

TI-99/4A
GAME PROGRAMS

TI-99/4A
GAME PROGRAMS

BY FREDERICK HOLTZ

TAB BOOKS Inc.
BLUE RIDGE SUMMIT. PA. 17214

FIRST EDITION

THIRD PRINTING

Copyright © 1983 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction orpublication of thecontent in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to

the use of the information herein.

Library of Congress Cataloging in Publication Data

Holtz, Frederick.
TI-99/4A game programs.

Includes index.
1. Games—Data processing. 2. TI-99/4A (Computer)

I. Title.
GV1469.2.H64 1983 794.8'2 83-10544

ISBN 0-8306-0730-7
ISBN 0-8306-1630-6 (pbk.)

Cover photography by The Ziegler Photography Studio ofWaynesboro, PA.

Contents

Acknowledgments vii

Introduction ix

1 TI-99/4A A Home Computer System 1
Home Versus Personal Computers—The Console—The Keyboard—Accessories

2 Game Programming Concepts 32
The Importance of Mathematics—Selecting Games to Program—Planning Your Computer Game-
Space Age Games—Simulation Games—Writing Your Own Game Programs

3 Graphics and Sound for Games 43
Screen Coordinates andey—A True Game Program

4 Game Programs 67
Auto Race 68 Matchgame 129
Speedread/Type 75 Acey-Deucey 130
Monster 81 Coin Flip 132
Bingo Caller 90 Coin Flip 2 133
Card Shuffler/Dealer 93 Hidden Words 134
One-Armed Bandit 98 Mathematical Progression 135
Graphic Dice 101 Math Game 137
Roulette Wheel 104 Blackjack 138
Hangman 111 States and Capitals 141
Tic-Tac-Toe 118 One Million Words 144
Letter Confusion 123 Word Puzzle Plus 145

Numbers Alignment 146 Gunnery 158
Hi-Di 149 Crypto 161
Spin the Bottle 152 Morse Code 168
U-Boat 154 Time Keeping Programs 176
Demolition Derby 156 ThePurpose ofthe Programs 181

5 Commercial Game Software for the TI-99/4A 182
Card Games—Sports Games—Games of Skill—Games of Strategy and Logic—Fantasy and Adventure

6 Tl BASIC Conversions 194

Appendix A ASCII Character Codes 202

Appendix B A Concise Guide to TI-99/4A BASIC 204

Glossary 215

Index 225

Acknowledgments

The author would like to gratefully ac- ing Center for their cooperation in researching
knowledge the assistance of Texas Instru- this book. Without their able assistance, this
ments, Inc. and the Texas Instruments Learn- work would not have been possible.

VII

Introduction

At long last, the microcomputer for any
home is available in the form of the Texas

Instruments TI-99/4A. As of this writing, a
$100 manufacturer's rebate is in effect from
Texas Instruments, and the basic computer can
be purchased for a total price of about $150.
When one considers that a machine with the

same capabilities only a decade ago might cost
in the hundreds of thousands of dollars, it is
easy to see just how far microcomputing has
come.

The reason I refer to the TI-99/4A as the

microcomputer for any home lies in the fact
that it is an excellent blend of power and low
cost. Certainly, there are many other comput
ers which are far more powerful, but these cost
at least twice as much as the TI-99/4A. Unlike

some extremely inexpensive computers which
offer only marginal power and are severely

restricted regarding ease of operation, the
TI-99/4A operates like a "real" computer
(which it certainly is). It makes an excellent
training machine for children and adults alike
who may wish to move on to a personal com
puter in the near future. Also, the TI-99/4A is
one of the few home computers that are built
around a 16-bit microprocessor. This means
the machine should be able to expand its com
munications capabilities to meet the trends of
the computer market.

While the TI-99/4A is a true computer, it
also may be used in amanner similar to the way
video game machines, which are traditionally
connected to television receivers, are used.
The TI-99/4A contains a ROM cartridge slot in
addition to having the capability of reading and
writing to cassette and disk. With the cartridge
slot, it's a simple matter to plug in a game

module and use the machine just like you would
a video game.

This book concentrates on the game as
pect of this excellent little computer, although
the game cartridge slot is never used, since all
programs contained in this book are input via
the keyboard. No, the game programs con
tained here are not what you would classify as
true video games. Most are text-mode com
puter exercises that revolve around random
chance or involve the skill of the operator. A
few games do include on-screen animation, and
you will see a fairly large number of on-screen
graphics incorporated in the programs.

All programs in this book were written
and tested on a TI-99/4A in basic form. This

means that you can get by with a minimum
configuration, which is the computer itself, the

modulator, and a television receiver (black and
white or color). More than likely, you will also
want to have on hand a cassette recorder and

the optional computer/cassette adapter cord,
but the latter two are not necessary. The point
here is that you do not have to have any op
tions, such as a speech synthesizer, expansion
chassis, or RS-232 interface to utilize every
game in this book to its maximum. Nor do you
need the Extended BASIC firmware package
available from Texas Instruments. The latter
is most conducive to easily programming diff
erent types of video games, but again, this book
is aimedat the individual with the basic config
uration. If you've purchased your TI-99/4A
computer and have a television receiver, you
need nothing else to input and enjoy any game
in this book.

To Connie and C. L. Longerbeam who I've
come to know only recently, but whose
friendship seems to have been there forever.

Chapter 1

TI-99/4A Home Computer System
Texas Instruments Incorporated announced an
enhanced version of their popular TI-99/4
home computer on May 29, 1981, at the Sum
mer Consumer Electronics Show in Chicago,
Illinois. The TI-99/4A was a multi-unit com

puter system. It contained a 16-bit micro
processor and was one of the first 16-bit home
computers to be offered. The new model, an
nounced in Chicago, is designated the TI-99/
4A and among other things, includes a new
keyboard. The console retains the compact
profile, speech capability, and color graphics
software capability of the older TI-99/4 but
also offers improved functionality. The latter
word belongs to Texas Instruments. What it
means to the computer user is a lot more ver
satility. Now you get upper- and lowercase
letters, along with numbers, punctuation, and
symbols, all arranged on a standard typewriter

keyboard. The shift key activates the upper
case characters and can be locked in place by
depressing the alpha lock key.

The TI-99/4A (Fig. 1-1) has a built-in au
tomatic repeat function that was not available
on the older TI-99/4. This is useful in format

ting tabular data and in developing fairly com
plex graphic designs. By holding the space bar
down and depressing any alphabetic or other
symbol key, that character is repeated until the
key is released.

One of the special keys is the function key
(FCTN). When this key is depressed, along
with certain designated number keys, you get
special computer functions such as delete, in
sert, erase, clear, begin, proceed, aid, redo,
and backspace. The control key (CTRL) is
used specifically for communications applica
tions. This includes communicating with an-

Fig. 1-1. The TI-99/4A microcomputer.

other home computer or even with a remote
home information service. A two-level strip
overlay is included with the console to help you
identify the keys that are used in combination
with the FCTN and CTRL keys (Fig. 1-2). For
additional identification, control keys and the
CTRL key are specified by red symbols; the
function keys have gray symbols.

TI BASIC, the standard language on the
TI-99/4A, accepts both upper- and lowercase
characters, except in a few special instances.
When the list command is entered, the screen
displays all reserved words, variable names,
and subprogram names in capital letters for
easy identification. Actually, the lowercase
letters are smaller reproductions of the upper
case character set. A lowercase R is not

formed differently from an uppercase R; it is
just physically smaller.

The TI-99/4A, like its predecessor, is
equipped with a module slot so that solid state

command modules may be inserted. These
modules may contain Extended BASIC, a more
powerful version of TI BASIC, or any of a
hundred or so different programs. This com
puter will also store and read programs on and
from cassette tape with the optional cassette
interface cable. A disk drive system is availa
ble as well for those users who need the addi

tional speed and convenience disks provide. In
most instances, however, users will probably
stick to the less expensive cassette tape stor
age medium.

The software for this computer is exten
sive and allows individuals with no prior com
puting experience to begin enjoying the
machine. By adding peripherals such as disk
drives, printers, or telephone modems, the
TI-99/4A becomes a quite powerful problem
solver for advanced users. It is the only inex
pensive home computer that can be pro
grammed to include 16 colors, numerous

sound effects, and five musical octaves (with
three-part harmony).

Another option is the 10-inch color mon
itor that accepts the composite video signal
directly from the TI-99/4A. This is an option
that manyusers won't buy becauseamodulator
is supplied to connect the console witha tele
vision receiver. The picture quality is better
with the 10-inch monitor, but the display on a
standard color television screen is quite good.
The fact that the color monitor option costs
more than the basic computer itself is a big
factor in selecting which type of monitor to
use. If you're going to be heavily involved in
color graphics work with the TI-99/4A, you
will certainly want to consider the excellent
reproduction provided by the small, 10-inch
monitor.

Resident memory in the TI-99/4A is
specified as 72K bytes. This can be a little
misleading since most companies rate their
random-access memory only. The TI-99/4A
includes 16K bytes of data storage memory.
This is also known as random-access memory,
read-write memory, or simply RAM. This is
generally the minimum amount of RAM rec
ommended for any type of computer system,
although very few single programs will use
even half of the available memory. With 16K
RAM, any program you run cannot require
more than 16K of memory.

This limitation doesn't mean that once

you've written one program that consumes

about 16K, your machine is useless until more
memory is added. Two different programs
cannot be run simultaneously on this mi
crocomputer. When you write a program, you
may want to store it in permanent memory.
This is usually a cassette tape for the TI-
99/4A, but it may also be a magnetic disk. Once
the program information is transferred from
RAM to disk or cassette, you are free to erase
the program from RAM and begin a new one.
When this one's completed, you can store it on
cassette or disk as well. Suppose you want to
run one of the stored programs. You simply
load the information from the storage medium
into RAM.

I find that the majority of individuals who
buy a microcomputer actually buy more mem
ory than they will ever use. It takes a long
program to fill 16K RAM, so I suggest you try
the minimum configuration to determine what
your memory requirements are.

In addition to the 16K RAM, the TI-99/4A
contains 26K bytes of read-only memory
(ROM). These chips contain the instructions
needed for your computer to know it's a com
puter. Additionally, they include information to
allow the microprocessor to accept informa
tion from the keyboard and perform all of the
functions that allow you to enter a program in
TI BASIC.

The 26K bytes of ROM and 16K bytes of
RAM, a grand total of 42K bytes, is all the
memory that comes built into the basic TI-

DEL INS ERASE CLEAR BEGIN PROC'D AID REDO BACK

Fig. 1-2. Atwo-level strip overlay fits above the top row ofkeys to identify special function keys.

99/4A computer. When Texas Instruments
states that memory resident in the basic sys
tem is 72K bytes, they are including in that
figure 30K bytes of ROM that is actually con
tained in an accessory plug-in memory module.
This extra ROM may contain an optional pro
gram or new language. It accomplishes in ROM
what might normally be accomplished in RAM
through software.

Those of you who require more than 16K
of RAM will be happy to know that RAM data
storage is expandable to a total of 48K bytes
through the memory expansion unit. This op
tion adds 32K bytes to the resident 16K bytes
of RAM.

HOME VERSUS PERSONAL COMPUTERS

The TI-99/4A is a home, rather than a
personal, microcomputer. The home computer
is often called a low-level microcomputer,and
the personal computer is often called a high-
level microcomputer. The differences be
tween the two groups are becoming less dis
tinct as home computer design andcapabilities
are being constantly upgraded. The 16-bit mi
croprocessor in the TI home computer, for in
stance, is far more advanced than the 8-bit
microprocessors used in many personal com
puters.

In general you will find fewer options
(such as communications interfaces, disk
drives, and mass storage systems) available
for home computers than for personal comput
ers, or if available, they will cost more than the
cost of the computer itself. Home computers
generally have fewer operating features than
personal computers. Here too, the differences
are disappearing. On the TI, for instance, it is

easy to edit, or make program changes in a line
without having to retype the entire line. This is
a feature that was not available on most per
sonal computers only a few years ago.

The character set and screen display on a
personal computer will generally be of higher
quality than found on home computers. A true
personal computer can also more easily and
more quickly display charts andgraphsthrough
direct programming methods using the fea
tures built into the machine. Because of this
capability personal computers may also be re
ferred to as small business computers.

Although many home computers may ac
complish the same results, they most often
require special software or hardwarepackages
to do so and will do so much slower.

Screen displays are also handled dif
ferently. Onmost personal computersthe first
line of text appears at the top left-handcorner
of the screen, and no scrolling (the automatic
movement of displayed lines upward) occurs
until after the screen is full. On the TI mi
crocomputer, as on most home computers, the
first line of text appears at the bottom left-hand
corner of the screen. Upward scrolling begins
with the very next line that is typed. This is the
easiest way to accomplish on-screen display
because it requires less ROM. For most home
computer uses this is really no drawback, but it
can prove troublesome in more sophisticated
personal or business applications.

Another difference in screen display is
screen format. Most home computers display
characters in only one format, andit is usually
about30columns wide by 25rows deep; that is
approximately 30 letters can be printed in a
single row andyou canget up to 25 rows on the

Cassette

interface

cable

Console

power

receptacle Wired Remote

Controllers Qoysticks)

Audio/video output

Fig. 1-3. The location of various outlets on theTI-99/4A console.

full screen. The TI-99/4A allows a 32-char-
acter wide format with 24 rows on the full
screen. True personal computers usually dis
play text in at least two different screen for
mats: one format approximately 80 columns
wide and 24 or 25 rows deep (called high-
resolution text mode) and one format 40 col
umns wide and 25 rows deep (called medium-
resolution text format). This type of screen
formatting canbe a greataidin clearly display
ing information without having to do a lot of
hunting through screen garbage. Although
most home computers display information
quite accurately, you may have to look for a
secondorso longer to distinguish it from other
on-screen information.

Because personal computers generally
offer more keyboard functions thanhome com
puters theymake inputting information easier.

Forexample,onthe TI-99/4A home computer,
you must press the FCTN key simultaneously
with another key to move the cursorto the left
or right. On most personal computers, cursor
movement is controlled by a separate key
panel that requires only one finger to operate.

While the extra features of a true personal
computer may be very nice, you pay through
the nose for them. Keep in mind that the TI-
99/4A is available from most discount stores
for less than $200. In comparison, the personal
computer I have sells for about $2,500. With
options such as a disk drive, special monitor,
and memory expansion package, it costs well
over $6,000. In other words, my personal com
puter cost thirty times what the TI-99/4A
home computer costs.

The question every potential computer
owner must ask is, "Do I need everything the

expensive machine offers?"
The TI-99/4A is a home computer de

signed to be used in the home by the average
homeowner and home dweller. Texas Instru
ments states that adults and children with little
or no knowledge of computers can easily use
the TI-99/4A. Texas Instruments has at
tempted to achieve (and in my opinion, has) a
simple machine built around a high-powered
microprocessor. Simplicity is the key here,
ergo the standard typewriter keyboardandex
cellent software packages that are offered.

As an experienced computer operator, I
would love to see a separate numeric keypad
on the TI-99/4A, just like the one on my per
sonal computer. However, such a keypad is
certainly not mandatory, nor even desirable for
the beginning or casual home computer
operator. It would certainly add to the cost and
the complexity of operating the machine.

For the money, the TI-99/4A is one of the
best computer buys on today's market. I have
tried many different home computers, and I
especially like this one because of its standard
typewriter keyboard. Many home computers
do not offer this feature. The main reason I like
the TI though is because its language and
keyboard operation are identical or similar to
those contained in personal computers. Some
home computers seem to program in a com
pletely different manner from most personal
computers. They don't, therefore, make very
good trainingaids for childrenwhomaysome
day hope to convert to serious personal com
puting. If you learn to efficiently program the
TI-99/4A, you will be ableto easilyconvert to
a full-scale personal computer when the time
comes. Ifyou haveprogrammed forquitesome
time on a personal computer, you will be able

to easily convert to the TI-99/4A. There are
marked differences in the two types of ma
chines, but there are enough similarities to
make converting to either an easy task.

THE CONSOLE

The TI-99/4A console is shown in Fig.
1-4. This is the master unit and contains the
microprocessor, the keyboard, solid state
software command module input slot, and the
video/audio interface.

The TI-99/4A console or master unit is
designed around the TMS9900 16-bit micro
processor. Its architecture is 16-bit with 16
general registers. It can address up to 54K
bytes of memory and contains four interrupt
lines.

Also found in the console is a video dis
play processor chip. It controls display mem
ory and generates the composite video signal
used to drive a composite monitor or a video
modulator when a color television is used. It
displays 24 lines of 32 characters in an 8-by-8
dot matrix. The processor provides 16 colors
and for flexibility in the use of color, divides
the characters into sets of 8 characters each,
with different foreground/background colors.
The video display processor addresses up to
16Kbytes of RAM for the central processor or
display purposes.

There is a third chip in the console unit,
the sound controller chip. This chip offers
three voices with a 5-octavemusical range. It
also contains a 15-bit programmable noise
source and offers a 100-milliwatt audio output
with 30 dB control in increments of 2 dB.

The keyboard is contained within the con
sole.It's known as a48-key StaggeredQwerty,
full travel type. It is very similar to some

Keyboard

RS-232 output

Command

module slot

Power switch

Fig. 1-4. Front view of console.

typewriter keyboards, although youwillnote a
few differences in the placement of certain
keys. The number and letter keys, however,
are in the usual location.

The console unit itself also contains the
14K byte BASIC Interpreter, along with a
graphics language interpreter.

The console is powered from a standard
110-Vac source. The powersupplyis locatedin
the power cord. There are two arrangements
here. One model may locate the transformer a
distance from the plug, while another type has
the plug-in type of transformer arrangement.
Here, the plug prongs exit the transformer
body andthe entire unit rests against the wall
receptacle. It doesn't matter which type you
get because both are electrically equivalent.
The console draws a maximum of about 20
watts.

The removable power cord attaches at the

rear of the unit by means of a 4-pin plug. The
location of the various outlets on the console is
shown in Fig. 1-3. At the far left, the cassette
interface cable is connected to a 9-pin D outlet.
Immediately to the right of this receptacle is
the console power receptacle, and to the far
right is the 5-pin connector for audio/video
output from the unit. This connector accepts
the cabling from a compositevideo monitoror
from a video modulator when a television re
ceiver is to be used. To one side of the console
is another receptacle to accept the joysticks, or
as Texas Instruments calls them, the wired
remote controllers. This receptacle is identi
cal to that found on the rear of the unit for
interfacing with a cassette tape recorder. Do
not get these two receptacles mixed up.

Figure 1-4shows the front of the console.
The powerswitch is locatedat the lower front
right near the command module software slot.

All of the module software is inserted in this
slot. To the right of this slot is an output jack
for optional peripheral accessories, such as the
RS-232 interface. Since a good bit of the mi
croprocessor circuitry is located just beneath
the module software slot, it is normal for there
to be a bit of heat in this area. The plastic
casing in this area will become warm, but not
so hot that it's uncomfortable to touch.

THE KEYBOARD

One big advantage of the TI-99/4A over
the previous TI-99/4 is the typewriter
keyboard (Fig. 1-5). For the most part, the
keyboard looks and operates like a standard
typewriterkeyboard. When you press anykey,
its lowercase character appears on the screen
unless youholddown the shiftkeyat the leftor
right. When this is done and another key is
simultaneously pressed, the uppercase charac

ter for that key appears on the screen. There is
also an alpha lock key at the bottom left of the
keyboard. When this is depressed, the
keyboard is locked into uppercase mode. The
alpha lock key does not affect the number and
punctuation keys. Pressing the alpha lock key
one more time will "unlock" the uppercase
mode, and return the keyboard to normal low
ercase operation. Except for the alphabetical
keys, each key's uppercase character is
printed at the top of the key face. The lower
case character is printed at the bottom. This is
not done for the alphabeticalkeys because the
characters are formed in exactly the same
manner for both upper- and lowercase. The
onlydifferencebetween uppercase and lower
case letters will be their size. Some of keys
have special functions that are accessed by
depressing the FCTNkeysimultaneously with
another key. Some characters formed with the

1

@

2

#

3

$
4

%

5

A

6

&

7

*

8

(
9

)
0

+

Q W E R T Y U I 0 P /

A S D F G H J K L ; ENTER

SHIFT z X C V B N M
<

>

>
SHIFT

>\LPHA

LOCK
CTRL SPACE FCTN

Fig. 1-5. The TI-99/4A contains a typewriter-like keyboard.

• Fig. 1-6. Display of the letter O and
the number zero on the TI-99/4A.

Letter "oh" (O) Number ZERO (0)

aid of the FCTN key are printed on the front or
side of the corresponding keys, rather than on
the top, as is normally the case with most
keyboards.

The number keys on the TI-99/4 con
sole are on the top row. Unlike on some type
writers, you cannot type the lowercase letter
"elle" (1) as a substitute for the number one (1),
and you can't interchange a zero (0) and the
uppercase letter "oh" (0). The computer sc
reen displays the letter 0 with square corners
and the number zero with rounded corners

(Fig. 1-6) to make it easier for you to distin
guish between them. By pressing the shift key
and number keys, symbols become available.

The keyboard has most of the punctuation
and symbol keys of a standard typewriter.
There are also a few special ones that have
particular applications in computer program
ming and are not found on most typewriters.
These punctuation and symbol keys follow the
same upper- and lowercase format as other
keys: each has two symbols printed on its face.
To print the top symbol, you must use the shift
key. To print the bottom symbol (lowercase),
simply strike the key. Some punctuation marks
(quotation marks, for instance) appear on the
front of the key. The only way you can type
quotation marks or any other symbols on the

fronts of keys is by holding down the FCTN
key at the lower right of the keyboard while
pressing the appropriate key. The special func
tion keys with arrows on them do not print
anything on the screen. These are used to
move the cursor during the line editing pro
cess.

There are other special function keys as
well. These are really the number keys that
are pressed simultaneously with FCTN. The
following is a rundown of the special FCTN
key combinations.

When you press FCTN and the key with
the arrow pointing toward the left, the cursor
moves to the left. The cursor does not erase or

change any characters on the screen, but in edit
mode it allows you to insert or delete a charac
ter by means of other commands. The right
arrow key moves the cursor to the right when
pressed simultaneously with FCTN. The other
two arrow keys, one pointing up and the other
pointing down, have different functions ac
cording to the application they are being used
for and the software itself. When you enter a
program, pressing FCTN and up arrow key
will cause the lines on the screen to scroll

upward.
A special overlay is provided to owners of

the TI-99/4A. This metallic strip is fitted over

the top of the keyboard to indicate which
number key performs which function when
pressed simultaneously with the FCTN key.
The key bearing the number 1 is labeled as
DEL by the overlay. When this key is pressed
simultaneously with the FCTN key, a charac
ter is deleted from the screen. You usually use
this while in the edit mode, or before a program
line is entered. Using the cursor positioning
keys (right and left arrow keys) discussed ear
lier, you place the cursor beneath an improper
character and then press FCTN and the
number 1 key to delete it. When the character
is deleted, all other characters move one space
to the left to fill in the empty space. By con
tinuing to hold down FCTN and 1, more letters
or characters are deleted. All letters to the

right of the cursor move toward the cursor.
When you press FCTN and the number 2

key, the insert mode (INS) is accessed and
letters or characters may be added to a pro
gram line. Let's assume that instead of typing
PRINT X, you typed PRIT X. To correct this
you enter the edit mode by typing EDIT and the
line number that contains the error. Using
FCTN and the cursor positioning keys, you
move the cursor until it rests beneath the T.

Now press FCTN and the number 2 key, and
you are in insert mode. Type the letter N, and
the N is inserted just before the T. Pressing
the enter key saves this line as edited. The
delete and insert functions on the TI-99/4A can

save a great deal of time by letting you quickly
and easily correct mistakes.

When you press FCTN and the number 3
key, the entire program line you are presently
typing is erased. This must be done before you
press the enter key to commit the line to mem
ory. This is handy in situations where you

10

might be entering a program that is printed in a
book. Midway through the entering of a line,
you discover that you skipped a line and this
one is completely wrong. Press FCTN and the
number 3 key, and it's gone. Then begin typing
in the correct line.

When you press FCTN and the number 4
key, all execution stops. The key is also used
to clear any information from the screen before
you press the enter key. Its first feature
(execution halt) is most important. On other
computers, this might be called a break key or
a halt key. To stop a program in the midst of
execution, press FCTN and the number 4 key
simultaneously. You can now enter other
commands in direct mode.

The other numerical keys have special
functions in software applications and are
labeled by the same overlay strip. The overlay
strip is laid out in two levels. The top level of
functions is identified by a red dot. These keys
are called control keys. These functions are
accessed by holding down the CTRL key and
the numeric key simultaneously. The second
level of functions is identified by a light gray
dot. These are accessed by pressing that key
while holding down the FCTN key.

The TI-99/4A has several math keys used
to insert symbols to indicate math functions.
The plus (+), minus (-), and slash (/) indicate
addition, subtraction, and division. The as
terisk key (*) indicates multiplication, the
equal sign key (=) means equal. There is also a
caret key (A) used to indicate the raising of a
number to a certain power. For instance, a 5 A2
indicates 5 raised to the second power, or
squared. It is necessary to use the shift key to
obtain this character, which is found on the

number 6 key in uppercase mode. Two other
mathematical symbols are found on the keys at
the lower right of the keyboard. In lowercase
mode, these keys type the comma (,) and the
period (.). In uppercase mode the comma key
becomes the less than symbol (<), and the
period key is the greater than symbol (>).

Another feature of this keyboard is the
automatic repeat. If you hold down the space
bar or any character key for more than about
one second, it goes into repeat mode. To type a
series of 5 spaces, press the space bar once and
hold it down until your 5 spaces have been
printed. The same applies to any character
key. This comes in handy in certain graphics
applications, where it may be necessary to
print a series of 16 Fs, for instance.

The space bar may be used to delete or
erase characters from a program line before
the line has been committed to memory by
pressing the enter key. If you want to erase an
entire word, you simply position the cursor at
the beginning of the word and hold the space
bar down until all letters in the word have been

replaced by spaces. (Of course, you can use the
FCTN key and delete key for the same basic
purpose.)

The feel of the keyboard is quite impor
tant to typists who depend on "feel" to put
them into a typing rhythm. I would not call the
TI-99/4A keyboard crisp, but rather pleasingly
spongy and quiet. It does not have the feel of
any keyboard I have ever used before. This
doesn't mean that it's bad, just different. It's a
quiet keyboard; you don't hear the various
clicks present with other types of computer
keyboards. After ten or fifteen minutes ofprac
tice, one becomes adjusted to the keying ac
tion, and good typists can fly along at a com

fortably rapid pace. I rate the keyboard as ex
cellent for an inexpensive home computer.

ACCESSORIES

A variety of accessories are available for
the TI-99/4A computer.

Video Modulator

One item listed as an accessory for the
older TI-99/4 is now standard with the TI-
99/4A. This is the video modulator (Fig. 1-7),
which plugs directly into the console and at
taches to the 300-ohm antenna terminals of
your color television receiver. The TI900
video modulator is also called by several other
names, such as Sup'R Mod, depending on the
company from whom you buy it. This is a
high-qualityKorean-made modulator bought in
bulk by many companies and sold under dif
ferent names. Texas Instruments made a good
choice with this modulator, as it's probably one
of the most popular types for microcomputer
users.

This is an audio and video modulator, so it
transmits video information and audio informa

tion on the same carrier. The circuitry of your
television receiver separates the sound and
picture information just as it does with the
transmissions from a television station. The

picture information is displayed on the picture
tube, and the sound is emitted from the internal
television speaker.

The Texas Instruments modulator is

switch-selectable between channels 3 and 4.

Connect the unit to the back of your television
set by means of the short length of 300-ohm
cable that exits the top. There is also a termi
nal strip on the side of the modulator, to which

11

6" Television

interconnect

cable

VHF antenna

terminals

Computer interface cable
with 5-pin jack

Fig. 1-7. TI900 video modulator.

you can connect your television antenna leads.
A switch at the center of the modulator lets you
select either the computer or the television
antenna for input to the television set. When
you want to operate the computer into the
television, set this switch in the "computer"
position. The "television" position allows for
normal television viewing.

The channel selector switch determining
the output frequency of the modulator is found
at the bottom front. In the left position, the
output is on television channel 4; in the right
position, your computer output is seen on
channel 3. If you have a strong local station on
either of these channels, select the other one
or for that matter, whichever setting gives you
the clearest screen.

Don't be surprised if you hear a few clicks,
pops, and other sounds from your television
speaker. This is common and can be corrected
by turning down the volume. This assumes that
you are running a program that is not using the

12

TV antenna/
modulator

switch

Channel

\yselect switch

TI-99's sound production capabilities. When
using the computer to produce music, leave the
television volume up, because the music
comes from this speaker.

Another good feature of the modulator
supplied by Texas Instruments is its built-in
protection. If the computer overdrives the
modulator (supplies too much video signal),
the protective circuit temporarily disables the
device. When the protection circuit is acti
vated, a red light-emitting diode (LED) on the
front panel is triggered. You can reset the
modulator by turning the mode select switch
on its front face to "television" and then back to
"computer" again. If the light continues to be
triggered, this could be an indication of a defect
in the computer or even the modulator. For
best results, try to place the computer console
at least 3 feet away from the television re
ceiver. This can avoid unwanted video and

audio interference from the interaction of the
two.

Color Monitor

ShowninFig.1-8,the Model PHA4100is
ahigh quality color monitor specially matched
for use with the TI home computer. The dis
play format is 24lines of32characters per line
and the monitor provides excellent color re
solution and picture quality. The 10-inch sc
reen has a 192 by 256 dot density ratio and
connects to the TI-99/4A computer via a spe
cial cable. This eliminates the chance for inter

Fig. 1-8. The TI 10-inch color monitor.

ference and distortion that can occur in the
tuner of a standard television. This is a true
colormonitor andaccepts the composite video
directly. Therefore, the PHA 4100 has no tun
ing. The picture quality using a composite
color video monitor is almost always superior
to pictures from even the best colortelevision
receiver.

The monitor accepts the NationalTelevi
sion Systems Committee (NTSC) composite

13

video signal at a nominal 1-volt peak-to-peak
value. Audio input is delivered at 1 to 2 volts
peak-to-peak. The operating, or scan, fre
quency of this monitor is 15.750 kHz. In addi
tion to the standard on/off and volume con
trols, you will also find controls for sharpness,
tint, color level, contrast, brightness, height,
vertical hold, and horizontal hold. The monitor
operates from the standard 110-volt household
line, consumes about 65 watts, and weighs
about 22 pounds.

Texas Instruments warrants all compo
nents of the color monitor with the exception
of the picture tube for a period of three months
from the date of purchase. The picture tube is
warranted for a period of two years from the
date of purchase.

Thermal Printer

Shown in Fig. 1-9, the solid state thermal

14

printer gives printed copy of any program
and/or data run on the TI-99/4A. The printer
can also be used with some software applica
tions to print screen displays or generate lists
and reports.

The printer can print up to 32 characters
per line. It contains its own resident character
set, but it can also set special characters de
fined in software. Other special features in
cluded with this device allow you to control the
amount of paper that is ejected and the spacing
between lines. In many computer applications,
a hard copy printout is quite desirable and often
necessary. The TI solid state thermal printer
is excellent for this purpose. In addition to
standard letters and numbers, the printer has
32 predefined graphic symbols for printed
charts and graphs.

Printing is done on 3.5-inch thermally
sensitive paper, the same type of paper used

Fig. 1-9. The solid state thermal
printer from Texas Instruments.

for some of TI's printing commercial cal
culators. The printer is quite tiny and mea
sures approximately 10 inches by 7 inches by
5V2 inches. Because thermal printers normally
use fewer moving parts than impact-type
printers, they can be far more reliable.

Several software programmable functions
are available with this printer. When .U is
listed in a program, the printer accepts user-
defined characters. If .U is not listed, the
printer uses its resident character set. If .S is
listed in a program, the printer does not leave
any space between printed lines. If it is not
listed, the printer leaves a space that is equi
valent to the height of 3 rows of dots between
the printed lines. When .E is listed in a pro
gram, the printer does not eject paper as the
program runs. If it is not listed, the printer
automatically ejects five lines of blank paper
for each open and close statement for the
printer. Five lines of blank paper are also
ejected before and after each list statement.

The printer is controlled from certain TI
command modules and from TI BASIC. The
open, print, and close statements in a program
control and output data to the printer to pro
duce printed copy when the program is run.
The list command tells the computer to print a
copy of the program currently in memory.

The TI solid state printer prints approxi
mately 30 characters per second and offers
upper- and lowercase characters. It must be

Fig. 1-10. The wired remote
controllers from Texas Instruments.

used with thermal printing paper (PHA-1950),
available only from Texas Instruments. Other
thermal papers may damage the printer and
void the warranty, which is in effect for 90 days
from the date of purchase.

Wired Remote Controllers

Shown in Fig. 1-10, these are often called
joysticks and allow you greater freedom and
versatility in the controlling of graphics,
games, and sound on your computer. Without
the joysticks, it is necessary to press one or
more keys to effect similar control, which may
not be as precise as that offered by the remote
controller. The remote controllers are re

quired for certain software offered by Texas
Instruments and are a must for programmers
who wish to concentrate on developing com
plex computer games.

RS-232 Interface

The Texas Instruments RS-232 interface

(Fig. 1-11) is a communications adapter that
lets you connect serially formatted devices,
including those from other manufacturers, to
the TI-99/4A. It is not required for the use of
TI-99/4A peripherals manufactured by Texas
Instruments (with the exception of the tele
phone coupler). With the RS-232 interface, you
can list programs on a printer, send and receive
data from a terminal, exchange TI BASIC pro
grams directly between TI home computers,
etc.

15

With the addition of the telephone coupler
(modem) or other standard modem or acoustic
coupler and the RS-232 interface, the TI-
99/4A can talk with other computers and ter
minals over standard telephone lines. You can
access an office computer or time-sharing net
work using the TI-99/4A as a remote terminal
to send and receive data. This two-way com
munication permits interactive programming
and distributed processing functions to be
performed between two or more TI-99/4A
computers or by using the TI-99/4A as a re
mote terminal for another computer system.

The RS-232 interface is programmable so
you can exchange data with a variety of serially
formatted devices. Using TI BASIC, you can
select baud rate, the number of bits, parity, and
the number of stop bits. This lets you interface
with low- and high-speed peripherals including
printers, plotters, video display terminals, and
other computers.

The interface is capable of outputting in
formation at rates 110, 300, 600, 1200, 2400,
4800, or 9600 bits per second.

16

Fig. 1-11. The RS-232 interface allows communications
with serially formatted devices.

Several software programmable functions
are available and include:

• Carriage Return. Automatically
added to the end of all output records unless
disabled. If disabled, forces nulls and linefeed
to be disabled also.

D Nulls. Normally disabled, but if
enabled, will automatically add 6 null charac
ters between the carriage return and the
linefeed characters.

• Linefeed. Automatically added
after carriage return character unless disabled.

• Echo. Automatically echoes all re
ceived data on a particular port back to the
device connected to that port. Also enables the
remote terminal device to edit the data record
before the console receives it.

• Parity. Normally disabled, but if
enabled, will check for parity errors and gen
erate an error code if any are found.

The RS-232 interface also contains all the

software necessary to interface with the TI
Home Computer File Management System and
is controlled from TI BASIC. The open, close,

input, print, old, and save statements can be
used to input and output data through the two
ports of the RS-232 interface. The input and
print statements can input and output data to a
terminal. The old and save commands can

transfer a copy of a TI BASIC program from
one TI home computer to another.

Two serial ports are provided by this de
vice, and connection is by means of cables
using EIA RS-232-C standard 25-pin male con
nectors. Seven signals are used:

SERIAL DATA IN

SERIAL DATA OUT

CLEAR TO SEND

DATA SET READY

DATA CARRIER DETECT

DATA TERMINAL READY

SIGNAL GROUND

This device is operated from the ac line (115
volts) and consumes a maximum of 20 watts of
power during normal operation.

Peripheral Expansion System

The TI peripheral expansion system (Fig.
1-12) lets you add accessories to your com
puter in a single unit by inserting them in the
slots provided. The package includes the ex
pansion system and the peripheral expansion
card with a connecting cable. The latter pair
combine to serve as an interface between the

computer console and the accessories
mounted in the unit. With the peripheral ex-

Fig. 1-12. The peripheral expansion system from Texas Instruments.

17

pansion system attached to the TI-99/4A, you
can quickly change computer capabilities by
adding different accessory cards. You can also
install a TI disk drive in the portion of the
compartment designed for this purpose. To
access the interior of this accessory, remove
the top of the unit and slide in the accessory
cards. The system can hold up to seven acces
sories, including the disk drive controller card,
the RS-232 interface, the TI memory expan
sion card, and several other accessory boards.
To handle the increased power drain of the
many options this device can hold, a separate
150 watt power supply is provided. The unit
weighs about 20 pounds and is operated from
the ac line.

Disk Memory System

The TI disk memory system is a combina
tion of hardware and software that allows you
to store and retrieve data on single-sided or
double-sided disk measuring 5lA inches in
diameter. Disk systems accomplish the same
thing as cassette tape storage systems, but
faster. Each single-sided disk holds over
700,000 bits of information; a double-sided
disk holds nearly 1,500,000 bits. Thus, the
single-sided disk has a holding capacity of
about 90K bytes, and the double-sided disk
with this system will hold twice this amount.

The disk memory system consists of a
disk controller card, disk memory drive, and
the disk manager command software. The disk
controller card tells a disk drive where to posi
tion the magnetic head in order to read or write
information properly. The controller also puts
an index on the disk, making the data that has
been written easy to locate. It can control up to
three disk memory drives.

18

The disk drive spins the disk at a constant
speed and controls the movement of the
magnetic head. There is a special compartment
in the peripheral expansion system for installa
tion of one TI disk memory drive.

The disk manager solid state software
command module helps you maintain the in
formation on your disks. Naming and renaming
disks, renaming files, deleting files, copying
files, and copying disks is done with the disk
manager module.

Because the control software needed for

the disk system is in permanent ROM, in the
disk manager command module, and in the con
troller, the disk system uses a relatively small
amount of working space in the computer's
available memory (RAM).

Memory Expansion Card

The TI memory expansion card adds 32K
bytes of random-access memory to the 16K
bytes of RAM resident in the TI-99/4A con
sole. The expanded memory is designed for
use with TI Extended BASIC and other lan

guages contained on the command module.
The memory expansion card attaches to the
peripheral expansion system and requires that
TI Extended BASIC or another specialized
command module be inserted in the computer
console. Most software packages cannot make
use of the memory expansion card without the
addition of Extended BASIC or some other

special command module.

Telephone Coupler (Modem)

The Texas Instruments telephone coup
ler (Fig. 1-13) enables your TI-99/4A to send
and receive messages through a standard tele-

phone. Use of the telephone coupler requires
an RS-232 interface unit.

The telephone coupler functions as a
modulator to convert the data you enter on the
console into signals that can be sent over tele
phone lines. It also functions as a demodulator
to convert data received over telephone lines
back to its original form. Using the telephone
coupler is simple. It is powered by a UL-listed
low-voltage transformer, which is included. A
cable connects the coupler to the RS-232
interface. A standard telephone headset in
serts into the flexible acoustic couplers on the
telephone coupler. This device may be used
with many RS-232 compatible terminals or
computer systems for communication over
standard telephone lines.

The telephone coupler offers two basic
modes of operation, called the originate mode
and the answer mode. In the originate mode,
you are the party who begins all communica
tions with the remote terminal. In the answer

Fig. 1-13. The TI telephone coupler enables the TI-99/4A to
send and receive messages via a standard telephone.

mode, the remote terminal originates com
munications. This device is capable of trans
mitting at a data rate that is continuously vari
able up to 300 bps.

Cassette Interface Cable

This interface (Fig. 1-14) cable plugs into
the TI-99/4A console and allows you to con
nect one or two cassette recorders to the com

puter. I stated earlier that the basic TI-99/4A
package is complete, in that it allows you im
mediately to begin writing and running com
puter programs, providing you have a televi
sion or monitor. With the standard package,
however, you cannot store any programs, even
if you have a storage device such as a cassette
tape recorder. I assume that TI includes the
video modulator with their basic package on
the assumption that most homes have a televi
sion and that a receiver is necessary to use the
computer. It's my feeling that most homes also
have cassette tape recorders; and therefore,

19

the cassette interface cable should be provided
as part of the base package to allow for the
saving of programs. I guess I'm especially
touchy about this particular cable, since I in
correctly assumed that one was included with
my purchase of the basic console. When I re
turned home after a long drive, I found that the
cable was an option and it was impossible to
locate a substitute locally. Although disk users
would not need a cassette interface cable, I
think the majority of TI-99/4A owners will use
cassette storage since a disk drive costs more
than the computer itself.

With the cassette interface cable, you can
use one or two recorders to save and load

computer programs. Texas Instruments points
out that the use of two cassette recorders is
especially helpful for programming applica
tions where a lot ofmemory spaceis required.
Many cassette recorders can be used with the
computer, although each should be equipped

20

Fig. 1-14. The cassette interface cable turns a cassette re
corder into a memory storage device for the TI-99/4A.

with a separate volume control, tone control,
microphone jack, remote jack, earphone or ex
ternal speaker jack, and a digital tape counter.
The latter is not mandatory, but is a tremen
dous help in locating the correct tape position
for a particular program.

To connect the computer to the cassette
recorder(s), insert the 9-pin D connector into
the 9-pin outlet on the rear of the computer
console. This is the outlet directly to the left of
the power cable outlet when facing the back of
the unit. On the other end of the cable, the plug
with the red wire goes to the microphone jack.
The one with the black wire goes to the remote
jack and the third one connects to the earphone
jack. In most cases, the second set of cassette
recorder plugs are not used, so these simply
hang free.

Texas Instruments includes a list of re

corders from various manufacturers whose

products are known to work with the TI-

99/4A. This does not include all of the re
corders that work, and indeed, most types can
be made to work. Some of the inexpensive
recorders do not have a tone control, so it may
be necessary to adjust the volume to make up
for this.

There is one point that should be known.
Most cassette recorders operate from internal
batteries as well as from house current. I

would shy away from the use of battery power
when saving and loading computer programs.
As the batteries deteriorate, motor speed will
slow, and information may be erratically re
corded or output to the computer. In many
instances, replacing the batteries with a fresh
set will correct this; in one instance, it may not.
A set of weak batteries in the recorder causes

the motor speed to slow up and the tape is
pulled across the record head at a slower than
normal rate. You may successfully save (re
cord) the program on tape. With a new set of
batteries, the motor speed will pick up to nor
mal again, but the program that was saved
while the other set of batteries was in place
was recorded at a slower speed. With the fresh
set, the playback of this recorded program is
faster than intended. This can be disastrous,
and you may not be able to retrieve the pro
gram.

Also when batteries become weak, motor

speed may fluctuate. The tape may travel
across the record head for a few minutes at one

speed and for a few more at a faster or slower
speed. This is an even bigger problem and
almost assures that you can never retrieve the
program. The same thing can happen when ac
power is used to drive the recorder, but only
when there is a defect in the recorder circuitry.
I highly recommend the use of an ac power

supply for recording programs.
If you decide to use batteries, make ab

solutely certain that fresh batteries are install
ed at appropriate time intervals. You may wish
to use rechargeable batteries that can be re
charged from the ac line after every usage.

Cassette storage is slow compared with
disk storage, but it's also quite inexpensive and
the data is stored quite accurately. From a
price standpoint, it is the most efficient data
storage medium available today. For most
owners of the TI-99/4A, cassette storage will
be completely adequate.

Cassette Program Recorder

Texas Instruments announced early in
1983 a new, compact cassette program re
corder, (Fig. 1-15) designed for use with the
TI-99/4A. The recorder package includes a
computer interface cable for the TI-99/4A.

Features of the unit include the ability to
be controlled from the TI-99/4A, an automatic
recording level control (ALC), a digital tape
counter, clearly marked optimum settings for
volume and tone control, color-coded input
jacks for easy setup, a pause control, and a
built-in condenser microphone. The program
recorder, with a suggested retail price of
$69.95, can operate either on four C batteries
or on ordinary ac power through the included
cord.

Speech Synthesizer

The Texas Instruments solid state speech
synthesizer (Fig. 1-16) makes possible the ex
citing addition of speech to the TI-99/4A. The
speech synthesizer requires an optional com
mand module preprogrammed for speech, such

21

Fig. 1-15. The cassette program recorder fromTexas Instruments sells for about $70.00.

as the speech editor command module. These
preprogrammed modules allow the speech
synthesizer to be used without the need to do
any programming. Speech can also be included
as part of your own programs in TI BASIC.

The speech synthesizer is entirely elec
tronic. There are no taped voice recordings or
any other traditional recording medium. A vo
cabulary of words and phrases is permanently
stored on chips contained within the speech
synthesizer. Each word has been transformed
into a pattern of bits. When processed, each
pattern drives electronic circuitry that re

22

builds the requested word and audibly repro
duces it through a loudspeaker. The speech
synthesizer contains a resident vocabulary of
over 300 words. Capacity is expandable with
optional plug-in speech modules.

The synthesizer docks into the TI-99/4A
by means of built-in connectors. Insert one of
the command modules designed to call up
speech from the device, and you are ready to
go.

The speech synthesizer provides a voice
for the computer, creating many new applica
tions and enhancing the effectiveness of exist-

ing ones. It can communicate with you even if
you are not near the display. It can recite in
structions to those unable to read, or where
written instructions might interfere with the
display. It can provide exciting comments and
sound effects in games, and it can reinforce
concepts in educational applications.

The speech synthesizer can be used in
several ways. In one mode, it is controlled by a
command module other than the speech editor
command module. This must be a command
module with speech capability.

Allother methods ofoperation require the
use of the speech editor command module it
self. Using TI BASIC, words, phrases, or sen
tences may be recited under program control.

The speech editor command module can
also immediately recite words, phrases, and
sentences without your having to write a pro
gram. In this mode, just type in the desired
word, push the enter key, and the speech syn
thesizer says the word. Figure 1-17 provides a
listing of the device's resident vocabulary.

Optional plug-in speech modules add ad
ditional vocabulary, in specialized areas. Drop
the appropriate speech module into the speech
synthesizer and the new words are im
mediately accessible to you, in addition to the
resident vocabulary in the speech synthesizer
itself.

Impact Printer
The TI impact printer (Fig. 1-18) is a

fairly new offering for the TI-99/4A. The
printer itself has been out for a long time,
because it's manufactured by Epson (probably
the best-known manufacturer of computer
printers in the world). The Epson printer, the
MX-80, is almost a standard in the personal
computer industry. The IBM Personal Com
puter, for instance, uses this same printer
(with IBM's name on it).

This printer is capable of producing 80
characters per second and can handle 40-, 66-,
80-, and 132-column widths. It can print text or

Fig. 1-16. The solid state speech synthesizer made by TI
adds a voice to your TI-99/4A.

23

+ (positive) but draw gives it

- (negative) buy drawing go J

• (point) by e goes joystick

0 bye each going just

1 c eight good k

2 can eighty good work key

3 cassette eleven goodbye keyboard

4 center else got know

5 check end gray I

6 choice ends green large

7 clear enter guess larger

B color error h largest

9
come exactly had last

a(8)
comes eye hand learn

a1 (ah)
comma f handheld unit left

about command fifteen has less

after complete fifty have let

again completed figure head like

all computer find hear likes

am
connected fine hello line

an
console finish help load

and
correct finished here long

answer
course first higher look

any cyan fit hit looks

are d five home lower

as data for how m

assume decide forty hundred made

at device four hurry magenta

b did fourteen i make

back different fourth I win me

base diskette from if mean

be do front in memory

between does 9 inch message

black doing games inches messages

blue done get instruction middle

both double

down |
getting instructions might

bottom | give is module

Fig. 1-17. The resident vocabulary in the TI speech synthesizer.

24

more point shape that is incorrect up you

most position shapes that is right upper you win

move positive shift thel (the) use your

must press short the (the) v z

n print shorter their vary zero

name printer should then very

near problem side there w

need problems sides these wait

negative

next

program

put

six

sixty

they

thing

want

wants

nice try putting small things way

nine q smaller think we

ninety r smallest third weigh

no
randomly so thirteen weight

not read (red) some thirty well

now
readl (red) sorry this were

number ready to start space three what

0
recorder spaces threw what was that

of

off

red

refer

spell

square

through

time

when

where

oh remember start to which

on
return step together white

one
rewind stop tone who

only right sum too why

or
round supposed top will

order s supposed to try with

other

out

said

save

sure try again

turn

won

word

over

P

part

say

says

screen

t

take

teen

twelve

twenty

two

words

work

working

partner

parts

period

play

second

see

sees

set

tell

ten

texas

instruments

type

u

uhoh

under

write

X

y

yellow

plays seven
than understand yes

please seventy that until yet I

25

Fig. 1-18. The TI impact printer offers a speed of 80 characters per second and a maximum width of 132 columns.

graphic data. This is a bidirectional printer,
which means it prints from left to right and then
from right to left. There is no nonprinting re
turn stroke. The first line of a page of text is
printed from left to right, just like ona type
writer. However, the second line will be
printed from right to left in reverse order.

This printer does not require special
paper. It features a 9 by 9 dot matrix print head
that can be easily replaced. A single-unit rib
bon cartridge is easily inserted, and you can
choose from several different ribbon colors.

Connecting the impact printer to the TI-
99/4A requires the RS-232 interface and the
printer cable supplied by Texas Instruments.

It produces excellent quality hard copy

26

printouts, but is not a letter-quality printer.
Letter-quality printers are used in word pro
cessing operations that require all letters and
documents to appear as if they were typed ona
high-quality typewriter. Because most letter-
quality printers have typewriter-like mech
anisms to do the actual printing, they are usu
ally slower than dot matrix printers.

The TI impact printer produces neat and
perfectly readable copy. The type will not ap
pearto be as perfect as that producedby agood
letter-quality printer or for thatmatter, agood
typewriter, but because the TI-99/4A is not
designed for sophisticated wordprocessing(in
my opinion), a letter-quality printer should not
be required.

Cartridge Storage Cabinet
If you collect a lot of TI-99/4A software,

you've got to store the cartridges or cassettes
whenthey're not in use. Figure1-19shows the
TI storage cabinet, which sells for about
$15.00. The cabinet holds 12 cartridges or cas
settes in two sliding doors. The case is de
signed to be stackable, so two or more may be
combined vertically to increase storage capa
bility.

Compatible Computers

The next two devices may not be con
sidered options to the TI-99/4A, but they are

available and they can be interfaced with this
computer. Since these are relatively new an
nouncements from TI, it is appropriate that
they be mentioned here.

TI-99/2 (Fig. 1-20) is a new computer
from Texas Instruments that is believed to be
the first 16-bit computer for less than $100 in
the world. Unlike most computers in this price
range, the TI-99/2 Basic Computer uses
software on solid state cartridges as well as on
cassettes. In addition, Texas Instruments is
introducing low-cost peripherals and software
for the TI-99/2 that will also work the TI-
99/4A.

Fig. 1-19. Acartridge storagecabinet can protect valuable software.

27

Fig. 1-20. The TI-99/2 computer. (Courtesy Texas Instruments Inc.)

William Turner, President of the Con
sumer Group saidthat the TI-99/2 is designed
to allow computernovices to learn to program
acomputer inTI BASIC and BASIC-supported
assembly language. This machine is targeted
primarily at the technical enthusiast, engineer,
or student. He stated that TI expects this com
puter to be purchased as the first computer in
the home for personsjust beginning theircom
puter experience, or as a second computer.

The TI-99/2 console has an elastomeric
typewriter-like keyboard with raised keys in a
staggered QWERTY arrangement similar to
the TI-99/4A. The computer has4.2Kbytes of
built-inrandom accessmemory (RAM) and can
be expanded to a total of 36.2K bytes of RAM.

28

Most peripherals for the system plug into
the Hex-bus peripheral interface connector in
the rear of the console. The Hex-bus port al
lows users to connect any peripheral de
veloped for the TI compact computer family.
Currently, these consist of the RS-232 inter
face, HX-3000; theWafertape digital tape drive
unit, HX-2000; and the HX-1000 four-color
printer/plotter. Other peripherals such as
modems, printers, a wand input device, and
a black-and-white television monitor are
scheduled to be available in late 1983.

Two solid state software cartridges,
Learn to Program and Learn to Program
BASIC, are available for the unit. Other car
tridges will be available as well. Suggested

retail price for the cartridges is $19.95.
Twenty software programs will be avail

able as well. Educational programs include:
Picomath-80, Math I and II, Statistics I and II,
Sunrise Time, Datetimer, and Civil Engineer
ing. Programs for personal management are:
Household Formulas, Checkbook Manager,
Purchase Decisions, and General Finance. En
tertainment cassettes include: Lunar Landing,
Bioplot, The Minotaur, TI Trek, and Mind
Games I, II, III, and IV. Picomath-80 is priced
at $19.95; all others are $9.95 each. These

programs, and all user-written programs, can
be run on the TI-99/4A home computer.

The TI-99/2 features monochrome dis

play capability and contains a built-in RF mod
ulator. The included video cable and antenna

switch are used to connect the computer to any
television set. A cassette interface cable is

also included to interface directly to the new TI
Program Recorder or another cassette tape
player. In addition, the TI-99/2 comes with an
ac adapter, a user's manual, and a demonstra
tion cassette.

Fig. 1-21. Compact Computer 40 (CC-40) is the first memberof a new series of computers from TI which are small but
designed for professionals. (Courtesy Texas Instruments Inc.)

29

The Compact Computer 40 (CC-40)
was announced on January 6,1983. It is the first
member of a new series of small computers
designed for professionals. Shown in Fig. 1-21,
the computer is similar in appearance to the
TI-99/2, but includes a numeric keypad and a
built-in liquid crystal display. The CC-40 is
programmable in Enhanced BASIC and can run
preprogrammed applications software loaded
from plug-in solid state cartridges or from
small tape cartridges.

The system is battery-operated and fits
unobtrusively on a desk or into a briefcase. It
is designed to be used as a small personal
desktop cordless computer and for communi
cations. Its small size and battery operation
also provide extensive capability for portable
computer applications.

The computer console has a 34K byte
ROM that contains a BASIClanguage interpre
ter allowing operation in BASIC. The BASIC
language built into the CC-40 is compatible
with TI BASIC. Calculator functions are avail

able. The computer contains 6K bytes of RAM
and can be expanded to 16K bytes. The CC-40
has a suggested retail price of $249.95.

A plug-in module port is provided for ap
plication software of up to 128K bytes of ROM.
This port can also be used to expand the
random-access memory of the computer. The
back of the console houses a Hex-bus intelli

gent peripheral interface connector, allowing
connection of any Hex-bus compatible pe
ripherals, as well as future TI products.

Three low-cost peripherals will also be
available: an RS-232 interface, a printer/
plotter, and a Wafertape digital tape drive.
Other peripherals such as a wand input device,

30

modems, printers, and a black and white tele
vision monitor should be available late in 1983.
Each peripheral includes a Hex-bus port and
interface cable. Peripherals will also operate
with the TI-99/2 and, with an adapter, will
work with the TI-99/4A computer as well.

The RS-232 interface allows direct con

nection to serial-input printers and modems.
With the addition of an optional cable, the
interface can connect to a parallel-input
printer. The RS-232 interface, HX-3000, has a
suggested retail price of $99.95.

The printer plotter is an x-y plotter with
four-color capability using 2V£ inch wide plain
paper. In addition to x-y plotting, it can print up
to 36 characters per line. The printer/plotter
peripheral, HX-1000, has a suggested retail
price of $199.95.

The Wafertape digital tape drive can store
up to 48K bytes and has a data transfer rate of
8,000 bits per second. The Wafertape unit,
HX-2000, has a retail price of $139.95.

Twenty-two software applications pack
ages, including 8 plug-in solid state software
cartridges and 14 Wafertape cartridges, are
also available. The plug-in cartridges, which
sell for prices ranging from $39.95 to $124.95,
are: Mathematics, Finance, Perspective
Drawing, Statistics, Business Graphics, Non-
parametric Statistics, and Advanced Electrical
Engineering ($59.95 each); Editor/Assembler
($124.95); and Games I and Games II ($39.95
each). Wafertape cartridges, which have a
suggested retail price of $19.95 each, are:
Elementary Dynamics, Regression/Curve Fit
ting, Pipe Design, Production and Planning,
Inventory Control, Electrical Engineering,
Thermodynamics, Photography, Solar Energy,

Profitability Analysis, Quality Assurance:
Sampling Plans, and Quality Assurance: Con
trol Data. A total of 75 applications solutions
cartridges (48 solid state and 27 Wafertape
programs) are also available. TI is initiating
aggressive third-party authorship programs as
well as developing software internally.

The CC-40 console is 9Vfe inches by 5%
inches by 1 inch and weighs 22 ounces. The
display is a scrollable 31-character liquid crys
tal display (LCD) capable of displaying upper-
and lowercase characters. In addition, there
are 18 built-in indicators for user feedback in
cluding shift, control, function, degrees, ra
dians, grads, and 6 user-settable flags.

The keyboard has a staggered QWERTY
key arrangement with a numeric keypad. Key

spacing allows for easy key entry without
making the unit excessively large. A tilt stand
is built into the back of the console to provide
an optimum viewing and keying angle.

Four AA alkaline batteries provide power
to the console for up to 200 hours. Memory
contents are retained even when the unit is

turned off. The unit may also be connected to a
standard 115-volt ac power outlet using an op
tional adapter, AC9201, available for $14.95.

Texas Instruments continues to offer new

products and accessories, but usually attempts
to provide methods of interfacing them with
previous offerings. This speaks well of the
company and assures that any product you
purchase does not suddenly become antiquated
by the introduction of a new product.

31

Chapter 2

Game Programming Concepts
Programming games on the TI-99/4A com
puter opens up a whole new world of com
puter enjoyment. The more you program, the
more youbegin to visualizealmost everything
inprogramming terms. This statement applies
to mathematical problems,as wellas everyday
experiences. It hasbeenstated thateverything
in the universe can be explained by mathema
tics. While there is no way of proving this
statement, it is certainly very safe to say that
almost everything can be explained mathemat
ically.

THE IMPORTANCE OF MATHEMATICS

Mathematics is a language which is based
upon collective human knowledge. It is a
method of describing physical objects, func
tions, and processes. Since these are highly
complex in nature, one branch of mathematics

32

may be used to describe a certain attribute,
while another branch is used to describe

another. Mathematics is not a fixed language,
but one that changes as human knowledge
changes. When new facts are discovered and
new mathematics developed, this new branch
does not necessarily make the old branch ob
solete. Rather, the new branch becomes an
extension of our mathematical language.

A microcomputer is a mathematical in
strument. All programming describes math
ematical formulas, often in common language
terms. Successful computer programming in
volves a sophisticated use of mathmatics.
Therefore, one cannot fully evaluate a situa
tion and turn it into a computer program with
out an understanding of mathematics.

The computer programmer must learn to
thinkinmathematical terms. Ifa gameprogram

is to include the figure of a man running across
the screen, all of the motions must be de
scribed mathematically and input to the
machine accordingly. This conversion may
sound very complex, but in most cases, it is not
as you will see in the following chapter on TI
graphics.

Many of the games (in fact, all of them)
that have been enjoyed by persons for many
hundreds or even thousands of years can be
mathematically described. Therefore, they
may be committed to the computer. Knowing
this, let's take a game and input amathematical
description of it to the computer. Tic-tac-toe is
an excellent example of a fairly simple game.
Because this is a simple game as far as our
human computer (the brain) is concerned, you
might think that committing it to a computer
program would be an equally simple task. Well,
it's not.

First, it is necessary to draw the cross-
hatch on the screen. This is accomplished by
establishing the mathematical coordinates of
each line. These tell the machine where the

beginning and end of each line is to be. Once
the game board has been drawn, it is necessary
to establish mathematical coordinates for the

Xs or Os that are to be placed within the
squares and also to establish a method of
specifying which box a given X or 0 should be
placed in. In most computer tic-tac-toe games,
the X is assigned to the human player, while
the 0 is assigned to the computer. The human
chooses the square he wishes to fill by input
ting the number of the square via the keyboard.
The number in itself means nothing to the
computer, but a mathematical interpretation of
this human input is provided by statements

within the program. This allows the machine to
internally interpret the desires of the human,
converting them to a mathematical formula
which, in turn, brings about a specific screen
function, the placement of the character in the
correct box.

So far, there's been little problem. How
ever, the computer must now simulate human
thinking by deciding what move to make based
upon the human's moves. In fact, the machine
does not simulate human thinking; it will sim
ply carry out programmed instructions, which
are the product of human thinking. Simulation,
though, is not a totally incorrect description
here, because many of the human thinking pro
cesses involved in playing a game of tic-tac-toe
have been converted to mathematical form and

input to the machine in the BASIC language.
The computer can detect when a win is about to
occur on the human's part and will take steps to
block the win if possible.

As an example of this, let's assume that
the human is about to win diagonally. Assum
ing that the squares are numbered horizontally
from one to nine (Fig. 2-1), this would mean
that the human has filled squares one and five.
Assuming that the S$ array reflects the Xs and
Os that have been assigned to the squares, the

1 2 3

4 5 6

7 8 9

Fig. 2-1. The numbered tic-tac-toe grid.

33

computer program portion that protects
against a win in this situation might read:

10 IF S$(1) =,,X'* THEN 20 ELSE
(Branch to another portion of pro
gram)

20 IFS$(5)=UX"THEN30
30 S$(9) = "O"
40 PRINT S$(9) (in square 9)

This allows the computer to block at
square 9, provided the conditions are met. If
two human beings are playing the same game
and the one who has the next move is con

fronted with the same possible win situation,
his mind acts in much the same manner. To put
this into a crude program form, the human
equivalent might be

SQUARE 1 = X AND SQUARE 5 = X

SO SQUARE 9 HAD BETTER EQUAL 0

The human brain has been programmed
since birth and acts upon all information that
has been input. The human purpose here is to
win the game based upon a collection of data.
The computer, however, has no purpose. It is
simply thereto carryout humaninstructions...
but the human that programmed the tic-tac-
toe game was converting his natural program
ming into computer terms. The programmer
wants the computer to take his place and act
upon his store of knowledge about the game in
order to effect a win.

Humans often pull from a vast store of
knowledge. With present programming lan
guages, it is necessary to go all the way back to
basics in order to decipher just why we do the
things we do. Most of these actions are based

34

upon logic, even though some of the data will
undoubtedly be faulty. We can only get the
computer to do what we would do using our
own logic, given a certain circumstance. In
programming tic-tac-toe and all other games,
we must also figure out all of the possibilities
for every move. These possibilities increase to
maximum complexity after a set number of
moves. The computer must determine which
moves have been made by the human and by
itself and then effect the most logical step to
prevent a win by the human or to bring about a
win by itself.

When playing tic-tac-toe, the human
thinks ahead, while the computer can only
react to a human's moves based upon pro
gramming. Certainly, it'squitepossible to allow
the machine to make a good guess as to what
the human's next move will be based upon its
own move. To create an accurate anticipatory
program section, it would be necessary for the
programmer to play many different humans (a
broad cross-section) a large number of times,
record and analyze their moves, and utilize this
information in the game program.

SELECTING GAMES TO PROGRAM

It is not necessary to dream up computer
games out of your head, although this can be a
very rewarding experience. As a start, how
ever, it may be wise to use traditional games
that have been played without the use of a
computer. Your knowledge of these games will
aid you in writing programs to simulate them
on the machine. Take Spin The Bottle, for
example. This would be a fairly simple pro
gram to write. You could use a line with an
arrow instead of a bottle, which would be dif-

ficult to draw on the screen. Coordinates can
be worked out for various line positions and
committed to a loop that was randomly con
trolled. Upon initiatingthe program,youmight
be asked to input the names of two or more
players. These names would appear at two or
more positionson the screen. When the loop is
engaged, the arrow would spin and stop ran
domly at any of the possible positions. What
the humans choose to do with the screen re
sults is entirely up to them (or to you, as the
programmer).

For the most part, computer games are
fairly simple. The complexities are brought
into the programbythe necessity ofsimulating
human responses. In other words, the com
puter must frequently respond in a human
manner. This is often handled with messages
such as OOPS, YOU MISSED THAT ONE,
HA HA, I BEAT YOU AGAIN, OR OH NO,
YOU BEAT ME. These messages are totally
unnecessary for the actual mechanics ofplay
ingthe game, but theyare the human elements
that can make the difference between a suc
cessful game and one that is rather drab and
boring.

In many instances, these messages re
quire far more program lines than the basic
game itself. Many computer games can be
basically programmed in twenty lines or less.
However, a hundred or more lines may be used
in writing the program in order to add mes
sages and even simple graphic displays to
make the game more interesting. Take a dice
program, for example. Many computer games
that simulate the roll of dice simply print two
separate numbers on the screen, each chosen
at random and ranging from a value of 1 to 6.
Each number represents a die. This is totally

unnecessary in most dice games, since the sum
of the two die values is what the game revolves
aroundanyway. When a dice program is simu
lated on the computer, it could just as easily
involve a single random number which could
range invaluefrom2 to 12.This type ofdisplay
would be far more practical... but it probably
wouldn't be as interesting.

PLANNING YOUR COMPUTER GAME

From a realistic standpoint, we humans do
not really play computer games. Rather, we
play and enjoy simulations of games on the
computer. Most of the popular computer
games today simulate board games and even
childhood action games that have been with us
for hundreds or even thousands of years. Let's
face it. Even the most sophisticated graphic
space wars game is basically a computer
simulation of "Cowboys and Indians," which
many of us played as kids. Many of today's
computer games are similar to the mechanical
arcade games of a few decades ago where
moving ducks were knocked over by pellet
guns or actual fireanrs. Almost any game
which involves a target and a projectile can be
eventually traced to ancient games or pursuits.

Adventure games are based upon true
human experiences or modifications of them.
For example, many of us would love to have the
opportunity to go on an African safari and at
tempt to bag dangerous game. We like the idea
or the adventure aspects of such a fantasy.
However, when you get right down to it, few of
us can really afford such a trip. Also, Africa is
hot, dusty, and some of those animals really are
dangerous. However, a computer game, which
involves the same elements in fantasy form,
can occupy the mind for quite some time and

35

simulate the adventure that the actual event

might provide without any of the discomforts
or dangers of actually being there.

From a computer game standpoint, the
attention which must be given to a game re
lates directly to its popularity of same. Why do
people play games? To relax? Relaxation is
certainly an element, but is this really true of
action computer games? Not really. When you
get involved in a game that requires 100 per
cent of your attention, you cannot relax. You
must be tense and ready for anything to hap
pen. This indirectly relaxes many persons.
This is due to the fact that good action games
allow you to escape. When you're bored with
the humdrum world, something that requires
100 percent of your attention takes your mind
off your problems. There is a goal in mind, a
goalwhich you want to attain as a player. How
ever, unlike true life situations, if you don't
attain that goal, it's no big deal. You can just
come back a bit later and try again. In a few
countries where the populous must travel al
most exclusively by foot, fatigue from walking
is often handled in what we would consider an
unusual manner. After walking for several
miles, apersonmightrest and relaxby running
for a few minutes. While this sounds unusual to
us, it does work and is borne out by scientific
fact. When one's muscles become fatigued
from walking, running is an excellent remedy
because many different muscles are used. By
alternating between the two modes, one gets
to the final destination in the shortest periodof
time without undue physical strain.

Computergameprograms relaxplayersin
a similar manner. They allow the player to
function onadifferent mentallevel, which may
be more demanding, but only for a short period

36

of time. Additionally,the playerhas the option
of quitting at any time. This option is not often
afforded in true life situations. In all cases, the
player is in full control of the efforts that are
put forth.

However, a computer game must be at
tractive enough to warrant the player's full
attention. This is where programmingdifficul
ties usually arise. The player's imagination
must be stimulated. To do this, programmers
pull from experiences that most humans have
been subject to, either directly or through the
media.This is why space games are so popular
today. Several decades ago, the same type of
games that today involve space invaders and
flying saucers may have involved charging
guerillas and bush fighters. Both types of
games are played in the same manner; i.e.,
blow away your target, but each is aimed at the
imagination of the players of their respective
decades.

A successful computer game must pre
sent a sizeable difficulty factor, but must not
be so difficult as to be practically impossible.
Howdifficult to make the game will be decided
by manydifferent factors, chief amongwhichis
the age or skill range of the players. Undoubt
edly, you've noticed that many of the home
video games offer a wide range of difficulty
levels. This is because such games may be
played by small children as well as adults.
Varying difficulty levels can often be built into
computer game programs with a few extra pro
gram lines. Therefore, whenever writing a
computer game program, it is mandatory that
you know the age and general skill levels of
those who will be playing it.

The ideal computer game will offervary
ing degrees ofchallenge inorder to beusedby

alarge number ofplayers who will undoubtedly
exhibit different levels of proficiency. If a game
is tooeasy, it quickly becomesboring and is set
aside. By the same token, if a game is too
difficult, frustration quickly sets in and it is
thrown on the same scrap heap. For this rea
son, the gameprogrammer willdowell to learn
from the commercial games that are already
popular and let them partially determine what
is to be written in program form.

SPACE AGE GAMES

Inrecent years, spacegames,whichcome
in many different forms, have become quite
popular. The graphic renditions may display a
deep space background lit with stars. The
foreground often contains two different types
of space vehicles that may have to navigate
among asteroids or try to blow each other out
of existence. These programs often involve
quite a bit of graphics. The program usually
starts out by creating a dark blue background,
which is then dotted with tiny points of light. A
wide range of colors may be chosen for the
points thatrepresent stars. The drawing ofthe
space vehicles on the screen is not terribly
difficult either. For example, the Starship En
terprise of Star Trek fame maybe graphically
represented quite easily using the CALL
CHAR subprogram. Klingon vessels may be
represented in much the same manner. The
attack with phasers and photon torpedoes can
be enhanced by sound effects using the CALL
SOUND subprogram.

Now, let's look at such a program math
ematically. A call screen statement is used to
set up the initial blue background. We could
determine the coordinates of each point on the

screen that will be used to represent stars.
However, the easiest method is to set up
minimum and maximum coordinates and use
the RND function to place a large number of
dots on the screen with a minimum number of
program lines. When aphotontorpedois fired,
its originating point is based upon the coordi
nates of the attacking ship at that instant. The
torpedo may continue to the edge of the screen
or may be limited in range by a maximum
coordinate figure. In any event, when the sc
reen coordinates of a fired photon torpedo are
the same as the coordinates of the target, a hit
is registered. Depending on the graphics, the
target may disappear or explode into many
different pieces. Using the latter, the angle
each piece travels from its exploding point is
determined by more coordinates. Causing the
struck target to disappear is a far easier pro
gramming task than creating the "exploding
and flying out in all directions" display.

As mentioned before, most space games
are simply slightly altered versions of the
more conventional war games that have been
played for many years on game boards. Stra-
tego©, a very popular Parker Brothers game
for many years, is a board game involving con
flict and war. Here, you have captains, bombs,
flags, spies, and other gaming pieces which,
when arrangedin a certain pattern, bring about
a win. On the computer screen during a space
game, the gaming pieces are video impres
sions, which can be manipulated via the
keyboard. In other war games, if we simply
rename the attacking Huns and call them the
bloodthirsty Klingons, we have begun to make
strides toward developing a true space game.
However, the arrangement of the players and

37

the object of the game may be identical to those
which have been played for many years on
cardboard. From a player's viewpoint, the
space game requires no more human brain
power (probably less) than the board game
version, and both accomplish about the same
thing. The point is, however, that all games
must be designed to appeal to humans.Today,
the idea ofspace wars has been made popular
by motion pictures and television. No ones
sees a straight Donald Duckcartoon anymore,
but you may see on entitled Donald Duck in
Outer Space. We are all being made aware of
the mysteries and supposed excitement of
conventional practices when they are attemp
ted in a nonearthly environment. The success
ful game programmer must realize this and
orient his games to appeal to whatever fad
happens to be in vogue at the time.

Pac-Man, a currently popular space age
game even has its own television series. It is
one of the few video games that is not really a
simulation of a real life event. I can think of no
real life experience which even comes close to
resembling the psychology behind the Pac-
Man game. Pac-Man is popular because it is so
simple that anyone can play it, from preschool
age on up, and yet it requires skill and reflex
actions that are a challenge to even the most
intelligent individuals. It is fairly easy to come
up with games that have little or no real life
experience counterparts, but unless you're as
inventive as the creator of Pac-Man, most of
these will be popular to onlya small segment of
players.

SIMULATION GAMES

While it is true that all computer games
are simulations of real life experiences, most

38

which fall under the "simulated" category can
be readily identified with these experiences.
For example, anyone who plays a computer
football game can immediately see the re
semblances to the real game. In an example
such as Pac-Man, it is obvious that the main
character is eating something and will, in turn,
be eaten himself if he does not fulfill certain

obligations. While the latter game has some
real life counterparts, this could not accurately
be called a simulator.

Game simulations are often used for edu
cationalpurposes. The competition or gaming
angle helps to hold the student's attention and
is reallydesignedto makelearningapleasingly
challenging process. For example, an algebra
teacher may have problems getting students to
concentrate on working out a particular for
mula because the correct answer will yield no
direct result other than itself. This last state
ment is not entirely accurate, as the ability to
work such formulas may certainly be put to use
in a practical application at some later time.
The computer simulator games, however, im
part the element of immediacy. The student
must accomplish something to bring about or
prevent a certain screen or machine action.
The student is competing against the machine.
While I have alluded to a high school algebra
class in this discussion, game simulations are
used in a myriad of different areas which in
clude the training of test pilots, to name only
one. There is a popular simulation game out
that goes by several different names. This is a
simulation of artillery fire. A projectile is fired
froma graphiccannonwhose angle, and some
times firing velocity, can be altered via the
keyboard. The player sees the shell exit the
barrel and then follows its flight through

touchdown. Sometimes the graphics are omit
ted altogether, and the screen displays the
distance (plus or minus) from the target of the
expended projectile. This has been used as an
effective tool for teaching certain branches of
mathematics that relate to coordinates, trajec
tories, and angles. The idea is to fire the pro
jectile so that it lands on the target, and the
computer and player become automatic com
petitors. The student is actually playing him
self, as the computer will doonly what his input
data tells it to do.

Stock market simulations have been de

veloped to train new brokers, and the game
data is changed periodically to reflect recent
market trends. This type of simulation game
allows the neophyte to be put in control of
millions upon millions of dollars and to handle
the investments in much the same environ
ment as the licensed broker going about his
job. When serious mistakes are made, there
are no penalties, but of course, when the
proper investment has been made, there are no
profits either. Again, the student is playing
against himself and is learning about his per
sonal weak areas. This will carry over into the
actualjob when real money is involved. Such a
computer simulation game may avoid the
necessity of placing a promising young broker
in a rather superfluous position for the first
couple of years in order to keep him from
making serious miscalculations. It does not
entirely take the place of on the job training,
but it can greatly shorten the training period,
thus saving time and money for all concerned.

When simulation games are applied to
human professions, there seems to be no end
to what they can do and where they can be put
to use. Most readers are familiar with aircraft

simulators, whereby a pilot in training is actu
ally encased in a simulated cockpit, which is as
lifelike as the real thing. When the control yoke
is pulled toward the pilot in training, his dis
play screen indicates a nose-up attitude in rela
tion to the horizon. Also, the entire module is
tilted upward at the same angle that would be
assumed by the aircraft in flight.

Obviously, it is not possible to accomplish
all this with your microcomputer, but many
flying simulations have been programmed to
help train the student pilot who is trying for his
private pilot's license. The cost of flying is
quite high, and it's not possible to spend all of
your time in a rented airplane. Besides, a large
part of the private pilot's test involves course
plotting, aircraft weight and balance figures,
wind directions and velocities, etc. About a
year ago, I wrote a computer program which
caused the screen to display a reproduction of
an aerial map. The student was to take off from
one airport and land at another after being
given a set of data which specified wind veloc
ity and direction, aircraft fuel consumption,
aircraft weight and other mandatory flight in
formation. The student was then required to
input the proper course and the estimated time
of arrival. This information was figured on his
flight calculator. Often, some quite outrageous
conditions were specified, and unless a near-
perfect course was plotted, the plane would
run out of fuel before reaching its destination.
The simulation actually showed a simple
graphic airplane departing the home runway
and flying the course the student had charted.
Due to wind conditions and other factors, the
plotted course and the actual course would
usually be different. Sometimes, the plane
would make it, and sometimes it wouldn't. Oc-

39

casionally, the plane would fly completely off
the screen due to a course error on the part of
the student. There were varying degrees of
difficulty to allow the beginner to progress at
his own pace. This program was quite com
plex, but it served a worthwhile purpose in
training local student pilots. Usually, the job of
figuring out wind speed and direction, aircraft
loading, and compass heading is quite boring
when compared with actual plotting experi
ence. This program, however, added the ele
ment of competition, and many students un
complainingly put in the hours of study re
quired. There are those who will argue that
this program and many others like it are not
true games, but I cannot agree.

Just because a program or any other pur
suit happens to be educational does not neces
sarily mean that it is not a game. The purpose
ofa game is to provide relaxation, competition,
and/or fun in general. If these specifications
also result in a practical learning experience,
so much the better.

Other simulation games involve training
students to drive automobiles and even con
struct large buildings. Allofthem are primarily
based upon real life situations and must be
periodically updated to reflect changes within
the field. All offer an element of competition,
but most are primarily aimed at efficient educa
tion.

It is conceivablethat as computers andthe
art of computer programming evolve, simula
tion programs will become more and more a
part of the traditional educational system.
Computer simulation programs have even
been developed that simulate the operation ofa
large mainframe computer, but using micro
computers. The computer itself, then, be

40

comes a training aid for the scientific field of
which it is a majorpart. Manyhighschoolsnow
use microcomputers as an instrumental part of
their scholastic criteria and would, by now, be
lost without them.

WRITING YOUR OWN GAME PROGRAMS

By now, you have more than likely come
up with ideas of your own for writing original
game programs. If you're like most persons,
youwill probably developa fairlysimplegame
routine and then add to it periodically as your
expertise increases. The TI-99/4A allows for
muchversatility in this pursuit. Expansionand
modification are the keys here. You might
begin by programming a popular commercial
game which has been with us for many years.
You mightchoose to changesome of the rules,
but more importantly, to change the game en
vironment. An example of this was discussed
earlier when the names of countries in a board
war game were changed to those of planets
within oursolarsystem. Theevil villain might
be called a Klingon battle warrior or given
some other modern designation. Using the
computer, an old-time cavalry charge can be
almost instantaneously converted to an attack
by a squadron of star cruisers.

Start simply by choosing a favorite board
or parlor game (not too difficult) and commit
ting it to a program. Most games involve a
series of simple functions, and once you've
learned to program one function, the rest come
quiteeasily. It will then be necessary, in most
instances, to branch to different subroutines.
Aftera fewhours ofdebugging, youshouldend
up with a close approximation of the original
game. When you have arrived at this point, let
your imagination take over. Some of the most

outlandish ideas will make the best games. The
modification of a cavalry charge game to a
space game will first involvethe altering ofthe
game piece names or designations. Then
comes the playing field, which might be
changed from an old southern battlefield to
somewhere in outer space. Through the magic
ofthe computer, the entire scene can be shifted
to the bottom of the Atlantic Ocean, using
frogmen riding on portable submarines.

Again, the construction of most computer
games is a step-by-step process, and the whole
game is rarely worked out in the mind of the
programmer before the writing process actu
ally begins. More often, the programmer has a
general idea or concept of a particular game.
During the writing process, the programmer
may develop many new concepts, and the
original idea is altered accordingly. When the
entire game is complete, the debugging pro
cess begins, and even here, new ideas, which
can be easily written into the program, may
develop. When the game is ready to go, it may
be played and enjoyed for many hours, but the
programmer will always be thinking of ideas
that will bring about improvements, and this
game may serve as the basis for even more
complex game programs that bear little re
semblance to the original.

Use ideas and other games that you are
quite familiar with. As a specific example, con
sider a simulation of the rolling of a pair of dice.
A dice roll is fine for many games, but it's really
out ofplace in a game that involves spaceships,
black holes, and other celestial objects. Here,
you will want to stay away from dice, but you
may still need a method of generating random
numbers to control game moves. If the number
six can be represented by six dots on a die,

couldn't it be represented as easily by six
spaceships, a planet with six moons, or some
other set of objects that fit well into the game
format? Nor are you limited to a random
number with a maximum value of six. A

graphics program could display a simulation of
a sophisticated instrument board and actually
draw a large number six or even six million in
much the same manner as the electronic digital
displays that are popular in electronic equip
ment today. Here, each number is made up of a
series of points or ASCII characters. This is
much more difficult to accomplish than when
using the RND function and standard-sized
numbers, but if it significantly improves your
game, what have you got to lose?

The TI Speech Synthesizer is something
else to consider when programming computer
games. This synthesizer is relatively inexpen
sive and is especially appropriate for space
games, as its audio output closely resembles
the speech patterns often associated with
robots and other futuristic phenomena. It is
amusing to note that the most striking contrap
tions seen in science fiction movies are those

that closely simulate the actions of human be
ings. Therefore, the more human attributes
you build into your program, the more your
game will attract those concerned with science
fiction. It might be interesting to write a game
program which outputs screen prompts in a
machine language that would force the human
player to act more like a computer than a
human being. This would put the shoe on the
other foot, so to speak, but I have grave doubts
about the popularity of such a game.

New computer games are being de
veloped almost daily. Some are simply elec
tronic versions of popular board games, while

41

many are so modified through human imagina
tion that they do not resemble real life experi
ences at all. Some are written by well-paid
teams from commercial companies; others are
developed by hobbyists. Some are good, and
some are not so good, and this is true of games
developed by both groups.

To write a successful computer game
program, it is necessary to know something of

42

psychology, especially regarding human reac
tions to new experiences and developments.
Adventure is a big part of most computer
games, and the really successful ones allow the
human players to actually place themselves in
the role of the gaming pieces. As trends
change, so does the popularity of certain com
puter games. Programming the ideal game is a
goal you'll never grow tired of pursuing.

Chapter 3

Graphics and Sound for Games
TI BASIC has a special set of subprograms
built into the computer. These let you produce
on-screen colors, graphics, and sounds.
Whenever you want to use any of these special
subprograms, you must call for them by name
using the call statement. Additionally, you will
have to provide a few specifications to be used
in the subprogram. From this point on, the
subprogram does the rest.

The subprograms we are primarily in
terested in are CHAR, VCHAR, and HCHAR.
When any one of these subprograms is to be
accessed during a program, you use a call
statement, such as CALL VCHAR.

SCREEN COORDINATES AND ASCII

Before using the subprograms you need to
understand the screen coordinates of the TI-

99/4A, as well as the ASCII character set. The
TI-99/4A prints characters on the screen that
fill tiny blocks. Figure 3-1 shows the display
screen divided into 768 blocks, each of which is
the same size. The blocks are numbered hori

zontally, from left to right, starting at 1 and
ending at 32. Blocks are also numbered verti
cally from 1 to 24. When discussing display
screens, we refer to a horizontal line of blocks
as a row and a vertical line as a column. The

TI-99/4A screen consists of 24 rows and 32

columns.

Each of the 768 blocks is broken down into

64 tinier blocks, as shown in Fig. 3-2. When
your screen is filled with information, 49,152
blocks have been filled in. The character set for

the TI-99/4A is determined by filling in some
of the 64 tiny blocks and not filling in others.
Figure 3-3 shows how an 0 is formed on the

43

COLUMNS

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 1718 19 20 2122 23 24 25 26 27 28 29 30 3132

1

2

3

4

5

6

7

8

9

<O 11
W12

S 13
14

15

16

17

18

19

20

21

22

23

24

Fig. 3-1. Coordinate format of the TI-99/4A display screen.

screen by filling in some of the 64 blocks and
leaving all the others vacant.

When doing on-screen graphics with the
TI-99/4A, you must also understand the ASCII
codes that represent the machine's character
set. Each character is represented by an ASCII
number. Appendix B contains the complete
character set and ASCII number information

and should be used as a reference whenever

you're programming graphics.

44

A capital letter A is generated by ASCII
code 65. The lowercase A is generated by
ASCII code 97. A comma is ASCII code 44, and
a space is ASCII code 32.

Sometimes it is necessary to print a let
ter, number, or character at a certain location

on the screen. In this case, we cannot specify
the character by its keyboard designation. We
have to use its ASCII code.

Left blocks Right blocks

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Fig. 3-2. Each character is created by
filling in up to a total of 64 grid blocks.

HCHAR

The HCHAR subprogram is used to place
a character anywhere on the screen by spec
ifying the row and column coordinates. This
subprogram canalso repeat the characterhori
zontally the number of times specified. This
subprogram is used with the call statement, as
in:

CALL HCHAR(12,16,65)

The first number in parentheses identifies
the screen row (counting down from the top)
where the character is to be printed. If you
refer to Fig. 3-1, you see that row 12 is at the
center left of the screen. The second character

specifies the column position (counting from
left to right). This lies at the center of the
screen. When these two numbers are com

bined in this manner, you're telling the ma
chine to print a character in row 12 at the

Fig. 3-3. The form of the letter O using the 64-block grid.

45

COLUMNS

12 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 28 29 30 3132
1

2

3

4

5

6

7

8

9

10

R 11
o

W 12
S 13

14

15

16

17

18

19

20

21

22

23

24

i
Vn.

*.\
\
Center

Fig. 3-4. The center of the screen is represented by the coordinate designations 12,16.

sixteenth column position. This falls in the
exact center of the screen (Fig. 3-4). You first
locate row 12 and then you move toward the
right until you hit column 16. This is where the
character will be printed.

There's a third number in parentheses,
and this specifies the character to be printed,
giving its ASCII code number. Here, the code
is 65, so a capital letter A will be printed at
screen position 12,16.

Although not shown in the previous ex

46

ample, you can add one more number to those
already contained in the parentheses. This is
called the repeat number, and it maybe used to
repeat the character specified any number of
times. For example, in:

CALL HCHAR (12,16,65,5)

a capital letter A will be printed at the center of
the screen, and as specified by the last number
in parentheses (5), A will be repeated 5 times.

The first character will be printed at position
12,16. All other characters will be printed in a
horizontal format to the right of the first
character. The output from this program will
be:

AAAAA

with the first character at screen position
12,16. The next character will be at screen
position 12,17; then 12,18; etc. If you specify
the repeat of 20 of these characters, as in:

CALL HCHARfl 2,16,65,20)

you will run out of horizontal spaces in row 12.
Remember that there are 32 columns to a

single row. Since you started at column 16, this
means that the row can hold only 16 more
characters. By specifying the repeat of 20
characters, you run out of columns in line 12, so
the machine automatically advances to row 13
and prints the additionalcharacters there. The
result will be:

AAAAAAAAAAAAAAAAA

AAA

VCHAR

The VCHAR subprogram is identical to
HCHAR, except the optional character repeat
occurs in a vertical format. The following dem
onstrates this:

CALL VCHAR(12,16,65,5)

This program causes a vertical column of capi

tal As to appear at the center of the screen. The
first A is printed at coordinate 12,16. The sec
ond one will be at 13,16; then 14,16, etc.

If you want to print a single character at a
certain location on the screen, you may use
either HCHAR or VCHAR. For instance:

CALLHCHAR(12,16,65)
CALL VCHAR(12,16,65)

will produce the same results on the screen.
We can use VCHAR and HCHAR together

in programs to produce simple on-screen
graphic displays and even to make a chart or
two. The following program makes a large let
ter T on the screen using small capital Ts:

10 CALL CLEAR

20 CALL HCHAR(6,10,84,11)
30 CALL VCHAR(7,16,84,10)

Line 20 causes 11 letters (T) to be printed
horizontally on the screen. Line 30 causes the
same letters to be printed vertically at the
center of the horizontal column.

A for-next loop can be used with these
subprograms to produce some interesting re
sults, including pictures and graphs. The fol
lowing program gives a simple demonstration:

10 CALL CLEAR

20 FORX = 1TO10

30 CALL HCHAR(X,16,42,5)
40 NEXTX

This program produces the following results
centered on the screen:

47

You can also use input statements to make an
effective bar graph. The following program
does this:

10 CALL CLEAR

20 INPUT A

30 INPUT B

40 INPUT C

50 CALL CLEAR

60 CALLHCHAR(5,1,42,A)
70 CALL HCHAR(10,1,42,B)
80 CALL HCHAR(15,1,42,C)

This program gives you the opportunity to
enter three numeric values, A, B, and C. These
values are then fed to the Call HCHAR sub

programs in lines 60, 70, and 80. This gener
ates horizontal bar graphs, starting at the left
side of the screen. Line 60 specifies that the
first character is printed in row 5 at column
position 1. Line 70 begins the next graph by
dropping down 5 rows, but again, the first
character is printed at position 1. The same is
true of the subprogram in line 80. Five more
rows have been skipped, but the same column
starting position is used. Assuming values of8,
15, and 20 for variables A, B, and C, respec-

48

tively, the following chart will be displayed on
the screen:

Here are three bars that represent the numeric
values by adjusting their lengths accordingly.
The first bar contains 8 asterisks, the second
15, and the third 20.

CHAR

The Call CHAR subprogram is used when
it is necessary to generate characters that are
not a part of the TI BASIC character set. This
subprogram lets you design your own charac
ters by filling in the proper number of squares
that make up each character block.

Figure 3-5 shows the 64 blocks that make
up a single screen character block. These are
broken down into eight rows, with 2 block sets
per row. Each block set contains 4 squares.
The first 4 blocks in a row are given a certain
numerical specification, followed by a numeri
cal specification for the second set of 4 blocks.

There are 2 numerical specifications for
each row, so each block character is defined by
16 numbers (2 times 8 rows). Just remem
ber that there are 8 rows to each character
and 8 possible columns in each row. The 8 col
umns are broken down into 2 major sets, each
containing 4 columns. Remember now, I'm
speaking here of 64 tiny squares which make
up one screen position.

Assume that we want to make a character

that consists of filling in only one block of the
64. We have to provide a number for the one

Fig.3-5. Breakdown of the 64 blocks is handled in rows of 8.

block to be filled in, and we also have to pro
vide numbers for those which are not to be
filled in. Remember, zero is a number and is
used to indicate the blocks that are not to be
filled in. Figure 3-6 shows the 64-block grid
with one square filled in to form a character.
This square is the first one in row 1 and is

Left blocks Right blocks

Row1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

80

00

00

00

00

00

00

00

Left blocks | Right blocks

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

specified with a certain number. The other
squares are left blank, so these must be
specified with another number (0).

We do not have to insert a number for each

block, but rather for each set of four blocks.
The first row requires two numbers to de
scribe its two sets of four blocks. The same

Fig. 3-6. The 64-block grid with one
square filled in and each row numbered accordingly.

49

Blocks Hexadecimal Code

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

applies to the remaining seven rows. Any set of
four blocks uses one number to describe the

blocks that are to be filled in. If the first block is
to be filled in and the rest left vacant, then one
number will describe this situation. If the first

two blocks are to be filled in, another number
will describe this. If all blocks are to be filled

in, yet another number will describe this.
While there are 64 total blocks in each

grid, only 16 numbers are needed to describe
any possible pattern that can be derived from
this grid. Two numbers are given per row.

To make things a bit more complex, the
numbers that describe each block set are given

50

Fig. 3-7. The hexadecimal chart for filling in block grids.

in hexadecimal notation. This is just another
number system using 16 as a base instead of
10, which is the base in the decimal system. It
is not important to know how the system is
derived or even how to convert from decimal

to hexadecimal. For programming graphic
characters, all you need is the chart shown in
Fig. 3-7. This tells you what number or letter
to use in order to describe the blocks you wish
to have filled in.

Hexadecimal code uses letters to de

scribe numbers above 10. The letter F in

hexadecimal code is really a number. Looking
at the chart, we see that if no blocks are to be

filled in in any 4-block set, use 0. In the next
row, if you wish to fill in the fourth block only,
use hexadecimal code 1. This does not mean

that if you wish to fill only one block in a row,
you use the number 1. It means that if you
specifically want to fill in the last block in a
4-block row, use 1. If you wish to fill in the third
block, use 2; the third and fourth blocks are
filled in by hexadecimal code 3; and so forth.

Figure 3-8 shows a sample pattern using
the 64-block grid. This pattern was chosen at
random, and the hexadecimal code for each
block set of 4 is given to the right. Row 1
contains no filled-in squares. We know the
hexadecimal code for no blocks filled is 0.

Therefore, this row is represented by the
hexadecimal code "00". The first 0 describes

the left side of blocks in row 1, while the
second 0 describes the right set. In row 2, the
condition is the same so hexadecimal code

"00" represents this row as well.
In row 3 the last block in the left block set

Fig. 3-8. A typical grid figure.

Row1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

is filled in, as is the first block in the right block
set. The hexadecimal code to describe this row

is "18". The 1 indicates that the last block in

the left block section of row 3 is to be filled in.

The 8 indicates that the first block in the right
block section is to be filled in. Rows 4 through
8 follow the same pattern. In the last row, all
blocks are filled in in each block set. The code

that describes a completely filled in block set is
F. Therefore, FF means fill in both block sets
on this row.

We now have a simple character of our
own design. We can display it on the screen
using the Call CHAR subprogram. Our new
character must be assigned an ASCII number.
It can be any number on the ASCII chart used to
represent a character already in the machine
set. Any number from 32 to 127 will do. Let's
use the character code (33) for this example.
ASCII code 33 represents an exclamation point
(!). However, we're going to use this number to
represent our new character. The following

Left blocks Right blocks

00

00

18

21

00

81

00

FF

51

program defines the new character and assigns
it to ASCII code 33:

CALL CHAR(33,"000018210081OOFF")

This line tells the computer to assign the
character identified by the hexadecimal code
to ASCII code 33. The following program will
display the character at the center of the sc
reen:

10 CALL CLEAR

20 CALLCHAR(33,
"000018210081 OOFF")

30 CALL HCHAR(12,16,33)
40 GOTO 30

The first line clears the screen. Line 20 then

inputs the new character pattern, assigning it
to ASCII code 33. Line 30 uses the Call

HCHAR subprogram to locate screen position
12,16 and then print ASCII code character 33
on the screen. This would normally be "!" but
since this character code has been reassigned
in line 20, the pattern shown on the grid in Fig.
3-8 appears as a single character on the screen.
An endless loop is set up in line 40 that con
tinually prints the new character at the same
position. Without this loop, you would see the
new character, and it would then suddenly be
replaced by the original ASCII character (!) as
the program terminated. Unless you continu
ally reprint your new character on the screen,
it will be replaced by the character originally
programmed in the character set.

Let's try some block graphics now by fill
ing in an entire character block. The following
line will do this:

52

CALLCHAR(33,"FFFFFFFFFFFFFFFF")

The sixteen Fs in the hexadecimal code indi

cate that all sixteen four-block sets (64 blocks)
are to be completely filled in. This creates a
solid block character on the screen. The fol

lowing program prints a solid line from left to
right across the center of the screen:

10 CALL CLEAR

20 CALLCHAR(33,
"FFFFFFFFFFFFFFFF"

30 CALL HCHAR(12,1,33,32)
40 GOTO 30

After the block character has been established
in line 20, the HCHAR subprogram is used to
print a string of 32 character horizontally on
the screen from position 12,1. ASCII character
33 is the block character established in line 20.
The number 32 tells HCHAR to repeat this
character 32 times, which is the maximum
number of columns on any line. Your screen
will display a solid line running across the
screen from left to right at its center.

You could use a similar program, only
substituting VCHAR for HCHAR in line 30, to
draw a vertical line at the center of the screen.
Here, you might include:

30 CALL VCHARfl ,16,33,24)

This would draw a vertical line starting at the
top center and ending at the bottom center of
the screen. By combining block character with
VCHAR and HCHAR, it is possible to draw
different kinds of simple pictures on the sc
reen.

COLOR

The Color subprogram lets you change
screen character colors and even the screen
background. Again, the call statement is used
with this subprogram.You canchoose up to 16
foreground andbackgroundcolors, andyou can
specify which set of characters will be given
which color. In the TI-99/4A, there are 16
character set numbers. These are shown in
Fig. 3-9. Set 1 is comprised of ASCII character
codes 32 through 39. Any character rep
resented by the numbers 32 through 39 falls
into this particular set number. The set num
ber is important, because it mustbe usedwith
the Call Color subprogram to specify which
characters are to be given a certain color.

Each character displayed on the monitor

Set Number Character Codes

1 32-39

2 40-47

3 48-55

4 56-63

5 64-71

6 72-79

7 80-87

8 88-95

9 96-103

10 104-111

11 112-119

12 120-127

13 128-135

14 136-143

15 144-151

16 152-159

Fig. 3-9. The 16 character set numbers.

screen has two colors. This includes the color
of the dots that make up the character itself and
the color that occupies the rest of the character
positionon the screen. The latter are the blank
spaces in the 64-square character grid. The
filled-in spaces in the grid are called fore
ground color, while the othersarebackground
color.

Using the Call Color subprogram, you
must first specify the character set number,
then the foreground color, and finally, the
background color. Figure 3-10 shows the 16
color codes, along with the colors they repre
sent. If code 1 is chosen (transparent), then the
present screen color shows through when the
character is displayed. The following program
shows how Call Color might be used:

Color-code Color

1 Transparent

2 Black

3 Medium Green

4 Light Green

5 Dark Blue

6 Light Blue

7 Dark Red

8 Cyan

9 Medium Red

10 Light Red

11 Dark Yellow

12 Light Yellow

13 Dark Green

14 Magenta

15 Gray

16 White

Fig. 3-10. The 16 color codes.

53

CALLCOLOR(5,7,13)

This line instructs the computer to display all
characters in character set 5 with a dark red
foreground and a dark green background.
Character set 5 includes all characters with
ASCII codes offrom 64 to 71. The foreground
color number is 7, and this specifies dark red.
The third number in parentheses is the
background color. The number 13 specifies
dark green.

Once the Call Color subprogram is en
tered, all characters represented by ASCII
codes 64 to 71 will be printed on the screen in
the colors previously mentioned. This par
ticular set (5) includes capital letters Athrough
G. If you wanted all the capital letters in the
character set to be displayed on the screen in
the same color, several call color statements
would be necessary. All of the capital letters
are included in character sets 5, 6, 7, and 8 so
four Call Color subprograms would do the
trick.

SCREEN

The Screen subprogram is very much like
the Color subprogram, except it is used to
specify the color of the screen itself. This is
the palette upon which the characters are writ
ten. The same color code chart used with the
Color subprogram applies to the Screen sub
program. The following program segment
shows how the Screen subprogram is used
with the previous Call Color subprogram:

10 CALL CLEAR

20 CALLSCREEN(11)
30 CALLCOLOR(5,7,13)

54

This determines that the screen background
color will be dark yellow (11) and that the
character foreground color will be dark red
witha darkgreen background color.Here, you
have used lines 20 and 30 to control the colora
tion of three different screen elements: the
screen itself, the character foreground, and the
character background.

With these subprograms, you can high
light your displays, whether they be in alpha
numeric form (text mode) or in pure graphics
form. By changing the screen background col
ors, along with the character foreground and
background colors, you can cause certain por
tions of a text display to be highlighted in
comparison with the rest. You canalso produce
a myriad of multicolored images on the screen
that caninclude kaleidoscopes and even fairly
detailed pictures.

ANIMATION

The HCHAR and VCHAR subprograms
can be used to produce on-screen animation, or
movement.

Animation or movement is created by
drawing an image on the screen in one location,
erasing it, and then drawing it again at another
location on the screen. If this is done rapidly
enough, you don't really see the erasure pro
cess and it appears as though the object is
moving instead of being written, erased, and
then written again.

The program shown in Fig. 3-11 displays
numbers at the center of the screen and causes
them to count upward, giving the impression of
motion. All that's really happening is that one
number is printed; then it is written over by the
next number in the sequence. This process is

10 CALL CLEAR

20 FOR X = 48 TO 57

30 CALL HCHAR (12.15.X)
40 NEXTX

continued until the program is over. This type
of procedure can be used to produce the effect
of on-screen motion from left to right, bottom
to top, and/or vice versa. Here's how the pro
gram in Fig. 3-11 works.

Line 10 clears the screen, and a for-next
loop is entered in line 20. This causes X to
count from 48 to 57 in steps of 1. These num
bers represent ASCII codes in the Call
HCHAR subprogram in line 30. The numbers
48 to 57 represent the ASCII codes for the
numbers 0 to 9. During the first cycling of the
loop,a48 is output fromthe loop.This valueof
X is inserted into the call HCHAR statement in
line 30 at the character position. Therefore,
the characterrepresented by ASCII code 48 is
displayed at screen position 12,15. This char
acter is 0. When the value of X is equal to 49
duringthe second cycle of the loop, a 1 will be
displayed at the screen position where the 0
formerly appeared.This will continueuntil the
loop counts to 57 and times out. The program
then ends. This won't take very long, so you
may wish to add another line to set up an
endless loop, such as:

Fig. 3-12. A simple animation routine.

Fig. 3-11. A program to display
numbers at the center of the screen.

50 GOTO 20

This causes the program to run over and over
again until manually halted.

Remember that the loop numbers 48 to 57
represent machine characters specified by
ASCII character codes. Only the characters
ASCII codes 48 through 57 represented appear
on the screen. By changing line 20 to

20 FOR X = 65 TO 90

the capital letters A through Z appear.
In this animation program movement was

confined to a single character block. It is sim
ple to produce movement of characters from
one point to another on the display screen.
Let's start with the program shown in Fig.
3-12. With a few modifications this program
will produce animation.

After the screen is cleared in line 10, a
for-next loop is set up to count from 3 to 20 in
steps of 1. Within the loop at line 30 is a Call
HCHAR subprogram, which uses the value of
X in the horizontal or column designator posi-

10 CALL CLEAR

20 FOR X = 3 TO 20

30 CALL HCHAR (12,X,79)
40 NEXTX

55

10 CALL

20 FOR X = 3 TO 20

25 CALL CLEAR

30 CALL HCHAR(12,X,79)

40 NEXT X

tion. Line 30 tells the machine to print ASCII
character 79 (0) at position 12,X. This means
during the first cycle of the loop, the letter 0
will be printed at position 12,3; then at 12,4
during the next cycle, and so on, until 12,20 is
reached and the loop times out. The result is 18
capital letter Os printed horizontally on the
screen from position 12,3 to 12,20. All 18 ap
pear on the screen at the same time, but you do
see movement as each letter is printed in turn.
You could accomplish the same thing with a
single program line, such as:

10 CALL HCHAR(12,3,79,18)

This would display 18 ASCII characters iden
tified by the number 79 horizontally on the
screen starting at position 12,3.

Fig. 3-13. A modification to Fig. 3-12
produces true animation.

By using a for-next loop we can set up
some true animation. With one modification, a
single letter (0) will travel from the left side of
the screen to the right. The program is shown
in Fig. 3-13. The addition is found in line 25.
It's the Call Clear subprogram, which clears
the screen before printing the letter 0 in its
new position.

Here's how it works: As soon as the for-
next loop is entered, the screen is cleared. The
letter 0 is then printed at position 12,3. The
loop cycles once more, and the screen is
erased again by line 25. Then the letter 0 is
printed at the next screen position (12,4). This
write, erase, and write again sequence con
tinues until the loop times out. The overall
result is that of a single letter moving fromleft
to right on the screen.

Fig. 3-14. Animation program.

10 CALL CLEAR

20 FOR X = 1 TO 3Q STEP 5

30 CALL CLEAR

40 CALL HCHAR(12,X,79)

50 NEXT X

56

Fig. 3-15. Program to animate a solid block character.

Try the program in Fig. 3-14 to make the
letter travel all the way across the screen in
bigger jumps.

This program is almost identical to the
previous one, but the coordinates specified by
the for-next loop have been modified, and the
count is now in steps of 5. The first letter will
be printed at position 12,1. The next will be
printed at position 12,6; then 12,11, etc. The
character will travel faster and in bigger jumps.
You can repeat this process over and over
again by adding

60 GOTO 20

This establishes an endless loop and the capi
tal letter 0 will continue to race across the
screen.

The program shown in Fig. 3-15 uses a
trick learned earlier to cause a solid block
character to race from one side of the screen to
the other. Line 20 establishes the character

with a Call CHAR subprogram. It assigns our
new character to ASCII code 33. This charac
ter is represented by the hexadecimal code
(FFFFFFFFFFFFFFFF), which fills in the

10 CALL CLEAR

20 CALLCHAR(33,"FFFFFFFFFFFFFFFF")

30 FOR X = 1 TO 32

40 CALL CLEAR

50 CALL HCHAR(12,X,33)

60 NEXT X

character block completely. The for-next loop
in line 30 is followed by a Call Clear that is also
part of the loop. The next loop instruction
causes our new character to be printed on the
screen at various locations using Call HCHAR.

When this program is run, the block will
emerge from the left side of your screen, travel
to the right side, and the program will then end.
This is exactly what happened with the letter
O, only substituting our filled-in block charac
ter.

This left to right travel is getting rather
boring, so the program shown in Fig. 3-16
reverses it. The only change is found in line 30
where the for-next loop counts from 32 to 1
instead of from 1 to 32. Loops can count up or
down. However, if the starting value is more
than the ending value, you must include the
step command, which will be a negative
number. In this case, the -1 indicates that the
loop is to count from 32 to 1 in steps of -1. If
we wanted to have a loop take larger steps, we
might use -5. Regardless of what step is
specified, it must be given as a negative
number in order to count from a high number to
a lower one.

57

10 CALL CLEAR

20 CALLCHAR(33, "FFFFFFFFFFFFFFFF")

30 FOR X = 32 TO 1 STEP -1

40 CALL CLEAR

50CALL HCHAR(12,X,33)

60 NEXT X

Fig. 3-16. This program reverses the travel of the block.

When this program is run, the block will left to right on the screen, this new program
first appear at screen position 12,32. The next causes the block to move from right to left,
position will be 12,31, and so forth until screen Let's combine the left to right program
position 12,1 is reached. The program then with the one that moves the square from right
ends. The result isthat instead ofmoving from to left. The program is shown in Fig. 3-17.

58

Fig. 3-17. Program to cause block
to travel left to right and then right to left.

10 CALL CLEAR

20 CALL CHAR(33,"FFFFFFFFFFFFFFFF")

30 FOR X = 1 TO 32

40 CALL CLEAR

50 CALL HCHAR(12,X,33)

60 NEXT X

70 FOR X = 32 TO 1 STEP -1

80 CALL CLEAR

90 CALL HCHAR(12,X,33)

100 NEXT X

110 GOTO 30

Lines 10 through 60 are identical to the first
program, and lines70through 100areidentical
to the second program lines starting with the
for-next loop. It is not necessary to redefine
character 33, since this was done for both loops
in line 20. Once a character is defined with a
Call CHAR subprogram, the character will re
main in effect whenever called for in any other
part of the program. The for-next loop estab
lished in line 30 assigns X values from 1 to 32.
When this looptimes out, X is equal to 32.Line
70 is then executed, which establishes another
loop, still using the variable X. Line 70 reas
signsX from its former valuetovaluesfrom 32
to 1. Line 110 sets up an endless loop by
branching backto line 30 after the secondloop
times out.

When this program is run, the block
character moves from the left center of the

screen to the right center. It then moves from
right center to left center. This process con
tinues until the program is manually halted.

We know that the program is really print
ing a multitude of characters at different posi
tions on the screen, but erasing each old one
before a new one is generated. The viewer
seems to see a single cube in motion, but we
know that the motion is really made up of a long
series of separate blocks.

SOUND

The TI-99/4A has a Sound subprogram
that can be used to generate a wide range of
audio tones and a nice selection of audio sound
effects. Most video game programs depend
heavily onsound effects to maketheirdisplays
and competitions more realistic.

Like the other subprograms, this one is
used with the call statement. You can produce

3 simultaneous tones. Each call sound state

ment must include the desired duration, fre
quency, and volume.

Duration is given in milliseconds (1/1000
of a second) and can range from 1 to 4250. One
second is equal to a 1000 milliseconds. The
longest any single tone can be held is 4.25
seconds, or 4250 milliseconds.

The frequency of the tone must follow the
duration command. If you want to generate
tones or musical notes, the number must be
anywhere from 110to 44733 Hertz. The num
bers represent frequency in Hertz (cycles per
second). Tones above 44,733 Hertz (44.733
kilohertz) fall well above the human hearing
range and will not be detected.

If you want to generate a noise or sound
effect, specify any number from —1 to —8 for
frequency. The noise produced by the TI-
99/4A falls into two categories, white noise or
periodic noise. You will have to test these
sounds with the computer yourself. Some
sound like motors running, and others offer
"space" sounds, etc.

The last parameterthat must be specified
is volume. Volume is represented by any
number from 0 to 30. Zero represents the
loudest output and 30 is the softest. The fol
lowing program line generates a 1000-Hertz
tone for approximately 4% seconds at the
loudest volume possible:

CALL SOUND(4250,1000,0)

The number 4250 determines the length of the
tone. The value 1000 determines the fre
quency, and 0 determines the volume.

Figure 3-18 shows a program that gener
ates all 8 noises or sound effects available with

59

10 FOR X = 1 TO 8

20 CALL SOUND(4250,-X,0)

30 NEXT X

the Call Sound subprogram. The first sound
generated is represented by -1, while the next
sound is -2, and so on, up to -8. Each sound is
held for a little over 4 seconds.

When this program is run, a for-next loop
that encloses a Call Sound subprogram is en
tered. The value of X is from 1 to 8. These are

the values of the noise numbers. The noise
specification numbers must have negative val
ues. A value of minus X is specified in the
frequency section of the Call Sound subpro
gram contained in the for-next loop. This line
tells the computer to output for 4.25 seconds
the noise represented by the negative value of
X. The 0 indicatesthat the noise is to be output
at maximum volume. If the minus sign is not
placedbefore the X, you will get anerror mes
sage, because the lowest tone number that may
be used is 110.

If you want to generate a multitude of
tones, try the program shown in Fig. 3-19. This
one is similar to the noise-generating program,
but the valueof X is from 110to 2010insteps of
100. This time, X is inserted without the minus

Fig. 3-19. Program to produce a multitude of musical tones.

60

Fig. 3-18. Program to generate all eight
noises using Call Sound subprogram.

sign, since the numbers representing tones
must always be positive and equal to or more
than 110. They must also be less than 44733.

When the program is executed, the first
tone output will be 110 Hertz. The next tone
will be 210, then 310, and so on, until a max
imum frequency of 2010 is reached. I shor
tened the duration command in line 20 to hold
each tone for about half a second, if you use a
long duration command here, the program can
take several minutes to run.

KEY

Anothersubprogram useful inmaintaining
control over the movement of graphic images
is the Call Key subprogram. It lets youtransfer
one characterfromthe keyboard directly to the
program. This may sound similar to an input
statement, but it's not. When an input state
ment is used, program execution is halted until
something is input from the keyboard and the
enter key is pressed. Using the Call Key sub
program, your program continues to execute in

10 FOR X = 110 TO 2010 STEP 100

20 CALL SOUND(500,X,0)

30 NEXT X

10 CALL CLEAR

20 CALLCHAR(33,"FFFFFFFFFFFFFFFF")

30 FOR X = 1 TO 32

40 CALL CLEAR

50 CALL HCHAR(2,X,33)

60 CALL KEY(0,KEY,R)

70 IF R = 0 THEN 90

80 IF R = 1 THEN 110

90 NEXT X

100 GOTO 30

110 PRINT "PROGRAM IS OVER"

120 END

Fig. 3-20. Use of Call Key subprogram.

a certain manner until a key is pressed. When
this occurs, there is usually a branch to another
portion of the program, and the program runs in
a different way. It is not necessary to press the
enter key after striking the key. Once you
"arm" a key, the computer is constantly
monitoring that key's status. As soon as the
status changes (when the key is pressed), the
computer reads this condition and brings about
the required branch.

The Call Key subprogram is followed by
several specifications in parentheses. The first
is the key unit. This can be any number from 0
to 5. A key unit of 0 activates any key on the
console. A key unit of 1 activates only the keys
on the left side of the keyboard. These are keys

1 through 5 on the top row, Q through T on the
second row, A through G on the third row, and
on the fourth row, Z through B. A key unit of 2
activates the remaining keys on the right side
of the keyboard. Key units 3, 4, and 5 provide
specific modes for the keyboard.

Figure 3-20 shows how the Call Key sub
program might be used to provide console con
trol during a program run. This is similar to a
previous graphics program discussed in this
chapter. A block character moves from left to
right across the top of the screen. This is set up
by the for-next loop beginning in line 30 and
ending at line 90. The only thing unusual about
this loop is in lines 60 through 80. In line 60,
the Call Key subprogram is used to read the

61

keyboard. R is the status factor and the third simply causes the loop to cycle again. If R is
element of the Call Key subprogram. It's called equal to 1, this is detected in line 80, and there
the status bit, because it assumes the value is a branch to line 110. When such a branch
or status of the keyboard. When no key is occurs, the movingcharacter willfreeze on the
pressed, R has a value of 0. When a key is screen and the message "PROGRAM IS
pressed, the value of R is 1. Lines 70 and 80 OVER" will be displayed,
test for the condition of R. In line 70, if R is The Call Key subprogram is often used
equal to 0, there is a branch to line 90, which in text mode programming in place of input

10 CALL CLEAR

20 PRINT "THIS IS AN INTRODUCTION TO A NEW PROGRAM CALLED MOTORCADE"

30 PRINT

40 PRINT "WHERE YOU ACTUALLY DO THE DRIVING. THE GAME IS VERY SIMPLE TO PLAY"

50 PRINT

60 PRINT "ALONE OR WITH A FRIEND. THE TOP ROW OF KEYS CONTROL HORIZONTAL"

70 PRINT

80 PRINT "DIRECTION. THE SPACE BAR CONTROLS SPEED. THE OBJECT OF THE GAME"

90 PRINT

100 PRINT "IS TO COMPLETE TEN LAPS WITHOUT STRIKING AN OBSTACLE OR ANOTHER"

110 PRINT

120 PRINT "AUTOMOBILE. GOOD LUCK!!!"

130 PRINT

140 CALL KEY(0,KEY,R)

150 PRINT "PRESS ANY KEY TO CONTINUE"

160 IF R = 0 THEN 140

170 IF R = 1 THEN 500

Fig. 3-21. Using Call Key instead of Input.

62

statements. The program in Fig. 3-21 dem
onstrates this use.

This program is typical of the introduc
tory lines of many game programs. This is only
a sample used to demonstrate this use of Call
Key and is not a workable program in itself.
Lines 10 through 120 print game instructions
on the monitor screen. As soon as the instruc

tions are printed on the screen, nothing further
occurs until the operator presses any key on
the keyboard. A screen prompt appears in line
150 and tells the operator to "press any key to
continue." In line 140, the Call Key subpro
gram is used. The 0 designator has been incor
porated so that the entire keyboard is read.
Line 160 brings about a branch to line 140 as
long as R is equal to 0. It will be equal to this
value as long as no key is pressed. This effec
tively sets up an endless loop within lines 140,
150, and 160. When a key is pressed, variable R
will be equal to 1 and there will be a branch to
another part of the program. This is detected in
line 170. The branch to line 500 occurs when R

is equal to 1. This fictitious line is used to
represent the actual game portion of the pro
gram.

A TRUE GAME PROGRAM

The subprograms offered on the basic
TI-99/4A computer combined with the state
ments, commands, and functions in TI BASIC
give you the tools necessary to program your
own video games.

To give you an example of how most-cf the
subprograms studied in this chapter can be
combined into a game, look at the Shooting
Gallery program shown in Fig. 3-22. It lets you
try to "blow away" a little graphic man who

runs across the top of the screen. Your weapon
is a graphic pen that shoots square projectiles.
Each time you press any key on the keyboard,
your cannon will fire. The cannon will always
fire its projectile to one position on the screen.
An element of skill is involved since you must
fire the cannon when the running figure is at
the correct position to bring about a hit.

The game includes sound effects to make
it more interesting. It should only take you a
few minutes to enter this program to your
machine, and you can begin playing as soon as
the debugging procedure is complete.

Lines 10 through 40 use REM statements
to title the program and give some basic details
about the memory requirements and the lan
guage used. In line 50, a call color statement is
used to color the moving characters with a dark
red foreground and a black background. The
screen is cleared in line 60, while lines 70 and
80 develop our on-screen characters.

These are produced with call CHAR
statements. In line 70, the graphic target is
created from a single screen block. This will
show a little man with arms extended. Line 80

prints a square block character that represents
the projectile.

Line 90 brings sound effects into our pro
gram. It uses the Call Sound subprogram and
causes the computer to generate a noise (-8)
for approximately four seconds. When the Call
Sound subprogram is used, the program lines
following it are executed at the same time the
sound is being heard. The sound data is fed to a
buffer. This allows for simultaneous output of
sound and execution of remaining program
lines.

Lines 100 through 160 form a for-next
loop causing the character established in line

63

10 REM SHOOTING GALLERY

20 REM COPYRIGHT FREDERICK HOLTZ AND

ASSOCIATES 1/26/S3

30 REM PROGRAM RUNS IN TI-BASIC

40 REM MEMORY USED TO RUN THIS PROGRAM I

S 768 BYTES

50 CALL COLOR(1,7,2)
60 CALL CLEAR

70 CALL CHAR(33,"1818FF3C3C3C2424")
30 CALL CHAR(34,"FFFFFFFFFFFFFFFF")
90 CALL SOUND (4000,--8,0)
100 FOR X=l TO 32

110 CALL CLEAR

120 CALL HCHAR(2,X.33)
130 CALL KEY(0,KEY,R)

140 IF R=0 THEN 160

150 IF R=l THEN 270

160 NEXT X

170 CALL SOUND(4000,-8,0)
180 FOR X=32 TO 1 STEP -1

190 CALL KEY(0,KEY,R)
200 IF R=0 THEN 220

210 IF R=l THEN 270

220 CALL CLEAR
n"7A CALL HCHAR(2,X,33)
240 NEXT X

250 CALL SOUND(4000,-8,0)
260 GOTO 100

270 FOR Y=22 TO 1 STEP -5

280 CALL CLEAR

290 CALL HCHAR(Y,15,34)

300 NEXT Y

310 IF X=15 THEN 330

320 GOTO 160

330 CALL CLEAR-

340 CALL SOUND(4000,1000,0)
350 PRINT "DIRECT HIT"

360 FOR Q~l TO 800

370 NEXT Q

380 GOTO 60

Fig. 3-22. Shooting Gallery program.

64

70 to run from left to right across the top of the
screen. This is done by the HCHAR subpro
gram in line 120, whose horizontal coordinates
are derived from the value of X. The Call Key
subprogram is found in line 130, along with the
test lines to bring about appropriate branches
in lines 140 and 150. It takes this loop about
four seconds to time out. The noise follows the

little man across the screen and stops when he
reaches the right side. When this occurs, the
loop is timed out, and line 170 is executed.
This is identical to the Sound subprogram in
line 90, and sets up the sound effect for the next
loop. Lines 180 through 240 cause the little
man to now run from right to left across the top
of the screen. This loop is identical to the
previous one, except for the reverse order for
the count value of X. Note the Step -1 com
mand used at the end of line 180.

When this loop times out, there is another
Call Sound subprogram (line 250) and then a
branch to line 100, where the entire sequence
begins again. As long as no key is pressed after
the program begins running, the target will run
back and forth across the screen while sound

effects occur.

However, if a key is pressed, the value of
R is equal to 1, andthere will be abranchto line
270. Two Call Key subprograms are used in
lines 130 and 190 to make sure you have con
trol when either directional loop is executing.

When a key is pressed, the branch to line
270 causes another for-next loop to be exe
cuted. This is another negative step loop, de
termining the vertical coordinates for the
HCHAR subprogram in line 290. The loop
causes character 34 (the projectile) to move
from the bottom of the screen (position 22) to

the top of the screen in steps of 5 screen
places.

Line 310 tests for a hit. The projectile is
fired from horizontal position (column) 15. It
starts at 22,15, then rises to 17,15, then 12,15,
etc. Line 310 states that if X is equal to 15, then'
branch to line 330. Here, the variable X is the
last horizontal position of the little man. This
was his position when the loop controlling his
movement was exited by pressing a key. If the
little man is in the 15th horizontal position, the
projectile strikes him. When the program
branches to line 330, there is a musical tone set
up by the Call Sound subprogram in line 340.
The screen then displays DIRECT HIT.

The for-next loop in lines 360 and 370 is
a time delay loop. These two lines cause the
computer to count from 1 to 800. This takes a
few seconds and gives the player time to note
the "DIRECT HIT" prompt on the screen. As
soon as this loop times out, a branch to line 60
starts the target running again.

Going back to line 310, if X is not equal to
15, then there is a branch to line 160, which
starts the program near its beginning. Each
time you press a key, a single shot will be fired.
It takes a bit of practice to get anywhere close
to a perfect score.

This is a simple computer game program.
Through a few more programming steps, a
great deal more sophistication could be built
in, but the program as shown is sufficient as an
example of how to begin. Don't attempt to do
too much too soon. The best thing to do is come
up with a game idea and then program it in its
simplest possible form. Once you have the
basics working properly, add features to ex
pand the enjoyment of the game. Each addition

65

or modification should be completely debug- period of several weeks, but the end result will
ged and made operational before you make be a game program that is challenging, excit-
further additions. This process may take a ing, and entertaining.

66

Chapter 4

Game Programs
This chapter contains line listings for ready-
to-run programs in TI BASIC. Each of these
programs has been written and tested on the
TI-99/4A home computer and has been fully
debugged. Don't expect a successful run the
first time through, however, as you will proba
bly make a few keyboard errors during the
inputting process. Fortunately, the excellent
error-checking routines built into the TI-99
ROM will quickly identify the troublesome
lines and allow you to make the needed correc
tions. Debugging keyboard errors usually
takes less than five minutes after the program
has been fully input.

Some of the game programs included in
this chapter are based upon chance, while
others will test your skill at beating the
machine or even another player. Some are en
tertainment programs. Some will even help

you develop a skill, such as using your com
puter to better advantage. You will also find a
number of video action games that use on
screen animation to present an interesting dis
play and even sharpen your hand-to-eye coor
dination.

All programs have been written in TI
BASIC, and most are based upon a combination
of straightforward routines and subroutines. A
few tricks have been used here and there, but
for the most part, these programs are combina
tions of simple short programs which inter-
mesh to produce an interesting display and
perform a myriad of operations.

You are encouraged to experiment with
these programs, making changes to suit your
needs or to learn more about game program
ming. However, I suggest that you input the
programs exactly as shown in these pages be-

67

fore making anymodifications. When youhave
a successful program run, you can then begin
making changes. I suggest also that you copy
the original program on cassette or disk before
makingany modifications. This assures anop
erational program from which to work, even if
your modifications cause the one in current
memory to be partially erased or rendered
useless. The latter can sometimes occur when
you make a number of changes, one or more of
which may not be correct. The modified pro
gram can become unwieldy and it's sometimes
easier to start from scratch than to gothrough
and try to figure out where the problem has
occurred. When this happens, you simply re
load the originalprogramfromcassette or disk
and start all over again.

AUTO RACE

This program is a complete auto race or
drag raceusing on-screen graphics. Two mini
ature automobiles streak down a graphic race
track, speeding toward the finish line. One car
may move ahead and then fall back again. You
never know until the last minute just which car

68

Fig. 4-1. Screen setup for auto race.

will win. This display uses a lot of color and
willbe enjoyedby young and oldalike.The top
car is red and the bottom one is blue. When the
race is over, the screen will display the results,
and you are invited to race again by pressing
the enter key.

Figure 4-1 shows the screen setup. When
the screen is initialized, the carsbeginmoving
from left to right. There is always a photo
finish, in that the action freezes as soon as one
car crosses the finish line. Sometimes, the race
ends in a tie, and this is also recorded on the
screen. Since there are two automobiles, two
humans can play, each taking a different race
car. This game also lends itself well to single
players. Here, the human takes one car and the
computer is assigned the other.

The outcome of the race is randomly de
cided. No player control is necessary. This
maybe thoughtof as atype of dicegameor any
other game whose outcome is randomly de
cided.

Looking at the program itself, line 130
clears any printed material from the screen.
There is then a branch to line 520. This starts

Listing 1. Auto Race

100 REM AUTO RACE

110 REM COPYRIGHT FREDERICK HOLTZ AND ASSOCIATES 2/23/83

120 REM PROGRAM RUNS IN TI BASIC

130 CALL CLEAR

140 GOSUB 520

150 RANDOMIZE

160 CALL C0L0R(1,7,2)

170 CALL C0L0R(2,5,2)

180 CALL C0L0R(4,11,2)

190 CALL CLEAR

69

Listing continued.

70

200 A$="FFFFFFFFFFFFFFFF"

210 B$="0000000000000000"

220 C$="0066FFFFFFFF66001'

230 CALL CHAR(60,A$)

240 CALL CHAR(34,B$)

250 CALL VCHAR(1,28,60,24)

260 CALL HCHAR(12,1,60,28)

270 CALL CHAR(33,C$)

280 CALL CHAR(40,C$)

290 FOR X = 1 TO 29

300 CALL SOUND(500,-5,0)

310 ZZ = X + INT(RND*1.5)

320 YY = X + INT(RND*1.5)

330 CALL HCHAR(5,ZZ,33)

340 CALL HCHAR(20,YY,40)

350 IF ZZ>= 27 THEN 420

360 IF YY>= 27 THEN 420

370 FOR Y = 1 TO 75

380 NEXT Y

390 CALL HCHAR(5,ZZ,34,2)

400 CALL HCHAR(20,YY,34,2)

410 NEXT X

420 IF ZZ = YY THEN 500

430 IF ZZ<YY THEN 460 ELSE 440

440 PRINT "RED CAR WINS"

450 GOTO 470

460 PRINT "BLUE CAR WINS"

470 PRINT "PRESS ENTER TO RACE AGAIN"

480 INPUT ER$

490 GOTO 190

500 PRINT "THE RACE ENDS IN A TIE"

510 GOTO 470

520 PRINT "WELCOME TO AUTO RACE"

530 PRINT "COMPUTER STYLE. THIS IS"

540 PRINT "A GAME OF CHANCE WHICH"

550 PRINT "USES ON-SCREEN GRAPHICS"

560 PRINT "AND ANIMATION TO SIMULATE"

570 PRINT "AN AUTOMOTIVE DRAG RACE."

580 PRINT

590 PRINT "TWO DRAGSTERS WILL RACE"

71

Listing continued.

600 PRINT "ACROSS THE DISPLAY SCREEN."

610 PRINT "YOU AND A PLAYING PARTNER"

620 PRINT "CAN CHOOSE A RACE CAR AND"

630 PRINT "SEE WHO THE WINNER WILL BE."

640 PRINT "YOU CAN ALSO PLAY ALONE BY"

650 PRINT "CHOOSING ONE CAR AND ALLOWING"

660 PRINT "THE COMPUTER TO BE REPRE-"

670 PRINT "SENTED BY THE OTHER. GOOD"

680 PRINT "LUCK!!!"

690 PRINT

700 PRINT

710 PRINT "PRESS ENTER TO BEGIN"

720 INPUT ER$

730 RETURN

the instruction sequence, which ends at line
680.The print statements are used to provide a
brief explanation of what will occur when the
program gets under way. Line 710 instructs
the player to press the enter key in order to
begin the actual race. Line 720 reads the
keyboard input and the return statement in line
730 branches back to line 150, the line im
mediately following the GOSUB statement
that initiallyaccessed the instruction sequence
subroutine.

The randomize statement is used in line 150
to reseed the random number generator. This
assures race results that cannot be predicted
by the human players. Lines 160 through 180
use Call Color subprograms to color the two
automobiles and the racetrack itself. The call

clear statement in line 190 removes the in
struction information from the screen and the
beginning of the graphic work is encountered
in lines 200 through 280.

The first three lines in this sequence as-

72

Fig. 4-2. The racing car image.

sign hexadecimal values to string variables A$,
B$, and C$. The first uses sixteen Fs. This
produces a solid block character when as
signed by the Call CHAR subprogram in line
230. Line 210 produces a null block character
or one that is the same color as the screen

background. This one is assigned to ASCII
character 34 by the Call CHAR subprogram in
line 240. Line 220 assigns to C$ a hexadecimal
value that will draw a race car on the screen.

This is shown in enlarged form in Fig. 4-2.
Lines 270 and 280 assign this block value to
ASCII characters 33 and 40. Two assignments
must be made because each car is to have a

different color. ASCII character 33 lies in
character set 1, while ASCII character 40 is in
set 2. The Call Color subprogram in line 160
assigns the color red (7) to all characters in set
1. The Call Color subprogram in line 170 as
signs the color blue (5) to all characters in set 2.

Lines 250 and 260 are used to draw the

racetrack separator and the finish line on the
screen. Line 250 draws the vertical line using
VCHAR and ASCII character 60, which is the

block character assigned in line 230. The first
block character is printed at position 1,28 on
the screen, and 23 more will be printed verti
cally downward from this point as indicated by
the last numeral in the VCHAR command.

Line 260 draws the horizontal divider that

uses the same block character, but begins at
the left center of the screen (12,1). 28 of these
characters are printed horizontally, the last
intersecting with the center of the vertical
finish line.

The actual race sequence can now begin,
and this is handled by a for-next loop which
starts in line 290. The value of X is set from 1 to

29 in increments of 1. These values will be

used directly as column coordinates to allow
each race car to move across the screen. Some

audio efifects are created by the Call Sound
subprogram in line 300.1 elected to use a -5
noise designator here. You may wish to use
another. Lines 310 and 320 assign coordinate
values to variables ZZ and YY based upon the
value of X (determined by the loop value)
added to the integer output of the random

73

number (RND function) multiplied by 1.5. In
some cases, this integer value will be equal to
1, and in others, it will be equal to 0. This
determines the movement of the car across the

screen. Each time the loop cycles, X increases
by 1, but ZZ or YY may increase by 2 depending
on the value of RND*1.5. Lines 330 and 340

use Call HCHAR subprograms to write the
graphic automobiles at vertical screen posi
tions 5 and 20, respectively. The horizontal
position of each dragster is determined by the
value of ZZ and YY. Lines 350 and 360 test for a

win, which occurs when either ZZ or YY is
equal to or greater than 27. When this occurs,
there is a branch to line 420, which will be
discussed shortly. Assuming that the cars have
not progressed this far yet, line 370 is exe
cuted. This starts a nested loop, which is used
for time delay purposes. As soon as the
dragsters are drawn on the screen, this loop
delays further execution for about a second,
allowing the cars to be clearly seen by the
players. When the loop times out, lines 390 and
400 are encountered. These write two more

characters on the screen at the same locations

occupied by the graphic automobiles. ASCII
character 34 is used here, and this was as
signed in line 240 to a null character or one
which is the same color as the screen back

ground. When the two characters specified by
lines 390 and 400 are written on the screen, the
graphic automobiles are effectively erased.

Line 410 causes the loop to cycle again,
and the same sequence of events reoccurs.
However, the value of X has increased by 1,
and this causes the new graphic automobiles to
be written at least one position farther down
the track (horizontally). The actual position
will be determined by the value of ZZ or YY.

74

When one or both cars make it to the finish

line, program lines 350 or 360 sense this condi
tion and bring about a branch to line 420. Lines
420 through 460 determine which car will be
announced the winner. For instance, in line
420, a test is made for a tie. If the value of ZZ
(the top car position) is equal to YY (the posi
tion of the bottom car), there is a branch to line
500, which displays the TIE announcement on
the screen. In line 430, a test is made to see if
ZZ is less than YY, and if so, the bottom car
(blue) wins. If it is not, ZZ must be greater than
YY, and the red car is the winner.

After the winner (or the tie) is determined
and pictorially announced, line 480 temporar
ily halts program execution until the enter key
is pressed. When this occurs, there is a branch
to line 190, which clears the screen, and the
program begins anew.

This is certainly not a program of skill, so
you won't be given a test of your mental pow
ers or even your reflexes. It is one, though,
that can be enjoyed over and over again and can
be played by persons of all ages.

Many persons ask why only two au
tomobiles are included rather than four or

more. After all, this would change the odds
considerably and even allow for more players
to take part. Certainly, more automobiles
could be included, but probably at the expense
of game enjoyment, at least from a visual point
of view. The on-screen motion of the two au

tomobiles is accomplished by writing the im
ages on the screen (one at a time) and then
erasing them (again, one at a time). All of this
takes a short amount of execution time and

even then, the motion of the automobiles does
not appear to be exactly continuous, as you can
actually see them being quickly written,

erased, and then written again. If you added
two more automobiles to this display, the
execution time within the loop would be nearly
doubled. This would increase the flicker effect

and the speed with which the automobiles
travel from the left to the right side of the
screen would be slowed. The machine is sim

ply not fast enough to accomplish this type of
animation with reasonable visual efficiency, at
least when using BASIC. The same can be said
of most other home computers. When anima
tion is to be produced in a highly efficient and
professional manner, the BASIC language is
rarely used. Such programs are normally writ
ten in assembler or machine language. Such
languages are not within the scope of this book,
but are certainly available to those program

Listing 2. Speedread/Type

mers who want to go further on the TI-99/4A.

SPEEDREAD/TYPE

Speedread/Type is a learning game that
will allow you to sharpen your speedreading
skills and practice typing on the TI-99/4A at
the same time. When the program is first run, a
single line of words and/or numbers is dis
played on the screen for a second or so. As
soon as the phrase disappears, you must dupli
cate it by typing in the same information via the
keyboard. The keyboard information must be
identical to what appeared on the screen or a
wrong answer is recorded. At the end of the
game, the number of incorrect phrases is regis
tered as your score. The individual with the
lowest score is the winner.

-=

'JLmPEEDREAD
100 REM SPEEDREAD/TYPE

110 REM COPYRIGHT FREDERICK HOLTZ AND ASSOCIATES 2/22/83

120 REM PROGRAM RUNS IN TI BASIC

130 CALL CLEAR

140 PRINT "THIS GAME WILL ALLOW YOU TO"

150 PRINT "PRACTICE TYPING WHILE YOU"

160 PRINT "LEARN TO READ AND COMPREHEND"

170 PRINT "SCREEN INFORMATION QUICKLY."

75

Listing continued.

180 PRINT "THE SCREEN WILL DISPLAY A"

190 PRINT "PHRASE WHICH WILL DISAPPEAR"

200 PRINT "AFTER A FEW SECONDS. FROM"

210 PRINT "MEMORY, YOU MUST THEN RETYPE"

220 PRINT "THE PHRASE EXACTLY AS IT"

230 PRINT "APPEARED. AT THE END OF THIS"

240 PRINT "GAME, YOUR SCORE WILL BE"

250 PRINT "COMPUTED. GOOD LUCK!!!"

260 PRINT

270 PRINT

280 PRINT "PRESS ENTER TO CONTINUE."

290 INPUT ER$

300 CALL CLEAR

310 READ A$

320 IF A$=="END" THEN 930

330 PRINT A$

340 PRINT

350 PRINT

360 PRINT

370 PRINT

76

380 PRINT

390 PRINT

400 PRINT

410 PRINT

420 PRINT

430 FOR X=0 TO 250

440 NEXT X

450 CALL CLEAR

460 PRINT "RETYPE THE PHRASE"

470 PRINT

480 PRINT

490 INPUT AA$

500 IF AA$=A$ THEN 510 ELSE 630

510 PRINT

520 PRINT

530 PRINT

540 PRINT "THAT IS A CORRECT ANSWER"

550 PRINT

560 PRINT

570 PRINT

580 PRINT

77

Listing continued.

78

590 S=S+1

600 PRINT "PRESS ENTER TO CONTINUE"

610 INPUT ER$

620 GOTO 300

630 PRINT "THAT IS AN INCORRECT PHRASE!"

640 PRINT

650 PRINT

660 PRINT

670 PRINT "THE CORRECT PHRASE IS-"

680 PRINT

690 PRINT

700 PRINT A$

710 PRINT

720 PRINT

730 T=T+1

740 PRINT "PRESS ENTER TO CONTINUE"

750 INPUT ER$

760 GOTO 300

770 DATA DOWN BY THE OL' MILL RUN, SEVEN SONS FOR SEVEN
DARTERS, WHEN IN ROME DUE AS THE ROAMIN'S DO

780 DATA IT WAS A VERY GOOD TEAR

790 DATA STROLLING DOWN THE MAIN

800 DATA STAUNCH IS AS STAUNCH DOES

810 DATA COMPUTER ARITHMETIC IS FRAUGHT WITH LOGIC

820 DATA HE WAS BOOLEANED OF THE STAGE

830 DATA THE COMING OF THE HESPERUS WAS A SIGHT TO BEHOLD.

840 DATA YOU DID NOT SAY I COULD GO!

850 DATA FRONT THE ROYAL OAK! !!

860 DATA 9675892165;

870 DATA DOWN IN THE VALLEY OF THE FERAL DOGS.

880 DATA IS THIS THE CORRECT ADDRESS OR IS IT ELSEWHERE?

890 DATA LATCH HATCH SATCHEL MATCH

900 DATA IN THE FIRST OF THE NINTH THERE WERE NO RUNNERS ON BASE! !!

910 DATA VERY VENTURESOME VAGABONDS VEERED VOICELESSLY

920 DATA END

930 CALL CLEAR

940 PRINT "CORRECT PHRASES=";S

950 PRINT

960 PRINT

970 PRINT

980 PRINT "INCORRECT PHRASES=";T

990 END

79

Looking at the program, you can see that
lines 100 through 280 initialize the screen,
print instructions, and allow you to continue by
pressing the enter key. When this is done, line
300 clears the screen, and a read statement is
encountered in line 310. The read statement

pulls information from a data statement. A
group of these are used to provide the on
screen phrases. The data statements begin in
line 770. Line 320 tests for the last data state

ment. This is found in line 920, and its only
item is the word END. When A$ in line 320 is
equal to this word, there is a branch to line 930,
which clears the screen and prints the number
of correctly typed phrases. Line 980 prints the
number of incorrect phrases. Lines 340
through 420 contain print statements. Youwill
notice that no variables follow these state

ments, nor are there words or phrases con
tained in quotation marks. These print state
ments are used solely to position the phrase to
be retyped at the center of the screen. The
actual phrase is typed at the bottom of the
screen in line 330. The succeeding print
statements simply act like carriage returns,
and the displayed phrase is advanced upward to
the center of the screen.

Lines 430 and 440 provide the time delay
loop that determines the amount of time al
lowed for the message to be displayed after it
has reached its resting position at the center of
the screen. These lines cause the variable X to
count from 0 to 250, which provides a display
time of about one second. As soon as the loop
times out, line 450 clears the screen, and you
are then prompted to retype the phrase you've
just seen.

Your input phrase is assigned to the vari
able AA$ in line 490. Line 500 tests to deter

80

mine whether or not AA$ is equal to A$. The
latter variable represents the phrase originally
displayed. If the two are equal, there is a
branch to line 510, which causes the phrase,
THAT IS A CORRECT ANSWER to be dis

played at the center of the screen. Again, print
statements are used to position this phrase.
Line 590 counts the number of correct an

swers. The value of S steps in increments of
one each time the correct answer portion of the
program is accessed. Following this sequence,
you are prompted to press the enter key to
continue, and there is a a branch to line 300,
which displays another data item phrase.

Going back to line 500 in the program, if
AA$ and A$ are not identical, there is a branch
to line 630, which causes the INCORRECT
PHRASE message to appear on the screen.
After a few more print statements (for spacing
purposes), line 670 is accessed and reprints
the original phrase. Line 730 contains another
counting routine, which assigns to the variable
T the number of the incorrect phrases input.
Pressing the enter key brings about a branch to
line 300, and the next data item is accessed.

Lines 770 through 920 contain the data
statements and their various items. This is

where you can customize the program to suit
your own tastes. The data statements may con
tain any information you desire, but remember
that you can use commas only to separate data
items. If a comma appears in a quoted phrase,
the portion of the phrase to the left of the
comma will be displayed during one program
run, and the data to the right will be displayed
as a separate data item during the next run.

There are other ways to custom tailor this
program as well. For example, you can change
the count value of X in line 430 to display the

phrase contained in the data statement for a
longer or shorter period of time. By increasing
the value, the phrase will be displayed for a
longer period of time. Decreasing it also de
creases display time, since the loop times out
in a shorter period.

Print statements were used to locate the

phrases and certain screen prompts at a par
ticular vertical position. This could also have
been done using Call HCHAR or Call VCHAR
subprograms, but then it would have been
necessary to include a separate program line
for each letter in the phrase and also to convert
alphabetic and numeric characters into their
ASCII equivalents.

For example, to print the word HELLO
near the left center of the screen, the following
program lines would be required:

100 CALLHCHAR(15,1,72)
110 CALL HCHAR(15,2,69)
120 CALL HCHAR(15,3,76)
130 CALL HCHAR(15,4,76)
140 CALL HCHAR(15,5,79)

The final number in each program line repre
sents the appropriate letter of the alphabet
needed to spell the word HELLO. Line 120
could be changed to:

120 CALL HCHAR(15,3,76,2)

Fig. 4-3. The playing screen for monster.

and line 130 could be deleted, since lines 120
and 130 have both been used to produce the
letter L at certain positions on the screen. This
method will work only when identical letters
are side by side in any given word. One can see
that this method is rather tedious, so it's far
simpler to print the word HELLO using a print
statement, as in:

100 PRINT "HELLO"

and then follow this with a series of print
statements used as spacers. This has been
done throughout this program. It greatly short
ens input time and produces the same results
on the screen.

MONSTER

Monster is a game that revolves around
random occurrences just like a dice game, ex
cept that instead of 6 possible results as in the
case with a single die, there are 9 possibilities.
This game uses on-screen graphics to draw a
series of 9 boxes horizontally on the screen.
Each one of these boxes is represented as a
door, and above each door, there is a number
from 1 to 9. You open the door of your choice by
typing its number and then pressing the enter
key. The door will then disappear if there's
nothing behind it, but if this is the door the
monster has been hiding behind, it will spring

81

out at you with a growl. Figure 4-3 shows the
screen when play begins. Each time you select
a door (without getting the monster), the door
will disappear, but the identifying number
overhead will remain. When the door with

the monster is selected, the entire screen is
cleared, and the monster, shown in Fig. 4-4,
appears. At the same time, the excellent audio
qualities of the TI-99/4A are utilized to pro
duce a low-frequency noise that sounds like a
growl.

Listing 3. Monster

Fig. 4-4. Screen display when monster appears.

m a a e e e 0 a s
nannnnnn a

82

100 REM MONSTER

110 REM COPYRIGHT FREDERICK HOLTZ AND ASSOCIATES 2/23/83

120 REM PROGRAM RUNS IN TI BASIC

130 CALL CLEAR

140 GOSUB 690

150 DIM A(100)

160 1=0

170 RANDOMIZE

180 CALL CLEAR

190 CALL COLOR(l,3,7)

200 RN = INT(RND*9) + 1

210 A$ = "FFFFFFFFFFFFFFF"

220 B$ = "000000000000000"

230 CALL CHAR(33,A$)

240 CALL CHAR(34,B$)

250 CALL CLEAR

260 FOR X = 8 TO 24 STEP 2

270 CALL HCHAR(8,X,33)

280 FOR II = 1 TO 10

290 IF A(II) = 0 THEN 320

300 CALL HCHAR(8,A(II)*2+6,34)

310 NEXT II

320 NEXT X

330 FOR Y = 8 TO 24 STEP 2

340 CALL HCHAR(6,Y,(Y/2)+45)

350 NEXT Y

83

Listing continued .

360 1=1+1

370 INPUT "WHICH NUMBER?":A(I)

380 IF A(I)< = 0 THEN 370

390 IF A(I)> 9 THEN 370

400 IF A(I) = RN THEN 420

410 GOTO 250

420 CALL CLEAR

430 CALL COLOR(1,5,2)

440 CALL SOUND(4200,-3,0)

450 CALL HCHAR(8,8,33,16)

460 CALL VCHAR(8,8,33,12)

470 CALL HCHAR(20,8,33,17)

480 CALL VCHAR(8,24,33,12)

490 CALL HCHAR(12,12,33,2)

500 CALL HCHAR(12,20,33,2)

510 CALL VCHAR(13,16,33,2)

520 CALL VCHAR(13,17,33,2)

530 CALL HCHAR(17,12,33,9)

540 CALL VCHAR(17,12,33,2)

550 CALL VCHAR(17,21,33,2)

84

560 FOR II = 1 TO 100

570 A(II) = 0

580 NEXT II

590 FOR TD = 0 TO 1200

600 NEXT TD

610 CALL CLEAR

620 I = INT(1/9*100)

630 IF I<15 THEN 640 ELSE 650

640 1=0

650 PRINT "YOUR SCORE IS ";I

660 1=0

670 INPUT "PRESS ENTER TO PLAY AGAIN":A$

680 GOTO 150

690 PRINT "WELCOME TO THE GAME CALLED"

700 PRINT "MONSTER. THIS IS A GAME"

710 PRINT "OF CHANCE IN WHICH YOU"

720 PRINT "MUST LOOK BEHIND DOORS,"

730 PRINT "HOPING THE MONSTER IS NOT"

740 PRINT "THERE. SIMPLY TYPE IN THE"

750 PRINT "NUMBER OF THE DOOR YOU"

760 PRINT "WISH TO OPEN. YOU HAVE"

85

Listing continued.

770 PRINT "A ONE IN NINE CHANCE OF"

780 PRINT "OPENING THE ONE WITH THE"

790 PRINT "MONSTER BEHIND IT LAST."

800 PRINT "WHEN THIS OCCURS, YOU HAVE"

810 PRINT "BEATEN THE COMPUTER!"

820 PRINT "GOOD LUCK!!!"

830 PRINT

840 PRINT

850 PRINT "PRESS ENTER TO PLAY"

860 INPUT A$

870 RETURN

When the program is first run, the screen
is cleared in line 130, and line 140 branches to
near the end of the program, where a set of
instructions is provided. Lines 690 through
870 print the instructions on the screen and
allow you to press the enter key to begin pro
gram play. When enter is pressed, line 870
branches back to line 150, which follows the
GOSUB statement.

In line 150, an array which will contain
100 elements is established. The array is given
the designation "A". Line 170 contains a ran
domize statement, which assures a non-
predictable random number output. The
screen is then cleared again (line 180). It is
initialized witha Call Colorsubprogram in line

86

190. This produces a screen that has a medium
green foreground and a dark red background.
This will be the color combination of the doors.

Line 200 assigns a random value between
1 and 9 to the variable RN. This is the number

that determines which door the monster is
hiding behind. Here, RN is assigned the in
teger value of RND*9 + 1. This means the
number will always be an integer between and
including the numbers 1 and 9.

Line 210 assigns a hexadecimal value to
string variable A$. This is the value which will
produce a solid block character when coupled
with a Call CHAR subprogram. Line 220 also
makes a hexadecimal assignment, this time to
string variable B$. The 16-digit number pro-

duces a null character or a blank space on the
screen. Lines 230 and 240 utilize A$ and B$ in
Call CHAR subprograms. The block character
is assigned to ASCII character33, whereas the
null or blank character is assigned to ASCII
character 34.

Lines 260 through 320 comprise a nested
for-next loop. The major loop is begun in line
260 and allows X to count from 8 to 24 in steps
of 2. Line 270 feeds the value of X into the Call
HCHAR subprogram. Here, the value of X is
used as a horizontal screen coordinate. Notice
that ASCII character 33 is specified at the end
of the Call HCHAR subprogram in line 270.
This means that the block character defined in
line 210 andassigned in line 230 will appear in
the eighth row and at horizontal position
8,10,12,14, etc. Again, the horizontal position
is determined by the value of X in line 260.

The nested loop is begun in line 280.This
assignsavalue from 1to 10to numericvariable
II. It's difficult to understand this phase of the
program without skipping to another portion.
You will remember that variable A represents
the arraywhich was established in line 150.At
present, the array has no elements; therefore,
its value is 0. This condition is true only upon
first running the program and before any
keyboard information is input.Let's skipto line
370, which assigns a keyboard value to the
array. The previous for-next loops have been
used to write the doors on the screen and the
numbers as well. In line 370, you are asked to
input a numerical value corresponding to the
door you wish to open. When this is done, the
array is assigned this value at one element
position. Line 360 is a counting routine that
steps the element positions each time line 370

is accessed. Lines 380 through 410 check for a
match between your input value and RN and
also foranillegal input number. For example, if
you input a value which is lower than 0, as in
-1, -2, etc., this is detected in line 380, and
there is a branch to line 370, which asks you to
input the number again. Line 390 checks for a
value which is higher than 9. Line 400 checks
for a value which is equal to RN. You will
remember that this variable represents the
number which causes the monster to appear on
the screen. If this is true, there is a branch to
line 420, which includes the lines for the mon
ster image.

If, however, your number is correct (be
tween 1 and 9) and is not equal to RN, line 410
branches to line 250. The screen is cleared,
and the doors are printed one more time with
one exception. The door which you selected
will disappear. This is handled in a rather un
usual fashion, so follow closely.

First, line 270 causes the first door to be
printed at position 8,8 on the screen. Let's
assume that you chose door 1 during the first
go-round and that this door did not contain the
monster. All right, we have our first door on
the screen, but the loop is far from timing out.
Line 300 calls up the blank graphic character
which was assigned in line 240. It will print this
at position 8,A(II)*2+6,34. Here is where the
array comes into play. A(II) is equal to the first
character input via the keyboard. In this case, it
is 1, so a blank character will be printed at
vertical position 8 and horizontal position
(1*2+6), or horizontal position 8. This happens
to be the same position occupied by the first
block character or door. Therefore, that door is
erased, or more accurately, replaced with a

87

null character. Either way, you can no longer
see it. Line 310 causes the loop to recycle, and
the next door is printed. Line 300 is accessed
again, and this time, a null character is printed
again. However, here, the second element in
array A is equal to 0, so the null character is
printed at position 8,0*2+6. Zero times two is
zero, so the null character is printed at position
8,6. This position on the screen is already
blank, so you don't even know it's being
printed. The loop will continue to cycle until all
nine doors have been printed on the screen, but
remember that the first door (in this case) has
been erased, so only eight remain in the
player's view on the screen.

Let's go around one more time and as
sume that the next character input is the
number 4. Again, this is the second go-around,
so the numbers selected are 1 and 4. The same
routine occurs assuming that the number 4
does not pick up the monster. The screen is
cleared, and the first door is printed in line 280
and then just as quickly erased in line 300.
However, the nested loop is repeated ten
times before the next door is printed (in the X
loop). During the second cycle of the nested
loop (II), A(II) will be equal to 4, as this was the
second number the player input in line 370.
Therefore, the null character is printed at hori
zontal position 4*2+6, or 14. This is the screen
position that will be occupied by door number 4
.... but this door hasn't been printed yet. Be
patient and you'll understand in a minute. The
nested loop cycles again and from here on out,
the value of A(II) will be zero. Therefore, the
null character is printed at position 8,6, which
has no bearing on the screen display. Whenthe
nested loop finally times out, line 320 returns

88

to line 260 for the second cycle of the original
loop. Here, the second door is printed and the
nested loop goes through its gyrations again.
The same thing occurs on the third cycle of the
major loop, where the third door is printed.
Therefore, three doors have been printed on
the screen. The first one has been erased, and
we are now in the fourth cycle of the major
loop. Here, the fourth door is printed, but when
the nested loop is entered, line 300 once again
prints that null character. But this time, the
effect is noticeable, as this is the position that
door 4 occupies. Door 4 is printed and then
immediately erased. When the Xloopis finally
timed out, there will be seven doors on the
screen. Doors 1 and 4 will not be seen.

To summarize, duringeach loopcycle, the
X loop repeats itself nine times, but the nested
loop (II) repeats itself ten times for each cycle
of the X loop. Therefore, when the X loophas
timed out, the II loop has cycledninety times.
Ineachcase, ninedoorsare always printed, but
any doors you have previously opened are just
as quickly erased fromthe screen. The array is
necessary to keep track of your selections and
to feedthembackinto the programduring each
cycle.

During each graphic cycle, lines 330
through350are used to place numbers atop the
doors. This is done in a slightly unusual fashion
too, since it is necessary to use ASCII charac
ter numbers. First, loop Y in line 330 counts in
exactly the same fashion as loop X in line 260.
Some mathematics are involved, however, in
getting the numbers to be displayed correctly.
The numbers themselves are represented by
the formula (Y/2)+45. The unaltered value of
Y is used to determine the horizontal print

position. When Yis equal to 8, Y/2+45 is equal
to 49. ASCII character 49 is the number 1. The

Y loop counts in increments of 2, so the next
number will be 10. When this number is output,
Y/2+45 equals 50, which is the number 2 in
ASCII terms. Notice that the Y loop counts
from 8 to 24 in increments of 2. This is neces

sary to get the proper horizontal screen posi
tioning. However, the same value is altered
mathematically to cause the numbers 1
through 9 to be printed in steps of 1.

Let's talk about the monster face now. If

one of your input answers is equal to the ran
dom number represented by numeric variable
RN, this condition is picked up by line 400, and
there is a branch to line 420. Here, the screen
is cleared, and lines 450 through 550 draw the
actual monster face. As you've already seen,
this is a large block with eyes, nose, and mouth
inserted. The block itself is drawn with

HCHAR and VCHAR subprograms. Here, the
ASCII block character is strung together with
others of its kind. The eyes and nose are drawn
with single ASCII block characters. The mouth
is drawn with strings similar to those used to
draw the head. Lines 430 and 440 produce a
different color pattern for the monster face and
also the loud growl. The latter is produced
using the Call Sound subprogram and a -3
noise number.

When the monster is accessed, the pro
gram run is finished. It is necessary, however,
to erase all previous information from our
array in order to make way for a new program
run. This is done in lines 560 through 580. This
is a simple for-next loop which counts from 1 to
100 and assigns a value of 0 to each element
position in array A. Lines 590 and 600 com
prise a time delay loop and then the screen is

cleared automatically. Lines 620 through 650
comprise the portion of the program that gives
you your score. First, the value of I is altered to
a percentage. I represents the number of doors
you opened before the program was termi
nated by getting the monster. The scoring is
given really as a percentage, although this is
not specified on screen. For example, if you
made nine choices, opening all nine doors be
fore getting the monster, then I is equal to nine
divided by nine (which is one) times one
hundred. This means you got a perfect score,
or 100. If the value of I is less than 15, this
means you got the monster on the first try, so
the value of I is reassigned in line 640 to 0. The
score itself is printed in line 650. Line 660 then
reassigns I to a value of 0 (in case this hasn't
been done previously), and you are prompted
to press the enter key to play again. When this
is done, the program starts all over, and you or
an opponent can try your luck again.

This is a very simple game to play, but a
fairly complex one to write into a computer
program. It is even more difficult to explain on
a line-by-line basis. Just remember that the
array holds the guesses previously made and
feeds them into the portion of the for-next loop
that prints null characters on the screen. Nine
doors are always printed during each cycle, but
the ones represented by your guesses are
erased when the X loop has timed out.

Due to the graphics and sound effects, this
program may be enjoyed by young and old
alike. The monster face is quite large in pro
portion to the other on-screen data, so it seems
to literally jump out at you, especially when
accompanied by the low-frequency "growl".
This is a simple game, but it is composed of the
elements (graphics, sound effects, suspense)

89

that make even highly complex games so en
joyable.

BINGO CALLER

This program is short and sweet, but be
lieve it or not, it cancompletely take the place
of those expensive bingo outfits that are often
used by civic organizations to raise funds.
You've probably seen the type that uses num
bered ping pong balls, which float around on a
cushionof air.These areoften coupled with an
electronic display that will light up the same
number on a large electronic screen once the

Listing 4. Bingo Caller

ping pong ball is placed in its correct slot.
Some of these outfits cost thousands of dollars,
but if you have the TI-99/4A computer and a
large screen television receiver, you can ac
complish the same thing for less money, and
the computer version has no moving parts.

This program outputs any and all of the 75
alphanumeric possibilities associated with the
game of bingo. You will recall that the numbers
range from 1 to 75, with the first 15 placed
under the B, the next 15 under the I, and so on.
When this program is run, these 75 pos
sibilities are chosen at random and are dis-

100 REM BINGO CALLER 280 Q$="NM
110 REM COPYRIGHT FREDERICK 290 GOTO 340
HOLTZ AND ASSOCIATES 3/6 300 IF A(Y)< 61 THEN 310 ELSE

/83 330

120 REM PROGRAM RUNS IN TI- 310 Q$="G"
BASIC 320 GOTO 340
130 RANDOMIZE 330 Q$="0"
140 CALL CLEAR 340 INPUT "PRESS (ENTER)":ER $

CALL CLEAR150 DIM A(75) 350
160 FOR X=l TO 75 360 print " ";Q$;A(
170 A(X)=X Y)
180 NEXT X 370 PRINT

190 Y=INT(RND*75)+1 380 PRINT

200 IF A(Y)=0 THEN 190 390 PRINT

210 IF A(Y)< 16 THEN 220 ELSE 400 PRINT
240 410 PRINT

220 Q$="B" 420 PRINT
230 GOTO 340 430 PRINT

240 IF A(Y)< 31 THEN 250 ELSE 440 PRINT
270 450 PRINT

250 Q$="I" 460 PRINT
260 GOTO 340 470 PRINT

270 IF A(Y)< 46 THEN 280 ELSE 480 A(Y)=0
300 490 GOTO 190

90

played one at a time at the center of the screen.
Whenyou press the enter key, another letter/
number combination is displayed, and so on,
until someone wins. Once a letter/number has
been called, it will not be displayed again until
a new game is started. This program allows the
computer to act exactly like a commercial
bingo calling machine and can allow many civic
organizationswhomight not otherwise be able
to afford one the opportunity to offer "low
overhead" bingo.

While the program is short and fairly sim
ple, it is a bit difficult to explain, so make
certain you can view the program lines while
reading this discussion. First, line 130 uses the
randomize statement to assure a random com

bination of output call numbers. The number
portion of the final alphanumeric output is con
tained in array A, which is dimensioned in line
150. This array will contain 75 different ele
ments. Numbers from 1 to 75 are fed into the

array by lines 160 through 180. This loop
counts from 1 to 75 and inserts the value of X

into the array with each cycle.
When the loop is timed out, it is necessary

to read the numbers contained in the array at
random. In other words, the numbers run from
1 to 75 sequentially in the array, but we will not
be pulling them out of the array in this se
quence. Line 190 assigns variable Y the value
of RND*75+1. This is an integer value be
cause the INT function was used, so Y will
always be equal to a number between and in
cluding 1 and 75. It is not possible to predict
what number this will be. Therefore, it's like
pulling a number out of a hat or drawing a ping
pong ball out of a container of ping pong balls.
We'll skip line 200 for the present, but we'll

come back to it in a bit.
Lines 210 through 330 read the value of

A(Y). If Yis equal to 30, then A(Y) will be equal
to 30, since the array received its number se
quentially. Position A(l) will be equal to 1, and
this number will be output when Yis equal to 1.
One might wonder why an array is needed at all
if the value of its element is the same as the

value of the random number which accesses

the date from this element. You'll see why the
array is necessary shortly.

Lines 210 through 330 determine which
letter (B, I, N, G, O) will go with the output
from the array. Take line 210, for example. If
the value of A(Y) is less than 16 (i.e., equal to
1-15), there is a branch to line 220, which
assigns the letter "B" to the string variable Q$.
Line 230 is then executed, which brings about a
branch to line 340. Here, you are asked to
press the enter key to print the bingo output.
Line 350 clears the screen and line 360 prints a
series of spaces followed by Q$ (in this case,
"B"), and then followed by the value of A(Y).
Lines 270 through 330 apply when the value of
A(Y) is within other ranges of numbers. These
lines assign the letters I, N, G, or O accord
ingly.

All right, why do we need the array? At
this point, we really don't, but remember that
I've only talked you through the output of a
single alphanumeric bingo call. Without the
array, we could go back to line 190 and ask the
computer to output another random number
that could be coupled with the appropriate let
ter. The random number will always be be
tween 1 and 75, and the if-then statement lines
would make all letter assignments. All of this
is required for a proper bingo game.

91

However, suppose the random number
generator assigns a value to Y which has been
previously used. Assume this value is 10. The
computer will display BIO at its output. If the
same number crops up again, BIO will be called
again. This doesn't work very well when play
ing bingo. In this example, the fact that a BIO
comes up twice has little impact on the play,
since the first time it occurred, this square on
the card was supposedly covered. It is a nui
sance, however, and it slows up the game be
cause the computer is outputting what is now
useless information, since this is a repeat call.
The array is used to avoid such useless ma
neuvers. We need some method of removing a
number from the 75 we have to choose from

after it has been accessed once. Here's how it's
done.

Let's assume that the random number as
signed to Y is 10. Line 210 detects this situa
tion and brings about branches which assign
the letter B to Q$. Line 360 prints Q$ followed
by A(Y) or "B 10". The print statements found
inlines370through 470simplycause the bingo
call to be scrolled to the center of the screen.
Line 480 is where the action actually takes
place. In this line, the valueof A(Y) is changed
to 0. Inotherwords,to get a 10from the array,
Y was equal to 10. Therefore, A(Y) is equal to
10. However, line 480 changes A(Y) or A(10)
from a value of 10 to a value of 0. Line 490 then
branches to line 190, where a new random
number is output. Let's assume that this
number is again 10. Here is where line 200
takes over. A(Y) or A(10) is no longer equal to
10. Its valuehas been reassignedto 0. Line 200
detects this and branches back to line 190.
Here, another random number is output. In
other words, line 200 says "Hey, this number

92

has already been used, so I'm sending it back
(to the random number generator) and asking
for another one." Allof thenumbers originally
entered into the array are equal to a value
which is greater than 0. However, whenever
any number is pulled from this array and dis
played on the screen, it is then reassigned the
value of 0. As more and more numbers are
used, more andmore of the array elements are
equal to 0. Therefore, line 200 will be branch
ingback to line 190manymore times nearthe
end of acomplete bingo call than at the begin
ning. Toward the end of the available elements
in the array, one can begin to notice a very
definite time lag in getting a printout. How
ever, this has been almost completely rectified
by placing the input statement in line 340
rather than between lines 480 and 490, as
might becustomary. As soon asthe program is
run, the bingo call number is determined. In
other words, all ofthenumbers processing has
been done. When youpress the enterkey, this
number is printed; the value of A(Y) is reas
signed to 0; and line 490branches to line 190,
where the next bingo call is determined. While
you're reading the current call on the screen,
the computer is already determining what the
next call will be. I originally placed the input
statement between what is now lines 480 and
490. Using thismethod, the first bingo call was
displayed as soon as the program was run.
When you pressed the enter key, line 490
branched back to line 190, and then you had to
wait for the numbers to be processed for anew
output. This wasno problem during the first20
or 30calls, but lags began to crop up near the
halfway point as more and more previously
used numbers were output by the random
number generator. The way the program is

written now, the same lag occurs, but it is not
noticeable in operation since the players are
viewing the current call displayed on the
screen or the human caller is announcing the
number via a P.A. system. By the time all of
this has taken place, a new output should be
ready to be displayed as soon as the enter key
is pressed. In other words, I have arranged the
program so that the difficult processing por
tions take place at a time when the human
beings are occupied with the previous call.The
computer is working one call ahead of the
human players rather than at their own speed.

To summarize, this program feeds 75
numbers into an array. It draws them out one at
a time and after displaying them, reassigns
their values to 0. Any output value of 0 causes a
return to the random number routine, and a
new number is output. This program can di
rectly take the place of any other method of
randomly determining bingo sequences and is
quite easy to write. From a practical stand
point, there is a very real chance that a win will
take place by the time half of the numbers
contained in the array have been output. Occa
sionally, the calls will go to the three-quarter
point, but rarely will any game go past this
point. When bingo has been announced, the
program is manually halted and then reran for
the next game. If you want to play with this
program, you can continue to press the enter
key until all 75 numbers have been output. The
last number will remain on the screen (along
with its letter designator) and a continuous
loop will be formed at lines 190 and 200. At this
point, all of the numbers in the array are equal
to 0, so line 200 will constantly branch back to
line 190.

This program has been put to good use by

several groups and clubs in my local commun
ity, allowing them to forego the usual mechani
cal or other electronic methods of bingo call
ing. This is an example of another random
number program whose output cannot be pre
determined.

CARD SHUFFLER/DEALER

The bingo game program discussed pre
viously can also serve as the basis for a pro
gram that will shuffle and deal cards. In bingo,
there are 75 number possibilities, while in
most card games, there are only 52. In bingo, it
was necessary to fit an appropriate letter with
each number, while in a card game, the appro
priate suits must be matched. When you break
the two games down in this manner
(mathematically), you can see the similarities,
programming-wise, in the two types of games.

The simplest card shuffler program will
consist of an array that will hold 52 elements
sequentially numbered from 1 to 52. A random
number generator routine is used to pull an
element from the array at random. After this,
the value of that element is reassigned to 0. As
before, whenever an element that has a value
of 0 is accessed, there is a branch back to the
random number generator. In this manner, the
same card is never dealt twice during a single
game.

One might think that it's a bit simpler to
write a program to shuffle and deal cards than it
is to write a similar one called bingo. This
assumption is based on the fact that bingo con
tains 75 numbers, whereas most card games
require only 52 cards. While there are fewer
cards to deal with than there are bingo calls, a
practical card shuffler/dealer program will be
far more difficult to write. In bingo, you have

93

only two criteria to worry about. These are the
value of the number and the matching letter.
There, the letter B is matched to the first 15
numbers, the letter I to the next 15, and so on.
The numbers which have been input to the
array (1-75) may be used directly to represent
bingo call numbers.

The situation is different in a card game,
however. While there are 52 cards in the deck,
they are not sequentially labeled from 1 to 52.
There is a more complex combination with
names in sets of four. Each card will have a

number and a name, or a name and a name. For
example, there is the 2 of hearts, which is
identified by a number and a name. Then again,
there is the ace of spades, which is identified
by two names, ace and spades. We can use

Listing 5. Card Shuffler/Dealer

numeric variables, such as A(Y) to represent
numerical values, but string variables must be
used to print the names on the screen. This
increases complexity quite a bit. Out of neces
sity, we must use a random number output of
from 1 to 52. However, each number must be
linked to the numericand/or string naming of
each card. In other words, the number 2 cannot
necessarily represent the 2 ofhearts. If it does,
another number must represent the 2 of
spades, another, the 2 of diamonds, and so on.
Accessing a random number between 1 and 52
that cannot be repeated a second time is only
part of what the program must accomplish. A
large number of if-then statements are re
quired to assign each number a particular
playing card in a standard 52-card deck.

100 REM CARD SHUFFLER/DEALE 230 A(Y)=A(Y)+1
R 240 GOTO 830

110 REM COPYRIGHT FREDERICK 250 IF A(Y)< 19 THEN 260 ELSE
HOLTZ AND ASSOCIATES 3/6 290

/83 260 Q$="HEARTS"
120 REM PROGRAM RUNS IN TI- 270 A(Y)=A(Y)-8
BASIC 280 GOTO 830

130 RANDOMIZE 290 IF A(Y)< 28 THEN 300 ELSE
140 CALL CLEAR 330

150 DIM A(52) 300 Q$="CLUBS"
160 FOR X=l TO 52 310 A(Y)=A(Y)-17
170 A(X)=X 320 GOTO 830

180 NEXT X 330 IF A(Y)< 37 THEN 340 ELSE
190 Y=INT(RND*52)+1 370

200 IF A(Y)=0 THEN 190 340 Q$=nDIAMONDS"
210 IF A(Y)< 10 THEN 220 ELSE 350 A(Y)=A(Y)-26
250 360 GOTO 830

220 Q$="SPADES" 370 IF A(Y)=37 THEN 380 ELSE 400

94

Listing continued.

380 Q$="ACE OF SPADES" 680 Q$="QUEEN OF DIAMONDS"
390 GOTO 830 690 GOTO 830

400 IF A(Y)=38 THEN 410 ELSE 700 IF A(Y)=48 THEN 710 ELSE
430 730

410 Q$="ACE OF CLUBS" 710 Q$="QUEEN OF HEARTS"
420 GOTO 830 720 GOTO 830

430 IF A(Y)=39 THEN 440 ELSE 730 IF A(Y)=49 THEN 740 ELSE
460 760

440 A$="ACE OF DIAMONDS" 740 Q$="JACK OF SPADES"
450 GOTO 830 750 GOTO 830

460 IF A(T)=40 THEN 470 ELSE 760 IF A(Y)=50 THEN 770 ELSE
490 790

470 Q$="ACE OF HEARTS" 770 Q$="JACK OF CLUBS"
480 GOTO 8 0 780 GOTO 830

490 IF A(Y)=41 THEN 500 ELSE 790 IF A(Y)=51 THEN 800 ELSE
520 820

500 Q$="KING OF SPADES" 800 Q$="JACK OF DIAMONDS"
510 GOTO 830 810 GOTO 830

520 IF A(Y)=42 THEN 530 ELSE 820 Q$="JACK OF HEARTS"

550 830 INPUT "PRESS (ENTER)":ER
530 Q$="KING OF CLUBS $
540 GOTO 830 840 CALL CLEAR

550 IF A(Y) = 43 THEN 560 ELSE 850 IF SEG$(Q$,12,!)<>"" THE
580 N 880 ELSE 860

560 Q$="KING OF DIAMONDS" 860 PRINT " ";A(Y);Q$
570 GOTO 830 870 GOTO 890

580 IF A(Y)=44 THEN 590 ELSE 880 PRINT " ";Q$

610 890 PRINT

590 Q$="KING OF HEARTS" 900 PRINT

600 GOTO 830 910 PRINT

610 IF A(Y)=45 THEN 620 ELSE 920 PRINT

640 930 PRINT

620 Q$="QUEEN 1DF SPADES" 940 PRINT

630 GOTO 830 950 PRINT

640 IF A(Y)=46 THEN 650 ELSE 960 PRINT

670 970 PRINT

650 Q$="QUEEN OF CLUBS" 980 PRINT

660 GOTO 830 990 PRINT

670 IF A(Y)=47 THEN 680 ELSE 1000 A(Y)=0

700 1010 GOTO 190

95

Let's take a lookat the programitself. You
will notice that the randomize statement is
used in line 130 to assure an unpredictable
output of numbers. The screen is cleared in
line 140, and our single 52-element array is
established in line 150.It bears the designation
"A".

Lines 160 through 180 feed numbers into
the array. This is handled in exactly the same
manner as in the bingo program. X is stepped
from 1 to 52, and each array element assumes a
value of X. The value of array position 1 is 1,
position 5 is 5, etc.

The random number is assigned to vari
able Yin line 190, and line 200 branches back to
line 190 in the event that an array element
returns a value of 0. This is exactly the method
used at this point in the bingo program.

The actual number and name assignments
are made in lines 210 through 820. Here's how
it works. I simply let each number from 1 to 52
represent a different card. I wanted to take
advantage of the actual numbers value output
from the array as much as possible. In line 210,
a branch occurs to line 220 if the output of the
array A(Y) is less than 10. Here, Q$ is equal to
the word SPADES. This means that any ran
dom number assigned to Yin the range of 1 to 9
will represent a card that is a spade. Line 230
reassigns the value of A(Y) to A(Y)+1. This
means that if the random number output for Yis
1, this number will represent the 1+1 of
spades, or 2 of spades. If the number output is
2, it will represent the 2+1 or 3 of spades.
Whatthis program does regarding the numbers
portion of the card output is mathematically
modify the number output by the random
number generator.

96

Let's assume now that the output from the
random number generator is 15. This is de
tected in line 250. Any number between 10 and
18 will represent a card of from 2 to 10 with a
suit of hearts. Again, there is a branch to line
260, where Q$ is equal to hearts. The value of
A(Y) is assigned to A(Y)-8, so for value of 15,
A(Y)-8 equals 7. The card will be the 7 of
hearts.

Lines 290 through 310 allow any number
from 19 to 27 to represent a suit of clubs and
the numeric values 2 to 10. Lines 330 through
350 form the same operations in the suit of
diamonds for random numbers between 28 and
36. In each case, as soon as the suit name is
established and the mathematical modification
to A(Y) has been performed, there is a branch
to line 830, which will eventually cause the
card to be displayed on the screen.

This sequence is changed a bit when the
output of the random number generator is
equal to 37 or more. It's at this point that
individual assignments of card names and suits
must be made for the face cards, including
aces. These are the cards in the deck which are
not specified by a number. Rather, they are
specified by a face name and a suit name.

Lines 370 and 380 allow a random number
of 37 to represent the ace of spades. Lines 400
and 410 assign a 38 the value of the ace of clubs.
This process continues through line 820,
naming each face card and four suits for each.

At this point, all the processing work has
been done. Line 830 contains an input state
ment that prompts the user to press the enter
key. When this is done, the card that has been
selected from our 52-card electronic deck is
displayed on the screen. This is done in much

the same manner as the bingo numbers were
displayed. As before, as soon as one card is
displayed, the processor is busy picking out
another, but this latter card won't be displayed
until you press the enter key again.

The means of displaying these cards by
name and number (or by name and name for the
face cards) involves a bit of complexity, as
compared to the bingo game. It is necessary to
display the modified output from the random
number generator when a card of between 2
and 10 (on the face) is selected. However,
when a true face card is keyed up, it is not
desirable to display the random number value
that caused it to be selected. In other words, if
the number 43 is output from the random
number generator, this will key up the king of
diamonds. However, if we used the line found
in program line 860 to display this card, the
display would read:

43 KING OF DIAMONDS

To overcome this, line 850 is inserted. It
uses the SEG$ function to test the value of Q$.
What this line says is if the value of the 12th
character in Q$ is not equal to a null character
(in other words, no character at all), then
branch to line 880 and simply print Q$. How
ever, if the 12th character in Q$ is equal to a
null character, then branch to line 860. You
see, when you spell out ace of hearts, king of
diamonds, etc., Q$ is longer in characters than
for the numeric designations of Q$, which sim
ply includes suit names alone. I checked all of
the values for Q$ used to designate face cards
and found that in every case, the 12th character
in that string was a letter. With the lower value
cards, (2 through 10), the string ended long
before the 12th character was ever used.

Therefore, there was no 12th character. In
BASIC, we designate no character with two
quotation marks back to back. When this pro
gram is executed, the SEG$ function scans the
current value of Q$, and if there's no character
there at all, it causes a branch to line 860,
which prints the modified value of A(Y) fol
lowed by Q$. Again, when there is no character
in the 12th position, this indicates a card with a
numeric value of between 2 and 10. However,
if SEG$ reads any character in the 12th charac
ter position, this indicates a face card, and A(Y)
is not to be printed, since Q$ now contains the
entire name of that card. Therefore, there is a
branch to line 880, where Q$ alone is printed.

As was the case with the bingo program,
print statements are used to cause the card to
be displayed at the center of the screen. Line
1000 reassigns the value of A(Y) once again.
This time, the value is 0, and this is fed back
into the array. Assuming we were talking about
the king of diamonds, which is accessed by the
number 43 being returned by the random
number generator, then forever after, array
element position 43 will be equal to 0. If a 43 is
output again by the random number generator,
the 0 value is in effect. This is detected in line

200, and the program branches back to the
random number generator for one more try.

Admittedly, this is not much of a game
program in itself, although you can play a few
simple games with it. The purpose of this pro
gram is to demonstrate the finer points of
writing a program to shuffle cards and then be
able to output the full 52-card deck by name to
the screen. This same principle will be used in
a later program that can be classified as a true
computer card game. This program as shown
can be quite useful, however, for those readers

97

who might wish to write their own card game
programs. This program can be input to your
computer and stored on cassette or disk to be
used as the basis for all other card games that
involve a 52-card deck. With this utility pro
gram, hundreds of different card games can be
programmed in a much shorter period of time,
since the process of card shuffling, selection,
and naming is fully taken care of.

ONE-ARMED BANDIT

Slot machine games can be programmed
very easily on most microcomputers. Indeed,

Listing 6. One-Armed Bandit

98

SHU

100 REM ONE ARMED BANDIT

110 REM COPYRIGHT FREDERICK

HOLTZ AND ASSOCIATES 2/2
8/83
120 REM PROGRAM RUNS IN TI-

BASIC

130 RANDOMIZE

140 CALL COLOR(1,11,2)
150 CALL COLOR(2,10,2)
160 CALL COLOR(3,4,2)
170 CALL CLEAR

180 CALL SOUND(2400,-6,0)

some may even have some of the symbols
needed in their character set. This is not the

case with the TI-99/4A, but it is quite easy to
build up a number of graphic characters to
represent the fruit on the real slot machines.
This program uses a graphic heart, cherry, and
bar to represent three slot machine windows.
A win occurs when three of any one type of
item line up in a row. Anything else is a loser.
You may be surprised, however, at the number
of times an in-line matchup occurs. This will
certainly happen more often than on those
machines in Vegas or Atlantic City.

190 X=INT(RND*3)+1
200 Y=INT(RND*3)+1
210 Z=INT(RND*3)+1
220 IF X=l THEN 230 ELSE 250

230 A=34

240 GOTO 290

250 IF X=2 THEN 260 ELSE 280

260 A=40

270 GOTO 290

280 A=48

290 IF Y=l THEN 300 ELSE 320

300 B=34

Listing continued

310 GOTO 360

320 IF Y=2 THEN 330 ELSE 350

330 B=40

340 GOTO 360

350 B=48

360 IF Z=l THEN 370 ELSE 390

370 C=34

380 GOTO 440

390 IF Z=2 THEN 400 ELSE 420

400 C=40

410 GOTO 440

420 C=48

430 REM HEART

440 CALL CHAR(34,"00001C3E7F
7F7F7F")
450 CALL CHAR(35*, "0000387CFE
FEFEFE")
460 CALL CHAR(36,"3F1F0F0703
010000")
470 CALL CHAR(37,"FCF8F0E0C0
B00000")
480 CALL HCHAR(9,7,A)
490 CALL HCHAR(9,8,A+1)
500 CALL HCHAR(10,7,A+2)
510 CALL HCHAR(10,8,A+3)
520 REM CHERRY

530 CALL CHAR(40,"0000000000
1F3F7F")
540 CALL CHAR(41,"0000060810
204080")

Here's how the program works. First, the
randomize statement is used in line 130 to
make sure we get an unpredictable combina
tion each time. Lines 130 through 160 assign
different color patterns to character sets 1, 2,
and 3, respectively. The Call Clear subpro

550 CALL CHAR(42,"7F7F7F7F3F

3F1F00")

560 CALL CHAR(43,"E0F0F0F0F0

E0C000")

570 CALL HCHAR(9,16,B)
580 CALL HCHAR(9,17,B+1)
590 CALL HCHAR(10,16,B+2)

600 CALL HCHAR(10,17,B+3)
610 REM BAR

620 CALL CHAR(48,"0000000000
3F3F3F")
630 CALL CHAR(49,"0000000000
FCFCFC")
640 CALL CHAR(50,"3F3F3F0000

000000")
650 CALL CHAR(51,"FCFCFC0000
000000")
660 CALL HCHAR(9,24,C)
670 CALL HCHAR(9,25,C+1)
680 CALL HCHAR(10,24,C+2)
690 CALL HCHAR(10,25,C+3)

700 IF X=Y THEN 710 ELSE 730
710 IF X=Z THEN 720 ELSE 730
720 PRINT "YOU WIN THE JACKP

OT!!!"

730 INPUT "PRESS (ENTER) TO
PLAY AGAIN":A$
740 GOTO 170

gram is usedin line170 to removeall previous
information from the screen. Line 180 contains
the CallSound subprogram, which is supposed
to simulate the sound of the windows turning.
Actually, it doesn't soundvery realistic, but a
poor sound effect is better than none at all.

99

Lines 190 through 210 contain the RND
functions and determine which graphic sym
bols will appear, and in what order, on the
screen. Variables X, Y, and Z may be equal to
any number from 1 to 3. Let's assume for the
moment that X is equal to 1. This is determined
in line 220, and so there is a branch to line 230,
which assigns A the value of 34. At this point,
there is another branch, this time to line 290.
Here, the value of Y is tested. This is the
second random number that is produced in line
200. Let's assume that Y is equal to 2. This
condition will be detected in line 320, which
will bring about a branchto line 330. Here, the
variable B is assigned the value of 40. There is
another branch to line 360, where the value of Z
is determined and proper assignments made.
Let's assume that the value of Z is 3. Line 360
branches to line 370 only when Z is equal to 1.
Therefore, the else branch to line 390 is used.
The else branch in line 390 is also used, since Z
is not equal 2. The branch to line 420 assigns
variable C the value of 48.

Variables A, B, andC areassigned certain
numbers based upon the value of the random
number assigned to X, Y, and Z. You will re
member that X was given a value of 1 in this
discussion, so why was A assigned the value of
34? The answer is because ASCII character 34
in line 440begins the drawing of what will later
be a graphic heart. The heart is actuallydrawn
by four Call CHAR subprograms in lines 440
through 470. Notice that each of the lines as
signs the hexadecimal information to a dif
ferent ASCII character: 34, 35, 36, and 37.
When A is equal to 34, you can see what will
happen inlines480through 510for the graphic
images actually written on the screen. Lines
480 through 510 actually call the characters in

100

lines 440 through 470 because of the value of
A. In line 480, A will be equal to 34. Therefore,
the graphic image contained in line 440 is
printed on the screen. In line 490, ASCII
character 35 is represented by A+l, or 35.
This calls up the character produced in line
450. This continues until the entire graphic
heart is drawn on the screen.

Now, we find that B is equal to 40 (in this
example). This is the case because we allowed
Y to be equal to 2. Look at lines 520 through
560. A graphic cherry is drawn by combining
the Call CHAR subprograms in these lines.
You will notice the character numbers spec
ified arange from 40to43. In lines 570 through
600, the value of B is inserted into a Call
HCHAR subprogram, and the four previous
lines are printed on the screen. In this exam
ple, weallowed thevalue ofCtobeequal to48,
since Z was equal to 3, and the same basic
routine isused inline 610 through 690 to print
the bar on the screen.

Variables A, B, and C represent the first,
second, and third graphic character positions
placed side by side on the screen. If X was
equal to 3, A would be reassigned a value of 48.
In this case, line 480 would draw character A,
or 48, which is found in line 620. It would draw
characters 49, 50, and 51 as well, which would
produce a complete bar at the left-hand charac
ter position.

Following the printout, lines 700through
720 determine whether or not a win has oc
curred. Line 700 tests to see if the variable X is
equal to the variable Y. If this is true, there is a
branch to line 710, where a test is made to see
if X is equal to Z. If it is, all three characters are
identical and there is a branch to line 720,
which announces that you have won the

jackpot. Onthe other hand, ifXis notequal to Y
or X is not equal to Z, no match has occurred,
and you are simply instructed to press the
enter key again.

I have purposely limited this program to
the display of only three graphic characters,
although a true slot machine has many more
possible combinations. You can expand upon
this program, however, by allowing for more
random numbers and by producing other
graphic images in the same manner. This is a
veryentertaininggame foryoung andoldalike,
and I think you will find the colorful displayto
be quite appealing.

GRAPHIC DICE

No computer game book would be com
plete without a program that simulated a dice
roll. This one goes a step further, however, and
actually draws the cubes on the screen so the
display is far more realistic than those pro
grams that simply print numbers on the sc
reen.

It's quite simple to set up a dice routine.
All that is involved is the outputting of two
separate random numbers from 1to6.Indeed,
many dice programs do this and nothing else.
Some will add the two numbers together, and
still others will build in program lines to react
to certain sums, such as 2 (Snake Eyes), or 12
(Box Cars).

This diceprogram uses tworandom num
bers that are integers andare withinthe range
of1 to 6, but it feeds this information to a long
series ofprogramlines that produce on-screen
graphics that draw the dice faces tocorrespond
to the numbers generated. Figure4-5 shows a
typical screen display.

Fig. 4-5. Graphics dice screen display.

Here's how the program works. Lines 130
through 160 contain the familiar randomize,
call clear, and RND statements and functions.
The two random numbers are assigned to the
variables S and T. Variable S represents the
die that will appear at the left of the screen,
while T is the right-hand die.

Lines 170 through 190 are used to draw
the dice themselves and the dots which repre
sent numbers. The character in line 170 draws
a single dot, while the character in line 180is
the familiar filled-in block character which will

101

Listing 7. Graphic Dice

100 REM GRAPHIC DICE

110 REM COPYRIGHT FREDERICK

HOLTZ AND ASSOCIATES 2/2
8/83

120 REM PROGRAM RUNS IN TI-
BASIC

130 RANDOMIZE

140 CALL CLEAR

150 S=INT(RND*6)+1
160 T=INT(RND*6)+1
170 CALL CHAR(45,"183C7EFFFF
7E3C18")
180 CALL CHAR(34,"FFFFFFFFFF
FFFFFF")

190 CALL CHAR(46,"0000000000
000000")

102

200 CALL HCHAR(8,4,34,10)
210 CALL VCHAR(8,4,34,10)
220 CALL HCHAR(18,4,34,10)
230 CALL VCHAR(8,14,34,11)
240 REM SECOND DIE

250 CALL HCHAR(8,17,34,10)
260 CALL VCHAR(8,17,34,10)
270 CALL HCHAR(18,17,34,10)
280 CALL VCHAR(8,27,34,11)
290 FOR A=6 TO 12 STEP 3

300 CALL HCHAR(10,A,45)
310 CALL HCHAR(10,A+13,45)
320 CALL HCHAR(16,A,45)
330 CALL HCHAR(16,A+13,45)
340 CALL HCHAR(13,A,45)
350 CALL HCHAR(13,A+13,45)
360 NEXT A

370 BB=0

380 X=S

390 GOTO 420

400 X=T

410 BB=13

420 IF X=6 THEN 430 ELSE 480
430 GOTO 440

440 FOR AA=6 TO 12 STEP 3
450 CALL HCHAR(13,AA+BB,46)
460 NEXT AA

470 IF X=5 THEN 480 ELSE 550
480 CALL HCHAR(13,6+BB,46)
490 CALL HCHAR(13,12+BB,46)
500 CALL HCHAR(10,9+BB,46)
510 CALL HCHAR(16,9+BB,46)
520 IF X=4 THEN 530 ELSE 560
530 CALL HCHAR(13,9+BB,46)
540 GOTO 720

550 IF X=4 THEN 480

560 IF X=3 THEN 570 ELSE 640
570 FOR AA=6 TO 12 STEP 3

Listing continued.

580 CALL HCHAR(10,AA+BB,46)
590 CALL HCHAR(16,AA+BB,46)
600 NEXT AA

610 IF X=2 THEN 620 ELSE 650
620 CALL HCHAR(13,9+BB,46)
630 GOTO 720
640 IF X=2 THEN 570
650 IF X=l THEN 660 ELSE 720
660 FOR AA=6 TO 12 STEP 3

be strung together to draw the squares that
represent each die. Line 190 contains a null
character that will later be used to blank out
unwanted information on the screen. This
character simply overwrites in the color of
screen background.

Lines 200 through 280 draw the two cubes
on the screen. The first die is drawn in lines
200through 230, and the second dieis drawn in
lines 240 through 280. Lines 290 through 360
put dots inside the cubes, which will later be
selectively erased to produce a proper pattern.
When the program is first run, Fig. 4-5 shows
how the dice will appear momentarily. Notice
that there are nine dots in the center of each
cube. This pattern is necessary in order to
generate all of the other possible patterns.

For the moment, let's skip to line 420 and
assume that X is equalto 6.There is abranch to
line 430, andthen to line 440. This may seem a
bit unusual, but I had originally included a spe
cial character line in program line 430. I de
cided to drop it for the presentation in this
book. Therefore, line 430 simply moves the
flow along.

Again, X is equal to 6, and we want to
display adieonthe screenwith6dotsshowing.
Lines 440 through 460 are a for-next loop,

670 CALL HCHAR(10,AA+BB,46)
680 CALL HCHAR(13,AA+BB,46)
690 CALL HCHAR(16,AA+BB,46)
700 CALL HCHAR(13,9+BB,45)
710 NEXT AA

720 IF BB=0 THEN 400

730 INPUT A$
740 GOTO 140

which counts from 6 to 12 in steps of 3. The
on-screen position of the dots in-the left-hand
cube are 6, 9, and 12. This will be the output
from the loop. The Call HCHAR subprogram in
line 450 then prints a null character (erasure)
at the position specified. We start out with 9
dots in the cube, but this for-next loop erases
the center 3 at positions 13,6; 13,9;and 13,12.

Now let's go back to lines 370 through
410. While I could have written a program with
separate lines to identify the two randomnum
bers and then to erase dots in the appropriate
square, it was far more efficient to use one set
of program linesto dothe jobfor bothcubes. In
line 370,duringthe first run, the variable BB is
assigned the value of 0. Line 380 assigns the
value of S (the left-hand die's random number)
to the variable X. There is then a branch to line
420, where X is read. During this first run,
we're talking about the left-hand die. You will
notice that in line 450, the Call HCHAR sub
program uses the value of AA established by
the loop, but also adds it to variable BB. Re
member, at this stage, BB is equal to 0, so the
screen position is AA+0, or AA. Now, skip all
the way down to line 720, which is branched to
in line 540 after the first cube is completed. It
branches to line 400 when BB is equal to 0,

103

which is presently the case. Line 400 now
reassigns X to be equal to the value of T. Line
410 then reassigns the value of BB to 13. If T is
alsoequalto 6, lines 440through460willbegin
to erase dots, but this time at a position farther
to the right that is equal to AA plus BB. Re
member, the latter is now equal to 13. The
second position specified will be 6 + 13; 9 +
13; and 12 + 13, or 19, 21, and 25. These are
the horizontal positions of the dots in the sec
ond cube. When the 6 is formed again, there
will be another branch to line 720, but BB is not
equal to 0, so line 730 is executed. This pro
duces a temporary halt in execution until the
enter key is pressed. When this is done, there
is a branch to line 140, which starts the dice roll
all over again.

Various methods have been used to blot
out the correct dots in order to be able to
produce all numbers in standard fashion. In
lines 470 through 530, a 5 is drawn in either
cube, but this time, a for-next loop cannot be
used and the null characters are placed at their
positions using separate Call HCHAR sub
programs. Again, you will notice the horizontal
coordinate specification uses the BB variable
to switch from the left cube to the right cube.
This follows throughout the entire sequence,
allowing each die to be represented in true-
to-life fashion.

I purposely did not build additional test
lines that might determine a win or loss based
upon the rolling of a 7, 11, 2, or 12. This dice
program is to be used for anyandallpurposes
to directly take the place of mechanical dice.
Certainly, you can use this program to play
craps, but youcanalso use it to playParcheesi,
Monopoly, or for any other purpose that re
quires one or two dice. This is one of those

104

programs which is as ideally suited for a child
as for an adult. This program was written to be
as efficient as possible. This means that un
necessary program lines are not included
within loops. The completed dice images will
appear rapidly, so you won't have to wait for 15
seconds or more in order to get a final output.

ROULETTE WHEEL

Roulette is one of the most ancient games
of chance, although earlier forms of this game
and the wheel with which it was played were
quite different from those seen today. In any
event, this program will simulate the roulette
wheels of Las Vegas and Atlantic City and
allow youto try your luckwithout the possibil
ityoflosing anymoney (orwinning anyeither).
This program automatically "stakes" you the
sum of $1000, which you can bet any way you
want as far as quantity is concerned. If you go
broke, the computer has won; but ifyou're able
to buildyour $1000 stake into $10,000 or more,
you have "broken the bank" and beaten the
machine.

In this version of roulette, you actually
make four separate bets. Here, we are con
cerned with the actual number which lies in the
range of0 to 36; the color of the number, which
can be black or red; whether the number is
even or odd; and finally, whether it is high or
low. Insome versions ofroulette, you may bet
on any or all of these conditions. In this ver
sion, however, you must bet on them all. In
other words, you are asked to choose the
number on which the fictitious roulette marker
will land, followed by the color (black or red).
Any number which is divisible by 3 is red; all
others are black. You are then asked to select
whether the number will be even or odd.

Naturally, even numbers are evenly divisible
by two; all others are odd. Finally, you bet on
whether the number will be high or low. Low
numbers constitute those from 0 to 18, while
the high range from 19 to 36. Again, you must
bet on all of these possibilities.

Here's how the payoff works. Each of the
four bets constitute a possible win/loss situa
tion. If you guess the correct number, the
machine pays you 5 times the amount you bet.
If you don't guess the correct number, you lose
the amount of your bet. If you select the correct
color, the machine pays you 3 times the amount
of your bet. A loss here means you lose twice
the amount of your bet. If you guess the odd/
even sequence correctly, you win twice the
amount of your bet, or if you are wrong, you
lose the amount of your bet. Finally, getting
the high/low sequence right nets you the
amount of your bet, or if you don't guess right,
loses you this same amount.

The most you can possibly win is 11 times
your bet. This will occur only when you guess
the correct number, color, odd/even, and
high/low sequences. This is a billion to one
shot. Most of the time, you will be correct on
one or two and incorrect on others. Some

times, you will win a little, while at other
times, you will lose a little. Often, you'll end up
neither winning nor losing any money. This

occurs when you guess correctly at a few of the
sequences and incorrectly at others. The com
bined wins and losses of a single spin may
simply cancel each other out.

Again, you are allotted $1000 when the
game begins. The computer will keep track of
the amount you bet on each spin, along with
your wins and losses. You will be apprised of
your financial status at the end of each spin.
The computer automatically adds and sub
tracts your wins and losses. If you run out of
money, the computer displays a message
which indicates your bankrupt status, and the
game is ended. Likewise, if you build your
"pot" into $10,000 or more, a screen message
is printed indicating that you have beat the
machine.

This program has many protective fea
tures built in. When you are asked to input a
number between 0 and 36, you must do so. If
you input a number outside of this range or no
number at all, the program detects an errone
ous input and will not move on until you have
met the input requirements. This applies to the
other three sequences within the betting regi
men as well. Also, you cannot bet more money
than you have. This program allows the
machine to guard you as closely as the "wheel
manager" would at a casino.

Listing 8. Roulette Wheel

100 REM ROULETTE WHEEL 140 CALL CLEAR

110 REM COPYRIGHT FREDERICK 150 POT=1000

HOLTZ AND ASSOCIATES 3/12/83 160 RANDOMIZE

120 REM PROGRAM RUNS IN TI- 170 X=INT(RND*37)

BASIC 180 IF X/3=INT(X/3) THEN 190

130 GOSUB 1350 ELSE 210

105

Listing continued.

190 Y$="RED" 520 PRINT

200 GOTO 220 530 PRINT

210 Y$="BLACK" 540 PRINT

220 IF X/2=INT(X/2) THEN 230 550 PRINT "HOW MUCH DO YOU W
ELSE 250 ISH TO BET?"
230 Z$="EVEN" 560 INPUT BET

240 GOTO 260 570 IF BET >POT THEN 580 ELSE

250 Z$="ODD" 630

260 IF X<19 THEN 270 ELSE 29 580 CALL CLEAR

0 590 PRINT "YOU ONLY HAVE$";P
270 I$="LOW" OT;" lit"

280 GOTO 310 600 FOR TD=1 TO 1000

290 I$="HIGH" 610 NEXT TD

300 CALL CLEAR 620 GOTO 500

310 PRINT "NUMBER (0-36)?" 630 CALL CLEAR

320 INPUT XX$ 640 X$=STR$(X)
330 IF XX$ < "0" THEN 300 650 IF XX$=X$ THEN 660 ELSE
340 IF XX$ >"36" THEN 300 680

350 CALL CLEAR 660 BET1=BET*5

360 PRINT "BLACK OR RED?" 670 GOTO 690

370 INPUT YY$ 680 BET1=-1*(BET)
380 IF YY$<>"BLACK" THEN 390 690 IF YY$=Y$ THEN 700 ELSE
ELSE 400 720

390 IF YY$o"RED" THEN 350 700 BET2=BET*3

400 CALL CLEAR 710 GOTO 730

410 PRINT "ODD OR EVEN?" 720 BET2=-1*(BET*2)
420 INPUT ZZ$ 730 IF ZZ$=Z$ THEN 740 ELSE
430 IF ZZ$o"ODD" THEN 440 E 760

LSE 450 740 BET3=BET*2

440 IF ZZ$o"EVEN" THEN 400 750 GOTO 770

450 CALL CLEAR 760 BET3=-1*(BET)
460 PRINT "HIGH OR LOW?" 770 IF II$=I$ THEN 780 ELSE
470 INPUT 11$ 800

480 IF II$o"HIGH" THEN 490 780 BET4=BET

ELSE 500 790 GOTO 810

490 IF II$o"LOW" THEN 450 800 BET4=-1*(BET)
500 CALL CLEAR 810 BETT=BET1+BET2+BET3+BET4

510 PRINT "YOU HAVE $";POT 820 CALL CLEAR

106

Listing continued.

830 PRINT "RESULT"; 1170 PRINT "YOU ARE BANKRUPT

840 PRINT TAB(10);"SELECTION !!"
it

1180 PRINT

850 PRINT 1190 PRINT

860 PRINT 1200 PRINT "THE GAME IS ENDE

870 PRINT X$; DM!"

880 PRINT TAB(10);XX$ 1210 PRINT

890 PRINT Y$; 1220 PRINT

900 PRINT TAB(10);YY$ 1230 END

910 PRINT Z$; 1240 FOR TD=1 TO 1000

920 PRINT TAB(10);ZZ$ 1250 NEXT TD

930 PRINT 1$; 1260 CALL CLEAR

940 PRINT TAB(10);11$ 1270 PRINT "YOU HAVE BROKEN
950 PRINT THE BANK!!"
960 PRINT 1280 PRINT

970 PRINT "YOU BET:$";BET 1290 PRINT

980 PRINT 1300 PRINT

990 PRINT 1310 PRINT "YOU HAVE $";POT
1000 PRINT 1320 PRINT

1010 IF BETT<0 THEN 1020 ELS 1330 PRINT

E 1040 1340 END

1020 PRINT "YOU LOSE:$";-L*(1350 CALL CLEAR

BETT]> 1360 PRINT "WELCOME TO COMPU

1030 GOTO 1050 TERIZED"

1040 PRINT "YOU WIN:$";BETT 1370 PRINT

1050 PRINT 1380 PRINT "ROULETTE. THIS G

1060 PRINT AME ALLOWS"

1070 P0T=P0T+BETT 1390 PRINT

1080 IF POT<=0 THEN 1140 1400 PRINT "YOU TO CHOOSE AN

1090 IF POT> =10000 THEN 1240 Y NUMBER"

1100 PRINT "YOU NOW HAVE $"; 1410 PRINT

POT 1420 PRINT "FROM ZERO TO 36,

1110 INPUT "PRESS (ENTER) TO RED/BLACK,"

CONTINUE.":ER$ 1430 PRINT

1120 CALL CLEAR 1440 PRINT "ODD/EVEN, AND HI

1130 GOTO 170 GH/LOW AS IN"

1140 FOR TD=1 TO 1000 1450 PRINT

1150 NEXT TD
1460 PRINT "THE MECHANICAL G

1160 CALL CLEAR AME. THIS"

107

Listing continued.

1470 PRINT 1660 PRINT TAB(12);"3X BET";
1480 PRINT "VERSION GIVES YO 1670 PRINT TAB(22);"2X BET"
U 1000" 1680 PRINT "ODD/EVEN";
1490 PRINT 1690 PRINT TAB(12);"2X BET";
1500 PRINT "DOLLARS TO GAMBL 1700 PRINT TAB(22);"BET"
E WITH. IF" 1710 PRINT "HIGH/LOW";
1510 PRINT 1720 PRINT TAB(12);"BET";
1520 PRINT "YOU WIN TEN- THOU 1730 PRINT TAB(22);"BET"
SAND DOLLARS" 1740 PRINT

1530 PRINT 1750 PRINT

1540 PRINT "OR MORE, YOU BRE 1760 PRINT "ANY NUMBER EVENL

AK THE BANK!" Y DIVISIBLE"

1550 PRINT 1770 PRINT "BY THREE IS 'RED

1560 PRINT \ WHILE"

1570 INPUT "PRESS (ENTER) FO 1780 PRINT "LOW NUMBERS RANG

R PAY LIST.":ER$ E FROM 0-18."

1580 CALL CLEAR 1790 PRINT "HIGH NUMBERS ARE

1590 PRINT TAB(14);"WIN"; FROM 19-36."

1600 PRINT TAB(23);"LOSE" 1800 PRINT

1610 PRINT 1810 PRINT

1620 PRINT "NUMBER"; 1820 PRINT "PRESS (ENTER) TO

1630 PRINT TAB(12);"5X BET"; PLAY
ti

1640 PRINT TAB(22);"BET" 1830 INPUT ER$

1650 PRINT "BLACK/RED"; 1840 RETURN

Looking at the program, you will im
mediately recognize the randomizing routine,
which begins in line 160. Lines 160 and 170
assign X to a random number of between 0 and
36. This may not be apparent at first, since line
170is handleda bit differentlyfromother pro-
gams, especially those which produce comput
er dice rolls. You will notice here that the
number multiplied by the RND function is 37
rather than 36. Previously, a line such as

170 X=INT(RND*6)+1

108

was used to simulate a dice roll. Here, X can be
equal to any number from 1 to 6. However, in
roulette, numberingis from0 to 36.Therefore,
it is necessary to beableto allow Xto be equal
to 0 as a minimum instead of 1. Bymultiplying
RND times 37, we are assured that the number
37 will never crop up, since RND will always
be a number that is less than 1. Using the
integer function, a number such as 36.999 will
be displayedas 36. On the other end, a number
such as .999 will be displayed as a 0. There
fore, line 170 allows the variable Xto always

be equal to a number from 0 to 36.
Lines 180 through 210 test for the condi

tion of the random number being assigned to a
red or black color. Again, if the random number
is evenly divisible by 3, it is assigned the red
color; otherwise, it is black. Line 180 simply
states that if X divided by 3 is equal to the
integer of X divided by 3, branch to line 190.
Here, the string variable Y$ is assigned the
value of RED. Line 200 then branches to the

next test sequence (even/odd). However, if X
divided by 3 is not equal to the integer of X
divided by 3, there is a branch to line 210,
which assigns Y$ the value of BLACK. The
same basic process takes place in lines 220
through 250 and in lines 260 through 290 to
determine whether the random number is odd

or even, high or low. You will notice that these
assignments are made to different string vari
ables. At the present time, the numeric vari
able X represents the number itself, while
string variables Y$, Z$, and 1$ represent red/
black, even/odd, and low/high, respectively.

The result of each spin is actually deter
mined before the betting takes place, although
this information has not yet been displayed on
the screen. When the program is initially run,
there is a branch in line 130 to line 1350. The

latter line begins the instructional sequence
which prints all the game information on the
screen. A later return statement at the end of

the program branches back to line 140, where
the screen is cleared. In line 150, the numeric
variable POT is assigned the value of 1000.
This is the amount of money you are staked
when the game begins. Following this, the ran
domizing process described previously takes
place.

The player is not asked for input until line
310 is encountered. Here, the player inputs his
guess as to the number that will be output by
the electronic roulette wheel. His guess is
assigned to a string variable XX$. This is a bit
unusual, since the number (X) output by the
random number generator is a numeric vari
able. The string variable for the player input is
used because it is easier to display on the
screen in conjunction with the other bet se
quence variables, which are, out of necessity,
string variables. More on this later.

Lines 330 and 340 test for an improper
input, such as the number being less than 0 or
more than 36. If this occurs, there is a branch to
line 300, where the screen is cleared and you
are asked to input the number one more time.
Lines 360 through 390, 410 through 440, and
460 through 490 allow you to input the other
information needed for the bet sequence. Each
input is assigned to a string variable: YY$ for
black/red, ZZ$ for odd/even, and 11$ high/low.
Again, if you enter an improper choice, the
program will not continue any further, but you
will be given the opportunity to respond prop
erly again and again.

Now that you have made your selection, it
is time to indicate the amount you want to bet.
You are prompted to do this in line 550, and line
560 asks for the input. In this case, the numeric
variable BET is assigned to the amount you
input. This can be any amount up to and in
cluding the amount you have in the pot. How
ever, line 570 is there to make sure you don't
bet more. Again, the variable BET is the
amount you have bet, while the variable POT is
the amount you presently have. If the former is
larger than the latter, a message will appear on

109

the screen telling you that you don't have that
much and should try again.

It is now time to compare the player's
guesses with the actual sequence of events
that occurred during the spin. Before this can
begin, it is necessary to do something about
the X variable . This is a numeric variable that

must be compared with a string variable (XX$).
Again, it is easier in this program to display
string variables in the final output sequence.
When it is necessary to print both numeric and
string variables on the same line, one has
problems with uniform spacing between the
two. A test line such as:

IF XX$=X

is not legal. We can extract the numeric value
of XX$ using

XX=VAL(XX$)

However, this simply converts XX$ to a
numeric variable, which is not what we want.
What is needed is to convert the numeric vari

able (X) to a string variable. This is handled in
line 640 using the STR$ function. This con
verts the numeric variable X into string vari
able X$. The value of X$ is the same as the
value of X, so only the format has been
changed, and it is now legal to compare the
two, as is done in line 650.

Lines 650 through 800 compare the
player's guesses with the actual output from
the computerized spin. Variables BETl,
BET2, BET3, and BET4 are used to represent
the results of the sequence comparison. For
example, line 650 tests for a condition of XX$
(player's guess) being equal to X$(output from

110

the random number generator). If the two are
identical, the player hit the 1 in 36 odds and
guessed the correct number. You will re
member that this pays five times whatever
value was bet. Line 660 then assigns the value
of five times BET to BETl. However, if the
two are not identical, line 680 takes over and
assigns a value to BETl that is equal to your
bet times -1. In other words, if you bet $100
and missed the number, BETl would be equal
to minus $100. The remaining lines in this
sequence test for other matches and make as
signments to BET2, BET3, and BET4, respec
tively.

When all comparisons have been made,
the various BET numbers are added together
in line 810. Here, BETT (bet total) is equal to
the sum of BETl, BET2, BET3, and BET4.
Some of these will be equal to positive num
bers, while others will be equal to negative
numbers, depending on the outcome of the
sequence. Line 820 clears the screen and the
result sequence is then set up. A sample is
shown in Fig. 4-6. On the left is the RESULT
column, which indicates the actual outcome of
the computer roulette spin. On the right, the
SELECTION column indicates your guesses.
The printing is handled using tab functions so
that the information is neatly displayed on the
screen as shown.

RESULT SELECTION

36 24

RED RED

EVEN ODD

HIGH LOW

Fig. 4-6. Result of one spin of the wheel in roulette.

Line 970 shows the amount you bet, while
line 1010 checks to see if you have lost or won
money. If you've lost, line 1020 prints the
amount; whereas if you've won, the amount is
printed by line 1040. Line 1070 adds the
amount (positive or negative) of money in
volved in the last bet to the money you started
with (POT). Lines 1080 and 1090 check for a
win or a loss. The loss occurs when POT is

equal to or less than 0. A win occurs when POT
is equal to or more than $10,000. When either
of these conditions occurs, branch to other
program portions that indicate the win or loss
status. If neither an overall win or loss has

occurred, you are invited to press the enter
key to play again. This is handled in line 1110,
and when the enter key is pressed, there is a
branch to line 170, where another spin of the
wheel occurs.

This program is far more difficult to ex
plain in standard English than it is to write in
TI BASIC. It's not too much more difficult than

writing a complete dice game program, and
only a few extra comparisons need be made to
determine the outcome. While there are 36

different numerical possibilities, these are
only taken into account regarding the number
guess. With all other possibilities, there are
only two possible outcomes for each, which are
easily determined (i.e., division by 3, division
by 2, etc.).

A great many of the program lines are
taken up with what I call safety routines to
make certain that the player inputs correct
information. The program can be greatly
shortened without these safety lines, but it
would not be as easy to play. For example, if
you accidentally input LOP instead of LOW
and there is no opportunity to change your

guess, you can be sure that LOP will always
result in an incorrect guess. However, with the
safety lines built into this program, such an
erroneous input is detected and the player is
given the opportunity to try again.

This is a very enjoyable game and is easily
modified to take into account the types of
players who may be enjoying it. You can easily
limit the amount of money that canbe bet at any
one time, and you can even set the program up
so that the computer will allow you to go into
debt to the "house" up to a certain amount of
money.

All in all, it's a very interesting program
and runs quite well on the TI-99/4A. The pro
gram is complete and needs nothing else to
make it useful, although some players will un
doubtedly want to add some sound effects and
personal touches.

HANGMAN

Hangman has been a popular game for
centuries, and during the last half decade or so,
it has proved very popular as a computerized
game as well. This game, as presented here, is
not significantly different from others that have
been written for computers, at least as far as
the on-screen display is concerned. However,
the programming steps that were required to
arrive at the finished game became quite in
volved. Using standard TI BASIC, it is a bit
difficult to continually print information at one
point on the screen and then update that infor
mation without erasing the screen entirely.
Many dialects of BASIC offer locate state
ments or print @ statements, which will allow
you to print a line of text at acertain position on
the screen. Neither of these statements are

found in TI BASIC, so it is necessary to find a

111

different means of accomplishing the same
task. It would be fairly simple to draw a gal
lows, a rope, and a figure at the end of the rope
on the screen using TI BASIC. However, the
game of Hangman requires that these graphics
be produced on an element by element basis.
After each element is formed, the player is
given the opportunity to guess another letter.
This involves on-screen text which will au

tomatically cause the previous graphic image
to be scrolled upward one line. This can be
gotten around by clearing the screen after each
guess and then redrawing the previously dis
played graphics along with any new elements
that might be added. For example, if you pro
gress to a point in the game where you have a
gallows, a rope, and a head on the screen, when
you make your next guess and press the enter
key, the screen is cleared. If your guess is
wrong, the gallows, rope, and head will appear
again along with the graphics that make up the
body. If your guess is correct, the letter will be
displayed on the screen.

In computer Hangman, it is necessary to
display each correctly guessed letter on the
screen at all times and at a position that will
indicate its position within the word. For
example, if the word is TRACK and someone
guesses A, the letter A should be displayed in
the third horizontal position on the screen to
indicate where it falls within the word. This
can be a real problem, even more of one than
displaying graphic characters at certain posi
tions on the screen. Again, this is due to the
fact that there are no print @ or locate state
ments in TI BASIC. The closest alternatives
are the subprograms Call VCHAR and Call
HCHAR. However, these subprograms cannot

112

be used directly with letters from the TI-
99/4A character set. Rather, they must be
used with the ASCII values that represent
these characters. Therefore, it is necessary to
convert the secret word input at the beginning
of the game by the rival player to ASCII charac
ters and convert the guessed letters to ASCII
code as well. When this is done, the two are
compared; and in the event of a correct guess, a
Call HCHAR subprogram (Call VCHAR will
work as well) is used to insert the ASCII
character at a certain point on the screen.
When displayed, the character is in alphabeti
cal form. This was the hardest part of writing
this program. The graphics part of it went
along very well, but the rest of it consumed
many hours of experimentation until a work
able solution was finally arrived at.

Lines 100 through 490 are involved with
printing a complete set of instructions on the
screen. A large number of solo print state
ments are used to properly separate the text
lines and display them most attractively. The
set of instructions was so long that one screen
was not adequate to hold all information.
Therefore a time delay loopwas inserted at the
midway point. This is found in lines 320 and
330. Here, the numeric variable DELAY
causes the computer to count from 1 to 500
before moving on to the next set of instructions
beginning at line 340. This allows the player
time to view the screen, read the information,
andabsorb the information before the scrolling
begins as the loop times out and the additional
instructions are printed.

The heart of the program begins in line
510, where all instructional information is
clearedfrom the screen. Afour-element array

Listing 9. Hangman

^^•H^H 1

i 1
r1!

100 REM HANGMAN

1
210 PRINT

110 REM COPYRIGHT FREDERICK 220 PRINT "TO DO SO, ENTER AN
HOLTZ AND ASSOCIATES 3/2 Y FIVE LET-"

0/83 230 PRINT

120 REM PROGRAM RUNS IN TI- 240 PRINT "TER WORD. NO REPE

BASIC TITION OF"

130 CALL CLEAR 250 PRINT

140 PRINT "WELCOME TO THE GA 260 PRINT "LETTERS IS PERMIT

ME OF COM-" TED."

150 PRINT 270 PRINT

160 PRINT "PUTER HANGMAN. IT 280 PRINT

IS PLAYED" 290 PRINT

170 PRINT 300 PRINT

180 PRINT "IN A SIMILAR MANN 310 PRINT

ER TO THE" 320 FOR DELAY=1 TO 500

190 PRINT 330 NEXT DELAY

200 PRINT"STANDARD VERSION. 340 PRINT "WHEN YOU PRESS (E
WHEN ASKED" NTER), THE"

113

Listing continued.

350 PRINT

360 PRINT "KEY WORD WILL DIS

APPEAR"

370 PRINT

380 PRINT "AND THE PLAYER WI

LL BE ASKED"

390 PRINT

400 PRINT "TO GUESS THE CORR
ECT LETTER."

410 PRINT

420 PRINT "A WIN OCCURS WHEN
THE WORD"

430 PRINT

440 PRINT "IS GUESSED BEFORE THE
VICTIM"

450 PRINT

460 PRINT "IS FULLY STRUNG U
P"

470 PRINT

480 PRINT

490 PRINT "PRESS (ENTER) TO
BEGIN"

500 INPUT Y$
510 CALL CLEAR

520 DIM C$(4)
530 CALL CHAR(34,"FFFFFFFFFF
FFFFFF")
540 CALL CHAR(35,"00000000FF
FFFFFF")
550 PRINT "TYPE ANY FIVE LET

TER WORD"

560 PRINT

570 PRINT "WHICH DOES NOT CO

NTAIN TWO"

580 PRINT

590 PRINT "OR MORE IDENTICAL

LETTERS."

600 PRINT

114

610 INPUT A$
620 1=1+1

630 W$(I)=SEG$(A$,I,1)
640 IF 1=5 THEN 660

650 GOTO 620

660 CALL CLEAR

670 INPUT "GUESS A LETTER":B

$
680 CALL COLOR(1,6,2)
690 FOR TY=1 TO R

700 IF B$=C$(TY) THEN 710 ELS
E 740

710 CALL CLEAR

720 PRINT "YOU ALREADY HAVE

THAT LETTER!"

730 GOTO 670

740 NEXT TY

750 CALL CLEAR

760 GOTO 1160

770 IF T>0 THEN 790 ELSE 670

780 T=T+1

790 REM HORIZONTAL GALLOWS

SECTION

800 CALL HCHAR(1,17,34,12)
810 IF T=l THEN 670

820 REM VERTICAL GALLOWS SE
CTION

830 CALL VCHAR(1,29,34,20)
840 IF T=2 THEN 670

850 REM ROPE (THREE SECTION

S)
860 CALL VCHAR(2,17,35)
870 IF T=3 THEN 670

880 CALL VCHAR(3,17,35)
890 IF T=4 THEN 670

900 CALL VCHAR(4,17,35)
910 IF T»5 THEN 670

920 REM HEAD

Listing continued.

930 CALL HCHAR(6,16,34,3) 1210 GOTO 780

940 CALL HCHAR(7,16,34,3) 1220 S=ASC(W$(X))
950 CALL HCHAR(8,16,34,3) 1230 R=R+1

960 IF T«6 THEN 670 1240 E(R)=X
970 REM BODY 1250 G(R)=S
980 CALL VCHAR(9,17,34,8) 1260 FOR F=l TO R

990 IF T«7 THEN 670 1270 CALL HCHAR(4,E(F)+2,G(F))
1000 REM LEFT ARM 1280 NEXT F

1010 CALL HCHAR(11,15,34,2) 1290 IF RQ=1 THEN 1300 ELSE
1020 IF T=8 THEN 670 1320

1030 REM RIGHT ARM 1300 RQ=0
1040 CALL HCHAR(11,18,34,2) 1310 RETURN

1050 IF T=9 THEN 670 1320 IF R=5 THEN 1350

1060 REM LEFT LEG 1330 C$(R)=B$
1070 CALL HCHAR(16,15,34,2) 1340 GOTO 770

1080 CALL VCHAR(17,15,34,2) 1350 CALL CLEAR

1090 IF T=10 THEN 670 1360 PRINT "YOU HAVE ESCAPED
1100 REM RIGHT LEG THE GALLOWS"

1110 CALL HCHAR(16,17,34,2) 1370 PRINT

1120 CALL VCHAR(16,19,34,3) 1380 PRINT

1130 PRINT "YOU LOSE!!!11 1390 PRINT "THE CORRECT WORD

1140 PRINT "THE CORRECT WORD WAS ";A$
WAS ";A$ 1400 PRINT

1150 GOTO 1150 1410 PRINT

1160 FOR X=l TO 5 1420 PRINT "YOU WIN!!!!"

1170 IF W$(X)=B$ THEN 1220 1430 PRINT

1180 NEXT X 1440 PRINT

1190 RQ=1 1450 PRINT

1200 GOSUB 1260 1460 END

designed to hold string information is created
in line 520, while characters 34 and 35 are
reassigned using Call CHAR subprograms in
lines 530 and 540. Characters 34 and 35 from
the character set are used to draw the on

screen graphics. Character 34 is the familiar
"solid block", while character 35 is a half block.

Starting in line 550, you are instructed to
type in any five-letter word that does not con

tain two or more of the same letter. In every
case, the word must be five letters in length
(neither more and nor less) and must not con
tain the same letter more than once. This word

is the one that is to be guessed by another
player. Therefore, this game is designed to be
played by two individuals. When one is typing
in the secret word, the other must look away.
Alternately, you could use read/data state-

115

ments to input a long list of five-letter words.
Line 610 assigns the secret word to the string
variable A$. Line 620 serves as a count line,
which could just as easily be replaced with a
for-next loop. Lines 620 through 650 are effec
tively a for-next loop, which counts from 1 to 5.
Each time this loop cycles, W$(I) is assigned
the value of SEG$(A$,I,1). Here's what is hap
pening. The SEG$ function is used to read each
of the five letters in A$. As the value of I
increases, the W$ variable is relabeled, as in
W$(l), W$(2), etc. TheSEG$ function
steps as well, as in SEG$(A$,1,1),
SEG$(A$,2,1). . .etc. When variable I is equal
to 5, there is a branch to line 660, where the
screen is cleared. The purpose of this loop is to
assign the five letters in the secret word (A$)
to W$(l) through W$(5), respectively. This
will be dealt with further in a bit.

After the screen is cleared, you are asked
to guess a letter. This is where the second
player comes in and begins to actually play the
game, attempting to guess the secret word that
was supplied by the first player. As soon as the
letter, which is assigned to B$, is guessed and
the enter key is pressed, line 680 sets up a
colorful pattern combination on the screen for
the most attractive display of the graphics.
Forget lines 690 through 740 for right now. In
line 750, the screen is cleared and line 760
branches to line 1160. This routine determines

whether or not the input letter is the same as
any of the letters in the secret word. You will
remember that each letter was assigned to
W$(l) through W$(5). Line 1160 begins a for-
next loop, which counts from 1 to 5. In line
1170, the value of X is inserted in the paren
theses following W$, and it compares each of
the five stored letters with the input letter, B$.

116

Let's assume that there is a match. This brings
about a branch to line 1220.

Here's where the work begins. It was
mentioned previously that TI BASIC offers no
convenient way to print a letter in alphabetic
form in a specific place on the screen. Line
1220 assigns to the variable S the ASCII value
of the W$(X) string variable, which is the
match with the letter guessed by the player.
Line 1230 uses the variable R in a counting
sequence, which will be described in a bit. In
line 1240, the variable E(R) is assigned the
value of X. Another variable G(R) is assigned
the value of S.

Now, a for-next loop is formed that counts
from 1 to the value of R. The first time around,
the value of R will be 1, so the loop will make
only one pass. Within the loop, there is a Call
HCHAR subprogram which prints the ASCII
character G(F) at a position on the screen of
E(F) plus 2.1 realize this is getting to be a bit
difficult to understand, so to simplify things,
remember that W$(X) is equal to the letter that
has been correctly guessed. The value of X
itself is equal to the position this letter oc
cupies in the secret word. W$(X)is reassigned
to an ASCII value, which is in turn reassigned
to the variable G(F). This program uses X in
several different ways to establish a letter
position and indirectly, the letter itself. It is
absolutely mandatory to convert the letter to
its ASCII equivalent using the ASC function in
line 1220.

When the loop in lines 1260 through 1280
times out, it tests for a value of RQ. RQ will be
equal to 0 anytime a correct letter is guessed,
but is assigned to a value of 1 in line 1190 when
an incorrect guess occurs. If RQ is indeed
equal to 1, there is a branch to line 1300, which

reassigns its value to 0;but since we're talking
about a sequence that involves the guess of a
correct letter, the branch will actually be to
line 1320, where a test is made for the value of
R. If R is equal to 5, allof the letters in the word
have been correctly guessed, and there is a
branch to line 1360, which causes the screen to
display a message indicating that you have
won. If you have not guessed all the letters,
however, line 1330 assigns the string value of
B$ to the string array C$ and at position R.
There is then a branch to line 770, which tests
for a value of T. T is incremented in steps of 1
each time an incorrect letter is guessed. If your
first guess was correct, there is abranchto line
670, which allows you to guess another letter.

Now let's see what happens when an in
correct letter is guessed. Again, the input let
ter is B$, and this value is tested in the loop
contained in lines 700 through 740. You will
remember that earlier a correct guess was
committed to the C$ array. Line 700 compares
the new letter with all letters contained in the

C$ array. If there is a match, this means the
letter has been previously guessed, and the
prompt contained in line 720 is printed on the
screen. The branch statement in line 730 gives
you the chance to input another letter without
losing your turn.

If there is no match, the loop times out and
there is a branch in line 760, which takes us to
line 1160. The same checks are made as have

been previously discussed, but in this case, we
are assuming an incorrect guess, so there will
be no match found in line 1170. The loop will
time out and RQ will be assigned a value of 1.
There is then a GOSUB to line 1260. This

starts a for-next loop that ends at line 1280.
This loop prints the correctly guessed letters

from previous turns on the screen. When the
loop times out, line 1290 makes a test for the
value of RQ. Since it is equal to 1, there is a
branch to line 1300, which reassigns RQ the
value of 0 again. The return statement in line
1310 branches to line 1210. There is then
another branch to line 780.

Line 780 begins the graphic portion of the
program and is activated whenever an incor
rect guess occurs. In line 780, the variable T is
incremented in steps of 1 each time an incor
rect guess occurs. REM statements have been
included in lines 790 through 1100 to show
which program lines draw the various body
parts. For instance, line 790 indicates that the
following lines are used to graphically depict
the horizontal portion of the gallows. This is
drawn when the first incorrect guess occurs.
Line 810 tests for the number of wrong guess
es. If T is equal to 1, as it is in this case, this
means that only oneincorrect guess has occurr
ed. Therefore, only the horizontal gallows
section need be drawn. There is then a branch

to line 670, which allows for another guess.
For the sake of clarifying the discussion,

let's assume that the next guess is incorrect.
As before, all the tests and branches will take
place until we end up again at line 780. The
screen has been cleared, so the horizontal gal
lows section drawn previously is erased. Now,
T is incremented by 1, so it is equal to 2. Line
800 draws the horizontal gallows section, and
line 810 then tests for a condition of T being
equal to 1. This is no longer the case, as T is
equal to 2. Therefore, line 830 is executed,
which draws the vertical gallows section.
Another test line for T is found in line 840.

Here, when T is equal to 2, the graphic drawing
process stops, and there is a branch to line 670

117

which allows you to guess another number.
Remember, each time a new guess is entered,
the screen is cleared and is then almost in

stantly rewritten with any new additions
necessary. For instance, if the word is track
and you have guessed two letters correctly (T
and R), and two incorrectly, then at the start of
your fifth guess, the letters TR will appear at
the lefthand side of the screen and the vertical

and horizontal gallows sections will be seen at
the right.

Let's assume that your next guess is in
correct. The screen is completely erased. The
letters "TR" are then printed again, followed
by the printing of the horizontal gallows sec
tion, the vertical gallows section, and due to
the wrong guess, a section of rope. The latter
has been added to the previous screen, but it
was necessary to erase and rewrite the entire
screen due to the scrolling effect. In other
words, if anything on the screen is to be
changed in regard to the display of the letters
correctly guessed and the graphic gallows and
figure, the entire screen must be erased and
rewritten with the new additions.

You are allowed 11 incorrect guesses be
fore you actually lose the game. The last
graphic segment to be drawn will be the right
leg, which is produced in lines 1110 and 1120.
When this occurs, lines 1130 and 1140 are
executed, indicating that you have been
"strung up". An endless loop is created in line
1150 to allow the image on the screen to hold
its graphic appearance. To play another game,
you must manually halt execution (FCTN & 4)
and then run the program again.

Hangman is never an easy program to
write, regardless of the machinebeing used for
execution. By the same token, it's not an ex

118

tremely difficult program in most instances.
However, using standard TI BASIC (as op
posed to Extended BASIC for instance),
Hangman is a great challenge for the TI-99/4A
programmer. The same applies to any home
computer that displays information by
scrolling from bottom to top rather than by
printing from top to bottom, as is standard with
most business and personal computers. There
fore, it is harder to accurately set text and
graphic information using the BASIC language
found in home computers. However, with a bit
of resourcefullness and imagination and a large
heaping of knowledge about TI BASIC, these
difficulties can be overcome, although pro
gramming time may be doubled. In the end,
however, this Hangman program runs in much
the same manner as far as the player is con
cerned as those written for more powerful
machines using a dialect of BASIC that allows
for easy placement of characters on the screen.

TIC-TAC-T0E (Manual)

The game of tic-tac-toe has been enjoyed
for hundreds upon hundreds of years, and in
recent times, it has been committed to the
microcomputer using hundreds and hundreds
of different programs. The version of tic-tac-
toe shown here can certainly be classified as
low level, since you don't actually play the
computer, but rather, another human player.
This program allows the TI-99/4A computer
and its monitor screen to serve in place of
paper and pencil, which would normally be
used to implement the mechanical version of
this ancient game.

When the program is run, the monitor
screen will display the dual Crosshatch that
represents the game board. Each of the nine

squares will be identified byanumber of from 1
to 9. In order to fill in a square, all you need do
is hit the numbers key that corresponds to the
block you wish to occupy. In this game, X
always has the first move.

While relatively simple in nature, this
program has several built-in protection fea
tures thatgreatly eliminate the chance of input
errors through accidental pressing of errone
ous keys. Once a square has been filled in, it
cannot be filled in again by anotherplayer. The
Xs andOs which make up the moves of the two
players are always handled on an alternating
basis. In other words, the first player to input a
number will cause an X to appear in the appro
priate boxonthe screen. Thenextnumber that
is entered will cause an 0 to be displayed,
followed by another X for the next number. As
is the case with most tic-tac-toe games run on a

Listing 10. Tic-Tac-Toe

computer, a win does not cause a solid line to
be drawn through the series of boxes which
constitute that win. This can be done, but at the
expense of many more program lines. As a
matter of fact, this highly simple programdoes
not even register a win in its present form.
This could also be accomplished by adding a
win detect subroutine. However, the idea of
this game is to allow two players to enjoy the
game oftic-tac-toe without theuse ofpaper and
pencil.

Realistically speaking, tic-tac-toe is a
game for children, sincetwo adults willalmost
always play to a tie. There just aren'tas many
variables as there are in chess or checkers, so
the game quickly becomes boring. However,
children can delight in this game for hours on
end andgain experience with a microcomputer
as well.

100 REM TIC TAC TOE

110 REM COPYRIGHT FREDERICK

HOLTZ AND ASSOCIATES #/2

3/83
120 REM PROGRAM RUNS IN TI-

BASIC

130 CALL CLEAR

140 CALL CHAR(33,"FFFFFFFFFF
FFFFFF")
150 CALL VCHAR(3,13,33,20)
160 CALL VCHAR(3,20,33,20)
170 CALL HCHAR(9,7,33,20)
180 CALL HCHAR(16,7,33,20)
190 CALL HCHAR(6,9,49)
200 CALL HCHAR(6,16,50)
210 CALL HCHAR(6,24,51)
220 CALL HCHAR(13,9,52)

119

Listing continued.

230 CALL HCHAR(13,16 ,53) 590 CALL HCHAR(6,16,X)
240 CALL HCHAR(13,24 .54) 600 GOTO 450
250 CALL HCHAR(20,9,55) 610 REM 3

260 CALL HCHAR(20,16:,56) 620 F=F+1

270 CALL HCHAR(20,24s>57) 630 IF F>1 THEN 330
280 C=C+1 640 CALL HCHAR(6,24,X)
290 IF C/2=INT(C/2) THEN 300 650 GOTO 450

ELSE: 320 660 REM 4

300 X=79 670 G=G+1

310 GOTO 330 680 IF G>1 THEN 330
320 X=88 690 CALL HCHAR(13,9,X)
330 CALL KEY(0,I,S) 700 GOTO 450
340 IF S=0 THEN 330 710 REM 5

350 IF 1=49 THEN 510 720 H=H+1

360 IF 1=50 THEN 560 730 IF H>1 THEN 330
370 IF 1=51 THEN 610 740 CALL HCHAR(13,16,X)
380 IF 1=52 THEN 660 750 GOTO 450
390 IF 1=53 THEN 710 760 REM 6

400 IF 1=54 THEN 760 770 J=J+1

410 IF 1=55 THEN 810 780 IF J>1 THEN 330
420 IF 1=56 THEN 860 790 CALL HCHAR(13,24,X)
430 IF 1=57 THEN 910 800 GOTO 450
440 GOTO 330 810 REM 7
450 FOR T=l TO 50 820 K=K+1
460 NEXT T 830 IF K>1 THEN 330
470 GOTO 280 840 CALL HCHAR(20,9,X)
480 REM 1 850 GOTO 450
490 D=D+1 860 REM 8
500 IF D>1 THEN 330 870 L=L+1
510 REM 1 880 IF L > 1 THEN 330
520 B=B+1 890 CALL HCHAR(20,16,X)
530 IF B>1 THEN 330 900 GOTO 450
540 CALL HCHAR(6,9,X) 910 REM 9
550 GOTO 450 920 M=M+1
560 REM 2 930 IF M>1 THEN 330
570 E=E+1 940 CALL HCHAR(20,24,X)
580 IF E>1 THEN 330 950 GOTO 450

120

From an adult standpoint, the most in
teresting thingabout this program is not in the
wayit runs so much as the wayit is constructed
on a line-by-line basis. When the program is
initiallyactivated, the screen is cleared, and a
block character is established in line 140. It is
assigned to ASCII code number 33. The two
vertical lines that constitute half of the tic-tac-
toe gamingboard are created by program lines
150 and 160. Each of these strings is formed by
putting 20 block graphic characters together,
starting at positions 3,13 and 3,20, respec
tively. The horizontal lines whichcomplete the
Crosshatch are produced by lines 170 and 180
usingthe samemethod.In this latter case, Call
HCHAR subprograms are used to string the 20
block series horizontally on the screen.

Lines 190 through 270 print the numbers
in the nine blocks. The screen positions in each
of these subprograms place the number at the
center of the block. The numbers 1 through 9
are printed on the screen byusing their ASCII
codes in each of the Call HCHAR subprograms
in lines 190 through 270. For example, in line
190, ASCII code 49 represents the number 1.
ASCIIcode 50 represents the number 2, andso
on.

When line 270 has been executed, the
computerized game board is completely ini
tialized. The next portion ofthe program deals
withplayerinput,andmorespecifically, places
the Xs and Os as required points on the screen.

Lines 280 through 320 determine whose
move it is. The Xwill always be displayed first
and the O second. Therefore, X will always
move on odd numbers while O will be dis
played on even numbers. Line 280assigns the
variable C a value of itself plus 1. This is a

counting routine, so C will increase in steps of
1 each time line 280 is executed. When the

program is first run, the screen is initialized,
and C is equal to 0 plus 1. Line 290 tests for an
even or odd condition. It divides the value of C

by 2 and if this is equal to the integer value of C
divided by 2 (in other words, C/2 does not
leave a fraction), there is a branch to line 300.
Here, the variable X is assigned a value of 79,
which is the ASCII code for the letter O. How

ever, when C is equal to 1or any odd number, C
divided by 2 will not be equal to the integer
value of C divided by 2, so the branch is to line
320. Here, X is assigned the value of 88, which
is the ASCII code for the letter X. This is the

value X will have when the first player inputs
his move.

To prevent screen scrolling each time an
inputis askedfor, I used the Call Key subpro
gram, which is similar to the INKEY$ state
ment in other dialects of BASIC. The Call Key
subprogram in TI BASIC monitors the
keyboard andassigns a valueof0 to S whenno
keys are pressed. When any key on the
keyboard is pressed, thevalue changes toposi
tive 1ornegative 1, depending onwhich keyis
utilized. At the same time, variable I in line 330
is assignedthe ASCII value ofthe key that was
pressed. The 0 designation preceding I and S
simply indicates that the entire keyboard is to
be monitored. Other numbers may be input
here to monitor either the left or right side of
the keyboard.

A continuous loop is established in line
340 as long as no key is pressed. Given this
situation, the variable S in line 330 will be
equal to 0, so there will be a branch to line 330.
Lines 330 and 340 will continue to be executed

121

in the loop until some key is pressed.

When this occurs, the ASCII value of the
key will be assigned to the variable I contained
in line 330. This breaks the loop and test lines
350 through 430 are executed. These test for
the value of I, which should be in a range of
from 49 to 57. These numbers are ASCII codes

that represent the printed numbers 1 through 9
in the blocks on the screen. If for some reason a

player hits a key other than those representing
the numbers 1 through 9,1 will not be equal
to any of the numbers specified in lines 350
through 430. The GOTO statement in line 440
will then be executed. This branches back to

line 330 again, and the endless loop between
lines 330 and 340 is once again established.
The player who provided the erroneous input
does not lose his turn, however, and is allowed
to select a correct number key.

For the sake of this discussion, let's as
sume that the screen has been initialized and

the first player inputs the number 9, meaning
that he wishes to place an X in block number 9
on the tic-tac-toe game board. Upon pressing
the key, the endless loop in lines 330 and 340 is
broken and test lines 350 through 430 go to
work to locate the number and branch appro
priately. The key representing the number 9
returns the ASCII code of 57, and this is de
tected in line 430, which branches to line 910.
Lines 510 through 940 contain Call HCHAR
subprograms whose coordinates match the
coordinates of the screen positions where the
nine numbers have been printed. The variable
X contained in each of these subprograms is
assigned an ASCII value of 88 in this particular
case. During the next move, X will be equal to
79, which represents the letter O.

122

The branch to line 910 accesses the sub
routine which will print the character rep
resented by the ASCII number assigned to the
variable X at the position on the screen which
is currently occupied by the number 9. First,
however, a counting sequence is encountered
at line 920, which assigns variable M the value
of 1. Line 930 tests the value of M to make sure
it is not equal to more than 1. Finally, line 940
prints the letter X over top of the number 9 in
the tic-tac-toe box. Remember, the variable X
in line 940 is not the same as the letter X,
which is printed on the screen. In this particu
lar case, the variable Xrepresents the letter X,
but during the next move, the variable X will
represent the letter O.

As soon as the character has been printed
in the appropriate box, line 950 branches to
line 450. This line and the next form a short
time delay loop. This prevents players from
accidentally activating an erroneous move by
pressing more than one key simultaneously.
When the loop times out, there is a branch to
line 280, and the variable C is stepped by
another increment of 1. The variable C is now
equal to 2, and this is detected in line 290,
which branches to line 300. The variable X is
now assigned the ASCII code value of 79, and
again, the Call Key subprogram loop is en
tered. It is the next player's move, and he may
select any number from 1 to 9 that has not
already been chosen and print his character in
the appropriate box.

But what if the second player also chooses
the number 9? You will remember that this box

has been filled by the first player. Here's what
happens. When the number 9 is pressed by the
second player, this is detected by line 430, and

again, there is a branch to line 910. However,
line 920 steps the variable M once again. M is
now equal to 2, since it was equal to 1 on the
last go-round. Line 930 reads the fact that M is
equal to a value which is greater than 1, so
there is an immediate branch to line 330. The
Call Key subprogram loop is entered again, but
the player has not lost his turn. This same
protective routine applies to the nine other
subroutines which are used to print characters
over top of the block numbers. Once a block
has been selected, it cannot be selected again
during the same game. This applies to the
player who originallyfilled the box, as well as
to the other player.

This program uses no prompts as such.
You simply run it and begin making moves. As
soon as one player has moved, the other may
do likewise immediately. Again, this program
is not designed to detect a tic-tac-toe win, so it
will be necessary for the players to determine
this.

The use of the Call Key subprogram helps
avoid a great deal of screen reprinting that is
necessary when using input statements. The
previous Hangman program used input state
ments, and it was necessary to rewrite the
entire screen after every move. Tic-tac-toe
could have been handled in the same manner,

but the Call Key subprogram has allowed for a
shorter programming time to arrive at the de
sired on-screen effect. The Hangman program
could be written in the same manner, although
it would be necessary to make considerable
modifications due to the increased com

plexities involved.

LETTER CONFUSION

Letter Confusion is an extremely inter

esting program, from both the player's and the
programmer's point of view. The game is po
tentially unlimited and may be reseeded with
new words at any time. The idea of the game is
to unscramble a combination of letters that
appear on the screen in order to come up with
the correct word. In some cases, it is possible
to make two or more words from the letters
(rare), but there is always only one correct
answer. A scorekeeping routine is included in
the program, so once all of the scrambled
words have been presented and the player has
input his best guess for each, a final tally ap
pears, indicating the number of correct
answers as well as the number that were incor

rect.

This program is designed to be enjoyed by
persons of all ages and educational levels. No
modifications are required to switch from a
juvenile player to an adult. Three difficulty
levels are built into this program. The first one
is extremely elementary and is designed for
children. The second one is probably the one
that most adults will start with and is rated

intermediate in difficulty. The third level is for
the experts and includes some extremely com
plex scrambles.

Looking at the program, you can see that a
string array composed of ten elements is es
tablished in line 130. Ten elements were

chosen here, since the maximum length of any
word is ten letters. However, if you wish to
include longer words, you can simply increase
the dimension figure. The rest of the program
can remain the same. However, scrambled
words of more than ten letters will be nearly
impossible to decipher.

Line 140 brings about a branch to the
subroutine found in lines 870 through 1120.

123

Listing 11. Letter Confusion

100 REM LETTER CONFUSION

110 REM COPYRIGHT FREDERICK
HOLTZ AND ASSOCIATES 4/5/
83

120 REM PROGRAM RUNS IN TI-B
ASIC

130 DIM A$(10)
140 GOSUB 870

150 CALL CLEAR

160 PRINT "WHAT DIFFICULTY L
EVEL"

170 PRINT "(1,2 OR 3)?"
180 INPUT D

190 FOR G=l TO D

200 READ B$
210 NEXT G

220 L=LEN(B$)
230 GOTO 290

240 FOR GG=1 TO 3
250 READ B$
260 IF B$="END" THEN 760
270 NEXT GG
280 L=LEN(B$)
290 FOR X=l TO L

300 A$(X)=SEG$(B$,X,1)
310 NEXT X

320 CALL CLEAR

330 RANDOMIZE

340 RN=INT(RND*L)+1
350 IF A$(RN)="0" THEN 340
360 PRINT A$(RN):
370 A$(RN)="0"
380 T=T+1

390 IF T=L THEN 410

400 GOTO 340

410 PRINT

420 PRINT

124

430 PRINT

440 PRINT

450 PRINT "GUESS THE WORD."
460 PRINT

470 PRINT

480 INPUT C$
490 CALL CLEAR

500 IF C$=B$ THEN 510 ELSE 5
40

510 PRINT B$;" IS CORRECT!!"
520 SC*SC+1

530 GOTO 570

540 PRINT "WRONG!!!"

550 SW=SW+1

560 PRINT "THE CORRECT ANSWE
R IS ";B$
570 PRINT

580 PRINT

590 PRINT

600 PRINT

610 PRINT "PRESS (ENTER) TO
CONTINUE"

620 INPUT ER$
630 T=0

640 GOTO 240

650 DATA CAT,HORSE,ALLIGATOR
,DOG,MOUSE,TERRIBLE

660 DATA FROG,TADPOLE,SURGEO
N,DRIP,FABLE,GOBLET

670 DATA SAND,BASTE,BALANCED
,HAT,CROSS,MARSHY,DRAW,GNAT,
ELEPHANT

680 DATA JOG,BRAG,QUICKLY,BA
SH,TRAPPED,INFANTILE,GEE,HAR
DLY,HONESTLY

690 DATA COST,REASON,CONQUER
ED,VAT,BRASH,VEXATED,WAG,TAL

Listing continued.

ON,GHOSTLY ME OF"

700 DATA BUS,BANISH,SANCTIFY 890 PRINT

,JOB,CARTS,COURTESY,CLUB,QUE 900 PRINT "WORD SCRAMBLE. TH

EN,CANNISTER E COMPUTER"

710 DATA ROB,CAUGHT,NAMELESS 910 PRINT

,CAR,REBEL,HARRANGUE,LOB,HEDG 920 PRINT "WILL PRESENT SCRA
E,STUDENTS MBLED WORDS"

720 DATA HUB,ZERO,XENOPHOBE, 930 PRINT

WAY,TRASH,HAPPENING,KIT,F 940 PRINT "FOR YOU TO DECIPH
RESHET,JOBLESSNESS ER. YOUR"

730 DATA WART,MARKER,LIQUOR, 950 PRINT

FAT,LASHED,VILLIFY,MASS,CARB 960 PRINT "SCORE WILL BE GIV
ON,AIRPLANE EN AT THE"

740 DATA SAT,RAGE,NARCOTIC,HA 970 PRINT

ND,BEATS,CRIMINAL,POP,UNDER, 980 PRINT "END OF THE GAME."
COMPUTERS 990 PRINT

750 DATA CUT,MAKES,HACKLES,R 1000 PRINT

ICE,TREMBLE,WARTHOG,KILL,ZES 1010 PRINT "THERE ARE THREE
TY,JINGLES,END,END,END DIFFICULTY"

760 CALL CLEAR 1020 PRINT

770 PRINT "THE GAME IS OVER" 1030 PRINT "FACTORS. INPUT A
780 PRINT ONE (1) FOR"
790 PRINT 1040 PRINT

800 PRINT "YOUR SCORE IS";SC 1050 PRINT "EASY, TWO (2) FOR
810 PRINT "CORRECT AND";SW;" MODERATE,"
WRONG" 1060 PRINT

820 PRINT 1070 PRINT "OR THREE (3) FOR
830 PRINT HARD. GOOD"

840 PRINT 1080 PRINT

850 PRINT 1090 PRINT "LUCK!!!"

860 END 1100 FOR LAG=1 TO 2500

870 CALL CLEAR 1110 NEXT LAG

880 PRINT "WELCOME TO THE GA 1120 RETURN

This subroutine prints a set of instructions on
the screen. These instructions are displayed
for 30 seconds or so due to the time delay
for-next loop established in lines 1100 and
1110. When the loop times out, the return

statement in line 1120 is executed, and there is
a branch to line 150, where all information is
cleared from the screen. The player is then
asked to input the difficulty factor, which is
specified by the numbers 1, 2, and 3.1 repre-

125

sents the easiest level, while 3 is expert. The
difficulty number is assigned to variable D.

At this point, it is necessary to discuss
lines 650 through 750. These are the data
statement lines and contain the words that are

to be scrambled. The actual scrambling routine
will be discussed a bit later. For now, it is only
necessary to know that these data statements
contain the words in groups of three. For
example, in line 650, the word CAT will be
displayed on the screen in scrambled form if 1
is chosen as the difficulty factor. This is the
simplest of the three words. If an intermediate
level is chosen (2), the word CAT will be ig
nored, while the word HORSE will be scram
bled. If an expert level is chosen (3), the word
ALLIGATOR will be scrambled. This holds

true throughout the data statement lines. Once
a word has been chosen, the next two words
will be skipped on the following turn. Words
are selected in increments of three.

With this arrangement understood, our
discussion picks up again at program line 190.
You will recall that the variable D represents
the difficulty factor, and line 190 begins a for-
next loop which counts from 1 to the value of D.
Let's assume that you chose the lowest diffi
culty factor, or 1. This means that the loop will
cycle only once and then time out. Line 200
(within the loop) contains the read statement,
which pulls the first word from the data state
ment. You will remember that this is the word

CAT and represents one word of a three-word
set (the one that is the least difficult).

The loop times out and variable L is then
assigned a value which is equal to the number
of characters in B$. This is accomplished using
the LEN function. The following lines scram
ble the letters in the word.

126

Before going further, let's assume that
you chose a difficulty factor of 2 instead of 1.
Returning to line 190, the loop will now count
from 1 to D, the latter having a value of 2.
Therefore, the loop makes two passes instead
of one. During the first pass, the read state
ment accesses the first word in the data state

ment (CAT), but the loop does not time out
since it must make one more pass. During the
second pass, the read statement accesses the
word HORSE, which is the first word to be
scrambled in level 2 difficulty. At this time, the
loop terminates, and line 220 assigns the
length of B$ to the variable L. Should an expert
level be chosen (3), the loop will cycle three
times. This is the method used to extract the

proper words at the proper levels from the data
statements.

As soon as the LEN value has been ex

tracted from B$, there is a branch to line 290,
where another loop is entered. This one counts
from 1 to the value of L. Let's assume that we

are working with the word CAT. Therefore, L
will be equal to 3. This loop will then make
three passes. Line 300 fills the string array
(A$). In this case, only three of the available
ten array elements will be used, since there
are only three letters in CAT. The SEG$ func
tion is used to extract each letter (in order)
from the chosen word, which has been as
signed to B$. During the first pass of the loop,
the letter at the number 1 position in B$ will be
assigned to A$(X) or A$(l). This is the letter
C. During the next cycle of the loop, A$(2) is
opened and the SEG$ function extracts the
second letter from B$. This is the letter A.
During the third and final pass, the last letter of
the word will be assigned to A$(3). The loop
times out at this point, and the screen is

cleared by the Call Clear subprogram found in
line 320. At this point, the string array A$
contains the letters C, A, and T at positions 1,
2, and 3. The remaining seven elements are not
assigned and therefore are equal to 0.

At this point, it's time to scramble the
letters of the word CAT. To begin with, the
randomize statement is used in line 330, and in
line 340, the variable RN is assigned the in
teger value of RND*L + 1.You will remember
that L is equal to the number of letters in the
word (CAT). Therefore, RN will be equal to
either 1, 2, or 3. Line 350 tests for the occur
rence of 0 at any of the arrayelements that will
be returned in the future. More on this later.
Line 360 prints the letter which is found at
A$(RN). In other words, if the random number
returned in line 340 is a 3, line 360 will print
A$(3), which is the letter T. Line 370 then
reassigns A$(RN) (in this case, A$3)) to a
value of 0. What is being done here involves
removingthe letter from the array andplacing
a 0 in instead. Line 380 is a simple count
routine that steps the value of T by 1 eachtime
the line is executed. Line 290 tests for a condi
tion of T being equal to L, which brings abouta
branch outside of this program loop. The loop
is actually started in line 400 with the GOTO
branchin line 340. The loop, then, is composed
of lines 340 through 400.

Let's assume that the letter T has been
extracted from the third element of the array
and that this element has now been assigned to
the string value 0. It is much easier to under
standhow this process works when discussing
a secondpassof the loop. Sincewe don'tknow
what random number will be returned to vari
able RN, it is necessary to reassign the ele
ment value once it has been read. When the T

was extracted from A$(3), the A$(3) position
was reassigned to 0. Let's assume that during
the next pass, the same number is returned to
RN. Line 350 tests for this situation. In this
case (assuming that RN is equal to 3), line 350
tells the machine that if A$(3) is equal to 0
(which it now is), then go back to line 340 for
another random number. Line 350 will not
allow execution to continue past this point until
RN is a number that represents an array posi
tion that has not yet been read.

Assume further that the next value re

turned to RN is 2. Line 350 makes certain the

value of A$(2) is not 0, and line 360 then prints
this value on the screen (the letter A) to the
right of the first letter printed (T). The second
array position is reassigned a string value of 0,
and T is incremented by 1. At present, the
value of T (2) is not equal to the value of L (3),
so line 400 branches back to line 300 and
another random number is output. Assuming
the sequence previously discussed, the only
number that is left and will be passed through
line 350 is the number 1. Line 350 will continue
to branch back to line 340 until RN is equal to 1.
When a 1 is finally output, the letter at element
position A$(l) or C is printed on the screen.
Line 380 increments T by 1, and line 390 dis
covers that T is now equal to L, so the loop is
exited by the branch to line 410. The word that
now appears on the screen is TAC. Of course,
the random number generator output deter
mined the exact order. It could just as easily
have been ATC, TCA, or even CAT. Occasion
ally, the odds are with you, and the word will
appear in unscrambled form. This is quite a
rare occurrence at any but the beginner diffi
culty level.

Lines 410 through 450 contain print state-

127

ments which simply position the scrambled
word near the center of the screen. Line 450
prints a screen prompt asking you to guess the
word. The input statement in line 480 allows
you to type in your guess, and of course, you
have as long as you'd like to study the scram
bled word on the screen in an effort to come up
with the correct answer.

As soon as you've input your guess and
pressed the enter key, line 490 clears the
screen and line 500 tests the two strings to see
if they are equal. The string variable C$repre
sents your answer, while string variable B$ is
the word itself (in unscrambled form), which
was read from the data statement. If the two
are equal, there is a branch to line 510, which
prints the correct word on the screen, followed
by a message telling you that your guess was
correct. Line 520 is another count routine. The
variable SC is incremented by 1 each time a
correct answer is input. There is then a branch
to line 570; which allows you to receive
another scrambled word by pressing the enter
key.

On the other hand, if C$ is not equal to
B$, the branch is to line 540, which prints
"WRONG!!!" on the screen. In line 550, vari
able SW is incremented by 1. This is the count
routine that is accessed whenever an incorrect
answer is input. Line 560 then displays the
correct word on the screen.

The print statements in lines 570 through
600 again provide proper spacing on the screen
for a new display. Line 610 displays a prompt
on the screen telling you to press the enter key
to continue play. Line 620 accepts this input,
while line 630returns variable T to its original
value of 0. There is then a branch to line 240.

This line needs a little more explanation,

128

because it begins another for-next loop similar
to the one previously discussed, which began
in line 170. Youwill remember that this loop is
the one which counted from 1 to the difficulty
factor number. However, it is necessary to use
this loop only once, since forever after, only
every third word will be accessed from the data
statement lines. This applies regardless of the
difficultyfactor which was initially chosen. The
loop, which is begun in line 240, always makes
three passes. The read statement in line 250
pulls a word from the data statement each time
it is accessed, but only the word pulled during
the third pass is evaluated. In other words, the
first two words read during the first two passes
are simply ignored.

Looking at the end of line 750, you will
notice three identical words, each of which is
END. This word will be encountered when all

of the data words have been exhausted. The

word END is included three times to terminate

any of the three difficulty factor sequences.
Line 260 tests for a condition of B$ being equal
to END. When this condition is true, there is a
branch to line 760, which clears the screen.
The screen then displays a message indicating
that the game is over and showing the player's
score. Scoring is handled in line 800 and 810,
which use variables SC (correct answers) and
SW (incorrect answers) with print statement
prompts. At this point, the program is ended.

At the beginning of this discussion, it was
stated that the program was practically un
limited. This is due to the fact that it can be
completely altered by simply changing the
words in the data statements. This should take
only twenty minutes or so and should be done
after several plays, or when you begin to
memorize the words which it contains. Natur-

ally, this program should be set up by someone
who is not going to be an actual player, since
typing in the words yourself gives you an unfair
advantage. There is no limitation (practically
speaking) on the length of any word, although if
there are more than ten letters, it will be
necessary to change the DIM statement in line
130 to reflect this. All other program lines may
remain the same.

Letter Confusion is a delightful game
which combines competition with education.
The winner is the one who gets the highest
number of correct answers, although you can
play against yourself, so to speak, by trying to
achieve the highest score possible. The word
list is necessarily long to provide the most
enjoyment. Also, once you have finished a
single run, you can usually start the program
all over again, since most of the correct
answers will have been forgotten. You can also
start out with the lowest difficulty factor, move
to intermediate on the second go-around, and
finally the expert level when the program is
run for the third time. This can triple the en
joyment without having to resort to repro-
gramming.

If you want to add more words in addition
to those already included in the data state
ments, simply add more data lines. You should
first remove the three END words from the

end of line 750 and then add as many additional
data statements and words as you desire. Re
member to input these words in groups of
three, as was previously discussed, and to
terminate the last data statement line with the

triple END sequence. It is quite easy to expand
the program to include hundreds of different
words, which can be scrambled in thousands of

different ways by this interesting program.

MATCHGAME

Matchgame is not really a game, but it can
be used to randomly match up partners for true
games. For example, it can be used to match up
sides for a touch football game. The way it is
written here, it's really designed as a dating
game, in that it allows you to input the names of
up to 10 boys and then the names of a like
number of girls. When all names have been
input, partners will be randomly matched.

The program is extremely simple. Two
arrays are established in lines 130 and 140,
each of which can hold a maximum of ten ele

ments. The randomize statement in line 150

reseeds the random number generator. Line
170 includes an input statement that allows you
to input the number of couples involved. This
number is assigned to the variable C. The for-
next loop that is begun in line 190 counts from 1
to the value of C, and during each cycle, you are
asked to input the name of a boy. The screen is
cleared after each name is input. When this
loop times out, another one is begun in line
230, which goes through the same number of
cycles, but this time, you are asked to input the
name of a girl.

Once all names have been input, the ran
dom assignments are made. Starting in line
270, the variable I is assigned a value that is
equal to a random number between 1 and a
maximum value of C. Line 280 will be skipped
over for the time being in this discussion. Line
290 prints the element from A$ that is at the
position identified by the random number I.
Line 300 then reassigns this position, making it
equal to the number 0. This portion of the

129

Listing 12. Matchgame

100 REM MATCHGAME 210 CALL CLEAR

110 REM COPYRIGHT FREDERICK 220 NEXT X

HOLTZ AND ASSOCIATES 2/11 230 FOR X=l TO C

/83 240 INPUT "NAME OF GIRL?":A$
120 REM PROGRAM RUNS IN TI-B (X)
ASIC 250 CALL CLEAR

130 DIM A$(10) 260 NEXT X

140 DIM B$(10) 270 I=INT(RND*C)+1
150 RANDOMIZE 280 IF A$(I)="0" THEN 270
160 CALL CLEAR 290 PRINT A$(I);
170 INPUT "HOW MANY COUPLES? 300 A$(I)="0"
":C 310 II=INT(RND*C)+1
180 CALL CLEAR 320 IF B$(II)="0" THEN 310
190 FOR X= 1 TO C 330 PRINT TAB(15);B$(II)
200 INPUT "NAME OF BOY?":B$(340 B$(II)="0"
X) 350 GOTO 270

program pulls the name of each girl from the A$
array. Lines 310 through 340 are a repeat of the
above routine. In this case, II is the random
number and is used to pull boys' names from
the B$ array. Line 350 branches back to line
270 after the first two names have been printed
to allow more names to be extracted. Line 280
is absolutely necessary, in that it automatically
branches back to line 270 in the event that it
encounters an array element that is equal to
the number 0. This assures that all names are
extracted from the array and that no name is
printed twice.

You canuse this program to match people,
objects, or even numbers on a random basis.
By changing some of the screen prompts, the
program can be tailored to address these dif
ferent applications.

ACEY-DEUCEY

Acey-Deucey is a computerized version

130

of the cardgame which goes by the same name.
The screen will display three numbers. The
one in the center must lie between the first and

last number shown numerically. In other
words, if the first and last numbers are 5 and 10
respectively, any number from 6 to 9 is a win
ner, since it lies between 5 and 10. Any number
less than 5 or greater than 10 is a loser.
Likewise, the numbers 5 or 10 are losers.

In the card game, the face cards always
counted as 10, the other cards counted as their
face values, and the ace could be a 1 or an 11. In
this game, only numbers are used, and these
will range from 1 to 11. You do not have the
option of allowing an 11 to be equal to 1 or 11.
This is already written into the program.

The randomize statement is used in line

130 to reseed the random number generator.
Lines 150 through 170 assign each of the nu
merical variables X, Y, and Z a random number
between 1 and 11. Lines 180 and 190 display

Listing 13. Acey-Deucey

V
«i

YOU WIN!!
100 REM ACEY-DEUCEY

110 REM COPYRIGHT FREDERICK

HOLTZ AND ASSOCIATES 2/10

/83
120 REM PROGRAM RUNS IN TI-B

ASIC

130

140

150

160

170

180
it.Y

190 PRINT " ";Z
200 IF X<Y THEN 210 ELSE 230
210 IF Z>X THEN 220 ELSE 290

220 IF Z<Y THEN 250 ELSE 290

RANDOMIZE

CALL CLEAR

X=INT(RND*11)+1
Y=INT(RND*11)+1
Z=INT(RND*11)+1
PRINT " ";X;"

these values in a special format on the screen.
The spaces betweenquotation marks are quite
important, so count them carefully. Lines 200

230 IF Z<X THEN 240 ELSE 290

240 IF Z>Y THEN 250 ELSE 290

250 PRINT

260 PRINT

270 PRINT "A WINNER!"

280 GOTO 320

290 PRINT

300 PRINT

310 PRINT "YOU LOSE"

320 PRINT

330 PRINT

340 PRINT

350 PRINT

360 INPUT "PRESS (ENTER)" TO
CONTINUE.":EN$
370 GOTO 140

through 240 test for a win. If one is detected,
there is a branch to line 250, which prints A
WINNERIonthe screen.You are then prompt-

131

ed to press the enter key to play again. On the
other hand, if a win is not detected, there is a
branch to line 290, where YOU LOSE! is
printed on the screen.

You can play this game continuously and
never be able to predict the outcome. You will
probably find, however, that you lose more
oftenusingthis gamethanyou dowhenplaying
the card game equivalent. This is because the
odds are different with this game. For exam
ple, in cards, if your first number is a 2, you
have less chance of getting a 2 again because
there are fewer 2s left in the deck. This does
not apply with the computerized version, since
the computer has a supposedly infinite number
of 2s, and for that matter, of any other number,
to choose from. In other words, the computer's

Listing 14. Coin Flip

132

deck is not limited as is a deck of cards. If a 2
comes up as the first number, the odds on it
coming up again are the same as the first time
around.

COIN FLIP
One of the simplest random chance games

to simulate on a computer is the flip of a coin.
From a computer standpoint, the flip involves
only two possible random numbers, 1 or 2.
This assumes that there are only two possible
results when a coin is flipped, one side or the
other, better known as heads or tails. Of
course, from a realistic standpoint, this is not
entirely correct, since there is a very, very
slight possibility that the coin could land on its
edge and remain in this position. Since this is a
million to one shot, we won't even consider it.

Listing continued.

100 REM COIN FLIP 210 PRINT

110 REM COPYRIGHT FREDERICK 220 PRINT

HOLTZ AND ASSOCIATES 4/21 230 PRINT

/83 240 PRINT

120 REM PROGRAM RUNS IN TI-B 250 PRINT

ASIC 260 PRINT

130 CALL CLEAR 270 PRINT

140 RANDOMIZE 280 PRINT

150 X=INT(RND*2)+1 290 PRINT

160 IF X=l THEN 170 ELSE 190 300 PRINT

170 A$="HEADS" 310 INPUT "PRESS (ENTER) TO

180 GOTO 200 FLIP AGAIN.":EN$

190 A$=nTAILS" 320 GOTO 130

200 PRINT " ";A$

Following the randomize statement in
line 140, the variable X is assigned a value
which will either be 1 or 2 and which is ran

domly decided. Line 160 assigns A$ to a value
of HEADS (in line 170) when X is equal to 1.
Otherwise, A$is assigned the value ofTAILS.

As soon as the random determination has

been made, line 200 prints the value of A$ at
the center of the screen. The print statements
in lines 210 through 300 scroll the message
upward so that it rests at the exact center ofthe
screen. Line 310 then allows you to flip again
by pressing the enter key. This brings about a

branch to line 130, where the program begins
again.

COIN FLIP 2
Coin Flip 2 is almost identical to the pre

vious program, except that two hypothetical
coins are used. Two random numbers are set

up and assigned to X and Y. Again, the range is
from 1 to 2, with 1 representing heads and 2
representing tails for both coins. When this
program is run, the results of flipping the two
coins are displayed on the screen. This allows
for even/odd matching, which is a quite com
mon coin flip game.

Program 15. Coin Flip 2

100 REM COIN FLIP 2 130 CALL CLEAR

110 REM COPYRIGHT FREDERICK 140 RANDOMIZE

HOLTZ AND ASSOCIATES 4/21 150 X=INT(RND*2)+1

/83 160 Y=INT(RND*2)+1

120 REM PROGRAM RUNS IN TI-B 170 IF X=l THEN 180 ELSE 200

ASIC 180 A$="HEADS"

133

Listing continued.

1 190 GOTO 210 300 PRINT
200 A$="TAILS" 310 PRINT
210 IF Y=l THEN 220 ELSE 240 320 PRINT
220 B$="HEADS" 330 PRINT
230 GOTO 250 340 PRINT
240 B$=nTAILS" 350 PRINT
250 PRINT " ";A$;" " 360 PRINT
;B$ 370 PRINT
260 PRINT 380 INPUT "PRESS (ENTER) TO
270 PRINT FLIP AGAIN.":EN$
280 PRINT 390 GOTO 130
290 PRINT

HIDDEN WORDS

Hidden Words is a computer-assisted
game that alsoinvolves pencil andpaper.Most
readers will remember the word games they
played as children (and sometimes as adults)
that involved a long conglomeration of letters
that the players usedto make words. Any let-

Listing 16. Hidden Words

100 REM HIDDEN WORDS

110 REM COPYRIGHT FREDERICK
HOLTZ AND ASSOCIATES 4/22/83
120 REM PROGRAM RUNS IN TI-BASIC
130 DIM A$(26)
140 CALL CLEAR

150 FOR X=65 TO 90

160 A$(X-64)=CHR$(X)
170 NEXT X

180 RANDOMIZE

190 CALL CLEAR

200 FOR Z=l TO 10

210 Y=INT(RND*26)+1
220 PRINT A$(Y);
230 NEXT Z
240 PRINT

134

ter that was found in that conglomerationcould
be used to form part ofa word.The person who
made the most words from the string was the
winner.

This program randomly outputs a con
glomeration of letters with which players can
attempt to form words. Each output from the

250 PRINT

260 PRINT

270 PRINT

280 PRINT

290 PRINT

300 PRINT

310 PRINT

320 PRINT

330 PRINT

340 PRINT

350 PRINT

360 PRINT

370 PRINT

380 INPUT "PRESS (ENTER) FOR
NEW LETTERS.":ER$

390 GOTO 190

computer will consist of ten letters. When you
press the enter key again, a new string of
letters is output.

Line 130 sets up an array which contains
26 elements. The loop found in lines 150
through 170 assigns the letters of the alphabet
to each of the 26 array positions. In this case,
the letters are ASCII characters 65 through 90,
which are the capital letters A through Z in the
ASCII format of the TI-99/4A (and in nearly
every other computer as well).

The randomize statement is used in line

180, and line 200 begins a loop which counts
from 1 to 10. With each cycle, Y is assigned a
new random number and this number pulls the
letter from the A$ appropriate position in the
array. Since we don't care if letters are re
peated, it's not necessary to reassign the array
position value, as was done with the random
match program discussed previously. After the
loop has completed ten cycles, it times out and
the print statements contained in lines 240
through 370 center the word on the display
screen. Lines 380 and 390 allow for a new

series of letters to be printed when the enter
key is pressed.

MATHEMATICAL PROGRESSION

Mathematical Progression is an arithme
tic game that can be enjoyed by persons of all
ages. While the program shown here may be
used as is, it is presented in order to give the
reader aprogramformatandanidea forwriting
his own program.

This program contains three different
mathematical formulas held within for-next
loops. The loops begin at lines 140, 210, and
280, respectively. Each of these loops causes
a series of numbers to be displayed on the

screen. It is the player's responsibility to de
termine the relationship of these numbers and
then to input the next number that would logi
cally follow in the string. For example, if the
computer displayed 12 3 4 5 6, the next logical
number would obviously be 7, since the num
bers are pressing upward in steps of 1. De
pending on the mathematical formula used to
determine the numbers, the program's diffi
culty factor can be high or low.

For example, consider the string which
will be generated by lines 140 through 170. B
will be equal to the loop value divided by 8.
Each time the loop cycles, the value of A di
vided by 8 is displayed on the screen. When the
loop times out, line 180 assigns a value to BB
which is equal to 11 divided by 8, the next
logical number in this string. There is then a
branch to a routine beginning in line 390, which
adds two blank lines to separate the prompts to
be printed from the numbers already on the
screen and also steps the value of R (the
number of attempts) by 1 (see line 410). The
player is then prompted to input the next
number in the sequence. This input is assigned
to the variable AA in line 440. Line 450 com

pares this input with the correct answer, which
was assigned to BB. If the two match, there is a
branch to line 560, which informs you that your
answer is correct. If the two are not equal, line
460 is executed and causes the screen to dis

play WRONG ANSWER!!. Following this, the
value of W in line 470 is stepped by 1. When
you press the enter key again, the return
statement is executed and there is a branch

back to line 200, where the screen is cleared
and a new problem is encountered.

You can custom-tailor this program by in
serting as many new problems and for-next

135

Listing 17. Mathematical Progression

100 REM MATHEMATICAL PROGRES

SION

110 REM COPYRIGHT FREDERICK
HOLTZ AND ASSOCIATES 4/20
/83
120 REM PROGRAM RUNS IN TI-B

ASIC

130 CALL CLEAR

140 FOR A=l TO 10

150 B=A/8
160 PRINT B;
170 NEXT A

180 BB=ll/8
190 GOSUB 390

200 CALL CLEAR

210 FOR A=20 TO 35

220 B=A*.5

230 PRINT B;
240 NEXT A

250 BB=36*.5

260 GOSUB 390

270 CALL CLEAR

280 FOR A=20 TO 36

290 B=SQR(A)
300 PRINT B;
310 NEXT A

320 BB=SQR(37)
330 GOSUB 390

340 CALL CLEAR

350 PRINT "THE GAME IS ENDED "

loops as you want. This is the area of the
program currently filled by the statements in
lines140through 330.Atthe endofeach prob
lem sequence, there is a GOSUB to the sub
routine that allows you to input an answer and
also keeps score. At the end of the program,

136

360 PRINT "YOU HAD";W;"WRONG
ANSWERS"

370 PRINT "OUT OF";R;"ATTEMP
TS."

380 END

390 PRINT

400 PRINT

410 R=R+1

420 PRINT "WHAT IS THE NEXT
NUMBER"

430 PRINT "IN THIS SEQUENCE?
it

440 INPUT AA

450 IF AA=BB THEN 560

460 PRINT "WRONG ANSWER!!"

470 W=W+1

480 PRINT "DO YOU WANT TO TR
Y AGAIN(Y/N)?"
490 INPUT AG$
500 IF AG$="Y" THEN 390
510 PRINT "THE CORRECT ANSWE
R IS";BB
520 PRINT

530 PRINT

540 INPUT "PRESS ENTER":AS$
550 RETURN

560 PRINT "THAT IS CORRECT!!
it

570 GOTO 540

the number of attempts you made to answer
the problems and the number of wrong
answers is displayed. This is a basic program
that can be lengthened tremendously to be
developed intoanextremelycomplex andedu
cational mathematics drill.

MATH GAME

Another mathematics game that is en
joyed by a wide range of individuals involves
the display of math problems on the screen.
Naturally, the player is supposed to come up
with the correct answer. This version is fairly
simple, but by changing the random value

Listing 18. Math Game

range in lines 340 and 350, the difficulty level
can be increased or decreased. This program
displays addition, subtraction, multiplication,
and division problems on the screen.

The numbers that are added, subtracted,
multiplied, or divided are random in nature and
are determined by lines 340 and 350. In this

100 REM MATH GAME 290 PRINT "INFORMED AS TO IT

110 REM COPYRIGHT FREDERICK S ACCURACY."

HOLTZ AND ASSOCIATES 4/23 300 PRINT

/83 310 PRINT

120 REM PROGRAM RUNS IN TI-B 320 INPUT "PRESS (ENTER) TO

ASIC CONTINUE.":QW$

130 RANDOMIZE 330 CALL CLEAR

140 CALL CLEAR 340 X=INT(RND*10)+1
150 PRINT "THIS IS A MATHEMA 350 Y=INT(RND*10)+1

TICAL" 360 Z=INT(RND*4)+1
160 PRINT 370 IF Z=l THEN 380 ELSE 410

170 PRINT "QUIZ GAME. ANY NU 380 S$="+"

MBER" 390 ANS=X+Y

180 PRINT 400 GOTO 510

190 PRINT "OF MATHEMATICAL P 410 IF Z=2 THEN 420 ELSE 450

ROBLEMS" 420 S$="-"

200 PRINT 430 ANS=X-Y

210 PRINT "CAN BE DISPLAYED 440 GOTO 510

ON THE" 450 IF Z=3 THEN 460 ELSE 490

220 PRINT 460 S$="*"

230 PRINT "SCREEN. EACH TIME 470 ANS=X*Y

A NEW ONE" 480 GOTO 510

240 PRINT 490 S$="/"
250 PRINT "APPEARS, YOU ARE 500 ANS=X/Y

TO INPUT" 510 PRINT X;S$;Y;"="

260 PRINT 520 INPUT QR

270 PRINT "AN ANSWER. YOU WI 530 IF QR=ANS THEN 540 ELSE

LL BE" 610

280 PRINT 540 PRINT

137

Listing continued.

550 PRINT 610 PRINT "THAT IS A WRONG A
560 PRINT "THAT IS CORRECT" NSWER!!"
570 PRINT 620 PRINT
580 PRINT 630 PRINT "THE CORRECT ANSWER
590 INPUT "PRESS (ENTER) TO IS";ANS
CONTINUE.":FR$ 640 GOTO 570
600 GOTO 330

program, the numbers range from 1 to 10 and
are assigned to variables X and Y. Variable Z is
assigned a random number of from 1 to 4, and
this number determines the mathematical

function (addition, subtraction, multiplication,
division). For example, in line 370, if Z is equal
to 1, there is a branch to line 380, where S$ is
equal to a plus sign (+). Line 390 then assigns
the variable ANS to be equal to the sum of X
and Y. If Z is equal to 2, Y is subtracted from X.
The number 3 means that X will be multiplied
by Y. If Z is equal to 4, then the division func
tion is accessed. In each case, ANS is assigned
the value of the function results of X and Y.

Line 510 prints the value of X followed by
the mathematical function sign, the value of Y
and then the equal sign. In one example, the
screen might display

10 + 8 =

You would then input the value of 18. Line 530
checks for the inputting of a correct value. The
variable QR represents the keyboard input,
and if it is equal to ANS (the correct answer),
there is a branch to line 540, which prints the
CORRECT prompt on the screen. If the two
are not equal, there is a branch to line 610,
which causes the screen to display the fact that

138

a wrong answer has been input. This is fol
lowed by the printing of the correct answer. As
soon^as this sequence is over, you can press
the enter key again and a new problem will be
displayed on the screen. Unlike the previous
program, all problems are determined at ran
dom, and you can play all day and all night with
this same program and still not be repeating
too many problems. Of course, if you allow X
or Y to be equal to a random number in the
range of from 1 to 20 (instead of 1 to 10), the
difficulty factor is increased and there are
many more possible number combinations. By
decreasing the random number range, the dif
ficulty factor can be lowered for children. You
may also wish to omit the multiplication and
division aspects and simply leave the addition
and subtraction problems. As you can see, this
program can be easily tailored to meet the
needs of a wide range of individuals and is
popular with young and old alike.

BLACKJACK

Since the home computer became pop
ular, the game of Blackjack has been pro
grammed many times and in many ways for
each and every model. For our purposes, it
would be more appropriate to call it the game
of twenty one, since cards are not actually

Listing 19. Blackjack Card Game

ry
170 P=D

. 180 GOSUB 630

1 190 D1=C

200 GOSUB 630

210 D2=C

220 GOSUB 700

230 P1=C

240 GOSUB 700

250 P2=C

260 PRINT

270 PRINT "THE DEALER HAS";D
1;"SHOWING"
280 PRINT "YOU HAVE";PI;"AND

* ";P2

^ v/ 290

+P2

300

310

320

330

340

350

360

PRINT "YOUR TOTAL IS";PI

D=D1+D2

P=P1+P2

IF P=21 THEN 440

GOSUB 770

IF L=l THEN 490

IF D<=16 THEN 550

PRINT "THE DEALER HAS";D
vS" -—. 370 PRINT "YOU HAVE ";P
^^^^ ^^Z. 380 IF P>D THEN 420

^b^_ =• 390 REM

^•^"5 400 PRINT "DEALER WINS!!!"

* ~— 410

420

GOTO 890

PRINT "YOU ARE THE WINNE
100 REM BLACKJACK CARD GAME R!!! it

110 REM TI VERSION COPYRIGHT 430 GOTO 890

120 REM FREDERICK HOLTZ AND 440 PRINT "YOU HAVE BLACKJAC
ASSOCIATES 3/4/83 K"

130 REM PROGRAM RUNS IN TI-B 450 IF D=21 THEN 470

ASIC 460 GOTO 360

140 CALL CLEAR 470 PRINT "DEALER ALSO HAS B

150 RANDOMIZE LACKJACK--NO WINNER! !!"

160 D=0 480 GOTO 890

139

Listing continued.

490 GOSUB 700 710 IF C=ll THEN 730

500 PRINT "YOUR CARD IS ";C 720 GOTO 760

510 P=P+C 730 IF P+C > 21 THEN 750

520 PRINT "YOUR TOTAL IS";P 740 GOTO 760

530 IF P > 21 THEN 400 750 C=l

540 GOTO 330 760 RETURN

550 PRINT "THE DEALER HAS";D 770 PRINT "HIT OR STAY? (H/S)"
560 GOSUB 630 780 INPUT Q$
570 LET D=D+C 790 IF Q$="H" THEN 830
580 PRINT "THE DEALER DRAWS 800 IF A$="S" THEN 860
A ";C 810 PRINT "TRY AGAIN"

590 PRINT "DEALER TOTAL IS " ;D 820 GOTO 770

600 IF D> 21 THEN 420 830 L=l

610 IF D < = 16 THEN 560 840 CALL CLEAR

620 GOTO 360 850 GOTO 880

630 C=INT(RND*11)+1 860 L=0

640 IF C=ll THEN 660 870 CALL CLEAR

650 GOTO 690 880 RETURN

660 IF D-K3 > 21 THEN 680 890 PRINT

670 GOTO 690 900 PRINT "PRESS (ENTER) TO
680 C=l PLAY AGAIN."

690 RETURN 910 INPUT L$
700 C=INT(RND*11)+1 920 GOTO 140

used, having been replaced by the numbers 1
through 11. As in the card game, the idea is to
get a number combination that will result in a
maximum of 21. If you go over this figure,
you're busted. The player with the highest
score under 21 is the winner. In this game,
there is only one player, at least of the human
type. Here, the computer is the dealer and, of
course, a tie automatically goes to the dealer.

This program does not use an array to
hold 52 different numbers in order to simulate
a card deck. Instead, it uses random number
generators to output numbers from 1 to 11.
Therefore, the odds must be calculated in a

140

different manner than when playing Blackjack.
In a standard card deck, there are four of each
number and/or face card. Naturally, if the
dealer is displaying a queen and you have a
queen showing and one face down, there is
little likelihood that you will draw the fourth
and final queen, or that the dealer will already
have it face down. Of course, the other face
cards count 10 as well, but there is even less of
achance of youactually getting the last queen.
The computer version of this game makes no
distinction between the different suits and
types of face cards. It represents them all by
the number 10. However, there is a theoreti-

cally infinite number of tens in this game, and
the same goes for every other card. Each
number is chosen from between 1 and 11 by
random chance, so you can never run out of our
representative face cards or any other number.

Other than these differences, the game is
readily played by anyone who already knows
how to play Blackjack. Each time the program
is run, you are automatically assigned two
numbers and their total is given. You will also
be told the value of one number the computer is
holding. You may then opt to take a hit or pass.
If you go over 21, the screen clears, and the
dealer is declared the winner. This program
will also test for Blackjack by you or the dealer,
or by both at the same time.

Again, this program is a modification of
one presented in another TAB publication, but
it has been completely rewritten for the TI-
99/4A and tested on this same machine. The

modifications include getting rid of statements
and functions not applicable to TI BASIC, and
arranging the display to fit the 32-column TI-
99/4A format. In making such conversions, it is
often necessary to rewrite many if-then lines.
Many of these execute separate statements on
the same line, depending on the if-then test.
This is not permitted in TI BASIC (it is in
Extended BASIC), so an if-then line must al
ways branch to another line.

STATES AND CAPITALS

Here's a straightforward program that is a
great tutorial for school age children and will
also stymy many adults who haven't had to deal
with the capitals of various states for many
years. The programis extremely simple, but it
is long due to the fact that each data statement

contains the name of a state, along with its
capital. It would have been possible to con
serve a fair amount of memory by including
several states and their capitals on a single
data statement line. However, this method as
sures easy debugging and makes the program
content much more clear.

When the program is first run, line 140
clears the screen and lines 150 and 160 assign
the state to A$ and its capital to B$. Line 180
prompts the player to input the capital of the
state contained in A$. The player's input is
assigned to C$ in line 220. Line 230 tests for a
condition of C$ (player's answer) being equal
to B$ (correct capital). If the two match, there
is a branch to line 240, which clears the screen.
Line 250 is a counting routine which steps the
variable RA by 1 each time a correct answer
has been input. Following this, line 260 prints
the capital, followed by the CORRECT mes
sage. The player is then asked if he wishes to
play again, and if so, there is an eventual branch
to line 150, where the next state and capital are
read from the data statement lines.

In the event that an incorrect answer is

input, line 230 branches to line 380, where you
are told that a wrong answer has been given.
The variable WA stands for wrong answer and
is stepped by 1 each time an incorrect answer
is input. When a wrong answer occurs, the
player is asked if he wishes to try again. If a Y is
input, the state name is displayed again and
another guess may be attempted. When the
player simply cannot come up with the answer,
he will enter an N at line 400. This brings about
a branch to line 430, which clears the screen,
and then to lines 440 and 450, which print the
correct answer on the screen. The player may

141

Listing 20. States and Capitals

100 REM STATES AND CAPITALS

110 REM COPYRIGHT FREDERICK
HOLTZ AND ASSOCIATES

120 REM 4/29/83
130 REM PROGRAM RUNS IN TI-B
ASIC

140

150

160

170

180

OF"

190

200

142

CALL CLEAR

READ A$
READ B$
CALL CLEAR

PRINT "WHAT IS THE CAPITAL

PRINT A$
PRINT

210 PRINT

220 INPUT C$
230 IF C$=B$ THEN 240 ELSE 380
240 CALL CLEAR

250 RA=RA+1

260 PRINT C$;M IS CORRECT!!"
270 PRINT

280 PRINT

290 PRINT

300 PRINT

310 PRINT "PLAY AGAIN?(Y/N)"
320 INPUT ER$
330 IF ER$="Y" THEN 360
340 IF ER$="N" THEN 990

Listing continued.

350 GOTO 310

360 CALL CLEAR

370 GOTO 150
380 PRINT "WRONG!! TRY AGAIN

?(Y/N)"
390 WA=WA+1

INPUT WR$
IF WR$="Y" THEN 420 ELSE

400

410

430

420

430

440

R IS

450

460

470

480

490

500

510

520

K

530

540

550

D

560

570

580

590

600

610

D

620

S

630

640

GOTO 170

CALL CLEAR

PRINT "THE CORRECT ANSWE
it

PRINT B$
PRINT

PRINT

GOTO 270

DATA ALABAMA,MONTGOMERY

DATA ALASKA,JUNEAU
DATA ARIZONA,PHOENIX

DATA ARKANSAS.LITTLE ROC

DATA CALIFORNIA, SACRAMENTO

DATA COLORADO,DENVER

DATA CONNECTICUT,HARTFOR

DATA DELAWARE,DOVER

DATA FLORIDA,TALLAHASSEE

DATA GEORGIA,ATLANTA

DATA HAWAII.HONOLULU

DATA IDAHO,BOISE

DATA ILLINOIS,SPRINGFIEL

DATA INDIANA,INDIANAPOLI

DATA IOWA,DES MOINES

DATA KANSAS,TOPEKA

650

660

GE

670

680

690

N

700

710

L

720

730

CITY

740

750

760

770

RD

780

790

800

810

IGH

820

CK

830

840

ITY

850

860

BURG

870

ENCE

880

MBIA

890

900

DATA KENTUCKY,FRANKFORT

DATA LOUISIANA,BATON ROU

DATA MAINE,AUGUSTA

DATA MARYLAND,ANNAPOLIS

DATA MASSACHUSETTS,BOSTO

DATA MICHIGAN,LANSING

DATA MINNESOTA, SAINT PAU

DATA MISSISSIPPI,JACKSON

DATA MISSOURI,JEFFERSON

DATA MONTANA,HELENA

DATA NEBRASKA.LINCOLN

DATA NEVADA,CARSON CITY

DATA NEW HAMPSHIRE,CONCO

DATA NEW JERSEY,TRENTON

DATA NEW MEXICO,SANTA FE

DATA NEW YORK.ALBANY

DATA NORTH CAROLINA,RALE

DATA NORTH DAKOTA, BISMAR

DATA OHIO,COLUMBUS

DATA OKLAHOMA,OKLAHOMA C

DATA OREGON,SALEM

DATA PENNSYLVANIA,HARRIS

DATA RHODE ISLAND,PROVID

DATA SOUTH CAROLINA,COLU

DATA SOUTH DAKOTA, PIERRE

DATA TENNESSEE,NASHVILLE

143

Listing continued.

910 DATA TEXAS,AUSTIN
920 DATA UTAH,SALT LAKE CITY
930 DATA VERMONT,MONTPELIER
940 DATA VIRGINIA,RICHMOND
950 DATA WASHINGTON,OLYMPIA
960 DATA WEST VIRGINIA,CHARL
ESTON

970 DATA WISCONSIN,MADISON
980 DATA WYOMING,CHEYENNE

990 CALL CLEAR

1000 PRINT "YOU HAD";RA;"COR
RECT AND"

1010 PRINT WA; "INCORRECT ANS
WERS.

it

1020 PRINT

1030 PRINT

1040 END

exit the program after each guess, and when
this is done, there is a branch to line 990,
where the screen is cleared and you are given
your score in terms of right and wrong an
swers.

ONE MILLION WORDS

Here is a program that I just happened
across while writing a more complex one

Listing 21. One Million Words

100 REM ONE MILLION WORDS

110 REM COPYRIGHT FREDERICK
HOLTZ AND ASSOCIATES

120 REM 3/15/83
130 REM PROGRAM RUNS IN TI-B
ASIC

140

150

160

170

180

190

200

210

144

DIM A(26)
CALL CLEAR

FOR X=l TO 26

A(X)=X+64
NEXT X

RANDOMIZE

CALL CLEAR

RN=INT(RND*26)+1

which will be presented next. The name of this
program is quite applicable in that it can dis
play one million words or more if you play it
longenough.This is ahidden word puzzle with
little or no logicbehind it. Chances are, you've
seen many of these puzzles in various mag
azines. A large number of letters is printed
horizontally and vertically on the page with
certain words occurring horizontally, verti-

220 CV-CV+1

230 PRINT CHR$(A(RN));
240 IF CV<=28 THEN 260

250 CV=0

260 GH=GH+1

270 IF GH=616 THEN 290
280 GOTO 210

290 PRINT

300 PRINT

310 INPUT "PRESS ENTER FOR N
EW PUZZLE.":ER$
320 GH=0

330 CV=0

340 GOTO 200

cally, diagonally, and in reverse order. Most of
the letters are simply a jumble, but some of
them line up to form the words that must be
extracted. This is usually done by circling the
word.

This program works along similar lines,
except all letters are generated on a random
basis. No specific English words are actually
programmed for, although they will certainly
occur during every program run. A total of 616
letters will be generated on each screen, and it
is then up to the players (two or more) to

Listing 22. Word Puzzle Plus

100 REM WORD PUZZLE PLUS

110 REM COPYRIGHT FREDERICK

HOLTZ AND ASSOCIATES

120 REM 4/1/83
130 REM PROGRAM RUNS IN TI-B

ASIC

140

150

160

170

180

190

200

210

220

DIM A(26)
CALL CLEAR

FOR X=l TO 26

A(X)=X+64
NEXT X

RANDOMIZE

CALL CLEAR

RN=INT(RND*26)+1
CV=CV+1

extract as many words as possible from this
maze. Although no true words are purposely
programmed, I guarantee that you will be sur
prised at some of the words that crop up at
random.

WORD PUZZLE PLUS

This program is the one that sprang from
the preceding word puzzle routine. It is han
dled in almost exactly the same manner, ex
cept a number of words are purposely pro
grammed into the puzzle.

230 PRINT CHR$(A(RN));
240 IF CV<=28 THEN 260

250 CV=0

260 GH=GH+1

270 IF GH=616 THEN 290

280 GOTO 210

290 READ A$
300 IF A$="END END" THEN 310
ELSE 340

310 CALL CLEAR

320 PRINT "NO MORE PUZZLES!!

330 END

340 IF A$="END" THEN 350 ELS
E 410

145

Listing continued.

350 PRINT 490 NEXT T

360 PRINT 500 GOTO 290

370 INPUT "PRESS ENTER FOR N 510 DATA BASIC,LOGIC,KEY,DAT
EW PUZZLE.":ER$ A,INPUT,OUTPUT,MEMORY,HARDWA

380 GH=0 RE,SOFTWARE,MATRIX, END

390 CV=0 520 DATA TRANSISTOR,CHIP,FLO
400 GOTO 200 WCHART,BIT,BYTE,PRINTER,MODE

410 LV=LEN(A$) M,DISK,FLOPPY,TRACK,END

420 I=INT(RND*27)+2 530 DATA HANDSHAKE,PARITY,DA

430 II=INT(RND*19)+3 TA,LOGIC,MONITOR,DISKETTE,RG

440 IF I+LV> 28 THEN 420 B,JACK,MODULATOR,FANOUT,END

450 FOR T=l TO LV 540 DATA DRIVE,CARD,CHIP,GIG

460 Q$=SEG$(A$,T,1) 0,CMOS,CIRCUIT,CHASSIS,DATAB

470 W=ASC(Q$) ASE,END

480 CALL HCHAR(II,I+T,W) 550 DATA END END

These words are contained in the data

statements found in lines 510 through 540. The
puzzle discussed previously is printed on the
screen, and the data statement words are writ
ten over the other letters at random locations.

Sometimes, one data statement word will
cover up another, so all of the words contained
in the data statement lines may not appear in
any given puzzle. Each line contains the words
that will be contained in one puzzle, and as
written, there are enough data statement lines
to produce four separate puzzles. You can pro
duce many others by simply adding more data
statement lines between current program lines
540 and 550. Each data statement line is termi

nated with the word "END". This serves as an

indication that no further data statement words

are to be added. When one puzzle is completed,
you simply press the enter key to get a com
pletely different puzzle. After four puzzles
have been worked, the last data statement line,

146

which contains the word "END" twice, is en
countered. This is a sign to the computer that
there are no more data statement lines and the

program is to be terminated. Lines 410 through
490 read the number of letters in each data

statement word and assign them to various
random positions in the puzzle. These lines
assure that no words will be started at a point
near the right-hand side where there are not
enough additional screen column positions to
complete the word. Theoretically, you may
input words of any length up to 28 letters via
the data statement lines. The puzzle is a total
of 28 columns wide.

NUMBERS ALIGNMENT

This program is seen in many different
forms. Most use the numbers 1 through 5, but
this one is expanded to include numbers 1
through 9. The numbers will be displayed in
random order. The player's job is to align these

numbers in sequential order (1-9).
When the program is first run, you will

see a random pattern, such as

912473568

When this display is complete, a prompt will
appear asking WHICH NUMBER. The
number you select will completely rearrange
this pattern. Let's assume that you select 4,
given the display shown above. The screen
will clear, and a new pattern, which is no
longerchosenat randombut determinedbythe
previous random pattern and the number you
selected will be generated. The 4 that you
selected will result in a display of

421973568

You can see here that the number selected
automatically goes to the front of the string,
and all numbers that previously preceded it
now follow it. All numbers to the left of the one

Listing 23. Numbers Alignment

chosen are left in the same order. I will not
explain this program further, because it will
give youa clue as to how it may be deciphered.
Here is one of the few programs included in
this bookthat depends on intelligence and does
not give the programmer a playing advantage.
In other words, by inputting these program
lines, you will still have the same amount of
difficulty in solving each sequence as someone
with no programming skills at all.

While I won't give you a hint, I will say
that any sequence displayed by the computer
can be rearranged in sequential order. As soon
as you get the idea, you will be able to solve
any sequence quite easily. The simple trick to
a quick solution may take a half hour or more,
but most players will eventually catch on.
From there on out, it's a matter of two players
with similar experience trying to outdo each
other. Each time the sequence is solved, the
computer will tell you how many moves it took
you to arrive at the solution.

100 REM NUMBERS ALIGNMENT 180 PRINT

110 REM COPYRIGHT FREDERICK 190 PRINT "YOU MUST ARRANGE
HOLTZ AND ASSOCIATES THE NUMBERS"

120 REM 4/28/83 200 PRINT

130 REM PROGRAM RUNS IN TI-B 210 PRINT "DISPLAYED ON THE
ASIC SCREEN"

140 CALL CLEAR 220 PRINT

150 PRINT "THIS IS A GAME OF 230 PRINT "IN SEQUENTIAL ORD
SKILL" ER. THE"

160 PRINT 240 PRINT

170 PRINT "CALLED 'ALIGNMENT 250 PRINT "FIRST GROUPING OF

'. TO WIN" NUMBERS IS"

147

Listing continued.

260 PRINT

270 PRINT "CHOSEN AT RANDOM.

YOU WILL"

280 PRINT

290 FOR X=l TO 1000

300 NEXT X

310 PRINT "DECIDE THE FUTURE

ORDERS."

320 PRINT

330 PRINT "WHEN YOU INPUT A

NUMBER, IT"
340 PRINT

350 PRINT "AND ALL NUMBERS T

0 ITS LEFT"

360 PRINT

370 PRINT "WILL BE DISPLACED

FROM LEFT"

380 PRINT

390 PRINT "TO RIGHT. THE COM

PUTER WILL"

400 PRINT

410 PRINT "BE CONSTANTLY CHE

CKING FOR A"

420 PRINT

430 PRINT "WIN. IT WILL TELL

YOU YOUR"

440 PRINT

450 PRINT "SCORE WHEN YOU GE

T AN"

460 PRINT

470 PRINT "ALIGNMENT. GOOD L
UCK!!"

480 PRINT

490 PRINT

500 INPUT "PRESS (ENTER) TO
CONTINUE.":ER$
510 CALL CLEAR

148

520 DIM A(10)
530 DIM B(10)
540 RANDOMIZE

550 FOR X=l TO 9

560 A(X)=X
570 NEXT X

580 Q=0
590 R=0

600 Y=INT(RND*9)+1
610 IF A(Y)=0 THEN 600
620 PRINT A(Y);
630 Q=Q+1
640 B(Q)=A(Y)
650 A(Y)=0
660 IF Q=9 THEN 680
670 GOTO 600

680 PRINT

690 PRINT

700 PRINT

710 PRINT

720 PRINT

730 PRINT

740 PRINT "WHAT NUMBER?"

750 INPUT C

760 PRINT

770 PRINT

780 PRINT

790 PRINT

800 PRINT

810 R=R+1

820 IF C=B(R) THEN 840
830 GOTO 810

840 FOR X=R TO 1 STEP -1

850 Z=Z+1

860 PRINT B(X);
870 A(Z)-B(X)
880 NEXT X

Listing continued.

890 FOR YY=R+1 TO 9 1050 FOR TONE=1000 TO 3000 S

900 A(YY)=B(YY) TEP 20

910 PRINT B(YY); 1060 CALL SOUND(10,TONE,0)

920 NEXT YY 1070 NEXT TONE

930 FOR T=l TO 9 1080 PRINT

940 B(T)=A(T) 1090 PRINT

950 NEXT T 1100 PRINT

960 NT=NT+1 1110 PRINT

970 R=0 1120 PRINT

980 Q=0 1130 PRINT

990 Z=0 1140 PRINT

1000 FOR XYZ=1 TO 9 1150 PRINT "IT TOOK YOU";NT;

1010 IF b(xyz)<>:iCYZ THEN 119 "TRYS!"

0 1160 PRINT

1020 NEXT XYZ 1170 PRINT

1030 CALL CLEAR 1180 END

1040 PRINT "1 2 3 4 5 6 1190 GOTO 680

7 8 9"

HI-DI

This is an original computer game that is
similar to Blackjack in some ways, but uses a
simulated roll of dice to achieve its purpose.
The idea of this game is to get 7 points or less
with the roll of a maximum of 3 dice. You may
stop after the first roll or roll one or two more
in the event that your numbers are low. When
you have finished yourroll, the computer will

Listing 24. Hi-Di

100 REM HI-DI

110 REM COPYRIGHT FREDERICK

HOLTZ AND ASSOCIATES

120 REM 4/27/83
130 REM PROGRAM RUNS IN TI-B

ASIC

begin its roll. In this case, a tie does not go to
the computer, but is registered as a tie and
another game may be played. If you go over 7,
you automatically lose and the computer does
not have to roll. This program always assumes
that you roll first, and the computer has the
advantage in that it will determine how many
dice it must roll based upon your final score,
assuming it is 7 or less.

140 CALL CLEAR

150 PRINT "WELCOME TO THE GA

ME OF "

160 PRINT

170 PRINT "HI-DI. THE OBJECT

IS TO"

149

Listing continued.

180 PRINT

190 PRINT "GET A MAXIMUM OF

7 POINTS"

200 PRINT

210 PRINT "FROM THE ROLL OF

THREE DICE."

220 PRINT

230 PRINT "YOU CAN STOP AFTE

R ANY ROLL"

240 PRINT

250 PRINT "AND IF YOU GO OVE

R 7 POINTS,"
260 PRINT

270 PRINT "YOU LOSE! THE COM

PUTER WILL"

280 PRINT

290 PRINT "PLAY AGAINST YOU

AND WILL"

300 PRINT

310 PRINT "TRY TO GET 7 POIN

TS AS WELL."

320 PRINT

330 PRINT "AT THE END OF EAC

H ROLL SE-"

340 PRINT

350 PRINT "QUENCE, THE SCORE
S WILL"

360 PRINT

370 PRINT "BE DISPLAYED. GOO

D LUCK!!"

380 FOR TR=1 TO 1000

390 NEXT TR

400 INPUT "PRESS (ENTER) TO
BEGIN":ER$
410 CALL CLEAR

420 PRINT "YOUR TURN!!"

430 PRINT

150

440 PRINT

450 PRINT

460 PRINT

470 RANDOMIZE

480 A=INT(RND*6)+1
490 PRINT A

500 PRINT

510 PRINT

520 PRINT

530 PRINT

540 INPUT "ANOTHER ROLL?(Y/N
)":R$
550 IF R$o"Y" THEN 690
560 CALL CLEAR

570 B=INT(RND*6)+1
580 PRINT A;B
590 IF A+B > 7 THEN 690

600 PRINT

610 PRINT

620 PRINT

630 PRINT

640 INPUT "ANOTHER ROLL?(Y/N
)":R$
650 IF R$o"Y" THEN 690
660 CALL CLEAR

670 C=INT(RND*6)+1
680 PRINT A;B;C
690 PRINT

700 PRINT

710 PRINT

720 PRINT

730 PRINT "YOUR TOTAL IS";A+
B+C

740 FOR TIM=1 TO 500

750 NEXT TIM

760 PRINT

770 PRINT

Listing continued.

780 PRINT 1120 PRINT

790 PRINT 1130 PRINT

800 IF A+B+C<=7 THEN 900 1140 PRINT "YOUR SCORE WAS:"

810 PRINT "THE COMPUTER WINS ;A+B+C
iii" 1150 PRINT

820 PRINT 1160 PRINT "COMPUTER'S SCORE

830 PRINT IS:";AA+BB+CC

840 PRINT 1170 IF AA+BB+CC< =7 THEN 118

850 INPUT "PRESS (ENTER) TO 0 ELSE 1380

PLAY AGAIN":ER$ 1180 IF AA+BB+CC<A+B+C THEN

860 A=0 1380

870 B=0 1190 IF AA+BB+CC=A+B+C THEN

880 C=0 1200 ELSE 1290

890 GOTO 410 1200 PRINT

900 CALL CLEAR 1210 PRINT

910 PRINT "COMPUTER'S TURN!! 1220 PRINT
M 1230 PRINT

920 PRINT 1240 PRINT "TIE GAME!!"

930 PRINT 1250 PRINT

940 PRINT 1260 PRINT

950 PRINT 1270 GOTO 1360

960 AA=INT(RND*6)+1 1280 PRINT

970 PRINT AA 1290 PRINT

980 IF AA>A+B+C THEN 1100 1300 PRINT

990 FOR TIM=1 TO 500 1310 PRINT

1000 NEXT TIM 1320 PRINT "COMPUTER WINS!!"

1010 CALL CLEAR 1330 PRINT

1020 BB=INT(RND*6)+1 1340 PRINT

1030 PRINT AA;BB 1350 PRINT

1040 IF AA+BB>=A+B+C THEN 11 1360 INPUT "PRESS (ENTER) TO

00 PLAY AGAIN. ":ER$

1050 FOR TIM=1 TO 500 1370 GOTO 1430

1060 NEXT TIM 1380 PRINT

1070 CALL CLEAR 1390 PRINT

1080 CC=INT(RND*6)+1 1400 PRINT

1090 PRINT AA;BB;CC 1410 PRINT "YOU WIN!!!"

1100 PRINT 1420 GOTO 1330

1110 PRINT 1430 A=0

151

Listing continued.

1440 B=0

1450 C=0

1460 AA=0

SPIN THE BOTTLE

Here is the perfect Spin the Bottle game.
It is designed to be played by two couples
whose names are input at the beginning. Un
like the conventional Spin the Bottle game, the
computer determines who will kiss who, and it
always matches the immediate participants up
on a boy/girl basis. This game uses a bit of
on-screen graphics to point to the names of the
players who are to kiss. The names of the girls

Listing 25. Spin the Bottle

s

5RLLY SUE

100 REM SPIN THE BOTTLE

110 REM COPYRIGHT FREDERICK
HOLTZ AND ASSOCIATES

120 REM 4/28/83

152

1470

1480

1490

BB=0

CC=0

GOTO 410

are input first, and these will appear on the
screen at the left and right hand sides. The
boys' names will appear vertically at the top
and bottom. This arrangement forms a crude
circle. When you press the enter key, the spin
occurs, and a two-headed pointer will indicate
the names of those persons who can kiss. Any
combination is possible, but it will always be
on a boy/girl basis, provided that the names
were properly input at the beginning.

130 REM PROGRAM RUNS IN TI-

BASIC

140 CALL CLEAR

150 PRINT "WELCOME TO THE GA
ME OF"

160 PRINT

170 PRINT "SPIN THE BOTTLE W
HICH RE-"

180 PRINT

190 PRINT "QUIRES FOUR PLAYE
RS, TWO"
200 PRINT

210 PRINT "GIRLS AND TWO BOY

S. YOU"

220 PRINT

230 PRINT "WILL BE PROMPTED

TO INPUT"

240 PRINT

250 PRINT "THE NAME OF EACH
PLAYER"

Listing continued.

260 PRINT

270 PRINT "AND THEN THE COMP

UTER WILL"

280 PRINT

290 PRINT "SPIN A GRAPHIC BO

TTLE WHICH"

300 PRINT

310 PRINT "WILL POINT TO TWO

PLAYERS."

320 PRINT

330 PRINT "AT THIS POINT THE

TWO MAY"

340 PRINT

350 PRINT "KISS. TO SPIN AGA

IN, SIMPLY"
360 PRINT

370 PRINT "PRESS (ENTER)."
380 FOR TD=1 TO 2000
390 NEXT TD

400 RANDOMIZE

410 CALL CLEAR
420 PRINT "FIRST GIRL'S NAME
IS"

430 INPUT A$
440 CALL CLEAR
450 PRINT "SECOND GIRL'S NAM
E IS"

460 INPUT B$
470 CALL CLEAR
480 PRINT "FIRST BOY'S NAME
IS"
490 INPUT C$
500 CALL CLEAR
510 PRINT "SECOND BOY'S NAME
IS"

520 INPUT D$
530 CALL CLEAR

540 A=LEN(A$)

550 B=LEN(B$)
560 C=LEN(C$)
570 D=LEN(D$)
580 FOR X=l TO A

590 AA=ASC(SEG$(A$,X,1))
600 CALL HCHAR(10,X+2,AA)
610 NEXT X

620 FOR X=l TO B

630 BB=ASC(SEG$(B$,X,1))
640 CALL HCHAR(10,X+23,BB)
650 NEXT X

660 FOR X=l TO C

670 CC=ASC(SEG$(C$,X,1))
680 CALL HCHAR(X,17,CC)
690 NEXT X

700 FOR X=l TO D

710 DD=ASC(SEG$(D$,X,1))
720 CALL HCHAR(X+16,17,DD)
730 NEXT X

740 CALL CHAR(33,"FFFFFFFFFF
FFFFFF")
750 SA=INT(RND*2)+1
760 IF SA=1 THEN 770 ELSE 79

0

770 1=7

780 GOTO 800

790 1=10

800 SB=INT(RND*2)+1
810 IF SB=1 THEN 820 ELSE 84

0

820 K=18

830 GOTO 850

840 K=13

850 CALL VCHAR(I,17,33,4)
860 CALL HCHAR(10,K,33,4)
870 INPUT ER$
880 GOTO 530

153

U-BOAT

U-Boat is a simple arcade-like program
that graphically displaysablueoceanandaship
moving across its surface. The player assumes
the position of U-boat captain and is allowed
three torpedoes to try and sink the ship. This
game involves a bit of intuitiveness, as the path
of the torpedoes is controlled randomly. How
ever, these random paths fall within a certain
confinedarea, andafter you've playedthe game
awhile, it is possible to get higher scores based
on the torpedo path patterns experienced pre
viously. The torpedoes are fired by pressing

Listing 26. U-Boat

any key on the keyboard, and you will see the
path of each as it travels through the water
toward the ship. The ship must be struck dead
center in order to score a kill. When this oc
curs, you will hear the explosion. Later, the
screen will clear and a new ship and ocean will
appear, giving you a chance to make another
kill. If the ship makes it from one side of the
screen to the other, the screen clears and
another pass begins. This is a very simple
game, but it is quite pleasurable and can pro
vide many hours of enjoyment to both adults
and children alike.

100 REM U-BOAT

110 REM COPYRIGHT FREDERICK

HOLTZ AND ASSOCIATES

120 REM 4/26/83

130 REM PROGRAM RUNS IN TI-B
ASIC

140 CALL CLEAR

150 PRINT "THIS IS THE GAME OF U-BOAT"

154

Listing continued.

160 PRINT

170 PRINT "WHERE YOU ARE THE

CAPTAIN"

180 PRINT

190 PRINT "OF A SUBMARINE. T

HE OBJECT"

200 PRINT

210 PRINT "OF THE GAME IS TO

BLOW THE"

220 PRINT

230 PRINT "ENEMY SHIPS OUT 0

F THE WATER"

240 PRINT

250 PRINT "AS THEY PASS BY.

YOU GET"

260 PRINT

270 PRINT "THREE TORPEDOS PE

R SHIP."

280 PRINT

290 PRINT "FIRE THEM BY PRES

SING ANY"

300 PRINT

310 PRINT "KEY. GOOD HUNTING

320 PRINT

330 PRINT

340 PRINT "PRESS (ENTER) TO
BEGIN."

350 INPUT ENT$
360 CALL CLEAR

370 CALL COLOR(1,7,1)
380 CALL COLOR(5,5,5)
390 CALL SCREEN(4)
400 CALL CHAR(33,"FFFFFFFFFF
FFFFFF")
410 CALL CHAR(34,"0000000000
000000")
420 CALL CHAR(65,"FFFFFFFFFF
FFFFFF")

430 FOR D=ll TO 24

440 CALL HCHAR(D,1,65,32)
450 NEXT D

460 RANDOMIZE

470 FOR X=l TO 31

480 CALL SOUND(200,-4,2)
490 FR=INT(RND*9)+1
500 CALL HCHAR(10,X,33,2)
510 FOR Y=l TO 5

520 NEXT Y

530 CALL KEY(0,Z,RD)
540 IF RD=0 THEN 720 ELSE 55

0

550 CT=CT+1

560 IF CT > 3 THEN 720

570 CALL SOUND(1000,-8,3)
580 FOR TORP=l TO 14

590 CALL HCHAR(25-TORP,TORP+
FR,32)
600 FOR TY=1 TO 5

610 NEXT TY

620 NEXT TORP

630 IF TORP+FR=X+l THEN 640

ELSE 720

640 CALL CLEAR

650 CALL SCREEN(2)
660 CALL SOUND(1500,-7,0)
670 FOR TI=1 TO 250

680 NEXT TI

690 CALL SCREEN(4)
700 CT=0

710 GOTO 430

720 CALL HCHAR(10,X,34,2)

FFFFFFF 730 FOR Y=l TO 5

740 NEXT Y

0000000 750 NEXT X

760 CALL CLEAR

FFFFFFF 770 CT=0

780 GOTO 430

155

DEMOLITION DERBY

This is a fairly longand complex program
thatsimulates ademolition derby comprised of
four automobiles. The automobiles will be col
ored red, green, yellow, and blue, and up to
four players can each choose a car as their own.
When the program is run, these tiny au
tomobiles will appear on the screen for a few
seconds, disappear, andthen reappear in a dif
ferent location. If two automobiles come in
close contact with each other, there will be a
crash sound, and one of them will disappear
from the screen. The sequence keepsupuntil
onlyone automobileis left. The playerwhohas
chosen this color is the winner. Sometimes,

Listing 27. Demolition Derby

100 REM DEMOLITION DERBY

110 REM COPYRIGHT FREDERICK
HOLTZ AND ASSOCIATES

120 REM 5/2/83
130 REM PROGRAM RUNS IN TI-

BASIC

140 RANDOMIZE

156

two automobiles will remain on the screen and
never seem to damage each other. If you be
come tired of waiting, you canalways declare
the run a draw and start over again. Some
times, two automobiles will collide without
damaging each other severely enough to take
one out of the game. Also, there is the possi
bilitythatan automobile which waspreviously
damaged (slightly) will suddenlyoverheat and
be taken out.

This game depends solely upon random
chance to take automobiles out of the running
and determineawinner.All the playershaveto
do is select a color, start the program, and sit
back and wait.

150 CALL

160 CALL

170 CALL

180 CALL

190 CALL

200 CALL

FE6600")
210 CALL

FE6600")
220 CALL

FE6600")
230 CALL

FE6600")
240 CALL

000000")
250 RR=33

260 SS=43

270 TT=53

280 UU=63

290 IF WR

CLEAR

COLOR(l,7,l)
COLOR(2,11,1)
COLOR(3,13,l)
COLOR(4,5,l)
CHAR(33,"0066FEFFFF

CHAR(43,"0066FEFFFF

CHAR(53,"0066FEFFFF

CHAR(63,"0066FEFFFF

CHAR(34,"0000000000

=1 THEN 320

Listing continued.

300 A=INT(RND*20)+1 590 IF ABS(BB-DD)< 2 THEN 117
310 AA=INT(RND*20)+5 0 ELSE 600

320 IF WS=1 THEN 350 600 IF ABS(C-D)< 2 THEN 610 E
330 B=INT(RND*20)+1 LSE 620

340 BB=INT(RND*20)+5 610 IF ABS(CC-DD)< 2 THEN 128
350 IF WT=1 THEN 380 0

360 C=INT(RND*20)+1 620 FOR DLAY=1 TO 250

370 CC=INT(RND*20)+5 630 NEXT DLAY

380 IF WU=1 THEN 410 640 IF WR=1 THEN 660

390 D=INT(RND*20)+1 650 CALL HCHAR(A,AA,34)
400 DD=INT(RND*20)+5 660 IF WS=1 THEN 680

410 CALL CLEAR 670 CALL HCHAR(B,BB,34)
420 IF WR=1 THEN 440 680 IF WT=1 THEN 700

430 CALL HCHAR(A,AA,RR) 690 CALL HCHAR(C,CC,34)
440 IF WS=1 THEN 460 700 IF WU=1 THEN 720

450 CALL HCHAR(B,BB,SS) 710 CALL HCHAR(D,DD,34)
460 IF WT=1 THEN 480 720 GOTO 290

470 CALL HCHAR(C,CC,TT) 730 CALL SOUND(700,-6,0)
480 IF WU=1 THEN 500 740 FOR DLAY=1 TO 250

490 CALL HCHAR(D,DD,UU) 750 NEXT DLAY

500 IF ABS(A-B)< 2 THEN 510 E 760 W=INT(RND*2)+1
LSE 540 770 IF W=l THEN 780 ELSE 810

510 IF ABS(AA-BB)< 2 THEN 730 780 WR=1

ELSE 540 790 AA=100

520 IF ABS(A-C)< 2 THEN 530 E 800 GOTO 290

LSE 540 810 WS=1

530 IF ABS(AA-CC)< 2 THEN 840 820 BB=105

ELSE 540 830 GOTO 290

540 IF ABS(A-D)< 2 THEN 550 E 840 CALL SOUND(700,-6,0)
LSE 560 850 FOR DLAY=1 TO 250

550 IF ABS(AA-DD)< 2 THEN 950 860 NEXT DLAY

ELSE 560 870 W=INT(RND*2)+1
560 IF ABS(B-C)<2 THEN 570 E 880 IF W=l THEN 890 ELSE 920

LSE 580 890 WR=1

570 IF ABS(BB-CC)< 2 THEN 106 900 AA=100

0 ELSE 580 910 GOTO 290

580 IF ABS(B-D)<2 THEN 590 E 920 WT=1

LSE 600 930 CC=110

157

Listing continued.

940 GOTO 290 1160 GOTO 290

950 CALL SOUND(700,-6,0) 1170 CALL SOUND(700,-6,0)
960 FOR DLAY=1 TO 250 1180 FOR DLAY=1 TO 250
970 NEXT DLAY 1190 NEXT DLAY

980 W=INT(RND*2)+1 1200 W=INT(RND*2)+1
990 IF W=l THEN 1000 ELSE 10 1210 IF W=l THEN 1220 ELSE 1

30 250

1000 WR=1 1220 WS=1

1010 AA=100 1230 BB=105

1020 GOTO 290 1240 GOTO 290

1030 ws=a 1250 WT=1

1040 BB=105 1260 CC=110

1050 GOTO 290 1270 GOTO 290

1060 CALL SOUND(700,-6,0) 1280 CALL SOUND(700,-6,0)
1070 FOR DLAY=1 TO 250 1290 FOR DLAY=1 TO 250

1080 NEXT DLAY 1300 NEXT DLAY

1090 W=INT(RND*2)+1 1310 W=INT(RND*2)+1
1100 IF W=l THEN 1110 ELSE 1 1320 IF W=l THEN 1330 ELSE 1360

140 1330 WS=1

1110 WR=1 1340 BB=105

1120 AA=100 1350 GOTO 290

1130 GOTO 290 1360 WU=1

1140 WU=1 1370 DD=120

1150 DD=120 1380 GOTO 290

GUNNERY

This program has been around in various
forms for a long time and is also known as
Artillery, Gunner, Tanks, Azimuth, and many
other names. This one was originally written
for the TRS-80, but has been modified to run
perfectly on the TI-99/4A. It is the culmination
of many programs I have seen in the past and
includes some special innovations that were
included in The A to Z Book of Computer
Games, by Thomas Mclntire, (published by

158

TAB BOOKS Inc.). The mathematics involved
are unimportant, and here's how the game is
played.

The player assumes the role of gunnery
officer and is firing at a target, which is a
maximum of 60,000 meters distant. The
player's objective is to strike the target by
landing a shell within 100 meters of it. This is
done by raising or lowering the hypothetical
gun barrel. Elevation is input by the player in
degrees and fractions of degrees. After you

raise or lower the barrel, a shot is fired and the
computer spots the shell impact area, telling
you whether it was long or short and by how
much. By using these readings, you should be
able to zero in on the target and blow it up. At
the end of the explosion sequence, you will be
informed as to the number of shots it took to

score the hit. The player with the fewest shots
is the winner.

This is a game of skill and intelligence.
The actual distance selected at the start of the

program is determined by random chance.
However, based upon this distance figure, the
player must use logic to determine the barrel
elevation. As you play this game more and

more, you will become more adept at as
sociating certain distances with certain spe
cific elevations. Thus, your scores will im
prove as the number of shots you take de
creases.

Most programs of this type do not include
sound effects. However, this one does. Each
time you input an elevation and press the enter
key, you will hear the sound of the shot being
fired; andwhen you strike the target, an explo
sion will be heard and the screen will go black
for a few seconds. This is a very startling
effect, so this type of program will probably
hold the player's interest for a longer period
than one without such effects.

Listing 28. Gunnery

100 REM GUNNERY 240 PRINT "THIS, YOU MUST CO
110 REM COPYRIGHT FREDERICK NSIDER"

HOLTZ AND ASSOCIATES 250 PRINT

120 REM 5/1/83 260 PRINT "THE RANGE AND INP

130 REM PROGRAM RUNS IN TI- UT THE"

BASIC 270 PRINT

140 CALL CLEAR 280 PRINT "PROPER ELEVATION

150 CALL CLEAR WHICH11

160 PRINT "WELCOME TO THE GA 290 PRINT

ME OF GUN-" 300 PRINT "IS OFTEN A DECIMA

170 PRINT L SUCH AS"

180 PRINT "NERY. YOU ARE THE 310 PRINT

GUNNERY" 320 PRINT "65.3 FOR INSTANCE

190 PRINT . THE COM-'

200 PRINT "OFFICER AND ARE T 330 PRINT

0 FIRE ON" 340 PRINT "PUTER WILL TELL Y

210 PRINT OU WHETHER"

220 PRINT "A DISTANT TARGET. 350 PRINT

TO DO" 360 PRINT "YOUR SHOT IS LONG

230 PRINT OR SHORT"

159

Listing continued.

370 PRINT 670 CALL CLEAR

380 PRINT "AND BY HOW MANY M 680 PRINT "YOUR SHOT WENT ST
ETERS." RAIGHT UP!"

390 FOR DLAY=1 TO 2000 690 PRINT

400 NEXT DLAY 700 FOR 1=1 TO 10

410 CALL CLEAR 710 FOR DLAY=1 TO 150

420 PRINT "WHEN YOU STRIKE T 720 NEXT DLAY

HE TARGET,1 i

730 PRINT TAB(15);"."
430 PRINT 740 CALL SOUND(100,1500,0)
440 PRINT "THE COMPUTER WILL 750 NEXT I

TELL YOU" 760 PRINT TAB(13);"BOOM!!"
450 PRINT 770 FOR DLAY=1 TO 50

460 PRINT "HOW MANY SHOTS YO 780 NEXT DLAY

U FIRED." 790 CALL SOUND(2000,-6,0)
470 PRINT 800 CALL SCREEN(1)
480 PRINT "GOOD LUCK!!!" 810 FOR DLAY=1 TO 100

490 PRINT 820 NEXT DLAY

500 PRINT 830 CALL SCREEN(8)
510 PRINT 840 CALL CLEAR

520 PRINT "PRESS (ENTER) TO 850 GOTO 610

CONTINUE." 860 CALL CLEAR

530 INPUT ER$ 870 PRINT "THAT SHOULD MAKE
540 RANDOMIZE YOU A HERO!"

550 Y=59000-INT(RND*24000)+1 880 PRINT "THAT ROUND MIGHT
560 CALL CLEAR HIT MARS!"

570 PRINT "MAXIMUM RANGE IS 890 C=l

60,000" 900 FOR DLAY=1 TO 750

580 PRINT "METERS. DISTANCE 910 NEXT DLAY

TO TARGET" 920 GOTO 840

590 PRINT "IS";Y;"METERS." 930 CALL CLEAR

600 PRINT 940 PRINT TAB(3);"NEWS FLASH
610 PRINT "ELEVATION" jjI"

620 INPUT E 950 PRINT

630 CALL SOUND(250,-6,0) 960 PRINT

640 NJ=NJ+1 970 PRINT "MARS STRUCK"
650 IF E<85 THEN 1040 980 PRINT "BY MYSTERY PROJEC
660 IF E>95 THEN 860 TILE!!"

160

Listing continued.

990 PRINT 1200 CALL SCREEN(8)

1000 C=0 1210 PRINT "TARGET DESTROYED !!!"

1010 RETURN 1220 PRINT

1020 PRINT "ILLEGAL!!" 1230 PRINT

1030 GOTO 840 1240 PRINT

1040 IF C<>1 THEN 1060 1250 PRINT

1050 GOSUB 930 1260 PRINT "YOU FIRED";NJ;"R

1060 IF E<1 THEN 1020 OUNDS!!"

1070 E2«2*E/57.2958 1270 PRINT

1080 J=60000*SIN(E2) 1280 PRINT

1090 N=Y-J 1290 PRINT

1100 D=INT(N) 1300 INPUT "PRESS (ENTER) TO

1110 IF ABS(D)< 100 THEN 1140 CONTINUE":ER$

1120 IF Y-J<0 THEN 1330 1310 NJ=0

1130 IF Y-J > 0 THEN 1350 1320 GOTO 560

1140 CALL CLEAR 1330 PRINT "SHORT BY";ABS(D)

1150 CALL SOUND(4000,-6,0) ;"YARDS"
1160 CALL SCREEN(2) 1340 GOTO 610

1170 FOR DLAY=1 TO 850 1350 PRINT "LONG BY";ABS(D);
1180 NEXT DLAY "YARDS"

1190 CALL CLEAR 1360 GOTO 610

CRYPTO

Crypto is a decoding game in which the
computer substitutes a different letter for each
letter in the alphabet. Short sentences or
phrases included in data statements within the
program are then encoded and displayed on the
screen. The player is to figure out the code and
then type the decoded message using the
keyboard. The computer will then examine the
answer given by the player and indicate
whether it is right or wrong. If it is incorrect,
the correct message will also be displayed.

Code deciphering games have been popu

lar for hundreds of years, and even today syn
dicated columns that supply code games ap
pear in many American newspapers. This one
works very much like the printed games, and
the computer is used to come up with an infi
nite number of coding structures.

This game uses a randomly selected sub
stitution code. This means that one letter of

the alphabet is substituted for another. For
instance, the word HELLO may appear as
RHUUQ. Here, the R is substituted for the
letter H, the H for the letter E, the U for the
letter L, and the Q for the letter O. Notice that
in the word HELLO, the two Ls are rep-

161

resented by two Us. The substitution holds
true throughout the entire mystery phrase. In
other words, if U represents the letter L in one
word, U will always represent the letter L. A
substitution code should not be confused with

what is often called a midpoint code. This lat
ter coding method follows the logical progres
sion of the alphabet. However, instead of start
ing with A, the coded alphabetmay start wth S.
Given this midpoint coding example, the letter
B would then be represented by the letter T,
the letter C by the letter U, and so forth. When
the end of the midpoint code alphabet is
reached at the coded letter Z, the next real
letter will be represented by the code letter A
and then B, and so forth.

This program uses the RND function of TI
BASIC to randomly select a substitute letter
forevery letter of the standardalphabet.There
is no pattern to this selection other than ran
dom chance, so midpoint coding is not in effect,
and midpoint deciphering techniques will not
work. You can, however, gain clues from
words that contain apostrophes and also from
the repetition of letters in any coded phrase.
Also, a single letter that begins a sentence,

Listing 29. Crypto.

162

such as A BOY RAN DOWN THE STREET,
can give you a clue to the code. The letter A in
this sentence might be coded with the letter T.
However, it is used alone, so you might as
sume that the letter is either an I, as in I RAN
DOWN THE STREET, or an A, as in the
example above. These are the only two letters
in the alphabet thatmaybe used individually in
a sentence. From this point on, you should
examine the shortest words and then go on to
the longest. Some codes may be deciphered in
five or ten minutes, while others may take you
an hour or more. Each time you run the pro
gram, the same messages contained in the data
statements will be coded in a different manner.

It is quite easy to remove the data state
ments and allow a phrase to be input in plain
language via the keyboard. This message,
which would be represented by R$, would then
be put through the standard coding process.
This modification would involve two players,
one who will input the message to be coded and
the other who would tackle the deciphering
assignment. On the next turn, the players
would switch roles.

Here's how the programworks. Lines 100

100 REM CRYPTO

110 REM COPYRIGHT FREDERICK

HOLTZ AND ASSOCIATES

120 REM 6/4/83
130 REM PROGRAM RUNS IN TI-B

ASIC

140 CALL CLEAR

150 PRINT "WELCOME TO THE CR

YPTOGRAPHY"

160 PRINT

Listing continued .

170 PRINT "GAME CALLED 'CRYP 430 PRINT

TO1." 440 PRINT "PRESS (ENTER) TO

180 PRINT CONTINUE."

190 PRINT "A SHORT, ENCRYPTE 450 INPUT GH$

D PHRASE" 460 CALL CLEAR

200 PRINT 470 PRINT " COMPUTI

210 PRINT "WILL APPEAR ON TH NG"

E SCREEN" 480 PRINT

220 PRINT 490 PRINT

230 PRINT "WHICH YOU MUST DE 500 PRINT

CODE. THE" 510 PRINT

240 PRINT 520 PRINT

250 PRINT "PHRASE IS ENCODED 530 PRINT

USING" 540 PRINT

260 PRINT 550 PRINT

270 PRINT "A SIMPLE SUBSTITU 560 PRINT

TION CODE" 570 PRINT

280 PRINT 580 RANDOMIZE

290 PRINT "SUPPLIED BY THE C 590 DIM A(26)

OMPUTER." 600 DIM B(26)

300 FOR DLAY=1 TO 1000 610 FOR X=l TO 26

310 NEXT DLAY 620 A(X)=X+64

320 PRINT 630 NEXT X

330 PRINT "THE CODING METHOD 640 I=INT(RND*26)+1

IS DIFFER-
,m 650 IF A(I)=0 THEN 640

340 PRINT 660 Z=Z+1

350 PRINT "ENT EACH TIME. TY 670 B(Z)=A(I)

PE IN YOUR1 i 680 A(I)=0

360 PRINT 690 IF Z=26 THEN 710

370 PRINT "DECODED PHRASE AN 700 GOTO 640

D THE COM-" 710 Z=0

380 PRINT 720 CALL CLEAR

390 PRINT "PUTER WILL TELL Y 730 READ R$

OU IF IT" 740 W=LEN(R$)

400 PRINT 750 FOR C=l TO W

410 PRINT "IS CORRECT. GOOD 760 D$=SEG$(R$,C,1)

LUCK!" 770 IF D$="." THEN 1070

420 PRINT 780 IF D$="?" THEN 1070

163

Listing continued.

790 IF D$=",M THEN 1070 1170 PRINT CHR$(B(5));
800 IF D$=" " THEN 1070 1180 GOTO 1600

810 IF D$="A" THEN 1090 1190 PRINT CHR$(B(6));
820 IF D$="B" THEN 1110 1200 GOTO 1600
830 IF D$="C" THEN 1130 1210 PRINT CHR$(B(7));
840 IF D$="D" THEN 1150 1220 GOTO 1600
850 IF D$="E" THEN 1170 1230 PRINT CHR$(B(8));
860 IF D$="F" THEN 1190 1240 GOTO 1600

870 IF D$="G" THEN 1210 1250 PRINT CHR$(B(9));
880 IF D$="H" THEN 1230 1260 GOTO 1600

890 IF D$="I" THEN 1250 1270 PRINT CHR$(B(10));
900 IF D$="J" THEN 1270 1280 GOTO 1600

910 IF D$="K" THEN 1290 1290 PRINT CHR$(B(11));
920 IF D$="L" THEN 1310 1300 GOTO 1600

930 IF D$="M" THEN 1330 1310 PRINT CHR$(B(12));
940 IF D$="N" THEN 1350 1320 GOTO 1600

950 IF D$="0" THEN 1370 1330 PRINT CHR$(B(13));
960 IF D$="P" THEN 1390 1340 GOTO 1600

970 IF D$="Q" THEN 1410 1350 PRINT CHR$(B(14));
980 IF D$="R" THEN 1430 1360 GOTO 1600

990 IF D$="S" THEN 1450 1370 PRINT CHR$(B(15));
1000 IF D$="T'' THEN 1470 1380 GOTO 1600

1010 IF D$="U'' THEN 1490 1390 PRINT CHR$(B(16));
1020 IF D$="Vf THEN 1510 1400 GOTO 1600

1030 IF D$="Wf THEN 1530 1410 PRINT CHR$(B(17));
1040 IF D$="X' THEN 1550 1420 GOTO 1600

1050 IF D$="Yf THEN 1570 1430 PRINT CHR$(B(18));
1060 IF D$="Z' THEN 1590 1440 GOTO 1600

1070 PRINT D$; 1450 PRINT CHR$(B(19));
1080 GOTO 1600 1460 GOTO 1600

1090 PRINT CHR$(B(1)); 1470 PRINT CHR$(B(20));
1100 GOTO 1600 1480 GOTO 1600

1110 PRINT CHR$(B(2)); 1490 PRINT CHR$(B(21));
1120 GOTO 1600 1500 GOTO 1600

1130 PRINT CHR$(B(3)); 1510 PRINT CHR$(B(22));
1140 GOTO 1600 1520 GOTO 1600

1150 PRINT CHR$(B(4)); 1530 PRINT CHR$(B(23));
1160 GOTO 1600 1540 GOTO 1600

164

Listing continued.

1550 PRINT CHRS(B(24)); 1870 GOTO 2030

1560 GOTO 1600 1880 CALL CLEAR

1570 PRINT CHRS(B(25)); 1890 DATA HELLO. HOW ARE YOU

1580 GOTO 1600 ?

1590 PRINT CHR$(B(26)); 1900 DATA THE AIR IS FINE.

1600 NEXT C 1910 DATA SEVEN SONS WALKED

1610 PRINT TALL.

1620 PRINT 1920 DATA IS THIS THE RIGHT

1630 PRINT HOUSE?

1640 PRINT 1930 DATA DON'T YOU KNOW HOW

1650 PRINT ?

1660 PRINT "TYPE IN THE]DECI 1940 DATA HELEN DID NOT KNOW

PHERED" .

1670 PRINT 1950 DATA HE CAME ANYWAY.

1680 PRINT "MESSAGE." 1960 DATA WALK. DON'T RUN.
1690 PRINT 1970 DATA DAISEY'S DOG'S DIN
1700 PRINT NER

1710 INPUT QW$ 1980 DATA COLOR OR BLACK AND

1720 CALL CLEAR WHITE?

1730 IF QW$=R$ THEN 1830 ELS 1990 DATA THE RAINS CAME.

E 1740 2000 DATA NOWHERE BUT IN AME

1740 PRINT "INCORRECT ANSWER RICA.

!!" 2010 DATA A NOVA IN THE DARK

1750 CALL SOUND(200,-3,0) 2020 DATA THE WALLS HAVE EAR

1760 PRINT S.

1770 PRINT 2030 PRINT

1780 PRINT "THE CORRECT ANSW 2040 PRINT

ER IS 2050 PRINT "PLAY AGAIN(Y/N)"
1790 PRINT 2060 PRINT

1800 PRINT 2070 INPUT AY$
1810 PRINT R$ 2080 IF AYS="Y" THEN 460

1820 GOTO 2030 2090 IF AYS="N" THEN 2110

1830 PRINT R$ 2100 GOTO 2050

1840 PRINT 2110 CALL CLEAR

1850 PRINT "IS A CORRECT ANS 2120 PRINT "THANKS FOR PLAYI

WER!!
it

NG."

1860 CALL SOUND(250,1500 •0) 2130 END

165

through 450 initialize the screen and print a
short description of how the game is played.
Lines 440 and 450 prompt the player to press
the enter key to continue and then accept the
input. Line 460 clears the screen again, and
COMPUTING is printed at the center of the
screen. Lines 480 through 570 scroll the word
to the exact center. This routine was included
because there is a time lag of 15 to 20 seconds
while the program arrays are being initialized.
This prompt lets the player know that the
program is working and to stand by.

The randomize statement is included in
line 580 to allow the RND function to return a
random pattern of numbers. Without the ran
domize statement, the same code will be used
each time the program is rerun. Two arrays are
established in lines 590 and 600. Array A con
tains the ASCII code numbers for the letters of
the alphabet in order from A to Z. Array B will
contain the substitution code (again, given in
ASCII code numbers), which will be used to
encode the data statement messages.

Lines 610 through 630 feed in the sequen
tial alphabet to array A. In line 610, the vari
able X counts from 1 to 26 (the number of
letters in the alphabet). Line 620assigns each
array position the value of X plus 64. In other
words, the first array position willbe occupied
by the number 65 (X + 64), which is the ASCII
code for the capital letter A. Onthe next cycle
of the loop, position 2 in array A will be oc
cupied by the number 66, the ASCII code for
the capital letter B. When the loop times out,
the ASCII codes for the letters A through Z
have been fed to array A.

At this point, line 640 assigns a random
numberfrom 1 to 26 to variable I. Skipline 650
for the time being. Line 660 is a simple count

166

line that assigns the letter Z to a value equal to
itself plus 1. Each time line 660 is executed, Z
willstep its value by 1. Line 670begins feeding
information to array B. The first position of
array B will be filled by the letter contained in
position I of array A. If I is equal to 26, the first
position of array B will be assigned to the
letter Z. In this example, the standard letter A
will be substituted by the coded letter Z. Line
680 reassigns position I in array A to the value
of zero (0). Skip line 690 for the time being.
Line 700 branches to line 640, where another
random number is assigned to variable I. Here
is where line650comesintoplay. It checksfor
a valueofI that has been previouslyoutputby
the random number generator. In this case,
position A(I) will have been previously as
signed a value of zero (O). When this is the
case, there is a branch back to line 640 in order
to pick up another random number. What line
650 effectively does is tell the computer "This
number has been used before, so send me
another one." Notice that this branch back
takes place before line 660 is executed, so Z is
not increased until an unused random number
isgenerated. When Zisequal to26, thearray B
has been completely filled with the substitu
tion code. Line 690 detects the value of 26 for
the variable Z and branches to line 710. Here, Z
is reassigned the value of zero (0) in order to
set up for the next substitution code, which
will be established after the player has input
his or her guess. Line 720 clears the screen
again.

Line 730 reads the first data statement
line, which contains the message to be en
coded. Line 740 assigns the number of charac
ters and spaces contained in the data statement
line to the variable W. In line 750 a for-next

loop that counts from 1 to W is entered. Line
760 assigns the first character in the data line
to the string variable D$ and then steps by one
character at a time each time the loop is cycled.
The SEG$ function is used to read each letter,
space, and punctuation mark contained in the
data statement line on an individual basis. Re

member, the loop will count from 1 to the
required number of cycles to read the entire
datamessage. Lines 770 through 1060perform
the encoding function. If D$is equalto aperiod
(.), question mark (?), apostrophe ('), or space
(), lines 770 through 800 will detect this condi
tion and will branch to line 1070. This line
simply prints D$ on the screen. In other words,
periods, question marks, apostrophes, and
spaces contained in the data statement line will
not be encoded. The letters of the alphabet,
however, are handled in a completely different
manner.

Let's assume that the first letter in the

data statement phrase is an A. Line 810 detects
this and branches to line 1090. Here, there is
an instruction to print the letter equivalent of
the ASCII code found in array B at position 1:
PRINT CHR$(B(1));. Whatever letter has
been assigned to position 1 of array B will
always represent the letter A. There is then a
branch to line 1600, which causes the loop to
recycle.

Any other letters will be treated in the
same manner, except that there will be
branches to different lines for each different
letter. When this loop times out, all of the
characters contained in the original data
statement line will have been printed on the
screen in encoded form. Lines 1610 through
1650 cause the coded message to be scrolled
toward the center of the screen, while line

1660 begins printing the prompt telling the
player to type in his deciphered message.

The deciphered message is input at line
1710and is assigned to the variable QW$. Line
1720 then clears the screen, while line 1730
compares the player's input with the original
data statement line represented by R$. If the
two are equal, there is a branch to line 1830,
which prints R$ on the screen. Subsequent
lines print the fact that this is the correct an
swer. Line 1860 uses the Call Sound subpro-
gramtoproduce apleasing note output from the
monitor speaker. There is then a branch to line
2030, which eventually brings about the PLAY
AGAIN prompt, allowing you to have another
message displayed using a completely diff
erent code.

In line 1730, if QW$ is not equal to R$,
there is a branch to line 1740, which displays
the fact that your answer is incorrect, and an
unpleasant sound is produced in line 1750.
Line 1780 prints THE CORRECT ANSWER
IS:. Line 1810 then prints R$, which is the
correct answer. Again, there is a branch to line
2030, which asks if you want to play again. Line
2070 receives the player input at this point,
which should be either Y or N. If a Y is input,
indicating that you do wish to play again, line
2080 branches to line 460, where the screen is
cleared and the two arrays are once again ini
tialized. This time, however, array B will con
tain a different coding structure because of the
use of the RND function. If the player does not
wish to play again, he or she inputs the letter
N. This causes line 2090 to branch to line 2110,
where the exit message is displayed. If neither
Y or N is input, line 2100 simply branches back
to the PLAY AGAIN prompt.

This is an efficient program and offers an

167

almost limitless number of encoding pos
sibilities. Most programmers will want to
change or modify the fourteen data lines in
cluded in lines 1890 through 2020. You can
certainly add as many data lines as you want,
and you can change the message in any man
ner. Do not use any punctuation marks other
than the period, question mark, or apostrophe.
These will simply delay the time it takes to
display the encoded message. If you wish to
use exclamation points, quotation marks, etc.,
these can be included by simply adding more
lines between the present lines 770 and 790,
which assign D$ to these characters and then
branch to line 1070 to print D$ as it is.

This program does not contain a routine
to detect the end of the last data message.
Therefore, after you have gone through the
fourteen data statements provided, an error
message will occur when you attempt the fif

Listing 30. Morse Code

MORSE

100 REM MORSE PUZZLER

110 REM COPYRIGHT FREDERICK
HOLTZ AND ASSOCIATES

120 REM 6/6/83

168

teenth run. If you wish, you can add one more
data statement line at the end of those already
provided. This line should contain the word
END. Then, add a line 735 that reads IF
R$="END" THEN 2110. When the word END
is detected, the branch to line 2110 will clear
the screen, and the exit message will appear.

MORSE PUZZLER

Morse Puzzler is an educational game
that canhelp youlearn Morse Codeor improve
your skills in this communications medium.
The program uses several plain text data
statement lines and outputs the letter informa
tion in Morse Code using the Call Sound sub
program in TI BASIC. The dots and dashes are
heard from your monitor's speaker. The data
statement lines begin at program line 3650 and
can be altered to includeany type of message
you desire.

130 REM PROGRAM RUNS IN TI-

BASIC

140 CALL CLEAR

150 PRINT "THIS IS A MORSE C
ODE SKILL"

160

170

P YOU TO"

180 PRINT

190 PRINT "MASTER MORSE CODE
AND COM-"

200 PRINT

210 PRINT

SELF OR"

220 PRINT

PRINT

PRINT "GAME. IT WILL HEL

"PETE AGAINST YOUR

Listing continued.

230 PRINT "ANOTHER HUMAN PLA 530 IF C$="I" THEN 1550

YER AT" 540 IF C$="J" THEN 1620

240 PRINT 550 IF C$="K" THEN 1750

250 PRINT "THE SAME TIME. TH 560 IF C$="L" THEN 1850

E COMPUTER" 570 IF C$="M" THEN 1980

260 PRINT 580 IF C$="N" THEN 2050

270 PRINT "WILL TRANSMIT A S 590 IF C$="0" THEN 2120

ERIES IN" 600 IF C$="P" THEN 2220

280 PRINT 610 IF C$="Q" THEN 2350

290 PRINT "MORSE CODE. DECOD 620 IF C$="R" THEN 2480

E THE MES-" 630 IF C$="S" THEN 2580

300 PRINT 640 IF C$="T" THEN 2680

310 PRINT "SAGE AND THEN TYP 650 IF C$="U" THEN 2720

E IT IN." 660 IF C$="V" THEN 2820

320 PRINT 670 IF C$="W" THEN 2950

330 PRINT "THE COMPUTER WILL 680 IF C$="X" THEN 3050

TELL YOU" 690 IF C$="Y" THEN 3180

340 PRINT 700 IF C$="Z" THEN 3310

350 PRINT "IF YOUR DECODING 710 IF C$=" " THEN 3430 ELSE

IS CORRECT." 3450

360 PRINT 720 CALL SOUND(150,1500,3)
370 PRINT "PRESS (ENTER) TO 730 FOB. XX=1 TO 50

BEGIN." 740 NEXT XX

380 INPUT EW$ 750 CALL SOUND(350,1500,3)
390 CALL CLEAR 760 FOR. XX=1 TO 200

400 READ A$ 770 NEXT XX

410 IF A$="END" THEN 3850 780 GOTO 3450

420 L=LEN(A$) 790 CALL SOUND(350,1500,3)
430 FOR X=l TO L 800 FOR XX=1 TO 100

440 C$=SEG$(A$,X,1) 810 NEXT XX

450 IF C$="A" THEN 720 820 CALL SOUND(150,1500,3)
460 IF C$="B" THEN 790 830 FOR XX=1 TO 50

470 IF C$="C" THEN 920 840 NEXT XX

480 IF C$="D" THEN 1050 850 CALL SOUND(150,1500,3)
490 IF C$="E" THEN 1150 860 FOR XX=1 TO 50

500 IF C$="F" THEN 1190 870 NEXT XX

510 IF C$="G" THEN 1320 880 CALL SOUND(150,1500,3)
520 IF C$="H" THEN 1420 890 FOR XX=1 TO 200

169

Listing continued.

900 NEXT XX 1280 CALL SOUND(150,1500,3)
910 GOTO 3450 1290 FOR XX=1 TO 200

920 CALL SOUND(350,1500,3) 1300 NEXT XX

930 FOR XX=1 TO 100 1310 GOTO 3450

940 NEXT XX 1320 CALL SOUND(350,1500,3)
950 CALL SOUND(150,1500,3) 1330 FOR XX=1 TO 100

960 FOR XX=1 TO 50 1340 NEXT XX

970 NEXT XX 1350 CALL S0UND(350,1500,3)
980 CALL SOUND(350,1500,3) 1360 FOR XX=1 TO 100

990 FOR XX=1 TO 100 1370 NEXT XX

1000 NEXT XX 1380 CALL SOUND(150,1500,3)
1010 CALL SOUND(150,1500,3) 1390 FOR XX=1 TO 200

1020 FOR XX=1 TO 200 1400 NEXT XX

1030 NEXT XX 1410 GOTO 3450

1040 GOTO 3450 1420 CALL SOUND(150,1500,3)
1050 CALL SOUND(350,1500,3) 1430 FOR XX=1 TO 50

1060 FOR XX=1 TO 100 1440 NEXT XX

1070 NEXT XX 1450 CALL SOUND(150,1500,3)
1080 CALL SOUND(150,1500,3) 1460 FOR XX=1 TO 50

1090 FOR XX=1 TO 50 1470 NEXT XX

1100 NEXT XX 1480 CALL SOUND(150,1500,3)
1110 CALL SOUND(150,1500,3) 1490 FOR XX=1 TO 50

1120 FOR XX=1 TO 200 1500 NEXT XX

1130 NEXT XX 1510 CALL SOUND(150,1500,3)
1140 GOTO 3450 1520 FOR XX=1 TO 200

1150 CALL SOUND(100,1500,3) 1530 NEXT XX

1160 FOR XX=1 to 200 1540 GOTO 3450

1170 NEXT XX 1550 CALL SOUND(150,1500,3)
1180 GOTO 3450 1560 FOR XX=1 TO 50

1190 CALL SOUND(150,1500,3) 1570 NEXT XX

1200 FOR XX=1 TO 50 1580 CALL SOUND(150,1500,3)
1210 NEXT XX 1590 FOR XX=1 TO 200

1220 CALL SOUND(150,1500,3) 1600 NEXT XX

1230 FOR XX=1 TO 50 1610 GOTO 3450

1240 NEXT XX 1620 CALL SOUND(150,1500,3)
1250 CALL SOUND(350,1500,3) 1630 FOR XX=1 TO 50

1260 FOR XX=1 TO 100 1640 NEXT XX

1270 NEXT XX 1650 CALL SOUND(350,1500,3)

170

Listing continued.

1660 FOR XX=1 TO 100 2040 GOTO 3450

1670 NEXT XX 2050 CALL SOUND(350,1500,3)
1680 CALL SOUND(350,1500,3) 2060 FOR XX=1 TO 100

1690 FOR XX=1 TO 100 2070 NEXT XX

1700 NEXT XX 2080 CALL SOUND(150,1500,3)
1710 CALL SOUND(350,1500,3) 2090 FOR XX=1 TO 200

1720 FOR XX=1 TO 200 2100 NEXT XX

1730 NEXT XX 2110 GOTO 3450

1740 GOTO 3450 2120 CALL SOUND(350,1500,3)
1750 CALL SOUND(350,1500,3) 2130 FOR XX=1 TO 100

1760 FOR XX=1 TO 100 2140 NEXT XX

1770 NEXT XX 2150 CALL SOUND(350,1500,3)
1780 CALL SOUND(150,1500,3) 2160 FOR XX=1 TO 100

1790 FOR XX=1 TO 50 2170 NEXT XX

1800 NEXT XX 2180 CALL SOUND(350,1500,3)
1810 CALL SOUND(350,1500,3) 2190 FOR XX=1 TO 200
1820 FOR XX=1 TO 200 2200 NEXT XX

1830 NEXT XX 2210 GOTO 3450

1840 GOTO 3450 2220 CALL SOUND(150,1500,3)
1850 CALL SOUND(150,1500,3) 2230 FOR XX=1 TO 50

1860 FOR XX=1 TO 50 2240 NEXT XX

1870 NEXT XX 2250 CALL SOUND(350,1500,3)
1880 CALL SOUND(350,1500,3) 2260 FOR XX=1 TO 100

1890 FOR XX=1 TO 100 2270 NEXT XX

1900 NEXT XX 2280 CALL SOUND(350,1500,3)
1910 CALL SOUND(150,1500,3) 2290 FOR XX=1 TO 100
1920 FOR XX=1 TO 50 2300 NEXT XX

1930 NEXT XX 2310 CALL SOUND(150,1500,3)
1940 CALL SOUND(150,1500,3) 2320 FOR XX=1 TO 200
1950 FOR XX=1 TO 200 2330 NEXT XX

1960 NEXT XX 2340 GOTO 3450

1970 GOTO 3450 2350 CALL SOUND(350,1500,3)
1980 CALL SOUND(350,1500,3) 2360 FOR XX=1 TO 100
1990 FOR XX=1 TO 100 2370 NEXT XX

2000 NEXT XX 2380 CALL SOUND(350,1500,3)
2010 CALL SOUND(350,1500,3) 2390 FOR XX=1 TO 100

2020 FOR XX=1 TO 200 2400 NEXT XX

2030 NEXT XX 2410 CALL SOUND(150,1500,3)

171

Listing continued.

2420 FOR XX=1 TO 50

2430 NEXT XX

2440 CALL SOUND(350,1500,3)
2450 FOR XX=1 TO 200

2460 NEXT XX

2470 GOTO 3450

2480 CALL SOUND(150,1500,3)
2490 FOR XX=1 TO 50

2500 NEXT XX

2510 CALL SOUND(350,1500,3)
2520 FOR XX=1 TO 100

2530 NEXT XX

2540 CALL SOUND(150,1500,3)
2550 FOR XX=1 TO 200

2560 NEXT XX

2570 GOTO 3450

2580 CALL SOUND(150,1500,3)
2590 FOR XX=1 TO 50

2600 NEXT XX

2610 CALL SOUND(150,1500,3)
2620 FOR XX=1 TO 50

2630 NEXT XX

2640 CALL SOUND(150,1500,3)
2650 FOR XX=1 TO 200

2660 NEXT XX

2670 GOTO 3450

2680 CALL SOUND(350,1500,3)
2690 FOR XX=1 TO 200

2700 NEXT XX

2710 GOTO 3450

2720 CALL SOUND(150,1500,3)
2730 FOR XX=1 TO 50

2740 NEXT XX

2750 CALL SOUND(150,1500,3)
2760 FOR XX=1 TO 50

2770 NEXT XX

2780 CALL SOUND(350,1500,3)
2790 FOR XX=1 TO 200

172

2800 NEXT XX

2810 GOTO 3450

2820 CALL SOUND(150,1500,3)
2830 FOR XX=1 TO 50

2840 NEXT XX

2850 CALL SOUND(150,1500,3)
2860 FOR XX=1 TO 50

2870 NEXT XX

2880 CALL SOUND(150,1500,3)
2890 FOR XX=1 TO 50

2900 NEXT XX

2910 CALL SOUND(350,1500,3)
2920 FOR XX=1 TO 200

2930 NEXT XX

2940 GOTO 3450

2950 CALL SOUND(150,1500,3)
2960 FOR XX=1 TO 50

2970 NEXT XX

2980 CALL SOUND(350,1500,3)
2990 FOR XX=1 TO 100

3000 NEXT XX

3010 CALL SOUND(350,1500,3)
3020 FOR XX=1 TO 200

3030 NEXT XX

3040 GOTO 3450

3050 CALL SOUND(350,1500,3)
3060 FOR XX=1 TO 100

3070 NEXT XX

3080 CALL SOUND(150,1500,3)
3090 FOR XX=1 TO 50

3100 NEXT XX

3110 CALL SOUND(150,1500,3)
3120 FOR XX«1 TO 50

3130 NEXT XX

3140 CALL SOUND(350,1500,3)
3150 FOR XX=1 TO 200

3160 NEXT XX

3170 GOTO 3450

Listing continued.

3180 CALL SOUND(350,1500,3) 3540 PRINT

3190 FOR XX=1 TO 100 3550 PRINT

3200 NEXT XX 3560 PRINT

3210 CALL SOUND(150,1500,3) 3570 PRINT "PRESS (ENTER) TO

3220 FOR XX«1 TO 50 CONTINUE"

3230 NEXT XX 3580 INPUT EW$

3240 CALL SOUND(350,1500,3) 3590 GOTO 3640

3250 FOR XX=1 TO 100 3600 PRINT "THAT ANSWER IS C

3260 NEXT XX ORRECT!!"

3270 CALL SOUND(350,1500,3) 3610 PRINT

3280 FOR XX=1 TO 200 3620 PRINT "PRESS (ENTER) TO

3290 NEXT XX CONTINUE"

3300 GOTO 3450 3630 INPUT EW$

3310 CALL SOUND(350,1500,3) 3640 GOTO 390

3320 FOR XX=1 TO 100 3650 DATA HOW IS THE WEATHER

3330 NEXT XX IN SPAIN

3340 CALL SOUND(350,1500,3) 3660 DATA THE QUICK BROWN FO

3350 FOR XX=1 TO 100 X JUMPED OVER THE LAZY DOG

3360 NEXT XX 3670 DATA THE GRAY RABBIT WA

3370 CALL SOUND(150,1500,3) S NEVER CAUGHT

3380 FOR XX=1 TO 50 3680 DATA ELECTRON TUBES HAV

3390 NEXT XX E BEEN REPLACED BY TRANSISTO

3400 CALL SOUND(150,1500,3) RS

3410 FOR XX=1 TO 200 3690 DATA ELEPHANTS ARE BIGG

3420 NEXT XX ER THAN SATELLITES

3430 FOR XX=1 TO 100 3700 DATA RHOMBIC ANTENNAS A

3440 NEXT XX RE SUPERIOR

3450 NEXT X 3710 DATA MARTIANS ARE ALIEN
3460 PRINT "PRINT THE DECODE TO VENERIANS
D MESSAGE" 3720 DATA THE HYPERBOLA CONS
3470 INPUT QW$ ISTS OF TWO CURVES

3480 CALL CLEAR 3730 DATA MINIATURE CIRCUITS
3490 IF QW$=A$ THEN 3600 ARE ALSO KNOWN AS MICRO CIR

3500 PRINT "THE CORRECT ANSW CUITS

ER IS :" 3740 DATA FREE FALLING IS A
3510 PRINT CHALLENGING SPORT

3520 PRINT 3750 DATA THE WIRELESS WAS I
3530 PRINT A$ NVENTED BY MARCONI

173

Listing continued.

3760 DATA CALLING CQ RESULTS
IN A CHANCE COMMUNICATION

3770 DATA FAR BE IT FROM THE

M TO TELL

3780 DATA RUNNING IN THE DEL

TA WAS THE WILY HARE

3790 DATA AMATEUR RADIO INVO

LVES SEVERAL LICENSE CLASSES

3800 DATA WATER OVER THE DAM

MEANS IT IS TOO LATE TO WORRY

Lines 100-380clear the screen and give a
brief explanation as to how the game works.
When you press the enter key, line 390 clears
the screen again, while line 400 reads the first
data statement line. The data statement infor
mation is assigned to the string variable A$.
Line 410 tests for the final data statement line.
If the information contained here is the word
END, there is a branch to line 3850 and the end
statement.

Line 420 reads the number of characters
in the data statement line. Line 430 establishes
the major loop in the program, which counts
from 1 to L, the latter variable having been
assigned the number of characters in A$. Line
440 uses the SEG$ function to read each
character in A$ individually. Each character is
assigned to the variable C$. Lines 450through
710 test for the letter value of C$, making
appropriate branches to the actual Morse Cod
ing lines, which begin at program line 720.

Lines 720 through 3440 contain all of the
information needed to generate each letter of
the alphabet in Morse Code. I chose a fre
quency of 1500 hertz. This figure is contained

174

3810 DATA WHEN THE RAINS COM

E THE GROUNDS ARE POROUS

3820 DATA WHAT IS THE ANSWER
TO THIS RIDDLE

3830 DATA TO BE OR NOT TO BE

IS THE QUESTION

3840 DATA ROLLING STONES GAT
HER NO MORSE,END
3850 END

in the Call Sound subprogram lines. By ex
perimentation, I decided to use 150 as the
duration for a dot and 350 as the duration for
the dash.

Let's take a practical example. Assume
that A$ is equal to A DOG RAN DOWN THE
STREET. This entire phrase is 25 characters
in length including the spaces between words.
Line 420 assigns thevalue 25toL,sotheloop
in line 430 will count from 1 to 25 in order to
read each letter in A$. During the first pass of
the loop, line440will assignC$the value ofA,
since this is the first letter in the A$ phrase.
Line 450 branches to line 720, since C$ does
equal "A". Lines 720 through 770 contain the
coding information for the letter A, which is
represented in Morse Code by a dot and then a
dash. Inline 720, theCall Sound subprogram is
set up to produce a 1500 hertz tone for a dura
tion of 150, which is a fraction of a second. In
Morse Code, however, the pauses between
thedots and dashes are significant. Therefore,
lines 730 and 740 contain a delay sequence
while the computer counts from 1 to 50. This
count is used to separate dots from other dots

or dots from dashes. A delay count of 100 is
used to separate dashes from dots or dashes
from other dashes. Each letter is followed by a
count of 200 in order to separate it from the
next letter.

Line 750 contains the Call Sound Sub

program for a dash, which completes the letter
A. Since this is the last part of the letter se
quence, lines 760 and770 contain the sequence
end delay, a count from 1 to 200. Line 780
branches to line 3450, which contains a next
statement that recycles the X loop. This effec
tively branches back to line 430, where the
loop cycles again with X being equal to 2. Line
440 samples the second character in A$, which
in this case is a space between the first word in
the sentence, A, and the next word, which
begins with the letter D. C$ is therefore equal
to a space. This condition is detected in line
710, which branches to line 3430. A space is
represented by another time delay. Here, XX
counts from 1 to 100. This gives a longer delay
than the space between letters, even though
the delay between letters counts from 1 to 200
because the if-then line that tests for a space
lies at the end of all of the if-then lines for the

letters of the alphabet. An automatic delay is
thus built in.

Once this delay loop times out, the X loop
again recycles, picking up the third character
of A$, which is the letter D. Line 480 detects
the letter D and branches to line 1050, where
the Call Sound subprograms are used with the
delay loops to produce the code sequence
dash-dot-dot, the Morse Code for the letter D.
Line 1050 contains the Call Sound subprogram
for a dash, while lines 1060 and 1070 contain
the dash delay, a count of from 1 to 100. Line
1080 contains the Call Sound subprogram for a

dot. Lines 1090 and 1100 contain the dot sep
aration delay, a count of from 1 to 50. Lines 110
through 1130 are identical to the previous
three because another dot must be formed.

However, you will notice that the count in line
1120 is from 1 to 200, since this last dot com
pletes the letter.

This same sequence of events will take
place for all the characters in A$ until the last
one is sounded. When this is done, the X loop
times out and line 3460 displays a prompt on
the screen telling you to type in the decoded
message. Your input is committed to the string
variable QW$ in line 3470 and line 3840 clears
the screen. Line 3490 tests to see if you input
(QW$) is equal to the original message (A$). If
this is so, there is a branch to line 3600, which
tells you the answer is correct and instructs
you to press the enter key to continue. When
you press the enter key, there is another
branch to line 390, which again clears the sc
reen. At this point, line 400 reads the next data
statement line and a new phrase is output in
Morse Code.

If QW$ in line 3490 is not equal to A$, line
3500 is executed, which eventually brings
about the printing of the correct answer on the
screen. I have included several data statement

message lines to get the program going, but of
course, you can include any text in these lines
that you desire. This program does not address
the coding of numbers and the various punctua
tion marks that are allowed in the Morse Code

set. This program is designed to be fun and
educational and to introduce the player to
Morse Code. With few additional lines, num
bers and punctuation marks can be included,
however.

Some persons will undoubtedly wish to

175

foregothe data statement lines inorder to give
themselves the opportunity to input a line di
rectly via the keyboard while the program is
running. This can be easily accomplished by
simply replacing line 400 with:

400 INPUT A$

Whenthis is done, execution willbe temporar
ily halted while you type in a phrase. Whenyou
press the enter key, whatever you typed in will
be run through the coding sequence.

This is quite a long program to write. It
could have been shortened considerably by
using GOSUBbranches to single lines contain
ing the information for the dot, the spacing
after the dot, the dash, the spacing after the
dash, and finally, the end of character spacing
routine. Such a program is more difficult to
understand, however, than this one, which
uses straight-line programming. Once this
program has been input as shown, you can
input any phrase information you desire and
have it come out in Morse Code.

As written, this program sends code at
the rate of about eight words per minute. You
can speed things up (or slow them down) by
changing the duration of the delay between the
dots and dashes, and possibly changing the
duration of the dot and dash proportionately.
Increase the count value of your for-next loops
used for delay purposes to slow sending speed.
Decrease these values to increase it.

All in all, I think you will find the program
to be most interesting and highly enjoyable if
you have a desire to learn Morse Code or are
already somewhat familiar with this means of
communication. Undoubtedly, some amateur

176

radio operators will use a program of this type
to send Morse Code via their transmitters
while typing the information in a letter form via
the TI-99/4A keyboard. This program has
many applications outside of the game pro
gramming environment.

TIME KEEPING PROGRAMS

In some instances, it's desirable to have
some means of keeping time in game pro
grams. For example, any of the word puzzle
programs presented might be more interesting
if each player were limited to a certain number
of seconds or minutes to find the words. Ad
ding a countdown feature to one of these pro
grams simply involves putting the game itself
on the screen and then displaying numbers that
count backward from a figure you choose.
When 0 is reached, the computer would an
nounce that time is up, and it would be another
player's turn.

Many personal computers contain TIME$
functions, which use the internal clock of the
computer in a machine language program that
will automatically keep time. This program is
run internally. Therefore, once the correct
time has been input, youmayrun anyprograms
you wish and return to the TIME$ function at
any time and receive the correct readout.

Like most home computers, the TI-99/4A
does not contain a TIME$ function. There is no
practical way to access the internal clock to
simulate this function, but it can be simulated
during the run of a program designed specif
ically to tell time. Again, the programs I'm
speaking ofcan be set up to accuratelydisplay
time, but when the program is terminated, the

timekeeping function is immediately discon
tinued.

Anyone who has programmed even for a
short period of time knows that when you
crowd a lot of statements into a for-next loop, a
time lag occurs. This can be seen in the flicker
of moving graphic objects on the screen, for
example. Many of the programs presented in
this chapter have used time delay loops which
simply count from 1 to a high number and then
move on to another routine. Since it is easy to
generate time delays, one could also assume
that it's fairly easy to generate these delays in
units which correspond to seconds. This is a
correct assumption.

The following programs are not games in
themselves, but they can be used to spice up
some game programs, as well as for many
other purposes. By adding a few program lines
you can even use some of them to teach
youngsters to tell time.

Ten Second Timer

This program is designed to count from 0
to 10 in a period of 10 seconds. The numerals
will be displayed on the screen.

Listing 31. Ten Second Timer

In this simple program line 140 clears the
screen, and line 150 begins a for-next loop that
counts from 49 to 57. These two numbers rep
resent the ASCII codes for the numerals 1 and

9. The numbers in between make up the num
erals 2 through 8. Line 160 displays these
numerals on the screen by feeding the ASCII
equivalent into a Call HCHAR subprogram.
The heart of the clock program, however, is
found in lines 170 and 180. Through ex
perimentation, I determined that it took the
TI-99/4A one second to count from 1 to 325

while running in TI BASIC. If you are running
TI Advanced BASIC, execution time will be
different and you will have to adjust the count
in line 170 with the aid of an accurate watch.

Lines 170 and 180 form a time delay loop.
When this times out, line 190 is executed and
the loop begun in line 150 recycles.

However, the top of the loop, or the
number 57, is the ASCII code for the number 9.
This program is to count to a maximum of 10.
Lines 200 and 210 are executed after the loop
in lines 170 and 180 and the master loop in lines
150 and 190 time out. Lines 200 and 210 dis

play the number 10 on the screen and the pro
gram is terminated.

Again, the for-next loop in lines 170 and

100 REM TEN SECOND TIMER 150 FOR X=49 TO 57

110 REM COPYRIGHT FREDERICK 160 CALL HCHAR(10,16,X)
HOLTZ AND ASSOCIATES 170 FOR Y=l TO 325

120 REM 4/30/83 180 NEXT Y

130 REM PROGRAM RUNS IN TI- 190 NEXT X

BASIC 200 CALL HCHAR(10,15,49)
140 CALL CLEAR 210 CALL HCHAR(10,16,48)

177

180 determines the accuracy of your clock pro
gram. You may not find my values here to give
you the accuracy you desire onyour TI-99/4A,
since internal differences (and even tempera
ture) can affect the actual sequence time. As
soon as you set up your program, check its
accuracy with a stopwatch. For game pur
poses, if you're off a half second or so, it's not
that important. But naturally, you will want the
program to be as accurate as possible.

Audible Ten Second Timer

This program is almost identical to the
previous one, and you will see the familiar
timing loop at lines 160 and 170. In this case,

Listing 32. Audible Ten Second Timer

however, the master loop, which is begun at
line 150, counts from 1 to 10 (cycles 10 times).
During each cycle, the Call Sound subprogram
in line 180 will produce a beep. This loop will
cycle 10 times, and after each second, another
1000-Hz beep will be heard. The Call Sound
subprogram can also be directly inserted into
the previous program (line 161) to provide a
combination of visual and audible time display.
The additionof the CallSound subprogramwill
slow execution marginally, however, so it will
probably be necessary to decrease the top
count of the for-next loop in the previous pro
gram.

100 REM AUDIBLE TEN SECOND TIMER 140 CALL CLEAR

110 REM COPYRIGHT FREDERICK 150 FOR A=l TO 10

HOLTZ AND ASSOCIATES 160 FOR X=l TO 325

120 REM 4/30/83 170 NEXT X

130 REM PROGRAM RUNS IN TI- 180 CALL SOUND(10,1000,0)

BASIC 190 NEXT A

Countdown Timer

Here's a program that is useful for playing
various games. It is a countdown timer that will
count from a maximum of 99 seconds down to 0

Listing 33. Countdown Timer

100 REM COUNTDOWN TIMER

110 REM COPYRIGHT FREDERICK

HOLTZ AND ASSOCIATES

120 REM 5/1/83

178

seconds. You may input anyvalue you want, up
to 99 seconds, and get an accurate countdown
on the display screen.

130 REM PROGRAM RUNS IN TI-
BASIC

140 CALL CLEAR

150 INPUT "SECONDS=":A$

Listing continued.

160 CALL CLEAR 290 CALL GCHAR(10,16,GG)
170 A=LEN(A$) 300 GG=GG-1

180 IF A> 2 THEN 190 ELSE 240 310 FOR DLAY=1 TO 225

190 CALL CLEAR 320 NEXT DLAY

200 PRINT "MAXIMUM TIME IS 9 330 IF GG 48 THEN 340 ELSE 3

9 SECONDS" 70

210 FOR TD=1 TO 1000 340 IF FF=48 THEN 400

220 NEXT TD 350 GG=57

230 GOTO 140 360 FF=FF-1

240 FOR X=l TO A 370 CALL HCHAR(10,15,FF)
250 AA=ASC(SEG$(A$,X,1)) 380 CALL HCHAR(10,16,GG)
260 CALL HCHAR(10,14+X,AA) 390 GOTO 280

270 NEXT X 400 CALL SOUND(1000,1000,0)
280 CALL GCHAR(10,15,FF) 410 END

The for-next loop that serves as the timer
element in this program is found in lines 310
and 320. The master loop begins at line 280 and
recycles at line 390. You can see that there are
a large number of statement lines within this
loop, and therefore, the delay (DLAY) count
has been reduced to 225. This reflects the

slowed execution time caused by the extra
statement lines. Line 340 branches to line 400

when the clock has counted down to 0. At this

time, an alarm which is provided by the Call
Sound subprogram in line 400 goes off. This
line generates a 1000-Hz tone at a very re
spectable volume, indicating that a timing
sequence has been completed.

Clock

It is only natural to go one step further and
program a complete 24-hour clock. Again, this
is not a game program in itself, but it can be
used as a teaching game when it is necessary

for small children to learn to tell time by means
of an electronic clock.

When the program is run, you will be
asked to input the hours and the minutes. This
is a 24-hour clock, so 6:00 A.M. is input as 0.6,
while 6:00 P.M. is input as 1, 8. The latter
stands for 1800 hours, which is 6:00 P.M. in
24-hour time. The commas are necessary be
tween each numeral to the INPUT statements

in lines 150 and 160 which require the input
ting of two separate values.

You should always set this clock at the
beginning of a new minute. In other words,
input the hours numerals and then input the
minutes numerals for the upcoming minute. As
soon as your watch reads one second before
the beginning of a new minute, press the enter
key and your clock is activated. You will then
see a display such as

09:23:14

179

This indicates that the time is twenty-
three minutes and 14 seconds past the hour of 9
in the morning. Every second the right-hand
number will advance by 1. When it reaches 60,
the center number will be stepped by 1. As
long as your computer is left on, this program
will continue to tell time for you.

The timing loop for this program is found
in lines 350 and 360. You will notice that the

Listing 34. Clock

top value is even lower here than in the pre
ceding programs because of the extra state
ment lines within the loop. This program com
bines almost everything found in the first one
that was discussed, but it also makes provision
for graphically displaying minutes and hours as
well as the seconds.

The clock programs presented will be ac
curate only when run in standard TI BASIC.

100 REM CLOCK 340 CALL HCHAR(12,19,48+E)
110 REM COPYRIGHT FREDERICK 350 FOR Y=l TO 180

HOLTZ AND ASSOCIATES 360 NEXT Y

120 REM 4/28/83 370 NEXT X

130 REM PROGRAM RUNS IN TI- 380 E=E+1

BASIC 390 IF E<>6 THEN 580

140 CALL CLEAR 400 E=0

150 INPUT "HOURS":A$,B$ 410 D=D+1

160 INPUT "MINUTES":C$,D$ 420 IF D=10 THEN 430 ELSE 58
170 AA=ASC(A$) 0

180 BB=ASC(B$) 430 D=0

190 CC=ASC(C$) 440 C=C+1

200 DD=ASC(D$) 450 IF C=6 THEN 460 ELSE 580
210 A=AA-48 460 C=0

220 B=BB-48 470 B=B+1

230 C=CC-48 480 IF A=2 THEN 490 ELSE 500
240 D=DD-48 490 IF B=4 THEN 530 ELSE 500
250 CALL CLEAR 500 IF B=10 THEN 510 ELSE 58
260 FOR X=48 TO 57 510 B=0
270 CALL HCHAR(12,13,48+A) 520 GOTO 580
280 CALL HCHAR(12,14,48+B) 530 A=0
290 CALL HCHAR(12,15,58) 540 B=0

300 CALL HCHAR(12,16,48+C) 550 C=0
310 CALL HCHAR(12,17,48+D) 560 D=0
320 CALL HCHAR(12,18,58) 570 E=0

330 CALL HCHAR(12,20,X) 580 GOTO 260

180

Again, if you elect to use Extended BASIC,
change the count values of the timing for-next
loops. Even in standard TI BASIC, it may be
necessary to add or subtract from the top count
of the timing loops in order to make up for
internal differences and temperature varia
tions, which can affect execution time.

THE PURPOSE OF THE PROGRAMS

The programs presented in this chapter
have been designed with several criteria in
mind. First, they must be interesting and var
ied. Second, they must run on a basic TI-99/4A
computer without any options. This means that
when you purchase your TI-99/4A, you can be
assured that all you need do is input these
programs, debug any input errors, and then
enjoy a successful run. The third criteria in
volves the instructive properties of each pro
gram. Each program must be able to teach the
beginner a little more about how his or her
machine responds to the BASIClanguage. The
fourth criteria is as important as the previous
three. Each program must not be so long as to

require many hours of input time. When fatigue
sets in, typing errors are made and sometimes,
this results in a program that is just about
impossible to debug.

I hope you will agree that the programs in
this chapter have met all of the above criteria in
most instances. Another important criterium
involves the modification and/or expansion
properties of each program. None of the pro
grams presented here is too complicated for
the programmer who has been at it for three
months or more. However, these experienced
programmers may be able to utilize the pro
gramming concepts discussed here and expand
upon each of the programs, turning something
simple and enjoyable into something complex
and more enjoyable.

As you can tell by analyzing these pro
grams, the TI-99/4A home computer is un
doubtedly one of the best buys in the computer
world today when you consider its extremely
low price and wide range of capabilities. These
computers will most certainly introduce many
thousands of persons to the age of logic in a
most successful manner.

181

Chapter 5

Commercial

Game Software for the TI-99/4A
The TI-99/4A computer was first introduced
as the TI-99/4 in 1979. Since the machine has
been out a few years now, there is a prolifera
tion of software available. Software for this
machine is available on three differentstorage
mediums. These include command module,
cassette tape, and disk. Some programs may be
available on two types of media; while others
may be available on only one of the three. The
command modules plug into the module slot in
the console unit. Cassette tapes are interfaced
with the console unit by an optional cassette
cable. Software which comes on 5%" disks can
only be loaded into the machine when it is
equipped with the peripheral expansion sys
tem, disk adapter, and disk drive.

182

While the commercial software available
for the TI-99/4A includes programs that ad
dress home and business needs, you will also
find a large variety ofentertainmentandgame
programs. This chapter will describe some of
them. You may be interested in purchasing
some of this software and then modifying the
game ideas they provide to develop your own
programs. I'm not sayingthat you should copy
the game ideas; only that you should let the
multitude ofgames commercially availablefor
this machine serve to stimulate yourowncrea
tive juices. Perhaps you can come up with a
game that combines the best of all the many
currently available games while adding a new
flair or bit of excitement.

CARD GAMES

Draw Poker pits one person against the
computer. The computer is the dealer. You
have a number of options once the cards are
dealt, such as raise, call, fold, discard, etc. You
are able to see all your cards, while the com
puter's cards are all face down. You are given a
bankroll at the beginning that is equal to the
computer's bankroll. The game is over when
you or the computer run out of money. This
game requires Extended BASIC and is availa
ble on cassette (PHT 6037) for $25.00 or disk
(PHD 5037) for approximately $30.00.

Challenge Poker, designed for use by
up to four players, can be played against the
computer as well. Points are scored by creat
ing the best poker hand. The winner is the
player who is able to amass 100 points first.
Designed by Pewterware, the game is avail
able on cassette only (CPW67070).

Casino Pack was developed by Eh-
ninger Associates, Inc. In this game, the com
puter is the house and you are betting. The
package includes a slot machine and blackjack
tables. Based on the popular Las Vegas game,
this package is available on disk only (D1010).

Blackjack was developed by Color
Software, and up to four may play at the same
time. All the cards in a standard deck are dis

played face up in a colorful and easy-to-
recognize manner. The game is designed for
users 12 and older and is available on cassette

only.
Developed by Milton Bradley Company,

the Blackjack and Poker package contains
two betting games with which most people are
familiar. You are given a certain amount of
money at the beginning of each game. When

your money runs out, the game is over. Both
games can be played by users aged 10 and
older, and the package is available as a plug-in
module for about $25.00 (PHM 3033).

SPORTS GAMES

All* Star Baseball, designed by Eh-
ninger Associates, Inc., is a two-player game
in which each player has control over pitching,
fielding, base-running, and a number of other
tactics common to the game of baseball. Active
participation is the key in this exciting and
challenging baseball simulation. The game
may be played by persons of all ages. It is
available on cassette only in either BASIC
(C1020) or Extended BASIC (C1020X).

Extended Baseball was developed by
Extended Software Company and requires Ex
tended BASIC. The user controls the pitcher
and batter, as well as a number of functions
such as balls, strikes, inning changes, scoring,
hitting, fielding, etc. You are also given such
statistics as batting averages. The game is
available on disk or cassette.

All*Star Bowling is a simulated bowling
game, which may be played by as many as eight
players at the same time. You may throw the
ball and knock down the pins at various speeds.
Before rolling the ball you must position it in
the lane. This game is designed for use with
Extended BASIC and was developed by
Ehninger Associates, Inc. It is available on
cassette only (C1110X).

Decathlon, developed by Pewterware,
is based on the Olympic Decathlon event. The
user is required to compete in all ten events,
and timing is very important. You have one
second to complete the first event, with the

183

time increasing in one-second increments with
each event, so the final event must be com
pleted in ten seconds. This is an exciting and
challenging game designed for users aged 10
and older. The game is available on cassette
only (CPW67030).

Football has been designed by TI for
users 8 years old and up. It provides a simula
tion of football based on actual pro football
statistics. The player can select offensive
plays, defensive plays, and acts as the quart
erback on offense.

Indoor Soccer is a five-man soccer
game. The user controls the players and can
make passes, shots, interceptions, saves, tack
les, and use a number of other common tactics.
This is a fast-paced game. One of the unique
features of this game is that you can view an
instant replay of each score. The game is de
signed for users 8 and older and is available on
module only for $30.00 (PHM 3024) from TI.

GAMES OF SKILL

In The Attack, the user is the com
mander of a spaceship and must destroy
enemies. The user must maneuver his ship to
avoid contact with alien ships and fire missiles
at the same time. Developed by Milton Brad
ley Company, this is an exciting and entertain
ing game, which can be played by users of all
ages. It is available in plug-in module form only
and is priced at about $40.00 (PHM 3031).

Blasto can be played by one or two
players. It is a tank game in which the user
must destroy a mine field while avoiding oppo
nent fire at the same time. This is a fast-paced
game, which is timed, so you must quickly
destroy as many mines as possible. A number

184

of options are provided, and there are dangers
involved. If you hit a mine at close range, for
example, you must start over. This game is
designed for users 10 or older and is available
as a plug-in module for about $25.00 (PHM
3032).

In Cars and Carcasses, developed by
Not-Polyoptics, you are the driver of a car on a
randomly generated board. The object of the
game is to save an imaginary city from
monsters such as Frankensteins, Draculas, and
weird space creatures, by running them over
as you move around the board. This exciting
and challenging adventure game is available on
cassette only.

Car Wars is a speed-racing game of skill
in which the player is pitted against the com
puter. The object is to maneuver your car
around the track while avoiding obstacles.
This game has several difficultylevels andmay
be used with the TI wired remote controllers if

desired. It is available as a plug-in module and
sells for about $40.00

Chutes & Sharks, also developed by
Ehninger Associates, Inc., is designed for
single-player use. In this game you are in con
trol of a boat waiting for paratroopers who are
dropped from a helicopter positioned over
head. To further complicate the situation,
there are sharks in the waters waiting to de
stroy the paratroopers if you do not position
the boat to receive the falling paratroopers
properly. This program requires Extended
BASIC and the memory expansion unit may
also be used, although it is not required. The
game is available on cassette only (C1120XM).

Galactic Gunfight, developed by Inter-
soft, puts you in control of a spaceship that
must defend a colony against these invaders,

which appearon the screen insquadrons offive
at increasing speed levels. The game is de
signedfor users 7 andolder and is available on
cassette (CIS64540).

Hustle is a fast-paced game designed for
one or two players. The user is in control of a
snake-like object with whichhe must try to hit
targets while avoiding his opponent, the edge
of the screen, and his own object, at the same
time. This is an excellent tool for developing
quick reflexes, as well as eye and handcoordi
nation. It can be used by users 10 and older and
is available in module form only for about
$25.00 (PHM 3034).

Ships!, another adventure game from
Not-Polyoptics, can be played by one or two
players. You are in command of a ship on the
highseas andmust steer your ship in a variety
of changing conditions, such as wind changes,
which make sailing more difficult. The
graphics in this game are good. The game is
available on cassette.

Speedway 100 is a well-illustrated
graphicgame in which the player controls one
of six cars on a speedway. He first selects the
number of laps he wishes to make and then
maneuvers his car around all other cars, which
appear in different lanes at varying speeds.
Other obstacles are provided to increase driv
ing proficiency. The game is available on cas
sette only, and was developed by Intersoft
(CIS 64540).

Tickworld may be unpleasant for some;
you are pitted against eight gigantic, hungry
ticks. This game creates a different game
board each time it is played, and your job is to
capture the ticks and imprison them before
theyget you. There are three skill levels. This

game was developed by Not-Polyoptics and is
available on cassette.

TI Invaders is a one-player game in
which you are attacked by strange space crea
tures. You must be quick to use your missiles
before these multi-color creatures get you.
The wired remote controllers from TI are op
tional, and the game comes in plug-in module
form for approximately $40.00.

TI-Trek is an exciting and challenging
game that uses the speech capabilities of the
TI-99/4A. Youare responsible for the safety of
a galaxy and have the ability to fire phasors,
torpedoes, or multiple torpedoes in an effort to
destroy the enemy before he endangers your
galaxy. A warp control is provided for addi
tional maneuvers. The package is available as a
plug-in module for $15.00 (PHD 5002).

Tournament Brick Bat was designed
by Image Producers and pits the player against
the computer or a human opponent in a fast-
action skill game. The computer keeps a
record of the score and the game increases in
difficultyas skills improve. Designed for users
10 and older, the game is available on cassette
only (9041).

Video Games I consists of three games:
Pot-Shot, Pinball, and Doodle. Each is de
signed for use by persons of all ages. Pot-Shot
is an aim-practicing game, Pinball is designed
in the format of the pinball games found in
arcades, and Doodle is a game in which the
user tries to trap his opponent. Each game is
sure to provide many hours of entertainment.
Available as a plug-in module, it is priced at
$30.00 (PHM 3018).

In ZeroZap, the user is provided with a
computerized pinball game that includes elec-

185

trie lights and fascinating sound effects. The
user may also create an individualized playing
field, providing an educational as well as enter
taining game. This program was developed by
Milton Bradley Company and may be used by
children as young as 6. Available as a plug-in
module, it sells for $20.00 (PHM 3036).

GAMES OF STRATEGY AND LOGIC

Advance is a board game developed by
Not-Polyoptics. In this strategy game, two or
three players compete in moving up the board.
You can purchase squares on the board, and the
whole game provides a number of random
selections. Each square has a point value, or it
may take points away from the player after
purchase. Blocking other players stops them
from reaching the end. This game is available
on cassette only.

A-Maze-Ing is an excitingand challeng
ing game of mazes. The user is able to select
from options providing many mazes, from the
very simple to the very complex. The chances
of seeing the same maze twice are small—this
game provides 5,200 variations. The package
is available as a plug-in module and sells for
$25.00 (PHM 3030).

Strategy is used to the fullest in Barrier.
Twoplayersare required; the first playertries
to draw a continuous line on the screen from
left to right, while the second does the same
from topto bottom. The object is to reach your
goal in the shortest time possible, while pre
venting your opponent from reaching his goal.
The game is designed for persons of all ages
and is available on cassette only.

Brain Games was developed by Crea
tive Computing. It consists offive challenging

186

games designed to test your brain power. The
games are Dueling Digits, Parrot, Tunnel Vi
sion, European Maps, and U.S. Maps. All
games are designed for users of all ages, and
the package is available on cassette (CS-6002).

Challenge I displays ten frogs on the
screen. The user is prompted to use logic to
take the frogs through leaps that will reverse
the color pattern of the frogs. This strategy
game is designed for use by two players and
was developed by Ehninger Associates, Inc. It
is available on cassette only (C1030).

Challenge II contains two programs.
The first is NIM,a game two players mayplay.
Objects are arranged in rows and the players
begin removing the objects, one at a time, until
the winner is determined. The winner is the
one who removes the final object. The second
game is the popular game of Tic-Tac-Toe. De
signed by Ehninger Associates, Inc., Chal
lenge II is available on cassette only (C1040).

Connect Four was developed by Milton
Bradley Company and is the computerized
version of the popular game. In this strategy
game the user has to place four markers in a
row (down, across, or diagonally) to win. The
game may be played by persons 10 and older
and is priced at $20.00. It is available as a
plug-in module only (PHM 3038).

Corner Bound is a combination skill and
strategy game in which a snake-like line is
presented on the screen. You are in control of
the line, and you must maneuver it to hit
targets placed in the corners of the screen.
This is an excellent teaching aid, using both
eye and hand coordination, and three skill
levels are provided to increase your profi
ciency. The game was developed by Micro-

computers Corporation and can be played by
persons aged 8 and older. It is available on disk
(MCD0001) or cassette (MCT0001).

Crosses is a computer simulation of a
combination of Go and Othello, two popular
board games. This game is presented in board
form, and two players are required to strategi
cally compete, placing markers on the board
and trying to capture the opponent's marker
while making a cross on the board. This game
was developed by Not-Polyoptics, and is avail
able on cassette only.

The Cube was developed by Linear
Aesthetic Systems, and provides a graphic
simulation of Rubik's Cube. High resolution
graphics make this game exciting visually and
challenging as well. You have complete control
over the movements of the cube and can com

mand it to display any of six sides, rotate it
clockwise or counterclockwise, and spin it to
see another side, etc. This skill-challenger is
available on cassette only.

Doctor Nuttier was developed by
Ehninger Associates, Inc. It is more an enter
tainment program than game. Dr. Nuttier is the
computer, and the player is prompted to enter
a question. Using psychoanalysis techniques
developed by Carl Rogers, the doctor provides
advice based upon the input. The program is
available on disk only (D1050).

Hangman was developed by Hall
Software. Two players are required; one
selects a word, and the other must guess the
word before his man is hung. You have only
seven guesses in this game. It is available on
cassette only.

Hangman is another computerized ver
sion of the popular game. The computer
selects a mystery word, or the user can enter

his own word. An opponent is asked to guess
the letters in the mystery word. Each incorrect
guess causes another portion of the hanged
man's body to be drawn on the gallows. The
object is to guess the word before the man is
hanged. Designed by Milton Bradley Com
pany, this package sells for $20.00 and can be
played by users 6 years and older. It is avail
able as a plug-in module (PHM 3037).

Extended Hangman is yet another
computerized version of this popular game.
This package was developed by Extended
Software Company and requires Extended
BASIC for operation. It uses color, graphics,
and speech, making this extended form of
Hangman unique and entertaining. Over 500
words are included in the computer's word
vocabulary, and you can add your own words to
this list to make the game more difficult or
easier. The game is available on disk or cas
sette.

Hidden Numbers was developed by Hall
Software. It is designed to test the memory
skills ofthe player. Numbers are hidden behind
several rows of squares. The player must lo
cate the squares hiding matching numbers.
The game may be played by persons of all ages
and is available on cassette only.

Hunt the Wumpus is a search for the
Wumpus through a hidden maze of caverns and
tunnels. Clues are provided, and the user must
evaluate the clues and avoid any dangers while
traveling through the maze. This program is
available in module form only and sells for
$25.00 (PHM 3023).

Match Wits is a game that tests the con
centration of the player. The game is designed
for up to four players aged 16 and older and is
available on cassette only (CPW67050). It was

187

developed by Pewterware.
Mind Challengers includes two chal

lenging games. The first game is similar to
manyhand-heldgames availablecommercially
and prompts the user to repeat a sequence of
notes. A second user is then prompted to re
peat the previous sequence plus an additional
note. The game continues until one player is
unable to echo the correct sequence, up to 64
notes. The second game is a code-breaking
game, which uses colors and shapes. Both
games can be used by persons 10 and older. It
is available in plug-in module form for $25.00
(PHM 3025).

Mind Masters, developed by Image
Producers, is a strategy and logic-teaching
simulationgame inwhichthe computer creates
problems and the user must solve them. The
game is designed for multi-player use, and dif
ferent skill levels may be used byeach player.
Here, the principles of deductive logic are
taught in a fun and challenging manner that
tests the user's skill, ability, and patience. The
package is designed for persons 10 and older
and is available only on cassette (9405).

In Mystery Melody, a challenging musi
calgame, the user and hisopponent are promp
ted to guess the title of a song based on notes
provided. The winner is the person able to
name the song in the fewest guesses. One
person may play this game alone, or it can be
played by the entire family. It will provide
hours of entertainment. It is available on cas
sette (PHT 6010) or disk (PHD 5010) for
$10.00 and $15.00, respectively.

Oldies But Goodies—Games I is five
games in one. It includes Number Scramble,
Word Scramble, Tic-Tac-Toe, Biorhythm and
FactorFoe.Each game may beplayed with the

188

computer or with a human component. The
package is designed for use by persons of all
ages. It can be purchased on cassette (PHT
6015) or disk (PHD 5015) for $15.00 and
$20.00, respectively.

Oldies But Goodies—Games II con
tains five games. Hammurabi, Hidden Paris,
Peg Jump, 3D Tic-Tac-Toe, and Word Safari.
Designed forall family members, it is available
on cassette (PHT 6017) for $20.00 or on disk
(PHD 5017) for approximately $25.00.

Othello™ is the computerized version of
this popular board game. Each of the two
players take turns placing disks on the board in
an attempt to bracket the opponent's disks and
thus make them his own. The winner is the
player with the most disks on the board at the
end of the game. The game is over when
neither player is able to make a move. Alter
nately, one player can be pitted against the
computer. This game is available in plug-in
module form only (PHM 3067) for $40.00.

Peg Jump, developed by Hall Software,
simulates the popular pegboard game in com
puterized form. You are required to make
carefully planned jumps to win this fastpaced
game. The game isavailable on cassette only.

Saturday Night Bingo is a computer
simulation ofthathighly popular game, Bingo.
It isamulti-player game in which thecomputer
randomly selects numbers and then reads them
out loud through the TI speech synthesizer, an
optional peripheral. Two modes are provided,
automatic and manual, so the user may select
the speed at which the game is played. This
package may be used at home with the entire
family, or it may be used by church and other
types oforganizations that stage Bingo games.

The game is available on cassette (PHT 6025)
for approximately $25.00 or disk (PHD 5025)
for $30.00.

Scrambled Letters Puzzle & Number

and Alphabet Hi-Lo is a two-game package
developed by Hall Software. In the first game
you are required to unscramble 15 letters. In
the second game, Number and Alphabet Hi-Lo,
a character is randomly selected by the com
puter, and you are prompted to guess the
number or letter. The computer responds to
your guesses in a manner which gives you
clues as to how close you are to guessing the
correct number or letter. This package is
available on cassette only.

Skill Builder I, designed by Image Pro
ducers, consists of two games of skill at dif
ferent skill levels. The first is Bingo Duel, in
which one or two players are provided with
problems to solve. In the second game,
Number Hunt, the user must match numbers at
increasing levels of difficulty. Designed for
users 10 and older, the package is available on
cassette only (9406).

Strategy Games was developed by
Creative Computing to promote reasoning and
strategy skills. Four gamesare included in this
package, including Blockade, Checkers, Darts,
and Depth Charge. This packageis available on
cassette (CS-6003).

Strategy and Brain Games, also de
velopedby Creative Computing, combines the
programs included in the Brain and Strategy
packages previously discussed. This package
is available only on disk (CS-6501).

Strategy Pack I contains two strategy
games in which the user can play against the
computer or a human opponent. The first is
Roman Checkers, based on the popular board

game of the same name. The second game is
called Frame Up. In this game you must use
strategy and skill to outwit either the computer
or your human opponent. The package was
designed by Image Producers and is available
on cassette only (9404).

Video Chess, developed with the help of
International Master David Levy, is designed
for chess players ofall ages. It is simple to use,
providinghelp with moves if desired. You can
play with the computer or another person, and
different levels ofplay are provided. If desired,
a game can be stopped and stored for return to
the same game at another time. The computer
keeps track of each move, and although it is
simple to use, will prove challenging to even
the most experienced chess player. The cost is
approximately $70.00, and is available from
Texas Instruments in module form (PHM
3008).

Wall Street—a Market Simulation is

a computerized simulation of the stock market,
in which you must make as much money as
possible. You are given ten years in which to
make your fortune. Although advertised as a
game, this package will provide education in
money management and the stock market
strategies. It may be used with TI BASIC or
Extended BASIC and is available on cassette

only.
Wall Street Challenge, developed by

Image Producers, is a computer simulation of
Wall Street in which the user is allowed to
invest in different types of stocks. Charts and a
DowJones report are provided to keep you up
to date on the current trends. The package is
designed for persons aged 13 and older and is
available on cassette only (9402).

Wildcatting was developed by Image

189

Producers. In this game, the computer sets up
hidden oil deposits, and the user must try to
locate them. Geological survey data is pro
vided in order to help you determine whether
or not oil is in a given location, and the oil
deposits are in different locations each time
the game is played. Designed for persons 10
and older, Wildcatting is an educational game
that will teach the user logical decision
making. It is available on cassette only (9403).

Yahtzee, developed by Milton Bradley
Company, is a challengingdice game that many
people are familiar with in its uncomputerized
format. Points are garnered by varying dice
combinations, and the winner is the person
who obtains the most points after a specific
number of rolls. Designed for users 8 years old
and older, this package is available as a module
and sells for $25.00 (PHM 3039).

FANTASY AND ADVENTURE

Adventure is a series ofgamesdeveloped
by Adventure International. Each require the
adventure command module, the TI disk mem
ory system for the disk version, or a cassette
recorder and the TI cassette interface cable for
the cassette version. These games were de
veloped to create fantasies, whichmay take as
long as a few weeks to complete. The games
include Mystery Fun House, Ghost Town, Ad-
ventureland, and a host of others. The disk
version (PHM3041D) is available for $50.00,
as is the cassette version (PHM3041T).

Adventureland Adventure Data
base: the player in this game is taken on a
fantasy trip to a forest in an enchanted world.
You mustexplore theworld,searchingfor trea
sures and avoiding all obstacles. Youare also
required to locate the secret place where the

190

treasures are stored. The game is available on
disk (PHD 5046) or cassette (PHT 6046) and
requires the adventure command module from
Texas Instruments. It is priced at $30.00 for
either cassette or disk.

Alpiner is a mountain-climbing game,
which may be played by one or two players.
You are presented with a number of obstacles
during your climb up a choice of mountains,
including Matterhorn, Kenya, McKinley,
Garmo, Everest, andHood. Dangersyoumust
confront include the abominable snowman,
lions, bears, skunks, forest fires, avalanches,
and rockfalls. The game is colorful and has
sound effects as well. Alpiner is available as a
plug-in module (PHM3056) for approximately
$40.00.

Airmail Pilot takes youbackto the early
days ofaviation. You are the pilot, and you are
giventhe responsibilityofpiloting aplanefrom
Columbus to Chicago in the shortest timepos
sible. Many factors are involved in this flight,
however, to make it challenging and educa
tional. You must contend with weather condi
tions, electrical storms, etc. The game was
developed byInstant Software and is designed
for persons 10 and older. It is available on
cassette only (0274 TI).

In Chisolm Trail the user is in control of
a steer which must move through a series of
mazes, avoiding obstacles andkilling monsters
thatblock the way. Chisolm Trail may be used
with the TI optional joysticks and comes in
plug-in module form (PHM 3110). Price is
about $40.00.

The Count Adventure Database re
quires the adventure command module, and
sets you back inthe days ofDracula inTransyl
vania. You are given a number ofclues and then

must determine who you are, what you are
doing in Transylvania, and a number of other
things. The game is available on disk (PHD
5049) or cassette (PHT 6049) for $30.00.

Galactic War is a space game in which
you are in control of a spaceship. You must
avoid all obstacles and prevent any danger to
your spaceship while trying to destroy all
enemy spaceships. This game requires Ex
tended BASIC and is available on cassette

(X1100X). The package was designed by
Ehninger Associates, Inc.

Ghost Town is a treasure-hunting game
placed in a setting of an old ghost town. The
player must go through the deserted buildings,
looking for treasure and avoiding ghosts. This
game requires the adventure command module
from TI, as well as a disk drive and controller if
purchased on disk (PHD 5053) or a cassette
recorder and cable if purchased on cassette
(PHT 6053). It is priced at $30.00 for either
disk or cassette.

The Golden Voyage Adventure Data
base sends you back in time to a royal palace in
a Persian City. Youare introduced to a very old
king, who is dying. Your mission is to find a
way to restore his youth, equipped with only a
bag of gold. Your quest is to find the.Fountain
of Youth before the king dies. This adventure
requires the adventure command module from
TI and can be purchased on disk (PHD 5056) or
cassette (PHT 6056) for approximately
$30.00.

Gorfia Pestulitas is an unusual adven

ture game that places you in outer space and
pits you against alien ships constantly trying to
attack you. You may also opt to have space
mines in the game, and two skill levels are
provided. This game requires Extended

BASIC and was developed by Extended
Software Company. It comes on disk or cas
sette.

Khe Sanh is a game in which you are in
Vietnam and must defend your base against the
enemy. This tactical skill game pits you against
approaching forces. It is your job to locate the
enemy by means of search and destroy tactics,
as well as defend approaching supply convoys,
and defoliate forests, etc. This game was de
veloped by Not-Polyoptics and can be pur
chased on cassette only.

Maze of Ariel is a game which displays
random mazes consisting of different rooms
and paths through them. You are pitted against
the computer, and to create difficulty there is a
dragon that you must avoid. You are equipped
with only a flashlight and a supply of grenades.
Developed by Not-Polyoptics, the game comes
on cassette only.

Mission Impossible Adventure Data
base is loosely based on the popular television
program of the same name, which held many
persons spellbound during its long run. As the
game begins, you are listening to a recording
in a briefing room. Your mission is to locate a
person who has set out to destroy a nuclear
reactor, thus destroying the entire world. This
action-packed game must be used with the
adventure command module and is available on

disk (PHD 5047) or cassette (PHT 6047) for
approximately $30.00.

In the Mystery Fun House Adventure
Database the player must get inside the fun
house, which may not be very easy. Once in
side, you are confronted with all the sights you
would see in a fun house, and you must search
for a prize hidden somewhere inside. The
game requires the adventure command module

191

and is available on disk (PHD 5051) or cassette
(PHT 6051) for approximately $30.00.

In Parsec, you are the commander of a
spaceship in outer space. You are required to
do battle with alien ships, which attack in
varying patterns, while guiding your ship
through refueling tunnels. At different levels
of the game, you are attacked by different
types of alien ships, and as the levels change,
you must guide your ship through obstacles
such as asteroid belts. A number of controls
are at your disposal, such as speed/sensitivity
control, pause capability, and even a female
voice, which can apprise you of your current
situation.The graphics andspeech capabilities
make this game quite exciting and entertain
ing. Joysticks and a speech synthesizer are
optional for this game, which is available in
plug-in module form only (PHM 3112) and
sells for $40.00.

In Pyramid of Doom Adventure Data
base the player is positioned in a desert. Stick
ing out of the sand is a pole, which marks the
point where a pyramid has been discovered. It
is your job to find the entrance to the interior of
the pyramid, findand collect the treasures, and
then escape. This is an exciting adventure
game, which requires the adventure command
module. It is available on disk (PHD 5052) or
cassette (PHT 6042) for $30.00.

SAM (surface-to-air missile) De
fense is a simulation game. In this game you
are the viewer, watching the firing of a
surface-to-air missile. This package is avail
able on cassette only (C1080), and was de
veloped by Ehninger Associates, Inc.

Santa Paravia and Fiumaccio was de
signed by Instant Software. In this game, up to
six players can compete to become the ruler of

192

a medieval state (king or queen). Various situa
tions are set up and the players must create a
kingdom. This game may be played by persons
12 and older. It is available on cassette only
(0273 TI).

Savage Island I and II Adventure
Database requires the adventure command
module. This game places you on the edge of a
wild and impenetrable jungle. Youare required
to enter the jungle, with all its creepy crea
tures, and travel through it successfully. This
is a two-part game, which is available on disk
(PHD 5054) or cassette (PHT 6054) for ap
proximately $40.00.

Sengoku Jidai is a fantasy game set in
medieval Japan. Designed for one to three
players, you are given a castle and three ar
mies consisting of archers, foot soldiers, and
samurai. You must then defend your castle as
well as attack the enemy. Each mapboard is
randomly selected by the computer, which
makes this adventure game different each time
it is played. This package was designed by
Not-Polyoptics, a division of Synchronet, and
is available on cassette.

Starship Pegasus is a space adventure
game. This game is designed for play by one
person only, and provides a different set of
randomly selected circumstances each time it
is played. You are positioned inside a space
ship, looking out at the solar system. You are
provided with indications of what is occurring
by sensors, which tell you conditions of a
planet, for example. The purpose is to conquer
the planet or solar system, while avoiding
space pirates. Judgment decisions are in
volved, as well as skill and coordination. This
game was developed by Not-Polyoptics and is
available on cassette.

3-D Star Trek is a three-dimensional

computerized version of Star Trek. It is a very
challenging and exciting program package, de
signed for persons 16 and older. Available on
cassette, this game was designed by Color
Software.

In Strange Odyssey Adventure Data
base the player finds himself stranded on a
small planet with a spaceship badly in need of
repair. The object is to find the parts needed to
repair the ship, while collecting treasures from
the ancient civilization's ruins. The game re
quires the adventure command module and can
be purchased on disk (PHD 5050) or cassette
(PHT 6050) for $30.00.

In Tombstone City: 21st Century you
are in an Old West ghost town that is being
invaded by strange alien creatures, which eat
people and tumbleweeds. You are given a se
curity force consistingof prairie schooners, and
it is your responsibility to protect the ghost
town from the aliens. This is a one-player
game, which will test skill and strategy. It may
be used with the optional wired remote con
trollers from Texas Instruments and is avail

able as a plug-in module only (PHM 3052) for
$40.00.

In Trail West you are required to travel
west to California to reach the gold mines.
Many obstacles confront you on this 2,000-
mile trip, and you are required to reach your
destination without running out of ammunition
or supplies. Random events such as storms and

overturned wagons are introduced during the
trip, and you must use skill and logic to ration
supplies and ammunition so they will last the
entire trip. The game can be played by young
and old and was developed by Micro-Ed, Inc. It
is available on disk only (OT-1).

Treasure Dive, developed by Tutorex,
takes the player through a search for sunken
treasure. You are a scuba diver and are pre
sented with many obstacles such as sea
monsters and a limited air supply. Users of all
ages will enjoy this game, which is available on
cassette only (TUT 6861).

Tunnels of Doom is a fantasy/adventure
game, which takes you back to the age of kings
and queens in a search for treasure. This is a
role-playing game in which you have many op
tions to choose from while you attempt to
rescue the king and defend yourself against
monsters and other dangers. This game re
quires the disk drive and controller if purch
ased on a disk, or a cassette recorder and cable
if purchased on cassette. It is priced at $60.00
for disk (PHM 3042-D) or cassette (PHM
3042-T).

In Voodoo Castle Adventure Data
base you are presented with a closed coffin,
and it is your job to locate the information
needed to free the Count from a curse that has
placed him in the coffin. The game requires the
adventure command module and may be
purchased on disk (PHD 5048) or cassette
(PHT 6048) for $30.00.

193

Chapter 6

TI BASIC Conversions
While there are many software companies
which offer products for the TI-99/4A, you will
not find a large number of books, such as this
one, which include programs written specifi
cally for the TI-99/4A. Texas Instruments is
the largest producer of software for this
machine, and you can find just about anything
you want. However, you will still want to write
your own programs and probably run programs
that were originally written for other ma
chines.

There are many books out which include
program line listings for the TRS-80, IBM Per
sonal Computer, Apple, ATARI, Commodore,
and many others. In many instances, it is pos
sible to convert these programs so that they
will run in TI BASIC on the TI-99/4A com

puter. Such conversions are often not too dif
ficult when the programs deal with the handl

194

ing of on-screen text. However, computer
games, especially those which involve on
screen animation, may present some serious
conversion difficulties. You will often run into

situations where a true conversion is not pos
sible. Rather than converting a program writ
ten for another computer, you simply have to
write a program for the TI-99/4A that will
duplicate the on-screen action of the original
program. Converting a program involves leav
ing most program lines intact, but changing
many of the statements to conform to the new
dialect of BASIC.For example, the CLS (clear
screen) statement, which is common to most
dialects of BASIC, is not found in TI BASIC.
To convert a program that includes CLS, all
that is necessary is to replace this statement
with call clear, which does the same thinginTI
BASIC. This is a program conversion. How-

ever, some programs may contain statements
that perform actions that are simply not avail
able with a similar set of statements on the

TI-99/4A computer. Here, it may be necessary
to develop an entirely new set of instructions
that will perform the same on-screen functions
using the TI-99/4A as the previous program
segment did for the other machine. This is not
a conversion, but a program section rewrite.

The following discussion is an overview
of statement, command, and function modifica
tions that may be necessary to get a program
written for another machine to run on the TI-

99/4A. It certainly doesn't take every other
dialect of BASIC into account, but hopefully,
this information will be a worthwhile guideline
as to how to proceed.

ABS—ABS is the absolute value func

tion. It is always used in the same manner from
dialect to dialect of BASIC. If you see this
function in a BASIC program written for
another computer, no modifications should be
necessary in order to get the program to run on
the TI-99/4A.

ATN—The same is true of the ATN func

tion, which returns the arc tangent of an argu
ment. I have never seen it used in a different

manner than that specified in the Texas In
struments manual.

ASC—The ASC function will give you the
ASCII character code that corresponds to the
first letter in a string argument. This function
is used in basically the same manner in all
dialects of BASIC.

Break—This command will not be en

countered in other dialects of BASIC, although
it is similar to the stop and wait commands
found on other machines. When converting
programs from other dialects to TI BASIC, you

will probably never have to use the break
command or the unbreak command.

Bye—I have not encountered the bye in
other dialects of BASIC. However, it is equiv
alent to the new command found in TRS-80

BASIC and IBM BASIC. In these two ma
chines, BASIC is exited and a return to the
main operating system occurs. Since this is a
command, it should not be encountered in any
BASIC program lines.

Call CHAR-Call CHAR is a subpro
gram found in TI BASIC and in no other
dialects. When involved in graphics program
ming, you will encounter so many differences
between dialects that it is probably much
easier to simply write a new program from
scratch rather than to attempt a conversion.
The Call CHAR command is used to create
block characters. This feature may not be
available on other machines, at least not
through a single command.

Call Clear—This is identical to the CLS

command, which is found in many dialects of
BASIC. It may be used either as a command or
a statement. When it is found in a program,
however, it is a statement. Call CLEAR may be
directly substituted for CLS when converting
programs to TI BASIC.

Call Color—This is equivalent to the
color statement found in other dialects of

BASIC. The numerical commands which fol
low color may vary from machine to machine,
depending on the number of foreground and
background colors offered. You will have to do
a bit of experimenting when attempting a con
version using this statement. However, it
should be done only after the major portion
of the program has been modified and is run
ning. Color statements are used primarily in

195

graphics, and again, it may be easier to simply
rewrite the program rather than convert.

Call VCHAR/Call HCHAR-These

two subprograms in TI BASIC do not really
correspond to any other statements in other
dialects of BASIC. They are, however, roughly
equivalent to locate statements found in IBM
BASIC and TRS-80 Color Computer Extended
BASIC, or to print @ statements in TRS-80
BASIC or Apple BASIC. In these dialects,
however, the statements are used to print in
formation at a specific point on the screen,
whereas in TI BASIC, the subprograms are
more often associated with graphics rather
than text. In most applications involving a
printout of text mode information, locate
statements can be omitted from your TI ver
sion of the program and print @ statements
can be replaced with print. These statements
are often used to display information at certain
points on the screen to make the output more
readable. In this case, the omission of locate or
the changing of print @ to print will not make
a significant difference. However, if these
statements are used to form charts, a conver
sion may not be possible.

Call JOYST—This is the joystick sub
program in TI BASIC. It may correspond
roughly to the stick function found in some
dialects of BASIC.

Call Key—The Call Key subprogram is
quite similar to the on key and key on state
ments in other dialects of BASIC. These

statements are used to activate a certain key
or set of keys on the keyboard and create
branches when the key is activated.

Call Screen—This subprogram is used
primarily in graphics programming. It loosely
corresponds to screen statements in other

196

dialects, but the numbers used to designate
foreground and background colors will proba
bly be different. In most instances, the Call
Screen subprogram can be used to replace a
screen statement, but you will have to coordi
nate the numbers between the dialects. In IBM

BASIC, for example, the screen statement is
used to establish screen mode, which has to do
with screen width and resolution.

Call Sound—This statement corre

sponds to the sound statement as well as the
beep and play statements in other dialects. The
Call Sound subprogram may be used to directly
replace beep, although you will have to follow
Call Sound with appropriate numbers to pro
duce a 1000 Hertz tone for a short duration.

The sound statement in IBM BASIC can also

be converted to Call Sound, although the dura
tion portion must be altered to reflect TI
BASIC nomenclature. In IBM BASIC, duration
is given in machine cycles, of which there are
approximately 18 per second. There is no vol
ume command, but this will be of little signifi
cance in making the conversion to TI BASIC.

CHR$—This function returns the charac
ter corresponding to any given ASCII charac
ter code and is common to all dialects of

BASIC. However, different machines will have
different character sets, so it may be necessary
to compare the character sets and ASCII codes
in order to determine which character is being
specified by an ASCII number. For example, in
IBM BASIC, ASCII code 219 is a block charac
ter used in text mode graphics. There is no
equivalent to this character in the TI-99
character set. In such instances, a conversion
may not be possible.

Close—This statement is used to discon
tinue access to a file. In many instances, it can

be used interchangeably from dialect to di
alect.

Continue—Continue is a command in TI

BASIC, so it should not be encountered in a
program line listing. However, it may be
necessary to continue execution after a pro
gram halt has been performed. In TI BASIC,
you may use CON or continue. Both are the
equivalent of CONT, which will be found in
some other dialects of BASIC.

COS—This function returns a cosine of

an argument. It is used in the same way in all
common dialects of BASIC.

DATA—The data statement is common

to all dialects of BASIC and need not be altered

when making a conversion.
DEF—The DEF statement is used to de

fine your own function to be used in a program.
Most dialects of BASIC contain a DEF FN

statement, which is directly interchangeable
with DEF in TI BASIC.

Delete—In TI BASIC the delete com

mand is used to erase a program or data file
from a disk. It will not be found in a program
line listing. However, its use in TI BASIC is
quite different from other dialects. In TRS-80
and IBM BASIC, the delete command is used
to delete lines from a program in memory. In
many other dialects, the kill command is used
to erase programs from disks, and this com
mand most closely corresponds to the delete
command in TI BASIC.

DIM—The dimension statement is com

mon to all dialects of BASIC. No changes
should be necessary to make a conversion.

Display—The display statement will
probably not be encountered in other dialects
of BASIC. It is rarely used in TI BASIC, as the

print statement is more commonly used to
perform the same function.

Edit—This command is used to display a
line for editing purposes. Most machines have
a similar command. It is never encountered in a

program line listing.
End—This statement stops program

execution and is the same in all dialects of

BASIC.

EOF—The EOF function indicates an

end-of-file condition. It is common to many
other dialects, so no changes will be necessary
as long as you use the number specified in all
other open and close statements as an argu
ment in the EOF functions.

EXP—The exponential function is the
same in most dialects of BASIC.

For-To-Step—This statement is com
mon to all dialects of BASIC.

GOSUB/GOTO—These are branch

statements, which are common to most
dialects of BASIC.

If-Then-Else—This statement is com

mon to most dialects of BASIC, but there are
subtle differences from dialect to dialect. In TI

BASIC, this statement must be followed by a
branch line. In other dialects, if-then may be
followed by statements or commands, as in IF
A = 6 THEN PRINT "HELLO". This line

would not be legal in TI BASIC. The modifica
tion would have to be:

10 IF A = 6 THEN 20 Else 30
20 PRINT "HELLO"
30 END

If-then-else statements in other dialects of

BASIC may also include Boolean operators,

197

such as AND, OR, etc., as in:

10 IF A = 6 AND B = 10 THEN 30
ELSE 20

20 END

30 PRINT "HELLO"

In TI BASIC, this would have to be modified to:

10 IF A = 6 THEN 15 ELSE 20
15 IF B = 10 THEN 30 ELSE 20
20 END

30 PRINT "HELLO"

As indicated by these modifications, all if-
then-else statements in other dialects of
BASIC can be converted to run in TI BASIC,
although more lines will usually be required. In
TI Extended BASIC, however, statements
may follow if-then-else statements, and Bool
ean operators are allowed.

Input—The input statement is common
to most dialects of BASIC, although the for
mats may vary. TI BASIC requires that a colon
be used following any printed phrase in an
input statement. For example,

10 INPUT "PRESS ENTER TO CON

TINUE"^

In other dialects, the colon is rarely used. In
stead, you will find a comma or a semicolon.
This punctuation change is necessary only
when a quoted phrase follows the input state
ment. Such program lines as INPUT A, INPUT
A$, etc. need no changes at all to run in TI
BASIC.

INT—This is the integer function, which
normally requires no modifications to run in TI
BASIC.

198

Len—The len function is common to
most dialects of BASIC and determines the
number of characters in a string statement. No
modification is usually required.

Let—The let statement is optional in TI
BASIC, as in some other dialects. Let state
ments need no modifications to run in TI
BASIC, nor is it necessary to add them when
modifying programs from dialects where let is
not used.

List—The list command is common to
most dialects of BASIC and is used to list the
lines of the program currently in memory. It
will not be encountered in a program line list
ing.

Log—The Log function returns the
natural logarithm of a number. It needs no
modification during a conversion to TI BASIC.

New—The new command is used to
erase the current program from memory in
order to clear space for the writing of a new
program. It is common to most dialects of
BASIC and will not be encountered in a pro
gram line listing.

Next—See For-To-Step.
Number—This command, which may

also be entered as NUM in TI BASIC, is used
to automatically generate line numbers each
time the enter key is pressed when you are
writing or enteringa program. Although some
machines do not offer this feature, those that
do may use NUMS. Numbers, and AUTO.

Old—This command loads a program
from cassette into current memory. Most
often, it corresponds to the load command
found in other dialects of BASIC.

ON-GOSUB/ON-GOTO-Both of these
statements are common to other dialects of
BASIC. See also GOSUB/GOTO.

Open—The open statement is used to
open a file and usually does not need to be
changed when converting a program to TI
BASIC.

Print—All dialects of BASIC contain a

print statement, which is used to display in
formation on the monitor screen. Some modifi
cations may be necessary. For instance, the
following lines are legal in TI BASIC:

PRINT A

PRINT A$
PRINT "HELLO",A
PRINT "HELLO";A
PRINT A,"HELLO"
PRINT A;"HELLO"

The following lines may be legal in other
dialects, but not in TI BASIC:

PRINT A"HELLO"

PRINT "HELLO" A

PRINT "HELLO" A "HELLO AGAIN"

Whenever a variable is used on the same line

with a quoted phrase, the variable must be
separated from the phrase by either a comma
or a semicolon. Many other dialects of BASIC
do not require this.

Randomize—When a conversion to TI

BASIC is done, randomize can be used to di
rectly replace the randomize statements in the
original programs. Some dialects require that a
number follow the randomize statement, such
as RANDOMIZE 32, or RANDOMIZE X,
where X is an assigned numeric variable. In
most instances, you can replace these expres
sions with the single randomize statement in
TI BASIC.

Read—The read statement is common to

all dialects of BASIC and can usually be used as
it is.

REM—REM statements are nonexecut

able and may be used in any dialect of BASIC.
Resequence—Resequence or RES is a

command that is used to sequentially re
number the lines in a computer program. It is
equivalent to RENUM in some dialects of
BASIC.

Restore—The restore statement is the

same in most dialects of BASIC and is used to

enable read statements to reaccess the first

item in a data line.

Return—This statement is always used
in conjunction with the GOSUB statement,
both of which are common to most dialects of

BASIC.

RND—The random function is used in

most dialects of BASIC, but some machines
randomize in slightly different manners. For
example in one dialect of BASIC

INT (RND*6)

will return a number of from 1 to 6. To ac

complish this in TI BASIC, the line must be
modified to:

X = INT(RND*6) + 1

Run—The run command is common to

most dialects of BASIC.

Save—The save command is used to

copy the current program in memory on to a
tape or disk. This command is used similarly in
most dialects of BASIC.

SEG$—In TI BASIC, the SEG$ function
takes the place of LEFT$, RIGHT$, and MID$

199

in some other dialects of BASIC. Any of these
three functions can be replaced by SEG$. You
will rarely encounter SEG$ in other dialects of
BASIC.

SGN—This function gives the algebraic
sign (plus, minus, zero) ofan argument. It may
be used in the same manner in most dialects of
BASIC.

SIN—This function returns the sine of a
number and need not be changed.

SQR—This function returns the square
root of a number and is used in the same man
ner in most other dialects.

Stop—This statement is common to most
dialects of BASIC. No modifications should be
necessary when it is encountered in a program
line listing.

STR$—STR$ is used to return a string
representation of the value of an argument. It
need not be changed during a conversion to TI
BASIC.

Tab—Most dialects of BASIC use the tab
function. However, you will need to know the
differences among screen formats of the vari
ous machines. The TI-99/4A is capable of a
32-column screen, but other machines may
have 40 or 80 column capability. Thus, a
TAB(35) would be illegal on the TI-99/4A, but
wouldbe legal on a machinewith the capability
of displaying 35 columns or more.

TAN—This function returns the tangent
of a number and is used in most dialects of
BASIC.

VAL—The VAL function converts a
string variable to a numeric variable and can be
used in most dialects of BASIC.

MULTIPLE STATEMENTS

The previous material has presented the vari

200

ous statements, commands, and functions and
compared their usage in TI BASIC to their
usage in other BASIC dialects. However, it is
also important to know that TI BASIC does not
allowmultiple statements on a single program
line, andmodifications willbe necessary when
they are encountered in a program that you
wish to convert to run on the TI-99/4A.

Multiple statement lines may be pre
sented in different ways from machine to
machine. For example, one machine may use
the following format:

10 LETA = 10/PRINTA

Here, two statements have been included in
a single line separated by a backslash (/). In
other dialects of BASIC, the same operation
would be presented as follows:

10 LETA = 10:PRINTA

Here, a colon is used to separate the state
ments. Other dialects may use a semicolon or
even brackets. The first statement assigns a
value of10to the variable A.The secondprints
the valueofAon the displayscreen. In order to
modify this line to run on the TI-99/4A, the
following would be necessary:

10 LET A = 10

20 PRINT A

All multiple statement lines cannot be
handled in the manner already discussed. For
example, lines containing if-then-else state
ments willbe a bit more difficult to separate, as
in the following program section:

10 IF A = 10 THEN PRINT
"HELLO": PRINT "YELLOW"

20 PRINT "GOODBYE"

30 END

You might think that a conversion to TI
BASIC would look like this:

10 IF A = 10 THEN 15 ELSE 20

15 PRINT "HELLO"

20 PRINT "YELLOW"

30 PRINT "GOODBYE"

40 END

This is not correct, however. Line 10 con
tains the if-then statement. Therefore, the
second statement on that line (PRINT "YEL
LOW") will be executed only if A is equal to 10.
In the modified program, PRINT "YELLOW"
will occur whether or not A is equal to 10.
Thus, the correct modification would be:

10 IF A = 10 THEN 15 ELSE 25

15 PRINT "HELLO"

20 PRINT "YELLOW"

25 PRINT "GOODBYE"

30 END

In this program, if A equals 10, "HELLO"
will be printed on the screen. If A is not equal
to 10, there is a branch to line 25, where the
word "GOODBYE" will be printed and the
program will end. This problem is encountered
because both the if-then statement and the

second statement on the same line must be

modified.

If you stick to text mode programs written
in other dialects of BASIC for your first exer
cises in program conversion, you will learn
how to do such conversions easily.

Later when you try the more difficult
graphics programs, you can concentrate on the
more involved areas. As you become more
familiar with the TI-99/4A, you will become
more adept at making conversions as you learn
the programming methods used to accomplish
certain functions. You will then be able to look

at a program and duplicate the functions on
your machine. TI Extended BASIC, which is
more powerful than TI BASIC, will make con
version much more simple, because it contains
many programming features common to other
dialects of BASIC.

201

Appendix A

ASCII Character Codes

ASCII ASCII ASCII
CODE CHARACTER CODE CHARACTER CODE CHARACTER

32 (space) 48 0 64 @(at sign)
33 ! (exclamation point) 49 1 65 A
34 " (quote) 50 2 66 B
35 # (number or pound sign) 51 3 67 C
36 $ (dollar) 52 4 68 D
37 % (percent) 53 5 69 E
38 & (ampersand) 54 6 70 F
39 ' (apostrophe) 55 7 71 G
40 ((open parenthesis) 56 8 72 H
41) (close parenthesis) 57 9 73 I
42 * (asterisk) 58 : (colon) 74 J
43 + (plus) 59 ; (semicolon) 75 K
44 , (comma) 60 < (less than) 76 L
45 - (minus) 61 = (equals) 77 M
46 . (period) 62 > (greater than) 78 N

47 / (slant) 63 ? (question mark) 79 0

202

ASCII ASCII ASCII
CODE CHARACTER CODE CHARACTER CODE CHARACTER

80 P 97 A 114 R

81 Q 98 B 115 S
82 R 99 C 116 T

83 S 100 D 117 U
84 T 101 E 118 V

85 U 102 F 119 W

86 V 103 G 120 X

87 w 104 H 121 Y

88 X 105 I 122 Z

89 Y 106 J 123 { (left brace)
90 Z 107 K 124 ;

91 [(open bracket) 108 L 125 } (right brace)
92 \ (reverse slant) 109 M 126 ~ (tilde)
93] (close bracket) 110 N 127 DEL (appears on
94 A (exponentiation) 111 O screen as a

95 (line) 112 P blank.)

96 (grave) 113 Q

203

Appendix B

A Concise

Guide to TI-99/4A BASIC

The language used by most microcomputers is
BASIC, an acronym for.BeginnersAll Purpose
Symbolic instruction Code. Unlike many com
puter languages, BASIC uses English words to
represent computer commands. For example,
the print statement tells the computer to print
something on the screen. The end statement
tells the computer to stop the execution of a
program. The BASIC commands, statements,
and functions relate to the actual function that
is to be carried out.

If you're already familiar with BASIC, you
will have little trouble converting to TI BASIC.
All dialects of BASIC are similar, although
some contain special statements designed to
perform a specialized function on a particular
machine. These differences are always minor,
and most of what you already know about
BASIC will apply to the TI-99/4A.

204

This chapter overviews TI BASIC and
explains what each command, statement, and
function causes the machine to do. If you're
familiar with BASIC, many of these pages will
contain review material; otherwise, this chap
ter will serve as a BASIC primer for the TI-
99/4A.

The nucleus of TI-99/4A BASIC is built

into the machine. The BASIC interpreter is
written into the on-board ROM contained in

the console unit. (ROM stands for Read-Only
Memory, as opposed to RAM, which is Ran
dom-Access Memory.) The programs con
tained in ROM are handled on the machine
level: the integrated circuitchips that make up
ROM have been electronically programmed at
the factory. When the computer is turned on, it
reads this information into its microprocessor.
Nothing you can do at the keyboard affects the

programming in ROM.
The programs you write are committed to

RAM. RAM is also composed of integrated
circuits, but you can change this programming
based on your keyboard input. RAM is also
known as read/write memory: you can write
information into the memory and then the mi
croprocessor reads information out. The lan
guage used to write information into RAM is
the one that is set up in ROM.

The language set in ROM is much like a
dictionary, which contains all the words in the
English language. In dictionary form the words
are not connected to form meaningful sen
tences, and this is the way the words are or
ganized in ROM. ROM simply provides you
with words you can use. You must pull them
out and arrange them in a meaningful order,
which will then be committed to RAM as a
program.

Each TI BASIC statement, command, and
function, including what it means and how to
use it in writing programs is explained below.

ABS The absolute value function
gives the absolute value of an expression. This
expression is often called the argument; it is
the value obtained when the numeric expres
sion is evaluated. If the argument is positive,
the absolute value function gives you the ar
gument itself. If the argument is negative, the
absolute value is the negative of the argument
(the absolute value of -20 is 20). This function
is useful when it is necessary to pull the abso
lute value from a long series of mathematical
functions. It is used in the following format:

ABS(38)

The 38 in this case is the numeric expression.
It couldbe replaced by a variable or a complex
series of expressions, such as:

ABS 20*(14*3.2)/-20)

The absolute value will return the numerical
value from this formula and delete the minus
sign if the value is negative.

ASC The ASC function returns the
ASCII code for the first character of a string
variable or string of numbers inserted in
parentheses following this function. Each
character produced by the TI-99 is rep
resented and accessed by an ASCII code
number. For example, the ASCII code number
for the uppercase letter 0 is 79. Using the ASC
functionfollowedby an 0 in parentheses would
yield the number 79. A typical format for this
function is:

10 X$ = "0"
20 PRINT ASC(X$)

When this simpleprogramis run, the computer
screen will display 79 (the ASCII value for X$),
which is equal to the uppercase letter 0.

ATN This function returns the arc
tangent of the numeric expression that follows
it in parentheses. The arc tangent is the angle
in radians whose tangent is equal to the
numeric expression. (This sophisticated
mathematical function will not be of immediate
use to the beginning programmer.) ATN func
tion formatting is handled in the same manner
as the ABS function.

Break The break command is en
tered via the keyboard: it is not normally in-

205

eluded as part of a program. When the break
command is entered, break points are set at the
program lines currently being executed. When
you enter break, you tell the computer to stop
running the program before executing the
statement on the next line.

BYE The BYE command lets you
leave BASIC. When this command is entered,
the computer closes all open files; the program
in memory and all variables are erased; and the
computer is reset so it's ready to receive pro
gramming when you return to BASIC. After
the BYE command is entered and executed,
the computer screen returns to the master
mode, the first mode accessed when the com
puter is turned on. Don't execute this com
mand until you are certain that any program
currently in memory has been saved.

CHR$ The CHR$ function is the re
verse of the ASC function. Where the ASC
function returned the ASCII code for a specific
character, the CHR$ function converts an
ASCII code number into its character equiva
lent. The following will cause the computer
screen to display the letter 0:

10 V$ = CHR$(79)
20 PRINT V$

In the simple program shown here, V$ equals
CHR$(79), which is the same as saying V$ is
equal to ASCII character 79 or the uppercase
letter 0. The print statement in line 20 causes
the character 0 to be printed on the screen.

Close The close statement "closes"

a file that was previously opened using an open
statement. Any open file must be closed before
the computer can move to another part of the
program. The close statement is discussed

206

further under the open statement entry.
Call CHAR Call CHAR is a subpro

gram standing forcharacterdefinition. The call
statement is used to call up or initiate the
subprogram. Call CHAR lets you arrange spe
cial graphics characters on the screen. It is
followed by the ASCII character code and a
pattern identifier expressed in hexadecimal
code (a 16-character string expression which
specifies the pattern ofa character you want to
use in yourprogram). The graphics section of
this book discusses this in more detail.

Call Clear The Call Clear subpro
gram clears or erases the monitor screen. A
call clear command is often issued at the be
ginning of a program to clear the screen.

Call Color The Call Color subpro
gram lets you specify the colors of characters
on the screen. This subprogram statement is
followed by a character set number, fore
ground color code, and backgroundcolor code,
all numeric expressions.

Call GCHAR This subprogram lets
you read a character anywhere on the screen,
by specifying the row number, column number,
and the numeric variable to read the character.

The video screen is arranged in a series of
blocks, 32 running horizontally and 24 running
vertically. Row number 12 references the mid
dle far left of the screen, while column number
16 reference's the top center portion of the
screen. When the two numbers are combined,
as in 12,16 the center of the screen is refer
enced.

Call HCHAR This subprogram
places a character anywhere on the screen and
optionally repeats it horizontally. To use this
program, you must input the row and column
numbers, along with the character code (given

in the ASCII equivalent) and, optionally, the
number of repetitions.

Call JOYST This subprogram lets
you input information directly to the computer
by positioning the lever on a joystick. Qoy-
sticks are available as options for the TI-99.)

Call Key The Call Key subprogram
transfers one character from the keyboard di
rectly to the program, eliminating the need for
an input statement. (The Call Key subprogram
is similar to an INKEY$ variable common to
other dialects of BASIC.) This subprogram
reads the keyboard input and branches the pro
gram according to the pressed key.

Call Screen This subprogram is
used to display on-screen graphics and lets the
screen be changed to any of16 available colors.
When a Call Screen subprogram is executed,
only the screen background color changes. The
Call Screen color code is a number from 1 to

16. To change a screen to a dark blue back
ground, youwould type CALL SCREEN(5) (5
is the color code for dark blue).

Call Sound The Call Sound sub

program generates tones and noises. This
statement must be followed by the time dura
tion, frequency, and volume you wish the
sound to follow. The duration is measured in
milliseconds, numerically expressed by a
value of from 1 to 4250. A value of 4250 holds
the tone for 4.25 seconds. Frequency is ex
pressed in hertz; legal values are from 110 to
44,733. Achart in the Appendices indicates the
frequencies that correspond to different musi
cal notes. The final number in the string ex
presses volume, one of five values from 0 to 5.
Zero is the loudest; 5 is the softest.

Call VCHAR This subprogram is
like Call HCHAR, except it repeats characters

on the screen vertically rather than horizon
tally.

To further demonstrate, consider the fol
lowing example:

CALL HCHAR(2,15,72,7)

This will cause 7 ASCII characters (86) to
appear vertically on the screen starting at posi
tion 2,15. ASCII character 86 is the capital
letter V, which is repeated 7 times. The
HCHAR version is:

CALL HCHAR(2,15,72,7)

The ASCII code has been changed to 72, the
letter H, which will be printed 7 times horizon
tally.

Continue This command is en

tered whenever program execution has been
halted by a break command. When a continue
command is input, execution continues until
the program ends or another break point is
reached.

COS The cosine function returns the

cosine of a numeric expression. The format is
COS(X),where Xis the numericexpression. If
you entered the line PRINT COS(4), thescreen
would display the cosine of the number 4. You
can also use this function as follows:

10 l=COS(4)
20 PRINT I

Data The data statement stores nu

meric and string constant data in a program. It
is always used with a read statement, which
instructs the computer to pull information from
the data statement. The format for the data
statement is: Data item, item, item, . . . The

207

items must be separated by commas. If you
wanted to include the numbers 1 through 10 in
a data statement you would use DATA 1,2,3,
4,5,6,7,8,9,10. Whenever a read statement
is encountered, the information contained in
the data statement will be fed to the machine

one item at a time. A read statement would

have to be accessed 10 times to read all data

items in the example.
DEF The define statement lets you

define your own functions in a particular pro
gram. The specified function name may be any
valid variable name. Any parameters following
a DEF statement must be enclosed in paren
theses.

Delete This command removes a

program or a data file from a disk. To use this
command, you must have the TI Disk Drive
Controller and a disk drive. Once a file is es

tablished, the delete command will erase it
from the storage medium. The command must
be followed by the file name or program name.
If you opened a file under the name GAME,
DELETE "GAME" will erase it from the disk.

DIM This may be used as a command
or statement and reserves space for numeric
and string arrays. DIM lets you set the
maximum size of an array. For example DIM
X(15) sets aside a one-dimensional array with
a maximum of 15 elements. Using the DIM
statement, you may also establish two- and
three-dimensional arrays.

Display The display statement is
identical to the print statement. Both may
be used to write information on the display
screen. The display statement causes informa
tion to be output only to the screen.

Edit The edit command is entered in
direct mode and used to call up a line from a

208

previously written program to change it. For
example, to make corrections in line 100, input
EDIT 100, and that line will appear on the
screen. The FCTN and cursor movement keys
are used to align the cursor with the beginning
of the word or letter to be changed. New infor
mation may now be typed over the old, or the
insert function may be used to place letters or
words before this point. There is no need to
retype the entire line. The line number cannot
be changed. Press enter to exit the edit mode
and store all changes in memory.

End The end statement terminates
your program. It may be used interchangeably
with the stop statement. Its presence as the
last line of a program is not necessary, since
the program will automatically terminate when
there are no more lines to execute. The end
command is useful when one or more sub
routines are includedat a point in the program
that follows the normal termination point. For
example, if you write a program filling lines
100 through 1000 and then add a subroutine
starting at line 1010reached througha GOSUB
or GOTO statement, the end statement might
be inserted at line 1005 to avoid accidental
execution of the subroutine at the end of the
program.

EOF The end-of-file function deter
mines when the end of a specific file has been
reached. When files are accessed by the open
statement, their information is output until
there is nothing left. On the next information
loop, anend-of-file condition results. Using the
EOF function, a branch may be built into a
file-reading program that will terminate the
program before an error message can occur or
activate other programs. If a file has been
opened as number 1, the EOF function might

look like this:

IFEOF(1)THEN 1000

When an end-of-file condition results in file

number 1, the program will branch to line 1000.
EXP This is the exponential func

tion, the inverse of the natural logarithm func
tion. It raises the number 2.718281828 to theX

power. In this case, the variable X is the
number you input. For example:

PRINT EXP(4)

will raise the number 2.718281828 to the

fourth power.
For-to-Step This statement is used

to create loops in a computer program. It is
always used with a next statement, which
marks the end of a loop. While for and to must
always be used to set up a for-next loop, the
step command is necessary only when the loop
is to cycle in increments other than 1. The
following program demonstrates the use of this
statement:

10 FORX = 1 TO 10 STEP 1

20 PRINT X

30 NEXTX

This is a simple for-next loop that causes the
value of X to be printed on the screen. The
for-to-step statement in line 10 specifies thatA
is assigned values of from 1 to 10 in steps of 1.
In this loop,A" is equal to 1 on the first cycle, 2
on the next, then 3, and so on, until the
maximum value specified is reached. If the
step were changed to 2, the count would skip
every other number.

GOSUB The GOSUB statement is
used to branch to another portion of a program.
It may be typed as one word or two, as in
GOSUB or GO SUB. This statement is al

ways used with a return statement allowing
you to defer the program to a subroutine, exe
cute each line in the subroutine, and then re
turn to the next program line following the
GOSUB statement.

GOTO The GOTO statement like
the GOSUB statement, is used to branch from
one portion of a program to another. A line
number indicating the program line to which to
branch follows this statement. GOTO 100 or
GO TO 100 will bring about a branch to line
100. Once a GOTO branch is made, there is no
automatic return; the only way to return to the
main program is with another GOTO state
ment.

If-Then-Else This statement lets
you change the sequence of your program
execution by using a conditional branch.
GOSUBor GOTO will bring about an uncondi
tional branch. With if-then-else, a certain con
dition must exist before the branch occurs.
Else is often dropped from this statement. For
example:

IF X= 40 THEN 500

This means there will be a branch to line 500

only when the value ofX is equal to 40. IfA" is
not equal to 40, the computer will execute the
next line. When the else statement is used, a
branch will always occur, but the branch
selected depends on a certain condition:

IF X = 40 THEN 500 ELSE 1000

There are two possible branches—one to

209

line 500 and the other to line 1000. If the value

ofX is 40, there will be a branch to line 500; ifX
is not equal to 40, then there will be a branch to
line 1000. If-then-else statements are often

used to conditionally access subroutines using
branches to lines containing GOSUB state
ments. The following program segment dem
onstrates this:

10 IF X = 1 THEN 20 ELSE 30

20 GOSUB 100

30 PRINT X

40 END

In line 10, the computer is told to branch to line
20 if the value of X is 1. Line 20 contains a

GOSUB statement that branches to a sub

routine starting at line 100. The content of this
subroutine is unimportant for this discussion
and is therefore not included here, but when it
has been executed, there will be a return
statement that will cause line 30 to be the first

executed after the subroutine.

If X is not equal to 1, the else portion of
line 10 branches to line 30, skipping line 20
altogether.

Input The input statement tem
porarily halts program execution until informa
tion can be input via the keyboard. The input
prompt appears as a question mark on the
screen. The input statement may be im
mediately followed by a prompt message in
quotation marks. After the last quotation mark,
a colon must be inserted and then a variable

name. Either a numeric or string variable may
be specified. If a numeric variable is used and
the information is not input in numeric form, an
error message will be displayed.

Another form of the input statement lets
you enter data from an accessory device. The

210

input statement can be used only with files
opened in the input or update mode. The file
number in the input statement must be the file
number of a currently open file.

INT The integer function gives you
the largest integer not greater than the argu
ment. The argument is the value obtained
when a numeric expression is evaluated. With
positive numbers, the decimal portion of the
number is dropped. For negative numbers, the
next smallest integer value is used. The fol
lowing format is used with the INT function:

100 X = INT (113.876)
110 PRINT X

The value output to the screen will be 113, the
integer of 113.876. If the value in line 100 was
-L113.876, the integer value would be -114,
the next smaller integer value. INT is used
whenever it is necessary to arrive at answers
given as whole numbers only and not as whole
numbers and fractions of their decimal equiva
lents.

LEN The length function gives you
the number of characters in a string:

10 A$ = "HELLO"
20 PRINT LEN(A$)

When the program is run, the screen will dis
play the number 5, which is the number of
characters in A$ (HELLO). The LEN function
counts spaces as well as characters; if A$ were
assigned the value of HELLO CATHY, the
length would be 11.

Let The let statement is optional and
is used to assign values to variables within a
program. Because let is optional in TI BASIC
LET A = 10 and A = 10 are both acceptable.

List The list command is entered in
direct mode (no line number) rather than as
part of the program. It causes the screen to
display the list of lines that make up a program.
You may also specify the name of the device on
which you want the lines listed. You can
specify a line or lines with the list statement;
typing LIST displays all program lines. LIST
150 will display only line 150. LIST—150 will
list all program lines before and including line
150. LIST 150- will list line 150 and all lines
following it. LIST 90—150 will list lines 90
through line 150.

LOG This is the natural logarithm
function. PRINT LOG(3.5) will give you the
natural logarithm of the number 3.5. The
number may also be represented by a previ
ously assigned variable. LOGis the inverse of
the EXP function.

New The new command erases the

program currently in memory. It also closes
any open files and clears all space previously
allocated for special characters. The new
command is often used after a program has
been written, debugged, and stored on cas
sette or disk. Typing NEW erases any program
from memory and lets you begin on a new one.
Don't use new before a program you wish to
save has been committed to permanent stor
age.

Next The next statement is never
used by itself; it is always paired with a for
statement (for-to-step). The next statement
controls whether the computer will repeat a
loop or exit to the following program line.
When a next statement is encountered, the
previously evaluated increment in the step
clause is added to the control variable, and then
the control variable is tested to see if it ex

ceeds the previously established limit.
Number This command may be en

tered as NUMBER or NUM. When the com

puter receives this command, it automatically
generates line numbers to speed program
writing. The NUM command is issued before a
program is written. When you press enter, a
line number is automatically generated, start
ing with 100 and stepping up in increments of
10. When you have finished the program, hit
enter once more to remove the number

generator feature.
Old The old command reads a previ

ously saved program into the computer's
memory. This applies to programs that have
been saved on cassette or disk and then re

moved from current memory. When you want
to load information from cassette to current

memory, input OLD CS1. A set of instructions
will then appear on the screen telling you to
rewind the cassette tape and press the cassette
play button. The old command is followed by
the name of the file you wish to load into mem
ory.

ON-GOSUB The ON-GOSUB state

ment is used to tell the computer to perform
one of several subroutines. It is another way of
setting up a conditional branch to subroutines
without using the if-then-else statement.

10 INPUT A
20 ON A GOSUB 150,250,350

This is not a conditional branch in the true

sense, but it does bring about several branches
whenever a value is input for A. The following
is an example of a true conditional branch:

211

10 B = 10

20 INPUT A

30 ON B-1 GOSUB 1000

Here, a branchwilloccuronlywhenAis equal
to 9 (the value of B minus 1, as specified in the
ON-GOSUB statement).

ON-GOTO Like ON/GOSUB, this
statement is used to access different portions
of a program, whereas with GOTO returns are
unnecessary.

Open The open statement prepares a
BASIC program to use data files stored on
cassette, disk, etc. It provides the necessary
link between a file number in a program and the
particular accessory device on which the file is
to be located.

Option Base The option base state
ment is used to set the lower limits ofan array
subscript at 1 instead of 0.

POS The position function detects
the occurrence of a substring within a string.
The POS function compares two strings and
indicates at what position a letter or series of
letters found in one string begins occurring in
another.

Print The print statement is used to
display information on the screen. Words to be
displayed follow the print statement in quota
tion marks. Words and/or numbers assigned to
string variables or variables are printed by
following the print statement with the name of
the variable without quotation marks.

Randomize The randomize state
ment is used with the random number function
(RND) to generate a pseudo-random sequence
of numbers. When randomize is used by itself,
the random number function generates a dif
ferent sequence of random numbers each time.

212

The randomize statement may also be used
with another number called the seed. If the

seed is unchanged, the sequence of random
numbers will be the same each time the pro
gram is run. The randomize statement and
RND function are used in programs simulating
dice rolls, card selections, and other games of
chance. The output numbers are pseudo
random, which means they are logical progres
sions to the computer, but the patterns are so
complex as to appear random to users.

Read The read statement is used to
read data from data statements within the same

program. Read and data statements must al
ways be used together. Information is read an
item at a time, sequentially from left to right.

REM The REM (remark) statement
is a non-executable portion of a program. The
computer simply skips over the lines that
begin with REM. REM statements are used to
insert informationconcerning the program that
may be of importance to users.

REM statements are also helpful to the
programmer. For example, when programs are
quite long and complex, the beginning and
ending of certain subroutines can be identified
with REM statements, as can other major
building block programs within a major pro
gram.Whenthe programis reviewed fordebug
ging, the REM statements let you quickly
identify the sections you seek.

Resequence The resequence com
mand mayalsobe entered as RES. It reassigns
the linenumbers for all lines in a program. It is
often necessary during debugging to insert ad
ditionalprogram lines, makingthe line number
sequence confusing.

Also, when many additional lines must be
input, you can often run out of space between

lines. The resequence command, when used
alone, will automatically renumber every line
in steps of 10, beginning with line number 100.
All branch statements are also automatically
changed to reflect the new numbers: if one
branch statement was input as GOTO 100 and
line 100 was changed to line 120, during re-
sequencing, the GOTO statement would read
GOTO 120 after resequencing. You can also
renumber a program starting at certain lines
and determine your own sequence: RE
SEQUENCE 10,10 causes the first rese-
quenced line number to be 10, followed by 20,
30, 40, etc.

Restore The restore statement is

used to return a data statement to the begin
ning of its list of items.

Return The return statement is used

with a GOSUB statement to return program
execution to the line immediately following the
GOSUB statement that accessed the sub

routine.

RND This is the random function,
which provides the next pseudo-random
number in the current sequence of numbers
generated by the randomize statement.

Run The run command is used to

begin execution ofa program in memory. When
used by itself, the run command causes execu
tion to begin at the first line number in the
program. If the run command is followed by a
line number, execution will begin at that line.

Save The save command lets you
copy the current program in memory onto disk
or cassette. The save command must be fol

lowed by the name of the file you wish to
establish.

SEG$ This is a function which gives
you a portion of a designated string. The fol

lowing program demonstrates the use of this
function:

10 A$ = "PARADOXICAL"
20 PRINT SEG$(A$,4,5)

When this program is run, the screen will dis
play ADOXI. This is the segment of the word
"paradoxical" that begins with the fourth letter
from the left and continues for five letters.

SEG$ has been used to extract a substring
from A$.

SGN This is the signum function,
giving you the algebraic sign of a value
specified by an argument. This function tells
you whether a number is positive, negative, or
equal to 0:

10 A = 15

20 PRINT SGN(A)

Here a 1 will be displayed on the screen, indi
cating that the number is positive. If A were
changed to -15 in line 10, the screen would
display -1, incidating that the value of A is
negative. If A were equal to 0, 0 would appear
on the screen. Obviously, in the program
shown for demonstration purposes, it is quite
easy to tell whether a number is positive,
negative, or equal to 0. The SGN function,
however, may be used in a program that per
forms complex mathematical functions, most
of which are not displayed on the screen.

Here, the SGN function may also be used
to bring about branches to other portions of the
program:

IFSGN(A) = -1 THEN 200

213

The value of the number is unimportant; the
important quality is whether it is negative
rather than positive or equal to 0.

SIN The sine function gives you the
trigonometric sineofthe argument. Iftheangle
is in degrees, multiply the degrees by pi di
vided by 180 to get the equivalent angle in
radians. The SINfunction is useful when per
forming different types of vector math and in
generating sine waves on a computer screen
graph.

SQR The square root function re
turns the positive square root of the value
specified by the argument:

10 PRINT SQR(9)

The output from this program will be the
number 3, which is the square root of 9.

Stop The stop statement terminates
a program and is interchangeable with end.

STR$ This function converts the
number specifiedby an argument into a string.
It is the opposite of the VAL function.

TAB The tab function is used with
the print statement and specifies a starting

214

positionon the linefor the next print item. The
tab function works like a tab on a typewriter.
PRINT TAB(10);"HELLO" will print HELLO
on the screen starting 10 positions from the
left.

TAN This returns the tangent of the
argument X, where X is an angle in radians.

Trace This lets you see the order in
which the lines of your programare executed.
When the trace command is input, the line
numbers appearon the screen as they are exe
cuted. This can be a most valuable debugging
aid, in that infinite loops and unwanted
branches can be quickly detected. To remove
the trace feature, the untrace command is
input.

VAL The VAL function is used to
extract a numeric value from a string variable.
If the string variable is composed of numbers
only, the VAL statement will extract these and
assign them to a numeric variable that may be
used in mathematical functions. When VAL is
used with a string variable containing letters
and numbers, only the numeric portion will be
committed to a numeric variable.

Glossary
accessory device—Any equipment that at

taches to the computerto allow it to expand
its functions. Accessory devices are usually
limited tohardware orfirmware, asopposed
to software.

access time—The interval between the ap
plication of an input pulse and the availabil
ity of data signals at the output.

algorithm—An algorithm is a set of rules or a
standard procedure that provides the solu
tionto a problem. Ina computerprogram, an
algorithm is the most efficient method of
achieving a specific goal. In this case, effi
cient would most likely refer to a minimum
number of statements, functions, and com
mands or the shortest program possible to
achieve the goal.

alphanumeric—Alphanumeric describes
characters which include the letters of the

alphabet, numerals, and symbols used for
punctuation and mathematical operations.

array—An array is a group or table of values
referenced by the same name when pro
gramming in BASIC. Each item or value in
the array is often referred to as an element.
Array elements are variables and can be
used in expressions and in BASIC state
ments or functions that allow the use of
variables.

ASCII—ASCII is an acronym for American
Standard Code forInformation Interchange.
This is an 8-level code (7 bits plus parity
check) that is widely used for information
interchange. This code structure is used in
the TI-99/4Aand most personal computers
to represent letters, numbers, symbols, and
special characters.

assigned statement—An assigned state-

215

assigned statement—buffer

ment is a line in a computer program that
assigns a value of an expression to a vari
able. On the TI-99/4A the let statement or

the equal sign may be used,
asynchronous—Asynchronous is a mode of

computer operation in which performance of
the next command is activated by a signal
indicating that the previous command has
been completed.

BASIC—An acronym for Beginners All Pur
pose Symbolic Instruction Code, BASIC is a
programming language that is used to write
programs. A BASIC program consists of one
or more statements, functions, or com
mands preceded by line numbers. These
numbers control the sequence in which the
instructions are run. The BASIC language
used with all computers is quite similar.
Different types of computers may alter the
BASIC language slightly to conform to cer
tain machine standards. The TI-99/4A is
programmed in TI BASIC.

binary—Binary is a number system based on
only two digits, 0 and 1. The internal lan
guage and operations of digital computers
are most often based on the binary system.

bit—Bit is an abbreviation for binary digit.
This is an information unit equal to one bi
nary decision, or the designation of one or
two possible values. These values may be
referred to as high/low, 1/0, yes/no, off/on,
etc.

Boolean algebra—Boolean algebra is a de
ductive system or process of reasoning
named after George Boole, an English
mathematician. It is a system of theorems

216

that uses symbolic logic to denote classes of
elements, true or false propositions, and
on-off logic circuit elements. Symbols are
used to represent operators such as and, or,
not, except, if-then, etc. This system is now
recognized as an effective method of handl
ing single-valued functions with two possi
ble output states. When Boolean algebra is
applied to binary arithmetic, the two states
become 0 and 1. When applied to switching
theory, the two states become open and
closed.

branch—A branch is a break in the sequential
execution of a program. A branch causes the
computer to jump to another portion of the
program. In TI BASIC, statements that set
up branches include GOTO, GOSUB, and
if-then-else. There are two types of
branches, conditional and unconditional. An
unconditional branch is conducted each time

the line that includes the branch instruction

is executed. A conditional branch brings
about the jump only upon the result of some
logical or arithmetic operation. GOTO and
GOSUB statements are used most often to

bring about unconditional branches, and if-
then-else is used only for conditional
branching.

breakpoint—In TI BASIC,a breakpoint is the
point in a program at which execution is
halted by the break command. After execu
tion has been suspended, you can perform
operations in command mode to help locate
program errors. To resume execution after
a breakpoint, type CONTINUE and press
the enter key.

buffer—A buffer is a device or area of com-

puter memory that serves as an isolator or
interface to dissimilar elements. In comput
er terminology, a buffer is usually thought
of as a storage device. It may store input or
output information transmitted at one rate
until another station can use the data. The

output from the Texas Instruments comput
er to the printer is transmitted at a much
faster speed than the printer can transfer to
paper. The print buffer receives the output
from the computer at its normally transmit
ted rate. It stores the information until the

printer can accept it all at its own speed.
bug—A bug is an error. The term applies

especially to software errors. When a pro
gram is first written, it must often go
through a debugging process. This is a mat
ter of removing all errors.

bus—A bus is a conductor through which in
formation is transmitted or received.

byte—A byte is a string of binary digits that
form one unit. A byte is equal to one char
acter letter, number, space, or punctuation
mark. Computer memory capacity is
specified in bytes. The TI-99/4A makes
available 16,000 bytes of read/write mem
ory (RAM). This may also be specified as
16K (RAM). This may also be specified as
16K bytes, with the K meaning multiply by
1000.

card—In microcomputer jargon, a card is a
plug-in circuit board. The peripheral expan
sion system used with the TI-99/4A makes
available slots for inserting these circuit
boards, or cards. The plug-in modules con
tain internal cards, but since they are en
closed in one unit, the term module applies.

buffer—command

cassette storage system—This system al
lows you to to write information onto a blank
cassette tape and to load the program or data
back into the computer.

cathode ray tube—Abbreviated CRT, a
cathode-ray tube is a device that displays
information. Your television picture tube is
a cathode ray tube, and all monitors, such as
the TI 10-Inch Color Monitor, contain them.

character—A character is a letter, number,
or symbol that can be produced (usually on
the screen) by a computer.

character set—A character set is a set of

representations, called characters, from
which selections are made to denote and

distinguish data. A set may include the nu
merals 0 to 9, the letters A to Z, punctuation
marks, and a blank or space.

chip—A chip is a thin piece of silicon material.
Solid state devices use a single chip to pro
duce highly complex circuits, all contained
on the chip surface. More common ter
minology lets chip be used to describe in
tegrated circuits.

code—A code is a system of symbols for rep
resenting data or instructions in computers.
Code also means to translate a program into
instructions acceptable to a particular com
puter.

collate—An operation in which two or more
sets of data are merged to produce one or
more sets that still reflect the original or
dering relations.

command—A command is an instruction that

is not a part of a program and which the
computer can perform immediately upon
input.

217

command module—executable statement

command module—The Texas Instruments

command modules are preprogrammed
read-only memory circuits enclosed in a
package for insertion in the TI-99/4A con
sole. These modules contain different lan

guages and programs.
concatenation—Concatenation is the pro

cess of linking together in a series.
cursor—A cursor is a symbol that appears on

the monitor to indicate where the next

character will appear. In TI BASIC, the cur
sor is represented by the more than symbol
(>)•

data—Data are facts, concepts, numbers, let
ters, symbols, or instructions for communi
cation, interpretation, or processing. Data
form the basic elements of information. (See
data statement)

data statement—In TI BASIC, a data state
ment allows for items to be contained within

a program line. A matching read statement
reads each data item when commanded to do

so. A data statement may contain as many
constants as will fit on a program line, and
any number of data statements may be used
within a program. The items contained in
data statements are always read sequen
tially.

debug—Debug is a computer term used to
describe the detecting and removing of er
rors and malfunctions from a program or
from the computer itself.

default—A default is a characteristic or value
that the computer assumes to be true unless
otherwise negated.

digital system—A digital system is a device

218

or circuit that deals in digital rather than
analog form. It operates on a binary number
configuration using 2 as a base and the digits
0 and 1 as values, which are referred to as
bits. Combinations of these bit values pro
vide the code by which data can be proces
sed through its electronic circuitry.

DIP—DIP is an abbreviation for dual in-line

package. This describes many types of in
tegrated circuit packaging. DIP packages
resemble long, flat wafers with pins ex
truding the longer edges.

directory—A directory is the area on a disk in
which the names of files are stored. Included

in a directory may be information about the
size of the file, its location on the disk, and
the date it was created.

disk—A disk (also called a floppy disk) is a
mass storage device. It is a flexible circular
object coated with a magnetic substance.
When in use, the disk spins inside a perma
nent protective jacket. The disk drive con
tains a magnetic head to read and write in
formation from the disk.

edit—Editing involves the deletion, insertion,
and rearrangement of data.

error message—An error message is a
screen prompt that appears after you enter a
line incorrectly, or when you are trying to
run a program with incorrect lines. The
error message indicates what the problem
may be and may generate an error message
number for easy reference in the TI refer
ence manual.

executable statement—Executable state

ments are program instructions that tell

BASIC what to do while executing a pro
gram.

execute—Execute means to run a program.
exponent—An exponent is a number which

indicates the power to which another
number or expression is to be raised. In TI
BASIC, the exponent is written to the right
of the number or expression, separated from
it by the > symbol which is typed in via the
keyboard.

expression—an expression is a combination
of variables, constants, and operators that
can be evaluated to a single result.

file—A file is a collection of information usu

ally stored on cassette tape or disk.
flowchart—A flowchart is a graphical rep

resentation of the definition or solution of a

problem, in which symbols are used to rep
resent functions, operations, and execution
flow. A flowchart contains the logical steps
in a program so the designer can concep
tualize and visualize each step. It defines the
major phases of the processing, as well as
the path to problem solution.

formatting—Formatting is the process of
setting up a disk to receive information.
This process checks the disk for bad spots
and builds a directory to hold information
about the files that will be written on it.

function—A function is a feature that lets you
specify a variety of procedures as single
operations. Each procedure may actually
contain a large number of steps.

function keys—On the TI-99/4A, the key
board function keys perform special func
tions when pressed simultaneously with the

executable statement—integrated circuit

FCTN key. These functions can include the
printing of quotation marks in a program, or
the deletion, insertion, or complete erasure
of characters or lines in a program while in
the edit mode.

graphics—Graphics include simple drawings,
random patterns, and graphs.

hardware—Hardware refers to the physical
components that make up the microcom
puter. A monitor, printer, cassette recor
der, and disk drive, are hardware.

hexadecimal—Hexadecimal describes a

number system that has a base of 16 and
uses 16 symbols. These symbols are the
numbers 0 through 9 and the letters A
through F.

housecleaning—Housecleaning is a process
by which BASIC collects all of its useful data
and frees up areas of memory that were once
used for strings. The data is compressed so
the user can continue until there is no space
left.

instruction—An instruction defines an oper
ation and causes the computer to actually
perform the operation.

integer—An integer is a positive or negative
whole number, such as 1,2,3,4, or 5. Zero is
an integer, but numbers such as 1.12,2.333,
and 4.115 are not.

integrated circuit—Abbreviated IC, an in
tegrated circuit is an interconnected array of
components fabricated from a single crystal
of semiconductor material (usually treated
silicon).

219

interface—memory

interface—An interface lets a computer op
erate into a communications line, a terminal,
or into peripheral devices.

I/O—I/O is an abbreviation for input/output.
An I/O channel is a circuit path that allows
communications between the processor and
devices including the keyboard, a disk drive,
a cassette player, etc.

iteration—A programming technique of re
peating a group of program statements.
For-next loops are often used for this pur
pose.

joystick—A joystick is a lever that provides
coordinate data of a display surface. The
data can control operations, such as the
movement of one or more display elements.
Joysticks are often used in computer games
or to manipulate data on the screen.

keyboard—The keyboard contains keys for
entering data or information into the sys
tem.

light pen—A light pen is a photosensitive
device that causes the computer to modify
the display on the monitor screen. The light
pen signals the computer using an electroni
cally produced pulse. The light pen can draw
impressions on the monitor screen, as well
as read points of light from computer-
generated displays.

logical operator—Logical operators perform
logical, or Boolean, operations on numeric
values. Logical operators are usually used to
connect two or more relations and return a

true or false value to be used in a decision. A

220

logical operator takes a combination of
true-false values and returns a true or false

result. An operand of a logical operator is
considered to be true if it is not equal to
zero, or false if it is equal to zero. The result
of the logical operation is a number that is
true if it is not equal to zero, or false if it is
equal to zero. The number is calculated by
performing the operation bit by bit. The
logical operators are not (logical comple
ment), and (conjunction), or (disjunction),
XOR (exclusive OR), IMP (implication), and
EQV (equivalence).

logic expression—A logic expression con
sists of variable array elements, function
references, logic constants, and combina
tions of operands separated by logical
operators and parentheses. Typically, logi
cal expressions may contain arithmetic ex
pressions separated by relational operators.

loop—A loop is the repeated execution of a
series of instructions usually for a specific
number of times. For-next statements are

often used to establish such loops.

machine language—A machine language is
used directly by a microprocessor. All other
languages must be translated or compiled
into binary code before entering the proces
sor.

matrix printer—A matrix printer is a device
that uses an array of dots to form characters.

memory—Memory in a computer stores in
formation. Random-access memory (RAM)
is the memory section to which operator
programs are written and stored for execu
tion. Read-only memory (ROM) is not ac-

cessible, having been programmed at the
factory to allow the computer to perform its
built-in functions.

microprocessor—A microprocessor is a
central processing unit.

modem—A modem is an electronic device

that performs the modulation and demodula
tion functions required for communications.
A modem can be used to connect computers
and terminals over telephone circuits.

module—A module is an assembly which
contains a complete circuit or subcircuit.
Printed circuit boards designed to be
plugged into a computer may be classified as
modules.

monitor—A monitor is a unit in a computer
that prepares machine instructions from a
source code. It may use built-in compilers
for one or more program languages. The
machine instructions are sequences into the
processing unit once compiling is complete.
A monitor most often refers to the display
screen.

nanosecond—A nanosecond is an amount of

time equal to 10~9 second. It is abbreviated
ns and is equivalent to 1/1,000,000 of a sec
ond. A time interval of 1,000,000 nano
seconds is equal to 1 second.

non-executable statement—A non-exe

cutable statement does not cause any pro
gram action. The statementsare therewithin
the program, but they are passed over and
not acted on. Two examples of non
executable statements are REM and data.

null string—A string that has no value is a

memory—operator

null string. It contains no characters and has
a length of 0.

number mode—This is an automatic line

numbering mode set up by the NUM com
mand in TI BASIC. Once this command is

executed, a number will be generated on the
screen whenever the enter key is pressed.

numeric comparison—In numeric compari
son, when arithmetic and relational oper
ators are combined in one expression, the
arithmetic is always performed first. For
example, the expression:

X + Y<(T-1)/Z

will be true if the value of X plus Y is less
than the value of T— 1 divided by Z.

numeric expression—A numeric expres
sion may be a numeric constant or variable,
or may be used to combine constants and
variables using operators to produce a
single numeric value. Numeric operators
perform mathematical or logical operations
mostly on numeric values, and sometimes
on string values. They are referred to as
numeric operators because they produce a
value that is a number.

numeric function—A function is used to call

a predetermined operation that is to be per
formed on one or more operands. BASIChas
intrinsic functions that reside in the system,
such as SQR (square root) or SIN (sine).

operator—An operator is a symbol used in
performing arithmetic calculations. In the
calculation 1 + 1 = 2, the operator is +.
Common operators are *,+,—,/, A. These

221

operator—software

stand for multiply, add, subtract, divide, and
raise to.

power supply—A power supply is an electric
circuit that supplies operating voltage and
current to the computer.

program—A program is a set of instructions
that direct a computer in performing a de
sired operation, such as the solution of a
mathematical problem or the sorting of data.

program line—Any line preceded by a line
number and containing a statement is called
a program line.

prompt—A symbol or phrase that appears on
the display screen to signal that an input is
needed is called a prompt.

pseudo-random-number—A pseudo-ran
dom number is logically produced, but the
set of calculations used to generate it are so
complex that an outcome cannot be logically
deduced by a human being. Computers out
put pseudo-random numbers as opposed to
random numbers, the latter being generated
by chance.

RAM—An acronym for random-access mem
ory, RAM is the user programmable internal
memory of a computer. The computer can
store values in distinct locations in random
access memory and recall them again, or
alter and restore them. The values in RAM

are lost when the power is turned off.
record—A record is a collection of related

data elements. When records are combined
into relational groups, they are called a file

register—A register is a storage area in
memory having a specified storage capacity,

222

such as a bit, a byte, or a computer word, and
intended for a special purpose.

reserved word—A reserved word has a pre
defined meaning in a specific computer lan
guage. Reserved words have special mean
ing and include all BASIC commands,
statements, function names, and operator
names. Reserved words may not be used as
variable names.

RF modulator—An RF modulator accepts an
audio or video input and then place this in
formation on a carrier, usually at radio fre
quencies. Modulators are used to connect
computers to television receivers.

ROM—An abbreviation for read-only mem
ory, ROM holds important programs or data
that must be available to the computer when
first activated. Information in ROM is unal
terable and does not disappear when the
power is turned off.

scientific notation—A method of express
ing numbers that are extremely large or
small by using a base number or mantissa
multiplied by 10 raised to some power is
known as scientific notation. 2,000,000 may
be represented in scientific notation by 2E6.
The E6 stands for 10 raised to the sixth
power, or 1,000,000.

scrolling—When a screen is filled, the dis
play moves upward, or scrolls, one line at a
time to allow additional lines to be entered
at the bottom. When this occurs, the top line
disappears.

software—Software encompasses all types of
computer programs, including programs
containedin ROM,those stored on magnetic

media, and those entered from the key
board. Any program that can be executed by
the computer may be considered as
software.

statement—A statement is an instruction

preceded by a line number. Some computers
allow program lines to contain multiple
statements, although TI BASIC does not.

storage—Storage is used to describe a device
or medium on or into which data can be

entered, held, and retrieved at a later time.
Storage may use electrostatic magnetic,
acoustic, optical, electronic, or mechanical
methods. This term is synonymous with
memory.

string—A string is a sequence of items
grouped in series according to certain rules.

string constant—A string constant is a
sequence of up to 108 characters enclosed in
double quotation marks. It is a type of actual
value which BASIC uses during execution.

subprogram—In TI BASIC, a subprogram is
a general-purpose procedure made accessi
ble by using the call statement. Subpro
grams are held in ROM and extend the capa
bility of BASIC.

subroutine—A subroutine is a segment of a
program that can be executed by a single
call. Subroutines are used to perform the
same sequence of instructions at different
places in a single program.

software—variable

telecommunications—Telecommunica

tions is data transmission between a compu
ter and remotely located devices.

terminal—A terminal is a part of a computer
system that is used for entering or output-
ting information. It usually includes a
keyboard and a monitor.

trace—Trace is a command in BASIC that lets
you see the order in which the computer
executes statements during a program run.
When the trace is in effect, the program line
number is displayed as it is executed. This
is a valuable debugging aid.

truncation—Truncation is the deletion or

omission of a portion of a string. It may also
be the termination of a computation process
before its final conclusion or natural termi

nation.

update—To update means to modify current
information with new information.

variable—Variables are names used to rep
resent values being used in a BASIC pro
gram. There are two types of variables:
numeric and string. A numeric variable al
ways has a value that is a number. A string
variable may only have a character string
value and may not be operated on math
ematically.

223

Accessories, 11
Acey-Deucey program, 131
Adventure games, 190
Animation, 54
ASCII, 43
ASCII character codes, 202
Audible Ten Seconds Timer program,

178

Auto Race program, 69

B
BASIC, TI, 194, 200
Bingo Caller program, 90
Blackjack Card Game program, 139

Cable, cassette, 19
Card games, 183
Card Shuffler/Dealer program, 94
Cassette recorder, 21
CC-40, 30
CHAR, 48
Chips, 6
Clock program, 179
Code, ASCII, 202
Code game, 161

Index

Coin Flip program, 132
COLOR, 53
Commercial games, 182
Computers, compatible, 27
Console, 6
Controllers, remote, 15
Conversions to TI BASIC, 194
Coordinates, screen, 43
Countdown Timer program, 178
Coupler, 18
Crypto program, 162

Decoding game, 161
Demolition Derby program, 156
Disk system, 18

Fantasy and adventure games, 190

Game program, 63
Games, adventure, 35, 190
Games, card, 183
Games, commercial, 182
Games, logic, 186
Games, planning, 35

Games, selection of, 34
Games, simulation, 38
Games, space age, 37
Games, sports, 183
Games, writing, 40
Games of skill, 184
Games of strategy and logic,186
Graphic Dice program, 102
Gunnery program, 159

H

Hangman program, 113
HCHAR, 45
Hidden Words program, 134
Hi-Di program, 149

I

Interface, RS-232, 15

Key, 60
Key, function, 8
Keyboard, 8

Letter Confusion program, 124
Logic games, 186

225

M

Matchgame program, 130
Mathematical Progression program,

136

Mathematics, the importance of, 32
Math Game program, 137
Memory, 3
Memory expansion card, 18
Modem, 18
Modulator, video, 11
Monitor, 3, 13
Monster program, 81
Morse Code program, 168
Multiple statements, 200

N

Numbers Alignment program, 147

One-Armed Bandit program, 98
One Million Word program, 144

P

Peripheral exansion system, 17
Printer, impact, 23
Printer, thermal, 14
Program, Acey-Deucey, 131
Program, Audible Ten Second Timer,

163

Program, Auto Race, 69
Program, Bingo Caller, 90
Program, Blackjack Card game, 139
Program, Card Shuffler/Dealer, 94
Program, Clock, 179

226

Program, Coin Flip, 132
Program, Countdown Timer, 178
Program, Crypto, 162
Program, Demolition Derby, 156
Program, Graphic Dice, 102
Program, Gunnery, 159
Program, Hangman, 113
Program, Hidden Words, 134
Program, Hi-Di, 149
Program, Letter Confusion, 124
Program, Matchgame, 130
Program, Mathematical Progression,

136

Program, Math game, 137
Program, Monster, 81
Program, Morse Code, 168
Program, Numbers Alignment, 147
Program, One-Armed Bandit, 98
Program, One Million Words, 144
Program, Roulette Wheel, 105
Program, Shooting Gallery, 64
Program, Speedread/Type, 75
Program, Spin the Bottle, 152
Program, States and Capitals, 142
Program, Ten Second Timer, 177
Program, Tic-Tac-Toe, 119
Program, Time-Keeping, 176
Program, U-Boat, 154
Program, Word Puzzle Plus, 145

Roulette Wheel program, 105
RS-232, 15

Screen, 54
Shooting Gallery program, 64
Skill, games of, 184
Slot machine game, 98
Sound, 59
Speech synthesizer, 21,41
Speedread/Type program, 75
Spin the Bottle program, 152
Sports games, 183
Statements, multiple, 200
States and Capitals program, 142
Storage, cartridge, 27
Strategy and logic, games of, 186

Ten Second Timer program, 177
TI BASIC, 194, 200
TI BASIC, conversions to, 194
Tic-Tac-Toe, 33
Tic-Tac-Toe program, 119
Time-keeping programs, 176
TI-99/2, 27

U

U-Boat program, 154

V

VCHAR, 47

W

Word Puzzle Plus program, 145

TI-99/4A Game Programs

If you are intrigued with the possibilities of the programs included in TI-99/4A Game
Programs (TAB Book No. 1630), you should definitely consider having the ready-to-run
tape containing the software applications. This software is guaranteed free of manufactur
er's defects. (If you have any problems, return the tapewithin 30 days and we'll send you a
new one.) Not only will you save the time and effort of typing the programs, the tape
eliminates the possibility of errors that can prevent the programs from functioning. In
terested?

Available on tape for the TI-99/4A, 16K(does not require Extended BASIC) at $19.95 for
each tape plus $1.00 each shipping and handling.

r
I'm interested. Send me:

tape for TI-99/4A Game Programs (number 6505S)

Check/Money Order enclosed for $ (include $19.95 plus $1.00
shipping and handling for each tape).

VISA MasterCard

Acct. No. Expires

Name

Address

City State Zip

Signature .

Mail To: TAB BOOKS Inc.

Blue Ridge Summit, PA 17214

(Pa. add 6%sales tax. Orders outside U.S.mustbe prepaidwith internationalmoneyorders
in U.S. dollars.)

TAB 1630

L—————————

	front-cover
	Binder1
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	content09

	back-cover

