s Ms 22395

TI-99/4A
Trivia
Data Base

James F. Hunter
and Gregory L. Guntle

TI-99/4A™ Trivia Data Base

James F. Hunter is currently Director of Publishing for Howard W. Sams & Co.,
Inc. (ITT). A graduate of the University of California (Riverside), Jim is a veteran of
seven years experience in the personal computer field. In his spare time, he
plays all board games with an enthusiasm and facility that sometimes astonish
his opponents.

Gregory L. Guntle, a computer support specialist at Sams, is a 1983 graduate of
Indiana University where he majored in computer science. He has worked
actively with micros for the past six years. He also enjoys spending time in
outdoors activities with his wife and family.

TI-99/4A™ Trivia Data Base

by

James F. Hunter
and
Gregory L. Guntle

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1984 by Howard W. Sams & Co., Inc.,
Indianapolis, Indiana 46268

FIRST EDITION
FIRST PRINTING — 1984

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without
written permission from the publisher. No patent
liability is assumed with respect to the use of the
information contained herein. While every precaution
has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages
resulting from the use of the information contained
herein.

International Standard Book Number: 0-672-22395-3
Library of Congress Catalog Card Number: 84-51277

Edited by Douglas P. DeBrabant

Printed in the United States of America.

TI-99/4A is a trademark of Texas Instruments
Incorporated.

Preface

All computers, including micros, are designed to emulate
processes of the human mind. It is, after all, we who have
defined the tasks assigned to computers, with the goal of free-
ing ourselves from tedious and repetitious tasks which can be
done more quickly and efficiently by an electronic device.

It is not unexpected that, after working with computers for a
while, we begin to regard them as intelligent living entities.
While not accurate technically, such an attitude can be of use in
discussing what the programs in this book are designed to do.

We need not be intimidated by the speed with which a com-
puter can do repetitious tasks and calculations. Remember that,
while doing those calculations, the computer need not be con-
cerned with satisfying superiors on the job, raising children,
paying bills, or trying to achieve goals set for itself, by itself. In
short, a computer is not distracted by the state of being human.

For its part, the computer does not enjoy some of the very
positive attributes of a human. It can not think, or feel, or play.
We can. Playing a data retrieval game against a computer would
be no fun. The computer would always win. It is our own lack of
perfection at manipulating and retrieving data that has
accounted for the tremendous success of games like Trivial
Pursuit. As we shall learn, the process of information storage
and retrieval in a computer is exact and describable. Not so with
us humans.

How many times have you heard someone say, “That reminds
me of a story.” Why? What is the mechanism which links one
thought or event to another in the human mind? | don't have the
answer, but | do believe that the lack of exact precision in
describing those links can be a source of entertainment for
people.

We are by nature curious. In the exercise of that curiosity we
amass tremendous quantities of information, some of which
might not be of immediate or even long-term use. In an effort to
justify the acquisition and retention of such bits of knowledge,

we at once name them trivia, and proudly proclaim ourselves
true fountains of useless information. In simpler terms, we try
simply to express our belief that knowing things for their own
sake is rewarding, and fun.

The purposes of this book, and the included programs, are
simple. First, to learn about the concept of a data base program
on a computer, how it is developed, and how it works. Second,
and perhaps more important, to take advantage of the given data
base by using it as a pool from which to draw questions for the
triviarandom inquiry game program. Third, it's designed for you
just to have fun. Itis our hope that you will find both educational
benefit and enjoyment in this book.

JAMES F. HUNTER

A NOTE TO THE READER

The programs in this book were not written as applications
software but as educational examples of what your personal
computer can do. All of the programs have been tested and
work on the machine configuration for which they were
designed. The programs are unprotected. This means that you
can modify them to better understand how they work or to fita
different machine configuration.

What Is a Combo Pack?

A Combo Pack, like this package, is a step beyond your aver-
age technical book. While most books give you programming
examples through printed listings (which we do here), Combo
Packs provide the book and the listings recorded on magnetic
media, either disk, cassette tape, or both.

Every effort has been made to be clear, concise, and infor-
mative about how these programs and routines work. If you
experience any difficulty with the software operations, the solu-
tion can be found in the book or in your computer manuals.

We are rather proud of the time and effort that went into
preparing the Combo Pack. If you have purchased the Combo
Pack and have enjoyed using it, let us know your thoughts. Your
comments will be valuable in preparing future Combo Packs.

LOADING INSTRUCTIONS

The cassette accompanying this Combo Pack contains the
program listings printed in the book.

To load a cassette file from this tape, perform the following
steps:

1. Put the cassette tape into the cassette recorder.

2. Position the tape at the beginning of the program you
want to load.

3. Type OLD CSl
Press <ENTER>

This will cause the next program on the tape to load into the
computer’s memory. When the program is loaded, it is ready to
be used as described in the book.

After you have loaded the programs from cassette, you can, if
you want, save them to disk. For information on how to do that,
consult your computer manual.

The following list shows the tape counter positions for the
contents of the cassette tape. These numbers are approximate
and may vary from recorder to recorder. They should, however,
assist you in locating the programs you are searching for.

Tape Directory

Program Name Counter Location
Cassette Version — Data Base %)
Cassette Version — Game 49
Diskette Version — Data Base 75
Diskette Version — Game 124

Sample File 178

Contents

CHAPTER 1

INTRODUGTION .« v e et teeteeneneeenesnsneneseeneaenenas 13
CHAPTER 2

WHAT ISADATABASE? ..ttt i it i eeen e 17
CHAPTER 3

WHERE DO WEBEGIN? . ittt ittt ei e 21
CHAPTER 4

PROGRAM DESCRIPTION &« ottt it it eieeiieineaeaennes 23
CHAPTER 5

ADDING QUESTIONS .+« vtvttittetiiiineneeenaannnnnns 29
CHAPTER 6

EDITING QUESTIONS . vvvtiiiiiieeeenniiianeeeeeeannns 33
CHAPTER 7

SAVING AND EXITING + ot ittt it ittt ittt eneeeanenans 37
CHAPTER 8

BEGINNING THE TRIVIAGAME v ottt ittt it iiiiienaneaenns 39
CHAPTER 9

THE GAME ITSELF + v ot et e e ittt it et in et tetaenaneaneaann 43
CHAPTER 10

USINGTHEDATABASE .. oottt ittt i i i i enaenns 47

Load an Existing File — Create a New File

CHAPTER 11
PLAYING THE TRIVIA GAME .« oo eiiiiiiiiiiiiiaeeaeee e 55
Instructions — Running the Game — The Start —
Exiting the Game

CHAPTER 12

INCONCLUSION oottt ittt e e et e 59
Appendix A

THE CAsSETTE DATA BASE (SEE FLOWCHART1)o.o.... 61
Appendix B

THE CASSETTE GAME (SEE FLOWCHART2) .. vvveeeaenn. 75
Appendix C

THE DiskeTTe DATA BASE (SEE FLOWCHART 3). ..o vvee v 87
Appendix D

THE DiSKETTE GAME (SEE FLOWCHART4) ..o, Q9

Chapter 1
Introduction

In the 1940's, my father tuned pipe organs as a sideline and he
later worked on the first electronic organs. In the process of
repairing and tuning those organs, he kept runninginto the fact
that the twelfth root of two is a very significant number in
understanding the tempered musical scale. And he needed to
understand that scale thoroughly to do a good job of tuning.
Because he worked principally as a motion picture projectionist
at the time, he had ample opportunity to set about calculating
the twelfth root of two by hand.

The process was simple, if time consuming. He would pick a
number between one and two, multiply it by itself twelve times,
and see how close the result was to 2.00000. If the result of the
multiplications (all done by hand) was greater than 2.00000, then
he reduced the trial number. If it was less than 2.00000, then he
increased the trial number. Over a period of years, he was able to
calculate the twelfth root of two to 7 decimal places.

In 1975, | purchased a Hewlett Packard calculator. With a few
keystrokes | found the log of 2, divided it by 12, and took the
antilog. In amatter of seconds I'd obtained the same answer that
it had taken my father years to arrive at. That speed in calculation
is really what computers are all about. From the earliest modern
computer, which was used by the U. S. Army to calculate mortar
trajectories, to today’s mainframe, mini, and microcomputers,
the object has always been the same — to relegate repetitious
and time consuming tasks to electromechanical (and now sil-
icon technology) devices.

Repeated calculations to obtain a mathematical answer is pop-
ularly called number crunching. It was not long, however, after
the advent of computers until other kinds of activities, which
had previously been done by hand, were being done by com-
puter. One very obvious application is financial accounting,
with its ledgers, balance sheets, T accounts, and profit and loss

13

statements. One has but to remember the frustration of trying to
balance a checkbook to understand the relief felt by account-
ants with the introduction of computerized bookkeeping.

As computers have become smaller, more affordable, and
more powerful, other applications have been defined and
implemented. Specifically, the applications which are of interest
here are those currently being used on microcomputers, such as
the TI-99/4A. It is helpful to understand general groupings of
those applications, so as to put the programs contained in this
book and the accompanying cassette in perspective. There are
five main categories of microcomputer software, and each has
several subcategories:

Accounting
General Ledger
Accounts Payable
Accounts Receivable
Inventory
Payroll

Productivity Tools
Word Processor
Spreadsheet
Data Base
Communications
Graphics

Education
Tutorial
Skill Remediation
Drill and Test
Programmed Instruction
Simulations

Entertainment
Shoot-em-ups
Strategy Games
Fantasy Games
Simulations

14

Utilities
Programming Aids
Communications
Graphics

Looking quickly at the list above reveals that in this book we
are dealing with an area of productivity tools called data bases.
Before we begin construction of our data base, and subse-
quently use it for an amusing trivia game, we must describe and
understand just what a data base is. And that's what is coming up
in the next chapter.

15

Chapter 2
What Is a Data Base?

The term data base is in itself quite descriptive. A collection of
information, arranged in some nonrandom and accessible order
is a data base. Your telephone white pages are a data base. The
phone book gives multiple iterations of the same types of infor-
mation for many listees — last name, first name, address, and
telephone number. The Joy of Cooking cookbook is a collection
of recipes, each of which has ingredients, and step-by-step
directions for the preparation of food. It, too, is a data base.
Given just these two examples, think about what other everyday
sources of information could be regarded as data bases.

To better understand what electronic (computerized) data
bases consist of and do, the following analogy to a commonly
used manual system of maintaining a data base may be helpful.
That system is the ever present 3 x 5 filing card system. Many
such index card systems are the result of our desire to collect.
Once our collection reaches a significant size, we need to have
control of its contents. This control can be used to trade, to sell,
to insure, to value, or for any number of other activities. For
whatever reason, we definitely need to control the collection’s
contents.

Let us suppose that we collect cassette tapes of old time radio
show broadcasts, and we want to be able to share them with
friends. Our collection has grown to over 600 shows, and mem-
ory alone will not suffice to summon up the exact details of each
show. Our friends ask if we have any shows with Jack Benny. We
know that there are two, but where? Time for an index file!
Time, indeed, for a data base!

Simply writing down the information about a show, in para-
graph form, for instance, quickly proves of limited use. For
example:

Jack Benny show broadcast June 4, 1938. Guest stars

17

include Edgar Bergen and Charlie McCarthy. The show was
sponsored by Lucky Strike, and is currently located in my
upper-left hand desk drawer, on the Sony tape with the Red
and Black label.

This card certainly has all of the information we want, but after
we have finished ten cards or so, we begin to file them. How?
Alphabetically, of course. But alphabetically by what criteria? For
starters, let’s do it by the name of the show. What is the name of
the show? “T” for the, “J” for Jack, or “B” for Benny? We
obviously need some standard procedures. Also, when flipping
through the cards, we need to be able to find the information on
the show name quickly. Let’s put the show name on a separate
line at the top of the card.

The next thing that we need to read on the card is the date of
broadcast. Let's put it in the upper-right hand corner. And the
guests . . . second line, left hand side. We are quickly designing
aformat for the information. Ultimately, it could end up looking
like this:

Show title: Bdcst Date:
Guests: Sponsor:
Location: Running time:

Additional Comments:

At this point, let’s digress for just a moment to point out
another phenomenon resulting from the increasing use of
microcomputers. It has been dubbed computerphobia, and it is
often seen in the following form: the media has convinced us all
that we must be “computer literate” if we are to survive econom-
ically and socially in the next decade. We also are “required,” if
we would be thought “good parents,” to provide “computer
literacy” for our children. Otherwise, perhaps we could be seen
as impeding their growth and success potential as they grow up
and enter a world controlled by computers. However, we some-
times feel inadequate (if not plain stupid) because we don’t
understand microcomputers, and if we admit it by asking ques-
tions, people will then learn the worst — we really are stupid.

Fortunately, this is not at all the case. Most often, it is not the
concept which we do not understand, it is the jargon used to
describe computers and their uses. The following exercise may
help to shed light on this point: set out below are two versions

18

of a paragraph describing the use of our filing card system. The
first uses terms with which we are all familiar and the description
and concept are easily understood. The second, however, sub-
stitutes the terms which would be used to describe the same
data base if it were found in a computer environment. By com-
paring the two, you can see that (1) you can understand concepts
of microcomputer usage, and (2) you are definitely not stupid.

Ordinary version

Now that we have the information layout, we can begin
to fill out cards for each specific show. We can then file
them alphabetically by show title. After all of the cards have
been filled out, we can use the newly formed card file. If, as
time goes by, we change our collection, we can remove
cards, change cards, or insert cards to reflect those
changes. We can also decide to file them alphabetically by
another bit of information on each card, such as Guest
Stars, and re-sort them for location using that new cate-

gory.

Computerese version

Now that we have the format, we can begin to enter data
for each specific show. We can then sort the data records
by show title. After all of the records have been entered,
we can access the newly formed data base. If, as time goes
by, we change our collection, we can delete records, mod-
ify or edit records, or add records to reflect those changes.
We can also decide to sort them alphabetically by another
field, such as Guest Stars, and resave all records for access
using the new key field.

In general terms, then, a computerized data base does the
same things as a card system. So why bother with creating and
maintaining such a data base? Because a computerized system
can do many other things (far more quickly and easily) that the
card system can't. For example, let us suppose that we wanted to
find a show that was exactly 28 minutes long. With the cards, we
would have to check each card by hand, or re-sort the cards by
show length, from shortest to longest or vice versa. On the
computer, we can search on the part of the card (field) which has

19

that information until such a show is found, and then read
(access) that whole record. Such sorts and searches using a
variety of keystrokes are the backbone of an electronic data
base.

Next, let us suppose that we also had established a dollar
value for each show, and entered that onto our format in its own
location (field). A sophisticated data base would also allow us to
add up all of the values, thus giving us a total value for the
collection at any point in time.

Finally, we shall assume that our insurance company wants
limited information on each show in order to issue a policy on
the collection. With the cards, we would have to hand copy or
electronically copy the cards. With an electronic data base, we
could design a new format for printing the data, in columns for
example, and summarize all of our shows on a few pages.

In summary, an electronic data base allows for the creation of
data entry and output formats, and the actual entry, storing,
retrieval, editing, deletion, searching, and sorting of records.

In addition to these features, our trivia data base will be
complemented by a random inquiry program. Our data will
consist of questions and two word answers, and the second
program will randomly select questions from data entered into
the data base program itself, compare our answer, and then
score us on the speed and accuracy of our replies.

20

Chapter 3
Where Do We Begin?

Now that we understand something of what a generalized
electronic data base is and what it does, we can begin to con-
struct our own specialized random inquiry version of a data
base. The method of this book beginning with Chapter 4 will be
as follows: first, define the aspect of our data base program to
be dealt with; and second, to present and explain the BASIC
language code which will achieve that result. As a tool for
following the logical flow of both programs, we will use standard
flowcharting techniques.

Such a process of program development is referred to as
modular programming. Each task will have its own section of
code and, when we put them all together at the end, we will
have a program that meets our original design specifications.

Before we begin, however, let us review in more detail what it
is that we want our program to do. First, we want to be able to
enter trivia data questions and answers (in pairs). Next, we want
to be able to edit (add, delete, alter) those entries until we are
satisfied with the results. Finally, we want a second program to
arrange for the computer to ask us those questions randomly,
and give us an individual or comparative score for our efforts.

Perhaps a few comments on programming techniques and
style would be helpful at this time. With regard to structure, the
BASIC language can be something of a trap for the unwary. The
necessity to access subroutines in other parts of our program
could result in the creation of “spaghetti code” (a term meaning
program code written in such a haphazard fashion that it “wan-
ders” up and down and decreases program efficiency and legi-
bility as it goes) if we are not careful. Top down or structured
programming is much to be preferred, and it means to start at
the top of the program and work out the details in a logical,
sequential manner. This requires that we have a very precise idea
of how the logic of the program will work before we write a

21

single line of program code.

The assignment of variable names within the program is also
of greatimportance. Prepare a logical scheme for these variables
by giving each variable a form which can be easily recalled. In
other words, make the variable names mnemonic —a great help
as we reuse the variables throughout the program.

REMark statements within the program help remind us of the
function of modules, and aid other programmers who might at
some later date be working with the program to understand the
logic which we are using.

Finally, we cannot always assume that a user will follow our
directions, and we must therefore allow for circumstances in
which input might not normally be expected, or it might take an
invalid form. The process of accounting for such events is called
“error trapping.” This process is nothing more or less than
anticipating inappropriate actions by the program users, and
preventing those incorrect actions from causing the program to
fail, or “bomb” as we say in the trade.

We are now ready to build the skeleton of the program. Next
stop, the flowchart (not Greenwich Village).

Chapter 4
Program Description

In the complete program listings which appear in Appendices
A, B, C,and D, you will note that this package actually consists of
four different programs. In fact, there are two different versions
of two programs, all delivered on the same cassette if you
bought this package as a Combo Pack. On the tape there is a
tape version of the data base and the access routine, as well as a
disk version® of each program which will not execute on a tape
based machine, but which is meant to be loaded from tape,
stored to a disk system, and then executed. For continuity and
clarity we shall discuss the construct and code of the tape
versions. The differences in the disk version have to do with disk
input and output for the storage and retrieval of individual
records created by the data base and used by the game.

One popular misconception (although you don’t buy it for a
minute!) about computers is that they can think. Computers
cannot think. They can only be programmed to evaluate a cer-
tain situation according to certain guidelines, and then to per-
form certain calculations based on those guidelines. A specific
example may be of some help here.

Let us suppose that we want to create a program which
receives as input from a user his sex, height, weight, and age.
Then we want to program the computer to return a message as
to whether the person who input the data is underweight, at a
healthy weight (for him), or overweight. Before we can begin
writing BASIC code, we must define what the process will be by
which the computer can output the appropriate response.

For a first pass, let us assume that we have a chart of appropri-
ate weights for adults. We can program the computer to retain
that chart, and look up (based on the user input) an appropriate

* Disk version program listings and variable listings for main programs and subroutines are shown in
Appendices C and D.

23

weight based on sex, height, and age. For now, let’s just assume
that a program exists which will accomplish that task. We now
have, in the computer’s memory area, the target weight, and the
actual weight of our subject. Now we come to the kind of logical
branching activities which computers can be programmed for,
and that lead people to believe that computers can indeed
think. Actually, all that takes place are tests on the data, with
selection of the correct message based on the results of those
tests.

For the sake of this example, let us further assume that anyone
who is plus or minus 5% of his best weight is close enough, and
will receive a positive message. If his weight s less than 95% of
his target weight he will get a “skinny” message, and if he is over
105% of his best weight, he will read a “fat” message.

The preceding description of program flow is wordy, awk-
ward, and not easily understood at a glance. There must be a
better way, and there is. What we have here is a sequence of
tests, decisions, and actions, which can be nicely represented
by a flowchart. (See flowchart on next page.)

It is now clear at a glance that we receive input from a user,
compare the actual and target weights, and then choose one of
three messages to print to the screen. Even in this simple exam-
ple, the value of the flowcharting tool is evident. In more com-
plex programs (such as we are describing here), flowcharting is
an invaluable aid to understanding what is happening in the
program. See Flowcharts 1, 2, 3, and 4 which fold out of the back
of this book.

Let us now look at the heart of our data base program, using a
flowchart. (Pull out Flowchart 1 for simultaneous viewing.) From
the standpoint of the user, his first decision will be to load an
existing data file, or create a new one.

If he chooses to load an existing file, he will be led through
the process with screen messages, and if he chooses to create a
new one, he will be given four more choices. These lists of
choices presented on the computer screen are called menus,
and a program which always has menu options available on the
screen is said to be menu driven (and sometimes even “user
friendly”).

24

response
valid
?

Within
table
limits

Within
table
limits

Look up true
weight from
tables based
on sex, height
and age

Is

weight

within Over- Display
range of weight “Underweight!"
true ?

height
?

Display Dis,

o play
"Weight “ iohtir
oK" ‘Overweight!

END

Fig. 4-1. Weight example program flowchart.
25

Fig. 4-2. Mr. User Friendly.

The BASIC code which will initialize our variables (they have
to start somewhere) and present the first two choice menu looks
like this:

10 REM TRIVIA DB-CASSETTE VERSION

20 OPTION BASE 1 :: DIM QA$(39)

30 CALL CHAR(128,"FFO0000000000003"):: CALL CHAR
(129, "0@0G7E7E7ETEQQGGB") : : CALL CHAR
(136, "FFFFFFFFFFFFFFFF")

40 CALL COLOR(14,13,4):: BLK$S=RPT$(" ",78):: FALSE=0
: : TRUE=NOT FALSE :: GOTO 670

670 CHNGS=FALSE :: NUMQ=0 :: CALL CLEAR :: CALL
SCREEN(4):: DISPLAY AT(1,8)BEEP:"** TRIVIA DB **"

680 DISPLAY AT(5,2):"DO YOU WANT TO:" :: DISPLAY
AT(8,3):"1. LOAD AN EXISTING FILE"

690 DISPLAY AT(10,3):"2. CREATE A NEW FILE" :: DISPLAY
AT(13,3):"PLEASE SELECT (1-2)"

799 CALL KEY(®,K,S):: IF S<=@ THEN 700

710 DISPLAY AT(13,23):CHR$(K):: IF (K<49)OR(K>5@)THEN
DISPLAY AT(13,23)BEEP SIZE(1l):: GOTO 700

26

The four new choices are as follows:

** TRIVIA DB MAIN MENU **
1. ADD QUESTIONS

2. DISPLAY/EDIT
QUESTIONS

3. CHANGE FILES
4. EXIT PROGRAM

PLEASE SELECT (1-4)

Fig. 4-3. The Trivia DB main menu.

The code which produces this main menu follows:

799 ARRNUM=NUMQ

800 DISPLAY AT(4,3)ERASE ALL BEEP:"** TRIVIA DB MAIN
MENU **" :: DISPLAY AT(8,6):"1. ADD QUESTIONS"

819 DISPLAY AT(18,6):"2. DISPLAY/EDIT" :: DISPLAY
AT(11,9):"QUESTIONS" :: DISPLAY AT(13,6):"3.
CHANGE FILES"

820 DISPLAY AT(15,6):"4. EXIT PROGRAM" :: DISPLAY
AT(18,6) : "PLEASE SELECT (1-4)"

830 CALL KEY(9,K,S):: IF S<=0 THEN 830

840 DISPLAY AT(18,26):CHR$(K):: IF (K>48)AND(K<53)THEN
K=K-48 :: SL=K ELSE DISPLAY AT(18,26)BEEP
SIZE(1):: GOTO 830

850 ON K GOSUB 79,340,6390,630

860 GOTO 809

Based upon which option is selected, there are three different
subprograms which will be activated. On Flowchart 1, those
choices will direct flow to B, C, or D. The following three
chapters will deal with an evaluation and discussion of the
flowchart for that option, and the resultant BASIC code which
will achieve that flow.

27

Chapter 5
Adding Questions

Before reading further, pull out Flowchart 1 for simultaneous
reference and see Appendix A.

Increment the counter . . . the phrase sounds like gob-
bledegook, but it really is quite simple. The operation ARRNUM
= ARRNUM + 1simply indicates that the next question will have
a number one greater than the previous number. ARRNUM is a
counter, and increment means add 1. Because we can only have
up to 30 questions in one data base, we then test to see if we
have exceeded that amount. If we have, then we let our user
know. If not, we present a screen for input of the question and
the answer which is correct.

But we are all human, and we might need to make some
changes, because when we entered the question and answer,
we made a mistake. We therefore offer the options of redoing
the question and answer, saving it (and thus making it part of the
current data file in memory only), or forgetting the whole thing
and exiting the entry mode. If we choose to quit, we delete the
current record, but retain the rest of the saved records that are in
memory. If we save what we have done, we set the CHNGS flag
(simply a marker on the status of things) to TRUE, and save the
work done to memory.

Before presenting the BASIC code for this section, another
thing needs to be explained. Subroutines are of great value to
the programmer, because quite often a particular action is
repeated throughout a program. Rather than copy the same
code over and over, that action is identified as a “subroutine,”
and given a name. Then, when the action is required, that
subroutine is invoked, or called, and many lines of code have
been eliminated.

In the code for this section, please note that there are a
number of subroutine calls. In most cases, the name of the
routine, and the attendant code, are straightforward and sim-

29

ple. A complete listing of the subroutines in this program, by
name, is contained in Appendix A, and should be referred to as
each is invoked.

The code for adding questions follows:

79 CALL CLEAR :: DE=FALSE

80 ARRNUM=ARRNUM+1 :: IF ARRNUM>3@ THEN ARRNUM=30 ::
CALL FULL :: RETURN

99 TT$="** ADDING QUESTIONS **" ::. CALL SCRFORM
(ARRNUM, TT$) :: CALL ADDCMDS

188 Q$="" :: FLAG=@ :: SV=TRUE :: EX=TRUE :: CALL
GETCHAR(7,2,3,Q$,FLAG,SV,EX)::IF FLAG=1 THEN CALL
ERASEQUEST :: GOTO 199

119 IF FLAG=3 THEN ARRNUM=ARRNUM-1 :: RETURN ELSE IF
FLAG=2 AND Q$="" THEN 100

120 Q$=SEG$(Q$&BLKS$,1,78):: CALL WRAP(Q$, BLKS)

138 A$="" :: FLAG=0 :: SV=TRUE :: EX=TRUE :: CALL
GETCHAR(17,2,1,A$,FLAG,SV,EX)

140 IF FLAG=1 THEN CALL ERASZQUEST :: CALL ERASEANS ::
GOTO 109

150 IF FLAG=3 THEN ARRNUM=ARRNUM-1 :: RETURN ELSE
GOSUB 60 :: IF ERR THEN CALL ERRMSG :: GOTO 130

160 IF FLAG=2 THEN GOSUB 5@ :: CHNGS=TRUE :: GOTO 80

176 CALL HCHAR(23,31,129):: CALL BEEP

180 CALL KEY(9J,K,S):: IF S<=0 THEN 180

199 IF K=146 THEN GOSUB 230 :: CALL ADDCMDS :: GOTO
170

200 IF K=147 THEN FLAG=2 :: GOTO 164

210 IF K=152 THEN ARRNUM=ARRNUM-1 :: RETURN ELSE CALL
BEEP :: GOTO 189

There are two additional sections of code that are invoked
within this portion of the program. First, it is desirable to elimi-
nate the articles “a,” “an,” and “the” from answers, since we are
limited to two word answers, and someone might well delete
them, but get the rest of the answer correct. We therefore have a
routine called Parseans which deletes them. In line 60, when
PARSEANS is called, you will note that there are two variables in
parentheses following the call. These are called arguments and
are important in the calling process. Argument is, again, a con-
fusing term in this context. Basically, what it means is that the
subroutine called PARSEANS requires two pieces of information
before it can perform its function, and that it requires them in a
particular order. In this case it needs to have a variable called
ANSS$ followed by another numerical variable called ERR. For
lists of variable names for the programs in this book, see, as
appropriate, Appendix A, B, C, or D.

Secondly, there is a portion of code which handles the storing
of questions and answers:

30

The call for the parsing routine looks like this:

60 ANS$=A$:: ERR=FALSE :: CALL PARSEANS(ANSS,ERR)::
RETURN
That, then, comprises the code for the ADD RECORDS sec-
tion of the program. But, as noted earlier, nobody is perfect, and
even after we have entered what we think is correct information,
we sometimes will have to change it. Time to look to the editing
process, and that is discussed in the next chapter.

31

Chapter 6
Editing Questions

This module is undoubtedly the most complex one in the data
base program. Pull out Flowchart 1 for simultaneous reference,
refer to Appendix A, and let’s look at the logic.

First we test to make sure that our location in the list of
questions is not before record number 1. If we are, we advise the
user, and return to the main menu. If not, we assign our current
position within the file to the variable ARRPOS. We then display
the current record question and answer, and offer it up for
modification. We have several options:

** DISPLAY/EDIT QUESTION **

PECETEEEEErr ety
QUESTION# 1

ANSWER FOR QUESTION# 1

(USE ONLY 2 WORDS)
PETTEEEEEEET T r et

C/R-REDO, C/N-NEXT, C/P-PREV,
C/D-DEL, C/X-EXIT

Fig. 6-1. Display/edit screen.

The first option is to redo the question and/or the answer.
Look at the rest of the flowchart, and you can see that we have
even more options. At this point we can change the question,
the answer, both, or neither. If we wish to change the question
and/or the answer, we first erase the old entry, and then replace

33

it with the new information.

Notice that, as before, there is a flow option for “invalid
responses.” These are our error trapping routines. Now let us
return to option C on Flowchart 1. The second option is to look
at the next record. ARRPOS is incremented by 1, and then we
test to make sure that we have not passed all of the existing
records in the file. If we pass both tests, it's back to display and
editing. If not, we present an appropriate message, and return
to the previous menu.

Likewise, we can also look at the previous record. We decre-
ment the record position, check for the beginning of the file,
and then edit that record. We may simply opt to delete a record
altogether. We check to make sure that is the requested action
(once it's gone, it’s gone), and then perform the action. Finally,
we can choose to exit this module and return to the main menu.

The code for this section follows. Remember, subroutines can
be found in Appendix A.

340 IF ARRNUM>J THEN 370

350 CALL CLEAR :: DISPLAY AT(6,2)BEEP:"THERE ARE NO
QUESTIONS"

360 DISPLAY AT(8,2):"AND ANSWERS IN MEMORY TO" ::
DISPLAY AT(1@,2):"DISPLAY/EDIT." :: CALL ENTER ::
RETURN

378 ARRPOS=1 :: DE=TRUE

380 TTS$="* DISPLAY/EDIT QUESTION *" :: CALL
SCRFORM(ARRPOS, TTS)

399 DISPLAY AT(7,2):SEGS(QAS$(ARRPOS),1,26):: DISPLAY
AT(9,2) :SEG$ (QAS$ (ARRPOS) ,27,26)

40@ DISPLAY AT(11l,2):SEG$(QAS$(ARRPOS),53,26):: DISPLAY
AT(17,2) :SEG$ (QAS$ (ARRPOS) ,79,26)

419 CALL EDITCMDS

429 CALL KEY(5,K,S):: IF S<=@ THEN 420

430 IF K=132 THEN 530 ELSE IF K=142 THEN
ARRPOS=ARRPOS+1 :: GOTO 478

449 IF K=144 THEN ARRPOS=ARRPOS-1 :: GOTO 500

45@ IF K=146 THEN TOT=ARRNUM :: ARRNUM=ARRPOS :: GOSUB
220 :: GOSUB 5@ :: ARRNUM=TOT :: GOTO 3880

463 IF K=152 THEN RETURN ELSE CALL BEEP :: GOTO 420

470 IF ARRPOS<=ARRNUM THEN CALL NUMDISP(ARRPOS):: GOTO
390

480 DISPLAY AT(23,1)BEEP:"THERE ARE NO MORE
QUESTIONS!":: DISPLAY AT(24,1)SIZE(28)

499 CALL DELAY(68@):: CALL EDITCMDS :: CALL BEEP ::
ARRPOS=ARRPOS-1 :: GOTO 420

Sgg IF ARRPOS>=1 THEN CALL NUMDISP(ARRPOS):: GOTO 394

51@¢ DISPLAY AT(23,1)BEEP:"CAN'T GO BELOW RECORD #11"

: :DISPLAY AT(24,1)SIZE(28)

34

520
539

540
550

569
579
580

CALL DELAY(60@):: CALL EDITCMDS :: CALL BEEP ::
ARRPOS=ARRPOS+1 :: GOTO 420

DISPLAY AT(23,1)BEEP:"DELETE THIS RECORD? (Y/N)"
: :DISPLAY AT(24,1)SIZE(28)

CALL KEY(@,K,S):: IF S<=@ THEN 540

CALL HCHAR(23,30,K):: IF K<>78 AND K<>89 AND
K<>110 AND K<>121 THEN CALL BEEP :: GOTO 540

IF K=78 OR K=110 THEN 410 ELSE IF ARRNUM-1=0g THEN
QA$ (ARRPOS)="" :: ARRNUM=@:: GOTO 350

IF ARRPOS=ARRNUM THEN QA$(ARRNUM)="" ::
ARRPOS=ARRPOS-1 ELSE QA$ (ARRPOS)=QAS$ (ARRNUM)
ARRNUM=ARRNUM-1 :: CHNGS=TRUE :: IF ARRNUM<1l THEN
350 ELSE CALL NUMDISP(ARRPOS):: GOTO 390

35

Chapter 7
Saving and Exiting

Now that we have finished with the data base, we need to
leave the program cleanly, and allow for file updates as needed.
Look at Flowchart1, in the pullout section, as well as Appendix A
while we evaluate the final portions of the data base code.

First we check to make sure that some changes have been
made to the active data base. If so, then you have a chance to
save the file from memory to tape. Otherwise, we clear the
screen to end the program. '

If changes have been made, then we ask if we want to save the
changes. If so, we do; if not, we return to the main menu. All of
these checks are designed to allow a user to “back out of” an
erroneously chosen option, without damaging the integrity of
the data.

The code for these two sections follows:

590 CALL SAVEMSG :: CALL CLEAR

600 OPEN #1:"CS1", INTERNAL,OUTPUT,FIXED 128

610 PRINT #1:NUMQ :: FOR I=1 TO NUMQ :: PRINT
#1:QA$(I):: NEXT I

620 CLOSE #1 :: RETURN

639 IF NOT CHNGS THEN IF SL=4 THEN CALL CLEAR :: END
ELSE 670

640 NUMQ=ARRNUM :: YFLG=FALSE :: CALL SAVECHNGS(YFLG)

658 IF NOT YFLG THEN IF SL=4 THEN CALL CLEAR :: END
ELSE 670

660 GOSUB 598 :: GOTO 670

This completes the code explanations for the data base itself.
Next we shall look at the random inquiry and scorekeeping

program (the game), using the same techniques employed in the
preceding analysis.

37

Chapter 8
Beginning the Trivia Game

We can now begin an analysis of the second program in this
package, the Trivia Game, which will utilize the data base cre-
ated by the first program. Pull out Flowchart 2 for simultaneous
viewing, see Appendix B, and we shall begin an evaluation of the
flowchart and attendant code.

As was the case with the data base program, we must first
initialize the variables. We then display the introduction screen.
This code appears as follows:

14 REM TRIVIA GAME - CASSETTE VERSION

2@ CALL CLEAR :: CALL SCREEN(4):: OPTION BASE 1 :: DIM
QA$(30),RQN(30),N(30),ND(8),NT(4)

30 BLK$=RPTS$(" ",26):: FALSE=@ :: TRUE=NOT FALSE ::
CALL CHAR(128,"FFO0J000000300903"):: CALL
CHAR(129, "Q@0Q7ETETETEQQ00")

40 CALL CHAR(136,"FFFFFFFFFFFFFFFF"):: CALL
COLOR(14,13,4):: GOTO 200

200 DISPLAY AT(6,4)BEEP:"WELCOME TO THE TI-99/4A" ::
DISPLAY AT(10,6):"** TRIVIA GAME **" :: CALL
ENTER

Next, we must load the data files from tape (or disk) prior to
starting the game. We first ask for the number of cassette files. If
there is only one file, we will use all of the questions. If there is
more than one file, then we must choose only selected ques-
tions from each tape. The code for this activity follows
(remember, subroutines are called by name, and can be found
in Appendix B):

216 DISPLAY AT(8,2)ERASE ALL BEEP:"HOW MANY CASSETTE
FILES" :: DISPLAY AT(1¢,2):"DO YOU HAVE? (1-19)"

220 ACCEPT AT(10,21)VALIDATE(NUMERIC) SIZE(3)
BEEP:NUMFILES :: IF NUMFILES<l OR NUMFILES>1@ THEN
220

230 IF NUMFILES=1 THEN 380

240 DISPLAY AT(8,2)ERASE ALL BEEP:"PLEASE WAIT...I'M
WORKING" :: RANDOMIZE :: FOR I=1 TO 30

39

250 WN=INT(RND*NUMFILES*30)+l :: ERR=FALSE :: CALL
CKNUM(WN, RQN(),ERR,30):: IF ERR THEN 250 ELSE
RON(I)=WN

260 NEXT I :: P=1 :: Q=39 :: TO=0

278 IF P>=Q THEN 369

280 V=RQN(P):: I=P ::-J=Q+l

299 J=J-1 :: IF RQN(J)>V THEN 290

309 I=I+1 : IF RQN(I)<V AND I<75 THEN 300

310 IF J>I THEN T=RQN(I):: RQON(I)=RQN(J):: RQN(J)=T ::
GOTO 294

320 RQN(P)=RQN(J):: RQN(J)=V

330 IF (J-P)<(Q-J)THEN N(T@+1)=J+1 :: N(T@+2)=Q :: Q=J-
1 :: GOTO 350

340 N(TO+1)=P :: N(T@+2)=J-1 :: P=J+1

350 T@=TO+2 :: GOTO 270

360 IF TO<>3 THEN Q=N(T@):: P=N(T@-1):: TO=TO-2 ::
GOTO 279

370 FOR I=1 TO 30 :: N(I)=0 :: NEXT I

380 DISPLAY AT(2,2)ERASE ALL BEEP:" THIS IS GOING TO
TAKE A" :: DISPLAY AT(4,2):"WHILE, FOR ME TO LOAD
THE"

390 DISPLAY AT(6,2):"QUESTIONS AND ANSWERS FROM" ::
DISPLAY AT(8,2):"YOUR CASSETTE." ’

400 DISPLAY AT(160,2):" PLEASE BE PATIENT AS I" ::
DISPLAY AT(12,2):"LOAD THE RANDOM QUESTIONS"

41@ DISPLAY AT(14,2):"FROM YOUR CASSETTE FILES." ::
CALL ENTER :: CN=1 :: CTR=1:: RECCTR=0

42@ DISPLAY AT(20,2)ERASE ALL BEEP:"INSERT CASSETTE
" : CN

430 OPEN #1:"CS1",INTERNAL, INPUT ,FIXED 128

440 INPUT #1:NUMQ :: FOR I=1 TO NUMQ :: INPUT
#1:QAS$(CTR)

450 IF NUMFILES=1 THEN RQN(CTR)=I :: CTR=CTR+1l :: GOTO
479

460 IF I+RECCTR=N(CTR)THEN CTR=CTR+1l

473 NEXT I :: RECCTR=RECCTR+NUMQ :: CN=CN+l1 :: CLOSE
#l1:: IF CN<=NUMFILES THEN 420

Notice that, since this process is often time consuming, we
display a “pacifier message” during the process to assure users
that things are proceeding properly. Finally, we must “shuffle”
the questions, so that the order is not predictable.

After we have shuffled the questions (and their corresponding
answers), we will pick double and triple point questions. Then
we will find out who is playing, by asking for the number of
players and their names. We are now ready to begin the game,
so we display the screen form for the game, and move onto the
next chapter, where we will look at the interrogation, evaluation,
and scorekeeping functions. The shuffling and selecting of dou-
ble and triple point questions is coded as follows:

40

480
490
508
5108
520
530
540
550
560
570
580
590
600
610

620
630

640
650
669

DISPLAY AT(6,2)ERASE ALL BEEP:"PLEASE WAIT..." ::
DISPLAY AT(1@,2):"SCRAMBLING QUESTIONS"

RANDOMIZE :: NUMQ=RECCTR :: IF NUMQ>3@ THEN
NUMQ=39

NUMDBL=INT(NUMQ*.25)+1 :: NUMTPL=INT(NUMQ*.10)+1
FOR I=1 TO NUMQ

WN=INT(RND*NUMQ)+1 :: ERR=FALSE :: CALL
CKNUM(WN, N(), ERR, NUMQ)

IF ERR THEN 520 ELSE N(I)=WN

NEXT I :: FOR I=1 TO NUMDBL

QN=INT(RND*NUMQ)+l :: ERR=FALSE :: CALL
CKNUM(QN,ND(),ERR, 8)

IF ERR THEN 550 ELSE ND(I)=QN

NEXT I :: FOR I=1 TO NUMTPL

QN=INT(RND*NUMQ)+1 :: ERR=FALSE :: CALL
CKNUM(QN,NT(),ERR,4):: IF ERR THEN 580

CALL CKNUM(QN,ND(),ERR,8):: IF ERR THEN 580
NT(I)=QN :: NEXT I

DISPLAY AT(13,2)ERASE ALL BEEP:"NUMBER OF PLAYERS
(1_4)n

CALL KEY(@,K,S):: IF S<=¢ THEN 620

CALL HCHAR(1%,28,K):: IF K<49 OR K>52 THEN CALL
BEEP :: CALL HCHAR(1@,28,32):: GOTO 620

NP=K-48 :: FOR I=1 TO NP :: DISPLAY AT(1@,2)ERASE
ALL:"PLAYER#";I;"NAME:"

ACCEPT AT(19,18)VALIDATE(UALPHA)BEEP
SIZE(11):PN$(I):: IF PN$(I)="" THEN 650

NEXT I :: DISPLAY AT(1l,5)ERASE ALL BEEP:"**
TRIVIA GAME **" ::; CALL HCHAR(2,3,136,29)

Now, on to the actual play of the game.

41

Chapter 9
The Game Itself

For this section of the program, pull out Flowchart 2 and see
Appendix B for reference. We have displayed the format, and
now we must get one of the random questions previously
loaded into memory. We check to find out whether the question
has been randomly designated as a double or triple value ques-
tion.

Now that we know what the question is worth in point value,
we start the timer, and wait for the user to enter his answer. As
time passes, the value of the question decreases. Once the
ENTER key is pressed, we have to check for the correctness of
the answer. If the answer is correct, we go to the next player, and
display his current score, if there is another player remaining.
We then pick the next question, and display it.

Once the questions have been used up, we must display the
final score. This done, we ask for a replay, and either start over or
end the game with a pleasant message. These code sections
follow:

720 PLYR=1 :: ARRLOC=1 :: FOR I=1 TO NP :: NQ(I)=0 ::
NC(I)=0 :: SC(I)=0 :: NEXT I

730 TIM=@ :: CALL TIMER(TIM):: GOSUB 50 :: DISPLAY
AT(5,13)SIZE(2) :ARRLOC

740 DISPLAY AT(7,2):SEG$(QA$(N(ARRLOC)),1,26)::
DISPLAY AT(9,2):SEG$(QAS(N(ARRLOC)),27,26)

750 DISPLAY AT(11l,2):SEGS$(QA$(N(ARRLOC)),53,26)::
STPLYR=PLYR

768 FOR I=1 TO NUMDBL :: IF ND(I)=N(ARRLOC)THEN
DBL=TRUE :: GOTO 798

770 NEXT I :: DBL=FALSE :: FOR I=1 TO NUMTPL :: IF
NT(I)=N(ARRLOC)THEN TPL=TRUE :: GOTO 790

780 NEXT I :: TPL=FALSE

790 DISPLAY AT(15,2)SIZE(26):: DISPLAY
AT(12,9)SIZE(15)

809 IF DBL THEN CALL BEEP :: DISPLAY AT(12,1¢):"DOUBLE
VALUE" :: CALL BEEP

819 IF TPL THEN CALL BEEP :: DISPLAY AT(12,18):"TRIPLE
VALUE" :: CALL BEEP

43

‘820 TU=FALSE :: ANS$="" :: QUIT=FALSE :: CALL
GETANS(ANS$,15,2,26,QUIT,TIM,TU) : : POINTS=25-TIM ::
IF QUIT THEN 949 .

830 IF TU THEN 860 ELSE IF DBL THEN POINTS=POINTS*2

840 IF TPL THEN POINTS=POINTS*3

850 CALL PARSEANS(ANSS$):: ANS$=SEG$(ANSS$&BLKS,1,26)::
CA$=SEGS$ (QAS$ (N(ARRLOC)),79,26):: CALL
CONVERTUPPER(CAS$):: IF CA$=ANSS THEN 910

868 CALL SOUND(799,-3,0):: CALL DELAY(200)::
NQ(PLYR)=NQ(PLYR)+1

870 PLYR=PLYR+l :: IF PLYR>NP THEN PLYR=1

880 IF PLYR<>STPLYR THEN TIM=13 :: CALL TIMER(TIM)::
GOSUB 58 :: GOTO 790

890 DISPLAY AT(14,2)BEEP:"THE CORRECT ANSWER IS:" ::
DISPLAY AT(15,2):SEG$(QA$(N(ARRLOC)),79,26)

900 CALL DELAY(50@):: DISPLAY AT (14,2)SIZE(26):
"ANSWER:" :: DISPLAY AT(15,2)SIZE(26):: GOTO 928

910 CALL SOUND(70@,-1,@):: SC(PLYR)=SC(PLYR)+POINTS ::
NC(PLYR)=NC(PLYR)+l :: NQ(PLYR)=NQ(PLYR)+l ::
GOSUB 58 :: CALL DELAY(300)

920 ARRLOC=ARRLOC+l :: IF ARRLOC>NUMQ THEN CALL
DELAY(200):: GOTO 70 ELSE PLYR=STPLYR+l :: IF
PLYR>NP THEN PLYR=1

939 DBL=FALSE :: TPL=FALSE :: GOTO 730

70 CALL SOUND(39%,-1,0):: CALL SOUND(389,-1,8)::
DISPLAY AT(1,19)ERASE ALL:"FINAL STATS"

80 DISPLAY AT(5,2):"NAME SCORE NC/NQ" :: CALL
HCHAR(6,4,128,29) :

9@ IF NP=1 THEN DISPLAY AT(8,2):PN$(1):: DISPLAY AT
(8,14):8C(1):: DISPLAY AT(8,22):NC(1);"/":NQ(1)::
GOTO 160

103 FOR I=1 TO NP :: PN(I)=I :: NEXT I :: FOR J=1 TO
NP-1 :: Jl=J

110 FOR K=J+1 TO NP :: IF SC(J1)<SC(K)THEN Jl=K

120 NEXT K :: IF J1<>J THEN T=SC(J):: SC(J)=SC(Jl)::
SC(J1)=T :: T=PN(J):: PN(J)=PN(J1l):: PN(JL)=T

130 NEXT J

148 FOR I=1 TO NP :: DISPLAY AT(6+I,2) :PN$(PN(I))::
DISPLAY AT(6+I,14):SC(I)

150 DISPLAY AT(6+I,22):NC(PN(I));"/";NQ(PN(I)):: NEXT
I

160 IF QUIT THEN CALL DELAY(808):: GOTO 199

170 DISPLAY AT(22,2)BEEP:"ANOTHER GAME? (Y/N)" ::
YFLG=FALSE :: CALL GETYN(YFLG)

180 IF YFLG THEN DISPLAY AT(1Q,2)ERASE ALL:"ONE MOMENT
PLEASE..." :: RUN 10

190 DISPLAY AT(10,2)ERASE ALL:"HAVE A NICE DAY!" ::
END

Once the game has begun, we may wish to quit (when the
score is terribly one-sided, for example). In order to do this, we
may enter Ctrl-Q to call the following subroutine:

4

949 DISPLAY AT(23,6)SIZE(2¢)BEEP:"ARE YOU SURE? (Y/N)"
:: YFLG=FALSE :: CALL GETYN(YFLG)

95¢ IF YFLG THEN 70 ELSE DISPLAY
AT(23,6)SIZE(20):"CTRL-Q TC QUIT" :: GOTO 820

Notice that, as always with an ending decision, we check fora
confirmation.

This completes the code for the actual game. When we put it
all together, it should (and does) work. In the next two chapters,
we shall document the actual use of these two programs.

45

Chapter 10
Using the Data Base

As noted earlier, the Trivia Data Base is the program that is
used to store your questions and answers. This chapter demon-
strates how easily the data base program can be to use. (Just a
note before we begin. You will need to have blank cassettes
handy at all times and they should be labelled in some organized
way. For example, Trivia Files #1, Trivia Files #2, etc., or even
Cassette #1, Cassette #2, etc., will work. The reason for the
blank cassettes is that the program (for memory convenience)
stores 30 questions and answers on each cassette and if you have
more than 30 questions you'll need to store the rest on a differ-
ent cassette. Another little note for you, DB stands for data
base.)

The data base is totally menu driven. This means that you are
able to select the process that you want to perform on the data
base. Once the program is run, you are presented with an initial
menu.

** TRIVIADB **
DO YOU WANT TO:
1. LOAD AN EXISTING FILE

2. CREATE A NEW FILE

PLEASE SELECT (1-2)

Fig. 10-1. The Trivia DB initial menu.
47

From this menu you select whether you want to load and work
on a Trivia File that has already been created with this program,
or create a new Trivia File. Because this is your first time using
the data base, you'll want to select option #2, CREATE A NEW
FILE, but before doing that let me explain each option.

LOAD AN EXISTING FILE

This option allows you to load a Trivia File into memory so you
are able to add new questions to the file or change questions
and answers. Once this option is chosen, a message is displayed
saying to insert your cassette file into your tape player. Then
follow the directions that are given by the T1-99/4A computer. If
for any reason or by chance an error occurs while loading in
your file, the program takes you to the TRIVIA DB MAIN MENU
(Fig. 10-2) with no questions in memory at the time.

CREATE A NEW FILE

This option allows you to create a new file. Any file can contain
at most 30 questions and answers. It is because of memory and
speed consideration that we arrived at the limit of 30. Go ahead
and select this option now, and then you are presented with the
TRIVIA DATA BASE MAIN MENU.

** TRIVIA DB MAIN MENU **
1. ADD QUESTIONS

2. DISPLAY/EDIT
QUESTIONS

3. CHANGE FILES
4. EXIT PROGRAM

PLEASE SELECT (1-4)

Fig. 10-2. The Trivia DB main menu.

48

Again, let’s look at each of the four selections given in Fig.
10-2.

1. ADD QUESTIONS

This is the first thing that you need to do when creating a new
file. This selection allows the user to enter new questions and
answers to the trivia file. The current question number is always
displayed while you are adding new questions to let you know
how many questions are in the file. The screen for adding the
questions and answers is shown in Fig. 10-3.

** ADDING QUESTIONS **

EERRREERARERER RN R RN R RN
QUESTION# 1

ANSWER FOR QUESTION# 1

(USE ONLY 2 WORDS)
EERERRERERERERRRERRRE NN

C/S-SAVE, C/R-REDO, C/X-EXIT

| |
|
||
| |
| |
| |
||
| |
||
||
|

Fig. 10-3. Adding questions screen.

First take a look at the bottom of the screen in Fig. 10-3. The
bottom of every screen contains valuable information. This
screen contains only three major keys. They are C/S, C/R, C/X.
The C stands for the CTRL key. So by pressing the CTRL key and
the S simultaneously, the current question and answer is saved
into memory. C/R allows you to redo or change the questions
and answer. If the cursor (the little black rectangle that appears
on the question field) is on the last line of the screen, by the
three major keys, then C/R generates another display asking
what you want to change. You can then choose to edit the
question, answer, or both. If you press C/R while the cursoris on

49

either the question field or the answer field, then you must
reenter both the question and the answer. The data base doesn’t
allow you to enter a blank question or a blank answer. Also, you
may press any one of the keys displayed at the bottom of the
screen at any time. By pressing the C/X (CTRL key plus the X key)
you exit the ADD QUESTION routine and it also erases anything
that is on the screen at the time of exiting. You are then returned
to the TRIVIA DB MAIN MENU (Fig. 10-2).

Now you can enter your first question. When you are finished
with your question press the ENTER key to move the cursor
down to the answer field. Don’t worry about how your question
looks while you are typing, because as soon as you are finished
and you press the ENTER key, the question gets reformatted
(words are wrapped around to the next line) to look better. The
cursor then moves down to the ANSWER field and waits for the
answer. The answer cannot be more than two words. If it is, the
computer beeps and tells you to reenter the answer. Once the
user has typed in an answer then you can use C/S to save it or
press ENTER to move the cursor down to the command line at
the bottom of the screen. Again you may press any one of the
three command keys at any time. Once the question and answer
have been saved you are then given another blank screen to add
more questions and answers.

When the cursor is on the same line as the command keys,
you then have to press one of the three keys displayed. If the
user presses C/S the record is saved to memory and the array
counter is incremented and another blank record is displayed. If
the user presses C/X, the current question and answer that is on
the screen is erased and the user is returned to the TRIVIA DB
MAIN MENU (Fig. 10-2). If you press C/R, you are then given the
REDO command line presented at the bottom of the screen (Fig.
10-4).

NNy
REDO:

Q - QUESTION, A - ANSWER
B - BOTH, X - EXIT

Fig. 10-4. REDO command line.
50

Once at this point, you can then select which part you want to
redo. Either the question, the answer or both at once. When you
are finished editing the record, press X to exit and return you to
the C/S, C/R, etc. commands. You will still need to save the
record when you are through editing it.

2. DISPLAY/EDIT QUESTIONS

This routine allows you to display as well as edit (make
changes) to any question or answer in the file. When you press 2
from the Main Menu, you are presented with the DISPLAY/EDIT
SCREEN (Fig. 10-5).

** DISPLAY/EDIT QUESTION **

QUESTION# 1

ANSWER FOR QUESTION# 1 |

(USE ONLY 2 WORDS)
LEEEEEr e

C/R-REDO, C/N-NEXT, C/P-PREV,
C/D-DEL, C/X-EXIT

Fig. 10-5. Display/edit screen.

Again, as you notice in Fig. 10-5, at the bottom of the screen
there is another command line. Here there are five command
keys to use. C/R (remember that the C stands for the CTRL key
and the other letter stands for itself) displays two rows of com-
mands that allow the user to change the question, the answer, or
both as in Fig. 10-4. You can then choose what you want to do. C/
N displays the next question and answer. C/P displays the pre-
vious question and answer. C/D asks you if you are sure that this

51

is the question and answer that you want to delete. If you press Y
to the prompt, the question and answer is deleted from your
file. C/X exits this routine and takes you to the TRIVIA DB MAIN
MENU.

3. CHANGE FILES

This selection allows you to quit working on the file currently
in memory and load in a different file. If there were any changes
made to the file in memory, then you are asked if you wish to
save the changes made to the file. You are prompted with this
question: SAVE CHANGES? (Y/N). If you press N everything
(including the changes) will be thrown away. If you press Y then
you are prompted to insert a cassette in the tape recorder and
then follow the instructions as they are presented on the screen.
Once the file in memory has been saved or erased, you are then
returned to the very first screen (Fig 10-1) and then you choose
from that screen what you want to do.

4. EXIT PROGRAM

This selection allows you to exit the Data Base program.
Again, if there is any file in memory and changes were made
(addition or editing) to the file, then you are asked if you wish to
save the file that is currently in memory. If you elect not to save
the file in memory, then everything in memory is thrown away.
Always exit the program through this selection. If you don’t then
none of the changes or new questions can be saved.

Now that you have an understanding of how to enter and edit
questions try putting some questions and answers in a file so
that you can have some questions and answers with which to
play the Trivia Game. If you really can’t wait to play the game,
then go ahead and load the sample questions.

Before we exit this chapter, let me inform you (those of you
who have a disk drive) that there is a disk version of the Data
Base and a disk version of the Trivia Game. This next paragraph is
only for those people who have a disk drive with their TI-99/4A. |
want to explain the differences between the two versions.

The major difference between the two versions (the cassette
and the disk) is the I/O routines. I/O stands for input and output.
This is just the way the program stores the questions and

52

answers and the way they are loaded into memory. The disk
version keeps only one question and answer in memory at a
time. The cassette version holds 30 at once. As with the
cassette version, you should keep one file per disk, where afile
can contain up to 710 questions and answers. Don't place a trivia
file on a disk that already has other files. You might lose some
questions and answers later on when the disk starts to get full.
The rest of the disk version is the same as the cassette version.
You are presented with the same menus, same screens, etc., as
the cassette version. Again remember to exit the disk version
through #4. If you don’t you stand a good chance of losing some
information.

NOTE ON USING THE SAMPLE FILE

There are a few mistakes in the sample file. They have been
made on purpose to provide you with a file on which to practice
using the data base. Remember to save the new file when you
are finished.

53

Chapter 11
Playing the Trivia Game

In the last chapter you learned how to enter questions and
answers into your Trivia Data Base File. This chapter uses those
questions that you entered into the file and allows you to play a
trivia game. For those of you who did not store any questions
and answers using the data base, you may use the sample file
that is located after the disk version of the Trivia Game on Side 1
of the tape.

INSTRUCTIONS

The game itself is much like any other trivia game. You are
asked random questions and you have to answer them. The
object of the game is to gain as many points as possible by
answering random questions. The faster you are able to answer
a question, the more points you will receive. The point value for
each question starts at 25 points, but as time goes by the point
value decreases. So, you see, it is to your benefit to answer the
questions as fast as possible. There will be times when a ques-
tion will be worth DOUBLE points and even TRIPLE. One major
note: the answer you type in must match the correct answer
exactly; otherwise, it will not count as the correct answer. The
game can be played by one to four players. If a player misses the
question, then the next player in line gets a chance to answer
the question, although the point value is reset to 12 points
instead of the original value of 25. Once everyone has a chance
to answer the question and no one answers it correctly, the
correctanswer is displayed. Every time someone gets the correct
answer a high beeping sound is made. When someone misses,
they hear a lower beeping sound. The game keeps track of each
player’s number, his/her name, total points scored, the number
of questions each player answers correctly, and the number of
questions each player had a chance to answer. At the end of the

55

game, the players’ scores are shown in descending (from high-
est to lowest) order.

RUNNING THE GAME

The first screen you see is the introduction screen (Fig. 11-1). It
welcomes you to the Trivia Game. Next, you are asked how many
cassette files you have. The game allows you to use up to ten
different cassette files from which to have your questions
selected. Although, you are only allowed a total 30 questions in
memory due to memory limitations on the TI-99/4A, the process
of loading in random questions takes time. The program (if
more than one file is used) will generate enough random num-
bers to fill memory and then go through all your files and load in
selected questions. Once the questions and answers have been
loaded into memory, then they are scrambled again. A percent-
age of the questions is selected to be worth DOUBLE the point
value and even a few of the questions are selected for TRIPLE
value. Once all the questions have been scrambled, you are
asked how many people plan to play and then their names are
entered. Now, the game is ready to hegin.

WELCOME TO THE TI-99/4A

** TRIVIA GAME **

PRESS <ENTER> TO CONTINUE

Fig. 11-1. The introduction screen.

THE START

After everyone has entered his’/her name, then the game
56

screen is displayed (Fig. 11-2). Notice in the upper-right hand
corner of the boxed-in screen, there is a timer. This timer also
shows how much the question is worth. As time goes by, this
timer decreases. When you finally press ENTER after entering
your answer, the timer freezes at the point value shown. This is
the amount of points that you will receive if your answer is
correct. At the bottom of the screen is the status of the current
player. It shows the player number, name, score, the number of
correct answers (NC) and the number of questions (NQ) that
that player had a chance to answer. Once you press ENTER, the
program then checks your answer against the correct answer. If
you are right, then you receive the points that are shown in the
upper-right hand corner. Otherwise, the next player gets a
chance to answer it. The correct answer is displayed after every-
one has a chance to answer the question, and they all miss.

% TRIVIA GAME **
RN RARRRRN RN R AR
25

QUESTION # 1

ANSWER

(USE ONLY 2 WORDS)
RN RRRRRRRRRR R RR
PLAYER# 1 NAME :
SCORE NC/NQ

CTRL-Q TO QUIT
(R RRRRRRRRRRRRRRRR RN R RRRRY

Fig. 11-2. The game screen.

EXITING THE GAME

The game normally ends when all the questions have been
asked. Then there is a status screen displayed that shows all the
players’ scores in descending (highest to lowest score) order.
You are then asked if you wish to play another game. If you
don't, the program exits. Otherwise, you start all over again with
loading in another file, etc.

If you get tired before all the questions have been asked, just

57

press CTRL-Q (hold down the CTRL key while simultaneously
pressing the Q key) and the program will ask if you are sure you
wantto exit. If so, then all the players’ scores are shown with the
highest score shown first. If you do not wish to exit, then the
game continues with the same question and the same point
value that the question was at before you pressed CTRL-Q.

Disk Version (for those who have a disk drive attached to the
TI-99/4A.). The disk version is the same as the cassette version.
The only exception is that you can have more questions in
memory at once, especially if you have the extended memory
cartridge for your expansion box. In the disk version, you can
have 30 questions in memory at once. The disk version loads
your random questions all from one file (disk), which can hold
up to 710 questions. The game and screen designs, as well as
how the points are kept, etc., are exactly the same as the cas-
sette version.

The main point behind the Trivia Game is for you to enjoy the
game, while at the same time, you can be learning new and
different trivia questions. Have fun!

58

Chapter 12
In Conclusion

Well, that’s it. We have provided sample questions after the
disk version of the Trivia Game on Side 1 of the tape. We really
strained our brains for those questions, but now it is up to you.
If you have a copy of Trivial Pursuit (or some such game), you
could enter some selected questions and play with the com-
puter keeping score. If not, there are some other uses for the
data base entry program and game program.

If you have students who need to drill on facts (answers no
longer than two words), they could have the questions entered
(by you?), and then practice with the computer’s assistance. If
you are studying for a professional exam, the same sort of
assistance is available for you.

Whether you use these two programs for entertainment or
education, it is our hope that you will gain from their purchase.
Also, a thorough examination of the code structure and sub-
routines will be of great assistance in any other data base type
programs which you might wish to write for your Tl- 99/4A.

Watch for other entertaining and iristructional programs from
us for your TI-99/4A. TI may have given up on you, but we
haven’t.

59

10
20
30
40
50
60

70
80

90

100

110

120
138

140
150
160
170
180
190

200
210

220
230
240
250
260

270

Appendix A
The Cassette Data Base

REM TRIVIA DB-CASSETTE VERSION
OPTION BASE 1 :: DIM QA$(30)
CALL CHAR(128,"FFGEZBEGGG%BEGGE"):: CALL CHAR
(129, "P@OB7ETETETESPPS") : : CALL CHAR
(136, "FFFFFFFFFFFFFFFF")
CALL COLOR(14,13,4):: BLK$=RPT$(" ",78):: FALSE=0
: :TRUE=NOT FALSE :: GOTO 678
Q$=SEG$ (Q$&BLKS,1,78) :: ANSS$=SEGS$ (ANS$&BLKS$,1,26) ::
QAS$ (ARRNUM)=Q$&ANS$:: RETURN
ANS$=A$:: ERR=FALSE :: CALL PARSEANS(ANSS$,ERR) ::
RETURN
CALL CLEAR :: DE=FALSE
ARRNUM=ARRNUM+1 :: IF ARRNUM>3@ THEN ARRNUM=30 ::
CALL FULL :: RETURN
TT$="** ADDING QUESTIONS **" :: CALL SCRFORM
(ARRNUM, TT$) : : CALL ADDCMDS
Q$="" :: FLAG=0 :: SV=TRUE :
GETCHAR(7,2,3,Q$,FLAG, SV, EX)
ERASEQUEST :: GOTO 100
IF FLAG=3 THEN ARRNUM=ARRNUM-1 :: RETURN ELSE IF
FLAG=2 AND Q$="" THEN 100
Q$=SEG$ (Q$&BLKS,1,78) : : CALL WRAP(Q$,BLKS)
A$="" :: FLAG=Q :: SV=TRUE :: EX=TRUE :: CALL
GETCHAR(17,2,1,A$,FLAG, SV, EX)
IF FLAG=1 THEN CALL ERASEQUEST :: CALL ERASEANS ::
GOTO 108
IF FLAG=3 THEN ARRNUM=ARRNUM-1 :: RETURN ELSE
GOSUB 68 :: IF ERR THEN CALL ERRMSG :: GOTO 130
IF FLAG=2 THEN GOSUB 58 :: CHNGS=TRUE :: GOTO 8@
CALL HCHAR(23,31,129):: CALL BEEP
CALL KEY(%,K,S):: IF S<=@ THEN 180
IF K=146 THEN GOSUB 23@ :: CALL ADDCMDS :: GOTO
170
IF K=147 THEN FLAG=2 :: GOTO 160
IF K=152 THEN ARRNUM=ARRNUM-1 :: RETURN ELSE CALL
BEEP :: GOTO 189
Q$S=SEGS$ (QAS (ARRNUM) ,1,78):: ANS$=SEGS$
(QAS$ (ARRNUM) ,79,26)
BOTH=FALSE :: DISPLAY AT(22,2)BEEP:"REDO:" ::
DISPLAY AT(23,1)SIZE(28):" Q- QUESTION, A -
ANSWER"
DISPLAY AT(24,1)SIZE(28):" B - BOTH, X - EXIT"
CALL KEY(®,K,S):: IF S<=@ THEN 250
IF K<>81 AND K<>113 AND K<>65 AND K<>97 AND K<>66
AND K<>98 AND K<>88 AND K<>120 THEN 250
IF K<>88 AND K<>120 THEN CALL PRRNT :: CHNGS=TRUE

EX=TRUE :: CALL
:IF FLAG=1 THEN CALL

61

289

290
300

319
320
339
340
359
360
370
380
390
400
419
420
430

440
450

460
470

480
490

500
510

520
530

540
5590

560
578

IF K=81 OR K=113 THEN CALL ERASEQUEST :: GOTO 300
ELSE IF K=65 OR K=97 THEN CALL ERASEANS :: GOTO
320

IF K=66 OR K=98 THEN BOTH=TRUE :: CALL ERASEQUEST
:: CALL ERASEANS :: GOTO 308 ELSE RETURN

SV=FALSE :: EX=FALSE :: Q$="" :: FLAG=0 :: CALL
GETCHAR(7,2,3,Q$,FLAG,SV,EX):: IF FLAG=1 THEN CALL
ERASEQUEST :: GOTO 300

Q$=SEG$ (Q$&BLKS$,1,78):: CALL WRAP(QS$,BLKS$):: IF
NOT BOTH THEN GOSUB 58 :: GOTO 220

SV=FALSE :: EX=FALSE :: A$="" :: FLAG=0 :: CALL
GETCHAR(17,2,1,A$,FLAG,SV,EX)

IF FLAG=1 THEN CALL ERASEANS :: GOTO 328 ELSE
GOSUB 68 :: IF ERR THEN CALL ERRMSG :: GOTO 320
ELSE GOSUB 50 :: GOTO 229

IF ARRNUM>@ THEN 370

CALL CLEAR :: DISPLAY AT(6,2)BEEP: "THERE ARE NO
QUESTIONS"

DISPLAY AT(8,2):"AND ANSWERS IN MEMORY TO" ::
DISPLAY AT(lﬂ,Z):"DISPLAY/EDIT." 3¢ CALL ENTER ::
RETURN

ARRPOS=1 :: DE=TRUE

TT$="* DISPLAY/EDIT QUESTION *" :: CALL
SCRFORM(ARRPOS, TTS)

DISPLAY AT(7,2):SEG$(QA$(ARRPOS),1,26):: DISPLAY
AT(9,2) : SEG$ (QAS (ARRPOS) , 27, 26)

DISPLAY AT(ll,Z):SEG$(QA$(ARRPOS),53,26):: DISPLAY
AT(17,2):SEG$(QA$(ARRPOS),79,26)

CALL EDITCMDS

CALL KEY(5,K,S):: IF S<=@ THEN 420

IF K=132 THEN 530 ELSE IF K=142 THEN
ARRPOS=ARRPOS+1 :: GOTO 470

IF K=144 THEN ARRPOS=ARRPOS-1 :: GOTO 500

IF K=146 THEN TOT=ARRNUM :: ARRNUM=ARRPOS :: GOSUB
220 :: GOSUB 5@ :: ARRNUM=TOT :: GOTO 380

IF K=152 THEN RETURN ELSE CALL BEEP :: GOTO 429
IF ARRPOS<=ARRNUM THEN CALL NUMDISP(ARRPOS):: GOTO
390

DISPLAY AT(23,1)BEEP:"THERE ARE NO MORE
QUESTIONS!":: DISPLAY AT(24,1)SIZE(28)

CALL DELAY(600):: CALL EDITCMDS :: CALL BEEP ::
ARRPOS=ARRPOS-1 :: GOTO 420

IF ARRPOS>=1 THEN CALL NUMDISP(ARRPOS):: GOTO 390
DISPLAY AT(23,1)BEEP:"CAN'T GO BELOW RECORD #11"
::DISPLAY AT(24,1)SIZE(28)

CALL DELAY(600):: CALL EDITCMDS :: CALL BEEP ::
ARRPOS=ARRPOS+1 :: GOTO 420

DISPLAY AT(23,1)BEEP:"DELETE THIS RECORD? (Y/N)"
::DISPLAY AT(24,1)SIZE(28)

CALL KEY(@,K,S):: IF S<=0 THEN 540

CALL HCHAR(23,30,K):: IF K<>78 AND K<>89 AND
K<>110 AND K<>121 THEN CALL BEEP :: GOTO 540

IF K=78 OR K=110 THEN 410 ELSE IF ARRNUM~-1=@ THEN
QA$ (ARRPOS)="" :: ARRNUM=@:: GOTO 350

IF ARRPOS=ARRNUM THEN QAS$(ARRNUM)="" ::
ARRPOS=ARRPOS-1 ELSE QAS (ARRPOS)=QAS (ARRNUM)

62

580

590
600

610

620
630

640
650

660
678

680
690

709
710

720
730
743
750

760
778

780
790
800

810

820
838
840

850
860
879
889

890

909

: IF ARRNUM<1l THEN

ARRNUM=ARRNUM-1 :: CHNGS=TRUE :
):: GOTO 390

350 ELSE CALL NUMDISP(ARRPOS
CALL SAVEMSG :: CALL CLEAR
OPEN #1:"CS1", INTERNAL,OUTPUT,FIXED 128

PRINT #1:NUMQ :: FOR I=1 TO NUMQ :: PRINT
#1:QA$(I):: NEXT I

CLOSE #1 :: RETURN

IF NOT CHNGS THEN IF SL=4 THEN CALL CLEAR :: END
ELSE 670

NUMQ=ARRNUM :: YFLG=FALSE :: CALL SAVECHNGS (YFLG)
IF NOT YFLG THEN IF SL=4 THEN CALL CLEAR :: END
ELSE 670

GOSUB 590 :: GOTO 670

CHNGS=FALSE :: NUMQ=@0 :: CALL CLEAR :: CALL
SCREEN(4):: DISPLAY AT(1,8)BEEP:"** TRIVIA DB **"
DISPLAY AT(5,2):"DO YOU WANT TO:" :: DISPLAY
AT(8,3):"1. LOAD AN EXISTING FILE"

DISPLAY AT(10,3):"2. CREATE A NEW FILE" :: DISPLAY
AT(13,3):"PLEASE SELECT (1-2)"

CALL KEY(9,K,S):: IF S<=0 THEN 700

DISPLAY AT(13,23):CHR$(K):: IF (K<49)OR(K>5@) THEN
DISPLAY AT(13,23)BEEP SIZE(l):: GOTO 780

IF K=5@¢ THEN 7990 ELSE DISPLAY AT(5,2)ERASE ALL
BEEP:"PLEASE INSERT A CASSETTE"

DISPLAY AT(7,2):"WHERE YOUR QUESTIONS AND" ::
DISPLAY AT(9,2):"ANSWERS HAVE BEEN SAVED."
DISPLAY AT(13,2):"THEN FOLLOW THE DIRECTIONS" ::
DISPLAY AT(15,2):"AS THEY ARE PRESENTED ON"
DISPLAY AT(17,2):"THE SCREEN." :: CALL ENTER ::
CALL CLEAR

OPEN #1:"CS1",INTERNAL,INPUT ,FIXED 128

INPUT #1:NUMQ :: FOR I=1 TO NUMQ :: INPUT
$1:QAS$(I):: NEXT I

CLOSE #1

ARRNUM=NUMQ

DISPLAY AT(4,3)ERASE ALL BEEP:"** TRIVIA DB MAIN
MENU **" :: DISPLAY AT(8,6):"1. ADD QUESTIONS"
DISPLAY AT(106,6):"2. DISPLAY/EDIT" :: DISPLAY
AT(11,9) :"QUESTIONS" :: DISPLAY AT(13,6):"3.
CHANGE FILES"

DISPLAY AT(15,6):"4. EXIT PROGRAM" :: DISPLAY
AT(18,6) : "PLEASE SELECT (1-4)"

CALL KEY(@,K,S):: IF S<=@ THEN 830

DISPLAY AT(18,26):CHR$(K):: IF (K>48)AND(K<53)THEN
K=K-48 :: SL=K ELSE DISPLAY AT(18,26)BEEP
SIZE(l):: GOTO 830

ON K GOSUB 790,340,630,630

GOTO 800

SUB SAVEMSG

CALL CLEAR :: DISPLAY AT(5,2)BEEP:"PLEASE INSERT A
CASSETTE"

DISPLAY AT(7,2):"WHERE YOU WANT YOUR NEW" ::
DISPLAY AT(9,2):"QUESTIONS AND ANSWERS TO"
DISPLAY AT(11,2):"BE SAVED." :: DISPLAY
AT(14,2):"THEN FOLLOW THE DIRECTIONS" :: DISPLAY
AT(16,2):"AS THEY ARE PRESENTED ON"

63

919 DISPLAY AT(18,2):"THE SCREEN." :: CALL ENTER

920 SUBEND

938 SUB SCRFORM(NUMREC, TT$)

940 CALL CLEAR :: CALL OUTLINE :: DISPLAY
AT(1,3)BEEP:TT$

950 DISPLAY AT(5,2):"QUESTION#";NUMREC :: CALL
HCHAR(8,4,128,26):: CALL HCHAR(10,4,128,26):: CALL
HCHAR(12,4,128,26)

96d DISPLAY AT(15,2) : "ANSWER FOR QUESTION#" ; NUMREC ::
CALL HCHAR(18,4,128,26)

97@ DISPLAY AT(19,6):"(USE ONLY 2 WORDS) "

983 SUBEND

990 SUB GETCHAR(STROW,STCOL,NROWS,ANS$,FLG,SV,EX)

1000 ROW=STROW :: COL=STCOL :: NR=1 :: ANSS=""

1019 CALL HCHAR(ROW,COL+2,129):: CALL KEY(5,K,S):: IF
S=g THEN 1010

1020 IF K=146 THEN FLG=1 :: GOTO 1200

1030 IF (K=147)AND SV THEN FLG=2 s: GOTO 1199 ELSE IF
K=147 THEN 1010

1048 IF (K=152)AND EX THEN FLG=3 :: GOTO 1200 ELSE IF
K=152 THEN 1010

1959 1IF (K<>l3)AND(K<>8)AND((K<32)OR(K>126))THEN CALL
BEEP :: GOTO 1019

1060 IF K=13 THEN 1190 ELSE IF K=8 THEN 1090

1079 ANS$=ANSS$&CHRS (K) : : DISPLAY AT(ROW,COL):CHR$(K)::
COL=COL+1 :: IF COL<=27 THEN 1010

1080 ROW=ROW+2 :: NR=NR+1 :: IF NR>NROWS THEN 1128
ELSE COL=STCOL :: GOTO 1010

1090 COL=COL-1 :: IF (COL<=STCOL)AND(NR=1) THEN CALL
HCHAR(ROW,COL+3,32):: CALL BEEP :: GOTO 1090

11006 IF COL<STCOL THEN CALL HCHAR(ROW, COL+3,32) ::
COL=27 :: NR=NR-1 :: ROW=ROW-2

1119 CALL HCHAR(ROW,COL+3,32):: ANS$=SEGS$
(ANS$,1,LEN(ANS$)-1):: GOTO 19019

1120 ROW=ROW-2 :: NR=NR-1 :: CALL HCHAR(ROW, 30,129)

1130 CALL KEY(@,K,S):: IF S<=@ THEN 1130

1140 IF K=146 THEN FLG=l1 :: GOTO 1200

1150 IF (K=147)AND SV THEN FLG=2 :: GOTO 11990 ELSE IF
K=147 THEN 1130

1160 IF (K=152)AND EX THEN FLG=3 :: GOTO 1200 ELSE IF
K=152 THEN 1139

1179 IF (K<>l3)AND(K<>8)THEN CALL BEEP :: GOTO 1130

1180 IF K=13 THEN 1190 ELSE 1090

1190 IF ANS$="" THEN CALL BEEP :: GOTO 1010 ELSE CALL
HCHAR(ROW, COL+2,32)

1200 SUBEND

1219 SUB BEEP

1220 CALL SOUND(180,523,8)

1230 SUBEND

1249 SUB OUTLINE

125¢ CALL HCHAR(3,3,136,29):: CALL HCHAR
(21,3,136,29)::CALL VCHAR(3,3,136,18)::
CALL VCHAR(3,31,136,18)

1260 SUBEND

1278 SUB DELAY(TIME)

1280 FOR I=1 TO TIME :: NEXT I

64

1290 SUBEND

1308 SUB ENTER

1319 DISPLAY AT(22,2):"PRESS <ENTER> TO CONTINUE"

1320 CALL KEY(@,K,S):: IF S<=@ THEN 1320

1330 IF K<>13 THEN 1320

1340 SUBEND

1350 SUB PARSEANS(ANSS, ERR)

1360 WD$="" :: WRDS=0 :: FOR I=1 TO LEN(ANSS$)

1370 IF ASC(SEG$(ANS$,I,1))=32 AND WD$="" THEN 1410

1380 IF SEG$(ANS$,I,1)=" " AND SEG$(ANS$,I+1,1)=" "
THEN 1410

1399 IF ASC(SEG$(ANS$,I,1))=32 OR I=LEN(ANS$)THEN
WRDS=WRDS+1 :: IF WRDS>2 THEN ERR=-1 :: GOTO 1480

1400 WD$=WD$&SEGS$ (ANSS$,I,1)

1418 NEXT I :: T$="" :: FOR J=1 TO LEN(WD$)::
A=ASC(SEGS$(WD$,J,1))

1429 IF A>96 AND A<123 THEN A=A-32

1430 T$=T$&CHRS$(A):: NEXT J

1440 FOR I=1 TO LEN(TS$):: IF ASC(SEG$(T$,I,1))=32 AND
I<>1 THEN 1469

1450 NEXT I :: GOTO 1480

1460 A$=SEG$(T$,1,1):: IF (A$="A " OR A$="THE " OR
A$="AN ")AND I<>LEN(T$)THEN T$=SEG$(T$,I+1,LEN(TS)-
I)

1478 ANSS$=T$

1480 SUBEND

1490 SUB ERASEQUEST

1508 DISPLAY AT(7,2)SIZE(26):: DISPLAY AT
(9,2)SIZE(26):: DISPLAY AT(11,2)SIZE(26)

1510 SUBEND

1520 SUB ERASEANS

1538 DISPLAY AT(17,2)SIZE(26)

1540 SUBEND

1550 SUB FULL

1560 CALL CLEAR :: CALL BEEP :: CALL BEEP

1570 DISPLAY AT(12,2):"MEMORY IS FULL!!" :: CALL ENTER

1588 SUBEND

1590 SUB ADDCMDS

1600 DISPLAY AT(22,1)SIZE(28):: DISPLAY AT
(23,1)SIZE(28):"C/S-SAVE, C/R-REDO, C/X-EXIT"

1619 DISPLAY AT(24,1)SIZE(28)

1620 SUBEND

1630 SUB PRRNT

1649 DISPLAY AT(22,1)SIZE(28):: DISPLAY AT(23,1):"
PRESS <ENTER> WHEN DONE!" ::DISPLAY AT
(24,1)s1z2E(28)

1650 CALL BEEP

1660 SUBEND

16706 SUB SAVECHNGS(YFLG)

1680 D}SPLAY AT(19,3)ERASE ALL BEEP:"SAVE CHANGES?
(Y N)"

1690 CALL KEY(9,K,S):: IF S<=@ THEN 1690 ELSE CALL
HCHAR(10, 25,K)

1708 IF K<>78 AND K<>11@ AND K<>89 AND K<>121 THEN
CALL HCHAR(1@,25,32):: GOTO 1690

1718 IF K=78 OR K=110 THEN YFLG=@ ELSE YFLG=-1

65

1728 SUBEND

1730 SUB ERRMSG

1749 DISPLAY AT(20,7)BEEP:"RE-ENTER ANSWER" :: CALL
DELAY (400)

1750 DISPLAY AT(20,7)SIZE(17):: DISPLAY AT
(17,2)SIZE(26)

176@ SUBEND

1778 SUB NUMDISP(ARRCTR)

1780 DISPLAY AT(5,11)SIZE(4):ARRCTR :: DISPLAY AT
(15,22)SIZE(4) :ARRCTR

1790 SUBEND

1800 SUB EDITCMDS

1810 DISPLAY AT(22,2):"C/R-REDO, C/N-NEXT, C/P-PREVC/D-
DEL, C/X-EXIT"

182@ SUBEND

1830 SUB WRAP(Q$,BLKS)

1840 WL=0

185¢ WL=WL+1 :: IF WL>2 THEN 1910

1860 IF ASC(SEG$(Q$,WL*26,1))=32 THEN 1850

1870 ST=WL*26-1 :: EN=(WL-1)*26+1 :: FOR I=ST TO EN
STEP -1 :: IF ASC(SEG$(Q$,I,1))=32 THEN 1890

1880 NEXT I :: GOTO 1850

1890 T$=SEGS$(Q$,I+1,WL*26-I):: T2$=SEGS(SEGS(SEGS
(Q$,1,I)&BLKS,1,WL*26)&T$&SEGS (QS,WL*26+1,
(WL+1)*26),1,78)

1909 Q$=T2$:: GOTO 1850

1910 DISPLAY AT(7,2):SEG$(Q$,1,26):: DISPLAY AT
(9,2):SEG$(Q$,27,26)

192¢ DISPLAY AT(11,2):SEG$(Q$,53,26)

1938 SUBEND

Variable Listing — Main Program

A$ Temporarily holds the answer before pack-
ing and concatenating with the question.

ANS$ Holds the answer. Maximum length is 26
characters.

ARRNUM Holds the array number of the next loca-
tion to store the question and answer.

ARRPOS Holds the current location of the array QA$

for displaying the record to the screen.
Used in Display/Edit Menu.

BLK$ Blank string the size of the maximum size
field (78). Used for packing the question
and answer to their maximum length.

66

BOTH

CHNGS

DE

ERR

EX
FALSE

FLAG

NUMQ

QA$(30)

Q$

Boolean flag set to indicate if the user
wants to REDO both the question and the
answer. If true, the user wants to edit both
parts of the record.

Boolean flag. Indicates if any changes have
been made to the existing file in memory.

Flag set to indicate whether the program
execution came from the Display/Edit
menu. If true, then it did. Make sure you
return to Display/Edit menu.

Flag used to indicate if an error occurred
within a procedure. This type of an error is
not a system error but a user error (invalid
response or illegal characters, etc.).

Boolean flag. Indicates whether or not to
allow the user to use the C/X key.

Boolean flag set to 0. Indicates a false
value.

Flag set to indicate if one of the command
keys (C/S, C/X, etc.) has been pressed.
Returns a 1 if C/R is pressed, a 2 if C/S is
pressed, and a 3 if C/X has been pressed.

Looping variable for FOR...NEXT state-
ments.

Used in the CALL KEY routine to hold the
ASCII value of the key that is pressed.

Number of questions currently loaded into
memory or set to 0 initially for creating a
new file.

Holds the questions and answers in a con-
catenated string. Total string length is 104
characters, 78 for the question and 26 for
the answer.

Holds the question. Maximum length is 78
characters.

67

S Used in the CALL KEY routine to hold the
status of the keyboard.

SL Holds the selection number the user
chose from the Main Menu.

Y Boolean flag. Indicates whether or not to
allow the user to press C/S while typing in
the question or answer.

TOT Temporarily holds the total number of
questions and answers in memory.

TRUE Boolean flag indicates that the result is
indeed true. Usuallya —1, but the TI-99/4A
accepts any number other than 0 to be
true.

TT$ Holds the title string to be printed at the
top of each screen.

YFLG Boolean flag to indicate whether the user
responded with a YES or a NO.

Subroutines

Here are the subroutines that are used in the Database pro-
gram with an explanation of what they do and the parameters
needed to use them.

SUB SAVEMSG

This routine displays a message to the screen telling the user
to insert a cassette on which he wants to save the file. Tells user
to then follow the instructions as they appear on the screen.

SUB SCRFORM(NUMREC,TT$)

This routine displays the screen format for both the ADD
QUESTION and the DISPLAY/EDIT QUESTION routines. The
NUMREC parameter is the current record number to be dis-
played, and it is printed as the question number. The TT$ is the
title of the screen. It is always printed at the top of the screen.
TT$ is either ADDING QUESTION or DISPLAY/EDIT QUESTION.
The screen is then displayed showing the border and the lines
where the question and answer will be displayed.

68

SUB GETCHAR(STROW,STCOL,NROWS,ANS$,FLG,SV,EX)

This routine is the heart of adding or editing a question or
answer. This routine gets one character at a time and displays it
in the appropriate row and column. It uses the CALL KEY rou-
tine. This routine is called whenever a question or answer is
needed. STROW is the starting row position for the character to
be displayed. STCOL is the starting column position. NROWS is
how many rows the answer can contain. (For the QUESTION
line, the NROWS is 3 because the answer can be 78 characters
long and there can only be 26 characters displayed per line.)
ANSS$ contains the concatenated string of all the characters that
were typed by the user. It is the variable that the question and
the answer is stored in before returning. FLG is a flag used to tell
if one of the command keys has been pressed. (FLG returns a1if
the C/R has been pressed. A 2 is returned if the C/S has been
pressed, and a 3 is returned if the C/X has been pressed. The
program can then act on whatever the flag has been set.

SUB BEEP
This subroutine produces a beeping sound to indicate that an
invalid response has been entered.

SUB OUTLINE

This routine draws the outline border for the add and edit
screens. Inside this screen is where the question and answer will
be displayed.

SUB DELAY(TIME)

This routine is a pausing routine. It merely holds the screen
the way it is for a certain time period. TIME is the length for how
long to hold the screen. It uses a FOR...NEXT loop to stall the
screen.

SUB ENTER

This routine displays this message PRESS <ENTER> TO CON-
TINUE and then waits for the ENTER key to be pressed before
returning to the main program.

SUB PARSEANS(ANS$,ERR)

This routine parses through the answer to make sure there
were no more than two words in the answer. It also checks to see
if A, AN, and THE are used in conjunction with another word. If
they were, the answer is stripped of them. ANS$ is the string

69

where the corrected (an answer without A, AN, or THE) answer
is returned. ERR is a flag that indicates if the answer is more than
two words long. If it is, this variable is set to true and the
program can act on it when control returns to the main program.

SUB ERASEQUEST
This routine erases the question from the screen. Used when-
ever the question has to be redone.

SUB ERASEANS
This routine erases the answer from the screen. Used when-
ever the answer has to be redone.

SUB FULL
Displays the message MEMORY IS FULL!! and calls the rou-
tine to wait for the ENTER key to be pressed.

SUB ADDCMDS
This subroutine displays the ADD QUESTION command line
at the bottom of the screen.

SUB PRRNT
This subroutine displays the message for the user to press
ENTER when done.

SUB SAVECHNGS(YFLG)

Takes a flag parameter that can be set to true if the user
presses the Y key or to false if the user presses the N key. Waits
fora Y or an N key to be pressed.

SUB ERRMSG
Prints the error message “RE-ENTER ANSWER” and is used
when the answer given is invalid.

SUB NUMDISP(ARRCTR)

This subroutine displays the number for the questions and
answers on the screen. ARRCTR is the current number for the
question that is being displayed or added.

SUB EDITCMDS
This subroutine displays the commands the user is able to use
during the DISPLAY/EDIT screen.

70

SUB WRAP(Q$,BLK$)

This subroutine takes the question that the user has typed on
the screen and reformats it to make it look nicer on the screen.
Words are wrapped around to the next line. Q$ is the question
that needs to be wrapped around on the screen. BLK$ is the
blank string used for packing the question to its fullest length of
78 characters.

Variable Listing for SUBROUTINES
SUB SCRFORM(NUMREC, TT$)

NUMREC

TT$

Record number to print. Same as the ques-
tion number. Shows what question the
user is currently entering.

Same purpose, as TT$ is in the MAIN PRO-
GRAM.

SUB GETCHAR(STROW,STCOL,NROWS,ANS$,FLG,SV,EX)

STROW

STCOL

NROWS

ANS$

FLG

Sv

EX

ROW

COoL

NR

Starting row location to place the cursor
and where to start printing characters as
they are typed.

Starting column location for placing the
cursor and displaying the characters.

The number of rows the cursor is allowed
to travel. For the question, NROWS is set
to 3; for the answer, it is set to 1.

Holds the answer or the question as the
user types in the characters.

Flag returns a 1,2, or 3 depending on
which, if any, of the three command keys
(C/S, C/R, C/X) was pressed.

Tells subroutine whether or not to allow
the user to press C/S as a valid key.

Tells subroutine whether or not to accept
C/X as a valid input.

Is used for keeping the cursor on the same
line until it reaches the end of the line then
move it down to the next line.

Used for keeping the cursor, as well as the
characters, placed one in front of the
other.

Counter to keep track of how many rows
the cursor has traveled compared to how
many it is allowed to move.

72

K&S Same purpose here as in the MAIN PRO-
GRAM.

SUB DELAY(TIME)
TIME Factor for how long the FOR...NEXT loop
should go for a delaying time period.

| Same purpose as in the MAIN PROGRAM.

SUB ENTER
K&S Same purpose as in the MAIN PROGRAM.
SUB PARSEANS(ANSS$,ERR)

ANS$ Holds the answer that you want parsed.
Parses out the words THE, A, and AN from
the answer. Returns the correct answer in
this variable.

ERR Is set if the answer contains more than two
words.

WD$ Temporarily holds the new answer after
parsing.

WRDS Counter used to count how many words
are in your answer.

1 &) Looping variables.

T$ Temporarily holds the answer after it is
converted to all uppercase letters.

A Holds the ASCII value of each character in
the answer while converting the character
to uppercase.

A$ Holds the first word of the answer to see if
it matches A, AN, or THE.

SUB SAVECHNGS(YFLG)

YFLG Holds a true value if the user presses a Y;
false if the user presses an N. Returns one
of the two above to the MAIN PROGRAM
for execution on the flag.

K&S Same purpose as in the MAIN PROGRAM.

73

SUB NUMDISP(ARRCTR)

ARRCTR

The question number that is displayed on
the screen. Indicates the current question.

SUB WRAP(Q$,BLK$)

Qs

BLK$
WL

ST

EN

T$

2%

Holds the question that is to be wrapped
around the screen.

Same purpose as in the MAIN PROGRAM.

Indicates Which Line we are currently cal-
culating for size.

Starting character position within the
string Q$.

Ending position within the Question
string.

Same as in MAIN PROGRAM.

Temporarily holds the new reformatted
question (1st part).

Temporarily holds the rest of the string in
its newly reformatted state.

74

10

30

40
50
60
70
80
90

100

110
120

130
140

150

160
170

180
190

209

210

220

230
240

Appendix B
The Cassette Game

REM TRIVIA GAME - CASSETTE VERSION

CALL CLEAR :: CALL SCREEN(4):: OPTION BASE 1 :: DIM
QAS$(30),RQN(30),N(30),ND(8),NT(4)

BLK$=RPTS$(" ",26):: FALSE=@0 :: TRUE=NOT FALSE ::
CALL CHAR(128, "FF0000000000000"):: CALL
CHAR(129, "00Q07ETE7ETEQGG00")

CALL CHAR(136,"FFFFFFFFFFFFFFFF"):: CALL
COLOR(14,13,4):: GOTO 200

DISPLAY AT(19,2):"PLAYER#";PLYR :: DISPLAY AT
(19,15):"NAME: ";SEG$(PNS$(PLYR),1,10)

DISPLAY AT(21,2):"SCORE:";SC(PLYR):: DISPLAY AT
(21,15):"NC/NQ:";NC(PLYR);"/";NQ(PLYR) :: RETURN

CALL SOUND(309,-1,8):: CALL SOUND(300,-1,0)::
DISPLAY AT(1,10)ERASE ALL:"FINAL STATS"

DISPLAY AT(5,2):"NAME SCORE NC/NQ" :: CALL
HCHAR(6,4,128,29)
IF NP=1 THEN DISPLAY AT(8,2):PN$(1):: DISPLAY AT

(8,14):SC(1):: DISPLAY AT(8,22):NC(1);"/";NQ(1)::
GOTO 160

FOR I=1 TO NP :: PN(I)=I :: NEXT I :: FOR J=1 TO
NP-1 :: J1=J

FOR K=J+1 TO NP :: IF SC(J1)<SC(K)THEN Jl=K

NEXT K :: IF J1<>J THEN T=SC(J):: SC(J)=SC(J1l)::
SC(J1)=T :: T=PN(J):: PN(J)=PN(J1l):: PN(J1)=T
NEXT J

FOR I=1 TO NP :: DISPLAY AT(6+I,2):PNS(PN(I))::
DISPLAY AT(6+1,14):SC(I)

DISPLAY AT(6+I,22):NC(PN(I));"/";NQ(PN(I)):: NEXT
I

IF QUIT THEN CALL DELAY(8@0):: GOTO 199

DISPLAY AT(22,2)BEEP:"ANOTHER GAME? (Y/N)" ::
YFLG=FALSE :: CALL GETYN(YFLG)

IF YFLG THEN DISPLAY AT(10,2)ERASE ALL:"ONE MOMENT
PLEASE..." :: RUN 10

DISPLAY AT(10,2)ERASE ALL:"HAVE A NICE DAY!" ::
END

DISPLAY AT(6,4)BEEP:"WELCOME TO THE TI-99/4A" ::
DISPLAY AT(106,6):"** TRIVIA GAME **" :: CALL
ENTER

DISPLAY AT(8,2)ERASE ALL BEEP:"HOW MANY CASSETTE
FILES" :: DISPLAY AT(1#,2):"DO YOU HAVE? (1-14)"
ACCEPT AT(10,21)VALIDATE(NUMERIC) SIZE(3)
BEEP:NUMFILES :: IF NUMFILES<1l OR NUMFILES>1@ THEN
220

1IF NUMFILES=1 THEN 380

DISPLAY AT(8,2)ERASE ALL BEEP:"PLEASE WAIT...I'M
WORKING" :: RANDOMIZE :: FOR I=1 TO 30

75

250 WN=INT(RND*NUMFILES*3G)+1 :: ERR=FALSE :: CALL
CKNUM(NN,RQN(),ERR,35):= IF ERR THEN 250 ELSE
RQN(I)=WN

260 NEXT I :: P=1 :: Q=30 :: TO=0

278 IF P>=Q THEN 368

280 V=RQN(P):: I=P :: J=Q+1

290 J=J-1 :: IF RQN(J)>V THEN 290

300 I=I+1 :: IF RQN(I)<V AND I<75 THEN 300

310 IF J>1 THEN T=RQN(I):: RQON(I)=RQN(J):: RQN(J)=T ::
GOTO 299

320 RON(P)=RQN(J):: RQN(J)=V

330 1IF (J-P)<(Q-J)THEN N(T@+1)=J+1 :: N(T@+2)=Q :: Q=J-
1l :: GOTO 35@

340 N(T@+1)=P :: N(T@+2)=J-1 :: P=J+1

350 TO=TO+2 :: GOTO 278

360 IF TO<>@ THEN Q=N(T@):: =N(T@-1):: TO=T@-2 ::
GOTO 279

370 FOR I=1 TO 30 :: N(I)=@ :: NEXT I

380 DISPLAY AT(2,2)ERASE ALL BEEP:" THIS IS GOING TO
TAKE A" :: DISPLAY AT(4,2):"WHILE, FOR ME TO LOAD
THE"

390 DISPLAY AT(6,2):"QUESTIONS AND ANSWERS FROM" ::
DISPLAY AT(8,2):"YOUR CASSETTE."

400 DISPLAY AT(10,2):" PLEASE BE PATIENT AS I" ::
DISPLAY AT(12,2):"LOAD THE RANDOM QUESTIONS"

419 DISPLAY AT(14,2):"FROM YOUR CASSETTE FILES." ::
CALL ENTER :: CN=1 :: CTR=1l:: RECCTR=0

420 DISPLAY AT(20,2)ERASE ALL BEEP:"INSERT CASSETTE
#";CN

439 OPEN #1:"CS1", INTERNAL, INPUT ,FIXED 128

440 INPUT #1:NUMQ :: FOR I=1 TO NUMQ :: INPUT
#1:QAS$ (CTR)

450 IF NUMFILES=1 THEN RON(CTR)=I :: CTR=CTR+1 :: GOTO
470

460 IF I+RECCTR=N(CTR) THEN CTR=CTR+1

479 NEXT I :: RECCTR=RECCTR+NUMQ :: CN=CN+l1 :: CLOSE
#l:: IF CN<=NUMFILES THEN 420

480 DISPLAY AT(6,2)ERASE ALL BEEP:"PLEASE WAIT..." ::
DISPLAY AT(1@,2):"SCRAMBLING QUESTIONS"

490 RANDOMIZE :: NUMQ=RECCTR :: IF NUMQ>30 THEN
NUMQ=30

500 NUMDBL=INT(NUMQ*.25)+1 :: NUMTPL=INT(NUMQ*.10)+1

519 FOR I=1 TO NUMQ

520 WN=INT(RND*NUMQ)+1 :: ERR=FALSE 33 CALL
CKNUM(WN,N(),ERR,NUMQ)

530 IF ERR THEN 520 ELSE N(I)=WwN

540 NEXT I :: FOR I=1 TO NUMDBL

550 QN=INT(RND*NUMQ)+l1 :: ERR=FALSE :: CALL
CKNUM(QN, ND(), ERR, 8)

560 IF ERR THEN 550 ELSE ND(I)=QN

578 NEXT I :: FOR I=1 TO NUMTPL

580 QN=INT(RND*NUMQ)+1 :: ERR=FALSE :: CALL
CKNUM(QN,NT(),ERR,4):: IF ERR THEN 580

598 CALL CKNUM(QN,ND(),ERR,B):: IF ERR THEN 589

600 NT(I)=QN :: NEXT I

76

610

620
630

640
650
660
670

680
690

700
710
720
730
740
750
760
770

780
790

800
810
820
830
840
850
864

870
880

890

900

DISPLAY AT(1d,2)ERASE ALL BEEP: "NUMBER OF PLAYERS
(1__4)!-

CALL KEY(@,K,S):: IF S<=0 THEN 620

CALL HCHAR(10,28,K):: IF K<49 OR K>52 THEN CALL
BEEP :: CALL HCHAR(10,28,32):: GOTO 620

NP=K-48 :: FOR I=1 TO NP :: DISPLAY AT(18,2)ERASE
ALL:"PLAYER#";I;"NAME:"

ACCEPT AT(lﬂ,lB)VALIDATE(UALPHA)BEEP
SIZE(11):PN$(I):: IF PN$(1)="" THEN 650

NEXT I :: DISPLAY AT(1,5)ERASE ALL BEEP:"**
TRIVIA GAME **" :: CALL HCHAR(2,3,136,29)

CALL HCHAR(18,3,136,29):: CALL VCHAR(2,3,136,16) ::
CALL VCHAR(2,31,136,16):: CALL VCHAR(18,3,136,6)
CALL VCHAR(18,31,136,6):: CALL HCHAR(24,3,136,29)
DISPLAY AT(17,6)SIZE(20):"(USE ONLY 2 WORDS)" ::
DISPLAY AT(5,2):"QUESTION #"

DISPLAY AT(14,2):"ANSWER:" :: CALL
HCHAR(16,4,128,26)

DISPLAY AT(23,6):"CTRL-Q TO QUIT" :: DBL=FALSE
TPL=FALSE

PLYR=1 :: ARRLOC=1 :: FOR I=1 TO NP :: NQ(I)=0
NC(I)=0 :: SC(I)=@ :: NEXT I

TIM=@ :: CALL TIMER(TIM):: GOSUB 5@ :: DISPLAY
AT(5,13)SIZE(2) :ARRLOC

DISPLAY AT(7,2):SEG$(QA$(N(ARRLOC)),1,26):3
DISPLAY AT(9,2):SEG$(QA$(N(ARRLOC)),27,26)
DISPLAY AT(ll,Z):SEG$(QA$(N(ARRLOC)),53,26)::
STPLYR=PLYR

FOR I=1 TO NUMDBL :: IF ND(1)=N(ARRLOC)THEN
DBL=TRUE :: GOTO 799

NEXT 1 :: DBL=FALSE :: FOR I=1 TO NUMTPL :: IF
NT(I)=N(ARRLOC)THEN TPL=TRUE :: GOTO 790

NEXT 1 :: TPL=FALSE

DISPLAY AT(15,2)SIZE(26):: DISPLAY
AT(12,9)SIZE(15)

IF DBL THEN CALL BEEP :: DISPLAY AT(12,10) : "DOUBLE
VALUE" :: CALL BEEP

IF TPL THEN CALL BEEP :: DISPLAY AT(12,10) : "TRIPLE
VALUE" :: CALL BEEP

TU=FALSE :: ANSS$="" :: QUIT=FALSE :: CALL
GETANS(ANS$,15,2,26,QUIT,TIM,TU)::POINTS=25—TIM HY]
IF QUIT THEN 940

IF TU THEN 860 ELSE IF DBL THEN POINTS=POINTS*2

IF TPL THEN POINTS=POINTS*3

CALL PARSEANS(ANS$):: ANS$=SEG$(ANS$&BLK$,1,26)::
CA$=SEGS$ (QA$ (N(ARRLOC)),79,26):: CALL
CONVERTUPPER(CAS$) :: IF CA$=ANS$ THEN 910

CALL SOUND(708,-3,8):: CALL DELAY(200) ::
NQ(PLYR)=NQ(PLYR)+1

PLYR=PLYR+1 :: IF PLYR>NP THEN PLYR=1

IF PLYR<>STPLYR THEN TIM=13 :: CALL TIMER(TIM)::
GOSUB 58 :: GOTO 798

DISPLAY AT(14,2)BEEP:"THE CORRECT ANSWER IS:" ::
DISPLAY AT(15,2):SEG$(QA$(N(ARRLOC)),79,26)

CALL DELAY(59@):: DISPLAY AT (14,2)SIZE(26):
"ANSWER:" :: DISPLAY AT(15,2)SIZE(26):: GOTO 929

o
.

o
o

77

919 CALL SOUND(7008,-1,0):: SC(PLYR)=SC(PLYR)+POINTS ::
NC(PLYR)=NC(PLYR)+1 :: NQ(PLYR)=NQ(PLYR)+1 ::
GOSUB 50 :: CALL DELAY(300)

920 ARRLOC=ARRLOC+1 :: IF ARRLOC>NUMQ THEN CALL
DELAY(200):: GOTO 70 ELSE PLYR=STPLYR+1 :: IF
PLYR>NP THEN PLYR=1

933 DBL=FALSE :: TPL=FALSE :: GOTO 730

94@ DISPLAY AT(23,6)SIZE(20)BEEP: "ARE YOU SURE? (Y/N)"
:: YFLG=FALSE :: CALL GETYN(YFLG)

950 IF YFLG THEN 78 ELSE DISPLAY
AT(23,6)SIZE(20):"CTRL-Q TO QUIT" :: GOTO 8280

960 SUB CONVERTUPPER(WDS)

970 T$="" :: FOR J=1 TO LEN(WDS) :: A=ASC(SEGS$
(WD$,J,1)):: IF A>96 AND A<123 THEN A=A-32

980 T$=T$&CHRS$(A):: NEXT J :: WD$=TS$

990 SUBEND

1989 SUB GETANS(ANSS,STROW,STCOL,LN,QUIT,TIMR,TU)

1010 TT=0

1020 ROW=STROW :: COL=STCOL :: ANSS=""

1939 CALL HCHAR(ROW,COL+2,129):: CALL KEY(5,K,S)

1040 IF S=@ AND TT>=15 THEN TT=0 :: TIMR=TIMR+1 ::
CALL TIMER(TIMR):: IF TIMR>=25 THEN TU=-=1 :: GOTO
1249

1050 IF S=0@ THEN TT=TT+1 :: GOTO 1930

1060 IF K=145 THEN QUIT=-1 :: GOTO 1210

1970 1IF (K<>13)AND(K<>8)AND((K<32)0R(K>126))THEN CALL
BEEP :: GOTO 1030

1088 TT=TT+l1 :: IF TT>=15 THEN TT=0 :: TIMR=TIMR+1l ::
CALL TIMER(TIMR):: IF TIMR>=25 THEN TU=-1 :: GOTO
1249

1090 IF K=13 THEN 1200 ELSE IF K=8 THEN 1118

1108 ANS$=ANS$&CHRS$(K):: DISPLAY AT(ROW, COL) :CHRS$ (K) : :
COL=COL+1 :: IF COL<STCOL+LN THEN 1030 ELSE CALL
BEEP :: GOTO 1130

1114 COL=COL-1 :: IF (COL<=STCOL)THEN CALL
HCHAR(ROW,COL+3,32):: CALL BEEP :: GOTO 1020

1120 ANS$=SEG$(ANSS$,1,LEN(ANSS$)-1):: CALL
HCHAR(ROW,COL+3,32):: GOTO 1830

1130 CALL HCHAR(ROW,COL+2,129):: CALL KEY(9,K,S)

1140 IF S<=@ THEN TT=TT+l

1156 IF TT>=15 THEN TT=0 :: TIMR=TIMR+1 :: CALL
TIMER(TIMR):: IF TIMR>=25 THEN TU=-1 :: GOTO 1249

1160 IF S<=@ THEN TT=TT+l :: GOTO 1130

1176 IF K=145 THEN QUIT=-1 :: GOTO 1210

1180 IF (K<>l3)AND(K<>8)THEN CALL BEEP :: GOTO 1139

1190 IF K=13 THEN 1200 ELSE 1110

1200 IF ANS$="" THEN CALL BEEP :: GOTO 1930 ELSE CALL
HCHAR(ROW, COL+2, 32)

1210 SUBEND

1220 SUB BEEP

1238 CALL SOUND(10#,523,9)

12490 SUBEND

1250 SUB PARSEANS(ANSS)

1260 WD$="" :: FOR I=1 TO LEN(ANSS)

1270 IF ASC(SEG$(ANSS$,I,1))=32 AND WD$="" THEN 1300

78

1280 IF SEG$(ANSS$,I,1)=""" AND SEGS$ (ANSS$,I+1,1)=" "
THEN 1300

1299 WDS=WD$&SEGS (ANSS$,I,1)

1300 NEXT I :: CALL CONVERTUPPER(WDS$)

1310 FOR I=1 TO LEN(WD$):: IF ASC(SEGS$(WD$,I,1))=32
AND 1<>1 THEN 1330

1320 NEXT I :: GOTO 1358

1330 A$=SEGS$(WD$,1,I):: IF (A$="A " OR AS$="THE " OR
A$="AN ")AND I<>LEN(WD$)THEN WD$=SEG$
(WD$,1+1,LEN(WD$)-I)

1340 ANS$=WDS$S

13580 SUBEND

136@ SUB TIMER(SEC)

1370 DISPLAY AT(3,23)SIZE(4):25-SEC

1380 SUBEND

1390 SUB GETYN(YFLG)

1400 CALL KEY(@,K,S):: IF S<=@ THEN 1408

1419 IF K<>78 AND K<>118 AND K<>89 AND K<>121 THEN
1400

1420 IF K=78 OR K=110 THEN YFLG=g ELSE YFLG=-1

1430 SUBEND

1440 SUB ENTER

1450 DISPLAY AT(22,1)SIZE(28):"PRESS <ENTER> TO
CONTINUE"

1468 CALL KEY(®,K,S):: IF S<=@ THEN 1460 ELSE IF K<>13
THEN 1460

1470 SUBEND

1480 SUB CKNUM(NUMB,T(),ERR,MAXLIM)

1499 FOR I=1 TO MAXLIM :: IF NUMB=T(1)THEN ERR=-1

1500 NEXT 1

1516 SUBEND

1520 SUB DELAY (DURAT)

1530 FOR K=1 TO DURAT :: NEXT K

1540 SUBEND

Variable Listing — Main Program

ANS$ Holds the answer the player has typed in.
Maximum length is 26 characters.
ARRLOC Holds the array number of the question

that is displayed.

BLK$ Blank string the size of the maximum size
field (26). Used for packing the answer to
its maximum length.

CA$% Holds the correct answer. Used for com-
paring the two answers for equality.

CN Starting counter for looping through the
number of cassette files the user has.

79

CTR

DBL

ERR

FALSE

1&]

N(30)

NC()

ND(8)

NP

NQ()

NT(4)

NUMFILES

NUMDBL

Counter for placing the correct random
record into the array in a sequential man-
ner.

Boolean flag to indicate if the current
question is to be double value or not.
Used for printing the DOUBLE VALUE mes-
sage.

Flag used to indicate if an error occurred
within a procedure.

Boolean flag set to @. Indicates a false
value.

Looping variable for FOR...NEXT state-
ments.

Used in the CALL KEY routine to hold the
ASCII value of the key that is pressed. K
also used for looping.

Holds the random generated sequence of
numbers in which to display the questions
in a random format.

Holds the player’s number of correct ques-
tions that (s)he answered.

Holds the random generated numbers that
are to be assigned DOUBLE point values.

The total number of players playing the
game, from one to four.

Holds the number of questions that each
player was asked.

Holds the random generated numbers that
are to be assigned TRIPLE point value.

Holds the total number of cassette files to
load from. Maximum is 10.

Holds the number of DOUBLE point ques-
tions this game is supposed to have.

80

NUMQ

NUMTPL

PLYR

PN$()

Q
QA$(30)

QN

QUIT
RECCTR

RQN(30)

SCO

Number of questions currently loaded into
memory from the cassette file.

Holds how many questions are to be TRI-
PLE pointers.

Holds the current pointer for the lowest
partition using Quicksort routine.

Holds the current player number to dis-
play on the screen.

Holds the players’ names. Holds up to 10
characters, but only six are displayed on
the game screen. The whole name is dis-
played at the end of the game in the statis-
tic screen.

Holds the maximum array location to sort.

Holds the questions and answers in a con-
catenated string. Total string length is 104
characters, 78 for the question and 26 for
the answer.

Holds the random question number for
selecting the double and triple value ques-
tions without obtaining duplicate num-
bers.

Holds the boolean flag for quitting the
game early.

Holds the number of records loaded from
each cassette file.

Holds the Random Question Numbers to
load in memory.

Used in the CALL KEY routine to hold the
status of the keyboard.

Holds the player’s score.

STPLYR

TO
TIM

TPL

TRUE

TU

WN

YFLG

Holds the player number of who started
first. This keeps the players going in the
same order no matter who answers the
questions from a missed question.

Used for holding the number that needs
switching.

Holds the stack pointer for Quicksorting.
Holds the timer value. Starts at 0 and is
incremented until either the player

answers the questions or it reaches the
maximum point limit.

Holds the TRIPLE value flag set for printing
the TRIPLE VALUE message or not.

Boolean flag indicates that the result is
indeed true. Usuallya —1, but the TI-99/4A
accepts any number other than 0 to be
true.

Boolean flag set only if the timer runs out
of time. Indicates that Time is Up.

Temporarily holds a number to sort on.

Holds a random number to select from the
file.

Boolean flag to indicate whether the user
responded with a YES or a NO.

82

Subroutines for the Cassette Trivia Game

Here are the subroutines that are used in the Trivia Game
program with an explanation of what they do and the param-
eters needed to use them.

SUB CONVERTUPPER(WD$)

This routine takes a string, WD$, and converts all the charac-
ters in the string to uppercase characters before comparing the
answer the player typed to the correct answer.

SUB GETANS(ANS$,STROW,STCOL,LN,QUIT, TIMR,TU)

This routine is the heart of the answer routine. This routine
gets one character atatime and displays itin the appropriate row
and column. It uses the CALL KEY routine. This routine is called
when a player is typing in the answer for the question. ANS$ is
where the answer (s)he types is stored. STROW is the starting
row position for the character to be displayed. STCOL is the
starting column position. LN is the length of the answer (26 is
maximum). QUIT is the quit flag for setting if the players wishes
to exit the game early. If they do, then this flag gets set to true.
TIMR is the timer passed to the subroutine so the routine can
keep decreasing the time (point value). TU is the time up flag. It
is set if the TIMR goes to the number equal to the starting value
of the question.

SUB BEEP
This subroutine produces a beeping sound to indicate that an
invalid response has been entered.

SUB DELAY(DURAT)

This routine is a pausing routine. It merely holds the screen
the way it is for a certain time period. DURAT is the length for
how long to hold the screen. It uses a FOR...NEXT loop to stall
the screen.

SUB ENTER

This routine displays this message PRESS <ENTER> TO CON-
TINUE and then waits for the ENTER key to be pressed before
returning to the main program.

83

SUB PARSEANS(ANS$)

This routine parses through the answer to make sure there
were no more then two words in the answer. It also checks to see
if A, AN, and THE are used in conjunction with another word. If
they were, the answer is stripped of them. ANS$ is the string
where the corrected (an answer without A, AN, or THE) answer
is returned.

SUB TIMER(SEC)

This routine takes the time and displays the correct point
valuein the upper-right hand corner of the screen. SEC is the
amount of time that has elapsed.

SUB GETYN(YFLG)

This routine waits for the user to answer a Y/N question with a
Y or a N. If the user presses Y, the YFLG is set to TRUE; other-
wise, it is set to false.

SUB CKNUM(NUMB,T(),ERR,MAXLIM)

This routine checks the array T() which is passed to it to make
sure that the NUMB is not already in the array. Ifitis, ERR is set to
false. MAXLIM is the maximum array dimension for the array T()

Variable Listing for SUBROUTINES

SUB CONVERTUPPER(WD$)
WD$ The string that needs to be converted to
uppercase characters.

T$ Temporarily holds the new characters as
they are converted.

J Same purpose as in MAIN PROGRAM.

A Holds the ASCII value for one character at
a time.

GETANS(ANS$,STROW,STCOL,LN,QUIT, TIMR,TU)

ANS$ Holds the answer as the user types.

STROW Starting row location to place the cursor
and where to start printing characters as
they are typed.

STCOL Starting column location for placing the

cursor and displaying the characters.
84

LN

QUIT

TIMR
TU

ROW

CcoL

K&S

SUB DELAY(DURAT)
DURAT

K

SUB ENTER
K&S

Holds the length of the answer. (26 is the
maximum amount.)

Is the quit flag. Gets set if the user presses
CTRL-Q.

Holds the timer value as it clicks away.

Flag that indicates if time ran out on the
player before he could answer the ques-
tion.

Runs the timer from within the subroutine.

Holds the starting row location for display-
ing the printed characters.

Holds the starting column number for dis-
playing the characters side by side as they
are typed.

Same purpose here as in the MAIN PRO-
GRAM.

Factor for how long the FOR...NEXT loop
should go for a delaying time period.

Looping variable.

Same purpose as in the MAIN PROGRAM.

SUB PARSEANS(ANSS)

ANS$

WD$

WRDS

1&]

Holds the answer that you want parsed.
Parses out the words THE, A, and AN from
the answer. Returns the correct answer in
this variable.

Temporarily holds the new answer after
parsing.

Counter used to count how many words
are in your answer.

Looping variables.

85

A$

SUB GETYN(YFLG)
YFLG

K&S

SUB TIMER(SEC)
SEC

Holds the first word of the answer to see if
it matches A, AN, or THE.

Holds a true value if the user presses a Y;
false if the user presses an N. Returns one
of the two above to the MAIN PROGRAM
for execution on the flag.

Same purpose as in the MAIN PROGRAM.

How many points to decrease the starting
value by.

SUB CKNUM(NUMB,T(),ERR,MAXLIM)

NUMB

TO

ERR

MAXLIM

Number to check for duplication in selec-
tion random numbers.

The array to compare the NUMB to, to see
if any duplication is found.

Set to true if the NUMB already exists in
the array T().

Maximum amount of numbers to check in
the array.

Looping variable.

86

19
20
30
40
50

60
70
80
90
100
110
120
130
140
159
168
170

180
190
200
210
220

230
240
259
260
270
280
290
300
318

320
330
340
350
360
370
380

399

Appendix C
The Diskette Data Base

REM

REM TRIVIA DB-DISKETTE VERSION
REM

CALL INIT :: CALL LOAD(-31806,16)

CALL CHAR(128, "FFQ0000000000000") :
CALL CHAR(129,"@Q@@@7E7E7E7E0000")
(136, "FFFFFFFFFFFFFFFF")

CALL COLOR(14,13,4):: BLKS=RPTS$(" ",78)

FALSE=0 :: TRUE=NOT FALSE :: GOTO 14808

REM

REM STORE QUESTION AND ANSWER
REM
Q$=SEGS$ (Q$&BLK$,1,78)

ANS$=SEG$ (AlSS&BLKS,1,26)

QAS=Q$&ANS§$:: RETURN

REM

REM PARSE ANSWER

REM

ANSS=AS :: ERR=FALSE :: CALL PARSEANS(ANSS,ERR)::
RETURN

REM

REM ADD RECORDS

REM

CALL CLEAR :: DE=FALSE

ARRNUM=ARRNUM+1 :: IF ARRNUM>710 THEN CALL FULL
RETURN

TT$="** ADDING QUESTIONS **"

CALL SCRFORM(ARRNUM,TT$):: CALL ADDCMDS

Q$="" :: FLAG=@ :: SV=TRUE :: EX=TRUE

CALL GETCHAR(7,2,3,0$,FLAG, SV, EX)

IF FLAG=1 THEN CALL ERASEQUEST :: GOTO 258

IF FLAG=3 THEN ARRNUM=ARRNUM-1 :: RETURN

IF FLAG=2 AND Q$="" THEN 260

Q$=SEGS (Q$&BLK$,1,78) :: CALL WRAP(Q$,BLK$)
A$="" :: FLAG=@ :: SV=TRUE :: EX=TRUE :: CALL
GETCHAR(17,2,1,A$,FLAG, SV, EX)

IF FLAG=1 THEN CALL ERASEQUEST :: CALL ERASEANS ::
GOTO 250

IF FLAG=3 THEN ARRNUM=ARRNUM-1 :: RETURN

GOSUB 178 :: IF ERR THEN CALL ERRMSG :: GOTO 310
IF FLAG=2 THEN GOSUB 110 :: PRINT #1,REC
ARRNUM:QAS:: GOTO 229

CALL HCHAR(23,31,129):: CALL BEEP

CALL KEY(®,K,S):: IF S<=0 THEN 370

IF K=146 THEN GOSUB 450 :: CALL ADDCMDS :: GOTO
360

IF K=147 THEN FLAG=2 :: GOTO 350

: CALL CHAR

87

400
410
420
430
440
450

469
470
480
490

500
510

520

530
540
558
560
5708
583
590
600

610
620

630
640
650
660
670
680

690

700
710
720
730
740
750

760
770
780
790

800

IF K=152 THEN ARRNUM=ARRNUM-1 :: RETURN

CALL BEEP :: GOTO 379

REM

REM RE-DO ROUTINE

REM

BOTH=FALSE :: DISPLAY AT(22,2)BEEP:"REDO:" ::
DISPLAY AT(23,1)SIZE(28):" Q- QUESTION, A
ANSWER"

CALL HCHAR(23,31,32)

DISPLAY AT(24,1)SIZE(28):" B - BOTH, X - EXIT"
CALL KEY(®,K,S):: IF S<=0 THEN 480

IF K<>81 AND K<>113 AND K<>65 AND K<>97 AND K<>66
AND K<>98 AND K<>88 AND K<>120 THEN 480

IF K<>88 AND K<>12@ THEN CALL PRRNT

IF K=81 OR K=113 THEN CALL ERASEQUEST :: GOTO 590
ELSE IF K=65 OR K=97 THEN CALL ERASEANS :: GOTO
680

IF K=66 OR K=98 THEN BOTH=TRUE :: CALL ERASEQUEST
:: CALL ERASEANS :: GOTO 590

IF NOT DE THEN RETURN

IF NOT CHNGS THEN RETURN

PRINT #1,REC ARRNUM:QA$:: RETURN

REM

REM ENTER THE QUESTION

REM

SV=FALSE :: EX=FALSE

Q$="" :: FLAG=0 :: CALL GETCHAR(7,2,3,Q$,FLAG,SV,
EX)

IF FLAG=1 THEN CALL ERASEQUEST :: GOTO 590 ELSE

ANS$=SEGS$ (QA$,79,26)

Q$=SEG$ (Q$&BLKS$,1,78):: CALL WRAP(QS,BLKS)::
QA$=Q$&ANS$:: CHNGS=TRUE

IF NOT BOTH THEN 453

QAS$=SEGS$ (Q$&BLKS$,1,78)

REM

REM ENTER THE ANSWER

REM

SV=FALSE :: EX=FALSE :: A$="" :: FLAG=0 :: CALL

GETCHAR(17,2,1,A$,FLAG, SV, EX)

IF FLAG=1 THEN CALL ERASEANS :: GOTO 680 ELSE
Q$=SEGS$(QA$,1,78):: GOSUB 170:: IF ERR THEN CALL
ERRMSG :: GOTO 680

CHNGS=TRUE :: GOSUB 110 :: GOTO 450
REM

REM DISPLAY/EDIT/DELETE QUESTIONS
REM

IF ARRNUM>@ THEN 780

CALL CLEAR :: DISPLAY AT(6,2)BEEP:"THERE ARE NO
QUESTIONS"

DISPLAY AT(8,2):"AND ANSWERS IN MEMORY TO" ::
DISPLAY AT(19,2):"DISPLAY/EDIT."

CALL ENTER :: RETURN

ARRPOS=1 :: DE=TRUE

TT$="* DISPLAY/EDIT QUESTION *" :: CALL
SCRFORM(ARRPOS, TT$)

INPUT #1,REC ARRPOS:QA$

88

810 DISPLAY AT(7,2):SEG$(QA$,1,26):: DISPLAY AT
(9,2) :SEG$ (QAS$,27,26)

820 DISPLAY AT(11,2):SEG$(QAS$,53,26):: DISPLAY AT
(17,2) :SEGS$(QAS$,79,26)

830 CALL EDITCMDS

840 CALL KEY(5,K,S):: IF S<=@ THEN 840

850 IF K=132 THEN 1870

868 IF K=140 THEN 1170

870 IF K=142 THEN ARRPOS=ARRPOS+l :: GOTO 920

88¢ IF K=144 THEN ARRPOS=ARRPOS-1 :: GOTO 1000

890 IF K=146 THEN CHNGS=FALSE :: TOT=ARRNUM ::
ARRNUM=ARRPOS :: GOSUB 450 :: GOSUB 110 ::
ARRNUM=TOT :: GOTO 790

9¢g@ IF K=152 THEN RETURN ELSE CALL BEEP :: GOTO 840 -

919 REM GET NEXT RECORD

92¢ IF ARRPOS<=ARRNUM THEN CALL NUMDISP(ARRPOS):: GOTO
800

93¢ DISPLAY AT(23,1)BEEP:"THERE ARE NO MORE
QUESTIONS!":: DISPLAY AT(24,1)SIZE(28)

9409 CALL DELAY(690)

95¢ CALL EDITCMDS

960 CALL BEEP :: ARRPOS=ARRPOS-1 :: GOTO 848

970 REM

98¢ REM GET PREVIOUS RECORD

999 REM

1008 IF ARRPOS>=1 THEN CALL NUMDISP(ARRPOS):: GOTO 880

1910 DISPLAY AT(23,1)BEEP:"CAN'T GO BELOW RECORD #11!"
:: DISPLAY AT(24,1)SIZE(28)

1020 CALL DELAY(60@):: CALL EDITCMDS

18030 CALL BEEP :: ARRPOS=ARRPOS+l :: GOTO 840

1040 REM

1958 REM DELETE THE RECORD

1063 REM

1907¢ DISPLAY AT(23,1)BEEP:"DELETE THIS RECORD? (Y/N)"
:: DISPLAY AT(24,1)SIZE(28)

1880 CALL KEY(@,K,S):: IF S<=¢ THEN 1080

1990 CALL HCHAR(23,30,K):: IF K<>78 AND K<>89 AND
K<>11@ AND K<>121 THEN CALL BEEP :: GOTO 1080

1199 IF K=78 OR K=11¢ THEN 830

1110 IF ARRNUM-1=@ THEN ARRNUM=8 :: GOTO 750

112¢ IF ARRPOS<>ARRNUM THEN INPUT #1,REC ARRNUM:QAS$::
PRINT #1,REC ARRPOS:QA$ ELSE ARRPOS=ARRPOS-1

1138 ARRNUM=ARRNUM-1 :: IF ARRNUM<1 THEN 750 ELSE 790

1140 REM

1156 REM LIST RECORDS TO PRINTER

1168 REM

1176 DISPLAY AT(22,1)SIZE(28):" ENTER BEG. REC #" ::
DISPLAY AT(23,1)SIZE(28)::DISPLAY AT(24,1)SIZE(28)

1188 ACCEPT AT(22,18)VALIDATE(DIGIT)SIZE(3)BEEP:BRN ::
IF BRN<1 OR BRN>ARRNUM THEN 1180

1199 DISPLAY AT(23,1)SIZE(28)BEEP:" ENTER END. REC #"

1208 ACCEPT AT(23,18)VALIDATE(DIGIT)SIZE(3)BEEP:ERN ::
IF ERN<1 OR ERN<BRN OR ERN>ARRNUM THEN 1200

1210 DISPLAY AT(22,1)SIZE(28)BEEP:" TURN ON YOUR
PRINTER" :: CALL ENTER

1220 DISPLAY AT(22,1)SIZE(28):: DISPLAY AT

89

(23,1)S12E(28):" PRINTING RECORDS..."

1230 ON ERROR 1330

1240 OPEN #2:"RS232.BA=9600.DA=8"

1250 FOR I=BRN TO ERN :: INPUT #1,REC I:TEMS$

1268 PRINT #2:"RECORD #";I :: PRINT #2 :: PRINT #2:
"QUESTION: ";SEGS$(TEMS,1,26)

1270 PRINT #2:" " ;SEGS$ (TEMS,27,26)::
PRINT#2:" ";SEG$(TEMS,53,26)::
PRINT $#2

1280 PRINT #2 :: PRINT $#2:" ANSWER: ";
SEGS$ (TEMS, 79, 26)

1290 PRINT #2 :: PRINT #2 :: PRINT #2 :: NEXT I ::
CLOSE #2 :: GOTO 830

1390 REM

1316 REM ERROR ROUTINE FOR PRINTING RECORDS

1320 REM

1330 DISPLAY AT(23,1)SIZE(28)BEEP:"COULD NOT PRINT
RECORDS!" :: CALL DELAY(4080):: RETURN 830

1340 REM

1350 REM SAVING RECORD @

1360 REM

1370 ON ERROR 1860

1380 OPEN #1:"DSK1.TRIVIA", INTERNAL, RELATIVE,FIXED 128

1390 PRINT #1,REC @:NUMQ

1400 CLOSE #1 :: RETURN

1413 REM

1420 REM CHANGE FILES/EXIT PROGRAM

1430 REM

1440 NUMQ=ARRNUM :: CLOSE #1 :: GOSUB 1378 :: IF SL=4
THEN CALL CLEAR :: END

1450 REM

1460 REM START OF DB

1470 REM

1480 NUMQ=0 :: CALL CLEAR :: CALL SCREEN(4):: DISPLAY
AT(1,8)BEEP:"** TRIVIA DB **"

1490 DISPLAY AT(5,2):"DO YOU WANT TO:"

1500 DISPLAY AT(8,3):"1. LOAD AN EXISTING FILE"

1510 DISPLAY AT(10,3):"2. CREATE A NEW FILE"

1520 DISPLAY AT(13,3):"PLEASE SELECT (1-2)"

1530 CALL KEY(9,K,S):: IF S<=@ THEN 1530

1540 DISPLAY AT(13,23):CHR$(K):: IF (K<49)OR(K>58) THEN
DISPLAY AT(13,23)BEEP SIZE(1):: GOTO 1530

1550 IF K=50 THEN 1670

1568 OPNF=FALSE

1578 CALL CLEAR :: DISPLAY AT(5,2)BEEP:"PLEASE INSERT
THE TRIVIA"

1580 DISPLAY AT(7,2):"DB DISKETTE, INTO YOUR" ::
DISPLAY AT(9,2):"DISK DRIVE."

1590 CALL ENTER :: CALL CLEAR

1608 ON ERROR 1570

1619 OPEN #l:“DSKl.TRIVIA",INTERNAL,RELATIVE,FIXED 128

1620 INPUT #1,REC @:NUMQ

1630 CLOSE #1 :: GOTO 1719

1640 REM

1650 REM DB-MAIN MENU

1660 REM

90

167¢ DISPLAY AT(7,2)ERASE ALL BEEP:"PLEASE INSERT AN"
:: DISPLAY AT(10,2):"INITIALIZED DISKETTE INTO"

1688 DISPLAY AT(13,2):"YOUR DISK DRIVE."

1690 OPNF=TRUE

1708 CALL ENTER :: NUMQ=@ :: GOSUB 1370

1719 ARRNUM=NUMQ

1720 OPEN #1:"DSK1.TRIVIA",INTERNAL, RELATIVE,FIXED 128

1730 DISPLAY AT(4,3)ERASE ALL BEEP:"** TRIVIA DB MAIN
MENU **"

1740 DISPLAY AT(8,6):"1. ADD QUESTIONS"

1750 DISPLAY AT(19,6):"2. DISPLAY/EDIT" :: DISPLAY AT
(11,9) : "QUESTIONS"

1768 DISPLAY AT(13,6):"3. CHANGE FILES"

1770 DISPLAY AT(15,6):"4. EXIT PROGRAM" :: DISPLAY AT
(18,6) : "PLEASE SELECT (1-4)"

1780 CALL KEY(@,K,S):: IF S<=@ THEN 17890

1798 DISPLAY AT(18,26):CHR$(K)

1802 IF (K>48)AND(K<53)THEN K=K-48 :: SL=K ELSE
DISPLAY AT(18,26)BEEP SIZE(1l)::GOTO 1788

181Q0 ON K GOSUB 210,740,1440,1440

1820 GOTO 1730

1830 REM

1840 REM ERROR ROUTINE

1850 REM

1860 IF OPNF THEN 1910

1879 CALL ERR(EC,ET,ES,EL)

1880 DISPLAY AT(1,5)ERASE ALL BEEP:"** FILE ERROR
%":: DISPLAY AT(6,2):" PLEASE INSERT THE TRIVIA"

1890 DISPLAY AT(8,2):"DB DISKETTE, INTO YOUR" ::
DISPLAY AT(1@,2):"DISK DRIVE.":: CALL ENTER

1900 RETURN 1378

191@ DISPLAY AT(4,2)ERASE ALL BEEP:" PLEASE INITIALIZE
A " :: DISPLAY AT(6,2):"DISKETTE, THEN RE-RUN THE"

192@ DISPLAY AT(8,2):"PROGRAM." :: CALL ENTER :: CALL
CLEAR :: END

1930 REM

1940 REM SUBROUTINES

1959 REM

1968 SUB SCRFORM(NUMREC,TT$)

1970 CALL CLEAR :: CALL OUTLINE

1989 DISPLAY AT(1,3)BEEP:TT$

1998 DISPLAY AT(5,2):"QUESTION#"; NUMREC

2009 CALL HCHAR(8,4,128,26):: CALL HCHAR
(19,4,128,26)::CALL HCHAR(12,4,128,26)

2010 DISPLAY AT(15,2):"ANSWER FOR QUESTION#";NUMREC ::
CALL HCHAR(18,4,128,26)

2¢2¢ DISPLAY AT(19,6):"(USE ONLY 2 WORDS)"

2030 SUBEND

2043 SUB GETCHAR(STROW,STCOL,NROWS,ANSS$, FLG, SV, EX)

2350 ROW=STROW :: COL=STCOL :: NR=1 :: ANS$=""

2068 CALL HCHAR(ROW,COL+2,129):: CALL KEY(5,K,S)

2079 IF S=@ THEN 2060

2080 1F K=146 THEN FLG=1 :: GOTO 2320

2099 IF (K=147)AND SV THEN FLG=2 :: GOTO 238@ ELSE IF
K=147 THEN 2060

21009 IF (K=152)AND EX THEN FLG=3 :: GOTO 2320 ELSE IF

91

K=152 THEN 2060

2110 IF (K<>13)AND(K<>8)AND((K<32)OR(K>126))THEN CALL
BEEP :: GOTO 2068

2120 IF K=13 THEN 230@ ELSE IF K=8 THEN 2180

2130 ANS$=ANS$&CHRS (K)

2140 DISPLAY AT(ROW,COL):CHR$(K):: COL=COL+1

2158 IF COL<=27 THEN 2060

2160 ROW=ROW+2 :: NR=NR+1l :: IF NR>NROWS THEN 2210

2170 COL=STCOL :: GOTO 2060

2180 COL=COL-1 :: IF (COL<=STCOL)AND(NR=1)THEN CALL
HCHAR(ROW,COL+3,32):: CALL BEEP :: GOTO 2850

2190 IF COL<STCOL THEN CALL HCHAR(ROW,COL+3,32)::
COL=27 :: NR=NR-1 :: ROW=ROW-2

2290 CALL HCHAR(ROW,COL+3,32):: ANSS=
SEGS$ (ANS$,1,LEN(ANSS)-1):: GOTO 2068

2210 ROW=ROW-2 :: NR=NR-1 :: CALL HCHAR(ROW, 30,129)

222@ CALL KEY(@,K,S)

2230 IF S<=@ THEN 2220

2240 IF K=146 THEN FLG=1 :: GOTO 2320

22589 IF (K=147)AND SV THEN FLG=2 :: GOTO 2300 ELSE IF
K=147 THEN 2220

2268 IF (K=152)AND EX THEN FLG=3 :: GOTO 2320 ELSE IF
K=152 THEN 2220

2270 IF (K<>13)AND(K<>8)THEN CALL BEEP :: GOTO 2220

2280 IF K=13 THEN 2300

2290 GOTO 2180

2300 IF ANS$="" THEN CALL BEEP :: GOTO 2060

2319 CALL HCHAR(ROW,COL+2,32)

2320 SUBEND

233% SUB BEEP

2340 CALL SOUND(188,523,8)

2350 SUBEND

2360 SUB OUTLINE

2370 CALL HCHAR(3,3,136,29):: CALL HCHAR
(21,3,136,29): :CALL VCHAR(3,3,136,18)::CALL VCHAR
(3,31,136,18)

2380 SUBEND

2399 SUB DELAY(TIME)

24099 FOR I=1 TO TIME :: NEXT I

2410 SUBEND

2420 SUB ENTER

2439 DISPLAY AT(23,2):"PRESS <ENTER> TO CONTINUE"

2440 CALL KEY(@,K,S):: IF S<=0 THEN 2448

2450 IF K<>13 THEN 24492

2460 SUBEND

247@ SUB PARSEANS(ANS$,ERR)

2480 WD$="" :: WRDS=0

2498 FOR I=1 TO LEN(ANSS$)

2500 IF ASC(SEG$(ANSS$,I,1))=32 AND WD$="" THEN 2540

2510 IF SEG$(ANS$,I,1)=" " AND SEG$(ANSS,I+1,1)=" "
THEN 2540

2520 IF ASC(SEG$(ANSS$,I,1))=32 OR I=LEN(ANSS)THEN
WRDS=WRDS+1 :: IF WRDS>2 THEN ERR=-1 :: GOTO 2628

2530 WD$=WD$&SEGS (ANSS$,I,1)

2549 NEXT I

2550 T$="" :: FOR J=1 TO LEN(WDS):: A=ASC

92

(SEG$ (wWD$,J,1))

25608 IF A>96 AND A>123 THEN A=A-32

2570 T$=T$&CHRS$(A):: NEXT J

2580 FOR I=1 TO LEN(T$):: IF ASC(SEG$(T$,I,1))=32 AND
I<>1 THEN 2600

2590 NEXT I :: GOTO 2620

2600 AS=SEGS$(T$,1,1):: IF (A$="A " OR A$="THE " OR
AS="AN ")AND I<>LEN(T$)THEN T$=SEGS$(T$,I+1,LEN(TS)
I)

2610 ANS$=TS

2620 SUBEND

2630 SUB ERASEQUEST

2640 DISPLAY AT(7,2)SIZE(26):: DISPLAY AT(9,2)SIZE(26)

2650 DISPLAY AT(11,2)SIZE(26)

2668 SUBEND

2678 SUB ERASEANS

2680 DISPLAY AT(17,2)SIZE(26)

2690 SUBEND

2708 SUB FULL

2710 CALL CLEAR :: CALL BEEP :: CALL BEEP

2720 DISPLAY AT(12,2):"DISKETTE IS FULLII" :: CALL
ENTER

2730 SUBEND

2740 SUB ADDCMDS

275@ DISPLAY AT(22,1)SIZE(28)

2768 D1SPLAY AT(23,1)SIZE(28):"C/S-SAVE, C/R-REDO, C/X
EXIT"

2770 DISPLAY AT(24,1)SIZE(28)

2788 SUBEND

279¢ SUB PRRNT

2808 DISPLAY AT(22,1)SIZE(28)

2810 DISPLAY AT(23,1):" PRESS <ENTER> WHEN DONE!"

2820 DISPLAY AT(24,1)SIZE(28)

2830 CALL BEEP

2840 SUBEND

2850 SUB ERRMSG

2860 DISPLAY AT(20,7)BEEP:"RE-ENTER ANSWER" :: CALL
DELAY (400)

2870 DISPLAY AT(20,7)SIZE(17):: DISPLAY AT
(17,2)SIZE(26)

2880 SUBEND

2899 SUB EDITCMDS

2006 DISPLAY AT(22,2):"C/R-REDO, C/N-NEXT, C/P-PREVC/D
DEL, C/L-LIST, C/X-EXIT"

2910 SUBEND

292@ SUB NUMDISP(ARRCTR)

293¢ DISPLAY AT(5,11)SIZE(4):ARRCTR :: DISPLAY AT
(15,22)SIZE(4) :ARRCTR

294@ SUBEND

2958 SUB WRAP(Q$,BLKS)

2960 WL=0

2970 WL=WL+l :: IF WL>2 THEN 3030

2980 IF ASC(SEG$(Q$,WL*26,1))=32 THEN 2970

2990 ST=WL*26-~1 :: EN=(WL-1)*26+1 :: FOR I=ST TO EN
STEP -1 :: IF ASC(SEG$(Q$,I1,1))=32 THEN 3010

3900 NEXT I :: GOTO 2970

93

3010 T$=SEG$(QS$,I+1,WL*26-1):: T2$=SEGS$ (SEGS$ (SEGS
(Q$,1,I)&BLKS,1,WL*26)&T$&SEGS (Q$,WL*26+1,
(WL+1)*26),1,78)

3020 Q$=T2$:: GOTO 2978

3030 DISPLAY AT(7,2):SEG$(Q$,1,26):: DISPLAY AT
(92,2) 3SEG$(Q$:27126)

3049 DISPLAY AT(11,2):SEG$(QS$,53,26)

3058 SUBEND

Variable Listing — Main Program

A$

ANS$

ARRNUM

ARRPOS

BLK$

BOTH

BRN

CHNGS

DE

ERN

Temporarily holds the answer before pack-
ing and concatenating with the question.

Holds the answer. Maximum length is 26
characters.

Holds the total number of questions that
are on the disk as well as the next record
number to place the question and answer.

Holds the current record pointer for the
disk. Points to the record to load into
memory. Used in Display/Edit Menu.

Blank string the size of the maximum size
field (78). Used for packing the question
and answer to their maximum length.

Boolean flag set to indicate if the user
wants to REDO both the question and the
answer. If true, the user wants to edit both
parts of the record.

Beginning record number to print to the
printer.

Boolean flag. Indicates if any changes have
been made to the existing file in memory.

Flag set to indicate whether the program
execution came from the Display/Edit
menu. If true, then it did. Make sure you
return to Display/Edit menu.

Ending record number to print to the
printer.

94

ERR

EX
FALSE

FLAG

NUMQ
OPNF

Qs

QA%

SL

SV

TEM$

Flag used to indicate if an error occurred
within a procedure. This type of an error is
not a system error but a user error (invalid
response or illegal characters, etc.).

Boolean flag. Indicates whether or not to
allow the user to use the C/X key.

Boolean flag set to 0. Indicates a false
value.

Flag set to indicate if one of the command
keys (C/S, C/X, etc.) has been pressed.
Returns a 1 if C/R pressed, a 2 if C/S is
pressed, and a 3 if C/X has been pressed.

Looping variable for FOR...NEXT state-
ments.

Used in the CALL KEY routine to hold the
ASCII value of the key that is pressed.

Number of questions stored on disk.

Open flag indicates if the file is in open
mode or if it is closed.

Holds the question. Maximum length is 78
characters.

Holds the questions and answers in a con-
catenated string. Total string length is 104
characters, 78 for the question and 26 for
the answer.

Used in the CALL KEY routine to hold the
status of the keyboard.

Holds the selection number the user
chose from the Main Menu.

Boolean flag. Indicates whether or not to
allow the user to press C/S while typing in
the question or answer.

Holds the temporary string that is brought
into memory for listing to the printer.

95

TOT

TRUE

TT$

Temporarily holds the total number of
questions and answers that are on the
disk.

Boolean flag indicates that the result is
indeed true. Usually a — 1, but the TI-99/4A
accepts any number other than 0 to be
true.

Holds the title string to be printed at the
top of each screen.

Variable Listing for SUBROUTINES
SUB SCRFORM(NUMREC, TT$)

NUMREC

TT$

Record number to print. Same as the ques-
tion number. Shows what question the
user is currently entering.

Same purpose, as TT$ is in the MAIN PRO-
GRAM.

SUB GETCHAR(STROW,STCOL,NROWS,ANS$,FLG,SV,EX)

STROW

STCOL

NROWS

ANS$

FLG

SV

EX

Starting row location to place the cursor
and where to start printing characters as
they are typed.

Starting column location for placing the
cursor and displaying the characters.

The number of rows the cursor is allowed
to travel. For the question, NROWS is set
to 3; for the answer, it is set to 1.

Holds the answer or the question as the
user types in the characters.

Flag returns a 1,2, or 3 depending on
which, if any, of the three command keys
(C/S, CIR, C/X) was pressed.

Tells subroutine whether or not to allow
the user to press C/S as a valid key.

Tells subroutine whether or not to accept
C/X as a valid input.

96

ROW Is used for keeping the cursor on the same
line until it reaches the end of the line,
then move it down to the next line.

CcoL Used for keeping the cursor as well as the
characters placed one in front of the other.

NR Counter to keep track of how many rows
the cursor has traveled compared to how
many it is allowed to move.

K&S Same purpose as in the MAIN PROGRAM.
SUB DELAY(TIME)
TIME Factor for how long the FOR...NEXT loop

should go for a delaying time period.
I Same purpose as in the MAIN PROGRAM.

SUB ENTER
K&S Same purpose as in the MAIN PROGRAM.
SUB PARSEANS(ANS$,ERR)

ANS$ Holds the answer that you want parsed.
Parses out the words THE, A, and AN from
the answer. Returns the correct answer in
this variable.

ERR Is set if the answer contains more than two
words.

WD$ Temporarily holds the new answer after
parsing.

WRDS Counter used to count how many words
are in your answer.

1&] Looping variables.

TS Temporarily holds the answer after it is
converted to all uppercase letters.

A Holds the ASCII value of each character in
the answer while converting the character
to uppercase.

A% Holds the first word of the answer to see if

it matches A, AN, or THE.
97

SUB NUMDISP(ARRCTR)

ARRCTR

The question number that is displayed on the screen. Indicates
the current question.

SUB WRAP(Q$,BLK$)

Q$

BLK$
WL

ST

EN

T$

T2$

Holds the question that is to be wrapped
around the screen.

Same purpose as in the MAIN PROGRAM.

Indicates Which Line we are currently cal-
culating for size.

Starting character position within the
string Q$.

Ending position within the Question
string.

Same as in MAIN PROGRAM.

Temporarily holds the new reformatted
question (1st part).

Temporarily holds the rest of the string in
its newly reformatted state.

98

Appendix D
The Diskette Game

20 REM TRIVIA GAME - DISKETTE VERSION

30 REM

40 CALL INIT :: CALL LOAD(-31806,16)

5@ CALL CLEAR :: CALL SCREEN(4):: OPTION BASE 1 :: D1M
QAS$(75),RQN(75),N(75),ND(9),NT(5)

60 BLKS=RPTS$(" ",26):: FALSE=@ :: TRUE=NOT FALSE

7¢ CALL CHAR(128,"FF0Q0000000008800"):: CALL
CHAR(129, "0@@807E7E7E7EQG000")

80 CALL CHAR(136,"FFFFFFFFFFFFFFFF"):: CALL

COLOR(14,13,4)
90 GOTO 478
100 REM

116 REM DISPLAYS STATUS OF CURRENT PLAYER

120 REM

130 DISPLAY AT(19,2):"PLAYER#";PLYR :: DISPLAY AT
(19,15) : "NAME: ";SEG$ (PN$ (PLYR),1,6)

140 DISPLAY AT(21,2):"SCORE:" ;SC(PLYR) : : DISPLAY AT
(21,15):"NC/NQ:":NC(PLYR)7"/“:NQ(PLYR)

156 RETURN

160 REM

178 REM DISPLAY STATUS OF ALL PLAYER AT THE END OF
THE GAME

180 REM

190 CALL SOUND(300,-1,8):: CALL SOUND(3008,-1,08)::
DISPLAY AT(1,10)ERASE ALL:"FINAL STATS"

200 DISPLAY AT(5,2):"NAME SCORE NC/NQ" s
CALL HCHAR(6,4,128,29)

213 IF NP=1 THEN DISPLAY AT(8,2):PN$(1):: DISPLAY AT
(8,14):SC(1):: DISPLAY AT(8,22):NC(1);"/":NQ(1)::
GOTO 319

220 FOR I=1 TO NP :: PN(I)=I :: NEXT I :: FOR J=1 TO
NP-1 :: J1=J

239 FOR K=J+1 TO NP :: IF SC(J1)<SC(K)THEN J1=K

248 NEXT K :: IF J1<>J THEN T=SC(J):: sC(J)=sC(Jl)::
SC(J1)=T :: T=PN(J):: PN(J)=PN(J1):: PN(J1)=T

250 NEXT J

260 FOR I=1 TO NP :: DISPLAY AT(6+1,2):PNS(PN(I))::
DISPLAY AT(6+I,14):SC(I)

270 DISPLAY AT(6+I,22):NC(PN(I));"/";NQ(PN(I)):: NEXT
1

289 REM

290 REM PRINT FINAL STATS?

303 REM

31@ DISPLAY AT(22,2)SIZE(28)BEEP:"PRINT FINAL STATS?
(Y/N)" :: YFLG=FALSE :: CALL GETYN(YFLG):: IF NOT
YFLG THEN 400

99

320
339
340
350

360

370
380
390
400
410
420
430
440
450
460
470
480

490
500

510
520
530

540

5508
560
570

580

590
6090
610
620

DISPLAY AT(22,1)SIZE(28):" PRINTING STATS..."
ON ERROR 17389 ’
OPEN #2:"RS232.BA=9690.DA=8"

PRINT #2:" ** FINAL STATS **" :: PRINT #2 ::
PRINT #2

PRINT #2:"NAME SCORE NC/NQ" ::
PRINT #2:"==== - "oss
PRINT #2

IF NP=1 THEN PRINT #2:PN$(1l);" s
sc(1i);" ";NC(1);"/":NQ(1l):: GOTO 398

FOR I=1 TO NP :: PRINT #2:PNS$(PN(I));" "
;8C(1);:" “";NC(PN(I));"/";NQ(PN(I)):: NEXT I
CLOSE #2

IF QUIT THEN CALL DELAY(80@):: GOTO 430

DISPLAY AT(22,2)BEEP:"ANOTHER GAME? (Y/N)" ::
YFLG=FALSE :: CALL GETYN(YFLG)

IF YFLG THEN DISPLAY AT(10,2)ERASE ALL:"ONE MOMENT
PLEASE..." :: RUN 20

DISPLAY AT(10,2)ERASE ALL:"HAVE A NICE DAY!" ::
END

REM

REM STARTS GAME

REM

DISPLAY AT(6,4)BEEP:"WELCOME TO THE TI-99/4A" ::
DISPLAY AT(10,6):"** TRIVIA GAME **"

DISPLAY AT(22,2):"NEED INSTRUCTIONS? (Y/N)" ::
YFLG=FALSE :: CALL GETYN(YFLG)

IF NOT YFLG THEN 680

DISPLAY AT(1,2)ERASE ALL BEEP:" ** INSTRUCTIONS
** PG 1"

DISPLAY AT(3,2):" THE OBJECT OF THE GAME IS" ::
DISPLAY AT(4,2):"TO GAIN AS MANY POINTS AS"
DISPLAY AT(5,2):"POSSIBLE BY ANSWERING" :: DISPLAY
AT(6,2):"RANDOM TRIVIA QUESTIONS."

DISPLAY AT(7,2):"EACH QUESTION IS WORTH A" ::
DISPLAY AT(8,2):"STARTING VALUE OF 25"

DISPLAY AT(9,2):"POINTS." :: DISPLAY AT(11,2):"
THE FASTER THE PLAYER" :: DISPLAY AT (12,2)
:"ANSWERS THE QUESTION, THE"

DISPLAY AT(13,2):"MORE POINTS THEY CAN" :: DISPLAY
AT(14,2):"OBTAIN. AS TIME GOES BY,"

DISPLAY AT(15,2):"THE POINT VALUE DECREASES." ::
DISPLAY AT(17,2):"* ALL ANSWERS MUST MATCH"
DISPLAY AT(18,2):"EXACTLY, IN ORDER TO" :: DISPLAY
AT(19,2):"OBTAIN ANY POINTS!" :: CALL ENTER
DISPLAY AT(1,2)ERASE ALL BEEP:" ** INSTRUCTIONS
** PG 2" :: DISPLAY AT(3,2):" IF THE PLAYER

MISSES THE"

DISPLAY AT(4,2):"ANSWER, THE NEXT PLAYER IN" ::
DISPLAY AT(5,2):"LINE GETS A CHANCE TO"

DISPLAY AT(6,2):"ANSWER THE QUESTION WITH" ::
DISPLAY AT(7,2):"THE POINT VALUE STARTING AT"
DISPLAY AT(8,2):"12. ONCE ALL THE PLAYERS" ::
DISPLAY AT(9,2):"HAVE HAD A CHANCE TO ANSWER"
DISPLAY AT(19,2):"THE QUESTION, THE CORRECT" ::
DISPLAY AT(11,2):"ANSWER IS THEN DISPLAYED."

100

630
640

650
660
670
680

690
700
710
720
730
749
750

769
779

780
790
890
810
820
830
840
8508
860
878

889
890

900
910
920

930
940

950

960
970

980
990

DISPLAY AT(13,2):" THE GAME CAN BE PLAYED BY" ::
DISPLAY AT(14,2):"1-4 PLAYERS."

DISPLAY AT(18,2):" GOOD LUCK!...HAVE FUNI" ::
CALL ENTER

REM

REM TELLS USER TO INSERT TRIVIA DISKETTE

REM

DISPLAY AT(4,2)ERASE ALL BEEP:"PLEASE INSERT THE
TRIVIA" :: DISPLAY AT(6,2):"DB DISKETTE INTO YOUR"
DISPLAY AT(8,2):"DISK DRIVE." :: CALL ENTER

ON ERROR 1658

OPEN #1:"DSK1.TRIVIA", INTERNAL, RELATIVE,FIXED 128
INPUT #1,REC @:NUMQ

IF NUMQ>75 THEN 750

FOR I=1] TO NUMQ :: RQON(I)=I :: NEXT I :: GOTO 949
DISPLAY AT(8,2)ERASE ALL BEEP:"PLEASE WAIT...I'M
WORKING"

RANDOMIZE :: FOR I=1 TO 75

WN=INT(RND*NUMQ)+1 :: ERR=FALSE :: CALL
CKNUM(WN, RQN() ,ERR,75):: IF ERR THEN 778 ELSE
RON(I)=WN

NEXT I

REM

REM SORT NUMBERS

REM

P=1 :: Q=75 :: TO=0

IF P>=Q THEN 920

V=RQN(P):: I=P :: J=Q+l
J=J-1 :: IF RQN(J)>V THEN 850
I=I+1 :: IF RQN(I)<V AND I<75 THEN 8649

IF J>I THEN T=RQN(I):: RQN(I)=RQN(J):: RQN(J)=T ::
GOTO 850

RON(P)=RQN(J):: RQN(J)=V

IF (J-P)<(Q-J)THEN N(T@+1)=J+1 :: N(T@+2)=Q ::
Q=J-1 :: GOTO 918

N(T@+1)=P :: N(TO+2)=J-1 :: P=J+1

T@=TP+2 :: GOTO 830

IF T@<>@ THEN Q=N(T@):: P=N(T@-1):: TO=T@-2 ::
GOTO 838

FOR I=1 TO 75 :: N(I)=0 :: NEXT I

DISPLAY AT(2,2)ERASE ALL BEEP:" PLEASE LEAVE THE
DISKETTE" :: DISPLAY AT(4,2):"IN YOUR DISK DRIVE."
DISPLAY AT(6,2):"I WILL NOW LOAD THE" :: DISPLAY
AT(8,2) :"QUESTIONS FROM YOUR TRIVIA"

DISPLAY AT(10,2):"DISKETTE." :: CALL ENTER
DISPLAY AT(10,4)ERASE ALL BEEP:"LOADING
QUESTIONS..."

REM

REM LOADS RECORDS

1000 REM

1919 ON ERROR 1650

1920 IF NUMQ>75 THEN NUMQ=75

1230 FOR I=1 TO NUMQ :: INPUT #1,REC RQON(I):QA$(I)::

NEXT I :: CLOSE #1

1649 DISPLAY AT(6,2)ERASE ALL BEEP:"PLEASE WAIT..." ::

DISPLAY AT(16@,2):"SCRAMBLING QUESTIONS"

101

1050 RANDOMIZE

1060 NUMDBL=INT(NUMQ*.11)+l :: NUMTPL=INT(NUMQ*.04)+1

1078 FOR I=1 TO NUMQ

1980 WN=INT(RND*NUMQ)+l :: ERR=FALSE :: CALL
CKNUM(WN, N(), ERR, NUMQ)

19090 IF ERR THEN 1080 ELSE N(I)=WN

1108 NEXT I :: FOR I=1 TO NUMDBL

1110 QN=INT(RND*NUMQ)+l1 :: ERR=FALSE :: CALL
CKNUM(QN,ND(),ERR,9)

1120 IF ERR THEN 1110 ELSE ND(I)=QN

1139 NEXT I :: FOR I=1 TO NUMTPL

1140 QN=INT(RND*NUMQ)+l :: ERR=FALSE :: CALL
CKNUM(QN,NT(),ERR,4):: IF ERR THEN 1140

11580 CALL CKNUM(QN,ND(),ERR,9):: IF ERR THEN 1140

1160 NT(I)=QN :: NEXT I

1170 DISPLAY AT(10,2)ERASE ALL BEEP:"NUMBER OF PLAYERS
(1_4)n

1180 CALL KEY(@,K,S):: IF S<=@ THEN 1180

1190 CALL HCHAR(1#,28,K):: IF K<49 OR K>52 THEN CALL
BEEP :: CALL HCHAR(10,28,32):: GOTO 1180

1200 NP=K-48 :: FOR I=1 TO NP :: DISPLAY AT(1@,2)ERASE
ALL:"PLAYER#";I;"NAME:"

1210 ACCEPT AT(1@,18)VALIDATE(UALPHA)BEEP
SIZE(11):PN$(I):: IF PN$(I)="" THEN 1218

1220 PN$(I)=SEG$(PN$(I)&BLKS,1,1d)

1239 NEXT I

1248 REM

1250 REM STARTS GAME
1260 REM

1279 DISPLAY AT(1,5)ERASE ALL BEEP:"** TRIVIA GAME
**" .. CALL HCHAR(2,3,136,29)

1280 CALL HCHAR(18,3,136,29):: CALL
VCHAR(2,3,136,16) : :CALL VCHAR(2,31,136,16):: CALL
VCHAR(18,3,136,6)

1299 CALL VCHAR(18,31,136,6):: CALL HCHAR(24,3,136,29)

1308 DISPLAY AT(17,6)SIZE(20):"(USE ONLY 2 WORDS)"::
DISPLAY AT(5,2):"QUESTION#"

1310 DISPLAY AT(14,2):"ANSWER:" :: CALL
HCHAR(16,4,128,26)

1320 DISPLAY AT(23,6):"CTRL-Q TO QUIT" :: DBL=FALSE ::
TPL=FALSE

1330 PLYR=1 :: ARRLOC=1 :: FOR I=1 TO NP :: NQ(I)=8 ::
NC(I)=0@ :: SC(I)=0 :: NEXT I

1349 TIM=@ :: CALL TIMER(TIM):: GOSUB 138 :: DISPLAY
AT(5,13)SIZE(2) :ARRLOC

1358 DISPLAY AT(7,2):SEGS$(QAS$(N(ARRLOC)),1,26)::
DISPLAY AT(9,2):SEGS$(QAS$(N(ARRLOC)),27,26)

1360 DISPLAY AT(11,2):SEG$(QA$(N(ARRLOC)),53,26)::
STPLYR=PLYR

1378 FOR I=1 TO NUMDBL :: IF ND(I)=N(ARRLOC)THEN
DBL=TRUE :: GOTO 1480

1380 NEXT I :: DBL=FALSE :: FOR I=1 TO NUMTPL :: IF
NT(I)=N(ARRLOC)THEN TPL=TRUE:: GOTO 1400

1390 NEXT I :: TPL=FALSE

1490 DISPLAY AT(15,2)SIZE(26):: DISPLAY AT
(12,9)SIZE(15)

102

1410 IF DBL THEN CALL BEEP :

(12,10) : "DOUBLE VALUE" CALL BEEP

1420 IF TPL THEN CALL BEEP DISPLAY AT
(12,18) :"TRIPLE VALUE" :: CALL BEEP

1430 TU=FALSE :: ANS$="" :: QUIT=FALSE :: CALL
GETANS (ANS$,15,2,26,QUIT,TIM, TU)

1440 POINTS=25-TIM :: IF QUIT THEN 1609

1450 IF TU THEN 1490

1460 IF DBL THEN POINTS=POINTS*2

1479 IF TPL THEN POINTS=POINTS*3

1480 CALL PARSEANS(ANS$):: ANS$=SEGS (ANS$&BLK$,1,26)::
CAS$S=SEGS$ (QAS$ (N(ARRLOC)),79,26):: CALL CONVERTUPPER
(CA$):: IF CA$=ANS§ THEN 1540

1499 CALL SOUND(788,-3,0):: CALL DELAY(200):: NQ(PLYR)
=NQ(PLYR)+1

1500 PLYR=PLYR+1 :: IF PLYR>NP THEN PLYR=1l

1518 IF PLYR<>STPLYR THEN TIM=13 :: CALL TIMER(TIM)::
GOSUB 130 :: GOTO 1400

1520 DISPLAY AT(14,2)BEEP:"THE CORRECT ANSWER IS:" ::
DISPLAY AT(15,2):SEG$(QA$ (N(ARRLOC)),79,26)

1530 CALL DELAY(590):: DISPLAY AT
(14,2)SIZE(26) : "ANSWER:" :: DISPLAY AT(15,2)
SIZE(26):: GOTO 1550

1548 CALL SOUND(76@8,-1,8):: SC(PLYR)=SC(PLYR)+POINTS
: :NC(PLYR)=NC(PLYR)+1 :: NQ(PLYR)=NQ(PLYR)+1l
:: GOSUB 130 :: CALL DELAY(300)

1558 ARRLOC=ARRLOC+l :: IF ARRLOC>NUMQ THEN CALL
DELAY(200):: GOTO 19¢ ELSE PLYR=STPLYR+l :: IF
PLYR>NP THEN PLYR=1

1560 DBL=FALSE :: TPL=FALSE :: GOTO 1344

1570 REM

1588 REM QUITS GAME EARLY

1590 REM

1600 DISPLAY AT(23,6)SIZE(20)BEEP:"ARE YOU SURE?
(Y/N)":: YFLG=FALSE :: CALL GETYN(YFLG)

161@¢ IF YFLG THEN 190 ELSE DISPLAY AT
(23,6)SIZE(20):"CTRL-Q TO QUIT" :: GOTO 1430

1620 REM

1638 REM ERROR ROUTINE

1648 REM

1650 DISPLAY AT(1,5)ERASE ALL BEEP:"** FILE ERROR
*%".. DISPLAY AT(5,2):" 1 HAVE ENCOUNTERED AN"

1668 DISPLAY AT(7,2):"ERROR IN LOADING FROM THE" ::
DISPLAY AT(9,2):"DISKETTE."

1678 DISPLAY AT(14,2):" PLEASE RE-RUN THE PROGRAM." ::
DISPLAY AT(22,2):" PRESS <ENTER> TO EXIT"

1680 CALL KEY(9,K,S):: IF S<=g THEN 1680

1698 IF K<>13 THEN 1680 ELSE CALL CLEAR :: END

1708 REM

1719 REM ERROR ROUTINE FOR PRINTING FINAL STATS

1728 REM

1730 DISPLAY AT(22,1)SIZE(28)BEEP:"COULDN'T PRINT
STATSI" :: CALL DELAY(300)

1740 RETURN 318

1750 SUB CONVERTUPPER(WDS$)

1768 T$="" :: FOR J=1 TO LEN(WD$):: A=ASC (SEGS$ (WDS$,

DISPLAY AT

> 0 o0 *°

103

J,1)):: IF A>96 AND A<123 THEN A=A-32

1770 T$=T$&CHR$(A):: NEXT J :: WDS=T$

178¢ SUBEND

1798 SUB GETANS(ANSS$,STROW, STCOL,LN,QUIT, TIMR, TU)

1800 TT=0

181@ ROW=STROW :: COL=STCOL :: ANSS$=""

1820 CALL HCHAR(ROW,COL+2,129):: CALL KEY(5,K,S)

1838 IF S=0 AND TT>=15 THEN TT=0 :: TIMR=TIMR+1l ::
CALL TIMER(TIMR):: IF TIMR>=25 THEN TU=-1 :: GOTO
2060

1840 IF S=@ THEN TT=TT+l :: GOTO 1820

1850 IF K=145 THEN QUIT=-1 :: GOTO 20830

1860 IF (K<>13)AND(K<>8)AND((K<32)OR(K>126))THEN CALL
BEEP :: GOTO 1820

1870 TT=TT+1 :: IF TT>=15 THEN TT=@ :: TIMR=TIMR+1l ::
CALL TIMER(TIMR):: IF TIMR>=25 THEN TU=-1 :: GOTO
2060

1880 IF K=13 THEN 2018 ELSE IF K=8 THEN 1920

1890 ANS$=ANS$&CHRS (K)

1900 DISPLAY AT(ROW,COL):CHRS$(K):: COL=COL+1

1918 IF COL<STCOL+LN THEN 182@ ELSE CALL BEEP :: GOTO
1940

1920 COL=COL-1 :: IF (COL<=STCOL)THEN CALL HCHAR
(ROW,COL+3,32):: CALL BEEP :: GOTO 1810

1930 ANS$=SEGS$ (ANSS$,1,LEN(ANSS)-1):: CALL HCHAR
(ROW,COL+3,32):: GOTO 1820

1948 CALL HCHAR(ROW,COL+2,129):: CALL KEY(@,K,S)

1950 IF S<=@ THEN TT=TT+1l

1960 IF TT>=15 THEN TT=0 :: TIMR=TIMR+l1 :: CALL TIMER
(TIMR):: IF TIMR>=25 THEN TU=-1 :: GOTO 2060

1978 IF S<=@ THEN TT=TT+l1 :: GOTO 1940

1980 IF K=145 THEN QUIT=-1 :: GOTO 20830

1990 IF (K<>13)AND(K<>8)THEN CALL BEEP :: GOTO 19480

2000 IF K=13 THEN 2010 ELSE 1920

2010 1IF ANSS$="" THEN CALL BEEP :: GOTO 1828

2020 CALL HCHAR(ROW,COL+2,32)

2030 SUBEND

2040 SUB BEEP

2050 CALL SOUND(100,523,8)

2060 SUBEND

2070 SUB PARSEANS(ANSS)

2080 WD$="" :: FOR I=1 TO LEN(ANSS$)

2090 IF ASC(SEG$(ANS$,I,1))=32 AND WD$="" THEN 2120

2108 IF SEGS$(ANSS$,I,1)=" " AND SEGS$(ANSS$,I+1,1)=" "
THEN 2120

2110 WD$=WDS&SEGS (ANSS,I,1)

2120 NEXT I :: CALL CONVERTUPPER(WDS)

2138 FOR I=1 TO LEN(WD$):: IF ASC(SEGS(WDS$,I,1))=32
AND I<>1 THEN 21580

2140 NEXT I :: GOTO 2170

2150 A$=SEG$(WDS$,1,I):: IF (AS="A " OR A$="THE " OR
A$="AN ")AND I<>LEN(WD$)THEN WDS$=SEGS(WD$,I+1,
LEN(WDS)-1I)

2160 ANS$=WDS$

2170 SUBEND

2189 SUB TIMER(SEC)

104

2190 DISPLAY AT(3,23)SIZE(4):25-SEC

22@0 SUBEND

2210 SUB GETYN(YFLG)

2220 CALL KEY(@,K,S):: IF S<=@ THEN 2220

2238 IF K<>78 AND K<>110 AND K<>89 AND K<>121 THEN
2220

2240 IF K=78 OR K=110 THEN YFLG=@ ELSE YFLG=-1

2250 SUBEND

2260 SUB ENTER

2270 DISPLAY AT(22,1)SIZE(28):" PRESS <ENTER> TO
CONTINUE"

2280 CALL KEY(9,K,S):: IF S<=@ THEN 2280 ELSE IF K<>13
THEN 2280

2290 SUBEND

2300 SUB CKNUM(NUMB, T(), ERR,MAXLIM)
2310 FOR I=1 TO MAXLIM :: IF NUMB=T(I)THEN ERR=-1

2320 NEXT I
2330 SUBEND

2340 SUB DELAY(DURAT)
2350 FOR K=1 TO DURAT :: NEXT K

2360 SUBEND

Variable Listing — Main Program

ANS$

ARRLOC

BLK$

CA$

DBL

ERR

FALSE

1 &)

Holds the answer that the player has typed
in. Maximum length is 26 characters.

Holds the array number of the question
that is displayed.

Blank string the size of the maximum size
field (26). Used for packing the answer to
its maximum length.

Holds the correct answer. Used for com-
paring the two answers for equality.

Boolean flag to indicate if the current
question is to be double value or not.
Used for printing the DOUBLE VALUE mes-
sage.

Flag used to indicate if an error occurred
within a procedure.

Boolean flag set to 0. Indicates a false
value.

Looping variable for FOR...NEXT state-
ments.

105

N(75)

NC(

ND(9)

NP

NQO

NT(5)

NUMDBL

NUMQ

NUMTPL

PLYR

PN$()

Used in the CALL KEY routine to hold the
ASCII value of the key that is pressed. K
also used for looping.

Holds the random generated sequence of
numbers in which to display the questions
in a random format.

Holds the player’s number of correct ques-
tions that (s)he answered.

Holds the random generated numbers that
are to be assigned DOUBLE point values.

The total number of players playing the
game, from one to four.

Holds the number of questions that each
player was asked.

Holds the random generated numbers that
are to be assigned TRIPLE point value.

Holds the number of DOUBLE point ques-
tions that this game is supposed to have.

Number of questions currently loaded into
memory from the disk file.

Holds how many questions are to be TRI-
PLE pointers.

Holds the current pointer for the lowest
partition using Quicksort routine.

Holds the current player number to dis-
play on the screen.

Holds the players’ names up to 10 charac-
ters long, but only six are displayed on the
game screen. The whole name is displayed
at the end of the game in the statistic
screen.

Holds the maximum array location to sort.

106

QA$(75)

QN

QuUIT

RQN(75)

SC()
STPLYR

TO
TIM

TPL

TRUE

TU

Holds the questions and answers in a con-
catenated string. Total string length is 104
characters, 78 for the question and 26 for
the answer.

Holds the random question number for
selecting the double and triple value ques-
tions without obtaining duplicate num-
bers.

Holds the boolean flag for quitting the
game early.

Holds the Random Question Numbers to
load in memory.

Used in the CALL KEY routine to hold the
status of the keyboard.

Holds the player’s score.

Holds the player number of who started
first. This keeps the players going in the
same order no matter who answers the
questions from a missed question.

Used for holding the number that needs
switching.

Holds the stack pointer for Quicksorting.

Holds the timer value. Starts at 0 and is
incremented until either the player
answers the questions or it reaches the
maximum point limit.

Holds the TRIPLE value flag set for printing
the TRIPLE VALUE message or not.

Boolean flag indicates that the result is
indeed true. Usuallya —1, but the TI-99/4A
accepts any number other than 0 to be
true.

Boolean flag set only if the timer runs out
of time. Indicates that Time is Up.

107

\%
WN

YFLG

Temporarily holds a number to sort on.

Holds a random number to select from the
file.

Boolean flag to indicate whether the user
responded with a YES or a NO.

Variable Listing for SUBROUTINES
SUB CONVERTUPPER(WDS$)

WD$

T$

J
A

The string that needs to be converted to
uppercase characters.

Temporarily holds the new characters as
they are converted.

Same purpose as in the MAIN PROGRAM.

Holds the ASCII value for one character at
a time.

SUB GETANS(ANS$,STROW,STCOL,LN,QUIT,TIMR,TU)

ANS$

STROW

STCOL

LN

QUIT

TIMR
TU

Holds the answer as the user types.

Starting row location to place the cursor
and where to start printing characters as
they are typed.

Starting column location for placing the
cursor and displaying the characters.

Holds the length of the answer. (26 is the
maximum amount.)

Is the quit flag. Gets set if the user presses
CTRL-Q.
Holds the timer value as it clicks away.

Flag that indicates if time ran out on the
player before (s)he could answer the ques-
tion.

Runs the timer from within the subroutine.

108

ROW

COoL

K&S

SUB DELAY(DURAT)

DURAT

K

SUB ENTER
K&S

Holds the starting row location for display-
ing the printed characters.

Holds the starting column number for dis-
playing the characters side by side as they
are typed.

Same purpose as in the MAIN PROGRAM.
Factor for how long the FOR...NEXT loop
should go for a delaying time period.

Looping variable.

Same purpose as in the MAIN PROGRAM.

SUB PARSEANS(ANS$)

ANS$

wWD$

WRDS

&)
A$

SUB GETYN(YFLG)
YFLG

K&S

SUB TIMER(SEC)
SEC

Holds the answer that you want parsed.
Parses out the words THE, A, and AN from
the answer. Returns the correct answer in
this variable.

Temporarily holds the new answer after
parsing.

Counter used to count how many words
are in your answer.

Looping variables.

Holds the first word of the answer to see if
it matches A, AN, or THE.

Holds a true value if the user presses a Y,
false if the user presses an N. Returns one
of the two above to the MAIN PROGRAM
for execution on the flag.

Same purpose as in the MAIN PROGRAM.

How many points to decrease the starting
value by.

109

SUB CKNUM(NUMB,T(),ERR,MAXLIM)

NUMB

T0

ERR

MAXLIM

Number to check for duplication in selec-
tion random numbers.

The array to compare the NUMB to, to see
if any duplication is found.

Set to true if the NUMB already exists in
the array T().

Maximum amount of numbers to check in
the array.

Looping variable.

110

Flowchart 1 — Cassette Data Base

q (foldout)

Flowchart 1 — Cassette Data Base

‘ START ,

Initialize
system variables
NUMQ =0
CHNG S = FALSE

1. Load
file

Invalid response

2. Create

1 file

Insert Cassette

4

Load File Aﬂnﬂ"% =

1. Add Questions
2. Display/Edit Questions
3. Change File
4. Exit Program

-

Invalid response

Flowchart 1 cont. — Cassette Data Base

q (foldout)

Flowchart 1 cont. — Cassette Data Base

(’)

A
ARRNUM =

] RETURN

Display
message

ARRNUM +1

If
ARRNUM
>30

Display blank
screen form for
ARRNUM

\

Input question (Q$)

|

Input answer (ANS §)

C/S-save
C/X-exit

C/ RJN Invalid response

QAS$ (ARRNUM) = Q3&ANS$

A
CHNGS = TRUE

C/8 C/X
A

ARRNUM =

ARRNUM -1

RETURN

Y

Flowchart 1 cont. — Cassette Data Base

q (foldout)

Flowchart 1 cont. — Cassette Data Base

I
ARRNUM
>0

Display question

and answer for
ARRPOS

Display
message

—D‘ RETURN)

C/R-redo
C/N-next
C/P-prev
C/D-del
C/X-exit

Invalid
response

I
ARRPOS
<= ARRNUM

If
ARRPOS
>=1

Display
message
Display message {
| ARRPOS =
ARRPOS = ARRPOS +1
ARRPOS -1

!

Y/N

C/R C/N C/P C/0 C/X
ARRPOS = ARRPOS = RETURN
ARRPOS +1 ARRPOS -1 Delete
this record

Delelerrecom
ARRPOS

1

Set ARRPOS

to next record

Flowchart 1 cont. — Cassette Data Base

q (foldout)

Flowchart 1 cont. — Cassette Data Base

Save
changes
Y/N

Clear
screen

Save
changes

END

Flowchart 1 cont. — Cassette Data Base

q (foldout)

Flowchart 1 cont. — Cassette Data Base

®

Q (question)

Set flag
BOTH = FALSE

B (both)

Wait
for command

A (answer)

Invalid response

X (exit)

Set flag
BOTH = TRUE

Erase
question

Input question

Is
BOTH = TRUE
?

L]

Erase
answer

! Input answer ;

‘ RETURN ’

Flowchart 2 — Cassette Game

q (foldout)

Flowchart 2 — Cassette Game

‘ START ’
®- -~

Initialize
variables

1

Display
introduction
screen

Input #
of cassette
files
(1-10

Valid

of files

specified
?

More
than 1 file
?

Display
message

Select random
question

Sort questions

Flowchart 2 cont. — Cassette Game

q (foldout)

Flowchart 2 cont. — Cassette Game

Display load
message

[

Load questions
and answers

\

Randomize

A

Select questions
to be worth
double and triple
value

Enter #
of players
(1-4)

Invalid response

Flowchart 2 cont. — Cassette Game

q (foldout)

Flowchart 2 cont. — Cassette Game

\

Enter player
#1's name

Valid name?

Increment
player counter
(CTH

Finished
inputting
players?

Display game
screen

" Display question

Input answer

|

Flowchart 2 cont. — Cassette Game

q (foldout)

Flowchart 2 cont. — Cassette Game

!

Compare
answer to
correct answer

Is
answer
correct?

Increment lc);??elg
player's points answer

Increment
question #

More Game over
questions?
Display final
stats

Flowchart 3 — Diskette Data Base

q (foldout)

10

Flowchart 3 — Diskette Data Base

‘ START)

\

Initialize
system variables

1. Load
file

2. Create

file

Invalid response

Load
record 0

Store
record 0
NUMQ

ARRNUM =
NUMQ

Display menu and \
get response

Valid
response?

1 2 38&4

Flowchart 3 cont. — Diskette Data Base

q (foldout)

11

Flowchart 3 cont. — Diskette Data Base

ARRNUM =
g ARRNUM + 1

Can another -
record be added? Display
(ARRNUM message
A
RETURN
Display blank
A screen form for

ARRNUM

Y

L Input question (Q3) |
]

Input answer (ANS$)

Wait for Invalid response

A command

C/S (save) C/X (exit) C/R (redo)
|]
QA$ = Q8 & ANS$ Decrement
. ARRNUM

Save to
disk RETURN

Flowchart 3 cont. — Diskette Data Base

q (foldout)

12

Flowchart 3 cont. — Diskette Data Base

Are
there any
records?

ARRPOS = | Orsplay
message

Y

Retrieve record (RETURN >

Display question
and answer

le

Wait Invalid command

for command

Valid

C/R (redo) C/N (next) C/P (previous) command C/L(st) C/D (delete) C/X (exit)
Increment Decrement cnter beginming ‘ RETURN »
ARRPOS ARRPOS record #

Delete
this
record?

Display Display Enter end Delete

message message record # record
Decrement Increment Adjust

ARRPOS ARRPOS ARRPOS

Print
requested
records.

L

Flowchart 3 cont. — Diskette Data Base

q (foldout)

13

Flowchart 3 cont. — Diskette Data Base

T

NUMQ =
ARRNUM

[

Store NUMQ
in record # 0

RETURN

Flowchart 3 cont. — Diskette Data Base

q (foldout)

14

Flowchart 3 cont. — Diskette Data Base

®©

Q (question)

Set flag
BOTH = FALSE

Wait
for command

B (both)

A (answer)

Invalid response

X (exit)

Set flag
BOTH = TRUE

Erase
question

Input question

Is
BOTH = TRUE
?

P

Erase
answer

! Input answer ;

‘ RETURN)

Flowchart 4 — Diskette Game

q (foldout)

15

Flowchart 4 — Diskette Game

START

Initialize
variables

Display introducton
screen

Need
Instructions?
Y/N

Display
instructions

A

Display message
to place disk
into disk drive

Get record #0

l

Flowchart 4 cont. — Diskette Game

q (foldout)

16

Flowchart 4 cont.

{

— Diskette Game

Display
“Loading"
message

!

Load questions
and answers

Select questions
to be worth
double & triple values

Enter #
of player's

Valid

of players

(14)
?

Enter
player's
name

Is
name valid
?

Increment
player counter

Was
that the
last player
?

Flowchart 4 cont. — Diskette Game

q (foldout)

17

Flowchart 4 cont. — Diskette Game

1

Display game
screen

/

Display
question

Is
answer

correct
?

Increment Display correct
player points answer

R

A

Increment
question

End
of N o
questions
?

Game over

Display final
stats

SAMS.

TI-99/4A
Trivia
Data Base

® Includes cassette and disk versions of two complete programs,
a data base and a trivia game

o Introduces TI-99/4A owners to data bases and their applications
by enabling users to understand how a simplified data base is
created and why it works

e Discusses user-friendly data entry, error checking and program
continuity

® Shows how to design individual file records

e Compares advantages and disadvantages of both cassette and
disk files

® Provides tips on making programs run faster and more efficiently

® Offers education and entertainment for TI-99/4A users of all ages

Machine Requirements:

® T1-99/4A Personal Computer
e Tl Extended BASIC

® Cassette Player

Howard W. Sams & Co., Inc.
4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

$8.95/22395 ISBN: 0-672-22395-3

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008

	back-cover

