

Learning to Use the TI 99/4A Computer

Learning to Use the
TI 99/4A Computer
by Kevin Townsend

Gower

© Gower Publishing Company 1983

All rights reserved. No part of this publication may be
reproduced, stored in a retrievalsystem,or transmittedin
any form or by any means, electronic,mechanical,
photocopying,recording,or otherwise, withoutthe prior
permissionof GowerPublishing Company Limited.

Published by
Gower Publishing Company Limited,
Gower House, Croft Road, Aldershot,
Hampshire GUI 13HR, England

British Library Cataloguing in Publication Data

Townsend, Kevin
Learning to Use the TI 99/4A Computer.—(Learning to use)
1.TI99/4A (Computer)
I. Title

001.64*04 QA76.8.T

ISBN 0 566 03492 1

Typeset and printed in Great Britain
at FD Graphics, Fleet, Hants.

Contents

List of Figures vii
Foreword ix

Chapter 1. Introduction to the Texas Instruments 99/4A 1
What is the TI 99/4A? 1
How was the TI 99/4A developed? 3
What can the TI 99/4A do? 6
How can the TI 99/4A be extended? 9
What are some typical applications of the TI99/4A? 12
Summary 16

Chapter 2. Using the TI 99/4A microcomputer 17
Switching on 17
The screen 19
The keyboard 19
Loading a program 22
Editing 26
Giving simple instructions to the TI 99/4A 29
The TI 99/4A as a calculator 33
Summary 35
Self-test questions 35

Chapter 3. Introduction to programming 37
Writing and running a simple program 37
Some more BASIC instructions 40

Input : 40
Decisions 41
Repetition 45

More programs 47
Saving programs 51
Summary 53
Self-test questions 53

Chapter 4. Graphics 55
The screen and memory 60
Producing a drawing 63

Screen patterns ____ 66
Movement 69
Animation 71
Dynamic simulation 75

Chapter 5. Special features of the TI 99/4A 77
Specification of the TI 99/4A 77
Inside the TI 99/4A microcomputer 80
Sound on the TI 99/4A computer 81
Using the TI 99/4A as a timer 84
Speech synthesis 88

Conclusions 89

Appendix 1 Further reading 91
Magazines 91
Magazine articles 92
General books 92

Appendix 2 Glossary 94
Appendix 3 The Tower of Hanoi: a game 102

Index 107

VI

List of Figures

1.1 The Texas Instruments 99/4A Home Computer 1
1.2 A large scale integrated circuit: chip 2
1.3 A cassette tape and a floppy diskette 7
1.4 A cassette recorder attached to the TI 99/4A 7
1.5 (a) A TI Solid State Software command module.

(b) A command module inserted into the computer console 8
1.6 Rear view of the TI 99/4A 9
1.7 A printer attached to the TI99/4A 10
1.8 Side view: remote control port (joysticks) 11
1.9 Rear view: power socket and cassette recorder port, display port 11
1.10 Side view: Speech Synthesizer port 11
1.11 Front view: command module port J 12
1.12 Display produced by VisiCalc 15

2.1 Screen display when the TI 99/4A is switched on 18
2.2 Dialogue while loading a cassette from tape: 1 24
2.3 Dialogue while loading a cassette from tape: 2 24
2.4 Dialogue while loading a cassette from tape: 3 25
2.5 Dialogue while loading a cassette from tape: 4 25
2.6 Dialogue while loading a cassette from tape: 5 26
2.7 A string stored in memory 30
2.8 Numbers stored in memory after A=3, B=4 34

3.1 The results ofrunning a program 38
3.2 Flow chart for simple maths drill 43
3.3 Flow chart for improved maths drill 44
3.4 Two parallel arrays for translation program 50
3.5 Dialogue after saving a program 52

4.1 Display produced by 'Geography Tester' program 55
4.2 The Standard ASCII codes 57
4.3 (a) The CALL CHAR character matrix.

(b) A redefined character using CALL CHAR 58
4.4 The CALL CHAR character definition codes 59
4.5 A redefined character using CALL CHAR 59
4.6 The CALL CHAR character grid 61
4.7 The colours and their codes 62
4.8 (a) Butterfly, (b) Butterfly with grid, (c) Butterfly composed of graphics

characters, (d) Outline of image plotted on screen 64
4.9 A Space Invader 66
4.10 Program scheme for screen patterns 67
4.11 Screen pattern 68
4.12 Frames 1,2 and 3 for flying butterfly 72
4.13 Flow chart for mobile display program 73

vu

5.1 Musical tonefrequencies 32
5.2 Display produced bythe'Random Sound and Colours' program 83
5.3 Display produced bythe 'Timer' program 86
5.4 Display produced bythe 'Timer' program 87
5.5 Display produced by the 'Timer' program 87

vui

Foreword

This series of books is designed to fill the gap left by nearly every other
book ever published on microcomputing. For some reason there has
always been a surfeit of books which assume a thorough basic knowledge;
but few books to give you that knowledge in the first place. Even the
manuals supplied with most systems seem to assume you understand the
main principles from the beginning: in fact, most are only useful if you
don't need them! This open-ended series of books from the Gower
Publishing Company provides the new computer user with a jargon-free
introduction to his machine. He doesn't need to have any previous
computing experience, for the book itself provides all the relevant
information necessary to get started: and if he does come across any
strange new jargon, there is a useful glossary at the back. It is not, and is
not intended to be, a text book on BASIC programming; but after reading
this book even the complete beginner will be able to refer to a text book
with complete confidence.

Most young readers, and the books are primarily (but not solely!)
designed for young readers, will be using their machines at school or at
home. It was probably bought by parents to help the family get used to the
new technology; or perhaps it is the school's new system to help in teaching
computer science. If it is used at home, it is almost certain that parents will
join in the learning process - and in many cases, they may well start to
monopolise it! Fifty years ago, these same parents would have bought their
children a train set, and would then play with it for hours on end
themselves. We can expect the same to happen with the new micros, for
programming can become a very addictive pastime! This series is almost
designed as much for the adult novice as it is for the younger reader.

Computing and computer skills are a modern concept, and we will all
need to understand at least the basic principles in a world that is becoming
increasingly computer orientated. Since our future is to be based on the
computer as a useful tool to help run our factories, offices, schools and
homes, we need to know how to get the most out of them. At best, the
computer can be a useful, profitable, enjoyable, and beneficial aid; and at
worst it can be an expensive, useless conglomeration of electronic junk.
The Learning to Use series of books is designed to help new users get the
best from their computers as quickly and as easily as possible.

The books describe a number of applications for each computer,
including business, education and hobbyist. Furthermore, a simple and
direct introduction to programming is included in such a way as to
motivate further investigation of the computer and its capabilities. Each
computer's ability to draw pictures and diagrams, in black and white or
colour, is explored and explained, and programs for a large number of
graphics applications are presented. Wherever available, details of each
system's sound reproducing capabilities, including example programs and
a version of the national anthem, are also included. For the programs, the
series is indebted to William Turner, a lecturer in statistics at the Oxford
Polytechnic - and no mean programmer! - who has had the unenviable
task of converting somebody else's programs for each new book. The
Tower of Hanoi game at the end of each book is entirely his own program
and illustrates the teaching philosophy he employs at his college:
elegant simplicity.

Two further commendations are necessary: to Michael Fluskey of
Newtech who first conceived the idea for this series and has throughout
been the driving force behind it; and to Garry Marshall who wrote the first
book in the series: Learningto Use thePET Computer. It was the joint work
ofthese two that developed the basic structure that is now used throughout
the series.

This said, I can only wish the reader as much enjoyment from the book
and his computer, as I have from mine.

Kevin Townsend

Editor, Micro Software and Systems Magazine

Chapter 1

Introduction to the
Texas Instruments 99/4A

What is the Texas Instruments 99/4A?

The Texas Instruments 99/4A (which, for the rest of this book, we shall
often abbreviate to 'the TI 99/4A') is a computer. It is usually called a
microcomputer (and sometimes a personal computeror home computer)
because it is extremely small compared to early computers - and also
because its electronic 'heart' is a microprocessor. As you can see from
Figure 1.1, the TI 99/4Aappears likea casewith a keyboard, rather likea
conventional typewriter. In use, it requires a screen of some sort for its
display. In order to keep down costs, it has been designed to work
primarily with an ordinary television set (either black and white, or
colour). Inside the TI 99/4Athere are a number of integrated circuits, or
chips as shown in Figure 1.2. One contains the microprocessor. Others

Figure1.1 The Texas Instruments99/4AHomeComputer

provide the computer's memory, and can store information. Initially,
there is no need to worry about the inside of the computer. The electronic
circuitry and the devices that make the TI 99/4A work are fascinating, but
a detailed understanding of them is certainly not necessary in order to use
the computer - and this introductory book is about learning to use the
TI 99/4A computer.

The main feature, the keyboard, is for communicating to the computer.
Commands that are to be obeyed, and information that is to be stored, can
simply be typed in. Because the keyboard is set out in the same way as a
typewriter, a good typist can type almost as quickly as on an ordinary
typewriter. Notice, however, that if you try to type too fast, and do not
perhaps press the keys firmly enough, it is quite possible for the TI 99/4A
to miss some of the keys you think you have pressed. Nevertheless, it is a
good idea from the start to try to use the professional 'five-finger' typing
techniques rather than one-finger tapping: in the long run, this will save a
considerable amount of time. Once the correct connections are made to the

television set, anything you type on the keyboard will automatically appear
on the screen.

The TI 99/4A computer possesses a number of what are called 'screen
editing facilities'. These make it fairly simple and easy for you to 'edit'
your typing, ie to correct errors, to make changes, and to arrange for the
revised typing to appear on the screen. The TI 99/4A's screen editing
facilities have been very carefully thought out. With a little practice, you
will find them easy to use.

Besides letters and numbers, the TI 99/4A also lets you produce simple
pictures on the screen. This facility is known as 'graphics', and is an
impressive bonus to the use of the computer. The imaginative use of
pictures, diagrams and graphs enlivens the presentation of information,
and can be used in computer games, in business applications, and in
educational programs.

Figure 1.2 A large scale integrated circuit: chip.

The TI 99/4A is light and compact, and is small enough to be carried
from room to room, or from house to house, or even from schoolroom to
schoolroom. It can be set up and used in its new location quickly and
easily, for it needs only to be plugged into the mains and connected to an
ordinary domestic television set. Furthermore, as soon as it is switched on
it is ready to accept commands typed in at the keyboard, provided only
that they are typed in a language that the computer understands. The
language is BASIC, and it enables you to issue commands which are
promptly and automatically obeyed by the TI 99/4A computer. There are
many different versions of BASIC. The TI 99/4A has two options: TI
BASIC, which is held inside the computer; and TI Extended BASIC,
which is supplied on a plug-in command module. Throughout this book,
we shall concentrate on the inbuilt TI BASIC that is supplied
automatically with the system.

How was the TI 99/4A developed?

The two main events that have hastened the advance of microelectronics,
and microprocessors in particular, are the space race of the 1960sand the
general requirements of the world's various defence organisations
(particularly the US Department of Defense, and the UK Ministry of
Defence) ever since the end of the Second World War. In the space race,
because the US rockets were less powerful than those of the Russians, the
Americans needed to reduce the sizeand weight of everything that had to
be carried by their rockets - including the electronics. At the same time,
defence leaders began to demand computers that weresmallenough, light
enough, and tough enough to be carried around in, and survive, battle
conditions. In particular, this stimulated the American electronics
industry to investigate and develop means of miniaturising electronic
circuitry - and the result is the microprocessor, often referred to as the
chip. Not only is this extremely small (smaller than the size of the average
finger-nail) and relatively powerful (as powerful as the early computers
that would fill an average sized room), it is a multi-purpose device that can
perform any electronic function for which it can be programmed. This
versatility has led to the use of microprocessors in a wide and ever-growing
range ofapplications (the most common, and best known, is, ofcourse, as
the 'heart' of a general purpose microcomputer like the TI 99/4A). The
consequent mass production of microprocessors has caused the cost per unit
(ofthe microprocessor-not the microcomputer!) todrop to justa fewpence.

The story of Texas Instruments and the TI 99/4A in particular goes
back some 50 years. It started on May 16th, 1930 when two young
scientists, John Clarence Karcher and Eugene McDermott, signed a

charter for Geophysical Service Inc. Some years earlier Karcher had had
the idea that it would be possible to calculate the depth of geological strata
by bouncing sound waves off them. He believed that this technique, now
known as Reflection Seismology, could be used to determine the shape,
depth and nature of subsurface structures and thereby to indicate the
possibility ofoil being present in them.

Karcher's theory proved to be workable in practice and within a year
the company, based in a small office in downtown Dallas, was operating in
Texas, in California and in Mexico. It was a period of steady growth, with
continuous developments ofequipment and technique, which lasted until
the outbreak ofWorld War II.

By 1951 the manufacturing and exploration activities had both grown
so much that it was decided to set them up as separate corporate
structures. The former became Texas Instruments Inc - with GSI, the
exploration company, as a wholly-owned subsidiary.

Since those earliest days, Texas Instruments has been a major user of
commercial computers. One might say that TI and the computer industry
grew up together. While the computer was in its infancy TI designed and
built its own special purpose machines for the processing of seismic data
and, in 1971 produced the ASC - an advanced scientific computer which,
at that time, was the largest in the world.

Texas Instruments entered the commercial minicomputer market in
the late '60s. Since that time it has been actively marketing data processing
equipment in Europe and now serves a wide spectrum of commerce and
industry from over 40 West European locations.

In March 1967 Texas Instruments engineers, Jack Kilby, Jerry
Merryman and James Van Tassel completed the world's first electronic,
handheld calculator. This miniature calculator is now in the permanent
collection of the Smithsoman Institute, Washington DC. The patent for
the invention was assigned to TI on June 25th 1974.

In 1969 TI entered into a series ofcontracts for integrated circuits to be
used in calculators which would be produced by other manufacturers.
Then, in 1972, TI formed its own calculator division selling its first
product, the TD datamath. Since then Texas Instruments has continually
introduced new calculator ranges and is now one of the world's leading
manufacturers.

TI is also undoubtedly the world leader in electronic educational
products. The first of these was the Little Professor, introduced in 1976. It
looked like a calculator but it posed mathematical questions rather than
giving the answers. The philosophy is very simple: by making the learning
process fun for a child, the child will want to keep on learning. In 1978TI
incorporated its newest invention - the single chip speech synthesizer -

into the Speak & Spell learning aid, one of the most innovative consumer
products ofall time.

With so much experience in the manufacture of semiconductor
components and computer items for the professional market plus its
commitment to electronic products for the consumer market, it was
probably inevitable that Texas Instruments should, at some time, produce
a home computer. The TI 99/4 (now superseded by the TI 99/4A) was just
that - a computer designed truly for the home. The keynote is ease-of-
operation even by the user who has never touched a computer in his life
before. The computer is also the pioneer of Solid State Software
technology which allows electronic services to be reprogrammed through
the use ofinterchangeable plug-in modules. This technique, applied to the
TI 99/4A, allows even a novice to program the computer in a moment.
Simply by plugging in the appropriate command module the computer
becomes an arcade game, alearningaid forchildren, or ahousehold money
management system - there are scores and scores of different software
packages to choose from.

The TI 99/4A is based on the 9900 Family 16-bit microprocessor, a
processor manufactured by Texas Instruments and similar to the one used
in many of the amusement arcade games and identical to that used in a
number ofother successfulmicrocomputers. Ironically, given the military
origins of microelectronics, these microprocessors are more advanced
examples of the technology than those used in the guidancesystems of the
inter-continental ballistic missiles,andeventhe ultra-modern Exocet-type
missiles! The processor is the heart (and brain!) of theTI 99/4A. Although
it doesallthe hardwork, allthe computingandcalculations, youcantapits
potential and make it work for you without having any knowledge of how
it functions.

While many manufacturers release several versions of anynewcomputer
(usually based on the size of its RAM, or internal memory), Texas
Instruments has so far released just the single machine: the TI 99/4A. At
the time ofwriting however, a TI 99/4B appears to be imminent. The size
of its memory is 16K RAM (expandable to 48K), or 16 x 1024 bytes of
random access memory. One byte is actually made up of 8 bits of
information, but the important thing to remember is that it takes
approximately one byte to storeasinglecharacter. Thus, the TI 99/4A can
store up to a little over 16,000 charactersin its internal memory.

When using the computer, the internal memory (comprising both
RAM and ROM - see glossary) has to store both the program that is
operating, the language interpreter that converts the program instructions
into machine instructions, and any information you have to type in. Thus,
smaller computers like the old 8K PETs, and the newer IK ZX80s are all

capable of operating simple games programs, but are probably not large
enough to operate the more sophisticated fantasy games like Dungeons
and Dragons; and certainly not large enough for the majority of business
uses. But since the first TI 99/4Aproduced hasa fairlysubstantial memory
size, certainly in terms of home computers, it is more than likely that
Texas Instruments has further plans for the machines, even into basic
business applications.

What can the TI 99/4A do?

Fundamentally, the TI 99/4A microcomputer can do anything that you
can tell it to do. That is, it will obey any instruction or set of instructions
that is correctly given. A set ofinstructions to a computer is usually called a
computer program, and is written in a special language called a
programming language. Like any other computer, the TI 99/4A executes
programs and does what you tell it to do. Thus, one way to make use of the
computer is to learn to program in its own language, which is BASIC. Now
although BASIC is the natural language ofthe TI 99/4A computer, it is not
the natural language of the 9900 Family microprocessor. The BASIC
program must therefore be translated into the language, or code (known as
'machine code'), that is understood by the microprocessor. This second
level of translation happens automatically when you 'RUN' a program,
and you will be unaware of it when you are using the computer. It is
possible to write programs directly in the TI 99/4A's machine code, but
this book will not go into the methods. Machine code programs are
considerably more difficult to write than BASIC programs, even though
they operate at a much faster speed. One reason for this is that there is no
time lost in the translation between BASIC and machine code. Another

reason is that no translation is ever as good as the original. Just as a word
for word translation of Shakespeare into French can never be as good as
either Shakespeare's English, or Molieres French, so a translation from
BASIC to machine code can never be as efficient as a program written
directly in machine code.

However, it is not essential to be an expert programmer to use the
TI 99/4A computer since a growing number of ready-made programs can
be purchased. These programs either come on a cassette tape, from which
they are transferred into the memory via an ordinary cassette recorder/
player unit; or as a games cartridge that can be plugged into a cartridge slot
on the right-hand side (looking from the front) of the front of the computer.
Since many programs are already available, you may like to have a look at
the hobby computer magazines for their advertisements. A much wider
range will soon be available. Many commercial firms will be supplying

programs specifically for the TI 99/4A, and some are already advertised in
the press. Texas Instruments itself produces a wide range of games and
other programs. These are usually supplied on plug-in command modules
and are written in machine code.

Programs that are purchased from a different source usually arrive on
an ordinary cassette, or possibly a floppy disk. Figure 1.3, shows just such
a cassette and a floppy disk. To transfer a program to the TI 99/4A requires
either a cassette tape system (player/recorder) or a disk unit. Figure 1.4
shows a cassette tape recorder attached to the TI 99/4A. Figure 1.5 shows a
command module on its own and pluggedinto the computer. The programs

Figure 1.3 A cassette tape and a floppy diskette.

Figure 1.4 A cassette recorder attached to the TI 99/4A.

themselves are often referred to as 'software', in contrast to the computer
itself, which is known as the 'hardware'.

The TI 99/4A computer can do many things. As with most micro
computers, you can often make it do these things without having any
personal knowledge of programming. Nevertheless, it is often useful to be
able to program, ifonly to amend or modify an existing program. Besides,
programming is fun! It is easy to do, and it provides a means ofexpressing

Figure 1.5 (a) A TI Solid State Software command module.
(b) A command module inserted into the computer console.

and communicating your own ideas to the computer so that it can test them
for you.

How can the TI 99/4A be extended?

Besides performing computations and storing information the TI 99/4A
can, again like most other computers, be used in conjunction with other
devices. Units which can be connected to it, and controlled by it, are called
'peripherals'. You met one of them in the previous section: the cassette
recorder. This is a peripheral device used for the permanent storage of
information or programs by means of a magnetic pattern on the tape. The
TI 99/4A is supplied with a cable that will connect it and the recorder. In
fact, the TI 99/4A is almost unique in offering the ability to attach two tape
recorders simultaneously. (Figure 1.6 shows a rear view of the computer
with a number of the various peripheral connection sockets, including the
cassette recorder port.) One end of the cable connects to the left-hand
socket (viewed from the rear), while the other end connects to the
'earphone' and 'microphone' sockets of the recorder. A third wire ofone of
the cables can optionally connect to the recorder's socket usually labelled
'remote'. If your recorder has one of these sockets, the TI 99/4A can
control the cassette motor, and can stop the cassette automatically as soon
as it has successfully received the required information on the tape. We
recommend, however, that you disregard the 'remote' wire and use the
recorder manually.

For many computer applications it is useful to have the results of the
computer's work in written form to provide a permanent record of the
results of computations. It is also a useful aid for when you start to write
your own programs, and particularly when you start to amend programs,
to have a written copy. This printed output is called either a 'printout', or a
'listing'. A printout usually refers to the results of computations, while a
listing refers specifically to a printed copy of a program. Obviously, a

HUfMjtfl

^ffij flB H
^^^^^i^^ij^^R-

Figure 1.6 Rear view of the TI 99/4A.

computer printer is an essential peripheral for obtaining permanent
printouts and listings. It can be attached to the TI 99/4A as shown in
Figure 1.7. If you wish to buy a printer, ask your supplier, or Texas
Instruments, for advice.

All peripherals are attached to the TI 99/4A using the connections on
the sides, rear and top front of the computer. Figures 1.8, 1.9, 1.10 and
1.11 show the various views of the TI 99/4A with the different connection
sockets, or ports. A 'port' is another name for a connection point between a
computer and the outside world because it is similar to the way in which an
airport or shipping port connects acountry or region to its own outside world.

The TI 99/4A also has a device known as the Peripheral Expansion
System, which allows you to add accessories to your computer system in a
single, convenient location by inserting them in the peripheral system
itself. The package includes the Peripheral Expansion System, and the
Peripheral Expansion card with a connecting cable. The latter two
combine to serve as an interface between the computer and the accessories
in the unit. With this system attached to the 99/4A, you can:

1. Increase the capabilities of your computer system with a variety of
accessories in the form of slide-in cards.

2. Install a TI Disk Memory Drive in the compartment designed for
this purpose.

Figure 1.7 A printer attached to the TI 99/4A

10

Figure 1.8 Side view: remote control port (joysticks).

Figure 1.9 Rearview: powersocketandcassette recorder port, display port.

Figure 1.10 Side view: Speech Synthesizer port.

11

3. Connect the unit to the computer via cable in order to provide
flexibility in the placement of equipment.

Byremoving the top of the unit and sliding the accessory cardsinto the
slots provided, the Peripheral Expansion System can hold up to seven
computer accessories, such as the TI Disk Drive Controller card, the TI
RS232 Interface Card, the TI Memory Expansion Card, and the TI
P-Code Peripheral Card, in addition to the Peripheral ExtensionCard.

What are some typical applications of the TI 99/4A?

The TI 99/4A computer was designed with many serious applications in
mind. The areas in which it can be used can be broadly classifiedas: in the
home for personal and recreationaluse; in educationalinstitutions; and, to
a certain (but growing) extent, in business.

For personal use, there are games programs of many kinds already
available, and more becoming available all the time. There is even one,
called the Tower of Hanoi (a classic ancient logic problem) at the end of
this book, that you can type into the TI 99/4Aand play. Using a computer
for playing games is sometimes criticised as a frivolous use ofan advanced
electronic device, and there is no doubt that many gamesare lighthearted.
Nevertheless, they do serve a useful purpose for relaxation and enter
tainment. Furthermore, there are many imaginative and stimulating
games that, like the Tower of Hanoi, have a definite educational value.
Other games can teach or help to develop attributes ranging from simple
manipulation and co-ordination skills in children, and the mental disci
plines required to find solution methods for puzzles, to testingstrategies
and tactics against situationspresented by the computer. (The TI 99/4Ais
alsounique amongthe current rangeofhomecomputersin having perhaps

Figure1.11 Front view: command module port.

12

the world's best speech synthesizer. Later on in the book is an example ofa
spelling test program using the synthesizer to ask you to spell certain
words. There can be no doubt about the educational value of such pro
grams, but at the same time they are sufficiently enjoyable to be almost
classed as lighthearted games!) There are alsomany chess-playing programs
of a formidable standard, and, perhaps spurred by playing such games,
you might even be writing your own games programs in the near future.

The presence of a TI 99/4A in the home means that the educational
actitivies need not be restricted to schools and colleges. Computer assisted
learning packages have been available for some time on other computers
and are already being converted for use on the TI 99/4A. These can be
used just as effectively at home as at school. Computer assisted learning is
not, however, intended to replace teachers, but to assist them by providing
another tool. In a post-industrial society (it is often claimed that, just as the
country went through an industrial revolution during the last century, so it
is now going through a technological and information revolution), it is
important to expose everyone, as early as possible, to the current tech
nology. Only in this way will young people today be made aware of the
possibilities presented by modern electronics, and be in a position to take
advantage of the potential of computers. The presence of a TI 99/4A
computer as an everyday item in the home or school can help achieve this
objective.

Examples ofTexas Instruments' educational programs include:
1. Division. Animation, colour and graphics are all used to teach the

meaning of division and the basic facts of division. The operator is
automatically provided with extra help if his performance is low.

2. Music Maker. A music composition package that lets even the
novice composer create computer music by simply arranging notes
on an electronic musical staff.

3. Video Chess. A powerful but easy to use package that keeps track of
all the moves. You can simply use the computer asan electronic board,
or you can use it as your opponent. It allows you to choose the level of
difficulty, and will even save a particular game for later replay.

In schools, microcomputers have many valid uses, ranging over
computer assisted learning, instructional programs, and the use of quiz
programs. In higher education, the TI 99/4A is ideal for activities such as
Sixth Form and undergraduate programming projects. It is particularly
strong and useful in the range of alternative programming languages
available, including TI Extended BASIC, UCSD Pascal, TI-LOGO and
Editor/Assembler. Although these are for the more advanced user and are
not examined in any depth in this particular book, it is worth noting some
of the main points.

13

Extended TI BASIC is very similar to the TI BASIC that we shall use in
this book, except that it contains extra functions and features that make
advanced programming easier and more efficient.

UCSD Pascal is a system that was developed to aid the use of the Pascal
programming language, a language that was itself originally developed in
Switzerland as an aid to the computer learning environment. Its main
feature is that it has an inbuilt degree of software portability, which means
that a program written in UCSD Pascalon adifferent make ofmachine will
also run on the TI 99/4A, provided only that the two hardware configur
ations are similar (for example, if the program was originally written on a
machine with a floppy disk and a printer, it will most probably require the
TI 99/4A to have such peripherals as well).

TI-LOGO is a computer language based on a philosophy ofeducation
developed by Professor Seymour Papert and the staff of the Artificial
Intelligence Laboratory of the Massachusetts Institute of Technology.
The main principle of LOGO is the creation of computer based
environments in which formal learning (such as mathematics) can occur in
a natural manner.

The Editor/Assembler package extends the flexibility of the TI 99/4A
by allowing users to program in assembly language. It gives the
programmer a direct access to all the computer's features such as sound,
speech, graphics and interfaces, as well as enabling the highest possible
speed from the computer's 16-bit processor.

Use of the TI 99/4A as a business aid is, at least for the time being,
somewhat limited. Most, but by no means all, business applications
require the speed capabilities ofa floppy disk storage unit and either a dot
matrix or daisywheel printer; all of which may be accessed via the
Peripheral Expansion System. When all of these additions are attached,
the TI 99/4A is capable ofmost business applications. If you want to know
more about some of the technical words used anywhere in this book, look
them up in the glossary at the end of the book.

For any activity where largeamounts of information have to be stored,
and certain items have to be retrieved (for example, examining the stock-
levels of individual items), it is almost essential to use a disk rather than a
cassette unit for storage. This is not only because a disk has a greater
storage capacity, but also because it permits an item of information to be
got out of storage or 'accessed' much more rapidly. Any item stored on a
disk can be accessed almost immediately regardless of its position. This is
because the 'read head' on a disk unit can move over the surface ofthe disk
to the required point, and for this reason, a disk unit is sometimes called a
'random access' or 'direct access' device. By contrast, using acassettetape,
it is necessary to wind the tape sequentially until the required point is

14

reached. This, ofcourse, can mean long and frustrating delays, and is most
irritating when repeated access to information is required.

However, it is nevertheless possible to use the TI 99/4A, even without
a disk unit, in a business environment in certain cases. These are primarily
where the whole application is loaded into the computer once only every
time it is used, and that no further access to the tape is required. A typical
example of this type of application is the dynamic spreadsheet analysis
program of the type that was first made famous by VisiCalc (see Figure
1.12). Here, mathematical formulae and relationships can be defined
directly on the screen and the computer will work out the results. The
program is called dynamic because you can change parts immediately. At
the time ofwriting this book, we know of no such program on the market
for the TI 99/4A, but there is little doubt that some enterprising
programmer will very soon produce one! In fact, the spreadsheet type of
program is an ideal application for a command module that simply plugs
into the computer, and we may confidently expect Texas Instruments to
provide such a program in the near future.

Most computer manufacturers avoid announcing their intentions
before the product is available, but at the time of writing this book we
noticed sufficient hesitations from the TI spokesman we questioned to
have strong suspicions that the company is about to launch a wide range of

Figure 1.12 Display produced by VisiCalc.

15

new software. We suspect, therefore, that by the time you read this book
there may be, or may imminently be, a new range of business software
including a spreadsheet package and a word processor!

Apart from these last few examples, the majority of such activities can
be performed using existing programs. However, if you learn to program
the TI 99/4A microcomputer, you can write your own programs. (It is
worth remembering that a number of very successful commercial
programs were first written because ordinary people at home, at school or
in the office, were dissatisfied with the programs they could buy - so they
wrote their own). Not only can you express your own ideas, but you can
adapt programs that you buy to suit your own requirements more exactly.
Since the TI 99/4A computer is much faster at numerical calculations than
mere people, it would seem sensible to get the computer to do all your
complicated calculations. Besides being used as a source ofentertainment,
and of educational and business convenience, the TI 99/4A computer can
also be used, in this new Information Age, to extend and amphfy the
human brain.

Summary

The TI 99/4A computer is a small microcomputer which currently comes
as a single 16K version (expandable to 48K). The word 'micro' is used to
describe the physical size of the machine, and particularly the processor
inside, and NOT its ability to compute. However, the smallness of a
microcomputer is what makes its computing power available for use as a
personal tool at home, at school or in the office. This smallness is a direct
result of recent technological developments stimulated mainly by the
rivalry between the world's major nations.

The TI 99/4A can be used in many ways, but its main areas of
application seem to be for personal entertainment and education, with a
certain and lesser amount of business applications likely to develop.
Computer programs can alreadybe bought to perform many tasks in these
areas. This allows the TI 99/4A to be usefully employed as soon as it is
acquired without any expertise in programming being necessary. Clearly,
as time progresses, more and more programs will become available.

The capabilities of the TI 99/4Acan be extended in a variety of waysby
acquiring further units or peripherals, such as a printer, which can then be
attached to the computer and used in conjunction with it.

16

Chapter 2

Using the TI 99/4A
microcomputer

Switching on

The TI 99/4A must never be attached directly to the mains power supply.
To turn it on, it should first be connected to the supplied power trans
former unit, and this in turn plugged into the mains in the usual manner.
The ON/OFF button is on the front of the TI 99/4A next to a small light
that illuminates when the power is on. It is a slide switch: pushing it to the
right will turn the computer ON; pushing it to the left will turn the
computer OFF.

However, before you can do anything meaningful with the computer,
it must also be attached to adisplay screen sothat you can see what you are
doing. This will usually be a domestic television set as described in
Chapter 1. Most people will use their own home television set. Although it
is preferable to use a colour set, in order to gain the full benefit of the
colour capabilities of the TI 99/4A, you can also use one of the more
modern black and white sets. A portable black and white set has the added
advantage of being easily moveable to any location in the building without
being excessively expensive (about £60, for example). Because the
computer is American and originally made for the American market, a
separate PAL modulator is provided for the UK market. Connecting your
TI 99/4A to the display monitor requires only two steps:

1. Connect the single 6-pin plug (called a 'DIN' plug) to the computer
console at the video port located on the right-hand side of the rear
panel of the TI99/4A.

2. Disconnect any existing aerialinput to the television set, and connect
the PAL modulator to the set using the short coaxial cable supplied
with the system.

Once the connections have been correctly made you can switch on the
computer with the ON/OFF button. To begin with you may get a weak
picture of the channel last viewed on the set, that is, BBC 1 or ITV. You
must now tune the set to the frequency used by the TI 99/4A. A picture
will form when you tune around frequency 36. It will show a blue
background (on a colour set) or a light grey background (black and white

17

set). Two horizontal strips of the various colours available cross the screen
(showing as varying shades of grey on a black and white set). Between
these two strips is the Texas Instruments logo (an outline of the state of
Texas inset by the letters't' and 'i'), and the message:

TEXAS INSTRUMENTS
HOME COMPUTER

This initial display from the TI 99/4A is shown in Figure 2.1.
Underneath the bottom strip is a copyright notice from Texas
Instruments, while above it is the instruction:

READY - PRESS ANY KEY TO BEGIN

You will find that many different programs give you this instruction at
one stage or another. It is probably a good idea to get into the habit of
pressing the space bar whenever so instructed. There are two reasons: the
first is that it is the largest key on the keyboard and therefore the easiest to
find in a hurry; and the second is that this habit will eliminate the risk of
hitting a more destructive key, like RESET. There is little danger of this
on the TI 99/4A, but we nevertheless make no apologies for the
recommendation: now that you have started using a computer, you will
find that during the next few years you will come across, and use, many

Figure 2.1 Screen display when the TI 99/4Ais switchedon.

18

others. Ifyou now press the space bar, the screen will clear and you will see
a new message. The first two lines consist of the TI logo and the 'Texas
Instruments Home Computer' message. Below this is the beginnings of a
menu. A computer 'menu' is a list of options that are available together
with an individual code (usually a number) that stands for each option. It is
rather like the menu in a restaurant. At the moment there is only one
option: TRESS 1 for TI BASIC. If, however, you are also using an
Extended BASIC command module, then the menu would continue with
'2 FOR EXTENDED BASIC Now press 1. The screen will clear and be
replaced by a system prompt.

The first line tells you that the resident 14KBASICInterpreter is ready
to accept your input. We will learn more about BASIC in Chapter 3. The
second line consists of two symbols: a right pointing or closing angle
bracket (which some ofyou might already know better as the 'greater than'
symbol), and a flashing block. The first is known as the BASIC
Interpreter's 'prompt'. It is always located against the left hand margin of
the screen and tells you more specifically that BASIC is ready to receive a
new command. The flashing block, known as the cursor, shows you where
the next character you type will appear on the screen.

The screen

The letters, symbols and numbers that youcan type from the keyboard are
all called 'characters'. The screen display is wide enough to take 32
characters on a single line. Once the line is full up with 32 characters, the
cursor automatically moves to the beginning of the next line.

The screen display area can hold 24 lines, each of 32 characters. A
character can therefore be placed in any of 24x32 (=768) positions on the
screen. When the bottom line of the screen is full, the screen contents
automatically shift up by one line giving a new blank bottom line. This is
called 'scrolling upwards'. The previous top line disappears off the top of
the screen.

On some screens, only 28 columns are actually displayed.

The keyboard

The keyboard is very much like any ordinary typewriter keyboard. It is
known as a QWERTY keyboard becauseof the organisation of the top row
of letter keys, reading from left to right.

The keys consist of letters, numbers and symbols. There is also a space
bar which produces the spaces between words. Using the keyboard is just
like using an ordinary typewriter. Pressing any key causes its lower case
character to display on the screen, while holding down the <SHIFT>

19

while pressing any other key will cause the upper casecharacter to appear.
However, a word of warning: the upper case characters on this computer
are, quite logically, capitals. But so are the lower case characters, albeit
small capitals! Sooner or later you will probably hear that BASIC will only
recognise capital letters, which is generally true. This is probably why the
TI 99/4A returns capital letters in both upper and lower case, because with
this computer you can program in both cases. BUT some functions (for
example, loading a recorded program from a cassette) insist on the upper
case only. Once again, therefore, we recommend that you get straight into
the habit of using the ALPHA LOCK key whenever you intend to
program in TI BASIC.

There is also a number of other special features which this section will
explain.

First of all, note that TI BASIC is designed with an automatic repeat
function. This means that if you hold down any key on the keyboard for
longer than one second, then that key will repeat automatically. If you
have been reading this book with a computer switched on beside you, you
may also have noticed by now that in certain circumstances the screen may
go blank. Don't worry. You haven't broken the computer nor lost any
information it contained. It is simply a device built into the system that will
cause the screen to clear ifnothing new is entered for a particular length of
time. If this has happened to you, press any key to bring back the display
as it previously was.

The most important key to note is the <ENTER> key, since this is the
most frequently used non-alphanumeric or standard punctuation key. In
many ways it is similar to the CARRIAGE RETURN key on an ordinary
typewriter since the cursor will move down one line and return to the left
hand margin. Its main function on the TI 99/4A, however, is to tell the
computer to accept the information you have just finished typing; that is,
to 'enter' the information into memory (and, of course, act on it if it is a
command).

We have already noted the <ALPHA LOCK>key in passing. It is
located in the bottom left hand cornerof the keyboard. It is a 'toggle' key.
Pressing it once locks all the alphabeticalkeys into their uppercase mode.
The number and function keys are unaffected. When you press the key
again, the keyboard returns to normal operation.

There remain two further important keys; keys whose importance lies
not so much in themselves but in the effect they have on certain other keys.
They are the <CTRL> (control) key to the left of the <SPACE BAR>,
and the <FCTN> (function) key to its right. The former is marked with a
red dot on the front face of the key, while the latter has a similar white dot.
At this point notice a two-level strip overlayabove the top row of keys. It

20

refers to this top row ofkeys. The upper level ofthe overlay is identified by
a red dot and indicates control keys. To activate them simply hold down
the <CTRL> key with one hand and press the required control key with
the other. The second level of functions is identified by alight grey, almost
white, dot. These are function keys that canbe activatedby holding down
the <FCTN> key in a similar fashion. You will notice that a number
of the standard character keys have white symbols on their front face:
these are also function keys activated by simultaneously pressing the
<FCTN> key.

The control characters are used primarily for telecommunications, and
will not be discussed in this book. The main function keys, however, are as
follows:

This key is used to delete a letter, number or other
character from the lines you type.
This key returns the system to the master title screen (see
Figure 2.1). All the information and/or program that
you have entered into the computer will be lost.
Pressing the left-arrow key moves the cursor to the left by
one space. The cursor does not erase the characters on
the screen as it passes over them.
Pressing the right-arrow key moves the cursor to the
right by one space. The cursor does not alter the
characters in any way as it passes over them.
These two keys have various functions depending upon
the application for which they are used. You will
probably use them mostly when editing a program.
This key inserts a letter, number or other character into
the lines that you type.
If you press this key before you press the <ENTER>
key, you will erase the line you are currently typing.
This key is normally used to clear the screen ofany
information that you have typed before pressing the
<ENTER> key.

Note that the <CLEAR> key is also used to stop a program that is
currently being executed. Stopping a program may sound a strange thing
to want to do, but in practice you will find that you need to use it quite
frequently. It is particularlyuseful when you start writing and testing your
own programs. Using the <CLEAR> key in this manner will not harm
the program that is in the computer's memory. It will cause a display
something like:

F 1 (DEL)

F = (QUIT)

F«-(LEFT)

F^ (RIGHT)

Ft (UP))
F| (DOWN) j
F2(INS)

F 3 (ERASE)

F 4 (CLEAR)

• BREAKPOINT AT 30

>

21

where the number is the program's line number that was being executed at
the moment you pressed the <CLEAR> key.

Loading a program

Probably the most enjoyable and painless way to become familiar with the
TI 99/4A and its keyboard is to use them to play a game that requires
responses from the keyboard. A growing number of games are already
available for this.

As we have already seen, there are three common methods ofreceiving
a program (other than typing it in at the keyboard yourself!) for the
TI 99/4A. These are via a floppy disk, on a solid state command module, or
via a domestic cassette tape. If you have a disk drive with your computer,
you are probably already an advanced computer user and there is httle that
this book for beginners can tell you. We shall not, therefore, discuss floppy
disks here.

TI's Solid State Software is probably the most common method of
buying ready-to-run software. This is veryeasy to use. There is a special
port on the front right of the console. It has a sprung lid that will
automatically close when no module is inserted. Simply plug the module
into this port and it is ready to run. There is no need to load the program
into the computer's RAM because the module contains its own memory
that is used by the computer.

To load any program - irrespective of its name, from a cassette unit to
the TI 99/4A, connect the player/recorder to the computer and insert the
cassette. At the cassette unit end there are two cables; one with two pins
and one with three pins to the connecting lead. If you are only using one
lead (and we will assume that you are, since the use of two recorders is
really only valid in advanced programming) then it does not matter which
of the two cable ends you use (provided you don't try and mix them!). The
cable that you don't use will become inactive.

Let us assume that you decide to use the three pin lead. Insert the white
pin into the earphone socket (usually labelled 'ear'), and the red pin of the
same size into the microphone socket (usually labelled 'mic'). The third
and smaller black pin will fit into the socket labelled 'remote', but note that
some cassette player/recorders do not have this socket. We are going to
suggest that you ignore this third pin altogether at this stage. Let us
pretend that you have a cassette with a recording of one of the programs
that is used in this book. It is a game known as the Tower of Hanoi, which
is called simply 'Hanoi' on the cassette. To load this program into the
computer, first make sure all the connecting leads are correctly attached.
Rewind the cassette to the beginning (check that you haven't connected

22

the 'remote' pin by mistake), and then type:

OLDCS1 <ENTER>

Remember that you can only enter a command when the command
prompt (>) shows against the left hand margin. The OLD command refers
to an old (as opposed to new) program; that is, one that has already been
entered and saved. CS1 directs the computer's attention to the cassette
port, and <ENTER>, as we have already seen, instructs the computer to
obey the line.

As soon as you press <ENTER>, the screen will display the
following message:

>0LDCS1
• REWIND CASSETTE TAPE CS1

THEN PRESS ENTER

The TI 99/4A will now guide you through the process of loading from
the cassette. Note that it assumes that you have only the program on the
cassette. This is advisable, particularly when you aredeveloping your own
programs, but it is not essential. What it means, however, is that you
cannot command the computer to find and load a particular program (one
of many) recorded on the cassette; it will simply load the next programit
finds.

Once the sequence for loading an old program from cassette into the
computer's RAM has been successfully completed, the command prompt
will again appear at the left margin. You can now run the program merely
by typing RUN, and entering this command by pressing the <ENTER>
key. If you have loaded a games program, the program itself should now
give you instructions on how to play the game. These instructions, or any
set of messages between the computer and user, are called a 'dialogue'.
The complete dialogue for successfully loading a program is shown in
Figures 2.2,2.3,2.4,2.5 and 2.6.

If you use long cassettes with multiple programs (never use C60s or
longer since the tape itself tends to be thinner than some of the shorter
ones) you may find that you spend a long time trying to find the precise
program you wish to load. To avoid these long waits you may consider
using the shorter C12 cassettes and having only one or two programs on
each cassette. Alternatively you can keep a written record of the general
location of the beginning of each program (if your cassette unit has a
counter, you can keep an exact record), and finally, you can also detach all
the connections from the computer and use the cassette as a simple voice
recording unit to speak the name of each program just before it starts on
the tape. This way you can use the fast forward and back facilities of the

23

Figure 2.2 Dialogue while loading a cassette from tape: 1.

Figure 2.3 Dialogue while loading a cassette from tape: 2.

24

Figure2.4 Dialogue while loading acassette fromtape: 3.

Figure 2.5 Dialoguewhile loadingacassettefromtape: 4.

25

cassette unit to listen for the name of the program you want. When you
have found the program you are looking for, reconnect the unit to the
TI 99/4A, enter:

OLDCS1 <ENTER>

at the keyboard, and press the playswitchon the cassetteunit. Ignore the
command to rewind the cassette to the beginning and simply press
<ENTER> again. The TI 99/4A will now load the very next program it
finds on the cassette.

As a general rule, it is useful to develop individual programs,
particularly if they start to get quite long and elaborate, on individual
tapes. When you have completely finished the program, you may then
store it with several others on a single cassette.

Editing

'Editing' is the name givento correcting or alteringa pieceof typing. The
TI 99/4Ahas excellent facihties. If yourealise that youhavemadea typing
mistake immediatelyyou havemadeit, the simplest way to put it right is
by using the <LEFT ARROW> key.Pressing it oncemakesthe cursorgo
back a space. It does not yet delete that space, but it doesallowyou to type

Figure 2.6 Dialogue while loading a cassette from tape: 5.

26

in the correct charactersover the top of the errors.
If youhave already entered theline oftyping withthemistake init, you

would normally have to re-enter the whole line. Let us say that you are
typing a program with the following line:

110 PRINT "WHAT APPEARS TO BE THE MATTHER?"

Onceyou havetyped <ENTER> attheendof the line, youwillbeunable
to use the <LEFT ARROW> key to correct the word 'MATTHER'.
Nevertheless, you still need to remove the incorrect 'H'. You may decide
to simply retype the whole line. To do this, re-enter the line correctly,
making sure that you start the line with the correct line number. Use this
method with care. Every time you start a lineof text with a number, the
BASIC interpreter inside the TI 99/4A will assume that it is a program
line; andthat ifanother withthe same number already exists, thenewline
is to replace it completely. Thus if you enter:

100 PRINT 'WHAT APPEARS TO BE THE MATTER?' <ENTER>

youwill not have changed theincorrect line at 110, butwill have changed
whateverused to be line 100. Line 110 willremain exactly asit is.

Similarly, if youenter aline number without any text you will delete
any existing text on that line (what you will be doing is instructing the
TI 99/4A to replace thatline withnothing - which isexactly what it will
do!). Thus, if you enter '100', then realise that you really want to change
line 110, and immediately type '<ENTER>' so that you can start typing
line 110,what you aredoingis deleting line 100.

It is a better ideato getusedto usingtheTI 99/4A's Editor. An Editor
isasmall program orroutine thatwill specifically enable youtoedittexton
the screen. (It isthevery simplest and very earliest form ofword processor.)
To use the Editor, simply type 'EDIT' andthe linenumber, thus:

EDIT110<ENTER>

The screen will print out the whole of the line as follows:

EDIT 110

110 PRINT "WHAT APPEARS TO BE THE MATTHER?"

Notice that we have underscored the initial 'P' of PRINT. This is to
indicate the position of the flashing cursor. Now use the <RIGHT
ARROW> key to move the cursor to the required position over the
incorrect 'H'. Every time you press this key, the cursor will move one
position to the right. As it doesso, the characters it passes remainshown on
the screen. Thus, if you pressthe <RIGHT ARROW> key 15 times, the

27

screen will show:

EDIT 110
110 PRINT "WHAT APPEARSTO BE THE MATTHER?"

Continue pressing the <RIGHT ARROW> key until the cursor is
directly over the the 'H' of 'MATTHER'. If you go too far, press the
<LEFT ARROW> key to take the cursor backwards to the correct
position. Now pressthe (for delete)key. The 'H' will disappear
and the text will close up to fill the space.

Let us say, however, that you want to change the line:

110 PRINT "WHAT APPEARS TO BE THE MATTHER?"

to

110 PRINT "WHATEVER APPEARS TO BE THE MATTER?"

This time we need to insert characters as well as delete the 'H' in
'MATTHER'. Proceed as above until the screen shows:

EDIT 110
110 PRINT "WHAT APPEARS TO BE THE MATTHER?"

Now press the <RIGHT ARROW> key until the screen shows:

EDIT 110
110 PRINT "WHATAPPEARS TO BE THE MATTHER?"

Type <INS>. This is the Editor command to enter INSERT mode. A
computer mode is a condition under which the computer will perform
certain functions. Thus, INSERT mode allows the computer to insert text
without overwriting existing text. (Another mode that we will look at later
in this chapter is IMMEDIATE mode, which allows you to use the
TI 99/4A as a calculator.)

Now type 'EVER' so that the screen shows

EDIT 110
110 PRINT "WHATEVER.APPEARS TO BE THE MATTHER?"

At this point you will need to leave the INSERT mode so that you can use
the <RIGHT ARROW> key to move the cursor to the incorrect 'H'. If
you do not exit from the INSERT mode, you will never be ableto move the
cursor to the required position. Every time you press the <SPACE
BAR>, for example, you will be inserting a space into the text, and not
moving any closer to your goal! Luckily, however, pressing either the
<LEFT ARROW> or the <RIGHT ARROW> key will cause the
computer to exit from INSERT mode. Now use the <RIGHT ARROW>

28

key to move the cursor to the 'H'. Delete this with the key and
then press <ENTER> to tell the TI 99/4Ato accept the changes you have
made. The screen will then show:

EDIT 110

110 PRINT "WHATEVER APPEARS TO BE THE MATTER?"
>

There are a number ofother more complicated editing commands that
can be used. Details of these can be found in the TI 99/4A's training
manual. Briefly, they include the <UP ARROW> key (allows you to edit
the line with the next lower number); the <DOWN ARROW> key
(allows you to edit the line with the next higher number); and the
<CLEAR> key (allowsyou to ignore any changes you have made so far,
and exit from Edit mode). It is wellworth remembering this last key, for it
will probably save a lot of wasted timeand effort when youstart writing
your own programs!

The TI 99/4A also has two other features that can be of great benefit
during editing sessions. These are the NUMBER (NUM) and
RESEQUENCE (RES) commands. If youare enteringa new programor
adding a new subroutine to an existing program, and want to avoid the
frustrating problem of forgetting to enter the new linenumber each time,
enter the following command:

NUM500,10<ENTER>

This tells the computer to automatically produce newline numbers every
time you press the <ENTER> key. The first number is to be 500, and the
numbers are to be incremented by 10each time. Ifyou just type:

NUM <ENTER>

then the computer will start to number from line 100, in increments of 10.
The RES command will resequence the line numbers. This is of

particular use when you are amendinga programand need to add, say, five
new lines between lines 100 and 102. The command:

RES<ENTER>

will resequence all the program's line numbers in increments of 10,
starting from the line number 100. You can specify the starting point and
the increment value in the same manner as for the NUM command.

Giving simple instructions to the TI 99/4A

Apart from the INSERT mode that we have just talked about, there are
two other modes that you must understand. These are IMMEDIATE

29

mode (sometimes known asCOMMAND mode, because it is here that you
enter a command) and DEFERRED mode. If you enter text into the TI
99/4A in a line starting with a number, the computer will store that line
without acting on it. That is, if you start a line with a number, you are
automatically using DEFERRED mode. In this case, the computer
assumes that you have typed a line ofa programthat you will want to RUN
later on in conjunction with many other lines.

If you do not use a number at the beginning of the line, the computer
will automatically enter IMMEDIATE mode. In this case, the TI 99/4A
will act on the instructions it receives immediately you press the
<ENTER> key. In the rest of this chapter we will look at using the
computer in IMMEDIATE mode. In Chapter 3, we will begin to lookat
using DEFERRED mode: that is, at programming.

Generally speaking, what a computer does in most situations is to
accept and store information of some kind, manipulateor process it, and
then give the results in some appropriate form. This can be illustrated by
instructing the computer to do somethingwith a set of characters. Such a
set ofcharactersis calleda'string'. In the BASIC language the dollar sign$
is used to tell the computer that you want it to treat something asa string.
For example, the string or characters 'NICHOLAS AND JONATHAN'
can be stored in the TI 99/4A's memory by typing and entering the
following:

A$ = "NICHOLAS AND JONATHAN"

You will, of course, remember that you have to press the <ENTER> key
to instruct the computer to obey the commands you give it. Pressing
<ENTER> causes the TI 99/4A to execute this instruction, which it does
by giving the name A$ to a partof its memory in which it stores the string
of characters between the inverted commas. This is illustrated in Figure
2.7. This BASIC language instruction is equivalent to the plain English
instruction: 'store the string ofcharacters between the inverted commas in
a part of the memory, and give it the name A$'. Note that spaces count as
characters just as letters do.

Memory A$

NICHOLAS AND JONATHAN

Figure 2.7 A string stored in memory.

30

When you press <ENTER> and the commandisexecuted, there isno
visible outward sign that anything has happened, other than the appear
ance of '>' prompt at the beginning of the next line. This means that the
TI99/4A is ready to acceptyournextcommand.However,there is nowan
area of the computer memory that is storing the phrase 'NICHOLAS
AND JONATHAN'. To demonstrate that the instruction has been
correctlyobeyed, younowneedtoknowhowto getat the information that
has just been stored. Youcanprint out the information stored in the part of
the memory given the name A$ by typing and entering:

PRINT(SPC)A$ <ENTER>

(Wherever we use the symbol '(SPC)', it is to indicate that a physicalspace
character must be entered at this point.)

In response, the computer will then print on the screen:

NICHOLAS AND JONATHAN

This BASIC instruction can be understood as 'print out what is stored in
A$\

You can instruct the TI 99/4A to find the number of characters stored
in the area of memory called A$ with the LEN instruction, where LEN
stands for 'length'. For example, suppose you now type:

PRINT LEN(A$)

When you press <ENTER>, the number '21' will appear on the screen.
In this case the 21 characters consist of 19 letters and two spaces. This
instruction can be interpreted as 'print out the length of the string stored in
A$', or as 'print out the number ofcharactersstored in the string A$\

BASIC also has some features that enable you to manipulate strings.
The SEG$ command allows you to pick off a number of characters from
anywhere within the string. For example, typing:

PRINTSEG$(A$,1,8) <ENTER>

will cause the computer to print the following eight characters from the
string:

NICHOLAS

That is, starting from the 1st character of the string known as A$, the
computer will display the next 8 characters.

Similarly, typing:

PRINT SEG$(A$,14,8) <ENTER>

gives the eight characters 'JONATHAN' from the right of the string.

31

This last instruction can be interpreted as 'print the eight characters
following the 14th characterof the string ofcharacters stored in A$'.

You can see, then, that BASIC programming instructions area sort of
shorthand for instructions expressed in English. But because the TI 99/4A
cannot think for itself, all of its instructions must be expressed in precisely
the correct way. If there is even aslight errorin the way that an instruction
is written, no computer yet available will be able to recognise it. The TI
99/4A will, however, let you know that it doesn't understand what you are
trying to do by printing an error message on the screen. Here are some
examples, with their meanings:
* INCORRECT STATEMENT Thisisasyntax error, themostfrequent

of all errors. Usually caused by a
typing or spelling error, or simply not
knowing the correct format of the
BASIC command.

* CAN'T CONTINUE This occurs if you try to continue a
program that has ended, or does not
exist.

* I/O ERROR This error message is generated when
input/output functions fail. A two
digit code is also generated. Try to
load a program from cassette using the
OLD command, but with the
keyboard in lower case, or small
capitals, mode.

A full list of the error codes can be found in the User's Reference Guide
supplied with the TI 99/4A.

We have seen how BASIC makes it easy to dissect strings. In the same
way, it is alsoeasy to build them up. To illustratethis you will need to store
at least two character strings. Do this first by typing:

S$ = "SKY" <ENTER>
T$ = "TRAIN" <ENTER>

Now see what you can build up from these strings. Try typing:

PRINT S$ & T$ <ENTER>

This instructionmeans'print the string stored in S$ followed by the string
stored in T$'. It produces:

SKYTRAIN

The following is a more complicated problem, but try to work out for
yourself exactly what it tells the computer to do:

32

PRINT SEG$(S$,1,2) &SEG$(T$,4,2) <ENTER>

The result is'SKIN'.
Using the same principle, it is possible toget the TI 99/4Ato producea

number ofother words from the two strings stored as S$ and T$. Try and
make the computer produce the following: 'INKY', 'TRAY', 'STRAIN',
'STINKY'.

The TI 99/4A as a calculator

The TI 99/4A can be used asa calculator. If it seemslike a rather expensive
calculator, remember that this is only one, and perhaps the least useful, of
ways in which it can be used.

As you will by now have realised, the number keys are situated on the
top row of the keyboard. There are also five arithmetic keys for you to
remember. The four main ones are:

+ means 'add to'
— means 'subtract' or 'take away'
* means 'multiplied by'
/ means 'divided by'

The fifth instruction is the more advanced arithmetic function of
exponentiation. The symbol to use is 'f'. This function is used to raise a
number to the power of a second number. Thus, 'squaring' 6 is the same as
raising it to the power of 2, which isof course6 * 6, or 36. The wayto enter
this is:

6|2
Ifyou wish to 'cube' the figure, that is, raiseit to the powerof 3(6*6*6),
use:

6|3
For the time being, however, we shall concentrate on the four major
functions. The symbol * isused formultiplicationto avoidconfusionwith
the letter X. The symbol / is used because there is no -J- on the keyboard,
and the alternative fraction display must be expressed on a single line.

Arithmetic calculations can be performed by instructions such as the
following:

PRINT 2+3+4 <ENTER>

The answer 9 is immediately displayed on the next line. A more
complicated calculation could be:

PRINT (2*3+4)/5 <ENTER>

33

The answer is 2. How you express the calculation instructions is very
important, for the computer will always obey a certain sequence when it
performs the arithmetic. This sequence is the generally accepted sequence
taught in schools and should not, therefore, cause any problems.

The sum is performed basically from left to right; but multiplications
and divisions are performed first. Thus:

10-2*3

will first do 2*3, and then subtract the result from 10. The answer is 4
(and not, as you might otherwise think, 24). You can change this sequence
if you wish to by using brackets. Brackets are always calculated first.
Thus, if you type:

PRINT (10-2) * 3 <ENTER>

the answer will now be 24.

Numbers can also be stored by using lines such as the following:

A = 3 <ENTER>

B = 4<ENTER>

Notice that with numbers, you do not need to use the $ symbol for the
location. What you have done, of course, is to store the value of 3 at a
location called A, and the value of4 at a location called B. The result of this
operation on the contents ofmemory is represented in Figure 2.8.

You can now perform calculations on the contents of these locations
even if you do not know what the actualvaluesare. Forexample:

PRINTA<ENTER>

gives:

3

Similarly:

PRINT A * B + 8 <ENTER>

gives:

20

Figure2.8 Numbers storedin memoryafterA=3, B=4.

34

Summary

A good way to become familiar with the TI 99/4A's keyboard is to run a
games program which requires responses tobemade from thekeyboard. A
program can be loaded into the computer's memory from a cassette by
typingan OLD CS1 command. Once a program isloaded, it canbe RUN.
So,whenstartingtousetheTI 99/4A computer, it isagood ideatopractice
with programs already recorded on cassette.

Most of the keys on the keyboard cause the corresponding symbol to
appear on the screen when they are pressed, as one would expect.
However, a few keys can be used (notably the <FCTN> key) to produce
different symbols and or instructions.

Instructions can be givendirecdy to the TI 99/4Ain its own TI BASIC
language (a version of BASIC produced byTexas Instruments). With the
aid of a small repertoire of instructions it is able to make the computer
perform such diverse activities as storing and manipulating words, and
storing and performing calculations on numbers.

Self-test questions

1. What is the instruction which starts the procedure for loading a
program into the TI 99/4A computerfrom a cassette?

2. How do you start the Editor so that youcanedit a programline? Using
as few instructions as possible, change the line:

100 THE ASCENT OF MAN

to

100 THE ANCIENT OMEN

3. Make the computer store the words 'LEAD' and 'POSE' in its
memory. Usingthesetwostoredwords only,writethe instructions that
will cause the TI 99/4A to display:
PLEAD

POSE
PLEASE

LOSE
ADDLE

4. Make the TI 99/4A store the numbers 4 and 5 in its memory. Using
these stored numbers only, enter the instructions necessaryto make the
computer produce the results16,24 and 36.

35

Chapter 3

Introduction to
programming

Writing and running a simple program

Towards the end of Chapter 2 we looked at using the TI 99/4A in
IMMEDIATE mode; that is, we gave it single line instructions that were
to be obeyed immediately. In this chapter we shall examine the alternative
DEFERRED mode, which is another way of saying: 'programming'. In
DEFERRED mode, all instructions must be on a line starting with a
number. The computer will then store these commands until it is later told
to RUN them. At this point it will obey each stored line of instructions in
the order of the numbers at the beginning of the line.

A program, then, is a sequence of commands for the TI 99/4A to obey.
The language in which the commands must be written in order that the TI
99/4A can respond to them is BASIC, and a few examples of individual
BASIC commands have already been introduced in the previous chapter.
BASIC is a simple programming language that was devised at Dartmouth
College in the USA, and which first came into use in the early 1960s.It was
intended to be easy to learn and easy to teach: and, indeed, its
overwhelming popularity as a language for microcomputers stems from
the very fact that it is very easy to learn.

The TI 99/4A first deals with a program by storing it, so that it can then
execute it when instructed to do so. When a program is stored in the TI
99/4A's memory it can be executed as many times as desired, or it can be
modified prior to running it again. When a BASIC command is preceded
by a number, the TI 99/4Atreats that line asan instruction belonging to a
BASIC program and stores both the number and the command. When the
line is first entered, the command is not immediately executed, but is
stored so that it can be executed later. A TI 99/4A program consists ofa set
of numbered commands. The numbers give the order in which the
commands are to be executed when the program is run. The command or
commands on the line with the lowest number are the ones to be executed
first, and so on in ascending order. In fact, the instructions that make up a
program can be entered in any order because the TI 99/4A uses the line
numbers to put the instructions in the correct order.

37

To summarise this: a program line consists of a number followed by a
command or commands; the TI 99/4A stores these instructions, and puts
them in the correct order by using their line numbers; a program consists
of a set of instructions; when a program is executed, each instruction is
dealt with in sequence by executing its command part.

Now let us write a short program to store the three words 'THE',
'DOG', and 'SHOW', and to use these stored words to write out the
phrases 'THE DOG SHOW, 'SHOW THE DOG' and 'DOG THE
SHOW'. Before starting it is a good idea to type:

NEW <ENTER>

because this clears any program previously stored in the TI 99/4A. The
screen will revert to the initial BASIC display:

TI BASIC READY
>•

Now type in the following program exactly as shown, pressing the
<ENTER> key at the end of each line to cause it to be stored in the
computer's memory (note that in all of the example programs included in
this book, the symbol '(SPC)' indicates that you must here type a single

PROGRAM

10 AS = THE"

20 BS = "DOG"

30 CS = "SHOW"

40 PRINT "|CLSJ"

50 PRINT AS^BS+CS

60 PRINT CS +AS+BS

70 PRINT BS+AS+CS

MEMORY

CONTENTS
AFTER

EXECUTING

INSTRUCTION

AS

IMTERMEDIATE

COMPUTATION

THE
>

BS

DOG
_

>

CS

SHOW
.

\

I
AS + BS * CS

THE DOG SHOW

CS ~ AS + BS

SHOW THE DOG

BS+AS + CS

DOG THE SHOW

Figure 3.1 The results of running a program.

38

PRINTED
ON THE

SCREEN

Clear the screen

THE DOG SHOW

SHOW THE DOG

DOG THE SHOW

blank space):

10 A$= 'THE(SPC)" <ENTER>
20 B$= "DOG(SPC)" <ENTER>
30 C$= "SHOW(SPC)" <ENTER>
40 CALL CLEAR

50 PRINT A$ & B$ & C$ <ENTER>
60 PRINT C$ & A$ & B$ <ENTER>
70 PRINT B$ & A$ & C$ <ENTER>

In this program, the three words are stored at lines 10 to 30. Note that a
space is included at the end of each word to act as a word separator when
the phrases are printed. Line 40 causes the screen to be cleared when
executed. It is a good general rule to get into the habit of using this
command at the beginning of all of your programs.

Lines 50 to 70 cause the required phrases to be printed. Figure 3.1
shows the consequence of executing each instruction of the program. The
result of executing the program is the cumulative effect produced by
executing all of its instructions.

To demonstrate that the program has been stored by the TI 99/4A,
type:

LIST<ENTER>

in response to which the TI 99/4A will always produce a 'listing' (a
printout) of the program it is currently storing. Check the listing given on
the TI 99/4A screen against the listing above to see that they agree exactly
and, if they do, execute the program by typing:

RUN <ENTER>

You will then see the results of the program, looking like this:

THE DOG SHOW

SHOWTHE DOG

DOGTHESHOW

>•

Remember that because the program is stored in the TI 99/4A it can be
executed or listed as often as you like. If you wish to list only a part, or just
an individual line ofthe program, type LIST and the line number, or 'LIST
from-to'. If a line of the program has been entered incorrectly, it can be
corrected by Usting it on the screen and using the normal editing
procedures as described in Chapter 2. For example, if line 20 has been
incorrectly entered, it can be listed by typing:

LIST20<ENTER>

39

which could give, say,

20B$="DIG"

Because this is a short line, it could be corrected most quickly by simply
retyping the whole line. If it were a longer line, you should use the
TI 99/4A's Editor as described in the previous chapter. The corrected
program can then be RUN as described above.

To delete a complete line, all that is necessary is to type the number of
the line to be removed followed by <ENTER>.

Try typing:

60<ENTER>

and then list the program to see the effect it has had. When you have
finished experimenting with the program, type:

NEW<ENTER>

to delete it. After typing this, the LISTcommand evokesno response. Try it.

Some more BASIC instructions

In this section we meet a few more BASIC instructions. They are
incorporated in short programs to illustrate their usefulness. The fact that
the <ENTER> key has to be pressed after a command or at the end of an
instruction to cause the TI 99/4A to take the appropriate action will not be
mentioned explicitly any more. So, as a last reminder, if you have typed
something out and nothing appears to be happening as you sit and wait, it
may well be that you have not pressed < ENTER>!

Input

Suppose that we should like to modify the program given in the first
section of this chapter so that it accepts any three words we might care to
give it when we run the program, and then prints out the first followed by
the second and then the third; then the third followed by the first and the
second; and finally the second followed by the first and the third. The new
instruction that we need in order to make the program accept an input is
INPUT. When an INPUT instruction is executed it causes a question mark
to be printed on the screen to indicate that a response is required, and then
stops the program execution and makes the TI 99/4A wait until the user
types a response which it can accept. Thus, the instruction:

10 INPUT A$

produces the question mark on the screen.

40

If you then type:

THE <ENTER>

the word THE is accepted and stored in A$. So, in this case, the effect is
the same as that of the instruction

10A$="THE"

The difference is that the latter will assign 'THE' to the variable A$,
whereas the former can assignwhatever you type after the question mark.

An example program can be based on the previous program by
replacing the lines that store the three words with three INPUT instructions
- one for each word. When the words have been entered in this way, lines
50 to 70 will print out the phrases as before. Note, however, that when a
word is entered with an INPUT command, it is not possible to include
a space at the end ofit. For this reason the spaces to separate the words in a
phrasemust be placedin the PRINTcommands. In this way, the following
program for accepting any three words and printing three phrases
involving them is obtained:

10 CALL CLEAR
20 INPUT A$
30 INPUT B$
40 INPUT C$
50 PRINT A$ & "(SPC)" &B$ &"(SPC)" &C$
60 PRINT C$ &"(SPC)" &A$ &"(SPC)" &B$
70 PRINT B$ &"(SPC)" &A$ &"(SPC)" &C$

When this program is executed it could result in a dialogue like this:

?THE

?KIT

?BAG
THE KIT BAG
BAG THE KIT
KIT THE BAG

>•

Decisions

The TI 99/4A canbe programmed to make decisions. This ability canbe
used to produce some very interesting and powerful programs. The
command which permits decision-making uses the BASIC words IF and
THEN. It has the form:

IF condition THEN command

41

In the condition part of this instruction, both variables and/or values can
be compared, typically to see if they are the same or if they differ. The
command part must be another BASIC command; for example, an
assignment or a PRINT command. When the IF/THEN command is
executed, the condition part is first tested. Only if it proves positive will
the command part be executed. If the condition part does not hold, then
the instruction part is ignored. An example of this type of command is:

IF N$ = "PASSWORD" THEN PRINT "ACCEPTED"

When this is executed, the TI 99/4A tests to see if the most recent
assignment to N$ is PASSWORD: if it is, then ACCEPTED is printed
out. If it is not, nothing is done. A second example is

IF N$ <> "PASSWORD" THEN PRINT "REJECTED"

In this example the pair of symbols <> means 'not equal to'. (The <
symbol on its own means 'less than', while the > symbol on its own means
'greater than'. If something is either less than or greater than the subject,
then the only thing it is not, is 'equal to' the subject; that is, it is 'not equal
to'.) Thus, when this command is executed, REJECTED is printed only if
the most recent assignment to N$ is not PASSWORD.

Now consider a short program to create a sum, display it, accept an
answer to it and decide if the answer is correct or not before printing an
appropriate message. This requirement is alsoshown in Figure 3.2, which
is an example of a flow chart. The programstarts by storing two numbers
in A and B, and then line 30 uses these numbers to print out a question
about their sum. The question that is printed is WHAT IS 2+3? Using a
semicolon to separate the items in a PRINT command gives a spacing
different to that produced when a comma is used. Having set a problem,
the program accepts an answer at line 40, storing it in C. Then in line 50
the offered answer is tested to seeif it is equal to the right answer, and if it
is, then an encouraging message is printed. The final line detects when a
wrong answer is given and causes the realanswer to be printed out on these
occasions. The program is:

10A = 2

20B = 3
30 PRINT "WHAT IS(SPC)";A;"+";B;"?"
40 INPUT C

50IFCOA + BTHEN80
60 PRINT "GOOD. THAT IS CORRECT."
70 STOP
80 PRINT "NO. THE ANSWER IS(SPC)";A + B

42

This program can be adapted to give you more than one attempt to find the
answer to the way illustrated in Figure 3.3 by using the GOTO command.
The command:

GOTO 30

instructs the program to gotoline30andexecute thatlinenext. A program
that expects the user to keep attempting to answer until the correct answer
is given is obtained by altering line 50 so that it causes the last line of the
program (line 80) to be executed next if the correct answer is given. The
last line supplies the reinforcing message of encouragement. If the correct
answer is not provided, then line 60 is executed. This indicates that the

f BEGIN ")

CREATE SUM

^ DISPLAY SUM ^

^ ACCEPT ANSWER \

NO /ANSWER \ YES

PRINT "NO" AND DISPLAY

CORRECT ANSWER

PRINT "ANSWER CORRECT^

•»»(STOP J~+

Figure 3.2 Flow chart for simple maths drill.

43

answer is wrong before line 70 causes a jump back to line 30, so that the
question is posed again and a further opportunity to answer is given. This
more sophisticated program is listed below:

10A = 2

20B = 3
30 PRINT "WHAT IS(SPC)";A;"+";B;"?"
40 INPUT C
50IFC = A + BTHEN80
60 PRINT "SORRY. WRONG ANSWER. TRY AGAIN."
70 GOTO 30
80 PRINT "GOOD, THAT IS CORRECT."

A typical dialogue produced by this program could be:

WHAT IS 2 + 3 ?

?6

SORRY, WRONG ANSWER. TRY AGAIN.

^ PRINT "NO. TRY AGAIN"

C BEGIN ~)

\

^

^

CREATE SUM

DISPLAY SUM

ACCEPT ANSWER

^

^

NO ^ANSWEFTV YES
.CORRECT?^

PRINT "ANSWER CORRECT"

C STOP J

Figure 3.3 Flow chart for improved maths drill.

44

^

WHATIS2 + 3?
?4

SORRY, WRONG ANSWER. TRY AGAIN.
WHAT IS 2 + 3 ?

?5
GOOD, THAT IS CORRECT.

Now try changing line 30 to:

30 PRINT "WHAT IS(SPC)";A;"(SPC)+(SPC)";B;

This time, you have not included a question mark to be printed by the
instruction. Notice, however, that the semicolon at the end of the line
'pulls up' the question mark produced by the INPUT command. In this
way you can eliminate the occurrence of double question marks and make
the question and answer sequence more visually acceptable. A typical
dialogue might now be:
WHATIS2 + 376
SORRY, WRONG ANSWER. TRY AGAIN.
WHATIS2 + 374
SORRY, WRONG ANSWER. TRY AGAIN.
WHATIS2 + 375
GOOD, THAT IS CORRECT.

Repetition

The previousprogramhasshown that the TI 99/4A canbe programmed to
do things repeatedly by using the GOTO command. The mathematical
problem is posed repeatedly until the correct answer is given. BASIC,
however, has a more direct wayto achieve the effectof repetition: the use
of the BASIC FOR . . . NEXT command. To illustrate its use, enter the
following program:

10FORI = 1TO16
20 PRINT "JOANNE"
30 NEXT I

This program will cause 'JOANNE' to be printed sixteen times, because
all the instructions between FOR and NEXT are repeated as many times
as directed by the FOR instruction. In this case, line 10becomes a counter
that goes up by one each time the command 'PRINT "JOANNE"' is
executed. Notice that the program is going round in circles. This is called a
'loop'. Line 30 instructs the computer to loop back to line 10 until the
counter matches the number specified in the 'TO' statement; that is, 16.
At this point, the program will come out of the loop and go on to execute

45

the next command, if there is one. The next program illustrates that you
can put as many instructions as you want between the FOR and NEXT
statements:

10FORK= 1T0 9
20 PRINT "REPETITION NUMBER";K
30 PRINT "FRANCES"
40 PRINT

50 NEXT K

This causes nine repetitions and produces the output:

REPETITION NUMBER 1

FRANCES

REPETITION NUMBER 2

FRANCES

and continues up to the ninth repetition.
Now try a program that accepts a word and spells out its letters one at a

time. The program must accept the word, find its length and then
repeatedly pick out and print the first letter, second letter, and so on, up to
the last letter. We have already seen how to separate letters from the left or
right ofa word, using SEG$, so you now know all the commands necessary
to write the program. It will start with a polite request to enter a word,
which will be followed by an INPUT command to accept and store the
word in W$. At line 30 the number of letters in the entered word is found,
and stored in L. Note that line 50 contains SEG$(W$,I,1), and that Ihas
already been assigned the variable loop counter of a FOR . . . NEXT
command that is as long as the length of the word: in other words, I is at
first letter one of the word, then letter two, etc. Now SEG$(W$,3,1) will
find the string of letters in the word stored in W$ which starts with the
third letter and is one letter long, which means that it will find the third
letter of the stored word. The effect of lines 40 to 60 is therefore to find
repeatedly the successive letters of the word and to print out, on the first
loop, that 'letter number 1' is whatever the first letter is, and so on. The
entire program for spelling out the letters that make up a word is:

5 CALLCLEAR
10 PRINT "ENTER A WORD, PLEASE."
20 INPUT W$
30 L = LEN(W$)
40 FOR I = 1 TO L
50 PRINT "LETTER NUMBER(SPC)";I;

"(SPC) IS (SPC)"; SEG$(W$,I,1)
60 NEXT I

46

More programs

Let us now write a program to accept any name written in the form:

JAMES JOYCE

and to produce the output:

YOUR FIRST NAME IS JAMES
YOUR SECOND NAME IS JOYCE

This may seem at first sight very easy, since after:

INPUT N$

the first name could be found by SEG$(N$,1,5) and the surname by
SEG$(N$,7,5). Unfortunately this will produce nonsense if the name
entered is WILLIAM SHAKESPEARE (or any name that is not a combi
nation of two five letter names). The trick is, of course, to locate the
position of the space separating the two parts of the name. Then, assuming
that the name has been entered correctly, everything to the left of the space
is the first name and everything to the right is the surname. If the name is
not entered in the way we expect strange results can still be printed, so it is
sensible to ask that the name be entered in a standard fashion and then to
check it, rejecting it if it does not conform. This reasoning leads us to the
following program:

10 CALL CLEAR

20 PRINT "ENTER YOUR NAME, PLEASE. TYPE"
30 PRINT "YOUR FIRST NAME, THEN ONE"
40 PRINT "SPACE THEN YOUR SECOND NAME."
50 INPUT N$
60 L = LEN(N$)
65C = 0
70 FOR I = 1 TO L
80 IFSEG$(N$,I,1) <> "(SPC)" THEN 100
90C=C+1

100 NEXT 1

110 IFC=1 THEN 140
120 PRINT "PLEASE ENTER YOUR NAME AS REQUESTED"
130 GOTO 20
140 FOR J = 1TOL
150 IFSEG$(N$,J,1) <> "(SPC)" THEN 170
160 B = J

170 NEXT J
180 PRINT "YOUR FIRST NAME IS(SPC)";SEG$(N$,1,B-1)
190 PRINT "YOUR SURNAME IS(SPC)";SEG$(N$,B+1,L-B)

47

In this program the screen is first cleared, before lines 20 to 40 display on
the screen the instructions for using the program. Line 50 accepts a name
and stores it in N$. Line 60 stores the number of characters in the name in
L. Lines 70 to 100 scan each character ofthe name, counting the number of
spaces. At the end of the repetitions the number of spaces in the name is
held in C, which was set at zero in line 65. If there is not exactly one space
in the name, then lines 100 to 130 indicate that the entry is not satisfactory
and cause a return to line 20 to permit the name to be entered again. Lines
140 to 170 locate the position of the space, storing it in B, so that line 180
can print all the characters to the left of the space as the first name and line
190 can print all those to the right as the surname.

Our next program produces a rather fascinating mobile display of a
worm-like object that moves backwards and forwards across the screen!
Although there are other ways in which this effect could be achieved, this
method concentrates on the commands that we have already examined. It
does, however, introduce a new command: CALL HCHAR. The full
format for this instruction is:

CALL HCHAR (row number, column number,
character code, number of repetitions)

Imagine the screen as a large grid made up of 32 (columns) by 24 (lines).
The total number of points on this grid is therefore 768, which can be
accessed by the TI 99/4A as X,Y co-ordinates with the row being in the
range of 1-24 and the column being in the range of 1-32. Thus the top left
position is 1,1: and the bottom right is 24,32.

The character codes may be any number between 0 and 32767, but the
computer will always convert them to a value between 0 and 255. The
character codes between 32 and 127 are defined as standard ASCII codes.
See the next chapter on Graphics for more information on CALL HCHAR
and the ASCII codes.

Notice also that we have introduced an extension to the FOR... NEXT
command. At line 60, we have FOR . . . NEXT . . . STEP. If we do not
include a STEP value, the computer will assume that we wish to use STEP
-I-1. In other words, the FOR ... NEXT counter will go up by one in each
repetition loop. Here, however, the STEP is -1, and the counter will
consequently decrease by 1 for each loop. The mobile display program is:

10 CALL CLEAR
20 FOR I = 3 TO 27
30 CALL HCHAR(5,I-1,32,1)
40CALLHCHAR(5,I,42,3)
50 NEXT I

48

60 FOR I = 27T03STEP -1
70CALLHCHAR(5,I,42,3)
80CALLHCHAR(5,I+2,32,1)
90 NEXT I

100 GOTO 20

Because the last line of the program always causes line 20 to be executed
again, starting another pass across the screen and back by the worm, the
program runs indefinitely when executed. To stop it, it is necessary to
press the <CLEAR> key.

The character code 32 in lines 30 and 80 produce a space. This is
necessary to prevent the worm leaving a trail across the screen. Try
removing line 30 and see what happens.

We hope you will experiment with all the programs throughout this
book, and make changeshere and there to seewhat effect they have. On
this last program, for example, try anew command: RND. This command
will make the TI 99/4A produce a random number between0 and 1. By
multiplying the random number with an upper limit value, and then
extractingthe integerpart, youcan create awhole random numberup toa
maximum value that you can specify yourself. If you wish to make the
range inclusive, you need only add 1 to the result. Make the following
changes and seewhat happens. Try to workout for yourselfexactly what
the program is now doing.

Change all the references to the HCHAR line number in lines 30,40,
70, and 80 to X. Now add the new line:

15X=INT(RND*23)+1

Finally, change line 100 to:

100 GOTO 10

Run this program and see what happens. Now change line 100to:

100 GOTO 15

and see what happens. Try to work out the difference it makes.
We shall now develop a program to translate French words into their

English equivalents. To do this, we shall need to store French words and
the corresponding English words in such away that they can be related to
one another. BASIC provides the 'array' which is useful for doing this.
The single BASIC command:

DIMA$(20)

tells the TI 99/4A that 20 variables are to be established as an array, and

49

that their names are to be A$(1) to A$(20). Once established, these array
variables can be used in the same way as ordinary variable names. For
example, we can make the assignment:

A$(6) = "MAN"

The DIM command also reserves storage space for all the variables in the
array. As the following program shows, arrays can be used to great
advantage in FOR ... NEXT repetitions. In this program we shall use two
arrays, as illustrated in Figure 3.4, with one (F$) holding French words
and the other (E$) holding the equivalent English words in the same order.

The program translates by seeking to match the French word to be
translated with one of the French words stored in the array F$. If a match
is found then the word is associated with the English word in the
corresponding position in the array E$. In the program line 10 reserves
space for the two arrays which will hold the French and the English words.
The words themselves are stored by lines 20 to 55. When the lines up to 55
have been executed, the state of the memory is as shown in Figure 3.4.
Line 60 requests the entry ofa French word and line 70 accepts and stores
it. Lines 80 to 120 establish a loop that examines each of the words in the
'French' array. If the French word is found, then line 100 prints the
corresponding English word on the screen, and line 110 redirects the
program back to line 60. Ifno such French word is found in the array, then
line 130 prints a statement to that effect, before once again sending the
program back to line 60.

10DIME$(4),F$(4)
20E$(1) = "MAN"
25F$(1) = "HOMME"
30 E$(2) = "WOMAN"
35 F$(2) = "FEMME"
40 E$(3) = "BOY"
45 F$(3) = "GARCON"
50 E$(4) = "GIRL"
55 F$(4) = "JEUNE FILLE"

E$

F$

E$(1) ES(2) E$(3) ES(4)

MAN WOMAN BOY GIRL

FS(1) FS(2) F$(3) FS(4)

HOMME FEMME GARCON JEUNE FILLE

Figure 3.4 Two parallelarrays for translation program.

50

60 PRINT "ENTER FRENCH WORD."
70 INPUT W$
80FORI = 1TO4
90 IFW$<>F$(I)THEN 120

100 PRINT E$(l)
110 GOTO 60
120 NEXT I
130 PRINT W$;"(SPC)IS NOT IN MY VOCABULARY"
140 GOTO 60

Clearly, as presented here, this program has a very limited vocabulary. It
can, however, be extended in a very simple manner (by adding more lines
of the type shown at lines 20 to 55 and making other straightforward
adjustments). Also it is not difficult to adapt the program so that it
translates from English to French. As we have already mentioned, all of
the programs presented in this section are intended to be used as vehicles
for experimenting with programming in BASIC. They can be amended,
extended and improved in many ways.

Saving programs

When the TI 99/4A is switched off, the program stored in its internal
memory is lost. To avoid having to type in the same program every time
you want to use it, it is necessaryto copy it on to someform of permanent
storage. A program that is stored in the TI 99/4A can be permanently
saved using either a cassette or a disk unit (ifyou have one) so that it can be
loaded again later. Since you need the Peripheral Expansion System to be
able to use a disk drive, we shall not discuss saving on to disk in this book
for beginners. We shall simply concentrate on saving a program on to a
cassette tape.

To save the program stored in the TI 99/4A's internal memory on to a
cassette tape, first ensure that the cassette unit is correctly attached to the
TI 99/4A and then put a tape cassette (preferably blank) into it.
Completely rewind the tape and then windit forwarda little toavoidtrying
to record on the tape leader. When the tape is positioned properly, enter
the simple command:

SAVECS1

The computer willnow begingivinginstructionson the screen to help you
through the SAVE procedures (see Figure 3.5). If you follow these
instructions completely, you should have little difficulty in successfully
savinga program on to cassette. Note that whenthe computerhasfinished
recording, it gives you the option to check the data on the tape with the

51

original program still held in memory. It is asimple procedure and one well
worth adopting every time you save on to cassette. The full sequence of
commands, including the verification process, is as follows (note that the
only response you have to make is shown in heavy type):

>SAVECS1

• REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

• PRESS CASSETTE RECORD CS1
THEN PRESS ENTER

• RECORDING

• PRESS CASSETTE STOP
THEN PRESS ENTER

• CHECK TAPE (Y OR N)?
• REWIND CASSETTE TAPE

THEN PRESS ENTER

• PRESS CASSETTE PLAY
THEN PRESS ENTER

• CHECKING
• DATA OK

• PRESS CASSETTE STOP
THEN PRESS ENTER

Figure 3.5 Dialogue aftersaving a program.

52

CS1

Y

CS1

CS1

CS1

We have already seen how to load a program from tape into the computer's
memory. On nearly all microcomputers, the level at which the volume is
set on the player/recorder is critical in both saving and loading. If the level
is incorrectly set (and to begin with, it probably will be!), the screen will
probably produce some form of I/O error message (refer to the User's
Reference Manual for details of the different messages), when you try to
load, and perhaps nothing at all when you try to save. For this reason we
recommend that when you first start using the TI 99/4A you purchase a
cassette with a program already recorded on it. Keep trying to load the
program until you succeed. To begin with, try setting the volume to
approximately mid-range. Each time you fail to load successfully, move
the volume up slightly and try again. When you find the right level, leave
the recorder set at that point.

Summary

The TI 99/4A can store a BASIC program which can then be executed as
often as required, or which can be modifed before it is run again. The TI
99/4A's BASIC language is a simpleEnglish-likelanguagewhich provides,
among other things, facilities for storing and manipulating information,
making decisions and for repeating an action as often as necessary. In this
chapter these facilities are introduced and incorporated in simple
programs to illustrate ways in which they can be used. When a program
has been written it can be saved on cassette or disk, and the way in which
this is done is also described.

Self-test questions

1. What is the command to start the procedure for saving the program
stored in the TI 99/4A on a cassette?

2. What are the BASIC words used for:
(a) repetition
(b) making a test and acting on the result,

and
(c) giving data to a program while it is running?

3. Write short programs for the following:
(a) to print your name 10 times
(b) to enter a word and decide if it has more than 7 characters. Ifit

has more than 7 characters, indicate that a long word was
entered, otherwise print that it was a short one;

(c) to accept different words entered at the keyboard and then
print them out without either their first or last letter.

53

4. Explain in the way illustrated in Figure 3.1 the computations
performed when the following programs are executed:

(a) 10 A$ = "ALGORITHMIC"
20 L = LEN (A$)
30 FOR I = 1 TO L

40 PRINT SEG$(A$,lf1)
50 NEXT I

(b) 10A=1
15B= 1

20 PRINT A

25 PRINT B

30FORI = 1TO12

40C = A + B

50 PRINT C
60A=B

65B = C
70 NEXT I

5. Write a program to accept a word, store it in A$ and then create in B$
the reverse of the word. This can be done by starting with a string of
zero characters in B$, and then adding one character at a time from the
right of A$. The program should print the reversed word and then
decide if the original word is a palindrome, that is, if it reads the same
forwards and backwards.

A typical dialogue from the program might be:
ENTER A WORD, PLEASE.
?MADAM

THE REVERSE OF MADAM IS MADAM

MADAM IS PALINDROMIC.

54

Chapter 4

Graphics

In computer terminology, graphics are pictures. Many of the programs
written for the TI 99/4A that will be of lasting interest and value will make
good use of graphics. This will particularly apply to educational programs
(see Figure 4.1) and computer games, where the interest and compulsion
of the programs often lies in the attractiveness of the graphics. Business
programs can also be made more effective if they present information and
results in pictorial as well as numerical form.

Obviously, a large degree of computation is necessary in any
reasonably complex program whatever its application, but the results from
that computation can be presented in one of three ways: by numbers,
words or pictures. While it is necessary in some applications to have
accurate numerical results, in many others the presentation ofa screen full
of numbers inevitably becomes rather dull sooner or later. To present
information using words is better, but it is easier to read from a book than

Figure 4.1 Display produced by 'Geography Tester' program.

55

from a video screen! Anyway, as everybody knows, a picture is worth a
thousand words, and pictorial presentations are much more natural and
informative than their alternatives. In this chapter we look at the TI
99/4A's graphics capabilities.

The TI 99/4A microcomputer has the ability to produce both graphics
and colours on the screen. Furthermore, the graphics may be ofeither 'low
resolution' or 'high resolution'. In this context, resolution refers to the size
of the individual graphics elements that appear on the screen. Low
resolution graphics thus refers to graphics where the elements are fairly
large and the consequent clarity and definition of pictures is relatively
poor. High resolution graphics produce much smaller graphics elements,
and the consequent clarity and definition of the pictures produced is that
much higher.

The TI 99/4A differs from many other home computers, however, in
that the method of producing both high and low level graphics is exactly
the same. Put very simply, the computer contains a small subprogram that
is called CHAR. This subprogram can be invoked by the command: CALL
CHAR. The full structure of the command is:

CALL CHAR (character code, character definition)

The character code is the ASCII code number for any standard ASCII
symbol, plus some graphics characters. To see what codes produce which
symbols, try the following program:

100 CALL CLEAR

110 FOR I = 1 TO 255
120 PRINT l;"(SPC)IS THE CODE FOR(SPC)";CHR$(l)
130FORJ=1TO100
140 NEXTJ
150 NEXT I

A number of the early codes appear as blanks, as do many of the later
codes. Code 32, however, is actually a space. See Figure 4.2 for a full list of
the standard ASCII codes. What the CALL CHAR subprogram does is to
redefine that character code with the character definition that follows.

For the purpose of defining the new character, CALL CHAR treats
each character, as it appears on the screen, asa matrix of8 x 8 squares. (See
Figure 4.3.) You can thus redefine any existing character to any pattern
you like made up of a square of 64 much smaller squares. This is why we
say that the TI 99/4A is able to produce both high and low resolution
graphics. If you treat the entire matrix as a single square that you either
turn 'on' or 'off, or as four smaller squares, each 4x4, then you have a
basic low resolution graphics set. Using the former definition, you will

56

The defined characters on the TI99/4A Computer are the standard ASCIIcharacters for
codes 32 through 127. The followingchart lists these characters and their codes.

ASCII ASCII ASCII
CODE CHARACTER CODE CHARACTER CODE CHARACTER
32 (space) 65 A 97 A

33 ! (exclamation point) 66 B 98 B

34 " (quote) 67 C 99 c

35 # (number or pound sign) 68 D 100 D

36 $ (dollar) 69 E 101 E

37 % (percent) 70 F 102 F

38 & (ampersand) 71 G 103 G

39 * (apostrophe) 72 H 104 H

40 ((open parenthesis) 73 I 105 I

41) (close parenthesis) 74 J 106 J

42 * (asterisk) 75 K 107 K

43 + (plus) 76 L 108 L

44 , (comma) 77 M 109 M

45 - (minus) 78 N 110 N

46 . (period) 79 O 110 O

47 / (slant) 80 P 112 P

48 0 81 Q 113 Q

49 1 82 R 114 R

50 2 83 S 115 S

51 3 84 T 116 T

52 4 85 U 117 U

53 5 86 V 118 V

54 6 87 w 119 w

55 7 88 X 120 X

56 8 89 Y 121 Y

57 9 90 z 122 z

58 : (colon) 91 [(open bracket) 123 { (left brace)
59 ; (semicolon) 92 \ (reverse slant) 124 i

i

60 < (less than) 93] (close bracket) 125 } (right brace)
61 = (equals) 94 A (exponentiation) 126 ~ (tilde)
62 > (greater than) 95 (line) 127 DEL (appears on
63 ? (question mark) 96 (grave) screen as a blank.)
64 @ (at sign)

These character codes are grouped into twelve sets for use in color graphics programs.

Set # Character Set# Character Set # Character
Codes Codes Codes

1 32-39 5 64-71 9 96-103
2 40-47 6 72-79 10 104-111

3 48-55 7 80-87 11 112-119
4 56-63 8 88-95 12 120-127

Two additional characters are predefined on the TI 99/4A Computer. The cursor is
assigned to ASCII code 30, and the edge character is assigned to code 31.

Figure 4.2 The standard ASCII codes.

57

have a screen grid for drawing pictures of the standard 32 columns by 24
lines (768 separate positions). If you use the latter definition, then the
screen grid becomes 64 x 48 (3072 positions). We can call both ofthese low
resolution. But if you define each individual small square on the 8x8
matrix, then the total number ofindividual points that you can turn 'on' on
the screen becomes 24 x 32 x 64, or 49,152 positions, which is better
defined as high resolution.

All characters on the TI 99/4A are created by turning 'on' some of the
dots in this 8x8 matrix and leaving others 'off. The space character(32) is
a matrix with all the dots turned 'off; while the block cursor is a character
with all the dots turned 'on'. The standard characters, 'A', 'B' 'C etcetera,
are automatically set by the computer, but you can create new characters
by first specifying the character code that you wish to redefine, and then
telling the computer which dots to turn 'on' and which dots to turn 'off.
To do this, imagine the 64 dot square as being composed ofeight rows of2
blocks of four dots. Always think of these blocks in a strict sequence of
sixteen four dot blocks reading from left to right and top to bottom. If you
understand binary and hexadecimalnotation, think ofeach four dot block
as a binary code, and then express it in its hexadecimal code. If you don't
understand these codes, don't worry; just refer to Figure 4.4. So, in order
to define a new character with the CALL CHAR subprogram, simply
specify the character code, and then define the character as a string of 16
separate codes. In this way, the command:

CALL CHAR (33,"383810387CBA386C")

will redefine ASCII character 33 into the character shown, much enlarged,
in Figure 4.5

LEFT

BLOCKS

RIGHT

BLOCKS

ROW1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

1

3

5

7

9

2

4

6

8

10

12

14

16

11H ^^^^1 H
13

15

Figure 4.3 (a) The CALL CHAR character matrix. (b) A redefined character using CALL CHAR.

58

Blocks
Binary Code

(0=Off; 1=On)
Hexadecimal

Code

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Note: The hexadecimal codes A, B, C. D, E and F must be entered from the
keyboard as upper-case characters.

Figure 4.4 The CALL CHAR character definition codes.

To describe the dot pattern pictured below you would code this string forCALL CHAR:

"1898FF3D3C3CE404"

LEFT

BLOCKS

RIGHT

BLOCKS
BLOCK

CODES

ROW1 18

98ROW 2 B
ROW3 Bi^^^^^^l^l
ROW 4

ROW 5

ROW 6

^^^^^H
3C

3C

ROW 7 ^^^B E4

04ROW 8

Figure 4.5 A redefined character using CALL CHAR.

59

We recommend that until you become more accomplished at programming
the TI 99/4A, you concentrate on using the graphics facility at a low
resolution level. On the face of it, it might seen that only a limited range of
pictures could be generated within this format, but, as many existing
programs have shown, and a number of the programs in this chapter will
also demonstrate, displays of surprising complexity can still be produced.
Some patience and ingenuity may be required to produce them, but a little
knowledge and some effort are really all that is needed to start. Many
people find that investigating and using the graphics facilities of the TI
99/4A are among its most interesting aspects. The inclusion of good
graphic effects has certainly been a major reason for the success ofmany of
the better programs written for microcomputers, and will furthermore
help to ensure that new programs become a source of lasting pleasure and
usefulness.

The screen and memory

A number ofmicrocomputers use the facility of a POKE command to push
special symbols into particular positions on the screen in order to build up
pictures. This is NOT the method used by the TI 99/4A, and we mention
it only because nearly everybody has heard of 'memory-mapped' screens
and the POKE command.

In fact, the principle of graphics on the TI 99/4A is very similar.
Imagine the screen as a grid of small squares. Each square can be defined
as an X,Y co-ordinate. X is the number of the square from top to bottom
(that is, the column); and Y is the number from left to right (that is, the
row). The top left square is always 1,1.

The total number of squares actually depends on the graphics
resolution you use via CALLCHAR. But under normal circumstances, it is
exactly the same as the size of the text screen; that is 24 lines by 32
columns, see Figure 4.6. Thus in the low resolution grid size, the first row
ofsquares will be numbered 1 to 32 from left to right, and can be accessed
by 1,1; 1,2; 1,3; to 1,32. By the same principle, the bottom row ofsquares
can be accessed by the co-ordinates 24,1; 24,2; 24,3; to 24,32. If you are
using 'high resolution' graphics you will use exactly the same grid size and
references, but you will have already defined each individual graphics
character in considerable detail. Note that on some screens you cannot
access all of the grid squares, notably the first one and the last two
columns. This problem does not affect the way in which the squares are
numbered, but you may therefore like to consider your grid as having
columns numbered from 3 to 30.

We have already seen how to define a particular graphics character. All
we need now is to know how to place that character at a specified position

60

on the screen. The two commands (each ofwhich is another subprogram)
are CALL HCHAR and CALL VCHAR. In full, the commands are:

CALL HCHAR >(row number, column number,
CALL VCHAR 'character code, number of repetitions)

'Row number' and 'column number' are the X,Y co-ordinates for the
screen grid that we have just looked at. The 'character code' is that same
ASCII code we have also examined already. Finally, the 'number of
repetitions' is an optional extra that we may use to repeat the character a
specified number of times in either a horizontal (HCHAR), or vertical
(VCHAR) line.

We can enhance the use of these commands by adding an extra
subprogram command: CALL COLOR. The full command is:

CALL COLOR (character set number, foreground colour,
background colour)

Every character is made up of two colours on the screen. The foreground
colour is the colour of the dots that are turned 'on' in the 8 x 8 matrix. The

COLUMNS

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1 I 3 I 5 | 7 I 9 I 11 | 13 1 15 I 17 | 19 1 21 I 23 | 25 1 27] 29 J 31 1

1

2-

3

4—

5

6-

7

8-

9

10-

R 11

W «-
S 13

14—

15

16-

17

18-

19

20-

21

22-

23

24 .
— — -

Figure 4.6 The CALL CHAR character grid.

61

background colour is the colourof the remaining dots that are turned 'off.
You can use this command to specify the foreground and background
colourof any graphicsor othercharacter youcareto use.SeeFigure4.7 for
the colours availableand the codesto use. Note that if you do not use the
CALL COLORsubprogram, the standarddefault settingthat will be used
automatically by the computer is Black foreground (code 2) and
Transparent background(code 1). When the background is transparent,
those dots are shown in the same colour asthe screen itself, and theythus
become indistinguishable from rest of the screen. You can change the
screen colour by using:

CALL SCREEN (colour code)

The colour code is a numeric expression with a value of between 1 and 16
(refer to Figure 4.7).

To test these commands, enter and run the following program. Try to
work out exactly which command causes what effect on the screen:

10 CALL CLEAR
20 CALL COLOR(12,3,9)
30K=INT(RND*23)+1

Colour Code Colour

1 Transparent

2 Black

3 Medium Green

4 Light Green

5 Dark Blue

6 Light Blue

7 Dark Red

8 Cyan

9 Medium Red

10 Light Red

11 Dark Yellow

12 Light Yellow

13 Dark Green

14 Magenta

15 Grey

16 White

Figure 4.7 The colours and their codes.

62

40 CALL HCHAR(K,3,127,28)
50 L = INT(RND*27)+3
60 CALL VCHAR(1,L,127,24)
70 CALLHCHAR(K+1,3,32,28)
80 CALL VCHAR (1,L+1,32,24)
90 GOTO 20

Producing a drawing

To demonstrate the production ofa picture, try a short program that draws
the infamous space invader. We will be using a definition that really
belongs to low resolution graphics since we shall build the picture out of
four separate character spaces.

10 CALL CLEAR
20 A$ = "03030F0F3C3C3F3F"
30 B$ = "F0F0FCFCCFCFFFFF"
40 C$ = "0F0F03030C0C3030"
50 D$ = "3C3CF0F00C0C0303"
60 CALL CHAR(33,A$)
70CALLCHAR(34,B$)
80CALLCHAR(35,C$)
90CALLCHAR(36,D$)

100 CALL COLOR(1,7,12)
110X = 5
120Y = 7

130 CALL HCHAR(X,Y,33)
140 CALL HCHAR(X,Y+1,34)
150 CALL HCHAR(X+1 ,Y,35)
160 CALL HCHAR(X+1,Y+1,36)
170 GOTO 170

A 'space invader' is an artificial image in the sense that it originally took its
form from the generally available graphics characters rather than from an
inherent shape of its own that is later modelled, or approximated, by
graphics characters. In this section a procedure for sketching a shape on
the screen is described. It demonstrates that recognisable sketches can be
produced, while at the same time showing that the limited definition oflow
resolution displays can causeproblems regarding the accuracyof the sketch.

Suppose we want to draw the butterfly shown in Figure 4.8(a) on the
screen. To do this, draw a square grid over it as shown in Figure 4.8(b),
and then, for each square of the grid in turn find the graphics character
most closely approximating to it. In fact, to demonstrate the principle, we
shall simply use two graphics characters: a whole block turned on and a

63

whole block turned off. The result of this will be something Uke that
shown in Figure 4.8(c), while the outline of the butterfly as it will appear
on the screen is shown in Figure 4.8(d). Finally, find the codes for the
graphics characters and write a program to print them in the right place on
the screen.

We will use a basic programming technique that you should try to
understand and use as soon as possible. This is the use of the READ and
DATA commands. The names are fairly self-explanatory; a READ
command reads data from a DATA list. The first READ command
executed in a program will read the first data item from the DATA list, the
second takes the second item, and so on. By putting the READ command
into a FOR . . . NEXT loop, you can read through the entire DATA lists
quite simply. The information required to position the butterfly is stored
as data in lines 300 to 360. That data is then read into the program proper
by the READ commands in lines 90, 130 and 160. The structure of the
program is therefore to store all the screen locations in lines 300 to 360, and
all the graphics definitions in lines 10 and 20. Lines 30 and 40 redefine
ASCII codes 33 and 34 as either a block on or a block off. Once these
parameters are established, the program can then set up loops to READ
the position specifications and place the characters via the HCHAR
command.

Figure 4.8 (a) Butterfly, (b) Butterfly with grid, (c) Butterflycomposedof graphicscharacters,
(d) Outline of image plotted on screen.

64

5 CALL CLEAR
10 A$ = "FFFFFFFFFFFFFFFF"
20 B$ = "0000000000000000"
30CALLCHAR(34,A$)
40CALLCHAR(33,B$)
50 CALL COLOR(1,12,2)
60 CALL CLEAR
70Y = 5
80FORI = 1TO16

90 READ N
100N = INT(N/2)
110X1 = 1
120FORJ=1TON
130 READ X2
140 CALL HCHAR(Y,X1 +3.33.X2-X1)
150X1 =X2
160 READ X2
170 CALL HCHAR(Y,X1 +3,34,X2-X1)
180X1 =X2
190 NEXT J

200 X1 = X2
210 CALL HCHAR(Y,X1+3,33,15-X1)
220Y = Y+1
230 NEXT I

240 GOTO 240
300 DATA 3,10,12,5,3,3,10,13
310 DATA 5,1,5,10,14,7,1,6,7,8,9,14
320 DATA 3,1,14,3,1,14,3,1,14
330 DATA 3,1,14,3,2,13,3,3,12
340 DATA 7,1,6,7,8,9,14,7,1,6,7,8,9,14
350 DATA 7,1,6,7,8,9,14,5,1,6,9,14
360 DATA 5,3,5,10,13,5,3,5,11,13

The problems of resolution can be tackled in a number of ways. The
simplest is to stand further away from the screen, letting your eye and brain
integrate and resolve the image as its fine detail becomes less clear. A more
active measure would be to switch to high resolution graphics that would
enable the use ofa much larger number ofgrid squares. The positioning of
the grid is also important, since the details that are vital for recognition
should be captured as accurately as possible. Finally, a little artistic licence
in the design of the displayed image may also help considerably.

65

Screen patterns

The screen can be filled with a particular symbol by the program:

10 CALL CLEAR

20 FOR I = 1 TO 24
30 CALL HCHAR(1,1,35,32)
40 NEXT I

50 GOTO 50

To change the character, simply change the third value held in
parentheses; that is, 35.

When the character at each screen position is generated by a systematic
method, patterns that can be both informative and aesthetically pleasing
can be produced. A general scheme that can be used to give a wide variety
of interesting patterns involves the three stages of computation, classifi
cation, and representation. A value is computed for each position on the
screen using its row and column number. The value is then classified by
assigning it to one of a number of classes. Each class is represented by a
particular character. In this way a character can be obtained for, and
plotted in, each screen position. The process is, essentially, that used to
make a coloured contour map where the height of each point is measured

Figure 4.9 A space invader.

66

(computed), classified into the appropriate height interval, and then
represented on the map by the colour assigned to that height interval. A
general program scheme for generating screen patterns of this nature is
given in Figure 4.10, and this can be refined to give a program such as the
following:

10 CALL CLEAR
20FORI = 1TO4
30 READ P(l)
40 NEXT I
50 DATA 35,37,33,32
60FORR=1TO24

f BEGIN)

•• FOR EACH ROW

»• AND FOR EACH COLUMN IN THE ROW

COMPUTE A VALUE USING THE
ROW NUMBER AND THE COLUMN NUMBER

CLASSIFY THE VALUE, ASSIGNING IT
A CLASS NUMBER. I

PLOT CHARACTER I IN CURRENT POSITION

'END OF ROW?W?>

YES

NO <^LAST ROW?J>

YES

C ST0P)

Figure 4.10 Program scheme for screen patterns.

67

70 FOR C = 1 TO 32
80H = C*C + R*R
90 IF H> 80 THEN 120

1001= 1

110 GOTO 190

120IFH = >400THEN150
1301 = 2

140 GOTO 190
150 IF H> 800 THEN 180
1601 = 3
170 GOTO 190
1801 = 4

190 CALL HCHAR(R,C,P(I))
200 NEXT C
210 NEXT R

220 GOTO 220

If you follow the program closely, you will see that it keeps very close to the
program scheme in Figure 4.10. (Figure 4.11 shows the result of running
this program.) Line 60 is for each row, while line 70 is for each column.
Line 80 computes a value, while lines 90 to 180 classify the values. Line

Figure 4.11 Screen pattern.

68

190 then plots the relevant classcode on the individual points of the screen.
(To see how colours can be used to plot a coloured contour map, you will
need to redefine a character or characters as a solid block or blocks with
CALL CHAR,and then includedifferent colours withCALL COLOR. Try
and do this for yourself.)

A second program following the same program scheme is:

10 CALL CLEAR
20DIMP(10)
30FORI=1TO10
40 READ P(l)
50 NEXT I

60 DATA 35,37,33,38,39,40,41,42,43,32
70 FOR R = 1 TO 24
80FORC=1TO32

90H = (R*C)|(1/3)
100I = INT(H)
110 CALL HCHAR(R,C,P(I))
120 NEXTC
130 NEXTR

140 GOTO 140

Here there are 10 intervals and plotting symbols. Line 90 computes the
value (R*C raised to the power of 1/3; that is, the cube root of R*C),
while Une 100 classifies the value by finding its whole part (the INT
command). To change the appearance of the pattern, try changing the
values of the symbols being used.

A wide range of patterns can be produced by using this method. In
general, a distinct pattern results from each choice of computation,
classification and set of plotting symbols chosen to represent the classes.
Classification can be achieved in many ways other thanbydividing a range
ofvalues into intervals; for example,the number in the first placeafter the
decimal point in the computed value can be used to give the class number.
The selection of plotting characters is vital to the presentation of effective
patterns. The characters chosen for the last two programs are intended to
accentuate the transition from one class to another, but other characters
may well prove more effective or attractive.

Movement

Once static displays can be produced, it seems natural to progress to the
generation of moving displays. The programs presented in this section
make it possible for the user to control the movement of a shape on the

69

screen. Besides being fascinating in itself such programs illustrate the
techniques used in many games programs.

It is worth mentioning that the TI99/4A has the facility to use joysticks
to control movement on the screen, but since this is a more advanced form
of programming and it is quite likely that you did not buy the joysticks
when you first bought the computer, we shall merely give an example of
how to adapt our earlier space invader program into one that will provide a
moving space invader via one of the joysticks. If you do have the joysticks,
then you will be able to experiment with and expand the program into
some form of game. If not, still try to work out how the program works. It
makes the same space invader that we drew earlier move in any ofthe eight
major compass directions. A refinement is needed, however, to prevent the
moving shape from leaving a trail behind itself. Movement is simulated by
redrawing the entire shape by one position to the left or right, etcetera. If it
moves to the right, however, it will leave its leftmost characters where they
were on the screen. One method of avoiding this is for the shape to have a
surround of spaces so that the part left behind is always blank. In the
following program, which you will see is an expansion of our earlier space
invader program, lines 280 to 310 are added to prevent the trailing effect.

10 CALL CLEAR
20 A$ = "03030F0F3C3C3F3F"
30 B$ = "F0F0FCFCCFCFFFFF"
40 C$ = "0F0F03030C0C3030"
50 D$ = "3C3CF0F00C0C0303"
60CALLCHAR(33,A$)
70CALLCHAR(34,B$)
80 CALL CHAR(35,C$)
90CALLCHAR(36,D$)

100 CALL COLOR(1,7,12)
110X= 10
120Y=10

130 CALL JOYST(1,T,S)
140X = X-S/4
150IFX>2THEN170
160X = 2
170 IFX<20THEN 190
180X = 20

190Y = Y + T/4

200IFY>2THEN220
210Y = 2

220 IF Y< 29 THEN 240

230 Y = 29

70

240 CALL HCHAR(X,Y,33)
250 CALL HCHAR(X,Y+1,34)
260 CALL HCHAR(X+1 ,Y,35)
270 CALL HCHAR(X+1,Y+1,36)
280 CALL HCHAR(X-1 ,Y-1,32,4)
290 CALL HCHAR(X+2,Y-1,32,4)
300 CALL VCHAR(X-1 ,Y-1,32,4)
310 CALL VCHAR(X-1 ,Y+2,32,4)
320 GOTO 130

Notice line 130 and the JOYST command. This command takes the value
of —4, 0, or 4 depending on the position of the joystick. For further
information on this, refer to the Texas Instruments Reference Manual.
Lines 150 to 230 prevent the invader from wandering off the edge of the
screen. Without this routine, the program would fail whenever the invader
goes off the edge.

Animation

Displaying slightly different still pictures at a sufficiently high rate
produces the illusion of continuous movement. All moving-picture
systems including films and television rely on this effect; an effect that
depends on several human characteristics including the persistence of
vision. The program presented in this section attempts to produce a
mobile display by plotting successive static images in precisely the same
way as a moving picture is produced by showing successive static images at
a fast enough rate.

The following program produces an animated display of a flying
butterfly: the successive frames catch different positions of the butterfly's
wing when in flight. The sequence from which the frames are derived is
shown in Figure 4.12. The first frame, with the wings fully extended, is
the image produced earlier. The other frames are obtained in the same way
as the first. In the program, the codes for the three frames are read in first,
and then the frames are ploned repeatedly in the sequence 1,2,3,2. The
flow chart of the program is given in Figure 4.13.

The program is:

5 CALL CLEAR
10 A$ ="FFFFFFFFFFFFFFFF"
20 B$ = "0000000000000000"
30CALLCHAR(34,A$)
40CALLCHAR(33,B$)
50 CALL COLOR(1,12,2)
60FORK=1TO4

71

70Y=5
80 FOR 1=1 TO 16

90 READ N
100N = INT(N/2)
110X1 = 1
120FORJ=1TON

130 READ X2
140 CALL HCHAR(Y,X1 +3.33.X2-X1)
150X1 =X2
160 READ X2
170 CALL HCHAR(Y,X1 +3,34,X2-X1)
180X1 =X2
190 NEXTJ

200 X1 = X2
210 CALL HCHAR(Y,X1 +3,33,15-X1)
220Y = Y+1
230 NEXT I
240 NEXT K
250 RESTORE
260 GOTO 60
270 REM NUMBER ONE
300 DATA 3,10,12,5,3,5,10,13

Figure 4.12 Frames 1,2 and 3 for flying butterfly.

72

310 DATA

320 DATA

330 DATA
340 DATA
350 DATA
360 DATA

370 REM
380 DATA

390 DATA

400 DATA

410 DATA
420 DATA
430 DATA

440 REM

450 DATA
460 DATA

470 DATA

480 DATA
490 DATA

500 REM
510 DATA

520 DATA

530 DATA

5,1,5,10,14,7,1,6,7,8,9,14
3,1,14,3,1,14,3,1,14
3,1,14,3,2,13,3,3,12
7,1,6,7,8,9,14,7,1,6,7,8,9,14
7,1,6,7,8,9,14,5,1,6,9,14
5,3,5,10,13,5,3,5,11,13
NUMBER 2

5,4,5,10,11,5,3,5,10,12
5,2,5,10,13,7,2,6,7,8,9,13
3,2,13,3,2,13,3,2,13,3,2,13
3,3,12,3,4,12,7,2,6,7,8,9,13
5,2,6,9,13,5,2,6,9,13,5,2,6,9,13
5,3,5,10,12,5,3,5,11,12
NUMBER 3

5,4,5,10,11,5,3,5,10,12
5,3,5,10,12,7,3,6,7,8,9,12
3,3,12,3,3,12,3,3,12,3,3,12,3,4,11,3,3,12
7,3,6,7,8,9,12,5,3,6,9,12,5,3,6,9,12
5,3,6,9,12,5,4,5,10,11,5,4,5,10,11
NUMBER 2

5,4,5,10,11,5,3,5,10,12
5,2,5,10,13,7,2,6,7,8,9,13
3,2,13,3,2,13,3,2,13,3,2,13

(BEGIN)
1 1

STORE FRAME 1

*
STORE FRAME 2

*
STORE FRAME 3

t

1

PLOT FRAME 1

t
PLOT FRAME 2

t
PLOT FRAME 3

t
PLOT FRAME 2*

Figure 4.13 Flow chart for mobile display program.

73

540 DATA 3,3,12,3,4,12,7,2,6,7,8,9,13
550 DATA 5,2,6,9,13,5,2,6,9,13,5,2,6,9,13
560 DATA 5,3,5,10,12,5,3,5,11,12

This program shows how the simulation of animation can be achieved. In
this particular instance it does not work quickly enough to be very
effective. Obviously, the larger and more complicated the image, the
longer it takes the computer to display the different frames, and the less
effective the animation. One method that can be used to increase the frame
speed sequence in animation is to plot only the changes necessary to
convert one frame to the next rather than to plot entire frames all the time.
You might also like to produce an animation of a much smaller display to
see how much faster and more effective it becomes. Use the following
program to produce the image of a small figure running from left to right
across the screen:

100 CALL CLEAR
110 A$ = "383810387CBA386C"
120 B$ = "3838927C3838FE00"
130 C$ = "0000000000000000"
140 CALL CHAR(33,A$)
150 CALL CHAR(34,B$)
160 CALL CHAR(35,C$)
170FORI = 3TO27
180 CALL HCHAR(10,1,33)
190 CALL HCHAR(10,1,34)
200 CALL HCHAR(10,1,35)
210 NEXT I

220 GOTO 140

Because this figure is so much smallerand so much faster, we actually have
to include some extra instructions to slow things down enough for us to see
them. Add the four following lines:

185FORJ=1TO250
186 NEXTJ

195FORJ=1TO250
196 NEXTJ

These are delay loops. They do not actually do anything themselves, they
simply instruct the computer to go round a loop a set number of times.
Naturally, the largerthe number ofloops specified, the longer it takes, and
consequently, the longer is the delay. In this instance, it is just long enough
to let us see the little man jumping up and down as he runs from left to
right.

74

Dynamic simulation

This section provides a dynamic simulation of a system that experiences
random growth and decay. It displays a community that grows initially
from a single cell. When it reaches a certain size it decays to a lower level
and then fluctuates between those two levels. The display can be taken as a
simulation of the growth ofa town or of a community of insects, although
budding town planners will already know that real towns do not grow
randomly! The random element of the program is provided by a command
RND that generates a pseudo random number.

10 CALL CLEAR

20 G= 1
30 C= 1

40DIMA(12,16)
50T=1

60A(5,6)=1
70GOSUB1000
80FORI = 1T012

90FORJ=1T016
100 IF RND < 0.9 THEN 120
110A(I,J) = T
120 NEXT I

130 NEXTJ

140C = 0
150FORI = 1T012
160 FOR J=1 TO 16
170 IFA(l,J) = 0 THEN 190
180C = C+1
190 NEXTJ

200 NEXT I

210G = G+1
220 GOSUB 1000
230 IF C< 99 THEN 250

240T=0
250 IFC> 27THEN270

260T=1
270 GOTO 80

1000FORI = 1T012

1010 FOR J = 1T016
1020 IFA(l,J) = 0 THEN 1050
1030 CALL HCHAR(l,J+5,42)
1040 GOTO 1060

75

1050 CALL HCHAR(l,J+5,32)
1060 NEXTJ

1070 NEXT I

1080 RETURN

76

Chapter 5

Special features of
the TI 99/4A

In this chapter, information about the TI 99/4A and some of its special
features either not mentioned or mentioned only briefly in earlier
chapters, is now gathered together to provide a basic reference chapter. It
is not intended to be an exhaustive collection of data about the TI 99/4A,
but it does include features that are of interest to the new user of the
computer.

Specification of the TI 99/4A

Manufacturer:
Microprocessor:

Screen display:

Keyboard:

Memory size:

Language:

Graphics:

Texas Instruments Inc

Texas Instruments 9900 family, 16-bit
microprocessor, plus 256-byte scratchpad
RAM.

32 characters by 24 lines. Note that on a
number of screens, only columns 2 to 28 can be
accessed.

47 keys and one space-bar. The letters are laid
out in typewriter style: QWERTY
The total combined memory can be up to 110K.
16K Bytes RAM supplied (expandable to 48K).
26K Bytes ROM supplied. A further maximum
of36K Bytes may be provided as external ROM
by the Solid State Software command modules.
14K TI BASIC Interpreter built in.
TI-Extended BASIC, LOGO, Pascal, and
TMS 9900 Editor/Assembler available on Solid
State Software command modules.
Individual characters may be redefined to any
shape possible in an 8 x 8 matrix.

The screen resolution is 192 x 256 dots, or
24 x 32 characters.

77

Peripherals:

78

There are 16 foreground and background
colours available:

Lir code colour

1

2

Transparent
Black

3 Medium Green

4

5

Light Green
Dark Blue

6

7

Light Blue
Dark Red

8

9

Cyan
Medium Red

10

11

Light Red
Dark Yellow

12

13

Light Yellow
Dark Green

14

15

16

Magenta
Grey
White

The TI 99/4A will connect to a normal colour
television (or black and white). It will also
connect to a standard domestic cassette

recorder.

Texas Instruments produces its own
joysticks, known as remote controllers, that are
wired together and plug into the port on the
left-hand side of the console (facing from the
front).

A TI 99/4A printer is also available. It is
capable of printing both text and graphics
characters. It can print 40 enlarged characters
per line, 66 mixed characters per line, 80 normal
characters, or 132 condensed characters. It is
bidirectional, and can print at eighty characters
per second.

The TI Solid State Speech synthesizer
allows the addition of speech to the computer.
It is entirely electronic. There are no taped
voice recordings or any other traditional
medium. Instead, a vocabulary ofwords and
phrasesis permanently stored on chips within

Expansions:

Software:

the synthesizer. It hasaresidentvocabulary of
almost 400 English words.
The mainmethodofexpanding the systemisby
the PeripheralExpansion System, which allows
you to startsimplyand then gradually build up
amore sophisticatedsystem by plugging in
additional hardware cards. The unit measures
14x 15x 20 inches and has eight slots for the
cards. One of them is used to connect the
system to the computer console. The system
also provides a space for the installation of aTI
diskdrive (up totwoadditional diskdrives may
be added externally).

The Memory Expansion boardprovides a
further 32Kbytesof Random Access Memory.

The Disk Memory System, consisting ofa
disk controller card and from 1 to 3 disk drive
units, enables you to store information or data
for later reuse. The disk drive is a single-sided
single-density unit with the following features:

5.25 inches

up to 89K bytes capacity per disk
34 or 40 tracks
up to 127 files defined
Double-sided and double-sided/

double-density disk controllers and disk drives
will be added to the rangeat a future date.

The RS232 Interface Card enables you to
connect awide range ofaccessory devices,
including those from other manufacturers and
other computers using ASCII protocol, to your
own computer.

The P-Code card includes the UCSD-Pascal
version IV.0 P-codeinterpreter which enables
the user to run programs written for the TI
99/4A in Pascal. Programs written forother
computers can also be run with little or no
modification.

Apart from the built-in BASIC interpreter, the
TI 99/4Aalso hasabuilt-in Internal Graphics
Language interpreter, anda4.4K byte monitor.

A large and growing library of applications

79

software already exists for the TI 99/4A,
covering education, games and business.
Software supplied by Texas Instruments is
usually on a Solid State Software command
module which simply plugs into the port on the
front of the console next to the keyboard. You
do not need to load this software into the

console's memory since it comes supplied with
its own memory.

Third party software suppliers will usually
provide their software on cassette or floppy disk.

Inside the TI 99/4A microcomputer

You must provide your own screen for the display, which could be a
domestic television set (black and white or colour). The keyboard is
similar to a typewriter differing only a few extra keys. Since these external
features are familiar, most of this section is devoted to the inside of the
computer.

Inside the TI 99/4A are the electronics for producing the specialised
screen displays, the sound producing circuits, the memory, and of course
all the logic for running a sophisticated computer. All ofthis is mounted on
one medium sized printed circuit board, and a number of smaller boards.

A printed circuit board is the most convenient way to mount and
interconnect the large number of components of the computer. It has
copper tracks laid down on it to connect the mounts into which the various
chips are inserted. The layout of the printed circuit board reveals the
essential structure of the microcomputer.

Unlike some other microcomputers, the TI 99/4A does not have its
power supply unit within the main casing. The TI 99/4A's power unit is a
separate box that connects the computer to the domestic mains supply. It
converts the 240 volts alternating supply from the mains to the voltage
required by the computer components.

The memory available to the user, particularly for storing BASIC
programs, is provided by 'random access' chips, or RAMs. The
information stored in this type of memory can be accessed, and can be
replaced by the program as required. When the computer is switched off,
all the information stored in RAM is lost.

There are, of course, certain features of the TI 99/4A that are always
required and which must not be replaced or lost when the computer is
turned off. To give just two examples: BASIC must always be available,
and the characters to be displayed on the screen should be able to be
generated at any time. Such functions are provided by chips with

80

information permanently stored in them. These chips are known as 'read
only memories', or ROMs.

The sockets for connecting the TI 99/4A computer to other devices are
at the edge of the printed circuit board and at the two sides and the back of
the case. The socket for the Solid State Command modules is at the front.

Sound on the TI 99/4A computer

The TI 99/4A computer enjoys a growing reputation for the quality and
range of its sound capabilities. Sound is, furthermore, very simple to
produce.

Unlike many of its competitors, the TI 99/4A computer does not
include an internal loudspeaker. Instead, it uses the loudspeaker of the
television set to which it is attached, and thereby achieves a better quality
and greater control over the volume than many other microcomputers.

The form of the SOUND command, which is reallya subprogram, is as
follows:

CALL SOUND (duration.frequency one.volume one.frequency two,
volume two.frequency three.volume three.frequency four,
volume four)

The duration specifies how long the tone is to last, the frequency specifies
which tone actually plays, and the volume controls how loud the tone is.
All three are numeric expressions in the following ranges:

duration: 1 to 4250, inclusive
—1 to —4250, inclusive

frequency: (Tone) 110 to 44733, inclusive (see Figure 5.1)
(Noise) —1 to —8, inclusive

volume: 0 (loudest) to 30 (quietest), inclusive

To get some idea of the range of tones that this command can produce,
enter the following program:

100 TONE =110
110FORC=1TO10
120 CALL SOUND(-500,TONE,1)
130TONE = TONE+110
140 NEXTC
150 FOR C = 10TO 1 STEP -1
160 CALL SOUND(-500,TONE,1)
170 TONE = TONE-110
180 NEXTC
190 FORI = 110TO 7700 STEP110

81

200 CALL SOUND(-500,I,1)
210 PRINT I

220 NEXT I

230 END

The use of the SOUND command can be used with great effect in games
with graphics - Arcade Space Invaders will probably be familiar to
everyone. To demonstrate the concept of mixing sound and graphics, try
the following program:

10 CALL CLEAR
20 A$ = "FFFFFFFFFFFFFFFF"
30FORI = 0TO15
40 CALL CHAR(32+I*8,A$)
50 NEXT I
60M=INT(RND*16)+1

MUSICAL TONE FREQUENCIES

The following table gives frequencies (rounded to integers) of four octaves of the tempered
scale (one half-step between notes). While this list does not represent the entire range of
tones - or even of musical tones - it can be helpful for musical programming.

Frequency Note Frequency Note
110 A 440 A (above middle C)

. 117 A#,Bb 466 A#,Bb
123 B 494 B

131 C (low C) 523 C (high C)
139 C#,Db 554 C#,Db
147 D 587 D
156 D#,Eb 622 D#,Eb
165 E 659 E
175 F 698 F

185 F#,Gb 740 F#,Gb
196 G 784 G
208 G#,Bb 831 G#,Ab
220 A (below middle C) 880 A (above high C)
220 A (below middle C) 880 A (above high C)
233 A#,Bb 932 A#,Bb
247 B 988 B
262 C (middle C) 1047 C
277 C#,Db 1109 C#,Db
294 D 1175 D
311 D#,Eb 1245 D#,Eb
330 E 1319 E
349 F 1397 F
370 F#,Gb 1480 F#,Gb
392 G 1568 G
415 G#,Ab 1661 G#,Ab
440 A (above middle C) 1760 A

Figure 5.1 Musical tone frequencies.

82

70 I = INT(RND*26)+1
80J=INT(RND*32)+1
90CALLCOLOR(M,M,2)

100 CALL HCHAR(I,J,32+(M-1)*8)
110 CALL SOUND(10,INT(RND*600)+200,10)
120 GOTO 60

This program demonstrates that you can mix graphics and sound to
produce interesting effects (see Figure 5.2). Try and work out which lines
produce the graphics (and how they do it), and which lines produce the
sounds. Any similarity to some of the more modern pop music is purely
(and randomly!) coincidental.

By exercising tight control over the production of these sounds, you
can make the computer produce quite acceptable music. Look at the
following example. The structure of the program is very simple. The
frequency and duration of each individual note are stored as data in lines
110 to 130, and 140 to 160. The data is then read and assigned variable
names by two FOR ... NEXT loops in lines 20 to 70, and then 'played' by a
single CALL SOUND command in athird FOR... NEXT loop. It is agood
idea to write all the music in this basic method: as data strings that are then

Figure 5.2 Display produced by the 'Random Sound andColours'program.

83

read and played. In this way, repetitive pieces (choruses etc) can be played
without retyping all the arguments. Although there are no repetitions in
the following example, the principle is clear.

5 CALLCLEAR
10DIMF(50),T(50)
20 FOR I = 1T045
30 READ F(l)
40 NEXT I

50 FOR I = 1T045
60READT(I)
70 NEXT I

80 FOR I = 1T045
90 CALL SOUND(T(I)*190,F(I),15)

100 NEXT I
110 DATA 262,262,294,247,262,294,330,330,349,330,294,

262,294,262,247,262
120 DATA 262,294,330,349,392,392,392,392,349,330,349,

349,349,349,330,294
130 DATA 330,349,330,294,262,330,349,392,440,349,330,

294,262
140 DATA 2,2,2,3,1,2,2,2,2,3,1,2,2,2,2,2
150 DATA 1,1,1,1,2,2,2,3,1,2,2,2,2,3,1,2
160 DATA 2,1,1,1,1,3,1,2,1,1,2,2,2,

Using the TI 99/4A as a timer

Ifyou read other books on programming in BASIC, you may come across a
command called TI or Tl$. This command instructs the processor to
display the current value of an internal counter that automatically starts
whenever you turn on the computer. The timing of this counter is
extremely accurate, and it is consequently often referred to as a clock.
Computers that include this clock/counter can be readily used as an
elaborate and very accurate form of timer. Unfortunately, at the time of
writing, there is no such clock/counter in the TI 99/4A. Test this by typing
in the command:

PRINT TKENTER>

The response, you will see, is to display:

0
>

This section, however, will show that with a litde imagination, the TI 99/4A

84

can still be made to simulate a timer with a fair degree of accuracy. The
routine itselfcould be incorporated quite effectively into a recipe program.
Let us say that the recipe has given both the ingredients and the
instructions, and that the mixture has to be cooked for a certain length of
time. It could call the following as a subroutine (using GOSUB and
RETURN) and act as a timer for the recipe. Enter the following program
and try to work out what is happening. There are no new commands that
we haven't already come across.

100 CALL CLEAR
110 PRINT "HOW LONG DO YOU WANT"

120 PRINT "TO SET THE TIMER FOR?"
130 PRINT

140 PRINT "ENTER THE NUMBER OF MINUTES";
150 INPUT A

160 CALL CLEAR
170 PRINT "COUNTING UP TO";A;"MINUTE/S"
180FORI=1TOA
190 FOR J=1 TO 19675
200 NEXTJ

210 CALL CLEAR

220 PRINT "COUNTING UPTO";A;"MINUTE/S"
230 PRINT

240 PRINT l;"MINUTE/SOF";A;"COUNTED"
250 CALL SOUND(10,262,15)
260 NEXT I
270FORI=1TO4

280 FOR K = 110TO330STEP 110
290 CALL SOUND(-500,K,15)
300 NEXTK
310 NEXT I

320 CALL CLEAR
330 PRINT "TIMES UP!"

340 PRINT
350 PRINT "DO YOU WANT TO RESET TIMER? Y/N";
360 INPUT B$
370 IF B$ = "Y" THEN GOTO 10
380 END

This program illustrates a number of the more simple features of BASIC
that you have already come across: PRINT, FOR ... NEXT, GOTO and
CALL SOUND. But it also demonstrates an interesting use of the FOR ...
NEXT loop that is particularly useful when programming the TI 99/4A:

85

that is, as a 'delay loop'. Notice the format of the loop:

FOR I = 1 TO n
NEXT I

There is no separatecommand between the FOR and the NEXT partofthe
instruction. In other words, this construction instructs the computer to do
nothing but goround in circles for aspecified number of times. By varying
the number of loops you canspecify the length of time the computer takes
to complete the command, andhencethe duration ofthe delayintroduced
into the program.

Notice that our delay loop (which is the 'timer') at line 190 is for 1 to
19675 in steps of +1. Experimentation has shown that it takes the TI
99/4A almostexactlyone minute to complete this numberof loops. If you
find that it is in fact only 59.9 seconds, try adding a few more loops:
conversely, reduce the number to, say, 19650 if you find the TI 99/4A is
taking too long.

The timer also shows a feature known as 'nested loops'. The first loop
is FOR I = 1 TO A. Now, A, as you will see at lines 140 and 150, is a
variable input by the user to specifythe duration of the timer in minutes.
The FOR J loopisthus repeated as manytimesasthe FOR Iloop specifies.

Lines 240 and 250 provide a simple counter and buzzer to show the

Figure 5.3 Display produced by the 'Timer' program.

86

Figure 5.4 Display produced by the 'Timer' program.

Figure 5.5 Display produced by the 'Timer' program.

87

passage of time. Lines 270 to 310 provide the alarm that is activated as soon
as the nested FOR . . . NEXT timer is complete, while the rest of
the program provides the opportunity to reset the timer or exit from
the program.

Speech synthesis

We won't say much about the Texas Instruments Speech Synthesizer,
since its use depends upon having a Speech Synthesizer hardware unit and
a software command unit that has speech capabilities. Possession of these
items really takes the scope of the computer out of the limits set for a
beginner's book such as this. Nevertheless, speech is such an exciting
addition to modern computing that we include below a small spelling test
program that makes the computer ask you how to spell certain words. If
you have a speech synthesizer, then you can take this program and adapt
and expand it into a sophisticated spelling test. If you don't have a
synthesizer, it is still worth trying to work out what the program does.

5 CALLCLEAR
10 RANDOMIZE
20FORI = 1T010
30 READ X$(l)
40 NEXT I

50I = INT(RND*10+1)
60 CALL SAY("CAN YOU SPELL")
70CALLSAY(X$(I))
80CALLKEY(3,A,C)
90 IF C<1 THEN 80

100A$ = CHR$(A)
110 PRINT A$
120 CALL SAY(A$)
130P$=P$&A$
140IFP$ = X$(I)THEN170
150 IF LEN(P$) > LEN(X$(I))THEN 200
160 GOTO 80
170 CALL SAY("CORRECT, WELL DONE")
180 P$=""
190 GOTO 50
200 CALL SAY("SORRY, YOU SPELL IT")
210FORJ=1TOLEN(X$(I))
220 CALL SAY(SEG$((X$(I),J,I))
230 NEXT J

240 P$ = ""

250 GOTO 50

260 DATA SMALL, PLEASE, PROBLEM, TURN, WEIGHT, WHICH,
WHITE, POINT, YELLOW, SECOND

Conclusions

This book has aimed to provide an easy introduction to using the TI 99/4A
microcomputer, and it has described many ofthe applications in which the
TI 99/4A can be used to good effect simply by loading and running a
program. There are a large number of applications of this kind, including
some business applications, which require no knowledge of how the TI
99/4A microcomputer works and need only a minimal knowledge of the
instructions required to operate it. In these circumstances the program is
all important. The TI 99/4A microcomputer is merely a vehicle for
running the program. A special purpose system of this kind can
demonstrate its worth by paying for itself in quite a short time. However,
the TI 99/4A microcomputer is extremely versatile, being capable of as
many activities as it can be programmed for. This versatility can be
harnessed by running different programs for each of a range of
applications.

Purchased programs do not alwaysdo exactly what you may want, so it
is useful to be able to program the TI 99/4A microcomputer in order to
modify such programs. Whether for this reason, or as a result of
inquisitiveness about how to tap the full potential of the TI 99/4A
microcomputer, it is useful to be able to write programs. An introduction
to programming the TI 99/4A microcomputer is provided by this book,
but it is only an introduction and Appendix 1 indicates several sources of*
information which can be used for further study.

The importance ofthe TI 99/4A microcomputer used as an educational
tool has been stressed more than once in these pages. Its importance as an
example of modern technology should not be overlooked. It has a merit
merely existing as an available product of the technology that will be used
increasingly in the future, by providing an appreciation of how the
technology is applied in everyday situations. In particular, the TI 99/4A's
unique Speech Synthesizer is a good example of the early stages of
advancing computer technology.

When viewed from different perspectives, the TI 99/4A microcomputer
is seen as a tool which can be used in a number of ways. This book has
attempted to introduce many of these uses and to indicate the sources of
information which will help in developing these avenues further.

89

Appendix 1

Further reading

This appendix lists some books andmagazines that aresuitable for further
reading to follow up particular topics that are mentioned, introduced or
developed within the book. At the time of writing, we know of no other
book specifically on the TI 99/4A computer in this country. This is
probably becauseTexas Instruments has only recendy started to actively
market the computer outside of North America. If this is the case, we can
expect to see many more books appearing in the very near future; both
those written in the UK, and also imports of American books. There is,
however, alreadyaUK TI Home ComputerUsers'Club, at 157Bishopsford
Road, Morden, Surrey.

Magazines

Computing Today
This magazine is considered by many to be the best of the popular
computing magazines. It covers the whole field of microcomputing and
often provides listings of useful programs. Converting these to run on the
TI 99/4A could be both entertaining and educational.

Which Micro and Software Review
This is one ofthe better ofthe new crop ofcomputer magazines. It features
articles on a wide range of equipment from the lower end of business
machines to the new small home computers. Articles on the TI 99/4A do
appear now and again, but it is particularly useful for gaining an overall
view of the general trends in microcomputing.

Personal Computer World
Often abbreviated to PCW, this is in many ways required reading for
microcomputer users.

Micro Software and Systems Magazine
This is a new magazine that is devoted mainly to business software. Each
issue focuses on a different computing application: graphics, operating
systems, word processing, etc. It may be ofinterest to those who intend to
use their TI 99/4A to develop serious software, by providing an outline of
the existing software in specific fields.

91

99'er Magazine
An independent magazine launched in the US for users of the TI 99/4A. It
is published bi-monthly and features editorial comment and detailed
articles on a wide range of subjects of interest to the TI user. For further
details write to:

99'er Magazine
PO Box 5537
Eugene, OR 97405
USA

Magazine articles

Speech Synthesis with Linear Predictive Coding, by Larry Brantingham,
Interface Age, June 1979, pp 72-75.

Electronics Speaks Out, by N C Pearson, Design News, April 9, 1979,
pp 76-79.

Three-Chip System Synthesizes Human Speech, by Richard Wiggins
and Larry Brantingham, Electronics, August 31,1978, pp 109-116.

General books

IllustratingBASIC, by Donald Alcock(Cambridge University Press, 1978).
Somewhat dated now, but still the best general introduction to BASIC
programming available. Like Dennis Jarrett's book (see below), an easy
style can (wrongly, we think) be interpreted as a patronising approach
from the author.

Software Secrets, by Graham Beech (Sigma Technical Press, 1981).
This book is actually written for a Sharp MZ-80K microcomputer, but
since it is really a book about programming ideas and techniques, it makes
useful and interesting reading.

The Good Computing Book for Beginners, by Dennis Jarrett (ECC
Publications Ltd, 1980).
Claimed to be "all you need to know about computers (and nothing you
don't)"; its main use is in an extensive glossary (over 220 pages!). Jarrett
writes in an easy and colloquial style ("ECMA - It sounds like a skin
complaint but it stands for the European Computer Manufacturers'
Association"). If you object to the style, don't buy the book!

Inside BASIC Games, by R Mateosian (Sybex).
Teaches interactive BASIC programming through games.

92

BASIC Computer Programs for the Home, by Charles D Sternberg,
Hayden, 1980.
A comprehensive book of practicalhome application programs that will be
helpful to both the novice and experienced owner by increasing the
usefulness ofany home computer.

The First Book ofMicrocomputers, by Robert Moody, Hayden.
Claimed to be the home computer owner's 'best friend'.

The BASIC Workbook, Kenneth Schoman, Jr, Hayden.
A hands-on approach to learning BASIC and the fundamentals of
problem-solving using a computer. The book is subtitled: 'Creative
techniques for Beginning Programmers'.

93

Appendix 2

Glossary

Access

To obtain data from, or place data into, storage; which may be either main
memory or backing storage.

Address

The storage location of information, either in the computer's memory, or
on cassette tape or floppy disk.

Argument
Commonly used to describe the value associated with a command.

Array
A linear arrangement ofindividual items ofdata that can each be identified
by an index that allows single items to be examined. Thus, the command
DIM A$(20) will provide an array of 20 memory locations that can be
examined sequentially by their names A$(1), A$(2) and so on.

ASCII characters

The American Standard Code for Information Interchange (pronounced
'as-key'): a code used by most computers to represent 128 different text
and computer control characters. It uses 7 bits for each character. For
example, the ASCII code for the character A is 1000001.

Assembly language
A language similar in structure to machine language, but made up of
mnemonics and symbols. Programs written in assembly language are slightly
less difficult to write and understand than programs in machine language.

BASIC
The computer language immediately available when many microcomputers
are turned on (including the Dragon and the BBC Microcomputer), and in
which commands to it are expressed. BASIC actually stands for Beginner's
All-purpose Symbolic Instruction Code.

Binary
A number system with two digits, '0' and T, with each digit in a binary
number representing a power of two. Most digital computers are essentially
binary in nature.

94

Bit

Short for 'binary digit'. A bit (0 or 1) is the smallest unit of digital
information.

Board

A printed circuit board, or PCB, is sometimes called a printed circuit card.
It is usually plastic and has its required circuits (in a conducting medium
like copper) printed on its surface. There is also a number of small holes
where individual electronic components can be plugged or soldered into
the board to make contact with those circuits. At the other end of the
circuit is the edge of the board, which is equipped with connectors. The
connectors engage with further circuitry in the backplane, which is the
part of the computer that interconnects thevarious boards. The processing
functions of a microcomputer and its main memory willbe held on a small
number of PCBs.

Boot

Short for 'bootstrap': the processof loadingan operating system from disk
or tape into computer memory.

Branch

A departure from the sequential performance of program statements. An
unconditional branch causesthe computer to jump to a specifiedprogram
line every time the branching statement is encountered. A conditional
branch transfers program control in accordance with the result of a
conditional test.

Buffer

An area of computer memory for temporary storage of either input or
output data.

Bug
An error in computer programming. Because the error may only be
noticed when it affects a different part of the program, many bugs are very
difficult to find.

Byte
A unit of computer storage that comprises 8 bits. It is almost the same as
the storage needed for a single character. Thus a 32K Byte computer has
approximately 32000 storage locations each able to store a character.

Central processing unit (cpu)
The 'brains' of the computer, containing the electronic circuits that
interpret and execute instructions.

95

Character
A letter, number, punctuation symbol, or special graphics symbol.

Chip
Literally, the chip of silicon from which an integrated circuit is fabricated,
but used popularly to refer to the integrated circuit itself.

Constant
A specific numeric or string value. A numeric constant is any real number,
such as 1.2 or —4321. A string constant is any combination of characters,
up to the limit set by each different version of BASIC, enclosed in
quotation marks, such as "HELLO" or "221 Baker Street". See also
'Variable'.

Cursor
The flashing bar or square on a computer's visual display screen which
indicates the position at which the next item will be displayed.

Database
An organised collectionofdata fromwhicheither data or the propertiesof
items of data can easily be retrieved.

Debug
To find and correct errors (bugs) in a program.

Default
This is a value that is automatically assigned by the program being used
whenever the user of that program does not specify a particular value for a
given variable.

Disk
A disk on which programs or data can be stored as magnetic patterns on the
surface of the disk, and from which recorded information can be rapidly
retrieved. Also known as a floppy disk.

Disk Operating System (DOS)
An operating system specifically for a disk drive. A program to facilitate
the storage of information on disk and its retrieval from the disk. The DOS
selects unused portions of the disk surface for data storage, and then
remembers where everything is for data retrieval. See also, operating
system.

Double-density
It is possible for disk drive manufacturers to double the number of bits
stored per inch on a disk. You pay extra for the drives and for the disks
themselves for this increased storage capacity - but the price increase is

96

less than that for buying a second disk drive. Since double-density drives
came on to the market, the original density disks are now often referred to
as 'single-density'.

Double-sided

It is now possible for disk drive manufacturers to produce disks and disk
drives with data storage facilities on both sides of the disk. The extra
technology involved in writing to and reading from both sides of a disk
means that these disks are far more expensivethan is usuallyacceptable for
home computers. These drives are therefore more frequently found on
business computers. Since double-sided drivescame on to the market, the
original disks are now often referred to as 'single-sided'.

Execute

The act of obeying the instructions contained in a computer program.
Synonymous with running a program.

File

A collection of related data records stored on a device, such as a cassette
tape or floppy disk.

Floppy disk drive
A peripheral device used to store programs and data on disks made of a
thin flexible plastic coated with a magnetic recording surface (called a
floppy disk or diskette). Floppy disks are more reliable and much faster in
operation than simple cassette tapes.

Flow chart

A diagram indicating in stylised form the steps of a computation. It is used
as an aid to program development.

Graphics
Pictures produced by a computer.

Hardware

More properly called 'computer hardware', it is the collection of physical
devices that make up a computer system.

High level language
A language that is more intelligibleto human beings than it is to machines;
for example, BASIC,Pascal, FORTRAN. Seealso: Lowlevel language.

Increment

A value that consistently modifies a variable. The FOR . . . NEXT . . .
STEP instruction consistently modifies (increments) the FORvariable by
the STEP value.

97

Integer
A whole number, either positive, negative, or zero.

Integrated circuit
An electronic circuit fabricated in extreme miniature form on a silicon chip
typically a few millimetres square.

Interface

An electronic and/or physical connection between different devices. A
serial interface transmits or accepts information one bit at a time, whereas
a parallel interface transmits or accepts information several bits at a time.

Interpreter
Software which translates a program in a high-level language into machine
code, which comprises the binary instructions which correspond directly
to computer operations and is the 'language' that the microprocessor
understands. The program is executed at the same time as it is interpreted.
This is distinct from a 'compiler', which performs a similar operation but
produces a compiled program from the user's source program. This
compiled program is the program that is ultimately executed. With an
interpreter, each statement in the high-level language program is
translated and executed immediately. This means you can add or delete
instructions and see the effect immediately, so it speeds the process of
program development. Interpreters might take up some memory, since
they have to be waiting to translate; and interpreted programs are certainly
slower when it comes to run-time (because a program already in machine
code is inevitably much more efficient). But because interpreter languages
do not require the compile process they are generally preferred for home
computers. Apart from BASIC, you will find the APL and PASCAL
languages frequently in interpreter form.

K

IK stands for 1 kilobyte of memory, and gives the size of memory
consisting of multiples of 1024 storage locations.

Listing
A printout (which can be either as a display on the screen, or as a physical
printed list) of the fines of instruction that make up a program.

Loop
A group of consecutive program lines that are repeatedly performed,
usually a specified number of times.

Low level language
A language that is more intelligible to machines than it is to human beings;
for example, assembler. See also: High level language.

98

Machine code

The code in which instructions must be conveyed to a microprocessor in
order that it may respond to them directly.

Memory
Also called main memory, corememory, or main storage. The integrated
circuits of a computer in which information is stored that is directly
accessibleto the cpu, asopposedto peripheral,or backingstoragewhichis
accessible only via interfaces.

Microcomputer
A computer whose central processor is on a microprocessor.

Microprocessor
Physically, a very complexintegrated circuit. Functionally, an electronic
device that can be programmed and can, in consequence, perform a
variety of tasks.

Mode

A condition or a set of conditions under which a particular set of rules
applies.

Operating system
Systems softwarethat controls the computer and its peripheral devices.

Output
Information sent by the cpu to any peripheraldevice.

Peripheral
Equipment that can be attached to a computer, and can be used and
controlled by the computer. Examples are cassette units, television
screens, and printers.

Port

A socket on the computer into whichyou can plug a terminalor someother
input/output device.

Printed circuit board
(see Board)

Program
An ordered sequence of commands given to a computer, so that when it
obeys them it automatically performs a specified task.

Prompt
A symbol (different for the different versions of BASIC) which marks the
beginning of each program lineduring input from the keyboard;a symbol
or phrase that requests input from the user.

99

RAM

Random-access memory. Memory whose contents is lost when the power
supply is turned off. The amount of RAM determines how much memory
is available for the user to store programs and data.

Record

A collection of related data elements, such as an individual's payroll
information or a student's exam scores. A group of similar records, such as
a company's payroll information, or a school's exam results, is called a file.

ROM
Read-only memory. This is permanent memory, typically used to store
information that is always required, such as that which provides BASIC.
This memory is not available to store the user's programs: it provides
facilities required by the user.

Scroll

To move all the text on the screen of a video monitor (usually upwards) in
order to make room for more (usually at the bottom).

Software

Computer programs; the list ofinstructions that tell a computer to perform
a given task or tasks - as opposed to hardware (the computer itself). There
are basically two types of software: systems and apphcations. Examples of
systems software include operating systems and language interpreters.
Applications software includes programs that instruct the computer to
perform specific apphcations, such as word processing, computer games
etcetera.

String
A sequence of letters, numbers or symbols, usually arranged in some
specific order, and treated as a unit.

Subroutine

A program segment which can be used more than once during the
execution of a program, such as a complex set of calculations. In most
forms of BASIC, a subroutine is best defined with the GOSUB and
RETURN statements.

Trace

Listing the order in which the computer performs program statements.
Tracing the fine numbers canhelpyoufinderrors in a programflow.

User
Any person or persons who use a computer.

100

User port
One of the connections at the rear of a number of microcomputers, which
can be used to send or receive signals under the control of the user's
program.

Users group
A group of people who have computers from a particular supplier, or who
have some kind of common computing interest. It is worth stressing the
value that this kind of organisation can offer, even when, as sometimes
happens, it is really a manufacturer-inspired mouthpiece designed
primarily for marketing purposes. Users can discuss problems, swap
solutions and programs, band together to get discounts on bulk-buying
consumables like paper and disks, and if necessary present a coherent
front to get some action from the supplier.

Variable

A name given to a valuethat mayvary duringthe execution ofa program.
Think of a variable as a memory locationor pigeon-holewhere values can
be replaced by new values during program execution.

Word processor
Asystem forprocessing textual material electronically and thenprinting it
or, perhaps, transmitting it to a similar system. In this context, the
processing is mainly editing.

101

Appendix 3

The Tower of Hanoi -
a Game

This game is one of the classic ancient logicproblems. You are givena pile
ofdiscs ofdifferent sizes, and you have to movethe discsone at a time from
location A to location C in as fewmovesas possible. Location B is available
as a temporary position to help you sort the discs. The problem, however,
is that you must never put a disc on top of one that is smaller in size than
itself.

To use the program, enter the following listing accurately. When
entered, type RUN and follow the instructions that appear on the screen.
You will soon be presented with a picture showinga Tower of the size you
chose on the left hand side. Locations B and C, empty to begin with, are
shown to the right. To move the discs, simply type the location of the disc
you wish to move (say, 'A') followed by the location you wish to move it to
(say, 'C'). Thus, 'A,C' may wellbe your first move. If it is, then 'A,B' must
be your second move - you cannot do 'A,C again (big disc on to little
disc!), and there islittlepointin moving thesmall discagain before making
any other move. Good luck!

10DIMA(10,5),V(30),W(15)
20 CALL CLEAR

30 CALLSCREEN(8)
40 PRINT TAB(10); "TOWER OF HANOI"
50 PRINT

60 PRINT

70 PRINT "AIM: MOVE ALL DISCS TO C"
80 PRINT

90 PRINT "RULE 1: ONLY MOVE ONE DISC EACH MOVE"
100 PRINT

110 PRINT "RULE 2: LARGE DISCS MUST NOT SIT ON SMALL
DISCS"

120 PRINT

130 PRINT "PRESS ANY KEY TO START"
140 PRINT

150 CALL KEY(3,A1,B)

102

160IFB = 0THEN150
170 CALL CLEAR
180 PRINT

190 PRINT TAB(10); "TOWER OF HANOI"
200 PRINT

210 PRINT "HOW MANY DISCS DO YOU WANT?"

220 PRINT

230 PRINT "CHOOSE A NUMBER BETWEEN 2 AND 5"
240 PRINT

250 PRINT

260 CALL KEY(3,A1,B)
270IFB = 0THEN260
280 IF A1> 49 THEN 300

290 GOTO 310

300 IF A1< 54 THEN 360
310 PRINT
320 PRINT "YOU HAVE TYPED AN INVALID NUMBER"
330 FOR I = 1 TO 500
340 NEXT I

350 GOTO 170
360C = A1-48
370FORI = 1TO21
380 READ V(l)
390 NEXT I

400 DATA 73,78,86,65,76,73,68,32,77,79,86,69
410 DATA 84,82,89,32,65,71,65,73,78
420 FOR I = 1 TO 11
430 READ W(l)
440 NEXT I

450 DATA 84,89,80,69,32,65,32,77,79,86,69
460FORI = CTO1STEP-1
470 READ A(l,1)
480A(I,2) = 0
490A(I,3) = 0
500 NEXT I

510 DATA 1,2,3,4,5
520H(1) = C
530 H(2) = 0
540 H(3) = 0
550 CALL CLEAR
560 CALL SCREEN(7)
570 PRINT

103

580 PRINT TAB(9); "TOWER OF HANOI"
590 PRINT

600 PRINT
610 PRINT "TARGET MOVES(SPC)";2AC-1
620 PRINT

630 PRINT "MOVES MADE(SPC)";M
640 FOR I = 1T017
650 PRINT
660 NEXT I

670 A$ = "FFFFFFFFFFFFFFFF"
680 B$ = "0000000000000000"
690 CALL CHAR(40,A$)
700 CALL CHAR(41,B$)
710 CALL CHAR(96,A$)
720 CALL COLOR(9,14,7)
730 CALL HCHAR(19,1,96,32)
740 CALL HCHAR(20,1,96,32)
750 CALL HCHAR(21,1,96,32)
760 CALL HCHAR(22,1,96,32)
770 CALL HCHAR(20,5,65)
780 CALL HCHAR(20,15,66)
790 CALL HCHAR(20,25,67)
800 GOSUB 5000

810 GOSUB 6000
820IFH(I1)>0THEN940
830 FOR I = 1T012
840 CALL HCHAR(6,18+I,V(l))
850 NEXT I

860 FOR I = 13 TO 21
870 CALL HCHAR(8,6+I,V(I))
880 NEXT I
890 FOR I = 1 TO 500
900 NEXT I

910 CALL HCHAR(6,19,41,12)
920 CALL HCHAR(8,19,41,9)
930 GOTO 800
940IFH(I2) = 0THEN960
950IFA(H(I1),I1)>A(H(I2),I2)THEN830
960H(I2) = H(I2)+1
970A(H(I2),I2) = A(H(I1),I1)
980A(H(I1),I1)=0
990H(I1) = H(I1)-1

104

1000M = M+1
1010M$ = STR$(M)
1020 FOR I = 1TOLEN(M$)
1030 CALL HCHAR(6,14+I,ASC(SEG$(M$,I,1)))
1040 NEXT I
1050 GOSUB 5000
1060 IF H(3) <> C THEN 800
1070 PRINT "CONGRATULATIONS!!!!"
1080 GOTO 1080
5000 CALL COLOR(2,11,7)
5010FORP=1TO3
5020 FOR I = 1 TO C
5030 R1 = 1+ 10*(P-1)
5040 R2 = 5-A(l,P)
5050R3 = 2*A(I,P)-1
5060 R4 = 20 - l*2
5070IFA(I,P) = 0THEN5110
5080 CALL HCHAR(R4,R1 +R2.40.R3)
5090 CALL HCHAR(R4-1 ,R1 +R2.40.R3)
5100 GOTO 5130
5110 CALL HCHAR(R4,R1,41,9)
5120 CALL HCHAR(R4-1 ,R1,41,9)
5130 NEXT I
5140 NEXT P
5150 RETURN
6000 CALL COLOR(5,2,7)
6010 CALL COLOR(6,2,7)
6020 CALL COLOR(7,2,7)
6030 CALL COLOR(8,2,7)
6040 FOR Y = 1 TO 11
6050 CALL HCHAR(6,18+Y,W(Y))
6060 NEXTY
6070 CALL KEY(3,A1,B)
6080 IFB = 0THEN 6070
6090 FOR Y = 1 TO 11
6100 CALL HCHAR(6,18+Y.41)
6110 NEXT Y
6120CALLKEY(3,A2,B)
6130 IF B = 0THEN 6120
614011 = A1-64
6150l2 = A2-64
6160 RETURN

105

Index

9900 Processor, 5,77

Access, 94
Address, 94
ALPHA LOCK key, 20
Animation, 71
Argument, 94
Array, 50,94
ASCII characters, 94
Assembler, 14
Assembly language, 94

BASIC, 37
Binary, 94
Bit, 95
Board, 95
Boot, 95
Branch, 95
Buffer, 95
Bug, 95
Business use, 12
Byte, 95

Calculations:

addition, 33
division, 33
exponentiation, 33
multiplication, 33
subtraction, 33

CALL CHAR, 48,56
CALL COLOR, 61
CALL HCHAR, 61
CALL KEY, 88
CALL SAY, 88
CALL SCREEN, 62
CALL SOUND, 81
CALLVCHAR,61
Cassette player/recorder, 7
Cassette tapes, 23
Central processing unit (cpu), 95
Character, 96
Character matrix, 56
Chip, 96

Colours, 61-2,78
Constant, 96
Contours, 66-7
CONTROL key, 20
Cursor, 96

DATA, 64
Database, 96
Debug, 96
Decisions, 41
Default, 96
DEFERRED mode, 30,37
DIM, 49
Disk, 96
Disk drive, 10
Disk Memory System, 79
Disk Operating System (DOS), 96
Double-density, 96
Double-sided, 97
Dynamic simulation, 75

EDIT, 27
Editing, 2,26
Educational use, 12
Execute, 97
Extended TI BASIC, 14

File, 97
Floppy disk, 14
Floppy disk drive, 97
Flow chart, 97
FOR... NEXT, 45
FOR ... NEXT... STEP, 48
FUNCTION key, 20

GOSUB, 85
GOTO, 43
Graphics, 2,55-76,77,97

Hardware, 97
High level language, 97

107

High resolution, 56
Home use, 12

IF/THEN, 42
IMMEDIATE mode, 29-30
Increment, 97
INPUT, 40,47
INSERT mode, 28
INT, 49
Integer, 98
Integrated circuit, 98
Interface, 98
Interpreter, 98

JOYST, 71
Joysticks, 78

K,98
Karcher, J L, 3
Keyboard, 2,19,77,80

Languages, 77
LEN, 31
LIST, 39
Listing, 98
Little Professor, 4
Loading, 22
Loop, 64,98
Low level language, 98
Low resolution, 56

Machine code, 6,99
McDermott, Eugene, 3
Memory, 60,77,99
Memory Expansion Board, 79
Microcomputer, 99
Microprocessor, 1,99
Mode, 99
Movement, 69

NEW, 38
NUM, 29

108

OLD, 23
Operating system, 99
Output, 99

P-Code, 12,79
Patterns, 66
Peripheral Expansion System, 10,79
Peripherals, 9,78
POKE, 60
Port, 99
Printed circuit board, 80,99
Printer, 14, 78
Program, 99
Prompt, 19,99

RAM, 5,77, 80,100
READ, 64
Record, 100
Repetition, 45
RES, 29
RETURN, 85
RETURN key, 20
RND,49
ROM, 5,77,81,100
RS232 Interface Card, 79
RUN, 23,37

SAVE, 51
Saving, 51
Screen, 19,60,77
Scroll, 100
SEG,31,46
Software, 100
Solid State Software, 5,80
Sound,81
Space invader, 63,70
Space race, 3
Speak & Spell, 5
Speech synthesizer, 13,78,88
String, 100
Subroutine, 100

TD datamath, 4
TI-LOGO, 14

Timer, 84
Trace, 100
Tower ofHanoi, 12,102

UCSD Pascal, 14,79
User, 100
User port, 101
Users group, 101

Variable, 101
VisiCalc, 15
Volume, 53

Word processor, 101

109

	front-cover
	content01
	content02
	content03
	content04
	content05
	back-cover

