T1-99/4A

TI-99/4A®
User’s Handbook

TI-99/4A°
USER’S HANDBOOK

by
WSI Staff

Weber Systems, Inc.
Cleveland, Ohio

T1-99/4A® User’'s Handbook
Copyright © 1983 by Weber Systems, Inc.

All rights reserved under International and Pan-American Copy-
right Conventions. Published in the United States by Weber
Systems, Inc., 8437 Mayfield Rd., Cleveland, OH 44026. Printed in
the United States of America. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of
the publisher.

The authors have exercised due care in the preparation of this
book and the programs contained in it. The authors and the
publisher make no warranties either express or implied with
regard to the information and programs contained in this book.
In no eventshall the authors or publisher be liable for incidental
or consequential damages arising out of the furnishing, perform-
ance, or use of any information and/or programs.

TI-99/4®, TI-99/4A®, Tl BASIC®, and Tl Extended BASIC® are registered trade-
marks of Texas Instruments Incorporated.

Library ot Congress Catalog Card Number: 83-060591
ISBN: 0-938862-49-9

Typesetting and Layout: Tina Koran, Jana Butler, and Zema-
graphic

CONTENTS

INTRODUCTION 9.
1. THE TI-99/4A COMPUTER:
INTRODUCTION, INSTALLATION AND OPERATION 1.

Introduction 11. TI-99/4A Overview 12. TI-99/4A Specitications 14.
Computer Memory 15. T1-99/4A System Peripherals & Accessories 16.
Program Recorder 17. Peripheral Expansion System 17. Disk Memory
System Card 18. Tl 1250 & 1850 Disk Drives 18. TI-99/4 impact Printer
19. RS-232 Intertace Card 19. 32K RAM Memory Expansion Card 19.
Solid State Speech Synthesizer 20. Installation 20. Getting Started 24.
Prompt 25. Cursor 25. Display 26. TI-99/4A Keyboard 26. SHIFT 26.
ALPHA LOCK 27. ENTER27. CTRL28. FCTN 28. Correcting Keyboard
Entry Errors 29. Cursor Left 29. Cursor Right 29. INS 30. DEL 30.
ERASE 30. Special Function Keys 31. QUIT 31. CLEAR 31.

2. PROGRAMMING THE T1-99/4A IN STANDARD BASIC 33.

Introduction 33. Immediate & Program Modes 33. Line Numbers 34.
NUMBER 35. NEW Command 36. END Statement 36. Executinga Pro-
gram 37. Listing a Program 37. Error and Warning Messages 38. BASIC
Data Types 39. Strings 39. Numeric Data 39. Floating Decimal Point
39. Scientitic Notation 40. Variables 42. BASIC Variables 42. BASIC
Variable Names 43. Tables and Arrays 44. Expressions and Operators
46. Arithmetic Operators 47. String Operators 48. Relational Opera-
tors 48. Compound Expressions and Order ot Evaluation 50. Mixed
Expressions 51. TIBASIC Statements 52. Remark Statements 52. Assign-
ment Statements 52. DATA and READ Statements 53. Outputting
Data 55. INPUT Statements 57. Loops 60. Nested Loops 62. Condi-
tional Branches 63. Branching Statements 64. ON,GOTO Statement
64. Subroutines & GOSUB Statements 65. ON,GOSUB Statement 66.
Functions 67. DEF 68. ASCII 69. Advanced Input and Output State-
ments 71. Filenumbers 71. OPEN 72. PRINT# and INPUT# 72. CLOSE
72. EDIT 72.

3. PROGRAMMING IN TI EXTENDED BASIC 75.

Multiple Statement Lines 76. Variable Assignment Statements 77.
ACCEPT 77. LINPUT 78. LET 80. Arrays 80. Boolean Operators 81.
Formatted Output 83. BRANCHING STATEMENTS 86. ON BREAK 86.
ON ERROR 87. ON WARNING 88. Subprograms 89. SUB 89. Func-
tions 91. Manipulation Programs 91.

4. TI SOUND & GRAPHICS 95.

Tl Sound 95. Generating Sound 95. Generating Chords 97. Using the
CALL SOUND Statement 97. Using Variables in CALL SOUND State-
ments 98. Tl Graphics 99. Standard Character Set 99. Redetining a
Character 99. The Hexadecimal Conversion 100. The Size ot One
Character 160. Using Hexadecimal Notation to Describe a Character
101. Using the CALL CHAR Statement 102. Program and Immediate
Modes 103. Using Variablesin the CALL CHAR Statement 104. Placing
a Character on the Screen 104. Moving a Character 107. Coloring a
Character 107. The CALL COLOR Statement 108. Screen Color 109.
Clearing the Screen 110. Locating a Character 110. Extended BASIC
Graphics Features 111. Sprites 111. Rules ot Sprites 111. Creating a
Sprite 112. Velosity ot a Sprite 113. Position ot a Sprite 114. Colorota
Sprite 115. Causing a Sprite to Disappear 115. Extended BASIC Demon-
stration Program (1) 116. Animation with Sprites 117. Determiningthe
Distance Between Two Sprites 118. Enlarging Sprites 118. Contact
Between Sprites 121. Extended BASIC Demonstration Program (2) 122.

5. T1-99/4A BASIC REFERENCE GUIDE 123,

ABS 124. ACCEPT 124. AND 128. ASC129. ATN 130. BREAK 130. BYE
132. CALL 132. CALL CHAR 133. CALL CHARPAT 138. CALL CHAR-
SET138. CALLCLEAR139. CALLCOINC139. CALLCOLOR141. CALL
DELSPRITE 144. CALL DISTANCE 145. CALL ERR 146, CALL GCHAR
147. CALL HCHAR 148. CALL INIT 149. CALL JOYST 149. CALL KEY
151. CALL LINK 152. CALL LOAD 153. CALL LOCATE 154. CALL
MAGNIFY 155. CALL MOTION 156. CALL PATTERN 158. CALL PEEK
159. CALL POSITION 159. CALL SAY 160. CALL SCREEN 161. CALL
SOUND 162. CALL SPGET 163. CALL SPRITE 164. CALL VCHAR 167.
CALL VERSION 168, CHR$168. CLOSE169. CONTINUE169. COS 170.
DATA 171. DEF 174. DELETE 175. DIM 176. DISPLAY 178. DISPLAY
USING 180. EDIT 182, END 184. EOF 184. EXP 185. FOR 186. GOSUB
188. GOTO 190. IF 192. IMAGE 194, INPUT 195. INPUT# 197. INT
198. LEN 199. LET 199. LINPUT 200. LINPUT# 201. LIST 202. LOG 204.
MAX 204. MERGE 205. MIN 206. NEW 207. NEXT 207. NOT 208.
NUMBER 210. OLD 211. ONBREAK 213. ONERROR 214. ON WARN-
ING 216. OPEN 218. OPTION BASE 220. OR 220. P1 222. POS 223.
PRINT 223. PRINT USING 226. RANDOMIZE 226. READ 227. REC 228.
REM 229, RESEQUENCE 229. RESTORE 230. RESTORE with files 231.
RETURN with GOSUB 232. RETURN with ON ERROR 232, RND 234.
RPT$ 234. RUN 235, SAVE 237. SEG$ 240. SGN 241. SIN 241. SIZE 242.
SQR 242. STOP 243. STR$ 243. SUB 244. SUBEND 246. SUBEXIT 247.
TAB 248. TAN 249. TRACE 249. UNBREAK 250. UNTRACE 251. VAL
252. XOR 252.

6. THE Tl PROGRAM RECORDER 255.

Introduction 255. Installation 255. Saving & Loading Programs 256.
SAVE 256. Checking Programs 258. OLD 258. Errors 259. Saving Data
260. OPEN 260. CLOSE 261. PRINT# 261. INPUT# 264. Files 266. Pro-
tecting Programs and Data 267. Extended BASIC Features 268.

7. THE TI 1250 & 1850 DISK DRIVES 271,

Floppy Diskettes 271. Tracks and Sectors 272. Locating Tracks and Sec-
tors 273. Single and Double Sided Diskettes 274. Single, Double, and
Quad Density Diskettes 274. Diskette Write Protection 274. Powering
On 275. Inserting a Diskette 276. File Storage 276. The Disk Manager
277. File Commands 279. Disk Commands 282. Disk Tests 284. Saving
and Loading Programs 286. SAVE 286. OLD 287. Saving Data 288.
Types of Data Files 288. OPEN 289. CLOSE 291. DELETE 291. PRINT#
291. Writing to Sequential Files 292. Writing to Relative Files 293.
INPUT# 294. Reading trom Sequential Files 295. Reading trom Relative
Files 295. The EOF Function 296. The RESTORE Statement 296. Sequen-
tial Data File Example 297. Relative Data File Example 299. CALL FILES
301. Extended BASIC Features 301.

8. THE T1-99/4 PRINTER 303.

Installation 304. Listing Programs 304. Outputting Data 305. Printer
Commands 306. Print Styles 307. Character Sets 310. Tabulation 311.
Line Spacing 313. Form Length 314. Line Length 314. Bottom Margin
314. Carriage Return 315. Line Feed 315. Form Feed 315. Bell 315.
Graphics 316.

Appendix A. Tl BASIC Error & Warning Messages 321.
Appendix B. Extended BASIC Error & Warning Messages 328.
Appendix C. ASCll Codes 335.
Appendix D. Tl BASIC Commands, Functions, & Statements 337.
Appendix E. Extended BASIC Commands, Functions, & Statements 339.
Appendix F. Resident Vocabulary 3.

Index 345.

INTRODUCTION

This book is intended to be both a tutorial and an ongoing
reterence guide to the TI-99/4A computer and its related peri-
pherals. It is a usetul guide tor beginners and experienced users
as well.

The book is divided into three sections. The tirst section ot the
book contains an explanation of the techniques used to program
the TI-99/4A in Tl BASIC and Ti Extended BASIC. This section
does not assume any prior knowledge ot computing, and is
written in a concise manner that can be easily read and
understood.

The second section of the book is a complete reterence guide to
all ot the TI1 BASIC and Tl Extended BASIC tunctions, commands
and statements. This section is particularly usetul tor experienced
users who are tamiliar with programming techniques but have
ditticulty remembering the exact tormat of each statement.

The tinal section ot the book contains explanations of the usage
ot TI-99/4A peripheral equipment. An entire chapter is dedi-
cated to each of the most commonly used Tl peripherals: the
Program Recorder, Disk Drive and Printer.

Several appendices are also included for quick reference. These
include error and warning messages, characters codes, as well as
several others.

CHAPTER 1.
THE T1-99/4A COMPUTER:
INTRODUCTION, INSTALLATION
AND OPERATION

INTRODUCTION

In this book, we will describe the T1-99/4A personal computer, as
well as many of the various peripherals available for use with the
T1-99/4A, such as the Tl Peripheral Expansion System, T1 1250 and
1850 Disk Drives, Tl Program Recorder, and the T1-99/4 Impact
Printer. It should be noted that the TI-99/4A is an improved
model of the original Texas Instruments personal computer, the
TI-99/4.

Chapter 1 includes a discussion of the features of the T1-99/4A
and available peripherals, and provides step by step intructions
on the installation of the computer system.

Chapters 2,3 and 4 provide an explanation of the programming of
the TI-99/4A computer. Chapter 2 provides information that
allows the user to write programs in the standard version of Tl
BASIC. Chapter 3 contains an explanation ot the Tl Extended
BASIC programming language. Chapter 4 is a discussion of the
techniques used to generate sound and graphics with the Ti-
99/4A computer.

Chapter5 is a reference guide to the commands, statements and
functions of Tl BASIC as well as Tl Extended BASIC.

Chapter 6 provides an explanation of the Tl Program Recorder.
This device allows programs and data to be stored on ordinary
cassette tapes. The Tl 1250 and 1850 Disk Drives are described in
detail in chapter 7. The TI-99/4 Impact Printer is explained in
chapter 8.

12 T1-99/4A User’s Handbook

TI-99/4A OVERVIEW

The TI-99/4A is pictured in lllustrations 1-1, 1-2, and 1-3. Notice
the following features of the computer console.

Keyboard --

Command Module Slot -~

Peripheral Expansion Port --

Cassette Port --

Power Supply Receptacle --

Audio/Video Output Jack --

Wired Remote Port --

Used for inputting instructions
and information into the
TI-99/4A.

Used to accept plug-in TI-
99/4A program modules.

Used to connect external
peripherals to the computer
console.

Used to connect the
Program Recorder.

Used to connect the power
supply to the TI-99/4A.

5 pin jack used to connect TV
set or monitor.

Used to connect Wired
Remote Controllers (game
controllers, etc.)

The T1-99/4A Computer Introduction, Installation and Operation 13

llustration 1-1. TI-99/4A (Top View)

van tavtur VENE

1,

1. Keyboard 2. Command Module Siot.

lllustration 1-2. TI-99/4A (Side View)

1. Peripheral Expansion Port (cover open).

14 TI-99/4A User’s Handbook

lllustration 1-3. TI-99/4A (Rear View)

1. Cassette Port 2. Power Supply Receptacle 3. Audio/Video Output Jack.

Ti-99/4A SPECIFICATIONS

The following components are included with the TI-99/4A
computer console.

® AC Power Adapter
® T1-900 Video Modulator
® Keyboard Overlay Strips

The ACPower Adapter provides suitable power for the computer
console. The Adapter can be plugged into any ordinary house-
hold outlet.

Two types of Power Adapters have been produced for the TI-
99/4A computer. One model is plugged directly into an outlet,
but the other has a power cord and a plug. Either of these two
types of Power Adapters has a small plug that can be connected
to the power cord receptacle on the back of the computer
console. (see lllustration 1-3).

The Ti-99/4A Computer Introduction, Installation and Operation 15

Ilustration 1-4, AC Power Adapter and RF Modulator

The Power Adapter that plugs directly into the wall must be
securely in place. A screw is included with this type of adapter to
fasten it on the outlet plate.

If aTV set is used for video display, the TI-900 Video Modulator is
used to convert the computer’s video output to a television
signal.

If the Texas Instruments color monitor is used, it is not necessary
to use the RF modulator.

Computer Memory

The computer cannot perform any calculations or process any
data unless a set of instructions (a program) and data are
provided. The part of the computer that is used to store
programs and data is called the random access memory (or
RAM). The computer can only process data that is stored in
RAM. As a result, computers with more random access memory
can handle longer programs and more data than computers with
less RAM.

16 TI-99/4A User’s Handbook

A convenient unit of memory capacity is the kilobyte, or simply
K. One K is enough memory capacity to store 1024 characters of
data, or about one-half of a typed page. Generally, small
computers contain 16K, 32K, 48K, 64K or 128K of RAM.

The random access memory cannot be maintained unless the
computer is powered on. As a result, the contents of RAM are
erased when the power is shut off.

The T1-99/4A computer contains 16K of RAM. The system can be
expanded to 48K with the Peripheral Expansion System and the
Memory Expansion Card.

Read-only memory (ROM) is similiar in principle to RAM, but
has two distinct features. The contents of the read-only memory
cannot be changed. Also, the contents of ROM remain intact
when the computer is shut off.

The programs that are permanently stored in ROM are used to
maintain the operations of the computer.

TI-99/4A SYSTEM PERIPHERALS & ACCESSORIES
A complete TI-99/4A system includes the main computer

console, monitor, Peripheral Expansion System, printer and Pro-
gram Recorder.

The TI-99/4A Computer Introduction, Installation and Operation 17

Program Recorder

The Program Recorder can be used to store programs or data.
This allows programs and data to be stored and recovered at a
later date. Several thousand characters of information can be
stored on an ordinary cassette tape.

lllustration 1-5. Program Recorder

Peripheral Expansion System

The Peripheral Expansion System is the foundation of an
expanded TI-99/4A system. It allows the addition of special
purpose peripheral devices, such as the Disk Memory System, an
RS-232 Interface, and the 32K RAM Memory Expansion.

Each of the peripheral devices require a card to be installed in
the Peripheral Expansion box. A card is simply an electronic
device that allows the computer to perform a specific function. A
total of 8 cards can be installed in the Peripheral Expansion box.

18 TI-99/4A User’s Handbook

lllustration 1-6. Peripheral Expansion System with
Tl 1250 Disk Drive

%

Disk Memory System Card

The Disk Memory System Card contains the electronic circuitry
required for the T1-99/4A to use disk drives. With this card
mounted in the Peripheral Expansion System, the TI-99/4A can
access up to 3 disk drives.

TI 1250 & 1850 Disk Drives

A disk drive is a much more efficient device for storing data than
a cassette recorder. A disk drive allows greater storage capacity,
quicker access to data, and fewer errors in the transfer of data.

The TI 1250 and 1850 disk drives are designed for use with the
Ti-99/4A. They are virtually identical except for the fact the 1250
is designed to mountinside the Expansion System cabinet, while
the 1850 has its own enclosure. Both the 1250 and the 1850 use
single-sided, single density 5 %4” diskettes, and can store approx-
imately 90,000 characters on each diskette.

The T1-99/4A Computer Introduction, Installation and Operation 19

T1-99/4 Impact Printer

The TI-99/4 Impact Printer is capable of printing both text and
graphics characters. The printer outputs characters at a rate of 80
per second, and uses standard, tractor feed paper.

The Impact Printer must be connected to the computer through
an RS-232 Intertace.

Mlustration 1-7. T1-99/4 Printer

(i

RS-232 Interface Card

The RS-232 Interface Card plugs into the Expansion System, and

allows the addition of input or output devices such as a modem
or printer.

RS-232 is a code that was developed in order to standardize the
exchange of data along telephone lines.

32K RAM Memory Expansion Card

The Memory Expansion Card is plugged into the Expansion
System to add 32K of RAM to the original 16K. This extra memory

20 TI-99/4A User’s Handbook

cannot be used with standard TI BASIC. However, it may be used
with Tl Extended BASIC, TI LOGO, Editor/Assembler, or several
other Solid State Software Command Modules.

The RF modulator contains another switch labeled CHANNEL
SELECT. This switch determines the channel on which the
television will receive the computer output signal. The switch
can be used to select either channel 3 or channe! 4. Set the switch
to the channel that receives the weaker signal in your area. Be
sure that the channel selector on the television is tuned to the
channel that corresponds to the RF modulator when the
computer is in use. A correct installation of the RF modulator is
depicted in llustration 1-8.

lllustration 1-8. RF Modulator Installation

If a television is not used with the TI-99/4A, the Tl color monitor
can be used instead. The monitor is supplied with an audio/
video output jack on the back of the computer console. The
other end of the monitor cable contains two plugs. The plugs
correspond to the two jacks on the back of the monitor. The two
plugs on the cable are shaped differently to prevent them from
being confused.

The T1-99/4A Computer Introduction, Installation and Operation 21

Solid State Speech Synthesizer

The Solid State Speech Synthesizer can be used to produce
electronically simulated speech. The speed synthesizer can
produce a limited number of words when it is used in con-
junction with Extended BASIC. When the speech synthesizer is
used with the Terminal Emulator command module, its vocabu-
lary is unlimited. Untortunately, the speech synthesizer cannot
be used with standard BASIC, but it can be used with many
specialized command modules.

INSTALLATION

The installation of the TI-99/4A computer is not at all difficult. It
only takes a few minutes to set up the equipment and make the
appropriate connections.

It is generally a good idea to save the carton and packing
materials that are supplied with the computer. The packaging
allows the computer to be safely shipped or stored in the future.

Once the computer has been removed from the carton, choose
a convenient location for the equipment. At least two electrical
outlets are required for the computer. One outlet is required for
the computer console, and another is needed for a television or
monitor. Additional outlets may be required for any peripheral
equipment.

The computer console should be placed in a location where it
will not be exposed to extreme heat or humidity. Also, the
console should be protected from direct sunlight, excessive
dust, moisture, etc.

The power switch for the TI-99/4A is located on the right hand
side of the front of the console. Be sure that the switch is in the
off position (left) during the installation procedure.

22 TI1-99/4A User’s Handbook

Begin by plugging the power supply into a wall outlet. If your
computer is supplied with a power supply that has a power cord,
simply place the power supply in a safe place near the computer
console.

If your power supply plugs directly into an outlet, be sure that it
is firmly in place. If possible, use the screw that is provided with
the power supply to fasten the unit to the outlet plate.

Proceed by connecting the power supply to the computer
console. The power supply plug is accommodated by the power
supply receptacle on the back of the computer console. Be sure
that the four connector pins in the receptacle are lined up with
the four holes in the power supply plug.

If the computer console is to be used with a television, an RF
modulator must be used. An RF modulator is a device that
converts the audio and video output of the computer into a
signal that is compatible with a standard television.

The RF modulator supplied with the T1-99/4A has a cord with a
round, 5 pin connector. This plug is accommodated by the
round receptacle on the back of the computer console.

Once again, be sure that the pinsin the plug and the holes in the
receptacle are aligned properly. If the plug is forced into the
receptacle without being properly aligned, both the plug and
receptacle may be damaged.

Proceed by removing any antenna leads that may be connected
to the VHF terminals on the television. Connect the antenna
leads (if any) to the terminals labeled TV ANTENNA IN on the RF
modulator.

The RF modulator contains a switch that is labeled
MODULATOR/TV ANTENNA. This switch allows the television
to operate normally when the computer is not in use. When the
switch is in the MODULATOR position, the television receives
the signal from the computer. When the switch is in the TV
ANTENNA position, the television receives the signal from the
antenna.

The T1-99/4A Computer Introduction, Installation and Operation 23

When the power supply has been connected to the console, and
a monitor or television has been installed, the system is ready to
be powered on. Begin by turning on the television or monitor.
Proceed by moving the computer console power switch to the
ON position.

The red power indicator on the front of the computer should be
illuminated and the following should appear on the screen.

lllustration 1-9. The Master Title

<P

TEXAS INSTRUMENTS
HOME COMPUTER
READY — PRESS ANY KEY TO BEGIN

©1981 TEXAS INSTRUMENTS

If the initial display does not appear as in the previous illustration,
consult the following table for a list of solutions to common
installation problems.

Table 1-1. Troubleshooting Guide

Problem Possible Cause Solution

No video display | Power Adapter Check connection

with power light unplugged from between wall outlet

off. outlet. and Power Adapter.
Power Adapter Check connection
not connected to | between Power
to computer Socket and Power
console, Adapter.

24 TI1-99/4A User’s Handbook

Table 1-1. Troubleshooting Guide

Problem

Possible Cause

Solution

INo video display
with power light
fon.

No color or
incorrect color on
display.

TV tuned to
wrong channel.

RF Modulator
not connected to
console.

RF Modulator not

properly connect-
edtoTV.

TV is improperly
tuned or color is
adjusted incorrectly

Be sure that the TV
is tuned to the
channel indicated
on the RF Modulator.

Check connection
between RF Modu-
lator and console.

Be sure that the twin
leads are connected
to the VHF terminals
on the TV-not UHF.

Tune TV and/or
adjust color.

Getting Started

The master title screen allows the colors of the display to be
adjusted. When the master title screen is displayed, the display
changes to the master selection menu when a character is typed.

The master selection menu is a list of options that appear on the
display. If no command modules are plugged into the console,
the menu appears as follows.

The T1-99/4A Computer Introduction, Installation and Operation 25

HOME COMPUTER

Q@ TEXAS INSTRUMENTS \

PRESS
1 FOR TI BASIC

_ /

When a command module is in use, additional selections appear
on the menu. Any selection on the menu can be chosen by
typing the appropriate number.

When the “1” key is pressed, the display is cleared and the
following message will be displayed.

TI BASIC READY
>N
Prompt
When the TI-99/4A is ready to accept data from the keyboard, an

angle bracket (>) is displayed at the left edge of the display. This
symbol is generally called a prompt.

Throughout this book, the prompt (=) is used to designate
program lines or statements that are entered by the user.

Cursor
The small rectangle that appears to the right of the prompt is
called the cursor. The cursor is a symbol that is used to indicate

the position that the next typed character will occupy.

The cursor is easily recognized because it continually blinks on
and off.

26 T1-99/4A User’s Handbook

Display

The Ti-99/4A computer displays 24 lines of output on a television
or monitor. Each line can contain up to 28 characters. A line on
the display is commonly called a display line.

The computer is not restricted to information that can appear on
one line of the display. When the standard version of BASIC isin
use, the computer can accept data that is up to 4 lines long. The
maximum length of a line of information is called the computer’s
logical line length.

In the standard version of TI BASIC, the logical line is four display
lines long. The computer’s logical line is longer when TI
Extended BASIC is in use.

TI-99/4A KEYBOARD

The T1-99/4A Keyboard contains many of the same keys arranged
in the same order as a standard typewriter. However, the
keyboard also contains several additional keys, such as CTRL and
FCTN.

Many of the keys have special symbols on the frontin addition to
the symbols on the top of the keys. Each of these keys are
assigned a special function in addition to the regular function of
the key.

Any problems that occur as a result of keyboard entry can be
solved by turning the computer off and turning it on again. As a
result, experimentation with the keyboard cannot damage the
computer.

SHIFT

The SHIFT keys on the T1-99/4A are used in the same manner as
the SHIFT keys on a typewriter. When one of the SHIFT keys is
pressed, each lettered key will generate an upper case character
rather than a lower case character.

The T1-99/4A Computer Introduction, Installation and Operation 27

The T1-99/4 has lowercase characters that resemble the upper-
case characters. The computer does not have a unique set ot
lowercase letters. Lowercase letters are merely a smaller version
of the uppercase characters.

‘Each numbered key generates a unique symbol when a SHIFT
key is pressed. The symbols that are represented by these keys
are displayed on each key above the corresponding number.

Five keys on the right side of the keyboard are used only to
generate symbols. These keys have the following markings.

_—-< >

+
=5 /7,

Each of these keys are used to generate the symbol that appears
on the lower half of the key. However, when one of the SHIFT
keys is pressed, each of these five keys can be used to generate
the symbol on the upper half of the key.

ALPHA LOCK

When the ALPHA LOCK key is pressed, it does not return to its
original position. Instead, the ALPHA LOCK key remains down
whenitis pressed. The key does not return to its original position
until it is pressed again.

When the ALPHA LOCK key is depressed, the lettered keys on
the keyboard will generate the uppercase characters only. The
numbered keys and the tive symbol keys will not be attected by
the ALPHA LOCK key.

ENTER

The ENTER key on the computer is used to enter data and move
the cursor to the beginning of the next line on the display.

When data is typed at the keyboard, the information is not
actually entered into the computer until the ENTER key is
pressed.

28 TI1-99/4A User’s Handbook

The ENTER key is sometimes called the “carriage return key”
because its function is similar to the carriage return key on a
typewriter.

CTRL
The key that is labeled CTRL is generally called the “control key.”
This key is not commonly used with the TI-99/4A computer.

The CTRL key is used with other keys on the keyboard to
generate special commands. The “control commands” are
generally used when the computer is used as a terminal for a
larger computer system.

FCTN

The key that is labeled FCTN is called the “function key.” This
key is used in conjunction with several other keys on the
keyboard to perform special functions.

Several keys on the keyboard have special functions when the
FCTN key is depressed. These special functions will be described
in this book with the following notation.

FCTN X

The character that follows “FCTN" corresponds to the marking
onakey. Be sure to press the specified key while the FCTN key is
being held down.

A template is provided with the computer to help the user
remember the function commands. The labels that appear on
the template (DEL, INS, ERASE . . .) correspond to the function
commands for the top row of keys on the keyboard.

The FCTN key can also be used to generate the following special
characters.

~[1 =N

The T1-99/4A Computer Introduction, Installation and Operation 29

These characters can be generated by holding down the
function key and typing the key that has the corresponding
character printed on the front of the key.

Correcting Keyboard Entry Errors

When information is typed incorrectly, there are five commands
that can be used to correct the entries before the data has been
entered into memory.

These four commands can be used to move the cursor to the left,
move the cursor to the right, insert data or delete data.

Cursor Left (FCTN S)

The S key on the keyboard has an arrow on the front of the key
that points to the left. When the S key is typed while the function
key is held down, the cursor moves one space toward the left
edge of the display.

If the cursor is located at the beginning of a logical line, the
Cursor Left command has no effect.

When both the function key and the S key are held down, the
Cursor Left command will be automatically repeated. This
feature allows the cursor to be moved quickly and easily.

Cursor Right (FCTN D)

The D key on the keyboard has an arrow on the front of the key
that points to the right. When the D key is typed while the
function key is held down, the cursor moves one space toward
the right edge of the display. If the cursor is moved past the end
of a display line, it automatically moves to the beginning of the
next line.

If the cursor is located at the end of a logical line, the Cursor
Right command has no effect.

30 TI-99/4A User’s Handbook

When both the function key and the D key are held down, the
Cursor Right command is automatically repeated. This feature
allows the cursor to be moved quickly and easily.

INS (FCTN 2)

The INS command is used to insert data. When the insert
command is executed, any subsequent typed characters will be
displayed at the cursor location. Each character that is inserted
causes the cursor to move one space to the right.

As the cursor is moved toward the end of the logical line, the
data on the right side of the cursor will also be moved to the
right. This allows the data to be inserted in the line without
overwriting any of the existing data.

The INS command is automatically repeated when the FCTN and
2 keys are both held down.

DEL (FCTN 1)

The DEL command is used to delete data. When the delete
command is executed, the character that occupies the current
position of the cursor will be deleted. Each time a character is
deleted, the data that appears to the right of the cursor will be
moved one space to the left.

When the DEL command is executed, the cursor does not move.
The data that appears to the right of the cursor will be deleted
one character at a time.

When the FCTN key and the 1 key are both held down, the DEL
command will be repeated automatically.

ERASE (FCTN 3)

The ERASE command is used to delete an entire logical line of
data. When the ERASE command is executed, the cursor will be
returned to the first position on the logical line.

The TI-99/4A Computer Introduction, Installation and Operation 31

Special Function Keys
QUIT (FCTN =)

The QUIT command is used to reset the computer system. When
the QUIT command is executed, the computer’s memory will be
cleared. As aresult, pressing the FCTN and = keys simultaneously
causes the program and data in the computer’s memory to be
erased.

The QUIT command also causes the master title screen to be
displayed.

CLEAR (FCTN 4)

The CLEAR command is generally used to stop the program that
is currently being executed. The CLEAR command does not
eliminate any of the program or data that is currently in use. As a
result, the FCTN and 4 keys are used simultaneously to stop the
execution of a program.

When the CLEAR command is executed, a message will be
displayed that indicates the program line/number that was
being executed when the command was issued.

The CONTINUE command can be used to resume the execution
of a program that was halted by the CLEAR command.

CHAPTER 2.
PROGRAMMING THE TI-99/4A
IN STANDARD BASIC

INTRODUCTION

BASIC is probably the most widely used programming language
for microcomputers, with the TI-99/4A being no exception.

Unfortunately, there are many versions of BASIC that are used
with various computers. As a result, the version of BASIC that is
used with Texas Instruments computers is not the same as the
versions of BASIC used with other computers. However, the
fundamentals of the BASIC language are the same, regardless of
the version.

Immediate & Program Modes

The immediate mode is also known as the direct or the calculator
mode. In the immediate mode, most BASIC command entries
result in the instructions being executed without delay. For
example, if the following immediate mode line was entered,

PRINT “JIM SMITH"
the following would be displayed on the video screen:
JIM SMITH
Inthe program or indirect mode, the computer accepts program
lines into memory, where they are stored for later execution.
This stored program is executed when the RUN command is

entered.

lllustration 2-1 contains an example ot the entry ot a program in
the program mode and its execution.

34 TI-99/4A User’s Handbook

Hlustration 2-1. Program Mode Entry & Execution

/ >10 PRINT “JIM SMITH" \

=20 PRINT "1220 EUCLID AVE”
>30 PRINT "CLEVELAND, OH 44122”
>40 END
=>RUN
JIM SMITH
1220 EUCLID AVE
CLEVELAND, OH 44122

_ J

Line Numbers

In the program mode, program lines must begin with a line
number. A line number is a number entered at the beginning of
a program line. The line number at the beginning of a program
line is the only difference between a program line and an
immediate mode line.

Line numbers between 1 and 32767 can be used with the TI-
99/4A computer.

A program cannot contain two lines that begin with the same
line number. If the same line number is used more thanonceina
program, the most recently entered line will replace the original.

The order in which the statements of a BASIC program are
executed is determined by the line numbers. The statement with
the lowest line humber will be executed first, followed by the
program lines with higher line numbers.

Program lines do not need to be entered in the correct
sequence. Program lines are executed according to the order of
their line numbers, regardless of the order in which they are
entered.

Adding program lines to the program stored in the computer’s

Programming the T1-99/4A In Standard BASIC 35

memory is very easy. Simply type in the line number followed by
the appropriate program statement.

Theline will be inserted in the programin the position indicated
by its line number. For example, by adding the following line to
the program in Illustration 2-1,

35 PRINT "216-777-5579"

the phone number for Jim Smith will be displayed on the line
following his city, state, and zip.

Program lines can be deleted by typing the line number of the
line to be deleted, followed by Enter. For example, the following
entry,

30
would result in line 30 being deleted.

Program lines can be changed by merely retyping the new line.
The existing line in the computer’s memory will be replaced with
the new line. For example, the following entry,

10 PRINT “THOMAS HILL”

would result in "“THOMAS HILL” being output rather than ”JIM
SMITH" in the program in lllustration 2-1.

NUMBER

The NUMBER command (or simply NUM) can be used to
generate line numbers automatically.

When a NUMBER command is executed, line number 100 is
displayed on the screen, and a new line number is generated
each time a program line is entered. Each subsequent line
number is greater than the previous line number by a value of 10.
As a result, the line numbers are generated with the following
sequence.

100, 110, 120, 130 ...

36 TI-99/4A User’s Handbook

If a line number is generated for a line that already exists in the
program, the entire line will be displayed along with the line
number. If you do not wish to change the program line, simply
press the ENTER key to generate the next line number.

The NUMBER command can also be used to generate a different
sequence of line numbers. Two arguments can be used with a
NUMBER command to indicate the first line number generated,
and the increment between line numbers.

For example, the following NUMBER command can be used to
generate the line numbers 10,15,20,25, etc.

NUM 10,5

The automatic line number mode can be exited by simply
pressing the ENTER key when a new line number is displayed.
The CLEAR command (FCTN 4) can also be used to cancel the
automatic line number mode.

NEW Command

The NEW command is used to erase an old program from
memory before a new one is typed in.

The TI-99/4A can only store one program in its memory at any
one time. If you attempt to enter a new program while another
program is already stored in the memory, the new program will
be merged with the existing program.

END Statement

Notice the last line in the program in lllustration 2-1. That line
consists only of the line number plus the BASIC reserved word
END.

The END statement identifies the end of a program, and causes
the computer to return to the immediate mode. Generally, the
END statement should be the last line in a program.

Programming the T1-99/4A In Standard BASIC 37

Actually, TI BASIC does not require an END statement. When the
program’s final statement is executed, the program will end.
However, it is good programming practice to end a BASIC
program with an END statement.

Executing a Program

The program in the computer’s memory is executed when the
RUN command is entered. This is shown in lllustration 2-1. Each
time the RUN command is repeated, the program is reexecuted.

Listing a Program

The LIST command can be used to display the program lines that
are currently stored in the computer’s memory.

When the LIST command is executed, the program in the
computer’s memory is displayed on the screen. Each line of the
program appears initially at the bottom of the display. In order
for each subsequent line of the program to appear on the last
line of the display, each line of the display must be moved one
line toward the top of the display.

As aresult, if a program occupies more than 24 display lines, the
firstlines of the program will be moved off the top of the display
in order to accommodate the last lines. This process is called
scrolling.

The LIST command may also be used to display portions of a
program.

Ifa LISTcommand includesaline number, only the program line
with the specified line number is displayed.

For example, the following command can be used to display the
program line that has the line number 100.

>LIST 100

38 TI1-99/4A User’s Handbook

A LIST command can also be used to display the program lines
that have line numbers within a specified range. For example,
the following command causes all the program lines that have
line numbers between 100 and 200 to be displayed.

>LIST 100-200

When the LIST command is used with only one line number, a
dash can be included either before or after that line number. A
dash before the line number causes all the program lines that
have a line number less than or equal to the specified value to be
displayed. If the dash follows the specified line number, all the
program lines from the specified line to the end of the program
will be displayed.

For example, the following command causes line 1000 to be
displayed along with all the program lines with line numbers
greater than 1000.

>LIST 1000-
Error and Warning Messages

When a statement with an incorrect format has been entered, an
error message will be displayed. The error message describes the
type of problem that occurred.

If a problem develops while a program is being executed, an
error message will also be displayed. An error that occurs during
the execution of a program generates an error message that
includes a description of the problem as well as the line number
of the statement that caused the problem.

When an error occurs in a program, an error message will be
displayed and the execution of the program will stop. If a
problem occurs in a program that is not serious enough to stop
the execution, a warning message will be displayed. Warning
messages describe the nature of the problem as well as the line
number where the problem occurred.

Programming the TI-99/4A In Standard BASIC 39

Appendix A provides explanations ot the Tl BASIC error and
warning messages.

BASIC Data Types

There are two general types of data that can be manipulated by
the computer: string and numeric.

Numeric data consists of numeric values and string data consists
of numbers, letters, and special characters.

Strings

A string consists of one or more characters enclosed within
double quotation marks. The following are examples of strings:

“F. SCOTT FITZGERALD"
"149 LEXINGTON AVE"
"NEW YORK, NY 10017

”212-349-9879"

Notice that a string can contain both letters, numbers, and
symbols. Any string containing numbers cannot be used in
mathematical operations.

NUMERIC DATA
Floating Decimal Point

Floating decimal point is the standard method of representing
numeric data. With floating decimal point numbers, a decimal
point is always assumed. Any number of digits can be placed on
either side of the decimal point. Even with numbers with no
decimal position, a decimal point always is assumed following
the number’s last digit.

Floating point numbers are displayed with 10 digits of accuracy.
For example, the following entry of a 10 digit floating point

number,

PRINT .5666666666

40 TI-99/4A User’s Handbook

would generate a ten digit display. If an 11 digit floating point
number was entered,

PRINT .56666666666

the last digit would not be displayed and the number would be
rounded as follows.

5666666667

Commas may notbe included within numeric data. For example,
109000 would be a valid number, while 109,000 would be invalid.

Floating point numbers include integers as well as numbers with
decimal positions. The following are examples of floating point
numbers.

-.0789
5
77.39
0
+.000001
67.98

Negative floating point numbers should be preceded by a minus
sign (-). Positive floating numbers can optionally be preceded
with the plus sign (+), however, a floating point number is
assumed positive if it doesn’t have a sign.
Scientific Notation
TI BASIC uses scientific notation to express either extremely
large or extremely small numbers. A number in scientific
notation has the following format:

x Etyy
Where;

+ is an optional plus or minus sign.

Programming the T1-99/4A In Standard BASIC 41

x is a floating point number. This position of the number is
known as the coefficient or mantissa.

E stands for exponent.

yy is a one or two digit exponent. The exponent gives the
number of places that the decimal point must be moved to
give its true location. The decimal point is moved to the
right with the positive exponents. The decimal point is
moved to the left with negative exponents.

The following examples specify a number in both standard
floating point and scientific notation:

10600000 — 1 E6
.000001 — 1 E-6
57500000 — 5.75 E+07
-.00000479 — -4.79 E-06

Any integers containing 11 or more digits will be expressed in
scientific notation as shown in the following example.

PRINT 12345678901
1.23457 E+10

Notice that the decimal portion of the preceding example
contains 6 digits of precision. Any additional digits are rounded
off.

Numbers cannot be displayed with an exponent greater than 99.
Numbers that have exponents greater than 99 are displayed with
two asterisks in the position of the exponent. This indicates that a
number was generated that cannot be represented with a two
digit exponent.

2.47685E+**

Numbers that require an exponent that is less than -99 are
automatically converted to zero.

42 T1-99/4A User’s Handbook

The computer cannot manipulate numbers that have an
exponent greater than 127. As a result, the following warning
message will be displayed when a number is generated with an
exponent that is too large.

*WARNING
NUMBER TOO BIG

A line number will be included with the warning message if an
illegal value was generated during a program.

VARIABLES

So far, we have only discussed data constants. A constant can be
defined as a fixed value. The following are examples of string and
numeric constants.

"JACK NOVET”
”375”

27.59

0

100000

A name can be used to express data as well as a constant.
Variables are used to express data as a name.

BASIC Variables

A variable can be defined as a name that can represent any one
of a group of values. Variables are represented by variable
names. These consist of a letter followed optionally by additional
letters and/or numbers. The value assumed by a variable is
subject to change, depending upon the program statement
being executed. The following example program uses the
variables A and B.

100 LETA=5.0
200 LETB=7.0
300 LETA=A+B

Programming the TI-99/4A In Standard BASIC 43

The variable Aiis initially assigned a value of 5.0and Bis assigned a
value of 7.0. In line 300, the variable A is assigned a new value
equal to the sum of variables A and B, which is 12.0. The previous
value of A is erased.

Note the use of the LET statementin the preceding example. The
LET statement is used to assign a value to a variable. Whenever a
LET statement is used in a program, the value of the variable on
the left side of the equation is to be replaced with the value
appearing on the right.

The reserved word, LET need not actually be included in a LET
statement. Both of the following statements have the same
effect.

100 LETA =5
200 A=5
BASIC Variable Names

TI BASIC allows any group of up to 15 characters to be used as a
variable name--as long as the first character of the group is a
capital letter of the alphabet, and as long as the variable name
does not duplicate a reserved word (see Appendix D). Examples
of reserved words are:

LET, GOTO, IF, READ, DATA

The following are examples of valid BASIC variable names:

A PRICE
AMOUNT A7
VALUE B2A

The following are examples of invalid variable names.

2BB7 END
1A FOR
PRINT ({0)

44 T1-99/4A User’s Handbook

All of the preceding examples of valid variable names should be
used to represent numeric data. Variable names can also be used
to represent string data. These are known as string variables.
String variable names consist of a valid variable name followed
by the dollar sign ($). The following are examples of valid string
variable names.

A$ NED$
ZIP$ MONS$
A7$ N222%

Tables & Arrays

Avariable is designed to hold a single data item--either string or
numeric. However, some programs require that hundreds or
even thousands of variable names be used.

Obviously, the use of thousands of individual variable names
could prove extremely cumbersome. To overcome this problem,
BASIC allows the use of subscripted variables. Subscripted
variables are identified with a subscript. A subscript is a number
appearing within parentheses immediately after the variable
name. An example of a group of subscripted variables is given
below:

A(0), A1), A(2), A(3), A(4),..., A(100)

Note that each subscripted variable is a unique variable. In other
words, A(0) differs from A(1), A(2), A(3), A(4), etc.

Subscripted variables should be visualized as an array (or table).
In our previous example, the data contained in the array defined
by A would consist of one row with 101 columns in it. Such an
array is a single-dimension array.

Tl BASIC allows one, two or three dimensionally subscripted
variables. lllustration 2-2 provides a visualization of a two
dimensional array of values.

Programming the T1-99/4A In Standard BASIC 45

lllustration 2-2. Two-Dimensional Array

Columns
0 1 2

275 | 29.4 | 26.4
378 | 36.1 | 35.8
26.4 | 29.5 | 25.9
40.1] 358 | 349

Rows

w N -2 O

If the variable name of the example array was X, the value in the
upper left corner of the table would be the value of the variable
X(0,0). Each element of the table must be specified by the
variable name, followed immediately by two subscripts. The first
subscript indicates the row number of the specified value. The
second subscript indicates the column. The subscripts must be
enclosed in parentheses and separated by commas.

OPTION BASE and DIM statements have an affect on the use of
subscripted variables. A DIM statement is used to specify the
highest subscripts that can be used in an array. An OPTION BASE
statement determines the lowest subscript that can be used in an
array.

The following DIM statement can be used to reserve an area in
the computer’s memory for an array with 27 as the highest row
number and 14 as the highest column number.

DIM Z(27 14)

The size an array is only limited by the amount of available
memory. If an insufficient amount of memory is available, a
MEMORY FULL error will occur when a DIM statement is
executed.

A single DIM statement can be used to set the maximum
subscript values for more than one array. The specifications of
each array must be separated by commas, asdemonstrated in the

46 T1-99/4A User’s Handbook

following statement.
100 DIM A(5,3),B(100),C(2,3)

Be sure to include a DIM statement in a program before the
subscripted variables are referenced. A BAD SUBSCRIPT error
will occur if dimensioned variables are used improperly.

DIM statements are required for arrays that have subscripts
greater than 10. However, subscripted variables that do not have
subscripts greater than 10 do not require DIM statements.

In general, the lowest subscript that can be used in an array is 0.
However, an OPTION BASE statement can be used to change the
lowest allowable subscript to 1. Although DIM statements can be
used to set subscript limits for each array individually, a single
OPTION BASE statement affects every array.

The only two values that can be used in an OPTION BASE
statement are 0 and 1. As a result, the following two statements
are the only possible OPTION BASE statements.

OPTION BASE 0
OPTION BASE 1

Expressions and Operators

The values of variables and constants are combined to form a
new value through the use of expressions. An expression is a
group of constants, variables and operators that are used to
calculate a single value. The value that is calculated reflects the
information contained in the expression. A typical expression
would appear as follows.

27+A8-X

Tl BASIC allows the use of arithmetic, relational and string
operators. Arithmetic operators are used to evaluate expressions
based on the values of the numbers in the expression. Relational
operators are used to evaluate expressions based on the relative

Programming the TI-99/4A In Standard BASIC 47

values of the items in an expression. String operators are used to
evaluate expressions that contain string values.

Arithmetic Operators

The symbols used for addition, subtraction, multiplication,
division, and exponentiation are known as arithmetic operators.
In BASIC, the symbols + and - are used tor addition and subtrac-
tion respectively. The asterisk (*) is used to indicate multipli-
cation, while the slash (/) is used to indicate division.

When a + or - sign precedes a number, the symbol is used to
specify that number’s sign.

However, when a minus sign is used to change the sign of a
value, the operator is called a unary minus. The following
statement uses the unary minus operation to change the sign of
the variable A.

100 LETA=-A

Exponentiation is the process of raising a number to a specified
power. For example,

AS
is equivalent to the following expression:
A*A*A*A*A

In Tl BASIC, exponentiation is indicated by the caret (A). The
value to the left of the caret is the base, and the number to the
right of the caretis the exponent. As aresult, the expression (A$)
could be represented in BASIC as AAS5.

The following examples demonstrate the use of the arithmetic
operators.

37/A +4°B
50*4-A
23.25/4+ C

48 TI-99/4A User’s Handbook

String Operators

The only string operation used in TI BASIC is string concatenation.
This operation is the combining of two strings to form a third
string. The result of a concatenation is a combination of the two
strings. The ampersand (&) is used to represent this operation.

For example, if the variable A$ is assigned the value “TOOTH"
and B$ is assigned the value "ACHE" the strings can be
concatenated to form the string "TOOTHACHE". The expression
A% & B$ can be used to concatenate the two strings.

Relational Operators

Relational operators are used to evaluate relational expressions.
These types of expressions can be either true or false. The
following relational expressions are all true.

5>3
3=3
4<7

The conditions of true and false are represented by the values -1
and 0 respectively. As a result, a relational expression is always
evaluated to one of the two values (0 or -1).

The relational operators are summarized as follows.

< —less than
< = — less than or equal to
> — greater than
> = — greater than or equal to
—equal to
< > — not equal

For example, a "less than” expression is equal to -1 only if the
value on the left side of the operator is less than the value on the
right. Otherwise the expression is equal to zero.

When relational expressions include string values, the string
values are compared according to each character in the string.

Programming the T1-99/4A In Standard BASIC 49

One character is considered "greater than” another if its ASCII
code is a greater number.

The ASCII code is a widely used system that uses numbers to
refer to the characters instead of the characters themselves. The
ASCII values that correspond to the TI-99/4A character set can
be found in Appendix C.

For example, the ASCII code for an upper case A is 65. The code
for an upper case B is 66. As a result, the following relational
expressions would be considered true.

"BII = IIA”
IIBII >”AII
IIAII - = IIBII
IIAII< ”B”
”A”< >'IB”

Strings are compared by the ASClI code for each character, one
atatime. If the first characters in each of the strings are the same,
the second characters in the strings will be compared.

For example, consider the two string values “"JOSEPH” and
“JOAN". In a relational expression, the first characters of the
strings will be compared first. Since both strings begin with “)”,
the second charactes will be compared next. Since the second
characters are also the same, the comparison continues with the
third character.

Since the ASCII code for “A” (65) is less than the ASCII code for
" (83), "JOAN" is considered less than "JOSEPH".

If the end of a string is encountered during a string comparison,
the string with the fewer number of characters will be considered
less than the longer string. For example, "ABC” would be
considered less than "ABCD".

The relational operators can be used to indicate the relative
location of strings in alphabetical order.

50 T1-99/4A User’s Handbook

The following examples demonstrate the use of relational
operators with string values. All of the following expressions are
true.

IIABCII = ”ABC”

”AAB” . IIAAAIl

"ALFRED” < "ALFREDO”

A$=<Z$ where A$ ="ALFRED” and Z$ ="ALFREDO"

Note that all string constants must be enclosed in quotation
marks.

Compound Expressions and Order of Evaluation

Most of the preceding examples were simple expressions. A
simple expression is one which contains just one operator and
one or two operands. Simple expressions can be combined to
tform compound expressions. The tollowing are examples ot
compound expressions.

(A+B)*7-4
(A+B)/(C+D)
(A>B)>(C< >D)

Without a standard means of evaluating compound expressions,
the expression 2+3*5 could be evaluated as either 17 or 25
(depending on the order of operations).

As a result, a standard order of operations is used to prevent
contusion. Table 2-1 outlines the standard order of evaluation.

Parentheses are used to enclose expressions that should be
evaluated before any other operations are performed.

More than one set of parentheses can appear in an expression. If
asetof parentheses are located within another set, the expression
within the inner set of parentheses will be evaluated first.

If multiple sets of parentheses are not contained within each
other, the expression enclosed in the leftmost setof parentheses
will be evaluated first.

Programming the TI-99/4A In Standard BASIC 51

Table 2-1. Order of Evaluation

Operator | Description Priority
ql’arentheses () Used to alter order 1
of evaluation.
A Exponentiation 2
- Unary Minus 3
Arithmetic * Multiplication 4
Operators / Division
+ Addition 5
- Subtraction
= Equal To
<> Not Equal To
Relational < Less Than 6
Operators > Greater Than
<= Less Than or Equal To
>= Greater Than or Equal To

When the expressions in parentheses have been evaluated, the
remaining operations will be performed. The operations will be
performed according to the priority levels ot Tabel 2-1. The
operations in an expression that have the same priority level will
be evaluated from left to right.

Mixed Expressions

Since the relational operators return a numeric value (0 or -1),
the result of a relational expression can be used within an
algebraic expression.

The following examples demonstrate the format of mixed
expressions,

4*(B>6)
5+(6<>A)

52 T1-99/4A User’s Handbook

The value returned by a relational expression can be used in the
same manner as any other value.

For example, the expression 7*(4>3) would be evaluated as -7.
The expression in parentheses is equal to -1because the relation
is true. When the result of the relational expression is multiplied
by 7, the result is -7.

Tl BASIC Statements

The next several sections contain explanations of the most
commonly used BASIC statements.

Remark Statements

Remark statements are used to include comments in a program.
It is good programming practice to include a liberal number of
Remark statements in a program. Comments should be used to
describe the logic that is used in a program.

Remark statements must include the keyword REM. This reserved
word causes the statement to be ignored by the computer. Even
though Remark statements have no effect on the operation of
the computer, the comments will be displayed each time the
program is listed.

The following statement demonstrates the format of a typical
Remark statement.

100 REM INPUT ROUTINE
Assignment Statements

Assignment statements are used to assign values to variables. The
following are examples of assignment statements.

100 LETA=7
200 B=42
300 NAME$ =“PHIL"

Notice that the keyword LET is optional. Generally, LET is

Programming the T1-99/4A In Standard BASIC 53

assumed. Both string and numeric variables can be assigned
values with an assignment statement.

DATA and READ Statements

Assigning values to a large number of variables with individual
assignment statements could prove very cumbersome. DATA
and READ statements can be used to assign values to a large
number of variables. The following is an example of DATA and
READ statements.

100 DATA 100, 500, 1000, “JACK”
200 READ A, B, C, D$

The DATA statement creates a list of constant values known as a
DATA list. The items in the DATA list are assigned sequentially to
the variables in the READ statement. A DATA list is depicted in
lllustration 2-3.

llustration 2-3. DATA and READ Statements

Example Statements

100 DATA 10,20,30

200 DATA JUNE,JULY,AUGUST
300 READ A,B,C

400 READ A$,B%,C$

Data List | Corresponding Variables
10 A
20 B
30 C
JUNE A$
JULY B%
AUGUST C%

DATA statements may contain numeric or string values. These
values must be separated or delimited with commas. DATA

54 TI-99/4A User’s Handbook

statements may appear at any point in the program.

The DATA list uses a pointer to indicate which value within the
list is to be assigned to the next variable in a READ statement.
Before the first READ statement is encountered, the DATA list
pointer will point at the first value in the DATA list. As values
from the DATA list are assigned to variables in the READ
statement, the pointer will move sequentially to each successive
item in the DATA list.

The values from the DATA list must match the type of variable to
which they are assigned in the READ statement. In other words, a
string value cannot be assigned to a numeric variable, or vice
versa.

A RESTORE statement can be used to move the data pointertoa
specific location in the data list. If a RESTORE statement is not
used to move the data pointer, each data item in a program can
only be read once. The first READ statement will assign the first
value in the first DATA statement to the specified variable.

Each dataitem in the program will be read sequentially beginning
with the first data item. When a RESTORE statement is executed,
the data pointer can be moved to the first value in any of the
program’s DATA statements. The particular DATA statement will
be specified by the line number argument in the RESTORE
statement. When a RESTORE statement does not include a line
number, the data pointer will be moved to the first data item in
the program. The following example demonstrates the use of a
RESTORE statement.

100 READ A,B
200 RESTORE
300 READ C,D,EF
400 RESTORE 700
500 READ G,H
600 DATA 10,20
700 DATA 30,40

Atline 100, the variables A and B were assigned the values 10 and

Programming the T1-99/4A In Standard BASIC 55

20. The DATA statement at line 600 provided the values for the
first two variables in the READ Statement.

The RESTORE statement at line 200 returned the data pointer to
the beginning of the data. As a result, the values 10 and 20 were
once again assigned to variables via a READ statement.

The READ statement at line 300 assigned the values 10,20,30 and
40 to the variables C,D,E and F.

The RESTORE statement at line 400 caused the data pointer to
return to the first data item in line 700. As a result, the READ
statement at line 500 assigned the values 30 and 40 to the
variables G and H.

Outputting Data
In some of the preceding examples, the PRINT statement was
used to display data. The PRINT statement can be used to display
both numeric and string data.
The following program statement,

100 PRINT “VENDOR LIST”
would cause the following output when executed.

VENDOR LIST

The first item in a PRINT statement is displayed at the cursor’s
current location.

Two data items can be displayed on the same line with a single
PRINT statement by separating the string constants or variables
in the PRINT statement with commas. The following statements,

100 LET A$ ="JOHN"
200 PRINT A$, "BILL", "PETER”

56 T1-99/4A User’s Handbook

would result in the display shown below:

JOHN BILL
PETER

The display screen is divided into two separate zones when data
is being output to the screen via the PRINT statement. The first
zone begins at the far left side of the screen in the first column.
The second zone begins in the middle of the display line.

When a comma appears in a PRINT statement, the computer is
instructed to print the next value at the beginning of the next
print zone. In the preceding example, “JOHN" is printed in print
zone 1. The third parameter, “PETER” is displayed in the first
zone of the subsequent display line.

If the first value in a PRINT statement consists of more than 13
characters, the next item will be printed at the first print position
on the following line. The following example illustrates this
principle.

>100 LET A$ ="TORONTO,ONTARIO”
=200 PRINT A$, “BILL", “PETER”

=>RUN
TORONTO,ONTARIO
BILL PETER

A semicolon can also be used to separate the items in a PRINT
statement. A semicolon causes the next item in the PRINT
statement to be displayed immediately after the preceding item.
When semicolons are used to separate items, no blank spaces

appear between string values. Numeric values are separated by
two spaces.

When a PRINT statement has been executed, the cursor will be
moved to the left margin of the following line. Thisis known asa
carriage return/line feed.

If acomma or semicolon occurs atthe end of a PRINT statement,
the carriage return/line feed will be suppressed. If a comma is
placed at the end of a PRINT statement, the next PRINT

Programming the TI1-99/4A In Standard BASIC 57

statement will begin output at the next print zone after the last
item is displayed. If a semicolon is placed at the end of a PRINT
statement, the next PRINT statement will begin output im-
mediately following the last item displayed.

A DISPLAY statement can also be used to output data to the
screen. DISPLAY statements use the same format as PRINT
statements, but DISPLAY statements cannot be used to output
data to any device other than the video screen.

DISPLAY statements can be used to output string or numeric
values. The values in a DISPLAY statement must be separated by
commas or semicolons. A comma causes the next output to
appear in the next available column. When a semicolon is used
to separate values, the values will be output adjacent to each
other.

Numeric values that are output with DISPLAY statements will
always be preceded by one blank space.

>100 A$ ="THOMAS HILL"
=200 DISPLAY “NAME: ";A$
>300 B =34
=400 DISPLAY “AGE:";B
>RUN
NAME: THOMAS HILL
AGE: 34

INPUT Statements

An INPUT statement allows values to be assigned to variables
while a program is being executed.

When an INPUT statement is executed, the execution of the
program cannot continue until data has been entered via the
keyboard.

The following statement demonstrates the format of a simple
INPUT statement.

58 TI-99/4A User’s Handbook

100 INPUT A

When the preceding statement is executed, a tone will sound
and a question mark will be displayed to indicate that data is
required for the variable A. A keyboard entry should be used to
assign a value to the variable. When the ENTER key is pressed, the
execution of the program will resume.

The type of data entered at the keyboard must correspond to the
type of variable specified in the INPUT statement. If the two
types do not correspond, the following warning message will be
displayed.

*WARNING:
INPUT ERROR IN 100
TRY AGAIN:

When an input error occurs, the INPUT statement will
automatically be repeated. As a result, an INPUT statement will
not allow the execution of the program to continue until an
appropriate value has been entered.

The values for several variables can be assigned with a single
INPUT statement. The following example demonstrates the use
of an INPUT statement with several variables.

200 INPUT A$,B,C$

The variables in an INPUT statement must be separated by
commas. Also, the data values entered in response to the INPUT
statement must be separated by commas.

When an INPUT statement requires values for more than one
variable, the values should be entered in the correct sequence
and should be separated with commas. Press the ENTER key to
end the entry of values.

The types of values in the response must correspond to the types
of variables in the INPUT statement. A numeric value will be
considered a string if itis entered as a value for a string variable. If
the number of data items entered in response to an INPUT

Programming the T1-99/4A In Standard BASIC 59

statement did not correspond to the number of variables in the
statement, the following warning message would be displayed.

*WARNING:
INPUT ERROR IN 200
TRY AGAIN:

String values that contain commas must be enclosed in quotation
marks when entered in response to an INPUT statement.
However, the quotation marks will not be considered a part of
the string value. The quotation marks are required because
commas are generally used to separate data items. If a single
string value includes a comma, that value would be interpreted
by INPUT as two separate values. The following example
contains a program that uses INPUT statements to assign string
values to variables.

>100 INPUT A$%,B$,C$
>200 PRINT A%
>300 PRINT B%
>400 PRINT C$
=>RUN
? DESK, CHAIR, “PENCILS, PENS” 4— user’s response
DESK
CHAIR
PENCILS, PENS

The data PENCILS, PENS would generally be considered two
separate values for an INPUT statement. However, the quotation
marks allow the data to be considered as a single string value.

Itis a good programming practice to include a prompt message
in an INPUT statement. A prompt is used to indicate the exact
type of data entry that is required. For example, the statement:

100 INPUT “"CUSTOMER NAME?":A$

60 TI1-99/4A User’s Handbook

would cause the following message to be displayed when the
INPUT statement was executed.

CUSTOMER NAME?

The prompt message in an INPUT statement must be enclosed in
quotation marks and followed by a colon. The list of variables
must follow the prompt message.

When a prompt message is included in an INPUT statement, the
question mark (?) will not automatically be displayed. If a prompt
message is included, the prompt will be displayed exactly as it
appears in the INPUT statement.

Loops

A section of a program that is to be repeated more than once is
called a loop. Loops are used extensively in computer
programming to perform calculations for large sets of data.

One of most commonly used loops is the FOR, NEXT loop. The
following program example illustrates a typical application of a
FOR, NEXT loop.

100 FORJ=1TO 20
200 X =)A2

300 PRINT X

400 NEXT)

500 END

The section of the program from line number 100to line number
400isa FOR, NEXT loop. The variable J is referred to as a counter.
The statements within the loop (between the FOR and NEXT
statements) will be repeated for various values of the counter (J).

The FOR statement contains the upper and lower limits of the
counter. The keyword TO is preceded by the initial value of the
counter (1), and followed by the final value (20).

Each time the NEXT) statement is executed, the value of the
counter will be increased and the loop will be repeated. As a

Programming the T1-99/4A In Standard BASIC 61

result, the statements within the loop (lines 200 and 300) will be
repeated 20 times. Each time the loop is repeated, the variable |
will represent a different value. As a result, the preceding
example program will compute the squares of the numbers from
1to 20.

When the counter (J) is assigned the final value (20), the
statements at lines 200 and 300 will be executed for the last time.
When the loop has been completed, the program will proceed
with the statement following the NEXT } statement.

Any numeric variable can be used as the counter, and any
number of program lines can be included within a loop.

In the preceding example, the counter was incremented by one
each time the loop was repeated. If itis necessary to increase the
counter by a value other than 1, a STEP statement can be
included in the FOR statement. The value following the keyword
STEP will determine the amount that the counter is to be
increased each time the loop is repeated.

The following program contains a FOR, NEXT loop with a
counter that will increase by 3 each time the loop is repeated

100 FOR K=1TO 20 STEP 3
200 X =KA2

300 PRINT X

400 NEXTK

500 END

The FOR, NEXT loop in the preceding example will be repreated
7 times. The counter (K) will be assigned the value 1 when the
loop is begun. Each time the loop is executed, the value of the
counter will be increased by 3. The value of the counter will be 19
during the last repetition of the loop.

FOR, NEXT loops will be repeated until the value of the counter
is larger than the final value. The example loop will be executed
for the last time when K has been set equal to 19 because one
more repetition would cause the value of Kto be set to 22. Since

62 T1-99/4A User’s Handbook

22is larger than the final value (20), the loop will not be executed
once the variable K has been assigned the value 22.

STEP statements can also include negative or fractional values.
The correct format for STEP statements is demonstrated in the
following examples.

FOR) =10TO 0 STEP-1
FOR T=0TO 100 STEP.25
FOR K =25TO 0 STEP-.5

Nested Loops

One loop can be placed inside another loop. The innermost
loop is known as a nested loop. The following program contains
a nested loop.

100 FORJ=0TO 2

200 FORK=0TO
300 READ R(,K) inner loop |outer loop
400 NEXT K

500 NEXT) -
600 DATA 10,11,12,13,14,15
700 DATA 16,17,18,19,20,21

The preceding example is used to read data into the numeric
array R.

When using nested loops, be sure to end the inner loop before
ending the outer loop. In other words, be sure that the entire
inner loop is contained within the outer loop.

A program must contain a NEXT statement that corresponds to
each FOR statement. If the FOR and NEXT statements are not
properly arranged in a program, a FOR-NEXT ERROR will occur.

If a program contains a loop that is improperly nested, a CAN'T
DO THAT error will occur.

Programming the T1-99/4A In Standard BASIC 63

Conditional Branches

A branch is an interruption in the order in which statements are
executed in a program. A branch causes a specified program line
to be executed regardless of that line’s location within the
program.

For example, if line number 500in a program causes a branch to
line 1000, the statements in the program with line numbers
between 500 and 1000 will be ignored. The program execution
will resume at line number 1000 and continue with the
subsequent statements.

Conditional branches are statements that are used to branch a
program if a specified condition is true.

A conditional branch statement has the following configuration.
IF expression THEN linenumber

The expression in an IF,THEN statement is used to control the
execution of a program. Relational expressions are most
commonly used as the control expression in an IF,THEN
statement.

If the relational expression is true, the program will execute the
statement at the specified line number. The following statement
is an example of a conditional branch statement.

500 IF A$ ="STOP” THEN 1000

The control expression in this statement is A$ = “STOP”. When
this expression is true, the statement at line number 1000 will be
executed. When the program control is branched to line 1000,
the execution of the program will continue with the statements
that follow line number 1000.

If the control expression is false, the execution of the program
will continue with the statement that follows the IF,THEN
statement. In other words, the normal execution of the program

64 T1-99/4A User’s Handbook

will not be affected by the IF,THEN statement if the condition is
false.

An ELSE statement can be included with an IF,THEN statement.
An ELSE statement is used to specify a line number that the
program will branch to if the control expression is false.

100 IF C>256 THEN 1000 ELSE 2000
The preceding example statement will cause the program to
branch to line number 1000 if the value of the variable C is
greater than 256. If the value of C is less than or equal to 256, the
program will branch to line number 2000.

Branching Statements

The concept of branching a program was introduced in the
discussion of conditional statements. A branch in a programis an
alteration of the normal order of executing statements.

A branching statement causes the program control to proceed at
a specified line number. The most commonly used branching
statements are GOTO and GOSUB.
A GOTO statement has the following format.

GOTO linenumber

For example, the following statement would cause the program
to branch to line number 1000 when line 500 is executed.

500 GOTO 1000
ON, GOTO Statement
An ON, GOTO statement is a combination of a conditional

statement and a branching statement. The use of an ON, GOTO
statement is illustrated in the following program.

Programming the Ti-99/4A In Standard BASIC 65

10 INPUT A

20 ON A GOTO 40,50,60
40 B =B+1

50 C=C#+1

60 D =D+1

The ON, GOTO statement at line number 20 is used to branch
the program to one of the specified line numbers (40,50 or 60).
The value of the variable A is used to select the line number of
the branch.

If the expression following the keyword ON is equal to 1,
program control will branch to the first line number specified
after GOTO; if 2, to the second; if 3, to the third; etc.

Forexample, if the variable A is one, program control will branch
to line number 40. If the value of A is 2, the program will branch
to line number 50, etc.

If the control expression is notan integer, itis rounded off. If the
value of the control expression is less than or equal to 0, or
greater than the number of line numbers in the ON, GOTO
statement, a BAD VALUE error will occur.

Subroutines & GOSUB Statements

Many times the same set of program instructions are used more
than once in a program. Re-entering these program lines can be
very time consuming. The use of subroutines make the additional
entries unnecessary.

A subroutine can be defined as a program which appears within
another larger program. The subroutine may be executed as
many times as desired.

The execution of subroutines is controlled by the GOSUB and
RETURN statements. The format for a GOSUB statement is as
follows.

GOSUB linenumber

66 TI1-99/4A User’s Handbook

The computer will begin execution of the subroutine beginning
at the specified linenumber. Statements will continue to be
executed in order, until a RETURN statement is encountered.
Upon execution of the RETURN statement, the computer will
branch out of the subroutine back to the first line following the
original GOSUB statement. This is illustrated in the following
example.

100 FOR)=0TO 3

200 GOSUB 1000

300 NEXT)

400 END

1000 X = JA2+JA3
Subroutine { 1100 PRINT X

1200 RETURN

Subroutines can make writing a program easier. By dividing a
lengthy program into a number of smaller subroutines, the
complexity of the program will be reduced. Individual sub-
routines are smaller and therefore more easily written. Sub-
routines are also more easily debugged than longer programs.

ON, GOSUB Statement

An ON, GOSUB statement is very similar in principle to an ON,
GOTO statement. The following statement is an example of an
ON, GOSUB statement.

100 ON X GOSUB 1000, 2000, 3000

If the value of Xis 1, the subroutine at line 1000 is executed. If Xis
2, the subroutine at line 2000 is executed. If X is 3, the subroutine
at line 3000 is executed.

If the value of X is rounded off to a value less than 1 or greater
than 3, a BAD VALUE error will occur.

When the execution of the subroutine is complete, program
control will return to the line immediately following the ON,
GOSUB statement.

Programming the TI-99/4A In Standard BASIC 67

Functions

Functionsare used to representa set of calculations thatreturna
value. Generally, functions require one or more arguments. The
arguments are used as input for the function. The output of the
function is the value that is returned.

There are many functions that can be used in TI BASIC (See Table
2-2).

Table 2-2. Tl BASIC Functions

Functions Functions
that require that require
numeric arguments string arguments|
ABS COS INT SIN ASC
ATN EOF LOG SQR LEN
CHR$ EXP SGN STR$ VAL
TAN

The following format is used for all of the functions that require
one argument.

function (argument)

The keyword for the function is always followed by an argument.
An argument can be any expression that uses constants, variables,
operators, or other functions. Some functions require numeric
values as arguments and others require string values. The type of
data used as an argument must correspond to the type of data
that the function requires. The functions on the left side of Table
2-2 require numeric arguments. The functions on the right side
of the table require a string value as arguments.

A STRING-NUMBER MISMATCH error will occur if the wrong
type of argument is used with a function.

68 T1-99/4A User’s Handbook

The following example statements demonstrate the use of the Tl
BASIC functions.

10 PRINT SGN(SIN (A))

10 PRINT CHR$(87)

10 X = SQR (VAL(A$))

10 FOR] = LEN(A$) TO LEN(B$)
10 IF LEN(A$)>LEN(B$) THEN 80

Each of the Tl BASIC functions are described in detail in
Chapter 5. .

TI BASIC includes two functions that require more than one
argument. These functions are used with both numeric and
string values.

The POS and SEG$ functions are the only two functions that
require more than one argument.

The arguments of these functions must be enclosed in
parentheses and separated by commas. The following statements
are examples of multiple argument functions.

100 Y = POS(X$,"TEXAS" 4)
100 PRINT SEG$(X$,5,6)

The only function that does not require an argument is RND.
This function is used to return random numbers that are greater
than or equal to zero and less than one.

DEF

A DEF statement can be used to define a function. If calculations
in a program need to be repeated several times, a function can
be defined to perform the calculations.

Functions can return either a string value or a numeric value.
Also, the argument of a function can be either a string or a
number.

Programming the T1-99/4A In Standard BASIC 69

The following example program is used to define a function that
concatenates the argument of the function with the string
"BERRIES”.

>10 DEF Z$(X$) = X$ & "BERRIES”
>20 A$ ="BLUE"
>30 B$ ="STRAW"
>40 PRINT Z$(A$),Z$(B$)
> RUN
BLUEBERRIES ~ STRAWBERRIES

The name of the function is Z$. Since the function returns a string
value, the function name must be a string variable name.

The argument of the function is represented by the variable X$.
In the function definition statement at line 10, the argument of
the function (X$) is concatenated with the string “BERRIES”,

As a result, the PRINT statement at line 40 returns two string
values. The variables A$ and B$ are used as arguments of the
function Z$.

The two string values returned by the function are the output of
the program.

The following example program uses a DEF statement to define a
numeric function. The function defined in the following program
is commonly called the inverse sine or arcsine function.

=>10 DEF ARCSIN(X) = ATN(X/SQR(-X*X+1))
>20 PRINT ARCSIN(.5)
>RUN

.5235987756

ASCII

The computer cannot actually store characters in its memory.
Instead, the computer stores numeric values.

Before characters can be stored, they must be converted to
numbers. Computers use special numeric codes to store

70 TI1-99/4A User’s Handbook

characters. Most microcomputers use a code known as ASCII
(American Standard Code for Information Interchange).

The TI-99/4A uses codes slightly different from the standard
ASCII code set. The codes used by the TI-99/4A are listed in
Appendix C.

The CHR$ function can be used to generate the characters with
ASCII codes from 30 to 127. For example, since the ASCII value
for the letter A is 65, the following statement causes the letter A
to be output.

PRINT CHR$(65)

The ASClIi values from 0 to 30 are reserved for special functions
of the computer. The CHR$ function cannot be used to generate
these special functions. Generally, when a CHR$ function hasan
argument less than 30, a blank space will be displayed.

The ASCII values from 128 to 159 are used to specify special
graphics characters. These special characters must be defined
before they can be displayed.

The ASC function returns the ASClI code equivalent for its string
argument. If this string is longer than one character, the ASC
function returns the ASCIl code for the first character in the
string.

The following program illustrates the use of the ASC function.

=>100 A$ ="JOHN JOHNSON”
>200 PRINT ASC(A$)

>300 END

>RUN

The program in the preceding example outputs the number 74
because the ASCII value of the first character in the string
argument of the ASC function is 74.

Programming the T1-99/4A In Standard BASIC 71

Advanced Input and Output Statements

INPUT and PRINT statements are commonly used to perform the
input and output functions of the computer. However, the use
of these statements is somewhat restricted. An INPUT statement
canonly be used to accept data from the keyboard, and a PRINT
statement can only be used to output data to the display.

These statements can be modified to allow an exchange of data
between the computer and the peripheral devices. The
generalized [/0 statements have the following format.

INPUT # filenumber : data ...
PRINT # filenumber : data ...

PRINT# and INPUT# statements are commonly used to transfer
data to and trom the Program Recorder or Disk Drives. PRINT#
statements are also used to send output to the printer.

The use of a filenumber is the only difference between the
standard and generalized 1/0 statements.

Filenumbers

Before communication can be undertaken between an input or
output device, an 1/0 channel must first be associated with the
specitic device. The channel serves as a link between the BASIC
program and the 170 device. The tilenumber is a parameter that
is used to specity an 1/0 channel.

Once an /0 channel is specified for a particular device, any
input or output to the device can be performed with an INPUT#
or PRINT# statement. The tile number in an 170 statement must
be used to specify the particular 1/0 channel.

72 T1-99/4A User’s Handbook

OPEN

Before an 1/0 channel can be used with a program, it must first
be opened. When a channel is opened for an external device
such as the Program Recorder, disk drive or printer, the
computer reserves a memory area known as a buffer from which
data will be sent to or received from the specified device.

An OPEN statement has the following configuration.
OPEN # filenumber:”device.filename”

The filenumber specifies the 1/0 channel being opened. This
number can range from 1to 255, and will be used by subsequent
INPUT# and PRINT# statements to access the device opened.

The device parameter is used to specify the type of 1/0 device
being opened. The filename is used to specify the particular file
that the input will be taken from or the output will be sent to.

PRINT# and INPUT#

PRINT# and INPUT# are used to send data to or receive data from
the device opened in a preceding OPEN statement.

The exact nature of the use of these generalized 1/0 statements
is described in the chapters of this book that deal with the
specific 1/0 devices.

CLOSE

A CLOSE statement is used to prevent access to a device that was
previously accessed with an OPEN statement.

EDIT

The edit mode is a feature of the TI-99/4A that allows the
statements in a program to be revised. The edit mode allows
program lines to be modified without retyping the entire
statement.

Programming the TI-99/4A In Standard BASIC 73

The EDIT command can be used to enter the edit mode. The
EDIT command must be followed by the line number of the
statement that needs to be modified. The following commands
can be used to modify a program line when the edit mode is in
effect.

rcTNd | FCTN 1 (DEL)
FCTNY | FCTN 2(INS)
FCTN+— | FCTN 3 (ERASE)
FCTN —

CHAPTER 3.
PROGRAMMING IN TI
EXTENDED BASIC

Tl Extended BASIC is a programming language that can be used
with the TI-99/4A. Unlike the standard version of Tl BASIC,
Extended BASIC is not built into the computer. Extended BASIC
can be used only if the Tl Extended BASIC solid state cartridge is
plugged into the command module slot in the computer
console.

The Tl Extended BASIC cartridge is not included with the TI-
99/4A computer. In order to use Extended BASIC, the cartridge
must be purchased separately.

This chapter is a presentation of the programming features of
Extended BASIC. Since Extended BASIC is an expanded version
of Tl BASIC, the information in Chapter 2 applies to Extended
BASIC as well as TI BASIC.

Since this chapter is based on the information in chapter 2,
please read chapter 2 before reading this chapter unless you are
already familiar with TI BASIC.

Only one of the two versions of BASIC can be used at any time.
As a result, the version must be selected when the computer is
powered on.

When the computer is powered on, the master title screen will
be displayed. When any key on the keyboard is pressed, the
main selection menu will be displayed. When the Extended
BASIC cartridge is being used with the computer, the main
selection menu will appear as follows.

76 TI-99/4A User’s Handbook

/ °_ TEXAS INSTRUMENTS \
HOME COMPUTER

PRESS
1 FOR TI BASIC
2 FOR TI EXTENDED BASIC

_ J

In order to use Extended BASIC, press the 2 key on the keyboard.
When the 2 key is pressed, the display will be cleared and the
following message will appear on the display.

* READY *

The “greater than” symbol (>) is used to indicate that the
computer is ready to accept a command.

Multiple Statement Lines

One of the principle differences between TI BASIC and Extended
BASIC is the use of multiple statement lines. In Extended BASIC,
more than one statement can be included on each program line.
The individual statements on each program line must be
separated by two colons. For example, the following program
line contains 3 statements.

10 FOR J=1TO 10::PRINT A(J)::NEXT]

This feature allows programs to be written with fewer program
lines.

Programming in Tl Extended BASIC 77

REM statements should be the last statement in a multiple
statement program line. When a REM statement is encountered
in a program, any subsequent statements on the same program
line will be ignored.

Each DATA statement in a program must be the only statement
on a program line.

Variable Assignment Statements

In Extended BASIC two additional statements are available for
assigning values to variables. These statements are ACCEPT and
LINPUT. Also, the LET statement has additional features when
used in Extended BASIC.

ACCEPT

An ACCEPT statement is used to assign values to variables while a
program is being executed.

An ACCEPT statement can only be used to input data that is
entered via the keyboard.

An ACCEPT statement is similar in principle to an INPUT
statement. However, an ACCEPT statement has more optional
features than does an INPUT statement.

ACCEPT statements can include any or all of the following
options.

AT VALIDATE BEEP ERASE ALL SIZE

The AT option allows the data being input to be displayed at any
specified location on the display.

The VALIDATE option can be used to restrict the type of data that
can be input.

The VALIDATE option can be used to restrict the input to any
combination of the following catagories:

78 TI1-99/4A User’s Handbook

Upper case letters (UALPHA)
Digits 0 through 9 (DIGIT)
Numeric values (NUMERIC)
Specific characters (e.g. “YN”)

el S

The BEEP option causes a tone to sound when the ACCEPT
statement is executed.

The ERASE ALL option causes the entire display to be cleared
before any data is input.

The SIZE option is used to restrict the number of characters that
can be included in a value being input.

The following example statements demonstrate the use of
ACCEPT statements:

10 ACCEPT AT (1,1) BEEP SIZE(10):X
20 ACCEPT VALIDATE (DIGIT) ERASE ALL:Y

The first example statement causes the data being input to
appear at the upper left corner of the display. A tone is sounded
when the statement is executed. The maximum number of
characters that can be included in the inputis 10. The value thatis
input at the keyboard will be assigned to the variable X.

The second example statement causes the data being input to be
assigned to the variable Y. The VALIDATE option allows the data
being input to consist only of the digits 0 through 9. When the
statement is executed, the screen will be cleared before any data
is accepted.

If any characters other than the digits 0 through 9 are entered as
data, a tone will sound, and the input will not be accepted.

LINPUT

A LINPUT statement is used in Extended BASIC to assign a value
to a string variable. A LINPUT statement is similar to an INPUT
statement, buta LINPUT statement can only assign a value to one
variable.

Programming in Tl Extended BASIC 79

Since a LINPUT statement can only assign a value to one variable
atatime,a commais not used to separate data items. As a result,
commas are considered a part of the string value. In other words,
a LINPUT statement is used to assign an entire line of data to a
string variable.

The following example demonstrates the use of a LINPUT
statement.

>10 LINPUT A%

> 20 PRINT A$

> RUN
2 PROGRAM LINES 20, 22, 28-32 <—user’s response
PROGRAM LINES 20, 22, 28-32

The value that is entered in response to the LINPUT statement
contains two commas. These commas are not used to separate
dataitems. Instead, the commas are considered part of the string
data.

A LINPUT statement can include a prompt message that appears
each time the LINPUT statement is executed.

The following example consists of a LINPUT statement that
contains a prompt message.

10 LINPUT “ENTER NAME (LAST, FIRST)”:NAME$

The preceding example statement would cause the following
message to be displayed each time the statement is executed.

ENTER NAME (LAST, FIRST)

A LINPUT statement can also be used to input data from a device
other than the keyboard. If a LINPUT statement includes a file
number, the data will be taken from the device that was
previously opened for input.

80 TI-99/4A User’s Handbook

It a LINPUT statement includes a filenumber, the tilenumber
must correspond to the file number specified in a previously
executed OPEN statement. The configuration of a LINPUT#
statement is as follows.

LINPUT # filenumber : variable
LET

In Extended BASIC, a variable assignment statement can be used
to assign a value to several variables. Each variable in a multiple
variable assignment statement must be separated by a comma.
The following example statement would assign the value 100 to
the variables X, Y and Z.

100 X, Y, Z=100
Arrays

Subscripted variables can be used to make the handling of
variables easier. Extended BASIC allows variables to be used with
up to seven subscripts.

Due to the large amount of memory required for a multi-
dimensional array, large arrays must be used carefully.

The following example program uses a four dimensional array.

>10 DIM A (2,3, 4, 5)
>20 A(1,1,1,1)=10
>30 PRINTA(1,1,1,1)
> RUN

10

A four dimensional array can be visualized as a number of books
that contain data. If each book has data arranged in rows and
columns, any data item in any of the books can be specified with
4 subscripts.

The first subscript refers to the book number. The second
subscript refers to page number. The third and fourth subscripts
refer to the row and column number of the data item.

Programming in Tl Extended BASIC 81

Boolean Operators

In addition to the arithmetic, relational and string operators,
Extended BASIC allows the use of Boolean (or logical) operators.

Boolean operators are used to compare logical expressions.
Logical expressions are any expressions that can be considered
either true or false.

The most common type of logical expressions are relational
expressions. These expressions are always either true or false.

The four Boolean operators used with the TI-99/4A are AND,
OR, XOR and NOT. The AND, OR and XOR operators require
two arguments.

The AND operator returns a true value only if both of the argu-
ments are true. The OR operation returns a true value if either
one (or both) of the arguments are true. The XOR operator
returns a true value if either of the arguments (but not both) are
true.

The NOT operator requires only one argument. This operator
returns a true value only when the argument is false. lllustration
3-1 demonstrates the results of the Boolean operators.

The Boolean operators are most commonly used in IF, THEN
statements. The following statements demonstrate the use of the
Boolean operators.

100 IF X >10 OR Y < 10 THEN 250
200 IF A$=‘STOP” AND Z =10 THEN 500
100 IF NOTY =8 AND X =200 THEN 50

82 TI-99/4A User’s Handbook

Illustration 3-1. Boolean Operators.

X Y X OR Y

T T T

T F T

F T T

F F F

X Y X AND Y
T T T

T F F

F T F

F F F

X Y X XOR Y
T T F

T F T

F T T

F F F

X NOT X

T F

F T

Programming in Tl Extended BASIC 83

Formatted Output

Extended BASIC allows data to be output according to a
predefined format. There are three statements that can be used
to generate formatted output: PRINT USING, DISPLAY USING
and IMAGE.

Formatted output requires a predefined pattern that is used to
output the data. The pattern that is used for the data is defined
with a format string. A format string is a set of characters that
describe the format of output data.

A format string can be used to specify the maximum number of
characters that can appear in an output value. A format string can
also be used to indicate the position of the decimal point within
the value. Furthermore, a format string can be used to specify
that a value should be output in scientific notation.

There are three characters that can be used in a format string.
These characters are the pound sign (#), caret (4) and decimal
point (.). The pound sign is used to represent a character in the
value being output. The decimal point is used to specify the
location of the decimal point within the value. The carets in a
format string are used to indicate that a value should be outputin
scientific notation.

Some examples of format strings are presented in Illustration 3-2.

llustration 3-2. Format Strings

DATA FORMAT STRING OUTPUT
23.478 #4 44 23.48

4 # 44 4,000
24.8785 H#H# HEE AAAA 2.488E + 01

A formatsstring can be used to specify the format of string values
as well as numeric values.

84 TI1-99/4A User’s Handbook

A format string can be used in one of two ways. An IMAGE
statement can include a format string, and each PRINT using or
DISPLAY using statement that requires the specified format can
use the line number of the IMAGE statement. This concept is
demonstrated in the following example.

>100 INPUT X
> 200 IMAGE ## . ##
> 300 DISPLAY USING 200: X
> RUN
? 24.685-=—user’s response
24.69

An alternate way of using a formatstring is to include the format
string in the PRINT or DISPLAY statement that requires the
specified format.

> 100 INPUT X
> 300 DISPLAY USING “##.##": X
> RUN
? 24.685-—user’s response
24.69

A format string can include characters other than the characters
(#)(#~) and (.). However, any of these characters appear in the
output exactly as they appear in the format string.

The following example includes a format string that contains
characters other than the special formatting characters.

200 PRINT USING “PART NUMBER #####": X

Typical output of the preceding example statement would
appear as follows

PART NUMBER 98563

Notice that numeric values are rounded off in order to be
displayed with the specified number of decimal places. If avalue
is too large to be displayed in the specified format, asterisks will
be displayed instead of the specified value.

Programming in Tl Extended BASIC 85

> 10 DISPLAY USING “##.4": 250
> RUN

* KKk

Since the value 250 cannot be displayed with two digits to the left
of the decimal point, the preceeding example program outputs
four asterisks instead of the value 250.

The following example demonstrates the use of formatted string
output.

> 10 INPUT A%
> 20 IMAGE PLEASE CONTACT ########u84
> 30 PRINT USING 20: A$
> RUN
? JOE SMITH ¢= user’s response
PLEASE CONTACT JOE SMITH

String values that are output according to a format string are
always left justified. However, numeric values are always right
justified. Numeric values that include a decimal point are
aligned according to the position of the decimal point.

lllustration 3-3 demonstrates left justified, right justified and
aligned output.

lllustration 3-3. Justification of Output

FORMAT #u#HE #H#H4 #4848

JUSTIFICATION left right aligned

OUTPUT BILL 7 7.00
BOB 1238 33.85
RANDY 48 8.40
TOM 541 77.85

86 T1-99/4A User’s Handbook

BRANCHING STATEMENTS

Extended BASIC allows the use of several branching statements
that T1 BASIC does not allow. Extended BASIC also allows more
features of the IF, THEN, ELSE statement.

In TI BASIC, an IF, THEN, ELSE statement can only be used with
specific line numbers. In extended BASIC, however, statements
can be used instead of line numbers.

For example, the following IF, THEN statement contains two
statements instead of two line numbers

400 IF X>256 THEN T=0 ELSE T=-1

The preceding example uses the expression X=>256 to control
the execution of the program. If the expression is true, the T=0
statement will be executed. If the expression is false, the T=-1
statement will be executed.

An IF, THEN, ELSE statement can also include multiple state-
ments. In order for the statements to be executed as a single
statement, the individual statements must have a double colon
(::) between them.

For example, the following statement will assign values to the
variables] and K if the control expression is true. Values will be
assigned to the variables L and M if the control expression is
false.

10 IF X=>10 THEN J=10::K=11 ELSE L=-4::M=-5
ON BREAK
An ON BREAK statement is used to determine the action that will
be taken when a breakpoint is encountered in a program. A

breakpoint is an interruption in the execution of a program due
to a BREAK statement or the CLEAR command (FCTN 4).

Programming in T Extended BASIC 87

When the keyword NEXT is used in an ON BREAK statement, all
the breakpoints in a program will be ignored.

An ON BREAK statement that uses the keyword STOP corre-
sponds to the default mode of the computer. When this mode is
in effect, the program execution will stop when a breakpoint is
encountered.

An ON BREAK statement can only have one of the following two
formats.

ON BREAK NEXT
ON BREAK STOP

ON ERROR

An ON ERROR statement is used to determine the action that
will be taken when an error occurs during the execution of a
program.

When a line number is included in an ON ERROR statement,
program control will branch to the specified line number when
an error occurs. The following example statement is a typical ON
ERROR statement.

200 ON ERROR 1000

A RETURN statement can be used to return the program control
to the statement that caused the error.

A RETURN NEXT statement can be used to branch program
control to the statement that follows the statement that caused
the error.

If a RETURN statement includes a line number, program control
will be branched to the specified line number.

The following four techniques can be used to branch a program
when an error occurs.

88 T1-99/4A User’s Handbook

1. Branch the program to a specified line number
when an error occurs.

2. Branch the program to a specified line number
when an error occurs. Proceed by executing one
or more program statements and use a RETURN
statement to branch program control back to the
statement that caused the error.

3. Branch the program to a specified line number
when an error occurs. Proceed by executing one
or more program statements and use a RETURN
statement (with a line number) to branch
program control to the specified line number.

4. Branch the program to a specified line number
when an error occurs. Proceed by executing one
or more program statements. Then, use a
RETURN NEXT statement to branch program
control to the statement that follows the
statement that caused the error.

An ON ERROR statement can also include the keyword STOP.
This statement causes the execution of a program to stop when
an error occurs. Since this statement corresponds to the default
mode of the computer, an ON ERROR STOP statement is
generally used only to counteract a preceeding ON ERROR
statement.

ON WARNING

An ON WARNING statement determines the action that will be
taken when a warning condition develops. An ON WARNING
statement can include any one of the following three keywords.

STOP PRINT NEXT

An ON WARNING STOP statement causes the execution of the
program to stop when a warning condition occurs.

Programming in Tl Extended BASIC 89

An ON WARNING PRINT statement causes an appropriate
warning message to be displayed when a warning condition
occurs. This statement corresponds to the default mode of the
computer.

An ON WARNING NEXT statement causes the warning con-
ditions to be ignored by the computer. Warning messages are
not diplayed when an ON WARNING NEXT statement is in
effect.

SUBPROGRAMS

Extended BASIC allows the use of subprograms. Subprograms
are similar to subroutines, but subprograms are accessed with
CALL statements. As a result, it is not necessary to branch
program control to a subprogram.

Subprograms are similar to functions, but subprograms are not
restricted to accepting only one input value. Furthermore,
subprograms can be used to compute values for any number of
variables. Subprograms can also be used to call other sub-
programs.

There are many pre-defined subprograms that can be used in
Extended BASIC. Each of these subprograms are described in
detail in chapter 5. The CALL statement is used to access each of
these subprograms.

The subprograms that have been pre-defined are commonly
used for generating sound and graphics.

SuUB

The SUB statement allows subprograms to be written with BASIC
statements. A SUB statement must include the subprogram
name as well asa list of variables that are used in the subprogram.

The list of variables that are included in a SUB statement are used
throughout the subroutine. However, these variables are con-
sidered separate from the variables in the main program. The

90 Ti-99/4A User’s Handbook

variables that are assigned values in the subprogram do not
necessarily represent the same values in the main program. For
example, the variable X may be assigned the value 10 in the main
program. Later, the varibale X may be assigned the value 20in a
subprogram. As a result, the variable X will be assigned two
different values at the same time.

Since this situation is potentially very confusing, do not duplicate
the main program variables in a subprogram.

The following example demonstrates the use of a subprogram.

>10 A=27
_ > 20 B=34
Main > 30 C=54
Program > 40 CALL ADD (A,B,C)
> 50 END
>100 SUB ADD (X,Y,Z)
Sub- >110 SUM=X+Y+Z
>120 PRINT SUM
>130 SUBEND
>RUN
115

Program

Subroutines must be defined at the end of the main program. If
the program contains more than one subprogram, the sub-
programs must be defined one after the other at the end of the
main program. Be sure to include all of the main program
statements (including DATA statements) before the subprogram
definitions.

The example program contains a subprogram called ADD. The
statements from line number 100 to 130 are used to define the
subprogram. Note that the subprogram definition begins with a
SUB statement and ends with a SUBEND statement.

The variables A, B, and C are used in the main program. The
variables X, Y, Z and SUM are used only within the subprogram.

Programming in Tl Extended BASIC 91

Values are assigned to the variables A, B and C in the main
program. The CALL statement at line number 40 is used to access
the subprogram ADD. The values of the variables A, B and C are
passed to the subprogram variables X, Y and Z. The calculations
in the subprogram are performed with the values of the variables
A, B and C used in place of the variables X, Y and Z.

When the example programis executed , the value 115 is output.
This valve is the sum of the values of the variables A, B and C.

FUNCTIONS
Extended BASIC allows the use of 5 functions that cannot be
used in TI BASIC. The additional functions are described briefly
in Table 3-1.

Table 3-1. Extended BASIC Functions

MAX (a,b) Returns the greater of the two
arguments.

MIN (a,b) Returns the lesser of the two
arguments.

Pl Returns the value 3.141592654.

REC (a) Returns the current record number

of a relative file.

RPTS$ (A$,a) Returns a specified number of
repetitions of the specified string
value.

MANIPULATING PROGRAMS

The RUN command can be used in Extended BASIC to load and
execute a program. With a disk drive, the RUN command can be
used to load and execute any program that is stored on a

92 T1-99/4A User’s Handbook

diskette. With a program recorder, the RUN command can be
used to load and execute a program that was previously stored
on a cassette tape.

The RUN command can have either of the following two
configurations.

RUN “device”
RUN “device. Program name”

Program names are only used with programs that are stored ona
diskette. '

Extended BASIC also allows a RUN statement to be used in a
program. This feature allows the program that is currently being
executed to load and execute another program.

Consider the following two programs that have been saved in
diskette program files.

PROGRAM1

10 FOR J=1TO 100

20 PRINT)

30 NEXT)

40 RUN “DSK1.PROGRAM2”

PROGRAM?2

10 FOR J=100 TO 1 STEP -1
20 PRINT)

30 NEXT)

40 END

Line number 40 in PROGRAMT is a RUN statement that causes
PROGRAM2 to be loaded and executed. As a result, the
following statement can be used to load and execute
PROGRAMT1, which in turn loads and executes PROGRAM2,

RUN “DSK1. PROGRAM1”

Programming in Tl Extended BASIC 93

The first program causes the numbers from 1to 100 to be cutput.
When the first program is completed, the computer will pause
briefly while the second programis loaded. The second program
causes the numbers from 1 to 100 to be output in descending
order.

A RUN statement can be used to execute programs that are
stored on cassette tape. However, a program recorder is not as
convenient to use as a disk drive.

CHAPTER 4
Tl SOUND & GRAPHICS

This chapter provides an overview of the various sound and
graphics capabilities of the TI-99/4A computer when used with
Standard BASIC and Extended BASIC.

TI SOUND

The TI-99/4A has the capability to generate a wide variety of
sounds. Sounds are transmitted directly through the speaker in
the television set or monitor.

All sound capabilities can be controlled with a single statement.
The CALL SOUND statement is used to activate the sound
generators built into the computer.

Generating Sound

The CALL SOUND statement is used to output sound via the
television set or monitor. CALL SOUND is used with the
following configuration.

CALL SOUND (delay, frequency 1, volume 1, [. . . frequency 4, volume 4])

The arguments of the CALL SOUND statement determine the
type, volume, and duration of the sound or sounds to be
generated. A maximum of three tones and one noise can be
generated simuitaneously in one CALL SOUND statement.

The first argument of the CALL SOUND statement is the delay.
The delay determines the duration of the specified sound or
sounds. Only one delay may be specified in a CALL SOUND
statement.

The delay is measured in milliseconds and can range anywhere
from 1 to 4250 milliseconds. A sound will continue to be
generated until the specified duration has been completed.

96 TI1-99/4A User’s Handbook

If a CALL SOUND statement is encountered while a previous
CALL SOUND statement is being executed, program execution
will pause until the first CALL SOUND statement has been com-
pleted. For example, the following program will complete
execution of the first CALL SOUND statement before continuing
with the second.

100 CALL SOUND (3000, 110, 0)
200 CALL SOUND (3000, 400, 0)

If a negative sign is inserted in front of the first parameter (delay)
the specified tone will be generated immediately. For example,
the following program is similar to the previous program except
for the minus sign that was inserted before the first parameter in
the second CALL SOUND statement. When this program is
executed, the first CALL SOUND statement will be interrupted
by the second CALL SOUND statement.

100 CALL SOUND (3000, 110, 0)
200 CALL SOUND (-3000, 400, 0)

The second parameter of the CALL SOUND statement is the
frequency. The frequency specifies the tone or noise to be
generated. The frequency can range anywhere from 110 to 44733
or from -8 to -1. The values 110 through 44733 specify musical
notes. The value 110 specifies the lowest possible note that the
computer can generate while 44773 specifies the highest.

The computer can generate eight different noises. Each noise is
represented by a number from -8 to -1. The best way to become
familiar with these noises is to listen to each one separately.

The third parameter of the CALL SOUND statement specifies the
volume at which each note is to be generated. The specified
volume must be an integer from 0 to 30. A volume of 0 causes the
specified sound to be generated as loud as possible. A volume of
30 causes the specified sound to be generated as quietly as
possible.

Tl Sound & Graphics 97

Generating Chords

The CALL SOUND statement can be used to generate two or
three notes simultaneously. The following configuration is used
to generate more than one note.

CALLSOUND (delay, frequency 1, volume 1, frequency 2, volume 2, frequency 3, volume 3)

Only one delay parameter may be used in a CALL SOUND
statement. Therefore, all the specified notes will be generated
for the same length of time. Up to three notes can be generated
simultaneously, but each note requires both a frequency and a
volume. The following example CALL SOUND statement demon-
strates this principle.

CALL SOUND (4000, 196, 0, 262, 0, 330, 0)
One noise can also be generated along with one, two, or three
notes. The following example is similar to the previous one,
except that a noise was added.

CALL SOUND (4000, 196, 0, 262, 0, 330, 0, -7, 0)

A total of four different sounds can be generated with one CALL
SOUND statement. However, the following restrictions apply:

1) Not more than three notes may appear in one CALL

SOUND statement.

2) Not more than one noise may appear in one CALL
SOUND statement.

3) Each specified sound must be followed by a
volume.

4) All sounds specified in a single CALL SOUND
statement are generated for the same amount of
time as specified by the first parameter.

Using The CALL SOUND Statement

The CALL SOUND statement can be used in either the command
mode or in the program mode.

98 TI1-99/4A User’s Handbook

When the CALL SOUND statement is used in the command
mode, the cursor will return almost immediately after pressing
ENTER. The specified sound will continue to be generated until
the specified duration has been completed.

Operation of the computer does not pause while sound is being
generated. As a result, commands may be entered while asound
is being generated.

The CALL SOUND statement works in a similar manner in the
program mode. Execution of a program will not stop while
sound is being generated. The following program shows that
even while a sound is being generated, the computer will
continue executing the program.

100 CALL SOUND (4250, 500, 0)
200 PRINT “EXECUTION 1S COMPLETE”

If more than one CALL SOUND statement is used within a
program, a subsequent CALL SOUND statement will not be
executed until the current CALL SOUND statement has been
completed. However, if a negative sign is inserted before the
delay parameter in a CALL SOUND statement, the specified
sound will be generated immediately.

The following program shows the effects of using a delay
parameter with and without a negative sign.

100 CALL SOUND (4000, 300, 0)
200 PRINT “PHASE #1”

300 CALL SOUND (4000, 600, 0)
400 PRINT “PHASE #2”

500 CALL SOUND (-4000, 300, 0)
600 PRINT “PHASE #3”

Using Variables In CALL SOUND Statements

The parameters of the CALL SOUND statement can include
numeric variables, numeric expressions, and numeric functions.

Tl Sound & Graphics 99

The following program includes a CALL SOUND statement that
uses numeric variables and expressions as its parameters.

100 FORT=1TO 10
200 CALL SOUND (1000, 110 + (10*T), T)
300 NEXTT

Functions that return numeric values can also be used as
parameters within a CALL SOUND statement. The following
program will generate ten random notes.

100 FOR T=1TO 10
200 CALL SOUND (1000 RND*891 + 110, 0)
300 NEXTT

Tl GRAPHICS

In this section, as well as the remainder of this chapter, we will
explain the various graphic capabilities of the TI-99/4A computer
when used with Standard and Extended BASIC.

Standard Character Set

The TI-99/4A has a predefined character set. This character set
consists of uppercase and lowercase letters. Also, any special
characters such as +, -, =, , ;, etc., are also predefined. All
predefined characters have a corresponding number known as
the ASCII code of that character. A table of the predefined
characters and their ASCII codes are listed in Appendix C.

Redefining A Character
Characters that are predefined can be temporarily redefined as

another character. A CALL CHAR statement can be used to
redefine any or all of the characters in the character set.

A CALL CHAR statement has the following configuration.

CALL CHAR (ASCII code, “string expression”)

100 T1-99/4A User’s Handbook

The first parameter is an integer from 32 through 159* that
indicates the ASCII code of the character to be redefined. The
second parameter specifies the new character. The string expres-
sion is the hexadecimal representation of the new character.

The Hexadecimal Conversion

Hexadecimal notation is a compressed method of describing
binary numbers. Combinations of four binary digits can be
described using a single hexadecimal character.

Table 4-1 illustrates the conversion from binary to hexadecimal

notation. Every combination of four binary digits can be ex-
pressed with a single hexadecimal character.

Table 4-1. Binary to Hexadecimal Conversion

BINARY HEX BINARY HEX
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 101 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1M F

The Size of One Character

One character is made up of 64 picture elements (or pixels),
which are arranged in an 8x8 matrix. The character is created by
illuminating only certain pixels, thus causing a shape to appear.

*Although the CALL CHAR statement can be used in both
Standard BASIC and Extended BASIC, only characters 32 through
143 can be redefined in Extended BASIC.

Tl Sound & Graphics 101

lllustration 4-1 shows an enlarged view of the 64 pixels that make
up one character. This illustration also shows how a character
can be created by illuminating only certain pixels.

llustration 4-1. llluminating Pixels

USING HEXADECIMAL NOTATION TO DESCRIBE A
CHARACTER

Each character consists of an 8 x 8 matrix of pixels that can be
described in terms of binary digits. Every illuminated pixel can be
described by the binary digit 1. Every non-illuminated pixel can
be described by the binary digit 0. Therefore, the description of
each character requires 64 binary digits.

Illustration 4-2 depicts a typical character and its binary
representation.

lllustration 4-2. Binary Representation of a Character

000000O0CO
01111100
01000000
01000000
01111000
01000000
01000000
01111100

102 TI-99/4A User’s Handbook

Since each group of 4 binary digits is equivalent to a single
hexadecimal character, the 64 digit binary code can be replaced
by a 16 digit hexadecimal code. lllustration 4-3 contains a
complete example of the procedure used to determine the
hexadecimal representation of a character.

Hllustration 4-3. Character Definition and Conversion
hexadecimal
binary representation representation
=0 0 0000
0

OO O0OCOO

-t el) el e ewd ol
- 00 -=SO00 -
- OO0 =200=
- 00 20 0=
- 0O 0000 -
oo ocoo0coo o
OO0 000000
NSNS LHBNO
hoomcono

Using the CALL CHAR Statement

As stated earlier, the CALL CHAR statement can be used to
create new characters. The configuration of the CALL CHAR
statement is as follows:

CALL CHAR (ASCIl code, ‘““hexadecimal representation”)

The first parameter is the ASCII code of the character to be
redefined. The second parameter is the hexadecimal representa-
tion of the new character. When the CALL CHAR statement is
executed, the new character will be assigned to the specified
ASCIl code.

Illustration 4-4 shows how the CALL CHAR statement can be
used to create a new character. First, the new character must be
drawn in an 8 x 8 matrix. Next, the hexadecimal representation of
the character must be determined. Finally, the hexadecimal
code, along with the ASCII code of the character to be replaced

Tl Sound & Graphics 103

must be used in a CALL CHAR statement. Whenever the
specified ASCll code is used in a PRINT, DISPLAY, CALL VCHAR
or CALL HCHAR statement, the new character will appear.

llustration 4-4. Creating A Character
binary hexadecimal

0 0

[— 2 — I — I — I — Y — i~ Y - }
O - = a0 O00C
-— e e e e OO
— e e e e e)

-l) e e e O -
O - = a2 0000
[~ — I — I — B — I — I~ Y)
[= 2~ R~ I - I = I = Y =]
W N NN W W

© AN O ®

100 CALL CHAR (130, “081038387C7C7C38")
200 FORT=1TO 28

300 PRINT CHR$(130);

400 NEXTT

When the program in lllustration 4-4 is executed, a row of pears
will be displayed on the screen.

Program and Immediate Modes

The characters with ASCIl codes from 132 to 159* can be
redefined at any time. These characters will retain their new
definition until the computer is turned off or BASIC is exited.
The characters with ASCII codes from 32 to 131** can also be
redefined at any time. However, the new definition will only be
retained as long as a program is being executed.

* 127 to 143 in Extended BASIC
** 30 to 126 in Extended BASIC

104 TI1-99/4A User’s Handbook

Using Variables In The CALL CHAR Statement

Both parameters of the CALL CHAR statement may be variables
that had been predefined. The variable used for the ASCII code
must be a numeric variable. The variable used for the hexa-
decimal code, however, must be a string variable.

The following statement is a typical example of the syntax of a
CALL CHAR statement.

CALL CHAR (A, C%) .
Functions that return the proper values may also be used within a
CALL CHAR statement. The ASC function, for example, may be
used in place of the first parameter.
Placing A Character On The Screen
The screen is divided into two areas, the display area and the

border. Characters cannot be placed in the border area.
lllustration 4-5. Screen Display

BORDER

DISPLAY
AREA

)< BORDER

The display area is divided into 24 rows with 32 columns each.
Therefore, the display area is divided into 768 separate locations.
One character can be placed in each of these. lllustration 4-6
shows the division of the display area.

Tl Sound & Graphics 105

lllustration 4-6. Display Area

2 4 6 8 10121416 18 20 22 24 26 28 30 32
1 3 5 7 9 1113 1517 19 21 23 25 27 29 31

Several statements can be used to place a character on the
display area. The PRINT and DISPLAY statements can be used
along with the CHR$ function to place a character at the bottom,
left corner of the screen (column 3, row 23). The following PRINT
statement uses the CHR$ function to display a character.

PRINT CHR$(65)

The PRINT and DISPLAY statements are limited in that they can
place a character in only one position (column 3, row 23).
However, CALL HCHAR and CALL VCHAR statements can be
used to place a character in any specified position.

The CALL HCHAR and CALL VCHAR statements can be used to
place a character at a specified position on the screen. Both
statements can also be used to repeat the specified character a
specified number of times. The CALL HCHAR statement can be
used to repeat a character horizontally and the CALL VCHAR
statement can be used to repeat a character vertically.

106 T1-99/4A User’s Handbook

All of the aforementioned methods for displaying a character
use the ASCII code of the character. For example, the statement
PRINT CHR$(65) would display the character that corresponds to
the ASCII code 65. The same format applies to the DISPLAY
statement.

The CALL HCHAR and CALL VCHAR statements are more
versatile than PRINT and DISPLAY. Both the CALL HCHAR and
CALL VCHAR statements have up to four parameters. These four
parameters specify the character to be displayed, the position in
which the character is to be placed, and the number of times the
specified character is to be repeated.

The configurations of the CALL HCHAR and CALL VCHAR
statements are as follows:

CALL HCHAR (row, column, ASCII code, [repeat])
CALL VCHAR (row, column, ASCII code, [repeat])

The parameters of the two statements are identical. The first two
parameters specify the position at which the character is to be
placed (see lllustration 4-6). The third parameter specifies the
ASCIl code of the character to be displayed. The fourth
parameter specifies the number of times the character is to be
repeated.

The CALL HCHAR and CALL VCHAR statements differ only
when the optional fourth parameter is used. The CALL HCHAR
statement will repeat the character horizontally. The CALL
VCHAR statement will repeat the character vertically.

The CALL HCHAR and CALL VCHAR statements can use
numeric variables, functions, and expressions as their argu-
ments. The following program shows a CALL HCHAR statement
that uses variables, functions, and expressions. The program
results in a pyramid of x’s being formed.

100 CALL CLEAR

200 FORA=1TO 16

300 CALL HCHAR (24-A, A, ASC (“x""), 32-2*A)
400 NEXT A

Tl Sound & Graphics 107

Moving a Character

There is no single statement in Standard BASIC that allows a
character to move along the screen. However, by continually
erasing a character and placing it in a new position, a character
will appear to move. The following program illustrates this
method.

100 CALL CLEAR

200 FORT=1TO 32

300 CALL HCHAR (10, T, ASC (“O”))
400 CALL CLEAR

500 NEXT T

600 GOTO 200

The preceding program will place a character in a screen
position. The screen will then be cleared and the character will
be placed in the next column of the same row. This procedure
will continue until the character reaches column 32. At this
point, program control branches back to the beginning.

Coloring a Character

Characters cannot be colored individually. Instead, groups of
several characters are colored at the same time. To color a
character, the entire group that contains that specific character
must be colored as well.

Each group is assigned a group number. There are 16 different
groups in Standard BASIC and 15 different groups of Extended
BASIC. Table 4-2 lists the groups and their corresponding group
numbers in Standard BASIC. Table 4-3 lists the groups and their
corresponding group numbers in Extended BASIC. When speci-
fying a group of characters, the group number must be used.

108 T1-99/4A User’s Handbook

Table 4-2. Color Groups Standard BASIC

group | ASCII codes group | ASCII codes
number number

1 32-39 9 96-103

2 40-47 10 104-111

3 48-55 1 112-119

4 56-63 12 120-127

5 64-71 13 128-135

6 72-79 14 136-143

7 80-87 15 144-151

8 88-95 16 152-159

Table 4-3. Color Groups Extended BASIC

group | ASCII codes group | ASCII codes
number number

0 30-31 8 88-95

1 32-39 9 96-103

2 40-47 10 104-111

3 48-55 n 112-119

4 56-63 12 120-127

5 64-71 13 128-135

6 72-79 14 136-143

7 80-87

The CALL COLOR Statement

The CALL COLOR statement is used to color a group of
characters. The configuration of the CALL COLOR statement is
as follows:

CALL COLOR (group number, character color, screen color)

The first parameter of the CALL COLOR statement specifies the
group of characters to be colored (see Tables 4-2 and 4-3). The
second parameter specifies the color of the character. The third
parameter specifies the color of the screen directly behind the
character.

Tl Sound & Graphics 109

The second and third parameters of the CALL COLOR statement
must be integers between 1 and 16 inclusive. Each one of these
numbers represents a particular color. Table 4-4 lists the 16
possible colors along with their corresponding number.

The following statement is a typical CALL COLOR statement.
CALL COLOR (6,5, 4)

This CALL COLOR statement will color all the characters in

group 6. The colors of the characters will be dark blue (code 5)

and the color of the screen behind those characters will be light

green (code 4).

Table 4-4. Color Codes

COLOR COLOR COLOR COLOR
CODE CODE

1 Transparent 9 Medium Red
2 Black 10 | Light Red
3 Medium Green 11 Dark Yellow
4 Light Green 12 | Light Yellow
5 Dark Blue 13 | Dark Green
6 Light Blue 14 | Magenta
7 Dark Red 15 | Gray
8 Cyan 16 | White

The parameters of the CALL COLOR statement may be numeric
variables, numeric functions, or numeric expressions. The only
restriction is that the values must be in the allowed range.

Screen Color
The color of the entire screen can be changed by one statement.

The CALL SCREEN statement can be used to change the color of
the screen to any specified color.

110 T1-99/4A User’s Handbook

The CALL SCREEN statement has only one parameter. This
parameter is the number (1-16) that corresponds to the desired
color. A table of colors and their corresponding codes can be
found on the preceding page.

The CALL SCREEN statement can be used in both the command
mode and program mode. However, when used in the command
mode, the screen will only change colors briefly. When used in
the program mode, the screen will remain the specified color
until a new CALL SCREEN statement is executed, or until the
program ends.

The parameter of the CALL SCREEN statement can be a numeric
variable, function or numeric expression.

A typical CALL SCREEN statement is shown below.
CALL SCREEN (7)

The previous statement will change the color of the screen to
dark red.

Clearing The Screen

The entire screen can be cleared with the CALL CLEAR state-
ment. The CALL CLEAR statement can be used either in a
program or in the command mode.

Locating A Character

The CALL GCHAR statement can be used to determine the
character that is located at a specified position. The CALL
GCHAR statement requires three parameters. The first two
parameters are the coordinates of the screen position. The third
parameter is a numeric variable. The ASCII code of the character
located at the specified position will be assigned to the specified
variable.

CALL GCHAR (4,7, X)

Tl Sound & Graphics 111

The previous statement will assign the ASCIl code of the
character located in row 4 of column 7 to the variable X.

EXTENDED BASIC GRAPHICS FEATURES

All the capabilities that have been discussed thus far are
common to both Standard BASIC and Extended BASIC. The
remainder of this chapter will deal with capabilities found only in
Extended BASIC.

SPRITES

The major advantage ot Extended BASIC over Standard BASIC is
the ability to create sprites. Sprites are graphic characters that
can be made to move smoothly across the screen. Sprites can be
enlarged up to 16 times the normal size ot a character, Also, the
position, the appearance, the speed, and many other teatures ot
a sprite can be altered with individual statements.

Rules of Sprites

The following are a set of rules that pertain to sprites. The
following rules hold when using sprites in any situation.

1) A total of 28 sprites may appear on the screen at any one
time. As aresult, each sprite must be identified by a number from
1to 28.

2) No more than four sprites may appear in one row. If
more than four sprites are positioned in a single row, only the
four sprites with the lowest sprite numbers will be visible.

3) Sprites will cease to exist when the execution of the
program is complete or when an error occurs.

4) Once a sprite is set into motion, it will continue in that
direction until a statement changes its movement or the program
ends.

112 TI-99/4A User’s Handbook

6) If two or more sprites are located in the same position,
the sprite with the lowest sprite number will cover the other
sprites. Sprites are always visible when they pass over fixed
characters on the display.

Creating A Sprite

A sprite can be created in a single statement. The CALL SPRITE
statement is used to create a sprite. The configuration of the
CALL SPRITE statement is as follows:

CALL SPRITE (#sprite number, ASClI-code, color, row-pixel,
column-pixel [, row-velocity, column-velocity] [, ...])

The first parameter of the CALL SPRITE statement is the sprite
number. The sprite number must be an integer from 1t0 28. The
sprite number becomes the identifying symbol of the sprite.
Each sprite must have its own sprite number. If two sprites are
given the same sprite number, only the second sprite will
continue to exist.

The second parameter of the CALL SPRITE statement is the ASCII
code of the character that is to become the sprite. The sprite will
take on the appearance of the character with the corresponding
ASCII code.

The third parameter of the CALL SPRITE statement is the color
code. The color code specifies the color of the sprite.

The fourth and fifth parameters of the CALL SPRITE statement
determine the starting position of the sprite. The fourth
parameter is the starting row and the fifth parameter is the
starting column. There are 192 visible rows on the screen. As a
result, the starting row value can range from 1t0 192. Since there
are 256 visible columns on the screen, the column value can
range from 1 to 256.

The sixth and seventh parameters of the CALL SPRITE statement
determine the speed and direction in which the sprite moves.

Tl Sound & Graphics 113

The sixth parameter determines the vertical velocity while the
seventh parameter determines the horizontal velocity.

The sixth parameter (vertical velocity) can range from -128 to 127.
The larger the absolute value of the velocity, the faster the sprite
will travel. If a negative velocity is specified, the sprite will move
toward the top of the screen. If a positive velocity is specified, the
Sprite will move toward the bottom of the screen.

The seventh parameter (horizontal velocity) can range from -128
to 127. The larger the absolute value of the velocity, the faster the
sprite will travel. If a negative velocity is specified, the sprite will
move from right to left. If a positive velocity is specified, the
sprite will move from left to right.

A typical CALL SPRITE statement would appear as follows.
CALL SPRITE (#1,78, 7, 33, 75, 50, -19)
Numeric variables, functions and expressions may be used as
parameters in a CALL SPRITE statement. The following example
demonstrates this principle.
CALL SPRITE (#X, ASC(A),X A 2,3 +Y,10+X,50,30)
Velocity of A Sprite

The velocity of a sprite can be controlled by two different
statements, the CALL SPRITE statement and the CALL MOTION
statement. The CALL SPRITE statement is used only when
creating a sprite. The CALL SPRITE statement establishes the
initial velocity of the sprite.

The CALL MOTION statement can be used to change the velocity
of a sprite that already exists.

A typical CALL MOTION statement would appear as follows.

CALL MOTION (#7, 40, 70)

114 T1-99/4A User’s Handbook

The previous CALL MOTION statement would change the
velocity of sprite number seven to a vertical velocity of 40 and a
horizontal velocity of 70.

Numeric variables, functions and expressions may also be used
as parameters of the CALL MOTION statement, as demonstrated
in the following example statement.

CALL MOTION (#7, A, A + 30)
Position of A Sprite

Three different statements can be used to control and monitor
the position of a sprite. These three statements are the CALL
SPRITE statement, the CALL POSITION statement, and the CALL
LOCATE statement.

The CALL SPRITE statement can only be used when creating a
new sprite. The initial position of a sprite is specified in the CALL
SPRITE statement.

The CALL POSITION statement can be used to determine the
position of a sprite. A typical CALL POSITION statement is as
follows.

CALL POSITION (#14, X, Y)

The previous CALL POSITION statement would assign the row
position of sprite number 14 to the variable X, and the column
position to the variable Y.

The CALL LOCATE statement can be used to change the position
of a sprite. A typical CALL LOCATE statement would appear as
follows.

CALL LOCATE (#14, 70, 80)

The previous CALL LOCATE statement would change the
position of sprite number 14 to row 70 and column 80.

Tl Sound & Graphics 115

Numeric variables, functions and expressions may be used as
parameters in both of the preceding statements.

Color of A Sprite

Two different statements can be used to set the color of a sprite.
The CALL SPRITE statement and the CALL COLOR statement can
both be used to set the color of a sprite. The CALL SPRITE
statement can only be used to set the initial color of a sprite.

The color of a sprite can be changed at any time with a CALL
COLOR statement. A typical CALL COLOR statement is as
follows.

CALL COLOR (#5,9)

The previous CALL COLOR statement would change the color of
sprite number 5 to red (color code 9).

Numeric variables, functions and expressions may be used as
parameters in the CALL COLOR statement.

Causing A Sprite to Disappear
The CALL DELSPRITE statement may be used to cause a specified

sprite to disappear. Once a sprite has been deleted using the
CALL DELSPRITE statement, the sprite no longer exists.

The following statement is a typical example of a CALL DELSPRITE
statement.

200 CALL DELSPRITE (#7)
The preceding statement would delete sprite number 7.
Numeric variables, functions and expressions may also be used
in the CALL DELSPRITE statement. For example, the statement

CALL DELSPRITE (#C) is perfectly acceptable as long as the
variable C has a value that corresponds to an existing sprite.

116 TI1-99/4A User’s Handbook

The keyword ALL may be used as a parameter in a CALL
DELSPRITE statement. In this case, all existing sprites are deleted.

The following statement will cause all sprites that had been
defined, to be deleted.

CALL DELSPRITE(ALL)
Extended BASIC Demonstration Program (1)

The following program incorporates several of the Extended
BASIC statements already covered.

100 CALL CLEAR

110 CALL HCHAR (12, 14, 43)

120 CALL HCHAR (12, 18, 61)

130 FORT=1TO 2

140 A(T) = INT (RND*5 + 48)

150 CALL SPRITE (#T, A(T), 5, 1, 56 + 32*T, 7, 0)
160 CALL POSITION (#T, X, Y)

170 IF X > 88 THEN CALL MOTION (#T, 0, 0) ELSE 160
180 NEXTT

190 ANS = VAL (CHR$ (A(1))) + VAL (CHR$(A(2)))
200 FOR T=1TO 300 :: NEXT T

210 CALL SPRITE (#6, ASC(STR$(ANS)), 5, 89, 155)
220 FOR T=1TO 700 :: NEXT T

230 CALL DELSPRITE(ALL)

240 GOTO 130

The preceding example program consists of a graphics display
that performs a series of simple addition problems. Lines 110 and
120 cause the addition and equal signs to appear on the display.
Line 130 initiates a FOR/NEXT loop that is repeated twice. Each
time the loop is repeated a random number from 0 through 4 is
generated at line 140. At line 150, a sprite is defined with the
shape of the number. Each sprite is set into motion at the top of
the screen and moves slowly toward the bottom.

Tl Sound & Graphics 117

The statements at line 160 and 170 monitor the position of the
sprite, and stop its motion when it reaches the level of the
addition symbol. When the sprites are located on both sides of
the addition sign, a third sprite is generated at line 210. The value
of the third sprite is the sum of the values of the first two sprites.
As a result, typical output of the sample program would appear
as follows.

2+3=5

The sample program will automatically be repeated until the
CLEAR command (FCTN 4) is executed.

Animation with Sprites

Ananimation effect can be achieved by using the CALL PATTERN
statement to repeatedly change the appearance of a sprite.

The following example program demonstrates how an animation
effect can be achieved. The program defines a pair of characters
that differ slightly. As the program proceeds, the sprite has the
appearance of a face with changing expressions.

100 CALL CLEAR :: CALL MAGNIFY(2)
110 CALL CHAR (65, “7E81A58181BD817E”)
120 CALL CHAR (66, “7E818181A599817E")
130 CALL SPRITE (#1, 65, 5,99, 1,0, 9)

140 CALL PATTERN (#1, 65)

150 FOR A=1TO 300 :: NEXT A

160 CALL PATTERN (#1, 66)

170 FORA=1TO 30 :: NEXT A

180 GOTO 140

The CALL PATTERN statement can be used to change the
appearance of a specified sprite. The CALL PATTERN statements
in the preceding program repeatedly changes the appearance of
sprite #1 from one shape to another.

118 TI-99/4A User’s Handbook

The first parameter of the CALL PATTERN statement is the sprite
number of the sprite to be changed. The second parameter is the
ASCll code of the character that should become the sprite.

Determining the Distance Between Two Sprites

The CALL DISTANCE statement can be used for two different
tasks. It can be used to determine the distance between two
specified sprites, or the distance between a sprite and a specified
location on the screen.

The format of a CALL DISTANCE statement is as follows.

. Sprite . .

CALL DISTANCE(#Sprite 3 row-pixels, ¢ olumn-pixels} , humeric variable)
The value returned in the numeric variable is the square of the
distance between the specified sprites or the sprite and the
specified position.

The following two examples are typical CALL DISTANCE
statements. The first statement determines the distance between
two sprites. The second statement determines the distance
between a sprite and a location on the screen.

CALL DISTANCE (#1, #2, X)
CALL DISTANCE (#1, 77, 39, X)

Numeric variables, functions and numeric expressions may be
used as parameters in a CALL DISTANCE statement.

Enlarging Sprites

Sprites can be enlarged up to 16 times their original size. The
normal size of a sprite is one character (8 pixels x 8 pixels). The
largest size a sprite can assume is 16 characters (32 pixels x 32
pixels). This increase in size can be accomplished by a CALL
MAGNIFY statement.

The CALL MAGNIFY statement has only one parameter. This
parameter determines the size of all the sprites in use.

Tl Sound & Graphics 119

The parameter used in the CALL MAGNIFY statement must be an
integer from 1 to 4. lllustration 4-7 shows the effects of the four
possible parameters.

llustration 4-7. MAGNIFICATION PARAMETERS

8

1. Normal size (1 character) 8

16
2. 4 times normal size (1 character) 16

16
3. 4 times normal size (4 charcters) 16

32

4. 16 times normal size (4 characters) 32

The parameters 2 and 3 seem to have the same effect. However,
this is not the case. When a parameter of 1 or 2 is used, only one
character is used to define the sprite. When a parameter of 3 or 4
is used, four characters are used to define the sprite. For example,
using the ASCIl code 92 when creating a sprite, and using a
magnification parameter of 3 would cause the sprite to consist of
characters 92, 93, 94, and 95.

The characters are grouped in sets of four. When a magnification
parameter of 3 or 4 is used, all four characters in the set that
contains the specified character are used. Table 4-5 contains a list
of the characters that belong to each set. The way in which
characters are grouped cannot be changed.

120 TI1-99/4A User’s Handbook

Table 4-5. CHARACTER GROUPS

SET# 1 32 33 34 35
SET# 2 36 37 38 39
SET# 3 40 41 42 43
SET# 4 44 45 46 47
SET# 5 48 49 50 51
SET# 6 52 53 54 55
SET# 7 56 57 58 59
SET# 8 60 61 62 63
SET# 9 64 65 66 67
SET#10 68 69 70 71
SET#11 72 73 74 75
SET#12 76 77 78 79
SET#13 80 81 82 83
SET#14 84 85 86 87
SET#15 88 89 90 91
SET#16 92 93 94 95
SET#17 96 97 98 99
SET#18 100 101 102 103
SET#19 104 105 106 107
SET#20 108 109 110 m
SET#21 112 113 14 115
SET#22 116 17 118 119
SET#23 120 121 122 123
SET#24 124 125 126 127
SET#25 128 129 130 131
SET#26 132 133 134 135
SET#27 136 137 138 139
SET#28 140 141 142 143

The following example demonstrates the effect of using a
magnification parameter of 4. Even though character number 78
is used to define the sprite, the sprite actually consists of
characters 76, 77,78, and 79.

100 CALL CLEAR :: CALL MAGNIFY(4)
110 CALL SPRITE(#1, 78, 5, 99, 125)
120 GOTO 120

Tl Sound & Graphics 121

Contact Between Sprites

A CALL COINC statement can be used to determine whether or
not two sprites have come into contact. The statement can also
be used to determine if a sprite is located at a specified position.
A typical CALL COINC statement is as follows.

CALL COINC(#1, #2, 10, A)

The first two parameters are sprite numbers. The third parameter
specifies a number of pixels. If the two sprites specified come
within the specified number of pixels of each other, a value of -1
is assigned to the numeric variable. Otherwise, the variable is
assigned the value 0.

A CALL COINC statement may also specify a sprite and a
position. In this case, if the sprite is located at the specified
position, the variable will be assigned the value -1. The following
is a typical CALL COINC statement that specifies a sprite and a
position.

CALL COINC (#1, 70, 50, 10, A)

The previous statement will report any contact between sprite
number 1 and the position 70, 50 (row 70, column 50).

The keyword ALL can also be used as a parameter of the CALL
COINC statement. In this case, contact between any two sprites
will return a value of -1. The following statement is a CALL
COINC statement that uses the ALL parameter.

CALL COINC (ALL, A)

122 T1-99/4A User’s Handbook

Extended BASIC Demonstration Program (2)

The following program incorporates several of the Extended
BASIC statement including CALL COINC and CALL MAGNIFY.

100 CALL CLEAR :: CALL MAGNIFY (2)

110 CALL CHAR (65, “10387CFEFE828282")

120 CALL CHAR (66, “0000003C24FFDB24")

130 CALL SPRITE(#1, 65, 5, 99, 50)

140 CALL SPRITE(#2, 66, 5, 99, 30,0, -7)

150 CALL COINC (ALL, A)

160 IF A=-1THEN CALL DELSPRITE(#2) ELSE 150
170 CALL CHAR(65, ““10387 C FEFEFEFEFE")

180 FORT=1TO 300 :: NEXT T :: GOTO 110

CHAPTER 5.
TI-99/4A BASIC REFERENCE GUIDE

This chapter provides descriptions and examples of the correct
syntax for Tl Standard BASIC and Tl Extended BASIC. Each of the
commands, statements, and functions are listed in alphabetical
order along with an appropriate abbreviation if applicable.

This manual refers to the BASIC which is built into the T1-99/4A
as Standard BASIC. The version of BASIC available in the TI
EXTENDED BASIC COMMAND MODULE is refered to as Extend-
ed BASIC.

The following notation will be used to describe the configura-
tion of each of the commands, statements, or functions.

Capitalized words are keywords.

Italicized items are parameters.

Items enclosed in brackets [] are optional.

Ellipsis (...) represent repetition.

Punctuation (except brackets and braces) must be
included as shown.

6. The following symbols will be used:

nmhwN =

In Line number
> Precedes lines typed by user.
0 EX BASIC
O ST BASIC Indicates whether a statement, command or
function may be used in Extended BASIC,
Standrd BASIC or both.
A$, B$ String variables
A, B Numeric variables

124 T1-99/4A User’s Handbook

® EX BASIC
ABS m ST BASIC

The ABS function returns the absolute value of its argument.
Configuration
X = ABS(a)
Example
> PRINT ABS(-81)

81

m EX BASIC
ACCEPT O ST BASIC

An ACCEPT statement is used to accept data from the keyboard
and assign the data to a variable. An ACCEPT statement is similar
in principle to an INPUT statement. However, an ACCEPT
statement has more optional features than an INPUT statement.

Configuration

ACCEPT [[AT (row, column)] [VALIDATE (character-type)]
[BEEP) [ERASE ALL] [SIZE (parameter)]:] variable

When an ACCEPT statement is encountered, the execution of
the program does not continue until data is entered at the
keyboard.

The AT option allows the data to appear at any location on the
display while it is being input. The data will appear at the
specified row and column. The display is divided into 24 rows
and 28 columns. As a result, the following statement,

ACCEPT AT(12,14):X

Ti-99/4A BASIC Reterence Guide 125

will cause the data to appear near the center of the display.
When the ENTER key is pressed, the data that appears at the
specified location on the display will be assigned to the variable
X.

The VALIDATE option is used to restrict the type of data that can
be input. The character type parameter is used to select the
acceptable types of data. Table 5-1 summarizes the effects of the
character type parameters.

Table 5-1. Character Type Parameters

UALPHA | Only upper case letters are acceptable
input.

DIGIT | The digits 0-9 are the only acceptable
input.

NUMERIC | Restricts allowable input to integers,
floating point numbers, and scientific
notation.

Allows only the characters that are included
in the quotation marks.

The BEEP option causes a short tone to be generated when the
program is ready to accept input.

The ERASE ALL option causes the entire display to be cleared
before the data being input appears on the screen.

The SIZE option is used to set a limit to the number of characters
that may be accepted as input.

If the SIZE option is not used, characters may be entered until the
end of the line is reached.

If the SIZE option includes a positive argument, the specified
number of spaces will be cleared before the data is displayed on
the screen. The number of characters in the data being entered
cannot exceed the specified limit.

126 TI1-99/4A User’s Handbook

The SIZE option may include a minus sign with its argument. The
minus sign is used to indicate that the specified number of spaces
should not be cleared when the ACCEPT statement is executed.
For example, a SIZE(-10) statement sets a maximum data length
of 10 characters, but does not clear 10 spaces on the display.

When a SIZE statement includes a minus sign, the data that is
entered will take the place of the characters that already appear
on the display. However, the data that originally appears on the
display will be assigned to the specified variable unless new data
is specified. This concept is demonstrated in the following
example.

Example

>100 FORA=0TO 2
> 200 PRINT 3¢ ¢ 3 ok s ¢ ok ok kXY
>300 NEXT A
>400 ACCEPT AT(22,2) VALIDATE(UALPHA) SIZE(8):A$
>500 ACCEPT AT(23,2) VALIDATE(UALPHA) SIZE(-8):B$
>600 PRINT::PRINT A$,B$
>RUN
a0 3k 3 o ok ok e ok ok ok ok
*APPLES *
*APPLES***
APPLES APPLES**

The preceding example contains a program that includes two
ACCEPT statements. The FOR/NEXT loop at lines 100 through
300 causes three rows of asterisks to be displayed.

The ACCEPT statement at line 400 causes the data being input to
appear at location (22,2) on the display. The VALIDATE option
indicates that upper case letters are the only type of acceptable
data. The SIZE option causes 8 spaces to be cleared before the
data is input. As a result, the following display should appear at
the bottom left corner of the screen.

0 3 ok o ok e ok ok ko
* *
4 3 o ok o ok 3ok ke

T1-99/4A BASIC Reterence Guide 127

The data thatis input is limited to the 8 blank spaces in the center
of the asterisks. In the example, the word APPLE is the data that is
entered. When the ENTER key is pressed, the variable A$ is
assigned the string value APPLE.

The ACCEPT statement at line 500 is similar to the statement at
line 400. However, the data being input is displayed at location
(23,2). As aresult, the data appears at the line below the previous
data.

Once again, the VALIDATE option allows only upper case letters
to be input.

The SIZE option imposes an 8 character limit on the data being
input. However, the minus sign indicates that the display should
not be cleared.

Asaresult, the display at the bottom of the screen should appear
as follows:

o o o o o o ok ok K ok

*APPLES *

e 2k o ok o ok ok ok

As the word APPLE is input, the characters take the place of the
asterisks that appear in the last line of the display. However, the
asterisks that are not replaced with data will be considered part
of the input. When the ENTER key is pressed, the data will be
assigned to the variable B$.

The PRINT statements at line 600 display the values of the
variables A$ and B$. Notice that the value of B$ contains two
asterisks, even though the asterisks were not entered as data.

The following example statements demonstrate the correct
format for ACCEPT statements.

128 T1-99/4A User’s Handbook

Examples

ACCEPT AT(5,14) BEEP:A$

ACCEPT AT(1,1) VALIDATE(DIGIT):A
ACCEPT BEEP VALIDATE("YN") SIZE(1):A$
ACCEPT BEEP:A

8 EX BASIC

AND O ST BASIC

AND is used between two expressions as either a numeric or
logical operator.

Configuration

ex AND ex

The conditions of true and false are represented in the computer
by the logical values -1 and 0. As a result, the logical operators
(AND, OR, NOT, and XOR) operate with the logical values -1

and 0. The AND operation can be explained by the following
truth table.

ex1 ex2 RESULT
-1 -1 -1
-1 0 0

0 -1 0

0 0 0

AND is generally used in an IF/THEN statement with relational
expressions. For example:

>10 X=10
>20 Y=30
>30 IF X=10 AND Y >100 THEN GOTO 999
>40 PRINT “CONDITIONS WERE NOT MET”
>999 END
>RUN

CONDITIONS WERE NOT MET

T1-99/4A BASIC Reterence Guide 129

In this example, AND is used in an IF/THEN statement that ends
the program if both conditions are true. The first expression of
the AND statementis X =10. This is true because X is assigned the
value 10 in line 10. The second expression, Y > 100, is false
because Y is assigned the value 30 in line 20. As a result, ex7 is true
and ex2is false. This corresponds to the truth table where ex7=1
and ex2=0. The result from the table is 0 (false), so the condition
of the IF/THEN statement is false, and the next line is executed.

When AND is used as a numeric operator, the arguments are
rounded off and converted to their binary equivalents. The value
of the AND statement is the result of the AND operation on each
bit of the values. For example:

6 (binary 0110)
AND 10 (binary 1010)

2 (binary 0010)

Since the binary equivalent of 6 is 0110, and the binary equivalent
of 10is 1010, the AND operation for each bit has the result 6010.
The decimal value of 0010 is 2.

® EX BASIC
ASC m ST BASIC

The ASC function returns the ASCII code for the first character of
its string expression argument. The argument of ASC can either
be a string constant or a string variable.
Configuration
X = ASC(AS$)

Example

> PRINT ASC(”JONES")
74

130 TI-99/4A User’s Handbook

8 EX BASIC
ATN m ST BASIC

The ATN function returns the arctangent of its argument. The
result will be in radians.

Configuration
X = ATN(A)
Example
> PRINT ATN(.576)

.5225854816

m EX BASIC
BREAK m ST BASIC

A BREAK statement causes the program execution to stop. Line
numbers may be included as parameters with the BREAK
statement to instruct the computer where to stop the program.

Configuration
BREAK [In, In . .]

BREAK can be used in the immediate mode as well as in the
program mode. When used in the immediate mode, the BREAK
statement must be followed by one or more line numbers. These
line numbers instruct the computer where to stop execution of
the program. The program will be halted before the specified
line is executed.

Example
>100 PRINT “JOHN DOE”

> 200 PRINT "4444 BAKER ST”
>300 PRINT "CLEVE. OHIO”

T1-99/4A BASIC Reterence Guide 131

> BREAK 200
>RUN

JOHN DOE

* BREAKPOINT IN 200
>RUN

JOHN DOE

4444 BAKER ST

CLEVE. OHIO

In the preceding example, BREAK 200 causes the program
execution to stop before line 200 is executed. Since BREAK 200
was used in the immediate mode, it only effects the program

once. Note when the program is run a second time, there is no
break.

The computer can be instructed to continue execution of a
program after a break is encountered by using the CON
command. In the preceding example, if CON had been entered
after the breakpoint instead of RUN, the output would have
been as follows:

4444 BAKER ST
CLEVE. OHIO

When BREAK is used as a statement in a program, line numbers
may or may not be included as parameters. If line numbers are
notincluded, program execution will stop at the point where the
BREAK appears in the program.

Example

>100 PRINT “JOHN DOE”
> 200 BREAK
>300 PRINT "4444 BAKER ST”
>400 PRINT "CLEVE. OHIO”
>RUN

JOHN DOE

* BREAKPOINT IN 200
>CON

4444 BAKER ST

CLEVE. OHIO

132 T1-99/4A User’s Handbook

In this example, the program will stop at line 200 each time it is
executed.

In Extended BASIC, multiple statement lines may be used.
However, if BREAK is used in a multiple statement line, it must be
the last statement in the line. If BREAK is not the last statement, a
syntax error will occur when an attempt is made to continue the
program.

@ EX BASIC
BYE B ST BASIC

The BYE command causes the computer to exit Tl BASIC or Ti
Extended BASIC and return to the master title screen. The master
title screen is the display that appears when the computer is
powered on.

The QUIT command also returns the computer to the master
title screen. However, QUIT will not close any files that had been
opened. This could resultin the loss of data that has been stored
on disk or cassette. The BYE command will close all files that had
been opened. Therefore, BYE should generally be used instead
of QUIT.

Configuration
BYE
Example
>BYE
® EX BASIC
CALL m ST BASIC

CALL is used to access subprograms that are stored in the
computers memory. Many special purpose subprograms are
permanently stored in the computer’s memory. However, in
Extended BASIC, a SUB statement may be used to define custom
made subprograms.

T1-99/4A BASIC Retference Guide 133

CALLis used most frequently for color, sound, and graphics. The
subprograms that are stored in memory are as follows:

CHAR HCHAR *PATTERN
*CHARPAT *INIT *PEEK
*CHARSET JOYST *POSITION

CLEAR KEY *SAY
*COINC *LINK SCREEN

COLOR *LOAD SOUND
*DELSPRITE *LOCATE *SPGET
*DISTANCE *MAGNIFY *SPRITE
*ERR *MOTION VCHAR

GCHAR *VERSION

*Only in Extended BASIC.
Configuration
CALL subprogram name [(parameters)]
Example

100 CALL CLEAR

8 EX BASIC
CALL CHAR & ST BASIC

The CALL CHAR statement accesses the subprogram CHAR. The
CHAR subprogram allows the user to create graphic characters.

Configuration (EX & ST BASIC)
CALL CHAR (ASCl! code, “string expression”)

The ASCII code is a widely used system that uses numbers to
refer to the characters instead of the characters themselves. Each
character defined in the computer is represented by a specific
ASCII code. By specifying a particular ASCII code in the CALL
CHAR statement, the character that is normally associated with
the specified ASCII code can be redefined. For example, the

134 TI1-99/4A User’s Handbook

ASCII code of the character “A” is 65. Therefore, if 65 is used as
the parameter in a CALL CHAR statement, the letter “A” will be
redefined to some other character.

In Standard BASIC, the ASCII codes that can be redefined are
codes 32 through 159 inclusive. In Extended BASIC, the ASCII
codes that can be redetined are codes 32 through 143 inclusive.

The second parameter of the CALL CHAR statement is the string
expression. The string expression consists of a hexadecimal
code. The hexadecimal code is used to define the shapes of
characters.

Each character consists of 65 elements or pixels. These 65 pixels
form an 8x8 grid the size of one character.

lllustration 5-1 depicts the 8x8 grid that is used to define
characters. Characters can be defined by selectively illuminating
some of these pixels. The 16 character string expression is used to
determine the pixels to be illuminated.

Hlustration 5-1. Character Grid

In order to use the hexadecimal code, the grid in lllustration 5-1
must be divided into 16 sections of 4 pixels each.

T1-99/4A BASIC Reterence Guide 135

Illustration 5-2 shows an 8x8 grid that has been divided in this
manner.

Hlustration 5-2. Grid Division

oooo cooo 2
0000 CooD 4
0OCD OO0o0 6
0000 oooo 8§
9 0CoOOO cooo 10
11 CoOoD oooo 12
13 OO0 oooo 14
15 0000 cooo 16

N W=

Each one of these sections can be defined with one character of
the hexadecimal code. Any combination of the 4 pixels can be
illuminated. Illustration 5-3 shows the hexadecimal codes that
correspond to the 16 possible combinations.

Ilustration 5-3. Hexadecimal Code

PIXELS HEXADECIMAL CODE
oooo

(mimm
oom0
O0mm
m]

L1

O

[m]
TMONE®I>POONITTLEWNSO

LLE

136 TI1-99/4A User’s Handbook

The 8x8 grid that makes up one character can be described in 16
hexadecimal characters. These 16 hexadecimal characters make
up the string expression used in the CALL CHAR statement.

The first character in the string expression will describe section 1
of the 8x8 grid. The second character will describe section 2, and
so on.

Example
00
o 0 4
S 0 6
i 0 6
- 0 4
00
00

100 CALL CLEAR
200 CALL CHAR(143,”000406FF06040000")
300 CALL HCHAR(12,16,143)

The preceding example shows how a CALL CHAR statement is
used to create a character. The first step in creating a character is
to draw the character within an 8x8 grid. Then, translate the
drawing into a hexadecimal code using lllustration 5-3.

The hexadecimal code for the specified character can now be
used in a CALL CHAR statement.

The program in the preceding example will place a small arrow
in the middle of the screen. Line 100 will clear the screen. Line
200 will use the string expression to define character number
143.

Line 300 will display the character in the middle of the screen.
Any type of character can be defined using the CALL CHAR

statement. The following example contains a program that uses
the CALL CHAR statement to define the character 7 (Pl).

TI-99/4A BASIC Reference Guide 137

Example
>100 CALL CHAR (130,"007E242424244600")
> 200 B =3.141592654
>300 PRINT CHR$(130); "=";B
>RUN
7 =3.141592654

The string expression in the CALL CHAR statement must be 16
characters in length. If less than 16 characters are used, the
missing characters are assumed to be zeros. In Standard BASIC, if
more than 16 characters are used, the string will be truncated. In
Extended BASIC, however, specifying more than 16 characters
causes the character with the next highest ASCII code to be
redefined.

Configuration (EX BASIC)
CALL CHAR (ASCII code, “string expression” [,...])

Extended BASIC allows many characters to be defined in one
statement. The string expression may be as long as 64 characters.
The first 16 characters will redefine the character with the
specified ASCII code. Characters 17 through 32 will redefine the
character with the next higher ASCII code and so on.

More than one character can be redefined by listing ASCII codes
and hexadecimal codes one after the other in the CALL CHAR
statement.

Examples

CALL CHAR(66,"FFFFFFFFFFFFFFFFFFFFFFEFFEFFFFFE”)
CALL CHAR(66,"FFFFFFFFFFFFFFFF”,67,"FFFFFFFFFFFFFFEF")

The previous example contains two statements that have the
same results. Both statements redefine the characters 66 and 67
as solid blocks.

138 T1-99/4A User’s Handbook

® EX BASIC
CALL CHARPAT 0 ST BASIC

The CALL CHARPAT statement accesses the subprogram
CHARPAT. The CHARPAT subprogram returns the 16 character
hexadecimal code that is used to create a particular character.

Configuration
CALL CHARPAT (ASCll-code,A$],...])

The first parameter of the CALL CHARPAT statement is the ASCII
code of the character whose hexadecimal code will be returned.

A$is a string variable that will be assigned the hexadecimal code
of the specified character.

Example

> CALL CHARPAT(65,A$)
> PRINT A$
003844447C444444

In the preceding example, the CALL CHARPAT statement is used
to return the hexadecimal code of the character A (ASCII code
65). This hexadecimal code is assigned to the variable A$. A
PRINT statement is used to display the value of the variable A$.

m EX BASIC
CALL CHARSET O ST BASIC

The CALL CHARSET statement accesses the subprogram CHAR-
SET. The CHARSET subprogram causes all characters in the char-
acter set to return to their standard character detinition.

Configuration

CALL CHARSET

TI-99/4A BASIC Reterence Guide 139

The CHARSET subprogram will also reset character colors to
their standard colors.

Example

100 CALL CHARSET

| EX BASIC
CALL CLEAR & ST BASIC

CALL CLEAR accesses the subprogram CLEAR. CLEAR can be
used in either the immediate mode or the program mode to
clear the entire screen.

Configuration
CALL CLEAR
Example
> CALL CLEAR
8 EX BASIC
CALL COINC O ST BASIC

The CALL COINC statement accesses the subprogram COINC.
The COINC subprogram determines if there has been a collision
between two sprites. The COINC subprogram can also determine
if a sprite passes over a specified position on the screen. The
COINC subprogram returns a true or false value depending on
whether or not the specified condition has been met.

Configuration

ALL
CALL COINC #sprite, #sprite, int ,var
#sprite, row-pixel, column-pixel, range

140 T1-99/4A User’s Handbook

The last parameter in the CALL COINC statement must be a
numeric variable. The value assigned to this numeric variable
will be either -1 or 0. A value of -1 will be assigned to the variable
if the specified collision has occurred. A value of 0 will be
assigned to the variable if the specified collision has not
occurred.

If the keyword ALL is used in the CALL COINC statement, a
collision between any two sprites causes a value of -1 to be
assigned to the variable.

If two sprite numbers are specified, a collision between the two
sprites will cause a value of -1 to be assigned to the variable.

When a sprite and a position are specified, a value of -1 is
assigned to the variable if the specified sprite passes over the
specified position.

Positions are specified by row-pixel and column-pixel. Pixels are
very small dots which make up the display on the screen. There
are 256 column-pixels and 193 row-pixels that are visible on the
screen. Therefore, the row-pixel in the CALL COINC statement
isanumber from 1to 193 and the column-pixel is a number from
1 to 256.

When two sprites or a sprite and a position are specified, arange
must also be specified. The range specifies how close two sprites
or a sprite and a position must be before it is considered a
collision. The range is an integer that represents a number of
pixels.

A numeric variable (var) must always be used with CALL COINC.
The variable is assigned the value of -1 for true and 0 for false.

Example

100 CALL CLEAR :: CALL MAGNIFY(2)

200 CALL SPRITE(#1,49,5,1,1,34,56)

300 CALL SPRITE(#2,50,5,193,256,-34,-56)

400 CALL COINC(#1,42,10,A)

500 IF A = -1 THEN CALL DELSPRITE(#1) :: CALL
PATTERN(#2,51)

600 GOTO 400

TI-99/4A BASIC Reterence Guide 141

The preceding example contains a program that uses a CALL
COINC statement to determine whether or not two sprites have
collided. Line 100 clears the screen and sets a magnification
factor of two. Line 200 and 300 create two sprites that have the
appearances of the numbers "1” and “2”. Line 400 assigns A the
value of -1 or 0 depending on whether or not the two sprites
have collided. Line 500 is an IF/THEN statement that deletes
sprite number 1and changes the appearance of sprite number 2
if a collision occurs. Line 600 branches program control back to
line 400.

When the program is executed, two sprites in the shapes of the
numbers “1” and “2” begin moving along the screen. When the
two sprites collide (within three pixels) sprite number one is
deleted and sprite number two takes on the appearance of the
number "3".

m EX BASIC
CALL COLOR ® ST BASIC

The CALL COLOR statement accesses the subprogram COLOR.
The COLOR subprogram is used to change the color of
characters.

Configuration (EX & ST BASIC)
CALL COLOR (set#, foreground, background)

In Standard BASIC, the ASCII codes (32 through 159) are divided
into 16sets. In Extended BASIC, the ASCII codes (32through 143)
are divided into 14 sets.

Thesset# used in the CALL COLOR statement must be an integer
from 1 to 16. The set# specifies the characters to be colored. The
ASCII codes and corresponding set numbers can be found in
Table 5-2.

142 T1-99/4A User’s Handbook

Forexample, if set# 8 is specified in a CALL COLOR statement, all
characters having ASCII codes from 88 to 95 will be colored as
specified in the second and third parameters.

The foreground and background colors are specified by the
integers 1 through 16. Each number specifies a particular color,
as indicated in Table 5-3.

Table 5-2. Color Sets

set # ASCII codes set # ASCII codes
1 32-39 9 96-103
2 40-47 10 104-111
3 48-55 1 112-119
4 56-63 12 120-127
5 64-71 13 128-135
6 72-79 14 136-143
7 80-87 15 144-151
8 88-95 16 152-159

Table 5-3. Color Codes

Color Code Color Color Code Color
1 Transparent 9 Medium Red
2 Black 10 Light Red
3 Medium Green 1 Dark Yellow
4 Light Green 12 Light Yellow
5 Dark Blue 13 Dark Green
6 Light Blue 14 Magenta
7 Dark Red 15 Gray
8 Cyan 16 White

The foreground color specifies the color of the character. The
background color specifies the color of the screen behind the
character.

TI-99/4A BASIC Reterence Guide 143

Example

100 CALL CLEAR

200 CALL COLOR(6,2,5)

300 PRINT "ABCDEFGHIJKLMNOPQRST”
400 GOTO 400

The previous example contains a program that uses the CALL
COLOR statement.

Line 100 will clear the screen. Line 200 will cause all characters
having ASCII codes 72 through 79 to have a black foreground
and blue background. Line 300 will display the characters A
through T. Line 400 will create a loop that keeps the program
from ending.

When the program in the previous example is executed, the
letters A through T are displayed on the screen. However, only
letters H through O are colored. The letters H through O are the
only characters in set number 6. Therefore, they are the only
characters specified in the CALL COLOR statement.

When the preceding program is stoped, all characters will return
to their standard colors. The CALL COLOR statement only has an
effect while the program is being executed.

Example

100 CALL CLEAR

200 CALL CHAR(65,"007E7E7E7E7E7EQ0")
300 CALL HCHAR(1,1,65,768)

400 CALL COLOR(5,7,5)

500 GOTO 500

The preceding example contains a program that uses CALL
COLOR. Line 100 of the program will clear the screen. Line 200 is
a CALL CHAR statement that defines a small square. Line 300 will
fill the screen with this small square. Line 400 will cause the color
of the square to be red and the background color to be blue.
Line 500 causes a loop that prevents the program from ending.

144 TI1-99/4A User’s Handbook

To stop the program, press FCTN 4 (CLEAR).
Configuration (EX BASIC)
CALL COLOR(#sprite, foreground],...])

In Extended BASIC, a CALL COLOR statement can be used to
change the color of any sprite.

The sprite is an integer between 1 and 28 inclusive that specifies
the sprite to be colored. The foreground is an integer between 1
and 16 inclusive that specifies the color of the sprite.

Example

100 CALL COLOR(#3,5)

The statement in the previous example would change the color
of sprite number three to blue.

m EX BASIC
CALL DELSPRITE D ST BASIC

The CALL DELSPRITE statement accesses the subprogram
DELSPRITE. The DELSPRITE subprogram is used to delete sprites.
Once a sprite is deleted, it cannot be used again unless it is
redefined with a CALL SPRITE statement.

Configuration

ALL
CALL DELSPRITE ({ #sprite [# sprite...] })

If the keyword ALL is used with DELSPRITE, all sprites will be
deleted. If one or more sprite numbers are specified, only the
specified sprites will be deleted.

Example

100 CALL DELSPRITE(#1,#7)

T1-99/4A BASIC Reterence Guide 145

® EX BASIC
CALL DISTANCE D ST BASIC

The CALL DISTANCE statement accesses the subprogram
DISTANCE. The DISTANCE subprogram is used to determine the
square of the distance between two sprites. The DISTANCE
subprogram can also be used to determine the square of the
distance between a sprite and a position on the screen.

Configuration

#sprit
CALL DISTANCE (#sprite, sprite U variable)
row-pixel, column-pixel

The parameters of CALL DISTANCE must be either two sprites or
a sprite and a screen position. In either case, the square of
distance is assigned to the specified variable. The variable must
be a numeric variable.

The DISTANCE subprogram determines the square of the
approximate number of pixels that separate two objects. The
upper left corner of each sprite is the point of reference.

For example, two sprites that are displayed with 1inch between
their upper left corners would cause the DISTANCE subprogram
to indicate a value of 625. Since the square root of 625 is 25, the
two sprites are about 25 pixels apart.

The largest value that can be returned by the CALL DISTANCE
statement is 32767.

Examples

CALL DISTANCE (#1,42,A)
CALL DISTANCE (#1,77,120,B)

The first statement in the preceding example will determine the
distance between two sprites. This distance will be assigned to
the variable A.

146 TI-99/4A User’s Handbook

The second statement in the preceding example will return the
distance between sprite number one and position 77,120. This
distance will be assigned to the variable B.

m EX BASIC
CALL ERR D ST BASIC

The CALL ERR statement accesses the subprogram ERR. The ERR
subprogram is generally used after an error occurs. This
subprogram allows information about the error to be assigned to
variables.

Configuration
CALL ERR(A,B[,C,D])

The value assigned to the first variable (A) is the error code that
corresponds to the error.

The value assigned to the second variable (B) is generally -1. If
the error that occurred was a file error, the value assigned to the
second variable will be positive and correspond to the file that
caused the error.

The value assigned to the third variable (C) is always 9.

The value assigned to the fourth variable (D) is the line number
where the error occurred.

Example

100 INPUT A

200 ON ERROR 500

300 PRINT SQR({A)

400 END

500 CALL ERR(B,C)

600 IFB=74 THEN PRINT "SQUARE ROOT OF “;A;" IS UNDEFINED”

TI-99/4A BASIC Reference Guide 147

The previous example contains a program that uses the CALL
ERR statement. Line 100 of the program will allow a number to be
assigned to the variable A. Line 200 will transfer program control
toline 500if an error occurs. Line 300 will print the square root of
the value of the variable A. Line 400 will end the program.

Line 500 and 6060 will only be executed if an error occurs. Line 500
will assign the error code to the variable B. Line 600 will print a
message if the error code is 74 (BAD ARGUMENT error).

8 EX BASIC
CALL GCHAR ® ST BASIC

The CALL GCHAR statement accesses the subprogram GCHAR.
The GCHAR subprogram is used to determine the character that
is located at a particular position on the screen.

Configuration
CALL GCHAR (row, column, variable)

The GCHAR subprogram will return the ASCIl code of the
character located at the specified row and column.

The screen is divided into 24 rows and 32 columns. Therefore,
any number from 1 to 24 is an acceptable row number and any
number from 1 to 32 is an acceptable column number.

The variable is a numeric variable that will be assigned the ASClII
code of the character in the specified position.

Example

100 CALL GCHAR(15,17,A)

148 T1-99/4A User’s Handbook

| EX BASIC
CALL HCHAR ® ST BASIC

The CALL HCHAR statement accesses the subprogram HCHAR.
The HCHAR subprogram is used to place characters at specified
positions on the screen.

Configuration
CALL HCHAR (row, column, ASClI code [,repetitions])

The first two parameters, rows and column, determine the
position where the character will be displayed. The screen is
divided into 24 rows and 32 columns. Therefore, the specified
row must be a number from 1 to 24 and the specified column
must be a number from 1 to 32.

The third parameter, ASCII code, is the ASCIl code of the
character that is to be placed at the specified position.

The fourth parameter, repetition, is optional. repetition must be
anumber from1to 32767. The repetition specifies the number of
times the specified character is to be repeated. Characters will be
repeated horizontally the specified number of times.

If no parameter is included for repetition, the character will be
displayed only once.

Example

CALL HCHAR(12,16,42)
CALL HCHAR(2,2,42,12)

The preceding example contains two CALL HCHAR statements.
The first statement will place an asterisk (*) in the middle of the
screen (position 12,16). The second statement will print 12
asterisks (*) starting at the upper left hand corner of the screen
(position 2,2).

TI-99/4A BASIC Reference Guide 149

8 EX BASIC
CALL INIT O ST BASIC

The CALL INIT statement accesses the subprogram INIT. The
subprogram INIT prepares the computer to run assembly
language subprograms. Assembly language programs cannot be
executed unless a memory expansion unit is used with the TI-
99/4A.

Configuration
CALL INIT

The CALL INIT statement must be entered before any other
statements are used to access assembly language subprograms.

A set of assembly language supporting routines are loaded into
the memory expansion when the CALL INIT command is
entered.

A SYNTAX ERROR will occur if the memory expansion unitis not
powered on.

Example

CALL INIT

= EX BASIC
CALL JOYST ® ST BASIC

The CALL JOYST statement accesses the subprogram JOYST. The
JOYST subprogram is used to determine the position of the
joystick controllers.

Configuration

CALL JOYST (joyst#, variable 1, variable 2)

150 T1-99/4A User’s Handbook

The joyst#is the number of the joystick to be used. joyst# must be
an integer from 1 to 4. However, only joysticks 1 and 2 are
accessible.

The JOYST subprogram returns two values corresponding to the

position of the joystick. These values are assigned to variable 1
and variable 2.

lllustration 5-4 shows the value that will be returned for every
joystick position.

Example
100 CALL JOYST(1,X,Y)
Hlustration 5-5 CALL JOYST Joystick Positions

(0,4)

77N

.
|
l
|
1
|
I

T1-99/4A BASIC Reference Guide 151

® EX BASIC
CALL KEY ® ST BASIC

CALL KEY accesses the subprogram KEY. KEY is used to accept
input from the keyboard while a program is being executed.

Configuration
CALL KEY (mode, variable 1, variable 2)

The CALL KEY statement assigns a value to variable 7 that
corresponds to the key that is being pressed on the keyboard.
variable 1 is assigned the value -1 if no key is being pressed.

The mode determines the values that are returned by each
character. The mode must be an integer between 0 and 5
inclusive. Generally, a mode of 0 is chosen. A 0 mode specifies
that all characters return their standard ASCII values. If a mode
other than 0 is chosen, non-standard values for the characters
are returned.

variable 2 is assigned a value of -1, 0 or 1. The value assigned to
this variable is determined by the relationship between the last
CALL KEY statement and the current CALL KEY statement.

variable 2 is assigned the value -1 if the CALL KEY statement
assigns the same character code to variable 7 in two consecutive
statements. variable 2is assigned the value 1only when variable 1
isassigned a new character code. variable 2 s assigned the value
0 only when variable 1 is assigned the value -1. This situation
occurs if no keys are being pressed when the statement is
executed.

Example

100 CALL KEY(0,A,B)

200 IF (B=0) + (B =-1) THEN 100
300 PRINT CHR$(A)

400 GOTO 100

152 T1-99/4A User’s Handbook

The previous example shows a program that uses the CALL KEY
statement to print the character corresponding to the key that
was pressed.

Line 100 of the program is a CALL KEY statement. The mode is set
to 0. Therefore, the standard ASCII values of the characters will
be used.

Line 200 branches program control back to line 100if B=0or B=
-1. Therefore, if no key is pressed, or the same key is pressed,
program control is passed to line 100.

Line 300 prints the character that corresponds to the ASCII code
returned in A. Line 400 branches program control to line 100.

To stop the program, press FCTN 4 (CLEAR).

m EX BASIC
CALL LINK O ST BASIC

CALLLINK accesses the subprogram LINK. The LINK subprogram
passes program control to an assembly language subprogram.

Configuration
CALL LINK (subprogram name [,variable list])
The subprogram name is the name of the assembly language
subprogram. The variable list passes parameters from the main
program to the assembly language subprogram.
An assembly language subprogram must have been previously

loaded into the memory expansion unit before CALL LINK can
be used.

T1-99/4A BASIC Reference Guide 153

m EX BASIC
CALL LOAD O ST BASIC

The CALL LOAD statement is used to store bytes of intformation
in specitied memory locations. The CALL LOAD statement can
only be used when a memory expansion unit is in use. Also the
CALL INIT command must be executed betore the CALL LOAD
command is used. The CALL LOAD statement can also be used to
retrieve an assembly language subprogram from a data file and
store it in a memory expansion unit.

Configuration

CALL LOAD (filename)

memory address, byte 1 [, byte 2,]

An assembly language subprogram can be loaded into the
memory expanison unit by using the CALL LOAD statement
along with the filename of the assembly language subprogram.
The following example will load the assembly language subpro-
gram named “START” from disk drive 1.

Example
> CALL LOAD (“DSK1.START”)
The CALL LOAD statement can be used to change individual
memory addresses. Also, if more than one byte of information is
specified, each following byte is stored in each successive
memory address.
Example

> CALL LOAD (8734,65,72)

The previous CALL LOAD statement will store 65 in memory
address 8734 and 72 memory address 8735.

154 T1-99/4A User’s Handbook

The CALL LOAD statement can only store information in
memory addresses that are part of RAM. If a CALL LOAD state-
ment specifies a memory location that is part of the ROM, the
CALL LOAD statement has no effect.

m EX BASIC
CALL LOCATE O ST BASIC

The CALLLOCATE statement accesses the subprogram LOCATE.
The LOCATE subprogram is used to change the position of a
sprite.

Configuration
CALL LOCATE (#sprite, row, column [,...])

The sprite is an integer from 1 to 28 that indicates the sprite to be
moved. The row is an integer from 1 to 192. The column is an
integer from 1 to 256.

Example

>100 CALL CLEAR

>200 CALL MAGNIFY(2)

> 300 CALL SPRITE(#1,65,5,99,125)

> 400 CALL LOCATE(#1,INT(RND*192) +1, INT(RND*256) +1)
>500 GOTO 400

>RUN

The preceding example contains a program that will continually
relocate a sprite.

Line 100 will cause the display to be cleared. Line 200 will cause
all sprites to be magnified. Line 300 will cause a sprite to appearin
the shape of the letter A. Line 400 will cause the sprite to be
relocated at a random position on the screen. Line 500 will
branch program control to line 400.

Press FCTN 4 (CLEAR) to stop the program.

Ti-99/4A BASIC Reterence Guide 155

m EX BASIC
CALL MAGNIFY O ST BASIC

CALL MAGNIFY accesses the subprogram MAGNIFY. The sub-
program MAGNIFY is used to increase the size of sprites.

Configuration
CALL MAGNIFY (a)

A sprite can be magnified in two ways. The first method is to
increase the size of the character that makes up the sprite. The
second method is to use more than one character to define a
sprite.

The parameter in the MAGNIFY subprogram must be an integer
from 1 to 4 that determines how a sprite will be magnified.

A parameter of 1 causes all sprites to consist of one character.
This character will be of normal size. Therefore, all sprites will be
of normal size.

A parameter of 2 causes all sprites to consist of one character.
However, this character will be four times its original size.
Therefore, all sprites will be four times their original size.

A parameter of 3 causes all sprites to consist of four characters.
These four characters will all be normal sized. Therefore, all
sprites will be four times their original size.

A parameter of 4 causes all sprites to consist of four characters.
However, these characters will be four times their original size.
Therefore, all sprites will be sixteen times their original size.

Example

100 CALL CLEAR

200 CALL SPRITE(#1,76,6,99,115)

300 ACCEPT AT(23,1) VALIDATE ("1234") SIZE (1):A
400 CALL MAGNIFY(A)

500 GOTO 300

156 T1-99/4A User’s Handbook

The preceding example contains a program that shows the
different effects thata CALL MAGNIFY statement can produce.

When executed, the preceding program causes a sprite to
appear in the middle of the screen. The sprite has the shape of
the letter L.

The cursor then appears at the bottom of the screen. An integer
from 1 to 4 may now be entered. This integer is then used in a
CALL MAGNIFY statement to magnify the sprite.

Line 100 in the preceding program will clear the screen. Line 200
will create a sprite with the shape of the letter Land placeitin the
middle of the screen. Line 300 will inputa number from1to4and
assign it to the variable A. Line 400 is a CALL MAGNIFY statement
that uses the variable A as its parameter. Line 500 will branch
program control to line 300.

Press the FCTN 4 (CLEAR) key to stop program execution.

s EX BASIC
CALL MOTION O ST BASIC

The CALL MOTION statement accesses the subprogram
MOTION. The MOTION subprogram is used to change the
direction and speed of a sprite.

Configuration
CALL MOTION (#sprite, vertical speed, horizontal speed)

The CALL MOTION statement can be used to change the vertical
speed and horizontal speed of a sprite.

The sprite is an integer from 1 to 28 that indicatees the sprite to
be affected. The vertical speed is an integer from =128 to 127. A
negative vertical speed will cause a sprite to move up the screen.

TI-99/4A BASIC Reterence Guide 157

A positive vertical speed will cause a sprite to move down the
screen.

The horizontal speed is an integer from -128 to 127. A negative
horizontal speed will cause a sprite to move left on the screen. A
positive horizontal speed will cause a sprite to move right on the
screen.

The absolute value of the numbers specified as the second and
third parameters determine the speed of the sprite. If the
absolute value of the specified number is close to zero, the sprite
will move slowly. If the absolute value of the specified number is
much greater than zero, the sprite will move quickly.

Example

100 CALL CLEAR

200 CALL MAGNIFY(2)

300 CALL SPRITE(#1,65,5,99,115)
400 INPUT A,B

500 CALL MOTION(#1,A,B)
600 GOTO 400

The preceding example contains a program that uses a CALL
MOTION statement. When the program is executed, a sprite
with the shape of the letter A appearsin the middle of the screen.
The cursor then appears at the bottom of the screen. The sprite
can be set into motion in any direction and at any speed by
entering two number between -128 and 127.

Line 100 of the preceding program will clear the screen. Line 200
will magnify all sprites. Line 300 will create a sprite with the shape
of the letter A and places it in the center of the screen. Line 400
will input two numbers and assign them to the variables A and B.
Line 500 is a CALL MOTION statement that uses the variable A
and B to change the motion of sprite #1. Line 600 will branch
program control to line 400.

158 T1-99/4A User’s Handbook

® EX BASIC
CALL PATTERN O ST BASIC

CALL PATTERN accesses the subprogram PATTERN. The sub-
program PATTERN is used to change the appearance of a sprite
without changing any other characteristics of that sprite.

Configuration
CALL PATTERN (#sprite, ASCII code [,Il])

The first parameter of the CALL PATTERN statement specifies the
number of the sprite to be changed. The second parameter
specifies the ASCI! code of the character that will be used in the
specified sprite.

Example

100 CALL CLEAR :: CALL MAGNIFY(2)
110 CALL CHAR(65,”3C667E3C18244281")
120 CALL CHAR(66,”3C7E7E3C18242424")
130 CALL SPRITE(#1,66,5,100,100,0,12)
140 FORT=1TO 30 :: NEXTT

150 CALL PATTERN(#1,65)

160 FORT=1TO 30 :: NEXTT

170 CALL PATTERN(#1,66)

180 GOTO 140

The preceding example contains a program that uses the CALL
PATTERN statement to create an animation effect.

Line 100 of the program clears the screen and causes all sprites to
be magnified. Line 110 and 120 define two different characters
that will be used in creating the animation effect. Line 130 creates
a sprite using character 66. Line 140 uses a FOR/NEXT loop to
cause a delay. Line 150 causes the sprite number one to become
character 65. Line 160 uses a FOR/NEXT loop to create a second
delay. Line 170 changes sprite number one back to character 66.
Line 180 causes the last five lines of the program to be repeated.

Press CLEAR (FCTN 4) to end the program.

T1-99/4A BASIC Reference Guide 159

m EX BASIC
CALL PEEK O ST BASIC

The CALL PEEK statement accesses the subprogram PEEK. The
subprogram PEEK is used to recover the value in a memory
location.

Configuration
CALL PEEK (memory location, variable list)

A memory location contains an integer value between 0 and 255.
The first parameter of the CALL PEEK statement must be an
integer from -32768 to 32767. This number specifies the memory
location. A numeric overflow error occurs if the specified
memory location is greater than 32767 or less than -32768. If the
specified memory location is not an integer, it is rounded off.

The first variable in the variable list is assigned the value
contained in the specified memory location. The second variable
in the variable list is assigned the value contained in the next
highest memory location and so on.

The CALL PEEK statement is generally used when executing an
assembly language subprogram.

8 EX BASIC
CALL POSITION O ST BASIC

CALL POSITION accesses the subprogram POSITION. The
POSITION subprogram returns the coordinates of the location
of a specifies sprite.

Configuration

CALL POSITION (#sprite, variable 1, variable 2 [,...])

160 TI-99/4A User’s Handbook

The sprite is the number of the sprite whose position is to be
returned.

The position of the sprite will be assigned to variable 7 and
variable 2. The row pixel position will be assigned to variable 1.
The column pixel position will be assigned to variable 2.

Example

CALL POSITION (#1,A,B)

® EX BASIC
CALL SAY O ST BASIC

The CALLSAY statement accesses the subprogram SAY. The SAY
subprogram is used to activate the Solid State Speech Synthe-
sizer. A CALL SAY statement has no effect if the Speech
Synthesizer is not properly installed.

Configuration
CALL SAY ("word string,”X$,...)

The word string may include any word, or any combination of
words that are contained in the speech synthesizer’s resident
vocabulary. A listing of these words can be found in AppendixF.

The resident vocabulary also includes phrases. When using a
phrase, place a “#” on either end of the phrase.

If a word that is not included in the resident vocabulary is used,
the computer will spell that word. If the Speech Synthesizer does
not recognize a character in a word string, the word “uh oh” is
produced instead.

Example

> CALL SAY ("I AM THE #TEXAS INSTRUMENTS#
HOME COMPUTER")

T1-99/4A BASIC Reterence Guide 161

A CALL SPGET statement can be used to generate “speech
strings.” These strings can be processed more quickly then word
strings. When speech strings are used in a CALL SAY statement,
they must be separated from word strings by commas.

CALL SAY statements require that word strings and speech
strings be used alternately, and that the first value is a word
string. Asa result,a CALL SAY statement must haveacommaora
word string as the first data item.

Example
> CALL SPGET ("HELLO",A$)

> CALL SAY ("GOODBYE”,A$)
> CALL SAY (,A$)

m EX BASIC
CALL SCREEN ® ST BASIC

CALL SCREEN accesses the subprogram SCREEN. The SCREEN
subprogram is used to change the color of the screen.

Configuration
CALL SCREEN (a)
The parameter for CALL SCREEN is an integer from 1 to 16 that
specifies the color of the screen. The color codes used in the
CALL SCREEN statement are the same as those used in the CALL
COLOR statement. Table 5-3 on page 142 lists all the color codes.

Example

CALL SCREEN (9)

162 TI-99/4A User’s Handbook

® EX BASIC
CALL SOUND m ST BASIC

CALL SOUND accesses the subprogram SOUND. The sub-
program is used to generate musical notes and noises.

Configuration
CALLSOUND (delay, frequency 1, volume 1[,..., frequency 4, volume 4])

The CALL SOUND statement can simultaneously generate up to
three tones and one noise.

The delay parameter determines the duration of the tone or
noise. There can only be one delay specified within a CALL
SOUND statement. The specified delay will affect all of the tones
and noises that are specified in the statement.

The delay is measured in milliseconds. The range of the delay is
from 1 to 4250 and from -1 to -4250.

When a positive delay is specified, the specified tone will
continue to be generated until the specified duration is
complete. When a negative delay is specified, the specified tone
will be generated until the specified duration is complete or a
new CALL SOUND statement is encountered.

Program execution will not stop while a tone is being generated.

The frequency for a tone is measured in hertz. The frequency
may vary from 110 to 44733, where 110 is the lowest possible tone
and 44733 is the highest possible tone. Frequencies much higher
than 10,000 hertz generally cannot be heard.

The frequency for a noise must be an integer from -1to -8. When
used in a CALL SOUND statement, each of these integers will
cause a different noise to be generated.

The volume is an integer from 0 to 30 that determines the volume
of each tone or noise. Using a 0 for the volume in a CALLSOUND

T1-99/4A BASIC Reference Guide 163

statement causes the specified tone or noise to be generated at
the highest possible volume. Using a 30 for the volume in a CALL
SOUND statement causes the specified tone or noise to be
generated at the lowest possible volume.

Example

100 FOR A =110 TO 44733
200 CALL SOUND(-100,A,0)
300 NEXT A

The program in the previous example will generate all the
possible tones. Line 100 initializes a FOR/NEXT loop that is used
to specify the frequency. Line 200 is a CALL SOUND statement
that uses the value of the variable A as the frequency. Line 300
completes the FOR/NEXT loop.

Example

100 FOR A=-8to -1

200 CALL SOUND(4000,A,0)
300 PRINT A

400 NEXT A

The preceding example will generate all the possible noises. The
number of the noise is displayed when it is generated.

| EX BASIC
CALL SPGET O ST BASIC

CALL SPGET accesses the subprogram SPGET. The SPGET sub-
program returns the speech string that corresponds to the
specified word string. A speech string is a set of special characters
that can be pronounced more quickly than a wordstring.

Configuration

CALL SPGET (“wordstring”, string variable)

164 TI-99/4A User’s Handbook

The first parameter is any word that can be found in the resident
vocabulary. The second parameter is a string variable. The
speech string that corresponds to the specified word string is
assigned to the specified string variable. Using this string variable
in a CALL SAY statement allows the computer to process speech
more quickly than if a wordstring was used in a CALL SAY
statement

Example

> CALL SPGET ("GOODBYE”,A$)
> CALL SAY ("HELLO",A$)
> CALL SAY (,A$)

m EX BASIC
CALL SPRITE O ST BASIC

The CALL SPRITE statement accesses the subprogram SPRITE.
The SPRITE subprogram is used to create graphic characters that
can move smoothly across the screen. These characters are
called sprites.

Configuration

CALL SPRITE (#sprite, char-code, color, row-pixel,
column-pixel[,vertical speed, horizontal speed]|,...])

A sprite can be placed atany position on the screen. A sprite can
also be set into motion to move in any direction at a wide range
of speeds.

Once set into motion, a sprite will move smoothly across the
screen. The motion of a sprite will not change unless the
program ends or a program statement changes the motion.

When a sprite and a fixed object meet, the sprite will pass over
that object. When two sprites meet, the sprite with the lower
number will pass over the sprite with the higher number.

TI-99/4A BASIC Reterence Guide 165

There can be up to 28 sprites on the screen at any one time.
However, no more than 4 sprites can appear in the same row. If
more than four sprites are positioned in a row, only the four
sprites with the lowest numbers will appear.

There are five essential parameters and two optional parameters
ina CALL SPRITE statement. The first parameter is the sprite. The
sprite is a number from 1 to 28. This number becomes the
identifying number of the sprite. The sprite number is used
when referencing a sprite.

The ASCII code is a number from 32 to 143 that specifies the
character that will be used as the sprite. Each ASCll code
corresponds to a predefined character. However, the CALL
CHAR statement can be used to redefine the standard ASCII
characters. Therefore, a sprite can be given any shape.

The third parameter is color. The color is an integer between 1
and 16 inclusive. This number specities the color of the sprite.
The color codes are listed in Table 5-3, page 142.

The fourth parameter is the row-pixel. The row-pixel specifies
the starting row position of the sprite. The screen is divided into
192 row pixels. Therefore, row-pixel must be a number between
1 and 192 inclusive.

The fifth parameter is the column-pixel. The column-pixel
specifies the starting column position of the sprite. The screen is
divided into 256 column pixels. Therefore, column-pixel must be
a number between 1 and 256 inclusive.

The two optional parameters, vertical speed and horizontal
speed, are used when the sprite is to be set in motion.

The vertical speed is in integer from -128 to 127. A positive
vertical speed will cause a sprite to move toward the top of the
screen. A negative vertical speed will cause a sprite to move
toward the bottom ot the screen.

The horizontal speed is an integer from -128 to 127. A negative

166 TI-99/4A User’s Handbook

horizontal speed will cause a sprite to move toward the left side
of the screen. A positive horizontal speed will cause a sprite to
move toward the right side of the screen.

The absolute value of the vertical speed and the horizontal
speed determine the speed of the sprite. If the absolute value of
the specified number is close to zero, the sprite will move slowly.
If the absolute value of the specified number is much greater
than zero, the sprite will move quickly.

Example

100 CALL CLEAR :: CALL MAGNIFY(2)
200 CALL CHAR(92,"7090284482FF7E3C")
300 CALL HCHAR(15,1,94,32)

400 CALL SPRITE(#1,92,5,101,30,0,10)

500 GOTO 500

The preceding example contains a program that uses a sprite.
When the program is executed, a small sailboat appears to be
moving across the screen.

Line 100 of the program will clear the screen and magnify all
sprites. Line 200 will redefine character 92 into the shape of a
sailboat. Line 300 will place a row of carets (A) across the screen.
Line 400 will create sprite #1 using character 92. The color of the
sprite will be blue. The sprite will begin at position 101,30 and
proceed with a horizontal speed of 10. Line 500 will prevent the
program from ending.

When the program is executed, a sprite with the shape of a
sailboat will move across the screen.

To stop the program, press FCTN 4 (CLEAR).

T1-99/4A BASIC Reterence Guide 167

B EX BASIC
CALL VCHAR ® ST BASIC

The CALL VCHAR statement accesses the subprogram VCHAR.
The VCHAR subprogram is used to place characters at specified
positions on the screen.

Configuration
CALL VCHAR(row, column, ASCII code [,repetition])

The first two parameters, row and column, determine the
position where the character will be displayed. The screen is
divided into 24 rows and 32 columns. Therefore, the specified
row must be a number from 1 to 24 and the specified column
must be a number from 1 to 32.

The third parameter, ASCII code, is the ASCIl code of the
character that is to be placed at the specified position.

The fourth parameter, repetitions, is optional. repetition must
be a number from 1 to 32767. The repetition specifies the
number of times that the specified character is to be repeated.
The specified number of characters will be repeated vertically.

If no parameter is included for repetition, the character will be
displayed only once.

Example
> CALL VCHAR(5,15,65,10)
The preceding example contains a CALL VCHAR statement that

will display a column of ten letter A’s starting at position 5,15 on
the screen.

168 TI1-99/4A User’s Handbook

®m EX BASIC
CALL VERSION O ST BASIC

CALL VERSION accesses the subprogram VERSION. The sub-

program VERSION returns a value that corresponds to the type

of BASIC being used. Extended BASIC returns a value of 110.
Configuration

CALL VERSION(a)

The parameter of the CALL VERSION statement is a numeric
variable.

Example
> CALL VERSION(A)

>PRINT A
110

® EX BASIC
CHR$ m ST BASIC

The CHRS$ function returns the character with the ASCII code
specified by the argument. The ASCII codes correspond to the
values between 0 and 255. If the argument is not an integer, it will
be rounded off.

Configuration
X$ = CHR$(a)
Example

> PRINT CHR$(65)
A

T1-99/4A BASIC Reterence Guide 169

® EX BASIC
CLOSE ® ST BASIC

The CLOSE statement closes a file that has been opened for
input, output, or both. Closing afile that has not been opened
will result in a FILE ERROR message. Closing a tile causes the
computer to no longer associate a particular tilenumber with its
corresponding file.

Configuration
CLOSE #a (:DELETE)

The tilenumber must be a number between 1 and 255 inclusive.
To close a particular tile, the tilenumber used in the CLOSE
statement must be the same as the filenumber used in the
corresponding OPEN statement.

Example

CLOSE #2
The CLOSE statment has a DELETE option. When used in a CLOSE
statement, the DELETE option erases the file that was closed. The
DELETE option can only be used to erase a disk file.

Example

CLOSE #1 : DELETE

® EX BASIC
CONTINUE (CON) m ST BASIC

The CONTINUE command causes the execution of a program to
resume after a breakpoint.

Configuration

CONTINUE

170 T1-99/4A User’s Handbook

A breakpoint is an interruption in the execution of a program
due to a BREAK statement or the CLEAR command (FCTN 4).

When the CONTINUE command is executed, the program
execution resumes at the exact point where it was stopped. The
CONTINUE command cannot be used in instances where an
error was encountered or where program lines were added or
edited. If an attempt is made to use the CONTINUE command in
such a circumstance, the following message will be displayed.

*CAN'T CONTINUE

Example

>100 A=7
>200 PRINT A
>300 BREAK
>400 PRINTA
>RUN
7
* BREAKPOINT IN 300
>CON
7

Notice in the preceding example that even after the breakpoint,
the computer retained the value of the variable A.

Variables will retain their values after a breakpoint. Variables will
be cleared, however, if the program is edited in any way.

® EX BASIC
COS m ST BASIC

The COS function returns the cosine of its argument. In order to
obtain the correct answer, the argument must be in radians.

Configuration

X = COS(a)

T1-99/4A BASIC Reterence Guide 171

Example

>100 Y =3.14159269
>200 X =COS(Y)

>300 PRINTX
>RUN
-1
® EX BASIC
DATA B ST BASIC

The DATA statement supplies information that can be assigned
to variables through READ statements. A DATA statement can
include numeric values, string values or both.

DATA items are separated by commas. Therefore, string values
that contain commas will be read as separate data items. For
example, DATA DOE, JOHN is a DATA statement with 2 data
items. However, DATA DOE. JOHN has only one item. Commas
may be included in strings within a DATA statement if the string
is enclosed in quotation marks (”). For example, the following
DATA statement has only one data item. DATA ”JOHN, STEVE,
PAT, TOM”,

Configuration

al,b
DATA 25 [,b$]...

The DATA statementincludes a list of constant values known as a
DATA list. The items in the DATA list are assigned sequentially to
the variables in the READ statement.

Therefore, the order in which DATA statements appear is very
important.

The DATA list uses a pointer to indicate which value within the
list is to be assigned to the next variable in a READ statement.

172 T1-99/4A User’s Handbook

Before the first READ statement is ecnountered, the DATA list
pointer will point at the first value in the DATA list. As values
from the DATA list are assigned to variables in the READ
statement, the pointer will move sequentially to each successive
item in the DATA list.

Example

>100 FORA=1TO9
>200 READB
>300 PRINT B;
>400 NEXTA
>500 DATA9,8,7,6
>600 DATAS54,3,2,1
>RUN

987654321

The values from the DATA list must match the type of variable to
which they are assigned in the READ statement. For example, a
string value cannot be assigned to a numeric variable. A numeric
value can be assigned to a string variable, but this numeric value
may no longer be used as a number but rather as a string.

Example
>100 FOR)=1TO5

>200 READ A%
>300 PRINT A%

>400 NEXT)
>500 DATATOMUC., 25, 3+4* %, 247
>RUN

TOM C.

25

3+4*%

247

The preceding example shows correct data for a string variable.
Notice the blank line in the output that corresponds to the two
commas in a row. This is read as a string value with no characters
and length equal to zero.

T1-99/4A BASIC Reterence Guide 173

If only four data items had been supplied with this program, the
message DATA ERROR IN 200 would have been displayed to
notify the user that not enough data had been supplied.

Both standard and scientific notation are acceptable in a DATA
statement. For example, 3.14159266, 2.85E-10, .0001, 35 and -45
are all acceptable DATA statement items that can be assigned to
corresponding numeric variables in a READ statement.

Expressions such as 4 + 5, 12/6, and 10 * 5 will not be evaluated
when assigned to a numeric variable. Instead, they will cause a
DATA ERROR with the line number of the READ statement.

Example

100 FOR1=1TO5

200 READ A$%$,A

300 PRINT A$,A

400 NEXT |

500 DATA PENCILS, 20, PENS, 25,
RULERS, 40, ERASERS, 50, PAPER,
200, GLUE, 5

The preceding example shows a correct sequence for reading
string and numeric data into correct variables. However, the
READ statement is only called 5 times, and there are 6 sets of
data. This will not cause an error, but the last set of data (GLUE,5)
will never be read.

Data can only be read once unless a RESTORE statement has
been executed. A RESTORE statement causes the data pointer to
return to a specified DATA statement.

174 T1-99/4A User’s Handbook

® EX BASIC
DEF ® ST BASIC

The DEF statement allows a user to define a function that can be
used repeatedly in a program.

Configuration
A X\ _ . _—
DEF B$ (Y$) = function definition

The DEF function can be used to manipulate string or numeric
values. The type of values that are returned by the function
depend on the nature of the function definition. However, the
variable name that follows the keyword DEF must be the same
type as the value returned by the function.

The variable name in a DEF statement that is enclosed in
parentheses represents the function’s argument. This variable
name is used in the function definition to calculate the value
returned by the function. The type of value used as an argument
must agree with the type of variable used in the function
definition.

Example

>10 DEF A$ (B) = CHR$(42)&CHR$(B)
>20 PRINT A$(65)
> RUN

*A

The preceding example contains a program that defines a
function. Line 10 contains a DEF statement that defines the
function A$. Since the function name is a string variable, the
function must return a string value.

In the DEF statement, the argument of the A$ function is the
numeric variable B. As a result, the A$ function must always have
a numeric value as an argument.

T1-99/4A BASIC Reterence Guide 175

The A$ function returns an asterisk, followed by the character
that corresponds to the ASCII code specified by the argument.

lllustration 5-5. Function Definition Examples

function definition argument| result
DEF A%$(B) = CHR$(B) numeric | string
DEF A(B$%) = ASC(B$) string |numeric
DEF A(B) = SIN(B) + COS(B) numeric |numeric
DEF A$(B$) = SEG$(B$,2,2) string string

Iustration 5-5 contains tour simple DEF statements. The type of
argument that each function requires are also listed. The last
column describes the type of value returned by the function.

® EX BASIC
DELETE m ST BASIC

The DELETE command is used to erase programs or files
recorded on a storage device.

Configuration
DELETE “device-name.prog-name”
The DELETE command is generally used with a disk drive to
delete programs and files. The DELETE command cannot be used
with a cassette recorder.
Example
DDELETE "DSK1.PROG1”
The preceding example could be used to erase a program that

had been previously stored on a disk. In this case, the device was
a disk drive (DSK1) and the program name was PROG1.

176 TI-99/4A User’s Handbook

m EX BASIC
DIM s ST BASIC

In Standard BASIC, the DIM statement is used to set aside
memory space for a 1, 2, or 3 dimensional string or numeric
variable. in Extended BASIC, DIM can be used to set aside
memory for an array of up to seven dimensions.

If an array variable is used in a program without having first been
dimensioned, that variable will automatically be dimensioned to
11 elements.

Configuration (EX & ST BASIC)

X(@Lbl <) [.Y(dLel LA)
DM ysiarbl Le)) L.YsidLel 1M ..

Configuration (EX BASIC)

DIM X(a[,b,c,d,e,f,g]) Y(b,ijk,L,m,n])
X$(a[,b,c,d,ef,g]) L,YS(b[,ijk,lm,n])

The lowest element number of an array is automatically set to
zero. This can be changed, however, using an OPTION BASE
statement. The highest element number is specified in the DIM
statement. For example, DIM X(100) would dimension a numeric
array of 101 elements. The first element would be identified as
X(0) and the last as X(100).

Variables can also be used with two or three subscripts in
Standard BASIC, and up to seven subscripts in Extended BASIC.
For example, if X is dimensioned by the statement DIM X(2,3),
the following table will result.

TI1-99/4A BASIC Reference Guide 177

The values in this table can be named by X with two subscripts (in
parentheses). The first subscript is the row number, and the
second is the column number. For example, the value of the
shaded block would be X(2,1) because it is row 2, column 1.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

Example

FORH=0TO 1
FORI=0TO 3
FOR]=0TO 2
READ X(H,1,})
PRINT X(H,1,});
NEXT)

PRINT

NEXT |

PRINT

PRINT

NEXT H

DATA 1,2,3,4,5,6
DATA 7,8,9,1,2,3
DATA 4,5,6,7,8,9
DATA 1,2,3,4,5,6

This example shows a technique for assigning values to tables.
This particular example uses a three dimensional array. Note that
since none of the subscripts exceed the number 10, a DIM
statement is not necessary. Executing this program would have

the following result.

- N b=
NV N
w oo w

SN
(S SR - INE,]
A WO on

A DIM statement can include any combiation of numeric and

178 T1-99/4A User’s Handbook

string variable dimension statements. For example, DIM A(10,10),
B(9), A$(30), B$(90) dimensions all four variables in one statement.

If avariable is going to be used with more than eleven subscripts,
a DIM statement must appear in the program before the
subscripted variable is used. For example, if X is being
dimensioned to 20, DIM X(20) must appear in the program
before the variable X is used.

A variable must always contain a subscript once it has been
dimensioned. For example, if the statement DIM X(20) appeared
in a program, all references to the variable X must be made in the
form X(Y) where Y is an integer between 0 and 20.

m EX BASIC
DISPLAY m ST BASIC

The DISPLAY statement is similar to the PRINT statement.
However, a DISPLAY statement may not be used to write to any
device other than the screen.

Configuration
DISPLAY (expression) (;) ...
Example

>200 READ A$, B
>300 DISPLAY A$; “1S”; B; "YEARS OLD”
>600 DATA TIM, 21
>RUN
TIM 1S 21 YEARS OLD

DISPLAY can be used in Extended BASIC in the same manner as it
is used in Standard BASIC. However, in Extended BASIC, many
more options are available.

TI-99/4A BASIC Reference Guide 179

Configuration

DISPLAY [AT(row, column)] [BEEP] [ERASE ALL]
[SIZE (parameter):] expression

The AT option is used to specify the position of the output on the
screen. The data will be printed at the specified row and column.
The screen is divided into 24 rows and 28 columns.

The BEEP option causes a short tone to be generated when the
data is being printed.

The ERASE ALL option causes the entire screen to clear before
the data is printed. Therefore, when the data is printed, nothing
else appears on the screen.

Example

100 DISPLAY AT (6,6) BEEP ERASE ALL: "NAMES AND ADDRESSES”
200 FORT=7TO 12

300 READ B$

400 DISPLAY AT (T,6):B$

500 NEXT T

600 DATA ,JOHN DOE, 4444 ROCKHAVEN

700 DATA ,JANE LANG, 6526 FRANKLEN

The first DISPLAY statement in the preceding example will clear
the screen, generate a short tone, and print the phrase NAMES
AND ADDRESSES starting at position 6,6 on the screen.

The second display statement prints the actual names and
addresses.

When executed, the preceding example will generate the
following output.

180 TI-99/4A Uset’s Handbook

NAMES AND ADDRESSES

JOHN DOE
4444 ROCKHAVEN

JANE LANG
6526 FRANKLEN

Another option of DISPLAY is the SIZE option. SIZE determines
the number of spaces on the line to be cleared for the data. If the
SIZE option is not used, an entire line will be cleared.

Example

>10 A$ ="WILLIAM JONES”
> 20 DISPLAY AT(23,5) SIZE(7):A$
>RUN WILLIAM <=——— program output

The preceding example contains a program that uses the AT and
SIZE options with a DISPLAY statement. At line 10, the variable
A$ is assigned a value. At line 20, a DISPLAY statement specifies
screen location (23,5). This location is 5 spaces from the left
margin on the last line of the display. The SIZE option specifies
that only seven spaces are available for the output.

When the RUN command is executed, the output is displayed
one space to the right of the keyword RUN. Only the first seven
characters of the string are actually output. The value of A$ is
truncated because of the SIZE option of the DISPLAY statement.

m EX BASIC
DISPLAY USING O ST BASIC

By including the keyword USING in a DISPLAY statement, a
printing format may be specified. The printing format specifies
the configuration of the output.

TI-99/4A BASIC Reterence Guide 181

Configuration

"expression”

DISPLAY [options:] USING line number

[:data list]

The options specified after DISPLAY are the same as all the
options discussed previously (AT, BEEP, ERASE ALL, and SIZE).
The expression after the USING statement consists of special
characters that are used in defining the formatin which the data
list is to be displayed. These special characters are listed in Table
5-4 on page 194,

Illustration 5-5. Values, Format Strings and Results

VALUE FORMAT | RESULT
7 Sus #H $7.00
667 B4 # 667.0
5674 ## 6E+03
994 TI###A TI994A
235 Sus# $235
8757 #is kK
8.235 #4 8.2
9 #h4 9
78 +i# +78
1.9 # 2
.999 # 1

lllustration 5-5 shows how ditterent tormats will effect the dis-
play of ditterent numbers.

A line number can also be included in a USING statement. Line
number must be the program line number of an IMAGE "’
statement. The IMAGE statement is used to define a format that
can be used with more than one DISPLAY or PRINT statement.

182 T1-99/4A User’s Handbook

D EX BASIC
EDIT & ST BASIC

The EDIT command displays a line for editing. The EDIT
command also instructs the computer to enter the Edit Mode. In
the Edit Mode, existing program lines can be changed or
deleted.

Configuration
EDIT line number

An alternative method for entering the Edit Mode (other than
executing EDIT) is to enter a line number and then press either
FCTN t or FCTN |,

The EDIT command cannot be used in Extended BASIC. The Edit
Mode can only be entered by using the FCTN keys as previously
explained. Once in the Edit Mode, program lines are edited in
the same fashion, regardless of the version of BASIC.

In the Edit Mode, the specified program line will be displayed
with the cursor at its beginning. By using special function keys,
the cursor can be moved along the line to be edited, and
changes can be made. The only portion of the line that cannot be
changed is the line number.

The following keys are used in the Edit Mode.

ENTER — The ENTER key will enter the line, whether or not
it has been changed, into the computer’s memory. ENTER
will also cause the computer to leave the Edit Mode.

FCTN 1t — This key causes the line being displayed for
editing to be entered into memory. The line with the next
lowest line number is then displayed for editing. If a line
with a lower line number does not exist, the computer will
leave the Edit Mode.

T1-99/4A BASIC Reterence Guide 183

FCTN | — This key causes the line being displayed for
editing to be entered into memory. The line with the next
highest line number is then displayed for editing. If a line
with a higher line number does not exist, the computer will
leave the Edit Mode.

FCTN — — This key is used to move the cursor to the left.
The cursor will move backward in the line without changing
or deleting any characters.

FCTN — — This key is used for moving the cursor to the
right. The cursor will move forward along the line without
changing or deleting any characters.

FCTN 2 (INSERT) — This key is used to insert characters in a
program line. To use this key, move the cursor (using FCTN
—and FCTN <) to the point where additional characters are
needed. Then, depress the INSERT key and proceed by
typing the additional characters. Any characters to the right
ot the cursor will automatically move to the right as charac-
ters are inserted. Once the addition has been made, the
line can be entered into memory using either ENTER, FCTN 1,
or FCTN 1.

FCTN 1 (DELETE) — This key is used to delete any unwanted
characters from a line. To delete a character or set of
characters, move the cursor (using FCTN — and FCTN —) to
the leftmost character to be deleted. Once the cursor is
over the character to be deleted, depress FCTN 1. The
computer will delete the character and automatically move
everything to the right of the cursor one space to the left.

FCTN 4 (CLEAR) — This key causes the computer to leave
the Edit Mode. However, any changes made in the line
being edited will not be stored. The line being edited when
the CLEAR key is used will not be altered. It will be stored in
its original form.

FCTN 3 (ERASE) — This key erases the entire line being
edited. The only portion of the line not erased is the line
number,

184 T1-99/4A User’s Handbook

m EX BASIC
END m ST BASIC

An END statement ends the execution of the program. An END is
not necessary at the end of a program because execution stops
automatically after the last statement. However, it is a good
programming technique to end BASIC programs with an END
statement.

Configuration
END

When an END statement is executed, all files opened in the
program will be closed.

Example

100 INPUT X

200 IF X <=10 THEN 500

300 PRINT “X IS LARGER THAN 10”
400 GOTO 100

500 END

The programiin the previous example will end only if a value of X
is entered which is less than or equal to 10.

m EX BASIC
EOF ® ST BASIC

The EOF (End Of File) function is used to determine if the end of
a file has been reached.

Configuration

EOF(filenumber)

TI-99/4A BASIC Reterence Guide 185

The filenumber in the EOF tunction must correspond to a tile-
number used in an OPEN statement,

If the end of the file has been reached, the EOF function will
return a value of 1. If the end of file has not been reached, the
EOF function will return a value of 0. If the end of file has been
reached due to mechanical reasons such as a full disk or
mechanical failure, the EOF function will return a value of -1.

Example

100 OPEN #1: "DSK1.TEST”, INPUT, FIXED
200 IF EOF(1) THEN 9999

The preceding example contains a portion of a program that
uses the EOF function to transfer program control to line 9999 if
the end of the file has been reached.

® EX BASIC
EXP B ST BASIC

The EXP function returns the exponential of the argument. The
exponential is the approximate value of e (2.718281828) raised to
the power of the argument.

Configuration
X = EXP(a)
Example

> PRINT EXP(5)
148.4131591

186 T1-99/4A User’s Handbook

m EX BASIC
FOR s ST BASIC

A FOR statement is used with a NEXT statement to form a
repetitive loop within a program.

Configuration
FORA=aTO b [STEP]
Every FOR statement must have a corresponding NEXT statement.
Example

>10 FORJ=1TO5
>20 PRINT J;
>30 NEXT)
>RUN

12 3 45

In the previous example, the FOR/NEXT loop is repeated five
times. Line 20 is the only statement inside the loop, however, any
number of program lines can be placed within a loop.

In line 10,] is assigned the value 1.] is referred to as a counter.
The value of] is incremented when a NEXT] statement is
executed. Here, the program returns to the FOR statement,
where | isincremented by one. This loop is repeated until J is set
equal to 5. When the counter ()) has been set equal to the final
value (5), and the loop has been executed, the program will
proceed with the statement following NEXT J.

A FOR/NEXT loop can use a STEP statement to increment the
counter by a value other than 1.

T1-99/4A BASIC Reterence Guide 187

Example

>10 FORJ=1TO 2STEP .5
>20 PRINT J;
>30 NEXT)
>RUN
1 15 2

The preceding example contains a FOR/NEXT loop that in-
crements the value of] by .5 each time the loop is executed.

A FOR/NEXT loop can also be used to decrease the value of the
counter. This can be accomplished by using the optional STEP
statement within the FOR statement. If the STEP statement has a
negative argument, the counter is decreased each time the loop
is executed. The following example illustrates a FOR/NEXT loop
in which the counter is decremented rather than incremented.

Example

>10 FORK=10TO 5 STEP -2
>20 PRINT K;
>30 NEXTK
>RUN
10 8 6

This loop begins at line 10 by assigning the counter (K) the value
10. At line 20 the value of K is printed. When line 30 is
encountered, execution continues at line 10, because the NEXT
statement returns the program to the preceding FOR statement.
The value of the counter is changed by the argument of STEP.
Since the STEP value is -2, the counter is decreased by 2. The
value of the counter is changed to 8. At line 20, the new value of
Kis printed. Line 30 is executed again, so the program returns to
the FOR statement at line 10. The counter is again decremented
by 2. The new value of K is 6. At line 20, this K value is printed.

When line 30 is executed again, the program does not return to
line 10. The current value of the counter is 6, and if the counter
was to be decremented again, the counter would be 4. However,

188 T1-99/4A User’s Handbook

4is less than the final value specified in the FOR statement (the
argument of TO). As a result, the loop does not continue after K=
6 because another decrement would make the counter less than
the final value (5).

If the counter of a loop is being incremented, the loop will be
executed until the counter would exceed the final value if it
were incremented again. For example: FOR) =1 TO 4 STEP 2
would be executed with] equal to 1and 3. The counter (J) would
exceed the final value (4) if it were incremented again.

A FOR/NEXT loop should be executed as if it were a single
statement. An attempt to branch into a FOR/NEXT loop will
cause an error.

Example

>10 GOTO 30
>20 FORT=1TO 10
>30 PRINTT
>40 NEXTT
>RUN
0

* CAN'T DO THAT IN 40
In general, branching out of a FOR/NEXT loop will not cause an

error. However, exiting a loop before it has completed should be
avoided.

® EX BASIC
GOSUB m ST BASIC

GOSUB branches program control to the subroutine beginning
at the line number specified by its argument.

Configuration

GOSUB In

T1-99/4A BASIC Reterence Guide 189

Subroutines can be called from any part of a program. ARETURN
statement, at the end of a subroutine, causes the program to
resume execution with the statement directly after the GOSUB
statement.

Subroutines are convenient to use when the same set of
operations need to be repeated at different parts of a program.

Example

>10 FOR]J=0TO 2
>20 GOSUB 100
>30 NEXT)
>40)=5
>50 GOSUB 100
>60 END
>100 PRINT J;
>110 RETURN
>RUN

01T 25

The previous example illustrates a subroutine that is called 4
times, from 2 different parts of the program. In this example,
only one statement is included in the subroutine. However,
many statements can be included in a subroutine.

Line 10 begins a FOR/NEXT loop. The counter (]) is set equal to 0
the first time through the loop. Line 20 calls the subroutine atline
100. As a result, line 100 is executed next. The subroutine prints
the value of] and proceeds to line 110. At line 110, the program is
returned to the point where the subroutine was called (line 20).

The statement at line 30 is then executed. The NEXT statement
causes the loop to beincremented and repeated. The counter (J)
is set equal to 1, and the subroutine is called again from line 20.
Atline 100, the value of) is printed. Line 110 returns the program
to line 20.

These steps are also repeated for) =2. When the loop has been
executed 3 times, the program will proceed to line 40.] is
assigned the value 5, and the subroutine is called again at line 50.
The subroutine prints the value of J. The program then returns to
line 60 where it ends.

190 TI1-99/4A User’s Handbook

GOSUB can also be used with ON to branch a program to one of
several subroutines,

Configuration’
ON EX GOSUB In [In, ...]

The expression after the ON statement indicates which line
number the program proceeds to. This is called the control
expression. The control is evaluated and rounded off. If the
value is negative, an error occurs. If the value of the controlis 1,
the program continues at the first line number after GOSUB. If
the control is equal to 2, the program continues at the second
line number after GOSUB, etc.

If the value of the control is 0 or greater than the number of line
numbers, an error occurs.

Example
ON X GOSUB 100, 200, 300, 400

This statement executes the subroutine atline 100if X=1.1f X=2,
the subroutine at line 200 is executed. If X =3, the subroutine at
line 300 is executed. If X = 4, the subroutine at line 400 is
executed. If X =0 or X is greater than 4, an error occurs.

m EX BASIC
GOTO m ST BASIC

The GOTO statement causes the program to procceed at the
indicated line number.

Configuration

GOTO In

T1-99/4A BASIC Reference Guide 191

Example

>10 X =X+1
>20 IF XA2 > 50 THEN 50
>30 PRINT X;
>40 GOTO 10
>50 END
>RUN
123 456 7

The previous example demonstrates the use of GOTO. Line 10
increases the value of X by 1. Line 20 ends the program when X
squared is greater than 50. When line 40 is executed, the
program returns to line 10. This program repeats lines 10 through
40 until the program is ended or branched out of the loop. The
program ends when X =8 because 8 squared is greater than 50.

GOTO is also used with an ON statement to branch a program to
one of several lines.

Configuration

ON ex GOTO In[,In, ...]

The expression after the ON statement indicates which line
number the program proceeds to. This is called the control
expression. The control is evaluated and rounded off. If the
value is negative, an error occurs. If the value of the control is 1,
the program continues at the first line number after GOTO. If
the value is 2, the program continues at the second line number
after GOTO, etc.

Example

10 FORJ=1TO 3

20 ON) GOTO 30,50,70
30 PRINT ") =1"

40 GOTO 80

50 PRINT “J=2"

60 GOTO 80

70 PRINT ") =3"

80 NEXT)

192 TI-99/4A User’s Handbook

The previous example is a program that uses an ON/GOTO
branch. Line 10 begins a FOR/NEXT loop that is repeated 3 times.
The first time through the loop, the counter ()) is set equal to 1. At
line 20, the program is branched to the first line number after
GOTO because the control (J) is equal to 1. At line 30, the
message) =1is printed. The program is sent to line 80, where the
NEXT J is chosen. Since the loop increments the counter by 1, the,
counter is set equal to 2during the second execution of the loop.
At line 20, the program is branched to line 50, the second line
number after GOTO. At line 50, the message] =2 is printed. The
loop is repeated again with) set equal to 3. At line 20, the
program branches to line 70, the third choice. At line 70, the
message) = 3 is printed. The loop is complete so the program
ends.

If the control expression (argument of ON) equals zero or a
number greater than the number of choices, an error occurs.

m EX BASIC
IF m ST BASIC

The IF statement is used with a THEN statement to branch a
program if a particular condition is true.

Configuration (EX & ST BASIC)
IF expression THEN In [ELSE In]

The expression that follows IF can be logical, relational or
algebraic. Any of the logical, relational or algebraic operators
can be used in this expression.

The expression in an IF THEN statement is used to control the
program flow. If the expression is true, the program branches to
the line number that follows THEN. If the expression is false, the
program branches to the line number that follows ELSE.

T1-99/4A BASIC Reference Guide 193

If an ELSE statement is not included with IF and THEN, a false
expression causes the program to proceed to the next line.

Example
100 IF X >Y THEN 600 ELSE 1000

The preceding example statement uses the expression X > Y to
control the branching of the program. If the value of the variable
Xis greater than the value of Y, program control branches to line
600. If the value of X is less than or equal to the value of Y,
program control branches to line 1000.

IF THEN ELSE statements can be used in Extended BASIC in the
same manner in which they are used in Standard BASIC.
However, Extended BASIC allows additional statements to be
included within the IF THEN ELSE statement.

Configuration (EX BASIC)

In

X statement [::statement] ... statement [::statement] ...
IF expression THEN ; ELSE
n

Extended BASIC allows the use of both line numbers and
statements after THEN and ELSE. Multiple statements can also be
included. However, some statements may not be used with IF
THEN ELSE. These statements are DATA, DEF, DIM, FOR, NEXT,
OPTION BASE, SUB and SUBEND.

Example
100 IF X >Y THEN PRINT X::GOTO 500 ELSE PRINT Y::END

The previous example shows that multiple statements can follow
a THEN or ELSE statement in Extended BASIC. When more than
one statement is used, be sure to separate the individual
statements with a double colon (::).

If the condition in the IF THEN ELSE statement is true, the
statements following the THEN statement will be executed. If the

condition is false, the statements following the ELSE statement
will be executed.

194 T1-99/4A User’s Handbook

m EX BASIC
IMAGE O ST BASIC

The IMAGE statement specifies the format used when displaying
data. The IMAGE statement does not cause any data to be
output, but it defines a format that can be used to output data
with a PRINT USING or DISPLAY USING statement.

Configuration
IMAGE "expression”

The expression within all IMAGE statements is of the same
format as the expression used in the PRINT USING and DISPLAY
USING statements. The expression consists of special characters
used to define the format of the output. These special characters
are listed in Table 5-4.

In general, any string can be placed within the quotation marks.
The string will appear in the output exactly as it does in the
IMAGE expression.

Table 5-4. Special Format Characters

specifies a digit position. If the number being printed
has fewer digits than allowed by the formatting char-
acters, the number will be right justified in the for-
matting field. If the number being printed has more
digits to the left of the decimal point than allowed by
the formatting characters, several asterisks (*) will
appear in place of the number.

a decimal point may be inserted anywhere in the
format field. It will appear in the number as it does in
the format field.

AAAAwhen four or five carats are placed at the end of the
format string, scientific notation is used. The largest
number which can be displayed using AAAAA s
9.9999999E + 127.

TI-99/4A BASIC Reference Guide 195

The following example demonstrates the use of an IMAGE
statement.

Example

>10 IMAGE "COST: $##.44"
>20 PRINT USING 10: 23.475
>RUN

COST: $23.48

Note that the value that is output is not the same value that
appears in the PRINT USING statement. The value is rounded off
in order to achieve the format defined in line 10.

Although Extended BASIC offers multiple statement lines, the
IMAGE statement must be the only statement on a particular
line. If an IMAGE statement is not alone on a line, an error
generally will not occur, but the program may not work
properly.

| EX BASIC
INPUT ® ST BASIC

The INPUT statement permits data entry from the keyboard
while the program is being executed.

Configuration

INPUT ["prompt”:]{ xﬁﬁ] }

When an INPUT statement is encountered, a question mark
appears on the display as a signal for the operator to enter data. A
prompt message can also be included to print a message when
an INPUT statement is executed. However, if a prompt is
included, the question mark does not appear on the display.

196 TI-99/4A User’s Handbook

An INPUT statement can include a combination of numeric and
string variables. Values can be assigned to each variable with one
response. The values of a multiple response must be separated
by commas. The response to an INPUT statement must always be
ended by pressing the ENTER key.

The following warning message is dispalyed if the number of
values entered does not match the number of variables in the
corresponding INPUT statement.

*WARNING
INPUT ERROR [N line number

This previous warning is also generated if a string value is entered
where a numeric value is expected.

Example

>100 INPUT "ITEM, QTY.? ":ITEMS$, QTY

> 200 PRINT ITEM$; QTY

>RUN
ITEM, QTY? PENS, 1200 —user’s response
PENS 1200

The preceding example demonstrates the use of an INPUT
statement to assign values to two variables. When the programiis
executed, the prompt "ITEM, QTY?" is displayed on the screen.
The computer then waits for an appropriate response from the
keyboard.

The two values that are entered are PENS and 1200. The data that
is entered is displayed on the screen immediately to the right of
the prompt. The PRINT statement at line 200 causes the values of
the two variables to be displayed on the screen.

If a string value that contains one or more commas is used in
response to an INPUT statement, the string must be enclosed in
quotation marks. Otherwise, the commas will be interpreted as
delimiters instead of characters in the string. When string values

TI1-99/4A BASIC Reterence Guide 197

are enclosed in quotation marks, the quotation marks are not
considered part of the string.

| EX BASIC
INPUT # | ST BASIC

The INPUT # statement is used to read data from an input device,
and assign the values to variables.

Configuration
INPUT #filenumber [,REC record number]: variable [variable] ...

The filenumber is the number assigned to the appropriate input
file. The filenumber must have been used in an OPEN statement
prior to being used in an INPUT # statement.

The specified variable is assigned the value of the data item input
from the appropriate device.

The record number is used with relative files to specify the
position of the data pointer. The data pointer determines the
position of the current data item in a relative file.

The data items being read and assigned to variables may be from
a sequential file on cassette, from a sequential or relative file on
diskette, from a communications device, or from the keyboard.

The type of data being read from the file must agree with the
specified variable type.

When numeric items are being read, any leading blank spaces
will be ignored. Numeric data can only include the digits 0
through 9, and the following special characters when appropriate.

.+-E

198 TI-99/4A User’s Handbook

Leading blank spaces are ignored when string data is being
input.

Quotation marks may not be-used within a sring, but may be
used to enclose a string if necessary. Generally quotation marks
are needed only if a string contains a comma.

Example
100 INPUT # 1, REC 3: A$
The previous example contains an INPUT statement that will

retrieve data from file number one starting at record number 3.
This data will be assigned to the variable A$.

m EX BASIC
INT ®m ST BASIC

The INT function returns the largest integer that is less than or
equal to the argument.

Configuration
X =INT (a)
Examples
> PRINT INT (13.9)
13

> PRINT INT (-4.7)
-5

TI-99/4A BASIC Reterence Guide 199

& EX BASIC
LEN B ST BASIC

The LEN function returns the number of characters in a string
value or variable, including spaces and punctuation.

Configuration
X =LEN (string)
Example

>100 A$ ="JONES, BILL”
>200 PRINT LEN (A$)
>300 PRINT LEN ("BILL JONES")
>RUN
10
10

Line 100 assigns A$ a string value. Line 200 displays the number of
characters in the variable A$. Line 300 displays the number of
characters in the string "BILL JONES”.

® EX BASIC
LET & ST BASIC

The LET statement is optional. It is used to assign a value to a
variable.

Configuration (EX & ST BASIC)

s s}

200 TI-99/4A User’s Handbook

The type of variable in an assignment statement must correspond
to the value of the expression. For example, if the variable is a
string, the value of the expression must also be a string. If the
variable is numeric then the value of the expression must be an
integer or real number.

Any type of expression that returns an appropriate value can be
used in an assignment statement.

Examples
LET X =250
X=Y+25

A=B>C
A$ ="TIMM.”

Extended BASIC allows one value to be assigned to more than
one variable simultaneously.

Configuration (EX BASIC)

XLyl _
[LET] {xs[,v$...]}— { ! }

Examples

LET A,B,C,D,E=10
A$,B$,C$,D$ ="TIM"

m EX BASIC
LINPUT O ST BASIC

The LINPUT statement is used to assign an entire line of datato a
string variable.

TI-99/4A BASIC Reterence Guide 201

Configuration
LINPUT [“prompt”:] string variable

The LINPUT statement will assign an entire line of text to the
specified string variable. The data assigned to the string variable
will include spaces, quotation marks, and commas. A line of
input will be ended when the Enter key is pressed.

A prompt message can be included to print a message when an
LINPUT statement is executed.

Example

>100 LINPUT A$
> 200 PRINT A$
>RUN
? OUTPUT 23-35,40 —user’s response
OUTPUT 23-35,40

m EX BASIC
LINPUT # O ST BASIC

The LINPUT # statement is used to assign an entire line of data
from an input device to a string variable.

Configuration
LINPUT # filenumber [,REC record number]: string variable
The filenumber is the number assigned to the appropriate input
file. The filenumber must have been used in an OPEN statement

prior to being used in a LINPUT # statement.

The specified string variable will be assigned the data item that
was input from the file.

The record number is used with relative files to specify the
location of the data pointer. The data pointer determines the
position of the current data item in a relative file.

202 T1-99/4A User’s Handbook

Example
100 LINPUT # 1, REC 3:A%

The previous example contains a LINPUT # statement that will
assign data from file number 1 to the string variable A$. The data
in record number 3 of the relative file will be assigned to the
variable specified in the LINPUT # statement.

The LINPUT # statement must be preceeded by an appropriate
OPEN statement for the specified filenumber.

m EX BASIC
LIST ® ST BASIC

The LIST statement is used to display the contents of the
computer’s memory.

Configuration
LIST [device:] [In] — [In]

The arguments of a LIST statement are optional. If the LIST
statement is executed without any arguments, the entire program
that is currently in memory will be displayed on the screen.

The arguments of a LIST statement can be used to specify a
particular section of the program. If only one number appearsin
a LIST statement, the specified line of the program will be
displayed. If there is no corresponding line number in the
program, the line with the next highest line number will be
displayed. If a line number is specified that is greater than any
linein the program, the line with the largest line number will be
displayed.

If a LIST statement has one argument, followed by a dash, every
line of the program with a line number greater than or equal to
the argument will be displayed.

T1-99/4A BASIC Reterence Guide 203

If a LIST statement has one argument preceded by a dash, every
line of the program with a line number less than or equal to the
argument will be displayed.

Examples

LIST 100
LIST 10-100
LIST 10-
LIST -100

The first statement in the preceding example displays line 100.
The second example displays all the lines in the program
numbered from 10 to 100 inclusive. The third example displays
line number 10 along with all the subsequent lines of the
program. The fourth example displays all the lines of the
program in memory up to and including line number 100.

A listing can be stopped in both Standard BASIC and Extended
BASIC by pressing FCTN 4 (CLEAR). However, Extended BASIC
allows a listing to be stopped and restarted again. To interrupt
the listing of an Extended BASIC program, hold down any key
until the listing stops. To restart the listing, simply press any key
on the keyboard.

By including a proper device name after the list command,
programs can be written to devices other than the screen. Proper
device names include “TP”, "DSK1” and “RS$232".

Examples

LIST “RS232" : 100 — 200
LIST “TP”

The first statement in the preceding example sends a listing of
lines 100 through 200 to the RS232 interface. The second
statementsends a listing of the entire program in memory to the
thermal printer. :

204 T1-99/4A User’s Handbook

® EX BASIC
LOG ® ST BASIC

The LOG function returns the natural logarithm of the argument.
The natural log function is undefined for arguments less than or
equal to zero.

Configuration
X=L1L0G (a)
Examples
> PRINT LOG (2.718281829)
> P‘Ill.l NT LOG (-1)
* BAD ARGUMENT

A BAD ARGUMENT message is displayed when a zero or
negative argument is used.

® EX BASIC
MAX D ST BASIC

The MAX function returns the largest of its two arguments.
Configuration
X = MAX (a, b)
Example
> PI;INT MAX (8, 3)

>A=15:: B =27 :: PRINT MAX (A, B)
27

T1-99/4A BASIC Reterence Guide 205

| EX BASIC
MERGE O ST BASIC

MERGE is used to recover programs that have been saved on
disk. MERGE can only be used to load programs that were
recorded on disk with the SAVE command including the MERGE
option.

Configuration
MERGE device name . file name

When the MERGE statement is executed, the computer’s mem-
ory will not be erased. The new program being loaded will be
placed in memory together with any existing program lines. For
example, if the program in memory contained line numbers 10,
20, 30..., and the program being loaded (using MERGE) con-
tained line numbers 5, 15, 25, 35,..., the resulting program in
RAM would include the line numbers from each of the two
programs.

MERGE does not alter the program in memory unless the
program being merged has the same line numbers as the
program in memory. For example, if the program in memory
contains line numbers 10, 20, 30, 40, 50, and 60 and the program
being merged contains 10, 20, 30, 45, 55, 70, 80, and 100, the new
program in memory will contain all of the newly entered
program, but only lines 40, 50, and 60 of the original program.
The original lines 10, 20, and 30 will be replaced with lines 10, 20,
and 30 being loaded from disk. Lines 40, 50, and 60 of the original
program remain unchanged.

MERGE is the only statement that can recover a program without
clearing the memory first.

Example

MERGE DSK1.TEST

206 T1-99/4A User’s Handbook

The preceding example demonstrates the format of a MERGE
statement. The disk file TEST is merged with the program that
currently resides in the computer’s memory. Before a program
can be merged, it must first be saved with the MERGE option.
The following SAVE statement demonstrates the format used to
save a program that is intended to be merged.

> SAVE DSK1.TEST,MERGE

A program saved in this manner cannot be recovered with the
OLD command. Only MERGE can be used to reload programs
that are saved with the MERGE option.

\

m EX BASIC
MIN O ST BASIC

The MIN function returns the smallest of its two arguments.
Configuration
X =MIN (a, b)
Examples
> PRINT MIN (16, 7)
7

>A=6::B=3::PRINT MIN (A, B)
3

TI-99/4A BASIC Reference Guide 207

® EX BASIC
NEW m ST BASIC

The NEW command eliminates the current program in the
computer’s memory. The NEW command also erases all variables
and closes any open files.

Configuration
NEW
Example
> NEW
m EX BASIC
NEXT | ST BASIC

The NEXT statement is used with a FOR statement to form a
repetitive section of a program.

Configuration
NEXT X

A FOR statement begins a loop, and a NEXT statement ends it.
The FOR statement sets an initial value and a final value for the
counter. The optional STEP statement specifies the amount that
the counter is increased or decreased each time the loop is
executed.

Example
10 FOR] =TO 10 STEP 2

20 PRINT)
30 NEXT)

208 TI1-99/4A User’s Handbook

In the previous example, the variable J is the counter. The initial
value of the counteris 1, and the final value is 10. The value of the
counter is incremented by 2 each time the loop is executed.

The section of the program between the FOR and NEXT
statements is repeated for each different value of the counter.
Each time the NEXT statement is executed, the value of the
counter is changed by the STEP argument value. The loop is
repeated for each value of the counter. In the previous example,
the loop is repeated 5 times, with the counter equal to 1, 3, 5, 7,
and 9. The initial value of the counter (J) is 1,and itis increased by
2each time the loop is executed because of the STEP 2 statement.

If no STEP statement is used, the counter value increases by 1
each time a NEXT statement is executed.

A FOR/NEXT loop can also have a decreasing counter. If the STEP
argument is negative, the value of the counter decreases each
time the loop is executed.

An increasing counter will repeat the loop until one more
increase would make the counter greater than the final value. A
decreasing counter will repeat the loop until one more decrease
would make the counter less than the final value.

When a loop has been completed, the statement after the NEXT
statement will be executed.

® EX BASIC
NOT O ST BASIC

The NOT statement is used as logical negation.
Configuration

NOT ex

TI1-99/4A BASIC Reterence Guide 209

The NOT operation is executed according to the following truth
table.

A NOT A
0 -1
-1 0

The conditions of true and false are represented by the values -1
and 0.

NOT statements are generally used in IF/THEN statements.
Example

10 Y=5

20 IF NOTY =4 THEN 999

30 PRINT"Y IS EQUAL TO 4"
999 END

The programin the preceding example contains a NOT statement
as part of an IF/THEN statement. At line 10, the variable Y is
assigned the value 5. At line 20, the statement NOT Y =4 is the
condition of the IF/THEN statement. Since the value of Y is 5, the
statement 5=4is false. Asaresult, NOT Y =4istrue, and program
control branches to line 999. When Y has any value other than 4,
the program has no output.

A NOT statement can also have a numeric argument. The NOT
operation returns a numeric value according to the formula
NOT A = (-A) -1. A numeric argument for a NOT statement is
always rounded off so a NOT statement is always evaluated to an
integer. The NOT operation of integers can be represented by
the following illustration.

w=3,-2,-1,0,1,2,..

210 TI1-99/4A User’s Handbook

® EX BASIC
NUMBER (NUM) ® ST BASIC

The NUMBER command results in a new line number being
generated every time the user types in a program line and
presses the ENTER key.

Configuration
NUMBER [number] [,increment]

The specified number determines the first line which will be
generated. The specified increment determines the amount to
be added to the previous line number to generate the next line
number.

The NUMBER command is generally used when entering
programs. This saves the user the task of typing the line numbers.

If no parameters are included in the NUMBER command, the
beginning line number will be 100 and each new line number
will be incremented by 10.

If abeginning line number is specified in the NUMBER command,
but the incrementis not specified, the increment will be 10. If an
increment is specified without an original line number, the first
line number will be 100. Be sure to precede the increment value
by a comma when a beginning line number is not specified.

When the NUMBER is in effect, a line number that already exists
in the program may be generated. When the number of an
existing program line is generated, the entire program line
appears on the display. This line can then be changed, deleted or
saved without any revisions. If the ENTER key is pressed before
any changes are made, the line will remain in memory and a new
line number will be generated.

T1-99/4A BASIC Reterence Guide 211

There are two ways of exiting the NUMBER mode. If the user
presses the ENTER key without first typing in a line, the computer
returns to normal operation. The CLEAR command (FCTN 4) can
also be used to exit the NUMBER mode. However, the current
line being entered is erased when the CLEAR command is used.

Examples

NUM

NUM 100, 20
NUM 1000
NUM, 100

In the preceding example, the first command will generate the
line numbers 100, 110, 120, 130 The second command will
generate the line numbers 100, 120, 140 The third command
will generate the line numbers 1000, 1010, 1020, 1030..... The line
numbers generated by the final NUMBER command will be 100,
200, 300, etc.

| EX BASIC
OoLD m ST BASIC

The OLD command is used to retrieve programs that have been
stored on disk or cassette.

Configuration
OLD device name [.program name]

Both a device name and a program name must be specified when
retrieving programs from a disk. The proper device names for a
disk drive are DSK1, DSK2,... The device name must correspond
to the disk drive that contains the specified disk file. The
program name that was used to save the program must also be
used to retrieve the program.

212 TI-99/4A User’s Handbook

Entering the OLD command causes the program with the
specified program name to be loaded from the disk drive.

Example
OLD DSK1.PROGRAM1

The preceding example demonstrates the format of an OLD
command. The device name (DSK1) specifies disk drive number
1, and PROGRAMT is the name of the program.

Using the OLD command with a cassette recorder involves
several steps. The command OLD CS1 must be entered, but a
program name need not be specified.

When an OLD CS1statement is executed, a series of prompts are
displayed on the screen. These prompts guide the user through
the steps required to operate the cassette recorder.
Example
>OLD CS1
* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

*PRESS CASSETTE PLAY Cs1
THEN PRESS ENTER

* READING
* DATA OK

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

The preceding example shows the prompts that appear when
the OLD command is entered.

If an error occurs while the program is being loaded, an error
message will appear.

TI1-99/4A BASIC Reference Guide 213

® EX BASIC
ON BREAK O ST BASIC

An ON BREAK statement determines the action that will be
taken when a breakpoint is encountered in a program.

Configuration
NEXT
ON BREAK { STOP }

A breakpoint is an interruption in the execution of a program
due to a BREAK statement or the CLEAR command (FCTN 4).

The keywords STOP and NEXT determine the action that will be
taken when a breakpoint is encountered.

Using the keyword NEXT with the ON BREAK statement causes
breakpoints to beignored. When the ON BREAK NEXT statement
is included in a program, commands such as BREAK 100 and
FCTN 4 (CLEAR) are ignored. However, if a BREAK statement
withoutan argumentis encountered in a program, a breakpoint
will occur regardless of the ON BREAK NEXT statement.

Using the keyword STOP with the ON BREAK statement causes
program execution to stop when a breakpoint is encountered.
During normal operation, the computer will always stop
execution when a breakpoint is encountered. Therefore, the
ON BREAK STOP statement corresponds to the default action of
the computer.

An ON BREAK STOP statement is generally used to counteract
the effect of an ON BREAK NEXT statement. Any number of ON
BREAK statements may be included in a program.

214 T1-99/4A User’s Handbook

Example

100 ON BREAK NEXT
program lines

200 BREAK 240, 260
program lines

300 BREAK

program lines

The program in the preceding example contains an ON BREAK
NEXT statement and two BREAK statements. Because of the ON
BREAK NEXT statement, the BREAK statement in line 200 will
have no effect on the program. However, the BREAK statement
in line 300 will cause the program to stop execution. The ON
BREAK NEXT statement has no effect on line 300 since the BREAK
statement is not followed by an argument.

When an ON BREAK NEXT statement is in effect, the program
being executed will not be affected by the Function 4 (CLEAR)
command. Normally the CLEAR command causes the execution
ot the program to be stopped.

®m EX BASIC
ON ERROR O ST BASIC

An ON ERROR statement determines the action that will be
taken when an error occurs within a program.

Configuration

In
ON ERROR {STOP}

The In and the keyword STOP determine the action that will be
taken when an error occurs.

T1-99/4A BASIC Reterence Guide 215

When a line number is used as the argument of an ON ERROR
statement, program control will be transterred to the specitied
line number when an error occurs.

An ON ERROR statement causes the transfer of program control
to a subroutine in the same manner as a GOSUB statement. The
execution of the subroutine begins at the specified line number
and continues until a RETURN statement is executed.

The RETURN statement can be used to transfer program control
back to the line that caused the error. The RETURN statement
can also be used to transfer program control to any other line of
the program.

Using the keyword STOP with the ON ERROR statement causes
program execution to stop when an error occurs.

During normal operation, the computer will always stop
execution when an error occurs. Therefore the ON ERROR
STOP statement corresponds to the default action of the
computer.

An ON ERROR STOP statement is generally used to counteract a
previously executed ON ERROR statement.

Example

100 ON ERROR 500

200 INPUT A

300 PRINT SQR(A)

400 END

500 PRINT “TRY AGAIN"
600 RETURN 200

The preceding example contains a program that uses an ON
ERROR statement. The statement at line 100 causes program
control to branch to line 500 when an error occurs.

216 TI1-99/4A User’s Handbook

Lines 200 and 300 contain statements that accept numeric input
from the keyboard, assign the value to the variable A, and print
the square root of the value. The only type of data that can be
assigned to the variable A are numeric values. As a result, an
error occurs if the data input is not a numeric value.

Atline 300, the SQR function is used to calculate the square root
of the value of the variable A. If the value of the variable A is
negative, an error occurs.

Lines 500 and 600 contain a simple subroutine that prints a
message and returns program control to the INPUT statement at
line 200.

m EX BASIC
ON WARNING O ST BASIC

An ON WARNING statement determines the action that will be
taken when a warning condition develops.

Configuration

PRINT
ON WARNING { STOP
NEXT

The keywords NEXT, STOP, and PRINT specify the action that will
be taken if a warning condition develops.

Warning conditions are ignored when an ON WARNING
statement includes the keyword NEXT.

An ON WARNING PRINT statement causes the standard
warning message to be displayed when a warning condition
develops. Although a warning message is displayed, program
execution will continue. The ON WARNING PRINT statement
corresponds to the default action of the computer.

T1-99/4A BASIC Reterence Guide 217

Using the keyword STOP with the ON WARNING statement
causes program execution to stop when a warning condition
develops. In the event of a warning condition, the standard
warning message is displayed and program execution stops.

Example

> 100 ON WARNING NEXT
> 110 PRINT 1041000

> 120 ON WARNING PRINT
> 130 PRINT 1041000

> 140 ON WARNING STOP
> 150 PRINT 1041000

> RUN

9.99999E+**

* WARNING
NUMERIC OVERFLOW IN 130
9.999999E+**

* WARNING
NUMERIC OVERFLOW IN 150

The previous example contains a program that handles the same
warning condition in three different ways. The warning condition
in each case is caused by a numeric overflow.

The first warning condition is ignored. The value displayed
(9.99999E+**) indicates that overflow has occurred, but no
warning message appears on the screen.

The second warning condition causes a warning message to be
displayed. Although the warning message is displayed, program
execution continues. The third warning condition causes a
warning message to be displayed. In addition to the warning
message being displayed, program execution will be stopped.

218 TI1-99/4A User’s Handbook

® EX BASIC
OPEN m ST BASIC

An OPEN statement is used to open an 1/0 channel for an input
or output device.

Configuration
OPEN # filenumber : "device filename”[,format]|,storage][,mode](,record length]

The filenumber must be an integer from 1 through 255. This
number is used as a reference for the particular file being
opened.

The device is the I/0 device that is being opened by the OPEN
statement. Proper device names include "RS$232”, “DSK1”, and
,’CS1”-

The filename is a specific name used to reference a particular
file.

Filenames need not be used with all devices. An RS232 and
cassette recorder are two devices that do not require filenames
when being opened. Disk drives, however, do require a filename
when being opened.

The format specifies how files should be organized on the 170
device. The choices for format are RELATIVE and SEQUENTIAL.

Relative files allow any record to be accessed within that file
without first searching all preceding records. Records within a
sequential file can only be accessed in the order in which they
appear in the file. The default value for format is SEQUENTIAL.

The storage specifies how the data will be stored. Data can be
stored in two ways, binary form or ASCII form. Data stored in
binary form can be accessed more quickly by the computer.

T1-99/4A BASIC Reterence Guide 219

The keyword INTERNAL is used to specify binary storage. The
keyword DISPLAY is used to specify ASClI storage. INTERNAL is
generally the better choice when storing data on a disk or
cassette. DISPLAY is generally the better choice when the output
is to be sent to a printer. The default option for storage is
DISPLAY.

The mode specifies the operation that will be performed while
the file is open. The choices for mode are INPUT, OUTPUT,
UPDATE, and APPEND. If INPUT is chosen, data can only be read
from the file. If OUTPUT is chosen, data can only be written to
thefile. If UPDATE is chosen, the user may both read and write to
afile. If APPEND is chosen, data may be added to a file without
changing anything already in the file. The default option for
mode is UPDATE.

The record length determines whether all the records will be the
same length or will be of varying lengths. The options for record
length are VARIABLE and FIXED. VARIABLE specifies that the
records may be of varying lengths. FIXED specifies that all the
records must be of the same length. The default option for
record length depends on what other options were chosen. For
example, the default record length for a RELATIVE file is FIXED,
while the default record length for a SEQUENTIAL file is
VARIABLE.

A maximum record length can be specified with the record
length parameter. If a maximum record length is not specified
the default values are 80 for diskettes, 64 for cassettes, 80 for the
RS232 and 32 for the thermal printer.

Examples

OPEN #1:"DSK1.TEST", SEQUENTIAL DISPLAY, UPDATE, VARIABLE 80
OPEN #1:”DSK1.TEST”

The two example statements have the same effect. The first
statement lists all the default values which are assumed in the
second statement.

220 TI-99/4A User’s Handbook

Either of the preceding examples will open file number one on
disk drive 1. The name of the file is TEST. The file will be
organized sequentially and have a display type storage. The user
may read or write to the file, and records are of varying lengths
with a maximum length of 80.

® EX BASIC
OPTION BASE m ST BASIC

The OPTION BASE statement is used to specify a minimum value
for array subscripts.

Configuration

OPTION BASE {;}

If an OPTION BASE of one is chosen, the lowest subscript that
any array may have is one.

Only one OPTION BASE statement may appear in a program.
The default value for OPTION BASE is zero.

Example
100 OPTION BASE 1

The maximum value of an array subscript can be specified with a
DIM statement.

m EX BASIC
OR O ST BASIC

The OR operator is generally used in IF/THEN statements to
combine two or more conditions.

T1-99/4A BASIC Reference Guide 221

Configuration
ex OR ex

The OR operation is executed according to the following truth

table.

A B AORB
0 -1 -1

-1 -1 -1

-1 0 =1
0 0 0

The conditions of true and false are represented by the values -1
and 0.

Example

>10 X=5
>20Y=10
> 30 IFY>50RX<0THEN 50
> 40 END
> 50 PRINT “Y IS GREATER THAN 5"
> 60 PRINT “OR X IS NEGATIVE”
> 70 END
> RUN
Y IS GREATER THAN 5
OR X IS NEGATIVE

In the preceding example, the variables X and Y are assigned
values at lines 10 and 20. At line 30, an IF/THEN statement
inlcudes an OR operator. The two expressions are Y>>5 and X<0.
Since Y>5 is true, and X<0 is false, the OR operation is
evaluated as true.

Since the condition of the IF/THEN statement is true, the
program control branches to line 50. At lines 50 and 60 the
output message is printed. When the condition of the IF/THEN
statement is false, the program is ended at line 40.

222 TI-99/4A User’s Handbook

When the OR operation is executed with numeric expressions,
the arguments are rounded off and converted to their binary
equivalents. The value of the OR statement is the result of the
OR operation on each bit of the values. For example:

5 (binary 0101)
OR 11 (binary 1011)

15 (binary 1111)

Since the binary equivalent of 5is 0101, and the binary equivalent
of 11 is 1011, the OR operation for each bit has the result 1111.
The numeric value of 1111is 15. Any non-zero value is considered
true.

8 EX BASIC
Pl O ST BASIC

The PI function returns the value 3.1415926539 ().
Configuration
a="Pl

Pl is a physical constant that is used extensively in mathematic
and scientific calculations.

Example

> PRINT COS (Pl)
-1.

> PRINT SIN (Pl)
0

T1-99/4A BASIC Reterence Guide 223

® EX BASIC
POS m ST BASIC

The POS function returns a value corresponding to the position
of one string within another.

Configuration
X =POS (A3, B$, a)

The value returned by the POS function is the position of the first
occurance of B$ in A$ starting at position a. If B$ does not occur
in A$, a value of 0 is returned.

Examples

> PRINT POS ("STEPHEN", "E”, 1)
3

> PRINT POS (“STEPHEN”, “E”, 4)
6

The preceding two examples show the proper use of the POS
function. In the first example, the computer searches for the
letter Ein STEPHEN starting at the S (or position 1). In the second
example, the computer searches for the letter E in STEPHEN
starting at the letter P (or position 4).

B EX BASIC
PRINT ® ST BASIC

The PRINT statement is used to output characters to the display
or an ouptut device.

Configuration

PRINT [[#a][,REC record number]:][expression](;)]...

224 T1-99/4A User’s Handbook

The first argument of a PRINT statement is the optional file
number. The file number is generally used only when an output
device other than the display is used.

A PRINT statement can include string and numeric values. Each
variable name or constant must be separated by eitheracomma,
semicolon or colon. When a comma separates the items in a
PRINT statement, the display is divided into two columns. When
a semicolon is used between items in a PRINT statement, the
values are displayed adjacent to each other, with one space
preceding and trailing numeric values. When a colon is used
between items in a PRINT statement, each item is printed on a
separate line. An entire line is skipped for each colon that
appears between data items.*

A PRINT statement can end with a comma, semicolon, colon, or
no punctuation at all. A PRINT statement that ends with a
semicolon causes the cursor to wait at the next position until
another PRINT statement is executed. The cursor waits at the
next available column when a PRINT statement ends with a
comma. When a PRINT statement ends with a colon or has no
punctuation at the end, the next line of output occurs on the
next line. If more than one colon is used at the end of a
statement, a line is skipped for each colon.

Example

> 100 X =576
> 200 Y=24
> 300 PRINT “CODE:"; X,
> 400 PRINT "UNITS:"; Y
> RUN

CODE: 576 UNITS: 24

*In Extended BASIC, be sure to separate colons in a PRINT
statement by one space.

TI-99/4A BASIC Reference Guide 225

In the previous example, the program contains two PRINT
statements for one line of output. At lines 100 and 200, the
variables are assigned values. At line 300, the string constant
“CODE:" is printed, followed by the value of the variable X. Since
a semicolon separates the values, they are printed adjacent to
each other, separated by one space. The PRINT statementin line
300 ends with a comma, so the next output occurs in the second
column of the same line. The string constant "UNITS:” is fol-
lowed by the value of the variable Y. These values are also separ-
ated by one space.

A PRINT statement may include the optional file number. The
output will be sent to the device that was opened with the
specified filenumber. Filenumbers 1 through 255 are used tor
devices other that the screen. Filenumber zero is always open for
output to the display.

Example

100 OPEN #1:"CS1”,SEQUENTIAL,OUTPUT,FIXED
200 FORJ=1TO 10

300 X=RND

400 PRINT #1:X

500 NEXT]

600 CLOSE #1

The programin the previous example uses a PRINT statement to
record ten random numbers on a cassette tape. At line 100, an
170 channel is opened for output to the cassette recorder. Line
200indicates a FOR/NEXT loop thatis repeated ten times. Atline
300, a random value is assigned to the variable X. At line 400, the
value of X is printed on the output device opened as file #1.
When ten values are recorded, this file will be closed.

When a PRINT statement includes the REC option, the data will
be written starting at the indicated record number. The REC
option may only be used when writing onto a RELATIVE file.

226 T1-99/4A User’s Handbook

® EX BASIC
PRINT USING O ST BASIC

The PRINT USING statement is used to write string or numeric
data in a predefined format.

Configuration

PRINT [#a][,REC record number] USING{""e ““’?’be’ :data list
expression

The file number and the record number are used the same way
in the PRINT USING statement in the PRINT statement.

The expression or the line number following the USING
statement defines the format in which the data will be written. If
a line number is used, it must be the line number of an IMAGE
statement. The expression used after the USING statement must
contain special characters that are used to detine the display
tormat. These special characters can be found in Table 5-4 on
page 194.

PRINT USING and IMAGE statements use the same procedure to
define a display format.

Example

> PRINT USING "THE VALUE OF PI IS #.####":PI
THE VALUE OF PI IS 3.1416

m EX BASIC
RANDOMIZE B ST BASIC

The RANDOMIZE statement is used to reset the random number
generator,

T1-99/74A BASIC Reference Guide 227

Configuration
RANDOMIZE [a]
If a seed is used with the RANDOMIZE statement, the same
sequence of numbers will be generated each time the programiis
run. If the seed is omitted, an unpredictable sequence will be
generated each time the program is run.
Example

> RANDOMIZE 25

The RND function is used to return the values calculated by the
random number generator.

® EX BASIC
READ ® ST BASIC

A READ statement is used to assign values to variables. The values
are taken individually from DATA statements in the order they
appear in the program.

Configuration

X Y
READ lxsl [,vs]

Data items are assigned to variables in the order in which they
appear in the program unless a RESTORE statement has been
executed.

The type of variable in the READ statement must correspond to
the type of data in the corresponding DATA statement. A
numeric variable can only be assigned a numeric value. However,
a string variable can accept any type of character or none at all.

228 T1-99/4A User’s Handbook

A program must include at least as many data items as the
number of variables in its READ statements unless a RESTORE
statement is executed.

Example

> 20 READ X,X$
> 30 PRINT X$,X

> 40 END
> 50 DATA 12,JONES
> RUN

JONES 12

The preceding example contains a program that has a READ
statement. At line 20, the variables X and X$ are assigned the
values from the DATA statement at line 50. At line 30, the values
of the two variables are displayed.

A READ statement can accept data from a DATA statement that
appears anywhere in a program. A DATA statement does not
have to precede the READ statement in order to be effective.

® EX BASIC
REC O ST BASIC

The REC function is used to determine the current record
position in a RELATIVE file.

Configuration
X = REC (filenumber)
RELATIVE files are a method of storing information in which any
record can be accessed within that file without first searching all
of the preceding records.

Example

100 PRINT REC (1)

T1-99/4A BASIC Reterence Guide 229

= EX BASIC
REM & ST BASIC

A REM statement is used to insert comments in a program. The
REM statement is ignored by the BASIC interpreter.

Configuration
REM remarks
Example
10 REM INPUT ROUTINE
Any statements that follow a REM statement on the same pro-
gram line are also ignored by the computer. As a result, a REM

statement is generally used on its own line or at the end of a
mutilple statement line.

| EX BASIC
RESEQUENCE (RES) ® STBASIC

The RESEQUENCE command is used to renumber the statements
in a program.

Configuration
RESEQUENCE [new#][,value]
New# is the first new line number to be used in the renumbering
process. The default value for new#is 100. Value is the amount to

be added to each line number to generate the subseuqgent line
number. The default for value is 10.

230 TI-99/4A User’s Handbook

The RESEQUENCE command also changes any reference to a
line number that appears in any other statement. Line number
references are updated in all of the following statements.

GOTO BREAK PRINT USING
GOSsuB RESTORE DISPLAY USING
THEN RETURN ON ERROR
ELSE UNBREAK ON WARNING
RUN
Example
> 1 X=X+
> 2 PRINT X
>3 GOTO1
> RESEQUENCE 100, 10
> LIST
100 X = X+1
110 PRINT X

120 GOTO 100

The previous example demonstrates the use of the RESEQUENCE
command. Notice that the line numbers and the line number
reference in the GOTO statement are all updated.

® EX BASIC
RESTORE u ST BASIC

A RESTORE statement is used to move the data pointer.
Configuration
RESTORE [In]

The data in a program is read in order, starting with the first

DATA statement item. In order to reread a section of data, a
RESTORE statement is necessary.

T1-99/4A BASIC Reterence Guide 231

When a RESTORE statement is executed without an argument,
the next READ statement will assign to its first variable the first
data value that appears in the program.

When a RESTORE statement is executed with an argument, the
next READ statement will assign to its first variable the first data
value that appears at the specified line number.

Example

> 100 DATA 1,2,3,4,5
> 200 DATA6,7,8,9
> 300 READ A,B,C,D,E
> 400 PRINT A;B;C;D;E
> 500 RESTORE
> 600 READ F,G,H,l,)
> 700 READ K,L,M,N
> 800 PRINT F;G;H; L1 K;L;M;N
> RUN
12345
123456789

In the preceding example, a RESTORE statement causes the same
DATA statement to be read twice. If the RESTORE statement had
not been included, there would not have been enough DATA
for the READ statements in lines 600 and 700.

® EX BASIC
RESTORE with files m ST BASIC

The RESTORE statement is used with files to move the pointer
back to any position within a file.

Configuration

RESTORE filenumber, REC recordnumber

232 T1-99/4A User’s Handbook

The filenumber indicates the file that is being manipulated. The
recordnumber indicates the position within the file where the
data pointer will be placed.

Example

RESTORE #1, REC 4

® EX BASIC
RETURN with GOSUB m ST BASIC

A RETURN statement is used to branch a program back to the
line where the last subroutine was called.

Configuration
RETURN

A subroutine is called with a GOSUB or ON/GOSUB statement.
When the subroutine has been completed, a RETURN statement
causes the program control to return to the statement following
the most recently executed GOSUB or ON/GOSUB statement.

Example
10 RETURN
m EX BASIC
RETURN with ON ERROR O ST BASIC

The RETURN statement is used with the ON ERROR statement to
exit an error handling subroutine.

TI-99/4A BASIC Reterence Guide 233

Configuration

In
RETURN NEXT l

The RETURN statement transfers program control to the main
program after the execution of an error handling subroutine.
RETURN can be used without an argument. In this case, program
control will be transferred back to the line that caused the error.

Program control will be transferred to the line following the line
that caused the error if the keyword NEXT is used with RETURN.
The line that caused the error will not be executed again.

A line number may also be specified in the RETURN statement.
In this case, program control is transferred to the line with the
specified line number.

Example

100 ON ERROR 500

200 INPUT A

300 PRINT SQR(A)

400 GOTO 100

500 A =ABS(A)::RETURN

The preceding example contains a program that uses a RETURN
statement without any options. When the program is executed,
line 100 causes program control to be transferred to line 500 if an
error occurs. Line 200 contains an INPUT statement that is used
to assign a numeric value to the variable A. Line 300 prints the
square root of the number that was input. Line 400 transfers
program control back to the INPUT statement. Line 500 takes the
absolute value of the number that caused the error.

Taking the square root of a negative number would normally
cause an error. However, in this case, an error handling
subroutine would take the absolute value of a negative number.
The RETURN statement would then transfer program control
back to line 300.

234 TI1-99/4A User’s Handbook

® EX BASIC
RND m ST BASIC

The RND function is used to generate random numbers.
Configuration
X=RND

The computer uses a mathematical process to generate pseudo-
random numbers greater than or equal to zero, but less than 1.
The sequence of random numbers will be the same each time
the computer is turned on unless a RANDOMIZE statement is
used.

Example

100 PRINT INT (RND * 100)
200 GOTO 100

The previous example contains a program that will generate
random number between 0 and 99 inclusive. The same numbers
will be generated each time the program is executed unless a
RANDOMIZE statement is inserted in the program. Press the
FCTN 4 key (CLEAR) to stop the program.

m EX BASIC
RPTS O ST BASIC

The RPT$ function is used to repeat a string a specified number
of times.

Configuration

X$ = RPT$ (string expression, numeric expression)

Ti-99/4A BASIC Reterence Guide 235

The string expression is the expression that is to be repeated.
The numeric expression determines the number of repetitions.

Examples

PRINT RPT$ ("A”, 56)
PRINT RPT$ ("**", 14)

The previous example contains two statements. The first
statement will cause the letter “A” to be printed 56 times on the
screen. The second example will cause 28 asterisks (*) to be
displayed on the screen.

More than one character may be used as the string expression,
however, the length of the total expression after repetitions may
not exceed 255 characters. If the generated string is more than
255 characters, a warning message will be displayed and the
string will be truncated.

® EX BASIC
RUN ® ST BASIC

The RUN statement is used to execute the program that is
currently in the computer’s memory.

Configuration (EX & ST BASIC)
RUN [In]
The RUN statement can include aline number as an argument. If
the specified line number appears in the program, execution
begins with that line. If the specified line number does not

appear in the program, the following message will be displayed:

* BAD LINE NUMBER

236 TI1-99/4A User’s Handbook

If the RUN statement does not include an argument, execution
will begin at the first line of the program.

Examples

RUN
RUN 100

The RUN command can be used in Extended BASIC the same
way it is used in Standard BASIC. However, Extended BASIC
allows more options to be used with the RUN command.

Configuration (EX BASIC)

In
RUN ["device name.program name"]

A RUN statement with no argument and a RUN statement with a
line number have the same effect in Extended BASIC as they do
in Standard BASIC.

In Extended BASIC, the RUN command can be used with an
input device to load and execute a program. The contents of the
computer’s memory will be erased before the new program is
entered into memory.

RUN can also be used as a statement in a program. This means
that one program can load and execute another program.

Examples

RUN "CS$1”
RUN “DSK1.TEST”
100 RUN “DSK1.TEST”

The preceding example contains three statements. The first
statement causes the first program on cassette drive 1 to be
loaded into memory and executed.

T1-99/4A BASIC Reference Guide 237

The second statement causes the program named TEST on disk
drive 1 to be loaded into memory and executed. The third
statement is an example of a RUN statement that is used in a
program.

® EX BASIC
SAVE B ST BASIC

The SAVE command is used to record the program that is
currently in the computer’s memory.

Configuration (EX & ST BASIC)
SAVE devicename . programname
The devicename specifies the device that will be used to save the
program. Proper device names include CS1, CS2, DSK1, DSK2,
and DSK3.
The programname used to specify disk program files can contain
up to ten characters. Periods and spaces are the only characters

that cannot be used in a program name.

For best results, however, use only upper case letters, numbers
and the following symbols when specifying program names.

"#3%&’()*+,—/ ;=@ J1<>\A

When using the SAVE command with a cassette recorder, a
programname is not used.

Example

SAVE DSK1.PROGRAM1

238 TI-99/4A User’s Handbook

The previous example contains a SAVE command that is used to
record the program currently in the computer’s memory. The
program is saved on the diskette in disk drive 1 with the name
PROGRAM1. There must be a program in the computer’s
memory before the SAVE command can be used.

When the SAVE command is used with a cassette recorder, a set
ot instructions will appear on the screen. These step by step
instructions guide the user through the process of using the
cassette recorder.
Example
DSAVE CS1

* REWIND CASSETTE TAPE Cs1
THEN PRESS ENTER

* PRESS CASSETTE RECORD Cs1
THEN PRESS ENTER

* RECORDING

* PRESS CASSETTE STOP Cs1
THEN PRESS ENTER

* CHECK TAPE (Y OR N)? N

The previous example contains the results of a SAVE command
being used with a cassette recorder.

The preceding example contains the prompts that normally
appear when the SAVE command is executed. The prompts
direct the user in the operation of the cassette recorder.

The amount of time required to record a program depends upon
the length of the program.

TI-99/4A BASIC Reterence Guide 239

When the computer completes the recording, it once again
prompts the user on the operation of the cassette recorder. At
this point, the user has the option of checking the tape. A
recorded program should generally be checked to be sure that
no errors developed while recording the program.

In the preceding example, the check option was not chosen. If
“Y” had been entered in response to the CHECK TAPE prompt, a
series of prompts would have appeared to direct the user in the
operation of the cassette recorder.

If an error is detected while checking the tape, an error message
will be displayed. At this point, the user has three options.

Example

* ERROR — NO DATA FOUND
PRESS R TO RECORD
PRESS C TO CHECK
PRESS E TO EXIT

The preceding example shows an error message that may occur
during the checking procedure. Three options are provided. If
"R" is pressed, the computer will record the program again. If
"C” is pressed, the computer will recheck the program on
cassette. If “E” is pressed, the computer will abort the SAVE
command.

In Extended BASIC, there are two additional options that can be
used with the SAVE command. These two options are MERGE
and PROTECTED.

Configuration (EX BASIC)

PROTECTED
MERGE

SAVE devicename . program name [’

240 TI-99/4A User’s Handbook

If the keyword PROTECTED is used at the end of the SAVE
command, the program will be saved in a special format. A
program that was protected when it was saved cannot be listed,
edited or resaved after it has been reloaded into memory.

If the keyword MERGE is used at the end of the SAVE command,
the program can only be retrieved using the MERGE command.
The MERGE option allows a program to be loaded into memory
from a disk program file without erasing the program already in
memory. The MERGE option can only be used with a disk
program file.

m EX BASIC
SEG$ m ST BASIC

The SEG$ statement is used to designate characters in the middle
of a string.

Configuration
A$ = SEG$(B$,a,b)

The SEG$ function returns a string value. The first argumentis a
string constant or a string variable. The second and third
arguments are numeric values. The first numeric argument
determines the first character from the string argument that is
returned. The second numeric argument determines the total
number of characters that are returned.

Example

> 10 A$="JOHN PETER JONES"
> 20 PRINT SEG$ (A$,6,5)
> 30 END
> RUN
PETER

TI-99/4A BASIC Reterence Guide 241

The previous example contains a program that uses the SEG$
function. At line 10, the variable A$ is assigned a string value. At
line 20, the PRINT statement includes a SEG$ statement. The
SEGS$ statement specifies the string value of the variable A$. The
second argument (6) specifies the sixth character in the string.
The third argument (5) specifies the number of characters
returned. As aresult, the string value "PETER" is printed because
”P” is the sixth character of the string (including spaces).

® EX BASIC
SGN ® ST BASIC

The SGN function returns a +1 if its argument is positive, a -1 if
negative, and a 0 if zero.

Configuration
SGN (a)
Example

> 100 A =100
> 200 X =SGN (A)
> 300 PRINT X
> RUN
1

® EX BASIC
SIN m ST BASIC

The SIN function returns the sine of the angle specified by its
argument. The argument must be an angle measured in radians.

242 T1-99/4A User’s Handbook

Configuration
X =SIN (a)
Example

> PRINT SIN (3.1415927/2)
1

m EX BASIC
SIZE O ST BASIC

The SIZE command returns the number of bytes of memory
available.

Configuration
SIZE
Example

> SIZE
13928 BYTES FREE

The previous example demonstrates the use of the SIZE
command.

The size command displays additional information when a
memory expansion unit is in use.

® EX BASIC
SQR ® ST BASIC

The SQR function returns the positive square root of its
argument.

T1-99/4A BASIC Reference Guide 243

Configuration
X =SQR (a)
Example

> 100 X=49

> 200 PRINT SQR (X)

> RUN

7
® EX BASIC

SsTOP m ST BASIC

The STOP statement causes a halt in the execution of a BASIC
program.

Configuration
STOP
Generally, the STOP statement and the END statement are

interchangeable. However, a STOP statement cannot be used at
the end of a subprogram.

® EX BASIC
STR$ m ST BASIC

The STR$ function returns the string representation of its
argument.

Configuration

X$ =STR$ (a)

244 T1-99/4A User’s Handbook

The argument of an STR$ function must be a numeric value.

A numeric argument that has been converted to a string can no
longer be used in any calculations. However, the string
representation consists of the same characters as the original
numeric argument.

Example

> 100 A$=STR$ (40)
> 200 PRINT A$
> RUN

40

m EX BASIC
SUB 0O ST BASIC

The SUB statement is used as the opening statement of a
subprogram.

Configuration
SUB subprogram name [(variable list)]

User written subprograms must begin with a SUB statement,
which indicates the name of the subprogram. A subprogram
must end with a SUBEND statement.

A CALL statement is used to transfer program control to a
subprogram. For example, the statement CALL WORK would
transfer program control to the subprogram named WORK.
Once a SUBEND statement is encountered, program control is
transferred back to the program line that follows the CALL
statement that called the subprogram.

Subprograms must appear at the end of the main program. If
more than one subprogram exists in a program, the subprograms

T1-99/4A BASIC Reterence Guide 245

must be listed one after the other at the end of the main
program.

Variables within the main program are independent of the
variables within subprograms. For example, if the variable A is
assigned the value of 10 within the main program, the value of A
within a subprogram is zero until it is assigned a value. Variables
which have been assigned values in the main program can be
used within subprograms by including a variable list after the
subprogram name. A variable list must appear in the CALL
statement as well as the SUB statement.

When values are used in a subprogram, they must be passed to
the subroutine variables. When a subroutine is called, the
specitied values are transferred from the CALL statement to the
variables in the SUB statement. lllustration 5-7 depicts the pass-
ing ot values.

lllustration 5-7. Passing Values to a Subprogram

CALL FUNCTION (X,Y,Z...)

vid

SUB FUNCTION (A, B, C ...)
Example

> 100 X =25
> 200 CALL MESSAGE (X)
> 300 PRINT SQR (X)
> 400 SUB MESSAGE (A)
> 500 PRINT “THE SQUARE ROOT OF”;A;"IS";
> 600 SUBEND
> RUN
THE SQUARE ROOT OF 25 IS 5

In the preceding example, a subprogram is used to print a
message. Line 100 assigns the value of 25 to the variable X. Line
200 transfers program control to the subprogram MESSAGE. Line
300 prints the square root of X after the subprogram has been
completed.

246 T1-99/4A User’s Handbook

Line 400 is the beginning of the subprogram MESSAGE. Line 500
prints the message and line 600 returns program control to line
300.

Avariable listis used in the CALL statement and SUB statement in
order to transfer the value of X into the subprogram. In the
subprogram, A is assigned the value of the variable X, which is 25.

B EX BASIC
SUBEND O ST BASIC

The SUBEND statement is used to mark the end of a subprogram.
Configuration
SUBEND

Subprograms that begin with the SUB statement must end with a
SUBEND statement. Once the SUBEND statement is executed,
program control will be transferred to the line following the
CALL statement that called the subprogram.

Example

> 100 FORT=1TO3

> 200 CALL FUNCTION (T)
> 300 NEXTT

> 400 SUB FUNCTION (A)
> 500 PRINT AA2,

> 600 PRINT AA3

> 700 SUBEND

> RUN
1 1
4 8
9 27

The program in the preceding example contains a subprogram
named FUNCTION. The subprogram displays the square and the
cube of the argument.

T1-99/4A BASIC Reterence Guide 247

When the SUBEND statement is executed, the program control
branches to the statement that follows the CALL statement.

| EX BASIC
SUBEXIT O ST BASIC

The SUBEXIT statement is used to exit a subprogram before a
SUBEND statement is executed.

Configuration
SUBEXIT

The SUBEXIT statement is optional within a subprogram. The
SUBEXIT statements can be used to branch out of a subprogram
back to the main program.

Once a SUBEXIT statement is executed, program control will be
transferred to the line tollowing the CALL statement that called
the subprogram.

Example

100 INPUT X
200 CALL CHECK (X)

300 SUB CHECK (A)

400 IF A >0 THEN PRINT” AMOUNT:";A::SUBEXIT
500 PRINT “INVALID AMOUNT”

600 SUBEND

The preceding example demonstrates the use of a SUBEXIT
statement. At line 100, a numeric value is input and assigned to
the variable X. At line 200, a subroutine is called.

The subroutine is passed the value of the variable X. As a result,
wherever the variable A appears in the subroutine, the value of
the variable X will be used.

248 T1-99/4A User’s Handbook

The subroutine prints one of two messages, depending on the
value of the variable A. If the value is positive, the statements at
line 400 will be executed and the subroutine will be exited.

If the value of the variable is not a positive value, the statement at
line 500 is executed. When a SUBEND statement is executed,
program control branches to the statement that follows the
CALL statement.

m EX BASIC
TAB | ST BASIC

The TAB statement is used to specify the column where the next
item in a PRINT or DISPLAY statement will be output.

Configuration
TAB (a)

The output that follows a TAB statement begins at the column
specified by the argument.

Example
PRINT X$; TAB (8); Y$

In the previous example, the value of the variable X$ is displayed,
starting in the first column. The value of the variable Y$ is
displayed, starting in column number 8.

If the next available column is greater than the argument of a
TAB statement, the data following the TAB statement will be
printed on the next line starting at the specified column.

T1-99/4A BASIC Reference Guide 249

® EX BASIC
TAN 8 ST BASIC

The TAN function returns the tangent of the angle specified as its
argument. The argument will be assumed in radians.

Configurations
X =TAN (a)
Example

> PRINT TAN (3.14159265359)
0

a® EX BASIC
TRACE ® ST BASIC

The TRACE command is used to follow the execution of program
statements.

Configuration
TRACE

The TRACE command sets a trace flag that causes the line
number of each statement in the program to be printed as it is
executed. The line numbers will be displayed within angle
brackets.

Example

> 100 X =100

> 200 FORI=1TO3
> 300 X=X/2

> 400 PRINT X

> 500 NEXT I

> 600 END

> TRACE

250 T1-99/4A User’s Handbook

> RUN
<100 > <200 > <300 > <400 > 50
< 500 > <300 > < 400 > 25
< 500 > <300 > < 400 > 12.5
< 500 > < 600 >

B EX BASIC
UNBREAK ® ST BASIC

The UNBREAK command is used to remove breakpoints that
were inserted in a program.

Configuration
UNBREAK [In][,In] ...

UNBREAK commands can be used to eliminate breakpoints that
are specified by line number only. For example, if a program
includes the following statement,

100 BREAK 200,250,260

an UNBREAK statement can eliminate all of these breakpoints. In
this case, the UNBREAK statement must occur in the program
after the BREAK statement.

If the following BREAK statements appear in the program, an
UNBREAK statement will have no effect.

200 BREAK
250 BREAK
260 BREAK

When the breakpoints are specified by a command that is not
part of the program, the breakpoints can be easily eliminated.
For example, an UNBREAK statement can be used counteract
the following BREAK statement.

TI-99/4A BASIC Reterence Guide 251

BREAK 200,250,260
Examples
110 UNBREAK

110 UNBREAK 200,250,260
UNBREAK

® EX BASIC
UNTRACE m ST BASIC

The UNTRACE command cancels the effect of the TRACE
command.

Configuration
UNTRACE
Example

> 100 X=10
> 110 PRINT X
>120 Y=20
> 130 PRINTY
> TRACE

> RUN
<100 > <110 > 10
<120 > <130 > 20

** READY **
> UNTRACE

> RUN
10
20

252 T1-99/4A User’s Handbook

® EX BASIC
VAL m ST BASIC

The VAL function converts its string argument to a numeric
value. The numeric characters in the string argument will be
converted to their numeric equivalents. Non-numeric characters
may not be used in the argument.

Configuration
X = VAL (A$)
Example
> 100 A$="57342"

> 200 PRINT VAL (A$)
> 300 PRINT VAL (A$) + 2

> RUN
57342
57344
® EX BASIC
XOR O ST BASIC

XOR is used between two expressions as either a numeric or
logical operator.

Configuration
ex XOR ex

The conditions of true and false are represented in the computer
by the logical values -1 and 0. As a result, the logical operators
(AND, OR, XOR and NOT) operate with the logical values -1and
0. The XOR operation can be explained by the following truth
table.

T1-99/4A BASIC Reterence Guide 253

EX1 EX2 RESULT
-1 -1 0
-1 0 -1

0 -1 -1

0 0 0

The XOR logical operator is generally used in an IF,THEN
statement with relational expressions.

Example
10 INPUT X
20 INPUTY
30 IFX < OXORY < OTHENS50
40 END

50 PRINT X:"TIMES”;Y;"”1S NOT POSITIVE”

The preceding example demonstrates the use of the XOR logical
operator. Lines 10 and 20 are used to assign numeric values to the
variables X and Y. The XOR operator is used in line 30 to
determine if either (but not both) of the arguments are negative.
If thisis true, the PRINT statement at line 50 will be executed. It X
and Y are both positive or both negative, the program will have
no output.

Typical output for the example program is as follows.

-1 TIMES 5 1S NOT POSITIVE

When XOR is used as a numeric operator, the arguments will be
rounded off and converted to their binary equivalents. The value
of the XOR statement will be the result of the XOR operation on
each bit of the values. For example:

10 (binary 1010)
XOR 12 (binary 1100)

6 (binary 0110)

254 T1-99/4A User’s Handbook

Since the binary equivalent of 10 is 1010, and the binary
equivalent of 12 is 1100, the XOR operation for each bit has the
result 0110. The decimal value of 0110 is 6.

CHAPTER 6.
THE Tl PROGRAM RECORDER

INTRODUCTION

The Texas Instrument Program Recorder is used for storing
BASIC programs or data on cassette tape. The process of transfer-
ring a program from the computers memory onto cassette tape is
known as saving a program. Once a program has been saved, it
can later be transferred back from the storage device into the
computer’s memory. This process is known as loading.

Data can also be transferred back and forth between the compu-
ter and the Program Recorder. The process of saving data on
cassette tape is known as writing the data. The retrieval of that
data from the cassette tape is known as reading the data.

Installation

The installation of the Tl Program Recorder is simple and straight-
forward. Two cords are supplied with the Program Recorder. One
of the cords is a power cord that allows the Program Recorder to
be used without batteries. The other cable is used to transmit
signals between the computer and the cassette recorder.

The data cable has a single plug on one end, and 3 smaller plugs
on the other. The large plug should be inserted in the receptacle
on the back of the computer console. The three smaller plugs
should be inserted in the side of the Program Recorder. The three
jacks on the Program Recorder are marked with the color that
corresponds to the appropriate plug (white, red or black).

Be sure to follow the complete set of installation instructions in
the Program Recorder manual.

256 T1-99/4A User’s Handbook

Saving & Loading Programs

The Program Recorder can be used to store the program that
resides in the computer’s memory. Many lengthy programs can
be stored on a single cassette tape. However, if more than one
program is stored on one side of a cassette tape, the position of
each program must be noted. If programs are recorded hap-
hazardly on asingle cassette, it will become nearly impossible to
preserve and recover them.

There are two BASIC commands that can be used to save and
load programs. These commands are SAVE and OLD. The SAVE
command is used when programs are to be stored, and the OLD
command is used to recover a previously stored program.

SAVE

When the SAVE command is used to store a program, the
command must include the device name CS1 or CS2. If only one
Program Recorder is being used with the computer system, the
device name CS1 must be used. However, a special cable may be
purchased that allows two Program Recorders to be used. In this
situation, either device name, CS1 or CS2, may be used.

The proper configuration for a SAVE command is as follows.
>SAVE “CS$1”

The SAVE command can only be used if a program is currently
stored in the computer’s memory. If a program does not exist, a
CAN’T DO THAT error will occur when the SAVE command is
entered.

When the SAVE command is used properly, a series of instruc-
tions will be displayed on the screen to guide the user through
the use of the the Program Recorder. These instructions are
generally quite easy to understand.

When the SAVE command is entered, the first instruction is
displayed as follows.

The Tl Program Recorder 257

*REWIND CASSETTE TAPE
THEN PRESS ENTER

This instruction is a reminder to position the tape in the location
atwhich you would like to record the program. Itisimportant to
choose a blank section of the tape for the program to be saved. If
the tape is positioned where another program has been
recorded, and the previously recorded program will be erased.
The tape counter can be used to keep track of the precise
location of the programs on a cassette tape.

When the tape has been properly positioned and the Enter key
has been pressed, the following instruction will be displayed.

*PRESS CASSETTE RECORD
THEN PRESS ENTER

This instruction is a reminder to press the appropriate levers on
the Program Recorder. When a program is to be saved, the
RECORD and PLAY levers must pressed simultaneously. Both
levers must be pressed firmly so they lock into position.

When the Enter key is pressed, the next message will be
displayed as follows.

*RECORDING

This message indicates that the Program Recorder is operating
and the program is being recorded. Intervals of sound may be
heard while the data is being transferred. These sounds indicate
that the data is actually being sent to the Program Recorder.

When the transfer of data is complete the final instruction will be
displayed as follows.

*PRESS CASSETTE STOP THEN PRESS ENTER
This message indicates that the recording process is complete.

The STOP lever on the Program Recorder should be pressed in
order to release the PLAY and RECORD levers.

258 TI1-99/4A User’s Handbook

Checking Programs

The Tl Program Recorder can be used to verify that a program
was recorded properly. This feature is essentially a re-reading of
the program to determine if the program was recorded in the
proper format.

When the SAVE command is used, the CHECK TAPE option will
be presented after the recording procedure has been com-
pleted. This option requires a simple Y or N response to the
prompt. If N is typed, the recording will not be verified. If Y is
typed, another series of instructions will be displayed.

The instructions used to verify the program are exactly the same
as the instructions used with the OLD command. These instruc-
tions are completely described in the following section.

OoLD

The OLD command is used to recover programs that were
previously recorded. Whenever a program is loaded into the
computer’s memory by means of an OLD command, any
program that may have previously been present in the com-
puter’s memory will be erased. The OLD command presents a list
of instructions that are similar to the instructions of the SAVE
command. The format for a typical OLD command is as follows.

>OLD “CS1”

When an OLD command is entered, the following instruction
will appear on the display.

*REWIND CASSETTE TAPE
THEN PRESS ENTER

This message is a reminder to position the tape at the beginning
of the desired program. When this step has been completed and
the ENTER key has been pressed, the second message will be
displayed as follows.

The Tl Program Recorder 259

*PRESS CASSETTE PLAY
THEN PRESS ENTER

This message indicates that the PLAY lever on the Program
Recorder should be pressed. Be sure that the lever is pressed
down completely and that it locks into position. Proceed by
pressing the Enter key.

While the transfer of data takes place, tones may be heard from
the television or monitor speaker. While this procedure is
performed, the following message will be displayed.

*READING

If no problems occur during the loading of the program, the
following two messages will be displayed.

*DATA OK
*PRESS CASSETTE STOP
THEN PRESS ENTER

This final message reminds the user to press the STOP lever on
the Program Recorder in order to release the PLAY lever. When
this final step has been completed, the computer will be ready to
accept another command.

Errors

There are generlly two types of errors that occur with the
Program Recorder. These two errors are NO DATA FOUND and
ERROR DETECTED IN DATA. These errors generally occur due
to incorrect volume setting on the Program Recorder. If one of
these errors occurs frequently, refer to the Program Recorder
manual for troubleshooting hints.

When an error occurs, the tollowing list ot selections will be
displayed on the screen.

260 TI1-99/4A User’s Handbook

PRESS R TO READ
PRESS C TO CHECK
PRESS E TO EXIT

If selection R is chosen, the computer will repeat the procedure
that is used to load a program. If selection C is chosed, the
computer will execute the procedure that checks the condition
of the recorded program. If selection E is chosen, the computer
will cancel the OLD command and will be prepared to accept
another command.

Saving Data

The Tl Program Recorder is not restricted to saving and loading
programs. It can also be used to save data. Any string or numeric
values that need to be saved can be recorded and retrieved with
the Program Recorder.

There are 4 BASIC commands that are used to store and retrieve
data. These statements are OPEN, CLOSE, PRINT# and INPUT#.

OPEN

Before data can be output to any external device, an OPEN
statement must be executed. The OPEN statement must include
the information that is required to establish communication
between the computer and the external device.

A filenumber is a parameter that is used to specify a particular
channel of communication between the computer and a part-
icular device. It is necessary to use a filenumber because several
different peripheral devices may be in use at the same time, or
the same device may be used for several functions simul-
taneously. To avoid confusion, each input or output operation of
the computer must be assigned a unique number.

The filenumber must be an integer from 1to 128, and must be the
first parameter in an OPEN statement. Any subsequent PRINT#,
INPUT# or CLOSE statement must include the specified file-
number.

The Ti Program Recorder 261

An OPEN statement must also include several additional
parameters to specify the exact nature of the transfer of data. The
most important parameter is either INPUT or OUTPUT. This
parameter indicates whether the computer is accepting infor-
mation (input) or sending information (output).

In general, the keywords INTERNAL and FIXED must in included
in an OPEN statement for the Program Recorder. As a result, a
typical OPEN statement for the Program Recorder would appear
as follows.

OPEN #1:“CS1”,0OUTPUT,FIXED,INTERNAL
CLOSE

A CLOSE statement is used to eliminate a channel that was
previously established for an input or output operation. A
CLOSE statement does not require any parameters other than
the filenumber.

A CLOSE statement is not always required’since each input or
output channel is automatically closed when the program ends.
However, it is a good programming practice to close each
channel that is opened in a program.

A typical CLOSE statement would have the following structure.
CLOSE #1
PRINT#

A PRINT# statement is used to output data to the Program
Recorder. The format for this statement is basically the same as
the PRINT statement, except for the filenumber, followed by a
colon. The values that follow the colon are output to the
specified device.

262 TI1-99/4A User’s Handbook

For example, the following PRINT# statement would cause the
values of the variables A$,B$ and C$ to be output to the Program
Recorder.

PRINT#1:A$,B$,C$

When data is output to the Program Recorder, the data items in
the PRINT# statement should be separated by commas.

The data is output to the Program Recorder is sections called
fields. A field is merely a segment of the tape that is used to store
one or more data items. Each PRINT# statement outputs exactly
one field.

For the Program Recorder, each field is 64 characters long unless
asmaller number is specified in the corresponding OPEN state-
ment. As a result, the data that is sent to the Program Recorder
cannot exceed a total of 64 characters.

The length of a string value is the total number of characters in
the string. Letters, numbers spaces and punctuation marks all
contribute to the length of a string value. Each numeric value has
the equivalent length of an 8 character string value.

One space of the data field must be used to separate the individ-
ual values. These spaces must also be considered when field
lengths are determined. As a result, the total number of charac-
ters in the field can be calculated as follows.

Total number of variables
Total number of characters in string values
+ Eight characters for each numeric value

Total field lengths

For example, consider the program on the following page.

The Tl Program Recorder 263

10 OPEN #1:“CS1”,0UTPUT,INTERNAL,FIXED
20 A=53.5

30 B=47.85

40 A$="TEXAS INSTRUMENTS"”

50 PRINT #1:A,B,A%

60 CLOSE #1

The preceding example program outputs the values of three
variables to the Program Recorder. Line 10 is an OPEN statement
that reserves 1/0 channel number 1 for output to the Program
Recorder. Lines 20 through 40 assign values to the variables A,B
and A$. At line 50, a PRINT# statement is used to output these
values in a single field. The output of this example program can
be recovered by the program on page 265.

When the sample program is executed, the prompts will appear
on the display as a reminder of the correct use of the Program
Recorder.

Since only one PRINT# Statement is executed in the program, the
output consists of only one field. The length of the field can be
calculated as follows.

Total number of variables: 3
Total number of characters in string values: 17
+ Eight characters for each numeric value: 16

Total field lengths: 36

Since the total field length is less than 64, the PRINT# statement
has a valid format.

When a PRINT# statement is used to output a field that is too
long, a FILE ERROR will occur. To prevent this problem, carefully
examine each PRINT# statement and be sure that the length of
each field does not exceed 64.

264 TI1-99/4A User’s Handbook

INPUT#

An INPUT# statement is used to retrieve data from the Program
Recorder. The format for this statement is basicaly the same as the
INPUT statement, except for the filenumber followed by a colon.
The variables specitied in the INPUT# statement are assigned
values that have previously been stored in a cassette data file.

For example, the following INPUT# statement would cause
values to be input for the variables X$,Y$ and Z$.

INPUT #1:X$,Y$,Z$

The variables specified in an INPUT# statement must be separ-
ated by commas.

Data is stored in a cassette data file as a collection of fields. Each
field in the file has a specific format. The type of datain each field
is determined by the structure of the PRINT# statement that was
used to output the data. For example, if a PRINT# statement
outputs two string values followed by two numeric values, these
values are recorded in a specific order in a specific data field. As a
result, the data in the field can only be recovered by an INPUT#
statement that has the same structure. This principle is demon-
strated in [llustration 6-1.

lllustration 6-1. Corresponding PRINT#/INPUT# Formats

Corresponding
Output Statement Input Statement
PRINT #1:A$ INPUT #4:X$
PRINT #27:A%,B$,C,D | INPUT #3:L$,M$,N,O
PRINT #1:A,B,C,D INPUT #1:A,B,C,D
PRINT #4:A,B$,C INPUT #6:X,X3$,Y

There are several important considerations in the use of PRINT#
and INPUT# statements. The most important detail is the fact that
each corresponding pair of PRINT# and INPUT# statements must
have the same number of variables. String variables must corres-

The Tl Program Recorder 265

pond to string values and numeric variables must correspond to
numeric values.

The actual names of the variables do not have to be exactly the
same in a corresponding pair of statements. The only require-
ment is that the types of variables must be consistent.

The filenumbers in corresponding statements do not have to be
the same. This is a result of the fact that the Tl Program Recorder
cannot be used for input and output simultaneously. As a result,
the l/0 channel that was used for output must be closed before a
separate channel is opened for input. As a result, the two separ-
ate channels may or may not use the same tilenumber.

The following example progran can be used to recover the data
that was stored by the previous example program.

100 OPEN #1:“CS1”,INPUT,INTERNAL, FIXED
110 INPUT #1:X,Y,Z%

120 PRINT X,Y,Z$

130 CLOSE #1

140 END

Notice that the INPUT# statement in this program has the same
numbers and type at variables as the PRINT# statement in the
previous example. These two programs can be combined to
perform the input and output functions in a single program.

Whenever cassette data files are used, be sure to note the loca-
tion of the beginning of the file. When the data is recovered
from the file, the tape must be rewound to the beginning of the
file. If this procedure is performed correctly, the output of the
sample program should appear as follows.

53.5 47.85
TEXAS INSTRUMENTS

266 T1-99/4A User’s Handbook

Files.

Data files usually consist of many fields. Unfortunately, it
becomes quite difficult to include a PRINT# statement in a pro-
gram each time data is read or written. As a result, it is usually
more practical to use a FOR/NEXT loop to repeat a section of a
program. The following program demonstrates this principle.

10 OPEN #1:“CS1”,0UTPUT,INTERNAL, FIXED
20 INPUT “NUMBER OF ENTRIES”:N

30 FOR)=1TON

40 INPUT “DESCRIPTION:”:D$

50 INPUT “PRICE:”:P

60 INPUT “QUANTITY:”:Q

70 PRINT #1:D$,P,Q

80 NEXT]

90 PRINT #1:“END",0,0

100 CLOSE #1

The FOR/NEXT loop in the preceding program allows any
number of fields to be entered in the data file. A field with the
values “END”,0,0 is entered as the last field so the end of the data
can be recognized when the data is recovered.

The following example program can be used to recover the data
that is stored in the data file.

200 OPEN #1:“CS1”,INPUT,INTERNAL,FIXED
210 PRINT “INVENTORY REPORT”::
220 INPUT #1:A$,B,C
230 IF A$="END”THEN 999
240 PRINT A$;B,C
250 GOTO 220
999 CLOSE #1
1060 END

The preceding example program uses an IF, THEN statement to
test the data being input. If the input is equal to a specific value
(“END” in this case) the program is ended. The GOTO statement

The Tl Program Recorder 267

at line 250 causes the INPUT# statement to be repeated until the
end of the file is detected.

Protecting Programs and Data

Programs and data that are stored on cassettes can be protected
from accidental erasure. Each cassette tape cartridge has two
tabs that are used to prevent the contents of the tape from being
erased. When these tabs are removed, the Program Recorder will
not be able to be used in the record mode. As a result important
programs or data cannot be erased by accidentally recording
other information on the same tape.

lllustration 6-2 depicts the technique used to “write protect”
one side ot a cassette tape.

lllustration 6-2. Write Protecting a Cassette Tape

You can determine which write protect notch protects which
side of the tape by holding the cassette so that the exposed tape
is facing towards you, and the side that is to be protected is facing
up. By removing the tab on the left side of the cassette, the side
of the tape facing up will be protected. By removing the tab
on the right side, the side of the cassette facing down will be
protected.

268 T1-99/4A User’s Handbook

Once a cassette tape has been write protected, the effect can be
reversed by covering the write protect notch with a small piece
of tape.

Extended BASIC Features

When Tl Extended BASIC is used with the TI-99/4A computer
system, the Program Recorder takes on additional features. The
most useful feature is that of protected programs.

Data can be read from a file in Extended BASIC with a LINPUT#
statement. This technique allows all of the datastored in a record
to be assigned to asingle string variable. However, this statement
can only be used with files that are stored in the DISPLAY mode
rather than INTERNAL.

For example, a PRINT# statement may be used to write the values
of four variables in a single cassette record. These four values can
be recovered with a LINPUT# statement that only includes one
string variable name. The four values are then assigned collec-
tively to the string variable. A typical LINPUT# statement would
appear as follows.

LINPUT#1:A$

When an Extended BASIC program is saved with the SAVE
command, the keyword PROTECTED can be included in the
command. A program that was protected when it was saved
cannotbe listed, edited or resaved after if has been reloaded into
memory. This feature allows programs to be used repeatedly,
but prevents them from being altered or copied. The following
SAVE command demonstrates the format used to produce a
protected version of a program.

>SAVE “CS1”,PROTECTED
Entended BASIC also allows programs to be loaded and excuted

with a single statement. The RUN command is used to perform
this function. When a RUN command is executed, the list of

The T Program Recorder 269

instructions will be displayed in the same manner as the OLD
command. However, the program will be automatically executed
when the loading procedure has been completed. This feature
allows a RUN statement to appear in a program. As a result, a
program that is being executed can be used to load and execute
another program that is saved on a cassette tape. An example of
this concept is located in the last section of Chapter 3. The
correctsystem fora RUN commandi isillustrated by the following
example statement.

>RUN “Cs1”

CHAPTER 7. THE Tl 1250 & 1850
DISK DRIVES

The Texas Instruments 1250 and 1850 disk drives provide a fast
and efficient means of storing programs and data. Although disk
drives cost more than cassette Program Recorders, disk drives
are much more versatile and easier to use.

The two models of disk drives are basically the same. However,
the 1250 disk drive is intended to be installed in a Peripheral
Expansion box. The 1850 disk drive is built into its own enclosure,
and is intended to be used separately.

The Disk Memory System is a package that includes a Disk Drive
Controller and a Disk Manager Command Module. The Disk
Drive Controller is an electronic device that actually manipulates
the disk drives. This system is capable of controlling 1, 2, or 3
independent disk drives. No disk drive can be used with the
computer system unless the Disk Drive Controller is installed.

The Disk Manager Command Module plugs directly into the
computer console. This device allows the disk drives to be used
to perform special functions. This Command Module does not
need to be used during the normal operation of the disk drive.
However, some special features of the disk drives require that
the Command Module be inserted in the computer console.

A complete guide to the installation of the disk drives and Disk
Drive Controller can be found in their respective manuals. Be
sure to follow these instructions carefully.

Before a disk drive is actually used with the computer system, it is
helpful to understand the fundamentals of disk storage.

Floppy Diskettes

The most widely used type of disk storage with microcomputers
is floppy disk storage. A floppy diskette consists of a round vinyl
disk enclosed within a plastic cover. The diskette is generally
stored in a diskette envelope.

272 T1-99/4A User’s Handbook

This cover protects the diskette from damage while it is being
handled by the operator. The diskette should never be removed
from its cover. A 5% inch diskette with its protective envelope is
shown in lllustration 7-1.

The diskette is allowed to rotate within the protective cover. The
round hole in the middle of the diskette allows the disk drive to
hold the diskette and spin it. The oblong shaped opening on the
protective cover provides an area where data can be read trom
or written to the diskette surface.

Hlustration 7-1. Mini-Floppy Diskette

protective
envelope

Gl .'.' 3
diskette—"" | o ‘

in its s

cover |

Tracks and Sectors

To facilitate the process of searching for data on the diskette
surface, the surface is divided into tracks and sectors.

Tracks may be visualized as a series of concentric circles on the
diskette surface, as shown in lllustration 7-2. There are 40 tracks
on a diskette used by the Tl disk drives.

The T1 1250 & 1850 Disk Drives 273

To further reduce the time necessary to search for a particular
data item, the tracks are divided into sectors, which are also
shown in Illustration 7-2.

Illustration 7-2. Tracks and Sectors

P

AT
// — \ Track
/// /—-~\ \ /

//// . \\
One/)éx\\

~ e

Sect t \ S ///

Track Q_/j//
~

Locating Tracks and Sectors

Locating a particular track on the disk surface is a relatively
uncomplicated matter. The drive merely moves the head to the
position on the diskette where the specified track is located,
much like the needle on a phonograph is positioned to the
location of a specific song on a record album.

However, locating a particular sector is a more difficult process.
Anindex hole is used to determine the position of the diskette. It
is located just to the right of the large hole in the middle of the
5% inch diskette.

The index hole, as shown in Illustration 7-1, is a hole only in the
diskette’s protective covering. Another index hole is located on
the actual diskette surface inside the cover. As the diskette spins,
the index hole on the diskette surtace passes underneath the
hole in the protective cover.

274 T1-99/4A User’s Handbook

A light source inside the disk drive shines light onto the area of
the diskette containing the index hole. When an index hole on
the disk surface is aligned with the index hole on the protective
cover the light will shine through to a sensor. The sensor will
relay information on the location of the index hole, which can be
used to calculate the various sector locations.

This method of locating sectors is called soft sectoring. Although
the Tl disk drives use soft sectored diskettes, some computers
use a similar system called hard sectoring. Hard sectored
diskettes have more than one index hole.

Single and Double Sided Diskettes

Some floppy diskettes are designed to be written on only one
side. These are known as single sided (SS) diskettes.

Diskettes which are designed to be written on both sides are
known as double sided (DS) diskettes.

Single, Double, and Quad Density Diskettes

Density refers to a diskette’s recording format, which in turn
affects its capacity. Single density 5% inch diskettes have roughly
95K of capacity, double density 5% inch diskettes have a capacity
of about 150-200K, and quad density 5% inch diskettes have a
capacity of up to 370K.

The TI disk drives use single sided, single density or double
density diskettes. A small amount of the storage capacity of each
diskette is reserved for the operations of the disk drives. The
available storage capacity of each diskette is 90K.

Diskette Write Protection

Diskettes have a notch on the side of their protective envelope
that determines whether or not data can be written onto that
diskette. On 8 inch diskettes, this notch is known as a write-
protect notch. On 5% inch diskettes, it is known as a write-
enable notch.

The TI 1250 & 1850 Disk Drives 275

On an 8 inch diskette, information cannot be written onto the
diskette unless this notch has been covered. On 5% inch
diskettes, information cannot be written onto the diskette unless
the notch is left uncovered.

Some 5% inch diskettes may be permanently write protected if
their protective envelope does not contain a notch. Any 5% inch
diskette with a notch can be write protected by merely covering
the notch with a piece of tape as shown in lllustration 7-3.

lllustration 7-3. Write Protecting a 5% Inch Diskette

The main portion of this chapter is dedicated to the use of a
single disk drive with the TI-99/4A computer system. However,
all of this explanation applies to the use of several disk drives as
well.

Powering On

In order for a disk drive to be used with the computer system, the
Disk Controller must be powered on before the computer
console is powered on. Generally, the best technique is to power
onall of the peripheral equipment, then power on the computer
console last.

276 T1-99/4A User’s Handbook

Inserting a Diskette

Before a diskette can be inserted in a disk drive, the drive door
must be open. If the drive door is not open already, press the
rectangular button to release the door latch. Do not attempt to
force the door open, it should spring open automatically.

Insert a diskette into the disk drive as pictured in lllustration 7-4.

llustration 7-4. Inserting a Diskette

Notice that the write-enable notch is at the top of the diskette,
and the head access slot is forward. Once a diskette has been
inserted in the drive, close the drive door by sliding it to the left.
If the diskette interferes with the closing of the door, the diskette
has not been inserted properly.

Toremove adiskette, simply press the door latch release button.
This causes the drive door to open, and the diskette to be
partially ejected.

File Storage

When programs or data are output to a disk file, the file must be
given a name. Valid file names must contain 10 characters or less,

The T1 1250 & 1850 Disk Drives 277

and consist of uppercase characters and numbers. The following
special symbols can also be used in a file name.

1#$% & ()*+-/:;{=> 1@[/]A-

File names are used to distinguish the files that are recorded on a
diskette. As a result, two files cannot exist on the same diskette
with the same file name. If a file is saved with a file name that
already exists on a specific diskette, the file that was recorded
earlier will be erased and the new file will be saved.

Diskette files belong to two broad catagories: programs and
data. Program files can contain only one BASIC program and
data files can contain only data. Data and programs cannot be
combined in asingle file. The way in which these files are created
is discussed in a later section of this chapter. This topic is
deferred until the way in which the files are manipulated is
discussed.

THE DISK MANAGER

The Disk Manager is a command module that is used to perform
special functions of the disk memory system. These functions
include initializing diskettes, deleting files and generating
backup diskettes. The Disk Manager is easy to use because each
function can be selected from a list of choices that are displayed
on the screen. A list of selections of this type is called a menu.

When the Disk Manager Command module is inserted in the
command module slot in the console, the master selection menu
appears as follows.

Q{\[Z‘? TEXAS INSTRUMENTS \

HOME COMPUTER

PRESS

1 FOR TI BASIC

2 FOR “DISK MANAGER”

3 FOR “DISKETTEN-MANAGER”

QFOR “GESTION DE DISQUES” /

278 T1-99/4A User’s Handbook

Selection number 2 from this menu activates the disk manager. A
title display appears for several seconds when this selection is
chosen. Each menu that appears after this display requires that
the proper selection be made and the proper data entered. The
Enter key must be pressed after each response is entered.

Usually, when the computer requires a selection, a value appears
at the location of the cursor. If the desired selection is the same
as the value that s displayed, simply press the Enter key to make a
selection. The values that automatically appear are called default
values.

When a set of selections are chosen from a menu, the following
prompt may appear at the bottom of the display.

PRESS: PROC’D, REDO,
BEGIN, OR BACK

The four commands correspond to the numbered keys (5, 6, 8
and 9) on the keyboard when they are used with the FCTN key.
Bessure to hold the FCTN key down while striking the appropriate
numbered key.

The PROC’D command causes the selected procedure to be
performed. If all of the selections from the menu are correct, the
PROC’D command is used to proceed with the specified function
or repeat the previous function.

The REDO command causes the menu to be redisplayed so a
different set of selections can be made. This command is usually
chosen when a mistake is made in a menu selection.

The BEGIN command causes the main Disk Manager menu to be
displayed. This command effectively returns the Disk Manager
to its initial condition.

The T1 1250 & 1850 Disk Drives 279

The BACK command causes the previous menu to be displayed.
This command should be chosen when it is desirable to return to
a previous level, but not all the way back to the main selection
menu. The main selection list appears as follows.

DISK MANAGER

1 FILE COMMANDS

2 DISK COMMANDS

3 DISK TESTS

4 SET ALL COMMANDS FOR
SINGLE DISK PROCESSING

The most useful categories of commands are the file commands
and disk commands. The file commands are used to manipulate
the individual files on a diskette, and the disk commands deal
with an entire diskette.

The disk tests commands are not as useful as the first two
categories and they are rarely used. The last selection on the
main Disk Manager menu is used to inform the Disk Manager
thatonly one disk drive is being used with the computer system.

When the Disk Manager is in use, it is often necessary to specify
the disk drive that contains the diskette for which the function
should be performed. However, when the Single Disk Processing
selection is chosen, it is no longer necessary to specify the
desired disk drive.

File Commands
The individual file commands are named as follows.

COPY FILE

RENAME FILE

DELETE FILE

MODIFY FILE PROTECTION

280 T1-99/4A User’s Handbook

As would be expected, the Copy File command is used to
duplicate a program or data file. When this command is
executed, the operator is asked to specify the disk drive that
contains the master copy of the file to be copied. Next, the file
name of the master file must be specified. The final two
specifications that must be included are the disk drive number
where the new copy should be located, and the file name that
the newly copied file will have.

When all of the correct entries have been specified, press FCTN-
6 (PROC’D) to begin the copying procedure. If an error was
made in the specifications of the parameters, press FCTN-8
(REDO) to repeat the Copy File questionnaire.

The Single Disk Processing selection from the Disk Manager
menu causes the Copy File procedure to be altered slightly. The
Disk Manager assumes that only one disk drive is in use. As a
result, Disk Drive number 1is considered to be the master as well
as the copy disk drive. To allow a single disk drive to be used to
copy files on separate diskettes, the Single Disk Processing
selection allows diskettes to be swapped during the copy
procedure. A list of prompts are displayed to aid the operator
through the disk swapping procedure. After each step, press
FCTN-6 to continue the procedure.

The Rename File command is used to change the name of a
program or data file. This command requires that the disk drive
number, old file name and new file name be specified. In the
Single Disk Processing mode, the disk drive number is assumed
to be one. When all of the prompts have been given appropriate
responses, press FCTN-6 to execute the command.

The Delete File command can be executed in either of two

modes. When this command has been selected, the first prompt
will appear as follows.

SELECTIVE (Y/N)?

The Tl 1250 & 1850 Disk Drives 281

If the response to this prompt was N, the disk drive number and
the name of the file to be deleted must be specified. If the
response to the prompt was Y, each file that is located on the
specified disk drive will be listed by file name. Each file will be
listed individually, and the following prompt will be displayed.

DELETE (Y/N)?

When this prompt appears, the operator will have the
opportunity to either delete the listed files or continue with the
procedure. Each time the response to the prompt is “N”,
another file name will be presented and the DELETE prompt will
be repeated. Each time the response to the prompt is “Y”, the
indicated file will be deleted and the next file name will be
presented along with the DELETE prompt. The command will
automatically end when the list of file names has been exhausted.

When the Delete File (or any other) command is executed with
the Single Disk Processing in effect, the disk drive number does
not need to be specified.

The last command in the category of File Commands is the
Modify File Protection command. Important files that are stored
on a diskette may be designated as such by the “protected”
status.* Protected files cannot be deleted or renamed unless the
protected status has been overridden.

When the Modify File Protection command is executed, the disk
drive number must be specified. The name of a file must also be
specified. When this step has been completed, the following
prompt will appear.

PROTECT (Y/N)?

*This status should not be confused with the keyword
PROTECTED used in Extended BASIC. This is not the same type
of protection.

282 TI1-99/4A User’s Handbook

The selection made in response to this prompt will determine
the status of a file until it has been changed again with this
command.

When a file is copied, the status of the original file will be
transferred to the new file as well. For example, if DATA is the
name of a protected file on one diskette, and it is copied on
another diskette with the name RESULTS, the new file (RESULTS)
will be protected as well.

Disk Commands

The Disk Commands are used to perform procedures that affect
an entire diskette. The four Disk Commands have the following
names.

CATALOG DISK
BACKUP DISK
MODIFY DISK NAME
INITIALIZE NEW DISK

The Catalog Disk command is used to display a list of all the files
on a diskette, When this command is executed, the disk drive
number must be specified unless the Single Disk Processing
mode is in effect.

The next prompt that appears indicates that the list of files can be
output to the display thermal printer, RS-232 interface or some
other device. Once the device selection has been chosen, the
procedure will be ready to begin.

When FCTN-6 (PROC’D) is entered, the list of file names, types
of files, file lengths and file protection status will be output. Also,
the number of sectors in use and the number of available sectors
will be indicated.

The Backup Disk command is used to make a second copy of the
contents of a diskette. When the Backup Disk command is
executed, a prompt will appear on the display as follows.

SELECTIVE (Y/N)?

The T1 1250 & 1850 Disk Drives 283

This selection will determine whether an entire diskette is to be
copied, or only individual files. If the response to this prompt is
“Y”, each file name will be listed individually, along with its
length, type and protection status. The following prompt will
then appear on the display.

COPY FILE (Y/N)?

The response to this prompt will determine whether the file is to
be copied. After each response, the next file name will be
displayed along with the file parameters.

The COPY FILE will be displayed repeatedly until the entire list of
file names has been exhausted.

If the reply to the SELECTIVE prompt was “N”, the entire
contents of the diskette will be duplicated. This procedure is
simple if two or more disk drives are in use. In this case, simply
specify the disk drive number that contains the master diskette
and enter the disk drive number that contains the backup
diskette.

Unfortunately, the Backup Disk procedure is rather inconvenient
when a single disk drive is in use. In this case the Single Disk
Processing mode must be in effect. Each time a file is copied, the
master diskette and backup diskettes must be swapped. A series
of prompts will be displayed to guide the user through the
procedure. However, if several files need to be duplicated, this
procedure may become tedious and time consuming.

The third command in the category of Disk Commands is the
Modify Disk Name command. This command is used to change
the name that was assigned to a diskette. The diskette name is
merely a means of identifying the diskette.

When this command is executed, the disk drive number must be
specified. The current name of the diskette will be displayed as
well as a prompt that indicates that a new diskette name should
be entered. When FCTN-6 (PROC’D) is typed, the name of the
diskette will be changed.

284 T1-99/4A User’s Handbook

The Initialize command is the most important Disk Manager
command because diskettes cannot be used until they have
been initialized. As a result, the Initialize command must be used
before any other disk operations can be performed.

When this command is executed, the disk drive number must be
specified if the Single Diskette Processing mode is not in effect.
The next message will indicate the current name of the diskette,
or willindicate that the diskette has not been initialized and does
not have a name. At this point, a new diskette name must be
specified. The next prompt will appear as follows.

40 TRACKS (Y/N)?

A “Y” response to this prompt will cause 40 tracks of 9 sectors
each to be arranged on the diskette. If the response to this
promptwas “N”’, the diskette will be arranged in 35 tracks. Since
40 tracks allow the storage of more data, it is generally advisable
to use the 40 track format.

The initializing procedure includes a process that verifies the
condition of the diskette. As each sector is examined, the
number of the sector will be displayed. If a problem occurs, a
message will be displayed on the screen. If such a problem
occurs, the initialization should be repeated. If the problem
persists, the diskette should not be used.

When the initialization has been completed, the total number of
available sectors will be displayed. It should be noted that the
initialization procedure eliminates all of the information that
may have been stored on a diskette before it had been
initialized. Fortunately, a diskette only needs to be initialized
once before it is used for the first time.

Disk Tests
There are two types of tests that can be performed for the Disk

Memory System: quick tests and comprehensive tests. Quick
tests are performed to determine the condition of a diskette. The

The T1 1250 & 1850 Disk Drives 285

comprehensive tests are performed to determine the condition
of the entire Disk Memory System, including the Disk Controller
and Disk Drive as well as the diskette.

A disk test can be either destructive or non-destructive. A
destructive test is a procedure that eliminates all of the infor-
mation on a diskette. This type of test is usually performed with
new diskettes to be sure that they are not damaged.

A non-destructive test does not eliminate any of the information
stored on the diskette. As a result, this type of test is generally
more useful.

When the Disk Test selection is chosen from the Disk Manager
Menu, the following two selections will appear on the display.

1 QUICK TEST
2 COMPREHENSIVE TEST

The Quick test can be chosen at any time, regardless of the
condition of the diskette. The first prompt that appears on the
display requests the type of test to be performed. If a non-
destructive test is desired, enter “N”. However, if the diskette
has not been initialized, the destructive test must be selected.

If the diskette had not been initialized previously, a prompt will
request information concerning the number of tracks on the
diskette and the number of the drive containing the diskette. A
subsequent prompt will be displayed to determine whether the
test should be performed repeatedly or only once. The final
prompt will be used to select a device that can be used to record
any errors detected during the test.

When a complete set of selections have been made, press FCTN-
6 (PROC’D) to begin the test procedure. Press FCTN-4 (CLEAR) if
the test needs to be stopped at any point.

286 T1-99/4A User’s Handbook

A quick test requires only a few minutes to be executed, but a
comprehensive test requires about 15 minutes to be completed.
Also, a comprehensive test is always destructive. Since this test
requires so much time to be completed, it is used only
infrequently.

The information required to perform a comprehensive test will
be presented with a set of prompts in a similar manner to the
quick test.

SAVING AND LOADING PROGRAMS

There are two BASIC commands that are commonly used to save
and load programs. These commands are SAVE and OLD. The
SAVE command is used when programs are to be stored, and the
OLD command is used to recover previously stored programs.

SAVE

When the SAVE command is used to store a program, the
command must include a device name as well as a file name.
Appropriate device names include DSK1, DSK2 and DSK3. Only
the lower number device names may be used if fewer than three
disk drives are in use.

The Disk Memory System must be powered on and ready to
operate when the SAVE command is executed.

The SAVE command stores the program that currently resides.in
the computer’s memory in a disk file with the specified name. If a
file already exists on the specified diskette with the specified file
name, the old file will be erased and the new file will be stored in
its place.

The following example commands demonstrate the technique
used to save programs in disk files.

SAVE DSK1. PROGRAM
SAVE DSK2. SORT
SAVE DSK1. FORECAST

The T1 1250 & 1850 Disk Drives 287

Before attempting to save a program in a diskette file, be sure
that the diskette has been initialized. The initialization procedure
can be performed by the Disk Manager Disk Command number
4,

The SAVE command cannot be used unless a program actually
exists in the computer’s memory. If no program is present, a
CAN’'T DO THAT error will occur.

OLD

The OLD command is used to recover programs that had
previously been saved. Whenever a program is loaded into the
computer’s memory by means of an OLD command, any
program that may have previously been present in the com-
puter’s will be erased.

When the OLD command is used to recover a program, the
command must include a device name as well as a file name.
Appropriate device names include DSK1, DSK2 and DSK3. Only
the lower number device names may be used if fewer than three
disk drives are in use.

The Disk Memory System must be powered on and ready to
operate when the OLD command is executed.

The following example commands demonstrate the techniques
used to recover programs from disk files.

OLD DSK1. PROGRAM
OLD DSK2. SORT
OLD DSK1. FORECAST

Any attempt made to load a program that has not been saved on
a diskette will result in DISK ERROR 57.

288 T1-99/4A User’s Handbook

SAVING DATA

The TI Disk Drives are not restricted to saving and loading
programs. They can also be used to save data. Any string or
numeric values that need to be saved can be recorded and
retrieved with a disk drive.

There are 4 BASIC commands that are used to store and retrieve
data. These statements are OPEN, CLOSE, PRINT# and INPUT#.

TYPES OF DATA FILES

A data file is merely a collection of records, and a record is a
collection of data items. The records in a data file can be
arranged in one of two ways.

A sequential file is a collection of records in which each record
can only be accessed in the order in which it was written. In other
words, the records are written to the file in a specific order, and
they can only be accessed in the same order. The records in a

cassette tape data file are an excellent example of a sequential
file.

A relative file is a collection of records in which each record can
be accessed individually and in any order. Unfortunately, the
added convenience of a relative file is counteracted by a
reduced efficiency in the use of disk storage space.

Relative files cannot be used unless each record is the same
length. However, sequential files can vary in length, as long as an
upper limit is not exceeded. Since data items are usually not
uniform in length, relative files usually result in a great deal of
wasted memory space because the data file contains a large
number of records, very few of which are fully occupied.

On the other hand, sequential files can be created so each
record is only as long as the data that needs to be stored in that
record. This technique results in a much more efficient use of
disk memory space.

The T1 1250 & 1850 Disk Drives 289

OPEN

Before data can be output to any external device, an OPEN
statement must be executed. The OPEN statement must include
the information that is required to establish communication
between the computer and the external device.

A tilenumber is a parameter that is used to specity a particular
channel of communication between the computer and a partic-
ular device. It is necessary to use a filenumber because several
ditterent peripheral devices may be in use at the same time, or
the same device may be used for several tunctions simultane-
ously. To avoid contusion, each input or output operation ot the
computer must be assigned a unique number.

Thetilenumber must be an integer trom 1 to 128, and must be the
tirst parameter in an OPEN statement. Any subsequent PRINT#,
INPUT# or CLOSE statement must include the specitied tile-
number,

An OPEN statement must also include several additional para-
meters to specify the exact nature of the transfer of data, as well
as the format of the data file.

As mentioned earlier, there are primarily two types of data files:
relative and sequential. The keyword RELATIVE is used in an
OPEN statement to specify a relative file. Similarly, the keyword
SEQUENTIAL specifies a sequential file. With all disk data files
the keyword INTERNAL should also be specified. This parameter
specifies a compact means of storing the data that uses the
storage space most effectively.

Sequential files can be opened for either INPUT, OUTPUT, or a
special function called APPEND. The keyword INPUT refers to
the situation in which data is being retrieved from a file. The
keyword OUTPUT is used when data is sent to a new file. The
APPEND function is used when it is necessary to add additional
records to the end of a sequential file.

290 T1-99/4A User’s Handbook

An OPEN statement also requires a parameter that specifies the
length of each record in the file. Since the nature of sequential
files requires variable length records, the keyword VARIABLE
should be used with all sequential files.

Relative files can be opened for either INPUT, OUTPUT or a
special function called UPDATE. The keyword INPUT once again
refers to the situation in which data is being retrieved from afile.
The keyword OUTPUT is used when data is to be sent to a new
file.

The UPDATE function is used when it is necessary to change the
data stored in a record within the file. The structure of relative
files requires that each record be the same length. As a result, the
keyword FIXED must be included in an OPEN statement for a
relative file.

If a record length is not specified, each record in a relative disk
file will be 80 characters long. If a smaller record length is
desired, the record length can be specified immediately after the
FIXED parameter. The following example statements depict the
correct format of OPEN statements.

OPEN#4: “DSK1. RESULTS”, OUTPUT, SEQUENTIAL, VARIABLE,
INTERNAL

OPEN #7: “DSK2. DATA”, OUTPUT, RELATIVE, FIXED 50,
INTERNAL

OPEN #4: “DSK1. RESULTS”, APPEND, SEQUENTIAL, VARIABLE,
INTERNAL

OPEN #7: “DSK2. DATA"”, UPDATE, RELATIVE, FIXED 50,
INTERNAL

OPEN #4: “DSK1. RESULTS”, INPUT, SEQUENTIAL, VARIABLE,
INTERNAL

OPEN #7: “DSK1. DATA”, INPUT, RELATIVE, FIXED 50,
INTERNAL

The T1 1250 & 1850 Disk Drives 291

CLOSE

A CLOSE statement is used to eliminate a channel that had been
previously established for an input or output operation. A
CLOSE statement does not require any parameters other than
the tilenumber.

A CLOSE statement is not always required since each input or
output channel will be automatically closed when the program
ends. However, it is a good programming practice to close each
channel that has been opened in a program.

A typical CLOSE statement would have the following structure.
CLOSE #1

A CLOSE statement can include the keyword DELETE. This state-
ment causes the data tile that is being closed to be deleted as
well. Besure to include a colon after the tilenumber, as depicted
below.

CLOSE #1: DELETE
DELETE
A DELETE statement is used to delete files from a diskette. The
only parameters required for a DELETE statement are an appro-
priate device name and file name. As a result, a typical DELETE
statement would appear as follows.

DELETE “DSK1. OUTPUT”

A disk error will occur if a DELETE statement specifies a
nonexistant device.

PRINT#

A PRINT# statement is used to output data to a diskette data file.
The format for this statement, is basically the same as the PRINT

292 TI-99/4A User’s Handbook

statement, except tor the filenumber. Each PRINT# statement
must include a filenumber, followed by a colon. The values that
tollow the colon will be output to the specified tile.

For example, the following PRINT# statement would cause the
values of the variables A$, B$ and C$ to be output to a data file

PRINT# 1: A$, B$, C$

When data is output to a file, the data items in the PRINT#
statement should be separated by commas.

The data is output in sections called records. A record is merely a
section of the diskette that is used to store one or more data
items. Each PRINT# statement outputs exactly one record.

For diskette files, each record will be 80 characters long unless a
smaller number was specified in the corresponding OPEN
statement. As a result, the data being sent to the data file cannot
exceed a total of 80 characters.

The length of a string value is the total number of characters in
that string. Letters, numbers, spaces and punctuation marks all
contribute to the length of a string value. Each numeric value has
the equivalent length of an 8 character string value.

One space of the data record must be used to separate the
individual values. These spaces must also be considered when
record lengths are determined. As a result, the total number of
characters in the record can be calculated as follows.

Total number of variables
Total number of characters in string values
+ Eight characters for each numeric value

Total record length.
Writing to Sequential Files

Sequential files contain a set of records that are recorded one
after the other, in a specific order. As a result, the records do not

The Tl 1250 & 1850 Disk Drives 293

need to be of uniform length. The keyword VARIABLE should be
included in the OPEN statement that corresponds to the
particular file.

Since the records of a sequential file are automatically stored
with the correct length, the record length is of no concern to the
programmer as long as the maximum length of 80 characters is
not exceeded. A typical PRINT# statement for a sequential file
would appear as follows.

PRINT #1: A, B, C$
Writing to Relative Files

Since the records of a relative file can be accessed in any order, a
PRINT# statement for this type of file must specify the number of
the record that is to receive the data. The REC statement in a
PRINT# statement performs this function. A REC statement must
be included atter the tilenumber, but betore the data items in a
PRINT# statement. The tollowing example statement portrays
the typical structure ot a PRINT# statement tor a relative file.

PRINT #1, REC 4: A3, B$, C$

The example statement would cause the values of the variables
A$, B$, and C$ to be output to record number 4 of the file
opened for channel number 1. Keep in mind that the first record
in a relative file is record number zero.

The nature of relative files requires that the records in a file be of
uniform length. As a result, the most efficient use of diskette
storage area requires the minimum record length. However, the
records must all be long enough to accomodate the amount of
data that appears in the longest record of the file. The FIXED
statement thatappears in every OPEN statement for a relative file
may be followed by any value less than or equal to 80. This value
determines the length of every record in the entire file.

294 T1-99/4A User’s Handbook

INPUT#

An INPUT# statement is used to retrieve data from a diskette data
file. The format for this statement is basically the same as the
INPUT statement, except tor the tilenumber. Each INPUT# must
include a tilenumber tollowed by a colon. The variables speci-
fied in the INPUT# statement are assigned values that have pre-
viously been stored in a data file.

For example, the following INPUT# statement would cause
values to be input for the variables X$, Y$, and Z$.

INPUT #1: X$, Y$, Z$

The variables specified in an INPUT# statement must be separ-
ated by commas.

Data is stored in a data file as a collection of records. Each record
in the file has a specific format. The type of datain each record is
determined by the structure of the PRINT# statement that was
used to output the data. For example, if a PRINT# statement
outputs two string values followed by two numeric values, these
values are recorded in a specific order in a specific record.

As a result, the data in the field can only be recovered by an

INPUT# statement that has the same structure. This principle is
demonstrated in lllustration 7-5.

Hlustration 7-5. Corresponding PRINT#/INPUT# Formats

output statement corresponding input statement
PRINT #1: A$ INPUT #4: X$
PRINT #27: A%, B$,C,D INPUT #3: L$, M$, N, O
PRINT #1: A,8,C,D INPUT #1: A,B,C,D
PRINT #4: A, B$, C INPUT #6: X, X$, Y

The TI 1250 & 1850 Disk Drives 295

There are several important considerations in the use of PRINT#
and INPUT# statements. The most important detail is the fact that
each corresponding pair of PRINT# and INPUT# statements must
have the same number of variables. String variables must
correspond to string values and numeric variables must corre-
spond to numeric values.

The actual names of the variables do not have to be exactly the
same in a corresponding pair of statements. The only require-
ment is that the types of variables must be consistent. Similarly,
the tilenumbers in corresponding statements do not have to be
the same, although this is often the case.

Reading from Sequential Files

INPUT# statements are used to recover data from a diskette file
in sequential order. The data is assigned to the variables that are
listed in the INPUT# statement. The data must be input in exactly
the same order in which it was recorded.

An INPUT# statement must include exactly the same number
and type of variables as the corresponding PRINT# statement.

Reading from Relative Files

The data stored in relative files can be accessed in any order. As a
result, a record number can be specified when an INPUT#
statement is used with relative files. The keyword REC can be
included in the INPUT# statement immediately after the file-
number.

An INPUT# statement can be used with relative files without a
record number. However, if no record was specified, the data
will be taken from the record immediately after the one that had
been accessed previously. As a result, data can be recovered
from a relative file in a sequential style if no record numbers are
specified. The following two example statements demonstrate
the format of typical INPUT# statements.

INPUT #1,REC 2: A, B, C
INPUT #1: A, B, C

296 T1-99/4A User’s Handbook

The EOF Function

The EOF function returns a numeric value that indicates if the
end of a file has been reached. This function requires an argu-
ment that corresponds to the tilenumber of a diskette data file. A
typical program statement that uses the EOF function would
appear as tollows.

PRINT EOF (1)

The EOF function is used most often when sequential files are
used as the input to a program. If the end of the file has not been
reached, the function will return a zero value. If a problem arises
that does not allow the input process to continue, the function
will return a value of -1. If the end of a file has been reached by
the normal exhaustion of data, the function will return a value of
1.

Recall that an IF, THEN statement considers any non-zero value
to be a true condition. As a result, a statement with the following
format can be used to branch the execution of a program when
the end of a file has been reached.

{F EOF (1) THEN 450
The RESTORE Statement

A RESTORE statement can be used to alter the order in which the
records in a sequential file are accessed. Normally, the records in
a sequential file are accessed from the first record in the file to
the last. However, a RESTORE statement causes the first record in
the file to be accessed again. In other words, a RESTORE
statement has the same effect as closing a file and reopening it
again. A RESTORE statement must always contain the filenumber
that corresponds to a diskette data file. The following statement
demonstrates the format of a typical RESTORE statement for a
sequential file.

RESTORE #1

The T1 1250 & 1850 Disk Drives 297

A RESTORE statement can be used with relative files in a similar
manner. However, this statement is only of limited use since the
records in a relative file can always be accessed in any order.
When used with a relative file, a RESTORE statement may include
a REC statement that specifies a particular record in a file. As a
result, the next record accessed in the file will correspond to the
record number specified in the RESTORE statement. The follow-
ing example statement demonstrates a typical RESTORE stat-
ement for a relative file.

RESTORE #1, 27

Sequential Data File Example

An example program is included here in order to present the
techniques used to create and use a data file. This example
includes a sequential file arranged in a possible format for a parts
order form.

10 OPEN #1: “DSK1. ORDER”, OUTPUT, SEQUENTIAL,
INTERNAL, VARIABLE

20 CALL CLEAR

30 INPUT “DESCRIPTION?":D$

40 INPUT “PART NUMBER?”:P

50 INPUT “QUANTITY?”:Q

60 PRINT #1:D$, P, Q

70 INPUT “ENTER S TO STOP”: S$

80 IF S$ <> *'S” THEN 20

90 CLOSE #1

100 INPUT “ENTER R TO REVIEW”: R$

110 IF R$ <> "R THEN 200

120 CALL CLEAR

130 PRINT “PARTS ORDER”:::

140 OPEN #1: “DSK1. ORDER”, INPUT, SEQUENTIAL,

INTERNAL, VARIABLE

150 INPUT #1: A$, B, C

160 PRINT A$, B; C

170 IF EOF (1) THEN 190

180 GOTO 150

190 CLOSE #1

200 END

298 TI1-99/4A User’s Handbook

The program has two major parts; one for writing data to a file
and one for recovering the data. The first part begins with an
OPEN statement that assigns filenumber 1 to the data file DSK1.
ORDER. The prefix DSK1 indicates that the files should be
created on the diskette in disk drive number 1. The OPEN state-
ment also specifies that the tile will be written in a sequential
tashion with variable length records.

The program proceeds with three INPUT statements that present
prompt messages on the display and accept data entered at the
keyboard. A PRINT# statement is used to write the three data
items in a single record of the file. An additional INPUT
statement is included to determine the end of the list of data. In
order to stop the data entry routine, the letter S must be entered
in response to the prompt. If any entry other than S is made the
program will request additional data.

The second part of the program begins with an INPUT message
that asks if the contents of the file need to be reviewed. If the
response to this prompt is anything other than the letter R, the
program will branch to the end of the program. If R was entered,
the data file DSK1. ORDER will be opened once again. However,
the file will be opened for input rather than output. Notice that
the file’s other parameters will match those identitied in the
initial tile access.

Before the contents of the file are read, the display will be
cleared and the message “PARTS ORDER” displayed. Once the
file has been opened, an INPUT# statement will be repeated
until the end of the file has been detected. Notice that the
number of variables and type of variables in the INPUT statement
corresponds exactly to the PRINT# statement in the first part of
the program. When the data in the file has been exhausted, the
file will be closed and the program will end.

The records of a sequential file cannot be altered once the file
has been created. However, additional records can be added to
the end of the file if the APPEND operation was used. When an
OPEN statement is used to reopen a sequential file, the para-

The TI 1250 & 1850 Disk Drives 299

meters of the file must once again be exactly the same. The
following example statement could be used to reopen the file
DSK1. ORDER.

OPEN #1: “DSK1.ORDER”, APPEND, SEQUENTIAL, INTERNAL,
VARIABLE

Relative Data File Example

The following example program demonstrates a technique that
can be used to create and maintain a relative file.

10 OPEN #1: “DSK1. DATA”, UPDATE, RELATIVE, FIXED,
INTERNAL

20 CALL CLEAR

30 X=X+1

40 INPUT “NAME:"”:N$

50 INPUT “ADDRESS:”’:A$

60 INPUT “CITY:”":C$

70 INPUT “STATE:”:S$

80 PRINT #1, REC 0:X

90 PRINT #1, REC X:N$, A$, C$, S

100 INPUT “ENTER S TO STOP”’: STOP$

110 IF STOP$ = ““S” THEN 130

120 GOTO 20

130 CLOSE #1

140 INPUT “ENTER L TO LIST NAMES”:L$

150 IF L$ <> “L” THEN 240

160 CALL CLEAR

170 OPEN #1: “DSK1. DATA”, INPUT, RELATIVE, FIXED,

INTERNAL

180 INPUT #1, REC O:X

190 FORN=1TO X

200 INPUT #1: A%, B$, C$, D%

210 PRINT A$: B$: C$: D$:::

220 NEXT N

230 CLOSE #1

240 END

300 T1-99/4A User’s Handbook

The preceeding example program is divided into two parts. The
first part creates the data file and allows data to be entered into
the file. The second part allows the data to be recalled and
displayed on the screen.

The program begins by opening filenumber 1 for the disk data
file DSK1.DATA. Data can be written to the tile as well as read
because the file is a relative file opened for the UPDATE
operation.

The variable X in this program is used to keep track of the current
record number in the file. As a result, the value of X must be
increased each time a new record is added to the file. Record
number zero in the data file is used to store the number of
records that are contained in the file.

The input routine in the first part of the program provides
prompts and accepts four values to be stored in each record.
When all four values have been entered, the current record
number will be stored in record number zero, and the data will
be stored in the next available record. An additional INPUT
statement was included to allow the user to end the input
routine.

When the input routine has been completed, the data can be
recovered from the file by entering the letter Lin response to the
“LIST NAMES” prompt.

Inorder to recover the data, the file must be opened once again.
The same file parameters must be specified each time a file is
opened. Record number zero must be read first in order to
determine the total number of records in the file. When this
value has been determined, a FOR, NEXT loop will be estab-
lished to read the data from the file. An INPUT# statement within
the loop will be used to read the four values from each record of
the file.

The loop will be repeated until each record in the file has been
read and displayed. When this procedure has been completed,
the file will be closed and the program will end.

The T1 1250 & 1850 Disk Drives 301

CALL FILES

Each file that is opened for input or output to the computer will
consume a portion of the computer’s memory. As a result, Tl
BASIC imposes a limit of 3 files that can be simultaneously open.

If it becomes necessary to use more than 3 files, the CALL FILES
statement can be used to extend the limit to any number less
than 10. A CALL FILES statement must be executed in the
immediate mode, followed by the NEW command. A CALL FILES
statement must not be used as a statement in a program.

The following two statements demonstrate the technique used
to allow 5 files to be simultaneously open in a program.

CALL FILES (5)
NEW

Extended BASIC Features

Extended BASIC allows the use of a LINPUT# statement to input
an entire record of a file. Unfortunately, this statement can only
be used with files that had been recorded with the DISPLAY
format rather than INTERNAL. With relative files, a LINPUT#
statement can include a REC statement in order to specify a
particular record within a file. The following two example
statements depict the two formats of a LINPUT# statement.

LINPUT #1, REC 27:A$%
LINPUT #1:A%

A LINPUT# statement can only include a single string variable
name since the entire record will be returned as one value.

Extended BASIC also allows the use of the REC function. This
function returns the number that corresponds to the record that
will be accessed next in a relative file. In other words, the REC
function returns a value that is one greater than the number of
the current record.

302 TI-99/4A User’s Handbook

The REC tunction requires an argument that corresponds to the
filenumber ot a currently opened data file.

CHAPTER 8. THE TI-99/4A PRINTER

The T1-99/4 printer (model PHP 2500) allows its user to output
programs and data using virtually any standard computer form.
This printer includes a number of useful features--including
graphics capabilities and a variety of type styles that allow data to
be output in any one of several different formats.

The computer can send data to the printer in one of two modes.
These two modes are commonly called serial and parallel.
Regardless of the mode, the printer must be used with an RS232
interface module. The T1-99/4 printer is most commonly used in
the serial mode.

Early models of the RS232 interface module do not have a
parallel output. As aresult, the printer must be used in the serial
mode with this style of interface module.

New models of the RS232 interface have both serial and parallel
output. This type of interface is installed in the Peripheral
Expansion box.

The cable supplied with the printer allows it to be used in the
serial mode. The printer can only be used in the parallel mode if
a special cable is purchased.

304 T1-99/4A User’s Handbook

Installation

Carefully follow the installation instructions that appear in the
printer manual. These instructions provide a complete guide to
the installation of the printer.

When the installation is complete, be sure to test the printer by
holding down the LF button and turning the printer’s power on.
If the results of the test are satisfactory, and the printer is
properly installed, the printer is ready to be operated.

The remainder of this chapter is presented in three sections. The
first section deals with the BASIC commands that can be used to
list programs and output data to the printer. The second section
is dedicated to the special printer commands that control the
special functions of the printer. The final section of this chapter
provides an explanation of the techniques used to generate
graphics with the printer.

Listing Programs

The LIST command can be used to output a copy of the program
that is currently stored in the computer’s memory.

Since the printer is connected to the RS232 interface, the LIST
command requires the device name ““RS232” to cause the output
to be sent to the printer.

The following example depicts the command that is used to
output the entire program that is stored in the computer’s
memory.

>LIST “RS232”

The LIST command can also be used with line numbers to specify
portions of the program to be output. For example, the
following command would cause program lines 100 through
1000 to be output to the printer.

The TI1-99/4 Printer 305

LIST “RS232”: 100-1000
Outputting Data

A PRINT# statement is most commonly used to output data to the
printer. However, an 1/0 channel must be opened for the
printer before any data can be output.

An OPEN statement is required to open an 1/0 channel. An
OPEN statement for the printer requires a filenumber as well as
the device name “RS232". The filenumber can be any integer
from 1 to 255.

The following statement is a typical OPEN statement that can be
used to establish an 1/0 channel for the printer.

OPEN #7: “RS232”

Any subsequent PRINT# statements in a program that specify
filenumber 7 will cause the output to be sent to the printer.

The following example program demonstrates the use of OPEN
and PRINT# statements to output data to the printer.

10 OPEN #7: “RS232”
20 FOR =1 TO 20

30 PRINT #7:],]A2
40 NEXT |

50 CLOSE #7

60 END

The preceding example program causes the values from 1 to 20
to be output, along with the squares of these values.

PRINT# statements are used in a similar manner to PRINT
statements. The only difference between the two types of
statements lies in the use of the filenumber.

306 T1-99/4A User’s Handbook

When the data values in a PRINT# statement are separated by
commas, the output will be arranged in columns. Six columns of
data can be output on a standard 8%2" paper width.

When the data values in a PRINT# statement are separated by
semicolons, no additional spaces are inserted in the output.
String values are output adjacent to each other, but numeric
values are always preceded and followed by one blank space.

A CLOSE statement is used to prevent access to an 1/0 channel
that was previously opened with an OPEN statement.

A CLOSE statement requires the filenumber of the 1/0 channel
that is no longer needed. CLOSE statements are not always
necessary since all 170 channels are automatically closed when
the program ends. However, it is a good programming practice
to include CLOSE statements that correspond to each OPEN
statement in a program.

Printer Commands

The Ti-99/A printer’s output can be controlled using a variety of
different printer commands.

For example, by outputting certain characters to the printer, the
programmer can vary the typestyle used to output data. Printer
control characters also allow the programmer to set tab stops,
vary the character set, control line spacing, control the form
length, and control the line length. Each of these printer control
commands will be discussed in the next few pages.

These printer control characters can be generated with the
CHRS$ function. For example, character number 13 causes the
printer to return to the beginning of the next line. This is known
as a carriage return. The following example contains a typical
PRINT # statement that generates a carriage return.

The T1-99/4 Printer 307

PRINT #2: CHR$(13)

Many of the special functions of the TI-99/4 printer require more
than one character to be specified. When a special function
requires more than one printer control character, the CHR$
statements should be separated by semicolonsin asingle PRINT#
statement.

For example, the following statement would be used to output
four special characters to the printer.

PRINT #3:CHR$(27); CHR$(76); CHR$(80); CHR$(0)

In the preceding example, the characters CHR$(76) and
CHR$(80) would be output to the printer. The ASCII values 76
and 80 correspond to the letters L and P respectively. As a result,
it was not actually necessary to use the CHR$ function to
generate these two characters.

The following three statements have the same effect as the
previous example statement.

PRINT #3 :CHR$(27); “L”; CHR$(80) ; CHR$(0)
PRINT #3 :CHR$(27); CHR$(76); “P”’; CHR$(0)
PRINT #3 :CHR$(27); “LP”; CHR$(0)

Print Styles

The TI-99/4 printer can output characters in any one of 12
distinct styles. These styles can be controlled by a program
through the use of special printer control characters.

The two fundamental type styles are called standard and
condensed. The standard print style is automatically used when
the printer is first powered on. This style outputs 10 characters
per inch for a total of 80 characters per line.

308 T1-99/4A User’s Handbook

The condensed print style outputs approximately 17 characters
per inch for a total of 132 characters per line. The standard and
condensed print styles cannot be used on the same line of
output.

Either of these fundamental styles can be enlarged to twice their
normal width. As expected, only half as many double width
characters can be output on each line. Both enlarged and normal
width characters can be output on the same line.

The TI-99/4 printer can also be used to output bold characters.
There are two techniques that are used to generate these print
styles: double printing and emphasized print.

When double printing is used, the printer types each character
twice in order to make a darker impression on the paper. The
double printing mode can be used in conjunction with any of
the print styles. Unfortunately, the printer must reduce its rate of
output when the double print mode is used.

Emphasized print is similar in principle to double printing, but
emphasized print does not reduce the speed of the printer. In
the standard output mode (10 characters per inch), emphasized
characters are the same size as non-emphasized characters.
However, in the condensed output mode (17 characters per
inch), emphasized characters are larger. Emphasized condensed
characters are output in the standard character size (10 charac-
ters per inch).

As a result, the T1-99/4 printer can output characters in any of
four sizes. Table 8-1 summarizes the sizes of these four print
styles.

The T1-99/4 Printer 309

Table 8-1. Print Sizes

Style Characters/inch

Condensed 17

Standard or
Emphasized condensed 10

Enlarged condensed 8.5

Enlarged Standard or
Enlarged Emphasized 5
Condensed

Generally, when a print style is selected, it will be in effect for the
entire line of output. However, enlarged characters can be used
at any time without disrupting the entire line of output.

Table 8-2 includes a complete list of the commands used to
activate and deactivate the print styles.

Table 8-2. Print Style Commands

Mode Activate Deactivate
Standard CHR$(18)
Condensed CHR$(15) CHR$(18)
Enlarged CHR$(14) CHR$(20)
Double CHR$(27);“G” CHR$(27);“H”
Emphasized CHR$(27);“E” CHR$(27);“F”

310 T1-99/4A User’s Handbook

The following example program demonstrates the technique
used to output characters in four different sizes.

100 OPEN #1:“RS232"”

200 OPEN #1:CHR$(15);“CONDENSED”
300 PRINT#1:CHR$(27);"E";"EMPHASIZED”
400 PRINT #1:CHR$(27);“F”’;

500 PRINT #1:CHR$(14); ENLARGED”’

600 PRINT #1:CHR$(14); CHRS$(27);“E”
700 PRINT #1:“ENLARGED EMPHASIZED"”
800 CLOSE #1

900 END

Character Sets

The TI1-99/4 printer can use any one of 8 character sets. All 8
character sets are similar to each other, but each one contains
several unique characters. The character sets are commonly
referenced by the country for which the character set is most
appropriate.

The eight character sets are designated by the values 0 through 7
as listed in Table 8-3.

The character set for England contains only one character that
differs from the U.S.A. character set. In the English character set,
the £ symbol is included instead of #. As a result, when the
English character set is in use, the £ symbol is printed each time
the # character is sent to the printer.

In order to select a character set other than character set number
zero, a three character command must be executed. The first
two characters must be CHR$(27) and CHR$(82) respectively.
The third character must correspond to the desired character
set. For example, the following statement could be used to select
the character set for ltaly.

PRINT #1: CHR$(27);CHR$(82); CHR$(6)

The TI1-99/4 Printer 311

Table 8-3. Character Set Values

Country Value
U.S.A. 0
France 1
Germany 2
England 3
Denmark 4
Sweden 5
Italy 6
Spain 7

Tabulation

The T1-99/4 printer allows tab stop locations to be set for the lines
of output as well as for columns. The horizontal tab function
causes the printer to proceed to a specified column location. The
vertical tab function causes the printer to proceed to a specified
line on the page.

The horizontal tab function can be used to set up to 12 tab stop
locations. In order to set the tabs, CHR$(27) and CHR$(68) must
be sent to the printer. Additional characters must be sent to the
printer to specify the tab locations. The last character must be
CHR$(0). Be certain that the tab locations are listed in ascending
order. The following characters can be used to set the tab
locations at column numbers 30, 60 and 70.

CHR$(27); CHR$(68); CHR$(30); CHR$(60); CHR$(70); CHR$(0)

312 TI1-99/4A User’s Handbook

CHR$(9) is the command that causes the printer to proceed to
the next tab stop location. If the CHR$(9) command was exe-
cuted when the printer had passed the last tab stop on a line, the
printer would ignore this command.

The tab function will have no effect when enlarged characters
are being output.

Vertical tabulation is similar in principle to horizontal tabulation.
Vertical tabs correspond to line numbers rather than column
numbers. The first two characters of a vertical tab statement must
be CHR$(27) and CHR$(66). The last character must be CHR$(0).
As many as 8 vertical tab locations can be used at one time.

The following characters can be used to set tab locations at lines
30, 40 and 60. Once again, be certain that the line numbers are
specified in ascending order.

CHR$(27); CHR$(66); CHR$(30); CHR$(40); CHR$(60); CHR$(0)

The CHR$(11) code is used to cause the printer to proceed to the
next predetermined line number. The lines on a page range
from 1 to 66.

In order for the vertical tab function to operate properly, the
paper must be set with the top of the page in the correct
location. This setting must be made before the printer is
powered on.

The following example demonstrates the use of the horizontal
and vertical tab functions. Use the FF key to advance the printer
to the top of the next page before beginning this program.

100 OPEN #1: “RS232”
110 FOR =0 TO 8

120 READ X

130 PRINT #1:CHR$(X);

The T1-99/4 Printer 313

140 NEXT)

150 DATA 27,68, 35,0

160 DATA 27, 66, 33, 65,0

170 PRINT#1:CHR$(9);“TOP CENTER”

180 PRINT#1:CHR$(11);"MIDDLE LEFT”

190 PRINT #1:CHR$(11); CHR$(9);“BOTTOM CENTER”
200 CLOSE #1

The FOR/NEXT loop at lines 120 to 140 is used to send 9 special
characters to the printer. This technique is usually more con-
venient to use than individual CHR$ functions.

The DATA statement at line 150 provides the character codes
that would be used to set a tab stop at column number 35. The
DATA statement at line 160 provides the character codes that will
be used to set tab stops at line numbers 33 and 65.

When the program is executed, the PRINT statement at line 170
will cause the message “TOP CENTER” to be output at the center
of the first line. The PRINT statement at line 180 will cause the
printer paper to advance to the 33rd line of the page. The
message “MIDDLE LEFT” is output at this location. Line 190 will
cause the printer paper to advance to the last line of the page.
The message “BOTTOM CENTER” will be printed in the center
of the last line.

Line Spacing

The line spacing of the printer can be set to either 8 or 6 lines per
inch. When the printer is powered on, the spacing is set to 1/6
inch. The following command can be used to cause narrow line
spacing.

CHR$(27); CHR$(48)

In order to return to wide spacing, execute the following
command.

CHR$(27); CHR$(50)

314 TI1-99/4A User’s Handbook

Form Length

The printer is generally used with paper that is eleven inches
long. However, if a different size paper is used, the printer can be
informed of the new paper length. This allows the form feed and
vertical tabulation functions to operate properly regardless of
the length of the paper.

The following command can be used to specify a form length of
up to 127 lines. The number of lines is represented by X.

CHR$(27); CHR$(67); CHR$(X)
Line Length

The maximum line length can be specified with a three character
code. The first two characters must be CHR$(27) and CHR$(81).
The last character must correspond to the length of the line. For
example, the following command can be used to set a maximum
line length of 40 characters.

CHR$(27); CHR$(81); CHR$(40)
Bottom Margin
Character codes 27 and 78 can be used to set a margin at the
bottom of each page. The third character code in the Bottom

Margin command specifies the number of blank lines thatare to
be inserted at the bottom of each page.

The following command can be used to specify a bottom margin
of 4 lines.

CHR$(27);CHR$(78); CHR$(4)

The T1-99/4 Printer 315

Carriage Return

The Carriage Return command (CHR$(13)), causes the printer to
return to the first column of the current line. This feature allows
more than one character to be printed at the same location. For
example, consider the following program.

100 OPEN #1: “RS232”
110 PRINT #1: “ONE";
120 PRINT #1: CHR$(13);
130 PRINT #1: “TWO”
140 PRINT #1

The PRINT statement at line 110 causes the word “ONE”’ to be
output. The Carriage Return at line 120 causes the printer to
return to the beginning of the same line. The word “TWO” is
then output directly on top of the word “ONE”’.

Line Feed

The Line Feed function (CHR$(10)) causes the printer to advance
the paper one line and return the carriage to the first column of
the new line.

Form Feed

The Form Feed function (CHR$(12)) causes the printer to
advance the paper to the first line of the next page. Any
subsequent output will begin at the upper left corner of the new

page.
Bell

The CHR$(7) command causes the printer’s buzzer to sound.

316 T1-99/4A User’s Handbook

GRAPHICS

The output of the printer consists of an array of dots. These dots
are arranged in such a way as to form a specific character. For
example, Illustration 8-1 depicts the dot formations of the
characters E and p.

lllustration 8-1. Character Dot Patterns

O =2 N W hHh O N®

A total of 9 print elements are used in the formation of the
character sets. In the graphics mode, seven* of these dot
elements, 1 through 7, can be controlled independently. As a
result, any number of different characters or graphic displays can
be generated.

Graphics can be generated in one of two modes: single density
or dual density. Single density graphics allows 480 dots to be
printed across the width of the page. The dual density graphics
mode allows twice as many dots to appear in each row.

Each column of dots is specified by a numeric value from 0 to 127.
This value specifies the combination of dots thatare to appearin
the output. Each print element is specified by the values
indicated in Ilfustration 8-2.

*Eight dot elements may be used if the printer is modified.

The T1-99/4 Printer 317

lustration 8-2. Print Element Values

Any combination of the print elements can be specified by the
sum of the values of the dots to be output. For example, the
pattern in [llustration 8-3 can be specified by the value 42.

lustration 8-3. Determining Pattern Values

2+8+32=42

The single density graphics mode is activated by the special
characters CHR$(27) and CHR$(75). The double density graphics
mode is activated by CHR$(27) and CHR$(76).

When either graphics mode is activated, two additional
characters must be specified. These characters are used to
specify the number of graphics data items that will be supplied.

318 TI1-99/4A User’s Handbook

Because the CHR$ function is limited to 128 values, and the
number of data items may be as large as 960, two values are
required to specify the number of data items. As a result, the first
value is used as an actual number of data items, and the second
value indicates additional multiples of 128. The following
expression demonstrates the method used to specify the number
of data items.

total = value 1 +value 2 * 128

lllustration 8-4 provides several examples of the use of this
technique.

lllustration 8-4. Specifying the Number of Data Items.

Characters Value Expression
CHR$(10); CHR$(0) 10 10 + (0 * 128)
CHR$(100); CHR$(0) 100 100 + (0 * 128)
CHR$(72); CHR$(1) 200 72+ (1* 128)
CHR$(44); CHR$(2) ‘ 300 44 + (2 > 128)

The characters that specify the amount of data must be included
directly after those characters that specify the graphics mode.

The following example program demonstrates the technique
used to create a graphics characters and insert the characterina
section of text.

The first step is to determine the data that defines the character.
Illustration 8-5 contains the data required to define acommonly
used mathematic symbol.

The T1-99/4 Printer 319

lllustration 8-5. Data for a Graphics Character

6,73,73,62

Once the data has been determined, that data can be used in a
program.

100 OPEN #1: ““RS232”

110 PRINT #1: CHR$(27); CHR$(75);
120 PRINT#1:CHR$(4); CHR$(0);
130 FOR)= 0TO 3

140 READ X

150 PRINT #1: CHR$(X);

160 NEXT |

170 CLOSE #1

180 DATA6,73,73, 62

The preceding example program can be used to generate a
single graphics character. The FOR/NEXT loop specified in lines
130 through 160 is used to send the graphics data to the printer.

Lines 110 and 120 use the CHR$ function to enter the single
density graphics mode and specify the number of data items.
Since the CHR$ function is used 8 times in this program, the
program can be simplified by containing all 8 CHR$ functions in
a single FOR/NEXT loop.

If this technique is used, the entire section of the program that
generates the special character can be placed in asimple subrou-
tine. This technique allows graphics to be easily mixed with text.
The tollowing example demostrates this concept.

320 TI-99/4A User’s Handbook

100 OPEN #1: “RS232”
110 PRINT #1: “f (x)="";
120 GOSUB 1000

130 PRINT #1: “F/”’;
140 GOSUB 1000

150 PRINT #1: “x”

160 CLOSE #1

170 END

1000 FOR)J=0TO 7
1010 READ A

1020 PRINT #1: CHR$ (A);
1030 NEXT)

1040 RESTORE

1050 RETURN

1060 DATA 27,75,4,0
1070 DATA 6,73,73,62

Subroutine

The preceding example program uses a subroutine to print a
graphics character. Each time the subroutine is called, the
graphics character will be displayed. The output of the example
program should appear as follows.

f (x)=9F/2x

In the double density graphics mode, the printer functionsin a
similar manner. However, twice as much data is required to
define a double density graphics character. This additional effort
is compensated by higher quality graphics.

Appendix A 321

Appendix A. Tl BASIC Error & Warning Messages

The T1-99/4A computer can only recognize instructions that are
presented in a valid format and do not contain any contradictory
or ambiguous information. If a statement does not comply with
these restrictions, an error or warning condition will occur.

There are four general categories of errors that can be classified
by the situation in which they occur. Many errors occur as soon
as the command or statement has been entered. Others occur
during the brief period when a program is scanned (prior to
execution) for organization errors. The third category of errors
occur during the actual execution of a program. The final type of
errors occur during the input or output processes of the
computer. Each of the error messages will be presented in this
appendix according to its category.

STATEMENT ENTRY ERRORS

Statement entry error messages will be displayed immediately
after an incorrect statement has been entered. These types of
error messages apply only to the most recently entered statement.

Explanations of the statement entry error messages are given in
the following sections.

Bad Line Number

This error message will occur when an illegal line number has
been specified. Line numbers must be within the range from 1to
32767.

Bad Name

This error is the result of a variable name in excess of 15
characters.

Can’t Continue

This error will result from an incorrect use of the CON
command. This command can only be used if a breakpoint in the

322 T1-99/4A User’s Handbook

execution of a program has occurred. The CON command
cannot be used if a program has been halted because of an error,
or if a program has been edited after having been halted.

Can’t Do That

This error will occur when a statement has been used in the
command mode or when a command has been used in the
program mode. For example, an EDIT statement cannot be used
in a program, and a DATA statement cannot be entered as a
command. This error also will occur when a LIST, RUN, or SAVE
command was issued when a program was not present in the
computer’s memory.

Incorrect Statement

This error will occur when a statement is entered with an
incorrect format. This error usually results from incorrect punctua-
tion marks.

Line Too Long

This error will occur when a program line contains too many
characters.

Memory Full

A Memory Full error will result when an insufficient amount of
the computer’s memory is available to perform the specified
command or accommodate the specified program line.

SCAN ERRORS

Scan error messages will be displayed immediately after the RUN
command has been issued. These error conditions are generally
the result of incorrect program organization. Scan error mes-
sages will be displayed along with the line number of the
statement causing the error.

The following sections provide explanations of the scan error
messages.

Appendix A 323

Bad Value

This error is the result of an incorrectly dimensioned array.

Can’t Do That

This type of error message will be displayed when a program
contains more than one OPTION BASE statement, or when an
OPTION BASE statement is preceded by a DIM statement.

For-Next Error

The FOR-NEXT error results from the incorrect use of FOR-NEXT
loops. Each FOR statement in a program must have a correspond-
ing NEXT statement.

Incorrect Statement

This error will occur when a statement is used with an incorrect
format. Many incorrect statements are not detected upon entry.
As a result, these statements will cause errors during the scan
process.

Memory Full

A Memory Full error will occur when an insufficient amount of
memory is available for variables, arrays, or function definitions.

Name Conflict

This error will occur when a variable, function, or array name
duplicates the name of a function, array, or variable. In other
words, a variable name cannot be simultaneously used as an
array name or a function name, etc.

EXECUTION ERRORS

This category of errors results from error conditions that occur
during the actual execution of a program. Execution errors cause
the program to be halted at the point at which the error
occurred. A line number will always be displayed along with the
description of an execution error condition.

The following sections provide explanations of the execution
errors.

324 TI-99/4A User’s Handbook

Bad Argument

This error occurs when a function has been executed with an
inappropriate value as an argument.

Bad Line Number

This error will occur when a statement specifies a line number
that does not exist in a program. Bad Line Number errors
generally occur in the following types of statements: GOTO,
GOSUB, IF-THEN, etc.

Bad Name

A Bad Name error will occur when a CALL statement contains an
invalid subprogram name.

Bad Subscript

This error will occur when the subscript of an array is inappro-
priate. This error generally results from a subscript not being an
integer, or lying outside of the allowable range of values.

Bad Value

This error message indicates that a statement contains one or
more inappropriate values. Since the parameters in many
statements are restricted to specific types of values, parameters
outside of the allowable range will cause a Bad Value error.

Can’t Do That

This type of error will occur when a RETURN statement is
encountered without a corresponding GOSUB. Also, a NEXT
statement without a corresponding FOR statement can cause
this error. A misused BREAK statement can also cause this error.

Data Error

A Data Error results from a problem with a DATA, READ, or
RESTORE statement. A program must be organized in such a way
that each variable in each READ statement will correspond to a
valid data value.

Appendix A 325

Incorrect Statement

Some statements with an incorrect format are not detected upon
entry or upon scanning. As a result, these errors will be detected
during program execution.

Memory Full

A Memory Full error occurring during the execution of a
program may have been caused in several ways. This error may
result from an actual exhaustion of available memory, but it may
also have been caused by a programming error. An excessive
number of subroutines or function calls may cause a Memory
Full error. Also, a subroutine or function that references itself
will cause a Memory Full error.

Number Too Big

A Number Too Big warning message will be displayed if a
number in scientific notation requires an exponent greater than
127. This warning condition will not terminate program execution.

String-Number Mismatch

This type of error will occur when a string value is used instead of
a numeric value, or vice versa.

INPUT/OUTPUT ERRORS

The final category of errors occur during the input or output
procedures of the computer. These messages may or may not
display a line number indicating the error’s location.

Check Program In Memory

This message will be displayed when a problem occurred during
the loading procedure. When the OLD command is being used
and a problem occurs, the program that previously existed in the
computer’s memory may or may not be eliminated. However,
the OLD command is generally used under the assumption that
the current program in the computer’s memory will be elimin-
ated in order to accommodate the incoming program. As a
result, this message is usually insignificant.

326 T1-99/4A User’s Handbook

File Error

A File Error occurs when an inappropriate statement has been
executed for a data file. For example, an OPEN statement for a
file that is already open will cause an error. Similarly, a CLOSE
statement for a file that has not been opened will also cause an
error.

Input Error

When data is being entered from the keyboard, an Input Error
merely causes a warning message. However, an Input Error
caused by a data file operation causes program execution to be
terminated. INPUT requires a data entry for each variable
included in the statement. Also, the type of each data entry must
match the corresponding variable in the INPUT statement. If
either of these conditions are violated, an Input Error will occur.

I/0 Error

This type of error can be caused by a wide range of input or
output operations. This type of error message is unique in the
fact that itis accompanied by a two digit code that describes the
exact nature of the error condition. The first digit of the code
specifies the type of statement causing the error condition.

first
digit statement

0 OPEN

1 CLOSE

2 INPUT

3 PRINT

4 RESTORE
5 OLD

6 SAVE

7 DELETE

Appendix A 327

The second digit of the code describes the specific nature of the

problem.

second
digit

NOUbhAE WN-=O

description

Device not present

Write Protection in effect
Improper file specification
Improper operation

Storage area not available
End of file

Device not working properly
Specified file does not exist

328 TI1-99/4A User’s Handbook

Appendix B. Extended BASIC Error & Warning Messages

When Tl Extended BASIC is used with the TI-99/4A computer, a
unique set of error and warning messages will be generated
when a problem occurs. Error messages are often generated
when a command or statement is entered. However, additional
error situations may occur during the scanning procedure or
during the actual execution of the program.

if an error message was displayed when a statement or command
was entered, the error message will only apply to the most
recently entered statement. Errors that occur during the scan-
ning or execution of a program will be displayed along with the
number of the program line containing the problem.

Bad Argument

This error will occur when a function has an inappropriate value
as an argument,

Bad Line Number

This error will occur when a statement specifies a line number
that does not exist in a program. Bad Line Number errors
generally occur in the following types of statements: GOTO,
GOSUB, IF-THEN, etc.

Bad Subscript

This error will occur when the subscript of an array is a non-
integer or lies outside of the allowable range of values.

Bad Value

This error message indicates that a statement contains one or
more inappropirate values. The parameters in many statements
are restricted to specific types of values. Values outside of the
allowable range will cause a Bad Value error.

Can’t Continue

This error will result when the CON command is used improper-
ly. This command can only be used if a breakpoint in the

Appendix B 329

execution of a program has occurred. The CON command
cannotbe used if a program has been halted due to an error or if
a program is being edited after having been halted.

Command lllegal in Program

This error results from the use of one of the following commands
in a program: BYE, CON, LIST, MERGE, NEW, NUM, OLD, RES,
or SAVE,

Data Error

A Data Error is the result of a problem with a DATA, READ, or
RESTORE statement. A program must be organized in such a way
that each variable in each READ statement corresponds to a valid
data value.

File Error

AFile Error will occur when an inappropriate statement has been
executed for a data file. For example, an OPEN statement for a
file that is already open will cause an error. Similarly, a CLOSE
statement for a file that has not been opened will also cause an
error.

For-Next Nesting

Each FOR statement in a program must have a corresponding
NEXT statement. These loops must be arranged so that each loop
is fully contained in another loop, or so that each loop has been
terminated before another begins.

1/0 Error

This type of error can be caused by a wide range of input or
output operations. This error message is unique in the fact that it
is accompanied by a two digit code that describes the exact
nature of the error condition. The first digit of the code specifies
the type of statement causing the error condition.

330 TI-99/4A User’s Handbook

first
digit statement

OPEN
CLOSE
INPUT
PRINT
RESTORE
OoLD
SAVE
DELETE

NOUhAh W =0

The second digit of the code describes the specific nature of the
problem.

second
digit description

Device not present

Write Protection in effect
Improper file specification
Improper operation

Storage area not available
End of file

Device not working properly
Specified file does not exist

NOUbH WN=O

llegal After Subprogram

A SUBEND statement cannot be followed by an END, REM, or
SUB statement.

Image Error

An IMAGE, PRINT USING, or DISPLAY USING statement must
notspecify more than 14significant figures for a decimal value or
more than 10 figures for a value in scientific notation. Also, a
format string must not contain more than 254 characters.

Appendix B 331

Improperly Used Name

This error message will be displayed when a variable, array or
function name has been misused. None of the Tl Extended
BASIC reserved words can be used as a variable, array or
function name. Also, the same name cannot be used for a
variable, array or function name simultaneously. This error also
will occur when an array has been dimensioned twice or when a
subscripted variable has been used in a FOR statement.

Incorrect Argument List

This error will occur when ALL and SUB statements for a
subroutine do not have corresponding arguments.

Input Error

When data is being entered from the keyboard, an Input Error
will merely cause a warning message. However, an Input Error
caused by a data file operation will cause program execution to
be terminated. INPUT requires that a value be input for each
variable specified with the statement. Also, the type of data
being input must correspond to the type of each variable
indicated with INPUT. If either of these conditions are violated,
an Input Error occurs.

Line Not Found

A Line Not Found error will occur when a statement or
command specifies a line number that does not exist in a
program.

Line Too Long

This error will occur when a program line contains too-many
characters.

Memory Full

A Memory Full error will result when an insufficient amount of
the computer’s memory is available to perform the specified
command or accommodate the specified program line.

332 TI1-99/4A User’s Handbook

Missing SUBEND

This error will occur when a SUBEND statement does not appear
as required in a program.

Must Be In Subprogram

This error will occur when a SUBEND or SUBEXIT statement
appears in an inappropriate location in a program.

Name Too Long

A Name Too Long error will occur when a variable name
contains more than 15 characters.

Next Without For

This error will occur when a FOR statement is missing, or when
the structure of a loop is incorrect.

No Program Present

A program must be present in the computer’s memory before a
RUN, LIST, SAVE, RESTORE, or RESEQUENCE command can be
executed.

Numeric Overflow

A Numeric Overflow warning message will be displayed if a
number in scientific notation requires an exponent greater than
127. This warning condition does not terminate program execu-
tion.

Only Legal in a Program

Many statements can only be used in the program mode. This
error will occur if one of these statements has been entered as a
command.

Option Base Error

This error will occur if more than one OPTION BASE statement
appears in a program. This error will also occur if an OPTION
BASE statement specifies a value other than zero or one.

Appendix B 333

Protection Violation

This error will occur if an attempt is made to save, list, or edit a
program that had previously been saved as a protected program.

Recursive Subprogram Call

This error will result when a subprogram contains a reference to
itself.

Return Without Gosub

A RETURN Without GOSUB error will occur when a RETURN
statement is encountered in a program without a corresponding
GOSUB statement.

Speech String Too Long

This error will occur when the SPGET subprogram returns a
string expression in excess of 255 characters.

Stack Overflow

A Stack Overflow error will occur when an expression contains
too many sets of parentheses. This error will also occur if an
insufficient amount of memory is available to perform a set of
calculations.

String Truncated

A String Truncated warning message will be displayed when a
string expression must be reduced in length in order to be within
the 255 character limit. The execution of the program will not be
terminated when this condition occurs. However, any extra
characters in the string expression will be abolished.

String-Number Mismatch

This type of error will occur whenever a string value was used
instead of a numeric value, or vice versa.

Subprogram Not Found

This error will occur when a CALL statement is used in an attempt
to access a non-existent subprogram.

334 TI1-99/4A User’s Handbook

Syntax Error

Syntax Errors result from statements or commands which have
been entered with an incorrect format. Misspelled keywords
and the incorrect use of punctuation marks are the most
common sources of syntax errors.

Unmatched Quotes

This type of error will occur when a command or statement
contains an odd number of quotation marks.

Unrecognized Character

An Unrecognized Character error will occur when a special
character has been included in a statement without having been
enclosed in quotation marks.

Appendix C 335

Appendix C. ASCII Codes

The T1-99/4A computer uses special numeric values to represent
each character. These character codes are used in CHRS,
VCHAR, HCHAR, and SPRITE statements as well as many others.

The lowercase characters have the same shapes as the uppercase
characters, but the lowercase letters are smaller than the
uppercase letters.

ASClI ASClI ASClI
Code | Character | Code | Character | Code | Character
32 (space) 52 4 72 H
33 ! 53 5 73 |
34 " 54 6 74 J
35 # 55 7 75 K
36 $ 56 8 76 L
37 % 57 9 77 M
38 . & 58 : 78 N
39 ! 59 ; 79 (@)
40 (60 < 80 P
11) 61 = 81 Q
42 * 62 > 82 R
43 + 63 ? 83 S
44 , 64 @ 84 T
45 - 65 A 85 U
46 . 66 B 86 \%
47 / 67 C 87 w
48 0 68 D 88 X
49 1 69 E 89 Y
50 2 70 F 90 A
51 3 71 G 91 [

336 T1-99/4A User’s Handbook

ASCIl ASCII ASCH

Code | Character | Code| Character | Code| Character
92 \ 104 h 116 t
93] 105 i 17 u
94 A 106 j 118 v
95 — 107 k 119 w
96 \ 108 | 120 X
97 a 109 m 121 y
98 b 110 n 122 z
99 [111 o 123 |
100 d 12 p 124 !
101 e 113 q 125 :
102 f 114 r 126 ~
103 g 115 s

Appendix D 337

Appendix D. Tl BASIC Commands, Functions, & Statements

Table D-1. Tl BASIC Functions

ABS INT SIN
ASC LEN SQR
ATN LOG STR$
CHR$ POS TAB
COs RND TAN
EOF SEG$ VAL
EXP SGN

Table D-2. BASIC Commands

BREAK CONTINUE PRINT#

BYE DELETE RANDOMIZE
CALL CHAR DIM REM

CALL CLEAR DISPLAY RES

CALL COLOR EDIT RESEQUENCE
CALL GCHAR END RESTORE
CALL HCHAR LET RUN

CALL JOYST LIST SAVE

CALL KEY NEW STOP

CALL SCREEN NUM TRACE

CALL SOUND NUMBER UNBREAK
CALL VCHAR oLD UNTRACE
CLOSE OPEN

CON PRINT

338 TI1-99/4A User’s Handbook

Table D-3. Tl BASIC Statements

BREAK DEF ON GOTO
CALL CHAR DIM OPEN

CALL CLEAR DISPLAY OPTION BASE
CALL COLOR ELSE PRINT

CALL GCHAR END PRINT#

CALL HCHAR GOsuB RANDOMIZE
CALL JOYST GOTO READ

CALL KEY (F THEN REM

CALL SCREEN INPUT RESTORE
CALL SOUND INPUT# RETURN
CALL VCHAR LET STEP

CLOSE NEXT STOP

DATA ON GOsusB UNTRACE

Appendix E 339

Appendix E. Extended BASIC Commands, Functions, and
Statements

Table E-1. Extended BASIC Functions

ABS MAX SGN
ASC MIN SIN
ATN Pl SQR
CHR$ POS STR$
EOF REC TAB
EXP RND TAN
INT RPT$ VAL
LEN SEG$

Table E-2. Extended BASIC Commands

ACCEPT CALL KEY CON RANDOMIZE
BREAK CALL LINK CONTINUE READ

BYE CALL LOAD DELETE REM

CALL CHAR CALL MAGNIFY DIM RES

CALL CHARPAT CALL MOTION DISPLAY RESEQUENCE
CALL CHARSET CALL PATTERN FOR RESTORE
CALL CLEAR CALL PEEK LET RUN

CALL COINC CALL POSITION LIST SAVE

CALL COLOR CALL SAY MERGE SIZE

CALL DELSPRITE CALL SCREEN NEXT STOP

CALL DISTANCE CALL SOUND NUM TRACE
CALLERR CALL SPGET NUMBER UNBREAK
CALL GCHAR CALL SPRITE oLD UNTRACE
CALL HCHAR CALL VCHAR OPEN

CALL INIT CALL VERSION PRINT

CALL JOYST CLOSE PRINT#

340 TI1-99/4A User’s Handbook

Table E-3. Extended BASIC Statements

ACCEPT
BREAK
CALL

CALL CHAR

CALL CHARPAT
CALL CHARSET

CALL CLEAR
CALL COINC
CALL COLOR

CALL DELSPRITE
CALL DISTANCE

CALL ERR
CALL HCHAR
CALL INIT
CALL JOYST
CALL KEY
CALL LINK
CALLLOAD

CALL LOCATE

CALL MAGNIFY
CALL MOTION

CALL PATTERN
CALL PEEK

CALL POSITION

CALL SAY
CALL SCREEN
CALL SOUND
CALL SPGET
CALL SPRITE
CALL VCHAR
CLOSE

DATA

DEF

DELETE

DIM

DISPLAY

END

FOR

GO SuB
GO TO
GOsusB
GOTO

IF THEN
IMAGE
INPUT
INPUT#

LET

LINPUT
NEXT

ON BREAK
ON ERROR
ON GO suB
ONGOTO
ON GOsuB

ON GOTO
ON WARNING
OPEN
OPTION BASE
PRINT

PRINT#
RANDOMIZE
READ

REM
RESTORE
RETURN

RUN

SUB

SUBEND
SUBEXIT
TRACE
UNBREAK
UNTRACE

Appendix F 341

Appendix F. RESIDENT VOCABULARY

The Solid State Speech Synthesizer, when used with Extended
BASIC, can recognize only a limited number of words and
phrases. The following words can be used in CALL SAY or CALL
SPGET statements.

0 CHECK EYE HEAR

1 CHOICE £ HELLO

2 CLEAR FIFTEEN HELP

3 COLOR FIFTY HERE

4 COME FIGURE HIGHER

5 COMES FIND HIT

6 COMMA FINE HOME

7 COMMAND FINISH HOwW

8 COMPLETE FINISHED HUNDRED

9 COMPLETED FIRST HURRY

Al COMPUTER T i

At CONNECTED FIVE I WIN

ABOUT CONSOLE FOR IF

AFTER CORRECT FORTY IN

AGAIN COURSE FOUR INCH

ALL CYAN FOURTEEN INCHES

AM D FOURTH INSTRUCTION

AN DATA FROM INSTRUCTIONS

AND DECIDE FRONT 1S

ANSWER DEVICE G T

:RN: DID GAMES |

o DIFFERENT GET JOYSTICK
DISKETTE GETTING

ASSUME DO GIVE Just

AT DOES GIVES K

8 DOING GO KEY

BACK DONE GOES KEYBOARD

BASE DOUBLE GOING KNOwW

BE DOWN GOOD L

BETWEEN DRAW GOOD WORK LARGE

BLACK DRAWING GOODBYE LARGER

BLUE E GOt LARGEST

BOTH EACH GRAY LAST

8OTTOM EIGHT GREEN LEARN

BUT EIGHTY GUESS LEFT

BUY ELEVEN H LESS

BY ELSE HAD LET

BYE END HAND LIKE

c ENDS HANDHELD UNIT LIKES

CAN ENTER HAS LINE

CASSETTE ERROR HAVE LOAD

CENTER EXACTLY HEAD LONG

342 T1-99/4A User’s Handbook

LOOK
LOOKS
LOWER

M

MADE
MAGENTA
MAKE

ME

MEAN
MEMORY
MESSAGE
MESSAGES
MIDDLE
MIGHT
MODULE
MORE
MOST
MOVE
MUST

N

NAME
NEAR
NEED
NEGATIVE
NEXT
NICE TRY
NINE
NINETY
NO

NOT
NOwW
NUMBER

o

OF
OFF
OH
ON
ONE
ONLY
OR
ORDER
OTHER
out
OVER

P

PART
PARTNER
PARTS
PERIOD
PLAY
PLAYS
PLEASE

POINT
POSITION
POSITIVE
PRESS
PRINT
PRINTER
PROBLEM
PROBLEMS
PROGRAM
PUT
PUTTING

Q

R
RANDOMLY
READ?
READ14
READY TO START
RECORDER
RED

REFER
REMEMBER
RETURN
REWIND
RIGHT
ROUND

S

SAID
SAVE

SAY

SAYS
SCREEN
SECOND
SEE

SEES

SET
SEVEN
SEVENTY
SHAPE
SHAPES
SHIFT
SHORT
SHORTER
SHOULD
SIDE
SIDES

SIX

SIXTY
SMALL
SMALLER
SMALLEST
SO
SOME

SORRY
SPACE
SPACES
SPELL
SQUARE
START
STEP

STOP

SUM
SUPPOSED
SUPPOSED TO
SURE

T
TAKE
TEEN
TELL
TEN

TEXAS INSTRUMENTS

THAN
THAT

THAT IS INCORRECT

THAT IS RIGHT
THES
THE18
THEIR
THEN
THERE
THESE
THEY
THING
THINGS
THINK
THIRD
THIRTEEN
THIRTY
THIS
THREE
THREW
THROUGH
TIME

TO
TOGETHER
TONE
T00

TOP

TRY

TRY AGAIN
TURN
TWELVE
TWENTY
T™WO

TYPE

U

UHOH
UNDER
UNDERSTAND
UNTIL

up

UPPER

USE

v
VARY
VERY

w

WAIT
WANT
WANTS
WAY
WE
WEIGH
WEIGHT
WELL
WERE
WHAT
WHAT WAS THAT
WHEN
WHERE
WHICH
WHITE
WHO
WHY
WILL
WITH
WON
WORD
WORDS
WORK
WORKING
WRITE

X

Y
YELLOW
YES

YET

YOU

YOU WIN
YOUR

z
ZERO

+*7
-8
9

Appendix F 343

pronounced like the a in ape

pronounced like the a in among

pronounced reed

pronounced red

pronounced thee

pronounced tha

pronounced as the word “negative” when used before numbers.
pronounced as the word “positive” when used before numbers.
pronounced as the word “point” when used between numbers.

INDEX

ABS 67,124

Absolute Value 124

AC Power Adapter 14-15

ACCEPT 77-78, 124-128

Accessories 16-20

ALPHA LOCK 27

AND 81-82, 128-129

APPEND 289

Arctangent 130

Arguments 67

Arrays 44-46, 62, 80, 176-178

ASC 67,70-71,129

ASCI1 69-70, 129, 335-336

Assignment Statements 52-53, 77,
199-201

AT 77, 124-125,179

ATN 67, 130

Audio/Video Output Jack 12, 14

Available Memory 242

BACK 279
BACKUP DISK 282-283
BEEP 78, 125, 179
BEGIN 278
Binary Notation 100-103
Boolean Operators 81-82, 208-209,
220-222, 252-253
Branches 62-66
Conditional 63-65, 66, 130, 191,
192, 193
Unconditional 64, 65-66, 188-191
BREAK 130-132, 250
BYE 132

Calculator Mode 33

CALL 89, 132, 244-245

CALL CHAR 99-100, 102-104, 133-137
CALL CHARPAT 138

CALL CHARSET 138-139

CALL CLEAR 110, 139

CALL COINC 121, 139-141

CALL COLOR 108-109, 115, 141-144
CALL DESPRITE 115-116, 144
CALL DISTANCE 118, 145-146
CALL ERR 146-147

CALL FILES 301

CALL GCHAR 110-111, 147

CALL HCAR 105-106, 148

CALL INIT 149

CALL JOYST 149-150

CALL KEY 151

CALL LINK 152

CALL LOAD 153-154

CALL LOCATE 114, 154

CALL MAGNIFY 118-119, 155-156
CALL MOTION 112-113, 156-157
CALL PATTERN 117-118, 158
CALL PEEK 159

CALL POSITION 114-115, 159-160
CALL SAY 160-161, 341

CALL SCREEN 109-110, 161

CALL SOUND 95-99, 162-163
CALL SPGET 163-164, 341

CALL SPRITE 112-113, 164-166
CALL VCHAR 105-106, 167

CALL VERSION 168

Carriage Return 56

346 T1-99/4A User’s Handbook

Cassette Port 12, 14
CATALOG DISK 282
CHRS$ 67, 70, 168, 307
CLEAR 31, 183
Clearing the Screen 110
CLOSE 72, 169, 261, 291, 306
Color Codes 109
Color Groups 108
Coloring a Character 107-109
Coloring the Screen 109-110
Command Module Slot 12,13
Commands 337, 339
Compound Expressions 50-51
Computer Memory 15-16
CON 131, 169-170
Conditional Branches 63-65, 213-217
CONTINUE 131, 169-170
Control Expression 63-64
COPY FILE 280
Correcting Errors 29-30
Delete 30
Erase 30
Insert 30
COS 67, 170-171
COSINE 170-171
CTRL 28
Cursor 25

DATA 53-55, 77, 171-173, 227-228
Data Files 266, 277
Data Types 39-42
Floating Point 39, 40
Numeric 39-42
Scientitic Notation 40
Strings 39
DEF 68-69, 174
Detining a Character 99-104
DEL 30, 73, 183
DELETE 169, 175, 291
DELETE FILE 280-281
DIGIT 78
DIM 45-46, 80, 176-178
Direct Mode 33
Disk Commands 282-286
Disk Drive Controller 271
Disk Drives 18, 271-302
Disk Manager 271, 277-286
Disk Memory System 271
Disk Memory System Card 18

Disk Tests 284-286
Diskette 271-275
Backup 282-283
Catalog 282
Data Files 277, 288-302
Density 274
Initialization 284
Inserting and Removing 276
Name Moditication 283
Program Files 277, 286-287
Write Protection 274-275
Diskette Files 276-291
Commands 279-282
Copying 280
Deleting 280-281, 291
Name 276-277
Protection 281-282
Relative 288
Renaming 280
Sequential 288
Display 26
Display Area 104
DISPLAY 57, 83-85, 178-181
DISPLAY USING 83-85, 180-181

EDIT 72-73, 182-183
Edit Mode 72-73, 181-183
Editing Programs 72-73, 182-183
ELSE 192-193
END 36-37, 184
End of File Function 184-185, 296
ENTER 27-28
EOF 67, 184-185, 296
ERASE 30, 73, 183
ERASE ALL 78, 125, 179
Error Messages 38-39, 321-324
EXP 67, 185
Exponential Function 185
Expressions 46

Compound 50-51

Control 63-64

Mixed 51-52
Extended BASIC 75-93

FCTN 28-29

Fields 262-263
Filenumbers 71-72, 305
FIXED 261, 290

Floating Point Data 39-40

Floppy Diskettes 271-275
FOR 186-188
FOR/NEXT 60-62, 186-188, 319
format Character 83-85, 194-195
Format String 83-85, 180-181, 194-195
Formatted Output 83-85, 180-181,
194-195, 226
Functions 67-71, 91
Trigonometric 67, 130, 170-171,
241-242, 249
User Detined 68-69, 174-175

Generating Chords 97
Generating Noises 96
Generating Sound 95-99
GOSUB 65-66, 188-190
GOTO 64, 190-192
Graphics 99-122

Hexadecimal Notation 100-103, 135

170 Channels 71-72, 305, 306
170 Errors 325-327, 329-330
IF 192-193
IF/THEN 63, 86
IF/THEN/ELSE 192-193
IMAGE 83-84, 194-195
Immediate Mode 33
Index Hole 273-274
Indirect Mode 33
INITIALIZE NEW DISK 284
INPUT 57-60, 195-197, 289-290
INPUT# 71, 72, 197-198, 264-265,
294-295
Inputting Data 57, 71, 77-80, 195-198,
200-202, 264-265
INS 30, 73, 183
Installation
Console 20-23
Printer 304
Program Recorder 255
INT 67, 198
INTERNAL 261

Keyboard 12, 13, 26
Keyboard Overlays 15

LEN 67, 199

LET 52-53, 80, 199-200

Line Numbers 34-36, 210-211

Index 347

LINPUT 78-80, 200-201
LINPUT# 80, 201-202, 301

LIST 202-203, 304-305

Loading Data 264-266

Loading Programs 258-259, 287
LOG 67, 204

Logarithm 204

Logical Operators 81-82

Loops 60-62

Manipulating Programs 91-93, 205-206
Master Selection Menu 24-25

MAX 91, 204

Memory Expansion 19

MERGE 205-206

MIN 91, 206

Mixed Expressions 51-52

MODIFY DISK NAME 283

MODIFY FILE PROTECTION 281-282
Moving a Character 107

Multiple Statement Lines 76-77

Nested Loops 62

NEW 36, 207

NEXT 60, 186-188, 207-208
NOT 81-82, 208-209

NUM 35-36, 210-211
NUMBER 35-36, 211
NUMERIC 78

Numeric Data 39-42
Numeric Variables 43

OLD 211-212, 258-259, 287
ON BREAK 86-87, 213-214
ON ERROR 87-88, 214-216
ON WARNING 88-89, 216-217
ON/GOSUB 66, 190
ON/GOTO 64-65, 191
OPEN 72, 218-220, 260-261, 289-290,
305
Operators 46-50
Arithmetic 47
Boolean 81-82, 208-222, 252-253
Logical 81-82, 208-222, 252-253
Relational 48-50
String 48
OPTION BASE 45-46, 200
OR 81-82, 220-222
Order ot Operations 50-51

348 T1-99/4A User’s Handbook

OUTPUT 289-290

Output, Fomatted 83-85

Outputting Data 55-57, 71, 180-181,
223-226, 261-263

Parallel Output 303
Peripheral Expansion Port 12, 13
Peripheral Expansion System 17, 18
Peripherals 16-20
Pl 91, 222
Picture Elements 100-103
Pixels 100-103
POS 68, 223
Power Supply Receptacle 12, 14
Powering On 275
PRINT 55-57, 83-85, 223-225
PRINT USING 83-85, 226
Print Zones 56
PRINT# 71, 72, 261-263, 264, 291-293,
305-306, 307
Printer 18, 303-320
Bell 315
Bottom Margin 314
Carriage Return 315
Character Sets 310-311
Commands 306-315
Form Feed 315
Form Length 314
Graphics 316-320
High Density Graphics 317, 320
Installation 304
Line Feed 315
Line Length 314
Line Spacing 313
Output 305
Print Elements 316-317
Tabulation 311-313
Type Style Commands 309
Type Styles 307-310
PROC'D 278
Program Files 277
Executing 91-93
Loading 211-212
Saving 237-240
Program Recorder 17, 255-269
Checking Programs 258
Data Files 266
Errors 259-260
Example Program 266

Installation 255
Loading Data 264-266
Loading Programs 258-259
Saving Data 260-263
Saving Programs 256-257
Writing Protection 267-268
Programs 33-38
Entry 33-34
Listings 37, 202-203, 304
Loading Files 258-259
Saving Files 256-257
Prompt 25
Prompt Message 59-60, 79, 195-197,
20
PROTECTED 268

QUIT 31

RAM 15-16
Random Numbers 234
RANDOMIZE 226-227
READ 53-55, 171-173, 227-228
REC 91, 228, 301-302
Redefining a Character 99-104
REDO 278
RELATIVE 289
Relative Files 288
Closing 291
Opening 289-230
Program Example 299-3C0
Reading 295
Writing 293
REM 52,77, 229
Remark Statements 52, 229
RENAME FILE 280
RES 229-230
RESEQUENCE 229-230
Reserved Words 337-339
Resident Vocabulary 341-343
Restarting a Program 131
RESTORE 54-55, 173, 230-232, 296-297
RETURN 189, 232-233
RF Modulator 15, 21-22
RND 68, 234
ROM 16
RPT$ 91, 234-235
RS232 Intertace 19, 303, 304
RUN 91-93, 235-237, 268-269

SAVE 237-240, 256-257
Saving Data 260-263
Saving Program Files 237-240
Saving Programs 256-257, 286-287
Scientitic Notation 40
Screen Color 109-110
Sectoring 274
Sectors 272-274
SEG$ 68, 240-241
SEQUENTIAL 289
Sequential Files 288
Closing 291
Opening 289-290
Program Example 297-299
Reading 295
Writing 292-293
Serial Output 303
SGN 67, 241
SHIFT 26-27
SIN 67, 241-242
Sine 241-242
Single Disk Processing 279
SIZE 78, 125-126, 180, 242
SOUND 95-99
Special Function Keys 31
Speech Synthesizer 20, 160-161,
163-164, 341-343
Sprites 111-122
Animation 117-118
Collisions 121
Color 115
Creating 112-113
Deleting 115-116
Example Programs 116-117, 122, 140,
156, 157, 158, 166
Motion 113-114
Position 114-115
Size 118-119
SQR 67, 242-243
Square Root 242-243
Statements 52-60, 338, 340
Assignments 77, 199-201
Branching 63-66, 86-89
Conditional Branching 63-65, 66,
86-89
Unconditional Branching 64, 65-66
STEP 62, 186-188
STOP 243
STR$ 67, 243-244

Index 349

String Data 39

String Variables 44

SUB 89-91, 244-246

SUBEND 90, 244, 246-247

SUBEXIT 247-248

Subprograms 89-91, 132-168, 244-248
Subroutines 65-66, 320

Subscripted Variables 80, 176-178

TAB 248

Tables 44-46, 176-178

Tabulation 248

TAN 67, 249

Tangent 249

THEN 192-193

TI BASIC 33-73

T1-99/4 Printer 303-320

TO 60, 186-188

TRACE 249-250

Tracks 272-274

Trigonometric Functions 67, 130,
170-171, 241-242, 249

UALPHA 78

UNBREAK 250-251

UNTRACE 251

UPDATE 290

User Detined Functions 68-69, 174-175
USING 83-85, 180-181, 266

VAL 67, 252
VALIDATE 77-78, 125
VARIABLE 290
Variables 42-46
Numeric 43
String 44
Subscripted 44-46, 80, 176-178

Warning Messages 38-39, 321-334
Wired Remote Port 12, 14

Write Enable Notch 274-275
Write Protection 267-268

XOR 81-82, 252-253

Other Computer Titles from Weber Systems, Inc.
Compaq User’s Handbook
ISBN 0-938862-11-1

Coleco Adam User’'s Handbook
ISBN 0-938862-45-6

Lotus 1-2-3 User’s Handbook
ISBN 0-938862-54-5

1BM PCjr For Students
ISBN 0-938862-25-1

Coleco Adam For Students
ISBN 0-938862-42-1

TK Solver User’s Handbook
ISBN 0-938862-00-6

Atari XL User’s Handbook
ISBN 0-938862-08-1

Kaypro BASIC Programs for Business
ISBN 0-938862-51-0

Xenix User’s Handbook
ISBN 0-938862-44-8

C Language User’s Handbook
ISBN 0-938862-56-1

CP/M Simplified
ISBN 0-938862-04-9

CBASIC Simplified
ISBN 0-938862-10-3

User’s Handbook to the Atari 400/800
ISBN 0-938862-15-4

User’s Handbook to the TRS-80 Model Il
ISBN 0-938862-01-4

User’s Handbook to the Apple Il
ISBN 0-938862-03-0

Please Contact your local bookstore or computer store to order.
For catalogue, send a self addressed stamped envelope to:

Weber Systems Inc.
Box 413 Gates Mills, OH 44040

Updates and Revisions

Due to the changing nature of the personal computer
market, Weber Systems, Inc. regularly updates and revises its
titles. If you wish to receive notification of the availability of
revised editions of the TI-99/4A User’s Handbook, please
return this page to the following address:

Weber Systems, Inc.
Box 413
Gates Mills, Ohio 44040

Also, we would appreciate any comments you might have on
this title.

'---1
Please send notitication ot updates in 1
T1-99/4A User’s Handbook to:

Name

Address

City State Zip

Comments

	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	content09
	content10
	content11
	content12
	back-cover

