

The Last Whole
TI-99/4A Book

Programs and Possibilities

The Last Whole
TI-99/4A Book

Programs and Possibilities

Paul Garrison

A Wiley Press Book
Wiley & Sons, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

Publisher: Judy V. Wilson
Editor: Theron Shreve

Managing Editor: Katherine Schowalter
Electronic Book Publishing Services: The Publisher's Network, MorrisviUe. PA

Copyright® 1984 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section
107 or 108 of the 1976 United States Copyright Act without the permission of the
copyright owner is unlawful. Requests for permission or further information should be
addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Garrison. Paul.

The Last Whole TI-99/4A Book.

Includes index.

1. TI 99/4A (Computer)--Programming. I. Title.
QA76.8.T133G37 1984 001.64*2 83-26046
ISBN 0-471-87920-7

Printed in the United States of America.

10 98765432 1

Acknowledgments

I want to thank Texas Instruments
for providing me with the hardware and software

that made this book possible.

Paul Garrison

Santa Fe, NM
September 20, 1983

Contents

Chapter 1 Introduction 1
What, Exactly, Is a Computer? 2
The Anatomy of the TI-99/4A Home Computer System

Chapter 2 Disks and Disk Drives 8
Initializing Your Disk 9
Recording Programs on Disk 14
Finding out What's on a Disk 15
Making Backup Disks 15
Rearranging Disk Contents 18

Chapter 3 Getting Started 20
Immediate Mode 20

Deferred Mode 30

Chapter 4 Commercial Software 38
Home Management/Personal Finance 39
Education 49

Home Entertainment 57

Chapter 5 Word Processing 60
Line Printers 61

Word Processing with TI-WRITER 66
Word Processing Without a Word Processor 82

Chapter 6 TI BASIC and TI EXTENDED BASIC 86
Commands and Statements 86

Subprograms 107

Chapter 7 A Primer to Personal Program Writing 125
A Simple Data-Base Program 126
A Size/Price Comparison Program 133
Standard Formulas 134

File Programs 137
Arrays 140

Chapter 8 Your Computer Talks Back 148

Chapter 9 Programs for the Home 154
Checkbook Program 155
Day of the Week Program 162
Travel Program 167
Name and Address List 176

Electronic Cookbook Program 184
Schedule C Tax Program 194
Kitchen Timer Program 206
Household Budget Program 209

Chapter 10 Educational Programs 214
Simple Arithmetic Program 214
Words That Make Other Words 221

The Presidents of the United States 227
Speed Program for Mathematics or Grammar 236
Arithmetic with Voice 244

Scrambled Words 249

History Lesson 254
Metric Conversions 258

Authors and Their Works 268

Object Recognition 273
Children's Counting game 273

Chapter 11 Sprites and Other Graphics 280
CALLHCHAR 280

CALLVCHAR 283

CALL CHAR 285

CALL COLOR and CALL SCREEN 288

CALL SPRITE 295

CALL MAGNIFY 297

CALL MOTION 298

CALL DELSPRITE 300

CALL PATTERN 301

CALL LOCATE 302

CALL COLOR and Sprites 302
CALL DISTANCE 303

CALLCOINC 304

Chapter 12 Programs Strictly for Fun 307
A Dice Game 307

Model Railroading Program 315
A Numbers Game 325

A Game with Airplanes 328

Chapter 13 Programs for Business or Profession 336
Loan, Saving, and Investment Program 336
Currency Conversion Program 346
Invoice Writer 349

A Ledger Sheet Program 354
Analyzing Advertising Cost Versus Return 360
Analyzing Direct Mail Advertising 367
Introducing a New Product 370
Business Profit/Loss Analysis 376

Chapter 14 Advanced TI BASIC Statements 381
Defined Functions 381

Numerology 390

Chapter 15 Having Fun with TI LOGO II 397
Turtle Graphics 397
LOGO Procedures 401

Turtle Commands 402

Procedures with Inputs 405
Procedures Within Procedures 408

Sprite Graphics 409
Musical LOGO 415

Other TI LOGO Capabilities 418

Chapter 16 Telecommunication: Modems and Data
Banks 420

Getting "On Line" 421
Services of The SOURCE 424

Appendix I ASCII Character Codes 427
Appendix II Speech Synthesizer Word List 430
Glossary ofComputer Terms and Abbreviations 436
Computer Magazines 454
Index 457

Introduction

Revolution. It may not look as ifwe were living in the middle of a
revolution, but we most certainly are. And it is the kind of revolu
tion that will affect all of us, especially the young. I'm talking, of
course, about the computer revolution, which is likely to make the
industrial revolution look simple by comparison.

It's all the fault ofTexas Instruments, the company that proudly
proclaims itself to be the inventor of the integrated circuit, the
microprocessor, and, in turn, the microcomputer. Without these in
credible advances in the art of electronic microminiaturization, the

personal computer—even the lowly pocket calculator—would not
have been possible. But today they are not only possible, they are
invading our homes, offices, and schools in ever-growing numbers,
changing the way we keep records, make important decisions, and
educate ourselves and our children.

This book is about home computers: the uses of personal com
puters in homes; in schools and other education situations; and in
offices, where they are rapidly replacing the typewriter and the fil
ing cabinet. Much of this book deals with writing personal pro
grams, because program writing can be fun and exciting—not to
mention that programs are really what computers are all about.

Today computers have become accepted tools to be used by
business and professional people, much like any other office
machine. But use in the home has, so far, been restricted largely to
playing video games or performing very simple tasks. There are,
however, a great many ways in which the computer can play a
meaningful role in the home, and even more ways in homes with
children from preschool to college age.

2 The Last Whole TI-99/4A Book

This book deals specifically with the Texas Instruments
TI-99/4A Home Computer and with the optional peripherals that
are designed to work with it. While this book was being prepared,
Texas Instruments announced its decision to stop manufacturing
and marketing the TI-99/4A computer itself, but the company has
stated that it will continue to provide software and peripherals to
the million-plus owners of TI-99/4As. This book is designed to in
crease the enjoyment the TI-99/4A owner can derive from using the
computer.

WHAT, EXACTLY, IS A COMPUTER?

Many of us tend to think of computers as some sort of
superintelligent being that threatens to take over our lives.
Nonsense! A computer is simply one more dumb machine that
can't do a thing without human help. Computer can't think, can't
philosophize, can't reason. What they can do is remember huge
amounts of information, store it indefinitely, and retrieve it when
needed at incredible speed. There is a saying in computer country:
"Garbage in, garbage out" This means simply that if we, the
human operators of the machine, provide it with faulty information,
it will produce faulty answers simply because it doesn't know any
better: It has no way of knowing that the information it was fed was
faulty in the first place. So don't be afraid of computers. They are
patient beasts of burden, ready to do your bidding as soon as you
know how to talk to them.

That takes us back to the original question: What, exactly is a
computer? Webster's Unabridged Dictionary defines a computer
simply as "one that computes; an automatic electronic machine for
performing calculations." But computers do a good deal more than
calculate. To put it simply for the moment, computers are
machines designed to deal with vast amounts of information, stor
ing it when called upon to do so, or using it in order to perform a
variety of functions.

The computer is the heart of what is generally referred to as a
computer system. The computer itself consists of two types of
memory, a central processing unit, and a keyboard. We use the
keyboard to communicate with the computer. But computers don't
understand the complex language we use every day. In order to

Introduction 3

communicate with the computer, we have to learn a new language,
one the computer has been programmed to understand. There are a
number of such computer languages (often referred to as high-level
languages), but the only one we need to be concerned with is called
BASIC, for Beginners' All-purpose Symbolic Instruction Code.
(Don't let that "beginners' " fool you—BASIC is a very powerful
language, capable of doing anything we may expect of it.)

When I said that the computer understands BASIC, that is, of
course, not exactly correct. Technically, a computer understands
nothing other than certain combinations of zeros and ones. The
home computers in use today are referred to as digital computers
because they perform all of their tasks and functions using only two
digital symbols: 0 and 1. All information typed into a computer is
internally translated into still another language, machine
language, that consists entirely of zeros and ones. Every letter,
digit, or symbol consists of a combination of eight zeros and ones,
where the individual zeros and ones are referred to as bits and the
combination of eight such symbols is known as a byte. BASIC, like
other high-level languages, allows us to communicate with the
computer without getting bogged down in seemingly endless
strings of ones and zeros.

There are a number of versions of BASIC for different com

puters, though the primary terms are identical in all BASIC
dialects. We shall be concerned with the dialect known as TI BASIC,
which consists ofjust under 100 words, abbreviations, and phrases
that are relatively easy to learn and understand. Most of the time, in
fact, you'll probably be using only about a dozen or so.

Information typed into a computer via a keyboard is stored in a
memory known as the random access memory or RAM. The RAM
is one of two kinds of memories contained in the computer. The
other is known as the read-only memory or ROM. It contains all the
built-in functions that the computer performs automatically when
called upon to do so. The RAM and ROM interact with the central
processing unit or CPU, which consists of microprocessors, those
little black roach-like things with their multitudinous legs that do
all the actual work.

The computer itself is only able to receive information and to
process it. In order for us to know what's going on, we need a means
for the computer to communicate with us. That means is the
monitor, which may be an ordinary TV set, or one of the dedicated

4 The Last Whole TI-99/4A Book

black-and-white or color monitors designed specifically to function
with computers. The monitor is used to display what we type in,
and then whatever results are produced by the computer.

Now let's take a closer look at the TI-99/4A Home Computer
system, the one we'll be discussing and using throughout this book.

THE ANATOMY OF THE TI-99/4A

HOME COMPUTER SYSTEM

The emphasis here must be on the word system, because in
order for a computer to be of use, it must interact with a number of
different peripherals. The entire system, the computer and its
peripheral devices, is known as the hardware. The system we'll be
using throughout this book consists of the following:

1. The computer and its keyboard
2. A color monitor

3. A peripheral extension unit
4. A single disk drive
5. A line printer
6. An extended memory board
7. Joysticks
8. A speech synthesizer
9. A modem

10. A TI EXTENDED BASIC module

We have already talked a little about the computer itself, let's
take a closer look at the TI-99/4A keyboard. This consists of 48
keys, representing the digits 0 through 9; the letters of the alphabet;
the usual symbols such as periods, commas, and other punctuation
marks; and arithmetic function symbols such as plus, minus, and
so on. Unlike a conventional typewriter, certain symbols, such as
quotation marks, require that two keys be pressed at the same time.
If you're a touch typist, you may find that you have to do a bit of
relearning.

In addition to the usual keys, there are three that are not found
on an ordinary typewriter. One is labeled FCTN, which stands for
function. It must always be pressed in conjunction with another

Introduction 5

key in order to produce the desired result. It is used to type the sym
bols that are printed on the front side of 16 keys, and it is also used
in combination with other keys to perform some special functions
that we'll be talking about on and off. Another key is labeled CTRL
for control, and it is used primarily in conjunction with a word pro
cessor. The third key is labeled ENTER. Its purpose is to enter typed
information into the computer RAM, and, as we shall see, it is used
with great frequency.

Computers are described as having memories of so many Ks.
The memory being referred to is the RAM, and the number of Ks
represents the number ofbytes that can be stored in the RAM at one
time. Although the symbol K normally stands for 1000, in com
puter terms it stands for 1024 bytes. If you think ofeach byte as one
letter, and assume that the average word consists of seven letters, a
48K RAM can accommodate up to 7022 words before running out of
memory space. That sounds like a lot, but it isn't, and, with that in
mind, it is easy to understand why it is important to install the Ex
tended Memory card, which increases the computer's basic 16K
memory to 48K. There is always a lot of talk among computer en
thusiasts about the importance of having plenty of Ks. Don't worry
too much about it: The kinds of programs the average user is likely
to write rarely exceeds 48K.

The monitor can be adjusted to produce different colors and
color combinations, or to present a black-on-white display and,
under certain circumstances, a white- or green-on-black display.
The latter is important if the computer is to be used as a word pro
cessor, as it is less tiring on the eyes than white on black or black on
white. Except when using the computer to produce graphic images,
or when running commercial software programs, it is advisable to
leave it in its black-and-white configuration because in that mode
the display is sharper and easier to read than it is in the color mode.

The peripheral extension unit is just what the name implies. Its
purpose is to control the peripheral devices, and there is no need for
us to concern ourselves with exactly how that is accomplished.

Built into the peripheral extension unit are slots into which cer
tain cards must be inserted, and also built in is one disk drive slot. A

word of warning: If you're going to install the disk drive and the
associated card yourself, you're likely to find, as I did, that it is
humanly impossible to do so by following the instructions provided
by Texas Instruments. To attach the cable that connects the card to

6 The Last Whole TI-99/4A Book

the drive in the manner prescribed simply doesn't work. I finally
succeeded by removing some screws and partially removing the top
of the unit. If you're purchasing your system from a dealer, let him
or her do the installation.

Also installed in the peripheral extension unit is the Extended
Memory card, which increases the size of the computer's RAM from
16 to 48K, and another card that controls the operation of the line
printer.

The line printer is a sort of automatic typewriter. When com
manded to do so, it will print the information being displayed or
stored in the computer's RAM, printing both from right to left and
from left to right. There are different types of line printers available,
and we'll talk about printers in greater detail in Chapter 5.

TI offers joysticks as an option. Their purpose is related strictly
to playing video games available from TI in the form of modules
that can be plugged into the computer.

Another option is a speech synthesizer, a rather fascinating ad
dition that can be used to cause the computer to speak the words
that are typed in, assuming that the words are contained in the
373-word dictionary the synthesizer has been taught to pronounce,
or that the words can be created by using combinations of those 373
words.

A modem is another option, one that makes it possible for your
computer to communicate via telephone with other computers or
with data banks, such as The SOURCE, which are repositories of
huge amounts of data and information. The acronym modem
stands for modulate/demodulate, because the computer signals are
modulated into the type of signals that can be transmitted over
telephone lines and then, on the other end, are demodulated back
into the kind of signals the computer is equipped to deal with. We'll
discuss the subject of telecommunication in Chapter 16.

The TI EXTENDED BASIC module adds a number of important
features to standard TI BASIC. It may be very important to someone
anticipating serious programming, but to the average user it is
more a convenience item. One drawback is the fact that once it is
loaded into the computer RAM, it takes up a fair number of Ks, thus
reducing the amount of RAM available for program writing.

Introduction 7

That, then, is the complete system, the hardware we'll be using
in the various chapters of this book. In addition there is all manner
of software, programs that have been prerecorded on disk or in the
form of plug-in modules. In Chapter 4 we'll take a look at some soft
ware that is representative of the various categories in which it is
available.

Disks and
Disk Drives

Disks, also known asfloppy disks, diskettes, orfloppies, are the
medium used by computers to store data for future use. Data may
also be stored on magnetic tape via cassette recorders, but using
cassettes is slow and inefficient (though considerably cheaper), and
for the purpose of this book we shall assume that at least one disk
drive is available with your TI-99/4A Home Computer.

The disks used with your TI-99/4A are 5.25 inches in diameter.
They can be bought individually or in boxes of 10, priced anywhere
from less than $2 to more than $5 each. Personally, I have been us
ing the cheapest disks that I could find (at $19.90 for a box of 10)
and have found them to be entirely satisfactory.

Disks may be likened to phonograph records, though they func
tion differently. They are made of flexible magnetic material, and
the read/write head in the disk drive is used to record material on

the disk as well as to read material from the disk. The disk surface is

divided into sectors in order to permit the retrieval of information
without having to read through all the preceding material first.
(This is not true of cassettes. The tape recorder must read through
all recorded material consecutively in order to find the requested
information.)

When you buy a disk (or a box of disks), the disk itself is enclosed
within two paper covers. The outer cover is removable. Whenever a
disk is not in the drive, keep it in its outer envelope to protect the ex
posed surfaces from damage. The inner envelope is permanent, and

Disks and Disk Drives 9

the disk must never be removed from it. This permanent envelope
has four openings. In the center is a round opening used by the
drive mechanism to spin the disk in the drive. Below it is an oval
opening through which the disk itself can be seen. Do not touch the
surface of the disk, and keep disks away from sources of
magnetism, as they can be inadvertantly erased. There is another
small round hole in both the envelope and the disk itself called in
dex hole. It is used by the drive to work the disk's rotation. And on
the right edge there is a rectangular cutout, referred to as the
read/write slot. When that slot is open, you can write to the disk. If it
is covered by a piece of tape or something, the disk becomes a read
only disk: You cannot write to that disk as long as the rectangular
cutout is covered.

Unlike a phonograph record, which can simply be placed on the
turntable and played, disks are incapable of reading or writing data
until they have been initialized. This initialization or formatting
process differs for different types of computers, which is why you
cannot take a disk that you've initialized on your TI-99/4A to a
friend who's got another type of computer and expect it to run. It
won't.

INITIALIZING YOUR DISK

Let's begin by initializing a blank disk. First, of course, turn
everything on. When turning on your computer, always turn on the
expansion system (the box containing the interface cards and the
disk drive) first, then use the slide switch on the keyboard to turn on
the computer, and then turn on the monitor. Don't try to turn on
the computer before the expansion system.

At this point you may want to use the controls below the screen
to adjust the color and contrast. You can select bright colors, tints,
or a black-and-white display.

With your computer and its peripherals turned on, plug the Disk
Manager module into your computer console, place a fresh disk in
to the drive, facing to the right with the read/write slot at the top.
With the Texas Instruments title page in display, press any key.
The display will change to:

10 The Last Whole TI-99/4A Book

r

^.

PRESS

1 FOR TI BASIC

£ FOR %,DISK MANAGER' '•

3 FOR 4 VDISKETTEN-MANAGER"

4 FOR ^GESTION DE DISQUES"

Unless you want the subsequent instructions to be presented in
either German or French, ignore choices 3 and 4 and press 2. First
the display will change to a fancy title page reading DISK
MANAGER and after a moment it will present you with a new set of
choices:

r

DISK MANAGER

1 FILE COMMANDS

£ DISK COMMANDS

3 DISK TESTS

4 SET ALL COMMANDS FOR SINGLE DISK PROCESSING

YOUR CHOICE? 1

The 1 after YOUR CHOICE will be flashing on and off, indicating
that the computer wants to know if that is your choice or if you'd
rather select something else. Right now, select 4 and press
> ENTER < because you want all commands to be set for single-
disk processing. The display remains unchanged except for the bot
tom line, which now reads:

Disks and Disk Drives 11

^v

SINGLE DISK PROCESSING HAS BEEN INITIALIZED

V.

Now select DISK COMMANDS by typing 2 and > ENTER <. The
display will change to:

-v

I

DISK COMMANDS

1 CATALOG DISK

£ BACKUP DISK

3 MODIFY DISK NAME

4 INITIALIZE DISK

YOUR CHOICE? 1

For the moment we're interested only in the fourth choice, which
you should select by typing 4 and pressing > ENTER <. The resul
tant display now reads:

12 The Last Whole TI-99/4A Book

INITIALIZE NEW DISK

MASTER DISK <l-3>? 1

DISK NOT INITIALIZED

NEW DISK NAME?

The little square signs are to remind you that the largest number of
characters you can use in naming a disk is 10: The TI disk system
requires that each disk be given a unique name. Names can be as
simple as DISKONE, DISKTWO, or as complicated as you wish—as
long as each name consists of 10 characters or less. Type your
chosen name in and press > ENTER <. The display now asks a
series of questions, one at a time:

r

TRACKS PER SIDE? 4©

SINGLE SIDED <Y/N) Y

SINGLE DENSITY <Y/N> Y

You can press > ENTER < in answer to each of these questions
unless you're sure that your disk does not conform to those
specifications. The display will then show:

Disks and Disk Drives 13

r

INITIALIZE NEW DISK. . * PLEASE WAIT

V.

There will be a pause while the computer and the disk drive do their
thing. Eventually the display will change to:

r

^.

DSK 1 - DISKNAME=DISKONE

AVAILABLE = 358 USED= O

COMMAND COMPLETED

PRESS: PRGC'D, REDO, BEGIN, OR BACK

DSK1 means that the disk is in drive number 1 (you can use up to
three drives with your system). The numbers after AVAILABLE
and USED refer to the number of sectors that are either available for

use or have been used by previously recorded programs. PRESS:
and the four choices refer to certain key combinations identified by
the plastic strip that came with yourcomputer. Type FCTN 5 followed
by FCTN 9 by pressing the function (FCTN) key and the number
key simultaneously. This will get you back to the original title page.

14 The Last Whole TI-99/4A Book

Your disk is now initialized and can be used to store programs,
data, or information. Remove it from the drive and be sure to write
the disk name on the label so that you always know which name
you've used. Always close the disk drive when it's not in use.

RECORDING PROGRAMS ON DISK

You might want to skip the rest of this chapter until after you've
actually keyed in your first program, which we'll do in the next
chapter. Then, with the program still in the computer, follow these
steps in order to record it on your newly initialized disk:

1. Place the disk in the drive as before.

2. Type SAVE DSK1.DEGREES.
3. Press > ENTER <.

where DEGREES can be any program name. I have chosen it
because it is the first program you'll be writing in the next chapter.
Once you've done that, remove the program DEGREES from the
computer's memory (RAM) by typing NEW > ENTER <. The pro
gram is now no longer in your computer, but it is stored on the disk.
Let's make sure:

1. Type OLD DSK1.DEGREES.
2. Press > ENTER <.

After a few moments of clacking a whirring, the red light on the disk
drive will go out and the familiar prompt (>) and cursor (flashing
square) will be displayed. (See page 21 if you're not sure what a pro
mpt or a cursor is.) Now type LIST > ENTER < and your program
will again be LISTed on the display, ready to be RUN.

Disks and Disk Drives 15

FINDING OUT WHAT'S ON A DISK

Later on, when you've recorded a lot of material on one or more
disks, you may want to check what is on the disk and, possibly
more important, how much unused space is left on the disk. To do
this we use the CATALOG option which we saw displayed earlier.
Take the steps that were described above to call up the DISK
MANAGER display and then type 1 to select CATALOG. The
display will then ask where you want the CATALOG displayed, and
you can select the display screen by simply typing > ENTER<.
What you'll then see is a list ofthe program titles, the length ofeach
program in terms of sectors used on the disk, and, at the top, the
number of available and used sectors.

As you write more and more programs, you'll gradually get a
feel for the amount of space that a given program takes up on the
disk. Be sure that there is ample room when getting ready to record
a program. A DISK FULL messagecan be disconcerting, and ifyou
don't happen to have an initialized disk ready, you may end up los-
ing the entire program you just painstakingly keyed into your com
puter. Therefore, always run the CATALOG function when you're
not certain about the amount of remaining space available on the
disk, and always have at least one initialized spare disk in reserve.

MAKING BACKUP DISKS

Another option that is included among the DISKCOMMANDS is
BACKUP DISK. The purpose of making backup disks is to protect
the originalagainst some type ofdamage that might result from con
stant use. For instance, the TI word processor that functions with
your TI-99/4Aconsists of a plug-in module and a disk. The instruc
tion book that accompanies the word processor suggests that you

16 The Last Whole TI-99/4A Book

make a backup disk before using the system, and that you then use
the backup disk in your day-to-day operation, keeping the original
in a safe place.

When you select the BACKUP DISK option, the display asks:

r

SELECTIVE <Y/N>? N

which means that you have the choice of copying everything on the
disk or simply one or another selected program. To copy the entire
disk, simply press the > ENTER < key. The display will respond
with the name of the disk to be copied and the message:

r

^

LOAD COPY DISK

PRESS: PROC'D, REDO BEGIN OR BACK

Disks and Disk Drives 17

Remove the master disk and insert a blank disk into the disk drive.

Then press FCTN and 6 simultaneously for PROC'D. If the blank
disk was not previously initialized, the display now shows:

DISK NOT INITIALIZED

INITIALIZE NEW DISK (Y/N)

NEW DISKNAME?

*\

Type in the name that you want to use for the backup disk and
press > ENTER <. The display will respond with the same sequence
of messages that we saw when we initialized a blank disk before.
After a while the next message appears:

plus the name of the master disk and the message that tells you to
again press the PROC'D keys (FCTN and 6). Now remove the

18 The Last Whole TI-99/4A Book

backup disk and load the master disk and then press the ap
propriate keys. After a moment the display will ask that you switch
disks again in order to copy the first of the programs contained on
the master disk onto the backup disk. That procedure is repeated
until all programs have been copied, at which point the display
responds with:

r

COMMAND COMPLETED

PRESS: PROC'D, REDO, BEGIN OR BACK

If you now press the keys for BEGIN and BACK, the display will
return to the original title page.

There may also, of course, be other times when you will want to
make backup disks. You might have a program that you wrote
yourself that you expect to be using with considerable frequency, or
you might have created some important text on your word pro
cessor that must be saved. Alternatively, you might want to com
bine programs from several disks onto one, though that can be ac
complished by a somewhat simpler method, described below.

REARRANGING DISK CONTENTS

You may have recorded a number of entirely unrelated pro
grams on a disk and subsequently decide that it would be more in
telligent to keep related programs on the same disk. Thus you

Disks and Disk Drives 19

might want one or several disks to be used entirely for educational
programs, another for home- or kitchen-related programs, still
others for business programs, and so on. The simplest way to ac
complish this is to load one program at a time into the computer
RAM, using:

OLD DSK1.FILENAME > ENTER <

and then switch to the other disk and type:

SAVE DSK.1 FILENAME > ENTER <

so the program will be recorded on the new disk. Then repeat that
procedure for all programs that you want to record on that new
disk. When all the related programs have thus been saved on the
new disk, you might write the following program and save it too:

10 PRINT " MENU:"

20 PRINT "

30 PRINT "FILENAME-DESCRIPTION"

40 PRINT "FILENAME-DESCRIPTION"

50 END

where FILENAME is the name of each program, using as many
FILENAME - DESCRIPTION lines as you need in order to list all the
programs on the disk, along with brief descriptions to remind you of
the purpose of each of the individual programs. You can, of course,
also call up a list of the programs by selecting the CATALOG option
from the DISK MANAGERmenu, but if there are more programs on
the disk than can be displayed at one time, they'll scroll by too fast
to be read.

Once all programs have been copied from the original disk onto
several new disks, you can erase the original disk by using the
INITIALIZE option, after which the disk can be used again.

Getting Started

Now that we have a reasonably clear idea of what the computer
system is all about, let's begin to put our machine through some of
its paces.

Computers can be used in two distinct fashions, usually referred
to as modes: the immediate mode and the deferred mode. In the im
mediate mode the computer acts much like an everyday calculator,
whereas in the deferred mode it executes instructions that have been

keyed in the form of a program. For the time being, let's stick to the
immediate mode as a means of getting acquainted.

IMMEDIATE MODE

To begin, turn on the expansion system, the computer, and the
monitor as we did in Chapter 2. The display will show:

N

READY - PRESS ANY KEY TO BEBIN

20

Do that now, and the display will change to:

/

PRESS

1 FOR TI BASIC

2 FOR %%DISK MANAGER"

3 FOR ''DISK MANAGER''

4 FOR ''GESTIQN DE DISQUES"

Getting Started 21

For the time being we won't concern ourselves with selections 2, 3,
and 4 (unless you want your instructions in German or French,
you'll never use 3 and 4). Therefore, let's now press 1. The screen
responds with:

r

TI BASIC READY

k /

and a flashing square next to a > sign. That sign is referred to as the
prompt, because it prompts us to key in some information. The

22 The Last Whole TI-99/4A Book

flashing square is the cursor, and it tells us where on the screen the
next keyed-in character will appear.

Try typing:

1 + 1 =

and then press the > ENTER < key.

Absolutely nothing happens, because we didn't command the
computer to do anything. The command we need to use in the im
mediate mode is PRINT. Print has nothing to do with your line
printer. It simply tells the computer to PRINT the applicable infor
mation and data on the display screen. Now try:

PRINT 1 + 1 = > ENTER <

This time something does happen, but it's not what we had in
mind. The display has responded with:

r ^

*INCORRECT STATEMENT

^

meaning that there was something wrong with what we typed.
What was wrong was the use of the equal (=) sign. With that in
mind, let's try once more. Type:

PRINT 1 + 1 > ENTER <

Getting Started 23

Success. The computer responds by displaying:

/

^

PRINT 1+1

2

In other words, it performed the calculation and has displayed the
result.

Now let's try something else. Type:

PRINT MARY + ANN > ENTER<

The computer responds by displaying:

which doesn't seem to make any sense at all. Try again by typing:

PRINT "MARY" + "ANN" >ENTER<

24 The Last Whole TI-99/4A Book

This time we get a message that reads:

r

STRING-NUMBER MISMATCH

which requires a bit of explanation. A string is anything, be it let
ters or digits, that is enclosed in quotation marks. But the computer
cannot perform addition or any other mathematical function with
strings, which is what is meant by the above message. Now type:

PRINT "MARY";"ANN" >ENTER<

This time the computer responds by displaying:

f '

MARYPNN

Getting Started 25

because the semicolon told the computer that there is not supposed
to be a space between the two words (strings). Now type:

PRINT "MARY","ANN" >ENTER<

using a comma instead of a semicolon. This time the result looks
like this:

because the comma told the computer to space the two strings a
certain distance apart.

Now, in order to illustrate the different ways in which the com
puter uses letters and numbers, let's try something else. But first
let's get rid of all that stuff on the screen. Press the FCTN (function)
key and at the same time the +/= key and watch as the display
returns to the original design. Now press any key then 1, and we're
back where we started. Type:

PRINT "MARY HAD A LITTLE LAMB" >ENTER<

26 The Last Whole TI-99/4A Book

The result is:

r \

MARY HAD A LITTLE LAMB

^

But now try:

The result is:

/

PRINT "MARY SAID, "HELLO, JOE"
WHEN HE CAME IN " > ENTER <

♦INCORRECT STATEMENT

V.

Getting Started 27

because you cannot use quotation marks within quotation marks.
What you can use instead are single quotation marks (apostrophes),
like this:

PRINT "MARY SAID'HELLO, JOE'WHEN HE CAME IN" >ENTER<

This time the result is:

S

MARY SAID %HELLO, JOE' WHEN HE CAME IN

because single quotation marks do not represent a command to the
computer. Next, let's type:

A = 1 >ENTER<

B = 2 >ENTER<

PRINT A + B > ENTER <

The computer responds with:

r

28 The Last Whole TI-99/4A Book

because we have told it that from now on, until we either change it
or turn the computer off, it is to consider the letter A as 1 and the let
ter B as 2. In this case the letters A and B are referred to as numeric
variables because they can be made to stand for any numerical
value. For instance:

A = 56/3

B = 3*56

C=A+B-6

PRINT C

results in:

18(3.6666667

^.

because the computer has performed all those calculations
automatically. (Don't forget to press the >ENTER < key at the end
of each line. Since that should by now have become second nature,
we'll no longer mention it.) By the way, there is an alternative way
that can be used to assign values to variables:

LETA = 6

but the LET command is optional, and it seems silly to type
something that is not needed. You may think that this business of
assigning numeric values to variables (letters or letter combina-

Getting Started 29

tions) is kind of a strange way of doing things. It isn't, as you'll soon
find out when we start to write some simple programs. But before
that, let's look at another kind of variable. Type:

A$="MARY"
B$="ANN"
PRINT A$;B$

The display responds with:

r

MARYANN

^.

In this case the dollar sign ($) tells the computer that the letter
represents a string variable, and it automatically translates that
variable into the string that was assigned to it. Strings can consist of
letters or digits or symbols such as commas, plus or minus signs,
and so on, but they may not contain quotation marks, and they can
be of any length, up to 255 characters (including blank spaces,
which, to the computer, are characters). As you can imagine, using
such string variables can save a lot of typing.

What we have done so far is of not much practical use. It simply
helped to familiarize you with some of the very basic functions that
are available to us. In practice computers are virtually never used in
this immediate mode. The whole purpose of computers is to per
form series of commands—programs—and to do this we must use
the deferred mode. Let's start by writing a very simple program, us
ing some of what we have already learned plus a few new concepts.

30 The Last Whole TI-99/4A Book

DEFERRED MODE

Programs are series of instructions that are entered in the form
of individual lines. These lines must be numbered in order to tell
the computer the order in which it is to execute the various com
mands. The lines may be numbered 1, 2, 3, and so on, or 10, 20, 30,
and so on, or in any other consecutive order that appeals to you. It is
good practice, however, to keep the line numbers at least 10
numbers apart, because as you start to write programs you will
often find that you want to insert a line here or there, which cannot
be done without renumbering (and retyping) all the remaining lines
if you have left no space between line numbers.

TEMPERATURE CONVERSION PROGRAM

Our first little program is designed to convert degrees
Fahrenheit to degrees Celsius and vice versa, and it demonstrates
some of the basics of program writing. Let's look at it line by line:

Line 10 gives the title of the program. The REM stands for
REMark, meaning that the line is simply a reminder. All REM lines
are ignored by the computer.

Lines 20 and 30 assign a leading blank space followed by a string
to the string variables F$ and C$.

Line 40, CALL CLEAR, is the command used by the TI-99/4A to
clear the screen.

Line 50 prints the word MENU, a standard computer term that
always refers to a list of available options.

Line 55 simply prints a line to make the display look better. The
line number is 55 rather than 60 because I added the line 55 after

the program had already been written.
Lines 60 and 70 print 1 F. TO C. and 2 C. TO F. Notice that the 1 is
not included between the quotation marks. The reason will be ex
plained when we get to line 90.

Line 75 is the same as line 55.

Line 80 asks you to select Fahrenheit to Celsius or Celsius to
Fahrenheit by typing either 1 or 2. The INPUT command tells the
computer to print the question, keyed in in quotation marks, and
then to stop program execution until an answer to the question

Getting Started 31

TEMPERATURE CONVERSION PROGRAM

A simple program that converts degrees F, to degrees C, or vice versa.

10 REM TEMPERATURE CONVERSION

20 F$=" DEGREES F."

30 C*=" DEGREES C."

40 CALL CLEAR

50 PRINT "MENU:"

55 PRINT " "

60 PRINT 1;" F. TO C."
70 PRINT 2;" C. TO F."
75 PRINT " "

80 INPUT "WHICH? ":WHICH

90 ON WHICH GOTO 100,200
100 PRINT

110 PRINT

120 INPUT "DEGREES F.? ":F

130 C=(F-32)/1.8

140 PRINT

150 PRINT C;C*
160 END

200 PRINT

210 PRINT

220 INPUT "DEGREES C? ":C

230 F=C*1.8+32

240 PRINT

250 PRINT F;F$
260 END

has been keyed in and >ENTER < has been pressed. In TI BASIC,
all INPUT commands use a colon (:) between the question and the
variable that represents the answer to that question. Here the
variable is WHICH. It could just as well have been simply W, or
any other letter or letter combination. Once you have keyed in 1 or
2, WHICH represents your reply.

Line 90 tells the computer that if WHICH represents 1, it is to go to
line 100; and if WHICH represents 2, it is to go to line 200. That is
the reason for leaving the 1 and 2 outside the quotation marks. If
they were inside the quotation marks, they would have become
part of the string, and could not have been assigned to a numeric
variable. The GOTO command simply means GO TO line number
x. In TI BASIC the command can also be typed as GO TO.

Lines 100 and 110 simply place two blank lines into display to
make the copy easier to read.

Line 120 asks you to key in the number of degrees Fahrenheit you

32 The Last Whole TI-99/4A Book

want to convert to degrees Celsius, assigning the value you type in
response to that question to the numeric variable F.

Line 130 performs the required calculation and assigns the result
to the variable C.

Line 140 creates a blank line.

Line 150 displays the result of the calculation along with
DEGREES C, which was assigned to the string variable C$ in line
30. You can see now why a leading blank space was included in
the strings represented by F$ and C$. Without it the number and
the word DEGREES would have run together.

Line 160 indicates to the computer that it has come to the end of
the program.

Lines 200-260 are a repeat of lines 100-160, and they are used if
you typed 2 in reply to the question in line 80.

In this little program we have made use of numeric as well as
string variables (F and C, F$ and C$) and have learned to use the
commands REM, CALL CLEAR, PRINT, INPUT, ON GOTO, and
END. There are, of course, many more that make up the TI BASIC
computer language, but for the time being we'll stick to those that
are used most often.

STOPWATCH PROGRAM

Let's look at another short program that introduces a few more
of the commonly used BASIC commands. The program is a timing
program that acts like a stopwatch, except that it can be run at dif
ferent speeds because it was originally designed for model
railroaders who like to run their trains to what is referred to as scale

time, where a scale hour might actually be 15 minutes.
When the program is run, it first displays its title (CLOCK) and

then asks that you key in the timing speed. The number that pro
duces the desired speed may vary among computers. With mine,
typing 100 produces actual time (the smaller the number, the faster
the clock, and vice versa). The display then requests that you type
in the number of minutes after which you want the clock to stop,
and after that you're told to press > ENTER < to start the timing
process. The display then scrolls upward across the screen,reading:

Getting Started 33

V

V.

i3 Minutes and 1 Second

«2» Minutes and £ Seconds

and so on until it reaches the number of minutes you typed in
earlier. You will notice that I have used lowercase letters here. On

the screen they appear as smaller uppercase letters, but the printer
automatically accepts them as lower case. (Later on we'll come
back to this program and convert it to a kitchen clock that produces
a loud tone when the selected time has been reached.)

Now let's look at each line of the program and see what takes
place.

Lines 50-80 assign words to string variables.
Line 100 clears the screen of anything left over in the display.
Lines 110-130 represent a FOR . . . TO . . . NEXT loop; by which
the computer goes around in circles, repeating the command in
the center line as often as is indicated by the number after TO, in
this case 10 times. Here it is used to place 10 blank lines on the
screen in order to have the word "Clock" printed in the center of
the screen. Such loops have lots of uses.

Lines 140-160 print the word Clock in the center of the screen
between two lines. The TAB(12) command moves the first
character 12 spaces in from the left edge of the screen.

Lines 170 and 180 produce two blank lines.
Line 190 asks you to key in the speed at which you want the clock
to run, and assigns that value to the variable SPEED.

Lines 200 and 210 print two more blank lines.

34 The Last Whole TI-99/4A Book

Line 220 asks you to decide on a time limit in minutes, assigning it
to the variable TIME.

Lines 230 and 240 print two more blank lines.
Line 250 requests you to press > ENTER < to start the timing
process.

Lines 260-280 use another loop to place four blank lines into
display. These four lines are used later on to separate the
minute/second lines as they scroll up the screen.

Lines 290 and 300 use another loop to create a time lapse, the
length of which is determined by the value that, earlier in the pro
gram, was assigned to the variable SPEED.

Line 310 raises the value of A by 1 each time the computer passes
this line. A, in this case, represents the number of seconds that
have elapsed.

Line 320 uses an IF . . . THEN command to send the computer to
another line if a certain condition is met—in this case, if the value
of A has reached 60. This command is used very often because it
permits us to have the computer produce alternate results based
on changing conditions.

Line 330 uses another IF ... THEN command to tell the computer
that if A is larger than (>) 1, then go to line 360. The purpose is to
print the singular "Second" for 1 second, and the plural for more
than 1 second.

Line 340 causes the string that was assigned SS$ to be assigned to
S$, as well. The aim is to have the display read "1 second" rather
than "1 seconds," which would be annoying.

Line 350 tells the computer to skip the next line and go to line 370.
Line 360 assigns the string that was assigned to SSS$ to S$, now
causing seconds to be read as the plural.

Line 370 causes the computer to go to line 400 if B equals 1. B, in
this program, represents the number of elapsed minutes.

Line 380 is similar to line 360 for minutes.

Line 390 causes the computer to skip line 400.
Line 400 is similar to line 340.

Line 410 causes the number of minutes and seconds to be

displayed. Note the blank spaces on either side of "and" inside the
quotation marks.,

Line 420 tells the computer to go back to line 260 and start the pro
cess all over again.

Getting Started 35

STOPWATCH PROGRAM

This program turns your computer into a clock, displaying minutes and seconds.

50 MM$="Minute"

60 MMM*="Minutes"

70 SS*="Second"

80 SSS*="Seconds"

100 CALL CLEAR

110 FOR X=l TO 10

120 PRINT

130 NEXT X

140 PRINT TAB (12);" "
150 PRINT TAB(12);"Clock"
160 PRINT TAB(12);" "
170 PRINT

180 PRINT

190 INPUT "Timing speed? ":SPEED
200 PRINT

210 PRINT

220 INPUT "Stop a-fter how many minutes? ":TIME
230 PRINT

240 PRINT

250 INPUT "To start press >ENTER< ":START*
260 FOR X=l TO 4

270 PRINT

280 NEXT X

290 FOR PAUSE=1 TO SPEED

300 NEXT PAUSE

310 A=A+1

320 IF A=60 THEN 450

330 IF A>1 THEN 360

340 S$=SS$

350 GOTO 370

360 S$=SSS*

370 IF B=l THEN 400

380 M*=MMM$

390 GOTO 410

400 M$=MM$

410 PRINT B;M*;" and ";A;S*
420 GOTO 260

450 A=0

460 B=B+1

470 FOR X=l TO 4

480 PRINT

490 NEXT X

500 PRINT B;M*;" and ";A;S*
510 IF B=TIME THEN 530

520 GOTO 260

530 END

36 The Last Whole TI-99/4A Book

Line 450 returns the value of A (seconds) to 0 after 60 seconds
have elapsed.

Line 460 raises the value of B (minutes) by 1 each time the com
puter reaches this line.

Lines 470-490 uses a FOR . . . NEXT loop to insert four blank
lines to accentuate the passing of 1 minute.

Line 500 is similar to line 410.

Line 510 tells the computer to go to the END line when the value of
B (minutes) equals the value of TIME, representing the previously
entered time limit.

Line 520 is similar to line 420.

Line 530 tells the computer that it has reached the end of the
program.

Program writing can be a lot of fun, and it can also serve a vari
ety of practical and useful purposes. Don't be intimidated by the
number and variety of commands that make up the TI BASIC
language. At this stage there is no need to try to memorize them all.
By far the easiest way to learn them is actually to type some (the
more, the better) programs into your computer and observe the ef
fects produced by the different commands. The programs in this
book are arranged by general subject matter and also in ascending
order of difficulty, eventually using all the commands that are
available on your TI-99/4A. If you have a disk drive or a means of
storing programs on magnetic tape, be sure to do so. Even though
you may not initially envision using a particular program again,
you will find, as you accumulate experience, that it is often possible
to make some minor modifications in a program so that it can serve
a variety of purposes.

One word of warning: Computers are extremely fussy about the
manner in which information, data, and commands are typed into
them. Blank spaces in the wrong place, stray punctuation marks, or
the use of lowercase letters can, under certain conditions, cause
programs to produce incorrect results or to refuse to work at all.
Even though the TI-99/4A will accept certain commands typed in
lower case, that is not true under all circumstances, and it is good
practice to use upper case for all commands. Also, protected words,

Getting Started 37

the words and phrases that constitute TI BASIC, must always be
used with blank spaces on either side. For instance:

FORX=1TO10

produces an:

♦INCORRECT STATEMENT

^.

message because TO is a protected word. The line must be keyed in
as:

FORX=1 TO 10

with spaces on either side of TO.

Commercial
Software

Although Texas Instruments is no longer manufacturing and
marketing TI-99/4A Home Computer, the company publishes a
catalog of the software that is available for the TI-99/4A Home Com
puter. Although it would be impossible to discuss and describe the
hundreds of programs in detail, we shall talk about a dozen or so
programs that are more or less representative of some of the various
categories.

The Texas Instruments Home Computer Program Library
catalog is divided into several groups: Home Management/Personal
Finance; Education; Home Entertainment; Computer Programm
ing Aids; and Other Programs, where the last category includes
such things as engineering and statistical programs.

Most programs are contained in a plug-in module and come with
an instruction booklet that explains how the program works. (A few
are provided on disk.) A word of caution: Some of the booklets ex
amined were apparently written for the earlier TI-99 and not the 4A,
and they contain instructions that require special keys on the 4A.
Use the key combinations shown on the plastic strip instead.

My personal feeling about software is that, with the possible ex
ception of such highly sophisticated programs as word processors
and spreadsheet programs, each program should include complete
and easy-to-follow instructions and prompts that obviate the need
for studying instruction books. In this area a number of the pro
grams I have examined fall short of that criterion.

38

Commercial Software 39

HOME MANAGEMENT/PERSONAL
FINANCE

PERSONAL RECORD KEEPING

This program is designed to permit you to create any type of
records and to save them on a storage device such as a cassette or
disk. The program includes a means of customizing your records to
fit any type of specialized need. You can use it to create an address
list, an inventory, product lists with specifications, and so on (a
number of typical examples are included in the instruction
booklet), but there are limits to the number of characters that can
be used. In order to demonstrate how the program functions, let's
create a short inventory file, print it on the line printer, and save it
on disk.

When the program is first activated it displays a title page followed
by ONE MOMENT PLEASE . . . and then this display:

ENTER DATE

MONTH?

DAY?

YEAR? 19

^V

which asks you to type in the date on which the record file is being
created or updated. When the date has been entered, the display
will change as on the following page.

40 The Last Whole TI-99/4A Book

PRINTING DEVICE <Y OR N)?

V.

and after you have typed Y it continues with:

r :

PRINTING DEVICE NAME?

^.

requesting that you type in printer identification which, in the case
of the TI-99/4A Impact Printer, is RS232. The next display is:

r

PRESS TO

1 CREATE A FILE

£ LOAD A FILE

Commercial Software 41

^v

Since this is the first time we're using the program and no previous
ly created file exists as yet, let's type 1.

FILE NAME?

*<•

Type INVENTORY, which is nine characters long, the maximum
allowable for a file name.

42 The Last Whole TI-99/4A Book

r

ITEM #1

ITEM NAME?

V

Type PROD # to reserve this first item in the record for product
identification numbers. This adds the following to the display:

r •

PRESS FOR

1 CHARACTERS

£ INTEGER

3 DECIMAL

4 SCIENTIFIC NOTATION

Your answers to these choices limit the type of data that may be
entered in this particular category. If all your product numbers are
simple integers, then you can select 2. If, on the other hand, your
product numbers include letters, slashes (/), or any other symbols,
be sure to select 1, because the integer choice will not allow you to
enter a blank space, which is regarded as a character by the com
puter. The display now asks:

Commercial Software 43.

MAX # CHARACTERS?

^

Be sure to reserve space for a sufficient number of characters to per
mit future expansion, because once the limit has been established,
it cannot be changed. Maybe 5 would be a good choice. When this
has been keyed in, the computer asks for ITEM #2, and so on, each
time asking the same series of questions. After you have entered the
format for the last item, press BACK and you're presented with the
MAIN INDEX:

r

PRESS TO

1 SEE FILE STRUCTURE

£ ADD PAGES

3 DISPLAY PAGES

4 CHANGE PAGES

5 ANALYZE PAGES

6 PRINT PAGES OR REPORT

7 SAVE DATA FILE

a EXIT

44 The Last Whole TI-99/4A Book

Since we want to create a new inventory file, let's type 2. The
display will now prompt you to enter your data with:

r

^

PAGE #

1 PROD*

£ DESCRIPTN

3 # ON HAND

4 REORDER #

5 MFG COST

fc LIST %

7 SHIP WT

Each page number represents one record. If you want to visualize
the procedure, think of file cards. After you have typed in the data
for the above, the display will change to PAGE #2, and so on until
you have entered all your inventory data. Then type BACK, and the
program will return to the MAIN INDEX, where you should now
select choice #6 if you want a printout (see Figure 4-1A, B, C), choice
#7 if you want to save your records on disk. You will be asked to

FILE: INVENTORY

DATE: 8/15/83

TITLE : INVENTORY

INDEX

0 = PAGE #

1 = PROD #

DESCRIBTN

3 = # ON HAND

4 = REORDER tt

5 = MFG COST

6 = LIST %

7 = SHIP WT

Figure 4-1A. The printer produces a record of the file. Note the typo (B in DESCRIBTN).

Commercial Software 45

FILE STRUCTURE

ITEM TYPE WIDTH DEC

1 PROD # CHAR 5 0

2 DESCRIBTN CHAR 15 0

3 # ON HAND INT 5 0

4 REORDER # INT 5 0

5 MFG COST DEC 6 2

6 LIST * DEC 6 2

7 SHIP WT INT 3 0

Figure 4-1B. It then prints the file structure.

0

T

1 2 3 4 5 6 7

10/14 PRODUCT A 78 75 33.78 65.95 7

2 10/15 PRODUCT B 48 50 15.88 29.95 3

3 10/16 PRODUCT C 114 100 5.76 9.95 2

4 10/8A PRODUCT D 73 67 45.27 90.00 11

5 10/21 PRODUCT E 77 75 14.63 25.95 3

Figure 4-1C. And finally it prints the data you have keyed in.

enter the file name under which you want the file recorded. This file
must include the name of the storage device, for instance:ql

DSK.1 INVENTORY

which will cause your records to be recorded on disk for future
recall, at which time you can select the data you want to inspect by
page number or by item. Thus if you specify a particular item
number, all pages that contain the data for that item will be
displayed.

Once the program has been activated, it incorporates reasonably

46 The Last Whole TI-99/4A Book

easy-to-follow instructions and prompts. Within its limitations it's a
versatile and useful program (though, with a bit of practice, you
could write one yourself that would do the same thing).

HOUSEHOLD BUDGET MANAGEMENT

This program, too, includes fairly complete instructions and
prompts, although some of the abbreviations used are a bit obscure.
The program includes a demonstration that uses arbitrary figures
for some 34 preselected expense and income categories (see Figure
4-2). Once you have run the demonstration program, you'll do best

Figure 4-2. Demonstration data for the Household Budget Management program.

Commercial Software 47

to start from scratch and select the first choice from the MAIN

INDEX:

1 ENTER INCOME/EXPENSE

after which you will be asked to enter the category number for
which you want to enter data. The trouble is that it is quite impossi
ble to remember all those category numbers and you either have to
consult the booklet, which lists them on page 14, or you have to
type AID after each entry in order to find the appropriate category
number for your next entry.

You can enter actual and/or projected income and expense
figures, and you can set up a budget for each month. The program
displays how you're doing in terms of actual income and expen
ditures versus the budget or projections, and it can do this in the
form of tables or graphs (see Figure 4-3 on page 48). The program is
a bit cumbersome to use, primarily because of the excessive
number of categories. But all categories that are not applicable to
your situation can be eliminated, thus reducing the number of ac
tive categories to a minimum. During the early portion of the pro
gram you're asked whether you want to go with the 34 preselected
categories or not. Type N and you'll have an opportunity to select
any one of a total of 99 categories relative to different types of in
come and almost every conceivable type of expense. I would sug
gest using a minimum number in order to reduce the amount of
typing as well as clutter in the display. Then, when you type AID to
see the category numbers, only those that you selected will be
displayed.

The program might be useful for households that must adhere
to a relatively stringent budget. But unless data are updated con
tinuously, it won't do much good. The program does require a
storage device such as a cassette recorder or a disk drive, because
all data in the module remain unchanged and all changes that you
make, along with all data that you entered, will be lost unless you
record them on disk or tape.

48 The Last Whole TI-99/4A Book

Figure 4-3. The Household Budget Management program can show graphically how
you're doing.

SECURITIES ANALYSIS

This program deals with stocks, bonds, dividends, and com
pound interest, and its worst fault appears to be that it seems to
take forever to come up with the various results. In order to use the
program you must be familiar with the terms used in dealing with
stocks, bonds, options, options spreads, and so on, which I am not
(see Figure 4-4 if you are). I can only assume that it is reasonably
valuable to people who are actively involved in the stock and bond
markets.

Commercial Software 49

Figure 4-4. The Securities Analysis program starts by offering six choices.

EDUCATION

ADDITION AND SUBTRACTION 1

This program is designed for the very young, dealing with
single-digit figures and using stylized graphics (see Figure 4-5 on
page 50), music, and voice (if the optional voice synthesizer is
available) to animate the program. The trouble with it is that it is ex
tremely slow, and interaction between the computer and the stu
dent does not appear to me to be sufficiently rapid to hold the atten
tion of any reasonably intelligent child. And once, it has been ac
tivated, there is no way to exit any portion of the program and to

50 The Last Whole TI-99/4A Book

Figure 4-5. Addition and Subtraction 1 is distinguished by attractive graphics.

proceed to a more advanced portion without turning the computer
off and then on again.

The program consists of nine subprograms, which are displayed
at the start:

r
PRESS FOR

1 COUNTING BARS

£ GETTING READY

3 ADDITION ACTION

4 ADD ANOTHER WAY

5 SUBTRACTION ACTION

6 SUBTRACT ANOTHER WAY

7 ACROSS AND DOWN

a ADDITION TABLE

9 SUBTRACTION TABLE

Commercial Software 51

If number 1 is selected, the program will gradually (though ex-
asperatingly slowly) go through one category after another. Fur
thermore, the voice keeps goading the student if after too long a
period of time no answer has been typed in to a question. I like the
visual and audio effects. I only wish it could be speeded up a bit.

ADDITION AND SUBTRACTION 2

This program is very similar to the one discussed above except
that it deals with very slightly more advanced subjects such as
three-number equations and a few two-digit figures. Here, too, the
graphic, audio, and voice effects are outstanding (see Figure 4-6),
but it is full of pauses during which nothing happens. Similarly, this
program, too, cannot be exited except by turning the computer off.

Neither of these two programs requires the Peripheral Expan-

Figure 4-6. Addition and Subtraction 2 uses multinumber equations.

52 The Last Whole TI-99/4A Book

sion Unit, because neither calls for the use of the printer, disk drive,
or the Extended Memory. Both were authored by Thomas Hartsig
and were produced for Texas Instruments by Scott, Foresman and
Company.

EARLY READING AND READING FUN

These two programs use the same style of graphics along with
music and voice in two different types of reading lessons for the
beginner. Both use very short, simple stories illustrated with stylized
graphics to help the student recognize words, (see Figure 4-7).
The second program, which is a little more advanced, also asks the
student to think by presenting written problems with multiple-
choice answers. The lettering, using upper- and lowercase letters, is

Figure 4-7. Early Reading uses simple stories.

^fhe activities II.
Module ui KI help 'yo^-vw
illunderstand: v vl^ v^llt
^ppobrens and hou _--&2
3111 people solve fhem> _--~=SJ
Pljliajhy things happen* and Jt?
H>H how characters feel. *^iP

Commercial Software 53

Figure 4-8. The upper- and lowercase letters are easy to read.

clear and easy to read (see Figure 4-8 on page 54). Unlike the pro
grams discussed above, these two do not suffer from interminable
pauses during which nothing happens. I believe that, depending on
the student's reading ability, they will hold the child's interest,
although older students with reading disabilities may object to the
naivete of the subject matter.

SCHOLASTIC SPELLING, LEVEL 5

This program was produced for Texas Instruments by
Scholastic Spelling, Inc. When it is first activated the display will
give you a prompt:

54 The Last Whole TI-99/4A Book

What lesson Mould you like?
Press 1 to 36.

which is annoying because we don't know what those lessons are
unless we study the accompanying book, where they are listed on
page 3. Some lessons display words with a particular type of sound,
such as short a's and long ones. In others the voice reads words and
asks the student to type them. Unfortunately, some of these
computer-generated words are hard to understand. Another prob
lem is the size of the lowercase letters. Because of the relatively low
resolution of the TI monitor, certain letters such as "m" and "w"
are extremely hard to read (see Figure 4-9). This program, too, uses
graphics, music, and, of course, voice to keep things fairly lively.
The total number of words used in this program is 600, and
students at the fifth level should have little trouble with them.

COMPUTER MATH GAMES II

This program was produced for Texas Instruments by Addison-
Wesley Publishing Company. It uses a different and rather in
teresting approach to various relatively simple math problems by
playing one of five games:

Your Number's up Tic-Tac-Math
Math Basketball Horse Race

Match up

Commercial Software 55

a fact op fy*P®$$8L~

crash

h

5 ^tsSlSllijIlS

t ra.r # i

c oil r . •— B

r- a.p i <f

c-ho.pt « ~^-~—-^j|M

s <k.n dvi

r- ab bit

F^gss ENTER t. a

Figure 4-9. Some of the lowercase letters in this program are hard to read.

Some of these, such as the "Match up" game, are really quite dif
ficult and require considerable concentration despite the fact that
they're limited to one- or two-digit numbers (see Figure 4-10 on
page 56). All are designed to be played by several players (though
they can be played solo), keeping score for each player with the
score being based not only on the number of right and wrong
answers, but also on the time it takes a player to come up with his
or her answer. The program uses pleasant graphics and music but
no voice.

56 The Last Whole TI-99/4A Book

Figure 4-10. Some of the games in Computer Math Games II require considerable
concentration.

ALLIGATOR MIX

Although this program looks more like an arcade game than an
educational exercise, it is definitely designed to improve the ability
of students to recognize whether an equation (single-digit addition
or subtraction) and the related result are correct or not. It uses an
alligator figure on which the result is displayed and a fish-like shape
that floats toward the alligator on which the equation is displayed
(see Figure 4-11). The student is to hit the space bar (or the fire but
ton on the joystick) if the displayed result is correct, and nothing if it
is wrong. The time available to the student to decide whether or not
to press the space bar depends on the skill level selected and ranges
from quite fast to very slow. When one of the upper skill levels is
selected, it takes both considerable reading ability (with reference to
numbers) and manual dexterity to come up with a reasonably good
score.

Commercial Software 57

Figure 4-11. Alligator Mix combines arcade game graphics with simple math.

HOME ENTERTAINMENT

VIDEO GRAPHS

This program either displays a variety of abstract graphic pat
terns, or gives the player an opportunity to create his or her own
graphic designs (see Figure 4-12 on page 58). The player can also in
teract with preprogrammed graphic patterns. In order to play this
game you must first write to Texas Instruments for a keyboard
overlay, which is sent free of charge (I wonder why it is not included
to begin with). The program is fun for those who like to experiment
with graphic designs. Others may find it less than fascinating. In
the catalog it is listed under "Education," but I don't believe that it
belongs there.

58 The Last Whole TI-99/4A Book

Figure 4-12. Video Graphs creates a variety of graphic images.

ALPINER

This is the only program I have selected that can be described as
a real video game. The game can be played on the keyboard or with
joysticks by either one or two players. It consists of a little man who
is supposed to climb a bunch of mountains and who is confronted
by all manner of obstacles including falling rocks, avalanches,
angry bears, and so on (see Figure 4-13). The audio portion of the
program is interesting in that it continuously plays a melody over
which we hear two different voices, one of a man and another of a
woman. The voices are obviously prerecorded and not computer-
generated. In several tries I have never been able to get that little
man all the way up the mountain, but then I don't really have the
patience for games like this.

Commercial Software 59

Figure 4-13. The Alpiner must climb mountains past all manner of obstacles.

Before ordering any program, stop in at your dealer's store and
ask for a demonstration—otherwise you may waste a lot of time and
money before you find the type of program you're actually looking
for.

In the next chapter we'll look at the word processor that is
designed to function with the TI-99/4A. It, too, technically falls into
the category of commercial software, but it differs greatly from
what we have discussed up to now.

Word Processing

Word processors are programs, not pieces of hardware. (Though
there are so-called dedicated word processors, the kind we often see
on TV in scenes that take place in newspaper offices, these are, in
fact, microcomputers with built-in word processing software,
designed to perform no function other than word processing.)

The purpose of a word processor is to permit you to produce
text—to use your computer in place of a typewriter—because
writing documents of any type on a word processor has advantages
not available with typewriters. We can make corrections without
using an eraser. We can delete copy or insert single words, entire
sentences, or blocks of copy anywhere in a document. We can shift
copy around, and we can change the format in which the final docu
ment is to be printed.

Since the whole purpose of word processing is to produce
printed material, the first requirement for word processing, ob
viously, is that you have a line printer and that you know how to
use it. Let's begin, therefore, by discussing line printers. (If you
don't have a line printer and don't expect to opt for one, you may
want to skip this chapter. On the other hand, even if you do not an
ticipate doing very much word processing, you may want to con
sider a line printer anyway: Several of the programs reproduced in
the program sections of this book do assume the availability of a
line printer, and those in turn may give you ideas for other non-
word processing uses for a line printer.)

60

Word Processing 61

LINE PRINTERS

Line printers fall into two primary categories: dot matrix
printers and daisywheel printers. Dot matrix printers produce
characters that consist of closely spaced individual dots. As a
general rule, dot matrix printers print from left to rightand right to
left at a rapid rate; with some it is possible to print all manner of
graphic designs. Daisywheel printers, also referred to as letter-
quality printers, operate on a principle that is similar to the one
used by the IBM Selectric typewriter. The individual characters, in
stead of being contained on a metal ball (as in the IBM Selectric), are
embossed on a wheel that looks much like a flower, therefore the
name. The wheels can be changed to provide different type faces,
and the quality of the printed material is comparable to and often
better than that resulting from a good-quality typewriter.
Daisywheel printers are slower than most dot matrix printers, and
considerably more expensive.

Your TI-99/4A Home Computer can be used with a number of
different makes and models of printers, and you might want to
discuss with your dealer the make and model that best suits your
needs. Texas Instruments markets the TI-99/4A Impact Printer, a
relatively low-cost dot matrix printer that is capable of producing a
variety of type faces and type sizes (see Figure 5-1 on page 62) as
well as graphic images. The print quality is comparable to some of
the best on the market; all program listings reproducedin this book
were printed with that printer.

For normal use, you canoperate the printer without any special
commands other than the OPEN # 1:"RS232" or LIST "RS232"
command that is used to access the printer from the keyboard. To
produce special effects, you must use any one or more of a great
many command codes that are described in some detail in the
reference manual that is provided with the printer.

The printer is designed tobeusedexclusively with fan-fold, per
forated computer paper. It does not have the friction-feed option
available on some others that permits the use of ordinary paper
such as stationery, envelopes, or rolls of paper without perforated
edges.

62 The Last Whole TI-99/4A Book

!"#*•/.&' ()*+,-. /0123456789: ;<=>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC
"#$•/.?<' <)*+,-. /0123456789: ;<=>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\
#*%&*()*+,-./0123456789:; <=>?S)ABCDEFGHI JKLMNOPQRSTUVWXYZC\3
"/.&><)+,-./0123456789:;<=>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3A
'/.?<' () *+,-. /0123456789: ;<=>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3A_
&' ()*+,-./01234567B9:;<<>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3"_<
<)+,-./0123456789:;<=>?5)ABCDEFGHIJKLMNOPQRSTUVWXYZC\3A_'a
<)*+,-./0123456789:;< = >?S)ABCDEFGHIJKLMNOPQRSTUVWXYZC\1~_<ab
)*+,-./0123456789:;<=>?5)ABCDEFGHIJKLMNOPQRSTUVWXYZC\3A_<abc
*+,-./0123456789:; <=<>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3"-_'abed
+,-./0123456789:;<= >?5)ABCDEFGHIJKLMNOPQRSTUVWXYZC\3^_'abede
,-./O123456789: ;<= >?5)ABCDEFGHIJKLMNOPQRSTUVWXYZ C\ 3A_ 'abede-f
-./0123456789: ;<= >?5>ABCDEFGHIJKLMNOPQRSTUVWXYZC\3~_ 'abedefg
./0123456789: ;<= >?3ABCDEFGHIJKLMNOPQRSTUVWXYZ C\3A_ *abede-fgh
/0123456789:;<<>?3ABCDEFGHIJKLMN0PQRSTUVWXYZC\3\.'abedefghi
0123456789:;<=>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3A_'abedefghij
123456789: ;<= >?5)ABCDEFGHI JKLMNOPQRSTUVWXYZC\3'_ 'abedefghi jk
23456789: ;<= >?5)ABCDEFGHI JKLMNOPQRSTUVWXYZC\3'_ 'abedefghi jkl
3456789:;<=>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3^_'abedefghijklm
456789: ;<= >?S)ABCDEFGHI JKLMNOPQRSTUVWXYZC\3~_ 'abedefghi jklmn
56789: ;<= >?5)ABCDEFGHIJKLMNOPQRSTUVWXYZ C\3"s_'abedefghi jklmno
6789:;<<>?3ABCDEFGHIJKLMN0PQRSTUVWXYZC\3_'abedefghijklmnop
789: ;<= >?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3^_'abedefghijklmnopq
89: ;<<>?5)ABCDEFGHIJKLMNOPQRSTUVWXYZC\3^'abedefghi jklmnopqr
9: ;<= >?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3\.'abedefghi jklmnopqrs
:;<==>?;DABCDEFGHIJKLMN0PQRSTUVWXYZC\3-S_':akbcdefghi jklmnopqrst
;<= >?3ABCDEFGHIJKLMN0PQRSTUVWXYZC\3^_'abedefghijklmnopqrstu
<=>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3"-_'abedefghijklmnopqrstuv
<>?3ABCDEFGHIJKLMNOPQRSTUVWXYZC\3'%_'abedefghi jklmnopqrstuvw
>?3ABCDEFGHIJKLMNGPQRSTUVWXYZC\3''_'abedefghijklmnopqrstuvwx
?dABCDEFGHIJKLMN0PQRSTUVWXYZC\3_'abedefghi jklmnopqrstuvwxy
3ABCDEFGHIJKLMNOPQRSTUVWXYZ C\3''_. 'abedefghi jklmnopqrstuvwxyz
ABCDEFGHI JKLMNOPQRSTUVWXYZC\ 3_'abedef ghi jklmnopqrstuvwxyz*
BCDEFGHIJKLMN0PQRSTUVWXYZC\3~_'abedefghijklmnopqrstuvwxyzC!
CDEFGHI JKLMNOPQRSTUVWXYZ C\ 3lS- *abedef gh ijk1mnopqrstuvwx yz i !3-
DEFGHIJKLMNOPQRSTUVWXYZC\3'_'abedefghijklmnopqrstuvwxyz(!
EFGHIJKLMNOPQRSTUVWXYZ C\3'*_ 'abedefghi jklmnopqrstuvwxyz <.
FGHIJKLMNOPQRSTUVWXYZ C\3-s_'abedef ghi jkl mnopqrstuvwxyz*:;^ !
GHIJKLMNOPQRSTUVWXYZCN3~_'abedefghijklmnopqrstuvwxyzC!3~ !"
HI JKLMNOPQR5TUVWXYZ.C\3-\.'abedef ghi jklmnopqrstuvwxyz C! 3-~ !"#
IJKLMNOPQRSTUVWXYZC\3's_'abedef ghi jklmnopqrstuvwxyzt! 3~ !"#$
JKLMNOPQRSTUVWXYZ C\3'-_'abedefghi jkl mnopqrstuvwxyz C:>~ !"#$'/.
KLMNOPQRSTUVWXYZC\3'_'abedefghi jklmnopqrstuvwxyz{!3~ !"#*•/.&
LMNOPQRSTUVWXYZC\3'x_'abedefghi jklmnopqrstuvwxyz{! 3~ !"#*•/.&'
MNOPQRSTUVWXYZ C\3's_ 'abedefghi jklmnopqrstuvwxyz C! 3-~ !"#$"/.?<' (

•>. ~

Figure 5-1. The TI-99/4A Impact Printer includes a test program that prints its characters.

Word Processing 63

For first-time use, be sure to follow the set-up instructions
carefully and be especially careful when loading the paper, a tricky
operation that is not well illustrated in the instructions. One annoy
ing characteristic of the printer is the fact that it is not possible to
make the printer start printing at the top of a page without first run
ning an entire blank page through.

What follows are most of the commands that you're likely to
use, along with sample printouts resulting from those commands.

LIST "RS232" causes the program that is currently in the com
puter memory to be printed line by line.

LIST "RS232":200-500 causes lines 200-500 of the program in
memory to be printed.

100 OPEN #1:"RS232"

110 PRINT #l:"Text"

120 CLOSE #1 are the program lines that are used under normal
circumstances to access the printer, to print data (strings must be
in quotation marks, numeric data need not be), and to disengage
the printer.

CHR$(27);CHR$(68) is the command code that allows you to
create tab settings in order to print data in a certain format (see
Figure 5-2 on page 64). The "D" in line 110 can be used because the
ASCII character code for D is 68; thus CHR$(68) and the letter D are
interchangeable. CHR$(10) and CHR$(15) represent the tab posi
tions, where the numbers can be changed to represent tab positions
of your choice. CHR$(0) represents the end of the tab command se
quence, whereas CHR$(9) tells the printer to go to the next preset
tab position. In most cases you'll probably be better offsimply spac
ing the material to be printed in your program the way you want it,
because such long lists of instructions are prone to typing errors.

64 The Last Whole TI-99/4A Book

100 OPEN ttl:"RS232"

110 PR I NT 4* 1: CHR* <27> ; " D" ; CHR* < 10> ; CHR$ <20> ;
CHR*<0> ;"NAME" ;CHR*<?> ;"CITY" |CHR*<9> ; "STATE"

120 CLOSE #1

130 END

Figure 5-2. CHR$ (27) permits you to set tab positions.

CHR$(14) causes characters to be printed in an enlarged format.

CHR$(15) produces a condensed format.

CHR$(20) cancels CHR$(14).

CHR$(18) cancels CHR$(15).

CHR$(27);CHR$(69) causes characters to be printed in the em
phasized format [CHR$(69) = "E"].

CHR$(27);CHR$(70) cancels the above [CHRS$(70) = "F"].

CHR$(27);CHR$(71) causes characters to be double-printed
[CHR$(71) = "G"J.

CHR$(27);CHR$(72) cancels the above [CHR$(72) = "H"].

The short program in Figure 5-3 uses these character designa
tion codes and shows the resulting printout.

CHR$(27);CHR$(75) calls up the normal-density graphics mode.
[CHR$(75) = 4,K"J. For an explanation of how to create different
graphic effects, read the instructions in the owner's manual.
Because the on/off position for each of the print wires that print

Word Processing 65

100 OPEN Ml: •RS232"

110 PRINT Ml :"NORMAL" ;CHR*<14>;"ENLARGED";CHR*< 20) ;
"NORMAL"

120 PRINT #1

130 PRINT #1 :CHR*<15) :"CONDENSED" ;CHR*<14);
"CONDENSED ENLARGED";CHR*(20) ;CHR*<18)

140 PRINT Ml

150 PRINT Ml :CHR*<27) ;"E";"EMPHASIZED";CHR*<27) • » C "

160 PRINT Ml

170 PRINT

"H"

CLOSE

Ml :CHR*<27) ;"G";DOUBLE PRINT";CHR*<27>;

180 Ml

190 END

Figure 5-3. Different character designation codes produce various type sizes.

each individual dot must be determined in binary format and then
translated into decimal format, producing graphics can be a bit
tedious. If you have the time and the patience, however, it can be
done. Figure 5-4 shows a program that produces a graphic design
and the resulting printout.

100 RESTORE

110 OPEN #ls"RS232"

120 PRINT #1:CHR*<27)&"K":CHR$<12);CHR$(0);
130 RESTORE

140 FOR 1=1 TO 12

150 READ A

160 PRINT #1:CHR*<A);
170 NEXT I

ISO DATA 4,10,26,58,103,231,231,103,58,26,10,4
190 FOR X=l TO 10

200 GOTO 130

210 NEXT X

220 CLOSE #1

230 END

Figure 5-4. Here the printer has produced a graphic design.

There are a considerable number of additional commands
available for use with your printer, which create a variety of
specialized and rarely used effects. All are explained in detail, in the

66 The Last Whole TI-99/4A Book

manual, and no useful purpose would be served by including them
here.

Remember that the commands described here are applicable
only to the TI-99/4A Impact Printer. Other printers may use dif
ferent code combinations.

WORD PROCESSING WITH TI-WRITER

There are lots of word processing programs available, with a
wide variety of sophistication (and price), but not all can be used
with all types of computers. The one designed to function with your
TI-99/4A Home Computer is TI-WRITER, produced and marketed
by Texas Instruments.

Before discussing TI-WRITER in detail, we should mention
some of the shortcomings and limitations that are inherent in the
system. First, if you have done a lot of typing on a typewriter with a
conventional keyboard, regardless of whether or not you're a touch
typist, you'll need to get used to using the computer keyboard to
type text because of the awkward positioning of the quotation
marks, the question mark, and the asterisk. The upper and lower
case letters are controlled in the conventional manner, using the
SHIFT key rather than the ALPHA-LOCK key. It's a matter of
becoming accustomed to these features, but it may take a bit of
time.

Another drawback is that the screen can display only 40
characters per line at a time. If your left and right margins are set to
produce more than that number of characters per line, the screen
will keep scrawling from left to right and back again, making it dif
ficult if not impossible to read what you have written. But there is a
way to get around this. If you set your left margin tab at 21 and the
right margin tab at 60, all your typed lines will be 40 characters
wide and it will be easy to read what you have typed. Then, after the
document has been completed and has been edited and checked for
errors, you can reformat the document to the proportions at which
you want it printed. Figures 5-5A, B, C on the following pages
shows a short document in the version in which it was originally
typed, with 40 characters per line and the right margin not justified,
as well as several ways in which it was reformatted and then
reprinted.

Word Processing 67

I find the instruction book that comes with TI-WRITER to be
rather awkward, and I will take you through a sufficient number of
the initial steps to help you become reasonably comfortable. Let me
suggest that you sit down at your computer (turned off) and follow
me through, step by step, because reading without doing tends to
be confusing.

ACTIVATING THE SYSTEM

Before you start it is advisable that you make a copy of the disk
provided as part of the TI-WRITER system and-then place the
original in a safe place. That way you can be sure you always have a
good disk to use to make another copy if something untoward hap
pens to the copy disk you'll be using from now on. The original disk

The idea of a word processor is to
enable the writer to type on and on
without worrying about coming to the
end o-f a line or about having to retype
entire pages o-f copy just because
something has to be deleted or some
material was accidentally left out.
You simply keep on typing and when you
•find that you need to correct a
typographical error you simply type
over the old copy and it is
automatically replaced by the new. And,
better still, you can change the -format
of your document to any other format
when it is time to have it printed.
Furthermore, because all your work is
saved on disk, you don't end up with a
filing cabinet full of carbon copies
that tend to clutter up the place.

This copy was originally typed with
40 characters per line, single spaced
and not right justified. I then used
the text formatter to print it in the
different versions that are reproduced
here.

Figure 5-5A. The copy was typed originally with up to 40 characters per line.

-
n

(O c -
» C
D

U
l

U
l

W I 3 o 3 C
D

Q
.

o
o

o o o C
D

C
O

T
3 C
D

T
h
e

i
d
e
a

o
f

a
w
o
r
d

p
r
o
c
e
s
s
o
r

i
s

t
o

e
n
a
b
l
e

t
h
e

w
r
i
t
e
r

t
o

t
y
p
e

o
n

a
n
d

o
n

w
i
t
h
o
u
t

w
o
r
r
y
i
n
g

a
b
o
u
t

c
o
m
i
n
g

t
o

t
h
e

e
n
d

o
f

a
l
i
n
e

o
r

a
b
o
u
t

h
a
v
i
n
g

t
o

r
e
t
y
p
e

e
n
t
i
r
e

p
a
g
e
s

o
f

c
o
p
y

j
u
s
t

b
e
c
a
u
s
e

s
o
m
e
t
h
i
n
g

h
a
s

t
o

b
e

d
e
l
e
t
e
d

o
r

s
o
m
e

m
a
t
e
r
i
a
l

w
a
s

a
c
c
i
d
e
n
t
a
l
l
y

l
e
f
t

o
u
t
.

Y
o
u

s
i
m
p
l
y

k
e
e
p

o
n

t
y
p
i
n
g

a
n
d

w
h
e
n

y
o
u

f
i
n
d

t
h
a
t

y
o
u

n
e
e
d

t
o

c
o
r
r
e
c
t

a
t
y
p
o
g
r
a
p
h
i
c
a
l

e
r
r
o
r

y
o
u

s
i
m
p
l
y

t
y
p
e

o
v
e
r

t
h
e

o
l
d

c
o
p
y

a
n
d

i
t

i
s

a
u
t
o
m
a
t
i
c
a
l
l
y

r
e
p
l
a
c
e
d

b
y

t
h
e

n
e
w
.

A
n
d
,

b
e
t
t
e
r

s
t
i
l
l
,

y
o
u

c
a
n

c
h
a
n
g
e

t
h
e

f
o
r
m
a
t

o
f

y
o
u
r

d
o
c
u
m
e
n
t

t
o

a
n
y

o
t
h
e
r

f
o
r
m
a
t

w
h
e
n

i
t

i
s

t
i
m
e

t
o

h
a
v
e

i
t

p
r
i
n
t
e
d
.

F
u
r
t
h
e
r
m
o
r
e
,

b
e
c
a
u
s
e

a
l
l

y
o
u
r

w
o
r
k

i
s

s
a
v
e
d

o
n

d
i
s
k
,

y
o
u

d
o
n
'
t

e
n
d

u
p

w
i
t
h

a
f
i
l
i
n
g

c
a
b
i
n
e
t

f
u
l
l

o
f

c
a
r
b
o
n

c
o
p
i
e
s

t
h
a
t

t
e
n
d

t
o

c
l
u
t
t
e
r

u
p

t
h
e

p
l
a
c
e
.

T
h
i
s

c
o
p
y

w
a
s

o
r
i
g
i
n
a
l
l
y

t
y
p
e
d

w
i
t
h

4
0

c
h
a
r
a
c
t
e
r
s

p
e
r

l
i
n
e
,

s
i
n
g
l
e

s
p
a
c
e
d

a
n
d

n
o
t

r
i
g
h
t

j
u
s
t
i
f
i
e
d
.

I
t
h
e
n

u
s
e
d

t
h
e

t
e
x
t

f
o
r
m
a
t
t
e
r

t
o

p
r
i
n
t

i
t

i
n

t
h
e

d
i
f
f
e
r
e
n
t

v
e
r
s
i
o
n
s

t
h
a
t

a
r
e

r
e
p
r
o
d
u
c
e
d

h
e
r
e
.

The idea of a

word processor is to
enable the writer to

type on and on
without worrying
about coming to the
end of a line or

about having to
retype entire pages
of copy just because
something has to be
deleted or some

material was

accidentally left
out. You simply
keep on typing and
when you find that
you need to correct

a typographical
error you simply
type over the old
copy and it is

automatically
replaced by the new.
And, better still,
you can change the
format of your
document to any
other format when it

is time to have it

printed.

Furthermore, because
all your work is
saved on disk, you
don't end up with a
filing cabinet full
of carbon copies
that tend to clutter

up the place.
This copy was
originally typed
with 40 characters

per line, single
spaced and not right
justified. I then
used the text

formatter to print
it in the different

versions that are

reproduced here.

Word Processing 69

Figure 5-5C. And here it is changed again, to only 20 characters per line.

70 The Last Whole TI-99/4A Book

contains a total of seven individual programs: EDITA1, EDITA2,
FORMAL FORMA2, PRACTICE, PRACTICED and FORMATDOC.
There is no need to copy the two practice programs onto your copy
disk, as they contain sample texts that you will not be using in the
future. (But you can copy them if you want to.) The procedure for
copying disk is described in Chapter 2.

Now take the plastic strip that was provided with your word proc
essor and place it in the slot above the keyboard. It will provide a
ready reminder of which key combinations produce what effects.
Note the red and gray dots. The red dotted line calls for the use of
the CTRL key in conjunction with another key. The gray dotted line
calls for the use of the FCTN key in combination with another.

Now insert the TI-WRITER module into the computer console
and the copy of the TI-WRITER disk into the disk drive. Turn on
your peripheral system, then the computer console and monitor.
With the usual title screen in display, type any key and you'll be
confronted by a menu that gives you the choice of:

1 TI BASIC

2 TI-WRITER

plus the latter in a whole bunch of different languages Type 2. The
screen will display:

^

PRESS

1 FOR TEXT EDITOR

2 TEXT FORMATTER

3 UTILITY

Word Processing 71

We'll ignore the third choice altogether, because it deals with op
tional peripherals with which we're not concerned. For now, type 1,
the display will change to:

A

Edit,Tabs,Files,Lines,Search, RecoverEdit

^

plus some other stuff we won't be using. Most likely your display
will be in the form ofwhite letters on a gray background, which may

72 The Last Whole TI-99/4A Book

not be the way you'd like your display to look. Type CTRL 3 several
times in succession to observe the different color combinations in

which your copy can be displayed and choose the one that seems
best to you.

Now set your left and right tabs in the manner discussed above.
Type T and press > ENTER < and then use the space bar to move
the cursor to the left margin position, which is the 1 after the second
blank in the top line and one position to the right of the 2 in the
second line. When the cursor is sitting over that spot, type L and
then move the cursor to the right margin position, which is the 6 in
the second line, and press R and > ENTER<. Your margins are now
set to a maximum line length of 40 characters. So far you have been
in what is called the command mode, which permits you to enter
commands rather than text. In this mode the lowercase letter set
ting does not work. To exit the command mode, type FCTN 9; the
display will return to what we had before. Now type E and press
> ENTER <. The top line will disappear and the cursor will locate in
line 0001, two-thirds of the way to the right of the screen. Nowtype
any copy or, ifyou can't be bothered to think ofwhat to write, simply
press a letter key and hold it down. As you will see, the lines fill one
after another, with the letters wrapping around to the next line
when the previous one is filled up. If you're typing actual words
with spaces between them, then the word wrapping always takes
place at the end of a word, so that words are not broken up the way
they are when you type past the end of a line without the word
processor.

When you have five or six lines filled with some sort of type, try
this: Move the cursor, using the arrow keys (FCTN E, S, D, or X), to
some place in the middle and, using the space bar, delete a couple of
words. You'll see that you're left with an empty hole in the line,
because the space bar produces blank spaces and blank spaces are
considered characters by the computer. Now move the cursor over
some letter and press FCTN 1, and you'll see that the letter disap
pears and. all characters to the right of it on that line have moved
one space to the left. Now move the cursor on top of the first
character in a word and type FCTN 2; everything to the right of the
cursor position will move to the next line down, giving you an op
portunity to insert as many new characters or words as you like.
Type in something. You now have a pretty messy-looking display,
with lines of differing lengths and holes in the lines. Type CTRL 2,

Word Processing 73

and everything to the right and below the cursor will be refor
matted, while text to the left and above the cursor is left unchanged.
Now place the cursor over some letter and type another letter. You
have replaced the previous letter with the new one.

What we have done up to this point is to use some of the basic
and most used editing commands. Now let's take a look at some of
the formatting functions. Type FCTN 9 to get back to the command
mode and then type T and press > ENTER < in order to display the
tab settings once more. Now, with the cursor on the far left tab posi
tion, type L and then, using the space bar, move the cursor all the
way to the right until it rests on top of the 8. Type R and press
> ENTER<, and the cursor will be located at the head of your copy.
Now type CTRL 2 and watch how your typed copy is now filling
each line with up to 80 characters and, as a result, your document
occupies only half the number of lines it did before. Now, using the
same procedure described above, change the left tab setting to 50
(the 5 on the second line) and the right setting to 60 and then refor
mat again (press CTRL 2). The result will be a long, skinny column
with up to only 10 characters per line (unless there is a single word
that is longer than 10 characters, in which case it will stick out to
the right).

Next we might waste a sheet of paper by printing whatever we
have on the screen. The command PF (for Print File) prints the
material that is currently in display and in the computer memory.
Press PF and > ENTER <, which results in this request in the top
line:

^\

PRINT FILE, enter devicename:

^

which asks that you type in the printer identification, which, in the
case of the TI-99/4 Impact Printer is RS232. Type it and press

74 The Last Whole TI-99/4A Book

> ENTER < after making sure that your printer is turned on, and
the printer will print your document in the form in which it was last
displayed.

In most cases you will want to save what you have typed on disk
rather than send it directly to the printer. To do that, first remove
the TI-WRITER disk from the drive and replace it with a formatted
working disk on which there is ample space. The command to use
for this purpose is SF, for Save File. When you're satisfied that you
want to save what you have typed, type SF and press > ENTER < to
produce this display in the top line:

SAVE FILE, enter filename:

Type in any valid file name, which is the name that must be used in
the future to load the file back into the computer or to cause it to be
printed. But the file name must include the identification of the disk
drive to be used. Here is an example:

DSK1.TEST

If you now press > ENTER < the disk drive will start whirring and
after a few moments your precious prose will be preserved forever
on the disk. After this, in order to return to the command mode, you
must once more replace the working disk with the TI-WRITER disk,
though you may continue typing without first changing disks. This

Word Processing 75

is important, because it is good practice to save your material every
10 minutes or so, just to make sure that a sudden and unexpected
power interruption doesn't result in your losing pages and pages of
work. Keep saving your work in bits and pieces, using the same file
name, and the computer together with the disk drive will replace
the previous material with the new version.

You're now ready to go to work. All the other functions and com
mands, and they are legion, are ofonly secondary importance. We'll
discuss them next, one after another.

FUNCTIONS AND COMMANDS

This long list of commands and functions may at first seem in
timidating. Don't let it worry you. For most day-to-day use you
won't need to remember more than a few. Furthermore, many func
tions can be invoked by using either one of two key combinations
(apparently as a convenience for touch typists).

Editing Functions

These are the functions that are available when you're operating
in the edit mode, the mode that is invoked by typing E and that is
used to type any kind of document.

Cursor Movements Commands

ARROW KEYS are the four key combinations that can be used to
move the cursor to any spot on the screen within the left and right
margin limits without blanking out the text across which it is moved.
These key combinations include the repeat function, which means
that holding the keys down will cause the cursor to continue to
move in the selected direction. FCTN D or CTRL D moves the cursor

to the right. FCTN S or CTRL S moves the cursor to the left. FCTN E
or CTRL E moves the cursor up. FCTN X OR CTRL X moves the
cursor down.

76 The Last Whole TI-99/4A Book

FCTN 7 or CTRL I moves the cursor to the next tab setting to the
right. The cursor can also be moved by using the right arrow-keys.

CTRL T moves the cursor one tab setting to the left. The left arrow
keys can also be used.

CTRL V moves the cursor to the left margin position on the line on
which it is currently located.

CTROL L moves the cursor to the upper left-hand corner of the
screen without otherwise affecting the display.

CTRL 7 or CTRL W places the cursor over the first letter of the
next word on the line on which it is currently positioned.

Insert and Delete Commands

FCTN 1 or CTRL F causes the character on which the cursor is
located to be deleted, moving all text to the right of the cursor posi
tion one space to the left.

FCTN 2 or CTRL G causes the text at the cursor position to be split,
moving everything to the right of the cursor down one line. This
permits the insertion of a single character, a word, or entire
sentences. After the additional material has been typed in, use the
reformat function (CTRL 2 or CTRL R) to reorganize the text into
the desired format.

CTRL K deletes everything to the right of the current cursor posi
tion to the end of the line on which it is located.

FCTN 3 or CTRL N deletes the entire line on which the cursor is
located, moving all the text below that line one line up.

FCTN 8 or CTRL O causes a blank line to be inserted above the line
on which the cursor is located. It then automatically repositions the
cursor on that newly created blank line.

Word Processing 77

Paragraph Commands

CTRL 4 or CTRL J moves the cursor to the first character in the
next paragraph or, if no next paragraph exists, onto the last line of
the existing text.

CTRL 6 or CTRL H moves the cursor to the first character of the
previous paragraph.

CTRL 8 or CTRL M inserts a carriage return and one blank line
and thus causes the next copy to start a new paragraph. A funny
little symbol like a tiny "c" and "r" appears on the screen. This
symbol is not printed when the text is sent to the line printer.

Miscellaneous Commands

CTRL A or FCTN 4 scrolls the display on the screen 20 lines up,
meaning that the 20 lines below the current display are displayed.

CTRL B or FCTN 6 is the opposite! It displays the 20 lines above
the current display.

CTRL C or FCTN 9 switches from the edit mode to the command
mode. It can also be used to cancel a command if it is used before
> ENTER < has been pressed.

CTRL Y is the left margin release. The cursor must be moved to the
left margin before this command is used. It then permits text entry
to the left of the left margin.

CTRL 1 or CTRL Z can be used to recover accidentally deleted
text, assuming that no other key has been pressed between this and
the delete command.

CTRL 2 or CTRL R is the reformat command. The reformatting
action starts at the cursor position and continues downward to the
next carriage return (end of paragraph).

78 The Last Whole TI-99/4A Book

CTRL 3 is used to change the colors in which the screen and the
text are displayed. It can be used repeatedly to show all available
color combinations.

CTROL 5 replaces the line on which the cursor is positioned with
the copy on the line above that position. (I can't imagine why.)

CTRL 9 or CTRL P tells the line printer to start a new page. It in
serts funny little pa and cr symbols on the screen, which are not
printed.

CTRL O turns the automatic wordwrap off or, when it is off, turns it
back on.

FCTN = enters the command mode or, when used with the main
menu in display, returns the title screen.

FCTN 5 scrolls the screen window 20 spaces to the right and, when
the far right has been reached, it scrolls it back again to the far left.

FCTN 0 is a toggle function that removes or displays the line
numbers on the screen.

Formatting Commands

Formatting commands are often called dot commands, because
they are all preceded by a period. They should, under normal cir
cumstances, be entered at the head of the document that is to be
created, but they may also be entered later to change or adjust
previously entered instructions.

.AD creates right-margin justification. It must be used in conjunc
tion with the fill command (.FI). -

.BP causes the printer to start a new page, regardless of the number
of lines on the preceding page.

Word Processing 79

.CE (and number) centers as many lines as are indicated by the
number between the left and right margins. When used without a
number, it centers the next line only.

.CO (text) causes text to be ignored by the printer. The text may
not exceed 76 character spaces in length. It can be used to insert
comments that are not part of the actual document.

.FI is thefill command, which causes as many words as possible to
be placed on a line without going beyond the right margin. It must
always be used if right-margin justification is desired, or if the docu
ment is to be printed in a format that differs from the one in which it
was created.

.FO (text) (%) places text at the foot of the page. The percent sign
(SHIFT 5) indicates the location of consecutive page numbers, if
any.

.HE (text) (%) places header text at the top of the page (line 3). The
percent sign indicates the location of consecutive page numbers, if
any.

.IN (and number) is used to create an indent in the first line of any
paragraph. If the number is used without a + or — sign, the
number represents the column number counting from the first col
umn. If it is used with a plus or minus symbol, it is counted relative
to the left margin limit.

.LM (and number) sets the left margin to the column position in
dicated by the number. It may be used anywhere within the docu
ment to change the left margin.

.LS (and number) controls line spacing. The default is single spac
ing. The number causes double spacing, triple spacing, and so on.

.NA turns off right-margin justification. It is the default condition.

80 The Last Whole TI-99/4A Book

.NF turns offthefdl command (.FI) in order to permit printing por
tions of a document in the format in which they were originally
typed.

.PA (and number) determines the page number with which
numbering is to start. It can be used with a + or —sign, in which
case the numbering is figured relative to previous page numbers.

.PL (and number) controls the number of lines (including blank
lines) that are printed on each page. The default is 66, which is
usually too long for the average 8.5-inch by 11-inch page.

.RM (and number) sets the right margin (see .LM).

.SP (and number) inserts as many blank spaces as are represented
by the number. When used without a number, it inserts one blank
space.

SHIFT 2 (@) overstrikes each word in front ofwhich it is placed. To
overstrike more than one word, use the symbol before each word.

SHIFT 6 0 can be placed in a space between two words that you
want to have appear on one line. The symbol is not printed.

SHIFT 7 (&) underlines the one word in front of which it is placed.
To underline more than one word, use the symbol before each word
to be underlined.

Special Functions

What follows are a number of special functions that are available
with your word processing system, but that are probably of rather
limited interest to most users. They involve combining various files
stored on disk to create personalized form letters for mailing lists or
to otherwise permit entering variable information while a docu
ment is being printed.

Word Processing 81

File Management Commands

.IF (and file name) causes the textformatter to consider the call
ing file, the document containing the command, and the file iden
tified by thefile name as one document. Although it is not possible
to have the called file (identified byfile name) call up a third file, the
original document can be used to call up more than one file. Here is
an example:

r

V.

• FI

.AD

. LM 4

.RM 6£

.PL 55

.HE Garrison

. IF DSK1.CHAPTER 1A

. IF DSK1.CHAPTER IB

. IF DSK1.CHAPTER 1C

& TI &99/4A

Here the left margin for all files is set at 4 and the right margin at 62
and the text is right-justified. Each page is to contain 55 lines
(including blank lines), and the header will be printed at the top of
each page with consecutive page numbers, continuing through all
three files, at the top right.

Form Letter Option

Here we are dealing with the creation of form letters that are to
be personalized by inserting data contained in another file, or by in
terrupting the printing process in order to permit us to type in the
code that represents the location where variable information is
stored.

82 The Last Whole TI-99/4A Book

.ML (and file name) calls the file that was created to contain the
variable data to be included in the form letter that is the calling
document. If yours is a single-disk-drive system, both, the calling
document and the called-up file must be on the same disk.

(number), where the number must be in the range from 1 to 99,
defines the variable to be used. The variable may either be iden
tified by number or typed in by the user.

For more detailed information on this option, study the ap
propriate section in the TI-WRITER Reference Guide (pages
111-113).

WORD PROCESSING WITHOUT
A WORD PROCESSOR

If you're one of many who would like to use your computer to
take the place of a typewriter, but the amount of writing you do
doesn't seem to justify the expense of a word processing program,
you do have an alternative. Granted, the method I shall describe is
not suitable for long documents, but it can be used for letters, notes,
recipes, or other written material of limited length.

You could, of course, simply use the PRINT #1: command
before each line of text. Each line would have to be limited to the
number of characters that your printer is set up to type per line,
plus the line number plus space plus PRINT #1. Assuming that your
line numbers consist of three digits and your printer prints 80
characters per line, the total number of characters per line would be
93, which places the last permissable character into the fourth line
under the T of PRINT. Although this method is feasible, it's a bit
cumbersome, but by writing a simple program, it is possible to
simplify the task considerably.

THE NO-WORD PROCESSOR PROGRAM

The program uses DATA.. .READ statements, and allows you to
enter as much text as your heart desires or as the RAM in your com-

Word Processing 83

puter is capable of accepting. The program first displays two blocks
of copy that explain how it works. It then displays a menu:

r

1 Enter text

2 Print text

Which?

I have included three DATA lines, starting with line 350. The lines
use 80 characters per printed line plus nine characters for the line
number-space-DATA-space (remember, spaces are counted as
characters). If you're using commas in your text, you must enclose
the entire text line in quotation marks, which are not counted as
characters. If you want to use a left margin of, say, 10 characters,
use opening quotation marks, then 10 blank spaces, then as many
text characters as you want on the line, and then closing quotation
marks. If you want your copy to appear double-spaced, use a comma
at either the beginning or the end of the line (outside any quotation
marks). The computer then assumes another DATA item, one that
is blank, and will thus skip a line in the printout. Two such commas
would produce triple spacing, and so on.

Let's look at the program line by line:

Lines 100 and 110 are REMarks.

Lines 120 and 130 clear the screen and send the computer across
the three usual subroutines.

Lines 140-160 are the subroutines.

Lines 170-230 place the explanations of the program into display.
These lines are optional and can be eliminated if you like.

84 The Last Whole TI-99/4A Book

100

110

120

130

140

150

160

170

180

190

per

200

210

220

THE NO-WORD PROCESSOR PROGRAM

REM N0-W0RDPR0CESS0R PROGRAM

REM TI EXTENDED BASIC

CALL CLEAR

GOTO 170

PRINT " '• " :: RETURN
FOR X=l TO 8 :: PRINT :: NEXT X :: RETURN
INPUT "Press >ENTER< ":E* :: RETURN
G0SUB 140

PRINT "To enter text, use DATA
entry to as many characters as
print per line." :: PRINT

PRINT "Here is a sample -for 80
per line:" :: PRINT :: PRINT

PRINT "300 DATA This is the time -for all good men to
come to the aid o-f their party. This is the" :: GOSUB
140

GOSUB 160 :: CALL CLEAR :: GOSUB 140

PRINT "I-f you're using commas in a line o-f text, the

lines, limiting text
your printer will

characters

line must be enclosed in quotation
NOT count as characters."

marks! They do

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

GOSUB 140

GOSUB 140

PRINT

PRINT

INPUT

GOSUB 150 GOSUB 160 CALL CLEAR

1;" Enter text" :: PRINT

2;" Print text" :: GOSUB 140 :: GOSUB 150
"Which? ":WHICH

ON WHICH GOTO 350,290
OPEN #1:"RS232"

ON ERROR 340

READ TEXT*

PRINT #1:TEXT$

GOTO 300

CLOSE #1 :: END

DATA This is sample text entered by using the
DATA/READ program -for text entry. The
DATA printer is set to type 80 characters per line.
With the line number—space-DATA-
DATA space the total number o-f characters that can be
used per line number is 89.

Word Processing 85

Lines 240-270 display the menu, asking whether you want to
enter text or print it.

Line 280 sends the computer to one of two line numbers, de
pending on your choice.

Line 290 accesses the line printer.
Line 300 is used to avoid an OUT OF DATA ERROR message when
the last text line has been printed.

Line 310 READs one text line at a time.

Line 320 PRINTS that line.

Line 330 sends the computer back to line 300 to repeat the pro
cedure for the next line.

Line 340 disengages the line printer after all text has been printed.
Line 350 and up can be used for text. The DATA lines appear at
the end of the program (after END) in order to avoid having to
change line numbers to accommodate lots of DATA lines.

I suggest that you save the program without the DATA lines
under a file name such as WORDPRO. Then, ifyou want to save any
of the text you have produced, save it under a different file name.
That way you won't have to erase a lot of lines when you want to
write something else. Later on, when the copy ofyour material is no
longer needed, you can simply erase the file from disk or tape.

If your printer is capable of friction feeding (the TI-99/4A Impact
Printer is not), you can print on letterhead and even print addresses
on envelopes by arranging your line spacing accordingly.

6

TI BASIC and
TI EXTENDED

BASIC

TI BASIC and TI EXTENDED BASIC are two languages the
TI-99/4A Home Computer can deal with. Although you need not
become thoroughly familiar with all the words, phrases, com
mands, and statements that make up these languages, you will find
a reasonably clear explanation of each, along with some examples,
in this chapter.

COMMANDS AND STATEMENTS

COMMANDS AND STATEMENTS IN

TI BASIC and TI EXTENDED BASIC

All commands and statements in the following list are available
in both TI BASIC and TI EXTENDED BASIC. Where use of the com

mand or statement is different in the two versions, the differences
are noted. For those of you using TI EXTENDED BASIC, an addi
tional list of commands and statements available only in this ver
sion begins on page 102.

86

TI BASIC and TI EXTENDED BASIC 87

ABS (xxx) returns the ABSsolute value, meaning the positive value
of any numeric data enclosed in parentheses: ABS (123.4) produces
123.4, but ABS(-123.4) will also produce 123.4. This is useful if you
want to determine the difference between two values and it requires
fewer program steps to deduct the larger value from the lesser one:

10 A = 50-100

20 A = ABS(A)
30 PRINT A 50

or simpler still:

10 A=ABS(50-100)
20 PRINT A 50

which illustrates that you can use simple digits, variables, or
numeric calculations inside the parentheses in conjunction with
the ABS function.

ASC("characters") displays the ASCII character code for the first
character of the string enclosed in quotation marks. (Ican't say that
I have ever found this particularly useful.)

ATN(xxx) returns the arctangent or the measure of the angle, in ra
dians, the, tangent of which is represented by xxx. In order to con
vert radians to degrees, multiply the result by 180/PI. PI is available
only in EXTENDED BASIC; in TI BASIC you must type in the
values of pi, 3.14159265359.

BREAK may be used by itself or followed by one or several line
numbers. When used by itself, it stops program execution when the
command is encountered. When used in conjunction with one or
several line numbers (separated by commas), it stops program ex
ecution at those line numbers. Program execution can be resumed
by typing CON. See also UNBREAK.

BYE returns the computer to the title screen and closes all open
files. It is preferable to using the QUIT (FCTN = in TI BASIC or
SHIFT Q in EXTENDED BASIC) command, because the latter
leaves files open, which may result in the loss of recorded data.

88 The Last Whole TI-99/4A Book

CALL is used in conjunction with a long list of subprograms that
are part of both TI BASIC and TI EXTENDED BASIC. When the
command is encountered, the computer executes the subprogram
before going on to the next program line. With TI BASIC the sub
programs are CHAR, CLEAR, COLOR, GCHAR, HCHAR, JOYST,
KEY, SCREEN, SOUND, and VCHAR; and with TI EXTENDED
BASIC the subprograms, in addition to the above, are CHARPAT,
CHARSET, COINC, DELSPRITE, DISTANCE, ERR, INIT, LINK,
LOAD, LOCATE, MAGNIFY, MOTION, PATTERN, PEEK, POSI
TION, SAY, SPGET, SPRITE, VERSION. All these subprograms are
explained in detail at the end of this chapter (page 107). The CALL
statement can be used as an immediate execution command or as a

statement in a program. It can also be used to invoke subprograms
that you write yourself, but in that case it cannot be used in the im
mediate mode.

CHR$(xx) returns the character represented by the ASCII
character code number enclosed in the parentheses. It is the reverse
of the ASC function.

CLOSE #xx closes a data file with the file number xx that was

previously OPENed. Although open files are closed automatically if
you edit the program or if you use any of the commands BYE, RUN,
NEW, OLD, SAVE, or LIST (to a device, such as the printer), it is
always good practice to use the CLOSE statement when access to
the file is no longer required. Several of the programs reproduced in
this book include examples of the use of OPEN and CLOSE.

CONTINUE, abbreviated as CON, restarts program execution after
it has been interrupted by a BREAK statement within the program,
or by typing SHIFT C in TI EXTENDED BASIC or FCTN 4 in TI
BASIC.

COS(xxx) returns the trigonometric cosine of a radian number or a
numeric variable representing such a number. In order to obtain
the cosine of a number representing degrees, multiply that number
by PI/180 (PI = 3.14159265359. PI is available in EXTENDED
BASIC only.)

TI BASIC and TI EXTENDED BASIC 89

DATA makes it possible to store long lists of alpha-numeric data
that can be READ subsequently when called upon to do so by the
program. Individual DATA items must be separated by commas,
and commas may not be used within such items, unless the entire
item is enclosed in quotation marks:

100 DATA 1,2,3,4,5,6
200 DATA "10,000".ABC,"ABC Company, Inc."

See also the related statements READ and RESTORE.

DEF is used to permit you to DEFine your own function. It must be
used in conjunction with function identifiers, followed by an equal
sign (=), followed by the desired result:

10 DEF SALARY = HOURS*PAY

defines the variable SALARYas representing the result of multiply
ing the value assigned to HOURS by the value assigned to PAY
whenever it is encountered in a program.

DELETE, when used in conjunction with the identifier for the
device and the name of a file, causes that file to be erased:

DELETE "DSK1.TIFILE"

in the immediate execution mode, or:

10 INPUT "File name?":FN$
20 DELETE FN$

in the deferred execution mode.

DIM is used to reserve space in the computer memory for arrays,
either numeric or string. It must be used inconjunction with the ar
ray name and a numeric expression (integer). The number of such
numeric expressions is limited to three in TI BASIC and to 10 in TI
EXTENDED BASIC. For more details on the use of DIM, see the ex
planation of arrays in Chapter 7.

90 The Last Whole TI-99/4A Book

DISPLAY is used differently in the two versions of BASIC. In TI
BASIC it is identical to the PRINT statement except that it can only
be used to write to the screen and not to any other device. In TI EX
TENDED BASIC it can be used in conjunction with AT, BEEP,
ERASE ALL, and SIZE to control the placement of data on the
screen:

10 DISPLAY AT (10,3):X

places the value represented by X into the tenth row starting at the
third column:

10 DISPLAY ERASE ALLX

causes the screen to be cleared of all data before the value of X is
displayed in the left bottom corner of the screen:

10 DISPLAY AT (A,B) SIZE(D)BEEP:A$

displays the string assigned to the variable A$ in the row that cor
responds to the value assigned to the variable A starting at the col
umn number represented by the variable B, limiting its length in
terms of characters to the number represented by the variable D
while at the same time sounding a beep (assuming that the volume
on the monitor is turned up).

END tells the computer that the end of. the program has been
reached.

EOF stands for End Of File and is used in conjunction with a file
number to determine whether the end of that file has been reached:

10IFEOF(1)THEN 1000

tells the computer to go to line 1000 upon reaching the last item in
file number 1.

TI BASIC and TI EXTENDED BASIC 91

EXP is used in conjunction with a numeric expression in paren
theses to produce the exponential value:

10X= EXP(15)

will produce 3269017.372.

FOR. . .TO (STEP). . .NEXT causes the computer to go around in
circles until a certain condition has been met (a loop):

10 FORX=1 TO 10

20 PRINT

30 NEXTX

will cause 10 blank lines to be placed into display before program
execution continues:

10 FORX=1 TO 10 STEP 2

20 PRINT X

30 NEXT X

will cause the program to print:

r

before continuing program execution.

92 The Last Whole TI-99/4A Book

10 FORX=1 TO 100

20 READA$
30 IF A$ = "SMITH" THEN GOSUB 50 ELSE GOTO 40
40 NEXTX

50 READ B$,C$
60 PRINT B$;" ";A$;", ";C$
70 RETURN

causes the computer to search through up to 100 DATA items until
it finds the name SMITH. At that point it goes to a subroutine to
READ the strings assigned to B$ and C$ and then to print them
(JOHN SMITH, CHICAGO), after which it returns to the loop.

GOSUB is used in conjunction with a line number and the RETURN
statement to send the computer to a subroutine and then to
RETURN it to the line number that follows the GOSUB statement:

10 GOSUB 1000

sends the computer to line 1000 to execute all following line
numbers until a RETURN statement is encountered, after which it

goes back to line 20.

GOTO is used in conjunction with a line number to tell the com
puter to go to that line number and to continue execution from
there. The difference between GOSUB and GOTO is that with the
latter the computer does not go back to where it came from unless
another GOTO statement sends it to another line number.

IF.. .THEN.. .ELSE is used to specify an action based on whether
or not a condition has been met. The ELSE portion is optional:

or

or

or

10 IFA = 25THEN 100

10 IF A = 25 THEN 100 ELSE 200

10 IF A = 25 THEN GOSUB 100

10 IF A = 25 THEN GOSUB 100 ELSE GOSUB 200

TI BASIC and TI EXTENDED BASIC 93

In the first example the computer is sent to line 100 IF A represents
the value of 25; if not, the computer goes on to the next line. In the
next example the computer goes to either one of two lines depend
ing on the value of A. In the third example the computer goes to a
subroutine if the condition is met and then returns to the next line
after 10. In the fourth example the computer goes to either one of
two subroutines depending on the value of A.

INPUT halts program execution until data have been keyed in and
> ENTER < has been pressed. The statement is used to assign
numeric values or string expressions to numeric or string variables:

10 INPUT "Your name? ":NAME$
20 INPUT "Your phone number? ":PN or
10 PRINT "Your name?"

20 INPUT NAMES
30 PRINT "Your phone number?"
40 INPUT PN

In the first two examples, the prompt line appears along with the IN
PUT statement, followed by a colon and then the variable. In the
last two examples, the prompt is represented by a PRINT statement
and the INPUT statement is on a separate line, producing a ques
tion mark (?) on the screen to ask you to key in the data to be assigned
to the variables.

INPUT (with files) is confusing, because it refers to reading data
FROM data files INTO the computer RAM. For more details on
statements related to data files, see the data file information in
Chapter 7.

INT is used in conjunction with a numeric expression enclosed in
parentheses and returns the INTeger of that numeric expression:

10 A = INT(123.45)

produces 123.

94 The Last Whole TI-99/4A Book

10 A = INT (1.99999)

produces 1.

10 A = INT(123/4)

produces 30, although the actual result of this numeric expression
is 30.75.

LEN is used in conjunction with a string expression to determine
the number of characters in a string:

10 PRINT LEN ("ABC")

prints 3.

10 XX= LEN("ABCD")

assigns 4 to the variable XX.

10 PRINT LEN (" ")

prints 1, but

10 PRINT LEN ("")

prints 0.

LET is optional. In practice it is nearly always omitted. The purpose
of the statment, whether used or omitted, is to assign values to
variables:

10X=14

assigns 14 to X.

10X=1<3

assigns —1 to X, because 1 is indeed smaller than 3.

10X = 3<1

TI BASIC and TI EXTENDED BASIC 95

assigns 0 to X, because 3 is not smaller than 1.

10 X$= "Harry"

assigns Harry to X$.

10 X= 10/2

assigns 5 to X.

10X = A + B

assigns the sum of the values assigned to A and B to X.

LIST causes program lines to be displayed or printed. Used without
line numbers it LISTs all program lines from the lowest to the
highest. Used with line numbers it lists those lines.

LIST

LIST 250

LIST 250 -

LIST -250

LIST 250-500

LIST "RS232"

LIST "RS232" 250-500

In the first instance, all program lines are displayed. In the second,
line 250 is displayed. In the third, all lines above 250 are shown.
Next all lines up to line 250 are shown. In the fifth example, lines
250 through 500 displayed. In the sixth example,* all program lines
are printed by the line printer. And in the last example, lines 250
through 500 are printed by the line printer.

LOG returns the natural logarithm of a numeric expression as long
as that expression is greater than zero:

10A=LOG(15)

assigns 2.708050201 to the variable A.

96 The Last Whole TI-99/4A Book

10 A = LOG (3*5)

does the same.

10A = LOG(X/Y)

also does the same if X equals 45 and Y equals 3.

NEW clears the screen and the computer memory of all previously
stored data, preparing it to accept a NEW program. Be sure to SAVE
anything that you don't want to lose before using NEW.

NEXT See FOR. . .TO.

NUMBER, abbreviated NUM, causes the computer to create line
numbers automatically: NUM starts numbering with 100, 110, and
so on; NUM 1000 starts with 1000, 1010, and so on; NUM 1000, 100
starts with 1000, 1100, 1200, and so on.

OLD loads a program from disk or cassette into the computer RAM.
It must be used with the name of the device and the name of the
program to be loaded: OLD "DSK1.PROGRAM" loads the program
named PROGRAM from the disk in drive 1 into RAM.

ON GOSUB is used to send the computer to a subroutine if the
variable used represents a certain number:

10 FORX = 1 TO 5

20 ON X GOSUB 100,200,300,400,500
30 NEXTX

sends the computer consecutively to five different subroutines. The
value of the variable (X) must start with 1. Thus:

10 FORX = 5TO10

20 ON X-4 GOSUB 100,200,300,400,500
30 NEXTX

would have to be used to make sure that the first value controlling
the GOSUB statement is 1.

TI BASIC and TI EXTENDED BASIC 97

ON GOTO works the same way as ON GOSUB, except that the com
puter goes to a branch rather than a subroutine.

OPEN opens an already existing data file or creates a new file in
conjunction with programs designed to interact with files recorded
on disk. For details see the section on file programs in Chapter 7.

OPTION BASE 0 or OPTION BASE 1 sets the lowest acceptable
subscript of an array to either zero or one. For more on the subject,
see the section on arrays in Chapter 7.

POS assigns the position of a certain string character within a
string to a numeric variable:

10 X=POS("ADAM","A",1)

assigns the value of 1 to the variable X, because the computer was
told to search the string starting with the first character (1), and the
letter A was the first character encountered.

10 X=POS("ADAM","A",2)

assigns the value of 2 to the variable X, because the computer was
told to start the search with the second character (2), and the letter
A was the second character found.

10 X = POS("ADAM","A",4)

assigns the value of 0 to the variable X, because the computer was
told to start the search at the fourth character (4), and no letter A
was found.

PRINT causes data to be displayed on the screen:

10 PRINT 123

displays 123

98 The Last Whole TI-99/4A Book

10 PRINT "ABC"

displays ABC

10 PRINT 1,"ABC"

displays 1 ABC

10 PRINT 1;"ABC"

displays 1ABC

10 PRINT A.B.C

displays the numeric values assigned to A, B, and C spaced apart. If
A = 1, B = 2, and C = 3, the display will be:

10 PRINT A;B;C

will result in 1 2 3

RANDOMIZE is used in conjunction with the RND function to pro
duce an unpredictable sequence of numbers. If it is followed by a
numeric expression or a variable representing a numeric expres
sion, the same sequence of numbers will result each time.

TI BASIC and TI EXTENDED BASIC 99

READ returns the items listed in DATA lines. See DATA.

REM stands for REMark and is used to enter explanations into pro
grams; all REM lines are ignored by the computer.

RESEQUENCE, abbreviated RES, can be used to change the line
numbers throughout a completed and debugged program to regular
intervals. Do not use this command unless you're sure that no fur
ther editing is needed, because you're likely to have trouble finding
what you're looking for. RES can be used with and without line
numbers: RES changes line numbers to 100, 110, 120, and so on;
RES 1000 changes line numbers to 1000, 1010, 1020, and soon;
RES 1000, 100 results in 1000, 1100, 1200, and so on; RES, 100
results in 100, 200, 300, and so on.

RESTORE is usually used to make sure that the items contained in
DATA lines are READ from the beginning. But there are, in fact,
several ways in which the statement can be used:

10 RESTORE

10 RESTORE 250

10 RESTORED!

10 RESTORE #2,REC 5
10 RESTORE #3,REC A

The first example causes items in DATA lines to be READ from the
beginning. The next causes them to be READ starting at line 250.
The third sets the next record to be the first record in file #1 that will

be used with the next PRINT, INPUT, or LINPUT statement. In the
fourth example, record number 5 (the sixth record) in file #2 will be
used; and in the last example, the record number in file #3 is the
number assigned to the variable A.

RETURN See GOSUB, ON GOSUB, and ON ERROR.

RND returns a random number that is greater than zero but less
than one, which is why it is nearly always used in conjunction with
some type of numeric expression. Unless it is used in combination
with RANDOMIZE, it always returns the same number sequence.

100 The Last Whole TI-99/4A Book

10 X = INT(RND*16) + 1

assigns some number between 1 and 16 to the variable X.

10 X = INT(RND*(Y-Z+1)) + Y

produces a random number between the values assigned to the
variables Y and Z.

RUN is usually used by itself to start program execution. It can also
be used with a line number to start program execution at that line
number.

SAVE is used to SAVE a program on disk. It must be used in con
junction with the name of the disk drive to be used and the name
under which the program is to be SAVEd:

SAVE DSK1.PROGRAM

simply records the program on the disk in drive 1. When writing
programs, especially long ones, it is always a good idea to SAVE
them often during the process of program writing in order to avoid
inadvertant loss of your work. There are two other ways in which
the statement can be used in TI EXTENDED BASIC only:

SAVE DSK1 .PROGRAM.PROTECTED
SAVE DSK1.PROGRAM,MERGE

In the first example the program called PROGRAM is saved in such
a way that it can be RUN, but it cannot be edited, LISTed or SAVEd
again. In the second example the program is recorded in a manner
that permits MERGEing it with a program in the computer RAM.
See MERGE, in the listing for TI EXTENDED BASIC.

SEG$ stands for SEGment of a string. It is used to return a string
that consists of a portion of another string:

10 A$ = SEG$("JOHN DOE",1,4)

TI BASIC and TI EXTENDED BASIC 101

assigns JOHN to the string variable A$, because the computer was
told to use four characters starting with the first character (1,4).

10 A$ = SEG$("JOHN DOE",6,3)

assigns DOE to the variable by reading three characters, starting
with the sixth (6,3). Remember that blank spaces are counted as
characters.

SGN results in 1 if the numeric expression used is positive, 0 if it is
zero, and —1 if it is negative. (Seldom used.)

SIN returns the sine of a radian value. To convert degrees to ra
dians, multiply the degrees by PI/180 if you're using TI EXTENDED
BASIC, or by 3.14159265359/180 if you're using TI BASIC.

SQR is used in conjunction with a numeric expression and returns
the positive square root:

10 X = SQR(9)
20 PRINT X

prints 3

STOP terminates program execution. It is interchangeable with
END, except that it cannot be used after subprograms.

STR$ converts a numeric expression to a string:

10 A$ = STR$(110.7)

changes 110.7 into a string expression that cannot be used in
calculations. See also VAL.

102 The Last Whole TI-99/4A Book

TAB(x) causes data to start at a column determined by the number
in parentheses or, in TI EXTENDED BASIC, the value of a numeric
variable in parentheses:

10 PRINT TAB(8);"DATA"

or

10 A = 8

20 PRINT TAB(A);"DATA"

causes the word DATA to start in the eighth column.

TAN produces the trigonometric tangent of a radian expression. If
the angle is in degrees, the degrees must be multiplied by PI/180 in
TI EXTENDED BASICor the value of PI(3.14159265359) divided by
180 in TI BASIC.

TRACE displays the program lines along with all other program
data when the program is being run. A useful aid when editing.

UNBREAK either removes all BREAKpoints or only those
represented by a line-number list.

UNTRACE turns off the TRACE action.

VAL(string) produces the numeric value of a string that consists of
digits:

10 X =VAL("123")

assigns 123 to the numeric variable X.

ADDITIONAL COMMANDS AND STATEMENTS FOR
TI EXTENDED BASIC ONLY

The following commands and statements are available only
with TI EXTENDED BASIC.

TI BASIC and TI EXTENDED BASIC 103

ACCEPT is an alternative to the INPUT command that permits
placing the input data in a specific manner and position in the
display. The word can be used with a number of options, which
may be in any consecutive order. The functions ofACCEPT are best
explained by examples:

10 ACCEPT AT(8,3):DATA$

will place the typed-in data, whether numeric or string, into the
eighth row, starting at the third column from the left. DATA$ or
DATA (or any other character or character combination) represents
the variable to which the keyed-in data are assigned.

10 ACCEPT ERASE ALLX

will clear the screen of all previously displayed data and assign the
keyed-in data to the variable X while displaying the value ofX at the
bottom left corner of the screen.

10 ACCEPT VALIDATE("YN"):Y$

limits the characters that can be typed in and assigned to the string
variable Y$ to Y or N. Typing any other character causes the com
puter to go on to the next line without assigning anything to the
variable Y$.

10 ACCEPT AT(A,B)SIZE(C)BEEP VALIDATE(DIGIT,"XYZ"):W$

combines a number of the available options. It is assumed that A
and B are numeric variables, where A represents the row number
and B the column number where data will be displayed. The SIZE
option limits the number of characters that may be entered to the
numeric value assigned to C. The BEEP option causes a beep to
sound (assuming that the volume on the monitor is turned up)
before data may be typed in. The VALIDATE option limits the
characters that may be entered to digits or the letters X, Y, and Z
with the keyed-in data assigned to the string variable W$.

The options available for use in conjunction with VALIDATE,
which limits the type of input, are UALPHA, which permits all up
percase letters; DIGIT, which permits digits only; NUMERIC, which

104 The Last Whole TI-99/4A Book

permits digits and +, —, E, comma, and.decimal point; and string,
which permits the characters that make up the string and are
enclosed in quotation marks. When any of these options is used in
conjunction with VALIDATE, it must be enclosed in parentheses.

DISPLAY USING specifies the format in which a numeric expres
sion is to be displayed. In most instances it is used to limit the
number of displayed decimals. For example:

10 DISPLAY AT(A,B):USING "###.##":X

limits the number of decimals to two and the number of digits that
can be used to the left of the decimal point to three. Thus, if the
variable X represents 123.4567, the displayed figure will be 123.45.

IMAGE is used in conjunction with a string to control the way
numbers are displayed on the screen or printed by the line printer.
The use of IMAGE is very complicated and only rarely used; if
you're interested, check the details in the TI EXTENDED BASIC
manual.

LINPUT permits the assignment of an entire line or record to a
single string variable. This is another seldom used statement; you
can consult the manual for details.

MAX displays the greater of two numeric expressions or assigns it
to a numeric variable. For example:

PRINT MAX (5,10)

displays 10, and

10 X= MAX(Y,Z)

assigns the greater of the two values to X. Similarly,

10 X= MAX (-15,-36)

assigns—15 to X.

TI BASIC and TI EXTENDED BASIC 105

MERGE permits you to MERGE a program already recorded on
disk with a program that is currently in the computer RAM. Be sure
that the program lines used in the already-recorded program are
not the same as those used in the program currently in RAM: Other
wise, the new line numbers will replace the old. This command can
be used only with disks, and in order to work, the previous program
must have been SAVEd using the MERGE option:

SAVE "DSK1.PROGRAM ".MERGE

from which it is then recalled and MERGEd with the current pro
gram by using:

MERGE DSK1 .PROGRAM

MIN is the opposite of MAX.

ON BREAK can be used in two ways; ON BREAK STOP and ON
BREAK NEXT, where the first has the same effect as BREAK
whereas the second causes the computer to ignore a BREAK state
ment, assuming that that statement is used in conjunction with a
line number.

100 BREAK 250

ON ERROR determines what the computer does when an ERROR
message is encountered: ON ERROR STOP stops program execu
tion; ON ERROR 2000 sends the computer to line 2000, which must
be the beginning of a subroutine that ends with the RETURN
statement.

ON WARNING can be used in three ways:

ON WARNING PRINT

ON WARNING STOP

ON WARNING NEXT

The first causes the warning message to be displayed, after which
the program execution continues. The second prints the message

106 The Last Whole TI-99/4A Book

and halts program execution. The third ignores the message and
continues program execution.

PI stands for 3.14159265359. For instance, the following figures
the volume of a ball with a radius of 3:

10 BALL=Pr(4/3)*4*3

assigns 268.0825731 to the variable BALL.

PRINT USING limits the number of digits that will be displayed:

10 PRINT USING 'The total is $ ####.## ":6543:1234

will result in:

The total is $6543.12

REC must be used in conjunction with a file number in paren
theses, and it returns the number ofthe RECord that will be accessed
in an OPENed file at the next use of a PRINT, INPUT, or LINPUT
statement. Since records in files are numbered starting with zero,
number 3 is actually the fourth one.

RPT$ causes repetitions of a string, with the number of repetitions
controlled by a numeric expression. For example:

10 A$ = RPT$("HENRY",3)

results in:

/

^.

10 fl*=RPT*<"HENRYu,3>
HenryHenryHenry

TI BASIC and TI EXTENDED BASIC 107

SIZE, used in the immediate mode, displays the number of unused
bytes; if the Memory Expansion Peripheral is attached, it returns
the available bytes in the stack and in memory. SIZE produces
either:

r

11840 BYTES FREE

11840 BYTES FREE

224488 BYTES OR PROGRAM SPACE FREE

V.

with the numbers depending on the amount of program currently
in RAM.

SUB must be used as the first statement in a user-written sub

program. For details consult your manual.

SUBEND is used to mark the end of a subprogram.

SUBEXIT is used to exit a subprogram before its end.

SUBPROGRAMS

Both versions of BASIC include a number of built-in sub

programs that can be CALLed by using the CALL command along
with the name of the subprogram. In this section we look at these
programs in some detail, though I suggest that you also consult
your manuals to be sure you have a clear understanding of the func
tions and input requirements of those subprograms you intend to
use.

108 The Last Whole TI-99/4A Book

The subprograms are divided into two sections. The first section
deals with those that are available in both versions of BASIC, and
the second section deals with those that are available only in TI EX
TENDED BASIC.

Several of the subprograms dealing with the graphics capability
of the computer refer to SPRITES. Sprites are graphic characters
that can be manipulated in many different ways. Because the sub
ject is of considerable interest, especially to younger computer
users, I have devoted to the subject a large chunk of a separate
chapter, in which all ofthe sprite-related subprograms are explained
in detail and sample programs illustrate how they function.

Some programs listed in the program sections of this book make
use of subprograms and provide examples of how they can best be
utilized.

SUBPROGRAMS AVAILABLE WITH TI BASIC

AND TI EXTENDED BASIC

The following subprograms are available for both versions of TI
BASIC. A list of additional subprograms available only for TI EX
TENDED BASIC begin on page 122.

CALL CHAR must be used in conjunction with a character code
and a pattern identifier, with the latter in quotation marks and both
together in parentheses. For example:

CALL CHAR(32,"FFFFFFFFFFFFFFFF") '

converts the ASCII character code (32) that actually stands for a
blank space to a graphic character represented by those 16 Fs. All
graphic character identifiers must consist of 16 characters, and that
can get a bit confusing. The reason is this: The character position
on the screen is made up of 64 dots, which are arranged in an eight-
by-eight grid (see Figure 6-1). Each character in the string expres
sion is used to control the pattern of dots that make up the block,
and these characters must be in the hexadecimal code, where
0123456789ABCDEF, represent the numbers
from 0 through 15. I have found it very time-consuming and dif-

TI BASIC and TI EXTENDED BASIC 109

Figure 6-1. Characters are composed of an eight-by-eight grid of dots.

ficult to figure out the appropriate number-character combinations
that will produce certain results. For that reason it might be a good
idea to produce a subroutine that assigns various frequently used
patterns to a string variable that can then be used with all manner
of graphic programs:

1000 BLOCKS$ = "FFFFFFFFFFFFFFFF "
1010 TRIANGLE$= "0103070F1F3F7FFF"
1020 SQUARE$="FF818181818181FF"

and so on. Then, instead of having to type all those 16 characters
each time you use the CALL CHAR statement, you can replace it
with the string variable:

10 CALL CHAR(33,SQUARE$)

which is likely to avoid a lot of typing errors. Figure 6-2 (see page
110) shows how the block of 64 dot positions is divided into two

110 The Last Whole TI-99/4A Book

X
X
XX

Figure 6-2. The 64-dot block is divided into two halves, with one hexadecimal character
representing each line of four dots.

halves, each consisting offour horizontal and two vertical positions.
Each group of four horizontal positions is controlled by one of those
16 hexadecimal characters. Thus, it takes two of those characters to
control each horizontal line of eight dot positions. The characters
that produce the different available combinations of black (on) and
white (off) dots are shown in the illustration. Figure 6-3 shows a
number of likely patterns and the 16-character combinations that
will produce these patterns.

The CALL CHAR subprogram, by itself, only defines the shapes
to be used. In order to cause those shapes to be displayed, we have

TI BASIC and TI EXTENDED BASIC 111

Figure 6-3. Patterns created by using 16 hexadecimal numbers.

112 The Last Whole TI-99/4A Book

to use some of the other graphic subprograms that are designed to
tell the computer where to display the shape and what color com
binations to use. Beforewe go into that, type this short program just
for the fun of it:

100 A=5

110 B*5

120 GOSUB £30

130 CALL CLEAR

140 FOR X-l TO 15

150 CALL CHAR(33, BLOCK*)
160 CALL CHAR(33, SQUARE*)
170 CALL COLOR (1,9, 6)
180 CALL VCHAR(A,B, 33)
190 A=A+1

£00 B=B+1

£10 NEXT X

££0 GOTO ££0

£30 SQUARE*=,,FF818181818181FFM
£40 BLOCK*=,,FFFFFFFFFFFFFFFM
£50 RETURN

Now type RUNand watch what happens. A staircase develops, con
sisting alternately of solid blocks and open squares.

CALL CLEAR may be used in the immediate and deferred modes.
Either way, it CLEARsthe screen, leaving the prompt and cursor in
the bottom left-hand corner. It should be used with some frequency
when developing a program in order to keep the screen reasonably
uncluttered and easy to read. Here is a good way to achieve a
cosmetically attractive display in either version of BASIC:

10 CALL CLEAR

20 PRINT TAB(8); 'Program title"
30FORX=1 TO 10

40 PRINT

50 NEXT X

60 INPUT "Press > ENTER< ":E$

TI BASIC and TI EXTENDED BASIC 113

will place the program title more or less centered on the screen with
the prompt to press > ENTER < displayed on the left side of the bot
tom line. The CALL CLEAR command fills the screen with the

ASCII character 32. If that character is defined to represent
something else, such as some sort of graphic symbol, it will print
that symbol instead (see Figure 6-4). For instance:

10 CALL CHAR(32","OFOFOFOFOFOFOFOF"
20 CALL CLEAR

30 GOTO 30

will fill the screen with black and white (or, if you're in color, black
and varied colored) vertical lines until you press FCTN 4 (CLEAR) to
stop the program.

HJHU'HHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
^HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
^HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
^HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHH

Figure 6-4. Ifthe ASCII character code 32 is redefined as representing a letter or graphics
symbol, CALL CLEAR fills the screen with that symbol.

114 The Last Whole TI-99/4A Book

CALL COLOR is the subprogram that determines the colors that
will be used when the graphic shapes are displayed on the screen.
The command is used with three parameters, enclosed in
parentheses:

CALL COLOR (1,16,14)

where the first number is referred to as the character-set number,
meaning that the character to be displayed falls into one of 16
groups of ASCII character codes:

1 32-39

2 40-47

3 48-55'
4 56-63

5 64-71

6 72-79

7 80-87

8 88-95

9 96-103

10 104-111

11 112-119

12 120-127

13 128-135

14 136-143

15 144-151

16 152-159

(To determine which characters fall into each of those groups of
seven ASCII character codes, see the list ofASCII character codes in
Appendix I.) The second number in parentheses is the foreground
color, the color in which the selected character itself will be
displayed. The third number is the background color. Each
character appears, theoretically at least, on a square block of color.
That color is the background color. If transparent is selected, then
the character appears with an invisible background, meaning that
it is displayed against the color of the screen. (For control over
screen color, see CALL SCREEN). To see how all of this works, and
in order to be able to do a bit of experimentation, type this short
program:

r

^

TI BASIC and TI EXTENDED BASIC 115

100 GOSUB 150

110 CALL CLEAR

120 CALL COLOR(ft, B, C)
130 CftLL VCHARCD, E, F,G)
140 BOTO 140

150 INPUT "CHARACTER SET # ? *' :A

160 INPUT "FOREGROUND COLOR? '' :B

170 INPUT "BACKGROUND COLOR? ' 1 :C

180 INPUT "PLACE ON ROW # ? ' 1 sD

190 INPUT "AT COLUMN # ? • :E

200 INPUT "USE CHARACTER # ? «' :F

210 INPUT "REPEAT HOW OFTEN? •1 :G

220 RETURN

By typing different numbers and RUNning the program over and
over, you can find out what color combinations work for you, and
which onesare less thansatisfactory. Here is the listofavailable colors
and the number code associated with each:

1 transparent
2 black

3 medium green
4 light green
5 dark blue

6 light blue
7 dark red

8 cyan

9 medium red

10 light red
11 dark yellow
12 light yellow
13 dark green
14 magenta
15 gray
16 white

116 The Last Whole TI-99/4A Book

CALL GCHAR is a subprogram of limited usefulness. It is used
with three parameters in parentheses; as:

CALLGCHAR(10,15,X)

and causes the ASCII character code of the character displayed in
the tenth row in column number 15 to be assigned to the numeric
variable X. If you then add a PRINT X command, that ASCII
character code will be displayed on the screen.

CALL HCHAR and CALL VCHAR are two subprograms that con
trol the horizontal and vertical position in which a selected
character is displayed on the screen. Unless one or both of these
commands are used, no display results. Both commands are used
in conjunction with either three or four numeric expressions or
variables representing those expressions:

CALL HCHAR(A,B>C,D)
CALL VCHAR(A,B,C,D)

where A is the row number, B is the column number, C is the ASCII
character code, and the optional D represents the number of times
you want the character repeated, either horizontally or vertically or
both. Here is a short program designed to demonstrate the effect of
these two commands:

TI BASIC and TI EXTENDED BASIC 117

(\
100 GOSUB 180

110 CALL CLEAR

1£0 CALL SCREEN(S)

130 CALL COLOR<CS, F6, BG)
140 CALL HCHARCA, B, C, D)
150 CALL VCHAR(E,F, G, H)

160 INPUT "PRESS >ENTER< ":E*

170 GOTO 100

180 INPUT "HORIZONTAL ROW? " :A

190 INPUT "HORIZONTAL COL- ? ":B

£00 INPUT "ASCII CHAR. CODE? ":C

£10 INPUT "REPEAT HOW OFTEN? " :D

££0 INPUT "VERTICAL ROW? ":E

£30 INPUT "VERTICAL COL.? " sF

£40 INPUT "ASCII CHAR. CODE? " :G

£50 INPUT "REPEAT HOW OFTEN? " :H

£60 INPUT "SCREEN COLOR? " :S

£70 INPUT "CHARACTER SET? ":CS

£80 INPUT "FOREGR. COLOR? ":FG

£90 INPUT "BACKGR. COLOR? ":BG

300 RETURN

^

RUN the program a number of times, entering different values for
all the variables, and watch what happens. It's the best way to get a
feel for how all this works.

CALL JOYST causes input to the computer to be controlled by the
Wired Remote Controller, commonly referred to as the JOYSTick. It
can be used with commercially available game programs and with
certain types of graphic or sound programs that you might write
yourself. Since it must be used in conjunction with other sub
programs that we haven't discussed yet, we'll get back to it when
those associated subprograms are discussed. Suffice it to say for
now that the optional unit consists of two controllers, each with a
movable handle (joystick) and a red bar referred to as the fire but
ton. The unit is plugged into the nine-prong receptacle on the left
side of the keyboard console (not in the back, where there is an iden
tical outlet), and it can be attached at any time without affecting
programs or other data in memory.

118 The Last Whole TI-99/4A Book

CALL KEY is a complicated and difficult-to-understand program
that assigns certain codes to a variable, depending on which key
has been pressed. To get an idea, try this:

10CALLKEY(0,A,B)
20 IF B = 0 THEN 10

30 PRINT A,B
40 GOTO 10

If you now type RUN, absolutely nothing happens because the
variable B records whether a key has been pressed. If no key has
been pressed, the value of B remains zero. Now type A B C D E F;
the display will respond with:

where the numbers on the left side of the screen represent the ASCII
codes for the letters you typed, having been assigned, one after
another, to the variable A. The l's on the right represent the
number of key strokes that you made since the last time the com
puter encountered the CALL KEY statement. The statement can
also be used to split the keyboard into two nearly identical halves,
which can then be used by two persons to control the movement of
characters on the screen. It can also be used in conjunction with
CALL JOYST to affect the effect of pressing the fire button. There
are other uses, such as converting the keyboard to PASCAL. For

TI BASIC and TI EXTENDED BASIC 119

more details, consult the TI BASIC User's Reference Guide and

some of the sample programs included with the SOUND and
GRAPHICS commands.

CALL SCREEN works similarly to CALL COLOR, except that only
one number or variable is required in parentheses; as in:

CALL SCREEN(X),

representing the color you want the screen to be. The same color set
shown earlier is available for this command. You might want to
change the above program by adding two lines:

115 CALL SCREEN(S)
215 INPUT "SCREEN COLOR? ":S

in order to be able to experiment with different screen colors in com
bination with the previously used colors.

CALL SOUND permits the use of the computer to produce sounds
and, if used by someone with a degree of musical talent, actually to
play melodies. (Be sure that the volume on the monitor is turned
up.) The statement is used in conjunction with three or more
numeric expressions or numeric variables. Try this as a
demonstration:

V.

10 INPUT "DURATION? " :D

£0 INPUT "FREQUENCY? ":F

30 INPUT "VOLUME? " :V

40 CALL SOUND(A,B, C>

50 GOTO 10

120 The Last Whole TI-99/4A Book

For the inputs you can use 1 through 4250 for DURATION, where
every 1000 represents about 1 second. For FREQUENCY you can
use any number from 110 to 44733 for actual tones or —1 through
—8 for different types of noises. For VOLUME you can use any
number from 0 to 30, where 0 is the loudest and 30 the quietest.
After you have experimented in order to learn the effects of different
values for each of the three categories, you might try this:

r

^.

10 TONE=110

£0 FOR SCALE=1 TO 38

30 CALL SOUND (500,TONE,0)
40 T0NE=T0NE+55

50 NEXT SCALE

60 END

When you type RUN, the speaker plays a series of 38 ascending
notes.

The CALL JOYST command can be used in conjunction with
SOUND programs. A program in the little booklet that comes with
the joysticks permits you to use the Remote Control Device to con
trol the sounds you hear. I think it's more trouble than it's worth,
but it might give you some ideas about how to use this combination
of functions:

TI BASIC and TI EXTENDED BASIC 121

100 A*="CDEFGABC"

110 DIM N0TE(9),M(8, 8)
1£0 FOR 1=1 TO 9

130 READ NOTE<I)

140 NEXT I

150 DATA £6£, £94, 330, 349, 39£, 440,

494, 5£4, 40000
160 FOR 1=1 TO 9

170 READ X,Y,INDEX
180 M(X,Y)=INDEX

190 NEXT I

£00 DATA 8, 4, 1,8, 8, £, 4, 8, 3
£10 DATA 0, 8, 4, 0, 4, 5, 0, 0, &
££0 DATA 4,0,7,8,0,8,4,4,9

£30 CALL J0YST(1,X1,Y1)
£40 CALL JOYST(£,X£,Y£>

£50 Xl=Xl+4

£60 Yl=Yl+4

£70 X£=X£+4

£80 Y£=Y£+4

£90 CALL SOUND(-1000, NOTE <M(XI, Yl),0,NOTE(M

(X£, Y£),0)
300 PRINT SE6*(A*,M(X1,Y1>, 1)5SEB*(A*,M(X£,

Y£),l
310 GOTO £30

^ J

When this program is RUN, nothing happens until you operate the
joysticks. Both can be used simultaneously to produce harmony (or
disharmony). In line 100 a string of the available names of the notes
to be played is assigned to the string variable A$, which is later
broken down into its segments (using SEG$) in order, in line 300, to
display the note(s) being played on the screen. In lines 120-150, the
frequencies of the C scale are assigned to an array called NOTE.
Another array, called M, is established in lines 160-220, using the
subscripts 0-8. Nine values, 1-9, are READ and stored in M at loca
tions that correspond to the positions of the joysticks, and are then
incremented by 4. These values are then used in line 290 to select

122 The Last Whole TI-99/4A Book

the proper frequency from the NOTE array. Lines 230 and 240
cause the joysticks to be activated. The X and Y values are adjusted
in lines 250-280 to correspond to locations in the M array. Line 290
causes the tones to be generated, and line 300 displays the names of
the notes on the screen. Line 310 sends the computer back to line
230 to permit you to play as long as you like. The SOUND and the
GRAPHICS programs appear to be rather difficult to explain which
may be why it is hard to understand the explanations in the dif
ferent instruction manuals. A number of programs that make use of
these subprograms are included in the program section, and the
line-by-line explanations there will probably be more useful than a
lot of complicated theory.

A list of the numbers associated with musical tone frequencies is
contained in both the TI BASIC and the TI EXTENDED BASIC

manuals.

SUBPROGRAMS AVAILABLE IN

TI EXTENDED BASIC ONLY

CALL CHARPAT is similar to CALL GCHAR. It is used with two
parameters in parentheses, the first of which is the character code
that was assigned to a character created by the CALL CHAR pro
gram. The second must be a string variable designed to receive the
16-character code that was used to create that character. Thus, if
that character was a solid square block, the string variable will
represent "FFFFFFFFFFFFFFFF", which can be PRINTed if you so
desire.

CALL CHARSET simply restores the standard characters and
standard colors, negating previous commands to the contrary. It is
used by itself with no parameters.

CALL COINC stands for COINCide. It is a program that is used in
conjunction with CALL MOTION and similar subprograms discuss
ed below. It is designed to detect an impending or actual collision
between several sprites; some examples of its use can be found in
Chapter 11.

TI BASIC and TI EXTENDED BASIC 123

CALL DELSPRITE deletes a previously created sprite. It is used
with one of several numeric expressions or numeric variables that
represent sprites, or with ALL to delete all sprites:

CALLDELSPRITE(#1,#5)
CALL DELSPRITE(ALL)

CALL DISTANCE is used in conjunction with two sprite numbers
or one sprite number and a row/column identifier plus a numeric
variable in parentheses. It returns the square of the distance be
tween two sprites or between one sprite and a spot on the screen.

CALL ERR is used in conjunction with either two or four numeric
variables in parentheses, representing the error code, the error
type, the error severity, and the line number of the last error to
have been encountered. It is used in conjunctin with ON ERROR.

CALL INIT is used along with LINK, LOAD, and PEEK to access
assembly language subprograms. It prepares the computer and the
Memory Expansion unit. For details see the manual.

CALL LINK is used in combination with INIT, LOAD, and PEEK to

access assembly language subprograms. See the manual for details.

CALL LOAD See LINK and INIT.

CALL LOCATE causes one or several sprites to be LOCATEd at a
specific row/column position on the screen. It is used in conjunction
with sprite number(s) and row/column parameters in parentheses.

CALL MAGNIFY, used with the magnification factor in paren
theses, causes sprites to be magnified. The available magnification
factors are 1,2, 3, and 4.

CALL MOTION is used in conjunction with a sprite number and
numeric variables representing row and column velocities, in
parentheses. In terms of row velocity, a positive number moves the
sprite down and a negative number moves it up. In terms ofcolumn

124 The Last Whole TI-99/4A Book

velocity, a positive number moves the sprite to the right, and a
negative number moves it to the left. Combinations of the two can
be used to move sprites at any angle.

CALL PATTERN is designed to permit changing the character pat
tern of a sprite without affecting any of its other characteristics. It is
used in conjunction with the number of the sprite and the character
value, in parentheses.

CALL PEEK See INIT, LINK, and LOAD, as well as the manual.

CALL POSITION, used with sprite number(s) and numeric
variables in parentheses, assigns the row/column position ofa named
sprite to the numeric variables.

CALL SAY is used to activate the speech synthesizer. It is used
with a word string in parentheses, where the word(s) must be in
cluded in the available word list. For more details, see Chapter 8.

CALL SPGET can be used to assign word sounds to string
variables. For details, see Chapter 8.

CALL SPRITE is the program that creates all those SPRITES we've
been talking about. A sprite is a graphic design that has a certain
color and can be made to appear anywhere on the screen. Sprites
must be numbered from 1 to 28 in order to be manipulated. For
details, see Chapter 11.

CALL VERSION, used with a numeric variable in parentheses,
assigns a number that represents the version of BASIC that is cur
rently in use (100 represents EXTENDED BASIC).

A Primer to
Personal Program

Writing

In chapter 3, we wrote two simple programs in order to get a bit
of hands-on experience with the keyboard and to observe the effects
of a few commands and statements. In this chapter we'll gradually
go several steps further to explore some of the more sophisticated
approaches to program writing and to look at some of the tricks and
shortcuts that are available to us.

Before we begin, there is one important distinction we must
make between writing programs in TI BASIC and in TI EXTENDED
BASIC. In TI BASIC every statement must be on a separate line,
whereas in TI EXTENDED BASIC it is possible to group several
statements on one line, separating them by double colons (::). To il
lustrate this difference, here are two versions of an identical se
quence of program steps:

100 FORX = 1 TO 10

110 PRINT

120 NEXTX

is the form in which this sequence of three statements, constituting
a loop, would have to be written in TI BASIC.

125

126 The Last Whole TI-99/4A Book

100 FORX = 1 TO10::PRINT::NEXTX

is the same series of statements in TI EXTENDED BASIC. Actually,
it makes no difference which format you use, unless you want your
program listing to be printed by a line printer. In that case you may
want to avoid excessively long printouts by grouping statements on
single lines (the maximum number ofcharacters per line, including
blank spaces, is 140). On the other hand, it is often a lot easier to
figure out what a program is about if there are not too many
statements on the same line, not to mention that editing and debug
ging tends to become more difficult. For that reason, many of the
programs in this book use separate lines for every statement despite
the fact that they could have been reproduced more concisely by
combining statements.

In order to write any program, we must first have a clear idea of
what we want our program to accomplish. Many authors like to em
phasize the importance of developing some graphic representation,
known as a.flowchart, to aid in creating a visual "blueprint" for the
organization of the program. Personally, I find that flowcharts are
sometimes more trouble than they are worth, and I never use them.
But that's my way of doing things. You may feel different.

Basically, programs fall into two primary categories. Some are
designed to store data, representing for all practical purposes an
electronic file cabinet or card file. The other category consists of
programs to perform calculations and, thus, provide answers to
(usually) mathematical questions. Within those two categories
there are various subcategories. Some programs simply require you
to type in certain data. After that they calculate and then produce
an answer. Others are designed to Activate the printer and to print
out selected data. Still others interface with the disk drive(s) and
record data, which then becomes available the next time that pro
gram is executed. In addition, certain programs include decision
making statements that cause results to be based on whether or not
a certain condition has been met. Let's look at a few examples.

A SIMPLE DATA-BASE PROGRAM

We'll begin with a simple data-base program. (We've written
this one in TI EXTENDED BASIC to save space. If you have only TI

A Primer to Personal Program Writing 127

A SIMPLE DATA BASE PROGRAM

100 CALL CLEAR:60SUB 1000

110 PRINT TflB<5>VThis is a simple": :PRINT
120 PRINT TAB(5);"Data-Base program. "::GOSUB 1000
130 GOSUB 1100

140 INPUT "Press >ENTER< "iE*

1000 PRINT " "s:RETURN
1100 FOR X=l TO 10:iPRINT:sNEXT X::RETURN

BASIC you will have to reformat the program to put each statement
on a separate line before you can run it. Try it—it will be good
practice.)

Up to this point the program causes its two-line title to be
displayed more or less in the center of the screen between two dashed
lines with the prompt "Press > ENTER < " in the bottom left corner.
In line 100 the screen is cleared and the computer is sent to a
subroutine (line 1000) that prints a dashed line. We use a
subroutine rather than a direct command here because this dashed
line is used many times to make the display cosmetically more at
tractive, and it saves a lot of typing to be able simply to go to the
subroutine. In line 110 the TAB(5); statement causes the text line to
start in the fifth column, thus centering it on the screen. The PRINT
at the end of the line causes a blank line to be inserted between the
two text lines. Line 120 is similar to the previous line except for the
GOSUB 1000 statement at the end, which causes another dashed
line to be displayed. In line 130 the computer is sent to another
subroutine, one that is also used frequently. It places 10 blank lines
on the screen, positioning the two lines of copy along with the two
dashed lines screen center. Line 140 is used to stop program execu
tion until you press > ENTER <, because otherwise the computer
would go right on and the two lines of text would disappear before
they could be read. Lines 1000 and 1100 are the two subroutines
we've already discussed. Figure 7-1 on page 128 shows what the
screen looks like at this point.

128 The Last Whole TI-99/4A Book

Figure 7-1. The display at this stage of our simple data-base program.

Now let's go on and write another portion of the program.

145 COLL CLEAR

150 GOSUB 1000i:PRINT "To find data associated"::PRINT
160 PRINT "with a product, type"::PRINT
170 PRINT "the product number"::GOSUB 1000
180 PRINT "Which product number?"ssGOSUB 1100
190 INPUT PN

This time we ask the computer to display instructions to the
user. In line 145 we make sure that the last line of the previous
display is erased before new text is displayed. We use a line number
ending on 5 because this line was entered after the subsequent lines
had already been typed. Line 150 first uses the dashed-line
subroutine and then prints the first line of text, adding a blank line

A Primer to Personal Program Writing 129

for readability. Lines 160 and 170 print the next two lines and then
add another dashed line. Line 180 asks you to determine which prod
uct number you're interested in, and it uses the other subroutine to
place the four lines of copy into the center of the screen. Line 190
places a question mark (?) into the bottom left corner of the screen
and causes the computer to stop program execution until you type
in a number.

S00 INPUT "Printout? (Y/N) ":YN*

210 FOR Y=l TO 50

S20 RESTORE::A=A+1::READ N,PR*,Q,RU,LP
£30 IF N=PN THEN 300

240 IF A=50 THEN END

£50 NEXT Y

300 CALL CLEAR::GOSUB 1000

310 PRINT "Product number ";N
3£0 PRINT "Description ";PR*
330 PRINT "Quantity on hand . .":Q
340 PRINT "Reorder number "?R0
350 PRINT "List price *"? LP siGOSUB 1000::

PRINT::PRINT

360 IF YN$="Y" THEN 400 ELSE 370

370 INPUT "Another product or quit? (P/Q) ":PQ$
380 IF PQ*="P" THEN 150 ELSE END

400 OPEN #1:"RS£3£"

410 PRINT #1:"Product number ";N
4£0 PRINT 4*1: "Description " ;PR*
430 PRINT #l:"Quantity on hand . k" IQ
440 PRINT #1:"Reorder number ";R0

450 PRINT #l:"List price *" ;LP
460 PRINT #1:"-- "::PRINT #1

470 CLOSE #1

480 GOTO 37®

This time we've used a whole bunch of new statements. Let's look
at them line by line. Line 200 asks if you want the data sent to the
line printer. Line 210 starts a loop that is limited to 50 turns,
because we're dealing with 50 (or fewer) product numbers. If the
program must accommodate more than 50 products, the number
will have to be increased accordingly. In line 220 the RESTORE
statement is used to make sure that the items in the DATA block
(which we have yet to type in) are READ from the beginning. Then
the value of A is increased by 1 during each turn through the loop

130 The Last Whole TI-99/4A Book

and next the computer is told to READ five items that are contained
in the DATA block. Line 230 checks if the value assigned to the
numeric variable N is equal to the value that you typed in and that
was assigned to the numeric variable PN, in which case the com
puter is told to go to line 300. If the values assigned to the two
numeric variables don't match, the computer goes to line 240,
which checks the value of the numeric variable A to see if all prod
ucts have been READ. If they have, the computer is told that the
END of the program has been reached. If not, the computer goes to
line 250, which causes it to repeat the loop.

Lines 300-360 are the section of the program that causes the
READ data for the selected product number to be displayed be
tween two dashed lines; the two PRINTs at the end of line 350 move
the display up from the bottom of the screen. Line 360 asks if you
want the results sent to the line printer, in which case the computer
is told to go to line 400. Otherwise it is told to go to line 370 to deter
mine whether you want to exit the program or select another prod
uct number. Depending on the answer, it then returns to line 150 to
permit you to select another product number or simply quits the
program. Line 400 activates the line printer. Lines 410-450 print
the data at the line printer. Line 460 prints a dashed line and adds
two blank lines in order to separate this group of data from the next.
Line 470 deactivates the line printer, and line 480 sends the com
puter to line 370 to determine whether you want to continue or
quit.

Now the only thing left to do is to type in the product data:

500 DATA 1,PRODUCT A,300,250, 75. 95
510 DATA £,PRODUCT B,£00,£50, 15.75
5£0 DATA 3,PRODUCT C,175,150, 88. 77

and so on for up to 50 products. The first item represents the prod
uct number, the second the product description, the third the quan
tity on hand, the fourth the reorder level, and the fifth the list price.
When all entries have been made and you have tested the program
to make sure it functions the way it is supposed to, you might type
RES for RESEQUENCE and > ENTER < and the computer will

A Primer to Personal Program Writing 131

automatically change the line numbers to start at 100 and continue
at intervals of 10, adjusting the various GOSUB, GOTO, and IF . .
THEN.. ELSE line numbers automatically. Figure 7-2 shows a print
out of the program listing after the line numbers have been adjusted
and Figure 7-3 is a printout of two products that resulted when the
printout option was selected.

100

no

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

CALL CLEAR :: GOSUB 480

PRINT TAB(5);"This is a simple" :: PRINT
PRINT TAB(5);"Data-Base program" :: GOSUB 480
GOSUB 490

INPUT "Press >ENTER< ":E*
CALL CLEAR

GOSUB 480 :: PRINT "To -find data associated"
:: PRINT

PRINT "with a product, type"
PRINT "the product number" ::
PRINT "Which product number?"
INPUT PN

INPUT "Printout? (Y/N) ":YN*

FOR Y=l TO 50

RESTORE :: A=A+1

IF N=PN THEN 270

IF A=50 THEN END

NEXT Y

CALL CLEAR :: GOSUB 480

PRINT "Product number...

PRINT "Description
PRINT "Quantity on hand.
PRINT "Reorder number...

PRINT "List price $";LP :: GOSUB 480

PRINT :: PRINT

IF YN*="Y" THEN 360 ELSE 340

INPUT "Another product or quit? (P/Q) ":PQ$
IF PQ*="P" THEN 160 ELSE END

OPEN #1:"RS232"

"Product number....";N
"Description ";PR*
"Quantity on hand..";Q
"Reorder number....";RO
"List price ..*";LP

PRINT #1;

PRINT #1

PRINT #1:

PRINT #1

PRINT #1:

PRINT '#li
#1

:: PRINT

GOSUB 480

:: GOSUB 490

READ N,PR$,Q,R0,LP

N

PR$

Q

RO

LP :

PRINT

(continued)

132 The Last Whole TI-99/4A Book

430 CLOSE #1

440 GOTO 340

450 DATA 1,PRODUCT A,300,250,75.95
460 DATA 2,PRODUCT B,200,250,15.75
470 DATA 3,PRODUCT C,175,150,88.77
480 PRINT " " : : RETURN

490 FOR X=l TO 10 :: PRINT :: NEXT X :: RETURN

Figure 7-2. The listing simple data-base program after the lines have been renumbered
using the RESEQUENCE command.

Product number...

Quantity on hand.
Reorder number...

. 1

. 300

. 250

$ 75.9.5

A

Product number... . 2

.PRODUCT B

Quantity on hand.
Reorder number...

. 200

. 250

* 15.75

Product number...

Quantity on hand.
Reorder number..

. 1

. 300

. 250

$ 75.95

A

Figure 7-3. A sample printout resulting from running our simple data-base program.

There are many ways in which a data-base program like this can
be refined, and more sophisticated versions are included in the pro
gram section. The principles, however, remain the same.

A Primer to Personal Program Writing 133

A SIZE/PRICE COMPARISON
PROGRAM

Now let's look at another type of program, one that performs
some quite different functions. This sample program designed to
accept a number of inputs and then perform some simple calcula
tions in order to produce a desired result. Let's say, for the moment,
that we want to determine whether the "large economy size" is ac
tually more economical than regular or smaller sizes of a certain
product, such as soap powder. (Again, we've combined statements
to save space; if you do not have TI EXTENDED BASIC you will
have to put each statement on a separate line if you want to run the
program.)

A SIZE/PRICE COMPARISON PROGRAM

100 CALL CLEARaIGOSUB 1000

110 PRINT TAB<5)i"This program compares sizes"ssPRINT
120 PRINT TAB(5)5"and prices of products.'" 11GOSUB 1000
130 GOSUB1200IGOSUB 1100

140 CALL CLEARiiINPUT "Number of units in size l?"tUlss

PRINT

150 INPUT "Price of size 1? *"xPlssPRINT
160 INPUT "Number of units in size 2? "iU2iiPRINT

170 INPUT "Price of size 2? "iP2

180 CALL CLEAR

190 UP1=P1/U1asUP2=P2/U2

200 IF UP1<UP2 THEN 210 ELSE 240
210 PER=<UP2-UPl)/UP2*100siPER»INT(PER*10+.5)/10

220 PRINT "Size 1 is "|PERi"S cheaper"ssPRINT
239 GOSUB 1100siCALL CLEARSJGOTO 300
240 PER=<UP1-UP2)/UP2*100«sPER=INT(PER*10+. 5>/10

250 PRINT "Size 2 is "?PERi"% cheaper"tIPRINT
260 GOSUB 1100s!CALL CLEAR

300 INPUT "Another calculation? (Y/N) "sYN*

310 CALL CLEAR

320 IF YN*="Y" THEN 140 ELSE END

1000 PRINT "

t sRETURN

1100 PRINTSsINPUT "Press >ENTER< "sEtssRETURN

1200 FOR X=l TO 10:IPRINTiINEXT XsRETURN

134 The Last Whole TI-99/4A Book

This program calculates the percentage difference in price be
tween two sizes of the same product or, for that matter, two ver
sions of a product produced by different manufacturers. Lines
100-130 print the purpose of the program, using cosmetic
subroutines in the same manner as we did before. Lines 140-170

ask you to enter the number of units (ounces, pounds, or whatever)
in each package, and the two prices. Line 190 determines the price
per individual unit for both packages, assigning the result to the
numeric variables UP1 and UP2. In line 200 the computer checks
which package has the larger unit price, and if the unit price of
package 1 is smaller than the other, the computer is told to go to
line 210, otherwise (ELSE) to line 240. Line 210 deducts the unit
price for package 1 from that of package 2, divides the result by the
unit price of package 2, and multiplies the result by 100 to arrive at
a percentage. It then uses an often-used standard formula to round
the result off to one decimal. The formula is:

X = INT(X*10 + .5)/10orX = INT(X*100 + .5)/100

where the number of zeros (10, 100, etc.) determines the number of
displayed decimals. Line 220 displays the result, and line 230 tells
the computer to go to line 300 to find out whether you want to run
another calculation or quit. Lines 240-260 are a repeat of the
previous lines, used if package 2 proves to be the cheaper of the two.
Line 300 asks if you want to repeat, and line 320 tells the computer
where to go based on the answer. Lines 1000-1200 are subroutines.

STANDARD FORMULAS

Time Calculations

In the previous program we used a formula for rounding off
numeric values to a predetermined number of decimals. (I could
have used the PRINT USING command available with EXTENDED

BASIC, but for most purposes I find the formula method easier.)
There are a number of other standard formulas that are also used

fairly often to make the computer perform certain functions. One
has to do with the performance of calculations using hours, min-

A Primer to Personal Program Writing 135

utes, and seconds. Since minutes and seconds are not decimal
values, they must be converted to decimals for this purpose and
then reconverted. The manner of accomplishing this depends on
the format in which the time values are entered into the computer.
The two most common are:

100 INPUT "Hours? ":H

110 INPUT "Minutes? ":M

120 INPUT "Seconds? ":S

and

100 INPUT 'Time (H.MMSS) ":T

In the first version we leave the hour figure alone but convert the
minutes and seconds to decimal values like this:

130 M = M/ .6/100::S = S/ .6/10000

140 TIME = H + M + S

in which case the numeric variable TIME becomes the decimal

equivalent of the three time values that were entered separately.
After the calculation has been performed, the time value must be
reconverted:

200 TIME1 = INT(TIME)::TIME2= (TIME-TIME1)ffl100
210 MIN = INT(TIME2)
220 SEC = (TIME2-MIN)*100\6
230 MIN = MIN*.6

240 PRINT H;" hours, ";MIN;" minutes and ";SEC;" seconds"

which produces the conventional values for hours, minutes, and
seconds.

If the second type of input is used, a value such as 2 hours, 30
minutes, and 30 seconds would be entered as 2.3030, which will
have to be separated into its component parts before it can be
converted:

. 110 H = INT(T)::M1=(T-H)*100/.6::M = INT(M1)
120 S = (M1 -M)*100 / .6::M = M / 6
130 TIME = H(M / 100)(S /10000)

136 The Last Whole TI-99/4A Book

This results in the decimal equivalent of the original time value,
ready to be used for calculations. To reconvert it to conventional
time values, use the same formula that was described above.

Compound Interest

Another formula frequently used in programs that deal with
financial matters determines compound interest:

FV= PV*(1 + (INT/100)rCP

where FV stands for FUTURE VALUE, PV for PRESENT VALUE,
INT for INTEREST, and CP for the number of COMPOUNDING
PERIODS. In order to work correctly, the annual interest rate must
be adjusted to the interest rate representing the compounding peri
ods. For instance, if the annual interest rate is 7.45% and the inter
est is compounded daily, then the value of INT in the formula is:

INT = 7.45/ 365.25

because each year, in view of the fact that each fourth year is a leap
year, has 365.25 days.

Temperature Versus Altitude

Here is a formula that is primarily of interest to the pilots among
my readers. Temperature fluctuations affect aircraft performance, a
fact that is of particular importance during the landing and take-off
phases offlight. Aircraft need longer runways on hot days than they
do on cold days, and the climb capability is affected by air tem
perature. The phenomenon is referred to in aviation as the effect of
density altitude, which refers to the theoretical elevation or altitude
adjusted for the prevailing temperature conditions. Here is a short
program that uses the standard formula to perform that adjust
ment:

A Primer to Personal Program Writing 137

100 INPUT "Actual elevation or altitude? "sALT

110 INPUT "Temperature in degrees F. ? "iTF
180 TC-(TF-32)/l.B

130 DALT= <145426* <l-<< (288. 15-ALT*. 001981)/288. 15).. 5.2563/
((273.15+TC)/288.15)) .235))

140 DALT-INT(DALT)

150 PRINT "Density altitude- "|DALT|" feet."xiEND

Here line 120 uses a standard formula to convert degrees Fahrenheit
to degrees Celsius and line 130 uses a long and complicated formula
to convert actual elevation or altitude to density altitude. Although
this conversion may be of limited interest to many readers, it does
illustrate the fact that we always need to know the correct mathe
matical formulas to use whenever we expect the computer to per
form some type of calculation.

FILE PROGRAMS

Now let's get back to some more programming. Many times it is
desirable that our programs retain previously input or calculated
information for future use, so that you don't have to key in previous
totals or data. Programs that perform this function are referred to as
file programs, because they create separate files that are used to
store these data for future use. There are two types of such file
programs available to us. One is referred to as sequential and the
other as random access (which, for some strange reason, is referred
to as RELATIVE in TI BASIC). Sequential files, when accessed, read
data from the beginning, one after the other. Random-access files,
when accessed, permit the computer to go directly to a given record
that consists of the desired data.

In order to make use of this function, we must have at least one
disk drive on line, because the data are stored directly on disk and
are not retained as part of the original program. (A cassette tape
recorder may also be used.) The commands and statements used to
write to or access the data files are OPEN # 1, PRINT # 1, INPUT # 1,

138 The Last Whole TI-99/4A Book

and CLOSE #1, with the number representing the number ofthe file
to be used. The OPEN #1 command must be used in conjunction
with the DISK NAME and the FILE NAME:

100 OPEN #1:"DSK.TIONE.FILE NAME"

and its purpose is to OPEN the desired file and thus get it ready to
accept further commands. The PRINT # 1 command must be used
with the numeric or string variable that represents the data you
want to preserve by recording them on the disk:

110 PRINT #1:A

or

PRINT #1:A$

which sends the value assigned to the numeric variable A or the
string assigned to the string variable A$ to the disk. The opposite is
INPUT # 1, which is used in the same format, but retrieves data that
were previously recorded and places them into the computer's
memory, ready to be displayed on the screen, sent to the line printer,
or otherwise manipulated. The CLOSE #1 statement is used by
itself, and it must always be used to CLOSE the file when no further
data are to be recorded or retrieved. You can perform both recording
and retrieval between one pair of OPEN / CLOSE commands, but I
believe that it is better practice to CLOSE the file after one type of
action is finished and to reOPEN it before the next function is per
formed. Here is a simple sample (using combined statement lines):

100 CALL CLEARasA*™"BEGIN"

110 INPUT "First run? <Y/N) ":FR*

120 IF FR*="Y" THEN 130 ELSE 200

130 INPUT "Last total? "sLT

140 OPEN #la"DSK.TIONE.TOTALS"

150 PRINT #1iLT

(continued)

A Primer to Personal Program Writing 139

160 CLOSE #1iiIF A*«"END" THEN END

200 OPEN #11"DSK.TIONE.TOTALS"

210 INPUT #lsLT

220 CLOSE #1

230 PRINT "The last total was "iLTiiPRINTsiPRINT

240 PRINT "Do you want to"tiPRINT
250 PRINT 1, "add?"nPRINT 2, "deduct?" iiPRINT
260 INPUT "Which? "iWHICH

270 ON WHICH GOSUB 300,400
280 A*="END"nGOTO 140

300 INPUT "Add how much? ":ADD

310 LT=»LT+ADD:s RETURN

400 INPUT "Deduct how much? ":DED

410 LT=LT-DEDllRETURN

In the first line we assign the string BEGIN to the string variable A$,
because we need to use it later on in lines 160 and 280. Lines 110 and

120 are needed because, if this is the first run, a new file must be
created because no data file called TOTALS exists as yet. If this is
the first run, you're asked to enter the last total (of anything) in line
130, and lines 140-160 then create a file and record the value
assigned to the numeric variable LT. In line 160 the computer also
checks on the string that is assigned to A$ and, since the answer is
negative, the computer goes to the next line, reOPENing the file,
reading the value assigned to LT, closing the file, and then, in line
230, printing that value. Lines 240-260 ask whether you want to
add or deduct, and line 270 sends the computer to one of two line
numbers. Line 280 assigns a new string, END, to the string variable
A$, and sends the computer back to line 140 to again reOPEN the file
and record the results produced in lines 300-410 in the data file.
Lines 300 and 310 are used if you want to add to the last total, and
lines 400 and 410 come into play ifyou want to deduct from the last
total. In each case the computer is sent back to line 280.

Although this little program may not be of much practical use, it
clearly illustrates the basics of the file management function. There
are, of course, more complicated ways to deal with files, but most of
these are beyond the needs of the average home programmer.

What we just created is a sequential data file. Whenever no
additional instructions are given, the computer automatically
assumes sequential as the type of file. It also assumes that the

140 The Last Whole TI-99/4A Book

lengths of the various records that will be stored in the file may be
variable in size. If you want your file to be of the random-access
type, the statement must include the word RELATIVE, in which
case the automatic assumption is that all records will be ofthe same
length, though you may add the statement FIXED as reminder. You
may also include a numeric expression to stipulate the maximum
number ofcharacters in each record:

OPEN #1:"DISK.TIONE.FILENAME'/,RELATIVE,FIXED20

The convention used for RELATIVE files is explained in some detail
(including several available options) in the User's Reference Guide.
The trouble is that the use of RELATIVE (random-access) files is
considerably more involved in TI BASIC than in other BASIC
dialects; unless you insist on becoming proficient at programming
such files, I would suggest you stick to the simpler version we have
described. The advantage ofrandom-access files is that they operate
faster, but since the difference can be measured in fractions of
seconds, it is of little practical consequence.

Furthermore, sequential files can be used to retrieve data in
random-access fashion simply by asking the computer to retrieve
the values assigned to a certain variable. The computer then reads
the data stored in the file from the beginning until it encounters the
indicated variable, which is then retrieved and moved into the com
puter memory for display or manipulation.

ARRAYS

In this last section of this chapter we'll look at one of the more
obscure, but also more useful, functions available to us. The func
tion is the use of arrays, and it requires a bit of explanation. Put
succinctly, arrays are collections ofvariables arranged in a way that
allows easy use in computer programs.

A Primer to Personal Program Writing 141

Array Demonstration Programs

Arrays are nearly always used in combination with FOR.. .NEXT
loops, and the best way to demonstrate how the function works is to
start by explaining how data are entered into an array. Array Dem
onstration Program #1 is a short program that describes one way in
which numerical data might be entered.

ARRAY DEMONSTRATION PROGRAM #1

A numeric array containing 10 numbers is created using a FOR . . . NEXT loop.

100 CALL CLEAR

110 FOR X=l TO 10

120 READ A<X)

130 NEXT X

140 DATA 10,9,8,7,6,5,4,3,2,1
150 INPUT "SUBSCRIPT ":S

160 PRINT

170 PRINT TAB(12);A(S)
180 B(1)=A(S)*3

190 PRINT

200 PRINT TAB(12);B(1)
210 PRINT

220 GOTO 150

Line 110 sets up the loop that will make 10passes before continuing
with program execution.

Line 120 causes the computer to READ the numeric data in the
DATA line (140), assigning each to the numeric variable A and the
subscript (in parentheses) of the value of X. When all 10 passes
through the loop are completed, the 10 numbers will have been
assigned to the numeric variables as follows:

A(1)=10 A(2)=9 A(3)= 8 A(4)= 7 A(5) = 6
A(6) = 5 A(7)=4 A(8)=3 A(9) = 2 A(10)=1

142 The Last Whole TI-99/4A Book

Line 150 asks you to input a subscript number from 1 to 10.
Line 170 causes the value assigned to A(S) to be displayed.
Line 180 multiplies the value assigned to A(S) by 3 and assigns the
result to the numeric variable B(l).

Line 200 displays the result, and line 220 starts the process all over
again.

As you can see, if we had not used the array, we would have to
assign the 10 values to 10 different numeric variables, using up a lot
of programming steps and thus slowing program execution. But
arrays can also be used to store strings, using more or less the same
routine. Array Demonstration Program #2 is a short program that
demonstrates how this works. Here we're using the array to contain
five names.

ARRAY DEMONSTRATION PROGRAM #2

A string array created in the same manner as in Figure 7-4.

100 CALL CLEAR

110 FOR X=l TO 5

120 READ A*(X)

130 NEXT X

140 DATA JOHN DOE,MARY SMITH,FRANK JONES,PAUL GARRISON,
JANE BROWN

150 INPUT "SUBSCRIPT? ":S

160 PRINT

170 PRINT A$(S)

180 PRINT

190 GOTO 150

Line 110 sets up a loop that will make five passes through the loop.
Line 120 causes the computer to READ the strings contained in the

DATA line (140), assigning each to the string variable A$ and the
subscript X in parentheses.

Line 150 asks you to key in a subscript number from 1to 5.
Line 170 displays the string represented by the string variable
A$(S), and line 190 goes back to the beginning.

A Primer to Personal Program Writing 143

Here we would have had to assign the five names to five different
string variables, which wouldn't have been too bad. But ifthe DATA
block had contained 50 or 500 names, the array capability would
have simplified matters considerably.

In Array Demonstration Program #3 we use a somewhat differ
ent way ofentering data into an array. Instead ofusing data stored in
a DATA block, we use the numbers generated by the loop itself.

ARRAY DEMONSTRATION PROGRAM #3

A FOR . . . NEXT loop generates the numeric data for the array.

100 CALL CLEAR

110 FOR X=10 TO 100 STEP 10

120 M(X/10)=X

130 NEXT X

140 INPUT "SUBSCRIPT? "iS

150 PRINT

160 PRINT M<S)

170 PRINT

180 GOTO 140

Line 110 sets up a loop that assigns the numbers from 10 to 100 to
the numeric variable X in increments of 10.

Line 120 assigns the value of X to the numeric variable M with the
subscript (X /10) in order to have the subscript numbers start with 1.

Line 140 asks you to type in a subscript number from 1 to 10. Line
160 displays the value assigned to M(S), which will be 10, 20,
30 100.

Array Demonstration Program #4 found on the next page uses
still another method of entering data into arrays. Here, instead of
using a FOR.. .NEXT loop, we create a loop using the GOTO state
ment, permitting us to enter an unlimited number of arbitrary
variables into the two arrays.

144 The Last Whole TI-99/4A Book

ARRAY DEMONSTRATION PROGRAM #4

Using a GOTO statement, an unlimited number of numeric and string data can be entered
into the two arrays.

100 CALL CLEAR

110. INPUT "NUMBER? ":IMO

120 PRINT

130 INPUT "STRING? ":ST*

140 PRINT

150 A=A+1

160 B=B+1

170 ARRKA)=NO

180 ARR2*(B)=ST$

190 PRINT ARRKA)

200 PRINT

210 PRINT ARR2*(B)

220 PRINT

230 INPUT "PRESS >ENTER< ":E*

240 GOTO 100

Line 110 asks you to key in a number that is assigned to a numeric
variable.

Line 130 asks you to key in a string, assigning it to a string variable.
Lines 150 and 160 increase the values of the numeric variables A
and B by 1 each time the lines are encountered.

Lines 170 and 180 set up two arrays that accept the previously
input data.

Lines 190 and 210 display the variables assigned to the two arrays.
Line 240 returns you to the beginning to enter additional data.

Array Demonstration Program #5 is a short program that dem
onstrates the practical use ofarrays, showing quite clearly how they
can be useful in effectively shortening and, thus, speeding up a
program. Here we have three sets of data. The first is a list of eight
product descriptions. The second shows the list prices of these
products. And the third lists the manufacturing cost for each prod
uct. In the conventional way we would have ended up with eight
string variables and 16 numeric variables. The purpose of the pro
gram is to compute the changes in manufacturing cost and list
price, assuming that there is an X% increase in material and/or

A Primer to Personal Program Writing 145

labor cost. This would have meant a total of 16 calculations with the

results assigned to an additional 16 numeric variables. By using
three arrays, all this is changed.

ARRAY DEMONSTRATION PROGRAM #5

A short program in Tl EXTENDED BASICthat makes practical use of three arrays.

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

REM ARRAY SAMPLE PROGRAM

REM TI EXTENDED BASIC

CALL CLEAR

INPUT "Percent change? ":PER
RESTORE

OPTION BASE 1

OPEN #1:"RS232"

TO 8

PER=PER/100

FOR P=l TO 8 :: READ P*(P):: NEXT P

FOR L=l TO 8 :: READ LL(L):: NEXT L

FOR C=l TO 8 :: READ CC(C):: NEXT C

FOR X=l TO 8 :: PRINT #1:P*(X);LL(X) ;TAB(20);CC(X)
PRINT #1 :: NEXT X

IF E*="END" THEN END ELSE 220

FOR L=l TO 8 :: LL(L) =LL(D+LL <L) *PER :: NEXT L

FOR C=l TO 8 :: CC(C)=CC(C)+CC(C>*PER :: NEXT C

PRINT #1:"

250 E*="END" :: GOTO 200

260 DATA PRODUCT A,PRODUCT B,PRODUCT C,PRODUCT D,PRODUCT
E,PRODUCT F,PRODUCT G,PRODUCT H

270 DATA 100,56.34,11.06,97.35,56.93,25,75.11,5.85
280 DATA 55,29,6,49,30,13,38,3

Line 130 asks you to key in the percentage increase in manufactur
ing cost, assigning the figure to the numeric variable PER and then
dividing that figure by 100 for use in the subsequent calculations.

Line 140 assures that the items in the DATA block are READ from

the top.
Line 150 sets the lowest subscript number in the arrays to 1. Ifthis
statement is left out, the lowest number is always 0.

Line 160 accesses the line printer.
Lines 170-190 use three FOR.. .NEXT loops to create three arrays:

P$(P) for the product descriptions, LL(L) for the list prices, and
CC(C) for the manufacturing cost figures.

146 The Last Whole TI-99/4A Book

Line 200 uses another FOR.. .NEXT loop to print the eight sets of
data stored in the three arrays.

Line 210 sends the computer to line 220 if E$ does not equal
"END". If it does, the program stops.

Lines 220 and 230 use two more FOR. . .NEXT loops to perform
the calculations for each of the eight product categories.

Line 240 prints a dashed line to separate the old figures from the
new.

Line 250 assigns "END" to the string variable E$ and sends the
computer back to line 200, where the previously used loop is used
once more, this time printing the new totals.

Lines 260-280 are the DATA block that contains the eight product
descriptions, the list prices, and the manufacturing cost figures.
Many additional items could be added to these lines, requiring only
that the 8 in the FOR.. .TO.. .NEXT loops be changed to reflect the
total number ofDATA items.

Figure 7-4 is a printout that resulted from the above program
when a figure of 20 was used for the "percentage change" input.
The top half represents the data stored in the DATA block, and the
bottom halfshows the new totals after 20% has been added.

The trouble with using arrays is that they make programs very
difficult to decypher. Somehow things get terribly confusing, and it
is always hard to figure out what's actually going on since, on paper
at least, one lonely variable, the one used to identify the array, is
used, in fact, to represent a large number of data. For this reason I
have avoided using arrays in the program sections of this book,
since my intention was to make these programs as easy to read and
understand as possible.

Still, if you want to do a lot of program writing of your own, you
should experiment with arrays, not only because they shorten and
speed up programs, but also because they tend to reduce the chance
of typing errors.

A Primer to Personal Program Writing 147

PRODUCT A 100 55 -

PRODUCT B 56.34 29

PRODUCT C 11.06 6

PRODUCT D 97.35 49

PRODUCT E 56.93 30

PRODUCT F 25 13

PRODUCT G 75.11 38

PRODUCT H 5.85 3

PRODUCT A 120 66

PRODUCT B 67.608 34.8

PRODUCT C 13.272 7.2

PRODUCT D 116.82 58.8

PRODUCT E 68.316 36

PRODUCT F 30 15.6'

PRODUCT G 90.132 45.6

PRODUCT H 7.02 3.6

Figure 7-4. The printout that resulted from running the program.

8

Your Computer
Talks Back

If you have the optional Speech Synthesizer, you can make the
computer talk back to you. It's not only fun, it can also be used to
produce some interesting and educational exercises. Before we
start, let's introduce ourselves. Enter:

100 CALL SPGET("HELLO ",H$)
200 CALL SPGET("THERE ",T$)
300 CALLSPGET("I",I$)
400 CALLSPGET("AM",M$)
500 CALL SPGET("HOME ",0$)
600 CALL SPGET("COMPUTER",C$)
700 CALLSPGET("HOW",W$)
800 CALL SPGET("ARE ",R$)
900 CALL SPGET("YOU ",Y$)

1000 CALL SAY(,H$„T$„I$„M$, "A TI NINE NINE FOUR
A",0$„C$„W$„R$„Y$)

and type RUN. It will take a few seconds, so be patient and wait for
the computer to talk to you. (Be sure that the volume at the monitor
is turned up.) Eventually an unemotional computer-generated voice
will respond with "Hello there, I am a TI-99 4A Home Computer.
How are you?", but entirely without punctuation or inflection. In
writing this program we have used the two primary commands
available with the speech function:

148

Your Computer Talks Back 149

CALLSAY(-)
CALLSPGET(~~)

The first causes the voice synthesizer to be activated and to' read
whatever is written between the parentheses, though the total sen
tence should not exceed 126 characters. The second is comparable
to the more familiar LET in that it permits us to assign frequently
used words to string variables. As you will have noticed in looking at
the above program, actual words or sentences must be enclosed in
quotation marks, and when several string variables are used next to
one another, they must be separated by two commas, whereas only
one comma is needed between a string variable and a word or
phrase enclosed in quotation marks.

The computer is capable of pronouncing only a limited number
ofwords; the available words are listed in Appendix II at the back of
the book. If you use a word that is not in its vocabulary, the com
puter will spell it rather than pronounce it. For instance:

CALL SAY(THE WEATHER TODAY IS BEAUTIFUL")

will produce the following:

"THE WEATHER TODAY IS BEAUTIFUL1

with only the words "the" and4 'is'' actually being read as words and
the others being simply spelled. Because the dictionary is rather
limited, it is difficult to create meaningful speeches. On the other

150 The Last Whole TI-99/4A Book

hand, the computer's proclivity for spelling is a useful function in
some other ways. Here is an example:

100 CALL CLEAR

110 PRINT "How do you spell the word"::
120 PRINT "that is the opposite of"
125 PRINT

130 PRINT "FLOOR?"

140 FORX = 1to10

150 PRINT

160 NEXT 10

170 INPUT "Spell the word . . . ":W$
180 FORPAUSE = 1TO100

190 NEXT PAUSE

200 CALLSAY("CEILING")
210 END

Here we have a simple test that combines two problems that must be
solved. The first is knowing what the opposite of a certain word
might be, and the second involves knowing how to spell it. The
computer waits until you type in your answer, after which it waits
for approximately 1 second before spelling the word. In Chapter 101
have listed a number ofprograms that make use ofthis function in a
variety of different combinations with other types of problems.

If the word to be spelled is actually in the dictionary, we have to
let the computer know that we want it spelled by using the following
convention:

CALLSAY("C,0,M,P,U,T,E,R")

which causes the word to be spelled despite the fact that it is
included among the available words.

There is a way to modify verbs and nouns that are included in the
word list by adding "s" to either verbs or nouns, or "ing" or "ed" to
verbs. The routine involved in adding these suffixes is so compli
cated that it seems doubtful that it would be used often. The com

mands involved are CALL DEFS, CALL DEFING, and CALL DEFED;
and the routine often involves truncating the word to be modified.
The TI EXTENDED BASIC manual includes a rather lengthy

Your Computer Talks Back 151

sample program (pages 206-210) that explains these functions.
There is a way in which we can make the speech synthesizer say

just about anything (though some words tend to be hard to under
stand). To accomplish this we need something called the Terminal
Emulator IICommand Module, the primary purpose of which is its
use with the optional modem.

The Terminal Emulator II, which is plugged into the computer in
place ofthe TI EXTENDED BASIC module, has certain speech rules
programmed into it, making it possible to use any English words as
well as proper names and so on. The manner ofuse differs consider
ably from that which we have discussed so far. To cause the synthe
sizer to talk, the OPEN statement must be used, followed by a file
number, the file name, and file attributes, ifany. Here is an example:

100 CALL CLEAR

110 OPEN #1:"SPEECH",OUTPUT
120 PRINT #1:"THE NEXT ISA MATHEMATICS PROBLEM"
130 PRINT #1:"WHAT IS THE RESULT OF"

140 PRINT #1:"FOUR TIMES ONE HUNDRED AND TWENTY
FIVE"

150 PRINT #1:"THE RESULT IS"

160 PRINT #1:4*125
170 END

When you now type RUN, the voice speaks the four lines oftext and,
when it comes to the fifth line, instead of reading the equation, it
says "five zero zero," because whenever an equation is included in
speech commands, the computer will automatically perform the
calculation and the voice then pronounces the result.

In order to improve the speech quality, it is possible to insert
punctuation marks—question marks and such—but they are
treated as numerical characters and must, therefore, be used out
side of quotation marks: "WORD", "WORD" with a blank space
after commas and periods. Furthermore, it is possible to change the
pitch of the voice (high, medium, low), and the slope characteristic,
which controls the rate at which the pitch changes in spoken
phrases. Both use numbers, 0 through 63 for pitch, where 0 is
hardly audible, 1is a whisper, and 63 is nearly a shout, and from 0 to
255 for slope numbers, with the best slope numbers usually being
the integer of 10% of the pitch number times 32. The default values

152 The Last Whole TI-99/4A Book

are a pitch number of 43 and a slope number of 128 (4 * 32). The
convention for use is:

//xxyyy

where xx is the pitch number and yyy is the slope number, used
with a mandatory space between the two. In addition, the module
includes inflection symbols, using A, underline, and >. These sym
bols must be used ahead of the word to be affected and are included

within the quotation marks. In order to become familiar with their
effect, try different combinations. And last, there are "allophones,"
which refer to the special pronunciation of certain letters or letter
combinations. There are a total of125 such allophones programmed
into the module; the list is on pages 41 and 42 of the Terminal
Emulator II instruction book. To use this method of constructing
words from individual allophone components, the routine is:

100 CALL CLEAR

110 OPEN #1: "SPEECH ".OUTPUT
120 OPEN #2: "ALPHON".INTERNAL
130 PRINT #1:&CHR$(xxx)&CHR$(xxx)

where the numbers in parentheses represent the allophone sounds.
In order to use more than one such sound with a PRINT statement,

there must be a & sign between them, as otherwise the computer
will read and speak only the first sound.

You can also use the INPUT statement in speech programs. For
instance:

100 CALL CLEAR

110 OPEN #1: "SPEECH ".OUTPUT
120 INPUT "WHAT DO YOU WANT ME TO SAY?-> ":A$

130 PRINT #1:A$
140 GOT0120

will halt program execution until you type in whatever you want the
computer to say.

Obviously, the capability of using the speech synthesizer in this
manner immensely improves its usefulness. All manner of educa-

Your Computer Talks Back 153

tional as well as fun programs can be written this way, and although
use of the allophone portion might seem complicated, at first, it
becomes relatively simple with a bit of practice. And remember,
unless you're a stickler for excellence in computer-generated pro
nunciation, you don't need to use that capability at all.

The Terminal Emulator II is not terribly expensive (under $50),
and if you're planning to use the speech synthesizer for some
serious programming, it is a virtual necessity.

9

Programs
for the Home

When we talk about using a home computer for anything other
than playing video games, we usually think first that it would be
nice to use it to keep our checkbook balanced. But then it soon
becomes obvious that this may be more trouble than it's worth for
the financial activities of the average household. If, on the other
hand, those financial activities include expenses divided into sev
eral different categories, such as personal as well as tax-deductible
business expenses, then a relatively simple computer program can
be used to keep a continuing record, simplifying the eventual task of
determining the taxes that must be paid.

In this chapter we'll examine a number of programs using the
instructions and functions discussed in the previous chapters that
can be of practical use in the home. The first is the kind of check
book-keeping program we just discussed. Another deals with a sim
ple data-base program designed to keep a permanent record of
names, addresses, phone numbers, and birth dates of family,
friends, and acquaintances. Still another is designed to perform the
conversion and calculation chores that confront us when we try to
convert a cookbook recipe that might have been written for a party
of six or eight to serve a smaller or larger group. Also included is a
program designed to simplify the task of filling out the Schedule C
tax form for self-employed persons. Other programs determine the
day of the week for any date, past, present, or future; provide
assistance in making vacation or other travel plans; help to control a
rigid budget; and so on.

154

Programs for the Home 155

CHECKBOOK PROGRAM

Let's look at the checkbook program first. It falls into the cate
gory known as file programs that we discussed in Chapter 7. As
written, the program requires that you have one disk drive and that
data be recorded on a disk on which there is sufficient empty space
to accommodate the data files to be created.

CHECKBOOK PROGRAM

This checkbook-keeping program is a sequential file program that stores input data in
separate data file called BALANCE.

100 REM CHECKB00K/TI99/4A

200 GOSUB 1000

210 PRINT "A program that keeps": :
'220 PRINT "your checkbook balanced."
230 GOSUB 1100

240 GOSUB 1000

250 INPUT "First run? (Y/N) ":FR$

260 IF FR*<>"Y" THEN 350

270 PRINT

280 INPUT "Current balance? $":DD

281 BW=0

282 PW=0

290 OPEN #1:"DSK.TIONE.BALANCE"

300 PRINT #1:DD

301 PRINT #1:BW

302 PRINT #1:PW

310 CLOSE #1

350 GOSUB 1000

360 OPEN #1:"DSK.TIONE.BALANCE"

370 INPUT #1:DD

371 INPUT #1:BW

372 INPUT #1:PW

380 CLOSE #1

390 PRINT "Last balance= *";DD
391 PRINT

392 PRINT "Business expense to date= $";BW: :

393 PRINT "Personal expense to date= $";PW: :

400 GOSUB 1100

410 GOSUB 1000

420 PRINT "Your choice:": :

430 PRINT
11 11

440 PRINT 1;" Deposits.": :
450 PRINT 2;" Withdrawals."
460 PRINT M II

(continued)

156 The Last Whole TI-99/4A Book

470 INPUT " Pick one ":DW

480 IF DW=1 THEN 500 ELSE 600

500 GOSUB 1000

510 INPUT "Amount deposited? $":D
520 DD=DD+D

525 IF D=0 THEN 900

530 GOSUB 800

550 GOTO 410

600 GOSUB 1000

610 INPUT "Amount withdrawn? $":W

620 DD=DD-W

621 GOSUB 1300

625 IF W=0 THEN 900

630 GOSUB 800

650 GOTO 410

800 GOSUB 1000

810 PRINT "After last entry,": :
820 PRINT "key in 0": :
830 GOSUB 1100

840 RETURN

900 OPEN #1:"DSK.TIONE.BALANCE"

910 PRINT #1:DD

911 PRINT #1:BW

912 PRINT #1:PW

920 CLOSE #1

930 GOSUB 1000

940 PRINT TAB(12):"End."

950 END

1000 CALL CLEAR

1010 FOR X=l TO 10

1020 PRINT

1030 NEXT X

1040 RETURN

1100 PRINT

1110 INPUT "Press >ENTER< ":Y$

1120 RETURN

1300 GOSUB 1000

1301 INPUT "Business or personal? (B/P) ":BP*
1310 IF BP*="B" THEN 1350

1320 PW=PW+W

1330 RETURN

1350 BW=BW+W

1360 RETURN

Programs for the Home 157

When the program is run, it first displays its purpose:

(— "\

A program that keeps
your checkbook balanced.

It then asks:

/

First run? <Y/N)

because only the first time the program is used will you be required
to enter the last balance. During all future runs the last balance will

158 The Last Whole TI-99/4A Book

be displayed automatically. If this is the first run, the program
continues with:

/

^.

Your choices

1 Deposits.
£ Withdrawals.

If, on the other hand, the program has been run before and therefore
has stored previously entered information, it first displays:

Last balances $xxx.xx

Business expense to date= $xxx.xx
Personal expense to date~$xxx.xx

after which it goes to the previous display, asking whether you want
to enter deposits or withdrawals. It is then ready to accept as many
deposit or withdrawal items as you want to make, asking, in the case
ofwithdrawals:

Programs for the Home 159

r

Business or personal? <B/P)

^.

because the computer performs the necessary calculations inter
nally so that eventually, after the last entry, it can display the results
in terms of the current balance and the totals for personal and
business expenditures. Now let's examine the program line by line
to be sure that each statement and command is clearly understood.

Line 100 is a REMark line that identifies the program but is ignored
by the computer.

Line 200 goes to a subroutine that is used repeatedly to clear the
display screen.

Lines 210 and 220 display the purpose of the program.
Line 230 goes to another subroutine used to tell you to press the

> ENTER < key in order to continue program operation.
Line 250 asks if this is the first time the program is run. Your
answer, either Y for yes or N for no, is then assigned to the string
variable FR$.

Line 260 checks whether you typed in Y for yes or N (or any other
letter) for no, telling the computer to skip the next few lines and go
to line 350 if this is not the first run.

Line 270 uses the PRINT command with nothing after it to place a
blank line into the display.

160 The Last Whole TI-99/4A Book

Line 280 asks you to key in the current balance, assigning the reply
to the numeric variable DD. If this figure is in excess of$999.99, do
not use commas (10000.00, not 10,000.00), because numeric vari
ables can consist only of digits and decimal points and no other
symbols.

Lines 281 and 282 make sure that no leftover values are assigned
to the numeric variables BW and PW.

Line 290 OPENs a data file named TIONE.BALANCE. Since this is

the first run, the command means that a data file by that file name
is being newly created.

Line 300 uses the PRINT statement to enter data into that newly
created file. Those data will be the value of DD that you have just
keyed in, and the values of zero for BW and PW.

Line 310 CLOSES the data file. This is important. Whenever such a
data file has been OPENed, it must be CLOSEd before program
execution can continue.

Line 350 again uses the subroutine to clear the screen. This is the
line to which the computer is sent if this is not the first run of the
program.

Lines 360 and 372 OPEN the data file again, using the INPUT
statement to ready the computer to display the data stored in that
file on the monitor screen by placing them into the computer's
RAM.

Line 380 CLOSES that data file.

Line 390 causes the last balance and the expense data to be dis
played.

Lines 400 and 410 use the subroutines to ask you to press
> ENTER < and then to clear the screen.

Lines 420-470 display the menu of the types of entries you may
make, asking you to pick one by typing either 1or 2. Your answer is
then assigned to the numeric variable DW.

Line 480 examines the value assigned to DW. If it is 1, the computer
is told to go to line 500; otherwise, using the ELSE command, it is
told to go to line 600.

Line 500 clears the screen.

Line 510 asks you to key in the amount of a deposit, assigning that
figure to the numeric variable D.

Line 520 adds the value of D(current deposit) to the value of DD
(last balance) to produce the new balance, assigning it again to the
numeric variable DD.

Programs for the Home 161

Line 525 checks whether the keyed-in amount was zero, indicating
that the entry was the last deposit to be entered. If so, the computer
is told to go to line 900.

Line 530 sends the computer to a subroutine that tells you to key in
zero after the last entry.

Line 550 sends the computer back to line 410 to ask if you want to
key in more deposits or withdrawals.

Line 600 clears the screen again.
Line 610 asks you to key in the amount of a withdrawal, assigning
that figure to the numeric variable W.

Line 620 deducts the value of W (withdrawal) from the value ofDD
(last balance), assigning the result to the variable DD.

Line 625 checks whether the last amount keyed in was zero, in
which case the computer is sent to line 900.

Line 630 sends the computer to the subroutine in lines 800-840.
Line 650 sends the computer to line 410 for another choice of
entering either deposits or withdrawals.

Lines 800-840 are the subroutine discussed above.

Lines 900-912 OPEN the data file and use the PRINT command to

record the keyed-in data in that file.
Line 920 CLOSES the data file before the computer continues with
program execution.

Lines 930-950 cause the word END to be displayed on the screen
and, in line 950, tell the computer that it has reached the end ofthe
program.

Lines 1000-1040 are the subroutine used to clear the screen and

place some blank lines intothe display.
Lines 1100-1120 are the subroutine asking that you press

>ENTER <.

Lines 1300-1360 are the subroutine that asks whether the with

drawal is for personal or business expenses. In line 1310 the answer
assigned to the string variable BP$ is examined; ifthe value ofBP$
equals B (business), the computer is told to go to line 1350. In line
1320 the value of W (withdrawal) is added to the value of PW
(personal expenses) and the result is again assigned to PW. In line
1330 the computer is sent back to where it came from. In line 1350
the value ofW is added to the value ofBW (business expenses) and
is then again assigned to BW. And in line 1360 the computer is told
to RETURN to where it came from.

162 The Last Whole TI-99/4A Book

DAY OF THE WEEK PROGRAM

Now let's look at a different kind of program, one that does not
create data files while it is being run. This program performs some
rather esoteric computations along the way. The purpose of the
program is to determine the day of the week for any date, past
(though after 1584, the start of the Gregorian calendar), present, or
future. If you type in a date (2 10 1918), the display will respond
with the day of the week (Sunday). This program has its practical
uses in determining dates for meetings, parties, vacations, and so
on.

DAY OF THE WEEK PROGRAM

This program determines the day of the week for any date after 1584.

100 REM DAY OF THE WEEK/TI99/4A

110 CALL CLEAR

120 PRINT "This program determines": :
130 PRINT "the day of the week": :
140 PRINT "for any date after 1584,": :
150 PRINT "the start of the": :
160 PRINT "Gregorian Calendar"
170 GOSUB 1000

ISO GOSUB 800

190 CALL CLEAR

200 INPUT "Month (1 or 2 digits) ":M
210 PRINT

220 INPUT "Day (1 or 2 digits) ":D
230 PRINT

240 INPUT "Year <4 digits) ":Y .

250 GOSUB 1000

260 ON M GOTO 270,290,310,330,350,370,390,410,
450,470,490

,430,

270 E=D

280 GOTO 510

290 E=D+31

300 GOTO 510

310 E=D+59

320 GOTO 510

330 E=D+90

340 GOTO 510

350 E=D+120

360 GOTO 510

370 E=D+151

(continued)

Programs for the Home 163

380 GOTO 510

390 E=D+181

400 GOTO 510

410 E=D+212

420 GOTO 510

430 E=D+243

440 GOTO 510

450 E=D+273

460 GOTO 510

470 E=D+304

480 GOTO 510

490 E=D+334

500 GOTO 510

510 Z=(Y-1584)/Y

520 A=INT(Z)

530 Z=Z-A

540 IF Z=0 THEN 550 ELSE 560

550 E=E+1

560 B=(Y-l)/4

570 B=INT(B)

580 C=<Y-1)/100

590 C=INT(C)

600 F=(Y-l)/400

610 F=INT<F)

620 G=E+Y+B-C+F

630 H=G/7

640 I=INT(H)

650 I=H-I

660 1=1*7

670 CALL CLEAR

680 IF K1.2 THEN 820

690 IF I<2 THEN 700 ELSE 710

700 IF I>1.5 THEN 840 ELSE 710

710 IF K3.2 THEN 720 ELSE 730

720 IF I>3 THEN 860 ELSE 730

730 IF I<4 THEN 740 ELSE 750

740 IF I>3.5 THEN 880 ELSE 750

750 IF K5.5 THEN 760 ELSE 770

760 IF I>5 THEN 900 ELSE 770

770 IF I<6 THEN 780 ELSE 790

780 IF I>5.6 THEN 920 ELSE 790

790 IF 1=0 THEN 940

800 INPUT "Press >ENTER< ":Y$

810 RETURN

820 PRINT M;'\ ";D;", ";Y;" is Sunday"
830 GOTO 960

840 PRINT M;", ":D;", ";Y;" is Monday"
850 GOTO 960

860 PRINT M;", ":D;'\ ";Y;" is Tuseday"
870 GOTO 960

880 PRINT M;", ":D;", ";Y:" is Wednesday"
890 GOTO 960

(continued)

164 The Last Whole TI-99/4A Book

900 PRINT M;", ";D;", ";Y;" is Thursday"
910 GOTO 960

920 PRINT M;", ";D;", "jY;" is Friday"
930 GOTO 960

940 PRINT M;", ";D;", ";Y;" is Saturday"
950 GOTO 960

960 PRINT : :

970 PRINT : :

980 PRINT " End."

990 END

1000 PRINT " '• "
1010 RETURN

When you run this program it first displays it purpose;

/ —\

This program determines
the day of the week
for any date after 1584,
the start of the

Gregorian calendar

^.

after which it asks that you type in:

/

^.

Month (1 or £ digits)
Day (1 or £ digits)
Year (4 digits)

Programs for the Home 165

and, after a briefhesitation during which the computer performs the
necessary calculations, the display responds with something like:

^V

£, 10, 1918 is Sunday

V.

followed by:

After I wrote this program I used the RESEQUENCE command,
which automatically renumbers all program lines to intervals of 10
(unless otherwise commanded), also automatically adjusting the
different GOTO, GOSUB, and IF. . .THEN. . .ELSE lines to the
revised line numbers.

166 The Last Whole TI-99/4A Book

Let's look at the program line by line:

Line 100 identifies the program.
Line 110 clears the screen.

Lines 120-160 place the purpose and description of the program
into display.

Line 180 sends the computer to the subroutine asking you to press
>ENTER<.

Line 190 clears the screen.

Lines 200-240 ask you to key in the month, day, and year for
which you want to determine the day of the week.

Line 250 sends the computer to a subroutine that causes a line to
be displayed below the previous lines of text.

Line 260 uses the ON GOTO command to send the computer to one
of 12 line numbers, depending on the month in question.

Lines 270-500 add the appropriate number of days to the date,
based on the selected month. Here it is determined that the 10th of
February, for instance, is the 41st day of the year. In each instance
the computer is sent on to line 510.

Lines 510-660 perform the actual calculations, taking account of
the fact that every fourth year is a leap year.

Line 670 again clears the screen.
Lines 680-790 examine the value of the variable I relative to.some
figures that are part of the established mathematical formula
determining the day of the week.

Lines 800 and 810 are the subroutine described above.

Lines 820-940 display the result of the calculation, each time
sending the computer on to line 960.

Line 950 is superfluous, because it sends the computer to line 960,
which is the next line.

Lines 960 and 970 place some blank lines into the display.
Line 980 places the word END into display.
Line 990 tells the computer that the end of the program has been
reached.

Lines 1000 and 1010 are the subroutine that causes a dashed line

to be displayed.

It is possible to make the program repeat itself if several dates are
to be examined. The lines that must be changed or added are:

Programs for the Home 167

980 INPUT "Examine another date? (Y / N)
990 IF YN$-"Y"THEN 190 ELSE 1020
1020 PRINT::

1030 PRINT" End."

1040 END

':YN$

These lines eliminate the need to run the program again from the
beginning, saving a certain amount of time.

TRAVEL PROGRAM

Our next program deals with a variety of details that are usually
associated with making plans for travel and vacations. The program
is designed to determine the cost of any trip and the comparative
costs, using four different means of transportation: automobile,
commercial airline, bus, or private aircraft. In each category it dis
plays the total time en route as well as cost for one-way, round-trip,
and for the entire trip including food and lodging.

TRAVEL PROGRAM

Travel comparison program.

10 REM TI EXTENDED BASIC

100 REM TRAVEL COMPARISON

110 D$="Distance to travel (miles)?

120 Tl*="Approx.time to destination52"
130 T2*=" hours and "

140 T3$=" minutes."
150 FL$="Food/lodging en route?
160 GT0$="Grand total (one way)=

170 GTR$="Grand total (round trip)=
180 FT$="Final total (entire trip)=
190 CA*="Cost!itravel to airport?
200 TA$="Time,travel to airport?
210 NP$="Number o-f paying passengers?
220 CT*="Cost,each ticket,one way?
230 CD$="Cost,travel -from airport?
240 TD*="Time,travel -from airport?
250 CR$="Cost, rental car (i-f any)?

*"

$"

$"

$'

$

(continued)

168 The Last Whole TI-99/4A Book

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

CRR*="Total,car,round trip- $"
TR0$="Time,car,ohe way="
CRA$="Total,airlines,round trip= $"
TQA$="Time,airlines,one way="
FTA$="Final total,airlines= *"
FTC$="Final total,car= *"

DISPLAY AT(5,1)ERASE ALL:"This program analyzes"
DISPLAY AT<7, 1): "travel costs -for di-f-f erent"
DISPLAY AT(9, 1) :"means o-f transportation"
GOSUB 2460

GOSUB 2480

GOSUB 2440

DISPLAY AT(5,1) "Do you plan to travel
DISPLAY AT(6,1):"
DISPLAY AT(7,1):
DISPLAY AT(9,1):
DISPLAY AT(11,1)

DISPLAY AT(13,1)
DISPLAY AT(14,1)

DISPLAY AT(15,1)
DISPLAY AT(16,1)
DISPLAY AT(17,1)
INPUT WHICH

GOSUB 2440

ON WHICH GOTO 510,880
INPUT D*:MILES

INPUT "Average speed (incl.stops)? ":SPEED
INPUT "Aver.cost o-f gas per gal? *":GAS
INPUT "Aver.miles per gallon? ":MPG
INPUT "Annual car expense (e>:c. gas) ? $": YEAR
INPUT "Aver.annual miles driven? ":ANNUAL
GOSUB 2460

GOSUB 2400

TIME=MILES/SPEED

TIME1=INT(TIME>

TIME2= (TIME-TIMED*. 6*100
TIME5=TIME1

TIME6=TIME2

PRINT T1$;TIME1;T2*;TIME2;T3$
GAS=GAS*MILES/MPG

GAS-INT(GAS*100+.5)/100

PRINT "Fuel cost= $";GAS
YEAR=YEAR/ANNUAL*MILES

YEAR=INT(YEAR*100+.5)/100 -
PRINT "Other car costs= $";YEAR
TOTAL=GAS+YEAR

GOSUB 2460

PRINT "Total car costs= *";TOTAL
GOSUB 2460

INPUT FL*:F00D

TOTAL1-T0TAL+F00D

GOSUB 2460

1,"Automobile"
2,"Airlines"

:3,"Bus"
:4,"Private plane"
. n_____ _________ _.

:5,"Exit program"
. II : .

:"Which?"

1360,1910,2510

by:

(continued)

Programs for the Home 169

780 PRINT GTO*;TOTAL1
790 T0TAL2=T0TAL1*2

800 PRINT GTR*;T0TAL2
810 TRIP=T0TAL2+M0TEL

820 PRINT FT$;TRIP
830 TRIPCAR=TRIP

840 GOSUB 2460

850 GOSUB 2480

860 GOSUB 2440

870 GOTO 380

880 INPUT D*:MILES

890 INPUT "Scheduled air time? ":TIMEX

900 INPUT CA$:TAXI

910 INPUT TA$:GROUND

920 INPUT "Wait time at airport? ":AIRPT
930 INPUT NP*:PERSONS

940 INPUT CT*:TICKET

950 INPUT CD*:TAXII

960 INPUT TD*:GR0UNDX

970 INPUT CR*:CAR

980 GOSUB 2460

990 GOSUB 2400

1000 TIMEX1=INT(TIMEX)

1010 TIMEX2-(TIMEX-TIMEXl>/.6

1020 TIMEX=TIMEX2+TIMEX2

1030 GROUND1=INT(GROUND)

1040 GR0UND2=(GR0UND-GR0UNDl)/.6

1050 GR0UND=GR0UND1+GR0UND2

1060 GR0UNDX1=INT(GR0UNDX)

1070 GR0UNDX2-(GROUNDX-GROUNDX1)/.6

1080 GR0UNDX=GR0UNDX1+GR0UNDX2

1090 AIRPT1=INT(AIRPT)

1100 AIRPT2=(AIRPT-AIRPTl)/.6

1110 AIRPT=AIRPT1+AIRPT2

1120 TIME=TIMEX+GROUND+GROUNDX+AIRPT

1130 TIME1=INT(TIME)

1140 TIME2= (TIME-TIMED*.6*100

1150 TIME2=INT(TIME2>

1160 TIME7=TIME1

1170 TIME8=TIME2

1180 PRINT T1*;TIME1;T2$;TIME2;T3*
1190 C0ST=TAXI+(PERS0NS*TICKET)+TAXI1

1200 PRINT GT0*;C0ST
1210 TC0ST=(C0ST*2)+CAR

1220 T0TAL5=TC0ST

1230 PRINT GTR$;TCOST
1240 GOSUB 2460

1250 GOSUB 2480

1260 GOSUB 2440

1270 PRINT FTC*;TRIPCAR
1280 TRIP=TCOST+MOTEL

1290 GOSUB 2460

(continued)

170 The Last Whole TI-99/4A Book

1300 PRINT FT*;TRIP
1310 TRIPAIR=TRIP

1320 GOSUB 2460

1330 GOSUB 2480

1340 GOSUB 2440

1350 GOTO 380

1360 INPUT D*:MILES

1370 INPUT "Scheduled bus time? ":TIMEX

1380 INPUT "Cost,travel to bus terminal? *":TAXI
1390 INPUT "Time,travel to bus terminal? ":GROUND
1400 INPUT "Waiting time at terminal? ":AIRPT
1410 INPUT NP*:PERSONS

1420 INPUT CT*:TICKET

1430 INPUT "Cost,travel -from terminal? *":TAXI1
1440 INPUT "Time,travel -from terminal? ":GR0UNDX
1450 INPUT FL*:F00D

1460 INPUT CR*:CAR

1470 GOSUB 2460

1480 GOSUB 2400

1490 GROUND1=INT(GROUND)

1500 GR0UND2=(GROUND-GROUND1)/. 6

1510 GR0UND=GR0UND1+GR0UND2

1520 GR0UNDX1=INT(GR0UNDX)

1530 GR0UNDX2=(GR0UNDX-GR0UNDXD/.6
1540 GROUNDX-GROUNDX1+GR0UNDX2

1550 AIRPT1=INT(AIRPT)

1560 AIRPT2=(AIRPT-AIRPTD/.6

1570 AIRPT=AIRPT1+AIRPT2

1580 TIME=TIMEX+GR0UND+GR0UNDX+AIRPT

1590 TIME1=INT(TIME>

1600 TIME2= (TIME-TIMED*. 6*100

1610 TIME2=INT(TIME2)

1620 COST-TAXI+(TICKET*PERSONS)+TAXI1+F00D

1630 PRINT T1$;TIME1;T2*;TIME2;T3$.
1640 H0UR1=TIME1

1650 H0UR2=TIME2

1660 GOSUB 2460

1670 PRINT GT0*;C0ST
1680 TC0ST=(C0ST*2)+CAR

1690 T0TAL6=TC0ST

1700 PRINT GTR*;TC0ST
1710 TRIP-TCOST+MOTEL

1720 GOSUB 2460

1730 PRINT FT*;TRIP
1740 TRIPBUS=TRIP

1750 GOSUB 2460

1760 PRINT CRR*;T0TAL2
1770 PRINT CRA*;TOTALS
1780 PRINT TRO*;TIMES;T2*STIME6; T3*
1790 PRINT T0A*:TIME7;T2*;TIME8;T3*
1800 GOSUB 2460

1810 GOSUB 2480

(continued)

Programs for the Home 171

1820 GOSUB 2440

1830 PRINT FTC*;TRIPCAR
1840 PRINT FTA*;TRIPAIR

1850 GOSUB 2460

1860 PRINT FT*;TRIPBUS
1870 GOSUB 2460

1880 GOSUB 2480

1890 GOSUB 2440

1900 GOTO 380

1910 INPUT D*:MILES

1920 INPUT "Av.cruise speed (nm)? ":SPEED
1930 SPEED=SPEED/1.15089

1940 INPUT "Cost,operation/hour? *":C0ST
1950 INPUT CA*:TAXI

1960 INPUT TA*:GROUND

1970 INPUT CD*:TAXII

1980 INPUT TD*:GROUNDX

1990 INPUT CR*:CAR

2000 GOSUB 2460

2010 GOSUB 2400

2020 TIME=MILES/SPEED

2030 C0ST=(C0ST*TIME)+TAXI+TAXI1+CAR

2040 TIME1=INT(TIME)

2050 TIME2= (TIME-TIMED*. 6

2060 TIME=TIME1+TIME2+GR0UND+GR0UNDX

2070 TIMEX=INT(TIME)

2080 TIMEXX=(TIME-TIMEX)*.6*100

2090 TIMEXX=INT(TIMEXX)

2100 PRINT T1*;TIMEX;T2*;TIMEXX;T3*
2110 GOSUB 2460

2120 COST=INT(C0ST*100+.5)/100

2130 PRINT GTO*;COST
2140 TC0ST=(C0ST*2)-CAR

2150 PRINT GTR*;TCOST

2160 TRIP=TCOST+MOTEL

2170 GOSUB 2460

2180 PRINT FT*;TRIP

2190 GOSUB 2460

2200 GOSUB 2480

2210 GOSUB 2440

2220 PRINT CRR*;T0TAL2

2230 PRINT CRA*;TOTALS

2240 PRINT "Total cost,bus,round trip= *";TOTAL 6
2250 PRINT TRO*;TIMES;T2*;TIME6; T3*
2260 PRINT T0A*;TIME7;T2*;TIME8;T3*

2270 PRINT "Time by bus, one way- ";H0UR1;T2*;
H0UR2;T3*

2280 GOSUB 2460

2290 GOSUB 2480

2300 GOSUB 2440

2310 PRINT FTC*;TRIPCAR
2320 PRINT FTA*;TRIPAIR

(continued)

172 The Last Whole TI-99/4A Book

2330 PRINT "Final total, bus= *";TRIPBUS
2340 GOSUB 2460

2350 PRINT "Final total,private plane- *";TRIP
2360 GOSUB 2460

2370 GOSUB 2480

2380 GOSUB 2440

2390 GOTO 380

2400 INPUT "Food/lodging at destination? *":M0TEL
2410 GOSUB 2460

2420 PRINT ::

2430 RETURN

2440 CALL CLEAR

2450 RETURN

2460 PRINT " "

2470 RETURN

2480 PRINT ::

2490 INPUT "Press >ENTER< ":Y*

2500 RETURN

25.10 GOSUB 2440

2520 PRINT "End."

When the program is activated it displays the menu:

_ .

Do you plan to travel by:

1 Automobile

2 Airlines

3 Bus

4 Private plane

5 Exit program

Which?

After that, depending on the selection made, it asks all the pertinent
questions relative to the information needed in order to perform the
calculations. If several different means of transportation are called
up, one after the other, the program displays not only the totals for

Programs for the Home 173

the selected mode but also the previously determined totals, in
order to provide an easy means of comparison.

The best way to see what takes place in the different parts of the
program is to examine it line by line.
Line 10 is a REMark that this program uses TI EXTENDED BASIC.
To convert the program to run on TI BASIC, see the discussion at
lines 320-340.

Line 100 identifies the program.
Lines 110-310 assign various repeated used strings to string vari
ables.

Lines 320-340 use the DISPLAY command in the manner in
which it is available in TI EXTENDED BASIC, where the numbers
in parentheses after AT determine the row and column number at
which the text is to be displayed on the screen, and the ERASE ALL
in line 320 is equivalent to the CALL CLEAR command that clears
the screen. In ordinary TI BASIC this convention is not available,
and DISPLAY would have to be used in the same manner in which
the PRINT command is normally used.

Lines 350-370 call up three subroutines. The first causes a dashed
line to be displayed. The second asks you to press > ENTER < in
order to continue program execution. And the third clears the
screen.

Lines 380-470 again use the DISPLAY command as described
above.

Line 480 accepts the typed-in choice and assigns it to the variable
WHICH.

Line 490 calls up the subroutine that clears the screen.
Line 500 sends the computer to the appropriate section of the
program, depending on the previously keyed-in selection.

Lines 510-560 ask you to key in the distance to be traveled in
miles, the average speed including stops for food and fuel (40 mph
would probably be a good guess), the average cost ofgas per gallon,
the miles per gallon applicable to the automobile to be used, the
annual car expenses (except gas), such as car payments, insur
ance, maintenance, and so on, and the average number of miles
driven per year. In each case the keyed-in data are assigned to
numeric variables that are subsequently used in the calculations.

Line 570 calls up the subroutine that displays a dashed line.
Line 580 calls up a subroutine that asks you to key in the costs
involved with food and lodging at the destination.

174 The Last Whole TI-99/4A Book

Lines 590-610 calculate the time en route, one way, based on the
input average speed and distance to travel. In line 600 the integer
of the result, representing the hours, is separated from the decimal
portion. In line 610 the decimal portion, representing tenths and
hundredths of an hour, is multiplied by .6 and 100 in order to be
converted to minutes.

Lines 620 and 630 assign additional numeric variables (TIME5,
TIME6) to the results, so that they can be used later when they are
needed to display comparisons with other means of travel.

Line 640 causes the result to be displayed, using the previously
assigned string variables along with the numeric variables repre
senting hours and minutes.

Line 650 determines the cost of fuel by multiplying the price per
gallon by the total mileage and dividing the result by the miles-per-
gallon figure.

Line 660 employs a frequently used formula that limits the
number of displayed decimals to two, rounding off the final deci
mal, depending on the value of the subsequent digit.

Line 670 displays the result.
Line 680 determines the portion of the annual car cost (excluding

fuel) that should be figured as part of the trip cost by dividing the
annual cost by the average number of miles driven each year and
then multiplying the result by the distance to be traveled.

Line 690 again limits the number of decimals to two.
Line 700 prints the result.
Lines 710-740 add the two figures and display the result between

two dashed lines.

Line 750 asks you to key in the anticipated cost for food and
possibly lodging en route, assigning that figure to the numeric
variable FOOD.

Lines 760-830 first add that figure to the previous total in order to
display the total one-way cost in line 780. In line 790 that figure is
doubled and in line 800 the round-trip total is displayed. Line 810
adds the cost of food and lodging, represented by the numeric
variable MOTEL, to the previous total, displaying the final result in
line 820. And, finally, that figure is assigned to the numeric vari
able TRIPCAR in line 830 for use later on.

Lines 840-870 are the last lines in the automobile section of the

program, placing a dashed line into display, asking you to press

Programs for the Home 175

> ENTER < to continue program execution, clearing the screen,
and then, in line 870, returning the program to the menu for
another selection.

Lines 880-1350 represent the airline portion of the program, first
asking all the pertinent questions associated with travel by com
mercial airlines (lines 880-970), covering such subjects as travel to
the departure airport and from the destination airport, whether a
rental car will be needed at the destination, and so on. In lines

1000-1170 the hours-plus-minutes figures that were keyed in are
first converted to decimal values (by dividing minutes by .6) in
order to be used in the computations. Once the results have been
obtained, the decimal values are again converted to minutes by
multiplying by .6 and 100. Most of the other lines in this section are
similar to those in the first section.

Lines 1360-1900 represent the portion of the program that deals
with traveling by bus. The various calculations and displays are
comparable to those in the airline section.

Lines 1910-2390 comprise the section of the program that deals
with travel by private plane. Here, too, most ofthe calculations and
displays are comparable to those discussed above. Line 1920 asks
you to key in the average cruising speed in nautical miles, and line
1930 converts that speed to statute miles, which are used in enter
ing the distance to be traveled. Line 1940 asks for the cost of
operating the aircraft based on one flying hour. Those costs include
fixed as well as variable costs and are normally known to pilots.

Lines 2400-2500 are the subroutines described above, and lines

2510 and 2520 cause the screen to be cleared and the word "End."

to be displayed.

As you will have noticed, I used the RESEQUENCE command to
renumber all the lines after the program was written and debugged
(and then I added still another line-linelO). I would like to offer a
word of warning with reference to that command: Don't use the
command unless and until the program is complete, debugged, and
tested because, especially if the program is a long one, you will have
great difficulty in finding a given line that may need editing in some
way. Usually, during the process of program writing we tend to
assign easy-to-remember line numbers to separate sections. For
instance, in writing the above program I used 1000 and up for the

176 The Last Whole TI-99/4A Book

automobile, 2000 and up for the airlines, and so on. Thus, while
debugging and editing, I had no trouble finding the lines I was
looking for. Resequencing changes all that and makes editing more
difficult.

NAME AND ADDRESS LIST

Keeping track of the names, addresses, phone numbers, and,
where appropriate, birthdays of relatives, friends, and acquain
tances usually calls for the use of some sort of address book. The
trouble is that, unless we remember at least the months in which we
might have to send birthday cards to certain persons, we're likely to
forget to do so in time. This program is a very simple record-keeping
program designed to store the names, addresses, telephone num
bers, and birthdays of any number of persons. The program will
search for entries by last name, city, state, zip code, area code, or
birth month, always displaying all records that conform to^the entry
requirements. Thus, if you enter JONES, it will produce all records
for persons with the last name JONES. Ifyou enter CHICAGO, it will
display everyone living in Chicago. If you key in CA, it will display
everyone living in California. Ifyou type 1, it will display all persons
who live in an area where the zip code starts with 1. If you enter 213,
the display will respond with everyone whose area code is 213. And
if the entry is 2, it will display each person born in February. In
addition, if called upon to do so, the program will send the informa
tion to a line printer to have the selected list of data printed.

The program does not automatically create a DATA file. Instead,
the names, addresses, and so on, must be entered in the DATA lines,
following a specific format that must be adhered to if the program is
to function satisfactorily. Because this is of overriding importance,
let's look at that format before going into detail about the rest of the
program.

In the Name &Address Program listing, I have used 10 arbitrary
names with the accompanying data. The lines used for that purpose
are 1000-1090, and the lines available for such DATA entries are

Programs for the Home 177

1000-4999, which means that, theoretically at least, you can enter
up to 3999 names, obviously more than you're likely to need. The
format for DATA entry is as follows (use only uppercase letters):

LAST NAME.FIRST NAME AND MIDDLE NAME OR INITIAL.STREET
OR P.O. BOX NUMBER.CITY.STATE (2-LETTER ABBREVIATION.ZIP
CODE.AREACODE.PHONE NUMBER.BIRTH MONTH.BIRTH DAY

It is important that no commas be used anywhere except where
indicated. (It is possible to use commas for such names as ABC
COMPANY, INC., but then the entire string must be enclosed in
quotation marks: "ABC COMPANY, INC.".) The placement of com
mas is so important because the computer READs everything
between commas as one DATA item, and each record (line) must
contain the same number ofDATA items. Thus, ifsome information
is missing (area code, birth date, or some such), commas must be
used with nothing in between (DOE,JOHN,,,,,,,, would be needed for
a name for which no additional information is available). In other
words, each record consists of 10 DATA items separated by nine
commas, with the first item, the last name, ahead of the first
comma, and the last item, birth day, to the right ofthe ninth comma.
Now let's take a closer look at the program.

THE NAME AND ADDRESS PROGRAM

A program that can be used to store names, addresses, phone numbers, and birth dates.

100 REM RANDOM ACCESS

110 REM DATA BASE

120 REM TI99/4A

150 BX*="Birth date: "

200 GOSUB 11000

210 PRINT "This is a simple": :
220 PRINT "random-access data-base

230 PRINT "program."
240 GOSUB 11500

250 PRINT "Program lines available

260 PRINT "for data entry are ": :
270 PRINT "lines 1000 through 4999
280 GOSUB 11500

(continued)

178 The Last Whole TI-99/4A Book

290 PRINT "Do you want the data sent": :
300 INPUT "to the line printer? Y/N ":YY$
310 GOSUB 11000

320 PRINT "The data stored are ": :

330 PRINT "name, address, phone number": :
340 PRINT "You may retrieve data by:": :
350 PRINT Is" Last name"

360 PRINT 2;" City"
370 PRINT 3; " St.vte (2 Letters) "
380 PRINT 4;" Zip (1st digit)"
390 PRINT 5:" Area code"

400 PRINT 6?" Birth month"
410 GOSUB 11500

420 INPUT "Pick one ":P

430 ON P GOTO 5000,6000,7000,8000,9000,10000
500 READ LN$,FN$,AD*,CT*,ST$,ZC,AC*,PN*,BM$,BD$
510 RETURN

1000 DATA JONES,PHIL,P.O.BOX 1246,SANTA FE,NM,87501,505,
555 2374,2,11

1010 DATA^DOE,'JOHN, 321 MAIN STREET, MIAMI, FL, 31011, 305, 555
3578,12,21

1020 DATA DOE,JANE,65 BETA WAY,LOS ANGELES,CA,90027,213,
555 9611,7,24

1030 DATA JONES,PETER,55 PARK AVE.,LOS ANGELES,CA,90027,
213,555 8871,1,22

1040 DATA SMITH,HARRY,77 OREGON DR.,DALLAS,TX,75010,214,
555 6609,10,15

1050 DATA GORDON,FRANK,882 CENTRAL AV.,NEW YORK,NY,10015,
212,555 5518,1,7

1060 DATA CARTER,JIMMY,45 2ND STREET,BOSTON,MA,03021,617,
555 6492,3,16

1070 DATA SMITH, MARY, P.O.. BOX 129, CHICAGO, IL,60506, 3.12, 555
8755,9,14

1080 DATA CARTER,ELLEN,666 MARKET ST.,SAN FRANCISCO,CA,
94132,415,555 9876,7,4

1090 DATA GORDON,DR.JOHN,45 BEVERLY DR.,BEVERLY HILLS,CA,
90210,213,555 4519,4,23

5000 GOSUB 11000

5005 RESTORE

5010 INPUT "Last name? ":NL$

5020 FOR Z=l TO 1000

5030 GOSUB 500

5040 IF NL*=LN$ THEN 5100

5050 NEXT Z

5100 GOSUB 11500

5200 PRINT FN*;" "; LN$
5210 PRINT AD*'
5220 PRINT CT$;",";ST*;" ";ZC
5230 PRINT AC*; "--";PN*'
5240 PRINT BX*;BM*;" "; BD*
5250 IF YY$="Y" THEN 5300

5260 PRINT : :

(continued)

Programs forthe Home 179

5290 ON P GOTO 5030,6030,7020,8030,9030,10030
5300 OPEN #1:"RS232"

5310 PRINT #1:FN*;" ";LN*
5320 PRINT #1:AD*

5330 PRINT #1:CT*;",";ST*;" ";ZC
5340 PRINT #1:AC*;"-";PN*
5350 PRINT #1:BX*;BM*;" ";BD*
5360 PRINT #1:" ": :

5370 CLOSE #1

5380 ON P GOTO 5030,6030,7020,8030,9030,10030
6000 GOSUB 11000

6005 RESTORE

6010 INPUT "City? ":TC*
6020 FOR Z=l TO 1000

6030 GOSUB 500

6070 IF TC*=CT* THEN 6100

6080 NEXT Z

6100 GOSUB 11500

6200 GOTO 5200

7000 GOSUB 11000

7005 RESTORE

7010 INPUT "State? (2 letters) ":TS*

7015 FOR Z=l TO 1000

7020 GOSUB 500

7070 IF TS*=ST* THEN 7100

7080 NEXT Z

7100 GOSUB 11500

7200 GOTO 5200

8000 GOSUB 11000

8005 RESTORE

8010 INPUT "Zip? (1st digit) ":CZ
8020 FOR Z=l TO 1000

8030 GOSUB 500

8080 ZZ=ZC

8090 ZZ=ZZ/10000

8100 ZZ=INT(ZZ)

8110 IF CZ=ZZ THEN 8200

8120 NEXT Z

8200 GOSUB 11500

8250 GOTO 5200

9000 GOSUB 11000

9005 RESTORE

9010 INPUT "Area code? ":CA*

9020 FOR Z=l TO 1000

9030 GOSUB 500

9090 IF AC*=CA* THEN 9200

9100 NEXT Z

9200 GOSUB 11500

9240 GOTO 5200

10000 GOSUB 11000

10005 RESTORE

10010 INPUT "Month o-f birth? ":MB*

(continued)

180 The Last Whole TI-99/4A Book

10020 FOR Z=l TO 1000

10030 GOSUB 500

10110 IF BM*=MB* THEN 10200

10120 NEXT Z

10200 GOSUB 11500

10220 GOTO 5200

11000 CALL CLEAR

11010 RETURN

11500 PRINT "

11510 RETURN

12000 GOSUB 11000

12010 PRINT TAB(12);"End."
12020 END

When the program execution is started, it first displays some
basic information:

r

V.

This is a simple
random-access data-base

program.

Program lines available

for data entry are
lines 1000 through 4999.

Do you want the data sent
to the line printer? (Y/N)

The data stored are

name, address, phone number.
You may retrieve data by3

1 Last name

e City
3 State <£ letters)

4 Zip (1st digit)
5 Area code

6 Birth month

Pick one

Programs for the Home 181

After that the program will ask for the appropriate input (use only
uppercase letters). When that has been done it will display, and if
called upon print, all the complete records of persons who match the
input data. Some sample printouts are shown in Figs. 9-lA thru
9-1F.

PHIL JONES

P.O.BOX 1246

SANTA FE,NM 87501
505-555 2374

Birth date: 2 11

PETER JONES

55 PARK AVE.

LOS ANGELES,CA 90027
213-555 8871

Birth date: 1 22

Figure9-1A. The printout that resultswhendata are selected bylast name.

JANE DOE

65 BETA WAY

LOS ANGELES,CA 90027
213-555 9611

Birth date: 7 24

PETER JONES

55 PARK AVE.

LOS ANGELES,CA 90027
213-555 8871

Birth date: 1 22

Figure 9-1B. Here data are selected by the city.

182 The Last Whole TI-99/4A Book

JANE DOE

65 BETA WAY

LOS ANGELES,CA 90027
213-555 9611

Birth date: 7 24

PETER JONES

55 PARK AVE.

LOS ANGELES,CA 90027
213-555 8871

Birth date: 1 22

ELLEN CARTER

666 MARKET ST.

SAN FRANCISCO,CA 94132
415-555 9876

Birth date: 7 4

DR.JOHN GORDON

45 BEVERLY DR.

BEVERLY HILLS,CA 90210
213-555 4519

Birth date: 4 23

Figure 9-1C.Data selection based on the two-letterstate identification.

JOHN DOE

321 MAIN STREET

MIAMI,FL 31011
305-555 3578

Birth date: 12 21

Figure 9-1D. Onlyone name is associated witha zip code starting with3.

JIMMY CARTER

45 2ND STREET

BOSTON,MA 3021'
617-555 6492

Birth date: 3 16

Figure 9-1E. Here, too, onlyone name is selected based on the area code 617.

PETER JONES

55 PARK AVE.

LOS ANGELES,CA 90027
213-555 8871

Birth date: 1 22

FRANK GORDON

882 CENTRAL AV.

NEW YORK,NY 10015
212-555 5518

Birth date: 1 7

Figure 9-1F. Selection based on the month of birth.

Programs for the Home 183

Looking at the program line by line:

Lines 100-120 identify the program.
Line 150 assigns a string to the string variable BX$.
Lines 200-420 display the menu.
Line 430 sends the computer to a line number determined by your
selection.

Lines 500 and 510 are a subroutine that READs 10 DATA items

(one complete record), assigning each item to a string variable with
the exception of the zip code, which is assigned to a numeric
variable.

Lines 1000-4999 are the lines available for record data entry, with
each record consisting of10 items or "fields."

Line 5000 calls up a subroutine to clear the screen.
Line 5005 uses the RESTORE command to make sure that the

DATA lines are READ from the beginning.
Line 5010 asks you to input the last name of the persons you want
the computer to look for.

Lines 5020-5050 are a loop that causes the computer to READ the
DATA items (using the subroutine in lines 500 and 510) until it
finds a name that matches the one you have keyed in. That's why it
is important to use only uppercase letters, because if the name in
the DATA line were written in uppercase, and the one you typed in
is written in lowercase, the computer would not recognize them as
being identical. If a match is found (IF NL$-LN$), the computer is
sent to line 5100.

184 The Last Whole TI-99/4A Book

Lines 5100-5240 first place a dashed line into display and then
display the entire record in five lines.

Line 5250 checks whether you want the information sent to the
line printer, in which case the computer is sent to lines 5300-5370.

Line 5260 places some blank lines into display.
Line 5290 is used if the records are not to be printed. It sends the
computer to one of six lines, depending on the value of P, which
represents your original selection.

Line 5300 accesses the line printer.
Lines 5310-5360 print the record data on paper.
Line 5370 disengages the line printer.
Line 5380 is the same as line 5290.

Lines 6000-10220 repeat the above, based on the second through
sixth choices from the menu. The only real difference occurs in
lines 8080-8100, where the zip code is divided by 10000 in order to
be able to separate the first digit from the rest of the number using
the INT(ZZ) statement.

Lines 11000-12020 are the purely cosmetic subroutines and the
END line.

As is obvious, changes, such as changes of address or phone
number, can easily be made by simply retyping the DATA line in
question. Furthermore, the same program can be used to store any
other type of data, as long as care is taken that the number of items
(fields) in each DATA line is always the same. Thus it could be used
to record inventory of all manner of products, where the products
could be called up by category, or it could be used to record research
material or whatever.

ELECTRONIC COOKBOOK PROGRAM

Let's look now at a similar type of random-access program,
which we'll use to store favorite recipes from a variety ofcookbooks.
If you type in the recipes using a fixed formula, you will be able to
retrieve them by categories, such as eggs, poultry, beef, pork, and so
on, or by the name of the individual recipe. In addition, the program
includes a subprogram that can be used to convert weights and
measures to the number of persons for whom the recipe is to be
prepared.

Programs for the Home 185

Before looking at the program in detail, let's see how recipes
must be entered. Each recipe is entered in the form of six items in
the DATA lines (lines 5000-20000). The first entry must be the
category, such as FISH, EGGS, BEEF, and so on, followed by a
comma. Next comes the name of the recipe, such as FILLETS AU
GRATIN. Then use the next DATA line to enter all ingredients,
using no commas unless you enclose the whole list in quotation
marks, in which case commas are acceptable. The maximum
number of characters that can be used forthis item is 130 (including
blank spaces), or five lines on the screen including line number and
the DATA statement. Then use the next DATA lines to enter the
instructions. In order to be able to accommodate lengthy instruc
tions, the program provides for a total of three instruction items of
up to 130 characters each. Remember that regardless ofwhether or
not all of this space is needed, each recipe must include three
instruction fields, even if one or more are blanks. Thus, it should
look like this:

5000 DATACATEGORY.NAME
5010 DATA INGREDIENTS

5020 DATA INSTRUCTIONS.INSTRUCTIONSJNSTRUCTIONS

where the instructions can be on up to three separate DATA lines.
An example of what this looks like is included in the Electronic
Cookbook Program in lines 5000-5030.

ELECTRONIC COOKBOOK PROGRAM

An electronic cookbook program.

100 REM ELECTRONIC COOKBOOK

110 REM TI99/4A

200 GOSUB 22200

205 GOSUB 22100

210 PRINT "This program stores recipes" :
220 PRINT "by category, and it includes"
225 PRINT "a subprogram to convert" ::
230 PRINT "weights and measures"
231 GOSUB 22100

232 GOSUB 22400

(continued)

186 The Last Whole TI-99/4A Book

233 GOSUB 22200

350 PRINT "Menu:"

355 GOSUB 22100

360 PRINT l;")Enter new recipe"
370 PRINT 2;")Find recipe by category"
380 PRINT 3;")Find speci-fic recipe"
390 GOSUB 22100

395 PRINT 4;")Conversion program"
400 GOSUB 22100

405 PRINT 5;")E>!it program"
410 GOSUB 22100

415 RESTORE

420 INPUT " Which? ":WHICH

430 GOSUB 22200

440 ON WHICH GOTO 1000,2000,3000,4000,25000
1000 PRINT "With 'READY' in display," ::
1010 PRINT "type: LIST 5000-20000" ::
1020 GOSUB 22100

1030 PRINT "Then enter recipes in the" ::
1040 PRINT "DATA lines using the -Format:"
1050 GOSUB 22100

1060 PRINT "DATA CATEGORY,NAME,INGREDI- ENTS,INSTRUCTIONS,
INSTRUCT- IONS,INSTRUCTIONS"

1070 GOSUB 22100"

1080 PRINT "Limit instructions to three" ::

1090 PRINT "DATA items." ::

1100 PRINT ::

1110 PRINT "Use as many DATA lines as"
1120 PRINT "are needed"

1130 GOSUB 22100

1140 GOTO 25040

2000 INPUT "Category? ":CATEG*
2010 RESTORE

2020 FOR PASS=1 TO 25

2025 ON ERROR 233

2030 READ R*

2040 IF R*=CATEG* THEN 2500

2045 READ N*

2046 READ I*

2047 READ Dl$,D2$,D3$
2050 NEXT PASS

2500 READ N$

2510 READ I*,D1$,D2$,D3$
2511 PRINT ::

2512 PRINT ::

2520 PRINT N*

2525 GOSUB 22100

2530 PRINT I*

2540 GOSUB 22100

2541 PRINT D1$:D2*;D3$
2542 GOSUB 22100

2543 PRINT ::

(continued)

Programs forthe Home 187

2550 INPUT "Printout? (Y/N) ":PR$

2560 IF PR$="Y" THEN GOSUB 2700

2570 IF WHICH=2 THEN 2030

2580 IF WHICH=3 THEN 3030

2700 OPEN #1:"RS232"

2710 PRINT #1:N*

2720 PRINT #1:" "

2730 PRINT #1:1*

2740 PRINT #1:" "

2745 PRINT #1:Dl$;D2«;D3*
2746 PRINT #1:" "

2750 CLOSE #1

2760 RETURN

3000 INPUT "Recipe name? ":RN*
3010 RESTORE

3020 FOR PASS=1 TO 1000

3025 ON ERROR 233

3030 READ R*

3040 READ N$

3050 IF N*=RN$ THEN 3500

3060 READ 1$,Dl$,D2$,D3*
3070 NEXT PASS

3500 PRINT ::

3510 PRINT R*

3520 GOSUB 22100

3530 PRINT N*

3540 GOSUB 22100

3550 READ I*

3560 PRINT I*

3570 GOSUB 22100

3575 PRINT D1*;D2*;D3$
3576 GOSUB 22100

3580 PRINT ::

3590 GOTO 2550

4000 INPUT "No.servings in recipe? ":SERV
4010 INPUT "No.servings desired? ":SERV1
4020 SERV2=SERV/SERV1

4030 PRINT "Use decimals -for -fractions:" ::

4040 PRINT "l/2=.5;l/3=.33;2/3=.67" ::
/ 4045 PRINT "1/4=.25;3/4=.75" ::
4050 INPUT "Quantity to convert? ":QUANT
4052 GOSUB 22100

4060 QUANT1=QUANT/SERV2

4065 QUANT1=INT(QUANT1*100+.5)/100

4070 PRINT QUANT;" -for ";SERV1;" servings="; QUANT 1
4080 GOSUB 22100

4090 INPUT "Another conversion? (Y/N) ":YN$

4100 IF YN*="Y" THEN 4110 ELSE 4150

4110 GOSUB 22200

4120 GOTO 4000

4150 GOSUB 22200

4160 GOTO 350

(continued)

188 The Last Whole TI-99/4A Book

5000 DATA FISH,FILLETS AU GRATIN
5010 DATA 1 LB FISH FILLETS.2/3 CUP CANNED CONDENSED SOUP.

2 TBS MILK.l CUP COARSE BREAD CRUMBS.2 TBS MELTED

BUTTER

5020 DATA ARRANGE FILLETS IN BUTTERED BAKING DISH.COMBINE

SOUP S< MILK & HEAT.POUR OVER FISH.SPRINKLE WITH BREAD

CRUMBS.DRIZZLE WITH MELTED
5030 DATA BUTTER.BAKE UNCOVERED AT 375 DEG.F.FOR 10 TO 15

MINS.2 TO 3 SERVINGS.,

5040 DATA FISH,NAME1
5050 DATA INGREDIENTS

5060 DATA INSTRUCTIONS,INSTRUCTIONS,INSTRUCTIONS
5070 DATA EGGS,NAME2
5080 DATA INGREDIENTS

5090 DATA INSTRUCTIONS,INSTRUCTIONS,INSTRUCTIONS
5100 DATA EGGS,NAME3
5110 DATA INGREDIENTS

5120 DATA INSTRUCTIONS,INSTRUCTIONS,INSTRUCTIONS
5130 DATA BEEF,NAME4
5140 DATA INGREDIENTS

5150 DATA INSTRUCTIONS,INSTRUCTIONS,INSTRUCTIONS
22100 PRINT " < "

22110 RETURN

22200 CALL CLEAR

22210 PRINT ::

22220 RETURN

22400 PRINT ::

22410 INPUT "Press >ENTER< ": Y*

22420 RETURN

25000 GOSUB 22200

25010 GOSUB 22100

25020 PRINT " End."

25030 GOSUB 22100

25040 END

When we run the program, it first displays its purpose and then
presents the menu:

r

V

1) Enter new recipe
£> Find recipe by category
3) Find specific recipe

4> Conversion program

5) Exit program

Which?

Programs for the Home 189

Next, depending on your selection, it responds with the appropriate
information or requests for input. If the first choice was selected, it
displays a reminder ofhow data must be entered:

With *READY' in display,
type LIST 5800-28000

Then enter recipes in the
DATA lines using the formats

DATA CATEGORY,NAME,INGREDI
ENTS, INSTRUCTIONS,INSTRUCT
IONS, INSTRUCTIONS

Limit instructions to three

DATA items.

Use as many DATA lines as
are needed.

While this is being displayed, the 'READY' statement shows at the
bottom ofthe screen, telling you that the computer is ready to accept
input in accordance with the instructions.

If the second choice is selected, the display responds with:

Category?

asking you to type in the category desired. When that has been
done, it displays the name of the first recipe in that category, the
ingredients, and all instructions, followed by:

190 The Last Whole TI-99/4A Book

A

Printout (Y/N)

asking if you want the recipe printed by the line printer. If you
answer in the negative (N), the display changes to the second recipe
in that category, and so on until all recipes in the selected category
have been displayed. If you answer in the affirmative (Y), the printer
will print the recipe as shown in Figure 9-2 before the display moves
on to the next category. Thus, it is possible to have selected recipes
printed while others are ignored. When all recipes in the category
have been displayed, the computer returns to the menu.

FILLETS AU GRATIN

1 LB FISH FILLETS.2/3 CUP CANNED CONDENSED SOUP.2
TBS MILK.1 CUP COARSE BREAD CR

UMBS.2 TBS MELTED BUTTER

ARRANGE FILLETS IN BUTTERED BAKING DISH.COMBINE SO

UP S< MILK & HEAT. POUR OVER FIS

H.SPRINKLE WITH BREAD CRUMBS.DRIZZLE WITH MELTED

BUTTER.BAKE UNCOVERED AT 375 DEG.F.FOR 10 TO 15 MI

NS.2 TO 3 SERVINGS.

Figure 9-2. When the printout option is selected, the recipe is printed.

Programs for the Home 191

If you select the third choice, the first display asks:

r \

Recipe name?

v*.

and when it has been typed, the program searches the DATA lines
for a recipe by that name and, when found, places it into display,
again asking if you want it printed by the line printer. Either way,
the program returns to the menu when printing is completed or
when N has been pressed. Be sure to use the exact name (using
uppercase letters), because the computer will return to the menu
without displaying anything when the typed-in name does not
match the stored name exactly.

If the fourth option is selected, the display shows:

r

No.servings in recipe?
No.servings desired?
Use decimals for fractions:

1/2=. 5;1/3=.3352/3=. 67
1/4=. 25?3/4=.75
Quantity to convert?

^.

and when the three questions in the above have been answered, the
display responds with:

192 The Last Whole TI-99/4A Book

r

X for Y servings= Z

where X is the quantity to be converted, Y is the number ofservings
desired, and Z is the converted quantity. This is followed by:

^v

Another conversion? (Y/N)

which either repeats the above or returns the computer to the menu.
Line by line, the program functions as follows:

Lines 100 and 110 identify the program.
Lines 200-430 display the purpose of the program and the menu,
using several subroutines to clear the screen, display dashed lines,
and to ask you to press > ENTER < to continue program execution.

Line 440 sends the computer to the appropriate line number,
depending on your choice.

Programs for the Home 193

Lines 1000-1140 are used with the first option, displaying the
instructions for entering new recipes in the DATA lines. In line 1140
the computer is sent to line 25040, the END line, which causes the
"READY" statement to be displayed by actually exiting the pro
gram.

Lines 2000-2760 are used with the second option; line 2000 asks
you to key in the category. Line 2010 uses the RESTORE command
to make sure the DATA items are READ from the beginning. Lines
2020-2050 represent a loop that causes the computer to READ the
groups ofsix DATA items that make up each recipe up to 25 times.
That 25 in line 2020 is arbitrary. The number used should be equal
to or greater than the number ofcategories. Line 2025 uses the ON
ERROR command to send the computer back to the menu when all
DATA have been READ, resulting in a DATA ERROR condition. In
line 2030 the first DATA item is READ, and in line 2040 that item is
compared to the category you typed in. If they match, the com
puter is sent to line 2500. If not, it goes on to lines 2045-2050 to
READ the remaining five items and then return to line 2020 to go
on to the next recipe. Lines 2500 and 2510 READ the next five
DATA items associated with the recipe, and lines 2511-2543 cause
the name, ingredients, and instructions to be displayed. Line 2550
asks ifyou want the displayed information sent to the line printer,
sending the computer in line 2560 to line 2700 if yes, and to the
next line if no. Lines 2570 and 2580 are needed because this

section is used with both the second and third options. Line 2700
accesses the line printer and lines 2710-2760 are the subroutine
that causes the data to be printed.

Lines 3000-3590 come into play if the third option was selected.
Here the number (1000) used for the loop in line 3020 is again an
arbitrary number. Any number equal to or greater than the total
number ofrecipes in the DATA lines can be used. The rest is pretty
much a duplication of the previous section, except that the com
puter is asked to READ the first two DATA items and the second
one is then compared to the name of the recipe you've typed in. In
line 3590 the computer is sent to line 2550 to use the question once
more with reference to the line printer and the subroutine that
causes the data to be printed.

Lines 4000-4160 are used if the fourth option is selected. Line
4000 asks the number of servings for which the recipe was written.

194 The Last Whole TI-99/4A Book

Line 4010 asks the number of servings to which you want the
weights and measures to be converted. Line 4020 divides one by
the other. Lines 4030-4050 are a reminder that decimals must be

used instead of fractions, displaying the decimal equivalents of
frequently used fractions, and then asking you to type in the
weight or measure to be converted. Line 4060 performs the conver
sion calculation. Line 4065 limits the displayed decimals to two.
Line 4070 displays the result, and line 4090 asks if you want to
perform additional conversions, causing the computer, in lines
4120 and 4160, to be sent to the appropriate line numbers.

Lines 5000-20000 are reserved for the DATA lines. In lines
5000-50201 have used an actual recipe as an example (see Figure
9-2); the remaining DATA lines are there simply to permit testing
the program. Note the comma at the end of line 5020. It must be
there because I have used only two instruction items (fields), and
the computer is told, via the comma, that the third is blank.

Lines 22100-25040 are subroutines used primarily for cosmetic
reasons, and the line that places the word "End." into display, with
line 25040 telling the computer that it has reached the end of the
program.

SCHEDULE C TAX PROGRAM

Next we'll write a program designed to simplify the task of filling
out the Schedule C federal tax form used to report income from a
business or profession. Aside from being a useful program, it is an
interesting exercise in program writing. See Figure 9-4 on page 204
for a printout ofthe program.

SCHEDULE C TAX PROGRAM

This program simplifies the task of filling out the Schedule C federal tax form.

100 REM SCHEDULE C TAX PROGRAM

110 REM TI EXTENDED BASIC
150 D=l

200 GOSUB 22200

210 GOSUB 22100

220 DISPLAY AT(5,1):"This program simplifies"

(continued)

Programs for the Home 195

230 DISPLAY AT (7, 1):"the task of -filling out"
240 DISPLAY AT (9, 1) : "the Schedule C tax -form"

250 DISPLAY AT(10,1>: "— "

260 PRINT

265 INPUT "Press >ENTER< ":E$

270 GOSUB 22200

300 DISPLAY AT<10,1):1;" Enter receipts"
310 DISPLAY AT(12,1):2;" Enter expenses"
320 DISPLAY AT (13,1):" "

330 INPUT "Which? ":WHICH

340 GOSUB 22200

350 ON WHICH GOTO 500,600
500 INPUT "Enter amount $":A

510 AA=AA+A .

520 GOSUB 22100

530 PRINT TAB(16);"$";AA
540 GOSUB 22100

550 GOSUB 22400

560 GOSUB 22200

'570 GOTO 300
600 GOSUB 22200

605 INPUT "Enter line number ":L$

610 LLLL$=SEG$(L$,1,2)

615 L=VAL(LLLL$)

620 IF L<28 OR L=29 THEN 700 ELSE 630

630 LL*=SEG*(L*,1,2)

640 LLL*=SEG*(L$,3,1)

650 LL=VAL(LL$)

660 INPUT "Deductible amount $":D

670 IF LL=28 THEN 2000 ELSE 3000

680 GOTO 710

700 INPUT "Deductible amount *":D

710 ON L-5 GOTO 1060,1070,1080,1090,1100,1110,1120,1130,
1140,1150,1160,1170,1180,1190,1200,1210,1220,1230,
1240,1250,1260,1270,1280,1290

1060 D6=D6+D

1061 PRINT TAB(IS);"$";D6

1062 GOSUB 22400

1063 GOTO 600

1070 D7=D7+D

1071 PRINT TAB(18);"$";D7

1072 GOTO 1062

1080 D8=D8+D

1081 PRINT TAB(18);"$";D8

1082 GOTO 1062

1090 D9=D9+D

1091 PRINT TAB(IS);"*";D9
1092 GOTO 1062

1100 D10=D10+D

1101 PRINT TAB(18);"*";D10
1102 GOTO 1062

(continued)

C
D

C
M

t
o

t
i
n

•
a

n
0
3

C
h

o
•
r
-
l

C
M

M
<3"

i
n

«
o

r
»

1
-
1

y
-
i

T
-
t

t
-
i

•*4
i
-
i

*
-
t

,
-
i

C
M

C
M

C
M

C
M

C
M

M
C
M

c
m

Q
a

a
a

a
Q

a
a

Q
Q

Q
Q

Q
Q

a
Q

*
»

»
*

*
ft

*
»

*
»

*
<

ft
«

*
«

*
#

C
O

C
D

C
O

C
O

C
O

C
O

C
O

C
O

C
O

0
3

C
O

C
O

0
3

C
O

C
O

C
O

Q+-*
s
-

o

C
Q

C
M

C
O

C
M

c
r

-o
Q

C
Q

C
M

+
<

r
<

i
*•••>

h
-

o

q
c
q

cm
+

<
r

-«o
«•

i
-

o

Q
H

ii
z

a

Q
0

-
C

D

Q
C

Q
C

M
+

<
C

>
0

111
I
-

O

C
I

C
Q

C
M

+
<

E
-0

<
J

H
O

Q
U

I
N

+
<

E
M

3
S

l
-
O

Q
0

1
C

M
C

I
ill

+
<

r
o

+
<

r
0

0
l
-
O

(
M

-

CM
Q

C
Q

CM
a

OQ
CM

Q
C

Q
CM

O
C

O
CM

Q
C

O
IN

O
C

Q
CM

Q
C

Q
CM

Q
C

Q
CM

Q
>

o
+

<
E

>
o

+
'a

:
>

o
+

<
r

O
O

h
O

-
n

H
O

C
M

h
-

-
i
W

*-«
C

M
»

h
C

M

O
II

Z
O

II
Z

O
II

z
„

„
,

.,
_

h
-

O
»-«

H
-

-*
•-•

|-
CM

»-<
I-

tO
i-i'h

-
«

t
»-t

o
+

o
w

^
MQ

O
II

<
r

^
+

<
r

C
M

Q
H

II

cm
m

>
o

+
c
:
>

o
+

<
e
-
o

+
0

>
l
)
h

O
M

-
0

(
h

*h
C

M
'-i

C
M

-h
m

p
h

a
t
-

q
O

II
Z

O
II

Z
O

II
(
_

>
0

i
_

«
l
_

|
s
.M

|
-
C

b
u

l
l
i
L

u
u

u
.
U

u
u

.
o

M
o

:
o

N
i
i
:
o

cm
C

D
Q

0
-
C

D
Q

0
.C

D
O

Q
.(

D
Q

D
.C

D
Q

£
l
G

Q

+llT
cmaII
inC

M
C

C
•
^

a
:

Q
l
l

i
-

o

Q
I
-

!i
Z

M
»-i

-
i

a
:

Q
Q

.

o
Q

H
II

Z

^
a

:
a

a
.

a
i
-

II
z

in
m

a
a
.

a
h

II
z

a
II

z
>

o
«

•^
a

:
Q

a
.

ID
Q

0
.

C
O

q
\~

II
z

03

a
i
-

O
II

z
\-

o
>-*

~*
a

:
o

-«
m

Q
Q

.
Q

Q
J
L

O
M

I
C

O
CM

flC
O

N
C

C
b

C
M

C
C

b
C

D
Q

0
-

C
D

Q
Q

.
C

D
Q

0
.

z
a

>
J

O
-
•

CM
O

h
N

O
h

N
O

"
H

CM
O

*-«
CM

O
h

«
O

h
CM

O
*h

CM
O

*-•
CM

O
»-i

CM
O

~«
CM

O
^

CM
O

^
CM

O
^-i

CM
O

~*
CM

O
^

CM
O

-
cm

cm
cm

to
n

ro
^

<
*•

*
f

in
m

m
-o

o
-o

n
n

i^
cd

co
co

o«
o

-
o

-
o

o
o

•*
•*

-<
cm

c-j
c-i

n
n

n
*

t
t
i
i
i
y

i
i
n

>
o

>
o

o
N

N
M

>
^

^
w

,
h

,
h

,
h

*
h

^
^

,-.
^

^
,
h

,-<
^

r
*

^
,-i

^
^

,
*
^

,
h

,-<
w

C
M
C
M
C
M

C-1
C
M

C
M

C
M
C
M

C
M

C
M
C
M

C
M

C
M
C
M

C
M

C
M

C
M

C
M
C
M
C
M
C
M

C
M
C
M

C
M

C
M

1291 PRINT TAB(18)

1292 GOTO 1062

1300 D28A=D28A+D

1301 PRINT TAB(18)

1302 GOTO 1062

1310 D28B=D28B+D

1311 PRINT TAB(18)

1312 GOTO 1062

1320 D28C=D28C+D

1321 PRINT TAB(18)

1322 GOTO 1062

1330 D30A=D30A+D

1331 PRINT TAB(18)

1332 GOTO 1062

1340 D30B=D30B+D

1341 PRINT TAB(18)

1342 GOTO 1062

1350 D30C=D30C+D

1351 PRINT TAB(18)

1352 GOTO 1062

1360 D30D=D30D+D

1361 PRINT TAB(18)

1362 GOTO 1062

1370 D30E=D30E+D

1371 PRINT TAB(18)

1372 GOTO 1062

1380 D30F=D30F+D

1381 PRINT TAB(18)

1382 GOTO 1062

1390 D30G=D30G+D

1391 PRINT TAB(18)

1392 GOTO 1062

1400 D30H=D30H+D

1401 PRINT TAB(18)

1402 GOTO 1062

1410 D30I=D30I+D

1411 PRINT TAB(18)

1412 GOTO 1062

1420 D30J=D30J+D

1421 PRINT TAB(18)

1422 GOTO 1062

1430 D30K=D30K+D

1431 PRINT TAB(18)

1432 GOTO 1062

1440 D30L=D30L+D

1441 PRINT TAB(18)

1442 GOTO 1062

1450 D30M=D30M+D

1451 PRINT TAB(18)

1452 GOTO 1062

2000 IF LLL*="A" THEN

2010 IF LLL*="B" THEN

"$•

"$'

;D29

;D28A

"$";D28B

"$";D28C

"$";D30A

"$";D30B

"$";D30C

"$";D30D

$":D30E

"$'

••$

*

;D30F

;D30G

;D20H

"$":D30I

$":D30J

"$";D30K

"$";D30L

"*";D30M

1300

1310

Programs for the Home 197

(continued)

198 The Last Whole TI-99/4A Book

2020 IF LLL*="C" THEN 1320

3000 IF LLL*="A" THEN 1330

3010 IF LLL$="B" THEN 1340

3020 IF LLL*="C" THEN 1350

3030 IF LLL*="D" THEN 1360

3040 IF LLL*="E" THEN 1370

3050 IF LLL$="F" THEN 1380

3060 IF LLL*="G" THEN 1390

3070 IF LLL$="H" THEN 1400

3080 IF LLL*="I" THEN 1410

3090 IF LLL$="J" THEN 1420

3100 IF LLL$="K" THEN 1430
3110 IF LLL*="L" THEN 1440

3120 IF LLL*="M" THEN 1450

4000 DT=D6+D7+D8+D9+D10+D11+D12+D13+D14+D15+D16+D17+D18+

D19+D20+D21+D22+D23+D24+D2325+D26+D27+D28A+D28B+D28C+
D29+D30A+D30B+D30C+D30D+D30E

4005 DT=DT+D30F+D30G+D30H+D30I+D30J+D30K+D30L+D30M
4010 GOSUB 22200

4020 ..$";AA
4030 INPUT " b Returns S< allowances? $":RA

4040 BA=AA-RA

4050 PRINT " c Balance $"; BA
4055 INPUT "2 Cost of goods sold? $":CG

4060 GP=BA-CG

4070 PRINT "3 Gross profit $n. gp

4080 INPUT "4a Windfall prof.tax credit?.. ..$":WP
4090 INPUT " b Other income? $":0I
4095 TI=0I+WP+GP

5000 PRINT "5 Total income $":TI
5010 GOSUB 22100

5020 PRINT "31 Total deductions *";DT
5030 NP=TI-DT

5040 PRINT "32 Net profit or loss * "; NP
5050 GOSUB 22100

5060 INPUT "Printout? (Y/N) ":YN$
5070 IF YN$<>"Y" THEN 25000
6000 Q*="Line number..."
6001

6002 V*=" "

6005 OPEN #1:"RS232"

6010 PRINT #1:Q*;6;V$;W$;D6
6020 PRINT #1:Q$;7;V$;W*;D7
6030 PRINT #1:Q$;8;V*;W*;D8
6050 PRINT #1:Q$;9;V$;W$;D9
6060 PRINT #1:Q*;10;V*;W*;D10
6070 PRINT #1:Q$;11;V*;W$;D11
6080 PRINT #1:Q$;12;V$;W$;D12
6090 PRINT #1:Q$;13;V$;W$;D13
6100 PRINT #1:0$;14;V$;W*;D14
6110 PRINT #1:Q$;15;V*;W*;D15
6120 PRINT #1:Q*;16;V$;W*;D16

(continued)

Programs for the Home 199

6130 PRINT #1:

6140 PRINT #1:

6150 PRINT #1:

6160 PRINT #1:

6170 PRINT #1:

6180 PRINT #1:

6190 PRINT #1:

6200 PRINT #1:

6210 PRINT #1:

6220 PRINT #1:

6230 PRINT #1:

6240 PRINT #1:

6250 PRINT #1:

6260 PRINT #1:

6270 PRINT #1:

6280 PRINT #1:

6290 PRINT #1:

6300 PRINT #1:

6310 PRINT #1:

6320 PRINT #1:

6330 PRINT #1:

6340 PRINT #1:

6350 PRINT #1:

6360 PRINT #1:

6370 PRINT #1:

6380 PRINT #1:

6390 PRINT #1:

6400 PRINT #1:

6410 PRINT #1:

Q$S 17;V*" W$;
G$; 18;V*; W$;

Q*- 19;V* W*;
Q$; 20;V*- W*;
Q*; 21 ;V* W*;

Q*; 22;V*; W*;

Q*; 23;V* W*;
Q$; 24;V*; W*;
Q*; 25; V* W*;

Q*! 26;V*: W*:

Q*- 27;V* W*;
Q*; "28A"; V$;
Q* "28B" V*;
Q*; "28C", V*;

Q* 29; V* W*;
Q*- "30A" V*;

Q* ,"30B" ,V*;

Q* "30C" V*;

Q* ;"30D" ;V*;
Q* ,"30E" V*;

Q$ i"30F" ;V*;

Q$,"30G" V*;

Q$;"30H" ;V*;

Q* ;"30I" ;V$;
Q* ;"30J" ;V$;
Q* •"30K" ;V*;
Q* •"30L" ;V*;
0$;"30M" ;V*;

D17

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

W*;D28A
W*;D28B
W*;D28C
D29

W*

W*

W*

W*

W$

W*

W*

W*

W*

W*

W*

W*

W*

D30A

D30B

D30C

D30D

D30E

D30F

D30G

D30H

D30I

D30J

D30K

D30L

D30M

6420 PRINT #l:Q*;"la Gross receipts or sales.,

AA

6430 PRINT #1:0.*;" b Returns & allowances....,
RA

6440 PRINT #1:Q*;" c Balance
BA

6450 PRINT #1:Q*;"2 Cost of goods sold ,
CG -

6460 PRINT #1:0.*; "3 Gross profit ,

GP

6470 PRINT #l:Q*;"4a Windfall prof.tax credit,
WP

6480 PRINT #1:Q*;" b Other income ,
01

6490 PRINT #1:Q*;"5 Total income
TI

6500 PRINT #lz"

6510 PRINT #1:Q*;"31 Total deductions...

DT

6520 PRINT #1:Q*;"32 Net profit or loss.

NP

$»

$"

*"

*"

$»

*"

$"

,*"

*";

*"

(continued)

200 The Last Whole TI-99/4A Book

6525 PRINT #1:" ;
___________ ii

6530 CLOSE #1

6540 GOTO 25000

22100 PRINT "- "

22110 RETURN

22200 CALL CLEAR

22210 RETURN

22400 PRINT

22410 PRINT "After last entry,enter 0."
22420 PRINT

22430 PRINT "To exit program, press X. "
22440 PRINT

22450 INPUT "To continue, press >ENTER< ":Y*
22460 IF Y*="X" THEN 25000

22470 IF D=0 THEN 4000 ELSE RETURN

25000 GOSUB 22100

25010 PRINT TAB(12);"End."

25020 GOSUB 22100

25030 END

Initially the program displays its purpose, followed by the choice:

r

V.

1 Enter receipts
S Enter expenses

Which?

It is important to enter all receipts first, because once expenses are
selected, the program, as written, will not return to the above menu.
That can be changed by changing the GOTO 600 in line 1063 to
GOTO 270. The drawback would be the fact that it adds additional

Programs for the Home 201

key strokes during program execution, because the choice between
receipts and expenses would have to be made prior to each data
entry. When "receipts" is selected, the display asks:

r

Enter amount

v.

and when "expenses" is selected, the request is:

Enter line number

Deductible amount?

^\

The program internally adds up the receipts and the amounts typed
in for each line number. In order to enter the expenses for the correct
line numbers, have a blank Schedule C form (as shown in Figure 9-3

202 The Last Whole TI-99/4A Book

SCHEDULE C

(Form 1040)
Dffpxrtm*nt of the Treasury
InUrntl Rtvtitut Senrlc* (Q)

Profit or (Loss) From Business or Profession
(Sole Proprietorship)

Partnerships, Joint Ventures, etc., Must FileForm 1065.
• Attach to Form 1040 or Form 1041. • See Instructions for Schedule C (Form 1040).

OHB. No. 1545-0074

08

Name of proprietor Social security number of proprietor
! I
i 1

A Main business activity (see Instructions) • ; product •

B Business name • C Employer identification number

D Business address (number and street) •_ j
City, State and ZIP Code • 1 1 1

E Accounting method: (1) fj Cash (2) • Accrual (3) fj Other (specify) p»

F Method(s) used to value closing inventory:
(1) • Cost (2) Q Lower of cost or market (3) rj Other (if other, attach explanation)

G Was there any major change in determining quantities, costs, or valuations between opening and closing inventory?,

If "Yes," attach explanation.

H Did you deduct expenses for an office in your home?

I Did you operate this business at the end of 1982?
J Howmany months in 1982 did you actively operate this business? •

Income

1 a Gross receipts or sales

b Returns and allowances

c Balance (subtract line lb from line la)

2 Cost of goods sold and/or operations (Schedule C-l, line 8)
3 Gross profit (subtract line 2 from lino lc)
4 a Windfall Profit Tax Credit or Refund received in 1982 (see Instructions)

b Other income '

5 Total income (add lines 3.4a. and 4b),

Deductions.

6 Advertising

7 Bad debts from sales or services

(Cash method taxpayers, see In

structions)

8 Bank service charges

9 Car and truck expenses

10 Commissions

11 Depletion

12 Depreciation, including Section

179 expense deduction (from
Form 4562)

13 Dues and publications . . .

14 Employee benefit programs .

15 Freight (not Includedon ScheduleC-l)

16 Insurance

17 Interest on business Indebtedness

18 Laundry and cleaning . . .

19 Legal and professional services

20 Office supplies and postage. .

21 Pension and profit-sharing plans

22 Rent on business property . .

2a Repairs
24 Supplies (not included on Schedule C-l)

la

lb

4a

4b

25 Taxes (Do not include Windfall

Profit Tax here. See line 29.) . .

26 Travel and entertainment . .

27 Utilities and telephone . . .

28 a Wages . . I
b Jobscredit I !__
c Subtract line 28b from 28a .

29 Windfall Profit Tax withheld In

1982

30 Other expenses (specify):

I

g

h

I

1

k

I
m

31 Total deductions (add amounts In columns for lines 6 through 30m),

32 Net profit or (loss) (subtract line 31 from line 5). If a profit, enter on Form 1040, line 12, and
on Schedule SE, Part I. line 2 (or Form 1041, line 6). If a loss, go on to line 33 | 32

Yes No

• QY, line 6).If you checked "No." enter the loss on Form 1040, line 12, and on Schedule SE. Part I, line 2 (or Form 1041
For Paperwork Reduction Act Notice, see Form 1040 Instructions.

Figure 9-3. Federal Form 1040 Schedule C. Our program uses actual tax form line num
bers, and deductible expenses must be entered by line number. Each year you would
have to check, and possibly change, some line numbers if the form is revised.

• No

Programs for the Home 203

on page 202) available and use it to determine the appropriate line
number. Each time an entry is made, the program displays the total
for receipts ofany specific line number up to that point. After the last
entry has been made, enter 0 to let the computer know that no
further entries will be made. At that point the display responds with:

Litre number la Gross receipts or sales . . .»xxxx.xk
Line number b Returns & allowances? *
Line number c Balance *xxxx.xx
Line number 2 Cost of goods sold? *
Line number 3 Bross profit *xxxx.xx
Line number 4a Windfall prof.tax credit? ...»
Line number b Other income? . *
Line number 5 Total income «xxxx. xx

Line number 31 Total deductions txxxx.xx
Line number 32 Net profit or loss *xxxx. xx

Printout? <Y/N>

In most instances the answer should be in the affirmative, produc
ing the printout ofall totals (see Figure 9-4 on page 204), and all that
is left to do is to enter the data in the printout into the actual tax
form.

If the program appears rather long, it is because of all the line
numbers, which must be dealt with one at a time in order to obtain
the totals for each.
Lines 100 and 110 identify the program, and line 150 assigns the
value of 1 to the numeric variable D, because whenever the com
puter finds that the value of D is zero, it assumes that no further
entries are to be made.

Lines 200-265 display the purpose of the program. The DISPLAY
AT command is available only in TI EXTENDED BASIC and if that
version is not available, it must be replaced by PRINT commands.

Lines 300-340 present the choice, again using the DISPLAY AT
command.

Line 350 sends the computer to either of two lines, depending on
the selected option.

Lines 500-570 are used to enter receipts. Line 510 adds entered
data to previously entered data, assigning the resulting sums to the
numeric variable AA.

204 The Last Whole TI-99/4A Book

Line

Line

Line

Line

number... 6Total...'.* 2387

. . ..* 0

number... 8 Total....$ 0

$ 3116

Line

Line

number... 10 Total... $ 4570

* 0

Line

Line

number... 12Total... $ 0

number... 13Total...$ 428

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

number... 14Total... $ o

$ o

number... 16 Total... $ 362

* 0

number... 18Total... $ 0

number... 19Total... $ 1000

number... 20Total... $ 1374

number... 21Total... $ o

number... 22Total... $ 6000

number... 23 Total... $ o

number... 24Total... $ o

* 0

Line

Line

number... 26Total... $ 3786

number... 27Total... $ 1863

Line

Line

Line

Line

Line

number... 29Total... $ o

number... 30A....Total .
Line S 763

Line

Line

Line number...30E....Total....
Line

Line number...30G....Total....
Line

Line number...301....Total....
Line

Line

Line

Line number...30M....Total....

45700Line number...la Gross receipts or sales.. .$
Line

Line

Line

number... b Returns 8< all< 0

45700

5611,number...2 Cost o-f goods
Line

Line

number...3 Gross pro-fit.
.*

40089

0number...4a Wind-fall pro-f .tax credit.
Line

. Line

number... b Other income. 0

40089number...5 Total income.

Line

Line

number...31 Total deductic

number...32 Net profit or
26099

13990

Figure 9-4. A sampleprintout of the tax program.

Programs for the Home 205

Line 570 returns the computer to the menu for another selection. '
Lines 600-680 are used ifyou want to key in deductible expenses.
When the line number is keyed in, it is assigned to the string
variable L$ because several ofthe numbers use letters (A, B, C, and
so on) which cannot be assigned to numeric variables. In line 610
the first two characters of the line number (the digits) are assigned
to the string variable LLLL$. Line 615 assigns the numeric value of
LLLL$ to the numeric variable L. Line 620 checks whether the
value ofL is smaller than 28 or equal to 29, because lines 28 and 30
are the ones that use alpha characters along with the digits, send
ing the computer to either of two line numbers. Lines 630-650
once more separate the digits from the alpha characters. Line 660
asks you to key in the deductible amount. Line 670 sends the
computer to either oftwo line numbers ifthe value ofLL is either 28
or 30.

Line 700 asks for input if the selected line number is other than
either 28 or 30.

Line 710 checks the value ofL-5, because the lowest line number to
be used is 6. It then sends the computer to the line number that is
designed to deal with the selected Schedule C line number.

Lines 1060-1452 add the keyed-in amount to previously entered
amounts for each of the line numbers and cause the current total
for that number to be displayed. After that, upon pressing
> ENTER <, the program returns to line 600.

Lines 2000-3120 use the values assigned to LLL$ (the alpha
characters) to determine the appropriate 28 or 30 line number.

Lines 4000 and 4005 add the totals from all line numbers to arrive

at total deductible expenses.
Lines 4010-5050 print various totals and ask you to key in
answers to a number of questions.

Lines 5060 and 5070 ask if you want a printout, causing the
computer to go to either one of two line numbers.

Lines 6000-6002 assign three strings to string variables that will
subsequently be used by the line printer.

Line 6005 accesses the line printer.
Lines 6010-6525 cause all totals to be sent to the line printer.
Line 6530 turns the line printer off.
Line 6540 sends the computer to the END line.
Lines 22100-25030 are several subroutines that are used repeat
edly throughout the program. Line 22460 checks whether X was

206 The Last Whole TI-99/4A Book

pressed in order to exit the program, and line 25470 checks
whether 0 was pressed to indicate that no further entries will be
made.

KITCHEN TIMER PROGRAM

In Chapter 3 we created a stopwatch program as an exercise in
program writing. Now let's take that same program and add a few
steps in order to convert it into a kitchen timer. In the new version
you're asked to key in answers to these questions

Timing speed?
Stop after minutes.seconds?
Length of tone? (1080=1 sec.)

Tone? (110-44733)

Volume (0=loud, 30=soft)
To start press)ENTER<

A

The timing speed should be about 100 for actual time. The stop
command should be entered with a decimal point between minutes
and seconds (1.25). The length of tone refers to the number of sec
onds for which the alarm will sound when the keyed-in time has
been reached. Ifyou're likely to be away from the room in which the
computer is located, you might want to enter a longer period and a
louder volume than you would otherwise. Each 1000 produces an
alarm lasting about 1 second. Tone refers to the pitch. You might
want to experiment until you find a pitch you like. Volume refers to
the loudness, assuming that the volume on your monitor is turned
full up. Again, a bit of experimentation might be in order.

Programs for the Home 207

KITCHEN TIMER PROGRAM

A program that converts your computer into a kitchen timer.

100 MM*="Minute"

110 MMM$="Minutes"

120 SS$="Second"

130 SSS*="Seconds"

140 CALL CLEAR

150 FOR X=l TO 10

160 PRINT

170 NEXT X

180 PRINT TAB (12);" "
190 PRINT TABU2); "Clock"
200 PRINT TAB(12);" "
210 PRINT

220 PRINT

230 INPUT "Timing speed?
240 PRINT

250 PRINT

260 INPUT "Stop a-fter minutes, seconds
270 PRINT

280 PRINT

290 INPUT

300 INPUT

310 INPUT

320 INPUT

330 FOR X=l

340 PRINT

350 NEXT X

360 FOR PAUSE=1 TO SPEED

370 NEXT PAUSE

380 A=A+1

390 IF A=60 THEN 520

400 IF A>1 THEN 430 ELSE 410

410 S*=SS*

420 GOTO 440

430 S*=SSS*

440 IF B=l THEN 470 ELSE 450

450 M*=MMM*

460 GOTO 480

470 M*=MM$

480 PRINT B;M$;" and ";A;S$
490 HALT=B+(A/100)

500 IF HALT=TIME THEN 650

510 GOTO 330

520 A=0

530 B=B+1

540 FOR X=l TO 4

550 PRINT
560 NEXT X

SPEED

":TIME

"Length of tone (1000=1 sec.) ":DUR
"Tone (110-44733) ":TONE

"Volume (0=loud,30=soft) ":VOL
"To start press >ENTER< "-.START*
TO 4

(continued)

208 The Last Whole TI-99/4A Book

570 IF B=l THEN 580 ELSE 600

580 M$=MM*

590 GOTO 610

600 M*=MMM$

610 PRINT B;M$;" and";A;S*
620 HALT=B+(A/100) .

630 IF HALT=TIME THEN 650

640 GOTO 330

650 CALL SOUND(DUR,TONE,VOL)
660 PRINT

670 PRINT

680 PRINT

690 PRINT "To continue, type CON"
700 BREAK

710 CALL CLEAR

720 INPUT "Stop after minutes.seconds? ":TIME
730 GOTO 510

After that the minutes and seconds are displayed as they scroll
up the screen until the keyed-in stop time has been reached, at
which point the display shows:

To continue type CON
Stop after minutes.seconds?
Breakpoint at (line number)

You can now do whatever needs to be done and, when you're ready,
type in the next point at which you want the timing process to stop.
Then type CON and the program will continue the timing process

Programs for the Home 209

where it left off. If you'd prefer to have it start again at zero minutes
and seconds, you'll have to add four lines;

635 A = 0

636 B = 0

725 A = 0

726 B = 0

though I believe that cumulative timing is preferable despite the fact
that for the second and subsequent timing periods you'll always
have to add the minutes and seconds that have already elapsed to
the next timing period. There is still another alternative that would
overcome that problem:

260 INPUT "Stop after minutes.seconds? ":TIMEX
265 TIME=TIME-rTIMEX

720 INPUT "Stop after minutes.seconds? ":TIMEX
725 TIME=TIME+TIMEX

in which case the computer internally adds the keyed-in time period
to any previously keyed-in time periods, making it unnecessary for
you to perform that calculation.

The program seems to require no special explanations, with the
possible exception of lines 490 and 620, where the minute and
second figures that are displayed are converted to the format in
which the time limits are keyed in by dividing the seconds by 100
and then adding them to the minutes. In line 700 the command
BREAK is used to stop program execution until you use the CON-
tinue command then restart the program.

HOUSEHOLD BUDGET PROGRAM

The last program in this group deals with budgeting the
expenses associated with a home. It can be used for any size family
and for any income level, and its primary purpose is to determine
how much, if anything, is left over each week for fun and games after
all annual, monthly, and weekly expenses have been taken care of.

210 The Last Whole TI-99/4A Book

HOUSEHOLD BUDGET PROGRAM

A household budget program.

100 REM HOUSEHOLD BUDGET

110 REM TI99/4A

120 GOSUB 690

130 GOSUB 670

140 PRINT "This program is designed to
150 PRINT "determine the weekly amount
160 PRINT "available for fun and games
170 GOSUB 670

180 GOSUB 710

190 GOSUB 750

200 GOSUB 690

210 INPUT "Annual

220 INPUT "Annual

230 GOSUB 670

240 INPUT "Monthly rent/house payments?
250 INPUT "Monthly car payments?
260 INPUT "Other monthly installments?
270 INPUT "Annual insurance premiums?
280 INPUT "Annual medical/dental costs?
290 INPUT "Gas,electricity,water/month?
300 INPUT "Average phone bill/month?
310 INPUT "Average transportation/month?
320 INPUT "Union dues per year?
330 INPUT "Other fixed expenses/month?
340 MI=(IV/12)+(AI/12)

350 MI==INT(MI*100+.5)/100

360 ME=MR+UT+TP+MT+MU+FE+CP+0M+(IP/12)+(MD/1
370 ME=INT(ME*100+.5)/100
380 DC=MI-ME

390 GOSUB 690

400 GOSUB 670

410 PRINT "Income per month=
420 PRINT "Fixed expenses per month=
430 PRINT "Left over per month=
440 GOSUB 670

450 GOSUB 710

460 GOSUB 750

470 GOSUB 690

480 INPUT "Average food bill per week?
490 INPUT "Average^cleaning per week?
500 INPUT "Average clothing per year?
510 INPUT "Average other costs/week?
520 WEEK=WF+WC+((CY/365.25)*7)+EW
530 FG=((DC/30.44)*7)-WEEK

540 WEEK=INT(WEEK*100+.5)/100
550 FG=INT(FG*100+.5)/100
560 GOSUB 670

570 GOSUB 750

net salary or income?
interest income?

$" :AI

*" :IV

$" .MR

$" :CP

$" .OM

$" : IP

4" MD

$" .UT

$"• TP

V MT

$" UY

$" :FE

2)

*";MI
*";ME
*";DC

$":WF

$":WC

*":CY

$":EW

(continued)

Programs for the Home 211

580 GOSUB 690

590 GOSUB 670

600 PRINT "Regular weekly living costs= $";WEEK.

610 PRINT

620 PRINT "Left over for fun and games= $";FG
630 GOSUB 670

640 GOSUB 710

650 GOSUB 750

660 GOTO 780

670 PRINT " "

680 RETURN

690 CALL CLEAR

700 RETURN

710 FOR X=l TO 10

720 PRINT

730 NEXT X

740 RETURN

750 PRINT

760 INPUT "Press >ENTER< ":Y$

770 RETURN

780 GOSUB 690

790 GOSUB 670

800 PRINT TAB(12);"End."
810 GOSUB 670

820 GOSUB 710

830 END

After displaying its purpose, the Household Budget program
requires that you type in the answers to a long list of questions:

r

\.

Annual net salary or income?
Annual interest income?

Monthly rent/house payments?
Monthly car payments?
Other monthly installments?
Annual insurance premiums?
Annual medical/dental costs?

Gas, electricity,water/month?
Average phone bill/month?
Average transportat ion/month?
Union dues per year?
Other fixed expenses/month?

212 The Last Whole TI-99/4A Book

where annual net income refers to income after taxes. Interest

income, if any, is for interest from investments. Transportation cost
per month refers to necessary transportation, such as going to and
from work, taking kids to school, and going shopping for food or
other necessities.

When these questions have been answered, the program dis
plays:

r — n

Income per months $xxxx.xx
Fixed expenses per month« $xxxx.xx
Left over per month** $xxxx. xx

^

after which you're asked to enter averages for living expenses:

r

Average food bill per week?
Average cleaning per week?
Average clothing per year?
Average other costs/week?

which then produces the final figures:

/ ——

Programs for the Home 213

Regular weekly living costs8 $xxx.xx
Left over for fun and games12 $xxx. xx

^.

If the final figure turns out to be negative, it indicates that you're
spending in excess of your income and you may have to make
adjustments in some of the areas where such adjustments are possi
ble.

Lines 120-190 display the purpose of the program.
Lines 200-330 ask the first series of questions.
Line 340 calculates the monthly income figure.
Line 350 limits the displayed decimals to two.
Line 360 calculates the total fixed expenses per month.
Line 370 again limits the number of displayed decimals to two.
Line 380 calculates the amount left over per month after the fixed
monthly expenses have been deducted from the monthly income
figure.

Lines 390-470 cause the results of these calculations to be dis
played.

Lines 480-510 ask the next series of questions.
Lines 520-530 calculate the weekly living costs and the leftover
balance.

Lines 540 and 550 limit the displayed decimals.
Lines 560-650 display the final results.
Line 660 sends the computer to line 780, which clears the screen
and then places "End." into display.

Lines 670-830 represent frequently used subroutines and the
END sequence.

10

Educational
Programs

Computers, when equipped with intelligently written programs,
are very useful in motivating kids ofall ages to learn. Most likely, one
of the reasons is the need for constant interaction with the com

puter. Another is the fact that computers are extremely patient,
allowing the student to make all kinds of mistakes and then to
correct those mistakes without embarrassing him or her by com
menting in one way or another when a mistake has been made.

We have already discussed a few of the typical educational soft
ware programs that are available commercially for the TI-99/4A
Home Computer. In this chapter we'll write some original programs
designed to deal with a number of different educational subjects.
Some are very simple, some less so, and some can be adapted to deal
with basic or more advanced subjects. Most are written in TI BASIC,
so you can use them regardless of whether your computer is
equipped to handle the optional TI EXTENDED BASIC.

SIMPLE ARITHMETIC PROGRAM

Let's start with a mathematics program that presents several
choices: single- or double-digit figures and addition, subtraction,
multiplication, or division. The program presents random numbers
and asks the student to type in the result of performing arithmetic
operations.

214

Educational Programs 215

SIMPLE ARITHMETIC PROGRAM

A simple program to practice arithmetic. It uses randomly generated integer numbers.

100 REM SIMPLE MATH/TI99/4A

110 CALL CLEAR

120 PRINT "I am TI99/4A. Tell me your"
130 PRINT "name, please."
140 GOSUB 1350

150 INPUT N*

160 CALL CLEAR

170 PRINT "This program is designed"
180 PRINT "to practice arithmetic": :
190 PRINT "You have a choice of using:"
200 GOSUB 1430

210 PRINT 1;" Single-digit figures"
220 PRINT 2;" Double-digit figures"
230 GOSUB 1430

240 GOSUB 1350

250 INPUT "Which? ":WHICH

260 IF WHICH=1 THEN 290

270 X=100

280 GOTO 300

290 X=10

300 GOSUB 1340

310 PRINT "You can practice:"
320 GOSUB 1430

330 PRINT 1,"Addition"
340 PRINT 2,"Subtraction"
350 PRINT 3,"Multiplication"
360 PRINT 4,"Division"
370 GOSUB 1430

380 GOSUB 1350

390 INPUT "Which would you like? ":WHICH
400 ON WHICH GOTO 410,640,870,1100

410 GOSUB 1340

420 GOSUB 1450

430 NN=N

440 GOSUB 1450

450 NNN=N

460 PRINT ;TAB(5);NN;" + ";NNN;" =?"
470 GOSUB 1430

480 GOSUB 1350

490 INPUT "The sum is ":S

500 SS=NN+NNN

510 IF SS=S THEN 590

520 PRINT

530 PRINT "Sorry, ";N*;
540 PRINT "try again."
550 GOSUB 1350

560 GOSUB 1390

that's wrong,"

(continued)

216 The Last Whole TI-99/4A Book

570 GOSUB 1340

/580 GOTO 460

590 PRINT

600 PRINT "Good, ";N$;" that's right."
610 GOSUB 1350

620 GOSUB 1390
630 GOTO 410

640 GOSUB 1340

650 GOSUB 1450
660 NN=N

670 GOSUB 1450

680 NNN=N

685 IF NNN>NN THEN NNN=NN AND NN=NNN

690 PRINT ;TAB(5):NN;" - ";NNN;" =?"
700 GOSUB 1430
710 GOSUB 1350

720 INPUT "The balance is ":S

730 SS=NN-NNN

740 IF SS=S THEN 820

750 PRINT

760 PRINT "Sorry, ";N$;", that's wrong'
770 PRINT "Try again."
780 GOSUB 1350

790 GOSUB 1390

800 GOSUB 1340

810 GOTO 690

820 PRINT

830 PRINT "Good,
840 GOSUB 1350

850 GOSUB 1390

860 GOTO 640

870 GOSUB 1340

880 GOSUB 1450

890 m-ti

900 GOSUB 1450

910 NNN=N

920 PRINT ;TAB(5):NN;" *
930 GOSUB 1430

940 GOSUB 1350

950 INPUT "The result is

960 SS=NN*NNN

970 IF SS=S THEN 1050
980 PRINT

990 PRINT "Sorry, ";N$;"
1000 PRINT "Try again."
1010 GOSUB 1350

N$;", that's right.

iNNN;" =?"

":S

that's wrong,

(continued)

4
»

J
i
*

4
i
^
J
s
*

*
*

M
M

M
U

M
M

U
M

W
M

I
O

I
O

N
M

H
M

M
I
O

M
M

H
K

K
H

H
H

i
-
H

H
H

O
O

O
O

O
O

O
O

(
D

v
l(

>
W

*
M

W
H

O
<

)
m

^
0

s
W

4
>

W
W

H
O

<
J
0

3
N

l0
k
U

^
U

M
H

O
'J

)
(
D

^
0

4
L

ll
*

tl
W

^
O

'0
tD

,«
4

(
>

U
lJ

iU
M

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

m
33

z
z

m
ii

O
H

•
c

z
3

-
i

z
- *

N

3
3

m
z o

3
3

3
3

T
J
3

3
«

-
«

i-
i-

o
;
g

3
>

m
3

j
m

-
n

z
3

>
m

Z
H

*-
*

H
T

J
•-

«
H

o
c
z
c
k
c
z
c

0
3

J
H

3
I
»

H
H

3
3

3
Z

Z
II

Z

X
T

3
=

-
i ID

H
U

1
I

W
m Z

V m
•
-

z

r
o

m
O

3
3

Z
T

m
n

O
Q

Q
i
n

J
l
D

O
O

Q
T

)
r
n

3
J
0

3
>

o
o

o
3

j
x
o

o
o

o
3

j
x
»

-
i3

jr
H

c
n

c
n

»
-
«

>
-
iH

to
c
o

c
n

»
-
<

h
z

r
o

c
c
z
z
o

c
c
c
z

-J
X

03
03

H
H

03
03

03
H

x
x

n
•*

ii
r

h
m

k
s

•*
P

I
O

W
W

G
l

t>
o

<
t

m
o

H
33

O
O

O
o

a

1
3

•-
•

33
-n

z
e
n

H
C

O II
=

C
O

C
O

O
H

T
X

i
m

<
z

»

U
M

W
W

H
o

•*
»

o
u

t
1

o
o

o
-
< in

z
o

iO :
r

r+

C
O

C
O

CO
CO

II
II

s
z

3
i

o +

1
3

•-
•
Q

G
3
1
3
Z

3
3
Z

O
O

3
3
Z

•
h
T
J

C
O

C
O

*-
*
Z

Z
C

C
C

Z
II

-
H
H

0
0
C
O
H

Z

W
*

H
U

l
W

D
O

O
0

3 ui

C
O

Z
Q

G
1

Z
O

O
II

C
O

C
O

z
e
e

0
0

C
O

e
n

-I
*

o
o

Q
Q

O
T

3
T

3
0

Q
O

0
0

0
3

3
3

3
0

0
0

H
C

O
C

O
h

h
o

c
c

z
z

C
O

C
O

H
H

H
C

O
C

O
o

c
c

03
03

•4
3

M
•
-

m
.

o
w

n

O
O

0
4

0
4

C
)

O
U

l
o

o
o

o a iQ

O 0 o

218 The Last Whole TI-99/4A Book

When the program is executed, it first displays:

r

v^

I am TI99/4G. Tell me your
name, please.

After the name has been typed in it continues with:

r

This program is designed
to practice arithmetic.

You have a choice of using

1 Single-digit figures
£ Double-digit figures

Which?

V

After either 1or 2 has been typed, it presents the next choice:

/ \

You can practices

1 Addition

2 Subtraction

3 Multiplication
4 Division

Which would you like?

Educational Programs 219

When that choice has been made, it presents two figures:

.

Depending on what has been typed in in reply, it then displays:

/ \

Good, (name), that's right

or:

Sorry, (name), that's wrong,
Try again.

220 The Last Whole TI-99/4A Book

In the first instance the computer presents the next problem, in the
second it repeats the previous problem. The results, in the case of
division, have been rounded off to one decimal, and the student, in
answering those questions, should do the same. Thus, 6/7 pro
duces a correct reply if the answer is .9, although the actual result is
.86.

Line by line, here is what happens:

Line 100 represents the program title and is ignored by the com
puter.

Line 110 clears the screen.

Lines 120-150 perform the introduction and ask the student to
type in his or her name. Line 140 sends the computer to a sub
routine (lines 1350-1380) that is used over and over in order to
cause the copy to be displayed in the center of the screen instead of
across the bottom, which I find annoying.

Line 160 clears the screen again.
Lines 170-260 place a description and the first group of choices
into display. Lines 200 and 230 call up a subroutine that places a
dashed line into the display. Line 240 again uses the other sub
routine to move the copy to the center of the screen. Line 250
assigns the typed-in choice to the numeric variable WHICH, and
line 260 tells the computer where to go, depending on the value of
WHICH.

Lines 270 and 280 assign a value to the numeric variable X and
then send the computer to line 300.

Line 290 assigns another value to that numeric variable.
Lines 300-400 place the second group ofchoices into display, with
line 400 telling the computer where to go, based on the typed-in
choice.

Lines 420 and 440 send the computer to a subroutine consisting
of lines 1450-1470, where the combination of RANDOMIZE and
INT(X*RND)+1 produce a random number that is assigned to the
numeric variable N and that, in lines 430 and 450, is assigned to
the numeric variables NN and NNN, which are then used to repre
sent the values to be manipulated.

Line 460 places the addition equation into display, and line 490
asks that the result be typed in, assigning it to the numeric variable S.

Educational Programs 221

Line 500 causes the computer to perform the calculation, assign
ing the result to the numeric variable SS.

Line 510 compares the two values and tells the computer to go to
line 590 if the typed-in answer is correct.

Lines 530 and 540 are used if the answer is wrong, and line 580
tells the computer to go back to line 460 to display the equation
once more.

Line 600 tells the student that the answer is correct, and line 630
sends the computer back to line 410 to produce another equation.

Lines 640-860 are identical to the above, representing the sub
traction section.

Lines 870-1090 contain the multiplication section, and lines
1100-1330 are used for division. This last section contains line

1210, where the result is rounded off to one decimal place.
Lines 1340-1470 represent the various subroutines. In line 1400
you're asked to either press > ENTER < to go on or X to quit. If X is
pressed, the computer, in line 14KX is told to go to line 1480, which
tells the computer that the end of the program has been reached.

The addition and multiplication sections of this program are
extremely simple, especially when used with single-digit figures.
The division portion is the one that is complicated, because in most
instances the result will include fractions.

WORDS THAT MAKE OTHER WORDS

Word Game Program

Now let's look at a program that can prove to be a valuable
vocabulary builder. The Word Game Program displays a total of 26
key words, one after the other, asking that the student type in as
many words as he or she can think of that can be made up of any
number of the letters that constitute the key word.

222 The Last Whole TI-99/4A Book

WORD GAME PROGRAM

A program that can prove helpful as a vocabulary builder.

100

no

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

REM A WORD GAME/TI99/4A
REM WORDS WITHIN WORDS
GOSUB 1200

PRINT "The letters that make up"
"words can often be used"

"to make up many other words,
PRINT

PRINT

PRINT

PRINT

PRINT

PRINT TAB<12)

PRINT

PRINT "contains the -following"
PRINT "words:"

PRINT

PRINT "moth, other, her, the, hot,
PRINT "term, home, he, hem, them,"
PRINT "and others."

PRINT

PRINT

GOSUB 1220

GOSUB 1200

PRINT "My name is computer."
PRINT "Tell me yours, please."
GOSUB 1300

INPUT NAME*

GOSUB 1200

PRINT "Let's see i-f you, ";NAME*;"
PRINT "can come up with more words
PRINT "than I, shall we?"
GOSUB 1300

INPUT "Are you ready? (Y/N) ":Y*
IF Y*<>"Y" THEN 1260 ELSE 420
W*="The word is: "

T$="Type all the words you can "
C*="Compare the words. "
F*="Type the number o-f words you "
S$="The score is"
GOSUB 1200

READ WORD*

PRINT W$;">";WORDS;"<"
GOSUB 1300

PRINT T*

INPUT "think o-f. ":NW*
GOSUB 1200

PRINT NW$

PR INT " ••

READ FF$,Z,EE$
PRINT FF$,,Z;" ";EE*
PRINT "—— »

"For instance, the word"

"MOTHER"

(continued)

Educational Programs 223

590 PRINT C*

600 PRINT

610 PRINT F$

620 INPUT "-found. ":W

630 A=A+Z

640 B=B+W

650 GOSUB 1200

660 PRINT S*;": ";NAME$;" ";B;" Computer ";A
670 PRINT " "

680 GOSUB 1300

690 GOSUB 1220

700 IF Z=216 THEN 720

710 GOTO 470

720 GOSUB 1200

730 INPUT "Another play? (Y/N) ":N$
740 IF N*<>"Y" THEN 1260

750 RESTORE

760 GOTO 470

770 DATA ALWAYS

780 DATA WAY YAW SAY LAY SLAY,5,WORDS
790 DATA BEFORE

800 DATA BE FOR FORE BORE ROBE ROB FOB BEER,8,WORDS
810 DATA CHRISTMAS

820 DATA CHRIST MAST CHASM AT MAT MATCH A SMASH IT IS SIT

SAT MIST,13,WORDS
830 DATA DEMOCRACY

840 DATA DOME MAY DECAY YORE CORE CARE MARE RACY RACE CRY

CORD CAY A READ,15,WORDS

850 DATA EXISTENCE

860 DATA SIT IS EXIT EXIST SENT TENSE SIX SEX CENT SCENT

TINE,11,WORDS

870 DATA FOREST

880 DATA FOR FORE SORE SOFT FROST REST ROT TORE OR OF TO

SO,12,WORDS

890 DATA GHOST

900 DATA GO HOT SOT HOG TOG TO SO HO SHOT,10,WORDS

910 DATA HEAVEN

920 DATA EVEN HEAVE A VAN HEN EVE HE,7,WORDS
930 DATA INTEREST

940 DATA IN REST RENT SENT INSERT SITTER INTER SEER TIER

SIT IT TINT,12,WORDS
950 DATA JESTER

960 DATA JET REST JEST JEER RESET SET,6,WORDS
970 DATA KIDNEY

980 DATA KID DIN DEN YEN DIKE KIN KEY IN KIND,9,WORDS
990 DATA LIVELY

1000 DATA LIVE YELL LEI VIE VEIL IVY ILL,7,WORDS

1010 DATA MEDIOCRE

1020 DATA RED CORE MORE MIRE DIRE DOME DIME MODE ME CRIME,
10,WORDS

1030 DATA NATION

1040 DATA AT ON IN ION TIN TAN NO A AN,11,WORDS

1050 DATA OFFSPRING

(continued)

224 The Last Whole TI-99/4A Book

1060 DATA OFF SPRING OF SO RING SING PIG PRIG PING FOP FOG

FIG RIG GO SIN,15,WORDS
1070 DATA PASTURE

1080 DATA UNDER WORLD OR DO RUN DOER LORD WORD DUD LOW

LOWER,11,WORDS
1090 DATA VESTMENT

1100 DATA VEST MET TENT ME SENT EVE MEET SEE VENT EVENT

TEST,11,WORDS

1110 DATA WEATHER

1120 DATA ETHER WATER WHEAT REATH HEAT WHAT RAT THAW AT WE
HE A HERE HER TAR TARE HEAR WEE,18,WORDS

1130 DATA XYLOPHONE

1140 DATA PHONE HONE LONE ONE ON HEY LOX POX HEX LOP HEN
PEN,12,WORDS

1150 DATA YEAR

1160 DATA EAR ARE AY RAY A,5,WORDS
1170 DATA.ZEBRA

1180 DATA ARE BEAR RAZE BRAZE BARE BAR ERA A,8,WORDS
1190 GOTO 470

1200 CALL CLEAR

1210 RETURN

1220 PRINT

1230 INPUT "Press >ENTER< or X to exit ":G0$

1240 IF G0*="X" THEN 1260

1250 RETURN

1260 GOSUB 1200

1270 PRINT TAB(12);"End."
1280 GOSUB 1300

1290 END

1300 FOR Z=l TO 10

1310 PRINT

1320 NEXT Z

1330 RETURN

When we activate the program it first displays its purpose and an
example:

r
The letters that make up
words can often be used

to make up many other words.

For instance, the word
MOTHER

contains the following
words:

moth, other, her, the, hot
term, home, he, hem, them,
and others.

Educational Programs 225

Then the computer introduces itself and asks the player to type in
his or her name. After that it displays:

r

Let's see if you, (name),
can come up with more words
than I, shall we?
fire you ready? (Y/N)

V.

followed by:

r~-

The word is >ALWftYS<

Type all the words you can
think of.

After that it displays the words the student typed in and a word list
that is stored in the computer, giving the student an opportunity to

226 The Last Whole TI-99/4A Book

compare the two. Next the student is asked to type in the number of
words he or she found, after which the computer responds with:

The score iss (name) xx, computer xx

V.

The word lists that are stored in the program are intentionally
incomplete in order to give the student an opportunity to beat the
score of the computer.

This program is fun to play for kids and adults alike, and I have
often had two or more adults sit in front of the computer, trying to
outdo one another (as well as the computer) in coming up with more
and more possible words. It's a great way to pass a rainy afternoon.

Line by line:

Lines 100 and 110 identify the program.
Lines 120-260 explain the program and present an example.
Lines 290 and 300 are duplicates that were left in accidentally.
One should be deleted.

Lines 310-340 perform the introduction and ask that the name of
the student be typed in.

Lines 360-410 encourage the student to start.
Lines 420-460 assign a number of strings to string variables.
Line 480 causes the computer to READ the key word from the

DATA block, assigning it to the string variable WORD$, and line
490 causes it to be printed along with the string assigned to the
string variable W$.

Lines 510 and 520 ask the student to type in as many words as
possible. (Do not use commas between the words unless you want
to enclose the entire word list in quotation marks, because the
input words are considered one string and are assigned to the
string variable NW$).

Educational Programs 227

Line 560 causes the computer to go to the DATA lines and to READ
the word list, assigning it to the string variable FF$, the number of
words, assigning it to the numeric variable Z, and the last word
(WORDS), assigning it to the string variable EE$. All these data are
then displayed in line 570.

Lines 590-660 ask the student to compare the words and type in
the number he or she was able to come up with, after which, in line
660, the program displays the cumulative score up to that point.

Line 700 checks the value ofZ; ifit is 216, the total number ofwords
stored in the word lists in the computer, tells the computer to go to
line 720 to find out ifyou want to play another round. If the answer
is other than Y, the computer is told to go to lines 1260-1290 for the
END statement. Otherwise it is sent back to line 470 for a fresh start

without going through all of the introductory explanations.
Line 750 uses RESTORE to make sure that the items in the DATA

block are READ from the beginning.
Lines 770-1180 are the DATA block, and the rest are the various

subroutines used throughout the program.

THE PRESIDENTS OF THE UNITED

STATES

Now we'll look at a program that might be thought ofas present
ing a history lesson. It deals with the 40 Presidents of the United
States and actually consists ofsix subprograms. When it is started it

THE PRESIDENTS OF THE UNITED STATES

A program that includes six subprograms about the presidents of the United States.

100 CALL CLEAR

110 REM PRESIDENTS OF THE U.S.

120 REM TI EXTENDED BASIC

130 GOTO 530

140 CALL CLEAR :: PRINT "If you're ready, ";N$
150 PRINT :: INPUT "pick a year ":YY
160 GOSUB 1160

170 RESTORE

180 MM=0

(continued)

228 The Last Whole TI-99/4A Book

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

IF YY=1789 THEN MM=1 :: GOTO 290

FOR K=l TO 40 :: READ K$:: NEXT K

READ L :: MM=MM+1

IF YY>=L THEN 240

GOTO 210

READ LL :: MM=MM+1

IF YY<=LL THEN 270

GOTO 240

RESTORE

MM=MM-1

FOR M=l TO MM :: READ P* :: NEXT M

PRINT "In ";YY;" the President was"
P*

GOSUB 1150 :: GOSUB 1160

RESTORE :: GOSUB 1170 :: GOTO 560

RESTORE

FOR 00=1 TO 40 ::

XX=0 :: RANDOMIZE

IF XX<1 THEN 350

IF XX>20 THEN 350

EE=0

FOR WW=1 TO XX s:

NEXT WW

CALL CLEAR :: PRINT "Who was the President" :: PRINT

: PRINT "from ";Y1;" to ";Y2;"?" :: GOSUB 1160
INPUT "Type the name ":PP$
RESTORE

EE=EE+(EE-1)

IF EE>40 THEN 420

FOR DD=1 TO EE :: READ P*
IF P*=PP* THEN 510

PRINT :: PRINT :: GOSUB 1150

PRINT "Sorry, ";N$;'\ it was ";P*
GOSUB 1160

RESTORE

GOSUB 1170 :: GOTO 560

PRINT :: GOSUB 1150

READ 0$:: NEXT 00

:: XX=INT(RND*40)+1

READ Yl EE=EE+1

NEXT DD

PRINT PRINT

READ Y2

GOSUB 1150 :

PRINT

PRINT "That's correct, ";N*
1160

PRINT

yours

GOSUB 1150 GOSUB

GOTO 500

My name is Computer," :: PRINT :: INPUT "type
please ":N*

CALL CLEAR :: GOSUB 1150

PRINT "The Presidents of the U.S." :: GOSUB 1150 ::
GOSUB 1160 :: GOSUB 1170

CALL CLEAR :: PRINT "You have six choices:" :: GOSUB
1150

PRINT 1;" Name them in order (1-40)" :: PRINT
PRINT 2;" I'll call J or them by No." :: PRINT
PRINT 3;" You call for them by No." :: PRINT
PRINT 4;" You name them to find No." :: PRINT
PRINT 5;" You type in a year" :: PRINT
PRINT 6;" I'll display the years" :: GOSUB 1150

(continued)

Educational Programs 229

630 INPUT "Which choice? ":WHICH

640 ON WHICH GOTO 650,960,1020,1070,140,330
650 0=0 :: B=0

660 RESTORE

670 B=B+1

680 CALL CLEAR :: PRINT "Name President No. ";B :: GOSUB
1160 :: INPUT PP$

690 IF 0=5 THEN 1000

700 READ P$:: IF B=40 THEN 1010

710 IF PP$=P* THEN 730

720 GOTO 760

730 PRINT :: PRINT :: PRINT "That's right, ";N$;"." ::
GOSUB 1160 :: GOSUB 1170

740 IF 0=5 THEN 960

750 GOTO 670

760 PRINT :: PRINT :: PRINT "Sorry, ";N*;", the answer is:
" :: FRINT :: PRINT TAB(5);P* :: GOSUB 1150 :: GOSUB
1160 :: GOSUB 1170

770 IF 0=5 THEN 960

780 GOTO 670

790 DATA GEORGE WASHINGTON,JOHN ADAMS,THOMAS JEFFERSON,
JAMES MADISON

800 DATA JAMES MONROE,JOHN QUINCY ADAMS,ANDREW JACKSON,
MARTIN VAN BUREN

810 DATA WILLIAM H. HARRISON,JOHN TYLER,JAMES POLK,ZACHARY
TAYLOR

820 DATA MILLARD FILLMORE,FRANKLIN PIERCE,JAMES BUCHANAN,
ABRAHAM LINCOLN

830 DATA ANDREW JOHNSON,ULYSSES S. GRANT,RUTHERFORD B.
HAYES,JAMES GARFIELD

840 DATA CHESTER A. ARTHUR,GROVER CLEVELAND,BENJAMIN
HARRISON,GROVER CLEVELAND

850 DATA WILLIAM MCKINLEY,THEODORE ROOSEVELT,WILLIAM
HOWARD TAFT,WOODROW WILSON

860 DATA WARREN HARDING,CALVIN COOLIDGE,HERBERT HOOVER,
FRANKLIN DELANO ROOSEVELT

870 DATA HARRY S. TRUMAN,DWIGHT D. EISENHOWER,JOHN F.
KENNEDY,LYNDON B. JOHNSON

880 DATA RICHARD M. NIXON,GERALD FORD,JIMMY CARTER,RONALD
REAGAN

890 DATA 1789,1797,1801,1809,1817,1825
900 DATA 1829,1837,1841,1841,1845,1849
910 DATA 1850,1853,1857,1861,1865,1869
920 DATA 1877,1881,1881,1885,1889,1893
930 DATA 1897,1901,1909,1913,1921,1923
940 DATA 1929,1933,1945,1953,1961,1963
950 DATA 1969,1974,1977,1981,1989
960 X=0 :: RANDOMIZE :: X=INT(RND*40)+1

970 IF X<1 THEN 960 :: IF X>40 THEN 960

980 RESTORE :: FOR W=l TO X :: READ P* :: NEXT W

990 B=X :: Q=5 :: GOTO 680

1000 RESTORE :: GOTO 710

(continued)

230 The Last Whole TI-99/4A Book

1010

1020

1030

1040

1050

1060

1070

1080

CALL CLEAR :: GOSUB 1150

GOSUB 1150 :: GOSUB 1160

RESTORE

CALL CLEAR :: PRINT "Which No. President are you" ::

PRINT :: INPUT "interested in? ":N

FOR Z=l TO N :: READ W* :: NEXT Z

GOSUB 1150 :: PRINT TAB(5);W$:: GOSUB 1150 :: GOSUB
1160 :: GOSUB 1170

GOTO 560

RESTORE

CALL CLEAR :: PRINT "Type the president" :: PRINT ::
PRINT "whose No. you want" :: GOSUB 1150 :: GOSUB
1160 :: INPUT VV*

V=0

V=V+1

READ W$

IF W*=VV$ THEN 1130 ELSE 1100

PRINT TAB(12);"End."

END

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

PRINT :: GOSUB 1150 :: PRINT VV$;"
1150 :: GOSUB 1160 :: GOSUB 1170

GOTO 560

PRINT " '

FOR Z=l TO 10 :: PRINT :: NEXT Z a:

PRINT :: INPUT "Press >ENTER< or X

IF Y*="X" THEN 1200

RETURN

CALL CLEAR :: PRINT TAB<12):"End."

GOSUB 1160 :: END

is No.

:: RETURN

RETURN

to ex it ": Y*

GOSUB

GOSUB 1150

first asks that you type in your name, which is then used repeatedly
throughout each of the subprograms. After that it displays the title
of the program and follows that with:

1 Name them in order (1-40)

£ I'll call for them by No.
3 You call for them by No.
4 You name them to find No.

5 You type in a year
6 I'll display the years

Educational Programs 231

The first choice asks you to type in the names ofthe Presidents in
consecutive order, starting with George Washington and ending
with Ronald Reagan. If a wrong name is typed in, the computer tells
you so, and then it displays the correct name before asking for the
next name.

The second choice results in the computer displaying a number
from 1 to 40 at random, asking you to type in the name that is
associated with that number. Again, if the answer is wrong, the
computer displays the right name before displaying the next
number.

The third choice asks you to type in a number and the computer
then responds by displaying the name that is associated with that
number.

The fourth choice is the reverse. You type in a name and the
computer responds by displaying the number associated with that
name.

The fifth choice asks you to type in any year between 1789, the
year in which George Washington was inaugurated, and today. The
computer then responds by displaying the name of the President
who was in office that year.

The sixth choice causes the computer to display two years,
which represent the term in office ofa given President. You are then
asked to type in the name of the President who was in office during
those years.

Looking at the program line by line can be a bit confusing,
primarily because several of the subprograms were added after the
original program had already been written, and then the RESe-
quence command was used to rearrange the line numbers. In addi
tion, the program was written in TI EXTENDED BASIC in order to
keep the number of lines to an acceptable limit.

Line 100 clears the screen.

Lines 110 and 120 are REMark lines.

Line 130 sends the computer to line 530, which is the actual start of
the program.

From here on, let's go through the program in the order in which
the lines are used, rather than by line number. I believe this will be
less confusing.

232 The Last Whole TI-99/4A Book

Line 530 performs the introduction and asks you to type in your
name.

Line 54Q clears the screen and places a dashed line into display,
using a subroutine (line 1150).

Line 550 displays the title of the program between two dashed
lines, another subroutine (line 1160) moves it up from the bottom of
the screen, and a third subroutine (line 1170) asks you to type
> ENTER < to continue or X to exit the program.

Lines 560-630 display the six choices, asking you to type in any
number from 1 to 6.

Line 640 sends the computer to a line number, depending on the
typed-in choice.

We'll now go to those line numbers, starting with choice number 1.

Line 650 assigns the value of zero to two numeric variables.
Line 660 uses the RESTORE statement to make sure that DATA
are READ from the beginning.

Line 670 increases the value of B by one each time that line is
encountered.

Line 680 asks you to name the President associated with the dis
played number (B), which starts with 1and goes from there to 40.

Line 690 checks on the variable of Q, the reason for which will
become apparent later.

Line 700 causes the computer to READ one DATA item and checks
the value assigned to the numeric variable B, being sent to line 1010
if B equals 40, meaning that all the Presidents have been used up.

Line 710 compares your answer, which has been assigned to the
string variable PP$, with the name that was READ and assigned to
the string variable P$, telling the computer to go to line 730 if the
two strings match.

Line 720 sends the computer to line 760 if they don't match.
Line 730 tells you that your answer is correct.
Line 740 once more checks the value assigned to Q.
Line 750 sends the computer back to line 670 in order to repeat the
previous routine.

Line 760 is used if your answer was wrong.
Lines 770 and 780 are duplicates of lines 740 and 750.

Educational Programs 233

We now come to the second choice, which starts with line 960.

Line 960 assigns zero to the numeric variable X and then produces
a random number that is assigned to that numeric variable.

Line 970 makes sure that the random number is between 1 and 40

inclusive.

Line 980 causes the computer to READ up to 40 DATA items,
starting at the beginning, assigning the name to the string variable
W$.

Line 990 causes the value of X to be assigned to B. It then assigns
the value of5 to the numeric variable Q, which is used in lines 690,
740, and 770 to tell the computer where to go next. It then tells the
computer to go to line 680 to repeat the second of the six routines.

We now come to the third choice, starting with line 1020.

Line 1020 makes sure that DATA are READ from the beginning.
Line 1030 asks you to key in the number of a given President,
assigning it to the numeric variable N.

Line 1040 represents a loop that causes the computer to READ
DATA items up to the number represented by N, assigning the last
READ name to the string variable W$.

Line 1050 prints that name.
Line 1060 sends the computer to line 560 to display the six choices
once more.

We now come to the fourth choice, starting with line 1070.

Line 1070 makes sure that DATA items are READ from the begin
ning.

Line 1080 asks you to type in the name of the President for whom
you want to find the consecutive number. There is one hitch here.
Grover Cleveland served two nonconsecutive terms, but the com

puter will display only the first term.
Line 1090 assigns zero to V.
Line 1100 increases the value of V by 1 each time the computer
encounters that line.

Line 1110 causes the computer to READ one DATA item, assigning
it to the string variable W$.

234 The Last Whole TI-99/4A Book

Line 1120 compares the READ name with the one you typed in and,
depending on whether or not they match, sends the computer to
one of two line numbers.

Line 1130 is used if the two do match. It displays the name and the
associated number.

Line 1140 sends the computer back to line 560 to display the six
choices once more.

Next we come to choice number five, starting with line 140.

Lines 140 and 150 ask you to type in a year, assigning it to the
numeric variable YY.

Lines 160,170, and 180 are self-explanatory.
Line 190 checks whether the typed-in year is 1789, in which case
the value of 1 is assigned to the numeric variable MM and the
computer is told to go to line 290.

Line 200 represents a loop that causes the computer to perform the
READ command 40 times in order to get it past the 40 DATA items
that contain the 40 names.

Line 210 executes the READ command once more, this time
assigning the result to the numeric variable L while, at the same
time, increasing the value ofMM by 1.

Line 220 compares the year you have typed in with the one that
was READ. If your year is greater than or equal to the other, the
computer is told to go to line 240.

Line 230 tells the computer to go back to line 210.
Line 240 causes the next year to be READ from the DATA lines.
Line 250 checks whether your year is smaller than or equal to the
other, in which case the computer is told to go to line 270.

Line 260 tells the computer to go back to line 240.
Lines 270 and 280 are self-explanatory.
Line 290 sets up a loop that causes the names to be READ from the
beginning up to the number represented by the value of MM.

Line 300 displays the name of the President who was in office
during the year that you selected.

Lines 310 and 320 perform some housekeeping chores and then
send the computer to line 560 to display the six choices once more.

Educational Programs 235

The sixth choice starts at line 330.

Line 330 once more RESTORES the DATA to the beginning.
Line 340 sets up a loop that READs the first 40 DATA items to get
past the 40 names.

Line 350 picks a random number and assigns it to the numeric
variable XX.

Lines 360 and 370 return the computer to line 350 if the value of
XX is smaller than 1or greater than 20.

Line 380 assigns zero to EE.
Line 390 causes the computer to READ two successive years and
assigns them to the numeric variables Yl and Y2.

Lines 400 and 410 ask you to type in the name of the President
who was in office during the time span represented by the two
years.

Lines 420-470 make various comparisons, READ the name ofthe
associated President, compare it to the one you typed in, and tell
the computer where to go, depending on your answer.

Line 480 is used ifyour answer was wrong.
Line 520 is used if your answer was right. In each case the com
puter is then returned to line 560 in order to redisplay the six
choices.

If you would like to use this program without TI EXTENDED
BASIC, the only changes that need to be made concern the fact that
in TI BASIC you cannot place more than one statement on a single
line. Therefore, wherever there is a double colon (::) on a line, the
statement to the right of the double colon has to be moved to the
next line, and the double colon should be deleted. This will make the
program physically rather long, but it will perform in a manner
identical to the one described here, though it may be a trifle slower.
In doing this, be sure to retain the line numbers used in the program
listing that is reproduced here, using in-between numbers (101,102,
etc.) for the additional lines in order to make sure that the various
GOTO, GOSUB and IF.. .THEN statements send the computer to the
right line numbers. Once the program has been rewritten and test
run to make sure that no typographical errors have crept in, you can
use the RESequence command to rearrange the line numbers.

236 The Last Whole TI-99/4A Book

SPEED PROGRAM FOR MATHEMATICS
OR GRAMMAR

This next program tests your ability to identify and solve a prob
lem quickly. The program offers a choice of two types of problems,
mathematical equations or grammar problems. You can also select
the length of time that each problem will be displayed on the screen,
anywhere from a fraction ofa second to several seconds.

SPEED PROGRAM FOR MATHEMATICS OR GRAMMAR

This program tests your ability to identify and solve problems quickly.

100

no

120

130

140

150

160

170

180

190

200

210

220

225

230

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

REM SPEED TEST/TI99/4A
GOSUB 10000

PRINT "This program is designed":
PRINT "to test your ability": :
PRINT "to solve problems -fast.":
GOSUB 11000

GOSUB 10000

PRINT "Your choice:"1

PRINT " "

PRINT

PRINT

PRINT " "

INPUT "Pick one ":P
RESTORE

IF P=l THEN 1000 ELSE 2000
DATA 12/2.5=7,8.4 4.8 4.6,4.8
DATA 3*(15-4)=7,45 30 33,33
DATA 14-(7*2)+l=?,28 0 1^1
DATA 2^2=7,6 4 12,4
DATA 10-^3=7, 1000 10000 100,1000
DATA 5*3'-2=?,30 90 45,45
DATA -15+(10-15)=7,20 -20 40,-20
DATA -25*-2=?,-50 12.5 50,50
DATA 99.9+(10/10)=7,100.9 89.9 101.9,100.9
DATA 20*-5+2=7,102 -102 -98,-98
DATA 20*(-5+2)=7,-98 102 -60,-60
DATA 10^-2=7,100 0.01 1,0.01
DATA 100.75 - 75.1=?,25>4 25.65 99.75,25.65
DATA (((2*2)*2)*2)*2=7,16 64 32,32
DATA 4^2^2=7,256 16 32,256
DATA 50/.5=7,10 -100 100,100
DATA (18-3)*3=?,45 18 21,45
DATA 18-(3*3)=?,45 12 9,9
DATA 77.11+12.99=7,100 90.1 90,90.1

1;" Mathematics":
2;" Grammar"

(continued)

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

DATA

DATA

DATA 2)

DATA 3)

HARRY.

DATA 2

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

Educational Programs 237

45*.3=7,13.5 135 15,13.5
1) HARRY WANTS TO TAKE JILL AND I TO THE MOVIES.

HARRY WANTS TO TAKE JILL AND ME TO THE MOVIES.

JILL AND ME ARE GOING TO THE MOVIES WITH

1)

2)

3)

3

1)

2)

3)

2

1)

2)

3)

1

1)

2)

3)

1

1)

I'M ESPECTING RAIN.

I ESPECT RAIN.

I'M EXPECTING RAIN.

THERE'S 6

THERE ARE

THERE'S 6

APPLES TO EAT.

6 APPLES TO EAT.

APPLES TO BE EATEN.

I'M LYING IN BED.

I'M LAYING IN BED.

I'M LAYING IN THE BED.

I HOPE THAT WE'LL BE

HOPEFULLY WE'LL GO ON A

HOPEFULLY WE'LL BE GOING

JOE OWES HE AND I $10.

JOE OWES HIM AND I $10.

JOE OWES HIM AND ME $10.

HE EXCAPED BEING INJURED.

HE ESCAPED INJURY.

HE EXCAPED INJURY.

FIRST OFF WE'LL GO OUT.

FIRSTLY WE'LL GO OUT.

FIRST WE'LL GO OUT.

GOING ON A TRIP.

TRIP.

ON A TRIP.

DATA 2)

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

3)

3

1)

2)

3)

2

1)

2)

3)

3

1)

1

1)

2)

3)

*1

1)

2)

3)

3

1)

2)

3)

1

THE MEDIA ARE BEING

PRESIDENT.

DATA 2) THE MEDIA IS BEING

PRESIDENT.

DATA 3) THE MEDIA IS TREATING

UNFAIRLY.

UNFAIR TO THE

UNFAIR TO THE

THE PRESIDENT

THE RESTAURANTEUR SERVED US PERSONALLY.

THE RESTAURATEUR SERVED US IN PERSON.

THE RESTAURANTEUR SERVED US IN PERSON.

IT'S BETWEEN BETTY AND

IT'S BETWEEN BETTY AND

IT'S AMONG BETTY AND JOE

ROSES ARE DIFFERENT FROM

ROSES ARE DIFFERENT THAN

ROSES ARE DIFFERENT THEN DAISIES.

JOE AND ME.

JOE AND I

AND ME.

DAISIES.

DAISIES.

(continued)

238 The Last Whole TI-99/4A Book

840 DATA 1) I CAN RUN FASTER THAN HE.

845 DATA 2) I CAN RUN FASTER THEN HE.

850 DATA 3) I CAN RUN FASTER THAN HIM.

855 DATA 1

860 DATA 1) HE'S PRECEEDING AS PER SCHEDULE.

865 DATA 2) HE'S PROCEEDING AS PER SCHEDULE.

870 DATA 3) HE'S PROCEDING AS PER SCHEDULE.

875 DATA 2

880 DATA 1) 10 MILES IS FURTHER THAN 1 MILE.

885 DATA 2) 10 MILES IS FARTHER THEN 1 MILE.

890 DATA 3) 10 MILES ARE FARTHER THAN 1 MILE.
895 DATA 3

900 DATA 1) THE CAR WON'T START WHEN ITS COLD OUT.
905 DATA 2) THE CAR WILL NOT START WHEN ITS COLD OUT.
910 DATA 3) THE CAR WON'T START WHEN IT'S COLD OUT.
915 DATA 3

920 DATA 1) I WOULD FEEL BETTER IF I WERE WARMER.

925 DATA 2) I WOULD FEEL BETTER IF I WAS WARMER.

930 DATA 3) I WOULD FEEL BETTER IF I WHERE WARMER.
935 DATA 1
940 DATA 1) HIM AND ME IS FRIENDS.
945 DATA 2) HE AND ME ARE FRIENDS.

950 DATA 3) HE AND I ARE FRIENDS.
955 DATA 3

960 DATA 1) THE FOOD TASTES BAD.
965 DATA 2) THE FOOD TASTES BADLY.

970 DATA 3) THE FOOD DOESN'T TASTE WELL.
975 DATA 1

980 DATA 1) THE TRUCK DRIVES TOO SLOW.
985 DATA 2) THE TRUCK IS DRIVING TOO SLOW.

990 DATA 3) THE TRUCK IS DRIVING TOO SLOWLY.
995 DATA 3

1000 GOSUB 10000

1020 GOSUB 4990

1030 GOSUB 10000

1050 R=R+1

1060 IF R>20 THEN 13100

1110 READ M$

1130 PRINT M$

1140 FOR X=l TO PAUSE

1150 NEXT X

1160 GOSUB 10000

1170 GOTO 12000

1180 FOR XXX=1 TO PAUSE

1190 NEXT XXX

1200 GOSUB 10000

2000 GOSUB 10000

2010 GOSUB 4990

2020 GOSUB 10000

2030 FOR V=l TO 60

2040 READ Z$

2050 NEXT V

2055 R=0

(continued)

Educational Programs 239

2060 R=R+1

2070 GOSUB 10000

2120 READ G$

2121 READ GG$

2122 READ GGG$

2140 PRINT G$: :

2141 PRINT GG$: :

2142 PRINT GGG$

2150 FOR X=l TO PAUSE

2160 NEXT X

2170 GOSUB 10000

2180 GOTO 6000

4990 PRINT

5000 PRINT "You can control the time": :

5010 PRINT "you -feel you need in order": :
5020 PRINT "to come up with an answer."
5030 PRINT " "

5040 PRINT "Type a number -from 1 to 10": :
5050 PRINT "1 is short, 10 is long."
5060 PRINT " "

5070 INPUT "Number? ":N

5080 PAUSE=N*250

5090 RETURN

6000 INPUT "Answer? ":AA$
6010 READ GGGG$

6020 PRINT

6030 IF AA$=GGGG$ THEN 12500
6040 PRINT "Sorry, that is wrong.": :
6050 PRINT "The correct answer is ": :
6060 PRINT TAB(8) ;"No. ";G6GG$; " o-f": :
6070 PRINT G$: :

6071 PRINT GG$: :

6072 PRINT GGG$
6080 PRINT

6090 GOTO 12520

10000 CALL CLEAR

10010 RETURN

11000 PRINT

11010 INPUT "Press >ENTER< ":Y$
11020 RETURN

12000 PRINT "Do you want me to give": :
12010 PRINT "you a multiple choice?": :
12030 INPUT "Y/N ":N$

12040 IF N$="N" THEN 12100

12050 READ MM$

12060 PRINT

12070 PRINT MM$
12100 PRINT

12110 INPUT "Answer? ":A$

12120 IF N$<>"N" THEN 12140

12130 READ MM$

12140 READ MMM$

12150 IF A$=MMM$ THEN 12500 ELSE 12600

(continued)

240 The Last Whole TI-99/4A Book

12500 PRINT

12510 PRINT "That is correct": :

12520 PRINT "Your choice:": :

12530 PRINT " "

12540 PRINT 1;" Go on?": :
12550 PRINT 2-," Quit?"
12560 PRINT " "

12570 INPUT "Which? ":W

12580 IF P=l THEN 12900

12590 IF W=l THEN 2070 ELSE 13000

12600 PRINT

12610 PRINT "Sorry, that is wrong.": :
12620 PRINT "The correct anser is ": :

12630 PRINT TABQ2) ;MMM$
12640 PRINT : :

12650 GOTO 12520

12900 IF W=l THEN 1030 ELSE 13000

13000 GOSUB 10000

13010 PRINT TAB(12);"End."
13020 END

13100 GOSUB 10000
13110 PRINT "Those are all the questions":
13120 PRINT 1;") Select math"
13130 PRINT 2;") Select grammar"
13140 PRINT 3;") Quit": :
13150 INPUT "Pick one ":PP

13160 IF PPOl THEN 13180

13170 R=0

13180 IF PP=3 THEN 13200

13190 RESTORE

13200 ON PP GOTO 1000,2000,13000

When the program is first activated, it displays its purpose and
then offers you a choice ofmathematics or grammar problems. Next
it asks you to decide on the time allowance for each problem by
typing a number from 1 to 10 (1 is short, 10 is long). Depending on
your choice of subject matter, the program then displays either
three short sentences, only one ofwhich is grammatically correct, or
mathematical equations, some of which are quite simple while others
are more difficult. With the math problems, as soon as the equation
has disappeared from the screen the program asks:

r

Do you want me to give
you a multiple choice?
Y/N

Educational Programs 241

~\

Ifyou type Y, the program displays three possible answers, only one
of which is correct. The program includes a total of 20 problems in
each category.

Line by line:

Lines 100-220 identify the program and offer the choice ofmathe
matics or grammar.

Line 225 makes sure the items contained in the DATA block are
READ from the beginning.

Lines 230-490 contain the mathematical equations, the three
multiple-choice answers, and the correct answer.

Lines 500-995 contain the grammar problems and the numbers
that represent the correct choices.

Lines 1020 and 2020 send the computer to the subroutine (lines
4990-5090) that permits you to specify the length oftime for which
the problem will remain in display. In line 5080 the number you
typed in is multiplied by 250 and then assigned to the numeric
variable PAUSE, which controls the time factor.

Lines 1030-1200 are used in conjunction with the math problems.
Line 1050 increments the value of R by 1during each pass, and line
1060 sends the computer to line 13100 if the value of R is greater
than 20, indicating that all 20 problems have been done. Line 1110
READs the problem, and line 1130 causes it to be displayed. Lines

242 The Last Whole TI-99/4A Book

1140 and 1150 represent the loop that controls the time element.
Line 1170 sends the computer to line 12000, where you're asked if
you want multiple-choice answers displayed.

Lines 12000-12040 display that choice and send the computer to
line 12100 if the answer is negative. Otherwise it goes to the next
line.

Lines 12050-12070 READ the multiple choices and cause them to
be displayed.

Lines 12100-12150 ask you to type in your answer. Then line
12120 checks the string assigned to N$ to determine whether or not
to skip the next line. Lines 12130 and 12140 READ the next two
DATA items, and line 12150 compares your answer, assigned to the
string variable A$, with the correct one, assigned to the string
variable MMM$, sending the computer to one of two line numbers
where the responses to right or wrong answers are located.

Lines 12500-12590 are used if the answer you gave was correct,
giving you a choice ofgoing on or quitting. In lines 12580and 12590
the values of the numeric variables P and W are checked to deter

mine whether you're solving the math or grammar problems and
whether you want to go on or quit, sending the computer to the
appropriate line numbers.

Lines 12600-12650 are used if your answer was wrong, causing
the correct answer to be displayed and then sending the computer
back to line 12520 to offer you the choice ofgoing on or quitting.

Lines 2000-2180 are used when grammar has been selected.
After sending the computer to the subroutine that determines the
time factor, lines 2030-2050 cause the computer to READ through
the first 60 DATA items, which represent the math section. Then,
in lines 2120-2142, three sentences are READ and displayed on
three separate lines. Lines 2150 and 2160 control the time element,
and line 2180 sends the computer to line 6000.

Lines 6000-6090 check if your answer is right; if not, it displays
the three sentences again, identifying the one that is correct.

Lines 10000-11020 contain two frequently used subroutines that
clear the screen and ask you to press > ENTER < to continue
program execution.

Lines 13100-13200 are used after all 20 problems in either cate
gory have been used, offering you a choice of picking the same or
the other category for another run, or quitting the program.

Educational Programs 243

You can, of course, change the problems in the DATA blocks to
others that may either be easier or more difficult or that you might
prefer for one reason or another. If you do, note that it is important
that the total number ofitems be the same and that the same format

is used. In the math section that means:

problem,multipie-choice answers,correct answer

and in the grammar portion it must look like this:

r

^.

1) sentence

2) sentence

3) sentence

number of correct sentence

because a change in those formats will require a considerable
number of changes throughout the program. Also, if you either
increase or decrease the total number of problems in one or both

244 The Last Whole TI-99/4A Book

sections, then the number associated with R in line 1060 must be
changed to represent the new total in order to avoid a DATA ERROR
message.

The program, as shown, is written in TI BASIC. It could be
shortened considerably if it were written in TI EXTENDED BASIC,
where multiple statements can be grouped on individual lines.

ARITHMETIC WITH VOICE

This next program Problem Solving, is a lot offun if you have the
optional speech synthesizer (and TI EXTENDED BASIC), because
the computer presents a series of relatively simple arithmetic prob
lems by voice before displaying them on the screen and, depending
on your typed-in reply, the voice tells you whether your answer was
right or wrong. There are a few awkward phrases because of the
rather limited vocabulary that is available with the synthesizer. For
instance, the vocabulary does not include the words "plus" and
"minus" in its word list. Still, it works pretty well.

". ARITHMETIC WITH VOICE

This program uses the speech synthesizer to play arithmetic games.

100 CALL CLEAR

110 PRINT "LET'S PLAY SOME" :: PRINT

120 PRINT "SIMPLE ARITHMETIC"
130 FOR X=l TO 10 :: PRINT :: NEXT X

140 REM SPOKEN MATH

150 REM NEEDS SPEECH SYNTHESIZER AND EXTENDED BASIC
160 CALL SAY("HELLO, I AM COMPUTER. TYPE YOUR NAME AND I

WILL SPELL IT."')
170 INPUT "YOUR NAME? ": N$

180 CALL SAY(N$)

190 FOR PAUSE=1 TO 250 :: NEXT PAUSE
200 CALL CLEAR :: GOSUB 330

210 CALL SAY("5 AND 7 IS WHAT")

220 INPUT "5+7=? ":SUM

230 IF SUM=12 THEN GOSUB 300 ELSE GOSUB 310

240 IF SUM=12 THEN 250 ELSE 210

250 CALL CLEAR :: GOSUB 330

260 CALL SAY("TWELVE LESS S IS WHAT")

(continued)

Educational Programs ,245

270 INPUT "12-8=? ":SUM

280 IF SUM=4 THEN GOSUB 300 ELSE GOSUB 310

290 IF SUM=4 THEN 320 ELSE 260

300 CALL SAY("THAT IS CORRECT"):: RETURN

310 CALL SAY("THAT IS NOT CORRECT, TRY AGAIN"):: RETURN
320 CALL CLEAR :: GOSUB 330

325 GOTO 400

330 PRINT TAB(10);"LISTEN!"
340 FOR X=l TO 10 :: PRINT :: NEXT X :: RETURN

400 CALL SAY("3 LESS 7 IS WHAT")

410 INPUT "3-7=? ":SUM

420 IF SUM=-4 THEN GOSUB 300 ELSE GOSUB 310

430 IF SUM=-4 THEN 440 ELSE 320

440 CALL CLEAR :: GOSUB 330

450 CALL SAY("SIXTY AND 3 LESS 9 IS WHAT")

460 INPUT "60+3-9=? ":SUM

470 IF SUM=54 THEN GOSUB 300 ELSE GOSUB 310

480 IF SUM=54 THEN 490 ELSE 440

490 CALL CLEAR :: GOSUB 330

500 CALL SAY("FIFTY LESS SEVENTY IS WHAT")
510 INPUT "50-70=? ":SUM

520 IF SUM=-20 THEN GOSUB 300 ELSE GOSUB 310

530 IF SUM=-20 THEN 540 ELSE 490

540 CALL CLEAR :: GOSUB 330

550 CALL SAY("2 AND 7 LESS 5 IS WHAT")

560 INPUT "2+7-5=? ":SUM

570 IF SUM=4 THEN GOSUB 300 ELSE GOSUB 310

580 IF SUM=4 THEN 590 ELSE 540

590 CALL CLEAR :: GOSUB 330

600 CALL SAYC'l HUNDRED LESS 7 IS WHAT")

610 INPUT "100-7=? ":SUM

620 IF SUM=93 THEN GOSUB 300 ELSE GOSUB 310

630 IF SUM=93 THEN 640 ELSE 590

640 CALL CLEAR :: GOSUB 330

650 CALL SAY("6 AND 6 AND 6 LESS TEN IS WHAT")

660 INPUT "6+6+6-10=? ":SUM

670 IF SUM=8 THEN GOSUB 300 ELSE GOSUB 310

680 IF SUM=8 THEN 690 ELSE 640

690 CALL CLEAR :: GOSUB 330

700 CALL SAY("FORTY 7 LESS THIRTY 6 IS WHAT")

710 INPUT "47-36=? ":SUM

720 IF SUM=11 THEN GOSUB 300 ELSE GOSUB 310

730 IF SUM=11 THEN 740 ELSE 690

740 CALL CLEAR :: GOSUB 330

750 CALL SAY("2 HUNDRED AND SEVENTY 5 LESS NINETY 5 IS

WHAT")

760 INPUT "275-95=? ":SUM

770 IF SUM=180 THEN GOSUB 300 ELSE GOSUB 310

780 IF SUM=180 THEN 790 ELSE 740

790 CALL CLEAR :: GOSUB 330

800 CALL SAY("ELEVEN AND 7 LESS TWENTY IS WHAT")

810 INPUT "11+7-20=? ":SUM

(continued)

246 The Last Whole TI-99/4A Book

820 IF SUM=-2 THEN GOSUB 300. ELSE GOSUB 310
830 IF SUM=-2 THEN 840 ELSE 790

840 CALL CLEAR :: GOSUB 330

850 CALL SAY("5 HUNDRED FORTY 3 AND 4 HUNDRED FIFTY 7

IS WHAT")

860 INPUT "543+457=? ":SUM

870 IF SUM=1000 THEN GOSUB 300 ELSE GOSUB 310
880 IF SUM-1000 THEN 890 ELSE 840

890 CALL CLEAR :: GOSUB 330

900 CALL SAY("3.5 AND 7.8 IS WHAT")

910 INPUT "3.5+7.8=? ":SUM
920 IF SUM=11.3 THEN GOSUB 300 ELSE GOSUB 310

930 IF SUM=11.3 THEN 940 ELSE 890

940 CALL CLEAR :: GOSUB 330

950 CALL SAY("TWENTY 4.8 LESS TWENTY 1.3 IS WHAT")
960 INPUT "24.8-21.3=? ":SUM

970 IF SUM=3.5 THEN GOSUB 300 ELSE GOSUB 310
980 IF SUM=3.5 THEN 990 ELSE 940

990 CALL CLEAR :: GOSUB 330

1000 CALL SAY("7 HUNDRED FORTY 4.68 AND FORTY 6.32 IS

WHAT")

1010 INPUT "744.68+46.32=? ":SUM

1020 IF SUM=791 THEN GOSUB 300 ELSE GOSUB 310

1030 IF SUM=791 THEN 1040 ELSE 990

1040 CALL CLEAR :: GOSUB 330

1050 CALL SAYC-5 AND -8 IS WHAT")

1060 INPUT "-5+(-8)=? ":SUM

1070 IF SUM=-13 THEN GOSUB 300 ELSE GOSUB 310

1080 IF SUM=-13 THEN 1090 ELSE 1040

1090 CALL CLEAR :: GOSUB 330

1100 CALL SAY("-3 LESS -9 IS WHAT")

1110 INPUT "-3-(-9)=? ":SUM

1120 IF SUM=6 THEN GOSUB 300 ELSE GOSUB 310

1130 IF SUM=6 THEN 1140 ELSE 1090

1140 CALL CLEAR :: GOSUB 330

1150 CALL SAY("0.7 LESS 0.3 IS WHAT")

1160 INPUT "0.7-0.3=? ":SUM

1170 IF SUM=0.4 THEN GOSUB 300 ELSE GOSUB 310

1180 IF SUM=0.4 THEN 1190 ELSE 1140

1190 CALL CLEAR :: GOSUB 330

1200 CALL SAY("0.12 AND TWENTY 1.24 IS WHAT")

1210 INPUT "0.12+21.24=? ":SUM

1220 IF SUM=21.36 THEN GOSUB 300 ELSE GOSUB 310

1230 IF SUM=21.36 THEN 1240 ELSE 1190

1240 CALL CLEAR :: GOSUB 330

1250 CALL SAY("THIRTEEN AND EIGHTY 7 LESS 1 HUNDRED IS

WHAT")

1260 INPUT "13+87-100=? ":SUM

1270 IF SUM=0 THEN GOSUB 300 ELSE GOSUB 310

1280 IF SUM=0 THEN 1290 ELSE 1240

1290 CALL CLEAR :: GOSUB 330

1300 CALL SAY("THAT IS ALL FOR NOW")

1310 END

Educational Programs 247

Before activating the program, be sure the sound on the monitor
is turned up. First the screen displays:

r

V.

LET'S PLAY SOME

SIMPLE ARITHMETIC

and after a briefpause the voice can be heard:

"Hello, Iam Computer. Type your name and Iwill spell it."

After you have typed in your name, the computer spells it (except in
the unlikely event that your name is one ofthe words in its word list).
The display then shows the word:

LISTEN!

^

in the center of the screen and after a moment the voice comes on

again:

"Five and seven is what?"

248 The Last Whole TI-99/4A Book

after which the display changes to:

/ ~

5+7=?

^

asking you to type in the result. When you have done so, the voice
responds with:

'That is correct.

or

'That is not correct. Try again."

The program then goes on to the next problem or repeats the pre
vious one. The program contains 20 problems in ascending order of
difficulty. More can be added without affecting the way it works, as
explained at the end of the line-by-line discussion.

Line by line:

LineslOO-130 place the title of the program into display.
Lines 140 and 150 are REMarks.

Line 160 activates the voice synthesizer and tells it what to say,
using the CALL SAY statement.

Line 170 places YOUR NAME? into display, asking you to type it in
and assigning it to the string variable N$.

Line 180 causes the computer to spell your name.
Line 190 creates a short pause.

Educational Programs 249

Line 200 clears the screen and uses a subroutine (lines 330 and
340) to place the word LISTEN! into the center of the screen.

Line 210 tells the computer to speak the first problem.
Line 220 displays the problem on the screen, asking you to type in
the result.

Line 230 checks whether your answer is right or wrong, sending
the computer to one of two subroutines (lines 300 and 310) that
cause the voice to tell you whether or not your answer is correct.

Line 240 once more checks your answer, sending the computer to
one of two line numbers to either go to the next problem or to repeat
the previous one.

From here on, except for lines 300, 310, 330, and 340, which are
subroutines, the program simply repeats the same line sequence for
each problem. Notice the way some numbers must be written in the
CALL SAY lines in order for the computer to understand what the
voice is supposed to say (575 has to be written as 5 HUNDRED
SEVENTY 5).

Line 1300 tells the computer to tell you that you're at the end ofthe
program.

If you want to add more problems, give lines 1300 and 1310
higher line numbers and use the routine represented by the series of
five line numbers for each problem (1190-1230 and 1240-1280 are
two such sequences) to enter as many additional problems as your
heart desires. But be sure to use the words that are listed in the TI
EXTENDED BASIC word list.

SCRAMBLED WORDS

Let's try another program that deals with words. This one dis
plays a bunch of letters that make no sense. It is your job to rear
range these letters so as to make a word. There is a total of50 words
for you to determine. See displays on following pages.

250 The Last Whole TI-99/4A Book

It goes like this:

/

I am your Home Computer.
Tell me your name, please.

and after you have typed it in:

This program displays
groups of letters that must
be rearranged to make words.

^.

and then:

Educational Programs 251

r

The letters are EWRTA

What is the word?

Ifthe word you now type in is the right one, the computer tells you so
and goes on to the next one. If you've typed an incorrect word, it
displays the right one before going on.

SCRAMBLED WORDS PROGRAM

A program that asks you to unscramble some scrambled words.

PRINT "Tell me your

100 CALL CLEAR

110 PRINT "I am your Home Computer" ::
name, please"

120 GOSUB 960

130 INPUT N*

140 CALL CLEAR

150 RESTORE

160 REM SCRAMBLED WORDS

170 REM TI EXTENDED BASIC

180 GOSUB 960

190 PRINT "This program displays"
200 PRINT "groups of letters that must"
210 PRINT "be rearranged to make words"
220 GOSUB 960 :: GOSUB 1020

230 Ls="The letters are: "

240 W$="The word is "

250 R*="That's right, "

(continued)

252 The Last Whole TI-99/4A Book

260 Fs="No, that's wrong, "
270 GOSUB 970

280 GOSUB 960

290 Q=Q+1

300 IF Q>S0 THEN 1040

310 READ AS

320 PRINT L$;A*
330 GOSUB 1020

340 PRINT "What is the word?" :: GOSUB 960 :s INPUT WW$

350 READ AA*

360 IF WWsOAA* THEN 410

370 PRINT

380 PRINT R*;N$
390 GOSUB 960

400 GOTO 270

410 PRINT

420 PRINT F$;N$: :
430 PRINT W*:AA$

440 GOSUB 960

450 GOTO 270

460 DATA EWRTA,WATER
470 DATA EBACH,BEACH
480 DATA LEEXI,EXILE
490 DATA RUMSEM,SUMMER

500 DATA RHOSE,HORSE
510 DATA POTUCMRE,COMPUTER
520 DATA HOLOSC,SCHOOL
530 DATA REDOBOM,BEDROOM
540 DATA WLEROF,FLOWER
550 DATA TISHR,SHIRT
560 DATA HENEPOTLE,TELEPHONE
570 DATA DOIRA,RADIO
580 DATA PLAM,LAMP

590 DATA FOCEFE,COFFEE
600 DATA PREPA,PAPER
610 DATA LEAPT,PLATE
620 DATA PELES,SLEEP

630 DATA LIBMAOTUEO,AUTOMOBILE
640 DATA CEENF,FENCE
650 DATA AAPRELIN,AIRPLANE
660 DATA THOMER,MOTHER
670 DATA REACHET,TEACHER
680 DATA RUMBEN,NUMBER
690 DATA ICEBYLC,BICYCLE
700 DATA AIRYCIDONT,DICTIONARY
710 DATA MEWDOA,MEADOW
720 DATA ESTOV,STOVE
730 DATA UPIRTCE,PICTURE

(continued)

Educational Programs 253

740 DATA STAAL,ATLAS
750 DATA COALGAT,CATALOG
760 DATA FINKE,KNIFE
770 DATA TREACP,CARPET
780 DATA LICEING,CEILING
790 DATA SEDERST,DESSERT
800 DATA CONEA,OCEAN
810 DATA AACHUETPR,PARACHUTE
820 DATA SEDERT,DESERT
830 DATA BRAYLIR,LIBRARY
840 DATA HOODANBK,HANDBOOK
850 DATA BEALT,TABLE
860 DATA PILCNE,PENCIL
870 DATA UCCSTA,CACTUS
880 DATA KRAMTE,MARKET
890 DATA NOWDIW,WINDOW
900 DATA PEATER,REPEAT
910 DATA RIGEREST,REGISTER
920 DATA APPLENICA,APPLIANCE
930 DATA PRINTERSEE,ENTERPRISE
940 DATA CAYLAFL,FALLACY
950 DATA DOERCORR,RECORDER
960 FOR X=l TO 10 :: PRINT :: NEXT X :: RETURN
970 GOSUB 1020

980 PRINT "To exit program press X"
990 INPUT "To continue, press >ENTER< ":Y*
1000 IF Y*="X" THEN 1040

1010 CALL CLEAR :: RETURN

1020 PRINT " »

1030 RETURN

1040 GOSUB 960

1050 GOSUB 1020

1060 PRINT ;TAB(10);"End."
1070 GOSUB 1020

1080 END

Let's look at the Word Scrambler Program line by line:

Line 110 performs the introduction.
Lines 120 uses a subroutine to place the two lines of copy into the
center of the screen.

Line 130 assigns your name to the string variable N$.
Line 150 makes sure that DATAare READfrom the top.
Lines 160 and 170 are REMarks.

254 The Last Whole TI-99/4A Book

Lines 190-210 display the purpose of the program.
Lines 230-260 assign several strings to string variables.
Line 290 increases the value of Q each time the line is encountered.
Line 300 checks the value of Q and, if all 50 words have been used,
sends the computer to line 1040.

Line 310 READs the group ofscrambled letters and assigns it to the
string variable A$.

Line 320 displays the strings represented by two string variables.
Line 340 asks you to type in the word, assigning it to the string
variable WW$.

Line 350 READs the correct word as stored in the program, assign
ing it to the string variable AA$.

Line 360 checks ifyour word matches the correct one, sending the
computer to line 410 ifyour entry was wrong.

Line 3 80 is used if your entry was right.
Line 400 sends the computer back to line 270 to look for the next
group ofscrambled letters.

Lines 420 and 430 tell you that your entry was wrong and then
display the right word.

Line 450 is the same as line 400.

Lines 460-950 represent the DATA block that contains all 50
words and the groups ofscrambled letters.

Lines 960-1080 are the frequently used subroutines and the line
that puts the word "End." into display after all words have been
used or if you typed X instead of > ENTER < in order to exit the
program.

I have tried not to include letter groups that can be used to make
more than one word, but it is not impossible that you may find a
legitimate word that uses all the letters but is not the one stored in
the program. The computer will then insist that you're wrong even
though your word may be perfectly good.

HISTORY LESSON

Next we take up a history lesson. The American History Pro
gram, works in either of two ways. It may display any one of 25
important dates in American history, asking you to type in the event

Educational Programs 255

associated with that date. It then displays the event that is stored in
the program, asking you to compare your entry with it before going
on to the next date. Alternatively, the program may display an
event, asking you to type in the year in which that event took place.
It then compares your entry with the date stored in the program to
determine whether you were right or wrong. It then continues by
displaying another event. The dates and events are picked at ran
dom and, because of the peculiarity ofrandom-number generation,
there may occasionally be duplications. The dates and events are
grouped in the DATA block and can be changed if you like.

HISTORY LESSON PROGRAM

A computerized history lesson.

100

110

120

130

140

150

160

170

ISO

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

GOTO 140

PRINT "

FOR X=l TO 10 :: PRINT

INPUT "Press >ENTER< "

REM AMERICAN HISTORY

REM TI EXTENDED BASIC
CALL CLEAR

GOSUB 110

PRINT TAB(5);"American History"
GOSUB 110 :: GOSUB 120 :: GOSUB

"You have two choices:" :

1;" I display a date"
2;" I display an event" ::
"Which? ":WHICH

GOSUB 250 :: GOTO 280

: Q=INT(RND*25)+1

" :: RETURN

:: NEXT X :: RETURN

E* :: CALL CLEAR :: RETURN

PRINT

PRINT

PRINT

INPUT

RESTORE :

RANDOMIZE

130

: GOSUB

PRINT

: GOSUB

110

110

IF Z=Q THEN 250 ELSE Z=Q

RETURN

ON WHICH GOTO 370,290
QQQ=INT(QQ):: Q0=(QQ-QOQ)*100

•1

TO Q

QQ=Q/2 ::

THEN Q=Q-

FOR XX=1

GOSUB 110

READ DATE :: READ EVENT* :

PRINT EVENT* :: GOSUB 110

INPUT "What year? ":YEAR
GOSUB 120 :: PRINT TAB(12);DATE :: GOSUB 110
GOSUB 130 :: RESTORE :: GOSUB 250 :: GOTO 290

QQ=Q/2 :: QQQ=INT<QQ):: QQ=(QQ-QQQ)*100 :: IF QQ=0
THEN GNQ-1

NEXT XX

GOSUB 120

IF QQ=0

(continued)

256 The Last Whole TI-99/4A Book

380 FOR XXX=1 TO Q

390 GOSUB 110

400 READ DATE :: READ EVENT* :: NEXT XXX

410 PRINT TAB(12);DATE :: GOSUB 110:GOSUB 120
420 INPUT "What took place? "".WHAT*
430 GOSUB 120 :: PRINT EVENT* :: GOSUB 110

440 GOSUB 130 :: RESTORE :: GOSUB 250 :: GOTO 370

450 DATA 1492,CHRISTOPHER COLUMBUS SIGHTS LAND ON OCT.12
460 DATA 1636,HARVARD COLLEGE IS FOUNDED
470 DATA 1683,WILLIAM PENN SIGNS TREATY WITH INDIANS FOR

PENNSYLVANIA

480DATA 1752,BENJAMIN FRANKLIN USES KITE TO PROVE
LIGHTNING IS ELECTRICITY AND INVENTS LIGHTNING ROD

490 DATA 1754,FRENCH AND INDIAN WARS
500 DATA 1776,DECLARATION OF INDEPENDENCE IS SIGNED ON

JULY 4

510 DATA 1789,INAUGURATION OF GEORGE WASHINGTON AS
PRESIDENT

520 DATA 1793,ELI WHITNEY INVENTS COTTON GIN
530 DATA 1812,WAR IS DECLARED ON BRITAIN
540 DATA 1848jGOLD WAS DISCOVERED IN CALIFORNIA
550 DATA 1863,LINCOLN ISSUES. EMANCIPATION PROCLAMATION

560 DATA 1871,CHICAGO FIRE
570 DATA 1894,THOMAS EDISON FIRST SHOWS MOTION PICTURE
580 DATA 1898,U.S.BATTLESHIP 'MAINE' BLOWN UP AT HAVANA
590 DATA 1906,SAN FRANCISCO EARTHQUAKE
600 DATA 1909,ADMIRAL PEARY REACHES NORTH POLE

610 DATA 1963,JOHN F. KENNEDY ASSASSINATED
620 DATA 1941,JAPAN BOMBS PEARL HARBOR
630 DATA 1918,END OF WORLD WAR I. NOV.11
640 DATA 1929,STOCK MARKET CRASH. OCT.29 -
650 DATA 1917,U.S. DECLARED WAR ON GERMANY. APR.6
660 DATA 1945,FIRST ATOMIC BOMB EXPLODED IN NEW MEXICO ON

JULY 16 AND THEN DROPPED ON JAPAN ON AUG.6 AND AUG.9

670 DATA 1950,FIRST U.S. ADVISORS TO SOUTH VIETNAM

680 DATA 1974,RICHARD M. NIXON RESIGNS AS PRESIDENT. AUG.9
690 DATA 1979,THREE MILE ISLAND ACCIDENT AT ATOMIC POWER

PLANT

700 DATA 1980,MT. ST. HELENS ERUPTS. MAY 18

Because any given year may be representative of more than one
important event, the second choice is probably more useful. As you
have probably noticed, each DATA line consists of the year followed
by a comma, followed by the event (with no commas). If you want to
change these items, be sure to follow the same convention; if you do

Educational Programs 257

want to use commas in the description of the event, don't forget that
the entire item must be enclosed in quotation marks. Also, if you
would like to add more dates and events, you can add as many
DATA lines as you like, but the number associated with RND in line
250 must then be changed to reflect the total number of such lines.

Line by line:

Line 100 is used to send the computer to line 140, skipping over the
subroutines, which, in this program, are placed in lines 110-130.

Lines 140 and 150 are REMarks.

Lines 170-230 place the title of the program and then the two
choices into display, assigning your choice (1or 2) to the numeric
variable WHICH.

Line 240 first makes sure that the DATA items are READ from the

top. It then sends the computer to the subroutine (lines 250-270)
where a random number between 1and 25 is generated in line 250.
Line 260 makes sure that the new number is not the same as the

one that was generated during the previous pass.
Line 280 sends the computer to one of two line numbers, depend
ing on your choice.

Line 290 makes sure that the value that is finally assigned to the
numeric variable Q is an odd number, which is important because
the computer must subsequently READ the year before the event,
and all years are odd-numbered DATA itefns.

Lines 300-320 create a loop that causes as many pairs of DATA
items to be READ as are represented by the value assigned to Q.

Line 330 causes the event, assigned to the string variable EVENT$,
to be displayed.

Line 340 asks you to type in the year that is associated with that
event.

Line 350 causes the year, assigned to the numeric variable DATE,
to be displayed, affording you a chance to check whether your
entry was right or wrong.

Line 360 uses RESTORE and then sends the computer to the
subroutine that produces a new random number. After that it
sends the computer back to line 290 to display the next event.

Line 370 is identical to line 290.

258 The Last Whole TI-99/4A Book

Lines 380-400 represent another loop that is identical to the first
one (lines 300-320).

Line 410 causes a year, assigned to the numeric variable DATE, to
be displayed.

Line 420 asks you to type in the important event of that year.
Line 430 prints the event, assigned to the string variable EVENT$,
giving you a chance to compare your entry with the event stored in
the program. Note that though your answer may differ, it is not
necessarily wrong.

Line 440 is identical to line 360, except that it eventually returns
the computer to line 370 to display the next year.

Lines 450-700 represent the DATA block, which can be expanded
or changed to fit your needs or desires.

METRIC CONVERSIONS

Nearly everyone in the world today measures things in the met
ric system. Even though the United States has long held out against
it, more and more products appearing in this country are weighed or
measured in the metric system. Road signs often show distances in
kilometers, gasoline is sometimes sold by the liter, even recipes are
beginning to use metric weights and measures. The Metric Conver
sions Program allows you to convert quantities easily to and from
the metric system. When the program is executed it identifies itself
and then offers you an extensive choice ofconversions.

METRIC CONVERSION PROGRAM

This program converts weights and measures to and from the metric system.

100 REM METRIC CONVERSIONS

110 REM TI99/4A

200 GOSUB 10000

210 PRINT "This program coverts": :
220 PRINT "measures and weights": :
230 PRINT "to and -from metric": :
240 BOSUB 11000

(continued)

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

515

520

530

540

600

610

620

630

640

641

645

646

650

655

656

660

670

675

680

685

690

691

692

695

700

705

Educational Programs 259

GOSUB 10000

PRINT "Your choice:"

GOSUB 10500

PRINT 1;" Inch/centimeter"
PRINT 2;" Foot/meter"
PRINT 3;" Mile/kilometer"
PRINT 4;" Yard/meter"
PRINT 5;" Sq.inch/sq.centimeter"
PRINT 6;" Sq. -foot/sq. meter"'
PRINT 7;" Sq.mile/sq.kilometer"
PRINT 8;" Sq.yard/sq.meter"
PRINT 9;" Cu.inch/cu.centimeter"

Cu.foot/cu.meter"

Grain/gram"
Ounce/gram"
U.S.pound/kilogram"
U.S.pound/metric pound"
Fl.ounce/cu.centimeter"

Quart/liter"

U.S.gallon/liter"
Acre/sq.feet"
Degrees F./degrees C."
Exit program"

PRINT 10

PRINT 11

PRINT 12

PRINT 13

PRINT 14

15PRINT

PRINT 16:

PRINT 17:

PRINT 18:

PRINT 19:

PRINT 20:

GOSUB 10500

INPUT "Which one? ":N

ON N GOTO 600,700,800,900,1000,1100,1200,1300,
1400,1500,1600,1700,1800,1900,2000,2100,2200,
2300,2400,12000
GOSUB 10000

PRINT 1;" Inch to centimeter?"
PRINT 2;" Centimeter to inch?"
GOSUB 10500

INPUT "Which? ":W

ON W GOTO 645,675
GOSUB 10000

INPUT "Number of inches? ":I

GOSUB 10500

C=I*2.54

C=INT(C*100+.5)/100

PRINT C;" centimeters"
GOTO 240

GOSUB 10000

INPUT "Number of centimeters? ":C

GOSUB 10500

I=C/2.54

I=INT(I*100+.5)/100

PRINT I;" inches"
GOTO 240

GOSUB 10000

PRINT Is" Feet to meters? "

(continued)

260 The Last Whole TI-99/4A Book

710 PRINT 2;" Meters to feet? "
715 GOSUB 10500

720 INPUT "Which? ":N

725 ON N GOTO 730,760
730 GOSUB 10000

735 INPUT "Number of feet? ":F

740 GOSUB 10500

745 M=F*.3048

750 M=INT(M*100+.5)/100

751 PRINT M;" Meters"
755 GOTO 240

760 GOSUB 10000

765 INPUT "Number of meters? ":M

770 F=M*3.2808

775 F=INT(F*100+.5)/100

777 GOSUB 10500

780 PRINT F;" Feet"
790 GOTO 240

800 GOSUB 10000

805 PRINT 1;" Statute miles to km.?"
806 PRINT 2;" Nautical miles to km.?"
807 PRINT 3;" Km. to statute miles?"
808 PRINT 4;" Km. to nautical miles?"
810 GOSUB 10500

815 INPUT "Which? ":N

816 ON N GOTO 817,830,855,875
817 GOSUB 10000

819 INPUT "Number of statute miles? ":M

820 K=M*1.6089

822 K=INT<K*100+.5)/100

823 GOSUB 10500

825 PRINT K;" Kilometers"
827 GOTO 240

830 GOSUB 10000

832 INPUT "Number of nautical miles? ":M

835 K=M*1.6089/.86839

837 K=INT<K*100+.5)/100

838 GOSUB 10500

840 PRINT K;" Kilometers"
850 GOTO 240

855 GOSUB 10000

857 INPUT "Number of kilometers? ":K

859 M=K*.62137

860 M=INT(M*100+.5)/100

862 GOSUB 10500

(continued)

Educational Programs 261

865 PRINT M;" Statute miles"
870' GOTO 240
875 GOSUB 10000

877 INPUT "Number of kilometers'? ":K
879 M=K*.53956

880 M=INT(M*100+.5)/100
882 GOSUB 10500

885 PRINT M;" Nautical miles"
890 GOTO 240

900 GOSUB 10000

905 PRINT 1;" Yards to meters?"
910 PRINT 2;" Meters to yards?"
915 GOSUB 10500
920 INPUT "Which? ":N

925 ON N GOTO 930,965
930 GOSUB 10000

935 INPUT "Number of yards? ":Y
940 M=Y*.9144

945 M=INT(M*100+.5)/100
946 GOSUB 10500
950 PRINT M;" Meters"
960 GOTO 240

965 GOSUB 10000

970 INPUT "Number of meters? ":M
975 Y=M*1.0936

980 Y=INT(Y*100+.5)/100
982 GOSUB 10500

985 PRINT Y;" Yards"
990 GOTO 240

1000 GOSUB 10000

1005 PRINT 1;" Sq.inches to sq.cm.?"
1010 PRINT 2;" Sq.cm. to sq.inches?"
1015 GOSUB 10500

1020 INPUT "Which? ":N

1022 ON N GOTO 1025,1055
1025 GOSUB 10000

1030 INPUT "Number of sq.inches? ":I
1035 C=I*6.4516

1036 C=INT(C*100+.5)/100
1037 GOSUB 10500

1040 PRINT C;" Sq.centimeters"
1050 GOTO 240

1055 GOSUB 10000

1060 INPUT "Number of sq.centimeters? ":C
1065 I=C*.155

1070 I=INT(I*100+.5)/100

(continued)

262 The Last Whole TI-99/4A Book

1072 GOSUB 10500

1075 PRINT I;" Sq.inches"
1080 GOTO 240

1100 GOSUB 10000

1105 PRINT 1;" Sq.feet to sq.meters?"
1110 PRINT 2;" Sq.meters to sq.feet?"
1115 GOSUB 10500

1120 INPUT "Which? ":N

1125 ON N GOTO 1130,1160

1130 GOSUB 10000

1135 INPUT "Number of sq.feet? ":F
•1140 M=F*.0929

1145 M=INT<M*100+.5)/100

1150 GOSUB 10500

1151 PRINT M;" Sq.meters"
1155 GOTO 240

1160 GOSUB 10000

1165 INPUT "Number of sq.meters? ":M
1170 F=M*10.764

1175 F=INT(F*100+.5)/100

1180 GOSUB 10500

1190 PRINT F;" Sq.feet"
1195 GOTO 240

1200 GOSUB 10000

1205 PRINT 1;" Sq.miles to sq.km.?"
1210 PRINT 2;" Sq.km. to sq.miles?"
1215 GOSUB 10500

1220 INPUT "Which? ":N

1225 ON N GOTO 1230,1265

1230 GOSUB 10000

1235 INPUT "Number of sq.miles? ":M
1240 K=M*2.59

1245 K=INT<K*100+.5)/100

1250 GOSUB 10500

1255 PRINT K:" Sq.kilometers"
1260 GOTO 240

1265 GOSUB 10000

1270 INPUT "Number of sq.kilometers? ":K
1275 M=K*.3861

1280 M=INT(M*100+.5)/100

1285 GOSUB 10500

1290 PRINT M;" Sq.miles"
1295 GOTO 240

1300 GOSUB 10000

1305 PRINT 1;" Sq.yards to sq.meters?"
1310 PRINT 2;" Sq.meters to sq.yards?"
1315 GOSUB 10500

1320 INPUT "Which? ":N

1325 ON N GOTO 1330,1365

1330 GOSUB 10000

1335 INPUT "Number of sq.yards? ":Y

(continued)

Educational Programs 263

1340 M=Y*.83613

1345 M=INT(M*100+.5)/100
1350 GOSUB 10500

1355 PRINT M;" Sq.meters"
1360 GOTO 240

1365 GOSUB 10000

1370 INPUT "Number of sq.meters? ":M
1375 Y=M*1.196

1380 Y=INT<Y*100+.5)/100

1385 GOSUB 10500

1390 PRINT Y;" Sq.yards"
1395 GOTO 240

1400 GOSUB 10000

1405 PRINT 1;" Cu.inches to cu.cm.?"
1410 PRINT 2;" Cu.cm. to cu.inches?"
1415 GOSUB 10500

1420 INPUT "Which? ":N

1425 ON N GOTO 1430,1465
1430 GOSUB 10000

1435 INPUT "Number of cu.inches? ":I

1440 C=I*16.387

1445 C=INT<C*100+.5)/100

1450 GOSUB 10500
1455 PRINT C;" Cu.centimeters"
1460 GOTO 240

1465 GOSUB 10000

1470 INPUT "Number of cu.centimeters? ":C

1475 I=C*.06102

1480 I=INT<I*100+.5)/100

1485 GOSUB 10500

1490 PRINT I;" Cu.inches"
1495 GOTO 240

1500 GOSUB 10000

1505 PRINT 1;" Cu.feet to cu.meters?"
1510 PRINT 2;" Cu.meters to cu.feet?"
1515 GOSUB 10500

1520 INPUT "Which? ":N

1525 ON N GOTO 1530,1565
1530 GOSUB 10000

1535 INPUT "Number of cu.feet? ":F

1540 M=F*.02831

1545 M=INT<M*100+.5)/100

1550 GOSUB 10500

1555 PRINT M;" Cu.meters"
1560 GOTO 240

1565 GOSUB 10000

1570 INPUT "Number of cu.meters? ":M

1575 F=M*35.314

1580 F=INT<F*10+.5)/100

1585 GOSUB 10500

1590 PRINT F;" Cu.feet"
1595 GOTO 240

(continued)

264 The Last Whole TI-99/4A Book

1600 GOSUB 10000

1605 PRINT 1;" Grains to grams?"
1610 PRINT 2;" Grams to grains?"
1615 GOSUB 10500

1620 INPUT "Which? ":N
1625 ON N GOTO 1630,1665
1630 GOSUB 10000

1635 INPUT "Number of grains? ":G
1640 GG=G/15.432

1645 GG=INT(GG*100+.5)/100
1650 GOSUB 10500

1655 PRINT GG;" Grams"
1660 GOTO 240

1665 GOSUB 10000

1670 INPUT "Number of grams? ":GG
1675 G=GG*15.432

1680 G=INT(G*100+.5)/100
1685 GOSUB 10500

1690 PRINT G;" Grains"
1695 GOTO 240

1700 GOSUB 10000
1705 PRINT 1;" Ounces to grams?"
1710 PRINT 2;" Grams to ounces? "
1715 GOSUB 10500

1720 INPUT "Which? ":N

1725 ON N GOTO 1730,1765
1730 GOSUB 10000

1735 INPUT "Number of ounces? ":0
1740 G=0*28.35

1745 G=INT<G*100+.5)/100
1750 GOSUB 10500

1755 PRINT G:" Grams"

1760 GOTO 240

1765 GOSUB 10000

1770 INPUT "Number of grams? ":G
1775 0=G*.03527

1780 0=INT(0*100+.5)/100

1785 GOSUB 10500

1790 PRINT 0;" Ounces"
1795 GOTO 240

1800 GOSUB 10000

1805 PRINT 1;" U.S.pounds to kilograms?"
1810 PRINT 2;" Kilograms to-U.S.pounds?"
1815 GOSUB 10500

1820 INPUT "Which? ":N
1825 ON N GOTO 1830,1865
1830 GOSUB 10000

1835 INPUT "Number of U.S.pounds? ":P
1840 K=P*.45359

1845 K=INT<K*100+.5)/100
1850 GOSUB 10500

1855 PRINT Ks" Kilograms"
1860 GOTO 240

(continued)

Educational Programs 265

1865 GOSUB lOOOO

1870 INPUT "Number of kilograms? ":K
1875 P=K*2.2046

1880 P=INT<P*100+.5)/100

1885 GOSUB 10500

1890 PRINT P;" U.S.pounds"
1895 GOTO 240

1900 GOSUB 10000

1905 PRINT 1;" U.S.lbs'to metric lbs?"
1910 PRINT 2;" Metric lbs to U.S. lbs?"
1915 GOSUB 10500

1920 INPUT "Which? ":N

1925 ON N GOTO 1930,1965

1930 GOSUB 10000

1935 INPUT "Number of U.S.pounds? ":P
1940 MP=P/1.17137

1945 MP=INT(MP*100+.5)/100

1950 GOSUB 10500

1955 PRINT MP;" Metric pounds"
1960 GOTO 240

1965 GOSUB 10000

1970 INPUT "Number of metric pounds? ":MP
1975 P=MP*1.17137

1980 P=INT(P*100+.5)/100

1985 GOSUB 10500

1990 PRINT P;" U.S.Pounds"
1995 GOTO 240

2000 GOSUB 10000

2005 PRINT 1;" Fluid ounces to cu.cm.?"
2010 PRINT 2;" Cu.cm. to fluid ounces?"
2015 GOSUB 10500

2020 INPUT "Which? ":N

2025 ON N GOTO 2030,2065
2030 GOSUB 10000

2035 INPUT "Number of fluid ounces? ":F0

2040 C=F0*29.57

2045 C=INT(C*100+.5)/100

2050 GOSUB 10500

2055 PRINT C;" Cu.centimeters"
2060 GOTO 240

2065 GOSUB 10000

2070 INPUT "Number of cu.centimeters? ":C

2075 F0=C/29.57

2080 F0=INT(F0*100+.5)/100

2085 GOSUB 10500

2090 PRINT FO;" Fluid ounces"
2095 GOTO 240

2100 GOSUB 10000

2105 PRINT 1;" Quarts to liters?"
2110 PRINT 2?" Liters to quarts?"
2115 GOSUB 10500

2120 INPUT "Which? ":N

2125 ON N GOTO 2130,2165

(continued)

266 The Last Whole TI-99/4A Book

2130 GOSUB 10000

2135 INPUT "Number of quarts? ":Q
2140 L=((Q*4)*3.7853)/4/4

2145 L=INT(L*100+.5)/100

2150 GOSUB 10500

2155 PRINT L;" Liters"
2160 GOTO 240

2165 GOSUB 10000

2170 INPUT "Number of liters? ":L

2175 Q=4*<<(L/4)/3.7853)*4)

2180 Q=INT<Q*100+.5)/100

2185 GOSUB 10500

2190 PRINT Q;" Quarts"
2195 GOTO 240

2200 GOSUB 10000

2205 PRINT 1;" U.S.gallons to liters?"
2210 PRINT 2;" Liters to U.S.gallons?"
2215 GOSUB 10500

2220 INPUT "Which? ":N

2225 ON N GOTO 2230,2265
2230 GOSUB 10000

2235 INPUT "Number of U.S.gallons? ":G
2240 L=G*3.7853

2245 L=INT(L*100+.5)/100

2250 GOSUB 10500

2255 PRINT L;" Liters"
2260 GOTO 240

2265 GOSUB 10000

2270 INPUT "Number of liters? ":L

2275 G=L/3.7853

2280 G=INT(G*100+.5)/100

2285 GOSUB 10500

2290 PRINT G;" U.S. gallons"
2295 GOTO 240

2300 GOSUB 10000

2305 PRINT 1;" Acres to sq.feet?"
2310 PRINT 2;" Sq.feet to acres?"
2315 GOSUB 10500

2320 INPUT "Which? ":N

2325 ON N GOTO 2330,2365
2330 GOSUB 10000

2335 INPUT "Number of acres? ":A
2340 F=A*43560

2345 GOSUB 10500

2350 PRINT F;" Sq.feet"
2360 GOTO 240

2365 GOSUB 10000

2370 INPUT "Number of sq.feet? ":F
2375 A=F/43560

2380 A=INT<A*100+.5)/100

2385 GOSUB 10500

2390 PRINT A;" Acres"

(continued)

Educational Programs 267

2395 GOTO 240

2400 GOSUB 10000
2405 PRINT 1;" Degrees F. to degrees C."
2410 PRINT 2;" Degrees C. to degrees F."
2415 GOSUB 10500

2420 INPUT "Which? ":N

2425 ON N GOTO 2430,2465
2430 GOSUB 10000

2435 INPUT "Number of degrees F.? ":DF
2440 DC=(DF-32)/1.8

2445 DC=INT(DC*10+.5)/10

2450 GOSUB 10500

2455 PRINT DC;" Degrees Celsius"
2460 GOTO 240

2465 GOSUB 10000

2470 INPUT "Number of degrees C? ":DC
2475 DF=(DC*1.8)+32

2480 DF=INT(DF*10+.5)/10

2485 GOSUB 10500

2490 PRINT DF;" Degrees Fahrenheit"
2495 GOTO 240

10000 CALL CLEAR

10010 RETURN

10500 PRINT " "

10510 RETURN

11000 PRINT

11010 INPUT "Press >ENTER< ":Y$

11020 RETURN

12000 GOSUB 10000

12010 PRINT TAB(12);"End".
12020 END

In most cases the results calculated by the program have been
rounded off to two decimals in order to improve legibility. Each time
a result is displayed, the program returns to the menu to offer you
the choice of running another conversion or exiting the program.

The program is written in TI BASIC, limiting each line to a single
statement. If TI EXTENDED BASIC is available, it could be short
ened considerably by grouping related statements on a single line.

Line by line:

Lines 100 and 110 are REMarks.

Lines 200-530 display the purpose of the program and then the
menu with its 20 choices.

Line 540 sends the computer to one of20 line numbers, depending
on your choice.

268 The Last Whole TI-99/4A Book

Lines 600-695 deal with inch/centimeter conversions, with lines
655 and 690 containing the conversion formulas and lines 656 and
691 rounding the results to two decimals. All the other lines in this
section are self-explanatory.

Lines 700-2495 include all the other conversions and are more or
less duplications of the above, needing no special explanation.

Lines 10000-12020 are the repeatedly used subroutines and the
END line.

AUTHORS AND THEIR WORKS

The next program, Famous Authors, deals with famous authors
and their better-known literary works. In structure and operation it
is quite similar to the history program we examined earlier. It, too,
offers two choices. It will either display the name of the author and
ask you to type in his or her most famous work, or it will display the
title ofa literary work and ask you to identify the author. Again, the
second choice is probably more useful than the first, because differ
ent readers will think of different works by certain authors as being
their most significant literary contribution.

FAMOUS AUTHORS PROGRAM

A program dealing with well-known authors and some of their works.

100 CALL CLEAR

110 GOTO 220

120 REM AUTHORS AND THEIR WORKS
130 REM TI EXTENDED BASIC

140 RANDOMIZE :: Q=INT(RND*30)+1

150 QQ=Q/2 :: QQQ=INT(QQ):: QQ=(QQ/QQQ)* 100 :: IF QQ=0
THEN Q=Q-1

160 IF Q=Z THEN 140 ELSE Z=Q

170 RESTORE :: RETURN

180 FOR X=l TO 10 :: PRINT :: NEXT X :: RETURN
190 PRINT " " •: RETURN

200 PRINT :: INPUT "Press >ENTER< or X to exit ":E$
210 IF E$="X" THEN 870 ELSE RETURN
220 GOSUB 190

230 PRINT "Authors and their works"
240 GOSUB 190 :: GOSUB 180 :: GOSUB 200 :: CALL CLEAR

(continued)

Educational Programs 269

250 PRINT "You have two choices:" :: GOSUB 190

260 PRINT 1;"I display author by name" :: PRINT
270 PRINT 2;"I display the work title" :: GOSUB 190 ::

GOSUB 180

2S0 INPUT "Which? ":WHICH

290 CALL CLEAR

300 PRINT "Do want consecutive or" :: PRINT "random

selection? (C/R) " :: GOSUB 190 :: GOSUB 180

310 INPUT CR*

320 ON WHICH GOTO 330,450

330 CALL CLEAR :: IF CR*="R" THEN GOSUB 140 ELSE GOTO 390

340 FOR XX=1 TO Q :: READ AUTHOR* :: READ WORK* :: NEXT XX

350 PRINT AUTHOR* :: GOSUB 190 :: GOSUB 180

360 INPUT "Name the work: ": W* :: GOSUB 190 :: PRINT ::

PRINT

370 PRINT WORK* :: GOSUB 190 :: GOSUB 200

380 CALL CLEAR :: GOTO 330

390 RESTORE

400 READ AUTHOR* :: READ WORK*

410 PRINT AUTHOR* :: GOSUB 190 :: GOSUB 180

420 INPUT "Name the work: ":W* :: GOSUB 190 :: PRINT ::

PRINT

430 PRINT WORK* :: GOSUB 190 :: GOSUB 200

440 CALL CLEAR :: GOTO 400

450 CALL CLEAR :: IF CR*="R" THEN GOSUB 140 ELSE GOTO 510

460 FOR XXX=1 TO Q :: READ AUTHOR* :: READ WORK* :: NEXT

XXX

470 PRINT WORK* :: GOSUB 190 :: GOSUB 180
480 INPUT "Name the author: ":A* :: GOSUB 190 :: PRINT ::

PRINT

490 PRINT AUTHOR* :: GOSUB 190 :: GOSUB 200

500 CALL CLEAR :: GOTO 450

510 RESTORE

520 READ AUTHOR* :: READ WORK*

530 PRINT WORK* :: GOSUB 190 :: GOSUB 180

540 INPUT "Name the author: ":A* :: GOSUB 190 :: PRINT ::

PRINT

550 PRINT AUTHOR* :: GOSUB 190 :: GOSUB 200

560 CALL CLEAR :: GOTO 520

570 DATA THEODORE DREISER,AN AMERICAN TRAGEDY
580 DATA LEON TOLSTOY,ANNA KARENINA

590 DATA SINCLAIR LEWIS.ARROWSMITH

600 DATA LEW WALLACE,BEN HUR
610 DATA ALDOUS HUXLEY,BRAVE NEW WORLD
620 DATA THORNTON WILDER,THE BRIDGE OF SAN LUIS REY
630 DATA THOMAS MANN,BUDDENBROOKS
640 DATA FYODOR DOSTOIEVSKI,THE BROTHERS KARAMAZOV
650 DATA ALEXANDRE DUMAS,CAMILLE
660 DATA RUDYARD KIPLING,CAPTAINS COURAGEOUS
670 DATA LEWIS CARROLL,ALICE IN WONDERLAND
680 DATA CHARLES DICKENS,DAVIF COPPERFIELD

(continued)

270 The Last Whole TI-99/4A Book

690 DATA KARL MARX,DAS KAPITAL
700 DATA STENDAHL,THE CHARTERHOUSE OF PARMA
710 DATA JAMES FENIMORE COOPER,THE LAST OF THE MOHIKANS
720 DATA DANTE ALIGHIERI,THE DIVINE COMEDY
730 DATA ROBERT LOUIS STEVENSON,DR. JEKYLL AND MR. HYDE
740 DATA HENRIK IBSEN,A DOLL'S HOUSE
750 DATA ERNEST HEMINGWAY,A FAREWELL TO ARMS
760 DATA JOHN GALSWORTHY,THE FORSYTE SAGA
770 DATA MARY SHELLEY,FRANKENSTEIN
780 DATA JOHN STEINBECK,THE GRAPES OF WRATH
790 DATA F.SCOTT FITZGERALD,THE GREAT GATSBY
800 DATA JONATHAN SWIFT,GULLIVER'S TRAVELS
810 DATA MARK TWAIN,HUCKLEBERRY FINN
820 DATA VICTOR HUGO,THE HUNCHBACK OF NOTRE DAME
830 DATA HOMER,THE ILIAD
840 DATA SIR WALTER SCOTT,IVANHOE
850 DATA ADOLF HITLER,MEIN KAMPF
860 DATA CHARLOTTE BRONTE,JANE EYRE
870 CALL CLEAR :: GOSUB 190 :: PRINT TAB(12);"End." ::

GOSUB 190 :: GOSUB 180 :: END

The program is written in TI EXTENDED BASIC in order to keep
the number of lines to a minimum. It will work just as well in TI
BASIC, but then each statement must be placed on a separate line
number. If you do convert the program to TI BASIC, be sure to use
the right line numbers in conjunction with the different GOTO,
GOSUB, and IF.. .THEN.. .ELSE statements.

This program, like the history lesson, can be modified simply by
changing the items in the DATA block. Thus, it need not necessarily
deal with authors and literature. It could just as well be used to
determine states and their capitals, countries and their capitals or
the continents on which they are located, composers and their
works, or any other two subjects that bear a relationship to one
another.

I have added one choice that was not included in the history
program, the choice of having the authors or their works displayed
in random fashion or in consecutive order (the order in which they
are listed in the DATA block).

When the program is run, it displays its title and your choices:

r
Authors and their works.

V-

You have two choicest

1 I display author by name
2 I display the work title

Which?

Do you want consecutive or
random selection?

Educational Programs 271

When both questions have been answered, it either displays the
name ofan author, asking you to type in the title ofthe work, or vice
versa. In each case it then displays the associated title or author
before going on to the next. You can exit the program at any time by
typing X.

Line by line:

Line 100 clears the screen.

Line 110 tells the computer to skip over the group of REMarks and
subroutines in lines 120-210 and go to line 220.

Lines 120 and 130 are REMarks.

Lines 140-170 generate a random number between 1 and 30 (the
number of author/work combinations used) and assign that
number to the numeric variable Q. Line 150 makes sure that the
value assigned to Q is an odd number. Line 160 is used to prevent
displaying the same selection twice in a row. Occasional repeti
tions are unavoidable when the random mode is selected, but we

don't want the same selection to appear several times in succes
sion. Line 170 makes sure that DATA are READ from the beginning
and then RETURNS the computer.

Line 180 is a subroutine that places 10 blank lines into the display
in order to position copy at screen center.

Line 190 is a subroutine that places a dashed line into display.

272 The Last Whole TI-99/4A Book

Lines 200 and 210 are the subroutine that asks you to press
> ENTER < in order to continue program execution or X to exit the
program.

Lines 220-310 place the title and the various choices into display,
assigning your choice of authors or their works to the numeric
variable WHICH and your choice of consecutive versus random to
the string variable CR$.

Line 320 sends the computer to one of two line numbers, depend
ing on the choice represented by WHICH.

Line 330 clears the screen, checks the value assigned to CR$, and
sends the computer either to the subroutine that creates the ran
dom number or to line 390.

Line 340 produces a loop that causes the author's name and the
work title to be READ as many times as the number represented by
Q, assigning the name to the string variable AUTHOR$ and the
work title to the string variable WORK$.

Line 350 places the name of the author into display.
Line 360 asks you to type in the title of the work.
Line 370 displays the work title stored in the program, giving you a
chance to compare the two.

Line 380 clears the screen and returns the computer to line 330 for
the next random selection.

Line 390 returns the DATA pointer to the top.
Line 400 causes the computer to READ the first author name and
work title.

Line 410 displays the author's name.
Line 420 asks you to type in the associated work title.
Line 430 displays the work title stored in the program.
Line 440 clears the screen and returns the computer to line 400 for
the next consecutive selection.

Lines 450-560 are identical to the above, the only difference being
that the work title is displayed and you're asked to type in the
author's name.

Lines 570-860 represent the DATA block in which the author's
names and the work titles are stored.

Line 8 70 is the END line.

There is no particular reason to limit the number ofauthor / work
combinations to 30. You can add as many as you like. The only

Educational Programs 273

changes that would be required are to change the number associ
ated with the RND statement in line 140 to reflect the total number of

DATA pairs. Furthermore, the END line would have to be moved
down, and the line number used in line 210 in conjunction with the
E$ = "X" equation would have to be changed accordingly.

OBJECT RECOGNITION

The last program in this group, the Children's Counting Game is
designed for the relatively young. It places a number of shapes on
the screen and asks the child to count and key in the number. How
long the shapes remain in display is controlled by the user, and can
be from as little as approximately a halfa second to several seconds.
What makes the program challenging is the fact that the shapes
move up and down and across the screen at different rates of speed,
and it takes a certain amount of concentration to determine the

actual number. The program uses the graphics capabilities of the
TI-99/4A, which are described in detail in Chapter 11. It is designed
to be used with a color monitor and with the voice synthesizer,
although it can be used without the latter. It does, however, require
TI EXTENDED BASIC.

CHILDREN'S COUNTING GAME

When the Children's Counting Game Program is run it first
displays a line of copy that, among other things, asks if you have a
voice synthesizer. If none is available, the subsequent information is
printed. If one is available, the screen changes to blue with all
shapes in display (see Figure 10-1) while the voice announces:

"In this program you must type in the number of
shapes on the screen. What time period do you want?
One is short. Ten is long. Type a number
from 1 to 10."

As soon as a number has been typed in and > ENTER < has been
pressed, the display is blanked out and three airplane-like shapes

274 The Last Whole TI-99/4A Book

travel across the screen from left to right for a period of time deter
mined by that number. The screen then goes blank and the voice
asks:

"What number?"

After the child has entered the number of objects, the voice responds
with:

'That is correct"

or:

"That is not correct, try again."

If the answer is correct, the next group of shapes appears. If it is
incorrect, the previous group is displayed again for another try.

Figure 10-1.The initial display while the synthesizer speaks.

Educational Programs 275

There are 10 such groups of objects in all, and recognition
becomes increasingly difficult as the objects appear in different
colors and move at considerable speed.

CHILDREN'S COUNTING GAME PROGRAM

This program combines voice, color, and graphics to test your ability to recognize the
number of objects on the screen.

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

REM COUNTING OBJECTS

REM TI EXTENDED BASIC

CALL CLEAR

GOTO 170

PRINT "

FOR X=l TO 8 :: PRINT

INPUT "PRESS >ENTER<"

A$="

B$="

C*="

D$="

E$="

F$="

G$="

GOSUB

PRINT

" :: RETURN

:: NEXT X :: RETURN

:E$:: RETURN

00008EFF00000000"

3C18181SFFFF1818"

000071FF00000000"

3C7E7E7E3C180018"

1818FFBD3C3C2424"

3C7EFFFFFFFF7E3C"

FFFFFFFFFFFFFFFF"

140

"This program is designed to be used with the

260

270

2S0

290

300

310

320

330

340

350

360

370

3S0

390

400

410

420

430

440

450

voice

GOSUB

PRINT

INPUT Y*

CALL CLEAR

IF Y$="N" THEN GOSUB 1250

CALL CHAR(96,A*)

CALL CHAR(97,B$)
CALL CHAR(98,C*)

CALL CHAR(99,D$)

CALL CHAR(100,E$)

CALL CHAR(101,F$)

CALL CHAR(102,G$)

CALL SCREEN(6)

CALL SPRITE(#1,96,7,30,30)

CALL SPRITE(#2,97,2,60,60)
CALL SPRITE(#3,98,16,90,90)

CALL SPRITE(#4,99,13,120,120)
CALL SPRITE(#5,100,5,150,150)
CALL SPRITE(#6,101,12,30,100)

CALL SPRITE(#7,102,3,60,130)
CALL MAGNIFY(2)

IF Y$="XX" THEN 500

syn- thesizer, but it can be run without it.
140 :: GOSUB 150

"Do you have a voice synthe- sizer? (Y/N)"

(continued)

276 The Last Whole TI-99/4A Book

460 CALL SAY("IN THIS PROGRAM YOU MUST TYPE IN THE NUMBER

OF SHAPES ON THE SCREEN")

470 CALL SAY("WHAT TIME PERIOD DO YOU WANT. 1 IS SHORT.

TEN IS LONG")

480 CALL SAY I"TYPE A NUMBER FROM 1 TO TEN")
490 INPUT N

500 N=N*300

510 CALL DELSPRITE(ALL)

520 PASS=1

530 CALL SPRITE(#8,96,8,50,1,0,25)
540 CALL SPRITE(#9,96,8,80,1,0,25)

550 CALL SPRITE(#10,96,8,110,1,0,25)
560 NS=3

570 GOSUB 590

580 GOTO 690

590 FOR PAUSE=1 TO N :: NEXT PAUSE

600 CALL DELSPRITE(ALL)

610 IF Y$="XX" THEN 1290

620 CALL SAY("WHAT NUMBER")

630 CALL CLEAR :: INPUT NN

640 IF NN=NS THEN 670 ELSE 650

650 CALL SAY("THAT IS NOT CORRECT. TRY AGAIN")

660 ON PASS GOTO 530,700,780,820,910,950,1010,1050,1080,
1150

670 CALL SAY("THAT IS CORRECT")

680 RETURN

690 PASS=2

700 CALL SPRITE(#11,99,7,150,50,-10,0)
710 CALL SPRITE(#12,99,7,150,80,-10,0)
720 CALL SPRITE(#13,99,7,150,110,-10,0)
730 CALL SPRITE<#14,99,7,150,140,-10,0)
740 CALL SPRITE(#15,99,7,100,95,-10,0)
750 CALL SPRITE(#16,99,7,100,125,-10,0)

760 NS=6

770 GOSUB 590 :: GOTO 780

780 PASS=3

790 CALL SPRITE(#17,97,2,1,50,30,0)

800 CALL SPRITE(#18,97,2,1,100,30,0)
810 NS=2 :: GOSUB 590

820 PASS=4

830 CALL SPRITE(#19,102,5,10,10,0,50)

840 CALL SPRITE(#20,102,5,30,30,0.
850 CALL SPRITE(#21,102,5,50,50,0.
860 CALL SPRITE(#22,102,5,70,70,0,

870 CALL SPRITE(#23,102,5,90,90,0.
880 CALL SPRITE(#24,102,5,110,110,

890 CALL SPRITE(#25,102,5,130,130.
900 NS=7 s: GOSUB 590

910 PASS=5

920 CALL SPRITE(#26,100,7,50,50,20,30)
930 CALL SPRITE(#27,100,5,50,200,-20,-30)

,50)

,50)
,50)
,50)
,0,50)
,0,50)

(continued)

Educational Programs 277

940 NS=2 :: GOSUB 590
950 PASS=6

960 CALL SPRITE(#28,101,14,40,40,5,60)
970 CALL SPRITE(#1,101,9,70,100,0,-25)
980 CALL SPRITE(#2,101,5,15,30,5,25)
990 CALL SPRITE(#3,101,16,140,100,-60,0)
1000 NS=4 :: GOSUB 590
1010 PASS=7

1020 CALL SPRITE(#4,96,13,50,1,0,80)
1030 CALL SPRITE(#5,98,7,60,250,6,-80)
1040 NS=2 :: GOSUB 590

1050 PASS=8

1060 CALL SPRITE(#6,102,12,1,1,70,90)
1070 NS=1 :: GOSUB 590

1080 PASS=9

1090 CALL SPRITE(#7,100,4,10,240,5,-5)
1100 CALL SPRITE(#8,100,5,30,220,5,5)
1110 CALL SPRITE(#9,100,7,100,30,-5,5)
1120 CALL SPRITE(#10,100,13,70,100,5,-5)
1130 CALL SPRITE(#11,100,12,150,150,-5,-5)
1140 NS=5 :: GOSUB 590

1150 PASS=10

1160 CALL SPRITE(#12,97,16,1,125,50,0)
1170 CALL SPRITE(#13,98,16,60,30,0,-50)
1180 CALL SPRITE(#14,96,16,30,200,0,50)
1190 CALL SPRITE(#15,99,16,130,80,-10,0)
1200 CALL SPRITE(#16,100,16,120,10,0,5)
1210 CALL SPRITE(#17,101,2,1,1,25,35)
1220 CALL SPRITE(#18,102,7,1,250,25,-35)
1230 NS=7 :: GOSUB 590

1240 END

1250 PRINT "In this program you must type in the number
of shapeson the screen." :: PRINT

1260 PRINT "What time period do you want? 1 is short,
10 is long. Type a number -from 1 to 10" ::
GOSUB 140 :: GOSUB 150

1270 INPUT N :: CALL CLEAR

1280 Y*="XX" :: RETURN

1290 CALL CLEAR :: PRINT "HOW MANY?" :: INPUT NN
1300 IF NN=NS THEN 1340 ELSE 1310
1310 PRINT "THAT IS WRONG. TRY AGAIN"
1320 GOSUB 160

1330 CALL CLEAR :: GOTO 660

1340 PRINT "THAT IS RIGHT. "

1350 GOSUB 160 :: PASS=PASS+1

1360 IF PASS>10 THEN END

1370 CALL CLEAR :: GOTO 660

278 The Last Whole TI-99/4A Book

Line by line:

Lines 100 and 110 are REMarks.

Line 120 clears the screen.

Line 130 tells the computer to skip the next three lines, which
contain three frequently used subroutines.

Lines 170-230 assign alphanumeric strings to string variables.
These strings determine the shapes of the objects (see Chapter 11).

Lines 250 and 260 explain the program and ask if a voice synthe
sizer is available.

Line 280 sends the computer to a subroutine if a voice synthesizer
is not available. The subroutine (lines 1250-1280) places the words
that otherwise would be spoken into display.

Lines 290-350 assign the previously determined shapes to char
acter numbers (96-102) for subsequent use.

Line 360 assigns color number 6 (dark blue) to the screen.
Lines 370-430 place the seven objects into display at specified
places on the screen.

Line 440 doubles the size of the objects.
Line 450 tells the computer to skip the next four lines if the voice
synthesizer is not available.

Lines 460-480 activate the voice synthesizer and cause it to tell
the student to type in a number from 1to 10 to determine the length
of time for which the objects will be displayed.

Line 490 assigns the input number to the numeric variable N.
Line 500 multiplies the value of N by 300.
Line 510 clears the objects from the screen.
Line 520 identifies the first moving display by assigning the value
of 1 to the numeric variable PASS.

Lines 530-550 cause three shapes to move across the screen. The
numbers in parentheses represent the number of the object, the
number assigned to the shape, the color (8), the vertical position on
the screen, the horizontal starting position on the screen (1), the
vertical velocity (0), and the horizontal velocity (25). For details,
see Chapter 11.

Line 560 assigns the number of objects on the screen (3) to the
numeric variable NS.

Line 570 sends the computer to a subroutine (lines 590-680),
which is explained below.

Educational Programs 279

Line 580 is used after the subroutine has been executed, sending
the computer to line 690.

Line 590 uses a loop to produce the time period during which the
objects remain on the screen.

Line 600 clears them from the screen.

Line 610 once more checks if the voice synthesizer is being used.
Line 620 activates the voice synthesizer.
Line 630 clears the screen and assigns the child's answer to the
numeric variable NN.

Line 640 checks whether or not N matches NN and then, sends the
computer to one of two line numbers, either to repeat the last
display or to go on to the next one.

Line 650 activates the voice synthesizer if the answer is wrong.
Line 660 sends the computer to one of10 line numbers, depending
on the value of PASS.

Line 670 activates the voice synthesizer if the answer is right.
Line 680 returns the computer to line 580, which then sends it to
line 690.

Lines 690-1240 are repeats of the above, placing the other nine
groups ofshapes into display.

Lines 1250-1370 contain the information that must be displayed if
the voice synthesizer is not being used.

11

Sprites and Other
Graphics

One of the most fascinating aspects of the TI-99/4A Home Com
puter is its multitude of graphics capabilities. The computer is
equipped with a large number of subprograms that permit you to
create all kinds of graphic images. The problem is that the methods
involved are a bit complicated, and it usually requires a con
siderable amount of trial arid error to become reasonably proficient
in their use.

In this chapter we'll write a number of programs that illustrate
the use of these subprograms. I suggest that you follow me through,
one step at a time, as I explain the various graphics capabilities of
the TI-99/4A.

CALL HCHAR

To start, let's draw a simple picture of a tree, using only one of
the most basic statements. The statement is

CALL HCHAR

where HCHAR stands for horizontal character. The program that
draws a tree is shown on page 281. The picture that results is a
ground surface line, a straight tree trunk made up of the letters H,
and a triangular crown made up of the letter A. Figure 11-1 shows
the final picture. Let's look at each line and see what happens.

280

Sprites and Other Graphics 281

f\f\BBf\RBRf\a
RRRRRRRRRRRR

RRRRRRRRRRRRRR
RRRRRRRRRRRRRRRR

af\f\aa^f\fif\HBf\afiHafin
BHRB^fiBaf\BaaBf\fiBaRfifi

mR^BRaafif\fif\BaBB^f\Bfif\an
fmaHRf\RRRf\f\BBaRB^^f\BBFt^

HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH
HHHH

Figure 11-1. The display of the symmetrical tree.

CALL HCHAR. DEMONSTRATION PROGRAM1-: -

This program creates a symmetrical tree.

100 CALL CLEAR

110 WIDTH=16

120 R0W=12

130 CALL HCHAR(24,1,94,32)
140 FOR X=l TO 12

150 WIDTH=WIDTH-1

160 REP=REP+2

170 HEIGHT=HEIGHT+1

180 CALL HCHAR(HEIGHT,WIDTH,65,REP)
190 NEXT X

200 FOR X=l TO 12

210 R0W=R0W+1

220 CALL HCHAR(ROW,14,72,4)
230 NEXT X

240 GOTO 240

282 The Last Whole TI-99/4A Book

Line 100 clears the screen.

Line 110 assigns the value of 16 to the numeric variable WIDTH
which controls the width of the crown of the tree in each row.

Line 120 assigns the value of 12 to the numeric variable ROW,
which specifies the rows on which the tree trunk is pictured.

Line 130 uses the statement CALL HCHAR along with four
numbers in parentheses (24,1,94,32), where 24 is the row (bottom
row) on the screen where the character will be printed. 1 is the col
umn number (far left), where the first character will be printed. 94
is the ASCII character code for the symbol *. And 32 is the number
of times the symbol is to be printed horizontally in the 24th row.
The resulting picture, at this stage, looks like this,

••S «*%.A. Xs •>*•• <•"•» ••'•.*'•*•••% ^S A .-S S^S-. S-. .-'s ^"%.»••./•». /••. .*"•.«>v.j\ /•% S\ S^ .•'%••'% S:v"%X%Xn .•*% ••••» .-X ••*>.•"•.X%.•'•• .•"•..••». S: .'•. .•"•..•'•. J": X-. /"•. X-w.•"•.

and provides the ground line.
Line 140 sets up a loop limited to 12 passes.
Line 150 decreases the value assigned to the numeric variable

WIDTH by 1 during each pass.
Line 160 increases the value assigned to the numeric variable REP
by 2 during each pass, because that variable controls the number
of times the character is REPeated on each row.

Line 170 increases the value assigned to the numeric variable
HEIGHT, which controls the row numbers on which the character
is printed.

Line 180 uses the CALL HCHAR statement again, this time with
different values in parentheses (HEIGHT,WIDTH,65,REP), where
HEIGHT controls the row number, WIDTH controls the column
numbers, 65 is the ASCII character code for the letter A, and REP
represents the number of As that are to be printed.

Line 190 completes the loop.
Line 200 starts another loop, also limited to 12 passes.
Line 210 increases the value assigned to the numeric variable

ROW by 1 during each pass, controlling the row numbers on
which the tree trunk is printed.

Line 220 uses CALL HCHAR along with (ROW,14,72,4), where
ROW is the row number, 14 is the starting column position, 72 is

Sprites and Other Graphics 283

the ASCII character code for the letter H, and 4 is the number of
times H is to be printed on each row.

Line 230 completes the second loop.
Line 240 makes sure the picture remains on the screen. To exit the
program, press FCTN 4 (CLEAR).

What we have learned is that CALL HCHAR can be used to place
a given character anywhere on the screen, repeating it horizontally
as often as we like. If the fourth value, the one controlling the
number of repetitions, is left out, only a single character will be
printed.

CALL VCHAR

The companion statement to CALL HCHAR is CALL VCHAR,
which is identical except that it produces vertical rather than
horizontal repetitions. The CALL VCHAR Demonstration Program
is another short program, one that uses both statements to produce
a picture of a box, as seen in Figure 11-2 on the following page.

THE CALL VCHAR DEMONSTRATION PROGRAM

This program creates a box.

100 CALL CLEAR

110 REM GRAPHIC BOX

120 CALL VCHAR(6,2,91,18)
130 CALL VCHAR(2,6,91,18) ,
140 CALL VCHAR(2,30,93,18)
150 CALL HCHAR(2,6,95,25)
160 CALL HCHAR(23,2,95,25)
170 CALL HCHAR(20,6,95,25)
180 R0W=23

190 C0L=2

200 FOR X=l TO 3

210 R0W=R0W-1

220 C0L=C0L+1

230 CALL HCHAR(ROW,COL,47)
240 NEXT X

250 R0W=6

260 C0L=2

270 FOR X=l TO 3

280 R0W=R0W-1

(continued)

284 The Last Whole TI-99/4A Book

290 C0L=C0L+1

300 CALL HCHAR(ROW, COL, 47)

310 NEXT X

320 R0W=24

330 C0L=27

340 FOR X=l TO 3

350 R0W=R0W-1

360 C0L=C0L+1

370 CALL HCHAR(ROW COL, 47)

380 NEXT X

390 GOTO 390

Lines 120-140 place three vertical lines into display, each con
sisting of 18 symbols, using left and right brackets (ASCII
character codes 91 and 93), with the position of the first of the 18
characters determined by the first (row) and second (column)
numbers-

Figure 11-2. The display of the box.

Sprites and Other Graphics 285

Lines 150-170 place three horizontal lines into display, using
underlines (ASCII character code 95).

Lines 180 and 190, 250 and 260, and 320 and 330 assign
values to the numeric variables ROW and COL.

Lines 200-240, 270-310, and 340-380 represent three loops
where the values of the numeric variables are increased and
decreased in order to cause diagonal lines to be displayed, using
slashes (ASCII character code 47) in three different places. Here
the number controlling repetitions was left out because only one
character is to be printed during each pass through the loop. The
finished box is shown in Figure 11-2.

CALL CHAR

So far we have contented ourselves with using characters that
can be identified by the ASCII character codes numbered from 30
through 95 (see Appendix I). More often than not, however, we're
likely to want to use characters of our own design. That, too, is
possible, and the statement to use is CALL CHAR. But now we're
getting into some further complications. Each character is the size
of the average capital letter, and each character consists of a total of
64 dots. Figure 6-1 shows what such a box looks like. Now, each lit
tle square can be turned on or off. If all our turned on, you get a
black (or colored) square. If all are turned off, you get nothing. The
method for determining which squares we want to turn on and
which are to be left off requires cutting the block in half, producing
two vertical rectangles consisting of 32 squares each (see Figure
6-2). The ON/OFF positions for each square are determined by a
total of 16 hexadecimal numbers, with each individual number
determining the condition of four horizonally arranged squares.
Figure 6-3 illustrates which numbers (and letters, since the hex
adecimal system uses letters for values from 9 to 16) produce what
results.

The CALL CHAR Demonstration Program #1 produces a
number of different symbols and will serve as a good way to il
lustrate how this statement works.

286 The Last Whole TI-99/4A Book

CALL CHAR DEMONSTRATION PROGRAM #1

This program produces 10 different shapes.

100 CALL CLEAR

110 REM CHARACTER SHAPES

120 A*="FFFFFFFFFFFFFFFF"

130 B*="3C7EFFFFFFFF7E3C"

140 C*="000000FFFF000000"

150 D$="2828282828282828"

160 E*="0000001100000000"

170 F$="FF80018001800IFF"

180 G*="FF000000000000FF"

190 H*="1818FFBD3C3C2424"

200 J*="0O8OC0E0F0F8FCFE"

210 K$="FCF8F0E0C0800000"

220 CALL CHAR(96,A*)
230 CALL HCHAR(2,10,96,10)
240 CALL CHAR(97,B*)
250 CALL HCHAR<4,10,97,10)
260 CALL CHAR(98,C*)
270 CALL HCHAR(6,10,98,10)
280 CALL CHAR(99,D$)
290 CALL HCHAR(8,10,99,10)
300 CALL CHAR(100,E$)
310 CALL HCHAR(10,10,100,10)
320 CALL CHAR(101,F$)
330 CALL HCHAR(12,10,101,10)
340 CALL CHAR(102,8$)
350 CALL HCHAR(14,10,102,10)
360 CALL CHAR(103,H*)
370 CALL HCHAR(16,10,103,10)
380 CALL CHAR(104,J$)
390 CALL HCHAR(18,10,104,10)
400 CALL CHAR(105,K$)
410 CALL HCHAR(20,10,105,10)
420 SOTO 420

Lines 120 through 210 assign different patterns to string
variables.

A$ produces a solid square.
B$ produces a solid ball.
C$ produces a narrow horizontal line.
D$ produces vertical bars.
E$ produces short horizontal dashes.

Sprites and Other Graphics 287

F$ produces an empty square.
G$ produces two narrow horizontal lines.
H$ produces a little man.
J$ produces a right triangle facing up.
K$ produces a right triangle facing down.

Lines 220, 240, 260, etc., assign an identification number to a
character (96-105) and use the string variable to determine the
shape of that character.

Lines 230, 250, 270, etc., cause the characters to be printed on
rows 2, 4, 6, etc., starting at column 10 and repeating each
character 10 times.

I wrote the program in the form described in order to give the
clearest possible picture. In practice it could be shortened, and you
could save a fair amount of typing (and reduce the chance of mak
ing typing errors) by using CALL CHAR Demonstration Program
#2 which produces the result shown in Figure 11-3 found on the next
page.

CALL CHAR DEMONSTRATION PROGRAM #2

The shape program, simplified.

100 CALL CLEAR

110 REM CHARACTER SHAPES

120 A*="FFFFFFFFFFFFFFFF'

130 B*="3C7EFFFFFFFF7E3C

140 C*="000000FFFF000000'

150 D*="2828282828282828'

160 E$="0000001100000000'

170 F*="FF80018001800IFF'

ISO G*="FF000000000000FF'

190 H$="1818FFBD3C3C2424'

200 J$="0080C0E0F0F8FCFE'

210 K*="FCF8F0E0C0800000'

220 CALL CHAR(96,A$)

230 CALL CHAR(97,B*)
240 CALL CHAR(98,C*)
250 CALL CHAR(99,D*>
260 CALL CHAR(100,E$)
270 CALL CHAR(101,F*>
280 CALL CHAR(102,6$)
290 CALL CHAR(103,H*) (continued)

288 The Last Whole TI-99/4A Book

300 CALL CHAR<104,J$)
310 CALL CHAR(105,K$)

320 R0W=2

330 IDENT=96

340 FOR X=l TO 9

350 R0W=R0W+2

360 IDENT=IDENT+1

370 CALL HCHAR(ROW,10,IDENT,10)

380 NEXT X

390 GOTO 390

Figure 11-3. The display produced by Figure 11-5 or Figure 11-6.

CALL COLOR AND CALL SCREEN

So far we have dealt with characters and character shapes, but
have ignored colors. There are two subprograms that deal with col
ors, CALL COLOR and CALL SCREEN, where the first controls the
colors of the characters, and the latter the color of the screen as a

Sprites and Other Graphics 289

whole. Different color monitors react differently, and you may have
to do a bit of experimenting, but as a general rule, the following
numbers produce these colors:

1 transparent 2 black 3 medium green
4 light green 5 dark blue 6 light blue
7 dark red 8 cyan 9 medium red

10 light red 11 dark yellow 12 light yellow
13 dark green 14 magenta 15 gray
16 white

Before we go on, there are a few items that need to be
understood. You can specify a foreground color and a background
color for each character. The background color has nothing to do
with the screen color. It is simply the color of the square on which
the character is printed. When no color command is given, the
character is printed in black and the background color is
transparent, causing the screen color to surround the character, as
we saw when we ran the previous program. In addition, the CALL
COLOR statement requires us to identify the character set that mat
ches the character code we used. The character sets are identified
by 15 numbers, all except one representing a group of eight ASCII
character codes:

Set No. ASCII Code Set No. ASCII Code

0 30-31 1 32-39

2 40-47 3 48-55

4 56-63 5 64-71

6 72-79 7 80-87

8 88-95 9 96-103

10 104-111 11 112-119

12 120-127 13 128-135

14 136-143

In the previous program we used character codes 96-105, which
fall into character sets 9 and 10. The convention is

100 CALL COLOR (9,7,1)

which produces dark red characters on a transparent background.

290 The Last Whole TI-99/4A Book

The statement controlling the screen color is

100 CALL SCREEN (number)

where the number is one of the 16 color numbers.

Now, in order to demonstrate, let's add some color instructions

to our previous program. The new version called Color CALL CHAR
Program displays all possible color combinations, one after another.
It first asks you to key in the speed at which you want the program
to run, because even at a very fast speed, using a low number such
as 2 or 3, the program takes more than 3 minutes to go through all
the steps. It first shows all possible colors for the character shapes,
using transparent as the background color; then it goes through all
screen colors in combination with all character colors; finally, it
goes through all background colors in combination with all
foreground colors and all screen colors. Occasionally the images
briefly disappear from the screen, because the color is either
transparent or identical to the screen color.

COLOR CALL CHAR PROGRAM

Here we have added color instructions to the program.

100 CALL CLEAR

110 REM CHARACTER SHAPES

120 INPUT "SPEED? ":SPEED

130 B6=l

140 CALL CLEAR

150 A*="FFFFFFFFFFFFFFFF"

160 B*="3C7EFFFFFFFF7E3C"

170 C*="000000FFFF000000"

ISO D$="2828282828282828"

170 E*="0000001100000000"

200 F*="FF80018001800IFF"

210 G*="FF000000000000FF"

220 H*="1818FFBD3C3C2424"

230 J*="0080C0E0F0F8FCFE"

240 K*="FCF8F0E0C0800000"

250 CALL CHAR(96,A*)

260 CALL CHAR(97,B$)
270 CALL CHAR(98,C$)

280 CALL CHAR(99,D*)

(continued)

Sprites and Other Graphics 291

290 CALL CHAR(100,E$)

300 CALL CHAR(101,F$)
310 CALL CHAR(102,G$)
320 CALL CHAR(103,H$)
330 CALL CHAR(104,J$)

340 CALL CHAR(105,K*>
350 GOSUB 440

360 R0W=2

370 IDENT=96

380 FOR X=l TO 9

390 R0W=R0W+2

400 IDENT=IDENT+1

410 CALL HCHAR(ROW,10,IDENT,10)
420 NEXT X

430 RETURN

440 FOR FG=1 TO 14
450 CALL C0L0R(9,FG,BG)
460 CALL COLOR(10,FG,BG)
470 GOSUB 360

480 FOR PAUSE=1 TO SPEED :: NEXT PAUSE

490 NEXT FG

500 FIELD=FIELD+1

510 IF FIELDM4 THEN 550

520 CALL SCREEN(FIELD)

530 FOR PAUSE=1 TO SPEED :: NEXT PAUSE

540 GOTO 350

550 BG=BG+1

560 IF BG>14 THEN 580

570 GOTO 350

580 END

Line 120 asks you to key in the speed at which you want the pro
gram to run. Five is a good number if you're in a hurry. If you want
time to study the different color combinations, a number between
100 and 500 will be better.

Line 130 assigns a value of 1 (transparent) to the numeric variable
BG, which controls the background color.

Lines 150-430 are the same as discussed in the previous version
of the program.

Line 440 raises the value assigned to the numeric variable FG by 1
during each pass, controlling the foreground colors.

Lines 450 and 460 control the colors, where 9 and 10 represent
the two character code sets used in conjunction with the CALL
CHAR statements. FG controls the foreground colors and BG con
trols the background colors.

292 The Last Whole TI-99/4A Book

Line 470 sends the computer to the subroutine (lines 360-430)
that causes the characters to be displayed on the screen.

Lines 480 and 530 control the speed at which the program runs.
Line 490 completes the foreground color loop.
Line 500 increases the value assigned to the numeric variable

FIELD by 1 during each pass, controlling the screen colors.
Line 510 checks whether all 16 colors have been used, in which
case the computer is sent to line 550.

Line 520 assigns the value of FIELDto the screen, changing its col
or during each pass.

Line 540 sends the computer to line 350 to cause all foreground
colors to be displayed with each screen color.

Line 550 raises the value assigned to the numeric variable BG by 1
during each pass, controlling the background colors.

Line 560 checks whether all background colors have been used, in
which case the computer is sent to line 580, the END line.

Line 570 sends the computer to line 350 to go through all
foreground colors and all screen colors in combination with each
background color once more.

Line 580 is the END line.

So far we have created various character shapes and placed
them into certain places on the screen. Now let's go one step further
and move them around. The Moving Object Program takes a black
square and moves it from the upper left-hand corner of the screen
diagonally down and toward the right. It then returns, leaving a
trail of black squares, until it gets back to where it came from, only
to start the process all over again.

THE MOVING OBJECT PROGRAM

This program moves an object around on the screen.

100 REM MOVING OBJECT

110 CALL CLEAR

120 A$="FFFFFFFFFFFFFFFF"

130 CALL CHAR<96,A*)
140 H=H+1

150 V=V+1

160 IF H=31 OR V=23 THEN 210

170 CALL HCHAR(V,H,96)

(continued)

180 FOR PAUSE=1 TO 50 :: NEXT PAUSE

190 CALL CLEAR

200 GOTO 140

210 H=H-1

220 V=V-1

230 CALL HCHAR(V,H,96)
240 IF H=l OR V=l THEN 140 ELSE 210

Sprites and Other Graphics 293

Line 120 defines the character shape and assigns it to the string
variable A$.

Line 130 assigns number 96 to the character shape.
Lines 140 and 150 increase the values assigned to the numeric
variables H and V by 1 during each pass, where H controls the col
umn number and V represents the row number.

Line 160 is used to limit the distance of travel.
Line 170 displays character 96 in row V and column H.
Line 180 controls the speed of travel.
Line 190 clears the previous position of the character before
displaying it in the next position.

Line 200 causes the action to be repeated by sending the computer
back to line 140.

Lines 210 and 220 reduce the values assigned to the two numeric
variables by 1 during each pass.

Line 230 is identical to line 170.

Line 240 limits the travel to the starting position.

As this little program demonstrates, by controlling the values
assigned to the variables that represent the row and column
numbers, we can create a degree of motion.

THE RANDOM MOVING OBJECT PROGRAM

This version of the program gradually fills the screen with squares ofconstantlychanging
colors.

100 REM MOVING OBJECT

110 CALL CLEAR

120 A*="FFFFFFFFFFFFFFFF"
130 CALL CHAR<96,A*)
140 RANDOMIZE :: H=INT(RND*32)+1
130 RANDOMIZE :: V=INT<RND*24>+1
160 RANDOMIZE :: SC=INT(RND*16)+1

(continued)

294 The Last Whole TI-99/4A Book

170 RANDOMIZE :: FG=INT<RND*16>+.

180 CALL SCREEN<SO

190 CALL C0L0R(9,F6,1)
200 CALL HCHAR(V,H,96)
210 FOR PAUSE=1 TO 50 :: NEXT PAUSE

220 GOTO 140

The Random Moving Object Program is another example of mo
tion. Here the row and column numbers as well as the screen and

character colors are created at random, causing the screen to fill
gradually with squares of constantly changing colors while the
screen color also changes all the time.

Lines 100-130 are the same as before.

Lines 140-170 produces the random numbers for columns (H),
for rows (V), for the screen color (SC), and for the character
foreground color (FG).

Lines 180 and 190 use subroutines to produce the desired screen
and character colors.

Line 200 displays the character in constantly changing positions
and colors.

Line 210 controls the speed with which characters are displayed.
Line 220 returns the computer to line 140 to produce a new set of
random numbers and start all over again. To stop the program,
press FCTN 4 (CLEAR).

Sometimes we want to create images that are larger than a
single character. Such, images must consist of several characters
placed next to one another in order to produce the larger image. For
instance, let's assume that we want to create a large ball, say, four
times the size of the average character. What we have to do is create
four characters, where each represents a quarter of the ball, and
then place them next to one another. The Shape Demonstration'
Program does just that.

Sprites and Other Graphics 295

THE SHAPE DEMONSTRATION PROGRAM

This program creates a ball made up of four separate shapes.

100 CALL CLEAR

110 BALL1$="030F1F3F7F7FFFFF"

120 BALL2$="C0F0F8FCFEFEFFFF"

130 BALL3$="FFFF7F7F3F1FCF03"

140 BALL4*="FFFFFEFEFCF8F0C0"

150 CALL VCHAR(12,16,96)
160 CALL VCHARU2, 17,97)
170 CALL VCHAR(13,16,98)
180 CALL VCHAR(13,17,99)
190 CALL CHAR(96,BALL1$)
200 CALL CHAR(97,BALL2*)
210 CALL CHAR(98,BALL3$)
220 CALL CHAR(99,BALL4$)
230 GOTO 230

Lines 110-140 assign the character shapes for the four quarters of
the ball to the four string variables.

Lines 150-180 determine the positions of the four portions on ad-
jacant column and row numbers.

Lines 190-220 assign four character codes (96,97,98,99) to the
four portions and use the string variables to define the character
shapes.

Line 230 keeps the ball in display until you press FCTN 4
(CLEAR).

With this method you can produce images of any size and
shape, though the process tends to be tedious. Still, by combining
this capability with varying colors and possibly motion, you can
create all manner of interesting imagery.

CALL SPRITE

Up to now we have concerned ourselves with what is described
as low-resolution graphics. This type of graphic capability is
available with TI BASIC as well as TI EXTENDED BASIC. In addi

tion, ifTI EXTENDED BASIC is available, your computer is capable
of high-resolution graphics. The subprogram used for this purpose

296 The Last Whole TI-99/4A Book

is CALL SPRITE, and associated with it are a number of additional
subprograms that perform a considerable variety of interesting
functions.

A sprite is simply a fancy name for a character shape. A sprite
can be any one of the ASCII characters, or it can be any shape that
you have created, using the previously discussed CALL CHAR
statement. Let's start with a simple program that illustrates
creating a sprite representing one of the ASCII characters (SPRITE
Demonstration Program #1). As you can see, the program actually
consists of only one line (line 120), which creates a sprite represen
ting the ASCII character 38, the ampersand. The numbers in paren
theses (#1,38,2,96,128) represent the following: #1 is the sprite
number. You can have a great many sprites on the screen at one
time, but each one must be given its own number. The second
number (38) is the ASCII character code. The third number (2) is
the color number, black in this example. The fourth number (96) is
referred to as the dot-row number. Previously we dealt with only 24
row numbers and 32 column numbers. But when we're using
sprites we are dealing with 192 rows, each of which represents one
dot width, and 256 columns of single-dot width. Thus, the program
places an ampersand on row 96 and column 128, which is more or
less screen center. The last line simply keeps it in display until you
press FCTN 4 (CLEAR).

-SPRITE .DEMONSTRATION PROGRAM #1 - ,•

This program creates a sprite in the shape of an ampersand.

100 REM SPRITE 1

110 CALL CLEAR

120 CALL SPRITE(#1,38,2,96,128)
130 GOTO 130

If you want to create your own character shapes, you have to use
character code numbers between 32 to 143, but you can redefine
the codes that stand for ASCII characters. Let's now write another

miniprogram that defines the shape of the sprite to our own
specifications (SPRITE Demonstration Program #2.)

Sprites and Other Graphics 297

SPRITE DEMONSTRATION PROGRAM #2

Here we create a sprite in the shape of a little square man.

100 REM SPRITE 2

110 CALL CLEAR

120 H$="1818FFBD3C3C2424"

130 CALL CHAR(96,H$)
140 CALL SPRITE(#1,96,7,96,124)
150 GOTO 150

Line 120 creates the shape of the little man that we used in one of
the earlier programs, assigning the code to the string variable H$.

Line 130 assigns that shape to a character number (96).
Line 140 produces sprite #1, shape 96, color 7, at dot row 96 and
dot column 124.

Line 150 keeps the sprite in display.

CALL MAGNIFY

Now that we have figured out how to create a sprite, let's go one
step further. So far we have dealt with characters that are the size of
an ordinary capital letter or, in cases where we designed our own
characters, possibly even smaller. When we're dealing with sprites,
there is another subprogram available to us to increase the size of
those characters by doubling, tripling, or quadrupling their dimen
sions. The statement used for that purpose is CALL MAGNIFY
(number), where the number can be 1, 2, 3, or 4. Figure 11-14
SPRITE Demonstration Program #3 represents an addition to our
short program that illustrates how that works.

SPRITE DEMONSTRATION PROGRAM #3

Now we use MAGNIFY to double the size of the sprite.

100 REM SPRITE 3

110 CALL CLEAR

120 H*="1818FFBD3C3C2424"

130 CALL CHAR(96,H$)
140 CALL SPRITE(#1,96,7,96,124)
150 FOR PAUSE=1 TO 50 :: NEXT PAUSE

160 CALL MAGNIFY(2)

170 GOTO 170

298 The Last Whole TI-99/4A Book

Lines 100-140 are the same as before.

Line 150 creates a short pause while the sprite is displayed at its
original size.

Line 160 uses the magnification statement to cause the sprite to
double in size.

Line 170 holds it in display.

CALL MOTION

Before, when we wanted to move our character on the screen,
we had to achieve motion by specifying ascending or descending
row and column numbers, creating some rather jerky movement.
With sprites we have a special subprogram at our disposal, CALL
MOTION, which creates very smooth movement in any desired
direction. The statement is used in conjunction with three values in
parentheses:

100 CALL MOTION (#1,A,B)

where #1 is the identification of the sprite that is to be moved. A and
B are numeric variables, representing the speed at which the sprite
is to move in a given direction. The first of the two (A) is the row
velocity, the speed at which the sprite moves either up or down.
The available values for these variables are from —128 to +127.

Negative numbers cause the sprite to move up, whereas positive
values move it down. Zero produces no movement. The greater the
number on either side of zero, the greater the speed of movement.
The second of the two variables (B) controls column velocity, the
speed at which the sprite moves from one side to the other. The
available numbers are the same; and negative numbers move it to
the left, whereas positive numbers move it to the right.

SPRITE Demonstration Program #4 is the same program we
discussed before with some added lines that cause the sprite to
jump across the screen in huge leaps. After a while the leaps get
shorter and shorter. The sprite then reverses direction and con
tinues with increasing vigor.

Sprites and Other Graphics 299

SPRITE DEMONSTRATION PROGRAM #4

Here we use MOTION to make our sprite move.

100 REM SPRITE4

110 CALL CLEAR

120 H$="1S18FFBD3C3C2424"

130 CALL CHAR(96,H$)

140 CALL SPRITE(#1,96,7,96,124)
150 FOR PAUSE=1 TO 50 :: NEXT PAUSE
160 CALL MAGNIFY(2)
170 FOR X=-50 TO 50

ISO FOR Y=-20 TO 20

190 CALL MOTION(#1,Y,X)
200 NEXT Y

210 NEXT X

220 GOTO 140

Lines 100-160 are unchanged from the previous program.
Lines 170 and 180 set up two loops that assign ascending
numbers to the numeric variables X and Y, where X stands for
horizontal motion and Y for vertical motion.

Line 190 tells sprite #1 to move in accordance with the values of
the two variables.

Lines 200 and 210 close the loops.
Line 220 returns the computer to line 140 for another run through
the program.

As you must have gathered by now, a combination of row and
column velocities produces movement at any desired angle and at
any speed you like. To simplify experimentation, SPRITE
Demonstration Program #5 lists a program you can use to practice
the CALL MOTION statement.

SPRITE DEMONSTRATION PROGRAM #5

This program can be used to practice the use of MOTION.

100 REM SPRITE 5

110 CALL CLEAR

120 INPUT "ROW VELOCITY? ": Y

130 INPUT "COL VELOCITY? "sX

140 CALL CLEAR (continued)

300 The Last Whole TI-99/4A Book

150 H*="1818FFBD3C3C2424"

160 CALL CHAR(96,H*)
170 CALL SPRITE(#1,96,7,96,124)
180 FOR PAUSE=1 TO 50 :: NEXT PAUSE

190 CALL MAGNIFY(2)

200 CALL M0TI0N(#1,Y,X)
210 GOTO 120

Lines 120 and 130 ask you to key in the two velocity values for
row and column velocities.

Lines 140-190 are the same as in the previous program.
Line 200 causes the desired motion.

Line 210 returns you to line 120 to permit you to enter different
velocity values. While the two INPUT lines appear on the screen,
the sprite continues to move in the established direction until you
key in new values and press > ENTER <, at which point the sprite
changes to the new direction and speed.

If you're designing some kind of motion program in which the
direction and speed of one or several sprites is important, you can
use this program to determine the criteria that will produce the ef
fect you want.

CALL DELSPRITE

A sprite remains on the screen, either still or in motion, until the
program is terminated, or until we use yet another subprogram,
CALL DELSPRITE, which erases the sprite from the screen., It is
used in conjunction with the sprite number(s) in parentheses as
shown in SPRITE Demonstration Program #6. This program works
like the previous one except that the sprite disappears intermittently
for about a half a second as a result of lines 220-240.

SPRITE DEMONSTRATION PROGRAM #6

DELSPRITE deletes the sprite from the display.

100 REM SPRITE 6

110 CALL CLEAR

120 H*="1818FFBD3C3C2424,,

130 CALL CHAR (96, H«> (continued)

140 CALL SPRITE(#1,96,7,96,124)
150 FOR PAUSE=1 TO 50 :: NEXT PAUSE

160 CALL MAGNIFY(2)

170 FOR X=-6 TO 6

180 FOR Y=-10 TO 10

190 CALL MOTION(#1,Y,X)
200 NEXT Y

210 NEXT X

220 CALL DELSPRITE(#1)

230 FOR PAUSE=1 TO 300

240 NEXT PAUSE

250 GOTO 140

Sprites and Other Graphics 301

CALL PATTERN

You can change the shape of a sprite by using the subprogram
CALL PATTERN in conjunction with the number of the sprite to be
changed and a new character code number.

The SPRITE Demonstration Program #7 illustrates. Line 170
changes the shape of the sprite from our little man to an
ampersand.

•SPRITE<DEMONSTRATION PROGRAM #7 ,

PATTERN changes the shape of our sprite.

100 REM SPRITE 7

110 CALL CLEAR

120 H*="1818FFBD3C3C2424"

130 CALL CHAR(96,H*)
140 CALL SPRITE(#1,96,7,96,124)
150 CALL MAGNIFY(2)

160 FOR PAUSE=1 TO 500 :: NEXT PAUSE

170 PALL PATTERN(#1,38)
180 FOR PAUSE=1 TO 500 :: NEXT PAUSE

190 GOTO 120

When you run the program, the shape of the sprite changes at
about 2-second intervals until you stop the program.

302 The Last Whole TI-99/4A Book

CALL LOCATE

If you want to move a sprite to another location, use the CALL
LOCATE subprogram in conjunction with the sprite number and
the dot row and dot column numbers to which you want to move it,
as illustrated in SPRITE Demonstration Program #8. Here the only
line that was changed from the previous program is line 170, which
moves the sprite to a new location. When you run the program, the
sprite jumps back and forth at roughly 2-second intervals.

SPRITE DEMONSTRATION PROGRAM #8

LOCATE relocates our sprite.

100 REM SPRITE 8

110 CALL CLEAR

120 H$="1818FFBD3C3C2424"

130 CALL CHAR(96,H*)

140 CALL SPRITE(#1,96,7,96,124)
150 CALL MAGNIFY(2)

160 FOR PAUSE=1 TO 500 :: NEXT PAUSE

170 CALL LOCATE(#1,50,50)
180 FOR PAUSE=1 TO 500 :: NEXT PAUSE

190 GOTO 120

CALL COLOR and SPRITES

When dealing with sprites, you can change the color of any of
the sprites by using the CALL COLOR statement in conjunction
with the sprite identification number and just one number for the
desired change in color (sprites have no background color), as
demonstrated in SPRITE Demonstration Program #9. Here line 170
has been changed to increase the value of the numeric variable C
progressively to 16 and then return it to 1, and in line 180 the color
of the sprite is changed in accordance with the value assigned to
that numeric variable.

Sprites and Other Graphics 303

SPRITE DEMONSTRATION PROGRAM #9

COLOR changes the color of our sprite.

100 REM SPRITE 9

110 CALL CLEAR

120 H*="1818FFBD3C3C2424"

130 CALL CHAR(96,H$)
140 CALL SPRITE(#1.,96,7,96,124)
150 CALL MAGNIFY(2)

160 FOR PAUSE=1 TO 500 s: NEXT PAUSE

170 C=C+1 :: IF C>16 THEN C=l

180 CALL COLOR(ttl,C)
190 FOR PAUSE=1 TO 500 :: NEXT PAUSE

200 GOTO 120

CALL DISTANCE

You can determine the distance of a sprite from another sprite,
or from a given row/column position, by using the CALL
DISTANCE subprogram. In the first case you use the statement in
conjunction with two sprite numbers and a numeric variable in
parentheses. In the second case you use it with one sprite number, a
dot row and dot column position coordinate, and a
numeric variable, also in parentheses. The distance is then assigned
to the numeric variable. The figure that results is actually the
square of the true distance. Thus, before causing it to be displayed,
the square root should be calculated, using the SQR statement.
SPRITE DemonstrationNProgram #10 demonstrates this function.

Line 150 creates a second sprite and places it in a different position
(dot row 50, dot column 50).

Line 170 uses the statement that produces the distance squared.
Line 180 takes the square root of that figure and then causes the
result to be displayed. In this case the resulting figure is
87.13208364, representing 87 dot width. Since the decimals are of
no practical use, we might want to add a line that reduces the
figure to its integer.

304 The Last Whole TI-99/4A Book

SPRITE "DEMONSTRATION 'PROGRAM *#1&*

This program displays the distance between two sprites.

100 REM SPRITE 10

110 CALL CLEAR

120 H$="1818FFBD3C3C2424"

130 CALL CHAR(96,H*)
140 CALL SPRITE(#1,96,7,96,124)
150 CALL SPRITE(#2,96,7,50,50)
160 CALL MAGNIFY(2)

170 CALL DISTANCE(#1,#2,D)
180 D=SQR(D):: PRINT D

190 60T0 190

If you want a certain action to take place when a sprite has
reached a given distance position, you can then use:

100 IF D= X THEN action or line number (ELSE. . .)

instead of using the PRINT statement to have the number printed.

CALL COINC

When we design programs that use several sprites in motion, we
may want to achieve a certain action if and when they collide. The
subprogram for that purpose is CALL COINC (for coincide or coinci
dent). The program detects the collision of two sprites or the arrival
of a sprite at a given dot row/dot column position. The statement is
used in conjunction with any of three subscripts in parentheses:

(sprite #, sprite #, tolerance, numeric variable)

(sprite #,dot—row,dot column, tolerance, numeric

variable)

(ALL,numeric variable)

Sprites and Other Graphics 305

where the first determines the coincidence between two sprites.
The tolerance value must be given and refers to the distance be
tween the (nearly) colliding sprites in terms of dot width. The
second performs the identical function with reference to a given
sprite and a dot/column position on the screen. The third is used
when you want the statement to apply to all sprites. In that case no
tolerance figure is used. SPRITE Demonstration Program #11
demonstrates this function.

SPRITE- DEMONSTRATION PROGRAM '#11

COINC detects an impending collision.

100 REM SPRITE 11

110 CALL CLEAR

120 H$="1818FFBD3C3C2424"

130 CALL CHAR(96,H$)
140 CALL SPRITE(#1,96,7,96,124)
150 CALL SPRITE(#2,96,7,50,75)
160 CALL MAGNIFY(2)

170 CALL MOTION(#1,-1,-1)
180 CALL COINC(#1,#2,20,A)
190 PRINT A

200 CALL COINC(ALL,B)
210 PRINT B

220 GOTO 180

Line 170 commands sprite #1 to move slowly toward sprite #2.
Line 180 calls for a coincidence to be detected when the upper left-
hand corner of sprite #1 is within 20 dot widths of the upper left-
hand corner of sprite #2, assigning zero to the numeric variable A
when they are far enough apart, and assigning —1 to that variable
when the two are within the tolerance.

Line 190 continuously prints the value of A (0 or —1).
Line 200 uses the statement in the third variation, requiring no
tolerance, assigning the results to the numeric variable B.

Line 210 prints the results.
Line 220 sends the computer back to line 180 to make sure that
the CALL COINC statement is executed for each move of the
sprite.

306 The Last Whole TI-99/4A Book

As before, if you want a certain action to take place when two
sprites collide or are about to collide, such as have one disappear or
change coloror direction, then, instead ofhaving the values produced
by the numeric variables printed, you can use the IF. .THEN. .
ELSE statement to trigger such action.

Playing with sprites can be a very enjoyable pastime. You can
devise your own computer games, combining the graphics func
tions with music and voice. In Chapter 121 have included an exam
ple of the use of such multiple functions.

12

Programs Strictly
for Fun

In this chapter we'll write a number of programs designed with
no more serious purpose than to offer a bit of fun or to be used in the
pursuit of a hobby. Some of the game programs can be played by
more than one person, and others are intended as solo
entertainment.

A DICE GAME

We'll start with a dice game. I have included two versions of the
game, one requiring the voice synthesizer, the other a silent
version.

Before we start, here are the rules of the game: Two dice are
used. On the first throw, if you throw a 2 or a 12, you lose your bet
but retain the dice. If you throw a 7 or 11, you win. If you throw any
other number, that number becomes the "point" that you'll try to
match during subsequent throws of the dice. If you make your
point, you win. If you throw a 7, you lose your bet and the dice go to
the next player.

Let's look first at the program called The Talking Dice Game.
When it is activated it displays its title, and after a brief pause the
voice says:

'To start, press enter"

307

308 The Last Whole TI-99/4A Book

TALKING DICE GAME

This program uses the speech synthesizer to simulate a dice game.

100 GOTO 130

110 PRINT "

120 FOR X=l TO 10 :: PRINT :: NEXT X
130 REM A DICE GAME WITH VOICE

140 REM TI EXTENDED BASIC

150 CALL CLEAR :: GOSUB 110
160 PRINT "This program simulates a"
170 PRINT "dice game played with" ::
180 PRINT "two dice." :: GOSUB 110 :

190 CALL SAY("TO START PRESS ENTER")

200 INPUT ENTER*

210 RANDOMIZE :: PLAY=INT(RND*12)+1

220 IF PLAY=2 THEN PLAY*="TWO"

230 IF PLAY=3 THEN PLAY*="THREE"

240 IF PLAY=4 THEN PLAY*="FOUR"

250 IF PLAY=5 THEN PLAY*="FIVE"

260 IF PLAY=6 THEN PLAY$="SIX"

270 IF PLAY=7 THEN PLAY*="SEVEN"

280 IF PLAY=8 THEN PLAY*="EIGHT"

290 IF PLAY=9 THEN PLAY*="NINE"

300 IF PLAY=10 THEN PLAY*="TEN"

310 IF PLAY=11 THEN PLAY*="ELEVEN"

320 IF PLAY=12 THEN PLAY*="TWELVE"

330 IF XX*="ROUND" THEN 520

340 POINT=PLAY :: POINT*=PLAY*

350 CALL SAY("YOU MADE"):: CALL SAY(PLAY*)

360 IF XX*="ROUND" THEN 390

370 IF PLAY=2 OR PLAY=12 THEN 400

380 IF PLAY=7 OR PLAY=11 THEN 430

390 IF PLAY>2 AND PLAY<7 OR PLAY>7 AND PLAY<11 THEN 460
400 CALL SAY("NO GOOD,,TRY AGAIN,,PRESS ENTER")
410 GOSUB 640

420 INPUT ENTER* :: IF ENTER*="Q" THEN 630 ELSE 210

430 CALL SAY("YOU WON,,TO GO ON PRESS ENTER")
440 GOSUB 640

450 INPUT ENTER* :: IF ENTER*="Q" THEN 630 ELSE 210

460 CALL SAY("THE POINT IS"):: CALL SAY(PLAY*)

470 CALL SAY("PRESS ENTER")

480 PRINT "The point is ";PLAY :: GOSUB 110 :: GOSUB 120
490 XX*="ROUND"

500 GOSUB 640

510 INPUT ENTER* :: IF ENTER*="Q" THEN 630 ELSE 210

520 CALL CLEAR

530 CALL SAY("THE POINT IS"):: CALL SAY(POINT*)

540 PRINT "The point is ";POINT :: GOSUB 110 :: GOSUB 120
550 CALL SAY("YOU MADE"):: CALL SAY(PLAY*)

560 IF PLAY=POINT THEN 620

(continued)

:: RETURN

RETURN

:: PRINT

PRINT

GOSUB 120

IF PLAY=1 THEN 210

Programs Strictly for Fun 309

570 IF PLAY07 THEN 580 ELSE 610

580 CALL SAY("TO GO ON,,PRESS ENTER")
590 GOSUB 640

600 INPUT ENTER* :: IF ENTER*="Q" THEN 630 ELSE ,210
610 XX$="START" :: GOSUB 110 :: PRINT TAB(5);"New shooter

" :: GOSUB 110 :: GOSUB 120 :: GOTO 400
620 XX*="START" :: GOTO 430

630 CALL CLEAR :: GOSUB 110

GOSUB 110 :: GOSUB 120 :
640 PRINT "To quit press Q"
650 RETURN

: PRINT TAB(12);"End.V ::
END

: PRINT :: PRINT

Pressing > ENTER < produces a random number between 2 and
12, which, at first, is not displayed. Instead the voice responds with
one of three announcements, depending on that number:

"You made (number), no good, try again, press enter"

or

"You made (number), no good, try again, press enter"

or

"You made (number), you won. To go on, press enter"

In the last instance the display shows:

/

The point is (number)

V.

310 The Last Whole TI-99/4A Book

This display will be repeated until you make your point or throw a
7. Also displayed, whenever the voice prompts you to press
> ENTER <, is:

r

To quit press Q

in order to give you the option to quit the game at any time. If you
lose your bet because you've thrown a 7 before making your point,
the display reminds you with:

"\

New shooter!

Programs Strictly for Fun 311

in addition to the audio announcement of your loss. It goes without
saying that you can play this game alone, or with others, but it's
more fun when several persons are involved and when bets are
placed.

Line by line:

Line 100 tells the computer to skip over two lines that contain two
subroutines.

Line 110 is the subroutine that places a dashed line into display.
Line 120 is the subroutine that centers copy on the screen.
Lines 130 and 140 are REMarks.
Lines 150-180 place the title of the program into display.
Line 190 tells the voice synthesizer what to say.
Line 200 places a question mark into the lower left-hand corner of
the screen and causes the speaker in the monitor to beep to remind
you to press > ENTER <.

Line 210 produces a random number and assigns it to the numeric
variable PLAY. It then checks that number and causes the com
puter to try again if the number is 1.

Lines 220-320assign strings representing 11numbers to the string
variable PLAY$, depending on the random number.

Line 330 examines the string assigned to the string variable XX$
, to determine whether or not this is the first throw. If it is not the

first throw, the computer is told to go to line 520.
Line 340 assigns the value of PLAY to the numeric variable POINT
and the string assigned to PLAY$ to the string variable POINT$.

Line 350 tells the voice synthesizer what to say.
Line 360 once more examines the string assigned to XX$, sending
the computer to line 390 if this is not the first throw.

Lines 370 and 380 are used if this is the first throw, examining
the value of PLAY and sending the computer to one of two line
numbers if you threw a 2, 12, 7, or 11, resulting in an immediate
win or loss. If any other number came up, the computer goes to the
next line.

Line 390 tells the computer to go to line 460 if a number larger
than 2 and smaller than 7 or larger than 7 and smaller than 11 was
thrown.

Line 400 tells the computer what to say if you have lost.
Line 410 uses the subroutine (lines 640 and 650) to display the
choice that permits you to quit.

312 The Last Whole TI-99/4A Book

Line 420 checks whether you pressed > ENTER < or Q and tells
the computer where to go next.

Line 430 tells the computer what to say if you've won.
Lines 440 and 450 are the same as lines 410 and 420.

Lines 460 and 470 tell the computer what to say if a point has
been made.

Line 480 causes the point to be displayed.
Line 490 assigns the string "ROUND" to the string variable XX$
to indicate that subsequent throws of the dice are not the first
throw.

Lines 500 and 510 are the same as lines 410 and 420.

Line 520 clears the screen.

Lines 530 and 540 tell the computer what to say and again
display the point that was made with the first throw.

Line 550 cause the computer to announce what your throw was.
Line 560 compares the point with your throw and sends the com
puter to line 620 if the two match.

Line 570 checks if your throw was a 7, sending the computer to
one of two line numbers.

Line 580 once more tells the computer what to say.
Lines 590 and 600 are the same as lines 410 and 420.

Line 610 assigns the string "START" to the string variable XX$ to
indicate that the next throw will be the first throw of a new player,
and it displays the reminder that the dice are to go to a new
shooter.

Line 620 also assigns "START" to XX$ and then sends the com
puter to line 430 to tell you that you won.

Line 630 is the END line, which is used if you press Q instead of
>ENTER<.

Lines 640 and 650 are the subroutine that permits you to quit the
game.

This version of the dice game was written in TI EXTENDED
BASIC. The Display Dice Game eliminates the voice feature and is
written in TI BASIC. Otherwise it performs in exactly the same
manner, displaying the announcements on the screen.

Programs Strictly for Fun 313

DISPLAY DICE GAME PROGRAM

The dice game program without the speech synthesizer.

100 REM A DICE GAME/TI99/4A

110 REM TI BASIC (NO VOICE)

120 CALL CLEAR

130 GOSUB 830

140 PRINT "This program simulates a"
150 PRINT "dice game played with": :
160 PRINT "two dice.": :

170 GOSUB 830

180 GOSUB 850

190 GOSUB 730

200 POINT$="The point is "
210 L0ST$="You lost. New shooter!"

220 MADES="You made "

230 CRAPS$="Craps, you lost."
240 W0N$="You won!"

250 CALL CLEAR

260 XX=XX+1

270 RANDOMIZE

280 PLAY=INT(RND*12)+1

290 IF PLAY=1 THEN 270

300 IF XX=1 THEN 310 ELSE 420

310 IF PLAY=7 THEN 530

320 IF PLAY=11 THEN 530

330 IF PLAY=2 THEN 660

340 IF PLAY=12 THEN 660

350 GOSUB 830

360 PRINT POINTS;PLAY
370 GOSUB 830

380 GOSUB 850

390 P0INT=PLAY

400 GOSUB 730

410 GOTO 250

420 GOSUB 830

430 PRINT POINT*;POINT
440 PRINT

450 PRINT MADE*;PLAY

460 GOSUB 830

470 GOSUB 850

480 IF P0INT=PLAY THEN 530

490 IF PLAY=7 THEN 600

500 IF XX=1 THEN 580 ELSE 510

510 GOSUB 730

520 GOTO 250

530 GOSUB 830

(continued)

314 The Last Whole TI-99/4A Book

540 PRINT PLAY;" " ;W0N*
550 XX=0

560 GOSUB 830

570 GOSUB 850

580 GOSUB 730

590 GOTO 250

600 GOSUB 830

610 PRINT LOST*: :

620 XX=0 .

630 GOSUB 830

640 GOSUB 730

650 GOTO 250

660 GOSUB 830

670 PRINT PLAY;" ";CRAPS*
680 XX=0

690 GOSUB 830

700 GOSUB 850

710 GOSUB 730

720 GOTO 250

730 PRINT

740 INPUT "Press >ENTER< or Q to quit ":E*

750 IF E*="Q" THEN1 770 ELSE 760

760 RETURN

770 CALL CLEAR

780 GOSUB 830

790 PRINT TAB(12); "End."

800 GOSUB 830

810 GOSUB 850

820 END
P^Tl PDTMT " — — H

840 RETURN

850 FOR X=l TO 10

860 PRINT

870 NEXT X

880 RETURN

Line by line:

Lines 100 and 110 are REMarks.

Line 120 clears the screen.

Lines 130-190 place the title of the program into display, using a
number of subroutines to make the display look reasonably
attractive.

Lines 200-240 assign a number of strings to string variables.
Lines 250-280 clear the screen, cause the value ofXX to be raised
by 1 each time the line is encountered, and then produce a random
number between 1 and 12.

Programs Strictly for Fun 315

Line 290 tells the computer to try again if the random number is 1.
Line 300 checks the value assigned to XX to determine if this is
the first throw.

Lines 310-340 determine whetheryou threw one of the winning
or losing numbers on the first throw.

Line 360 prints the string assigned to POINT$ and the value
assigned to PLAY.

Line 390 assigns the value of PLAY to the variable POINT.
Lines 430 and 450 display the strings assigned to POINT$ and

MADE and the values of POINT and PLAY.
Lines480and490checkifyoumadeyourpointorthrewa7,sending
the computer toone oftwolinenumbers ifthe answer to either ques
tion is affirmative.

Line 500 checks whether or not this is the first throw.
Lines 540 and 550 are used ifyou won, reassigning a value ofzero
to XX.

Lines 610 and 620 are used if you lost.
Lines 670 and 680 are used if you threw a 2 or a 12 on the first
throw.

Lines 740-760 represent the frequently used subroutine telling
you to press > ENTER < or Q.

Lines 770-820 are the END lines.
Lines 830 and 840 are the dashed-line subroutine.
Lines 850-880 are the subroutine that moves copy to the center of
the screen.

MODEL RAILROADING PROGRAM

The next program is ofan entirely different nature. It is designed
for those readers whose hobby is model railroading. Model
railroading, especially for those hobbyists who take pride in
faithfully reproducing real scenes to a specific scale, involves a
great number of calculations, some of which are rather difficult and
time-consuming to perform with pencil and paper. This Model
Railroad Program consists of a number of subprograms that take
care of these calculations, and one that transforms your computer
into a clock that keeps scale time. It can be used with any of the
seven popular gauges.

316 The Last Whole TI-99/4A Book

MODEL RAILROAD PROGRAM

This program is designed to assist model railroaders in their hobby.

100

no

120

130

140

150

160

170

ISO

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

REM MODEL RAILROADING

REM WRITTEN IN TI BASIC

GOSUB 2800

GOSUB 2780

PRINT "Programs -for model railroads"
GOSUB 2780

GOSUB 2820

GOSUB 2860

GOSUB 2800

PRINT "This is a collection o-f"

PRINT "programs that is designed"
PRINT

PRINT

PRINT

GOSUB 2780

GOSUB 2820

GOSUB

GOSUB

PRINT

GOSUB

PRINT

PRINT 2,"S"
PRINT 3,"00"
PRINT 4,"HO"
PRINT

PRINT

"to be used by model rail-"
"roaders using any of the"
"seven popular gauges."

2860

2800

"Select your gauge:"
2780

1, "0"

"TT"

"N"

PRINT 7,"Z"
GOSUB 2780

INPUT "Which? ":WHICH

ON WHICH GOSUB 410,430,450,470,490,510,530
GOTO 550

G=48

RETURN

G=64

RETURN

G=76.2

RETURN

G=87.1

RETURN

G=120

RETURN

G=160

RETURN

G=220

RETURN

GOSUB 2800

(continued)

Programs Strictly for Fun 317

560 PRINT ,"Menu:"

570 GOSUB 2780

580 PRINT 1;" Convert linear measures"
590 PRINT 2;" Convert MPH to FPM"
600 PRINT 3;" Convert to scale time"
610 PRINT 4:-" Scale-time clock"
620 PRINT 5;" Prototype speed=distance"
630 PRINT 6;" Distance=prototype speed"

Determine grade data"
Determine curve data"

Ohm's Law"

670 PRINT 10;" Check wire resistance"
680 GOSUB 2780

690 PRINT 11;" Exit the program"
700 GOSUB 2780

710 INPUT "Select one ":SELECT
720 GOSUB 2800

730 ON SELECT GOTO 740,960,1020,1330,1790,1910,200,2340,
2450,2720,2890

740 PRINT "Dp you want to convert:"
750 GOSUB 2780

760 PRINT 1;" Prototype to scale'"
770 PRINT " or"

780 PRINT 2;" Scale to prototype'"
790 GOSUB 2780

800 INPUT "Type 1 or 2 ":TYPE
810 GOSUB 2800

820 ON TYPE GOTO 830,910
830 INPUT "Prototype measure? ":FEET
840 FEET=FEET/G

850 FEET=INT(FEET*10+.5)/10
860 GOSUB 2780

870 PRINT "Scale measure= ";FEET
880 GOSUB 2780

890 GOSUB 2860

900 GOTO 550

910 INPUT "Scale measure? ":SCALE
920 SCALE=SCALE*G
930 GOSUB 2780

940 PRINT "Prototype measure= ":SCALE
950 GOTO 880

960 INPUT "Prototype MPH? ":MPH
970 GOSUB 2780

980 FPM=MPH*5280/G/60
990 FPM=INT(FPM*10+.5)/10
1000 PRINT "Feet per minute= ";FPM
1010 GOTO 880

1020 PRINT "Scale time by:"
1030 GOSUB 2780.
1040 PRINT 1;" Scale or"
1050 PRINT 2;" Percentage?"

640 PRINT 7;"
650 PRINT 8;"
660 PRINT 9s"

(continued)

318 The Last Whole TI-99/4A Book

1060 GOSUB 2780

1070 INPUT "Type 1 or 2 "".TYPE
1080 GOSUB 2800

1090 ON TYPE GOTO 1100,1220
1100 INPUT "Hours.minutes to convert? ":TIME

1110 TIME1=INT<TIME)

1120 TIME2=TIME-TIME1

1130 TIME3=TIME2/.6

1140 TIME=TIME1+TIME3

1150 TIME=TIME/G

1160 H0URS=INT<TIME)

1170 MINS=(TIME-HOURS)#.6*100

1180 GOSUB 2780

1190 MINS=INT(MINS*10+.5)/10

1200 PRINT "Scale time= ";H0URS;" hours and ";MINS;"
minutes"

1210 GOTO 880

1220 INPUT "Hours.minutes to convert? ":TIME
1230 INPUT "Conversion percentage? ":PER
1240 TIME1=INT(TIME)

1250 TIME2=TIME-TIME1

1260 TIME3=TIME2/.6

1270 TIME=TIME1+TIME3

1280 TIME=TIME*(PER/100)

1290 H0URS=INT(TIME)

1300 MINS=(TIME-H0UR"S)*.6*100

1310 GOSUB 2780

1320 GOTO 1200

1330 PRINT "The computer = a scale clock"
1340 GOSUB 2780

1350 INPUT "Timing speed (actual=100) "-.SPEED
1360 INPUT "Timing limit (hrs.mins) ":LIMIT
1370 LIMIT1=INT(LIMIT)

1380 LIMIT2=LIMIT-LIMIT.l

1390 GOSUB 2780

.1400 INPUT "To start, press >ENTER< ":RET$
1410 GOSUB 2800

1420 M*="Minute"

1430 MM$="Minutes"

1440 S*="Second"

1450 SS*="Seconds"

1460 H*="Hour"

1470 HH$="Hours"

1480 FOR PAUSE=1 TO SPEED

1490 NEXT PAUSE

1500 FOR XX=1 TO 5

1510 PRINT

1520 NEXT XX

1530 A=A+1

1540 IF A=60 THEN 1690

1550 IF A=l THEN 1560 ELSE 1580

(continued)

Programs Strictly for Fun 319

1560 SSS*=S*

1570 GOTO 1590

1580 SSS$=SS$

1590 IF B=l THEN 1600 ELSE 1620
1600 MMM*=M$

1610 GOTO 1630

1620 MMM$=MM*

1630 IF C=l THEN 1640 ELSE 1660
1640 HHH$=H$

1650 GOTO 1670

1660 HHH$=HH*

1670 PRINT C;HHH*;" ";B;MMM$;" ";A;SSS$
1680 GOTO 1480

169© A=0

1700 B=B+1

1710 IF C+(B/100)=LIMIT1+LIMIT2 THEN 1760
1720 IF B=60 THEN 1730 ELSE 1480
1730 B=0

1740 C=C+1

1750 GOTO 1480

1760 PRINT "To continue time,type CON"
1770 BREAK

1780 GOTO 1480

1790 INPUT "Distance covered (feet) ":FEET
1800 INPUT "Time (mins.secs) ":TIME
1810 TIME1=INT(TIME)

1820 TIME2= (TIME-TIMED/. 6

1830 TIME=TIME1+TIME2
1840 FEET=FEET*G/5280

1850 TIME=TIME/60

1860 SPEED=FEET/TIME

1870 SPEED=INT(SPEED*10+.5)/10
1880 GOSUB 2780

1890 PRINT "Prototype speed= ";SPEED;" mph."
1900 GOTO 880

1910 INPUT "Prototype speed? (mph)9":SPEED
1920 INPUT "Time? (mins.secs) ":TIME
1930 TIME1=INT(TIME)

1940 TIME2= (TIME-TIMED/. 6

1950 TIME=TIME1+TIME2

1960 FEET=SPEED*5280/60*TIME/G

1970 FEET=INT(FEET*10+.5)/10
1980 GOSUB 2780

1990 PRINT "Distance covered= ":FEET:" -feet"
2000 GOTO 880

2010 PRINT "Do you want to -find:"
2020 GOSUB 2780
2030 PRINT 1;" Distance by grade percent"
2040 PRINT " and elevation change,"
2050 PRINT 2;" Grade percent by distance"
2060 PRINT " and elevation change or"

(continued)

320 The Last Whole TI-99/4A Book

2070 PRINT 3;" Elevation change by"
2080 PRINT " percent and distance"
2090 GOSUB 2780

2100 INPUT "Type 1,2 or 3 "sGRADE
2110 GOSUB 2800

2120 ON GRADE GOTO 2130,2200,2270
2130 INPUT "Percent grade desired? ":PER
2140 INPUT "Inches to climb/descend? ":ELEV

2150 GOSUB 2780

2160 DIST=PER/ELEV*100

2170 DIST=INT(DIST*10+.5)/10

2180 PRINT "Distance needed= ";DIST;" inches"
2190 GOTO 880

2200 INPUT "Distance available? (inches) ":DIST

2210 INPUT "Inches to climb/drescend? ":INCH

2220 GOSUB 2780

2230 PER=INCH/DIST*100v
2240 PER=INT(PER*10+.5)/10

2250 PRINT "Percent grade= ";PER;"7."
2260 GOTO 880

2270 INPUT "Percent grade desired? ":PER
2280 INPUT "Distance available (inches) ":INCH

2290 GOSUB 2780

2300 ELEV=PER/100*DIST

2310 ELEV=INT(ELEV*10+.5)/10

2320 PRINT "Change in elevation= ";ELEV;" inches."
2330 GOTO 880

2340 INPUT "Curve radius? ":RAD

2350 INPUT "Curve what 7. of circle? ":CIR

2360 GOSUB 2780

2370 CIR=CIR/100

2380 INCH=RAD*(2*3.14159)*CIR

2390 INCH=INT(INCH*10+.5)/10

2400 PRINT "Length of curve= ";INCH;" inches."
2410 MILES=INCH/12/5280*G

2420 MILES=INT(MILES*10+.5)/10

2430 PRINT "Length in prototype miles= ";MILES;"
miles."

2440 GOTO 880

2450 PRINT "Ohm's Law:"

2460 GOSUB 2780

2470 PRINT 1;" Find ohms"
2480 PRINT 2;" Find amperes"
2490 PRINT 3;" Find volts"
2500 GOSUB 2780

(continued)

Programs Strictly for Fun 321

2510 INPUT "Type 1,2 or 3 ":TYPE
2520 GOSUB 2800

2530 ON TYPE GOTO 2540,2600,2660
2540 INPUT "Number of volts? ":V0LT

2550 INPUT "Number of amperes? ":AMP
2560 GOSUB 2780

2570 0HM=V0LT/AMP

2580 PRINT "0hms= ";0HM;" ohms"
2590 GOTO 880

2600 INPUT "Number of volts? ":V0LT
2610 INPUT "Number of ohms? ":0HM

2620 GOSUB 2780

2630 AMP=V0LT/0HM

2640 PRINT "Amperes= ";AMP:" amperes."
2650 GOTO 880

2660 INPUT "Number of amperes? ":AMP
2670 INPUT "Number of ohms? ":0HM
2680 GOSUB 2780

2690 V0LT=AMP*0HM

2700 PRINT "Volts= ";V0LT;" volts."
2710 GOTO 880

2720 INPUT "Length of wire? (inches) ":WIRE
2730 INPUT "Diameter of wire? (mils) ":MILS
2740 GOSUB 2780

2750 0HM=10~.4*WIRE/MILS

2760 PRINT "Wire resistance= ";0HM;" ohms"
2770 GOTO 880

2780 PRINT " "

2790 RETURN

2800 CALL CLEAR

2810 RETURN

2820 FOR X=l TO 10

2830 PRINT

2840 NEXT X

2850 RETURN

2860 PRINT

2870 INPUT "Press >ENTER< ":Y$

2880 RETURN

2890 GOSUB 2800
2900 GOSUB 2780

2910 PRINT TAB(13);"End."
2920 GOSUB 2780

2930 GOSUB 2820

2940 END

322 The Last Whole TI-99/4A Book

When it is executed, it first displays:

/
Programs for model railroads

This is a collection of

programs that is designed
to be used by model rail
roaders using any of the
seven popular gauges.

Select your gauges

1 0

2 8

3 00

4 HO

5 TT

6 N

7 Z

Which?

which is followed by these choices:

/
1 Convert linear measures

2 Convert MPH to FPM

3 Convert to scale time

4 Scale-time clock

5 Prototype speededistance
6 Distance=prototype speed
7 Determine grade data
8 Determine curve data

9 Ohm* s Law

1(9 Check wire resistance

11 Exit program

Select one

Programs Strictly for Fun 323

with some of these subprograms consisting of two or more choices,
such as converting to or from a certain measure. If the program
seems excessively long, it is because of this multitude of choices
and the fact that it is written in TI BASIC, which permits only one
statement per line.

The first subprogram permits conversion from prototype to
scale or scale to prototype, using any type of measure (feet, inches,
meters, etc.).

The second subprogram converts miles per hour to feet per
minute and vice versa.

The third subprogram converts hours and minutes to scale
hours and minutes, using either the selected scale or a percentage
figure selected by the user.

The fourth subprogram turns the computer into a clock that
displays hours, minutes, and seconds at any rate of speed that the
user selects, simplifying the task of running timed operations be
tween stations on a fixed schedule.

The fifth subprogram uses the distance covered in feet and the
time in minutes and seconds to determine the equivalent prototype
speed in miles per hour.

The sixth subprogram does the reverse. It uses a given pro
totype speed in miles per hour plus a time factor in minutes and
seconds to determine scale distance.

The seventh subprogram determines the distance required in
order to effect a change in elevation at a given percent grade, or the
percent grade based on the change in elevation and the available
distance, or the change in elevation achieved in a given distance at
a given percent grade.

The eighth subprogram determines the linear length of track re
quired for a curve ofa given radius representing a specified percent
of a full circle.

The ninth subprogram uses Ohm's law to find volts from
amperes and ohms, ohms from volts and amperes, and amperes
from volts and ohms.

The tenth subprogram determines the resistance of electrical
wire in ohms, based on wire length in inches and diameter in mils.

324 The Last Whole TI-99/4A Book

Line by line:

Lines 100 and 110 are REMarks.

Lines 120-380 place the title of the program and the selection of
available gauges into display, repeatedly using a group of
subroutines, primarily for cosmetic reasons.

Lines 390-540 send the computer to any of seven subroutines to
assign conversion factors to the numeric variable G.

Lines 550-720 display the menu with the 10 subprograms.
Line 730 sends the computer to one of 11 line numbers depending
oh the selection entered.

Lines 740-950 are used for the first subprogram, where lines 840
and 920 perform the calculations. All other lines should be self-
explanatory.

Lines. 960-1010 represent the second subprogram. Line 980
multiplies miles per hour by 5280, the number of feet in a statute
mile, and then divides the result by the scale conversion factor and
60 (the number of minutes in an hour) to arrive at a feet-per-
minute figure.

Lines 1020-1320 represent the third subprogram, where lines
1100 and 1220 ask you to key in hours and minutes to be con
verted. Lines 1110-1190 convert that time into scale time based

on the scale conversion factor. Lines 1240-1300 convert the time

that was entered, using a percentage figure keyed in by you in line
1230. In each instance the minutes are first separated from the
hour figure and then converted to decimal values in order to be
manipulated mathematically. They are then converted back to
minutes before the result is displayed.

Lines 1330-1780 produce the scale-time clock in the same way
we produced a kitchen timer in Chapter 9.

Lines 1790-1900 represent the fifth subprogram, with lines
1810-1870 performing the time conversions and related
calculations.

Lines 1910-2000 represent the sixth subprogram and are the
reverse of the above. *

Lines 2010-2330 represent the seventh subprogram, where you
have three choices with reference to grade data determination.
Lines 2160 and 2170 perform the calculations for the first choice.

Programs Strictly for Pun . 325

Lines 2230 and 2240 handle the calculations for the second
choice. And lines 2300 and 2310 do the same for the third choice.

Lines 2340-2440 take.care of the eighth subprogram, and lines
2380 and 2390 perform the calculation. The figure 3.14159 is the
value of pi, which is not automatically available in TI BASIC.

Lines 2450-2710 are the ninth subprogram, dealingwith Ohm's
law. The calculations are made in lines 2570, 2630, and 2690.

Lines 2720-2770 are the tenth subprogram; the calculation is
made in line 2750.

Lines 2780-2920 are the various subroutines and the END lines.

A NUMBERS GAME

The next program deals with numbers and requires a
reasonable degree of proficiency in solving mathematical puzzles. It
displays a number together with three groups of four numbers
each, only one ofwhich can be manipulated mathematically to pro
duce a result that matches the key number. You are asked to iden
tify the group ofnumbers that fits the criterion. For instance, given:

39

A) 7 6 5 2

B) 30 9 3 7

C) 15 7 16 2

the A group (on the following page) is the right one:

326 The Last Whole TI-99/4A Book

7*6-5+2

with the equations figured one calculation at a time from left to
right. (No parentheses were used in the equations displayed by the
program, though some would require parentheses if the calcula
tions are to be performed by your computer.) If you pick the right
number group, the computer tells you so and displays the equa
tions. If you pick the wrong one, you're told the right number group
and the equation is also displayed.

The Number Game, contains 12 key numbers and their
associated number groups. You can easily add more by writing ad
ditional DATA lines; the only change that would have to be made is
in line 210, where the number associated with the numeric variable
Z must reflect the total number of key numbers in order to avoid a
DATA ERROR message.

NUMBERS GAME PROGRAM

A game with numbers.

100 REM A SAME WITH NUMBERS

110 REM TI EXTENDED BASIC
120 CALL CLEAR

130 GOTO 170

140 PRINT " " :: RETURN
150 FOR X=l TO 7 :: PRINT :: NEXT X :: RETURN
160 PRINT :: INPUT "Press >ENTER< ":E$:: RETURN
170 GOSUB 140

180 PRINT "This is a game with numbers requiring a degree

(continued)

Programs Strictly forFun 327

190 PRINT "I will display a key number and groups of
secondary numbers. You must pick the group that
can be used to"

200 PRINT " produce an equation that results in the key
number using + , -, * and/or / ." :: GOSUB 140 ::

PRINT :: GOSUB 160

210 1=1+1 :: IF Z>12 THEN 580

220 READ KEY,A*,N$,B$,NN$,C*,NNN$,SUM$

230 READ EQUATION*

240 CALL CLEAR

250 PRINT TAB(12);KEY :: GOSUB 140
260 PRINT A*;" "; N* :: PRINT
270 PRINT TAB(7);B$;" ";NN* :: PRINT
280 PRINT TAB(10);C$;" ";NNN$:: GOSUB 140 :: PRINT
290 INPUT "Which group? ":ABC$
300 GOSUB 150

310 IF ABC*=SUM$ THEN 320 ELSE 330

320 GOSUB 140 :: PRINT TAB(10);"That's right" :: PRINT
"The equation is ";EQUATION* :: GOSUB 140 :: GOSUB
160 :: GOTO 210

330 GOSUB 140 :: PRINT TAB(10);"That's wrong" :: PRINT "It

is group ";SUM$;" <";EQUATI0N*;")" :: GOSUB 140 ::
GOSUB 160 :: GOTO 210

340 DATA 38,A),7 6 5 1,B),30 8 3 6,C),15 7 16 1,A
350 DATA 7*6-5+1

360 DATA 417,A),212 200 1 8,B),25 16 9 8,0,17 50
8 2,B

370 DATA 25*16+9+8

380 DATA 1,A),15 3 25 30,B),7 10 4 2,C),18 17 0
6,A

390 DATA 15/3+25/30

400 DATA 99,A),90 9 14 8,B),9 11 7 3,C),33 30 0
10, C

410 DATA 33*30/10+0

420 DATA 602, A),27 18 212 3,B),-1 20 17 31,0,102
50 10 6,B

430 DATA -1+20*31-17

440 DATA 0,A),15 102 5.44 37, B), 6. 11 55 2,0,19 10
190 -3,A

450 DATA 37*15/102-5.44

460 DATA 15, A), 3 4 5 20,B),10 1 4 7,0,145 30 99
3, A

470 DATA 3+4*5-20

480 DATA 100, A), 17 25 23 36, B), 7 13 11 2.2,0,50 2
1 8,B

490 DATA 7+13*11/2.2

500 DATA 11,A),11 1 4 17,B),10 1 77 8,C),3 22 9
14,B

510 DATA 10+1+77/8

520 DATA 1000, A), 500 2 15 7,B),47 6 22 1.04,0,100
10 5 50,B

530 DATA 47*22+6/1.04

(continued)

328 The Last Whole TI-99/4A Book

540 DATA -10,A),65 110 5 7,B),78 55 22 6,C),15 45
-65 10, A <*

550 DATA 7*5+65-110
560 DATA 3.33, A), 10 7 18 4,B),69 3.5 30 1.5,0,99 3

66 2, B
570 DATA 69*1.5-3.5/30

580 CALL CLEAR :: GOSUB 140 :: PRINT TAB(12);"End." ::
GOSUB 140 :: GOSUB 150 ::

END

Line by line:

Lines 100 and 110 are REMarks.
Lines 120 and 130 clear the screen and send the computer to line

170, skipping over the subroutines in lines 140-160.
Lines 170-200 display the purpose of the program.
Line 210 send the computer to the END line if all DATA have been
used.

Lines 220 and 230 READ all DATA items associated with a given
key number.

Line 240 clears the screen.

Lines 250-280 cause the items to be displayed on the screen.
Line 290 asks you to key in your selection.
Line 310 checks whether your selection matches the one stored in
the program.

Lines 320 and 330 are used if your selection is right (320) or
wrong (330).

Lines 340-570 are the DATA block,where the first item is the key
number, the second is the letter identification for the first number
group, the third is the number group, and so on, with the last item
in the line representing the correct number group, and the single
item in the following line the equation.

Line 580 is the END line. If you add more DATA lines, start with
line 590, leaving line 580 in place.

A GAME WITH AIRPLANES

The last program in this group is a sort of home-made video
game in which a bunch of airplanes and a hot-air balloon cavort in
the sky. I've called it OSHKOSH because the action reminds me of

Programs Strictly for Fnn 329

the annual gathering of the thousands of members of the Ex
perimental Aircraft Association during the first week of August in
Oshkosh, Wisconsin, where, for the better part of 10 days, the sky is
constantly alive with all manner of home-built and antique aircraft.

The program includes four airplanes and one balloon, the speed
and direction of travel of which you can control intermittently. It in
cludes some rather primitive sound effects and occasionally a voice
will admonish you with "Look out!" when there is an imminent col
lision. It requires TI EXTENDED BASIC to produce the graphics.

OSHKOSH

A game with four airplanes and a balloon.

100 REM GAME WITH AIRCRAFT

110 REM TI EXTENDED BASIC

120 CALL CLEAR :: PRINT "—

130 PRINT TAB(12);"Oshkosh" :: PRINT "•

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

FOR X=l TO 8

INPUT "Press

s: PRINT

>ENTER< '

NEXT X

E*

R0W1=20 :: C0L1=20

R0W2=60 :: C0L2=60

R0W3=100 :: C0L3=100

R0W4=110 :: COL4=110

R0W5=200 :: C0L5=200

SC=6

UD1=0 :: LR1=40

UD2=50 :: LR2=0

UD3=-1 :: LR3=60

UD4=-1 :: LR4=-60

UD5=-1 :: LR5=0

CALL CLEAR

GOSUB 650

B$="3C181818FFFF1818"

D$="00008EFF00000000"

C*="3C7E7E7E3C180018"

E*="000071FF00000000"

CALL CHAR(96,C$)
CALL CHAR(97,B$)
CALL CHAR(98,D$)
CALL CHAR(99,E$)
CALL CHAR(100,D$)
CALL SPRITE(#1,100,TINT1,R0W1,COLD
CALL SPRITE(#2,97,TINT2,R0W2,C0L2)
CALL SPRITE(#3,98,TINT3,R0W3,C0L3)
CALL SPRITE(#4,99,TINT4,R0W4,C0L4)

(continued)

330 The Last Whole TI-99/4A Book

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

CALL SPRITE(#5,96,TINT5,ROWS,COLS)
CALL MOTION(#1,UD1,LR1)
CALL MOTION(#2,UD2,LR2)
CALL MOTION(#3,UD3,LR3)
CALL MOTION(#4,UD4,LR4)
CALL MOTION(#5,UD5,LR5)
1=0

CALL COINC(#1,#2,20,CO
CALL COINC(#1,#3,20,CO
CALL COINC(#1,#4,20,CO
CALL COINC(#1,#5,20,CO
CALL COINC(#2,#3,20,CO
CALL COINC(#2,#4,20,CO
CALL COINC(#2,#5,20,CO
CALL COINC(#3,#4,20,CO
CALL COINC(#3,#5,20iCO
CALL COINC(#4,#5,20,CO
IF CC=-1 THEN GOSUB 990
FOR PAUSE=1 TO 1000 ::
1=1+1 :s GOSUB 1040 ::
GOTO 490

GOSUB 740

GOTO 290

INPUT "COLOR,PLANE #1?
INPUT "COLOR,PLANE #2?
INPUT "COLOR,PLANE #3?
INPUT "COLOR,PLANE #4?
INPUT "COLOR,BALLOON ?
CALL SCREEN(SO

CALL CLEAR

CALL MAGNIFY(2)

RETURN

INPUT "CHANGE SPEED/DIRECTION?(Y/N)":YN$
"N" THEN CALL CLEAR :: RE
TURN ELSE CALL CLEAR :: GOTO 750

NEXT PAUSE

IF Z=4 THEN 630

:TINT2

:TINT3

:TINT4

iTINTl

ITINT5

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

PRINT 1

PRINT 2

PRINT 3

PRINT 4

PRINT 5

PLANE GOING DOWN?"

PLANE GOING EAST?"

PLANE GOING EAST?"

PLANE GOING WEST"
WIND DIR/VEL" :: PRINT

INPUT "WHICH'

CALL CLEAR

ON WHICH GOTO 830,860,1010,890,920
INPUT "SPEED DOWN? ":UD2
INPUT "SPEED R/L? ":
CALL CLEAR :: RETURN
INPUT "SPEED U/D? ":
INPUT "SPEED EAST? ":
CALL CLEAR :: RETURN
INPUT "SPEED U/D? ":
INPUT "SPEED WEST? ":
CALL CLEAR :; RETURN

:WHICH

:LR2

:UD3

:LR3

:UD4

:LR4

IF YN$=

(continued)

Programs Strictly for Fun 331

920 INPUT "WIND VEL(E=-,W=+) ":WV :: CALL CLEAR

930 LR1=LR1+WV

940 LR2=LR2+WV

950 LR3=LR3+WV

960 LR4=LR4+WV

970 LR5=LR5+WV

980 RETURN

990 CALL SAY("LOOK OUT")

1000 RETURN

1010 INPUT "SPEED U/D? ":UD1

1020 INPUT "SPEED EAST? ":LR1

1030 CALL CLEAR :: RETURN

1040 CALL SOUND(4250,-4,0)
1050 CALL SOUND(4250,-8,0)
1060 RETURN

After displaying its title, the program asks you to determine the
colors for the four planes and the balloon. You may choose any color
except 1 (transparent) or 6 (lightblue), which is the color of the sky.
As soon as the colors have been keyed in, the screen changes to
light blue and the sky comes alive with action, with two planes
traveling east (right) and one traveling west (left) and another ap
parently performing a never-ending series ofloops, while the hot-air
balloon rises slowly from the bottom of the screen. After a few
seconds a line appears across the bottom of the screen, asking:

CHANGE SPEED/DIRECTION? (Y/N)

332 The Last Whole TI-99/4A Book

and if you type N, the line disappears, only to reappear after another
time period during which the action continues. If you type Y, the
line disappears and is replaced by:

1 PLANE GOING DOWN?

2 PLANE GOING EAST?

3 PLANE GOING EAST?

4 PLANE GOING WEST?

5 WIND DIR/VEL?

WHICH?

giving you a choice of correcting the speed at which any of the four
planes is traveling, or changing the wind direction and velocity.
Depending on your selection, the above will be replaced with one of
five displays:

r

I

SPEED DOWN?

SPEED R/L?

SPEED U/D?

SPEED EAST?

SPEED U/D?

SPEED WEST?

WIND VEL <E=-,W«+>

Programs Strictly for Fun 333

where the SPEED EAST display appears for both east-bound air
craft. The R/L refers to right or left for the aircraft flying the loops.
To move it to the left, use a negative number (—1). To move it to the
right, use a positive number (1) without the + sign. The U/D con
trols the climb and descent ratio for aircraft traveling east and west.
To make them climb, use a negative number. For descent, use a
positive number. The wind direction and velocity affect all aircraft.
If you key in an east wind of, say, a value of 10 (—10), the west
bound aircraft will speed up and the east-bound ones will slow
down while, at the same time, the looping aircraft and the balloon
will both move westward. The wind entries are cumulative (the
others are not), meaning that if you want to stop the wind at your
next opportunity to enter data, you would have to enter 10 in order
to offset the previous —10.

The program will continue indefinitely. To stop it, type FCTN 4
(CLEAR). If you want sound effects and the occasional voice warn
ings, assuming you have a voice synthesizer, be sure to turn up the
volume on your monitor.

Line by line:

Lines 100 and 110 are REMarks.

Lines 120-150 place the title of the program into display and ask
you to press > ENTER < to continue.

Lines 160-200 assign the row and column numbers that repre
sent the starting positions to numeric variables.

Line 210 assigns light blue to a numeric variable.
Lines 220-260 assign the starting speeds to numeric variables.
Lines 270 and 280 clear the screen and send the computer to the
subroutine (lines 650-730) where you're asked to key in the color
numbers for the aircraft. Line 700 controls the color of the sky
(screen), and line 720 uses CALL MAGNIFY to double the size of
the sprites that represent the aircraft.

Lines 290-320 assign the different aircraft shapes to string
variables.

Lines 330-370 create the characters that represent those shapes.
Lines 380-420 create the five sprites.
Lines 430-470 control the speed with which the aircraft cavort in
the sky.

334 The Last Whole TI-99/4A Book

Line 480 assigns the value of zero to the numeric variable Z, which
is used later in line 610.

Lines 490-580 detect imminent collisions, assigning the value of
— 1 to the numeric variable CC if such a condition is detected.
(Depending on the speed of travel, not all impending collisions are
detected. The faster the movement, the less the chance of
detection.)

Line 590 sends the computer to a subroutine (lines 990 and 1000)
if an impending collision has been detected. That subroutine
causes the voice synthesizer to say "Look out!"

Line 600 produces a pause.
Line 610 increases the pause. During the pause the action con
tinues. The purpose of the pause is to avoid having a line of text on
the bottom of the screen at all times. Each time this line is en
countered, the computer is sent to the subroutine that produces
the sound effects (lines 1040-1060). At the end of the pause the
computer is sent to line 630.

Line 620 returns the computer to line 490 to detect additional
collisions.

Line 630 sends the computer to a subroutine (starting with line
740) that asks if you want to make changes in the speed and direc
tion of travel.

Line 640 returns the computer to line 290 to continue the action of
the aircraft.

Lines 650-730 are the subroutine discussed above.
Line 740 asks if you want to make a change. If not, it returns the
computer to line 640. If you do, it goes to the next line.

Lines 750-800 offeryou the choice of aircraft, the speed or direc
tion of which you want to change.

Line 820 sends the computer to one of five lines, depending on
your selection.

Lines 830-850, 860-880, 890-980, or 1010-1030 are called
into play to give you the chance to type in the desired changes. In
lines 930-970 the left/right speeds are changed in accordance with
the keyed-in wind direction and velocity factor. At the end ofany of
these five sections, the copy lines are cleared from the screen and
the computer is returned to line 640.

Programs Strictly for Fan 335

Lines 990 and 1000 are the subroutine that activates the speech
synthesizer.

Lines 1040-1060 produce the intermittent sound effects.

Once you become familiar with the use of the family of sprite
subprograms, you can easily create all manner of fascinating
games.

13

Programs for
Business or
Profession

Although your TI-99/4A Home Computer, as the name implies,
is designed primarily for use in the home, it does offer ample
capabilities for use in connection with business matters or in the
pursuit of a profession. The programs in this chapter provide ex
amples of the kinds of programs you might want to write in order to
deal with problems that may be unique to your work.

All of the programs in this chapter are written in TI EXTENDED
BASIC, but with very few changes they can easily be translated into
TI BASIC if the extended version is not available. Several programs
assume that the system includes a line printer—they are designed
to produce certain documents automatically while the program is
being executed.

LOAN, SAVING, AND
INVESTMENT PROGRAM

This program deals with the cost of borrowing money and the
returns that can be expected from savings or investment under any
given set of circumstances. It consists of three subprograms. The
first asks you to enter the amount available for investment plus the

336

Programs for Business or Profession 337

available rate of interest and the compounding period. It then re
quires you to key in a time period, after which it displays the value
ofyour investment at the end of that period (see Figure 13-1 on page
340).

LOAN SAVING AND INVESTMENT PROGRAM

A program that deals with investment and loan or mortgage data.

100 REM SAVINGS AND LOAN DATA

110 REM TI EXTENDED BASIC

120 H=0

130 CALL CLEAR

140 SOTO 180

150 PRINT " " :: RETURN

160 FOR X=l TO 8 :: PRINT :: NEXT X :: RETURN

170 INPUT "Press >ENTER< ":E$:: RETURN

180 LL$=" :
«

190 GOSUB 150

200 PRINT "This program analyzes loan, mortgage, saving
and invest-ment data" :: PRINT

210 PRINT "You have three choices:" :: PRINT

220 PRINT 1;" Loan/mortgage analysis"
230 PRINT 2;" Savings/investment data"
240 PRINT 3;" Cost comparisons" :: GOSUB 150
250 INPUT "Which? ":WHICH

260 PRINT :: PRINT :: INPUT "Printout? (Y/N) ":NN*

270 CALL CLEAR :: ON WHICH GOTO 610,280,950
280 Y=0 :: M=0 :: D=0

290 PRINT "Savings/investment data" :: GOSUB 150
300 INPUT "Present value? *":L

310 INPUT "Annual interest rate? '/.": I

320 PRINT :: PRINT "Compounding periods:" :: GOSUB 150
330 PRINT 1,"Daily"
340 PRINT 2,"Monthly"
350 PRINT 3,"Yearly" :: GOSUB 150
360 INPUT "Which? ":PERIOD

370 1=1/100 :: IF H=l THEN 1050

380 CALL CLEAR :: PRINT "Term to be examined:" :: PRINT
390 INPUT "Number o-f years? ":Y
400 INPUT "Number o-f months? ":M

410 INPUT "Number o-f days? ":D
420 CALL CLEAR :: ON PERIOD GOTO 430,440,470
430 1=1/365.25 :: GOTO 450

440 1=1/12 :: GOTO 470

450 CP=(Y*365.25)+(M*30.44)+D

460 GOTO 480

(continued)

338 The Last Whole TI-99/4A Book

470 CP=Y+(M/12)+(D/365.25)

480 FV=L*(1+I>~CP :: FV=INT(FV*100+.5)/100

490 CALL CLEAR :: GOSUB 150 :: PRINT "Future value= *"
:FV :: GOSUB 150

500 GOSUB 150

510 IF NN*="Y" THEN GOSUB 540

520 PRINT :: INPUT "Another run? (Y/N) ": Y* :: CALL CLEAR
530 IF Y*="Y" THEN 180 ELSE END

540 OPEN #1:"RS232"

550 PRINT #1: "Present value *";L
560 J=I*100 :: IF PERI0D=1 THEN J=J*365.25 :: IF PERI0D=2

THEN J+J*12

570 PRINT #1: "Annual interest rate. ";J; "'/."
580 PRINT #1:"Period ";Y;" years, ";M;" months, ";D;" days

." :: PRINT #1:LL*

590 PRINT #1: "Future value *";FV :s PRINT
.ttlsLL*

600 CLOSE ttl :: RETURN

610 CALL CLEAR :: GOSUB 150

620 PRINT "Loan/mortgage data" :: GOSUB 150
630 INPUT "Amount o-f loan or mortgage? ":N
640 INPUT "Annual interest rate? 7.":C :: C=C/100
650 IF H=2 THEN 680

660 D=N*C/12 :: D=INT(D*100+.5)/100 :: CALL CLEAR
670 PRINT "The absolute minimum paymentto cover the

interest= *";D :: GOSUB 150
680 INPUT "The monthly payment that you-feel you can

a-f-ford? *":E :: G=l

690 F=C/12 :: I=F*N+N-E
700 G=G+1

710 I=I*F+I-E

720 IF H=2 THEN 1320

730 IF KE THEN 750

740 IF I>E THEN 700

750 IF H=2 THEN 1320

760 CALL CLEAR :: PRINT "Number o-f payments= ": G :: PRINT
770 I=INT(I*100+.5)/100

780 PRINT "Plus a -final payment of *";I
790 V=E*G+I :: V=INT(V*100+.5)/100
800 W-V-N :: W=INT(W*100+.5)/100 :: GOSUB 150
810 PRINT "Total cost of loan= $";V :: PRINT
820 PRINT "Total interests $";W
830 IF NN*="Y" THEN GOSUB 850
840 GOTO 520

850 OPEN #1:"RS232"

860 PRINT #1:"Amount of loan or mortgage $";N :: CI
=C*100

870 PRINT #l:"Anuual interest rate ";C1;"7."
:: PRINT #1:LL*

880 PRINT #1:"Minimum payment to cover interest.*";D
890 PRINT #1: "Payment you want to make *";E ::

PRINT #1:LL$

(continued)

Programs for Business or Profession 339

900 PRINT ttl:"Number of payments -. ";G
910 PRINT #l:"Plus a final payment of *";I ::

PRINT #1:LL*

920 PRINT #1:"Total cost of loan or mortgage *";V
930 PRINT #1: "Total interest *";W ::

PRINT #1:LL*

940 CLOSE #1 :: RETURN

950 VI*="Value of investment, year #" :: CALL CLEAR ::
GOSUB 150

960 PRINT "Loan or mortgage cost versusinvestment returns"
:: GOSUB 150

970 INPUT "Capital to invest? *":L
980 INPUT "Available interest rate? ":I

990 H=l

1000 OPEN #1:"RS232"

1010 PRINT #1: "Investment *";L
1020 J=I

1030 PRINT #1: "Interest rate ";J;"7." ::
PRINT #1:LL*

1040 GOTO 320

1050 CALL CLEAR

1060 IF PERI0D=1 THEN 1090

1070 IF PERI0D=2 THEN 1100

1080 IF PERI0D=3 THEN 1110

1090 CP=365.25 :: I=I/CP :: GOTO 1230

1100 CP=12 :: I=I/CP :: GOTO 1250

1110 CP=1

1120 READ K

1130 CP=1

1140 CP=CP*K :: FV=L*(1 + 1)~CP :: FV=INT(FV*100+.5)/100

1150 PRINT VI*;K;" *";FV
1160 IF NN*="N" THEN 1180

1170 PRINT #1:VI*;K;" *";FV
1180 IF K=20 THEN 1270

1190 IF K=10 THEN GOSUB 170

1200 IF PERI0D=1 THEN 1230

1210 IF PERI0D=2 THEN 1250

-1220 IF PERI0D=3 THEN 1120

1230 READ K

1240 CP=365.25 :: GOTO 1140

1250 READ K

1260 CP=12 :: GOTO 1140

1270 PRINT

1280 INPUT "For loan data press >ENTER< ":Y*
1290 H=2

1300 LB*="Loan balance for month #" :: CALL CLEAR :: GOSUB
150

1310 GOTO 630

1320 IF NN*="N" THEN 1370

1330 PRINT #1:"Amount of loan or mortgage *";N
1340 C1=C*100

1350 PRINT #1: "Annual interest rate ";C1;"7."

(continued)

340 The Last Whole TI-99/4A Book

1360 PRINT #1: "Monthly payment *";E ::
PRINT #1:LL$

1370 I=INT(I*100+.5)/100 :: PRINT

1380 PRINT LB*;G;" *"; I
1390 IF NN$="N" THEN 1410

1400 PRINT #1:LB*;G;" *";I
1410 IF KO THEN 1430

1420 GOTO 700

1430 CLOSE #1 :: GOTO 520

1440 DATA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19.
20

1450 END

Annual interest rate.

Period 5 years, 6

.* 5000

. . 7.25 V.

months, 0 days.

.* 7449.53

Figure 13-1. Printout showing the future value of savings or an investment.

The second subprogram deals with loans and mortgages. It
calls for the entry of the loan or mortgage principal and the annual
percentage rate. With that information it calculates the absolute
minimum monthly payment that must be made in order to cover
just the interest. After that it asks you to key in the payment
amount you feel you can afford to make, an amount that obviously
must be larger than the one calculated by the computer. It then
displays the number of monthly payments and the amount of the
final payment needed in order to retire the loan or mortgage. Figure
13-2 shows a sample printout, and Figure 13-3 shows the loan
balance as calculated for the first 12 months of the mortgage.

Programs for Business or Profession 341

Amount o-f loan or mortgage $ 25000
Anuual interest rate 12.25 %

Minimum payment to cover interest.$ 255.21
Payment you want to make $ 1000

Number o-f payments 2?
Plus a final payment of * 10.77

Total cost of loan or mortgage $ 29010.77
Total interest * 4010.77

Figure 13-2. Printout showing analysis of a $25,000 mortgage.

Amount of loan or mortgage * 25000
Annual interest rate 12.25 '/.
Monthl y payment * 1000

Loan balance for month # 2 * 23502.81

Amount of loan or mortgage * 25000
Annual interest rate 12.25 V.
Monthly payment '. * 1000

Loan balance for month # 3 $ 22742.73

Amount of loan or mortgage * 25000
Annual interest rate 12.25 '/.
Monthly payment * 1000

Loan balance for month # 4 $ 21974.9

Amount of loan or mortgage * 25000
Annual interest rate 12.25 V.
Monthly payment * 1000

Loan balance for month tt 5 * 21199.23

Amount of loan or mortgage $ 25000
Annual interest rate 12.25 V.
Monthly payment $ 1000

Loan balance for month # 6 * 20415.64

Amount of loan or mortgage $ 25000
Annual interest rate 12.25 '/.

Monthly payment * 1000

(continued)

342 The Last Whole TI-99/4A Book

Loan balance for month # 7 * 19624.05

Amount of loan or mortgage ..$ 25000
Annual interest rate 12.25 V.

Monthly payment $ 1000

Loan balance for month # 8 $ 18824.38

Amount of loan or mortgage * 25000
Annual interest rate.. 12.25 7.

Monthly payment$ 1000

Loan balance for month #9 * 18016.55

Amount of loan or mortgage * 25000
Annual interest rate 12.25 '/.

Monthly payment $ 1000

Loan balance for month # 10 $ 17200.47

Amount of loan or mortgage * 25000
Annual interest rate 12.25 7.

Monthly payment $ 1000

Loan balance for month #11 $ 16376.06

Amount of loan or mortgage.......* 25000
Annual interest rate 12.25 '/.

Monthly payment $ 1000

Loan balance for month # 12 * 15543.23

Amount of loan or mortgage * 25000
Annual interest rate 12.25 V.

Monthly payment .$ 1000

Figure 13-3. Printout showing the first 12 months in the life of a mortgage.

The third subprogram requires similar data input but then
displays the future value of the investment at the end of each of 20
years as well as the remaining loan balance at the end of each
month throughout the life of the loan or mortgage (see Figure 13-4).
All three subprograms can be run repeatedly in order to compare
the results achieved with different variables, and all include the op
tion of having the results sent to a line printer for a hard copy.

Programs for Business or Profession 343

Investmer

Interest

it $ 5000

7.25 V.

Value of investment, year # 1 * 5375.93

Value of investment, year # 2 * 5780.11

Value of investment, year # 3 * 6214.69

Value of investment, year # 4 * 6681.95

Value of investment, year # 5 * 7184.33

Value of investment, year # 6 * 7724.48

Value of investment, year # 7 $ 8305.25

Value of investment, year # 8 * 8929.68

Value of investment. year # 9 $ 9601.06

Value of investment, year # 10 $ 10322.91

Value of investment, year # 11 * 11099.04

Value of investment, year # 12 * 11933.52

Value of investment, year # 13 * 12830.75

Value of investment, year # 14 $ 13795.43

Value of investment, year # 15 * 14832.64

Value of investment, year # 16 $ 15947.83

Value of investment, year # 17 $ 17146.87

Value of investment, year # 18 * 18436.06

Value of investment, year # 19 * 19822.17

Value of investment, year # 20 S 21312.51

Figure 13-4. Printout showing annual results for an investment for 20 years.

Line by line:

Lines 100 and 110 are REMarks.

Line 120 makes sure that no leftover value is assigned to the
numeric variable H.

Lines 130 and 140 clear the screen and cause the computer to
jump over the subroutines in the next three lines.

Lines 150-170 are three subroutines used frequently throughout
the program, placing a dashed line into display, causing text to be
centered on the screen, and asking you to press > ENTER < in
order to continue program execution.

Line 180 assigns a dashed line to the string variable LL$, which is
used when the line printer option is called up.

344 The Last Whole TI-99/4A Book

Lines 190-260 place the explanation of the program and the three
choices into display, asking you to decide which program you
want to use and whether or not you want the resulting data
printed. There is a hyphen in "invest-ment" because the line
wraps around at that point when that line of copy is displayed.

Line 270 clears the screen and sends the computer to one of three
line numbers depending on your choice of subprograms.

Line 280 assigns zero to three numeric variables.
Lines 290-600 deal with savings or investment data, asking you
to key in the present value representing the amount of capital
available for the purpose, the available annual interest rate, and
the compounding period, assigning the present value to L, the in
terest rate to I, and the compounding period to PERIOD.

Line 370 divides the interest by 100 for use in subsequent calcula
tions and checks on the value assigned to H, which has to do with
the third subprogram, because it uses some of the same input
lines.

Lines 380-410 ask you to key in the time period for which you
want the data to be figured.

Line 420 sends thecomputer tooneofthree linenumbers depending
on the compounding period.

Lines 430-480 perform the required calculations, and line 490
displays the result.

Line 510 checks whether you want the results printed, in which
case the computer is sent to the subroutine consisting of lines
540-600.

Lines 520 and 530 check whether you want to run one or another
portion ofthe program again in which case the computer is returned
to line 180. If not, the program terminates.

Lines 610-940 represent the portion of the program that deals
with loans and mortgages, asking you first to key in the principal
amount and the rate of interest, assigning the data to the variables
N and C.

Line 660 calculates the minimum payment, which covers the in
terest but does not reduce the principle.

Lines 670 and 680 display the result and then ask you to key in
the payment amount you want to make. The lack of spaces be
tween words (paymentto, youfeel) again has to do with the fact

Programs for Business or Profession 345

that the copy wraps around at that point. Your entry is assigned to
the variable E, and the value 1 is assigned to the variable G, which
is used only in the third subprogram.

Lines 690-750 perform a number of calculations and send the
computer to a number of different line numbers, depending on the
values of several variables.

Lines 760-820 display the results and perform some additional
calculations.

Lines 830-840 check if you want the results printed and send the
computer to the subroutine (lines 850-940) that activates the
printer, or back to line 520, which asks if you want to run the pro
gram again.

Lines 950-1500 represent the third subprogram, which uses por
tions of the two previous programs.

Line 950 assigns a string to a string variable.
Line 960 prints the title of the subprogram.
Lines 970 and 980 ask you to key in the capital and interest data.
Line 990 assigns the value of 1 to the variable H, which later tells
the computer that we're dealing with the first part of the third
subprogram.

Lines 1000-1030 cause your input data to be printed.
Line 1040 sends the computer to line 320, where you!re asked to
key in the compounding period,and in line 370 the computer finds
that the value assigned to H is 1, sending it back to line 1050.

Lines 1050-1080 send the computer to one of three line numbers
depending on the compounding periods.

Lines 1090-1110 perform a group of calculations.
Line 1120 is used to READ the numbers stored in the DATA block
that represent the year numbers 1 through 20.

Lines 1130 and 1140 calculate the future value, and line 1150
causes the result to be displayed.

Line 1160 checks if you want the results printed and, if yes, line
1170 sends the data to the line printer.

Lines 1180 and 1190 check the value of K. If it's 10, then you're
asked to press > ENTER< because the screen can display only so
many lines at a time. If it's 20, the computer is told to go to line
1270, which is the start of the second portion of the third
subprogram.

Lines 1200-1260 repeat the above.

346 The Last Whole TI-99/4A Book

Lines 1270-1430 represent the loan/mortgage portion of this
section.

Line 1290 assigns the value of 2 to the variable H to be used later
to tell the computer which is the active program portion.

Line 1300 assigns a string to a string variable.
Line 1310 sends the computer to line 630, where you're asked to
enter the principal and interest data. In line 650 the computer
finds the value assigned to H and is sent to line 680 for additional
input. Lines 720 and 750 again use the value ofH to send the com
puter back to line 1320.

Line 1320 checks if you want the results printed. Here the answer
should be in the affirmative, because the results will involve many
more lines than can be displayed at one time.

Lines 1330-1400 perform the printing function or, if printing is
rejected, line 1380 causes the data to be sent to the screen.

Line 1410 checks the value of I, which, at this point, represents
the remaining loan balance. If the balance is less than zero (a
negative figure), then the computer is sent to line 520 to ask if you
want another run. Otherwise it is sent to line 700 to continue the
progressive calculations.

Line 1440 is the DATA block, and line 1450 is the END line.

CURRENCY CONVERSION PROGRAM

Next is a very short program that comes in handy if you're in
volved in importing or exporting products or if you often travel in
foreign countries. Itspurpose is tofigure the value offoreign curren
cies in terms of dollars or vice versa. You have the choice of con
verting to orfrom any foreign currency, but there is one hitch: If the
foreign currency denomination is valued at more than one dollar
(for instance, the English pound), then the to/from selection must
be reversed, which is a bit awkward, but not serious. It would have
been possible, of course, to add another section to take care of this
problem, as is shown at the end of the line-by-line explanation.

Programs for Business or Profession 347

CONVERTING CURRENCIES PROGRAM

A program that converts foreign currencies to U.S. dollars and vice versa.

loo

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

REM CONVERTING FOREIGN CURRENCIES

REM TI EXTENDED BASIC

CALL CLEAR

GOTO 170

PRINT " • " : s RETURN

FOR X=l TO 8 :: PRINT :: NEXT X :: RETURN

INPUT "Press >ENTER< ":E* :: RETURN
GOSUB 140

PRINT "This program can be used to convert foreign
currencies." :: GOSUB 140 :: GOSUB 150 :: GOSUB 160

CALL CLEAR :: PRINT "Menu:" :: GOSUB 140

PRINT 1;" Convert TO U.S. money" :: PRINT
PRINT 2;" Convert FROM U.S. money" :: GOSUB 140
PRINT 3;" Exit the program" :: GOSUB 140
INPUT "Which? ":WHICH

RE$="Today's rate o-f exchange" :: AC*="Amount to be
converted"

TM*="Name o-f currency"
CALL CLEAR

ON WHICH GOTO 280,330,380
PRINT TM* :: INPUT NM* :: PRINT

PRINT RE* :: INPUT R :: PRINT

PRINT AC* :: INPUT A :: GOSUB 140 :: GOSUB 150

C=A/R :: C=INT(C*100+.5)/100

PRINT A;NM*;
190

PRINT TM* ::

PRINT RE* ::

PRINT AC* ::

C=A*R

PRINT

'= *";C

INPUT NM*

INPUT R ::

INPUT A ::

: : C=INT(C*100+.I

"*":A:"= ":NM*;C

GOSUB 140 :: GOSUB 160

:: PRINT

PRINT

GOSUB 140 : :

D/100

:: GOSUB 140

GOSUB 150

GOSUB 160

GOTO

GOTO 190

GOSUB 140

GOSUB 150

PRINT TAB(12);"End."
END

GOSUB 140

When you run the Converting Currencies Program it asks
whether you want to convert to orfrom the U.S. dollar. It then asks

348 The Last Whole TI-99/4A Book

you to key in the name of the foreign currency (yen, lira, etc.) and
the amount to be converted. After that it displays either:

r

*xx.xx = xx-xx (currency name)

or

xx. xx = (currency name = *xx.xx

And then it returns to the menu to offer you the choice of making
another conversion or exiting the program.

Line by line:

Lines 100-160 are the usual REMark lines and the subroutines.
Lines 170-230 display the program title and the menu.
Lines 240 and 250 assign strings to string variables.
Line 270 tells the computer where to go, based on your selection
from the menu.

Lines 280-300 are used if you convert to U.S. currency, asking
you to key in the name of the foreign currency, the current rate of
exchange, and the amount of foreign currency to be converted.

Line 310 performs the conversion, limiting the display to two
decimal places.

Line 320 displays the result and then returns the menu to the
screen.

Lines 330-350 are used if you want to convertfrom U.S. curren
cy, asking the same set of questions.

Line 360 performs the conversion.
Line 370 displays the result, and line 380 is the END line.

Programs for Business or Profession 349

If you feel that you would like to add a section that can deal with
the English pound (and other currencies with denominations
valued in excess of one dollar), make the following changes and
additions:

235 Z = 0

270 CALL CLEAR::ON WHICH GOTO 275,325,380
275 Z=1 ::GOTO 400

305 IFZ = 1 THEN 360

315 IF Z = 2 THEN 370

325 Z = 2::GOTO400

355 IF Z = 2 THEN 310

365 IFZ=1 THEN 320

400 PRINT 1;" U.S.$ is worth more than other currency''
410 PRINT 2;" U.S. $ worth less than other

currency "::GOSUB 140
420 INPUT "Which? ":W

430 CALL CLEAR

440 IF Z = 1 THEN ON W GOTO 330,280 ELSE ON W GOTO
280,330

With these lines added to the existing program, the computations
and displays will be correct regardless of the relationship of the two
currencies.

INVOICE WRITER

The next program, requires that a line printer be part of the
system and loaded with paper and turned on when it is run,
because it prints an invoice while you're typing, calculating all sub
totals and totals automatically. Figure 13-5 on page 353 is an exam
ple of what the final invoice looks like. When you execute the pro
gram, it immediately prints the letterhead and then asks you to
type in the addressee information, the order number, and the date
of shipment. It then calls for the actual billing information, and then

350 The Last Whole TI-99/4A Book

asks if additional entries are to be made. When all billing items have
been typed in, it asks:

Shipping and handling?
Tax % (if applicable)
Amount prepaid?

INVOICE WRITER PROGRAM

A program that produces printed invoices.

100 REM INVOICE WRITER

110 REM TI EXTENDED BASIC

120 CALL CLEAR

130 GOTO 170

140 PRINT #1:"
„ .. RETURN

150 PRINT " •' :. RETURN

160 FOR X=l TO 8 :: PRINT :: NEXT X :: RETURN
170 GOSUB 150

180 PRINT "This program prints invoiceswhile you are
typing. Be sure that the printer is ready!" ::
GOSUB 150 :: GOSUB 160

190 INPUT "Press >ENTER< ":E$

200 OPEN #1:"RS232"

210 PRINT #1:" ' ABC
COMPANY"

220 PRINT #1:" 101 MAIN
STREET"

230 PRINT #1:" SANTA FE, NM
87501"

(continued)

Programs for Business or Profession 351

240 PRINT #1:" 505 555

1212"

250 GOSUB 140

260 CLOSE #1

270 INPUT "Customer company name? ":CC*
280 INPUT "Attention? ": TA$

290 INPUT "Street or P.O. Box? ":PB*

300 INPUT "City, State, Zip? ":CS*
310 OPEN #1:"RSI

320 PRINT #1

330 PRINT #1:"

INVOICE"
340 PRINT #1:" =========

=="

350 PRINT #1:CC*

360 PRINT #l:"Att.: ";TA$
370 PRINT #1:PB*

380 PRINT #1:CS*

390 GOSUB 140

400 CLOSE #1

410 INPUT "Your order number? ":Y0$

420 INPUT "Date shipped? ":DS$
430 N$="No." :: 0*="0RDERED" :: S*="SHIPPED" :: D*=

"DESCRIPTION" :: U*="UNIT"

440 P$="PRICE" :: UU*="ITEMS PER" :: A*="AMOUNT" :: T$=

"Total= $"

450 OPEN #1:"RS232"

460 PRINT #l:"Your order number:

470 PRINT #l:"Date shipped:
480 GOSUB 140

490 PRINT #1:N«;" ";N$;"
";UU$;" ";A$

500 PRINT #1:0*;" ";S$$" ";P$;" ";U$
510 GOSUB 140 :: GOSUB 140

520 CLOSE #1.

530 INPUT "Number ordered?

540 INPUT "Number shipped?
550 INPUT "Description?
560 INPUT "Unit price?
570 INPUT "Units per item?
580 A=SS*UP :: AA=AA+A

590 A=INT<A*100+.5)/100 :: AA=INT(AA*100+.5)/100

600 OPEN #1:"RS232"

610 PRINT #1:NN;TAB(9);SS!TAB(18) ;DD*«, TAB (34) ;"*" 5UP; TAB
(46);UI;TAB<60);"$";A

620 CLOSE #1

630 PRINT "Do you want to add more items?" :: INPUT
"Y/N ":YN*

640 IF YN$="Y" THEN 530

650 OPEN #1:"RS232"

660 GOSUB 140

670 PRINT #l:"This order, ";T$;AA

(continued)

"; Y0$
"; DS*

;D$;" ••. U*; "

5 P$; ii

H
:NN

•I :SS
n :DD$

*
ii

":UP

:UI

352 The Last Whole TI-99/4A Book

680 GOSUB 140

690 CLOSE #1

700 SH$="Shipping and handling" :: TT$="Sales tax
710 CALL CLEAR

720 INPUT "Shipping and handling? ":SH
730 INPUT "Tax 7. (i-f applicable) ":TT
740 INPUT "Amount prepaid? *":PP
750 TT=AA*<TT/100):: TT=INT(TT*100+.5)/100

760 OPEN #1:"RS232"

770 PRINT #1:SH$;" $";SH
780 PRINT #1:TT*;" *";TT
790 PRINT #1

800 AA=AA+TT+SH :: AA=INT(AA*100+.5)/100
810 PRINT #1:T$;AA
820 PRINT #1:"Amount prepaid *";PP
830 PRINT #1

840 GOSUB 140

850 AA=AA-PP

860 PRINT #1:"Amount due *";AA
870 GOSUB 140

880 PRINT #1

890 PRINT #1:"Thank you."
900 CLOSE #1

910 END

and, once the information has been entered, the computer
calculates the totals and prints the rest of the invoice.

Line by line:

Lines 100-160 are the usual REMark lines and subroutines.
Lines 180 and 190 remind you that the printer must be ready.
The missing space (invoiceswhile) is there because of the
wraparound. You're then asked to press > ENTER < to start the
program.

Lines 200-260 cause the letterhead to be printed. Those lines will,
of course, have to be rewritten and respaced to fit the information
that is applicable to your operation.

Lines 270-300 ask you to key in the customer name, address, etc.
Lines 310-400 print the word INVOICE and the customer data.
Lines 410 and 420 ask for order number and shipping date.
Lines 430 and 440 assign a number of strings to string variables.
Line 450 activates the printer again.

Programs for Business or Profession 353

ABC COMPANY

101 MAIN STREET

SANTA FE, NM 87501
505 555 1212

INVOICE

XYZ Manufacturing Company
Att.: Hector Jones

P.O.Box 1234

Anytown CA 91234

Your order number: 527

Date shipped: 8/25/83

No. . No.

ORDERED SHIPPED

DESCRIPTION UNIT

PRICE

ITEMS

UNIT

PER AMOUNT

25 22

15 12

50 48

WIDGETS

GADGETS

GIMMICKS

* 24.95

* 12.95

$ 99.5

1

1

1

* 548.9

* 155.4

$ 4776

This order, Total= $ 5480.3

Shipping and handling * 12.5
Sales tax $ 369.92

Total=

Amount prepaid

Amount due

Thank you.

$ 5862.72

$ 50

$ 5812.72

Figure 13-5. A sample invoice produced by INVOICE WRITER.

Lines 460 and 470 print the above information.
Lines 490-510 print the column headings and print two dashed

lines.

Lines 530-570 ask you to enter the billing data.
Lines 580 and 590 calculate the subtotal for each item.
Lines 600-620 send the billing data along with the subtotal to the
line printer.

354 The Last Whole TI-99/4A Book

Lines 630 and 640 ask whether or not you want to add more
items to the invoice.

Lines 650-690 print the total of all subtotals.
Line 700 assigns additional strings to string variables.
Lines 720-740 ask for additional data input.
Lines 750, 800, and 850 perform the additional calculations to
take shipping and handling, taxes, and the prepaid amount into
account.

Lines 760-900 cause the results of those calculations to be

printed, and line 910 is the END line.

I might point out that I included all those OPEN #1 and CLOSE
#1 statements to clarify the action of the printer. In practice all but
the first OPEN #1 and the last CLOSE #1 can be eliminated, because
the printer will not pay attention to any program lines that start
with something other than PRINT #1.

A LEDGER SHEET PROGRAM

While we're talking about programs that automatically print a
document, here is another. The Ledger Program prints an eight-
column ledger sheet, where one column is used for job description
and seven columns can be assigned to contain either debit or credit
data. Figure 13-6 on page 358 is a sample of what the final printout
looks like. Here columns 1 and 2 were used for credit data and col

umns 3 through 7 for debit data. In addition to printing the ledger
and the entered data and calculating and printing the various sub
totals and totals, the program creates two separate data files that
remember which column was assigned to which type of data, and
all of the final subtotals and totals. Thus, the next time the program
is run, it starts by displaying the previous balances.

Programs for Business or Profession 355

LEDGER SHEET PROGRAM-

Aprogram thatproduces a multicolumn ledger sheetanda datafile that records previous
balances.

100

no

115

120

130

140

150

180

200

210

REM LEDGER

REM TI EXTENDED BASIC

CALL CLEAR

GOTO 200

PRINT "—"

FOR X=l TO 8 :: PRINT

INPUT "Press >ENTER< '

PRINT #1:"
" :: RETURN

GOSUB 130

PRINT "This program prints a multi-column ledger and
it enters data while you are typing. Be sure that the
printer is ready."
GOSUB 130 :: GOSUB 140 :: GOSUB 150

GOTO 600

CALL CLEAR

PRINT "You have eight columns, one -for job description,
seven -for data entry. " :: PRINT

PRINT "Please decide which columns to use -for credits

and which-for debit entries." :s GOSUB 140 :: GOSUB 150

C*="Cc>l." :: CR$=", credit/debit? (C/D) "
PRINT C$;1;CR$
PRINT C$;2;CR*
PRINT C$;3;CR*
PRINT C*;4;CR$
PRINT C*;5;CR*
PRINT C$;6;CR$

PRINT C$;7;CR$
E$="Expenses= $'

" :: RETURN

: NEXT X :: RETURN

E* :: RETURN

220

230

235

240

250

260

270

280

290

300

310

320

330

370

400

410

420

430

440

450

460

470

480

500

510

520

530

540

550

INPUT CD1$

INPUT CD2*

INPUT CD3$

INPUT CD4$

INPUT CD5$

INPUT CD6$

INPUT CD7*

: R$="Receipts= GT$="Grand

total= $" :

CALL CLEAR

130

PRINT C$;1

PRINT C$;2
PRINT C$;3

FRINT C*';4
PRINT CU»;5
PRINT C$;6
PRINT C$;7

CALL CLEAR

T$="Total= $ B$="Last balance= $'

PRINT "Enter last balances: GOSUB

INPUT "$"

INPUT "$"

INPUT "*"

INPUT "$"

INPUT "*"

INPUT "*"

INPUT "$"

GOTO 2100

PRINT "Make new entries!

INPUT "Job description? ":JD$
PRINT C*;1

PRINT Cf.;2

PRINT C*;2

PRINT C*:4

CI

C2

C3

C4

C5

C6

C7

INPUT

INPUT

INPUT

"*":CC1

"*"sCC2

"4":CC3

INPUT "$":CC4

GOSUB 130

(continued)

356 The Last Whole TI-99/4A Book

560 PRINT C*:5

570 PRINT C*;6

580 PRINT C$;7
590 CALL CLEAR

600 CALL CLEAR

1130

1140 T1=C1+CC1

T5=C5+CC5

INPUT "$":CC5

INPUT "*":CC6

INPUT "$":CC7

GOTO 1100

PRINT "Menu:" :: GOSUB 130

610 PRINT 1;"Enter new balances"
620 PRINT 2;"Use previous balances" :: GOSUB 130
630 INPUT "Which? ":WHICH

640 ON WHICH GOTO 235,2000
1000 OPEN #1:"RS232"

1005 PRINT #1:"DESCRIPTION":TAB(15);C$;1:TAB(23)sC*52;TAB
<31);C*;3;TAB(39);C*;4;TAB(47);C$;5;TAB(55);C$;6;TAB
(63);C*;7

1006 GOSUB 180

1010 PRINT #l:TAB(15);Cl;TAB(23);C2sTAB(31);C3;TAB(39);C4;
TAB(47);C5;TAB(55);C6;TAB(63);C7

1015 GOSUB 180

1020 GOTO 500

1100 CALL CLEAR

1105 PRINT #1:JD$;TAB(15);CC1;TAB(23);CC2;TAB(31);CC3;TAB
(39);CC4:TAB(47);CC5;TAB(55);CC6;TAB(63);CC7

1110 A=A+1

1120 INPUT "Another entry? (Y/N) ":YY*
IF A>1 THEN 1150

T2=C2+CC2

T6=C6+CC6

T4=C4+CC4

1145 IF A<2 THEN 1160

T3=C3+CC3

T7=C7+CC7

T3=T3+CC3

T7=T7+CC7

1150 T1=T1+CC1

T5=T5+CC5

T2=T2+CC2

T6=T6+CC6

1160 IF YY$="N" THEN 1200 ELSE 510
1200

1210

1220

1230

1240

1250

1260

IF CD1*="C" THEN 1310 ELSE 1410

IF CD2$="C" THEN 1320 ELSE 1420

IF CD3$="C" THEN 1330 ELSE 1430

IF CD4$="C" THEN 1340 ELSE 1440

IF CD5$="C" THEN 1350 ELSE 1450

IF CD6$="C'1 THEN 1360 ELSE 1460

IF CD7$="C

1310 GOTO 1210

1320 TT=T1+T2

1330 TT=TT+T3

1340 TT=TT+T4

1350 TT=TT+T5

1360 TT=TT+T6

1370 TT=TT+T7

1410 T1=T1-(T1*2)

1420 T2=T2-(T2*2)

1430 T3=T3-(T3*2)

1440 T4=T4-(T4*2)

1450 T5=T5-(T5*2)

1460 T6=T6-(T6*2)

1470 T7=T7-(T7*2)

THEN 1370 ELSE 1470

GOTO 1220

GOTO 1230

GOTO 1240

GOTO 1250

GOTO 1260

GOTO 1500

: GOTO 1310

. GOTO 1320

. GOTO 1330

GOTO 1340

GOTO 1350

GOTO 1360

GOTO 1370

T4=T4+CC4 :

(continued)

Programs for Business or Profession 357

1500 GOSUB 180 :: GOTO 2200

1510 PRINT #1:T*;TAB(15);T1;TAB(23);T2;TAB(31);T3;TAB(39);
T4;TAB(47);T5:TAB(55);T6;TAB(63);T7 :: PRINT #1

1520 IF TK1 THEN E1=T1 ELSE R1=T1

1530 IF T2<1 THEN E2=T2 ELSE R2=T2
1540 IF T3<1 THEN E3=T3 ELSE R3=T3

1550 IF T4<1 THEN E4=T4 ELSE R4=T4

1560 IF T5<1 THEN E5=T5 ELSE R5=T5

1570 IF T6<1 THEN E6=T6 ELSE R6=T6

1580 IF T7<1 THEN E7=T7 ELSE R7=T7

1590 EE=E1+E2+E3+E4+E5+E6+E7 :: EE=EE-(EE+EE):: RR=R1+R2+
R3+R4+R5+R6+R7

1600 PRINT #1:E$;EE
1601 PRINT #1 :: PRINT #1:R$;RR
1602 PRINT #1 :: PRINT #1:GT$;TT

1605 CLOSE #1

1610 END

2000 OPEN #2:"DSK1.BALANCE"

2010 IF EOF(2)THEN 2030

2020 INPUT #2:T1,T2,T3,T4,T4,T6,T7
2030 CLOSE #2

2040 GOTO 2400

2100 T1=C1 s: T2=C2 :: T3=C3 :: T4=C4 :: T5=C5 :: T6=C6 ::
T7=C7

2110 OPEN #2:"DSK1.BALANCE"

2120 PRINT #2:T1,T2,T3,T4,T5,T6,T7
2130 CLOSE #2

2140 GOTO 1000

2200 OPEN #2:"DSK1.BALANCE"

2210 PRINT #2:T1,T2,T3,T4,T5,T6,T7
2220 CLOSE #2

2230 GOTO 1510

2300 OPEN #3:"DSK1.TOTALS"

2310 PRINT #3:CD1*,CD2*,CD3$,CD4$,CD5$,CD6$,CD7$
2320 CLOSE #3

2330 GOTO 370

2400 OPEN #3:"DSK1.TOTALS"

2410 IF EOF<3)THEN 2430

2420 INPUT #3:CD1*,CD2«,CD3*,CD4$,CD5*,CD6*,CD74
2430 CLOSE #3

2440 C1=T1 :: C2=T2 :: C3=T3 :: C4=T4 :: C5=T5 :: C6=T6 ::

C7=T7

2450 GOTO 1000

D
E
S
C
R
I
P
T
I
O
N

C
o
l
.

1
C
o
l
.

2
C
o
l
.

3
C
o
l
.

4
C
o
l
.

5
C
o
l
.

6
C
o
l
.

7

4
2
8
.
7
6

4
4
.
8
2

3
.
0
5

1
1
.
7
5

2
3
.
5
1

2
9
.
0
7

1
7
.
1
5

J
O
B

A

J
O
B

B

9
7
.
2
3

9
3
.
1
1

8
5
.
3
9

6
8
.
9
4

1
4
.
8
8

4
3
.
6
5

1
7
.
3
4

0

7
6
.
2
1

1
9
.
5
4

6
1
.
9
9

6
6
.
1
2

5
0
.
0
3

3
4
.
9
3

T
o
t
a
l
=

*
6
1
9
.
1

1
9
9
.
1
5

-
6
1
.
5
8

E
x
p
e
n
s
e
s
=

$
4
6
9
.
2
2

R
e
c
e
i
p
t
s
=

*
8
1
8
.
2
5

G
r
a
n
d

t
o
t
a
l
=

*
3
4
9
.
0
3

>
9

.0
9

F
ig

ur
e

13
-6

.A
sa

m
pl

e
pr

in
to

ut
pr

od
uc

ed
by

th
e

le
dg

er
sh

ee
t

pr
og

ra
m

.

•
1

1
9

.2
6

-
1

5
7

.
1

8
-
1

0
2

.
1

1

w 0
1

0
0 H C
O 8. n H I C
D

C
O 5> C
d

o

Programs for Business or Profession 359

Line by line:

Lines 100-170 are the usual.

Line 190 prints the purpose of the program and reminds you that
the printer must be ready.

Line 210 sends the computer to line 540 to display the menu, giv
ing you the choice ofentering a new set ofbalances, such as would
have to be done during the first run, or to use the previous
balances.

Lines 230-430 are used only if this is the first run or if you have
decided to enter a new set of balances and/or redesign the column
layout.

Lines 230 and 240 describe the layout and ask you to decide
which columns to use for what.

Line 250 assigns some strings to string variables.
Lines 260-330 asks you to enter either C (credit) or D (debit) for
each of the seven columns. At the end of line 330 the computer is
sent to line 1240, where the data are transferred to a separate data
file.

Line 340 assigns a group of strings to string variables.
Lines 350-430 ask you to key in balance figures for each of the
seven columns. At the end of line 430 the computer is sent to line
1150 to store the entered data in another separate data file.

Lines 440-530 are used on subsequent runs, asking you to type in
the job descriptions and the associated data to be added to or
deducted from the previous balances.

Lines 540-580 display the menu and send the computer to one of
two line numbers depending on your reply. If it goes to line 1100,
the previously created data files are accessed and the column
categories and last balances are transferred into the computer
RAM.

Line 590 accesses the line printer.
Line 600 prints the first line of the printout, identifying the eight
columns.

Line 620 prints the previous balances or the set of new balances
you have typed in.

Line 640 sends the computer to line 440 to permit you to enter
new data.

Line 660 prints those data.

360 The Last Whole TI-99/4A Book

Line 670 increases the value assigned to A by 1, because a dif
ferent set of calculations is used if more than one set of entries is

made.

Line 680 asks if you want to make another entry.
Line 690 checks the value of A and tells the computer to skip the
next line if it is 1.

Line 700 performs a series of calculations, adding entries to
previous balances.

Line 710 performs the same task as line 690.
Line 720 performs the same task as line 700.
Line 730 checks for your answer with reference to additional en

tries, sending the computer to one of two line numbers to either
enter new data or to go on to the final set of calculations.

Lines 740-800 check on the column designations for each col
umn and send the computer to one of two line numbers in each
case.

Lines 820-870 are used to add data in the credit columns.
Lines 880-940 are used to compute the debit columns.
Line 950 sends the computer to line 1200 to store the new
balances in the data file.

Line 960 prints the new balances for each column.
Lines 970-1040 calculate the total expenses, total receipts, and
the grand total.

Lines 1050-1080 cause the final data to be sent to the line
printer.

Lines 1100-1330 access the two data files (#2 and #3) to either
record or retrieve data.

In practice, you might want to add another print line to identify
the individual columns not only by number, but also by the type of
data for which they are to be used.

ANALYZING ADVERTISING COST
VERSUS RETURN

The next two programs deal with different aspects of advertis
ing. The first (Advertising Cost Program) is designed to determine
the cost per prospect and the return per advertising dollar resulting

Programs for Business or Profession 361

ADVERTISING COST PROGRAM

A program that analyzes cost and return data for seven advertising media.

100

no

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

REM ADVERTISING

REM TI EXTENDED BASIC

CP$="Cost per prospect= *"
SD$="Sales per adv.dollar=$"
RPS*="# of resultant prospects= "
RSS$="$ resultant sales= «"

ZER0*="For 0 prospects/sales type
SP$="$ spent on "
RP$="tt o-f resultant prospects?"
RS*="$ resultant sales?"

CALL CLEAR

GOSUB 1720

PRINT TAB(5);"To advertise or" ::

PRINT TAB(5);"not to advertise?" :
GOSUB 1730 :: GOSUB 1740

CALL CLEAR

"You can select any or all"

1"

PRINT

: GOSUB 1720

PRINTPRINT

PRINT

PRINT 1;
PRINT 2;

PRINT 3;

PRINT 4;
PRINT 5;

PRINT 6:

PRINT 7;

"o-f the -following categories:" GOSUB 1720

NEWSPAPERS"

MAGAZINES"

YELLOW PAGES"

RADIO"

TELEVISION"

DIRECT MAIL"

MISCELLANEOUS"

PRINT 8;" See totals" ::
PRINT 9;" Exit the program"
INPUT "Which? ":WHICH

CALL CLEAR :: ON WHICH GOTO 390,500,610,720,830,940,
1050,1160,1750

:: GOSUB 1720

GOSUB 1720

GOSUB 1720

PRINT ZERO*

PRINT SP$;"newspapers?" :: PRINT
INPUT N :: PRINT

PRINT RP$:! PRINT

INPUT NP :: PRINT

PRINT RS* :: PRINT

INPUT NS :: GOSUB 1720

PN=N/NP :: SN=NS/N

PN=INT(PN*100+.5)/100

PRINT :: PRINT CP$;PN
PRINT SD*;SN :: GOSUB 1720
PRINT ZERO* :: GOSUB 1720

PRINT SP$;"magazines?" :: PRINT
INPUT M :: PRINT

PRINT RP$:: PRINT

INPUT MP :: PRINT

PRINT RS* :: PRINT

GOSUB 1720
.«"? II . ,

SN=INT<SN*100+.5)/100

PRINT

GOSUB 1740 :: GOTO 250

(continued)

362 The Last Whole TI-99/4A Book

INT<SM*1

NT

: GOSUB

PRINT

560 INPUT MS :: GOSUB 1720

570 PM=M/MP y: : SM=MS/M
580 PM=INT<PM*100+.5)/100 :: SM=

590. PRINT :: PRINT CP*;PM :: PRI

600 PRINT SD*;SM :: GOSUB 1720 :
610 PRINT ZERO* :: GOSUB 1720

620 PRINT SP*;"Yellow Pages?" ::
630 INPUT Y :: PRINT

640 PRINT RP* :: PRINT

650 INPUT YP :: PRINT

660 PRINT RS* :: PRINT

670 INPUT YS :: GOSUB 1720

680 PY=Y/YP :: SY=YS/Y

690 PY=INT<PY*100+.5)/100 :: SY=

700 PRINT :: PRINT CP*;PY :: PRI
710 PRINT SD*;SY :: GOSUB 1720 :
720 PRINT ZERO* :: GOSUB 1720

00+..5) /100

1740 :: GOTO

730 PRINT SP*;"radio?" PRINT

740 INPUT R :: PRINT

750 PRINT RP* :: PRINT

760 INPUT RP :: PRINT

770 PRINT RS* :: PRINT

780 INPUT RS :: GOSUB 1720

790 PR=R/RP :: SR=RS/R

800 PR=INT<PR*100+.5)/100 :: SR=

810 PRINT :: PRINT CP*;PR :: PRI

820 PRINT SD*;SR :: GOSUB 1720 :
830 PRINT ZERO* :: GOSUB 1720

840 PRINT SP*;"television?"
850 INPUT T :: PRINT

860 PRINT RP* :: PRINT

INT(SY*1

NT

: GOSUB

INT<SR*1

NT

: GOSUB

PRINT

870 INPUT TP

880 PRINT RS*

890 INPUT TS

900 PT=T/TP :

910 PT=INT(PT* 100+.5)/100

920 PRINT :: PRINT CP*;PT

930 PRINT SD*;ST :: GOSUB 1720

940 PRINT ZERO* :: GOSUB 1720

950 PRINT SP*;"direct mail?" :
960 INPUT D :: PRINT

970 PRINT RP* :: PRINT

PRINT

: PRINT

GOSUB 1720

ST=TS/T

00+.5)/100

1740 :: GOTO

00+.5)/100

1740 :: GOTO

ST=

PRI

INT(ST*1

NT

: GOSUB

PRINT

00+.5)/100

1740 :: GOTO

980 INPUT DP :

990 PRINT RS*

1000 INPUT DS

1010 PD=D/DP :

PRINT

PRINT

GOSUB 1720

SD=DS/D

250

250

250

1020 PD=INT(PD*100+.5)/100 :: SD=INT(SD*

1030 PRINT :: PRINT CP*;PD :: PRINT

1040 PRINT SD*;SD :: GOSUB 1720 :: GOSUB
1050 PRINT ZERO* :: GOSUB 1720

1060 PRINT SP*;"miscellaneous?" :: PRINT
1070 INPUT I :: PRINT

1080 PRINT RP* :: PRINT

100+.5)/100

1740 :: GOTO 250

(continued)

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

Programs for Business or Profession 363

INPUT IP !

PRINT RS*

INPUT IS :

II=I/IP ::

: PRINT

:: PRINT

: GOSUB 1720

SI=IS/I

II=INT(II*100+.5)/100
PRINT :: PRINT CP*;II
PRINT SD*;SI :: GOSUB 1720
TT=N+M+Y+R+T+D+I

PP=NP+MP+YP+RP+TP+DP+IP

SS=NS+MS+YS+RS+TS+DS+IS
PRINT "Total cost= *";TT :
PRINT RP$;PP :: PRINT
PRINT RS$;SS :: GOSUB
QQ=PP :: WW=SS

PP=TT/PP :: SS=SS/TT

PP=INT<PP*100+.5)/100
PRINT CP*;PP :: PRINT
PRINT SD*;SS :: GOSUB 1720
INPUT "Printout? (Y/N) ":YN*

IF YN*="Y" THEN 1290 ELSE 17
OPEN #1:"RS232"

SI=INT(SI*100+.5)/100
PRINT

GOSUB 1740 :: GOTO 250

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT ttl

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT #1

PRINT

1720

SS=INT(SS*100+.5>/100

50

SP*;"Newspapers= *";N
RPS*;NP
RSS*;NS
CP*;PN

SD*;SN :: GOSUB 1710
SP*;"Magazines= *";M
RPS*;MP

RSS*;MS
CP*;PM
SD*;SM :: GOSUB 1710

SP*;"Yellow pages= *";Y
RPS*;YP

RSS*;YS
CP*;PY

SD*;SY :: GOSUB 1710
SP*;"Radio= *";R
RPS*;RP

RSS*;RS
CP*;PR
SD*;SR :: GOSUB 1710
SP*;"Television= *";T
RPS*;TP
RSS*;TS
CP*;PT
SD*;ST :: GOSUB 1710
SP*;"Direct mail= *";D
RPS*;DP

RSS*;DS

(continued)

364 The Last Whole TI-99/4A Book

1580 PRINT #1:CP*;PD
1590 PRINT #1:SD*;SD :: GOSUB 1710
1600 PRINT #l:SP*;"Miscellaneous=*";I
1610 PRINT #1:RPS*;IP
1620 PRINT #1:RSS*;IS

1630 PRINT #1:CP*;II

1640 PRINT #1:SD*;SI :: GOSUB 1710 :: GOSUB 1710
1650 PRINT #1:"Total cost= *";TT
1660 PRINT #1:RPS*;QQ
1670 PRINT #1':RSS*;WW
1680 PRINT #1:CP*;PP

1690 PRINT ttl:SD*;SS :: GOSUB 1710
1700 CLOSE #1 :: GOTO 1750

1710 PRINT #1:" " :: RETURN

1720 PRINT " " :: RETURN

1730 FOR X=l TO 8 :: PRINT :: NEXT X :: RETURN

1740 INPUT "Press >ENTER< ":E* :: RETURN

1750 GOSUB 1720 :: PRINT TAB(12);"End." :: GOSUB 1720 ::
GOSUB 1730 :: END

from advertising in seven categories of media. The program
assumes that you have a means of determining which advertising
medium is responsible for a given prospect or sale. When it is ac
tivated, it displays:

V.

To advertise or

not to advertise?

You can select any or all
of the following categories:

1 NEWSPAPER

£ MAGAZINES

3 YELLOW PASES

4 RADIO

5 TELEVISION

6 DIRECT MAIL

7 MISCELLANEOUS

8 See totals

9 Exit the program

Which?

Programs for Business or Profession 365

After a category has been selected, it asks you to key in the amount
spent for advertising in that category, the number of prospects, and
the amount of resulting sales. It then displays the cost per prospect
and the sales per advertising dollar. When all data have been
entered, it displays the total amounts and asks if you want the
results printed. Figure 13-7 shows a sample printout from this
program.

* spent on Newspapers^ * 1438.22
* o-f resultant prospects= 63
* resultant sales= * 3784.66
Cost per prospect= * 22.83
Sales per adv.dollar=* 2.63

* spent on Magazines= * 4285.76
* of resultant prospects= 13
* resultant sales= * 12870.55
Cost per prospect= * 329.67
Sales per adv.dollar=* 3

* spent on Yellow pages= * 175
* o-f resultant prospects= 22
* resultant sales= * 438.75
Cost per prospect= * 7.95
Sales per adv.dollar=* 2.51

* spent on Radio= * 2000
* o-f resultant prospects= 21
* resultant sales= * 1547.86
Cost per prospect= * 95.24
Sales per adv.dollar=* .77

* spent on Television= * 3279.45
* o-f resultant prospects= 176
* resultant sales= * 6422.11

Cost per prospect= * 18.63
Sales per adv.dollar=* 1.96

* spent on Direct mail= $ 175.22
* of resultant prospects= 5
* resultant sales= * 288.53
Cost per prospect= * 35.04
Sales per adv.dollar=* 1.65

(continued)

366 The Last Whole TI-99/4A Book

* spent on Miscellaneous3* 50
* of resultant prospects^ 2
* resultant sales= * 150

Cost per prospect= * 25
Sales per adv.dollar=* 3

Total cost= * 11403.65

of resultant prospects= 302
* resultant sales= * 25502.46

Cost per prospect= * 37.76
Sales per adv.dollar=* 2.24

Figure 13-7. A sample printout from the advertising program.

Line by line:

Lines 100 and 110 are REMarks.

Lines 120-190 assign a number offrequently used strings to string
variables.

Lines 200-370 display the program title and the menu.
Line 380sends the computer to one ofnine line numbers, depending
on your selection.

Lines 390-450 ask you to key in the data for newspaper
advertising.

Line 460 performs the calculations.
Lines 470-490 display the results and then send the computer
back to line 250 to display the menu for the next selection.

Lines 500-1150 are repetitions of the above for the other six
categories.

Lines 1160-1180 perform the calculations that produce the final
totals.

Lines 1190-1260 display the final totals.
Line 1270 asks if you want the data sent to the line printer.
Line 1280sends the computer to one oftwo line numbers, depending
on your answer.

Lines 1290-1700 send the data for all seven categories and the
totals to the line printer.

Lines 1710-1740 are four frequently used subroutines.
Line 1750 is the END line.

Programs for Business or Profession 367

ANALYZING DIRECT MAIL
ADVERTISING

The second advertising program analyzes data associated with
direct mail. When provided with the necessary input data, it deter
mines the number of sales that must be made to break even, the
percent return needed to break even, and the profit or loss based on
actual sales. The program is titled Direct Mail Cost Program.

DIRECT MAIL COST PROGRAM

This program analyzes direct mail advertising data.

100

no

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

REM DIRECT MAIL

REM TI EXTENDED BASIC
CALL CLEAR

GOSUB 690

PRINT "This program determines the cost
associated withdirect mail advertising"
GOSUB 700 :: GOSUB 710
CALL CLEAR

PRINT "Cost of mailing list?" :: INPUT '
PRINT "Cost of mailing piece?" :: INPUT
PRINT "Multiple use OK? (Y/N)" :: INPUT
IF YN*="N" THEN 240

PRINT "Number of mailings,(1ist)?" :: INPUT NM
PRINT "Number of uses (mail piece)?" :: INPUT NU
ML=ML/NM :: MP=MP/NU

PRINT "Number of names on list?" :: INPUT A
AD=A

PRINT

PRINT

PRINT

factors

:: GOSUB 690

"Postage (each piece)?"
"List price per item?"
"Mfg. cost per item?" :

CALL CLEAR

PP=P-I :: MU=(PP/I)*100
GOSUB 690

PRINT "Profit per item=
PRINT "Markup=
GOSUB 700 :: GOSUB 710
CALL CLEAR

PRINT "Mailing/handling per item'
PRINT "Mailing/handling charge?"
MH=MH-MHC

AB=(A*M)+ML+MP :: AA=AB/(PP-MH):: Q=(AA/AD)*100
AA=INT(AA*10+.5)/10 :: Q=INT(0*10+.5)/10

*":ML

"*":MP

YN$

s INPUT "$":A

INPUT "$":P

INPUT "*":I

MU=INT(MU*10+.5)/10

$";PP :: PRINT
'^MU;""/." :: GOSUB 690

: INPUT "*":MH

INPUT "$":MHC

(continued)

368 The Last Whole TI-99/4A Book

400 CALL CLEAR

410 PRINT "No.sales to break even=";AA :: PRINT
420 PRINT "7. return to break even=";Q; "7." :: GOSUB 700
430 PRINT "Number of sales?" :: INPUT NS

440 EX=ML+(A*M)+MP+(NS*MH):: EX=INT(EX*100+.5)/100

450 CALL CLEAR

460 PRINT "Total mailing expenses= " :: PRINT :: PRINT TAB
(15);"*":EX :: GOSUB 6

470 NR=(NS*PP)-EX

480 PRINT "Net profit/loss=" :: PRINT :: PRINT TAB(15);"$"
;NR

490 GOSUB 690 :: GOSUB 700 :: GOSUB 710

500 CALL CLEAR

510 INPUT "Printout? (Y/N) ":NY$

520 IF NY$="Y" THEN 560

530 CALL CLEAR

540 INPUT "Another run? (Y/N) ":YY$

550 IF YY$="N" THEN 720 ELSE 160

560' OPEN #1:"RS232"

570 PRINT #l:"Item price= $":P
580 PRINT #l:"Item cost= $";I
590 PRINT #1:"Item profit= *";PP
600 PRINT ttl:"Markup= ";MU;""/."
610 PRINT #1:"Break-even sales= ";AA
620

630

PRINT

PRINT

#1: "Break-even 7. return ";Q;"7."

640 PRINT #1:"Sales made= ";NS
650 PRINT #1: "Mail/hand'ling= $";EX
660 PRINT #l:"Net prof it/1oss= $";NR
670 CLOSE #1

680 GOTO 720

690 PRINT " _ ____ _ _ " . • DCTI IBM

700 FOR X==1 TO 8 :: PRINT :: NEXT X :: RETURN
710 INPUT "Press >ENTER< ":E* :: RETURN

720 CALL CLEAR :: GOSUB 690 :: PRINT TAB(12)5"End." ::
GOSUB 690 : : GOSUB 700 :: END

When it is run it first asks you to type in the cost of the mailing
list and the cost of producing the mailing piece including envelopes.
It then wants to know if the mailing list can be used for more than
one mailing and if you anticipate using the mailing piece for more
than one mailing. If the answer to either question is yes, it asks the
number of anticipated uses of the list and of the mailing piece. Next
it needs to know the number of names on the list. After that you're
asked to enter the postage for each individual mailing piece, the list
price of the item being advertised, and the manufacturing cost of
that item. It then displays the profit per item and the markup

Programs for Business or Profession 369

percentage. Next you must enter the mailing and handling cost to
you for shipping theitem, and themailing andhandling charge that
will be added to the list price.

Once all these data have been entered, it calculates the number
ofsales and the percent return needed to break even. Then you're
asked to key in theactual number ofresulting sales. The program
then calculates the total mailing and shipping expenses and the
profit orloss based onactual sales. Finally, you'reaskedifyouwant
the resulting data printed. Figure 13-8 shows a sample printout.

Item price= . $ 24.95
Item cost= * 13.11

Item profit= $ 11.84
Markup= 90.3 V.
Break-even sales= 42.9
Break-even "/. return 4.3 7.

Sales made- 57

Mail/handling= * 492.08
Net profit/loss= * 182.8

Figure 13-8. Asample printout from the direct mail program.

Line by line:

Lines 100 and 110 are REMarks.
Lines 120-160 display the purpose of the program.
Lines 170-190 display the first three questions.
Line 200 tells the computerto skip the next three lines ifmultiple
use of the list or mailing piece is not anticipated.

Lines 210-230 are used ifmultiple use is anticipated, performing
the necessary calculations in line 230.

Lines 240-310 display an additional set of questions. Line 300
then performs a series of calculations to produce interim totals.

Lines 320 and 330 display those interim totals.
Lines 350 and 360 ask two more questions.

370 The Last Whole TI-99/4A Book

Lines 370-390 perform the calculations needed to determine the
breakeven figures.

Lines 410 and 420 display the breakeven figures.
Line 430 asks you to key in the number of actual sales.
Lines 440 and 470 perform another series of calculations.
Lines 460 and 480 display the results of those calculations.
Lines 510 and 520 ask if you want the results printed, and line
540 asks if you want to run the program again with different
variables.

Lines 560-670 produce the printout.
Lines 690-710 are three subroutines, and line 720 is the END
line.

INTRODUCING A NEW PRODUCT

Developing and introducing a new product is another task in
which a reasonably comprehensive computer program can deter
mine whether or not there is a chance of making a profit. The pro
gram, New Product Projection reproduced here should work for
most types ofproducts, though not all of the items being considered
may be applicable in each case, and other considerations may have
to be added.

NEW PRODUCT PROJECTION PROGRAM

This program analyzes the data involved in the introduction and marketing of a new
product.

100 REM INTRODUCING A NEW PRODUCT

110 REM TI EXTENDED BASIC

120 CALL CLEAR

130 GOTO 170

140 PRINT "

150 FOR X=l TO 8 :: PRINT

160 INPUT "Press >ENTER<

170 I$="Fee paid inventor"
180 M*="Cost of redesign"
190 SM*="Cost,machinery"
200 T$="Months to prepare"
210 RM*="Raw material/unit"

220 TU*="Hours to make 1 unit"

.. . . RETURN

: NEXT X :: RETURN

E* :: RETURN

(continued)

Programs for Business or Profession 371

L*="Labor * (hour)"

0M*="0verhead/month"
AB*="Adverti sing/month"
PB*="Publicity/month"
SC*="Shipping cost/unit"
SP*="Selling price/unit"
AS*="Anticipated sales, "
Sl*="year 1 " :: S2*="year 2
="year 4 " :: S5*="year 5 "
CU*="Cost per unit
PU*="Profit per unit "
TP*="Total profit
IC*="Cost amortized "

GS$="Gross sales: "

CM*="Mfr.cost

RP*="Royalty 7. rate "
PL*="Profit/loss

TD$="Total to date
LL*="

S3*="year 3 : S4*

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

GOSUB 140

PRINT "This program calculates the costs and profit/
loss data associated with the develop-ment of a new
product."

GOSUB 140 :: GOSUB 150 :: INPUT "Printout"? ":YY* ::
PRINT :: PRINT

CALL CLEAR

PRINT "Product description" :: INPUT DP*
PRINT 1$

PRINT MS

PRINT SM*

PRINT T*

GOSUB 140

PRINT RM*

PRINT TU*

PRINT L*

PRINT 0M$

GOSUB 140

PRINT AB$

PRINT PB$

PRINT SC$

PRINT SP$

GOSUB 140

PRINT RP* ::

GOSUB 140

FRINT AS$;S1$
PRINT AS*;S2*
PRINT AS*;S3*
PRINT AS*;S4*
PRINT AS*;S5*
CALL CLEAR

IC=I+M+SM+(T*OM)

INPUT "*":I

INPUT "*":M

INPUT "*":SM

INPUT T

INPUT "*":RM

INPUT TU

INPUT "$":L

INPUT "*":0M

INPUT "*":AB

INPUT "$":PB

INPUT "*":SC

INPUT "*":SP

INPUT "7.":RP

INPUT SI

INPUT S2

INPUT S3

INPUT 54

INPUT S5

CALL CLEAR

(continued)

372 The Last Whole TI-99/4A Book

700 CU=(IC/Sl)+RM+(TU*L>+((0M*12)/SI)+(((AB+PB)*12)/SI)+SC
710 CU=CU-(SP*(RP/100)):: PU=SP-CU

720 GS1=SP*S1

730 GS2=SP*S2

740 GS3=SP*S3
750 GS4=SP*S4

760 GS5=SP*S5

770 PRINT DP*

780 PRINT I*;"
790 PRINT M*;"

800 PRINT SM*;
810 PRINT T*;"

820 PRINT RM*; "
830 PRINT TU*;" ";TU;" hours"
840 PRINT L*;" *";L
850 PRINT OM*;" *";0M :: GOSUB 140
860 PRINT AB*;" *";AB
870 PRINT PB*;" *"sPB
880 PRINT SC*;" *";SC
890 PRINT SP*;" *";SP :: GOSUB 140

CLEAR

900 PRINT RP*;RP;"7." :: GOSUB
910 PRINT AS*;" ";S1*;" ";S1
920 PRINT AS*;" ";S2*;" ";S2
930 PRINT AS*;" ";S3*;" ";S3
940 PRINT AS*;" ";S4*;" ";S4
950 PRINT AS*;" ";S5*;" ";S5 i

CALL CLEAR

960 PRINT IC*;" ";S1*;" *"
970 CU=INT(CU*100+.5>/100

980 PRINT GS*;" ";S1*;" *"
990 PRINT CM*;" ";S1*;" *"

: CM1=CU*S1 ::

: CM2=CU*S2 ::

: CM3=CU*S3 ::
: CM4=CU*S4 ::

: CM5=CU*S5 :!

: GOSUB 140

*"; I
*";M
*";SM
";T;" months"
*";RM

PL1=GS1-IC-CM1

PL2=GS2-CM2 : -.

PL3=GS3-CM3 ::

PL4=GS4-CM4 ::

PL5=GS5-CM5 :s

TTD2=PL1+PL2

TTD3=TTD2+PL3
TTD4=TTD3+PL4

TTD5=TTD4+PL5

GOSUB 140

GOSUB 160 :: CALL

140

GOSUB 140 GOSUB 160

;IC

1000 PRINT PL*;" ";S1*;" *";PL1 :
:: CALL CLEAR

1010 PRINT GS*;" ";S2*;" *";GS2
1020 PRINT CM*;" ";S2*;" *";CM2
1030 PRINT PL*;" ";S2*;" *";PL2
1040 PRINT TD*;" ";S2*;" *";TTD2

:: CALL CLEAR

1050 PRINT GS*;" ";S3*;"
1060 PRINT CM*;" ";S3*;"
1070 PRINT PL*;" ";S3*;"
1080 PRINT TD*;" ";S3*;"

:: CALL CLEAR

1090 PRINT GS*;" ";S4*;" *";GS4
1100 PRINT CM*;" ";S4*;" *";CM4
1110 PRINT PL*;" ";S4*;" *";PL4
1120 PRINT TD*;" ";S4*;" *";TTD4

:: CALL CLEAR

1130 PRINT GS*;" ";S5*;" *";GS5
1140 PRINT CM*;" ";S5*;" *";CM5
1150 PRINT PL*;" ";S5*;" *";PL5

*"

*"

GS3

CMS

*";PL3
*";TTD3

GOSUB 140

: PU=INT(PU*100+.5>/100

GS1

CM1

GOSUB 140 GOSUB 160

GOSUB 140 GOSUB 160

GOSUB 140 GOSUB 160

GOSUB 140 :: GOSUB 160

(continued)

C
O

e
oaoC
O

0.«uotoavBtona.oo

os
0

1
-
1

•b
!!

IDen
,-%

2
*

*
*

*
3-

ts
»

_i
_i

_j
_i

^
-J

-
i

_
i

-
j

_
j

_i
..

..
..

cq
"

••
*-«

T
-\

»H
»-,

3

2
*

o
2

t
t

K
»-

a
^

!=
z

z
z

z
_

Z
rH

l-H
1-4

H
,.

5;
M

cc
a:

cc
a:

..
8

•
£

a.
a.

a.
a.

_
o

.
.
.
.
.
.
.
.

~.
C

••
••

••
•>

••
T3

"
2

f-J
m

"t-
in

iS
"

ro
h

h
h

N
M

IN
Q

tO
fO

10
Q

<*•
<fr

«*
Q

(iT
in

m
q

r

£
~<

_J
=

in
tn

tn
w

tn
tn

_iw
tD

U
o

.(D
u

£
L

h
a
u

iii-iD
u

5
:P

tD
u

5
.h

~
Q

«J
U1

l.
ar.

ar.
ar-

ar.
>

r._
|

an
ar.

>
r.

ar.
ar.

ar.
ar.

ar.
ar.

in
«r.

aa.
ar.

it.
,r.

»
.

ar.
...

ar.
ar

P
J

H
HJ

»
£

3
:
:

=
:
:
.
.
:

=
s

's
s

s
s

s
s

s
s

s
=

s
s

r
s

s
s

-
"

•-tn
r;

+•»
o

»
#

•
#

#
#

*
-
«

#
»

#
»

*
#

*
»

#
«

*
#

#
«

#
*

»
»

#
#

#
»

#
~

"n
j

*
n

^
m

-
8

2
£

.
£

-^
£

69
S°

^
fc

*
£

Si£
£

2
*

*
*

*
S

*
*

*
*

*
*

*
*

»
»

»
»

»
*

«
*"

r-2
~

—
m

=
^

?
o

<
e

a.
tn

en
*-•

c-4
to

«3-
in

>-«
*-.

<-•
*-<

-th
in

n
n

m
to

to
to

to
<

t<
r«

t*
tw

in
in

in
h-

•"O
g:»-«

e
«

.-
™

i-
_i

«.
.»

....*
„
.

tn
tn

tn
tn

tn
a:

tn
w

tn
tn

tn
tn

tn
tn

tn
tn

tn
tn

tn
tn

tn
tn

tn
tn

tn
tn

z
V

*
"

Q
.

•»•
"

•
-

t~
S

ar.
ar.I

=
S

=
=

ir.
ir.

i>
.

ar.
ar.Q

_
ar.

ar.
ar.

ar.
art

ar.
ar.

ar.
ar.

ar.
ar.

ar
ar

ar
ar.

ar
ar.

ar.
ar.

ar
h-i

\n
=

=
#

.r.
**

=
=

#
#

#
#

#
:
i

=
r
r

:
=

:
:

=
=
r
r
s
:
:

=
=

:
':

:
':

=
s
-
'

iv-
rj

-
IllIN

»
=

=
:

r
:

:
=

=
=

=
=

=
=

.,=
s
r
s
:
s
:
:
s
:
:
s
s
:
:

CL
m

—
*!•

r
J

•
-

•*•
-

•*•
•*•

_
ar.

a
n

ar.
am

ar.
ir>

«r.
ar.

ar.
ar.

*r>
w

w
,

ar>
ar.

in
ar.

ar.
ar.

ar
ar.

ar
ar.

ar.
ar

ar.
ar

ar.
ar

ar.
ar

=
m

Q
.«

>
ttZ

j»
J
E

D
»

E
J
(
n

fflU
D

L
J
O

)
in

U
)
W

(
flJ

U
J
W

Z
J
tD

E
J
Q

(
n

z
J
D

[
D

E
J
Q

(
D

Z
J
Q

•»:
C

D
H

Z
D

)
h

J
I
T

I
-
J
O

J
<

I
L

W
I
)
)
J
<

[
<

r
€

<
r
c
:
jH

J
lD

U
L

tD
U

ih
(
D

L
)
S

.h
(
D

U
ih

Q
u

i.h
cc

q
?

^
^
w

J
I
^
^
^
-
^
-
J
L

.-
-
-
-
-
-
I
!
-
-
-
-
J
L

.^
-

"
^

^
^

"
<LO

\-i
-

H
r
t
r
t
H

H
r
l
r
t
r
l
r
t
H

H
T

H
r
l
r
t
H

r
l
H

r
t
r
t
t
H

r
t
i
H

r
l
H

r
l
H

H
r
l
r
t
r
t
i
H

r
t
H

r
l
H

r
l
H

T
H

r
t
r
l
r
t
r
l
H

H
H

l
l
l
I
l
l

t^
,!:tttttttl"

,"
l_

1
_

t-|_
,-h

|-,'h
|-|-|-t-i-i-^

i-^
H

i-i-i-i-H
h

h
i-i-h

h
i-h

h
iiiU

ffl
Z

>
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

2
2

2
i
n

_
|
D

M
IJ

r
H

M
r
H

^
r
H

r
H

M
r
H

r
H

I-ll-IM
M

r
H

I-ir
M

M
M

M
r
H

M
r
H

M
r
H

I-a
M

O
.^

O
k
l
L

i
l
.i

L
i
X

a
.l

i
Q

.i
l
i
L

Q
.a

-
G

.C
L

i
i
u

.k
i
i
.1

^

9
?
S
2
2
°
f
i
S
2
0
0
0
0
0
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
'
-
'
O
o

^
^

,h
^.
w
N

IN
CN
M
N
N

CM
N
N

IO
tO

tO
tO

Ff
IO

tO
tO

tO
JO
^

«^
*f

«4-
«*

^T
<^

<t
>*

-4"
in

in
iTiW

in
h

LH
h
K

If)
-^

<J
>0

>C

374 The Last Whole TI-99/4A Book

During execution the program presents you with a checklist of
more than a dozen subjects for which data may have to be entered
in order to produce the desired information:

Fee paid to inventor?
Cost of redesign for production?
Cost of special machinery?
Months to prepare for production?
Raw material cost per unit?-
Hours to manufacture one unit?

Labor cost per hour?
Overhead per month?
Advertising cost per month?
Publicity cost per month?
Shipping cost per unit?
Selling price per unit?
Royalty percentage paid inventory?
Anticipated sales for each of the first
five years?

-N

Given these data, the program shows the gross sales, manufactur
ing cost, profit or loss, and accumulated profit or loss for each of 5
year's, the assumption being that the initial expense of acquisition
and preparation is amortized during the first year. A sample
printout appears in Figure 13-9.

PRODUCT A/10

Fee paid inventor * 500
Cost of redesign * 700
Cost,machinery * 2250
Months to prepare 6 months

Raw material/unit * 25.55

Hours to make 1 unit 3.5 hours

Labor * (hour) * 18

Overhead/month * 3500

(continued)

Programs for Business or Profession 375

Advertising/month * 1500
Publicity/month * 500

Shipping cost/unit * 5
Selling price/unit * 175

Anticipated sal es, year 1 * 1000

Anticipated sal es, year 2 * 2000

Anticipated sal es, year 3 * 2500

Anticipated sal es, year 4 * 2500

Anticipated sal es, year 5 * 2000

Cost amortised year 1 * 24450

Gross sales: year 1 * 175000

M-fr.cost year 1 * 166500

Profit/loss year 1 *--15950

Gross sales: year 2 * 350000

M-fr.cost year 2 * 333000

Pro-fit/loss year J- * 17000

Total to date year * 1050

Gross sales: year 3 * 437500

M-fr.cost year 3 * 416250

Pro-fit/loss year 3 * 21250

Total to date year 3 * 22300

Gross sales: year 4 * 437500

M-fr.cost year 4 * 416250

Profit/loss year 4 * 21250

Total to date year 4 * 43550

Gross sales: year 5 * 350000

Mfr.cost year 5 * 333000

Profit/loss year 5 * 17000

Total to date year 5 * 60550

Figure 13-9. A printout showing new product introduction data.

Line by line:

Lines 100 and 110 are REMarks.

Line 130 causes the computer to skip the usual three subroutines.
Lines 170-400 assign a series of strings to string variables.
Lines 410-440 place the purpose of the program into display and
ask if you want the data sent to the line printer.

376 The Last Whole TI-99/4A Book

Lines 450-670 are the section of the program that asks you to key
in the variable data.

Line 690 calculates the cost of acquisition and preparation.
Lines 700 and 710 calculate the cost of manufacturing one unit,
assigning it to the numeric variable CU, and the profit margin per
unit, assigning it to the variable PU.

Lines 720-760 calculate the gross sales, the total manufacturing
cost, the profit or loss, and the total to date for each of 5 years.

Lines 770-950 once more display your input data to make sure
there are no errors.

Line 960 displays the total acquisition and preparation expense,
which is to be amortized during the first year of production and
sales.

Line 970 rounds the values assigned to CU and PU to two decimal
positions.

Lines 980-1160 display the results for each of 5 years.
Line 1170 asks if you want the data printed.
Lines 1180-1620 send the input data as well as the results to the
line printer.

Line 1630 is the END line.

BUSINESS PROFIT/LOSS ANALYSIS

The last program in this chapter deals with the costs associated
with running a profitable business. It, too, starts with several
lengthy checklists designed to remind you to enter all the cost items
that represent every type of business expense. It then calculates the
amount of gross business that must be achieved during a given
period in order to break even or produce a profit. Next is uses actual
sales figures to determine the true profit or loss (before taxes) for
that given time period.

Included in the Business Analysis Program is a subprogram that
determines the straight-line depreciation schedule for major capital
expenditures, displaying the annual depreciation, the accumulated
depreciation, and the remaining book value for any year within the
period of time of the depreciation schedule.

Programs for Business or Profession 377

BUSINESS ANALYSIS PROGRAM

A program that deals with potential profit or loss from operating a business.

100

110

120

130

140

150

160

170

180

REM BUSINESS ANALYSIS
REM TI EXTENDED BASIC

CALL CLEAR

GOTO 170

PRINT "

FOR X=l TO 8 :: PRINT

>ENTER< ":E*INPUT "Press

GOSUB 140

PRINT "This program analyzes business
profitability." :: GOSUB 140 :: GOSUB 150 ::
:: CALL CLEAR

PRINT "The program includes a
that displays the straight-line
schedule -for capital outlays."
GOSUB 140 :: GOSUB 150 :: GOSUB 160

PRINT 1;" Main program"
PRINT 2;" Depreciation schedule" ::
150

":WHICH

250,680
monthly overhead
rent?" :: INPUT 0

"Electricity?" :: INPUT E
"Heating/airconditioning?" :: INPUT
"Telephone (base rate)?" :: INPUT T

NEXT X

•" : : RETURN

RETURN

RETURN.

GOSUB 160

190 separate subprogram
depreciation

:: CALL CLEAR

GOSUB 140 :: GOSUB

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

INPUT "Which?

ON WHICH GOTO

PRINT "Direct

"Office

CALL CLEAR

GOSUB 140

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

GOSUB

160 :

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

GOSUB

PRINT

OS

PRINT

GOSUB

PRINT

PRINT

PRINT

PRINT

"Maintenance/cleaning/repair?"
"Equipment rentals?" :: INPUT
"Miscellaneous?" :: INPUT M

140

OT=E+0+H+MR+T+M+ER

PRINT "Total fixed costs= *";0T :: GOSUB 140 :: GOSUB
CALL CLEAR

"Monthly salaries:" :: GOSUB 140
"Owner or executive(s)?" :: INPUT PO

"Office manager?" :: INPUT OM
"Executive secretary?" :: INPUT EX
"Sales personnel?" :: INPUT SP
"Other of-fice staff?" :: INPUT OP

"Part-time help?" :: INPUT PH
140 :: 0S=0M+EX+SP+0P+PH+P0

"Monthly salaries= *";0S :: GOSUB 140 :: 00=0T+

ER

INPUT MR

"Fixed overhead= *"j;00
140 :: GOSUB 160 :: CALL CLEAR

"Variable costs per month:" ::
"Materials?" :: INPUT MP

"Telephone (exc.base)?" :: INPUT
"Advertsing?" :: INPUT AC

GOSUB 140

LD

(continued)

378 The Last Whole TI-99/4A Book

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

PRINT "Publicity?" :: INPUT PC
PRINT "Entertainment?" :: INPUT EN

PRINT "Postage/shipping?" :: INPUT PS
PRINT "Miscellaneous?" :: INPUT PM ::

LD+PS+PM :: GOSUB 140

PRINT "Total variable costs= *"|iZZ ::
ZZ+OT+OS

PRINT "Total, this month= *"",WW :: GOSUB 140 :: GOSUB
160 :: CALL CLEAR

PRINT "Average markup (job/sale?" :: INPUT MU
PRINT "Sales commission 7." :: INPUT SC

GS=WW+(WW*(MU/100>)+<GS*(SC/100))

NS=GS-(GS*(MU/100)):: NS=GS~NS :: NS=NS-(GS*(SC/100))

Z Z=PC+MP+AC+EN+

GOSUB 140 :: WW=

NS=INT(NS*100+.5)/100

CLEAR :: GOSUB 140

PRINT "Gross needed=

PR=GS-WW-GS*(SC/100) :

PRINT "Profit=

150 :: GOSUB 160 :: CALL CLEAR

PRINT "Gross sales,this month'
: PRINT

MM=SM-GS :: PRINT

140 :: GOSUB 150

INPUT "Another run?

CALL CLEAR :: GOTO

PRINT "Depreciation

GS=INT(GS*100+. 5)/100 CALL

*";GS :: PRINT

PR=INT(PR*100+.5>/100

*";PR :s GOSUB 140 :: GOSUB

INPUT SM :s PRINT

Above break/even= *".;MM :: GOSUB
GOSUB 160 :: CALL CLEAR

(Y/N) ":Y* :: IF Y*="Y" THEN

210 ELSE END

chedule." :: GOSUB 140

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

"Office bldg./factory?"
"Interior decoration?"

INPUT BLD

INPUT ID

"Furnishings?" :
"Typewriters?" :
"Computers?" ::
"Machinery?" ::
"Mi seel 1aneous?'

IC=ID+F+TW+CH+MA+BLD+MI

GOSUB 140 :: PRINT "Total purchase cost=
PRINT :: PRINT :: PRINT "To be amortised

GOSUB 140

: INPUT F

: INPUT TW

INPUT CH

INPUT MA

s: INPUT MI

many years?" :: INPUT Y
INPUT "Useful life? ":UL

INPUT "Salvage value? *":SV ::
PRINT "Which year do you wish
:: INPUT YN

DE=(IC-SV)/UL :: DE=INT(DE*100+.5)/100

RD=(UL-YN)*DE :: RD=INT(RD*100+.5)/100 :: RB

CALL CLEAR :: PRINT "Annual depreciation= *"
PRINT

PRINT "Remaining book value= VjRB :: PRINT
AC=DE*YN :: GOSUB 140 :: GOSUB 150

PRINT "Accumulated depreciation= *";AC :: PRINT
PRINT

PRINT "Evaluate other years? (Y/N) " :: PRINT :
INPUT YN*

IF YN*="Y" THEN CALL CLEAR :: GOTO 680 ELSE END

*"; IC

over how

PRINT :: PRINT

to examine?" :: PRINT

RD+SV

DE : :

IN

Programs for Business or Profession 379

To start with, the program displays its purpose and then asks if
you want the main program or the depreciation schedule. If the
main program is selected, it asks you to enter data relative to
monthly office expenses, monthly salaries, and actual or antici
pated variable costs for any given month. A total of 23 input
categories are used to calculate the gross amount of business that
must be achieved in order to produce a profit. Once that has been
established, the program asks you to key in the amount of gross
business that was actually done during the month in question or
the anticipated gross business for that period, after which it
displays the net profit or loss.

If the straight-line depreciation program is selected, it uses
seven input categories to determine the total capital outlay to be
depreciated. It then asks that the depreciation period be entered as
well as the useful life and the salvage value at the end of the
depreciation period. Based on that information it calculates the an
nual depreciation, the accumulated depreciation for any year, and
the remaining book value for any year.

In both programs, not all the input categories must be answered
if some are not applicable to your operation. Conversely, you may
use some of the categories for alternative subjects. The only thing
that is important is that the final totals realistically reflect your
business data.

Line by line:

Lines 100 and 110 are REMarks.

Lines" 120 and 130 clear the screen and cause the computer to
skip three lines containing the usual subroutines.

Lines 170-230 display the purpose of the program and ask which
of the two programs you want to run.

Line 240 sends the computer to one of two line numbers based on
your selection.

Lines 250-580 contain the input categories, with lines 340, 430,
and 540 performing the calculations that produce the interim sub
totals displayed in lines 350, 440, 550, and 560.

Lines 590-610 and 630 perform a series of calculations, using
the interim subtotals, to produce the figures that represent the
needed gross and the minimum profit, if any, that would result
from that figure.

Lines 620 and 640 display the results of those calculations.

380 The Last Whole TI-99/4A Book

Line 650 asks you to key in the actual or anticipated gross figure
for a given month.

Line 660 calculates the amount above or below the breakeven
point represented by that figure. (A below-breakeven figure would
be a negative figure.)

Line 670 asks if you want to return to the menu for another run of
either of the two programs, sending the computer back to line 210
or terminating the program.

Lines 680-750 represent the input categoriesfor the depreciation
program.

Lines 760 and 770 calculate the total and cause it to be displayed.
Lines 780-800 ask you to key in the number of years over which
the capital outlay is to be depreciated, the useful life, and the
salvage value.

Line 810 asks which year within the depreciation period you want
to examine.

Lines 820, 830, and 860 perform several calculations to deter
mine the final data.

Lines 840, 850 and 870 display the annual depreciation, the re
maining book value, and the accumulated depreciation for the
selected year.

Lines 880 and 890 ask if you want to examine other years, and
then send the computer to line 600 or cause the program to
terminate.

14

Advanced TI
BASIC Statements

In this chapter we'll look at some programs that illustrate the
usefulness of some of the more esoteric statements available with
the TI-99/4A. Some of these are rather difficult to understand at
first, and using them requires a bit of practice and experience.

DEFINED FUNCTIONS

In the first program we'll be dealing with built-in as well as de
fined (or derived) functions. Built-in functions are statements such
as INT (X), which returns the integer of the value assigned to X.
Defined functions are functions that you designed and assign to a
function name of your choice. The best way to illustrate these func
tions is to look at the Defined Function Program listing along with
the explanations of what takes place in the individual lines.

The program consists of 35 subprograms dealing with
arithmetic, trigonometric, and related problems. Any of these sub
programs can be called up at anytime. The computer will perform
the appropriate calculation and then return you to the menu to
make another selection or exit the program.

381

382 The Last Whole TI-99/4A Book

DEFINED FUNCTION PROGRAM

A program of defined functions.

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

CALL CLEAR

REM DEFINED FUNCTIONS

REM TI EXTENDED BASIC

DR=P1/180 :: RR*="The result is

GOTO 1680

PRINT "

CALL CLEAR :: RETURN

FOR Q=l TO 5 :: PRINT :: NEXT Q

PRINT :: INPUT "Press >ENTER< '

•" : : RETURN

RETURN

E*

GOSUB 160

GOSUB 170

GOSUB 150

GOSUB 150

END

GOSUB 180

INPUT "Any number?
PRINT RR$;B :: GOTO 200

DEF ADD(A)=X+Z

GOSUB 210

INPUT "Number to add?

B=ADD<X>

GOTO 220

DEF SBN(A)=X-Z :: GOSUB 210

INPUT "Number to subtract? ":Z :

170

B=SBN <X)

GOTO 220

DEF MUL<A)=X*Z :: GOSUB 210

INPUT "Number to use to multiply?

:: GOSUB 170

B=MUL(X)

GOTO 220

DEF DIV<A)=X/Z :: GOSUB 210

INPUT "Number by which to divide?
ss GOSUB 170

B==DIV(X>

GOTO -220

DEF XPN<A)=X"Z :: GOSUB 210

INPUT "Exponent? ":Z :: GOSUB 15Q
B=XPN(X)

GOTO 220

DEF R0T(A)=X--(1/Z) : : GOSUB 210

INPUT "Which root? ":Z :: GOSUB 150 :

B=ROT(X)

GOTO 220

INPUT "Find sine o-f? ": X :: GOSUB 150

X=X*DR ss B=SIN(X)

GOTO 220

INPUT "Find the arcsine of? ":X s: GOSUB 150

170

PRINT "End,

RETURN

:: GOSUB ISO

GOTO 1680

X : ". RETURN

GOSUB 150 GOSUB 170

GOSUB 150 GOSUB

":Z GOSUB 150

i c GOSUB 150

GOSUB 170

: GOSUB 170

GOSUB 170

GOSUB

(continued)

Advanced TI BASIC Statements 383

520 X=X*DR :: DEF ARCSIN<A)=ATN(A/SQR(-A*A+1))
530 B=ARCSIN(X)

540 GOTO 220

550 INPUT "Find the hyperbolic sine o-f? "sX :: GOSUB
150 :: GOSUB 170

560 X=X*DR :: DEF SINH(A)=(EXP(A)-EXP(-A)>/2
570 B=SINH(X)

580 GOTO 220

590 INPUT "Find the cosine o-f? "sX :: GOSUB
150 s: GOSUB 170

600 X=X*DR ss B=COS<X)

610 GOTO 220

620 INPUT "Find the arccosine of? "sX :: GOSUB 150 ss
GOSUB 170

630 X=X*DR :: DEF ARCCOS(A)=-ATN(A/SQR<-A*A+l))+1.5708
640 B=ARCCOS(X)

650 GOTO 220

660 INPUT "Find the hyperbolic cosine of "s X- ss GOSUB
150 s s GOSUB 170

670 X=X*DR ss DEF COSH(A)=(EXP(A)+EXP(-A))/2
680 B=COSH(X>

690 GOTO 220

700 INPUT "Find the tangent of? "sX :s GOSUB 150 :: GOSUB
170

710 X=X*DR s s B=TAN(X)

720 GOTO 220

730 INPUT "Find the arctangent of? "sX :s GOSUB 150 ss
GOSUB 170

740 X=X*DR ss B==ATN(X)

750 GOTO 220

760 INPUT "Find the cotangent of? "sX ss GOSUB 150 ss
GOSUB 170

770 X=X*DR ss DEF COT(A)=1/TAN(A)

780 B=COT(X)

790 GOTO 220

800 INPUT "Find the inverse cotangent of "sX ss GOSUB
150 s s GOSUB 170

810 X=X*DR ss DEF ARCCOT(A)=ATN(A)+1.5708
820 B=ARCCOT(X)

830 GOTO 220

840 INPUT "Find the hyperbolic tangent of "sX :: GOSUB
150 s: GOSUB 170

850 X=X*DR ss DEF TANH(A)=EXP(-A)/(EXP(A)+EXP<-A>)*2+l

860 B=TANH(X)

870 GOTO 220

880 INPUT "Find the hyperbolic cotangent of "sX ss GOSUB
150 s s GOSUB 170

890 X=X*DR ss DEF COTH(A)=EXP(-A)/(EXP(A)-EXP(-A))*2+l
900 B=COTH(X)

910 GOTO 220

(continued)

384 The Last Whole TI-99/4A Book

920 INPUT "Find the secant of "sX ss GOSUB 150 s: GOSUB

170

930 X=X*DR ss DEF SEC(A)=1/COS(A)

940 B=SEC(X)

950 GOTO 220

960 INPUT "Find the cosecant of "sX ss GOSUB 150 ss GOSUB

170

970 X=X*DR ss DEF CSC(A)=1/SIN(A)

980 B=CSC(X)

990 GOTO 220

1000 INPUT "Find the inverse secant of? ":X s: GOSUB

150 :s .GOSUB 170

1010 X=X*DR :: DEF ARCSEC(A)=ATN(A/SQR(A*A-1)) +SGN(SGN<A>

-1)* 1.5708

1020 B=ARCSEC(X)

1030 GOTO 220

1040 INPUT "Find the inverse cosecant of ":X s: GOSUB

150 :s GOSUB 170

1050 X=X*DR ss DEF ARCCSC <A) =ATN (A/SQR (A*A-1)>-KSGN(A)-1) *

1.5708

1060 B=ARCCSC(X)

1070 GOTO 220

1080 INPUT "Find the hyperbolic secant of "sX s: GOSUB
150 s s GOSUB 170

1090 X=X*DR ss DEF SECH(A)=2/(EXP(A)+EXP(-A))

1100 B=SECH(X)

1110 GOTO 220

1120 INPUT "Find the hyperbolic cosecant of? "sX ss GOSUB
150 s s GOSUB 170

1130 X=X*DR ss DEF CSCH(A)=2/(EXP(A)-EXP(-A))

1140 B=CSCH(X)

1150 GOTO 220

1160 INPUT "Find the inverse hyperbolic sine of? "sX ::
GOSUB 150 s: GOSUB 170

1170 X=X*DR ss DEF ARCSINH(A)=LOG<A+SQR<A*A+1>)

1180 B=ARCSINH(X)

1190 GOTO 220

1200 INPUT "Find the inverse hyperbolic cosine of? "sX ss
GOSUB 150 s s GOSUB 170

1210 X=X*DR ss DEF ARCCOSH(A)=LOG(A+SQR(A+A--1))

1220 B=ARCCOSH(X)

1230 GOTO 220

1240 INPUT "Find the inverse hyperbolic tangent of? "sX s
s GOSUB 150 i3 GOSUB 170

1250 X=X*DR ss DEF ARCTANH(A)=LOG<(1+A)/(1-A>) /2

1260 B=ARCTANH(X>

1270 GOTO 220

1280 INPUT "Find the inverse hyperbolic secant of? "sX ss
GOSUB 150 ss GOSUB 170

1290 X=X*DR S3 DEF ARCSECH(A)=LOG<(SQR<-A*A+l)+1)/A)

1300 B=ARCSECH(X)

(continued)

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

Advanced TI BASIC Statements 385

GOTO 220

INPUT "Find the inverse hyperbolic cotangent of? "sX
s 3 GOSUB 150 S3 GOSUB 170

X=X*DR ss DEF ARCC0TH(A)=L0G((A+l)/(A-l))/2
B=ARCCOTH(X)

GOTO 220

INPUT "Find the inverse hyperbolic cosecant of? "sX ss
GOSUB 150 S3 GOSUB 170

X=X*DR 3 3 DEF ARCCSCH(A)=L0G(SGN(A)*SQR(A*A+1)+1)/A
B=ARCCSCH(X)

GOTO 220

INPUT "Find the natural logarithm of? "sX ss GOSUB 150
s: GOSUB 170

B=LOG(X)

GOTO 220

INPUT "Find the reciprocal of? "sX ss GOSUB 150 ss
GOSUB 170

DEF RCL(A)=1/A

B=RCL(X)

GOTO 220

INPUT "Number to be rounded to X decimals? "sX

INPUT "How many decimal places? "sXX ss GOSUB 150 ss
GOSUB 170

DEC=1 ss FOR V=l TO XX ss DEC=DEC*10 s: NEXT V ss B=INT

(X*DEC+.5)/DEC

GOTO 220

INPUT "Find the integers of? "sX ss GOSUB 150 ss GOSUB
170

B=INT(X)ss PRINT RR$;B :: GOSUB 150 ss PRINT,
BB=INT(X+.5)

PRINT "and the rounded-off integer of "sX;" iss ";BB
GOTO 200

PRINT 1,"Convert degrees to radians" ss PRINT
PRINT 2,"Convert radians to degrees" ss GOSUB 150
INPUT "Which? "sWH ss GOSUB 160

ON WH GOTO 1600,1640

INPUT "Number of degrees?
170

DEF DEG(A)=A*(PI/180)

B=DEG(X)

GOTO 220

INPUT "Number of radians?

170

DEF RAD(A)=A/(PI/180)

B=RAD(X)

GOTO 220

GOSUB 160

PRINT 1;" Addition"

PRINT 2;" Subtraction"

PRINT 3;" Multiplication"
PRINT 4;" Division"

sX GOSUB 150

GOSUB 150

GOSUB

GOSUB

(continued)

386 The Last Whole TI-99/4A Book

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

PRINT 5;" Exponents"
PRINT 6;" Roots"
PRINT 7;" Sine"
PRINT 8;" Arcsine"
PRINT 9;" Hyperbolic sine"
PRINT 10;" Cosine"
PRINT 11;" Arccosine"
PRINT 12;" Hyperbolic cosine"
PRINT 13;" Tangent"
PRINT 14;" Arctangent"
PRINT 15;" Hyperbolic tangent" ss GOSUB 150
INPUT "See more categories? (Y/N) "sYY$
IF YY*="Y" THEN GOSUB 160 ss GOTO 1860 ELSE 2090
PRINT 16;" Cotangent"
PRINT 17;" Arccotangent"
PRINT 18;" Hyperbolic cotangent"
PRINT 19;" Secant"
PRINT 20;" Cosecant"
PF<INT 21;" Inverse secant"

20 PRINT 22;" Inverse cosecant"
PRINT 23;" Hyperbolic secant"
PRINT 24;" Hyperbolic cosecant"
PRINT 25;" Inverse hyperbolic sine"
PRINT 26;" Inverse hyperb.cosine"
PRINT 27;" Inverse hyperb.tangent"
PRINT 28;" Inverse hyperb.secant"
PRINT 29;" Inv.hyperb.cotangent"
PRINT 30;" Inverse hyperb.cosecant"
GOSUB 150 ss INPUT "See more categories? (Y/N) "sNN$

IF NN$="Y" THEN GOSUB 160 :s GOTO 2030 ELSE 2090

PRINT 31;" Natural logarithm"
PRINT 32;" Reciprocal numbers"
PRINT 33;" Rounding to X decimals"
PRINT 34;" Integers"
PRINT 35;" Degrees vs. radians" ss GOSUB 150
PRINT 36;" Exit program" ;; GOSUB 150
INPUT "Which? "sWHICH s; GOSUB 160

IF WHICH>26 THEN 2110 ELSE 2120

WHICH=WHICH»26 s: GOTO 2130

ON WHICH GOTO 230,280,320,360,400,440,480,510,550,
590,620,660,700,730,840,760,800,880,920,960,1000,
1040,1080,1120,1160,1200,2130
ON WHICH GOTO 1240,1280,1320,1360,1400,1430,1470,
1510,1560,190

2130

Lines 130 uses the built-in value ofPI (available only in EXTENDED
BASIC. In regular BASIC you would have to add PI = 3.1415927). It
assigns the value of PI/180 (0.0174533) to the numeric variable

Advanced TI BASIC Statements 387

DR, which is used later to convert degrees to radians. Next it
assigns a string to the string variable RR$.

Line 140 sends the computer to lines 1680-2100 to display the 36
choices available to the user.

Lines 150-210 are subroutines used throughout the program.
Line 220 is the line used at the end of each subprogram to display
the result and then return the computer to the menu.

Line 230 creates a defined function called ADD by using the DEF
statement. Once this defined function, ADD(A) = X + Z, has been
entered, it can be used over and over again, causing the values
assigned to X and Z to be added.

Line 240 sends the computer to the subroutine that asks you to
key in any number.

Line 250 asks you to key in the number to be added.
Line 260 uses the previously defined function to perform the
calculation and then assigns the result to the numeric variable B.
During this process the A used when defining the function is
replaced by the X to which the keyed-in value was assigned.

Line 270 sends the computer to line 220, which causes the result
to be displayed.

Since all the subprograms are quite similar in construction, I
will from here on only discuss those lines that contain that types of
statements and functions the program is designed to illustrate.

Lines 280, 320, 360, 400, and 440 create five defined functions
that perform the tasks of subtracting, multiplying, dividing, ex
ponentiating, and obtaining a root. They are SBN(A) = X—Z for
subtraction, MUL(A) = X*Z for multiplication, DIV(A) = X/Z for
division, XPN(A) = X~Z for exponentiation, and ROT(A) = X"(1/Z) to
find the root.

Lines 300, 340, 380, 420, and 460 use those defined functions
to perform the calculations and then assign the various results to
the numeric variable B. The ROT(A) = X~(l/Z) function creates an
exponent that is the reciprocal of the root figure, producing the
correct result.

Line 490 multiplies the keyed-in figure, representing degrees, by
the value previously assigned to DR in order to convert degrees to

388 The Last Whole TI-99/4A Book

radians, because the trigonometric functions are designed to deal
with radians rather than degrees. Next the built-in function SIN(X)
is used to produce the result.

Line 520 defines a function ARCSIN(A) to produce the arcsine ofthe
keyed-in number. The expression itself is ATN(A/SQR(—A*A + 1),
using the two built-in functions. Whathappens is this: The value ofA
(or in this case X, which replaces the A in line 530) is divided by the
positive square root (SQR) of —A*A+ 1, and the built-in ATN func
tion produces the arctangent of that figure, representing the arcsine
of the keyed-in figure.

Line 560 defines a function that determines the hyperbolic sine of
the keyed-in value: SINH(A) = (EXP(A)—EXP(—A))/2. Here the
built-in function EXP is used twice. EXP produces the exponential
value of 2.718281828459, using the value assigned to the numeric
variable in parentheses as the exponent. Thus, assuming that the
value assigned to X (which replaces the A in line 570) is 25, the
EXP function produces 2.718281828459^ 25 or, in the second use
of the statement, ~ — 25, which results in 7.20049E+10 and
1.38879E—11, respectively. The complete calculation performed
by this function, assuming that the keyed-in value is 25, is
(7.20049E + 10—1.38879E— ll)/2.

Line 600 uses the built-in function COS(A) to find the cosine of the
keyed-in value.

Line 630 defines a new function used in the expression ARC-
COS(A) = ATN(A/SQR(—A*A + 1))+ 1.5708 to find the arccosine of
the keyed-in value, using the two built-in functions ATN (arc
tangent) and SQR (square root) that we've already discussed.

Line 670 defines another function used in the expression
COSH(A) = (EXP(A) + EXP(—A))/2, which is similar to the one in
line 560, in this version producing the hyperbolic cosine of the
keyed-in value.

Lines 710 and 740 use the built-in function TAN(X) (tangent) and
ATN(X) (arctangent) to produce the desired results.

Lines 770, 810, 850, 890, 930, and 970 define additional func
tions, each using some of the built-in functions we've discussed
earlier.

Lines 1010 and 1050 utilize another built-in function, SGN(A),
which produces 1 if the value assigned to the numeric variable is
positive, 0 if the value is zero, or —1 if the value is negative.

Advanced TI BASIC Statements 389

Lines 1090 and 1130 again use previously discussed built-in
functions to define the numeric expressions represented by the
defined functions.

Lines 1170, 1210, 1250, 1290, 1330, and 1370 use the built-
in function LOG(A), which returns the natural logarithm of the
numeric variable in defining additional functions.

Line 1410 uses the same built-in function LOG(X) to find the
natural logarithm of the value assigned to X.

Line 1440 defines a new function designed to produce the
reciprocal value of the one keyed in and assigned to X. The
reciprocal value can be used to multiply instead of divide or vice
versa, for example, 5*100 = 500 and 5/.01 =500, where .01 is the
reciprocal of 100. Reciprocals of any value are produced by
1/value.

Line 1490 causes the numeric variable DEC to represent 10, 100,
1000,10000, etc., depending on the keyed-in value assigned to XX
through the use ofa FOR.. .TO.. .NEXT loop, where the number of
zeros represents the number of decimal places.

Lines 1520 and 1530 use the built-in function INT(X) to return
the ordinary integer and INT(X+.5) to return the rounded-off
integer.

Lines 1610 and 1650 define two functions used in the expres
sions DEG(A) = A*(PI/180) and RAD(A) = A/(PI/180) to convert
degrees to radians and vice versa.

Using defined functions rather than repeatedly typing in entire
numeric expressions not only saves a lot of typing, it also reduces
the chance of making typing errors in the mathematical formulas,
which could produce incorrect results that might go unnoticed or, if
noticed, would often be difficult to correct because the error would
be hard to find.

In the above program, the use of the trigonometric functions in
conjunction with certain keyed-in values may produce a BAD
ARGUMENT error message, because these functions cannot be
used with certain values. When that happens the computer
automatically exits the program and you'll have to start over again
by typing RUN.

390 The Last Whole TI-99/4A Book

NUMEROLOGY

Now let's look at another group of functions. Our second pro
gram deals with numerology; for those who don't know what
numerology is all about (I didn't until I wrote the program), I'll first
explain the principle involved. The idea of numerology is that the
combination of the letters in your name and the digits representing
your date of birth produce a single-digit number that is supposed to
have some influence on your life. To find this single-digit number,
the letters in your name are assigned numeric values from 1 to 9,
with the value assigned to each letter shown in lines 210-230 in the
program (A = 1, B = 2, etc.). The numbers that correspond to the
name are then added: JONATHAN is represented as 1 + 6 + 5+1
+ 2 + 8+ 1 + 5= 29. Now we add the two resulting digits, 2 + 9 =
11, and then we once more add the two resulting digits, 1 + 1 = 2,
to arrive at the numerology figure for the name JONATHAN. This
routine is repeated over and over for the middle name(s), the last
name, the birth month, birth day, and birth year, until the final
result is a single-digit number.

Although the Numerology Program is of no practical value ex
cept to numerology aficionados, it is ideally suited to demonstrate
certain statements.

NUMEROLOGY PROGRAM

A program that calculates the numerical values of your name and birth date.

100

110

120

130

140

150

160

170

180

190

200

REM NUMEROLOGY

REM TI EXTENDED BASIC

CALL CLEAR

GOTO 200

PRINT " " ss RETURN

CALL CLEAR :: RETURN

FOR Q=l TO 5 : : PRINT : •. NEXT Q s: RETURN

:: INPUT "Press >ENTER< =":E$:: RETURN

150 :: GOSUB 140 ss PRINT TAB<8>:"End."

GOSUB 160

PRINT

GOSUB

140 s:

END

PRINT

value?

"This program determines the numerical
o-f your name and birth date" :: GOSUB 140

GOSUB 170 GOSUB 160

GOSUB

(continued)

Advanced TI BASIC Statements 391

PRINT

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

500

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

DATA A,1,B,2,C,3,D,4,E,5,F,6,G,7,H,B,1,9
DATA J,1,K,2,L,3,M,4,N,5,0,6,P,7,G,8,R,9
DATA S,1,T,2,U,3,V,4,W,5,X,6,Y,7,Z,8
GOSUB 150

PRINT "Use no single-letter initials!"
PRINT "For no middle name type NMI" :: PRINT
PRINT "Use no hyphensf" :: GOSUB 140
INPUT "Fist name (to 10 letters)

INPUT "Middle name(s) (to 10 let.s)

INPUT "Last name (to 10 letters)

INPUT "Birth month (1 or 2 digits)
INPUT "Birth day (1 or 2 digits)
INPUT "Birth year (4 digits)
LL=LEN(FF*):: LLL=LEN(MN*):: LLLL=LEN(LN*)
P=l :: LL=LL-1

ON LL GOTO 510,530,560,590,630,670,720,770,830
RESTORE

IF P>LL THEN 890

READ N*

ON P GOTO 410,420,430,440,450,460,470,480,490,

':FF*

": MN*

":LN* : : GOSUB 140

':MM

":DD

":YY :: GOSUB 140

IF N*=LETTER1* THEN 1310

IF N*=LETTER2* THEN 1320

IF N*=LETTER3* THEN 1330

IF N*=LETTER4* THEN 1340

IF N*=LETTER5* THEN 1350

IF N*=LETTER6* THEN 1360

IF N$=LETTER7* THEN 1370

IF N*=LETTER8* THEN 1380

IF N*=LETTER9* THEN 1390

IF N*=LETTER0* THEN 1400

LETTER1*=SEG*(FF*,1,1)::
GOTO 370

LETTER1*=SEG*(FF$,1,1)::

LETTER3*=SEG*(FF*,3,1)

GOTO 370

LETTER1*=SEG*(FF*, 1,1)::
LETTER3*=SEG*(FF*,3,1)::
GOTO 370

LETTER1*=SEG* (FF*,1,1)
LETTER3*=SEG*(FF*,3,t)

LETTER5*=SEG*(FF*,5, 1)
GOTO 370

LETTER1*=SEG*(FF*,1,1)
LETTER3*=SEG*(FF*,3,1)
LETTER5*=SEG$(FF*,5, 1)
GOTO 370

LETTER1*=SEG*(FF*,1,1)
LETTER3*=SEG*(FF*,3,1)
LETTER5*=SEG*(FF*,5, 1)
LETTER7*=SEG*(FF*,7,1)

ELSE 380

ELSE 380

ELSE 380

ELSE 380

ELSE 380

ELSE 380

ELSE 380

ELSE 380

ELSE 380

ELSE 380

LETTER2*=SEG*(FF*,2,1)

LETTER2*=SEG*(FF*,2,1)

LETTER2*=SEG*(FF*,2,1)
LETTER4*=SEG*(FF*,4,1)

LETTER2*=SEG*(FF*,2,1)
LETTER4*=SEG*(FF*,4,1)

LETTER2*=SEG*(FF*,2,1)
LETTER4*=SEG*(FF*,4,1)
LETTER6*=SEG*(FF*,6,1)

LETTER2*=SEG*(FF*,2,1)
LETTER4$=SEG*(FF*,4,1)
LETTER6*=SEG*(FF*,6,1)

(continued)

392 The Last Whole TI-99/4A Book

710 GOTO 370

720 LETTER1*=SEG*<FF*,1,1):
730 LETTER3*=SEG*(FF*,3,1):
740 LETTER5*=SEG*(FF*,5,1):
750 LETTER7*=SEG*(FF*,7,1):
760 GOTO 370

770 LETTER1*=SEG* (FF*, 1,1):
780 LETTER3*=SEG*(FF*,3,1):
790 LETTER5*=SEG*(FF*,5,1):
800 LETTER7*=SEG*(FF*,7,1):
810 LETTER9*=SEG*(FF*,9,1)
820 GOTO 370

830 LETTER1*=SEG*(FF*,1,1):
840 LETTER3*=SEG*(FF*,3,1):
850 LETTER5*=SEG*(FF*,5,1):
860 LETTER7*=SEG*(FF*,7,1)s
870 LETTER9*=SEG*(FF*,9,1):
880 GOTO 370

890 GOSUB 150 :: GOSUB 140

GOSUB 140 s: GOSUB 160

QQ=QQ+1 :: IF QQ=1 THEN

IF QQ=2 THEN 940

IF QQ>2 THEN

GOSUB 960 ::

GOSUB 960 :•:

GOSUB 960 ::

950

FF*=MN* s:

FF*=LN* ::

GOSUB 1080

NN=N1+N2+N3+N4+N5+N6+N7+N8+N9+N0

NN*=STR* (m) :: NN1*=SEG* (NN*, 1,1)
m1=VAL <NN1*):: NN2=VAL(NN2*):: NN=NN1+NN2

IF NN>9 THEN 1000 ELSE GOTO 1020

NU*=STR* (NN) : : NU1*==SEG* (NU* 1,1):: NU2*=SEG* (NU*.

LETTER2*=SEG*(FF*,2,1)
LETTER4*=SEG*(FF*,4,1)
LETTER6*=SEG*(FF*,6,1)
LETTER8*=SEG*(FF*,8,1)

LETTER2*=SEG*(FF*,2,1)
LETTER4*=SEG*(FF*,4,1)
LETTER6*=SEG*(FF*,6,1)

LETTER8*=SEG*(FF*,8,1)

LETTER2*=SEG*(FF*,2,1)
LETTER4*=SEG*(FF*,4,1)

LETTER6*=SEG*(FF*,6,1)

LETTER8*=SEG*(FF*,8,1)
LETTERO*=SEG*(FF*,10,1)

: PRINT TAB(12);"WAIT!"

930

LL=LLL s!

LL=LLLL :

:: GOSUB

GOTO 350

: GOTO 350

170 s: GOTO 180

900

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

NN2*=SEG*(NN*,2,1)

1)

NU1

990

IF QQ=

IF O.Q=

IF QQ=

NN1=NN

NN2=NN

NN3=NN

VAL(NU1*) NU2=VAL(NU2*) NN=NU1+NU; GOTO

THEN

THEN

THEN

: RETURN

: RETURN

: RETURN

MM*=STR*(MM):: DD*

MM1*=SEG*(MM*,1,1)
MM1=VAL(MM1*):s MM

DD1*=SEG*(DD*,1,1)
DD1=VAL(DD1*):

YY1*=5EG*(YY*,
(YY,3,1)
YY5*=SEG*(YY*,

YY1=VAL(YY1*):

5=VAL(YY5*)

YY3=YY1+YY2+YY4+YY5

1050

1060

1070

STR*(DD):s YY*=STR*(YY>

: MM2*=SEG*(MM*,2,1)

=VAL(MM2*):s MM3=MM1+MM2

: DD2*=SEG*(DD*,2,1)
DD2=VAL(DD2*)s: DD3=DD1+DD2

1):: YY2*=SEG*(YY*,2,1):: YY4*=SEG

1)

YY2=VAL(YY: :*) YY4=VAL(YY4*) YY

(continued)

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

Advanced TI BASIC Statements 393

IF YY3>9 THEN 1180 ELSE 1200

YY3=YY3*10 :: YY3*=STR*(YY3):: Y1*=SEG*(YY3*,1,1):
: Y2*=SEG*(YY3*,2,1)
Y1=VAL(Y1*):: Y2=VAL<Y2*):: YY3=Y1+Y2
NN4=MM3+DD3+YY3

IF NN4>9 THEN 1220 ELSE PRINT NN4 :: GOTO 1240
NN5=NN4 :: NN5*=STR*(NN5):: NN6*=SEG*(NN5*,1,1)::
NN7*=SEG*(NN5*,2,1)
NN6=VAL(NN6$):: NN7=VAL(NN7*):: NN4=NN6+NN7 :: GOTO
1210

RESULT=2+NN1+NN2+NN3+NN4 :: IF MN*="NMI" THEN 1250
ELSE 1260

RESULT=RESULT-NN2

IF RESULT>9 THEN 1270 ELSE 1290

RESULT*=STR*(RESULT):: R1*=SEG*(RESULT*,1,1):: R2*
=SEG*(RESULT*,2,1)
R1=VAL(R1*):: R2=VAL(R2*):: RESULT=R1+R2 :: IF RESULT
>9 THEN 1270 ELSE 1290

GOSUB 150 :: GOSUB 140

PRINT "Your numerology -figure: ":RESULT :: GOSUB 140
:: RETURN

70

70

READ Nl

READ N2

READ N3

READ N4

READ N5

READ N6

READ N7

READ N8

READ N9

READ NO

P=2

P=3

P=4

P=5

P=6

P=7

P=8

P=9

P=10

P=ll

GOTO

GOTO

GOTO 370

GOTO 370

GOTO 370

GOTO 370

GOTO 370

GOTO 370

! GOTO 370

: GOTO 370

Lines 210-230 place the letters of the alphabet and the associated
numbers into DATA lines.

Lines 340 uses the LEN statement to determine the number of let

ters in the first (FF$), middle (MN$), and last (LN$) names, assign
ing the results to the numeric variables LL, LLL, and LLLL. Thus, if
the first name is JONATHAN, LL = LEN(FF$) would result in assign
ing 8 (the number of letters in the name) to the variable LL.
Line 350 assigns 1 to the variable P and reduces the number
assigned to LL by 1 because the ON LL GOTO statement assumes
the first value of LL to be 1, and the shortest possible name that
can be used consists of two letters.

Line 360sends the computer to one of nine line numbers, depending
on the value ofLL.

394 The Last Whole TI-99/4A Book

Line 370 makes sure that the DATA lines are READ from the
beginning.

Line 380 sends the computer to line 890 if the value of P is greater
than that of LL.

Line 390 causes the computer to READ an item from the DATA
lines, assigning the item to the string variable N$.

Line 400 sends the computer to one of 10 line numbers depending
on the value of P.

Lines 410-500 compare the single-letter string assigned to the
string variable N$ with the single-letter string variables assigned
to LETTER1$ through LETTER0$, sending the computer to one of
two line numbers, depending on whether or not a match has been
found.

Line 510 is used if the name being examined consists of two let
ters. There LETTER1$ = SEG$(FF$,1,1) assigns the first letter in
the string, represented by FF$, to the string variable, LETTER1$,
because the first digit inside the parentheses after FF$ represents
the consecutive position of the letter(s) to be separated by the SEG$
statement, and the second digit represents the number of letters to
be separated. Thus, in this line, the first letter is assigned to LET
TER^ and the second to LETTER2$.
Lines 530-870 perform the same task for names from three to 10
letters.

Line 890 comes into play while the computer is performing a long
list of calculations, placing WAIT! into display because the process
takes quite a bit of time and you might be tempted to think that
the computer has malfunctioned if the screen were simply left
blank.

Line 1080 uses the MM$ = STR$(MM) expression to convert the
numeric value assigned to the numeric variable MM to the string
variable MM$, and the same is then done to the numeric variable
DD and YY, transforming them to DD$ and YY$.

Lines 1090, 1110, 1130, 1140, 1180, 1220, and 1270 once
more use the SEG$ statement to separate the individual
characters represented by the string variables.

Lines 1100, 1120, 1150, 1190, 1230, and 1280 use the
MM1 = VAL(MM1$) phrase to convert the string value assigned to
MM1$ to a numeric value, which is then assigned to MM1, and the
same routine is followed with the other string variables.

Advanced TI BASIC Statements 395

Line 1300 displays the resulting single-digit figure.
Lines 1310-1400 assign different values to the numeric variable

P as the computer READs the numeric items in the DATA lines,
assigning them to Nl through NO, each time returning the com
puter to line 370.

The reason for all these conversions from string variables to
numeric variables and vice versa is the fact that the SEG$ state
ment can be used only with string variables. It would, therefore, be
rather cumbersome to separate the individual digits that make up
the original numeric values. It can, of course, be done by using a
series of calculations. For instance, to separate the four digits in
1984, you could use this sequence of steps:

100 YY=1984

110 Y1 =YY/1000::Y2 = INT(Y1)::Y3 =Y1-Y2::Y3 = Y3*10
120 Y4 = INT(Y3)::Y5 =Y3-Y4::Y5 = Y5* 10
130 Y6 = INT(Y5)::Y7 = Y5-Y6::Y7 = Y7*10

which would result in Y2 = 1, Y4 = 9, Y6 = 8, and Y7 = 4. It goes
without saying that this would be a rather tiresome way of doing
things, not to mention the ever-present chance of making some sort
of typing error.

In the above program we used the DATA lines to associate cer
tain numbers with letters. Here, too, an alternative method is
available to us. We could use the ASC statement, which returns the
ASCII numbers for the various letters:

110 NN = ASC("A")
120 NN = NN-64::PRINTNN

This would result in NN representing 1, because the ASCII code
number for A is 65..Using this method, the number to be subtracted
for letters A through I is 64, for letters J through R it is 73, and for
letters S through Z it is 82.

396 The Last Whole TI-99/4A Book

Two other statements we have not yet used are MAX and MIN,
which return either the largest or the smallest value assigned to two
numeric variables that must be enclosed in parentheses. For
example:

100 A = MAX(C,D)::PRINTA
110 B = MIN(C,D)::PRINTB

will assign the highest of the values assigned to C and D to the
numeric variable A, and the smallest value to the variable B.

15

Having fun with
TI LOGO II

LOGO, like BASIC, is a computer language that can be used to
write all manner of programs. Its greatest advantage is the simpli
city with which it is possible to create fascinating graphic designs
and that, in turn, makes it an ideal means to permit youngsters of
even preschool age to be introduced to the use of computers.
Although LOGO is capable of being used to write programs other
than graphics, it is this latter facet that we'll concentrate on in this
chapter.

In order to use LOGO, you must have the LOGO module installed
in your TI-99/4A Home Computer, and it must be equipped with the
Extended Memory board that adds the needed 32K bytes to the
standard 16K bytes of memory. With the computer so equipped,
the best way to find out what LOGO is all about is to start right in.

TURTLE GRAPHICS

Turn on the system in the usual manner, first the Peripheral Ex
pansion System, then the monitor, and last the computer with the
TI LOGO module in place. When the master title appears, press any
key.

397

398 The Last Whole TI-99/4A Book

The display will show:

PRESS

1 FOR TI BftSIC

£ FOR TI LOGO II

J
Now press 2 and the screen will blank out. After a short pause you
will see:

r

WELCOME TO TI LOGO

because LOGO uses the underline as a prompt. The system is now
ready to accept your first command. The primary graphic system
used by LOGO is referred to as turtle graphics, and in order to get
into that mode we now type:

TELL TURTLE

Having Pun with TI LOGO n 399

and press >ENTER<. Again the screen blanks and then there ap
pears a small triangle in the center of the screen, and the question
mark and underline are moved to a place about three-quarters
down from the top at the left edge of the screen. That small triangle
is the "turtle." In order to make the turtle move and, in doing so,
draw pictures, we must now tell it where to go. Type:

FORWARD 50 > ENTER <

and see what happens. The turtle has drawn a vertical line because
the top of the triangle that represents the nose of the turtle is point
ing upward. Now type:

LEFT 90 >ENTER<

and note that the turtle has tuned 90 degrees to the left. Now type:

FORWARD 50 > ENTER <
LEFT 90 >ENTER<
FORWARD 50 > ENTER <

LEFT 90 >ENTER<
FORWARD 50 > ENTER <

When you're through, the turtle will have drawn a square box.
What we have discovered is that FORWARD plus a number causes
the turtle to travel a given distance, leaving a trail in the form of a
line. And we have learned that by typing RIGHT or LEFT and a
number, the turtle will turn that many degrees in the desired direc
tion. In this manner we can move it all over the place in order to
draw any kind of design we have in mind.

Now we'll try something else. So far the lines drawn by the turtle
have been straight. Here is a command that produces a circle. First
type:

PENUP >ENTER<

FORWARD 20 > ENTER <

PENDOWN > ENTER <

REPEAT 36 [RIGHT 10 FORWARD 10] > ENTER <

400 The Last Whole TI-99/4A Book

and presto, we have a circle. Here we have learned several new
words: PENUP, PENDOWN, and REPEAT, plus the use of square
brackets. PENUP permits us to move the turtle without drawing a
line, and PENDOWN reverses the previous command. REPEAT
causes the turtle to repeat a given command as many times as the
number that follows it. But REPEAT requires two inputs: the
number of repetitions, and the action that is to be repeated. Here
that action is RIGHT 10 and FORWARD 10, which must be enclosed
in square brackets (FCTN R and FCTN T on the keyboard) in order
to be treated by the REPEAT command as one series of actions,
referred to in LOGO as a "list."

By now, ifyou've made a typing error somewhere along the line,
you've metone ofLOGO'S many error messages, whichare expressed
in plain English, such as:

r

TELL ME HOW TO.

I CftN'T. . .

and so on, telling us clearly what our mistake was. For instance, if
you type RIGHT90 with no space between the word and the
number, the display will respond with:

TELL ME HOW TO RIGHT90

Having Fun with TI LOGO n 401

because the computer assumes that you had something special in
mind by combining the word and the number.

At this point I suggest you play around with drawing straight
and curved lines to get the feel of things before going on to the next
stage.

LOGO PROCEDURES

Just as we have learned in writing programs in BASIC how we
can create entire subroutines that are identified by line numbers, so
we can create various routines, referred to as procedures in LOGO,
that are identified by a single word. To create a procedure, we use
the word TO followed by the name of the procedure. Here is an
example:

TO SQUARE

FORWARD 50

RIGHT 90

FORWARD 50

RIGHT 90

FORWARD 50

RIGHT 90

FORWARD 50

BACK (FCTN 9)

using >ENTER< after each command. (We'll assume from now on
that you'll remember to press > ENTER <.) The first line tells LOGO
that we want to define a procedure named SQUARE. The next
seven lines constitute the action that comprises the procedure. The
last line tells LOGOthat the end of the procedure has been reached.
When you type TO SQUARE, the screen changes color and in the
upper left-hand corner you'll see:

TO SQUARE

END

402 The Last Whole TI-99/4A Book

When you press > ENTER <, the END will move down one line to
permit you to type in the first line of the procedure, and it continues
to move down as you add more lines. The reason is that every pro
cedure must be closed with that END line, which is provided
automatically. (Do not type END yourself, or you will be given an er
ror message.) After you've closed the procedure by typing FCTN 9
(BACK), the screen returns to its original color, displaying the name
ofyour procedure. You're now ready to use it. Simply type its name:

SQUARE

and the turtle will execute the procedure. You can now use your
procedure as part of a new series of commands:

PENUP

FORWARD 25

PENDOWN

REPEAT 8 [RIGHT 45 SQUARE]

The turtle will draw eight squares, advancing 45 degrees to the
right each time.

TURTLE COMMANDS

Experimenting with different procedures can be a lot of fun, and
you can, of course, use procedures within procedures. In order to
get a clear picture of how much we can make the turtle do, let's take
a quick look at the commands that are available. Many commands
may be abbreviated to save typing, and these abbreviations are
shown in parentheses.

BACK (BK) moves the turtle in a reverse direction as many steps as
indicated by a number: BK 50.

CLEARSCREEN (CS) clears the screen of all but the turtle and the
prompt.

ERASE can be used to delete a procedure: ERASE BOX.

Having Fun with TI LOGO H 403

FORWARD (FD) moves the turtle forward as many steps as in
dicated by a number: FD 50.

HIDETURTLE (HT) removes the turtle but not any lines drawn.

HOME moves the turtle to the starting position, center screen, fac
ing up (north).

LEFT (LT) turns the turtle to the left by the number of degrees in
dicated :LT 90.

NOTURTLE exits turtle mode.

PA displays all procedures and procedure names currently in the
computer memory.

PENDOWN (PD) reverses the PENUP command.

PENERASE (PE) causes the turtle to erase previously drawn lines.

PENREVERSE (PR) causes the turtle to draw lines except when
passing over previously drawn lines, which will be erased.

PENUP (PU) causes the turtle to draw no lines when moving.

PN prints all names of procedures currently in memory.

PO prints the definition of a named procedure: PO BOX prints the
steps that constitute BOX.

REPEAT requires two items of information, the number of
REPEATS and the steps that are to be REPEATed: REPEAT 10 [RT
20 BOX] prints 10 shapes defined by the procedure BOX, rotating
20 degrees to the right each time. The steps to be repeated must be
enclosed in square brackets.

RIGHT (RT) turns the turtle to the right by the indicated number of
degrees: RT 90.

404 The Last Whole TI-99/4A Book

SETHEADING (SH) turns the turtle to the heading, in degrees, in
dicated by a number: SH 270 turns the turtle to the left (westward).

SHOWTURTLE (ST) restores the turtle after the HIDETURTLE
command has been used.

TELL TURTLE is used to enter the turtle graphics mode, and it
must also be used under certain conditions when using color (see
below).

TO PROCEDURE defines the following steps as a procedure named
PROCEDURE (or any name you give it). When all procedure steps
have been entered, type FCTN 9 (BACK)rather than END. (In subse
quent procedures we'll omit typing FCTN 9, using END instead.)

There are many other commands, some of which we'll look at
later, but the ones listed here are all you really need to experiment
with the different aspects of turtle graphics.

So far we've been satisfied with drawing black lines on a bright
background. But turtle graphics can also be used in color. For that
there are these commands:

SET COLOR (SC) is used to determine the color in which the turtle
draws. It is used either in combination with a number from 0 to 15
to identify the desired color (e.g., SC6 causes red lines to be drawn);
or in conjunction with the name of the color, preceded by a colon
(e.g., SC :RED).

COLORBACKGROUND (CB) is used in the same way, controlling
the color of the background: CB 1 or CB :BLACK produces a black
background. The available colors are:

0 clear 1 black

2 green 3 lime

4 blue 5 sky
6 red 7 cyan

8 rust 9 . orange

10 yellow 11 lemon

12 olive 13 purple
14 gray 15 white

Having Fun with TI LOGO H 405

Now let's quickly write a sample procedure that makes use of
these commands:

TO SQUARE1

CB2

FD 20 RT 90

SC6

FD 20 RT 90

CB 4 SC 10

FD 20 RT 90

SC1

FD20 END

What we've done is to write a procedure that draws a square with
different color sides, using the standard background color (2) to
start with and then changing it in the middle to blue (4). Now type:

REPEAT 8 [RT 45 SQUARE1]

and see how the turtle draws eight squares, each time moving 45
degrees to the right, while the background flashes back and forth
between green and blue. At this point you might use some of the
procedures you've written previously and add color commands.
Use your imagination. You'll soon get fascinated as you keep
experimenting.

PROCEDURES WITH INPUTS

So far we've written procedures in which the values associated
with the commands, such as the 20 in FD 20, are part of the pro
cedures and cannot be changed unless you go into the edit mode (by
typing TO PROCEDURE, where PROCEDURE is the name you gave
your procedure) and change those values. But it is possible to write
procedures in such a manner that you can input different values
without having to rewrite the procedure itself. Such a "procedure
with input" might look like this:

TO SQUARE2 :SIDE

REPEAT 8 [FD :SIDE RT 45]
END

406 The Last Whole TI-99/4A Book

When you now type SQUARE2, the display responds with TELL
ME MORE, because you have failed to define what SIDE stands for.
Now type SQUARE2 20, and the turtle will draw an octagonal shape
with each side being 20 steps long. Now type SQUARE2 30 and
then SQUARE2 40 and you'll see how increasingly larger versions
of the same shape are drawn.

Inputs do not need to be limited to one per procedure. You can
just as easily write procedures with multiple inputs: The only thing
you must remember is the consecutive order ofsuch inputs—which
stands for what—because LOGO does not prompt you by displaying
the name of the input (SIDE in the above example). Let's try one:

TO DESIGN :SIDE :DEGREE

FD :SIDE RT :DEGREE

DESIGN :SIDE :DEGREE

END

Now, to see what happens, type this command:

DESIGN 30 90

The turtle draws a square but refuses to stop. To stop its frantic ac
tion, type BACK (FCTN 9). Now use CS to clear the screen and then
type this series of commands, each time stopping the turtle action
and clearing the screen as before:

DESIGN 30 120

DESIGN 40 150

DESIGN 60 80

DESIGN 50 144

DESIGN 5 10

Experiment with using all kinds of different arbitrary values,
always remembering that the first value refers to the number of for
ward steps taken by the turtle, and the second number refers to the
number of degrees it turns to the right.

This ability of the turtle to continue its action until it is stopped
by pressing BACK is referred to as recursion, and it can be used to

Having Fun with TI LOGO n 407

change some of the input values automatically. To demonstrate,
let's start with this:

TO COUNT :VALUE

PRINT :VALUE

COUNT :VALUE - 1

END

Now, in turtle mode, type COUNT 100 and you will see numbers
displayed, starting with 100 and reducing by 1 in quick succession
until you stop the action in the usual manner. Now let's take this
one step further by using that principle in a graphic procedure:

TO GROW :SIDE :ANGLE

FD :SIDE RT :ANGLE

GROW (:SIDE + 2) :ANGLE
END

Now type some of the following commands, always stopping the ac
tion and clearing the screen after each:

GROW 0 90

GROW 10 120

GROW 10 144

Try picking other values at random. Because of the +2 in the third
line, the number of forward steps is increased by 2 during each
pass. Note that regular parentheses were used, because this is a
calculation, not a list.

There is a way we can stop that continuous action automati
cally, by inserting a conditional statement similar to those used in
BASIC. The statement uses IF. Thus, if we use the previous pro
cedure and add an IF statement, we can cause the action to be stopped
automatically:

TO GROW2 :SIDE :ANGLE

IF :SIDE > 100 THEN STOP

FD :SIDE RT :ANGLE

GROW2 (:SIDE + 2) :ANGLE
END

408 The Last Whole TI-99/4A Book

This is the same as the previous procedure, except that the action of
the turtle stops automatically when the value of SIDE reaches 100
steps.

PROCEDURES WITHIN PROCEDURES

As you will have gathered by now, you can use procedures
within procedures and within other procedures. You might simply
think of each (borrowing the terms used in BASIC) as a subroutine
that can be used within other subroutines within a program. For in
stance, here is a procedure that uses two other procedures. First we
must write the two others:

TO TRIANGLE

REPEAT 3 [FD 50 RT 120]
END

TO BOX

PU HOME LT 115 FD 15 RT 115 PD

REPEAT 4 [FD 60 RT 90]
PU HOME PD

END

And then we create a third procedure using these two:

TO CIRCLE

TRIANGLE BOX

PU HOME LT 90 FD 35 RT 90 FD 20 PD

REPEAT 36 [FD 10 RT 10]
PU HOME PD

END

Now when we type CIRCLE, the turtle draws a triangle within a
square within a circle. All those PU.. .PD lines are used to move the
turtle a certain distance from the home position without leaving a
trail, prior to drawing the next shape. You could now develop
another procedure that uses CIRCLE that would then automatically
also include TRIANGLE and BOX. It must be remembered and

understood that any name you give to a procedure becomes a com-

Having Fun with TI LOGO n 409

mand consisting of any number of predetermined steps. In this
manner we can create literally hundreds of different commands
that can subsequently be used as parts of other procedures, which
then, in turn, become commands containing other commands. The
instruction book that comes with the TI LOGO module is full of
examples.

SPRITE GRAPHICS

In addition to the turtle graphics capability, TI LOGO (unlike
other versions of LOGO) permits us to use LOGO in combination
with the sprite capability. LOGO includes five predetermined sprite
shapes, but you can also define your own shapes by using the ap
propriate commands, as we'll see. Let's start by using some of the
predetermined shapes, which are:

1 PLANE

2 TRUCK

3 ROCKET

4 BALL

5 BOX

To start the process, clear the turtle from the screen by typing:

NOTURTLE

HOME

followed by:

TELL SPRITE 1

SC6

CARRY 1

HOME

You'll see a plane facing right. You can now move it all over the
screen by using the FD, RT, LT, and BK commands though,
although RT and LT control the direction of movement, they do not
turn the nose of the airplane to a different direction, the way the tur-

410 The Last Whole TI-99/4A Book

tie does. In order to manipulate the sprites, we'll have to learn a
number of additional commands, which, along with explanations,
are listed below.

BIG doubles the size of a sprite. See SMALL and SIZE.

CARRY is used in conjunction with the name of a sprite (CARRY
:PLANE) or with a number representing a given sprite shape
(CARRY 1).

COLOR calls up the number that represents the color of the current
sprite. In practice it might be used to produce changes in the color
during the execution of a procedure: SC (:COLOR + 1).

BACH causes all sprites to perform in accordance with associated
inputs: EACH [SH :WEST] causes all sprites to be prepared to move
to the left with the next FD command.

FREEZE cancels previous motion commands, holding all sprites in
position. THAW reverses the action.

HEADING produces the heading (in degrees) of the active sprite (or
the turtle). In practice it can be used in the same way as COLOR: SH
SHEADING — 3).

LOOKLIKE is the same as CARRY.

MAKECHAR (MC) permits the definition or editing of the character
shape represented by a number in the range from 0 to 255: MC 52.
The character shapes represent the ASCII characters (see Appendix
I) or shapes defined by you.

MAKESHAPE (MS) permits changing the shape of the sprite
represented by a number in the range from 0 to 25: for instance, MS
18, where the number identifies the sprite whose shape is to be

.changed. A maximum of 26 sprites may be used at one time.

NUMBEROF produces the number of the active sprite when used
with WHO: PRINT NUMBEROF WHO.

Having Fun with TI LOGO n 411

SETSPEED (SS) controls the speed of movement of sprites when
used with a number in the range from —127 to 127, where low
numbers produce a slow motion and large numbers result in fast
motion. Negative numbers cause motion in the opposite direction of
the last SH command, whereas positive numbers move the sprite in
the last SH heading. To use the command with a specific sprite, it
must be preceded by TELL and the sprite number: TELL SPRITE
15 SS —5.

SHAPE produces the shape number of the active sprite. It can be
used to change the shape in the same manner in which COLOR is
used.

SIZE produces one of two numbers: 16 if sprites are the normal
size, or 32 if the BIG command was used to double the size of
sprites.

SMALL reverses the action of BIG by reducing sprite size to
normal.

SPEED produces the number of the speed at which sprites are mov
ing. Use in the same manner as COLOR.

SPRITE is used in conjunction with TELL and a numeric input
from 0 to 31 to direct commands to a given sprite: TELL SPRITE 3
SS50.

SV, with two numbers, determines the velocity of vertical and
horizontal movement of a given sprite: TELL SPRITE 1 SV 20 10
causes movement at a speed of 20 horizontally and 10 upward. Us
ing negative numbers reverses the direction of travel.

SX is used with one number to move the sprite instantly to the
horizontal coordinate represented by that number. After the reloca
tion, previous motion continues.

SXV is used with one number from —127 to 127 to control the
speed of horizontal travel.

412 The Last Whole TI-99/4A Book

SXY moves the sprite to the position on the screen represented by
two numbers which stand for the x/y coordinates, with 0 0
representing screen center.

SY instantly moves the sprite to the vertical (y) coordinate
represented by a number. (0 is screen center, vertically). After the
relocation, previous movement continues.

SYV is used with one number in the range from —127 to 127 to
control the vertical speed of the sprite. Positive numbers move up
ward, negative numbers downward.

TELL directs the commands that follow to a given sprite: TELL
SPRITE 1 causes only that sprite to be affected by subsequent
commands.

THAW restores motion after FREEZE.

WHO identifies the currently active sprite: PRINT WHO results in
SPRITE 1 or whichever sprite number is active.

XVEL produces the currently used horizontal velocity of the active
sprite. Used in the same manner as COLOR.

YVEL is the same as above, relative to vertical velocity.

When we're using sprites, the CLEARSCREEN (CS) command
does not affect the sprites, only the text on the screen. To get rid of
the sprite in order to produce something new, we'll have to write a
little procedure:

TOKILLSPRITE

TELL :ALL SC 0

END

which changes the color of all sprites to 0 (clear), making them in
visible. Or you can simply type TELL :ALL SC 0, and the effect will
be the same.

Now let's have a little fun with sprites we design ourselves. First
we've got to give our shapes a name and a number, which then
represents the number of the sprite:

Having Fun with TI LOGO II 413

MAKE "HORSE 6

MAKE "HORSES 7

defines two shapes, HORSE and HORSES, as sprites 6 and 7. Next
we actually have to create those shapes:

MS :HORSE

changes the screen to a grid of 16 by 16 squares. What we want to
create is the shape ofa horse with two different leg and tail positions
to give the impression that it is running. Figures 15-1 and 15-2 on
the following page show the two designs in the grid. The designs are
created by moving the cursor, using the arrow keys. If the cursor is
moved without the use of the FCTN key, the square remains empty.
If the FCTN key is pressed, the square is filled with black. When the

Figure 15-1. A design in the shape of a running horse.

414 The Last Whole TI-99/4A Book

Figure 15-2. Another design, with the horse's legs, tail, and head in different positions.

design is complete, press BACK (FCTN 9), which returns you to the
command mode. Now type:

MS :HORSES

and repeat the process with the second horse shape. When that is
complete, it's time to devise the procedure:

TO GALLOP

SC6

CARRY 6

FD5

CARRY 7

FD5

GALLOP

END

Having Fnn with TI LOGO n 41S

which sets the color as 6 (red) and then tells sprite 6 to move for
ward five spaces, after which sprite 7 moves forward five spaces and
the next line (GALLOP) causes the routine to be repeated over and
over again, giving the impression that the horse is galloping, mov
ing its legs and swishing its tail up and down.

Now, ifyou want to make a horse race out of this, we can use the
shapes we have created like this:

TO RACE

SC6

CARRY 6 FD 3

CARRY 7 FD 3

TELL SPRITE 8 CARRY 6

TELL SPRITE 9 CARRY 7

TELL SPRITE 10 CARRY 6

TELL SPRITE 11 CARRY 7

TELL SPRITE 8 SY 5

TELL SPRITE 9 SY 5

TELL SPRITE 10 SY 10

TELL SPRITE 11 SY 10

TELL SPRITE 8 FD 5

TELL SPRITE 9 FD 5

TELL SPRITE 10 FD 7

TELL SPRITE 11 FD 7

RACE

END

This creates a total of six sprites, representing three horses moving
at different speeds in the same direction.

The TI LOGO instruction book contains a number of additional

ideas you might like to experiment with, after which you'll want to
think up new procedures and shapes of your own.

MUSICAL LOGO

LOGO can also be used to play music, but for this it would be
helpful, though not absolutely necessary, if you can read music. I
cannot, so I won't create any actual music, but rather give you a
simple example, using scales. The commands used are MUSIC and

416 The Last Whole TI-99/4A Book

PLAYMUSIC (PM), and in the three-plus octaves that LOGO offers in
one of two music modes (CHROMATIC and MAJOR), each note is
represented by a positive or negative number, all of which are listed
on pages 128 and 132 of the LOGO manual. MUSIC requires two
sets of inputs, the first set being the pitch of each note in a phrase,
and the second representing the duration for which the note is held.
Here is an example that plays a chromatic scale:

MUSIC PROGRAM

This program plays a chromatic scale.

TO SCALE1

MUSIC E-15 -14 -13 -1£3 C£ £ £ 2J

END

TO SCALE£

MUSIC C-l1,-10 -9 -83 [£ £ £ £ 3
END

TO SCALE3

MUSIC C-7 -6 -5 -43 C£ £ £ £3

END

TO SCALE4

MUSIC C-3 -£ -1 03 C£ £ £ £3

END

TO SCALES

MUSIC CI £ 3 43 C£ £ £ £3

END

TO SCALE6

MUSIC [5 6 7 8] C£ £ £ £3

END

TO SCALE7

MUSIC C9 10 11 1£3 C£ £ £ £3

END

TO SCALES

MUSIC [13 14 15 163 C£ £ £ £3

END

TO SCALE9

MUSIC C17 18 19 £03 C£ £ £ £3

END

TO SCALE10

MUSIC C£l ££ £3 £43 C£ £ £ £3

END

TO PLAY

SCALE1 SCALE£ SCALE3 SCALE4 SCALE5 SCALE6 SCALE7

SCALES SCALE9 SCALE10

PLAY

END

Having Fun with TI LOGO n 417

With all that in the computer, turn up the volume on your monitor
and type PLAY:

PM

and the entire range of musical notes available with LOGO
CHROMATIC will be played over and over again. When you now
want to stop the playing, you will find that pressing BACK or AID
does not work. The only way to stop it is either to type SETVOICE0
or by entering the edit mode by typing TO NAME, where NAMEcan
by anything. If you know anything about music, you can use such
short blocks of notes to create all manner of melodies. All it takes is
a bit of experimentation. As is true of the sprite mode, the music
mode offers a number of commands:

CHROMATIC is the standard range of notes that we used in the ex
ample above. See also MAJOR.

DRUM creates a drum beat. It must be used with numeric inputs
that determine the duration.

LEGATO controls pauses inserted between notes.

LOOPMUSIC causes music to be played over and over. To stop, use
SETVOICE 0 or enter edit mode. LOGO commands can be executed
while the music is playing.

MAJOR changes the scales to full notes per unit rather than the
half notes in CHROMATIC.

MUSIC is used with two sets of numeric expressions, where the first
set controls the pitch and the second controls the duration.

NOTE places a single note into the buffer, with duration, pitch, and
volume controlled by three digits (without square brackets): NOTE
4811.

PLAYNOTE plays one note at a time, after which it waits for the
duration of that note.

418 The Last Whole TI-99/4A Book

PLAYMUSIC (PM) plays the music stored in the buffer. While
music is playing, other LOGO commands may be executed.

REST is used with one number to insert a pause, the length of
which is determined by the number.

SETTEMPO is used with one number to set the tempo in counts
per minute.

SETVOICE uses a single digit from 0 to 4 as input. Zero clears the
music buffer; 1, 2, and 3 can be used to select one of three different
voices, and 4 is used to generate noise.

SETVOLUME uses a single digit as input, ranging from 0 to 15,
with 0 being the softest and 15 the loudest. The default value is 0.

STACCATO causes each note to be played for just 5/60 of a second,
with dead pauses between notes. This contrasts with LEGATO,
which is the default condition.

OTHER TI LOGO CAPABILITIES

You can use TI LOGO to create so-called tiles, which are designs
on an eight-by-eight grid, by using the MAKECHAR (MC) com
mand. When used in conjunction with the numbers that represent
the ASCII characters (see Appendix I), the command produces
those characters. Or you can use numbers above 95 and create sim
ple shapes of your own, or you can actually reshape the ASCII
characters.

TI LOGO can also, of course, be used to write the type of pro
grams that we normally write in BASIC. I believe, however, that
such use is of secondary importance. Anyone wishing to use LOGO
in that fashion will find reasonably clear instructions in the LOGO
manual.

Finally, you will almost certainly want to save some of your
LOGO shapes and procedures on disk or cassette. In the command
mode, type SAVE, after which the display will ask whether you

Having Fan with TI LOGO II 419

want to save just the procedures, just the shapes (and tiles), or both.
In most instances you'll want to select the latter. It then asks
whether you're using a cassette, a diskette, or other. Type the ap
propriate number and the name of the procedure to be saved, and
all will be recorded. Later on, if you want to reuse the same pro
cedure along with the saved shapes, type RECALL and then follow
the same routine, and your work will be transferred to the computer
RAM.

16

Telecommunication:
Modems and Data

Banks

One of the more fascinating aspects of computers is their ability
to communicate with one another over telephone lines. The entire
field of telecommunication is growing so rapidly at least in part
because it provides computer users with a "window" to the entire
world. Texas Instruments offers an optional modem that interfaces
with your telephone. The word "modem" stands for
modulate/demodulate, because the computer is a digital device
whereas the telephone company uses analog technology to
transmit. The analog technology consists of a variety of tones,
similar to those you hear on pushbutton telephones, which control
the electrical current and, in turn, the transmission. Since the
digital computer uses only two symbols, zero and one, the modem
translates these symbols into tones acceptable to telephone
technology, and, at the receiving computer, another modem
retranslates the analog tones into digital symbols. The speed at
which all of this is accomplished is described in terms of baud rate,
which is the number of bits transmitted in 1 second. The TI modem
has a baud rate of300, which means that it transmits approximately
30 letters or digits in each second.

Unfortunately, not every computer can "talk" to every other
computer. The computer language used must be the same at both

420

Telecommunication: Modems and Data Banks 421

ends, which means that, barring the availability of some relatively
complicated translating devices, you'll only be able to com
municate with TI-99/4A Home Computers or with data banks that
are equipped to deal with the TI version ofBASIC. The good news is
that one of the leading data banks, The SOURCE (a subsidiary of
Reader's Digest) has established something call TEXNET, which
provides TI-99/4A users with access to the huge amount of informa
tion and services available from The Source.

The Source provides more than 1000 information and com
munication services that are instantly available to subscribers.
Subscribing involves an initial fee plus a relatively small monthly
fee plus charges based on the number of minutes you use in access
ing the data bank during any given month. The aggregate charges
are not too steep, but they can, of course, mount up with frequent
use of the services. The time charges vary with the time of day, be
ing higher during business hours and lowest in the middle of the
night. Another consideration is the city or town in which you're
located. The Source has local phone numbers available in most ma
jor cities, but if you live in a small community, you may have to use
a number in a nearby city, and you'll have to add long-distance
telephone charges to the other fees.

Before going into more detail about the ways in which telecom
munication can be useful, let's look at the logistics of getting your
computer "on line."

GETTING "ON LINE"

The TI modem is what is known as an acoustical modem, mean

ing that it uses the telephone receiver to accomplish transmission
and reception. The unit consists of a small board that contains the
electronics and two rubber cups into which the telephone receiver
is placed. The modem is attached to the same RS232 port as is used
for the printer, and since only one port is available on the card, the
printer must be disconnected while the modem is in use. This
means that incoming data must be stored in the computer RAM or
sent to the disk drive, to be printed later if a hard copy is desired.
The modem receives its electrical power from a transformer that
plugs into a regular wall outlet.

422 The Last Whole TI-99/4A Book

If you're going to communicate with someone in a distant loca
tion, try to do it at night when long-distance telephone rates are
lowest, because you'll be billed at regular long-distance rates
whenever you communicate through the telephone. Plan
everything in advance to avoid wasting time while you're deciding
what you want to do next.

Most of the time you'll probably use your modem to access The
Source (or other such data banks if and when they become available
to TI-99/4A users). To use the modem to contact The Source, you
will need, in addition to the modem, a Terminal Emulator II

module, which must be plugged into your computer. When you're
ready, turn on the system in the usual manner, make sure the
modem is set for FULL DUPLEX (F on the back of the unit) and
OUTPUT (O on the back of the unit), and press any key to get to the
main menu. That menu offers you several choices:

PRESS

1 FOR TI BASIC

£ FOR TERMINAL EMULATOR II

3 FOR DEFAULT OPTION TE II

For now, press 2. The display will change to:

/

TERMINAL EMULATOR II

V.

and then to:

Telecommunication: Modems and Data Banks 423

f A

PARAMETER OPTIONS CHOICE

BAUD RATE 1-300

2-110

1

PARITY 1-EVEN

2-ODD

3-NONE

1

DUPLEX 1-FULL

2-HALF

1

RS-232 PORT 1-#1

2=#2

1

COLUMN WIDTH 1-40

2-38

3-36

4-34

AUTO LOS-ON FILE LOGON

V. J

with the cursor blinking on the first 1 under OPTION. In most in
stances you will be able to accept the default values by simply
pressing >ENTER < for each item, though you might want to
change the column width to 38 (type 2) in order to avoid
wraparound of copy on the screen. When all that has been done,
press >ENTER <, and a steady cursor will appear in the top left cor
ner of the screen. Now dial the number that was given you by The
Source, and when you hear the high-pitched tone, place the
receiver into the cups of the modem, making sure that it is firmly in
place. The display will change to L?, which indicates that you are
now connected to The Source. Unless you've been given other in
structions when signing up with The Source, you now need to type
in the identifier code for your terminal, which is D1 >ENTER <. The
screen now displays an @ sign, and you must type in the code for
your system, which is most likely C 30128. The screen now tells

424 The Last Whole TI-99/4A Book

you that you are connected to The Source. You now type ID TI4917
PASSWORD, or whatever account number and password you were
given when you signed up with The Source. At this point you're
ready to ask for whatever information you're interested in, using
the instructions provided in the voluminous instruction book that
was sent you.

SERVICES OF THE SOURCE

The type of services available through The Source are as useful
to the family at home as they are to businesses or professional per
sons. You can do your shopping electronically by calling up
categories of merchandise that interest you, and you'll be con
fronted by the best discounted prices along with information as to
how to obtain your selection. In addition, you can trade and barter
with other Source subscribers. You can ask for current airline
schedules and rates for any city with airline service. There are
restaurant guides available for most cities, and you can obtain ad
vice on recipes, food and nutrition, wines, health care, medicine,
home repair, or you can ask for reviews ofthe latest motionpicture
releases.

You can access a library of computer programs that are
available free of charge. You can send letters, documents, or other
material via The Source to be delivered immediately or delayed to
one recipient or thousands. You can have access to a large number
ofgames to be played at home, toa variety ofeducational programs
in many languages. You have immediate access to the latest stock
quotations, to the UPI news service, to business advice and pro
grams. You can hold computer conferences, or you can simply chat
with other Source subscribers. And, most of all, you can use The
Source's research facilities to obtain information on virtually any
subject imaginable. Anything that might be found in the latest edi
tion of the best encyclopedia available is provided at a moment's
notice, plus material and information dealing with specialized sub
jects that are usually not covered in most general-purpose research
publications and therefore cannot be easily found.

Telecommunication; Modems and Data Banks 425

You can even publish newsletters or an entire magazine via The
Source electronically, without ever using paper or employing a
printer. Your publication will be distributed to subscribers, and
you'll receive a royalty.

At first glance, the very quantity of information and services be
ing offered is somewhat intimidating. And, when contemplating the
purchase ofa modem, you might say to yourself that you don't really
need any of this stuff. You may be right, but chances are that you're
not, especially if your family includes school-age children, who
always need answers to questions you may not be equipped to deal
with.

Like just about anything associated with the growing field of
computers, we must do in order to learn how best to make use of
what is available to us. And that includes the field of telecom

munication because, until you actually use the system, it's virtually
impossible to obtain a clear picture of the advantages to be gained.
My guess is that once a modem has been added to your system,
you're likely to wonderhow you evermanagedto getalongwithout it.

If you're at all interested in having the world at your fingertips,
then, by all means, don't hesitate.

Appendix I

ASCII Character
Codes

The ASCII character codes produce the characters of the
alphabet, digits, and a variety of symbols.

32 (space)
33 ! (exclamation point)
34 " (quotation mark)
35 # (number or pound)
36 $ (dollar or string)
37 % (percent)
38 & (ampersand)
39 ' (apostrophe)
40 ((parenthesis open)
41) (parenthesis close)
42 * (asterisk)
43 + (plus)
44 , (comma)
45 — (minus or hyphen)
46 . (period or decimal point)
47 / (slash or divide)
48 0(zero)

49 1

50 2

51 3

427

428 The Last Whole TI-99/4A Book

52 4

53 5

54 6

55 7

56 8

57 9

58 : (colon)
59 ; (semicolon)
60 < (less than)
61 = (equals)
62 > (greater than)
63 ? (question mark)
64 @(at)
65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

80 P

81 9
82 R

83 S

84 T

85 U

86 V

87 w

88 X

89 Y

90 Z

91 [(bracket open)
92 \ (reverse slash)
93] (bracket close)
94 " (exponent)
95 _ (underline)

Appendix I 429

Appendix II

Speech
Synthesizer
Word List

The TI Solid State Speech Synthesizer, Model PHP 1500, has a
resident vocabulary of 373 words that the voice will pronounce. All
words not included in this list, when used with the speech syn
thesizer, will be spelled.

A (long a) B

Al (short a)
BACK

ABOUT BASE

AFTER BE

AGAIN BETWEEN

ALL BLACK

AM BLUE

AN BOTH

AND BOTTOM

ANSWER BUT

ANY BUY

ARE BY

AS BYE

ASSUME

AT

430

CAN

CASSETTE '
CENTER

CHECK

CHOICE

CLEAR

COLOR

COME

COMES

COMMA

COMMAND

COMPLETE

COMPLETED

COMPUTER

CONNECTED

CONSOLE

CORRECT

COURSE

CYAN

D

DATA

DECIDE

DEVICE

DID

DIFFERENT

DISKETTE

DO

DOES

DOING

DONE

DOUBLE

DOWN

DRAW

DRAWING

E

EACH

EIGHT

EIGHTY

ELEVEN

ELSE

END

ENDS

ENTER

ERROR

EXACTLY

EYE

F

FIFTEEN

FIFTY

FIGURE

FIND

FINE

FINISH

FINISHED

FIRST

FIT

FIVE

FOR

FORTY

FOUR

FOURTEEN

FOURTH

FROM

FRONT

G

GAMES

GET

GETTING

Appendix n 431

432 The Last Whole TI-99/4A Book

GIVE

GIVES

GO

GOES

GOING

GOOD

GOOD WORK

GOODBYE

GOT

GRAY

GREEN

GUESS

H

HAD

HAND

HANDHELD UNIT

HAS

HAVE

HEAD

HEAR

HELLO

HELP

HERE

HIGHER

HIT

HOME

HOW

HUNDRED

HURRY

I

I WIN

IF

IN

INCH

INCHES

INSTRUCTION

INSTRUCTIONS

IS

IT

JOYSTICK

JUST

K

KEYBOARD

KNOW

L

LARGE

LARGER

LARGEST

LAST

LEARN

LEFT

LESS

LET

LIKE

LIKES

LINE

LOAD

LONG

LOOK

LOOKS

LOWER

M

MADE

MAGENTA

MAKE

ME

MEAN

MEMORY

MESSAGE

MESSAGES
MIDDLE

MIGHT

MODULE

MORE

MOST

MUST

N

NAME

NEAR

NEED

NEGATIVE

NEXT

NICE TRY

NINE

NINETY

NO

NOT

NOW

NUMBER

O

OF

OFF

OH

ON

ONE

ONLY

OR

ORDER

OTHER

OUT

OVER

Appendix n 433

PART

PARTNER

PARTS

PERIOD

PLAY

PLAYS

PLEASE

POINT

POSITION

POSITIVE

PRESS

PRINT

PRINTER

PROBLEM

PROBLEMS

PROGRAM

PUT

PUTTING

9

R

RANDOMLY

READ (reed)
READ (red)

READY TO START

RECORDER

RED

REFER

REMEMBER

RETURN

REWIND

RIGHT

ROUND

434 The Last Whole TI-99/4A Book

SAID

SAVE

SAY

SAYS

SCREEN

SECOND

SEE

SEES

SET

SEVEN

SEVENTY

SHAPE

SHAPES

SHIFT

SHORT

SHORTER

SHOULD

SIDE

SIDES

SIX

SIXTY

SMALL

SMALLER

SMALLEST

SO

SOME

SORRY

SPACE

SPELL

SQUARE
START

STEP

STOP

SUM

SUPPOSED

SUPPOSED TO

SURE

T

TAKE

TEEN

TELL

TEN

TEXAS INSTRUMENTS

THAN

THAT

THAT IS INCORRECT

THAT IS RIGHT

THE (thee)
THE1 (the, short e)
THEIR

THEN

THERE

THESE

THEY

THING

THINGS

THINK

THIRD

THIRTEEN

THIRTY

THIS

THREE

THREW

THROUGH

TIME

TO

TOGETHER

TONE

TOO

TOP

TRY

TRY AGAIN

TURN

TWELVE

TWENTY

Appendix n 435

TWO WORDS
TYPE WORK

WORKING
U WRITE

UHOH

UNDER X

UNDERSTAND

UNTIL Y

UP YELLOW
UPPER YES
USE YET

YOU
V YOU WIN

VARY YOUR

VERY

Z

W ZERO

WAIT 0 (zero)

WANT 1 (one)

WANTS 2 (two)

WAY 3 (three)

WE 4 (four)

WEIGH 5 (five)

WEIGHT 6 (six)

WELL 7 (seven)

WERE 8 (eight)
WHAT 9 (nine)

WHAT WAS THAT - (negative)

WHEN + (positive)

WHERE . (point)

WHICH

WHITE

WHO

WHY

WILL

WITH

WON

WORD

Glossary of
Computer Terms

and
Abbreviations

This glossary includes the terms, abbreviations, and commands
used in this book. Other frequently encountered computer terms
and abbreviations are also included.

A

ACCEPT — a statement and command used in TI EXTENDED

BASIC that stops program execution until data have been keyed in.
Similar to INPUT, except that it permits input data to be displayed
at a certain location on the screen.

Accumulator — a word for memory or register, derived from the
fact that subtotals are accumulated and retained in memory.

Address — the number or phrase used to recall previously stored
data from the computer memory.

Address register — the register in the central processing unit that
contains the address of the program in use.

436

Glossary of Computer Terms 437

ADP — automatic data processing; in other words, the activity of
the computer itself.

ALGOL — a computer language that is best suited to the process
ing of mathematical and numerical problems. The acronym stands
for ALGOrithmic Language.

Alphanumeric — a combination of alphabetic and numeric data.

Analog —one of two methods ofsolving problems electronically. In
the analog method electrical signals are of variable voltages, and
the slightest change may cause a significant difference in output.
The word "analog" is derived from analogy. The alternative
method of electronic problem solving is referred to as digital.

Analog computer — analog computers use electrical current fluc
tuations to represent data. Analog computers, once predominent in
the computer field, have lost favor since the introduction of the
microprocessor and the digital computer.

ANSI — American National Standards Institute, an organization
that studies computer languages and codes in an effort to bring
about a degree of standardization.

AOS — arithmetic operating system, the conventional system of
mathematical problem solving that we use when figuring with pen
cil and paper. (See also RPN.)

APL —a programming language. The acronym stands for just that:
A Programming Language.

Applications program —a program designed to solve a specific
type of problem, in contrast to systems programs, such as CP/M,
designed to control the operation of the computer itself.

ARRAY —a list of variables designed for quick and easy access by
the computer.

ASCII —American Standard Code for Information Interchange. It
is a code that represents the assembly and machine language

438 The Last Whole TI-99/4A Book

substitutes for upper- and lowercase letters, numbers, punctuation
marks, mathematical function symbols, and so on. It is the stan
dard used by most microcomputers.

Assembler — a program that translates assembly language into
machine language.

Assignment statement — permits programmers to assign given
numeric, alpha, or alphanumeric data to letters, letter combina
tions, or other symbols, such as A = 6 or B = 5/ (1 + 8) or
A$ = "WORD." Subsequently these symbols can be used in place of
the data that have been assigned to them.

Asterisk (*) — the sign used by computers to represent the com
mand to multiply. It is used in order to permit the computer to dif
ferentiate between the multiplication command and the letter X,
conventionally used to denote multiplication.

B

BASIC — the most popular programming language. It's popularity
is based on the fact that it is relatively easy to learn and use. It per
mits the use of simple and largely self-explanatory phrases to enter
complicated instructions when writing programs. The acronym
stands for Beginners' All-purpose Symbolic Instruction Code.

Baud — a unit of the speed with which information and data are
transmitted. Thus, a baud rate of 5000 means that data are
transmitted at a rate of 5000 bits per second.

Binary — represents the way in which computers use data. Com
puters can use only two digits, 0 and 1, representing the state of the
electronic circuits: on and off. All data entered into the computer,
numbers, letters, symbols or whatever, must be translated into
machine language, consisting entirely of combinations of Os and Is.
Here is a brief list of decimal numbers translated into their binary
equivalents:

0 00000 5 00101 9 01001 13 01101

1 00001 6 00110 10 01010 14 OHIO

2 00010 7 00111 11 01011 15 01111

3 00011 8 01000 12 01100 16 10000

4 00100

Glossary of Computer Terms 439

Bit — the smallest possible unit of information. One bit is sufficient
to tell the difference between 0 and 1, which may represent yes or
no, right or wrong, and so on. Computers deal with all information
in the form of individual bits.

Block diagram — a graphic representation of a program. In pro
gram development it often helps to clarify what the program is to
accomplish at any given stage by preparing a block diagram, also
referred to as a flowchart.

Boot — stands for "bootstrap," derived from "pulling yourself up
by your own bootstrap." It is, in fact, a short and simple program
that prepares the computer to accept information, or permits infor
mation from disk to be loaded into the computer. Computers are
described as supporting "warm boot" and "cold boot" routines,
meaning the manner in which a disk can be activated. Cold boot
means that the disk is loaded into the disk drive with the power to
the computer turned off. After it is in the drive, the computer is
turned on and the disk drive is activated automatically. Warm boot
means that the power to the computer is on when the disk is placed
into the disk drive. Then a key or a combination of keys is pressed,
and the drive is activated. Either way, the disk in question must
contain a boot program, such as the TI initialization program.

Branch — a detour in a program, usually as the result of a condi
tional statement, such as IF A = 0 THEN GOTO and the line number
to which the computer is supposed to go, assuming that A equals 0.
If it doesn't the computer will ignore the command and go to the
next program line. At the end ofsuch a branch there must be an ad
ditional instruction that tells the computer either to return to the
line just past the previous place in the program, or to some other
line.

BREAK — A command or statement in TI BASIC that stops pro
gram execution.

Buffer — The temporary storage area for data, limited by the
number of Ks in the computer's random-access memory (RAM).
Anything typed into the computer, whether text or programs, is
first stored in the memory buffer, which, after the information has
been saved on disk, can be cleared to accept additional data.

440 The Last Whole TI-99/4A Book

BYE — a command in TI BASIC, terminating program execution.

Byte — any unit of information that consists of 8 bits, such as most
individual letters or digits.Storage space in memory or on disk is
usually referred to in terms of K bytes, with one K byte representing
1024 bytes.

Calculator mode — the operating mode in which the computer ac
cepts direct commands and performs them immediately. Thus, if
PRINT 2 + 2? is typed in with no line number, the computer instantly
responds with 4. Also referred to as "immediate execution mode."

CALL — a statement in TI BASIC and TI EXTENDED BASIC that

calls up any one of a large number of built-in subprograms.

Cathode-ray tube (CRT) — the video display of the monitor or TV
set.

Character — any character, such as a letter, digit, mathematical
function symbol, and so on.

Chip — an integrated circuit, or the tiny amount of silicon that
makes up part of an integrated circuit.

COBOL — a programming language that is particularly suited to
solving business-related problems. It is particularly adept at han
dling random-access files. The acronym stands for COmmon Busi
ness-Oriented Language.

Column — each individual character space on a program or text
line. The current position of the cursor is indicated by line and col
umn numbers.

Compiler — a program that translates the data, information, and
commands entered in one of the common computer languages
(high-level languages) into the kind of language the computer can
deal with.

Glossary of Computer Terms 441

Computer error —there really is no such thing. Whenever people
blame some kind of a goof on "computer error," they are usually
simply trying to hide some human error that was made while in
teracting with the computer.

Computer languages — languages the computer can accept
because they were designed to be translated automatically into
machine language.

Conditional statement — a statement in a computer program
that causes the computer to execute one of several possible steps,
depending on whether the condition contained in the statement is
met (such as IF A = 0 THEN GOSUB. . .).

Constant — a numeric or alphanumeric expression that remains
unchanged. The opposite of a variable.

CONTINUE or CON — a command in TI BASIC that causes the
computer to continue program execution after a BREAK,command
caused it to interrupt execution.

cps — characters per second. Used frequently to express the speed
with which line printers print text.

CPU — central processing unit, the heart of the computer.

CRT — cathode-ray tube.

Cursor — the usually flickering mark that appears on the video
display to indicate where the next printed character will appear.

Data — any type of information, commands, letters, numbers,
symbols, or graphics.

DATA — a statement in BASIC that permits the entry of any
number of alphanumeric data in programs. These data are then ac
cessed by using the READ statement.

442 The Last Whole TI-99/4A Book

Data-base program — a program designed to accumulate data of
one kind or another, and from which these data can be retrieved at
will in random fashion. Data-base programs are, in fact, random-
access file programs designed to make data entry easy.

Data field — an area within a data form in a data-base program
designed to accept entry of data.

Data file — a file created automatically during program execution
in which data are stored in the order in which they were keyed into
the computer. Data files can be sequential files or random-access
files.

Data link — a means of electronically transferring data from one
location to another. Data links can be telephone lines, radio waves,
microwaves, coaxial cables, or laser beams.

Data processing — the manipulation of data; what the computer
does.

Debugging — editing and correcting a program.

Decimal — the fraction represented by digits to the right of the
decimal point.

Decimal system — the conventional arithmetic system, using
numbers from zero to nine.

DEF — a TI EXTENDED BASIC statement that allows you to define
your own functions.

Default — most computers are preprogrammed to a certain degree,
causing them to assume that certain standard commands will be
executed unless the operator keys in commands to the contrary.

DELETE — a TI BASIC command used to delete files from disk.

Dialect — computer languages are used by different computers
with minor changes. Thus TI BASIC and TI EXTENDED BASIC are

Glossary of Computer Terms 443

dialects of BASIC that are accented by TI-99/4A computers. They
include some commands that are not supported by other computer
models.

Digital — using numbers rather than analog-type representations
in the manipulation of data.

Digital computer — computers that operate by counting the
ON/OFF sequences in electrical currents. All microcomputers are
digital computers.

DIM — a TI BASIC command used to dimension arrays.

Disk — a thin disk of magnetic material that can be used for the
storage of large amounts of data. There are so-called floppy disks,
and hard disks.

Disk drive — the mechanical system designed to store data on disk
or to retrieve data from disk.

Diskette — often used to describe 5.25-inch disks.

DISPLAY AT — a TI BASIC statement that causes data to be

displayed at predetermined positions on the screen.

Duplex — a communication line that permits sending and receiv
ing information simultaneously, such as an ordinary telephone line.

E

Edit mode — a means of editing program lines without retyping
the entire line. Type the line number and press FCTN X to enter edit
mode.

EDP — electronic data processing.

END — a BASIC statement indicating the end of the program. It
does not necessarily have to be the last program line.

444 The Last Whole TI-99/4A Book

Error message —'any message displayed by the computer to tell
the operator that he or she has made a mistake, or that something
has gone wrong. Error messages are usually associated with infor
mation describing the error in,question.

Executive program —a program designed to handle the manage
ment of the computer system.

Expression — a program statement.

F

File — a collection of pieces of information, data, or text stored
either in the computer's memory buffer or on disk. Files must be
stored under a unique file name in order to facilitate retrieval.

Fixed-length record files —an expression denoting files in which
each record consists of the identical number of bytes.

Floppy disk — see disk.

Flow chart — see block diagram.

FOR. . .TO. . .(STEP) — the BASIC statement that creates a loop.

Formatting — the term refers to the action of the computer when,
in compliance with instructions given by the operator, it rearranges
text or data into a predetermined format for display or printing.

FORTRAN — a high-level language best suited for the handling of
algebraic problems, allowing exponentation of up to three
subscripts. The acronym stands for FORMula TRANslation.

Function keys — keys on the keyboard that perform certain
predetermined functions rather than typing a letter, digit or sym
bol. Since many of the more sophisticated programs require the
availability of dozens of unique functions, they usually use com
binations of two or even three keys to execute functions.

Glossary of Computer Terms 445

G

Garbage — incorrect information.

GIGI — garbage in, garbage out. An expression used to emphasize
that faulty input information will produce faulty output
information.

Global search — looking for a given piece of information, data, or
text anywhere within the program or file.

GOSUB — a BASIC statement used in conjunction with a line
number that tells the computer to go to a subroutine. The
subroutine must end with a RETURN statement, telling the com
puter to go back where it came from.

GOTO — a BASIC command used to tell the computer to go to a
line in the program other than the next line.

H

Hard copy — printouts produced by the line printer.

Hardware — all actual equipment, including all peripherals, that
makes up a complete computer system.

Hexadecimal — an arithmetic system using 16 digits. It is often
used in computer language translations. It is used in TI BASIC to
determine the shapes of graphic characters. Here is a list of 16
characters:

0 0 5 5 9 9 13 D

1 1 6 6 10 A 14 E

2 2 7 7 11 B 15 F

3 3 8 8 12 C 16 10

4 4

High-level language — all programming languages other than
assembly and machine language. Also referred to as procedure-
oriented languages (POLs).

446 The Last Whole TI-99/4A,Book

IF.. .THEN.. .(ELSE) — in BASIC, a set of protected words used in
conditional statements: IF A = 10 THEN. . .(ELSE. . .)

IMAGE — a TI EXTENDED BASIC statement used to specify the
format in which numbers are to be displayed or printed.

INPUT — a BASIC statement that tells the computer to stop pro
gram execution until certain data have been keyed in. With
TI-99/4A computers it can be used in conjunction with a prompt:
INPUT "DATA? ";A$, which would assign the keyed-in data to the
symbol A$.

Integer — any number stripped of its decimals; the integer of
123.456 is 123.

Interactive —a program that includes questions and prompts that
must be acted upon by the operator.

Interface — any device that connects two pieces of hardware,
causing them to be compatible.

Interpreter —a machine-language program that understands, in
terprets, and executes programs written in a high-level language.

I/O — input/output.

K

K —short for kilo. Even though kilo usually stands for 1000, in the
world of computers, K stands for 1024 (bytes).

Keyboard —the arrangement of keys that permits communication
between the operator and the computer.

Kilobaud — 1000 baud.

Glossary of Computer Terms 447

Line printer —any type of printer that uses 8.5-inch (plus 1 inch
for the perforations) or wider paper. Line printers are either dot
matrix printers or daisywheel printers.

LINPUT — a TI EXTENDED BASIC statement that assigns an en
tire line or record to a string variable.

LIST —a BASIC command that causes the computer to display the
specified program lines on the CRT.

Local search — tells the computer to look for a given piece of infor
mation, data, or text only within a certain portion of the program.

Logic — an arithmetic method, such as AOS or RPN.

Loop — a portion of a program that is repeated time and again until
a certain condition is met, such as:

. 10FORX = 1 TO 100

20A = A+1

30 NEXT X

where A will increase by 1 until it equals 100, after which program
execution continues.

M

M — mega or 1,000,000. One megabyte equals 1 million bytes.

Machine language — the only language the computer can under
stand without prior translation. It consists entirely of 0s and Is.

Memory — all those cubbyholes in which the computer stores data,
information, text, and commands.

MERGE — a TI BASIC command that tells the computer to use data
recorded in several different files.

448 The Last Whole TI-99/4A Book

Microcomputer — the expression has nothing to do with size. It
refers to computers based on microprocessor technology.

Microprocessor — the real magical heart and guts of the com
puter. It is a sophisticated version of an integrated circuit that is
capable of performing most computer functions. Its development
by Texas Instruments made today's personal computer possible.

Microsecond — one-millionth of a second.

Millisecond — one-thousandth of a second.

Modem — a piece of hardware needed for two computers to com
municate with one another over telephone lines. The acronym
stands for modulate/demodulate, because the computer data are
modulated into sound, similar to the sounds generated by pushbut
ton telephones, and, on the other end, demodulated again into com
puter commands.

N

n,nn,nnn — used frequently in instruction books to denote one-,
two-, or three-digit numbers.

NEXT — the BASIC statement that is part of the loop sequence.

Nonvolatile memory — a computer or calculator memory that re
tains stored information even when the computer or calculator is.
turned off.

NUMBER or NUM— a TI BASIC command that automatically
numbers program lines.

O

Octal — an arithmetic system using only eight digits:

0 00 5 05 9 11 13 15

1 01 6 06 10 12 14 16

2 02 7 07 11 13 15 17

3 03 8 10 12 14 16 20

4 04

Glossary of Computer Terms 449

OLD — the TI BASIC command to load files from disk into the com
puter RAM: OLD DSK1.FILENAME.

ON — a portion of several TI BASIC statements that tells the com
puter to execute certain steps if certain conditions exist: ON
(numeric variable) GOTO or GOSUB. Also ON BREAK. . ., ON ER
ROR. ... ON WARNING.

OPEN# —a TI BASIC statement that accesses peripheral devices or
opens data files.

OPTION BASE — the TI BASIC statement that controls the lowest
subscript in arrays.

Output — computer results. Opposite to input.

Overflow —when a program or text file is too long to be handled by
the available K, the balance must be handled and recorded
separately. When a computation involves more digits than the com
puter can handle, the result is rounded off, though the true result
may still be available in the computer memory.

Page — a screenful of information. Has no relation to the average
8.5-by-ll piece of paper.

Parsing — scanning a string to look for its individual components.

Pascal — a structured high-level language named after the noted
French scientist.

Peripheral —any device connected to the computer itself, such as
the monitor, line printer, disk drives, and so on.

Polish notation — see RPN.

PRINT — the BASIC statement that causes data to be displayed on
the screen. To send data to a line printer, it must first be accessed
using OPEN #, and the PRINT # statement must then be used.

450 The Last Whole TI-99/4A Book

Procedure — subroutine or similar self-contained program
segments.

Program — a sequence of instructions designed to permit the com
puter to perform a given task repeatedly, using different variables.

Programming — designing and writing a program.

Protected word — a word, phrase, or combination of letters that
has a distinct meaning to the computer. All high-level languages
consist of such protected words.

RAM — random-access memory, the memory buffer available for
the temporary storage of keyed-in data. Its size is measured in K.

Random-access file — a file that can accept data in any order,
which can subsequently be retrieved by subject matter as re
quested by the operator.

Random-access memory — see RAM.

RANDOMIZE — the TI BASIC statement that assures variety in
random-number generation.

READ — the BASIC statement used to retrieve data stored in DATA

lines within a program.

Read-only memory — see ROM.

Record — a TI BASIC expression referring to the combination of
data fields that contain the information relative to one subject.

Register — a specific location within a random-access memory.

Relative file — the name used by TI computers for random-access
files.

Glossary of Computer Terms 451

REM — the BASIC statement denoting remark lines that are ig
nored by the computer.

RESEQUENCE or RES — the TI BASIC command that causes line
numbers to be rearranged automatically.

RESTORE — the BASIC statement that is used to assure that

DATA items are READ from the top. In TI BASIC it can also be used
with files to have a file read from the beginning.

RETURN — the BASIC statement denoting the end of a subroutine.

ROM — read-only memory. Prestored program information that
controls the manner in which the computer functions. The ROM of
the average computer cannot be accessed by the operator.

Round-off error — the cumulative mathematical error that results

when fractions are rounded off.

RPN — Reverse Polish Notation, named after the Polish mathemati
cian Jan Lukasiewicz, is an arithmetic system that does not sup
port equal signs or parentheses. Data must be entered into the com
puter in a given order, after which the computer is told what to do
with those data. Thus:

• 2 + 2 = 4

would, in RPN, look like

2 ENTER 2 +

and the displayed result would again be 4. Certain calculators, like
the HP-41CV, use RPN.

RUN — the BASIC command that starts program execution. It can
be used with or without line numbers.

452 The Last Whole TI-99/4A Book

SAVE — the BASIC command that causes programs or data to be
recorded on disk or tape: SAVE DSK1.FILENAME.

Screen-oriented program — a program that displays all the
necessary prompts to tell the operator what to do next in order to
obtain the desired result.

Simplex — a communication transmission system that permits
either transmission or reception, but not both at the same time.

SIZE — a TI BASIC command that displays the number of unused
bytes in RAM.

Software — computer programs. The term usually refers to pro
grams that are marketed commercially.

Sprite — a TI expression for graphic shapes.

Storage — memory.

STOP — same as END.

String — any sequence of alpha or numeric characters that is
treated by the computer as a single unit. Digits can be used as
strings, but then they cannot be used for mathematical
calculations.

Subroutine — a separate part of the program that may have to be
run repeatedly during the execution of a program. Subroutines are
entered as the result of a GOSUB statement and must always ter
minate with a RETURN command.

Syntax — the rules that govern the way in which the computer ac
cepts commands and other data. When these rules are violated by
the operator, the display responds with SYNTAX ERROR or some
other error message.

System — the computer and all its peripherals.

Glossry of Computer Terms 453

Terminal — any of the means by which the computer outputs data
and information, the monitor screen, the line printer, the disk
drives, modems, and so on.

Thermal printer — a printer that uses specially prepared paper to
print by impact without a ribbon.

Toggle key —a key or combination of keys that reverse their effect
each time the command is keyed in, such as on/off, up/down,
alpha/numeric, and so on.

TRACE — the BASIC command that displays program line
numbers when a program is being run. To reverse the process, use
UNTRACE.

Truncation — when there are too many digits in a number, the ex
cess is chopped off and the last digit rounded off.

U

UNTRACE — turns off the TRACE action.

Variable — the data that must be keyed in anew each time the pro
gram is executed.

Volatile memory — a memory capable of retaining stored data
only as long as the electrical current is not interrupted. Interrup
tions cause all stored data to be lost. Microcomputers have volatile
memories.

W

Window — a portion of the display that is reversed for the display of
input data when other portions are occupied by fixed data such as
help menus.

Word — the number of bits a computer can deal with at one time.
Microcomputers usually have an 8-bit or 16-bit limit.

Computer
Magazines

There are a number of magazines being published, all of which
are devoted entirely to subjects related to microcomputers, hard
ware, and software, and all of which are filled with articles, evalua
tions, and advertisements for all conceivable computer-related
products.

Since it is often difficult to find these magazines at the average
newsstand or magazine rack, here are the names and addresses of
the ones that are most important and informative:

99er Homecomputer Magazine, P.O. Box 5537, Eugene, OR
97405

Personal Computing, Hayden Publishing Company, Inc., 50
Essex Street, Rochelle Park, NJ 07662

Popular Computing, Byte Publications, Inc., 70 Main Street,
Peterborough, NH 03458

Creative Computing, Ahl Computing, Inc., a subsidiary of Ziff-
Davis Publishing Company, 39 East Hanover Avenue, Morris
Plains, NJ 07950

Compute!, Small Systems Services, Inc., P.O. Box 5406,
Greensboro, NC 27403

454

Glossary of Computer Terms 455

Interface Age, McPheters, Wolfe and Jones, 16704 Marquardt
Avenue, Cerritos, CA 90701

Microcomputing, Wayne Green, Inc., 80 Pine Street, Peter
borough, NH 03458

Byte, Byte Publications, Inc., a subsidiary of McGraw-Hill, Inc., 70
Main Street, Peterborough, NH 03458

There are others, but by wading through the hundreds of pages
ofjust some of the above, you'll be able to find whatever you may be
looking for.

Index

Addition & subtraction I program
(commercial), 49, 50

Addition & subtraction II program
(commercial), 51

Advertising cost analysis program,
360-366

Advertising, direct mail program.
367-370

Airplane game program, 329-335
Alligator mix math program (commer

cial), 56
Alpiner game program (commercial),

58.59

Arithmetic, simple, program, 215-221
Arithmetic with voice program.

244-249

Arrays. 140-147
ASCII character codesv 427-429

Authors and their works program,
268-273

BASIC. 3

BASIC commands and statements,

86-124

Baud rate. 420

Budget profit/loss analysis program,
376-380

CALL CHAR, 285-288

CALL COINC, 304-306

CALL COLOR, 288-292, 302, 303

CALL commands, 107-124

CALL DELSPRITE, 300, 301

CALL DISTANCE, 303. 304

CALL HCHAR, 280-283

CALL LOCATE, 302

CALL MAGNIFY, 297, 298

CALL MOTION, 292-294, 298, 299

CALL PATTERN, 301

CALL SCREEN, 288-292

CALL SHAPE. 294. 295

CALL SPRITE. 295-297

CALL VCHAR, 283-285

Central processing unit, 3
Character definition, graphics,

109-112

Checkbook keeping program, 155-161
Children's counting game program

(graphics). 273-279
Comma (,), 25
Commands and statements, TI BASIC

& EXTENDED BASIC. 86-102

Commands and statements, TI
EXTENDED BASIC only,
102-107

Compound interest, 136

457

458 The Last Whole TI-99/4A Book

Computer math games program (com
mercial), 54, 55

Computer revolution, 1
Computer system, 2
Conversion to metric program,

258-268

Cookbook, electronic, program,
184-194

CPU, 3

Currency conversion program,
346-349

Cursor, 22

Data-base program, 126-132
Day-of-the-week program, 162-167
Deferred mode, 30

Defined functions, 381-389

Defined functions program, 382-386
Density altitude, 136,137
Dice game, no voice (program),

312-315

Dice game with voice (program),
307-312

Digital, 3
Direct mail advertising program,

367-370

Derived functions, 381-389

Diskettes, 8

Disk, backup, 15
Disk catalog, 15
DISK FULL, 15

Disk, initializing, 9
Disk Manager module, 8
Disk rearranging contents, 18,19
Disk, recording programs, 14
Disks, 8

Disk drive installation, 5, 6

Early reading and reading fun pro
grams (commercial), 52, 53

Electronic cookbook program,
184-194

Extended memory card, 6

Floppies, 8
Floppy disks, 8
Formulas, standard calculation,

134-137

Garbage in, garbage out, 2
Graphics commands, 109-112

History lesson program, 254-258
Household budget program, 209-213
Household budget-management pro

gram (commercial), 46,47

Immediate mode, 20

Initializing disks, 9
Investment, loan, savings program,

336-346

Invoice writer program, 349-354

Joysticks, 6

K,5

Keyboard, 4
Kitchen timer program, 206-209

Ledger printing program, 354-360
Line printers, general, 61
Line printer, TI99/4A Impact Printer,

63,64,65

Loan, savings, investment program,
336-346

LOGO, 397-419

LOGO music, 415-418

LOGO sprites, 409-415
LOGO turtle graphics, 397-409

Metric conversion program, 258-268
Microprocessors, 3
Model railroad scale conversion pro

gram. 315-325
Modem. 6, 420-424

Monitor, 3

Music, LOGO. 415-418

Name and address list program,
176-184

New product introduction program,
370-376

No-wordprocessor program, 82-85
Numerology program. 390-395
Numbers game program, 325-328
Numeric variables, 28

Object recognition game program
(graphics), 273-279

Oshkosh. a game with aircraft (pro
gram), 328-335

Peripheral extension unit, 5
Personal record-keeping program

(commerical), 39-45
Presidents of the U.S. program,

227-235

Product introduction program,
370-376

Profit/loss analysis program. 376-380
Prompt, 21
Protected words, spacing, 37

Quotation marks, 24
Quotation marks within quotation

marks. 27

Index 459

RAM, 3. 5,6

Random-access file programs,
137-140

Random-access memory, 3
Rate of exchange, currency conver

sion program, 346-349
Rearranging contents ofdisks, 18,19
Revolution, computer, 1
Read-only memory. 3
ROM. 3

Savings, loan, investment program,
336-346

Schedule C Tax program. 194-206
Scholastic spelling program (commer

cial), 53, 54
Scrambled words program, 249-254
Securities analysis program (commer

cial), 48
Semicolon (;), 25

Sequential file programs. 137-140
Simple arithmetic program, 215-221
Size/price comparison program, 133,

134

Sound, CALL SOUND, 119-122

Source. The, 6, 421-425

Speech synthesizer, 6,148-153
Speed program for mathematics or

grammar, 236-244
Sprites, 124
Sprites, LOGO, 409-415
Standard calculation formulas,

134-137

Statements and commands, TI BASIC

& EXTENDED BASIC, 86-102

Statements and commands, TI

EXTENDED BASIC only,
102-107

Statements, number per line, 125.126
Stopwatch program, 32, 33, 34, 35
Strings, 24
String variables. 29
System, computer, 2

/

460 The Last Whole TI-99/4A Book

Talking dice game (program), 307-312
Tax program (Schedule C), 194-206
Telecommunication, 420-425

Temperature conversion program, 30,
31,32

The Source, 6, 421-425

TI EXTENDED BASIC. 6

Time conversion to decimals, 134,135
Travel comparison program, 167-177
Turtle graphics, LOGO, 397-409

Variables, numeric, 28
Variables, string, 29
Video graphs program (commercial),

57,58

Word game program, 221-227
Wordprocessing, general, 60
Wordprocessing, TI WRITER, 66
Wordprocessing, TI WRITER func

tions and commands, 75-82

	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	content09
	content10
	content11
	content12
	back-cover

