

THE

LAST WORD
ON THE

BY LINDA ML & ALLEN R. SCHREIBER

fTAB|TAB BOOKS Inc.
BLUE RIDGE SUMMIT. PA. 17214

To Joseph Schreiber

FIRST EDITION

FIRST PRINTING

Copyright © 1984 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to

the use of the information herein.

Library of Congress Cataloging in Publication Data

Schreiber, Linda M.
The last word on the TI-99/4A.

Includes index.

1. Tl 99/4A (Computer)—Programming. 2. Basic
(Computer program language) I. Schreiber, Allen R.

II. Title.

QZ76.8.T133S37 1984 001.64 83-24339

ISBN 0-8306-0745-5
ISBN 0-8306-1745-0 (pbk.)

Contents

Introduction v

1 What Is a Program? 1
Program Possibilities—Program Sources—Program Differences

2 The Makeup of a Computer 4
The Central Processing Unit—Types of Memory—Mass Storage—Accessories

3 Getting to Know the Keyboard 8
Standard Characters—Special Function Keys—Accessory Outlets

4 Organizing Your Program 11
Partsof a Program—Flowcharts—Putting the Program on Paper

5 Commands, Statements, and Functions 16
Direct Commands—Program Statements—Editing—Error Messages

6 Storing and Accessing the Program 23

7 Understanding the Screen 25
Displaying the Program—Printing to the Screen—Display

8 Getting the Answers 35
Assigning Values—Using String Variables

9 Storing Related Information 46
What is an Array?—Using Arrays

10 Making Decisions in Programs 56
Decision-Making Statements—Using IF..THEN to Exit a Loop—More Decision-Making Statements

11 Repeating Part of the Program 66
Uses for Loops—FOR . . . NEXT Loops—Stepping

12 Reusing Part of a Program 78
Using a Subroutine—Calling a Subroutine—Developing a Subroutine

13 Arithmetic Functions 103
Special Functions

14 Working With Strings 117
Adding Strings—Splitting Strings—Using String Functions

15 Finding and Trapping Errors 145
Error-Trapping Techniques—Testing for Errors

16 Sights and Sounds 152
Using Graphics Commands—Using Sound Commands—Mixing Graphics and Sound—Using
Joysticks—Using the Speech Synthesizer

17 Special Functions 203
Handling Specific Memory Locations—Eliminating the ENTER Key—Printing in Columns

18 Advanced Programming Skills 212
Machine/Assembly Language—Using Sprites

19 Using the Disk 231
Accessing the Disk—Storing to and Retrieving from Disk—Merging Disk Files—Deleting Disk Files

20 Putting It All Together—Using Sprites,
Special Characters, and Sound 234

Appendix Working with Numbers 239
The Binary System—Understanding Hex

Index 246

Introduction

This book is designed to give you a hands-on learn
ing experience with your TI-99/4A computer. It
assumes that you have access to a TI-99/4A com
puter complete with the TI Extended BASIC car
tridge. You do not need any previous knowledge of
computers. If you can turn your system on, you are
ready to begin.

The first chapters will acquaint you with your
computer and the different accessories that can be
attached to it. You will be introduced to new terms

gradually. After you are thoroughlyacquaintedwith
your system, you will begin to program.

Each chapter introduces a few related com

mands. An explanation of each command is followed
by an example of the way to use the command. The
programs included with the chapter further illus
trate the use of each new command. Each program
is accompanied by a detailed explanation.

Sound, color, and graphics are included in sev
eral programs. A complete explanation of error
codes is also included. You will be shown how to

make your programs crash-proof, as well as how to
find and correct errors in an existing program.

Once you have mastered the skills presented
here, you will find that this book will serve as a
handy reference guide.

Also by Linda M. Schreiber from TAB BOOKS Inc.

No. 1485 ATARI Programming. . . with 55 Programs
No. 1545 Advanced Programming Techniquesfor YourATARI® including Graphics andVoice Programs

Chapter 1

What Is a Program?

Computers ... the information age ... a new and
fascinating experience for anyone and everyone.
Using computers can be fun, but exploring what can
be done with them is pure delight!

Programming a computer requires only logical
thinking and the spirit of adventure. You have been
programmed and reprogrammed throughout your
life. When your teacher gave you instructions, she
was programming you. Your parents, bosses, and
friends have all programmed you in some way.
Think about the last time you went to the store. Did
you count your change immediately after the clerk
handed it to you? Why or why not? Habit—or pre
programming? You probably program your chil
dren, too! —change your clothes, brush your teeth,
say your prayers, then get into bed. Carrying out a
task in a logical sequence is an important element of
good programming.

Computers need programs (software) to oper
ate properly. A program is a set of instructions the
computer follows. It is written in a language the
computer understands. We will be writing pro

grams in BASIC for the TI-99/4A computer
throughout this book.

Programs can be very simple or very complex
depending on their purpose.

10 REM A DEMONSTRATION OF A PRO

GRAM

20 PRINT "HELLO, I AM TI-99/4A COM
PUTER",

30 GOTO 20

This is a very simple program that will display

HELLO, I AM A TI-99/4A COMPUTER

over and over again on your monitor or television
screen. Your computer will continue forever if you
let it. (To stop the program, press the FCTN key
and the 4 key at the same time.) Your computer will
also follow any instructions in the order they were
given. It will not correct your spelling (unless it is
programmed to), or tell you that your formula is
incorrect.

The accuracy of a program depends upon the
programmer. Errors occurring within a program
are a result of human errors and are referred to as

bugs. It is the programmer's responsibility to make
the program as bug free as possible. This book will
show you where bugs are most likely to appear,
how to test for them, and how to correct them.

PROGRAM POSSIBILITIES

Games are a large portion of the software mar
ket. Arcade games are very popular; these pro
grams offer the same thrills and challenges of a real
arcade without the cost. The TI-99/4A can create
fascinating arcade game becomes of its special
graphics features. You can program your computer
so you may play pinball, space games, or a shooting
arcade on it.

Your computer can also be programmed for
traditional family games. The graphics on your TI-
99/4A allow you to easily duplicate card games,
board games, or games of skill and strategy.

The remote controllers that are available for
this computer help improve hand-eye coordination.

Educational

Educational computer programs are steadily
becoming more popular. In the home or classroom,
the computer can be a powerful and valuable in
structor. It can be programmed to provide drill
exercises in repetitive subjects such as math ta
bles, states and capitals, or spelling. Your com
puter can also be used as a tutor for self-paced
instruction.

Another effective method of learning with a
computer is called simulation. A good simulation
program can train a person in weeks to do what
would normally take a lifetime to learn by providing
the experience of both normal and extreme situa
tions. Games can stimulate the mind as well as the
imagination.

Your computer can be programmed to com
pose tests, store grades on a cassette or disk,
average the grades, and later generate report
cards.

Home Applications

Your TI-99/4A computer can be used effec

tively throughout your home. It can store informa
tion or help plan and organize your activities. It can
be your secretary or security guard, librarian or
accountant.

A program could act as a dietician, selecting
menus for the week or month, and generating a
shopping list for those meals. Whileyou're at it, you
may want to program the computer to recall your
coupons and refunds.

Yourcomputer is an ideal librarian. It can keep
track of all your books, records, and tapes. Your
program can store valuable information about any
thing you own.

If you have been trying to decide whether it's
better to save for an item or take out a loan, write a
program to show you the amount of interest your
savings account would earn versus the interest that
you would pay on a loan over the same period of
time. Take into consideration the inflation rate and

the price that the item will be by the time you have
saved enough for it.

If you are buying a house, your program can
show you what your mortgage payments would be
over different lengths of time with varying down
payments.

And, of course, you will want to program your
computer to balance your checking account. Your
program can also store your deductions for income
tax records while it is balancing your checkbook.

In the area of health and safety, a program can
help you learn first aid. With its graphics ca
pabilities, it can teach you where the pressure
points are for bleeding or how to splint a broken
bone.

You can write a flower or vegetable garden
program to help you plan your garden, estimate the
yield of your crops, compare it to your family's
needs, and show you a layout for your garden.

Darkroom enthusiasts can use a computer pro
gram to time the development of their films or store
processing information.

With a special device called a modem and your
telephone, you can call and connect your computer
to large message centers called networks. Some of
these networks serve as electronic mail boxes

where you can leave a message for another person

who also belongs to this network. Other networks
are giant data banks that offer UPI news, stock
market reports, airline schedules, and other infor
mation.

These are some examples of the types of pro
grams possible for your computer. Sample pro
grams are included throughout this book. As you
will become more familiar with your TI-99/4A, you
will continue to discover more ideas and uses for it.

PROGRAM SOURCES

Programs for your TI-99/4A are available from
a wide variety of sources. Several software firms
produce well-written programs for many different
applications. These programs are usually available
on a cassette or disk and come with some instruc

tions (documentation) on how to use the program.
Your local computer store should be able to dem
onstrate these programs for you. Other programs
are available only through mail order firms. Most
software firms offer a catalog describing their pro
grams and the amount of memory necessary to use
them.

Another source of programs are books. Pro
grams in books give you the opportunity to read
through a program before you type it in. The best
way to learn to program is by studying the programs
others have written. The disadvantage of programs
published in books is the time spent typing the
programs into the computer. If you make a typo
graphical error, you will have to find and correct
your mistake before the program will work cor
rectly.

Magazines are a third source of programs.
There are many good articles containing programs

or routines that explain the inner workings of a
computer. However, unless the magazine is writ
ten specifically for the TI-99/4A, you may find that
some of the programs won't work on it unless you
rewrite them.

PROGRAM DIFFERENCES

Even though most popular computers on the
market today are programmed in BASIC, each
manufacturer chooses a slightly different dialect of
BASIC. If you find a program written for another
computer and the program is fairly simple, you
should have no problem rewriting it for the TI-
99/4A. You must also take into account the graphics
the program uses. Color generation, screen res
olution, and animation differ from one computer to
another. Once you are familiar with your TI-99/4A
and how the BASIC language works, you should be
able to translate many programs written for other
computers.

Most computers can also accept programs
written in many other languages, such as PASCAL,
LISP, PILOT, and assembly language. Each lan
guage varies from one computer to another. Each
language is designed differently and has its own
advantages. For most applications, the programs
that you may want to write can be written very
efficiently in BASIC. When timing becomes im
portant, as with arcade games, you may want to
learn assembly language.

Whether you purchase programs from a
software firm or copy them from a magazine or
book, you may find the program almost fits your
needs. By learning to program, you will be able to
change the program to suit yourself.

Chapter 2

The Makeup of a Computer

The most vital part of a computer is its central
processing unit (CPU). Often no bigger than a dime,
it controls and maintains the computer and many
devices attached to it.

THE CENTRAL PROCESSING UNIT

The CPU can be thought of as the brain of the
computer. All instructions are read and interpreted
by it. It sends the correct commands to different
parts of the computer and ensures that the program
is followed. If you own a microwave oven, pro
grammable video recorder, or programmable cal
culator, you have already worked with a CPU. The
difference between the one in your computer and
those in your appliances is its internal design. Your
computer can be programmed for multiple uses;
your microwave can only be programmed to start,
stop, and cook at the correct temperature.

Every computer contains at least one CPU,
often referred to as "chips." Some of the first per
sonal computers used the INTEL 8080, others used

the 6502. Both of these chips are eight-bit micro
processors. Your TI-99/4A uses a 16-bit mi
croprocessor—the TMS 9900. This chip has some
advantages over the earlier microprocessors.

The language the computer uses is called
machine language. We understand it as groupings of
numbers that the CPU can translate into instruc

tions that it can follow. When we write a program in
assembly language, the assembler, a software pro
gram that can read and assemble our program into a
form the computer can use, translates our program
into machine language. One advantage of programs
written in machine language is that if a program is
written for a particular CPU, it will work (within
certain limitations) on all computers containing that
chip. Most people don't try to program in assembly
language until they have mastered BASIC.

TYPES OF MEMORY

Memory is used to store programs. Programs
consist of instructions and useful information

(data). The amount of memory your computer has is
measured in bytes. Some instructions use one byte
of memory, others need two or more bytes. Each
letter or number of data occupies one byte of mem
ory. The longer your programs are, the more mem
ory you need. Memory capacity is measured in
thousand (K) bytes. IK is equal to 1024 bytes, thus
a 32K computer contains 32768 bytes of RAM.

There are three types of memory available to
your TI-99/4A-RAM, ROM, and GROM. RAM
means random-access memory. It is sometimes
called read/write memory. Program data can be
placed anywhere in RAM (writing to RAM) or your
program can get information from any byte in RAM
(reading from RAM). RAM should never be used for
permanent storage since it can't retain information
once the power is shut off. It is needed for pro
gramming because it can be easily changed by the
user or under program control.

Static RAM is used in some computers. This
type of RAM is stable. Once an instruction is placed
into it, it will retain the instruction until it is
changed or the power is shut off.

Dynamic RAM is used in most popular home
computers, including the TI-99/4A. After an in
struction is placed in this type of memory, the CPU
must constantly refresh (remind) the memory of the
information placed there. This makes the CPU run
slower than it would with static memory, but for
most applications, this is not crucial. Some devices
cannot run properly with dynamic memory, but they
are few. Dynamic RAM is much less expensive than
static RAM.

Memory from different manufacturers may
have different access times, that is, the amount of
time the CPU has to retrieve an instruction from

memory. Speed becomes an important factor if your
program must do many different calculations before
arriving at the answer. In most programs, though,
you will not notice the difference in speed.

ROM means read-only memory. Your TI-
99/4A has its operating system in ROM. The pro
gram on these ROM chips has been permanently
fixed and will remain there whether the unit is

turned on or off. When you turn your TI-99/4A on,

this program begins immediately. It checks to see if
you have inserted a cartridge and taken care of
many other tasks before the screen appears on your
monitor.

The cartridges that contain Extended BASIC,
or one of the many games available for the TI-99/4A
contain GROM chips.

You can add more memory to your TI-99/4A
with the expansion interface. There is a slot in this
interface for 32K RAM. You can also use this inter
face for the disk drive and other devices. The mini

memory module is a unique cartridge. You can store
a program on it and remove it from the computer;
the program will remain in the cartridge. There is a
small battery in the unit that keeps the memory
active. You can erase the program with a special
commandand store a new program on the cartridge.

MASS STORAGE

Once you have written a program, you will
want to save it for future use. Cassette recorders

are an inexpensive and easy-to-use way to store
programs. Once a program is placed on the cassette
it will stay there until it is erased or recorded over.
The computer records the program on the tape by
generating two tones. These tones represent the
instructions in the program. This can be done be
cause the most basic instructions used by the com
puter, called machine code, is a binary code con
sisting of combinations of ones and zeros. The com
puter loads a program from the cassette by listening
to the tones and translating them into the corre
sponding binary digits.

Cassettes are inexpensive, easy to use, and,
because they are in a plastic case, easily handled by
children. They can be shipped or stored with
minimum precautions. Programs save and load to
cassettes very slowly, and you cannot access the
informationon them easily. If you purchase inferior
tapes, ones that are too thin, you run the risk of
having your program destroyed by the recorder. If
you do not wish to purchase tape designed for com
puter use, you may use recording tape, but don't
use long-playing ones (45 to 120 minutes). This
tape is too thin and easily damaged by the recorder.

A more efficient way of storing programs is
with a disk drive. There are two different drives

available for the TI-99/4A—the single-sided drive
and the double-sided drive. The double-sided drive
can store program information on both sides of the
disk. This doubles the amount of information that

the disk can hold.

Afloppy disk (sometimes called a diskette) is a
thin Mylar circular medium similar to a record. It is
covered with a thin jacket. There is a slot cut out on
both sides of the jacket exposing the surface of the
disk (Fig. 2-1). Touching this surface could damage
the disk. Programs are stored on disks by elec
tronic impulses that magnetize the surface. Be
cause the disk spins rapidly inside the drive, the
computer can save or load a program on it much
faster than on a cassette. Also, the disk has tracks
much like a record has grooves. Any part of the disk
can be accessed at any time.

Disks are very vulnerable to static charges. An
electrical charge, even a mild one produced by
walking across the carpet, can destroy the pro
grams on the disk. The jacket on the disk is for
protection against dust and dirt. If the disk is bent,
it will not spin properly, and the computer will not
be able to read the program or data stored on it.

Since both disks and cassettes store informa

tion magnetically, you should not place them near a

Fig. 2-1. Cutaway of a disk.

magnetic field such as the top of a speaker, a motor,
or a monitor (television). A strong magnetic field
could destroy your program.

ACCESSORIES

Many other accessories, or peripherals, are
available for and compatible with the TI-99/4A.
These peripherals can be connected to your TI-
99/4A through the expansion interface or through
the port on the right side of the computer.

The expansion interface is a large metal case
that houses extra memory, the disk drive, and the
disk controller card. There are several other slots
available in the expansion interface for other
peripherals.

By adding the TI Printer to your computer, you
can get a listing of your program on paper. When
you write long programs, you may find it difficult to
remember different parts of the program. By get
ting a listing or hard copy of your program you are
able to read the entire program, compare different
sections of the program, or check the program more
easily than when you are reading it from the screen.

The TI Acoustic Coupler Modem can connect
your TI-99/4A to the outside world. The word
modem means modulator-demodulator. That is, it
can change the signals that you send from your
computer into signals that can be transmitted over
the telephone lines. Demodulator means it changes
the signals that it receives from another computer
over the telephone line into signals that your com
puter can understand. There are several network
services available that can provide you with up-
to-the-minute stock market reports, UPI transmis
sions, or software for your computer. The modem
allows you to connect with message centers that
serve as electronic mailboxes in certain areas of the

country. Often a computer club will host such a
message center.

Your computer can also speak through TFs
Solid State Speech Synthesizer. Many educational
programs as well as games use this feature.

Your TI-99/4A computer can be connected to
your color television or a color monitor. A monitor
is essentially a television without a tuner. A color
monitor will provide you with a clearer, crisper

picture than a television set, but for most applica- connector, you can add two joysticks. The joystick
tions, a television will do fine. is a rectangular box with one stick and a button on it.

Using the keyboard to play arcade games just This stick sends signals to the computer. Your
doesn't feel quite right. These games need a quick program can determine if you are moving the stick
response from the player who shouldn't be fumbling or pressing the button.
with a keyboard. Along the left side of your TI- We will be using some of these accessories
99/4A is an outlet or port. By using a "Y" shaped later in this book.

Chapter 3

Getting to Know the Keyboard

The best way to learn about your TI-99/4A com
puter is to use it. Remove any cartridge that you
might have in the computer, turn on your television
or monitor, and turn on your computer. Your screen
should display two bright r.olor bands near the top
and bottom. The TI logo and name should appear in
the center of the screen, and

READY-PRESS ANY KEY TO BEGIN

should appear just above the bottom color band.
Press any key.

The screen will change. A short menu will
appear. A menu is a listing of choices that you can
make. Since there is no cartridge in the computer,
your only choice is number 1 for TI BASIC. Press
the key with the number 1 on it.

The screen clears for a few seconds. The

words TI BASIC READY are displayed near the
bottom. Under these words a caret (>) and a dark
flashing square appear. This square is called a cur

sor. It marks the position that the next character
will occupy.

STANDARD CHARACTERS

Look at your keyboard. Most of the letters and
numbers are in the same place as a standard type
writer keyboard. Some of the characters may be in a
different place than your typewriter.

Your TI-99/4A has two sets of letters in its

memory. One set is the standard uppercase letters.
The second set is a smaller version ofthe uppercase
letters. The TI-99/4A does not display true lower
case letters with the letters in its memory.

The right most key of the center row is called
ENTER. This key acts as a carriage return. It
moves the cursor down one line and to the left side

of the screen.

SPECIAL FUNCTION KEYS

Along the top ledge of your computer is a strip
with different functions on it. Look at the key to the

right of the space bar. This is the function key. On
the front side of this key is a grey dot. On the left
side of the space bar is the control key. This key has
a red dot on the front side of it. Look again at the
strip on the top ledge. On the right are both the red
dot and the grey dot. The functions listed on the
same line as the grey dot operate when the function
key and the number key under the command are
pressed at the same time. The functions listed on
the same line as the red dot operate when the
control key and the number key under that com
mand are pressed at the same time.

Hold down either the function key or the con
trol key. Now press the key with the plus sign (+)
on it. This is the QUIT command. Your screen

should clear and the title page with the color bars
should appear on the screen. Press any key, then
the number 1 to return to TI BASIC.

The key to the left of the control key is the
ALPHA LOCK key. This is similar to a shift-lock
key. By pressing the ALPHA LOCK key into the
down position, you lock the computer into using
only capital letters. Press the ALPHA LOCK key
so that it is in the raised position. This unlocks the
keyboard, letting you type in both large uppercase
and small uppercase letters. The number and sym
bol keys differ from those on a typewriter
keyboard; you must press the shift key for the
symbols above the numbers, the greater than or
less than symbols, or other character keys even if
the ALPHA LOCK key is in the down position.
Most programmers use capital letters exclusively
(BASIC doesn't recognize lowercase commands) so
the ALPHA LOCK key is normally depressed. It
would be cumbersome to have to unlock the

ALPHA LOCK key for the numbers.
The function key (FCTN) is also used with

certain other keys. Look at the letters: W, E, R, T,
U, I, 0, P, A, S, D, F, G, Z, X, C. Each of these
keys have another character printed on the front of
it. You cannot use the shift key to print these
characters. Instead you press the FCTN key and
the character key at the same time. For example,
every time you want a quotation mark, you hold
down the FCTN key and press the P key.

Holding down FCTN and pressing the 4 key
can serve one of two purposes. If you are running a
BASIC program and you want to stop the program,
hold down FCTN and 4. The program will stop and
the screen statement will tell you what line the
program stopped at. If you are typing in a program
and you decide that the line has several errors on it,
or wrong commands, instead of using FCTN and the
backarrow to delete the line, you can hold down
FCTN and press the 4 key. The computer will
ignore the line and bring the cursor down one line.
You can now enter a new line.

Holding down FCTN and the 3 key is very
similar to using the 4 key. When you press the 3 key
with FCTN to erase, the cursor moves to the be
ginning of the line, erasing everything that you
typed. The screen does not scroll. The cursor re
mains on the same line.

FCTN and the 2 key are used to insert more
characters into a line. Type this short exercise:

30 PINT "THIS IS A TEST"

do not press the ENTER key. Notice that the word
PRINT is misspelled. Press the FCTN and the S
key. The cursor moves back one position. Hold
down both keys until the cursor is over the "I" in
"PINT." Now hold down the FCTN and press the 2
key. Release both keys. Press the R key. The "R"
will be inserted between the "P" and the "I." If you
had more letters or characters to insert, you could
keep typing, and each character would move the
letters and characters in the line to the right one
position. If the rest of the line is correct, you can
press the ENTER key. If you want to enter more
commands at the end of the line, use FCTN and D to
move the cursor to the right.

To delete characters from a line, use FCTN
and the 1 key. Type this example:

30 PRINT "THISS IS A TEST"

again, do not press the ENTER key. Instead, hold
down FCTN and press S. Move the cursor to the
left until it is over one of the "Ss" in THIS. Hold

down FCTN and the 1 key. The "S" on the screen
will be removed. As long as you hold down both
FCTN and 1 characters will be removed from the

line.

These keys are very useful when entering
programs. If you make a mistake while you are
entering a line, you can easily move the cursor and
correct the error.

ACCESSORY OUTLETS

On the left side of the computer is an outlet.
This outlet is the connector for your remote con
trollers. You can use any standard joystick with
your TI-99/4A. Using a connector that is shaped
like a "Y," you can adapt your TI-99/4A to use two
joysticks.

On the right side of the keyboard is a large
connector you can connect your interface to. If you
own a speech synthesizer, it will also connect on
this side. The speech synthesizer is designed to fit
between the computer and the interface. Some disk

10

drives that are not contained in the expansion mod
ule also connect here.

On the top surface of the computer, to the right
of the keys, is a large, flat area. The GROM car
tridges are inserted here. These are the cartridges
that TI and a few other software firms manufacture.

If you own the TI Extended BASIC cartridge, you
will insert it here.

On the back of the computer, near the side of
the interface connector is a small rectangular con
nector. The cables for a cassette recorder are con

nected here. This special set of cables should be
available through the same store that sold you your
TI-99/4A. If you do not have a disk drive, then you
will need these cables so that you can save your
programs to a cassette.

Near the other corner on the back of the com
puter is a circular connector. This is where the
cable for the video monitor connects. The TI-99/4A
video monitor comes with its own cable and uses
this connector.

Chapter 4

Organizing Your Program

No matter how creative a program appears, the
rudiments of programming are the same. Very few
programmers can conceive an idea, sit downat the
keyboard, and enter the program without a plan or
guideline. Good programs are carefully thought-
out and developed. Consideration is given to the
parts of the program that the computer will per
form, the information the user will provide, and the
information stored in the program.

Let's say you would like to write a program
that will determine the cost of the floor covering for
a room with a complete cost comparison of the
different floor treatments possible. This program
would consist of several small programs, or
routines. This chapter develops a portion of that
program. The program computes the area of the
floor in square feet and square yards.

PARTS OF A PROGRAM

The computer will calculate the area of the
floor, the amount of floor covering needed, the

price of the floor covering, and the cost per year,
determined by the average life of the floor covering.
To do this, the computer must be given the essen
tial facts, including the measurements of the room,
the price of the floor covering, and what flooring is
being considered. This information is provided by
you, the user. The computer also needs information
about the expected life of floor coverings, the con
version from square feet to square yards, and the
pricing formula. All these figures remain constant
and can be stored in the program.

The set of instructions the computer will fol
low regardless of the information entered is called
the algorithm. The answers to the questions that
the program asks are supplied by the user and will
change from person to person depending on the
questions and the circumstances. Errors (or bugs)
can be generated if the user enters incorrect infor
mation. The information stored in a program and
used to perform calculations is the data base. If the
data is incorrect, the outcome ofthe program will
also be in error.

11

FLOWCHARTS

A flowchart is an outline of a program that the
programmer uses to develop the program. It
serves as a guide, showing the parts of the program
that must be included for it to function correctly. To
program without a flowchart would be like trying to
take a trip to an unknown region without a map. It
can be done, but it can also be a waste of time and
energy.

Every programmer develops a personal style
of flowcharting. There are several well-known
types, including Warner-Orr diagramming, data
flow diagrams, structure charts, and structured
pseudocode. Throughout this book the standard
symbols, shown in Fig. 4-1, are used.

The terminal symbol is used to indicate the
beginning and ending of the program. Input/output
indicates where the user must provide information,
the program will read its own data base, or informa
tion will be printed to the screen or printer. The

(J Terminal

Li /f Input/output

O Decision

Predefined

process

o Connector

Fig. 4-1. Standard flowchart symbols.

12

Get width

and length-
find area

*
Get floor

treatments

*
Get price
per square

foot or yard

i

Get user

preference

*
Calculate

cost on

all choices

*

Display
costs

Fig. 4-2. Flowchart indicating main routines of a program.

decision symbol indicates where the computer will
have to determine which set of instructions to fol

low. Predefinedprocess is the sequence of program
statements (instructions) the computer will follow
regardless of what has been entered by the user.
The connector is used to show that the flowchart

continues on another part of the page, or even to
another page. The connecting connectors will have
the same number inside the circle.

When you flowchart a large program, you may
find it helpful to divide the program into several
small modules before you draw a detailed flow
chart.

Figure 4-2 is a block diagram of the different
parts of the program. The first block indicates the
routinef or module of instructions, that determines
the size of the room. The next three modules de

termine the different treatments being considered,

the price (in cost per yard), and the user's prefer
ence. The program computes the cost of the treat
ment in terms of the overall price and the price per
year over the expected life. The program would
show the user the most expensive treatment, the
least expensive treatment, and the cost of the
treatment that the user prefers. A good program
would give the user the option of changing some of
the treatments or adding new ones. The end result
would be the amount of material needed to cover

the floor and the approximate cost. Each of these
modules can be flowcharted with a very detailed
flowchart. Figure 4-3 is a flowchart containing the
routine for the first module of the program.

PUTTING THE PROGRAM ON PAPER
Jot down your program idea after you've

thought it out, using the block diagram. Now think
.. . what is the best way to handle the details of the
program? Look again at Fig. 4-3. The first thing the
program does is ask the user for the dimensions of
the room. The program needs this information.
Request it first, not after you ask whether the user
will tile or carpet the floor. Any facts that are vital
to the program should be asked for as soon as
possible. The message written on the side of the
flowchart is a remark, a reminder to the program
mer why this command should be included in the
program, or an explanation of how this part of the
program should work. The more remarks you
make, the clearer your program will be.

The next part of the flowchart requests the
type of flooring and the cost per square foot. The
diamond reading ANY MORE? indicates a decision
the computer will make. If the user say that there
are more types of floorings to be entered, the pro
gram will go back to the step asking for the type of
flooring. If there are no more entries, the program
will continue.

The computer determines whether more than
one entry was made. If so, it requests the user's
preference, then computes the cost and cost per
year. The last part of the program shows the user
the costs of the preferred treatment, the most ex
pensive treatment, and the least expensive treat
ment. It also indicates the best floor treatment

based on the average cost per year.

The size of the room, and the types of flooring
and their costs are data the user inputs. The
squares in the flowchart are the algorithms or in
structions that the computer will follow to reach an
answer. The data base is not easily discovered by
readingthe flowchart. When the program computes
the cost per year, it will use the figures stored in its
data base. This information must be accurate if the
program is to be accurate.

The program starts at the top of the flowchart
and works its way to the bottom; It rarely back
tracks. This is good programming practice; if your
program jumps from one routine to another, you
will become confused writing it, andif a bug should
appear, it will take much longer to correct it. Divide
your program into small routines, so you can write
cleaner programs with less chance of errors.

Listing 4-1 is the BASIC listing of the first
flowchart routine. This program will work in TI
BASIC or TI Extended BASIC. The remarks in the
program correspond with the instructions in the
flowchart. Below is a line by lineexplanation of the
program:

Listing 4-1

Lines 100-130 are remark lines. They name the
program and give general information about it.

Line 140 contains the command to clear the screen.
This command removes everything that is pres
ently on the screen. Keep your program presen
tation neat—clear the screen to get rid of old
information.

Line 150prints a question on the screen. The pro
gram would like the length of the room in feet.

Line 170waits forthe user to enter the length. The
amount entered will be stored in the LENGTH

variable.

Line 180 prints the next question. Now the program
would like the width of the room in feet.

Line 200 waits until the width is entered. The
program stores this number in the WIDTH vari
able. (The numbers entered in lines 170 and 200
will change each time the program is used.)

Line 220 computes the are in square feet.
Line 240 changes the square feet into square yards.

(These two algorithms, Lines 220 and 240, re-

13

C Begin J

/ Clear /
/ screen /

I
Prompt
#1 get
length

Prompt
#2 get
width

i
Calculate

area In
square
yards

Ask for length
In feet

Ask for width
In feet

Display
area ?•

Show square feet
and square yards

c

Get

user

preference

Calculate

cost of

floorings

Calculate

cost per
year

Check

entries

In number

Display
results 7

Initial calculation

cost per
year

End j

Is this the last entry?

Fig. 4-3. Detailed flowchart for Listing 4-1.

main the same no matter what size the room is.)
Line 260 rounds the square yards to the nearest

square yard.
Line 270 prints a message on the screen.

14

Line 280 prints the area of the room in square feet.
Line 290 prints the area of the room in square yards.
Line 300 tells the computer that the program has

ended.

Listing 4-1

100 REM LISTING 4-1

110 REM COMPUTE SQUARE FEET AND SQUARE

ARDS

120 REM L.M.SCHREIBER FOR TAB BOOKS

130

140

150

oom

160

NGTH'

170 INPUT LENGTH

180 PRINT : I J"What

room (in feet)8?

190 REM STORE THE WIDTH

'WIDTH'

200 INPUT WIDTH

REM COMPUTE THE SQUARE

AREA=WIDTH*LENGTH

REM COMPUTE THE SQUARE

SQYARD=AREA/9

REM ROUND OFF TO NEARESTSQUARE

SQYARD=INT(SQYARD+O.5)

PRINT : X I {"The area of the room

210

230

240

250

260

270

s J"

280 PRINT

290 PRINT

300 END

REM CLEAR THE SCREEN

CALL CLEAR-

PRINT "What is the length of the r

(in feet)"»

REM STORE LENGTH IN THE VARIABLE 'LE

is the width of the

IN THE VARIABLE

FEET

YARDS TOO

{AREA?"sauare feet"

SQYARD?"souare wards"

YARD

15

Chapter 5

Commands, Statements, and Functions

There are two ways that you can communicate with
your TI-99/4A. You can type an instruction; then
press the ENTER key and the computer will im
mediately execute it, or you can enter a series of
commands in a program to be executed in sequence.
In the first example, the instruction that you give
the computer is a direct command. In the second
example, the lines of a program contain the instruc
tions, which are indirect commands or program
statements. In the following programs we will use
the commands for TI Extended BASIC. When the

command is used differently by TI BASIC, we will
show examples for both versions of BASIC.

DIRECT COMMANDS

Most commands can be used as direct com

mands. Many direct commands can also be used in a
program. When you type RUN to start a program,
you are giving the computer a direct command. An
entire line of a program can be entered as a direct
command. If you are using the Extended BASIC
cartridge, try this:

16

Type: FOR X=l TO 10::PRINT X::NEXT X
Press the ENTER key.

The left side of your screen should display the
numbers from 1 to 10 along the left side. You could
also type:

10

10

20

30

40

FOR X=l TO 10::PRINT X::NEXT X (EN
TER)
or in TI BASIC type:
FOR X=l TO 10

PRINT X

NEXTX

END

For either BASIC type: RUN
The results should be the same.

NEW

One direct command that should be used

sparingly is NEW. This command erases the pro
gram that is in the computer's memory. It cannot be
used as a command in a program. It is best used

when and only when you have finished a program,
saved it, and want to enter another program. If you
get into the habit of using this command without
much thought, you may find that you have just wiped
out two or more hours of hard work.

The NEW command does have its advantages,
however. Since it clears a program out of memory,
you can begin typing another program and not have
lines left over from the last program. You do not
have to enter the NEW command before loading a
program from cassette or disk because this is done
automatically by the computer.

BYE

Another direct command is BYE. Type this
when you want to return to the TI logo page. It is
the equivalent of pressing FCTN and the + key.
Your entire program will be erased from the com
puter's memory.

PROGRAM STATEMENTS

The instructions in the numbered lines of a

program are program statements. They are entered
when you type in a program or load a program from
the cassette or the disk. The computer stores these
statements in its RAM. It will follow these instruc

tions when the program is RUN.
Each program statement must begin with a line

number. Most programmers start with 10 and
number the lines in multiples of ten. This lets you
easily add lines to your program without reor
ganizing or retyping an entire routine.

NUMBER

One feature of TI BASIC and TI Extended
BASIC is the NUMBER command. This command

allows you to enter the lines of a program without
having to enter the line numbers. Your program
lines will be numbered automatically. There are
four different ways that you can use this command.
The abbreviation or shorter version of the com

mand is NUM. Using the NUMBER command by
itself tells the computer to begin with line number
100 and add 10 for every additional line. Your
screen might look like this:

NUMBER

100 REM PROGRAM FOR AREA

110 PRINT "ENTER THE LENGTH"
120 INPUT L

By entering two numbers after the NUMBER
command, you can tell the computer which line
number to start with and how far apart the line
numbers should be as illustrated below.

NUMBER 500,5
500 REM PROGRAM FOR THE AREA
505 PRINT "ENTER THE LENGTH"
510 INPUT L

If you do not enter the last number, the com
puter will produce line numbers in multiples of 10,
like this:

NUMBER 300

300 REM PROGRAM FOR THE AREA
310 PRINT "ENTER THE LENGTH"
320 INPUT L

If you do not specify which line to start at, the
computer will begin with line 100.

NUMBER ,20
100 REM PROGRAM FOR THE AREA
120 PRINT "ENTER THE LENGTH"
140 INPUT L

The numbers that the computer uses when you
do not enter a specific number is called default
value. The default values for NUMBER are 100

(first line number) and 10 (apart).

RESEQUENCE

The NUMBER command keeps your program
well organized while you are writing it. Remember,
we want to keep the line numbers in multiples of 10
so that we can add lines to our program if we need
to. Looking at the first example, let's add one line to
the program.

105 PRINT "THE AREA IS THE PRODUCT OF

THE LENGTH TIMES THE WIDTH"

17

The computer will automatically add this line
between lines 100 and 110. By using the RESE
QUENCE command, we can renumber the pro
gram, keeping all the lines evenly spaced.

Type: RESEQUENCE

Now LIST the program. It should look like this:

100 REM PROGRAM FOR AREA

110 PRINT "THE AREA ISTHE PRODUCT OF

THE LENGTH TIMES THE WIDTH"

120 PRINT "ENTER THE LENGTH"

130 INPUT L

The RESEQUENCE command is very similar
to the NUMBER command. The default values are

100 for the beginning line number, and 10 for the
lines between line numbers.

Try these commands with the program:

RESEQUENCE 500,20

The program will begin at line 500 and the lines are
20 apart.

RESEQUENCE 300

The program will begin at line 300 and the lines are
10 apart.

RESEQUENCE ,20

The program will begin at line 100 and the lines are
20 apart.

In TI Extended BASIC, program statements
can not exceed five screen lines in length. How
ever, long lines often mean multiple statements on
each line. Too many commands on one line is not a
good programming practice. Lengthy lines can
confuse the programmer and are sometimes impos
sible to debug.

There are times, however, when you will need
to put two program statements on the same line, for
example, when you want the program to make a
decision. Place two (2) colons between the end of

18

one statement and the beginning of the next. The
colons tell the computer not to go on to the next line
but to look at the rest of this line. The line you typed
at the beginning of this chapter is an example of a
line with multiple statements.

REM

There is one program statement that the com
puter will always ignore, even though it is most
useful to the programmer. That is the REM (re
mark) statement. Use the REM as a reminder to
yourself about what the routine does, why you did
it, when it will be used, and the like. Often a good
routine is extremely confusing without remark
statements if you haven't looked at it for a long
period of time.

In TI BASIC the REM statement must be used

on a program line by itself, as shown here:

20 REM CLEAR THE SCREEN

In Extended BASIC, the exclamation mark (!) can
be used to replace the word REM as illustrated
below.

20 ! PROGRAM ON VARIABLES

30 A=10 ! SET THE FIRST VARIABLE

The double colons are not necessary to separate the
program statement from the remark.

END

When the computer comes to a line that has the
END statement on it, it will stop running the pro
gram. The END statement is not necessary if the
program starts with the first line and continues
through to the last line. Sometimes, however, a
program is written with routines or program sec
tions at the end of the program, and the main portion
of the program occupies the first hundred or so
lines. Placing the END statement between the main
program and the routines will tell the computer that
the program is over and that it should not execute
the program lines following the END statement.
The two listings that follow will illustrate the dif
ference between a program with subroutines and a
program without them.

10 REM A PROGRAM WITH NO SUBROU
TINES

20 PRINT "PLEASE ENTER A NUMBER"

30 INPUT A

40 PRINT "PLEASE ENTER A NUMBER"

50 INPUT B

60 PRINT "THE PRODUCT OF ";A;" and
";B;" IS ";A*B

10 REM A PROGRAM WITH A SUBROUTINE
20 GOSUB 100

30 A=C

40 GOSUB 100

50 B=C

60 PRINT "THE PRODUCT OF ";A;" AND
";B;" IS "A*B

70 END

100 PRINT "PLEASE ENTER A NUMBER"
110 INPUT C

120 RETURN

STOP

The STOP command is similar to the END
command. When the computer comes to the STOP
command in a program line, it stops running the
program.

VERSION

The VERSION command can be used to find
out which version of TI Extended BASIC is being
used in the TI computer. There are different ver
sions of the Extended BASIC cartridge. The
changes in the BASIC are not apparent to the user,
but for someone who is developing programs for
commercial uses, and is using parts of the operating
system that could be different in the old or newer
versions of TI Extended BASIC, this command is
very useful.

10 CALL VERSION(T):: PRINT T

The version of TI Extended BASIC, used for this
book is 110.

EDITING

Editing program lines is something that all

programmers learn to do sooner or later (usually
sooner). You'll use the editing feature to correct
typing errors; to change values; to fix errors in the
program, commands, or operation, and to delete
unnecessary instructions or to add instructions.
The TI-99/4A has some very goodediting features.
There are differences between the editing features
ofTI BASIC and TI Extended BASIC.For instance,
if youenter a statement incorrectly, the computer
will not understand it and stop. An error message
will be displayed on the screen. To make the pro
gram run correctly, you will have to correct the
program statement. On the other hand, if you tell
the computer to print a word that is misspelled, the
program will do so. The computer cannot tell if a
word is wrong unless it is a command word.

To edit a program line in TI BASIC, type:

EDIT (line number)

For example, your line 20 reads:

20 PINT "THIS IS A TEST"

There is an "R" missing from the word PRINT.
Afteryoutype EDIT 20, line 20will reappear on the
screen. The cursor will flash over the first letter of

the program statement. Now you can use the FCTN
and right arrow key to move the cursor over the "I".
Use the FCTN and 2 key to enter the insert mode.
Press the letter R and it will be inserted between
the "P" and the "I." Youcan now press the ENTER
key and the program statement will be corrected.

Once you have entered the EDIT mode by
typing EDIT and the line number, you can use
FCTN along with the right or left arrow keys to
move the cursor on the program line. Use FCTN
with the 1 or 2 key to delete or insert characters.

In TI Extended BASIC, there is no EDIT
command perse. To edit the program statements,
simply enter the line number, and press FCTN
alongwith the up arrow (W)or down arrow (X)key.
Again, that entire line will appear on the screen
with the cursor flashing over the first letter or
character in that program statement.

To add letters or characters to the program

19

statement, use the function key and the right or left
arrow key to move the cursor. Let's use the same
program line as before.

20 PINT "THIS IS A TEST"

Type 20 and while pressing FCTN, press the
up arrow (W) or down arrow (X) key. Line 20 will
reappear on the screen with the cursor flashing over
the "P." Press FCTN and the right arrow (D) key.
The cursor will move over the "I." This is where

the "R" should be. Now press FCTN and the 2 key.
Press the R key. The "R" will appear between the
"P" and the "I." Press ENTER and the line will be

corrected.

To delete letters or characters from a program
line, use the same procedure, except, instead of
pressing the 2 key, press the 1 key. The letters or
characters under the cursor will disappear. Press
ENTER when all the characters that you want to
erase are removed from the program line.

To change a line completely, you can enter the
program line and begin typing the new line. How
ever, if you are already in the EDIT mode because
you entered the line number and FCTN/up arrow,
you can press FCTN and the 3 key. The entire line
will be erased from the screen. You can now begin
typing the new line.

Changing Line Numbers

Sometimes you may want to use the same or
very similar program line several times in your
program. You do not have to type the same line over
and over again with new line numbers. There are
two different ways to change line numbers in TI
Extended BASIC.

Enter the following program statement:

20 PRINT "THIS IS FUN"

Now press FCTN and the 8 key. The entire line is
reprinted on the screen with the cursor flashing
over the line number 2. Type the number "3". The
number "2" is replaced with the "3." Now use
FCTN with the right arrow (D) key to move the

20

cursor over the "F" in "FUN." Press FCTN and 2

for the insert mode. Now enter the words "MUCH

MORE" and press ENTER. Type LIST to see the
entire program. Your screen should display:

20 PRINT "THIS IS FUN"

30 PRINT "THIS IS MUCH MORE FUN"

You entered two program lines without having
to retype the second program line.

(Pressing FCTN with 8 will always display the
last command or line that was entered. If you
pressed those keys now, the LIST command would
be displayed on the screen.)

When you are entering a program, you don't
always know that you will want to reuse a line in
other parts of the program, or that you may want to
move a program line to another part of the program.
To renumber a program line that was not just en
tered, type the program line. Press FCTN and the
up arrow (W) or down arrow (X). Now using the
FCTN and the right arrow, move the cursor to the
space after the last letter or character in the pro
gram line entered. Press FCTN with 8 and this line
will reappear on the screen with the cursor flashing
over the program line number. You can now change
the program line number.

When you use FCTN with the 8 key to change
line numbers, you reenter the line with a new
number. The original line remains in the program.

Deleting Lines

To remove or delete a program line, type the
line number and press ENTER. If you are in the edit
mode, you can use FCTN and the 3 key to erase the
line, then press ENTER. The program line will be
removed from the program.

ERROR MESSAGES

YourTI-99/4A may tell you that your program
contains an error when you are entering a program
line, after you type RUN but before the program is
actually executed, or while the computer is running
your program. Usually, the error message will also
contain the line number of the error. Although most

messages are self-explanatory, the following guide
offers suggestions on how to avoid or correct the

most common errors. They may not help you just
yet, but it is a good idea to be familiar with them.

ERROR

MEMORY FULL

BAD ARGUMENT

NAME CONFLICT

BAD SUBSCRIPT

DATA ERROR

INPUT ERROR

BAD LINE NUMBER

FOR-NEXT ERROR

LINE TOO LONG

CANT DO THAT

CAUSE and CORRECTION

The program uses more memory than available in your computer. Check
the dimension statement. You may be setting aside more memory than
you need to. Divide your program into smaller programs that can be
chained together. Look at your program lines that contain the GOSUB
command. Make sure that you are not calling the same line that the
command is on. Check for a RETURN at the end of every subroutine.

You maybe trying to find the ASCII value or numericvalue of an empty
string. If the string does containinformation, be sure that you are taking
the value of a number, not letters.

A name used for a variable cannot also be used for an array or function.
Arrays, variables, and functions cannot duplicate each others names.

You are tryingto use a subscript inanarray that is greater than the limits
of the array, or you are using the subscript 0 and the base 1 option was
chosen. Subscripts must also be integers.

The problem may lie in the DATA lines or the READ command. Be sure
that there are commas between the elements in the DATA line. Either
there is not enough data in the DATA lines, you want to access the same
data but did not use the RESTORE command, or you are trying to
RESTORE a linenumber thatishigherthanthe last lineofthe program.
The program needs a number but a letter or character was entered. If a
letter or character is supposed to be entered, change the variable to a
string variable.

A GOSUB, GOTO, or THEN command referred to a line not in the
program. Correct the line number in the program line, or add the
missing line to the program.

The number of program lines that contain the FOR statement do not
match the number of program lines that contain the NEXT statement.
Checknested loopsfora missingNEXTor too manyNEXTstatements.

The line is too long for BASIC to understand. Shorten the line. If it is a
DATA line, count the numberofelements in that line. Only30 commas
are allowed on a line of data.

A RETURN command cannot find the matching GOSUB. If you place
your subroutines at the end of your program, be sure that there is an
ENDstatement beforethe first subroutine. Makesure that the program
is not using a GOTO where there should be a GOSUB.
The NEXT part of a FOR. . . NEXT loop could not find the matching
FOR. Check for incorrect variables after the NEXT and for incorrectly
nested loops.

21

BAD VALUE

INCORRECT STATEMENT

The number used is incorrect. First check the command that the number

is used in conjunction with. Be sure that you are not using a number too
large or too small for the command. Check the sign of the number. Some
commands will not accept negative numbers or a zero.

There is a definite problem in the program line, and the computer cannot
execute the program any further. Check the program line for missing
commands, parentheses, variables, arithmetic signs, and line numbers.
Reserved words cannot be used as variables.

These are some of the most common errors error messages related to the use of the disk drives,
you can get from a BASIC program. There are other printers, and other accessories.

22

Chapter 6

Storing and Accessing

the Program

Programs can be stored on cassettes or floppy
disks. This chapter discusses only the commands
used to store and load programs on the cassette
recorder.

Your TI-99/4A can have two cassette record

ers connected to it. The first, the number 1 cas
sette recorder, can be used to load a program into
the computer or save a program that is in the com
puter onto the cassette. The second, the number 2
cassette recorder, can only be used to save pro
grams.

OLD

To get a program from a cassette tape into the
computer, insert the cassette in the recorder, make
sure that it is properly positioned, type OLD CS1,
and press the ENTER key. The computer gives you
instructions on the screen. Follow these instruc

tions carefully. First, you are instructed to rewind
the tape that is in the first cassette recorder. If the
program that you want to load is the first program
on the tape, then rewind the cassette. If it is the
second or third program on the tape, and you are

sure that you have the tape correctly positioned,
you can omit this step and press ENTER.

Now press the PLAY button on the cassette
recorder and the ENTER key on the computer. The
screen displays "READING." The computer lis
tens to the tape and converts the tones that it hears
into the program instructions. If the tape loads
successfully, the cursor appears on the screen.
Type RUNandpress ENTER to begin the program.

If the computer cannot read the program cor
rectly, an error message will appear on the screen
and you are given the option of trying the reading
procedure again or stopping. To read again, press
the R key. Be sure that you enter it in uppercase.
Use the shift key if necessary. If you do not want to
try again, press the E and another error message is
displayed on the screen. Sometimes an error mes
sage means that the tape has a defect in it. Other
times you may have placed the wrong tape or blank
tape in the recorder or not positioned it correctly. It
may also mean that the heads on the tape recorder
are dirty and should be cleaned.

23

SAVE

Once you have typed a program into the com
puter, you will want to store it before shutting off
the machine. The SAVE command places the pro
gram in RAM onto a cassette. To save your pro
gram, type SAVE CS1 and press the ENTER key.
The computer displays instructions on the screen to
help you save your program correctly. The same
instruction is displayed if you are using a second
recorder and CS2 as the recorder number.

First you are instructed to rewind the cassette
tape. Again, if this is the second or third program
that you are saving on the tape, it is not necessary to
rewind the tape. Press ENTER to continue. Press
the RECORD and PLAY buttons on your recorder
and press the ENTER key again. The screen dis
plays RECORDING. The computer converts the
program instructions into tones and sends these
tones to the recorder. The tones represent the
binary numbers that the computer converts back
into instructions when the program is read back into
the computer.

Once the program has been saved, the com
puter instructs you to press the STOP button on
your recorder and press the ENTER key. You are
then given the option of checking the tape for the
program that you just saved. Press Y. You are
instructed to rewind the tape, press the ENTER
key, press the PLAY key on the recorder, and the
ENTER key on the computer. If the program has
been saved correctly, the screen displays DATA
OK. This is a very good feature. If the program has
not been saved correctly, or was not saved at all
because both the PLAY and RECORD buttons were

not pressed on the recorder, you have not lost your
program. Your original program is still in the com
puter and you can save it again.

24

Once you have saved the program correctly,
the cursor appears in the lower corner of the
screen, and you can continue programming, run the
program, or quit.

PROTECTED

In TI Extended BASIC there is a protected
option that is available for use with programs that
you do not want to change while they are being
used. When you use the SAVE command, add
,PROTECTED to the command as shown here:

SAVE CS1, PROTECTED {press ENTER}

The computer saves the program to the cassette.
When the program is loaded back into the com
puter, the user can RUN the program, but cannot
edit, list, or resave it. A word of caution here,
always save an unprotected copy of your final pro
gram just in case you will want to list or edit the
program at a later date.

RUN

This command is used to begin a program.
When the command is used with no numbers fol

lowing it, the computer begins at the first line of the
program. All the variables are set to zero, the
strings are cleared so that they are empty, and if any
area of memory was used for special graphics
characters, that space is also cleared.

You can also start the program at any line
number. All variables will be cleared. If you try to
run a program at a line number that does not exist,
the computer will give you an error message. If you
try to RUN a program when none exists, the com
puter will tell you that it CANT DO THAT.

Chapter 7

Understanding the Screen

Your TI-99/4A can display letters, numbers, and
characters anywhere on your screen. Your screen
size or resolution is 32 characters across and 24
lines high. This resolution is referred to as a 32 x 24
screen. Each character on the screen is made up of
dots called pixels. These pixels are turned on to
form the letters or characters. The characters use 8
pixels across and 8 pixels down. The actual resolu
tion of the screen is 256x192 because that's how
manypixels there are. Wewillwork with the pixels
and high resolution graphics in a later chapter. In
this chapter, we will work with the standard set of
characters that are available with your TI-99/4A.

DISPLAYING THE PROGRAM

After you have loadeda program into memory,
you may want to look at it to see which commands

are used, or to change the line instructions. You can
look at a program by typing LIST and pressing
ENTER. The entire program will be printed on the
screen. If the program is longer than 23 lines, the
first lines will scroll offthe tip of the screen. Unless

you can speed read, the program will scroll by too
fast. To pause the listing, hold down SHIFT and
press the S key. The computerwill stop the listing
at the end ofthat line. To continuethe listing, press
any key.

You mayalso tell the computer to list onlythe
lines that you would like to read. LIST 10-50 tells
the computer to start with line 10 and list all the
program statements up to and including line 50. If
there are more lines than can fit on the screen, the
first lines will scroll off. You can also use LIST -50
to list all the lines in the programfrom the first line, •
up to and including line 50. LIST 50- will list all the
lines beginning with line 50 to the last program
statement. LIST 50 would only list program state
ment 50.

To tell the computerto execute the programin
its memory, type RUN and press ENTER. The
computerwillstart with the first lineof the program
and complete the instructions in that line; then
proceed to the next line and follow those instruc
tions. Shouldyou want to stop a program after one

25

section has run, you can press FCTN and the 4 key.
The screen will display:

♦BREAKPOINTIN {line number}

You may put in several breakpoints to help you
debug your program and remove them later.

SIZE

Ever wonder how much memory a program
uses, or how much room (free RAM) you have left?
Type SIZE and press ENTER to find out how much
memory (RAM) is left. Everything that is used in a
program uses memory (RAM). This includes the
screen, string and numeric variables, sprite and
color tables, and of course, the program. If you have
the Memory Expansion unit attached to your TI-
99/4A, the computer stores the program, variable,
and table information differently. The SIZE com
mand tells you how much program memory is avail
able as well as how much stack space is free. The
program memory holds the program and the
numeric variables. All other information is stored in

the stack space.
Always run the program to get the true amount

of free memory. Some programs set aside some of
the memory for storage and this is not evident until
you run the program.

PRINTING TO THE SCREEN

The video screen is the primary display for
your program. Even though you can use a printer,
voice synthesizer, or other accessories with your
TI-99/4A, most programs are presented on the
video screen. You should try to keep unrelated
information off the screen when you are running
your program. When you begin to write a program,
the first few lines should be remark lines with
information about the program. The first program
line should clear the screen. The format for clearing
the screen during a program is as follows:

50 CALL CLEAR

This command will remove any previous in
formation from the screen. Directions can then be

26

printed on the screen for the user to read while the
computer is setting up the program.

Displayingwords or characters to the screen is
accomplished with the PRINT command.

60 PRINT "ANYTHING YOU WANT"

The computer places whatever is between the
quotation marks on the screen. There must be
quotation marks before and after the words or
characters that you want printed. If there are sev
eral lines to be printed in a program, each new line
will be displayed under the previous one.

There may be times when you will want sev
eral different items printed on the same line with or
without spaces between them, for example, col
umns with headings above each column. Two
characters, when placed at the end of a line, will
hold the cursor in the same line—the comma and

the semicolon.

The semicolon will not advance the cursor

after the last character of a print statement has been
printed. The first character of the next print state
ment will occupy the next position on the screen.

60 PRINT "HELLO";
70 PRINT "THERE"

Ifyou run this two-line program, your screen should
display:

HELLOTHERE

There is no space between the "0" in "hello" and
the "T" in "there." The semicolon indicated no

space, so the next word began in the next position
on the same line.

There is one case where the semicolon works

differently. If the next string, whether it is a set of
characters between quotation marks or a string
variable, is too long to fit on that same line, it will be
printed on the next line. Try this:

60 PRINT "THIS IS THE FIRST SENTENCE";
70 PRINT "THIS IS THE SECOND

SENTENCE!"

Run this two-line program. As you can see, the
sentence in line 70 cannot possibly fit on the same
line as the sentence in line 60, so the computer
moves it to the next line on the screen.

A comma functions somewhat differently from
the semicolon. It will place the next string in a
particular column on the screen. Try these lines:

60 PRINT "DATE",
70 PRINT "PLACE",
80 PRINT "TIME"

Run these lines. The screen should display:

DATE

TIME

PLACE

There are two distinct columns on the screen. The

comma indicates that the next line should print in
the next available column. Since there is no comma

after the word "TIME," the next print statement
would place its information on the next line under
the word "TIME."

Printing numbers is a little different. Numbers
do not have to be enclosed in quotes. Negative
numbers always display the minus sign. With posi
tive numbers, the plus sign is understood. When
these numbers are printed on the screen, the com
puter leaves a space before a positive number, and a
space after all numbers whether they are negative
or positive, so that numbers with a semicolon be
tween them do not look like one long number when
printed on the screen. Try this example:

60 PRINT 1;
70 PRINT -1;
80 PRINT -2;
90 PRINT 2;

100 PRINT 3;"!"

When this program is run, the screen will look
like:

1-1-2 2 3!

There is one space between the left edge of the

screen and the first "1." This is the understood plus
sign. There is one space after the first "1." This is
the trailing space for the number. There is one
space between the "-1" and the "-2." After the
"-2," there are two spaces. One is the trailing
space, the other is the understood positive sign for
the "2." There is one space between the "3" and the
exclamation mark (!).

There are times when neither the comma or

the semicolon will place the information in the cor
rect position on the line. Any horizontal location can
be addressed by using the TAB command with the
PRINT command, as shown below.

PRINT TAB(20);"HELLO"

This program line will begin to print the word
"hello" in the twentieth space or column of that line.
On the other hand,

PRINT "HELLO";TAB(20);"THERE"

will print the word "hello" at the beginning of the
line, then print the word "there" at the twentieth
column. When you need more than two columns on
the screen, use the TAB command.

DISPLAY

Used by itself, the DISPLAY command is
similar to the PRINT command. The information

following it is printed on the screen. Used with the
word AT, you can print information anywhere on
the screen. There are several options that you can
choose from when you use the DISPLAY AT com
mand. Following the AT, specify the number of the
row and column that your information should be
printed at.

70 DISPLAY AT(4,8):"4TH ROW-8TH
COLUMN"

80 DISPLAY AT(10,15):"10TH ROW - 15TH
COLUMN"

Before you run these two lines, be sure that all
other program lines have been deleted. After you
run these lines, you should see both lines on your

27

screen, each in its correct position, as indicated by
the two numbers in the parentheses. The first
number indicates how many rows or lines down
from the top of the screen this information will be
printed on. The second number is the column, or
how far in from the left side of the screen the
information will be. (There are 24 rows and 28
columns that can be accessed with the DISPLAY
AT command.) If you tell the computer to print
something outside of that range, for example: DIS
PLAY AT(30,2):"HI", a #79 - BAD VALUE error
message will result.

The DISPLAY AT(r,c) BEEP command will
make a sound before the message is printed on the
screen.

DISPLAY AT(2,3)BEEP:"SOUND"

The SIZE option used with the DISPLAY AT
command places spaces (or erases) a certain
number of positions on the screen. The number of
spaces to be printed on the screen is placed within
the parentheses after the SIZE command.

DISPLAY AT(2,3)SIZE(2)

Starting at location 2,3 two blank spaces across will
be displayed.

To clear the entire screen, you can use the
ERASE ALL option. Used with the DISPLAY AT
command, you can have a message printed on the
screen immediately after the screen is cleared.

DISPLAY AT(3,4)ERASE ALL:"HELLO AGAIN"

If the message to be printed on the screen will
NOTfit on the line that youwant it to, the computer
will move it down one line and ignore the column
number. If your message exceeds one line length,
part of the message will be on the next line. Try
this:

DISPLAY AT(7,4):"THIS MESSAGE IS
OBVIOUSLY TOO LONG TO FIT ON ONE LINE"

The message does not begin at the fourth col
umn of the seventh row, but at the first column of

28

the eighth row and continues on the ninth row.
The following programs will give you some

ideas on how to use the PRINT and DISPLAY AT

commands. The commands not yet introduced will
be covered later in this book. Listing 7-1 is flow-
charted in Fig. 7-1.

Listing 7-1

Line 130 clears the screen with the CALL CLEAR

subroutine.

)

/

/

(

,? /

/

)

C Start

L

/ Clear

/ the ,screen /
/

/

/

/ Show
/ size j

option /

/ Show
/ display

/ no options /

*
Count to

2000

f *
Count to

1000

/ Show
f erase /

all /

t *

/

/ Show
/ display >

at /
Count to

1000

f
♦

Count to

1000
End

*

L
/ Show j

beep /

♦

Count to

1000

6
Fig. 7-1. Flowchart for Listing 7-1 Display Options.

Listing 7-1

100 REM LISTING 7-1

110 REM DISPLAY EXAMPLES

120 REM A.R.SCHREIBER FOR fAB BOOKS

130 CALL CLEAR ! CLEAR SCREEN

140 REM USE DISPLAY AS PRINT

150 DISPLAY J"'DISPLAY' WITHOUT OPTIONS

WORKS THE: SAME AS 'PRINT'8

160 FrOR DELAY=1 TO 1000 XX NEXT DELAY

170 REM DISPLAY WITH "AT" OPTION

180 DISPLAY AT<12*2)5"WITH AT OPTION ROW

12)-COL
'•>a
A*..

190 FOR DELAY=i TO 1000 XX NEXT DELAY

200 REM WITH BEEP OPTION

210 DISPLAY AT<14»5)BEEP J" WITH BEEP !!"

220 FOR DELAY=1 TO 1000 XX NEXT DELAY

230 REM WITH SIZE OPTION

240 DISPLAY AT<12»7)SIZE(18)BEEP X"SIZE 0

PTION AT IS"

250 FOR DELAY=1 TO 2000 :J NEXT DELAY

260 REM WITH ERASE ALL OPTION

270 DISPLAY ATU2»5)ERASE ALL BEEP J"WITH

ERASE ALL OPTION"

280 FOR DELAY=1 TO 1000 XX NEXT DELAY

Line 150 demonstrates using the DISPLAY com
mand like a PRINT command.

Line 160 is a delay loop. This slows down the
program so that you can watch the messages ap
pear on the screen.

Line 180 uses the DISPLAY AT command. This

message begins at the second column of the
twelfth row on the screen.

Line 210 uses the BEEP option. The computer
sounds a short beep. Then the words "with beep"
are printed at the fifth column of the fourteenth
row.

Line 240 uses the SIZE option to erase 18 letters
from the twelfth row beginning with the seventh
column. The computer beeps; then the words
"size option at 18" replace the letters that were
erased from that line.

Line 270 erases the entire screen with the ERASE
ALL option. The computer beeps and the mes
sage is printed on the screen.

Listing 7-2 displays a LOVE graphic. This is
created by using the SIZE command with the DIS
PLAY AT command to erase characters from the

screen. After the remarks in lines 100 to 120 the

computer follows the steps flowcharted in Fig. 7-2.

Listing 7-2

Line 130 clears the screen.

Lines 150-170 use a new command. The RPT$
command tells the computer to use the string
"LOVE" 63 times; then 63 times; then 42 times.
Since the RPT$ command can only print 255
characters at one time, it is necessary to divide
the pattern into three program lines.

Lines 190-300 use the DISPLAY AT with the SIZE

command to form the letter "L." Each line

specifies a new row and column that will have
letters erased. The number after SIZE is the

number of characters that will be erased.

Lines 320-470 erase letters to form the letter "0."

29

C Start }

t

/ Clear
/ screen y/

L

r-i—/ Print
/ L0VE' ,

on screen /
7

/ Erase

/ l' //
*

/

/ Erase 7

r-i—
/ Erase 7

♦

L
1 Erase /

♦ -
^Loop here

until clear

is pressed

i

Fig. 7-2. Flowchart for Listing 7-2 LOVE pattern.

Listing 7-2

Lines 490-680 erases letters to form the "V."
Lines 700-840 form the letter "E."

Line 860 does not end the program with an END
statement that would tell the computer to display
the cursor at the bottom of the screen and part of
the display would be lost. Instead, we use the
GOTO command. This returns the computer to
the beginning of the line. This is the only com
mand on this line, so the computer continues to go
to line 860until you press FCTN and 4 to stop the
program.

Listing 7-3 demonstrates simple animation.
The letters are printed in a specific location,
erased, and reprinted in a new position. (See flow
chart in Fig. 7-3.) Entire words can be moved
across the screen this way.

Listing 7-3

Line 130 clears the screen.

Line 140 is the beginningof a FOR.. . NEXT loop.
This command saves memory and typing. The X
variable refers to the column the computer will be
printing the information in.

Line 150 positions the cursor at the point on the
screen at which we want a letter printed. X indi
cates the column that the "M" will be printed in.
There is a space before the letter "M." Before the
computer prints the "M," it will print the space.
This erases the previous "M" that was printed on
the screen andgives the illusionofan "M" moving
across the screen.

100 REM LISTING 7-2

110 REM LOME

120 REM L.M.SCHREIBER FOR TAB BOOKS

130 CALL CLEAR ! CLEAR SCREEN

140 REM FILL SCREEN WITH LOVE

150 PRINT RPT*< "LOVE'S63)y

160 PRINT RPT* <nLOVE'S 63>y

170 PRINT RPT$CLOVE"i-42>5

180 REM MAKE AN 'L'

190 DISPLAY AT(2»2)SIZE(7)

30

200

210
220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

DISPLAY AT(3y

DISPLAY AT(4y
DISPLAY AT(5y

DISPLAY AT(6y

DISPLAY AT(7y

DISPLAY AT(8y

DISPLAY AT(9y

DISPLAY AT<9y

DISPLAY AT(10

DISPLAY AT(11

DISPLAY AT(12

REM MAKE AN '

DISPLAY AT<2y

DISPLAY AT<3y

DISPLAY AT(4y

DISPLAY AT(5y

DISPLAY AT(5y

DISPLAY AT<6y

DISPLAY AT<6y

DISPLAY AT(7y

DISPLAY AT<7y

DISPLAY AT(8y

DISPLAY AT(8y

DISPLAY AT(9y
DISPLAY AT(9y

DISPLAY AT(10

DISPLAY AT(11

DISPLAY AT(12

REM MAKE A 'V

DISPLAY AT(14

DISPLAY AT(14

DISPLAY AT(15

DISPLAY AT(15

DISPLAY AT(16

DISPLAY AT(16

DISPLAY AT(17

DISPLAY AT(17

DISPLAY AT(18

DISPLAY AT(18

DISPLAY AT(19

DISPLAY AT(19

DISPLAY AT(20

DISPLAY AT(20

DISPLAY AT(21

2)SIZE(7)

4)SIZE(3)

4)SIZE(3>

4)SIZE(3)

4)SIZE(3)

4)SIZE(3)

4)SIZE(3>

12)SIZEC2)
y3>SIZE(ll)

y3)SIZE(ll)

y3)SIZE(ll)

0'

19)SIZE(7)

19)SIZE(7)

17)SIZE(11)

17)SIZE(3)

25)SIZE(3)

17)SIZE(3>

25)SIZE(3)

17)SIZE(3)

25)SIZE(3>

17)SIZE(3)

25)SIZE(3)

17)SIZE(3)

25)SIZE(3)

17)SIZE(11>

19)SIZE(7)

19)SIZE(7)

2)SIZE(3)

11)SIZE(3)

2)SIZE(3)

11)SIZE(3)

3>SIZE(3)

10)SIZE(3)

3)SIZE(3)

10)SIZE(3)

4)SIZE(3)

9)SIZE(3)

4)SIZE(3)

9)SIZE(3)

5)SIZE(3)

8)SIZE(3)

5)SIZE(3)

31

640 DISPLAY AT(21

650 DISPLAY AT(22

660 DISPLAY AT(22

670 DISPLAY AT(23

680 DISPLAY AT(24

690 REM MAKE AN

700 DISPLAY AT(14

710 DISPLAY AT(15

720 DISPLAY AT(16

730 DISPLAY AT(16

740 DISPLAY AT(17

750 DISPLAY AT(18

760 DISPLAY AT(18

770 DISPLAY AT(19

780 DISPLAY AT(20

790 DISPLAY AT(21

800 DISPLAY AT(21

810 DISPLAY AT(22

820 DISPLAY AT(22

830 DISPLAY AT(23

840 DISPLAY AT(24

850 REM LOOP HERE

NTIL (CLEAR) IS P

860 GOTO 860

y8)SIZE(3)

y6)SIZE(3)

y7)SIZE(3)

y7)SIZE(2>

y7)SIZE(2)

E'

yl7)SIZE(ll>

yl7)SIZE(ll)

y18)SIZE(3)

y26)SIZE(2)

yl8)SIZE(3)

yl8)SIZE(3)

y24)SIZE(l)

yl8)SIZE(7)

yl8)SIZE(7)

yl8)SIZE(3)

y24)SIZE(l>

yl8)SIZE(3)

y26)SIZE(2)

yl7)SIZE(ll)

yl7)SIZE(ll)

SO PROGRAM WON'T END U

RESSED

Line 160 finishes the loop. The computer com
pletes lines 140 to 160 six times before it goes on
the next line.

Lines 170-190 move the "0" across the screen in a
similar manner.

Line 200 erases the "0" from the line that it was

moving on.
Line 210 moves the "0" up one line, placing it

immediately after the "M."
Lines 220-240 move the "V" across the screen

above the letters "MO."

Line 250 erases the "V" from the line above the
"MO."

Line 260 prints the "V" after the "MO."
Lines 270-410follow the same pattern of printing a

letter on the left side of the screen, erasing it, and

printing it one column over.
Lines 420-440 move an entire word across the

screen. Again, there is a space before the word
WORDS. This space erases the letter "W" in the
word previously printed. If there were no space, a
line of "Ws" would be printed across the screen.

Lines 450-500 use the SIZE command to erase the

entire word and print it one line lower.
Line 510 ends the program. The message "MOV

ING WORDS" should be on the screen, along with
the prompt.

Although this program moved only letters
across the screen, using this technique of printing
and erasing you can use graphics created with new
characters and move them anywhere on the screen.

32

Calculate

next

position

Calculate

next

position

No

Display
"O"

/Display i
' correct row

and column t

Calculate

next

position

Calculate

next

position

Calculate

next
position

Fig. 7-3. Flowchart for Listing 7-3 Simple Animation.

No

No

/Display in
correct row
and column >

Display
"I"

/ Display in
correct row

and column j

Display
"N"

Calculate

next

position

Calculate

next

position

Z Display in 7
correct row /
and column/

Calculate

next row

and column

Z Display /
"Words" /

/Display in 7
correct row /
and column /

c End }

33

Listing 7-3

34

100 REM LISTING 7^3

110 REM SIMPLE ANIMATION

120 REM L.M.SCHREIBER FOR TAB BOOKS
130 CALL CLEAR ! CLEAR SCREEN

140 FOR X=l TO 6 ! THIS COMMAND SAVES ME

MORY & TYPING

150 DISPLAY AT<5»X>:'

LUMN BUT NOT THE ROW

M" ! CHANGE THE CO

160 NEXT X

170 FOR X=l

180 DISPLAY

ROW LOWER

190 NEXT X

DISPLAY

DISPLAY

FOR X=l

DISPLAY

NEXT X

DISPLAY

DISPLAY

FOR X=l

DISPLAY

NEXT X

DISPLAY

DISPLAY

FOR X=l

DISPLAY

NEXT X

DISPLAY

DISPLAY

FOR X=l

DISPLAY

NEXT X

DISPLAY

DISPLAY

FOR X=l

DISPLAY

NEXT X

DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

END

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

! DO IT 6 TIMES

TO 7

AT(6»X)! On ! NOW DO IT ONE

AT(6»7)t

AT(5*8)J

TO 8

AT(4yX>J

AT(4y8):

AT(5»9)X

TO 9

AT(6 yX)X

AT(6y9){

AT(5ylO)

TO 10

AT(4»X)X

AT(4ylO)

AT(5yll):

TO 11

AT(6fX>: '

AT(6 y11):

AT(5yl2):

TO 16 !

AT(2yX)X

1 " ! ERASE IT

'08 ! MOVE IT UP

N1

•N'

G'

XaG"

MOVE IT ACROSS

WORDS"

AT(2yl7)SIZE(5)!

AT<3»17)J"W0RDS"

AT(3yl7)SIZE(5)

AT(4yl7)J"WORDS"

AT(4yl7)SIZE(5)

AT(5yl7)J"WORDS"

ERASE IT

Chapter 8

Getting the Answers

Sometimes a value that the program needs will
change every time the program is run. Sometimes a
new value will be entered by the computer user,
other times the programmer wants the computer to
use a value different than the one previously calcu
lated. The computer needs to be able to keep track
of the value by storing it in a place in memory so it
can recall the value when it needs to. To accomplish
this, the program stores the value as a variable.

ASSIGNING VALUES

LET

A variable is a letter, group of letters, or word
that represents a value. If you were to enter

20 LETA=10

the computer would substitute the value 10 each
time it encountered the A variable in the program. If
the program contained

30 LETB=A+5

it would add 10 to 5. The B variable would become

15. The LET command is used to set a variable to a

value. The command does not have to be used. It is

an understood command, so you could enter

30 B=A+5

If you have a program in your computer, type
NEW and then type in Listing 8-1. (See flowchart in
Fig. 8-1.)

Listing 8-1

Line 140 sets the A variable equal to 10.
Line 150 sets the B variable equal to 15.
Line 160 sets the C variable equal to 20.
Line 170 prints all three variables on the same line.

As you can see, when the computer is told to
print a variable, it prints the value that it stored in
that variable. Your screen should display:

10 15 20

35

(Begin)

/ ' >/ Clear /

L
f screen /

*
Set
variables
to 10, 15,
and 20

i
/Display /

/ contents /
[_ of variables/

*

c End)

Fig. 8-1. Flowchart for Listing 8-1 Assign Variable Values.

The value of a variable can be changed and
reused throughout the program. A variable can also
be used instead of a number for an arithmetic oper
ation. Type NEW and enter the program shown in
Listing 8-2. (Also see flowchart in Fig. 8-2.)

Listing 8-2

Line 140 assigns the LENGTH variable a value of
30 and the WIDTH variable a value of 7. Names

can be used as variables.

Listing 8-1

Line 150 prints a message on the screen. Since the
value of the variable will be printed on the same
line, a semicolon is placed after the quotation
mark and before the variable. There is no need to

place a space between the last letter of the last
word and the quotation mark since there will be a
leading and trailing space when the number is
printed. A semicolon is placed after the LENGTH
variable so that the next word of the message will
be on the same line.

Line 160 performs the calculation that determines
the perimeter of the room. The answer is stored
in the PERIMETER variable.

Line 170 contains two print statements. The
first PRINT command is not followed by a mes
sage ; it brings the cursor down one line so that the
message contained after the second PRINT com
mand will be one row below the last message. A
print statement by itself skips a line on the
screen. This message will be printed on the next
line of the screen.

Line 180 changes the values of the LENGTH and
WIDTH variables. Whenever possible, the same
variables should be reused in a program. This
saves memory and is efficient. Each time a vari
able is assigned a new value, the computer forgets
the old value.

Line 190 skips a line on the screen, then prints
another message on the screen. The colons be
tween parts of the message tell the computer to
use a new line for that portion of the message.

Line 200 calculates the area of the room and stores

100 REM LISTING 8-1

110 REM ASSIGN VARIABLES VALUES

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 CALL CLEAR ! CLEAR SCREEN

140 A=10 ! THE VARIABLE 'A' WILL BE 10

150 B=15 ! THE VARIABLE 'B' WILL BE 15

160 C=20 ! THE VARIABLE 'C WILL BE 20

170 PRINT AJBJC ! THE SEMI-COLONS WILL K
EEP THE VALUES ON THE SAME LINE

180 END

36

Listing 8-2

100 REM LISTING 8-2

110 REM CHANGE VARIABLES VALUES

120 REM BY L*M*SCHREIBER FOR TAB BOOKS

130 CALL CLEAR ! CLEAR SCREEN

140 LENGTH»30 J J WIDTH«7 ! NAMES CAN BE

VARIABLES

150 PRINT °I will now compute the8tHperi

meter of a room that hasa length ofJLEN

GTH?"and a width"J"of"?WIDTH

160 PERIMETER«2*WIDTH+2*LENGTH ! FORMULA

FOR PERIMETER

170 PRINT :j PRINT "THE PERIMETER IS"*PE

RIMETER

180 LENGTH«27" it WIDTH«14 ! CHANGE THE V

ALUES OF THE VARIABLES

190 PRINT S! PRINT "Now I will calculate

the' 'area of a room whose width' is'

WIDTH*"and whose length

200 AREA=WIDTH*LENGTH !

isBfLENGTH

FORMULA FOR AREA

210 PRINT

220 END

PRINT "THE AREA IS"J AREA

the answer in the AREA variable.

Line 210 skips a line on the screen, then prints the
message containing the area of the room.

It is important to note that there must be a
semicolon or comma between the message and the
variable in the print statements. Without semico
lons, BASIC will not accept the line. To print the
value of the variable on the next screen line, use a
colon instead of a semicolon.

MAX/MIN

The MAX command compares two numbers or
variables to see which one is larger. There are
many different uses for this command when you are
writing a program that needs to know which vari
able is the largest.

The MIN command is just the opposite. It
determines which variable or number is smaller.

The formats for these commands are:

70 X=MAX(B,C) or

70 X=MAX(10,20) or
70 X=MAX(B,10)

80 X=MIN(B,C) or
80 X=MIN(10,20) or
80 X=MIN(B,10)

The program in Listing 8-3 (flowcharted in
Fig. 8-3) is a routine from the end of a game where
the program checks the scores of both players to
see if the previous high score has been beaten. It
shows how the MAX command can be used.

Listing 8-3

Line 130 clears the screen, then prints the message
HI SCORE in the fourth row beginning with the
column 14.

Line 140 sets the HISCR variable to 758 and the

CRNTSCR variable or 902. These variables could

be any score, but have been set here for this
example.

Line 150 prints the value of HISCR immediately

37

(

L

Start

f Clear
screen 1

)

/

♦
Set variables

to length
and width

L
/ Display
' message /7

♦

Calculate

perimeter

L
/ Display
' perimeter 17

*
Set variables

to new length
and width

L
/ Display
' message j7

♦

Calculate

area

L

\
1 Display

area 1
7

♦

(End)

c Start 3

7
Clear screen

display
message

Set

variables

for scores

f Display
message

and scores

Count to

2000

Compare
current score

and high score

Reset

current score

to zero

Display
new high
score

~T~
Count to

2000

REM: this would have been

done in the main program

c End j

Fig. 8-2. Flowchart for Listing 8-2 Change Variable Values. Fig. 8-3. Flowchart for Listing 8-3 MAX Example.

38

Listing 8-3

100 REM LISTING 8~3

3.10 REM MAX EXAMPLE

120 REM BY A.R.SCHREIBER FOR TAB BOOKS

130 CALL CLEAR XX DISPLAY AT<4»14>J"HI S

CORE X•

140 HISCR=758 XX CRNTSCR=902

150 DISPLAY AT<4»24)tHISCR XX DISPLAY AT

<14> 9) J" GAME OVER" XX DISPLAY AT(24y17)X

'SCORE •JCRNTSCR

160 FOR DELAY=1 TO 2000 XX NEXT DELAY

170 HISCR=MAX<HISCR»CRNTSCR): X CRNTSCR=0

180 DISPLAY AT<4>24)BEEPXHISCR XX DISPLA

Y AT(14i>9>BEEPJ8 NEW GAME" XX DISPLAY AT

(24 s-23>BEEPJCRNTSCR

190 FOR DELAY=1 TO 2000 XX NEXT DELAY

after the words HI SCORE on the screen. This is

the current high score for this game. At the four
teenth row, GAME OVER is displayed. The
score for this game is shown in row 24. The
computer will beep before the current score is
printed.

Line 160 is a timing loop. It waits for a few seconds
so you can read the screen.

Line 170 compares the current score to the high
score. The larger value will be stored in the
HISCR variable. The variable for the current

score will be reset to zero for the next game.
Line 180 changes the score. Now the new high

score is on the screen. The message at row 14 is
changed to NEW GAME and the current score of
zero is displayed after the word SCORE.

Line 190 is another delay loop to give you a chance
to read the screen. The program ends after this
line.

USING STRING VARIABLES

Numeric variables store numbers, but string
variablescan store a "string" of numbers, letters, or
characters. However, string variables cannot be
used in arithmetic functions even though they may
store numbers. Numbers that you will not be
adding, such as dates or ID numbers are best
housed in strings.

Like numeric variables, string variable names
can be letters, groups of letters, or words. By
placing a "$" at the end of a variable name, you are
telling the computer that this is a string variable.
Just like numeric variables, the contents of string
variables can be printed on the screen. (See the
flowchart in Fig. 8-4.)

C Start

/ Clear
/ screen /

)

/

♦
Store

information

in strings

i

; i
/ Display

/ contents j
ofstrings /

7

c End)

Fig. 8-4. Flowchart for Listing 8-4 String Variable Value.

39

Listing 8-4

100 REM LISTING 8 -4

110 REM STRING VARIABLES VALUES

120 REM BY 1L.M.SCHREIBER FOR TAB BOOKS

130 CALL CLEAR ! CLEAR SCREEN

140 NAME$=",J.Q*PUBLIC" ! STORE NAME IN S

TRING

150 ADDRESS*=»123 MAIN STREET" ! STORE A

DDRESS

160 CITY*="iMEWTON " ! THIS IS CITY

170 STATE*= "MI" ! USE THE TWO LETTER ABB

REVIATION

180 ZIP*=B43201B ! ZIP CODE

190 DISPLAY AT<4» 1)X"THE ADDRESS INFORMA

TION IS}" ! SHOW WHAT IS STORED IN THE S

TRINGS

200 DISPLAY AT<6> 7)J NAME*

210 DISPLAY AT<8r 7):ADDRESS*

220 DISPLAY ATC10 »7>:city*

230 DISPLAY AT(10 ?17)JSTATE*

240 DISPLAY AT(12 >17>:zip*

250 END

Listing 8-4

Lines 140-180 store information in each string. The
letters, numbers, or characters that are placed in
each string variable must be enclosed by quota
tion marks.

Lines 190-240 print the information in each string
on the screen. DISPLAY AT places the informa
tion of each string at a particular place on the
screen.

Like numeric variables, string variables hold
their contents until they are changed by the pro
gram.

LEN

There are times when you need to know the
length of a string. For example, you may want the
title of your new program to be centered on the
screen with the instructions printed under it. Your
program would look like Listing 8-5 (flowchart in
Fig. 8-5).

40

Listing 8-5

Line 140 places the title of the program in the string
variable TITLE.

Line 150 uses the LEN commandto find the length
of the string. It places this information in variable
L.

Line 160 divides the length of the title in half. We
know that 28 letters can be placed on one row of
the screen. If we subtract half of the length of the
title from the center point of the screen (14), we
willknowwhere we should start printing the title.

Line 170 places the cursor at fourth row and in the P
column. The title will be printed in the center of
the screen.

Lines 180-190 begin the instructions for this pro
gram.

Line 200 is a loop that makes the computer wait
until the FCTN and 4 keys are pressed.

If a program repeats itself or reuses some of

(Start

/ Clear
f screen J

)

/
♦

Place

information

into string

♦

Get length
of string

*
Compute
printing
position

/

/ Display
/ centered /

title /
/

J Display ,
/ message /

/

i

—*

*
i Loop until

clear is

pressed

Fig. 8-5. Flowchart for Listing 8-5 Finding the Middle.

Listing 8-5

the variables, you can clear the previous informa
tion from a string by setting the string equal to " "
(two quotation marks with nothing between them).
This sets the string length to zero and erases all
previous information. A string with no information
in it is called a null string.

INPUT

So far, our variables and string variables have
been assigned their value within the program.
However, you don't always know the values ahead
of time. The INPUT command allows you to enter a
number, letter, or characters from the screen while
the program is in use. If numbers are to be entered,
then a numeric variable can be used for the entry. If
letters or characters are entered, a string variable
is used. In addition, your TI-99/4A can be set up so
that only certain answers can be accepted. This is
very useful when there can only be two answers to a
question, and you don't want the computer to accept
anything else. A True or False test is one example.
The INPUT command can be used alone or with a

message as a PRINT command.

20 INPUT B

If you ran this line it would display a question
mark on the screen. The value entered would have

to be a number and would be stored in the variable

"B." One way to indicate what type of answer you
want is to precede the variable with a question
called a prompt,

20 INPUP'What is your name?":NAME$

100 REM LISTING 8-5

110 REM FINDING THE MIDDLE

120 REM BY L.M.SCHREIBER FOR: TAB BOOKS

130 CALL CLEAR ! CLEAR SCREEN

140 TITLE*="MORE SPACE WARS" ! GIVE THE

PROGRAM A TITLE

150 L=LEN<TITLE*)! FIND OUT HOW LONG THE

STRING IS

160 P=14-L/2 ! GET HALF THE LENGTH AND S

41

UBTRACT IT FROM THE MIDDLE OF THE SCREEN

170 DISPLAY AT(-4»P>: TITLE* ! ' P' IS THE

STARTING POSITION OF THE STRING

180 DISPLAY AT(6»1)J This Same reou

ires sSoodhand/eye coordination ♦ Youare

the commander of a spaceship. It is

beins drawntoward"

190 DISPLAY AT<10>8) *"another planet."

200 GOTO 200 ! STAY HERE UNTIL (CLEAR) I

S PRESSED

If you ran this line, the question would be
printed on the screen. Your name would be stored
in the string variable NAME$.

ACCEPT/VALIDATE/SIZE

An input can be accepted at a particular loca
tion on the screen. ACCEPT with the AT option is
followed by the row and column number E.G. AC
CEPT AT(22,28). The BEEP option can be used to
get the user's attention.

The VALIDATE option is used after the AC
CEPT command to specify which letters or num
bers will be accepted for an entry. You can specify
UALPHA for any uppercase letter, or DIGIT for
any single-digit (0-9). NUMERIC allows the digits
(0-9) plus the period, positive (+) and negative (-)
signs, and the letter "E" for scientific notation. In
addition, specific characters or letters can be en
closed in quotation marks, and those characters
would be the only characters that the computer
would accept. Any of these options can be used
together. Here is an example of the use of some of
these commands.

20 ACCEPT AT (2,2) VALIDATE (DIGIT, "Q")

The computer would accept a single-digit number
or the letter "Q."

To accept more than one digit or letter, the
SIZE option is used to specify the number that will
be accepted. This option also clears that number of
spaces at the ACCEPT AT position.

42

20 ACCEPT AT(2,2) VALIDATE(UALPHA)
SIZE(5):ANSWER$

This program line clears five spaces beginning
with row 2, column 2. The answer entered cannot
be longer than five letters. This entry will be stored
in ANSWER$.

If a negative number is used with the SIZE
option, no spaces will be. cleared at that location.
The value of that number will determine how many
characters will be accepted.

20 ACCEPT AT(2,2) VALIDATE (UALPHA)
SIZE(-5):ANSWER$

This line is similar to the last line except no
spaces will be cleared at location 2,2. The entry will
still be limited to five characters.

The next program (Listing 8-6 and flowchart in
Fig. 8-6) will compute the amount of sales tax to be
added to an item and give the total price. The
program demonstrates the commands discussed in
this chapter.

Listing 8-6

Line 130 clears the screen.

Line 140 uses the INPUT command. The words in

the quotation marks are printed on the screen as if
the PRINT command were used. The program
then waits until you enter a number. The program
does not want the tax entered as a decimal or with

the percent sign. If the tax rate in your state is

r Start >
*

/ Clear

screen /
i

/ Display
message /

i

/
Get

sales

tax /
Convert

to

decimal

Display
message

Get

cost of

purchase

Calculate

tax for

purchase

Add

tax to

cost

Display
total

cost

6
7

Fig. 8-6. Flowchart for Listing 8-6 Sales Tax.

Rem .* is there

another sale ?

43

Listing 8-6

100 REM LISTING 8-6

110 REM SALES TAX

120 REM BY A.R.SCHREIBER FOR TAB BOOKS
130 CALL CLEAR

140 INPUT "ENTER YOUR STATE SALES TAX (

NUMBERS ONLY* NO LEADING DECIMALS OR P
ERCENT SIGN) ?"JTAX

150 TAX=TAX/100 ! CHANGE NUMBER ENTERED

TO A DECIMAL

160 PRINT J J INPUT "WHAT IS THE COST OF

THE ITEM(S) ? "J COST

170 STAX=INT<(C0ST*TAX+.005>*100)/100 !
ROUND TO NEAREST CENT AFTER MULTIPLYING
COST BY TAX

180 PRICE=COST+STAX ! TOTAL PRICE IS THE
COST PLUS THE TAX

190 PRINT J J PRINT "THE COST OF THE ITEM

' ii PRINT "INCLUDING SALES TAX" J J PRIN
t "is *"»price

200 print j j j j j display at<22v2)j"d0

you have another sale?"

210 accept at<22f28)beep validate("yn")s

ize<i>:ansuer*

220 rem test for no answer

230 IF ANSWER**"" THEN 210

240 IF ANSWER*="Y" THEN 160

250 PRINT J J PRINT "HAVE A NICE DAY."
260 END

SOME ALTERNATE LINES FOR SDD-510:

200 PRINT J S : J.J DISPLAY AT<22>2> J"DO
YOU HAVE ANOTHER SALE? Y"

210 ACCEPT AT(22r28)BEEP VALIDATE<"YN">S
IZE<-1)JANSWER*

4%, then type the number "4" and press ENTER. between the last message that was entered on the
The TAX variable will now be equal to the number screen and the new one. The INPUT command is
that you entered. used again. The message between the quotation

Line 150 changes the number that you entered to a marks will be printed on the screen. The corn-
decimalby dividing the amountstored in TAX by puter will wait until an amount has been typed,
100. and ENTER has been pressed before going on to

Line 160uses the PRINT commandto place a space the next program line. Enter the cost of the item,

44

but do not enter a dollar sign. A period can be used
as a decimal point.

Line 170 calculates the tax on the item. The state

tax is the cost of the item times the tax. Since we

are dealing with money, we want the tax to be
rounded to the nearest penny. To do this, we add
.005 to the amount arrived at after the cost of the
item is multiplied by the tax rate. We then multi
ply the entire amount by 100. This shifts the
decimal point two places to the right. If the tax
came out to .473, adding .005 would change it to
.478. Multiplying it by 100 would move the deci
mal to the right. The number would be 47.8. Now
we take the integer (INT) of this number—that is,
take only the whole number and ignore the
decimal—and we have 47. Divide this by 100 and
we have the tax of .47.

Line 180 adds the state tax to the cost of the item

and stores it in the PRICE variable.

Line 190 uses a PRINT commandto skip a line. The
next PRINT command prints the total cost of the
item including the sales tax.

Line 200 uses the PRINT command and three co
lons to place spaces on the screen. Be sure that
this line is entered exact. There must be a space
after the PRINT command, and after each of the
three colons. The next two colons have no space
between them. The DISPLAY AT command

places the question at row 22, column 2.
Line 210 uses the ACCEPT AT command instead of

the INPUT command. At the 22nd row and 28th

column, the computer will beep. The VALIDATE
option will only accept a "Y"or an "N" as an input.
The SIZE(l) option erases one character at row
22, column 28. The entry will be stored in the
string variable ANSWER$.

Lines 230-240 test the contents of ANSWER$.
Since it is possible to press the RETURN key
without pressing any other key, ANSWER$
would not contain any letter, and be an empty or
null string. If it is a null string, the computer will
go back to line 210 and wait for another key to be
pressed. If the string is not empty, then it must
contain an "N" or a "Y." If it contains a "Y," the
computer will go back to line 160 and wait for
another cost to be entered.

Line 250 prints once to skip a line, then ends the
program.

We can change lines 200 to 210 to accept a
default value. Look at the two alternate lines
printed below the main listing. Line 200 is changed
to include aspace and a"Y" afterthequestion mark.
Thiswill be printed onthe screen. In line210, the
value after SIZE is changed to a -1. Now when the
program is run, the "Y" will appear on the screen
afterthequestion. Ifthere isanother sale, you need
only press ENTER. The computer will accept the
"Y" that is already on the screen as the entry,
unless the N key and ENTER are pressed to indi
cate "No."

45

Chapter 9

Storing Related Information

Sometimes the information that the program needs
will change every time the routine is used by the
computer; however, it is not necessary for the user
to provide the information. The program can con
tain this information within itself. This information

is called data.

READ/DATA/RESTORE

Program data is stored in one or more program
lines. The computer will not use this information
until it is told to. The READ command directs the

computer to the information in the DATA lines. The
computer starts with the first DATA line and uses
the first piece of information there, if there is more
than one piece of information on the line, it will
continue with this data line until all the information

is read. Each time the computer uses the READ
command it will get the next piece of information.
The data can be numbers or letters. Numbers can

be read into numeric variables or string variables.
Letters can only be read into string variables. The
format for the READ command is:

46

30 READC or

30 READC$

More than one variable can be used on a pro
gram line if your program will be reading several
pieces of data at the same time.

30 READ C,C$

The data is stored on a DATA line. Each piece
of data must be separated from the other by a
comma. The DATA line can hold a maximum of 31

elements, or 30 commas. Any more, even if the
maximum length of the line is not filled, will pro
duce a LINE TOO LONG error.

100 DATA red, green, orange, blue, violet, yellow
110 DATA 4,5,6,7,12,145,34
120 DATA name, 4, red, 3, girl, 4, hello, 5

After the computer has reached the last piece
of data, another READ command will cause an error

f Start)

Change
background
colors

i
Clear

screen

Get color

value and

name

Change
screen

color

Get length
of color

name

Find

center

of color

Fig. 9-1. Flowchart for Listing 9-1 Colors.

message to appear on the screen. The data can be
reused with the RESTORE command. RESTORE

tells the computer to start pointing to the first line
or a specific DATA line. This way, the information
can be reused. The computer will start from the
first line of data if no line number is specified with
the RESTORE command.

60 RESTORE

The computer will begin with a certain line of
data if a line number is specified, as shown below.

60 RESTORE 110

In the program in Listing 9-1 (flowcharted in Fig.
9-1), the information in the DATA lines tells the
computer what color the screen should be. The
screen color will also be printed. The program uses
the RESTORE command without the line number
so the program continues the color cycle until the
FCTN and 4 keys are pressed.

Listing 9-1

Line 130 changes the colors of the letters from the
third set through the ninth set. (The first set is
numbered zero.) The I variable represents which
set willbe changed. The number two changes the
character color to black. The 16 changes the
background of that letter to white. Now the let
ters will show up on all the screen background
colors.

Line 140 clears the screen.

Line 150 READs the information from the DATA
lines (240-250). The number from the DATA line
is stored in the CLRCD variable. The color is
stored in the string variable CLRNAM$. Since we
are reading the number and color as a set, the
READ command reads the number and the word
with one command followed by both variables.
The comma separates the variables on the line.

Line 160 changes the color of the screen to the color
value just read. The CALL SCREEN command
changes the screen color. This color is deter
mined by the value of the CLRCD variable.

Line 170finds the length of the word and stores it in

47

Listing 9-1

100 REM LISTING 9-1

110 REM COLORS

120 REM L.M.SCHREIBER FOR TAB BOOKS

130 FOR 1=2 TO 8 I! CALL COLOR<I*2?16>tX

NEXT I

140 CALL CLEAR

150 READ CLRCD»CLRNAM*

160 CALL SCREEN(CLRCD)

170 L=LEN(CLRNAM*)

180 CNTR=14-L/2

190 DISPLAY AT<20*CNTR)iCLRNAM*

200 FOR DELAYS. TO 2000 XI NEXT DELAY

210 CALL CLEAR

220 IF CLRCD=16 THEN RESTORE

230 GOTO 150

240 DATA 1*TRANSPARENT*2*BLACK*3*MEDIUM

GREEN*4*LIGHT GREEN*5*DARK BLUE*6>LIGHT

BLUE*7*DARK RED*8*CYAN

250 DATA 9*MEDIUM RED?10*LIGHT RED*11*DA

RK YELLOW*12fLIGHT YELLOW*13*DARK GREEN*

14 *MAGENTA *15 *GRAY *16 *WHITE

the L variable. This length will be used to center
the word on the screen.

Line 180 divides the length of the word in half, then
subtracts that number from 14. The fourteenth

position is the center of the screen. By subtract
ing half the length of the word from the center, we
can center the word on the screen.

Line 190 uses the DISPLAY AT command to print
the color on the screen. You will notice that the

word is printed in black and the background color
of the letters is white.

Line 200 is a delay loop. If we did not place a delay
loop in the program, the screen would change
colors too fast for you to read the color name on
the screen.

Line 210 clears the screen again.
Line 220 checks the value ofthe CLRCD variable. If

the value of this variable is 16, the computer uses
the RESTORE command to set the pointer back
to the beginning of the DATA lines.

Line 230 sends the computer back to line 150. The
program will continue to change the screen color

48

and print that color on the screen until the FCTN
and 4 keys are pressed.

Lines 240-250 contain the data that the computer
uses to change the screen colors and print the
colors on the screen. The number indicates the

color that the screen will be, and the word is the
corresponding color.

WHAT IS AN ARRAY?

An array is a set of locations used for storing
and/or retrieving information. Numbers or letters
can be stored in an array. Figure 9-2 shows how an
array is arranged. This is a one-dimensional array,
because it contains only one row. If a teacher wants

14 207 8 0 7 0 156 37 49

E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8) E(9)

Fig. 9-2. Storing numbers in a numeric array.

to record the grades for her class, and she knows
that there are 25 students and each will take eight
tests in the quarter, to record this information she
would use an array that is 25 rows by eight columns.

In another program the array could holda pre
determined value for plotting points on the screen
or determining various statistics. An insurance
program could have an array that would contain
various ages and the rate of insurance for each age
group.

USING ARRAYS

DIM

The DIM or dimension command is used to tell

the computer how large the array will be. Each
location in the array is called anelement. If you will
be using ten or less elements in the array, you do
not have to use the DIMension command. TI BASIC
uses the default value of ten for arrays. In the
program in Listing 9-2 (flowcharted in Fig. 9-3) we
will be using only seven elements of the array.

Listing 9-2

Line 130 sets the option base for the program. It is
possible to use the zero element of an array. Ifyou
do not need to use it, you can tell the computer to
start the array with the first element with the
OPTION BASE command.

Line 140 tells the computer that the MILES array
will only use seven elements.

Line 150 clears the screen.

Line 160 places a message on the fourth row begin
ning with the first column.

Line 170 begins a FOR . . . NEXT loop. The DAY
variable will count to seven, the number of days
that the trip was for.

Line 180 asks the user to enter the number of miles

driven on a particular day. If you look closely at
this line, you will see that the number of the day is
stored in the variable DAY. This variable is

printed before the question mark and after the
word "day." The beep is sounded and the AC
CEPT command uses the VALIDATE option.
Only a number can be entered. This number will
be stored in the MILES array. The value of the

c Start

Set aside

elements for

the array

Clear

screen

Display
message

Get one

day's
mileage

T
Add to

total miles

driven

Find

average

miles driven

j

Display
average

miles driven >

(End)

/Display 7
average /
miles driven/

Fig. 9-3. Flowchart for Listing 9-2 Mileage.

49

Listing 9-2

100 REM LISTING 9

:U.O REM MILEAGE

120 REM L.M.SCHRE
130 OPTION BASE 1

140 DIM MILES<7)!

AGES FOR 7 DAYS

150 CALL CLEAR

160 DISPLAY AT(4y

alculate the aver

ven on a 7 daw tr

170 FOR DAY=1 TO

180 DISPLAY AT(12

E DRIVEN ON DAY"

IBER FOR TAB BOOKS

STORAGE SPACE FOR MILE

YD ACCEPT A

1)J"This program will c

s£e number of miles dri

ip*"

7

yl>:"HOW MANY MILES UER
XX DISPLAY AT(13?8)JDA

T<13?13)BEEP UALIDATE(N

)

ILES(DAY):: NEXT DAY

QTAL/7+.5)

tl) XTOTAL?"WERE THE TOT

LAY AT(13yl>:"DRIVEN IN

y1) J"THE AVERAGE NUMBER

IN A DAY WAS"?AVERAGE?"

UMERIC)J MILES(DAY

190 TOTAL-TOTAL+M

200 AVERAGE=INT(T

210 DISPLAY AT(12

AL MILES" J J DISP

THE 7 DAYS."

220 DISPLAY AT(.1.6

OF MILES DRIVEN
tl

230 END

variable indicates which element of the array will
contain the information.

Line 190 contains a running total for the number of
miles driven. Each day's mileage is added to the
previous total. The program continues until the
number of miles for all seven days has been en
tered.

Line 200 finds the average mileage. The total
number of miles are divided by the number of days
in the trip (7). Since this number does not have to
be a whole number, we need to round it. Add .5 to
the average, then take the integer or whole
number. For example, 827 divided by 7 equals
118.14; add .5 to this number and it becomes
118.54. The integer is 118, so the average miles
driven per day would be 118. However, if 900
miles were driven, then the average number of
miles driven per day would be 128.57. Add .5 to

50

this amount, yielding 129.07, and take the integer
or whole number of that result, 129.

Line 210 displays the total miles driven.
Line 220 shows the average miles driven per day.
Line 230 ends the program.

The program in Listing 9-2 uses a one-
dimensional numeric variable array. The one-
dimensional string array works the same way. The
next program (Listing 9-3) is a simplified spelling
program. (See flowchart in Fig. 9-4.) The words are
entered into a one-dimensional string array. These
words are then flashed on the screen for the child.

Listing 9-3

Line 130 dimensions the string array WORD$ for 20
elements. A maximum of 20 words can be stored

in this program.
Line 140 clears the screen.

(~ Start ^

Set aside

memory for
20 words

f Display
new

instructions k

Wait

for

enter

5
7

Fig. 9-4. Flowchart for Listing 9-3 Spelling.

-=£
Show

a

word

Count to

500

Count to

1000

Congratulate
user I

51

Listing 9-3

100 REM LISTING 9-3

110 REM SPELLING

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 DIM WORD*(20)

140 CALL CLEAR

150 DISPLAY AT(5>5)."This prosfrsm will 3

How" *♦ DISPLAY AT(6>1>i"you to enter u

p to twenty spelling- words."

160 DISPLAY AT(9*5)J"TYPE - xxx when you

have" it DISPLAY AT(10*1)J"no more word

s to enter and the last word is not the

twentieth*"

170 FOR C0UNT=1 TO 20 .. DISPLAY AT(15>5

>J"PLEASE ENTER YOUR WORD"

180 DISPLAY AT(17»5)J"#"JC0UNT ♦♦ ACCEPT

AT(17 r10)BEEP SIZE(18)* ANSWER*

190 IF ANSWER**"" THEN 180

200 IF ANSWER**"XXX" THEN 240

210 WORD*(COUNT)"ANSWER*

220 NEXT COUNT

230 REM NOW FOR THE TEST

240 DISPLAY AT<1»1)ERASE ALL BEEP*" • it

DISPLAY AT(12»1)BEEP J"PRESS 'ENTER' WHE

N YOU ARE READY TO START"

250 ACCEPT AT(13»16)BEEP.A*

260 FOR TSTCNT=1 TO COUNT-1

270 DISPLAY AT(12»5)ERASE ALL BEEPJWORD*

(TSTCNT)

280 FOR DELAY=1 TO 500 ** NEXT DELAY

290 DISPLAY AT(12s-5)BEEP. "ENTER THE WORD

" it ACCEPT AT(14»7)?ANSWER*

300 IF ANSWER*=WORD*(TSTCNT)THEN DISPLAY

AT(16r7)."VERY GOOD!!!!!" H GOTO 320

310 DISPLAY AT(16v4>*"WRONG THE WORD

WAS" .: DISPLAY AT(18t10).WORD*(TSTCNT)

320 FOR DELAY=1 TO 1000 .} NEXT DELAY
330 NEXT TSTCNT

340 DISPLAY AT(22y1)BEEP*"YOU HAVE FINIS

HED THE LESSON"

Lines150-160 print the instructions on the screen. willaccept upto 20words. The messagePLEASE
The DISPLAY AT command is usedto print the ENTER YOUR WORD appears on the screen,
wordsexactlywherewe wantthem onthe screen. Line 180uses the DISPLAYAT command to print

Line 170 begins a FOR . . . NEXT loop. This loop "#" and the number of the word being entered.

52

Because the variable COUNT is printed on the
screen, you will know how many words have been
entered and which word you are currently enter
ing. The computer will beep and erase 18 spaces
on the screen. Up to 18 letters can be entered for
each word. The word entered is stored in AN-

SWER$.
Line 190 checks the contents of ANSWER$. If it is

empty, then no word has been entered, and the
computer will go back to line 180 to wait for a
word.

Line 200 checks to see if the word is XXX. If it is,
then the computer knows that you are done with
this part of the program. The computer is sent to
the next part of the program that tests the user on
these words.

Line 210 places the spelling word entered into the
correct element of WORD$. The value of the
variable COUNT will indicate the next available

location in WORD$. The spelling word is placed
there.

Line 220 continues the loop. This part of the pro
gram or routine will continue until 20 words have
been entered, or until the user enters an XXX.

Line 240 begins the test part of the program. The
screen is erased and the message is displayed on
the screen.

Line 250 waits until the ENTER key has been
pressed. This way, the program will not begin
until the user is ready.

Line 260 begins another FOR. . . NEXT loop. The
computer will count from one until one less than
the value of COUNT. We do not want to count up
to the value of COUNT because it is one more

than the number of words entered.

Line 270 erases the screen and prints a spelling
word on the screen. Since the variable TSTCNT

will begin with one and end with the last number
of the word entered, the computer will begin with
the first word that was entered and continue

through all the words in WORD$. The variable
TSTCNT is the number of the word being dis
played.

Line 280 is a delay loop that keeps the word on the
screen long enough to be read, but not so long that
the user can study it. If you would like the word to

be removed from the screen more quickly, change
500 to a smaller number. If you would like to leave
the word up longer, increase the value from 500 to
a higher number.

Line 290 erases the word and asks the user to enter

the word that was just on the screen. The com
puter will wait until a word is entered. The word
is stored in ANSWER$.

Line 300 checks the word contained in ANSWER$
against the word that was on the screen. If both
words are the same, the message VERY GOOD
will be displayed on the screen and the computer
is directed to line 320; it will skip line 310.

Line 310 is used when the word entered is not the

same as the word that was flashed on the screen.

This line tells the user that the word entered

was wrong and displays the correct word on the
screen.

Line 320 is another timing loop. This one gives you
a chance to read the message.

Line 330 continues the program until all the words
have been flashed on the screen.

Line 340 ends the program with a message.

In the previous programs, you used one-
dimensional arrays. At other times, you may need
a two-dimensional array. You can think of your
screen as a two-dimensional array. All the charac
ters are placed in a particular row and column. In a
two-dimensional array, you must tell the computer
how many rows and columns the array will need
(Fig. 9-5).

1

2

3

4

5

6

1 2

red rojo

blue azul

green verde

black negro

white bianco

yellow amarillo

Fig. 9-5. Storing words in a two-dimension string array.

53

40 DIMA(4,5), D$(8,2)

In this example, the numeric array will use
four rows and five columns to store numbers. The

string array will use eight rows and two columns.
The program in Listing 9-4 (Fig. 9-6) uses a two-
dimensional string array to store words.

Listing 9-4

Line 130 sets aside the memory needed for the
string array. The array called WORD$ will use six
rows and two columns.

Line 140 clears the screen.

Line 150 begins a FOR . . . NEXT loop. The vari
able COUNT will count from one to six.

Line 160 reads two words from the DATA line. The

first word is stored in the first column of the array,
the second in the second column. The variable

COUNT will indicate which element of the array
will continue this routine until all six sets ofwords

have been read.

Line 180 begins another FOR . . . NEXT loop.
Line 190 displays the English word on the screen.

The word that will be displayed will be deter
mined by the value of the variable COUNT. If the
value of COUNT is four, the word "black" will be
printed on the screen.

Line 200 prints a message on the screen.
Line 210 tells the computer to sound a beep and

wait for an answer. The answer will be stored in

the string variable ANSWER$.
Line 220 checks the answer that was entered. If the

word entered is not the same as the word stored in

the second column of WORD$ array, the program
will go back to line 210 for another try. Each set of
words will be stored in corresponding parts of the
string array. For example, the third row, first
column of the array is the word green. The third
row, second column of the array is verde, the
Spanish word for green. The variable COUNT
points to the correct row of the array. This vari
able does not change its value until the correct
Spanish color is entered.

54

c Start

Set aside

memory for
six sets
of words

Clear

screen

j

Get the

English and
Spanish word

c End j

Fig. 9-6. Flowchart for Listing 9-4 Spanish Colors.

Listing 9-4

100 REM LISTING 9-4

110 REM SPANISH COLORS

120 REM BY L»M,SCHREIBER FOR TAB BOOKS

130 DIM WORD*(6?2)

140 CALL CLEAR

150 FOR COUNT=1 TO 6

160 READ WORD*(COUNT»1)rWORD*(COUNT *2)

170 NEXT COUNT

ISO FOR COUNT"1 TO 6
190 DISPLAY AT(12*1):"ENGLISH WORD IS "?

W0RD*(CGUNT*1>

200 DISPLAY AT(14»1)J"SPANISH WORD IS"

210 ACCEPT AT(14»17>BEEPtANSWER*

A.. A..\/ IF ANSWER*OW0RD*(COUNT»2>THEN 210

230 NEXT COUNT

240 DATA REDyROJO

250 DATA BLUE»AZUL

260 DATA GREEN»VERDE

270 DATA BLACK?NEGRO

280 DATA WHITE9BLANCO

290 DATA YELLOW»AMARILLO

Line 230 the programcontinuesuntil all six colors words that are stored in the array WORD$. As
have been displayed on the screen. you can see, each line contains the English and

Lines 240-290 are the DATA lines. These are the Spanish color.

55

Chapter 10

Making Decisions in Programs

Programs are not always straightforward calcula
tions of accumulated information. When we figured
out the area of a room or moved letters across the

screen, the program ran from start to finish without
any consideration of the information entered by the
user. It processed everything in the order that it
was instructed.

Some of the programs that we've entered so
far did take into consideration the entries. The

Spelling program allowed the user to stop the first
routine by entering XXX. When the computer must
choose between different program paths, we are
talking about logic or decision making statements.
The computer must decide which path to take. This
decision is determined by information that has been
entered or calculated in the previous part of the
program.

DECISION-MAKING STATEMENTS

IF . . . THEN

The very simplest decision making statement
is an IF... THEN statement. IF the first part of the

56

statement is true, THEN the program continues
with the second part of the statement. These
statements are often used after an input statement
to check the answer entered for erroneous

answers. Other times it is used after a computation
to decide on the path the computer must take in the
program. Listing 10-1 (flowcharted in Fig. 10-1)
shows an example of IF... THEN statements. Use
the keys that have the arrows on the side of them.
Do not use the "FCTN" key. These keys will con
trol the ball on the screen. The IF . . . THEN

statements keep the ball on the screen.

Listing 10-1

Line 130 sets the ROW variable to 12 and the COL
variable to 14, the center location of the
screen. The twelfth ROWis halfwaydown and the
fourteenth COL is halfway across.

Line 150 prints a warning message on the screen
saying that the ALPHA LOCK key must be
pressed down or this program will not operate
correctly.

0-

Start

/Clear screen
&display /
message /

Display
ball

Fig. 10-1. Flowchart for Listing 10-1 Ball.

Reset

horizontal

variable

Reset

horizontal

variable

G>

Erase

ball

Erase

ball

Display
ball

Reset

vertical

variable

=1

Reset

vertical

variable

zzi—

57

Listing 10-1

100 REM LISTING 10-1

110 REM BALL

120 REM BY L«MUSCHREIBER FOR TAB BOOKS

130 R0W=12 it C0L=14 ! SET UP FOR CENTER

SCREEN

140 REM CLEAN UP SCREEN AND DISPLAY A ME

SSAGE

150 CALL CLEAR it PRINT "MAKE SURE ALPHA

LOCK KEY"J"IS IN DOWN (LOCK) POSITION"

160 FOR DELAY= 1 TO 2000 it NEXT DELAY

170 REM CLEAR MESSAGE OFF SCREEN

180 CALL CLEAR

190 DISPLAY ATCROWpCODJ-O" ! PLACE BALL

ON SCREEN

200 REM TEST FOR ANY KEY PRESSED

210 CALL KEY<0 9KEY 9STATUS)

REM IF NOT 9 GO BACK % CHECK IT AGAIN

230 IF STATUS* 0 THEN 210

240 REM A KEY WAS PRESSED - SO TEST TO S

EE WHICH ONE

250 IF KEY=83 THEN 300 ! MOVE THE BALL T

0 THE LEFT

260 IF KEY=68 THEN 330 ! MOVE BALL TO TH

E RIGHT

270 IF KEY=69 THEN 360 ! MOVE BALL UP

280 IF KEY=88 THEN 390 ! MOVE BALL DOWN

290 GOTO 210 ! NOT A VALID ENTRY

300 C0L=C0L-1 :: IF C0L<1 THEN C0L=1 ! C

HECK FOR EDGE OF SCREEN

310 DISPLAY AT<ROWvCQL+l> ta " ! ERASE OL

D BALL

320 GOTO 420 ! GO TO SECTION TO DISPLAY

BALL IN NEW POSITION

330 COL=COL-fl it IF C0L=29 THEN C0L=28 !

DON'T GO PAST' RIGHT EDGE

340 DISPLAY AT<R0W>C0L-1>i" " ! ERASE OL

D BALL

350 GOTO 420

360 R0W=R0W~1 it IF ROW=0 THEN R0W=1 ! T

HERE IS NO ROU1 '0'

370 DISPLAY AT(R0W+1»C0L)t" ' ! ERASE OL

D BALL

380 GOTO 420

58

390 R0W«R0W+1 i X IF ROW=*25 THEN R0W^24 !

DON'T GO PAST 1BOTTOM ROW

400 DISPLAY AT<ROW-i»COL)J" a ! ERASE OL

D BALL

410 REM DISPLAY BALL IN NEW POSITION

420 DISPLAY AT(ROWyCOD!j,,0H

430 REM GO BACK AND GET NEXT KEY

440 GOTO 210

Line 160 is a delay loop to give you time to read the
message.

Line 180 clears the message.
Line 190 places the ball on the screen. In this

program the uppercase "0" will represent the
ball.

Line 210 uses a CALL command. This command

will check to see what key, if any, has been
pressed. If a key has been pressed, the STATUS
variable will be set and the KEY variable will

contain the value of the key that has been pressed.
Line 230 uses an IF . . . THEN statement. IF the

value of STATUS is a zero, then a key was not
pressed and the computer will go to line 210. If
the value of STATUS is other than zero, then the
computer will not continue with statement, but go
on to the next line of the program.

Line 250 tests the value of KEY. If its value is 83,
then the S key was pressed and the computer is
directed to line 300.

Line 260 checks the value of KEY for a 68. If it is,
then the D key was pressed and the computer will
go to line 330.

Line 270 looks for 69. This is the value KEY will be

if the E was pressed. The computer will be di
rected to line 360.

Line 280 checks for the value of88. This is the value

of the X key. When this key is pressed, the com
puter will go to line 390.

Line 290 directs the computer to line 210. The
computer will reach this line if KEY does not
equal any of the previous values.

Line 300 moves the ball to the left edge of the
screen. One is subtracted from the COL value.

This variable is then tested for a value that is less

than one. If the COL variable becomes a zero, it is
printed off the screen, so, when COL is less than
one, it is reset to the value one.

Line 310 erases the ball from its present position on
the screen. One is added to the value of COL

because the old position is one more than the new
position. Printing a space will erase the old ball.

Line 320 sends the computer to line 420 where the
ball will be reprinted on the screen.

Line 330 adds one to the value of COL. This will

move the ball to the right. Again the value of COL
is checked for the edge of the screen. This time, if
the value of COL reaches 29, it will be reset to 28
so that the ball will not be printed off screen.

Line 340 erases the ball from the previous position.
Line 350 sends the computer to line 420 to reprint

the ball.

Line 360 adjusts the ROW variable. By subtracting
one from its value, we can move the ball up on the
screen. The value of ROW is checked for a zero. If

it is zero, it is reset to one.
Line 370 erases the ball from the screen. This time

we are adding one to ROW since that is the vari
able that we just subtracted one from.

Line 380 directs the computer to line 420 to print
the ball in the new position.

Line 390 adds one to the value of ROW. The ball can

now be printed one row lower on the screen. The
value of ROW is tested for 25. If it reaches 25, it is
reset to 24. This keeps the ball on the screen.

Line 400 erases the ball that is currently on the
screen.

Line 420 prints the ball on the screen. The values of
ROW or COL have been adjusted for the new
position on the screen. If the ball has reached any

59

edge of the screen, it will not move since that
variable has been reset to the edge position.

Line 440 sends the computer back to line 210 where
it waits for another key to be pressed.

USING IF ... THEN TO EXIT A LOOP

Another use for IF. . .THEN statements is to

exit a loop. An example of when you would use
IF . . . THEN as an exit is as follows: You are

getting information from the user, but you do not
determine ahead of time the exact number of en

tries the user will enter. In the Spelling program,
the user could enter up to 20 words, but it is possi
ble to enter only one word. The code XXXsignifies
the end on the word list. The program checks each
entry to see if it is the final entry. When the code is
entered, the program leaves the routine it is in and
directs the computer to the spelling routine.

In the last program, when an arrow key was
pressed, the program exited the routine that
checked the value of the key pressed. If an unac
ceptable key was pressed, the program directed the
computer to wait for another key.

MORE DECISION-MAKING STATEMENTS

ELSE

Sometimes you may want the computer to do
one of two things depending on what the cir
cumstance is. Instead of using two IF . . . THEN
statements, one for each possibility, the ELSE can
be used to tell the computer which direction it
should take.

For example, ELSE can be used in a program
that shows the tax imposed on income earnings
above a certain level. Incomes below $25,000 are
taxed at 15 percent and incomes above $25,000 are
taxed at 17 percent.

215 IF INCOME<25000 THEN TAX= 15 ELSE

TAX=17

The same idea can be used to direct the com

puter to different parts of a program.

400 IF C=3 THEN 450 ELSE GOTO 500

60

GOTO

The GOTO command can be used in a

loop.The number following the GOTO command is
the line number that the computer will process
next. The line number must be an actual number

used in the program. If you try to GOTO a line that
does not exist, an error will occur.

ON . . . GOTO

In some programs you may have several
routines that can be used, but they will not be used
at the same time, or in the same order. When we
want the computer to go to a routine only when
certain conditions are met, we are using selective
branching. One example is a program containing
several games or learning modules. When the pro
gram is run, the screen contains a menu from which
the user can choose a program or unit. The program
in Listing 10-2 (see flowchart in Fig. 10-2) uses
selective branching for a three unit program on
states.

Listing 10-2

Line 130 sets aside two strings. One string is used
for the names of the 50 states. The second string
is used for the second part of the answer whether
it be the capital, the state abbreviation, or the
state flower.

Line 150 contains a RESTORE command. The first

time that this program is run, the computerwill be
pointing to the first DATA line (line 420). When
the program repeats itself, the computer will be
pointing to a different line number. By restoring
the pointer to this line, the computer will be able
to read the names of the states into the STATE$
array no matter where it was pointing. The FOR
. . . NEXT loop reads the names of the states and
places them into each element of the string array.

Lines 160-170 clear the screen and place the menu
on the screen. You are given three units to choose
from.

Line 180 uses the ACCEPT AT command to get the
unit number. The VALIDATE option checks the
entry. If it is not a 1, 2, or 3, the number will not
be accepted. The number entered is stored in
UNIT.

c Start

IE
Set aside
memory
for states
and answers

I

")

Set for random

numbers point
to states

/ Erase screen
/ &rdisplay menu7

Set pointer
and string
for flowers

~5

Set pointer
and string
for capitals

Set pointer
and string for

abbreviations

&

-0

-o

Fig. 10-2. Flowchart for Listing 10-2 Selective Branching.

=£
Get selected
information

Clear variable
for correct

number

Choose a
state

Store state
and answer

i
Count to

2000

Move state
and answer
to end of
array

ZClear screen
and show ,
imbercorrect/

Display
'Very good

Count to

2000

6

7
Add one

to number

correct

61

Line 190 contains the ON... GOTO command. The

value of UNIT determines which routine in the

program the computer will go to. There are three
line numbers following GOTO. Each of these line
numbers is the first line of that routine.

Line 210 begins the states and capitals routine.
This part of the program displays a state on the
screen and asks you to enter the correct capital.
The RESTORE command sets the pointer to line
470, the first line of data for the capitals. The
CATEGORY$ variable is set to "capital." This
information is used in the next part of the pro
gram.

Line 220 sends the computer to line 280. The ques
tion and answer part of the program begins at this
program statement.

Line 240 contains another RESTORE command.

The computer is directed to this line when unit
two is selected. Line 520 is the first line of data of

the two-letter abbreviations of the states.

CATEGORY$ is set to "abbreviation."
Line 250 sends the computer to line 280 for the

questions and answers.
Line 270 restores the pointer to line 550 which

contains the list of flowers. Again CATEGORY$
is set to the name of this unit, "flower." There is
no GOTO line for this part of the program since
line 280 is the next line number.

Line 280 begins the question and answer part of the
program. The information from the previous lines
is used in this part of the program. The computer
knows where to begin reading the information
because the RESTORE command set the pointer
to the correct DATA lines. Now the computer can
READ these lines and place that information into
the string array ANSWER$.

Line 290 sets the variable CORRECT to 0. This

variable will count how many questions were
answered correctly. The FOR . . . NEXT loop
makes sure that every state is placed on the
screen. The RND chooses a number from one to
the value of the COUNT variable. The first time
that this routine is used, the COUNT variable is
50. The second time 49, then 48, 47, and so on.
The value of S will determine which state will be
placed on the screen.

62

Line 300 takes the state stored at S location in the

STATE$ array and places it in TESTSTATE$.
This is the state that will be printed on the screen.
The corresponding correct answer is stored in
CORRECT$. As long as the data lines are entered
correctly, STATE$ and ANSWERS should match
at the same location. For example, the first ele
ment of STATES, STATE$(1), is Nebraska.
ANSWER$(1) should be NE if the second unit,

state abbreviations, has been chosen. TEST-
STATES is now the state and CORRECTS is the
corresponding correct answer.

Line 310 erases the screen, then prints the question
on the screen. CATEGORY$ will print the type of
answer that the computer is looking for—the cap
ital, the abbreviation, or the flower—depending
on which unit number was entered. TEST-

STATES prints the state in question.
Line 320 prints the question mark, then beeps. The

VALIDATE option limits the entry to letters
only. The size limits the number of letters en
tered to 18. The answer is stored in TRY$.

Line 330 checks the answer that was entered

against the correct answer. If it is correct, VERY
GOOD is displayed on the screen and the COR
RECT variable has one added to it. The computer
is directed to line 350.

Line 340 will be used only if the wrong answer is
entered. The computer will print the correct ans
wer on the screen.

Line 350 is a timing loop. This gives you time to
read the message on the screen.

Line 360 takes the state that is in the last place and
places it in the position of the state that has been
used. It moves the answer the same way. If this is
the first time the routine is used, it will move the
state from the 50th position. On the second time
the forty-ninth, then the forty-eighth, forty-
seventh and so on. This way, every state will be
used in a random order.

Line 380 continues the loop. This loop will continue
until COUNT is less than one and all the states

have been displayed on the screen.
Line 390 erases the screen, then prints your score

on the screen.

Line 400 is another timing loop to give you a chance

Listing 10-2

100 REM LISTING 10-2
110 REM SELECTIVE BRANCHING

120 REM BY L,M,SCHREIBER FOR TAB BOOKS

130 DIM STATE*<50)*ANSWER*<50):S RANDOMI
ZE

140 REM GET STATES INTO STORAGE AREA

150 RESTORE 420 H FOR COUNTS TO 50 it
READ STATE*(COUNT)tt NEXT COUNT

160 DISPLAY AT(6*1)ERASE ALL J"PLEASE CHO

OSE A UNIT (1-3)" H DISPLAY AT(9*4)J"1)
STATES X CAPITALS"

170 DISPLAY AT(11*4)!"2) STATE ABBREVIAT

IONS" ti DISPLAY AT(13*4K"3) STATE FLOW
ERS"

180 ACCEPT AT(6*28)BEEP VALIDATE("123")S
IZE(1)?UNIT

190 ON UNIT GOTO 210*240*270

200 REM STATES X CAPITALS

210 RESTORE 470 it CATEGORY*="CAPITAL"
220 GOTO 280

230 REM STATE ABBREVIATIONS

240 RESTORE 520 :: CATEGORY*^"ABBREVIATI
ON"

250 GOTO 280

260 REM STATE FLOWERS

270 RESTORE 550 it CATEGORY*^"FLOWER"

280 FOR COUNTS TO 50 it READ ANSWER*(CQ

unt)j: next count

290 corrects) j j for c0unt=50 to 1 step

-1 h s=int(rnd*c0unt)+1

300 teststate*=state*(s)it correct*=answ
ER*(S)

310 DISPLAY AT(8*5)ERASE ALL?"What is th

e "^CATEGORY* tt DISPLAY AT(10»B)J'of "*
TESTSTATE*

320 DISPLAY AT(12*8):"?" it ACCEPT AT(12

10)BEEP VALIDATE(UALPHA> SIZE(18)JTRY

330 IF TRY*=CORRECT* THEN DISPLAY AT(14*

10)J"VERY GOOD" it C0RRECT=C0RRECT+1 it
GOTO 350

340 DISPLAY AT(14*10)t"No* it's " ti DIS

PLAY AT(16*11){CORRECT*

350 FOR DELAY=1 TO 2000 :: NEXT DELAY

360 STATE*(S)=STATE*(COUNT)ti STATE*(COU

63

64

NT)=TESTSTATE*

370 ANSWER*(S)=ANSWER*(COUNT)J J ANSWER*(

COUNT>=CORRECT*

380 NEXT COUNT

390 DISPLAY AT(12*7)ERASE ALL:"YOU GOT"*

CORRECT*"CORRECT."

400 FOR DELAY=1 TO 2000 H NEXT DELAY

410 GOTO 150

420 DATA NEBRASKA*SOUTH DAKOTA*NORTH DAK
OTA*MINNESOTA*KANSAS*IOWA*MISSOURI*TEXAS

*OKLAHOMA *ARKANSAS *ALABAMA *MISSISSIPPI *L

OUISIANA*TENNESSEE

430 DATA NEW MEXICO*ARIZONA *UTAH*IDAHO*C

OLORADO *MONTANA *WYOMING *NEVADA *WASHINGTO

N*HAWAII*OREGON*CALIFORNIA*ALASKA*MAINE*

VERMONT

440 DATA KENTUCKY*RHODE ISLAND*NEW HAMPS

HIRE *MASSACHUSETTS *CONNECTICUT *DELAWARE *

NEW YORK*MARYLAND*NEW JERSEY*PENNSYLVANI

A*WEST VIRGINIA

450 DATA FLORIDA*NORTH CAROLINA*VIRGINIA

*SOUTH CAROLINA*GEORGIA*MICHIGAN*WISCONS

IN*ILLINOIS*INDIANA*OHIO

460 REM STATE CAPITALS

470 DATA LINCOLN*PIERRE*BISMARK*ST. PAUL

*TOPEKA*DES MOINES*JEFFERSON CITY*AUSTIN

»OKLAHOMA CITY*LITTLE ROCK*MONTGOMERY*JA

CKSON*BATON ROUGE

480 DATA NASHVILLE*SANTA FE*PHOENIX*SALT

LAKE CITY *BOISE *DENVER *HELENA *CHEYENNE *

CARSON CITY* OLYMPIA *HONOLULU *SALEM *SACRA

MENTO*JUNEAU

490 DATA AUGUSTA*MONTPELIER*FRANKFORT*PR

OVIDENCE *CONCORD *BOSTON *HARTFORD *DOVER *A

LBANY *ANNAPOLIS *TRENTON *HARRISBURG *CHARL

ESTON*TALLAHASSEE

500 DATA RALEIGH*RICHMOND*COLUMBIA*ATLAN

TA* LANSING*MADISON*SPRINGFIELD*INDIANAPO

LIS*COLUMBUS

510 REM STATE ABBREVIATIONS

520 DATA NE*SD*ND*MN*KS*IA*MO*TX*OK*AR*A

L * MS *LA *TN *NM *AZ *UT * ID *CO *MT *WY *NV *WA *HI

*OR *CA *AK *ME *VT *KY *RI

530 DATA NH*MA*CT*DE»NY*MD*NJ*PA*WV*FL*N

C*VA*SC*GA*MI*WI*IL*IN*OH

540 REM STATE FLOWERS

550 DATA GOLDENROD*PASQUEFLOWER*WILD PRA

IRIE ROSE*LADY SLIPPER*SUNFLOWER*WILD RO

SE *HAWTHORN *BLUEBONNET *MISTLETOE *APPLE B

LOSSOM *CAMELIA

560 DATA MAGNOLIA*MAGNOLIA*IRIS*YUCCA FL

OWER *SAGUARO *SAGO LILY *SYRINGE *COLUMBINE

*BITTERROOT*INDIAN PAINTBRUSH»SAGEBRUSH*

RHODODENDRON

570 DATA HIBISCUS*OREGON GRAPE*GOLDEN PO

PPY*FORGET-ME-NOT*PINE CONE*RED CLOVER?G

OLDENROD *VIOLET *PURPLE LILAC *MAYFLOWER *M

OUNTAIN LAUREL

580 DATA PEACH BLOSSOM*ROSE*BLACK-EYED S

USAN*VIOLET*MOUNTAIN LAUREL*RHODODENDRON

*ORANGE BLOSSOM*FLOWERING DOGWOOD*AMERIC

AN DOGWOOD

590 DATA CAROLINA JESSAMINE*CHEROKEE ROS

E *APPLE BLOSSOM *VIOLET *VIOLET *PEONY *SCAR

LET CARNATION

to read your score.
Line 410 sends the computer back to line 150. The

states will be read back into the array and the
menu appears on the screen for another choice.

Lines 420-590 contain the data for this program.
This is divided into four parts—the states, their

capitals, the two-letter abbreviations, and the
state flowers. Do not try to place more two-letter
abbreviations on the DATA lines than are there.

TI BASIC only allows 30 commas on one DATA
line. You will get a line too long error if you try to
enter more than 30 commas.

65

Chapter 11

Repeating Part of the Program

You will often find parts of your program repeating
themselves. Typing in the same instructions over
and over again is tiring for you and a waste of
memory for the computer. Bytes disappear very
quickly even in the most memory efficient program.

One way to conserve memory is to place the
instruction or set of instructions the computer will
be repeating in a bop. A loop tells the computer to
repeat a certain set of instructions any number of
times. In the past few chapters you have used loops
for timing routines and input. Loops kept the size of
the program reasonable.

USES FOR LOOPS

The computer can process information with
remarkable speed. If the computer is also asked to
print information on the screen as it processes it,
chances are the computer's speed will be too fast for
you to read the information. Sometimes just listing
a program is too fast!

If you are printing instructions on the screen
for the user or presenting a problem for the user to

66

read, you will need to slow the computer down so
that the user can read it before it disappears. A
timingbop was used for this purpose in the Colors
program and the Spelling program. Timing loops
tell the computer to stay at a particular place in the
program and do nothing but count from one number
to another. The numbers are not displayed on the
screen but serve to slow down the computer to
allow the user to read the information on the
screen.

Another loop was used in the Spelling program
when the user was asked to enter the words. With

out it, the program would have to contain 20 input
commands, 20 prompt lines, and 20 decision lines.
Aneedless waste of memory! A series of inputs can
usually be obtained most efficiently by using a loop.

Beware of looping to infinity! When you con
struct a loop, you must design an exit from the loop,
or you may wait for the computer to complete a
calculation, read information, or time an activity,
only to discover (after pressing the FCTN and 4
keys, of course) that the computer hasn't passed

line 30! Aloopwith no exit is called an endless loop;
it is useful in demonstration programs, where you
want the same program to be repeated all day, or at
the end of a program that you want to end without
the prompt appearing on the screen. The only way
to exit an endless loop is by pressing the FCTN and
4 keys.

FOR... NEXT LOOPS

A FOR . . . NEXT loop repeats a set of pro
gram instructions a given number of times.

20 FOR T=l TO 100

30 NEXTT

This loop starts by setting the T variable to 1. The
second commandis NEXT T. The program tells the
computer to start with the number one, then add
one to the value of T and return to the FOR state
ment. It continues to go back and forth between the
FOR and NEXT until T is equal to 100. When the
T variable equals 101, it has exceeded the second
value andgoes on to the program linefollowing the
NEXT command.

Ifwe had other program lines between lines 20
and 30, the computer wouldexecute any and all of
the commands between the FOR and the NEXT 100
times.

In the above example we started with the T

/ Display /
/ answer /

c End D

Fig. 11-1. Flowchart for Listings 11-1 and 11-1B, Answer Version 1 and Answer Version 2.

67

Listing 11-1A

100
110

120

130

140

L OF

150

160

170

180 TRY=TRY+1

ESS*

190 IF GUESS*:*ANSWER* THEN 240

200 IF COUNTO THEN DISPLAY AT(18 >10)JHT
RY AGAIN"

210 FOR DELAY=1 TO 500 XX NEXT DELAY XX

DISPLAY AT<18*1)J" '

220 NEXT COUNT XX DISPLAY AT<18*1)J"THE

CAPITAL OF MONTANA IS "J ANSWER*

230 END

240 DISPLAY AT<18y1)X "VERY GOOD ! YOU G

OT IT IN "-i TRY >" TRIES ♦"

REM LISTING 11-1A
REM ANSWER VERSION 1

REM BY L.M.SCHREIBER FOR TAB BOOKS

CALL CLEAR
DISPLAY AT(12y1)1"WHAT IS THE CAPITA

MONTANA ? "

ANSWER$=BHELENA"

FOR COUNT=1 TO 3

TRY=0 ! NUMBER OF GUESSES

ACCEPT AT(13112)BEEP tGU

variable equal to one and ended with it equal to 100.
Any variable and any starting and ending numbers
can be used in your programs.

One common error when using the FOR . . .
NEXT loop is setting a variable to zero within the
loop instead of before the computer starts the loop.
An example of this would be a program that gives
the user three tries to answer a problem. The vari
able that counts the number of wrong answers must
be cleared before each question. If this variable is
cleared within the loop, the computer will never
know when the three tries are up. Listing 11-IB
demonstrates the correct use of FOR . . . NEXT

loops. Listing 11-1A shows the same programs with
a variable cleared inside the loop that should be
cleared before the loop. The flowchart in Fig. 11-1
shows both possible loops. The dotted line points
out the correct way to set up the loop.

Listing 11-1A

Line 130 clears the screen.

68

Line 140 prints the question on the screen on the
12th line and first column.

Line 150 sets the string variable ANSWER$ to
Helena.

Line 160 begins the FOR . . . NEXT loop. The
COUNT variable will begin with one and continue
until it reaches three.

Line 170 sets the number of guesses to zero.
Line 180 counts which guess this is by adding one to

the TRY variable. The computer beeps and waits
for an answer. The answer will be stored in

GUESS$.
Line 190 checks the entry against the correct an

swer. If the answer is correct, the computer will
be directed to line 240.

Line 200 checks to see if this is the last try. If the
COUNT variable is less than three, the computer
will display "TRY AGAIN" on the screen.

Line 210 is a delay loop. Then the message is
erased.

Line 220 sends the computer back to the line where

Listing 1MB

100 REM LISTING 11-IB

110 REM ANSWER VERSION 2

120 REM BY UM*SCHREIBER FOR TAB BOOKS
130 CALL CLEAR

140 DISPLAY AT<12>l)i"WHAT IS THE CAPITA
L OF MONTANA ? •

.1.50 ANSWER*:*"HELENA"

160 TRY=0 ! NUMBER OF GUESSES
170 FOR COUNTS1 TO 3

180 TRY=TRY+1 XX ACCEPT AT<13*12)BEEPJGU
ESS*

190 IF GUESS*^ANSWER* THEN 240

200 IF COUNTO THEN DISPLAY AT<18f10)X "T
RY AGAIN"

210 FOR DELAY=1 TO 500 XX NEXT DELAY XX
DISPLAY AT<18fl)JB "

220 NEXT COUNT XX DISPLAY AT<18 y1)X"THF
CAPITAL. OF MONTANA IS HyANSWER*
230 END

240 DISPLAY AT(18»1)t"VERY GOOD ! YOU G
OT IT IN " rTRY J "TRIES", "

the FOR . . . NEXT loop began for another try.
When the value of COUNT exceeds three, the
answer will be displayed.

Line 230 ends the program so that the congratula
tory message is not displayed.

Line 240 congratulated the player for guessing the
correct answer.

If you try this program the way it is written,
you will find that you will always get the answer in
one try whether it took you only one try or not. The
reason is that the TRY variable is cleared each time

the computer executes the FOR . . . NEXT loop.
The result is always:

VERY GOOD! YOU GOT IT IN 1 TRIES

Listing 11-1B corrects this situation by ex
changing lines 160 and 170. Now the variable is
cleared only before the loop is executed. The pro
gram will tell you the correct number of tries that it
took before the correct answer was entered.

FOR. . . NEXT loops can also be used within
each other. This is called nesting. An example of
nested loops is shown in the program in Listing
11-2. The flowchart of the program (Fig. 11-2)
shows the proper structure of nested loops. Note
that the inner loop is completed before the outer
loopcangoon the next value. The inner loopis also
completed each time the outer loop is executed. If
you do not nest loops properly, you can get error
messages, cause the program to crash, or get incor
rect answers.

STEPPING

A FOR . . . NEXT loop does not have to add
one to the variable every time it completes the
loop. You canhave the variable incremented byany
amount by adding STEP to the command, as shown
below.

40 FOR Z=10 TO 100 STEP 5
50 . . .

60 NEXTZ

69

c Start

Zl Clear 7
screen- display/

message /

Place symbols
for target
into string

<D
/Display /

score /

Set variable
for column

use subroutine
to draw gun

/ Display /
/ target /

Z Erase /
gun /

Fig. 11-2. Flowchart for Listing 11-2 Target.

70

Return

Return

REM: Use this

routine for

subroutine to

draw gun on screen

Calculate

new row

In this program the Z variable will be equal to 10 the
first time the computer executes line 40. When it
comes to line 60, five will be added to the variable,
making it 15. The program will continue with the
computer adding five to the value of Z until Z is
greater than 100.

If you want the computer to count backwards,
use a negative number after the STEP option, as
shown below.

50 FOR G=150 TO 50 STEP - 5

Here, the computer will set the G variable to 150
the first time it executes the line. The second time

G will be 145; then 140, 130, and so on. When G is
less than 50, the computer will continue with the
next line of the program.

Listing 11-2 contains examples of FOR . . .
NEXT loops.

Listing 11-2
Lines 130-150clears the screen and prints a short

Listing 11-2

100 REM

110 REM

120 REM

130 CALL CLEAR XX

a rifle siame" ♦ ♦

to move the pi

140 PRINT :"PRESS

the pifie to the

ARROW to shoot* a

ISO PRINT X X Xa

J"PRESS ENTER TO

160 TARGET*

170 DISPLAY

LISTING

TARGET

BY L.M.SCHREIBER FOR TAB BOOKS

PRINT "TARGET SHOOT is

8PRESS the RIGHT ARROW

f1e to the ri aht♦w

the LEFT ARROW to move

left*"J J"PRESS the UP

11-2

introductory message. This message will remain
on the screen until the ERROR key is pressed.

Line 160 sets the TARGETS variable to an as
terisk, two slashes, and a hyphen. This is our
target.

Line 170 places the score at the top of the screen.
Both the hits and misses will be displayed.

Line 180 sets the COL variable to 13. This is the
column that the gun will be printed at. The com
puter will go to line 340 to print the gun on the
screen.

Line 190 is the first loop of the two nested FOR...
NEXT loops. The POSITION variable will indi
cate which column the target will be printed at. It
will begin with column 25 and work its way from
right to left across the screen. Because the col
umn numbers decrease as we travel across the

screen, this loop will count backwards.
Line 200 prints the target on the screen based on its

new column value.

Line 210 begins the second FOR . . . NEXT loop.

GOOD

CONTINUE

"*//--"

AT<1f2)ERASE

LUCK !!B: ;

INPUT A*

s :: DISPLAY

180 C0D=13 it GOSUB 340

190 FOR POSITIONERS TO 1 STEP

T WILL MOVE FROM RIGHT TO LEFT

200 DISPLAY AT(51P0SITION)X TARGET* !

W THE TARGET ON THE SCREEN

210 FOR TIME=1 TO 25 XX CALL KEY<1*KEY*S
TATUS)

9 ♦ ♦

ALL

AT<1*15):"MISSED

IITS "?HIT

JMISSES

1 ! TARGE

DRA

71

xu *u v/ IF STATUS*1 THEN IF KEY=5 THEN 350 E

LSE GOSUB 260

230 NEXT TIME

240 NEXT POSITION

250 GOTO 170

260 IF KEY=2 OR KEY=3 THEN 280

270 RETURN

280 IF C0L<3 AND KEY=2 THEN RETURN

290 IF C0L>25 AND KEY=3 THEN RETURN

300 FOR R0W=21 TO 24 it DISPLAY AT(ROW»C

01...) !\• • :: NEXT ROW ! CLEAR OLD GUN

31.0 IF KEY-2 THEN C0I...=C0L-1 H GOTO 330

320 C0L=C0L+1

330 IF C01.X2 OR C0L>26 THEN RETURN

340 FOR R0W=21 TO 24 :J DISPLAY AT<ROW»C

0L) \\"! !" :: NEXT ROW i i RETURN

350 FOR BULLETR0W=23 TO 5 STEP -1

360 DISPLAY AT<BULLETROW+l»COL+i>SIZE<l>

' :j DISPLAY AT(BULLETROWrCOL+l)SIZE<

1) J'**"

370 NEXT BULLETROW

380 IF C0L+1>=P0SITI0N AND COL-flOPOSITI

ON+3 THEN DISPLAY AT<5» position):0: t ::"

it HITS=HITS+1 it GOTO 400

390 DISPLAY AT<3yP0SITI0N-2>:"MISSED" it

MISSES=MISSES+1

400 FOR DELAY=1 TO 200 :: next delay ::

GOTO 170

The KEY routine is called to see if a key has been
pressed.

Line 220 checks the value of the STATUS variable.

If it is a one, then a key has been pressed. The
next part of this IF . . . THEN statement is
another IF . . . THEN. If the value of key is five,
then the program will direct the computer to line
350; however, if the value is anything else, the
computer will use the subroutine that begins with
line 260.

Line 230 continues the loop until the value of TIME
exceeds 25. This loop is nested within the POSI
TION loop.

Line 240 continues the loop that moves the target
across the screen. This loop will continue until
the value of POSITION is less than one.

72

Line 250 sends the computer back to line 170 and
repeats the entire program.

Line 260 is the routine that the computer is directed
to from line 220. The value of the KEY variable is

checked for a two or three. If it contains either of

these values, the program will continue at line
280.

Line 270 sends the computer back to line 230 be
cause the value of KEY was neither two nor three.

Line 280 checks the value of the COL and KEY

variables. If COL is less than three, then the gun
cannot move to the left any further. If the value of
KEY is two, then the user wants to move the gun
to the left. It cannot move, so the computer re
turns to the line that sent it to this routine.

Line 290 checks the value of COL and KEY again.
This time it is checking to see if the gun is as far to
the right as it can go and the user wants to move it
further. If both of these conditions are true, that
is, the value of COL is greater than 25 and the
value of KEY is three, the computer will return to
the line that sent it to this routine.

Line 300 removes the gun from the screen. Now it
can draw the gun in its new position.

Line 310 looks at the value of KEY to see if the COL

variable must have one added to it or subtracted

from it. If the value of KEY is two then one will be

subtracted from the value of COL and the program
will direct the computer to line 30.

Line 320 adds on to the value of COL. We know

that the value of KEY can only be a two or three
since we tested it in line 260 for those two values.

Since it was tested for the value of two in line 310

and failed the test, we know that its value can only
be a three. Therefore, we do not have to test it for
its value again.

Line 330 checks the value of COL to make sure that

it is not less than two or greater than 26. If it is the
computer will leave this routine and return to the
line that sent it.

Line 340 draws the gun on the screen. The value of
the ROW will change, but the value of COL re
mains the same. The computer returns to the line
that sent it.

Line 350 begins another FOR. .. NEXT loop. This
time we place the bullet on the screen. It will start
at the bottom of the screen and continue up to the
line the target is on. The rows on the screen
decrease as we travel up the screen, so this loop
counts backwards.

Line 360 erases the last bullet. The first time

through this loop there will be no bullet to erase.
The COL variable is increased by one. This vari
able holds the position of the gun on the screen.
The bullet is in the next column. The BULLET-

ROW variable is the row that the bullet is on. We

start with 23, which is one row up from the bottom
of the screen. After the bullet is erased, we draw
the bullet in the new position on the screen.

Line 370 continues the loop until the bullet reaches
the row that the target is on.

Line 380 compares the position of the target with
the position of the bullet. The POSITION variable
indicates the position of the target. The target is
four characters long. If the position of the bullet^
which is one more than the COL variable, is equal
to the position of the target, or is not greater than
the last character of the target (POSITION+3),
we have hit the target. The target will be replaced
with four colons. The HITS variable will be in

creased by one and the program will go on to line
400.

Line 390 will be executed if the bullet is not within

the range specified for the target. MISSED will be
printed above the target and the MISSED variable
will be increased by one.

Line 400 contains another timing loop. The com
puter is then directed back to line 170.

Listing 11-3 is a routine for shuffling cards,
flowcharted in Fig. 11-3. You may want to use it in
any program where you will be using information,
numbers, or words, and do not want to repeat the
same routine twice.

This method replaces the item chosen with the
last item in the array; takes the last one and places
it in the location chosen, and then decreases the
number of locations that the computer can choose
from. The locations that the information is moved to

cannot be disturbed because the computer will not
be allowed to choose from those locations.

Listing 11-3

Line 130 sets aside 52 locations for the cards.

Line 140 places the numbers and letters of the cards
into the string. The Ace is the lowest card and the
King is the highest.

Line 150 is a FOR . . . NEXT loop. The computer
will count from 1 to 52. Each time it will place the
value of X in the CARDNO array. Every element
of CARDNO will contain a number from 1 to 52.

Line 160 contains the RANDOMIZE command.

Without this program line the computer would
shuffle the cards the same way every time the
program was run.

Line 170 begins the FOR . . . NEXT loop that will

73

c Start

Set aside

array

space

Place

card values

in string

}

♦
Number

card

array

^
♦

Choose a

number

*
Store

number of

card picked

J

i
*

Place

"bottom"

card there

*
Move

stored card

to "bottom"

Make

"bottom"

one card up

No y^ Deck >v
^ C shuffled ^

'Yes

Fig. 11-3. Flowchart for Listing 11-3 Shuffle.

74

£
Clear

screen 7
Get number

of card

Subtract

13

Display
a

)lay /
"LI

Display
diamond 7n
Display

heart

Display
spade

7-

7-

Listing 11-3

100 REM LISTING 11-3

110 REM SHUFFLE

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 DIM CARDNO(52)

140 CARDNAME*="A234567890jaK''

150 FOR C0UNT=1 TO 52 H CARDNO<COUNT>=C

OUNT it NEXT COUNT ! NUMBER THE CARDS

160 RANDOMIZE ! GET NEW SERIES OF RANDOM

NUMBERS

170 FOR C0UNT=52 TO 1 STEP -1

180 SHUFFLE=INT<RND*C0UNT)+1 ! CHOOSE A

CARD FROM 1 TO THE NUMBER LEFT IN THE DE
CK

190 REM 'TEMP' IS A TEMPORARY STORAGE VA

RIABLE

200 TEMP=CARDNO<SHUFFLE)! SWAP THE CARDS
- STORE THE CARD AT LOCATION 'SHUFFLE'

IN THE VARIABLE 'TEMP'

210 CARDNO<SHUFFLE)=CARDNO<COUNT)! TRANS
FER THE CARD FROM LOCATION 'COUNT' TO 'S

HUFFLE'

220 CARDNO(COUNT>=TEMP ! PLACE THE CARD

REMOVED FROM 'SHUFFLE' INTO LOCATION 'CO

UNT'

230 NEXT COUNT

240 REM PRINT THE FIRST 5 CARDS IN THE S

HUFFLED DECK

250 CALL CLEAR

260 FOR C0UNT=1 TO 5

270 REM GET CARD NUMBER INTO TWO SEPARAT
E VARIABLES

280 CRNTNO==CARDNO< COUNT) i t CARDPOS=CARDN

0(COUNT)

290 REM ADJUST 'CARDPOS' UNTIL IT POINTS

AT CORRECT LOCATION IN 'CARDNAME*'

300 IF CARDP0SM3 THEN CARDP0S=CARDP0S~1

3 it GOTO 300

310 IF CARDP0S=10 THEN PRINT •1" 5 ! NECES

SARY AS 'CARDPOS' CAN ONLY POINT AT THE
'0'

320 REM PRINT THE ONE CHARACTER CODE PER

'CARDPOS' OF 'CARDNAME*' <THE VALUE OF

THE CARD)

330 PRINT SEG*(CARDNAME*yCARDPOS>l)»» "J

75

340 IF CRNTN0M3 THEN 360 ! IT'S NOT A D

IAMOND

350 PRINT "DIAMOND" it GOTO 420

360 IF CRNTN0>26 THEN 380 ! IT'S NOT A H

EART

370 PRINT "HEART" it GOTO 420

380 IF CRNTN0>39 THEN 410 ! IT'S NOT A S

PADE

390 PRINT "SPADE" ti GOTO 420

400 REM IT IS A CLUB

410 PRINT "CLUB"

420 NEXT COUNT

430 END

shuffle the cards. We want to start with a full

deck, so make COUNT equal to 52 and count
backwards.

Line 180 picks one of the cards. The computer will
be allowed to choose one number from one to the

value of COUNT. The first time that the computer
executes this line it can choose any of the 52
cards. The second time 51, the third time 50, and
so on.

Line 200 places the card that the computer picked in
a temporary location. We will call this location
TEMP.

Line 210 takes the card at the bottom of the pile and
places it in the location that we just removed a
card from. COUNT will always represent the
bottom of the pile. The first time the card is taken
from location 52, the second time 51, the third
time 50, and so on. Since COUNT is always de
creasing, we will not take a card twice.

Line 220 transfers the card from the temporary
location (TEMP) to the bottom of the pile. Again,
COUNT will be decreasing, so the number placed
in the last element of the array cannot be chosen
or replaced once COUNT has decreased.

Line 230 continues the loop until all the cards have
been moved.

Line 250 clears the screen.

Line 260 begins another FOR. .. NEXT loop. This
time we want only the first five cards in the array
printed on the screen.

76

Line 280 takes the value of the COUNT element of

the array and places it into CRNTNO and
CARDPOS variables. CARDPOS will be the let

ter or number of the card.

Line 300 checks the value of CARDPOS. If it is

greater than 13, CARDPOS will be decremented
by 13 until it is less than or equal to 13. The
computer subtracts 13 from the value of
CARDPOS because there are 13 cards in each

suit. Since this value can be any value from 1 to
52, the computer needs to subtract 13 from it
until the number is equal to or less than 13. Then
it will know what the value of the card is.

Line 310 checks the value of CARDPOS again. If it
is 10, the computer will print a one on the screen,
and use a semicolon to hold the cursor there for

the rest of the card. CARDNAME$ can only con
tain one letter or number for each card—the ten

card is the exception to the number/suit pattern.
Line 330 prints the number or letter of the card on

the screen. The SEG$ command takes a letter or
number from CARDNAME$ variable. The value
of CARDPOS is a number from one to 13. This

position in CARDNAME$ contains the corre
sponding number or letter of the card. Since we
only want one number or letter, the number "one"
tells the computer to take only one character from
this string at the CARDPOS position; this
character will be printed on the screen. Use the
semicolon to keep the cursor on that line.

Line 340 checks the value of CRNTNO. This vari
able will indicate what suit should be printed on
the screen. The cards contain four suits, with
thirteen cards in each suit. If the value of
CRNTNO is greater than 13, then the card will
not be a diamond and the computer will go on to
line 360.

Line 350 prints the suit of the card. In this case, a
diamond.

Lines 360-410 continue checking the value of
CRNTNO for the correct suit. When it finds the
suit of the card, it prints that suit on the screen.

Line420continuesthe FOR... NEXTloopuntilall
five cards have been printed on the screen.

Line 160 in this program contains a RAN
DOMIZE command. We will discuss this command
ingreater detail in a later chapter. You maywant to
delete this line from your program, then run it
several times andnote the cards that comeupon the
screen. Each time you run the program without the
RANDOMIZE command, your cards should be the
same. (Talk about a stacked deck!) With the RAN
DOMIZE command, the cards will be different each
time the program is run.

This shuffle routine can be changed to shuffle
the array no matter how many elements it has. It
can also be used in routines that will shuffle words
to be displayed, as in a Spelling program.

77

Chapter 12

Reusing Part of the Program

In Chapter 10 we discussed routines that were used
selectively by the program. These routines could
be used more than once, but only after the entire
routine was completed and the program had dis
played the menu. What happens ifwe have a routine
used by several parts of the same program? If this
routine will be used by the main part of the pro
gram, and we expect to come back to the same part
of the program that we left, we will need some way
to keep track of where we are and where we are
going. You could use a series of IF . . . THEN
statements or list the routine in the program
wherever you need it, but each of these methods
wastes time and memory.

USING A SUBROUTINE

GOSUB . . . RETURN

The best way to handle a routine that you will
call often is to replace the multiple copies of the
routine with one subroutine. A subroutine is part of
the program that can be used at any time in the
program. When the computer finishes with the sub

78

routine it returns to the part of the program that it
came from. One example is a timing loop. Youwill
often use the same timing loop at several points in
your program. You could write the timing routine
once and use it as a subroutine from any point in
your program. If, for example, you had a routine
that played a certain melody, and you wanted to use
that routine several times in your program, it would
save a good amount of work if you made that music
routine a subroutine.

When the computer finds a GOSUB command,
it remembers the line number by placing it in an
area of memory called a stack. It then goes to the
line number that appears after GOSUB. It executes
the lines in the subroutine until it encounters a

RETURN command. This command tells the com

puter to go back to the line it came from and con
tinue with the program. GOSUB is used in Listing
12-1 (flowcharted in Fig. 12-1).

Listing 12-1

Line 140 uses the OPTION BASE command. This

c Start

Set aside

memory for
variable

array

Put number

of days for
each month

into array

i

/Display /
message /

Use music

subroutine

Use music

subroutine

Fig. 12-1. Flowchart for Listing 12-1 Days.

i
Use music

subroutine

Get number

for j
year

Get number

of days
for the month

Add to

total days

Add this

months

days

Use music

subroutine

Display
total number;

ofdays /L
c End j

Add one

more day

Music

subroutine

Calculate
tone

Return

79

Listing 12-1

80

100 REM LISTING 12-1

110 REM BAYS

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 REM SET UP ARRAY FOR DAYS IN EACH MO

NTH - DON'T USE ARRAY ELEMENT 0
140 OPTION BASE 1 it DIM DAYS(12)

150 FOR C0UNT=1 TO 12 ti READ DAYS(COUNT

)it NEXT COUNT

160 DATA 31»28»3i»30»31»30»31>31»30»3i»3

0*31

170 DISPLAY AT(4yl)ERASE ALL J"THIS IS A

DEMONSTRATION OF ASUBROUTINE"

180 REM USE SUBROUTINE TO PLAY A SCALE X

THEN CONTINUE PROGRAM AT NEXT LINE

190 GOSUB 370

200 DISPLAY AT(BkI)t"PLEASE ENTER TODAY'

S DATE"

210 DISPLAY AT(10 y1)t"MONTH (NUMBER ONLY
) ?" it ACCEPT AT(l()y24)BEEP UALIDATE(DI
GIT)SIZE(2){MONTH it IF M0NTH<1 OR MONTH

>12 THEN 210

220 REM USE SUBROUTINE AGAIN CONTINUING

PROGRAM AT NEXT LINE

230 GOSUB 370

240 DISPLAY AT(12 y1):"DATE (1-31) ?" it
ACCEPT AT(12y24)BEEP VALIDATE (DIGIT) SIZE

(2)IDATE

250 IF DATE>DAYS(MONTH)THEN 240

260 REM USE SUBROUTINE AGAIN THEN CONTIN

UE PROGRAM ON SAME LINE BUT NEXT STATEME

NT

270 GOSUB 370 {i DISPLAY AT(14y1){"YEAR"

{{ ACCEPT AT(14*22)BEEP VALIDATE(DIGIT)

SIZE(4){YEAR

280 IF M0NTH=1 THEN 330

290 FOR PAST=1 TO MONTH-1

300 TOTALDAYS=TOTALDAYS+DAYS(PAST)

310 NEXT PAST

320 IF YEAR/4=: INT(YEAR/4) THEN IF M0NTH>2

THEN TOTALDAYS^TOTALDAYSil ! CHECK FOR

LEAP YEAR

330 TOTALDAYS=TOTALDAYS+DATE

340 GOSUB 370 it DISPLAY AT(20y1>{"TODAY

IS THE"yTOTALDAYSy"th DAY OF" {{ DISPLA

Y AT (2.1. >i):"THE YEAR*"

350 END ! DON'T LET THE

THE SUBROUTINE

360 REM MUSIC SUBROUTINE

370 FOR T0NE=300 TO 400 STEP' 10

380 CALL SOUND(250*TONE*0)

390 NEXT TONE

400 RETURN ! GO BACK TO THE LINE YOU CAM

E FROM

PROGRAM RUN INTO

statement will use only the elements one to 12 in
the DAYS array. Without this command you could
use the zero element of the DAYS array. This line
also sets aside 12 locations for use by the DAYS
variable.

Line 150 contains a FOR . . . NEXT loop to READ
the number of days in each month into the DAYS
array.

Line 160 contains the number of days for each
month of the year.

Line 170 erases the screen and prints a short mes
sage.

Line 190 contains the GOSUB command. The com

puter is directed to line 370. It will know that it
should come back to this point after it completes
the subroutine.

Line 200 prints a message on the screen. You are
asked to enter today's date.

Line 210 asks you to enter the number of the cur
rent month and stores it in the MONTH variable.

The VALIDATE option accepts only number keys
and the SIZE option limits the number of digits
that can be entered to two. The number entered is

checked to make sure that it is a valid month. If it

isn't, the line will repeat until a valid number is
entered.

Line 230 directs the computer to the same sub
routine that it used before. The computer will
return to this point in the program.

Line 240 prints the next question on the screen.
This time you are asked to enter today's date.
Again the VALIDATE option is used to accept
only numbers, and the SIZE option limits the

number of digits to two. This entry will be stored
in the DATE variable.

Line 250 checks the date entered against the
number of days that the month could legally have.

Line 270 uses the same subroutine that has been
used in previous program statements. This time,
when the computer returns from the subroutine,
it will not go on to the next program, but will
continue with this line and ask you to enter the
current year. The SIZE option in this line is set to
four so that the entire number of the year can be
entered (1984 instead of 84). The year will be
stored in the YEAR variable.

Line 280 checks the value of the MONTH variable.
Ifthevalue is aone, thenthe program willgoonto
line 330since it does not haveto addanydaysto
the number of days in January.

Lines 290-310 total the number of days of each
month that has passed. The program stops one
month before the month that has been entered

because all the days of the current month have not
passed.

Line320checks for a leap year by dividing the year
byfour; ifthe result is a wholenumber, it is a leap
year. If it is a leap year, the statement checks to
see if we have passed February. If the month
entered is greater than two, the computer will add
one to the total number of days.

Line 330 adds the value of DATE to the total
number of days that have passed.

Line340uses the subroutinein line370, then prints
which day of the year today is.

Line350ends the program. It is very important to

81

Startc Cup
subroutine

Set for

random

numbers

EZlClear 7
screen and /

display menu/

ZGet a number /
fromone /
to three /

Fig. 12-2. Flowchart for Listing 12-2 Guess.

have this line in this program. Without it, the
computer would continue into the music sub
routine.

Lines 370-400 contain the program lines for the
music subroutine. The computer will begin with
the value 300 and count by 10s to 400. Each value
is used in the SOUND command. The tone that

you hear depends on the value of TONE. Once the

82

Display
message

Neither

sound has been made, the computer returns to the
program line that it left.

A variable that is used in the main program
should not be used in any subroutine unless you
know for certain that you will not need the currently
stored value of that variable later in the program. If
you are using a variable for a counter within a

subroutine, it should be reset to zero when you
enter the subroutine. If it is not reset each time, it
will continue to count starting at the last value that
it held.

ON . . . GOSUB/RETURN

As you did with the ON . . . GOTO command,
you can selectively branch to a subroutine from the

Yes

Show

coin

Display
"very
good"

Ask to

play
again

Return

main program with an ON . . . GOSUB command,
where the subroutine entered is determined by the
value of a variable. The computer remembers the
line that the GOSUB was on, executes the sub
routine, and returns to the next program line.

Be sure that all subroutines end with a RE
TURN statement. If the RETURN statement is not
there, the computer will continue with the lines

83

Listing 12-2

84

100 REM LISTING 12-2

110 REM GUESS

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 RANDOMIZE ! PICK NEW RANDOM NUMBERS

140 REM PUT UP MENU * GET SELECTION

150 DISPLAY AT(10i-l)ERASE ALLS "PLEASE CH

OOSE A UNIT (1~3)B ti DISPLAY AT<12»10)J

•1) CUPS" JJ DISPLAY AT<14ylO>!"2> HURKY
a

160 DISPLAY AT(16ylO>J"3> FLIP" tt ACCEP

T AT(10y28)BEEP VALIDATE("123")SIZE<1)JU

NIT

170 CALL CLEAR ! REMOVE THE MENU

180 REM 60 PERFORM UNIT PICKED AND THEN

CONTINUE AT NEXT LINE

190 ON UNIT GOSUB 220y530*960

200 GOTO 150 ! GO BACK TO MENU

210 REM CUPS INSTRUCTIONS

220 PRINT "HERE ARE 3 CUPS* I WILL"J"PL

ACE A BALL UNDER ONE OF"!"THEM* AND MIX

THEM UP. YOU WILL TELL ME WHERE THE BAL

L IS."

230 PRINT {"READY??? GOOD...LET'S GO!!"*

240 REM CREATE CHARACTERS TO FORM CUPS %

BALL FROM UNUSED CHARACTER CODES

250 CALL CHAR <128»aFFFFCOCOCOCOCOCO")tt

CALL CHAR<129y"FFFF")j: CALL CHAR<130y"F

FFF030303030303")it CALL CHAR(131,"3C7EF

FFFFFFF7E3C")

260 CUP*=CHR*(128)8CHR*<129)SCHR* <130)tt

BALL*=CHR$<131>:♦* ERASE**" " tt TIMEA

DJ=15

270 REM DISPLAY 3 CUPS IN A ROW

280 DISPLAY AT(15*8)JCUP* it DISPLAY AT<

15 » 13 > JCUP* J t DISPLAY AT <15 y18)JCUP*

290 REM ERASE 1 CUP* REDISPLAY IT i ROW

HIGHERy PUT BALL ON ROW BELOW RAISED CUP

y X DELAY A FEW SECONDS

300 DISPLAY AT(15y8)SIZE(3)JERASE* H DI

SPLAY AT<14y8>:CUP* it DISPLAY AT(15y9)S

IZE(l)JBALL*

310 TIME=200*TIMEADJ it GOSUB 1360 ! GIV

E TIME TO READ INSTRUCTIONS continued onpage 86

following the subroutine until it comes to the end of
the program, finds another return, or crashes. Also,
if you place your subroutines at the end of the
program, be sure an END statement is between the
end of the program and the subroutines. If the pro
gram does not end, it will continue into the sub
routine until it finds the RETURN statement, and
then crash with an error message. The program
flowcharted in Fig. 12-2 and listed in Listing 12-2
demonstrates the use of selective subroutines.

Listing 12-2

Line 130 uses the RANDOMIZE command so that

the computer will choose different numbers every
time it's asked to pick a number.

Lines 150-160 display a menu on the screen. In this
program you can choose from three different
units. The following sequence of events occurs
before the choice is made: the computer erases
the entire screen, displays the unit names and
numbers, beeps, clears one space for the entry,
and then waits for a number to be entered. Only
the numbers 1, 2, and 3 will be accepted.

Line 170 clears the screen.
Line 190 directs the computer to the correct sub

routine. The subroutine that it will go to is deter
mined by the value of the UNIT variable.

Line 200 sends the computer back to line 150 to
place the menu on the screen again. When the
program returns from one of the three selected
subroutines, it will return to this line. The GOTO
command is necessary to keep the computer from
continuing into the first subroutine of the pro
gram.

Lines 220-230 print the instructions on the screen.
Be sure that all 16 colons in line 230 are entered.

These colons move the instructions up to the top
of the screen.

Line 250 uses the CHAR command to create new

characters (depicted in Fig. 12-3). These charac
ters will be the cup and the ball. We will cover the
procedures for creating new character sets in de
tail in a later chapter. In the CHAR command the
letters after the comma tell the computer how the
characters should look. If these letters are not

entered correctly, your cups may not look right.

8 4 2 1 8 4 2 1

FF

FF

CO

CO

CO

CO

CO

CO

8 4 2 1 8 4 2 1

Iff
FF

8 4

Character

#128

2 18 4 2 1
8 4

Character

#129

2 1

^Hff 3C

7E

re

•03 ^^^^^•ff
• 03 ^^^^^^H^
• 03 ^^^^^^H,,
^•03
1^03 7E

3C
Character

#130
Character

#131

Fig. 12-3. Characters used in cups routine Listing 12-2.

Line 260 places the new characters in CUP$ and
BALL$. It is mucheasier and smoother to print a
string on the screen. The string ERASE$ is three
spaces. When we want to remove a cup from the
screen, we will print ERASE$ over the location of
the cup. The TIMEADJ variable is set to 15. We
will use this variable for timing routines.

Line 280 prints all three cups on the screen using
the DISPLAY AT command. At first, all three
cups will be on the same row or line.

Line 300 uses the DISPLAY AT command to erase
the first cup and reprint it at a slightly higher
location on the screen. BALL$ is printed under
the cup. When the computer runs this line, it
gives the illusion of picking up the cup and show
ing the ball under it.

Line310sets the TIME variable by multiplying200
by the value of TIMEADJ. The computer is then
directed to the subroutine that begins with line
1360. This subroutine is the timing routine and
will be used by other units in this program. This
subroutine is used to give the user enough time to
read the instructions that are on the screen.

85

86

320 REM PUT CUP OVER BALL - ONLY CUP SHO

US

330 DISPLAY AT(14y8)J ERASE* it DISPLAY A

T(15y8)JCUP*

340 HIDE=INT<RND*3>+1 ! GET NUMBER WHERE

TO HIDE BALL

350 REM ILLUSION OF MOVING THE CUPS

360 FOR MOVEMENTS TO 10

370 DISPLAY AT(15y8):ERASE*

380 DISPLAY AT<15y8)tCUP* H DISPLAY AT<

15yl3)JCUP* :: DISPLAY AT<15yl8)JCUP*

390 NEXT MOVEMENT

400 REM ASK FOR GUESS

410 DISPLAY AT(21yl)J"WHERE IS THE BALL

(Iy2y3)?a H ACCEPT AT<21y28)BEEP VALIDA

TE("123b)SIZE<D:GUESS

420 REM DETERMINE IF GUESS IS CORRECT &

TELL PLAYER

430 IF GUESS=HIDE THEN DISPLAY AT<22y7>:

"THAT'S RIGHT!!!'' H GOTO 460

440 DISPLAY AT(22y5)t•IT WAS UNDER CUP"y

HIDE

450 REM RAISE APPROPRIATE CUP % SHOW BAL

L UNDERNEATH

460 DISPLAY AT<15y8+<HIDE~l)*5>SIZE<3)SE

RASE* H DISPLAY AT(14»8+<HIDE-1>*5)JCUP

* tt DISPLAY AT<15y9+(HIDE-l)*5)SIZE<3)l

BALL*

470 REM FIND OUT IF PLAYER WANTS TO PLAY

AGAIN - ONLY ACCEPT A 'Y' OR 'N' ANSWER

480 DISPLAY AT<24y1)t"WANT TO PLAY AGAIN

(Y/N) ?" it ACCEPT AT<24y28)BEEP VALIDA

TE< °YN">SIZE<1> JANSWER* H IF ANSWER*==""

THEN 480

490 IF ANSWER*="N" THEN RETURN ! GO BACK

TO MENU

500 REM ERASE OLD GAME BEFORE GOING BACK

TO PLAY IT AGAIN - LEAVE INSTRUCTIONS

510 FOR R0W=14 TO 24 H DISPLAY AT<ROWyl

)•$• " H NEXT ROW JJ TIMEADJ=1 Jt GOTO 2
80

520 REM HURKY INSTRUCTIONS

530 DISPLAY AT(i»1)J"HURKY IS VERY SHY.

HE LIVESIN A 10 X 10 GRID. TRY TO" it

continued on page 88

Line 330uses the ERASE$ again to remove the first
cup from the screen. The cup is then reprinted in
its original position, covering the ball.

Line 340 chooses a random number from one to
three to select the cup that the ball will be placed
under.

Lines 360-390 create the illusion that the cupsare
moving on the screen. The computer erases the
cups from the screen, then reprints them. The
speed at which the computer erases and reprints
the cups gives the viewer the illusion that the
cups are moving on the screen. The cups are
erased and reprinted ten times.

Line 410asksthe user toguesswhich cupthe ball is
under. The computer will only accept the num
bers one, two, or three. This entry will be stored
in the GUESS variable.

Line 430 checks the entry against the number that
the computer picked. If both numbers are the
same, the computer will congratulate the user and
go on to line 460.

Line 440 will tell the user where the ball was if the
guess was wrong.

Line 460 erases the cup that the ball was under,
reprints it in a slightly higher location on the
screen, and prints the ball under the cup. This can
be done with one formula. The cups were origi
nally printed five columns apart on the screen.
The first cup is in column8, the second in 13, and
the third in 18. To find out which cup should be
erased, we subtract one from the number of the

cup that will be raised. This number is stored in
the HIDE variable. Because the cups are five
columns apart, we multiply 5 times the new
number. Then 8 is added to the number because
the first cup is 8 columns fromthe left edge ofthe
screen. If the cups were not placed the same
number of rows apart, we could not use such a
simpleformula to determine where the three cups
were on the screen.

Line 480 asks the user to play again. Only the
letters "Y" and "N" will be accepted by the com
puter. The computer will remain at this line until a
"Y" or "N" is entered.

Line 490 checks the entry for the letter "N." If the
"N" was entered, the computer returns to the

main menu.

Line 510 is used when a "Y" is entered. The com
puter does not have to check the entry for a "Y"
because only the two letters, "Y" and "N," were
accepted in the first place. This line erases the
cups from the screen, changes the value of
TIMEADJ to one anddirects the computerto line
280. This game will continue until the user enters
an "N," or presses the FCTN and 4 keys.

Lines 530-550 begin the hurky unit. These three
lines print the directions on the screen.

Lines 570-580change some of the characters on the
character set. DOT$ contains an entire row of
dots. The RPT$command tells the computerthat
we want to place character number 131 (Fig. 12-4)
followed by a space in DOT$ 10 times. HURKY$
contains the new character that represents
HURKY. The character that represents which
position was chosen is in POINTER$.

Line600picksa hidingplace for HURKY. Weneed
to choose both a row and a column. The column
that HURKY will be hiding in is stored in the
HURKCOL variable. The row is stored in the
HURKROW variable. The computer will pick a

8 4 2 18 4 2 1 8 4 2 18 4 2 1

Character

#131
8 4 2 18 4 2 1

Character
#133

Character
#132

Fig. 12-4. Characters used in hurky Listing 12-2.

87

88

DISPLAY AT(3yl>:°FIND 'HURKY7 BY ENTERIN

G THECOLUMN AND ROW"

540 DISPLAY AT<4y16):"NUMBER WHERE" H D

ISPLAY AT(5yl)J"Y0U THINK HE IS - LIKE T

HIS 3y4. IF YOU DID NOT GUESS"

550 DISPLAY AT<7y1)i'WHERE 'HURKY' ISy

YOU WILL BE TOLD WHICH WAY TO GO."

560 REM CREATE PLAYING CHARACTERS FROM U

NUSED CHARACTER CODES

570 CALL CHAR'131yB387CFEFEFE7C38">!J DO

T*=RPT*'CHR*<131>&" "?10)it CALL CHAR(13

2y"002838546C4438")tt HURKY*«CHR$<132)

580 CALL CHAR(133y"0018187E7E1818")J? PO

INTER*=CHR*U33>

590 REM PICK A HIDING PLACE FOR HURKY X

PLAYERS STARTING LOCATION

600 HURKC0L=INT(RND*10)fl H HURKROW=INT

<RND*10)+1 it 0LDC0L=1 it OLDROW-1

610 REM PUT UP GRID WITH ROW NUMBERS

620 C0LADJ=7 ?: FOR R0W=11 TO 20 it DISP

LAY AT(R0WyC0LADJ~4> J11-(ROW-10) ? t DISPL

AY AT(ROWyCOLADJ)J DOT* it NEXT ROW

630 REM PUT IN COLUMN NUMBERS

640 C0UNT=1 it FOR C0L=6 TO 24 STEP 2 tt

DISPLAY AT <ROW yCOD? COUNT it COUNT=COUN

T+l it NEXT COL

650 REM SHOW NORTHy SOUTHy EASTy X WEST

DIRECTIONS

660 DISPLAY AT<10y16)}"N" it DISPLAY AT(

15y2)SIZE(l>:"W" H DISPLAY AT<15y27)J"E

8 J: DISPLAY AT(R0W+lyl6):BS"

670 REM ERASE BOTTOM 2 ROWS

680 DISPLAY AT<23yl>:B • it DISPLAY AT(2
4yl):'' •

690 REM USE A STRING TO GET 2 VALUES WIT

H 1 ACCEPT STATEMENT

700 DISPLAY AT<24y5):"WHERE AM I HIDING?

8 H ACCEPT AT(24y24)BEEP VALIDATE'"0123
456789y")SIZE(5)JGUESS*

710 REM BREAK THE STRING DOWN INTO 2 NUM
ERIC VALUES

720 C0MMA=P0S(GUESS*y8y"yl):j COLGUESS=V

AL(SEG*<GUESS*y1y COMMA-!))J i ROWGUESS=VA

L(SEG* <GUESS* yCOMMA+1y 2))

continued on page 90

number between one and ten for both the row and
the column because the grid is made up of ten
rows and ten columns. The OLDCOL and OLD-
ROW variables are both set to one.

Line 620 prints the grid on the screen. The COL-
ADJ variable is set to seven. This is the position
of the first dot of the grid. The FOR . . . NEXT
loop counts from 11 to 20. These are the rows that
the dots will be printed on. The first DISPLAY AT
command finds the column that the row number

will be printed in. Four is subtracted from the
value of COLADJ. Then, ten is subtracted from
the value of ROW and this difference is subtracted
from 11. The resulting number is the actual row
number. The reason for all this subtraction is, the
FOR. . . NEXT loop is counting forward, but the
top row of the grid is the 10th row, the one under
it is the 9th, the next 8th, and so on. So, we have
to subtract the number that it is (the first row is
one) from 11 to arrive at the ,row number that
should be printed on the screen. The next DIS
PLAYAT command prints the entire row of dots
on the screen. The loop continues until the entire
grid is on the screen.

Line 640 prints the column numbers across the
bottom of the grid. The COUNT variable is the
number of the column. The FOR. . . NEXT loop
COL begins with the 6th column and ends with the
24th. The loop steps by two, using only the
even-numbered columns because there is a space
between each dot. One is added to COUNT to

keep the column numbers accurate.
Line 660 places the points of the grid, N, S, E, and

W, on the screen.
Line 680 erases the last two rows of the screen.

These two rows are used to accept numbers from
the user and display the clues for the next guess.

Line 700 asks the user to enter the column and row
of the location of HURKY. The column number is
entered first, then a comma, then the row column.
The computer stores this entry in the GUESS$
variable.

Line 720 takes GUESS$ and removes the column
number and the row number. First the computer
finds the comma with the POS command. The

COMMA variable will hold the position of the

comma in GUESS$. The COLGUESS variable
will hold the number of the column entered. This
number is obtained by taking the value of
GUESS$ from the first character to the character
just before the comma. ROWGUESS is the row
that has been entered. The computer finds this
value by taking the value of the string from the
position just after the comma to the end of the
string. The maximum number of characters is
two.

Line 740 tests the ROWGUESS and COLGUESS
variables to make sure that their values are be
tween one and ten. If either variable is less than

one or greater than ten, the computer will be sent
to line 700 to wait for another set of coordinates.

Line 760 places the pointer at the column and row
position that was entered in line 700. First the old
pointer (if there is one) is erased and replaced
with a dot. The first time an entry is made, there
is nodot to replace. Onevery moveafter the first,
the pointer will be replaced with a dot. Then the
pointer is printed at the new location.

Line 780 compares the column guessed with the
column that HURKY is in and the row that was
guessed with the row that HURKY is in. If, and
only if, both the row and column match the com
puter will be directed to line 890. HURKY will
be found when both the row and column guessed
match the row and column that HURKY is in.

Line800beginsthe lines that give the clues to help
find HURKY. In this line the word "GO" is printed
on the screen. The string variable DIRECTIONS
is cleared. This is where the clue will be stored.

Line 810 checks the row that HURKY is in against
the row that was guessed. If HURKY's row is less
than the guessed row, then the player will have to
guess a smaller number so the word "SOUTH' is
stored in DIRECTIONS.

Line 820compares the rows again. This time, if the
row that HURKY is in is greater than the row
guessed, the player will have to try a larger
number, so "NORTH" is stored in the string vari
able DIRECTIONS. If the row guessed is the
same row that HURKY is in, neither "NORTH"
nor "SOUTH" will be stored in DIRECTIONS.

Line 820 compares the rows again. This time, if the

89

90

730 REM IF ENTERED VALUES ARE ILLEGAL GO

BACK X GET NEW VALUES
740 IF ROWGUESS<1 OR C0LGUESS<1 OR ROWGU

ESS>10 OR COLGUESSMO THEN 700

750 REM PLACE DOT AT OLD LOCATION AND CR

OSS AT NEW LOCATION

760 DISPLAY AT<21-0LDR0W*0LDC0L*2+5)SIZE

(1)JCHR*<131)tt DISPLAY AT<13-(ROWGUESS-

8),C0LGUESS*2+5)SIZE<1)JPOINTER*

770 REM IF PLAYER'S GUESS IS CORRECT GO

TO MESSAGE

780 IF COLGUESS=HURKCOL AND ROWGUESS=HUR

KROW THEN 890

790 REM PLAYER'S GUESS IS INCORRECT GIVE

APPROPRIATE DIRECTIONS

800 DISPLAY AT<23»i2>:"G0" H DIRECTION*

810 IF HURKROW<ROWGUESS THEN DIRECTION**

"SOUTH"

820 IF HURKROW>ROWGUESS THEN DIRECTION**

"NORTH"

830 IF HURKCQL<COLGUESS THEN DIRECTION**

DIRECTION**"WEST"

840 IF HURKCOL>COLGUESS THEN DIRECTION**

DIRECTION*8"EAST"

850 DISPLAY AT<23»15){DIRECTION* H TIME

*2000 H GOSUB 1360

860 REM REPLACE OLD PLAYER'S LOCATION WI

TH CURRENT GUESS S GO BACK & TRY AGAIN

870 OLDCOL=COLGUESS tt OLDROW*ROWGUESS t

t GOTO 700

880 REM FLASH THE MESSAGE AND HURKY

890 TIME=200 it FOR C0UNT=1 TO 5 J J DISP

LAY AT(23y7)J"YOU FOUND MEN!" tt DISPLA

Y AT <21-HURKROW »HURKC0L*2+5)SIZE(1)tHURK

Y* it GOSUB 1360

900 DISPLAY AT<23*5)?" " H DISPLAY AT(2

1-HURKROW9HURKC0L*2+5>SIZE(1)tERASE* t t

GOSUB 1360 it NEXT COUNT

910 REM LEAVE HURKY ON SCREEN

920 DISPLAY AT<21-HURKR0WyHURKC0L*2+5)SI

ZE(1>JHURKY*

930 REM FIND OUT IF PLAYER WANTS TO PLAY

AGAIN & IF S0» REPEAT GAME? OTHERWISE»

continued on page 92

row that HURKY is in is greater than the row
guessed, the player will have to try a larger
number, so "NORTH" is stored in the string vari
able DIRECTION$. If the row guessed is the
same row that HURKY is in, neither "NORTH"
nor "SOUTH" will be stored in DIRECTION$.

Line 830 compares the column guessed with the
column that HURKY is in. If the column that

HURKY is in is less than the column that was

guessed, then the player will have to choose a
smaller number. The word "WEST" is added to

the direction that is in DIRECTION^ This way,
the player can be directed to go Northwest or
Southwest.

Line 840 compares the columns to see if the player
should move to the East. If this is the case, the
direction "EAST" will be added to the direction in

DIRECTION$. If the column guessed is the same
as the column that HURKY is in, neither "WEST"
nor "EAST" will be added to the DIRECTIONS

Line 850 prints the clue held in DIRECTION$ on
the screen. The computer will use the same tim
ing loop in line 1360 that it used in the last unit.

Line 870 places the number of the column that the
pointer is in in the OLDCOL variable and the row
that the pointer is in in the OLDROW variable.
Now it will know where to place the dot after the
next guess is made. The computer is sent to line
700 to wait for another guess.

Lines 890-900 begin the end of the program. The
computer is directed to this line if the player
guesses both the row and the column that HURKY
is in. The TIME variable is set to 200 for a fast

timing loop. The FOR... NEXT loop counts from
one to five. Near the bottom of the screen "YOU

FOUND ME!!!" is displayed. At the location
where HURKY has been hiding, "HURKY" is
printed. The message and "HURKY" is printed
and erased five times.

Line 920 prints "HURKY" on the screen at the
correct location.

Line 940 asks to play again. Only the letters "Y"and
"N" can be accepted by the computer. This time,
after the computer checks ANSWER$for a "Y," it
will return if an "N" or nothing is entered. If the

-"Y" is entered, the computer will go to line 600 for

another game.
Lines 960-970 begin the third module—FLIP. The

instructions are printed on the screen.
Lines 990-1020 create the characters that will be

used in this unit. There are 11 new characters

(Fig. 12-5). CH$ will contain the characters that
display the edge or side view of the coin.

Line 1030 places the characters that make up the
top part of the coin in CT$, the bottom part of the
coin in CB$, the middle of the coin on the heads
side in MH$, and the middle of the coin on the tails
side in MT$. By printing these strings on the
screen in the proper order, we will be able to
simulate a coin flipping on the screen.

Line 1040 chooses a random number. The computer
will only pick a one or a two since there are only
two sides to a coin.

Line 1060 sets the TIME variable to five. This

variable is used in the timing loop. The FOR. . .
NEXT loop begins at this line. The coin will flip
five times.

Lines 1070-1130 print the coin in all of its positions.
First the coin will be shown with the "H" for head

on it, then the middle section will be removed and
only the top third and bottom third will be on the
screen. At line 1090, only the side view on the
coin will be on the screen. The top third and
bottom third will be printed again, then the back
or tail side of the coin. This same procedure will
occur one more time until the head is displayed
again and the coin has flipped completely.

Line 1140 continues this loop until the coin has
flipped five times.

Line 1150 prints only the top third and bottom third
of the coin. The computer is then sent to the
timing subroutine.

Line 1170 prints a blank coin on the screen. Now
you have to guess what it is.

Line 1190 asks what is it—heads or tails. The

VALIDATE option will accept only an "H" or a
"T" as your answer. Your guess is stored in
GUESS$. The string is checked to make sure that
a letter was entered. If the string is empty or null,
this line will be repeated.

Line 1210 directs the computer to the correct line
to display the face of the coin. If the "N" variable

91

92

GO BACK TO MENU

940 DISPLAY AT (24 s.1)t"WANT TO PLW AGAIN

<Y/N>?" it ACCEPT AT<24y27)BEEP VALIDAT

E("YN")SIZE(1){ANSWER* H IF ANS ER**"Y"

THEN 600 ELSE RETURN

950 REM FLIP INSTRUCTIONS

960 DISPLAY AT<i»l){"I WILL FLIP A COIN.

YOU" {{ DISPLAY AT(2»1){"MUST GUESS WH

AT IT WILL BE." {{ DISPLAY AT<3»1>{"ENTE

R AN 'H' FOR HEADS -"

970 DISPLAY AT(4»1){"A 'T' FOR TAILS."

980 REM CREATE CHARACTERS TO MAKE UP THE

COIN IN 3 POSITIONS FROM UNUSED CHARACT

ER CODES

990 CALL CHAR(133s-"0000030C10102020" > { {

CALL CHAR<134*"828282FE82828282"){{ CALL

CHAR(135 f"0000C03008080404")

1000 CALL CHAR<136»"4040808080804040"){{

CALL CHAR<137s."0202010101010202B){{ CAL

L CHAR(138>"202010100C03")

1010 CALL CHAR(139y"0404080830C0"){{ CAL

L CHAR(140?"FE1010101010.1.0"){{ CALL CHAR

(14l!»"000000000000C33CB){{ CALL CHAR(142

?"3CC3")

1020 CALL CHAR(143y"0000FFA5A5FF"){{ CH*

=CHR*(143)SCHR*(143)8CHR*(143)

1030 CT**CHR*(133)SCHR*(142)SCHR*(.1.35){{

CB*=CHR*(138)&CHR*(141)XCHR*(139K{ MH*

CHR(136)SCHR*(134)8CHR*(137){{ MT**CHR

(136)8CHR(140)8CHR*(137)

1040 N=INT(RND*2)+1 ! PICK A RANDOM NUMB

ER TO REPRESENT 'HEADS' OR 'TAILS'

1050 REM DISPLAY ILLUSION OF A FLIPPING

COIN

1060 TIME*5 {{ FOR POSITION*! TO 5

1070 DISPLAY AT(10»10){CT* it DISPLAY AT

(11»10){MH* {{ DISPLAY AT(12y10)JCB* {{

GOSUB 1360

1080 DISPLAY AT(10»10){CT* it DISPLAY AT

(lls-lOKCB* {{ DISPLAY AT<12»10){" " {{

GOSUB 1360

1090 DISPLAY AT(10f>10){" " {{ DISPLAY AT

(lls>10){CH* {{ GOSUB 1360

1100 DISPLAY AT<10f10){CT* {{ DISPLAY AT
continued on page 94

8 4 2 18 4 2 1 8 4 2 18 4 2 1 8421 84i

I i ill i i too BillT~BT~l82 I I I I l~

jW03 !••••••—82 fPt»

Character Character Character
#133 #134 #135

8 4 2

#133
1 8 4 2 1

00

"oo

.C0
"30
"08

08

04

"04

Character

#136

8 4 2 18 4 2 1

40

40

80

80

80

80

40

40

Character

#137

8 4 2 18 4 2 1

Character

#140

8 4 2 18 4 _.?__ 1 8 4 2 18 4 2 1

02

FE

10

10

10

10

10

10

Character

8 4 2

#138

1 8 4 2 1

P1 • • • • 1 P
Character

#141
Character

#139

8 4 2 18 4 2 1

3C

C3

00

00

F>

A5

A5

FF

8 4 2 18 4 2 1

iiipi
Character

#142

Fig. 12-5. Characters used in flip Listing 12-2.

Character

#143

00

00

00

00

00

00

C3

3C

93

94

(11,10){CB* {{ DISPLAY AT(12,10){" " {{

GOSUB 1360

1110 DISPLAY AT(10,10){CT* {{ DISPLAY AT

(11,10){MT* {{ DISPLAY AT(12,10){CB* {{

GOSUB 1360

1120 DISPLAY AT(10,10){CT* {{ DISPLAY AT

(11,10){CB* {{ DISPLAY AT(12,10>{" " {{
GOSUB 1360

1130 DISPLAY AT(10,10){" " {{ DISPLAY AT

(llvlOKCH* {{ GOSUB 1360

1140 NEXT POSITION

1150 DISPLAY AT(10,10){CT* {{ DISPLAY AT

(11,10){CB* {{ GOSUB 1360

1160 REM DISPLAY A BLANK COIN ON SCREEN
1170 DISPLAY AT(10,10){CT* {{ DISPLAY AT

(11,10){CHR*(136)«" "&CHR*(137){{ DISPLA
Y AT(12,10){CB*

1180 REM GET PLAYER'S GUESS - ONLY ACCEP

T A 'H' OR 'T'

1190 DISPLAY AT(15,5){"WHAT IS IT (H-T>?
" {{ ACCEPT AT(15,23)BEEP VALIDATE("HT")

SIZE(l){GUESS* {{ IF GUESS**"" THEN 1190

1200 REM GO TO CORRESPONDING LINE BASED
ON NUMBER THAT DETERMINES 'HEAD' OR 'TAI
L'

1210 ON N GOTO 1230,1240

1220 REM DISPLAY APPROPRIATE COIN FACE

1230 DISPLAY AT(10,10){CT* {{ DISPLAY AT
(11,10){MH* {{ DISPLAY AT(12,10){CB* {{

GOTO 1260

1240 DISPLAY AT(10,10){CT* {{ DISPLAY AT
(11,10){MT* {{ DISPLAY AT(12,10){CB*

1250 REM DETERMINE IF GUESS WAS CORRECT
& IF SO, GIVE MESSAGE

1260 IF N=l AND GUESS**"H" THEN 1300

1270 IF N=2 AND GUESS**"T" THEN 1300

1280 REM WRONG GUESS - GO SEE IF PLAYER
WANTS TO TRY AGAIN

1290 GOTO 1310

1300 DISPLAY AT(20,8){"VERY GOOD!!!"

1310 DISPLAY AT(23,1){"WANT TO PLAY AGAI
N (Y/N)?" {{ ACCEPT AT(23,27)BEEP VALIDA
TE("YN")SIZE(1){ANSWER*

1320 REM IF PLAYER WANTS TO PLAY AGAIN,

ERASE OLIi MESSAGE LINES FI RSI- % THEN REP

EAT

1330 IF ANSWER** •Y" THEN DISPLAY AT(15,1
\ 4> h a ♦ ♦
) ♦ ♦ ♦ DISPLAY AT(20,8){" " ♦ *

* * DISPLAY

AT(23,1)
* a a ♦ •» GOTO 1040

1340 RETURN ! PLAYER WANTS TO GO BACK TO

MENU

1350 REM TIMING SUBROUTINE

1360 FOR DELAY*1 TO TIME {{ NEXT DELAY {

{ RETURN

is equal to one, the computer will be directed to
line 1230; otherwise it will be directed to line
1240.

Line 1230prints the "H" on the coin—if"N" is aone
then heads was chosen. The program continues
with line 1260.

Line 1240 prints the "T" for tails on the screen.
Line 1260 checks to see if the computer picked

heads ("N" is equal to 1) and the player picked
heads. If the player did, the computer is directed
to line 1300.

Line 1270 checks to see if both the computer and
the player chose tails. If both did, the computer
will go on to line 1300. l

Line 1290 sends the computer to line 1310, skip
ping line 1300 so that the player will not be con
gratulated.

Line 1300 congratulates the player for making the
correct guess.

Line 1310 asks to play again. Only the letters "Y"
and "N" will be accepted and stored in AN-
SWER$.

Line 1330 checks to see if ANSWER$ contains a
"Y." If it does, the messages will be erased from
the screen and the computer will be directed to
line 1040 for another flip.

Line 1340 sends the computer back to the main
menu. It will return to the main menu if the N key
was pressed, or if the ENTER key was pressed
without entering any other letter.

Line 1360 is the timing subroutine that had been
used by all three units in this program.

CALLING A SUBROUTINE

CALL

Throughout the last program (Listing 12-2)
and in several other programs in this book, the
CALL command has been used. It is never used

alone. Another word or command follows it. The

CALL command uses subroutines that are built into

the TI-99/4A. The CALL CLEAR command directs

the computer to the built-in subroutine that clears
the screen and then returns to the main program.
Other subroutines used were CALL KEY to find out

what key has been pressed and CALL CHAR to
redefine a character. There are many more sub
routines like these built into the TI-99/4A, and we
will examine them closely in other chapters.

The CALL command is not restricted to the

built-in subroutines. You can write your own sub
routines that can be called by name, just like the
subroutines that Tl developed. In the next program
we will develop two subroutines that will be called
from the main program.

You may be wondering why you would want to
use the CALL command when a GOSUB seems to

do the same thing. There are a few differences
between a subroutine that is used with the GOSUB

command. The variables are used in the main pro
gram. With the CALL command, the same variable
can be used in the main program and in the sub
routine. The computer will remember what that
variable's value should be in the main program and

95

keep it separate from the variable's value in the DEVELOPING A SUBROUTINE
subroutine.

The subroutine that you develop to use with SUB
the CALL command can be saved to disk under its In order to use the CALL command, sub-
own name, then mergedwith or joined into the main routines must be developed. How will the computer
program when needed. know where this subroutine is when you ask for it?

Values can also be passed and used in a sub- Listing 12-3 is a subroutine that will be used in a
routine that is called with the CALL command. future program. If you are using a cassette recorder

Listing 12-3

96

980 REM LISTING 12-3

990 REM BY A.R.SCHREIBER FOR TAB BOOKS

1000 REM SIMULATED SCROLL

1010 REM THE "CALL" COMMAND SHOULD PASS

3 VARIABLES TO THIS SUB PROGRAM AS FOLLO
WSJ

1020 REM "STARTROW" IS THE TOP ROW WHERE

INFORMATION CAN BE PRINTED AND IS ASSIG

NED TO "ROWREF" IN THIS SUB PROGRAM, "S

TARTROW'S" VALUE IS

1030 REM NOT ALTERED♦ "COUNT" IS USED I

N BOTH PROGRAMS AS THE ITEM NUMBER AND A

RRAY ELEMENT NUMBER. IT'S VALUE IS NOT

CHANGED BY THE SUB

1040 REM PROGRAM. "LIST*<>" IS THE ARRA

Y OF ALL THE ITEMS TYPED. IT TOO* IS NO

T ALTERED BY THIS SUB PROGRAM.

1050 REM "NEWRGW" IS THE ONLY COMMON VAR
IABLE THAT THE SUB PROGRAM DOES CHANGE.

HOWEVERo A VARIABLE BY THE SAME NAME IN

THE MAIN PROGRAM

1060 REM WILL BE UNAFFECTED BY THIS CHAN

GE IN THE SUB PROGRAM. VARIABLES USED I

N A SUB PROGRAM ARE TREATED SEPARATELY U

NLESS NAMED IN THE

.1.070 REM CALL OPTION LIST.

1080 SUB SCROLL <ROWREF tCOUNT *LIST*())

1090 FOR NEWROW=ROWREF TO 23

1100 DISPLAY AT<NEWROW?COL)tSTR*<C0UNT--2

3+NEWROW)>°."

1110 DISPLAY AT<NEWROW»COL+A>:LIST*(COUN

T-i7+<NEWR0W-6>>

1120 NEXT NEWROW

1130 SUBEND

for programstorage, youmaywant to wait untilthe
entire program is listed before entering this sub
routine. Ifyouare using the disk, youcan enter this
programand save it to the disk with the MERGE
option.

Listing 12-3

Lines 1000-1070 explain how this subroutine is
used. There are three values that will be passed
to this subroutine. This subroutine needs to know

where the top row ofthe screen is. This is not the
actual top screen row, but the place on the screen
where the scroll will occur. All the information
printed on the screen above this row will remain
on the screen no matter how many times it is
scrolled. It also needs to know the last number of
the item on the screen and be given access to the
LIST$ array.

Line 1080 names this subroutine. The format for a
subroutine that uses the CALL command is very
simple.

SUB {name} (any variables)

The line that contains the SUB command must be
immediately followed by the name of the sub
routine. The computer cannot find the subroutine
if it is not named in the program. After the name of
the subroutine are the variables that will have
values passed to them from the main program.
These variables are enclosed in parentheses.
This subroutine is called SCROLL. The variables

Listing 12-4

ROWREF, COUNT, and LIST$() will be used in
this subroutine. The values that they contain have
been passed to them through the CALL command.

Lines 1090-1120 contain the FOR . . . NEXT loop
that moves the words one row up on the screen.
The loop begins with the row value of NEWROW
and continues to row 23. The line number is

printed on the screen, then the word from LIST$.
The loop continues until all the words have been
moved one row up on the screen.

Line 1230 contains a SUBEND. There are only two
ways to leave a SUB routine. The SUBEND is
similar to the RETURN. The computer goes back
to the main program. The other way is with a
SUBEXIT. There can only be one SUBEND in
any SUB routine.

If you have a disk drive, you can save this
subroutine by typing the following line:

SAVE DSKl.SCROLL,MERGE

You can add this subroutine to any program
that you are writing where you want only a portion
of the screen to scroll. If you are using a cassette,
you can save this program with the SAVE com
mand. There is no MERGE option for the cassette.

WARNING: Do not type NEW while this routine is in
memory. Just type the next routine.

The next subroutine alphabetizes a list of
words. The words are stored in LIST$. The main

1980 REM LISTING 12-4

1990 REM BY A.R.SCHREIBER

2000 REM ALPHABETIZE SUB PROGRAM

2010 SUB ALPHABETIZE(CNT* LIST*<>>

2020 FOR COUNT1=1 TO CNT- 1 it FOR C0UNT2

=C0UNT1+1. TO CNT

2030 IF LIST*<C0UNT2KLIST*<C0UNT1)THEN

TEMP*=LIST*<C0UNT2)tt LIST*<C0UNT2>=LIST
<COUNT13C: LIST(COUNT!) -TEMP*

2040 NEXT C0UNT2 it NEXT COUNT1

2050 SUBEND

97

program will set aside enough memory to store up
to 200 words in this string array.

Listing 12-4

Line 2010 names this subroutine. It tells the com
puter that this subroutine is called ALPHA
BETIZE. Two values are passed into this sub
routine. The CNT variable contains the number of
words that will be alphabetized. LIST$ contains
the words that this subroutine will alphabetize.

Line 2020 begins two FOR . . . NEXT loops. The
first loop counts from the first word of the string
array to the next to the last word of the array. The
second loop begins with the second word of the
array and ends with the last word of the string
array.

Line 2030 begins by comparing the second word of
the string array with the first word. If the value of
the second word is less than the first; that is, it
comes before the first word in the alphabet, the
computer will place the second word in a tempo
rary string called TEMP$, place the first word
into the second word's locationin the string array,
and then place the second word into the first
word's location. Now the word that should come
first does.

Line 2040 continues the loop. The word that is now
in the first location is compared to the word in the
other words, the third, fourth, fifth, and so on,
until that word has been compared to all the words
in the string. The loop then advances to the sec
ond word in the array and does the same thing for
it and for all the others until all the words in the
array have been compared to all the words that are
after them in the array.

Line 2050 is the SUBEND command. After all the
words have been compared, the list is in al
phabetical order and the computer returns to the
main program.

SAVE DSK. 1 ALPHA, MERGE

If you are using the cassette recorder for the
program storage, save your program using the
SAVE command. Since there is no merge withcas
sette, you should be saving both subroutines at this
time.

98

The next program uses both subroutines that
we just typed in. Ifyou are using the disk, you do not
have to worry about having the two preceding
routines in memory. If you are using the cassette,
be sure that both of the previous routines are in the
computer. If they are not, you can load them in from
your cassette. They should have been saved to
gether as one program.

Listing 12-5

Line 130 sets aside enough memory to hold 200
words. These are the words that the computer
will alphabetize.

Line 140 clears the screen.

Lines 150-160 prints the instructions on the
screen. Keep entering the words that you want
the computer to alphabetize. If you do not have
200 words, press ENTER without typing in a
word and the computer will know that you have
finished.

Line 170 sets the STARTROW and ROW variables

to six. Since both variables contain the same

value, you can use one program statement with
the comma between them to set both variables to

the same value. Row six is the row where the first

word will be printed. COL is set to 1 and the FOR
... NEXT loop begins. This loop counts from 1 to
200, which is the number of words this program
can hold.

Line 180 prints the number of the word on the
screen. We are using a new command in this
line—STR$. By taking the STR$ of the variable,
we eliminate the spaces that are normally printed
before and after the number. The period will be
printed in the space immediately following the
number rather than one space over. The computer
waits until a word is entered. The VALIDATE

option will only allow uppercase alphabetical
characters to be entered. Once entered, the word
will be stored in ITEM$, a string variable for
temporary storage. The computer checks the
entry. If ITEM$ is an empty or null string, the
computer will be directed to line 220 because
there are no more words to be entered. Anyother
word will be stored in LIST$ at the location
COUNT.

Listing 12-5

100 REM LISTING 12-5

110 REM ALPHABETIZE

120 REM BY A.R.SCHREIBER FOR TAB BOOKS
130 DIM LIST*<200>

140 CALL CLEAR

150 DISPLAY~AT<lvl)J"THIS PROGRAM ACCEPT
S A LIST" it DISPLAY AT<2rl>:a0F UP TO 2
00 WORDS AND" it DISPLAY AT<3y1)t"ALPHAS
ETIZES S PRINTS THEM."

160 DISPLAY AT(4yl)J"TYPE AN CENTER} ONL

Y TO END," it DISPLAY AT<5»1>:" •

170 STARTROWrROW=A it COL-1 it FOR COUNT
=1 TO 200

180 DISPLAY AT<ROWyCOL>SSTR*<COUNT)?"."
it ACCEPT AT<R0WyC0L+5)VALIDATE<UALPHA)S
IZEC22KITEM* H IF ITEM*="" THEN 220 El.
SE LIST*(COUNT)=ITEM*

190 R0W=R0W+1 it IF R0WO24 THEN 210

200 CALL SCR0LL<STARTR0W»C0UNT»LIST*O)J
J R0W=24 ! SCROLL PREVIOUS LINES WITHOUT
DISTURBING INSTRUCTIONS

210 NEXT COUNT

220 CALL ALPHABETIZE(COUNT-1yLIST*())
230 DISPLAY AT<1>1>ERASE ALL J"PRESS CENT
ER3 FOR NEXT SET OF WORDS."

240 STARTROWyR0W=4 tt FOR COUNTERS TO C
OUNT-1 it DISPLAY AT(ROWyCOL)JSTR*<COUNT
ER)?"." it DISPLAY at<row*col+5>:list*<c
OUNTER)

250 R0W=R0W+1 it IF R0W=25 THEN ACCEPT A
T<2y12)BEEPtWAIT* it GOSUB 300
260 NEXT COUNTER

270 DISPLAY ATUvlK" • it DISPLAY AT<2y
DBEEP!" THAT'S ALL FOLKS!!!" it FOR
DELAY=1 TO 5000 it NEXT DELAY
280 END

290 REM CLEAR PART OF SCREEN

300 FOR ROW=STARTROW TO 24 JJ DISPLAY AT
(ROWyl)J* " it NEXT ROW It ROW=STARTROW

it RETURN

310 REM SIMULATED SCROLL

320 REM THE "CALL" COMMAND SHOULD PASS 3
VARIABLES TO THIS SUB PROGRAM AS FOLLOW

St
continued on page 101

99

c
Set aside

string space
for 200

words

Z Display 7
new /
directions /

ALPHABETIZE

Scroll

Get word

/Clear screen
and display /

f / Move word /
/ShoJporto./ / IT"* /
/ the list / i i L " 1

/ of words / JL

Set variables

for row and

column

Use

subprogram
ALPHABETIZE

^

Return a ^

Fig. 12-6. Flowchart for Listing 12-5 Alphabetize and its subprograms. Listing 12-3 and Listing 12-4.

Line 190 adds one to the value of ROW. The next
word will be entered in the next line on the
screen. The value of ROW is checked for 24. If
ROW is less than or equal to 24 then the computer
will continue at line 210. Row 24 is the last or

bottom row on the screen.

Line 200 calls the SCROLL subroutine. This was

the first subroutine that we typed in. Three values
will be passed to the subroutine. STARTROW is
the top row that will be scrolled off the screen;
COUNT is the number of the word that has just
been entered, and LIST$ contains the words that
have been entered. The values of these variables
will be used in the subroutine. When the com

puter returns to this line, ROW will be reset to

100

24, the last line on the screen.
Line 210 continues this loop until 200 words have

been entered or ENTER has been pressed with
out typing a word.

Line 220 calls the second subroutine, AL
PHABETIZE. The two values that are passed to
the subroutine are the value of COUNT minus

one, and the value of LIST$. We subtract one from
the value of COUNT, because COUNT will be
one more than the number of words entered. If we

did not enter 200 words, COUNT would be the
number that the word would have been if it were

entered. If we did enter 200 words, the FOR. . .
NEXT loop would stop when the value of COUNT
exceeded 200.

330 REM "STARTRQW" IS THE TOP ROW WHERE

INFORMATION CAN BE PRINTED AND IS ASSIGN

ED TO "ROWREF" IN THIS SUB PROGRAM* "ST

ARTROW'S" VALUE IS

340 REM NOT ALTERED* "COUNT* IS USED IN

BOTH PROGRAMS AS THE ITEM NUMBER AND AR

RAY ELEMENT NUMBER* IT'S VALUE IS NOT C

HANGED BY THE SUB

350 REM PROGRAM. aLIST$<)B IS THE ARRAY

OF ALL THE ITEMS TYPED. IT TOO? IS NOT

ALTERED BY THIS SUB PROGRAM.

340 REM "NEWROW" IS THE ONLY COMMON VARI

ABLE THAT THE SUB PROGRAM DOES CHANGE.

HOWEVERf A VARIABLE BY THE SAME NAME IN

THE MAIN PROGRAM

370 REM WILL BE UNAFFECTED BY THIS CHANG

E IN THE SUB PROGRAM. VARIABLES USED IN

A SUB PROGRAM ARE TREATED SEPARATELY UN

LESS NAMED IN THE

380 REM CALL OPTION LIST.

390 SUB SCROLL(ROWREFs-COUNTi.LIST*<>>

400 FOR NEWROW=ROWREF TO 23

410 DISPLAY AT(NEWROW*COL>!STR*<C0UNT~23

+NEWROWH"."

420 DISPLAY AT(NEWR0W»C0L+6> H_IST*(COUNT

-17+(NEWR0W-6>>

430 NEXT NEWROW

440 SUBEND

450 REM ALPHABETIZE SUB PROGRAM

460 SUB ALPHABETIZE(CNTyLIST*(>)

470 FOR C0UNT1=1 TO CNT-1 XX FOR C0UNT2=

C0UNT1+1 TO CNT

480 IF LIST*(C0UNT2KLIST*<C0UNT1)THEN T

EMP*=LIST*(C0UNT2> X X LIST*(C0UNT2)=LIST*

(C0UNT1)X X LIST$(C0UNT1>=TEMP*

490 NEXT C0UNT2 X X NEXT C0UNT1

500 SUBEND

Line 230 clears the screen and instructs you to Lines 240-260 print the words in alphabetical order
press ENTER for the next set of words. Only 21 on the screen. The words will begin at line 4 and
words can be displayed on the screen at one time. continue until line 24. When the value of ROW is
The words are not erased until ENTER hasbeen equal to 25, the computer will wait until ENTER
pressed. has been pressed. The bottom portion of the

101

screen will clear and the loop will continue until
all the word letters have been displayed on the
screen.

Line 270 prints the ending message on the screen.
Line 280 contains the END command. This pro

gram line must be here to separate the main part
of the program from the subroutine that follows it.

Line 300 is the subroutine that clears the bottom

portion of the screen when the alphabetized
words are being displayed. Only rows 4 through
24 will be cleared. The instructions will remain on

the screen. The ROW variable is set to the value

of STARTROW so that the computer will begin
printing the next set of words on the 4th row. The
subroutine returns to the line that sent it.

The remaining lines of the program are the two

102

subroutines that you entered earlier. If you are
using the disk, and these lines are not in the pro
gram right now, you do not have to retype them.
Use the MERGE command to load the program
from the disk.

MERGE DSK1. SCROLL

MERGE DSK1. ALPHA

The subroutines will be added to your pro
gram. If you are using the cassette, these routines
should have been loaded before you typed in the
rest of the program. The entire program can be
saved to either the cassette or the disk.

Listing 12-5 shows the entire program after
the subroutines have been merged. It is flow-
charted in Fig. 12-6.

Chapter 13

Arithmetic Functions

TI Extended BASIC can perform any standard
arithmetic function including; addition, subtrac
tion, multiplication, division, and exponentiation
(raising to a power) to name a few. When the com
puter solves an equation, it carries out the opera
tions in a specific order. The orderofprecedence is
listed from first performed to last below:

1. parentheses ()
2. exponentiation (raising to a power)
3. multiplication (*) and/or division (/)
4. addition (+) and/or subtraction (-)

If you want a subtraction operation completed
before multiplication, you must place the numbers
and/or variables in parentheses. Below are some
examples of the way the computer would solve
various types of equations.

4+2*3-8=2

8*(53-8)+9=369

47-22+(4*5)=63

In any equation, variables can be substituted
for the numbers. If a value has been assigned to the
variable, the computer will use that value. If no
value has been assigned, the computer will use a
zero. In this chapter we will discuss the five most
frequently used special functions.

SPECIAL FUNCTIONS

INT

When you want a whole number without a
fraction (any numbers after the decimal point), you
will use the INT(integer) command. This command
ignores any numbers following the decimal point
and the variable becomes a whole number.

X=INT(10/3). The X variable would be equal to
three rather than 3.333 . . . The program flow-
charted in Fig. 13-1 and listed in Listing 13-1 shows
how the INT command can be used.

Listing 13-1

Line 130 clears the screen. The amount of money

103

Calculate

the

change

Display
the

change

Make it

pennies
calculate

the dollars

Subtract

them from

the change

Calculate

the

quarters

5
Fig. 13-1. Flowchart for Listing 13-1 Change.

104

Subtract

them from

the change

Calculate

the

dimes

Subtract

them from

the change

Calculate

the

nickels

Subtract

them from

the change

Listing 13-1

100 REM LISTING 13-1

110 REM CHANGE

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 CALL CLEAR XX DISPLAY AT<5»9>J"YOU H

AVE $5,00"

140 DISPLAY AT<7»1).J,H0W MUCH DO YOU WAN

T TO" XX DISPLAY AT<9»1)X"SPEND ?" J J AC

CEPT AT <919)BEEP VALIDATE(NUMERIC)SIZE(4
)X SPEND

150 IF SPEND>5 THEN 140 ! DON'T SPEND MO
RE THAN YOU HAVE

160 CHANGE=5-SPEND ! GET AMOUNT LEFT

170 DISPLAY AT< 11 y5) S"YOU HAVE $"9CHANGE

XX IF CHANGE*10*INT<CHANGE/.1)AND CHANG
EOO THEN DISPLAY AT< 11,19) X"0"

180 DISPLAY AT(11y21)J"LEFT♦"

190 CHANGE=CHANGE*100 ! MAKE IT ALL PENN
IES

200 dollars** int(change/100) ! get the num
ber of dollars

210 if dollarsoo then change=change~dol

lars*100 ! remove the dollars

220 quarters=int<change/25>:j if quarter

soo then change=change-quarters*25
230 DIMES=1NT<CHANGE/10>:: IF DIMESOO T
HEN CHANGE=CHANGE-DIMES*10

240 NICKEL==INT< CHANGE/5) XX IF NICKELOO

THEN CHANGE=CHANGE-NICKEL*5
250 PENNIES=CHANGE

260 DISPLAY AT(13y1)X DOLLARS y•DOLLAR(S)"

yQUARTERS>"QUARTER(S)" XX DISPLAY AT(15y

1)J DIMES?"DIME(S)•,NICKEL J"NICKEL(S)"

270 DISPLAY'AT<17»1)JPENNIES XX IF PENNI
ES=1 THEN DISPLAY AT(17y4)X"PENNY" ELSE

DISPLAY AT(17y4):"PENNIES"

that you have, $5.00, isdisplayed on thescreen. Line 150 checks theamount entered. Ifit isgreater
Line 140 asks you how much money you want to than five, the computer will be sent back to line

spend. You can enter any amount from 5.00 to.00. 140. You cannot spend more money than you
Do not enter the dollar sign. The VALIDATE have.
option will only allow you toenternumbers. The Line 160 subtracts theamount spent from five. This
number that you enter will be stored in the amount is stored in the CHANGE variable.
SPEND variable. Line 170 shows you how much money you have left.

105

It checks to see if the amount left ends with a zero,
like $1.20. If it does, we print another zero after
the amount left. If we didn't, the computer would
print $1.20 as $1.2. By multiplying the value of
CHANGE by 10, we move the decimal one place
to the right. For instance, 1.20 x 10 = 12 or 3.47
x 10 = 34.7. Next we divide the same number by
.1. This also moves the decimal one place to the
right, making 1.20/. 1 = 12 or 3.47/. 1 = 34.7. By
taking the integer of the second number, we can
check it to see if the cents ends with a zero. The

integer of 12 is 12. Since the integer equals the
real number, there was nothing after the decimal
place. In the case of 34.7, the integer is 34. The
two numbers are not equal, so there is something
after the decimal point and no extra zero is re
quired.

Line 180 prints the last word of the message.
Line 190 multiplies the amount stored in the

CHANGE variable by 100. This converts the
money into pennies.

Line 200 divides the value of CHANGE by 100 and
places the integer value in the DOLLARS vari
able.

Line 210 tests the value of DOLLARS for a zero. If

it is a zero than we have no dollars and computer
will go on to the next line. If there are dollars, the
computer must remove them from the value of
CHANGE. Multiplying the value of DOLLARS by
100 and subtracting that amount from CHANGE
removes the dollars from the change.

Line 220 finds the number of quarters in CHANGE
by dividing the value of CHANGE by 25 and plac
ing the integer value in the QUARTERS variable.
The computer checks the value of QUARTERS. If
it is not zero, the number of quarters are multi
plied by 25 and subtracted from the amount in
CHANGE.

Line 230 divides the amount left in CHANGE by 10
to findout how many dimes there are. The integer
value of CHANGE divided by 10 is the number of
dimes. The computer checks the value of DIMES
to see if there are any dimes. If there are, the
number of dimes are multiplied by 10 and sub
tracted from the value of CHANGE.

Line 240 finds the number ofnickels by dividingthe

106

amount stored in CHANGE by five. If a nickel is
removed, it is multiplied by five and subtracted
from the amount in CHANGE.

Line 250 takes the amount left in CHANGE and

stores it in PENNIES.

Lines 260-270 print the number of dollars, quar
ters, dimes, nickels, and pennies left. An IF . . .
THEN . . . ELSE statement checks to see if the

singular or plural version of penny should be used.

Notice that in every line that removed coins
from the CHANGE variable, CHANGE was divided
by the value of that coin. Then the computer was
able to take the integer or whole number for the
number of coins removed.

ABS

The ABSolute command gives the value of the
number without the sign. The absolute value of
negative three and the absolute value of positive
three is the same—three. It is used when you need
to know the difference between two numbers with

out regard to the sign. Listing 13-2 is a good exam
ple of how to use the absolute command. The pro
gram (flowcharted in Fig. 13-2) tells the user how
manyspaces from the hole the ball is without telling
the user if the number should be greater or smaller.

Listing 13-2

Line 130 clears the screen and uses the randomize

command so that a different number will be cho

sen by the computer each time the program is run.
Line 150 creates three graphics characters—the

holes, the ball, and the ground (See Fig. 13-3).
These characters are used in the program.

Line 160 uses the new character, number 130, to
draw the ground. The RPT$ command tells the
computer to print this character 28 times.

Line 170 draws the holes. The RPT$ command is
used again. This time the pattern that is repeated
is character number 128 and two spaces. This
three-character pattern is printed on the screen
ten times.

Line 190 numbers the holes. The computer steps
through the FOR. .. NEXT loop by three's. This
places the correct number under each hole.

c Start

m
Clear

the

screen

3

Set for random

numbers-

create new

characters

'Draw ground,
holes and

number

the holes

Drop it 7
through /
the hole /

Choose a

number

Clear

the

ball(s)

&

Fig. 13-2. Flowchart for Listing 13-2 Bounce.

Drop it through/Yes
the hole

and display
message

Ask for

a guess

Get a

number

Bounce

the

ball

Subtract

guess from
hole

i
Give
clue

107

Listing 13-2

108

100 REM LISTING 13-2

110 REM BOUNCE

120 REM BY L.M.SCHREIBER FOR TAB BOOKS
130 CALL CLEAR XX RANDOMIZE

140 REM CREATE SOME GRAPHIC CHARACTERS
150 CALL CHARC128y"8181818181818181•)XX
CALL CHAR(129y"00387C7C7C7C7C38")JX CALL
CHAR(130 y"OOOOOOOOOOOOOOFF")

160 DISPLAY AT(10yl)JRPT$<CHR$(130)y28)!
DRAW THE GROUND

170 DISPLAY AT(11>1) :RPT*(CHR*(128)*" "
y.10) ! DRAW THE HOLES

180 REM NUMBER THEM

190 C0UNT=1 :j FOR C0L=1 TO 25 STEP 3 XX
DISPLAY AT(12yC0L):STR*(C0UNT)JX COUNT*

COUNT+1 XX NEXT COL XX DISPLAY AT(12»27>
JSTR*(COUNT)

200 HOLE-8 ! SAMPLE MAGIC HOLE
210 REM BALL DOWN

220 C0UNT=1 XX FOR C0L=1 TO 28 STEP 3 XX
DISPLAY AT(9 yCOL)XCHR* <129)XX GOSUB 480
XX DISPLAY AT(9yC0L){- • XX IF COUNT=HO

LE THEN 250

230 DISPLAY AT(5»C0L+2)JCHR*(129)XX GOSU
B 480 ! BOUNCING UP

240 DISPLAY AT(5yC0L+2):" • XX COUNT=COU

NT+1 XX NEXT COL ! COUNT THE HOLE IT IS
OVER

250 DISPLAY AT<10yC0L)SIZE(~l):CHR*(129)

XX GOSUB 480 XX DISPLAY AT(10>COL)SIZE(~
1)J" " ! DROP IT IN

260 DISPLAY AT(10rCOL)SIZE<-l)JCHR*(130)
! COVER IT OVER

270 REM NOW START TO PLAY

280 H0LE=INT(RND*10)+1 ! THINK OF THE MA
GIC HOLE

290 REM LET HUMAN GUESS WHICH HOLE WILL
OPEN

300 DISPLAY AT(9yl):B " ! CLEAR ALL BALL
S

310 DISPLAY AT(15»1)J"THE BALL CAN ONLY
FALL"J"THROUGH ONE OF THESE HOLES. GUESS

continued on page 110

8 4 2 18 4 2 1

Character

#128

181
181 8 4 2 18 4 2 1

8 4 2 1 8 4 2 1

Character

#130

00

38

7C

7C

7C

7C

7C

38

Fig. 13-3. Characters used in Bounce program.

Line 200 sets the HOLE variable to eight. When the
example is run, the ball will disappear through
hole eight.

Line 220 begins the FOR . . . NEXT loop that
bounces the ball across the screen. The ball is
character 129. It is printed on the screen. Then
the computer goes to the subroutine at line 480.
This is a timing loop to give you time to watch the
ball. The ball is erased. Then the value of COUNT
is compared to the value of HOLE. If both vari
ables are the same, the ball is over the hole and
the computer goes to line 250. If they are not the
same, the computer continues with the next line.

Line 230 prints the ball four rows higher and two
columns to the right. This is the up position. The
computer uses the same subroutine at line 480 as
a timing loop.

Line 240 erases the ball and adds one to COUNT.
Now, COUNT contains the number of the next
hole. The FOR... NEXT loop continues until the
ball drops through a hole.

Line 250 drops the ball into the hole. The SIZE
option is required in this line. If it is not used, the

entire line after the ball is erased from the screen.

The ball is printed on the same line as the ground.
The computer uses the timing loop, then prints a
space over that location. This gives the illusion
that the ball fell into the hole.

Line 260 prints the character for the ground over
the space. Again the SIZE option must be used to
keep the rest of the line intact.

Line 280 begins the game. The computer chooses a
number from one to ten. This is one of the holes

on the screen.

Line 300 prints a space on the screen. Since there is
no SIZE option with this DISPLAY AT command,
the entire line will be cleared.

Line 310 prints the directions on the screen. The
computer beeps, and waits for a number to be
entered. The VALIDATE option will only accept
one digit. This digit will be stored in the GUESS
variable.

Line 330 checks the number entered. There are ten

holes on the screen. If the number entered is less

than zero or greater than ten, the computer will be
sent back to line 310 to wait for another number.

Line 350 begins a FOR . . . NEXT loop to bounce
the ball on the screen. The COUNT variable is set

to one for the first hole. This variable keeps track
of which hole the ball is over. The FOR... NEXT

loop steps by threes so that the ball will always be
printed over a hole. First the ball is printed just
over the ground and above the hole. The com
puter uses the timing loop in line 480 to hold it
there for a few seconds. Then the computer com
pares the value of GUESS with the value of
HOLE. If both are the same, the computer will go
on to line 380 to drop the ball through the hole. If
the values are not the same, the computer will
continue with the next program line.

Line 360 erases the ball. The SIZE option makes
sure that only the ball is erased from that line. The
ball is then printed four lines higher and two
columns to the right. The computer uses the sub
routine at line 480 to delay the bounce.

Line 370 erases the ball and adds one to COUNT.
COUNTkeeps track ofwhich hole the ball is over.
The loop continues.

Line 380 compares the value of GUESS with the

109

WHICH ONE ?• XX ACCEPT AT(17y19)BEEP VA

LIDATE(DIGIT)JGUESS

320 REM KEEP IT LEGAL

330 IF GUESS<1 OR GUESS>10 THEN 310
340 REM BOUNCE TO THAT HOLE

350 C0UNT*1 XX FrOR C0L=1 TO 28 STEP 3 XX

DISPLAY AT(9yC0L)SIZE(~l)JCHR*(129)XX Q

OSUB 480 XX IF COUNT=GUESS THEN 380 ! BA

LL DOWN

360 DISPLAY AT(9»COL)SIZE(-1>X• • XX DIS

PLAY AT(5»C0L+2)JCHR*(129>:: GOSUB 480 !

BOUNCING UP

370 DISPLAY AT(5»C0L+2>X• • XX COUNT=COU

NT+1 XX NEXT COL ! COUNT THE HOLE IT IS

OVER

380 IF 6UESSOH0LE THEN 460 ! CHECK THE

GUESS - TRY AGAIN IF IT IS NOT RIGHT

390 DISPLAY AT(9 yCOL)SIZE<1)X" "

400 DISPLAY AT(10rCOL>SIZE(-1>:CHR*(129)

XX GOSUB 480 XX DISPLAY AT(10tCOL)SIZE(-

1)J" • ! DROP IT IN

410 DISPLAY AT(10»COL)SIZE(-1)JCHR*(130)

! COMER IT OVER

420 DISPLAY AT(20»1)J" " ! CLEAR THE ENT

IRE LINE BEFORE PRINTING THE MESSAGE

430 FOR REPEAT=1 TO 5 XX DISPLAY AT(20»9

>J"YOU GOT IT" XX GOSUB 480 XX DISPLAY A

T(20»9)J" " XX GOSUB 480 XX NEXT REPEAT

440 GOTO 280 ! GO THINK OF ANOTHER NUMBE

R

450 REM WRONG GUESS •••• GIVE CLUE

460 DEVIATION=ABS(HOLE-GUESS)! SUBTRACT

THE GUESS FROM THE HOLE

470 DISPLAY AT(20»3):•YOU ARE"yDEVIATION

*"SPACE(S) AWAY" XX GOTO 310 ! TELL HUMA

N HOW FAR AWAY - BUT NOT WHICH WAY

480 FOR DELAY*1 TO 25 XX NEXT DELAY J X R

ETURN ! LEAVE IT ON THE SCREEN

value of HOLE. If they are not the same, the Line 390 erases the ball from the screen,
computerwill goonto line460to get aclue. If the Line 400 prints the ball on the same line as the
two variables are the same, the computer will ground. The SIZE command keeps the restof the
continue with the next program line. ground intact. The ball is erased again.

110

Line 410 prints the ground back over the hole and
the ball has disappeared.

Line 420 clears the entire line before printing the
message.

Line 430 is a FOR. . . NEXT loop that prints YOU
GOT IT on the screen five times.

Line 440 sends the computer back to line 280 for
another game.

Line 460 uses the ABS (absolute) command to find
the difference between the number that the com

puter chose and the number entered. The value of
GUESS is subtracted from the value of HOLE.
The answer is stored in the DEVIATION. Be

cause of the ABS command, the value of the DE
VIATION will always be a positive number
whether the difference between HOLE and
GUESS is positive or negative.

Line 470 gives a clue to how far away from the ball
the hole is. The number printed (the value of
DEVIATION) gives the number of holes away
from the correct hole the ball is, but does not give
a hint about which direction. The program sends
the computer back to line 310 for another guess.

Line 480 is the timing loop that is used in this
program. It is a subroutine that keeps the ball on
the screen for a few seconds.

SQU

The SQUare command finds the square root of
a number or variable. The line below shows the

syntax with SQU.

100 X=SQU(V): REM THE SQUARE ROOT OF
'V IS STORED IN 'X'

RND

RND is the most frequently used special func
tion. So far, it has been used in every program in
this book that requires any random numbers. Be
fore the computer can choose a random number, the
RANDOMIZE command must be used. Without it,
the computer will chose the same numbers in the
same order. With it, the computer will chose new
numbers in a new order each time the program is
run.

The number that the computer chooses is be

tween zero and one. To obtain a whole number, the
ENTeger command is used with the random com
mand. Try the program in Listing 13-3 with and
without the RANDOMIZE command in line 140.
Write down the numbers that the computer gener
ates each time the program is run. Every time the
program is run without the RANDOMIZE com
mand, the number sequence is the same. With the
command, a new set of numbers are generated each
time the program is run. Aflowchartof the program
is shown in Fig. 13-4.

Listing 13-3

Line 130 clears the screen.

Line140contains the RANDOMIZE command. Try
the program with and without this line.

Line150prints the exampleset that will be printed
on the screen. This routine prints ten random
numbers. These numbers will be between zero
and one. They are all decimal values. There are
no whole numbers. The FOR. . . NEXT loop will
count from one to ten for the ten examples.

Line 160 chooses a random number. This number is
a decimal.

Line 170prints the number that the computer chose
in line 160. This number is greater than zero but
less than one.

Line 180 continues the loop.
Line 190 sends the computer to a subroutine that

waits until a key is pressed. This gives you time
to record the numbers that are on the screen.

Line 210 begins the loop that prints random num
bers that are greater than zero. The FOR . . .
NEXT loop will print ten numbers.

Line 220 chooses a random number. This time the

random number is multiplied by five. Now the
number chosen will be greater than zero but less
than five.

Line 230 prints the number that was chosen. This
number is greater than zero, but less than five.
The numbers have decimals following the whole
number.

Line 240 continues the loop.
Line 250 sends the computer to the subroutine at

line 380.

Line 270 begins the loop that will print integers or

111

c Start

Display
message

D

7
Choose a

number

Choose a

number

less than 5

Fig. 13-4. Flowchart for Listing 13-3 Random.

whole numbers on the screen.

Line 280 multiplies that number chosen by five, but
it also takes the integer (whole number) of the
number chosen. The decimal portion of the
number is disregarded.

112

/Display /
message /

Choose a

whole

number

Choose

whole

number

between 1 -5

Line 290 prints this number on the screen. The
whole number can be a 0, 1, 2, 3, or 4.

Line 300 continues the loop.
Line 310 sends the computer to the subroutine that

waits until a key is pressed.

Listing 13-3

_

100

110

120

130

140

150

VE

160

170

180

190

200

210

0

220

230

REM LISTING 13-3

REM RANDOM

REM BY L.M.SCHREIBER FOR TAB BOOKS
CALL CLEAR

RANDOMIZE

PRINT "RANDOM9 XX FOR X=l TO 10 ! GI
10 SAMPLE NUMBERS

N=RND ! GET A RANDOM NUMBER

PRINT N*! SHOW IT

NEXT X

GOSUB 380

REM NOW SHOW IT WITH A

PRINT J"MORE THAN 0" Ji
MULTIPLE

FOR X*l TO 1

N=RND*5

PRINT Ny ! IT MORE THAN 0 BUT LESS

NEXT X

GOSUB 380

REM NOW WITH THE INTEGER COMMAND
PRINT J"INTEGER8 XX FOR X=l TO 10
N=INT<RND*5>! ANY NUMBER BETWEEN 0

240

250

260

270

280

ND 4

290 PRINT

300 NEXT X

310 GOSUB 380

320 REM NOW ADD 1

330 PRINT J"ADD 1

TO 10

340 N=INT(RND*5)+1

1 AND 5 INCLUSIVE
350 PRINT Nf

360 NEXT X

370 END

380 PRINT I"PRESS ANY

390 CALL KEY(0»K»S)JJ

400 RETURN

N!

A

TO NUMBER" FOR X=l

! ANY NUMBER BETWEEN

KEY TO

IF S=0

CONTINUE'

THEN 390

Line 330 prints random numbers that have one
added to them. Adding one to the number ensures
that zero will never be picked.

Line340choosesarandom number, multiplies it by
five, takes the integer of that number, then adds

one to the number. This will give us a number
from one to five inclusive. Always addone to the
numberchosen if you do not want zero as a possi
ble number, but want the number multiplied by
the random number as a possible number.

113

)(

/

Start

*
1 Clear

screen

display
message j/

/i /
Get

month

No /Good >
X. month s

\ Yes

i• /
No

f Get
days
in month t

/"Current >
S. month S

/

i

/

l

Yes

i Yes

'Get
one day's
temperaturei

^/FirstN^
V day y

/
Yes Store as

high and
low

i

/New\
>. low .

Yes Store

new low

/ Display /
fr' / new low /

/ and high /

/^New^v
v high .

Store

new high

/ Display /
-*-V new high /

/ and low /
1

/ More\
S. days >

Tno

(End)

Fig. 13-5. Flowchart for Listing 13-4 Negatives.

Line 350 prints the number on the screen.
Line 360 continues the loop.
Line 370 ends the program, and separates the main

program from the subroutine in line 380.
Line 380 prints the instructions on the screen. The

114

program will wait until a key is pressed.
Line 390 uses the CALL KEY command to wait

until a key is pressed. The S variable will not be
zero when a key has been pressed. As long as S is
zero, the computer will loop at this line.

Line 400 sends the computer back to the line that
called it in the main program.

You can also specify which random pattern you
want the computer to follow by placing a number or
variable after the RANDOMIZE command.

RANDOMIZE (3)
RANDOMIZE (5)

The computer will follow the same pattern
each time it encounters the same value. Try placing
different values at line 140 and then record the

results.

SGN

The SIGN command sets a variable to a nega
tive one when the variable it checks is a negative
number, a positive one if the variable is positive,
and a 0 if the variable is zero. One use for this

command is demonstrated in the temperature pro
gram in Listing 13-4 where we want to know if the
temperature is above or below zero. (The program
is flowcharted in Fig. 13-5.)

Listing 13-4

Line 130 clears the screen and asks for the number

of the month. The VALIDATE option will only
allow numbers. The SIZE option will not allow
more than two digits to be entered. The number
entered is stored in the MONTH variable.

Line 140 checks the number that was entered. If it
is less than one or greater than 12, then it is not a
month of the year, and the computer will go back
to line 130 to wait for another entry.

Lines 150-160 is a FOR . . . NEXT loop that reads
the number of days in the month entered. The data
for this line is stored in line 290.

Line 180 checks to see if the month entered is

February. If it is, then the program asks for the
year. Only four digits will be accepted and stored
in the YEAR variable.

Listing 13-4

100 REM LISTING 13-4

110 REM NEGATIVES

120 REM BY L*M.SCHREIBER FOR TAB BOOKS

130 DISPLAY AT<2»1)ERASE ALL?"ENTER THE

NUMBER OF THE"J"MONTH ?" XX ACCEPT AT(3y
9)BEEP VALIDATE(DIGIT)SIZE(2)X MONTH

140 IF M0NTH<1 OR M0NTHM2 THEN 130
150 FOR C0UNT=1 TO MONTH XX READ DAYS !
GET THE NUMBER OF DAYS IN THE MONTH
160 NEXT COUNT

170 REM IF FEBRUARY THEN CHECK FOR LEAP
YEAR

180 IF M0NTH=2 THEN DISPLAY AT<4y.lK»ENT
ER YEAR ?" XX ACCEPT AT(4*14)BEEP VALIDA
TE<DIGIT>SIZE<4KYEAR

190 REM IF LEAP YEAR ADD 1 DAY

200 IF M0NTH=2 THEN IF YEAR/4=INT(YEAR/4
)THEN DAYS=DAYSil

210 FOR COUNT=1 TO DAYS

220 DISPLAY AT(10»1)X"WHAT WAS THE TEMPE

RATURE"X"FOR "ySTR$(MONTH)?"-"iSTR*(COUN
T)t"?• XX ACCEPT AT(11y12)BEEP VALIDATE(
NUMERIC)SIZE(3)J TEMP

230 IF COUNT---1 THEN LOW=TEMP XX HIGH=TEM
P ! FIRST DAY SETS THE RECORDS

240 IF SGN<TEMP-LOW)==-•! THEN DISPLAY AT(
20v3K"NEW LOW TEMPERATURE? •HEMP XX LO
W=TEMP XX DISPLAY AT<22y7) X"HIGH TEMPERA
TUREJ "?HIGH

250 IF SGN(HIGH-TEMP)=-1 THEN DISPLAY AT
<22y3)J"NEW HIGH TEMPERATURE J "HEMP XX
HIGH=TEMP XX DISPLAY AT<20»7>X"LOW TEMPE
RATURE J "H„OW

260 NEXT COUNT

270 END

280 REM DAYS IN EACH MONTH

290 DATA 31*28,31y30i-31f.30y31,3l!.30y31y3
0y31

Line 200 divides the yearentered by four and com- of product, then it is a leap year andone is added
pares it to the integer of the year divided by four if to the number of days in the month of February,
the month entered is February. If the product of Line 210begins the FOR. . . NEXT loopthat asks
the year dividedby four is the same asthe integer for the temperature for each day of the month.

115

Line 220 asks for the temperature of each day of the
month. The number entered is stored in the

TEMP variable.

Line 230 checks if this is the first day of the month.
If so, both LOW temperature and HIGh tempera
ture are set to the temperature entered.

Line 240 uses the SGN command to see if the

temperature just entered is less than the current
low temperature. If the value of TEMP is less
than the value of LOW, the SGN of the numbers
will be negative and there is a new low tempera
ture. This temperature is printed on the screen.
Low is now equal to TEMP. The high tempera
ture is also printed.

116

Line 250 checks to see if the temperature entered is
greater than the current high temperature. If the
value of HIGH is less than the value ofTEMP, the
SGN of the numbers will be negative. The value of
TEMP is a new high temperature. This value is
printed on the screen and the value of TEMP is
stored in HIGH. The low temperature is also
printed on the screen.

Line 260 continues the loop until the temperature
for each day of the month has been entered.

Line 270 contains an END statement. This stops
the program before the data line.

Line 290 contains the data for the number of days in
each month of the year.

Chapter 14

Working with Strings

When you store information in strings, you have
easy access to the information. You can move it
around in the string, use only part of it, or convert
numbers that are in the string into numeric vari
ables. By using strings you can easily manipulate
the information any way you would like to.

ADDING STRINGS

One string can be added to another string. This
type of addition is not the same as adding two
numbers together. It is more like adding links onto
a chain. Adding two or more strings together is
called concatenation. An example of adding two
strings is:

10 REM MAKE TWO STRINGS INTO ONE

20 A$="HELLO "::B$="THERE"! BE SURE
THERE IS A SPACE AFTER THE '0' IN
HELLO

30 C$=A$&B$
40 PRINT C$

The words or expressions can be those that fill

a complete string, those in quotation marks, or
those that comprise part of a string.

SPLITTING STRINGS

SEG$

Sometimes it is necessary to"split"a stringor
copypart of it for one reason or another. The SEG$
"removes"part ofa string andputs that information
into another string, or prints it on the screen. The
information is not actually erasedfrom the string,
but merely copied into another string or onto the
screen. The information still remainsin the original
string.

The computer needs to know where the infor
mation is in the string and how many characters
will be removed. The format for SEG$ is A$=
SEG$(B$2,5), where B$ is the string that we are
getting the information from, two is the number of
the first characterin the string that willbe placedin
A$, and five represents the number of characters
that will be copied into A$. Try the next few lines
with your computer.

117

c Start j
Clear screen

place
message

into string

('Place first

28 character >
of string
on screen

Count to

10

Move characters

up on position in
string. Place
first-last

Fig. 14-1. Flowchart for Listing 14-1 Ticker Tape.

10 REM EXAMPLES OF SEG$
20 A$="The quick brown fox is really lazy"
30 WORDl$=SEG$(A$,l,3) ! THE WORD

THE'

40 WORD2$=SEG$(A$,4,6) ! QUICK WITH
THE SPACE

50 WORD3$=SEG$(A$, 10,20) ! LEAVE LAZY
60 WORD4$=SEG$(A$,30,5) ! GET 'LAZY'
70 B$=WORDl$&WORD4$&WORD3$&WORD

2$
80 PRINT A$
90 PRINT B$

As you can see, the entire sentence can be
changed by using the SEG$. In the program in
Listing 14-1 (flowcharted in Fig. 14-1), we will
create a ticker-tape effect across the screen by
printing only a portion of the string at one time.

Listing 14-1

Line 130 clears the screen.

Line 150 places the message in A$. This message is
61 characters long.

Listing 14-1

100 REM LISTING 14-1

:u.o REM TICKER TAPE

120 REM L.M.SCHREIBER FOR TAB BOOKS

130 CALL. CLEAR

140 REM STRING CONTAINS MESSAGE TO PRINT

150 A$=" The DOW JONES report at 12 noon

is AT%1 up 3 points ♦ »» "

160 REM PUT MESSAGE ON MIDDLE ROW START!

NG AT FIRST COLUMN SCREEN ONLY 28 CHAR

ACTERS WIDE SO ONLY PRINT PART OF IT

170 DISPLAY AT(12»1)XSEG$ <A*»1>28)

180 REM TIMING LOOP**,CHANGING THE 10 MA

KES IT F•RINT FASTER OR SLOWER

190 FOR DELAYS. TO 10 XX NEXT DELAY

200 REM MOVE FIRST CHARACTER OF STRING T

0 END OF STRING WITH OTHER CHARACTERS MO

VIN(•5 TOWARD FRONT OF STRING GIVES STRI

NG WRAP- AROUND EFFECT

210 A$==S EG*< A* *2 yLEN(A$)-1)fcSEG* <A*»1»1)

220 GOTO 170 ! REPEAT UNTIL (CLEAR) IS P

RESSED

118

Line 170 prints the first 28 characters of the mes
sage on the screen.

Line 190 is the timing loop to give you a chance to
read the message.

Line 210 uses the SEG$ command to move the first
letter of the string into the last position. Taking
all the characters of the string from the second
position to the last. The amount of one must be
subtracted from the length of A$ because we are
not taking the first character. Next, the character
that is in the first position of the string is added to
the end of the string. Now all the characters have
moved up one position.

Line 220 sends the computer back to line 170. The
new string is printed on the screen.
By moving the characters in the string, but only
printing those that occupy the first 28 positions,
the letters move smoothly across the screen.

USING STRING FUNCTIONS

POS

In addition to adding strings together and rear
ranging them, we can search a string for a particular
letter or character. The program in Listing 14-2
(flowcharted in Fig. 14-2) is an example of a tele
phone directory where the person's name, address,
and telephone number are all stored in one string.
The second part of the program searches for the
character that separates the name from the address
and phone number so that the information can be
printed on the screen correctly.

Listing 14-2

Line 130 sets aside enough memory to hold 20
names and addresses.

Line 140 begins the loop that will enter the names.
Line 150 displays the instructions on the screen.
Line 160 gets the name and stores it in NAME$. It

checks to see if the name is an XXX. If it is, then
there are no more names to be entered. It leaves

the loop and goes to line 240.
Lines 170-210 get the address, city, state, zip code,

and phone number. Each of these entries are
stored in a separate string variable.

Line 220 puts all the information in the various

strings into one string. The COUNT variable in
dicates which element of the string array the
name will be placed in. Each separate string is
added to the others. A slash (/) is placed between
each piece of information to separate each item
from the next.

Line 230 continues the loop until 20 names have
been entered.

Line 240 clears the string and asks for the name of
the person whose address and/or phone number
you want. The name will be stored in WANT$.
The entire name must be entered just as it was
typed in. If you misspelled the name when you
entered it, you must misspell it now.

Line 250 checks the contents of WANT$. The pro
gram will stop if the string is empty (ENTER is
pressed without typing any name).

Line 260 begins the FOR. . . NEXT loop that will
search for the name that has been entered. We

will count from the first name to the value of

COUNT less one. We must stop one element
before the value of COUNT, because COUNT is
the value of XXX or 21. (Up to 20 names may be
entered.) Counting all the way to the value of
COUNT will cause the program to crash.

Line 270 sets the START variable to one. This

variable will be used in the subroutine that begins
with line 370. When the computer returns from
this subroutine, it checks PART$ to see if it con
tains the same information as WANT$. If it does,
then the name has been found and the computer
proceeds to line 300. If the two string variables do
not match, the computer will continue with the
next program line.

Line 280 continues the loop until there are no more
names in the list, or the match has been found. If
no match has been found, the message will be
displayed on the screen.

Line 290 is a delay loop to give you time to read the
message. The computer is directed to line 240 to
see if you want to look for another name.

Lines 300-310 stores the name, address, or other
information that matches your inquiry. The same
subroutine is used in line 370 to move this infor

mation from the element in DIRECTORY$ and

place it in the correct string.

119

Fig. 14-2. Flowchart for Listing 14-2 Breaking Down Strings.

Line 320 finds out how long the DIRECTORY$ is
for this particular element. The phone number is
placed in PHONE$ by using the SEG$ command.
The START variable will contain the first

120

character after a slash. We will begin with this
character and continue to the end of the string. We
found out how long the string is and stored this
value in L. By subtracting the position of the

Listing 14-2

100 REM LISTING 14-2

110 REM BREAKING DOWN STRINGS

120 REM BY A.R.SCHREIBER FOR TAB BOOKS

130 DIM DIRECTORY*(20)

140 FOR COUNT*1 TO 20

150 DISPLAY AT(2i>l>ERASE ALLS"ENTER THE

FOLLOWING OR 'XXX'"

160 DISPLAY AT<6y4>J"NAME ?" it ACCEPT A

T(6ylO)BEEPJNAME* H IF NAME**"XXX" then

240

170 DISPLAY AT(8y4)i"ADDRESS ?" it ACCEP

T AT(8»14)BEEPJ ADDRESS*

180 DISPLAY AT<10»4)J"CITY ?" it ACCEPT

AT<10»11)BEEPJCITY*

190 DISPLAY AT(12y4>J"STATE ?" H ACCEPT

AT(12 912)BEEP iSTATE*

200 DISPLAY AT<14»4>S"ZIPCODE ?" it ACCE

PT AT(14 914)BEEP JZIPCODE*

210 DISPLAY AT(16y4)i"PHONE No* ?• it AC
CEPT AT(16 916)BEEP tPHONE*

220 DI RECTORY* (COUNT) *NAME* Si" /» Si ADDRESS*
Si" /" SiCITY*Si" /" SiSTATE*Si • /" SiZIPCODE*Si" /" Sip
HONE*

230 NEXT COUNT

2 4 0 DISPLAY A T (22 * 1) E R A S E A LI... t "W H 0 S E A D D

RESS Si PHONE DO YOUWANT?" it ACCEPT AT(2

4»6>BEEPJWANT*

250 IF WANT**"" THEN ST0P

260 FOR RECOUNT*! TO COUNT-1

270 START*! H GOSUB 370 it IF PART**WAN

T* THEN 300

280 NEXT RECOUNT H DISPLAY AT(12yl)BEEP

?"N0 ONE BY THAT NAME IS LIST-ED IN THIS

DIRECTORY"

290 FOR DELAY*! TO 1000 J: NEXT DELAY it
GOTO 240

300 START*! it GOSUB 370 it NAME**PART*

J i GOSUB 370 ? t ADDRESS**PART* ii GOSUB

370 H CITY**PART*

310 GOSUB 370 ii STATE**PART* :i GOSUB 3

70 j: ZIPCODE**PART*

320 L=LEN(DIRECTORY*(RECOUNT))Ji PHONE**

121

8EG*(DIRECTORY*(RECOUNT)? START yL-START+1

)

DISPLAY AT <4 y1)ERASE ALL t"NAME:330

ME*

SS*

340 DISPLAY AT<8y1)J"CITYJ "iCITY*

SPLAY AT< 10* l) ♦ "STATE: u 9STATE*

350 DISPLAY AT(12 * 1> J"ZIPCODEI H?Z

* it DISPLAY AT(14y1)tBPHONE Mo*t

E*

360 DISPLAY AT<24y1)I"PRESS ANY KE

ONTINUE" :: CALL KEY(OyKEYySTATUS)

STATUS=0 THEN 360 ELSE 240

370 P=POS< DIRECTORY*(RECOUNT)«a/a 9

380 PART*=SEG*(DIRECTORY*(RECOUNT)

yp-START)

390 START=P+1

400 RETURN

DISPLAY AT <6 y1)JH ADDRESS i •ADDRE

character past the last slash and adding one,
we know how many characters to move into
PHONE$.

Lines 330-350 clear the screen, and then place the
information from each string at the correct loca
tion on the screen. The information is taken from

the DIRECTORY$.
Line 360 places a message on the screen and waits

for a key to be pressed. The STATUS variable
will be zero until a key has been pressed. The
program will loop at this line until a key has been
pressed. When a key is pressed, the computer
will go to line 240 and wait for another name to be
entered.

Line 370 begins the subroutine that first checks the
string for the name that has been entered, then
moves the information from the string into
PART$ so that it can be stored in the correct
string. The P variable will contain the location of
the slash in the string. The computer will begin
searching the string at the location specified by
START. The first time this subroutine is used

when we are looking for a name in the directory,
START contains one. The computer begins with
the first character of the string and continues until

122

IPCODE

"JPHON

Y TO C

tt IF

START)

ySTART

it finds the slash. The location of the slash is

stored in P and the computer continues with the
next line.

Line 380 takes the character whose position is that
of START and places it just before the slash in
PART$. When we were looking for the name, the
P variable would contain the location of the first

slash. Since START would be set to one, the
computer would take all the characters beginning
with the first and ending with the one just before
the slash and store them all in PART$.

Line 390 adds one to P and stores the total in

START. The next time the computer uses this
subroutine, it will begin searching for the slash
again, starting with the character just after the
last slash it found. This is why we can use this
subroutine to separate the name, address, and
other elements in lines 300 to 310. The informa

tion between the slashes is placed in PART$ and
transferred to the correct string in the main pro
gram.

Line 400 sends the computer back to the main
program.

Look at Fig. 14-3. This is an example of a name
stored in DIRECTORY$. The first time that the

computer uses the subroutine at line 370, the POS
command will find the slash at location nine. The

first time that this same subroutine is used to sepa
rate the parts of the string, START will be one, and
P will be a nine. When we add one to P, START will
become ten. The next time that the computer uses
this subroutine, it will begin with the tenth position
in the string, the one in 123 and search for the slash.
The P variable will become 24 and all the characters

from the one to the second "T" in street will be

placed in the string variable PART$. The START
variable will become 25 and be ready for the next
search. This continues until all the parts of the
string have been placed in each particular string for
the name, address, city, and so on.

ASC

Every character that is printed on the screen
has its own numeric code. Every letter, number, or
character has a position in the character set. This
position number is the ASCII value of that charac
ter. Most computers follow this code. This makes
the systems somewhat compatible. For example,
the ASCII value of the letter "A" is 65 on most

systems. If the computer system does not use this
code pattern, it cannot communicate with other
systems. The graphics characters on different com
puters are usually different, but the numbers, sym
bols, and letters (both upper and lower case) all
follow the standard ASCII codes. To find out what

the code of a particular character is, simply type:

PRINT ASC("{character}")

Try these examples:

PRINT ASC("7")
PRINT ASC("Z")
PRINT ASC("/")

The following numbers should have appeared
on your screen - 55, 90, 47. In the last program in
this chapter, we will enter the ASCII values of
these characters to place them on the screen.

CHR$

This command will place the character whose
value is in the parentheses into a string, or print
that character on the screen. Now that we know that

each character has a particular value, we can use
that value to print that character on the screen. Try
these commands with your computer:

PRINT CHR$(33)
PRINT CHR$(71)
PRINT CHR$(61)

Your screen should display!, G, =. If you
would like to see the entire character set displayed
on your screen, type

FOR X=l TO 256:: PRINT X,CHR$(X)::NEXT X

You will notice that some of the codes do not have

any characters. You can use these positions to
create your own characters, or you can recreate any
of the existing characters.

JOHN DOE/123 ANY S T R E

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ET/NEW TOWN/S T/99999/

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

802-453-230 0

43 44 45 46 47 48 49 50 51 52 53 54

Fig. 14-3. How the characters in a string are numbered.

123

VAL

The VALUE command was used in the guess
program in a previous chapter. In that program, in
the HURKY routine, the row and column was en
tered with one entry. This entry was stored in a
string. There are times when you will want a
number to be entered in a string. It may be that the
number is used for the convenience of being able to
accept two or more answers with one entry, or it
may be because a string is the more acceptable way
to handle the number for the purpose of the pro
gram. In any event, the actual value of the string can
be determined by the VALUE command. The string
is placed in parentheses following the command.
The value of the string is placed in a NUMERIC
variable or printed on the screen.

B$="1.23"::V=VAL(B$)::PRINT V

or

B$="1.23"::PRINT VAL(B$)

STR$

At other times, you may want to convert a
variable into a string. This is accomplished by
placing the value in parentheses. The string is
placed in a string variable or printed on the screen.

B=2::B$=STR$(B)::PRINT B$

or

B=2::PRINTSTR$(B)

You may remember that when you print a
number on the screen, there is a space before and
after the number. There may be times when you do
not want this space after the number. By placing the
value in a string, you eliminate this space. Note the
difference between one of the two lines below and

the next:

FOR X=l TO 10::PRINT STR$(X);".":: NEXT X

FOR X=l TO 10::PRINT X;"."::NEXT X

124

In the first example, the period will be printed
immediately after the number. In the second, there
will be a space between the number and the period.

RPT$

This command repeats a character a specific
number of times, eliminating the need for duplicate
typing. For example, instead of entering

20 B$="********************"

you could enter

20 B$=RPT$("*",20)

and the character in the quotation marks would be
placed in B$ 20 times. The character or characters
between the quotation marks can change, and the
number of times the character(s) will be repeated
can be changed, but the line cannot be longer than
255 characters. If more than one character is en

tered, the entire sequence will be repeated the
number of times after the comma, as shown in the
example below:

20 B$=RPT$("HELLO",8)

will produce

HELLOHELLOHELLOHELLOHELLOHELLO
HELLOHELLO

We have used this command in several programs in
this book.

In the following program, we will use all the
commands listed above. This program will create
new characters that can be used in any other pro
gram (See Fig. 14-4.) These new characters can be
stored on disk and entered into some other program
later. The characters are displayed on the screen
with the corresponding hex code for each line. If
you are unfamiliar with binary to hex conversions,
please turn to Appendix A. Then use the program
listed in Listing 14-3 and flowcharted in Fig. 14-5.

NOTE: This program will run in a 16K cassette-
based machine. Lines 1210 to 1260 are used for the

8 4 2 18 4 2 1 8 4 2 1 8 4 2 1

FF IP
•
•

B
•_
1
H_
1

Character

#137

8 4 2 1 8 4 2 1

Character

#140

8 4 2 1 8 4 2 1

Character

#142

00

00

00

00

00

00

00

00

Character

#138

Fig. 14-4. Characters used for the grid and the cursor.

80

80

80

80

80

80

80

80

8 4 2 18 4 2 1

Character

#139

8 4 2 18 4 2 1

Character

#141

8 4 2 18 4 2 1

Character

#143

125

&

C Start)

Set aside

memory for
arrays

Move character

set into

a string

Create new

characters

for grid and
cursor

Place binary
code into

array

Place

colors into

array

'Display menu
get number j
(1-5)

Fig. 14-5. Flowchart for Listing 14-3 Character patterns.

126

©-

s.
Clear

screen &

display
option

Use grid
subroutine

rGet
character

number

(32-143)

Transfer

character

into empty
location

Display
default

values

on screen

Place

character

on grid

Place

options
on screen

Get a

number

(1-4)

5

o
REM: No entry
send back to

main menu

127

<j>

l
,T

/ -

/Place options/
/on screen /

/ get number /
/ or enter // Clear screen

/ and display j
' selection /L

*
i

Cycle
option

Yes >^"s '*>v l [
•^ ^ enter ^

MQlfc • fc

Use

16x16 grid
subroutine jtNo

*
i /Get /

/ character /
/ number /

/ (32-143) / J

I

Use subroutine
to change
four colors

Yes >^is «V
« < 1 >

I Yno

/No\ No ^^^\
<f number "> m < between >

Use subroutine
to change
four sizes

Yes v^ls itV
-*-<r 2 ^>

X. ? >^
\ ? v^ ^32-143^

jYes
|No J

s^W it >.

^

VV

Get the

first

character

for the boundary

res / \m c 3 ^
>V 9 yS

Tno

♦ s^ Is it >v No

Transfer

four

characters

<T 4 J> +> '

/

/

r-i
/ Put characters

/ and default ,
values on /
the screen /

, r
/Place j

/ all four /
/ characters/

on grid /

1
CO

Fig. 14-5. Flowchart for Listing 14-3 Character patterns. (Continued from page 127.)

128

Change
row or

column
value

Change to
other cursor

Place hex

values from

four characters

on screen

~S

Yes

Change code
so grid
square will
change

Erase all

black

squares iny
grid

Get

characters

from

disk

§

129

Grid

subroutine

/Print pixel
' values and
row numbersy

Change
color

subroutine

Change
color of

character

and sprites

/
Place

color name

on screen k

RETURN

Fig. 14-5. Flowchart for Listing 14-3 Character patterns.
(Continued from page 129.)

disk save and load. At the end of the program are the
correct lines for cassette users. Do not enter any of
the REM (remark) lines. The program will run
without the remarks. Lines 1550 and 1560 are used

130

only by the disk and should be omitted for the
cassette version.

Listing 14-3

Line 1?0 sets aside the memory space for the
characters that will be altered, the binary codes of
the characters, and colors that are possible for
these characters.

Line 140 reads the character patterns into CHAR$
array. The command CHARPAT gets the hex
code for the character. This pattern is stored in
CHAR$ so that we can alter them in this program.
All the codes from the characters beginning with
character 32 through character 143 are moved
from the character set into this string. Any
characters that you change will be changed in this
string. Only when you save the new character set
will the characters in the character set be

changed. Each code is offset by 32 in the character
set, but our array begins with the zero element of
the array.

Line 150 reads the new character codes from the

data in line 160. These coded are placed in
characters 137 through 143 inclusive. These
characters are changed in the character set that
will be displayed on the screen for this pro
gram. These characters can, however, be used,
changed, or modified for your character set.

Line 170 places all the possible hex codes in HEX$.
These codes are in line 180 and will be used later

in the program when we are converting the
character codes into hex on the screen.

Line 190 reads the colors into COLR$ array. These
color names will be displayed on the screen when
we are changing the characters. The abbreviated
color words are used when the larger characters
are on the screen.

Lines 230-270 place the menu on the screen. This
program will allow you to display a single charac
ter or a four-character pattern, load a character
set, or save a character set. Use the single
character option when you want to change only
one character at a time. The four-character pat
tern is useful for creating sprites. In Chapter 16,
we will discuss how four characters can be used

together as one sprite. This option allows you to

Listing 14-3

100 REM LISTING 14-3

110 REM CHARACTER PATTERNS

120 REM BY A.R.SCHREIBER FOR TAB BOOKS
130 DIM CHAR*(lll>yHEX$<15)yC0LR*<16y2)
140 FOR C=32 TO 143 H CALL CHARPAT(CyCH
AR*<C~32))J! NEXT C

150 FOR C=137 TO 143 ti READ C* it CALL
CHAR<C»C»>JJ NEXT C

160 DATA FFy808080808080808yFFB6D5E380E3
D5B6 9FF80808080808080yFFC9AA9CFF9CAAC9 y0
0 yF F F F F F F F F F F F F F F F

170 FOR 00 TO 15 H READ HEXUKCM! NEXT
C

ISO DATA 0000y0001y0010y001ly0100y0101yO
11090111y1000 y1001y1010 y1011y1100 y1101y1
110*1111

190 FOR N=l TO 2 it FOR C=l TO 16 H REA
D COLR*(C»N):j NEXT C H NEXT N

200 DATA TRANSPARENTyBLACKyMEDIUM GREENy
LIGHT GREENyDARK BLUEyLIGHT BLUEyDARK RE
Dy CYAN

210 DATA MEDIUM REDyLIGHT REDyDARK YELLO

W yLIGHT YELLOW yDARK GREEN yMAGENTA yGRAY yW
HITE

220 DATA TRANy BLCK yMGRN rLGRN yDBLU tLBLU yD

RED yCYAN yMRED yLRED rDYEL rLYEL yDGRN yMGNT yG
RAYyWHIT

230 DISPLAY AT<2»3)ERASE ALL J"CHARACTER/
SPRITE PATTERNS"

240 DISPLAY AT(5t10)i"MAIN MENU• H DISP
LAY AT(1092)t"1♦ DISPLAY SINGLE PATTERN•
JJ DISPLAY AT<12»2>:"2« DISPLAY FOUR PA

TTERNS"

250 DISPLAY AT(14y2> i "3♦ LOAD CHARACTER
SET" it DISPLAY AT(16y2)i"4. SAME CHARAC
TER SET"

260 DISPLAY AT(18f2):"5. EXIT PROGRAM"

270 DISPLAY AT<22»A)J"ENTER CHOICE ?" it
A C C E P T A T (22 y2 2) B E E P V ALIDAT E ("1234 5")S

ize<d:c a on c goto 310»720»1250,1220*
290

280 REM EXIT PROGRAM

290 END
continued on page 1331

131

see the entire character the way it would be dis
played on the screen. You can load into the com
puter anycharacter set that you have saved, and,
of course, you can save the character set that you
are working on. When you are finished with the
program, you can exit it with option5, the EXIT
PROGRAM. The VALIDATE option is set to
accept only the numbers one through five inclu
sive. Your choice is stored in the C variable and
the computer is sent to the correct routine.

Line 290 is the END command. When you
choose options 5, the computer will be directed to
this line and the program will end.

Line 310 begins option 1—display single pattern.
The screen is cleared and the option chosen is
displayed at the top.

Line 320 sets the RN variable to one. This variable
will count the number of grid rows placed on the
screen. The computer uses the subroutine begin
ning with line 1270 to draw the 8x8 grid on the
screen. This character grid will be numbered with
the values of each pixel.

Line 330 asks for the character number that you
want displayed on the screen. The subroutine at
line 1540 accepts the character number. The
computer returns to this line with the number of
the character that you would like displayed on the
screen. If you do not enter a number, but simply
press ENTER, the computer will erase any
sprites that may have been created and send you
back to the main menu. If you have entered a
character number, the computer will use the
VALUE command to get the number from the
string and place this value into the W variable.

Line 340 checks the value of the number entered to

make sure that it is a character between 32 and
143. If the character number entered cannot be

changed with this program, the computer will be
sent back to line 330 for another character

number. Otherwise, the character number 135
will be changed to reflect the character that you
want to change. This character is changed in the
character set, not in the actual character. The
character you create will then be printed on the
screen so you can see what it looks like. If you
have already altered the character, your new

132

character will be displayed; otherwise, the origi
nal character will be shown.

Line 350 sets the CLR variable to two and M to 1.
These are default values used in this program.
The color of the character on the screen will be
black and the size of the sprite will be normal. The
labels for sprite and magnifywill be printed on the
screen.

Line 360 prints the label for the color on the screen,
then uses the subroutine at line 1440. This
routine sets the color and sprite, and places the
character and color on the screen. The subroutine
at line 1460 is called to set the size of the sprite.

Lines 370-400 take each byte of the character and
place it on the screen on the large grid. First, the
two character hex byte is removed from the
CHAR$ at the location of the character that we
want displayed. The subroutine at line 1300 is
used to break down the hex code into binary. We
must use binary because the characters are all
binary codes. The pixel is either on or off. The
logic statement IF BT will print a black square at
the correct location of the grid if the value of BT is
equal to one. The result is the same if we tell the
computer IF BT or IF BT=1. The computer will
continue with the program statement if the value
of BT is not zero. If the value of BT is false, or

zero, the computer will go on to line 390 and print
an empty box on the screen. This loop continues
until all eight hex codes for the character are
displayed on the grid.

Lines 420-440 display new options on the screen.
Nowyou can change the color of the character on
the screen, changethe magnification ofthe sprite,
display a new character on the screen, or change
the character that is on the screen. Your entry will
be stored in the OP variable.

Line 450 uses the subroutine at line 1580 to clear
the last five rows on the screen after the option
number has been entered. The computer is sent
to the correct routine based on the number en

tered.

Line 460 sends the computer to the subroutine at
line 1600. Here you will be able to change the
color of the character that is on the screen. Once
the new color has been entered, the computer will

300 REM DISPLAY SINGLE CHARACTER/SPRITE
PATTERN

310 DISPLAY AT(2y4)ERASE ALL!"DISPLAY SI
NGLE PATTERN"

320 RN==1 H GOSUB 1270

330 DISPLAY AT(6y24)i"CHAR." it GOSUB 15
40 II IF W$="" THEN CALL DELSPRITE(#1>ii
GOTO 230 ELSE W=VAL<W*>

340 IF W<32 OR W>143 THEN 330 ELSE CALL
CHAR <135 yCHAR* (W--32))

350 CLR=2 it M=1 it DISPLAY AT(10y23)I"S
PRITE" II DISPLAY AT<12y24)I"MAG"

360 DISPLAY AT(17»23)I"COLOR" II GOSUB 1
440 II GOSUB 1460

370 FOR R=l TO 8 II B*=SEG*(CHAR$(W-32)y
R*2~ly2)ll GOSUB 1300

380 FOR C0L=1 TO 8 11 BT=VAL(SEG*<BN$yCO

Lyl))ll IF BT THEN DISPLAY AT<R+7yC0L+10

)SIZE<1)ICHR*<143)II GOTO 400

390 DISPLAY AT<Ri7yCQL+10)SIZE<1)ICHR*<1
40)

400 NEXT COL II DISPLAY AT(R+7y20)SIZE(2
)IB$ I! NEXT R

410 REM GET DISPLAY OPTIONS

420 DISPLAY AT(2yl)l" DISPLAY SINGLE P
ATTERN" I! GOSUB 1580

430 DISPLAY AT(20y1)I"ENTER NUMBER WANTE
D ?" II DISPLAY AT<21»5>i"i. CHANGE COLO
R" I! DISPLAY AT(22y5)!"2. CHANGE MAGNIF

ICATION"

440 DISPLAY AT<23y5)!83. DISPLAY NEW COD

E" I! DISPLAY AT<24y5)i"4, ALTER CHARACT

ER" I! ACCEPT AT(20y23)BEEP VALIDATE<"12

34")SIZE(1)I0P

450 GOSUB 1580 II ON OP GOTO 460y470y330
?490

460 GOSUB 1600 II GOSUB 1440 II GOTO 420

470 GOSUB 1630 II GOSUB 1460 II GOTO 420

480 REM ALTER SINGLE CHARACTER PATTERN

490 DISPLAY AT<2»3)J"ALTER CHARACTER PAT
TERN"

500 CR»0LR=8 II CC»0C=11 II CUR*=CHR*<14
1)

continued on page 135

133

be sent to the subroutine at line 1440 to change
the character's color. The computer will then be
directed to line 410 and the menu will be dis

played.
Line 470 is used to change the size of the sprite on

the screen. Anycharacter can be used as a sprite,
and the sprite can be two different sizes. The way
the sprite appears on the screen when the
character is printed is the normal size. By enter
ing a two for the size, you can enlarge the single
sprite. The computer uses the subroutine at line
1630 to get the number of the size of sprite that
you want. It then uses the subroutine at line 1460
to change the size of the sprite. Once the size of
the sprite has been changed, the computer will
display the menu on the screen.

Line 490 begins the routine to change the character
that is on the screen. At the top of the screen, the
option will be displayed.

Line 500 sets the CR and OLR variables to eight.
These variables will keep track of the row the
cursor is in on the screen. The CC and OC vari
ables are set to 11. These variables keep track of
the column of the cursor. Otherwise, the cursor
could not be printed and moved around on the
screen. The string variable CUR$ is set to
character 141. This character has been predefined
by the program and will indicate which pixel can
be turned on or off.

Line 510 uses the GCHAR command to find out
what character is on the screen at the location
OLR, OC+2. The value of the character is stored
in the T variable. We need to keep track of what is
on the screen before we print the cursor there so
that when we move the cursor, we can replace the
original character in that location.

Line 520 prints the cursor on the screen. The CR
and CC variables tell the computer where on the
screen the cursor should be placed.

Line 530 uses the CALL KEY command to see if a
key has been pressed. The status of the keyboard
is stored in the S variable. If the value of S is not a
zero, then a key has been pressed and the com
puter will go on to line 560. Otherwise, it will
continue with the next program line.

Line 540 checks to see which character is being

134

used for the cursor. There are two characters
being used for the cursor. One is the negative
image of the other, so if the character is 141, the
computer will change it to 139, otherwise, it will
make character 141 as the cursor.

Line 550 sends the computer to line 520, the line
that prints the cursor on the screen. Until a key is
pressed, the computer will continue this loop,
changing the cursor back and forth between the
positive and negative images. This makes the
cursor flash on the screen.

Line 560 checks the value of the key pressed. If the
Key value is 82, 87, or 90, then the R, W, or Zkey
has been pressed. The W key will blacken the
square and the R key will erase all the squares,
the computer will be sent to line 670 to perform
the correct routine.

Line 570 prints the character that was originally in
the square back in the square so that the cursor
can move.

Lines 580-610 check the value of the KEY variable
to see if one of the arrow keys have been pressed.
The keys to move the cursor are E, X, D, and S.
FCTN need not be pressed to move the cursor;
simply pressing the correct arrow key will move
the cursor in that direction. The computer checks
for each value separately. If the value of K
matches on the arrow keys, the OLR or OC vari
able will be changed accordingly. That is, its
value will be increased by one if the cursor moves
to the right or down, and is decreased by one ifthe
cursor should move to the left or up. If the value of
KEY is 81 the Q has been pressed and the com
puter will quit this routine by going to line 410. If
the value of KEY is not 13, that is, the ENTER
key has not been pressed, the values of OLR and
OC are placed into the CR and CC variables. The
computer is sent to line 510 to move the cursor in
the correct direction.

Line 640 begins the routine that places the hex
codes for the new character on the screen. Up
until this time, the hex codes that were on the
screen were for the original character. This
routine changes them to set up the new character.
P$ is cleared to hold the new codes for the new
character. The computer will use the subroutine

510 C A L L GCHAR <0LR y0C+2rT)

520 DISPLAY AT(CR yCC)SIZE(1)I CUR*

530 CALL KEY(OyKyS)! I IF SOO THEN 560
540 IF CUR*=CHR*(141)THEN CUR*=CHR*(139)
ELSE CUR**CHR*(141)
550 GOTO 520

560 IF K=82 OR K=87 OR K=90 THEN 670
570 DISPLAY AT<OLRyOC)SIZE <1)ICHR*(T)
580 IF K=69 THEN 0LR=0LR-1 II IF 0LR=7 T
HEN 0LR=15

590 IF K=88 THEN 0LR=0LR+1 II IF 0LR=16
THEN 0LR=8

600 IF K=68 THEN OOOC+1 II IF 0O19 THF
N 0C«11

610 IF K=83 THEN OOOC-1 II IF 0C=10 THE
N 0C=18

620 IF K=81 THEN 420 ELSE IF KOI3 THEN
CR=0LR II COOC II GOTO 510
630 REM CONVERT NEW CHARACTER TO HEX-COD
E 8 INSERT IN CHAR*(W)

640 P*="- II FOR 0LR=8 TO 15 II SC=11 II
EC=18 II GOSUB 1350 II P*»p*JtB*

650 DISPLAY AT(0LRy20)SIZE(2)IB* II NEXT
OLR II CHAR*<W-32)=P* II CALL CHAR(135,

P$)ll GOTO 420

660 REM SETf CLEARy OR ERASE
670 IF K=87 THEN T=143
680 IF K==90 THEN T=140

690 IF K<>82 THEN 520

700 RN=1 II GOSUB 1270 II DISPLAY AT(6y2
4)1"CHAR*" II DISPLAY AT(8y26)JCHR*<135)
II GOTO 500

710 REM DISPLAY FOUR CHARACTER/SPRITE PA
TTERN

720 DISPLAY AT(2»4)ERASE ALLI"DISPLAY FO
UR PATTERNS"
730 GOSUB 1470

740 W*="CHAR" II R=8 II GOSUB 1510 II GO
SUB 1540 II IF W*="" THEN CALL DELSPRITE
<#!)}} GOTO 230 ELSE W=VAL<W*)

750 IF W<32 OR W>143 THEN 740 ELSE W=INT
<W/4)*4

760 FOR 1=0 TO 3 II CALL CHAR(132+1yCHAR
continued on page 137 |

135

at line 1350 to convert each row of the grid into a
binary code, which will, in turn, be converted into
a hex code. The hex code will be stored in

BYTE$. These hex codes will be stored in PAT
TERNS. The contents of PATTERN$ will be
added to the contents of B$.

Line 650 displays the hex code for that row on the
screen. The loop continues until all the rows of
the grid have been converted into hex codes, the
codes have been stored in P$, and P$ has been
printed on the screen.The new character is placed
into the string array that stores the characters,
and it is printed on the screen. The computer will
go back to the program line that displays the menu
for this option. You can continue to alter this
character, or choose a new character.

Line 670 checks the value of K for 87. If it is an 87,

then the Wkey has been pressed. The value of the
T variable is changed to 143. This is the character
number of the character that prints an empty
square on the screen.

Line 680 checks for the code for the Z. If the Z has

been pressed, the T variable is set to 140 so that
the character for the filled-in square can be
printed on the screen.

Line 690 checks for the R. If the R has not been

pressed, the computer will be sent to line 520 so
that another key can be pressed.

Line 700 sets the RN variable to one. This variable

counts the row numbers as the grid is cleared.
The subroutine at line 1270 is used to print the
empty grid on the screen. The computer will
proceed to line 500 to move the cursor and create
a new character on an empty grid. This option is
good to use when you are creating a new character
that will not resemble the character that it is

replacing.
Line 720 begins the routine for displaying four

characters the way they would appear if they were
used together as sprites. The name of this option
is printed at the top of the screen.

Line 730 uses the subroutine at line 1470 to print
the grid on the screen. This time the grid will be
16x16 to accommodate four characters.

Line 740 uses the subroutines at line 1510 and 1540

to get the value of one of the characters in the

136

group of four that you want displayed on the
screen. The sprite or four-character mode dis
plays the characters in groups of four with each
group beginning on an even boundary. This means
that the character number that you enter can be
displayed in any of the four-character grids on the
screen. You cannot move the character into a

particular grid. You can change the character in
any grid to any design that you would like.

Line 750 checks the value of the character entered

to make sure that it is a character that can be

changed. If it isn't, the computer will be sent back
to line 740 and wait for another number. If it can

be changed, the value of the character is divided
by four and multiplied by four. This gives us the
value of the character on the boundary. This
character will be printed in the upper left portion
of the grid.

Line 760 changes the characters in locations 132 to
135 to the characters that will be printed on the
screen. The characters are taken from CHAR$. If
any of these characters have been changed, the
new character will be printed on the screen.

Line 770 prints all four characters on the screen.
This is the way the characters would be printed on
the screen if they were used as a by-four sprite.

Line 780 sets the default values for the color and the

magnification of the sprite and prints it on the
screen. The characters will be printed in black
and the magnification of the sprite will be normal.
The value for a normal by-four sprite is three.

Lines 800-870 print all four characters on the grid.
You will be able to alter these characters just as
you were able to alter the single character.

Line 880 displays the menu. Because this option
uses most of the screen space, the menu will cycle
every time you press the ENTER key without
entering a number. The first option, change color,
is on the screen.

Line 890 checks the value of W$ to see if it is a one,
or an empty string. If it is neither, the computer
will return to the previous line until either a one is
entered, or the ENTER key is pressed without
the number.

Line 900 displays the second option, change mag
nify.

*<W-fI-32))il NEXT I

770 DISPLAY AT(10y1)SIZE(2)ICHR*(132)XCH

R$ <134)I I DISPLAY AT(11y1)SIZE(2)ICHR*(1

33)*CHR*<135>

780 CLR=2 II M==3 II U*="COLR" II R=13 II

GOSUB 1510 II W*=="SPRT" II R=16 II GOSU

B 1510 II W*="MAG" II R~17 II GOSUB 1510

790 GOSUB 1520 II GOSUB 1530

800 FOR CH=(> TO 1 II FOR R=l TO 8 I I B*=

SEG$<CHAR$(W~32+CH)yR*2~ly2)ll GOSUB 130

0

810 FOR C0L=1 TO 8 II BT=VAL(SEG*(BN*yCO

L y1)) I I IF BT THEN DISPLAY AT(R+(CH*8)+5

yC0L+6)8IZE(l)ICHR*(143)II GOTO 830

820 DISPLAY AT(R+(CH*8)+5>COL+6)SIZE(1)1

CHR*(140)

830 NEXT COL II DISPLAY AT(RKCH#8)+5y24

)SIZE(3)IB$y"-" II NEXT R II NEXT CH

840 FOR CH=0 TO 1 II FOR R=l TO 8 II B$=

SEB*(CHAR*(W-30+CH)»R*2-l»2)j: GOSUB 130

0

850 FOR .C0L«1 TO 8 II BT=VAL<SEG*<BN*»CO

Ly1))I I IF BT THEN DISPLAY AT(R+(CH*8)f5

iC0L+14)SIZE<1)ICHR*(143)II GOTO 870

860 DISPLAY-AT<R+(CH*8)+5»C0L+14)SIZE<1>

ICHR*(140)

870 NEXT COL II DISPLAY AT(R+<CH*8)+5»27

)SIZE(2)IB$ II NEXT R II NEXT CH

880 DISPLAY AT(23»1)I"PRESS CENTER] ONLY

TO CYCLE" II DISPLAY AT(24y1)I"TYPE 1 T

0 CHANGE COLOR" I I ACCEPT AT(24y27)BEEP

SIZE(l)JW*

890 IF W*="l" THEN 960 ELSE IF W*="" THE

N 900 ELSE 880

900 DISPLAY AT(24yl)l"TYPE 2 TO CHANGE M

AGNIFY" II ACCEPT AT(24y27)BEEP SIZE(l)!

W*

910 IF W$=="2" THEN 960 ELSE IF W*="" THE

N 920 ELSE 900

920 DISPLAY AT(24y1)I"TYPE 3 TO CHANGE C

ODE" II ACCEPT AT(24,27)BEEP SIZE(1)IW$

930 IF W*="3" THEN 960 ELSE IF W$="" THE

N 940 ELSE 920
continued on page 139

137

Line 910 checks the W$ variable for the number two
or an empty string. Anything else will send the
computer back to line 900.

Line 920 places the third option on the screen,
change code.

Line 930 compares the contents of W$ with the
number 3 and an empty string.

Line 940 is the fourth option, alter characters. Use
this option to create new characters on the
screen.

Line 950 checks for a four or an empty string. These
lines will continue to cycle until one of the num
bers is entered.

Line 960 sends the computer to the correct line
based on the value of W$. These routines are very
similar to the routines used for the single charac
ter. The only difference is any or all of the four
characters on the screen can be changed.

Line 970 uses the subroutines at lines 1600 and

1520 to change the colors of the characters on the
screen.

Line 980 uses the subroutines at lines 1630 and

1530 to change the size of the sprites. In the
by-four mode, the three is used for normal sprites
and four for enlarged sprites.

Lines 1000-1220 allow you to change the characters
on the screen. The commands for this option are
the same as the commands for the alter single
character mode. We cannot reuse the same

routines, however, because the single character
mode uses only eight squares in the grid and this
routine uses 16. Also, the placement of the grid,
the hex values, and the number of values printed
on the screen are different for this option. How
ever, the cursor is the same, and the same keys
are used to move the cursor and change the pixels
on the screen.

Lines 1220-1230 save the character set out to disk.

You will give the character set a name. You will
use this name to bring the character set back into
the computer for future alterations or for use in
your own program.

Lines 1250-1260 load a character set from disk into

the computer. If you have used this program and
saved a character set onto the disk, you can use
this option to load the character set back into the

138

computer and make more changes to it. In Chap
ter 16 we will talk about how these characters can

be loaded directly into a different program for
immediate use.

Lines 1270-1700 are the subroutines that have been

used in the main portion of this program.
Lines 1270-1280 place the grid for the single mode

on the screen. The value of each pixel is printed
across the top of the screen. By taking the STR$
of the RN variable, we eliminate the leading and
trailing spaces that are normally printed with a
variable. The RPT$ command places eight
characters on the screen. The code for these

characters is 140, which makes the empty grid.
Finally character 138 is printed on the screen to
complete the last box in each row.

Lines 1300-1330 convert the hex value on B$ to an
eight-bit binary string. When the computer is sent
to this routine, a two-character hex code will be in
B$. The computer takes the first character and
places it into NY$. It then goes to line 1320 where
it gets the ASCII value of the character. This
value is used to get the four-bit binary equivalent
from HEX$. The computer uses this routine
twice, once for each character in B$. When it
returns to the main program, BN$ will contain the
binary code for B$.

Lines 1350-1380 look at a row in the grid and con
vert the pixels that are turned on into a binary
code. The GCHAR command gets the value of the
character at location OLR,COL+2. If the value of
this character is 143, then the pixel is darkened or
turned on and one is added to the BN$. If it is not
143, a zero is added to the string. After the row is
converted into a binary string, the computer di
vides it into two nibbles, each four bits long, and
converts the binary code into hex. When the com
puter returns to the main program, the hex value
of that row will be in the B$.

Lines 1400-1430 count from zero to 15, looking for a
match between the contents of NY$ and HEX$ at
any of those locations. When both match, the
computer is directed to line 1420 where the hex
value is placed in HX$. If the value of C is none or
less, then that value can be placed in HX$. If it is
greater than nine, the value must be converted to

940 DISPLAY AT(24y1)I"TYPE 4 TO ALTER CH

ARS," II ACCEPT AT(24y27)BEEP SIZE(1)IW*
950 IF W*="4" THEN 960 ELSE IF W*=8" THE

N 880 ELSE 940

960 DISPLAY AT(23yl)l" " II ON VAL(W*)GO
TO 970y980y740y1000

970 GOSUB 1600 II GOSUB 1520 II GOTO 880

980 GOSUB 1630 II GOSUB 1530 II GOTO 880

990 REM ALTER FOUR CHARACTER/SPRITE PATT

ERNS

1000 DISPLAY AT<2»2>:"ALTER 4 CHARACTER

PATTERNS"

1010 CRyOLR=6 II CC»0O7 II CUR*=CHR*(14

1)

1020 CALL GCHAR(OLR yOC+2rT)

1030 DISPLAY AT(CR yCC)SIZE(1)I CUR*

1040 CALL KEY(Oy|<yS)ll IF SOO THEN 1070

1050 IF CUR*=CHR*(141)THEN CUR*=CHR*<139

)ELSE CUR*=CHR*(141)

1060 GOTO 1030

1070 IF K=82 OR K==87 OR. K=90 THEN 1160

1080 DISPLAY AT(OLRyOC)SIZE(l)ICHR*(T)

1090 IF K=69 THEN 0LR=0LR~1 II IF 0LR»5

THEN 0LR=21

1100 IF K=88 THEN 0LR=0LR+1 II IF 0LR=22

THEN 0LR=6

1110 IF K-~=68 THEN OOOC+1 I I IF 0C=23 TH

EN 007

1120 IF K=83 THEN 0C=0C-1 II IF 0C=6 THE

N 0C=22

1130 IF K=81 THEN 1200 ELSE IF KOI3 THE

N CR=OLR II COOC II GOTO 1020
1140 GOSUB 1660 II W=W~4 II GOTO 1200

1150 REM SETy CLEARy OR ERASE

1160 IF K=87 THEN T=143

1170 IF K=90 THEN T=140

1180 IF K<>82 THEN 1030

1190 GOSUB 1470 II GOTO 1030

1200 DISPLAY AT(2yl)i" DISPLAY FOUR PA

TTERNS" II GOTO 880

1210 REM SAME CHARACTER SET

1220 DISPLAY AT<2»6)ERASE ALLI "SAVE CHAR

ACTER SET" II W*="SAVE" II N*=B" II GOSU
continued on page 141

139

the correct HEX letter.

Lines 1440-1450 change the character and sprite
colors and place the color word on the screen.

Line 1460 changed the size of the sprite.
Lines 1470-1490 place the 16x16 grid on the

screen. The values of the pixels are printed
across the top of the grid and the empty grid is
placed on the screen.

Line 1510 will place a word of any length anywhere
on the screen. The loop counts from one to the
last letter in the word. The ASCII value of a letter

in the word is stored in WC, then this letter is
printed on the screen at the location specified by
the R and C variables.

Lines 1520-1530 are used to change the color of the
character and sprites from the by-four mode.

Line 1540 accepts a code for the character that will
be displayed on the screen. The computer will
return to the main program with value entered in
W$.

Line 1560 gets the name of the character set that
you want to save or load.

Line 1580 clears the bottom five rows on the

screen.

Lines 1600-1610 get the value of the new color for
the character and sprite. If the number entered is
less than one or greater than 16, the computer will
stay at this line until a correct number is entered.
The computer returns to the main program with
the color value stored in the CLR variable.

Lines 1630-1640 accept a value to change the size of
the sprite. Only the numbers one to four can be
entered. Numbers one and two should be used for

the single character mode and three and four for
the by-four mode. The computer returns to the
main program with the magnification value in the
M variable.

Lines 1660-1700 change the hex codes of the screen
to the new codes for the by-four mode. The
character set is also changed to reflect the new
characters.

This program should be used from a cold start.
That is, the computer should be shut off, then
turned back on before using this program. One
reason for doing this is the characters that are

140

moved into CHAR$ are the characters from the
character set of the TI. If the program that youwere
using altered any of these characters, the altered
characters would show up on the screen instead of
the true TI characters.

This program is written to run with the disk
system. It can, however, work with the cassette if
you change the following lines:

{LINES FOR LOADING AND SAVING CHAR
ACTER SET WITH CASSETTE.}
Line 1220 prints the option at the top of the screen.
Lines 1230-1236 saves the character set to the

cassette recorder. Before the values for the new

characters can be saved, we need to pack the
information together so it will be saved quickly
and efficiently. We will use CM$ as a temporary
storage area for the character codes. Each ele
ment of CM$ will contain the codes for 12

characters. Each character contains 16 hex codes.

The length of each string in each element of CM$
will be 192 bytes. The two nested FOR... NEXT
loops will take each byte from the character pat
terns stored in CHAR$, put them together or
concatenate them, and store them in CM$. First
the C variable is set to zero. This variable is used

as a pointer. It tells the computer which character
pattern is being transferred. The first FOR . . .
NEXT loop counts from one to nine, the first nine
elements of CM$ array where the packed code
will be stored. C$ is cleared so that we won't be
adding to previously stored information. The next
FOR . . . NEXT loop begins with the value of C
and continues until N is more than C+ll. We will

be moving 12 character patterns into each string.
The first time this loop is used, the character
pattern for the zero element of CHAR$ is stored
in C$. The second time this loop is used, N will
equal one so the character pattern for the first
element of CHAR$ will be added to the character
pattern in C$. The loop will continue until the first
12 character patterns (from zero-11) have been
placed in C$. This set of patterns is then placed in
the element of CM$ that is pointed to by RN. The
first 12 character patterns will be placed in the
first element of CM$. The C variable has 12 added

B 1560 it IF N*^" THEN

1230 OPEN *i:"DSKl."SN*

1 it PRINT #i:CHAR$(C)JJ
#1 it GOTO 230

1240 REM LOAD CHARACTER SET

1250 DISPLAY AT<2»6)ERASE ALL J"LOAD CHAR
ACTER SET" :j W*="LOAD" it N*="' JJ GOSU
B 1560 H IF N*=" THEN 230

1260 OPEN #1J"DSK1."8N* it FOR C=0 TO 11
1 H INPUT #1JCHAR*(C)J: NEXT C H CLOSE
#1 H GOTO 230

1270 DISPLAY AT<6»11)SIZE(8)J"84218421"
:: FOR R=8 TO 15 JJ DISPLAY AT<R?5)SIZE<
5)J•ROW "8STR*(RN)tt RN=RN+1
1280 DISPLAY AT<R»11)SIZE<9):RPT*(CHR*<1

40>*8)&CHR*<138> ti NEXT R H DISPLAY AT<
Rr11)SIZE<8):RPT*<CHR*<137)18> J J RETURN
1290 REM SUBROUTINE TO CONVERT 2-DIGIT H
EX CODE TO 8-BIT BINARY

1300 BN*="' it NY$=SEG*(B$>lyl)SJ GOSUB
1320 i t NY*=SEG*<B*»2»1>

1310 REM SUBROUTINE TO CONVERT l-DIGIT H
EX CODE TO BINARY
1320 NY=ASC<NY*>t t IF NY>57 THEN NY=NY~5
5 ELSE NY=NY-48

1330 BN*=BN«*HEX*<NY>:J RETURN
1340 REM CONVERT 1 ROW OF BLOCKS TO BINA
RY CODE

1350 BN*=«" it FOR COL=SC TO EC it CALL
GCHAR(0LR»C0L+2»T)JJ IF T=143 THEN BN$=B
N*4"l" ELSE BN*=BN*&BOa

1360 NEXT COL

1370 REM CONVERT 8-BIT BINARY CODE TO 2-
DIGIT HEX CODE

1380 B*="» it NY*=SEG*<BN*i-l»4) it GOSUB
1400 it B*=B*SHX* it NY*=SE6*(BN*»5»4>::
GOSUB 1400 H B*»B*SHX« J J RETURN

1390 REM CONVERT A BINARY NYBBLE TO HEX
CODE

1400 FOR C^O TO 15 it IF NY$=HEX$(C)THEN
1420

1410 NEXT C

1420 IF C>9 THEN HX*=CHR*(C+55)ELSE HX*=

230

:: for c=^=0 TO 11

NEXT C CLOSE

141

142

CHR*(C+4S)

1430 RETURN

1440 CALL C0L0R<13»CLR»1>:J DISPLAY AT<8

»26>:CHR*<135):: CALL SPRITE<*1f135>CLR»

104 9217)tt L=LEN(COLR*(CLRy 1 > >

1450 DISPLAY AT(19»1)J" " it DISPLAY AT<

19 y28-L)iCOLR* <CLR r1)it RETURN

1460 DISPLAY AT(12y27):STR*(M>tt CALL MA

GNIFY<M)?J RETURN

1470 RN=1 J: DISPLAY AT(4y7)SIZE(16)JRPT

*(' 84218421 "y 2) i i FOR R=6 TO 21 :: IF R==

6 THEN DISPLAY AT(Ry1)SIZE(4)t"ROWt"

1480 DISPLAY AT(Ry5)SIZE<1)JSTR*<RN>Jt R

N-RN+1 J J IF RN>8 THEN RN=1

1490 DISPLAY AT(Ry7)SIZE<17)?RPT*<CHR*<1

40)»16)8CHR*(-138) ?: NEXT R it DISPLAY AT
<Ry7)SIZE<16> JRPT*<CHR*<137) y.1.6) t t RETUR

N

1500 REM ROUTINE TO PLACE WORDS ANYWHERE

ON THE SCREEN

1510 L=LEN(W*)JJ FOR C=l TO L it WC=ASC<

SEG*(W* yC y1))tI CALL HCHAR(R tC+11WC y1) tt
NEXT C tt RETURN

1520 CALL C0L0R<13»CLR»1):: CALL SPRITE(

l»132rCLR»l'44»17) H W=COLR*(CLRy 2) J t R
=14 it GOTO 1510

1530 DISPLAY AT(17y3)SIZE(1)ISTR*(M)tt C

ALL MAGNIFY(M)? i RETURN

1540 DISPLAY AT<24»1)J"ENTER CHAR* CODE<

32-143)?" it ACCEPT AT<24y26)BEEP VALIDA
TE(DIGIT)SIZE<3)JW* J J RETURN

1550 REM GET FILE NAME

1560 DISPLAY AT(12y1)J"ENTER. NAME OF CHA
RACTER SET TO "yW$y" f it ACCEPT AT(13y

11)BEEP SIZE(10)IN* it RETURN

1570 REM CLEAR BOTTOM 5 LINES

1580 FOR R-20 TO 24 H DISPLAY AT(Ryl)?"

" :t NEXT R :i RETURN

1590 REM GET NEW COLOR

1600 DISPLAY AT<24»1>:"ENTER COLOR CODEC

1-16) ?" it ACCEPT AT(24y26)BEEP VALIDAT

E(DIGIT)SIZE<2)JCLR H IF CLR<1 OR CLR>1

6 THEN 1600
continued on page 143

1610 DISPLAY AT(24»1>

1620 REM GET NEW MAGN

1630 DISPLAY AT<24»1)

TOR(1-4)?" H ACCEPT

A TE (DIGIT) SIZE (1) i M i
N 1630

1640 DISPLAY AT<24»1)

1650 REM CONVERT NEW

BE 8 INSERT IN CHAR*<

1660 A»A2=0 iI SR=6 i
GOSUB 1680 H SR=14 i

♦ * RETURN

IFICATION

J"MAGNIFICATION FAC

AT(24y28)BEEP VALID

i IF M<1 OR M>4 THE

80

1670 A2=3 J J SR=6 it
SUB 1680 H SR=14 H
1680 p*=«» it FOR OLf

*A1 it EC=13+1*A1 it
1400 it P*«P**B*

1690 DISPLAY AT<OLR>I

NEXT OLR H CHAR*<W

132-fAyP*)

1700 w=w+i :: a=a+i

CHARACTER TO HEX-CO
W)

i ER=13 it A1=1 it
i ER=2i :j GOSUB 16

ER=13 :j A1=9 it GO
ER=21

:=SR TO E.R it SC=6+ 1
GOSUB 1350 it GOSUB

24+A2)SIZE<2):B* H
32)=P* H CALL CHAR(

H RETURN

1220 DISPLAY AT<23»6)ERASE ALL J"SAVE CHA
RACTER SET"

1230 C=0 :: FOR RN=1 TO 9 H C*="M it FO
R N=C TO C+ll JJ C*=C*XCHAR*(N)Jt NEXT N
1232 CM*(RN)=C* it C=C+12 it NEXT RN H
C*=»» JJ FOR N=C TO C+3 it C*=C*8CHAR*(N
)

1234 NEXT N it CM*(10)=C$

1236 OPEN #1t"CS1"yOUTPUT,FIXED 192 ?! F
OR RN=1 TO 10 it PRINT #1JCM*(RN)JS NEXT
RN it CLOSE #1 :? GOTO 230

1250 DISPLAY AT<23»6>ERASE ALL:"LOAD CHA
RACTER SET"

1252 OPEN #lt"CSl"yINPUT yFIXED 192 it F
OR C=i TO 10 it LINPUT #1JCM*(C)?J NEXT
C it CLOSE #1

1254 C=0 it FOR RN=1 TO 9 it A=l it FOR
N=C TO C+ll :: CHAR*(N)=SEG*(CM*(RN)yAyl
6)

1256 A=A+16 JJ NEXT N it C=C+12 :: NEXT
RN H A=l it FOR N=C TO C+3

1260 CHAR*(N)=SEG*(CM*(RN)yAyl6)J J A=A+1
6 it NEXT N :j GOTO 230

143

Table 14-1

Table of Commands for Listing 14-3.

(The ALPHA LOCK KEY must be down)

KEY FUNCTION KEY FUNCTION

E (up arrow) Cursor up Z Whiten square

X (down arrow) Cursor down R Erase all blocks

D (right arrow) Cursor right Q Quits alter mode—no changes

S (left arrow) Cursor left

W Blacken square

{ENTER} Make changes on screen—leave
alter mode

to it, so now it can point to the second set of 12
characters in CHAR$. Because RN will be two,
the second set of twelve character patterns (12 to
23) will be stored in the second element of CM$.
Both FOR . . . NEXT loops continue until nine
sets of 12 character patterns each have been
packed together and moved into CM$. The next
FOR. .. NEXT loop packs the last four character
patterns together and places them in the tenth
element of CM$ array. Now the entire character
set is ready to be saved to cassette. The file is
opened to output to the first cassette. Each record
will have a fixed length of 192 bytes. The FOR...
NEXT loop will send out the ten elements of
CM$.

Lines 1250-1260 open the file for the cassette to
input or read the character set from the cassette at
the fixed length of 192 bytes for each record. The
FOR . . . NEXT loop uses the LINPUT or line
input command to get the records from the cas

144

sette. The LINPUT command is used due to the

length of the records. The records are stored in
the string array CM$. Follow the instructions on
your screen to turn the cassette recorder on and
off. Once these records are in the computer, the
next FOR . . . NEXT loop breaks down each of
these 10 records into the 12 characters that are

stored on them. Each character is made of a 16

hex digit code. The SEG$ command removes 16
codes or one character pattern at a time and
moves it into CHAR$. There are 12 character
patterns stored in the first nine records. The
tenth record contains last four characters.

When the computer is saving the characters to
the cassette it does not display the message RE
CORDING on the screen. You can hear your
characters being saved by turning up the volume on
your monitor or television. You should hear a sound
like a burst of noise separated by a few seconds of
tone.

Chapter 15

Finding and Trapping Errors
The most necessary steps in programming are
testing and debugging your program. When you
write aprogram, youare familiar withits functions,
what answers or inputs are expected, and how the
program is supposed to work. The best test for a
program is to let someone who is unfamiliar with
the program sit at the computer and try it. It's
amazing how many errors can appear when some
one else is using your program. Ofcourse, there are
some errors the program cannot check for. If you
enter 50 instead of 5, you would not expect the
program to ask, "ARE YOU SURE?" after every
question. On the other hand, there are ways to
checkfor errors before or after they happen, have
the program recover from the error and avoid hav
ing the user experience an error message on the
screen.

ERROR-TRAPPING TECHNIQUES

ON ERROR

The ON ERROR command is one of the com

mands that handles an error that may occur in a
program. When a program error occurs, the error is
printedon the screen andthe program stops. If it is
possible for the user to enter any type of informa
tion that could result in an error, the program
should be aware of the possible error and check for
it. It isalso possible for theerrortobegenerated by
theprogram itself. Again, theprogram canbeset up
to watch for an error and handle it.

The ON ERROR statement is similar to a
GOSUB in that it also needs a RETURN statement
after the error is handled. ON ERROR must be
followed by a line number. This line number is the
program line that the computer will go to if an error
occurs.

Try the program in Listing 15-1 without the
ON ERROR instruction in line 140. After the words
have beenprintedon the screen, andthe computer
hasnomoredata, anerror messageis printedonthe
screen, and the program stops. Now put the ON
ERROR line back in. The program will continue
until the FCTN and 4 keys are pressed. When the
computer runs out of data, it is in error. This time,

145

Listing 15-1

100 REM LISTING 15-1

110 REM ON ERROR
120 REM BY L*M*SCHREIBER FOR TAB BOOKS
130 DISPLAY AT(2 y2)ERASE ALL iBI'M 001NO
TO READ MY OWNaI"DATA.u

140 ON ERROR 180
150 READ A* JJ DISPLAY AT<7y7>SHI READ?

M mA*

160 FOR TIME-1 TO 500 it NEXT TIME

170 GOTO 150

180 RESTORE J J RETURN 140

190 DATA FATHER yMOTHER 9BROTHER 9SISTER 9At)
NT*UNCLE*COUSIN

however, line 135 tells the computer that when an
error occurs, go to line 180.The computerdoes this
and finds a RESTORE statement. Now it can con
tinue reading the data and printing the words on the
screen. The RETURN tells the computer to go back
to line 140 before continuing, which resets the er
ror handling.

Remove the line number after the RETURN
andrun the programagain. This time the RETURN
will send the computer back to the line where the
error occurred. The computer will read the words
in the DATAline and print them on the screen. The
error occurs again and the program stops. Once an
ON ERROR has been handled, it is cleared from the
computer. The error handling command must be
executed again when the next error occurs.

ON BREAK

Youcan protect your programs from being in
terrupted with the ON BREAKcommand, by using
the ON BREAK NEXT command at the beginning
of the program. One word of warning here—with
the ON BREAK NEXT command, only a break
point set within the program itself will stop the
program. If the program loops, and there is no
natural end to the program, the only way to stop it is
to use the quit function.

When you do not specify ON BREAK NEXT,
the default is ON BREAK STOP. When the FCTN

146

and4 keys are pressed, the program willstop. The
ON BREAK STOP statement can be used within
the program to restore the default.

You can also tell the computer to break or stop
at a particular linenumber. Use BREAK witha line
number at the beginning of the program and the
computer will stop at that line. If you use BREAK
without a line number, the computer will stop im
mediately upon reading the instruction.

150 BREAK

The computer will stop when it comes to line
150 no matter what. However, if you use BREAK
with the line number before the ON BREAK NEXT
command, the computer will not stop at that line
number. It will not stop at 150 as directed to in line
110 of the short listing below:

110 BREAK 150

120 ON BREAK NEXT

130 PRINT "I WILL"

140 PRINT "KEEP"

150 PRINT "GO "

160 PRINT" ING"

170 STOP

However, if you remove line 110 and add:

155 BREAK

the computer will stop at line 155. The following
program in Listing 15-2 demonstrates the ON
BREAK command.

ON WARNING

Some errors do not result in an error message,
but rather a warning message printed near the bot
tom of the screen. When a warning occurs, the
computer allows the user to try again. Go back
through some of the programs in this book. You will
notice that in most of the program statement where
the ACCEPT AT command was used, the program
specified whether the entry should be numbers, and
if they were which numbers should be accepted.
Youmay have accidentally pressed the ENTER key
without entering a number. The VALIDATEoption
can only check for a valid number. An entry with no
number gets a warning message and the opportun
ity to try again.

There are two different examples of eliminat
ing the warning in the program in Listing 15-3. In
the first few lines of the program, you are asked to
enter the number for the month that you were born

Listing 15-2

in. The VALIDATE option makes sure that only
numbers can be entered. If you press the ENTER
key without entering a number, a warning appears
on the screen. Now add the ON WARNING line to
the program. You can press the enter key all you
want. Theprogram will notadvance andyouwill not
get an error message.

The second part of the program does display
the warning message of the screen because this is
the default for an error that gives warning mes
sages. In this routine, you are asked to enter a
numberunder 295. The computer will findthe value
ofe (2.718281828459) raised to the value that you
enter. Any number larger than 294 will cause an
error. Enter numbers that are less thanandgreater
than 295.

The third way to use the ON WARNING is
withthe STOPcommand. When the computerhasa
value error, instead of displaying the error and
waiting for another entry, the program stops after
the warning message is displayed. If the ON
WARNING STOP or the ON WARNING NEXT is
used in a program, it will stay in effect until an ON

100 REM LISTING 15-2

110 REM ON BREAK

120 REM BY A*R*SCHREIBER FOR

130 CALL CLEAR it PRINT "RUN

ERED"

140 GOSUB 370

150 PRINT "DEFAULT OF ON BREAK STOP IN E

FFECT"

160 GOSUB 370 ii BREAK 340 {J PRINT "BRE

AK 320 COMMAND ISSUED" ti GOSUB 370

170 ON BREAK NEXT H PRINT "ON BREAK NEX

T COMMAND ISSUED"

ISO GOSUB 370

190 PRINT "ANY BREAKPOINTS ? "?JJ

GOSUB 380 ti PRINT "NO !"

200 GOSUB 370 :j PRINT "CLEAR

TAB BOOKS

COMMAND ENT

210 FOR

STATUS)

COUNT*1 TO 75

PRESSED ?"

CALL KEY(09KEY?

147

220 IF STATUSO0 OR STATUSO-1 THEN IF

0UNT>49 THEN DISPLAY AT<23*17)i"TRY IT1

tt GOSUB 3BO

C

230 IF KEY-2

t HA HA !" t

C0UNT=75 ELSE DISPLAY AT<23»17)J

240 NEXT COUNT Jt GOSUB 370

250 PRINT "EXECUTE NEXT COMMAND"

B 370

260 PRINT

1ST LINE

ii BREAK

270 GOSUB

MAND" i

THEN DISPLAY

GOSUB 380

AT<23?17)J"YES

GOSUB 380 :t

NO ! "

•PROGRAMMED BREAKPOINT

IN MESSAGE AND"J"NOTE

! TYPE 'CON' TO CONTINUE

370 it PRINT "EXECUTE NEXT

GOSUB 370

HIT"?"L

REMARK"

COM

280 PRINT "CLEAR PRESSED ?"

290 FOR COUNT*1 TO 75 H CALL KEY<0»KEY»

STATUS)

300 IF STATUSOO OR STATUSO-1 THEN IF C

0UNT>49 THEN DISPLAY AT<23>17)t"TRY IT"
tt GOSUB 380

310 IF KEY«2 THEN DISPLAY AT<23»17)t"YES

» HA HA !" H GOSUB 380 tt GOSUB 380 it
C0UNT=75 ELSE DISPLAY AT<23»17)t"NO !"

320 NEXT COUNT tt GOSUB 370

330 ON BREAK STOP ti PRINT "ON BREAK STO

P COMMAND ISSUED" H GOSUB 370 it PRINT

"TYPE 'CON' AFTER BREAKPOINT"

340 GOSUB 370 H PRINT "EXECUTE NEXT COM

MAND"

350 GOSUB 370 it PRINT "PRESS CLEAR NOW

TO END" it GOTO 350

360

370

END

FOR COUNT-1 TO 5

NEXT COUNT

380 FOR

RETURN

DELAY*1 TO 500

PRINT TAB(14)?"t

WARNING PRINT is issued. Be sure to clear any
error trapping that you have set up before running
another program.

RETURN

The RETURN statement is used with ON

ERROR. The ON ERROR is similar to a GOSUB.

After it executes the lines that it has been sent to, it
needs a RETURN to send it back. There is one

important difference between the RETURN used
here and the GOSUB's RETURN. With the ON

ERROR'S RETURN, you have three different op-

148

Listing 15-3

100 REM LISTING 15-3
110 REM ON WARNING

120 REM BY L.M.SCHREIBER FOR TAB BOOKS
130 DISPLAY AT<2>i)ERASE ALL J"THIS DEMON

STRATES 'ON WARNING'"

140 ON WARNING NEXT

150 DISPLAY AT<5*3)J"ENTER THE NUMBER OF

THE"?"MONTH THAT YOU WERE BORN"

160 ACCEPT AT<6»26)VALIDATE(DIGIT)JMONTH

it IF M0NTH<1 OR M0NTHM2 THEN 160

DISPLAY AT<10.-5) J"YOU DID IT RIGHT!"
FOR TIME=1 TO 700 it NEXT TIME

IF EXAMPLE>=5 THEN DISPLAY AT<2*3)ER

170

180

190

ASE ALL?"ON WARNING STOP

STOP ♦i GOTO 220

200 DISPLAY AT(2*3)ERASE ALL:"ON WARNING
WITH WARNING"

210 ON WARNING PRINT

220 DISPLAY AT<5*3):"ENTER A NUMBER LESS
THAN 295"

230 ACCEPT AT(9y8)SIZE(ll)yALIDATE(NUMER
io:n

240 display at(11 * 10):exp<n)

250 example=example-u :: goto 180

tions to choose from. The RETURN can be used
alone. In this case, the computer goes back to the
line that was in error. If there is a line number after
the RETURN, the computer will go to that line
number to continue the program. The word NEXT
can also be placed after RETURN. In this case, the
computer would go to the program line immediately
following the one in error. You will have to decide
which method works best for your needs.

100 RETURN ! TRY THE LINE AGAIN
110 RETURN 30 ! GO TO LINE 30
110 RETURN NEXT ! USE THE LINE AFTER

THE ONE IN ERROR

TESTING FOR ERRORS

As you write your program, you should test
every routine and subroutine as it is added to the
program. Since every possible situation should be

ON WARNING

takenintoaccount, and is not always possibleto do
so, try to test for the extreme situations, such as
the largest value you expect, then a larger value;
the smallest value that should be entered, then an
even smallervalue. Decimals, negative numbers,
andletters should be trapped, validated, or checked
in the program. Check that the FOR . . . NEXT
loopsexit when andwhere they should. If there is
another exit from the loop, does it branch to the
correct routine? Does the GOSUB command return
to the correct line, and if a program goes to a
subroutine becauseof an IF. . . THEN statement,
is the program correctly branched around the un
necessary lines?

If you are testing a routine that is not working
correctly, you should first try break points at the
line you think is causing the error. Also set a break
point before you enter the routine.

149

A break point is set by placing the command
BREAK in a line, or by telling the computer at the
beginning of the program BREAK (line number).
When the computer comes to that line number, the
program will stop. Check any variables for accuracy
before the program enters the routine by printing
them to the screen with a direct command. Then

type CONT. When the program stops again, check
the variables once more. If the variables were cor

rect when the computer entered the routine and are
now incorrect, the error is occurring somewhere
between the two break points. Set anew break
point between the two in the program and try it
again. Keep dividing the area between the correct
line and the incorrect line until you can pinpoint the
error. Of course, if at the second break point the
variable(s) were correct, the error occurs after this
line. Move the break point to the end of the routine
and try again. After you correct the error, remove
all the breaks in the program. Then type UN-
BREAK in the direct mode. If you had a break point
set at a particular line in the program and you did not
reach that line while you were testing the program,
the computer would remember that break point,
and break at that line even after the command had

been removed from the program. UNBREAK
erases or clears all break points that have been set.

Another way to find out why a certain routine is
being used when you think it shouldn't be, or why
the computer is coming up with strange values is to
use the TRACE command. The TRACE command

can be used as a direct command.

Type TRACE {ENTER}
then type RUN {ENTER}

The program in the computer will be executed,
but all the line numbers that the computer is using
will be displayed on the screen while the computer
is using them. This is very useful for checking
which program lines are being used and which ones
aren't. Maybe the GOTO is sending the computer
to the wrong line. You will find out by following the
line numbers printed on the screen.

With a very long program, you may know that
most of the program is working correctly, but one

150

routine seems to be wrong. Place the TRACE
command in the program just before the computer
enters that routine.

110 TRACE

Now the program will run without displaying
any line numbers until this line is reached. Once
this line is executed, the computer will print the
line numbers on the screen as it executes that line.

The computer will continue to use the TRACE
command until you tell it to stop. In the direct
mode, you can type UNTRACE {ENTER}. Under
program control, you can use the UNTRACE com
mand with a line number.

300 UNTRACE

Sometimes the program is operating cor
rectly, but it is not running smoothly. It is taking too
long to arrive at the answer, the screen does not
look clean, the messages are garbled. These are
weak points of the program. If it appears the pro
gram is running too slow, try to tighten the code or
instructions by placing more than one statement on
a line. (Watch out for IF . . . THEN and GOSUB
statements—when tightening code you can have
problems with them.)

CALL ERR

You can also find out more about the error that

has occurred in the program—which line number it
occurred at, the type of error, and the severity of
the error. The error code is the number of the

particular error. For instance, LINE NOT FOUND
is an error code 60. If the type of error is a negative
number, then the error occurred within the pro
gram. The severity code is always nine, and the line
number is the line at which the error occurred. This

may not be the line that caused the error, but only
the line where the error was detected. The format

for the CALL ERR is as follows:

100 CALL ERR(CODE,TYPE, SEVERITY,
LINE)

If you are not interested in the line number,

then you do not have to use the last two
variables-SEVERITY and LINE. The first two
variables will contain the error code and the type of
error.

Playing Computer

Sometimes the best way to find an error that
does not readily appear when you use the usual
methods is with a pencil and paper. Make a list of
the variable being used. Write down the line
number you are starting with and the value of the
variables at that time. As you work each line of the
program, change the variables the way the com
puter would. Calculate the equations and check the

lines the program would direct the computer to.
When you go to a subroutine, mark the line on the
paper, work the subroutine, and return to that line.
Many errors are made by reusing a variable in a
subroutine that youare usingin the mainprogram.
The program returns to the main part of the pro
gram with a different value and causes an error later
in the program. Other times, youfind the program
has been directed to another line and never returns
to the original lineat all! Byworking the programas
the computer would, it is easy to spot such mis
takes. This method can also alert you to routines
used within the program that could be made into
subroutines.

151

Chapter 16

Sights and Sounds

One of the most exciting features of the TI-99/4A
computer is its graphics and music capabilities. As
you have seen with many of the programs in the
book, you are not limited by the characters set
within your TI-99/4A. You can change the charac
ters to any form or design you want or need for your
program. You are limited only by your imagination.
Your TI-99/4A can also be programmed to produce
music or sound effects. Once you have added music
to your program, you will not want to use the silent
version again!

USING GRAPHICS COMMANDS

CALL CHAR

The CALL CHAR command has been used in

several programs in this book. This is the command
that changes a character in the character set into a
new character. Each character in the character set

is made up of an 8 x8 grid or set of pixels. (See Fig.
16-1). The character is arranged so that one row of
pixels is one byte, and the character is eight bytes

152

high. In order to change one of these characters, we
assign new values to each byte that makes up the
character. When you used the Character Pattern
program in Chapter 14, you were able to see the
byte value of each row on the screen. These eight
values are passed to the character set in the com
puter. Once the values have been changed, that
character number will become your new character.
Any character from 32 through 143 can be changed.
The character code is the first number in the

parentheses.

CALL CHAR(34, {pattern})

In the above example, we would change the
code of the quotation mark. The pattern is the hex
code that makes up the new character. The pattern
cannot exceed eight bytes—16 numbers. Trailing
zeroes such as those in "FFOO," can be omitted. If
you enter less than 16 numbers, the computer will
use zeroes for the remaining bytes. Try this:

10 CALL CHAR(36,FFFFC3A59999A5C3FFFF)

Value of each pixel

8 4 2 18 4 2 1

12 3 4 5 6 7 8

00

38

44

04

08

10

00

10

Character

pattern

Fig. 16-1 An 8x8 grid for character.

20 PRINT "$"
30 GOTO 30

When the computerprints the dollarsign ($),
an "X" inside a box should be printed instead.

CALLCHARPAT

This command is the opposite of the CALL
CHAR command. This command tells you what the
pattern of a particular character is. Its format is:
CALL CHARPAT(36,B$). The first number in the
parentheses is the code of the character that you
want. The string variable will contain the character
pattern for that code. Enter this in the direct mode.

CALLCHARPAT(36,B$)

Now type PRINT B$. B$ will contain the
character pattern for the dollar sign. If you have
changed the character, the code should be the code
that you just entered to make the "X" in the box. If
you didn't change the character, the character pat
tern that you see is for the dollar sign.

CALL CHARSET

This command restores the original character
set. When you RUN a program, the character set is
not restored. Any characters that you may have
changed in one program will remain changed until
this command is executed (or youquit and restart).

If youdo not want to reuse your new character set,
be sure to have this command in it. Ofcourse, once
the characters have been restored to normal, they
can be changed again.

CALL HCHAR

The HCHARmakes printing the same charac
ter several times in a row very easy. Allyouneed to
do is tell the computer the row that it should be
printed in, the column to start in, the character
code, and the number of times that character should
be printed. The row number can be any number
from one to 24. The column can be a number from
one to 32. The character codecanbe anyvaluefrom
zero to 32767. Although there are no actual char
acters past 255, the computer will convert the code
to a value between 0 and 255. For example, 289
would beconverted to 33and the exclamation point
would be printed. This command along with the
next command can be used to make a border around
a menu or with a FOR . . . NEXT loop to make a
design.

CALL VCHAR

This command is very similar to the HCHAR
command except that it prints the character in a
column on the screen. The format is the same as
that of CALL HCHAR-CALL VCHAR(row
number, column number, character code, number
ofcharacters). The program in Listing 16-1 (flow-
charted in Fig. 16-2) illustrates these two com
mands.

Listing 16-1

Line130will trap the computerforwarningerrors.
Ifanerror occurs, the computer willcontinue with
the program.

Line 150 prints the format for the HCHAR com
mand on the screen.

Line 160 prints the line that will be filled with the
proper numbers.

Line 170asks for a rownumber. The computerwill
accept any number between one and 24 inclusive.

Line 180 places the number entered in the com
mand and asks for the column number.

Line 190 makes sure that the number entered is

153

Fig. 16-2. Flowchart for Listing 16-1 HCHAR/VCHAR Example.

154

1
rClear screen >

rplace format;
on screen

for VCHAR

rPlace com-

^mand with no/
values on

screen

' Put it on
the screen

get a
column

Put it on the k
screen get

character

code

f
Place it on

the screen

^get numberi
of repeats

Place the char

acter on seven A

with VCHAR

command

155

Listing 16-1

100 REM LISTING 16-1

110 REM HCHAR/VCHAR EXAMPLE

120 REM BY A.R.SCHREIBER FOR TAB BOOKS

130 ON WARNING NEXT

140 REM HCHAR

150 DISPLAY AT<2*11>ERASE ALLi"HCHAR8? i

•FORMAT ft !"CALL HCHAR <ROW t- COL vCHAR COD

E" ? ' 1.9 REPETITIONS >•

160 DISPLAY AT(lOrl)J"CALL HCHAR(9 9

Cs 1) •

170 DISPLAY AT(12rl>:aGIVE ME A ROW #<1~

24)'>• it ACCEPT AT(12r24)BEEP UALIDATE<D

IGIT)SIZE<2)JR0W H IF ROkKi OR R0W>24 t

HEN 170

180 DISPLAY AT(10912)SIZE(2)tSTR*<ROW)i i

DISPLAY AT< 12s. 11)t "COLUMN #(1-32)?" H

A C C E P T A T (12 * 2 7)B E E P U A LIDA T E (DIGIT)SIZE

(2) I COLUMN

190 IF C0LUMN<1 OR C0LUMN>32 THEN 180

200 DISPLAY AT(10 915)SIZE(2)iSTR*< COLUMN
\ * *
} * •> DISPLAY AT(12111)t"CHAR CODE(0-255)"
* a '

* !>u :j ACCEPT AT(13?4)BEEP UALIDATE(DI

git:>SIZE(3>:C0DE

210 IF CODE<0 OR CODE>255 THEN 200

220 DISPLAY AT(10»18 >SIZE <3)JSTR*(CODE)t

i d: :SPLAY AT <12r11>1"REPEAT #(0-768)"?"

?a ;•J ACCEPT AT(13 y4)BEEP VALIDATE(DIGIT

)SIZE <3)tREPETITION

230 IF REPETITIONS OR REPETITI0N>768 TH
EN i:»20 ELSE IF REPETITIONS) THEN REPETIT

ION==1

240 DISPLAY AT(12 r1)tRPT* <" "938)

250 DISPLAY AT(10,23)SIZE <3)XSTR*(REPETI

TION)

260 CALL HCHAR(ROW 9COLUMN 9CODE»REPETITI0

N)

270 DISPLAY AT(24+iR0U=24)»!>:•DO ANOTHE

R (Y/N) ?" it ACCEPT AT <24+<R0W==24) y20)B

EEP MALIDATE("YN")SIZE<1)iA* it IF A*=B•

THEN 270

280 IF A*="N" THEN 310 ELSE DISPLAY AT(2

4+<R0U=24)»l):" "

290 IF ROW<11 OR REPETITI0N>(25-ROW)*32-

156

COLUMN*1 THEN 150 ELSE GOTO 160

300 REM VCHAR

310 DISPLAY AT(2y11)ERASE ALL t"VCHAR"? t

"FOF*mat:"j 1'"CALL VCHAR(ROWyCOLyCHAR COD
KT H « l1 c rrepetition:!) "

320

330

DISPLAY

::i)"

DISPLAY

AT(10y1)t'CALL VCHAR(y y

AT(12y1):'GIVE ME A ROW #(1-

24)?" H ACCEPT AT(12»24)BEEP VALIDATE(D

IGIT)SIZE(2:•JROW it IF R0W<1 OR R0W>24 T

HEN 330

340 DISPLAY AT(10 y12)SIZE(2)tSTR*(ROW)ti

DISPLAY AT<12»11>:"COLUMN #<l-32)?" H

ACCEPT AT(11»t27)BEEP VALIDATE(DIGIT)SIZE

(2):!COLUMN

350 IF C0LUMN<1 OR C0LUMN>32 THEN 340

360 DISPLAY AT(10y15)SIZE(2)JSTR*(COLUMN
\ ♦ ♦
) ♦ * DISPLAY AT(12 y11)t"CHAR CODE(0-255)•
OH *•f H ACCEPT AT(13y4)BEEP VALIDATE(DI

GIT)SIZE(3) f'CODE

370 IF CODE-::0 OR C0DE>255 THEN 360

380 DISPLAY AT(10yl8)SIZE(3K STR*(CODE)t

i DISPLAY AT(12»11):"REPEAT #(0-768)"i•

! <it ACCEPT AT(13y4)BEEP VALIDATE(DIGIT

)SIZE(3)tREPETITION

390 IF REPETITION<0 OR REPETITI0N>768 TH

EN 380 ELSE IF REPETITION*© THEN REPETIT

I0N==1

400 DISPLAY AT(12»1)JRPT*<" "y38)

410 DISPLAY AT(10 y23)SIZE(3)iSTR*(REPETI

TION)

420

N)

430

CALL VCHAR(ROW yCOLUMN yCODE »REPETITIO

DISPLAY AT(24yl)J"D0 ANOTHER (Y/N) ?

* <! ACCEPT AT(24 y20)BEEP VALIDATE(•YN ")

SIZEdKA* 1hJ IF A*=="" THEN 430

440 IF A*-HN" THEN 450 ELSE DISPLAY AT(2

4 v1)
1 * B H ♦ ♦

GOTO 310

450 END

between one and 32 inclusive.

Line 200 places the column number in the command
and asks for the character code. Although the
computer will accept any code from zero to 32767,

this program will only accept character codes
between zero and 255.

Line 210 checks the value of the CODE variable. If

it is not within the limits, the computer will be

157

directed back to line 200.

Line 220 places the code in the command and asks
for the number of times you would like this
character to be printed. This program will accept
any number from zero to 768.

Line 230 checks the value of the REPETITION

variable. If it is not a valid number, the computer
will be directed back to line 220. If it is a zero, the
computer will substitute a one for the number.

Line 240 erases the last question from the screen.
The RPT$ tells the computer to print a series of
38 spaces beginning with the first column in the
12th row.

Line 250 places the value of REPETITION in the
command on the screen.

Line 260 uses the HCHAR command to display the
character that you entered at the row and column
specified for as many times as you indicated.

Line 270 asks if you would like to try another set of
values. This question will be printed on the 24th
row unless that row was the one specified to begin
the characters printed. The program does not use
an IF... THEN command to test the row number.

Instead it uses a logic command. Look at the
DISPLAY AT command. After the plus sign, the
ROW=24 is in parenthesis. The computer tests
the value of the ROW variable. If it is 24, a -1 will
be added to the 24. The computer uses the value
-1 if the expression within the parentheses is
true. If the value of ROW is any other value, a zero
will be added to the 24. The computer uses a value
of zero when the expression within the paren
theses is false. The program will only accept an
"N" or a T for the answer. If the ENTER key is
pressed and no letter is entered, the computer
will remain on this line until the "N" or "Y" is

entered. If a "N" was entered, the computer will
go on to line 310 for the VCHAR command.
Otherwise, it removes the question from the
screen.

Line 290 checks the value of the ROW. If the value

of ROW is less than 11 or the number of times the

character was printed caused it to wrap around to
the top of the screen, the message on the screen
was written over. The computer will be directed

158

to line 150 to erase the screen and get a new row,
column, character code and number of characters.
If the characters printed on the screen were not
printed over the message, they will be left on the
screen when the computer asks for the new val
ues.

Line 310 begins the part of the program that dem
onstrates the VCHAR command. The format for

this command is printed on the screen.
Line 320 places the command on the screen. You

will be asked to fill in the blanks.

Line 330 asks for a row number. Again, the row
must be between one and 24 inclusive. If it is not,
the computer will remain at this line until a cor
rect number is entered.

Line 340 places the row number in the command on
the screen. It then asks for the column number.

This number must be between one and 32 inclu

sive.

Line 350 checks the value of the COLUMN vari

able. If it is not within the limits, the computer
will be sent back to line 340 to get another
number.

Line 360 places the column number on the screen
and asks for the character code. This portion of
the program will also limit the codes to zero to
255.

Line 370 checks the code value. If it is out of the

limit, the computer will be directed to line 360 to
get another code.

Line 380 places the character code in the command.
Now it asks how many times you would like this
character printed. You can print the character up
to 768 times.

Line 390 checks to see how many times you want to
print this character. If you requested more than
768 the computer will be sent back to line 380. If
you requested zero, a one will be substituted.

Line 400 clears the question from the screen by
printing a row of 38 spaces.

Line 410 places the number of times the character
will be printed in the command on the screen.

Line 420 uses the VCHAR command to print the
character in columns on the screen.

Line 430 asks if you want to enter another set of

codes. If you enter a "Y," the program will con
tinue at line 310. If you enter an "N," the program
will end.

CALL SCREEN

The CALL SCREEN command will change the
color of the screen. We used this command in the

Colors program where we changed the color and
printed the color on the screen. The command for
CALL SCREEN is:

CALL SCREEN (number)

The number in parentheses can be any number
from one through 16. Each number has a different
color assigned to it. This command is often used
with the following command—CALL COLOR.

CALL COLOR

The CALL COLOR command allows you to
change the color (Fig. 16-3) of any of the characters
in the character set. The character set is divided

into 15 different sets (Fig 16-4). When you change
the color of one character in the smaller set, you
change the color of all the characters in that set. In
addition to changing the color of the character, you
can change the background color of the character.
Do not confuse the character background color with

Code Color

1

2

Transparent
Black

3 Medium Green

4

5

Light Green
Dark Blue

6

7

Light Blue
Dark Red

8

9

Cyan
Medium Red

10

11

Light Red
Dark Yellow

12

14

15

16

Light Yellow
Magenta
Gray
White

Fig. 16-3. Color codes.

the screen color; these are two different colors.
When you are using the computer for entering

programs, the background color of the character
sets are set to transparent. The screen color shows
through. If the background color of the character is
set to any other color, you will see a box, like the
cursor, around the character. You can have a yellow
screen with a green background color and a red
character printed inside. Because each smaller set
within the character set is controled separately,
you can display an entire range of different colors
and color variations on the screen. The program in
Listing 16-2 (flowcharted in Fig. 16-5) prints the
entire character set on the screen, then cycles
through various screen, character, and background
colors. The second part of this program allows you
to enter the number of the character set that you
want to change along with the colors that you would
like it to be.

Listing 16-2

Line 130 uses the RANDOMIZE command to be

sure that every time the program is run the com
puter will choose a different number sequence.
The screen is cleared and the CHAR variable is

set to 31. This is the offset for the characters that

will be printed on the screen. The ON WARNING
NEXT is used so that if the ENTER key is

Set Code Characters

0 30-31 Cursor & Edge Character
1 32-39 Space, !, ", #, $,%,&, '
2 40-47 (.), *, +, comma, -, ., /
3 48-55 0, 1,2,3,4,5,6, 7
4 56-63 8, 9, :, ;, <, =, >, ?
5 64-71 @, A, B, C, D, E, F, G
6 72-79 H, I, J, K, L, N, M, O
7 80-87 P, Q, R, S, T, U, V, W
8 88-95 X, Y, Z, , /, , , -
9 96-103 \ a, b, c, d, e, f, g

10 104-111 h, i, j, k, I, m, n, o
11 112-119 p, q, r, s, t, u, v, w
12 120-127 x, y, z, {, , }, , blank
13 128-135 undefined characters

14 136-143 undefined characters

Fig. 16-4. Character sets.

159

c Start D
Start random

generator
set error

trapping

Choose a

screen color

and character

set

Choose a

foreground
and background
color

Change
screen and t
character

colors

Fig. 16-5. Flowchart for Listing 16-2 Color Foreground, Background, &Screen.

pressed without entering a number, the warning
message will not occur.

Line 140 begins the FOR ... NEXT loop. This
program will change the background and fore
ground colors for the character in the subsets one

160

through 12. The set number will be printed on the
even rows of the screen.

Line 150 is another FOR... NEXT loop. This time
the characters for each set will be printed on the
correct row of the screen. The COUNT variable

Listing 16-2

100 REM LISTING 16-2

110 REM COLOR FOREGROUNDtBACKGROUND>% SC

REEN

120 REM BY A.R.SCHREIBER FOR TAB BOOKS

130 RANDOMIZE XX CALL CLEAR XX CHAR=31 X
X ON WARNING NEXT

140 FOR ROUI-2 TO 24 STEP 2 XX DISPLAY AT

(ROWyl)J"SET"?ROW/2

150 FOR C0UNT=1 TO 8 XX DISPLAY AT(R0W»1

0+C0UNT*2>:CHR*(C0UNT+CHAR)8" " XX NEXT

COUNT

160 CHAR-CHAR+8 It NEXT ROW XX FOR COUNT

=1 TO 25

170 SCRN=INT<RND*16)+1 It SET=INT<RND*12

)+2

180 BACK=INT(RND*16>+1 XX F0RE=INT(RND#1

6) + l XX IF BACK=FORE THEN 180

190 IF SCRN=LSCRN OR SET==LSET OR BACK=LB

ACK OR FORE=LFORE THEN 170

200 LSCRN=SCRN XX LSET=SET XX LBACK-BACK

:t LFORE=FORE

210 CALL SCREEN(SCRN)!: CALL COLOR(SET?F

ORE .-BACK)

220 FOR DELAY-1 TO 500 X X NEXT DELAY

230 NEXT COUNT XX FOR 1=2 TO 12 XX CALL

COLOR(1*2t1)X X NEXT I X X CALL SCREEN(8)X

X CALL CLEAR

240 DISPLAY AT<10y1)X "ENTER SCREEN COLOR

(1-16)" XX ACCEPT AT <10126)BEEP VALIDATE

(DIGIT)SIZE<2)JSCRN

250 IF SCRN<1 OR SCRN>16 THEN 240

260 DISPLAY AT <12r1)X"ENTER CHAR. SET(2-

12)" :J ACCEPT AT<12r23)BEEP VALIDATE<DI

GIT>SIZE<2)J SET

270 IF SET<2 OR SET>12 THEN 260

280 DISPLAY AT(14y1)S"ENTER BCKGRND COLO

R (:!. -16)" XX ACCEPT AT <14 y27) BEEP VAL IDAT

E <DIGIT)SIZE (2) XB A C K

290 IF BACK<1 OR BACKX16 THEN 280

300 DISPLAY AT<16»1):"ENTER FORGRND COLO

R(1-16)" XX ACCEPT AT(16 y27)BEEP VALIDAT

E (DIGIT) SIZE (2) XF 0 R E

3.1.0 IF F0RE<1 OR F0REM6 THEN 300

161

320 DISPLAY AT(20,1)iaSET•? SET

330 FOR CQUNT=1 TO 8 it DISPLAY AT(20?10

+C0UNT*2)JCHR*(C0UNT+31+(8*(SET-1))) Xa B

J: NEXT COUNT

340 CALL SCREEN(SCRNKt CALL COLOR<SETrF

ORE*BACK)

350 DISPLAY AT<24*1):"DO ANOTHER(Y/N) ?•

M ACCEPT AT(24?19)BEEP VALIDATE("YNB)S

IZE<1)-JA* tJ IF A*="b THEN 350 ELSE IF A

*="N" THEN END

360 CALL SCREEN(8):: CALL COLOR(SET?2?1)

: : GOTO 240

will begin with one and count to eight. There are
eight characters in each subset. The value of
COUNT is added to CHAR and the correct

character is printed on the screen. A space is
printed after every character to keep them from
looking crowded.

Line 160 adds eight to the value of CHAR. We keep
adding to CHAR to keep the offset correct.
COUNT will only count from one to eight. If we
didn't add eight to CHAR after each set of charac
ters were printed, all the sets would have the
same characters printed next to them. The FOR
. . . NEXT loop continues until all the sets are
numbered and the correct characters are placed
next to them. Now COUNT will count from one to

25. This next part of the program will be repeated
25 times.

Line 170 chooses a random number for the screen

color and stores it in the SCRN variable. One of

the sets is also chosen and placed in the SET
variable. We are adding two to the integer chosen
because we do not want to change the color of the
characters in set one or set zero. Set zero is not

displayed on the screen. Set one contains the
space, and we will try this program later with only
one being added to the integer to see the differ
ence.

Line 180 chooses one of the 16 colors for the

background color and one for the foreground
color. If the same two colors are chosen, the

162

computer will choose two other colors. If the
foreground and background colors were the same,
you would not be able to see the characters in that
set.

Line 190 checks all the variables to see if any of the
colors or the set are the same as the one chosen

the last time. We do not want the screen to stay
the same color, nor do we want the same set being
changed, or the same character colors being used
every time. If any of the variables match the one
that was used in the last cycle, the computer will
choose a new set of colors.

Line 200 stores the colors that will be used in this

cycle in the corresponding variables.
Line 210 uses the CALL SCREEN command to

change the color of the screen and the CALL
COLOR command to change the character color.
The first number after the parentheses is the set
that will be changed, the second variable is the
foreground color, and the third variable is the
background color. When this line is executed, you
will see the screen change colors and one of the
sets will also change. Look at the words and
numbers along the left side of the screen. When
the set that they belong to is changed, these
characters will also change.

Line 220 is a delay loop so that the screen will pause
between colors.

Line 230 continues the loop. You will see 25
changes on the screen during this loop. The next

FOR . . . NEXT loop changes the character sets
back to their default values. The background color
is transparent and the foreground color is black.
The screen is changed to blue and cleared.

Lines 240-250 begin the second part of this pro
gram. Here you can experiment with different
color combinations to see which ones are pleasing
to your eyes. First you are asked for a screen
color. Only a number from 1 to 16 will be ac
cepted. This color will be stored in the SCRN
variable.

Lines 260-270 ask for the character set that you
would like to change the colors of. Again, you can
only change the colors of sets two through 12.

Lines 280-290 ask for the background color. Enter a
number between one and 16.

Lines 300-310ask for the foreground color. Again,
use only the color numbers one to 16.

Line 320 prints the set number that you chose.
Line 330 places the characters that are in that set on

the screen.

Line 340 changes the screen color and the
background and foreground colors of the character
set that you chose.

Line 350 asks if you want to play again. Some of
these characters may not show up on your screen
if the colors that you chose are too close to these
character colors. Enter "Y"or "N." If you entered
a "Y," the screen and the character set colors
would be set back to normal and the computer
would be directed to line 240 where it would ask

for new information. If you did not enter a "Y," the
program would end.

In program line 170 we did not allow the com
puter to change the colors of the first set of charac
ters. Now change that line to read as follows:

170 SCRN=INT(RND*16)+1::SET=INT
(RND*12)+1

Run the program. Whenever the computer
changes the colors of the first set, the screen also
changes colors, no matter what color the computer
may have chosen for it. You can see what color the
screen should be by looking at the screen border. It

keeps changing colors, yet the actual screen does
not change colors all the time. The reason is that
the space character is the first character of the first
set. When the screen is cleared, spaces are printed
all over the screen. Since only one character can be
printed on the screen at a time, the old characters
are erased. When the background color of the first
character set is changed, all the spaces on the
screen change to that color, so the entire screen
becomes that color. The border changes to the
screen color because there are no spaces printed on
it.

Think of the screen as three layers; the first
layer is the screen color, the second layer is the
background color, and the third is the character
color. In the default mode, the background color is
transparent, so the screen color will show through.
Once you change the background color of the first
character set, it is no longer transparent, and the
screen color cannot show through. You must keep
this in mind when you are changing colors on the
character set or you may end up with some un
wanted results.

CALL GCHAR

This command allows the computer to look at a
particular location on the screen. The ASCII value
of the character at that location is placed in a vari
able. The format is:

CALL GCHAR(row, column, variable)

You specify the row and the column number. Use
any variable name that you would like. The ASCII
value of the specified screen location will be placed
in that variable. This command is useful when you
want to check to see if a character is in a particular
place, such as in a grid game where the program
needs to know which playing piece is in which
square. In the program in Listing 16-3 (flowcharted
in Fig. 16-6), you are to follow the path on the
screen without running into the walls. The GCHAR
command is used before the next part of your path is
placed on the screen to make sure that your path is
not being placed on the wall. Use the arrow

163

©-
c

Clear

Start

Setup
characters

Adjust for
row or

column

Set flag

^
Fig. 16-6. Flowchart for Listing 16-3 Paths.

164

D

Listing 16-3

100 REM LISTING 16-3
110 REM PATHS

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 C*=--8FFFFFFFFFFFFFFFFn XX CALL CHARd

43»C*fl35»C*>: J CALL COLOR(14* 6* 1 i-13? 16 t
1)

140 RESTORE 160 XX CALL CLEAR IJ CALL SC

REEN(2)

150 FOR CT=1 TO 7 XX READ R,C»RPT XX CAL

L HCHAR<R»C»143»RPT>:j NEXT CT

160 DATA 2»3r26y6rllrl4r9rl5*7rllrl7f3»l
7 r17r5»20 115r10 t24 r11»IS

170 FOR CT=1 TO 7 JJ READ R,C»RPT :j CAL
L VCHAR <R r C r 1.43,RPT) XX NEXT CT

180 DATA 6rlli>19j'9fl5»12rlli>17r7rlli>19r5
»9s>21r9r6r24>15r2.28»23

190 R=20 XX (>6 XX CALL HCHAR<R»C»135)
200 CALL KEY(0»K*S>:! IF S=0 THEN 200

210 IF K-68 OR K=100 THEN C=C+1 XX GOTO
260

220 IF K=69 OR K=101 THEN R=R-1 J J GOTO

260

230 IF K=83 OR K=115 THEN C=C-1 XX GOTO
260

240 IF K=88 OR K=120 THEN R=R+1 XX GOTO
260

250 GOTO 200

260 IF R<1 THEN R=l ELSE IF R>24 THEN R=
24

270 IF C<3 THEN C=3 ELSE IF C>28 THEN C-

28

2 8 0 C A I... L G C H AR (R» C r T) XX IF T=143 T H E N F=

1 ELSE F=0

2 9 0 C AI... I... H C H A R (R r C r 135)

300 IF F~<) THEN IF R~12 AND OIS THEN 34

0 ELSE 200

310 CALL SOUND(250 f110 r5 r11015r200 15 ?-8r

5)

320 FOR C=l TO 3 XX CALL SCREEN(14)5J CA

LL S0UND<250»110»5»110»5»200»5»-8»5);j C

ALL SCREEN<10)

330 FOR DELAY=1 TO 100 XX NEXT DELAY XX

NEXT C XX GOTO 130

165

340 CALL COLOR(14 *5 ?1*13 *7 ?1)J: GOSUB 36

0 XX CALL CQLQR<14*8*1*13*13*1):: GOSUB

360 tt CALL COLOR(14*11*1*13*6*1)Jt GOSU

B 360

350 GOTO 130

360 FOR C=l TO 4 it CALL SOUND(200*110*C

*5*147*C*5*185*C*5)J: NEXT C XX RETURN

keys—S, D, X, and E without the function key to
make the path.

Listing 16-3

Line 130 creates a new character. The code is

placed into C$. The CALL CHAR command
places this character code into the 143rd charac
ter of the character set. It also places that same
character code into the 135th character of the set.

The CALL COLOR command changes the color of
the 14th set to light blue and the color of the 13th
set to white.

Line 140 sets the pointer to line 160. When the data
is read, the computer will begin at this line
number. This is not necessary the first time that
the program is run, but when the program is
repeated without the RUN command, the com
puter needs to know where the data is. The sc
reen is cleared and the screen color is set to black.

Line 150 is a FOR . . . NEXT loop. The computer
reads the row and column number and the number

of times the character will be printed from the
DATA line that follows. The HCHAR command is

used to draw the horizontal lines of the maze on

the screen. The loop continues until all the lines
are drawn.

Line 170 is similar. This time the computer draws
the vertical lines of the maze using the informa
tion from the DATA line that follows.

Line 190 sets the starting row and column for your
cursor and positions it on the screen.

Line 200 uses the CALL KEY command to find out

which key is pressed. If the value of the S variable
is zero, then no key has been pressed. The com
puter will remain at this line until a key has been

166

pressed. The ASCII value of the key will be
stored in the K variable.

Lines 210-240 check the value of the K variable. If
the value is 68 or 100 then the D key has been
pressed. One is added to the value of C so that the
cursor can be moved one column to the right. If
the value of K is 69 or 101, then the E key has
been pressed. One is subtracted from the value of
R so that the cursor can move up one row on the
screen. When the value of K is 83, the S key has
been pressed. To move the cursor to the left, one
is subtracted from the value of C. The K variable

has the value of 88 when the X key has been
pressed. One is added to the value of R to move
the cursor down one row on the screen. After the

row or column variable is adjusted, the computer
is sent to line 260. By checking the K variable for
two values, you do not have to worry about the
ALPHA LOCK key. The first value is the upper
case value, the second the lowercase. The pro
gram will work correctly whether the ALPHA
LOCK key is up or down.

Line 250 is executed if the key that was pressed was
not one of the arrow keys. The computer will loop
until a correct key is pressed.

Line 260 checks the value of the R variable. If the

value is less than one, or greater than 24, the
cursor would be printed off the screen. The vari
able is reset to the edge value.

Line 270 checks the value of the column vari

able—C. If this value is less than 3 or greater than
28, then the cursor would be off the screen, so the
program resets the variable to the correct edge
value.

Line 290 uses the GCHAR command to find out

what is on the screen at the location that the

cursor will be printed at. At this time, the cursor
has not moved. Before the computer will place the
cursor at the new location on the screen, it needs
to know what is currently on the screen at that
position. The ASCII value of that location will be
placed in the T variable. If the value of T is 143,
then the wall is on the screen at that location. The

F variable is used as a flag. If the cursor will hit
the wall, the variable is set to one for true; other
wise it is set to zero.

Line 290 places the cursor on the screen at the new
location. Character 135 is the cursor.

Line 300 checks the value of F. If it is a zero, the
computer checks the row and column that the
cursor is in. If the cursor makes it to the twelfth

row and eighteenth column without hitting the
wall, the computer is sent to line 340. Otherwise
it is sent to line 200.

Line 310 is used if the value of F is a one. The CALL

SOUND is used to call your attention to the fact
that you hit a wall.

Lines 320-330 flash the screen and continue the

sound. After it has finished, the computer is sent
to line 130 to start another game.

Lines 340-360 are used when the cursor reaches the

center of the maze. The screen flashes and the

computer sounds to let you know you have made it
without hitting any of the walls.

USING SOUND COMMANDS

CALL SOUND

Your TI-99/4A computer is equipped with four
separate and distinct sound generators. Each voice
or sound generator is capable of producing its own
tone or noise independent of the other generators.
Only three tones may be produced at one time. The
fourth generator can produce noise while the other
three are producing tones. The format for produc
ing tones or noise is as follows:

CALL SOUND(duration, frequency, volume)

The first variable sets the duration or length of
time that the computer will produce the tone. The

number is in thousandths of a second, so if you want
to produce a tone for one second, the first number
would have to be 1000. Two seconds would be
2000, and a quarter of a second 250. If the value of
this variable is positive, the computer will not make
the sound until the previous sound has been com
pleted. If, however, the value of the variable is
negative, the computer will begin the new sound
immediately.

The second variable is the frequency of the
tone. The frequency of a tone is the actual tone
itself. Every note or tone vibrates at a different
frequency. The larger the frequency, the higher the
tone; the smaller the frequency, the lower the tone.
If the variable contains a position number such as
110, 440, or 1047, the sound will be a tone. The
tone values are any positive number between 110
and 44733. A negative number will produce noise.
The noise values are the negative numbers be
tween negative one and negative eight.

The third value is the volume. This value de
termines how loud the sound will be. The value can

be any positive number between zero and 30 with
zero being the loudest and 30 the softest. A nega
tive number cannot be used for the volume.

The program in Listing 16-4 (flowcharted in
Fig. 16-7) demonstrates using the SOUND com
mand with negative for the duration. In this pro
gram the computer will produce only one tone at a
time.

Listing 16-4

Line 130 creates new characters. C$ has been set to
a character pattern, which was the character
numbers 143, 135, and 127. On this line the pat
tern in C$ is changed. The new pattern is used for
character numbers 142, 134, and 125.

Line 140 clears the screen and sets the screen color

to cyan. The characters in the fourteenth set are
changed to white on a transparent background;
the thirteenth set is changed to light blue on a
transparent background, and the twelfth set is
changed to black on a white background. These
three sets will be used for the piano keys.

Line 150 prints the title of the program on the
screen.

167

c Start

Create

new

characters

i
Clear

screen

change
colors

j

Place keys
on screen

and label

them

Use music

subroutine

z=r

Music

subroutine

Make
correct

sound

Change
key
color

Return

Fig. 16-7. Flowchart for Listing 16-4 Play a Tune.

Listing 16-4

Line 160 is a FOR . . . NEXT loop that places the
piano keys on the screen. The data in line 170 tells
the computer which column the key should be
drawn in. The value of CT sends the computer to
the subroutine that draws the correct key.

Line 180 is another FOR . . . NEXT loop. This
routine draws in the black key. The data in line
190 tells the computer in which row the black key
begins. The VCHAR command is used to place
the key on the screen.

Line 200 places the letter names of the keys on the
screen.

Line 210 uses the CALL KEY command to find out

which key has been pressed. If the value of the S
variable is a zero, then a key has not been pressed
and the computer loops at this location until a key
has been pressed. When the value of S is not zero,
the value of the K variable is checked. If its value

is less than 49 or greater than 56, a number key
between one and eight has not been pressed. The
computer will loop back to the beginning of this
line. The computer will remain at this line until a
valid character has been entered.

Line 220 subtracts 48 from the value of K. The

ASCII value of the number one is 49. By sub
tracting 48 from the ASCII value, we arrive at the
number of the key that has been pressed. The
computer is directed to the correct sound line
based on the value of K.

Line 230 uses the CALL KEY command again. This
time the S variable is checked for a negative one.
If the value of S is a negative one, then the same
key was pressed. The value of S will be positive if
a new key is pressed, and a zero if no key is

100 REM LISTING 16-4

110 REM PLAY A TUNE

120 REM BY A,>R*SCHREIBER FOR TAB BOOKS

130 C$=" pppppppppppppppp • * *

* * CALL CHAR <1

43?C*yl35yC*!.127yC$> X X C*••="0101010101010

101
1 •» ♦

* * CALL CHAR(142y C$y 134.-C*»l 25 yC*)

140 CALl. CLEAR XX CALL SCREEN(8>X X CALL

168

C 0 L 0 R (14 y16 y2 y13 y6 y2 y12 y2 y16)

150 DISPLAY AT<6»8>J"PLAY A TUNE"

160 FOR CT=1 TO 8 XX READ C XX ON CT GOS

UB 350y380y400y350y380y380y400y350 XX NE

XT CT

170 DATA 5y8yllyl4y.1.7y2()y23y26

180 FOR CT=1 TO 1.1. XX READ C XX CALL VCH

AR<14yCyl27y4)J X NEXT CT

190 DATA 7r8»10*lli>16>17»19>20*22»23v28

200 DISPLAY AT(22»4)J"C D E F G A

B C"

210 CALL KEY(OyKyS) ?♦♦ IF S=0 THEN 210 EL

SE IF K<49 OR K>56 THEN 210

220 ON K-48 GOSUB 260»270y280y290y300y31

0 y320 y330

230 CALL KEY(OyKYyS)XX IF S=-l AND KY~K

THEN 220

240 ON K-48 GOSUB 350y380y400y350y380y38

0y400y350

250 GOTO 210

260 CALL SOUND(-250 y131y 5)? ? C~5 XX GOTO

340

270 CALL S0UND(-250yl47y5)XX C-8 XX GOTO

370

280 CALL S0UND(-250yl65y5)?; C=ll XX GOT

0 390

2 9 0 C A L I... S 0 U N D (- 2 5 0 y175 y5) X X C ~ 14 XX G 0 T

0 340

3 0 0 C A I... I... S 0 U N D <- 2 5 0 y.1.96 y5) J : C === 17 XX G 0 T

0 370

310 CALL SOUND(- 250 y220 y5)XX C=20 XX GOT

0 370

320 CALL -S0UND(-250»247»5):: C=23 XX GOT

0 390

330 CALL SOUND(-250y262y5)XX C~26 XX GOT

0 340

340 CALL VCHAR(14 yC y135 y7)XX CALL VCHAR(

.1.4 t C+1 y 135 y7) X X CALL VCHAR < 181 C+2 y135 y3)

S X RETURN

350 CALL VCHAR(14 »C»143 y7)XX CALL VCHAR<

14 , C •!• 1 y143, 7) X X IF C+2< 2 8 T H E N C A LI... V C H A

R (18 yC+2 y12513) X t R E T U R N

3 6 0 C A L!... V C H A R <181C+21143 y3) X X R E T U R N

169

370 CALL VCHAR<18*C*135*3):: CALL VCHAR: (

14*C+1*135*7):: CALL VCHAR<18*C+2*135*3)

:: RETURN

380 CALL VCHAR<18*C*143*3):: CALL VCHAR<

14*C+1*143*7):: CALL VCHAR<18*C+2*125*3)

:: RETURN

390 CALL VCHAR(18*C*135*3):: CALL VCHAR<

14*C+1*135*7):: CALL VCHAR(14*C+2*135*7)

:: RETURN

400 CALL VCHAR(18*C* 143*3)-:: CALL VCHAR(

14*C+1*143*7>:: CALL VCHAR(14*C+2*125 *7)

:: RETURN

pressed. If the value of S is a negative one and the
ASCII value of the key is the same as the last
variable, the computer is sent back to line 220 to
continue the sound.

Line 240 is used when a new key is being pressed,
or no key is being pressed. The value of the K
variable is the ASCII value of the key, so 48 is
subtracted from it so the computer can use the
actual value of the key. The computer is sent to
the correct subroutine based on this new value.

Line 250 sends the computer back to line 210 to
wait for another key to be pressed.

Lines 260-330 contain the SOUND commands. The

computer will be sent to one of these lines based
on the value of K. The value of the duration is

negative. This means that the computer will use
the new values as soon as it receives this com

mand. The tone will be played for a quarter of a
second. The value of the tone is based on the note

values for low C to middle C. The sound will be

relatively loud. After the computer makes the
correct sound, the C variable is set to a value.
This value is the column of the key on the screen
that is producing the note. The computer is sent
to the correct subroutine.

Lines 340-400display the piano keys on the screen.
The lines are in sets of two. The first line places
the blue key on the screen. The second line re
stores the key to white. This way, when you press
a key to create a sound, the screen will indicate

170

which key is being pressed. The tone will con
tinue and the key will remain colored until a new
key is pressed or no keys are pressed.

In program lines 260 through 300 the duration
is a negative number. Change it to a positive
number and run the program. Hold a key down for a
period of time. You will hear the tone pulsating.
When the duration is positive, the computer does
not use the new SOUND command until the one that

it is using has completed its cycle and the sound
generator shuts off. Then the computer uses the
SOUND command again, turning the sound
generator on for the length of time specified by the
duration. Replace the values with the negative
ones. Now run the program and hold a key down.
The tone is steady. With the negative value, the
computer changes to the new SOUND command
immediately. The sound generator does not shut off
and on again, so there is no pulsing effect, just
smooth tones.

The program in Listing 16-5 (flowcharted in
Fig. 16-8) combines some simple graphics with two
part harmony. Your TI-99/4A computer is capable
of three part harmony. In this program, we will use
two sound generators at the same time.

Listing 16-5

Line 130 clears the screen so that you do not see the
characters being changed if any are on the screen.

Change
screen

color &
character
colors

Place cake

and

message

on screen/

Get 2 notes

and

duration

Fig. 16-8. Flowchart for Listing 16-5 Cake.

Listing 16-5

The characters from ASCII 99 through 109 are
changed. The character patterns for these
characters begin with line 250. (See the altered
characters in Fig. 16-9.)

Line 140 changes the characters from 112 to 116.
We miss the characters between 109 and 112

because we want these to be a different color, so
we are starting at a new character set.

Line 150 changes two more characters. These will
be the candles on the top of the cake.

Line 160 changes some of the uppercase letters.
Since we are not changing all of the uppercase
letters, the computer reads a number before it
reads the character pattern. This number is the
ASCII valueofthe character that willbe changed.

Line 170 changes the colors in the character sets 9,
10, and 11. In set 9, the foreground or character
color is the same as the screen color. The

background is set to light red. This eliminates
code to enter for the character set because most of

the character will be light red. The same thing
holds true for set 10. The background or character
color is set to medium red. We use this color for
the edge so you can see the difference between
the top and the side of the cake. The background
color is light red. The last set, 11, is the plate.
The foreground or character color is medium
green and the background color is transparent so
that the screen color will show through.

Lines 180-200 place the cake with the lit candles on
the screen.

Line 210 prints HAPPY BIRTHDAY on the screen
These letters have been changed to a fancier
character set.

Line 220 plays the melody. There are 26 sets of
notes in the song. The computer reads in the
duration or length of the note (D variable), the
first note (N) and the second note (Nl). The
SOUND command plays both notes at the same
time. The value for the duration is the first vari
able followed by the first note and its volume. The

100 REM LISTING .1.6-5

110 REM CAKE

120 REM BY L.M,SCHREIBER FOR TAB BOOKS

171

130 CALL CLEAR XX FOR 1=99 TO 109 XX REA
D c* : x CALL CHAR(I»C*)XX NEXT I

140 FOR 1=112 TO .1.16 XX READ C* X i CALL

CHAf t (I 9 C *)JJ NEXT' I

150 FOR 1=120 TO 121 XX READ C$ X i CALL

CHARdyC*)?! NEXT I

160 FOR 1=1 TO 9 XX READ C»C* XX CALL CH

AR((:»c$) XX NEXT I

170 CALL- COLOR(9y I2yl0yl0y9yl0y.1.1 9 3 y i >: X

CALL SCREEN(12)

180 DISPLAY AT (1.0 y.1.2) X"deccfs* J J DISPLA

Y Al

>; •:

190

"(11 y12)J'hiii
1 H

LAY AT(13

iJ" XX DISPLAY ATCI. 2 y.1.2

»ll)J'pkllllmt" :: DISP

.1111

DISP

LAY AT(14*11)i"or rrrrrs"

200 DISPLAY AT(9? •i /> ^ * aK, a

210 DISP ...AY AT(6y 11)i• 11 A P P Y" :: disp

LAY ATCI. 7 y8) J •B I \"< T H D A v"

220 FOR 1=1 TO 26 t t READ DvNpNM I J CALL

SOUND <D yNy()yNly())J? NEXT I

230 DISP ...AY ATC9. 14)*"w*H

240 GOTO 240

250 DATA FFyFFFFFCF0C08*FF8*FF0iy FFFF3F0

F0301

260 DATA 4 0 2 01F* 0000F F y0 204FCy 0 000000000

80C0E 900 y0 0 0 0 0 0 0 0 0 0 0103 0 7

270 DATA 00000003070F0F07y0301*FFFFFFyCO

8 r 0 0 0 0 0 0 C 0 E 0 F 0 F 0 E y00100290 1.2929292 ?00000

0101 ';> 9 ';>a •?92

280 DATA 65»7E66667E6666F? * 66 ? FC66667C66

A AFC y68yl•Co666666666FC?72*F766667 F6666F?
290 DATA 73»3CJ81 rU818183C*80yFC66667C60

60Fy 82.FC66667C666677*04?7E5A5A1818183C

300 DATA 89yEF6666667E067F

310 DATA 250y262y 220?250v262*220 - 500*294
9 220 »500 >262r2209 500y349m262y750y "y •>• /••. -—i .•• ••••«

..;> ..;> i/ y ..-' o ..-

320 DATA 250y262y 19692509262y:!96y 500y294
y!96 y500 >262.9 196y 500y392?262y750y 349*262

330 DATA 250?262y 220y250y262y220y 5009523

?349 y500 ,440.349, 250y349y262y250y 349*262

?50C)y330 v262 9750 »294 ?294

340 DATA 25()y 466» 349y250y466y349y 500y440

»349 y500 ^349?262y 500y392y262y750v 349y262

172

8 4 2 18 4 2 1

#99

8 4 2 18 4 2 1

#103

8 4 2 18 4 2 1

•_

fc====

00

00

00

00

00

80

CO

EO

#107

03

01

00

00

00

00

00

00

8 4 2 1 8 4 2 1

•

#113

8 4 2 1 8 4 2 1

#100

40

20

1F

00

00

00

00

00

8 4 2 1 8 4 2 1

#104

00

00

00

00

00

00

00

00

8 4 2 1 8 4 2 1

#108

8 4 2 18 4 2 1

#114

Fig. 16-9. Characters for Listing 16-5 Cake.

second note and its volume follows. The duration

for both notes is the same. The loop continues
until all the notes have been played. The melody
is located in lines 310 through 340. The duration
for all the notes is a positive number. This means
that the next note will not sound until the com
puter has finished playing the current note.

Line 230 blows out the candles after the song.
Actually, because the computer will continue with

8 4 2 1 8 4 2 1

8 4 2

#101

1 8 4 2 1

00

00

FF

00

00

00

00

00

#105

8 4 2 18 4 2 1

•

M
8 4

m
2

#109

1 8 4 2 1

1

00

00

00

00

00

01

03

07

#115

CO

80

00

00

00

00

00

00

8 4 2 18 4 2 1

8 4 2

#102

1 8 4 2 1

I I

•
• I

• JX • -

#106

8 4 2 18 4 2 1

•
00

00

03

07

OF

OF

07

8 4 2

#112

1 8 4 2 1

l^^l

|l
#116

00

00

00

CO

EO

FO

FO

EO

the program before the last note has finished, the
candles will be blown out during the last note.

Line 240 keeps the program from ending until the
CLEAR key has been pressed.

MIXING GRAPHICS AND SOUND

The program in Listing 16-6 (flowcharted in
Fig. 16-10) combines graphics with sound. It is an
example of the classic pencil and paper game—

173

8 4 2 18 4 2 1 8 4 2 18 4 2 1

#82 #84 #89

Fig. 16-9. Characters for Listing 16-5 Cake. (Continued from page 173.)

battleships. But this time, you are playing against
the computer.

Listing 16-6

Line 130 uses the RANDOMIZE command to en

sure that every game will be different.

Line 140 is a FOR . . . NEXT loop that reads the
length of each ship into an array. The computer
will use this information when it is placing the
ships in its grid.

Line 150 is the data for the ships. Each player has
ten ships to place in the grid that are four different
sizes.

Line 160 places the character number 103 in three
string arrays. These arrays will be used to deter
mine where the ships hits, and misses are. At
this time, character 103 is undefined. We will

174

create this character in the next routine.

Line 170 places the data pointer at line 200, where
the information for creating the new characters is
stored. The screen clears, and the computer
reads the character patterns from the DATA line.
The new characters are placed in locations 124
through 143 (Fig. 16-11).

Line 180 sets the C variable to 110. This is the first

location of the character that will be created. The

FOR. .. NEXT loop counts from 134 to 143. The
character pattern from these locations is placed in
C$. Then that pattern is transferred to the loca
tion set by C. The C variable is incremented by
one and the loop continues. The characters are
transferred from one location to the other. The

characters are the same; however, when they
appear on the screen, they will be in two different
colors. By transferring them to another set, the

Fig. 16-10. Flowchart for Listing 16-6 Battleship.

Listing 16-6

/Place marker/
f on screen /
add one /
toscore /

100 REM LISTING 16-6

110 REM BATTLESHIP

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 RANDOMIZE

/Put message /
on screen /

175

176

140 FOR C=l TO 10 XX READ I... XX SHP(C)=L

X X NEXT C

150 DATA 4»3*3»2i'2»2»l»ij'i»l
160 FOR C=l TO 10 XX H*(C)=RPT*<CHR*(103
>»10>:: C0M*<C)=RPT*(CHR*<103)»i0)JJ SCR

<C)=RPT<CHR*(103)»10)J: NEXT C
170 RESTORE 200 XX CALL CLEAR j: FOR C=l
24 TO 143 XX READ C* XX CALL CHAR(C»C*)J

I NEXT C

CALL CH

C=C+1 XX

CALL

200 DATA 000103031F130301y000A030F0F0303
OF 91F0F03030B0F0B02 r00080COE7F5F5F7F90F3
F3F1F1F0F0F0F»1F1F3F2F2F0E0C08

210 DATA 000416171F0F070Fy071F070F07070F
3F 97F3F0F071F07070F r1F171707070F0604 y000
0003010107CFE»000000009E98FEFC

220 DATA 000000017323FF7Fy00F090F0FEFCF8
F0»0000061EFFFFFFFF»00001C07FF7F3F1F»000

0001CB0FEFCF8y00008082CAFFFFFF

230 DATA 0001031397FFFFFF*0000000721FF7F
3 F t F F C 3 A 5 9 9 9 9 A 5 C 3 F F r F F C3 9 9 B D B D 9 9 C 3 F F yF F 8

18181818181FF

240 HS»CS»CHF=0

250 C A I... L S C R E E N (1) XX C A L L C 0 L 0 R (14 y5 1111
3 95 y1 y12 ?5 y1 y11 y16 y1 y10 y16 y1 y9 y16 y1)

260 FOR C=0 TO 8 XX CALL COI...OR (C y10 ?1) X X

NEXT C

270 DISPLAY AT <2»1) t'C0MPUTER" : J DISPI...A
Y AT(2 y24)X "HUMAN" JX DISPLAY AT(7 y10)X -

ABCDEFGHIJ"

280 GOSUB 1470 ! PUT GRID ON SCREEN

290 BV*=CHR*<133)SCHR*(132)8CHR*(131)*CH

R*<130)X X CV*=CHR*(129)8CHR*(128)SCHR*(1

27)XX DM*=CHR$(126)SCHR*(125)

300 SBV$=CHR«<124)XX SV*(1)=BV* XX SV*(2

)=CV* J: SV*(3)=CV* J J FOR C=4 TO 6 XX S

V*(C)=DV* J J NEXT C

310 FOR C=7 TO 10 XX SU*(C)=SBM$ XX NEXT

C

180 C=110 XX FOR 1 = 134 TO 143

ARPAT<I»C*>:X CALL CHAR(C!»C4>)
* *

NEXT I

190 FOR O10:i TO 103 X I READ C*

CHAR(CrC«)XX NEXT C

continued on page 178

colors can be changed and both sets can be printed
on the screen at the same time and in two different
colors.

Line 190 places the last three characters in loca
tions 101 to 103.

Line 240 sets the HS, CS, and CHF variables to
zero. The first two variables keep track of the
player's score and the computer's score. The
third variable is set when the computer has hit a
ship.

Line 250 changes the color of the screen and the
character sets 9 through 14.

Line 260 is a FOR . . . NEXT loop to change the
color in the first nine sets.

Line 270 displays the players' names and the letters
for the grid.

Line 280 sends the computer to a subroutine that
places the grid on the screen.

Lines 290-340 place the charactersfor the ships in
string arrays. There are two sets of ships that will
be used in the program. Both sets are placed in
string arrays. The ships with the "V" in the vari
able name will be vertical on the screen. The
ships with the "H" will be horizontal.

Line 350 places all four ships on the screen. The
ship that you will be placing in the grid is a dif
ferent color.

Line360beginsthe FOR... NEXTloopthat places
the ten ships on the grid. You will be placingone
battleship, two cruisers, three destroyers, and
four submarines on the grid.

Line 370 sets the flag variable to zero. This variable
will be set to one if the position where the ship is
being entered is invalid, or the Xkey was pressed
to delete or erase the ship from the screen. The
first subroutine at line 740 gets the letter and
number of the position of the ship. The second
subroutine at line 870 finds out if you want the
ship going across or up on the grid. It also checks
the position to make sure that the ship can fit in
that position and waits for the ENTER key or an
X. If the ENTER key is pressed, then the ship is
in the position that you want it in. If the X key is
pressed, the ship is erased, and the FLAG vari
able is set to one. The line will repeat itself until
the FLAG variable is zero.

Line 380 continues the loop until all the ships are
placed on the grid. Then the computer will tell
you that it is placing its ships on the grid.

Line 390 begins the computer's FOR . . . NEXT
loop to place the ships on the grid.

Line400sets the flag to zero again. The computer
chooses two random numbers, one for the letter
and one for the number.

Line 410 chooses a zero or a one. If the computer
chooses a one, the ships will be placed across on
the grid, otherwise it will be placed up.

Line 420 uses the subroutine at line 1280 to see if
the computer can place the ship at that location. If
it cannot, the flag will be set to one and the
computer will go to line 400 to choose a new
location. If the computercanplace the ship there,
the loop will continue.

Line 430continues the loop until all the ships have
been placed onto the computer's grid.

Line 450 begins the game. The computer uses the
subroutine at line 1470 to place the elements of
SCR$ on the screen. This string array stores the
screen information. If there was a hit or miss, it
will be in this string and then placed on the
screen. The color of the characters are changed.
The same characters are used for the computer
grid and the player grid. By changing the color of
the character set, we know whose turn it is.

Line 460 uses the subroutine at line 740 to get the
letter and number of a square on the grid. The
computer looks at that location in its string array
to see if it was used before. The characters 101

and 102 are used to indicate a hit or a miss. If that

location was used before, the computer goes back
to the beginning of this line and the player must
try another location. Each location can be entered
only once in a game.

Line 470 checks to see if that location was a 103. If it
was not, the player hit a ship and the computer is
sent to line 660 to flash the screen, tally the score,
and place the hit marker on the grid.

Line 480 places the miss marker in a temporary
string and uses the subroutine at line 1490 to
place the marker on the screen and in the correct
string arrays for storage.

Line500begins the computer's turn. The grid color

177

178

320 BH*=CHR*(143)8C HR*<142)8CHR$(141)8CH

R * (140) X X C H * :=C H R * (139) 8C H R * <138) 8 C H R * (1

3 7) J J D H *=CH R * <136)8 CIIR* <135)

330 SBH*-CHR*(134)XX SH*<1)=BH* J X SH*(2

>=ch* j: sh*<3)=ch* :j FOR 0-4 TO 6 XX S

H*(C)=DH* XX NEXT C

340 FOR C=7 TO 10 :: SH*<C)=SBH* XX NEXT

C

3 50 DISP L AY A T (19 y8) XBH * 8" "8C H R $ <115) Si C

HR*(114)8CHR*< 113) 8" "8CIIR*< 112) 8CHR$<11

1)8" a&CHR«<110)

360 FOR SH=1 TO 10

370 FLAG=0 XX GOSUB 740 XX GOSUB 870 XX

IF FLAG THEN 370

3 8 0 N E X T S H XX DISP I... AY A T <21 r 1) XTA B <6) 9 "
PLACING MY SHIPS"

390 FOR SH=1 TO 10
400 FLA6=0 J: SC=INT<RND*10)+1 XX N~INT<

RNDfclOHl

410 K = INT <R N D * 2) XX IF K < > 0 A N D K < > .1. T H E N

410 ELSE IF K=l THEN K*65 ELSE K=85

420 GOSUB 1280 XX IF FLAG THEN 400

430 NEXT SH

440 REM HUMAN'S TURN

4 5 0 G 0 S U B 147 0 J J C A I... I... C 01... 0 R (9 y5 y1)

460 G 0SU B 740 XX T=ASC<SEG*(00M*(N)ySC y1

)) X X IF T=101 0 R T=102 T H E N 4 6 0

470 IF TO103 THEN 660 ! HIT

4 8 0 T E M P *=CH R * <102) X X G 0 S U B 149 0

490 REM COMPUTER'S TURN

5 0 0 C A I... I... C 01... 0 R (9 916 91) XX F 0 R C = 1 T 0 10 X

X DISPI...AY AT (7+C »10)SIZE <10) .J H* (C) X X NEX

T C

510 DISPI...AY AT <21 » 1) J " HIT 0N P0SITI

ON"

520 IF CHF=0 THEN 590

530 FOR R =1 TO 10 XX FOR Ol TO 10 XX T«

A S C <S E G * (H * (R) yC, 1)) X X IF T < > 101 T H E N 5 8

0

5 4 0 IF C < > 10 T H E N T1 = A S C <S E G $ (H * (R) yC +1y

1))XX IF T1O101 AND T1O102 THEN SOCfl

J J N-R XX T=T1 X X GOTO 600

5 5 0 IF C < > 1 T H E N T1 =: A S C (S E G $ (H * <R) 10 •••• 111

continued on page 182

is changed to white and the player's grid is placed
on the screen. This grid contains the ships that
the player placed on their grid.

Line 510 displays a message on the screen.
Line 520 checks the CHF variable. This variable is

used as a flag. If the computer hit a ship the last
time it had a turn, this variable will be set to one
and the computer will use the routine to find the
hit and try another location near it. If the com
puter did not get a hit the last time, or has already
tried all the locations near the last hit, this vari
able will be set to zero and the computer will go on
to line 590.

Lines 530-580 check every location in the grid for
the hit. When it finds the hit location, it checks the
location after the hit, then before the hit, then
below the hit, then above the hit. If any of these
locations have not been used, that is, they do not
contain a hit or miss marker in them, the com
puter will hit them. It does not check these loca
tions to see if there is a ship in them—that would
be cheating. It only checks to see if it can drop a
hit there. If it can, the computer goes on to line
600 otherwise it finishes the loop. If the computer
completes the loop and does not find a location to
hit, the CHF variable is set to zero and the com
puter continues with line 590.

Line 590 is used when the computer does not have a
specific location to hit. The computer chooses a
random position on the grid, then checks it to see
if it has been used before. If it cannot use the
location, it tries again until it finds a location that
has not been tried before.

Line 600 prints the location that will be hit on the
screen. The SC variable has 64 added to it so that
the letter will be printed.

Line 610 checks the location that has been hit. If it is
not character 103, then a ship has been hit, and the
computer goes on to line 630.

Line 620 places the miss marker in the temporary
string and uses the subroutine at line 1630 to
display it on the screen andchange the characters
in the string array to reflect the miss. The com
puter goes backto line 450for the player's turn.

Line 630 uses the subroutine at line 1610 to flash
the screen. The hit marker is placed in the tem

porary string; one is added to the computer's
score; the subroutine at line 1630 is used to place
the hit on the grid, and the CHF variable is set to
one.

Line 640 checks the score. If the computer has not
scored 20 points, the computer goes to line 510 to
try again. If the score is 20, the computer goes to
line 680 to end the game.

Line 660 is used when the player gets a hit. The
subroutine at line 1610 is used to flash the screen;
the hit marker is stored in the temporary string,
and the player's score is increased by one. The
computer then goes to the subroutine at line 1490
to place the marker on the screen and in the
appropriate string arrays.

Line 670 checks the player's score and if it is less
than 20, the computer will go to line 460 to give
you another turn. If the player's score is 20, the
computer will continue with the next line.

Line 680checks the computer's score. If it is 20, the
computer wins, and the message is printed on the
screen.

Line 690 checks the player's score; if it is 20, then
the player wins and that news is flashed on the
screen.

Line 700tells you to press the R key to play again.
Line 710waits for a key to be pressed. As long as S

is zero, the computer will loop back to the begin
ning of this line. When S is not zero, the K vari
able is checked for 82—the R key. If it is not the R
key, the computer will loop back to the beginning
of this line.

Line 720 sends the computer to line 160 to play
another game.

Line 740 begins the routine that gets the letter and
number of the square on the grid from the player.
First, the message is printed on the screen.

Line 750waits for a key to be pressed. Once a key is
pressed, the K variable is checked to see if it is a
letter. If the ASCII value of the key is less than 65
or greater than 74, the key is not a letter and the
computer remains at that line until a letter key is
pressed.

Line 760 subtracts 64 from the value of K. This

number will be the grid column of the letter on the
screen.

179

8 4 2 18 4 2 1 8 4 2 18 4 2 1 8 4 2 1 8 4 2 1

8 4 2

#124

1 8 4 2 1 8 4 2

#12

1

15

8 4 2 1 8 4 2

#126

^*^^^1
00

08

OC

OE

Hl^loF

^^^^H1F|^^^HlF

ZSZ^^^^^H5F
^^^^|oF

^^^•0F
^^^•OF

#127

8 4 2 18 4 2 1

#128

8 4 2 18 4 2 1

#129

8 4 2 18 4 2

8 4 2

#130

18 4 2 1 8 4 2

#131

1 8 4 2 1 8 4 2

#1

1

32

8 4 2 1

HHH1F^^^^^^•17
00

00

00

3007

07 1
1H^^^|oF

06 •H^^HP"^^^^^^^^H HH|
#133 #134n #135o

Fig. 16-11. Characters for Listing 16-6 Battleship.

180

1F

1F

3F

2F

2F

OE

OC

08

00

00

00

00

9E

98

FE

FC

8 4 2 1 8 4 2 1 8 4 2 18 4 2 1

8 4

#136p

2 18 4 2 1

00

00

00

01

73

23

FF

7F

00

00

1C

07

FF

7F

3F

1F

8 4 2

137

1 8

M13

4 2 1

#139s #140t #141 & #117

84218421 84218421

00

00

00

07

21

FF

7F

3F

00

00

00

1C

BO

FE

FC

F8

8 4 2 1 8 4 2 1

00

00

06

1E

FF

FF

FF

FF

8 4

#138r

2 18 4 2 1

00

00

80

82

CA

FF

FF

FF

I loo

_M01^Mo3

^^^^^Hff
^^H^Hff
HHff

#142 & #118 #143 & #119

8 4 2 18 4 2 1 8 4 2 1 8 4 2 1 8 4 2 18 4 2 1

#101 #102 #103

181

182

)>:: if Tioioi and tk>102 then sooi
?? N=R XX T=T1 XX GOTO 600

56 0 IF R <> 10 THEN T1 = ASC (S EG* (H* <R+1) r C 9
1))XX IF T1O101 AND T1O102 THEN SOC X
t n=r+i : x t=ti :: goto 600

570 IF R < > 1 T H E N T1 :=A 8 C (S E G * <H * (R - 1 > yC y1

))XX IF T1 <>.1.01 AND T.1.<> 102 THEN SC=C XX
KMR--1 XX T=T1 XX GOTO 600

580 NEXT C IX NEXT R XX CHF=0

5 90 SC = INT <RND* 10) +1 XX N= INT <RND * 10) +1
XJ T=ASC< SEG*< H*(N)tSC»1))J5 IF T=101 0R

T-102 THEN 590

600 DI SPLAY AT (23 y.1.3) JCHR* <SC+64)%"\ "8ST
R*<N)

610 IF TO103 THEN 630 ! HIT
620 TEMP*=CHR*<102>:: GOSUB 1630 XX DISP
LAY AT(23yl)J" " XX GOTO 450

6 3 0 G 0 S U B 1610 XX T E M P*=CH R * <101) J X CS=C
S+l XX GOSUB 1630 XX CHF=1 XX DISPLAY AT

<23 y1)X • "

640 IF CS<20 THEN 510 ELSE 680

650 REM HUMAN GOT A HIT

6 6 0 G 0 S U B 1610 XX T E M P * «C H R * <101) : : H S =:H

S+l XX GOSUB .1.490.

670 IF HS<20 THEN 460

680 IF CS=20 THEN DISPI...AY AT (21 r 1) XTAB <1

0)J"I WIN M!"

6 9 0 IF HS=20 T H E N DIS PI... A Y ft T <21 y1) XT A B <9

)>"YOU WIN !!"

7 0 0 DISP I... A Y A T <2 3 y4) X"P R ES S 'R ' T0 R ES T A

RT"

710 C A I... I... K E Y <0 >K *S) : i IF S ::=0 T H E N 710 E I...

BE IF K<>82 THEN 710

720 GOTO 160

730 REM GET LEGAL LETTER & NUMBER %. DISP

LAY THEM

7 4 0 DISP L A Y A T (21 y1)B E E P X"E N T E R A I... E T T E R

& NUMBER"

750 CALL KEY<0»K»S)t: IF S=0 THEN 750 EL

SE IF K<65 OR K>74 THEN 750

760 SOK-64

7 7 0 DISP I... A Y A T (21125) XC H R * <K)%C H R * <9 2)

780 N*="" J X FOR C~l TO 3

continued on page 184

Line 770 prints the character string of the ASCII
value of K and the slash on the screen. The

character is the letter that you entered.
Line 780 clears N$. This string will store the

number that you enter. The FOR. . . NEXT loop
counts from one to three. You can only enter two
numbers, but the computer waits for the ENTER
key to be pressed. This could be the third key
pressed.

Line 790 waits for a key to be pressed. When the
value of S is one, the computer checks the value of
K. If K is either 13 or 88, the computer will go on
to line 830. If the ENTER key or X key has not
been pressed, the computer continues with the
next program line.

Line 800 checks the value of K to see if it is less than
49, the ASCIIvalue for one. If the key pressed has
a value less thaji 49, and this is the first key being
pressed, then the entry is not good and the com
puter goes back to line 790 to wait for another
key. If the value of K is greater than 57, the key
pressed was not a number and the computer goes
back to get another key.

Line 810 checks to see if the third key is being
pressed. If it is and this key is not ENTER, the
computer goes back to line 790 and waits for the
ENTER key or the X key to be pressed.

Line 820 adds the character of the key pressed to
the characters in N$ and prints the character on
the screen. The loop continues until ENTER has
been pressed.

Line 830 checks the length of N$. The computer
comes to this line when the X key or the ENTER
key has been pressed. If the length of N$ is zero,
there have been no numbers entered and the com

puter goes back to line 790 to get a number.
Otherwise, the value of N$ is placed in the vari
able N. If this value is less than one or greater
than ten, the number entered is not on the grid,
and the computer goes back to line 770 to erase
the number on the screen. If the number is on the

grid, the computer goes on to line 850.
Line 840 checks the value of K for the X key. If it is

the one that was pressed, the computer goes to
line 740 to get another letter and number.

Line 850 returns the computer to the main program.

Line 870 prints the question on the screen. Now the
computer needs to know if the ship should be
placed across or upward on the grid.

Line 880 waits for a key to be entered. The com
puter will loop at this line until the value of S is not
zero. The value of K is then checked for 65 (A)and
85 (U). The computer will loop at this line until
the A or U is pressed.

Line 890 subtracts the lengthof the ship from the
position of the ship if the letter U was pressed.
The SHP array stores the length ofeach ship and
the SHvariable is the ship that willbe printedon
the screen. If the ship is longer than the number of
squares on the grid, the computer goes to line
1150. For example, if you were placing the
battleship on the grid andwanted it to go up. You
would have to place it in at least the fourth row on
the grid, any row higher would be off the grid.

Line 900checks to make sure that the ship can be
placedacross on the grid. If it can't, the computer
goes to line 1150to continuethe program andget
another entry.

Line 910 places the direction on the grid.
Line 920 checks the SH variable. If it is one, the

computer does not have to check to see if this ship
will run into any other ships since it is the only
ship on the grid!

Line 930 checks the value of K to see if an A was
pressed. Ifan Awas not pressed, the computer is
directed to line 960.

Lines 940-950 check the squares across to see if
this ship will run into any other ships. If it does,
the computer is sent to line 1150. If the ship can
be placed on the grid, the computer goes to line
980.

Lines 960-970 check the squares up the grid to see
if the ship will run into any other ships. If it does,
the computer is sent to line 1150. If the ship can
be placed on the grid, the computer continues
with the next program line.

Line980placesthe horizontalship inthe temporary
string when the letter A is pressed. If the U is
pressed, the vertical ship is placed in the tempo
rary string.

Line990findsthe length of the ship. Ifthe ship is to

183

184

7 9 0 C A I... I... K E Y <0 * K t S > J J IF S * 0 0 R S=-1 TIIE

N 790 ELSE IF K«13 OR K=88 THEN 830

800 IF K<49 AND Ol THEN 790 ELSE IF K>5

7 THEN 790

810 if c=3 and koi3 then 790

820 n *=n* *chr*<k)xx displa y a t <21r26+c)x

chr*(k>:j next c

830 if len<n*)=0 then 790 elbe if k=13 t

hen n=val(n*):j if n<1 or n>10 then 770

ELSE 850

840 IF K«88 THEN 740

850 RETURN

860 REM GET UP OR ACROSS INFORMATION AND

DISPLAY IT

870 DISPI...AY AT (23 , 5)BEEP X"UP 0R ACR0BB ?
a

8 80 C A I... I... K E Y (0 r K r S) X X IF B=0 T H E N 8 8 0 E L.

SE IF K<>65 AND K<>85 THEN 880

890 IF K « 8 5 T H E N IF (N •••• B H P <S H))< 0 T H E N 1

150

900 IF K=65 THEN IF ((11-SC)-SHP(SH))<0

THEN 1150

910 IF K •-• 6 5 T H E N DISP I... A Y A T (2315) J "

ACROSS" ELSE DISPLAY AT(23»5):"UP"

920 IF SH=1 THEN 980 ! DON'T NEED TO CHE

CK FOR OTHER SHIPS

930 IF K<>65 THEN 960

940 F0R C0L=SC T0 S C +< SHP(SH)-1)XX IF A S

C <S E G * (H* <N > »C 01... 11))< > 103 T H E N 1150

950 NEXT COL XX GOTO 980

9 6 0 F 0 R R 0 W=N TO N •- (S H P <S H) -1) S T E P -1 X X
1F A S C <S E G * (H* (R0 U) t S C r .1.))< > 103 T H E N 11

50

970 NEXT ROW

980 IF K=65 THEN TEMP*=SH*<SH)ELSE TEMP*

=SV*(SH)

990 LN=LEN<TEMP*)J: IF K=85 THEN 1010

1000 DISPLAY AT <7+N»9+SC)BIZE <LN)X TEMP*

XX GOTO 1030

1010 FOR C=l TO LEN<TEMP*>:? DISPLAY AT<

8+N-Ct9+SC)SIZE(1)X BEG*(TEMP*»C11)X X NEX

T C
1020 REM NOW WAIT FOR AN "ENTER" OR "X"

(DELETE)

continued on page 186

go up on the grid, the computer goes on to pro
gram line 1010.

Line 1000 places the ship across on the grid at the
correct location and the program continues at line
1030.

Line 1010 places the ship up on the grid at the
correct location.

Line 1030 waits for a key to be pressed. Only two
keys will be accepted—the ENTER key or the X
key. If the ship is in the position that you would
like, press ENTER and the program will con
tinue. If you would like to erase the ship, press
the X key, the ship will be erased, and you will be
able to try it at a different position. The computer
will loop at this line until ENTER or the X key has
been pressed.

Line 1040 checks the KY variable for the X value. If

the X key was pressed, the computer will be sent
to line 1110 to erase the ship.

Lines 1050-1090 check the value of SH to see ifany
ship should be erased from the screen. If SH
equals any of these values, the ship that was
placed on the grid will be erased from the row of
ships under the grid, and the next ship will change
colors.

Line 1100 checks the direction that the ship has
been placed in on the screen and directs the com
puter to the correct routine to place the ship in the
other array as well.

Line 1110 erases a ship that was placed upward on
the grid.

Line 1120 erases a ship that was placed across on
the grid.

Line 1130 sends the computer to line 1150 to set the
flag.

Line 1150 sets the FLAG variable to one. When this

flag is set, the computer knows that the last ship
was erased, and it should not go on to the next
ship. The computer returns to the main program.

Lines 1170-1200 puts the ship in the player's array
vertically. One section of this ship is placed row
by row into the array.

Lines 1220-1240 place the ship in the player's
array. This time the ship is placed in the array
horizontally. The elements of the array before and
after the ships location are placed into temporary

strings, then concatenated into the array.
Line 1260is the flag that is set when the computer

makes a bad choice.

Line 1280checks the computer's choice to place a
ship upward on the grid. If the ship cannot fit on
the grid, the computer is directed to line 1260 to
make another choice.

Line 1290checks to see if the ship can fit across on
the grid. If it cannot the computer will go to line
1260 and return to the main program.

Line 1300checks to see if this is the first ship. If it
is, then there is no need to check the grid for other
ships.

Line 1310sends the computer to line 1340 to check
the grid going up.

Lines1320-1330 see ifthe shipcanbe placedacross
on the grid. If it can, the computer is directed to
line 1360to place the ship on the grid. If it cannot,
the computer must make another choice.

Lines 1340-1350 check to see if the ship can be
placedupwardon the grid. If it can, the computer
continues with the program. If it cannot, the com
puter must make another choice.

Line 1360places the horizontal ship into the tem
porary string, if the ship should be placed across
on the grid. It places the vertical ship in the array
if the ship should be placedupwardon the grid.

Line1370finds the lengthofthe ship and sends the
computer to line 1440 ifthe ship will be positioned
horizontally.

Lines 1390-1420 position the shipvertically in the
computer's array. Each part of the ship must be
placed in a different row of the grid.

Lines 1440-1460 position the ship horizontally in
one row of the grid.

Line 1470 places the screen grid on the screen.
Lines 1490-1570 place the hit or miss marker in the

computer's grid and on the grid on the screen.
First the marker that is stored in the temporary
string is placed on the screen. If the player's score
is more than zero, it is printed on the screen.
Then the computer checks the value of the
marker. Ifit is 102, it is a miss and the computer is
sent to the subroutine that makes the miss sound.

The marker is placed in the computer's string
array in the correct position. It is then placed into

185

186

1030 CALL KEY(0»KY»S)JX IF S=0 THEN 1030
ELSE IF KY013 AND KYO88 THEN 1030

1040 IF KY=88 THEN 11.1.0

1050 IF 8H=1 THEN DISPLAY AT(19y8)SIZE<8

> X" "*CH*

1060 IF SH=3 THEN DISPLAY AT<19y13>SIZE<

6)X• •SDH*

1070 IF SH=A THEN DISPLAY AT(19y17>SIZE<
4)1" "&SBH*

1080 IF SH=10 THEN DISPLAY AT<19»20>J' "
1090 DISPLAY AT(23yl)J" "
1100 IF K=A5 THEN 1220 ELSE 1170
1110 IF K*85 THEN CALL VCHAR<N-L.EN<TEMP*
)18 ySCI11 f 103 yI...EN (TEMP*))

1120 IF K=65 THEN CALL HCHAR<N+7»SC+11»1
03.LEN(TEMP$))

1130 REM DAD INPUT OR DELETE
1140 REM ERASE BOTTOM LINE 8 SET FLAG
1150 FI...AG = 1 XX DISPI... A Y AT <2 3 »5) J" " XX R

ETURN

1160 REM PUT VERTICAL SHIP IN HUMAN'S AR

RAY

1170 FOR Ol TO LEN<TEMP*>
1180 IF SO 1 THEN TF*=SE6* <H* (N-C+1) »11S
C-DELSE TF*=""
1190 IF S C< 10 T HEN T I... *=S E G* <H$ <N- C f 1) r S C
+1»10-SC)ELSE TL*=""

1200 H * <N••C •!• 1)= TF * %SE G* <TE MP * *C 11) %T L* X
X NEXT C XX RETURN

1210 REM PUT HORIZONTAL SHIP INTO HUMAN'

S ARRAY

122 0 IF S C > 1 T HE N T F *=SE G * <H* <N) »11SC -1)

ELSE TF*=""

1230 IF S C < 10 T HE N T I... * - S E G* <H* <N > »S C+1...N r
10- (S C+1... N-1)) E L S E T I... * = • "

1240 H*(N)«TF*8TEMP*8TL* XX RETURN
1250 REM DAD CHOICE •••• COMPUTER

1260 FLAG«1 RETURN

1270 REM CHECK UP S ACROSS COORDINATES F
OR COMPUTER

1280 IF K=85 THEN IF (N-SHP(SH)XO THEN
1260

continued on page 188

the string array that places the characters on the
screen.

Line 1590 is the delay loop. This leaves the infor
mation on the screen for a few seconds before the
next part of the program.

Line 1610 is the flash routine. When a hit is made,
the computer is sent to this subroutine to make
the crackling sound and change the screen colors.

Lines 1630-1670 place the computer's move in the
player's grid. If the computer's score is greater
than zero, it is placed on the screen. If the marker
was a miss, the computer is sent to the subroutine
in line 1690 to make the miss sound. The marker

is placed in the player's array, and the computer is
sent to line 1590 before returning to the main
program. This routine is a subroutine. By sending
the computer to line 1590 with a GOTO state
ment, the computer will return to the correct line
in the program.

Line 1690 is the sound routine for the miss.

USING JOYSTICKS

Built into your TI-99/4A BASIC are com
mands for reading the positions of joysticks. The
keyboard is a good way to enter information, but a
joystick can make a program easier to use. If you
have ever played an arcade type gamethat used the
keyboard to move characters, you will understand
whythe joystick is a better choice. The user has no
chance to press the wrongkeyandthen wonderwhy
the character isn't moving in the direction ex
pected. A joystick can be used in programs other
than arcade games.

CALL JOYST

This command is used to find out which direc
tion the joystick has been moved. The format for
this command is:

CALL JOYSTICK(unit,x-coordinate, y-coordinate)

The unit number indicates which joystick is
beingread. Your TI-99/4Acanuse twojoysticks in
a program. Use a onefor the first joystickanda two
for the second joystick. The next variable is the
x-coordinate. If this value is a zero, the joystick has

not moved to the left or right. If the variable con
tains a four, the joystick was moved to the right. If it
is a negative four, the joystick was moved to the
left. The y-coordinate determines whether the
joystick has moved up or down. If the Yvariable is a
four, the joystick has been moved up, a negative
four means the joystick has moved down. If the
values of both variables are zero, the joystick has
not moved.

In addition to the JOYST command, the CALL
KEY command can be used. The JOYST command
only checks which direction the joystick is pointing
to. It does not check to see if the fire button has

been pressed. To check for the fire button, use:

CALL KEY (l,key,status)

The one indicates the first joystick or the keys on
the left side of the keyboard. If you wanted to check
the second joystick, you would use a two. The key
variable is the ASCII value of the key that has been
pressed or the value of the fire button. When the
fire button has been pressed, the variable will be an
18. The status will be set to one when the fire

button or a key has been pressed. The program in
Listing 16-7 (flowcharted in Fig. 16-12) de
monstrates using a joystick with a menu.

Listing 16-7

Line 130places a character pattern in C$. This new
character will be used as our pointer (Fig. 16-13).
The character will be the 143 number in the
character set. Its color is set to dark blue and the

background to transparent. The character is
moved into P$. Whenever we want to print the
character on the screen, we can just print P$.

Line 140 places a message on the screen. The
ALPHA LOCK key must be up in order for this
program to work. If the key is down, the computer
will not read the joystick correctly.

Lines 150-160 clear the screen and place the menu
on it. This is an example of a menu that might be
used in many programs.

Line 170 sets the PR variable to 4. This variable
will indicate which row the pointer should be
printed in.

Line 180places the pointer (P$) on the screen. It is
placed in the seventh column in the row set by

187

188

1290 IF K=65 THEN IF (<11-BC)-SHP<BH>><0

THEN 1260

1300 IF SH=1 THEN 1360 ! DON'T NEED TO C

HECK FOR OTHER SHIPS

1310 IF K<>65 THEN 1340

1320 F0R C01...=SC T0 BC + <BHP(SH)-1) X X IF A

SC <SEG*<C0M *(N)yC0L,1))<>103 T H EN 1260

1330 NEXT COL XX GOTO .1.360

1340 FOR ROU=N TO N-(SHP<SH)-1)STEP -1 X

X IF A S C <S E G * < C 0 M* < R 0 W) t S C, 1)) < > 103 T H E N

.1.260

1350 NEXT ROW

1360 IF K=65 THEN TEMP*=SH*(SH)ELSE TEMP

~~SV(SH)

1370 I... N == I... E N (T E MP *) X X IF K « 6 5 T H E N 1440

1380 REM PUT VERTICAL SHIP IN COMPUTER'S

ARRAY

1390 FOR C=l TO LEN<TEMP*>

1400 IF SOI THEN TF*~SEG* < COM*< N-C+l) 11

»SC-1)ELSE TF*=""

1410 IF S C < 10 T H E N T I... *=BE G * < C 0 M* < N - C+1) y

S C +1 ? 10- S C) E I... S E TI...* = " "

142 0 C 0 M$ (N •••• C +1) = T F * 8 B E G * < T E MP * » C » 1) &T I... *
J X NEXT C XX RETURN

1430 REM PUT HORIZONTAL SHIP INTO COMPUT

ER'S ARRAY

1440 IF S C > 1 T H E N T F * ~" S E G $ (C 0 M* < N) ? 11SC ••••

DEL BE TF*=" "

1450 IF S C < 10 T H E N T I... * ~ B E G* < C 0 M* <N) » S C+1...

N y 10• • (S C {•I... N •-1)) E I... B E T I... * -" "

146 0 C 0 M$ (N) = T F * &T E MP * &TI... * X X R E T U R N

1470 F0 R R=8 T 0 17 J J DISPLAY A T <R v 9+< R=

17))JSTR$(R •7)&SCR*<R-7)XX NEXT R XX RET

URN

.1.480 REM PLACE VALUE IN TEMP* ON COMPUTE
R'S GRID

1490 DISPLAY AT(7+Nt9+SC)SIZE(1)X TEMP* X

X IF HB>0 THEN DISPLAY AT<3»25)JHS

1500 IF ABC(TEMP*)=102 THEN GOSUB 1690

1510 IF S C > 1 T H E N T F *=BE G * <C 0 M * (N) »11SC -

1)ELSE TF*=""

.1.520 IF SC<10 THEN Tl..*=SEG*<COM* <N) t SC + 1
ylO-SOELSE TL*=""

continued on page 189

1530 COM*(N)«TF*8TEMP*STL*

1540 REM PLACE VALUE IN TEMP* ON SCREEN'

155 0 IF S C > 1 T H E N T F *=SE G * < S C R * < N) y1, B C -

|5~SEG*<SCR*<N)y8Ch1.

DEL BE TF*=""

1560 IF SIX 10 THEN

ylO-SOELSE TL*="

157 0 S C R * < N) = T F * %T E MP * %T L * X X

1580 REM DELAY ROUTINE

1590 FOR DELAY-!. TO T XX NEXT

ETURN

1600 REM

1610 FOR

TL

T=1.000

FLASH SCREEN % SOUND

F=l TO 3 CALL SCREEN<16) C

ALL SOUND(100y110 * 5 y110 y5 y110»5»-8r0)X

CALL SCREEN(2)JJ NEXT F XX RETURN

1620
TTl

1630

J IF

1640

1650

ELSE

1660

REM PUT SHOT IN TEMP* ON HUMAN'S GR

DIBPI...AY AT <7•}• N r 9+SC)SIZE (1) XTEMP* X
CS>0 THEN DISPLAY AT<3»3)SIZE(4)tCS

IF ABC(TEMP*)=102 THEN GOSUB 1690

IF SO1 THEN TF*=SEG* (H* <N) y1 r SC-1)

TF*~ °"

IF S C < 10 T H E N T I... *=SE G * <H * (N) , S C +1 y1

0-SOELSE TL**"

1670 H*(N)*TF**TEMP**TL* XX T=1000 XX GO
TO 1590

.1.680 REM MISS SOUND

1690 FOR S*3 TO 1 STEP -1 :j CALL BOUND(

5 0 y110 y30y110r301B*100Or Or -4 r0)J X N EXT S

PR. The delay loop holds the computer at this line
for a few seconds. Without this delay, it would be
very difficult to place the pointer at the correct
position.

Line 190 uses the CALL KEY command to see if the
fire button on the joystick has been pressed. If the
S variable is one then the fire button or a key has
been pressed. If the K variable is 18, then the fire
button has been pressed and the computer will be

directed to line 270 to continue with the program.
Line 200 uses the JOYST command to see if the

joystick has been moved. In this program, we are
only interested in moving the pointer up or down.
The X variable will change if the joystick has been
moved left or right. If it has, the computer will be
sent back to line 190. If X is zero, the computer
will continue with the next program line.

Line 210 checks the Y variable. This variable will

189

C Start J
T

Create new

character and

set color

Display
message

Place menu

on screen

& pointer

Count to

100

Add to

pointer
variable

Place pointer/
in new

position

Go to routine

Subtract from

pointer
variable

Fig. 16-12. Flowchart for Listing 16-7 Menu.

190

change if the joystick has been moved up or down.
If the variable is a zero, then the joystick has not
been moved and the computer is directed to line
190 to check for another input.

Line 220 checks the value of Y for a four, which
indicates the joystick has been moved up. The
computer will be sent to line 250 to move the
pointer up one item on the menu.

Line 230 moves the pointer down one item on the
menu. The computer will use this line if the value
of Y is negative four. We do not have to check for
the value of Y since the last two program lines
checked for the other two values that Y could be.

The computer erases the pointer from its present
position. Four is added to the value of PR because
the items on the menu are four rows apart. When
you move down on the screen, the row numbers
increase. The fifth item on the menu is at row 20.

PR is checked to see if it has passed row 20. If it
has, the variable is reset to 20.

Line 260 sends the computer back to line 180 to
print the pointer at the new position on the
screen.

Line 250 erases the pointer from the screen and
subtracts four from PR. When we move the

pointer up the screen, the row values decrease.
The first item on the menu is printed at row four.
The value of PR is checked to see if the pointer
would be above the first item. If it is less than

four, the variable is reset to four.
Line 260 sends the computer back to line 280 to

print the pointer on the screen again.
Line 270 begins what would be the mainprogram.
Line 280 ends the program.

Any standard joystick can be used with your
TI-99/4A. A special Y-shaped cable will allowyou
to attach two joysticks to the port on the left side of
your keyboard.

USING THE SPEECH SYNTHESIZER

It is possible for your TI-99/4A to talk to you
through a speech synthesizer. Texas Instruments
manufactures a speech synthesizer that is compati
ble with your computer. The EXTENDED BASIC
cartridge has a built-in set of command and vocabul-

Listing 16-7

100 REM LISTING 16-7

110 REM MENU

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 C * «"003F787878700000" XX CALI- CHARCL

431C*) XX C A1... L C 01...0 R <14»511) XX
"X \

P$-=CHR*(14

3;

140 D18PLAY AT (12 y1)ERASE A1... 1. .XH/ ALPHA LO

CK' KEY MUST BE UP" XX FOR DE:lay=1 TO 15

00 ihJ NEXT DELAY

150 DISPLAY AT(4»9)ERASE ALLI "1. NUMBERS

♦ 4 DISPLAY AT<8»9)J"2* LETTERS " :: dis

PLAY AT <12f9)J"3♦ COLORS•

160 DISPLAY AT<16»9):"4» SHAPES'1 J J DISP

LAY AT<20»9)X"5, SIZES"

170 PR=4 ! ROW OF THE POINTER

180 DISPLAY AT< PR *7)SIZE<1)XP* XJ FOR DE

LAY*=1 TO 100 :J NEXT DELAY !F•AUS ;• BETWEE

N MOVES

190 CALL key<i»k»s):j if S=l AND K=18 TH

EN 1»70 ! SELECTION HAS BEEN MADE

200 CALL J0YST<1»X»Y>X X IF X=:>o I'HEN 190

21.0 IF Y=0 THEN 190

220 IF Y=4 THEN 250

230 DISPLAY AT(PR r7>SIZE(1)X'
H XX PRspR

+4 J\X IF PR>20 THEN PR=20

240 GOTO 180

250 DISP1... A Y A T <P R17) SIZE <1) : '
1 II XX PR=PR

-4 t: IF PR<4 THEN PR=4

260 GOTO 180

270 REM GO NOW TO THE UNIT SE•I...EC I'ED

280 END

ary words that can be used with this speech syn
thesizer.

Although it is possible to use other commer
cially available speech synthesizers with your TI-
99/4A, we will only explain the commands that are
used with the Texas Instruments' one. Consult

your manufacturer's booklet for the other speech
synthesizers.

SAY

With this command you can have the speech
synthesizer say any word that is in its vocabulary.

The entire word list is in the EXTENDED BASIC

book. If you ask the computer to say a word that is
not in its vocabulary, it will spell the word instead
of saying it. The format for this command is:

CALL SAY("HELLO")

More than one word may be included between the
quotation marks. Single letters and numbers can
also be spoken. Resident phrases must be enclosed
in pound and quotation marks.

CALL SAY (" TEXAS INSTRUMENTS "0

191

Fig. 16-13. Character for Listing 16-7 Menu.

CALL SPGET

This command is similar to the CALL CHAR-
PAT command. Every word that the TI-99/4A says
follows a particular pattern. This pattern can be
altered or changed to create new words that are not
in the computer's present vocabulary. The format
for this command is:

CALL SPGETC'word", string variable)

The word in quotation marks is a word from the
computer's vocabulary. The string variable is any
string variable that you want to use. The computer
will place in the string variable the codes that make
the soundfor the word. This string can be very long
since it takes several codes for the computer to
make a sound.

Ifyou would like the computer to say the word
that is in the string, use the SAY command with a
comma before the string variable.

CALLSAY(,R$)

The codes tell the computer to make sounds
called phonemes. Phonemes are the sounds that
make up the letter sounds to form words. For
example, there are six vowels in the English lan
guage (counting Y), but they can make over 26
different and distinct sounds. The phoneme code
tells the computer which sound to make. These
phonemes can be changed or added together to
make new words or sounds. The program in Listing

192

16-8C allows you to take two words and add the
phonemes from one word to the phonemes from the
other word to create a new word.

In the program in Listing 16-8C (flowcharted in
Fig. 16-14)we will shorten the phonemes of words
and add them to the phonemes of another word to
make the computer say a word that is not in its
resident vocabulary. The program can store up to
40 words. These words can be stored on cassette

and used in other programs. The second Listing,
16-8D, is the same, except that the words are
stored on disk instead of cassette.

Listing 16-8C

Line 130 traps errors. If an error has been entered
the computer will continue without displaying the
message.

Line 140 eliminates the zero element of the array.
SPEAK$ array will store the words and their
phonemes. The C variable is set to one. This
variable will count the number of words entered.

Line 150 asks you to enter a word. The word will be
stored in WORD$. If you do not enter a word, the
computer will remain at this line until you do.

Line 160uses the SAY commandto say the word. If
the wordis in the computer's resident vocabulary,
the computer will say the word. If it is not, the
computer will spell the word.

Line 170 sends the computer to the subroutine at
line 430. This subroutine is used throughout the
program to ask you if you like the sound of the
word or to repeat it. If you enter an "N," the
computer will go to line 150 and you can enter
another word. If you enter an "A" to say the word
again, the computer will go to line 160 to say the
word. If you enter a "Y," the computer will con
tinue with the next program line.

Line180asks you to enter another word. Ifyoudo
not haveanother word to enter, youcanjust press
ENTER and the computer will continue at pro
gram line 210.

Line 190 says the word that you entered.
Line 200 uses the subroutine at line 430 to find out if

you liked the way the word sounded. If you enter
an "N," you can enter another word. Enter an "A"
to hear the word again.

Line 210 erases the screen and prints one or both
words near the top of the screen.

Line 220 uses the SPGET command and places the
phonemes for the first word into W01$. If a sec
ond word was entered, the phonemes for this
word will be stored in W02$.

Line 230 finds the length of the two phoneme
strings. This length will be used to determine
how many bytes can be used and/or removed from
the string when we try to change the sound of the
word.

Line 240 tells you how many bytes there are in the
first phoneme string. We subtract three from the
length of the string because the first three bytes of
the string cannot be removed. Youare then asked
how many bytes you want to use.

Line 250 accepts the number that you enter. If you
try to use more bytes than are in the string, the
line will repeat itself.

Line 260 places the first two bytes of the phoneme
string concatenated with the number of bytes that
you want to use in W$. We leave the first two
bytes of the original string intact. The third byte
is changed to the number of bytes that will follow
it. If this number is not correct, an error will occur
when the computer tries to say the word. The first
part of the phoneme string, beginning with the
fourth byte, is added to these three bytes.We will
only be adding sounds from the beginning of the
string.

Line 270 says the word in W$. The W$contains the
phonemes or codes for the word, so we must
precede it with a comma. The comma tells the
computer that the first element, a word in a string
or within quotation marks, has not been entered,
so go on to the second element of the command,
the string with the phonemes.

Line 280 asks you if you liked the way the word
If you did not, enter an "N." The computer will
remove that phoneme string from W$ and ask you
to enter another length. Youcan keep trying dif
ferent lengths until the part of the word that you
want the computer to say sounds right to you. If
you enter an "A," the computer will say the word
again. Ifyou liked the way the word sounded enter
a "Y."

Line 290 checks to see if a second word was en

tered. If the string is empty, the computer will go
on to line 350.

Line 300 shows you the length of the second string.
Again, three is subtracted from its length.

Line 310 accepts the number for the number of
bytes that you want to use. Again, we will be
removing the first sounds of the word.

Line 320 places the first two bytes, along with the
number of bytes following them and their con
tents, in W2$.

Line 330 uses the SAY command to say the word
made up of the phonemes in W2$.

Line 340 uses the subroutine at line 430 to ask you if
you liked the way the word sounded. Enter an "N"
to try a different number of bytes, an "A" to hear
the word again, and a "Y" to continue the pro
gram.

Line 350 says the two phoneme strings together.
Line 360 asks you if you liked the way it sounded.

Respond as you did before.
Line 370 finds the length of just the first phoneme

string, or the length of both phoneme strings
together. This length will be used when we are
saving the program to cassette.

Line 380 places the phoneme string in the second
element of SPEAK$ array. The first element of
the array will be used for the word that is spoken.

Line 390 asks you to enter the word for the
phoneme string that you created.

Line 400 concatenates the word with the phoneme
string. A slash mark is placed between the actual
word and its phonemes. This will help us identify
where one word stops and its phoneme string
begins. If the length of both strings together is
longer than 192, a message saying so will be
printed on the screen, and the computer will re
turn to line 150. The string cannot be longer than
192 bytes. If it is, the computer will not be able to
save it onto the cassette.

Line 410 asks you if you have any more words to
enter into the array. If no letter was entered, the
computer will loop at this line until one is.

Line 420 adds one to the count of C. If the "N" was

entered, or the count is more than 40, the com
puter will be directed to line 470 to save the

193

Q Start J

Set warnings
set aside

string space

Clear screen^
display
words

s
Fig. 16-14. Flowchart for Listing 16-8C&D Making Words.

194

2.
Get phoneme
code for words

Get length
of phonemes

'Get lengthto
use for first J
word /

Listing 16-8C

1
Place

phonemes
in array

Get right
spelling for
word >

Store in array

100 REM LISTING 16-8C

11.0 REM MAKING WORDS - CASSETTE
120 REM BY L.M.SCHREIBER FOR TAB BOOKS
130 ON WARNING NEXT .

140

Ol

1.50

OPTION BASE 1 XX DIM SPEAK*<40»2)XX

DISPLAY AT<2t2)ERASE ALL J"ENTER A WO

RBu J X ACCEPT AT(4»4)BEEP XWORD* X X IF WO
RD$='•" THEN 150

195

196

160 CALL SAY(WORD*)

170 G 0 SIJB 430 XX IF M * == •N" T H E N 150 E I... 8 E
IF y *::::" A" THEN 160

180 DISPLAY AT <6 y2)X"ENTER SEC0ND W0RD•

XX ACCEPT AT(8 y4)BEEP XW0RD2* XX IF W0RD2

*=•" THEN 210

190 CALL SAY(W0RD2*>

200 GOSUB 430 It IF V*»"N" THEN 180 ELSE

IF V*="A" THEN 190

210 DISP I... AY A T (2 y2) E R A S E A I... L XW 0 R D * yW 0 R D 2

*

2 2 0 C A I... I... S P G E T <W 0 R D * »W 01 *) X X IF W 0 R D 2 * < >

8 " T H E N C A I... I... S P G E T (W0 R D 2 * t W 0 2 *)

2 3 0 W=I... E N <W 01 *) : X IF W 0 R D 2 * < >" " T H E N W 2=

LEN<W02*>

240 DISPI...AY AT (4 y2) X"THE FIRST W0RD IS" i
W-3J"BYTES LONG"J"USE HOW MANY?"

2 5 0 A C C E P T A T <7 r .1.3) V ALIDA T E <DIGIT) XB XX
IF B>W-3 THEN 250

260 W*•-•SEG* (W01 * y1y 2) 8CHR* <B) 8SEG* (W01 * •>
4 yB)

270 CALL SAY(yW*)

280 GOSUB 430 XX IF V*="N" THEN W*='" XX
GOTO 250 ELSE IF V*="A" THEN 270

2 9 0 IF W 0 R D 2 * =" " T H E N 3 5 0

300 DISPI...AY AT (9 r 2) X"THE SEC0ND W0RD IS "

9 W 2 - 3 X "B Y T E S I... 0 N G" X"U S E H 0 W MANY?"

310 A C C E P T A T <12»13) V ALIDA T E (DIGIT) XB 2 X
X IF B2>W2-3 THEN 310

3 20 W 2 *=SE G * (W 0 2 * y .1. y2) 8 C H R * <B 2)%S E 6 * (W 0 2

*y4yB2)

330 CALL SAY(,W2*>

340 GOSUB 430 XX IF y*:="N" THEN W2*="" :

X GOTO 300 ELSE IF V*="A" THEN 330

350 IF W0RD2*= • " THEN CALL SAY(yW*)EI...SE

CALL SAY(yW*yyW2*)

360 GOSUB 430 !! IF y*="N" THEN 210 ELSE

IF y*=aA" THEN 350

3 7 0 IF W 0 R D 2 * =" " T H E N L=I... E N (W*) E I... S E I... ~ I... E

N<W*&W2*>

380 IF W0RD2*="i THEN SPEAK*<C»2)=CHR*(L

)&W* ELSE SPEAK*(C»2)=CHR*<L)8W*8W2*

390 DISPLAY AT(14y1)X"ENTER PROPER NAME

FOR THIS"?"WORD" XX ACCEPT AT<15y6)BEEP?

NAME* XX IF NAME*="" THEN 390 ELSE SPEAK

(Cyl)=NAME

400 I..-MAX (LEN (SPEAK* (C y1)) yLEN <SPEAK* <C y

2))):: IF I...>254 THEN DISPI...AY AT (14 y1) BEE
PS" TOO LONG TO SAyE !" XX GOSUB 450 XX G
OTO 150

410 DISPLAY AT<14yl)J"ANY MORE <Y/N) ?"

XX DISPLAY AT<15»1>:"* Xt' ACCEPT AT<14»1
8)BEEP yALIDATE("YN")SIZE(1)Xy* XX 1F W*
*•" THEN 41.0

420 OCil XX IF y*=="N" OR C>40 THEN 470

ELSE 150

430 DISPLAY AT(14 y2)X"SOUND OK (Y/N/A) ?

" J X A C C E P T A T (14 y21) y A I... IDA T E ("A N Y")SIZE

<1)Xy* IF V*=d" THEN 430

440 DISPI... A Y AT <14 y2) X" " XX RE TURN
450 FOR DELAY=1 TO 2000 XX NEXT DELAY XX

RETURN

460 REM SAyE SPEECH WORDS % THEIR SOUNDS

470 DISP LAY A T (12 y1) E R A S E A LI... X"E N T E R NAM

E FOR FILE" XX ACCEPT AT(14y 1.9)BEEP SIZE

<1.0) XF11...E NAME * XX IF FILE NAME * =" " T H E N 4

70

4 8 0 DISPI... AY A T <12 y1)E R A S E A I... I... X"S A VING T 0

DISK - PLEASE WAIT"

4 9 0 0 P E N # 1X "D S K1 ♦ " IF11...E N A M E * yS E Q U E N TIA I...

»DISPLAY »UP

500 PRINT #:

510 FOR CT=:

520 PRINT #:l

530 PRINT #:

540 NEXT CT

550 CLOSE #1

560 DISP I... A Y A T <1419) ERAS E AI... I... BE EP X"A I... I...

DONE ! "

570 END

DATE»VARIABLE 254

nc-i

1. TO C-l

I. SSPEAK* (CTyl)

USPEAK*<CTi>2>

words; otherwise it will go to line 150 to get
another word.

Line 430 is the subroutine that asks you if the word
sounds OK. Only the letters "A," "N," and "Y"
will be accepted. If the ENTER key is pressed

without entering a letter, the computer will loop
at this line.

Line 440 erases the message from the screen and
the program returns to the main program.

Line470begins the subroutinethat saves the words

197

Listing 16-8D

198

100 REM LISTING 16-8D

110 REM MAKING WORDS •••• DISK

120 REM BY L«M.SCHREIBER FOR TAB BOOKS
1.30 ON WARNING NEXT

140 OPTION BASE 1 XX DIM SPEAK*<40y2)XX
C=l

150 DISPLAY AT(2y2)ERASE ALL J"ENTER A WO
RD" XX ACCEPT AT(4,4)BEEP:WORD* XX IF WO
RD*="" THEN 1.50

160 CALL SAY(WORD*)

170 00SUB 430 XX IF y* ="N" THEN 150 ELSE
IF y*=-A" THEN 1.60

180 DISPLAY AT(6y2)J"ENTER SECOND WORD"
:: ACCEPT AT<Sv4)BEEPJW0RD2* XX IF W0RD2
*=•• THEN 210

190 CALL SAY<W0RD2*>

200 GOSUB 430 XX IF y$=="N" THEN ISO ELSE
IF y*="A" THEN 1.90

210 DISPLAY AT(2 y2)ERASE ALL XWORD* yW0RD2
*

220 CALL SPGET(W0RD*yW01*>XX IF W0RD2*<>
'" THEN CALL SPGET(W0RD2*,W02*)
230 W=LEN<W01*>:: IF W0RD2*<>"» THEN W2=
LEN(W02*)

240 DISPLAY AT<4,2>:"THE FIRST WORD IS"i
W •••• 3 X"BYTES I... 0 NG" X"USE H0W MANY?"
250 ACCEPT AT(7t13)VALIDATE(DIGIT)XB XX
IF B>W-3 THEN 250

260 W*=SEG*< WO1* y192)*CHR*(B)8SEG*(W01 * y
4yB)

270 CALL SAY(yW*)

280 GOSUB 430 XX IF y*=="N" THEN W*="" XX
GOTO ?50 ELSE IF y*=°A" THEN 270

290 IF W0RD2*="" THEN 350

300 DISPLAY AT<9»2>:"THE SECOND WORD IS"
yW2-3J"BYTES LONG"J"USE HOW MANY?"

310 ACCEPT AT<12»13)VALIDATE<DIGIT>JB2 X
X IF B2>W2-3 THEN 31.0

320 W2*=SEG*(W02*,1,2)&CHR*(B2)XSEG* <W02
*,4,B2>

330 CALL SAY<yW2*)

340 GOSUB 430 XX IF V*="N" THEN W2$=-"" X
X GOTO 300 ELSE IF y*==»A" THEN 330

350 IF W0RD2*™"" THEN CALL SAY <,W*)ELSE

CALI. SAY<,W*y,W2*)

360 GOSUB 430 n IF y*="N" THEN 21.0 ELSE

IF y*="A" THEN 350

370 REM SAyE NAME 8 SOUND IN ARRAY ELEME

NTS

380 IF W 0 R D 2 * =" " T H E N S P E A K * <C, 2) ~ W * E L S

E SPEAK*(Cy 2)~W*«W2*

390 DISPLAY AT< 1.4,1) X"ENTER PROPER NAME

FOR THIS•X"WORD" :X ACCEPT AT(15,6)BEEP X

NAME* XX IF NAME*="" THEN 390 ELSE SPEAK

<C ?1>=NAME

400 L=LEN(NAME*X"/"4SPEAK*(C,2))XX IF L>

192 THEN DISP1...AY AT (14,1) BEEP X"T00 L0NG

TO 5>AyE !" XX GOSUB 450 XX GOTO 150

410 DISPLAY AT<14,1>:'ANY MORE <Y/N) ?"

XX D1SPLAY A T(15,1)X"" XX A CCEPT A T(14,1

8) B E E P y A1... IDA T E ("Y N")SIZE (1) XV * X X IF y *
.... II II

THEN 410

420 C=C+1 XX IF y*="N" 0R C >40 THEN 470

ELSE: 150

430 DISPLAY AT(14,2)X"SOUND OK (Y/N/A) ?
II * 4

* < A C C E P T A T <14 y21) V A1... IDA T E ("A N Y ")SIZE

(1)5 y* :: if y*=•" then 430

440 DISP1...AY AT <14,2) X" " XX RETURN

450 FOR DELAY™! TO 2000 XX NEXT DELAY XX

RET URN

460 REM SAyE SPEECH WORDS & THEIR SOUNDS

470 0 P E N # 1 X"C S1 " yFIXE D 192, 0 U T P U T

480 print #i:c-i

490 FOR CT=1 TO C-l

500

2)

510

PR INT # 1. XSPEAK* <CT ,1)8"/" SSPEAK*(CT,

NEXT CT

520 CLOSE #1

530 DISP1...AY A T (14,9) E R A S E A 1.1... B E E P X"A L1...

DONE ! "

540 END

to the cassette. The cassette file is opened for variable because when you stop entering the
output at the fixed length of 192. words, Cwillcontain one more than the number of

Line 480 tells the cassette the number of words that words that you entered,
will be sent out. One is subtracted from the C Line 490 begins the FOR . . . NEXT loop. All the

199

words and their phoneme sounds will be sent out,
one at a time, to the cassette.

Line 500 sends the word and its phoneme string to
the cassette. The slash mark separates the
phoneme string from the word.

Line 510 continues the loop.
Line 520 closes the file.

Line 530 places the closing message on the screen.

Listing 16-8D should be used if you want to
save the words out to disk. The two programs are
identical until line 470.

Listing 16-8D

Line 470 erases the screen and asks for a name for

the file. If you use a name that is already on the
disk, this file will replace it. The computer will
loop at this line until a name has been entered.
Enter only the name of the file. The computer will
add the DSK1. to the name.

Line 480 erases the screen and prints the message
that the computer is saving the words to the disk.

Line 490 opens the file to the disk.
Line 500 sends the number of words that will be

saved to the disk.

Lines 510-550 send the words in the SPEAK$ array
to the disk. The word and its phoneme are not
concatenated. The file is closed when all the

words have been saved.

Line 560 displays the ending message and the pro
gram ends.

Try to make new words with this program. For
example, enter the word "message" for the first
word and use the first 61 bytes of it. Do not enter a
second word. You have just created the word
"mess." Or, enter the word "else" for the first
word. Use the first 47 bytes. Enter the letter "N"
for the second word and use 58 bytes. This combi
nation makes "Allen." Try your own combinations
ofwords to make new words. Sometimes when you
shorten the number of bytes that the computer will
use, you do not get a word, but a noisy sound.

After you have saved words to the disk or
cassette, you may want to use them in another
program. The following programs can be used to

200

bring in the information from the cassette or disk.
The first program will get the words saved from the
cassette, the second from the disk.

Listing 16-9C and 16-9D

Line 130 eliminates the zero element of the string
array and sets aside the memory for the array.

Line 140 opens the file to read the cassette.
Line 150 brings in the number that tells the com

puter how many words were saved in this file.
Line 160 begins the FOR. . . NEXT loop to read in

the words.

Line 170 uses the LINPUT command to bring in the
word. The word is stored in the temporary string,
TEMP$. The POS command is used to locate the
slash. The position of the slash is stored in PI.

Line 180 places the contents of the string up to, but
not including, the slash in the first element of the
string array. This is the word that was created.
The character immediately following the slash is
the number of characters that make up the
phoneme code for the word. The phoneme code is
removed from the temporary string and placed in
the second part of the array.

Line 190 continues the loop.
Line 200 closes the file.

Lines 210-240 display the words that are in the
array and say each word. If you were using these
words in your own program, you would not use
these lines. Your program would begin here.

The program to bring in the words from the file
on disk is similar, except that the string is stored
directly into the array. Any program that saves
information to the cassette or disk can be brought
back into the computer with routines similar to
these. In Chapter 14, we saved a character set to
the disk or cassette. The character set can be

brought in and used in another program. The infor
mation must be brought in the same way that it was
saved—in a string—then transferred to the string
or memory area where it is to be used. In the
previous program the information in the string was
transferred to a two-dimensional string array. In a
character set program, the information would be
transferred to the character set.

Listing 16-9C

100 REM LISTING 16-9C

110 REM GET SAVED SPEECH •••• CASSE TTE

120 REM BY A.R.SCHREIBER FOR TAB BOOKS

130 OPTION BASE 1 H DIM SPEAK*<40t2)

140 OPEN #1:"CS1"»FIXED 192rINPUT

150 INPUT #1JCT

160 FOR Ol TO CT

170 LINPUT #1iTEMP* it PI ~P0S(TE!MP*y "/"»

1)
180 SPEAK* <C11)=SEG*< TEMP* r1»PI-•1)H I..-A

SC(SEG*(TEMP* vPl + 1r1))ti SPEAK*(0 2)==SEG

< TEMP»PI+2 >!...)

190 NEXT C

200 CLOSE #1

210 FOR Ol TO CT

220 DISPLAY AT<12»1>ERASt: ALL J"THE WORD

IS '

)

230

' S> SPEAK*(Ol) J t CALL £>AY< »SPE:ak*(0 2>

DISPLAY AT(iA»l)J"PRf.'SS 'R' TO REPEA

T" .it ACCEPT AT(16*21) JMil> it IF y*=»R» r

HEN 220

240 NEXT C

Listing 16-9D

100 REM LISTING 16-91)

110 REM GET SAVED SPEECH •- DI SK

120 REM BY A.R.SCHREIBER FOR TAB BOOKS

130 OPTION BASE 1 H DIM i}PEAK*<40» 2)

140 DISPLAY AT<12*1)ERASE ALL :"ENTER NAM

E OF• FILE WANTED" .. ACCEI:'T AT<14»1.9)BEE

p s:[ZE(IO)^FILENAME*

150 OPEN # 11 "D S K1. "*F11... E N A M E* f SEQUI!:ntial

yDIJiP L A Y »U P D A TE r V ARIA B1... E 254

160 input #i:ct

170 FOR Ol TO CT

180 INPUT #1.SPEAK*<01>

190 LINPUT #1JSPEAK*(02>

200 NEXT C

210 CLOSE #1

A..A*.\/ FOR Ol TO CT

230 DISP LAY A T <12»1 >E R A S E ALL J "THE WORD

201

202

IS "ySPEAK*(Cyl>iJ CALL SAY(ySPEAK*<Cy2)
)

240 DISPLAY AT<16y1)i"PRESS 'R' TO REPEA

T" it ACCEPT AT<16»21)JV* it IF V*="R" T
HEN 230

250 NEXT C

Chapter 17

Special Functions

Every memory location in your computer, whether
it is RAM, ROM, or GROM, has its own address.
These locations contain BASIC, the computer's
operating system, and the program that you are
using. If you have the Memory Expansion Unit and
extra memory, you can use special commands in
your Extended BASIC cartridge to look at and
change the contents of RAM memory.

HANDLING SPECIFIC MEMORY LOCATIONS

CALL PEEK

To find out what values the computer has
stored in a particular location, we need to be able to
ask the computer to look for us. We can look by
PEEKing at a location. The format for PEEK is:

CALL PEEK(location, variable, variable, etc.)

The location is the memory that we want to look at.
The first variable will contain the contents of that

memory location. If you want to look at more than

one location, each variable following the first, will
contain the contents of each subsequent memory
location following the one specified. So, if you
wanted to see the contents memory locations 500 to
504, you could enter:

CALL PEEK(500,A1,A2,A3,A4,A5)

The variable Al would contain the contents of

memory location 500. A2 would contain 501, A3
502, A4 503, and so on. The contents of any location
cannot exceed 255. You can PEEK at any location;
however, after location 32767 the computer uses
negative memory locations, so memory location
66530 would be accessed by using a negative six as
the memory location. Subtract the address that you
want to access from 65536 to get the negative ad
dress.

CALL INIT

The INITcommand must be used to change the
contents of any memory location. This command

203

tells the computer that you will be accessing
memory, loading in a machine language subroutine,
or just changing some values in certain memory
locations. You need only use this command once. If
you are planning to change the contents of memory
or load a machine language subroutine, it is good to
use this command near the beginning of the pro
gram. Once the command is used, it remains active
until the Memory Expansion Unit is turned off. The
format is CALL INIT.

CALL LOAD

This command will place a new value into a
memory location. Its format is:

CALL LOAD(address,byte)

The value of byte will be placed in the memory
location specified by address. This command can
also be used to load machine language subroutines
into memory. In the program in Listing 17-1 (flow-
charted in Fig. 17-1) we will use CALL PEEK.
After the program runs, we will use CALL INIT and
CALL LOAD to show you how the computer's
memory can be changed.

Listing 17-1

Line 130 clears the screen.

Line 140 begins the FOR . . . NEXT loop that will
display the contents of the memory locations on
the screen. The loop begins with a -345. We
want to look at memory location 65181. If we
subtract 345 from 65536 we arrive at 65181. We

do not use a STEP -1 because counting from a
negative number whose absolute value is larger to
a negative number whose absolute value is less is
counting in the positive direction.

Line 150 looks at the location pointed to by the
variable ADDRESS. The contents of this location

will be placed in the variable BYTE. BYTE$ will
contain the character string of BYTE.

Line 160 prints the address that the computer is
looking at and the contents of that memory loca
tion.

Line 170 looks to see if a key has been pressed. If a
key has not been pressed the S variable will be

204

zero. We are not interested in what key was
pressed, just if a key was pressed. Pressing a key
will pause the program and hold the information
on the screen.

Line 180 is a delay loop. This temporarily stops the
program from printing the contents of the memory
locations on the screen. After the loop, the com
puter will be directed back to line 170. As long as
a key is pressed, the computer will loop between
these two lines. This gives you a chance to study
or copy the information on the screen.

c Start

Clear the

screen

D

Get contents

of memory
location

Change it
to a character

'Place address.^
contents &

character on

screen

Count to

2000

Fig. 17-1. Flowchart for Listing 17-1 Peeking at a Program.

Listing 17-1

100 REM LST-17-1

1:1.0 REM PEEKING AT PROGRAM
120 REM BY A#R*SCHREIBER FOR TAB BOOKS
130 CALL CLEAR

140 FOR ADDRESS=~345 TO -24

150 CALL PEEK<ADIlRE8S>BYTE>ii BYTE*=CHR*
(BYTE)

160 PRINT ADDRESS+65536rrAB<10> JBYTESTAB
(18)?BYTE*

170 CALL KEY<0>K>S>*: IF S=0 THEN 190
180 FOR DELAYS. TO 2000 JJ NEXT DELAY it
GOTO 170

190 NEXT ADDRESS

200 END

210 REM END OF LISTING

Line 190 continues the loop until all the memory
addresses have been looked at.

Now, in the direct mode, enter

CALL INIT

so that we can use the CALL LOAD command.

Again, from the direct mode, enter:

MESSAGE$=" **PRESTO CHANGO**"

Be sure that there is a space before the first as
terisk. Press the ENTER key. Now in the direct
mode enter:

FOR Z=l TO LEN(MESSAGE$)::
Y=ASC(SEG$(MESSAGE$,Z,1))::CALL
LOAD(-56+Z,Y)::NEXT Z

Press the ENTER key, then, LIST the program.
Line 110 should now read:

110 REM **PRESTO CHANGO**

Youhave just changed the program by loading new
values into the memory locations that held line 110.
By knowing where the computer stores the pro
gram and other information, you can change it

whenever you need to. If you look closely at the
codes that this program printed on the screen, you
will notice that the program is stored in the highest
memory locations available. The highest 25 bytes
of memory are used by the computer. Then the
program is stored. Just before the program are the
programlinenumberswith twonumbers separating
the line numbers. These two numbers are the ad
dress of where that line is stored in memory.

DEF

This command allows you to create your own
functions. You can use it in a program where the
computer will be using a certain formula several
times. You could make this formula a subroutine,
have the computer go to it when it needs to use that
formula and return, or you can make the formula
your own function with its own name. Every time
the computer sees that name, it will use the for
mula. The program in Listing 17-2 (flowcharted in
Fig. 17-2) does just that. The T variable becomes a
formula to come up with a value for a pitch or tone.
When the computer uses T in the SOUND com
mand, it computes its value automatically.

Listing 17-2

Line 130 erases the screen and places the direc-

205

(

/

Start

I Clear screen
/ display ,

message /

)

/
♦

Define function

for tone

1

J

(

^KeyV

i
JYes

Calculate

for value

i

*

/ Make sound >7

. *

Fig. 17-2. Flowchart for Listing 17-2 Keyboard Tones.

Listing 17-2

tions on the screen. Adjust the volume on your
television or monitor to a comfortable level, then

press any key.
Line 140 defines a function. In this program we use

the standard formula for finding the frequency of a
note. Every time the computer finds T in the
program it will use this formula to find out what
the value of T is. It will use this value in that

program line.
Line 150 uses the CALL KEY command to see if a

key has been pressed. If the S variable is zero, a
key has not been pressed and the computer will
loop at this line until a key has been pressed.

Line 160 subtracts 31 from the value of K. By
subtracting 31, we can make a tone from any key
whose value is between 32 and 96. Any value less
than 32 would become less than one. You cannot

raise the value to a negative number and get a
value that the computer can play. Any value
higher than 96 will produce a tone that is too high
for most people to hear.

Line 170 makes the tone based on the value of T.

The computer will use the formula in line 140 to
arrive at the value of T. We use a negative number
for the duration so that the computer will not
pulse if the same key is pressed for an extended
period of time. If a new key is pressed before the
computer has finished playing this tone, it will
make a smooth change to the new tone.

100 REM LISTING 17-2

110 REM KEYBOARD TONES

1.20 REM BY L.M.SCHREIBER FOR TAB BOOK!:>

130 DISPLAY AK.1.1. »8)ERABE ALL t"ADJUST MO

LUME
U

" H ♦ ♦

♦ ♦ DISPLAY AT<13»S> I"PRESS ANY 1<EY

140 DEF T==:l.:l.0*<2"(1/12))"K

150 CALL. KEYCOvK fS>H IF S=0 THEN 150

1.60 K sK- 31 it IF K<1 OR K >6A THEN 150 !

TONE IS MU ST BE HEARABLE

1.70 CALL SOUND <-••1000»T»0> ! PLAY IT

1.80 GOTO 150

206

Line 180 sends the computer back to line 150 for a
new key value.

ELIMINATING THE ENTER KEY

CALL KEY

We have been using the CALL KEY command
throughout this book. Whenever we've wanted to
be able to check the key that has been pressed
without waiting for the ENTER key, we used the
CALL KEY. We also used the CALL KEY command

to see if the fire button on the joystick had been
pressed.

CALL KEY can not only check to see whether
or not any key has been pressed, but can check for
specific keys as well. The various format to check
keys are listed below:

CALLKEY(0,K,S)
CALLKEY(1,K,S)

CALLKEY(2,K,S)

CALLKEY(3,K,S)

CALLKEY(4,K,S)
CALLKEY(5,K,S)

any key
left side of keyboard &
joystick 1

right side of keyboard &
joystick 2

lowercase value regard
less of whether key is
upper or lowercase.

Pascal Codes

BASIC mode

The K variable will hold the ASCII value of the
key that has been pressed. S is the status of the
command. The value of S will be zero if no key has
been pressed. The valuewillbe one ifa new key has
been pressed and negative one if the same key has
been pressed as the last time that the computer
used this command. In the program in Listing 17-3
(flowcharted in Fig. 17-3) the computer will use
CALL KEY to accept entries from the keyboard.
Keep your ALPHA LOCK key up so that you can
enter upper or lowercase keys. You can also press
any two-key combination (CTRL and W, FCTN and
1) and see what codes will be returned. Do not
press FCTN and 4 (clear) or FCTN and 8 (quit).
They will leave the program.

Listing 17-3

Lines 130-140clear the screen and display the mes

sage and the format for the CALL KEY command.
Line 150 begins the FOR . . . NEXT loop that

displays the six different ways that the CALL
KEY command can be used. The CALL KEY

command is used with the UNIT variable set by
the FOR... NEXT loop. The value of the key that
has been pressed is placed in the variable
RTURN. When a key has been pressed, the value
of STATUS will be a one. STATUS will be a zero
when no key is being pressed.

Line 160 checks the value of STATUS when the

UNIT value is zero. Ifno key is being pressed, the
computer goes back to line 150 and waits until a
key has been pressed.

Lines 170-180 print the UNIT value, the value of
the key, and the STATUS on the screen. If the key

Fig. 17-3. Flowchart for Listing 17-3 Keyboard-Kapers.

207

Listing 17-3

100 REM LISTING 17-3

110 R E M K E Y B 0 A R D - K A P E R S

1.20 REM BY A*R*SCHREIBER FOR TAB BOOKS

130 DISPLAY AT(2»6)ERASE ALL?"HOLD DOWN

A KEY" tt DISPLAY AT <312) J"UNTIL CODES S

TOP
4- U

PRINTING" J J DISPLAY AT<A»1>:"FORMAT

♦

140 DISPLAY AT<8»l)J"CALl. KEY(UNITyRETUR

NySTATUS)"

150 F 0 R U NIT=0 T 0 5 it C A I... I... K E Y <U NIT r R T U

RN»STATUS)

1.60 IF UNIT=0 AND STATUS*=0 THEN 150

170 DISPLAY AT(2*UNIT+11. 1>: "CALL KEY("y

UNIT*TAB(14)J"f"

180 DISPLAY AT<2*UNITflls 16):RTURN»TAB<2

l)y 'f "vTAB <25)ySTATUS yTAB(28)9")"

190 NEXT UNIT

200 CALL KEY<0»K»S)J: IF S*-l THEN 200

21.0 GOTO 150

cannot be read for a particular unit value, for
example, the computer is reading the right side of
the keyboard and the key that you are pressing is
on the left side, the value of STATUS will be zero.
In the next line, the STATUS value will be a
one—new key pressed—when, in fact, it is the
same key that you have been pressing. If the
computer uses the value of the key in two con
secutive lines, the STATUS value in the second
line will be negative one.

Line 190 continues the routine until all six varia

tions of this command are displayed.
Line 200 uses the CALL KEY command again. This

time it checks to see if the key is still being
pressed. If it is, the STATUS will be negative
one. The computer will loop at this line until the
key is no longer being pressed.

Line 210 sends the computer back to line 150 to set
another key.

PRINTING IN COLUMNS

We have been using commas and semicolons

208

with spaces to print information in certain patterns
on the screen. The computer can have a pattern
stored in its memory and then use that pattern
within a program whenever it needs to by using the
IMAGE with the PRINT USING or DISPLAY

USING commands.

The IMAGE command tells the computer how
you would like the information printed. It can be
used for numbers, numeric variables, or string
variables. The IMAGE that you want to use must be
in a program line before the line that it will be used
in. Words can be used in the IMAGE statement.

Here are some samples of how to use IMAGE:

100 IMAGE $###.##-prints the dollar sign
and the amount up to three digits preceding
the decimal.

100 IMAGE YOU'RE BALANCE IS $####.
##—prints the words "you're balance is"
and the amount up to four digits preceding the
decimal.

100 IMAGE MEMO TO #####-prints a word

c Start i

Set aside

memory set
error trapping

Create and

store images

Erase screen/
print column y
headings

Fig. 17-4. Flowchart for Listing 17-4 Using.

9
Calculate

miles per
gallon

Place date, miles,
gallons of
gasoline &
mileage on
screen

209

Listing 17-4

100 REM LISTING 17-4

1.10 REM USING

120 REM BY A.R.SCHREIBER FOR TAB BOOKS

130 DIM DATE*(52)»MILES(52)y GASO _INE<52)

• Mil..EAGEC52)

140 ON WARNING NEXT

150 IMAGE ########

1.60 IMAGE ####.=8=

1.70 IMAGE #*,*

1.80 IMAGE *#♦#

1.90 DISPLAY AT (1 y8)ERASE A1...L {"MILEAGE RE

PORT•" it DISPLAY AT (3 »3)J"DATE"y ?AB(1.2)y

"MILES"yTAB<20)y"GAS" n'AB(26) 5 "MPG"

200 DISPLAY AT<4»D:RPT*< v28)

21.0 ROW™5 Jt FOR C=l TO 52

220 DISPLAY AT<23»1)J "ENTER DATE (03/04/

83) t" it ACCEPT AT(24y 5)BEEP SIZE(8) ME

MP* tt IF TEMP*="" THEN 220

230 IF LEN(TEMP*)<>8 THEN 22'() El... 3E DATE*

<C) ='TEMP*

240 DISPLAY AT<23*1)J "ENTER MILE S TRAMEL

ED \:u H ACCEPT AT(24 »5>BEEF' VAL IDATE(NU

mer:[OJ TEMP it IF TEMP<1 OR TEMP >9999«9

THEN 240

250 MILES<C)=TEMP

260 DISPLAY AT(23yl)t "ENTER GASO ..INE USE

D i'' tt ACCEPT AT(24y 5)BEEP UALIDATE(NUM

ERNJ)J TEMP it IF TEMF <.l OR TEMP >99.9 TH

EN 260

270 GASOLINE <.C)=TEMP it MILEAGE(C)=MILES

<C)/GASOLINE<C)

280 DISPLAY AT<R0W»1) :USING 1.50 5DATE*(C)

290

)

300

DISF:"1...AY AT (R0W y11) I USINC5 1.60 iMILES(C

DISF:'1...AY AT (R0W y19) t USINC) 170 JGASOLIN

E <C)

31.0 DISPLAY AT(ROWy25 >:usinc) 180{MILEAGE

(C)

320 R0U=R0U+1 tt IF R 0U=22 THEN ROW-5

330 NEXT C

210

or number up to five characters long.
100 IMAGE INVOICE ####-prints a word or

number up to four characters long.

The computer can refer to the patterns in the above
examples by line number. The program in Listing
17-4 (flowcharted in Fig. 17-4) contains examples of
these commands.

Listing 17-4

Line 130 sets aside memory for the strings. The
computer will allow up to 52 entries.

Line 140 traps errors.
Lines 150-180 set the IMAGEs for the numbers that

will be used in this program.
Line 190 prints the top heading on the screen.

These set the column for the entries.

Line 200 uses the RPT$ to print the line across the
screen.

Line 210 sets the ROW variable for five. This is the

row that the first entry will be printed on. The
FOR . . . NEXT loop begins on this line.

Line 220 places an example for the date on the
lower line and waits for the date to be entered.

The date is placed in TEMP$.
Line 230 checks the length of the string. If it is not 8

characters long, the computer will go back to line
220 for another entry; otherwise it will be placed
in DATE$, where the C variable is pointing.

Line 240 asks for the miles traveled. If the miles

traveled is less than one or greater that 9999.9 the
computer will loop at this line.

Line 250 places the miles traveled in the MILES
array.

Line 260 asks for the number of gallons of gasoline
used. If less than one tenth of a gallon or more than
99.9 gallons were used, the computer loops at this
line.

Line 270 places the gallons used in the GASOLINE
array. The mileage is determined by dividing the
miles driven by the gallons of gasoline used.

Lines 280-310 places the information entered and
the mileage on the screen. Each line uses a dif
ferentIMAGE forthe information that it is placing
on the screen. The line number after USING re
fers to the IMAGE that the computer will use.
The information will be printed in straight col
umns whether each entry in that column is the
same length or not.

Line 320 adds one to the value of ROW so that the
next entry can be printed on the next line. If the
valueof ROW is 22, then the computer will begin
printing at row five again.

Line 330 continues the loop until 52 entries have
been made.

Each IMAGE statement must be in a different
line. There cannot be any other command or state
ment on that line. If you enter another command on
the line before the IMAGE statement, the com
puter will not accept that line and print a syntax
error on the screen. Putting a statement or com
mand on the same line after the IMAGE statement
will cause the computer to print that statement or
command as part of the IMAGE message when the
IMAGE statement is used in the program. The
RESEQUENCE command will renumber the refer
ences to the IMAGE lines in the program so your
program will execute properly.

The computer will use the DISPLAY USING
or PRINT USING without the IMAGE statement if
the image is contained in the program line.

100 DISPLAY AT(2,3):USING ###.#:A

The contents ofAwillbe printed using the imageof
###. #. A line number was not referenced and an
IMAGE statement was not used. The image can
also be placed in a string, as shown below:

100 A$ ="####. ##"
110 PRINT USING A$:B

211

Chapter 18

Advanced Programming Skills

Now that you are confidently programming on your
TI-99/4A computer, you may want to give your
programs a more professional look. Routines may
be taking too long; other programs could use more
color or better graphics. Some of these problems
can be solved by using machine language sub
routines within your BASIC programs, others by
using sprites.

MACHINE/ASSEMBLY LANGUAGE

Before writing a machine language subroutine,
you must have some knowledge of the instructions
the microprocessor follows. This chapter is not
designed to teach you about machine language. It
will only give you a general explanation of how your
TI-99/4A can use a machine language subroutine
within a BASIC program.

In machine code, each instruction is a number.
This number tells the microprocessor within the
computer what it should do. It would be tedious to
write machine language programs using BASIC.
There is a special editor/assembler available for

212

your TI-99/4A designed for writing machine lan
guage programs. You use the editor/assembler to
write the program in assembly language. Once you
have written the program in assembly language, it
will be converted to machine code by the editor/
assembler.

You can save your machine language this pro
gram to disk or cassette. The name by which you
want to access your machine language program
must be specified with a DEF statement in the
assembly language program. From BASIC, you can
load this machine language program with the CALL
LOAD command as follows:

CALL LOAD(DSKl.name")

Once you have loaded the machine language
program into the computer, you can access it from
BASIC with the CALL LINK command as follows:

CALL LINK("subprogram name")

The name can be followed by variable values that

are to be passed to the machine language program
similar to the CALL SUB command. The computer
would search its table to find out where this

machine language program is stored and execute it.
After it is executed, it will return to BASIC. If the
machine language program has not been loaded into
memory, an error message will appear and the
program will crash.

Since the editor/assembler, Memory Expan
sion Unit, and memory is needed to utilize these
commands, it is beyond the scope of this book to
present viable examples of these commands.

USING SPRITES

Sprites add interesting and creative effects to
programs. Sprites are independent of the character
set in as much as they can be placed anywhere on
the screen, can move independently of each other
and characters, and can be one of two sizes. With
your TI-99/4A, you can place up to 28 sprites on
your screen.

A sprite is created with the same command
that a character is created—CALL CHAR. A

character that will be a sprite is created and placed
in the normal character set. This character is then

used as a sprite with the CALL SPRITE command.
The format is as follows:

CALL SPRITE (number, character number, col
or, row, column)

After the row and column, you can also add the
speed at which the sprite will move and the
direction—horizontally, vertically, or a com
bination—to move on the diagonal.

The row can be any number from 1 to 192 and
the column can be any number from 1 to 256. This is
a dot position rather than an actual row and column
number, giving you greater flexibility as to where
you want to place the sprites.

A sprite can be placed over a character that is
on the screen. The ability to place one sprite over
another sprite or character is called a priority.
Characters have a lower priority than sprites, so a
sprite can cover a character. The sprite with the
lowest number will cover the other sprite or portion

of the sprite if it tries to occupy the same area of the
screen.

The program in Listing 18-1 creates a space
ship (Fig. 18-1)and uses it as a sprite. The sprite is
placed on the screen as a character. You can enter
different colors andpositions to place the sprite on
the screen. The upper left corner of the sprite will
be placed in the row and column number that you
enter. The program will allow you to place all 28
sprites.

Listing 18-1

Line 130 protects the program against null entries
for the variables. It also creates a sprite (Fig.
18-2) and places it in an undefined character loca
tion. You can use any defined character as a
sprite. You can place your own characters into the
undefined character space and use them as
sprites. ^

Line 140 erases the entire screen. The ERASE

ALL option and the CALL CLEAR command does
not affect the sprites. Only the characters will be
erased. The format for the CALL SPRITE com

mand is printed on the screen.
Lines 150-160 print the remaining portion of the

CALL SPRITE command on the screen.

Line 170 places the empty command and the mes
sage on the screen. You can enter any values that
you like to create your own sprites.

Line 180 beeps and waits for a sprite number. This
number can be between 1 and 28. The number

sign (#) is already on the screen. You need only

Fig. 18-1. Character for Listing 18-1 Creating Sprites.

213

fStart ^
T

Set warning-
create a

new character

Clear screen i
place
message

/Get a
spritenumbery

No

Get a

character

value

Get a color

for the sprite

No >^Color
^ *C number

?

Fig. 18-2. Flowchart for Listing 18-1 Creating Sprites.

enter the sprite number.
Line 190 waits for the ASCII value of the character

that you want to use as a sprite. If you would like

214

the ship to appear on the screen, enter 128.
Otherwise, enter any value that you would like
between 32 and 143.

Listing 18-1

J. 00 REM LISTING 18-1

.1..1.0 REM CREATING SPRITES

120 REM BY L.M.S ;hreiber foe;' TAB BOOKS

130 ON WARNING N h:xt t t CALL CHAR(128y"00

ofo:2E24242FF")

140 DISPLAY AT<2 ip 1) ERASE ALL.:"FORMAT t"
H DTSPLAY AT(4y d:*call SPRITE<#SPR1TE
NUMBER y "

150 DISPLAY AT(5y 3):•CHAR♦ VALUE ySPRITE-

COLOR 9 •
160
u

DISPLAY AT(6 f6)t"DOT- •ROW yDOT-COLUMN)

170 DISPLAY AT<2;5yl)J"CALL S PRITE<# y
y y y " t t Dli3PI...AY AT< 24 y1) t ") " 9 T A

B(17)y"ENTER VALUES"

180 ACCEPT AT(23 t14)BEEP VAL IDATE(DIGIT)
SIZE:<2)JSN J J IF SN<1 OR SN>28 THEN 180

190 ACCEPT AT<23 r17)BEEP VAL IDATE(DIGIT)

SIZE

0

200

:<3)JCV it IF CV<32 OR CV>143 THEN 19

ACCEPT AT(23 >21)BEEP VAL IDATE(DIGIT)

SIZE:<2)jsc :: if SC<1 OR SO 16 THEN 200

210 ACCEPT AT(23 t24)BEEP VAL IDATE(DIGIT)

SIZE:(3)JDR H ...F DR<1 OR DR> 192 THEN 210

220 ACCEPT AT(24 •1)BEEP UALIDATE(DIGIT)S

IZE (3) :D G i t IF D C < 1 0 R D C > 2 56 THEN 220

230 CALL SPRITE(=1I'SNyCVySClyDRyDC) it DISPL

AY AT (24 y17) J "PRI•SS ENTEF
i II

240 CALL KEY(()yK >S)H IF S=0 THEN 240 EL

SE IF KOI3 THEN 240 else; 140

Line 200 accepts the color number. This will be the
color of your sprite. Unlike characters, you can
only set the foreground color and the sprite. Enter
a number between 1 and 16.

Line 210 waits for the row number. There are 192

rows on the screen for your sprite. Enter a
number between one and 192.

Line 220 places the number you enter in DC. This
variable will set the column for the sprite. The
column can be between one and 256.

Line 230 uses the CALL SPRITE command. The

sprite will be set per your entries. The sprite will
be displayed on the screen at the row and column

that you specified. If you do not see a sprite on the
screen, the color of the sprite may be blending
into it, or the row and/or column number is so low
that the sprite is off the screen. Some televisions
or monitors will display the entire screen, others
will not show the right and left edges or the top
and bottom rows.

Line 240 uses the CALL KEY command. The com

puter will loop at this line until the enter key is
pressed. It will then go back to line 140 for
another entry.

The program will continue until you press the
clear key. You can move any sprite that you have

215

c Start :>
Set warning
create a

new character

fClear screen i
place
message

/Get a
spritenumbery

Fig. 18-3. Flowchart for Listing 18-2 Moving Sprites.

216

Get the

row number

Get a

column

number

Get a row

speed

Get a
column

speed

Place sprite
on screen

Null

Listing 18-2

100 REM LISTING 18-2

110 REM MOVING SPRITES

120 REM BY L.M.SCHREIBER FOR TAB BOOKS
130 ON WARNING NEXT it CALL CHAR(128t"00
0F02E24242FF")

140 DISPLAY AT(2 y1)ER*ASE AI... L t ' F0RMAT t •
t t DISP I... AY A T (4 y1) t "C A I... I... S P RITE (# S PRITE
NUMBER r "

150 DI SPLAY AT (513) J»CHAR * VALUEy SPRITE--
COLOR y•

160 DISPLAY AT (6 y5) i "DOT-ROW yDOT •COLUMNI."
yROW-" i i DISPLAY AT(7»7)J"SPEED,COLUMN-
SPEED3) "

170 DISPLAY AT(23yl)J"CALL SPRITE(# ,
t y »" U DISPLAY AT(24yl)?" C>
y 3)ENTER VALUES"

180 ACCEPT A,T (23 y14)BCLEP VAL IDATE (DIGIT)
SIZE<2):SN it IF SN<1 OR SN>28 THEN 180
190 ACCEPT AT(23y17)BEEP VALIDATE(DIGIT)
SIZE(3)?CC it IF CCX32 OR CO.1.43 THEN 19
0

200 ACCEPT AT(23y21)BEEP VALIDATE(DIGIT)
SIZE(2)JSC it IF SC<1 OR SO16 THEN 200
210 ACCEPT AT<23»24)BEEP VALIDATE(DIGIT)
SIZE(3)4DR it IF DR<1 OR DR>192 THEN 210
220 ACCEPT AT(24y.1.)BEEP VALIDATE(DIGIT)S
IZE(3)JDC H IF DC<1 OR DO-256 THEN 220
230 ACCEPT AT(24y6)BEEP VALIDATE(NUMERIC
)SIZE(4):TEMP* it IF TEMP**"" THEN RVyCV
=0 it GOTO 270

240 RV==VAL(TEMP$) t t IF RV<-128 OR RV>127
THEN 230

25 0 A C C EP T A T (2 4 y11) BE EP V ALIDA TE (N U M E RI
C)SIZE(4)HEMP* it IF TEMP*="" THEN 250

260 CV=VAL<TEMP*)J: IF CV<••••:,.28 OR CV>127
THEN 250

270 C A I... L S P RITE (#S N yC C ySC yDR yDC t R V yC V) i t
DISPLAY AT(24 y17)I"PRESS ENTER"

280 CALL KEY(()yKySKJ IF S*0 THEN 280 EL
SE IF KOI3 THEN 280 ELSE 140

217

placedon the screen by setting the row andcolumn
numbers to a new position. You can change the
sprite by using another character number.

The sprites that you entered, did not move on
the screen. In order to get movement, you need to
enter the velocity or speed of the sprite. The
number can be negative or positive depending on
which direction you want the sprite to move in.

LEFT -128 to -1

RIGHT 1 to 127

UP -128 to -1

DOWN 1 to 127

The closer the number is to zero, the slower
the sprite movement. A zero for both directions
keeps the sprite in one position on the screen. A
zero for one direction moves the sprite in a straight
line in the other direction; for instance, a zero for
horizontal moves the sprite vertically. A number
for both directions moves the sprite diagonally. The
program in Listing 18-2 (flowcharted in Fig. 18-3)
allows you to add the horizontal and vertical speed
to the sprites.

Listing 18-2

Lines 130-220 are the same as in the previous
programs.

Line 230 validates the speed for negative or posi
tive numbers. The speed of the sprite can be
negative or positive. It is stored in a string so that
the string can be tested for a value or a null string.
The speed is optional in the CALL SPRITE com
mand. You do not have to enter a value for it. If
you just press the ENTER key, the computer will
place the sprite on the screen and it will not move.

The RV and CV variables will be set to zero.
Line 240 places the value of the string in the RV

variable. If the value entered is not between -128
and 127, the computer will go back to line 230 for
another value.

Line 250 accepts a value for the column speed. This
time if no value is entered, the computer will
remain at this line until a value is entered.

Line 260 places the value entered into the CVvari
able. The computer checks to see if the number

218

entered is valid. If it isn't the computer will go
back to line 250 for another number.

Line 270 places the sprite on the screen. If the
RV and CV variables are set, the sprite will move
on the screen. If they have not been set, the sprite
will remain in one place on the screen.

Line 280 waits for ENTER to be pressed. When it
is, the computer goes back to line 140 for another
sprite.

CALL MOTION

There may be times where you do not want to
set a sprite into motion when you place it on the
screen. Youwant the player or program to control
when the sprite shouldbe moved. This is when the
call motion command can be used. Load in the cake
program from Chapter 16. We will add sprites to
this program. (See Listing18-3.)While the candles
are lit, the balloons remain still. After the candles
go out, the balloons start to move on the screen.

Listing 18-3 (flowcharted in Fig. 18-4)

Line 212 places three new characters in the
character set beginning with character 128.
These three characters are the balloons. (See
Fig. 18-5)

Line 214 sets the variable SP to the first balloon
character number. The FOR.. .NEXT loop places
a balloon in a sprite. The color along with the row
and column that the sprite will be displayed at are
chosen randomly. When SP reaches 131, it is
reset to 128.

Line 216 continues the loop.
Line 240 blows the balloons up on the screen. When

the music is almost done, the balloons change size
with the MAGNIFY command. The two in pa
rentheses makes the balloons twice the size they
would have been in the normal mode. The FOR
. . . NEXT loop uses the CALL MOTION com
mandto get the sprites movingon the screen. The
computer chooses a random number for the di
rection and speed of each sprite. By multiplying
the number chosen by a -1, the computer can only
make the balloons go up on the screen. Ten is

Create new

characters

Change screen
color &

character colors

Create sprites

Place

sprites on
screen

5

=£
Get 2 notes

and duration

Fig. 18-4. Flowchart for Listing 18-3 Cake & Balloons.

subtracted from the column value. If the new

value is negative, the balloon will float to the left.
Ifthevalue is positive, the balloon willfloat right.

Line245keeps the computerina loopuntilthe clear
key is pressed.

You may notice that sometimes part of a bal
loon disappears from the screen. The TI-99/4A can
only have four sprites in one row. When more than
four sprites are in the same row, only the first four
will be visible on the screen.

CALL LOCATE

This command will move the sprite on the
screen. It canmoveanysprite to anylocation. In the
next program we will move an arrow across the

bottom ofthescreen. By pressingthe Dor Skeythe
arrow moves one column at a time to the right or
left. But, ifyoupress the F or Akey, the arrow will
movemuchfaster because it is actuallymovingfive
columns to the right or left.

Listing 18-4

Line 130 clears the screen, creates the new
characters and sets the magnification for the
sprite at two.

Line 140 gets COL to 125. This is the column that
the sprite will be printed at. The CALL SPRITE
commandis used to place the sprite on the screen.

Line 150checks to see if a key has been pressed.
The computer will loop at this line until a key is
pressed. The first value of the key command is
one. Only the keys onthe leftside ofthe keyboard
will change the status value.

Line 160 checks the value of K for a two. If the S has

Listing 18-3

100 REM LISTINt3 18-3

110 REM CAKE % BALLOONS

120 REM BY L*M •schre: :ber FOR TAB BOOKS

130 RANDOMIZE It CALL.. CLEAR iIt FOR 1=99

TO 109 JIt READ C$ a CALI. . CHAR(I »C*>:i N

EXT 1

140 EOR 1=112 TO 116 tt READ C$ ti CALL

219

220

CHARCIyC*)J I NEXT I

150 FOR I ==120 TO 121 it READ C*

char<i>c*>:: NEXT I

160 FOR 1 = 1 TO 9 J J READ C»C* it CALI... CH

ar<c»c*>:j next :i:

170 C A I... I... C 0 L 0 R (9 y12»10 »10 r 9 r 10 y 11 y3 »1) J J

CALI... SCREEN(12)

180 DI SPLAY AT(10 y12) J "deccfsiB H DI SF:'L A

Y AT<ll»12):,hiiiiJ" J J DISPLAY AT(12»12

) i " 111111•

190 DISP I... AY A T (13 y 11) t "p k 1111 it. t" it DISP

LAY AT(14y11)i"orrrrrrs"

200 DISPI...AY AT <9»14) : "xx"

210 DISPLAY AT(A»11)J"H A P P Y" it DISP

LAY AT(17»8)J'B I R T H DAY"

212 C AI... I... C H A R (128 y " 183 C 7 E 7 E 3 C180 0 0 0183 C 3

C 7 E 7 E 3 C 3 C18187 E F FrF Fr 7 E 3 C 3 C18 ")

214 SP=128 it FOR X=l TO 28 it CALL SPRI

T E< # X ySPrRND * 6+2»RND*3 0+150y RND*200+10):

t S P=SP +1 t t IF S F:' = 131 T H E N S P=128

216 NEXT X

220 FOR 1=1 TO 26 it READ D»N»N1 H CALL

SOUND(D tN y0tNl10)tt NEXT I

2 3 0 DISP I... A Y A T <9 y 14) t "«y"

240 CALL MA6NIFY<2)J: FOR X=l TO 28 it C

A I... I... M 0 T10N (# X yR N D * 10* -1 -11RN D * 2 0 -10) t i N

EXT X

245 GOTO 245

250 D ATA FFy FFFFFCF0C 0 8»FF8>FF01tFFFF3F0

F0301

260 DATA 40201Fy OOOOFF y0204FC y0000000000

80C0E y00 y0000000000010307

270 DATA 00000003070F0F07r0301»FFFFFFtCO

8y OOOOOOCOEOFOFOE»0010029012929292 y00000

01012929292

280 DATA 65y7E66667E6666F7y66yFC66667C66

66FC y68 yFC6666666666FC y72 yF766667E6666F7

290 DATA 73 y3C18181818183C1801FC66667C60

60F y82 rFC66667C666677 y84 y7E55551818183C

300 DATA 89yEF6666667E067E

310 DATA 250,262 y220 y250 y2621220 t500 y294

y220 y500 y262 y220 y500,349 y262 y750 r330 y262

320 DATA 250 y262 y196 y2501262 y196 t500 y294

9194v 500 f262,19A >500 *392* 2629750 y349 f262
330 DATA 2509262922092509262?220*500?523

9349 9500 *440 9349 *250 9349,262 *250 9349 *262

9500 ?330 f262 9750 y294 9294

340 DATA 2509466 *349 *2509466y3499500y440

y349 y500 y349 92629500 y392 92629750 9349 y262

been pressed, one will be subtracted from the
value of COL.

Line 170 checks for the D key. If it has been
pressed, one will be added to COL so that the
arrow can be moved to the right.

Line 180 checks for the A key. This key will make
the arrow move to the left faster by subtracting
five from the variable COL.

Line 190 will add five to the value of COL if the F

key is pressed.
Lines 200-210 check to see if the arrow will be off

the screen. If it will, the variable will be reset for
the edge of the screen.

Line 220 uses the CALL LOCATE command to

place the sprite on the screen. Each sprite can
only occupy one position on the screen. When we
place the arrow in a new position, the computer
erases the arrow before it places it in the new
position. The movement is much smoother than
when we moved characters by erasing one, then
reprinting it.

Line 230 sends the computer back to line 150 for
another key.

CALL MAGNIFY

In the Cake and Balloons program, we used the
CALL MAGNIFY command to make the balloons

larger on the screen. This command makes the
sprite four times as large as the normal character.
The four different CALL MAGNIFY options listed
below:

CALL MAGNIFY(l)
CALL MAGNIFY(2)
CALL MAGNIFY(3)
CALL MAGNIFY(4)

normal size

four times normal size

normal size 4 x4 sprite
four times 4x4 sprite

Since we already used the CALL MAG
NIFY®, the program in Listing 18-5A will dem
onstrate CALL MAGNIFY(4). With the CALL
MAGNIFY(3) or CALL MAGNIFY(4), the com
puter takes four sequential characters and places
them on the screen in a square. If the MAGNIFY(3)
is used, the characters will be the normal size, but
because the square is 2x2, the character could be
redefined and four times as large as a normal
character. If the MAGNIFY(4) is used, the charac-

8 4 2 1 8 4 2 1 8 4 2 18 4 2 1 8 4 2 18 4 2 1

18

3C

7E

7E

3C

18

00

00

18

3C

3C

7E

7E

3C

3C

18

18

7E

FF

FF

7E

3C

3C

18

#128 #129 #130

Fig. 18-5. Characters for Listing 18-3 Cake & Balloons.

221

Listing 18-4

100 REM LIS3TING 18- 4

110 REM MOMINO THE ARROW

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

130 CALL CI...EAR X t CALL CHARCl 28 y" 1028545

4ioio.i.o:i.ou:>tt CALL MAGNIFY<2)

140 C0L=12f:; I % CALL SPRITE<#1 »128 »5»150»

COL)

150 CALL KEY<1»K»S> %t IF S=0 THEN 150

160 IF K<=2 THEN COI... ~coi...-:i.

170 IF K=3 THEN COI... =C0L+1

.1.80 IF K=l THEN COL=C0L-5

190 IF K-ll-> THEN COL.=COL4-5

200 IF COL-:!8 THEN COI...=8

210 IF COI..::=•244 THEN C0L=244

220 CALL LOCATE<#1» .1.50?COL)

230 GOTO IfiO

LISTING 18-5A

100 REM LISTING 18-5A

110 REM THE BUCKS

120 REM BY L.M.SCHREIBER FOR TAB BOOKS

.1.30 CALL. CLEAR H M=3

140 CALL CHAR<128>"040F1F'37FF 3F4F06060F1

F3F:?F .1 F 0 F 0 7 0 0 0 0 8 0 C 0 C 0 8 F1CI3870E0FCFFFEFCF

8F0'')

150 CALL SPRITE<#1»128»5» 100» 120)

160 DISP1...AY AT <10 98) i "MAGNIFY AT'JM it C

ALL MAGNIFY(M)

.1.70 CALL key<o»k»s)j: if S=0 THEN 170

180 M=7- M !ALTERNATE BETWEEN 3 8 4

190 FOR. DELAY=1 TO 50 H NEXT BELAY

200 GOTO 160

ter will be four times as large as the normal charac
ter and be in a 2x2. The color of the four sprites
used together is the same. Also, if you magnifyone
sprite, you magnify all of them. You cannot have
small and large on the screen at the same time.

Listing 18-5A

Line 130 clears the screen and sets the variable M

222

to three. This variable will specify which magnifi
cation the computer should use.

Line 140 creates four new characters.The new

character will begin with ASCII 128.
Line 150uses the CALLSPRITE commandto place

the duck (Fig. 18-6) on the screen.
Line 160 places the message on the screen that tells

the user which magnification the computer has

#128

\ 8421842184218421

#130

/
06

OF

1F

37

00

00

80

CO

COFF ^^^^^^^^^^^H
3F

4F

06

06

OF

1F

3F

3F

1F

OF

07

I^^^HSF
1C

38

70

EO

FC

^^^^^^^^^^^^^^^^•H FF
FE

FC

F8

FO

f
#129

\
#131

Fig. 18-6. Character for Listing 18-5A The Ducks.

used for the sprite.
Line 170uses the CALL KEY command to wait for a

key to be pressed. The computer will loop at this
line until a key has been pressed to abort the
program.

Line 180 subtracts the value of M from 7. This will

alternate the value of M between 4 and 3.

Line 190 is a delay loop. Without it, the computer
would shift the sprite between the three and four
too fast.

Line 200 sends the computer back to line 160 for
another key.

Even though you can only have four sprites on
the screen at one time, if you use the 2 x2 character
combination for sprites, each character that makes
up the sprite is not counted separately. The two
characters that are in the same row for the sprite
are counted as one sprite (Fig. 18-7). This is handy
if you want to display words in large letters and the

word consists of five to eight letters. In the pro
gram in Listing 18-5B, we use sprites to print large
colorful letters on the screen.

Character Character

#112 #114

Q U

Character Character

#113 #115

(blank) (blank)

Fig.18-7. Arrangement of Sprites for Magnify (3) and Magnify
(4).

223

Listing 18-5B

100 REM

110 REM

120 REM

130 CALL

ERS"

140 C0DE=112 it FOR Ol TO 8 it CALL

RPAT(ASC <SEG*(MESSAGE*y C y1)) yTEMP*)J

LL CHAR<CODE»TEMP*)t: C0DE=C0DE+1

150 CALL CHAR<CODE»"00')JJ C0DE=C0DE+1 i
i NEXT C

160 CALL CHAR<128y"060FlF37FF3F4F06060Fl

F3F3F1F0F07000080C0C08F1C3870E0FCFFFEFCF
8F0")

170 CALL SPRITE<#lyl28y5yl00y50y#2yl28y3

yl00yl00y#3yl28y7yl00yl50y#4yl28y2y!00y2

00)

180 CALL SPRITE(#5 y112 y5 y132 y104 y#6,116r

3 y132 y120 y#7 y120y 7 r132 y136 y#8112412»1321

152)

190 DISPLAY AT(10y8)i"MAGNIFY AT'yM H I

F M=4 THEN CALL LOCATE<#5y148y82y#6y148y

114 y#7 y148 y146 y#8 y148 y178)

200 IF M=3 THEN CALL LOCATE(#5y132y104y#

6 y132 y120 y#7 y132 y136 v#8 1132 y152)

210 CALL MAGNIFY(M)

CALL KEY(0 yK yS)? ? IF 8=0 THEN 220

M=7-M ! ALTERNATE BETWEEN 3 % 4

FOR DELAY=1 TO 50 J J NEXT DELAY
GOTO 190

LISTING 18-

THE DUCKS

BY L.M.SCHREIBER

. CLEAR J{ M=3 ii

SB

220

230

240

250

Listing 18-5B

Line 130 clears the screen, sets the variable M to
three for the magnificationofthe sprite and places
the word "quackers" in the string. The letters in
this word will be used as sprites.

Line 140 sets the variable CODE to 112. This is the
first character that will be created. The FOR
. . . NEXT loop places the character pattern for
each letter of the message into TEMP$. This
character pattern is then transferred to the new
location pointed to by CODE. The variable CODE
is incremented by one for the next location.

Line 150 places a set of zeroes in the next location

224

FOR TAB BOOKS

MESSAGE*** "QUACK

CHA

CA

and adds one to the value of CODE. The loop
continues until all the letters from the message
have been moved to the new location. Every
other character will be a blank. When the word
will be formed using the 2x2 sprite, we do not
want any letters or characters under the words,
so these characters must be blanks.

Line 160 places the four characters for the duck in
the correct character locations.

Line 170sets the first four sprites to character 128.
Each duck will be a different color and in a dif
ferent column, but they will all be in the same
row.

Listing 18-6

100 REM LISTINO 18-6

110 REM FLIGHT

120 REM BY L..M, SCHREIBER FOR TAB BOOKS

130 CALL CHARC128y"000042A518"yi:19t"0081

4224.1.8 "y 130y"000000245A81 •>

140 CALL CLEAR it CALL SCREEN<A)

150 CALl... SPRITE <#lyl28yl6 »32*192 r0»-3)

160 FOR M-0 TO 2 :j call PATTERN<#ly1281

M)JS FOR DELAY= 1 TO 50 {{ NEXT DELAY It

NEXT M

170 GOTO 160

Line 180places the new characters for the letters in
sprites five through eight. Each of these sprites
will contain two letters and two blank characters.

Line 190 prints the message that tells the magnifi
cation of the sprites on the screen.The CALL
LOCATE command is used to position the sprites
that form the word on the screen.

Line 200 places the sprites at a different position if
the magnification is a three.

Line 210 sets the magnification of the sprites.
Line 220 waits for a key to be pressed.
Line 230 subtracts the value of M from 7 to alter

nate the values between 3 and 4.

Line 240 delays the computer.
Line 250 sends the computer back to line 190 to

wait for another key to be pressed.

CALL PATTERN

The CALL PATTERN command allows you to
changeto pattern of the character that the computer
is using without affecting its color, speed, or loca
tion. The program in Listing 18-6 uses three dif
ferent sprites for the bird (Fig. 18-8). As the bird
flies across the screen, the computer changes the
sprite and gives the illusion of actual flight.

Listing 18-6

Line 130 creates three new characters. These

characters make up the bird's positions while it is
flying.

Line 140 clears the screen and sets its color to blue.

Line 150 uses the character from location 128 as the

8 4 2 18 4 2 1 8 4 2 1 8 4 2 1

00

8 4 2 18 4 2 1

00 00

00

00

24

5A

00 • • 81

42 • • 42

24

18

00

00

00

mrm •I • " • I
18

00

00

00

• m m
• • 81

00

00

#128 #129 #130

Fig. 18-8. Characters for Listing 18-6 Flight.

225

sprite. The sprite will move across the screen
from right to left.

Line 160 is a FOR . . . NEXT loop. The CALL
PATTERN command changes the pattern of the
sprite from the character in location 128 to the
character in location 129 and, finally, to the
character in location 130. The delay loop slows
the computer down so that the bird isn't flapping
its wings too hard.

Line 170 sends the computer back to line 160. The
speed of the bird will always remain constant as
the computer changes the character that it places
in that sprite.

CALL POSITION

This command returns the row and column of
the sprite. Youspecify which sprite and the row and
column will be placed in the variables.

CALL POSITION #1,ROW, COL

We are looking for the position of sprite
number one. ROW will contain the row number of

the sprite and COL will contain the column number.

CALL COINC

In many games, especially the arcade games,
scores are based on the number of times one

character, missile, or ball hits another or reaches
its goal. You can constantly check the screen to see
if the two characters or sprites are trying to occupy
the same place on the screen, or you can use CALL
COINCcommand. This command will place a nega
tive one in the variable if the two sprites, or a sprite
and character, are over each other. There are three
different ways to use this command, as shown be
low:

CALL COINC(sprite #, sprite#, distance, vari
able)

CALLCOINC(sprite#, row, column, distance, var
iable)

CALL COINC(ALL, variable)

In the first example, the two sprites that we
are concerned with are identified by number. The

226

distance in the number of minimum pixels that we
will allow between the two sprites. The computer
compares the upper left corners of the sprites to
calculate the distance between them. The variable

will be negative one if the two sprites are on top
each other. The variable will be zero if the sprites
are far enough apart. The second example com
pares the sprite to a fixed area on the screen. A
hockey game might use this command to see if the
puck hit the net or not. The third example compares
all the sprites to each other and places a negative
one in the variable if any two sprites occupy the
same pixels on the screen.

CALL DELSPRITE

This command removes a sprite from the
screen. The sprite must be recreated if you want to
use it again.

CALL DELSPRITE(sprite #)
CALL DELSPRITE(ALL)

Youcan delete any or all sprites with this command.
You can also specify more than one sprite in the
program line by placing a comma between sprite
numbers, as below:

CALL DELSPRITE(#1, #5)

CALL DISTANCE

The CALL DISTANCE command determines

the distance between two sprites, or a sprite and a
location on the screen. The distance is placed in a
variable. This value is squared. You can use the
squared value or the square root of the value de
pending on your program applications.

The program in Listing 18-7 illustrates several
of the sprite commands in a simple arcade game.
(See the flowchart in Fig. 18-9.)

Listing 18-7

Line 130 creates the characters that will be used for

the ducks. These are the same characters that we

used in the other duck programs.
Line 140 creates the characters that will be used for

the arrow.

Listing 18-7

100 REM LISTING 18-7

110 REM SHOOTING GALLERY

120 REM BY L*M*SCHREIBER FOR TAB BOOKS

130 CALL CHAR(132 y u060F1F37FF3F4F0A040F.1.

F 3 F 3 F1F0 F 0 7 0 0 0 0 8 0 C 0 C 0 8 F1C3 8 7 0 E 0 F C F F F E F C F

8F0")

140 C A I... I... C H A R <136 y "010719010101010101010

1010101030580E0988080808080808080S08080C

OAO")

150 C AI... I... C I... E A R XX C A I... L. S C R E E N (11) X X C A I... I...

MAGNIFY(3)X X D=4 XX SC0RE=100

160 C A I... I... S P RI fE (#2 y132 y5 y32 y73 y#3 y132 y3 y

32»137**4

170 DISPLAY

180 COL=128

yCOL)

190 FOR SP=2 TO

10)J X NEXT SP

200 CALL KEY <1y K yS)X X IF S=0

210 IF K==2 THEN C0L=C0L-4

220 IF K=3 THEN C01...==COL.+4

230 IF C0I..X8 THEN COL=8 ELSE

THEN C0L==236

2 40 C A I... I... I... 0 C A T E (# 1 117 6 r C 01...)

IF K<>5 THEN 200

?. y7 y32 y201 y#5 y132 y2 y32 y256)

AT (2 y17) X "SCORE X " i> SCORE

XX 0 A I... I... S P RITE (# 1 y 13 6 * 13 y 176

250

260

270

280

CALL. MOTION (#1 r-

FOR DUCK=2 TO 5

C AI... I... C 01NC (#1 r * D U C K»101HIT) X X

THEN 330

290 NEXT DUCK

CALL MOTION (#SPy<)i

THEN 200

IF CO I... > 236

•0)

IF HIT

300 CALL.

ND <-800 y

310 CALL

DISTANCE<#1»6»C0L»F> CAI... SOU

10 t 30 y110 y30 yF/256+ S00 r .1.5 r -A r 0)

POSITION(#1yR *C)XX IF R<A OR R>

T H E N C A L I... D EI... S P RITE (#1) X X S C 0 R E = S C 0 R192

E--5

320

330

GOTO 270

C A I... L. C 01... 0 R (#D U C K y 16) X X C A I... L D EI... S P RIT

FOR C=l TO 3 :: CALl... SOUND(300 yl

5 68r5-Cy156815-C1156815-C)X X NEXT C

340 FOR DELAY=1 TO 50 X X NEXT DEI...AY X X C

ALL DELSPRITE <#DUCK)

3 5 0 S C 0 R E=SC 0 R E+10 XX DISPI... A Y A T (2 * 2 3) :S

D=D-1 XX IF D THEN 180

227

360 DISPLAY AT<12*5)X"PLAY AGAIN (Y/N) ?
II * ♦ ACCEPT AT<12»24)BEEP VALIDATE<"YN')

SIZE-id) JA$ XX IF A$=="" THEN 360

370 IF A$=" Y" THEN 150

380 CALL CI... EAR

Line 150 clears the screen, sets the screen color
and sets the sprite mode to the MAGNIFY(3).
This is the four-character sprite in the normal
mode. The D variable will keep track of how many
ducks are on the screen and the score begins with
100 points.

Line 160 places the duck characters into sprite
numbers two through five. Each duck will be a
different color, and be in a different column. They
will all be in the same row on the screen.

Line 170 places the score on the screen.
Line 180 sets the variable COL to 128. This is the

column that the arrow will be printed at. Sprite
number one will be the arrow.

Line 190 uses a FOR . . . NEXT loop to make the
other sprites move. The four duck sprites will
move across the screen horizontally at the same
speed.

Line 200 checks to see if a key has been pressed.
The computer will only consider the keys on the
left side of the keyboard. The computer will loop
at this line until a key is pressed.

Line 210 compares the value of K with two. If the S
key has been pressed, the COL variable will have
four subtracted from it.

Line 220 checks to see if the D key has been
pressed. When this key is pressed, four is added
to the value of COL. This moves the arrow to the

left or right on the screen.
Line 230 checks the value of COL to make sure that

it will not be printed off the screen. If the value of
COL is too large or too small, it will be reset to
the screen edge position.

Line 240 uses the CALL LOCATE command to

place the arrow on the screen. The arrow will be
erased from its old position and placed in its new
position.

228

Line 250 checks to see if the E key was pressed.
This key is the trigger key. It releases the arrow
and allows it to move up the screen at the row of
ducks. If the E key has not been pressed, the
computer will go back to line 200 and wait for
another key to be pressed.

Line 260 sets the first sprite in motion. The arrow
will travel up the screen in a straight line slightly
faster than the ducks are moving across the
screen.

Line 270 begins the FOR . . . NEXT loop that
checks to see if a duck has been hit. The loop
begins with 2 and ends with 5 because these are
the sprite numbers of the ducks.

Line 280 uses the CALL COINC command to see if

the arrow is hitting the duck specified by the
variable DUCK. The 10 is the maximum distance

that the arrow can be from the duck to consider it a

hit. If the arrow has hit the duck, the variable HIT
will be set to negative one. If it is negative one,
the computer will go on to line 330 to remove the
duck from the screen.

Line 290 continues the loop until all four ducks are
checked for a hit.

Line 300 uses the CALL DISTANCE command to

see how far the arrow is from the top of the
screen. The distance is stored in variable F. This

value is used in the CALL SOUND command to

make a sound based on the distance of the arrow

from the top of the screen.
Line 310 uses the CALL POSITION command to

see if the arrow sprite has reached the top of the
screen. If it has, the CALL DELSPRITE is used
to remove the arrow from the screen. The player
missed the duck. The score is decreased by five
and the computer goes to line 170 to update the
score on the screen. The player can try again.

f Start ^
L

No

Create

characters

for sprites

' Clear screen
set screen

color and

sprite size

Placesprites t
and score

on screen

Make

ducksprites
move j

Key
pressed

rYes

Add 4

to column

Yes.

Yesy

Is it D

V
I

Subtract 4

from column
Is its

^ T

Adjust column

f

Yes Off

screen

Move arrow

on screen >

Fig. 18-9. Flowchart for Listing 18-7 Shooting Gallery.

Yes

Erase arrow k
decrease

score reset

arrow

Change duck color,
make sound, erase;

duck & arrow

update score

Yes

229

Line 320 sends the computer back to line 270 where
it will check once again for a hit on the ducks. The
computer will continue to loop at these lines until
a duck has been hit or the arrow travels off the top
of the screen.

Line 330 begins the routine for the hit duck. First,
the color of the duck is changed with the CALL
COLOR command. Any one sprite color can be
changed with this command. Next, the arrow
sprite is removed from the screen with the CALL
DELSPRITE command. The FOR... NEXT loop
makes a bell sound indicating that a duck has been
hit.

Line 340 is a delay loop to slow down the program.

230

Then the duck is removed from the screen.

Line 350 adds ten points to the score and updates
the score on the screen. One duck is subtracted

from the D variable. If there are ducks on the

screen, the computer will go back to line 180 for
another turn.

Line 360 asks if you would like to play again. If you
do not enter any letter, the computer will loop
until you do.

Line 370 sends you to line 150 for a new game if you
enter a "Y."

Line 380 clears the screen. The program ends be
cause you entered an "N."

Chapter 19

Using The Disk

Sooner or later you'll find the cassette is too slow
for you, or your programs need the random-access
capabilities of the disk. This chapter will give you
an overview of the commands that are available

with the disk drive. When adding a disk drive to
your TI-99/4A, you should also add the Memory
Expansion Unit. Your disk drive, extra memory,
and other accessories can be added through this
unit.

In addition to saving programs to and loading
programs from the disk, you can access the disk
from a BASIC program.

ACCESSING THE DISK

OPEN/CLOSE

The OPEN command must be used before you
can access the disk. It opens a file through which
you can input, output, update, or append the files on
the disk. We used the OPEN command in Chapter
14 when we saved the new character set to the disk.

The format for this command is:

OPEN #file:device{options}

The file number must be a number between 1

and 255. File zero is used by the keyboard and
should not be used for the disk. The device is the

disk or cassette. To indicate the disk, use DSK1,
followed by the file name. The options should be
specified in this order:

FILE-ORGANIZATION-The files can be

stored on the disk as random files or sequential
files. A random file means the records or informa

tion in that file can be read or written in any order.
In a sequential file the records or information must
be accessed in order beginning with the first rec
ord. If the entire file will be loaded from the disk at

one time and used within the program, the sequen
tial files should be used. If you will be using the
information from the disk while it is on the disk, and
you will be accessing different information from
different areas of the file, then random files should
be specified. The default for the file organization is
sequential.

231

FILE-TYPE—is either display or internal.
When you specify display, the information is stored
in ASCII code. The internal type is binary code. If
you store your records in binary, they will take up
less room on the disk and be saved and/or loaded

more quickly. The default is display.

OPEN-MODE—is the option that tells the
computer whether it is reading or writing to the
disk. You can specify update, input, output, or ap
pend. With update, you can read and write to the
disk. Input will only read from a disk and output
limits you to writing to the disk. The append will
only add one file. The default is update.

RECORD-TYPE—tells the computer wheth
er the records that will be storing or retrieving from
the disk are all the same length or different lengths.
Specify that they are variable if all the records may
not be the same length. Specify fixed if they will all
be the same length. If you are using the relative
record-type, you must use the fixed record type.
You can also specify how long the records will be for
either the fixed or variable record-types.

Once you have stored or retrieved the infor
mation, you will use the CLOSE command to close
the file. The file that will be closed is the same file

number as the one that you were using: CLOSE #1.
Once you close a file, the computer cannot access it
without another OPEN command. It is good pro
gramming practice to close files once you have used
them to prevent accidental damage, (changes in or
erasure of information) to open the file.

STORING TO AND RETRIEVING FROM DISK

PRINT

Just as the PRINT command places informa
tion on the screen, you can use it with the files to
print information to the disk. The command must be
followed by the file number. This file has already
been opened with the open command. If the file is
relative, you can also specify the record number
that you want the information placed in. Use print in
the format below:

PRINT #file{,REC number}: information

232

INPUT

Once you have the information on the disk, you
will want to be able to bring it back into the com
puter. The INPUT command followed by the file
number will allow you to read the information from
the disk.

INPUT #file{,REC number}: variable

The file must be opened and the same file
number used. If the file is relative, and you want to
read the information from a specific record, you can
specify which record number you want to read. The
variables, string or numeric, follow the colon. They
will contain the information that is read from the

disk.

LINPUT

This command is similar to the INPUT com

mand, but it can be much quicker when working
with large files. Instead of bringing in just one piece
of information at a time, the LINPUT command
brings in the entire record and stores it in a string.
Then, your program can use the information in the
string. If the file is relative, you can specify which
record you want the computer to read.

LINPUT #file{,REC number}: string variable

REC

This command will tell you the number of the
next record that will be read or written. It is useful

if the program that you are writing needs to know
what record number is next. The format is

REC(file-number). The file number is the file that
is opened. Youdo not need the number sign before
the number.

EOF

The letters EOF mean end-of-file. This com

mand is very useful if you are reading a file and you
do not know how many records have been stored.
With an IF.. . THEN statement you can direct the
computer to read another record or close the file.

100 IF EOF(l)= THEN 200 ELSE 80

This program statement tells the computer
that if the end-of-file value for file one is a one, then
go to line 200. If it is not, go to line 80 to read the
next record. The EOF value will be a one; if you are
at the last record of the file. It will be zero if there

are more records for this file. It will be a negative
one if there is no more room on the disk. The

number in the parentheses is the file number that
has been opened.

MERGING DISK FILES

MERGE

This command has been used in previous chap
ters. It is a very easy to combine frequently used
program routines without having to retype the en
tire routine. The MERGE command will bring in a
program from disk and add it to the program in the
computer. If any line numbers in the program on
disk are the same as the line numbers of the pro
gram in the computer, the lines from the program
on disk will replace the lines in the computer.

All programs or routines cannot be merged
with another. In order for the merge to work, the
program or routine must be saved to the disk with
the merge option below:

SAVE DSKl.name,MERGE

To add the program to the program in the computer
type:

MERGE DSKl.name

Now you can store your favorite routines on
disk and bring them in when you write your next
program. One tip here, make these routines sub
routines with high line numbers that you would not
use in your program. After you bring in the routines
from disk, you can renumber your program.

DELETING DISK FILES

DELETE

You will not always want to keep all the pro
grams that you have saved on your disk. With the
cassette, you can just record over a program. It
doesn't work that way with a disk. Youhave to tell
the computer to remove a program from the disk.
After a program is removed, the computer can
reuse that disk space for another program. You can
delete a file using a direct command or from a
BASIC program. The format is:

DELETE "DSKl.filename"

233

Chapter 20

Putting It All Together—Using

Sprites, Special Characters, And Sound

Now that you can redefine characters, use sprites,
make music and save information to cassette or

disk, you are ready to develop programs that use all
these features. The last program in this book (List
ing 20-1) is a classical puzzle—the Towers of
Hanoi. There are nine disks on the first pole. The
object of the puzzle is to move the nine disks, one at
a time, from the first pole onto the third pole. A
smaller disk can be placed on a larger disk, but a
larger disk can never be placed on a smaller one.
The magnet is a sprite. You use the joystick to
move the magnet over one of the three poles and
press the fire button to pick up or drop a disk. Move
the joystick to the left or right to move the magnet,
with or without a disk. The program will not allow
you to drop a larger disk on a smaller one. Each
time you move a disk, even if you pick it up and drop
it back onto the same pole, the number of moves is
increased by one.

Listing 20-1

Line 130 sets aside the memory for the array that

234

will keep track of which disks are on which poles
and in what order.

Line 140 clears the screen and creates the charac

ters that will be used in the program.
Lines 150-180 place each disk in an element of R$

array.

Lines 190-230 contain the character patterns.
Line 240 changes certain characters in the charac

ter set. The C variable is the character that will be

changed; C$ is the character pattern for the rede
fined character.

Lines 250-260 set the screen color, change the
colors of the character sets, and set the mode of
the sprite to MAGNIFY, (2).

Lines 270-280places the title ofthe program (TOW
ERS), the characters, and the number of moves
on the screen. The MOVE variable will increase

by one every time a disk is picked up and dropped.
Line 290 places the three poles and the platform on

the screen.

Line 300 places the tops on the poles.
Line 310 uses the CALL SPRITE command to make

Listing 20-1

100 REM LISTING 20-1

110 REM TOWERS GAME

120 REM BY A.R.SCHREIBER FOR TAB BOOKS

130 DIM P(9y3)

140 CALL CLEAR XX FOR CNT«0 TO 6 it READ

C* XX CALL CHAR<120+CNT»C*»128+CNT»C*»i

36+CNTyC*)i? NEXT CNT

150 R* <1)=CHR*<121)SCHR*<120)SCHR*<122)t

I R*<2)=CHR*(131)SCHR*(128>*CHR*<132)X i
R*(3 >=CHR*(141)SCHR*<136)SCHR*(142)

160 R* (4)-CHR*(120)SCHR*(120 >SCHR*<120 > t

X R* <5 >*CHR*<129)SCHR* <128)SCHR*(128 >SCH

R*(128)SCHR*(130)

170 R* <6)=CHR*<139 >SCHR*(136)SCHR* <136 >S

CHR*(136)SCHR*(140)Xt R*(7)-CHR* <125)SCH

R*(120)SCHR*(120)SCHR*(120)SCHR* <126)

180 R* (8)~CHR*(128)SCHR* <128)SCHR* <128)S

CHR*(128)SCHR*(128)XX R* <9)-CHR* <137)SCH

R*(136)SCHR*(136)SCHR*(136)SCHR* <136 >SCH

R*(136)SCHR*(138)

190 DATA FF-FFFFFFFFFFFFFFy03030303030303

03 9COCOCOCOCOCOCOCO9OFOFOFOFOFOFOFOF 9FOF

OFOFOFOFOFOFO 93F3F3F3F3F3F3F3F

200 DATA FCFCFCFCFCFCFCFCy 1.1.2 v3C66C3C3C3

C3C3C3 9113 9FFFFFFFFFFFFFFFF 911A 93C7EFFFF

FFFFFFFFy 111 yFFTFFFFFFFFFFFFF

210 DATA 115 93C42A02222242830 91169 DO1010

10080E996y00007C7C10101010y97y1010101010

1010.1.0 998 90000387C44444444 y99 y4444444444

447C38

220 DATA 100y0000444444444444y101y747474

7474742828 y102 y00007C7C40404040 y103 y7878

404040407C7C

230 DATA 104y0000787844444444y105y787850

5048484444 y106 y0000383844444040 y107 y3838

040444443838

240 FOR CNT=1 TO 18 XX READ CyC* XX CALL

CHAR<CfC*>:: NEXT CNT

250 CALL SCREEN(2)J? CALL COLOR<3»16y1y4
y16 y1 y5 y4 y1 y6 y4 y1 y7 y4 y1 y9 y14 y1 y10 y14 y1 y1

lyl6yl>:: CALL MAGNIFY(2)

260 CALL COLOR (12 y3 y1 y1.3 y11 y1 y14 y7 y1 >

270 DISPLAY AT(1y10):"s sbdfhJ s"

235

236

280 DISPLAY AT<2»10)i"t acesJik t" J J DIS
PLAY AT(4 y4)X•MOVES"9 TAB(10)$ MOVE

290 CALl... VCHAR<12»7>113»12>:: CALL VCHAR

(12 y17 y113»12 >JJ CALl... VCHAR(12 y27 r 113 r 12
) M C A LI... H C H A R (2 4 y1 y1.1.1 y3 2)

300 DISPLAY AT(11y 5)X•r r

r"

310 CALL SPRITE(#lyll2yl.6y41 y45)

320 FOR CNT=1 TO 9 XX L=LEN(R*(CNT))X X D

ISPLAY AT(14iCNTy5~L/2)S.i:ZE(L) JR*(CNT) XX
NEXT CNT

330 FOR CNT=1 TO 9 XX P(CNTk1)=CNT XX NE

XT CNT XX MP=45 XX ML, Rl... rORP=0 ?t RP=5 t

{ P0LE=1

340 CALL JOYST(1y X yY)XX IF SGN(X)=0 THEN

CALL KEY(lrKrS):: IF S=0 THEN 340

350 IF SGN<X)---1 AND MP<>45 THEN MP-MP--8

0 XX RP=RP~.1.0 XX P0LE=P0LE-1

360 IF SGN(X)»1 AND MPO205 THEN MP=MP+8

o xx r p=rp + io :: p o l e=po l e+1

370 IF SGN(X)<>0 THEN CALL LOCATE(#1. y4:1. y

MP)X X DISPLAY AT(8»ORP-(RL/2))!"' XX DIS

PLAY AT(8 yRP- (RL/2)) XR* (Ml...) t J GOTO 340

380 REM PICK UP OR DROP A RING

390 IF MLOO THEN 500

400 REM PICK UP A RING

410 FOR CNT=1 TO 9

420 M L=P (C N T» P 01... E) XX IF M I... < > 0 T H E N p (C N T

yPOLE)=0 :: GOTO 440

430 NEXT CNT XX GOTO 340

440 RR=14fCNT j: RL«LEN<R*<ML))J: FOR CN
T=RR TO 9 STEP -.1

450 IF CNTM1 THEN DISPLAY AT(CNT»RP-3)S
IZE(7)JB a " ELSE IF CNT=11 THEN DIE
PLAY AT<CNT»RP-3>SIZE<7>:" r

460 IF CNT<11 THEN DISPLAY AT(CNTyRP-(RL
/2))SIZE(RL):""

470 DISPLAY AT(CNT-1,RP-(RL/2))SIZE<RL)X
R*(ML)

480 NEXT CNT XX CALL SOUND<50»1760»0)XX
GOTO 340

490 REM DROP A RING

500 FOR CNT==1 TO 9

::>

510 TR-P(CNTyPOLE)XX IF TROO THEN 540

520 NEXT CNT

530 REM MAKE SURE TOP RINGylF ANYy IS LA
RGER THAN MAGNET'S RING

540 CNT=CNT-1 XX IF TR<ML AND TROO THEN
340

550 P(CNTyPOLE)=ML XX RR=13+CNT XX RL=LE
N(R*(ML))t,* FOR CNT=8 TO RR

560 IF CNT<1.1. THEN DI SPLAY AT(CNTyRP-3)S
IZE<,7)JBB ELSE IF CNT=11 THEN DISPLAY AT
(CN1ryRP-3)SIZE(7)J" Y* 0

570 IF CNT>11 THEN DI SPLAY AT(CNTyRP-3)S
IZE(7>:" a

580 DISPLAY AT<CNT+lf RP-(RL/2))SIZE(RL)?

R*(ML)

590 NEXT CNT X X CALL S0UND(50y440y0)XX M

OVE»

L=0

600

=M0VE+1 X X DISPLAY AT(4y.lO) JMOVE J J M

IF P(ly3X>l THEN 340

610 REM THE TASK WAS ACCOMPLISHED

620 FOR C0LR=3 TO 16 XX FOR CNT----8 TO 14

XX CALL COLOR(CNT yCOLR11)X X COLR=COLR+1

XX IF C0LRM5 THEN C0LR=3

630 CALL SOUND(50 yCOLR*110 y0 yC0LR*22010 y
C0LR*33()y0)

640 CALL KEY<0»K»S)«: IF SOO THEN 660

650 NEXT CNT XX NEXT COLR

660 CALL CLEAR

the first sprite the magnet.
Line 320 places the disks on the first pole. The row

that the disk is printed on is the value of CNT
offset by 14. The disks will be printed from the
smallest one down to the largest. On the screen,
the smallest one is on the top and the largest on
the bottom.

Line 330 places the value of CNT into the first
element of the array. The array will contain val
ues from one to nine. Each value represents that
disk, with one the smallest disk and nine the
largest. The first set of elements of the array
represent the first pole. The array is 9x3. The
second and third set are zeroes because there are

no rings on those poles. The other variables in
this line keep track of which pole the magnet is
over, the magnet's current position, and the posi
tion of the rings.

Line 340 checks to see if the joystick has been
moved. We are only interested in seeing if the
joystick is moved to the right or left. If the sign of
the X is zero, the joystick has not been moved and
the computer continues with the commands on
this line. The CALL KEY command is used to see

if the fire button has been pressed on the joystick.
If it has not, the computer loops back to the
beginningof this line and waits for the joystick to
move or for the fire button to be pressed.

237

Line 350 checks to see if the sign ofX is negative. If
it is, the joystick has been moved to the left. Now
the computer checks to see if the magnet can
move to the left. The variable MP cannot be 45. If
it is, the magnet cannotmove to the left. If it isn't,
80 is subtracted from MP. This is the new posi
tion for the magnet. The ring will also have a new
position, and the pole that the magnet willbe over
is one less than the pole it is currently over.

Line 360 checks to see if the sign of the variable X is
positive. If it is, then the joystick was moved to
the right. The computer checks the value of the
variable MP. If it is not 205 the magnet can move
to the right. The next position of the magnet is 80
pixels to the right. The ring and pole positions are
also changed.

Line 370 verifies that the joystick has been moved.
If the sign ofXis zero, the joystick has not moved.
If it is not zero, the joystick has moved and the
computer will move the sprite to the new position
using CALL LOCATE. If a ring is under the mag
net, it will also move. The computer is directed
back to line 340 again to see if the joystick has
been moved or the fire button pressed.

Line 390 checks the value of ML. If it is not zero,

there is a ring under the magnet, and the com
puter is directed to the line to drop the ring.

Line 410 begins a FOR . . . NEXT loop. This loop
will check every position under the magnet to see
if there is a ring under the magnet. If there is, the
computer will be able to pick it up and move it.

Line 420 checks the positions in the array as indi
cated by the pole number. If the array element
does not contain a zero, there is a ring there.
Since we are removing the ring from that posi
tion, a zero is placed in that array element.

Line 430 continues the loop until there are no more
elements in the array. If the computer looks at
every element of the array and does not find a ring
on the pole, the computer will be sent back to line
340. The magnet must be moved to another pole.

Lines 440-480 pick up the ring. The value of CNT is
offset by 14 so the computer will move the ring in
the correct row on the screen. The lower case

"Q" replaces the ring. This character is the pole.

238

The ring is printed one row higher on the screen.
This action continues until the ring is in the row
under the magnet. CALL SOUND is used to make
a metallic sound and the computer is sent to line
340.

Line 500 begins the routine to drop the ring. The
FOR . . . NEXT loop checks the elements of the
array under the pole. The ring cannot be dropped
onto a smaller ring.

Line 510 checks the element for a zero. If it is a

zero, the loop continues. If there is a ring in this
position, the computer is sent to line 540to check
its size.

Line 520 continues the FOR . . . NEXT loop. If all
the elements are checked and none contain a ring,
the program continues, because the ring can be
dropped on an empty pole.

Line 540 subtracts one from the value of CNT. This
is the position in the array and on the pole that the
ring will occupy. If the value of the ring on the
pole is less than the value of the ring on the
magnet, the computer goes back to line 340 and
the ring will not drop.

Lines 550-590 drop the ring onto the pole. The
lower case R is the top of the pole, the lower case
Q is the pole. The ring is printed on the screen,
then the pole is printed over it and the ring is
printed one position lower. After the ring reaches
the bottom of the pole, the CALL SOUND is used
to make the thump sound. The counter for the
number of moves is incremented by one.

Line 600 checks the array element for the first
position of the third pole. If it contains a one, then
the task was accomplished and the computer can
go on to the ending routine. If it has not been
accomplished, the computer will be sent to line
340 and wait for another move.

Lines 620-650 contain nested FOR . . . NEXT

loops. These loops continually change the values
of the colors in the character sets. The sound

made is based on the colors on the screen. The

CALL KEY is used to see if a key has been
pressed. This fanfare will continue until a key has
been pressed.

Line 660 clears the screen and ends the program.

Appendix

Working with Numbers

Ever since man had the need to know how many
items he had in his possession, how much grain he
needed, or how many days since the last rain, he
had to devise a system to count. It is believed that
some ancient tribes used the base two or three for
counting. There is some evidence thatbasetwenty
was used by a few early tribes, since their handiest
counting aids were their fingers and toes.

With numbers came the need to do simple
calculations. Soon the problems were no longer
simple, and man quickly learned that if he marked
the numbers in the dirt, or on a tablet, he could
computemuchmore quickly. Stones were probably
used much the same way we use pokerchips today
with each type of stone representing a different
group of numbers—ones, fives, tens, and the like.

The abacus is the oldest, yet the simplest,
adding machine invented. The principle ofmoving
the beads on rods has survived the test of time.
Many people consider the abacus the first type of
computer.

THE BINARY SYSTEM

Aswith the abacus, the computer uses its own
number system—binary. Ifyou think ofalight bulb,
a lock, or a trap, eachitem has only two states. It
can be either on or off, open or closed, set or
sprung. The computer operates in the same man
ner. Each memory location in the computer can be
either on or off.

The memory in your computer can hold a
charge. This is represented by the number one.
When a location has no charge, it is represented by
a zero. The computer, then, uses binary or base
two for its number system.

In our decimal system, each number position
is a multiple of10. The positionbefore the decimal
is the unit position. In the binary system, each
position isamultiple oftwowith theposition before
the decimal the unit position. In the decimal sys
tem, there are 10 numerals, 0 through 9. In the
binarysystem, only the numbers 0 and 1 are used.
The binary number 10110 is 22 in decimal. To

239

convert a binary number to decimal, we add the
places that contain a 1 and ignore the place values
where there is a zero.

1

2 6 3 1

8 4 2 6 8 4 2 1

0 0 0 1 0 1 1 0

In our example, 10110, there is 1 in the 16's
columns, a 1 in the 4's column and a 2 in the 2's
column. If we add 16 + 4 +, we arrive at 22 or the
decimal equivalent. Most computers have 8 posi
tions in each memory location. This means that
each location can contain a number from 0 to 255.

The number that is stored in each memory
location is called a byte. Each one or zero in the
byte is referred to as a bit. Although the TI-99/4A
computer is considered a 16-bit computer, some of
the memory is treated as eight-bit. There are some
four-bit and eight-bit computers also. Each byte can
also be divided into two four-bit nibbles.

Although it seems confusing at first, using the
binary system in computers conserves on parts and
increases speed. If a switch with ten different set
tings were used, the computer would have to de
termine if the switch was set, then decide which
setting it was pointed to. In binary, there are only
two possibilities, a 1 or 0. It takes only eight bits
(switches) to count to 255. By adding eight more,
any number up to 65535 can be displayed. Work the
following examples to practice converting binary
numbers to decimal.

1. 01100001

2. 10110111

3. 11001000

4.

5.

6.

7,

00111001

01110010

00111100

00011110

8. 11011000

9. 01111010

10. 11110001

240

The decimal equivalents are: 1-97; 2-183; 3-200;
4-57; 5-114; 6-58; 7-30; 8-216; 9-122; 10-241

UNDERSTANDING HEX

Although the binary system increases the
computer's speed, most of us cannot readily con
vert a string of ones and zeros into a number that we
can understand. To help us, most programmers and
manuals reference the memory locations and the
number stored in it in hex. The hexadecimal system
uses base 16. The numbers after nine are rep
resented as the letters A-F. To convert a binary
number to hex, we first divide the byte into two
nibbles. If, for example, we needed to convert
11001101 into hex, we would divide it into two
nibbles—1100 1101. Each nibble consists of four
bits. Now we treat each nibble as a separate
number. By adding the place values of the first
nibbles, 8 + 4, we get 12. Twelve is not a one-digit
number, so we use the letter "C." The next nibble
is 8 + 4 + 1, or 13. One number more than "C" is
"D." Our hex number for 11001101 is CD.

Let's try that again with another binary
number, 10010111. Divide this eight-bit number
into two nibbles—10010111. The first nibble is 8 +
I or 9, the second is 4 + 2 + 1 or 7. The hex number
for 10010111 is "97."

There are times when you want the decimal
equivalent to a hex number. When you are working
in BASIC and want to POKE a location with a

number, both the location and the number that you
are POKEing must be in decimal. Often the manual
you are using will only provide the HEX addresses
to be POKEd or the HEX values that should be

entered. To convert a HEX number to decimal is

fairly easy. Since each number/letter represents a
value from one to 15, each place value in HEX is a
multiple of 16. If the HEX number has only two
places such as B3, multiply the number in the sec
ond position from the end by 16 and add the value in
the rightmost position. B is equal to 11 decimal,
II x 16 is 176. Add 3 and the decimal value of HEX

B3 is 179. Since the computer can access over
64000 memory locations, often the HEX number
will contain four places. To convert C253 HEX to
decimal we would multiply the "C" (decimal 12) by

4096, the 2 by 256, the 5 by 16 and add 3.f
(12 x4096)+(2x256)+(5x 16)4-3=49747

To convert a decimal number to HEX, divide
the number by the largest place value feasible, the
quotient is the value for that place, divide the re
mainder by the next place value, and continue until
there is a remainder less than 16. That remainder is
the last digit of the HEX number. If, for example,
the decimal number is 21013, we would divide the
number by 4096. The first or leftmost value of the
HEX number is a 5. The remainder is 533. When
this numberis divided by256, the next quotientis a
2 with a remainder of21. 21 divided by 16is 1 with a
remainder of 5. Therefore, the HEX equivalentof
21013 is 5215, as shown below:

The program in Listing A-1 will convert a de
cimal number to Hexor binary anda binaryor HEX
number to decimal.

Listing A-1

Line 130 traps for errorsthatwould cause awarning
message to occur.

Lines 140-160 place the menu on the screen.
Line 170 prints a question mark and waits for a

selection.

Line 180uses the ON GOSUBcommandto send the
computer to the right based on the selection.

Line 190 sends thecomputer back to the beginning
of the menuwhen the computer returns fromthe
subroutine.

Lines 210-230 print the message for the first
routine. This routine will convert a decimal
number into a hexadecimal number.

Line 240 clears A$. If we did not clear the string
each time we began this routine, the hex digits
would be added to the digits in A$. The conver-

4096/21013
- 20480

533

2 1

256/533 •16] ^
-512

21

-16_
5

Listing A-1

110 REM CONVERSIONS

120 REM BY L*M* SCHREIBER FOR TAB BOOKS
130 ON WARNING NEXT

140 DISPLAY AT<3>1)ERASE ALL J"PLEASE SFL
EOT A CONVERSION"

150 DISPLAY AT<5*2>J"1* DECIMAL TO HEX"
it DISPLAY AT<7>2>J"2« DECIMAL TO BINARY
n

.1.60 DISPLAY AT<9»2)J"3* HEX TO DECIMAL"
H DISPLAY AT<ii»2>:"4. BINARY TO DECIMA
L "'

170 DISPLAY AT<14»8)J"?' ACCEPT AT<14
y9)VALIDATE("1234")SIZE(1)iN

180 ON N GOSUB 210»31Ov390*480
190 GOTO .1.40

200 REM ROUTINE TO CONVERT DECIMAL NUMBE
RS TO HEX

210 DISPLAY AT<1*1)ERASE ALL?"PLEASE ENT
ER THE DECIMAL NUMBER TO BE CONVERTED
TO"

241

242

220 DISPLAY AT(3»1>:"HEX* NUMBER CANNOT
BE GREATER THAN 65535,"

230 DISPLAY AT<7*1)?"TO EXIT* ENTER (0)
ZERO"

240 A*=M" H ACCEPT AT(9 v7)VALIDATE(DIGI
T):dgit

250 IF DGIT=0 THEN RETURN
260 IF DGIT>65535 OR DGIT<0 THEN 240
270 STDGIT=DGIT ! STORE THE NUMBER FOR T
HE C0 NVERS10N R0UTINE
280 V=65536 it FOR HEXP=1 TO 3 H V=V/16

it GOSUB 570 it NEXT HEXP
290 V=V/16 it H=STDGIT ii G0SUB 600
300 DISPLAY AT(3»1)ERASE ALL J"THE HEX EQ
UIVALENT OF"*DGIT*"IS "JA* H GOSUB 620
* * GOTO 210

310 DISPLAY AT <3*1)ERASE ALL i"PLEASE ENT
ER THE DECIMAL NUMBER TO BE CONVERTED
TO BINARY,"

320 DISPLAY AT(6*1)i"NUMBER CANNOT EXCEE
D 255, TO EXIT THIS ROUTINE ENTER 0 <Z
ERO>."
330 A*="" H ACCEPT AT<9*9)VALIDATE<DIGI
T)SIZE(3)JDGIT

340 IF DGIT=0 THEN RETURN
350 IF DGIT>255 THEN 330
360 STDGIT-DGIT ! STORE THE NUMBER ENTER
ED FOR THE CONVERSION ROUTINE
370 V-256 H FOR PBIN=1 TO 7 Si V=V/2 H
GOSUB 570 J! NEXT PBIN it A*=A**STR*<ST

DGIT)

380 DISPLAY AT(3»1)ERASE ALL J"THE BINARY
EQUIVALENT OF"»DGIT*" IS "?A* %i GOSUB
620 H GOTO 310
390 DISPLAY AT (1*1)ERASE ALL.} "PLEASE ENT
ER THE HEX NUMBER TO BE CONVERTED TO DEC
IMAL"
400 DISPLAY AT<3*1)i "NUMBER CANNOT EXCEE
D FFFF TO EXIT PRESS ENTER"
410 DGIT=0 H ACCEPT AT(6*5)VALIDATE<DIG
ITf•abcdef">size<4>:a*
420 IF A*="' THEN RETURN
430 HEXP=LEN(A*>! FIND OUT HOW MANY POSI
TIONS

440 F0R V=1 T0 HEXP it C=ASC <SEG*< A $ *V *1
))

4 50 C=C-•5 5 : t IF C< 10 THEN C=VAL <S E6 $ (A«
*V*1))!IF IT'S NOT A LETTER THEN GET THE
VALUE

460 P»HEXP--V it BGIT=DGIT+C*1AT H NEXT
V

470 DISPLAY AT<3*1)ERASE ALL J"THE DECIMA
I... EQUIVALENT OF "*A**" IS'SDGIT it GOSUB
620 it GOTO 390

480 DI SPLAY AT (1 *.1.) ERASE ALL i "PLEASE ENT
ER THE BINARY NUMBER TO BE CONVERTED
TO DECIMAL, NUMBER CANNOT"

490 DISPI...AY AT (4 *.1.) i "EXCEED 1111.1.1.11,
TO EXIT PRESS ENTER,"

500 DGIT=0 it ACCEPT AT<9*5)VAI...IDATE("10
")SIZE(8)JA$

510 IF A*="» THEN RETURN

P=LEN<A*)

FOR V= 1 TO P i i OVAl... <SEG$(A$ *V *1))

IF C=l THEN DGIT=DGIT+2~<P--V>
NEXT V

DI SPLAY AT (3 *.1.) ERASE ALL t "THE DECIMA

520

530

540

550

560

I... E Q UIVAI... E N T 0 F " *A* * " IS

B 620 H GOTO 480

570 IF STDGIKV THEN A*«A*8,0"

580 H=INT (ST DGIT/ V) ! DIVIDE T H li
Y THE VALUE OF THE POSITION

590 STDGIT=STDGIT-H*V ! STORE THE

ER FOR THE NEXT CONVERSION

600 IF H>9 THEN A*=A*8CHR$(H+55)it RETUR
N

610 A*«A**STR*(H>ii RETURN

620 DISPLAY AT <10 *5)i"PRESS ANY KEY" ii
CALL KEY(0*K*S)?J IF S*0 THEN 620 ELSE R
ETURN

IDGIT tt GOSU

ti RETURN

NUMBER B

*EMAID

sion would be correct only the first time that the
routine was used. The number that you want to
convert to hex is stored in the DGIT variable.

Line 250 checks to see if a zero was entered. The

routine returns when a zero is entered.

Line 260 checks the number entered. If it is too

large, or anegativenumber, the computerwillbe
sent back to line 240 for another input.

Line 270 stores the number entered in STDGIT.
The computer will use the number stored in this
variable for the conversion routine.

Line 280 places the highest value that number can

243

be in the V variable. This number is divided by 16
in the FOR... NEXT loop to set the place values
of the HEX number. The subroutine at line 570
will place the correct digit in A$.

Line 290 sets the digit for the last position in A$.
This is the one's position, so the computerbegins
the subroutine at 600 since it has no conversion to
make. It only needs to determine if the number
will be numeric or a letter from A through F.

Line 300 places the conversion on the screen and
uses the subroutine at line 620 to wait for a key to
be pressed.

Lines 310-320 places the message for the second
routine on the screen. This routine will convert a
decimal number to binary.

Line 330 clears A$. A$ will be used again to store
the conversion. The number to be converted will
be stored in the DGIT variable.

Line 340 checks to see if a zero was entered. If it
was, the computer will return to the mainmenu.

Line 350 checks to see if the number entered ex
ceeds the highest possible entry. If it does, the
computer will go back to line 330 to wait for
another entry.

Line 360 stores the number entered in STDGIT.
Line 370 begins the conversion routine. V is set to

one move that the largest number that could be
entered. This value will be divided by two and
used in the subroutine that sets the digits in the
binarynumber. The binarynumberwillbe placed
in A$.

Line 380 places the number and the binarynumber
on the screen. It uses the subroutine in line 620 to
wait for a key to be pressed. The computer willgo
back to line 310 to wait for another entry.

Lines 390-400 place the message for the third
routine on the screen. This routine will convert a
HEX number to decimal.

Line 410 sets the DGIT variable to zero. This
variable will be used to store the decimal number.
The VALIDATE options assures that only num
bers and the letters A through F will be accepted.
The HEX number will be stored in A$.

Line 420 checks to see if A$ is a null string. If it is
null, the computer will be sent back to the main
menu.

244

Line 430 finds out how many positions are in this
number. The maximum position is four, but the
number could contain one, two, or three as well.

Line 440 begins a FOR . . . NEXT loop to convert
the HEX number to decimal. The length of the
loop depends on the value of HEXP. The ASCII
value of each position of A$ is placed in the C
variable.

Line 450 subtracts 55 from C. If the value of C is
less than 10, the character is a number and the
computer takes the value of that position. If it is
10 or more, it has the value of that letter.

Line 460 calculates the decimal equivalent of the
value of C based on the position of C in A$. Each
position of the HEX string is a power of 16. By
subtracting the value of V from HEXP, we know
what power to raise 16 to. This number is then
multiplied by the value of C and added to the
contents of DGIT. Each time the computer
travels through this loop, the power that 16 will
be raised to is one less than the previous power,
or, one position to the right.

Line 470 places the HEX number and the decimal
equivalent on the screen. The computer then
waits for a key to be pressed before going back to
line 390.

Lines 480-490 place the message for the fourth
routine on the screen. This routine will convert a
binary number to decimal.

Line 500 clears the DGIT variable and waits for an
entry. The VALIDATE option ensures that only
ones and zeroes can be entered. The entry will be
placed in A$.

Line 510 checks A$ for a null string. If it is null, the
computer will return to the main menu.

Line 520 places the length ofA$ into the P variable.
Again, this variable will determine how many
times the computer loops through the conversion
routine.

Line 530 begins the conversion routine. The value
of A$ at the position determined by P is stored in
C.

Line 540 checks to see if this position is a one. If it
is, the value of that position is added to the con
tents of DGIT. The position value is determined
by subtracting the position that V is pointing to

from the number of positions in the string; then
raising two to the power equal to that difference.
This number is added to DGIT. In this routine we
raise two to a power because each place value ofa
binary number is a power of two.

Line 550 continues the loop.
Line560places the decimal equivalentofthe binary

number on the screen and waits for a key to be
pressed before going to line 480.

Line 570 is the first line of the subroutine used by
the decimal to hex and decimalto binaryroutines.
If the valueofSTDGITis less than the valueofV,
there is no number for this position and zero is
added to the contents of A$. The computer re
turns to the routine that sent it.

Line 580 finds the integer of the number that will be

converted. The value of the position is divided
into the number.

Line 590multiplies the integer by the placevalue
and subtracts it from the number that it is convert
ing. This removes the place value from the
number. The remainder will be converted for the
next position.

Line 600 checks tosee ifthe number is greater than
nine. If it is, the number must be converted to a
letter and placed in A$.

Line 610 places the number in A$.
Line 620 is thesubroutine thatthecomputer uses to

see ifa keyhasbeenpressed. It givesyoutime to
copy the number and the conversion from the
screen.

245

ABS, 106
Absolute value, 106
ACCEPT, 42-45
Accessories, 6, 10
Arithmetic functions, 103
Array, 48-50
ASC, 123
ASCII codes, 123
Assembly language, 212
Assigning values, 35-41

B

BASIC, types of, 19
Binary, 132, 138, 239-240
Breakpoints, 26

CALL, 95
CALLCHARSET, 153

CALLCHRPAT. 153
CALL COINC, 226
CALL COLOR, 159
CALL DELSPRITE, 226
CALL DISTANCE, 226
CALL ERR, 150-151
CALLGCHAR, 163
CALLHCHAR, 153

246

Index

CALL INIT, 203-205
CALL JOYST, 187
CALL KEY, 187, 189-190, 207
CALL LINK, 212-213
CALL LOAD, 204, 212-213
CALL LOCATE, 219
CALL MAGNIFY, 221-222, 223
CALL MOTION, 218
CALL PATTERN, 225
CALL PEEK, 203
CALL POSITION, 226
CALL SCREEN, 159, 162
CALL SOUND, 167
CALLSPGET, 192
CALL SPRITE, 213
CALLVCHAR, 153
Cassette recorder, 10
Cassettes, 23, 98, 130, 143, 200
Central Processing Unit, 3-4
Character patterns, using, 153
Characters, 8
Characters, ASCII codes, 123
Characters, overlap, 226
Characters, repeating, 124
Characters, user defined, 85, 87, 93,

109, 125, 138, 153, 173-174,
180-181, 192

Character set, using, 153

Chips, 4
CHR$, 123
Cold start, 140
Color, 159, 162-163
Columns, printing in, 208-211
Commands, direct, 16
Computer club, 6
Correction, screen, 9
CPU, 3

Data, 46
Decision-making, 56
DEF, 205
DIM, 49-50
Dimensions, array, 49-50
Dimensions, two-dimensional array,

53

Disk, 98, 130, 200, 231-233
DISPLAY, 27-30
Distance, between sprites, 226

Editing lines, 19-20
ELSE, 60
ENTER, eliminating, 207
EOF, 232
Error messages, 21-22
Errors, 145

Files, opening and closing, 231
Flowchart, 12-13
Format, printing, 153
FOR . . . NEXT, 54
FOR . . .NEXT, stepping, 69-71
Function keys, 8-9, 144
Functions, user defined, 205

G
GOSUB ...RETURN, 78
GOTO, 60
Graphic commands, 152
Graphic patterns, interchanging, 225
Graphics, with sound, 173-174
Graphics characters, using, 163

H

HEX, 132, 240-241

I
IF . . . THEN, 56, 60
IMAGE, 208-211
INPUT, 41,232
INT, 103-106
Integers, 103

J

Joystick, 187-189
Joystick, using, 234
JOYST, 187, 189-190

LET, 35
Line numbering, 17-18, 20
LIN PUT, 232
LIST, 25
Location, peeking at, 203
Logic, 56
Loop, 54, 60, 66-68

M

Machine language, 212
Machine language subroutines, load

ing, 204, 212-213

Edited by Ruth Mustoe

Magnifying characters, 221- 223
MAX/MIN, 37
Memory, 4
Menu, 8
Merging, 95- 98, 102
Modem, 6, 10
Monitor, 6-7, 10
Moving sprites, 218-219
Music, 152, 234

ON BREAK, 146-147
ON ERROR, 145-146
ON . . . GOTO, 60
ON WARNING, 147-148
OPEN/CLOSE, 231

Peripherals, 6
Pixels, 25, 138, 152
POS, 119-120
Precedence, order of, 103
PRINT, 232
Printing, to screen, 26
Programming, defined, 1, 2
Programming, development, 11
Prompt, 41

RAM, 5
RANDOMIZE, 85, 111, 114
READ, 46
REC, 232
Remarks, 18
Removing sprites, 226
Repeating, 153
Repeating characters, 124
Resolution, 25
RESTORE, 46-47
RETURN, 78
RETURN, with ON ERROR, 148-149
RND, 111, 114
ROM, 5
RPT$, 124
RUN, 24

Saving programs, 23-24
SAY, 191
Scroll, 25
Searching, strings, 119-120
SGN, 114
SIZE, 26, 42
SIZE, changing character, 221-223
Software, 1
Software, educational, 2
Software, home applications, 2
Software, resources, 3
Sound, 152
Sound, using, 167, 170-171
Sound, with graphics, 173-174
Speech, using, 190-192
Speech synthesizer, 6, 10
Splitting strings, 117
Sprites, 130,213
Sprites, in motion, 218
Sprites, removing, 226
Sprites, using, 234
SOU, 111
Square root, 111
Statements, 17
Stepping, 69-71
String functions, 119
Strings, splitting, 117
STR$, 124
SUBEND, 97-98
Subroutine, 78
Subroutine, calling, 95
Subroutine, developing, 96-97
Subroutines, machine language, 204,

212

Synthesizer, speech, 190

Testing for errors, 149-150
Trapping, errors, 145-151

VAL, 124
VALIDATE, 42-45
Value of string, 124
Variables, numeric, 35-36
Variables, string, 39-42

247

The Last Word on the TI-99/4A

If you are intrigued with the possibilities ofthe programs included inThe Last Word on the Tl 99/4A
(TAB BOOK No. 1745), you should definitely consider having the ready-to-run tape containing the
software applications. This software is guaranteed free of manufacturer's defects. (If you have any
problems, return the tape ordisk within 30 days, and we'll send you a new one.) Not only will you save
the time and effort of typing the programs, the tape eliminates the possibility of errors that can prevent
the programs from functioning. Interested?

The programs are available on tape for TI-99/4A with 16K and Extended BASIC

at $19.95

for each tape or disk plus $1.00 each shipping and handling.

I'm interested in the program from The Last Word on the TI-99/4A. Send me:

tape(s) for TI-99/4A with 16K and Extended BASIC (651 OS)

TAB BOOKS catalog

Check/Money Order enclosed for $

plus $1.00 shipping and handling for each tape ordered.

VISA MasterCard

Account No. . Expires

Name

Address

City State Zip

Signature

Mail To: TAB BOOKS INC.

P.O. Box 40

Blue Ridge Summit, PA 17214

(Pa. add 6% sales tax. Orders outside U.S. must be prepaid with international money orders in U.S. dollars.)
TAB 1745

	front-cover
	binder 1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013
	content014

	back-cover

