BY LINDA M. & ALLEN R. SCHREIBER

THE

LAST WORD

ON THE

TI-994A

BY LINDA M. & ALLEN R. SCHREIBER

TAB BOOKS Inc.

To Joseph Schreiber

FIRST EDITION
FIRST PRINTING

Copyright © 1984 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Schreiber, Linda M.
The last word on the TI-99/4A.
Includes index.
1. T1 99/4A (Computer)—Programming. 2. Basic
(Computer program language) |. Schreiber, Allen R.
11. Title.

QZ76.8.T133S37 1984 001.64 83-24339
ISBN 0-8306-0745-5
ISBN 0-8306-1745-0 (pbk.)

Contents

Introduction v
What Is a Program? 1
Program Possibilities—Program Sources—Program Differences

The Makeup of a Computer 4
The Central Processing Unit—Types of Memory—Mass Storage—Accessories

Getting to Know the Keyboard 8
Standard Characters—Special Function Keys—Accessory Outlets

Organizing Your Program "
Parts of a Program—Flowcharts—Putting the Program on Paper

Commands, Statements, and Functions 16
Direct Commands—Program Statements—Editing—Error Messages

Storing and Accessing the Program 23
Understanding the Screen 25

Displaying the Program—Printing to the Screen—Display

Getting the Answers 35

Assigning Values—Using String Variables

10

1

12

13

14

15

16

17

18

19

20

Storing Related Information
What is an Array?—Using Arrays

Making Decisions in Programs .
Decision-Making Statements—Using IF...THEN to Exit a Loop—More Decision-Making Statements

Repeating Part of the Program
Uses for Loops—FOR . . . NEXT Loops—Stepping

Reusing Part of a Program
Using a Subroutine—Calling a Subroutine—Developing a Subroutine

Arithmetic Functions
Special Functions

Working With Strings

Adding Strings—Splitting Strings—Using String Functions

Finding and Trapping Errors

Error-Trapping Techniques—Testing for Errors

Sights and Sounds

Using Graphics Commands—Using Sound Commands—Mixing Graphics and Sound—Using
Joysticks—Using the Speech Synthesizer

Special Functions
Handling Specific Memory Locations—Eliminating the ENTER Key—Printing in Columns

Advanced Programming Skills
Machine/Assembly Language—Using Sprites

Using the Disk

Accessing the Disk— Storing to and Retrieving from Disk—Merging Disk Files—Deleting Disk Files
Putting It All Together—Using Sprites,
Special Characters, and Sound

Appendix Working with Numbers
The Binary System—Understanding Hex

Index

56

66

78

103

117

145

152

203

212

231

234

239

246

Introduction

15—

This book is designed to give you a hands-on learn-
ing experience with your TI-99/4A computer. It
assumes that you have access to a TI-99/4A com-
puter complete with the TI Extended BASIC car-
tridge. You do not need any previous knowledge of
computers. If you can turn your system on, you are
ready to begin.

The first chapters will acquaint you with your
computer and the different accessories that can be
attached to it. You will be introduced to new terms
gradually. After you are thoroughly acquainted with
your system, you will begin to program.

Each chapter introduces a few related com-

mands. An explanation of each command is followed
by an example of the way to use the command. The
programs included with the chapter further illus-
trate the use of each new command. Each program
is accompanied by a detailed explanation.

Sound, color, and graphics are included in sev-
eral programs. A complete explanation of error
codes is also included. You will be shown how to
make your programs crash-proof, as well as how to
find and correct errors in an existing program.

Once you have mastered the skills presented
here, you will find that this book will serve as a
handy reference guide.

Also by Linda M. Schreiber from TAB BOOKS Inc.

No. 1485 ATARI Programming . . . with 55 Programs
No. 1545 Advanced Programming Techniques for Your ATARI® including Graphics and Voice Programs

Chapter 1

What Is a

Program?

Computers . . . the information age . . . a new and
fascinating experience for anyone and everyone.
Using computers can be fun, but exploring what can
be done with them is pure delight!

Programming a computer requires only logical
thinking and the spirit of adventure. You have been
programmed and reprogrammed throughout your
life. When your teacher gave you instructions, she
was programming you. Your parents, bosses, and
friends have all programmed you in some way.
Think about the last time you went to the store. Did
you count your change immediately after the clerk
handed it to you? Why or why not? Habit—or pre-
programming? You probably program your chil-
dren, too! —change your clothes, brush your teeth,
say your prayers, then get into bed. Carrying out a
task in a logical sequence is an important element of
good programming.

Computers need programs (software) to oper-
ate properly. A program is a set of instructions the
computer follows. It is written in a language the
computer understands. We will be writing pro-

grams in BASIC for the TI-99/4A computer
throughout this book.

Programs can be very simple or very complex
depending on their purpose.

10 REM A DEMONSTRATION OF A PRO-
GRAM

PRINT “HELLO, I AM TI-99/4A COM-
PUTER”,

30 GOTO 20

20

This is a very simple program that will display

HELLO, I AM A TI-99/4A COMPUTER

over and over again on your monitor or television
screen. Your computer will continue forever if you
let it. (To stop the program, press the FCTN key
and the 4 key at the same time.) Your computer will
also follow any instructions in the order they were
given. It will not correct your spelling (unless it is
programmed to), or tell you that your formula is
incorrect.

The accuracy of a program depends upon the
programmer. Errors occurring within a program
are a result of human errors and are referred to as
bugs. It is the programmer’s responsibility to make
the program as bug free as possible. This book will
show you where bugs are most likely to appear,
how to test for them, and how to correct them.

PROGRAM POSSIBILITIES

Games are a large portion of the software mar-
ket. Arcade games are very popular; these pro-
grams offer the same thrills and challenges of a real
arcade without the cost. The TI-99/4A can create
fascinating arcade game becomes of its special
graphics features. You can program your computer
so you may play pinball, space games, or a shooting
arcade on it.

Your computer can also be programmed for
traditional family games. The graphics on your TI-
99/4A allow you to easily duplicate card games,
board games, or games of skill and strategy.

The remote controllers that are available for
this computer help improve hand-eye coordination.

Educational

Educational computer programs are steadily
becoming more popular. In the home or classroom,
the computer can be a powerful and valuable in-
structor. It can be programmed to provide drill
exercises in repetitive subjects such as math ta-
bles, states and capitals, or spelling. Your com-
puter can also be used as a tutor for self-paced
instruction. '

Another effective method of learning with a
computer is called simulation. A good simulation
program can train a person in weeks to do what
would normally take a lifetime to learn by providing
the experience of both normal and extreme situa-
tions. Games can stimulate the mind as well as the
imagination.

Your computer can be programmed to com-
pose tests, store grades on a cassette or disk,
average the grades, and later generate report
cards.

Home Applications
Your TI-99/4A computer can be used effec-

tively throughout your home. It can store informa-
tion or help plan and organize your activities. It can
be your secretary or security guard, librarian or
accountant.

A program could act as a dietician, selecting
menus for the week or month, and generating a
shopping list for those meals. While you're at it, you
may want to program the computer to recall your
coupons and refunds.

Your computer is an ideal librarian. It can keep
track of all your books, records, and tapes. Your
program can store valuable information about any-
thing you own.

If you have been trying to decide whether it’s
better to save for an item or take out a loan, write a
program to show you the amount of interest your
savings account would earn versus the interest that
you would pay on a loan over the same period of
time. Take into consideration the inflation rate and
the price that the item will be by the time you have
saved enough for it.

If you are buying a house, your program can
show you what your mortgage payments would be
over different lengths of time with varying down
payments.

And, of course, you will want to program your
computer to balance your checking account. Your
program can also store your deductions for income
tax records while it is balancing your checkbook.

In the area of health and safety, a program can
help you learn first aid. With its graphics ca-
pabilities, it can teach you where the pressure
points are for bleeding or how to splint a broken
bone.

You can write a flower or vegetable garden
program to help you plan your garden, estimate the
yield of your crops, compare it to your family’s
needs, and show you a layout for your garden.

Darkroom enthusiasts can use a computer pro-
gram to time the development of their films or store
processing information.

With a special device called a modem and your
telephone, you can call and connect your computer
to large message centers called networks. Some of
these networks serve as electronic mail boxes
where you can leave a message for another person

who also belongs to this network. Other networks
are giant data banks that offer UPI news, stock
market reports, airline schedules, and other infor-
mation.

These are some examples of the types of pro-
grams possible for your computer. Sample pro-
grams are included throughout this book. As you
will become more familiar with your TI-99/4A, you
will continue to discover more ideas and uses for it.

PROGRAM SOURCES.

Programs for your TI-99/4A are available from
a wide variety of sources. Several software firms
produce well-written programs for many different
applications. These programs are usually available
on a cassette or disk and come with some instruc-
‘tions (documentation) on how to use the program.
Your local computer store should be able to dem-
onstrate these programs for you. Other programs
are available only through mail order firms. Most
software firms offer a catalog describing their pro-
grams and the amount of memory necessary to use
them.

Another source of programs are books. Pro-
grams in books give you the opportunity to read
through a program before you type it in. The best
way to learn to program is by studying the programs
others have written. The disadvantage of programs
published in books is the time spent typing the
programs into the computer. If you make a typo-
graphical error, you will have to find and correct
your mistake before the program will work cor-
rectly. :

Magazines are a third source of programs.
There are many good articles containing programs

or routines that explain the inner workings of a
computer. However, unless the magazine is writ-
ten specifically for the TI-99/4A, you may find that
some of the programs won’t work on it unless you
rewrite them.

PROGRAM DIFFERENCES

Even though most popular computers on the
market today are programmed in BASIC, each
manufacturer chooses a slightly different dialect of
BASIC. If you find a program written for another
computer and the program is fairly simple, you
should have no problem rewriting it for the TI-
99/4A. Youmust also take into account the graphics
the program uses. Color generation, screen res-
olution, and animation differ from one computer to
another. Once you are familiar with your TI-99/4A
and how the BASIC language works, you should be
able to translate many programs written for other
computers.

Most computers can also accept programs
written in many other languages, such as PASCAL,
LISP, PILOT, and assembly language. Each lan-
guage varies from one computer to another. Each
language is designed differently and has its own
advantages. For most applications, the programs
that you may want to write can be written very
efficiently in BASIC. When timing becomes im-
portant, as with arcade games, you may want to
learn assembly language.

Whether you purchase programs from a
software firm or copy them from a magazine or
book, you may find the program almost fits your
needs. By learning to program, you will be able to
change the program to suit yourself.

| Chapter 2
The Makeup of a Computer

The most vital part of a computer is its central
processing unit (CPU). Often no bigger than a dime,
it controls and maintains the computer and many
devices attached to it.

THE CENTRAL PROCESSING UNIT

The CPU can be thought of as the brain of the
computer. All instructions are read and interpreted
by it. It sends the correct commands to different
parts of the computer and ensures that the program
is followed. If you own a microwave oven, pro-
grammable video recorder, or programmable cal-
culator, you have already worked with a CPU. The
difference between the one in your computer and
those in your appliances is its internal design. Your
computer can be programmed for multiple uses;
your microwave can only be programmed to start,
stop, and cook at the correct temperature.

Every computer contains at least one CPU,
often referred to as “chips.” Some of the first per-
sonal computers used the INTEL 8080, others used

the 6502. Both of these chips are eight-bit micro-
processors. Your TI-99/4A uses a 16-bit mi-
croprocessor—the TMS 9900. This chip has some
advantages over the earlier microprocessors.
The language the computer uses is called
machine language. We understand it as groupings of
numbers that the CPU can translate into instruc-
tions that it can follow. When we write a program in
assembly language, the assembler, a software pro-
gram that can read and assemble our program into a
form the computer can use, translates our program
into machine language. One advantage of programs
written in machine language is that if a program is
written for a particular CPU, it will work (within
certain limitations) on all computers containing that
chip. Most people don'’t try to program in assembly
language until they have mastered BASIC.

TYPES OF MEMORY

Memory is used to store programs. Programs
consist of instructions and useful information

(data). The amount of memory your computer has is
measured in bytes. Some instructions use one byte
of memory, others need two or more bytes. Each
letter or number of data occupies one byte of mem-
ory. The longer your programs are, the more mem-
ory you need. Memory capacity is measured in
thousand (K) bytes. 1K is equal to 1024 bytes, thus
a 32K computer contains 32768 bytes of RAM.

There are three types of memory available to
your TI-99/4A—RAM, ROM, and GROM. RAM
means random-access memory. It is sometimes
called read/write memory. Program data can be
placed anywhere in RAM (writing to RAM) or your
program can get information from any byte in RAM
(reading from RAM). RAM should never be used for
permanent storage since it can’t retain information
once the power is shut off. It is needed for pro-
gramming because it can be easily changed by the
user or under program control. ‘

Static RAM is used in some computers. This
type of RAM is stable. Once an instruction is placed
into it, it will retain the instruction until it is
changed or the power is shut off.

Dynamic RAM is used in most popular home
computers, including the TI-99/4A. After an in-
struction is placed in this type of memory, the CPU
must constantly refresh (remind) the memory of the
information placed there. This makes the CPU run
slower than it would with static memory, but for
most applications, this is not crucial. Some devices

" cannot run properly with dynamic memory, but they
are few. Dynamic RAM is much less expensive than
static RAM.

Memory from different manufacturers may
have different access times, that is, the amount of
time the CPU has to retrieve an instruction from
memory. Speed becomes an important factor if your
program must do many different calculations before
arriving at the answer. In most programs, though,
you will not notice the difference in speed.

ROM means read-only memory. Your TI-
99/4A has its operating system in ROM. The pro-
gram on these ROM chips has been permanently
fixed and will remain there whether the unit is
turned on or off. When you turn your TI-99/4A on,

this program begins immediately. It checks to see if
you have inserted a cartridge and taken care of
many other tasks before the screen appears on your
monitor.

The cartridges that contain Extended BASIC,
or one of the many games available for the TI-99/4A
contain GROM chips.

You can add more memory to your TI-99/4A
with the expansion interface. There is a slot in this
interface for 32K RAM. You can also use this inter-
face for the disk drive and other devices. The mini
memory module is a unique cartridge. You can store
a program on it and remove it from the computer;
the program will remain in the cartridge. There is a
small battery in the unit that keeps the memory
active. You can erase the program with a special
command and store a new program on the cartridge.

MASS STORAGE

Once you have written a program, you will
want to save it for future use. Cassette recorders
are an inexpensive and easy-to-use way to store
programs. Once a program is placed on the cassette
it will stay there until it is erased or recorded over.
The computer records the program on the tape by
generating two tones. These tones represent the
instructions in the program. This can be done be-
cause the most basic instructions used by the com-
puter, called machine code, is a binary code con-
sisting of combinations of ones and zeros. The com-
puter loads a program from the cassette by listening
to the tones and translating them into the corre-
sponding binary digits.

Cassettes are inexpensive, easy to use, and,
because they are in a plastic case, easily handled by
children. They can be shipped or stored with
minimum precautions. Programs save and load to
cassettes very slowly, and you cannot access the
information on them easily. If you purchase inferior
tapes, ones that are too thin, you run the risk of
having your program destroyed by the recorder. If
you do not wish to purchase tape designed for com-
puter use, you may use recording tape, but don’t
use long-playing ones (45 to 120 minutes). This
tape is too thin and easily damaged by the recorder.

A more efficient way of storing programs is
with a disk drive. There are two different drives
available for the TI-99/4A —the single-sided drive
and the double-sided drive. The double-sided drive
can store program information on both sides of the
disk. This doubles the amount of information that
the disk can hold.

A floppy disk (sometimes called a diskette) is a
thin Mylar circular medium similar to a record. It is
covered with a thin jacket. There is a slot cut out on
both sides of the jacket exposing the surface of the
disk (Fig. 2-1). Touching this surface could damage
the disk. Programs are stored on disks by elec-
tronic impulses that magnetize the surface. Be-
cause the disk spins rapidly inside the drive, the
computer can save or load a program on it much
faster than on a cassette. Also, the disk has tracks
much like arecord has grooves. Any part of the disk
can be accessed at any time.

Disks are very vulnerable to static charges. An
electrical charge, even a mild one produced by
walking across the carpet, can destroy the pro-
grams on the disk. The jacket on the disk is for
protection against dust and dirt. If the disk is bent,
it will not spin properly, and the computer will not
be able to read the program or data stored on it.

Since both disks and cassettes store informa-
tion magnetically, you should not place them near a

Fig. 2-1. Cutaway of a disk.

6

magnetic field such as the top of a speaker, a motor,
or a monitor (television). A strong magnetic field
could destroy your program.

ACCESSORIES

Many other accessories, or peripherals, are
available for and compatible with the TI-99/4A.
These peripherals can be connected to your TI-
99/4A through the expansion interface or through
the port on the right side of the computer.

The expansion interface is a large metal case
that houses extra memory, the disk drive, and the
disk controller card. There are several other slots
available in the expansion interface for other
peripherals.

By adding the TI Printer to your computer, you
can get a listing of your program on paper. When
you write long programs, you may find it difficult to
remember different parts of the program. By get-
ting a listing or hard copy of your program you are
able to read the entire program, compare different
sections of the program, or check the program more
easily than when you are reading it from the screen.

The TI Acoustic Coupler Modem can connect
your TI-99/4A to the outside world. The word
modem means modulator-demodulator. That is, it
can change the signals that you send from your
computer into signals that can be transmitted over
the telephone lines. Demodulator means it changes
the signals that it receives from another computer
over the telephone line into signals that your com-
puter can understand. There are several network
services available that can provide you with up-
to-the-minute stock market reports, UPI transmis-
sions, or software for your computer. The modem
allows you to connect with message centers that
serve as electronic mailboxes in certain areas of the
country. Often a computer club will host such a
message center.

Your computer can also speak through TI's
Solid State Speech Synthesizer. Many educational
programs as well as games use this feature.

Your TI-99/4A computer can be connected to
your color television or a color monitor. A monitor
is essentially a television without a tuner. A color
monitor will provide you with a clearer, crisper

picture than a television set, but for most applica-
tions, a television will do fine.

Using the keyboard to play arcade games just
doesn'’t feel quite right. These games need a quick
response from the player who shouldn’t be fumbling

with a keyboard. Along the left side of your TI-

99/4A is an outlet or port. By using a “Y” shaped

connector, you can add two joysticks. The joystick
is arectangular box with one stick and a button on it.
This stick sends signals to the computer. Your
program can determine if you are moving the stick
or pressing the button.

We will be using some of these accessories
later in this book.

Chapter 3
Getting to Know the Keyboard

The best way to learn about your TI-99/4A com-
puter is to use it. Remove any cartridge that you
might have in the computer, turn on your television
or monitor, and turn on your computer. Your screen
should display two bright color bands near the top
and bottom. The TI logo and name should appear in
the center of the screen, and

READY-PRESS ANY KEY TO BEGIN

should appear just above the bottom color band.
Press any key.

The screen will change. A short menu will
appear. A menu is a listing of choices that you can
make. Since there is no cartridge in the computer,
your only choice is number 1 for TI BASIC. Press
the key with the number 1 on it.

The screen clears for a few seconds. The
words TI BASIC READY are displayed near the
bottom. Under these words a caret (>) and a dark
flashing square appear. This square is called a cur-

sor. It marks the position that the next character
will occupy.

STANDARD CHARACTERS

Look at your keyboard. Most of the letters and
numbers are in the same place as a standard type-
writer keyboard. Some of the characters may be in a
different place than your typewriter.

Your TI-99/4A has two sets of letters in its
memory. One set is the standard uppercase letters.
The second set is a smaller version of the uppercase
letters. The TI-99/4A does not display true lower-
case letters with the letters in its memory.

The right most key of the center row is called
ENTER. This key acts as a carriage return. It
moves the cursor down one line and to the left side
of the screen.

SPECIAL FUNCTION KEYS

Along the top ledge of your computer is a strip
with different functions on it. Look at the key to the

right of the space bar. This is the function key. On
the front side of this key is a grey dot. On the left
side of the space bar is the control key. This key has
a red dot on the front side of it. Look again at the
strip on the top ledge. On the right are both the red
dot and the grey dot. The functions listed on the
same line as the grey dot operate when the function
key and the number key under the command are
pressed at the same time. The functions listed on
the same line as the red dot operate when the
control key and the number key under that com-
mand are pressed at the same time.

Hold down either the function key or the con-
trol key. Now press the key with the plus sign (+)
on it. This is the QUIT command. Your screen
should clear and the title page with the color bars
should appear on the screen. Press any key, then
the number 1 to return to TI BASIC.

The key to the left of the control key is the
ALPHA LOCK key. This is similar to a shift-lock
key. By pressing the ALPHA LOCK key into the
down position, you lock the computer into using
only capital letters. Press the ALPHA LOCK key
so that it is in the raised position. This unlocks the
keyboard, letting you type in both large uppercase
and small uppercase letters. The number and sym-
bol keys differ from those on a typewriter
keyboard; you must press the shift key for the
symbols above the numbers, the greater than or
less than symbols, or other character keys even if
the ALPHA LOCK key is in the down position.
Most programmers use capital letters exclusively
(BASIC doesn’t recognize lowercase commands) so
the ALPHA LOCK key is normally depressed. It
would be cumbersome to have to unlock the
ALPHA LOCK key for the numbers.

The function key (FCTN) is also used with
certain other keys. Look at the letters: W, E, R, T,
ULOP A S DF,G, Z X, C. Each of these
keys have another character printed on the front of
it. You cannot use the shift key to print these
characters. Instead you press the FCTN key and
the character key at the same time. For example,
every time you want a quotation mark, you hold
down the FCTN key and press the P key.

Holding down FCTN and pressing the 4 key
can serve one of two purposes. If you are running a
BASIC program and you want to stop the program,
hold down FCTN and 4. The program will stop and
the screen statement will tell you what line the
program stopped at. If you are typing in a program
and you decide that the line has several errors on it,
or wrong commands, instead of using FCTN and the
backarrow to delete the line, you can hold down
FCTN and press the 4 key. The computer will
ignore the line and bring the cursor down one line.
You can now enter a new line.

Holding down FCTN and the 3 key is very
similar to using the 4 key. When you press the 3 key
with FCTN to erase, the cursor moves to the be-
ginning of the line, erasing everything that you
typed. The screen does not scroll. The cursor re-
mains on the same line. -

FCTN and the 2 key are used to insert more
characters into a line. Type this short exercise:

30 PINT “THIS IS A TEST”

do not press the ENTER key. Notice that the word
PRINT is misspelled. Press the FCTN and the S
key. The cursor moves back one position. Hold
down both keys until the cursor is over the “I” in
“PINT.” Now hold down the FCTN and press the 2
key. Release both keys. Press the R key. The “R”
will be inserted between the “P” and the “L.” If you
had more letters or characters to insert, you could
keep typing, and each character would move the
letters and characters in the line to the right one
position. If the rest of the line is correct, you can
press the ENTER key. If you want to enter more
commands at the end of the line, use FCTN and D to
move the cursor to the right.

To delete characters from a line, use FCTN
and the 1 key. Type this example:

30 PRINT “THISS IS A TEST”

again, do not press the ENTER key. Instead, hold
down FCTN and press S. Move the cursor to the
left until it is over one of the “Ss” in THIS. Hold

down FCTN and the 1 key. The “S” on the screen
will be removed. As long as you hold down both
FCTN and 1 characters will be removed from the
line.

These keys are very useful when entering
programs. If you make a mistake while you are
entering a line, you can easily move the cursor and
correct the error.

ACCESSORY OUTLETS

On the left side of the computer is an outlet.
This outlet is the connector for your remote con-
trollers. You can use any standard joystick with
your TI-99/4A. Using a connector that is shaped
like a “Y,” you can adapt your TI-99/4A to use two
joysticks.

On the right side of the keyboard is a large
connector you can connect your interface to. If you
own a speech synthesizer, it will also connect on
this side. The speech synthesizer is designed to fit
between the computer and the interface. Some disk

10

drives that are not contained in the expansion mod-
ule also connect here.
On the top surface of the computer, to the right

_ of the keys, is a large, flat area. The GROM car-

tridges are inserted here. These are the cartridges
that TI and a few other software firms manufacture.
If you own the TI Extended BASIC cartridge, you
will insert it here.

On the back of the computer, near the side of
the interface connector is a small rectangular con-
nector. The cables for a cassette recorder are con-
nected here. This special set of cables should be
available through the same store that sold you your
TI-99/4A. If you do not have a disk drive, then you
will need these cables so that you can save your
programs to a cassette.

Near the other corner on the back of the com-
puter is a circular connector. This is where the
cable for the video monitor connects. The TI-99/4A
video monitor comes with its own cable and uses
this connector.

Chapter 4
Organizing Your Program

No matter how creative a program appears, the
rudiments of programming are the same. Very few
programmers can conceive an idea, sit down at the
keyboard, and enter the program without a plan or
guideline. Good programs are carefully thought-
out and developed. Consideration is given to the
parts of the program that the computer will per-
form, the information the user will provide, and the
information stored in the program.

Let’s say you would like to write a program
that will determine the cost of the floor covering for
a room with a complete cost comparison of the
different floor treatments possible. This program
would consist of several small programs, or
routines. This chapter develops a portion of that
program. The program computes the area of the
floor in square feet and square yards.

PARTS OF A PROGRAM

The computer will calculate the area of the
floor, the amount of floor covering needed, the

price of the floor covering, and the cost per year,
determined by the average life of the floor covering.
To do this, the computer must be given the essen-
tial facts, including the measurements of the room,
the price of the floor covering, and what flooring is
being considered. This information is provided by
you, the user. The computer also needs information
about the expected life of floor coverings, the con-
version from square feet to square yards, and the
pricing formula. All these figures remain constant
and can be stored in the program.

The set of instructions the computer will fol-
low regardless of the information entered is called
the algorithm. The answers to the questions that
the program asks are supplied by the user and will
change from person to person depending on the
questions and the circumstances. Errors (or bugs)
can be generated if the user enters incorrect infor-
mation. The information stored in a program and
used to perform calculations is the data base. If the
data is incorrect, the outcome of the program will
also be in error.

11

FLOWCHARTS

A flowchart is an outline of a program that the
programmer uses to develop the program. It
serves as a guide, showing the parts of the program
that must be included for it to function correctly. To
program without a flowchart would be like trying to
take a trip to an unknown region without a map. It
can be done, but it can also be a waste of time and
energy.

Every programmer develops a personal style
of flowcharting. There are several well-known
types, including Warner-Orr diagramming, data-
flow diagrams, structure charts, and structured
pseudocode. Throughout this book the standard
symbols, shown in Fig. 4-1, are used.

The terminal symbol is used to indicate the
beginning and ending of the program. Input/output
indicates where the user must provide information,
the program will read its own data base, or informa-

tion will be printed to the screen or printer. The

Get width
and length-
find area

v

Get floor
treatments

v

Get price
per square
foot or yard

Y

Get user
preference

y

Calculate
cost on

7
<
O

Terminal

Input/output

Decision

Predefined
process

Connector

Fig. 4-1. Standard flowchart symbols.

12

all choices

Display
costs

Fig. 4-2. Flowchart indicating main routines of a-program.

decision symbol indicates where the computer will
have to determine which set of instructions to fol-
low. Predefined process is the sequence of program
statements (instructions) the computer will follow
regardless of what has been entered by the user.
The connector is used to show that the flowchart
continues on another part of the page, or even to
another page. The connecting connectors will have
the same number inside the circle.

- When you flowchart a large program, you may
find it helpful to divide the program into several
small modules before you draw a detailed flow-
chart.

Figure 4-2 is a block diagram of the different
parts of the program. The first block indicates the
routine, or module of instructions, that determines
the size of the room. The next three modules de-
termine the different treatments being considered,

the price (in cost per yard), and the user’s prefer-
ence. The program computes the cost of the treat-
ment in terms of the overall price and the price per
year over the expected life. The program would
show the user the most expensive treatment, the
least expensive treatment, and the cost of the
treatment that the user prefers. A good program
would give the user the option of changing some of
the treatments or adding new ones. The end result
would be the amount of material needed to cover
the floor and the approximate cost. Each of these
modules can be flowcharted with a very detailed
flowchart. Figure 4-3 is a flowchart containing the
routine for the first module of the program.

PUTTING THE PROGRAM ON PAPER

Jot down your program idea after you've
thought it out, using the block diagram. Now think
... what is the best way to handle the details of the
program? Look again at Fig. 4-3. The first thing the
program does is ask the user for the dimensions of
the room. The program needs this information.
Request it first, not after you ask whether the user
will tile or carpet the floor. Any facts that are vital
to the program should be asked for as soon as
possible. The message written on the side of the
flowchart is a remark, a reminder to the program-
mer why this command should be included in the
program, or an explanation of how this part of the
program should work. The more remarks you
make, the clearer your program will be.

The next part of the flowchart requests the
type of flooring and the cost per square foot. The
diamond reading ANY MORE? indicates a decision
the computer will make. If the user say that there
are more types of floorings to be entered, the pro-
gram will go back to the step asking for the type of
flooring. If there are no more entries, the program
will continue.

The computer determines whether more than
one entry was made. If so, it requests the user’s
preference, then computes the cost and cost per
year. The last part of the program shows the user
the costs of the preferred treatment, the most ex-
pensive treatment, and the least expensive treat-
ment. It also indicates the best floor treatment
based on the average cost per year.

The size of the room, and the types of flooring
and their costs are data the user inputs. The
squares in the flowchart are the algorithms or in-
structions that the computer will follow to reach an
answer. The data base is not easily discovered by
reading the flowchart. When the program computes
the cost per year, it will use the figures stored in its

data base. This information must be accurate if the
program is to be accurate.

The program starts at the top of the flowchart
and works its way to the bottom; It rarely back-
tracks. This is good programming practice; if your
program jumps from one routine to another, you
will become confused writing it, and if a bug should
appear, it will take much longer to correct it. Divide
your program into small routines, so you can write
cleaner programs with less chance of errors.

Listing 4-1 is the BASIC listing of the first
flowchart routine. This program will work in TI

‘BASIC or TI Extended BASIC. The remarks in the

program correspond with the instructions in the
flowchart. Below is a line by line explanation of the
program:

Listing 4-1

Lines 100-130 are remark lines. They name the
program and give general information about it.
Line 140 contains the command to clear the screen.
This command removes everything that is pres-
ently on the screen. Keep your program presen-
tation neat—clear the screen to get rid of old

information. '

Line 150 prints a question on the screen. The pro-
gram would like the length of the room in feet.
Line 170 waits for the user to enter the length. The
amount entered will be stored in the LENGTH

variable.

Line 180 prints the next question. Now the program
would like the width of the room in feet.

Line 200 waits until the width is entered. The
program stores this number in the WIDTH vari-
able. (The numbers entered in lines 170 and 200
will change each time the program is used.)

Line 220 computes the are in square feet.

Line 240 changes the square feet into square yards.
(These two algorithms, Lines 220 and 240, re-

13

Check
entries

Clear
screen

Ask for length

Yes
in feet
et

G
user In number
preference

Ask for width
in feet

Calculate
area in
square

yards

Calculate

cost of
Display Show square feet floorings
area and square yards ‘
Calculate
Get
type of
flooring

cost per
year

Display
results

Initial calculation
cost per
year

Is this the last entry?

Fig. 4-3. Detailed flowchart for Listing 4-1.

main the same no matter what size the room is.) Line 280 prints the area of the room in square feet.
Line 260 rounds the square yards to the nearest Line 290 prints the area of the room in square yards.
square yard. Line 300 tells the computer that the program has

Line 270 prints a message on the screen. ended.

14

Listing 4-1

100 REM LISTING 4-1
110 REM COMFUTE SQUARE FEET AND SQUARE Y
ARDS
120 REM L.M.SCHREIRER FOR TAR ROOKS
130 REM CLEAR THE SCREEN
140 Call CLEAR
150 FRINT *What is the lendgth of the r
ocom (in feet)®s
160 REM STORE LENGTH IN THE VARIARLE ‘LE
NGTH '
170 INFUT LENGTH
180 FRINT ¢ ¢ (*What is the width of the
room (irn feet)®s
190 REM STORE THE WIDTH IN THE VARIARLFE
‘WIDTH
200 INPUT WIDTH
210 REM COMFUTE THE SQUARE FEET
220 AREA=WINTHXLENGTH
230 REM COMFUTE THE SQUARE YARDS TOO
240 SQYARD=AREA/9
250 REM ROUND OFF TO NEARESTSQRUARE YARD
“60 SAYARD=INT(SQYARD+0.5)
270 FRINT ¢ 1 ¢ $*The area of the room i
s "
280 FRINT (AREA? "seuare feet®
290 FRINT SQYARDS "square wvards®
300 END

15

Chapter 5
Commands, Statements, and Functions

There are two ways that you can communicate with
your TI-99/4A. You can type an instruction; then
press the ENTER key and the computer will im-
mediately execute it, or you can enter a series of
commands in a program to be executed in sequence.
In the first example, the instruction that you give
the computer is a direct command. In the second
example, the lines of a program contain the instruc-
tions, which are indirect commands or program
statements. In the following programs we will use
the commands for TI Extended BASIC. When the
command is used differently by TI BASIC, we will
show examples for both versions of BASIC.

DIRECT COMMANDS

Most commands can be used as direct com-
mands. Many direct commands can also be used in a
program. When you type RUN to start a program,
you are giving the computer a direct command. An
entire line of a program can be entered as a direct
command. If you are using the Extended BASIC
cartridge, try this:

16

Type: FOR X=1 TO 10::PRINT X::NEXT X
Press the ENTER key.

The left side of your screen should display the
numbers from 1 to 10 along the left side. You could
also type:

10 FOR X=1 TO 10::PRINT X::NEXT X (EN-
TER)
or in TI BASIC type:

10 FORX=1TO 10

20 PRINT X

30 NEXT X

40 END

For either BASIC type: RUN
The results should be the same.

NEW

One direct command that should be used
sparingly is NEW. This command erases the pro-
gram that is in the computer’s memory. It cannot be
used as a command in a program. It is best used

when and only when you have finished a program,
saved it, and want to enter another program. If you
get into the habit of using this command without
much thought, you may find that you have just wiped
out two or more hours of hard work.

The NEW command does have its advantages,
however. Since it clears a program out of memory,
you can begin typing another program and not have
lines left over from the last program. You do not
have to enter the NEW command before loading a
program from cassette or disk because this is done
automatically by the computer.

BYE

Another direct command is BYE. Type this
when you want to return to the TI logo page. It is
the equivalent of pressing FCTN and the + key.
Your entire program will be erased from the com-
puter’s memory.

PROGRAM STATEMENTS

The instructions in the numbered lines of a
program are program statements. They are entered
when you type in a program or load a program from
the cassette or the disk. The computer stores these
statements in its RAM. It will follow these instruc-
tions when the program is RUN.

Each program statement must begin with a line
number. Most programmers start with 10 and
number the lines in multiples of ten. This lets you
easily add lines to your program without reor-
ganizing or retyping an entire routine.

NUMBER

One feature of TI BASIC and TI Extended
BASIC is the NUMBER command. This command
allows you to enter the lines of a program without
having to enter the line numbers. Your program
lines will be numbered automatically. There are
four different ways that you can use this command.
The abbreviation or shorter version of the com-
mand is NUM. Using the NUMBER command by
itself tells the computer to begin with line number
100 and add 10 for every additional line. Your
screen might look like this:

NUMBER

100 REM PROGRAM FOR AREA
110 PRINT “ENTER THE LENGTH”
120 INPUTL

By entering two numbers after the NUMBER
command, you can tell the computer which line
number to start with and how far apart the line
numbers should be as illustrated below.

NUMBER 500,5

500 REM PROGRAM FOR THE AREA
505 PRINT “ENTER THE LENGTH”
510 INPUT L

If you do not enter the last number, the com-
puter will produce line numbers in multiples of 10,
like this: '

NUMBER 300

300 REM PROGRAM FOR THE AREA
310 PRINT “ENTER THE LENGTH”
320 INPUT L

If you do not specify which line to start at, the
computer will begin with line 100.

NUMBER, 20

100 REM PROGRAM FOR THE AREA
120 PRINT “ENTER THE LENGTH”
140 INPUTL

The numbers that the computer uses when you
do not enter a specific number is called default
value. The default values for NUMBER are 100
(first line number) and 10 (apart).

RESEQUENCE

The NUMBER command keeps your program
well organized while you are writing it. Remember,
we want to keep the line numbers in multiples of 10
so that we can add lines to our program if we need
to. Looking at the first example, let’s add one line to
the program.

105 PRINT “THE AREA IS THE PRODUCT OF
THE LENGTH TIMES THE WIDTH”

17

The computer will automatically add this line
between lines 100 and 110. By using the RESE-
QUENCE command, we can renumber the pro-
gram, keeping all the lines evenly spaced.

Type: RESEQUENCE
Now LIST the program. It should look like this:

100
110

REM PROGRAM FOR AREA

PRINT “THE AREA IS THE PRODUCT OF
THE LENGTH TIMES THE WIDTH”
PRINT “ENTER THE LENGTH”

INPUT L

120
130

The RESEQUENCE command is very similar
to the NUMBER command. The default values are
100 for the beginning line number, and 10 for the
lines between line numbers.

Try these commands with the program:

RESEQUENCE 500,20

The program will begin at line 500 and the lines are
20 apart.

RESEQUENCE 300

The program will begin at line 300 and the lines are
10 apart.

RESEQUENCE , 20

The program will begin at line 100 and the lines are
20 apart.

In TI Extended BASIC, program statements
can not exceed five screen lines in length. How-
ever, long lines often mean multiple statements on
each line. Too many commands on one line is not a
good programming practice. Lengthy lines can
confuse the programmer and are sometimes impos-
sible to debug.

There are times, however, when you will need
to put two program statements on the same line, for
example, when you want the program to make a
decision. Place two (2) colons between the end of

18

one statement and the beginning of the next. The
colons tell the computer not to go on to the next line
but to look at the rest of this line. The line you typed
at the beginning of this chapter is an example of a
line with multiple statements.

REM

There is one program statement that the com-
puter will always ignore, even though it is most
useful to the programmer. That is the REM (re-
mark) statement. Use the REM as a reminder to
yourself about what the routine does, why you did
it, when it will be used, and the like. Often a good
routine is extremely confusing without remark
statements if you haven't looked at it for a long
period of time.

In TI BASIC the REM statement must be used
on a program line by itself, as shown here:

20 REM CLEAR THE SCREEN

In Extended BASIC, the exclamation mark (!) can
be used to replace the word REM as illustrated
below.

20 ! PROGRAM ON VARIABLES
30 A=10! SET THE FIRST VARIABLE

The double colons are not necessary to separate the
program statement from the remark.

END

When the computer comes to a line that has the
END statement on it, it will stop running the pro-
gram. The END statement is not necessary if the
program starts with the first line and continues
through to the last line. Sometimes, however, a
program is written with routines or program sec-
tions at the end of the program, and the main portion
of the program occupies the first hundred or so
lines. Placing the END statement between the main
program and the routines will tell the computer that
the program is over and that it should not execute
the program lines following the END statement.
The two listings that follow will illustrate the dif-
ference between a program with subroutines and a
program without them.

10 REM A PROGRAM WITH NO SUBROU-
TINES

20 PRINT “PLEASE ENTER A NUMBER”

30 INPUT A

40 PRINT “PLEASE ENTER A NUMBER”

50 INPUT B

60 PRINT “THE PRODUCT OF “;A;” and
“;B;” IS “;A*B

10 REMAPROGRAM WITH A SUBROUTINE
20 GOSUB 100
30 A=C
40 GOSUB 100
50 B=C
60 PRINT “THE PRODUCT OF “;A;” AND
“B;” IS “A*B
70 END .
100 PRINT “PLEASE ENTER A NUMBER”
110 INPUTC
120 RETURN

STOP

The STOP command is similar to the END
command. When the computer comes to the STOP
command in a program line, it stops running the
program.

VERSION

The VERSION command can be used to find
out which version of TI Extended BASIC is being
used in the TI computer. There are different ver-
sions of the Extended BASIC cartridge. The
changes in the BASIC are not apparent to the user,
but for someone who is developing programs for
commercial uses, and is using parts of the operating
system that could be different in the old or newer
versions of TI Extended BASIC, this command is
very useful.

10 CALL VERSION(T)::PRINT T

The version of TI Extended BASIC, used for this
book is 110.

EDITING
Editing program lines is something that all

programmers learn to do sooner or later (usually
sooner). You'll use the editing feature to correct
typing errors; to change values; to fix errors in the
program, commands, or operation, and to delete
unnecessary instructions or to add instructions.
The TI-99/4A has some very good editing features.
There are differences between the editing features
of TIBASIC and TI Extended BASIC. For instance,
if you enter a statement incorrectly, the computer
will not understand it and stop. An error message
will be displayed on the screen. To make the pro-
gram run correctly, you will have to correct the
program statement. On the other hand, if you tell
the computer to print a word that is misspelled, the
program will do so. The computer cannot tell if a
word is wrong unless it is a command word.
To edit a program line in TI BASIC, type:

EDIT (line number)
For example, your line 20 reads:
20 PINT “THIS IS A TEST”

There is an “R” missing from the word PRINT.
After you type EDIT 20, line 20 will reappear on the
screen. The cursor will flash over the first letter of
the program statement. Now you can use the FCTN
and right arrow key to move the cursor over the “I”.
Use the FCTN and 2 key to enter the insert mode.
Press the letter R and it will be inserted between
the “P” and the “L.” You can now press the ENTER

. key and the program statement will be corrected.

Once you have entered the EDIT mode by
typing EDIT and the line number, you can use
FCTN along with the right or left arrow keys to
move the cursor on the program line. Use FCTN
with the 1 or 2 key to delete or insert characters.

In TI Extended BASIC, there is no EDIT
command perse. To edit the program statements,
simply enter the line number, and press FCTN
along with the up arrow (W) or down arrow (X) key.
Again, that entire line will appear on the screen
with the cursor flashing over the first letter or
character in that program statement.

To add letters or characters to the program

19

statement, use the function key and the right or left
arrow key to move the cursor. Let’s use the same
program line as before. ‘

20 PINT “THIS IS A TEST”

Type 20 and while pressing FCTN, press the
up arrow (W) or down arrow (X) key. Line 20 will
reappear on the screen with the cursor flashing over
the “P.” Press FCTN and the right arrow (D) key.
The cursor will move over the “L.” This is where
the “R” should be. Now press FCTN and the 2 key.
Press the R key. The “R” will appear between the
“P” and the “I.” Press ENTER and the line will be
corrected.

To delete letters or characters from a program
line, use the same procedure, except, instead of
pressing the 2 key, press the 1 key. The letters or
characters under the cursor will disappear. Press
ENTER when all the characters that you want to
erase are removed from the program line.

To change a line completely, you can enter the
program line and begin typing the new line. How-
ever, if you are already in the EDIT mode because
you entered the line number and FCTN/up arrow,
you can press FCTN and the 3 key. The entire line
will be erased from the screen. You can now begin
typing the new line.

Changing Line Numbers

Sometimes you may want to use the same or
very similar program line several times in your
program. You do not have to type the same line over
and over again with new line numbers. There are
two different ways to change line numbers in TI
Extended BASIC.

Enter the following program statement:

20 PRINT “THIS IS FUN”

Now press FCTN and the 8 key. The entire line is
reprinted on the screen with the cursor flashing
over the line number 2. Type the number “3”. The
number “2” is replaced with the “3.” Now use
FCTN with the right arrow (D) key to move the

20

cursor over the “F” in “FUN.” Press FCTN and 2
for the insert mode. Now enter the words “MUCH
MORE” and press ENTER. Type LIST to see the
entire program. Your screen should display:

20 PRINT “THIS IS FUN”
30 PRINT “THIS IS MUCH MORE FUN”

You entered two program lines without having
to retype the second program line.

(Pressing FCTN with 8 will always display the
last command or line that was entered. If you
pressed those keys now, the LIST command would
be displayed on the screen.)

When you are entering a program, you don’t
always know that you will want to reuse a line in
other parts of the program, or that you may want to
move a program line to another part of the program.
To renumber a program line that was not just en-
tered, type the program line. Press FCTN and the
up arrow (W) or down arrow (X). Now using the
FCTN and the right arrow, move the cursor to the
space after the last letter or character in the pro-
gram line entered. Press FCTN with 8 and this line
will reappear on the screen with the cursor flashing
over the program line number. You can now change
the program line number.

When you use FCTN with the 8 key to change
line numbers, you reenter the line with a new
number. The original line remains in the program.

Deleting Lines

To remove or delete a program line, type the
line number and press ENTER. If youare in the edit
mode, you can use FCTN and the 3 key to erase the
line, then press ENTER. The program line will be
removed from the program.

ERROR MESSAGES

Your TI-99/4A may tell you that your program
contains an error when you are entering a program
line, after you type RUN but before the program is
actually executed, or while the computer is running
your program. Usually, the error message will also
contain the line number of the error. Although most

messages are self-explanatory, the following guide most common errors. They may not help you just
offers suggestions on how to avoid or correct the yet, but it is a good idea to be familiar with them.

ERROR
MEMORY FULL

BAD ARGUMENT

NAME CONFLICT

BAD SUBSCRIPT

DATA ERROR

INPUT ERROR

BAD LINE NUMBER

FOR-NEXT ERROR

LINE TOO LONG

CAN'T DO THAT

CAUSE and CORRECTION

The program uses more memory than available in your computer. Check
the dimension statement. You may be setting aside more memory than
you need to. Divide your program into smaller programs that can be
chained together. Look at your program lines that contain the GOSUB
command. Make sure that you are not calling the same line that the
command is on. Check for a RETURN at the end of every subroutine.

You may be trying to find the ASCII value or numeric value of an empty
string. If the string does contain information, be sure that you are taking
the value of a number, not letters.

A name used for a variable cannot also be used for an array or function.
Arrays, variables, and functions cannot duplicate each others names.

You are trying to use a subscript in an array that is greater than the limits
of the array, or you are using the subscript 0 and the base 1 option was
chosen. Subscripts must also be integers.

The problem may lie in the DATA lines or the READ command. Be sure
that there are commas between the elements in the DATA line. Either
there is not enough data in the DATA lines, you want to access the same
data but did not use the RESTORE command, or you are trying to
RESTORE a line number that is higher than the last line of the program.

The program needs a number but a letter or character was entered. If a
letter or character is supposed to be entered, change the variable to a
string variable.

A GOSUB, GOTO, or THEN command referred to a line not in the
program. Correct the line number in the program line, or add the
missing line to the program.

The number of program lines that contain the FOR statement do not
match the number of program lines that contain the NEXT statement. -
Check nested loops for a missing NEXT or too many NEXT statements.

The line is too long for BASIC to understand. Shorten the line. If it is a
DATA line, count the number of elements in that line. Only 30 commas
are allowed on a line of data.

A RETURN command cannot find the matching GOSUB. If you place
your subroutines at the end of your program, be sure that there is an
END statement before the first subroutine. Make sure that the program
is not using a GOTO where there should be a GOSUB.

The NEXT part of a FOR . . . NEXT loop could not find the matching
FOR. Check for incorrect variables after the NEXT and for incorrectly
nested loops.

21

BAD VALUE The number used is incorrect. First check the command that the number
is used in conjunction with. Be sure that you are not using a number too
large or too small for the command. Check the sign of the number. Some
commands will not accept negative numbers or a zero.

INCORRECT STATEMENT There is a definite problem in the program line, and the computer cannot
execute the program any further. Check the program line for missing
commands, parentheses, variables, arithmetic signs, and line numbers.
Reserved words cannot be used as variables.

These are some of the most common errors error messages related to the use of the disk drives,
you can get from a BASIC program. There are other printers, and other accessories.

22

Chapter 6

Storing and Accessing
the Program

Programs can be stored on cassettes or floppy
disks. This chapter discusses only the commands
used to store and load programs on the cassette
recorder.

Your TI-99/4A can have two cassette record-
ers connected to it. The first, the number 1 cas-
sette recorder, can be used to load a program into
the computer or save a program that is in the com-
puter onto the cassette. The second, the number 2
cassette recorder, can only be used to save pro-
grams.

OLD
To get a program from a cassette tape into the

computer, insert the cassette in the recorder, make
sure that it is properly positioned, type OLD.CS1,
and press the ENTER key. The computer gives you
instructions on the screen. Follow these instruc-
tions carefully. First, you are instructed to rewind
the tape that is in the first cassette recorder. If the
program that you want to load is the first program
on the tape, then rewind the cassette. If it is the
second or third program on the tape, and you are

sure that you have the tape correctly positioned,
you can omit this step and press ENTER.

Now press the PLAY button on the cassette
recorder and the ENTER key on the computer. The
screen displays “READING.” The computer lis-
tens to the tape and converts the tones that it hears
into the program instructions. If the tape loads
successfully, the cursor appears on. the screen.
Type RUN and press ENTER to begin the program.

If the computer cannot read the program cor-
rectly, an error message will appear on the screen
and you are given the option of trying the reading
procedure again or stopping. To read again, press
the R key. Be sure that you enter it in uppercase.
Use the shift key if necessary. If you do not want to

- try again, press the E and another error message is

displayed on the screen. Sometimes an error mes-
sage means that the tape has a defect in it. Other
times you may have placed the wrong tape or blank
tape in the recorder or not positioned it correctly. It
may also mean that the heads on the tape recorder
are dirty and should be cleaned.

28

SAVE

Once you have typed a program into the com-
puter, you will want to store it before shutting off
the machine. The SAVE command places the pro-
gram in RAM onto a cassette. To save your pro-
gram, type SAVE CS1 and press the ENTER key.
The computer displays instructions on the screen to
help you save your program correctly. The same
instruction is displayed if you are using a second
recorder and CS2 as the recorder number.

First you are instructed to rewind the cassette
tape. Again, if this is the second or third program
that you are saving on the tape, it is not necessary to
rewind the tape. Press ENTER to continue. Press
the RECORD and PLAY buttons on your recorder
and press the ENTER key again. The screen dis-
plays RECORDING. The computer converts the
program instructions into tones and sends these
tones to the recorder. The tones represent the
binary numbers that the computer converts back
into instructions when the program is read back into
the computer.

Once the program has been saved, the com-
puter instructs you to press the STOP button on
your recorder and press the ENTER key. You are
then given the option of checking the tape for the
program that you just saved. Press Y. You are
instructed to rewind the tape, press the ENTER
key, press the PLAY key on the recorder, and the
ENTER key on the computer. If the program has
been saved correctly, the screen displays DATA
OK. This is a very good feature. If the program has
not been saved correctly, or was not saved at all
because both the PLAY and RECORD buttons were
not pressed on the recorder, you have not lost your
program. Your original program is still in the com-
puter and you can save it again.

24

Once you have saved the program correctly,
the cursor appears in the lower corner of the
screen, and you can continue programming, run the
program, or quit.

PROTECTED

In TI Extended BASIC there is a protected
option that is available for use with programs that
you do not want to change while they are being
used. When you use the SAVE command, add
,PROTECTED to the command as shown here:

SAVE CS1,PROTECTED {press ENTER}

The computer saves the program to the cassette.
When the program is loaded back into the com-
puter, the user can RUN the program, but cannot
edit, list, or resave it. A word of caution here,
always save an unprotected copy of your final pro-
gram just in case you will want to list or edit the
program at a later date.

RUN

This command is used to begin a program.
When the command is used with no numbers fol-
lowing it, the computer begins at the first line of the
program. All the variables are set to zero, the
strings are cleared so that they are empty, and if any
area of memory was used for special graphics
characters, that space is also cleared.

You can also start the program at any line
number. All variables will be cleared. If you try to
run a program at a line number that does not exist,
the computer will give you an error message. If you
try to RUN a program when none exists, the com-
puter will tell you that it CAN'T DO THAT.

vChapter 7

Understanding the Screen

Your TI-99/4A can display letters, numbers, and
characters anywhere on your screen. Your screen
size or resolution is 32 characters across and 24
lines high. This resolution is referred to as a 32 x24
screen. Each character on the screen is made up of
dots called pixels. These pixels are turned on to

form the letters or characters. The characters use 8

pixels across and 8 pixels down. The actual resolu-
tion of the screen is 256 x192 because that’s how
many pixels there are. We will work with the pixels
and high resolution graphics in a later chapter. In
this chapter, we will work with the standard set of
characters that are available with your TI-99/4A.

DISPLAYING THE PROGRAM

After you have loaded a program into memory,
you may want to look at it to see which commands
are used, or to change the line instructions. You can
look at a program by typing LIST and pressing
ENTER. The entire program will be printed on the
screen. If the program is longer than 23 lines, the
first lines will scroll off the tip of the screen. Unless

you can speed read, the program will scroll by too
fast. To pause the listing, hold down SHIFT and
press the S key. The computer will stop the listing
at the end of that line. To continue the listing, press
any key.

You may also tell the computer to list only the
lines that you would like to read. LIST 10-50 tells
the computer to start with line 10 and list all the

' program statements up to and including line 50. If

there are more lines than can fit on the screen, the
first lines will scroll off. You can also use LIST -50
to list all the lines in the program from the first line, -
up to and including line 50. LIST 50- will list all the
lines beginning with line 50 to the last program
statement. LIST 50 would only list program state-
ment 50.

To tell the computer to execute the program in
its memory, type RUN and press ENTER. The
computer will start with the first line of the program
and complete the instructions in that line; then
proceed to the next line and follow those instruc-
tions. Should you want to stop a program after one

25

section has run, you can press FCTN and the 4 key.
The screen will display:

«*BREAKPOINT IN {line number}

You may put in several breakpoints to help you
debug your program and remove them later.

SIZE

Ever wonder how much memory a program
uses, or how much room (free RAM) you have left?
Type SIZE and press ENTER to find out how much
memory (RAM) is left. Everything that is used in a
program uses memory (RAM). This includes the
screen, string and numeric variables, sprite and
color tables, and of course, the program. If you have
the Memory Expansion unit attached to your TI-
99/4A, the computer stores the program, variable,
and table information differently. The SIZE com-
mand tells you how much program memory is avail-
able as well as how much stack space is free. The
program memory holds the program and the
numeric variables. All other information is stored in
the stack space.

Always run the program to get the true amount
of free memory. Some programs set aside some of
the memory for storage and this is not evident until
you run the program.

PRINTING TO THE SCREEN

The video screen is the primary display for
your program. Even though you can use a printer,
voice synthesizer, or other accessories with your
TI-99/4A, most programs are presented on the
video screen. You should try to keep unrelated
information off the screen when you are running
your program. When you begin to write a program,
the first few lines should be remark lines with
information about the program. The first program
line should clear the screen. The format for clearing
the screen during a program is as follows:

50 CALL CLEAR

This command will remove any previous in-
formation from the screen. Directions can then be

26

printed on the screen for the user to read while the
computer is setting up the program.

Displaying words or characters to the screen is
accomplished with the PRINT command.

60 PRINT “ANYTHING YOU WANT”

The computer places whatever is between the
quotation marks on the screen. There must be
quotation marks before and after the words or
characters that you want printed. If there are sev-
eral lines to be printed in a program, each new line
will be displayed under the previous one.

There may be times when you will want sev-
eral different items printed on the same line with or
without spaces between them, for example, col-
umns with headings above each column. Two
characters, when placed at the end of a line, will
hold the cursor in the same line—the comma and
the semicolon.

The semicolon will not advance the cursor
after the last character of a print statement has been
printed. The first character of the next print state-
ment will occupy the next position on the screen.

60 PRINT “HELLO”;
70 PRINT “THERE”

If you run this two-line program, your screen should
display:

HELLOTHERE

There is no space between the “O” in “hello” and
the “T” in “there.” The semicolon indicated no
space, so the next word began in the next position
on the same line.

There is one case where the semicolon works
differently. If the next string, whether it is a set of
characters between quotation marks or a string
variable, is too long to fit on that same line, it will be
printed on the next line. Try this:

60 PRINT “THIS IS THE FIRST SENTENCE”;
70 PRINT “THIS IS THE SECOND
SENTENCE!”

Run this two-line program. As you can see, the
sentence in line 70 cannot possibly fit on the same
line as the sentence in line 60, so the computer
moves it to the next line on the screen.

A comma functions somewhat differently from
the semicolon. It will place the next string in a
particular column on the screen. Try these lines:

60 PRINT “DATE”,
70 PRINT “PLACE”,
80 PRINT “TIME”

Run these lines. The screen should display:
PLACE

DATE
TIME

There are two distinct columns on the screen. The
comma indicates that the next line should print in
the next available column. Since there is no comma
after the word “TIME,” the next print statement
would place its information on the next line under
the word “TIME.”

Printing numbers is a little different. Numbers
do not have to be enclosed in quotes. Negative
numbers always display the minus sign. With posi-
tive numbers, the plus sign is understood. When
these numbers are printed on the screen, the com-
puter leaves a space before a positive number, anda
space after all numbers whether they are negative
or positive, so that numbers with a semicolon be-
tween them do not look like one long number when
printed on the screen. Try this example:

60 PRINT 1;
70 PRINT -1;
80 PRINT -2;
90 PRINT 2;
100 PRINT 3;“1”

When this program is run, the screen will look
like:

1-1-2 2 3!

There is one space between the left edge of the

screen and the first “1.” This is the understood plus
sign. There is one space after the first “1.” This is
the trailing space for the number. There is one
space between the “—1" and the “—2.” After the
“~2,” there are two spaces. One is the trailing
space, the other is the understood positive sign for
the “2.” There is one space between the “3” and the
exclamation mark (!).

There are times when neither the comma or
the semicolon will place the information in the cor-
rect position on the line. Any horizontal location can
be addressed by using the TAB command with the
PRINT command, as shown below.

PRINT TAB(20); “HELLO”

This program line will begin to print the word
“hello” in the twentieth space or column of that line.
On the other hand,

PRINT “HELLO”; TAB(20);“THERE”

will print the word “hello” at the beginning of the
line, then print the word “there” at the twentieth
column. When you need more than two columns on
the screen, use the TAB command.

DISPLAY

Used by itself, the DISPLAY command is
similar to the PRINT command. The information
following it is printed on the screen. Used with the
word AT, you can print information anywhere on
the screen. There are several options that you can
choose from when you use the DISPLAY AT com-
mand. Following the AT, specify the number of the
row and column that your information should be
printed at.

70 DISPLAY AT(4,8):“4TH ROW - 8TH
COLUMN”

80 DISPLAY AT(10,15):“10TH ROW - 15TH
COLUMN”

Before you run these two lines, be sure that all
other program lines have been deleted. After you
run these lines, you should see both lines on your

27

screen, each in its correct position, as indicated by
the two numbers in the parentheses. The first
number indicates how many rows or lines down
from the top of the screen this information will be
printed on. The second number is the column, or
how far in from the left side of the screen the
information will be. (There are 24 rows and 28
columns that can be accessed with the DISPLAY
AT command.) If you tell the computer to print
something outside of that range, for example: DIS-
PLAY AT(30,2):“HI”, a #79 - BAD VALUE error
message will result.

The DISPLAY AT(r,c) BEEP command will
make a sound before the message is printed on the
screen.

DISPLAY AT(2,3)BEEP:“SOUND”

The SIZE option used with the DISPLAY AT
command places spaces (or erases) a certain
number of positions on the screer. The number of
spaces to be printed on the screen is placed within
the parentheses after the SIZE command.

DISPLAY AT(2,3)SIZE(2)

Starting at location 2,3 two blank spaces across will
be displayed.

To clear the entire screen, you can use the
ERASE ALL option. Used with the DISPLAY AT
command, you can have a message printed on the
screen immediately after the screen is cleared.

DISPLAY AT(3,4)ERASE ALL:“HELLO AGAIN”

If the message to be printed on the screen will
NOT fit on the line that you want it to, the computer
will move it down one line and ignore the column
number. If your message exceeds one line length,
part of the message will be on the next line. Try
this:

DISPLAY AT(7,4):“THIS MESSAGE IS
OBVIOUSLY TOO LONG TO FIT ON ONE LINE”

The message does not begin at the fourth col-
umn of the seventh row, but at the first column of

28

the eighth row and continues on the ninth row.

The following programs will give you some
ideas on how to use the PRINT and DISPLAY AT
commands. The commands not yet introduced will
be covered later in this book. Listing 7-1 is flow-
charted in Fig. 7-1.

Listing 7-1
Line 130 clears the screen with the CALL CLEAR
subroutine.

Show

Clear

the size
screen option
Show
display Count to
no options 2000
Count to Show
1000 erase
: all
Show
display Count to
at 1000

Count to
1000

Show
beep

Count to
1000

O

Fig. 7-1. Flowchart for Listing 7-1 Display Options.

Listing 7-1

100
110
120
130
140
150 DISFPLAY
WORKS THE SAME AS

REM LISTING 7-1

CALL CLEAR !

12.C0L 2°

FTION AT 18°
250 FOR DELAY=1 T0O
260 REM WITH ERASE

ERASE ALL
280 FOR

OFTION®

REM DISFLAY EXAMFLES

REM A.R.SCHREIRBER FOR TAE ROOKS
CLEAR SCREEN

REM USE DISFLAY AS FRINT
$RNISPLAY Y
‘PRINT®
160 FOR DELAY=1 TO 1000 33
170 REM DISFLAY WITH
180 DISFLAY AT(12,2):°WITH AT OFTION ROW

HAT!

190 FOR DELAY=1 TO 1000 ! NEXT DELAY
200 REM WITH BEEF OFTION

210 DISFLAY AT(14-5)BEEF"WITH BREEF !1!°
220 FOR DELAY=1 TO 1000 33 NEXT DELAY
230 REM WITH SIZE OFTION

240 DISFLAY AT(12+7)8IZECI8)YREEFI"SIZE O

2000 3
ALL OFTION
270 DISFLAY AT(12s3)ERASE

DELAY=1 TO 1000 3

WITHOUT OFTIONS

NEXT DELAY

OFTION

NEXT DELAY

AlLL BEEF*WITH

NEXT DELAY

Line 150 demonstrates using the DISPLAY com-
mand like a PRINT command.
Line 160 is a delay loop. This slows down the

program so that you can watch the messages ap-

pear on the screen.

Line 180 uses the DISPLAY AT command. This
message begins at the second column of the
twelfth row on the screen. .

Line 210 uses the BEEP option. The computer
sounds a short beep. Then the words “with beep”
are printed at the fifth column of the fourteenth
row.

Line 240 uses the SIZE option to erase 18 letters
from the twelfth row beginning with the seventh
column. The computer beeps; then the words
“size option at 18” replace the letters that were
erased from that line.

Line 270 erases the entire screen with the ERASE
ALL option. The computer beeps and the mes-
sage is printed on the screen.

Listing 7-2 displays a LOVE graphic. This is
created by using the SIZE command with the DIS-
PLAY AT command to erase characters from the
screen. After the remarks in lines 100 to 120 the
computer follows the steps flowcharted in Fig. 7-2.

Listing 7-2

Line 130 clears the screen.

Lines 150-170 use a new command. The RPT$
command tells the computer to use the string
“LOVE” 63 times; then 63 times; then 42 times.
Since the RPT$ command can only print 255
characters at one time, it is necessary to divide
the pattern into three program lines.

Lines 190-300 use the DISPLAY AT with the SIZE
command to form the letter “L.” Each line
specifies a new row and column that will have
letters erased. The number after SIZE is the
number of characters that will be erased.

Lines 320-470 erase letters to form the letter “0.”

29

‘LOVE’
on screen

Loop here
until clear
is pressed

Fig. 7-2. Flowchart for Listing 7-2 LOVE pattern.

Listing 7-2

Lines 490-680 erases letters to form the “V.”

Lines 700-840 form the letter “E.”

Line 860 does not end the program with an END
statement that would tell the computer to display
the cursor at the bottom of the screen and part of
the display would be lost. Instead, we use the
GOTO command. This returns the computer to
the beginning of the line. This is the only com-
mand on this line, so the computer continues to go
to line 860 until you press FCTN and 4 to stop the
program.

Listing 7-3 demonstrates simple animation.
The letters are printed in a specific location,
erased, and reprinted in a new position. (See flow-
chart in Fig. 7-3.) Entire words can be moved
across the screen this way.

Listing 7-3

Line 130 clears the screen.

Line 140 is the beginning of a FOR . . . NEXT loop.
This command saves memory and typing. The X
variable refers to the column the computer will be
printing the information in.

Line 150 positions the cursor at the point on the
screen at which we want a letter printed. X indi-
cates the column that the “M” will be printed in.
There is a space before the letter “M.” Before the
computer prints the “M,” it will print the space.
This erases the previous “M” that was printed on
the screen and gives the illusion of an “M” moving
across the screen.

30

100 REM LISTING 7-2
110 REM LOVE

120 REM L.M.SCHREIRER
130 CALL CLEAR ! CLEA
140 REM FILL SCREEN W
150 FRINT RFT$(°LOVE"
1460 FRINT RFT$("LOVE"®
170 FRINT RFT$("LOVE"®
180 REM MAKE AN ‘L7
190 DISFLAY AT(2+2)81

FOR TAE BROOKS
R SCREEN

ITH L.OVE

y63) 5

vb63)

»42) 5

ZE(7)

200
210

220

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
400
610
620
630

NISFLAY
LISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFL.AY
DISFLAY
DISFLAY
DISFLAY
DISFLAY

AT(3+s2)8TZE(?)
AT (45 4)STZE(3)
AT(594)8TZE(3)
AT(6y4)STZE(3)
AT(734)SIZE(3)
AT(84)SIZE(3)
AT(P4)8IZE(3)
AT(9:12)SIZE(2)
AT(10s3)SIZE(LL)
AT(11:3)SIZE(L1)
AT(12:3)SIZECLL)

REM MAKE AN ‘07

DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
LISFLAY
DISFLAY
DISFLAY

DISFLAY

DISFLAY

AT(2s19)8IZE(7)
AT(3219)GIZE(7)
AT (4, 17)STZE(LL)
AT (S5 17)8TZE(3)
AT (S 25)8TZE(3)
AT (69 17)8TZE(3)
AT (69 25)SIZE(3)
AT(7917)SIZE(3)
AT(725)SIZE(3)
AT(8217)8IZE(3)
AT(B8»25)8IZE(3)
AT(9917)8IZE(3)
AT(P» 2GIG8TZE(3)
AT(10:17)SIZE(L1L)
AT(11919)SIZE(7)
AT(12:19)STZE(7)

REM MARKE A ‘V7

DISFLAY
DISFLAY
DISFLAY
DISFLAY
DNISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
LDISFLAY
DISFLAY
DISFLAY
DNISFLAY
DISFLAY
DISFLAY

AT(1452)8TZE(3)
AT(14:11)SIZE(3)
AT (1S5 2)8TZE(3)
AT(1S211)STZE(3)
AT (165 3)81ZE(3)
AT(16,10)8IZE(3)
AT(1793)81ZE(3)
AT(17910)SIZE(3)
AT(1874)SIZE(3)
AT(18+s9)SIZE(3)
AT(1924)8IZE(3)
AT(19:9)8IZE(3)
AT(20,5)8TZE(3)
AT(20:,8)8T2ZE(3)
AT(213)8IZE(3)

31

4640
650
660
670
680
4690
700
710
720
730
740
730
760
770
780
790
800
810
820
830
840

DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY

REM MAKE AN

DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY
DISFLAY

AT(218)8IZE(3)
AT(2256)81IZE(3)
AT(22»7)8IZE(3)
AT(23s7)SIZE(2)
AT(2437)8TZE(2)
IE/
AT(14:17)8TIZE(11)
AT(1517)SIZE(11)
AT(1621B)8IZE(3)
AT(16226)8TZE(2)
AT(17+18)8IZE(3)
AT(18518)SIZE(3)
AT(18524)8IZE(1)
AT(19518)SIZE(7)
AT(20518)8IZE(7)
AT(21518)SIZE(3)
AT(2124)8TIZE(1)
AT(225,18)8IZE(3)
AT(22926)8IZE(2)
AT(23517)SIZE(11)
AT(24517)8TZE(11)

850 REM LOOF

860 GOTO 840

HERE S0 FROGRAM WON'T END U
NTIL (CLEAR) IS FRESSED

Line 160 finishes the loop. The computer com-
pletes lines 140 to 160 six times before it goes on
the next line.

Lines 170-190 move the “O” across the screen in a
similar manner.

Line 200 erases the “O” from the line that it was
moving on.

Line 210 moves the “O” up one line, placing it
immediately after the “M.”

Lines 220-240 move the “V” across the screen
above the letters “MO.”

Line 250 erases the “V” from the line above the

- “MO.”

Line 260 prints the “V” after the “MO.”

Lines 270-410 follow the same pattern of printing a
letter on the left side of the screen, erasing it, and

32

printing it one column over.

Lines 420-440 move an entire word across the
screen. Again, there is a space before the word
WORDS. This space erases the letter “W” in the
word previously printed. If there were no space, a
line of “Ws” would be printed across the screen.

Lines 450-500 use the SIZE command to erase the
entire word and print it one line lower.

Line 510 ends the program. The message “MOV-
ING WORDS” should be on the screen, along with
the prompt.

Although this program moved only letters
across the screen, using this technique of printing
and erasing you can use graphics created with new
characters and move them anywhere on the screen.

Calculate
starting row
and column

l

Calculate
next.
position
In
correct

place?

[}

Calculate
next
position

|

Display
g

Display in
correct row
and column

Calculate
next row
and column

Display

oy

Calculate
row and
column
“
C 0"
alculate
next
position
In

correct
column

Display in

Calculate
next
position

In

correct
column

Display in
correct row
and column

[}

Display in
correct row
and column

Calculate
next row
and column

Display

Calculate

next
position

“G"

A

In
correct

column
?

Display in
correct row
and column

Calculate
next row
and column

Display

correct row
and column Calculate
next row
and column
Calculate
next row J
and column ! Display
Calculate N
next
position
In
correct

column

Calculate

next

position

“Words"

Display in
correct row
and column

Fig. 7-3. Flowchart for Listing 7-3 Simple Animation.

33

Listing 7-3

100
110
120
130
140

REM LISTING 7-3
REM SIMFLE ANIMATION

REM L.M.SCHREIRER FOR
CAlLL CLEAR !

FOR X=1

TO 6 !

MORY & TYFING

150

DISFLAY

AT(S5sX33" M®

LUMN BUT NOT THE ROW

160
170
180

NEXT X
FOR X=21
DISFLAY

ROW LOWER

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

NEXT X

DISFLAY
DISFLAY
FOR X=1
DISFLAY
NEXT X

DISFLAY
DISFLAY
FOR X=1
DISFLAY
NEXT X

DNISFLAY
DISFLAY
FOR X=1
DISFLAY
NEXT X

DISFLAY
DISFLAY
FOR X=1
DISFLAY
NEXT X

DISFLAY
DISFLAY
FOR X=1
DISFLAY
NEXT X

Do I7T 6 TIMES

TO 7
AT (6 X) 0" O

AT (67288 ®
AT(S»8) 170"
TO 8
AT(4sX2 " U

AT(4,8)5"° *
AT (G920
TO 9
AT(6sX) 2" I

AT(659)1"
AT(5510)¢° 1"
TO 10

AT(45X)1" N

AT(4510)5° °
AT(S5s11)2°N"
TO 11

AT (6 XD 87 G*

AT(b6s11)2" "
AT(S5912)2°G"°
TO 16 ! MOVE
AT(Z2s XD 0"

TAR ROOKS
CLEAR SCREEN
THIS COMMAND SAVES ME

CHANGE THE CO

NOW L0 IT ONE

ERASE IT
MOVE IT UF

IT ACROSS
WORDS®

450 DISFLAY AT(2917)8IZE(S)! ERASE IT
460 DISFLAY AT(3517):"WORDS®

470 DISFLAY AT(3s17)8IZE(S)

480 DISFLAY AT(4517):"WORDS®

490 DISFLAY AT(4517)SIZE(S)

900 DISFLAY AT(5917):°*WORDS®

w10 END

34

Chapter 8
Getting the Answers

Sometimes a value that the program needs will
change every time the program is run. Sometimes a
new value will be entered by the computer user,
other times the programmer wants the computer to
use a value different than the one previously calcu-
lated. The computer needs to be able to keep track
of the value by storing it in a place in memory so it
can recall the value when it needs to. To accomplish
this, the program stores the value as a variable.

ASSIGNING VALUES

LET

A variable is a letter, group of letters, or word
that represents a value. If you were to enter

20 LET A=10

the computer would substitute the value 10 each
time it encountered the A variable in the program. If
the program contained

30 LET B=A+5

it would add 10 to 5. The B variable would become
15. The LET command is used to set a variable to a
value. The command does not have to be used. It is
an understood command, so you could enter

30 B=A+5

If you have a program in your computer, type
NEW and then type in Listing 8-1. (See flowchart in
Fig. 8-1.)

Listing 8-1

Line 140 sets the A variable equal to 10.
Line 150 sets the B variable equal to 15.
Line 160 sets the C variable equal to 20.
Line 170 prints all three variables on the same line.

As you can see, when the computer is told to
print a variable, it prints the value that it stored in
that variable. Your screen should display:

10 15 20

35

Set
variables
to 10, 15,
and 20

Display
contents
of variables

Fig. 8-1. Flowchart for Listing 8-1 Assign Variable Values.

The value of a variable can be changed and
reused throughout the program. A variable can also
be used instead of a number for an arithmetic oper-
ation. Type NEW and enter the program shown in
Listing 8-2. (Also see flowchart in Fig. 8-2.)

Listing 8-2
Line 140 assigns the LENGTH variable a value of

30 and the WIDTH variable a value of 7. Names

can be used as variables.

Line 150 prints a message on the screen. Since the
value of the variable will be printed on the same
line, a semicolon is placed after the quotation
mark and before the variable. There is no need to
place a space between the last letter of the last
word and the quotation mark since there will be a
leading and trailing space when the number is
printed. A semicolon is placed after the LENGTH
variable so that the next word of the message will
be on the same line.

Line 160 performs the calculation that determines
the perimeter of the room. The answer is stored
in the PERIMETER variable.

Line 170 contains two print statements. The
first PRINT command is not followed by a mes-
sage; it brings the cursor down one line so that the
message contained after the second PRINT com-
mand will be one row below the last message. A
print statement by itself skips a line on the
screen. This message will be printed on the next
line of the screen.

Line 180 changes the values of the LENGTH and
WIDTH variables. Whenever possible, the same
variables should be reused in a program. This
saves memory and is efficient. Each time a vari-
able is assigned a new value, the computer forgets
the old value.

Line 190 skips a line on the screen, then prints
another message on the screen. The colons be-
tween parts of the message tell the computer to
use a new line for that portion of the message.

Line 200 calculates the area of the room and stores

Listing 8-1
100 REM LISTING 8-1
110 REM ASSIGN VARIARLES VALUES
120 REM RBRY L.M.SCHREIRER FOR TAR ROOKS
130 CaALL CLEAR ! CLEAR SCREEN
140 A=10 | THE VARIARLE ‘A’ WILL RE 10
150 EB=135 ! THE VARIABLE ‘R’ WILL RE 15
160 C=20 ! THE VARIARLE ‘C’ WILL RE 20
170 FRINT ASRSC ! THE SEMI-COLONS WILL K
EEF THE VALUES ON THE SAME LINE
180 END

36

Listing 8-2

100 REM LISTING 8-2

110 REM CHANGE VARIARLES VALUES

120 REM BY L.M.SCHREIRER FOR TAE EOOKS
130 Call CLEAR ! CLEAR SCREEN

140 LENGTH=30 ! WINDTH=7 | NAMES CAN RE
VARIARLES

150 FRINT "I will rnow comrute the®i'reri

meter of a8 room that hasa length of"iLEN

GTHs "and 8 width®"{"of*SsWINTH
160 PERIMETER=2XWINTH+2XLENGTH !
FOR PERIMETER

170 PRINT FRINT
RIMETER

180 LENGTH=27 ! WIDTH=14 |

ALUES OF THE VARIABLES A
120 FRINT 1! FRINT "Now I will calculste

thei"area of a2 room whose width®*3%ig®j

WINTH? "and whose length is®"3LENGTH

200 AREA=WIDTHXLENGTH ! FORMULA FOR AREA
210 PRINT % FPRINT °"THE AREA IS°5AREA

FORMULA.

*THE FERIMETER IS®3FE

* 0
L 2R 4

CHANGE THE V

220 END

the answer in the AREA variable.
Line 210 skips a line on the screen, then prints the
message containing the area of the room.

It is important to note that there must be a
semicolon or comma between the message and the
variable in the print statements. Without semico-
lons, BASIC will not accept the line. To print the
value of the variable on the next screen line, use a
colon instead of a semicolon.

MAX/MIN

The MAX command compares two numbers or
variables to see which one is larger. There are
many different uses for this command when you are
writing a program that needs to know which vari-
able is the largest.

The MIN command is just the opposite. It
determines which variable or number is smaller.

The formats for these commands are:

70 X=MAX(B,C) or

70 X=MAX(10,20) or
70 X=MAX(B,10)

80 X=MIN(B,C) or
80 X=MIN(10,20) or
80 X=MIN(B,10)

The program in Listing 8-3 (flowcharted in
Fig. 8-3) is a routine from the end of a game where
the program checks the scores of both players to
see if the previous high score has been beaten. It
shows how the MAX command can be used.

Listing 8-3

Line 130 clears the screen, then prints the message
HI SCORE in the fourth row beginning with the
column 14.

Line 140 sets the HISCR variable to 758 and the
CRNTSCR variable or 902. These variables could
be any score, but have been set here for this
example.

Line 150 prints the value of HISCR immediately

37

Clear
screen

Set variables
to length
and width

Display
message

Calculate
perimeter

Display
perimeter

Set variables
to new length
and width

Display
message

Calculate
area

Display
area

Clear screen
display
message

Set
variables
for scores

Display
message
and scores

Count to
2000

v

Compare
current score
and high score

Y

Reset
current score
to zero

Display
new high
score

Count to
2000

Fig. 8-2. Flowchart for Listing 8-2 Change Variable Values.

Fig. 8-3. Flowchart for Listing 8-3 MAX Example.

REM: this would have been
done in the main program

Listing 8-3

100 REM LISTING 8-3
110 REM MAX EXAMPLE

CORE
140 HISCR=738
150 DISFLAY AT(4524)
(14593 "GAME OVER®
"SCORE "S§CRNTSCR

160 FOR DELAY=1 TO

4+ 8
+

+ ¢
LR

Y AT(14:9)REEF$® NEW
(245 23)REEFICRNTSCR

120 REM RY A.R.SCHREIBER FOR TAR ROOKS
130 CaALL CLEAR 3 DISFLAY AT(4514):*HI 8

CRNTSCR=902
tHISCR

+ 2
+ e

2000
170 HISCR=MAX(HISCRyCRNTSCR
180 DISFLAY AT(424)BREEFIHISCR

1920 FOR DELAY=1 TO 2000 : NEXT DELAY

¢ ¢
4 ¢

DISPLAY AT
DISFLAY AT(24:17)¢

NEXT DELAY

t: CRNTSCR=0
$¢ DISFLA
DISFLAY AT

¢+ ¢
LR

GAME®

L3R 3
¢+ ¢

 after the words HI SCORE on the screen. This is
the current high score for this game. At the four-
teenth row, GAME OVER is displayed. The
score for this game is shown in row 24. The
computer will beep before the current score is
printed.

Line 160 is a timing loop. It waits for a few seconds
so you can read the screen.

Line 170 compares the current score to the high
score. The larger value will be stored in the
HISCR variable. The variable for the current
score will be reset to zero for the next game.

Line 180 changes the score. Now the new high
score is on the screen. The message at row 14 is
changed to NEW GAME and the current score of
zero is displayed after the word SCORE.

Line 190 is another delay loop to give you a chance
to read the screen. The program ends after this
line.

USING STRING VARIABLES

Numeric variables store numbers, but string
variables can store a “string” of numbers, letters, or
characters. However, string variables cannot be
used in arithmetic functions even though they may
store numbers. Numbers that you will not be
adding, such as dates or ID numbers are best
housed in strings.

Like numeric variables, string variable names

can be letters, groups of letters, or words. By

' placing a “$” at the end of a variable name, you are

telling the computer that this is a string variable.

Just like numeric variables, the contents of string

variables can be printed on the screen. (See the
flowchart in Fig. 8-4.)

Store
information
in strings

Display
contents
of strings

Fig. 8-4. Flowchart for Listing 8-4 String Variable Value.

39

Listing 8-4

100
110
120
130
140
TRING

REM LISTING 8-4

CALL CLEAR !

DORESS

160 CITY$="NEWTON" !
170 STATE$=°"MI" |

REVIATION

180 ZIFP$="43201" 1
120 DISFLAY
TION I8:° |
TRINGS

200 DISFLAY
210 DISFLAY
220 DISFLAY
230 DISFLAY
240 DISFLAY
230 END

REM STRING VARIAERLES VALUES
REM RY L .M.SCHREIRER
CLEAR
NAMES$="J.Q.FURLIC" !

150 ADDRESS$="123 MAIN STREET* !

THIS IS CITY
USE THE TWO LETTER

ZIF
AT(4y1) ¢ "THE ADDRESS INFORMA
SHOW WHAT IS STORED

AT (65 7) INAMES
AT(8:7) IADDNRESSS
AT(10s7)CITYS
AT(10217)STATES
AT(12:17)1Z1F%

FOR
SCREEN
STORE NAME IN 8

TAER ROOKS

STORE A

ARRE

CODE

IN THE S

Listing 8-4)

Lines 140-180 store information in each string. The
letters, numbers, or characters that are placed in
each string variable must be enclosed by quota-
tion marks.

Lines 190-240 print the information in each string
on the screen. DISPLAY AT places the informa-
tion of each string at a particular place on the
screen.

Like numeric variables, string variables hold
their contents until they are changed by the pro-
gram.

LEN

There are times when you need to know the
length of a string. For example, you may want the
title of your new program to be centered on the
screen with the instructions printed under it. Your
program would look like Listing 8-5 (flowchart in
Fig. 8-5).

40

Listing 8-5

Line 140 places the title of the program in the string
variable TITLE.

Line 150 uses the LEN command to find the length
of the string. It places this information in variable
L.

Line 160 divides the length of the title in half. We
know that 28 letters can be placed on one row of
the screen. If we subtract half of the length of the
title from the center point of the screen (14), we
will know where we should start printing the title.

Line 170 places the cursor at fourth row and in the P
column. The title will be printed in the center of
the screen.

Lines 180-190 begin the instructions for this pro-
gram.

Line 200 is a loop that makes the computer wait
until the FCTN and 4 keys are pressed.

If a program repeats itself or reuses some of

Clear
screen

Place
information
into string

y

Get length
of string

v

Compute
printing
position

Display
centered
title

Display
message

Loop until
clear is
pressed

Fig. 8-5. Flowchart for Listing 8-5 Finding the Middle.

Listing 8-5

the variables, you can clear the previous informa-
tion from a string by setting the string equal to “ ”
(two quotation marks with nothing between them).
This sets the string length to zero and erases all
previous information. A string with no information
in it is called a null string.

INPUT

So far, our variables and string variables have
been assigned their value within the program.
However, you don’t always know the values ahead
of time. The INPUT command allows you to enter a
number, letter, or characters from the screen while
the program is in use. If numbers are to be entered,
then a numeric variable can be used for the entry. If
letters or characters are entered, a string variable
is used. In addition, your TI-99/4A can be set up so
that only certain answers can be accepted. This is
very useful when there can only be two answerstoa -
question, and you don’t want the computer to accept
anything else. A True or False test is one example.
The INPUT command can be used alone or with a
message as a PRINT command.

20 INPUT B

If you ran this line it would display a question
mark on the screen. The value entered would have
to be a number and would be stored in the variable
“B.” One way to indicate what type of answer you
want is to precede the variable with a question
called a prompt. .

20 INPUT“What is your name?”:NAME$

100 REM LISTING
110 REM FINDING THE MIDDLE

120 REM BY L.M.SCHREIRER FOR TAR BOOKS
130 Cal.L CLEAR !
140 TITLE$="MORE SFACE WARS" | GIVE THE
FROGRAM A TITLE
150 L=LENC(TITLES$)!

STRING IS

160 F=14-1/2

CLEAR SCREEN

FIND OUT HOW LONG THE

GET HALF THE LENGTH AND §

41

being drawntoward®

200 GOTO 200 !
S FRESSED

UBRTRACT IT FROM THE MIDDLE OF THE SCREEN
170 DISFLAY AT(4sF)STITLES |
STARTING FOSITION OF THE STRING
180 DISFLAY AT(&s1)%°
ires dgoodhand/ede coordination.
the commander of a3 sraceshir.

120 DISPLAY AT(10+8)!%3nother rlarmet.®
STAY HERE UNTIL

‘P’ IS THE

This dame reau

Yousre
It is

(CLEAR) I

If you ran this line, the question would be
printed on the screen. Your name would be stored
in the string variable NAMES.

ACCEPT/VALIDATE/SIZE

An input can be accepted at a particular loca-
tion on the screen. ACCEPT with the AT option is
followed by the row and column number E.G. AC-
CEPT AT(22,28). The BEEP option can be used to
get the user’s attention.

The VALIDATE option is used after the AC-
CEPT command to specify which letters or num-
bers will be accepted for an entry. You can specify
UALPHA for any uppercase letter, or DIGIT for
any single-digit (0-9). NUMERIC allows the digits
(0-9) plus the period, positive (+) and negative (—)
signs, and the letter “E” for scientific notation. In
addition, specific characters or letters can be en-
closed in quotation marks, and those characters
would be the only characters that the computer
would accept. Any of these options can be used
together. Here is an example of the use of some of
these commands.

20 ACCEPT AT (2,2) VALIDATE (DIGIT,“Q”)

The computer would accept a single-digit number
or the letter “Q.” '

To accept more than one digit or letter, the
SIZE option is used to specify the number that will
be accepted. This option also clears that number of
spaces at the ACCEPT AT position.

42

20 ACCEPT AT(2,2) VALIDATE(UALPHA)
SIZE(5): ANSWER$

This program line clears five spaces beginning
with row 2, column 2. The answer entered cannot
be longer than five letters. This entry will be stored
in ANSWERS.

If a negative number is used with the SIZE
option, no spaces will be. cleared at that location.
The value of that number will determine how many
characters will be accepted.

20 ACCEPT AT(2,2) VALIDATE(UALPHA)
SIZE(-5): ANSWERS$

This line is similar to the last line except no
spaces will be cleared at location 2, 2. The entry will
still be limited to five characters.

The next program (Listing 8-6 and flowchart in
Fig. 8-6) will compute the amount of sales tax to be
added to an item and give the total price. The
program demonstrates the commands discussed in
this chapter.

Listing 8-6

Line 130 clears the screen.

Line 140 uses the INPUT command. The words in
the quotation marks are printed on the screen as if
the PRINT command were used. The program
then waits until you enter a number. The program
does not want the tax entered as a decimal or with
the percent sign. If the tax rate in your state is

Rem: is there
another sale ?

Display
message

Convert
to -
decimal

= <

Display
message

Get
cost of
purchase

Display
ending
message

Calculate
tax for
purchase

y

Add
tax to
cost

Display
total
cost

Fig. 8-6. Flowchart for Listing 8-6 Sales Tax.

Listing 8-6

100
110
120
130 CalLl. CLEAR
140 INFUT
NUMEBERS ONLY>»
ERCENT SIGN)

150 TAX=TAX/100 !

TO A DECIMAL

160 FRINT &3 INFUT
THE ITEM(S) *

REM LISTING 8-6
REM SALES TAX

ROUND
COST RY TAX
180 FRICE=COST+8TAX
COST FLUS THE TAX
190 FRINT % FRINT
83 FRINT
T IS $"5FRICE
200 PRINT ¢ ¢ ¢ 32
YOU HAVE ANOTHER

IZE (1) tANSWERS
220 REM TEST FOR
230 IF ANSWER$=""
240 IF ANSWER$="Y"
250 PRINT 3! FPRINT
260 END

REM BY A.R.SCHREIRER

"ENTER YOUR STATE SALES TAX (
NO LEADING
TEITAX
CHANGE NUMEER ENTEREIL

"WHAT I8 THE COST OF
LLCosT

170 STAX=INT((COSTXTAX+.005)%100)/100 !
TO NEAREST CENT AFTER MULTIFLYING

TOTAL

"THE COST OF THE ITEM
*INCLUDING

DISFLAY AT(22,2)2:°00
SALE®®
210 ACCEFT AT(22y28)REEF

NO ANSUWER
THEN
THEN 160

"HAVE A NICE DAY.®

FOR TAR ROOKS

DECIMALS OR F

FRICE IS THE

SALES TAX" 3?3 FRIN

VALIDATE("YN®)S

210

SOME ALTERNATE LINES FOR 200-210:

200 FRINT ¢ ¢ ¢ ! DISPLAY AT(22,2):°D0
YOU HAVE ANOTHER SALE? Y*©

210 ACCEFT AT(22:28)REEF VALIDATE("YN®")S

IZE(-1) {ANSUWERS

4%, then type the number “4” and press ENTER.
The TAX variable will now be equal to the number
that you entered.

Line 150 changes the number that you entered to a
decimal by dividing the amount stored in TAX by
100.

Line 160 uses the PRINT command to place a space

44

between the last message that was entered on the
screen and the new one. The INPUT command is
used again. The message between the quotation
marks will be printed on the screen. The com-
puter will wait until an amount has been typed,
and ENTER has been pressed before going on to
the next program line. Enter the cost of the item,

but do not enter a dollar sign. A period can be used
as a decimal point.

Line 170 calculates the tax on the item. The state
tax is the cost of the item times the tax. Since we
are dealing with money, we want the tax to be
rounded to the nearest penny. To do this, we add
.005 to the amount arrived at after the cost of the
item is multiplied by the tax rate. We then multi-
ply the entire amount by 100. This shifts the
decimal point two places to the right. If the tax
came out to .473, adding .005 would change it to
.478. Multiplying it by 100 would move the deci-
mal to the right. The number would be 47.8. Now
we take the integer (INT) of this number—that is,
take only the whole number and ignore the
decimal—and we have 47. Divide this by 100 and
we have the tax of .47.

Line 180 adds the state tax to the cost of the item
and stores it in the PRICE variable.

Line 190 uses a PRINT command to skip a line. The
next PRINT command prints the total cost of the
item including the sales tax.

Line 200 uses the PRINT command and three co-
lons to place spaces on the screen. Be sure that
this line is entered exact. There must be a space
after the PRINT command, and after each of the
three colons. The next two colons have no space
between them. The DISPLAY AT command
places the question at row 22, column 2.

Line 210 uses the ACCEPT AT command instead of
the INPUT command. At the 22nd row and 28th

column, the computer will beep. The VALIDATE
option will only accept a “Y” or an “N” as an input.
The SIZE(1) option erases one character at row
22, column 28. The entry will be stored in the
string variable ANSWERS.

Lines 230-240 test the contents of ANSWERS.
Since it is possible to press the RETURN key
without pressing any other key, ANSWER$
would not contain any letter, and be an empty or
null string. If it is a null string, the computer will
g0 back to line 210 and wait for another key to be
pressed. If the string is not empty, then it must
contain an “N” or a “Y.” If it contains a “Y,” the
computer will go back to line 160 and wait for
another cost to be entered.

Line 250 prints once to skip a line, then ends the
program.

We can change lines 200 to 210 to accept a
default value. Look at the two alternate lines
printed below the main listing. Line 200 is changed
to include a space and a “Y” after the question mark.
This will be printed on the screen. In line 210, the
value after SIZE is changed to a —1. Now when the
program is run, the “Y” will appear on the screen
after the question. If there is another sale, you need
only press ENTER. The computer will accept the
“Y” that is already on the screen as the entry,
unless the N key and ENTER are pressed to indi-
cate “No.”

45

Chapter 9 |
Storing Related Information

Sometimes the information that the program needs
will change every time the routine is used by the
computer; however, it is not necessary for the user
to provide the information. The program can con-
tain this information within itself. This information
is called data.

READ/DATA/RESTORE

Program data is stored in one or more program
lines. The computer will not use this information
until it is told to. The READ command directs the
computer to the information in the DATA lines. The
computer starts with the first DATA line and uses
the first piece of information there, if there is more
than one piece of information on the line, it will
continue with this data line until all the information
is read. Each time the computer uses the READ
command it will get the next piece of information.
The data can be numbers or letters. Numbers can
be read into numeric variables or string variables.
Letters can only be read into string variables. The
format for the READ command is:

46

30 READC or
30 READ C$

More than one variable can be used on a pro-
gram line if your program will be reading several
pieces of data at the same time.

30 READ C,C$

The data is stored on a DATA line. Each piece
of data must be separated from the other by a
comma. The DATA line can hold a maximum of 31
elements, or 30 commas. Any more, even if the
maximum length of the line is not filled, will pro-
duce a LINE TOO LONG error.

100 DATA red, green,orange,blue, violet, yellow
110 DATA 4,5,6,7,12,145,34
120 DATA name,4,red, 3, girl, 4, hello,5

After the computer has reached the last piece
of data, another READ command will cause an error

Start

0

Change
background
colors

Clear
screen

Get color
value and
© name

Change
screen
color

Get length
of color
name

[]

Find
center
of color

Display
screen
color

Count to ‘
2000

More
colors
?

) Clear
screen

Fig. 9-1. Flowchart for Listing 9-1 Colors.

message to appear on the screen. The data can be
reused with the RESTORE command. RESTORE
tells the computer to start pointing to the first line
or a specific DATA line. This way, the information
can be reused. The computer will start from the

first line of data if no line number is specified with
the RESTORE command.

60 RESTORE

The computer will begin with a certain line of
data if a line number is specified, as shown below.

60 RESTORE 110

In the program in Listing 9-1 (flowcharted in Fig.
9-1), the information in the DATA lines tells the
computer what color the screen should be. The
screen color will also be printed. The program uses
the RESTORE command without the line number
so the program continues the color cycle until the
FCTN and 4 keys are pressed.

Listing 9-1

Line 130 changes the colors of the letters from the
third set through the ninth set. (The first set is
numbered zero.) The I variable represents which
set will be changed. The number two changes the
character color to black. The 16 changes the
background of that letter to white. Now the let-
ters will show up on all the screen background
colors.

Line 140 clears the screen.

Line 150 READs the information from the DATA
lines (240-250). The number from the DATA line
is stored in the CLRCD variable. The color is
stored in the string variable CLRNAMS. Since we
are reading the number and color as a set, the
READ command reads the number and the word
with one command followed by both variables.
The comma separates the variables on the line.

Line 160 changes the color of the screen to the color
value just read. The CALL SCREEN command
changes the screen color. This color is deter-
mined by the value of the CLRCD variable.

Line 170 finds the length of the word and stores it in

47

Listing 9-1

LISTING 9-1
COLORS

100 REM
110 REM
120 REM
130 FOR
NEXT I
140 CalL
150 READ
160 CALL
170 L=LEN(CLRNAMS$)
180 CNTR=14-L/2
190
200
210
220
230
240

I=2 TO 8 3

CLEAR

FOR DELAY=1 TO
CAlLL CLEAR

GOTO 1350

L+M. SCHREIRER
CALL

CLRCD s CLLRNAMS
SCREEN(CLRCID

NISFLLAY AT(20sCNTR) ICLRNAMS
2000 33

IF CLRCD=16 THEN RESTORE

DATA 1y TRANSFARENT s 2y BLACK s 3s METITUM
GREENy4sLIGHT GREENsSsDARK ERLUEs &5 LIGHT
BLUEs 7s DARK REI»BsCYAN

250 DATA 9sMEDIUM REDs109LIGHT REDs11sDA
RK YELLOW,12-LIGHT YELLOWs13sDARK GREENSs
14 s MAGENTA» 15yGRAY » 16y WHITE

TAR ROOKS
COLOR(I»2s16)35:

FOR

NEXT DELAY

the L variable. This length will be used to center

the word on the screen.

Line 180 divides the length of the word in half, then
subtracts that number from 14. The fourteenth
position is the center of the screen. By subtract-
ing half the length of the word from the center, we
can center the word on the screen.

Line 190 uses the DISPLAY AT command to print
the color on the screen. You will notice that the

word is printed in black and the background color

of the letters is white.

Line 200 is a delay loop. If we did not place a delay
loop in the program, the screen would change
colors too fast for you to read the color name on
the screen.

Line 210 clears the screen again.

Line 220 checks the value of the CLRCD variable. If
the value of this variable is 16, the computer uses
the RESTORE command to set the pointer back
to the beginning of the DATA lines.

Line 230 sends the computer back to line 150. The
program will continue to change the screen color

48

and print that color on the screen until the FCTN
and 4 keys are pressed.

Lines 240-250 contain the data that the computer
uses to change the screen colors and print the
colors on the screen. The number indicates the
color that the screen will be, and the word is the
corresponding color.

WHAT IS AN ARRAY?

An array is a set of locations used for storing
and/or retrieving information. Numbers or letters
can be stored in an array. Figure 9-2 shows how an
array is arranged. This is a one-dimensional array,
because it contains only one row. If a teacher wants

14 1297 8 | @ 7| P |156] 37 | 49

E(1) E(2) E@) E(4) E(5) E(6) E(7) E(8) E(9)

Fig. 9-2. Storing numbers in a numeric array.

to record the grades for her class, and she knows
that there are 25 students and each will take eight
tests in the quarter, to record this information she
would use an array that is 25 rows by eight columns.

In another program the array could hold a pre-
determined value for plotting points on the screen
or determining various statistics. An insurance
program could have an array that would contain
various ages and the rate of insurance for each age
group.

USING ARRAYS

DIM

The DIM or dimension command is used to tell
the computer how large the array will be. Each
location in the array is called an element. If you will
be using ten or less elements in the array, you do
not have to use the DIMension command. TI BASIC
- uses the default value of ten for arrays. In the
program in Listing 9-2 (flowcharted in Fig. 9-3) we
will be using only seven elements of the array.

Listing 9-2
Line 130 sets the option base for the program. It is

possible to use the zero element of an array. If you

do not need to use it, you can tell the computer to
start the array with the first element with the
OPTION BASE command.

Line 140 tells the computer that the MILES array
will only use seven elements.

Line 150 clears the screen.

Line 160 places a message on the fourth row begin-
ning with the first column.

Line 170 begins a FOR . . . NEXT loop. The DAY
variable will count to seven, the number of days
that the trip was for.

Line 180 asks the user to enter the number of miles
driven on a particular day. If you look closely at
this line, you will see that the number of the day is
stored in the variable DAY. This variable is
printed before the question mark and after the
word “day.” The beep is sounded and the AC-
CEPT command uses the VALIDATE option.
Only a number can be entered. This number will
be stored in the MILES array. The value of the

Set aside

elements for
the array

Clear
screen

Display
message

Get one
day's
 mileage

+ Add to
total miles

driven

No
Yes

Find
average
miles driven

Display
average
miles driven

Fig. 9-3. Flowchart for Listing 9-2 Mileage.

49

Listing 9-2

REM LISTING 9-2
REM MILEAGE

100
110
120
130
140
AGES FOR
150 CALL

OFTION RASE 1
DIM MILES(7)!
7 DAYS
CLEAR

a 7
naAY=1 T0 7

ver on
170 FOR

E DRIVEN ON DAY®
YirRe i

UMERIC) ¢MILES(DAY)

Al. MILES® 13
THE 7 DAYS. "

230 END

REM L.M+.SCHREIBER FOR TAE ROOKS

STORAGE SFACE FOR MILE

1460 DISFLAY AT(4y1)¢"This rrodgram will c©
aleulate the averade number of miles dri
rawy trig."

"HOW MANY MILES WER
DISFLAY AT(13:8):DA
ACCERT AT(13713)REEF VALIDATE(N

180 DISFLAY AT(1Z2s1)1

190 TOTAL=TOTAL+MILES(DAY) 2
200 AVERAGE=INT(TOTAL/7+.3)

210 DISFLAY AT(12y 1) ITOTALS "WERE THE TOT
DISFLAY AT(13s1) P "DRIVEN IN

220 NISFLAY ATC(Léy1):°THE AVERAGE NUMRER
OF MILES DRIVEN IN A DAY WAS®"iAVERAGE S *

NEXT DAY

variable indicates which element of the array will
contain the information.

Line 190 contains a running total for the number of
miles driven. Each day’s mileage is added to the
previous total. The program continues until the
number of miles for all seven days has been en-
tered.

Line 200 finds the average mileage. The total
number of miles are divided by the number of days
in the trip (7). Since this number does not have to
be a whole number, we need to round it. Add.5to
the average, then take the integer or whole
number. For example, 827 divided by 7 equals
118.14; add .5 to this number and it becomes
118.54. The integer is 118, so the average miles
driven per day would be 118. However, if 900
miles were driven, then the average number of
miles driven per day would be 128.57. Add .5 to

50

this amount, yielding 129.07, and take the integer
or whole number of that result, 129.
Line 210 displays the total miles driven.
Line 220 shows the average miles driven per day.
Line 230 ends the program.

The program in Listing 9-2 uses a one-
dimensional numeric variable array. The one-
dimensional string array works the same way. The
next program (Listing 9-3) is a simplified spelling
program. (See flowchart in Fig. 9-4.) The words are
entered into a one-dimensional string array. These
words are then flashed on the screen for the child.

Listing 9-3

Line 130 dimensions the string array WORD$ for 20
elements. A maximum of 20 words can be stored
in this program.

Line 140 clears the screen.

Set aside
memory for
20 words

Clear
screen
Display

message

Display
new
instructions

Show

word

Count to
500

Display
_ correct
spelling

Count to
1000

More
words

?
No

Display -
end
message

Congratulate
user

Fig. 9-4. Flowchart for Listing 9-3 Spelling.

51

Listing 9-3

100 REM LISTING 93

110 REM SPFELLING

120 REM RBRY L.M.SCHREIBER FOR TAER EQOOKS
130 DIM WORDSC20)

140 CALL CLEAR

1850 DISFLAY AT(S5y5)3*This srodgram will 2
Llow® % DISFLAY AT(6y 1)1 "wou to enter u

to twentwy srelling words,.®

160 DNISFLAY AT(953)I"TYFE - i when wou
have® 1t DISPLAY AT(10s1)¢%"rmo more word

s to enter and the last word is not the

twentieth.*

170 FOR COUNT=1 TO 20 i DISFILLAY AT(15+5
JI'PLEASE ENTER YOUR WORD®

180 NISFLAY AT(L7+5) "4 35COUNT §¢¢ ACCEPT
ATCL7s10)REEF SIZEC(L8) iANSWERS

1920 IF ANSWER$="* THEN 180

200 IF ANSWER$=®XXX" THEN 240

210 WORDS(COUNT)=ANSWERS$

220 NEXT COUNT

230 REM NOW FOR THE TEST

240 DISFLAY AT(1y1)YERASE ALL RBEER!® * ¢3¢
DISFLAY AT(125 1)REEFI®*FRESS “ENTER’ WHE

N YOU ARE READY TO START®

250 ACCEFT AT(13916)BREEFIAS

260 FOR TSTCENT=1 TO COUNT-1

270 NISFLAY AT12y3)ERASE ALl REEFIWORDS
(TSTCNT)

280 FOR DELAY=1 TO 500 % NEXT DELAY

290 DISFLAY AT(12yS)REEFI*ENTER THE WORD
28 ACCEFT AT(1457) {ANSWERS '
300 IF ANSWERS=WORD$E(TSTCNT)THEN DISFLAY
AT(LE&» 7)) PPVERY GOODELEEY® 28 GOTO 320
310 DISFLAY AT(lé6v4) 1 WRONG - ~ THE WORD
WAS® ¢ DISFLAY AT(18510) WORDS(TSTOCNT)
320 FOR DELAY=1 TO 1000 ¢! NEXT DELAY
330 NEXT TSTCONT

340 NISPLAY AT(2251)REEFI"YOU HAVE FINIS
HED THE LESSON® °

Lines 150-160 print the instructions on the screen.
The DISPLAY AT command is used to print the
words exactly where we want them on the screen.

Line 170 begins a FOR . . . NEXT loop. This loop

52

will accept up to 20 words. The message PLEASE

ENTER YOUR WORD appears on the screen.
Line 180 uses the DISPLAY AT command to print

“#” and the number of the word being entered.

Because the variable COUNT is printed on the
screen, you will know how many words have been
entered and which word you are currently enter-
ing. The computer will beep and erase 18 spaces
on the screen. Up to 18 letters can be entered for
each word. The word entered is stored in AN-
SWERS.

Line 190 checks the contents of ANSWERS. Ifit is
empty, then no word has been entered, and the
computer will go back to line 180 to wait for a
word.

Line 200 checks to see if the word is XXX. If it is,
then the computer knows that you are done with
this part of the program. The computer is sent to
the next part of the program that tests the user on
these words.

Line 210 places the spelling word entered into the
correct element of WORDS$. The value of the
variable COUNT will indicate the next available
location in WORDS. The spelling word is placed
there.

Line 220 continues the loop. This part of the pro-
gram or routine will continue until 20 words have
been entered, or until the user enters an XXX.

Line 240 begins the test part of the program. The
screen is erased and the message is displayed on
the screen.

Line 250 waits until the ENTER key has been
pressed. This way, the program will not begin
until the user is ready.

Line 260 begins another FOR . . . NEXT loop. The
computer will count from one until one less than
the value of COUNT. We do not want to count up
to the value of COUNT because it is one more
than the number of words entered.

Line 270 erases the screen and prints a spelling
word on the screen. Since the variable TSTCNT
will begin with one and-end with the last number
of the word entered, the computer will begin with
the first word that was entered and continue
through all the words in WORDS$. The variable
TSTCNT is the number of the word being dis-
played.

Line 280 is a delay loop that keeps the word on the
screen long enough to be read, but not so long that

the user can study it. If you would like the word to

be removed from the screen more quickly, change

-500 to a smaller number. If you would like to leave
the word up longer, increase the value from 500 to
a higher number.

Line 290 erases the word and asks the user to enter
the word that was just on the screen. The com-
puter will wait until a word is entered. The word
is stored in ANSWERS.

Line 300 checks the word contained in ANSWER$
against the word that was on the screen. If both
words are the same, the message VERY GOOD
will be displayed on the screen and the computer
is directed to line 320; it will skip line 310.

Line 310 is used when the word entered is not the
same as the word that was flashed on the screen.
This line tells the user that the word entered
was wrong and displays the correct word on the
screen.

Line 320 is another timing loop. This one gives you
a chance to read the message.

Line 330 continues the program until all the words
have been flashed on the screen.

Line 340 ends the program with a message.

In the previous programs, you used one-

- dimensional arrays. At other times, you may need

a two-dimensional array. You can think of your
screen as a two-dimensional array. All the charac-
ters are placed in a particular row and column. In a
two-dimensional array, you must tell the computer
how many rows and columns the array will need
(Fig. 9-5).

1 2
1 red rojo
2 blue azul
3 green verde
4 black negro
5 white blanco
6 yellow | amarillo

Fig. 9-5. Storing words in a two-dimension string array.

53

40 DIM A(4,5), D$(8,2)

In this example, the numeric array will use
four rows and five columns to store numbers. The
string array will use eight rows and two columns.
The program in Listing 9-4 (Fig. 9-6) uses a two-
dimensional string array to store words.

Listing 9-4

Line 130 sets aside the memory needed for the
string array. The array called WORD$ will use six
rows and two columns.

Line 140 clears the screen.

Line 150 begins a FOR . . . NEXT loop. The vari-
able COUNT will count from one to six.

Line 160 reads two words from the DATA line. The
first word is stored in the first column of the array,
the second in the second column. The variable
COUNT will indicate which element of the array
will continue this routine until all six sets of words
have been read.

Line 180 begins another FOR . . . NEXT loop.

Line 190 displays the English word on the screen.
The word that will be displayed will be deter-
mined by the value of the variable COUNT. If the
value of COUNT is four, the word “black” will be
printed on the screen.

Line 200 prints a message on the screen.

Line 210 tells the computer to sound a beep and
wait for an answer. The answer will be stored in
the string variable ANSWERS.

Line 220 checks the answer that was entered. If the
word entered is not the same as the word stored in
the second column of WORDS array, the program
will go back to line 210 for another try. Each set of
words will be stored in corresponding parts of the
string array. For example, the third row, first
column of the array is the word green. The third
row, second column of the array is verde, the
Spanish word for green. The variable COUNT
points to the correct row of the array. This vari-
able does not change its value until the correct
Spanish color is entered.

54

Set aside
memory for
six sets

of words

Clear
screen

Get the
English and
[} Spanish word

Display
English
word

Get
Spanish
word

Fig. 9-6. Flowchart for Listing 9-4 Spanish Colors.

Listing 9-4

100
110
120
130
140
150
160
170
180
190

REM LISTING 94

REM SFANISH COLORS

REM RBY L.M.SCHREIRER FOR TAER ROOKS
DIM WORDE(Hs2)

caLl CLEAR

FOR COUNT=1 TO 6

READ WORDS (COUNT» 1) »WORDS (COUNT » 2)
NEXT COUNT

FOR COUNT=1 TO 6

DISFLAY AT(12,1)"ENGLISH WORD IS *®5

WORD$ (COUNT» 1)

200
210
220
230
240
250
260
270
280
290

NISFLAY AT(1451)1°SFANISH WORD IS*®
ACCEFT AT(14y17)REEF {ANSWERS

IF ANSWER$=>WORD$S (COUNT2)THEN 210
NEXT COUNT

DATA REDyROJO

NATA BLUEyAZUL

DATA GREEN»VERDE

DATA RBLACK NEGRO

DATA WHITE » BRLANCO

DATA YELLOWs AMARILLO

Line 230 the program continues until all six colors
have been displayed on the screen.

Lines 240-290 are the DATA lines. These are the Spanish color.

words that are stored in the array WORDS$. As
you can see, each line contains the English and

55

Chapter 10
Making Decisions in Programs

Programs are not always straightforward calcula-
tions of accumulated information. When we figured
out the area of a room or moved letters across the
screen, the program ran from start to finish without
any consideration of the information entered by the
user. It processed everything in the order that it
was instructed.

Some of the programs that we’ve entered so
far did take into consideration the entries. The
Spelling program allowed the user to stop the first
routine by entering XXX. When the computer must
choose between different program paths, we are
talking about logic or decision making statements.
The computer must decide which path to take. This
decision is determined by information that has been
entered or calculated in the previous part of the
program.

DECISION-MAKING STATEMENTS
IF... THEN
The very simplest decision making statement

isanIF. .. THEN statement. IF the first part of the

56

statement is true, THEN the program continues
with the second part of the statement. These
statements are often used after an input statement
to check the answer entered for erroneous
answers. Other times it is used after a computation
to decide on the path the computer must take in the
program. Listing 10-1 (flowcharted in Fig. 10-1)
shows an example of IF . . . THEN statements. Use
the keys that have the arrows on the side of them.
Do not use the “FCTN” key. These keys will con-
trol the ball on the screen. The IF . . . THEN
statements keep the ball on the screen.

Listing 10-1

Line 130 sets the ROW variable to 12 and the COL
variable to 14, the center location of the
screen. The twelfth ROW is halfway down and the
fourteenth COL is halfway across.

Line 150 prints a warning message on the screen
saying that the ALPHA LOCK key must be

pressed down or this program will not operate
correctly.

Set variables
for horizontal
& vertical
positions

Clear screen
& display
message

Display
ball
Key
pressed
?
Yes

——
Subtract
one from
horizontal
Subtract
one from
Edge Yes Reset vertical
of screen horizontal
? variable
No -] Top Yes Reset
of screen vertical
variable
'y Erase o :
ball <
| Erase
o ball
Reset
: Add one to
horizontal]
variable vertical
T
Bottom Yes Reset
of screen vertical
variable
No

Display
ball

Fig. 10-1. Flowchart for Listing 10-1 Ball.

57

Listing 10-1

58

100 REM LISTING 10-1

110 REM BALL

120 REM RY L.M.SCHREIRER FOR TAE BOOKS
130 ROW=12 i COL=14 | SET UF FOR CENTER
SCREEN

140 REM CLEAN UF SCREEN AND DISFLAY A ME

SSAGE

150 CALL CLEAR 3 FPRINT “MAKE SURE ALFHA
LOCK KEY®":®IS IN DOWN (LOCK) FOSITION®
160 FOR DELAY=1 TO 2000 ! NEXT DELAY
170 REM CLEAR MESSAGE 0OFF SCREEN

180 CAlLL CLEAR

1920 DISFLAY AT(ROW,COLY 0" | FLACE BALL
ON SCREEN

200 REM TEST FOR ANY KEY FRESSED

210 CALL KEY(OYKEYs»STATUS)

220 REM IF NOTy GO RACK & CHECK IT AGAIN

230 IF STATUS=0 THEN 210

240 REM A KEY WAS PRESSED - 80 TEST TO 8

EE WHICH ONE

250 IF KEY=83 THEN 300 ! MOVE THE RBALL T

0 THE LEFT

260 IF KEY=68 THEN 330 ! MOVE BRALL TO TH

E RIGHT

270 IF KEY=6% THEN 360 ! MOVE ERALL UF

280 IF KEY=88 THEN 390 ! MOVE RALL DOWN
290 GOTO 210 ! NOT A VALID ENTRY

300 COL=COL-1 3 IF COL<1 THEN COL=1 ! C
HECK FOR ENGE 0OF SCREEN

310 DISFLAY AT(ROWsCOL+1) " * | ERASE OL
I RALL

320 GOTO 420 ' GO TO SECTION TO DISFLAY
RALL IN NEW FOSITION

330 COL=COL+1 ! IF COL=29 THEN COL=28 !
DON‘T GO FAST RIGHT EDGE

340 DISFLAY AT(ROW-COL-1)2" ° | ERASE OL
o RALL

350 GOTO 420

360 ROW=ROW-1 ¢! IF ROW=0 THEN ROW=1 ! T
HERE IS NO ROW ‘0O’

370 DISFLAY AT(ROW+1sCOLYZ® ® | ERASE OL
I BALL

380 GOTO 420

390 ROW=ROW+1 23

n RALL

430 REM GO BACK AND
440 GOTO 210

IF ROW=235 THEN ROW=24 |
NON‘T GO FAST ROTTOM ROW
400 DISFLAY AT(ROW-1-COLY " ° |

410 REM DISFLAY BALL IN NEW FOSITION
420 DISFLAY AT(ROWsCOLD:"O"
GET NEXT KEY

ERASE OL

Line 160 is a delay loop to give you time to read the
message.

Line 180 clears the message.

Line 190 places the ball on the screen. In this
program the uppercase “O” will represent the
ball.

Line 210 uses a CALL command. This command
will check to see what key, if any, has been
pressed. If a key has been pressed, the STATUS
variable will be set and the KEY variable will
contain the value of the key that has been pressed.

Line 230 uses an IF . . . THEN statement. IF the
value of STATUS is a zero, then a key was not
pressed and the computer will go to line 210. If
the value of STATUS is other than zero, then the
computer will not continue with statement, but go
on to the next line of the program.

Line 250 tests the value of KEY. If its value is 83,
then the S key was pressed and the computer is
directed to line 300.

Line 260 checks the value of KEY for a 68. If it is,
then the D key was pressed and the computer will
go to line 330.

Line 270 looks for 69. This is the value KEY will be
if the E was pressed. The computer will be di-
rected to line 360.

Line 280 checks for the value of 88. This is the value
of the X key. When this key is pressed, the com-
puter will go to line 390.

Line 290 directs the computer to line 210. The
computer will reach this line if KEY does not
equal any of the previous values.

Line 300 moves the ball to the left edge of the
screen. One is subtracted from the COL value.
This variable is then tested for a value that is less

than one. If the COL variable becomes a zero, it is
printed off the screen, so, when COL is less than
one, it is reset to the value one.

Line 310 erases the ball from its present position on
the screen. One is added to the value of COL
because the old position is one more than the new
position. Printing a space will erase the old ball.

Line 320 sends the computer to line 420 where the
ball will be reprinted on the screen.

Line 330 adds one to the value of COL. This will
move the ball to the right. Again the value of COL
is checked for the edge of the screen. This time, if
the value of COL reaches 29, it will be resetto 28
so that the ball will not be printed off screen.

Line 340 erases the ball from the previous position.

Line 350 sends the computer to line 420 to reprint
the ball.

Line 360 adjusts the ROW variable. By subtracting
one from its value, we can move the ball up on the
screen. The value of ROW is checked for a zero. If
it is zero, it is reset to one.

Line 370 erases the ball from the screen. This time
we are adding one to ROW since that is the vari-
able that we just subtracted one from.

Line 380 directs the computer to line 420 to print
the ball in the new position.

Line 390 adds one to the value of ROW. The ball can
now be printed one row lower on the screen. The
value of ROW is tested for 25. Ifit reaches 25, it is
reset to 24. This keeps the ball on the screen.

Line 400 erases the ball that is currently on the
screen.

Line 420 prints the ball on the screen. The values of
ROW or COL have been adjusted for the new
position on the screen. If the ball has reached any

59

edge of the screen, it will not move since that
variable has been reset to the edge position.

Line 440 sends the computer back to line 210 where
it waits for another key to be pressed.

USING IF ... THEN TO EXIT A LOOP

Another use for IF. . .THEN statements is to
exit a loop. An example of when you would use
IF . . . THEN as an exit is as follows: You are
getting information from the user, but you do not
determine ahead of time the exact number of en-
tries the user will enter. In the Spelling program,
the user could enter up to 20 words, but it is possi-
ble to enter only one word. The code XXX signifies
the end on the word list. The program checks each
entry to see if it is the final entry. When the code is
entered, the program leaves the routine it is in and
directs the computer to the spelling routine.

In the last program, when an arrow key was
pressed, the program exited the routine that
checked the value of the key pressed. If an unac-
ceptable key was pressed, the program directed the
computer to wait for another key.

MORE DECISION-MAKING STATEMENTS

ELSE

Sometimes you may want the computer to do
one of two things depending on what the cir-
cumstance is. Instead of using two IF . . . THEN
statements, one for each possibility, the ELSE can
be used to tell the computer which direction it
should take.

For example, ELSE can be used in a program
that shows the tax imposed on income earnings
above a certain level. Incomes below $25,000 are
taxed at 15 percent and incomes above $25,000 are
taxed at 17 percent.

215 IF INCOME<25000 THEN TAX=.15ELSE
TAX=.17

The same idea can be used to direct the com-
puter to different parts of a program.

400 IF C=3 THEN 450 ELSE GOTO 500

60

GOTO

The GOTO command can be used in a
loop. The number following the GOTO command is
the line number that the computer will process
next. The line number must be an actual number
used in the program. If you try to GOTO a line that
does not exist, an error will occur.

ON...GOTO

In some programs you may have several
routines that can be used, but they will not be used
at the same time, or in the same order. When we
want the computer to go to a routine only when
certain conditions are met, we are using selective
branching. One example is a program containing
several games or learning modules. When the pro-
gram is run, the screen contains a menu from which
the user can choose a program or unit. The program
in Listing 10-2 (see flowchart in Fig. 10-2) uses
selective branching for a three unit program on
states.

Listing 10-2

Line 130 sets aside two strings. One string is used
for the names of the 50 states. The second string
is used for the second part of the answer whether
it be the capital, the state abbreviation, or the
state flower.

Line 150 contains a RESTORE command. The first
time that this program is run, the computer will be
pointing to the first DATA line (line 420). When
the program repeats itself, the computer will be
pointing to a different line number. By restoring
the pointer to this line, the computer will be able
to read the names of the states into the STATE$
array no matter where it was pointing. The FOR
... NEXT loop reads the names of the states and
places them into each element of the string array.

Lines 160-170 clear the screen and place the menu
on the screen. You are given three units to choose
from. : i

Line 180 uses the ACCEPT AT command to get the
unit number. The VALIDATE option checks the
entry. If it is not a 1, 2, or 3, the number will not

be accepted. The number entered is stored in
UNIT.

Ce D 0 ®

Set aside Count
memory Get selected OU% 1o
for states A information 2000

: and answers

v

Move state
Set for random v More and answer
numbers point es information to end of
to states array
Get More
et a states
state Clear variable ”
? for correct :
number
More Clear screen
states and show
P Choose a number correct
state
No
Erase screen [] Count to
& 2000
display menu Store state
and answer f

Clear screen
and ask
question

Set pointer
and string ..@
for capitals

Get
answer

Set pointer
and string for ..@ Is it
correct

abbreviations

Yes /' pisplay
“Very good”

?
Set pointer -
and F.;Jring Display Add one
for flowers correct to number
answer correct

O

Fig. 10-2. Flowchart for Listing 10-2 Selective Branching.

Line 190 contains the ON . . . GOTO command. The
value of UNIT determines which routine in the
program the computer will go to. There are three
line numbers following GOTO. Each of these line
numbers is the first line of that routine.

Line 210 begins the states and capitals routine.
This part of the program displays a state on the
screen and asks you to enter the correct capital.
The RESTORE command sets the pointer to line
470, the first line of data for the capitals. The
CATEGORYS$ variable is set to “capital.” This
information is used in the next part of the pro-
gram.

Line 220 sends the computer to line 280. The ques-
tion and answer part of the program begins at this
program statement.

Line 240 contains another RESTORE command.
The computer is directed to this line when unit
two is selected. Line 520 is the first line of data of
the two-letter abbreviations of the states.
CATEGORYS is set to “abbreviation.”

Line 250 sends the computer to line 280 for the
questions and answers.

Line 270 restores the pointer to line 550 which
contains the list of flowers. Again CATEGORY$
is set to the name of this unit, “flower.” There is
no GOTO line for this part of the program since
line 280 is the next line number.

Line 280 begins the question and answer part of the
program. The information from the previous lines
is used in this part of the program. The computer
knows where to begin reading the information
because the RESTORE command set the pointer
to the correct DATA lines. Now the computer can
READ these lines and place that information into
the string array ANSWERS.

Line 290 sets the variable CORRECT to 0. This
variable will count how many questions were
answered correctly. The FOR . . . NEXT loop
makes sure that every state is placed on the
screen. The RND chooses a number from one to
the value of the COUNT variable. The first time
that this routine is used, the COUNT variable is
50. The second time 49, then 48, 47, and so on.
The value of S will determine which state will be
placed on the screen.

62

Line 300 takes the state stored at S location in the
STATES$ array and places it in TESTSTATES.
This is the state that will be printed on the screen.
The corresponding correct answer is stored in
CORRECTS. As long as the data lines are entered
correctly, STATE$ and ANSWERS should match
at the same location. For example, the first ele-
ment of STATES$, STATES$(1), is Nebraska.
ANSWERS$(1) should be NE if the second unit,
state abbreviations, has been chosen. TEST-
STATES$ is now the state and CORRECTS is the
corresponding correct answer.

Line 310 erases the screen, then prints the question
on the screen. CATEGORYS$ will print the type of
answer that the computer is looking for —the cap-
ital, the abbreviation, or the flower—depending
on which unit number was entered. TEST-
STATES prints the state in question.

Line 320 prints the question mark, then beeps. The
VALIDATE option limits the entry to letters
only. The size limits the number of letters en-
tered to 18. The answer is stored in TRY$.

Line 330 checks the answer that was entered
against the correct answer. If it is correct, VERY
GOOD is displayed on the screen and the COR-
RECT variable has one added to it. The computer
is directed to line 350.

Line 340 will be used only if the wrong answer is
entered. The computer will print the correct ans-
wer on the screen.

Line 350 is a timing loop. This gives you time to
read the message on the screen.

Line 360 takes the state that is in the last place and
places it in the position of the state that has been
used. It moves the answer the same way. If this is
the first time the routine is used, it will move the
state from the 50th position. On the second time
the forty-ninth, then the forty-eighth, forty-
seventh and so on. This way, every state will be
used in a random order.

Line 380 continues the loop. This loop will continue
until COUNT is less than one and all the states
have been displayed on the screen.

Line 390 erases the screen, then prints your score
on the screen.

Line 400 is another timing loop to give you a chance

Listing 10-2

100 REM LISTING 10-2
110 REM SELECTIVE EBRANCHING

120 REM BY L .M.SCHREIBER FOR TAR ROOKS
130 DIM STATES$(S50) » ANSWERE(50) ! RANDOMI

ZE

140 REM GET STATES INTO STORAGE AREA

150 RESTORE 420 ! FOR COUNT=1 TO 50 13

READ STATE$(COUNT) 3 NEXT COUNT

160 DISFLAY AT(651)ERASE ALL:°FLEASE CHO

OBE A UNIT (1-3)" 1t DISFLAY AT(9s4):°1)
STATES & CAFITALS®

170 DISFLAY AT(11+54):"2) STATE ARBRREVIAT
TONS® 1! DISPLAY AT(13+4):°3) STATE FLOW
ERS®

180 ACCEFT AT(46s28)BEEF VALIDATE(®123°)8
TZECL)Y UNIT

190 ON UNIT GOTO 21052405270

200 REM STATES & CAFITALS

210 RESTORE 470 1! CATEGORY$=°"CAFITAL®

220 6OTO 280 :

230 REM STATE ARBREVIATIONS

240 RESTORE S20 ! CATEGORY$=°"AREBREVIATI
ON*

250 GOTO 280

260 REM STATE FLOWERS

270 RESTORE 35350 3! CATEGORY$="FILOWER®

280 FOR COUNT=1 TO 50 !3: READ ANSWER$(CO .

UNT) :: NEXT COUNT

290 CORRECT=0 :: FOR COUNT=50 TO 1 STEF
=1 33 8=INT(RNIOXCOUNT)+1

300 TESTSTATE$=STATE$(S8):1! CORRECT$=ANSW
ERE(E)

310 DISFLAY AT(8y3)ERASE ALL?*What is th
@ "JCATEGORY$ 3 DISPLAY AT(10s8)!%0f ®3
TESTSTATES$

320 DISFLAY AT(12:,8)8%7° 1t ACCEPT AT(12
¢ LOYBEEF VALIDATE(UALFHA)YSIZE(18) ITRY$
330 IF TRY$=CORRECT$ THEN DISFLAY AT(14,
10):"VERY GOODR®" ¢ CORRECT=CORRECT+1 $:
GOTO 3%50 :
340 DISFLAY AT(14,10):"Noy it’s ® 11 DIS
FLAY AT(16511) 1CORRECTS

350 FOR DELAY=1 TO 2000 ! NEXT DELAY
360 STATE$(S)=8TATE$(COUNT)??: STATE$(COU

63

64

NT)=TESTSTATE%

370 ANSWER$ (S)=ANSWER$ (COUNT) ! ANSWER%$(
COUNT)=CORRECTS%

380 NEXT COUNT

390 DISFLAY AT(12y7)ERASE ALL:*YOU GOT®s
CORRECTS °CORRECT . "

400 FOR DELAY=1 TO 2000 (i NEXT DELAY
410 GOTO 150

420 DATA NEBRASKA»SOUTH DAKOTAsNORTH DAK
OTAyMINNESOTAYKANSAS IOWAsMISSOURI » TEXAS
» OKLAHOMA y ARKANSAS s ALABRAMAYMISSISSIFFI s L
OUISIANA» TENNESSEE

430 DATA NEW MEXICO>ARIZONAsUTAHsIDAHO.C
OLORADND s MONTANAsWYOMING y NEVADA» WASHINGTO
NyHAWAII yOREGONs CALLIFORNIAsALASKAYMAINE »
VERMONT

440 DATA KENTUCKYRHODE ISLANDNEW HAMFS
HIRE9MASSACHUSETTS;CUNNECTICUTvDELQUAREv
NEW YORKyMARYLANDsNEW JERSEYsFPENNSYLVANI
AyWEST VIRGINIA

450 DATA FLORIDAYNORTH CARDLINAsVIRGINIA
sSOUTH CAROLINAsGEORGIAYMICHIGANYWISCONS
INs ILLINOISy INDIANASOHIO

460 REM STATE CAFITALS

470 DATA LINCOLNsFIERREsBISMARKST. FAUL
yTOFEKAYyDES MOINESy JEFFERSON CITYsAUSTIN
yORLAHOMA CITYSLITTLE ROCKsMONTGOMERYJA

CKSONs BATON ROUGE »

480 DATA NASHVILLE»SANTA FEsFHOENIX»SALT
LAKE CITYsROISEsDENVERyHELENAy CHEYENNE »

CARSON CITY»OLYMFIAsHONOLULUSALEM SACRA
MENTO» JUNEAU

490 DATA AUGUSTAsMONTFEL.IERyFRANKFORT s FR
OVIDENCE s CONCORDy BOSTONyHARTFORDIs IOVER ¢ A
LEANY s ANNAFOL.ISs TRENTONs HARRISEBURG y CHARL.
ESTONy TALLAHASSEE

500 NATA RALEIGHs RICHMOND COLUMBIA-ATLAN
TAs LANSINGs MADISONy SFRINGFIELD INDIANAFO

1.ISy COLUMRUS

510 REM STATE ARBREVIATIONS

H20 DATA NEsSDyNDsMNyKS»TAsMO»TXyORKrARYA
LyMSsLAsTNyNMsAZsUTsINsCOsMTsWYsNVsWAYHI
yORsCAsARKyMEsVTsKYsRI

530 DATA NHesMAsCTyDEyNYsMOsNJsFArWVUsFL PN
CrVAYSCryGAsMIsWIsIL» INsOH '

540 REM STATE FLOWERS

950 IATA GOLDENROIFASQUEFLOWERWILD FRA
IRIE ROSEsLADY SLIFFERySUNFLOWERWILD RO
SEsHAWTHORN s BLUERONNETyMISTLETOEsAFFLE R
LOSSOMs CAMEL.IA

560 DATA MAGNOLIAMAGNOLIAsIRIS,YUCCA FL
OWER s SAGUARD s SAGO LILYsSYRINGEy COLUMBINE
sRITTERROQT s INDIAN FAINTERUSHs SAGERRUSH s
RHODODENDRON

570 DATA HIRISCUS»OREGON GRAFEGOLIDEN FO
FPRYsFORGET-ME-NOT»FINE CONEsRED CLOVERsG
OLDENRODSVIOLET » FURPLE LILACMAYFLOWERM
OUNTAIN LAUREL

580 DATA FEACH RBLOSSOMyROSEyBLACK-EYED §
USANsVIOLET s MOUNTAIN LAUREL s RHODODENDRON
y ORANGE RLOSSOMsFLOWERING DOGWOODL AMERIC
AN DOGWOODn

590 DATA CAROQLINA JESSAMINE y CHEROKEE ROS
EvAFFLE BLOSSOM»VIOLETVIOLETsFEONY»SCAR
LET CARNATION

to read your score.

Line 410 sends the computer back to line 150. The
states will be read back into the array and the
menu appears on the screen for another choice.

Lines 420-590 contain the data for this program.
This is divided into four parts—the states, their

capitals, the two-letter abbreviations, and the
state flowers. Do not try to place more two-letter
abbreviations on the DATA lines than are there.
TI BASIC only allows 30 commas on one DATA
line. You will get a line too long error if you try to
enter more than 30 commas.

65

Chapter 11
Repeating Part of the Program

You will often find parts of your program repeating
themselves. Typing in the same instructions over
and over again is tiring for you and a waste of
memory for the computer. Bytes disappear very
quickly even in the most memory efficient program.

One way to conserve memory is to place the
instruction or set of instructions the computer will
be repeating in a loop. A loop tells the computer to
repeat a certain set of instructions any number of
times. In the past few chapters you have used loops
for timing routines and input. Loops kept the size of
the program reasonable.

USES FOR LOOPS

The computer can process information with
remarkable speed. If the computer is also asked to
print information on the screen as it processes it,
chances are the computer’s speed will be too fast for
you to read the information. Sometimes just listing
a program is too fast!

If you are printing instructions on the screen
for the user or presenting a problem for the user to

66

read, you will need to slow the computer down so
that the user can read it before it disappears. A
timing loop was used for this purpose in the Colors
program and the Spelling program. Timing loops
tell the computer to stay at a particular place in the
program and do nothing but count from one number
to another. The numbers are not displayed on the
screen but serve to slow down the computer to
allow the user to read the information on the
screen.

Another loop was used in the Spelling program
when the user was asked to enter the words. With-
out it, the program would have to contain 20 input
commands, 20 prompt lines, and 20 decision lines.
A needless waste of memory! A series of inputs can
usually be obtained most efficiently by using a loop.

Beware of looping to infinity! When you con-
struct a loop, you must design an exit from the loop,
or you may wait for the computer to complete a
calculation, read information, or time an activity,
only to discover (after pressing the FCTN and 4
keys, of course) that the computer hasn’t passed

line 30! A loop with no exit is called an endless loop;
it is useful in demonstration programs, where you
want the same program to be repeated all day, or at
the end of a program that you want to end without
the prompt appearing on the screen. The only way
to exit an endless loop is by pressing the FCTN and
4 keys.

FOR ... NEXT LOOPS

A FOR. .. NEXT loop repeats a set of pro-
gram instructions a given number of times.

20 FOR T=1 TO 100
30 NEXT T

This loop starts by setting the T variable to 1. The
second command is NEXT T. The program tells the
computer to start with the number one, then add
one to the value of T and return to the FOR state-
ment. It continues to go back and forth between the
FOR and NEXT until T is equal to 100. When the
T variable equals 101, it has exceeded the second
value and goes on to the program line following the
NEXT command.

If we had other program lines between lines 20
and 30, the computer would execute any and all of
the commands between the FOR and the NEXT 100
times.

In the above example we started with the T

Ask
question

Store
correct
answer

 Em—

number of

Set variable
that records

tries to zero

- - -

Add one

of tries

to number

Display
message and

Get an
answer

End Display

L e T S |

Fig. 11-1. Flowchart for Listings 11-1 and 11-1B, Answer Version 1 and Answer Version 2.

67

Listing 11-1A

140
L. OF MONTANA 7 *
150 ANSWER$="HELENA"
160 FOR COUNT=1 TO 3
170 TRY=Q !

RY AGAIN®
210 FOR DELAY=1 T0
DISFLAY AT(18s1) 8"

O7T IT IN

REM BY L.M.SCHREIRER FOR TAR ROOKS

100 REM LISTING 11-14
110 REM ANSWER VERSTON 1
120

130 Call. CLEAR

DISFLAY AT(12¢1)3*WHAT IS THE CAFITA

NUMRER OF
ACCERT AT 13y L2)REEFIGU

180 TRY=TRY+1 23
ESS¢
190 IF GUESS$=ANSWER$ THEN

200 IF COUNT=3 THEN DISFLAY AT1810038"T
H500

DISFLAY ATC1851) 2" THE

220 NEXT COUNT 3
CAFPITAL OF MONTANA 16
230 END '

240 DISPLAY AT(18y1) 3 VERY GOOD !
"ITRYS*TRIES . ®

GUESSES

240

NEXT DELAY

[34 L84
¢ ¢ LR

"FANSWERS

You G

variable equal to one and ended with it equal to 100.
Any variable and any starting and ending numbers
can be used in your programs.

One common error when using the FOR . . .
NEXT loop is setting a variable to zero within the
loop instead of before the computer starts the loop.
An example of this would be a program that gives
the user three tries to answer a problem. The vari-
able that counts the number of wrong answers must
be cleared before each question. If this variable is
cleared within the loop, the computer will never
know when the three tries are up. Listing 11-1B
demonstrates the correct use of FOR . . . NEXT
loops. Listing 11-1A shows the same programs with
a variable cleared inside the loop that should be
cleared before the loop. The flowchart in Fig. 11-1
shows both possible loops. The dotted line points
out the correct way to set up the loop.

Listing 11-1A
Line 130 clears the screen.

68

Line 140 prints the question on the screen on the
12th line and first column.

Line 150 sets the string variable ANSWERS$ to
Helena.

Line 160 begins the FOR . . . NEXT loop. The
COUNT variable will begin with one and continue
until it reaches three.

Line 170 sets the number of guesses to zero.

Line 180 counts which guess this is by adding one to
the TRY variable. The computer beeps and waits
for an answer. The answer will be stored in
GUESSS.

Line 190 checks the entry against the correct an-
swer. If the answer is correct, the computer will
be directed to line 240.

Line 200 checks to see if this is the last try. If the
COUNT variable is less than three, the computer
will display “TRY AGAIN” on the screen.

Line 210 is a delay loop. Then the message is
erased.

Line 220 sends the computer back to the line where

Listing 11-1B

100 REM LISTING
110 REM ANSWER

L. OF MONTANA 7
1350 ANSWER$="HELENA®
160 TRY=(Q |
170 FOR COUNT=1
180 TRY=TRY+1 &3
ESS$

TO 3

RY AGAIN®

210 FOR DELAY=1 TO
DISFLAY AT(18s1)3%
220 NEXT COUNT 3
CAFITAL OF MONTANA
230 END

OT IT IN

1l-1R
VERSTON 2

120 REM RBY L.M.SCHREIRER FOR TAR ROOKS
130 CAl.L CLEAR
140 DISFLAY AT(1251)1°WHAT I8 THE CAFITA

NUMRER OF
ACCEFT ATC13s 12 REEF IGL

190 IF GUESS$=ANSWER$ THEN 240
200 IF COUNT=3 THEN DISFLAY AT(18210)3°T

900 3

NISFLAY ATC18y1) $ " THE

15

240 DISPLAY AT(18y1)¢
*FTRY$ "TRIES., ®

GUESSES

NEXT DELAY &3

" FANSUWERS

"VERY GOOD ! YOU G

the FOR . . . NEXT loop began for another try.
When the value of COUNT exceeds three, the
answer will be displayed.

Line 230 ends the program so that the congratula-
tory message is not displayed.

Line 240 congratulated the player for guessing the
correct answer.

If you try this program the way it is written,
you will find that you will always get the answer in
one try whether it took you only one try or not. The
reason is that the TRY variable is cleared each time
the computer executes the FOR . . . NEXT loop.
The result is always:

VERY GOOD! YOU GOT IT IN 1 TRIES

Listing 11-1B corrects this situation by ex-
changing lines 160 and 170.. Now the variable is
cleared only before the loop is executed. The pro-
gram will tell you the correct number of tries that it
took before the correct answer was entered.

FOR. .. NEXT loops can also be used within
each other. This is called nesting. An example of
nested loops is shown in the program in Listing
11-2. The flowchart of the program (Fig. 11-2)
shows the proper structure of nested loops. Note
that the inner loop is completed before the outer
loop can go on the next value. The inner loop is also
completed each time the outer loop is executed. If
you do not nest loops properly, you can get error
messages, cause the program to crash, or get incor-
rect answers.

STEPPING

A FOR. .. NEXT loop does not have to add
one to the variable every time it completes the
loop. You can have the variable incremented by any
amount by adding STEP to the command, as shown
below.

40 FOR Z=10 TO 100 STEP 5
5 ...
60 NEXT Z

69

Place symbols
for target
into string

Set variable
for column

use subroutine
to draw gun

Calculate
next position

End
of screen
?
Yes

check key
routine

Check key
routine

Return

Return

Subtract
one from
column variable|

Add one Y
to column
variable

REM: Use this
routine for
subroutine to

draw gun on screen

Return

Calculate
new row

Yes

Destroy
target

Add one .
to hits i
variable

—

Count to
2000

c

Fig. 11-2. Flowchart for Listing 11-2 Target.

70

In this program the Z variable will be equal to 10 the
first time the computer executes line 40. When it
comes to line 60, five will be added to the variable,
making it 15. The program will continue with the
computer adding five to the value of Z until Z is
greater than 100.

If you want the computer to count backwards,
use a negative number after the STEP option, as
shown below.

50 FOR G=150 TO 50 STEP -5

Here, the computer will set the G variable to 150
the first time it executes the line. The second time
G will be 145; then 140, 130, and so on. When G is
less than 50, the computer will continue with the
next line of the program.

Listing 11-2 contains examples of FOR . . .
NEXT loops. »

Listing 11-2
Lines 130-150 clears the screen and prints a short

Listing 11-2

introductory message. This message will remain
on the screen until the ERROR key is pressed.

Line 160 sets the TARGET$ variable to an as-
terisk, two slashes, and a hyphen. This is our
target. .

Line 170 places the score at the top of the screen.
Both the hits and misses will be displayed.

Line 180 sets the COL variable to 13. This is the
column that the gun will be printed at. The com-
puter will go to line 340 to print the gun on the
screen.

Line 190 is the first loop of the two nested FOR.. . .
NEXT loops. The POSITION variable will indi-
cate which column the target will be printed at. It
will begin with column 25 and work its way from
right to left across the screen. Because the col-
umn numbers decrease as we travel across the
screen, this loop will count backwards.

Line 200 prints the target on the screen based on its
new column value.

Line 210 begins the second FOR . . . NEXT loop.

100 REM LISTING 11-2
110 REM TARGET

130 CaLl.
a8 rifle dame®!?
to move the rifle
140 FRINT

CLEAR &3

ARROW to shoot.®
150 FRINT ¢ ¢ ¢
PPFRESS ENTER
160 TARGET$="%//~"
170
6 3¢
180 COL=13
190 FOR FOSITION=2%

120 REM RBY L.M.SCHREIRER FOR TAER ROOKS
FRINT
PAPRESS the RIGHT ARROW

$"PRESS the LEFT ARROW to move
the rifle to the lefht."!

TO CONTINUE®S 3

DISFLAY AT(1s2)ERASE ALLI"HITS
DISFLAY ATC(1s15) 2 "MISSED

¢ GOSUR 340

TO 1 STEF -1 |

"TARGET SHOOT is
to the right."
PFRESS the UP

GOOD LUCK ttr=¢ 3

INFUT A%

"IHIT
"IMISSES

TARGE

T WILL MOVE FROM RIGHT TO LEFT

200 DISFLAY AT(SFOSITION) STARGETS |
W THE TARGET ON THE SCREEN
210 FOR TIME=1 TO 285 1% CALL
TATUS)

NRA

KEY(1sKEY+S .

71

LSE GOSUR 260
230 NEXT TIME
240 NEXT FOSITION
250 GOTO 170
260 IF KEY=2 OR
270 RETURN

280 IF
290 IF COL=25 AND
300 FOR ROW=21 TO
oLy e* R ¢
310 IF KEY=2
320 COL=COL+1
330 IF COL=2 OR
340 FOR ROW=21 TO 24
oLysetd 7 32

350 FOR

24

RULLETROW=23

L L]] . e
*

1)o%”
370 NEXT RULLETROW

$d HITS=HITS+1 3
MISSES=MISSES+1

400 FOR
GOTO 170

220 IF STATUS=1 THEN IF

KEY=3 THEN 280

COL=3 AND KEY:=2
KEY=3 THEN RETURN
NEXT ROW
THEN COL=COL-1 :: GOTO 330

COL>26 THEN RETURN

NEXT ROW
TO %
360 DISFLAY AT(RULLETROW+1,COL+1)SIZECL)

$¢ DISFLAY AT(RULLETROWy COL41L)SIZE(

380 IF COLA1>=FOSITION AND
ON+3 THEN DISFLAY AT(S,FOSITION)$®322:°®
GOTO 400

390 DISFLAY AT(3sFOSTITION-2)"MISSED® I3

DELAY=1 TO 200 2

KEY=3 THEN 350 E

THEN RETURN

$1 DISFLAY AT(ROWSC
I CLEAR OLD GUN

t1 DISFLAY AT(ROWsC
1 RETURN
STEF

-1

COL4+1<=FOSITI

NEXT DELAY $3

The KEY routine is called to see if a key has been
pressed.

Line 220 checks the value of the STATUS variable.
If it is a one, then a key has been pressed. The
next part of this IF . . . THEN statement is
another IF . . . THEN. If the value of key is five,
then the program will direct the computer to line
350; however, if the value is anything else, the
computer will use the subroutine that begins with
line 260.

Line 230 continues the loop until the value of TIME
exceeds 25. This loop is nested within the POSI-
TION loop.

Line 240 continues the loop that moves the target
across the screen. This loop will continue until
the value of POSITION is less than one.

72

Line 250 sends the computer back to line 170 and
repeats the entire program. '

Line 260 is the routine that the computer is directed
to from line 220. The value of the KEY variable is
checked for a two or three. If it contains either of
these values, the program will continue at line
280.

Line 270 sends the computer back to line 230 be-
cause the value of KEY was neither two nor three.

Line 280 checks the value of the COL and KEY
variables. If COL is less than three, then the gun
cannot move to the left any further. If the value of
KEY is two, then the user wants to move the gun
to the left. It cannot move, so the computer re-
turns to the line that sent it to this routine.

Line 290 checks the value of COL and KEY again.
This time it is checking to see if the gun is as far to
the right as it can go and the user wants to move it
further. If both of these conditions are true, that
is, the value of COL is greater than 25 and the
value of KEY is three, the computer will return to
the line that sent it to this routine.

Line 300 removes the gun from the screen. Now it
can draw the gun in its new position.

Line 310 looks at the value of KEY to see if the COL
variable must have one added to it or subtracted
from it. If the value of KEY is two then one will be
subtracted from the value of COL and the program
will direct the computer to line 30.

Line 320 adds on to the value of COL. We know
that the value of KEY can only be a two or three
since we tested it in line 260 for those two values.
Since it was tested for the value of two in line 310
and failed the test, we know that its value can only
beathree. Therefore, we do not have to test it for
its value again.

Line 330 checks the value of COL to make sure that
it is not less than two or greater than 26. If it is the
computer will leave this routine and return to the
line that sent it.

Line 340 draws the gun on the screen. The value of
the ROW will change, but the value of COL re-
mains the same. The computer returns to the line
that sent it.

Line 350 begins another FOR . . . NEXT loop. This
time we place the bullet on the screen. It will start
at the bottom of the screen and continue up to the
line the target is on. The rows on the screen
decrease as we travel up the screen, so this loop
counts backwards.

Line 360 erases the last bullet. The first time
through this loop there will be no bullet to erase.
The COL variable is increased by one. This vari-
able holds the position of the gun on the screen.
The bullet is in the next column. The BULLET-
ROW variable is the row that the bullet is on. We
start with 23, which is one row up from the bottom
of the screen. After the bullet is erased, we draw
the bullet in the new position on the screen.

Line 370 continues the loop until the bullet reaches
the row that the target is on.

Line 380 compares the position of the target with
the position of the bullet. The POSITION variable
indicates the position of the target. The target is
four characters long. If the position of the bullet,
which is one more than the COL variable, is equal
to the position of the target, or is not greater than
the last character of the target (POSITION+3),
we have hit the target. The target will be replaced
with four colons. The HITS variable will be in-

- creased by one and the program will go on to line
400.

Line 390 will be executed if the bullet is not within
the range specified for the target. MISSED will be
printed above the target and the MISSED variable
will be increased by one.

Line 400 contains another timing loop. The com-
puter is then directed back to line 170.

Listing 11-3 is a routine for shuffling cards,
flowcharted in Fig. 11-3. You may want to use it in
any program where you will be using information,
numbers, or words, and do not want to repeat the
same routine twice.

This method replaces the item chosen with the
last item in the array; takes the last one and places
it in the location chosen, and then decreases the
number of locations that the computer can choose
from. The locations that the information is moved to
cannot be disturbed because the computer will not
be allowed to choose from those locations.

Listing 11-3

Line 130 sets aside 52 locations for the cards.

Line 140 places the numbers and letters of the cards
into the string. The Ace is the lowest card and the
King is the highest.

Line 150 is a FOR . . . NEXT loop. The computer
will count from 1 to 52. Each time it will place the
value of X in the CARDNO array. Every element
of CARDNO will contain a number from 1 to 52.

Line 160 contains the RANDOMIZE command.
Without this program line the computer would
shuffle the cards the same way every time the .
program was run.

Line 170 begins the FOR . . . NEXT loop that will

73

=~

Set aside
array Clear
Space screen.

Place | Get number
card values of card

in string
* $ -g—

1

Subtract
13

Number
card
array

= t

Choose a
number

Y

Store
number of
card picked

! -

“bottom”
card there

y

Move
stored card
to “bottom”

Display
a"”

Display
value of
card

Make Deck
“bottom” shuffled
one card up ?

Yes

Fig. 11-3. Flowchart for Listing 11-3 Shuffle.

74

Listing 11-3

100 REM LISTING 11-3

110 REM SHUFFLE

120 REM RY L.M.SCHREIRER FOR TAR EROOKS
130 DIM CARDNO(S2)

140 CARINAME$="AR234547890.JQK"

150 FOR COUNT=1 TO 52 1! CARINO(COUNT)=C

OUNT ! NEXT COUNT ! NUMEBER THE CARDS
1560 RANDOMIZE ! GET NEW SERIES OF RANDOM
NUMERERS

170 FOR COUNT=32 TO 1 STEF -1

180 SHUFFLE=INT(RNIXCOUNTY+1 ! CHOOSE A

CARD FROM 1 TO THE NUMERER LEFT IN THE DE

CK

190 REM ‘TEMF’ IS A TEMFORARY STORAGE Va

RIARLE

200 TEMP=CARINO(SHUFFLE)! SWAF THE CARDS
- STORE THE CARI AT LOCATION ‘SHUFFLE’
IN THE VARIAELE ‘'TEMF’

210 CARDNO(SHUFFLE)=CARDNOC(COUNT)! TRANS

FER THE CARD FROM LOCATION ‘COUNT’ TO *S§

HUFFLE"“

220 CARDNO(COUNT))=TEMF ! FLACE THE CARD

REMOVED FROM ‘SHUFFLE’ INTO LOCATION ‘CO

UNT”

230 NEXT COUNT

240 REM FPRINT THE FIRST % CARDS IN THE 8

HUFFLED DECK

250 CALL CLEAR

260 FOR COUNT=1 TO 5

270 REM GET CARD NUMEER INTO TWO SEFARAT

E VARIAERLES

280 CRNTNO=CARINO(COUNT)Y ! CARDFOS=CARIN

OCCOUNT)

290 REM AIJUST ‘CARIFOSY UNTIL IT FOINTS
AT CORRECT LOCATION IN ‘CARIINAMES‘

300 IF CARDFOS>13 THEN CARDFOS=CARDFPOS—~]

3 1 GOTO 300

310 IF CARDFOS=10 THEN PRINT ®"1"5! NECES
SARY AS ‘CARIDIF0OS’ CAN ONLY FOINT AT THE
Io.’

320 REM FRINT THE ONE CHARACTER CODE FER
‘CARDFOSY OF ‘CARDNAMES$’ (THE VALUE OF

THE CARIN

330 FRINT SEG$ (CARIDNAMES s CARDFOSs1)5" 5

75

IAMOND

350 FRINT °"DIAMOND®

340 IF CRNTNO>13 THEN 360 |

360 IF CRNTNO:>26 THEN 380 !

EART

370 FRINT "HEART® %

380 IF CRNTNO>39 THEN 410 !
FADE

3920 FRINT “SFADE® §3

400 REM IT IS & CLURE

410 PRINT °*ClLLUE®

420 NEXT COUNT

430 ENID

IT’S NOT A I

GOTO 420
IT’S NOT A H

GOTO 420
IT’S NOT A S

GOTO 420

shuffle the cards. We want to start with a full
deck, so make COUNT equal to 52 and count
backwards.

Line 180 picks one of the cards. The computer will
be allowed to choose one number from one to the
value of COUNT. The first time that the computer
executes this line it can choose any of the 52
cards. The second time 51, the third time 50, and
SO on. .

Line 200 places the card that the computer picked in
a temporary location. We will call this location
TEMP.

Line 210 takes the card at the bottom of the pile and
places it in the location that we just removed a
card from. COUNT will always represent the
bottom of the pile. The first time the card is taken
from location 52, the second time 51, the third
time 50, and so on. Since COUNT is always de-
creasing, we will not take a card twice.

Line 220 transfers the card from the temporary
location (TEMP) to the bottom of the pile. Again,
COUNT will be decreasing, so the number placed
in the last element of the array cannot be chosen
or replaced once COUNT has decreased.

Line 230 continues the loop until all the cards have
been moved.

Line 250 clears the screen.

Line 260 begins another FOR.. . . NEXT loop. This
time we want only the first five cards in the array
printed on the screen.

76

Line 280 takes the value of the COUNT element of
the array and places it into CRNTNO and
CARDPOS variables. CARDPOS will be the let-

ter or number of the card.
Line 300 checks the value of CARDPOS. If it is

greater than 13, CARDPOS will be decremented
by 13 until it is less than or equal to 13. The
computer subtracts 13 from the value of
CARDPOS because there are 13 cards in each
suit. Since this value can be any value from 1 to
52, the computer needs to subtract 13 from it
until the number is equal to or less than 13. Then
it will know what the value of the card is.

Line 310 checks the value of CARDPOS again. If it
is 10, the computer will print a one on the screen,
and use a semicolon to hold the cursor there for
the rest of the card. CARDNAMES$ can only con-
tain one letter or number for each card—the ten
card is the exception to the number/suit pattern.

Line 330 prints the number or letter of the card on
the screen. The SEG$ command takes a letter or
number from CARDNAMES$ variable. The value
of CARDPOS is a number from one to 13. This
position in CARDNAMES$ contains the corre-
sponding number or letter of the card. Since we
only want one number or letter, the number “one”
tells the computer to take only one character from
this string at the CARDPOS position; this
character will be printed on the screen. Use the
semicolon to keep the cursor on that line.

Line 340 checks the value of CRNTNO. This vari-
able will indicate what suit should be printed on
the screen. The cards contain four suits, with
thirteen cards in each suit. If the value of
CRNTNO is greater than 13, then the card will
not be a diamond and the computer will go on to
line 360..

Line 350 prints the suit of the card. In this case, a
diamond.

Lines 360-410 continue checking the value of
CRNTNO for the correct suit. When it finds the
suit of the card, it prints that suit on the screen.

Line 420 continues the FOR. . . NEXT loop until all
five cards have been printed on the screen.

Line 160 in this program contains a RAN-
DOMIZE command. We will discuss this command
in greater detail in a later chapter. You may want to
delete this line from your program, then run it
several times and note the cards that come up on the
screen. Each time you run the program without the
RANDOMIZE command, your cards should be the
same. (Talk about a stacked deck!) With the RAN-
DOMIZE command, the cards will be different each
time the program is run.

This shuffle routine can be changed to shuffle
the array no matter how many elements it has. It
can also be used in routines that will shuffle words
to be displayed, as in a Spelling program.

77

Chapter 12
Reusing Part of the Program

In Chapter 10 we discussed routines that were used
selectively by the program. These routines could
be used more than once, but only after the entire
routine was completed and the program had dis-
played the menu. What happens if we have a routine
used by several parts of the same program? If this
routine will be used by the main part of the pro-
gram, and we expect to come back to the same part
of the program that we left, we will need some way
to keep track of where we are and where we are
going. You could use a series of IF . . . THEN
statements or list the routine in the program
wherever you need it, but each of these methods
wastes time and memory.

USING A SUBROUTINE
GOSUB. .. RETURN

The best way to handle a routine that you will
call often is to replace the multiple copies of the
routine with one subroutine. A subroutine is part of
the program that can be used at any time in the
program. When the computer finishes with the sub-

78

routine it returns to the part of the program that it
came from. One example is a timing loop. You will
often use the same timing loop at several points in
your program. You could write the timing routine
once and use it as a subroutine from any point in
your program. If, for example, you had a routine
that played a certain melody, and you wanted to use
that routine several times in your program, it would
save a good amount of work if you made that music
routine a subroutine. '

When the computer finds a GOSUB command,
it remembers the line number by placing it in an
area of memory called a stack. It then goes to the
line number that appears after GOSUB. It executes
the lines in the subroutine until it encounters a
RETURN command. This command tells the com-
puter to go back to the line it came from and con-
tinue with the program. GOSUB is used in Listing
12-1 (flowcharted in Fig. 12-1).

Listing 12-1
Line 140 uses the OPTION BASE command. This

==

Set aside
memory for
variable
array

y

Put number
of days for
each month
into array

Display
message

Use music
subroutine

Get number
for
month

Use music
subroutine

Get number
for
date

Good
number
?

Yes

Use music
subroutine

Get number
for
year .

F—’—— } No
/
Get number
L of days

for the month
A Y

Add to
total days

Is it
leap year
?

Yes

Music
subroutine

g

Caiculate
tone

Add one
more day

> ¥ [s] .

Add this
months
days

Y

Use music
subroutine

Display
total number
of days

Return

Fig. 12-1. Flowchart for Listing 12-1 Days.

79

Listing 12-1

80

100 REM LISTING 12-1

110 REM DAYS

120 REM RY L.M.SCHREIRER FOR TAR ROOKS

130 REM SET UF ARRAY FOR DAYS IN EACH MO

NTH -~ DON’T USE ARRAY ELEMENT 0O

140 OFTION RASE 1 ! DIM DAYS(12)

150 FOR COUNT=1 TO 12 ! READ DAYSC(COUNT
$3 NEXT COUNT

160 DATA 315s28y31y30531930531531530731+3

0y31

170 NISFLAY AT(4y 1IERASE ALLI°THIS IS A

DEMONSTRATION OF ASURROUTINE®

180 REM USE SUBROUTINE TO FLAY A SCALE &
THEN CONTINUE FROGRAM AT NEXT LINE

190 GOSUR 370

200 DISFLAY AT(8y 1) {"FLEASE ENTER TODAY'

S DATE® .

210 DISFLAY AT(LOy 1) $PMONTH (NUMRER ONLY
Y P O3 ACCERT ATC(10s24)REEF VALIDATE(DT

GITYSIZE(2)IMONTH ¢¢ IF MONTH=1 OR MONTH

=12 THEN 210

220 REM USE SUBRROUTINE AGAIN CONTINUING

FROGRAM AT NEXT LINE

230 GOsSUR 370

240 DISFLAY AT(I2s 1) I"DATE (1-31) 7 @

ACCEFT AT(12s24)RBEEF VALIDATE(DIGITISI
(2)IDATE

250 IF DATEXDAYS(MONTH) THEN 240

260 REM USE SURROUTINE AGAIN THEN CONTIN

UE FROGRAM ON SAME LINE RUT NEXT STATEME

NT

270 GOSUR 370 3 DISPFLAY AT(1451) 1 YEAR®
13 ACCEFT ATC(14s22)REEF VALIDATE(DIGIT)

SIZE(4) {YEAR

280 IF MONTH=1 THEN 330

290 FOR FAST=1 TO MONTH-I

300 TOTALDAYS=TOTALDAYSHDAYS(FAST)

310 NEXT PaAST

320 IF YEAR/4=INT(YEAR/4)THEN IF MONTH:2
THEN TOTALDAYS=TOTALDAYSY1 ' CHECK FOR

LEAF YEAR

330 TOTALDAYS=TOTALIAYSH+DATE

340 GOSUR 370 ¢ DISFLAY AT(20s1) " TODAY
I8 THE"STOTALDAYSS *th DAY OF® ! DISPLA

ZE

330 END !
THE SUBROUTINE
360 REM MUSIC
370 FOR

380 CALL
390 NEXT TONE
400 RETURN !
E FROM

Y AT(21+1)2*THE YEAR.®
DONYT LET THE
SURROUT INE
TONE=300 T0O 400 STEF
SOUND 250 TONE 5 0)

GO BACK TO THE LINE YOU CAM

FROGRAM RUN INTO

10

statement will use only the elements one to 12 in
the DAYS array. Without this command you could
use the zero element of the DAYS array. This line
also sets aside 12 locations for use by the DAYS
variable.

Line 150 contains a FOR . . . NEXT loop to READ
the number of days in each month into the DAYS
array.

Line 160 contains the number of days for each
month of the year.

Line 170 erases the screen and prints a short mes-
sage. .

Line 190 contains the GOSUB command. The com-
puter is directed to line 370. It will know that it
should come back to this point after it completes
the subroutine.

Line 200 prints a message on the screen. You are
asked to enter today’s date.

Line 210 asks you to enter the number of the cur-
rent month and stores it in the MONTH variable.
The VALIDATE option accepts only number keys
and the SIZE option limits the number of digits
that can be entered to two. The number entered is
checked to make sure that it is a valid month. If it
isn't, the line will repeat until a valid number is
entered.

Line 230 directs the computer to the same sub-
routine that it used before. The computer will
return to this point in the program.

Line 240 prints the next question on the screen.
This time you are asked to enter today’s date.
Again the VALIDATE option is used to accept
only numbers, and the SIZE option limits the

number of digits to two. This entry will be stored
in the DATE variable.

Line 250 checks the date entered against the
number of days that the month could legally have.
Line 270 uses the same subroutine that has been
used in previous program statements. This time,
when the computer returns from the subroutine,
it will not go on to the next program, but will
continue with this line and ask you to enter the
current year. The SIZE option in this line is set to
four so that the entire number of the year can be
entered (1984 instead of 84). The year will be

stored in the YEAR variable.

Line 280 checks the value of the MONTH variable.
If the value is a one, then the program will go on to
line 330 since it does not have to add any days to
the number of days in January.

Lines 290-310 total the number of days of each
month that has passed. The program stops one
month before the month that has been entered
because all the days of the current month have not
passed.

Line 320 checks for a leap year by dividing the year
by four; if the result is a whole number, it is a leap
year. If it is a leap year, the statement checks to
see if we have passed February. If the month
entered is greater than two, the computer will add
one to the total number of days.

Line 330 adds the value of DATE to the total
number of days that have passed.

Line 340 uses the subroutine in line 370, then prints
which day of the year today is.

Line 350 ends the program. It is very important to

81

Clear

from one
to three

Use cup
subroutine

Use hurky
subroutine

directions

Display
three
cups

Use timing
subroutine

Use flip
subroutine

1

Choose one
cup for the
ball to hide
under

Erase
the
cups

No

/
Display
the
cups

Ten
times
?

Yes

Cup
subroutine o
Set for :
random
numbers . Ask for
Display a number

screen and
display menu Place new guess
characters between
) Get a number into strings one & three
nu

Erase
message

Get a

Display
message

Neither

Fig. 12-2. Flowchart for Listing 12-2 Guess.

have this line in this program. Without it, the
computer would continue into the music sub-
routine.

Lines 370-400 contain the program lines for the
music subroutine. The computer will begin with
the value 300 and count by 10s to 400. Each value.
is used in the SOUND command. The tone that
you hear depends on the value of TONE. Once the

82

sound has been made, the computer returns to the
program line that it left.

A variable that is used in the main program
should not be used in any subroutine unless you
know for certain that you will not need the currently
stored value of that variable later in the program. If
you are using a variable for a counter within a

?

Hurky
subroutine

Display
instructions

Create new
characters
and place
into strings

]
Choose a
row and
column to
hide in

4

Place
grid on
screen
and label

Ask for
hiding
location

Place
pointer in
new

location

Evaluate
answer for
clues

Display
clue

Flash

message put
hurky in cor-
rect location

] Choose

Flip
subroutine

Display
directions

Create
characters
and place

in strings

1]

heads or
tails

Display
“Head"

Display
side
view

Answer
correct
?

Yes

Display
“very
good”

Display
“Tail”

Display
side
view

Return

subroutine, it should be reset to zero when you
enter the subroutine. If it is not reset each time, it
will continue to count starting at the last value that

it held.

ON... GOSUB/RETURN

As you did with the ON . . . GOTO command,

you can selectively branch to a subroutine from the

main program with an ON . . . GOSUB command,
where the subroutine entered is determined by the
value of a variable. The computer remembers the
line that the GOSUB was on, executes the sub-
routine, and returns to the next program line.

Be sure that all subroutines end with a RE-
TURN statement. If the RETURN statement is not
there, the computer will continue with the lines

83

Listing 12-2

84

100 REM LISTING 12-2

110 REM GUESS

120 REM RY L.M.SCHREIRER FOR TAE ROOKS
130 RANDOMIZE ! FICK NEW RANDOM NUMRBERS
140 REM FUT UF MENU & GET SELECTION

150 DISFLAY AT(10s1)YERASE ALL:I"FLEASE CH
O0SE A UNIT (1-3)*" ¢ DISFLAY AT(125,10)32
1) CUPs® : DISPLAY AT(14510)3°2) HURKY
160 DISFLAY AT(16+10)2°3) FLIF® 3! ACCEF
T AT(1028)REEF VALIDATEC(®123")8IZEC(1) U
NIT

170 CAlLlL CLEAR ! REMOVE THE MENU

180 REM GO FERFORM UNIT FICKEXD AND THEN
CONTINUE AT NEXT LINE

190 ON UNIT GOSUR 220y3530+960

200 GOTO 150 ! GO BACK TO MENU

210 REM CUFS INSTRUCTIONS

220 FRINT "HERE ARE 3 CUFS, T WILL®""FL
ACE A RALL UNDER ONE OF®":"THEM» AND MIX
THEM UF. YOU WILL TELL ME WHERE THE RAL
L. I8."

230 PRINT :°REALY??? GOOD...LET’S GOV!IY3

@ * ¢ 4 + ¢ + ¢ 03 ? + 4 4 Q.
® * * + * * * ® . * L4 Q L4 +

240 REM CREATE CHARACTERS TO FORM CUFS &
BALL. FROM UNUSED CHARACTER CORES

250 CALL CHARC128y "FFFFCOCOCOCOCOCO") 22

CALL CHARC129s "FFFF"):?! CALL CHAR(130s"F
FFFO30303030303"):: CALL CHARC(131y *3C7EF

FFFFFFF7E3C")

260 CUFPS=CHRS$ (128) &CHR$ (129) &CHR$(130) 22
BALLE=CHR$(131) ! ERASE$=" "odd TIMEA

nJ=1%

270 REM DISFLAY 3 CUFS IN A ROW

280 DISPLAY AT(15+8)2CUF$ ¢ DISFLAY AT(
1513 1CUFE 13 DISFLAY AT(15218) 1CUFRS

290 REM ERASE 1 CUPy REDISPLAY IT 1 ROW

HIGHERy FUT RALL ON ROW RELOW RAISED CUF
¢+ & DELAY A FEW SECONDS

300 DISFLAY AT(13s8)SIZE(3) IERASES 2

SFLAY AT(14s8)I1CUF$ i DISFLAY AT(1S
IZEC1) SBALLS

310 TIME=200XTIMEADJ ¢! GOSUR 1360 ! GBIV
E TIME TO READ INSTRUCTIONS

I () ¥
y9)8

continued on page 86

following the subroutine until it comes to the end of

the program, finds another return, or crashes. Also,

if you place your subroutines at the end of the
program, be sure an END statement is between the
end of the program and the subroutines. If the pro-
gram does not end, it will continue into the sub-
routine until it finds the RETURN statement, and
then crash with an error message. The program
flowcharted in Fig. 12-2 and listed in Listing 12-2
demonstrates the use of selective subroutines.

Listing 12-2

Line 130 uses the RANDOMIZE command so that
the computer will choose different numbers every
time it's asked to pick a number.

Lines 150-160 display a menu on the screen. In this
program you can choose from three different
units. The following sequence of events occurs
before the choice is made: the computer erases
the entire screen, displays the unit names and
numbers, beeps, clears one space for the entry,
and then waits for a number to be entered. Only
the numbers 1, 2, and 3 will be accepted.

Line 170 clears the screen.

Line 190 directs the computer to the correct sub-
routine. The subroutine that it will go to is deter-
mined by the value of the UNIT variable.

Line 200 sends the computer back to line 150 to
place the menu on the screen again. When the
program returns from one of the three selected
subroutines, it will return to this line. The GOTO
command is necessary to keep the computer from
continuing into the first subroutine of the pro-

- gram.

Lines 220-230 print the instructions on the screen.
Be sure that all 16 colons in line 230 are entered.
These colons move the instructions up to the top
of the screen.

Line 250 uses the CHAR command to create new
characters (depicted in Fig. 12-3). These charac-
ters will be the cup and the ball. We will cover the
procedures for creating new character sets in de-
tail in a later chapter. In the CHAR command the
letters after the comma tell the computer how the
characters should look. If these letters are not
entered correctly, your cups may not look right.

S 4 2 1 84 2 1 84218421

FF
FF FF

Co
Co
Co
co
Cco
co

Character
#128

Character
#129

8 4218421

8 4218421

O

haracter
#130

Character
#131

Fig. 12-3. Characters used in cups routine Listing 12-2.

Line 260 places the new characters in CUP$ and
BALLS$. It is much easier and smoother to print a
string on the screen. The string ERASES$ is three
spaces. When we want to remove a cup from the
screen, we will print ERASE$ over the location of
the cup. The TIMEAD] variable is set to 15. We
will use this variable for timing routines.

Line 280 prints all three cups on the screen using
the DISPLAY AT command. At first, all three
cups will be on the same row or line.

Line 300 uses the DISPLAY AT command to erase
the first cup and reprint it at a slightly higher
location on the screen. BALLS$ is printed under
the cup. When the computer runs this line, it
gives the illusion of picking up the cup and show-
ing the ball under it.

Line 310 sets the TIME variable by multiplying 200
by the value of TIMEAD]. The computer is then
directed to the subroutine that begins with line
1360. This subroutine is the timing routine and
will be used by other units in this program. This
subroutine is used to give the user enough time to
read the instructions that are on the screen.

85

86

320 REM FUT CUF OVER ERBALL - ONLY CUFP SHO

Wws

330 NISFLAY AT(14+8)ERASES ! DISFLAY A

T(15+8) 1CUF%

340 HIDE=INT(RNDX3)+1 ! GET NUMRER WHERE
TO HIDE EALL

350 REM ILILUSION OF MOVING THE CUFS

3460 FOR MOVEMENT=1 T0O 10

370 DISFLAY AT(15y8)IERASES

380 DISFLAY AT1S:8)ICUFS 23 DISFLAY AT(
15s13)ICUFPS $¢ DISPLAY AT(1518)1CUPS

390 NEXT MOVEMENT

400 REM ASK FOR GUESS

410 DISPLAY AT(21-1):"WHERE IS THE RALL
(1+253)7°% §3 ACCEPT AT(21+28)REEF VALIDA

TE("123")SIZE(1) iGUESS

420 REM LDETERMINE IF GUESS 18 CORRECT &

TELL FLAYER

430 IF GUESS=HIDE THEN DISPLAY AT(22:+7)¢
"THAT’S RIGHTHII® 33 GOTO 460

440 DISFLAY AT(22:5):*IT WAS UNIDER CUP®3

HIDE

450 REM RAISE AFPFROFRIATE CUF & SHOW RAL

L. UNDERNEATH

460 DISFLAY AT(1%58+(HIDE-1)XS)SIZE(3) IE

RASEE 1% DISFLAY AT(14+8+(HIDE-1)X5) (CUF

$ 3¢ DISFLAY AT(1S5+ 94+ (HIDE-1L)XS)STIZE(3)

BALL%

470 REM FIND OUT IF PLAYER WANTS TO FLAY
AGAIN - ONLY ACCEFT A ‘Y’ OR ‘N’ ANSUWER

480 DISPLAY AT(2451):1"WANT TO FLAY AGAIN
(Y/N)Y 7" 13 ACCEFT AT(24+28)BEEF VAL IDA

TE(*YN")SIZE (1) ANSWERS 3 IF ANSWER$=®"
THEN 480

490 IF ANSWER$=°"N" THEN RETURN ! GO RACK
" TO MENU

300 REM ERASE 0OLD GAME BEFORE GOING BACK
TO FLAY IT AGAIN - LLEAVE INSTRUCTIONS

510 FOR ROW=14 TO 24 :: DISPLAY AT(ROWe1
$% 0" 1Y ONEXT ROW ¢! TIMEADJ=1 $! GOTO 2

80

520 REM HURKY INSTRUCTIONS

530 DISFLAY ATC(1s 1) "HURKY IS VERY SHY.
HE LIVESIN A 10 X 10 GRID. TRY TO" $2

continued on page 88

Line 330 uses the ERASES$ again to remove the first
cup from the screen. The cup is then reprinted in
its original position, covering the ball.

Line 340 chooses a random number from one to
three to select the cup that the ball w111 be placed
under.

Lines 360-390 create the 111u51on that the cups are
moving on the screen. The computer erases the
cups from the screen, then reprints them. The
speed at which the computer erases and reprints
the cups gives the viewer the illusion that the
cups are moving on the screen. The cups are
erased and reprinted ten times.

Line 410 asks the user to guess which cup the ball is
under. The computer will only accept the num-
bers one, two, or three. This entry will be stored
in the GUESS variable.

Line 430 checks the entry against the number that
the computer picked. If both numbers are the
same, the computer will congratulate the user and
go on to line 460.

Line 440 will tell the user where the ball was if the
guess was wrong.

Line 460 erases the cup that the ball was under,
reprints it in a slightly higher location on the
screen, and prints the ball under the cup. This can
be done with one formula. The cups were origi-

- nally printed five columns apart on the screen.
The first cup is in column 8, the second in 13, and
the third in 18. To find out which cup should be
erased, we subtract one from the number of the
cup that will be raised. This number is stored in
the HIDE variable. Because the cups are five
columns apart, we multiply 5 times the new
number. Then 8 is added to the number because
the first cup is 8 columns from the left edge of the
screen. If the cups were not placed the same
number of rows apart, we could not use such a
simple formula to determine where the three cups
were on the screen.

Line 480 asks the user to play again. Only the
letters “Y” and “N” will be accepted by the com-
puter. The computer will remain at this line until a
“Y” or “N” is entered.

Line 490 checks the entry for the letter “N.” If the
“N” was entered, the computer returns to the

main menu.

Line 510 is used when a “Y” is entered. The com-
puter does not have to check the entry for a “Y”
because only the two letters, “Y” and “N,” were
accepted in the first place. This line erases the
cups from the screen, changes the value of
TIMEAD] to one and directs the computer to line
280. This game will continue until the user enters

an “N,” or presses the FCTN and 4 keys.

Lmes 530-550 begin the hurky unit. These three
lines print the directions on the screen.

Lines 570-580 change some of the characters on the
character set. DOT$ contains an entire row of
dots. The RPT$ command tells the computer that
we want to place character number 131 (Fig. 12-4)
followed by a space in DOTS$ 10 times. HURKY$
contains the new character that represents
HURKY. The character that represents which
position was chosen is in POINTERS.

Line 600 picks a hiding place for HURKY. We need
to choose both a row and a column. The column
that HURKY will be hiding in is stored in the
HURKCOL variable. The row is stored in the
HURKROW variable. The computer will pick a

8 4218421 8 4218421

38 . . 00
7C 28
FE 38
FE 54
FE 6C
7C 44
38 38
Character Charact!er
842ﬁ1381421 #132
0o
18
18
7E
] 7E
18
18

Character
#133

Fig. 12-4. Characters used in hurky Listing 12-2.

87

88

AL (SEG$(GUESS%$ s 1, COMMA-1))

DISPLAY AT(3s1):°FIND ‘HURKY’ RY ENTERIN

G THECOLUMN AND ROW®

540 DISFLAY AT(4516) ¢ "NUMRER WHERE® $8 I
ISPLAY AT(S-1)23°Y0OU THINK HE IS - LIKE T
HIS 3s4. IF YOU DID NOT GUESS®

550 DISPLAY AT(7s1):°"WHERE ‘HURKY’ I8y
YOU WILL RE TOLD WHICH WAY TO GO.°

560 REM CREATE FLAYING CHARACTERS FROM U

NUSED CHARACTER COLES

570 CALL CHAR(131y"387CFEFEFE7C38"):: IO

Te=RFT$(CHR$(131)&" *s10):: CALL CHARC(13

25°002838546C44387) 13 HURKY$=CHR$(132)

580 CALL CHAR(133,°"0018187E7E1818"):2 FO
INTER$=CHR$(133)

590 REM FICK A HIDING FLACE FOR HURKY &

FLAYERS STARTING LOCATION

4600 HURKCOL=INT(RNIX10>+1 !¢ HURKROW=INT
(RNDX103+1 3¢ OLDCOL=1 2?3 OLIROW=1

610 REM FUT UP GRID WITH ROW NUMERERS

620 COLADJ=7 3! FOR ROW=11 TO 20 :: DISF

LAY AT(ROWsCOLADJ-4) 211~ (ROW-10) 22 DISFL

AY AT(ROWsCOLADI) $DOTE :: NEXT ROW

630 REM FUT IN COLUMN NUMRERS

640 COUNT=1 ! FOR COL=6 TO 24 STEPR 2 8
DISFLAY AT(ROWsCOL)ICOUNT 232 COUNT=COUN

T+1 ¢ NEXT COL

630 REM SHOW NORTHs SOUTHs EASTs & WEST

DIRECTIONS

660 DISFLAY AT(10-s16)2"N® :$ DISFLAY AT(
15 2)SIZEC1) "W 3t DISFLAY AT(1S5:27)¢°E
® :¢ DISFLAY AT(ROW+H1-16)2"S*"

670 REM ERASE ROTTOM 2 ROWS

680 DISFPLAY AT(23s1)31" * 1% DISFLAY AT(2

451):" °

690 REM USE A STRING TO GET 2 VALUES WIT

H 1 ACCEFT STATEMENT

700 DISFLAY AT(2495)!"WHERE AM I HIDING?
1! ACCEFT AT(24524)BREEF VALIDATE("0123

4567895 ")SIZE(5) tGUESS$

710 REM BREAK THE STRING DOWN INTO 2 NUM

ERIC VALUES

720 COMMA=FOS(GUESS$s°s"51)!! COLGUESS=V

¢! ROWGUESS=VA
L(SEG$(GUESS$» COMMA+1,2))

continued on page 90

number between one and ten for both the row and
the column because the grid is made up of ten
rows and ten columns. The OLDCOL and OLD-

ROW variables are both set to one.
Line 620 prints the grid on the screen. The COL-

AD] variable is set to seven. This is the position
of the first dot of the grid. The FOR . . . NEXT
loop counts from 11 to 20. These are the rows that
the dots will be printed on. The first DISPLAY AT
command finds the column that the row number
will be printed in. Four is subtracted from the
value of COLAD]. Then, ten is subtracted from
the value of ROW and this difference is subtracted
from 11. The resulting number is the actual row
number. The reason for all this subtraction is, the
FOR. .. NEXT loop is counting forward, but the
top row of the grid is the 10th row, the one under
it is the 9th, the next 8th, and so on. So, we have
to subtract the number that it is (the first row is
one) from 11 to arrive at the.row number that
should be printed on the screen. The next DIS-
PLAY AT command prints the entire row of dots
on the screen. The loop continues until the entire
grid is on the screen.

Line 640 prints the column numbers across the
bottom of the grid. The COUNT variable is the
number of the column. The FOR . . . NEXT loop
COL begins with the 6th column and ends with the
24th. The loop steps by two, using only the
even-numbered columns because there is a space
between each dot. One is added to COUNT to
keep the column numbers accurate.

Line 660 places the points of the grid, N,'S, E, and
W, on the screen.

Line 680 erases the last two rows of the screen.
These two rows are used to accept numbers from
the user and display the clues for the next guess.

Line 700 asks the user to enter the column and row
of the location of HURKY. The column number is
entered first, then a comma, then the row column.
The computer stores this entry in the GUESS$
variable.

Line 720 takes GUESS$ and removes the column
number and the row number. First the computer
finds the comma with the POS command. The
COMMA variable will hold the position of the

comma in GUESS$. The COLGUESS variable
will hold the number of the column entered. This
number is obtained by taking the value of
GUESSS$ from the first character to the character
just before the comma. ROWGUESS is the row
that has been entered. The computer finds this-
value by taking the value of the string from the
position just after the comma to the end of the
string. The maximum number of characters is
two.

Line 740 tests the ROWGUESS and COLGUESS
variables to make sure that their values are be-
tween one and ten. If either variable is less than
one or greater than ten, the computer will be sent
to line 700 to wait for another set of coordinates.

Line 760 places the pointer at the column and row
position that was entered in line 700. First the old
pointer (if there is one) is erased and replaced
with a dot. The first time an entry is made, there
is no dot to replace. On every move after the first,
the pointer will be replaced with a dot. Then the
pointer is printed at the new location.

Line 780 compares the column guessed with the
column that HURKY is in and the row that was
guessed with the row that HURKY is in. If, and
only if, both the row and column match the com-
puter will be directed to line 890. HURKY will
be found when both the row and column guessed
match the row and column that HURKY is in.

Line 800 begins the lines that give the clues to help
find HURKY. In this line the word “GO” is printed
on the screen. The string variable DIRECTION$
is cleared. This is where the clue will be stored.

Line 810 checks the row that HURKY is in against
the row that was guessed. If HURKY’s row is less
than the guessed row, then the player will have to
guess a smaller number so the word “SOUTH’ is
stored in DIRECTIONS.

Line 820 compares the rows again. This time, if the
row that HURKY is in is greater than the row
guessed, the player will have to try a larger
number, so “NORTH” is stored in the string vari-
able DIRECTIONS. If the row guessed is the
same row that HURKY is in, neither “NORTH”
nor “SOUTH” will be stored in DIRECTIONS.

Line 820 compares the rows again. This time, if the

89

90

730 REM IF ENTEREDI' VALUES ARE ILLEGAL GO
BACK & GET NEW VALUES

740 IF ROWGUESS+<1 OR COLGUESS<1 OR ROWGU

ESS»10 OR COLGUESS:10 THEN 700

750 REM FLACE DOT AT OLD LOCATION AND CR

088 AT NEW LOCATION

760 NISFLAY AT(21-0LDROWs OLDICOLX24+5)STZE
(1)ICHR$(131):: DISFLAY AT(13-(ROWGUESS-

8) yCOLGUESSX2+5)SIZE (1) IFOINTERS

770 REM IF FLAYER’S GUESS IS CORRECT GO

TO MESSAGE

780 IF COLGUESS=HURKCOL AND ROWGUESS=HUR

KROW THEN 890

790 REM FLAYER’S GUESS IS INCORRECT GIVE
AFFROPRIATE DIRECTIONS

800 DISFLAY AT(23:12):1°G0" ! DIRECTION®
810 IF HURKROW-ROWGUESS THEN DIRECTIONS®=
"SOUTH®

820 IF HURKROW:ROWGUESS THEN DIRECTIONS$=
"NORTH"

830 IF HURKCOL=COLGUESS THEN DIRECTIONS=

DIRECTION$&"WEST"®

840 IF HURKCOL>COLGUESS THEN DIRECTIONS$=

DIRECTION$Z"EAST"

850 DISFLAY AT(23»15)INIRECTIONS 3 TIME

=2000 ! GOSUER 1360

860 REM REFLACE OLD FLAYER’S LOCATION WI

TH CURRENT GUESS & GO RBACK & TRY AGAIN

870 OLDCOL=COLGUESS :: OLDROW=ROWGUESS 3
t GOTO 700

880 REM FLASH THE MESSAGE AND HURKY

890 TIME=200 ! FOR COUNT=1 TO 5 i DISF

LAY AT(237):°YOU FOUND ME!!I® 2: DISFLA
Y AT(21-HURKROW HURKCOLX2+5)SIZE (1) tHURK

Y¢ $: GOSUR 1360

200 DISFLAY AT(23:5)8" " 32 DISFLAY AT(2
1-HURKROWy HURKCOLX24+5)SIZE (1) SERASES 2

GOSUR 1360 ! NEXT COUNT

2?10 REM LEAVE HURKY ON SCREEN

220 DISFLAY AT(21-HURKROWs HURKCOLX2+5)S81
ZE(1) tHURKY%

230 REM FIND OUT IF PLAYER WANTS TO FLAY
AGAIN & IF S0y REFEAT GAMEs OTHERWISES

continued on page 92

row that HURKY is in is greater than the row
guessed, the player will have to try a larger
number, so “NORTH?” is stored in the string vari-
able DIRECTIONS. If the row guessed is the
same row that HURKY is in, neither “NORTH”
nor “SOUTH” will be stored in DIRECTIONS.

Line 830 compares the column guessed with the
column that HURKY is in. If the column that
HURKY is in is less than the column that was
guessed, then the player will have to choose a
smaller number. The word “WEST” is added to
the direction that is in DIRECTIONS. This way,
the player can be directed to go Northwest or
Southwest.

Line 840 compares the columns to see if the player
should move to the East. If this is the case, the
direction “EAST” will be added to the direction in
DIRECTIONS. If the column guessed is the same
as the column that HURKY is in, neither “WEST”
nor “EAST” will be added to the DIRECTIONS.

Line 850 prints the clue held in DIRECTIONS on
the screen. The computer will use the same tim-
ing loop in line 1360 that it used in the last unit.

Line 870 places the number of the column that the
pointer is in in the OLDCOL variable and the row
that the pointer is in in the OLDROW variable.
Now it will know where to place the dot after the
next guess is made. The computer is sent to line
700 to wait for another guess.

Lines 890-900 begin the end of the program. The
computer is directed to this line if the player
guesses both the row and the column that HURKY
is in. The TIME variable is set to 200 for a fast
timing loop. The FOR. . . NEXT loop counts from
one to five. Near the bottom of the screen “YOU
FOUND ME!!!” is displayed. At the location
where HURKY has been hiding, “HURKY” is
printed. The message and “HURKY” is printed
and erased five times.

Line 920 prints “HURKY” on the screen at the
correct location.

Line 940 asks to play again. Only the letters “Y” and
“N” can be accepted by the computer. This time,
after the computer checks ANSWERS for a “Y,” it
will return if an “N” or nothing is entered. If the

““Y” is entered, the computer will go to line 600 for

another game.

Lines 960-970 begin the third module—FLIP. The
instructions are printed on the screen.

Lines 990-1020 create the characters that will be
used in this unit. There are 11 new characters
(Fig. 12-5). CH$ will contain the characters that
display the edge or side view of the coin.

Line 1030 places the characters that make up the
top part of the coin in CT$, the bottom part of the
coin in CB$, the middle of the coin on the heads
side in MH$, and the middle of the coin on the tails
side in MT$. By printing these strings on the
screen in the proper order, we will be able to
simulate a coin flipping on the screen.

Line 1040 chooses a random number. The computer
will only pick a one or a two since there are only
two sides to a coin.

Line 1060 sets the TIME variable to five. This
variable is used in the timing loop. The FOR. ..
NEXT loop begins at this line. The coin will flip
five times.

Lines 1070-1130 print the coin in all of its positions.
First the coin will be shown with the “H” for head
onit, then the middle section will be removed and
only the top third and bottom third will be on the
screen. At line 1090, only the side view on the
coin will be on the screen. The top third and
bottom third will be printed again, then the back

* or tail side of the coin. This same procedure will

occur one more time until the head is displayed
again and the coin has flipped completely.

Line 1140 continues this loop until the coin has
flipped five times.

Line 1150 prints only the top third and bottom third
of the coin. The computer is then sent to the
timing subroutine.

.Line 1170 prints a blank coin on the screen. Now

you have to guess what it is.

Line 1190 asks what is it—heads or tails. The
VALIDATE option will accept only an “H” or a
“T” as your answer. Your guess is stored in
GUESSS$. The string is checked to make sure that
aletter was entered. If the string is empty or null,
this line will be repeated.

Line 1210 directs the computer to the correct line
to display the face of the coin. If the “N” variable

91

92

GO RACK TO MENU

940 DISFLAY AT(2451)3°WANT TO FLAY AGAIN
(Y/N)?" 3¢ ACCEFT AT(24527)REEF VALIDAT

EC*YN")SIZE(1) tANSWERS 3¢ IF ANS ER$="Y®
THEN 600 ELSE RETURN

950 REM FLIF INSTRUCTIONS

960 DISFLAY AT(151)$"I WILL FLIF A COIN.
YOU" $3 DISFLAY AT(2,1)3°MUST GUESS WH

AT IT WILL EE." 3¢ DISFLAY AT(3s1):"ENTE

R AN ‘H’ FOR HEADS ~*

970 DISFLAY AT(451):"A ‘T’ FOR TAILS.®

980 REM CREATE CHARACTERS TO MAKE UF THE
COIN IN 3 FOSITIONS FROM UNUSED CHARACT

ER CODES

990 CALL CHAR(1335°0000030C10102020%) 43

CALL CHAR(134,°*828282FES2828282°) 1! CALL
CHAR (1355 *0000C03008080404°)

1000 CALL CHAR(1365*4040808080804040°) ¢
CALL CHAR(1375"0202010101010202%)¢3 CAL

l. CHAR(1385*202010100C03")

1010 CALL CHAR(1395"0404080830C0")$: CAL

L CHAR(1405°FE101010101010")%3 CALL CHAK

(1415 "000000000000C33C") ¢ CALL CHAR(142

y "3CC3")

1020 CALL CHAR(1435"0000FFASASFF*)1: CH$

=CHR$ (143) 2CHRS (143) &CHR$ (143)

1030 CT$=CHR$ (133) 2CHRS(142) RCHRS (135) ¢ ¢
CE$=CHR$ (138) 8CHR$ (141) SCHRS (139) $ ¢ MH%

=CHR$ (136) 8CHR$ (134) §CHR$ (137) 3¢ MT$=CHR

$(136) RCHR$ (140) RCHRS (137)

1040 N=INT(RNDX2)+1 | FICK A RANDOM NUME

ER TO REFRESENT ‘HEADS’ OR ‘TAILS’

1050 REM DISFLAY ILLUSION OF A FLIFFING

COIN

1060 TIME=5 3 FOR FOSITION=1 TO %

1070 DISFLAY AT(105,10):CT$ i DISFLAY AT

(115100 ¢MH$ $2 DISFLAY AT(12510) iCE$ $2

GOSUE 1360

1080 DISFLAY AT(10s10):CT$ ¢

(11510 :CE$ $¢ DISFLAY AT(12

GOSUE 1360

1090 DISFLAY AT(10510)%" * t: DISFLAY AT

(11510 :CH$ ¢ GOSUE 1360

1100 DISFLAY AT(10s10):CT$ $: DISFLAY AT

i DISFLAY AT
p1028% " 33

continued on page 94

8 4 21842 1 8 4 218 42 1 8 4218 4 2 1

00 82 00
00 82 00
03 . 182 CO
oC FE 30
10 82 08
10 82 08
20 82 04
20 82 04
Character Character Character
133 #134 #135
8 42 184 2 1 8 421 842 1 8 421842 1
40 02 20
40 02 20
80 01 10
80 01 . 10
80) 01 oC
80 01 03
40 02 '
40 02
Character Character Character
136 # 137 # 138
8 4 218 4 2 1 8 4218 42 1 8 4218 4 2 1
04
04
08
08
30
co
Character Character Character
139 # 140 #1141
8 4218 421 8 4218 42 1
3C 00
C3 00
FF
A5
A5
FF
Character Character
142 # 143

Fig. 12-5. Characters used in flip Listing 12-2.

94

(11510)ICE$:: DISPLAY AT(12,10)%® ®* 1t
GOSUE 1360 . '

1110 DISFLAY AT(10-10):CT$:: DISFLAY AT
(11510):MT$! DISFLAY AT(12,10)1CR% !¢

- GOSUR 1360

1120 DISFLAY AT(10510):CT$¢ 3¢ DISFLAY AT
(11,10):CEB% ¢ DISFLAY AT(125,10)3° = 3¢
GOSUR 1360

1130 DISFLAY AT(10-10)8° *
(11-10):CH$% :: GOSUR 1360
1140 NEXT FOSITION

1150 DISFLAY AT(10-10)ICT$ $: DISFLAY AT
(11510):CR$% 3 GOSUR 1360

1160 REM DISFLAY A BLANK COIN ON SCREEN
1170 DISFLAY AT(10510):CT4¢ 1: DISFLAY AT
(11510)ICHR$(136)8&® “&CHR$(137)!: DISFLA
Y AT(12510) :CR%

1180 REM GET FLAYER’S GUESS - ONLY ACCEF
TA ‘H OR ‘T”

1190 DISFLAY AT(15:5)"WHAT I8 IT (H-T)?
3 ACCEPT AT(1Ss23)REEF VALIDATE("HT")
SIZE(1)IGUESSS !t IF GUESS$="°" THEN 1190
1200 REM GO TO CORRESFONDING LINE RASED
ON NUMERER THAT DETERMINES ‘HEAD’ OR ‘TAI
L/

1210 ON N GOTO 123051240

1220 REM DISFLAY AFFROFRIATE COIN FACE
1230 DISFLAY AT(10-10)ICT$ $: DISFLAY AT
(11510):MHS$! DISPLAY AT(12510)ICRHe &
GOTO 1260

1240 DISFLAY AT(10-10):CT$:: DISFLAY AT
(11510)IMT$ 3! DISFLAY AT(12510)ICR%
1250 REM DETERMINE IF GUESS WAS CORRECT
& IF S0y GIVE MESSAGE

1260 IF N=1 AND GUESS$="H® THEN 1300
1270 IF N=2 AND GUESS$=°T®* THEN 1300
1280 REM WRONG GUESS - GO SEE IF FLAYER
WANTS TO TRY AGAIN

1290 GOTO 1310

1300 DISFLAY AT(20+8) I "VERY GOODI 1YY
1310 DISFLAY AT(2351):°WANT TO FLAY AGAI
N (Y/N)?®" 2! ACCEFT AT(23,27)REEF VALIDA
TE(*YN")SIZE(1) IANSWERS

1320 REM IF FLAYER WANTS TO FLAY AGAIN.

*e

¢ DISFLAY AT

ERASE OLD
EAT

1330 IF ANSWER®="Y"
yevom o
AT(23s132" * 33
1340 RETURN !
MENU

! RETURN

MESSAGE LINES FIRST & THEN REF

THEN DISFLAY AT(15e1
DISFLAY AT(20:83:" " 32
GOTO 1040
FLLAYER WANTS

1350 REM TIMING SURROUTINE
1360 FOR DELAY=1 TO TIME i:

ODISFPLAY

TO GO BACK TO

NEXT DELAY @

is equal to one, the computer will be directed to
line 1230; otherwise it will be directed to line
1240.

Line 1230 prints the “H” on the coin—if “N” is aone
then heads was chosen. The program continues
with line 1260.

Line 1240 prints the “T” for tails on the screen.

Line 1260 checks to see if the computer picked
heads (“N” is equal to 1) and the player picked
heads. If the player did, the computer is directed
to line 1300.

" Line 1270 checks to see if both the computer and
the player chose tails. If both did; the computer
will go on to line 1300.

Line 1290 sends the computer to line 1310, skip-
ping line 1300 so that the player will not be con-
gratulated.

Line 1300 congratulates the player for making the
correct guess.

Line 1310 asks to play again. Only the letters “Y”
and “N” will be accepted and stored in AN-
SWERS.

Line 1330 checks to see if ANSWERS contains a
“Y.” If it does, the messages will be erased from
the screen and the computer will be directed to
line 1040 for another flip.

Line 1340 sends the computer back to the main
menu. It will return to the main menu if the N key
was pressed, or if the ENTER key was pressed
without entering any other letter.

Line 1360 is the timing subroutine that had been
used by all three units in this program.

CALLING A SUBROUTINE

CALL

Throughout the last program (Listing 12-2)
and in several other programs in this book, the

" CALL command has been used. It is never used

alone. Another word or command follows it. The
CALL command uses subroutines that are built into
the TI-99/4A. The CALL CLEAR command directs
the computer to the built-in subroutine that clears
the screen and then returns to the main program.
Other subroutines used were CALL KEY to find out
what key has been pressed and CALL CHAR to
redefine a character. There are many more sub-
routines like these built into the TI-99/4A, and we
will examine them closely in other chapters.

The CALL command is not restricted to the
built-in subroutines. You can write your own sub-
routines that can be called by name, just like the
subroutines that TI developed. In the next program
we will develop two subroutines that will be called
from the main program.

You may be wondering why you would want to
use the CALL command when a GOSUB seems to
do the same thing. There are a few differences
between a subroutine that is used with the GOSUB
command. The variables are used in the main pro-
gram. With the CALL command, the same variable
can be used in the main program and in the sub-
routine. The computer will remember what that
variable’s value should be in the main program and

95

keep it separate from the variable’s value in the
subroutine.

The subroutine that you develop to use with
the CALL command can be saved to disk under its
own name, then merged with or joined into the main
program when needed.

Values can also be passed and used in a sub-
routine that is called with the CALL command.

Listing 12-3

DEVELOPING A SUBROUTINE

SUB

In order to use the CALL command, sub-
routines must be developed. How will the computer
know where this subroutine is when you ask for it?
Listing 12-3 is a subroutine that will be used in a
future program. If you are using a cassette recorder

280 REM LISTING 12-3
990 REM RY A.R.SCHRE
1000 REM SIMULATED &
1010 REM THE "CALL*
3 VARIARLES TO THIS
We 2
1020 REM "STARTROW®
INFORMATION CAN RE
NED TO "ROWREF®" IN T
TARTROW’S" VALUE IS
1030 REM NOT ALTERED
N BOTH FROGRAMS AS T
RRAY ELEMENT NUMBER.
CHANGED RY THE SUR
1040 REM FROGRAM.
Y OF ALL THE
T ALTERED RY THIS
10350 REM "NEWROW®
TABLE THAT THE $SUR
HOWEVERs A VARIARLE
THE MAIN FROGRAM
1060 REM WILL RE UNA
GE IN THE SUR FROGRA
N A SUB FROGRAM ARE
NLESS NAMED IN THE
1070 REM CaAlLl. OFTION
1080 SUR SCROLL (ROWR
1090 FOR NEWROW=ROWR

I8

IHNEWROWY 3 * . °
1110
T=174+ (NEWROW-6))
1120 NEXT NEWROW
1130 SUREND

"LISTH "
ITEMS TYFED.
SUR

FROGRAM DOES CHANGE .

1100 DISFLAY AT(NEWROWsCOL)Y SSTRE(COUNT -2

DISFLAY AT(NEWROWs COL+6) SLISTS (COUN

IRER
CROLL.
COMMAND SHOULD FASS
SUR PROGRAM AS FOLLO

FOR TAR ROOKS

IS THE
FRINTED
HIS

TOF ROW WHERE
ANDI IS ASSIG
SUR FROGRAM. *8

"COUNT" I8 USED
ITEM NUMBER AND
IT7G VALUE I8 NOT

W)

I
A

+

HE

18 THE
IT TOOY
FROGRAM .

THE ONLY COMMON VAR

ARRA
IS NO

BY THE SAME NAME 1IN
FFECTED RY THIS CHAN
M. VARIARLES USED I
TREATED SEFARATELY U

LIST.
EFyCOUNT»LLISTH())
EFOTO 23

96

for program storage, you may want to wait until the
entire program is listed before entering this sub-
routine. If you are using the disk, you can enter this
program and save it to the disk with the MERGE
option.

Listing 12-3 -

Lines 1000-1070 explain how this subroutine is
used. There are three values that will be passed
to this subroutine. This subroutine needs to know
where the top row of the screen is. This is not the
actual top screen row, but the place on the screen
where the scroll will occur. All the information
printed on the screen above this row will remain
on the screen no matter how many times it is
scrolled. It also needs to know the last number of
the item on the screen and be given access to the
LISTS$ array.

Line 1080 names this subroutine. The format for a
subroutine that uses the CALL command is very
simple.

SUB {name} (any variables)

The line that contains the SUB command must be
immediately followed by the name of the sub-
routine. The computer cannot find the subroutine
if it is not named in the program. After the name of
the subroutine are the variables that will have -
values passed to them from the main program.
These variables are enclosed in parentheses.
This subroutine is called SCROLL. The variables

Listing 12-4

ROWREF, COUNT, and LIST$() will be used in
this subroutine. The values that they contain have
been passed to them through the CALL command.

Lines 1090-1120 contain the FOR . . . NEXT loop
that moves the words one row up on the screen.
The loop begins with the row value of NEWROW
and continues to row 23. The line number is
printed on the screen, then the word from LIST$.
The loop continues until all the words have been
moved one row up on the screen.

Line 1230 contains a SUBEND. There are only two
ways to leave a SUB routine. The SUBEND is
similar to the RETURN. The computer goes back
to the main program. The other way is with a
SUBEXIT. There can only be one SUBEND in
any SUB routine.

If you have a disk drive, you can save this
subroutine by typing the following line:

SAVE DSK1.SCROLL,MERGE

You can add this subroutine to any program
that you are writing where you want only a portion
of the screen to scroll. If you are using a cassette,
you can save this program with the SAVE com-
mand. There is no MERGE option for the cassette.

WARNING: Do not type NEW while this routine is in
memory. Just type the next routine.

The next subroutine alphabetizes a list of
words. The words are stored in LIST$. The main

1980 REM LISTING
1990 REM

2000 REM

13-

ALFHARETIZE
2010 SUR ALFHARETIZE
2020 FOR COUNT1=1 TO
=COUNT1+1 TO CONT

RY A.R.SCHR

4
ETBER

SUR FROGRAM
(CNTsLISTE())

CNT-1 $3 FOR COUNTZ

2030 IF LIST$(COUNT2)<LISTS$(COUNTL) THEN
TEMF$=LIST$(COUNT2) ! LIST$(COUNT2)=L IS8T
$(COUNT1) ! LISTS(COUNTL)=TEMF$

2040 NEXT COUNT2 1?3 NEXT COUNTIL

2050 SUREND

97

program will set aside enough memory to store up
to 200 words in this string array.

Listing 12-4

Line 2010 names this subroutine. It tells the com-
puter that this subroutine is called ALPHA-
BETIZE. Two values are passed into this sub-
routine. The CNT variable contains the number of
words that will be alphabetized. LIST$ contains
the words that this subroutine will alphabetize.

Line 2020 begins two FOR . . . NEXT loops. The
first loop counts from the first word of the string
array to the next to the last word of the array. The
second loop begins with the second word of the
array and ends with the last word of the string
array.

Line 2030 begins by comparing the second word of
the string array with the first word. If the value of
the second word is less than the first; that is, it
comes before the first word in the alphabet, the
computer will place the second word in a tempo-
rary string called TEMPS$, place the first word
into the second word’s location in the string array,
and then place the second word into the first
word’s location. Now the word that should come
first does.

Line 2040 continues the loop. Thé word that is now
in the first location is compared to the word in the
other words, the third, fourth, fifth, and so on,
until that word has been compared to all the words
in the string. The loop then advances to the sec-
ond word in the array and does the same thing for
it and for all the others until all the words in the
array have been compared to all the words that are
after them in the array.

Line 2050 is the SUBEND command. After all the
words have been compared, the list is in al-
phabetical order and the computer returns to the
main program.

SAVE DSK.1 ALPHA,MERGE

If you are using the cassette recorder for the
program storage, save your program using the
SAVE command. Since there is no merge with cas-
sette, you should be saving both subroutines at this
time. ’

98

The next program uses both subroutines that
wejust typed in. If you are using the disk, you do not
have to worry about having the two preceding
routines in memory. If you are using the cassette,
be sure that both of the previous routines are in the
computer. If they are not, you can load them in from
your cassette. They should have been saved to-
gether as one program.

Listing 12-5

Line 130 sets aside enough memory to hold 200
words. These are the words that the computer
will alphabetize.

Line 140 clears the screen.

Lines 150-160 prints the instructions on the
screen. Keep entering the words that you want
the computer to alphabetize. If you do not have
200 words, press ENTER without typing in a
word and the computer will know that you have
finished.

Line 170 sets the STARTROW and ROW variables
to six. Since both variables contain the same
value, you can use one program statement with
the comma between them to set both variables to
the same value. Row six is the row where the first
word will be printed. COL is set to 1 and the FOR
... NEXT loop begins. This loop counts from 1 to
200, which is the number of words this program
can hold.

Line 180 prints the number of the word on the
screen. We are using a new command in this
line—STRS. By taking the STR$ of the variable,
we eliminate the spaces that are normally printed
before and after the number. The period will be
printed in the space immediately following the
number rather than one space over. The computer
waits until a word is entered. The VALIDATE
option will only allow uppercase alphabetical
characters to be entered. Once entered, the word
will be stored in ITEMS, a string variable for
temporary storage. The computer checks the
entry. If ITEMS is an empty or null string, the
computer will be directed to line 220 because
there are no more words to be entered. Any other
word will be stored in LIST$ at the location
COUNT.

Listing 12-5

100 REM LISTING 12-5

110 REM ALFHARETIZE

120 REM BY A.R.SCHREIRER FOR TAR ROOKS
130 DIM LISTH(200)

140 CAlLL CLEAR

1350 DISFLAY AT(1s1)¢"THIS FROGRAM ACCEFT
8 A LIST® 1! DISPLAY AT(2:1)31*0F UF TO 2
00 WORDS AND® ! DISFLAY AT(3s51):"ALFHAR
ETIZES & FRINTS THEM.®

160 DISFLAY AT(451)8°TYFE AN LENTERI ONL
Y TO END.® 23 DISFLAY AT(Sy1)8* ¢

170 STARTROWsROW=6 $3 COL=1 $! FOR COUNT
=1 TO 200

180 DISFLAY AT(ROWsCOL) $STRSCCOUNTY S, "
¢ ACCEFT AT(ROWsCOL+S5)VALIDATE (UALFHAYS
IZEC(R22)CITEMS 23 IF ITEM$="° THEN 220 El
SE LIST$(COUNT)=ITEMS$

190 ROW=ROW+1 $: IF ROW==24 THEN 210

200 CALL SCROLL(STARTROWy COUNTLISTH()) ¢
¢ ROW=24 | GCROLL PREVIOUS LLINES WITHOUT
DISTURBING INSTRUCTIONS

210 NEXT COUNT

220 CALL ALFHARETIZE (COUNT-1sL.IST$())
230 DISFLAY AT(1s1)ERASE ALL:"FRESS LENT
ER] FOR NEXT SET 0OF WORDS,® v

240 STARTROWsROW=4 ! FOR COUNTER=1 TO C
OUNT-1 3% DISFLAY AT(ROWsCOL) STR (COUNT
ERY#%.,% 13 DISFLAY AT(ROWsCOL+S5) SLIST$(C
OUNTER)

250 ROW=ROW+1 ! IF ROW=2% THEN ACCEPT A
T(2y12)BEEFIWAITS 8 GOSUE 300

260 NEXT COUNTER

270 DISFLAY AT(Ly1)8" " 32 DISFLAY AT(2

1)BEEF " THAT’S ALL FOLKS!11* 1% FOR
DELAY=1 TO $5000 ! NEXT DELAY
280 END

290 REM CLEAR FART OF SCREEN

300 FOR ROW=STARTROW TO 24 !! DISFLAY AT
(ROWy1) 3% " 32 NEXT ROW !! ROW=STARTROW
¢ RETURN

310 REM SIMULATED SCROLL

320 REM THE "CALL" COMMAND SHOULD FASS 3
VARIARLES TO THIS SUR PROGRAM AS FOLLOW

53

continued on page 101

99

! ALPHABETIZE
Set aside '
string space - Scroll ——————1
for 200 Display
words new
directions Get word
Clear screen Move word
up one —>———1
and display ﬁ‘horv tport of row
instructions ofew: o Compare
2 with next
X End word
Set variables
for row and
column
u Yes
Geta " Retum) 4
word
. . Compare
Adjust for with next
new row Display word
ending
A message

Time Y Use
to scroll subprogram
? SCROLL
No

Use
subprogram
ALPHABETIZE

O

Return

Fig. 12-6. Flowchart for Listing 12-5 Alphabetize and its subprograms. Listing 12-3 and Listing 12-4.

24, the last line on the screen.
Line 210 continues this loop until 200 words have

Line 190 adds one to the value of ROW. The next
word will be entered in the next line on the

screen. The value of ROW is checked for 24. If
ROW is less than or equal to 24 then the computer
will continue at line 210. Row 24 is the last or
bottom row on the screen.

Line 200 calls the SCROLL subroutine. This was
the first subroutine that we typed in. Three values
will be passed to the subroutine. STARTROW is
the top row that will be scrolled off the screen;
COUNT is the number of the word that has just
been entered, and LIST$ contains the words that
have been entered. The values of these variables
will be used in the subroutine. When the com-
puter returns to this line, ROW will be reset to

100

been entered or ENTER has been pressed with-
out typing a word.

Line 220 calls the second subroutine, AL-

PHABETIZE. The two values that are passed to
the subroutine are the value of COUNT minus
one, and the value of LIST$. We subtract one from
the value of COUNT, because COUNT will be
one more than the number of words entered. If we
did not enter 200 words, COUNT would be the
number that the word would have been if it were
entered. If we did enter 200 words, the FOR. . .
NEXT loop would stop when the value of COUNT
exceeded 200.

330 REM "STARTROW® IS THE TOF ROW WHERE
INFORMATION CAN BE FRINTED AND IS ASSIGN

El TO "ROWREF®" IN THIS SUER FROGRAM. ~ °"ST

ARTROW’S® VALUE IS

340 REM NOT ALTERED. °“COUNT" IS USED IN
ROTH FROGRAMS AS THE ITEM NUMEBER AND AR

RAY ELEMENT NUMEER. IT’S8 VALUE IS NOT C

HANGED' RY THE SUR

350 REM FROGRAM. °LIST$()*® IS THE ARRAY
OF ALL THE ITEMS TYFED. IT TOOs IS NOT
ALTERED' BY THIS SUR FROGRAM.

3460 REM "NEWROW® IS THE ONLY COMMON VARI

ARLE THAT THE SUR FROGRAM DOES CHANGE.

HOWEVERs A VARIAEBRLE RY THE SAME NAME IN

THE MAIN FROGRAM

370 REM WILL RE UNAFFECTED RBY THIS CHANG

E IN THE SUR FROGRAM. VARIARLES USED IN
A SUR FROGRAM ARE TREATED SEFARATELY UN.

LESS NAMED IN THE

380 REM CALL OFTION LIST.

390 SUEB SCROLL (ROWREF s COUNTLIST$())

400 FOR NEWROW=ROWREF TO 23

410 DISFLAY AT(NEWROWs COL) :STRE(COUNT~23

+NEWROW) 5 * . ° ,

420 DISFLAY AT(NEWROWs COL+&6) SLISTS (COUNT
=17+ (NEWROW-4))

430 NEXT NEWROW

440 SUREND

450 REM ALFHARETIZE SUR FROGRAM

460 SUR ALFHARETIZE(CNTLIST$C())

470 FOR COUNT1=1 TO CNT-1 1! FOR COUNTZ2=
COUNT1+1 TO CNT

480 IF LISTH(COUNT2)LISTH(COUNTIITHEN T

EMP$=LIST$(COUNT2):? LISTS$(COUNTZ2)=LISTS$
(COUNT1)$?: LIST$(COUNTL)=TEMF%$

490 NEXT COUNT2 :: NEXT COUNTI1

500 SUREND

Line 230 clears the screen and instructs you to Lines 240-260 print the words in alphabetical order
press ENTER for the next set of words. Only 21 on the screen. The words will begin at line 4 and

words can be displayed on the screen at one time. continue until line 24. When the value of ROW is
The words are not erased until ENTER has been equal to 25, the computer will wait until ENTER
pressed. ‘ : has been pressed. The bottom portion of the

101

screen will clear and the loop will continue until
all the word letters have been displayed on the
screen.

Line 270 prints the ending message on the screen.

Line 280 contains the END command. This pro-
gram line must be here to separate the main part
of the program from the subroutine that follows it.

Line 300 is the subroutine that clears the bottom
portion of the screen when the alphabetized
words are being displayed. Only rows 4 through
24 will be cleared. The instructions will remain on
the screen. The ROW variable is set to the value
of STARTROW so that the computer will begin
printing the next set of words on the 4th row. The
subroutine returns to the line that sent it.

The remaining lines of the program are the two

102

subroutines that you entered earlier. If you are
using the disk, and these lines are not in the pro-
gram right now, you do not have to retype them.
Use the MERGE command to load the program
from the disk.

MERGE DSK1.SCROLL
MERGE DSK1.ALPHA

The subroutines will be added to your pro-
gram. If you are using the cassette, these routines
should have been loaded before you typed in the
rest of the program. The entire program can be
saved to either the cassette or the disk.

Listing 12-5 shows the entire program after
the subroutines have been merged. It is flow-
charted in Fig. 12-6.

Chapter 13
Arithmetic Functions

TI Extended BASIC can perform any standard
arithmetic function including; addition, subtrac-
tion, multiplication, division, and exponentiation
(raising to a power) to name a few. When the com-
puter solves an equation, it carries out the opera-
tions in a specific order. The order of precedence is
listed from first performed to last below:

parentheses ()

exponentiation (raising to a power)
multiplication (*) and/or division (/)
addition (+) and/or subtraction (-)

Wi

If you want a subtraction operation completed
before multiplication, you must place the numbers
and/or variables in parentheses. Below are some
examples of the way the computer would solve
various types of equations.

4+2+3—-8=2
8x(53—8)+9=369
47— 22 +(4%5)=63

In any equation, variables can be substituted
for the numbers. If a value has been assigned to the
variable, the computer will use that value. If no
value has been assigned, the computer will use a
zero. In this chapter we will discuss the five most
frequently used special functions.

SPECIAL FUNCTIONS

INT

When you want a whole number without a
fraction (any numbers after the decimal point), you
will use the INT(integer) command. This command
ignores any numbers following the decimal point
and the variable becomes a whole number.
X=INT(10/3). The X variable would be equal to
three rather than 3.333 . . . The program flow-
charted in Fig. 13-1 and listed in Listing 13-1 shows
how the INT command can be used.

Listing 13-1
Line 130 clears the screen. The amount of money

103

Clear
screen
display
message

Get
amount

spent

More
than you
have

Yes

Calculate
the
change

Display
the
change

Make it
pennies
calculate
the dollars

Are
there
dollars

Subtract
them from
the change

—é—‘

Calculate
the
quarters

©

Are
there
quarters

Subtract
them from
the change

g

Calculate
the
dimes

7 Subtract
them from
the change

g

Calculate
the
nickels

Are
there
nickels
?

Yes

7 Subtract
them from
the change

Display
the
change

Fig. 13-1. Flowchart for Listing 13-1 Change.

104

Listing 13-1

100 REM LISTING 13~1

110 REM CHANGE

120 REM BY L.M.SCHREIRER FOR TAR ROOKS

130 Call. CLEAR 33 DISFLAY AT(S5:9):*YOU H

AVE $5,00¢

140 DISFLAY AT(Z721)*HOW MUCH DO YOU WAN

T TO®" 3 DISFLAY AT(®s1) L "SFEND ?* 1: AC

CEFT AT(9y?)IREEF VALIDATE (NUMERICYSIZE (4
Y $SFEND '

150 IF SPEND:S THEN 140 | DON‘T SFEND MO

RE THAN YOU HAVE

160 CHANGE=%-GFENID | GET AMOUNT LEFT

170 NISFLAY ATL1+5)8°YOU HMAVE 4" 5 CHANGE
23 IF CHANGEX10=INT(CHANGE/.1)YAND CHANG

E==0 THEN DISPFLAY AT(1L1s19)80°0°

180 NISFLAY AT(L1s21) 3 LEFT "

190 CHANGE=CHANGEX100 | MAKE IT ALL FENN
TES
200 DOLLARS=INT(CHANGE/100)! GET THE NUM

RER OF DOLLARS

210 IF DOLLARS<:0 THEN CHANGE=CHANGE-DOL.
LARSX100 | REMOVE THE DOLLARS

220 QUARTERS=INT(CHANGE/2%5)3: IF QUARTER
650 THEN CHANGE=CHANGE~QUARTERSX2S

230 DIMES=INT(CHANGE/10)$3 IF DIMES<:=0 T
HEN CHANGE=CHANGE-~DIMES%X10

240 NICKEL=INT(CHANGE/5>33: IF NICKEL-<>0

THEN CHANGE=CHANGE~-NTCKEL XS

250 FPENNIES=CHANGE

260 DISFLAY AT(13y 1) D0LLARSS "DOLLARCS)

s QUARTERS S "QUARTER(S)Y " 33 DISFLAY AT (15,
YINIMESS "DIME(S) * yNICKEL § "NICKEL (&) ®
270 DISFLAY AT(1751)3FENNIES $: IF FENNI
ES=1 THEN DISFLAY AT(17s4)3:"FENNY" ELSE
DISPLAY AT(1754) " FENNIES®

that you have, $5.00, is displayed on the screen.

Line 140 asks you how much money you want to
spend. You can enter any amount from 5.00 to . 00.
Do not enter the dollar sign. The VALIDATE
option will only allow you to enter numbers. The
number that you enter will be stored in the
SPEND variable.

Line 150 checks the amount entered. If it is greater
than five, the computer will be sent back to line
140. You cannot spend more money than you
have.

Line 160 subtracts the amount spent from five. This
amount is stored in the CHANGE variable.

Line 170 shows you how much money you have left.

105

It checks to see if the amount left ends with a zero,
like $1.20. If it does, we print another zero after
the amount left. If we didn’t, the computer would
print $1.20 as $1.2. By multiplying the value of
CHANGE by 10, we move the decimal one place
to the right. For instance, 1.20 x 10 =12 or 3.47
%X 10 = 34.7. Next we divide the same number by
.1. This also moves the decimal one place to the
right, making 1.20/.1 =12 or 3.47/.1 = 34.7. By
taking the integer of the second number, we can
check it to see if the cents ends with a zero. The
integer of 12 is 12. Since the integer equals the
real number, there was nothing after the decimal
place. In the case of 34.7, the integer is 34. The
two numbers are not equal, so there is something
after the decimal point and no extra zero is re-
quired.

Line 180 prints the last word of the message.

Line 190 multiplies the amount stored in the
CHANGE variable by 100. This converts the
money into pennies.

Line 200 divides the value of CHANGE by 100 and
places the integer value in the DOLLARS vari-
able.

Line 210 tests the value of DOLLARS for a zero. If
it is a zero than we have no dollars and computer
will go on to the next line. If there are dollars, the
computer must remove them from the value of
CHANGE. Multiplying the value of DOLLARS by
100 and subtracting that amount from CHANGE
removes the dollars from the change.

Line 220 finds the number of quarters in CHANGE
by dividing the value of CHANGE by 25 and plac-
ing the integer value in the QUARTERS variable.
The computer checks the value of QUARTERS. If
it is not zero, the number of quarters are multi-
plied by 25 and subtracted from the amount in
CHANGE.

Line 230 divides the amount left in CHANGE by 10
to find out how many dimes there are. The integer
value of CHANGE divided by 10 is the number of
dimes. The computer checks the value of DIMES
to see if there are any dimes. If there are, the
number of dimes are multiplied by 10 and sub-
tracted from the value of CHANGE.

Line 240 finds the number of nickels by dividing the

106

amount stored in CHANGE by five. If a nickel is
removed, it is multiplied by five and subtracted
from the amount in CHANGE.

Line 250 takes the amount left in CHANGE and
stores it in PENNIES.

Lines 260-270 print the number of dollars, quar-
ters, dimes, nickels, and pennies left. AnIF . ..
THEN . . . ELSE statement checks to see if the
singular or plural version of penny should be used.

Notice that in every line that removed coins
from the CHANGE variable, CHANGE was divided
by the value of that coin. Then the computer was
able to take the integer or whole number for the
number of coins removed.

ABS

The ABSolute command gives the value of the
number without the sign. The absolute value of
negative three and the absolute value of positive
three is the same —three. It is used when you need
to know the difference between two numbers with-
out regard to the sign. Listing 13-2 is a good exam-
ple of how to use the absolute command. The pro-
gram (flowcharted in Fig. 13-2) tells the user how
many spaces from the hole the ball is without telling
the user if the number should be greater or smaller.

Listing 13-2

Line 130 clears the screen and uses the randomize
command so that a different number will be cho-
sen by the computer each time the program is run.

Line 150 creates three graphics characters—the
holes, the ball, and the ground (See Fig. 13-3).
These characters are used in the program.

Line 160 uses the new character, number 130, to
draw the ground. The RPT$ command tells the -
computer to print this character 28 times.

Line 170 draws the holes. The RPT$ command is
used again. This time the pattern that is repeated
is character number 128 and two spaces. This
three-character pattern is printed on the screen
ten times.

Line 190 numbers the holes. The computer steps
through the FOR . . . NEXT loop by three’s. This
places the correct number under each hole.

Set for random
numbers-
create new
characters

Draw ground,
holes and
number

the holes

Bounce
A the ball

No Over
hole

8
Yes

Drop it
through
the hole

Choose a
number

Clear
the .
bali(s)

the hole
and display
message

‘-b——-q-———

Ask for
a guess

Between
1 and 10

Bounce
the
ball

Over
N
0 the hole
guessed

Subtract
guess from
hole

Fig. 13-2. Flowchart for Listing 13-2 Bounce.

107

Listing 13-2

108

"COUNT+1 ! NEXT COL $3 DISFLAY AT(12,2

100 REM LISTING 13-2

110 REM EROUNCE

120 REM RY L.M.SCHREIRER FOR TAE ROOKS

130 CALL CLEAR $: RANDOMIZE

140 REM CREATE SOME GRAFHIC CHARACTERS

150 CALL CHAR(128,"8181818181818181")¢

CALL CHAR(1295"00387C7C7C7C7C38%)!: CALL
CHAR (1305 "00000000000000FF *)

160 DISFLAY AT(10y1)IRFT$(CHR$(130)s28) !
DRAW THE GROUNID

170 DISFLAY AT(L1y 1) IRFTS$(CHR$(128)%" °*
103! DRAW THE HOLES

180 REM NUMRER THEM

1920 COUNT=1 ! FOR COL=1 TO 25 STEF 3 $¢
DISFLAY AT(125COL) ISTREC(COUNTI ES COUNT=

7)

tSTR$ (COUNT)

200 HOLE=8 | SAMFILLE MAGIC HOLE

210 REM RALL DOWN

220 COUNT=1 3! FOR COL=1 TO 28 STEF 3 &3
DISFLAY AT(?sCOLIICHR$ (129218 GOSUR 480
¢¢ DISFLAY AT(PsCOLY " " 23 IF COUNT=HO

LE THEN 250

230 DISFLAY AT(S,COL42) ICHR$(129) ¢ GOSU

B 480 ! ROUNCING UF

240 DISFLAY AT(S,COL+2)1" * ! COUNT=COU

NT+1 ¢ NEXT COL ! COUNT THE HOLE IT IS

OVER

250 DISFLAY AT(10yCOLISIZE(~1) ICHR$(129)
¢ GOSUR 480 ! DISFLAY AT(10COLISTIZE (-
1):s " 1 DROF IT IN

260 DISFLAY AT(10sCOLISIZE(~1) ICHR$(130)
I COVER IT OVER

270 REM NOW START TO FLAY

280 HOLE=INT(RNDX10)>+1 ! THINK OF THE MA

GIC HOLE

290 REM LET HUMAN GUESS WHICH HOLE WILL

OFEN

300 DISFLAY AT(9y1)3:" ° | CLEAR ALL RALL

S

310 DISPLAY AT(15-1)*THE RALL CAN ONLY

FALL®:"THROUGH ONE OF THESE HOLES. GUESS

continued on page 110

8 4218421

8 4 2 1

8 4 2 1

00
38

Character 7c
#128 7c
7C
8 4218421 7C
00 7C
00 38
60 Character
00 #129
00
00
00
FF
Character
#130

Fig. 13-3. Characters used in Bounce program.

Line 200 sets the HOLE variable to eight. When the
example is run, the ball will disappear through
hole eight.

Line 220 begins the FOR . . . NEXT loop that
bounces the ball across the screen. The ball is
character 129. It is printed on the screen. Then
the computer goes to the subroutine at line 480.
This is a timing loop to give you time to watch the
ball. The ball is erased. Then the value of COUNT
is compared to the value of HOLE. If both vari-
ables are the same, the ball is over the hole and
the computer goes to line 250. If they are not the
same, the computer continues with the next line.

Line 230 prints the ball four rows higher and two
columns to the right. This is the up position. The
computer uses the same subroutine at line 480 as
a timing loop.

Line 240 erases the ball and adds one to COUNT.
Now, COUNT contains the number of the next
hole. The FOR. .. NEXT loop continues until the
ball drops through a hole.

Line 250 drops the ball into the hole. The SIZE
option is required in this line. If it is not used, the

entire line after the ball is erased from the screen.
The ball is printed on the same line as the ground.
The computer uses the timing loop, then prints a
space over that location. This gives the illusion
that the ball fell into the hole.

Line 260 prints the character for the ground over
the space. Again the SIZE option must be used to
keep the rest of the line intact.

Line 280 begins the game. The computer chooses a
number from one to ten. This is one of the holes
on the screen.

Line 300 prints a space on the screen. Since there is
no SIZE option with this DISPLAY AT command,
the entire line will be cleared.

Line 310 prints the directions on the screen. The
computer beeps, and waits for a number to be
entered. The VALIDATE option will only accept
one digit. This digit will be stored in the GUESS
variable.

Line 330 checks the number entered. There are ten
holes on the screen. If the number entered is less
than zero or greater than ten, the computer will be
sent back to line 310 to wait for another number.

Line 350 begins a FOR . . . NEXT loop to bounce
the ball on the screen. The COUNT variable is set
to one for the first hole. This variable keeps track
of which hole the ballis over. The FOR. .. NEXT
loop steps by threes so that the ball will always be
printed over a hole. First the ball is printed just
over the ground and above the hole. The com-
puter uses the timing loop in line 480 to hold it
there for a few seconds. Then the computer com-
pares the value of GUESS with the value of
HOLE. If both are the same, the computer will go
on to line 380 to drop the ball through the hole. If
the values are not the same, the computer will
continue with the next program line.

Line 360 erases the ball. The SIZE option makes
sure that only the ball is erased from that line. The
ball is then printed four lines higher and two
columns to the right. The computer uses the sub-
routine at line 480 to delay the bounce.

Line 370 erases the ball and adds one to COUNT.
COUNT keeps track of which hole the ball is over.
The loop c¢ontinues.

Line 380 compares the value of GUESS with the

109

WHICH ONE 7° 3! ACCEFT AT(17+19)RBEEF VA
LIDATE(DIGIT) :GUESS
320 REM KEEF IT LEGAL
330 IF GUESS<1 OR GUESS>10 THEN 310
340 REM EBOUNCE TO THAT HOLE
350 COUNT=1 3 FOR COL=1 TO 28 STEF 3 2t
DISFLAY AT(9yCOLOSIZE(-1)2CHR$ (129388 G
OSUE 480 i IF COUNT=GUESS THEN 380 !
l.L. DOWN
360 DISPFLAY AT(9yCOLHISIZE(~-1)3" * 2% DIS
FLAY AT(3sCOL42) :CHR$C129) 22 GOSUR 480 |
BOUNCING UF
370 DISFLAY AT(S.COL+2) 0" * 8 COUNT=COU
NTH+L 22 NEXT COL P COUNT THE HOLE IT I8
OVER
80 IF GUESS-:HOLE THEN 440 | CHECK THE
GUESS — TRY AGAIN IF IT I8 NOT RIGHT
390 LISFLAY AT(?yCOLISTZECLY S
400 DISFLAY AT10sCOLISIZE(-1) ICHRS(129)
£3 GOSUR 480 1! DISFLAY ATCLOsCOLIYSTIZE(~
1y:® 1 DROP IT IN
410 DISPLAY AT(10sCOLISTZE (1) CHR$(130)
I COVER IT QOVER
420 DISFLAY AT(20s102" * 1 CLEAR THE ENT
IRE LINE REFORE FRINTING THE MESSAGE
430 FOR REFEAT=1 TO % 32 DISFLAY AT(20+9
YITYOU GOT IT® f: GOSUR 480 @ DISFLAY A
TC20:9)2" " 3! GOSUR 480 3 NEXT REFEAT
440 GOTO 280 ! GO THINK OF ANOTHER NUMEE
R
450 REM WRONG GUESS -~ GIVE CLUE
460 DEVIATION=ARS (HOLE~GUESS) ! SURTRACT
THE GUESS FROM THE HOLE
470 DISFLAY AT(20+3)1°Y0U ARE"SDEVIATION
FUSFACE(S) AWAY" 2 GOTO 310 ! TELL HUMA
N HOW FAR AWAY - RBUT NOT WHICH WAY
480 FOR DELAY=1 TO 28 ¢ NEXT DELAY $: R
ETURN ' LEAVE IT ON THE SCREEN

value of HOLE. If they are not the same, the Line 390 erases the ball from the screen.
computer will go on to line 460 to get a clue. Ifthe Line 400 prints the ball on the same line as the
two variables are the same, the computer will ground. The SIZE command keeps the rest of the
continue with the next program line. ground intact. The ball is erased again.

110

Line 410 prints the ground back over the hole and
the ball has disappeared.

Line 420 clears the entire line before printing the
message.

Line 430 is a FOR. . . NEXT loop that prints YOU
GOT IT on the screen five times.

Line 440 sends the computer back to line 280 for
another game.

Line 460 uses the ABS (absolute) command to find
the difference between the number that the com-
puter chose and the number entered. The value of
GUESS is subtracted from the value of HOLE.
The answer is stored in the DEVIATION. Be-
cause of the ABS command, the value of the DE-
VIATION will always be a positive number
whether the difference between HOLE and
GUESS is positive or negative.

Line 470 gives a clue to how far away from the ball
the hole is. The number printed (the value of
DEVIATION) gives the number of holes away
from the correct hole the ball is, but does not give
a hint about which direction. The program sends
the computer back to line 310 for another guess.

Line 480 is the timing loop that is used in this
program. It is a subroutine that keeps the ball on
the screen for a few seconds.

SQU

The SQUare command finds the square root of
a number or variable. The line below shows the
syntax with SQU.

100 X=SQU(V):REM THE SQUARE ROOT OF
‘V' IS STORED IN ‘X’

RND

RND is the most frequently used special func-
tion. So far, it has been used in every program in
this book that requires any random numbers. Be-
fore the computer can choose a random number, the
RANDOMIZE command must be used. Without it,
the computer will chose the same numbers in the
same order. With it, the computer will chose new
numbers in a new order each time the program is
run.

The number that the computer chooses is be-

tween zero and one. To obtain a whole number, the
INTeger command is used with the random com-
mand. Try the program in Listing 13-3 with and
without the RANDOMIZE command in line 140.
Write down the numbers that the computer gener-
ates each time the program is run. Every time the
program is run without the RANDOMIZE com-
mand, the number sequence is the same. With the
command, a new set of numbers are generated each
time the program is run. A flowchart of the program
is shown in Fig. 13-4.

Listing 13-3

Line 130 clears the screen.

Line 140 contains the RANDOMIZE command. Try
the program with and without this line.

Line 150 prints the example set that will be printed
on the screen. This routine prints ten random
numbers. These numbers will be between zero
and one. They are all decimal values. There are
no whole numbers. The FOR. . . NEXT loop will
count from one to ten for the ten examples.

Line 160 chooses a random number. This number is
a decimal.

Line 170 prints the number that the computer chose
in line 160. This number is greater than zero but
less than one.

Line 180 continues the loop.

Line 190 sends the computer to a subroutine that
waits until a key is pressed. This gives you time
to record the numbers that are on the screen.

Line 210 begins the loop that prints random num-
bers that are greater than zero. The FOR . . .
NEXT loop will print ten numbers.

Line 220 chooses a random number. This time the
random number is multiplied by five. Now the
number chosen will be greater than zero but less
than five.

Line 230 prints the number that was chosen. This
number is greater than zero, but less than five.
The numbers have decimals following the whole
number.

Line 240 continues the loop.

Line 250 sends the computer to the subroutine at
line 380.

Line 270 begins the loop that will print integers or

111

Display
message

Choose a Choose a
number whole
number

Choose a Choose
number whole
less than 5 number
between 1-5
A W
10th
number

?

Fig. 13-4. Flowchart for Listing 13-3 Random.

whole numbers on the screen. Line 290 prints this number on the screen. The
Line 280 multiplies that number chosen by five, but ~ whole number can be a 0, 1, 2, 3, or 4.

it also takes the integer (whole number) of the Line 300 continues the loop.

number chosen. The decimal portion of the Line 310 sends the computer to the subroutine that

number is disregarded. waits until a key is pressed. '

112

Listing 13-3

100
110
120
130
140
150
VE
160
170
180
190
200
210
0 B
220 N=RNDXEH
230 FRINT Ny!
THAN 5

240 NEXT X
230 GOSUR 380
260
270
280
NI
290
300
310

REM LLISTING 13-3
REM RANDOM

CALL CLEAR
RANDIOMI ZE

FRINT "RANDOM® $
10 SAMFLE NUMRERS
N=RNII !
FRINT N»!
NEXT X
GOSUR 380

L d
¢

SHOW IT
$UMORE THAN

FRINT

$PINTEGER®
ANY

FRINT
N=INT (RNIIXE) !
4

FRINT Ny

NEXT X

GOSUR 380
320 REM NOW ADD 1
330 PRINT :("AID 1
TO 10
340 N=INT(RNIXS)41 |
1 AND S5 INCLUSIVE
350 FRINT N»
360 NEXT X
370 END

380 FRINT :°FRESS ANY
390 CALL KEY(OsKs8) 3¢
400 RETURN

REM BY L.M.SCHREIBER FOR TAR ROOKS

GET A RANDOM NUMRER

REM NOW SHOW IT WITH A MULTIPLE

IT’8 MORE THAN O RUT LE

REM NOW WITH THE INTEGER COMMAND

TO NUMRER®

ANY NUMRER

FOR X=1 TO 10 | GI

0" FOR X=1 TO 1

4+ 0
LN

56

4 ¢

¢ FOR X=1 TO 10
NUMBER BETWEEN O A

3 FOR X=1

BETWEEN

KEY TO CONTINUE®
IF 8=0 THEN 390

Line 330 prints random numbers that have one
added to them. Adding one to the number ensures
that zero will never be picked.

Line 340 chooses a random number, multiplies it by
five, takes the integer of that number, then adds

one to the number. This will give us a number
from one to five inclusive. Always add one to the
number chosen if you do not want zero as a possi-
ble number, but want the number multiplied by
the random number as a possible number.

113

Clear
screen
display
message

Get
days
in month

Get
one day's
temperature

Yes Store as
high and
low

Display
new low
and high

Store
new low

Display
new high
and low

Store
new high

Fig. 13-5. Flowchart for Listing 13-4 Negatives.

Line 350 prints the number on the screen.

Line 360 continues the loop.

Line 370 ends the program, and separates the main
program from the subroutine in line 380.

Line 380 prints the instructions on the screen. The

114

program will wait until a key is pressed.

Line 390 uses the CALL KEY command to wait
until a key is pressed. The S variable will not be
zero when a key has been pressed. Aslong as Sis
zero, the computer will loop at this line.

Line 400 sends the computer back to the line that
called it in the main program.

You can also specify which random pattern you
want the computer to follow by placing a number or
variable after the RANDOMIZE command.

RANDOMIZE (3)
RANDOMIZE (5)

The computer will follow the same pattern
each time it encounters the same value. Try placing
different values at line 140 and then record the
results.

SGN

The SIGN command sets a variable to a nega-
tive one when the variable it checks is a negative
number, a positive one if the variable is positive,
and a 0 if the variable is zero. One use for this
command is demonstrated in the temperature pro-
gram in Listing 13-4 where we want to know if the
temperature is above or below zero. (The program
is flowcharted in Fig. 13-5.)

Listing 13-4

Line 130 clears the screen and asks for the number
of the month. The VALIDATE option will only
allow numbers. The SIZE option will not allow
more than two digits to be entered. The number
entered is stored in the MONTH variable.

Line 140 checks the number that was entered. If it
is less than one or greater than 12, then it is not a
month of the year, and the computer will go back
to line 130 to wait for another entry.

Lines 150-160 is a FOR . . . NEXT loop that reads
the number of days in the month entered. The data
for this line is stored in line 290.

Line 180 checks to see if the month entered is
February. If it is, then the program asks for the
year. Only four digits will be accepted and stored
in the YEAR variable.

Listing 13-4

100 REM LLISTING 13-4

110 REM NEGATIVES

120 REM BY L.M.SCHRETIRER FOR TAE ROOKS
130 DISFLAY AT(2y1)ERASE ALLS"ENTER THE
NUMEER OF THE® ! *"MONTH ?* ¢! ACCEPT AT(3y
PIBEEF VALIDATE(NIGITISIZE (2) {MONTH

140 TF MONTH=1 OR MONTH=12 THEN 130

150 FOR COUNT=1 T0O MONTH $: READ DAYS !
GET THE NUMERER OF DAYS IN THE MONTH

1460 NEXT COUNT

170 REM IF FEBRUARY THEN CHECK FOR LEAF
YEAR

180 IF MONTH=2 THEN DISFLAY AT(451) P "ENT
ER YEAR 7® ¢! ACCEFT AT(4y14)REEF VALIDA
TECDIGITISIZE (4) ¢ YEAR

120 REM IF LEAF YEAR ADID 1. DAY

200 IF MONTH=2 THEN IF YEAR/4=INT(YEAR/4
YTHEN DAYS=DAYS+1

210 FOR COUNT=1 TO DAYS :

220 DISFLAY AT(10»1) " WHAT WAS THE TEMEE
RATURE® : "FOR °"3STR$ (MONTH) 5" STRS (COUN
TYsn®® 13 ACCEFT AT(L1+12)YREEPF VALIDATE ¢
NUMERIC)YSTZE (3) STEMF

230 IF COUNT=1 THEN LOW=TEMF $: HIGH=TEM
Fol FIRST DAY SETS THE RECORDS

240 IF SGN(TEMP-LOW)Y=-1 THEN DISFLAY AT
2053)"NEW LOW TEMFERATURES “S$TEMF $: 1.0
W=TEMF 1! DNISFLAY AT(22:7)1"HIGH TEMFERA
TURE: ®*3$HIGH

250 IF SGN(HIGH~TEMF)=-1 THEN DISFIL.AY AT
(22+3)I"NEW HIGH TEMFERATURES °"3TEMP ¢
HIGH=TEMF !! DISFLAY AT(20+7) " LL0W TEMFE
RATURE?: ®351.0W

260 NEXT COUNT

270 END A

280 REM 1AYS IN EACH MONTH

290 DATA 3128531 v30931+30+31+31930931+3
031

Line 200 divides the year entered by four and com- of product, then it is a leap year and one is added
pares it to the integer of the year divided by fourif ~ to the number of days in the month of February.
the month entered is February. If the product of Line 210 begins the FOR . . . NEXT loop that asks
the year divided by four is the same as the integer ~ for the temperature for each day of the month.

115

Line 220 asks for the temperature of each day of the
month. The number entered is stored in the
TEMP variable.

Line 230 checks if this is the first day of the month.
If so, both LOW temperature and HIGh tempera-
ture are set to the temperature entered.

Line 240 uses the SGN command to see if the
temperature just entered is less than the current
low temperature. If the value of TEMP is less
than the value of LOW, the SGN of the numbers
will be negative and there is a new low tempera-
ture. This temperature is printed on the screen.
Low is now equal to TEMP. The high tempera-
ture is also printed.

116

Line 250 checks to see if the temperature entered is
greater than the current high temperature. If the
value of HIGH is less than the value of TEMP, the
SGN of the numbers will be negative. The value of
TEMP is a new high temperature. This value is
printed on the screen and the value of TEMP is
stored in HIGH. The low temperature is also
printed on the screen.

Line 260 continues the loop until the temperature
for each day of the month has been entered.

Line 270 contains an END statement. This stops
the program before the data line.

Line 290 contains the data for the number of days in
each month of the year.

Chapter 14
Working with Strings

When you store information in strings, you have
easy access to the information. You can move it
around in the string, use only part of it, or convert
numbers that are in the string into numeric vari-
ables. By using strings you can easily manipulate
the information any way you would like to.

ADDING STRINGS

One string can be added to another string. This
type of addition is not the same as adding two
numbers together. It is more like adding links onto
a chain. Adding two or more strings together is
called concatenation. An example of adding two
strings is: '

10 REM MAKE TWO STRINGS INTO ONE

20 A$="HELLO "::B$=“THERE”! BE SURE
THERE IS A SPACE AFTER THE ‘O’ IN
HELLO

30 C$=A$&B$

40 PRINT C$

The words or expressions can be those that fill

a complete string, those in quotation marks, or
those that comprise part of a string.

SPLITTING STRINGS

SEG$

Sometimes it is necessary to “split” a string or
copy part of it for one reason or another. The SEG$
“removes” part of a string and puts that information
into another string, or prints it on the screen. The
information is not actually erased from the string,
but merely copied into another string or onto the
screen. The information still remains in the original
string.

The computer needs to know where the infor-
mation is in the string and how many characters
will be removed. The format for SEG$ is A$=
SEG$(B$2,5), where B$ is the string that we are
getting the information from, two is the number of
the first character in the string that will be placed in
AS$, and five represents the number of characters
that will be copied into A$. Try the next few lines
with your computer.

117

A Count to

10
(st) 20
30
Clear screen
place 40
message
into string 50
60
Place first 70
28 character
of string 80
on screen 90

10

y

Move characters
up on position in
string. Place
first-last

———————

Fig. 14-1. Flowchart for Listing 14-1 Ticker Tape.

Listing 14-1

REM EXAMPLES OF SEG$

A$="The quick brown fox is really lazy”
WORD1$=SEG$(A$,1,3) ! THE WORD
‘THE’

WORD2$=SEG$(A$,4,6) ! QUICK WITH
THE SPACE :
WORD3$=SEG$(A$,10,20) ! LEAVE LAZY
WORD4$=SEG$(A$,30,5) ! GET ‘LAZY’
];?S:WORD1$&WORD4$&WORD3$&WORD
PRINT A$

PRINT B$

As you can see, the entire sentence can be

changed by using the SEG$. In the program in
Listing 14-1 (flowcharted in Fig. 14-1), we will
create a ticker-tape effect across the screen by
printing only a portion of the string at one time.

Listing 14-1

Line 130 clears the screen.
Line 150 places the message in A$. This message is

61 characters long.

100 REM LISTING
110 REM TICKER
120 REM L.M.5CH
130 Call. CLEAR

140 REM STRING CONTAINS MESSAGE TO FRINT

150 At=" The I
is ATET up 3 &

1460 REM FUT MESSAGE ON MIDNDLE ROW STARTI
NG AT FIRST COLUMN---SCREEN ONLY 28 CHAR
ACTERS WIDE S0 ONLY PRINT PART OF IT

170 DISFLAY ATCL2y 1) ISEGE(ASEs 1528)

180 REM TIMING LOOF...CHANGING THE 10 MA

KES IT FRINT FA

190 FOR DELAY=1 TO 10 $: NEXT DELAY

200 REM MOVE FI
0 END OF STRING
VING TOWARD FRO
NG WRAF-AROUND

210 A$=SEGE(AS 29 LENC(AS)I 1) EBEGSE(AS» 1 1)

220 GOTO 170 1

RESSED

14-1
TAFE
REIRER

W JONES
aints .

STER OR

RST CHA
WITH O

NT OF 8§

EFFECT

REFEAT

FOR TAR ROOKS

rerort at 12 noon

]
LA

SLOWER
RACTER OF STRING T

THER CHARACTERS MO
TRING--~GIVES 8STRI

UNTIL (CLEAR) IS F

118

Line 170 prints the first 28 characters of the mes-
sage on the screen.

Line 190 is the timing loop to give you a chance to
read the message.

Line 210 uses the SEG$ command to move the first
letter of the string into the last position. Taking
all the characters of the string from the second
position to the last. The amount of one must be
subtracted from the length of A$ because we are
not taking the first character. Next, the character
that is in the first position of the string is added to
the end of the string. Now all the characters have
moved up one position.

Line 220 sends the computer back to line 170. The
new string is printed on the screen.

By moving the characters in the string, but only
printing those that occupy the first 28 positions,
the letters move smoothly across the screen.

USING STRING FUNCTIONS
POS

In addition to adding strings together and rear-
ranging them, we can search a string for a particular
letter or character. The program in Listing 14-2
(flowcharted in Fig. 14-2) is an example of a tele-
phone directory where the person’s name, address,
and telephone number are all stored in one string.
The second part of the program searches for the
character that separates the name from the address
and phone number so that the information can be
printed on the screen correctly.

Listing 14-2

Line 130 sets aside enough memory to hold 20
names and addresses.

Line 140 begins the loop that will enter the names.

Line 150 displays the instructions on the screen.

Line 160 gets the name and stores it in NAMES. It
checks to see if the name is an XXX. If it is, then
there are no more names to be entered. It leaves
the loop and goes to line 240.

Lines 170-210 get the address, city, state, zip code,
and phone number. Each of these entries are
stored in a separate string variable.

Line 220 puts all the information in the various

strings into one string. The COUNT variable in-
dicates which element of the string array the
name will be placed in. Each separate string is
added to the others. A slash (/) is placed between

- each piece of information to separate each item
from the next. v

Line 230 continues the loop until 20 names have
been entered.

Line 240 clears the string and asks for the name of
the person whose address and/or phone number
you want. The name will be stored in WANTS.
The entire name must be entered just as it was
typed in. If you misspelled the name when you
entered it, you must misspell it now.

Line 250 checks the contents of WANTS$. The pro-
gram will stop if the string is empty (ENTER is
pressed without typing any name).

Line 260 begins the FOR . . . NEXT loop that will
search for the name that has been entered. We
will count from the first name to the value of
COUNT less one. We must stop one element
before the value of COUNT, because COUNT is
the value of XXX or 21. (Up to 20 names may be
entered.) Counting all the way to the value of
COUNT will cause the program to crash.

Line 270 sets the START variable to one. This
variable will be used in the subroutine that begins
with line 370. When the computer returns from
this subroutine, it checks PARTS to see if it con-
tains the same information as WANTS. If it does,
then the name has been found and the computer
proceeds to line 300. If the two string variables do
not match, the computer will continue with the
next program line.

Line 280 continues the loop until there are no more
names in the list, or the match has been found. If
no match has been found, the message will be
displayed on the screen.

Line 290 is a delay loop to give you time to read the

message. The computer is directed to line 240 to
see if you want to look for another name.

Lines 300-310 stores the name, address, or other
information that matches your inquiry. The same
subroutine is used in line 370 to move this infor-
mation from the element in DIRECTORY$ and
place it in the correct string.

119

Set aside Use search
enough subroutine
memory for

20 addresses

Is there
a match
. Search
subroutine
Tell user Set variable *
SPt ir; ki Look for slash
irectory looking for or slas| X "
first slash beginning REM: the pgllnter
with location | IS "‘;;aﬂa e
* set by pointer STA
Use search *
subroutine Copy the informa-
tion between the
Y * pointer and
[Get address, \ the slash
i Place
city, state, I) *

zip code & !ntom\atuon

into correct Reset the

string pointer one

i position past
Add strings the slash
together and ‘
place in
string array
N RETURN
Remove
phone number

Display
directory
information

Clear screen
and get
a name

Yes

[)

Fig. 14-2. Flowchart for Listing 14-2 Breaking Down Strings.

Line 320 finds out how long the DIRECTORY$ is character after a slash. We will begin with this
for this particular element. The phone numberis character and continue to the end of the string. We
placed in PHONES by using the SEG$ command. found out how long the string is and stored this
The START variable will contain the first value in L. By subtracting the position of the

120

Listing 14-2

100 REM LISTING 14-2

110 REM BREAKING DOWN STRINGS

120 REM BY A.R.SCHREIBER FOR TAR ROOKS
130 NIM DIRECTORY$(20)

140 FOR COUNT=1 TO 20

1650 DISPLAY AT(2y1IERASE ALLI"ENTER THE

FOLLOWING OR “XXX7*

160 DNISFLAY AT(694) E"NAME 7" 1! ACCEFT A

T(6s LOIREEF INAMES 22 IF NAME$="XXX®" THEN
240 :

170 DISPLAY AT(8:4):"ADDRESS ?* {f ACCEF

T AT(8s14)REEFADDRESSS

180 DISFLAY AT(10+s4)0°CITY 7" 1t ACCEFT

ATC10 11 REEFICITYS

190 DISPLAY AT(12:4)I°STATE 7" 3 ACCEPT
ATC12 12)RBEEFPISTATES

200 DISFLAY AT(1454)22"ZIFCONE 7 2! ACCE

FT AT(1414)REEFIZIFCODES

210 DISFLAY AT(1424):"FHONE No. 7" ¢ AC

CEFT AT(16+16)BEEF $FHONES

220 DIRECTORY$S (COUNT)=NAME$L" /" SAIINRESS$
EU/NGCTITYS& /" RETATESE /" &ZIFCONESE Y/ * §F

HONE $

230 NEXT COUNT

S 240 DISFLAY AT(22y 1ERASE ALLI"WHOSE ADLD

RESS & FHONE DO YOUWANTT" 1 ACCEPT AT(2

A4y SIBEEF IWANTS

250 IF WANT$="" THEMN STOF

260 FOR RECOUNT=1 TO COUNT-1

270 START=1 3 GOSUR 370 3! IF PART$=WAN
T$ THEN 300

280 NEXT RECOUNT 332 DISPLAY ATL2y 1)BEEF
§UNO ONE BY THAT NAME I8 LIST-ED IN THIS
OIRECTORY®

290 FOR DELAY=1 TO 1000 & NEXT DELAY §:¢
GOTO 240

300 START=1 & GOSUR 370 1: NAME$=FART$
3 GOSUR 370 13 ADDRESSE=FARTE 131 GOSUR
370 ¢ CITYS=FARTY$

310 GOSUR I70 ¢ STATES$=FARTS 33 GOSUR 3
70 1 ZIFCODE4$=FART$

320 L=LEN(DIRECTORY$ (RECOUNT Y)Y 8 FPHONE $=

121

)

ME$ &2
5654

$ &2

%

ONTINUE® 33

yF-START)
390 START=F4+1
400 RETURN

SEG$(DIRECTORYS (RECOUNT) s START ¢ L.-START+1

330 DISFLAY AT (4y 1YERASE
DISFLAY AT(S 1) "ANDNRESS ¢

340 DISPLAY AT(8:108"CITY2
SFLAY AT(L0 1) I "STATES
350 DISFLAY ATC12:103"ZIFCODES "sZIFPCODE
DISFLAY AT(1451) 2 *FHONE No.3 "sF

360 DISFLAY AT(2451) 1 "FRESS
CaLL KEY(OsREYsSTATUS)::
STATUS=0 THEM 360 ELSE
370 P=FOS(UIRECTORY$ (RECOUNT) ¢ * /" s 8TART)
380 PART$=SEGH (DIRECTORY$ (RECOUNT) « START

ALL E"NAME S " iNA

" FADDRE

"ICITYS f2
"ISTATES

nr

s FHON
ANY KEY TO C
IF
240

character past the last slash and adding one,
we know how many characters to move into
PHONES.

Lines 330-350 clear the screen, and then place the
information from each string at the correct loca-
tion on the screen. The information is taken from
the DIRECTORYS.

Line 360 places a message on the screen and waits
for a key to be pressed. The STATUS variable
will be zero until a key has been pressed. The
program will loop at this line until a key has been
pressed. When a key is pressed, the computer
will go to line 240 and wait for another name to be
entered.

Line 370 begins the subroutine that first checks the
string for the name that has been entered, then
moves the information from the string into
PARTS$ so that it can be stored in the correct
string. The P variable will contain the location of
the slash in the string. The computer will begin
searching the string at the location specified by
START. The first time this subroutine is used
when we are looking for a name in the directory,
START contains one. The computer begins with
the first character of the string and continues until

122

it finds the slash. The location of the slash is
stored in P and the computer continues with the
next line.

Line 380 takes the character whose position is that
of START and places it just before the slash in
PARTS$. When we were looking for the name, the
P variable would contain the location of the first
slash. Since START would be set to one, the
computer would take all the characters beginning
with the first and ending with the one just before
the slash and store them all in PARTS.

Line 390 adds one to P and stores the total in
START. The next time the computer uses this
subroutine, it will begin searching for the slash
again, starting with the character just after the
last slash it found. This is why we can use this
subroutine to separate the name, address, and
other elements in lines 300 to 310. The informa-
tion between the slashes is placed in PART$ and
transferred to the correct string in the main pro-
gram.

Line 400 sends the computer back to the main
program.

Look at Fig. 14-3. This is an example of a name
stored in DIRECTORYS. The first time that the

computer uses the subroutine at line 370, the POS
command will find the slash at location nine. The
first time that this same subroutine is used to sepa-
rate the parts of the string, START will be one, and
P will be anine. When we add one to P, START will
become ten. The next time that the computer uses
this subroutine, it will begin with the tenth position
in the string, the one in 123 and search for the slash.
The P variable will become 24 and all the characters
from the one to the second “T” in street will be
placed in the string variable PART$. The START
variable will become 25 and be ready for the next
search. This continues until all the parts of the
string have been placed in each particular string for
the name, address, city, and so on.

ASC

Every character that is printed on the screen
has its own numeric code. Every letter, number, or
character has a position in the character set. This
position number is the ASCII value of that charac-
ter. Most computers follow this code. This makes
the systems somewhat compatible. For example,
the ASCII value of the letter “A” is 65 on most
systems. If the computer system does not use this
code pattern, it cannot communicate with other
systems. The graphics characters on different com-
puters are usually different, but the numbers, sym-
bols, and letters (both upper and lower case) all
follow the standard ASCII codes. To find out what
the code of a particular character is, simply type:

PRINT ASC(“{character}”)

Try these examples:

PRINT ASC(“7”)
PRINT ASC(“Z”)
PRINT ASC(“/”)

The following numbers should have appeared
on your screen — 55, 90, 47. In the last program in
this chapter, we will enter the ASCII values of
these characters to place them on the screen.

CHR$

This command will place the character whose
value is in the parentheses into a string, or print
that character on the screen. Now that we know that
each character has a particular value, we can use
that value to print that character on the screen. Try
these commands with your computer:

PRINT CHR$(33)
PRINT CHR$(71)
PRINT CHR$(61)

Your screen should display!, G, =. If you
would like to see the entire character set displayed
on your screen, type

FOR X=1 TO 256::PRINT X,CHR$(X)::NEXT X

You will notice that some of the codes do nct have
any characters. You can use these positions to
create your own characters, or you can recreate any
of the existing characters.

43 44

H

L\
N
n
w
N
H
n
(3]
N
(=]
N
\‘
n
(=]
N
©
W
o
w
-
[
N
[
W
(7]
»
W
(5]
[
(=]
w
~
(9]
[e]
(]
©
E-
hary
H
N

5 46 47 48 49 50 51 52 53 &

IS

Fig. 14-3. How the characters in a string are numbered.

123

VAL

The VALUE command was used in the guess
program in a previous chapter. In that program, in
the HURKY routine, the row and column was en-
tered with one entry. This entry was stored in a
string. There are times when you will want a
number to be entered in a string. It may be that the
number is used for the convenience of being able to
accept two or more answers with one entry, or it
may be because a string is the more acceptable way
to handle the number for the purpose of the pro-
gram. In any event, the actual value of the string can
be determined by the VALUE command. The string
is placed in parentheses following the command.
The value of the string is placed in a NUMERIC
variable or printed on the screen.

B$="1.23"::V=VAL(B$)::PRINT V
or

B$="1.23"::PRINT VAL(B$)

STR$

At other times, you may want to convert a
variable into a string. This is accomplished by
placing the value in parentheses. The string is
placed in a string variable or printed on the screen.

B=2::B$=STR$(B)::PRINT B$
or
B=2::PRINT STR$(B)

You may remember that when you print a
number on the screen, there is a space before and
after the number. There may be times when you do
not want this space after the number. By placing the
value in a string, you eliminate this space. Note the
difference between one of the two lines below and
the next:

FOR X=1 TO 10::PRINT STR$(X);“.”::NEXT X

FOR X=1 TO 10::PRINT X;“.”::NEXT X

124

In the first example, the period will be printed
immediately after the number. In the second, there
will be a space between the number and the period.

RPT$

This command repeats a character a specific
number of times, eliminating the need for duplicate
typing. For example, instead of entering

20 B$=u ”

you could enter
20 B$=RPTS$(“+",20)

and the character in the quotation marks would be
placed in B$ 20 times. The character or characters
between the quotation marks can change, and the
number of times the character(s) will be repeated
can be changed, but the line cannot be longer than
255 characters. If more than one character is en-
tered, the entire sequence will be repeated the
number of times after the comma, as shown in the
example below:

20 B§=RPT$(“HELLO",8)
will produce

HELLOHELLOHELLOHELLOHELLOHELLO
HELLOHELLO

We have used this command in several programs in
this book.

In the following program, we will use all the
commands listed above. This program will create
new characters that can be used in any other pro-
gram (See Fig. 14-4.) These new characters can be
stored on disk and entered into some other program
later. The characters are displayed on the screen
with the corresponding hex code for each line. If
you are unfamiliar with binary to hex conversions,
please turn to Appendix A. Then use the program
listed in Listing 14-3 and flowcharted in Fig. 14-5.

NOTE: This program will run in a 16K cassette-
based machine. Lines 1210 to 1260 are used for the

8 4 2 184 2 1

FF
00
00
00
00
00
00

Character
#137

00

8 421842 1

Character
140

FF
80
80
80
80
80
80

80

8 4218 421

00

|00

00

00

00

00

00

00

Character
142

8 4 2 1 8 42

1

Character
138

8 4218421

Character
141

8 4218 421

Character
143

Character
139

FF
FF
FF
FF
FF
FF
FF
FF

FF
B6
D5
E3
80
E3
D5
B6

Fig. 14-4. Characters used for the grid and the cursor.

125

Set aside
memory for
arrays

y

Move character
set into
a string

Y

Create new
characters
for grid and
cursor

y

Place binary
code into
array

Y

Place
colors into
array

Y

Clear
screen &
display

option

Use grid
subroutine

<

@
\

Display menu
get number
(1-5)

Get
character
number

(32-143)

Transfer
character
into empty
location

Y

Display
default
values
on screen

Place
character
on grid

Place
options
on screen

®
REM: No entry

send back to
main menu

Fig. 14-5. Flowchart for Listing 14-3 Character patterns.

Display
mode on
screen

Use
subroutines
to change
color

©

b

Use subroutines
to change

size

No

Y

Place
cursor
on grid

Has a

key been

pressed
?

No # A

Change to
other cursor

Yes

Yes

Change code
so color in
grid will
change

Erase
all black
squares
in grid

Change
row or
column
value

Place
new hex

values on
screen

127

get number
or enter

Clear screen
and display

selection L
Cycle
Use option
16x16 grid
subroutine
Use subroutine
Get = to change
character four colors
number
/
/'y Use subroutine
-4 to change
four sizes
Get the -

first
character
for the boundary

Y

Transfer
four
characters

Put characters
and default
values on

the screen

Place
all four

characters
on grid

Fig. 14-5. Flowchart for Listing 14-3 Character patterns. (Continued from page 127.)

128

Display
mode on
screen

Place
cursor on

Change to
other cursor

Is it
an arrow

Yes

Yes

Change code
so grid
square will
change

Place hex
values from
four characters
on screen

Erase all
black

squares in
grid

Clear
screen
display
option

Send
characters
to disk

Clear
screen
-display
option

Name
entered

Get
characters
from
disk

129

Grid
subroutine

Print pixel
values and
row numbers

Print a
row of
squares

8 rows

on screen
?

RETURN

Change
color
subroutine

v

Change
color of
character
and sprites

Place
color name
on screen

RETURN

Fig. 14-5. Flowchart for Listing 14-3 Character patterns.
(Continued from page 129.)

disk save and load. At the end of the program are the
correct lines for cassette users. Do not enter any of
the REM (remark) lines. The program will run
without the remarks. Lines 1550 and 1560 are used

130

only by the disk and should be omitted for the
cassette version.

Listing 14-3

Line 120 sets aside the memory space for the
characters that will be altered, the binary codes of
the characters, and colors that are possible for
these characters.

Line 140 reads the character patterns into CHAR$
array. The command CHARPAT gets the hex
code for the character. This pattern is stored in
CHARS so that we can alter them in this program.
All the codes from the characters beginning with
character 32 through character 143 are moved
from the character set into this string. Any
characters that you change will be changed in this
string. Only when you save the new character set
will the characters in the character set be
changed. Each code is offset by 32 in the character
set, but our array begins with the zero element of
the array.

Line 150 reads the new character codes from the
data in line 160. These coded are placed in
characters 137 through 143 inclusive. These
characters are changed in the character set that
will be displayed on the screen for this pro-
gram. These characters can, however, be used,
changed, or modified for your character set.

Line 170 places all the possible hex codes in HEX$.
These codes are in line 180 and will be used later
in the program when we are converting the
character codes into hex on the screen.

Line 190 reads the colors into COLR$ array. These
color names will be displayed on the screen when
we are changing the characters. The abbreviated
color words are used when the larger characters
are on the screen.

Lines 230-270 place the menu on the screen. This
program will allow you to display a single charac-
ter or a four-character pattern, load a character
set, or save a character set. Use the single
character option when you want to change only
one character at a time. The four-character pat-
tern is useful for creating sprites. In Chapter 16,
we will discuss how four characters can be used
together as one sprite. This option allows you to

Listing 14-3

100 REM LISTING 14-3

110 REM CHARACTER FATTERNS

120 REM BY A.R.SCHREIBER FOR TAE ROOKS

130 DIM CHAR$(111) yHEX$(15) yCOLRS (169 2)

140 FOR C=32 TO 143 $: CALL CHARFAT(CsCH

ARS(C-32))28 NEXT C

1350 FOR C=137 TO 143 ¢ READ C% !¢ CALL

CHAR(CsCH) ¢ NEXT C

160 DATA FF»808080808080808yFFRANSE3BOES

DGR6yFFB08080808080B0sFFLYAAPCFFLAACY 9 0

Oy FFFFFFFFFFFFFFFF

170 FOR C=0 TO 19 $: READ HEX$(C)$: NEXT
C :

180 DATA 000020001+001050011501005010150

110+0111+2000210015101051011511005110151

110v1111

190 FOR N=1 TO 2 $: FOR C=1 TO 16 $: REA

I COLRS(CsNISE NEXT C $¢ NEXT N

200 DATA TRANSFARENTsBLACKyMEDIUM GREEN;

LIGHT GREENyDARK BLUEsLIGHT ERLUEsDARK RE

Oy CYAN

210 DATA MEDIUM REDsLIGHT REDyDARK YELLOD

WeLIGHT YELLOWsDARK GREENsMAGENTAyGRAY W

HITE

220 DATA TRANyBLOKs MGRN 2 LGRNs DRLU LELU D

RET'y CYANs MRED s LRET s DYEL ¢ LYEL s DGRN s MGNT ¢ G

RAY y WHIT

230 DISFLAY AT(2y3)ERASE ALL S *CHARACTER/

SFRITE FATTERNS®

240 DISPLAY AT(Sy10)1"MAIN MENU® 3 DISPF

LAY ATC(102)8"1. DISFLAY SINGLE PATTERN®
$8 DISFLAY ATCL2:2)3"2,. DISFLAY FOUR FA

TTERNSG"

290 DISFLAY AT(14:2):°3, LOAD CHARACTER
SET" $3 DISFLAY AT(lé6:2)80%4, SAVE CHARAC
TER SET® :

260 DISPLAY AT(18y2)3°%, EXIT FROGRAM®
270 NISFLAY AT(22y86) I ENTER CHOICE ®¢ 3§
ACCERT AT(22y22)REEF VALIDATE(®12345%)8
TZECIHIC 28 ON C GOTO 31097205125051220s
290

280 REM EXIT FROGRAM

290 END

continued on page 133

131

see the entire character the way it would be dis-
played on the screen. You can load into the com-
puter any character set that you have saved, and,
of course, you can save the character set that you
are working on. When you are finished with the
program, you can exit it with option 5, the EXIT
PROGRAM. The VALIDATE option is set to
accept only the numbers one through five inclu-
sive. Your choice is stored in the C variable and
the computer is sent to the correct routine.

Line 290 is the END command. When you
choose options 5, the computer will be directed to
this line and the program will end.

Line 310 begins option 1—display single pattern.
The screen is cleared and the option chosen is
displayed at the top.

Line 320 sets the RN variable to one. This variable
will count the number of grid rows placed on the
screen. The computer uses the subroutine begin-
ning with line 1270 to draw the 88 grid on the
screen. This character grid will be numbered with
the values of each pixel.

Line 330 asks for the character number that you
want displayed on the screen. The subroutine at
line 1540 accepts the character number. The
computer returns to this line with the number of
the character that you would like displayed on the
screen. If you do not enter a number, but simply
press ENTER, the computer will erase any
sprites that may have been created and send you
back to the main menu. If you have entered a
character number, the computer will use the
VALUE command to get the number from the
string and place this value into the W variable.

Line 340 checks the value of the number entered to
make sure that it is a character between 32 and
143. If the character number entered cannot be
changed with this program, the computer will be
sent back to line 330 for another character
number. Otherwise, the character number 135
will be changed to reflect the character that you
want to change. This character is changed in the
character set, not in the actual character. The
character you create will then be printed on the
screen so you can see what it looks like. If you
have already altered the character, your new

132

character will be displayed; otherwise, the origi-
nal character will be shown.

Line 350 sets the CLR variable to two and M to 1.

These are default values used in this program.
The color of the character on the screen will be
black and the size of the sprite will be normal. The
labels for sprite and magnify will be printed on the
screen.

Line 360 prints the label for the color on the screen,

then uses the subroutine at line 1440. This
routine sets the color and sprite, and places the
character and color on the screen. The subroutine
at line 1460 is called to set the size of the sprite.

Lines 370-400 take each byte of the character and

place it on the screen on the large grid. First, the
two character hex byte is removed from the
CHARS at the location of the character that we
want displayed. The subroutine at line 1300 is
used to break down the hex code into binary. We
must use binary because the characters are all
binary codes. The pixel is either on or off. The
logic statement IF BT will print a black square at
the correct location of the grid if the value of BT is
equal to one. The result is the same if we tell the
computer IF BT or IF BT=1. The computer will
continue with the program statement if the value
of BT is not zero. If the value of BT is false, or
zero, the computer will go on to line 390 and print
an empty box on the screen. This loop continues
until all eight hex codes for the character are
displayed on the grid.

Lines 420-440 display new options on the screen.

Now you can change the color of the character on
the screen, change the magnification of the sprite,
display a new character on the screen, or change
the character that is on the screen. Your entry will
be stored in the OP variable.

Line 450 uses the subroutine at line 1580 to clear

the last five rows on the screen after the option
number has been entered. The computer is sent
to the correct routine based on the number en-
tered.

Line 460 sends the computer to the subroutine at

line 1600. Here you will be able to change the
color of the character that is on the screen. Once
the new color has been entered, the computer will

300 REM DISPLAY SINGLE CHARACTER/SFRITE
FATTERN

310 DISFLAY AT(2yAIERASE ALLI"DISFLAY &SI

NGLE FATTERN®

320 RN=1 3 GOSUR 1270

330 DISFLAY AT(46224)5"CHAR." $3 GOSUR 15
40 33 IF W$="" THEN CALL DELSFRITE(#1)$:
GOTO 230 ELSE W=VAL(W$)

340 IF W32 OR W:143 THEN 330 ELSE CALL

CHARC13%5y CHARS (W-32))

350 CLR=2 2 M=1 1 DISFLAY AT(10,23)¢%8

FRITE® $: DISFLAY AT(125:24):"MAG"

360 DISFLAY AT(1723):°COLOR" ¢ GOSUR 1

440 33 GOSUR 1440

370 FOR R=1 TO 8 ! R$=SEG$(CHARS(W-32)

R¥2-152) 8¢ GOSUR 1300

380 FOR COL=1 TO 8 :: RBT=VAL(SEG$(EN$sCO

Ly1338¢ IF RT THEN DISFLAY AT(R+7-COL+10
JSIZE(1)ICHR$(143)383 GOTO 400

3920 DISPLAY AT(R+7:COL+10)SIZECL) iCHR$ (1

40)

400 NEXT COL 2% DISFLAY AT(R+7520)SIZE(2
JIBRE 3 NEXT R

410 REM GET DISFLAY OFTIONS

420 DISFLAY AT(2s1)%° DISFLAY SINGLE F

ATTERN® ! GOSUR 1580

430 DISFLAY AT(2051)3"ENTER NUMEER WANTE

e ¢ DISFLAY AT(21,5)8%1, CHANGE COLO

R* ¢ DISPLAY AT(22:5)1"2, CHANGE MAGNIF

ICATION®

440 DISFLAY AT(23:5):"3. DISFLAY NEW COD

E®* 32 DISFLAY AT(24:5)3"4, ALTER CHARACT

ER® 13 ACCEPT AT(20:23)REEF VALIDATE("12

34")BIZECL) 2 0OF

4350 GOSUR 1380 3 ON OF GOTO 46054705330
» 490

460 GOSUR 1600 ¢! GOSUR 1440 !: GOTO 420

470 GOSUR 1630 ! GOSUR 14460 3! GOTO 420

480 REM ALTER SINGLE CHARACTER FATTERN

490 DISFLAY AT(2y3)3"ALTER CHARACTER FAT

TERN®

500 CRyOLR=8 12 CCyOC=11 $: CUR$=CHR$(14
1)

continued on page 135

133

be sent to the subroutine at line 1440 to change
the character’s color. The computer will then be
directed to line 410 and the menu will be dis-
played.

Line 470 is used to change the size of the sprite on
the screen. Any character can be used as a sprite,
and the sprite can be two different sizes. The way
the sprite appears on the screen when the
character is printed is the normal size. By enter-
ing a two for the size, you can enlarge the single
sprite. The computer uses the subroutine at line
1630 to get the number of the size of sprite that
you want. It then uses the subroutine at line 1460
to change the size of the sprite. Once the size of
the sprite has been changed, the computer will
display the menu on the screen.

Line 490 begins the routine to change the character
that is on the screen. At the top of the screen, the
option will be displayed.

Line 500 sets the CR and OLR variables to eight.
These variables will keep track of the row the
cursor is in on the screen. The CC and OC vari-
ables are set to 11. These variables keep track of
the column of the cursor. Otherwise, the cursor
could not be printed and moved around on the
screen. The string variable CURS$ is set to
character 141. This character has been predefined
by the program and will indicate which pixel can
be turned on or off.

Line 510 uses the GCHAR command to find out
what character is on the screen at the location
OLR, OC+2. The value of the character is stored
in the T variable. We need to keep track of what is
on the screen before we print the cursor there so
that when we move the cursor, we canreplace the
original character in that location.

Line 520 prints the cursor on the screen. The CR
and CC variables tell the computer where on the
screen the cursor should be placed.

Line 530 uses the CALL KEY command to see if a
key has been pressed. The status of the keyboard
is stored in the S variable. If the value of Sisnot a
zero, then a key has been pressed and the com-
puter will go on to line 560. Otherwise, it will
continue with the next program line.

Line 540 checks to see which character is being

134

used for the cursor. There are two characters
being used for the cursor. One is the negative
image of the other, so if the character is 141, the
computer will change it to 139, otherwise, it will
make character 141 as the cursor.

Line 550 sends the computer to line 520, the line

that prints the cursor on the screen. Until a key is
pressed, the computer will continue this loop,
changing the cursor back and forth between the
positive and negative images. This makes the
cursor flash on the screen.

Line 560 checks the value of the key pressed. If the

Key value is 82, 87, or 90, thenthe R, W, or Zkey
has been pressed. The W key will blacken the
square and the R key will erase all the squares.
the computer will be sent to line 670 to perform
the correct routine.

Line 570 prints the character that was originally in

the square back in the square so that the cursor
can move.

Lines 580-610 check the value of the KEY variable

to see if one of the arrow keys have been pressed.
The keys to move the cursor are E, X, D, and S.
FCTN need not be pressed to move the cursor;
simply pressing the correct arrow key will move
the cursor in that direction. The computer checks
for each value separately. If the value of K
matches on the arrow keys, the OLR or OC vari-
able will be changed accordingly. That is, its
value will be increased by one if the cursor moves
to the right or down, and is decreased by one if the
cursor should move to the left or up. If the value of
KEY is 81 the Q has been pressed and the com-
puter will quit this routine by going to line 410. If
the value of KEY is not 13, that is, the ENTER
key has not been pressed, the values of OLR and
OC are placed into the CR and CC variables. The
computer is sent to line 510 to move the cursor in
the correct direction.

Line 640 begins the routine that places the hex

codes for the new character on the screen. Up
until this time, the hex codes that were on the
screen were for the original character. This
routine changes them to set up the new character.
P$ is cleared to hold the new codes for the new
character. The computer will use the subroutine

910 CALL GCHARCOLR»OC+2+T)

G20 DISPLAY AT(CRyCOYSTIZECL) (CURS

G430 CALL KEY(OsyKeS)23 IF S0 THEN %60
G40 IF CUR$=CHR$(141)THEN CUR$=CHR$(139)
ELSE CUR$=CHR$(141)

G950 GOTO H20

G460 IF K=82 OR K=87 OR K=90 THEN 670

G770 DISPLAY AT(OLRsOCISIZE (L) $CHRE(T)
380 IF K=69 THEN OLR=0LR-1 &3 IF OLR=7 T
HEN OLR=1%

G990 IF K=88 THEN OLR=0LR+1 :! IF OLR=16é
THEN OLR=8

A00 IF K=48 THEN 0C=0C+1 $: IF 0C=19 THE

N 0C=11

410 IF K=83 THEN 0C=0C~1 3¢ IF QC=10 THE
N 0C=18

620 IF K=81 THEN 420 ELSE IF K313 THEN

CR=0LR i CC=0C 3 GOTO %510

630 REM CONVERT NEW CHARACTER TO HEX-COD

E & INSERT IN CHAR$ (W)

640 F4="" 2% FOR OLR=8 TO 1% t: SC=11 $:
EC=18 ! GOSUER 1350 1t Fé=F$SR%

450 DISFLAY AT(OLRy20)SIZE(2) 3RS $3 NEXT
OLR ¢! CHARS(W-32)=F4$! CALL CHAR(13%5s

F&)sd GOTO 420

460 REM SETy CLEARy OR ERASE

470 IF K=87 THEN T=143

4680 IF K=%0 THEN T=140

690 IF K<:82 THEN 320

700 RN=1 1! GOSUR 1270 :: DISFLAY AT(6s2
4)I°CHAR. " 2% DISFLAY AT(8526)3CHR$ (135)
£ GOTO 500

710 REM DISFLAY FOUR CHARACTER/SFRITE FA
TTERN

720 DISFLAY AT(2s4)ERASE ALL:"DISFLAY FO
UR FATTERNS®

730 GOSUR 1470

740 Wé="CHAR" ! R=8 {! GOSUR 1510 $$ GO
SUB 1540 3% IF W$="* THEN CALL DELSFRITE
(k1) 22 GOTO 230 ELSE W=VAL(W$)

750 IF W<32 0OR W:143 THEN 740 ELSE W=INT
(W/4)%4

760 FOR I=0 TO 3 ! CALL CHAR(13241IsCHAR

continued on page 137

135

at line 1350 to convert each row of the grid into a
binary code, which will, in turn, be converted into
a hex code. The hex code will be stored in
BYTES$. These hex codes will be stored in PAT-
TERNS$. The contents of PATTERNS will be
added to the contents of BS.

Line 650 displays the hex code for that row on the
screen. The loop continues until all the rows of
the grid have been converted into hex codes, the
codes have been stored in P$, and P$ has been
printed on the screen. The new character is placed
into the string array that stores the characters,
and it is printed on the screen. The computer will
go back to the program line that displays the menu
for this option. You can continue to alter this
character, or choose a new character.

Line 670 checks the value of K for 87. Ifit is an 87,
then the W key has been pressed. The value of the
T variable is changed to 143. This is the character
number of the character that prints an empty
square on the screen.

Line 680 checks for the code for the Z. If the Z has
been pressed, the T variable is set to 140 so that
the character for the filled-in square can be
printed on the screen.

Line 690 checks for the R. If the R has not been
pressed, the computer will be sent to line 520 so
that another key can be pressed.

Line 700 sets the RN variable to one. This variable
counts the row numbers as the grid is cleared.
The subroutine at line 1270 is used to print the
empty grid on the screen. The computer will
proceed to line 500 to move the cursor and create
a new character on an empty grid. This option is
good to use when you are creating a new character
that will not resemble the character that it is
replacing.

Line 720 begins the routine for displaying four
characters the way they would appear if they were
used together as sprites. The name of this option
is printed at the top of the screen.

Line 730 uses the subroutine at line 1470 to print
the grid on the screen. This time the grid will be
16x16 to accommodate four characters.

Line 740 uses the subroutines at line 1510 and 1540
to get the value of one of the characters in the

136

group of four that you want displayed on the
screen. The sprite or four-character mode dis-
plays the characters in groups of four with each
group beginning on an even boundary. This means
that the character number that you enter can be
displayed in any of the four-character grids on the
screen. You cannot move the character into a
particular grid. You can change the character in
any grid to any design that you would like.

Line 750 checks the value of the character entered
to make sure that it is a character that can be
changed. Ifit isn’t, the computer will be sent back
to line 740 and wait for another number. If it can
be changed, the value of the character is divided
by four and multiplied by four. This gives us the
value of the character on the boundary. This
character will be printed in the upper left portion
of the grid.

Line 760 changes the characters in locations 132 to
135 to the characters that will be printed on the
screen. The characters are taken from CHARS. If
any of these characters have been changed, the
new character will be printed on the screen.

Line 770 prints all four characters on the screen.
This is the way the characters would be printed on
the screen if they were used as a by-four sprite.

Line 780 sets the default values for the color and the
magnification of the sprite and prints it on the
screen. The characters will be printed in black
and the magnification of the sprite will be normal.
The value for a normal by-four sprite is three.

Lines 800-870 print all four characters on the grid.
You will be able to alter these characters just as
you were able to alter the single character.

Line 880 displays the menu. Because this option
uses most of the screen space, the menu will cycle
every time you press the ENTER key without
entering a number. The first option, change color,
is on the screen. .

Line 890 checks the value of W$ to see if it is a one,
or an empty string. If it is neither, the computer
will return to the previous line until either a one is
entered, or the ENTER key is pressed without
the number.

Line 900 displays the second option, change mag-

nify.

F(WHI-32)) 88 NEXT I

770 DISPLAY AI(JO;l)blZF(”)’FHR$(13°)&CH
REC134) 88 DISPLAY ATCLL» 1DSIZE(2) ICHR% (L
33YECHRE(135)

780 CLR=2 $$ M=3 $ W= COLR" $3 R=13 3%
GOSUR 1J10 $§8 We="GFRT" ¢ R=16 3 GOSU
B OIS10 22 We="MAG" 13 R=17 1? GOSUR 13510

790 GOSUR 1520 i GOSUR 1530

800 FOR CH=0 TO 1 :: FOR R=1 TO 8 ! B$=
SEG$ (CHAR$ (W-324CH) s R%2-192) 22 GOSUER 130
0 .

810 FDR COL=1 TO 8 1t BT=VAL(SEGH(EN$:CO
Lyld2d IF BT THEN DISFLAY AT(R+(CH%8)+5
9f0l+6) TZECL) ICHR$C143) 32 GOTO 830

820 DISPLAY AT(RH(CHXBI S5 COLISISTZE (1) 2
CHR%(140)

830 NEXT COL Zt DISFLAY AT(REC(CHXBY45,24
ISTZEC(I)IRE: "~ 33 NEXT R 3¢ NEXT CH

840 FOR CH=0 TO 1 3 FOR R=1 TO 8 :: Ré$=

SEGE(CHARS (W-304+CH) sR¥2~-192) 28 GOSUR 130
0

850 FOR COL=1L TO 8 : BT=VAL(SEGH{(EN$ O

Lylddss IF BT THEN DISFLAY AT(R+H(CH%8)+5
pCOLFIMSIZECLD SCHRE (14338 GOTO 870

860 NISPLAY hl(hi(FH*8)+59CULil4)SI?E(1)
tCHR$(140)

870 NEXT COL §: DISPLAY QT(R+(LH#8)+49M7
YSTIZE(2I¢RE 32 NEXT R 33 NEXT CH

880 DISFLAY AT(23y1):"FRESS CENTERI ONLY
TO CYCLE" % DISPLAY AT(2451)2°TYFE 1 T
0 CHANGE COLOR® 3% ACCEPT AT(24s27)REEF
SIZECL) 1We

890 IF Wé="1" THEN 960 ELSE IF W$=*" THE
N 200 ELSE 880

00 DISPLAY AT(2451)2*TYFE 2 TO CHANGE M
AGNIFY" 13 ACCEFT AT(24,27)BEEF SIZE(L):
W

10 IF W$="2" THEN 9460 ELSE IF W$="" THE
N 920 ELSE 900

P20 DISFLAY AT(2451)2°TYFE 3 TO CHANGE C
ODE® 1 ACCEPT AT(24y27)BEEF SIZECL) (WS
930 IF W$="3" THEN 260 ELSE IF W$="" THE
N 9240 ELSE 920

continued on page 139

137

Line 910 checks the W$ variable for the number two
or an empty string. Anything else will send the
computer back to line 900.

Line 920 places the third option on the screen,
change code.

Line 930 compares the contents of W$ with the
number 3 and an empty string.

Line 940 is the fourth option, alter characters. Use
this option to create new characters on the

screen.

Line 950 checks for a four or an empty string. These
lines will continue to cycle until one of the num-
bers is entered.

Line 960 sends the computer to the correct line
based on the value of W$. These routines are very
similar to the routines used for the single charac-
ter. The only difference is any or all of the four
characters on the screen can be changed.

Line 970 uses the subroutines at lines 1600 and
1520 to change the colors of the characters on the
screen.

Line 980 uses the subroutines at lines 1630 and
1530 to change the size of the sprites. In the
by-four mode, the three is used for normal sprites
and four for enlarged sprites.

Lines 1000-1220 allow you to change the characters
on the screen. The commands for this option are
the same as the commands for the alter single
character mode. We cannot reuse the same
routines, however, because the single character
mode uses only eight squares in the grid and this
routine uses 16. Also, the placement of the grid,
the hex values, and the number of values printed
on the screen are different for this option. How-
ever, the cursor is the same, and the same keys
are used to move the cursor and change the pixels
on the screen.

Lines 1220-1230 save the character set out to disk.
You will give the character set a name. You will
use this name to bring the character set back into
the computer for future alterations or for use in
your own program.

Lines 1250-1260 load a character set from disk into
the computer. If you have used this program and
saved a character set onto the disk, you can use
this option to load the character set back into the

138

computer and make more changes to it. In Chap-
ter 16 we will talk about how these characters can
be loaded directly into a different program for
immediate use.

Lines 1270-1700 are the subroutines that have been
used in the main portion of this program.

Lines 1270-1280 place the grid for the single mode
on the screen. The value of each pixel is printed
across the top of the screen. By taking the STR$
of the RN variable, we eliminate the leading and
trailing spaces that are normally printed with a
variable. The RPT$ command places eight
characters on the screen. The code for these
characters is 140, which makes the empty grid.
Finally character 138 is printed on the screen to
complete the last box in each row.

Lines 1300-1330 convert the hex value on B$ to an
eight-bit binary string. When the computer is sent
to this routine, a two-character hex code will be in
B$. The computer takes the first character and
places it into NY$. It then goes to line 1320 where
it gets the ASCII value of the character. This
value is used to get the four-bit binary equivalent
from HEX$. The computer uses this routine
twice, once for each character in B$. When it
returns to the main program, BN$ will contain the
binary code for B$.

Lines 1350-1380 look at a row in the grid and con-
vert the pixels that are turned on into a binary
code. The GCHAR command gets the value of the
character at location OLR, COL+2. If the value of
this character is 143, then the pixel is darkened or
turned on and one is added to the BN$. If it is not
143, a zero is added to the string. After the row is
converted into a binary string, the computer di-
vides it into two nibbles, each four bits long, and
converts the binary code into hex. When the com-
puter returns to the main program, the hex value
of that row will be in the B$.

Lines 1400-1430 count from zero to 15, looking for a
match between the contents of NY$ and HEXS at
any of those locations. When both match, the
computer is directed to line 1420 where the hex
value is placed in HX$. If the value of C is none or
less, then that value can be placed in HX$. If it is
greater than nine, the value must be converted to

240 DNISFLAY AT(24y1):°TYFE 4 TO ALTER CH
ARS,. " $t ACCEFT AT(24:27)REEF SIZE(L) WS
@50 IF W$="4" THEN 960 ELSE IF W$="" THE
N 880 ELSE 940

60 NISFLAY AT(R23s1331" * 1 ON VAL (W$)IGOD
TO 97098057405 1000

270 GOSUR 1600 ¢ GOSUER 1320 ! GOTO 880
280 GOSUR 1430 :: GOSUR 1530 ¢ GOTO 880
290 REM ALTER FOUR CHARACTER/SFRITE FATT

ERNS

1000 DNISFLAY AT(2s2):"ALTER 4 CHARACTER
FATTERNS®

1010 CR«OLR=6 ¢3¢ CCyOC=7 33 CUR$=CHR$(14

1) :

1020 CAll GCHARCOLR»OCH22T)

1030 DISPLAY AT(CRsCCISIZE(L) ICURS

1040 CaAllL KEY(0sKe&)2: IF &30 THEN 1070
1050 IF CUR$=CHR$(141)THEN CUR$=CHR% (139
YELSE CUR$=CHR$(141)

1060 GOTO 1030

1070 IF K=82 0OR K=87 OR K=90 THEN 1160
1080 NISKFLAY ATC(OLRsOCISIZE (L) SCHRE(T)
1090 IF K=69 THEN OLR=0LR-1 2: IF OLR=3
THEN OLR=21

1100 IF K=88 THEN OLR=0LR+1 % IF OLR=22
THEN OLR=6

11210 IF K=68 THEN OC=0C+1 33 IF 0C=23 TH

EN QC=7

1120 IF K=83 THEN 0C=0C-1 3% IF 0C=6 THE
N 0C=22 :
1130 IF K=81 THEN 1200 ELSE IF K<x13 THE
N CR=0LR % CC=0C 23 GOTO 1020

1140 GOSUR 14660 3t W=W-4 3 GOTO 1200
1150 REM SET» CLEARs OR ERASE

1160 IF K=87 THEN T=143

1170 IF K“?O THEN T=140

1180 IF K<=82 THEN 1030

1190 GO‘UB 1470 2 GOTO 1030

1200 DISFLAY AT(Z2s1)23° DISFLAY FOUR FA

TTERNS® it GOTO 880

1210 REM SAVE CHARACTER SET

1220 DISFLAY AT(2y46)ERASE ALLI"SAVE CHAR
ACTER SET® §3 We="SAVE" i N$="" i GOSU

continued on page 141

139

the correct HEX letter.

Lines 1440-1450 change the character and sprite
colors and place the color word on the screen.

Line 1460 changed the size of the sprite.

Lines 1470-1490 place the 16x16 grid on the
screen. The values of the pixels are printed
across the top of the grid and the empty grid is
placed on the screen.

Line 1510 will place a word of any length anywhere
on the screen. The loop counts from one to the
last letter in the word. The ASCII value of a letter
in the word is stored in WC, then this letter is
printed on the screen at the location specified by
the R and C variables.

Lines 1520-1530 are used to change the color of the
character and sprites from the by-four mode.

Line 1540 accepts a code for the character that will
be displayed on the screen. The computer will
return to the main program with value entered in
W3.

Line 1560 gets the name of the character set that
you want to save or load.

Line 1580 clears the bottom five rows on the
screen.

Lines 1600-1610 get the value of the new color for
the character and sprite. If the number entered is
less than one or greater than 16, the computer will
stay at this line until a correct number is entered.
The computer returns to the main program with
the color value stored in the CLR variable.

Lines 1630-1640 accept a value to change the size of
the sprite. Only the numbers one to four can be
entered. Numbers one and two should be used for
the single character mode and three and four for
the by-four mode. The computer returns to the
main program with the magnification value in the
M variable.

Lines 1660-1700 change the hex codes of the screen
to the new codes for the by-four mode. The
character set is also changed to reflect the new
characters.

This program should be used from a cold start.
That is, the computer should be shut off, then
turned back on before using this program. One
reason for doing this is the characters that are

140

moved into CHARS$ are the characters from the
character set of the TL. If the program that you were
using altered any of these characters, the altered
characters would show up on the screen instead of
the true TI characters.

This program is written to run with the disk
system. It can, however, work with the cassette if
you change the following lines:

{LINES FOR LOADING AND SAVING CHAR-
ACTER SET WITH CASSETTE.}

Line 1220 prints the option at the top of the screen.
Lines 1230-1236 saves the character set to the
cassette recorder. Before the values for the new
characters can be saved, we need to pack the
information together so it will be saved quickly
and efficiently. We will use CM$ as a temporary
storage area for the character codes. Each ele-
ment of CM$ will contain the codes for 12
characters. Each character contains 16 hex codes.
The length of each string in each element of CM$
will be 192 bytes. The twonested FOR. . . NEXT
loops will take each byte from the character pat-
terns stored in CHARS, put them together or
concatenate them, and store them in CMS$. First
the C variable is set to zero. This variable is used
as a pointer. It tells the computer which character
pattern is being transferred. The first FOR . . .
NEXT loop counts from one to nine, the first nine
elements of CM$ array where the packed code
will be stored. C$ is cleared so that we won’t be
adding to previously stored information. The next
FOR. .. NEXT loop begins with the value of C
and continues until N is more than C+11. We will
be moving 12 character patterns into each string.
The first time this loop is used, the character
pattern for the zero element of CHARS is stored
in C$. The second time this loop is used, N will
equal one so the character pattern for the first
element of CHARS will be added to the character
pattern in C$. The loop will continue until the first
12 character patterns (from zero-11) have been
placed in C$. This set of patterns is then placed in
the element of CMS$ that is pointed to by RN. The
first 12 character patterns will be placed in the
first element of CM$. The C variable has 12 added

B 1360 1% IF N$="" THEN 230

1230 OFEN #1:"DSK1."&N$ $3 FOR C=0 TO 11
1 33 PRINT #1:CHAR$(C)YE NEXT C ¢! CLOSE
#1 ¢ GOTO 230

1240 REM LOAD CHARACTER SET

12350 DISFLAY AT(R2:6)ERASE ALL:LOAD CHAR

ACTER SET® 3! Ws="L0OAD* 3 N$=°"% ! (GOSU
B 1560 ¢3¢ IF N$="" THEN 230

1260 OFEN #1:°DSK1."8N$!¢ FOR C=0 TO 11
1 382 INFUT #1:CHAR$(CY S NEXT € $: CLOSE
#1 i3 GOTO 230

1270 DISFLAY AT(Sy11)8IZE(8)"84218421 "
3 FOR R=8 TO 1% :: DISFLAY AT(R«5)SIZE(
SILTROW "ESTRECRN) 12 RN=RN+1

1280 DISFLAY AT(Rs11)SIZE(?)IRFTS(CHR$ (1
40)yB)KCHR$ (138) 88 NEXT R ¢! DISFLAY ATC

Ry LLISIZE(8) tRFTH(CHR$(137)+8) ¢ ¢ RETURN
1290 REM SURROUTINE TO CONVERT 2-DIGIT H
EX CODE TO 8-RIT RINARY

1300 EN$=°"" 3¢ NY$=SEG$(E$s1s1)¢: GOSUR
1320 3% NY$=SEG$(Rss2s1)

1310 REM SUEBROUTINE TO CONVERT 1-DIGIT H
EX CODIE TO RINARY

1320 NY=ASCINY$)$¢ IF NY>57 THEN NY=NY~5

5 ELSE NY=NY-48

1330 EBN$=EN$RHEX(NY)!! RETURN

1340 REM CONVERT 1 ROW OF BLOCKS TO RINA
RY CODE

1350 EBN$="" $: FOR COL=SC TO EC ¢! CALL
GCHARC(OLRsCOLA2yTY>3¢ IF T=143 THEN EN$=R
N$&"1" ELSE BN$=REN$&*0®

1360 NEXT COL

1370 REM CONVERT 8-RIT RINARY CODE TO 2-
DIGIT HEX CONE

1380 Bé="°" ! NY$=SEG$(EN$r1+4):! GOSUR
1400 1! BS=R&EEHXS 3¢ NY$=SEGH(ENSsSs4) ¢
GOSUR 1400 33 Be=REEHXS 3 RETURN

1390 REM CONVERT A RINARY NYERERLE TO HEX

COLE

1400 FOR C=0 TO 15 ! IF NY$=HEX$(C)THEN
1420

1410 NEXT ©

1420 IF C»9 THEN HX$=CHR$(C+55)ELSE HX$=

141

142

CHR$(C+48)

1430 RETURN

1440 CALL COLOR(C13sCLRs1)2: DISFLAY AT(8
s 26 ICHRE (135> 82 CALL SPRITE(#151355CLRy

104,217)238 L=LEN(COLR$(CLR»1))

1450 DISPLAY AT(19s1223° " 1 DISFLAY AT(

199281 COLRS(CLR» 1) 3 RETURN

14460 DISPLAY AT(L12:,27)18TR$MI S CALL MA

GNIFY(M)2:?! RETURN

1470 RN=1 ! DISPLAY AT(4:7)STZE(L14)RFT

$("B421R8421 2288 FOR R=6 TO 21 33 IF R=

é THEN DISFLAY AT(R:1ISIZE(4)I°ROWS"

1480 DISFLAY AT(RSISIZEC(L)ISTRE(RNY I R

N=RN+1 3 IF RN:8 THEN RN=1

1490 DISFLAY AT(Ry7)STIZECLZ7)Y IRFTE(CHRS (1

40)716) SCHR$CLIBI TS NEXT R 3 DISFLAY AT
(Re7)SIZECLS) IRFTH(CHRE (137916032 RETUR

N

1500 REM ROUTINE T0 FPLACE WORDS ANYWHERE
ON THE SCREEN

1510 L=LEN(W$) 2 FOR C=1 TO L 3
SEG$(WE+Cy1)22 2 CALL HCHAR(RsCH+1sWCs1) 322
NEXT ©C 23 RETURN '

1520 CALL COLORCLI3»CLRs1)$3 CALL SPRITEC
F1s132+CLRy144+17)2¢ Wh=COLR$(CLRs2)23: R
=14 i GOTO 1510

1530 DISFLAY AT(L7»3)ISTZECIIISTRS(MI S C
AL.L. MAGNIFY (M) RETURN

1540 NISFLAY AT(24 1) "ENTER CHAR. CODE(

3214327 31 ACCERT AT(24-26)REEF VALIDA

TEADIGITISIZE (3> WS 2 RETURN

1550 REM GET FILE NAME

1560 DISFLAY AT(12¢1) $"ENTER. NAME OF CHA

RACTER SET TO "sW$s" 2% ¢ ACCEFT AT(13y

TDREEF SIZECLO)INS ¢ RETURN

1570 REM CLEAR ROTTOM & LINES

1580 FOR R=20 TO 24 :: DISFLAY AT(Rs1):"
PO ONEXT R 38 RETURN

1890 REM GET NEW COLOR

1600 DISFLAY AT(2451)2"ENTER COLOR CODE(

L=16) % 33 ACCEFT AT(24y26)REEF VALIDAT

E(DIGITISIZE(2) (CLR 33 IF CLR<L OR CLR>1

& THEN 1600

WC=ASC(

continued on page 143

1610 DISPLAY AT(245101% % ¢ RETURN

1620 REM GET NEW MAGNIFICATION

1630 DISFLAY AT(24y 1) E"MAGNIFICATION FAC

TORCL-4)F" 33 ACCEFT AT(24y28)REEF VALID

ATE(DTGITISTZECLIIM 28 IF M<l OR M»4 THE

N 14630

1640 DIGFLAY AT(R24510 8" " 33 F
L6G0O REM CONVERT NEW CHARACTEF

DE & INSERT IN CHARS (W)

L6660 AvAR=0 1§ SR=& 1! ER=13

GOSUR 1680 3 SR=14 3! Ef 1

80

1670 AR=3 11 HBR=6 ¢

SUB 1680 3! SR=14 3 !
1680 Fg="" 22 FOR OLR=SR ¢ 80=641

*AL 20 EC=134+1%A1 1 GOSUR 1350 :1f GOSUR
1400 2 PH=PEERS

1690 DIGPLAY AT(OLRy24402)8TZE(R2) 1RS¢

NEXT OLR 33 CHAR$E(W-32)=F4 3¢ CALL CHARC
1324AB P

1700 W=Wt1l ¢ A=A+l 3 RETURN

ETURN
¢ TO HEX-CO

tEoAL=l 22
s GOSUR 146

1220 DISFLAY AT(23+8)ERASE ALL{"SAVE CHA

RACTER SET®

1230 C=0 3! FOR RN=1 TO 9 ! Cé="" :: FQO

R N=C TO C+11 2 CHd=CHECHARS(NY T NEXT N
1232 CM$(RN)=04$ 22 C=C+12 I NEXT RN ¢¢

Ce="7 33 FOR N=C TO C+3 33 Cs=CsRCHARS (N
)

1234 NEXT N ¢: OCM$(10)=0C%

1236 OFEN #1:°CSL"»OUTFUTFIXED 192 $3¢ F

OR RN=1 TO 10 ! FRINT #1!CM$(RN)Y$$ NEXT
RN ¢ CLOSE #1 :: GOTO 230

1230 DISFLAY AT(23»6)ERASE ALLS"LOAD CHA

RACTER SET®

1252 OFEN #1:°CS1"yINFUT »FIXED 192 3 F

OR C=1 TO 10 2 LINFUT #1:CM$C(C)$: NEXT
s CLOSE #1

254 C=0 12 FOR RN=1 TO ¢ ! A=1 3! FOR

CTO C+11 ¢ CHAR$(N)=SEG$(CMS(RN) sA» 1

)
2096 A=A+1é6 31 NEXT N 3 C=C+12 3 NEXT
RN 23 A=1

¢ FOR N=C TO C+3
N)=8EGH (CME(RN)»rA»16) 1! A=A+l

é
260 CHAR%
H GOTO 230

¢
NEXT N

143

Table 14-1
Table of Commands for Listing 14-3.

(The ALPHA LOCK KEY must be down)
KEY FUNCTION

E (up arrow) Cursor up
X (down arrow) Cursor down
D (right arrow) Cursor right
S (left arrow) Cursor left

W Blacken square

KEY FUNCTION

Z Whiten square

R Erase all blocks

Q Quits alter mode —no changes

{ENTER} Make changes on screen—leave
alter mode

to it, so now it can point to the second set of 12
characters in CHARS. Because RN will be two,
the second set of twelve character patterns (12 to
23) will be stored in the second element of CM$.
Both FOR . . . NEXT loops continue until nine
sets of 12 character patterns each have been
packed together and moved into CM$. The next
FOR. .. NEXT loop packs the last four character
patterns together and places them in the tenth
element of CM$ array. Now the entire character
set is ready to be saved to cassette. The file is
opened to output to the first cassette. Eachrecord
will have a fixed length of 192 bytes. The FOR. ..
NEXT loop will send out the ten elements of
CMs.

Lines 1250-1260 open the file for the cassette to
input or read the character set from the cassette at
the fixed length of 192 bytes for each record. The
FOR . .. NEXT loop uses the LINPUT or line
input command to get the records from the cas-

144

sette. The LINPUT command is used due to the
length of the records. The records are stored in
the string array CM$. Follow the instructions on
your screen to turn the cassette recorder on and
off. Once these records are in the computer, the
next FOR . . . NEXT loop breaks down each of
these 10 records into the 12 characters that are
stored on them. Each character is made of a 16
hex digit code. The SEG$ command removes 16
codes or one character pattern at a time and
moves it into CHARS. There are 12 character
patterns stored in the first nine records. The
tenth record contains last four characters.
When the computer is saving the characters to
the cassette it does not display the message RE-
CORDING on the screen. You can hear your
characters being saved by turning up the volume on
your monitor or television. You should hear a sound
like a burst of noise separated by a few seconds of
tone.

Chapter 15

Finding and Trapping Errors

The most necessary steps in programming are
testing and debugging your program. When you
write a program, you are familiar with its functions,
what answers or inputs are expected, and how the
program is supposed to work. The best test for a
program is to let someone who is unfamiliar with
the program sit at the computer and try it. It’s
amazing how many errors can appear when some-
one else is using your program. Of course, there are
some errors the program cannot check for. If you
enter 50 instead of 5, you would not expect the
program to ask, “ARE YOU SURE?” after every
question. On the other hand, there are ways to
check for errors before or after they happen, have
the program recover from the error and avoid hav-
ing the user experience an error message on the
screen.

ERROR-TRAPPING TECHNIQUES

ON ERROR
The ON ERROR command is one of the com-

mands that handles an error that may occur in a
program. When a program error occurs, the error is
printed on the screen and the program stops. Ifit is
possible for the user to enter any type of informa-
tion that could result in an error, the program
should be aware of the possible error and check for
it. It is also possible for the error to be generated by
the programtself. Again, the program can be set up
to watch for an error and handle it.

The ON ERROR statement is similar to a
GOSUB in that it also needs a RETURN statement
after the error is handled. ON ERROR must be
followed by a line number. This line number is the
program line that the computer will go to if an error
occurs.

Try the program in Listing 15-1 without the
ON ERROR instruction in line 140. After the words

~ have been printed on the screen, and the computer

has no more data, an error message is printed on the
screen, and the program stops. Now put the ON
ERROR line back in. The program will continue
until the FCTN and 4 keys are pressed. When the
computer runs out of data, it is in error. This time,

145

Listing 15-1

100 REM LISTING
110 REM ON ERROR

151

140 ON ERROR 180
150 READ A% 23
ENg

160 FOR TIME=L
1720 GOTO 1350
180 RESTORE 33

TO %500

NTyUNCLE s COUSTIN

120 REM RY L«M.SCHRETRER FOR TAR BOOKS
130 DISPLAY AT(2yDERASE ALLI*IT'M GOING
TO READI MY OWN®S"DATA.®

NISFLAY AT(7s7)8° 1 READy
$3 NEXT TIME

RETURN 140
190 UATA FATHERMOTHER BROTHER s STSTER 9 AU

however, line 135 tells the computer that when an
error occurs, go to line 180. The computer does this
and finds a RESTORE statement. Now it can con-
tinue reading the data and printing the words on the
screen. The RETURN tells the computer to go back
to line 140 before continuing, which resets the er-
ror handling.

Remove the line number after the RETURN
and run the program again. This time the RETURN
will send the computer back to the line where the
error occurred. The computer will read the words
in the DATA line and print them on the screen. The
error occurs again and the program stops. Once an
ON ERROR has been handled, it is cleared from the
computer. The error handling command must be
executed again when the next error occurs.

ON BREAK

You can protect your programs from being in-
terrupted with the ON BREAK command, by using
the ON BREAK NEXT command at the beginning
of the program. One word of warning here—with
the ON BREAK NEXT command, only a break
point set within the program itself will stop the
program. If the program loops, and there is no
natural end to the program, the only way to stop it is
to use the quit function.

When you do not specify ON BREAK NEXT,
the default is ON BREAK STOP. When the FCTN

146

and 4 keys are pressed, the program will stop. The
ON BREAK STOP statement can be used within
the program to restore the default.

You can also tell the computer to break or stop
at a particular line number. Use BREAK with a line
number at the beginning of the program and the
computer will stop at that line. If you use BREAK
without a line number, the computer will stop im-
mediately upon reading the instruction.

150 BREAK

The computer will stop when it comes to line
150 no matter what. However, if you use BREAK
with the line number before the ON BREAK NEXT
command, the computer will not stop at that line
number. It will not stop at 150 as directed to in line
110 of the short listing below:

BREAK 150

ON BREAK NEXT
PRINT “I WILL”
PRINT “KEEP”
PRINT “GO....... 7
PRINT “....... ING”
STOP

110
120
130
140
150
160
170

However, if you remove line 110 and add:

155 BREAK

the computer will stop at line 155. The following
program in Listing 15-2 demonstrates the ON
BREAK command.

ON WARNING

Some errors do not result in an error message,
but rather a warning message printed near the bot-
tom of the screen. When a warning occurs, the
computer allows the user to try again. Go back
through some of the programs in this book. You will
notice that in most of the program statement where
the ACCEPT AT command was used, the program
specified whether the entry should be numbers, and
if they were which numbers should be accepted.
You may have accidentally pressed the ENTER key
without entering a number. The VALIDATE option
can only check for a valid number. An entry with no
number gets a warning message and the opportun-
ity to try again.

There are two different examples of eliminat-
ing the warning in the program in Listing 15-3. In
the first few lines of the program, you are asked to
enter the number for the month that you were born

Listing 15-2

in. The VALIDATE option makes sure that only
numbers can be entered. If you press the ENTER
key without entering a number, a warning appears
on the screen. Now add the ON WARNING line to
the program. You can press the enter key all you
want. The program will not advance and you will not
get an error message.

The second part of the program does display
the warning message of the screen because this is
the default for an error that gives warning mes-
sages. In this routine, you are asked to enter a
number under 295. The computer will find the value
of e (2.718281828459) raised to the value that you
enter. Any number larger than 294 will cause an
error. Enter numbers that are less than and greater
than 295.

The third way to use the ON WARNING is
with the STOP command. When the computer has a
value error, instead of displaying the error and
waiting for another entry, the program stops after
the warning message is displayed. If the ON
WARNING STOP or the ON WARNING NEXT is
used in a program, it will stay in effect until an ON

100 REM LISTING 1%5-2
110 REM ON BREAK

130 CaAllL CLEAR 23
ERED®

140 GOSUR
150 FRINT
FFECT"
160 GOSUR

370

3720 ¢

210 FOR COUNT==1
STATUS)

120 REM BY A.R.SCHRETRER FOR
FRINT
"THEFAULT OF ON RREAK

BREAK 340 3
AK 320 COMMAND ISSUEDY

170 ON BREAK NEXT 3 FRINT “0ON BREAK NEX
T COMMAND ISSUED®

180 GOSUR 370

190 FRINT "ANY RBRREAKFOINTS 7 R
GOSUR 380 :: FRINT "NO I®

200 GOSUR 370 1 PRINT "CLEAR PRESSED #*

TO 75 13 CAlL

TAR ROOKS

"RUN COMMANI ENT
STOF IN E
FRINT "RRE
¢ GOSUR 370

KEY (O yKEY s

147

220 IF STATUSC=0 OR STATUS -1 THEN IF C
OUNT=49 THEN DISFLAY ATC23+17)22°TRY IT*®
i1 GOSUR 380

230 ITF KEY=2 THEN DISFLAY AT(23+17)1"YES
y HA HA 1" 1§ GOSUR 380 @ GOSUR 380 @
COUNT=7%S ELSE DISFLAY AT(23s17)0°N0O !°
240 NEXT COUNT 33 GOSUR 370

290 FRINT “EXECUTE NEXT COMMAND® 22 GOSU
B 370

260 FRINT "PROGRAMMED BREAKFOINT HIT®3®L
IST LINE # IN MESSAGE AND':"NOTE REMARK®
$¢ BREAK | TYFE “CONY TO CONTINUE

270 GOBUR 370 ¢ PRINT "EXECUTE NEXT COM
MANDY 22 GOSUR 370 '

280 PRINT “CLEAR PRESSED #°

290 FOR COUNT=1 TO 7% 3 CALL KEY(OsKEYy
STATUS)

300 IF 8TATUS<=0 OR STATUS<:-1 THEN IF C
OUNT=49 THEN DISFLAY AT(23417)2°TRY IT®
13 Gosur 380 :

310 TF KEY=2 THEN DISFLAY AT(23s17)"YES
vy HA HA 1" 33 GOSUR 380 ¢t GOSUR 380 2
COUNT=7% ELSE DISFLAY AT(23+17):°NO I°®
320 NEXT COUNT 3t GOSUR 370

330 ON BREAK STOF $$ FRINT *"ON RBREAK STO
P COMMAND TSSUED® 8 GOSUR 370 2 FRINT

"TYFE “CON‘ AFTER BREAKFOINT®
340 GOSUR 370 31 PRINT "EXECUTE NEXT COM
MAND®

350 GOSUR 370 1t FPRINT "FRESS CLEAR NOW
TO END" 22 GOTO 350

360 END

370 FOR COUNT=1 TO S5 ¢ FRINT TAER(14)5°2
e d NEXT COUNT -

380 FOR DELAY=1 TO 300 :: NEXT DELAY 3
RETURN

WARNING PRINT is issued. Be sure to clear any ERROR. The ON ERROR is similar to a GOSUB.
error trapping that you have set up before running After it executes the lines that it has been sent to, it
another program. needs a RETURN to send it back. There is one

RETURN

important difference between the RETURN used
here and the GOSUB’s RETURN. With the ON

The RETURN statement is used with ON ERROR’s RETURN, you have three different op-

148

Listing 15-3

100 REM LISTING 15-3

110 REM ON WARNING

120 REM RBY L.M.SCHREIRER FOR TAE ROOKS

130 DISFLAY AT(2:1)ERASE ALLI*THIS DEMON

STRATES ‘ON WARNING‘*®

140 ON WARNING NEXT

150 DISFLAY AT(Sy3)"ENTER THE NUMRER OF
THE® : "MONTH THAT YOU WERE RORN®

160 ACCEFT AT(6s26)VALIDATE(DIGIT) $MONTH
$3 IF MONTH=1 OR MONTH:>12 THEN 160

170 DISFLAY AT(10s3)2°YOU DID IT RIGHT!®

180 FOR TIME=1 TO 700 $i NEXT TIME

190 IF EXAMFLE>=S5 THEN DISFLAY AT(2y3)ER

ASE ALL:"ON WARNING STOF®" $: ON WARNING

STOF $: GOTO 220 ‘

200 DISFLAY AT(2y3)ERASE ALLI"ON WARNING

WITH WARNING®
210 ON WARNING FPRINT

THAN 295"
ICYIN

250 EXAMFLE=EXAMPLE+1

220 DISFLAY AT(S5:3)1"ENTER A NUMRER LESS
230 ACCEFT AT(9+s8)SIZE(11)VALIDATE (NUMER

240 DISFLAY AT(11510) tEXF(N)

GOTO 180

+ 2
L3R

tions to choose from. The RETURN can be used
alone. In this case, the computer goes back to the
line that was in error. If there is a line number after
the RETURN, the computer will go to that line
number to continue the program. The word NEXT
can also be placed after RETURN. In this case, the
computer would go to the program line immediately
Jollowing the one in error. You will have to decide
which method works best for your needs.

100 RETURN ! TRY THE LINE AGAIN

110 RETURN 30! GO TO LINE 30

110 RETURN NEXT ! USE THE LINE AFTER
THE ONE IN ERROR

TESTING FOR ERRORS

As you write your program, you should test
every routine and subroutine as it is added to the
program. Since every possible situation should be

taken into account, and is not always possible to do
S0, try to test for the extreme situations, such as
the largest value you expect, then a larger value;
the smallest value that should be entered, then an
even smaller value. Decimals, negative numbers,
and letters should be trapped, validated, or checked
in the program. Check that the FOR . . . NEXT
loops exit when and where they should. If there is
another exit from the loop, does it branch to the
correct routine? Does the GOSUB command return
to the correct line, and if a program goes to a
subroutine because of an IF . . . THEN statement,
is the program correctly branched around the un-
necessary lines?

If you are testing a routine that is not working
correctly, you should first try break points at the
line you think is causing the error. Also set a break
point before you enter the routine.

149

A break point is set by placing the command
BREAK in a line, or by telling the computer at the
beginning of the program BREAK (line number).
When the computer comes to that line number, the
program will stop. Check any variables for accuracy
before the program enters the routine by printing
them to the screen with a direct command. Then
type CONT. When the program stops again, check
the variables once more. If the variables were cor-
rect when the computer entered the routine and are
now incorrect, the error is occurring somewhere
between the two break points. Set a new break
point between the two in the program and try it
again. Keep dividing the area between the correct
line and the incorrect line until you can pinpoint the
error. Of course, if at the second break point the
variable(s) were correct, the error occurs after this
line. Move the break point to the end of the routine
and try again. After you correct the error, remove
all the breaks in the program. Then type UN-
BREAK in the direct mode. If you had a break point
set at a particular line in the program and you did not
reach that line while you were testing the program,
the computer would remember that break point,
and break at that line even after the command had
been removed from the program. UNBREAK
erases or clears all break points that have been set.

Another way to find out why a certain routine is
being used when you think it shouldn’t be, or why
the computer is coming up with strange values is to
use the TRACE command. The TRACE command
can be used as a direct command.

Type TRACE {ENTER}
then type RUN {ENTER}

The program in the computer will be executed,
but all the line numbers that the computer is using
will be displayed on the screen while the computer
is using them. This is very useful for checking
which program lines are being used and which ones
aren’t. Maybe the GOTO is sending the computer
to the wrong line. You will find out by following the
line numbers printed on the screen.

With a very long program, you may know that
most of the program is working correctly, but one

150

routine seems to be wrong. Place the TRACE
command in the program just before the computer
enters that routine.

110 TRACE

Now the program will run without displaying
any line numbers until this line is reached. Once
this line is executed, the computer will print the
line numbers on the screen as it executes that line.

The computer will continue to use the TRACE
command until you tell it to stop. In the direct
mode, you can type UNTRACE {ENTER}. Under
program control, you can use the UNTRACE com-
mand with a line number.

300 UNTRACE

Sometimes the program is operating cor-
rectly, but it is not running smoothly. It is taking too
long to arrive at the answer, the screen does not
look clean, the messages are garbled. These are
weak points of the program. If it appears the pro-
gram is running too slow, try to tighten the code or
instructions by placing more than one statement on
a line. (Watch out for IF . . . THEN and GOSUB
statements—when tightening code you can have
problems with them.)

CALL ERR

You can also find out more about the error that
has occurred in the program—which line number it
occurred at, the type of error, and the severity of
the error. The error code is the number of the
particular error. For instance, LINE NOT FOUND
is an error code 60. If the type of error is a negative
number, then the error occurred within the pro-
gram. The severity code is always nine, and the line
number is the line at which the error occurred. This
may not be the line that caused the error, but only
the line where the error was detected. The format
for the CALL ERR is as follows:

100 CALL ERR(CODE,TYPE,SEVERITY,
LINE)

If you are not interested in the line number,

then you do not have to use the last two
variables—SEVERITY and LINE. The first two
variables will contain the error code and the type of
error. ’

Playing Computer

Sometimes the best way to find an error that
does not readily appear when you use the usual
methods is with a pencil and paper. Make a list of
the variable being used. Write down the line
number you are starting with and the value of the
variables at that time. As you work each line of the
program, change the variables the way the com-
puter would. Calculate the equations and check the

lines the program would direct the computer to.
When you go to a subroutine, mark the line on the
paper, work the subroutine, and return to that line.
Many errors are made by reusing a variable in a
subroutine that you are using in the main program.
The program returns to the main part of the pro-
gram with a different value and causes an error later
in the program. Other times,. you find the program
has been directed to another line and never returns
to the original line at all! By working the program as
the computer would, it is easy to spot such rnis-
takes. This method can also alert you to routines
used within the program that could be made into
subroutines.

151

Chapter 16
Sights and Sounds

15—

One of the most exciting features of the TI-99/4A
computer is its graphics and music capabilities. As
you have seen with many of the programs in the
book, you are not limited by the characters set
within your TI-99/4A. You can change the charac-
ters to any form or design you want or need for your
program. You are limited only by your imagination.
Your TI-99/4A can also be programmed to produce
music or sound effects. Once you have added music
to your program, you will not want to use the stlent
version again!

USING GRAPHICS COMMANDS

CALL CHAR

The CALL CHAR command has been used in
several programs in this book. This is the command
that changes a character in the character set into a
new character. Each character in the character set
is made up of an 8 x8 grid or set of pixels. (See Fig.
16-1). The character is arranged so that one row of
pixels is one byte, and the character is eight bytes

152

high. In order to change one of these characters, we
assign new values to each byte that makes up the
character. When you used the Character Pattern
program in Chapter 14, you were able to see the
byte value of each row on the screen. These eight
values are passed to the character set in the com-
puter. Once the values have been changed, that
character number will become your new character.
Any character from 32 through 143 can be changed.
The character code is the first number in the
parentheses.

CALL CHAR(34,{pattern})

In the above example, we would change the
code of the quotation mark. The pattern is the hex
code that makes up the new character. The pattern
cannot exceed eight bytes—16 numbers. Trailing
zeroes such as those in “FF00,” can be omitted. If
you enter less than 16 numbers, the computer will
use zeroes for the remaining bytes. Try this:

10 CALL CHAR(36,FFFFC3A59999A5C3FFFF)

Value of each pixel

8 421842 1 </

-
| 00
38
44
04 Character

08 r‘ pattern
10

00
0)

Fig. 16-1 An 8x8 grid for character.

O NO O A WON -

1234567 8

20 PRINT “$”
30 GOTO 30

When the computer prints the dollar sign ($),
an “X” inside a box should be printed instead.

CALL CHARPAT

This command is the opposite of the CALL
CHAR command. This command tells you what the
pattern of a particular character is. Its format is:
CALL CHARPAT(36,B$). The first number in the
parentheses is the code of the character that you
want. The string variable will contain the character
pattern for that code. Enter this in the direct mode.

CALL CHARPAT(36,B$)

Now type PRINT B$. B$ will contain the
character pattern for the dollar sign. If you have
changed the character, the code should be the code
that you just entered to make the “X” in the box. If
you didn’t change the character, the character pat-
tern that you see is for the dollar sign.

CALL CHARSET

This command restores the original character
set. When you RUN a program, the character set is
- not restored. Any characters that you may have
changed in one program will remain changed until
this command is executed (or you quit and restart).

If you do not want to reuse your new character set,
be sure to have this command in it. Of course, once
the characters have been restored to normal, they
can be changed again.

CALL HCHAR

The HCHAR makes printing the same charac-
ter several times in a row very easy. All youneed to
do is tell the computer the row that it should be
printed in, the column to start in, the character
code, and the number of times that character should
be printed. The row number can be any number
from one to 24. The column can be a number from
one to 32. The character code can be any value from
zero to 32767. Although there are no actual char-
acters past 255, the computer will convert the code
to a value between 0 and 255. For example, 289
would be converted to 33 and the exclamation point
would be printed. This command along with the
next command can be used to make a border around
a menu or with a FOR . . . NEXT loop to make a
design.

CALL VCHAR

This command is very similar to the HCHAR
command except that it prints the character in a
column on the screen. The format is the same as
that of CALL HCHAR-CALL VCHAR(row
number, column number, character code, number
of characters). The program in Listing 16-1 (flow-
charted in Fig. 16-2) illustrates these two com-
mands.

Listing 16-1

Line 130 will trap the computer for warning errors.
Ifan error occurs, the computer will continue with
the program.

Line 150 prints the format for the HCHAR com-
mand on the screen.

Line 160 prints the line that will be filled with the
proper numbers.

Line 170 asks for a row number. The computer will
accept any number between one and 24 inclusive.
Line 180 places the number entered in the com-

mand and asks for the column number.
Line 190 makes sure that the number entered is

153

Set error
handling
for no entry
of numbers

\
Display
format of
HCHAR

Place com-
mand with
no values on
screen

Get a
row

No Is it
acceptable
?

Yes

Put it on
the screen
geta

A column

No Is it
acceptable
?

Yes

Put it on the
screen get a
character
code

>

No Is it
acceptable
2

Yes

A

Place on
screen

Set to
one

Place on
screen-

clear the
question

Place the character,
on screen with
HCHAR
command

1

Do it Neither

again

Fig. 16-2. Flowchart for Listing 16-1 HCHAR/VCHAR Example.

Clear screen
place format
on screen
for VCHAR

values on
screen

Is it
acceptable
?

No

————g Yes

Put it on
the screen
geta

column

Is it
acceptable
?

No

Yes

Put it on the

screen get /
character

code

Is it
acceptable
?

No

Yes

Place it on
the screen
get number
of repeats

Is it
acceptable
?

Set to
one

Y
Place on
screen

clear the
question

Place the char-
acter on seven
with VCHAR
command

155

Listing 16-1

156

100 REM LISTING 16-1

110 REM HCHAR/VCHAR EXAMPLE

120 REM RY A.R.SCHREIBER FOR TAR ROOKS

130 ON WARNING NEXT

140 REM HCHAR

150 DISFLAY AT(2y11)ERASE ALLI"HCHAR®: 2

"FORMAT:": :°CALL HCHARC(ROWsCOL s CHAR CODI

E*s®* CyREFETITIONTI)®

140 UISPLAY AT(101)2°CALL HCHARC »
Lo ne

170 DISPLAY AT(L2, 1) 2"GIVE ME A ROW #(1-

2427 10 ACCERT ATC(12»24)REEF VALIDATE(D

TGITYSTZE (2 IROW 33 IF ROW=1 OR ROW=24 T

HEN 170 .

180 DISFLAY AT(10»12)GTZE(2) ISTRE(ROW) 22
DISPLAY AT12,11) " COLUMN #(1-32)7" 21
ACCERT ATCOL2y27)REEF VALIDATE(DIGITISIZE

(2) LLOLUMN

190 IF COLUMN<L OR COLUMNE32 THEN 180

200 DISPLAY AT(1015)STZE(2) 18TRS (COLUMN
YD ODISFLAY ATO12.113 2 CHAR CODE(O-255)°
0 PY 1l ACCERT AT(13vAIREEF VALIDATE(DI

GITISIZE (3 2C0DE

210 IF CODE<Q OR CODE:255 THEN 200

220 DISFLAY AT1L0-1@STIZE(3) ISTR$(CODE) ¢
fODTSFLAY ATC1L2.11) ¢ *REFPEAT #(0-768)" 0"

T ACCERT AT(L3+ 4 BEEF VALTUOATE(DIGIT
YSIZEC3 IREFETITION

230 IF REFETITION<O OR REFETITION:=768 TH

EN 220 ELSE IF REFETITION=0 THEN REFETIT
TON=1

240 DISPLAY ATI2¢1)2RPTSHC *38)

2RO DISPLAY AT(10y2308TZE(3) (STRS(REFETI

TION)

260 CALL HCHAR(ROW, COLUMNy CODE s REFETITIO

N2

270 DISFLAY AT(244+(ROW=24)y1)°00 ANOTHE

R O(YANY 70 2 ACCEFT AT(244+(ROW=24)20)R

EEF VALTOATE (YN ISIZEC(LY 1A% 22 IF Ag=""
THEN 270

280 IF A$="N" THEN 310 ELSE DISFLAY AT(2

A4+ (ROW=24)Yv1 25" "

290 IF ROWC1L OR REPETITION® (25-ROW) X332~

COLUMNEL THEN 1350 ELSE GOTO 160

300 REM VCOCHAR

J10 DISPLAY AT(2+11)ERASE ALL:*VCHAR®E 2
TFORMAT2 "¢ 2tCAll VOHARC(ROW: COL s CHAR COD

E*2® DyREFETITIONIT)®

320 DISFLAY AT10s 1) 2 CALL VCHARC v v
[I

330 DIGFLAY ATCL2: 103 GIVE ME A ROW #(1-

247" 3¢ ACCERT ATC1L2»24)REEF VALIDATE(D
IGIMSIZECHIROW 22 TF ROWL OR ROW=24 T

HEM 330

FA0 DISPLAY ATCLO0» 1DSTIZE(2I 2ETRS (ROW)
DISFLAY AT(LI2y110) 2 COLUMN #(1-~-32)7%" ¢

ACCERT ATC12:273BEEF VALIDATE(DIGITISI
{2 1 C0OLUMN

350 IF COLUMN<1 OR COLUMN>32 THEN 340

360 DISFLAY AT(10-15)81IZE(2) 28TR$ (COLUMN
¢ DISFLAY AT(12.110) 2 "CHAR CODE(0-25%) 0
¢t P 3t ACCEFRT AT(13s4)REEF VALIDATE(DI
GIT)SIZE(3):CODE

370 IF CODE<Q OR CODEX255 THEN 360

380 DISFLAY AT(10.18)SIZE(3) ISTR$(CODE) $
: DISFLAY AT(12+ 112 REFEAT #(0-768)"13"

T ACCEFT AT(13»4)REEF VALIDATE(DIGIT
YSTIZE(3) IREFETITION

390 IF REFETITION=O OR REFETITION:>768 TH

EN 380 ELSE IF REFPETITION=0 THEN REFETIT

TON=1

400 DISFLAY AT(12«1)IRFTH(" "238)

410 DISFLAY AT(10y23)8IZE(3)3STR$(REFETI

®
*

ZE

TION)
420 CALL VCHAR(ROW COLUMN CODE yREFETITIO-
ND

430 DISFLAY AT(2451)2°00 ANOTHER (Y/N) 7
Pt ACCERT AT(24520)REEF VALTIDATE("YN")
SIZECLYtAs ¢8 IF A$="" THEN 430

A440 TF A$="N" THEN 450 ELSE DISFLAY AT(2
451):° * % GOTO 310

4350 END

between one and 32 inclusive. this program will only accept character codes
Line 200 places the column number in the command between zero and 255.

and asks for the character code. Although the Line 210 checks the value of the CODE variable. If

computer will accept any code from zero to 32767, it is not within the limits, the computer will be

157

directed back to line 200.

Line 220 places the code in the command and asks
for the number of times you would like this
character to be printed. This program will accept
any number from zero to 768.

Line 230 checks the value of the REPETITION
variable. If it is not a valid number, the computer
will be directed back to line 220. If it is a zero, the
computer will substitute a one for the number.

Line 240 erases the last question from the screen.
The RPTS$ tells the computer to print a series of
38 spaces beginning with the first column in the
12th row. .

Line 250 places the value of REPETITION in the
command on the screen.

Line 260 uses the HCHAR command to display the
character that you entered at the row and column
specified for as many times as you indicated.

Line 270 asks if you would like to try another set of
values. This question will be printed on the 24th
row unless that row was the one specified to begin
the characters printed. The program does not use
anIF. .. THEN command to test the row number.
Instead it uses a logic command. Look at the
DISPLAY AT command. After the plus sign, the
ROW=24 is in parenthesis. The computer tests
the value of the ROW variable. Ifit is 24, a —1 will
be added to the 24. The computer uses the value
—1 if the expression within the parentheses is
true. If the value of ROW is any other value, azero
will be added to the 24. The computer uses a value
of zero when the expression within the paren-
theses is false. The program will only accept an
“N” or a “Y” for the answer. If the ENTER key is
pressed and no letter is entered, the computer
will remain on this line until the “N” or “Y” is
entered. If a “N” was entered, the computer will
go on to line 310 for the VCHAR command.
Otherwise, it removes the question from the
screen.

Line 290 checks the value of the ROW. If the value
of ROW is less than 11 or the number of times the
character was printed caused it to wrap around to
the top of the screen, the message on the screen
was written over. The computer will be directed

158

to line 150 to erase the screen and get a new row,
column, character code and number of characters.
If the characters printed on the screen were not
printed over the message, they will be left on the
screen when the computer asks for the new val-
ues.

Line 310 begins the part of the program that dem-
onstrates the VCHAR command. The format for
this command is printed on the screen.

Line 320 places the command on the screen. You
will be asked to fill in the blanks.

Line 330 asks for a row number. Again, the row
must be between one and 24 inclusive. If it is not,
the computer will remain at this line until a cor-
rect number is entered.

Line 340 places the row number in the command on
the screen. It then asks for the column number.
This number must be between one and 32 inclu-
sive.

Line 350 checks the value of the COLUMN vari-
able. If it is not within the limits, the computer
will be sent back to line 340 to get another
number.

Line 360 places the column number on the screen
and asks for the character code. This portion of
the program will also limit the codes to zero to
255.

Line 370 checks the code value. If it is out of the
limit, the computer will be directed to line 360 to
get another code.

Line 380 places the character code in the command.
Now it asks how many times you would like this
character printed. You can print the character up
to 768 times.

Line 390 checks to see how many times you want to
print this character. If you requested more than
768 the computer will be sent back to line 380. If
you requested zero, a one will be substituted.

Line 400 clears the question from the screen by
printing a row of 38 spaces.

Line 410 places the number of times the character
will be printed in the command on the screen.
Line 420 uses the VCHAR command to print the

character in columns on the screen.

Line 430 asks if you want to enter another set of

codes. If you enter a “Y,” the program will con-
tinue at line 310. If you enter an “N,” the program
will end.

CALL SCREEN

The CALL SCREEN command will change the
color of the screen. We used this command in the
Colors program where we changed the color and

printed the color on the screen. The command for
CALL SCREEN is:

CALL SCREEN (number)

The number in parentheses can be any number
from one through 16. Each number has a different
color assigned to it. This command is often used
with the following command—CALL COLOR.

CALL COLOR

The CALL COLOR command allows you to
change the color (Fig. 16-3) of any of the characters
in the character set. The character set is divided
into 15 different sets (Fig 16-4). When you change
the color of one character in the smaller set, you
change the color of all the characters in that set. In
addition to changing the color of the character, you

_can change the background color of the character.
Do not confuse the character background color with

the screen color; these are two different colors.

When you are using the computer for entering
programs, the background color of the character
sets are set to transparent. The screen color shows
through. If the background color of the character is
set to any other color, you will see a box, like the
cursor, around the character. You can have a yellow
screen with a green background color and a red
character printed inside. Because each smaller set
within the character set is controled separately,
you can display an entire range of different colors
and color variations on the screen. The program in
Listing 16-2 (flowcharted in Fig. 16-5) prints the
entire character set on the screen, then cycles
through various screen, character, and background
colors. The second part of this program allows you
to enter the number of the character set that you
want to change along with the colors that you would
like it to be.

Listing 16-2

Line 130 uses the RANDOMIZE command to be
sure that every time the program is run the com-
puter will choose a different number sequence.
The screen is cleared and the CHAR variable is
set to 31. This is the offset for the characters that
will be printed on the screen. The ON WARNING
NEXT is used so that if the ENTER key is

Code Color
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
14 Magenta
15 Gray
16 White

Set Code Characters
0 30-31 Cursor & Edge Character
1 32-39 Space, , “, #, 9, %,&, '
2 40-47 G)* + comma, —, ./ -
3 48-55 0,1,2,3/4,5/6,7
4 56-63 8,9:,;,< =>7°2
5 64-71 - 8 A B C,DEFG
6 72-79 HLJKLNMO
7 80-87 P,Q,RSTUVW
8 88-95 xv,z .,/ , .-
9 96-103 Yab,cdefg
10 104-111 hijklmno
11 112-119 p.arstuv,w
12 120-127 x, v,z {, .} ,blank
13 128-135 undefined characters
14 136-143 undefined characters

Fig. 16-3. Color codes.

Fig. 16-4. Character sets.

159

Start random
generator
set error
trapping

Clear screen
place 12
character
sets on
screen

Choose a
screen color
and character
set

e

Choose a
foreground /
\ and background
) color

Get
character
set

Change
screen and
character
colors

Ge
background
color

Set colors
to
defaults

values same
at last time
?

screen and
character
colors

Get
foreground
color

Fig. 16-5. Flowchart for Listing 16-2 Color Foreground, Background, & Screen.

pressed without entering a number, the warning through 12. The set number will be printed on the

message will not occur. even rows of the screen.
Line 140 begins the FOR . . . NEXT loop. This Line 150is another FOR. .. NEXT loop. This time
program will change the background and fore- the characters for each set will be printed on the

ground colors for the character in the subsets one correct row of the screen. The COUNT variable

160

Listing 16-2

100 REM LISTING 16-2

110 REM COLOR FOREGROUNDsBACKGROUND & SC

REEN

120 REM RY ALR.SCHREIRER FOR TAR ROOKS

130 RANDOMIZE :: CALL CLEAR 3?3 CHAR=31 @
i ON WARNING NEXT

140 FOR ROW=2 TO 24 STEF 2 1% DISFLAY AT
(ROWy 1) ISET" sROW/2

150 FOR COUNT=1 TO 8 3: DISFLAY AT(ROWs1

O+COUNTX2) SCHR$ (COUNTHCHARDI & " 282 NEXT

COUNT

1460 CHAR=CHARYE 3 NEXT ROW ¢ FOR COUNT

=1 TO 25

170 SCRN=INT(RNIX16I+1 323 SET=INT(RNDX12
¥+32

180 BACK=INT(RNIK14)+1 2 FORE=INT(RNDX1

&¥+1 1% IF RACK=FORE THEN 180

190 IF SCRN=LSCRN OR SET=LSET OR BACK=LR

ACK OR FORE=LFORE THEN 170

200 LSCRN=SCRN i LSET=8ET ! LRBACK=RACK
11 LFORE=FORE

210 CaAll. SCREEN(SCRNY I CALL COLOR(SETF

ORE » BACK)

220 FOR DELAY=1 TO 300
230 NEXT COUNT 3% FOR I
COLORCT «291 238 NEXT T 2
i CALL CLEAR

240 DISPLAY AT(LO 1) 3"ENTER SCREEN COLOR
(1-1&2" ¢ ACCERT ATC(10.26)REEF VALIDATE
(NIGITISTZE(2) tSORN

2E0 TF SCRN<L OR SCRN:16 THEN 240

260 DISPLAY AT12y1I2°ENTER CHAR. SET(2-
120 2 ACCEFT AT(12«23)REEF VALIDATE(DI
GITYaTZE (2 IG6ET

270 IF SETZ 0R SET>12 THEN 260

280 DISFLAY AT(14. 1) "ENTER RCKGRND COLO
RCL-162" 23 ACCERT AT{14«27)REEF VALIDAT
E(NTGITISIZE(E) $BRACK

2P0 IF RACK<1 OR RACK:146 THEN 280

300 DISFLAY ATL& DY IPENTER FORGRND COLO
RO1-1&42" §8 ACCEPT AT(1&y27)BEEF VALIDAT
E(DNIGITISIZE (2) FORE

210 IF FORE<1 OR FORE>1S THEN 300

¢ NEXT DELAY
=2 TO 12 ¢¢ CALL
CALL SCREEN(8)?

i se

se

161

320 DISFLAY AT(20«1)3°SET SSET
330 FOR COUNT=1 TO 8 &3
FEOUNTR2Y SOHRS (COUNTH31+H(BX(SET-1)))8" *

I3 NEXT COUNT
340 Call
ORE » BACK)

350 VISFLAY AT(24-,1)2°D0 ANOTHER(CY/N) ¢
11 ACCERT AT(24-19)REEF VALTIDATE("YN®)S
THEN 350 ELSE IF A

ITZECLYiAs 1Y IF Ag=""
F="N" THEN END
360 Cal.l. SCREENC(8)22

£1 6GOTO 240

SCREEN(SCRN) 2 2

cALlL

DISFLAY AT(20:10

CAlLlL COLOR(SET:F

COLOR(SETs2+1)

will begin with one and count to eight. There are
eight characters in each subset. The value of
COUNT is added to CHAR and the correct
character is printed on the screen. A space is
printed after every character to keep them from
looking crowded.

Line 160 adds eight to the value of CHAR. We keep
adding to CHAR to keep the offset correct.
COUNT will only count from one to eight. If we
didn't add eight to CHAR after each set of charac-
ters were printed, all the sets would have the
same characters printed next to them. The FOR
. . . NEXT loop continues until all the sets are
numbered and the correct characters are placed
next to them. Now COUNT will count from one to
25. This next part of the program will be repeated
25 times.

Line 170 chooses a random number for the screen
color and stores it in the SCRN variable. One of
the sets is also chosen and placed in the SET
variable. We are adding two to the integer chosen
because we do not want to change the color of the
characters in set one or set zero. Set zero is not
displayed on the screen. Set one contains the
space, and we will try this program later with only
one being added to the integer to see the differ-
ence.

computer will choose two other colors. If the
foreground and background colors were the same,
you would not be able to see the characters in that
set.

Line 190 checks all the variables to see if any of the

colors or the set are the same as the one chosen
the last time. We do not want the screen to stay
the same color, nor do we want the same set being
changed, or the same character colors being used
every time. If any of the variables match the one
that was used in the last cycle, the computer will
choose a new set of colors.

Line 200 stores the colors that will be used in this

cycle in the corresponding variables.

Line 210 uses the CALL SCREEN command to

change the color of the screen and the CALL
COLOR command to change the character color.
The first number after the parentheses is the set
that will be changed, the second variable is the
foreground color, and the third variable is the
background color. When this line is executed, you
will see the screen change colors and one of the
sets will also change. Look at the words and
numbers along the left side of the screen. When
the set that they belong to is changed, these
characters will also change.

Line 220 is a delay loop so that the screen will pause
between colors.

Line 230 continues the loop. You will see 25
changes on the screen during this loop. The next

Line 180 chooses one of the 16 colors for the
background color and one for the foreground
color. If the same two colors are chosen, the

162

FOR. .. NEXT loop changes the character sets
back to their default values. The background color
is transparent and the foreground color is black.
The screen is changed to blue and cleared.

Lines 240-250 begin the second part of this pro-
gram. Here you can experiment with different
color combinations to see which ones are pleasing
to your eyes. First you are asked for a screen
color. Only a number from 1 to 16 will be ac-
cepted. This color will be stored in the SCRN
variable.

Lines 260-270 ask for the character set that you
would like to change the colors of. Again, you can
only change the colors of sets two through 12.

Lines 280-290 ask for the background color. Enter a
number between one and 16.

Lines 300-310 ask for the foreéground color. Again,
use only the color numbers one to 16.

Line 320 prints the set number that you chose.

Line 330 places the characters that are in that set on
the screen.

Line 340 changes the screen color and the
background and foreground colors of the character
set that you chose.

Line 350 asks if you want to play again. Some of
these characters may not show up on your screen
if the colors that you chose are too close to these
character colors. Enter “Y” or “N.” If you entered
a “Y,” the screen and the character set colors
would be set back to normal and the computer
would be directed to line 240 where it would ask
for new information. If you did not enter a “Y,” the
program would end.

In program line 170 we did not allow the com-
puter to change the colors of the first set of charac-
ters. Now change that line to read as follows:

170 SCRN=INT(RND=%16)+1::SET=INT
(RND+12)+1

Run the program. Whenever the computer
changes the colors of the first set, the screen also
changes colors, no matter what color the computer
may have chosen for it. You can see what color the
screen should be by looking at the screen border. It

keeps changing colors, yet the actual screen does
not change colors all the time. The reason is that
the space character is the first character of the first
set. When the screen is cleared, spaces are printed
all over the screen. Since only one character can be
printed on the screen at a time, the old characters
are erased. When the background color of the first
character set is changed, all the spaces on the
screen change to that color, so the entire screen
becomes that color. The border changes to the
screen color because there are no spaces printed on
it.

Think of the screen as three layers; the first
layer is the screen color, the second layer is the
background color, and the third is the character
color. In the default mode, the background color is
transparent, so the screen color will show through.
Once you change the background color of the first
character set, it is no longer transparent, and the
screen color cannot show through. You must keep
this in mind when you are changing colors on the
character set or you may end up with some un-
wanted results.

CALL GCHAR

This command allows the computer to look at a
particular location on the screen. The ASCII value
of the character at that location is placed in a vari-
able. The format is:

CALL GCHAR(row,column, variable)

You specify the row and the column number. Use
any variable name that you would like. The ASCII
value of the specified screen location will be placed
in that variable. This command is useful when you
want to check to see if a character is in a particular
place, such as in a grid game where the program
needs to know which playing piece is in which
square. In the program in Listing 16-3 (flowcharted
in Fig. 16-6), you are to follow the path on the
screen without running into the walls. The GCHAR
command is used before the next part of your path is
placed on the screen to make sure that your path is
not being placed on the wall. Use the arrow

163

Setup
characters

Place
character
on screen

Is

flag clear
?

No

paths on
the screen
Center

of screen
?

Key
pressed

Flash
screen
make

sound

?
Yes

Adjust for
row or
column

Offthe
screen

?
Yes
\
| Set for
end of
screen
No
Yes
Clear
flag Setflag

o

Fig. 16-6. Flowchart for Listing 16-3 Paths.

164

Listing 16-3

100 REM LISTING 16-3

110 REM FATHS

120 REM BY L .M.SCHREIERER FOR TAR ROOKS
130 Cs="FFFFFFFFFFFFFFFF®* $% CALL CHARC(I
AZ3yCH ¢ 135sCh) 27 CALL COLORC1A9691ls1301éy
1)

140 RESTORE 160 !¢ CALL CLEAR i CALL 8C
REEN(2)

130 FOR CT=1 TQ 7 1! READ Re+CsRFT $: CaAL
L. HCHAR(RsCy143,RFTY ¢ NEXT CT

160 DATA 2+3v2696911714s9915s7911¢17+351
Zel795 2051510324511 518

170 FOR CT=1 TO 7 3 READ ResCeRFT ¢t CAL
L VCHAR(RyCy 143sRFTY S NEXT CT

180 DATA 4e11v19sPs1%s12e11lel7v7911v19e5
P21l Prb9240 15228523

190 R=20 ! C=6 1! CALL HCHAR(RC»135)
200 CALL KEY(QOsKs8XE IF S=0 THEN 200
210 IF K=68 0OR K=100 THEN C=C4+1 $: GOTO
260

220 IF K=69 0OR K=101 THEN R=R-1 % GOTO
260

230 IF K=83% 0OR K=115 THEN C=C-1 $: GOTO
260

240 TF RK=88 (R K=120 THEN R=R+1 1 GOTO
260

280 GOTO 200

260 IF R<1 THEN R=1 ELSE IF R*24 THEN R=
24

2720 IF C=3 THEN C=3 ELSE IF C:28 THEN (=
28

280 CALL GCHAR(RsCeT288 IF T=143 THEN F=
290 CALL HCHAR(RCy 135)

200 IF F=0 THEN IF R=12 AND C=18 THEN 34
0 ELSE 200

310 CALL SOUND(2505110+5 11059200558y
5

320 FOR C=1 TO 3 i CALL SCREEN(14)::
LL SOUND2G0v110s55 11095200559 ~8¢5) 88
ALL SCREENCLIO)D

330 FOR DELAY=1 TO 1060 i NEXT LELAY %
NEXT © :t GOTO 130

Cah
C

165

3 cAlLL
4] C
3460 3
B 350

350 GOTO 130

3450 FOR C=1 T0 4
s Sy LAZXC S 185X

40
)

.
&+ 0
*

Cal.l

3

2
L
Wi

COLOR(LAySsLel3e79l) 11
ALL COLORC14:82113131022
COLORCLI4«11219139491)828

HEE ST
3

GOSUR 34
GOSUR
Gasu

SOUNDC200. 110%C
NEXT & &% RETURN

keys—S, D, X, and E without the function key to
make the path. '

Listing 16-3

Line 130 creates a new character. The code is
placed into C$. The CALL CHAR command
places this character code into the 143rd charac-
ter of the character set. It also places that same
character code into the 135th character of the set.
The CALL COLOR command changes the color of
the 14th set to light blue and the color of the 13th
set to white.

Line 140 sets the pointer to line 160. When the data
is read, the computer will begin at this line
number. This is not necessary the first time that
the program is run, but when the program is
repeated without the RUN command, the com-
puter needs to know where the data is. The sc-
reen is cleared and the screen color is set to black.

Line 150 is a FOR . . . NEXT loop. The computer
reads the row and column number and the number
of times the character will be printed from the
DATA line that follows. The HCHAR command is
used to draw the horizontal lines of the maze on
the screen. The loop continues until all the lines
are drawn. :

Line 170 is similar. This time the computer draws
the vertical lines of the maze using the informa-
tion from the DATA line that follows.

Line 190 sets the starting row and column for your
cursor and positions it on the screen.

Line 200 uses the CALL KEY command to find out
which key is pressed. If the value of the S variable
is zero, then no key has been pressed. The com-
puter will remain at this line until a key has been

166

pressed. The ASCII value of the key will be
stored in the K variable.

Lines 210-240 check the value of the K variable. If
the value is 68 or 100 then the D key has been
pressed. One is added to the value of C so that the
cursor can be moved one column to the right. If
the value of K is 69 or 101, ‘then the E key has
been pressed. One is subtracted from the value of
R so that the cursor can move up one row on the
screen. When the value of K is 83, the S key has
been pressed. To move the cursor to the left, one
is subtracted from the value of C. The K variable
has the value of 88 when the X key has been
pressed. One is added to the value of R to move
the cursor down one row on the screen. After the
row or column variable is adjusted, the computer
is sent to line 260. By checking the K variable for
two values, you do not have to worry about the
ALPHA LOCK key. The first value is the upper-
case value, the second the lowercase. The pro-
gram will work correctly whether the ALPHA
LOCK key is up or down.

Line 250 is executed if the key that was pressed was
not one of the arrow keys. The computer will loop
until a correct key is pressed.

Line 260 checks the value of the R variable. If the
value is less than one, or greater than 24, the
cursor would be printed off the screen. The vari-
able is reset to the edge value.

Line 270 checks the value of the column vari-
able—C. If this value is less than 3 or greater than
28, then the cursor would be off the screen, so the
program resets the variable to the correct edge
value.

Line 290 uses the GCHAR command to find out

what is on the screen at the location that the
cursor will be printed at. At this time, the cursor
has not moved. Before the computer will place the
cursor at the new location on the screen, it needs
to know what is currently on the screen at that
position. The ASCII value of that location will be
placed in the T variable. If the value of T is 143,
then the wall is on the screen at that location. The
F variable is used as a flag. If the cursor will hit
the wall, the variable is set to one for true; other-
wise it is set to zero. A

Line 290 places the cursor on the screen at the new
location. Character 135 is the cursor.

Line 300 checks the value of F. If it is a zero, the
computer checks the row and column that the
cursor is in. If the cursor makes it to the twelfth
row and eighteenth column without hitting the
wall, the computer is sent to line 340. Otherwise
it is sent to line 200.

Line 310is used if the value of F isa one. The CALL
SOUND is used to call your attention to the fact
that you hit a wall.

Lines 320-330 flash the screen and continue the
sound. After it has finished, the computer is sent
to line 130 to start another game.

Lines 340-360 are used when the cursor reaches the
center of the maze. The screen flashes and the
computer sounds to let you know you have made it
without hitting any of the walls.

USING SOUND COMMANDS

CALL SOUND

Your TI1-99/4A computer is equipped with four
separate and distinct sound generators. Each voice
or sound generator is capable of producing its own
tone or noise independent of the other generators.
Only three tones may be produced at one time. The
fourth generator can produce noise while the other
three are producing tones. The format for produc-
ing tones or noise is as follows:

CALL SOUND(duration, frequency, volume)

The first variable sets the duration or length of

time that the computer will produce the tone. The

number is in thousandths of a second, so if you want
to produce a tone for one second, the first number
would have to be 1000. Two seconds would be
2000, and a quarter of a second 250. If the value of
this variable is positive, the computer will not make
the sound until the previous sound has been com-
pleted. If, however, the value of the variable is
negative, the computer will begin the new sound
immediately.

The second variable is the frequency of the
tone. The frequency of a tone is the actual tone
itself. Every note or tone vibrates at a different
frequency. The larger the frequency, the higher the
tone; the smaller the frequency, the lower the tone.
If the variable contains a position number such as
110, 440, or 1047, the sound will be a tone. The
tone values are any positive number between 110
and 44733. A negative number will produce noise.
The noise values are the negative numbers be-
tween negative one and negative eight.

The third value is the volume. This value de-
termines how loud the sound will be. The value can
be any positive number between zero and 30 with
zero being the loudest and 30 the softest. A nega-
tive number cannot be used for the volume.

The program in Listing 16-4 (flowcharted in
Fig. 16-7) demonstrates using the SOUND com-
mand with negative for the duration. In this pro-
gram the computer will produce only one tone at a
time.

Listing 16-4

Line 130 creates new characters. C$ has been set to
a character pattern, which was the character
numbers 143, 135, and 127. On this line the pat-
tern in C$ is changed. The new pattern is used for
character numbers 142, 134, and 125.

Line 140 clears the screen and sets the screen color
to cyan. The characters in the fourteenth set are
changed to white on a transparent background;
the thirteenth set is changed to light blue on a
transparent background, and the twelfth set is
changed to black on a white background. These
three sets will be used for the piano keys.

Line 150 prints the title of the program on the
screen.

167

Create Music
new subroutine
characters

Clear
screen

change
colors

Place keys
on screen
and label
them

Return

Key
pressed
?

Use music
subroutine

L<——r

Fig. 16-7. Flowchart for Listing 16-4 Play a Tune.

Listing 16-4

Line 160 is a FOR . . . NEXT loop that places the
piano keys on the screen. The data in line 170 tells
the computer which column the key should be
drawn in. The value of CT sends the computer to
the subroutine that draws the correct key.

Line 180 is another FOR . . . NEXT loop. This
routine draws in the black key. The data in line
190 tells the computer in which row the black key
begins. The VCHAR command is used to place
the key on the screen.

Line 200 places the letter names of the keys on the
screen.

Line 210 uses the CALL KEY command to find out
which key has been pressed. If the value of the S
variable is a zero, then akey has not been pressed
and the computer loops at this location until a key
has been pressed. When the value of S is not zero,
the value of the K variable is checked. If its value
is less than 49 or greater than 56, a number key
between one and eight has not been pressed. The
computer will loop back to the beginning of this
line. The computer will remain at this line until a
valid character has been entered.

Line 220 subtracts 48 from the value of K. The
ASCII value of the number one is 49. By sub-
tracting 48 from the ASCII value, we arrive at the
number of the key that has been pressed. The
computer is directed to the correct sound line
based on the value of K.

Line 230 uses the CALL KEY command again. This
time the S variable is checked for a negative one.
If the value of S is a negative one, then the same
key was pressed. The value of S will be positive if
a new key is pressed, and a zero if no key is

100 REM LISTING 16-4
110 REM FLAY A TUNE

A43+C%9 135 C$ 1275080 8 ¢
101°% 33

140 Cal.l. CLEAR

L3R
LA

168

120 REM BY A.R.SCHREIBER
130 C$=*FFFFFFFFFFFFFFFF®

CALL CHAR(142+C$s1345CH»125+C%)
CALL

FOR

¢ o
¢ ¢

TAR ROOKS
CALL CHARC(1
C$="0101010101010

*+ o
¢ o

SCREEN(8) CALL

COLOR(14y16925 135692512+ 2516)

150 DISPLAY AT(4s8)*FLAY A TUNE®

160 FOR CT=1 TO 8 $: READ C $t ON CT GOS
LUE 350538054005 35053805 38054005350 2t NE
XT CT

170 DATA S5¢8s11s14517520523+26
180 FOR CT=1 TO 11 3% READ € 3

AR(145Ce12794)28 NEXT CT

190 DATA 7s8510511+s16517519520522523,28

200 DISPLAY AT(22:8)3°C 0 E F G A

EoCe

210 CALL KEY(OsK»8)$3 IF S§=0 THEN 210 EL

SE IF K49 OR K>5&6 THEN 210

220 ON K-48 GOSUR 260527052805 290300 31

05320330

230 CALL KEY(OyKYy8)38 IF S=-1 AND KY=K
THEN 220

240 ON K-48 GOSUR 3503805400350, 38038
034005350

250 GOTO 210

240 CALL SOUND(-250,1315)28 O=5 1 GOTO
340

270 CALL SOUND(-250514755)83 C=8 2 GOTO
370

280 CALL SOUND(-250+165:5)88 C=11 3 GOT

0 390

290 CALL SOUND(-25E05175:5) 83 C=14 3 GOT
0 240

300 CALL SOUNI(-2%0,y196+5)88 C=17 3 GOT
0 270 .

310 CALL SOUND(-250s220,5) 81 C=20 t3 GOT

0 370

320 CALL SOUNDC-250,247,5)83 C=2% 11 GOT
0 %90

A0 CALL SOUND(-250.262,5)81 (=26 11 GOT
0 340

340 CALL YCHARCI4:Cr 1357088 CALL VCHAR(
149041 v 135, 7083 CALL VCHARCIBCH2e 1350 3)
1t RETURN

350 CALL UCHAR(14+Cr143y 7382 CALL VCHAR(
145CH1e 14307238 IF CH2:28 THEN CALL VCHA
ROIBsCH2 12503038 RETURN

FS0 CALL VOHAR (I8 04214303088 RETURN

¢ CALL VCH

169

370 call.
14«0+1 1357228
1Y RETURN
380 CaAl.l
14.C+1+143+7) 132
1! RETURN
320 CALL
14+CH1L 13570232
1! RETURN

CAlLL

CALL

CAl.L

14+CH+1v143.7) 22
i RETURN

VOHAR (1B Cp 13533 02
VCHAR LBy C42 135 3D

VCHARC(18+Cy143:3)322
VCHAR (18- CH+2: 125, 3)

VCHAR(18,Cy 135,33 22
VOHAR (14 C+25 1354 7)

400 CALL VCHAR(18,Cr14353)2¢ CALL VCHAR(C
CALL VCHAR(14sC+2:125,7)

CALL VCHAR(
CAl.l. VCHAR(

CALL VCHAR(

pressed. If the value of S is a negative one and the
ASCII value of the key is the same as the last
variable, the computer is sent back to line 220 to
continue the sound.

Line 240 is used when a new key is being pressed,
or no key is being pressed. The value of the K
variable is the ASCII value of the key, so 48 is
subtracted from it so the computer can use the
actual value of the key. The computer is sent to
the correct subroutine based on this new value.

Line 250 sends the computer back to line 210 to
wait for another key to be pressed.

Lines 260-330 contain the SOUND commands. The
computer will be sent to one of these lines based
on the value of K. The value of the duration is
negative. This means that the computer will use
the new values as soon as it receives this com-
mand. The tone will be played for a quarter of a
second. The value of the tone is based on the note
values for low C to middle C. The sound will be
relatively loud. After the computer makes the
correct sound, the C variable is set to a value.
This value is the column of the key on the screen
that is producing the note. The computer is sent
to the correct subroutine.

Lines 340-400 display the piano keys on the screen.
The lines are in sets of two. The first line places
the blue key on the screen. The second line re-
stores the key to white. This way, when you press
a key to create a sound, the screen will indicate

170

which key is being pressed. The tone will con-
tinue and the key will remain colored until a new
key is pressed or no keys are pressed.

In program lines 260 through 300 the duration
is a negative number. Change it to a positive
number and run the program. Hold a key down for a
period of time. You will hear the tone pulsating.
When the duration is positive, the computer does
not use the new SOUND command until the one that
it is using has completed its cycle and the sound
generator shuts off. Then the computer uses the
SOUND command again, turning the sound
generator on for the length of time specified by the
duration. Replace the values with the negative
ones. Now run the program and hold a key down.
The tone is steady. With the negative value, the
computer changes to the new SOUND command
immediately. The sound generator does not shut off
and on again, so there is no pulsing effect, just
smooth tones.

The program in Listing 16-5 (flowcharted in
Fig. 16-8) combines some simple graphics with two
part harmony. Your TI-99/4A computer is capable
of three part harmony. In this program, we will use
two sound generators at the same time.

Listing 16-5

Line 130 clears the screen so that you do not see the
characters being changed if any are on the screen.

Clear
screen

Create
new
characters

Y

Change
screen
color &
character
colors -

Place cake
and

message
on screen,

Get 2 notes
and
duration

Fig. 16-8. Flowchart for Listing 16-5 Cake.

Listing 16-5

The characters from ASCII 99 through 109 are
changed. The character patterns for these
characters begin with line 250. (See the altered
characters in Fig. 16-9.)

Line 140 changes the characters from 112 to 116.
We miss the characters between 109 and 112
because we want these to be a different color, so
we are starting at a new character set.

Line 150 changes two more characters. These will
be the candles on the top of the cake.

Line 160 changes some of the uppercase letters.
Since we are not changing all of the uppercase
letters, the computer reads a number before it
reads the character pattern. This number is the
ASCII value of the character that will be changed.

Line 170 changes the colors in the character sets 9,
10, and 11. In set 9, the foreground or character
color is the same as the screen color. The
background is set to light red. This eliminates
code to enter for the character set because most of
the character will be light red. The same thing
holds true for set 10. The background or character
color is set to medium red. We use this color for
the edge so you can see the difference between
the top and the side of the cake. The background
color is light red. The last set, 11, is the plate.
The foreground or character color is medium
green and the background color is transparent so
that the screen color will show through.

Lines 180-200 place the cake with the lit candles on

the screen.

Line 210 prints HAPPY BIRTHDAY on the screen

These letters have been changed to a fancier
character set.

Line 220 plays the melody. There are 26 sets of

notes in the song. The computer reads in the
duration or length of the note (D variable), the
first note (N) and the second note (N1). The
SOUND command plays both notes at the same
time. The value for the duration is the first vari-
able followed by the first note and its volume. The

100 REM LISTING 16-3
110 REM CAKE

120 REM RY L.M.SCHREIRER FOR TAR ROOKS

171

130 Call CLEAR 3 FOR I=99 TO 109 ! REA
INeCE 1t CaALL CHARCIZCEY I NEXT I
140 FOR I=112 TO 116 3 READ C4 ! CALL
CHAR{T »CHY 12 NEXT I
150 FOR I=120 TO 121 ¢t READ C$ 3¢ CALL
CHARCTI «CH2 18 NEXT T
140 FOR I=1 TO 9 2:f READ C+C% t3 CALL CH
ARCCCHI> 33 NEXT I
170 CALL COLNRCP 1210210910911 s3el) e
Call. SCREENCLIZ)
180 DISPLAY AT(10:12) "daccfs" $f DISFLA
Y ATCLLy 12 0% hiaddid™ 13 DISPLAY AT(l2e1 3
IS I A I
1920 DISFLA&Y AT1Xe 11 2%k 11wt 3 DISE
LAY AT(14y11)3“u;rrrwr5"
200 DISFLAY AT{D a3 0w
210 nrsrLay AT(éyii)'“W a o Pyt i nIsR
LAY ATIZ»828"8 T R T H O & o
220 FOR I=1 T0O 26 ¢ READ DenNed 11 CaLL
GOUMDCOs N Qs N120)$E NEXT T
“?0 DISFLAY AT(Pv]14) 1wyt
240 GOTo 240
250 DATA FFeFFFFFUFOROG llthFOJ FFFFAEFG
F()%()T

80L0h?OQPOQOQOQOOOOOlQQQf

270 DATA Q0000CO3Z070F0F Q7 0301« FFFFFF O
e 000000C0EOFOFOE» Q01002901 2929292, 00000
0l01292
280 Data i v /’F"\(\f\.,),"lz'*‘\(.u,ul'..-" s FLASS
6:“;f f‘ ':(.'l.; ' (,,t'-i.- g : ;
290 DATA 73
HOF v S“vlfﬁﬁm{vrﬁréu/;
300 DATA B9 sEFsAA
3 'l 0 I'IATQ l'f“}ﬁ TRET,

v, 1’ ¥ 1 Eﬁ\} ¥
¥ .1." G v ,JOO y 262y 194 B00
330 NATA 280+262,220
v 34955009440 F49, 2
«E500yA30 3
340 DaTa -
¢ 349y S5O0

§#9v2629ﬁ0093?2.

172

8 421842 1 8 4218421 8 4218421 8 4218421
FF FF FF FF
00 FF 80 o1
00 FC 00 . 00
00 FO 00 00
00 co 00 00
00 80 00 00
00 00 00 00
00 00 00 00
#99 #100 #101 #102
8 4 2 184 2 1 8 421842 1 8 421842 1 8 4218 421
FF 40 00 02
FF 20 (V] 04
3F 1F FF FC
OF 00 00 00
03 00 00 00
01 00 00 00
00 00 00 00
00 00 00 00
#103 #104 #105 #106
8 42 184 2 1 8 421842 1 8 4218421 8 421842 1
00 00 00
00 00 00 00
00 00 00 00
00 00 00 03
00 00 00 07
80 00 o1 OF
co 00 03 OF
EO 00 07 07
#107 #108 #109 #112
8 4218421 8 421842 1 8 4218421 8 4218421
03 FF co 00
01 FF 80 00
00 FF 00 00
00 00 00 co
00 00 00 EO
00 00 00 FO
00 00 00 FO
00 00 00 | EO
#113 #114 #115 #116

Fig. 16-9. Characters for Listing 16-5 Cake.

second note and its volume follows. The duration the program before the last note has finished, the

for both notes is the same. The loop continues candles will be blown out during the last note.

until all the notes have been played. The melody Line 240 keeps the program from ending until the

is located in lines 310 through 340. The duration CLEAR key has been pressed.

for all the notes is a positive number. This means

that the next note will not sound until the com- MIXING GRAPHICS AND SOUND

puter has finished playing the current note. The program in Listing 16-6 (flowcharted in
Line 230 blows out the candles after the song. Fig. 16-10) combines graphics with sound. It is an

Actually, because the computer will continue with example of the classic pencil and paper game—

173

8 4218421 8 4 218 42 1

00 00
10 00
02 00
90 . 10
12 12

92
92
92

92
92
92
#121

8 421842 1

#120
8 4 2 1842 1

FC F7
66 66
66 66
66 7E
66 66
66 66
FC F7
00 00
#68 #72

8 4 2 184 2 1

8 421842 1

8 4218421 8 4 218 42 1

7€ FC
66 66
66 66
7E 7C
66 66
66 66
F7 FC
0o 00
#65 #66
8 4218421 8 4218421
3C FC
18 66
18 66
18 7C
18 60
18 60
3c Fo
| 00 00
#73 #80

#82 #84

Fig. 16-9. Characters for Listing 16-5 Cake. (Continued from page 173.)

battleships. But this time, you are playing against
the computer.

Listing 16-6

Line 130 uses the RANDOMIZE command to en-
sure that every game will be different.

Line 140 is a FOR . . . NEXT loop that reads the
length of each ship into an array. The computer
will use this information when it is placing the
ships in its grid.

Line 150 is the data for the ships. Each player has
ten ships to place in the grid that are four different
sizes. '

Line 160 places the character number 103 in three
string arrays. These arrays will be used to deter-
mine where the ships hits, and misses are. At
this time, character 103 is undefined. We will

174

create this character in the next routine.

Line 170 places the data pointer at line 200, where
the information for creating the new characters is
stored. The screen clears, and the computer
reads the character patterns from the DATA line.
The new characters are placed in locations 124
through 143 (Fig. 16-11).

Line 180 sets the C variable to 110. This is the first
location of the character that will be created. The
FOR. .. NEXT loop counts from 134 to 143. The
character pattern from these locations is placed in
C$. Then that pattern is transferred to the loca-
tion set by C. The C variable is incremented by
one and the loop continues. The characters are
transferred from one location to the other. The
characters are the same; however, when they
appear on the screen, they will be in two different
colors. By transferring them to another set, the

Create new
characters

&change
colors

o

Choose a
position

Place ships
in strings

'y

addone to
score

No

Place marker
on screen

Computer
chooses a
position

Place. marker
on screen

Put human
won on
screen

Fig. 16-10. Flowchart for Listing 16-6 Battleship.

Listing 16-6

100 REM LISTING 146
110 REM BATTLESHIP
120 REM RY L.M.S5CHRETIRER

130 RANDOMIZE

FOR TAR

ROOKS

175

176

140 FOR C=1 TO 10 !¢ READ L. ¢ SHF(C)=L
13 NEXT C

150 DNATA 49353s292v291elslsd

160 FOR C=1 TD 10 $: H$(CIY=RFTH(CHRH (103
Y 10) ! COMS(C)=RPT$(CHRE(103)+1032¢ SCR
F(CI=RFTS(CHR$ (103) 1081 NEXT C

170 RESTORE 200 $i CALL CLEAR $: FOR C=1
24 TO 143 :¢ READ C% 3 CALL CHAR(CC$) ¢
I NEXT C©
180 C=110 @
ARFAT (T« %)
NEXT T

190 FOR C=101 TO 103 t: READ C$% 3 CALL

CHARC(GyCEY 33 NEXT [

200 DATA 000103031F130301000A030F0F0303
OF s IFOFO3030ROFOROZy QOOBOLOEZFEFSFZF s OF 3
FIFLF1FOFOFOF s 1F1F3F2F2FOEQCOR

210 TATA 0004161 71F0FQ070F s Q7 1FOZ0FO7070F
AF s PFIFOFO7IFO7070F v LF171707070F 06045000
O00Z010107CFE s 00000000FERBIFEFC

220 DATA 00000001 7323AFF7Fy00FO0R0FOFEFCFS
FOvQOO00&61FEFFFFFFFFsQOO01ICOZFFZFIFLF 000
GOO1CROFEFCF2000080820AFFFFFF

FA0 DATA Q001031 ZX97FFFFFFyQ0QO00000721FF7F

¢ FOR

R I=134 TO 143 :: CALL CH
¢ CALL CHARCCCH) 3

C

1818181181 FF

240 HSvCE CHE =0

250 CALL SCREEMGIIED CaLl COLOR(1L4¢Se1 91

FvSelel2eSelellslé&slsdQeldbelePelbel)

2680 FOR C=0 TO 8 CAaLL CIMOR(Cs10e1)22
NEXT

270 DISFLAY AT(2y 1) 3 COMPUTER" $1 DISPLA

Y AT(2+243 I "HUMAN" 3 DNISFLAY AT(Z.102"
ABCHNEFGHI.I"

280 GOSUR 1470 ! FUT GRID ON SCREEN

290 BU$=CHRE(1IZIZIECHRS (132 ECHRS (131 &CH

RECLI30331 CUS=CHR$ 129 RCHRECLZ2BIRCHRS (1

2733 MWWE=CHR$ (1286 8CHRS (125)

300 SEVE=CHRE L2411 SUECLy=RVE 11 SU$C2
y=00E 1 SVUE(ETI=0Vs 2! FOR C=4 TO & 28 &
VE(CHr=1% 13 NEXT C

210 FOR =7 T0O 10 3! SVSCI=8RVE ! NEXT
(N '

ET
e

CH1 22

continued on page 178

colors can be changed and both sets can be printed
on the screen at the same time and in two different
colors.

Line 190 places the last three characters in loca-
tions 101 to 103.

Line 240 sets the HS, CS, and CHF variables to
zero. The first two variables keep track of the
player’s score and the computer’s score. The
third variable is set when the computer has hit a
ship.

Line 250 changes the color of the screen and the
character sets 9 through 14.

Line 260 is a FOR . . . NEXT loop to change the
color in the first nine sets.

Line 270 displays the players’ names and the letters
for the grid.

Line 280 sends the computer to a subroutine that
places the grid on the screen.

Lines 290-340 place the characters for the ships in
string arrays. There are two sets of ships that will
be used in the program. Both sets are placed in
string arrays. The ships with the “V” in the vari-
able name will be vertical on the screen. The
ships with the “H” will be horizontal.

Line 350 places all four ships on the screen. The
ship that you will be placing in the grid is a dif-
ferent color.

Line 360 begins the FOR. . . NEXT loop that places
the ten ships on the grid. You will be placing one
battleship, two cruisers, three destroyers, and
four submarines on the grid.

Line 370 sets the flag variable to zero. This variable
will be set to one if the position where the ship is
being entered is invalid, or the X key was pressed
to delete or erase the ship from the screen. The
first subroutine at line 740 gets the letter and
number of the position of the ship. The second
subroutine at line 870 finds out if you want the
ship going across or up on the grid. It also checks
the position to make sure that the ship can fit in
that position and waits for the ENTER key or an
X. If the ENTER key is pressed, then the ship is
in the position that you want it in. If the X key is
pressed, the ship is erased, and the FLAG vari-
able is set to one. The line will repeat itself until
the FLAG variable is zero.

Line 380 continues the loop until all the ships are
placed on the grid. Then the computer will tell
you that it is placing its ships on the grid.

Line 390 begins the computer's FOR . . . NEXT
loop to place the ships on the grid.

Line 400 sets the flag to zero again. The computer
chooses two random numbers, one for the letter
and one for the number.

Line 410 chooses a zero or a one. If the computer
chooses a one, the ships will be placed across on
the grid, otherwise it will be placed up.

Line 420 uses the subroutine at line 1280 to see if
the computer can place the ship at that location. If
it cannot, the flag will be set to one and the
computer will go to line 400 to choose a new
location. If the computer can place the ship there,
the loop will continue.

Line 430 continues the loop until all the ships have
been placed onto the computer’s grid.

Line 450 begins the game. The computer uses the
subroutine at line 1470 to place the elements of
SCR$ on the screen. This string array stores the
screen information. If there was a hit or miss, it
will be in this string and then placed on the
screen. The color of the characters are changed. -
The same characters are used for the computer
grid and the player grid. By changing the color of
the character set, we know whose turn it is.

Line 460 uses the subroutine at line 740 to get the
letter and number of a square on the grid. The
computer looks at that location in its string array
to see if it was used before. The characters 101
and 102 are used to indicate a hit or a miss. If that
location was used before, the computer goes back
to the beginning of this line and the player must
try another location. Each location can be entered
only once in a game.

Line 470 checks to see if that location was a 103. Ifit
was not, the player hit a ship and the computer is
sent to line 660 to flash the screen, tally the score,
and place the hit marker on the grid.

Line 480 places the miss marker in a temporary
string and uses the subroutine at line 1490 to
place the marker on the screen and in the correct
string arrays for storage.

Line 500 begins the computer’s turn. The grid color

177

178

320 BHE=CHRSCL43YRCHRECLA2) ROHRE (141) &CH

RECLA40)1: CHE=UHRE (L3P RCHRS C138) ROHRS (]

3711 DHE=CHR$ (134 &CHRS (135D

AZ0 SEHE=CHR$ (13482 GHEC(L)=RBHE 13 SHE(D
y=CHE 3 SHE(Fd)=0CHE 2 FOR =4 TD & 11 &

e CCy=NIH% ¢ NEXT C

40 FOR C=7 TO 10 21 SHE(C)=8RH$ & NEXT

(I

350 DISFLAY AT (18 IRHSE" "KCHR$CL1LE) RO

MRS CL1I4) SCHRECLLZD & "RCHRS CLL2) RCHRS (11

Ly&" YRCHR$ (110D

3460 FOR SH=1 TO 10 .

I70 FLAG=0 3 GOSUER 740 222 GOSUR 870 2

IF FLAG THEN 370

380 NEXT SH 31 DISPLAY AT21¢1)2TARCS) °

FLACING MY SHIFS®

390 FOR SH=1 TO 10

400 FLAG=0 §3 SC=INTORNIKIOIHL $§8 N=INT(

RNTKLOY 41

410 K=INTCRNIK2) ¢ IF K0 AND K1 THEN
410 ELSE TF K=1 THEN K=6%9 ELSE K=835

A20 GOSUR 1280 3 IF FLAG THEN 400

430 NEXT SH

440 REM HUMAN’S TURN

450 GOSUR 1470 1t CALL COLOR(PsUe1)

4460 GOSUR 740 ¢ T=ASCHEGEECOMEIN) v GOy 1
2388 TF T=101 OR T=102 THEN 440

470 TF Tx103 THEN &40 1 HIT

480 TEMP$=CHRE(L02I: GOSUR 1490

490 REM COMFUTER’S TURN

500 Call COLORY»1491332 FOR C=1L TO 10 2
§NTSPLAY AT(ZHCe LOISTZECLOY SHE I 2 NEX

TG

510 DISPLAY AT(Z1e132" HET ON FOSTTI

N

H20 IF CHF=0 THEN %90

B30 FOR R=L TO 10 22 FOR C=1 TO 10 23 T=

AGCCSEGE(HERY s Gl)22 TF TH10L THEN 0

0

540 1TF Co=10 THEN T1=ASCCSEGEHER) o O+
13388 IF TL=100 AND TL3102 THEN SC=C41
11 N=R 1§ T=T1 1% GOTO 400

550 IF C1 THEN T1=A8C(SEGEHS (RY yC-1 el

°e

continued on page 182

is changed to white and the player’s grid is placed
on the screen. This grid contains the ships that
the player placed on their grid.

Line 510 displays a message on the screen.

Line 520 checks the CHF variable. This variable is
used as a flag. If the computer hit a ship the last
time it had a turn, this variable will be set to one
and the computer will use the routine to find the
hit and try another location near it. If the com-
puter did not get a hit the last time, or has already
tried all the locations near the last hit, this vari-
able will be set to zero and the computer will go on
to line 590.

Lines 530-580 check every location in the grid for
the hit. When it finds the hit location, it checks the
location after the hit, then before the hit, then
below the hit, then above the hit. If any of these
locations have not been used, that is, they do not
contain a hit or miss marker in them, the com-
puter will hit them. It does not check these loca-
tions to see if there is a ship in them—that would
be cheating. It only checks to see if it can drop a
hit there. If it can, the computer goes on to line:
600 otherwise it finishes the loop. If the computer
completes the loop and does not find a location to
hit, the CHF variable is set to zero and the com-
puter continues with line 590.

Line 590 is used when the computer does not have a
specific location to hit. The computer chooses a
random position on the grid, then checks it to see
if it has been used before. If it cannot use the
location, it tries again until it finds a location that
has not been tried before.

Line 600 prints the location that will be hit on the
screen. The SC variable has 64 added to it so that
the letter will be printed.

Line 610 checks the location that has been hit. If it is
not character 103, then a ship has been hit, and the
computer goes on to line 630.

Line 620 places the miss marker in the temporary
string and uses the subroutine at line 1630 to
display it on the screen and change the characters
in the string array to reflect the miss. The com-
puter goes back to line 450 for the player’s turn.

Line 630 uses the subroutine at line 1610 to flash
the screen. The hit marker is placed in the tem-

porary string; one is added to the computer’s
score; the subroutine at line 1630 is used to place
the hit on the grid, and the CHF variable is set to
one.

Line 640 checks the score. If the computer has not
scored 20 points, the computer goes to line 510 to
try again. If the score is 20, the computer goes to
line 680 to end the game.

Line 660 is used when the player gets a hit. The
subroutine at line 1610 is used to flash the screen;
the hit marker is stored in the temporary string,
and the player’s score is increased by one. The
computer then goes to the subroutine at line 1490
to place the marker on the screen and in the
appropriate string arrays.

Line 670 checks the player’s score and if it is less
than 20, the computer will go to line 460 to give
you another turn. If the player’s score is 20, the
computer will continue with the next line.

Line 680 checks the computer’s score. Ifit is 20, the
computer wins, and the message is printed on the
screen.

Line 690 checks the player’s score; if it is 20, then
the player wins and that news is flashed on the
screen.

Line 700 tells you to press the R key to play again.

Line 710 waits for a key to be pressed. As long as S
is zero, the computer will loop back to the begin-
ning of this line. When S is not zero, the K vari-
able is checked for 82—the Rkey. Ifitis not the R
key, the computer will loop back to the beginning
of this line. '

Line 720 sends the computer to line 160 to play
another game.

Line 740 begins the routine that gets the letter and
number of the square on the grid from the player.
First, the message is printed on the screen.

Line 750 waits for akey to be pressed. Once akey is
pressed, the K variable is checked to see if it is a
letter. If the ASCII value of the key is less than 65
or greater than 74, the key is not a letter and the
computer remains at that line until a letter key is
pressed.

Line 760 subtracts 64 from the value of K. This
number will be the grid column of the letter on the
screen.

179

8 42 18 4 2 1

#124

8 42 18421

00

o1
03
03
1F
13
03
01

00

08

#127

8 4218 421

oC
OE
7F
5F
5F
7F

00

#130
2 1.8 4 2 1

04
16

17
1F
OF
07
OF

1F
17
17
07
07
OF
06
04

#133

8 421842 1

#125

8 421842 1

OF
3F
3F
1F

1F

OF

OF

OF

#128

8 4218 421

07
1F
07

OF

07

07

OF
3F

#131

8 421 8 42 1

00

00

00

30

10

10
7C
FE

#134& #110

8 4 2 1

8 4 2 1

1F

OF

03

03

0B

OF

0B

02

#126

#129

8 4218 42 1

#132

1 8 42 1

#135 & #111

Fig. 16-11. Characters for Listing 16-6 Battleship.

180

8 4 2 1

8 4 2 1

00

00

00

01
73
23
FF
7F

#136 & #112

8 4 2 1

8 4 2 1

00

00
1C
07
FF
7F
3F
1F

#139 & #115

8 4 2 1

8 42 18421

8 421842 1

#137 & #113
8 4 2 18 42

1

#140 & #116

00
00
00
1C
BO
FE
FC
F8

8 4218421

8 4218 42 1

#142 & #118

8 4 2 1

FF
c3
A5
99

99
A5
c3
FF

#101

8 4 2 1 8 4 2

#102

#143 & #119

1

FF
c3
99
BD
BD
99
c3
FF

#1388 #114
8 4218421
00
00
80
82
CA
FF
FF
FF
#141 & #117

00

00

00

07

21

FF

7F

3F

8 4218421

FF
81
81
81
81
81
81
FF

#103

181

182

S0 TF T1<x101 AND T13102 THEN SC=C-1

X3 TwTi t1 GOTO 600

K10 THEN rnwaqtcnrrm<n$<h413y(9

FoT14>101 AND T1<5102 THEN SC=C
T=T1 1% GOTO 600

TF Rzl THEN T1=A8CCSEGS (H$(R-1) 9Tyl

CTLEE101 AND T1CE102 THEN $C=C $3

N=R-1 33 T=T1 $% GOTO 600

580 NEXT € $3 NEXT R $% CHF=0

590 HC=INT (RNIKLOY L $% N=INT CRNIKLO) 41
13 T=ABC(SEGS (M (NY»SCy 12388 TF T=101 OR
T=102 THEN %90

500 NISFPLAY AT(23y13) $CHRE (SCH64) &\ " &ET
R (ND

610 TF Tx103 THEN 630 1 HIT

620 TEMPS=CHRS (10213 GOSUE 1630 ¢ DISF
LAY AT(2351)8% * 33 GOTO 450

630 GOSUR 1610 11 TEMPS$=CHR$ (101)¢3 CH=C

S+1 3¢ GOSUR 1630 $t CHF=) 3 DISFLAY AT
(2Fy1r30 o

40 TF 0SR20 THEN 510 ELSE 680

A50 REM HUMAN GOT A HIT

660 GOSUR 14610 13 TEMPS=CHR$(101) 3 HS

S41 1t GOSUR 1490,

670 TF HSIR0 THEN 460

680 IF C8=20 THEN DISFLAY AT(21s1)3TARCL

OY5"T WIN t11e

690 TF H8=20 THEN DISFLAY AT(21s 1) $TARY
YEUYOU WIN !1®

700 NISFLAY AT(23,4) LVFRESS ‘R TO RESTA

ReT "

710 CALL KEY(OvKs8)$: IF §=0 THEN 710 EL

SE TF K<x82 THEN 710

720 GOTO 160 |

730 REM GET LEGAL LETTER & NUMBER & DI&F

LAY THEM

740 DISFLAY AT(21y DIBEEFSYENTER & LETTER
& NUMBER®

750 CALL KEY(OsKy§) 12 IF G=0 THEN 750 EL

SE IF K+6% OR K374 THEN 7850

760 BL=K~64

770 DISPLAY AT 21 25) SOHRS (K SCHRS (92)
7RO N$='v 0 FOR C=1 TO 3 :

I

continued on page 184

Line 770 prints the character string of the ASCII
value of K and the slash on the screen. The
character is the letter that you entered.

Line 780 clears N$. This string will store the
number that you enter. The FOR. . . NEXT loop
counts from one to three. You can only enter two
numbers, but the computer waits for the ENTER
key to be pressed. This could be the third key
pressed.

Line 790 waits for a key to be pressed. When the
value of S is one, the computer checks the value of
K. If K is either 13 or 88, the computer will go on
to line 830. If the ENTER key or X key has not
been pressed, the computer continues with the
next program line.

Line 800 checks the value of K to see if it is less than
49, the ASCII value for one. If the key pressed has
a value less than 49, and this is the first key being
pressed, then the entry is not good and the com-
puter goes back to line 790 to wait for another
key. If the value of K is greater than 57, the key
pressed was not a number and the computer goes
back to get another key.

Line 810 checks to see if the third key is being
pressed. If it is and this key is not ENTER, the
computer goes back to line 790 and waits for the
ENTER key or the X key to be pressed.

Line 820 adds the character of the key pressed to
the characters in N$ and prints the character on
the screen. The loop continues until ENTER has
been pressed.

Line 830 checks the length of N$. The computer
comes to this line when the X key or the ENTER
key has been pressed. If the length of N$ is zero,
there have been no numbers entered and the com-
puter goes back to line 790 to get a number.
Otherwise, the value of N$ is placed in the vari-
able N. If this value is less than one or greater
than ten, the number entered is not on the grid,
and the computer goes back to line 770 to erase
the number on the screen. If the number is on the
grid, the computer goes on to line 850.

Line 840 checks the value of K for the X key. Ifit is
the one that was pressed, the computer goes to
line 740 to get another letter and number.

Line 850 returns the computer to the main program.

Line 870 prints the question on the screen. Now the
computer needs to know if the ship should be
placed across or upward on the grid.

Line 880 waits for a key to be entered. The com-
puter will loop at this line until the value of S is not
zero. The value of K is then checked for 65 (A) and
85 (U). The computer will loop at this line until
the A or U is pressed.

Line 890 subtracts the length of the ship from the
position of the ship if the letter U was pressed.
The SHP array stores the length of each ship and
the SH variable is the ship that will be printed on
the screen. If the ship is longer than the number of
squares on the grid, the computer goes to line
1150. For example, if you were placing the
battleship on the grid and wanted it to go up. You
would have to place it in at least the fourth row on
the grid, any row higher would be off the grid.

Line 900 checks to make sure that the ship can be
placed across on the grid. If it can’t, the computer
goes to line 1150 to continue the program and get
another entry.

Line 910 places the direction on the grid.

Line 920 checks the SH variable. If it is one, the
computer does not have to check to see if this ship
will run into any other ships since it is the only
ship on the grid!

Line 930 checks the value of K to see if an A was
pressed. If an A was not pressed, the computer is
directed to line 960.

Lines 940-950 check the squares across to see if
this ship will run into any other ships. If it does,
the computer is sent to line 1150. If the ship can
be placed on the grid, the computer goes to line
980. :

Lines 960-970 check the squares up the grid to see
if the ship will run into any other ships. If it does,
the computer is sent to line 1150. If the ship can
be placed on the grid, the computer continues
with the next program line.

* Line 980 places the horizontal ship in the temporary

string when the letter A is pressed. If the U is
pressed, the vertical ship is placed in the tempo-
rary string.

Line 990 finds the length of the ship. If the ship is to

183

184

790 CALL hIY(O Ke$Sd22 IF G=0 OR S=-1 THE
N 790 ELS TF RK=13 0OR K=88 THEN 830

800 IF h 49 AND C=1 THEN 290 ELSE IF K:S
7 THEN 790

810 IF =% AND K13 THEN 790

820 NE=NEICHR$ (K)$3 DISFLAY AT212464+0) 2

CHRECKY 22 NEXT

B30 TF LENONGIY=0 THEN 790 ELSE IF K=13 T

HEN WN=UALONEY S TF N1 DR ONELO THEN 770

ELSE 8350

40 IF K=88 THEN 740

850 RETURN

840 REM GET UF DR ACRKROSE ITNFORMATION AND
DISFLAY IT

870 DISFLAY ATC2ZySREERS"UF OR ACROES 7P

880 CaAlLl. le(Ovth)iﬁ TFG=0 THEN 880 EL

SE IF K<x6% AND K:85% THEN 880

890 IF K=835 THEN lF (N-SHFCEH) Y =0 THEN 1
150

P00 IF K=45 THEN IF ((11-8C)~8HP(SH))

THEN 1150

10 IF K=63 THEN DISFLAY AT(2Z+5) 5"
ACROSE" ELSE DIGSFLAY AT(23y5) ¢ "UP"

@20 IF SH=1 THEN 980 ! DON’T NEED TO CHE

CK FOR OTHER SHIFS

P30 IF Kx65 THEN 960

40 FOR COL=SC TO SCHSHPSHY 1320 TF A8

COSEGE(HE(NY » COL v 1333103 THEN 1150

250 NEXT COL 33 GOTO 980

2460 FOR ROW=N T0O N-(SHF(SH)-1)STERF ~1 32
TF ASC(SEGE (HE(ROWY ySCy 1302103 THEN 11

50

@70 NEXT ROW

280 IF K=65 THEN TEMP$=SHE(SHELSE TEMPS

=5U$ (EH)

290 LN=LENC(TEMPS) S IF K=85 THEN 1010
1000 DISFLAY AU(/#Ny9+SC)SIZE(LN)3TEMP$
£ GOTO 1030

1010 FOR C=1 TO LENC(TEMP$):: DISFLAY AT(

BEN-CyP+8OSIZECLIISEGS (TEMPSy Gy 1) 22 NEX

TG

1020 REM NOW WAIT FOR AN “ENTER’ OR X7
(DELETED

continued on page 186

go up on the grid, the computer goes on to pro-
~gram line 1010.
Line 1000 places the ship across on the grid at the
correct location and the program continues at line
1030.

Line 1010 places the ship up on the grid at the .

correct location.

Line 1030 waits for a key to be pressed. Only two
keys will be accepted—the ENTER key or the X
key. If the ship is in the position that you would
like, press ENTER and the program will con-
tinue. If you would like to erase the ship, press
the X key, the ship will be erased, and you will be
able to try it at a different position. The computer
will loop at this line until ENTER or the X key has
been pressed.

Line 1040 checks the KY variable for the X value. If
the X key was pressed, the computer will be sent
to line 1110 to erase the ship.

Lines 1050-1090 check the value of SH to see if any
ship should be erased from the screen. If SH
equals any of these values, the ship that was
placed on the grid will be erased from the row of
ships under the grid, and the next ship will change

_colors.

Line 1100 checks the direction that the ship has
been placed in on the screen and directs the com-
puter to the correct routine to place the ship in the
other array as well.

Line 1110 erases a ship that was placed upward on
the grid.

Line 1120 erases a ship that was placed across on
the grid.

Line 1130 sends the computer to line 1150 to set the
flag.

Line 1150 sets the FLAG variable to one. When this
flag is set, the computer knows that the last ship
was erased, and it should not go on to the next
ship. The computer returns to the main program.

Lines 1170-1200 puts the ship in the player’s array
vertically. One section of this ship is placed row
by row into the array.

Lines 1220-1240 place the ship in the player's
array. This time the ship is placed in the array
horizontally. The elements of the array before and
after the ships location are placed into temporary

strings, then concatenated into the array.

Line 1260 is the flag that is set when the computer
makes a bad choice.

Line 1280 checks the computer’s choice to place a
ship upward on the grid. If the ship cannot fit on
the grid, the computer is directed to line 1260 to
make another choice.

Line 1290 checks to see if the ship can fit across on
the grid. If it cannot the computer will go to line
1260 and return to the main program.

Line 1300 checks to see if this is the first ship. If it
is, then there is no need to check the grid for other
ships.

Line 1310 sends the computer to line 1340 to check
the grid going up..

Lines 1320-1330 see if the ship can be placed across
on the grid. If it can, the computer is directed to
line 1360 to place the ship on the grid. If it cannot,
the computer must make another choice.

Lines 1340-1350 check to see if the ship can be
placed upward on the grid. If it can, the computer
continues with the program. If it cannot, the com-
puter must make another choice.

Line 1360 places the horizontal ship into the tem-
porary string, if the ship should be placed across
on the grid. It places the vertical ship in the array
if the ship should be placed upward on the grid.

Line 1370 finds the length of the ship and sends the
computer to line 1440 if the ship will be positioned
horizontally.

Lines 1390-1420 position the ship vertically in the
computer’s array. Each part of the ship must be
placed in a different row of the grid.

Lines 1440-1460 position the ship horizontally in
one row of the grid.

Line 1470 places the screen grid on the screen.

Lines 1490-1570 place the hit or miss marker in the
computer’s grid and on the grid on the screen.
First the marker that is stored in the temporary
string is placed on the screen. If the player’s score
is more than zero, it is printed on the screen.
Then the computer checks the value of the
marker. Ifitis 102, it is a miss and the computer is
sent to the subroutine that makes the miss sound.
The marker is placed in the computer’s string
array in the correct position. It is then placed into

185

186

1030 CALL KEY(OyKY$S) 13 IF 8=0 THEN 1030
ELSE IF KY<:>13 AND RKY<:88 THEN 1030
1040 IF KY=88 THEN 1110

1050 1IF SH=1 THEN DISFLAY AT(19:8)8TZ2E(8
e “EOCHS

1060 IF SH=3 THEN DISPLAY ATCL9» 13)BTZEL
bret "ENHE

1070 IF SH=6 THEN DISFLAY AT19y17)Y81ZEC
48 "RGRHE

1080 IF SH=10 THEN DISFLAY AT(19,20)2° *
1090 DISFLAY AT(23+108% "

1100 IF RK=6% THEN 1220 ELSE 1170

1110 TF K=8% THEN CALL VCHAR(N-LENCTEMPS
YEG e SCHLL e 1Oy LENCTEMPS))

1120 IF RK=65 THEN CALL HUHARONEZySC4+H11e1
OX v LENCTEMFS))

1130 REM BAD INFUT OR DELETE

1140 REM ERASE BOTTOM LINE & SET FLAG
1150 FlLaG=1 3 DIGFLAY ATRIWE5) e % 13 R
ETURN

1160 REM FUT VERTICAL SHIF IN HUMAN‘S AR
RAY

1170 FOR C=1 TO LENCTEMF$)

1180 IF SC=1 THEN TF&=SEGS (HE(N-CH1L) v 18
C-10ELSE TF¢=2"

L1990 IF SC10 THEN TLE=SEGSE (HE(N~CH1L) v 8C
+1y10-SCIELSE Tlg=""

1200 HE(N-CHL)=TF$EBEGS (TEMPS$yCy 1) &TLS 3
§ ONEXT € 323 RETURN

1210 REM FUT HORITZONTAL SHIF INTO HUMAN
S ARRAY

1220 IF SCx1L THEN TF$=SEGB(HEI(N) s 12 8C-1)
ELSE TF$=*"

1230 IF SC10 THEN TL$=SEGS (HE N s SCHLNy
10-(SCHL.N-1ELSE TlLg=""

1240 HENI=TFSETEMFS$8TL$ ¢33 RETURN

1250 REM BAD CHOICE - COMPUTER

1260 FlL.AG=1 1 RETURN

1270 REM CHECK UF & ACROSS COORDINATES F
OR COMPUTER

1280 IF K=8% THEN IF (N-SHF(SH))<0 THEN
1260

continued on page 188

the string array that places the characters on the
screen.

Line 1590 is the delay loop. This leaves the infor-
mation on the screen for a few seconds before the
next part of the program.

Line 1610 is the flash routine. When a hit is made,
the computer is sent to this subroutine to make
the crackling sound and change the screen colors.

Lines 1630-1670 place the computer’s move in the
player’s grid. If the computer’s score is greater
than zero, it is placed on the screen. If the marker
was amiss, the computer is sent to the subroutine
in line 1690 to make the miss sound. The marker
is placed in the player’s array, and the computer is
sent to line 1590 before returning to the main
program. This routine is a subroutine. By sending
the computer to line 1590 with a GOTO state-
ment, the computer will return to the correct line
in-the program.

Line 1690 is the sound routine for the miss.

USING JOYSTICKS v

Built into your TI-99/4A BASIC are com-
mands for reading the positions of joysticks. The
keyboard is a good way to enter information, but a
joystick can make a program easier to use. If you
have ever played an arcade type game that used the
keyboard to move characters, you will understand
why the joystick is a better choice. The user has no
chance to press the wrong key and then wonder why
the character isn’t moving in the direction ex-
pected. A joystick can be used in programs other
than arcade games.

CALL JOYST

This command is used to find out which direc-
tion the joystick has been moved. The format for
this command is:

CALL JOYSTICK (unit,x-coordinate, y-coordinate)

The unit number indicates which joystick is
being read. Your TI-99/4A can use two joysticks in
aprogram. Use a one for the first joystick and a two
for the second joystick. The next variable is the
x-coordinate. If this value is a zero, the joystick has

not moved to the left or right. If the variable con-
tains a four, the joystick was moved to the right. If it
is a negative four, the joystick was moved to the
left. The y-coordinate determines whether the
joystick has moved up or down. If the Y variable is a
four, the joystick has been moved up, a negative
four means the joystick has moved down. If the
values of both variables are zero, the joystick has
not moved.

In addition to the JOYST command, the CALL
KEY command can be used. The JOYST command
only checks which direction the joystick is pointing
to. It does not check to see if the fire button has
been pressed. To check for the fire button, use:

CALL KEY (1,key,status)

The one indicates the first joystick or the keys on
the left side of the keyboard. If you wanted to check
the second joystick, you would use a two. The key
variable is the ASCII value of the key that has been
pressed or the value of the fire button. When the
fire button has been pressed, the variable will be an
18. The status will be set to one when the fire
button or a key has been pressed. The program in
Listing 16-7 (flowcharted in Fig. 16-12) de-
monstrates using a joystick with a menu.

Listing 16-7

Line 130 places a character patternin C$. This new
character will be used as our pointer (Fig. 16-13).
The character will be the 143 number in the
character set. Its color is set to dark blue and the
background to transparent. The character is
moved into P$. Whenever we want to print the
character on the screen, we can just print P$.

Line 140 places a message on the screen. The
ALPHA LOCK key must be up in order for this
program to work. If the key is down, the computer
will not read the joystick correctly.

Lines 150-160 clear the screen and place the menu
on it. This is an example of a menu that might be
-used in many programs.

Line 170 sets the PR variable to 4. This variable
will indicate which row the pointer should be
printed in.

Line 180 places the pointer (P$) on the screen. It is
placed in the seventh column in the row set by

187

188

1290 IF K=6% THEN IF (C11-8C)-SHF(SH) Y0
THEN 1260

1300 IF SH=1 THEN 1360 ! DON‘T NEED TO C

HECK FOR OTHER SHIFS

1310 IF K<=65 THEN 1340

1320 FOR COL=8C TO SCHGHPF(SHY-1)88 IF A

SCCHBEGE(COME(NI »COL» 13 5103 THEN 1260
1330 NEXT COL 33 GOTO 1360

1340 FOR ROW=N TO N-(SHPFSHY-1)STEF -1 2
fOIF ASCUSEGECCOME(ROW) » Sy 1)) 3103 THEN
1260

1350 NEXT ROW

1360 IF K=6% THEN TEMPS$=GHS (SHIYELSE TEMP

F=GUE (G5H)

1370 LN=LENCTEMPEY 2 TF K=65 THEN 1440
1380 REM FUT VERTICAL SHIF IN COMPUTER S
ARKRAY

1320 FOR C=L TO LENCTEMPS$)

1400 IF SCx1 THEN TF$=8EGS (COME(N-CH+L1) el
p SC-1IYELSE TFH=""

1410 1TF SCC10 THEN TLe=SEGECOME (N-CHL)Y

SCHLy LO-GEOELSE Tl g=""

1420 COMEIN-CHI)=TFS$EBEGE CTEMPS Ce L)Y BT %
$8ONEXT € 88 RETURN

1430 REM FUT HORIZONTAL SHIF INTO COMPUT

ER7ES ARRAY

1440 IF S0

LYELSE TF¢=®"

1450 TF SC10 THEN TLE=SEGSE CCOME NI y SCHL

Ny 10 (BCHLN-LDIIELSE Thg=""

14460 COMBINI=TFS$ETEMPEETLE 22 RETURN

1470 FOR R=8 TO 17 32 DISFLAY ATIRy 9+ (Res

122 E8TRE(R-ZIEBORE(R-2)Y 28 NEXT R 3¢ RET

URN

1480 REM FLACE VaLUE TN TEMPS ON COMPUTE

RS GRID

THEN TF&=GEGE(COMEI(N) ¢ 1y SO~

1490 DIGFLAY AT(Z4N« 9480 8TZECLY STEMPMS ¢

EO0F HEH0 THEN DISPFLAY AT(Z25) 1HE

LEOO IF ASCOTEMPE) =102 THEN GOSUE 1690
LH10 IF SCx)L THEN TF$=SEGE (COMEINY ¢ Lo B0~
DIELSE TF$==*"

LEZ0 TF SCC10 THEN TLE=8SEGS(COMS (N) « S04+
LO-SCOELSE Ti.h=0"

continued on page 189

1530 COMS(NI=TFSETEMPS&TI. %

1540 REM FLACE VALUE IN TEMFE ON SCREEN’
& GRID

LSS0 TF SCx1 THEN TF$=5EGE(SCRE(N) » L HC-
IYELSE TF$=®®

18560 TF SC10 THEN TLe=SEGE (SCREI(NY » KO+
¢ LO-SCIELSE Tld=®"

1570 SCRS (NI =TF$ETEMF$ETLS ¢ T=1000
1580 REM DELAY ROUTINE

1590 FOR DELAY=1 TO T 33 NEXT DELAY ¢ R
ETURN

1600 REM FLASH SCREEN & SOUND

1610 FOR F=1 TO 3 2: CALL SCREENCL&)3Z ©
AlL. SOUNDCLI00» 1109590105591 105%5:-850) 28

CALL SCREENC(2)3: NEXT F 33 RETURN
LA20 REM FUT SHOT IN TEMF$E ON HUMAN‘S GR
T
1630 DNISFLAY ATZENe9+BCISTIZE CLY STEMMS ¢
§OTF CEH0 THEN DISFLAY AT(IZ»3)8IZ2ECAII0H
1640 TF ASCCTEMPSY=102 THEN GOSUR 14690
L1650 TF SCxL THEN TF$=8EGS (H$ (N o Lo SC~1)
FLSE TF$="® '
1660 TF SC10 THEN TLS=SEGS (HEI(N) oSG+ 1
O-SCIELSE Tl g=nr
L6670 HENI=TFSETEMPFSETLS 33 T=1000 3 GO
TO 1590
L6B0O REM MISS SOUND
14620 FOR =3 T0O 1 STEF -1 13 CALL SOUNDC
0911093050 1033098X1000409-4v0)58 NEXT &
313 RETURN
J

PR. The delay loop holds the computer at thisline directed to line 270 to continue with the program.
for a few seconds. Without this delay, it wouldbe Line 200 uses the JOYST command to see if the
very difficult to place the pointer at the correct joystick has been moved. In this program, we are
position. only interested in moving the pointer up or down.
Line 190 uses the CALL KEY commandtoseeifthe =~ The X variable will change if the joystick has been
fire button on the joystick has been pressed. If the =~ moved left or right. If it has, the computer will be
S variable is one then the fire button or akey has sent back to line 190. If X is zero, the computer
been pressed. If the K variable is 18, then thefire ~ will continue with the next program line.
button has been pressed and the computer willbe Line 210 checks the Y variable. This variable will

189

Create new
character and
set color

Display
message -

Place menu
on screen
& pointer

Count to
100

Fire
button
pressed
?

Add to
pointer -
variable

position

Yes

Goto routihe

Subtract from
pointer
variable

Fig. 16-12. Flowchart for Listing 16-7 Menu.

change if the joystick has been moved up or down.
If the variable is a zero, then the joystick has not
been moved and the computer is directed to line
190 to check for another input.

Line 220 checks the value of Y for a four, which
indicates the joystick has been moved up. The
computer will be sent to line 250 to move the
pointer up one item on the menu.

Line 230 moves the pointer down one item on the
menu. The computer will use this line if the value
of Y is negative four. We do not have to check for
the value of Y since the last two program lines
checked for the other two values that Y could be.
The computer erases the pointer from its present
position. Four is added to the value of PR because
the items on the menu are four rows apart. When
you.move down on the screen, the row numbers
increase. The fifth item on the menu is at row 20.
PR is checked to see if it has passed row 20. If it
has, the variable is reset to 20.

Line 260 sends the computer back to line 180 to
print the pointer at the new position on the
screen.

Line 250 erases the pointer from the screen and
subtracts four from PR. When we move the
pointer up the screen, the row values decrease.
The first item on the menu is printed at row four.
The value of PR is checked to see if the pointer
would be above the first item. If it is less than
four, the variable is reset to four.

Line 260 sends the computer back to line 280 to
print the pointer on the screen again.

Line 270 begins what would be the main program.

Line 280 ends the program.

Any standard joystick can be used with your
TI-99/4A. A special Y-shaped cable will allow you
to attach two joysticks to the port on the left side of
your keyboard.

USING THE SPEECH SYNTHESIZER

It is possible for your TI-99/4A to talk to you
through a speech synthesizer. Texas Instruments
manufactures a speech synthesizer that is compati-
ble with your computer. The EXTENDED BASIC
cartridge has a built-in set of command and vocabul-

Listing 16-7

100 REM LISTING 16~7
110 REM MENU

120 REM RBY L.M.SCHRE
EXTAN DRI COLORC
3

CALL

CK7
00

KEY MUST RE
21 NEXT DELAY

Ut

FLAY AT(12:,9)3%3,
160 DISPLAY ATC(1é6+9)
LAY AT(209)3"5.

1720 PR=4 1 ROW OF
LAY=1 T0O 100
N MOVES

1920 CaAll
EN 270 1
200 CaAll.
210 IF Y=0 THEN
220 IF Y=4 THEN

NEXT

¢ 9
¢ 2

KEY(LyKs

190

280

+4 18 IF
240 GOTO 180

-4 TF
260 GOTO 180

270 REM GO NOW TO
280 ENI

¢+ ¢
LR

ITRER FOR
130 Ce="003F787878700000"

1495y 1)

140 DISFLAY AT 12y 1DERASE

150 NISFLAY AT(4y9IERASE ALLZ"
DISFLAY AT(8.,9)0"2.
COLORS®
R
SIZES"
THE
180 DISFLAY AT(FRy 7)STZECLY SFS

SELECTION HAS BEEN MADE
JOYST Lo XoY2 22

230 NIGFLAY ATFRy 78
FR=20 THEN FR=20

250 DISFLAY ATFRySTZECLY Y Y
FRE4 THEN PR=4

THE

B BOOKRS
LL CHARCL

TA
A
Fh=CHRS (14

4
¢
¢ ¢
LR 3

ALL T ALFHA LD
FOR DELAY=1 TO 13

¢ ¢
+ ¢

1.
LETTERS®

NUMBERS
$: DIS

SHAFES®

12 onIse
FOINTER

FOR DE
RETWEE

2
2

DELAY FPAUSE

TF G=1 AND K=18 TH

T Xl THEN 190

SLZECIY e " 23 PR=PR
8 PR=PR

UNTT SELECTE

ary words that can be used with this speech syn-
thesizer. :

Although it is possible to use other commer-
cially available speech synthesizers with your TI-
99/4A, we will only explain the commands that are
used with the Texas Instruments’ one. Consult
your manufacturer’s booklet for the other speech
synthesizers.

SAY

With this command you can have the speech
synthesizer say any word that is in its vocabulary.

The entire word list is in the EXTENDED BASIC
book. If you ask the computer to say a word that is
not in its vocabulary, it will spell the word instead
of saying it. The format for this command is:

CALL SAY(*HELLO”)

More than one word may be included between the
quotation marks. Single letters and numbers can
also be spoken. Resident phrases must be enclosed
in pound and quotation marks.

CALL SAY (“ TEXAS INSTRUMENTS "0

191

8 4 2 18 42 1

00
3F
78
78
78
70
00
00

#143

Fig. 16-13. Character for Listing 16-7 Menu.

CALL SPGET

This command is similar to the CALL CHAR-
PAT command. Every word that the TI-99/4A says
follows a particular pattern. This pattern can be
altered or changed to create new words that are not
in the computer’s present vocabulary. The format
for this command is:

CALL SPGET(“word”,string variable)

The word in quotation marks is a word from the
computer’s vocabulary. The string variable is any
string variable that you want to use. The computer
will place in the string variable the codes that make
the sound for the word. This string can be very long
since it takes several codes for the computer to
make a sound.

If you would like the computer to say the word
that is in the string, use the SAY command with a
comma before the string variable.

CALL SAY(,R$)

The codes tell the computer to make sounds
called phonemes. Phonemes are the sounds that
make up the letter sounds to form words. For
example, there are six vowels in the English lan-
guage (counting Y), but they can make over 26
different and distinct sounds. The phoneme code
tells the computer which sound to make. These
phonemes can be changed or added together to
make new words or sounds. The program in Listing

192

16-8C allows you to take two words and add the
phonemes from one word to the phonemes from the
other word to create a new word.

In the program in Listing 16-8C (flowcharted in
Fig. 16-14) we will shorten the phonemes of words
and add them to the phonemes of another word to
make the computer say a word that is not in its
resident vocabulary. The program can store up to
40 words. These words can be stored on cassette
and used in other programs. The second Listing,
16-8D, is the same, except that the words are
stored on disk instead of cassette.

Listing 16-8C

Line 130 traps errors. If an error has been entered
the computer will continue without displaying the
message.

Line 140 eliminates the zero element of the array.
SPEAKS$ array will store the words and their
phonemes. The C variable is set to one. This
variable will count the number of words entered.

Line 150 asks you to enter a word. The word will be
stored in WORDS. If you do not enter a word, the
computer will remain at this line until you do.

Line 160 uses the SAY command to say the word. If
the word is in the computer’s resident vocabulary,
the computer will say the word. If it is not, the
computer will spell the word.

Line 170 sends the computer to the subroutine at
line 430. This subroutine is used throughout the
program to ask you if you like the sound of the
word or to repeat it. If you enter an “N,” the
computer will go to line 150 and you can enter
another word. If you enter an “A” to say the word
again, the computer will go to line 160 to say the
word. If you enter a “Y,” the computer will con-
tinue with the next program line.

Line 180 asks you to enter another word. If you do
not have another word to enter, you can just press
ENTER and the computer will continue at pro-
gram line 210.

Line 190 says the word that you entered.

Line 200 uses the subroutine at line 430 to find out if
you liked the way the word sounded. If you enter
an “N,” you can enter another word. Enter an “A”
to hear the word again.

Line 210 erases the screen and prints one or both
words near the top of the screen.

Line 220 uses the SPGET command and places the
phonemes for the first word into WO18. If a sec-
ond word was entered, the phonemes for this
word will be stored in WO2$.

Line 230 finds the length of the two phoneme
strings. This length will be used to determine
how many bytes can be used and/or removed from
the string when we try to change the sound of the
word.

Line 240 tells you how many bytes there are in the
first phoneme string. We subtract three from the
length of the string because the first three bytes of
the string cannot be removed. You are then asked
how many bytes you want to use.

Line 250 accepts the number that you enter. If you
try to use more bytes than are in the string, the
line will repeat itself.

Line 260 places the first two bytes of the phoneme
string concatenated with the number of bytes that
you want to use in W$. We leave the first two
bytes of the original string intact. The third byte
is changed to the number of bytes that will follow
it. If this number is not correct, an error will occur
when the computer tries to say the word. The first
part of the phoneme string, beginning with the
fourth byte, is added to these three bytes.We will
only be adding sounds from the beginning of the
string.

Line 270 says the word in W$. The W$ contains the
phonemes or codes for the word, so we must
precede it with a comma. The comma tells the
computer that the first element, a word in a string
or within quotation marks, has not been entered,
so go on to the second element of the command,
the string with the phonemes.

Line 280 asks you if you liked the way the word
If you did not, enter an “N.” The computer will
remove that phoneme string from W$ and ask you
to enter another length. Youcan keep trying dif-
ferent lengths until the part of the word that you
want the computer to say sounds right to you. If
you enter an “A,” the computer will say the word
again. If you liked the way the word sounded enter
a“Y.”

Line 290 checks to see if a second word was en-
tered. If the string is empty, the computer will go
on to line 350. '

Line 300 shows you the length of the second string.
Again, three is subtracted from its length.

Line 310 accepts the number for the number of
bytes that you want to use. Again, we will be
removing the first sounds of the word.

Line 320 places the first two bytes, along with the
number of bytes following them and their con-
tents, in W2$.

Line 330 uses the SAY command to say the word
made up of the phonemes in W2§.

Line 340 uses the subroutine at line 430 to ask you if
you liked the way the word sounded. Enter an “N”
to try a different number of bytes, an “A” to hear
the word again, and a “Y” to continue the pro-
gram.

Line 350 says the two phoneme strings together.

Line 360 asks you if you liked the way it sounded.
Respond as you did before.

Line 370 finds the length of just the first phoneme
string, or the length of both phoneme strings
together. This length will be used when we are
saving the program to cassette.

Line 380 places the phoneme string in the second
element of SPEAKS array. The first element of
the array will be used for the word that is spoken.

Line 390 asks you to enter the word for the
phoneme string that you created.

Line 400 concatenates the word with the phoneme
string. A slash mark is placed between the actual
word and its phonemes. This will help us identify
where one word stops and its phoneme string
begins. If the length of both strings together is
longer than 192, a message saying so will be
printed on the screen, and the computer will re-
turn to line 150. The string cannot be longer than
192 bytes. If it is, the computer will not be able to
save it onto the cassette.

Line 410 asks you if you have any more words to
enter into the array. If no letter was entered, the
computer will loop at this line until one is.

Line 420 adds one to the count of C. If the “N” was
entered, or the count is more than 40, the com-
puter will be directed to line 470 to save the

193

Set warnings
set aside
string space

Get aword

Get
another
word

display
words

@

Get phoneme
code for words

]

Get length
of phonemes

Get length to
use for first
word

Create new
phoneme
string

Fig. 16-14. Flowchart for Listing 16-8 C&D Making Words.

194

Q

Place
phonemes
Get length to in array
use for

second word

Get right
spelling for
word

Create new
" phoneme
string

Store in array

No

Listing 16-8C

100
110
120
130
140
C=1
150
N
Rl =

REM LISTING 16-8C

REM MAKING WORDS ~ CASSETTE

REM BY L.M.SCHREITRER FOR TAE ROOKS
ON WARNING NEXT .

OFTION BASE 1 3 DIM SPEARS(40,2) 8¢

ACCEFT AT(4y A)REEFIWORDE 32 TF WO

DISFLAY AT(2y DIERASE ALLI"ENTER A W0
PEOTHEN 150

195

160 Call. SAY (WORDS)

170 GOSUR A4X0 $3 IF Vds="N" THEN 150 ELSE
TF Vd=iat THEN 160 v

180 DISFLAY AT(Hy2) PPENTER SECOND WORD®
3 ACCERT AT(8y4IBEEFIWORDZS 1 1IF WORDZ

=" THEN 210

1920 Call. SAY (WORD2%G)

200 GOSUR 430 2 ITF Yd="N" THEN 180 FL&SE
TF V=t THEN 190

210 DISFLAY AT(2y 27ERASE ALLIWORDE s WORD2

4

220 CALL SPEGET(WOROG »WOLEY £ TF WORD2$ -
EOTHEN CALL SPGET(WORD2E» WO2E)

B30 W=LENWOLIS) £ TF WORDAE =Y THEN W2

LENC(WO2%)

240 NISPLAY AT(4¢ 23 8" THE FIRST WORD TSYE

W32 "BYTES LONG"*USE HOW MANYT®"

250 ACCERT AT(?y 13XVALTOATE(NIGITY R 2
TF BrW-3 THEN 280

2H0 WE=SEGEWOL S Lo 2) FOMRSE (R ESEGE (WO L6y

A4y 1)

270 Call SAY(sWe)

280 GOSUR 4320 3 IF VE=*N" THEN W$="" 12
GOTD 250 ELSE IF Vé="A* THEN 270

290 ITF WORDZ2%="* THEN 350

300 DISFLAY AT(9y2) P "THE SECOND WORD 16"
FW2-ZL"RYTES LONG® $USE HOW MANY®®

310 ACCERT ATI2y13VALIDATENIGITIIRD ¢
IR RB2:W2E-Z THEN 210

Z20 WRE=SEGH(WO2%s 1 ¢ 2 &CHRE (B2 EEEGE (WO
$ede B2

330 Call. SAY(yW2%)

340 GOSUR 4X0 $: IF VUs=tN" THEN W2¢="" 2
PGOTO 300 ELSE IF Ve="A" THEN 230

IE0 IF WORDR2E="" THEN CALL SAY (s WS ELSE
CAlL SAY(sWhs s W2E)

3460 GOSUR 430 3 IF VE="N" THEN 210 ELSE
IF Ve="a* THEN 350

I70 IF WORD2%=*" THEN L=LEN(WEIELSE L=lE

N(WsEEW2%)

380 IF WORD2%="" THEN SFEAK$(Cy2)=CHRS$ (L.
YEWE ELSE SFEAKS(Cy2)=CHRE (L) SWEEW2S

320 NISFLAY ATC(145 1) "ENTER FROFER NAME

196

FOR THIS®:®WORD® ¢ ACCEFT AT(135s6)BEEF?
NAMES$ % IF NAME$="" THEN 390 ELSE SFEAK
$(Cs 1)=NAMES

400 L=MAXCLEN(SPFEARS (Cy 1) vy LEN(SFEARS (Y
233088 IF L2854 THEN DISPLAY ATCL4y 1) REE
FERTO0 LONG TO SAVE 1Y 3t GOSUR 450 0 0
010 150

410 DNISFLAY ATC(L42 1) 3"ANY MORE (Y/N) 7°
£ DISFLAY ATCLE»108"" 22 ACCERT AT(14y1
SIREER VALIDATECCYN"IGTZECL) VS ¢ IF Vé
=40 THEN 410

420 C=0C4+1L $3 TF VE="N" OR Cx40 THEN 470
ELSE 1350

430 DISFLAY ATCL4y2) 8 "GOUND OK (Y/N/ZA) 7
"3 ACCERT AT(14y200VALTDATE C"ANY ") ST ZE
(LY3VE 223 TF Vg="" THEN 430

440 DISFLAY ATC14,2) 8" $3 RETURN

450 FOR DELAY=1 T0O 2000 & NEXT DELAY &8¢
RETURN

4460 REM SAVE SPEECH WORDS & THEIR SOUNDS
470 NISFLAY ATCO1L2y DIERASE ALLS"ENTER NAM
EFOR FILE® $2 ACCERT AT(L4»19REEF SIZE
CLOY EFTLENAMES ¢ IF FILENAMES$="" THEN 4
70

480 DISFLAY AT L2y IERASE ALL"SAVING T0
NISK ~ PLEASE WAIT®

490 OFEN #11"DEKL " RFTLENAMES » SEQUENT LAL
s NISFLAY sUPDATE WARTARLE 204

SO0 FRINT #1801

510 FOR CT=1 TO G-l

B2 FRINT #138PEAKECCTy 1)

HA0 FRINT #128PEAR$SCCTy2)

540 NEXT CT

S50 CLOSE #1

540 DISFLAY AT(L4yDERASE ALl BEEF: AL
DONE 1"

570 END

words; otherwise it will go to line 150 to get without entering a letter, the computer will loop
another word. at this line.

Line 430 is the subroutine that asks you if the word ~Line 440 erases the message from the screen and
sounds OK. Only the letters “A,” “N,” and “Y” the program returns to the main program.
will be accepted. If the ENTER key is pressed Line 470 begins the subroutine that saves the words

197

Listing 16-8D

198

100 REM LLISTING 16-8I

110 REM MAKING WORDS - DISK

120 REM RBY L.M.SCHREIBRER FOR TAR ROOKS
130 ON WARNING NEXT

140 OFTION RASE 1 $3 DIM SPEAKS (402> ¢ ¢

C=1

150 DISFLAY AT(2y2)ERASE ALLIENTER A WO
RO 33 ACCEFT AT(4s4)REEFIWORNS ¢t TF WO

RI$g=" THEN 1%0

160 CALL SAYC(WORNDS)

170 GOSUR 430 3 IF Us="N" THEN 150 FLSE
IF Ug="a" THEN 140

180 DISFLAY AT(6:2) P "ENTER SECOND WORD®
$8ACCERPT AT(B8y4)REEFIWORD2S 38 IF WORDSY

$="" THEN 210

190 CALL SAY(WORND24$)

200 GOSUR 430 ¢! IF VUs="N" THEN 180 FLSE
TF V=A% THEN 190

210 DISPFLAY AT(2y2)FERASE ALL IWORDS » WORDY

%

220 CALL SPOETWORNEyWOIEY S TF WORDR2EC
"UOTHEN CALL SPGET(WORDZ2% »WO2S)

230 W=LEN(WOLE)Y ES IF WORD2G=4 THEN W=

LENCWO24) :

240 NISFLAY ATCAy2)Y L THF FIRST WORD 18°3

W-32"RYTES LONGY $YUSE HOW MANY®®

20 ACCERFT AT(7913YVALTNATE(IGITIIR 3¢
IF B>W-3 THEN 250

260 WE=GEGE(WO1Sy1s2)SCHRS (B) EEEGH (WO 1% v

49 R)

270 CALL SAY (s W)

280 GOSUR 430 ¢ IF Vg="N" THEN WH=H" ¢
GOTD 7S50 ELSE IF V$="AY THEN 270

290 IF WORD2¢="" THEN 350

300 DISFLAY AT(9y2)*THE SECOND WORD I8
FW2-ZL"RYTES LONG"$USE HOW MANY?®

310 ACCEPT ATUI2013)VALIDATE(NTIGLIT)Y (R ¢
¢ IF B2:W2-3 THEN 310

320 W2B=GEGH(WO2%y 15 2) RCHRS (R2) RGEGH (W02

bed4s R2)

330 CALL SAYC(sW2%)

340 GOSUR 430 3¢ IF Us="N" THEN WRg=0e 3
¢ GO0TO 300 ELSE IF VUs=®A* THEN 330

350 IF WORD2e=®" THEN CALL SAY (s W$IELSE

CALL SAY (s Wy s W2E)

360 GOBUR 430 3 IF Ve=*N" THEN 210 ELSE
IF VUg="A* THEN 350

370 REM SAVE NAME & SOUND IN ARRAY ELEME

NTS

380 IF WORD2%G="" THEN SFEARKE(C2)=W$ ELS

E SPEARS(Cy2)=WE&W24%

3P0 DISPLAY AT(1L49 1) S "ENTER PROFER NAME

FOR THIS*"WORD® ¢ ACCEFT AT1Sy6)REERS

NAME4$ & TF NAME$="" THEN 390 ELSE SFEAK

$(Cs L)=NAMES

400 L=LEN(NAMESE® /" &8FEARS (L2088 IF L=
192 THEN DISPLAY AT(14y YREEF:"TOD LONG

TO SAVE 1* 21 GOSUR 450 3 GOTO 150

410 DIGPLAY ATCL4s1) 2 ANY MORE (Y/N) 7"
$8 DISPLAY ATISGy1 8" 28 ACCEFT ATC1L4y1

SIREEF VALTDATEC YN " YSTZECLIIVE 28 IF Vs

=40 THEN 410

420 C=C+1 22 IF Yg="N" OR Cx40 THEN 470

ELSE 150

430 DISFLAY ATC(14»2)3"SOUND OK (Y/N/AY 7
o OACCERPT AT LA 21VALTHATE ("ANY ")STZE
(1¢Vse 33 IF V="' THEN 430

440 DISFLAY ATC14,2)80" 8 RETURN

450 FOR DELAY=1 TO 2000 3 NEXT DELAY 232
RETURN

4460 REM SAVE SPEECH WORDS & THEITR SOUNDS

A70 OFPEN #123"C8L " FIXED 1929 0UTPUT

480 FRINT #13C-1

490 FOR CT=1 T0 -1

S00 PRINT #138PEARBCCT L& /" ESPEARSECCT

27

10 NEXT CT

G20 CLOSE #1

530 NISFLAY ATC14y @IERASGE Al REEF"ALL
DONE 1"

540 END

_to the cassette. The cassette file is opened for variable because when you stop entering the
output at the fixed length of 192. words, C will contain one more than the number of
Line 480 tells the cassette the number of words that words that you entered.
will be sent out. One is subtracted from the C Line 490 begins the FOR . . . NEXT loop. All the

199

words and their phoneme sounds will be sent out,
one at a time, to the cassette.

Line 500 sends the word and its phoneme string to
the cassette. The slash mark separates the
phoneme string from the word.

Line 510 continues the loop.

Line 520 closes the file.

Line 530 places the closing message on the screen.

Listing 16-8D should be used if you want to
save the words out to disk. The two programs are
identical until line 470.

Listing 16-8D

Line 470 erases the screen and asks for a name for
the file. If you use a name that is already on the
disk, this file will replace it. The computer will
loop at this line until a name has been entered.
Enter only the name of the file. The computer will
add the DSK1. to the name.

Line 480 erases the screen and prints the message
that the computer is saving the words to the disk.

Line 490 opens the file to the disk.

Line 500 sends the number of words that will be
saved to the disk.

Lines 510-550 send the words in the SPEAKS array
to the disk. The word and its phoneme are not
concatenated. The file is closed when all the
words have been saved.

Line 560 displays the ending message and the pro-
gram ends.

Try to make new words with this program. For
example, enter the word “message” for the first
word and use the first 61 bytes of it. Do not enter a
second word. You have just created the word
“mess.” Or, enter the word “else” for the first
word. Use the first 47 bytes. Enter the letter “N”
for the second word and use 58 bytes. This combi-
nation makes “Allen.” Try your own combinations
of words to make new words. Sometimes when you
shorten the number of bytes that the computer will
use, you do not get a word, but a noisy sound.

After you have saved words to the disk or
cassette, you may want to use them in another
program. The following programs can be used to

200

bring in the information from the cassette or disk.
The first program will get the words saved from the
cassette, the second from the disk.

Listing 16-9C and 16-9D

Line 130 eliminates the zero element of the string
array and sets aside the memory for the array.

Line 140 opens the file to read the cassette.

Line 150 brings in the number that tells the com-
puter how many words were saved in this file.
Line 160 begins the FOR . . . NEXT loop to read in

the words.

Line 170 uses the LINPUT command to bring in the
word. The word is stored in the temporary string,
TEMPS$. The POS command is used to locate the
slash. The position of the slash is stored in P1.

Line 180 places the contents of the string up to, but
not including, the slash in the first element of the
string array. This is the word that was created.
The character immediately following the slash is
the number of characters that make up the
phoneme code for the word. The phoneme code is
removed from the temporary string and placed in
the second part of the array.

Line 190 continues the loop.

Line 200 closes the file.

Lines 210-240 display the words that are in the
array and say each word. If you were using these
words in your own program, you would not use
these lines. Your program would begin here.

The program to bring in the words from the file
on disk is similar, except that the string is stored
directly into the array. Any program that saves
information to the cassette or disk can be brought
back into the computer with routines similar to
these. In Chapter 14, we saved a character set to
the disk or cassette. The character set can be
brought in and used in another program. The infor-
mation must be brought in the same way that it was
saved—in a string—then transferred to the string
or memory area where it is to be used. In the
previous program the information in the string was
transferred to a two-dimensional string array. In a
character set program, the information would be
transferred to the character set.

Listing 16-9C

100 REM LISTING 16-90C

110 REM GET SAVEDR SPEECH -~ CABSETTE

120 REM RY AR.SCHRETRER FOR TAR BOOKS
130 OFTION RASE 1 3 DIM SPEAKS(4042)
140 OFEN #1:°CS1°yFIXEDR 192 INFUT

150 INFUT #1:CT

160 FOR C=1 TO CT

170 LINFUT #13TEMPS ¢ PL=POSCTEMPS "/ "y
1)

180 SPEAKS(Cy) =8EGS(TEMPS$s LyF1-1)88 L=A
SC(SEGHCTEMPSyPL4+1L1)) 21 SPEAKS(Cy2)=8EG
$CTEMFS s P L4291

190 NEXT C

200 CLOSE #1

210 FOR C=1 TO CT

220 DISFLAY ATOL2 DERASE ALLIYTHE WORD
TG "SSFEARS(Cy 128 CALL BAY G EPEARS(Cy)
)

230 DISFLAY AT(L& 1) PPPRESS ‘R TO REFEA
T $2 ACCERT AT(1&y21)03V% 28 IF VUs="R® T
HEN 220

240 NEXT

¢
L3

Listing 16-9D

100 REM LISTING 169D

110 REM GET SAVED SPEECH - DISK

120 REM RBY ALRLECHRETRER FOR TAR BOOKS
130 OFTION RASE 1 1 DIM SPEARKS(4042)
140 DISFLAY ATCL2y DERASE ALLZ"ENTER NAM
F OF FILE WANTED® $¢ ACCERT AT(14y19)RBEE
FoSTZE(LO) SFILENAMES

150 OFEN #138°DSK1 . *§FTLENAMES s SEQUENTIAL
s NIISPLAY s UPDATE y VARTARLE 2354

160 INFUT #1307

170 FOR C=1 TO CT

180 INFUT #128PEAKSCCy 1)

190 LINFUT #138PEAKSCCD)

200 NEXT C

210 CLOSE 41

220 FOR C=1 TO CT

230 DISPLAY ATL2y 1YERASE ALLIYTHE WORD

201

IS "SSPEARS(Cy 1) 2 CALL SAY(sSFEARSC(C2)
)

240 DISPLAY AT(L6y 1) IFPRESS ‘R TO REFEA
T" 31 ACCERPT AT(16+2133V8% §3 IF VUs=*R* T
HEN 230

250 NEXT C©

202

Chapter 17
Special Functions

Every memory location in your computer, whether
it is RAM, ROM, or GROM, has its own address.
These locations contain BASIC, the computer’s
operating system, and the program that you dre
using. If you have the Memory Expansion Unit and
extra memory, you can use special commands in
your Extended BASIC cartridge to look at and
change the contents of RAM memory.

HANDLING SPECIFIC MEMORY LOCATIONS

CALL PEEK

To find out what values the computer has
stored in a particular location, we need to be able to
ask the computer to look for us. We can look by
PEEKing at a location. The format for PEEK is:

CALL PEEK(location, variable, variable, etc.)
The location is the memory that we want to look at.

The first variable will contain the contents of that
memory location. If you want to look at more than

one location, each variable following the first, will

contain the contents of each subsequent memory
location following the one specified. So, if you
wanted to see the contents memory locations 500 to
504, you could enter:

CALL PEEK(500,A1,A2,A3,A4,A5)

The variable Al would contain the contents of
memory location 500. A2 would contain 501, A3
502, A4 503, and so on. The contents of any location
cannot exceed 255. You can PEEK at any location;
however, after location 32767 the computer uses
negative memory locations, so memory. location
66530 would be accessed by using a negative six as
the memory location. Subtract the address that you
want to access from 65536 to get the negative ad-
dress.

CALL INIT

The INITcommand must be used to change the
contents of any memory location. This command

203

tells the computer that you will be accessing
memory, loading in a machine language subroutine,
or just changing some values in certain memory
locations. You need only use this command once. If
you are planning to change the contents of memory
or load a machine language subroutine, it is good to
use this command near the beginning of the pro-
gram. Once the command is used, it remains active
until the Memory Expansion Unit is turned off. The
format is CALL INIT.

CALL LOAD

This command will place a new value into a
memory location. Its format is:

CALL LOAD(address,byte)

The value of byte will be placed in the memory
location specified by address. This command can
also be used to load machine language subroutines
into memory. In the program in Listing 17-1 (flow-
charted in Fig. 17-1) we will use CALL PEEK.
After the program runs, we will use CALL INIT and
CALL LOAD to show you how the computer’s
memory can be changed.

Listing 17-1

Line 130 clears the screen.

Line 140 begins the FOR . . . NEXT loop that will
display the contents of the memory locations on
the screen. The loop begins with a —345. We
want to look at memory location 65181. If we
subtract 345 from 65536 we arrive at 65181. We
do not use a STEP —1 because counting from a
negative number whose absolute value is larger to
anegative number whose absolute value is less is
counting in the positive direction.

Line 150 looks at the location pointed to by the
variable ADDRESS. The contents of this location
will be placed in the variable BYTE. BYTE$ will
contain the character string of BYTE.

Line 160 prints the address that the computer is
looking at and the contents of that memory loca-
tion.

Line 170 looks to see if a key has been pressed. Ifa
key has not been pressed the S variable will be

204

zero. We are not interested in what key was
pressed, just if a key was pressed. Pressing a key
will pause the program and hold the information
on the screen.

Line 180 is a delay loop. This temporarily stops the
program from printing the contents of the memory
locations on the screen. After the loop, the com-
puter will be directed back to line 170. As long as
akey is pressed, the computer will loop between
these two lines. This gives you a chance to study
or copy the information on the screen.

Clear the
screen

Get contents
of memory
location

]

Change it
to a character

contents &
character on
screen

Key
pressed
?

Another

address
?

2000

L

Fig. 17-1. Flowchart for Listing 17-1 Peeking at a Program. .

Listing 17-1

100
110

ING

C18YEBRYTES

180 FOR DELAY=),
GOTO 170

190 NEXT AINRESS

200 END

AT FROGRAM

FEEK(ANDRESS » BYTE) 8¢

120 RE

130 Call CLEAR

140 FOR ADDRESS=-34% T
1350 Cal.l.

(RYTED

1460 FRINT ADDRESSHO55363TARCLOY $RYTE S TAR

170 CALL KEYCOsKe8) 33
TO 2000 33

210 REM END OF LISTING

-4
BYTE$=CHRS

TF S=0 THEN

NEXT

190
DELAY $3

Line 190 continues the loop until all the memory
addresses have been looked at.
Now, in the direct mode, enter

CALL INIT

so that we can use the CALL LOAD command.
Again, from the direct mode, enter:

MESSAGE$=" *+PRESTO CHANGO=*+"

Be sure that there is a space before the first as-
terisk. Press the ENTER key. Now in the direct
mode enter:

FOR Z=1 TO LEN(MESSAGES$)::
Y=ASC(SEG$(MESSAGES$,Z,1))::CALL
LOAD(-56+Z,Y)::NEXT Z

Press the ENTER key, then, LIST the program.
Line 110 should now read:

110 REM #+PRESTO CHANGOx*x

You have just changed the program by loading new
values into the memory locations that held line 110.
By knowing where the computer stores the pro-
gram and other information, you can change it

whenever you need to. If you look closely at the
codes that this program printed on the screen, you
will notice that the program is stored in the highest
memory locations available. The highest 25 bytes
of memory are used by the computer. Then the
program is stored. Just before the program are the
program line numbers with two numbers separating
the line numbers. These two numbers are the ad-
dress of where that line is stored in memory.

DEF

This command allows you to create your own
functions. You can use it in a program where the
computer will be using a certain formula several
times. You could make this formula a subroutine,
have the computer go to it when it needs to use that
formula and return, or you can make the formula
your own function with its own name. Every time
the computer sees that name, it will use the for-
mula. The program in Listing 17-2 (flowcharted in
Fig. 17-2) does just that. The T variable becomes a
formula to come up with a value for a pitch or tone.
When the computer uses T in the SOUND com-
mand, it computes its value automatically.

Listing 17-2
Line 130 erases the screen and places the direc-

205

Clear screen
display
message

Define function
for tone

Key
pressed

?
Yes

Calculate
for value

‘f

Fig. 17-2. Flowchart for Listing 17-2 Keyboard Tones.

Listing 17-2

tions on the screen. Adjust the volume on your
television or monitor to a comfortable level, then
press any key.

Line 140 defines a function. In this program we use
the standard formula for finding the frequency of a
note. Every time the computer finds T in the
program it will use this formula to find out what
the value of T is. It will use this value in that
program line.

Line 150 uses the CALL KEY command to see if a
key has been pressed. If the S variable is zero, a
key has not been pressed and the computer will
loop at this line until a key has been pressed.

Line 160 subtracts 31 from the value of K. By
subtracting 31, we can make a tone from any key
whose value is between 32 and 96. Any value less
than 32 would become less than one. You cannot
raise the value to a negative number and get a
value that the computer can play. Any value
higher than 96 will produce a tone that is too high
for most people to hear.

Line 170 makes the tone based on the value of T.
The computer will use the formula in line 140 to
arrive at the value of T. We use a negative number
for the duration so that the computer will not
pulse if the same key is pressed for an extended
period of time. If a new key is pressed before the
computer has finished playing this tone, it will
make a smooth change to the new tone.

180 GOTO 1350

100 REM LISTING 17-2

110 REM KEYROARD TONES

120 REM RBY LoM.8CHREIRER FOR TAR ROOKS
130 NISPLAY AT 8YERASE ALL3 "ADJUST VO
LUME® 22 DISELAY AT(13y8) 3 "FRESS ANY KEY

140 DEF T=110%27(1/12))7K
150 CALL KEY(0OsKy 8
160 K=K-31 3 JF K<l
TONES MUST RBE HEARARLE

170 CALL SOUNDC-1000yTe 0 LAY IT

OR Kxé64 THEN 130 !

TF o S=0 THEN 150

206

Line 180 sends the computer back to line 150 for a
new key value.

ELIMINATING THE ENTER KEY

CALL KEY

We have been using the CALL KEY command
throughout this book. Whenever we’ve wanted to
be able to check the key that has been pressed
without waiting for the ENTER key, we used the
CALLKEY. We also used the CALL KEY command
to see if the fire button on the joystick had been
pressed.

CALL KEY can not only check to see whether
or not any key has been pressed, but can check for
specific keys as well. The various format to check
keys are listed below:

CALL KEY(0,K,S) . any key
CALL KEY(1,K,S) left side of keyboard &
joystick 1
CALL KEY(2,K,S) right side of keyboard &
: joystick 2

CALL KEY3,K,S) lowercase value regard-
less of whether key is
upper or lowercase.

CALL KEY(4,K,S) Pascal Codes

CALL KEY(5,K,S) BASIC mode

The K variable will hold the ASCII value of the
key that has been pressed. S is the status of the
command. The value of S will be zero if no key has
been pressed. The value will be one if anew key has
been pressed and negative one if the same key has
been pressed as the last time that the computer
used this command. In the program in Listing 17-3
(flowcharted in Fig. 17-3) the computer will use
CALL KEY to accept entries from the keyboard.
Keep your ALPHA LOCK key up so that you can
enter upper or lowercase keys. You can also press
any two-key combination (CTRL and W, FCTN and
1) and see what codes will be returned. Do not
press FCTN and 4 (clear) or FCTN and 8 (quit).
They will leave the program.

Listing 17-3
Lines 130-140 clear the screen and display the mes-

sage and the format for the CALL KEY command.

- Line 150 begins the FOR . . . NEXT loop that
displays the six different ways that the CALL
KEY command can be used. The CALL KEY
command is used with the UNIT variable set by
the FOR. .. NEXT loop. The value of the key that
has been pressed is placed in the variable
RTURN. When a key has been pressed, the value
of STATUS will be a one. STATUS will be a zero
when no key is being pressed.

Line 160 checks the value of STATUS when the
UNIT value is zero. Ifno key is being pressed, the
computer goes back to line 150 and waits until a
key has been pressed.

Lines 170-180 print the UNIT value, the value of
the key, and the STATUS on the screen. If the key

Clear screen
display
message

Fig. 17-3. Flowchart for Listing 17-3 Keyboard-Kapers.

207

Listing 17-3

100 REM LISTING 173

110 REM KEYROARD-KAFERS

120 REM RY ALR.B8CHREITIBRER FOR TAE ROOKS
130 DISFLAY AT(2&IERASE ALLS"HOLD DOWN
A KEY® 1! DISFLAY AT(Zy23 YUNTIL CODES &
TOF PRINTING® $3 DISPLAY AT(6 1) 2 "FORMAT

¢+ H
+

140 DISFLAY AT(8y 12" CAlL
NsSTATUS) "

KEY CUNTT s RETUR

150 FOR UNIT=0 TO 5 3 CALL KEYCUNITsRTU
RNsSTATUS)
1460 IF UNIT=0 aND STATUS=0 THEN 130

170 DISFLAY AT2XUNITHLLy 12 CALL KEY ("
UNITSTARC1A4)5 %"

180 NISFLAY AT C2XUNITH11s16) PRTURNSTARCR
1Ys s "5 TARCZ2EIISTATUSS TARC28)Y 370 "

190 NEXT UNIT
200 CALL KEY(OyKyH) 22
210 GOTO 1LGO

IF 8=-1 THEN 200

cannot be read for a particular unit value, for
example, the computer is reading the right side of
the keyboard and the key that you are pressing is
on the left side, the value of STATUS will be zero.
In the next line, the STATUS value will be a
one—new key pressed—when, in fact, it is the
same key that you have been pressing. If the
computer uses the value of the key in two con-
secutive lines, the STATUS value in the second
line will be negative one.

Line 190 continues the routine until all six varia-
tions of this command are displayed.

Line 200 uses the CALL KEY command again. This
time it checks to see if the key is still being
pressed. If it is, the STATUS will be negative
one. The computer will loop at this line until the
key is no longer being pressed.

Line 210 sends the computer back to line 150 to set
another key.

PRINTING IN COLUMNS
We have been using commas and semicolons

208

with spaces to print information in certain patterns
on the screen. The computer can have a pattern
stored in its memory and then use that pattern
within a program whenever it needs to by using the
IMAGE with the PRINT USING or DISPLAY
USING commands.

The IMAGE command tells the computer how
you would like the information printed. It can be
used for numbers, numeric variables, or string
variables. The IMAGE that you want to use must be
in a program line before the line that it will be used
in. Words can be used in the IMAGE statement.
Here are some samples of how to use IMAGE:

100 IMAGE $###.##—prints the dollar sign
and the amount up to three digits preceding
the decimal.

IMAGE YOU'RE BALANCE IS $####.
—prints the words “you’re balance is”
and the amount up to four digits preceding the
decimal.

IMAGE MEMO TO ##### —prints a word

100

100

Set aside
memory set
error trapping

y

Create and
store images

Erase screen
print column
headings

gasoline
used

Good
number
?
Yes

Calculate
miles per
gallon

Y

Place date, miles,
gallons of
gasoline &
mileage on
screen

Yes

No

Fig. 17-4. Flowchart for Listing 17-4 Using.

209

Listing 17-4

100 REM LISTING 174
110 REM USING

120 REM BY ALR.SCHREIRER FOR TAR ROOKS

130 DIM DATE$(S2) yMILES(52) s GASOLINE (52)
sMILEAGE (52)

140 ON WARNING NEXT

150 IMAGE 444444

160 ITMAGE 4. 4

170 ITMAGE &% . %

180 IMAGE &%

190 DISFLAY AT Ly 8IERASE ALLI*MILEAGE RE
FORT® 3¢ DISFLAY ATy 3 "IATE" STARCLZ2) §
TMILES S TARCR0) 5 GAS Y STARCRS) § "MPGT

200 NISFLAY AT(Ay 1) SRFTHC! "y 28)

210 ROW=% §8 FOR C=1 TO &2

220 NISFLAY AT(23y 1) TYENTER DATE 03704/
83y 3% 11 ACCERT AT(24ySIREERF STZECE) 2TE
Mg P E TF O TEMP$=*" THEN 220

230 TF LENCTEMP$) <=8 THEN 220 ELSE UATES
(CY=TEMF®

240 DISFLAY AT(23y 1) 2"ENTER MILES TRAVEL
Eod 2 ACCEFRT AT24y5)BEEF VAL TIATE (NU
MERTCY STEMP $3 TF TEMPCL OR TEMP:9999,9
THEN 240

250 MILES
260 DI&‘LAY AY(E&yl)K“ENTER GASOLINE USE
0not® 33 ACCERT AT(24,S5)REEF VALTIATE CNLM
ERICY $TEMP £ IF TEMP<.1 OR TEMP:99.9 TH
EMN 260

270 GASOLINE (Y =TEMP 2 MILEAGE (C)=MILES
(CYAGAGOLTNE CCD

280 DISFLAY ATROWy 1) 2US IN[; LSOINATES®(C)
290 DISPLAY ATROW 11 TUSTNG 160 IMILES O
)

Z00 NISFLAY AT(ROWy 19 TUSING 1703GAS0LIN
ECC)

F1L0 DISPLAY ATROW 285) SUSING 180 tMILEAGE
()

320 ROW=ROWHL $8 ITF ROW=22 THEN ROW=3
330 NEXT C©

210

or number up to five characters long.
100 IMAGE INVOICE ####—prints a word or
number up to four characters long.

The computer can refer to the patterns in the above
examples by line number. The program in Listing
17-4 (flowcharted in Fig. 17-4) contains examples of
these commands.

Listing 17-4

Line 130 sets aside memory for the strings. The
computer will allow up to 52 entries.

Line 140 traps errors.

Lines 150-180 set the IMAGEs for the numbers that
will be used in this program.

Line 190 prints the top heading on the screen.
These set the column for the entries.

Line 200 uses the RPT$ to print the line across the
screen.

Line 210 sets the ROW variable for five. This is the
row that the first entry will be printed on. The
FOR . . . NEXT loop begins on this line.

Line 220 places an example for the date on the
lower line and waits for the date to be entered.
The date is placed in TEMPS.

Line 230 checks the length of the string. Ifit is not 8
characters long, the computer will go back to line
220 for another entry; otherwise it will be placed
in DATES, where the C variable is pointing.

Line 240 asks for the miles traveled. If the miles
traveled is less than one or greater that 9999.9 the
computer will loop at this line.

Line 250 places the miles traveled in the MILES
array. :

Line 260 asks for the number of gallons of gasoline
used. Ifless than one tenth of a gallon or more than
99.9 gallons were used, the computer loops at this
line.

Line 270 places the gallons used in the GASOLINE
array. The mileage is determined by dividing the
miles driven by the gallons of gasoline used.

Lines 280-310 places the information entered and
the mileage on the screen. Each line uses a dif-
ferent IMAGE for the information that it is placing
on the screen. The line number after USING re-
fers to the IMAGE that the computer will use.
The information -will be printed in straight col-
umns whether each entry in that column is the
same length or not.

Line 320 adds one to the value of ROW so that the
next entry can be printed on the next line. If the
value of ROW is 22, then the computer will begin
printing at row five again.

Line 330 continues the loop until 52 entries have
been made.

Each IMAGE statement must be in a different
line. There cannot be any other command or state-
ment on that line. If you enter another command on
the line before the IMAGE statement, the com-
puter will not accept that line and print a syntax
error on the screen. Putting a statement or com-
mand on the same line after the IMAGE statement

~will cause the computer to print that statement or

command as part of the IMAGE message when the
IMAGE statement is used in the program. The
RESEQUENCE command will renumber the refer-
ences to the IMAGE lines in the program so your
program will execute properly.

The computer will use the DISPLAY USING
or PRINT USING without the IMAGE statement if
the image is contained in the program line.

100 DISPLAY AT(2,3):USING ###.#:A

The contents of A will be printed using the image of
###.#. A line number was not referenced and an
IMAGE statement was not used. The image can
also be placed in a string, as shown below:

100 AS=“####.##"
110 PRINT USING A$:B

211

Chapter 18
Advanced Programming Skills

Now that you are confidently programming on your
TI-99/4A computer, you may want to give your
programs a more professional look. Routines may
be taking too long; other programs could use more
color or better graphics. Some of these problems
can be solved by using machine language sub-
routines within your BASIC programs, others by
using sprites.

MACHINE/ASSEMBLY LANGUAGE

Before writing a machine language subroutine,
you must have some knowledge of the instructions
the microprocessor follows. This chapter is not
designed to teach you about machine language. It
will only give you a general explanation of how your
TI-99/4A can use a machine language subroutine
within a BASIC program.

In machine code, each instruction is a number.
This number tells the microprocessor within the
computer what it should do. It would be tedious to
write machine language programs using BASIC.
There is a special editor/assembler available for

212

your TI-99/4A designed for writing machine lan-
guage programs. You use the editor/assembler to
write the program in assembly language. Once you
have written the program in assembly language, it
will be converted to machine code by the editor/
assembler.

You can save your machine language this pro-
gram to disk or cassette. The name by which you
want to access your machine language program
must be specified with a DEF statement in the
assembly language program. From BASIC, you can
load this machine language program with the CALL
LOAD command as follows:

CALL LOAD(DSK1.name”)

Once you have loaded the machine language
program into the computer, you can access it from
BASIC with the CALL LINK command as follows:
CALL LINK(“subprogram name”)

The name can be followed by variable values that

are to be passed to the machine language program
similar to the CALL SUB command. The computer
would search its table to find out where this
machine language program is stored and execute it.
After it is executed, it will return to BASIC. If the
machine language program has not been loaded into
memory, an error message will appear and the
program will crash.

Since the editor/assembler, Memory Expan-
sion Unit, and memory is needed to utilize these
commands, it is beyond the scope of this book to
present viable examples of these commands.

USING SPRITES

Sprites add interesting and creative effects to
programs. Sprites are independent of the character
set in as much as they can be placed anywhere on
the screen, can move independently of each other
and characters, and can be one of two sizes. With
your TI-99/4A, you can place up to 28 sprites on
your screen.

A sprite is created with the same command
that a character is created—CALL CHAR. A
character that will be a sprite is created and placed
in the normal character set. This character is then
used as a sprite with the CALL SPRITE command.
The format is as follows:

CALL SPRITE (number,character number,col-
or,row,column)

After the row and column, you can also add the
speed at which the sprite will move and the
direction—horizontally, vertically, or a com-
bination—to move on the diagonal.

The row can be any number from 1 to 192 and
the column can be any number from 1 to 256. This is
a dot position rather than an actual row and column
number, giving you greater flexibility as to where
you want to place the sprites.

A sprite can be placed over a character that is
on the screen. The ability to place one sprite over
another sprite or character is called a priority.
Characters have a lower priority than sprites, so a
sprite can cover a character. The sprite with the
lowest number will cover the other sprite or portion

of the sprite if it tries to occupy the same area of the
screen.

The program in Listing 18-1 creates a space
ship (Fig. 18-1) and uses it as a sprite. The sprite is
placed on the screen as a character. You can enter
different colors and positions to place the sprite on
the screen. The upper left corner of the sprite will
be placed in the row and column number that you
enter. The program will allow you to place all 28
sprites.

Listing 18-1

Line 130 protects the program against null entries
for the variables. It also creates a sprite (Fig.
18-2) and places it in an undefined character loca-
tion. You can use any defined character as a
sprite. You can place your own characters into the
undefined character space and use them as
sprites. _

Line 140 erases the entire screen. The ERASE
ALL option and the CALL CLEAR command does
not affect the sprites. Only the characters will be
erased. The format for the CALL SPRITE com-
mand is printed on the screen.

Lines 150-160 print the remaining portion of the
CALL SPRITE command on the screen.

Line 170 places the empty command and the mes-
sage on the screen. You can enter any values that
you like to create your own sprites.

Line 180 beeps and waits for a sprite number. This
number can be between 1 and 28. The number
sign (#) is already on the screen. You need only

8 4218 421

00
OF
02
E2
42
42
FF
00

#128

Fig. 18-1. Character for Listing 18-1 Creating Sprites.

213

Setwarning-
create a
new character

Clear screen
place
message

Geta
sprite number

Geta
character
value

Good
column

?
Yes

Place sprite
on screen

Fig. 18-2. Flowchart for Listing 18-1 Creating Sprites.

enter the sprite number.

Line 190 waits for the ASCII value of the character
that you want to use as a sprite. If you would like

214

the ship to appear on the screen, enter 128.
Otherwise, enter any value that you would like
between 32 and 143.

Listing 18-1

100 REM LISTING
110 REM CREATING
120 REM RBY L.M.SCHRET
130 ON WARNING NEXT 3
OFQR2E24242FF ")

18-1

¢ ¢
LA S

NUMEER » ®
150 DISPLAY AT(S5.3)3¢

COLORs ®
160 NISFLAY AT(Asé6) 2"

1720 DITSFLAY AT(23412

BC17)8 "ENTER
180 ACCEPT
SIZEC(2) 6N
190 ACCERT
SIZE(3 0V
0
200 ACCEPT
STZEC(2) 80
210 ACCEPT
CSTZEC3) 2IR
220 ACCEPT
TZEC3)Y 206
230 CALL.
AY AT(24417) 2 "FRESS
240 Call. KEY(OsKe8) 11
SE IF K<x=13 THEN 240

VaL.UES®

s 8 TF 8N4

+ 9
¢ ¢

s IF

S

A F TR

[3K
LR

+ 2
¢ e

TF e

SERI

140 DISFLAY AT(2y 1IERASE
DIGFLAY AT (4510200

FRITE Gy
v ¢ 30 DISPLAY AT(244103¢ YERTA

AT (239 LAY BEERF VALIDATEIGIT)

AT 2y L2 REEF
IF CU<32 OR CV=143 THEN 19

AT (23 2LIREEP
AT 23y 24 REER
AT (24 1) RE

GFRITE (SN O
k.

TES
BER FOR
¢ Call.

¢

TAR ROOKS
CHARC128 00
ALL S "FORMAT
SFRITE CESFRITE

¢ H
¢

Al.L.

CHAR « VALUE y SFRITTE -

DOT-ROWs DOT-COLUMN)

"“CALL

SR

OR SN=28 THEN 180

VALTOATE(DTIGLT)

VALITDATECDIGLIT)
Cx1é THEN 200
VALTIDATEDTGIT)

OR DR=>192 THEN 210
EF VALTDATE(DIGITIS
OR DC=256 THEN 220
Ve SCy DRy DCI E3 DTGP
NTER"

IF

ELSE

0OR

G=

0 THEN
140

240 EL

Line 200 accepts the color number. This will be the
color of your sprite. Unlike characters, you can
only set the foreground color and the sprite. Enter
a number between 1 and 16.

Line 210 waits for the row number. There are 192
rows on the screen for your sprite. Enter a
number between one and 192.

Line 220 places the number you enter in DC. This
variable will set the column for the sprite. The
column can be between one and 256.

Line 230 uses the CALL SPRITE command. The
sprite will be set per.your entries. The sprite will
be displayed on the screen at the row and column

that you specified. If you do not see a sprite on the
screen, the color of the sprite may be blending
into it, or the row and/or column number is so low
that the sprite is off the screen. Some televisions
or monitors will display the entire screen, others
will not show the right and left edges or the top
and bottom rows.

Line 240 uses the CALL KEY command. The com-
puter will loop at this line until the enter key is
pressed. It will then go back to line 140 for
another entry.

The program will continue until you press the
clear key. You can move any sprite that you have

215

Setwarning
create a
new character

Clear screen
place
message

Geta
column
number

Geta
sprite number

Geta
character
value

Get a color
for the sprite

Color
number

Place sprite
onscreen
ter

key pressed
?

Fig. 18-3. Flowchart for Listing 18-2 Moving Sprites.

216

Listing 18-2

100 REM LISTING 182
110 REM MOVING SPRITES
120 REM RY L.M.SCHREIRER FOR TAR BOOKS
NKO ON WARNING NEXT & CALL CHARCL28 400
OFOREZ24242FF ")
140 DISFLAY AT(2y1
s DISPLAY AT (4 l)
NUMEER
150 DISFLAY AT(Sy3) 3 CHAR s VALUE s SFRTTE -
COLORy "
160 DISFLAY ATy 3 DOT~ROWs DOT-COLUMNI
yROW-" 32 DISFLAY AT(7+7) LSFEED COLUMN-
SFEEDI Y
170 DISFLAY AT(23y1) 1 CALL SPRITE(E
vy o' 83 DISPLAY AT(24000 20 [Ty
y DIENTER VALUES"
180 ACCEFT AT(23y LOIREEF VALIDATE(DIGLIT)
SIZEC2IEN 13 IF SNl OR SN=28 THEN 180
1920 ACCEPT AT(2Fy L2IBEEF VALIDATE(DIGIT)
SIZE(3 GO 3 IF COC32 OR COX143 THEN 19
0
200 ACCEPT
SIZE(2)360 3
210 ACCEFT A
SIZEC3YINR ¢
A

YERASE Al
eALL

LL3"FORMAT 3o
SF T

RETE CESFRITE

AT 23y 2 REEF VALIDATE (OIGET
¢OIF SCL OR 8CH1LE THEN 200
T(23y 24 BEEF VALIDATE(DIGIT)
: fF DR OR DR=192 THEN 210
220 ACCEFT AT(24» HYREEF VALIDATEC(DIGIT)YS
TZECZ)Y DG ¢ IF DC<L OR DCE=254 THEN 220
230 ACCERT AT(R24y6)BEEF VALIDATE (NUMERIC
YEIZECA) ITEMPS 33 1IF TEMP$="" THEN RVs(V
=0 ¢ GOTO 270
240 RU=VAL(TEMPFS) 33 ITF RVC-128 OR RV=127
THEN 230
290 ACCERT AT(24 LIREEF VALIUATE (NUMERT
COSTZECA) STEMPE $3 TF TEMP$=*" THEN 250
260 CU=VALCTEMPS) 2 IF CUC-128 OR CV=127
THEN 250
270 CALL SPRITE(FSNsCCyBCy IRy DGRV GV $3
DISPLAY AT(24417) 1" FRESS ENTER®
280 CaAll KEY(OsK»S)2: IF 8=0 THEN 280 F.
SE IF K<x13 THEN 280 ELSE 140

217

placed on the screen by setting the row and column
numbers to a new position. You can change the
sprite by using another character number.

The sprites that you entered, did not move on
the screen. In order to get movement, you need to
enter the velocity or speed of the sprite. The
number can be negative or positive depending on
which direction you want the sprite to move in.

LEFT -128 to -1
RIGHT 1to 127
UP -128 to -1
DOWN 1to 127

The closer the number is to zero, the slower
the sprite movement. A zero for both directions
keeps the sprite in one position on the screen. A
zero for one direction moves the sprite in a straight
line in the other direction; for instance, a zero for
horizontal moves the sprite vertically. A number
for both directions moves the sprite diagonally. The
program in Listing 18-2 (flowcharted in Fig. 18-3)
allows you to add the horizontal and vertical speed
to the sprites.

Listing 18-2

Lines 130-220 are the same as in the previous
programs.

Line 230 validates the speed for negative or posi-
tive numbers. The speed of the sprite can be
negative or positive. It is stored in a string so that
the string can be tested for a value or a null string.
The speed is optional in the CALL SPRITE com-
mand. You do not have to enter a value for it. If
you just press the ENTER key, the computer will
place the sprite on the screen and it will not move.

The RV and CV variables will be set to zero.

Line 240 places the value of the string in the RV
variable. If the value entered is not between -128
and 127, the computer will go back to line 230 for
another value.

Line 250 accepts a value for the column speed. This
time if no value is entered, the computer will
remain at this line until a value is entered.

Line 260 places the value entered into the CV vari-
able. The computer checks to see if the number

218

entered is valid. If it isn’t the computer will go
back to line 250 for another number.

Line 270 places the sprite on the screen. If the
RV and CV variables are set, the sprite will move
on the screen. If they have not been set, the sprite
will remain in one place on the screen.

Line 280 waits for ENTER to be pressed. When it
is, the computer goes back to line 140 for another
sprite.

CALL MOTION

There may be times where you do not want to
set a sprite into motion when you place it on the
screen. You want the player or program to control
when the sprite should be moved. This is when the
call motion command can be used. Load in the cake
program from Chapter 16. We will add sprites to
this program. (See Listing 18-3.) While the candles
are lit, the balloons remain still. After the candles
go out, the balloons start to move on the screen.

Listing 18-3 (flowcharted in Fig. 18-4)

" Line 212 places three new characters in the

character set beginning with character 128.
These three characters are the balloons. (See
Fig. 18-5)

Line 214 sets the variable SP to the first balloon
character number. The FOR. . .NEXT loop places
a balloon in a sprite. The color along with the row
and column that the sprite will be displayed at are
chosen randomly. When SP reaches 131, it is
reset to 128.

Line 216 continues the loop.

Line 240 blows the balloons up on the screen. When
the music is almost done, the balloons change size
with the MAGNIFY command. The two in pa-
rentheses makes the balloons twice the size they
would have been in the normal mode. The FOR
.. . NEXT loop uses the CALL MOTION com-
mand to get the sprites moving on the screen. The
computer chooses a random number for the di-
rection and speed of each sprite. By multiplying
the number chosen by a -1, the computer can only
make the balloons go up on the screen. Ten is

0

Get 2 notes
and duration

Make the
sound

Clear screen

Create new
characters

Y

Change screen
color &
character colors

Place cake
and

message
on screen

Set sprites
(balloons)
in motion

Create sprites

Place
spriteson
screen

Fig. 18-4. Flowchart for Listing 18-3 Cake & Balloons.

Listing 18-3

subtracted from the column value. If the new
value is negative, the balloon will float to the left.
Ifthe value is positive, the balloon will float right.

Line 245 keeps the computer in a loop until the clear
key is pressed.

You may notice that sometimes part of a bal-
loon disappears from the screen. The TI-99/4A can
only have four sprites in one row. When more than
four sprites are in the same row, only the first four
will be visible on the screen.

CALL LOCATE

This command will move the sprite on the
screen. It can move any sprite to any location. In the
next program we will move an arrow across the
bottom of the screen. By pressing the D or Skey the
arrow moves one column at a time to the right or
left. But, if you press the F or A key, the arrow will
move much faster because it is actually moving five
columns to the right or left.

Listing 18-4

Line 130 clears the screen, creates the new
characters and sets the magnification for the
sprite at two.

Line 140 gets COL to 125. This is the column that
the sprite will be printed at. The CALL SPRITE
command is used to place the sprite on the screen.

Line 150 checks to see if a key has been pressed.
The computer will loop at this line until a key is
pressed. The first value of the key command is
one. Only the keys on the left side of the keyboard
will change the status value.

Line 160 checks the value of K for a two. If the S has

100 REM LISTING 18-3

110 REM CAKE &

¢ ¢
¢ ¢

Ce

130 RANDOMIZE
TO 109 i READ
EXT I

140 FOR

¢ 4
LR

T=112 TO 116

BALLOONS
120 REM RBY L.M.SCHREIRER FOR
CaL.l.

TAR ROOKS

CLEAR 32 FOR I=99
CALL CHARCI-C$>2:: N
$3 READ G4 33 CALL

219

220

CHARCI yCEY 2 NEXT I
150 FOR I=120 TO 121 1 REAnR C$ 3 CALL
CHARCTI»CH) 22 NEXT I
160 FOR I=1 TO 9 $: READ C+C% 3 CALL CH
ARCCYCEY 28 NEXT I
170 Cal.l. lULUR(?VIQ;1091099?10911?3?1)33
call. SCREENCLD)
180 DISFLAY AT(1012) ¢ "decefd® 311 DISFLA
Y AT L1y 12) 3 %hiddadd® 13 DISFLAY AT12¢12
yerririnae
190 DISFLAY AT(13 010 8wk L1 Imt" §$2 DISGF
LAY AT(l4y1l)¢ "arrrrrrs®
200 NISFLAY AT(9y14) 2 %
210 NISkLAY ATCHy LY S"H A F P Y* 28 DISE
LAY ATCLZy8) "R 1T R T H D A Y®
212 CALL CHARCL28y " 183C7E7E3C1I8000018303
C7E7EICACIBLG7EFFFF?2EICICLIB8")
214 SP=128 $1 FOR X=1 TO 28 23 CaAllL SPRI
TECEX s GF v RNDKEGF2 s RNIDKZOAH 150 e RNDXZ2004+10) ¢
3 SF=GF4)L 20 TF SP=131 THEN SF=128
216 MNEXT X '
330 FOR T=1 TO 26 13 READ DeNeNL $3 CALL
GOUNDI(DyNe Oy NLs O 23 NEXT I
230 DISFLAY AT(Pv14) 2 "wyt
240 CAlL MAGNIFY(2)3: FOR X=1 T0O 28 3
ALl MOTTONCEX s RNIKLOX-1 1 s KNIKZO-10) 3
EXT X
245 GOTO 24%
250 NATA FFyFFFFFCFOCO8yFF8yFFO1L s FFFFAFO
FO301
260 NATA 40201F s Q000FF» 0204F Gy 0000000000
SOCOE s Q0000000000001 0307
270 NATA 00000003070F0OF 070301y FFFFFF (O
8+ 000000COEQFOFOE»0010029012929292500000
01012929292
280 NATA éuv/Féééé/Fééé&F/966?FU&666/C66
GOFCvbBsFLHALLELL6E6GF Ly 729F766667E6666F7
290 NATA 73,30C18181818183Cs80sFL66667060
HOF v B2 FLHLOOE7LHELLL77 v 84y 7EHEGH18181830
300 DNATA 899EF6666667EQ6 7
‘3 1O DATA 2502622209 2509262s2209500294
22055009 262522055009 349926237509 3309262
.30 NDATA 250s28629 196925002625 19695005294

o

(
N

4
®
¢
*

108695005 262919695005 3922427509349 3262
J30 NATA 2H0924629 220325052629 2205500,527
y 34950054405 349 250934952629 25093492262
v 50033052629 7504294294

340 NATA 2F0+4669 349925094669 3495005440
7349930093499 26295009 392926297509349 92462

been pressed, one will be subtracted from the
value of COL.

Line 170 checks for the D key. If it has been
pressed, one will be added to COL so that the
arrow can be moved to the right.

Line 180 checks for the A key. This key will make
the arrow move to the left faster by subtracting
five from the variable COL.

Line 190 will add five to the value of COL if the F

" key is pressed.

Lines 200-210 check to see if the arrow will be off
the screen. If it will, the variable will be reset for
the edge of the screen.

Line 220 uses the CALL LOCATE command to
place the sprite on the screen. Each sprite can
only occupy one position on the screen. When we
place the arrow in a new position, the computer
erases the arrow before it places it in the new
position. The movement is much smoother than
when we moved characters by erasing one, then
reprinting it.

Line 230 sends the computer back to line 150 for
another key.

CALL MAGNIFY

In the Cake and Balloons program, we used the
CALL MAGNIFY command to make the balloons
larger on the screen. This command makes the
sprite four times as large as the normal character.
The four different CALL MAGNIFY options listed
below:

CALL MAGNIFY(1) normal size

CALL MAGNIFY(2) four times normal size
CALL MAGNIFY(3) normal size 4 X4 sprite
CALL MAGNIFY(4) four times 4 x4 sprite

Since we already used the CALL MAG-
NIFY(2), the program in Listing 18-5A will dem-
onstrate CALL MAGNIFY(4). With the CALL
MAGNIFY(3) or CALL MAGNIFY(4), the com-
puter takes four sequential characters and places

" them on the screen in a square. If the MAGNIFY(3)

is used, the characters will be the normal size, but
because the square is 2x2, the character could be
redefined and four times as large as a normal
character. If the MAGNIFY(4) is used, the charac-

8 4218421

8 4 218 42 1

8 421842 1

18
3C

7E
7E
3C
18
00
00

18
7E
FF
FF
7E
ac
ac
18

#128

#129

#130

Fig. 18-5. Characters for Listing 18-3 Cake & Balloons.

221

Listing 18-4

100 REM LISTING 18-4

110 REM MOVING THE ARROW

120 REM BY L .M BCHREIRER FOR TAR ROOKS
130 Cal.l. CLEAR i CALL CHARCL28, 1028545
410101010%)38 CALL MAGNIFY(2)

140 COL=123 3¢ CALL SPRITE(EL» 1285150y
COLD :

150 CALL KEYC(LyKe8222: IF 8=0 THEN 150
160 IF K=2 THEN COL=COL-~1

1720 IF K=3 THEN COL=COL+1

180 IF K=1 THEN COL=COL-%5

190 TF K=12 THEN COL=COL4E

200 IF COL<8 THEN COL=8

210 IF COL>244 THEN COL=244

220 CALL LOCATE (#1150 C0LD

230 GOTO 150

LISTING 18-5A

100 REM LISTING 18-5a

110 REM THE DUCKS

120 REM BY L.M.SCHRETRER FOR TAR ROOKS
130 Call. CLEAR i M=3

140 CALL CHARCL28y "060F1F37FF3FAF06060F 1
FIFAFLFOFOZ000080C0C08F103870E0FCFIFFEFCF
BrFo®)

LSO CALL SPRITE L 128y591005120)

160 DISKFLAY AT10:8) I MAGNIFY ATY"IM 22 ©
AlL. MAGNIFY (M)

170 CALL KEY(OsKy&) 22 IF =0 THEN 170
180 M=7-M TALTERNATE BETWEEN 3 & 4

1920 FOR DELAY=1 TO 50 33 NEXT DELAY

200 GOTO 160

ter will be four times as large as the normal charac- to three. This variable will specify which magnifi-
ter and be in a 2x2. The color of the four sprites cation the computer should use.

used together is the same. Also, if you magnify one Line 140 creates four new characters.The new
sprite, you magnify all of them. You cannot have character will begin with ASCII 128.

small and large on the screen at the same time. Line 150 uses the CALL SPRITE command to place

L. the duck (Fig. 18-6) on the screen.

Listing 18-5A . Line 160 places the message on the screen that tells
Line 130 clears the screen and sets the variable M the user which magnification the computer has

222

#128 . #130
84218421842 1842 1
06 00
OF 00
1F 80
37 co
FF co
3F 8F
4F 1C
06 38
06 70
OF EO
1F 1 Fc
3F FF
3F FE
1F FC
OF F8
07 FO
#129 #131

Fig. 18-6. Character for Listing 18-5A The Ducks.

used for the sprite.

Line 170 uses the CALL KEY command to wait for a
key to be pressed. The computer will loop at this
line until a key has been pressed to abort the
program.

Line 180 subtracts the value of M from 7. This will
alternate the value of M between 4 and 3.

Line 190 is a delay loop. Without it, the computer
would shift the sprite between the three and four
too fast.

Line 200 sends the computer back to line 160 for
another key.

Even though you can only have four sprites on
the screen at one time, if you use the 2 x2 character
combination for sprites, each character that makes
up the sprite is not counted separately. The two
characters that are in the same row for the sprite
~ are counted as one sprite (Fig. 18-7). This is handy
if you want to display words in large letters and the

word consists of five to eight letters. In the pro-
gram in Listing 18-5B, we use sprites to print large
colorful letters on the screen.

Character Character
#112 #114

QU

Character Character
#113 #115
(blank) (blank)

Fig. 18-7. Arrangement of Sprites for Magnify (3) and Magnify
(4).

223

Listing 18-5B

100 REM LISTING 18-5Ek
110 REM THE DUCKS

120 REM RY LM SCHREIRER
130 Call. CLEAR M=3
ERG®

140 CODE=112 $: FOR C=1 T0O 8 cal.l.
RFAT(ASC(SEGS (MESSAGESsC» 1)) s TEMFE) £ ¢
L.LL. CHARC(CODE » TEMF$)Y $! CONE=CONFE+1.

150 CALL CHAR(CODE»®*00®")>3¢ CONE=CONE+1 @
I NEXT C

160 CALL CHARC1285 "060F1F37FF3F4F046060F 1
F3F3F1LFOF07000080C0CORBFI1C3870FE0FCFFFEFCF
8Fo*®)

170 CALL SPRITE(H1:128s5¢100s50s#2+128+3
v 1009100+ 43+128+751007150s#45128525100+2
00)

180 CALL SPRITE(#5:112:5991329104v846+116¢
3vl3271209%79120s7 1329136880124 251320
152)

120 DISFLAY AT(L08) " MAGNIFY AT"sM 3 1
F M=4 THEN CALL LOCATE(#5+148+82+46+148,
114:#7+1485 146481485178

200 IF M=3 THEN CALL LOCATE (#%5+132+104 %
69132912097 1320136 #851325152)

FOR TAR ROOKS
MESSAGE$="QUACK

+ 4+ L3R4
+ 2 LR

b CHA
CA

210 CALL MAGNIFY (M)
220 CALL KEY(0OsKeS)32
230 M=7-M | ALTERNATE
240 FOR DELAY=1 TO 50
250 GOTO 190

IF =0 THEN 220
BETWEEN 3 & 4
NEXT DELAY

L3R4
LR Y

Listing 18-5B

Line 130 clears the screen, sets the variable M to
three for the magnification of the sprite and places
the word “quackers” in the string. The letters in
this word will be used as sprites.

Line 140 sets the variable CODE to 112. This is the
first character that will be created. The FOR
. .. NEXT loop places the character pattern for
each letter of the message into TEMP$. This
character pattern is then transferred to the new
location pointed to by CODE. The variable CODE
is incremented by one for the next location.

Line 150 places a set of zeroes in the next location

224

and adds one to the value of CODE. The loop
continues until all the letters from the message
have been moved to the new location. Every
other character will be a blank. When the word
will be formed using the 2x2 sprite, we do not
want any letters or characters under the words,
so these characters must be blanks.

Line 160 places the four characters for the duck in

the correct character locations.

Line 170 sets the first four sprites to character 128.

Each duck will be a different color and in a dif-
ferent column, but they will all be in the same
TOW.

Listing 18-6

100 REM LISTING 18-6

110 REM FLIGHT

130 CALL

170 GOTO 160

120 REM RY LM SCHRETRER FOR
CHARCLZ28, "000042A518" » 129" 0081
422418% 1305 *000000245481 ")

140 CALL CLEAR $3 CALL SCREENCS)

150 CALL SFRITEC(EL» 1285165325 192509 3)
160 FOR M=0 TO 2 33 CALL PATTERNCGEL. 1284
M):s FOR DELAY=1 TO S0 3: NEXT DELAY 23
NEXT M

TAR ROOKS

Line 180 places the new characters for the letters in
sprites five through eight. Each of these sprites
will contain two letters and two blank characters.

Line 190 prints the message that tells the magnifi-
cation of the sprites on the screen.The CALL
LOCATE command is used to position the sprites
that form the word on the screen.

Line 200 places the sprites at a different position if
the magnification is a three.

Line 210 sets the magnification of the sprites.

Line 220 waits for a key to be pressed.

Line 230 subtracts the value of M from 7 to alter-
nate the values between 3 and 4.

Line 240 delays the computer.

Line 250 sends the computer back to line 190 to
wait for another key to be pressed.

CALL PATTERN

The CALL PATTERN command allows you to
change to pattern of the character that the computer
is using without affecting its color, speed, or loca-
tion. The program in Listing 18-6 uses three dif-
ferent sprites for the bird (Fig. 18-8). As the bird
flies across the screen, the computer changes the
sprite and gives the illusion of actual flight.

Listing 18-6

Line 130 creates three new characters. These
characters make up the bird’s positions while it is
flying.

Line 140 clears the screen and sets its color to blue.

Line 150 uses the character from location 128 as the

8 4 2 184 2 1 8 421842 1 8 4218421
00 00 00
00 81 00
42 42 00
A5 24 24
18 18 5A
00 00 81
00 00 00
00 00 00
#128 #129 #130

Fig. 18-8. Characters for Listing 18-6 Flight.

225

sprite. The sprite will move across the screen
from right to left.

Line 160 is a FOR . . . NEXT loop. The CALL
PATTERN command changes the pattern of the
sprite from the character in location 128 to the
character in location 129 and, finally, to the
character in location 130. The delay loop slows
the computer down so that the bird isn’t flapping
its wings too hard.

Line 170 sends the computer back to line 160. The
speed of the bird will always remain constant as
the computer changes the character that it places
in that sprite.

CALL POSITION

This command returns the row and column of
the sprite. You specify which sprite and the row and
column will be placed in the variables.

CALL POSITION #1,ROW,COL

We are looking for the position of sprite
number one. ROW will contain the row number of
the sprite and COL will contain the column number.

CALL COINC

In many games, especially the arcade games,
scores are based on the number of times one
character, missile, or ball hits another or reaches
its goal. You can constantly check the screen to see
if the two characters or sprites are trying to occupy
the same place on the screen, or you canuse CALL
COINC command. This command will place a nega-
tive one in the variable if the two sprites, or a sprite
and character, are over each other. There are three
different ways to use this command, as shown be-
low:

CALL COINC(sprite #, sprite#, distance, vari-
able)

CALL COINC(sprite#, row, column, distance, var-
iable)

CALL COINC(ALL, variable)

In the first example, the two sprites that we
are concerned with are identified by number. The

226

distance in the number of minimum pixels that we
will allow between the two sprites. The computer
compares the upper left corners of the sprites to
calculate the distance between them. The variable
will be negative one if the two sprites are on top
each other. The variable will be zero if the sprites
are far enough apart. The second example com-
pares the sprite to a fixed area on the screen. A
hockey game might use this command to see if the
puck hit the net or not. The third example compares
all the sprites to each other and places a negative
one in the variable if any two sprites occupy the
same pixels on the screen.

CALL DELSPRITE

This command removes a sprite from the
screen. The sprite must be recreated if you want to
use it again.

CALL DELSPRITE(sprite #)
CALL DELSPRITE(ALL)

You can delete any or all sprites with this command.
You can also specify more than one sprite in the
program line by placing a comma between sprite
numbers, as below:

CALL DELSPRITE(#1, #5)

CALL DISTANCE

The CALL DISTANCE command determines
the distance between two sprites, or a sprite and a
location on the screen. The distance is placed in a
variable. This value is squared. You can use the
squared value or the square root of the value de-
pending on your program applications.

The programin Listing 18-7 illustrates several
of the sprite commands in a simple arcade game.
(See the flowchart in Fig. 18-9.)

Listing 18-7

Line 130 creates the characters that will be used for
the ducks. These are the same characters that we
used in the other duck programs.

Line 140 creates the characters that will be used for
the arrow.

Listing 18-7

100 REM LISTING 18~7

110 REM SHOOQTING GALLERY

120 REM RBY L.MSCHRETRER FOR TAR RBOOKS
130 CALL CHARCLIAZ2y " Q60F 1LF3IZFF3FAF06060F 1
FAF3F1FOFO7000080C0CO8FICAB70E0FCFFFEFCK
8FoY)

140 CaAll CHARCLIS&"010719010101010101010
1010101030580E09880808080808080808080800

0A0")

LS50 Call CLEAR $: CAll SCREENC1L1LYSD CALL
MAGNIFY (3)$3: L=4 $3 SCORE=

16O ALl SPRITECE2s 1329532 730X 13203y
B2 13704y L3297 v 320201 45y &?9i’v."vlﬂxé)
170 DISFLAY AT2e 1) "SCORE " $ SCORE

180 COL=128 132 CALL SFRITECELs 136s L& 176
y(COLD

190 FOR GP=2 TO 5 ¢ CalLl MOTITONCHESF Oy -
1088 NEXT &F

200 CALL KEYU(LeRsSY I TF S=0 THEN 200

210 IF K=2 THEN COL=C0L-~4

220 IF K=3X THEN COL=COL+4

2EAOIF COLSE THEN COL=8 FLSE IF COL>236

THEN COL=236 :

240 CALL LOCATE (#1176 C0OL)

2H0 IF K<=S THEN 200

260 CALL MOTTONCELy 150D

270 FOR DUCK=2 TO %

280 CALL COINCCELy#OUCKy 2OyHETY S TF MIT
THEN 330

2YOGNEXT DUCK

I00 CAaLL DISTANCE (E1s & COL»F Y3 CAll. SOU
NIC=800s 11030110309 F /25645005 1% ~450)
310 CALL FOSITIONCGELsRyCY 2 TF R<E& OR R
192 THEN Call. DELSPRITE (LY SCORE=SCOR
E-5 3% GOTO 1720

320 GOTO 270

FE0 CALL COLORGEDUCKy 1683 CALL NELSFRIT
ECE1YES FOR C=1 TO 3 33 CALL SOUNDCI00s 1
568y 55Uy 1568850y 1888y 5-0C 2 NEXT

340 FOR DELAY=1 TO S0 13 NEXT DELAY 35 C
Al DELSPFRITE (EDUCK)

350 SCORE=SCORE4L10 23 LISFLAY AT(2y23028
CORE 3§ DN=D-1 3 IF I THEN 180

A
)
N

227

340 DISFLAY AT L2352 FLAY AGAIN (Y/N) 7

" %+
LR 4

ACCERT AT 12y 24)REEF

VALTDATE C"YN")

SIZECIYIAE $8 IF Ad="" THEN 340
I720 IF A$="Y" THEN 130
380 Call. CLEAR

Line 150 clears the screen, sets the screen color
and sets the sprite mode to the MAGNIFY(3).
This is the four-character sprite in the normal
mode. The D variable will keep track of how many
ducks are on the screen and the score begins with
100 points.

Line 160 places the duck characters into sprite
numbers two through five. Each duck will be a
different color, and be in a different column. They
will all be in the same row on the screen.

Line 170 places the score on the screen.

Line 180 sets the variable COL to 128. This is the
column that the arrow will be printed at. Sprite
number one will be the arrow.

Line 190 uses a FOR . . . NEXT loop to make the
other sprites move. The four duck sprites will
move across the screen horizontally at the same
speed.

Line 200 checks to see if a key has been pressed.
The computer will only consider the keys on the
left side of the keyboard. The computer will loop
at this line until a key is pressed.

Line 210 compares the value of K with two. If the S
key has been pressed, the COL variable will have
four subtracted from it.

Line 220 checks to see if the D key has been
pressed. When this key is pressed, four is added
to the value of COL. This moves the arrow to the
left or right on the screen.

Line 230 checks the value of COL to make sure that
it will not be printed off the screen. If the value of
COL is too large or too small, it will be reset to
the screen edge position.

Line 240 uses the CALL LOCATE command to
place the arrow on the screen. The arrow will be
erased from its old position and placed in its new
position.

228

Line 250 checks to see if the E key was pressed.
This key is the trigger key. It releases the arrow
and allows it to move up the screen at the row of
ducks. If the E key has not been pressed, the
computer will go back to line 200 and wait for
another key to be pressed.

Line 260 sets the first sprite in motion. The arrow
will travel up the screen in a straight line slightly
faster than the ducks are moving across the
screen.

Line 270 begins the FOR . . . NEXT loop that
checks to see if a duck has been hit. The loop
begins with 2 and ends with 5 because these are
the sprite numbers of the ducks.

Line 280 uses the CALL COINC command to see if
the arrow is hitting the duck specified by the
variable DUCK. The 10 is the maximum distance
that the arrow can be from the duck to considerita
hit. If the arrow has hit the duck, the variable HIT
will be set to negative one. If it is negative one,
the computer will go on to line 330 to remove the
duck from the screen.

Line 290 continues the loop until all four ducks are
checked for a hit.

Line 300 uses the CALL DISTANCE command to
see how far the arrow is from the top of the
screen. The distance is stored in variable F. This
value is used in the CALL SOUND command to
make a sound based on the distance of the arrow
from the top of the screen.

Line 310 uses the CALL POSITION command to
see if the arrow sprite has reached the top of the
screen. If it has, the CALL DELSPRITE is used
to remove the arrow from the screen. The player
missed the duck. The score is decreased by five
and the computer goes to line 170 to update the
score on the screen. The player can try again.

Add 4
to column

Subtract 4
fromcolumn

> Y

Create
characters
for sprites

Clear screen
set screen
color and

sprite size

Place sprites
and score
on screen

Make
ducksprites
move

IsE
pressed
Set arrow
in motion .

-
Key
pressed
?

Adjustcolumn

] ——

No Arrow
off screen

?

Erase arrow
decrease

score reset
arrow

'ﬁ—

Change duck color,
make sound, erase
duck & arrow
update score

Fig. 18-9. Flowchart for Listing 18-7 Shooting Gallery.

229

Line 320 sends the computer back to line 270 where
it will check once again for a hit on the ducks. The
computer will continue to loop at these lines until
a duck has been hit or the arrow travels off the top
of the screen.

Line 330 begins the routine for the hit duck. First,
the color of the duck is changed with the CALL
COLOR command. Any one sprite color can be
changed with this command. Next, the arrow
sprite is removed from the screen with the CALL
DELSPRITE command. The FOR. . . NEXT loop
makes a bell sound indicating that a duck has been
hit.

Line 340 is a delay loop to slow down the program.

230

Then the duck is removed from the screen.

Line 350 adds ten points to the score and updates
the score on the screen. One duck is subtracted
from the D variable. If there are ducks on the
screen, the computer will go back to line 180 for
another turn.

Line 360 asks if you would like to play again. If you
do not enter any letter, the computer will loop
until you do.

Line 370 sends you to line 150 for a new game if you
enter a “Y.”

Line 380 clears the screen. The program ends be-
cause you entered an “N.”

Chapter 19
Using The Disk

Sooner or later you’ll find the cassette is too slow
for you, or your programs need the random-access
capabilities of the disk. This chapter will give you
an overview of the commands that are available
with the disk drive. When adding a disk drive to
your TI-99/4A, you should also add the Memory
Expansion Unit. Your disk drive, extra memory,
and other accessories can be added through this
unit.

In addition to saving programs to and loading
programs from the disk, you can access the disk
from a BASIC program.

ACCESSING THE DISK

OPEN/CLOSE

The OPEN command must be used before you
can access the disk. It opens a file through which
you can input, output, update, or append the files on
the disk. We used the OPEN command in Chapter
14 when we saved the new character set to the disk.
The format for this command is:

OPEN #file:device{options}

The file number must be a number between 1
and 255. File zero is used by the keyboard and
should not be used for the disk. The device is the
disk or cassette. To indicate the disk, use DSK1,
followed by the file name. The options should be
specified in this order:

FILE-ORGANIZATION—The files can be
stored on the disk as random files or sequential
files. A random file means the records or informa-
tion in that file can be read or written in any order.
In a sequential file the records or information must
be accessed in order beginning with the first rec-
ord. If the entire file will be loaded from the disk at
one time and used within the program, the sequen-
tial files should be used. If you will be using the
information from the disk while it is on the disk, and
you will be accessing different information from
different areas of the file, then random files should
be specified. The default for the file organization is
sequential.

231

FILE-TYPE—is either display or internal.
When you specify display, the information is stored
in ASCII code. The internal type is binary code. If
you store your records in binary, they will take up
less room on the disk and be saved and/or loaded
more quickly. The default is display.

OPEN-MODE—is the option that tells the
computer whether it is reading or writing to the
disk. You can specify update, input, output, or ap-
pend. With update, you can read and write to the
disk. Input will only read from a disk and output
limits you to writing to the disk. The append will
only add one file. The default is update.

RECORD-TYPE —tells the computer wheth-
er the records that will be storing or retrieving from
the disk are all the same length or different lengths.
Specify that they are variable if all the records may
not be the same length. Specify fixed if they will all
be the same length. If you are using the relative
record-type, you must use the fixed record type.
You can also specify how long the records will be for
either the fixed or variable record-types.

Once you have stored or retrieved the infor-
mation, you will use the CLOSE command to close
the file. The file that will be closed is the same file
number as the one that you were using: CLOSE #1.
Once you close afile, the computer cannot access it
without another OPEN command. It is good pro-
gramming practice to close files once you have used
them to prevent accidental damage, (changes in or
erasure of information) to open the file.

STORING TO AND RETRIEVING FROM DISK

PRINT

Just as the PRINT command places informa-
tion on the screen, you can use it with the files to
print information to the disk. The command must be
followed by the file number. This file has already
been opened with the open command. If the file is
relative, you can also specify the record number
that you want the information placed in. Use print in
the format below:

PRINT #file{,REC number}: information

232

INPUT

Once you have the information on the disk, you
will want to be able to bring it back into the com-
puter. The INPUT command followed by the file
number will allow you to read the information from
the disk.

INPUT #file{,REC number}: variable

The file must be opened and the same file
number used. If the file is relative, and you want to
read the information from a specific record, you can
specify which record number you want to read. The
variables, string or numeric, follow the colon. They
will contain the information that is read from the
disk.

LINPUT

This command is similar to the INPUT com-
mand, but it can be much quicker when working
with large files. Instead of bringing in just one piece
of information at a time, the LINPUT command
brings in the entire record and stores it in a string.
Then, your program can use the information in the
string. If the file is relative, you can specify which
record you want the computer to read.

LINPUT #file{,REC number}: string variable

REC
This command will tell you the number of the

" next record that will be read or written. It is useful

if the program that you are writing needs to know
what record number is next. The format is
REC(file-number). The file number is the file that
is opened. You do not need the number sign before
the number.

EOF

The letters EOF mean end-of-file. This com-
mand is very useful if you are reading a file and you
do not know how many records have been stored.
WithanIF. .. THEN statement you can direct the
computer to read another record or close the file.

100 IF EOF(1)= THEN 200 ELSE 80

This program statement tells the computer
that if the end-of-file value for file one is a one, then
go to line 200. If it is not, go to line 80 to read the
next record. The EOF value will be a one; if you are
at the last record of the file. It will be zero if there
are more records for this file. It will be a negative
one if there is no more room on the disk. The
number in the parentheses is the file number that
has been opened.

MERGING DISK FILES

MERGE

This command has been used in previous chap-
ters. It is a very easy to combine frequently used
program routines without having to retype the en-
tire routine. The MERGE command will bring in a
program from disk and add it to the program in the
computer. If any line numbers in the program on
disk are the same as the line numbers of the pro-
gram in the computer, the lines from the program
on disk will replace the lines in the computer.

All programs or routines cannot be merged
with another. In order for the merge to work, the
. program or routine must be saved to the disk with
the merge option below: ’

SAVE DSK1.name,MERGE

To add the program to the program in the computer
type:

MERGE DSK1.name

Now you can store your favorite routines on
disk and bring them in when you write your next
program. One tip here, make these routines sub-
routines with high line numbers that you would not
use in your program. After you bring in the routines
from disk, you can renumber your program.

DELETING DISK FILES

DELETE

You will not always want to keep all the pro-
grams that you have saved on your disk. With the
cassette, you can just record over a program. It
doesn’t work that way with a disk. You have to tell
the computer to remove a program from the disk.
After a program is removed, the computer can
reuse that disk space for another program. You can
delete a file using a direct command or from a
BASIC program. The format is:

DELETE “DSK1.filename”

233

Chapter 20

Putting It All Together—Using
Sprites, Special Characters, And Sound

Now that you can redefine characters, use sprites,
make music and save information to cassette or
disk, you are ready to develop programs that use all
these features. The last program in this book (List-
ing 20-1) is a classical puzzle—the Towers of
Hanoi. There are nine disks on the first pole. The
object of the puzzle is to move the nine disks, one at
a time, from the first pole onto the third pole. A
smaller disk can be placed on a larger disk, but a
larger disk can never be placed on a smaller one.
The magnet is a sprite. You use the joystick to
move the magnet over one of the three poles and
press the fire button to pick up or drop a disk. Move
the joystick to the left or right to move the magnet,
with or without a disk. The program will not allow
you to drop a larger disk on a smaller one. Each
time you move a disk, even if you pick it up and drop
it back onto the same pole, the number of moves is
increased by one.

Listing 20-1

Line 130 sets aside the memory for the array that

234

will keep track of which disks are on which poles
and in what order.

Line 140 clears the screen and creates the charac-
ters that will be used in the program.

Lines 150-180 place each disk in an element of R$
array.

Lines 190-230 contain the character patterns.

Line 240 changes certain characters in the charac-
ter set. The C variable is the character that will be
changed; C$ is the character pattern for the rede-
fined character.

Lines 250-260 set the screen color, change the
colors of the character sets, and set the mode of
the sprite to MAGNIFY, (2).

Lines 270-280 places the title of the program (TOW-
ERS), the characters, and the number of moves
on the screen. The MOVE variable will increase
by one every time a disk is picked up and dropped.

Line 290 places the three poles and the platform on
the screen.

Line 300 places the tops on the poles.

Line 310 uses the CALL SPRITE command to make

Listing 20-1

100 REM LLISTING 20-1

110 REM TOWERS GAME

120 REM RBRY AR.SCHREIRER FOR TAR RBOOKS
130 NIM F(93)

140 Call. CLEAR 3 FOR CNT=0 T0O & t: READ
Cé 2t CALL CHARCLZ204CNTvCE o 1L28HCNT s O)

I6FONTsCE) 28 NEXT ONT

150 R =CHR$(121) &CHRECL20) RCHRE (12202
! REC2I=CHR$(LIILIECHRS CL28)RCHRB (13232

RE(3)=CHRS$(141) &CHR$(136) RCHRE(142)

160 RE(A))=CHR$(120) ECHR$ (120 &CHRE(120) ¢
P RS(E)=CHRE (L2 RCHRS (128 RCHRS (128) &CH

RECL28) ECHRE(130)

170 RECHY=CHRS(1LID) ECHRE (136 &CHR$ (13860 &

CHRE (L3S ECHRB (140033 RE(ZI=CHRSCL2E5)ECH

RECL20)ECHRS (1 20) ECHRE (1 20) &CHRE$ (1L26)
180 R(BI=CHRS(L28)ECHRE (128 GCHRSE (128> &

CHRECL28) GCHRS (128) 13 RE(PI=CHRSCLI?) KCH
RECLIOH) EBCHRS (1 36) SCHRE (LIS GCHRB (L 36) &CH
REC1I36)ECHRS (1.38)

190 DATA FFFFFFFFFFFFFFFF»03030303030303%
033 COCOCOCOCOCOCOLOs OFOFOFOFOFOFOFOF ¢ FOF
QFOFOF OF OF OF O v 3F 3F 3F 3F 3F 3F 3F 3F

200 NATA FCFCFCFCFCFOFCFCy 112y 3C646C3C3CE
CICIC3s 113y FFFFFFFFFFFFFFFF o114y 3C7EFFFF
FFFFFFFF o 111y FFFFFFFFFFFFFFFF

210 DATA 115+3CA420022222428305 11651101010
LO0BOE s 96y 00007C7C10101010¢97+1010101010
101010:98:0000387044444444,9994444444444
447038

220 NATA 100:00004444444444445101 9747474
74747428285 102500007070C404040405103+7878
404040407070

230 NATA 104500007878444444444105,787850
50484844445 1065 000038384444404051073838
040444443838

240 FOR CNT=1 TO 18 !¢ READ CsC% 3 CALL
CHARCCsCEY 83 NEXT ONT :

2%0 CALL SCREEN(2)Y$E CALL COLOR(3vy1é691v4
1691953490 9b3851 9798919991451 910v149151
1916180 CALL MAGNIFY(2)

260 CALL COLORC1293v19139119v09149751)
270 DISFLAY AT(1s10)8%s “hdafhd s

235

236

280 DISPFLAY AT(2,10)3%t acedik t* 33 DIS
FLAY AT (45432 "MOVES®*$TARCL0) $ MOVE
290 CALL VCHARC(L2y7 11312088 CALL VCHAR
1291751132120 28 CALL VOHARCL25275113412
:3 CALL HCHARC(24y19121532)
300 DISPFLAY AT(LLs5)3"y r
ru
310 CALL SPRITE(EL 112516041 545)
320 FOR CNT=1 TO 9 ¢ L=LENR$CCNTIYEE D
ISFLAY ATLAHONT s S-L/2)STZE L) IRECONT) 88
NEXT CNT
330 FOR CNT=1 TO @ i PCOUNT»1)=UNT 2
XT CNT 33 MP=4%5 32! ML+RL2ORP=0 3
¢ POLE=]
340 CALL JOYST(1eXeY22? IF SGN(X)I=0 THEN
Call KEY(1sKe&Gd)22 IF S=0 THEN 340
IGO0 IF SGNCX)=-1 AND MF<x45 THEN MP=MF-8
0t RP=RP-10 1% POLE=PFOLE-]L
360 IF SENXDI =1 AND MP<>205 THEN MP=MF+8
O ¢ RP=RF+10 1! POLE=POLE+]
370 IF SGNCX) <=0 THEN CALL LUOCATE(Flsa1e
MFY 2 DISPLAY AT(EyORFP-(RLA2)28%% 33 DIG
FLAY AT(8yRF-(RL/Z2)IIRE(MLI I GOTO 340
380 REM FICK UP OR DROF A RING
390 IF ML<=0 THEN $00
400 REM PICK UF A& RING
410 FOR CNT=1 TO 9
420 ML=F(CNTyFOLE) Y TF ML<=0 THEN F(ONT
sFOLE)=0 11 GOTO 440
430 NEXT CNT 3 GOTO 340
440 RR=144+CNT ! RL=LEN(RS$(ML)I) I3 FOR N
T=RR TO 9 STEF -1
450 IF CNT=11 THEN DISFLAY AT(CNTsRF-3)8
IZE(7) ¢ Q “ ELSE IF CNT=11 THEN DI§
FLAY AT(CNTsRF-3)STZE(7) ¢ r .
460 IF CNT=11 THEN DISPLAY ATC(ONT ¢ RF- (R
S2NIBIZE(RLY ¢
470 DISFLAY ATC(ONT-1eRFP-(RL/Z2Y)STIZEC(RL) S
R (ML)
480 NEXT CNT ! CALL SOUND(SO0v1760+0)82
GOTO 340
490 REM DROF A RING
300 FOR CNT=1 T0O 9

XY

NE

RF=S 1

G510 TR=F(ONT» POLE
S20 NEXT CNT

530 REM MAKE SURE
- RGER THAN MAGNET’ S
G40 CNT=CNT-1 3t IF

340
G50 FCOONTFOLE) =ML 13
NR$(MLII D FOR CNT=8

560 IF ONT<11
IZEC(7)i0 " ELSE IF
(CNTyRP-3ISTZE(7) S
570 IF
IZEC(7) ¢ Q@

80 DNISFLAY AT(ONTHLsRF-(RL/2)))STZEC(RL)

R$ (ML)
90 NEXT CNT 32 CALL
OVE=MOVE+1L 3 DISFLA
L.=0

600 IF F(1s3)x1
610 REM THE
620 FOR
i CAallL

4630 CAlLL.
COLRX33050)
640 CALL
6350 NEXT CNT ¢
660 CALL CLEAR

TF TR0 THEN

TOF RINGs IF
fe l N {3

THEN DISFLAY AT(ONTyRF-3)8

CNT=11

(“NY -1 IHI"N DISFLAY AT(CNTsRF-3)8

SOUNDCE0v44050) 8¢
Y AT(4510) tMOVE 3¢

THEN
TASK WAS ACCOMPLISHED
COLR=3 T0O 16
$d COLORCONTyCOLRs 1333
o3 IF COLRZ1S THEN COLR=3

SOUNDCSGOy COLRXL10» 0y COLRX2205 0y

$d FOR

KEY(OsRKsE) 32

NEXT COLR

H540
ANYy 18 LA
ML AND TREZE0 THEN

RE=13+CNT $3§
T RR

Rl

THEZN DISFLAY AT
r

M
M
340

CNT=8 TO 14
COLR=COLR+1

IF 8§40 THEN 660

the first sprite the magnet.

Line 320 places the disks on the first pole. The row
that the disk is printed on is the value of CNT
offset by 14. The disks will be printed from the
smallest one down to the largest. On the screen,
the smallest one is on the top and the largest on
the bottom.

Line 330 places the value of CNT into the flrst
element of the array. The array will contain val-
ues from one to nine. Each value represents that
disk, with one the smallest disk and nine the
largest. The first set of elements of the array
represent the first pole. The array is 9%3. The
second and third set are zeroes because there are

no rings on those poles. The other variables in
this line keep track of which pole the magnet is
over, the magnet’s current position, and the posi-
tion of the rings.

Line 340 checks to see if the joystick has been

moved. We are only interested in seeing if the
joystick is moved to the right or left. If the sign of
the X is zero, the joystick has not been moved and
the computer continues with the commands on
this line. The CALL KEY command is used tosee
if the fire button has been pressed on the joystick.
If it has not, the computer loops back to the
beginning of this line and waits for the joystick to
move or for the fire button to be pressed.

237

Line 350 checks to see if the sign of X is negative. If
itis, the joystick has been moved to the left. Now
the computer checks to see if the magnet can
move to the left. The variable MP cannot be 45. If
itis, the magnet cannot move to the left. If it isn’t,
80 is subtracted from MP. This is the new posi-
tion for the magnet. The ring will also have a new
position, and the pole that the magnet will be over
is one less than the pole it is currently over.

Line 360 checks to see if the sign of the variable X is
positive. If it is, then the joystick was moved to
the right. The computer checks the value of the
variable MP. If it is not 205 the magnet can move
to the right. The next position of the magnet is 80
pixels to the right. The ring and pole positions are
also changed.

Line 370 verifies that the joystick has been moved.
If the sign of X is zero, the joystick has not moved.
If it is not zero, the joystick has moved and the
computer will move the sprite to the new position
using CALL LOCATE. If a ring is under the mag-
net, it will also move. The computer is directed
back to line 340 again to see if the joystick has

~ been moved or the fire button pressed.

Line 390 checks the value of ML. If it is not zero,
there is a ring under the magnet, and the com-
puter is directed to the line to drop the ring.

Line 410 begins a FOR . . . NEXT loop. This loop
will check every position under the magnet to see
if there is a ring under the magnet. If there is, the
computer will be able to pick it up and move it.

Line 420 checks the positions in the array as indi-
cated by the pole number. If the array element
does not contain a zero, there is a ring there.
Since we are removing the ring from that posi-
tion, a zero is placed in that array element.

Line 430 continues the loop until there are no more
elements in the array. If the computer looks at
every element of the array and does not find a ring
on the pole, the computer will be sent back to line
340. The magnet must be moved to another pole.

Lines 440-480 pick up the ring. The value of CNT is
offset by 14 so the computer will move the ring in
the correct row on the screen. The lower case
“Q” replaces the ring. This character is the pole.

238

The ring is printed one row higher on the screen.
This action continues until the ring is in the row
under the magnet. CALL SOUND is used to make
a metallic sound and the computer is sent to line
340.

Line 500 begins the routine to drop the ring. The
FOR . . . NEXT loop checks the elements of the
array under the pole. The ring cannot be dropped
onto a smaller ring.

Line 510 checks the element for a zero. If it is a
zero, the loop continues. If there is a ring in this
position, the computer is sent to line 540 to check
its size.

Line 520 continues the FOR . . . NEXT loop. If all
the elements are checked and none contain a ring,
the program continues, because the ring can be
dropped on an empty pole.

Line 540 subtracts one from the value of CNT. This
is the position in the array and on the pole that the
ring will occupy. If the value of the ring on the
pole is less than the value of the ring on the
magnet, the computer goes back to line 340 and
the ring will not drop.

Lines 550-590 drop the ring onto the pole. The
lower case R is the top of the pole, the lower case
Q is the pole. The ring is printed on the screen,
then the pole is printed over it and the ring is
printed one position lower. After the ring reaches
the bottom of the pole, the CALL SOUND is used
to make the thump sound. The counter for the
number of moves is incremented by one.

Line 600 checks the array element for the first
position of the third pole. If it contains a one, then
the task was accomplished and the computer can
go on to the ending routine. If it has not been
accomplished, the computer will be sent to line
340 and wait for another move.

Lines 620-650 contain nested FOR . . . NEXT
loops. These loops continually change the values
of the colors in the character sets. The sound
made is based on the colors on the screen. The
CALL KEY is used to see if a key has been
pressed. This fanfare will continue until a key has
been pressed.

Line 660 clears the screen and ends the program.

Appendix

Working with Numbers
E

Ever since man had the need to know how many
items he had in his possession, how much grain he
needed, or how many days since the last rain, he
had to devise a system to count. It is believed that
some ancient tribes used the base two or three for
counting. There is some evidence that base twenty
was used by a few early tribes, since their handiest
counting aids were their fingers and toes.

With numbers came the need to do simple
calculations. Soon the problems were no longer
simple, and man quickly learned that if he marked
the numbers in the dirt, or on a tablet, he could
compute much more quickly. Stones were probably
used much the same way we use poker chips today
with each type of stone representing a different
group of numbers—ones, fives, tens, and the like.

The abacus is the oldest, yet the simplest,
adding machine invented. The principle of moving
the beads on rods has survived the test of time.
Many people consider the abacus the first type of
computer.

THE BINARY SYSTEM

As with the abacus, the computer uses its own
number system—binary. If you think of a light bulb,
a lock, or a trap, each item has only two states. It
can be either on or off, open or closed, set or
sprung. The computer operates in the same man-
ner. Each memory location in the computer can be
either on or off.

The memory in your computer can hold a
charge. This is represented by the number one.
When a location has no charge, it is represented by
a zero. The computer, then, uses binary or base
two for its number system.

In our decimal system, each number position
is a multiple of 10. The position before the decimal
is the unit position. In the binary system, each
position is amultiple of two with the position before
the decimal the unit position. In the decimal sys-
tem, there are 10 numerals, 0 through 9. In the
binary system, only the numbers 0 and 1 are used.
The binary number 10110 is 22 in decimal. To

239

convert a binary number to decimal, we add the
places that contain a 1 and ignore the place values
where there is a zero.

1

216]13]1
814]12]|6]|8 2|1
ofojoj1fjo1}|1l

In our example, 10110, there is 1 in the 16’s
columns, a 1 in the 4’s column and a 2 in the 2's
column. If we add 16 + 4 +, we arrive at 22 or the
decimal equivalent. Most computers have 8 posi-
tions in each memory location. This means that
each location can contain a number from 0 to 255.

The number that is stored in each memory
location is called a byte. Each one or zero in the
byte is referred to as a bit. Although the TI-99/4A
computer is considered a 16-bit computer, some of
the memory is treated as eight-bit. There are some
four-bit and eight-bit computers also. Each byte can
also be divided into two four-bit nibbles.

Although it seems confusing at first, using the
binary system in computers conserves on parts and
increases speed. If a switch with ten different set-
tings were used, the computer would have to de-
termine if the switch was set, then decide which
setting it was pointed to. In binary, there are only
two possibilities, a 1 or 0. It takes only eight bits
(switches) to count to 255. By adding eight more,
any number up to 65535 can be displayed. Work the
following examples to practice converting binary
numbers to decimal.

01100001
10110111
11001000
00111001
01110010
00111100
00011110
11011000
01111010
11110001

COPXNG W=

—

240

The decimal equivalents are: 1-97; 2-183; 3-200;
4-57; 5-114; 6-58; 7-30; 8-216; 9-122; 10-241

UNDERSTANDING HEX

Although the binary system increases the
computer’s speed, most of us cannot readily con-
vert a string of ones and zeros into a number that we
can understand. To help us, most programmers and
manuals reference the memory locations and the
number stored init inhex. The hexadecimal system
uses base 16. The numbers after nine are rep-
resented as the letters A-F. To convert a binary
number to hex, we first divide the byte into two
nibbles. If, for example, we needed to convert
11001101 into hex, we would divide it into two
nibbles—1100 1101. Each nibble consists of four
bits. Now we treat each nibble as a separate
number. By adding the place values of the first
nibbles, 8 + 4, we get 12. Twelve is not a one-digit
number, so we use the letter “C.” The next nibble
is 8 +4 + 1, or 13. One number more than “C” is
“D.” Our hex number for 11001101 is CD.

Let’s try that again with another binary
number, 10010111. Divide this eight-bit number
into two nibbles— 1001 0111. The first nibble is 8 +
lor9, the secondis4 + 2 + 1 or 7. The hex number
for 10010111 is “97.”

There are times when you want the decimal
equivalent to a hex number. When you are working
in BASIC and want to POKE a location with a
number, both the location and the number that you
are POKEing must be in decimal. Often the manual
you are using will only provide the HEX addresses
to be POKEd or the HEX values that should be
entered. To convert a HEX number to decimal is
fairly easy. Since each number/letter represents a
value from one to 15, each place value in HEX is a
multiple of 16. If the HEX number has only two
places such as B3, multiply the number in the sec-
ond position from the end by 16 and add the value in
the rightmost position. B is equal to 11 decimal,
11 x 16is 176. Add 3 and the decimal value of HEX
B3 is 179. Since the computer can access over
64000 memory locations, often the HEX number
will contain four places. To convert C253 HEX to
decimal we would multiply the “C” (decimal 12) by

4096, the 2 by 256, the 5 by 16 and add 3.f
(12x4096)+(2 x256)+(5x16)+3=49747

To convert a decimal number to HEX, divide
the number by the largest place value feasible, the
quotient is the value for that place, divide the re-
mainder by the next place value, and continue until
there is aremainder less than 16. That remainder is
the last digit of the HEX number. If, for example,
the decimal number is 21013, we would divide the
number by 4096. The first or leftmost value of the
HEX number is a 5. The remainder is 533. When
this number is divided by 256, the next quotient is a
2 with aremainder of 21. 21 divided by 161is 1 witha
remainder of 5. Therefore, the HEX equivalent of
21013 is 5215, as shown below:

5 2 1
409621013 256[533 16[21
20480 ~512 -16_
533 21 5

Listing A-1

The program in Listing A-1 will convert a de-
cimal number to Hex or binary and a binary or HEX
number to decimal.

Listing A-1

Line 130 traps for errors that would cause a warning
message to occur.

Lines 140-160 place the menu on the screen.

Line 170 prints a question mark and waits for a
selection.

Line 180 uses the ON GOSUB command to send the
computer to the right based on the selection.

Line 190 sends the computer back to the beginning
of the menu when the computer returns from the
subroutine. '

Lines 210-230 print the message for the first
routine. This routine will convert a decimal
number into a hexadecimal number.

Line 240 clears A$. If we did not clear the string
each time we began this routine, the hex digits
would be added to the digits in A$. The conver-

110 REM CONVERSIONS
120 REM RY L..M.
130 ON WARNING NEXT

ECT A CONVERSTON®

180 ON N GOSUR
190 GOTO 140
200 REM ROUTINE
R& TO HEX

ER THE DECIMAL
TO"

SCHRETRER FOR
140 DISFLAY AT(3y IERASE ALLIPLEASE SEL

S0 DISPLAY AT(Se2)3%1,
¢ DISFLAY AT(Zy2) 802,

1
160 DISFLAY AT(9y2)3"3,
¢¢ DISFLAY AT(11+2)8%4, RINARY TO DECIMA

170 DISFLAY AT(14:8)1%%" 3¢ ACCEFT AT(14
y DIVALTDATE (" 1234")STZE (1) N ‘
2109310+3905480

TO CONVERT DECIMAL NUMRE

210 DISFLAY ATCLy DERASE ALLI"FLEASE ENT
NUMRER TO BE CONVERTED

TAR BOOKS

DECTMAL
DECTMAL

TO HEX®
TO RINARY

HEX TO DECIMAL®

241

242

200 NISFLAY AT(3s 1) 3"HEX., NUMRBER CANNQT
RE GREATER THAN 6553%." '

270 DISELAY AT(Zs1) 3" TO EXITy ENTER (O)

ZERQO"

240 Ak=r" 3 ACCERT ATy 7IVALIDATE(DIGYT

TYIINGIT

250 1TF NGIT=0 THEN RETURN

a0 TF DOIT>6553% OR NGITZ0 THEN 240

270 STRHGIT=0GIT ' STORE THE NUMRER FOR T

HE CONVERSTON ROUTINE

280 V=65536 38 FOR HEXF=1 TO 3 33 U=U/16
ts GBOSUR 570 33 NEXT HEXF

290 VU=U/16 8 H=STOGIT ! GOSUR 600

300 NISFLAY AT (3 LIERASE ALLS"THE MEX EQ

UTVALENT OF"SDGIT IS “iAs 3 GOSUR 620
£ GOTO 210 _

310 DISFLAY AT 1YERASE ALL ¢ "FLEASE ENT

ER THE DECIMAL NUMEBER TO RBE CONVERTER
TO BINARY . "

320 DNISFLAY AT (&5 1) 3 "NUMBER CANNOT EXCEE

0255, TO EXIT THIS ROUTINE ENTER O (Z

ERO) "

Z30 A%="" 32 ACCERT AT(9yIVALIDATE(DIGT

TYSTZE(I)INGIT

340 IF DGIT=0 THEN RETURN

350 IF DGIT:=25%5 THEN 330

F60 STNGIT=NGIT | STORE THE NUMBER ENTER

ED FOR THE CONVERSION ROUTINE

370 V=256 3 FOR PRIN=1 TO 7 &: U=U/2 33
GOSUR 570 3 NEXT FRIN ¢! As=A$ESTR$(ST

LnGIT)

380 DISFLAY AT(3s1)ERASE ALLS*THE RINARY
FQUIVALENT OF"DGITS™ I8 "iA$ ¢! GOSUR
4620 33 GOTO 310

390 NISFLAY AT(1y1)YERASE ALLI*FLEASE ENT

ER THE HEX NUMEER T0O RE CONVERTED TO DEC

IMaL®

400 DNISELAY AT(3s1) 3 "NUMRER CANNOT EXCEE

n FFFF TO EXIT PRESS ENTER®

410 DGTIT=0 3¢ ACCERT AT(S&yS)VALIDATE(DIG
ITy "ARCOEF")STZE(4) 1A%

420 IF A$="* THEN RETURN

430 HEXF=LENCAS) ! FIND OUT HOW MANY FOSI

TIONS

440 FOR V=1 TO HEXF (! C=A8C(SEGHE(AEVsl
3)

450 C=0-5% 3
sV LD LIF I
VAL UE

460 P=HEXF-V 38 DEIT=0GITHCOXLI6™F ¢ NEXT
y

470 DISFLAY AT(Zy LIERASE ALLIYTHE DECIMA

Lo EQUIVALENT OF "§A%3" IS"SNGIT $2 GOSUR
620 33 GOTO 390

480 DISFLAY AT Ly DERASE ALL I "FLEASE ENT

ER THE BINARY NUMEER TO BE CONVERTED
TO DECIMAL . NUMEBER CANNOT®

490 DISPLAY AT (45 1) 3 "EXCEED 11101011

TO EXIT FRESS ENTER,®

G000 DEIT=0 3 ACCEPT AT(PEDVALINATE (10
IGIZE(8) IS

G910 IF A$="*" THEN RETURN

G20 P=LENCGAE)

G300 FOR V=1 TO F 15 C=VUAL(SEGE (AU 1))

G40 IF C=1 THEN DGIT=DGLT4H27 (F-Y)

G50 NEXT V

G660 DISPLAY AT(3yIIERASE ALLSI"THE DECITMA

Lo EQUIVALENT OF "sags" IS "306IT ¢ GOSU

B 620 ¢ GOTO 480

G970 IF STRGEITEY THEN A$=A%%"0" 3! RETURN

80 H=INT(STDGIT/V)! DIVINE THE NUMRER R

Y THE VALUE OF THE FOSITION

9920 STHEIT=8TNGIT-HXV | STORE THE REMAILD

ER FOR THE NEXT CONVERSTON

600 TF Hx9 THEN A$=A$ECHR$ (M45%5) 30 RETUR

N

610 AE=A$RETRE(H) ¢ RETURN

¢ IF C<10 THEN C=VAL(SEGE(AS
8 NOT A LETTER THEN GET THE

620 DISFLAY ATC10+5) 3 "FRESS ANY KEY® $3
CALL KEY(OyKy8)3: IF 8=0 THEN 620 ELSE R

ETURN

sion would be correct only the first time that the large, or a negative number, the computer will be

routine was used. The number that you want to sent back to line 240 for another input.

convert to hex is stored in the DGIT variable. ~ Line 270 stores the number entered in STDGIT.
Line 250 checks to see if a zero was entered. The The computer will use the number stored in this

routine returns when a zero is entered. variable for the conversion routine.

Line 260 checks the number entered. If it is too Line 280 places the highest value that number can

243

be in the V variable. This number is divided by 16
inthe FOR . . . NEXT loop to set the place values
of the HEX number. The subroutine at line 570
will place the correct digit in AS.

Line 290 sets the digit for the last position in AS$.
This is the one’s position, so the computer begins
the subroutine at 600 since it has no conversion to
make. It only needs to determine if the number
will be numeric or a letter from A through F.

Line 300 places the conversion on the screen and
uses the subroutine at line 620 to wait for a key to
be pressed.

Lines 310-320 places the message for the second
routine on the screen. This routine will convert a
decimal number to binary.

Line 330 clears A$. A$ will be used again to store
the conversion. The number to be converted will
be stored in the DGIT variable.

Line 340 checks to see if a zero was entered. If it
was, the computer will return to the main menu.
Line 350 checks to see if the number entered ex-
ceeds the highest possible entry. If it does, the
computer will go back to line 330 to wait for

another entry.

Line 360 stores the number entered in STDGIT.

Line 370 begins the conversion routine. V is set to
one move that the largest number that could be
entered. This value will be divided by two and
used in the subroutine that sets the digits in the
binary number. The binary number will be placed
in AS.

Line 380 places the number and the binary number
on the screen. It uses the subroutine in line 620 to
wait for a key to be pressed. The computer will go
back to line 310 to wait for another entry.

Lines 390-400 place the message for the third
routine on the screen. This routine will convert a
HEX number to decimal. _

Line 410 sets the DGIT variable to zero. This
variable will be used to store the decimal number.
The VALIDATE options assures that only num-
bers and the letters A through F will be accepted.
The HEX number will be stored in A$.

Line 420 checks to see if A$ is a null string. If it is
null, the computer will be sent back to the main
menu.

244

Line 430 finds out how many positions are in this
number. The maximum position is four, but the
number could contain one, two, or three as well.

Line 440 begins a FOR . . . NEXT loop to convert
the HEX number to decimal. The length of the
loop depends on the value of HEXP. The ASCII
value of each position of A$ is placed in the C
variable.

Line 450 subtracts 55 from C. If the value of C is
less than 10, the character is a number and the
computer takes the value of that position. If it is
10 or more, it has the value of that letter.

Line 460 calculates the decimal equivalent of the
value of C based on the position of C in A$. Each
position of the HEX string is a power of 16. By
subtracting the value of V from HEXP, we know
what power to raise 16 to. This number is then
multiplied by the value of C and added to the
contents of DGIT. Each time the computer
travels through this loop, the power that 16 will
be raised to is one less than the previous power,
or, one position to the right.

Line 470 places the HEX number and the decimal
equivalent on the screen. The computer then
waits for a key to be pressed before going back to
line 390. .

Lines 480-490 place the message for the fourth
routine on the screen. This routine will convert a
binary number to decimal.

Line 500 clears the DGIT variable and waits for an
entry. The VALIDATE option ensures that only
ones and zeroes can be entered. The entry will be
placed in A$.

Line 510 checks A$ for a null string. If it is null, the
computer will return to the main menu.

Line 520 places the length of A$ into the P variable.
Again, this variable will determine how many
times the computer loops through the conversion
routine.

Line 530 begins the conversion routine. The value
of A$ at the position determined by P is stored in
C.

Line 540 checks to see if this position is a one. If it
is, the value of that position is added to the con-
tents of DGIT. The position value is determined
by subtracting the position that V is pointing to

from the number of positions in the string; then
raising two to the power equal to that difference.
This number is added to DGIT. In this routine we
raise two to a power because each place value of a
binary number is a power of two.

Line 550 continues the loop.

Line 560 places the decimal equivalent of the binary
number on the screen and waits for a key to be
pressed before going to line 480.

Line 570 is the first line of the subroutine used by
the decimal to hex and decimal to binary routines.
If the value of STDGIT is less than the value of V,
there is no number for this position and zero is
added to the contents of A$. The computer re-
turns to the routine that sent it.

Line 580 finds the integer of the number that will be

converted. The value of the position is divided
into the number.

Line 590 multiplies the integer by the place value
and subtracts it from the number that it is convert-
ing. This removes the place value from the
number. The remainder will be converted for the
next position.

Line 600 checks to see if the number is greater than
nine. If it is, the number must be converted to a
letter and placed in AS$.

Line 610 places the number in A$.

Line 620 is the subroutine that the computer uses to
see if a key has been pressed. It gives you time to
copy the number and the conversion from the
screen.

245

Index

s

A
ABS, 106
Absolute value, 106
ACCEPT, 42-45
Accessories, 6, 10
Arithmetic functions, 103
Array, 48-50
ASC, 123
ASCII codes, 123
Assembly language, 212
Assigning values, 35-41

B
BASIC, types of, 19
Binary, 132, 138, 239-240
Breakpoints, 26

c
CALL, 95
CALL CHARSET, 153
CALL CHRPAT, 153
CALL COINC, 226
CALL COLOR, 159
CALL DELSPRITE, 226
CALL DISTANCE, 226
CALL ERR, 150-151
CALL GCHAR, 163
CALL HCHAR, 153

246

CALL INIT, 203-205

CALL JOYST, 187

CALL KEY, 187, 189-190, 207

CALL LINK, 212-213

CALL LOAD, 204, 212-213

CALL LOCATE, 219

CALL MAGNIFY, 221-222, 223

CALL MOTION, 218

CALL PATTERN, 225

CALL PEEK, 203

CALL POSITION, 226

CALL SCREEN, 159, 162

CALL SOUND, 167

CALL SPGET, 192

CALL SPRITE, 213

CALL VCHAR, 153

Cassette recorder, 10

Cassettes, 23, 98, 130, 143, 200

Central Processing Unit, 3-4

Character patterns, using, 153

Characters, 8

Characters, ASCII codes, 123

‘Characters, overlap, 226

Characters, repeating, 124

Characters, user defined, 85, 87, 93,
109, 125, 138, 153, 173-174,
180-181, 192

Character set, using, 153

Chips, 4

CHRS$, 123

Cold start, 140

Color, 159, 162-163
Columns, printing in, 208-211
Commands, direct, 16
Computer club, 6

Correction, screen, 9

CPU, 3

D
Data, 46
Decision-making, 56
DEF, 205
DIM, 49-50

Dimensions, array, 49-50

Dimensions, two-dimensional array,
53

Disk, 98, 130, 200, 231-233

DISPLAY, 27-30

Distance, between sprites, 226

E
Editing lines, 19-20
ELSE, 60
ENTER, eliminating, 207
EOF, 232
Error messages, 21-22
Erors, 145

F
Files, opening and closing, 231
Flowchart, 12-13
Format, printing, 153
FOR ... NEXT, 54
FOR . . .NEXT, stepping, 69-71
Function keys, 8-9, 144
Functions, user defined, 205

G
GOSUB. .. RETURN, 78
GOTO, 60 .
Graphic commands, 152
Graphic patterns, interchanging, 225
Graphics, with sound, 173-174
Graphics characters, using, 163

H
HEX, 132, 240-241

|
IF ... THEN, 56, 60
IMAGE, 208-211
INPUT, 41, 232
INT, 103-106
Integers, 103

)
Joystick, 187-189
Joystick, using, 234
JOYST, 187, 189-190

L
LET, 35
Line numbering, 17-18, 20
LINPUT, 232
LIST, 25
Location, peeking at, 203
Logic, 56

Loop, 54, 60, 66-68

M
Machine language, 212
Machine language subroutines, load-
ing, 204, 212-213

Edited by Ruth Mustoe

Magnifying characters, 221- 223
MAX/MIN, 37

Memory, 4

Menu, 8

Merging, 95- 98, 102

Modem, 6, 10

Monitor, 6-7, 10

Moving sprites, 218-219

Music, 152, 234

0
ON BREAK, 146-147
ON ERROR, 145-146
ON ... GOTO, 60
ON WARNING, 147-148
OPEN/CLOSE, 23t

P
Peripherals, 6
Pixels, 25, 138, 152
POS, 119-120
Precedence, order of, 103
PRINT, 232
Printing, to screen, 26
Programming, defined, 1, 2
Programming, development, 11
Prompt, 41

R
RAM, 5
RANDOMIZE, 85, 111, 114
READ, 46
REC, 232
Remarks, 18

Removing sprites, 226
Repeating, 153)
Repeating characters, 124

Resolution, 25

RESTORE, 46-47

RETURN, 78

RETURN, with ON ERROR, 148-149
RND, 111, 114

ROM, 5

RPTS, 124

RUN, 24

S

Saving programs, 23-24
SAY, 191
Scroll, 25
Searching, strings, 119-120
SGN, 114
SIZE, 26, 42 » :
SIZE, changing character, 221- 223
Software, 1
Software, educational, 2
Software, home applications, 2
Software, resources, 3
Sound, 152
Sound, using, 167, 170-171
Sound, with graphics, 173-174
Speech, using, 190-192
Speech synthesizer, 6, 10
Splitting strings, 117
Sprites, 130, 213
Sprites, in motion, 218
Sprites, removing, 226
Sprites, using, 234
sQu, 111
Square root, 111
Statements, 17
Stepping, 69-71
String functions, 119
Strings, splitting, 117
STRS, 124
SUBEND, 97-98
Subroutine, 78
Subroutine, calling, 95
Subroutine, developing, 96-97
Subroutines, machine language, 204,

212
Synthesizer, speech, 190

T
Testing for errors, 149-150
Trapping, errors, 145-151

v
VAL, 124
VALIDATE, 42-45
Value of string, 124
Variables, numeric, 35-36
Variables, string, 39-42

247

The Last Word on the TI-99/4A

If you are intrigued with the possibilities of the programs included in The Last Word on the T/ 99/4A
(TAB BOOK No. 1745), you should definitely consider having the ready-to-run tape containing the
software applications. This software is guaranteed free of manufacturer's defects. (If you have any
problems, return the tape or disk within 30 days, and we'll send you a new one.) Not only will you save
the time and effort of typing the programs, the tape eliminates the possibility of errors that can prevent
the programs from functioning. Interested?

The programs are available on tape for TI-99/4A with 16K and Extended BASIC

at $19.95
for each tape or disk plus $1.00 each shipping and handling.

I'm interested in the program from The Last Word on the TI-99/4A. Send me:
tape(s) for TI-99/4A with 16K and Extended BASIC (6510S)
TAB BOOKS catalog
Check/Money Order enclosed for $

plus $1.00 shipping and handling for each tape ordered.

VISA — MasterCard
Account No. Expires
Name
Address
City State Zip
Signature

Mail To: TAB BOOKS INC.
P.O. Box 40
Blue Ridge Summit, PA 17214

(Pa. add 6% sales tax. Orders outside U.S. must be prepaid with international money orders in U.S. dollars.)
TAB 1745
(NN N N N NN RN N N SN S N N SN A SO NN SN SN SN S S SN N NN SN S S N S S BN SN AN N

L--------------J

The Last Word on the TI-99/4A

by Linda M. and Allen R. Schreiber
+ 55 practical and entertaining programs, all written in Tl Extended BASIC!

+ Fullcoverage of the machine’s special functions, advanced programming techniques
and Sprite graphics!

+ All about peripherals—printers, disk drives, speech synthesizers, joysticks!
- Easy enough for the beginner . . . comprehensive enough for the advanced!

Introducing the ultimate programming guide for every TI-99/4A owneror user . . . it's the
last word on how to tap all your machine’s capabilities, special functions, and advanced
programming techniques!

Exceptionally well-written in clear, easy-to-follow format, this hands-on manual takes
you from the basics of computer usage to an in-depth look at BASIC to an introduction to
assembly language. You'll learn how to write a program of your own, understand com-
mands, functions, statements, program storage, screen displays, strings and variables,
debugging, and more!

Whether you are interested in using your T| for arcade and family games, educational
programs, home applications like menu planning, financial, medical and hobby applica-
tions, message center, or home security uses . . . this book will fill your needs!

Throughout the book, you'll find sample programs—55 in all—that illustrate various
programming techniques and provide you with workable program segments and sub-
routines that can be incorporated into your own original programming efforts.

An outstanding addition to TAB’'s exceptional, bestselling series of programming
manuals for the TI-99/4A, this is a book that every Tl user should own—whether novice or
advanced programmer!

j OTHER POPULAR TAB BOOKS OF INTEREST

Using and Programming the Ti-99/4A, including Ready-

Machine and Assembly Language Programming (No. to-Run Programs (No. 1620—$10.25; paper:

1389—$10.25 paper; $15.95 hard) : $16.95 hard)
Fundamentals of TI-99/4A Assembly Language (No. TI-99/4A Game Programs (No. 1630—$11.50 paper;

TAB BOOKS Inc.

Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > s1L.50 ISBN 0-830b-1745-0

\ PRICES HIGHER IN CANADA 1095-0384)

	front-cover
	binder 1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013
	content014

	back-cover

