

^j^g^

%^/

TABLE OF CONTENTS

ASSEMBLY LANGUAGE TUTORIAL Page

FORWARD. 1

PRE-LESSON 2

LESSON I 8

LESSON II 10

LESSON III 12

LESSON IV. 15

LESSON V. 18

LESSON VI 21

LESSON VII... 24

APPENDIX 1 HEX TO DECIMAL

APPENDIX 2

APPENDIX 3

APPENDIX 4

APPENDIX 5

TRUTH TABLE

INSTRUCTION TABLE

REFERANCE CARD

GLOSSARY

EVALUATION CARD

TV SCREEN

ASCII CODES

GAME LISTINGS

SUPPLEMENT FOR EDITOR/ASSEMBLER

This manual was created -for the So-fties by
Steve Barstad.

Additional Contributions: E.D.Barstad and

J.Shima.

Copyright (C) 1983 The Softies.

^

\^^/

FORWARD

TUTOR IS DESIGNED TO AID YOU IN UNDERSTANDING ASSEMBLY

LANGUAGE FOR THE TI99/4A. THE TOOLS NECESSARY TO INTERACT TUTOR

WITH YOUR TI99/4A ARE:

1. MINI-MEMORY MODULE (MINIMEM)

2. CASSETTE TAPE PLAYER TO LOAD PROGRAMS NEW/LINES.

3. SOME BLANK CASSETTE TAPES

TO MAXIMIZE LEARNING IT IS RECOMMENDED THAT YOU ALSO

PURCHASE THE EDTTOR/ASSEMBLER OWNER'S MANUAL. THIS IS AVAILABLE

FROM TEXAS INSTRUMENTS INCORPORATED, DALLAS, TEXAS OR THE

SOFTIES, 7300 GALLAGHER #229, EDINA, MINNESOTA.

TUTOR IS THE FIRST IN A SERIES OF HELPFUL STEP BY STEP

TEACHING AIDS FOR LEARNING ASSEMBLY LANGUAGE. TO GET THE MOST

OUT OF TUTOR, START WITH THE PRE-LESSON AND CONTINUE UNTIL ALL

THE LESSONS HAVE BEEN COMPLETED. MAKE SURE YOU FOLLOW ALL THE

THE DIRECTIONS AND PERFORM THE SIMPLE EXERCISES THAT ACCOMPANY

EACH LESSON. IF YOU ARE UNCERTAIN ABOUT SOMETHING GO BACK AND

RE-READ THAT SECTION.

WHEN YOU ARE FINISHED, YOU WILL HAVE TYPED IN A SIMPLE GAME

THAT RUNS IN ASSEMBLY LANGUAGE.

-1-

<w

PRE-LESSON

IMAGINE THAT YOU ARE A FOREIGN DIPLOMAT AND YOU HAVE AN

IMPORTANT MEETING WITH THE AMBASSADOR OF ANOTHL3 COUNTRY. IN

ORDER TO COMMUNICATE WITH THE AMBASSADOR YOU MUST SPEAK THROUGH

AN INTERPRETER. THIS CAN BE VERY VERY SLOW. THIS IS EXACTLY

WHAT HAPPENS WHEN WE USE BASIC. WHEN WE RUN A BASIC PROGRAM,

THE COMMANDS THAT WE WROTE ARK CONVERTED INTO MACHINE LANGUAGE

INSTRUCTIONS BY THE BASIC INTERPRETER. WHAT TUTOR WILL ATTEMPT

TO DO IS TO ELIMINATE THE MIDDLE MAN AND GIVE YOU A REMARKABLE

SPEED INCREASE. TUTOR WILL TRY TO TEACH YOU TO COMMUNICATE WITH

THE COMPUTER ON ITS OWN UlVEl.

YOUR TI UNDERSTANDS TWO NUMBER SYSTEMS IN THE MACHINE

LANGUAGE MODE, THEY ARE CALLED BINARY AND HEXADECIMAL. NEITHER

SYSTEM IS DIFFICULT TO LEARN ONCE YOU UNDERSTAND THE BASIC

PRINCIPLES. YOU DO NOT HAVE TO BE A MATHEMATICAL GENIUS TO USE

THEM. RELAX, TAKE A DEEP BREATH, AND READ ON.

LET'S BEGIN OUR DISCUSSION OF NUMBER SYSTEMS BY TAKING A

LOOK AT THE NUMBER SYSTEM WE USE EVERYDAY. FROM THERE, IT IS

EASY TO SEE THE SIMILARITIES BETWEEN THE SYSTEMS. THE NUMBER

SYSTEM WE COMMONLY USE IS CALLED THE DECIMAL OR BASE TEN SYSTEM.

IT COMES FROM THE LATIN ROOT DECIM MEANING TEN. WE DEVELOPED

THE SYSTEM BECAUSE WE WERE BLESSED WITH TEN FINGERS, WHO KNOWS

WHAT WOULD HAVE RESULTED IF WE WERE BLESSED WITH THIRTY-SEVEN

FINGERS.

THE DECIMAL SYSTEM IS SET UP ON A WORKING BASE OF TEN. THIS

NUMBER GIVES YOU TWO VERY IMPORTANT PIECES OF INFORMATION.

FIRST, IT TELLS YOU HOW MANY DIFFERENT SYMBOLS ARE AVAILABLE FOR

USE. (SINCE WE ARE DISCUSSING THE DECIMAL SYSTEM, WHERE THE

BASE IS TEN, WE USE THE TEN SYMBOLS 0,1,2,3,4,5,6,7,8,9.)

SECOND, THE BASE NUMBER TELLS US HOW TO ACTUALLY READ A NUMBER

WRITTEN IN THE DECIMAL SYSTEM.

-2-

EXAMPLE:

i LET'S LOOK AT THE NUMBER .1 8 3 9 , AND BREAK IT INTO ITS

COMPONENT PARTS.

J. _.8 ...A 2

1000 .100 10 1

THIS SAYS THAT THERE ARE:

9 ONES IN THE 1ST POSITION- 9

PLUS 3 * 101 IN THE 2ND POSITION- 30

PLUS 8 * 102 in THE 3RD POSITION- 800

PLUS 1 * 103 in the 4TH POSITION=iMfl

1839

OR (1 * 1000) 4 (8 * 100) ■♦ 13 * .10) + (9 * 1) - 1839

BOTH BINARY AND HEXADECIMAL ARE SET UP ON EXACTLY THE SAME

PRINCIPLES. THE MAIN DIFFERENCES ARE THE BASE NUMBER, THE

U^ AVAILABLE SYMBOLS AND THE' POSITIONAL VALUE OF THE SYMBOLS.
LET'S ATTACK BINARY FIRST.

BINARY COMES FROM THE l./TIN ROOT Bl MEANING TWO. IT HAS A

WORKING BASE OF TWO. WE KNOW FROM OUR PREVIOUS DISCUSSION OF

THE DECIMAL SYSTEM THAT BINARY ONLY GIVES US TWO WORKING

SYMBOLS, NAMELY 0 AND 1. THE PLACE VALUES IN BINARY INCREASE BY

POWERS OF TWO.

LET'S LOOK AT A BINARY TIMBER AND SEE IF WE CAN INTERPRET

IT.

1 1 ii. 1
8 4 2 1

\$Mffl$S

•3-

<w

THIS WOULD BE: 1*1=1
+ 0*2 = 0

+ 1*4 = 4

+ 1 * 8 =_£
13

OR (1 * 8) + (1 * 4) + (0 * 2) + (1 * 1) • 13. THEREFORE THE
DECIMAL EQUIVALENT OF THE BINARY NUMBER 1011 IS 13.

OKAY, SO ITS EASY TO INTERPRET A BINARY NUMBER INTO A
DECIMAL NUMBER, BUT HOW DO YOU GET FROM A DECIMAL NUMBER TO A
BINARY NUMBER. THE EASIEST WAY TO DO THIS IS TO PERFORM A
SERIES OF DIVISIONS. FIRST LET'S SET UP THE FIRST FOUR PLACES
IN THE BINARY SYSTEM.

~8 ~4 ~~2 ~1

1. CHOOSE A DECIMAL NUMBER BETWEEN 9
0 AND 15. WE'LL USE 9.

2. START WITH THE HIGHEST PLACE VALUE. 9/8 = 1 R 1
THAT VALUE IS 8. DIVIDE THE
NUMBER BY THIS VALUE GIVING "1"
AND A REMAINDER OF "1"

3. TAKE THE REMAINDER AND DIVIDE 1/4 = 0 R 1
BY THE NEXT HIGHEST PLACE VALUE.

4. CONTINUE ON DIVIDING BY EACH 1/2 = 0 R 1
i SUBSEQUENT PLACE VALUE UNTIL 1/1 = 1 R 0
W^ ALL PLACES ARE FILLED.

5. NOW WE PLACE THE NUMBERS IN
THEIR CORRECT POSITION AND 10 0 1
WE ARE FINISHED.

THIS MAY SEEM TEDIOUS SO HERE IS A BASIC PROGRAM:

10 INPUT A

20 IF A>15 THEN 10

30 IF A<0 THEN 110
40 FOR I = 3 TO 0 STEP -1

50 V = 2 * I
60 Al = INT(A / V)
70 PRINT Al;"
80 A = A - Al * V

90 NEXT I

100 PRINT

110 GOTO 10

120 STOP

>w

•4-

<w

\^p/

>^^—•

NOW WE ARE READY FOR HEXADECIMAL. HEXADECIMAL COMES FROM

THE GREEK WORD HEX MEANING SIX AND THE LATIN WORD DECIM MEANING

TEN. THE COMBINATION OF THE TWO MEANS SIXTEEN. HEXADECIMAL IS

A BASE SIXTEEN SYSTEM. THE PLACE VALUES IN HEXADECIMAL INCREASE

BY POWERS OF SIXTEEN. WE KNOW THAT THERE ARE LIXTEEN WORKING

SYMBOLS IN HEXADECIMAL BECAUSE THE BASE NUMBER TELLS US THIS.

HOWEVER, THEY DO NOT FOLLOW THE STANDARD SYMBOL PATTERN OF

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 INSTEAD THE WORKING

SYMBOLS OF HEXADECIMAL ARE 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. THE

LETTERS TAKE THE PLACE OF THE TWO DIGIT NUMBERS, AS SUCH A=10,

B=ll, C=12, D=13, E=14, F=15. OTHER THAN THE UNIQUE SYMBOL

PATTERN, HEXADECIMAL WORKS THE SAME AS BINARY AND DECIMAL. IN

ALL REALITY HEXADECIMAL IS A SHORTHAND VERSION OF BINARY. IT

SIMPLY CONDENSES FOUR BINARY PLACES INTO ONE HEXADECIMAL PLACE.

NOW LET'S TRY TO INTERPRET A HEXADECIMAL NUMBER. OUR NUMBER

WILL BE:

I _3_ _A £

4096 256 16 1

WE FIND THAT 14 * 160 = 14

10 * 161 = 160

3 * 162 = 768

1 * 163 = 4096

5038

OR (1 * 4096) + (3 * 256) + (10 * 16) + (14 * 1) - 5038

•5-

%^y

TO CHANGE A DECIMAL NUMBER TO HEXADECIMAL YOU MUST CONDUCT A

SERIES OF DIVISIONS.

1. SET UP FOUR HEX PLACES.

4096 256 16 1

2. CHOOSE A DECIMAL NUMBER BETWEEN

0 AND 65535. WE WILL USE 1389. 1389.

3. DIVIDE BY THE VALUE IN THE 1389/4096 = OR 1389

LEFTMOST PLACE

4. NOW DIVIDE BY THE NEXT 1389/256 = 5 R 109

HIGHEST HEX PLACE.

5. REPEAT THE PROCESS. 109/16 = 6 R 13

13/1 = D R 0

6. NOW PLACE THE SYMBOLS IN

THEIR CORRECT ORDER. >056D

THIS PROCESS IS TIME CONSUMING AND THE DIVISION CAN GET

MESSY, SO TO MAKE IT EASIER ON YOU TYPE IN THIS SIMPLE PROGRAM.

THIS PROGRAM WILL CHANGE DECIMAL NUMBERS BETWEEN 0 AND 255 INTO

HEXADECIMAL NUMBERS.

5 H$="0123456789ABCDEF"
10 INPUT A

20 IF A < 0 THEN 90
30 IF A > 255 THEN 10
40 Tl = INT(A/16)
50 T2 = A - (16 * Ti)
60 PRINT SEG$(H$,T1+1,1);
70 PRINT SEG$(H$,T2+1,1)
80 GOTO 10

90 STOP

ANOTHER WAY TO CONVERT BETWEEN SYSTEMS IS TO USE TABLES (SEE

APPENDIX ONE).

-6-

A FEW DEFINITIONS:

BIT IS AN ABREVIATION FOR BINARY DIGIT. A BIT CAN HAVE A VALUE

EITHER 1 OR 0.

A NIBBLE IS A HEXADECIMAL DIGIT. IT IS AN ABREVIATION FOR FOUR

BITS. A NIBBLE CAN HAVE A VALUE FROM >0 TO >F.

A BYTE IS TWO NIBBLES. >D4 IS A BYTE. THE LARGEST BYTE IS >FF.

A WORD IS TWO BYTES. IT IS ALSO FOUR NIBBLES, OR SIXTEEN BITS.

>8375 IS A WORD.

GET USED TO SEEING THE ">" IN FRONT OF NUMBERS. IT WILL

INDICATE THAT THE NUMBER IS A HEXADECIMAL NUMBER. IN THE

LESSONS THAT FOLLOW, YOU WILL BE SEEING IT OFTEN.

ONE MORE THING AND WE WILL BE READY TO GO. CAREFULLY READ

PAGES 4-6 OF THE LINE-BY-LINE ASSEMBLER MANUAL. FOLLOW THE

INSTRUCTIONS TO INITIALIZE AND LOAD "LINES/NEW" INTO THE MODULE

NOW WE ARE READY TO GO. TAKE A DEEP BREATH, HOLD ON TO YOUR

HAT, AND LETS BEGIN.

-7-

Nfaaaafej/'

LESSON I

WELCOME TO THE WONDERFUL WORLD OF TI99 MACHINE LANGUAGE. WE

HOPE THAT WHEN YOU ARE DONE WITH THIS TUTORIAL YOU WILL HAVE THE

NECESSARY VOCABULARY AND WORKING KNOWLEDGE TO BE ABLE TO WRITE

AND ENJOY MACHINE LANGUAGE.

THE TMS9900 IS A 16 BIT MACHINE. WHAT THIS MEANS IS THAT THE

LENGTH OF MOST OF IT'S INSTRUCTIONS ARE 16 BITS (ONE WORD) LONG,

IT TAKES 16 BITS TO UNIQUELY IDENTIFY ANY GIVEN MEMORY LOCATION,

AND THE REGISTERS ARE 16 BITS LONG.

ALL COMPUTERS HAVE WHAT ARE CALLED REGISTERS. EACH COMPUTER

USES AND IMPLEMENTS REGISTERS IN ITS OWN WAY. IN SOME MACHINES

REGISTERS ARE USED VERY LITTLE. IN THE TI , THEY ARE USED

ALOTlllll THEREFORE THE BEST PLACE TO START IS TO GIVE A QUICK

DISCUSSION OF THE TI REGISTER. TI REFERS TO ITS REGISTERS AS

WORKSPACE REGISTERS. THE REASON FOR THIS WILL BE EXPLAINED A

LITTLE LATER. THERE ARE 16 OF THESE REGISTERS, EACH 16 BITS

LONG. INTO ANY OF THESE REGISTERS CAN BE PUT 16 BITS OF

INFORMATION. THE INFORMATION COULD BE DATA OR IT COULD BE AN

ADDRESS. REGISTERS ARE LABELED R0,R1...R15. IF YOU WANT, YOU

CAN THINK OF THEM AS "BASIC VARIABLES. INFORMATION IS STORED

IN THEM FOR SAFE KEEPING, AND LATER USED IN A VARIETY OF WAYS.

ONE THING THAT A REGISTER IS GOOD FOR IS HOLDING A RETURN

ADDRESS FROM A SUBROUTINE CALL. WHEN THE TI DOES A "SIMPLE"

SUBROUTINE CALL, (BL: BRANCH & LINK) IT PUTS THE ADDRESS OF THE

NEXT INSTRUCTION INTO REGISTER Rll. WHEN THE SUBROUTINE IS

DONE, ALL THAT IS NECESSARY TO DO IS TO BRANCH TO THE ADDRESS IN

Rll. THE MACHINE LANGUAGE INSTRUCTION FOR THIS WOULD BE:

B *R11

THE STAR IN FRONT OF THE Rll TELLS THAT THE INFORMATION IN THE

REGISTER IS AN ADDRESS, NOT DATA OR A PROGRAM. THIS KIND OF

BRANCHING IS CALLED, INDIRECT. THE REASON IS THAT WE ARE NOT

BRANCHING DIRECTLY TO Rll BUT INSTEAD WE USE Rll TO TELL US

WHERE TO GO.

-8-

\^

SAMPLE PROGRAM:

JUST TO SHOW YOU THAT MACHINE LANGUAGE REALLY WORKS, WE WILL

WRITE THE SIMPLEST PROGRAM. GO TO THE MAIN MENU, TYPE:

2
ENTER

M7D00 ENTER

04 ENTER

5fi ENTER

E7D00 ENTER

TO GET TO EASY BUG

TO GET TO COMMAND LEVEL

GO TO MODIFY MODE STARTING AT >7D00

GIVE MEMORY LOCATION >7D00 THE VALUE >04

GIVE LOCATION >7D01 THE VALUE >5B

CANCEL MODIFY MODE

EXECUTE A MACHINE PROGRAM STARTING AT >7D00

IF YOU GOT ANOTHER QUESTION MARK, YOU DID EVERY THING RIGHT.

THE PROGRAM THAT WE JUST WROTE IS:

B *R11

WHEN WE TOLD EASY BUG TO EXECUTE OUR PROGRAM (E7D00), IT CAUSED

A BRANCH AND LINK (" BL @>7D00") TO OUR SUBROUTINE. ALL WE DID

WAS TO BRANCH BACK. NOW WE KNOW HOW TO EXECUTE A MACHINE

LANGUAGE PROGRAM AND RETURN BACK

WHEN WE ENTERED OUR PROGRAM, WE MODIFIED CENTRAL PROCESSING

UNIT (CPU) RAM. CPU RAM IS WHERE ALL MACHINE LANGUAGE PROGRAMS

ARE PUT.

AS LONG AS WE ARE IN EASY BUG, LETS TRY ONE MORE OF ITS

FEATURES. VIDEO DISPLAY PROCESSOR (VDP) RAM IS THE RAM THAT

CONTAINS THE VALUES OF WHAT IS DISPLAYED ON THE SCREEN. VDP RAM

LOCATION >0130 CORRESPONDS TO A SPOT IN THE MIDDLE OF THE SCREEN

ABOUT ONE THIRD OF THE WAY DOWN (SEE APPENDIX II). NOW THERE IS

A >20, THE HEX VALUE FOR A SPACE, AT THAT LOCATION. IN THE

EXAMPLE BELOW, WE CHANGE IT TO >41, THE CODE FOR AN "A". TYPE:

V0130 ENTER

41 ENTER

WHAT HAPPENS IF WE TYPE ANOTHER "Al ENTER"? (HINT: WE ARE

PUTTING IT INTO THE NEXT SCREEN LOCATION - BUT - THE SCREEN HAS

SCROLLED SINCE THE LAST TIME) .

-9-

>tafej^j/

\^/

L.

LESSON II

REGISTERS ARE NO GOOD UNLESS WE CAN PUT INFORMATION INTO THEM.

IN THIS LESSON YOU WILL LEARN HOW TO DO JUST THAT. FOR EXAMPLE,

IF WE WANT TO PUT THE NUMBER >0123 INTO RO WE COULD DO THAT BY:

LI R0,>0123

THIS SAYS LOAD IMMEDIATE RO WITH THE VALUE >0123. ANOTHER WAY

TO FILL A REGISTER IS TO PUT A COPY OF A DIFFERENT REGISTER INTO

IT. AN INSTRUCTION FOR THIS IS:

MOV R0,R1

THIS SAYS TO MOVE A COPY OF RO INTO Rl. THE INSTRUCTION LEAVES

RO INTACT. THIS INSTRUCTION YOU WILL BE USING OFTEN. MACHINE

LANGUAGE PROGRAMS ARE GENERALLY FULL OF DATA TRANSFERS OF ONE

KIND OR ANOTHER.

DID YOU NOTICE THAT IN THE FIRST EXAMPLE THE DATA WENT FROM

THE RIGHT OPERAND TO THE LEFT ONE? THIS IS VERY TYPICAL OF AN

"IMMEDIATE" TYPE INSTRUCTION. IN THE SECOND EXAMPLE, THE DATA

MOVED FROM THE LEFT OPERAND TO THE RIGHT. THIS IS THE WAY MOST

OTHER INSTRUCTIONS WORK.

THE WAY TO CALL MANY OF THE TI'S SYSTEM SUBROUTINES IS TO USE

THE "BLWP" INSTRUCTION. THIS STANDS FOR BRANCH AND LOAD THE

WORKSPACE POINTER. WHAT THIS INSTRUCTION DOES WILL BE COVERED

LATER.

NOW WE CAN WRITE ANOTHER PROGRAM:

LI R0,>0130
LI Rl,>4100
BLWP @>6024
B *R11

THIS TIME WE WILL INPUT IT INTO THE COMPUTER USING THE

LINE-BY-LINE ASSEMBLER PROGRAM. GO TO THE MAIN MENU, TYPE "3"

TO GET TO MINI-MEM. TYPE "2" TO "RUN". TYPE "NEW" IN RESPONSE

TO THE PROGRAM PROMPT. FOLLOW THE INSTRUCTIONS BELOW. MAKE

SURE TO TYPE AT LEAST ONE SPACE AT THE BEGINNING OF EACH LINE.

THE SPACE GOES IN THE LABEL FIELD. THIS IS BECAUSE SO FAR WE

-10-

HAVE HAD NO NEED FOR A LABEL.

^ AORG >7P00 ENTER
LI RQ,;>0I3Q ENTER
LI RJUM3.0Q ENTER
BLWP g>6024 ENTER

B *R11 ENTER
END ENTER

^||j|y^

ENTER

IF YOU DID NOT GET THE MESSAGE "0000 UNRESOLVED REFERENCES",

GO BACK AND CHECK WHAT YOU TYPED. SOMETIMES YOU CAN CORRECT

YOUR MISTAKE, SOMETIMES YOU WILL HAVE TO START OVER WITH "NEW".

GO TO EASY BUG AND DO AN "E7D00". AN "A" SHOULD APPEAR ON THE

SCREEN AND ANOTHER "?" SHOULD APPEAR.

IN

THIS PROGRAM WE USED A SYSTEM UTILITY CALLED VSBW. THIS ROUTINE

MOVES A SINGLE CHARACTER TO THE SCREEN. FOR MORE INFORMATION

SEE PAGE 35 MINI-MEM OWNER'S MANUAL. IN THE MINIMEM ENVIRONMENT

THIS ROUTINE IS LOCATED AT MEMORY LOCATION >6024.

WHEN USING THE "LINE-BY-LINE ASSEMBLER", THE "R" IN FRONT OF

REGISTER NUMBERS IS OPTIONAL, THOUGH HIGHLY RECOMMENDED FOR EASE

OF READING. MANY INSTRUCTIONS CAN HAVE EITHER A REGISTER OR AN

ABSOLUTE MEMORY LOCATION AS AN OPERAND. TO HELP THE ASSEMBLER

TELL THEM APART, WE MUST PUT AN "@" IN FRONT OF A NUMBER IF IT

IS TO INDICATE AN ABSOLUTE MEMORY LOCATION.

ADVANCED EXAMPLE:

AORG >7D00
LI R0,>0045
LI R1,S
LI R2,>000E
BLWP @>6028
B *R11

S TEXT 'THIS IS A TEST'
SYM

END

THIS EXAMPLE USES A ROUTINE CALLED VMBW WHICH DOES A MULTI-BYTE

WRITE TO VDP RAM. IT ALSO MAKES USE OF A LABEL.

-11-

LESSON III

^ THE THING THAT COMPUTERS DO BEST IS DOING THE SAME THING OVER
AND OVER AND OVER AGAIN. SO FAR WE HAVE BEEN HAVING IT DO ONE

THING ONCE. NOW WE'LL MAKE IT DO SOME REAL WORK. LET'S HAVE

THE COMPUTER FILL THE SCREEN WITH "A"S. THE PROGRAM WOULD BE:

AORG >7D00

LI R0,>02FF
LI Rl,>4100

L BLWP @>6024

DEC RO

JOC L

B *R11

END

USE "NEW" TO ENTER THIS PROGRAM. USE EASY BUG TO EXECUTE IT.

THIS PROGRAM WILL FILL THE SCREEN FROM THE BOTTOM TO THE TOP.

THE LOOP WILL EXECUTE EXACTLY >0300 TIMES. THE INSTRUCTION THAT

CAUSES THE LOOPING IS " JOC L". "JOC" STANDS FOR JUMP ON CARRY.

THE CARRY FLAG IS ONE OF THE BITS OF THE STATUS REGISTER. THE

STATUS REGISTER IS NOT ONE OF YOUR WORKSPACE REGISTERS. THE

^ CARRY FLAG IS CONDITIONED ANY TIME ANYONE DOES AN ARITHMETIC
OPERATION. THE OPERATION THAT WE DID WAS DEC. "DEC" STANDS FOR

DECREMENT. " DEC RO" TELLS THE COMPUTER TO SUBTRACT ONE FROM

RO. IF RO IS NOT ZERO, THE CARRY FLAG WILL BE SET TO "1", THAT

IS, THERE WILL BE A CARRY. IF RO IS ZERO, WHEN WE TRY TO

SUBTRACT, WE WILL HAVE TO BORROW ONE TO DO IT. WE BORROW IT

FROM THE CARRY FLAG. THEREFORE THE CARRY FLAG WILL NO LONGER BE

SET; THERE WILL BE NO CARRY. WHEN THERE IS NO CARRY, THE LOOP

WILL BE DONE, WE WILL DROP OUT OF IT, AND BRANCH BACK TO EASY

BUG. FOR MORE INFORMATION ON THE STATUS REGISTER AND THE STATUS

BITS, SEE PAGE 40 OF THE EDITOR/ASSEMBLER OWNER'S MANUAL.

ANOTHER WAY TO FILL THE SCREEN WOULD BE FROM THE TOP DOWN.

THAT PROGRAM WOULD BE:

-12-

Njjffij^

AORG >7D00

CLR RO

LI Rl,>4100
BLWP @>6024
INC RO

CI R0r>0300
JNE L

B *R11

END

" CLR RO" STANDS FOR CLEAR RO. WHAT THIS DOES IS TO SET THE

WHOLE WORD OF RO TO ZERO. THIS IS AN ABREVIATION FOR " LI

R0,>0000". " INC RO" SAYS TO INCREMENT RO (BY ONE). WE WANT

THIS LOOP TO START AT ZERO, THE FIRST LOCATION ON THE SCREEN.

WE KNOW WE ARE DONE WHEN RO IS EQUAL TO >0300. SO WE (" CI

R0,>0300") COMPARE IMMEDIATE RO WITH >0300. AND WE (" JNE L"

JUMP (WHILE) NOT EQUAL TO L.

ADVANCED EXAMPLE:

TX

AORG >7D00

CLR RO

LI Rl,>4100
LI R2,>02FF
ORI R0,>4000
SWPB RO

MOVB R0,@>8C02
SWPB RO

MOVB R0,@>8C02
MOVB Rl,@>8C00
DEC R2

JNE L

B *R11

TEXT ' PRINT THIS'
END

1 WHERE TO PRINT

2 WHAT TO PRINT
3 HOW MANY TO PRINT

4

5

6 LOW BYTE

7

8 HI BYTE

9

10

11

12

13 USED IN THE NEXT EXAMPLE

"ORI" IS "OR" IMMEDIATE. "SWPB" IS SWAP BYTES. "SWPB" IS USED

TO EXCHANGE THE BYTES IN A WORD WITH EACH OTHER. IN THIS CASE

IT IS USED TO KILL SOME TIME AND ALSO TO PUT THE PROPER BYTE IN

THE FIRST POSITION. LINES 4-8 SET UP A WRITE TO VDP RAM

STARTING AT THE LOCATION SPECIFIED IN RO. FOR MORE INFORMATION

SEE PAGE 266 OF THE EDITOR/ASSEMBLER OWNER'S MANUAL.

•13-

7D00 CLR RO :1

7D02 LI R1.>7D24 ;2
7D06 LI R2.>000C ;3
7D0A ORI R0,>4000 :4

7D0E SWPB RO :5

7D10 MOVB R0,@>8C02 :6

7D14 SWPB RO :7

7D16 MOV R0,@>8C02 :8

7D1A L MOVB *R1+.P>8C00 ;9
7D1E DEC R2 :10

7D20 JNE L :11

7D22 B *R11 :12

7D24 TX TEXT

END

' PRINT THIS' :13

THE UNDERLINED LINES ARE THE ONLY ONES THAT ARE DIFFERENT

FROM PREVIOUS EXAMPLE. TO CHANGE THEM YOU COULD RETYPE THE

WHOLE PROGRAM OR YOU COULD USE AORG COMMAND TO SET THE LOCATION

COUNTER TO THE ADDRESS OF THE LINE YOU WANT TO CHANGE. AFTER

YOU HAD CHANGED THE COUNTER, YOU CAN ENTER THE NEW FORM OF THE

LINE. AN EXAMPLE OF HOW TO DO THIS WOULD BE:

AORG >7D02

LI R1,>7D24
LI R2,>000A
AORG >7D1A
MOVB *R1+,@>8C00
END

IN LESSON ONE WE LEARNED HOW TO USE INDIRECT ADDRESSING WITH A

BRANCH COMMAND. LINE #9 IS AN EXAMPLE OF USING IT WITH A MOVE

COMMAND. IF YOU REMEMBER, WHEN WE USE INDIRECT ADDRESSING WE

PUT THE ADDRESS OF THE OPERAND INTO THE REGISTER. THIS EXAMPLE

IS DIFFERENT IN THAT IT ALSO ILLUSTRATES ADTO-INCREMENTING.

AUTO-INCREMENTING MEANS THAT EACH TIME WE FINISH EXECUTING THE

INSTRUCTION, THE VALUE IN THE REGISTER IS INCREMENTED. IN OUR

EXAMPLE, BECAUSE WE WERE MOVING BYTES, THE REGISTER IS

INCREMENTED BY ONE. IF WE USE AUTO-1NCREMENT WITH AN

INSTRUCTION THAT INVOLVES WORDS, THE REGISTER IS INCREMENTED BY

TWO.

-14-

c

LESSON IV

MANY TIMES THE FLOW OF CONTROL OF A PROGRAM IS NOT LINEAR.

SOMETIMES ALL THAT IS NEEDED IS A LOOP, BUT SOMETIMES WHAT IS

CALLED FOR IS A JUMP TO A SUBROUTINE. SUBROUTINES ARE SEGMENTS

OF CODE THAT ARE NOT IN THE MAIM STREAM OF THE PROGRAM. THEY

MAY BE AT THE BEGINNING OR AT THE END. THE REASONS FOR USING

SUBROUTINES IN MACHINE LANGUAGE ARE MUCH THE SAME AS IN BASIC.

IT MAY BE TO MAKE THE PROGRAM EASIER TO READ, OR MAYBE BECAUSE

THAT PIECE OF CODE IS USED BY DIFFERENT PARTS OF THE PROGRAM.

ONE KIND OF SUBROUTINE CALL IS "BL", "BL" STANDS FOR BRANCH AND

LINK. WHEN WE DO A BRANCH AND LINK, THE COMPUTER SAVES THE

ADDRESS OF THE STATEMENT AFTER THE "CALL". THAT ADDRESS TELLS

THE SUBROUTINE WHERE TO GO WHEN IT IS DONE. THIS INSTRUCTION

PUTS THE RETURN ADDRESS INTO Rll. VERY OFTEN WE HAVE TO SAVE

THIS VALUE SOMEWHERE ELSE SO THAT FURTHER BRANCHING AND LINKING

CAN TAKE PLACE. HERE IS AN EXAMPLE THAT PRINTS AN "A" AT A

GIVEN X AND Y COORDINATE:

XY

AORG >7D00

MOV Rll,RIO :1

LI R4,>0010 :2

LI R5,>0015 :3

LI Rl,>4100 :4

BL @XY ::5
B *R10 s:6
MOV R5,R0 !:7
SLA R0,5 ::8
A R4,R0 !:9
BLWP @>6024 ::10
B *R11 :11

END

LINE 1: THIS LINE SAVES THE LINK GENERATED BY EASY BUG'S CALL TO

OUR SUBROUTINE. WE PUT IT INTO RIO.

LINE 2: R4 IS THE X COORDINATE OF WHERE WE WILL PRINT AN "A"

LINE 3: R5 IS THE Y CO-ORDINATE

LINE 4: LOAD Rl WITH AN "A"

LINE 5: BRANCH AND LINK TO OUR PRINT SUBROUTINE

-15-

LINE 6: RETURN TO EASY BUG.

C LINE 7: COPY R5 INTO RO

LINE 8: SHIFT LEFT ARITHMETIC (" SLA RO"). EVERY TIME A WORD

IS SHIFTED ONE PLACE LEFT, IT IS EFFECTIVELY

MULTIPLIED BY 2. SHIFTING IT LEFT 5 PLACES WILL

MULTIPLY IT BY 32.

LINE 9: ADD (" A R4,R0") R4 TO RO. AT THIS POINT R0=32*Y+X

LINE 10: PRINT AN "A" AT THE LOCATION WE CALCULATED

LINE 11: RETURN BACK TO LINE 6

TYPE THIS PROGRAM IN. EXECUTE IT. NOW TRY TO SAVE IT.

CONNECT YOUR TAPE RECORDER. TYPE S.1RQ.Q. ENTER. THIS TELLS

EASY-BUG TO SAVE MEMORY STARTING AT LOCATION >7D00. WHEN IT

ASKS FOR "TO", TYPE 7D20. THIS TELLS IT TO SAVE THROUGH >7D20.

FOLLOW THE INSTRUCTIONS ON THE SCREEN. TO CHECK IF IT WORKED,

GO TO MODIFY MODE AND PUT >00"S IN MEMORY STARTING AT >7D00.

NOW LOAD THE PROGRAM BACK IN AND SEE IF YOU CAN STILL EXECUTE

IT. SINCE THERE WILL BE WRITING ON THE SCREEN ALREADY, FINDING

THE NEW "A" MAY BE A LITTLE BIT TRICKYSn^p/

S^ffiS

-16-

L,

\l^^/

\^/

EXERCISE •
•

AORG >7D00

LWPI >70B8

CLR @>8374

LI R8,>1000
D MOV R8,R7

BL <§P

Dl DEC R7

JNE Dl

JMP D

AORG >7E00

P MOV R11,R9
CLR R3

LI R1,P6
BL @P4

BLWP @>6020

MOVB @>8375,R3
ORI R3,>2000
CI R3,>6400
JEQ PI

CI R3,>7300
JEQ P2

JMP P3

PI CI R6,>0019
JEQ P3

INC R6

JMP P3

P2 CI R6,>0002
JEQ P3

DEC R6

P3 LI R1,P5
MOV R9,R11

P4 MOV R6,R0
AI R0,>0280
LI R2,3
BLWP @>6028

B *R11

P5 TEXT f 1

P6 TEXT 1 1

:DRIVER ROUTINE

:SEE LESSON 5

:CLEAR KEYBOARD SELECT

:SET SPEED OF PADDLE

:CALL PADDLE ROUTINE

:DELAY LOOP

:MOVING PADDLE ROUTINE

:SAV2 RETURN

LOAD Rl WITH A BLANK PADDLE

ERASE PADDLE

CALL KEYSCAN

MOVE ASCII BYTE INTO R3

MASK TO TURN UPPER CASE INTO LOWER

CHECK FOR "d"

IF FOUND JUMP TO MOVE RIGHT

CHECK FOR "s"

IF FOUND JUMP TO MOVE LEFT

JUMP TO PRINT

CHECK IF ALL THE WAY RIGHT

:CHECK IF ALL THE WAY LEFT

LOAD Rl WITH SOLID PADDLE

"TRICK" TO GET US BACK TO DRIVER

ENTER AND EXECUTE (YOU WILL HAVE TO TURN OFF THE COMPUTER TO

EXIT). SAVE THE "P" ROUTINE (>7E00 - >7E53). YOU WILL NEED IT

LATER. IF YOU WANT TO CHECK TO SEE IF YOU TYPED IT IN RIGHT,

THERE IS A LISTING IN APPENDIX 4 THAT GIVES THE ADDRESSES AND

THE ASSOCIATED VALUES FOR THE "P" ROUTINE.

-17-

LESSON V

^ TI CALLS ITS REGISTERS WORKSPACE REGISTERS BECAUSE THEY
CAN BE USED TO DEFINE AN ENVIRONMENT THAT GIVES SUBROUTINES A

UNIQUE CONTEXT IN WHICH TO OPERATE. YOU, THE USER, HAVE THE

ABILITY TO SPECIFY WHERE THE WORKSPACE REGISTERS WILL BE IN

MEMORY. INFACT, YOU CAN HAVE AS MANY SETS OF REGISTERS AS YOU

WANT. THE SET THAT IS CURRENTLY ACTIVE IS THE ONE POINTED TO BY

THE WORKSPACE POINTER. WHEN YOU CHANGE WHICH SET OF REGISTERS

YOU ARE USING, THIS IS REFERRED TO AS A CONTEXT SWITCH. ONE

INSTRUCTION THAT CAUSES A CONTEXT SWITCH IS "LWPI". IN THE LAST

EXAMPLE WE USED " LWPI >70B8" TO LOAD IMMEDIATE THE WORKSPACE

POINTER WITH THE VALUE >70B8. THIS INSTRUCTION DESTROYS WHAT

WAS IN THE POINTER SO CARE MUST BE TAKEN TO SAVE IT FIRST. THE

REASON WE USED "LWPI" IN THE PREVIOUS EXAMPLE WAS BECAUSE

EASY-BUG USES THE GPL WORKSPACE REGISTERS. THESE REGISTERS ARE

LOCATED AT >83E0, AND ARE USED BY GPL ROUTINES. KSCAN IS A GPL

ROUTINE AND WOULD CAUSE SIDE EFFECTS TO OUR PROGRAM. WE AVOID

THE PROBLEM BY SETTING UP OUR OWN REGISTERS. THE ONES THAT WE

USED ARE CALLED USRWSP AND ARE LOCATED AT >70B8.

ANOTHER INSTRUCTION THAT CAUSES A CONTEXT SWITCH IS "BLWP".

"BLWP" STANDS FOR BRANCH AND LOAD THE WORKSPACE POINTER. TO USE

A "BLWP" INSTRUCTION, YOU MUST SET UP A PAIR OF WORDS. THE

FIRST WORD IS A POINTER TO A SET OF REGISTERS, THE SECOND IS AN

ENTRY POINT INTO YOUR SUBROUTINE. WHEN ONE EXECUTES THIS

INSTRUCTION, MANY THINGS HAPPEN. FIRST THE COMPUTER DOES A

CONTEXT SWITCH, THEN IT PUTS THE OLD WP, THE OLD PC AND THE

VALUE OF THE OLD STATUS REGISTER INTO THE NEW REGISTERS R13-R15.

FINALLY THE COMPUTER BRANCHES TO THE SUBROUTINE.

•.DRIVER

:SPEED OF THE "A"

:MOVING "A" SUBROUTINE

:DELAY

AORG >7D00

LI R8,>1000
z MOV R8,R7

BLWP m
Zl DEC R7

JNE Zl

JMP Z

-18-

^li^p^-

\j||^/

AORG >7E60

M DATA

DATA

MR

MM

MOVING "A" ROUTINE

MR DATA >0000 RO s:VSBW ADDRESS

DATA >0000 Rl ::VSBW DATA

DATA >0010 R2 !:X

DATA >0005 R3 ::Y

DATA >0001 R4 ::X INCREMENT

DATA >0001 R5 ::Y INCREMENT

DATA >0002 R6 ::X MIN (LEFT WALL)
DATA >0003 R7 !:Y MIM (TOP WALL)
DATA >001B R8 ::X MAX (RIGHT WALL)
DATA >0017 R9 ::Y MAX (BOTTOM WALL)
DATA >4100 RIO !:"A"

DATA >0000 Rll !:"BL" RETURN ADDRESS

DATA >2000 R12 !i It II

DATA >0000 R13 !:OLD WP

DATA >0000 R14 !:OLD PC

DATA >0000 R15 ::OLD STATUS

MM MOV

BL

R12,R1
@M5

C R2,R6 :HAS IT HIT THE LEFT WALL

JNE Ml

NEG R4 :CHANGE X DIRECTION

Ml C

JNE

R2,R8
M2

:HIT RIGHT WALL?

NEG R4 :CHANGE X DIRECTION

M2 A R4,R2 :UPDATE X POSITION

C R3,R7 :HIT TOP?

JNE M3

NEG R5 :CHANGE Y DIRECTION

M3 C

JNE

R3,R9
M4

:HIT BOTTOM?

NEG R5 :CHANGE Y DIRECTION

M4 A

MOV

R5,R3
R10,R1

:UPDATE Y POSITION

BL @M5 :CALL PRINT

RTWP

M5 MOV R3,R0 :PRINT AT "X","Y" (R2,R3)
SLA R0,5 ROUTINE

A R2,R0
CI R0,>2FF :ERROR CHECK

JH M6

BLWP @>6024

M6 B

END

*R11

-19-

\fagir^

THE FIRST THREE LINES ARE A SHORT DRIVER PROGRAM, THEY CALL OUR

SUBROUTINE AND THEN RETURN. THE NEXT TWO LINES ARE A POINTER TO

OUR SET OF REGISTERS, AND A POINTER TO THE BEGINNING OF OUR

SUBROUTINE. A "BLWP" TO THE FIRST OF THESE POINTERS CAUSES A

CONTEXT SWITCH (CHANGING OF THE WP) AND ALSO CAUSES OUR

SUBROUTINE TO BE EXECUTED. IN ADDITION, THE OLD WP, THE OLD

PROGRAM COUNTER, AND THE OLD STATUS REGISTER ARE PUT INTO THE

NEW REGISTERS R13,R14,R15 RESPECTIVELY.

DID YOU NOTICE THAT A LOT OF THE REGISTERS ARE ALREADY

INITIALIZED. THE NICE THING ABOUT A CONTEXT SWITCH IS THAT AN

ENVIRONMENT CAN BE READY FOR YOU TO GO IN AND USE.

TYPE THIS IN, RUN IT, SAVE THE "M" ROUTINE (>7E60 - >7EBF).

-20-

LESSON VI

THE BEST WAY TO LEARN THINGS IS TO EXPERIMENT. UNTIL YOU TRY

SOMETHING ON YOUR OWN AND MAKE A FEW MISTAKES, YOU NEVER REALLY

LEARN. UNFORTUNATELY, MACHINE LANGUAGE CAN BE VERY UNFORGIVING

WHEN IT COMES TO MAKING MISTAKES. ONE AID TO WRITING AND

DEBUGGING PROGRAMS IS TO USE BREAK POINTS. WHAT A BREAK POINT

DOES IS TO CALL A ROUTINE THAT DISPLAYS SOME INFORMATION ABOUT

THE STATE OF THE COMPUTER. THE ROUTINE IN THE NEXT EXAMPLE WILL

DISPLAY A SPECIFIED NUMBER OF THE CALLING PROGRAM'S REGISTERS.

IT CAN DISPLAY THEM IN HEXADECIMAL OR DECIMAL AND IT WILL

DISPLAY THE PROGRAM COUNTER IF THAT IS SO DESIRED. WHAT THE

ROUTINE DISPLAYS IS DETERMINED BY THE PARAMETERS YOU SEND TO IT.

AFTER. IT DISPLAYS ITS INFORMATION, THE ROUTINE WILL WAIT FOR YOU

TO PRESS A KEY. ANY KEY BUT THE SPACE WILL STEP THROUGH THE

PROGRAM ONE BREAK POINT AT A TIME. THE SPACE KEY WILL STEP

CONTINUOUSLY THROUGH THE PROGRAM AS LONG AS YOU HOLD IT DOWN.

TO USE BREAK POINTS ONE MUST PLAN AHEAD. IF WE CALL THE

ROUTINE WITH THE INSTRUCTION " BLWP *R9" WHERE R9 HAS THE

ADDRESS OF OUR ROUTINE, WE HAVE TO ALLOW ONE WORD OF MEMORY FOR

EACH PLACE WE MAY WANT TO INSERT A BREAK POINT. THE EASIEST WAY

TO DO THAT IS TO USE THE "NOP" INSTRUCTION. "NOP" IS AN

ASSEMBLER ABREVIATION FOR " JMP $+2", WHICH SAYS TO JUMP TO THE

NEXT INSTRUCTION. THE MACHINE CODE FOR " BLWP *R9n IS >0 419.

THE MACHINE CODE FOR "NOP" IS >1000. IF WE EXCHANGE THESE TWO

VALUES IN A LOCATION WHERE WE HAVE ALLOWED SPACE FOR A BREAK

POINT WE CAN TURN THE FUNCTION ON OR OFF.

NOW TO SHOW WHAT I AM TALKING ABOUT*.

^fajgyV

AORG >7D00

LWPI >70B8

LI R9,>7F10
s LI R0,>0100
SI NOP

DEC RO

JNE SI

JMP S

END

-21-

^w

IF YOU EXECUTE THIS, NOTHING WILL HAPPEN. BUT IF YOU CHANGE

THE "NOP" AT >7D0C TO A " BLWP *R9" WONDEROUS THINGS WILL HAPPEN

(ESPECIALLY IF YOU DON'T TYPE IN THE NEXT PROGRAM FIRST).

TX

TT

TW

T

Tl

T2

T3

T4

W

Wl

W2

AORG >7F10

DATA TW

DATA TT

BL @T

DATA >0096

DATA >0000

DATA >0005

DATA >0000

DATA >0001

RTWP

BSS >20

MOV R11,R10
MOV *R10+,R4
MOV *R10+,R1
MOV *R10+,R7
MOV *R10+,R8
MOV R13,R6
MOV *R6+,R2
DEC Rl

JOC Tl

MOV R8,R8
JEQ T3

BL @C

BL @W
AI R4,>1C
MOV *R6+,R2
DEC R7

JNE T2

MOV *R10+,R0
JEQ T4

MOV R14,R2
BL @W

BL @N

B *R10

LI R3,4
SRC R2, >C
MOV P.2,R1
ANDI R1,>000F
SRC Rl,8
AI Rl,>3000
CI R1,>3A00
JL W2

AI Rl,>0700
CI R4,>0300

•.BREAK POINT ROUTINE

PARAMETER #1: WHERE TO PRINT

#2: WHICH ONE TO START WITH

#3 J HOW MANY

#4;IF <>0 THEN CONVERT TO DECIMAL

#5; IF <>0 THEN PRINT "PC

:SAVE LINK

:MOVE PARAMETERS

MOVE OLD WP TO R6

GET VALUE FROM AN OLD REGISTER

SHOULD WE PRINT THIS?

:CONVERT TO DECIMAL?

:CALL CONVERT ROUTINE

:CALL DISPLAY WORD ROUTINE

:GET ANOTHER REGISTER

:ARE WE DONE?

♦.PRINT PC?

:PRINT PC

•.CALL PAUSE

:WRITE A WORD

sSHIFT WORD 12 PLACES

sMASK OFF LAST NIBBLE

:SWAP BYTES

:CONVERT TO ASCII

jERROR CHECK

-22-

N^^^i/

Ni^^>'

N^^^

JL W3

CLR R4

W3 MOV R4,R0
INC R4

BLWP @>6024

DEC R3

JNE Wl

B *R11

N CLR RO

MOV R0,@>8374
Nl BLWP @>6020

MOVB @>8375,R0
CI R0,>2000
JEQ N2
MOV @>837C,R0
ANDI R0,>2000
JEQ Nl

N2 B *R11

C LI R3,C2
CLR Rl

CLR RO

CI DIV *R3+,R1
SLA R0,4
SOC R1,R0
CLR Rl

CI R3, C3
JNE CI

MOV R0,R2
B *R11

C2 DATA 1000,100,10,1
C3 NOP

END

ADVANCED •
•

AORG >7D00

G CLR R0

Gl CLR Rl

G2 MOV R1,R2
MPY R0,R2
BLWP @>7F10
INC Rl

CI Rl,>0020
JNE G2

INC RO

CI R0,>0020
JNE Gl

JMP G .

END

:PAUSE ROUTINE

:CLEAR KEYBOARD SELECT
:KEYSCAN

:MOVE ASCII BYTE

:CHECK IF BLANK

sMOVE STATUS

:CHECK IF NEW KEY

:CONVERT HEX TO DEC

:THIS ROUTINE MULTIPLIES R0 AND Rl
AND PUTS THE RESULT IN R2 AND R3

:CALL TRACE ROUTINE

-23-

\^^y-

C

LESSON VII

THIS IS THE FINAL LESSON OF THIS FIRST TUTOR. I HOPE THIS

EXPERIENCE HAS BEEN REWARDING AND NOT TOO FRUSTRATING.

HOPEFULLY I CAN TIE ALL OF YOUR EFFORTS TOGETHER AND GIVE YOU A

LITTLE GAME TO PLAY. AT THIS POINT, MINI-MEM SHOULD CONTAIN THE

"P", "M", AND "W" ROUTINES. IF YOU HAVE RE-INITIALIZED MINI-MEM

OR THINK ANY OF THE ROUTINES MAY HAVE BEEN DESTROYED, RETYPE OR

RELOAD THEM BEFORE TYPING IN THIS LAST ROUTINE.

AORG >7D00

CLR @>8374

LWPI >70B8

CLR R3

CLR R7

CLR R8

BLWP @I
LI R6,>0006
BL @S
DATA >02D2

DATA SC

DATA >0005

BL @S
DATA >02EF

DATA HS

DATA >0008

LI R4,>02F8
CLR R2

BLWP @>7F80

D DEC R14

JGT D7

BL @>7E00
INV R13

JLT D6

BLWP @>7E60

LI Rl,>0014
C @>7E6A,R1
JL D6

MOV R6,R0
LI Rl,>0003

D4 C R0,@>7E68
JEQ D5

INC RO

DEC Rl

JNE D4

JMP D9

D5 NEG @>7E6E

D6 MOVB R8,R14
INV R14

SRL R14,6

:DRAWS A BORDER

sINITIALIZE PADDLE POSITION

SPRINT "SCORE"

:PRINT "HI SCORE"

SPRINT "0000" USING "W" ROUTINE

sSLOW DOWN PADDLE

%MOVE "A" HALF AS OFTEN

;CHECK "A" VERTICAL POSITION

(>7E6A IS R3 IN "M" ROUTINE,
HERE IT IS A MEMORY LOCATION)

sIS "A" HITTING THE PADDLE?

IF NOTj GAME OVER

:THE SPEED OF THE "A" IS RELATED

TO THE SCORE COUNTER

-24-

^tbkuX'

D7

D8

D9

DA

DB

DC

HS

SC

OV

DEC R15

JGT D8

LI R15,>0080
LI R4,02D8
INC R8

MOV R8,R2
NOP

NOP

BL @>7F7C
JMP D

LI R0,>0005
MOV R0,@>7E6A
C R8,R7
JL DA

MOV R8,R2
MOV R8,R7
LI R4,>02F8
NOP

NOP

BL @>7F7C
BL @S
DATA >0284
DATA OV

DATA >0016

BLWP @>6020
MOV @>837C,R0
AND I R0,>2000
JEQ DB

LI R0,>0282
LI Rl,>2000
LI R2,>001A
BLWP @>6024
INC RO

DEC R2
JNE DC

CLR R8

JMP D

MOV *R11+,R0
MOV *R11+,R1
MOV *R11+,R2
BLWP @>6028
B *R11

sSLOW DOWN SCORE COUNTER

sPRINT SCORE USING "W" ROUTINE

:PUT "A" AT TOP FOR NEXT GAME
:UPDATE "HI SCORE"

:PRINT "GAME OVER ..."

;KEYSCAN

TEXT 'HI '

TEXT 'SCORE'

TEXT 'GAME OVER-PRESS A KEY'

AORG >7ED0

DATA >7E64

DATA II

sWORK SPACE FOR "M" ROUTINE

-25-

\^^' II

II

12

13

L,

LI R1,>2A00
MOV R6,R2
DEC R2

MOV R9,R3
BL §>7EAE SPRINT ROUTINE IN "M"

DEC R3

C R7,R3
JLE 11

BL @>7EAE

INC R2

C R2,R8
JLE 12

BL @>7EAE
INC R3

C R3,R9
JLE 13

LI R2,>0003 sINITIALIZE "A" X POSITION

LI R3,>0005 sINITIALIZE "A" Y POSITION

RTWP

-26-

yjjjjmm/'

APPENDIX I

0

0 1 2 3 4

SECOND DIGIT

5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

F

1

R

S

T

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

6 96 97 98 99 100 101 012 103 104 105 106 107 108 109 110 111

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

D

1

G

I

T

8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

TO CONVERT A 2 DIGIT HEXADECIMAL TO DECIMAL, FIND THE FIRST

DIGIT IN THE LEFT COLUMN. FIND THE SECOND DIGIT IN THE TOP ROW.

FIND WHERE THE ROW AND COLUMN INTERSECT, YOU WILL FIND YOUR

NUMBER.

REVERSE THE PROCESS TO GO FROM DECIMAL TO HEXADECIMAL.

iw

N^^/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

APPENDIX 2

0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 IB 19 20 21 22 23 24 25 26 27 28 29 30 31
OiC 010 01E OIF

03C 03D 03E 03F

05C 050 05E 05F

07C 07D 07E 07F

09C 09D 09E 09F

OBC OBD OBE OBF

ODC ODD ODE ODF

OFC OFD OFE OFF

11C 11D HE 11F

13C 13D 13E 13F

ISC 15D 15E 15F

17C 17D 17E 17F

19C 190 19E 19F

1BC 1BD 1BE 1BF

IDC 1DD IDE IDF

1FC 1FD 1FE IFF

2!C 21D 21E 21F

23C 23D 23E 23F

25C 25D 25E 25F

27C 27D 27E 27F

29C 29D 29E 29F

2BC 2BD 2BE 2BF

2DC 2DD 2DE 2DF

2FC 2FD 2FE 2FF

000 001

020 021

040 041

060 061

080 081

0A0 0A1

0C0 0C1

0E0 0E1

100 101

120 121

140 141

160 161

180 181

1A0 1A1

ICO 1C1

1E0 IE I

200 201

220 221

240 241

260 261

280 281

2A0 2A1

2C0 2C1

2E0 2E1

002 003

022 023

042 043

062 063

082 083

0A2 0A3

0C2 0C3

0E2 0E3

102 103

122 123

142 143

162 163

182 183

1A2 1A3

1C2 1C3

1E2 1E3

202 203

222 223

242 243

262 263

282 283

2A2 2A3

2C2 2C3

2E2 2E3

004 005

024 025

044 045

064 065

084 085

0A4 0A5

0C4 0C5

0E4 0E5

104 105

124 125

144 145

164 165

184 185

1A4 1A5

1C4 1C5

1E4 1E5

204 205

224 225

244 245

264 265

284 285

2A4 2A5

2C4 2C5

2E4 2E5

006 007

026 027

046 047

066 067

086 087

0A6 0A7

0C6 0C7

0E6 0E7

106 107

126 127

146 147

166 167

186 187

1A6 1A7

1C6 1C7

1E6 1E7

206 207

226 227

246 247

266 267

286 287

2A6 2A7

2C6 2C7

2E6 2E7

008 009

028 029

048 049

068 069

088 089

0A8 0A9

0C8 0C9

0E8 0E9

108 109

128 129

148 149

168 169

188 189

1A8 1A9

1C8 1C9

1E8 1E9

208 209

228 229

248 249

268 269

288 289

2A8 2A9

2C8 2C9

2E8 2E9

OOA OOB

02A 02B

04A 048

06A 068

08A 088

OAA OAB

OCA OCB

OEA OEB

10A 10B

12A 128

14A 14B

16A 16B

18A 18B

1AA 1AB

1CA 1CB

1EA 1EB

20A 20B

22A 22B

24A 24B

26A 26B

28A 28B

2AA 2AB

2CA 2CB

2EA 2EB

OOC OOD

02C 02D

04C 040

06C 06D

OOC 08D

OAC OAO

OCC OCD

OEC OED

IOC 10D

12C 12D

14C 14D

16C 16D

ISC 18D

1AC IAD

ICC 1CD

1EC 1ED

20C 20D

22C 22D

24C 24D

26C 26D

28C 28D

2AC 2AD

2CC 2CD

2EC 2ED

OOE OOF

02E 02F

04E 04F

06E 06F

08E 08F

OAE OAF

OCE OCF

OEE OEF

10E 10F

12E 12F

14E 14F

16E 16F

18E 18F

1AE 1AF

ICE ICF

1EE 1EF

20E 20F

22E 22F

24E 24F

26E 26F

28E 28F

2AE 2AF

2CE 2CF

2EE 2EF

010 Oil

030 031

050 051

070 071

090 091

OBO OBI

ODO 0D1

OFO 0F1

110 HI

130 131

150 151

170 171

190 191

1B0 181

100 ID!

1F0 1F1

210 211

230 231

250 251

270 271

290 291

2B0 2B1

2D0 2D1

2F0 2F1

012 013

032 033

052 053

072 073

092 093

0B2 0B3

0D2 0D3

0F2 0F3

112 113

132 133

152 153

172 173

192 193

1B2 1B3

1D2 103

1F2 1F3

212 213

232 233

252 253

272 273

292 293

2B2 2B3

2D2 2D3

2F2 2F3

014 015

034 035

054 055

074 075

094 095

0B4 0B5

004 0D5

0F4 0F5

016 017

036 037

056 057

076 077

096 097

0B6 0B7

006 0D7

0F6 0F7

117

137

157

177

197

1B7

1D7

1F7

216 217

236 237

256 257

276 277

296 297

2B6 2B7

2D6 2D7

2F6 2F7

114 i!5 116 1

134 J35 136 1

154 155 156 1

174 !75 176 1

194 195 196 1

1B4 1B5 J1B6 1

104 IDS 1D6 1

1F4 IF5 1F6 1

214 215

234 235

254 255

274 275

294 295

2B4 2B5

2D4 2D5

2F4 2F5

018 019

038 039

058 059

078 079

098 099

0B8 0B9

0D8 0D9

0F8 0F9

118 119

138 139

158 159

178 179

198 199

188 1B9

IDS 1D9

1F8 1F9

218 219

238 239

258 259

278 279

298 299

2B8 2B9

2D8 2D9

2F8 2F9

01A 01B

03A 03B

05A 05B

07A 07B

09A 09B

OBA 0B3

OOA ODB

OFA OFB

UA

13A

ISA

17A

19A

1BA

IDA

1FA

21A 21B

23A 23B

25A 25B

27A 27B

29A 29B

2BA 2BB

2DA 2DB

2FA 2FB

THIS TABLE SHOWS HOW VDP MEMORY MAPS ONTO THE TV SCREEN

C
O

C
O

M

X
3

M
o

Q
u

ZW
H

0
^

H

0
4

U
<

*2

'
(0

.Q
O

T3
CD

iw
CT»^

-H
-n

^
r
H

e
c
O

^
O

i^
W

4
J
D

>
^
«

>
iN

^
^
j

A
A

A
A

A
A

A
A

A
A

A
A

A
A

X
A

X
A

A
A

A
lA

4A
lA

§A
!^

^
^

^
A

A

^y
~

/
~J

Nja^y

(w

7DOO

7DOO

7D02

7D04

7D06

7D08

7D0A

7D0C

7D0E

7D10

7D12

7D14

7D1&

7D18

7D1A

7D1C

7D1E

7D20

7D22

7D24

7026

7D28

7D2A

7D2C

7D2E

7D30

7D32

7D34

7D36

7D38

7D3A

7D3C

7D3E

7D40

7D42

7D44

7D46

7D48

7D4A

7D4C

7D4E

7D50

7D52

7D54

7D56

7D58

7D5A

7D5C

7D5E

7D60

APPENDIX 4

TINBGAME L_XS

04E0

8374

02E0

70B8

04C3

04C7

04C8

0420

7ED0

0206

0006

06A0

7DD4

02D2

7DE3

0005

06A0

7DD4

02EF

7DE0

0008

0204

02F8

04C2

06A0

7F7C

06QE

151A

06A0

7E00

054D

1113

0420

7E60

0201

0014

8060

7E6A

1A0C

C006

0201

0003

8800

7E68

1304

0580

0601

16FA

1012

G

D

04

AORG

CLR

>7D00

3>8374

LWPI >70B8

CLR

CLR

CLR

BLWP

R3

R7

RS

81

LI R6,>0006

BL 8S

DATA >02D2

DATA SC

DATA >5
BL 38

DATA >02EF

DATA HS

DATA >8
LI R4,>2F8

CLR

BL

R2

DEC

JGT

BL

R14

D7

9P

INV

JLT

BLWP

R13

D6

an

LI Rl,>0014

C 3BY,R1

JL

MOV

LI

D6

R6?R0
Rl,3

C RO,®BX

JEQ

INC

DEC

JNE

'JMP

D5

RO

Rl

04

D9

<w

>^^^/

y^H^p/

same: L_ ISTINB

7D62 0520 D5 NEG 3IY

7064 7E6E

7D66 D388 D6 HOVB R8,R14

7068 OS4E INV R14

7D6A 096E SRL R14,6

7D6C 060F D7 DEC R15

7D6E 150A JGT D8

7D70 020F LI R15,>0080
7D72 OOSO

7074 0204 LI R4,>02D8

7D76 02D8

7D78 0588 INC R8

7D7A C088 MOV R8,R2

7D7C 1000 NOP

7D7E 1000 NOP

7D80 06A0 BL 3W

7082 7F7C

7D84 1007 D8 J MP D

7D86 0200 09 LI R0,5

7D88 0005

7D8A C800 MOV R0,S>BY
7D8C 7E6A

7D8E 81C8 C R8,R7

7090 1A08 JL DA

7092 C088 MOV R8,R2
7094 C1C8 MOV Roy T\7
7096 0204 LI R4„>2F8
7098 02F8

7D9A 1000 NOP

7D9C 1000 NOP

7D9E 06A0 BL aw

7DA0 7F7C

7DA2 06A0 DA BL 3S

7DA4 7004

7DA6 0284 DATA >0284

7DA8 7DE8 DATA OV

7DAA 0016 DATA >16
7DAC 0420 OB BLWP 3>6020

7DAE 6020

7DB0 C020 MOV a>837C„R0

7DB2 837C

7DB4 0240 ANDI RO,>2000

7DB6 2000

7DB8 13F9 JEQ OB

7DBA 0200 LI RO,>282
7DBC 0282

7DBE 0201 LI Rl,>2000
7DC0 2000

7DC2 0202 LI R2,>1A

7DC4 OOIA

7DC6

7DC8

0420

6024

DC BLWP S»6024

7DCA 0580 INC RO

7DCC 0602 DEC R2

PAGE

GAME LISTING

7DCE 16FB

7DD0 04C8

7002 10B0

7DD4 C03B

7DD6 C07B

7DD8 COBB

7DDA 0420

7DDC 6028

7DDE 045B

7DE0 48 HS

7DE3 53 SC

70E8 47 OV

JNE DC

CLR R8

JMP D

MOV tRU+,R0
MOV SRI 1-9-, Rl
MOV SR11+,R2
BLWP d>6028

B «R11

TEXT 'HI '

TEXT 'SCORE'

TEXT 'GAME OVER-PRESS A KEY »

7E00 AORG >7E00

7E00 C24B P MOV R1I,R9

7E02 04C3 CLR R3

7E04 0201 LI R15.P6

7E06 7E51

7E08 06A0 BL 3P4

7E0A 7E3E

7EOC 0420 BLWP 3>6020

7E0E 6020

7E10 DOEO MOVB @>8375,R3

7E12 8375

7E14 0263 ORI R3,>2000

7E16 2000

7E18 0283 CI R39 >6400

7E1A 6400

7E1C 1304 JEQ PI

7E1E 0283 CI R3,>7300

7E20 7300

7E22 1306 JEQ P2

7E24 1009 JMP P3

7E26 0286 PI CI R69 >0019

7E28 0019

7E2A 1306 JEQ P3

7E2C 0586 INC R6

7E2E 1004 JMP P3

7E30 0286 P2 CI R6, >0002

7E32 0002

7E34 1301 JEQ P3

7E36 0606 DEC R6

7E38 0201 P3 LI Rl jP5

7E3A 7E4E

7E3C C2C9 MOV R99R11

7E3E C00& P4 MOV R69R0

7E40 0220 AI RO,>0280

7E42 0280

7E44 0202 LI R2,3

7E46 0003

7E48 0420 BLWP ®>6028

7E4A 6028

7E4C 045B B •mil

<w

GAME LISTING

7E4E 20 P5 TEXT
» „__ y

7E51 20 P6 TEXT
r 9

7E60 AORG >7E60

7E60 7E64 M DATA MR

7E62 7E84 DATA

EVEN

MM

7E64 oooo MR DATA >oooo

7E66 oooo DATA >0000

7E68 0010 BX DATA >0010

7E6A 0005 BY DATA >0005

7E6C 0001 IX DATA >0001

7E6E 0001 IY DATA >0001

7E70 0002 DATA >0002

7E72 0003 DATA >0003

7E74 00IB DATA >001B

7E76 0017 DATA >0017

7E78 4100 DATA >4100

7E7A 0000 DATA >0000

7E7C 2000 DATA >2000

7E7E 0000 DATA >0000

7E80 0000 DATA >0000

7E32 oooo DATA >0000

7E84 C04C MM MOV R12,R1

7E86 06A0 BL S>M5

7E88 7EAE

7E8A 8182 C R2,R6

7E8C 1601 JNE Ml

7E8E 0504 NEG R4

7E90 8202 Ml C R2,R8

7E92 1601 JNE M2

7E94 0504 NEG R4

7E96 AOS4 M2 A R4,R2

7E98 8.1C3 C R3,R7

7E9A 1601 JNE M3

7E9C 0505 NEG R5

7E9E 8243 M3 C R39 R1?

7EA0 1601 JNE M4

7EA2 0505 NEG R5

7EA4 A0C5 M4 A R5,R3

7EA6 C04A MOV R10„R1

7EA8 06A0 BL 9M5

7EAA 7EAE

7EAC 0380 RTWP

7EAE COOS M5 MOV R3,R0

7EB0 OA50 SLA R0,5

7EB2 A002 A R2,R0

7EB4 0280 CI RO,>02FF

7EB6 02FF

7EB8 1B02 JH M6

7EBA 0420 BLWP 3>6024

7EBC 6024

f>age:

*w

GuPfei^S! LISTING

7EBE 045B M6 B *R11

7EDO AORG >7ED0

7ED0 7E64 I DATA >7E64

7ED2 7ED4 DATA II

7ED4 0201 II LI R1,>2A00

7ED6 2AOO

7ED8 C086 MOV R6,R2

7EDA 0602 DEC R2

7EDC COC9 MOV R9,R3

7EDE 06AO 11 BL 3M5

7EE0 7EAE

7EE2 0603 DEC R3

7EE4 80C7 C R7,R3

7EE6 12FB JLE 11

7EE8 06A0 12 BL S>M5

7EEA 7EAE

7EEC 0582 INC R2

7EEE 8202 C R2,R8

7EFO 12FB JLE 12

7EF2 06A0 13 BL 3M5

7EF4 7EAE

7EF6 0583 INC R3

7EF8 8243 C R3,R9

7EFA 12FB JLE 13

7EFC 0202 LI R2,>3

7EFE 0003

7F00 0203 LI R3„>5

7F02 0005

7F04 0380 RTWP

7F10 AORG >7F10

7F10 7F24 TX DATA TW

7F12 7F14 DATA TT

7F14 06A0 TT BL ST

7F16 7F44

7F18 0096 DATA >0096,0,5,0, 1

7F1A OOOO

7F1C 0005

7F1E OOOO

7F20 OOOl

7F22 0380 RTWP

7F24 TW BSS >20

7F44 C28B T MOV R12,R10

7F46 C13A MOV *R10+,R4

7F48 C07A MOV SR10+,R1
7F4A CIFA MOV 8R10+,R7

7F4C C23A MOV $R10+,R8

7F4E C18D MOV R13,R6

PAGE 5

C

GAME LISTING

7F50 C0B6 Tl H0V $R6+,R2

7F52 0601 DEC Rl

7F54 18FD JOC Tl

7F56 C208 T2 MOV R8„R8

7F58 1302 JEQ T3

7F5A 06A0 BL ®C

7F5C 7FCE

7F5E 06A0 T3 BL ®w

7F60 7F7C

7F62 0224 AI R4,MC

7F64 OOIC

7F66 C0B6 MOV §R6+9R2

7F68 0607 DEC R7

7F6A I6F5 JNE T2

7F6C C03A MOV SR10*9R0

7F6E 1303 JEQ T4

7F70 COSE MOV R14,R2

7F72 06A0 BL ©w

7F74 7F7C

7F76 06A0 T4 BL ®N

7F78 7FAE

7F7A 045A B SR10

7F7C 0203 M LI R394

7F7E 0004

7F80 0BC2 Wl SRC R29>C

7F82 C042 MOV R2,R1

7F84 0241 ANDI Rl,>000F

7F86 000F

7F88 0B81 SRC Rl,8

7F8A 0221 AI Rl,>3000

7F8C 3000

7F8E 0281 CI R1S>3A00

7F90 3A00

7F92 1A02 JL W2

7F94 0221 AI Rl,>0700

7F96 0700

7F98 0284 W2 CI R49 >0300
7F9A 0300

7F9C 1A01 JL. mz

7F9E 04C4 CLR R4

7FA0 C004 W3 MOV R4,R0

7FA2 0584 INC R4

7FA4 0420 BLWP ®>6024

7FA6 6024

7FA8 0603 DEC R3

7FAA 16EA JNE Wl

7FAC 045B B SR11

7FAE 04C0 N CLR RO

7FB0 C800 MOV R09©>8374

7FB2 8374

7FB4 0420 m BLWP @>6020

7FB6 6020

%i^y

Sn^y

GAME LISTING

7FB8 D020 MOVB 3>8375,R0
7FBA 8375

7FBC 0280 CI RO,>2000
7FBE 2000

7FCO 1305 JEQ N2

7FC2 C020 MOV 3>837C,R0
7FC4 837C

7FC6 0240 ANDI RO,>2000
7FC8 2000

7FCA 13F4 JEQ Nl

7FCC 045B N2 B $R1I

7FCE 0203 C LI R3,C2
7FD0 7FE8

7FD2 04C1 CLR Rl

7FD4 04CO CLR RO

7FD6 3C73 CI DIV SR3+,R1

7FD8 0A40 SLA R0,4

7FDA E001 SOC R1,R0

7FDC 04C1 CLR Rl

7FDE 0283 CI R3,C2+8
7FE0 7FF0

7FE2 16F9 JNE CI

7FE4 C080 MOV R09R2
7FE6 045B B 3R11

7FE8 03E8 C2 DATA 1000,100,10, 1

7FEA 0064

7FEC 000A

7FEE 0001

END

PAGE

<w

<w

APPENDIX 5

* THIS IS A SUPPLEMENT FOR USE BY PEOPLE THAT

* ARE IN A EDITOR/ASSEMBLER ENVIRONMENT- THIS

* LISTING MAY BE TYPED IN AND RUN SY LESSONS.

* AS YOU TYPE IN EACH LESSON PUT AN END AT THE

* END. THEN TYPE OVER IT WHEN YOU ADD A NEW SECTION.

*

* THE DELUXE THING ABOUT THE THIS ASSEMBLER IS THAT

* YOU CAN "DEF" SECTIONS OF CODE THEN CALL THEM BY

t NAME WHEN YOU WANT TO "RUN" THEM.

t

* SO, WHEN YOU WANT TO RUN THE SECTION YOU JUST
* TYPED YOU ASSEMBLE IT, THEN SELECT "LOAD AND RUN"
* TYPE IN THE FILE NAME, THEN IT ASKS FOR ANOTHER
* FILE PUSH ENTER THEN IT SHOULD SAY "PROGRAM NAME"

* THATS WHEN YOU TYPE IN THE NAME YOU "DEF'ED".

»

% NOTE BE SURE YOUR "LABELS" EG. L4,L41,P1,P2,ETC..
* ALL START ALL THE WAY TO THE LEFTCFXR8T SPACE).

* IF NOT YOU WILL GET AN ASSEMBLER ERROR LIKE OUT OF

* RANGE.

*

%

%

% REPEAT FOR EACH LESSON, ADDING TO THE END
* OF THE PREVIOUS ONE.

*

REF VSBWs.KSCANs.VMBW s IN EACH LESSON (AT BEGINNING)

* LESSON FOUR

tttttttttttttttttttttttttttttt

* DRIVER ROUTINE

DEF LESS4

LESS4 CLR 3>8374

LI R8,>1000
L4 MOV R89R7

BL S)P

L41 DEC R7

JNE L41

JMP L4

*

* MOVING PADDLE ROUTINE

t

MOV R119R9

iCLEAR KEYBOARD SELECT

iSPEED OF PADDLE

:CALL PADDLE ROUTINE

iDELAY LOOP

%^^

PI

P2

P3

CLR R3

LI RISP6
BL @P4

BLWP ©KSCAN

MOVB S»8375,R3
ORI R3,>2000
CI R3,>6400
JEQ PI

CI R3,>7300
JEQ P2

JMP P3

CI R6,>0019
JEQ P3

INC R6

JMP P3

CI R6,>0002
JEQ P3

DEC R6

LI RlfP5
MOV R9,R1I

sSAVE RETURN

sLOAD Rl WITH BLANK PADDLE

sCALL KEYSCAN

sMOVE ASCII BYTE TO R3

sMASK TO TURN UPPER CASE TO LOWER

gCHECK FOR "d"

sIF FOUND JUMP TO MOVE RIGHT

sCHECK FOR "s"

sIF FOUND JUMP TO MOVE LEFT

sJUMP TO PRINT

sCHECK IF ALL THE WAY RIGHT

sCHECK IF ALL THE WAY LEFT

3LOAD Rl WITH SOLID PADDLE

s"TRICK" TO GET BACK TO DRIVER

t ROUTINE TO PRINT PADDLE

piI MOV R6,R0
AI RO,>0280
LI R2,3

BLWP 3VMBW

B SR11

PI5 TEXT
3> . 3«

Pi> TEXT
V 5»

ttttttttttttttttttt^ttttttttt

t

* LESSON FIVE

t

tt&&ttz&t&&t&&&ttzztz$tttt%%&

* DRIVER ROUTINE

DEF LESS5

LESS5 LI R8,>1000
L5 MOV R8SR7

BLWP 3M

L5I DEC R7

JNE L5I

JMP L5

t MOVING "A" ROUTINE

$

M DATA MR

DATA MM

sSPEED OF THE "A"

2CALL MOVING "A" ROUTINE

sDELAY

^

\ftypi/

EVEN

MR DATA >0000 RO

DATA >oooo Rl

BX DATA >ooio R2 a A

BY DATA >0005 R3 sY

IX DATA >oooi R4 sX INCREMENT

IY DATA >0001 R5 sY INCREMENT

DATA >0002 R6 sX MIN (LEFT WALL)

DATA >0003 R7 sY MIN (TOP WALL)

DATA >001B R8 sX MAX (RIGHT WALL)

DATA >OOI7 R9 :Y MAX (BOTTOM WALL)

DATA >4100 RIO s "A"

DATA >0000 Rll

DATA >2000 R12 a •• •»

DATA >0000 R13 SOLD WP

DATA >0000 R14 sOLD PC

DATA >oooo R15 SOLD STATUS

MM MOV

BL

R12,R1
3M5

C R2,R6 gHAS IT HIT THE LEFT

JNE Ml

NEG R4 sCHANGE X DIRECTION

Ml C

JNE

R2,R8
M2

sHIT RIGHT WALL?

NEG R4 sCHANGE X DIRECTION

M2 A R4,R2 sUPDATE X POSITION

C R3,R7 sHIT TOP?

JNE M3

NEG R5 sCHANGE Y DIRECTION

M3 C

JNE

R3gi R*?
M4

sHIT BOTTOM?

NEG R5 sCHANGE Y DIRECTION

M4 A

MOV

R5,R3
RIOjRl

sUPDATE Y POSITION

BL 3M5 sCALL PRINT

RTWP

* ROUTINE TO PRINT AT

$

M5

M6

MOV

SLA

A

CI

JH

R3,R0
RQ,5

R2,R0
RO,>02FF
M6

BLWP SVSBW

B 8R11

BO y 88 IS W IB (R2,R3)

sERROR CHECK

<w

%

* LESSON SIX

%

DEF LESS&

LESS6 LI R9,TX
L6 LI RO,>0100
L&l BLWP *R9

DEC RO

JNE L61

JMP L6

%

t BREAK POINT ROUTINE

TX DATA TW

DATA TT

TT BL 3T

DATA >0096

DATA O

DATA 15

DATA O

DATA 1

RTWP

TW

Tl

T2

T3

T4

BSS >20

MOV

MOV

MOV

MOV

MOV

MOV

MOV

DEC

JOC

MOV

JEQ

BL

BL

AI

MOV

DEC

JNE

MOV

JEQ

MOV

BL

BL

B

Rll,RIO
&R10+,R4
SR10+,R1
*R10+,R7
*R10+,R8
R13,R6
$R6+s,R2
Rl

Tl

RS,R8

T3

®C

3W

R4,MC
*R6+,R2
R7

T2

*R10+,R0
T4

R14,R2

®N

*R10

* WRITE A WORD ROUTINE

sWHERE TO PRINT

sFIRST REGISTER TO PRINT

SHOW MANY

sIF <>0 THEN CONVERT TO DECIMAL

sIF <>0 THEN PRINT "PC"

sREGISTERS FOR THIS ROUTINE

sSAVE LINK

sPASS PARAMETERS

sMOVE OLD WP TO R6

sGET VALUE OF OLD REGISTER

sSHOULD WE PRINT?

sCONVERT TO DECIMAL?

sCALL CONVERT ROUTINE

sCALL DISPLAY WORD ROUTINE

sGET ANOTHER REGISTER

sARE WE DONE?

sPRINT PC?

SPRINT PC

sCALL PAUSE

c

\j^/

w

Wl

W2

W3

«

LI

SRC

MOV

R3,4
R2, >C
r\2g w% 1MOV R2,R1

ANDI Rl,>OOOF
SRC Rl,8
AI Rl,>3000
CI R1,>3A00
JL W2JL

AI

CI

JL

CLR

MOV

INC R4

BLWP 3VSBW

DEC R3

JNE

B

Rl,>0700
R4,>0300
W3

R4

R4,R0

fcRll

* PAUSE ROUTINE

s"ROLL" WORD 12 PLACES RIGHT

sMASK OFF LAST NIBBLE

sSWAP BYTES

sCONVERT TO ASCII

sERROR CHECK

N CLR RO

MOV R0,3>8374 sCLEAR KEY SELECT

Nl BLWP 3KSCAN sKEYSCAN

MOVB S»8375,R0 sMOVE ASCII BYTE

CI RO,>2000 sCHECK FOR BLANK

JEQ N2

MOV 3>837C,R0 sMOVE STATUS

ANDI RO,>2000 sCHECK IF NEW KEY

JEQ Nl

N2 B »R11

§ CONVERT HEX TO DECIMAL

CI

C2

LI R3,C2
CLR Rl

CLR RO

DIV *R3+,R1
SLA R0,4
SOC Rl,RO

CLR Rl

CI R3,C2+8
JNE CI

MOV R0,R2
B $R11

DATA 1000,100,10,1

\fe^=^

%^y/

^

$$««$$$$$$$$$$$$$$««$»$««$««$$$

* ADVANCED

*

$$$$$$#$«$$«S$$$$$$SE$$«$$$*«$$$

DEF LESS&A

LESS6A CLR RO

L6A1 CLR Rl

L6A2 MOV R1,R2
MPY R0,R2
BLWP STX

INC Rl

CI Rl,>0020
JNE L6A2

INC RO

CI RO,>0020
JNE L6A1

JMP LESS6A

* LESSON SEVEN

LESS7

D

DEF LESS7

CLR S>8374

CLR R3

CLR R7

CLR R8

BLWP 31

LI R6,>0006
BL S>S

DATA >02D2,SC, >5
BL as

DATA >02EF,HS, >8
LI R4S >2F8
CLR R2

BL 3W

DEC R14

JGT D7

BL 3P

INV R13

JLT D6

BLWP 3M

LI Rl,>0014
C 3BY,R1
JL D6

sDRAWS A BORDER

sINITIALIZE PADDLE POSITION

sPRINT "SCORE"

sPRINT "HI SCORE"

sPRINT "OOOO"

sSLOW DOWN PADDLE

sMOVE "A" HALF AS OFTEN

sCHECK "A" VERTICAL POSITION

('BY' IS R3 IN "M" ROUTINE,

laijfr-'

Hij^'

\^/

D4

D5

D6

D7

D8

D9

DA

DB

DC

MOV

LI

C

JEQ

INC

DEC

JNE

JMP

R6,R0
Rl,>0003
R0,3BX
D5

RO

Rl

D4

D9

NEG 3>IY

MOVB R8,R14
INV R14

SRL R14,6
DEC R15

JGT D8

R15,>0080
R4,02D8
R8

R8S R2

S>W

D

RO,>0005
RO,3BY
R8,R7
DA

R8,R2
R8,R7

R4,>02F8

HERE IT IS A MEMORY LOCATION)

sIS "A" HITTING THE PADDLE?

sIF NOTs GAME OVER

sTHE SPEED OF THE "A" IS RELATED

TO THE SCORE COUNTER

2SLOW DOWN SCORE COUNTER

:REPLACE WITH " BL 3>C " FOR

DECIMAL SCORING

sPRINT SCORE USING "W" ROUTINE

3PUT "A"

gUPDATE '

AT TOP FOR NEXT

HI SCORE"

3>C

GAME

FOR

LI

LI

INC

MOV

NOP

NOP

BL

JMP

LI

MOV

C

JL

MOV

MOV

LI

NOP

NOP

BL

BL

DATA

BLWP

MOV

ANDI

JEQ

LI

LI

LI

BLWP

INC

DEC

JNE

CLR

JMP

MOV

MOV

MOV

3W

@S

>0284,0V,>0016
aKSCAN

S>837C,R0
RO,>2000

sREPLACE WITH " BL

DECIMAL SCORING

sPRINT "GAME OVER .

sKEYSCAN

RO,>0282
Rl,>2000
R2,>001A
3VSBW

RO

R2

DC

R8

D

§Rll+,RO
»R11+,R1
*R11+,R2

BLWP 3VMBW

B *Rii

(w

(^

L,

HS TEXT 'HI '

SC TEXT 'SCORE'

OV TEXT 'GAME OVER-PRESS A KEY'

DATA MR

DATA II

(WORK SPACE FOR "M" ROUTINE

II

II

12

13

LI

MOV

DEC

MOV

BL

DEC

C

JLE

BL

INC

C

JLE

BL

INC

C

JLE

LI

LI

RTWP

R1,>2A00
R6,R2
R2

R9,R3
3M5

R3

R7,R3
II

3M5

R2

R2,R8
12

3>M5

R3

R3,R9
13

R2,>0003
R3,>0005

sPRINT ROUTINE IN "M"

INITIALIZE

INITIALIZE

"A"

"A"

X POSITION

Y POSITION

Trutb Table

for AND

Q 1
0 0 0

1 0 X

Examples:
1100 1101 = CD

0000 1111 = OF

0000 1101 = OD

1010

1001
1000

0001

1000
0000

= Al

= 98
= 80

Truth Table

for OR

0 X
0 0 1

1 1 X

Examples:
1100 1101 =

oooo mi =
1100 1111 =

CD

OF

CF

1010

xoox
1011

0001

X0QQ
1001

= Al

= 98
= B9

Trutb Table

for XOR

.0 X.
0 0 1

X X 0

1011 1000 = B8

1111 0001 = Fl
1011 0000 = B0

1011 1000 = B8

XXXX QOQX = Fl
1111 1001 = F9

Examples:
1100 1101 = CD 1010 0001 = Al 1011 1000 = B8

0000 llll = OF XOQX XPQQ = 98 XXXX 000X = FX
1100 0010 = OD 0011 1001 = 39 0100 1001 = 49

\l^y

\^/

Xfavtotoj/'

INSTRUCTION TABLE

A: ADD

ABs ADD BYTES

ABS: ABSOLUTE VALUE

Alt ADD IMMEDIATE

ANDIs AND IMMEDIATE

Bs BRANCH

BL: BRANCH AND LINK

BLWP: BRANCH AND LOAD WORKSPACE POINTER
C: COMPARE WORDS

CB: COMPARE BYTES

CIs COMPARE IMMEDIATE

CLR: CLEAR

COC: COMPARE ONES CORRESPONDING

CZC: COMPARE ZEROS CORRESPONDING

DEC: DECREMENT

DECT: DECREMENT BY TWO

DIVs DIVIDE

INC: INCREMENT

INCT: INCREMENT BY TWO

INV: INVERT

JEQ: JUMP EQUAL
JGT: JUMP ARITHMETIC GREATER THAN
JH: JUMP LOGICAL HIGH

JHE: JUMP HIGH EQUAL
JL: JUMP LOGICAL LOW

JLE: JUMP LOW EQUAL
JLT: JUMP ARITHMETIC LESS THAN

JMP: JUMP

JNC: JUMP NO CARRY

JNE: JUMP NOT EQUAL
JNO: JUMP NO OVERFLOW

JOC: JUMP ON CARRY

JOP: JUMP ODD PARITY

LI: LOAD IMMEDIATE
LWPI: LOAD WORKSPACE POINTER IMMEDIATE
MOV: MOVE A WORD

MOVB: MOVE A BYTE

MPY: MULTIPLY

NEG: NEGATE

ORI: OR IMMEDIATE
RTWP: RETURN (WITH OLD) WORKSPACE POINTER
S: SUBTRACT
SB: SUBTRACT BYTES
SLA: SHIFT LEFT ARITHMETIC
SOC: SET ONES CORRESPONDING
SOCB: SET ONES CORRESPONDING BYTE
SRA: SHIFT RIGHT ARITHMETIC
SRC: SHIFT RIGHT CIRCULAR
SRL: SHIFT RIGHT LOGICAL
STST: STORE STATUS
STWPs STORE WORKSPACE POINTER

s^^

L-

EASY-BUG
II II .

"M"
"V"

"E"

"S"

"L"

REFERENCE

CANCEL A COMMAND

INSPECT AND/OR CHANGE CPU MEMORY
INSPECT AND/OR CHANGE VDP MEMORY
EXECUTE MACHINE LANGUAGE PROGRAM

SAVE CPU MEMORY

LOAD CPU MEMORY

LINE-BY-LINE

" AORG" SPECIFY A VALUE TO THE ASSEMBLER LOCATION COUNTER
" BSS" RESERVE A BLOCK OF MEMORY

" DATA" INITIALIZE MEMORY

" EQU" EQUATES A LABEL WITH A VALUE
" TEXT" ENTER A STRING OF ASCII

" END" EXIT ASSEMBLER

MIMI-MEM EQUATES

VSBW

VMBW

VSBR

VMBR

>6024

>6028

>602C

>6030

KSCAN >6020
>8374 CONTAINS KEYBOARD DEVICE NUMBER
>8375 RETURNS ASCII VALUE OF KEY

>837C GPL STATUS REGISTER

>8C02 VDPWA: VDP WRITE ADDRESS REGISTER
>8C00 VDPWD: VDP WRITE DATA REGISTER
>8800 VDPRD: VDP READ DATA REGISTER

c

GLOSSARY

>A: HEX DIGIT EQUAL TO 10 IN DECIMAL

ADDRESS; THE WAY TO IDENTIFY ONE OF 65535 POSSIBLE MEMORY

LOCATIONS

AND: LOGICAL OPERATOR SIMILAR TO "*": 1 AND 1 = 1, 1 AND 0=0

>B: HEX DIGIT EQUAL TO 11 IN DECIMAL

BIT: BINARY DIGIT

BINARY: NUMBER SYSTEM BASE 2

BREAK POINT: USED FOR TRACING A PROGRAM

BYTEs TWO NIBBLES - EIGHT BITS - ONE HALF A WORD

>C: HEX DIGIT EQUAL TO 12 IN DECIMAL

CHAIN: A NUMBER OF LINKS

CONTEXT: ENVIRONMENT DEFINED BY A SET OF WORKSPACE REGISTERS.

CPU: CENTRAL PROCESSING UNIT

>D: HEX DIGIT EQUAL TO 13 IN DECIMAL

>E: BEX DIGIT EQUAL TO 14 IN DECIMAL

>F: HEX DIGIT EQUAL TO 15 IN DECIMAL

GPL: GROM PROGRAMMING LANGUAGE

GROM: GRAGHIC READ ONLY MEMORY. SEQUENTIAL IN NATURE

HEXADECIMAL: NUMBER SYSTEM BASE 16

HIGH BYTE: LEFT BYTE OF A WORD

INDIRECT: USE OF A REGISTER AS A POINTER

LINK: A WAY TO TIE TWO THINGS TOGETHER

LOW BYTE: FIGHT BYTE OF A WORD

NIBBLE: ONE HEXADECIMAL DIGIT - FOUR BITS LONG

OR: LOGICAL OPERATOR SIMILAR TO "+": 1 OR 1 = 1, 1 OR 0 = 1

PROGRAM COUNTER: A SYSTEM REGISTER THAT INDICATES THE ADDRESS

OF THE NEXT INSTRUCTION

RAM: RANDOM ACCESS MEMORY

REGISTER: A WORD USED FOR A SPECIAL PURPOSE

STATUS REGISTER: A SYSTEM REGISTER THAT CONTAINS FLAGS THAT

INDICATE THE STATE OF THE COMPUTER. SEE PAGE 40 ED/ASM.

VDP RAM: NOT REALLY RAM? ACTS LIKE SEQUENTIAL READ-WRITE

MEMORY. USED BY VIDEO DISPLAY PROCESSOR & BASIC INTERPRETER

INFORMATION IN VDP CANNOT BE EXECUTED DIRECTLY BY THE MICRO

PROCESSOR

WORD: TWO BYTES - 16 BITS

^ WORKSPACE POINTER: A SYSTEM REGISTER THAT INDICATES THE
CURRENT ACTIVE SET OF WORKSPACE REGISTERS

WORKSPACE REGISTER: ONE OF A SET OF 16 REGISTERS

XOR: EXCLUSIVE OR - ONE OR THE OTHER BUT NOT BOTH

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	last-sheet

	back-cover

