

\(S5r"

ADDENDUM

Tutor Assembley Tutorial

Flease mark the -Following changes in your Tutor

Page L§§i2Q 0§:=i£r i.Qt-LQQ.

24 VII Change DATA >02D2,SC,>0005 to

DATA >02D2

DATA SC

DATA >0005

24 VII Change DATA >02EF,HS,>0008 to

DATA >02EF

DATA HS

DATA >000B

25 VII Change DATA >0284,OV,>0016 to

DATA >02S4

DATA OV

DATA >0016

These same changes should be made to the game listing- These changes
are syntax changes and will not change the assembled values.

TABLE OF CONTENTS

ASSEMBLY LANGUAGE TUTORIAL Page

FORWARD 1

PRE-LESSON 2

LESSON 1 8

LESSON II 10

LESSON III 12

LESSON IV 15

LESSON V 18

LESSON VI 21

LESSON VII 24

APPENDIX I.--HEX TO DECIMAL

APPENDIX 11- -TV SCREEN

APPENDIX III-ASCII CODES

APPENDIX IV..GAME LISTING

TRUTH TABLE

INSTRUCTION TABLE

REFERANCE CARD

GLOSSARY

EVALUATION CARD

This manual was created for the Softies by
Steve Barstad.

Additional Contributions: E.D.Barstad and

J.Shima.

Copyright (C) 1983 The Softies.

FORWARD

TUTOR IS DESIGNED TO AID YOU IN UNDERSTANDING ASSEMBLY

LANGUAGE FOR THE TI99/4A. THE TOOLS NECESSARY TO INTERACT TUTOR

WITH YOUR TI99/4A ARE:

1. MINI-MEMORY MODULE (MINIMEM)

2. CASSETTE TAPE PLAYER TO LOAD PROGRAMS NEW/LINES.
3. SOME BLANK CASSETTE TAPES

TO MAXIMIZE LEARNING IT IS RECOMMENDED THAT YOU ALSO

PURCHASE THE EDITOR/ASSEMBLER OWNFIR'S MANUAL. THIS IS AVAILABLE

FROM TEXAS INSTRUMENTS INCORPORATED, DALLAS, TEXAS OR THE
SOFTIES, 7300 GALLAGHER #229, EDINA, MINNESOTA.

TUTOR IS THE FIRST IN A SERIES OF HELPFUL STEP BY STEP

TEACHING AIDS FOR LEARNING ASSEMBLY LANGUAGE. TO GET THE MOST

OUT OF TUTOR, START WITH THE PRE-LESSON AND CONTINUE UNTIL ALL

THE LESSONS HAVE BEEN COMPLETED. MAKE SURE YOU FOLLOW ALL THE

THE DIRECTIONS AND PERFORM THE SIMPLE EXERCISES THAT ACCOMPANY

EACH LESSON. IF YOU ARE UNCERTAIN ABOUT SOMETHING GO BACK AND
RE-READ THAT SECTION.

WHEN YOU ARE FINISHED, YOU WILL HAVE TYPED IN A SIMPLE GAME

THAT RUNS IN ASSEMBLY LANGUAGE.

-1-

^li^',

PRE-LESSON

IMAGINE THAT YOU ARE A FOREIGN DIPLOMAT AND YOU HAVE AN

IMPORTANT MEETING WITH THE AMBASSADOR OF ANOTHER COUNTRY. IN

ORDER TO COMMUNICATE WITH THE AMBASSADOR YOU MUST SPEAK THROUGH

AN INTERPRETER. THIS CAN BE VERY VERY SLOW. THIS IS EXACTLY

WHAT HAPPENS WHEN WE USE BASIC. WHEN WE RUN A BASIC PROGRAM,
THE COMMANDS THAT WE WROTE ARE CONVERTED INTO MACHINE LANGUAGE

INSTRUCTIONS BY THE BASIC INTERPRETER. WHAT TUTOR WILL ATTEMPT

TO DO IS TO ELIMINATE THE MIDDLE MAN AND GIVE YOU A REMARKABLE

SPEED INCREASE. TUTOR WILL TRY TO TEACH YOU TO COMMUNICATE WITH
THE COMPUTER ON ITS OWN LEVEL.

YOUR TI UNDERSTANDS TWO NUMBER SYSTEMS IN THE MACHINE

LANGUAGE MODE, THEY ARE CALLED BINARY AND HEXADECIMAL. NEITHER

SYSTEM IS DIFFICULT TO LEARN ONCE YOU UNDERSTAND THE BASIC

PRINCIPLES. YOU DO NOT HAVE TO BE A MATHEMATICAL GENIUS TO USE

THEM. RELAX, TAKE A DEEP BREATH, AND READ ON.

LET'S BEGIN OUR DISCUSSION OF NUMBER SYSTEMS BY TAKING A

LOOK AT THE NUMBER SYSTEM WE USE EVERYDAY. FROM THERE, IT IS
EASY TO SEE THE SIMILARITIES BETWEEN THE SYSTEMS. THE NUMBER

SYSTEM WE COMMONLY USE IS CALLED THE DECIMAL OR BASE TEN SYSTEM.

IT COMES FROM THE LATIN ROOT DECIM MEANING TEN. WE DEVELOPED

THE SYSTEM BECAUSE WE WERE BLESSED WITH TEN FINGERS, WHO KNOWS

WHAT WOULD HAVE RESULTED IF WE WERE BLESSED WITH THIRTY-SEVEN

FINGERS.

THE DECIMAL SYSTEM IS SET UP ON A WORKING BASE OF TEN. THIS

NUMBER GIVES YOU TWO VERY IMPORTANT PIECES OF INFORMATION.

FIRST, IT TELLS YOU HOW MANY DIFFERENT SYMBOLS ARE AVAILABLE FOR

USE. (SINCE WE ARE DISCUSSING THE DECIMAL SYSTEM, WHERE THE

BASE IS TEN, WE USE THE TEN SYMBOLS 0,1,2,3,4,5,6,7,8,9.)
SECOND, THE BASE NUMBER TELLS US HOW TO ACTUALLY READ A NUMBER

WRITTEN IN THE DECIMAL SYSTEM.

-2-

EXAMPLE:

LET'S LOOK AT THE NUMBER 1839, AND BREAK IT INTO ITS
COMPONENT PARTS.

I _8 _3 5.

1000 100 10 1

THIS SAYS THAT THERE ARE:

9 ONES IN THE 1ST POSITION= 9

PLUS 3 * 101 IN THE 2ND POSITION= 30

PLUS 8 * 102 in THE 3RD POSITION= 800

PLUS 1 * 103 in THE 4TH POSITION=1000

1839

OR (1 * 1000) + (8 * 100) + (3 * 10) + (9 * 1) = 1839

BOTH BINARY AND HEXADECIMAL ARE SET UP ON EXACTLY THE SAME

PRINCIPLES. THE MAIN DIFFERENCES ARE THE BASE NUMBER, THE
AVAILABLE SYMBOLS AND THE POSITIONAL VALUE OF THE SYMBOLS.
LET'S ATTACK BINARY FIRST.

BINARY COMES FROM THE LATIN ROOT BI MEANING TWO. IT HAS A

WORKING BASE OF TWO. WE KNOW FROM OUR PREVIOUS DISCUSSION OF

THE DECIMAL SYSTEM THAT BINARY ONLY GIVES US TWO WORKING

SYMBOLS, NAMELY 0 AND 1. THE PLACE VALUES IN BINARY INCREASE BY

POWERS OF TWO.

LET'S LOOK AT A BINARY NUMBER AND SEE IF WE CAN INTERPRET
IT.

1 1 <2 1
8 4 2 1

-3-

THIS WOULD BE: 1*1=1
+ 0*2 = 0
+ 1*4 = 4
+1*8 =_g

13

OR (1 * 8) + (1 * 4) + (0 * 2) + (1 * 1) = 13. THEREFORE THE
DECIMAL EQUIVALENT OF THE BINARY NUMBER 1011 IS 13.

OKAY, SO ITS EASY TO INTERPRET A BINARY NUMBER INTO A
DECIMAL NUMBER, BUT HOW DO YOU GET FROM A DECIMAL NUMBER TO A
BINARY NUMBER. THE EASIEST WAY TO DO THIS IS TO PERFORM A
SERIES OF DIVISIONS. FIRST LET'S SET UP THE FIRST FOUR PLACES
IN THE BINARY SYSTEM.

8 4 2 1

1. CHOOSE A DECIMAL NUMBER BETWEEN 9
0 AND 15. WE'LL USE 9.

2. START WITH THE HIGHEST PLACE VALUE. 9/8 = 1 R 1
THAT VALUE IS 8. DIVIDE THE
NUMBER BY THIS VALUE GIVING "1"
AND A REMAINDER OF "1"

3. TAKE THE REMAINDER AND DIVIDE 1/4 = 0 R 1
BY THE NEXT HIGHEST PLACE VALUE.

4. CONTINUE ON DIVIDING BY EACH 1/2 = 0 R 1
SUBSEQUENT PLACE VALUE UNTIL 1/1 = 1 R 0
ALL PLACES ARE FILLED.

5. NOW WE PLACE THE NUMBERS IN
THEIR CORRECT POSITION AND 10 0 1
WE ARE FINISHED.

THIS MAY SEEM TEDIOUS SO HERE IS A BASIC PROGRAM:

10 INPUT A

20 IF A>15 THEN 10

30 IF A<0 THEN 110

40 FOR I = 3 TO 0 STEP -1
50 V = 2 A I
60 Al = INT(A / V)
70 PRINT Al;" ";
80 A = A - Al * V
90 NEXT I

100 PRINT

110 GOTO 10

120 STOP

_4-

NOW WE ARE READY FOR HEXADECIMAL. HEXADECIMAL COMES FROM

THE GREEK WORD HEX MEANING SIX AND THE LATIN WORD DECIM MEANING

W" TEN. THE COMBINATION OF THE TWO MEANS SIXTEEN. HEXADECIMAL IS

A BASE SIXTEEN SYSTEM. THE PLACE VALUES IN HEXADECIMAL INCREASE

BY POWERS OF SIXTEEN. WE KNOW THAT THERE ARE SIXTEEN WORKING

SYMBOLS IN HEXADECIMAL BECAUSE THE BASE NUMBER TELLS US THIS.

HOWEVER, THEY DO NOT FOLLOW THE STANDARD SYMBOL PATTERN OF

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 INSTEAD THE WORKING

SYMBOLS OF HEXADECIMAL ARE 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. THE

LETTERS TAKE THE PLACE OF THE TWO DIGIT NUMBERS, AS SUCH A=10,

B=ll, C=12, D=13, E=14, F=15. OTHER THAN THE UNIQUE SYMBOL

PATTERN, HEXADECIMAL WORKS THE SAME AS BINARY AND DECIMAL. IN

ALL REALITY HEXADECIMAL IS A SHORTHAND VERSION OF BINARY. IT

SIMPLY CONDENSES FOUR BINARY PLACES INTO ONE HEXADECIMAL PLACE.

NOW LET'S TRY TO INTERPRET A HEXADECIMAL NUMBER. OUR NUMBER

WILL BE:

4096

WE FIND THAT

3 _A E.

256 16 1

14 * 160 — 14

10 * 161 = 160

3 * 162 = 768

1 * 163 = 409$

5038

OR (1 * 4096) + (3 * 256) + (10 * 16) + (14 * 1) = 5038

-5-

TO CHANGE A DECIMAL NUMBER TO HEXADECIMAL YOU MUST CONDUCT A

SERIES OF DIVISIONS.

1. SET UP FOUR HEX PLACES.

4096 256 16 1

2. CHOOSE A DECIMAL NUMBER BETWEEN

0 AND 65535. WE WILL USE 1389. 1389.

3. DIVIDE BY THE VALUE IN THE 1389/4096 = OR 1389

LEFTMOST PLACE

4. NOW DIVIDE BY THE NEXT 1389/256 = 5 R 109

HIGHEST HEX PLACE.

5. REPEAT THE PROCESS. 109/16 = 6 R 13

13/1 = D R 0

6. NOW PLACE THE SYMBOLS IN

THEIR CORRECT ORDER. >056D

THIS PROCESS IS TIME CONSUMING AND THE DIVISION CAN GET

MESSY, SO TO MAKE IT EASIER ON YOU TYPE IN THIS SIMPLE PROGRAM.

THIS PROGRAM WILL CHANGE DECIMAL NUMBERS BETWEEN 0 AND 255 INTO

HEXADECIMAL NUMBERS.

5 H$="0123456789ABCDEF"
10 INPUT A

20 IF A < 0 THEN 90
30 IF A > 255 THEN 10
40 Tl = INT(A/16)
50 T2 = A - (16 * Tl)
60 PRINT SEG$(H$,T1+1,1);
70 PRINT SEG$(H$,T2+1,1)
80 GOTO 10

90 STOP

ANOTHER WAY TO CONVERT BETWEEN SYSTEMS IS TO USE TABLES (SEE

APPENDIX ONE).

-6-

A FEW DEFINITIONS:

BIT IS AN ABREVIATION FOR BINARY DIGIT. A BIT CAN HAVE A VALUE

^W EITHER 1 OR 0.
A NIBBLE IS A HEXADECIMAL DIGIT. IT IS AN ABREVIATION FOR FOUR

BITS. A NIBBLE CAN HAVE A VALUE FROM >0 TO >F.

A BYTE IS TWO NIBBLES. >D4 IS A BYTE. THE LARGEST BYTE IS >FF.

A WORD IS TWO BYTES. IT IS ALSO FOUR NIBBLES, OR SIXTEEN BITS.

>8375 IS A WORD.

GET USED TO SEEING THE n>" IN FRONT OF NUMBERS. IT WILL

INDICATE THAT THE NUMBER IS A HEXADECIMAL NUMBER. IN THE

LESSONS THAT FOLLOW, YOU WILL BE SEEING IT OFTEN.

ONE MORE THING AND WE WILL BE READY TO GO. CAREFULLY READ

PAGES 4-6 OF THE LINE-BY-LINE ASSEMftTiER MANUAL. FOLLOW THE

INSTRUCTIONS TO INITIALIZE AND LOAD "LINES/NEW" INTO THE MODULE

NOW WE ARE READY TO GO. TAKE A DEEP BREATH, HOLD ON TO YOUR

HAT, AND LETS BEGIN.

-7-

^g^

LESSON I

WELCOME TO THE WONDERFUL WORLD OF TI99 MACHINE LANGUAGE. WE

HOPE THAT WHEN YOU ARE DONE WITH THIS TUTORIAL YOU WILL HAVE THE

NECESSARY VOCABULARY AND WORKING KNOWLEDGE TO BE ABLE TO WRITE

AND ENJOY MACHINE LANGUAGE.

THE TMS9900 IS A 16 BIT MACHINE. WHAT THIS MEANS IS THAT THE

LENGTH OF MOST OF IT'S INSTRUCTIONS ARE 16 BITS (ONE WORD) LONG,

IT TAKES 16 BITS TO UNIQUELY IDENTIFY ANY GIVEN MEMORY LOCATION,
AND THE REGISTERS ARE 16 BITS LONG.

ALL COMPUTERS HAVE WHAT ARE CALLED REGISTERS. EACH COMPUTER

USES AND IMPLEMENTS REGISTERS IN ITS OWN WAY. IN SOME MACHINES

REGISTERS ARE USED VERY LITTLE. IN THE Tl, THEY ARE USED

ALOTM!!! THEREFORE THE BEST PLACE TO START IS TO GIVE A QUICK

DISCUSSION OF THE Tl REGISTER. Tl REFERS TO ITS REGISTERS AS

WORKSPACE REGISTERS. THE REASON FOR THIS WILL BE EXPLAINED A

LITTLE LATER. THERE ARE 16 OF THESE REGISTERS, EACH 16 BITS

LONG. INTO ANY OF THESE REGISTERS CAN BE PUT 16 BITS OF

INFORMATION. THE INFORMATION COULD BE DATA OR IT COULD BE AN

ADDRESS. REGISTERS ARE LABELED R0,R1...R15. IF YOU WANT, YOU

CAN THINK OF THEM AS "BASIC" VARIABLES. INFORMATION IS STORED

IN THEM FOR SAFE KEEPING, AND LATER USED IN A VARIETY OF WAYS.

ONE THING THAT A REGISTER IS GOOD FOR IS HOLDING A RETURN

ADDRESS FROM A SUBROUTINE CALL. WHEN THE Tl DOES A "SIMPLE"

SUBROUTINE CALL, (BL: BRANCH & LINK) IT PUTS THE ADDRESS OF THE

NEXT INSTRUCTION INTO REGISTER Rll. WHEN THE SUBROUTINE IS

DONE, ALL THAT IS NECESSARY TO DO IS TO BRANCH TO THE ADDRESS IN

Rll. THE MACHINE LANGUAGE INSTRUCTION FOR THIS WOULD BE:

B *R11

THE STAR IN FRONT OF THE Rll TELLS THAT THE INFORMATION IN THE

REGISTER IS AN ADDRESS, NOT DATA OR A PROGRAM. THIS KIND OF

BRANCHING IS CALLED, INDIRECT. THE REASON IS THAT WE ARE NOT

BRANCHING DIRECTLY TO Rll BUT INSTEAD WE USE Rll TO TELL US

WHERE TO GO.

-8-

SAMPLE PROGRAM:

JUST TO SHOW YOU THAT MACHINE LANGUAGE REALLY WORKS, WE WILL

WRITE THE SIMPLEST PROGRAM. GO TO THE MAIN MENU, TYPE:

2
ENTER

M7D00 ENTER

04 ENTER

IB ENTER

E7D00 ENTER

TO GET TO EASY BUG

TO GET TO COMMAND LEVEL
GO TO MODIFY MODE STARTING AT >7D00
GIVE MEMORY LOCATION >7D00 THE VALUE >04
GIVE LOCATION >7D01 THE VALUE >5B
CANCEL MODIFY MODE

EXECUTE A MACHINE PROGRAM STARTING AT >7D00

IF YOU GOT ANOTHER QUESTION MARK, YOU DID EVERY THING RIGHT.

THE PROGRAM THAT WE JUST WROTE IS:

B *R11

WHEN WE TOLD EASY BUG TO EXECUTE OUR PROGRAM (E7D00), IT CAUSED

A BRANCH AND LINK (" BL @>7D00") TO OUR SUBROUTINE. ALL WE DID

WAS TO BRANCH BACK. NOW WE KNOW HOW TO EXECUTE A MACHINE

LANGUAGE PROGRAM AND RETURN BACK

WHEN WE ENTERED OUR PROGRAM, WE MODIFIED CENTRAL PROCESSING

UNIT (CPU) RAM. CPU RAM IS WHERE ALL MACHINE LANGUAGE PROGRAMS
^ ARE PUT.

AS LONG AS WE ARE IN EASY BUG, LETS TRY ONE MORE OF ITS

FEATURES. VIDEO DISPLAY PROCESSOR (VDP) RAM IS THE RAM THAT

CONTAINS THE VALUES OF WHAT IS DISPLAYED ON THE SCREEN. VDP RAM

LOCATION >0130 CORRESPONDS TO A SPOT IN THE MIDDLE OF THE SCREEN

ABOUT ONE THIRD OF THE WAY DOWN (SEE APPENDIX II). NOW THERE IS

A >20, THE HEX VALUE FOR A SPACE, AT THAT LOCATION. IN THE

EXAMPLE BELOW, WE CHANGE IT TO >41, THE CODE FOR AN "A". TYPE:

V0130 ENTER

11 ENTER

WHAT HAPPENS IF WE TYPE ANOTHER "41 ENTER"? (HINT: WE ARE

PUTTING IT INTO THE NEXT SCREEN LOCATION - BUT - THE SCREEN HAS

SCROLLED SINCE THE LAST TIME).

-9-

\^gy

LESSON II

REGISTERS ARE NO GOOD UNLESS WE CAN PUT INFORMATION INTO THEM.

IN THIS LESSON YOU WILL LEARN HOW TO DO JUST THAT. FOR EXAMPLE,

IF WE WANT TO PUT THE NUMBER >0123 INTO RO WE COULD DO THAT BY:

LI R0,>0123

THIS SAYS LOAD IMMEDIATE RO WITH THE VALUE >0123. ANOTHER WAY

TO FILL A REGISTER IS TO PUT A COPY OF A DIFFERENT REGISTER INTO

IT. AN INSTRUCTION FOR THIS IS:

MOV R0,R1

THIS SAYS TO MOVE A COPY OF RO INTO Rl. THE INSTRUCTION LEAVES

RO INTACT. THIS INSTRUCTION YOU WILL BE USING OFTEN. MACHINE

LANGUAGE PROGRAMS ARE GENERALLY FULL OF DATA TRANSFERS OF ONE

KIND OR ANOTHER.

DID YOU NOTICE THAT IN THE FIRST EXAMPLE THE DATA WENT FROM

THE RIGHT OPERAND TO THE LEFT ONE? THIS IS VERY TYPICAL OF AN

"IMMEDIATE" TYPE INSTRUCTION. IN THE SECOND EXAMPLE, THE DATA

MOVED FROM THE LEFT OPERAND TO THE RIGHT. THIS IS THE WAY MOST

OTHER INSTRUCTIONS WORK.

THE WAY TO CALL MANY OF THE TI'S SYSTEM SUBROUTINES IS TO USE

THE "BLWP" INSTRUCTION. THIS STANDS FOR BRANCH AND LOAD THE

WORKSPACE POINTER. WHAT THIS INSTRUCTION DOES WILL BE COVERED
LATER.

NOW WE CAN WRITE ANOTHER PROGRAM:

LI R0,>0130
LI Rl,>4100
BLWP @>6024
B *R11

THIS TIME WE WILL INPUT IT INTO THE COMPUTER USING THE

LINE-BY-LINE ASSEMBLER PROGRAM. GO TO THE MAIN MENU, TYPE "3"

TO GET TO MINI-MEM. TYPE "2" TO "RUN". TYPE "NEW" IN RESPONSE

TO THE PROGRAM PROMPT. FOLLOW THE INSTRUCTIONS BELOW. MAKE

SURE TO TYPE AT LEAST ONE SPACE AT THE BEGINNING OF EACH LINE.

THE SPACE GOES IN THE LABEL FIELD. THIS IS BECAUSE SO FAR WE

-10-

HAVE HAD NO NEED FOR A LABEL.

W AORG >7D0Q ENTER
LI R0,>0130 ENTER

LI Rl.>4100 ENTER
BLWP P>6024 ENTER
B *R11 ENTER
ENp ENTER

ENTER

IF YOU DID NOT GET THE MESSAGE "0000 UNRESOLVED REFERENCES",

GO BACK AND CHECK WHAT YOU TYPED. SOMETIMES YOU CAN CORRECT

YOUR MISTAKE, SOMETIMES YOU WILL HAVE TO START OVER WITH "NEW".

GO TO EASY BUG AND DO AN "E7D00". AN "A" SHOULD APPEAR ON THE

SCREEN AND ANOTHER "?" SHOULD APPEAR.

IN

THIS PROGRAM WE USED A SYSTEM UTILITY CALLED VSBW. THIS ROUTINE

MOVES A SINGLE CHARACTER TO THE SCREEN. FOR MORE INFORMATION

SEE PAGE 35 MINI-MEM OWNER'S MANHAT.- IN THE MINIMEM ENVIRONMENT

THIS ROUTINE IS LOCATED AT MEMORY LOCATION >6024.

WHEN USING THE "LINE-BY-LINE ASSEMBLER", THE "R" IN FRONT OF

/ REGISTER NUMBERS IS OPTIONAL, THOUGH HIGHLY RECOMMENDED FOR EASE

W OF READING. MANY INSTRUCTIONS CAN HAVE EITHER A REGISTER OR AN
ABSOLUTE MEMORY LOCATION AS AN OPERAND. TO HELP THE ASSEMBLER

TELL THEM APART, WE MUST PUT AN n@" IN FRONT OF A NUMBER IF IT

IS TO INDICATE AN ABSOLUTE MEMORY LOCATION.

ADVANCED EXAMPLE:

AORG >7D00

LI R0,>0045
LI R1,S
LI R2,>000E
BLWP @>6028
B *R11

S TEXT 'THIS IS A TEST'
SYM

END

THIS EXAMPLE USES A ROUTINE CALLED VMBW WHICH DOES A MULTI-BYTE

WRITE TO VDP RAM. IT ALSO MAKES USE OF A LABEL.

-11-

LESSON III

THE THING THAT COMPUTERS DO BEST IS DOING THE SAME THING OVER

AND OVER AND OVER AGAIN. SO FAR WE HAVE BEEN HAVING IT DO ONE

THING ONCE. NOW WE'LL MAKE IT DO SOME REAL WORK. LET'S HAVE

THE COMPUTER FILL THE SCREEN WITH "A"S. THE PROGRAM WOULD BE:

AORG >7D00

LI R0,>02FF
LI Rl,>4100

L BLWP @>6024

DEC RO

JOC L

B *R11

END

USE "NEW" TO ENTER THIS PROGRAM. USE EASY BUG TO EXECUTE IT.

THIS PROGRAM WILL FILL THE SCREEN FROM THE BOTTOM TO THE TOP.

THE LOOP WILL EXECUTE EXACTLY >0300 TIMES. THE INSTRUCTION THAT

CAUSES THE LOOPING IS " JOC L". "JOC" STANDS FOR JUMP ON CARRY.

THE CARRY FLAG IS ONE OF THE BITS OF THE STATUS REGISTER. THE

STATUS REGISTER IS NOT ONE OF YOUR WORKSPACE REGISTERS. THE

CARRY FLAG IS CONDITIONED ANY TIME ANYONE DOES AN ARITHMETIC

OPERATION. THE OPERATION THAT WE DID WAS DEC. "DEC" STANDS FOR

DECREMENT. " DEC RO" TELLS THE COMPUTER TO SUBTRACT ONE FROM

RO. IF RO IS NOT ZERO, THE CARRY FLAG WILL BE SET TO "1", THAT

IS, THERE WILL BE A CARRY. IF RO IS ZERO, WHEN WE TRY TO

SUBTRACT, WE WILL HAVE TO BORROW ONE TO DO IT. WE BORROW IT

FROM THE CARRY FLAG. THEREFORE THE CARRY FLAG WILL NO LONGER BE

SET; THERE WILL BE NO CARRY. WHEN THERE IS NO CARRY, THE LOOP

WILL BE DONE, WE WILL DROP OUT OF IT, AND BRANCH BACK TO EASY

BUG. FOR MORE INFORMATION ON THE STATUS REGISTER AND THE STATUS

BITS, SEE PAGE 40 OF THE EDITOR/ASSEMBLER OWNER'S MANUAL.

ANOTHER WAY TO FILL THE SCREEN WOULD BE FROM THE TOP DOWN.

THAT PROGRAM WOULD BE:

-12-

AORG >7D00

CLR RO

LI Rl,>4100
L BLWP @>6024

INC RO

CI R0,>0300
JNE L

B *R11

END

" CLR RO" STANDS FOR CLEAR RO. WHAT THIS DOES IS TO SET THE
WHOLE WORD OF RO TO ZERO. THIS IS AN ABREVIATION FOR " LI

R0,>0000". " INC RO" SAYS TO INCREMENT RO (BY ONE). WE WANT
THIS LOOP TO START AT ZERO, THE FIRST LOCATION ON THE SCREEN.
WE KNOW WE ARE DONE WHEN RO IS EQUAL TO >03 00. SO WE (" CI
R0,>0300") COMPARE IMMEDIATE RO WITH >0300. AND WE (" JNE L"
JUMP (WHILE) NOT EQUAL TO L.

ADVANCED EXAMPLE:

TX

AORG >7D00

CLR RO :1 WHERE TO PRINT
LI Rl,>4100 :2 WHAT TO PRINT
LI R2,>02FF :3 HOW MANY TO PRINT
ORI R0,>4000 :4

SWPB RO :5

MOVB R0,@>8C02 :6 LOW BYTE
SWPB RO ;•7
MOVB R0,@>8C02 :8 HI BYTE
MOVB R1,@>8C00 :9
DEC R2 :10
JNE L :11
B *R11 :12
TEXT ' PRINT THIS' :13 USED IN THE NEXT
END

"ORI" IS "OR" IMMEDIATE. "SWPB" IS SWAP BYTES. "SWPB" IS USED

TO EXCHANGE THE BYTES IN A WORD WITH EACH OTHER. IN THIS CASE

IT IS USED TO KILL SOME TIME AND ALSO TO PUT THE PROPER BYTE IN

THE FIRST POSITION. LINES 4-8 SET UP A WRITE TO VDP RAM

STARTING AT THE LOCATION SPECIFIED IN RO. FOR MORE INFORMATION

SEE PAGE 266 OF THE EDITOR/ASSEMBLER OWNER'S MANUAT,.

-13-

Nia^-

7D00 CLR RO :1
7D02 LI R1.>7D24 ;2
7D06 LI R2,>000C :3
7D0A ORI R0,>4000 :4
7D0E SWPB RO :5
7D10 MOVB R0,@>8C02 :6
7D14 SWPB RO :7
7D16 MOV R0,@>8C02 :8
7D1A L MOVB *R1+.@>8C00 ll
7D1E DEC R2 :10
7D20 JNE L :11
7D22 B *R11 :12
7D24 TX TEXT

END

' PRINT THIS1 :13

THE UNDERLINED LINES ARE THE ONLY ONES THAT ARE DIFFERENT

FROM PREVIOUS EXAMPLE. TO CHANGE THEM YOU COULD RETYPE THE

WHOLE PROGRAM OR YOU COULD USE AORG COMMAND TO SET THE LOCATION

COUNTER TO THE ADDRESS OF THE LINE YOU WANT TO CHANGE. AFTER

YOU HAD CHANGED THE COUNTER, YOU CAN ENTER THE NEW FORM OF THE

LINE. AN EXAMPLE OF HOW TO DO THIS WOULD BE:

AORG >7D02

LI R1,>7D24
LI R2,>000A
AORG >7D1A

MOVB *R1+,@>8C00
END

IN LESSON ONE WE LEARNED HOW TO USE INDIRECT ADDRESSING WITH A

BRANCH COMMAND. LINE #9 IS AN EXAMPLE OF USING IT WITH A MOVE

COMMAND. IF YOU REMEMBER, WHEN WE USE INDIRECT ADDRESSING WE

PUT THE ADDRESS OF THE OPERAND INTO THE REGISTER. THIS EXAMPLE

IS DIFFERENT IN THAT IT ALSO ILLUSTRATES AUTO-INCREMENTING.

AUTO-INCREMENTING MEANS THAT EACH TIME WE FINISH EXECUTING THE

INSTRUCTION, THE VALUE IN THE REGISTER IS INCREMENTED. IN OUR

EXAMPLE, BECAUSE WE WERE MOVING BYTES, THE REGISTER IS

INCREMENTED BY ONE. IF WE USE AUTO-INCREMENT WITH AN

INSTRUCTION THAT INVOLVES WORDS, THE REGISTER IS INCREMENTED BY
TWO.

-14-

LESSON IV

MANY TIMES THE FLOW OF CONTROL OF A PROGRAM IS NOT LINEAR.

SOMETIMES ALL THAT IS NEEDED IS A LOOP, BUT SOMETIMES WHAT IS

CALLED FOR IS A JUMP TO A SUBROUTINE. SUBROUTINES ARE SEGMENTS

OF CODE THAT ARE NOT IN THE MAIN STREAM OF THE PROGRAM. THEY

MAY BE AT THE BEGINNING OR AT THE END. THE REASONS FOR USING

SUBROUTINES IN MACHINE LANGUAGE ARE MUCH THE SAME AS IN BASIC.

IT MAY BE TO MAKE THE PROGRAM EASIER TO READ, OR MAYBE BECAUSE

THAT PIECE OF CODE IS USED BY DIFFERENT PARTS OF THE PROGRAM.

ONE KIND OF SUBROUTINE CALL IS "BL". "BL" STANDS FOR BRANCH AND

LINK. WHEN WE DO A BRANCH AND LINK, THE COMPUTER SAVES THE

ADDRESS OF THE STATEMENT AFTER THE "CALL". THAT ADDRESS TELLS

THE SUBROUTINE WHERE TO GO WHEN IT IS DONE. THIS INSTRUCTION

PUTS THE RETURN ADDRESS INTO Rll . VERY OFTEN WE HAVE TO SAVE

THIS VALUE SOMEWHERE ELSE SO THAT FURTHER BRANCHING AND LINKING

CAN TAKE PLACE. HERE IS AN EXAMPLE THAT PRINTS AN "A" AT A

GIVEN X AND Y COORDINATE:

XY

AORG >7D00

MOV Rll,RIO :1
LI R4,>0010 :2
LI R5,>0015 :3
LI Rl,>4100 :4

BL @XY j:5
B *R10 •:6
MOV R5,R0 :•7
SLA R0,5 :8
A R4,R0 :9
BLWP @>6024 j10
B *R11 :11
END

LINE 1: THIS LINE SAVES THE LINK GENERATED BY EASY BUG'S CALL TO

OUR SUBROUTINE. WE PUT IT INTO RIO.

LINE 2: R4 IS THE X COORDINATE OF WHERE WE WILL PRINT AN "A"

LINE 3: R5 IS THE Y CO-ORDINATE

LINE 4: LOAD Rl WITH AN "A"

LINE 5: BRANCH AND LINK TO OUR PRINT SUBROUTINE

-15-

LINE 6: RETURN TO EASY BUG.

LINE 7: COPY R5 INTO RO

LINE 8: SHIFT LEFT ARITHMETIC (" SLA RO"). EVERY TIME A WORD

IS SHIFTED ONE PLACE LEFT, IT IS EFFECTIVELY

MULTIPLIED BY 2. SHIFTING IT LEFT 5 PLACES WILL

MULTIPLY IT BY 32.

LINE 9: ADD (" A R4,R0") R4 TO RO. AT THIS POINT R0=32*Y+X

LINE 10: PRINT AN "A" AT THE LOCATION WE CALCULATED

LINE 11: RETURN BACK TO LINE 6

TYPE TBIS PROGRAM IN. EXECUTE IT. NOW TRY TO SAVE IT.

CONNECT YOUR TAPE RECORDER. TYPE &2SM ENTER. THIS TELLS

EASY-BUG TO SAVE MEMORY STARTING AT LOCATION >7D00. WHEN IT

ASKS FOR "TO", TYPE 7P3Q. THIS TELLS IT TO SAVE THROUGH >7D20.

FOLLOW THE INSTRUCTIONS ON THE SCREEN. TO CHECK IF IT WORKED,
GO TO MODIFY MODE AND PUT >00"S IN MEMORY STARTING AT >7D00.

NOW LOAD THE PROGRAM BACK IN AND SEE IF YOU CAN STILL EXECUTE

IT. SINCE THERE WILL BE WRITING ON THE SCREEN ALREADY, FINDING

THE NEW "A" MAY BE A LITTLE BIT TRICKY

-16-

\&r-

EXERCISE!:

AORG >7D00

LWPI >70B8

CLR @>8374

LI R8,>1000
D MOV R8,R7

BL @P
Dl DEC R7

JNE Dl

JMP D

AORG >7E00

P MOV R11,R9
CLR R3

LI R1,P6
BL @P4
BLWP @>6020

MOVB <§>8375,R3
ORI R3,>2000
CI R3,>6400
JEQ PI

CI R3,>7300
JEQ P2

JMP P3

PI CI R6,>0019
JEQ P3

INC R6

JMP P3

P2 CI R6,>0002
JEQ P3

DEC R6

P3 LI R1,P5
MOV R9,R11

P4 MOV R6,R0
AI R0,>0280
LI R2,3
BLWP @>6028

B *R11

P5 TEXT i i

P6 TEXT i i

:DRIVER ROUTINE

:SEE LESSON 5

:CLEAR KEYBOARD SELECT
:SET SPEED OF PADDLE

:CALL PADDLE ROUTINE
:DELAY LOOP

:MOVING PADDLE ROUTINE
:SAVE RETURN

:LOAD Rl WITH A BLANK PADDLE
:ERASE PADDLE

:CALL KEYSCAN

:MOVE ASCII BYTE INTO R3

:MASK TO TURN UPPER CASE INTO LOWER
:CHECK FOR "d"

:IF FOUND JUMP TO MOVE RIGHT
:CHECK FOR "s"

:IF FOUND JUMP TO MOVE LEFT
:JUMP TO PRINT

•.CHECK IF ALL THE WAY RIGHT

CHECK IF ALL THE WAY LEFT

LOAD Rl WITH SOLID PADDLE
"TRICK" TO GET US BACK TO DRIVER

ENTER AND EXECUTE (YOU WILL HAVE TO TURN OFF THE COMPUTER TO

EXIT). SAVE THE "P" ROUTINE (>7E00 - >7E53). YOU WILL NEED IT

LATER. IF YOU WANT TO CHECK TO SEE IF YOU TYPED IT IN RIGHT,

THERE IS A LISTING IN APPENDIX 4 THAT GIVES THE ADDRESSES AND

THE ASSOCIATED VALUES FOR THE "P" ROUTINE.

-17-

N*a^

LESSON V

TI CALLS ITS REGISTERS WORKSPACE REGISTERS BECAUSE THEY

CAN BE USED TO DEFINE AN ENVIRONMENT THAT GIVES SUBROUTINES A

UNIQUE CONTEXT IN WHICH TO OPERATE. YOU, THE USER, HAVE THE

ABILITY TO SPECIFY WHERE THE WORKSPACE REGISTERS WILL BE IN

MEMORY. INFACT, YOU CAN HAVE AS MANY SETS OF REGISTERS AS YOU

WANT. THE SET THAT IS CURRENTLY ACTIVE IS THE ONE POINTED TO BY

THE WORKSPACE POINTER. WHEN YOU CHANGE WHICH SET OF REGISTERS

YOU ARE USING, THIS IS REFERRED TO AS A CONTEXT SWITCH. ONE

INSTRUCTION THAT CAUSES A CONTEXT SWITCH IS "LWPI". IN THE LAST

EXAMPLE WE USED " LWPI >70B8" TO LOAD IMMEDIATE THE WORKSPACE

POINTER WITH THE VALUE >70B8. THIS INSTRUCTION DESTROYS WHAT

WAS IN THE POINTER SO CARE MUST BE TAKEN TO SAVE IT FIRST. THE

REASON WE USED "LWPI" IN THE PREVIOUS EXAMPLE WAS BECAUSE

EASY-BUG USES THE GPL WORKSPACE REGISTERS. THESE REGISTERS ARE

LOCATED AT >83E0, AND ARE USED BY GPL ROUTINES. KSCAN IS A GPL

ROUTINE AND WOULD CAUSE SIDE EFFECTS TO OUR PROGRAM. WE AVOID

THE PROBLEM BY SETTING UP OUR OWN REGISTERS. THE ONES THAT WE

USED ARE CALLED USRWSP AND ARE LOCATED AT >70B8.

ANOTHER INSTRUCTION THAT CAUSES A CONTEXT SWITCH IS "BLWP".

"BLWP" STANDS FOR BRANCH AND LOAD THE WORKSPACE POINTER. TO USE

A "BLWP" INSTRUCTION, YOU MUST SET UP A PAIR OF WORDS. THE

FIRST WORD IS A POINTER TO A SET OF REGISTERS, THE SECOND IS AN

ENTRY POINT INTO YOUR SUBROUTINE. WHEN ONE EXECUTES THIS

INSTRUCTION, MANY THINGS HAPPEN. FIRST THE COMPUTER DOES A

CONTEXT SWITCH, THEN IT PUTS THE OLD WP, THE OLD PC AND THE

VALUE OF THE OLD STATUS REGISTER INTO THE NEW REGISTERS R13-R15.

FINALLY THE COMPUTER BRANCHES TO THE SUBROUTINE.

AORG >7D00 :DRIVER

LI R8,>1000 :SPEED OF THE "A"
z MOV R8,R7

BLWP @M :MOVING "A" SUBRO
Zl DEC R7

JNE Zl

JMP Z

:DELAY

-18-

\fifesr

M

MR

MM

Ml

M2

M3

M4

M5

M6

AORG >7E60

DATA MR

DATA MM

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

MOV

BL

C

JNE

NEG

C

JNE

NEG

A

C

JNE

NEG

C

JNE

NEG

A

MOV

BL

RTWP

MOV

SLA

A

CI

JH

BLWP

B

END

>0000

>0000

>0010

>0005

>0001

>0001

>0002

>0003

>001B

>0017

>4100

>0000

>2000

>0000

>0000

>0000

R12,R1
@M5

R2,R6
Ml

R4

R2,R8
M2

R4

R4,R2
R3,R7
M3

R5

R3,R9
M4

R5

R5,R3
R10,R1
@M5

R3,R0
R0,5
R2,R0
R0,>2FF
M6

@>6024

*R11

RO

Rl

R2

R3

R4

R5

R6

R7

R8

R9

RIO

Rll

R12

R13

R14

R15

MOVING "A" ROUTINE

:VSBW ADDRESS

:VSBW DATA

:X

:Y

:X INCREMENT

:Y INCREMENT

:X MIN (LEFT WALL)
:Y MIN (TOP WALL)
:X MAX (RIGHT WALL)
\Y MAX (BOTTOM WALL)
:"A"

:"BL" RETURN ADDRESS
, n ii

:OLD WP

:OLD PC

;OLD STATUS

:HAS IT HIT THE LEFT WALL?

:CHANGE X DIRECTION
:HIT RIGHT WALL?

:CHANGE X DIRECTION
:UPDATE X POSITION

:HIT TOP?

:CHANGE Y DIRECTION
:HIT BOTTOM?

:CHANGE Y DIRECTION
:UPDATE Y POSITION

-.CALL PRINT

:PRINT AT "X","Y" (R2,R3)
ROUTINE

:ERROR CHECK

-19-

THE FIRST THREE LINES ARE A SHORT DRIVER PROGRAM, THEY CALL OUR
SUBROUTINE AND THEN RETURN. THE NEXT TWO LINES ARE A POINTER TO

OUR SET OF REGISTERS, AND A POINTER TO THE BEGINNING OF OUR

SUBROUTINE. A "BLWP" TO THE FIRST OF THESE POINTERS CAUSES A

CONTEXT SWITCH (CHANGING OF THE WP) AND ALSO CAUSES OUR
SUBROUTINE TO BE EXECUTED. IN ADDITION, THE OLD WP, THE OLD
PROGRAM COUNTER, AND THE OLD STATUS REGISTER ARE PUT INTO THE
NEW REGISTERS R13,R14,R15 RESPECTIVELY.

DID YOU NOTICE THAT A LOT OF THE REGISTERS ARE ALREADY

INITIALIZED. THE NICE THING ABOUT A CONTEXT SWITCH IS THAT AN
ENVIRONMENT CAN BE READY FOR YOU TO GO IN AND USE.

TYPE THIS IN, RUN IT, SAVE THE "M" ROUTINE (>7E60 - >7EBF).

-20-

LESSON VI

THE BEST WAY TO LEARN THINGS IS TO EXPERIMENT. UNTIL YOU TRY

SOMETHING ON YOUR OWN AND MAKE A FEW MISTAKES, YOU NEVER REALLY

LEARN. UNFORTUNATELY, MACHINE LANGUAGE CAN BE VERY UNFORGIVING

WHEN IT COMES TO MAKING MISTAKES. ONE AID TO WRITING AND
DEBUGGING PROGRAMS IS TO USE BREAK POINTS. WHAT A BREAK POINT

DOES IS TO CALL A ROUTINE THAT DISPLAYS SOME INFORMATION ABOUT
THE STATE OF THE COMPUTER. THE ROUTINE IN THE NEXT EXAMPLE WILL
DISPLAY A SPECIFIED NUMBER OF THE CALLING PROGRAM'S REGISTERS.
IT CAN DISPLAY THEM IN HEXADECIMAL OR DECIMAL AND IT WILL
DISPLAY THE PROGRAM COUNTER IF THAT IS SO DESIRED. WHAT THE

ROUTINE DISPLAYS IS DETERMINED BY THE PARAMETERS YOU SEND TO IT.
AFTER IT DISPLAYS ITS INFORMATION, THE ROUTINE WILL WAIT FOR YOU
TO PRESS A KEY. ANY KEY BUT THE SPACE WILL STEP THROUGH THE
PROGRAM ONE BREAK POINT AT A TIME. THE SPACE KEY WILL STEP
CONTINUOUSLY THROUGH THE PROGRAM AS LONG AS YOU HOLD IT DOWN.
TO USE BREAK POINTS ONE MUST PLAN AHEAD. IF WE CALL THE

I ROUTINE WITH THE INSTRUCTION " BLWP *R9" WHERE R9 HAS THE

ADDRESS OF OUR ROUTINE, WE HAVE TO ALLOW ONE WORD OF MEMORY FOR

EACH PLACE WE MAY WANT TO INSERT A BREAK POINT. THE EASIEST WAY

TO DO THAT IS TO USE THE "NOP" INSTRUCTION. "NOP" IS AN

ASSEMBLER ABREVIATION FOR " JMP $+2", WHICH SAYS TO JUMP TO THE

NEXT INSTRUCTION. THE MACHINE CODE FOR " BLWP *R9" IS >0419.

THE MACHINE CODE FOR "NOP" IS >1000. IF WE EXCHANGE THESE TWO

VALUES IN A LOCATION WHERE WE HAVE ALLOWED SPACE FOR A BREAK
POINT WE CAN TURN THE FUNCTION ON OR OFF.

NOW TO SHOW WHAT I AM TALKING ABOUT:

AORG >7D00

LWPI >70B8

LI R9,>7F10
S LI R0,>0100
SI NOP

DEC RO

JNE SI

JMP S

END

-21-

IF YOU EXECUTE THIS, NOTHING WILL HAPPEN. BUT IF YOU CHANGE

THE "NOP" AT >7D0C TO A " BLWP *R9" WONDEROUS THINGS WILL HAPPEN

(ESPECIALLY IF YOU DON'T TYPE IN THE NEXT PROGRAM FIRST).

TX

TT

TW

T

Tl

T2

T3

T4

W

Wl

W2

AORG >7F10

DATA TW

DATA TT

BL @T

DATA >0096

DATA >0000

DATA >0005

DATA >0000

DATA >0001

RTWP

BSS >20

MOV Rll,RIO
MOV *R10+,R4
MOV *R10+,R1
MOV *R10+,R7
MOV *R10+,R8
MOV R13,R6
MOV *R6+,R2
DEC Rl

JOC Tl

MOV R8,R8
JEQ T3

BL @c
BL @W
AI R4,>1C
MOV *R6+,R2
DEC R7

JNE T2

MOV *R10+,R0
JEQ T4

MOV R14,R2
BL @W
BL @N
B *R10

LI R3,4
SRC R2,>C
MOV R2,R1
AND I R1,>000F
SRC Rl,8
AI Rl,>3000
CI R1,>3A00
JL W2

AI Rl,>0700
CI R4,>0300

:BREAK POINT ROUTINE

PARAMETER #1: WHERE TO PRINT
#2: WHICH ONE TO START WITH
#3: HOW MANY

#4:IF <>0 THEN CONVERT TO DECIMAL
#5:IF <>0 THEN PRINT "PC"

:SAVE LINK

:MOVE PARAMETERS

:MOVE OLD WP TO R6

:GET VALUE FROM AN OLD REGISTER
:SHOULD WE PRINT THIS?

:CONVERT TO DECIMAL?

:CALL CONVERT ROUTINE

:CALL DISPLAY WORD ROUTINE

:GET ANOTHER REGISTER
:ARE WE DONE?

:PRINT PC?

:PRINT PC

:CALL PAUSE

:WRITE A WORD

:SHIFT WORD 12 PLACES

:MASK OFF LAST NIBBLE
:SWAP BYTES

:CONVERT TO ASCII

:ERROR CHECK

-22-

NS^r""

JL W3

CLR R4

W3 MOV R4,R0
INC R4

BLWP> @>6024
DEC R3

JNE Wl

B *R11

N CLR RO

MOV R0,@>8374
Nl BLWP @>6020

MOVB @>8375,R0
CI R0,>2000
JEQ N2

MOV @>837C,R0
AND I R0,>2000
JEQ Nl

N2 B *R11

C LI R3,C2
CLR Rl

CLR RO
CI DIV *R3+,R1

SLA R0,4
SOC R1,R0
CLR Rl

CI R3,C2+8
JNE CI

MOV R0,R2
B *R11

C2 DATA

END

1000,100,10,1

ADVANCED •

•

AORG >7D00

G CLR R0

Gl CLR Rl
G2 MOV R1,R2

MPY R0,R2
BLWP @>7F10
INC Rl

CI Rl,>0020
JNE G2

INC RO

CI R0,>0020
JNE Gl

JMP G

END

:PAUSE ROUTINE

:CLEAR KEYBOARD SELECT
:KEYSCAN

:MOVE ASCII BYTE

:CHECK IF BLANK

:MOVE STATUS

:CHECK IF NEW KEY

:CONVERT HEX TO DEC

:THIS ROUTINE MULTIPLIES R0 AND Rl
AND PUTS THE RESULT IN R2 AND R3

:CALL TRACE ROUTINE

-23-

Visu^

LESSON VII

THIS IS THE FINAL LESSON OF THIS FIRST TUTOR. I HOPE THIS

EXPERIENCE HAS BEEN REWARDING AND NOT TOO FRUSTRATING.

HOPEFULLY I CAN TIE ALL OF YOUR EFFORTS TOGETHER AND GIVE YOU A

LITTLE GAME TO PLAY. AT THIS POINT, MINI-MEM SHOULD CONTAIN THE

"P", "M", AND "W" ROUTINES. IF YOU HAVE RE-INITIALIZED MINI-MEM

OR THINK ANY OF THE ROUTINES MAY HAVE BEEN DESTROYED, RETYPE OR

RELOAD THEM BEFORE TYPING IN THIS LAST ROUTINE.

AORG >7D00

CLR @>8374
LWPI >70B8

CLR R3

CLR R7

CLR R8

BLWP ei
LI R6,>0006
BL @S
DATA >02D2,SC,>0005
BL @S
DATA >02EF,HS,>0008
LI R4,>02F8
CLR R2

BLWP @>7F80
D DEC R14

JGT D7

BL @>7E00
INV R13

JLT D6

BLWP §>7E60
LI Rl,>0014
C @>7E6A,R1
JL D6

MOV R6,R0
LI Rl,>0003

D4 C R0,@>7E68
JEQ D5

INC RO

DEC Rl

JNE D4

JMP D9

D5 NEG @>7E6E
D6 MOVB R8,R14

INV R14

SRL R14,6

:DRAWS A BORDER

INITIALIZE PADDLE POSITION
:PRINT "SCORE"

:PRINT "HI SCORE"

:PRINT "0000" USING "W" ROUTINE
:SLOW DOWN PADDLE

:MOVE "A" HALF AS OFTEN

:CHECK "A" VERTICAL POSITION
(>7E6A IS R3 IN "M" ROUTINE,
HERE IT IS A MEMORY LOCATION)

:IS "A" HITTING THE PADDLE?

:IF NOT; GAME OVER

:THE SPEED OF THE "A" IS RELATED
TO THE SCORE COUNTER

-24-

Vjfegg,^

D7

D8

D9

DA

DB

DC

HS

SC

OV

DEC R15

JGT D8

LI R15,>0080
LI R4,02D8
INC R8

MOV R8,R2
NOP

NOP

BL @>7F7C
JMP D

LI

MOV

C

JL

MOV

MOV

LI

NOP

NOP

BL

BL

R0,>0005
R0,@>7E6A
R8,R7
DA

R8,R2
R8,R7
R4,>02F8

@>7F7C
@S

DATA >0284,OV,>0016
BLWP @>6020 :KEYSCAN
MOV @>837C,R0
ANDI R0,>2000
JEQ DB

LI R0,>0282
LI Rl,>2000
LI R2,>001A
BLWP @>6024
INC RO

DEC R2

JNE DC

CLR R8

JMP D

MOV

MOV

MOV

*R11+,R0
*R11+,R1
*R11+,R2

BLWP @>6028

B *R11

:SLOW DOWN SCORE COUNTER

:REPLACE WITH " BL @>7FD2 FOR
DECIMAL SCORING

:PRINT SCORE USING "W" ROUTINE

:PUT "A" AT TOP FOR NEXT GAME
:UPDATE "HI SCORE"

:REPLACE WITH " BL @>7FD2" FOR
DECIMAL SCORING

:PRINT "GAME OVER ..."

TEXT 'HI '

TEXT 'SCORE'

TEXT 'GAME OVER-PRESS A KEY

AORG >7ED0

DATA >7E64

DATA II
:WORK SPACE FOR "M" ROUTINE

-25-

II

Nissan

II

12

13

LI R1,>2A00
MOV R6,R2
DEC R2

MOV R9,R3
BL @>7EAE

DEC R3

C R7,R3
JLE 11

BL @>7EAE
INC R2

C R2,R8
JLE 12

BL @>7EAE
INC R3

C R3,R9
JLE 13

LI R2,>0003
LI R3,>0005

:PRINT ROUTINE IN "M"

INITIALIZE "A" X POSITION
:INITIALIZE "A" Y POSITION

-26-

%^^>

APPENDIX I

0

0 1 2 3 4

SECOND DIGIT

5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

F

I

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

R

s

6 96 97 98 99 100 101 012 103 104 105 106 107 108 109 110 111

T 7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

D

I
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

G
I

9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

T A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

TO CONVERT A 2 DIGIT HEXADECIMAL TO DECIMAL, FIND THE FIRST

DIGIT IN THE LEFT COLUMN. FIND THE SECOND DIGIT IN THE TOP ROW.

FIND WHERE THE ROW AND COLUMN INTERSECT, YOU WILL FIND YOUR

NUMBER.

REVERSE THE PROCESS TO GO FROM DECIMAL TO HEXADECIMAL.

0

1

2

3

4

5

6

7

B

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

APPENDIX 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

000 001 002 003 004 005 006 007 008 009 00A 00B 00C OOD OOE OOF 010 Oil 012 013 014 015 016 017 018 019 01A 01B 01C 01D 01E OIF

020 021 022 023 024 025 026 027 028 029 02A 028 02C 02D 02E 02F 030 031 032 033 034 035 036 037 038 039 03A 03B 03C 03D 03E 03F

040 041 042 043 044 045 046 047 048 049 04A 04B 04C 040 04E 04F 050 051 052 053 054 055 056 057 058 059 05A 05B 05C 050 05E 05F

060 061 062 063 064 065 066 067 068 069 06A 06B 06C 06D 06E 06F 070 071 072 073 074 075 076 077 078 079 07A 07B 07C 07D 07E 07F

OBO 081 082 083 084 085 086 087 088 089 08A 08B 08C 08D 08E OBF 090 091 092 093 094 095 096 097 098 099 09A 09B 09C 09D 09E 09F

OAO 0A1 0A2 0A3 0A4 0A5 0A6 0A7 0A8 0A9 OAA OAB OAC OAD OAE OAF OBO OBI 0B2 0B3 0B4 0B5 0B6 0B7 0B8 0B9 OBA OBB OBC OBD OBE OBF

OCO 0C1 0C2 0C3 0C4 0C5 0C6 0C7 0C8 0C9 OCA OCB OCC OCD OCE OCF ODO 0D1 0D2 003 0D4 0D5 0D6 007 0D8 0D9 ODA ODB ODC ODD ODE ODF

OEO 0E1 0E2 0E3 0E4 0E5 0E6 0E7 0E8 0E9 OEA OEB OEC OED OEE OEF OFO 0F1 0F2 0F3 0F4 0F5 0F6 0F7 0F8 0F9 OFA OFB OFC OFD OFE OFF

100 101 102 103 104 105 106 107 108 109 10A 10B IOC 10D 10E 10F 110 111 112 113 114 115 116 117 118 119 HA 11B 11C IID HE 11F

120 121 122 123 124 125 126 127 128 129 12A 12B 12C 12D 12E 12F 130 131 132 133 134 135 136 137 138 139 13A 13B 13C 13D 13E 13F

140 141 142 143 144 145 146 147 148 149 14A 14B 14C 14D 14E 14F 150 151 152 153 154 155 156 157 158 159 15A 15B 15C 15D 15E 15F

160 161 162 163 164 165 166 167 168 169 16A 16B 16C 16D 16E 16F 170 171 172 173 174 175 176 177 178 179 17A 17B 17C 17D 17E 17F

180 181 182 183 184 185 186 187 188 189 18A 18B 18C 18D 18E 18F 190 191 192 193 194 195 196 197 198 199 19A 19B 19C 19D 19E 19F

1A0 1A1 1A2 1A3 1A4 1A5 1A6 1A7 1A8 1A9 1AA 1AB 1AC IAD 1AE 1AF 1B0 1B1 1B2 1B3 1B4 1B5 1B6 1B7 1B8 1B9 1BA IBB 1BC 1BD 1BE 1BF

ICO 1C1 1C2 1C3 1C4 1C5 1C6 1C7 1CB 1C9 1CA 1CB ICC 1CD ICE 1CF 1D0 1D1 1D2 1D3 1D4 1D5 1D6 1D7 1D8 1D9 IDA 1DB IDC 1DD IDE IDF

1E0 1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E8 1E9 1EA 1EB 1EC 1ED 1EE 1EF IFO 1F1 1F2 1F3 1F4 1F5 1F6 1F7 1F8 1F9 1FA 1FB 1FC 1FD 1FE IFF

200 201 202 203 204 205 206 207 208 209 20A 20B 20C 20D 20E 20F 210 211 212 213 214 215 216 217 218 219 21A 21B 21C 21D 21E 21F

220 221 222 223 224 225 226 227 228 229 22A 22B 22C 22D 22E 22F 230 231 232 233 234 235 236 237 238 239 23A 23B 23C 23D 23E 23F

240 241 242 243 244 245 246 247 248 249 24A 24B 24C 24D 24E 24F 250 251 252 253 254 255 256 257 258 259 25A 25B 25C 25D 25E 25F

260 261 262 263 264 265 266 267 268 269 26A 26B 26C 26D 26E 26F 270 271 272 273 274 275 276 277 278 279 27A 27B 27C 27D 27E 27F

280 281 282 283 284 285 286 287 288 289 28A 28B 28C 28D 28E 28F 290 291 292 293 294 295 296 297 298 299 29A 29B 29C 29D 29E 29F

2A0 2A1 2A2 2A3 2A4 2A5 2A6 2A7 2A8 2A9 2AA 2AB 2AC 2AD 2AE 2AF 2B0 2B1 2B2 2B3 2B4 2B5 2B6 2B7 2B8 2B9 2BA 2BB 2BC 2BD 2BE 2BF

2C0 2C1 2C2 2C3 2C4 2C5 2C6 2C7 2C8 2C9 2CA 2CB 2CC 2CD 2CE 2CF 2D0 2D1 2D2 2D3 2D4 2D5 2D6 2D7 2D8 2D9 2DA 2DB 2DC 2DD 2DE 2DF

2E0 2E1 2E2 2E3 2E4 2E5 2E6 2E7 2E8 2E9 2EA 2EB 2EC 2ED 2EE 2EF 2F0 2F1 2F2 2F3 2F4 2F5 2F6 2F7 2F8 2F9 2FA 2FB 2FC 2FD 2FE 2FF

THIS TABLE SHOWS HOW VDP MEMORY MAPS ONTO THE TV SCREEN

n
tow

X
Q

i-
i

O
a

U
f
i
t

ta
M

£
h

M

PL4
U

<
C

O
<

«J.Q
o

n
o

0
iw

D
^J=

-H
-n

^rH
g

q
o

f
tiy

n
w

+
j

3
>

£
tt

>
l

N
w

-»
r
^

\

«C
J

<to
C

O
—

•
B

o
r
H

C
N

e
g

cn
j

c
n

/
\

/V
/
\

4*s
•W

-
d

p
cj>

-
—

*
+

•*
|

•\O
H

<
N

M
^
ir»

V
O

(^
O

O
W

«
.*

v

aaaaaaaaaa'

J

II
/
\

0>
.

Niiggp''

GAME LI ST I IMG

7D00 AORG >7D00
7D00 04E0 G CLR 3>8374

7D02 8374

7D04 02E0 LWPI >70B8

7D06 70B8

7D08 04C3 CLR R3

7D0A 04C7 CLR R7

7D0C 04C8 CLR R8

7D0E 0420 BLWP 91

7D10 7ED0

7D12 0206 LI R6,>0006
7D14 0006

7D16 06A0 BL as

7D18 7DD4

7D1A 02D2 DATA >02D2,SC,>5
7D1C 7DE3

7D1E 0005

7D20 06A0 BL 5>S

7D22 7DD4

7D24 02EF DATA >02EF,HS,>8
7D26 7DEO

7D28 0008

7D2A 0204 LI R4,>2F8
7D2C 02F8

7D2E 04C2 CLR R2

7D30 06A0 BL o>W

7D32 7F7C

7D34 060E D DEC R14

7D36 151A JGT D7

7D38 06A0 BL «>P

7D3A 7E00

7D3C 054D INV R13

7D3E 1113 JLT D6

7D40 0420 BLWP 3M

7D42 7E60

7D44 0201 LI Rl,>0014
7D46 0014

7D48 8060 C S>BY,R1
7D4A 7E6A

7D4C 1A0C JL D6

7D4E C006 MOV R6,R0
7D50 0201 LI Rl,3
7D52 0003

7D54 8800 D4 C RO,3BX
7D56 7E68

7D58 1304 JEQ D5

7D5A 0580 INC RO

7D5C 0601 DEC Rl

7D5E 16FA JNE D4

7D60 1012 JMP D9

PABEE

GAME! LI ST I IMG

7D62 0520 D5 NE6 S>IY

7D64 7E6E

7D66 D388 D6 MOVB R8,R14
7D68 054E INV R14

7D6A 096E SRL R14,6
7D6C 060F D7 DEC R15

7D6E 150A JGT D8

7D70 020F LI R15,>0080
7D72 0080

7D74 0204 LI R4,>02D8
7D76 02D8

7D78 0588 INC R8

7D7A C088 MOV R8,R2
7D7C 1000 NOP

7D7E 1000 NOP

7D80 O6A0 BL aw

7D82 7F7C

7D84 10D7 D8 J MP D

7D86 0200 D9 LI R0,5
7D88 0005

7D8A C800 MOV R0,3BY
7D8C 7E6A

7D8E 81C8 C R8,R7
7D90 1A08 JL DA

7D92 C088 MOV R8,R2
7D94 C1C8 MOV R8,R7
7D96 0204 LI R4,>2F8
7D98 02F8

7D9A lOOO NOP

7D9C 1000 NOP

7D9E 06A0 BL aw

7DA0 7F7C

7DA2 06A0 DA BL as

7DA4 7DD4

7DA6 0284 DATA >0284,0V,>16
7DA8 7DE8

7DAA 0016

7DAC 0420 DB BLWP 3>6020

7DAE 6020

7DB0 C020 MOV S»837C,R0
7DB2 837C

7DB4 0240 ANDI RO,>2000
7DB6 2000

7DB8 13F9 JEQ DB

7DBA 0200 LI R0,>282
7DBC 0282

7DBE 0201 LI Rl,>2000
7DC0 2000

7DC2 0202 LI R2,>1A
7DC4 001A

7DC6 0420 DC BLWP 5»6024

7DC8 6024

7DCA 0580 INC RO

7DCC 0602 DEC R2

f'-age:

game: listiimg i=-age:

7DCE 16FB JNE DC
7DD0 04C8 CLR R8
7DD2 10B0 JMP D

7DD4 C03B S MOV *R11+,R0
7DD6 C07B MOV *R11+,R1
7DD8 COBB MOV *R11+,R2
7DDA 0420 BLWPN a>6028
7DDC 6028

7DDE 045B B *R11

7DE0 48 HS TEXT 'HI '
7DE3 53 SC TEXT 'SCORE'
7DE8 47 OV TEXT 'GAME OVER-PRESS A KEY

7E00 AORG >7E00
7E00 C24B P MOV R11,R9
7E02 04C3 CLR R3
7E04 0201 LI R1,P6
7E06 7E51

7E08 06A0 BL aP4
7E0A 7E3E

7E0C 0420 BLWP a>6020
7EOE 6020

7E10 D0E0 MOVB a>8375,R3
7E12 8375

7E14 0263 ORI R3,>2000
7E16 2000

7E18 0283 CI R3,>6400
7E1A 6400

7E1C 1304 JEQ PI

7E1E 0283 CI R3,>7300
7E20 7300

7E22 1306 JEQ P2
7E24 1009 JMP P3

7E26 0286 PI CI R6,>0019
7E28 0019

7E2A 1306 JEQ P3
7E2C 0586 INC R6

7E2E 1004 JMP P3

7E30 0286 P2 CI R6,>0002
7E32 0002

7E34 1301 JEQ P3

7E36 0606 DEC R6

7E38 0201 P3 LI R1,P5
7E3A 7E4E

7E3C C2C9 MOV R9,R11
7E3E C006 P4 MOV R6,R0
7E40 0220 AI RO,>0280
7E42 0280

7E44 0202 LI R2,3
7E46 0003

7E48 0420 BLWP a>6028
7E4A 6028

7E4C 045B B *R11

GAME LISTIMG

7E4E 2D P5 TEXT ' '

7E51 20 P6 TEXT '

7E60 AORG >7E60
7E60 7E64 M DATA MR

7E62 7E84 DATA MM

EVEN

7E64 OOOO MR DATA >0000
7E66 0000 DATA >0000
7E68 0010 BX DATA >0010
7E6A 0005 BY DATA >0005
7E6C 0001 IX DATA >0001
7E6E 0001 IY DATA >0001
7E70 0002 DATA >0002
7E72 0003 DATA >0003
7E74 00IB DATA >001B
7E76 0017 DATA >0017
7E78 4100 DATA >4100

7E7A 0000 DATA >0000
7E7C 2000 DATA >2000
7E7E 0000 DATA >0000
7E80 0000 DATA >0000
7E82 0000 DATA >0000

7E84 C04C MM MOV R12,R1
7E86 06A0 BL aM5
7E88 7EAE

7E8A 8182 C R2,R6
7E8C 1601 JNE Ml

7E8E 0504 NEG R4

7E90 8202 Ml C R2,R8
7E92 1601 JNE M2
7E94 0504 NEG R4
7E96 A084 M2 A R4,R2
7E98 81C3 C R3,R7
7E9A 1601 JNE M3
7E9C 0505 NEG R5

7E9E 8243 M3 C R3,R9
7EA0 1601 JNE M4

7EA2 0505 NEG R5

7EA4 A0C5 M4 A R5,R3
7EA6 C04A MOV R10,R1
7EA8 06A0 BL 3M5

7EAA 7EAE

7EAC 0380 RTWP

7EAE C003 M5 MOV R3,R0
7EB0 0A50 SLA R0,5
7EB2 A002 A R2,R0
7EB4 0280 CI RO,>02FF
7EB6 02FF

7EB8 1B02 JH M6

7EBA 0420 BLWP a>6024

7EBC 6024

l="AGE: *l

GAME LISTIMG

7EBE 045B M6

7ED0

7ED0 7E64

7ED2 7ED4

7ED4 0201

7ED6 2A00

7ED8 C086

7EDA 0602

7EDC C0C9

7EDE 06AO

7EE0 7EAE

7EE2 0603

7EE4 80C7

7EE6 12FB

7EE8 06A0

7EEA 7EAE

7EEC 0582

7EEE 8202

7EF0 12FB

7EF2 06A0

7EF4 7EAE

7EF6 0583

7EF8 8243

7EFA 12FB

7EFC 0202

7EFE 0003

7F00 0203

7F02 0005

7F04 0380

7F10

7F10 7F24

7F12 7F14

7F14 06A0

7F16 7F44

7F18 0096

7F1A 0000

7F1C 0005

7F1E 0000

7F20 OOOl

7F22 0380

7F24

7F44 C28B

7F46 C13A

7F48 C07A

7F4A CIFA

7F4C C23A

7F4E C18D

II

II

12

13

TX

TT

TW

B *R11

AORG >7ED0

DATA >7E64

DATA II

LI R1,>2A00

MOV R6,R2
DEC R2

MOV R9,R3
BL 3M5

DEC R3

C R7,R3
JLE 11

BL aM5

INC R2

C R2,R8
JLE 12

BL aM5

INC R3

C R3,R9
JLE 13

LI R2, >3

LI R3, >5

RTWP

AORG >7F10

DATA TW

DATA TT

BL aT

DATA >0096,0,5,0, 1

RTWP

BSS >20

MOV

MOV

MOV

MOV

MOV

MOV

R11,R10
*R10+,R4
*R10+,R1
*R10+,R7
*R10+,R8
R13,R6

f>age:

^*W3$l*&f

GAME: LI ST IMG

7F50 C0B6 Tl MOV *R6+,R2
7F52 0601 DEC Rl

7F54 18FD J0C Tl

7F56 C208 T2 MOV R8,R8
7F58 1302 JEQ T3

7F5A 06A0 BL ac

7F5C 7FCE

7F5E 06AO T3 BL aw

7F60 7F7C

7F62 0224 AI R4,>1C
7F64 001C

7F66 C0B6 MOV *R6+,R2
7F68 0607 DEC R7

7F6A 16F5 JNE T2

7F6C C03A MOV *R10+,R0
7F6E 1303 JEQ T4

7F70 C08E MOV R14,R2
7F72 06A0 BL aw

7F74 7F7C

7F76 06A0 T4 BL aN

7F78 7FAE

7F7A 045A B *R10

7F7C 0203 W LI R3,4
7F7E 0004

7F80 0BC2 Wl SRC R2, >C
7F82 C042 MOV R2,R1
7F84 0241 ANDI R1,>000F
7F86 000F

7FB8 0B81 SRC Rl,8
7F8A 0221 AI Rl,>3000
7F8C 3000

7F8E 0281 CI R1,>3A00
7F90 3A00

7F92 1A02 JL W2

7F94 0221 AI Rl,>0700
7F96 0700

7F98 0284 W2 CI R4,>0300
7F9A 0300

7F9C 1A01 JL W3

7F9E 04C4 CLR R4

7FAO C004 W3 MOV R4,R0
7FA2 0584 INC R4

7FA4 0420 BLWP a>6024
7FA6 6024

7FA8 0603 DEC R3

7FAA 16EA JNE Wl

7FAC 045B B *R11

7FAE 04C0 N CLR RO

7FB0 C800 MOV R0,a>8374
7FB2 8374

7FB4 0420 Nl BLWP a>6020
7FB6 6020

PAGI

\m^

GAME: LI ST IMG

7FB8 D020 MOVB a>8375,RO
7FBA 8375 .

7FBC 0280 CI RO,>2000
7FBE 2000

7FC0 1305 JEQ N2

7FC2 C020 MOV a>837C,R0
7FC4 837C

7FC6 0240 AND I RO,>2000
7FC8 2000

7FCA 13F4 JEQ Nl

7FCC 045B N2 B *R11

7FCE 0203 C LI R3,C2
7FD0 7FE8

7FD2 04C1 CLR Rl

7FD4 04C0 CLR RO

7FD6 3C73 CI DIV *R3+,R1
7FD8 0A40 SLA R0,4
7FDA E001 SOC R1,R0
7FDC 04C1 CLR Rl

7FDE 0283 CI R3,C2+8
7FE0 7FF0

7FE2 16F9 JNE CI

7FE4 C080 MOV R0,R2
7FE6 045B B *R11
7FE8 03E8 C2 DATA 1000,100,10,1
7FEA 0064

7FEC 000A

7FEE 0001

END

i^-age: it

Truth Table

for AND

0 0 0

10 1

Examples:
1100 1101 = CD

0000 1111 = OF
0000 1101 = 0D

Truth Table

for OR

0 1
0 0 1

111

Examples:
1100 1101 = CD

0000 1111 = OF
1100 1111 = CF

Truth Table

for XOR

0 1
0 0 1

110

Examples:
1100 1101 = CD

0000 1111 = OF
1100 0010 = 0D

1010 0001 = Al 1011 1000 = B8

10Q1 10Q0 = 98 1111 0001 = Fl
1000 0000 = 80 1011 0000 = B0

1010 0001 = Al 1011 1000 = B8

1001 1000 = 99 1111 0001 = Fl
1011 1001 = B9 1111 1001 = F9

1010 0001 = Al 1011 1000 = B8

1001 1000 = 98 1111 0001 = Fl
0011 1001 = 39 0100 1001 = 49

INSTRUCTION TABLE

A: ADD

AB: ADD BYTES

ABS: ABSOLUTE VALUE

Al: ADD IMMEDIATE

ANDI: AND IMMEDIATE

B: BRANCH

BL: BRANCH AND LINK

BLWP: BRANCH AND LOAD WORKSPACE POINTER
C: COMPARE WORDS
CB: COMPARE BYTES

CI: COMPARE IMMEDIATE
CLR: CLEAR

COC: COMPARE ONES CORRESPONDING
CZC: COMPARE ZEROS CORRESPONDING
DEC: DECREMENT

DECT: DECREMENT BY TWO
DIV: DIVIDE

INC: INCREMENT

INCT: INCREMENT BY TWO
INV: INVERT

JEQ: JUMP EQUAL
JGT: JUMP ARITHMETIC GREATER THAN
JH: JUMP LOGICAL HIGH
JHE: JUMP HIGH EQUAL
JL: JUMP LOGICAL LOW
JLE: JUMP LOW EQUAL
JLT: JUMP ARITHMETIC LESS THAN
JMP: JUMP

JNC: JUMP NO CARRY

JNE: JUMP NOT EQUAL
JNO: JUMP NO OVERFLOW
JOC: JUMP ON CARRY

JOP: JUMP ODD PARITY
LI: LOAD IMMEDIATE

LWPI: LOAD WORKSPACE POINTER IMMEDIATE
MOV: MOVE A WORD

MOVB: MOVE A BYTE

MPY: MULTIPLY

NEG: NEGATE

ORI: OR IMMEDIATE

RTWP: RETURN (WITH OLD) WORKSPACE POINTER
S: SUBTRACT

SB: SUBTRACT BYTES

SLA: SHIFT LEFT ARITHMETIC
SOC: SET ONES CORRESPONDING
SOCB: SET ONES CORRESPONDING BYTE
SRA: SHIFT RIGHT ARITHMETIC
SRC: SHIFT RIGHT CIRCULAR
SRL: SHIFT RIGHT LOGICAL
STST: STORE STATUS

STWP: STORE WORKSPACE POINTER

REFERENCE

EASY-BUG

".": CANCEL A COMMAND

INSPECT AND/OR CHANGE CPU MEMORY
INSPECT AND/OR CHANGE VDP MEMORY

"E" EXECUTE MACHINE LANGUAGE PROGRAM

nS" SAVE CPU MEMORY

"Ln LOAD CPU MEMORY

"V"

LINE-BY-LINE

" AORG"

" BSSn

" DATA"

" EQU"
" TEXT"

" END"

SPECIFY A VALUE TO THE ASSEMBLER LOCATION COUNTER

RESERVE A BLOCK OF MEMORY

INITIALIZE MEMORY

EQUATES A LABEL WITH A VALUE
ENTER A STRING OF ASCII

EXIT ASSEMBLER

MIMI-MEM EQUATES

VSBW

VMBW

VSBR

VMBR

>6024

>6028

>602C

>6030

KSCAN >6020

>8374 CONTAINS KEYBOARD DEVICE NUMBER

>8375 RETURNS ASCII VALUE OF KEY

>837C GPL STATUS REGISTER

>8C02 VDPWA: VDP WRITE ADDRESS REGISTER

>8C00 VDPWD: VDP WRITE DATA REGISTER

>8800 VDPRD: VDP READ DATA REGISTER

^Si^^

Vto''

GLOSSARY

>A: HEX DIGIT EQUAL TO 10 IN DECIMAL

ADDRESS: THE WAY TO IDENTIFY ONE OF 65535 POSSIBLE MEMORY

LOCATIONS

AND: LOGICAL OPERATOR SIMILAR TO n*n: 1 AND 1 = 1, 1 AND 0=0

>B: HEX DIGIT EQUAL TO 11 IN DECIMAL

BIT: BINARY DIGIT

BINARY: NUMBER SYSTEM BASE 2

BREAK POINT: USED FOR TRACING A PROGRAM

BYTE: TWO NIBBLES - EIGHT BITS - ONE HALF A WORD

>C: HEX DIGIT EQUAL TO 12 IN DECIMAL

CHAIN: A NUMBER OF LINKS

CONTEXT: ENVIRONMENT DEFINED BY A SET OF WORKSPACE REGISTERS.

CPU: CENTRAL PROCESSING UNIT

>D: HEX DIGIT EQUAL TO 13 IN DECIMAL

>E: HEX DIGIT EQUAL TO 14 IN DECIMAL

>F: HEX DIGIT EQUAL TO 15 IN DECIMAL

GPL: GROM PROGRAMMING LANGUAGE

GROM: GRAGHIC READ ONLY MEMORY. SEQUENTIAL IN NATURE

HEXADECIMAL: NUMBER SYSTEM BASE 16

HIGH BYTE: LEFT BYTE OF A WORD

INDIRECT: USE OF A REGISTER AS A POINTER

LINK: A WAY TO TIE TWO THINGS TOGETHER

LOW BYTE: RIGHT BYTE OF A WORD

NIBBLE: ONE HEXADECIMAL DIGIT - FOUR BITS LONG

OR: LOGICAL OPERATOR SIMILAR TO n+n: 1 OR 1 = 1, 1 OR 0 = 1

PROGRAM COUNTER: A SYSTEM REGISTER THAT INDICATES THE ADDRESS

OF THE NEXT INSTRUCTION

RAM: RANDOM ACCESS MEMORY

REGISTER: A WORD USED FOR A SPECIAL PURPOSE

STATUS REGISTER: A SYSTEM REGISTER THAT CONTAINS FLAGS THAT

INDICATE THE STATE OF THE COMPUTER. SEE PAGE 40 ED/ASM.

VDP RAM: NOT REALLY RAM; ACTS LIKE SEQUENTIAL READ-WRITE

MEMORY. USED BY VIDEO DISPLAY PROCESSOR & BASIC INTERPRETER

INFORMATION IN VDP CANNOT BE EXECUTED DIRECTLY BY THE MICRO

PROCESSOR

WORD: TWO BYTES - 16 BITS

I WORKSPACE POINTER: A SYSTEM REGISTER THAT INDICATES THE

CURRENT ACTIVE SET OF WORKSPACE REGISTERS

WORKSPACE REGISTER: ONE OF A SET OF 16 REGISTERS

XOR: EXCLUSIVE OR - ONE OR THE OTHER BUT NOT BOTH

\\\^_9"

9

EVALUATION CARD

COMMENTS ON "TUTOR":

QUESTIONS YOU HAVE:

•DIT BITS YOU WOULD LIKE TO SHARE:

REQUESTS FOR FURTHER "TUTORS" AND/OR POSSIBLE NEWS LETTER

OPTIONAL:

NAME:

ADRESS:

THE SOFTIES

7300 GALLAGHER DR. #229

EDINA, HN. 55435

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006

