

The Best of 99'er™

Volume 1

From the Editors
of

99'er Home Computer Magazine

®^
Emerald Valley Publishing Co.

Eugene, Oregon

Copyright © 1981, 1982, 1983, by Emerald Valley Publishing Co. All rights reserved. No
part of this book may be reproduced or transmitted in any form or by any means, elec
tronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the Publisher.

ISBN 0-933094-11-6

Library of Congress Number: 83-082849
Printed in the United States of America

10 987654321

Trademark acknowledgements:

99'er, 99'er Magazine, 99'er Home Computer Magazine, The Best of 99'er, The Best of 99'er On Tape, Home
Computer Magazine, HCM, Tex-sette, Home Computer Compendium, and From the People Who Know
the Home Computer Best are all tradmarks of Emerald Valley Publishing Co. Texas Instruments, TI, TI-99/4,
TI-99/4A, Command Cartridge, Little Professor, Mini Memory, Solid State Speech Synthesizer, and TEXNET
are all trademarks or service marks of Texas Instruments Inc. Apple is a trademark of Apple Computer,
Inc. CP/M is a trademark of Digital Research, Inc. GRAFTRAX-80 and MX-80 are trademarks of Epson
Corporation of America. Othello is a trademark of Gabriel Industries. The Source is a service mark of Telecom
puting Corporation, a subsidiary of The Readers Digest Association, Inc. TRS-80 is a trademark of Radio
Shack, a division of Tandy Corporation. UCSD, UCSD Pascal, and UCSD p-System are all trademarks of
The Regents of the University of California.

For marketing and distribution, inquire to:

Bulk Sales Department
Emerald Valley Publishing Co.
P.O. Box 5537
Eugene, Oregon 97405
Tel. (503) 485-8796

IMPORTANT NOTICE REGARDING BOOK MATERIALS

Emerald Valley Publishing Co. makes no warranty, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for particular
purpose, regarding these book materials and makes such materials available solely on an
"as-is" basis.

In noevent shall Emerald Valley Publishing Co. be liable to anyone for special, collateral,
incidental, or consequential damages in connections with or arising out of the purchase
or use of these book materials, and the sole and exclusive liability to Emerald Valley
Publishing Co. regardless of the form of actions, shall not exceed the purchase price of
this book. Moreover, Emerald Valley Publishing Co. shall not be liable for any claim of
any kind whatsoever against the user of these book materials by any other party.

TM

The Best of 99'er
Volume 1

Preface

This collection presents the cream of the diverse crop of articles which
appeared in the pages of 99'er Home Computer Magazine during its first
year. Beginning with Volume 1, Number 1, we have combed through each
issue of the magazine, carefully reviewing each article and selecting only
those that have withstood the test of time. This is a rigorous test in the home
computer world where rapid changes in the technology can render the best
efforts immediately obsolete or irrelevant. What we have chosen to include
here are the classics—articles that present fundamental programming con
cepts, step-by-step tutorials, favorite games—with careful revisions, addi
tions and updates when necessary. In addition, this volume contains some
new, never-before-published material essential to the library of any well-
informed TI Home Computer user.

The book is, we feel, an important one for the serious Texas Instruments
Home Computer user to own. It is now, and will likely remain, the largest
collection of information for users of these Texas Instruments machines.

One quick look through its contents will assure you that this is no coffee
table book for the dilettante. It is, rather, a console table book—a well
organized, cross-referenced handbook, idea book, and comprehensive
resource for the dedicated TI Home Computer user. Of course, the dedicated
user is not necessarily the experienced one. Keeping this in mind, we have
tried to balance the content of the book, as we balance each issue of the
magazine—providing material for both the novice and savvy user. An Ap
pendix (p. 355) offers help to those who may have problems keying in the
program listings, and we have included several articles that offer the most
basic and necessary information (such as how to store programs on cassette)
for the neophyte. Best of 99'er is a book that grows in sophistication with
the reader, providing stimulating and informative reading for the beginner
as well as the experienced programmer.

Although many of these articles will be familiar to longtime 99'er Home
Computer Magazine readers, Best of 99'er is much more than just a stroll
down memory lane. The articles and programs have been completely revis
ed. The chapters have been organized for easy access to areas of particular
interest: computer-assisted education, programming languages, gaming,
utilities, and business applications. The listings have been typeset for max
imum clarity and a minimum of key-in errors. The bugs and ambiguities
which may have crept in when the articles were first published have been
hunted down and eradicated.

An undertaking of this scope has involved many people. I would like
to directly acknowledge our debt of gratitude to the following authors who
contributed the original articles and art work:

W. K. Balthrop, F. T. Berkey, Ron Binkowski, David G. Brader, Fernando Caracena,
Dean Cleveland, J. Crawford Cook II, Norma and John Clulow, Greg Davis, Borden D.
Dent, Howard G. Drake, J. R. Dew, James Dugan, Fred Ellis, Fred Forster, Henry Gorman
Jr., John Gunter, S. T. Holl, Samuel Jenkins, Al Kanada, Paul Karis, Roger Kirchner,
Jerry Kirsling, Ira McComic, G. R. Michaels, Mark Moseley, James H. Muller, Samuel
Pincus, Corby Poticha, Martin Rayala, Lawrence Riley, George Struble, Flavian Stellerine,
Malladi V. Subbaiah, Patricia Swift, Harley M. Templeton, Dennis Thurlow, Daniel H.
Watt, Cheryl Whitelaw, and Jerry Wolfe.

Td also like to thank June Gaber, Julienne Laabs, and Kathy Garcia
who typeset the book; Hayder Amir, Laredo, Larry Fisk, Barbara Mickelson,
and Norman Winney, Jr. for the art design, and production work; Peter
Bloch, William Balthrop, and Roger Wood for their technical editing and
program verification; Joan Killough-Miller, Erin O'Connor, Judy Sanoian,
and Greg Roberts for their editorial assistance; and to Julie Kawabata for
the indexing.

Finally, my personal appreciation goes to Robert Ackerman who super
vised, coordinated, edited and revised the contents of Best of 99'er, and
to both Sharyn Lyon and David Brader who were instrumental in wrapping
up loose ends and getting the book out the door.

Gary M. Kaplan
Editor-in-Chief

Contents
Preface V

1 Starting Out 9
How to Buy a Computer 11
Now What? 16
A Beginner's Guide to Cassette Operation

with a Home Computer 20
Information Utilities and the Electronic Cottage 24
Data Communications and the TI-99/4A 26
Text-to-Speech on the Home Computer 28
3-D Animation with the TMS9918A Video Chip 30
Power-Line Problems in Personal Computers 33
Murphy's Law and the Home Computer 34

JL Programming Techniques and Languages 35
Chatting with Your Micro 37
How to Write Your Own Programs 41
Livening Up Your CALL SOUNDs 45
Fun and Games 48
Chuck-A-Luck 52
Spelling Flash 65
Pocket Typing Trainer 66
What Is UCSD Pascal

and Why Is Everybody Talking About It? 67

3 Inside BASIC and Extended BASIC 69
TRS-80 BASIC to TI BASIC 71
APPLESOFT to TI BASIC 73
The Secret of Personal Record Keeping: Implementing

DISPLAY AT and ACCEPT AT without Extended BASIC 76
Dynamic Manipulation of Screen Character Graphics 78
How to Write a BASIC Program that Writes

BASIC Programs 85
How E-X-T-E-N-D-E-D is Extended BASIC? 92
Pocket Tower of Hanoi 94

4 LOGO 95
The History of LOGO 97
The Lamplighter LOGO Project 99
Who is LOGO for? 103
LOGO'S Powerful Surprises 107
Extending LOGO Ill
The LOGO Poet 113
Avoiding Turtle Traps 116
Flyaway with the JOY Commands of TI LOGO 121
Problem Solving with LOGO 124

Assembly Language 129
TMS9900 Machine and Assembly Language 131

Part 1: Electrical Signals, Number Systems and CPU Architecture
Part 2: Registers, Programming, and the Need for Assemblers

Fundamentals of Assembly Language Programming 136
Magic Crayon: Learning Assembly Language the Hard Way.. .146
MINI MEMORY Cartridge 154
A Screen Printing Utility 157

8

Computer-Assisted Instruction 163
Preschool Block Letters and Data Compaction 165
Homework Helper: Fractions 168
Homework Helper: Division 173
Name That Bone 176
Computer Techniques for Tutoring the Mentally Handicapped. 181
Typing for Accuracy 186
Civil Engineering Fundamentals 189
Almost Everything You Ever Wanted to Know About

Music. . . But Were Afraid to Ask 196
Let's Learn Notes 199
Notes on A Computer Score 205
A Music Text Editor & File Player for the TI-99/4A 215
Music Maker 218

Computer Gaming 221
The Joys of Computer Gaming 223
Anti-Aircraft Gun 226

Battle At Sea 229

Battle Star 234
The Harried Housewife 237
Force 1 243

Dodge 'em 246
Space War 248
Maze Race 253

Tex-Thello 256
San Francisco Tourist 260

County Fair Derby 263
Sprite Chase 267
Dogfight 269
Interplanetary Rescue 272
N-Vader 276
Space Patrol 278
Computer Chess 280

Applications and Utilities 287
TI BASIC on the Rocks: A Micro Bartender 289
The Rule of 78 293
The Electronic Home Secretary 298
Verbose • 305
Spriter 309
Color Mapping and the TI-99/4A 313
Overland Flow 318
Programming Printer Graphics 324
From Dots to Plots 326
Personal Record Keeping: Managing a Mobile Home Park.. . .330
The Small Investor and the TI-99/4A 334
Interactive Forms Generator 336
Getting Down To Business:

Risks and Benefits 343
Evaluating a Software Package 345
Inventory 349
When Random Does Not Mean By Chance 350
Divide and Conquer 353

Appendix 355
Your Guide to Keying in Programs from The Best of 99'er

Index 356

STARTING
FROM

How to Buy A Computer

In this article I willoffer some suggestions to help those
of you shopping for your first personal computer. I will
not directly compare brand names, nor will I attempt

a technical critique of the TI-99/4A home computer—but
I will point out some of the TI machine's exceptional
features.

What follows is a general discussion of computer shop
ping techniques written by and for the computer novice who
is experiencing the bewilderment of trying to make a wise
purchase in a market exploding with products. I offer these
suggestions from the perspective of a writer who is not a
computer professional. I have owned a TI-99/4 for a year
and a half and also recently bought a competitive brand
computer. In addition, I plan to purchase a third brand dur
ing 1982. Therefore, I am not dedicated to a single brand
of computer although I am impressed with the 99/4A
capabilities. All of my comments apply equally to the 99/4
and the new 99/4A unless otherwise noted.

My computers are used to develop computer-assisted in
struction (CAI) for applications in the field of rehabilita
tion. The following suggestions result from the actual ex
periencesof a beginner faced with the task of learning about
computers—one who has spend literally hundreds of hours
poring over manuals and magazines, and peering into a
monitor screen.

Because my background is in psychology and counseling
I can't resist beginning with some general, facilitative
remarks. First of all, no matter which computer you event
ually buy, you will later regret your choice at times. No one
computer will have all the features you want; you'll have
to compromise on some features—just remember that the
grass always looks greener. . . so be aware that your buyer's
anxiety may not totally disappear the instant you take
possession of your new computer.

Secondly, regardless of how impressed you are with your
new computer's gee-whiz features, you will quickly adjust
your expectations upward. Whatever you buy now you will
probably soon want to expand, with either more hardware
(machinery/gadgets) or more software (programs).

Thirdly, start now! Don't wait for computers to come
down to $9.98—they probably never will. The manufac-

Copyright © 1983 Emerald Valley Publishing Co.

". . . be assured that you are embarking on an ex
citingadventure . . . and realize that ownership is
not only exciting but helpful and productive too."

turers willjust keep on making them more sophisticated for
about the same money.

And last of all, don't expect your friends, spouse, etc.,
to be as thrilled as you are about your computer. It is up
to you to educate them.

Who Buys A Personal Computer
Rumor has it that someone once tried to profile the

"typical" personal computer buyer for more effective
marketing strategies. The survey data showed one shared
factor: The majority of buyers wanted to become rich by
writing and marketing a very successful program. In other
respects, they are all different, and are using their computers
for myriads of different purposes. So you're not alone when
you go out to buy a computer—you may even find yourself
in one of the following categories:

Type 1—The electronics amateur who is intrigued by all the
technology. Fiddling with the equipment is enough reason
for him to buy. We should be grateful to him: When he
began buying kits and tinkering around with them a few
years ago, he started the home computer craze.

Type 2—The aware parents who want the family to be up
on "the latest." The family can play games and learn about
computing as wellas do the budget, and so on. The average
family will want a computer that is flexible, versatile, inex
pensive and "friendly" (easy to use). It should be expan
dable so that it can grow as the family's needs grow. This
market has yet to peak.

Type 3—The small business owner or professional person
who wants to automate the office. He will agonize over how
much computer to buy. If it's not enough, it could well
become merely a toy for his kids, but why buy a $10,000
system if a $3,500 package will do the job? This system will
probably need both large amounts of data storage capacity
and word processing capabilities.

Type 4—The educator interested in computer-assisted in
struction (CAI). He or she will need a computer capable
of displaying eye-catching color graphics and animations
along with text, speech and sound.

Type 5—The scientist or engineer who will use the machine
at work or home because it is easier than standing in line
to get on the company's big main frame computer. Even
companies that own big "braniac" computers are buying
micros to spread around to key people.

The list could go on and on, but I hope I have made my
point that the "typical" microcomputer buyer is anything
but typical. We all have one thing in common, however.

The Best of 99'er Volume 1 II

We have all been bitten by the computer bug and the only
known cure is to take the plunge and get our very own
microcomputer!

Types of Sellers
If you as a buyer are feelingoverwhelmedby all the com

puter choices, pity the typical salesperson. He may be more
at home with stereos and televisions, and entirely new to
computers. Or he may be a programmer or technicianen
tirely new to selling. Odds are that you'll meet the former
moreoften at your localcomputeroutlet; just as buyers exist
at every level of sophistication, so do sellers. More impor
tant than knowledge of computer technology, though, is the
willingness of the computer salesperson to help you learn.
After all, we're all new to personal computing.

If you haven't already, you will shortlyencounterat least
one of the following salespeople:

Type 1—The sincere young man or woman who produces
a nervous smile and confesses, "1 only started in this depart
ment yesterday; let me see, where is the power switch on
this little beauty. . ." Don't leave too soon, though. If
you've the time and patience, you and the trainee can learn
a lot about the computer in an hour.

Type 2—The equally sincere salesperson who introduces
himself and says, "What can I show you. . .we have a 48K
whiz-banger with a double DOS and CP/M on special. . ."
This individual will joyously prattle on until your glazed
eyeballs communicate either lack of interest or comprehen
sion. (They are equivalent in the clerk's opinion.) You can
then leave the store with a handful of pamphlets and a heart
full of doubt—and possibly a car full of computer.

Type 3—The merchandising expert who moves computers
the same way he used to move TV sets, stereos, etc. This
type cannot refrain from knocking the competition by say
ing things like, "Brand X is almost out of business, that's
why we don't handle 'em. . .what'd ya' say you do for
work. . .1 sell a number of Crunchy 100's to people in your
field." This individual may be able to tell you a lot about
his computer since he will be shrewd enough to read up on
all the features of his machine; you may actually learn
something if you have the confidence and patience to en
dure a barrage of irrelevancies.

12 The Best of 99'er Volume 1

TypeA—The skilled and sensitive sales professional whohas
developed a good knowledge of computing, or vice versa,
the computer professional who has developed basic com
petence as a salesperson. This personwill ask you rightoff
what you want to do with your computer and help you with
the answer if you aren't sure. You will appreciate this in
dividual's patience and willingness to find out information
for you. He or she will consult with a superior or even call
the manufacturer without fear of appearing ignorant. When
you meet people like this, respecttheir time and effort and
show your appreciation. We don't want them to get
discouraged and switch jobs. There will be little danger of
this, however, since they will probably be making a lot of
sales with many happy customers!

How To Shop
Be careful not to equate the amount of advertising you

see for a computer with its technical sophistication or
suitability for your needs. Take the time to go beyond mere
advertising when you shop. Talk to computer owners, or
visit a local computer club. But remember to expect some
very prejudiced views, because people always try to con
vince themselves that their choices are best. Be cautious, too,
of magazine reviewsof various computers. Articles with ex
tensive charts and diagrams may look impressive, but they
are sometimes simply wrong. I have read articles which
declared that the TI machine had no high-resolution color
graphics or memory expansion capabilities. Well, TI has one
of the best high-resolution color graphics capabilities on the
market and can be expanded to a 48K system. I have notic
ed similar errors on other brands as well.

So visit several stores, read a few computer magazines,
like Home Computer Magazine, and get your confidence
up so the salesperson won't intimidate you. I am impressed
with the TI-99/4A as I grow more familiar with it, but very
little of this knowledge came from advertising or from
salespeople: It came from use of the machine.

You may also need to know a little computer jargon,
although the better salespeople will avoid trying to impress
you with their vocabulary. If you don't already have one,
pick up a glossary of terms while you are out for your first
visit to the computer store. For starters, you should study
the accompanying glossary for an understanding of its
terms: With just a few of these terms tucked away in your
memory banks, you can walk into the computer store with
more confidence and less quiver in your voice when you ask
to see the "Brainiac 3000" computer.

Ask to see a demonstration of each computer you think
you can afford. But be aware that many demonstration pro
grams you see are written in a program language other than
BASIC—i.e., the language available to the user on most
small computers. Consequently, the demo may be super im
pressive with lots of color graphics, animation, and sound,
but find out if you can duplicate these effects readily with
the BASIC programming language available to you. If you
are interested in having good color graphics in your pro
grams, ask the salesperson to enter some simple statements
in BASIC to illustrate the computer's ability to perform the
following:

A. Clear the screen.

B. Change the screen color.

Copyright © 1983 Emerald Valley Publishing Co.

C. Plot the color shapes on the screen. Try to place a
"duck" or a "car" on the screen. Find out if the user
can create his own shapes or is he limited to pre-defined
shapes stored in the computer's memory.

D. Place a graphic shape and text on the same screen.
Some computers can do one or the other without
elaborate and difficult programming.

Happily, the 99/4A does all of the above with ease. You
can program in 16 colors with simple, easy-to-use BASIC
statements. If graphics are important to you, check out the
TI Extended BASIC graphics capabilities. They are sensa
tional and compete with computers costing as much as a
thousand dollars more. If you want sound capabilities in
your program, ask for a demo of the following:

A. Play a three note chord.
B. Play a simple scale.
C. Demonstrate the highest and lowest frequency

programmable.
D. Demonstrate the loudest and softest volume of sound

possible.
E. Create sound effects like a "choo-choo" or an

"explosion."

Speech synthesis adds an exciting dimension to computing,
especially in educational programs. Texas Instruments makes
it easy to integrate speech into BASIC progams with its speech
synthesizer and Speech Editor Command Cartridge or the
Terminal Emulator II Command Cartridge. The TE-II will
synthesize any English word typed into the computer; the
Speech Editor will allow you to choose from a vocabulary
of over 300 words. By all means get a demonstration of speech
synthesis if you are interested in computer-assisted
instruction—it is well worth the added cost.

The Editor

Regardless of the type of useyou plan for your computer,
you willdefinitely need a good editor. However, if you can
think and type without errors, you can skip this section and
not worry about editing.

Good, you are honest! I found out the importance of an
editor the hard way. Not one salesperson mentioned this
feature in any of my shopping except to say that I could
correct errors. From this treatment of the subject, you might
conclude that all editors are alike. The galaxy of differences
between computer brands and their editing capabilities can
make them either a joy or a pain to use.

So, what is an editor? Somewhere buried in all that
fabulous circuitryis a component which interprets all of the
instructions you type in. It turns your instructions-
words—into the ones and zeros that the computer
understands. It interprets the program for the computer.
It will also edit or change, program statements after they
have beenentered into the computer. When you are writing
and debugging (removing errors from) programs, you are
bound to make typing errors. Typing the whole line over
would correct these, but it is very time consuming and ir
ritating, especially when there may only be one or two
mistakes in 25-50characters! If you could only correct the
mistakes without disturbing the rest of the line.

You can: A good editor will permit you to modify a line
of a program by inserting or deleting characters or words
with a singlekeystroke, whiledisplayingthe changes on the
monitor screen exactly as made in the program. A poor

Copyright © 1983 Emerald Valley Publishing Co.

editor will require multiple keystrokes, and won't display
the corrections as they are made. It will make you pound
many keys and ultimately resort to retyping. The TI editor
is far superior to my Number 2 computer's editor, and is
equivalent to a good word processor in its correction
capabilities. (I am writing this article on my 99/4 using a
simple word processing program I wrote myself. It uses all
the editing features resident in the computer and works very
well for editing text.)

I cannot overemphasize the importance of the editor, and
strongly recommend that you evaluate it carefully before
you buy. Sit down at the keyboard and have the salesper
son walk you through some editing. Don't let the clerk do
it because he may pick simple tasks to make it look easy.

For instance, you might enter this program line;

100 PRINT "NOW IS THE TIME FOR ALL GOOD
MEN TO COME TO THE AID OF THERE
COUNTRY."

(If you are new to programming, let me point out that this
BASIC statement will cause the words inside the quotes to
be displayed on the monitor if you RUN the program.)

Notice that the word THERE is mispelled; so correct the
spelling without retyping the entire line, then insert the word
BEST before the TIME. If you can't accomplish this by
the store's closing time, ask the salesperson to do it; if he
can't do it with ease, give serious thought to buying another
brand of computer.

While you are at this, ask the salesperson to demonstrate
resequencingfor you. Resequencing is a simple but valuable
(and frequently unavailable) feature which permits you to
renumber your program line numbers in order to insert ad
ditional lines into an existing program if necessary. For ex
ample, you might type in this simple BASIC program:

10 PRINT "HELLO"

II PRINT "WHAT IS YOUR NAME?"
12 INPUT N$

13 PRINT "THANK YOU ";N$
14 END

Notice that you don't have any room between lines for
additional lines. If you later decide to change the program,
you either have to type the program over or resequence the
line numbers to provide space. Normally, you don't inten
tionallyget yourself into corners where it is necessary to rese
quence your programs, but it does frequently happen
(courtesy of Murphy's Law). On the TI machine, resequen
cing is easilyaccomplished by typing RES and pressing the
ENTER key. Presto! The program looks like this.

100 PRINT "HELLO"

110 PRINT "WHAT IS YOUR NAME?"
120 INPUT N$
130 PRINT "THANK YOU ";N$
140 END

Now you can add additional lines between the original
ones. Many computers do not have the resequencing func
tion built in so you have to load in a separate program from
a disk or tape. This function is important enough that it
should be built into the machine as it is in the TI-99/4A.

General Considerations
Regardlessof the sophistication of the system, you should

expect certain fundamental "creature comforts." First, it

The Best of 99'er Volume 1 13

is mandatory that the screen be clear and easy on the eyes.
You may not fully appreciate this during a brief demonstra
tion in the store, but spend an hour or two peering at the
screen in your basement, and you'll know what I mean.
Your 19-inch TV at home may not display characters as
sharply as the store's 9-inch monitor. On a big screen, the
characters may appear more ragged because the dots com
posing the characters are larger and more spread out. In
stead of white characters on a black background or vice ver
sa, the TI has exceptionally sharp black characters formed
by an 8 x 8 dot matrix with a pale blue background. It's
also possible to change the characters and background to
any of 16 colors.

My only criticism of the TI display capabilities is that with
TI BASIC it is limited to a line of 28 characters for text
or 32 for graphics. [With TI's Editor/Assembler or TI-
Writer Command Cartridge, you have a 40 character "win
dow" which automatically scrolls horizontally across an
80-column "page." The Video Display Processor chip in
side the computer actually has a 40-column "text mode,"
and the software produces the doubling effect.—Ed.] Some
computers display fewer, but many display lines up to 80
characters or more. My Number 2 computer displays 40,
but I see little practical difference between it and the TI
machines. However, the 80-character display and lower-case
characters are desirable if you plan to do extensive word
processing (letters, reports, etc.). The TI-99/4A has a type
of lower-case which is actually compressed upper-case; it
works very well. You can do word processing with a 28
character format, but you won't be able to see the text on
the screen exactly as it will appear on the printed page; with
an 80 column format, however, you will. Your printer
should have the capability of printing both upper- and lower
case characters with the proper program, so that you need
not worry about having lower-case resident in your
computer.

Another "creature comfort" to consider is the computer
keyboard. The original TI-99/4 was criticised for having a
keyboard smaller than a conventional typewriter. Actually
it is very easy to use and one can touch-type on it very effi
ciently. But TI modified the keyboard on the TI-99/4A so
it is more like a standard typewriter and added some func
tion keys and a repeat key function to improve the com
puter's flexibility.

If you select a disk system for program and data storage
rather than a cassette tape system, you will have the advan
tages of speed and convenience but you will sacrifice
something, too. In addition to the higher cost of the disk
system (maybe 10 times the cost of a tape recorder), you
will also lose some of your program space (random access
memory, known as RAM) inside the computer. Some
systems will have a 2K overhead (2000 bytes) while others
may require 10K or more. It is desirable to have a low
overhead so that your valuable program memory space will
be available for programs. The 99/4A disk system digests
about 2K of your RAM leaving a nominal 14k for programs
(on the standard 16K system). To put this into perspective,
one page of typed, double-spaced material with liberal
margins is equivalent to about 2Kof information. If you
buy a 16K computer which has a 10K overhead for the disk
system, you would only have about 6K of program space
after you turn on the disk system. And one of the very
popular computer brands actually has a 10K overhead! So

14 The Best of 99'er Volume 1

when you look at one in a store the salesperson will pro
bably insistthat you get (and pay for) at least 32Kof RAM.
Moral: 16K memory in computer "A" does not necessari
ly equal 16Kmemory in computer "B." Texas Instruments
gives you a lot of memory for the money.

How much memory willyou need in your computer? For
most home use, a 16K computer is generally considered a
satisfactory start. For business and educationalapplications
you willprobably need more memory—48Kis satisfactory
in most cases. That covers your program requirements in
sidethe computer. For permanent storage of large amounts
of data such as student grade records and inventory reports,
you will use disk or tape. Such storage is relatively cheap.
A diskette (called a "floppy disk" because it is flexible
plastic) can store90Kor more of information on a 5',4 inch
surface costing a mere four or five dollars. You can store
the equivalent of about 50 typed pages on one such disk.
Cassette tape is okay for home use and for back-up copies
of your disk data, but is generally too slow for serious
business or educational applications.

Service
Check out the servicepolicyon your computer before you

buy. Some manufacturers will exchange defective com
ponents, and others want to repair and return the original
unit. If downtime is critical to you, choose the system which
can be replacedin the shortest time. My 99/4 developedin
termittent problems after more than a year of very heavy
use, and TI exchanged it for a factory rebuilt unit for only
$45.00 with same day service and no questions asked. If
trouble develops during warranty, the exchange charge is
minimal. When I thought I had a defective disk system dur
ingthe third month of ownership, the service center would
have exchanged the entire disk system for about $3.50, but
as it turned out, I had a bad diskette instead.

Where to Buy
Deciding where to buy your computer can be difficult.

Should you buy from a local computer store, a department
store, or perhaps from a mail-order outlet? You can get
some terrific bargains from a mail-order firm. You'll see
dozens of ads in any computer magazine and nearly all will
accept credit cards, making it very easy to buy. I saved nearly
40% on my TI machine buying it from a firm in another
city across the state; my Number 2 computer cost almost
$500 less from out-of-state company than from the local
store. The argument for buying from a local dealer and pay
ing more is that you can count on better personal service
if your machine goes on the blink. This may or may not
be true depending on your dealer's integrity and quality of
service. You could buy locally and still have problems with
service. In my opinion, the overhead of the local computer
store justifies the higher prices. If you can afford it and
desire peace of mind, buy locally.

In the case of TI computers, you can exchange the defec
tive unit for a factory rebuilt unit at one of the exchange
centers. It won't matter where you originally purchased the
unit. You can check with your local dealer to see if a ser
vice center is near you.

Another point to consider is that we really should not
abuse the local computer store owner's time by letting him
educate us if we have no intention of buying locally. It is
fair to expect him to compete with other dealers for our
dollar by demonstrating his wares and services, but unfair

Copyright © 1983 Emerald Valley Publishing Co.

to sit through an hour or two of free demonstrations if we've
already decided to buy through the mail. After all, we want
the computer store to succeed, sinceit willadvance personal
computing in general.

Miscellaneous Points
Ask the salesperson if the computer you select can per

form the graphics, sound, and text functions you desire just
as it comes out of the box, or must you buy additional at
tachments or plug-in devices. You may find the demonstra
tion you witnessed on a "loaded" floor model cannot be
performed on a basic unit without adding several hundred
dollars of additional equipment. On the other hand, you
may find that most of the desirable features are built right
into the basic computer.

It is also essentialto have clear, concise, easilyunderstood
manuals which explain how to use your computer. You
should not have to have any knowledge about computers
to understand the basic introductory and tutorial manuals
for your computer.

If you have not yet bought that first computer, be assured
that you are embarking on an exciting adventure. The ex
citement and pride you'll experience when opening the box
on the first day is like a dozen Christmas celebrations com
bined. Enjoy the experience, and realize that ownership is
not only exciting but helpful and productive too.

In the meantime read all you can and shop carefully un
tilyou just can't stand it any longer. . .then take the plunge.
Go out and get that computer!

Glossary of Terms
BASIC—Beginners All Purpose Symbolic Instruction Code is a pro
gram language developed at Dartmouth in the early 60's; it is the most
common of all programming languages for small computers. BASIC
is relatively easy to learn and is an effective and powerful language for
most small computer applications.

bit—The smallest piece of information your computer deals with. It
is equivalent to a circuit being turned either on or off. Like a light bulb,
a computer logic circuit is either on or off; this equals one bit of infor
mation. Most home computers use an 8-bit microprocessor, but Texas
Instruments and IBM have a 16-bit microprocessor. The advantages
of the 16-bit configuration are too technical for this discussion, but
we can generally say that more powerful and accurate computing can
be accomplished. It has been predicted that the 16-bit microprocessor
will be the future industry standard.

byte—The amount of memory necessary to code a character (a
number/letter/punctuation, etc.) A byte has 8 bits in it. A computer
which has 16K bytes of memory has 16 thousand bytes and can work
with about 16 thousand characters of information in a single program.

chip—The circuits of the computer are fabricated on silicon chips. A
chip is typically about 1/4 inch on a side. Today's chips are so
sophisticated that the basic components of an entire computer can be
fabricated on a single chip.

CRT (monitor)—The TV-like screen (cathode ray tube) to which the
computer outputs information like numbers/letters/graphs, etc.)

disk drive—The accessory which stores and retrieves information on
plastic (mylar) diskettes. The DOS (see below) controls the operation
of the disk drive.

disk operating system—Sometimes called DOS and sometimes pro
nounced like "DOSS." It is the set of instuctions (software) which con
trols the storing and retrieving of information with the disk drive.

diskette—A plastic disk coated with an oxide upon which data and pro
grams are stored using the disk drive under control of the DOS. Diskettes
come in either of two sizes, 5 1/4 inch or 8 inch. The TI-99/4A uses
the 5 1/4 inch.

firmware—Generally speaking, firmware is a chip in which a program
has been stored permanently. It is "soft" in that it is a program (see
software) but "hard" to the extent that it is an electronic chip rather
than a diskette or tape. Hence it is "firmware." Firmware is used to
store programs which are used repeatedly, and need not be changed
or modified, (see ROM)

hardware—The actual physical machine, i.e., keyboard, CRT, printer,
etc.

integrated circuit (IC)—If you look into the back of an old radio, you
will see a lot of resistors, capacitors, and the like. Each component will
be discrete—i.e., separate from other resistors, etc. which surround it.
Integrated circuits, on the other hand, have many such individual com
ponents packed together or integrated in a small area. (See chip.) If
you peer into a computer, you will see rows of little black boxes plugg
ed into circuit boards. Each little black rectangle may have thousands
of components integrated into it.

Copyright © 1983 Emerald Valley Publishing Co.

input/output (I/O)—Input is the data that goes into the computer via
the keyboard as well as disk drives, tape recorders, etc. Output is what
comes back out of the computer to the monitor screen, disk drive, tape
recorder, and printer. (Throughput is what happens in between).

microcomputer—All computers used to be very large and esoteric and
were called "mainframes." But miniaturization with integrated circuits
has resulted in very powerful computers of small size coming into be
ing. That is, you could pack a lot of computer into a very small box.
These computers were initially called "minicomputers." But as the
reduction in size continued, small desktop-size computers were produced
with sufficient computing capacity to still be very useful. These are called
"microcomputers." The difference in power between the mini and the
micro is diminishing rapidly, so that it will soon be difficult to tell a
mini from a micro. For now, all home computers are considered
microcomputers.

modem—A device that connects your computer to the telephone so you
can communicate with other computers. It works by Modulating and
DEModulating a sound tone.

peripherals—All those hardware devices which plug into your computer
such as disk drives, tape recorders, printers, and modems.

printer—A peripheral device which will print a copy (called hardcopy)
of your computer's output. Very handy to have for correspondence and
for program debugging.

program—The set of coded instructions which directs the activities of
your computer. Without a program, your computer is just so much
metal and silicon junk. (See software and BASIC.)

RAM—Traditionally, the abbreviation for random access memory. But
the name is a little misleading. Both RAM and ROM memory are ran
dom access. More accurately, RAM should be described as read and
write memory (contrast with ROM). RAM is the memory you are us
ing when you program a computer. It is also the memory to which your
computer salesperson is referring when he says, "This one has 16K
memory." The more RAM you have, the bigger programs you can run.
When you turn your computer off, all the contents of RAM is erased.
So if you wish to avoid having to type in hundreds of program lines
everytime you use your computer, you must save programs on tape or
disk for future use.

ROM—This is read only memory. That's right, you cannot "write"
anything to a ROM; you can only "read" it. This means that you can
not change the contents of a ROM memory like you can a RAM
memory. ROM contents are usually not changed; therefore they are
used for firmware.

RS-232C—A common interface specification used to define the link
between the computer and some other device like a modem or a printer.

software—It is not the physical machine (hardware) and usually not
the permanent programs stored on chips (firmware) that instructs the
computer on how to perform a task. It is the program stored on disk
or tape. You can see that a tape or plastic disk is not as much a part
of the computer as a chip (not as "firm"); therefore the programs stored
on tape or disk are called "software."

The Best of 99'er Volume 1 15

Congratulations, you're the new owner of a TI-99/4A
Home Computer!! Now what? You have it all un
packed and need to know what to do with it, right?

Fortunately, you have The Best of99'er, and we'll give you
a few ideas to start you on your way.

Of course you can plug in a variety of Command Car
tridges that can teach you exercise, challenge you to a chess
game, help with your finances, or do a multitude of other
things. But the real fun and challenge is making that machine
do what you want it to do.

When I got my computer, many of my friends asked,
"Well, what can it do?" And the next questions were: "Can
you balance your checkbook with it?" "Can you file names
and addresses?" "Cari you keep track of other things such
as household inventories?" "Can you do your income
taxes?"

The TI-99/4A is so versatile that you can do all of these
home applications plus a myriad of business and profes
sional applications. You'll soon be "hooked" on your com
puter and be one of those computer nuts who stay up all
night saying, "I'll just make one more change in this pro
gram, and then"

Let me just give you a few ideas for programming and
then you'll be on your own.

Most households own a calculator. Now, with a calculator
you just punch in numbers and symbols and get an answer.
Your computer can manipulate numbers too, but it can also
interact with you, using words. And it can do the same pro
cess over and over again. You can also save your program
and the data and use it again a month or a year later. You'll
soon find your computer is a valuable household addition.

To make an interactive program you'll need to use
PRINT or DISPLAY and INPUT. PRINT and DISPLAY
do the same thing on the screen in TI BASIC. You pro
bably have discovered how to PRINT messages, so let me
just give you one hint here. A colon in a PRINT (or
DISPLAY) statement means, "Go to the next line." The
screen will be much easier to read if you have a few spaces
here and there rather than all the printing jammed up. You
may use more than one colon in the statement to get more
blank lines. Here's an example:

100 CALL CLEAR

110 PRINT "THIS IS A SAMPLE."

120 PRINT : "HELLO" : "HOW ARE YOU?" ::::
130 PRINT "START SPACING HERE."

16 The Best of 99'er Volume 1

mM^c **

140 PRINT : "I SKIPPED ONE LINE."
150 PRINT :: "I SKIPPED TWO LINES."

I usually start a program by clearing the screen. Line 110
prints a message. You'll notice the line actually prints then
moves up one line. The first colon in Line 120 says, "Go
to the next line," then print HELLO. Another colon—so
HOW ARE YOU? starts on the next line, then you "go
to the next line" four times. The number of blank lines is
the number of colons at the end of the line, minus one. If
the colons are at the beginning of a statement, the number
of lines is equal to the number of colons. Don't get
confused—just RUN this program and experiment a little
to learn how to use the spacing effectively.

INPUT is how you enter something from the keyboard
while the program is running. You may PRINT a message
and then INPUT like this:

100 PRINT "WHAT IS YOUR NAME?"

110 INPUT NAMES

Remember, string variables need $ at the end of the variable
name; numbers do not. This program will print the message,
then print a question mark on the next line, blink the cur
sor and wait for the user to enter something.

INPUT also allows a prompting message:

100 INPUT "WHAT IS YOUR NAME?":NAME$

This time the cursor will blink in the space immediately
following the prompt message and print your response there
as you key it in.

When programming responses, you generally use INPUT.
However, on a one-stroke answer I like to use CALL KEY.
The user will just have to press one key (won't have to press
ENTER), and you can block out unacceptable answers. For
example, suppose you need a yes or no answer.

400 PRINT "ANSWER Y OR N"

410 CALL KEY(0,KEY,STATUS)
420 IF KEY = 78 THEN 500

430 If KEY< >89 THEN 410

440 Continue here for "Yes" answer

500 Continue here for "No" answer

Only Y and N are accepted; any other key pressed is ig
nored. Another example is:

Copyright © 1983 Emerald Valley Publishing Co.

400 PRINT "CHOOSE 1, 2, 3, OR 4"
410 CALL KEY (0,K,S)
420 IF K<49 THEN 410
430 IF K>52 THEN 410
440 ON K-48 GOTO 1000,2000,3000,4000

Only 1, 2, 3, or 4 will be accepted, then the program will
branch to the appropriate section. Remember that the K
value in the CALL KEY statement is the ASCII code
number of the character pressed.

Now you are armed with some basics of interactive pro
gramming. Let's try some specificsand answer those ques
tions above.

Checkbook Balancing
Ah-ha! That's already in your TI-99/4A User's Reference

Guide, page 111-22. Just key that program in and add your
own embellishments to make it your program. I like to take
advantage of TI's color and sound to enhance a program,
so let's add a little color at the beginning. Add:

115 GOSUB500

This means go down to Line 500 and do some stuff then
come back. Now add Lines 500 to 660. A complete modified
listing follows. Try it. Then adapt it to what you want.

GO

D

D

D

D

D

D

I

I

D

GO

LA

UM

TO

DAMT

TA

TO

CA

CA

CH

WH

00

EAC

UMB

UMB

UMB R

T

H

AMtoU

AMOU

PO

EN

EW

AMT

EA

T

A

I

AMO

AMT

LA

BOOK B

ON

L +

Copyright © 1983 Emerald Valley Publishing Co.

lou
A

FO

WH

LAN

TAN

AMOU

UM

NG

AMT

T

T

AMOU

TO

NG

AMT

BA

As the program is written in the manual, there may be
a few problems. There is no DIMension statement, so if you
have more than ten outstanding checks or deposits you will
get an error. Because there is really no need to even worry
about subscripts, delete (N) in Lines 200,210,220, and 230
and (M) in Lines 320, 330, and 340. You may then also
delete Line 190 and change Line 240 to GOTO 200; and
delete Line 310 and change Line 350 to GOTO 320.

Remember what I said above about spaces, and insert
a colon before the first quote mark on Lines 130, 250, and
370 to make the screen easier to read. You may wish to add
SOUND and red lines if the balance or correction is negative.
Try your own ideas.

Name and Address File

Another easy solution—find Issue 2 of 99'er Magazine
and use the Electronic Home Secretary program. [Reprinted
in this volume.—Ed.] What? You haven't keyed it in yet??
I thought everyone grabbed his issue of99'er and immediate
ly keyed in all the programs!!

You can probably use this program as is, or adapt it to
your needs to make your address file, phone list, Christmas
list, or even a wedding invitation list. You can add a printer
to print address labels if you want.

Recipe Conversions
How about recipes? Some people cook with a dab of this,

a glug of that, enough flour until it looks right, and cook
it until it's done. But a computer is more precise and will
give you exact amounts. Try this program to convert a
recipe.

EM

AMT

T

T

AMO

AMT

GO

ME

NG

TO

AMT

MlU
R

A R

T

TO

AM

CO

CO

NG

UME AMO

MA

NG

TO

AM
2

M

NG

M$ (

Y

tMA
WH

ME

M$

AGA

UMB
?

NG

Let's show an example of this program. Key it in then
RUN. Remember you need to use decimal fractions.

AMOUNT: 2

MEASURE: CUPS

INGREDIENT: SHORTENING

The Best of 99'er Volume 1 17

AMOUNT: 2

MEASURE: CUPS

INGREDIENT: SHORTENING

AMOUNT: 2

MEASURE: CUPS
INGREDIENT: SUGAR

AMOUNT: 2

MEASURE: Gust press ENTER)
INGREDIENT: EGGS

AMOUNT: 1.5

MEASURE: TSP

INGREDIENT: ALMOND EXTRACT

AMOUNT: 2

MEASURE: TSP

INGREDIENT: BAKING POWDER

AMOUNT: 4

MEASURE: CUPS

INGREDIENT: FLOUR

AMOUNT: 4

MEASURE: DOZ.

INGREDIENT: ALMONDS

AMOUNT: 0

If you want to triple the recipe, you would next enter 3.
Answer CONVERT AGAIN? (Y/N) with Y, and this time
try .5 and the recipewill be halved. Whilesomeoneis key
ingin this program, another memberof the family can try
this recipe. It's Grandpa's Almond Cookies. Mix the in
gredients togetherin order (except the almonds), rollin balls,
and flatten slightly on cookiesheets. Press one almond on
top of each cookieand brush with egg.Bakeat 375for about
10 minutes.

You may use this program as part of a larger program
that retrieves the recipe from a file, then asks if you want
to convert the recipe. You may want to READ the recipe
from DATAstatements rather than using INPUT. Youcan
get fancy and print the titleand instructions and drawpic
tures. [Also check outMicro Bartender in thisbook—a pro
gram that can be adapted for any recipe file.—Ed.]

Inventory
Thereare manyways to approach an inventory program.

Tenprogrammers will comeup withten different programs.
Onepossibility is to usetheElectronic HomeSecretary pro
gram. Here is one method for a household inventory. Use
DATA statements and enter each item in the following
order: room number, item, cost.

18

EM H|0
1

R

I

C

S N

9
HOto

WHO

TO

ROOM

The Best of 99'er Volume 1

TO

TO

GO

OOM

OOM

H

ROOtMk
EMS

TO

V

D

OtM

L

L

PlWlR

L +

RO

0

T

OOM

WHO

TO

ROOM

HO

Only a few items in a few rooms are shown here to il
lustrate the logic of the program. You will probably want
to include more rooms, the year purchased, and perhaps
depreciation, replacement value, and a few other remarks.
And don't forget to add titles to make the information more
meaningful. You can use this program idea for any kind
of inventory from food storage to retail products. Extend
ed BASIC allows nice formating of output (with PRINT
USING or IMAGE) so the numbers line up. It isalsopossi
ble in regular BASIC by testing the length or the sizeof the
numbers and printing accordingly.

I entered the DATA items in alphabetical order so they
will be listedalphabetically, but you could use a sort routine
to alphabetize the items or list the items according to cost.
Following is a basic sorting routine:

EM

EM

GO

F0

N

E

R

IM=

0

I

LTIO

TO

SW =

FOR 1 =

NG

UMB

)
A

>AGA
4

1

TO

TO

N

1

MU
P

N

MIU

IM|
+ 1

EMS

AGA

OR EQ

Copyright © 1983 Emerald Valley Publishing Co.

s|wt= 1

T

s|w|=
TO

You can use this interchange sort algorithm to arrange
a list of numbers in ascending order. In this example, the
user inputs the numbers of items in the list, N, and then
enters each number (in any order). For this example, N is
limited to 50. The maximum execution time for 50 numbers
is about 50 seconds.

Within a FOR-NEXT loop, each number is compared
to the next number. If the first number is larger than the
second number, those two numbers in the array are swit
ched and SW is set equal to I to indicate a switch is made.
If the first number is smaller than or equal to the next
number, the loop returns to the next pair of numbers to
compare.

If SW = 1, at least one switch has been made and the pro
cess is repeated with SW reset to zero and the limit LIM
of the loop set to the place a switch was made (the numbers
after the last switch willbe in ascending order with the largest
number of the orginal list situated last in the series.)

To change this algorithm to rearrange a list of numbers
in descending order, simply change the "less than" sign in
statement 230 to "greater than." More efficient (and com
plex) sorts are available for large sets of numbers, but this
algorithm is sufficient for smaller sets of numbers.

The alphabetizing algorithm is the same as this inter
change sort algorithm with the list of variables changed to
string variables. Just change all occurences of A to A$ and
AA to AA$. In a regular program the INPUT and PRINT
formats would be different from this example.

Copyright © 1983 Emerald Valley Publishing Co.

In the inventory application, we have three variables for
each item: room, item name, and cost. These could be read
in as arrays and the sort routine would need to interchange
all three items. For example, let A(I) be the cost that you
are sorting. You would need to add:

242 RR$ = R$(I)
244 1I$=ITEM$(I)
252 R$(I)=R$(I+1)
254 ITEM$(I) = ITEM$(1 + 1)
262 R$(I+1) = RR$
264 1TEM$(1+1) = II$

This coding ensures that the variables associated with each
cost are interchanged in the same order as the costs are in
terchanged. You could also combine the room number and
item name into one string variable to be interchanged with
the cost variable.

Income Tax

Probably the most common use for the computer when
helping out at income tax time is keeping track of expen
ditures in different deduction categories. You can use the
same program idea discussed above in the inventory sec
tion, but with a slightly different data structure. Instead of
room number, you would use category (medical, interest,
contributions, etc.). You would probably still use item and
cost, and possibly add the date of expenditure. Your DATA
statement would look like this:

500 DATA 1, "DR. PAYNE",25.50,"MAY 9"

for a medical expense of $25.50 to Dr. Payne on May 9.

1 have suggested several ideas to help you get started
writing your own programs for your own home, business,
or professional applications. Now you just need to DO IT!

Recently someone asked me for a special income tax
program— one that would indicate zero taxes to be paid.
Hmmmm. I'm still thinking about that program

The Best of 99'er Volume 1 19

You bought your TI-99/4A Home Computer
because the plug-in Command Cartridges looked
like a quick and easy way to get started. You

played the games and typed in the programs that you
found in the User's Reference Guide. Now comes the mo
ment of truth—What to do next? The answer, fellow
99'ers, is easy: Learn how to use a cassette tape recorder
with your computer so that you can begin to build up
a program library by recording and saving the many ex
cellent software programs that are printed in 99'er Home
Computer Magazine.

TI manufactures a specialcassetterecorder (PHP-2700)
for use with its computers that comessuppliedwith a dual
cassette cable. If you cannot locate this recorder, things
may get a little complicated. Finding a recorder that pro
vides satisfactory results is not as easy as you'd think.
To explain why, I will have to give you a quick
background on how a computer talks to a tape recorder
and vice versa.

What the Recorder Records
In order to do the wonderful things your computer is

capable of doing, bits (the "offs" and "ons" that com
puters use) have to be arranged into patterns. This is true
not only for numbers, but also for letters. For example,
if you type the letter "A" on the keyboard, your
TI-99/4A really sees a pattern that looks like this: off-
on-off-off-off-off-off-on. If we think of an "off" as a
zero and an "on" as a one, the pattern looks like this:
01000001. Remember that everything your TI-99/4A does
is based on groups of binary numbers like that. A group
of 8 bits is called a byte.

Learning to count in binary is beyond the scope of this
article, but there are a number of books or articles around
that can teach it to you. What you should know for now
is that each letter and character has its own pattern of
zeros and ones (its own binary value). For example, the
65th pattern (a byte value = 65) represents the letter "A"
in the ASCII character coding system used by the
TI-99/4A and most computers. This means that 65 is the
ASCII value of letter "A." That is why the computer
will give you back an answer of 65 if you ask for the value
of ASC("A").

20 The Best of 99'er Volume 1

A Beginner's Guide
To Cassette Operation

With A Home Computer
In order to read data from a tape recorder, your com

puter will have to be able to read in bytes of data. That
means that it will have to understand "offs" and "ons"
when listening to the tape. But, the TI Home Computer
doesn't listen to the cassette tape for "off" and "on"
sound. Rather it listens to two different frequency tones
that represent the two states.

Not all Recorders Are Equal
It appears generally true that it takes more power for

a cassette tape recorder to produce or reproduce a high
frequency than it does to produce or reproduce a lower
frequency tone. If the volume is not high enough during
either recording or playback, your computer won't hear
anything, or it might not be able to hear the higher fre
quency tone. In order to help the TI-99/4A hear the high
frequency tones properly, the tone control knob on the
recorder should be set at or near the maximum level. Even
if this is done, some tape recorders cannot handle the high
frequency. If your recorder doesn't have a tone control,
there's a good chance it was meant to handle only the
frequencies of human speech and won't be mechanically
able to handle the high frequency tone at all.

Since it is possible that your recorder cannot reproduce
the high frequency tones properly, your computer has to
be sure that it has read all the data. How can it be sure
that nothing was lost? Your computer counts the number
of "ons" that it heard. After every so many bytes, it ex
pects to read a number on the tape. This number tells
the computer how many "ons" it should have read. If
the two numbers don't match, a parity error has occur
red and the computer will tell you that you have a
problem.

Now suppose that the volume is set high enough to
reproduce the high level tones, but is up too high? Well,
too much volume causes distortion in a tape recorder.
This distortion will mean that some of the tones will not
be heard accurately by the computer at all. It's just as
if someone screamed in your ear. You know something
was said, but you don't know what it was.

A Remote Possibility
There isone additional problemthat maycrop up even

with tape recorders that satisfy the above criteria: Almost
all cassette recorders have a remote control jack which
allows you to stop the recorder by pressing a button or
switch located on the microphone. Unfortunately, since
this jack is meant to work with the manufacturer's own
microphone, there is no guarantee that the jack is hook
ed up the same way in each tape recorder. In fact, there
is a 50-50 chance that a non-TI tape recorder model you
may buy or already own will not be compatible with the
Home Computer system. This means that the drive motor
of your recorder might not be capable of being turned
on and off automatically by the computer when the plug
on the TI cable is insertedinto the recorder's remotejack.

Copyright © 1983 Emerald Valley Publishing Co.

Luckily, if this is true for your recorder, Emerald Valley
Publishing Co. sells an inexpensive adapter (called "TEX-
SETTE") which is used between your recorder and the
TI cable. If you don't want to spend the money for this
adapter, you can get by without it by manually starting
and stopping the tape [except if you intend to use cassette
data files, in which case the automatic operation is
necessary.—Ed.].

The conclusion you can draw from all this is that your
TI-99/4A requires a tape recorder with specific attributes
in order to consistently guarantee good results. If you do
not already own a recorder, I strongly suggest that you
buy the model PHP2700 tape recorder from Texas In
struments. If you do have a recorder, you should try it
out before incurring the expense of purchasing a new one.

Plugging In!
Now that we have discussed why some recorders won't

work at all or won't work with the remote control jack
plugged in, let's get down to business. Shut off your
machines and plug the wide connector (with 9 holes in
it) into the back of your computer. The other end of the
cable has two cords. One cord has three plugs attached
(labeled plug #1), and the other (plug #2) has only two.
The tape recorder that you connect to plug #1 will be call
ed "CS1" by the computer. If you are lucky enough to
have a second usable tape recorder, you can hook up that
one to plug #2. It will be called "CS2" by the computer.
Just follow the installation instructions printed on the
card that came with the TI cassette cable. If your tape
recorder does not have a remote control jack, just ignore
the instructions to insert the black plug. Note that CS2
does not have a playback plug. You can only record on
CS2.

Plug the tape recorder into an electrical outlet and you
are now ready to check out your system. [A battery-
operated tape recorder is usually too unreliable for recor
ding and playing back data for your computer because
of the possible fluctuations in speed and amplifier gain
over the life of the battery.—Ed.] Load a high-quality
(remember we have to record those high tones accurate
ly!) C-10, C-15, or C-30 blank tape into the tape recorder.
The number part of the tape code gives the number of
minutes of recording time available on both sides of the
tape. A C-10 tape has 5 minutes of recording time on each
side. You can use a tape as long as a C-60, but never
anything longer. This is because longer tapes are thin
ner, stretch more, and may not maintain proper speed
in the recorder. For this first test, make sure the tape is
completely blank. Turn on your computer and select TI
BASIC. Key in the following 4-line program:

100 PRINT "HELLO"

110 1 = 30

120 PRINT "MY VALUE IS";I
130 END

Turn up the volume on your TV (or monitor) by a few
notches so that you can hear a slight hum. Set the volume
control on your tape recorder midway between the lowest
and highest settings. Set the tone control (if there is one)
up to maximum. [Or, if you are using the TI PHP2700,
follow its manual's setup instructions.—Ed.] Now type
in SAVE CS1 and press the ENTER button. Follow the

Copyright© 1983 Emerald Valley Publishing Co.

instructions that the computer gives you to rewind the
tape and begin recording. When you press "record" on
your tape unit and then press the ENTER button on the
computer, the tape should start moving.

If the tape doesn't start moving, you have a non-
compatible remote control jack. If this is the case, wait
for the computer to leave recording mode and print the
"VERIFY (Y/N)" message. When it does, type in an
"N". Now remove the plug from the remote control jack
and begin the recording process all over again (by typing
SAVE CS1 and pressing the ENTER button). When you
are told to record, you should now see the tape moving.

Getting Adjusted
After a short pause, you will actually hear your pro

gram being recorded onto the tape. The recording con
sists of an initial long phrase of a single tone, followed
by bursts of sound with a very short pause between bursts.
The initial tone is used to tell the computer on playback
that data is coming. This tone is recorded before each
program and each block of data (which we will talk about
later). When the recording is over, you will get the verify
message (see above). Type in a "Y" (you don't have to
press the ENTER button). Follow the instructions about
rewinding the tape. When you play back the tape, listen
to the sounds that it is making. Note that the volume is
much louder than when you recorded. If that initial tone
does not sound pure (if it seems to warble, with the tone
going higher and lower), you are probably using a
recorder that won't work well consistently. If the tone
does seem pure, you're halfway home!

When the tape goes silent, the program has finished
loading. You should get a message that says either
"DATA OK" or "ERROR IN DATA". If no message
prints, then the volume setting was too low and your com
puter is still waiting for the first recognizable byte of data.
It will eventually get tired of waiting and give you"a "NO
DATA FOUND" error. Just wait for this message to ap
pear, or shut off your computer and start all over again.

If you got the "DATA OK" message, you are home
free! Relax and go on to the next paragraph. If you were
unlucky enough to get a "NO DATA FOUND" error,
turn up the volume one notch. Write down the latest
notch on a piece of paper. In either case, respond to the
computer question by entering an "R" to re-record. The
computer will guide you in another recording session.
Keep repeating the process until you can't change the
volume any further, or the "DATA OK" message ap
pears or the error message has changed (i.e., from "NO
DATA FOUND" to "ERROR IN DATA"). If you can't
change the volume any further, your recorder just isn't
good enough. Don't aggravate yourself any longer—go
out and find somewhere to buy the TI recorder. If the
"DATA OK" message has appeared, you are in good
shape. If the message has changed, back off your last
change by half a notch. For example, if moving the con
trol from 6 to 7 made the "ERROR IN DATA" message
appear, try the recording process again at 6'/2. If that
doesn't work, try it at V* notch intervals. If that doesn't
work, forget it. Buy a different recorder.

After you get the "DATA OK" message, mark the
volume setting in some way. I usually dip a toothpick in
white paint (a light nail polish will also work) and dab

The Best of 99'er Volume 1 21

a line on both the recorder and the control so that I can
easily see that the volume setting is correct. You now have
a functioning cassette tape system and are ready for big
ger and better things.

Better Safe than Sorry
When you entered the SAVE CS1 command, you told

the computer to copy the bytes that represented your pro
gram inside the computer onto a tape. The entire pro
gram is saved each time. Your program is still in the com
puter, however. If you agree to verify your tape, TI
BASIC will read the data from the tape and compare it
in a byte-for-byte manner with the program still residing
in memory. Unless the two match perfectly, your 99/4A
will issue a warning that you have a bad tape. ALWAYS
VERIFY ANY SAVEs BEFORE ENDING A PRO
GRAMMING SESSION!

The tape version of the program is saved in a "machine
image" format that is meaningful only to TI BASIC. You
cannot, however, write a TI BASIC program that will
read this tape. The only way to get your program back
into the 99/4A is via the OLD CS1 command. This will
load the program back into the machine. Anything that
may have been in the computer before the OLD CS1 will
be lost. By the way, you can SAVE CS2 (if you have a
recorder hooked up to cable #2)and then read in the tape
by entering OLD CS1. Of course, you have to move the
tape over to the recorder attached to cable #1 first!

The instructionsbuilt into the TI-99/4A whenever you
enter the SAVE CS1 or OLD CS1 command assume that
youhaveonly one program per sideof tape. A longpro
gram will require about 3-4 minutes of recording time.
Thismeansthat it is possible to saveabout 4-5 programs
on each side of a C-30tape. If your recorder has a tape
counter, just keep track of where the next free space on
the tape is located. Then, when the computer tells you
to rewind the tape, just fast-forward to that next free spot
on the tape instead. Makesure to keepa logof whatpro
grams are recorded on tape and where they are located.
[If you don't want to be bothered by this, and want max
imum reliability, it is better to use C-10 cassettes and
record only one program per side.—Ed.]

A cassette tape recorder will usually have the ability
to record a new program directly over an old one. It is
good to get into the habit of completely erasing a tape,
however, when you no longer need it. This ensures the
best possible recording the next time you use the tape.

Filing Data
The cassette recorder also makes a handy data storage

device for use in your computer programs. Suppose that
you have written a program to keep track of the bowling
scores and figure out the handicap of each member of
your bowling league. You don't want to re-enter this in
formation each time you run your program. What you
need is a way of saving the data when you are through
with it so that it can be read in the next time around. Some
people do this by entering the information in DATA
statements each time before SAVEing the program. A
better way of doing this is to write out a small file of data
onto tape. Your program can then read in this data file
the next time it runs. TI BASIC has an easy way of do
ing this by using the INPUT # and PRINT # statements.

22 The Best of 99'er Volume 1

Before you can read or create a file, you must tell the
computer a little about your file. This is done by the
OPEN statement. Your reference manual does a pretty
good job of explaining this statement, so I'll just go over
the parts specifically dealing with cassette tape files.

Unlike the SAVE command which writes out your en
tire program as a large "chunk" of data, BASIC data
files can only handle small chunks of data, called records,
at a time. Each file can contain 1 or more records. All
cassette records in a file must be of the same size. They
can all be 64 bytes (characters) long, 128 bytes long, or
they can all be 192 bytes long. You can specify other
lengths as part of the OPEN statement, but TI BASIC
will boost the number up to either 64, 128, or 192. If a
record you want to write is shorter than the length that
you specify, TI BASIC will add enough blanks at the end
of the record to make it the right length.

Each record can contain as much data as you can fit
in a record of that size. When you have a statement that
uses PRINT # and ends with a semi-colon, BASIC will
add that data to the record, but will not write anything
out to the tape. When BASIC sees a statement with
PRINT # that doesn't end with a semi-colon, it will write
out everything in a record (including this last piece of
data) to the tape. When the record is written to tape, it
is preceded by the steady high-pitch tone that starts off
a SAVE. That means that BASIC uses a lot of tape to
write a single record. In fact, if you use records that are
only 64 bytes long, it is possible that more room is spent
on the tape for the start tone then is used to record the
data! Remember that more room on the tape means
slower reading by the computer. That's why I usually use
192 byte records and try to fit as much data as possible
into each record. Doing this will cut down on the number
of records written to tape, and make the program run
faster.

Because TI BASIC only writes to tape when you tell
it to, the computer must have total control of the cassette
recorder so that it can start and stop the recorder as need
ed. This means that the black remote-control plug must
be inserted (and functional!). If your remote jack is not
compatible with the TI-99/4A, you will not be able to
use the recorder for saving and reading data under pro
gram control.

You can store in two different formats. DISPLAY for
mat means the data is saved just the way it would look
in a DATA statement. INTERNAL format saves the data
in the same way that the computer stores the informa
tion internally. Numbers require 8 characters (bytes).
Strings (i.e., names) require 1 byte (for the length) plus
the data itself. I usually save my data in INTERNAL for
mat so that I know the length needed for numbers no
matter how big or small they are.

THE BASICS of Record Keeping.
Let's write a part of a program that will save each

bowler's name, his pin average and his handicap. Pre
tend that we have 60 bowlers in our league. If we restrict
each bowler's name to a maximum of 45 characters, we
will need a total of 62 bytes per bowler (45 bytes + 1
= 46 for the name + 8 for the average + 8 for the han
dicap = 62). We can therefore fit the data for 3 bowlers
into one 192 byte record. (See Listing 1.) If you have not

Copyright © 1983 Emerald Valley Publishing Co.

filled up a record by the time the program hits the CLOSE
statement, TI BASIC will fill out the record with blanks
and write it out. You do not have to worry about writing
out a last record that is partially full. Just remember
always to program in a CLOSE statement. To read the
data file into your program, you need program instruc
tions that almost duplicate the write program (see Listing
2, below).

When your program executes the OPEN statements,
the computer will issue commands about rewinding the
tape and pressing ENTER. When INPUTing from tape,
the screen will scroll up one line to indicate that it has
begun processing the tape just before it reads the first
record.

Once you have these basic components working and
understood, you will probably wish to embellish them

EM

EM

E

0

EM

RAGE

RlOlOMl
H

nIaIme

FOR 1 =

NIAME

F

EM

ER

AME

I

NIAME

NAME

R

N

R

N

R

E

E

R

E{M
EM

EM

ENOP

LO

EM

ON

TO

AR

N

NAM!

NAM

N

0
EtMlP

CA

CA

DA

BOW

BOWL

FO

NAM

AME

N

L

H

AME NG

EG AM

AGE

CO

OU

AME

AM

NAME

WR

Copyright © 1983 Emerald Valley Publishing Co.

AM

H

RAME RA

BOWL

00

AN

ROM

WR

CO

RNA

TO

00

BO

EQ

with things like update capability, printing of bowlers'
statistics, etc.

I have often been asked why TI provides the CS2 plug.
I have to admit that most manufacturers do not provide
dual cassette support. It is useful if you must process more
data in your program than the computer can handle in
side its memory. You would need two recorders hooked
up, and would read in as much data as possible (for ex
ample, as file #1) on CS1, then do whatever you have
to, and finally write the updated data out on CS2 (as a
different file number). You would then go back and read
in the next batch of data from CS1, update it, and write
it out. You repeat this until there is no more data on CS1.
This allows a small computer to handle very large files.

At this point you should have the basic knowledge for
choosing a cassette recorder, and getting it to work with
your computer. Keep in mind that tape storage
transforms your Home Computer into a very powerful
and versatile machine. And once you get familiar with
the few simple procedures and precautions, each occa
sion of saving and loading programs and data files will
become second nature. . .one might even say, "filled with
memories "

EM

EM

EM

EM

R

Ml

0

EM

RI0M

EM

EM

EM

L

I

0|0M
H

AlME

OW

U

A

R

|OWL
AM

A

h|a

T

T

H

AM

AME

AM

BOWL

B|OW

G

El

1

AM

OWL

CO

UMB

EN

AME

G

G

OM

DA

ROM

VG

The Best of 99'er Volume 1

EQU

HA

23

"... we find more and more companies that can be
described . . . as nothing but 'people huddled around a
computer.' Put the computer in people's homes, and they
no longer need to huddle."

—The Third Wave
By Alvin Toffler

In his book, The Third Wave, Alvin Toffler presents
a powerful argument that "... our biggest factories
and office towers may, within our lifetime, stand half

empty This is precisely what the new mode of pro
duction makes possible: a return to cottage industry on a
newer, higher, electronic basis, and with a new emphasis
on the home as the center of society." Toffler goes on to
single out many powerful socio-economic forces that are
presently fueling this transition and points to the software
production industry which has already set an early exam
ple as the fastest growing cottage industry of the 1980s.

Within the last three years, the microcomputer communi
ty has been witnessing the unfolding of an extraordinary
event. I say "extraordinary" not because of what has already
happened, but rather, for what it portends for the future.
What is this event, and what great significance does it hold?
Quite simply, the event has been the birth and maturation
of "information utilities"—a significant event because of
their awesome potential to speed up Toffler's timetable and
change the way most of us live and work within this cur
rent decade!

There's certainly nothing mysterious about utilities. All
of us are already familiar with telephone, electric, water and
gas utilities. These are necessary and valuable resources
delivered to and consumed in the home. If we now add in
formation to this list, we create an "information utility"—a
service that brings information to a place where the general
public can access it and put it to use. . .and where the cost
of packaging and delivery is sharedby the consuming public.
And what better, more convenient place is there for the
general public to consume this information than in the
home—the forthcoming "electronic cottage."

The New Timesharing
Timesharing, the foundation of all information utilities,

is certainly not new. It was originally developed to serve the
needs of business by providing companies with access to
computer power without them having to buy expensive data
processing equipment. Custom programming and technical

24 The Best of 99'er Volume 1

INFORMATION

UTILITIES

AND THE

ELECTRONIC
E

assistance were available at extra cost to those who couldn't
use the "canned programs."

What these information utilities have done is add a new
wrinkle to the traditional timesharing concept. Using the
famous "baking soda technique"—whereby a producer of
thisunglamorous age-old productcontinually dreamsup and
advertisesnew uses for it—they have repackaged timeshar
ing to make it palatable to a much greater potential market.
But lest you jump to the wrong conclusion, I should point
out that these utilities are not simply pushing an old service
to a new market. Rather, what we really have here is the
creation of an entirely new dimension to timesharing—an
attempt to satisfy a mass audience with extremely diverse
needs and wants. . .and do it at an affordable price.

Information Services for the Masses.
To provide you with some appreciation for the great

diversity of presently available information services, let's
take a brief look at one of the largest, fastest growing
utilities, The Source (a service mark of Source Telecom
puting Corporation, a subsidiary of The Reader's Digest
Association, Inc.) At present, The Source offers over 1,200
services in areas such as:

(1) computer-based message services
(2) proprietary databases
(3) business and professional applications packages
(4) personal and corporate services
(5) consumer purchasing
(6) entertaiment
(7) education
(8) "classical" timesharing

All these services enter a subscriber's home or business
through existing telephone lines (using the packet-switching

Copyright © 1983 Emerald Valley Publishing Co.

networks of Telenet and Tymnet.) A local number is
available in over 360 U.S. cities for accessing The Source.
A subscriber types in (on a computer terminal connected
to the telephone line, or a self-contained microcomputer with
appropriate software to emulate a terminal) his or her private
ID account number, and then chooses from a menu of ser
vices. Since subscribers can command the "host" computer
in plain English (in a somewhat abbreviated form), very little
instruction is necessary to do meaningful things—an ex
tremely important attribute of any information utility.

Although an information utility such as The Source
hopes, in the not-too-distant future, to be able to feed
millions of inexpensive computer terminals in U.S.
households, its present subscriber base is drawn from the
business community and a small segment of the vast con
sumer community—the segment which presently owns
microcomputers.

It's not surprising that businesses of all types are attracted
to very inexpensive services such as electronic mail, travel
arrangement, applications software packages, programm
ing access to mainframes, and business/industry news. It
does, however, take some stronger incentives to lure the con
sumer segment of the microcomputer community—the
present-day pioneers who purchased their micros for home
use. It's to this group that information utilities like The
Source must ultimately cater if they hope to eventually reach
the economy of distribution and substantial return-on-
investment that are possible in a mass market.

To this end, consumers with microcomputers are presently
being wooed with a rapidly expanding array of personal ser
vices (such as bookkeeping, correspondence, travel ar
rangements and keeping track of investments), educational
programs, home economics assistance, plus activities and
information that the whole family can use—especially
games, movie and product reviews, news and sports reports.

The TEXNET Turn-On
If having the services and activities of The Source in your

home isn't exciting for you, how about having it together
with the following package of special enhancements: color
graphics and animation, music and sound effects, a soft
ware exchange with hundreds of free programs plus state-
of-the-art synthetic speech—actually "spoken" to you! No,
all this isn't just a "wouldn't-it-be-great-if" speculation of
things to come, but rather embellishments to the basic
Source menu.

The special services and enhancements I've been describ
ing are available to users of the Texas Instruments TI-99/4A
microcomputer, and come under the TEXNET (a service
mark of Texas Instruments, Inc.) umbrella. Besides the
microcomputer, the only additional items that are needed
to take advantage of all of the special TEXNET features
are an RS232 Interface and modem (for establishing a com
patible telephone connection), a plug-in TerminalEmulator
II Command Cartridge (the software for the micorcom-
puter), and the plug-in Solid State Speech Synthesizer—the
Texas Instruments peripheral that "voices" the synthetic
speech. The synthesizer won't be necessary if speech
capability isn't desired.

Just how, exactly, are TEXNET and The Source related?
According to Craig W. Vaughan (President, Software
Sorcery, Inc.), a systems support consultant to Source
Telecomputing Corporation and Texas Instruments, TEX

Copyright © 1983 Emerald Valley Publishing Co.

NET appears to encompass The Source totally. That is to
say, TEXNET subscribers have access to everything Source
subscribers do plus additional special services that require
the Texas Instruments Home Computer for access and use.
Graphically, it would appear like this, with the outer ring
of TEXNET including everything
within The Source's inner ring, and ex
panding its own outer ring of special
services over time. This is only an ap
pearance, however, as Vaughan
pointed out; "In reality, TEXNET
users will be running a shell pro
gram . . .on The Source system."

Services on TEXNET fall into two major groups: (1)
directory or lookup textual information, and (2) interactive
or transfer services. In this first group there will be a pro
duct and technical newsletter (TI News), TI Software Direc
tory, TI User Groups, TI Service Centers, and TI Phonetic
Dictionary (helpful when programming with text-to-speech).
The second group of services is really what TEXNET is all
about. First, there are the transfer services. Sophisticated
error-checking software in the Terminal Emulator II Com
mand Cartridge will permit any of hundreds of user pro
grams from the TI Software Exchange to be downloaded
correctly into another user's system. Eventually, we can ex
pect to see on TEXNET the capability for direct uploading
and downloading between users. The TI Graphics Library
and TI Music & Sound Library will work the same way:
A TEXNET subscriber will be able to download the color
graphics, musical scores, and sound effects into his own
system for later use in his own programs.

The interactive services on TEXNET are really speech
enhancements of services already available on The Source.
For example, the electronic mail service—probably the most
highly used service, and reason enough for many to be
Sourcesubscribers—is made even more intriguingwhen you
mail is "read" to you by your machine's electronic voice.
And if "electronic voice mail" intrigues you, wait till you
experience TI Voice Chat: TEXNET users will be able to
participate in "spoken"interactive communication, CB-
style. Well almost What actually happens is that one
user types in something, and the words get converted back
into synthetic speech on the other end; the typed-in reply
gets sent back, and then also gets converted to speech. So
what we actually wind up with is a real-time verbal conver
sation between two speech synthesizers!

There's one short paragraph in the latest Source brochure
that perfectly sums up what's presently happening in the
world of information utilities:

((This brochure is obsolete.
By the time you read this brochure, new
information and communication services
will have been added to The Source. Old
data bases will have been updated, and
streamlined "userfriendly" access pro
cedures introduced. > >

Without a doubt, it's an exciting time to be living and
learning along the new information frontier.

For more information on TEXNET and the Source, see
your TI dealer or contact The Source Telecomputing Corp.,
1616 Anderson Rd. McLean, Virginia 22102.

The Best of 99'er Volume 1 25

«*/9M*

Ifyou have invested in an RS232 interface and a modem
in addition to your TI-99/4A system, you have the
possibility of tapping a vast information network

through existing and planned computer time-sharing ser
vices. A varietyof information services such as news, finan
cial information, computer games, various data bases, and
programexchange, to namejust a few,are provided through
information utilities suchas The Source (bySourceTelecom
puting Corporation). TEXNET, a collaboration between
SourceTelecomputing Corporation and Texas Instruments,
will enhance data base services with the addition of text-to-
speech, color graphics, and music. This service is available
exclusively to users of the TI-99/4A. TEXNET and The
Source are covered in another article. [See "Information
Utilities & the ElectronicCottage."—Ed.] This article is an
examination of basic data communications between the
T1-99/4A and other computers.

Data Communications Concepts
A number of coding schemes havebeendevised to repre

sent characters in order to input information into a com
puter. The most widely used code is the American Standard
Code for Information Interchange—more commonly
known as ASCII code. It is a 7-bit code which can repre
sent 128 character configurations. Figure 1 illustrates the

Figure 1 ASCII

0 000

LEAST SIGNIFICANT OCTAL DIGIT
000 001 010 011 100 101 110 111

NUL SOH STX ETX EOT WRU RU BEL

0 001 as HT LF VT FF CR SO SI

0 010 OLE DC1 OC2 DCS DC4 MAK SYN ETC

0 011 CAN EM SUB ESC FS OS RS US

9
a

<

o too SP 1 " • $ % t .

0 101

o too

(

0

)

1 2

+

3 4 5 6

;

7

0 111 • « <
-

> 7

i
1 000 0 A O C O E F a

1 001 H 1 1 K L M N o

S
*

1 010 P O R S T U V w

1 011 X Y Z 1 \ ! <
*

1 100 _

1 101 h

1 110 p

1 111 «

NUL
SOH

STX
ETX
EOT
WRU

OLE
DC1
0C2
DCS
DC4
NAK

SYN
ETC
CAN

Nullor Up* feed (control-shift P)
Sttrl ol heading(controlA)
Start ol toil (control B)
End ol Itit (controlC)
End ol transmission (control 0)
Enquiry (control E)
Acknowledge (control F)
Ring boll (control Q|
Backspace (control H)
HorttonUI lab (control I)
Vertical lab (control J)
Form Food(control I)
CarriageReturn (control at)
SUM out (control N)
Shift In (control O)
OertceUna oecap*(control P|
Owtea control 1 (central O)
Dottee control 2 (control R)
Dnlce control 3 (control S)
Detlc* control 4 (control T)
Negethv acknowledge(controlU)
Synchronous Idleblock (controlV)
Endol Irantntltslon block (controlWJ
Cancel (control X)
End ol medium (control Y)
Subttltut* (control Z)
Eteape (control-shllt K)
Fileseparator(control-shllt L)
Group separator(control-tMIIK)
Rtcord separator(control-thillN)
Unitseparator(control-shift O)
Spaee
Delete, rub out.

26 The Best of 99'er Volume 1

DATA

COMMUNICATIONS

& the TI-99/4A

bit patternsassociated witheachof the characters. An eighth
bit, called a parity bit, is commonly included in the ASCII
code. The parity bit used to detect errors in the bit stream
which might be due to the reading or transmission of the
data. Parity of a ASCII coded signal can be odd or even.
An ASCII code with even parity must contain an even
number of ones; for an odd parity the number of ones must
be odd (i.e., 1, 3, 5, 7). The Texas Instruments Terminal
Emulator II (TE-II) Command Cartridge enables you to
tailor your TI-99/4A to fit the characteristics of the remote
computer system. With the communications device menu,
you can specify the parity of the received or transmitted
signal—odd, even or none (no parity bit)—and set the
number of data bits at 7 or 8.

The actual number of bits transmitted is larger than the
number of bits in the code. "Housekeeping" bits are add
ed both before and after the bits which represent the
character code. The additional bitsare called start andstop
bits.A single bit is added at the front of the code as a signal
to advise the receiving device to start sampling the incom
ingsignal.Stop bits, added after the character code, indicate
when the code is finished, and reset the device for recogni
tion of the next start bit. For an ASCII coded character 11
or 12 bits are typically transmitted.

In data communications terminology, a fullduplex chan
nel implies that information can flow in two directions
simultaneously. On a halfduplexchannel, the information
can flow in both directions, but not simultaneously. If you
select the half duplex mode from the TE-II communications
device menu(and set the modemaccordingly), the characters
you send willbe "echoed" back to your monitor or TV set,
and appear on the screen. The echoed or extra character
does not occur if full duplex is selected.

The public telephone network can provide means of com
munication from your TI-99/4A to another computer or
information service. The information or bit streamthat your
computer sends and receives, travelsseriallythrough the net
work. That is to say that the bits making up a character
are sent and received one after another.

There are a variety of modes of serial data transmission.
Your modem transmits data asynchronously. This means
that any set character is sent independently of any other
character, and that the character bits are precededby a start
bit and followed by at least one stop bit. Synchronous

Copyright © 1983 Emerald Valley Publishing Co.

transmission requires that both the sending and receiving
modems are synchronized by a clock signal. The rate at
which data is transmitted (or received) is termed the baud
rate. The formal definition of a baud is the reciprocal of
the length of the shortest pulse used to create a character.
Sinceall the bits of the ASCII code are equal in length, the
terms "bits per second" and "baud" can be used inter
changeably. A baud rate of 110 requires a minimum of 2
stop bits; at 300 baud and higher a minimum of 1 is re
quired. The TE-II software allows you to choose between
two baud rates (110or 300), and your modem usually limits
your use to either 110or 300. The RS232 interface (without
the TE-II)also allows you to use baud rates of 1200, 2400,
4800 or 9600. The higher rates can be used to output data
to a printer or to send data to another TI-99/4A connected
directly to your system.

The function of your modem is to convert the binary pulse
train (Is and 0s) from your computer to some form of
analog signal(tones)that can be transmitted over a telephone
line. You will note that in the transmit mode your modem
emitsa continuous tone. This tone is called the carrier signal.
When sending data from your TI-99/4A, the modem's func
tion is to modulate (vary the amplitude or frequency) this
carrier signal. It also works in the opposite direction by
demodulating the carrier, so that the ASCII code sent to
your TI-99/4A can be properly interpreted. Thus, the term
"modem" is derived from the two words which describe
its function: Modulation and DEModulation. A common
modulation technique is called frequency shift keying (FSK).
This technique converts the binary pulses from the com
puter to two tones of different frequency. For example, if
the carrier signal has a frequency of 1500 Hz, a 1 might
be transmitted at 2000 Hz and a 0 at 1000 Hz.

Terminal Emulator II Command Cartridge
The TE-II Command Cartridge implements all 128

characters of the standard ASCII code, which is illustrated
in Figure 1. It's also possible to send any standard ASCII
control characters (used for signaling a remote computer
or device to perform a predefined function), and display
lines containing more than 40 characters by "wrapping" the
extra characters onto a second line. The most powerful
feature of the TE-II is the ability it gives users to store receiv
ed data on tape or disk. You can review this data after log
ging off the remote computer, and can also send it to a
printer or another computer.

Listing
R

1

C

60

EM

EH

N

R

F

|G|0
EO

TO

LOS

TO

Copyright © 1983 Emerald Valley Publishing Co.

E

F

0|W

The format of the data stored by the TE-II is ASCII
(display format) and is of fixed record length of 80 bytes
(characters). In order to make further use of the informa
tion, it is necessary to write programs using BASIC. A sim
ple example of such a program is shown in Listing 1. Line
130opens a saved disk file using the OPEN statement. The
following line inputs an ASCII character string; if the record
denotes the end of file (EOF), the program ends. Other
wise, the program returns to the INPUT statement (line 140)
and continues to read the data file until an EOF is detected.

Data Communications Using BASIC Programs
Display format files can be sent from your TI-99/4A to

another computer under control of the BASIC listing shown
in Listing 2. The program assigns file number 1 to the in
dicated disk filename, and file number 2 to port 1 of the
RS232 interface. Each record or character string is input
from the disk and then transmitted to the remote computer.
Of course, this assumes that a means of recording this data
is resident on the remote computer. This program can be
used, for example, to efficiently transmit a pre-recorded
message, or text file to another Home Computer.

The program listings in Listing 1 and 2 have a common
flaw: If a display format file contains commas, the character
string will be terminated by the first comma encountered.
This is due to the fact that the BASIC INPUT statement
interprets a comma as a separator between character strings
or data items in display format data. (See page 11-126 of
the User's Reference Guide.) This flaw can be overcome by
using the LINPUT statement from Extended BASIC.

Listing 2

R

[MO

EM

EM

ER

EM

AL

N P

EtMl

|MO
E

P

EM

SM

OW

MA

OW

MA

AM

<10
E

V

<b
E

N

>

E

S

R

E

ClOtMl

MO

MU

LOW

The Best of 99'er Volume 1

COMP

27

TEXT-TO-SPEECH

Go ahead—shout something at your Home Com
puter. . .but don't be surprised if it answers you
back! Welcome to the exciting world of talking

computers—a world in which synthetic speech will very soon
cease being a novelty, and will instead become instrumen
tal in the everyday interactions between humans and
machines.

If you have a Texas Instruments Home Computer, you're
one jump ahead of everyone else in taking advantage of this
revolutionary communications tool. All you need additional
ly is the Speech Synthesizer peripheral, and the plug-in Ter
minal Emulator II Command Cartridge. Text that you type
on the console keyboard will be converted to synthetic
speech, and "spoken" through your TV set or monitor.
There's no fixed vocabulary to constrain you, and personal
phrases can be called up under program control through
the TI BASIC computer language.

But this is only the beginning. ... If you connect TI's
RS-232 interface and a modem to this configuration, you
can have access (through your telephone) to the electronic
mail, database, entertainment, and computing facilities of
the SOURCE and its offspring, TEXNET. The TEXNET
service allows TI-99/4A users to access all the menu selec
tions from its parent information utility plus some additional
features withthe enhancements oftext-to-speech, sound ef
fects, music, and color graphics! Imagine a weather report
with a color graphic representation of a bright sun being
blotted out by ominous looking rain clouds, while "Stor
my Weather" is being played in the background, and the
temperature, wind, humidity and other vital statistics are
flashed on the screen and recited to you by your speech
synthesizer—an exciting prospect at the least.

Linear Predictive Coding (LPC)
When Texas Instruments made the first single-chip speech

synthesizer in 1978, its original application was in their Speak
& Spell learning aid. The chip, A TMS5100, is essentially
an electronic model of the human vocal tract (a
mathematical model implemented as a filter network) that
produces speech through a technique known as Linear
PredictiveCoding (LPC). There have been other approaches

28 The Best of 99'er Volume 1

ON THE

HOME

COMPUTER

to speech storage-methods .employing digitized speech and
pulse-coded modulation—but these result in very high data
rates (64,000-100,000 bits per second). And the higher the
data rate, the fewer words of speech the available memory
can hold.

The value of TI's LPC technique is its modest memory
requirement: It provides speech quality nearly comparable
to these other methods, at a much lower data rate (1,200
bits per second). For example, a speech reproduction of the
words "Texas Instruments" requires approximately 90 times
as many bits using digitized speech techniques as it requires
with LPC.

What is the secret to LPC's economy of storage? The
"P" in the middle that stands for "Predictive." Here's how

it works: A speech waveform is originally sampled and en
coded. This data is used to calculate the coefficients of the

linear equations of the digital filter network that will con
trol the "shape" of this synthetic vocal tract. When excita
tion noise (a chirp function and white noise generator) is
applied to this filter network, the circuitry produces a
simulation of the resonant effects of the mouth and nasal

cavities.

Allophones
This is fine if a user doesn't mind being confined to a

pre-stored vocabulary. A pre-stored vocabulary is, however,
under-utilizing the synthesizer's capability to produce any
spoken work on demand as long as it has the appropriate
input data. This is where TI's recently unveiled allophone
stringing techniquecomes into play. TI linguists have chosen
128 separate sounds called "allophones" that can be link
ed together to sound out any word in the English language.
Allophones are variations of a particular "phoneme" (the
smallest unit of speech that can distinguish one utterance
from another) that are modified by the environment in
which they occur. For example, the aspirated (followed by
a puff of air) "p" in "pin" and the non-aspirated "p" in
"spin" are allophones of the phoneme "p." These
allophones represent the sound more accurately than the
phoneme.

Copyright © 1983 Emerald Valley Publishing Co.

A total of 128allophones are grouped in a library occu
pying only3 kilobytes of memory storage. Each allophone
isidentified witha numerical code(indicating the parameters
for settingthe filtercharacteristics in the LPC synthesizer).
When a word is entered into the computer, its ASCII
representation is identified; the computer then searches
through a set of rules(contained in 7 kilobytes of memory
storage) to pick out the appropriate allophones and string
them together in the proper sequence (concatenation) to
represent the keyed-in words.

The rules (about 650 presently) overcome most of the
many pronunciation exceptions and irregularities in the
English language; they're able to select both phonemesand
allophones correctly over 90%of thetime. However, speech
scientists have found it impossible to achieve 100% accuracy
in a text-to-speech system of this type since there are too
manysilentlettersand incongruities that humans perceive,
but that the computer cannot discern. To get around this
problem, some words must by typed into the computer
phonetically or entered allophone-by-allophone.

If thiswere all the text-to-speech softwaredid, the quali
ty of the speech would sound monotonous and unnatural.
TI therefore provides its software with the ability to pro
duce more lifelike inflection: Users can add stresses to cer
tainsyllables, and required pitch patterns to particular points
in a sentence. Questionsthen sound likequestions, and com
mands like commands!

TI-99/4A Console

Control (4 Bits)

Text-to-Speech with the TI-99/4A
The chip used in the speech synthesizer peripheral that

attaches to theTI-99/4A isa TMS5200—a second genera
tionof theTMS5100 (used in theSpeak &Spell). It has the
following added features : (1) "Speak External" input which
allows the chip to accept speech data from a source other
than a Speech ROM (read-only memory), (2) an internal
buffer to store chunks of data (freeing the computer for
othertasks), and (3) a memory data busallowing it to work
with any standard 8-bit microprocessor. (The 16-bit data
bus of the TMS9900micropressor is converted to 8 bits for
use with all TI-99/4A peripherals.)

The text-to-speech productionby thisconfiguration is a
two part process: (1)the speech construction phase in which
letters are translated into a digital representation of com
ponentsounds and are concatenated(strung together),and
(2) the speech synthesis phase in which the LPC circuitry
"voices" the spoken words through a simulation of the
mouth and nasal cavities. As seen in the accompanying
diagram, speech construction ishandled bythe software resi
dent inthe Terminal Emulator IICommand Cartridge, and
speech synthesis by the TMS5200 chip within the separate
speech peripheral.

— Wet
^

I
Memory Data Bus (8 Bits)

TMS9900 CPU
Plus 16-Bit-To-8-Bit
Data Bus Converter

Speech
Synthesizer

Speech Synthesis

Speech Construction

Copyright © 1983 Emerald Valley Publishing Co.

I
Text / From Keyboard or Via \
Inputuelecommunications Network/

Text-To
Allophone
Rules (7K)

Allophone-To
Synthesizer

Data

T] Allophone
Library

(3K)

Terminal Emulator II
Command Module

The Best of 99'er Volume 1 29

Just the sound of the name Walt Disney conjures up
images of all those fantastic animated movie classics
spanning over a quarter century of entertainment for

young and old alike. But recently, the celluloid magic of
Disney Studios has taken on a new dimension with the
release of their eagerly awaited science-fantasy, TRON—
an incredible computer graphics extravaganza in which fan
tastic vistas of texture and light are generated artificially by
computer. As movie-goers worldwide continue to be awed
by TRON's video warriors and computer programs fighting
for survival in an electric universe, a new awareness of
computers—and in particular, the mind-boggling
possibilities of computer-generated imagery—permeates the
consumer cosmos. With one wave of Disney's digital wand,
the glass of Cinderella's slipper has been magically
transformed into the cathode ray tube , v \\
of a video monitor.

This heightened awareness is the
death knell for manufacturers of
consumer computers who do
not provide sophisticated -.;^-
color graphics and ani
mation capabilities.
Fueled by TRON
(and the horde of
video clones that are

destined to follow), the
public's demand for,
and expectation of,
more visually spec
tacular video games
and educational

displays will surely
take quantum leaps.
How can computer
manufacturers and
software houses ever

hope to satisfy this
demand? That's one

tough technical quest
ion that some of the

finest design teams in
the world are currently
tackling. One thing is
obvious, though—more and
more special effects that are usually
implemented through software must
instead be "integrated" in the hardware. This
means more powerful, and easier-to-control VDP
(video display processor) chips—the silicon workhorses
responsible for the displays.

The easier-to-control requirement doesn't necessarily
mean easier for highly-trained, professional programmers
to control. There will have to be a way for people such as
as artists and "graphic gurus" with fantastic imaginations
to interact directly with the display system—a way that re
quires only a bare minimum of "programming" experience
to implement sophisticated visual effects.

To anyone familiar with the interactive graphics capability
of the Texas Instruments 99/4A Home Computer, it is ob
vious that TI has already made great strides toward this
design goal—great enough, in fact, to cause at least two

30 The Best of 99'er Volume 1

other well-known computer manufacturers to attempt to
emulate TI with their "newly-discovered," smoothly mov
ing graphic patterns now known universally as sprites. Color
sprites as implemented on the TI-99/4A, however, have yet
to be equaled in their versatility and ease of use in a multi-
language environment. (Extended BASIC, TI LOGO,
UCSD Pascal, 9900 Assembly Language and TI PILOT).

A Flat, Yet 3-D Sandwich
The wonder VDP chip behind sprites and other video af

fects that the 99/4A is capable of producing is called the
TMS9918A. This complex LSI (large-scale integrated) chip
represents the next generation beyond the many small- and
medium-scale integrated circuits that formerly had to be
assembled to achieve a display with a minimal level resolu

tion required for video games.
But the consolidation

of many-into-one
wouldn't merit

an entire

article

here if it

weren't for the

chip's novel approach
to dramatically simulating a 3-

dimensional animated graphic display: It does this by
creating nearly three-dozen flat, "stacked" geometric planes
that are sandwiched one on top of the other onto the pic
ture tube of your TV or color monitor.

On each of the first 32 planes (numbered 0 to 31), we
can define the image of one sprite, give it one of the 15 stan
dard colors (the 16th is transparent), and then set it in mo
tion quickly and smoothly. We do not have to redefine the
imagery over the screen to simulate motion, because once
set in motion, a sprite can continue to move without fur
ther program control. When a sprite on a lower numbered
plane (closer in the foreground) comes into contact with
another sprite on a higher numbered plane, it progressively

Copyright © 1983 Emerald Valley Publishing Co.

— EXTERNAL VIDEO
— REARMOST PLANE

blots the second one out
and creates the illusion of passing in

front of it.
For example, in the figure shown here, the moving car

that is composed of four sprites set in motion together on
plane numbers 2-5 will passbehind the stationary tree(com
posed of 2 sprites on plane numbers 0 and 1)and in front
of the billboard which is drawn on the plane immediately
behind the rear-most (number31)sprite plane. Bythe same
design rules, the cloud (plane 7) will mask the color of the
skybehind it, and a bird (plane6) both mask the sky behind,
and appear to fly in front of the cloud. And sincesprites
move in a transparent surrounding, the scenery in the
background behind the car may be seen through the "win
dows" of the moving vehicle! The entire scene has the ap
pearance of depth and simulates a 3-D animated color
movie.

The Multicolor or Pattern Plane is used for textual and
fixed-graphics images. It is this plane (containing the sky,
mountains, bushes, billboard, fence, roadway and grass)
that the sprites on the remaining 32 planes appear to pass
directly in front of.

Immediately behindthe Multicolor Plane is the Backdrop
Plane—solid-colored and slightly larger than the other 33
planes in front of it, so that it forms a rectangular rim
around the other elements on the display.

The rearmost plane is pure black, so that when the other
planesare set to transparent, the screenappears to be black.
Although there is no provision in the current version of the
TI-99/4A for simultaneous on-screen mixing of external
videowith computer-generated graphics (e.g., spritesor fix

Copyright © 1983 Emerald Valley Publishing Co.

ed graphics mixed with input from a video cassette recorder
or videodisk player), the TMS9918A chip can, in fact, ac
comodateexternal video; this videowouldbe displayed on
therearmost plane with partor allof it masked bycomputer-
generated graphics until needed (e.g., as subtitles for the deaf
or foreign language translation or perhaps a "real-life"
video-taped space movie scene viewed through a scanner
screen of a computer-generated starshipcommandcenter).
Add to this the capability of chaining together multiple
9918A chips, and you havethe potential for a visual gam
ing or educational environment (in future versions of the
TI Home Computer) that is simply mind-boggling!

Those Magical Sprites
When spritesare on the screen, the 9918A chip organizes

the displayinto a high resolution pattern of 256 by 192 lit
tle boxes or picture elements called "pixels"—the smallest
controllable elements on the display. Each one of these
49,152 pixels represents a possible address for a sprite to
resideat, or pass through when moving across the screen.

The shape of a regular or standard sprite is defined by
an 8 x 8 bit pattern stored in memory. Each of these 64
bitscorrespond to one of the 49,152screen pixels mention
ed previously—with each being a single color whenever the
bit pattern contains a 1 (is thereby "turned on"); a zero
designates transparency ("turned off). We can specify a
larger sprite by either (a) using a 16 x 16 bit pattern ("a
double-sized unmagnified sprite"), (b) magnifying the ex
isting spritebya factorof four, ("single-sized magnified"),
or (c) using both techniques together to create a sprite six
teentimes normalsize ("double-sized and magnified"). This
size feature allows screen objects to grow and shrink at
will—with virtually none of the programming effort that
would be required in more conventional VDP systems.

The Best of 99'er Volume 1 31

Each sprite carries four attributes: The first two specify
its horizontal and vertical position; the third defines its shape
"name" (according to the bit-pattern concept described
above); and the fourth specifies its color. Moving a sprite
is simplya matter of changing its position indicators; it will
continue moving smoothly on its own. The high-speed,
smooth motion of a sprite compared with a conventional
moving-graphic element is due to the smaller, more precise
"steps" (higher resolution) that the sprite can take while
moving. Animated secondary motion—for example,
rotating wheels or an asteroid tumbling through space—is
achieved by defining ("naming") several similar

looking sprites in different
secondary positions (e.g.,
states of rotation). Then
swapping the sprite names
causes what appears to be
a single sprite to move
smoothly across the screen.

The TMS9918A VDP

chip has four modes of op
eration: (1) Graphics 1 or
Pattern Mode, (2) Graphics
2 or Bit-Map Mode, (3)
Text Mode, and (4) Multi
color Mode. The Pattern

Mode consists of a 32-co-

= single-

= double-s

s

siz

ze

•
tandc

•
ed an

d anc

ird

d

iu

magnified

nmagnified

.

= double-sized and magnified

32 The Best of 99'er Volume 1

lumn by 24-row grid of 8 x 8 pixels in each 2-color grid
square. Bit-Map Mode (shown in the above figures) allow
each of the 8 horizontal rows within an 8 x 8 grid square
to have 2 unique colors. In Text Mode the screen is a
2-color single plane (so sprites aren't available) of 40 col
umns by 24 rows composed of 6 x 8 grid squares. This
allows an ASCII character set with each character form
ed from a 5 x 7 pixel grid, with 2 pixels between
characters and rows. Multicolor Mode [see the "Super
Crayon" article in this book for more information]
divides the pattern plane into an unrestricted 64-column
by 48-row color-square display, with each 4x4 pixel
square allowed to take on any of the 15colors or be made
transparent.

Copyright © 1983 Emerald Valley Publishing Co.

Although glitches, crashes, errors, false printouts,
memory loss, and other forms of erratic
microcomputer operation are usually blamed on

software and hardware, most of these annoying problems
actually come to you courtesy of your ordinary 120-volt
powerline! These problems are directly traceable to three
general causes: (1) processor-memory-peripheral interaction,
(2) power line noise/hash, and (3) transient voltage surges.
Fortunately, serious computer users don't have to livewith
these problems, because many types of corrective devices
are available.

Powerline Coupling
The fact that microcomputersystems are so easyto hook

up—just plug the computer and peripherals into the wall
socket, and connnect the components with a few convenient
male/female preassembled cables—makes them susceptible
to power line noise. Connecting them to powerline strips
that are integratedwith RFI (radio-frequency interference)
filters will effectively isolate the computer and peripherals
from each otherand from the power line—thus providing
a convenient solution to the problem.
Hash

Hash is another problem altogether. When your favorite
space-war game gets fouled up by "glitches," or your
previously-proven-to-be-faultless program "blows up" or
creates erroneous printout, externally createdhash isthe pro
bable cause. Elimination of hash at the source is the most
desirable solution. But with hundreds of potential sources
(arcing in tools, motors, appliances, and other small elec
trical devices, plusloose,defective, or corrodedlightsockets,
wall sockets, line-cord plugs, or wire connections), pinpoint
ing the offender is often most difficult. That's where hash
filters are most effective. They often can completely
eliminate the interference.

An alternate approach to the hash problem is first to make
certain that all equipment covers and shields supplied by
the manufacturer are securely fastened in place. If that
doesn't work, you might try building and installing your
ownshield. Also don't forget to make sure that you have

Copyright © 1983 Emerald Valley Publishing Co.

Power

Line

Problems

In

Personal

Computers

an adequate grounding system with direct ties to a good
ground rather than ground loops (which often provide a
home for system hum that can induce glitches).
Transient Voltage Surges.

Transient voltage surges (transients) are certainly not
friends of microcomputer circuitry. Semiconductor com
ponents are easilydamaged by these momentary spikes—
often 5 or 10 times the normal AC line voltage. And in
dustry studies indicate that some transients have pulses up
to 5,600 volts!

Common causes of destructive powerline transients in
clude (1) demand power loadswitching byutility companies,
(2) nearby lightning strikes, (3) static discharge, and (4)
on/off switching of inductive motors, power supplies, air
conditioning and refrigeration units. Any of these can cause
a Differential Mode powerline surge—one in which short
surges of extremely high voltageare developed between the
AClines. Anything connected to theAClines will geta dose
of this damaging voltage. The resulting "domino effect"
could wipe out large sections of microcomputer memory.

A Common Mode surge occurs when both AC lines are
brought to a very high voltage—a situation usually caused
onlyby lightning. This high voltage may cause arcing bet
ween conductors and ground, destroying the insulation of
power transformers (rendering the units worthless) and
cables. Damage to switches and controls isalso a frequent
occurrence in this situation.

Besides the surge damages that are immediate and per
manent, there are some harder-to-detect damages as well:
deteriorated performance and shortened life-spans. These
damages can be the most irritatingsinceequipment will re
quire repeated servicing and will often seem to be falling
apart.

Fortunately, a large measure of surge protection ispossi
blewithclamping devices that can be placedacross the AC
lineand between each AC line and ground. These devices
are frequently built into special AC line cords, and thus,
likethe other protective devices mentioned, can be attach
ed without altering any equipment.

The Best of 99'er Volume 1 33

Murphy's Law
and the Home Computer

The significance of Murphy's Law is etched into the
hearts and minds of all professional programmers.
As an outgrowth of their crucial need to prevent

costly errors and protect their sanity, these professionals
have developed a set of rules for minimizing the expected
problems inherent in any programming project. In this
article, I'll acquaint you with a few of these "tricks of
the trade" that you can adopt when working with your
own home computer.

Rule #1—Name that Variable
Most beginning programmers select simple two-letter

variable names like XI, X2, X3, etc. The major problem
with this kind of naming scheme is that you tend to forget
what each one represents. Fortunately, both of TI's
BASIC languages allow you to use long variable names.
Unfortunately, using long names tends to slow down a
BASIC language program. The solution is to pick a 4-
or 5-letter name that adequately identifies the variable
it represents. For example a program that needs a loop
counter could have the name "LOOP" for the counter.
[When picking names for variables, you should also be
careful to avoid reserved words used in BASIC. If in
doubt, check your User's Reference Guide.—Ed.] Keep
a running list or chart of variable names and their mean
ings in front of you while you program. Avoid the temp
tation to add a variable to your program without updating
the chart.

Rule #2—Save that Program
Get used to SAVEing your program after typing in

about 50 program lines if your storage medium is a flop
py disk, or 75 lines if cassette tape. Keep your labels up-
to-date or else you may get confused in case of trouble.
I always place the version number "V.XX" on the
cassette before recording on it. Flipping the tape over and
scratching out the old version number as soon as the pro
gram has been SAVEd makes sure that 1 don't accident-
ly record over my last SAVE. For disk users, I suggest
that they SAVE their programs under the names V01 and
V02 alternately so that they don't fill up a disk.

Rule #3—Walk, Don't RUN
Computer-induced heartburn is one experience you'll

definitely want to avoid. Yet how many of you court this

34 The Best of 99'er Volume 1

"ANYTHING THAT CAN GO
WRONG WILL GO WRONG"

— Murphy's Law

"And at the worst possible time."
—Pincus's Corollary to Murphy's Law

malady by meticulously entering the last 50-75 lines of
your program, then typing in RUN? If you're guilty of
this practice, don't be too surprised if Murphy pays an
unexpected visit and causes your computer to "freeze"
on you—effectively wiping out everything in memory.
The best way to avoid this is to always "back up" your
entire program (on tape or disk) before you RUN it the
first time. Then verify your recording. The next step is
to plan what you want to test: Don't expect to have the
program execute successfully the first, second, or even
third time that you try it out. Instead, take a blank sheet
of paper and write down what you want to test and how
you will do it. Then RUN your program following your
plan. If you notice a problem that does not halt your pro
gram, write it down on your test sheet and keep going.
Don't stop to figure out what program line caused the
problem; there will be time for that later. And above all,
avoid the temptation to correct the error right away. Do
ing this will cause the following:

• If you change a program line, Tl BASIC resets all the
variable data (that you entered during your test) to zero
or spaces. Subsequently, you will have to retype all that
data back into your program.

• You may lose your train of thought when you stop your
test in the middle. It's possible to miss testing a major
item because you spent your time fixing a minor problem.

After you have done as much of your test as possible,
stop the program and begin fixing all the "bugs." Don't
forget to mark down the statements that you change. This
will come in handy if you must restore a previous ver
sion because of a problem in making corrections. There
are various way to correct (debug) a program, some of
which you'll encounter as you read through this book.
One of the best, however, is Rule #4.

Rule #4—Test, Test, TEST !
Any professional programmer will tell you that it's ex

tremely difficult to produce a bug-free program—maybe
even virtually impossible to do with very complex pro
grams. So even after extensive testing, your program may
have minor flaws in it. Therefore, the only way to pro
duce a relatively clean program is to test it as much as
possible. This brings up another corollary to Murphy's
law: "The only programs without bugs are the ones not
yetwritten." Thissaysit all, and should be reason enough
to TEST, TEST, TEST !

Copyright © 1983 Emerald Valley Publishing Co.

Languages for
the Home Computer

Chatting
with

Your Micro:

Home Computers are indeed wonderful machines.
They have been carefully designed to allow begin
ners to do meaningful tasks, act as educational tools,

and provide hours of inexpensive family entertainment.
All of this is made possible by the availability of "user-

friendly" software—Command Cartridges, cassette tapes,
and floppy disks that have been pre-recordedwith program
ming instructions the computer can understand and carry
out.

Users of this software need not concern themselves with
how this programming was actually produced—unless, of
course, they get smitten with that highly contagious human
germ known as "curiosity," and want to understand
something about the process.

"Programming" the Home Computer is not some
mysterious rite that is meant to be practiced by a select few
in secrecy. Rather, it is simplya means of communicating
with a machine in a language that both humans and human-
designedelectronic circuits can understand—nothing more
elaborate than basic, down-to-earth communication.

Languages, whether human-to-human or human-to-
machine, differ widely in their complexity. Depending on
the language, varying amounts of memorization and prac
tice are required before a "speaker" can communicate ef
fectively. The levels of computer language complexity run
the gamut from conversational English phrases, to the swit
ching on and off of electric current that the machine
"understands" and transforms into various actions.

Beforea user can begincommunicating with a computer,
however, one of three conditions must be met: (1) The user
must be able to communicate in the computer's language;
(2) the computer must be able to communicate in the user's
language(i.e., English, German, Spanish, etc.); or (3)some
common intermediate language must be established,
understood, and used by both parties. By definition, the
closer this intermediate language is to the machine's natural
"electrical" language, the lower its level. And conversely,
the closer to the human's language, the higher the level.

Machine Language
First, let's take a look at the lowest level of common in

termediate language—referred to as "machine language."

Copyright © 1983 Emerald Valley Publishing Co.

Since electricity can either be on or off—one of two pos
sibleconditions—machine languagecan only be constructed
from two "words." This binary languageis often express
ed by humans with the two digits 1 and 0, with 1 represen
tingthe "on" state (presence of electricity), and 0 represent
ingthe "off state (absence of electricity). Absolutely shock
ing in its simplicity, isn't it?

Figure 1.

' 'MACHINE LANGUAGE SAMPLE' •

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 I 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

Figure 1 represents six machine language "sentences."
It's not easy for a human to understand, is it? Yet when
communicating this way, more explicit control of the
machine is possible, because there can be nothing "lost in
the translation."

TMS9900 Assembly Language
Human difficulty in communicating in a binary language

led to the next step in the evolution of higher-level
languages—an easier-to-remember ("mnemonic") way of
expressing these binary "sentences." This was done by
assigning combinations of alphabetic letters to represent
operations formerly only expressable by binary sequences,
and assigninga full rangeof characters (includingnumbers)
to represent the things actually "operated" on.

This easier, alphanumeric way of communicating is call
ed Assembly Language because these newly created scores
of symbols must eventually be translated back (assembled)
to their binary equivalents for the machine to carry them
out.

The Best of 99'er Volume 1 37

Figure 2

REF VMBW.INPUT

LINE 1 TEXT •HI, I AM THE TI-99/4A'

LINE 2 TEXT ♦HOME COMPUTER '

LINE 3 TEXT 'WHAT'S YOUR NAME?'

BUFFER BSS 32

LINE 4 TEXT •NICE TO MEET YOU, '

GREET LI R0,0

LI R1.LINE1

LI R2.32

BLWP @VMBW

LI R0.64

LI R1.LINE2

BLWP @VMBW

LI R0.128

LI R1.LINE3

BLWP @VMBW
LI RO.BUFFER
BLWP ©INPUT

LI R0.256
LI R1.LINE4
BLWP @VMBW
LI R0.288

LI Rl,BUFFER

BLWP @VMBW

END GREET

Note: Keep in mind that the use of this and other sample program
segments that follow are for comparison purposes only, and do not in
dicatethe true powerof any of the languages. Note alsothat the reference
to a routine called INPUT doesn't imply the existence of that routine
(as this is only an example).

In Figure 2 we are showing you part of an Assembly
Language program that causes the computer to print several
English language messages on the screen, and allows it to
accept and acknowledge human response via the keyboard.
The screen dialog goes like this:

HI, I AM THE TI-99/4A
HOME COMPUTER

WHAT'S YOUR NAME?

You type in your name

NICE TO MEET YOU,

Your name appears here

Observe in Figure 2, the left to right sequence of symbols
that must be followed if the program is to be assembled cor
rectly. As an example of the proverbial "before and
after"—Assembly Language lines that have been assembl
ed back to binary—take a look at the last seven lines of sym
bols in Figure 2. The machine language that results from
the assembling of these symbols appears as the entire se
quence of left-to-right binary sentences shown in Figure 1.

Higher-Level Building Blocks
Although some very important programming is still done

at the Assembly Language level, the majority of programs
written are in higher-level languages. These languages are
closer to human languages such as English than to machine
language. To generate these higher-level languages, we must
take ordered groups of Assembly Language statements and
equate eachgroup with a single word of the new, higher-
level language we are generating. Each word of this new
language is much more powerful than any single Assembly
Language symbol: With one new higher-level word, we can
make the computer do several things. This is a powerful
technique, indeed, and has been the basis for all computer
languages that have evolved.

For the computer to understand one of these new English
like languages, the language must first be translated into
machine language.

Compiling & Interpreting Down
When translation of all the high-level language statements

in a program takes place before the computer acts on the
statements, the language is said to be compiled. The binary
sequences that result from this compilation are then saved
and later used directly any number of times.

On the other hand, the language is said to be interpreted
when the computer acts on each statement immediately after
that statement's translation. Therefore, every time an in
terpreted language program is "run" (all statements follow
ed step-by-step to completion), the program must be re
translated. Because of this basic difference in translation
technique responsible compiled language programs are faster
than interpreted ones.

This is not to say that interpreted languages do not have
compensating advantages. Ease of use is a case in point:

Additional Terms You'll Want to Know
Command Cartridge—A plug in plastic
cartridge from Texas Instruments with in
tegrated circuits that contain a computer pro
gram (software).
floppy disk—A mass storage device using
a flexible mylar disk to record information. It
is a more sophisticated alternative (quick ran
dom access) to cassette tape storage (se
quential access).
Home Computer—The Texas Instruments
TI-99/4A console with either home television
or Tl Color Monitor.

integrated CircuittlO—Integrated circuits
have many individual components packed
together or integrated in a small area. The cir
cuits of the computer are fabricated on silicon
chips. A chip is typically about 1/4 inch on a
side. Today's chips are so sophisticated that
the basic components of an entire computer
can be fabricated on a single chip,
mnemonic—Assisting or intended to assist
the memory.
screen—The home television or Tl monitor
to which «the computer outputs information

38 The Best of 99'er Volume 1

like numbers/letters/graphs, etc.
Speech Synthesizer—A peripheral device
built by Texas Instruments for use with the
Home Computer and used to reproduce the
human voice electronically.
TMS9S00—A very sophisticated integrated
circuit (called a "microprocessor") containing
all the most basic components of an entire
computer. Designed and built by Texas In
struments, it is the heart of the Home
Computer.

Copyright© 1983 Emerald Valley Publishing Co.

Just as soonas wefinish writing the lastprogram statement
in an interpreted language, we can immediately run the
program—without having to go through an additional in
termediary step such as compilation. The translation in an
interpreted language is therefore invisibleor hidden from us.

Furthermore, in many interpreted languages such as the
BASIC language that comes built into your Home Com
puter, statement misuse or errors of spelling in language
vocabularyare checked for right at thetimethestatements
are typed in. Appropriate error messages (if needed) will
appear on the screen; the person doing the programming
can then make immediate corrections.

Tl BASIC

Because Tl BASIC is a high-level and interpreted
language, it iseasy to learn and use. Thesample program
segment that follows (Figure 3)will cause the computer to
carry on a dialog similar to the one previously shown in
Figure 2. Notice how much easier the Tl BASIC version
is to understand.

Figure 3

100 PRINT "HI, I AM THE TI-99/4A"
110 PRINT "HOME COMPUTER"
120 PRINT "WHAT IS YOUR NAME?"
130 INPUT NAMES
140 CALL CLEAR

150 PRINT "NICE TO MEET YOU,"
160 PRINT NAMES
170 END

Tl Extended BASIC
Tl Extended BASIC, one of the higher-level languages

that you can add to your Home Computer by plugging in
theseparate Command Cartridge for the language issimilar
to the regular built-in BASIC. It gives you everything that
the regular BASIC does plus many special additional
features suchas arcade-style animated graphics (known as
"sprites"), commands to control the Speech Synthesizer,
as well as more precise control of on-screen text messages
(demonstrated in Figure 4).

Figure

100

110

120

130

140

DISPLAY AT(2,1):"HI, I'M THE TI-99/4 HOME
COMPUTER"

DISPLAY AT(6,1):"WHAT IS YOUR NAME?"
ACCEPT AT(8,5)VALIDATE
(UALPHA)SIZE(15):NAME$
CALL CLEAR : : PRINT "NICE TO MEET YOU,

";NAME$
END

Tl LOGO

Another interpreted language very popular with children
and educators is TI's unique implementation of LOGO. It
contains the previously mentioned sprites and features "Tur
tleGraphics." These line drawings generated by a "pen"
attachedto a simulated"turtle" object (that is movedabout
the screen with only simple heading anddistance commands)
are both enchanting and instructive—contributing to the
wonder of discovery that children experience with the com
puter.SeeFigure5 for a sampleTl LOGO program(known
as a procedure).

Copyright © 1983 Emerald Valley Publishing Co.

life W-fiwir'W|m

Figure 5

TO GREET

CLEARSCREEN

PRINT [HI, I AM THE TI-99/4A]
PRINT [HOME COMPUTER1
PRINT [WHAT IS YOUR NAME?]
CALL READLINE "N

PRINT "HELLO,
PRINT :N

END

Tl PILOT

Whereas LOGO is a high-level language with great
depth—i.e., the built-in vocabulary can be "customized"
by the user—Tl PILOT, another high-level language, is
much more abbreviated. With a fixed vocabulary of only
15 major commands, the interpreted Tl PILOT language
stillallowsaccess to sprites, color graphics, and sound. Each
command is represented by one or two letters followed by
a colon.The program segment in Figure6 illustrates a dialog
in PILOT.

Figure 6
D: R$(15)
T: HI, I AM THE TI-99/4A
T: HOME COMPUTER
T: WHAT IS YOUR NAME?
A: R$
T: HI THERE, R
E:

With PILOT, you can develop effective educationalpro
grams even if you've had little or no programming ex
perience. For this reason, PILOT is favored by educators
as a language highly suitable for producing computer-
assisted instruction (CAI) courseware.

UCSD Pascal

Currently, the only high-level compiled language available
for the Home Computer is University of California at San
Diego (UCSD) Pascal. This version of Pascal includes func
tions for accessing all the specialHome Computer features.
The languageis more appropriate for professionalprogram
mers or users who wish to delve into more sophisticatedpro
gramming. Although not as difficultas Assembly Language
to master, UCSD Pascal is, nevertheless, much more dif
ficult than other high-level languages on the Home
Computer.

This compiled language also happens to be highly
structured—i.e., it restricts programs to modular organi-

The Best of 99'er Volume 1 39

zation according to sets of specific construction rules known
as syntax. Because it is both compiled and structured, pro
grams written in UCSD Pascal are faster and easier to
modify than most other high-level languages. This makes
it a suitable language for large business and scientific pro
grams. See Figure 7 for a very simple (almost trite!) exam
ple of our now-familiar man-machine dialog as written in
Pascal.

Figure 7

PROGRAM GREET;

VAR NAME: STRING;

BEGIN

WRITE(OUTPUT/HI,I AM THE TI-99/4A ');
WRITELN(OUTPUT/HOME COMPUTER.*);
WRITELNtOUTPUT.'WHAT IS YOUR NAME?');
READLN(INPUT.NAME);
WRITE(OUTPUT,'NICE TO MEET YOU, ');

WRITELN(OUTPUT,NAME');
END.

ASPIC
Early in this article we implied that higher-level languages

are constructed from other languages. This means that you
have the opportunity to design your own personal languages
for communicating with your Home Computer. You can
do this by defining both the syntax and each word of your
new language in terms of the statements and commands of
an existing Home Computer language. The new ASPIC
language is a case in point. Constructed from Tl BASIC,
ASPIC was created to simplify a child's manipulation of
color graphics on the Home Computer. Figure 8 shows an
example of a typical program segment. [See ASPIC article
in this book for a complete discussion of this new
language—Ed.]

Figure 8

10 CLEAR

20 MAKE +

30 MAKEX

40 COLOR SCREEN RED

50 COLOR + BLACK

60 COLOR X GRAY

70 LET Rl = 5

80 LET CI = 5

90 LET R2 = 21

100 LET C2 = 13

110 REPEAT 9

120 DRAW + IN ROW#Rl COL#Cl

130 DRAW X IN ROW#R2 COLJC2

140 LET CI = CI + 1

150 LET R2 = R2 - 2

160 END

Tl FORTH
If you want to modify a language to fit your own par

ticular needs, Tl FORTH may be for you. FORTH is
much like LOGO, in that the basic language implemen
tation consists of a small number of built-in primitives
(called definitions) from which you may construct new
definitions. The primitive definitions and the new defini
tions which you create are entries in FORTH's dictionary.
Once you've entered your new definitions in the dic
tionary, however, they're a permanent part of your
FORTH implementation. Programmers who feel the need
to simplify their work with custom modifications—
software developers, for instance—will be most interested
in FORTH.

Now it's up to you ... Go ahead and strike up a conver
sation with your new-found electronic friend. Who knows?
New respect for and long-lasting Ties with your Home
Computer may be the result.

C(

FOR

Minimum
Cost of

Componen

To Run
Programs

DMPA

THE'

Relative
System
s Needed

To Write
Programs

RIS

n-9!

Ease
of

Use

(1-1(0*

ON O

9/4A I-

Execution
Speed
(M0)4

FLA

10ME

Color
Graphics
Supported

NGUl

•CON

Sprites
Supported

iGES

1PUTE

High
Speed
Turtle

Graphics
Supported

Speech
Supported

(with
additional

Synthesizer
peripherals)

Music
Supported

1. Relative cost ratio with price of a
TI-99/4A taken as unity.
2. Cost for running assembled program
In Mini Memory cartridge.
3. Cost for writing Assembly Language
programs using Editor/Assembler.
3A. Cost for writing very small
Assembly Language sub-routines &
programs using Mini Memory cartridge
and separate Editor/Asembler Manual.
4. Number 1 represents worst case; 10
represents best case. Please note
these values are subjective and are not
based on any laboratory test data.
5. With the proper background and ex
perience, the user can use this
language to write his own turtle
graphics support routines.
6. If the Speech Editor cartridge or Ter
minal Emulator II are added to the
system, speech can be supported by
the language.
7. The new Tl LOGO II, Tf PILOT, and
USCD Pascal have enhanced music
commands.
8. Minimum configuration based on
cassette storage.

ASPIC 1.0 1.0 9 1 yes no no no no

9900
Assembly

Language

1.3

Note 2

4.7
Note 3

1 10 yes yes no5 yes yes

1.3
Note 3A

Tl BASIC 1.0 1.0 7 3 yes no no no6 yes

Tl Extended
BASIC

1.3 1.3 6 4 yes yes no yes yes

Tl LOGO 2.9
Note8

2.9
Notes

8 4 yes yes yes yes yes7

UCSD Pascal 3.3
Note 8

7.3 4 7 yes yes no5 yes yes7

Tl PILOT 5.4 7.5 10 5 yes yes no yes yes7

Tl FORTH 1.3 4.7 4 7 yes yes no yes yes

^^

40 The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

HOW TO WRITE YOUR OWN

PROGRAMS

Using Flowcharts
To Outline a Solution.

Sitting down in front of your TI-99/4A and running
packaged software may stimulate your desire to try
some programming of your own. If you have taken

courses in computer programming or have had some prac
tical on-the-job training, you can probably type some lines
and have the computer do what you want. However, if you
haven't had this experience, you may soon find the frustra
tion of not knowing where to start too much to bear. Well,
take heart! Here we present some basic information on how
you can begin programming on your own.

A Framework for Writing Programs
Computer programming is an exercise in reasoning and

logic. Before programmers develop software to do specific
jobs, they plan their attack on the individual elements that
are inherent to those jobs or problems. It is helpful to have
in mind a general framework for solving each problem.

This general framework could take a number of different
forms. Most will, however, containsimilarsteps. Thesesteps
can be described as follows.

1. Define the Problem

Initially, it is necessary to have a good understanding of
exactly what you want the program to do. If it is possible,
try to express the problem in a simple thought or sentence
stating the intended outcome of the programming effort.
Definingthe problem in this manner may not only saveyou
time, but may also help focus your efforts.

2. Outline the Solution

This step is the primary purpose of this article. We'll get
back to examine this step in more detail later.

3. Select the Algorithm
Many problems requiring a computer for solution depend

on certain mathematical algorithms that are required in the
calculation of the desired solution. For those who are puz
zled by the word "algorithm," mathematicians and math
teachers use this word to refer to the specific method of solv
ing a certain kind of mathematical problem. For example,
you may have been taught to subtract whole numbers by
placing the larger number on top, the smaller on the bot
tom, and to borrow when necessary. This is but one possi
ble algorithm for subtraction. In general, you can either
locate those algorithms that are necessary from published
sources, or design your own. In either instance, the simpler
the algorithm, the better.

4. Writing the Program
Many peoplebelieve the writingor "coding" of the pro

Copyright © 1983 Emerald Valley Publishing Co.

gram is what computer programming is all about. Actual
ly, this is just one in a series of steps. Prior planning (as
detailed in steps 1-3, above) is absolutely essential before
the actual writing of the program can begin. And inherent
in the writing of the program must be a reasonable
understanding of the computer languageyou will be using.
5. Debugging

Once you have typed the program into the computer, it
is necessary to run it to determine if and what difficulties
exist. You will seldom write an error-free program on the
first draft. Trying to locate and correct those "bugs" can
be frustrating. This is where some of the 99/4A's built-in
features help tremendously.

6. Validating the Program
In this step, you intentionally try to locate situations in

which the program yields inaccurate or undefined solutions.

7. Documentation

It is a good idea to record the characteristicsof the pro
gram such as its intent, algorithms, and specifications. Some
day, in the future, when you decide to modify this program
you will be very happy that this documentation exists. In
cidentally, when buying a program, the author's documen
tation (or lack thereof) can often be a good indication of
the quality of the program.

Outlining the Solution
The development of an adequate outline (Step 1 above)

is the most critical step in writing a program. Many of us
dabblers in the art of programming seemto fail in develop
ing an adequate outline. My intention here is to demonstrate
to you some elementary outlining techniques—in the hopes
that we, the dabblers, may be able to improve our lot in
the somewhat puzzling world of bits, bytes, and bugs.
Flowcharting

There are a number of methods available for outlining
a solution to a problem. Of those used in computer pro
gramming, flowcharting is one of the simplest and easiest.

To introduce you to the flowcharting method, let's first
look at some of the symbols used.
1. START and END symbol

CD
This symbol is used to indicate both the beginning and the
end of a program.
2. INPUT-OUTPUT symbol

The Best of 99'er Volume 1 4\

The input-output symbol is used to indicate where the user
of the program will need to supply a piece of data or where
a calculation will be printed out for the user.
3. COMPUTATION or ASSIGNMENT symbol

This symbol is used to indicate where computations or
assignments of values to variables will occur.
4. DECISION symbol

O
This decision symbol is used to indicate where a "yes" or
"no" or "true" or "false" decision point is located.
5. STOP symbol

•
This symbol is used in some programs to indicate a termina
tion point if this point is different from the end point of
the program.

There are other symbols that can be used according to
your needs. Also, remember that no rules exist to stop you
from developing your own symbols.

Toward a Workable Technique
The outline strategy that works best for me is to start off

simpleand then increase the complexityof my outline until
it does what I want it to do. My approach includes: (1)
writing a sentence that defines the problem I want to solve,
(2) preparing an informal outline, (3) developing a more
complex flowchart, and then (4) writing the program. To
demonstrate how this approach leads you to developing a
better program, let's take a look at some examples.

EXAMPLE 1

For our first example, let's write a program that will add
two numbers together and print their sum. We will design
the program so that we may input two numbers from the
console. This is called an interactive program, in that the
user must input the values to be assigned to the variables.
Following the approach presented, we first define the
problem:
Step 1. Definition of the Problem:

The program will take two numbers being input from the
console, add them together and print the sum.

Step 2. Informal Outline:
1. Start

2. Input two numbers, A and B
3. Add A and B
4. Output the sum of the numbers

Step 3. Flowcharting:
Using the flowcharting symbols, the solution is further

developed:
(start)

/npot a,b/

/output sum/

Explanation of the flowchart
The "flow"isevident in the continous line running from

the initial start symbol to the final end symbol. The input

42 The Best of 99'er Volume 1

symbol shows that the two values are requested, with the
first input value being assigned to the variable A and the
second to B. The addition of the two numbers and the
assignment of their sum to a variable occurs inside the com
putation symbol.The valueof the sum is then output, and
the program ends. The algorithm necessary for the solu
tion is shown.

Now that the problem has been outlined, we proceed to
write or code the program.

Step 4. Coding:

100 REM **ADD1TI0N PROGRAM**

110 INPUT A,B
120LETS = A + B

130 PRINT S

140 END

Explanation of the program.

The program shows how the original intent is followed.
Line 100 contains a REM statement allowing us a means

of identifying the program.
Line 110 allows the user to type in the two numbers to

be added.
Line 120 assigns the value of A plus B to the variable S.
Line 130 prints the value of S.
Line 140 ends the program.
Since my primary intent here is to explain how an'outline

is developed and used, I willnot explain the Tl BASIC com
mand statements but assume that readers of this article have
already read most of the Tl Beginner's BASIC, the book
that came with their computer.

EXAMPLE 2

For a more complex example, let's develop a program
that will select and print the larger of two input values.

Step 1. Defining the Problem.
Given two numbers, the program will select the larger of

the two and print it.

Step 2. Informal Outline:
1. Start.

2. Input two numbers, A and B from the console.
3. Compare number A with B. If A is larger than B, print

A. If A is not larger than B, print B.
4. End.

Step 3. Flowcharting:

/input a, b/

/output b//output a /

Explanation of the flowchart.

The flowchart begins with the start symbol. The two
values are then input. In the decision box, a comparison
of the value A with B takes place. If the statement A>B
is true, the computer is instructed to bypass the output B
box, and output the value of A. If the statement is false,
the computer continues down the chart to output the value
assigned to B. The program then ends.

Copyright © 1983 Emerald Vatley Publishing Co.

Step 4. Coding:

100 REM **PRINTS LARGER OF TWO NUMBERS**
110 INPUT A,B
120 If A>B THEN 150
130 PRINT B

140 GOTO 160

150 PRINT A

160 END

Explanation of the program.

Line 100 is a REM statement used to identify the
program.

Line 110 allows the user to input the two numbers to be
compared.

Line 120is used to compare the two numbers. If the state
ment A is greater (>) than B is true, the computer is then
instructed to go to line number 150to print A. If the state
ment in line 120 is false the computer continues to the next
line.

Line 130prints the value of B, as it must be the larger.
Line 140 is used to direct the computer to go to line 160.

Without this line, the computer would print the value of
B, then the value of A. This is, of course, not what we
wanted.

One difficulty exists with this program. If A and B are
equal, the program will not be able to distinguish the two.
(If this arises, B will be printed.) This difficulty could be
corrected for this situation by allowing another step where
value A and value B could be displayed.

EXAMPLE 3

Let's take a look at one more simple example. This time
we'll try writing all the squares of the integers between 1
and 99, inclusive of the two boundaries.

Step 1. Defining the Problem:
The program will make a list of all the squares of the

integers between 1 and 99, inclusive.

Step 2. Informal Outline:
1. Start.

2. Let N be a variable whose initial value is 1.

3. Compute the value of N2, and let the result be the
value of S.

4. Print N and S on one line of the screen.
5. If the value of N is 99, then end the program. Other

wise go to step 6.
6. Add 1 to the value of N and then go back to step 3.

Step 3. Flowcharting:

Copyright © 1983 Emerald Valley Publishing Co.

Explanation of the flow chart.

After the program starts, the variable N is increased by
1. As the Tl BASIC will automatically set the initial value
of N to zero, using the statement N = N +1 will set the first
value of N to 1. Next, the square is calculated. Both the
integer and itssquareare thenprinted. Thenext stepchecks
to see if N is equal to the upper boundary of 99. If N is
equalto 99, the computer is instructed to end the program.
If N is not equal to 99, the program loops back to add 1
to the value of N and continues.

Step 4. Coding:

100 REM **SQUARES**
110LETN = N+1

120LETS = NA2
130 PRINT N,S
140 IF N< 99 THEN 110
150 END

Explanation of the program.

Line 100 is the REM statement.
Line 110 adds 1 to the variable N.
Line 120 computes the square.
Line 130 prints the integer N and its square S.
Line 140 determines if the value of N is 99. If N isequal

to 99, the computer goes to line 150and ends the program.
If N is not equal to 99, the computer returns to line 110.

Line 150 ends the program.

Now that we have seen the use of the outlining tech
nique in some rather elementary program examples, let's
get serious and try something more challenging.

EXAMPLE 4

Let's try writing a program to test our recall of a series
of digits. With each correct matching of a digit, we'll in
struct the computer to add another digit to the series.

Step 1. Defining the problem:
The program will display a series of digits of increasing

length and ask the user to recall the correct order of the
digits.

(It might be helpful to place some limits on the program
to further qualify what we want it to do. This can be done
in the informal outline.)

Step 2. Informal Outline:

1. Start.

2. Have the computer select a random digit.
3. Display the series of digits for a short time.
4. Clear the screen.

5. Ask for a response from the user.
6. Compare the response to the series of digits.

7A. If the response is correct, congratulate and ask if the
user wants to continue.

7B. If the response is incorrect, show the correct series
of digits and ask if the user wants to continue.

8. If the user wants to continue, have the computer select
another digit and add it to the end of the previous
series.

9. If the user does not want to continue, end the
program.

The Best of 99 er Volume 1 43

Step 3. Flowcharting:

f— SELECT
CKGIT

/ display /
clear
SCREEN

/respomse/

TRUE

FAL SE

7

/ SORRY! /

/ GOT ITl

J7-
/ DISIPLAY /

1

/£,^
NO

YES

(**)
Explanation of the flowchart.

After the program starts, a random digit is selected. The
series of digits is displayed, and the screen is cleared. The
user is then asked to respond. If the response is correct, the
computer offers congratulations with a GOT IT! message,
then asks if the user wants to continue. If the response is
incorrect, the computer says SORRY!, then displays the cor
rect response. The user is then asked if he wants to con
tinue. If the answer is yes, the computer loops back to the
random digit selection box, tacks on an extra digit to the
string, and continues. If the answeris no, the program ends.

Step 4. Coding:
In coding the program, we'll use the RANDOMIZE and

RND statments from Tl BASIC to get a better selection of
digits. Take the number returned by RND, multiply it by
10, then take the integer portion: The algorithm is
INT(RND*10). In order to display, compare and add digits
to the series, we'll translate them into a string using the STR$
function.

Explanation of the program.
Lines 100-170 are REM statements.

Line 180 is the RANDOMIZE statement.
Line 190 begins the selection of the random digit. With

this statement, the computer will display a series of digits
starting with a single digit and extending to an upper limit
of 25 digits maximum.

Line 200 is the algorithm for selecting the random digit
and assigning its value to the variable A.

Line 210 translates the digit selected to a numeric string.
The line will also function in adding each digit selected to
the end of the previous series of digits.

Line 220 clears the screen.
Lines230-250 present the series of digitsand tellyou how

much time you are allowed to study the series.
Lines 260-270 time the digits being displayed. Going

through the FOR. . .NEXT loop takes about five seconds.
Line 280 clears the screen.
Line 290 directs the computer to jump to line 320. The

line is intended to get us out of the FOR I. . .NEXT I loop
without disrupting it.

Line 300 continues the FOR I. . .NEXT I loop.

44 The Best of 99'er Volume 1

Line 310 ends the program.
Lines 320-330 prompt the user to respond.
Line 340 compares the response to the series of digits.

If the responseis incorrect, the THEN condition directsthe
computer to line 380, which is the SORRY! comment. If
the response is correct, the computergoes to the next line
(line 350).

Line 350 clears the screen.

Line 360 congratulates the user.
Line 370 directs the computer to go to line 390, bypass

ing the SORRY! comment.
Line 390 asks if the user wants to continue.
Lines 400-410 check to see if the user is interested in

continuing.
Line 420 returns the computer back into the FOR

I. . .NEXT I loop.
Line 430 ends the program.

M

EM

EM

EM

EM

EM

EM

EM

N

R

DioMi
I

A

M

T

T

T

Y

SG

60

NE

GO

R

P

Gp
P

$

E

GjO
0

SO

DO

OR

NS

>

UMB

TO

P

$
MjS[G|
R

R

M|S
R

R

I

Y

Y|OU
N

MA

irVA

UtMB

E

UMB

CO

TO CO

TO

WA MS

FINAL COMMENTS

Once you've had a chance to use this approach—defining
the problem, doing an informal outline, flowcharting, and
then coding—in a project of your own, programming your
computer will no longer be as forbidding and mysterious
as you first thought.

Before attempting programs of your own, you may want
to try a little exercise. Add the following features to the
previous program:

(l)Allow the user to choose how much time the digits are
displayed on the screen.

(2)If the response is correct, play a 3-note chord.
(3)If the responseis incorrect, play one note of noiseand

print a screenmessage that tellshow many digits werecon
tained in the largest number correctly guessed.

Copyright © 1983 Emerald Valley Publishing Co.

LIVENING UP YOUR

The CALL SOUND subprogram in Tl BASIC com
mands an amazing integrated circuit in your TI-99/4A
called the SN76489 Sound Generation Controller. On

a single chip, Tl has squeezed in three programmable fre
quency dividers, a programmable noise generator, four pro
grammable attenuators (volume controls), and eight registers
to hold the data that control the tones, noise, and their
volume levels. In effect, the tones and noise are synthesized
to your specifications from a frequency of 3.58 megahertz;
this is also the frequency that carries the color information
from your computer to your color monitor or video
modulator.

If you have used CALL SOUND only to produce
miscellaneous beeps, noise, and music, read on. I'm going
to give you some "mini programs" that demonstrate the
variety of other sounds your Home Computer is capable
of producing.

For the first example, let us try to re-create the sound
of a door bell of the type associated with the once popular
"Avon Calling" commercial. This is an example of an ob
ject that is struck a sharp blow and allowed to vibrate at
its resonant frequencies. The following characteristics are
needed to recreate this sound: 1) the fundamental frequen
cies of the two tones, 2) the overtone frequencies, and 3)
a gradually decaying volume. Those of you with a senseof
absolute pitch would immediately recognize the two fun
damental frequencies, but in my case, I actually measured
the dimensions of the sounding bars and their points of sup
port and determined with a magnet that the bars wereprob
ably steel. From a textbook, Acoustical Engineering by
Harry F. Olson, I obtained the formula and values of the
constants needed to calculate the resonant frequencies of
the bars. The calculated frequencies came out to be very
close to 698 and 554 cycles per second (F and C# above high
C). The book also told me that the two closest overtones
were 2.756 and 5.404 times the fundamental frequency. The
bars were supported on rubber mounts close to the
theoretical nodes (points of minimum vibration) for the fun
damental and the first overtones, but were located near
points of maximum vibration for the second overtone. I
therefore assumed that the second overtone would be
dampened out, so I omitted it from the CALL SOUND
specification for each tone. The decaying volumes for the
tones were obtained by including each CALL SOUND in
a FOR-NEXT loop as follows:

Copyright © 1983 Emerald Valley Publishing Co.

100 REM DOOR CHIMES

110 FOR A = 0 TO 30 STEP 5

120 CALL SOUND(-99,698,A,1924,A)
130 NEXT A

140 FOR A = 0 TO 30 STEP 5

150 CALL SOUND(-99,554,A,1527,A)
160 NEXT A

If you are wondering about the significance of the 99 for
the durations, it is simply an easily keyed number larger than
the 50 milliseconds needed to make the steps sound con
tinuous. The minus sign indicates that the sound generator
willbe updated as soon as the new value for A is determined;
the duration specified need only be long enough to cover
the time between updates.

Next, let us try a sound in which the frequency varies with
time. A siren is an example which can be characterized by
a slowly rising and falling frequency. Apparently, this is a
sufficient clue to the brain for us to recognize it as a siren.
Try varying the frequency range step in the following pro
gram to seehow far it can be varied and still be recognizable
as a siren.

170 REM SIREN

180 N=l

190 FOR F = 700 TO 900 STEP 5
200 CALL SOUND(-99,F,0)
210 NEXT F

220 FOR F = 900 TO 700 STEP -8
230 CALL SOUND(-99,F,0)

The Best of 99'er Volume 1 45

240 NEXT F

250N = N+1

260 IF N = 4 THEN 270 ELSE 190

270 END

N = 4 on line 260 limits the siren to 3 up-down frequency
sweeps.

In the next example, let us vary both the frequency and
the volume as a function of time. Imagine a large "killer"
bee buzzing around you, with the frequency of the buzz pro
portional to the rate of the beating wings, and the volume
proportional to the closeness of the bee.

280 REM BEE
290 N=l

300 CALL SOUND(-99,RND*8 + 110,RND*10)
310N = N+1

320 IF N = 75 THEN 330 ELSE 300
330 END

Unlike the previous examples, where the variations in fre
quency and volume were obtained by using a FOR-NEXT
loop, thevariations in thiscase were obtained by using the
RND statement. It is interesting to note that this routine
will not sound the same in Tl Extended BASIC—the bee
sounds very sluggish. This is one case in which the Tl BASIC
runs faster than the Extended version.

For the next sound, imaginethat you are tuning a short
waveradio receiver. The background static is simulated with
the noisetype (- 8), and the random signalis simulatedwith
frequency #3. The random volume on frequency #3
simulates varying signal levels with the noise volume for
mulated to be high when the signal level is low and vice
versa.

340 REM SHORTWAVE RECEIVER
350 N = l

360 F = RND* 15000+110
370A = RND*30

380CALL SOUND(-99,111,30,111,30,F,A,-8,30-A)
390N = N+1

400 IF N= 100 THEN 410 ELSE 360
410 END

Frequencies #1 and #2 are "do nothing frequencies" since
their volumes are set to the minimum and are inserted so
the program will recognize frequency #3, from which noise
type - 8 is derived. The lll*s therefore were picked for the
ease of inputting.

46 The Best of 99'er Volume 1

Next, imagine that the
radio of the previous
example is now tuned
to a "pre-ASCIl"
teleprinter signal which
uses an 850 cycle-per-
second frequency shift
to differentiate bet
ween a mark and a

space.

420 REM RADIO TELEPRINTER
430 N=l

440 CALL SOUND(22,2975,0)
450 FOR D=l TO 5
460 S= 850*INT(RND*2)
470 CALL SOUND(22,2125 + S,0)
480 NEXT D

490 CALL SOUND(31,2125,0)
500N = N+1

510 IF N = 30 THEN 520 ELSE 440
520 END

One character consists ofa 22 millisecond (ms) start pulse,
followed by a five-bit code for the characterwith each bit
22 ms long, anda 31 ms stop pulse. Line 440 generates the
start pulse, which is always a space. The FOR - NEXT loop
in lines 450-480 randomly generates a mark orspace pulse
for the five data bits, and line 490 generates the stop pulse,
which is always a mark. Line 510 limits the number of
characters generated to 29. Like the"bee" sound, this will
not come out well in Extended BASIC. In general, data
communications signals are easy toimitate because they are
well defined by standards.

For a change of pace, try the following sound:
530 REM FOOTSTEPS
540 N=l

550X = INT(RND*5)
560 IF X = 2 THEN 620
570 CALL SOUND(5,-3,5)
580 CALL SOUND(30,-7,20)
590 CALL SOUND(500,-7,30)
600N = N+1

610 IF N = 30 THEN 640 ELSE 550
620 CALL SOUND(60,-7,20)
630 GOTO 590
640 END x*

The CALL SOUND on line 570 is the heel contacting the
floor, followed by the sole contact on line 580. The CALL
SOUND online 590 is the delay between steps. Lines 550,
560, and620 adda shuffle about once every 4steps to make
the footsteps sound a little more natural. Changing the noise
type online 580 from - 7to - 5.will make the shoes squeak.

The sound ofa sword fight can be re-created by recogniz
ing that the sword blade is a resonator like the door chimes,
except that instead of being essentially free, it is clamped
at the handle—thus creating overtones at different ratios
than the chime bars. Also, the amplitude decays faster, since
the collision of the two blades would have a dampening
effect.

Copyright © 1983 Emerald Valley Publishing Co.

-. V

650 REM SWORD FIGHT

660 N=l

670 FOR A = 0 TO 30 STEP 15
680 CALL SOUND(-99,1000,A,3250,A,6750,A)
690 NEXT A

700 FOR D= 1 TO RND*200

710 NEXT D

720N = N+1

730 IF N = 30 THEN 740 ELSE 670
740 END

Lines 700 and 710 add a random delay between sword
clashes.

For the final example, let us try to simulate the sound
of an internal combustion engine starting, accelerating, and
then decelerating to a stop.

750 REM ENGINE

760 FOR N = 1 TO 8
770 CALL SOUND(60,220,8,-5,0)
780 CALL SOUND(60,220,8,-5,5)
790 NEXT N
800 CALL SOUND(80,220,8,-5,0)
810 FOR F= 1000 TO 5000 STEP 20
820 CALL SOUND(- 99,111,30,111,30,F,30, - 8,0)
830 NEXT F
840 FOR F = 4000 TO 800 STEP -50
850 CALL SOUND(-99,111,30,111,30,F,30,-8,0)
860 NEXT F

870 END

Lines 760 through 800 simulate an electric starter motor.
The acceleratingand decelerating engine sound is made by
sweeping noise - 8 up and down in a FOR- NEXT loop.

Copyright © 1983 Emerald Valley Publishing Co.

Now that you're convinced that your computer can pro
duce a wide variety of sounds, you are probably wonder
ing how one uses these sounds. If you are an adventure game
programmer, suppose that the player is confronted with a
door with a knocker and a bell button. Wouldn't it be more

interesting if the player heard the bell upon pressing the bell
button—before getting the usual textual message? Or if you
are dynamically simulating a race car, you could use line
820 in the engine sound example in a CALL KEY loop
where the F parameter would depend on the accelerator
pedal setting. The duration in the CALL SOUND would
have to be increased if you are updating other parameters
in the loop for the sound to be continuous.

One nice thing about sounds is that the listener will make
up the visual image that fits, which is why the radio pro
grams of years past were so effective. The bee sound, for
instance, immediately conveys the situation, whereas a
screenful of color graphics would be hard-pressed to evoke
the same feeling. Thus, for the programmer of interactive
fiction, sound should be a very effective way to make a story
come alive. If you could collect enough sounds, you could
even write a sound effects program where a given sound
could be accessed on cue for stage plays.

Hopefully, this article has openedyour ears to the sound-
making capabilities of your TI-99/4A
and has given you some insight into
how to create and use your own fllP^ iA
sounds. So sound off!—and JS!? Qv
have fun doing it. f|f oQ

The Best of 99'er Volume 1 47

FUN
&

GAMES

Psst! I've got a little secret for you, gang: Designing
and programmingyour own game can be just as much
fun as playing games produced by others. And best

of all, it's really not as hard as you might think. . . .

Pick an Idea
You can have a maze, a game using dice, a card game,

a memory-type game, a board game, a popular sport, a
game involving logic, a game using skills or reaction time,
some form of hide-and-seek, an adventure, or a myriad of
space and shooting games. Still don't have a game plan?
Walk through a video arcade to get some ideas.

Use the Computer
Now this sounds silly, doesn't it, since we're talking about

writingcomputer games. Let me explain. If you write a game
of tic-tac-toe or Othello for two players, you're really only
utilizing graphics—the game could just as well be played
on paper or on the board. But, if you write the game for
one person against the computer, then you are using the
computer to help go through a logic process. Another use
of the computer is doing anything with random numbers.

Write Your Program
Of course, you may just sit at the console and begin pro

gramming your game and hope you can remember all the
logic.Some programmers like to draw a flowchart. On logic
games you may like "tree diagrams"—i.e., if the player does
one option you branch one way; then depending on the next
choice, you branch again and so forth. Other programmers
prefer a structured approach—each process of the game is
in a subroutine and the main program calls the subroutines
in order. This type of program is easy to evaluate and easier
for other programmers to follow than a program that has
GOTO statements all over the place.

Include Instructions

Many players are anxious to play the game and won't
read anything that comes with the game program, so it is
wise to include simple instructions within your program.
Players who are playing the game a second time, however,
won't want instructions, so you must try to satisfy everyone.
One method is to print the instructions on one screen with
"PRESS ANY KEY TO START" at the bottom of the
screen. The player can then look at the screen as long as
he wants or immediately press any key to start the game.

100 PRINT "PRESS ARROW KEYS TO GO"
110 PRINT "LEFT OR RIGHT."

48 The Best of 99'er Volume 1

sfflsssss^^

120 PRINT "PRESS 'F' TO SHOOT."

130 PRINT :::"PRESS ANY KEY TO START."

140 CALL KEY(0,K,S)
150 IF S<1 THEN 140

160 Program continues for game.

Another method is to ask the player if he needs instructions:

100 PRINT "NEED INSTRUCTIONS? (Y/N)"
110 CALL KEY(0,K,S)
120 IF K = 78 THEN 150

130 IF K<>89 THEN 110

140 Program prints instructions.
150 Program continues for game.

If the player presses Y, instructions will be printed; if he
presses N, the game starts. Any other key pressed is ignored.

Be sure the instructions are as clear and concise as possi
ble. Use enough blank lines to make the instructions easy
to read. Make sure words are not divided at the ends of
lines, be sure to spell correctly, and use correct grammar.

"Dummy-Proof" Your Game
A nicer way of saying this is make your program "user-

friendly." This means consider all possibilities of input. You
never know what some other player will try to do. If he has
to answer "yes" or "no," can he just press Y or N, or does
he need to spell out and ENTER the answer? Pressing one
key makes for lesschance of error than using INPUT. What
if the game asks for a number, and a letteris pressed? What
if the game asks for a choice of 1 through 4, and the number
7 is pressed? If the player needs to use the arrow keys, is
there a default value if he hits the wrong key, or is that key
ignored—or worse yet, does the program crash?

Check for Speed and Captivation
You don't want the player to fall asleep between moves.

If you have moving objects in your game, he wants them
to be as fast as possible. The main hints here are to make
the moving object just one character and to minimize the
logic between moves. Remember, the more objects you have
to move, the longer it will take. And if you don't need to
worry about scrolling (lines moving up the screen), PRINT-
ing characters is faster than CALL HCHAR or VCHAR.

Look Through your Listing
If you use the same group of lines several times, use a

GOSUB and place the subroutine near the beginning of the
program. For example, a subroutine to print a message M$
on Row X starting in Column 1 is

180 FOR J= 1 TO LEN(M$)
190 CALL HCHAR(X, J,ASC(SEG(M$(J,1)))
200 NEXT J
210 RETURN

Copyright © 1983 Emerald Valley Publishing Co.

Within the program, the message and row numbers are
defined, then the subroutine called:

1740 M$ = "BLUE WINS THIS TIME."
1750 X = 22

1760 GOSUB 180

Check for unnecessary statements. I have seen a few
listings that contain some coding that can never be executed
or is superfluous, or a subroutine that is never called. Other
cases may occur because of editing. For example:

900 GOTO 920

910X = 25

920 GOTO 980

Or:

900 GOTO 910

910Z = Z + 1

Or:

900 IF X = A THEN 700 ELSE 910

910 GOTO 980

Test Your Game
Again, check all possibilities. If you say your spaceship

can move to the right and to the left, be sure to check both
directions. Make sure positive and negative numbers work
correctly in your calculations (you may want to use the AB-
Solute function). Check the scoring to see if it is adding cor
rectly. Test the possibility of hitting the wrong key. Test
moving objects at the edges of the screen.

Specific Game Coding

Random Numbers
Be sure to use the statement RANDOMIZE before us

ing RND so each game played willbe different. If random
numbers are computed in several different places, consider
using RANDOMIZE before each RND to ensure total ran
domization throughout the game. Sometimes a single RAN
DOMIZE statement at the beginning of the program does
not work.

A simulation of rolling the dice would need a random
number between 1 and 6:

100 RANDOMIZE

110D1 = INT(RND*6)+1

In a space program or skill-type game you may want to
placeobstacles at random positions. If you haveseveral ob
jects, DEFine a few functions at the beginning of the pro
gram, so they can be used more easily in the coding later:

100 DEF RX = INT(RND*24) + 1
110 DEF RY = INT (RND*29) + 2
120 CALL CLEAR

130 RANDOMIZE

140 FOR 1=1 TO 5
150 CALL HCHAR(RX,RY,65)
160 NEXT I

170 CALL VCHAR (RX,RY,66)
180 STOP

The DEFinition statements must be numbered lower than
the statements in which the functions are used. Lines 140-170
place five A's and one B in random X and Y positions for
X from 1 to 24 and Y from 2 to 30.

Copyright © 1983 Emerald Valley Publishing Co.

Another use of random numbers is choosing a random
message or procedure. For example,

500 PRINT A$(INT(RND*9) + 1)

chooses one of nine messages previously stored in the A$
array. For random subroutines, the coding would be

510 ON INT(RND*5)+ 1 GOSUB 220,250,300,350,400

Games using a deck of cards may use an array to keep
track of which cards are dealt. You may use C$(52) for the
52 cards or a two-dimensional array C(13,4) where the first
parameter is the number chosen and the second is the suit.
An example for choosing ten cards follows. The values in
the card array are initially zero. As a card is chosen, the
corresponding C element is set equal to 1. In the following
example I printed the card values, but you really should use
the Tl graphics to draw the cards.

FO

c

c

(
A A

N,K

D

T

T

T

T

T

N

DK>iM
1

R

E

3
E

NIG
,Q

AMO

HO

EN

One more use of RND is for choosing random sounds.
The CALL SOUND statement requires a frequency between
110 and 44733. Of course, most people cannot hear frequen
cies above 15,000; however, your dog may enjoy the higher
frequencies. This statement plays a sound frequency bet
ween 110 and 2109:

300 CALL SOUND (200,INT(RND*2000) +110,0)

You may wish to use random sounds while you're placing
objects randomly on the screen.

Sound and Noise
A lot of the fun in programming games is choosing the

sound effects to fit your game. The following is a program
that demonstrates the "noises" available on the TI-99/4A:

100 REM NOISE

110FORI=-1 to -8 STEP -1
120 CALL SOUND(4000,I,0)
130 CALL CLEAR

140 CALL SCREEN(ABS(I) + 2)
150 PRINT "NOISE NUMBER";I
160 NEXT I

170 GOTO 110

180 STOP

Listen to these noises and choose what you need for your
game. You can make crashing noises, explosions, airplane

The Best of 99'er Volume 1 49

or car motors, splats, bounces, rocket boosters, missile fire,
or whatever you need. The noises may be varied by adding
another set of sound frequencies and loudnesses.

Time

Since the 99/4A does not have an accessible real-time
clock, time may be simulated by placing a counter in the
CALL KEY routine or another loop that isexecutedregular
ly. The following example shows a counter as you move
the asterisk up and down with the up and down arrows (E
and X) keys. After a time of 100, the number of moves you
have made is printed. You will notice that if you press a
key, the counter moves more slowlythan if no key is pressed,
so the counter is not as even as a metronome but good
enough for games.

R

c

x

c

T

C

T

F

C

ME

ME

LL

ME

R

G|0
FI

D

C

X

I

X

I

X

CA

MO

GO

R

MO

50

M

n|g
R

TO

;MO

Following is another example of a way to time a
process—in this case, typing your name.

L

ME

TO

IME
H

T

A

IM

AME

IM

An accurate way to delay for a specific length of time
in your program is to use CALL SOUND for the number
of milliseconds you need. Use 30 for the volume level and
a very high frequency if you don't want to hear anything.
While the CALL SOUND statement is beingexecuted you
may also be doing graphics of calculations. To end your
timing device you will need another sound statement with
a duration of 1. The following example illustrates how the
CALL SOUND statements may be used for a rocket
countdown.

100 FOR I = 10 TO 1 STEP - 1

110 CALL SOUND (1000,44000,30)

50 The Best of 99'er Volume 1

120 PRINT I

130 NEXT I

140 CALL SOUND (1,44000,30)
150 Program continues for rocket blastoff.

Arrow Keys
In games where you move a character up, down, left, or

right, you may wishto have the player press the arrow keys.
The arrows are on the keys E, D, X, and S. A CALL KEY
statement is used to receivethe player's input; then the pro
gram branches, depending on which arrow is pressed. Any
other key pressedshould be ignored so your program doesn't
crash with bad values.

The following routine willdraw a trail of asterisks as you
press the arrow keys. Remember, you must consider the
edges of the screen or you will get a "BAD VALUE"
message. Lines270-340 test for the edgevaluesand will keep
the asterisk at the edge position.

Y

CA

GO

TO

L

2

5

L

L

K

X

TlO
K

Y +

TO

K

X +

TO

K

MA

HA

Remember thatthere aremany ways ofcoding toget the
same result, andtheexamples presented here arejustthat—
examples. The following routine illustrates another way to
use the arrow keys to move a character. This time the
previous character isdeleted. Also, lines 330-410 will make
the asterisk scroll to the other side of the screen instead of
staying at the edge.

D

GlO

EM

AL

= 1

X =

MO

Copyright© 1983 Emerald Valley Publishing Co.

D

C

X

I

X

I

X

Y

I

Y:

I

Y =

CA

GO

+

Y

12

Y

1

LL

TO

A more compact approach to automatic scrolling is to
replace lines 330-360 and 380-410 with these two lines:

330 X = INT(24*((X- l)/24-INT((X- l)/24))) +1
380 Y = INT(32*((Y- l)/32-INT((Y- l)/32)))+ 1

Split Keyboard
A split keyboard is used whentwo competing players or

teams are interacting with moving objects on the screen. In
stead of CALL KEY(0, KEY, STATUS), you will need to
recieve input with CALL KEY (1, KEY1, STATUS1) and
CALL KEY(2, KEY2, STATUS2). You may wish to use
a Video Games 1 Command Cartridge overlay for the ar
row keys. You'll notice the arrow keys for the right side
of the keyboard are keys I, J, K, and M. The key codes
returned in CALL KEY are 5 for up, 2 for left, 3 for right,
and 0 for down for both sides of the split keyboard. Note:
There is a slight problem in testing for zero on the 99/4A
console, so use logic such as IF KEY2 + 1<> 1 instead
of IF KEY2 <>0. It also seems wise to avoid using SHIFT,
ENTER, G, B, slash, semi-colon, comma, periods, and the
space bar for key input (such as firing a missile) because
the key codes for these keysare different on the 99/4 and
99/4A. You willwant your game to work on both consoles
so you can share with others.

An example of the logic for two players and a split key
board is shown in lines 910-1510 from the game Maze Race
in the section "Computer Gaming."

Joysticks
Enter the sampleprogramsthat comewithyourTl Wired

Remote Controllers to get an idea how to program move
ment with one or two joysticks. Keep in mind that CALL
JOYST (KU, X, Y) returns X and Y values of 0 and plus
or minus 4, depending on the position of the lever. By the
way, don't get these X and Y values confused with X- and
Y-coordinate values for HCHAR and VCHAR.

Followingis a sample program that allowsthe player to
move the asterisk with either the arrow keys or a joystick.
Line 150 is a CALL KEY statement. If no key on the
keyboard is pressed, all the arrow key logic is skipped and
CALL JOYST (line 330) is executed. If a key has been
pressed, then the joystick logic statements (lines 330-350)
are skipped. (Remember: ALPHA LOCK up for joysticks,
down for arrow keys.)

Copyright © 1983 EmeraldValley Publishing Co.

EM 10

Detecting a Crash
Probably the most common way of determining if your

moving object hit some obstacle in position X, Y is by us
ing CALL GCHAR(X ,Y ,C). The C value returned is the
character number occupying positon X, Y on the screen.
For example, you may then test if C = 32 (space); if so, the
programcould continue. But if C = 96 (one type of object),
the program wouldbranch one way, and if C = 99 (another
object) the program would branch another way—with the
appropriate sounds and graphics.

Another method of determining the character in a cer
tain position is to have the screenpositionsin an array and
have each array element contain information about the
character in that position. For example, you may have an
arrayA(24,32) for the 24 rows and 32columns of the screen.
Each element of A could be zero for a space and 1 for a
block in a maze. Your testing statement would look like

200 IF A(X,Y)= 1 THEN 240

This means if the position X ,Y is a block, then branch to
line 240where a crashing noise is made and appropriate ac
tion takes place.Note that by usingOPTION BASE 1, you
will eliminate Row 0 and Column 0 and save memory space.

Dolt!
I've presented some fundamental hints and ideas for pro

gramming; now it's your turn to put on your thinking cap,
turn on the computer, and have fun writing your own
games!

The Best of 99'er Volume 1 51

CHUCK
-A-

LUCK
HOW PROS PROGRAM

PART 1: "A bad beginning makes a bad ending"

Have you ever LISTed a program that you bought,
and after looking at the listingthought, "That's not
so hard. . ."?

Actually, you're quite correct in believing that writing a
good program is not really so difficult. But when begin
ning programmers sit down to translate this belief into a
finished program, many wind up confused and frustrated.
This can most often be attributed to their accompanying
belief that writing a program isjusta matter of sitting down
at a keyboard and banging away at it—a procedure that
is destined to fail.

To explain an alternate approach—one thatallexperienced
programmers use—I'll list the sequence of events that I
go through whenever I want to write a program.

First, I sit down and decide whatthe program isgoing
to do. If it's a game, I write down all the rules (even if
I'm making the game up). If it's a business-oriented pro
gram, I decide what features it has to have—i.e., sorting,
saving data, or printer output. Without this initial plan
ning, I wouldn't have a goal in mind when I reached
subsequent stages.

Second, I design the program. A design isa planshow
ingthe functions (the "whats") that a programcontains.
For example, a program that plays the game of Chuck-
A-Luck would contain the following functions: (1) ex
plaining the rules, (2) rolling dice, (3)accepting bets, (4)
paying off (or collecting) money, and (5) checking for
the final win/loss condition. (See Figure 1 for the rules
of the Chuck-A-Luck game that I'll be using as an ex
ample.) I don't figure out how I'll do these things at this
time; I just figure out what the program has to do.

Third, I group together any "whats" that I feel are
different parts of the same top-level module or function.
For example, giving the rules, generating the dice
characters, and getting player names are all part of in
itialization; so at first I put themtogetherunderthe top-
levelfunction name of START-UP. Now, I'll write these
functions down in a list. For this simple game of Chuck-
A-Luck, my list of top-level modules looks like this:
START-UP, DICE-ROLLS, and END-GAME.

Next, I look closely at each function (or module) and
list everything I need to do in each of these modules. For

52 The Best of 99'er Volume 1

example, the START-UP function will also have to in
clude things like DIMensioning data, asking if rules are
needed, asking the number of players, and initializing
data fields. The DICE-ROLLS module will have to take
bets for each roll, roll the dice (and display them), decide
the winners and losers, and recompute new cash balances
for each player. The END-GAME routine will have to
print an appropriate message after all players go broke
or a winner is determined, ask if any player wants to try
again, and restart the game.

Notice that all I have done so far is write down the
"whats" of the program. 1 haven't looked at the "hows"
yet. The technique I have been using is called top-down
design and consists of breaking a problem or program
into its component modules. These new modules are
themselves broken down into evensmaller ones until you
finally arrive at reasonably sized, easily codable low-level
modules.

Sometimes, as you break modules into smaller and
smaller routines, you may find at the lowest levels that
some modules are duplicated! That means that the same
module can belong to (or be used by) more than one
higher level module. This kind of routine is called a
subroutine. A good example of a subroutine that you
would code in Tl BASIC would be a routine to display
messages on the screen using CALL HCHAR. It would

Figure 1.

1. Each player starts with $500.
2. Each player bets an amount of money from $10 to $50

on a dice value from one to six.
3. Three dice are rolled.
4. If no die has a value equal to the value selected by a

player, he loses his bet.
5. If one die has a value equal to the value selected by a

player, that player receives an amount equal to the
amount that he bet.

6. If two dice have that value, the player receives twice
the amount he bet.

7. If three dice have that value, the player receives three
times the amount he bet.

8. A player who goes bankrupt is out of the game.
9. The game ends when only one player remains. The re

maining player is the winner.
10. If all the remianing players go bankrupt at the same

time, there is no winner.

CHUCK-A-LUCK Rules

Copyright © 1983 Emerald Valley Publishing Co.

be called by other routines in your program (using the
GOSUB statement) whenever they wanted a message
displayed on the screen.

But when do we stop designing and actually start
writing the program? There's a different answer for each
program and programmer. The idea here is to stop at a
point where you feel that you can picture in your mind
what the code should look like. For advanced program
mers, this may mean that there are fewer modules in a
design, and each module will have a lot of lines of code
in it. For beginners, I would recommend stopping when
each module is self-explanatory to you—usually this re
quires about 10-20 lines of BASIC code.

As I am doing my design, I keep track of the modules
by drawing a structured design chart which shows which
lower-level modules belong to (are to be part of) each top-
level module. After going over all of my top-level
modules, my structured design looks like Figure 2, below.
Figure 2 Structured d«itnfor| chuck-a-luck |

| START-UP I

J -I ' -•
DICE.ROLLS |EMD.OAKt|

T- 1
OIKENSION |[CREATE DICE || RULES |[PLAYERS| |GET BETS 11 DICE ROIL 11PAV/COLUCT| ASK FOR RESTARTl

ASK IF NHDtO DISPLAY RULES ASK AMOUNT EDIT AMOUNT DISPLAY WINNER

ASK NUMBER GET NAME START BALANCEJ [
X

ROLLOICE I DISPLAY

Take a look at the START-UP module. It includes a
low-level function called GET NAME. Now look at
DICE-ROLLS. It includes a low-level module called
EDIT AMOUNT. These routines demonstrate two rules
I always follow when I design programs: First, whenever
possible, I try to make the program "user-friendly." This
includes things like displaying understandable error
messages (instead of a cryptic "NOT POSSIBLE"), us
ing player names (instead of numbers), and giving
prompts that explain what action is required. Too many
people write programs that call you PLAYER #1 and tell
you to do something by saying things like "CODE?".
It takes only a little longer to write a program that says
"OK, MIKE, HOW MUCH WILL YOU BET THIS
TIME?" And the results are well worth the effort.

Of course, in a business-oriented program, you don't
usually ask for people's names. But such a program can
become user-friendly just by judicious use of self-
explanatory prompts and error messages. Of course, be
ing user-friendly makes for longer and larger programs.
I personally don't worry about how much extra memory
it requires at first. After all, I can always remove those
wonderful messages and replace them with a "NOT
POSSIBLE" message if I have to!

By the way. if you stop to think about it, the Tl BASIC
and Extended BASIC that you work with is very user-
friendly. It does things like prompt you for cassette tape
I/O and give you meaningful error messages when you
are in EDIT or COMMAND mode.

The second rule that I always follow is that any data
that is input into a program must be fully edited—i.e.,
it must be checked to make sure it is the proper type and
in the proper form. Always! Always! Always! I said it
three times because this is one of the major differences
between a professional program (which can be used by
anyone without "blowing up"—especially when en
countering some strange input from an unfamiliar user)

Copyright © 1983 Emerald Valley Publishing Co.

and a program which is usable only by the person who
wrote it.

Some of the rules that I always like to follow include:
1. Make sure that numeric data really is numeric (of
course this is something the Tl BASIC does for you
automatically).
2. Make sure that integers really are integers (and not
decimals or scientific notation).
3. Make sure that the data itself is realistic (always test
for maximums and minimums—e.g., making sure
nobody bets more money than he has!).

I'm now finished with my design as far as what
modules are needed. The fifth step in creating a program
is to decide what information I need to communicate be
tween these modules. The information that is passed from
one module to another is called a variable. And deciding
on what variables are needed before you sit down to write
program code is just as important as deciding what
modules you need. If you make a mistake in your design
variables, the last phase of programming (called debug
ging) will take twice as long as it needs to be. This is
because whenever you realize that you need a new
variable, you have to make coding changes in modules
(that have already been coded) in order to handle them.
And changing code is what destroys well-written
programs!

Programs will also need variables that are used only
within a module (i.e., things like loop counters), but you
don't have to worry about them during your design. As
long as a variable that is only used within a module has
a unique name (not used again in another module), then
no problems should arise when debugging. Of course, if
the variable name will be used again in another module
(which is a bad idea unless memory is, tight), then it is
just as important as a regular variable's.

The variables that I need to communicate between my
Chuck-A-Luck modules are

The number of players
The player names
The cash each player has on hand
The amount bet by each player
The dice value on which each player bets
The value of each die

Choosing the names for these variables is equally im
portant. A poorly chosen name is asking for trouble when
you get down to writing and debugging your code. A
good variable name has the following three attributes:
It is long enough to say what it is and what it's for.
It is short enough so as not to slow down the program.
It does not look too similar to any other variable.

For the Chuck-A-Luck game, I'll use NO_PLAYERS,
PLAYER_NAME, PLAYER_CASH, PLAYER_
BET, PLAYER_DICE, and DICE_VALUE as my
variable names. And, I won't re-use variables that are
used within a module.

Now my design is finally complete, and I'm ready to
start coding. I have done everything that I could to in
sure that the program will do its job and am ready for
the sixth step in creating a good program—planning the
code. As we have just learned, the first rule of good pro
gramming is PLAN, PLAN, PLAN!

The Best of 99'er Volume 1 53

CHUCK-A-LUCK PART 2; "Make no little plans. ft

Building a good program is a lot like building a house.
First, you need a good design. Then, you need good
tools, good materials, and good work habits to use

them all properly. We have discussed a way to develop a
good design by using a techinque commmonly called struc
tured design or top-down design. Now we'll talk a little
about how to get the necessary tools and materials and
cultivate the habits that we need.

After completingour designeffort, you mightexpect the
next step to be coding the program. But this, in fact, is not
the case. Just having a good design doesn't mean that the
code in your program will be correct or that you will write
the bestcode for the job. In every task, thereare two things
to remember: The first is that you want to do the rightjob.
The second is that you want to do the job right. To do the
rightjob meansthat your code has to follow the design that
you came up with. To do the job right, you have to create
the bestcode for the job. And likeanythingelse, theseboth
require planning. That's right! We still have some plan
ning to do. Only this time, we must plan our code.

Thefirst thing to do is refresh yourmemory on thedesign
we came up with to play Chuck-a-Luck. Notice how we
developed the modules that tell us what to do, but not how
to do it. The purpose of planning our code is to figure out
how we want to do it in the best possible way. At the same
time, wewant the"hows" that we develop to beeasily coded
and debugged, to execute quickly, and to be easily
modifiable so that we can make future improvements.
Starting UP with START-UP

Let's start with the module called START-UP. One of
its top-level components was DIMENSION. That module
is needed to set up the dimensioning of any arrays needed
in the program. Although it is not absolutely necessary to
codethe DIMension statementat the verybeginning of your
program, 1 have found that it is always best to put it right
up front. So, when I plan my code, the DIMENSION
module will be my very first line of code. Another good
coding habit to get into is to start your programs at line
100, which leaves you room in the front of your program
incase you have to add an extrastatement to start off your
program. I will reserve lines 100-140 for any dimensioning
of data that I will need. But before I go on withthe remain
ing design of the code, I think that we had better take time
out to talk about the DIM statement and what it is used for.

When 1was doing the design, I knew from my original
plan that the programwasgoing to haveto handle 4 players.
That meant that every time I did something concerning a
player, I would have to know which player I was dealing
with. For example, if each player was going to make a bet
and win or lose, the program would keep track of these
things (called variables) for each player. Thereare two ways
of doing this. The first way is to give a different name to
each one of these variables for each player. That is, I could
keep track of each player's bet by havingone variable called
BET_1 and another variable called BET_2, and so on.
This way, I would know at a glance what was contained
insidethe variable. The only problem with this way of do
ing things is that the program needsseparate code for each
player. This means that you would have to key in more lines
of code. It means more chances for data entry errors. It
also means the possibility that you could accidentallywrite

54 The Best of 99'er Volume 1

the code for each player a little bit differently, which in turn
means that you would need to debug your code for each
player.

Suppose, however, that you did not need to give each
player a different variable name. Suppose that you could
just call the variable by the single name of BET. Then the
code for each player would be the same. As a matter of
fact, you would have to code the logic only once, because
it could be re-used for each player. As you can see, this
would be a great improvement. You still have more than
one player so you would have to be able to say which
player's BET you wanted to deal with. Well, the way that
the BASIC language handles this is to allow you to set up
an array called BET. This array has only one name but con
tains multiple slots. Imagine an apartment building called
BET containing only one floor with a lot of rooms in it.
The room numbers start with 0 and increment by one. The
computer can put the betting information for player 1 into
room number 1, the information for player number 2 into
room number 2, and so on. Now, in order to look at the
bet of player number 3, all we have to do is tell the com
puter to look at room number 3 of BET. We do this by
saying BET(3). The value 3 is called a subscript of the ar
ray called BET.

This is an improvement over saying BET 3 but not
much. But if the computer can be told which subscript
(room number) to use via another variable, then you can
realize a great improvement. Suppose all you had to do was
tell the computer to look at something called X, and that
X had the value of the subscript in it. Now you just put
the room number inside X and tell the computer to look
at BET(X). How do you put the room number into X? The
same way you put any number inside any variable. You can
say things like X = 3 or X = A + B or set X to a range of
values in a FOR-NEXT loop. The important thing is that
you do not have to know in advance what is in X before
you execute the code. By the way, 1 used the name X just
as an example of my subscript name. We could have called
it PLAYER_NUMBER, or I, or any other legal variable
name. Also, just because a variable is being used as a
subscript in one part of your program, it doesn't mean that
the variablecan only be used as a subscript. Any variable
can be used as a subscript. It is also possible for two (or
more) variables to be used as subscripts for the very same
array, depending on what you are trying to do.
"Roomy" Arrays in Tl BASIC

Now, two questions should be running through your
head. The first question should be, "How many rooms can
Tl BASIC build for a given array?" The answer is that it
depends on what (if anything) you tell it to do. If you don't
tellit anything, it willautomatically set aside 8 rooms (slots)
for any array it may meet in your code. It will do this the
first time it sees the array. If you need more than 8, you
may not want to waste space on unused slots. In either
case—less than 8 or more than 8 with no waste space—you
tell it how many slots you need by using the DIM statement.

The second question should be, "What about room 0?"
In my game, it is always empty. In some programs, however,
room 0 may very well be used. If room 0 is not going to
be used at all, you can tell this to Tl BASIC so that it won't
waste computer memory with a room 0. This is done by

Copyright © 1983 Emerald Valley Publishing Co.

putting a statement with OPTION BASE 1 in front of the
DIM statement.

Of course, just as an apartment building can have rooms
on more than one floor, an array can have more than one
levelof slots. But since we don't need multiple levels in our
program, we'll leave a discussion of this to a later time. For
now, let's look at our variable list and see what variables
are going to be arrays so that we will put them in our DIM
statement. We will need to keep track of information for
1 to 4 players. In addition, there will be 3 dice and each
die will have a value. Look at line 100, of the Tl BASIC
listing that starts on page 59, to see how I coded the DIM
statement for these arrays. Notice that you cannot use a "-"
as part of a name in Tl BASIC. You can make variable
names with several words in them by using the underline
character (" ") to connect the words. For instance, I coded
the array as DICE VALUE in this program.
Leaving Out the Difficult is Easier

We are not ready to begin planning the code for the rest
of the START-UP module. Because (by definition) this code
will only be used once for each game, I like to keep it up
far away from the main logic of my program. For this
reason, I usually begin coding these one-shot modules at
line number 20000 to give myself a lot of leeway in case
I leave out a line of code or have to add another line during
debugging. I always increment my statement numbers by
10 or more. In addition, I also make sure that there are plen
ty of unused statement numbers between the end of one
module and the start of another.

The first module to be coded in START-UP is responsi
ble for creating the graphics for the dice. Naturally, you
now expect me to give you the code. But 1 won't! You see,
it's not really important that I do this right away; I can
always create the dice later after I am sure that the rest of
the program is working correctly. This is one of the impor
tant advantanges of designing and planning your program.

When you plan your code, don't rush right into figuring
out how the code in all your modules will look. First, decide
what modules or parts of modules can be left out without
affecting the program logic. For example, the code to display
instructions can be added as the very last part of your pro
gramming effort. A program usually will contain whole
modules requiring complex code that can be replaced by easy
code the first time through. After you are sure that the pro
gram as a whole is working correctly, you can gradually
replace the easy code with the complex code. Why? Because
it's easier to find your mistakes in an easy program! So an
important "rule of thumb" is to always start out with an
easy version of your program. Then, as you add the dif
ficult pieces, you at least know where to look if you hit a
snag in your debugging.

So, if I leave out all the graphics for now, what can I
substitute in their place? I can simply display the number
of each die instead of graphically showing the dice
themselves. After the program is running, I will go back
and add the graphics as well as any sound routines. Look
at what I am trying to accomplish this way:

1. By leaving out unnecessary code, I can get the pro
gram up and running faster. This means that I can begin
debugging my program earlier. This in turn means easier
debugging because there is less code to go through.

2. By using easy code in place of complex code in some
modules, I make it easier to debug the "guts" of my pro

Copyright © 1983 Emerald Vatley Publishing Co.

gram. After knowing that the program runs correctly, I can
begin replacing the easy code with the hard parts a little at
a time. Then I will test only one or two new parts at a time.
This means easier debugging because any problems will
probably be due to the new code.

3. After ensuring that the main portions are running cor
rectly, I can "fool around" with the hard portions without
worrying that I will hurt the program's logic. For example,
after 1 know that the program is running correctly by
displaying the dice numbers, I can now experiment with how
I want the dice themselves to be displayed. I can even come
up with two versions—one for Tl BASIC and a different
one for Extended BASIC using sprites! 1 won't have to
worry that adding different versions of this code will destroy
my program.

4. By getting a version up early, I can see if my program
is worth continuing. After seeing it in action, I may decide
that it just isn't worth the effort to continue with the coding.

So for right now, I won't code the CREATE DICE
routine but 1 will set aside lines 20000-20500 for the code

later. The next module is called RULES and will be respon
sible for giving the rules when asked. One part asks if the
rules are wanted; another displays them. Like the CREATE
DICE module, the entire code for this module isn't needed
now. But if I do code in the part asking if the rules are
wanted, I can test this part of the logic. If the program you
are writing is large enough, you may decide to leave both
of these parts out on your very first try.

Since I have decided to code part of this module, I will
lay it out in lines 21000-22000. The first thing I want to do
is clear the screen. This will attract the players' attention
and remove any "clutter" that may be on the screen from
any previous program. It's always a good idea to start out
your program with a CALL CLEAR statement. Notice that
in my code in lines 21010-21050, I am asking the players
for information and telling them in what form I expect the
answer to be! Too often, a programmer will code his pro
gram so that he is expecting a particular answer, but never
tell the person using his program what form the answer
should be in. There is nothing more frustrating to a user
than trying to figure out what the person who coded the
program means when the program displays a message like
CODE?, and what the valid values of the input are. You
should try to develop the habit of explaining what data you
are looking for and what legal values the program will allow
as part of your code for an INPUT statement.

The next thing the module does is make sure that only
the first character is going to be looked at. This is done by
using the SEG$ function to strip off the rest of AS. One
of my programming "rules of thumb" is to minimize the
chance of a program user entering bad data. If I am only
expecting a Y or N, I want to look at only the first character
of the input. If the wrong answer is given, an appropriate
message isdisplayed and the originalquestion is asked again.
The code to display the message will be eventually located
in lines 21000-21990, but I'll just put h\a REM statement
to show where the code will be added later.

The next module (called PLAYERS in our design) is very
important and easy to code, so 1willcode it in full the first
time out. This is done in lines 22000-22330. Notice that it
prompts the player for the required data in each case, and
edits the input to insure that only valid data gets in. One
of the main differences between a well written program and
a poorly written one is the amount of editing done on in-

The Best of 99'er Volume 1 55

put. The "hows" of an edit for an alphanumeric field should
always includea test for an empty field(called a nullstring).
Tl BASIC allows a null string to be entered in response to
an input statement. This kind of string data can cause a
number of problems in your program, expecially if you want
to display the data on the screen. I always test for an empty
field whenever I INPUT a string variable. That is what I
am doing in line 22140.

It may also be necessary to limit the size of an
alphanumeric field depending on how you want to display
it on the screen. For example, you may want to limit the
size of a player's name so that it fits on the same line as
his cash balance. The best way to handle this is to check
its length (using the LEN function) as part of your edit. If
the player enters a name that is too long, you can tell him
so, and ask that he enter a shortened version of his name.
There is also, however, another way: You may shorten the
field yourself by using the SEG$ function—as I do in line
22250.

When numeric fields are entered into your program, there
are always four things you must edit for. First, you have
to make sure that numeric data was entered. Luckily, Tl
BASIC will do this for you automatically so you don't have
to write any code to test for this. You should get in the habit
of immediately testing your input as follows: (1) check to
make sure it isn't too large, (2) check to make
sure it isn't too small, and (3) especially check to make sure
it is a wholenumber (if that's what you are expecting). Look
at my code in statements 22020-22030 to see what I mean.
Also note that if the answer is illegal, I ask for the item to
be re-entered. If you don't make it obvious that you want
the data entered again, it is possible that the person using
your program may not even know that he or she made a
mistake and get confused on what to enter next.

The main portion of our design is called DICE-ROLLS;
it is responsible for actually playing the game. First, it gets
the bets from each player. Then it rolls the dice. Finally,
it makes the payments to or collects the losings from each
player who is still in the game. Since this code is executed
often, I will place it in front of my program. The three main
components are called GET BETS, DICE ROLL and
PAY/COLLECT. The first two components will be coded
as subroutines called from DICE-ROLLS. Line 210 calls
GET BETS and line 230 calls DICE ROLL. The third
module, PAY/COLLECT, will be coded as part of the
DICE-ROLLS module.

Save the Unimportant for Manana.
Why did I set the modules up this way? The answer to

this question requires a little background in the style of
coding that I have adopted. As you know by now, I have
a number of set methods that 1 follow. One of these rules
of thumb is that if I get a module that I will be expanding
or replacing later, I set it up as a subroutine to be coded
later. I just code in a GOSUB statement and keep going.
If it is a module that has to be coded fully the first time
around, I usually code it right then—unless it looks like
something that is hard to code. In that case, I code in the
GOSUB statement and hold off coding it in until I have
to. I write my programs this way because I never want to
tackle any code that willdestroy my train of thought. After
all, one of the reasons we did a design in the first place was
to make sure that nothing important would be left out. So

56 The Best of 99'er Volume 1

if I keepcoding, I won't get sidetrackedinto worryingabout
the hard parts until I absolutely have to.

Lines 530-560 are used to figure out how many "hits"
a player has after the dice are rolled. Notice that this is done
using two FOR-NEXT loops, one inside the other. The in
side loop in lines 530-560 checks to see if a player bet any
of the dice numbers that came up. The outer loop from
statements 250-760controls which player we are looking at.
For now, I won't code the full CHECK FOR BANKRUPT
CY module. I will instead code a short module (statements
740-750) to check for bankruptcy and STOP the program
if there's a loser. Notice how the use of arrays has made
this code simple to write. Try to imagine what it would look
like if I had to name each variable separately!

The module called END-GAME is also not very impor
tant to the main logic of the program, so I'll ignore it for
now. This means that the only modules I haven't
looked at are GET BETS and DICE ROLL. I coded them
in lines 1200-1900 and 2000-2990 respectively. I am leaving
a lot of room in the DICE ROLL routine because I still
don't know exactly how I am going to do all of it. Oh, I
know how to roll the dice, but I haven't gotten around to
figuring out what the graphic display of the dice and the
designof the screen will look like. . .and until I do, I can't
really figureout all of the "hows" of this module. For now,
I willcode the DISPLAY routine to just show what the dice
are.

In order to simulate rolling the dice, I will have to create
three random numbers between 1and 6. This is done using
the RND function in statement 2110. Remember that RND
is really random only when you start your program with
a RANDOMIZE statement. We will eventually put this in
statement 140.But until I have fullydebugged my program,
I will leave the RANDOMIZE statement out. Without it,
the dice rolls will not be truly random. They will always
follow the samepattern from the start of the program. This
allows me to replaya game exactlythe same wayeach time,
so that if I find a bug and have to correct my code, I can
test the corrected code under the same conditions that caused
the bug in the first place. With the RANDOMIZE state
ment in my program, I may never hit the same conditions
that caused the bugand won't be sure that I made the right
correction.

After coding in these statements, you can find the result
in Listing 1. Let's briefly review just what this program can
and cannot do. First, it does play the game according to
the rules of Chuck-a-Luck. It will handle the bets of up to
4 players. It will keep track of cash held by each playerand
declare a loser. Once I have this program debugged, I then
have to plan what pieces I want to add next. The program
is missing three important features: First, it stops as soon
as one player goes bankrupt and it cannot be restarted
without rerunning the program. Second, it cannot display
the rules. Third, it is boring because it doesn't have any of
the graphics and sound features that the TI-99/4 can add
to a program to make it interesting.

Once I have written enough code to run at least a
"stripped-down" versionof the program, I should turn my
efforts to debugging it. Only after I was reasonably sure
that this version of the program was working properly,
would I begin to add more code. 1 then would add one
module at a time and retest. And that will be the subject
of Chuck-a-Luck, Part 3. mm

Copyright © 1983 Emerald Valley Publishing Co.

CHUCK-A-LUCK PART 3: "I never make misteaks"

Don't laugh. All too often you find programs with
errors as glaring as that in my first sentence. So let's
correct it: I never make mistakes! Now, doesn't that

sound egotistical? Nobody would have the nerve to say it
out loud. But some people who write programs act like they
never make a mistake while programming! The best pro
grammers that I have met not only admit that they make
coding errors, but they have also developed quick and effi
cient ways to find these inevitable mistakes—called bugs by
programmers. As with everything else, we need a good
plan—a "debugging" plan—to catch them.

In the last section, we wrote a large percentage of the code
required to play the full game. As a matter of fact, the only
important module not coded was the graphics routine. So
obviously, it's time to bring on the bugs! WHOA! First we
have to figure out how to test for the various bugs I KNOW
are in there. Before we do this, let's stop and talk about
the different types of bugs found infesting even the best
programs.

The first bug that must be eradicated is the "Baddus Plan-
nus." This bug hits programs that do everything (according
to the design) correctly but don't achieve the desired result
or implement all the rules that you originally laid out. For
example, as soon as I began testing my original code for
Chuck-A-Luck, I hit a situation that I had not planned for
and which was outside the scope of the rules of the game.
In my original list of rules, I said that a player's bet could
be from $10 to $50. As soon as I began debugging my pro
gram, however, I immediately saw a flaw in the whole idea!
If a player bets in anything other than $10 units, he may
eventually wind up with less than $10 in his bankroll. In
that case, he can't make a minimum $10 bet and yet he isn't
bankrupt. When that happens, the player is in limbo and
the whole idea of the game falls apart. A major disaster?
No, not necessarily. You see, when you have a good design,
these kinds of problems can usually be overcome. I could
havechanged the logicto allow a player to bet only multiples
of $10; instead, I just changed the rules so that bets of less
than $10 are allowed. You may have noticed that this change
is already in the code found in the last section.

Note that I am not ashamed to admit this error. Indeed
I expect something of the sort to happen whenever I write
a program. So when I set up my debugging plan, the first
few items on my list are tests of the rules. These items don't
have to be the first things actually tested, but they must be
tested by the time we finish debugging.

The second bug that creeps inside programs is the very
evil "Baddus Designus." This guy shows up when the code
almost does what you want. A sure sign that your program
has this problem is that it doesn't do everything that you
wanted it to. It may mean that you left out some modules
needed to get the program running correctly. It could also
mean that a piece of code needs more information (or
variables) to do its job. In other words, you forgot (or
missed) some facts when you were designing your code. This
kind of bug is uncovered by making sure that each routine
is thoroughly tested and also by ensuring that each routine
is tested using different values in the variables.

The third bug is "Baddus Codus." This means that a
piece of code doesn't work even though it has all the infor

Copyright © 1983 Emerald Valley Publishing Co.

mation it needs. There are a number of reasons for this kind
of bug, but they all boil down to three major ones:

1. You didn't write code that Tl BASIC or Extended
BASIC understands (for example, you typed in misspelled
keywords).

2. You don't really know how a particular feature of
BASIC works. You expect it to do something that it just
won't do. This can hit your code unless you are prepared
to check the reference manual for the usage of BASIC
statements that you are not thoroughly familiar with.

3. You wrote code that doesn't do the job. The code may
be in the wrong sequence (i.e., you are zeroing out a number
just before printing it out on the screen), or a pieceof code
line is missing, or you typed in the wrong variable name,
or even keyed in the wrong variable letter. It all boils down
to normal human error.

Bug Catching
If you are lucky,Tl BASICor ExtendedBASICwill catch

some of your errors for you. But don't rely on it. The only
good way to check for a case of "Baddus Codus" is to look
over your code before running it and then carefully watch
how your program behaves when you run it.

Since a test plan for each program depends on the par
ticular code and therefore is unique, the best that I can do
for you is list some rules to follow when making up your
test plan and debugging your programs.

A. List the program and visually check the code. Review
your code for incorrect spelling of variables, mis
coded statements (i.e., missing double colons between
statements in Extended BASIC), and incorrect CALL
names. Fix any errors you find immediately. After you have
done this, do it again. Then save this copy of your program
to disk or tape before you run the program. This will pro
tect your hard-earned code if your computer decides to
"eat" your program on the very first test. Label this Ver
sion 1.

B. Write down the function of each major module. Under
each module, list the range of valid variables. This should
be done so that when you begin debugging, you can set up
your tests using both the largest and smallest values possi
ble for each module.

C. Set up a test for each major module. Write down what
valuesyou willinput and what you expect the output values
to be. If you don't write it down before you begin your test,
you won't really know if a module is workingcorrectlywhile
you are debugging.

D. Decide whether or not you can use the BREAK com
mand to test the module. In many cases, a routine or module
can be tested locally. By that, I mean that the module uses
only a few variables and that you can set some values for
these variables at the start of the module and BREAK at
the end. Then you can check to make sure that the results
are correct by PRINTing them on the screen when the com
puter stops at the BREAK point. For example, suppose a
routine starts at line 1000 and uses the variables X and Y
as input. The routine is supposed to use these values to
calculate the variable Z using some formula. You can test

The Best of 99'er Volume 1 57

this routine locally by adding the following code in the front
and back:

1000 BREAK (replaces the REM statement at the start
of the routine)

routine

code is

here

1100 BREAK

Now RUN your program and make X and Y whatever
values you want them to be when the program initiallystops
at line 1000. When you type in CON, the machine will ex
ecute your routine and and stop at the second BREAK state
ment at line 1100. When your program stops, type in PRINT
Z so you can look at Z's value. In fact, you may want to
add the following program statement after the second
BREAK: 1110 GOTO 1000. In this way, the routine will
continually repeat so that you can test your code using a
number of input variables without the trouble of having to
execute the rest of the program each time. That's why I call
it a local test. Just make sure you remove that extra GOTO
statement as soon as you finish testing that module!

Of course this technique isn't possible with all routines,
and in some cases, it's not worth the effort. Just keep in
mind that it's one debugging tool that you can use. It also
shows a good reason to get into the habit of writing very
straightforward code. In a routine, you should try to
minimize GOTO statements which take the program out
side the routine. If the routine above had GOTO statements
that jumped outside the routine, it would be almost impossi
ble to test the routine locally, because you could never be
sure that your program would reach statement, 1100.
Although program size limitations may force you to reuse
code, write all your routines with only one entry point and
one exit point if possible.

E. Beginyour tests. Carefully note any time that a routine
does not givea correct result. Don't stop the program (using
the Shift C or FCTN4 keys) each time you notice a pro
blem. Just note the nature of the problem and what the pro
gram was doing at the time. For example, if you notice a
problem in a routine only when the second player is bet
ting, or if the dice roll is a 6, this is very important infor
mation and you should make sure that you write it down.
Wait until you have uncovered a number of problems or
until the computer stops with a BASIC error message.

F. Check each routine where an error occurred. Mental
ly "walk" through the code by doing each instruction or
calculation on a piece of paper. Usually, you will find your
errors this way quite easily. When you locate the error, write
down the line number and the solution butdon't keyit in!
This is because as soon as you change any of the code in
a program statement, BASIC will reset all of the variables
to 0 (for numbers) or empty (for strings). This may make
it impossible to debug some other routine during the same
test run. If you cannot find the bug by walking through the
code, look at any intermediate results that may be available
by PRINTing any intermediate variables. You may be able
to find your mistake this way. This works especially well
in complex code with a lot of intermediate totals.

58 The Best of 99'er Volume 1

G. If you get to a very difficult spot where the code
looks OK, but you are sure it contains an error, don't panic!
Use the BREAK xxx command, where xxx is an actual line
number. This allows you to stop the program every two or
three lines. At every BREAK, PRINT the important
variables, and write them down along the line number of
the BREAK. Then type in another BREAK xxx command,
using a line number two or three lines further along. Type
in CON and wait for the program to stop again. You can
usually narrow the problem down to a single line this way.
If you can't find a misspelling or other typographical er
ror, re-enter the program line very carefully when you have
finished this round of debugging. This will likely fix the er
ror (as long as the code you are entering is good code).

H. When you have gone as far as you can in this test,
fix all the bugs that you have discovered. Check off any
of the tests that have successfully been concluded.

I. Save this new version of your program to disk or tape.
1 usually have a version number in a REM statement in the
front of my programs. I increase this version number every
time I change my code. This allows me to know what ver
sion of the program I have read into the machine when I
begin my tests the next day. If you are saving to cassette
tape, make sure you label the tape with the new version
number. If you are using a disk, you may want to add the
version number as part of the program name (i.e., SAVE
DSK1.CHUCKV3). Making the version number part of
your SAVE routine can save you some agonizing problems.
There is nothing worse than realizing that you are debug
ging the same code that you fixed the day before.

J. As your program runs, review its actions against the
rules and requirements that you originally set up when you
began your plan. See if the results are what you expected.
If they aren't, immediately stop testing and try to figure out
why. You may have to change the rules. You may even have
to redesign part of your program. It isn't worth testing any
more until you fix this kind of problem.

K. If you get an idea to improve your program, write it
down. Don't stop testing to make minor improvements. You
may overlook a major flaw while adding a small feature.
Add all of these improvements at one time, and revise your
test plan to retest the old code as well as test the changes.
After my initial debugging, I began to add some of the

modules that I left out the first time. The first routine I add
ed checked to see if the game was over. This feature was
added in lines 750, 770-890, and 5000-5400. I do this by
checking eachplayer'scash balance. If a playerhasa balance
greater than zero, I increase a counter which tells me how
many playersare still in the game. I also save that player's
number. That way, if only one player is left at the end of
a round, I know who it is. If the game is over, I check to
see if a replay is wanted. I also added the code at
21100-21500 which displayed the rules. I then retested the
program to check both that the new modules worked and
that they did not cause any damage to the old code in the
rest of the program.

In the next section I'll explain how I added the graphics
for both the Tl BASIC and Extended BASIC versions. For
now, you can study and type in the complete Tl BASIC
game listing that follows.

Copyright © 1983 Emerald Valley Publishing Co.

R

R

R

R

D

P

R

D

2

RA

GO

EM

EM

M

M

AY

D

DOMI

EM

EM

60

GO

|W
FO

F

EN

IWI
IE

F

IWI
PR

F

R

R

L

R

F

R

EM

OR

F P

N

ON

T

WI

T

T

E

T

IDO
L

2

T

T

1

R|0|W
0
T

T

R

N +

YOU

BA

LA

LOC

LOO

BA

AME

NOW HA

CA SH

R

GO

F

N

R

[GO

F

Gk>
GO

F

F

N

1
PR

IGO

CH

NO

PU

L

FJOR

TO

'WA

13
NOW
50

LO

4 +

EN

YOU

GO

FO

Copyright © 1983 Emerald Valley Publishing Co.

G|A|M

0
AIGIA

NAME

YO

L

LrOlC

)+WI

)-

NG

DO

GO

GO

DO

N

R

R

C

C

F

I

[Gto

N

F

(
F

F

R

GO TO

0W=

CO L =

M SG

GO

ROW

CO

GO

CO

MS

GOlS
ROW

MSG

GO

CO

M

G

R

GO

0W|
CO

MSG

GO

CO

GO

FO

CH

g|o
i

c

F

H

[GO

S

L

MSG

Y|OU
Y

YlOU

WH

B

4

S

4

|0W+

A

9
rO|Wl+

[AR
EE

t|o
R

ROW + 1

N

A

A

A

D

CiHA

NO

TO

DI

NO

NO

N

5

IN
7
0
N|0
8

IGH

WH

AlMIE
E

NO

U[M

1

D

E

E

AlGA

NAM

LA

YlOU
)

L

PO

WI

CA

OU

The Best of 99'er Volume 1

!R_]

59

1
-

I
d

g
tv

,
g

O
S

c
u

(
9

P
~

.

•fl
I
d

&

o
o

O
Id

0
3

C
O

t
d

t
d

t
d

a
n

t
d

,

C
9

o
o

v
t

P
I

O
Q

_
]

•«
•n

I
d

%
m

<
-d

ig
0

3
<

>
*

O
%

g
C

M
C

M
S

c
c

>
u

«
c

Id
O

<
o

o
<

»
•

C
M

O
S

C
M

«
c

w
o

a
_

)
O

S
O

—
»

t
d

—
C

M
g

>
•

•
g

S
O

c
u

Q
I
d

g
o

g
!
-
•

M
1

«<
o

«
c

P
I
d

s?
&

*-
1

t
d

g
—

g
0

3
•
J

t
d

g
t
-

t
d

M
s

O
tv

.
C

M
X

t
d

«
»

I
d

t
d

ft.
u

•
J

u
O

S
B

•
—

.
_

H
i

•
I
d

SB
>

«

o
-
1

fc»
t
d

t
d

t
-

O
S

c
o

.
.

S
K

•«:
S

B
—

o
~

a
s

-
>

I
d

»
•
—

i
c
o

C
9

(
9

C
O

.
—

,
«<

•
j

U
Q

0
3

t
d

fr
-

I
d

•
&

-•
I
d

C
O

.
O

S
C

D
(
D

O
S

•
-

g
•

C
U

—

I
d

<
,

g
U

>
>

-
r
n

U
n

)
h

£
m

,
>

>
C

M
C

M
>

«
O

S
0

3
A

v
t

O
O

O
O

O
f
-
O

O
O

—
t
o

—
,

t
d

U
B

H
o

a
t
d

H
i

§
-

C
U

«C
«

*
o

«
<

C
M

C
M

<
I
d

I
d

V
O

-
g

U
B

Id
SB

u
I
v
.
O

S
g

•
k
J

•
J

c
o

o
a

>
*

—
t
d

O
O

O
O

T
"
f
«

^
f
«

^
»

^
f
"

f
*

f
-

f
r
-
T

—
f
T

—
T

-
f
f
f

-
e
n

-
f

f
f

r
-
T

-
f
T

-
f
T

-
T

-
f

-

g
o

O
S

E
-

g
C

O
O

C
O

t
d

•tl
O

td
•

•
C

U
g

g
c
u

O
S

S
<

—
C

O

0
3

O
B

t
d

Id
td

•<
•J

t
d

O
S

C
O

>
td

I
d

||
t
d

p
.
J

—
II

m
o

o
o

o
o

o
o

o
t
-

M
m

a
c
t
Q

c
t
n

c
i
a

n
a

n
i
a

o
t
a

n
a

i
c
t
o

e
f
a

a
a

N
M

M
M

H
u

a
w

—
P

SB
t
d

.
[
-
3

3
—

C
9

•«
B

B
SC

—
S

-
g

C
U

w
»

c
n

c
M

i
n

c
o

c
o

c
o

i
n

t
n

i
n

c
M

i
n

c
M

m
c
n

M
C

M
i
n

c
o

o
o

§-»
u

>
0

3
t
-

-
i

_
1

»
d

C
O

t
-

P
t
i

O
S

•
C

9
g

H
H

W
<

.
.

M
,
—

,
—

f
O

f
O

f
O

O
f

o
t
o

i
n

c
d

r
s

r
»

r
»

c
o

c
o

c
o

i
n

c
o

i
n

-
t
o

-
t
n

<
D

r
^

r
»

r>
.

«
o

C
D

C
D

m
m

m
-

«
/»

.
«

*
8

0
i
<

U
t
d

O
td

td
0

3
O

•3*
O

S
•
-)

O
S

>
S

^
^

>
*

C
D

i-
J

(
-

—
>

—
I
d

«
•

>
-

O
S

I
d

f
s

C
M

«
t
d

C
u

t
d

1
<

v
t

—
O

O
O

O
O

O
O

O
f

«
o

I
d

.-
J

h
o

P
C

O
t
d

x
C

td
g

V
A

&
-•

>
«

I
d

g
t
d

£
C

»
*

,
.
.
«

•
«

•
•

w
t
~
o

o
~

o
-
1

I
d

•
J

C
O
-
E

J
K

Z
O

fe
c
o

c
o

•<
(
9

O
K

£
I

O
S

o
a

o
o

o
a

o
a

o
a

o
a

a
a

n
a

a
o

a
a

a
a

a
a

a
a

a
>

(-<
~

S
H

p
SB

O
«C

~
<

C
u

1
-

•—
F

-
o

O
S

O
S

.
J

<
o

O
E

i
»

J
•
*

0
3

«
»

«
^

<
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

W
T

-
Q

S
f
-
g

>
SB

E
->

O
£

S
B

t
d

t
d

c
u

•
J

(
9

ft.
Z

U
n

4
I
f

8
5

-
-
O

O
O

O
O

O
T

-
o

o
o

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
•

«
»

f
•

0
3

i-
l

•
a

c
u

«
«

^
-

•«
«

r
*

•
>

-.
S

-.
—

C
U

C
M

•
^

»
»

>
»

ft,
C

M
|
Q

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
I
d

<
C

O
tv

.
c
o

P
c
o

tl
—

tfl«
«C

"
C

e—
C

M
II

•a:
C

M
0

3
«

-
0

3
«

g
O

f
T

>
f
f
f
O

O
f
>

X
O

c
o

c
o

c
a

c
a

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
a

c
o

c
o

c
o

c
o

c
o

c
a

c
o

c
o

c
o

c
o

g

g
O

O
g

•<
O

r
g

S
H

W
K

H
>

<
Z

H
«

S
M

M
S

i
J
-
2

H
K

h
1

h
)
2

H

t
-
P

l
d

C
U

C
U

«
S

O
g

H
t
J
h

P
C

U
g

I
d

'

O
X

f
-
t
d

0
3

o
a

0
3

R
(
h

(M
P

S
0

<
O

S
1

-
C

U
O

S
->

g
«

g
<

<
0

3
O

S

—
i

O
S

X
o

u
>

•

O
S

O
td

g
i*

l
t
v
.t

v
.0

u
0

3

H
O

S
—

O
O

0
3

•
C

U
-
"

t-
"

<
•

Z
U

.
K

O
-
J
-
-
•
J
W

W
K

C
X

K
C

K
t
i
X

X
X

X
x
x
c
M

II
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

K
C

X
X

a
t
i
X

X
t
d

a
.

t
o

C
U

H
"

a
.

p
O

h
p

q
C

U
td

C
U

lu
g

>
-
>

>
-
i

c
u

O
tv

,
C

U
03

1
•
-
«

•
-
•

C
U

C
5

ft.
-
•
O

u
g

p
S

Q
C

a
O

O
a

o
a

Q
O

O
f
-
i
E

-
i
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

C
S

o
O

c
»

(
9

«
9

C
9

C
9

o
o

s
s
o

(
9

o
O

O
o

o
o

i
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
m

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

C
M

m
4

i
n

C
D

r
.

o
^

C
9

r
M

M
i
o

r
s
O

r
c
m

<
er

r
»

c
o

i
n

r
M

M
S

f
M

m
c
t
i
n

i
S

N
c
s
a

s
s

r
M

M
<

f
i
A

(
O

M
t
a

s
r
M

M
c
t
i
n

i
D

h
>

a
«

o
r
N

m
c
t
i
A

«
D

N
n

o
o

o
o

o
T

-
"
^

•
^

«
P

"
T

"
f
»

C
M

m
f
o

m
o

o
o

o
o

o
o

o
o

o
o

o
o

o
^
o

o
o

o
o

o
f
f
f
f
f
f

t
-

T
—

f
-

T
-

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

f
t
—

f
*

—
V

"
•
^

T
"

r
-

c
m

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

r
i
r
i
N

i
A

i
A

i
n

i
f
l
i
A

i
n

i
n

i
n

i
n

i
n

c
o

c
o

c
o

c
o

e
o

c
o

a
a

a
o

a
c
o

c
o

c
o

c
o

n
a

c
o

c
o

a
c
o

o
a

o
o

o
a

c
o

c
o

c
o

c
o

c
o

c
o

l
o

C
M

c
m

**M
«

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

N
N

N
N

N
N

N
N

M
M

M
N

M
N

N
M

N
N

N
N

M
N

N
r
i
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

M
M

_
f

C
O

.
.

•
0

3

O
-

s
I
d

•
•

I
d

>
•

«<

+
f

—
-

s
.
-

>
—

—
.

S
a

»
M

C
O

C
M

v
»

«
J

.
—

g
•

•
o

-
•eC

C
O

o
>

C
M

C
5

o
O

S
O

O
O

—
O

Q
-

T
-

I
d

<
9

I
d

—
o

o
g

I
d

0
3

-
~

«
C

O
m

t
d

>
*

H
O

O
^

t
d

>
-•

t
d

x
c
»

—
«

9
S

B
X

C
O

o
o

>
*

S
«C

>
•

—
-

-
U

i
n

v
-

•
J

t
d

O
O

O
—

1
-

n
J

<

>
*

«
D

C
O

•
ft.

p
o

o
r
*

ft.
^
J

i
C

D
«

fi
g

•
•

1
a

o
n

«
-

C
O

O
c
u

o
f

-
I
d

•
fr»

O
r

O
g

1
-

•
I
d

o
f

«
^

O
S

S
B

«
9

.
O

C
O

t
d

O
C

O
C

M
O

"
(
O

X
1

•
-
i

-

+
t
d

t-«
O

v
-

o
<

S
S

O
f

t
d

—
O

O
S

-
O

—
»>

a
g

C
M

Iv
,

4
n

J
H

O
S

g
v
-

o
o

S
x

g
<

O
—

-
•
»

+
g

O
U

*
I
d

i
n

—
O

O
I
d

«
•

o
o

o
O

O
<

Id
tv

,

X
—

f
C

9
i-J

•—
C

O
l|

n
J

V
t

O
S

O
O

—
—

>
S

X
p

f
o

O
P

O
w

.
w

—
.

•
J
-

c
o

O
=

i
0

3
•
^

g
g

t
d

I
d

O
O

C
D

•
.

H
O

0
3

f
C

M
_

1
_

1

_
X

«
-^

T
-

S
o

t
d

•
—

+
I
d

C
O

I
d

S
S

O
O

T
-

-
P

«
»

1
-

C
M

C
M

Id
I

Id
C

O
O

o
1

•
r
*

«C
>

«
~

-
v
-

S
B

_
>

SB
«

C
C

O
O

O
-

—
C

M
-
J

«
C

O
—

*
«

S
S

0
3

O
O

O
-

(
9

—
tB

S
P

<
SB

tv
,

v
-

t
-

g
g

•
•

C
M

—
-
»

I
"
C

M
g

f
g

g
•

|
•<

td
in

<
e
>

o
g

(
9

o
•
»

id
o

0
3

i-
l

c
o

t
d

•
^

t
d

t
d

1
«

tj
-

-
-

c
u

—
i

<
+

+
—

-
t
d

t
d

••
X

O
>

-
*

»
-
»

1 1
C

M
*

»
~

-
•J

0
3

O
ft.

X
h

J
tl

O
g

—
f

0
3

«
o

r
.

e
n

e
n

e
n

—
||

|
M

M
M

—
X

T
-

SB
SB

•
O

X

>
*

—
—

0
3

—
g

—
tv

,
o

1
0

3
A

O
1

-
A

I
d

u
e
n

e
n

—
c
u

—
x

tl
n

a
-
I
-
.

t-
.

•
p

c
o

-
J

S
B

«
*

o
+

o
s

•<
o

O
I
d

O
S

O
O

S
o

1
o

_
t
d

1
-

1
-

>
-

C
O

—
—

0
3

0
3

O
O

1
C

M
O

O
O

O
O

O
—

—
(
B

i
d

v
t

O
••

3
3

—
ft.

f
-

<
n

•
-)(-•

e
>

<
x

g
§•"•

td
<

»
-

<
X

O
t
-

0
3

Z
>

-
t
u

0
<

0
b

.
<

•
*

O
S

O
S

O
*G

(-•
E

-
td

-
-
P

C
O

O
f
r
i
E

-
l
-
T

-
i
-
*

-
<

I
d

<
»

«
«

»
r
-

«
O

SB
«

II
C

U
*

S
B

O
p

0
3

t
d

S
3

O
II

t
d

II
*

C
t
d

g
S

U
i
J

U
<

<
^
I
U

U
—

SB
r
-

e
n

+
g

g
td

g
—

>
•

g
•J

O
»

h
«

3
p

co
f

—
o

•—
o

f
O

-
a

•
^

o
t
d

(
-
•

«
-

>
<

H
n

]
-
1

•
g

«
M

l
C

U
•
J
I
E

B
O

n
J

r
-

f
—

i
—

O
O

«
*

f
r
-
f
i
-
O

O
•
J
*

v
t

«
>

a
,
t
-

•
•

•

g
—

||
T

-
S

B
ft.

•—
C

O
i
—

i
II

—
t
o

O
g

II
S

B
' P

N
Z

X
h

.
II

>
<

Iv
,

ft.
—

.
|

—
i
n

1
»

g
P

u
O

O
O

O
C

M
M

II
Q

—
f-

.
C

M
.

o
—

n
n

n
g

x
—

~
o

O
II

II
C

M
O

H

I
Q

1
~

•
—

•
0

3
N

0
3

U
t
d

»
»

4
t
d

1
O

t->
O

*
-

-
0

3
•

f
~

—
g

II
II

f
«

O
—

^
-
X

O
>

-
X

l
i

U
i
a

u
h

!
-
•
•

t
-
i
E

-
i
p

0
3

•
-
.

.
J

a
.

1
-

•_
]

§
-•

t-
i

^
J

J
p

•
J

IM
|
i

P
>

d
P

o
J
h

H
S

S
M

O
S

Z
M

D
I
M

i
-
l
h

t
a

l
l

O
t
>

>
-
w

»
0

«
»

II
P

I
-

tl
II

1
I
h

H
H

J
D

c
O

K
t
J
X

g
O

g
'
-
g

O

<
»

0
3

—
-
J

1
X

k
J

i
K

C
X

J
U

H
K

>
J

-
X

*
~

S
1

0
3

IC
O

X
—

Q
fr*

«
S

H
<

A
i
-
)
>

J
k
l
b

)
S

K
B

>
C

»
<

O
H

O
t
d

C
O

X
t
~

0
3

O
3

O
3

E
~

O
O

X
X

X
i
-
l
C

U
tl

-
H

-
t

—
C

M

a
;

w
o

M
«

:
I
d

Id
«

S
t
d

O
td

«C
«C

td
O

<
' •A

t
d

I
d

W
O

O
tv

,
O

"C
!

I
d

tv
.

0
3

g
O

tv
,

O
S

—
t
d

_
9

i
<

C
i
<

<
i
<

O
O

O
t
d

t
d

I
v
,
c
o

O
c
o

O
O

t
d

g
O

O
O

g
O

O
t
d

t
d

t
d

a
:
g

«
>

»
>

t
u

t
v
,

0
3

O
O

S
Iv.

0
3

>
C

O

O
0

3
tv

,
X

O
O

g
O

—
g

t
v
,
g

o
o

e
s
t
v
.
o

O
g

o
s
o

3
g

t
v
,

•
-
1

g
«

J
g

—
C

u
Id

O
«

c
u

S
0

S
C

U
O

O
O

O
0

S
t
v
,
t
v
,
p

3
g

~
S

O
S

o
o

g
o

t
v
,
t
v
,
i
v
,
o

^
-
i
g

g
g

o
-
<

«
«

«
i
:
»

»
ft.

O
ft.

O
C

U
••

(
-

(
9

O
o

o
o

o
o

«
9

(
9

'C
9

O
C

9
C

9
C

9
(
9

C
9

C
9

o
o

o
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

O
O

O
o

o
o

o

I
Q

Q
i
n

i
D

O
)

O
(
9

O
O

r
B

r
N

t
»

r
N

M
A

O
r

N
M

C
t
l
f
l
I
D

T
-

C
M

O
O

o
s
r
n

i
o

i
n

m
e
r
N

n
c
t
t
n

i
o

N
a

i
n

o
o

r
N

M
Q

i
/
i
N

s
r
N

O
r

C
M

t
o

<
3*

i
n

C
D

O
T

-

N
N

N
N

N
r
»

C
O

e
n

o
o

c
o

o
>

e
n

e
n

o
>

e
n

n
n

n
s
o

s
s
o

o
s

«
-

T
-

C
M

W
o

o
o

O
O

f
f

M
M

W
C

M
M

C
M

C
M

C
M

I
O

»
O

N
»

tO
»

0
«

3
'«

3
>

Q
Q

V
i
f
l
i
A

i
A

i
n

u
t
i
n

i
n

t
n

i
n

i
n

i
n

m
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

f
f

f
f

f
f

f
f

f

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

©I5.^b
\

o
\

V
v
.

o♦
J

C
Q<
U

O

CHUCK-A-LUCK PART 4: "The Die is Cast"
nate displays for the values of 2, 3, and 6. This meant the
DICE_PIP had to be DIMensioned as (9,9). I added this
at line 110. In addition, for the SPRITE version of the
routine in Extended BASIC, Ron needed an array to keep
track of particular pieces of the die, to determine if they
were in position. He called this array LOC, and since there
are 27 different pieces, I DIMensioned it at 27 in line 120.

I then added the code in lines 20010-20420 (see Extended
BASIC listing starting on page 63) to fill in the data needed
for the new arrays. Lines 20100-20200 are used
to read in the data for DICE_PIP. Each DATA line
(in 25000-25080) describes whether a character of a dice
value is supposed to be blank (=0) or have a pip (= 1). Each
line gives the information needed for the 9 characters mak
ing up the dice value. Line 25090 is an extra DATA line.
TI BASIC usually slows down when it reads the last DATA
line in a program, but with an extra DATA statement, it
never reads the last line, and never slows down.

In order to simulate the DISPLAY AT function, available
only in Extended BASIC, I added a routine to the TI BASIC
version in statements 4900-4930 to print whatever was in
MSG$ beginning at COL on the row contained in ROW.
It runs much faster than the code given in TI's Program
ming Aids I software package because it is restricted to a
single row and does no preliminary editing of the message
area. In lines 20300-20420,1 added the codes to show where
each of the 9 characters for each die are to be displayed.
In the TI BASIC version, these are actual row and column
numbers. In the Extended BASIC version, these contain the
dot row and dot column values needed for sprites.

I then coded lines 2000-2370 to display the information
about each player on the screen. The new code in 2600-3920
displays the three dice values graphically. Lines 2630-2740
give a 50-50 chance that a dice value of 2, 3, or 6 will be
displayed in its alternate format. The 9 characters making
up the die are then displayed in the loop in lines 2750-2990
in the TI BASIC version, and lines 2750-3020 in the Ex
tended BASIC version. For TI BASIC, this consists of a
simple loop which displays at LOC X and LOC Y the
appropriate DICE PIP for each of the nine pieces. After
the character on the last die is displayed, I wait a little while
and then leave the routine.

Notice that in order to highlight the dice roll routine, I
changed the color of the screen and added a little music.
My "music jar" of melody listings borrowed from other
programs gave up only one piece that remotely matched up
with gambling, the "Call to the Post" tune played at the
track just before a race. Perhaps you have a more fitting
musical phrase.

The sprite version of the display routine is more com
plex than the HCHAR version. I will go through it very
carefully because Ron has some great ideas about control
ling sprites. Note that this routine was written with multi
ple statements on each line. This has to be done to make
your BASIC code run as fast as possible when handling
sprites. Slow code at this point could make it very difficult
to handle them smoothly.

Before me was the task I had been putting off from
the beginning: to plan the graphics for the DICE-
ROLL routine.

Because the program had been coded in TI BASIC all
along, I coded this routine using HCHAR and VCHAR
graphics. It occurred to me however, that the Extended
BASIC graphics ability (i.e., sprites) would add a lot to this
program. Then I saw that it could be done both ways.

The only problem was that I am not very graphics-
oriented. Oh, I do all right, but I am no world-beater at
eye-boggling displays. That left me one option: I called for
HELP!! and turned to my "Guru of Graphics," Ron
Binkowski. You may have seen his name on some fine pro
grams he has written for 99'er Magazine.

I asked Ron to develop a graphics routine to display dice
rolling inside a Chuck-A-Luck wheel. About two weeks
later, he called me back with the bad news, "No dice." (Par
don the pun—I just couldn't resist it). Rolling the dice was
just too complicated for this program, but Ron did come
up with an idea to move them graphically.

Starting to Roll
I reworked Ron's routine so that it could support both

SPRITE graphics for inclusion in the Extended BASIC ver
sion and HCHAR graphics for TI BASIC. The design in
dicated that DICE-ROLL needed an initializing routine (to
set up some variables)as wellas the actual graphics roll itself.
I added another module to display each player's name, cash
balance, amount bet, and dice value bet.

The DICE-ROLL routine needed three new arrays. Each
die can be thought of as a formation 3 pieces high and 3
pieces wide. Each character can have either a dot (pip) or
be blank. Since there are three dice and each needs 9
characters, we will have to keep track of the locations of
27 characters. The 9 characters for the first die will be
numbered 1-9; for the 2nd die, 10-18; and 19-27 for the third
die. The array called LOC X keeps track of the x-
coordinates (the horizontal rows) of these characters while
LOC Y keeps track of the y-coordinates (the columns).
This means that both of these arrays must be DIMensioned
with 27 entries.

The array called DICE_PIP tells whether characters are
blank or have a pip for each possible value of the dice. Since
there are six possible dice values, each to contain informa
tion on nine characters, we will need a two-dimensional ar
ray composed of 9 entries for each of 6 possible dice-values.

Arrays are Like Buildings
Remember our discussion about arrays? I said that you

can envision an array as a building with a number of rooms
on each floor. Well, in a two-dimensional array, the first
variable can be thought of as the floor number. The second
number is the room on the floor. For example, you can think
of DICE_PIP(2,4) as the value located in the 4th room
of the second floor of a building called DICE PIP. For
our program it will contain the information about the 4th
character (middle row on the left) needed to display a dice
roll of 2.

To make the display more interesting, Ron added 3 more
dice values. He realized that, depending on how a die fell,
the values of 2, 3, and 6 could be portrayed two different
ways. The three extra "floors" in DICE_PIP are alter-

Copyright © 1983 Emerald Valley Publishing Co.

Graphic Routines
If you have an interest in designing Extended BASIC pro

grams with sprites, tracing through the following program
will put you well on your way toward your own creative

The Best of 99'er Volume 1 61

endeavors. All line numbers from this point on will refer
to the Extended BASIC version only.

2750-2820 This code figures out the sprite number for
each character of the die being displayed and starts it out
as a sprite with a random motion. Note that this motion
can be either positive or negative so that we get them flying
in all directions. We also set the LOC value for that

character to zero, to show that we haven't yet moved
the character back to its final location.

2840-2920This routine uses a variable called CNT to keep
track of the number of characters moved back to their start
ing locations. If this number is low enough, we will ran
domly choose the character we work on. If CNT is 21 or
greater, however, we won't choose the character random
ly. We'll just look through the LOC array sequentially to
find the first character that we haven't yet moved
back to its location (i.e., its LOC has a zero in it).

Why is Ron going through the trouble of doing it this
way? The answer requires a little thought. Suppose we just
randomly kept choosing a figure. By the time 20 or so
characters have been reset to the final location, the odds
on randomly selecting a good character will then be 7/27
or 26%. The odds on the next selection being a good
character will then be 6/27 and they keep getting smaller
and smaller. With one character left, the odds on hitting
it randomly are 1/27 or less than 4%. As you can see, it
is very unlikely that you will hit a good character when on
ly a few are left. To prevent a long wait until the computer
randomly locates a good character, Ron set up his code so
that the last 7 or so sprites will not be randomly chosen.
Of course, he is also checking CNT to see if he has finished
with all 27 characters.

2930-2980 This part of the routine takes the selected
character, changes its color to black (to highlight it on the
screen while we play with it), and freezes it momentarily.
That is what the CALL MOTION(#I,0,0) is for. The ma
jor problem in sprite handling is that they keep moving at
a pretty high speed, while BASIC keeps plodding along with
old data. Ron prevents this problem by freezing the sprite
before finding its location. This means that he gets accurate
data via the CALL POSITION code.

After locating the sprite, he computes the velocitiesneeded
to move it back to its original (and final) location. The Ex
tended BASIC reference manual talks about row velocities
and column velocities, but it doesn't explicitly tell you that
you can control the direction of the sprite. For example,
if you want to move a sprite at a 45 degree angle, both the
row and column velocities must be equal. To move at a 30
degree angle, just make the column velocity equal to twice
the row velocity. Ron is using this fact in statement 2960
to figure out how far the sprite is, vertically and horizon
tally, from where it is supposed to go. He calculates this
in MY and MX respectively. He then adds the two to get
a value called TOT. The distances can be positive or negative
depending on the sprite's location relative to its final
position—left or right, above or below.

In order to get a good value of TOT, we have to ignore
the signs of the distances. In other words, we don't care
if the number is positive or negative, as long as we know
its absolute value. We find it with the ABS function. By
making the row and column velocities a function of both

62 The Best of 99'er Volume 1

the distance the sprite it has to go (MY or MX) and the TOT
value, we can direct the sprite to travel in the right direc
tion. Take a look at the last statement in line 2960. It uses

the MAX function available in Extended BASIC. TOT must

be a reasonably-sized number because we will divide MY
and MX by TOT to get our velocities. Since it is possible
for the sprite to be right where it should be, TOT can be
zero. If you divide by 0, however, your program will stop
with an error. To make sure that TOT has a value of at
least one, you would normally code in something like this:

xxxxx TOT = ABS(MX) + ABS(MY)
yyyyy IF TOT< 1 THEN TOT= 1
77777

This can be done just as easily with the MAX function,
which gives the larger of the two alternatives. In this case,
if 1 is greater than the result of the addition, it will return
1. On the other hand, if the result of the addition is greater
than 1, it will return that number. Using the MAX func
tion eliminates the need for an IF statement right in the mid
dle of my code. MAX (along with its cousin, the MIN func
tion) is a handy feature of Extended BASIC that can save
you a lot of coding trouble. We now use the values that
we just computed to set the sprite moving again using a
CALL MOTION.

2990-30101 have also set a new variable (my, we are col
lecting a whole slew of them now!) called CHK to be equal
to zero. This counter will be used to make sure that we don't

try the next lines of code more than 10 times before we give
up and refigure a new MOTION command. If we haven't
tried it more than 10 times, we do a CALL COINC to see
if the sprite has reached its goal. If not (HIT=0) we go back
and do it again. If the sprite has reached its final location,
Ron stops it with a CALL MOTION, and does a CALL
LOCATE to make sure it is being stopped exactly where
he wants it. This is necessary because a sprite that keeps
moving between the CALL COINC and the final CALL
MOTION may no longer be in the right spot. He changes
the color back to white.

3020-3920 This code checks to see if we finished all the
characters and restarts the process if we haven't. It then
changes the screen back to green. It also issues a CALL
DELSPRITE which clears the sprite characters from the
screen.

Protection and Improvement
We have now finished the Extended BASIC version of

the code. Our game gets a final debugging and is ready to
go! The next step is just some administrative work to make
sure that your effort will not be in vain. First, change the
REM statement at the beginning of the program so that it
says FINAL VERSION as well as the version number. Next,
save it on cassette tape or disk. Label the tape or disk with
the name of the program, the date, and the version number
along with the words FINAL VERSION. Make two copies.
If you are saving on tape, make one copy on each side and
verify both. Then make another copy on a backup tape.
You should always have a backup tape kept separately from
your original master copies. Remove the tabs in the back
of the tape to prevent accidental erasures. For disks, add
the write-protect tab. Make a backup disk. Keep it separate
from your regular disks. Then enjoy the fruits of your labor!

Copyright © 1983 Emerald Valley Publishing Co.

124

R

R

R

R

D

P

R

D

2

D

R

60

EM

EM

EM

EM

GO

EM

GO

P

P

W

FO

R

R

L

R

F

R

EX

EMI

LOC

DlOMI

T

E

T

[DO

N

IWI

2

0|W1
0
A

N +

Y0

AR

E

YO

T

PL

YOU

NO

GO

FO

N

GO

CA

FO

HI

S

A

0

0

A

N

P

N

t|o
R

X

TO

WA

TO

D

NOW

CA

00

) =
NlOW

SH

LO

YO

L

IHIA

A

S

0
AMIE

FO

GO

Copyright © 1983 Emerald Valley Publishing Co.

FO

TH

GAM

0
AjGA

AMI $

p;

LO

YO

+ W

CA

)-

NG

DO

1280

1250 GOTO 1350

1260 PR INT "OK, " ;
1270 GOTO 1350

1280 PR INT "ALRIGHT, " ;
1290 GOTO 1350

1300 PRINT "YOUR TURN , " ;
1350 PRINT PLAYER.NAMES(I);","
1360 PRINT "YOU HAVE";PLAYER CASH(I);"D

OLLAR " ;

1370 IF PLAYER_CASH(I)<2 THEN 1390
1380 PRINT "S" ;
1390 PRINT ".":"WHAT'S YOUR BET? "
1400 INPUT PLAYER_BET(I)
1410 IF PLAYER.BET(I)<1 THEN 1450
1420 IF PLAYER.BET(I)>PLAYER.CASH(I)THE

N 1450

1430 IF PLAYER_BET{I)>50 THEN 1450
1440 IF INT(PLAYER_BET(I))=PLAYER BET(I

)THEN 1470

1450 PRINT "THAT'S NOT POSSIBLE."
1460 GOTO 1230

1470 PRINT "WHAT NUMBER WILL YOU BET ON
? "

1480 INPUT PLAYER_DICE(I)
1490 IF INT(PLAYER_DICE(I))<>PLAYER_DIC

E(I)THEN 1520

1500 IF PLAYER.DICE(I)<1 THEN 1520
1510 IF PLAYER.DICE(I)<7 THEN 1540
1520 PRINT "TRY AGAIN."

1530 GOTO 1470

1540 NEXT I

1550 RETURN

2000 REM

2010 CALL CLEAR

2020 CALL SCREENI10)
2030 FOR 1=1 TO PLAYERS

2035 GOSUB 28000
2040 ROW={1-1)*5+1
2060 DISPLAY AT(ROW,15):PLAYER.NAMES{I)
2160 DISPLAY AT(ROW+1,15):"BET $";STRS

(PLAYER.BET (I))

2260 DISPLAY AT(ROW+2,15):"CASH $";STRS
(PLAYER.CASH(I))

2350 DISPLAY AT(ROW+3,15):"DIE- ";STRS
(PLAYER_DICE(I))

2370 NEXT I

2500 FOR 1=1 TO 3

2510 DICE_VALUE(I)= INT(RND*6)+1
2520 NEXT I

2600 REM DISPLAY DICE
2610 FOR 1=1 TO 3

2620 CHAR_NO=DICE_VALUE(I)
2630 IF CHAR_NO=1 THEN 2740
2640 IF CHAR_NO=4 THEN 2740
2650 IF CHAR_NO,= 5 THEN 2740
2660 IF RND<.5 THEN 2740
2670 IF CHAR_NO<>2 THEN 2700
2680 CHAR_NO=7
2690 GOTO 2740

2700 IF CHAR_NO=6 THEN 2730
2710 CHAR_NO=8
2720 GOTO 2740

2730 CHAR_NO=9
2740 REM DISPLAY A DIE

2750 FOR 1=1 TO 9
2760 K=(1-1)*9+J
2780 CALL SPRI TE(#K,96 + DICE.PIP(CHAR NO

,I),16,LOC_X(K),LOC_Y(K),HND*120-6
0,RND*120-60)

2800 LOC(K}=0
2820 NEXT I
2830 NEXT I

2840 CNT=0

2850 IF CNT<21 THEN 2900

2860 FOR 1=1 TO 27 :: IF LOC(I)=0 THEN
2920

2870 NEXT I :: GOTO 3800
290OI=1NT(RND*27)+1
2910 IF l|0C(I)=1 THEN 2900| | | | |

The Best of 99'er Volume 1 63

210
0

41

i5l

64

N

GO

F

PR

WI

E

E

F

MSIG
GOT

MSG

E

E

A

N

$

$

F

F

R

GO

L

ROIWI

CIO

MO

PO

MA

0

N

OM

OM

MO

CO

m|o
C

LO

WI

AM

SfflE
F

SO

MX

TO

CA

ROW SG

K

GIAIM

WE

A

COM
K

TO

The Best of 99'er Volume 1

UN

A

Y

LA

GAM

IGAIM

B

T

121130

EMA

RP

FO

E

N

A

F

F

F

PR

GO

WI

TO

H

AM

P

T

|W|I
TO

OW

AM

MA

2
4

AM

F

GAM

EMA

NO

UM

AM

T

AMO

WHO GO

WH

NOO

YO

AM

Copyright © 1983 Emerald Valley Publishing Co.

I SPELLING^
fFLASHl

Spelling Flash will help students review their spelling
periodically. This program does not use the Texas
Instruments Speech Synthesizer.

Its design incorporates one of the simplest, yet most
elemental programming structures: the loop. One of the
most valuable features of computers is their ability to
repeat any task many times over. Spelling Flash uses a
GOTO statement to form the loop. The program begins,
reads a word from its data, presents it to the student, ac
cepts the response, prints a message to the student and then
repeats the process. Line 330, GOTO 200, simply sends
the program back to line 200, where the process begins
again. In this case, the loop (and in SpellingFlash, the pro
gram) ends when it reads the non-word "ZZZ." Line 210
checks for this flag; if the spelling "word" is "ZZZ," it
ends the program.

In order to use this program, the spelling words have
to be typed into the program as DATA statements. The
accompanying listing has a selection of spelling words, star
ting in line 380, but you can put in words of your choice,
of course. If you use more words than are in the listing
shown, and in the process generate more DATA statements
with more line numbers, you will have to alter the value
after THEN in line 210 to reflect the new line number of
the END statement.

The words will be read as string variables. They may be
entered with separate statements for each word, or several
words may be listed in each statement, as long as they are
separated by commas. "Words" in this context may, of
course, also consist of phrases or names with embedded
spaces or other special characters. Such phrases must be
enclosed in quotes. ZZZ must be the last word in the list
of words; if it isn't, the computer will return a data error
when it tries to read data that's not there.

When the program runs, the screen is first cleared and
a spellingword is flashed on the screen. After a short delay,
the word is cleared and the student is asked to type in the
spelling word. The subroutine in lines 340-370 cause the
delay; if it seems too long or too short, the value in line
340 can be changed. The student signals that he's finished

Copyright © 1983 Emerald Valley Publishing Co.

TI
BASIC

spelling the word by pressing the ENTER key. The pro
gram gives some positive reinforcement with some sounds
and the message, "YOU SPELLED IT RIGHT!!" If the
word is incorrectly spelled, the student must try again un
til it is correct.

This section of the program is also a loop. An incorrect
spelling sends the program from line 280 back to line 220
until the student gives the correct spelling. After the stu
dent has spelled the word correctly, the screen is cleared
again and the next word flashes on the screen.

L

N

D

W|0
wo

wo

so

TOMO ROW

COAM

,o

F

H

WO

w|o

2

E

zo

EG

ROMA

AGA

DAM

GOO

This program may be saved on cassette tape for the
students' daily use. Each week, you can alter the list of
spelling words by changing the DATA statements.

The Best of 99'er Volume 1 65

Pocket Typing Trainer

Pocket Typing Trainer
Here is a pocket-sized program for the TI-99/4A—small

enough to fit on a 3 x 5 card—that is not only quick to key
in, but is also educational, illustrates a powerful technique
with random numbers and is fun for all ages. The Pocket
Typing Trainer asks which characters the user would like
to practice, and then plays back an endless series of ran
dom five-character groups for him to copy. Two tones ris
ing at the end of the typist's response say "Correct;" two
tones descending here mean "Oops." Try it! If you are a
beginning typist, start with characters ASDF, the home keys
of the left hand. Stop the program with a FCTN 4 (or
SHIFT C on the 99/4) keystroke when you can type those
four consistently without looking at them, and RUN the
program again with ASDFJKL, and so forth If you
are already a typist and you want to practice some of the
unusual features of the TI-99/4A keyboard, as well as some
of the characters important in BASIC (but not usually part
of the typist's repertoire), try the characters "$()* + -.

You are unlikely to notice it, but the Pocket Typing
Trainer tends to focus on the characters which the typist
is getting wrong—a remarkably sophisticated feature to find
in a pocket-sized program—and one which brings me to my
next point.

GO

CA

CA

GO

N

TO

ou

G$

T

L

$

P

T

R

L

5

EG

NG

YOU W

NG

EG

Skewing the Distribution
Line 180 is where OUT$, the random character string,

is manufactured a character at a time. It might have been

66 The Best of 99'er Volume 1

written without theA3, in which case equal segments of the
interval from zero to one would be assigned to the characters
given by the typist. (Since the 99/4's built-in random
generator, RND, generates "uniform random" numbers,
every character would have the same chance of being
chosen.) WithA3, the random numbers are cubed before
a character is chosen. Since the numbers are less than 1,
they get smalleras they are cubed; this results in many more
RND's corresponding to characters at the left end of the
LETTERS string. For example, suppose that LETTERS,
the string of characters which the typist wants to practice,
has four characters. If RND turns out to be .50001, then
the character a bit more than half way down LETTERS (i.e.,
the third character) would be the one chosen. But if we cube
RND, the result is .12500, which is well within the first
quarter of the range from 0 to 1; and the first character is
chosen. Perhaps Diagrams 1 and 2 would help to illustrate
this more clearly. The Pocket Typing Trainer takes advan
tage of this by moving missed letters to the beginning of
LETTERSS (Line 270).

without^: Diagram!
RND LETTER$

.99

r
,.75
r >

.25 1
This much < ... corresponds
of RND's .00 to the 3rd
range... character

with ^3: , Diagram 2.
RND RND3 LETTER$

.90

.80

.62

See how
much of
RND...

.00

ILi9
75

50

tii5
.00

L* ... maps
°? into the first

character

The lesson here is that uniform random numbers like
those provided by RND are a perfectly satisfactory foun
dation for any sort of randomness one could desire. This
includes the statisticians' favorites: Gaussian, binomial,
gamma, and so on. One simply needs to apply the proper
transformations.

Homework
Tailoring and embellishing programs to suit users' per

sonalities is at least half the fun of computing. The Pocket
Typing Trainer can be extended in many directions. Here
are some of the options:

Problem #1 (simple): Modify the program to allow the
typistto choosehow many random characters he'd likeon
the line.

Problem #2 (moderate): Change the program to heighten
the emphasis on characters which the typist is getting wrong
whenever the error rate is high.

Problem #3 (sound and graphics practice): Keep score,
and periodically (sayevery25 lines) treat the typist to a col
orful and melodic display, one whose elaborateness is
greatest for a perfect score.

Copyright © 1983 Emerald Valley Publishing Co.

?r « -"<i",;
♦***

WHAT IS

And Why Is Everybody Talking About It?

You can hardly pick up a computer publication, or at
tend a computer conference or fair these days without
being inundated with discussion of UCSD Pascal. To

understand what all the fuss is about, you must first know
something of what is meant by portability and understand
the concept of pseudocode and its relation to the
pseudomachine.

Portability, Pseudocode, and P-machine
Let's start by assuming that you already know that Pascal

is a structured, high-level, compiled language Gust as TI
BASIC is a high-level interpreted language). In this article
we won't go into the theory of compilers, interpreters, or
the structure of Pascal as a computer language; we'll save
that for a future time. For right now, let's imaginethat your
friend has written a really great Pascal compiler and
operatingsystem in his native6502Assembly Languagefor
his Apple computer. You'd like to move it to your fully-
configured TI-99/4 which has a TMS9900 microprocessor.
What are your options? Sure, you could always recode the
Pascal system for your TMS9900 (assuming you had a
TMS9900 assembler), but it would probably be almost as
much work as starting from scratch. How about firstwriting
a 6502 simulation program for your TMS9900 and letting
it re-write all the 6502 code? But even if you do this, the
extra layer in between will result in a loss of speed and a
greater memory overhead. This is what the microcomputer
community has been up against—virtuallyno portability in
movinglanguagesor applications software from one system
to another without a major re-working of the code.

Now let's design a hypothetical processor to provide a
convenient "home" for Pascal. We'll give it built-in instruc
tions for doing the type of things that the Pascal language
likes to do. Let's call this pseudomachine a. p-machine for
short, and configure it to be a simple, idealized stack com
puter that usespseudocode, or p-code—the native language
or machine code for the p-machine.

Great, but where do we go from here? What's the use
of a p-machine, and howdoesit contributeto software port
ability? Must we throw out all existing hardware and soft
ware and start over by giving everyone p-machines?
Obviously not. Rather, consider what would happen if we
could eliminate the differences between the instruction reper
toires of specific microprocessors, so that they all execute

Copyright © 1983 Emerald Valley Publishing Co.

an identical p-code. If a p-machine emulator for each CPU
were written (in its native assembly language), one of the
largest obstacles to portability would be overcome: Soft
warecould be written on different computers in a high-level
languagesuch as Pascal, then compiled to p-code, and final
ly "interpreted" for each specific CPU. Since the p-code
would be universal, in theory a program written on, say,
an Apple could be run without modification on a TI-99/4,
if the program consisted entirely of p-code. Score one for
portability!

This is, in effect, what has been done in the UCSD Soft
ware System. All high-level languages in the system—only
one of whichis Pascal—are compiled into p-code. One way
of looking at it is that the system software is not portable
at all, because it is always executed on a p-machine. The
portability is provided by a p-machine emulator for each
host. So when you think of a TMS9900-basedsystem run
ning Pascal, it is really running a simulation of a computer
which is running Pascal object programs.

Speed vs. Space: A Tradeoff
What price do we pay for the benefit of portability? The

detour through a p-machine often produces slower execu
tion than would native code. But raw execution speed is
often overshadowed because p-code is considerably smaller
than the corresponding native code—allowing the available
memory to store a more capable program. If a program can
be represented with p-code that fits entirely into available
memory, and using native code requires extensive overlay
ing, then the p-code version will actually run faster!

For bestperformance, it isdesirableto optimizesome por
tions of a program for space and others for speed. Since
the UCSD Pascal System provides communication between
an assembly language routine and a Pascal host program,
it is possible (with some reduction in portability) to code
time-critical routines (usually less then 10% of a program)
directly in assembly language. The low-level assembly
routine can request access to host program global variables
and constants, and can also allocate its own global storage
space.

A project is underway at SofTech Microsystems (the firm
responsible for the licensing and maintenance of the UCSD
Pascal System) to alleviate many of the performance
drawbacks of p-code (e.g., speed) without sacrificing port-

The Best of 99'er Volume 1 67

ability. Code generators will translate time-critical pro
cedures into native code through an optional step in the com
pilation process. A code generator will take a complete p-
codeprogramas input, and produce, as output, a mixture
of unmodified p-code and translated nativecodeprocedures.
Programs can then be written and maintained entirely in
Pascal, with the p-code object versionstillcompletely port
able. A prototype code generator for the TMS9900
demonstrated that improvement in execution performance
compared to interpretive execution has beenaround a fac
tor of 15! And if we take into account that translated native
code for the TMS9900 is about 50% larger then the cor
responding p-code, the improvement is indeed significant.

The Operating System
UCSD Pascal is not only a language compiler, but a com

pleteoperating system with utilities and libraries. In addi
tion to the Compiler, you have a screen-oriented Editor and
a File Manager (or Filer). The design philosophy behind
UCSD Pascal was to keep users continually informed about
the state of the systemand the options availablein that state.
This is done with a prompt line that allows users to select
options by typing single-character commands.

The screen orientation of the Editor means that you'll
be doing lots of paginginsteadof scrolling. The editorposi
tions a cursor into the text file being edited and surrounds
it with a "window" into that area of the file. When you
look at the display screen, you are peering into this win
dow. To modify text, you simply move the cursor to the
place where the change is desired and indicate the change.
Commands are provided for moving cursor, finding and
replacing patterns of text, making insertionsand deletions,
and copying text from elsewhere and moving it to any posi
tion indicated by the cursor. In addition to the powerful
text editing commands, special facilities are provided for
processing documents—e.g., user-specified left and right
margins and auto-indenting to encourage the writing of
structured programs. In microcomputer systemswithout an
80-column display, horizontal scrolling allows users to move
the text window left and right to view the entire Pascal page.

When you enter the Filer, you have access to another
complete set of commands: (1) housekeeping commands
such as listing directories, compressing files on a disk, and
testingdisks for bad sectors; plus (2)program execution and
file manipulation commands for executing named object
programs, invoking (with shortcuts) important system pro
grams, designating files for removal, and renaming or
transferring among on-line devices.

The Pascal Compiler translates Pascal programs from a
humanly readable text form (source code saved
on disk by the Editor) into p-code form (object code) which
is saved on disks for future execution. The Compiler is
designedto translate the entire contents of a text file in one
pass. But unlike the Editor and Filer, it has hardly any in
teractive commands. You can, however, change certain con
trols (directives) which govern the way in which the Com
piler does its work.

Error Handling
A big difference between an interpreted language (such

as BASIC) and a compiled language (such as Pascal) is

68 The Best of 99'er Volume 1

demonstrated in the way syntax and run-time errors are
handled: If the Compiler finds a syntax error, it halts and
displays an error message (if you've set it to return to the
Editor automatically), or prints on the screen a progress
display containing copies of the line (and previous line)
where the program error was found, as well as the coded
number of the syntax error. You can fix the error by return
ing to the Editor or attempt to compile the rest of the pro
gram. In some lessdrastic conditions, the program will, in
fact, compileall the way to the end without the Compiler
losing its way.

Run-time (execution) errors also cause all the action to
stop. A three-line error message tells you the type of error,
the segment and block where it occurred, and how far it
is from the beginning of the block (which you convert to
the actual line of code). In simple cases, this will be all the
help that's needed to pinpoint the error; in more complex
cases, you'll have to insert WRITELN statements (the
equivalentof PRINT) to determine the values of variables
before the program blew up. (There's no convenient
BREAK statement as in TI BASIC.)

Additional Language Support
The UCSD Pascal System does, in fact, support addi

tional compiled languages. At present, the FORTRAN-77
and BASIC Compiler are supported directly
by SofTechMicrosystems (MicroFocus CIS COBOL is also
presentlyrunning under the UCSD p-System). SofTech also
has a Cross-Assemblers Package (a complete set of cross-
assemblers generating native code for the Z80, 8080, Z8,
PDP-ll/LSI-11, 6502, 6800, 6809, and 9900
microprocessors) that allows programming on the host
machine of your choice, for the object machine of your
choice. Think of the possibilities. . . .

UCSD Pascal and the TI-99/4 Community
Texas Instruments has implemenfed UCSD Pascal in a

P-Code Card for the TI Peripheral Expansion System. The
P-Code Card contains an operating system called the UCSD
p-System and allowsaccessto a varietyof languages in ad
dition to Pascal. Besides being a powerful tool for software
developers, UCSD Pascal in TI's version is also of great
importance to software users: Users won't have to buy all
the software and hardware that software developers need
in order to write and debug programs. The simplest con
figuration for software users requires the TI Home Com
puter, a monitor or TV set, the TI Peripheral Expansion
System, the Memory Expansion Card, the P-Code Card and
a cassette drive; software developers will need the Disk
Memory System (the Disk Drive Controller and up to three
disk drives) as well. Under this two-tier system, a TI-99/4A
user will be able to run some very sophisticated and power
ful applications software with only a minimal investment
in the system hardware and software.

Copyright © 1983 Emerald Valley Publishing Co.

Language Conversion:

TRS-80 BASIC
to

TI BASIC

Tucked away in my basement, I have both a Radio
Shack TRS-80 and a Texas Instruments TI-99/4A.
The half-dozen personal computer magazines I read

each month provide coding and ideas for many new pro
grams for my TRS-80.1 now have a large collection of these
programs and have grown to appreciate greatly the help and
enjoyment this software library provides. Unfortunately, it
just hasn't been that easy to acquire software for the TI
machine. [But now, with the birth of 99'er Magazine, this
situation will be rapidly remedied.—Ed.] The solution for
me was obvious. I'd convert my TRS-80 programs to TI
BASIC.

At the suggestion of 99'er Magazine's editor, I read an
article by Harley M. Templeton appearing in the November
1980 issue of Personal Computing magazine. Although the
article highlighted the major differences between the ver
sions of BASIC used on the two systems, it didn't point
out which differences matter and which are merely in
teresting but of little practical importance. As you might
expect, the only way to find out is actually to convert a pro
gram and learn from the problems that you encounter.

To set up a fair test, I selected TRS-80 programs from
opposite ends of the spectrum: The first was a "number
cruncher" which I had written to convert the number cor
rect on a test to a scaled value on a continuum of learning.
(My nine-to-five job involves the management of the stan
dardized testing programs for the Portland, Oregon, School
District.) The other program was an adaptation of the ideas
behind a slot machine in David Ahl's Basic Computer
Games—a program with extensive use of graphics.

The first trouble I encountered was in converting the
PRINT AT command available on the TRS-80. The pro
cedure suggested by Templeton was to set a loop as follows:

In theory this works fine, but it is slow if the string length
is long; single characters don't walk across the screen—
they crawl! Since the program requires a prompt printed
in the middle of the screen to cue the operator to enter the
next five values for the scaling procedure, my final solu
tion was to use the following coding:

Copyright © 1983 Emerald Valley Publishing Co.

100 PRINT "MESSAGE AT THE MIDDLE OF THE
SCREEN"

200 PRINT :::::::::

This procedure causes the text prompt to scroll up from the
bottom to the middle of the screen. It is not especially
speedy, but it is fast enough for the data entry in cases where
you don't need lines that disappear at the top of the screen
as the result of this scrolling action.

The ease with which the "number crunching" code con
verted was a pleasant surprise. It was important to keep
track of the differences in the line numbers for GOTO's
and other branches, but that, in fact, presented little pro
blem. What was more difficult was converting the logic of
IF-THEN-ELSE clauses. TRS-80 (Microsoft) BASIC allows
multiple statements following the THEN- and ELSE-coding
that are difficult to keep straight and re-code. The multiple
line conditionals can be converted, but the conversion re
quires a clear head and a basic understanding of how the
program works.

Because I had written the TRS-80 program myself (it had
more lines of documentation than coding) and naturally
understood its operation, the conversion was fairly straight
forward. After I changed nearly all the PRINT and PRINT
AT statements, the program worked the first time (surprise).
To check it out, I made a comparison run on the TI-99/4
and the TRS-80. Surprisingly, they ran the same job in
almost the same time: three minutes for a forty item test.
Finally I spruced up the program a little with CLEAR and
CALL SCREEN commands to take advantage of the col
or options available on the TI machine.

The second program was a challenge. It had essentially
four main parts: (1) an introductory message, (2) the set
up graphics of the "slot machine," (3) the rotation of the
wheels in the slot machine, and (4) the determinaton of the
winnings and losses. The first and easiest part of the pro
gram to set up was the section which printed the introduc
tory messages. I couldn't resist adding the CALL SCREEN
command and sprucing up the comments to make it more
attractive (at least to me). In this instance, the lack of speed
for the HCHAR command was a benefit since it painted
the screen at a leisurely-yet-pleasing pace. Before I was
through, I had changed all the code in this section for
aesthetic reasons.

My real conversion problems began in the second sec
tion. There, I came face-to-face with the significant dif-

The Best of 99'er Volume 1 71

ferences in the way graphics are handled by the two systems.
In moving from a screen of 16x 64 to one of 24 x 28,1 had
to stop and develop a new outline shape for the slot
machine—one that would fit the TI screen. Deciding the
colors to be used in defining the outline of the machine and
the shapes to be matched (cherry, bar, bell, orange, lemon)
took extra time. After some experimentation using dark blue
against a white background, the lemon became a lime (dark
green). To develop a new set of four characters for the
orange, I experimented with CALL CHAR until the figure
finally looked like a circle instead of one of Dali's explod
ed watches. Since there isn't an orange color available, the
orange became a plum (magenta). I was still a character
short, so I used the heart from the back of the user's manual.

En route to coding this part of the program, I had to
devise the shapes, assigning them to one of the sixteen
character sets. Twice, however, I made the mistake of try
ing to conserve memory by using one of the character sets
with pre-defined codes. This caused errors in the print
statements using these codes. The moral of that experience:
Whenever possible, stay away from the first eight character
sets when defining new characters. It took a while to work
the kinks out of this section, but the addition of color made
a tremendous diffence, and I became hooked on TI
graphics. (I'll probably never turn the TRS-80 version of
this program again).

At this point, I realized that virtually every line of the
original program had been rewritten in the move to the TI
machine. Since this was to be an article on program con
version, not programming, I called the editor at 99'er
Magazine to make sure I hadn't missed the point of the ar
ticle. Gary, however, wasn't surprised at all, and encouraged
me to include suggestions on rewriting as well as conversion.

The third section of this program was probably the
toughest to convert. I have been responsible for program
ming and systems analysis for over ten years on a variety
of large computer systems. This has required establishing
structured programming standards for every program with
which I work. Even though I had personally keyed in the
slot machine program, I had forgotten how poorly it was
documented. This is not a criticism of Ahl's book, but rather
a realistic comment on what you are likely to encounter

An Example of Code Translation
From TRS-80 BASIC to TI BASIC

120 FOR II = 1 TO NI

130 IF IZ(I1)<>0 THEN PRINT "THIS ITEM
DROPPED";ID$: GOTO 160
140 IF K$ = K1$ THEN IF C1(I1)= 0 GOTO 160
ELSEC2=10*Cl(Il) + 200
150DX = C3-C2

160 NEXT II

Translates to:

120 FOR II = 1 TO NI

130IFIZ(I1) = 0THEN 140
132 PRINT "THIS ITEM DROPPED";ID$
134 GOTO 160

140 IF K$< >K1$ THEN 150.
142IFC1(I1) = 0THEN 160
144C2=10*Cl(Il) + 200
150DX = C3-C2

160 NEXT II

72 The Best of 99'er Volume 1

SUMMARY OF COMMANDS

TRS-80 Commands
Not Requiring Conversion

ABS
ASC
ATN
CHR»
COS
DATA
DIM
END
EXP
GOTO

GOSUB
INPUT
tNT
LEN
LET
LOG
ON/GOSUB
ON/GOTO
PRINT
READ

REM
RESTORE
RETURN
SGN
SIN
SQR
STR*
TAN
VAL

TRS-80 Commands
Easily Converted

TRS40

CLS

FIX
INKEY$
INPUT#-1
LEFT»(A$,N)
MtD»(A»,N1,N2)
RANDOM
RIGHT»(A»,N)

RND(N)
STOP
TAB

TI BASIC

CALL CLEAR

INT
CALL KEY

INPUT#1

SEG«(A»,1.N)
SEG»(A$,N1,N2)
RANDOMIZE
M«LEN(AS)-N+1
SEG$(A$,M,N)
INT(N*RND+1)
BREAK
TAB,(with comma)
PRINT
REM

TRS-80 Commands
That Can Be Ignored

CLEAR CSNG DEFSNG
CDBL DEFDBL DEFSTR
CINT DEFINT FRE

Commands Difficult to Convert to TI BASIC

TRS-80 TI BASIC

IF.. THEN.. ELSE

POINT
POKE(graphics)
PRINT AT

RESET
SET

IF.. THEN.. ELSE*
refer to line numbers
CALL CHAR CALLGCHAR
CALL CHAR CALL HCHAR

FOR ..ASC ..CALL HCHAR .

NEXT
PRINT .. FOR .. PRINT " ".

NEXT
CALL CHAR CALL HCHAR
CALL CHAR CALL HCHAR

Commands Not Available In TI BASIC*

ERL

ERR

ERROR
ON ERROR

PEEK

POKE

POS
RESUME

STRING)

USR

VARPTR
PRINT USING

when converting a program. After an hour of tracing
through a maze of GOSUBs without the benefit of a single
comment, I decided on a total rewrite.

The TRS-80 version had the program determine the coor
dinates of one of the nine open spots on the slot machine
and then perform a PRINT AT at the location. Using FOR-
NEXT loops, I was able to overprint the nine spots to give
the illusion of a rotating machine wheel. By converting the
PRINT AT commands to HCHAR calls and storing the
four codes for each shape in an array, I simulated this ac
tion on the TI-99/4. The graphics were fantastic (an un
biased estimate), but the speed was disappointing. In the
TRS-80 version it was necessary to insert dummy FOR-
NEXT loops to slow down the rotation of the wheels; the
TI version, on the other hand, was too slow right from the
start.

The single enhancement I had made to the TRS-80 ver
sion was to have the wheels stop one at a time, to prevent
givingaway the final result of the pull during rotation. To
keep the wheelsmoving at a constant speed on the TI-99/4,
I included dummy counting loops as each wheel was
stopped. In spite of its lack of speed, the richness of the
TI-99/4 graphics made the TI BASIC program a more ap
pealing simulation of real slot machine action than the
TRS-90 version.

To summarize, if the program you want to convert is a
number cruncher with a few graphics, the conversion should
go smoothly and result in a TI BASIC program which runs
with speed roughly comparable to its TRS-80 cousin. But
if the program involves the heavy use of graphics, expect
to rewrite it. And if the program is poorly documented to
boot, keep a bottle of aspirin handy. Futhermore, because
of the limitations of the TI BASIC IF-THEN-ELSE, and
the lack of a PRINT AT command you can expect nearly
everyconverted program to increase in length. On the plus
side, however, the extended variable names available in TI
BASIC make it possible to enhance the quality of the
documentation and structure of the rewritten program.

One final note: TI's Extended BASIC Command Car
tridge adds the PRINT AT and PRINT USING statements,
has the capability of controlling up to 28 moving objects
simultaneously, has improved IF-THEN-ELSE capability,
and supports true subroutine definition (a significant aid
in structuring programs). Although Extended BASIC pro
bably won't alter the need for rewriting graphic programs,
it should make the job a lot easier. gg^

Copyright © 1983 Emerald Valley Publishing Co.

Language Conversion:

APPLESOFT
to

TI BASIC

The Apple II has also generated its fair share of ap
plications and games programs—most of them tak
ing advantage of the Apple's color graphics capability.

In this regard the Apple is more like the TI-99/4A than the
non-color TRS-80.

The APPLESOFT language card has about 29 non
graphic commands which are identical to TI BASIC. These
commands, shown in Table 1 below, can be copied without
much concern over compatibility.
ABS DEF GOTO ON...GOSUB SOP
ASC DIM INT READ STEP
ANT END LEN REM STOP

CHR$ EXP LET RETURN STR$
COS FOR...TO LOG SGN TAN
DATA GOSUB ON...GOTO SIN

Table 1

In the remaining 26 or so commands, the differences range
from veryslight to major. Most importantly, the differences,
though slight in format or content, can cause major prob
lems in converting code. I'll go into each command, show
ing what to look for and how to resolve difficulties.

String Commands
APPLESOFT uses three different commands (LEFTS,

MID$, and RIGHTS) in place of the TI's SEGS. The state
ment LEFT$(A$,N) references the first N characters of
string AS. This directly translates into SEG$(A$,1,N).
MID$(A$,M,N) is the same as SEG$(A$,M,N).
Right$(A$,N) references the last N characters in string AS.
The best way to duplicate this is to combine the LEN and
SEG commands as follows: SEG$(A$,LEN(A$)-N+ 1,N).

The VAL function acts the same way in both AP
PLESOFT and TI BASIC if the field being VALed is a valid
numeric string. That is, both will return 45.2 as the value
of "45.2". If the string does not contain valid numeric
characters, however, the results are very different. TI BASIC
will stop the program if the field contains non-numeric
characters. APPLESOFT, however, will return with the
numeric equivalent of the numbers found in the string before
the first non-numeric character. For example: VAL
("123AB") will return with 123. If the first character of the
string isn't numeric, APPLESOFT returns a 0.

This is important because it means that APPLESOFT
does not have to edit a string prior to the VAL statement.
A typical program will have code such as:

Copyright © 1983 Emerald Valley Publishing Co.

10 INPUT AS

20X = VAL(A$)
30 If X = 0THEN 10

I've found that in most cases, 1 can ignore the whole issue
by using TI's built-in numeric editor and coding INPUT
X in place of statements 10 to 30 above. If you can't do
this, use the following routine to replace the APPLESOFT
VAL command:

10 FOR Y = l TO LEN (AS)
20 IF (ASC(SEG$(A$,Y,1))<48)

+ (ASC(SEG$(A$,Y,1))>57)THEN 40
30 NEXT Y

40 IF Y = 1 THEN 80

50 Y = Y-1

60 Y = VAL(SEG$(A$,1,Y))
70 GOTO 90

80 Y = 0

90 END

Note: This is not a rigorous equivalent of APPLESOFT'S
VAL, but it is sufficient for whole numbers greater than - 1.

FOR-TO-STEP-NEXT
In the usual run of programs, the FOR-TO-STEP state

ment is identical in the two interpreters. There is, however,
a very significant difference to look out for. The BASIC
statement FOR Z = 5 TO 4 will execute once in AP

PLESOFT but will not execute at all in TI BASIC! This

difference is important but can easily be spotted while
transcribing a program. It isn't so obvious if the statement
is FOR Z = A TO B where A and B are computed variables.
The safest thing is to test for A greater than B. If it is, make
B equal to A before entering the loop.

Both interpreters treat the STEP statement the same way
and are very similar in the format of the NEXT statement—
though in APPLESOFT, NEXT may be used by itself to
end a single FOR loop. If the FOR loops are nested,
however, APPLESOFT needs the control-variable name
following NEXT, as does TI BASIC.

INPUT/OUTPUT (I/O)
Both machines use very similar INPUT and PRINT

statements. They differ only in the use of print separators.
Both use the comma as a tab command and the semicolon

as a non-space separator. APPLESOFT reserves the colon

The Best of 99'er Volume 1 73

for a special use and doesn't treat it as a new line separator.
When converting, always keep this in mind because it pro
vides a powerful formating tool when converting PRINT
statements. The TAB command is similar in both inter

preters, but TI machine skips to a new line if a TAB value
is less than the current column location. The APPLE will
ignore the TAB statement in this case.

As part of the print function, APPLESOFT has a com
mand of the format SPC(N), which is used to print N spaces.
This must be replaced with a string of N spaces in the TI
PRINT statement. APPLESOFT has to be very careful with
spaces because it does not format a number with leading
and trailing spaces the way TI BASIC does. This means that
it is very rare to see something like PRINT J;K in
APPLESOFT—a perfectly acceptable command in TI code
since all numbers are printed with a trailing space.

The APPLE II screen starts off with the cursor at the
top and works its way down to the bottom before scrolling
begins. The APPLE uses HTAB and VTAB statements to
shift the print position horizontally and vertically in order
to print information at different locations on the screen.
TI BASIC uses the colon, instead, to force line feeds. When
converting, either change the print format to use line-feeds
(colons), or use HCHAR to print at an equivalent location.
Note: TI provides a full PRINT AT (using HCHAR) routine
as part of its Programming Aids I package, but it is very
slow. In many cases (where scrolling is acceptable), you are
better off setting up a sequence of PRINT commands us
ing the colon (PRINT ::::::). If you must use the
HCHAR method of print out, here's a routine to print string
AS at row RO, column CO:

10FORX=1 TOLEN(A$)
20 CALL HCHAR

(RO,CO + X -1,ASC(SEG$(A$,X, 1)))
30 NEXT X

This routine is much faster but requires you to remember
to begin at column 3 (where TI BASIC begins its PRINT
line) and not to allow AS to extend past column 30 (where
TI ends its PRINT line).

The prompt for APPLESOFT input is the same as for
TI BASIC except that it uses a semicolon in place of the
colon to separate the prompt from the input variable. For
example:

10 "ENTER A NUMBER";Q
VS

10 "ENTER A NUMBER" :Q

The last I/O difference concerns getting a single character
without using the INPUT statement: APPLE uses the GET
statement, while TI uses the CALL KEY statement.

SCREEN COMMANDS
The APPLE has three modes of processing: Text mode

and two different graphics modes. While in Text mode, the
programmer has a number of commands which provide a
wide range of control over the screen. The APPLE screen,
in this mode, acts like the TI—except it starts at the top
and works its way down to the bottom before scrolling. It
also allows the programmer to set the width of the print
screen ("text window") and the length (number of lines)
of the text window, among other things. Some of the most
commonly encountered commands are:

74 The Best of 99'er Volume 1

CALL - 936 Clears the screen inside the test window

CALL -912 Scrolls the text window up 1 line
CALL - 868 Clears the current line from the cursor

to the right
HOME Same as TI's CALL CLEAR

POKE 33,L Sets left margin of window to L
POKE 33,W Sets width of window
POKE 34,T Sets top of window
POKE 35.B Sets bottom of screen
FLASH Starts 'flashing' output from white let

ters on black to black letters on white

and back again
INVERSE Reverses output to black letters on white
NORMAL Resets FLASH and INVERSE

POS(N) Gets current horizontal column of the
cursor (i.e., N will have column number
0-39)

To simulate FLASH or INVERSE, use TI BASIC'S CALL
COLOR statement. For Example, CALL COLOR (3,16,2)
gives white numbers from 0 to 7 on a black background.
Changing this to CALL COLOR (3,2,16) will cause the in
verseof it to appear (black numbers on a white background).

RANDOM NUMBERS
Because APPLESOFT has the ability to retain a random

number for re-use, you cannot always convert the APPLE
RND statement directly to TI. In APPLESOFT, if the state
ment is RND(0), APPLESOFT re-uses its last random
number. If the statement is RND(N) where N is positive,
it gives a new random number. If the statement is RND(N)
where N is a negative number, N acts as a 'seed' number,
and all other RND statements will follow a standard se

quence. Note that the value N can be any positive number
in order to give a new random number.

If you see a statement using RND(0), backtrack to the
last statement with RND(N) and save that random number
in place of RND(0). For example:

10 If RND(2)<.5 THEN 500

60 If RND(0)<.75 THEN 600
in APPLESOFT would convert in TI BASIC to:

10Q = RND
15 IF Q<.5 THEN 500

60IFQ<.75THEN600

MULTISTATEMENT LINES
A key point about APPLESOFT that I haven't yet mem

tioned is that it allows multiple statements on one program
line. Each statement is separated by a colon. This allows
code like:

10X = X + Y:Y = Y+1:Z = Z+1

Translating multistatement lines can be a big problem
because there may not be available line numbers to assign
to the converted statement lines. For example:

400 A = A + 1:FOR I = 1 TO X:B = I*A:NEXT I
401 GOSUB 403

402 RETURN

403 REM

404 GOSUB 600

405 A = A+10

406 RETURN

Copyright© 1983 Emerald Valley Publishing Co.

The problem here is that there is no room to separate the
multiple statements on line 400.

You can get around this by using a line number transla
tion: Multiplying all line numbers by 10 allows you space
to insert the extra line of code. The translated code is as
follows:

4000 A = A+1

4002 FOR 1 = 1 TO X

4004 B = I*A

4008 NEXT 1

4010 GOSUB 4030

4020 RETURN

4030 REM

4040 GOSUB 6000

4050 A = A+10

4060 RETURN

IF-THEN-ELSE
APPLESOFT does not require the ELSE feature of an

IF statement because it allows other statements after the
THEN part of the IF statement, as in the following:

10 IF A = X THEN X = X+1:Y = Y+1

20 A = X + Y

If X is equal to A, all statements following THEN are ex
ecuted. If X isn't equal to A, the program simply advances
to statement 20. The TI BASIC equivalent is:

10 IF X = A THEN 15 ELSE 20

15 X = X+1

16 Y = Y+1

20 A = X + Y

Because TI BASIC lacks multiple statements per line, it
requires much more coding and a concurrent increase in
memory needed for code. Keep this in mind if you are temp
ted to enter a program requiring 16K RAM in AP
PLESOFT; it probably won't fit in your TI machine. [Of
course, if you have TI Extended BASIC, all this is moot,
since this Command Cartridge allows multiple statement
lines. See "HOW E-X-T-E-N-D-E-D IS EXTENDED

BASIC?"—Ed.]

LOGICAL EXPRESSIONS
Both interpreters allow logical expressions to be used as

if they were numeric values. APPLESOFT treats true ex
pressions as if they are equal to 1, while false expressions
are equal to 0. For TI BASIC true expressions are -1, false
are 0. Whenever converting code from APPLESOFTJust
insert a "-" in front of the logical expression:

10X = (0$ = "A")*5
becomes

10X=-(0$ = "A")*5

AND/OR

APPLESOFT allows multiple IF tests to be combined us
ing the Boolean operators AND and OR. TI BASIC also
allows this using the "*" and " + " arithmetic operators,
respectively. For example:

10IF(A = B) AND (C = D) THEN X = X+1
is replaced with

10 IF (A = B)*(C = D) THEN 15 ELSE. . .
15 X = X+1

In some cases, a straight conversion of the APPLESOFT
IF-THEN will result in wasteful code. It is always a good
idea to understand the purpose of the tests being made, and
if possible, re-code them more efficiently. For example:

Copyright © 1983 Emerald Valley Publishing Co.

10IF(A = B) AND (C = D)THEN X = X + 1
20Y = Y+1

would convert to: !

10 IF (A =B)*(C =D)'tHEN 15 ELSE 20
15X = X+1

20Y = Y+1

but it would take less code (and therefore less core!) to in
vert the test:

10 IF (A< >B) + (C<>D) THEN 20
15 X = X+1

20 Y = Y+1

SPECIAL FUNCTIONS
Each interpreter has special functions oriented toward the

manufacturer's hardware. Some of these are similar to other
functions available in a different computer. I will list only
the ones most commonly seen in APPLESOFT programs.
CLEAR Initializes all variables. Automatically

done by TI BASIC as part of RUN.
HIMEM Sets highest and lowest memory
LOMEM available to BASIC. No equivalent in

TI BASIC.

FRE(0) Gets arrlount of available memory left.
PDL(N) GETS joystick input. In TI BASIC,

use CALL JOYST instead. The PDL

function! returns with values from 0 to

255. If the value of N is 0 to 3, you
are referencing the joysticks, but values
from 4 to 255 can do weird things.
Luckily, the APPLE joysticks don't
seem to be used much. Also, the only
way to test for the 'FIRE' buttons is
to PEEK(-16287) through
PEEK(- 16284) for paddles 0 thru 3.

POP Cancels the last GOSUB. This is most
ly used in edit subroutines where an
error causes the progam to go to an
error routine instead of RETURNing.
The only way to code an equivalent in
TI BASIC is to have the edit routine

coded in an error switch which is inter

rogated as soon as the subroutine
RETURNS.

This tells APPLESOFT to GOTO a
part of the program if it encounters
certain errors while processing. In TI
BASIC, any errors are either handled
by the BASIC interpreter (e.g.,
dividing by zero), or cause the pro
gram to end (e.g., reading past the last
DATA statement). The ON ERR is
most often used to trap an error ex
pected by, or consciously caused by
the programmer.

USR(X) Jump to a machine language
subroutine.

As you can see from theforegoing, converting most code
from APPLESOFT to TI BASIC is straightforward,with
most of the effort devoted to converting PRINT statements.
Most importantly, don't get frustrated if your first attempts
don't succeed the way you intended. After a while, it will
all become second nature.; '

ON ERR

RESUME

The Best of 99'er Volume 1 75

The Secret of
Personal Record Keeping

Implementing

DISPLAY AT
and

ACCEPT AT

Without Extended BASIC

Some of you may have accidentally stumbled upon
features of the TI-99/4 that are not described
anywhere but which are nonetheless quite helpful. I

did. . .and what happily resulted was a way to quickly print
text to and accept it from anywhere on the screen without
having to pass through loops or causing the screen to scroll.

Those of you with Extended BASIC already have this
capability with the DISPLAY AT and ACCEPT AT
statements. Now you can have these powerful features in
TI BASIC (the language built into the TI-99/4 and 99/4A
computers), provided the Personal Record Keeping Com
mand Cartridge is inserted. This cartridge, which is quite
powerful and versatile in itself, will interface with the con
sole's BASIC routines and allow you to use two new
statements: CALL D and CALL A. [See "Personal Record
Keeping: Managing a Mobile Home Park" for more infor
mation on the PRK cartridge.Those of you without the PRK
cartridge but who happen to have the Statistics cartridge
should be able to use that instead.—Ed.]

Before getting into the documentation, I should, of
course, mention that you can also print anywhere on the
screen without CALL D by handling the printing character
by character using the subroutine given in the examples in
your manuals, i.e., "Character Definition." The drawbacks
of that method include lack of speed (the letters appear one
by one), more cumbersome programming and more
memory space taken up.
1. DISPLAY AT - numerical data

CALL D (R, C, L, V)

R

C

L

V

R/C-

row number of first character of print line
column number of first character of print line
maximum length of print line; must be > = 1
variable for the value that is to be printed

The R(ow) and C(olumn) variables are meaningful
with values between 1 and 24, and 1 and 28, respec
tively (the print field 24 x 28 is used). Values below
the minimum of 1 (0 and negative numbers) are
treated as the value 1. Values above the maximum

76 The Best of 99'er Volume 1

(24 or 28) are automatically subtracted as many
times as is required to bring the result between 1
and 24 or 28; this result is then used as the R and
C value. This is a nice feature that eliminates many
program halts of "BAD VALUE" that often result
from careless programming. Data at the end of the
screen line is not printed at the beginning of the
next screen row as is the case with the CALL
HCHAR statement.

L— The L position can be used with a fixed number
(the maximum meaningful number is 28) or as a
variable to which the function can be assigned in
numerical form, like SEGS in strings.

V— Instead of a numerical variable, you can also put
a number in this position; it will then be printed
on the screen in a position according to the rules
above.

Example 1
100 CALL CLEAR
110 V = 326525

120 CALL D(12, 10, 5, V)
130 GOTO 130

Of course you can explain why this program displays only
3265 in the middle of the screen. (Remember that a sign-
equivalent to a digit—precedes each number, and that plus
signs are suppressed on printing.) How would you have to
change line 120 to give the full 326525?

2. DISPLAY AT - string data

Version 1: CALL D(R, C, L, S$)
Version 2: CALL D(R, C, L, ("PAUL W. KARIS")
Version 3: CALL D(R, C, L, CHR$(N))

The variables R, C, and L work as described previously
under section 1, above.
Here expecially, L can be put to good use as a built-in SEGS.

Copyright © 1983 Emerald Valley Publishing Co.

Version 1: the string variables S$ is printed
Version 2: the string between quotes is printed
Version 3: a complicated way of saying CALL HCHAR(R,
C, N) that is merely mentioned here as illustration of the
possiblities

Example 2
100 CALL CLEAR

110 AS = "THIS IS MID-SCREEN"
120 CALL D(12, 4, 19, AS)
130 GOTO 130

3. ACCEPT AT - numerical data

The ACCEPT AT statement works like INPUT but can

be formated anywhere on the screen. The input prompt can
be printed in the appropriate place with the technique of
section 2, above. The built-in value checks are an additional
feature.

CALL A(R, C, L, F, A, MN, MX)

R, C, and L have been explained in section 1.

F = function variable

A = accept variable
MN = minimum value

MX = maximum value

F— The numerical variable in this position assumes a
value 1-7 depending on certain function keys be
ing depressed. The values connected to these func
tions in this way should not be confused with the
ASCII values of these functions that can be useful

in CALL KEY statements. For completeness, I'll
also tabulate the ASCII values here.

Function Key
CALL A value

(F position)
ASCII value

TI-99/4 A TI-99/4
FCTN 5 SHIFT W - BEGIN 6 14

FCTN 8 SHIFT R - REDO 4 6

FCTN 7 SHIFT A - AID 3 l

FCTN 9 SHIFT Z - BACK 7 15

FCTN 4 SHIFT C - CLEAR 2 2

FCTN 6 SHIFT V - PROC'D 5 12

ENTER 1 13

CLEAR will not only give F a value of 2, but it
also clears the input printing field on the screen and
is to be used when typed input is not yet entered
and should be changed. Warning: This means that
if you write a program that continually loops to
a CALL A statement, CLEAR cannot be used to
break the program. Only QUIT or cutting the
power will work then, but it will also erase your
program in the process! The solution to this prob
lem is to program your escape routine, e.g., IF
F=3 THEN 10000 enabling you to use AID to
bring the program to line 10000 which reads: 10000
END.

A— The variable in the position of A assumes (accepts)
the value you typed in much in the same way as
the input variable does after you depress ENTER.
The F variable, of course, then gets the value 1 since
you have used the function key ENTER. If you
press ENTER when the print/input field contains
no information (only "space"), F will take on the

Copyright © 1983 Emerald Valley Publishing Co.

value in the above table if one of the function keys
has previously been pushed.

MN— The numbers or the values of the numerical
MX— variables in the positions MN and MX respectively

determine the minimum and maximum values that
A will accept. A gentle beep when you press the
ENTER warns you if you try to step beyond these
imposed limits. The screen, of course, will accept
any numerical data, provided that the length does
not exceed L(e.g., if L=2 and MX = 10000you still
cannot get A to become more than 99 since the
screen will not accept more than 2 digits). Since the
plus and minus signs (+ and -) as well as the let
ter E (scientific notation) are all considered to be
numerical input, they will also be accepted. String
data, however, are not accepted by the screen at
all when you use CALL A in this way.

If MN = MX, A will accept only the MN and the MX value.
If MN>MX, A shouldn't accept any value at all, but il-
logically, it does accept the MN value.

Example 3
100 CALL CLEAR

110 CALL D(3, 3, 28, "ENTER 1, 2, OR 3")
120 CALL A(10, 25, 1, F, B, 2, 3,)
130 CALL CLEAR

140FORT=1 TO 500

150 NEXT T

160 CALL D(15, 3, 28, "YOUR CHOICE WAS")
170 CALL D(15, 20, 2, B)
180FORT=1 TO 500
190 NEXT T

200 GOTO 100

4. ACCEPT AT - string data
CALL A(R, C, L, F, AS)

R, C, and L are explained in section 1.
F is explained in section 3.
AS = accept string variable.

A$ The variable in the AS position is filled with the
typed string information when you press ENTER.

Example 4
100 CALL CLEAR

110 MS = "PLEASE ENTER YOUR NAME"
120 CALL D(5, 3, 26, MS)
130 CALL A(10, 3, 20, F, N$)
140 CALL CLEAR

150FORT=1 TO 500

160 NEXT T

170 CALL D(5, 2, 28, "THANKS " & N$)
180FORT=1 TO 500
190 NEXT T

200 GOTO 100

Now you're on your own: It's your turn to apply these
two new commands and, perhaps, discover some additional
ones.

[Note: In the event that Texas Instruments gets away from
producing "hybrid" Command Cartridges (containing both
BASIC and GPL coding), future releases of Personal
Record Keeping will not offer the capabilities described in
this article.—Ed.]

The Best of 99'er Volume 1 77

Would you appreciate being able to write shorter
programs that effectively do the same thing as
longer ones? Or, would you enjoy watching the

computer do a large amount of the tedious and boring
designing, defining and selecting of dozens of graphics
characters—work that you would otherwise have to do
yourself? If your answer to both of these questions is YES,
read on, fellow 99'er.

The scheme used in the TI-99/4A to represent screen
character patterns with hexadecimalnumbers is compact and
convenient—ingeniousreally. It's compact because only 16
digits uniquely specify the on-off states of the 64 pixels in
each 8x8 pixel character block. Such a system is certainly
more satisfactory than display systems that provide only a
small selection of predefined characters. It's convenient
because the programming requires only simple statements
of the form:

CALLCHAR(IJK,"0123456789ABCDEF")

to define any 8x8 character imaginable. Likewise the
statement:

CALL HCHAR(ROW,COLUMN,IJK,REPEAT)

will put character UK anywhere on the screen. After a brief
period, one is able to work intuitively, giving little conscious
thought to the format.

78 The Best of 99'er Volume 1

Yet even with this system, there remains a considerable
amount of tedious work to be done because every character
we want on the screen (beyond the resident alphabet, etc.)
must be defined and must be located. Doing this for many
characters can mean lots of work, as in Figure 1, where a
graphic occupying less than half the screen contains 33 dif
ferent characters. All 64 user-definable characters would use
up 64 lines of code just to define; if resident characters were
redefined, we could end up having in memory a hundred
or so program lines devoted to this one purpose.

In addition, there is the wear and tear on the program
mer. He gets his ears burned if he leaves out one of those
quote marks. Additional possibilities for errors include leav
ing out a comma or parenthesis or, worse, having a pattern
identifier string with more or less than 16 numbers, or in
advertently typing in a nonhexadecimal symbol. Just type
in four or five dozen CALL CHAR(IJK,"0123456789
ABCDEF") statements and you willsurely develop an acute
case of boredom. Such static definition—with a program
line for every new character and the resulting long list of
CALL CHAR statements—is a lot of trouble and a source
of errors.

It is also unnecessary. A little experimenting will show
that we can define screen characters with data statements
and a loop. Only a single CALL CHAR statement need be

Copyright © 1983 Emerald Valley Publishing Co.

typed in and carried in memory. Such a method was used
in the program which draws Figure 1. The program is given
in Listing 1, Xmas-Tree. The hexadecimal strings which
define the screen characters to be used are in data statements

starting at line 270. The loop starting at line 440 reads a
data statement and puts the hexadecimal string it has pick
ed up into a CALL CHAR statement. Thus the definition
is sent off to graphic memory where it can be used later
in the program as many times as needed. In this program,
each data entry contains a comment to help one figure out
what is happening on the screen, and each data entry con
tains three items: identification string, character number,
and pattern-identifier string. On the next pass through the
loop, another hexadecimal string is picked up and put in
the CALL CHAR statement. Thus another defined screen

character is sent off to memory.
After the program has cycled the last time through the

loop, all the screen characters described in the data
statements are in memory. They are now available using
CALL HCHAR or CALL VCHAR statements just as if
the program had run through dozens of CALL CHAR lines.
Fewer program lines have been used, the possibility of er
rors reduced, and life has been made much easier for the
programmer.

In a similar manner, characters are located on the screen
beginning at line 740. For this application the data entries
have the form: identification string, row number, column
number, character number. The identification string serves
only as documentation. The loop at line 940 puts this in
formation in a CALL HCHAR statement which then sends

it off to the video display processor. All characters will now
appear on the screen at their assigned locations. Of course,
the information we have in data statements could also be

stored on a floppy disk.
Dynamically defining characters and putting them on the

screen with data statements and loops (1) saves program lines
and effort, (2) reduces errors, and (3) can make a program
easier to follow if documentation is added. Although for
this program no special attempt has been made to reduce
the memory required, the information in data statments
could be packed tighter by omitting identification. Also, we
could incorporate the number of repetitions in the data
statements.

Figure 1. Many different characters can mean lots of work for the programmer.
Figure 2. Screen characters used for one-pixel resolution in bar height.
Figure 3. Bar graph with one-pixel resolution.
Figure 4. Three variables plotted with one-pixel resolution.
Figure 5. An example of 99/4 graphics.

Copyright © 1983 Emerald Valley Publishing Co.

Another opportunity for making character definition and
placement a part of program dynamics occurs in plotting
bar graphs. Bar graphs are a frequent application for com
puter graphics, and they look terrific on the color monitor.

On the TI-99/4A it is easy to plot a bar (Y characters
high) by just using CALL VCHAR(ROW,COLUMN,IJK
,Y). But the resolution will be very poor because we can
adjust the bar height in increments of only one full character,
which is about 3/8 of an inch on the 13-inch monitor. Ideally
we'd have a continuously adjustable bar height, but this in
finite resolution cannot be realized with raster-scan systems.
We can, however, get resolution equal to the pixel height.
Toward this end we will define eight screen characters as
shown in Figure 2.. The first character has the bottom row
of pixels turned on, the next one has the bottom two rows
turned on, etc. The eighth character has all pixels turned on.

These characters are then used as bar tops. Stick the right
one on top of your bar graph and you have resolution of
one pixel (which is 1/8 of a character)—quite satisfactory
with existing CRT's. On the 13-inch monitor this height in
crement is about 3/64 of an inch.

The program in Listing 2, Bar-Topper,which uses this
method, plots the bar graph in Figure 3. The characters
available for use as bar tops are defined beginning at line
360. Scale of 1 character = 10 units is applied to the value
entered at the keyboard starting at line 700. The integral
value of Y is found and the remainder used to select the

bar top character needed. The actual selection is done by
the ON GOTO statement at line 780.

This program does work, but represents a brute force ap
proach. If there is only one bar on the graph, then only one
character will be used at the bar top. Yet eight bar-top
characters have been defined and are sitting in memory. To
take an extreme case, suppose we have four variables to be
represented by four bars of different colors. Here, 32
characters must be defined and available for use as bar tops,
yet only four bar-top characters will actually be used. Besides
taking up memory, we have used half of the user-defined
characters. This approach is wasteful. Why define characters
that sit in memory but are never used?

Let's try a better idea by devising a program that defines
bar-top characters after reading the data. Then it can define
only characters that are needed. In other words, the data
determine what bar-top characters are defined. To do this,
we will have in the program a master string containing four
teen zeros and sixteen F's. Segments exactly sixteen spaces
long can be taken from this master string with a SEGS state
ment. Next, the segment can be used as the pattern-identifier
string and put in a CALL CHAR statement to define a bar
top. Where will these 16-space segments start? Well, the data
can cause a character with the first row of pixels turned on
to be defined, or a character with the second row turned
on, etc.

A possible coding to do this might be as follows:

110 MASTERS = '*(XXX)0000000000FFFFFFFFFFFFFFFF*,
115 REMAINDER = BARHEIGHT- INT(BARHEIGHT)
120 TOPPATTERN = INT(REMAINDER*8+.5) + 1
130 STARTPOSITION = 2*TOPPATTERN - 1
140 TOPPATTERNS = SEG$(MASTER$,STARTPOSITION, 16)
150 CALL CHAR(97,TOPPATTERN$)
160 CALL HCHAR(21-Y, 16,97,3)

Here the 21 in 21 - Y allows the bar to be up to 20 rows high.
Suppose, for example, that data calls for a bar top with

the bottom two rows turned on. Then TOPPATTERN will

The Best of 99'er Volume 1 79

be 2. Then STARTPOSITION = 3. Then the pattern-
identifier string created in line 140 will be

TOPPATTERNS = •mOOOaXXJOOFFFF"

(as you can see, if you will take the trouble to count this
off, starting at the third position in the master string). The
resulting screen character that is defined in line 150 will be
one with the bottom two rows of pixels turned on. As the
program runs, we want each datum to determine where the
16-space segment will begin. Thus we have used the re
mainder to calculate STARTPOSITION. By notching back
and forth with STARTPOSITION, the routine will define
any character needed to top off a bar.

With this particular routine there will be a little problem
associated with rounding up to the next higher grid line on
the next higher row. For instance, if the scale used is 1
character = 10 units, we would want 99.9 to appear on the
graph as 100. Another problem (I didn't say this was too
simple) involves the character to be used for the body of
the bar. This character must have all pixels turned on, but
the routine above will not create such a character for all
values of the data set.

Auto-Top, a program in which these problems are solv
ed, is given in Listing 3. A routine similar to the one above
starts on line 750. Character 96, which is used for the body
of the bar, is defined earlier in the program. Note that this
master string contains 18 F's. (If you try this program, you
had better count them carefully.) TOPPATTERN = 9 will
pick up the extra F's at the 17th and 18th positions.

The problem of rounding up to the next higher grid line
(so 99.9 will show up as 100 as in the earlier example) is
taken care of in lines 820 and 830 where a one-row-on
character is defined and put on the very top of the bar if,
and only if, TOPPATTERN = 9.

A graph with only one bar is not very useful. We can
generate additional bars with a loop. The routine in Listing
4, Three-Bars, plots three bars of different colors. See line
680. (My 13-inch monitor displays a lot of spillover with
most colors—especially with red. There is lessspilloverwith
lightor mediumgreenor blue, and withwhiteand yellow.)
As the loops runs, it will shift to succeedingcolor sets with
the expression89+ BAR*8as can be deduced by consider
ing the statement

CALL CHAR(89+BAR*8,TOPPATTERN$).

When BAR= 1, this statement defines character 97; when
BAR = 2, character 105; and when BAR = 3, character 113.
The first character is in color set 9, the second in color set
10, and the third in color set 11, allowing for three bars of
different colors.

The position of the bars is shifted by the expression.
11+ 5 = 16 is the position of the left edge of the first bar,
and the left edges of all bars are 5 columns apart. These
bars are three columns wide. Figure 4 shows this graph as
photographed on the 13-inch monitor.

This program and the earlier ones here might be a little
longer than if they were written in the standard way.
However, they will not get much longer if the graphics are
made more elaborate. For example, the bar graph program
does not get much longer if more bars are added.

80 The Best of 99'er Volume 1

The bar graph in Figure 5 was made using these tech
niques. I present it here just to show off the kind of
goodlooking graphics that can be made with the TI-99/4A
and TI BASIC. This program—with its outlining and the
fact that it reads and writes data for eight variables from
files and calculates items such as percentages—is more in
volved than the listing given here.

This brings up a new problem that has been created: In
many of my programs I run out of characters. I did not
notice this limitation when I was typing in so many CALL
CHAR, CALL HCHAR, and CALL VCHAR statements.
Actually when you think about it, there are not very many
characters available. If you start at the left of the screen
and put a different character in each space, you will run
out of characters in the fifth line if you include punctua
tion, number, the alphabet, and the eight user-definable sets.

In other words, it takes only about 17% of the screen
to display all available characters. Mathematically, we are
not about to run out of characters since there are 256 dif

ferent ways to put together just one row of a character. And
the number of characters that can be on the screen in this
graphic mode is 24 rows of 32 columns = 768 spaces.

Since my interest is primarily in graphics, available user-
definable characters are more important to me than
memory. Memory problems can often be avoided. To put
a unique character on every space on the screen would re
quire 48 character sets—several times more than any home
computer presently has. I do not know if this is
unreasonable. Two years ago the idea of a 48K memory
sounded unreasonable. Perhaps some computer architect
will devise a method of going to a higher resolution with
nestedcharacter sets. [For a discussion of the high-resolution
bit-mapped graphics supported by the TI-99/4A, see "3 - D
Animation with the TMS9918A Video Chip."—Ed.]

Finally, note that for some applications it can be useful
to define random graphics characters. This process,
however, really eats up character sets. In Listing 5, Twinkle,
random characters are defined that also have a certain
amount of shape. Line 240 of this code generates random
numbers from 1 to 16, and lines 480 to 620 convert them
to hexadecimal notation 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
These numbers are assembled into a 16-space string. This
hexadecimal string then goes into a CALL CHAR state
ment to define a random graphic characher.

Shape is forced on the character in lines 280 to 470 by
rejecting certain numbers generated by the random number
generator. In this particular application, the edges of the
characters are "rounded off so they will not appear square.

I use such random-patterned screen characters to soften
up the edges of my "block graphics" designs. ("Blockhead
graphics?") Another application is to create dramatic ef
fects as is done in Twinkle given in Listing 5.

I also use random characters to induce variations on
things that, as in nature, change with time-shadows or ex
plosions, for instance. Some video games could undoubtedly
profit from this technique. I get a little tired of aliens that
always blow up the same way. Hmm—come to think of it,
there is that video game with the pigeon in it. . . .

Copyright © 1983 Emerald Valley Publishing Co.

*
c
a

*

*
in

*

«
o

«

«
'

«
«

P
S

«

«
X

«

O
f
a

)
O

f
a

)
P

S
X

b
)
b

)
X

f
a

.g
a

S
P

S
fa

.P
S

X
Q

P
a

g
Q

~
fa

)
C

N
P

S
P

S
P

S
P

S
P

S
P

S
P

S

O
)

.j
_i

_i
-i

•j
.j

-i
.J

>
j

>
J

g
X

pa
X

ID
K

»
X

ID
10

X
-
X

~
C

0
X

O
•
•
C

M
r
K

fia
K

W
-

X
X

t-
a

X
X

X
X

X
ca

ca
X

Q
H

l
>

j
g

^
>

J
^
g

^
£

^
>

)
»

J
a

a
S

H
g

H
O

>
t-H

O
)T

-H
<

O
H

>
J

'H
«

W
H

T
»

-
t-

y
T

-
t-

T
-

Q>
K

"
I"

-
»

h
S

h
B

«
Z

H
r

-
i-.

35
35

«
|
M
!
B
|
a
!
«
!
B
;
5
»
<
U
M
!
<
t
B
!
M
M
D
»
t
H
M
«
!

-
-
X

-
-
X

Q>
X

-
O
X

-
-
X

-
C
M
X

-
-
X

-
«
-
X
X

rs
<
-
X

fa)
X

fa)
X

-to
X

X
fa)

O
O
O
O
O
O
B
O
B
O
O
O
B
«
»
J
O
O
B
O
r
W
O
f
l
t
f
Q

-
Q
l
D
.
-
)
a
c
s
.
-
.
a
o
>
y
Q
q
,
i
-
i
O
r
s
-
Q
Q

-
-
Q
B
Q
a
S
«
K
Q
W
r
O
"
H
io

c
a

e
»

o
o

fa
)

fa
)

fa)
fa)

b
)

fa
)

b
)

fa
)

u
i
(
D

i
D

m
p

a
>

u
>

<
o

t
o

r
>

M
N

N
t
>

r
s

T
-

C
M

tO
«

C
O

C
O

C
O

c
o

c
o

tO
«

I
f
l
l
O

N

o
>

o
>

o
>

o
o

>

o
o

e
n

o

1
»

O
i

C
T

«
»

*
-

cm
.
S

O
r
-

o
»

o
o

o
^
,

N
w

q
i
n

t
o

is
.

fa
.

o
o

o
fa

)
»->

T
-

B
Q

q
a

fa
.

Q
T

-
fa

)
_

x
_

o
_

t
o

Q
fa.

e
j
h

s
s

t
o

O
fa.

O
fa

.

r
s

o
r
s

b
.

O
l»

-
q

O
b

)
S

C
O

fa
.

o
o

o

~
M

T
-

r
s

o
r
s

fa
.

i
o

o
fa

.
T

-
l
x

fa.
o

o
fa.

r
-

I
O

H
h

I
Z

o
t
u

o
c
o

o
fa

.
o

ID
O

fa
.

fa.
tO

fa.
b

)

B
w

j
w

j
g

^
r
*

o
fa

.
fa

.
r
*

fa
.

c
a

u
b

r
M

b
m

o
q

-
fa.

o
fa.

c
o

u
.

r
»

M
O

S
B

Q
O

C
O

IP
fa.

O
fa.

O
fa

)fa
)fa

)tO
fa.

is
,

o
o

Q
t
o

o
r
O

b
h

r
O

U

~
~

>
-

t
-

O
fa

.
fa

.
I
O

fa
.

-
fa.

b
.

fa.
O

•T
-

r
fa

.
ID

O
fa

.
fa

.
o

fa
.

c
o

o
t-

.
f

W
C

O
N

t
*

fa
.

fa
.

o
M

O
W

N
M

r
b

)
Is

(
P

t
s
Q

O
O

m
O

W
g

O
U

.
U

.
r
a

M
-
~

-
~

—
"
-

fa
)

b
)

o
i

<
n

u
.

o
)

i
s

n
a

fa
.

I
s
,

fa
.

fa
)

r
-

q
q

1
—

•
—

y
i
d

i-»
!-•

o
fa)

m
•
r
»

o
e
>

o
t
-

r
r
c
a

c
i
a

i
n

a
i

•
b
.
M
a
U
.
Q
I
i
.
O
U
.
O
B
N

I
t
o

t
o

t
o

t
o

t
o

t
o

t
o

•
f
a
.

f
a
.
t
O

f
a
.
f
a
)

•
<
-

g
g

X
P
S

f
a
)

r
-
q
1
q
*
c
m

-
•
b
)
f
a
)
X
t
-
p
s

P
c
a
o
o
3
5
o
~

f
a
.
I
s
,
U
.

O
f
a
)
f
a
.
O

•
f
.
t
o

f
a
i
f
a
)
c
a
u
.
i
-
r
>

•
f
a
.
t
o

f
a
.
r
s

c
a
t
>
.
f
a
.
f
a
)
f
a
)
f
a
)
r
-
c
a
q
c
a
t
o
o
q
c
>
f
a
.
O
f
a
.
f
a
)
o
u

o
a

x
^
g
g
g
g
g
q
1
^

•
«
-
t
-

r
-
c
m
i
s
t
-
i
n

Q
Q

f
a
)

O
Q

e>
Q

fa.
p

.
Q

r-r«
.

^
co

O
t-fa

)
r
W

O
Q

Q
b

-fa
)

-
ca

fa.
oa

r
g

fa.
to

fa.
rs

Q
P

8
3

i
d

c
m

t
o

t
o

q
q

u
>

g
—

-
r
s

•
t
o

is
,

•
t
o

r
»

~
»

-
.
b

)
g

c
a

c
M

c
a

t
o

t
-

o
O

i
^

•C
O

T
-

fa.
O

fa.
fa)

o
o

o
u

-
•

u
w

o
.

h
u

.
h

h
q

>
t
o

c
M

c
a

o
c
a

o
f
a

)
c
o

c
a

o
i
o

c
a

f
a

.»
-
»

f
a

)
q

c
a

f
a

.t
-
'P

S
-fa

.
-

h
.

r
*

»-)
fa)

O
f
a

i
q

o
>

c
o

r
-
u

>
t
n

q

p
t»

)

O
ps

o
a

c
i
.
>

.
o

o
o

o
o

o
o

o
o

x
O

P
f
a

)
i
n

c
a

f
a

)
O

c
s
c
s
c
a

O
O

X
X

l
O

O
O

O
O

O
O

O
Q

O
.
f
a

.
g

»
8

>
)
>

.
O

H
r
B

B

•
c
a

*
-

cm
to

q
i
n

i
d

i
o

Q
O

O
to

o
c
o

y
<

-
r*

.
c
m

r
»

fa
.

i
t
-

r
-

z
g

fa
.

-
t
o

fa
.

e
a

b
.

c
m

•fa
)

I

p
s

t-
.

p
s

ft.
r
s

»
.

>
.
H

W
h

.
«

«
T

~

f
a

)
p

s
p

s
p

s
p

s
p

s
p

s
p

s
p

s
f
a

)
x
f
a

)
3

5
c
o

c
a

c
o

c
o

p
s

fa.
fa)

~
-
g

"
-
tO

fa
.

fa
)

t-
.

fa
.

m
t
o

fa)
O

I
D

-
.

c
o

O
O

M
q

t
o

-
j
Q

c
c
f
a

.
T

-
i
n

q
z
c
f
t
m

t
-

X
~

^
t-

iC
B

t-
'P

B
B

S
P

B
P

S
P

S
P

S
C

S

r
-

in
-

w
II

g
O

P
S

P
S

P
J
P

S
X

I
X

X
X

X
X

X
X

fa
iQ

O
O

O
O

O
O

Q
t-

g
g

x
q

c
a

^
t-

fa
jfa

)
-
o

p
s

C
O

35
O

O
3

5
-
c
o

t
-

I
-

to
t
-

C
O

g
T

-
fa.

C
8

>
)
>

j
>

4
i
J
^
>

)
>

)
>

)
H

B
|
g

X
O

>
a

h
.a

B
Q

M
O

P
g

M
a

O
D

W
M

D
r
N

p
q

i
W

U
.
B

r
H

-
P

x
c
a

x
x
o

x
f
a

)
l

a
a

a
;

a
s

a
s

a
s

D
3

>
J
r
>

)
r
W

>
J
e
O

>
J
W

C
8

M
O

-
Q

Q
K

>
•

U
.

Q
h

.
Q

B
O

>
J

-
M

M
Q

Q
w

B
P

I
I
!
!
a

O
H

>
J

I
O

O
O

O
O

O
O

M
O

<
r

N
P

«
r

>
j
~

t
-
.
g

>
q

(
-
Q

t
o

a
<

c
a

o
.
i
n

i
-
x
^
)
Q

P
S

O
—

•
x
x
g

o
o

o
w

o
P

S
O

t
-

Q
-

fa.
r*

~
X

O
O

fa
)
«

II
I

m
a

a
a

a
a

a

ps
ih

c
a

x
-

-
x
«

x
«

x
c
a

X
Q

y
X

T
-
to

X
Q

T
-
X

-
-
X

-
X

oa
q-

X
c
a

x
-
X

Q
«-»

t-»
o

a
o

Q
b

)
>

J
t-

>
j>

j>
j»

ji-
)
i-

)
i-

)
t-

)
8

5
iS

fa
)g

to
c
a

t-fa
.fa

)i-i
->-•

-fa
.i-T

-i-<
g

o
i-c

M
c
o

i-g
c
a

t-c
a

c
a

t-p
a

t-
q

t-fa
.t-p

a
i-X

Q
3

g
c
o

p
B

X
-

n
c
>

H
ix

g
.jS

>
j>

j>
i>

j
*i

>
j

.-)
S

B
S

fa
)

b
)

fa
)

y
p

s
p

s
a

s
a

w
b

)
b

)
>

-
i
X

X
X

X
X

X
X

X
X

f
a

)
f
a

)
t
-
|
b

)
i
O

c
a

X
f
»

f
a

.
X

c
a

X
C

a
f
a

.
X

-
X

Q
p

s
«

o
o

o
o

o
o

o
o

o
o

«
«

o
«

p
a

c
a

o
f
a

.
c
o

o
c
a

Q
c
a

f
a

.
Q

»
-
»

Q
a

5

K
X

Q
r
w

I
O

O
n

;
-X

fa
)*

-X
tO

X
X

W
X

fa
)b

)O
fa

)W
fa

.Q
O

X
fa

)b
)X

b
]
X

X
X

X
X

X
X

ca
Q

55
-Q

c
a

to
o

fa
.Q

fa
)

-
o

fa.Q
ft.

o
as

as
as

u,
ta

u
i"

•
g

o
o

P
a

e
e
e
e
e
a

.
~

o
t
-

cm
to

q
1

m
i
d

••S
<

-
t
-

^
^
*

^
^

^
in

i
s
t
s
o

i
e
r

m
m

q
i
n

i
d

r
s

r
r
r
w

w
w

w
w

w
w

w

g
p

s
o

o
s

o
o

o
o

o
o

o

c
m

t
o

q
*

i
n

t
o

r
s

c
o

c
o

c
a

t
-

q
i
n

i
d

r
*

c
o

o
»

c
a

q
,
q

q
,
q

i
q

-
q

q
q

i
n

i
n

i
n

i
n

i
n

i
n

m
i
n

m
i
n

i
D

I5

s
.

0
)

<
U

iS©

o
"
p

i
H

g
«

*
—

o
r

—

—
-

E
i

«
«

g
—

-
j

O
e
n

fa)
—

o

t
o

t
o

t
o

t
o

t
o

~
~

X
—

+
-
3

C
O

T
-

O
T

-
C

M
tO

IO
-

—
O

1
O

O
O

O
O

I
D

g
o

.
g

fa)
-

3
5

I
D

I
D

ID
I
D

I
D

I
D

•-i
-
J

>
.

>
-

>
"

>
"

>
-
>

-
—

O
X

B
-

1
1

1
1

I
I

t
o

r
s

t
-

•j
w

3
:

II
—

^
o

g

C
M

C
M

C
M

C
M

C
M

C
M

X
g

v
>

e
-

p
s

O
O

O
fa)

—
—

o
s

a
a

s
a

s
b

b
s
h

-
M

^
K

t-
i

x
x

x
x

x
x
~

a
I
-

C
O

X
—

o
a

o
a

o
a

o
a

o
a

a
>

.
t
~

—
M

o
a

C
O

r
s
O

r
s
o

r
s
o

r
s
o

r
s
o

O
f
a

)
u

i
a

t
a

U
O

m
s
o

)
x
o

>
x
(
n

x
<

n
i
E

x
t
d

o
O

a
s

x
a

ft.
g

II
c
u

b
)

ii
a

s

0
-
J
O

-
J
O

-
)
0

—
>

O
i
-
)
>

-
)
>

-
J
(
/
3

e
-

t
o

-
j

~
t
-

p

H
i
J
H

i
J
H

i
-
)
H

i
-
I
H

i
-
)
b

I
«

I
Q

K
H

Q
J

W
X

t
-

o
x
o

x
o

x
o

x
o

x
x
x
b

.
g

O
b

)
O

x
a

b
)

b
)

o
o

o
o

o
o

o
o

o
o

o
o

—
t
O

f
a

.
-
J
O

O
O

Z
«

(

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
c
a

i
D

r
s
o

o
a

t
O

T
-
c
M

t
o

g
i
n

i
o

r
s
c
o

c
n

o
y
c
M

t
o

g
•
n

o
o

o
o

c
o

o
o

e
n

e
n

e
n

e
n

e
n

e
n

e
n

e
n

o
n

o
n

o
o

o
c
a

o
c
a

y
T

-
T

~
^

r
*

-

C
O—

»
*

^
*

^
w

«
9

«
a
»

«
v

«
9

«
a
p

«
v

w
^

v
•

,
_

o
^
c
M

t
o

g
i
n

i
p

r
s
o

o
o

n
o

'
_

_
_

_
,

+
£

T
~

T
~

<
-

T
~

T
~

T
~

T
-
y
r
-
y
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
tO

tO
tO

tO
(0

—

«
«

O

C
O

>
"

O
>
J

C
M

g
C
M

X

W
g
H
B
g

P
t
o

5
5

P
S

X
fa)

Q
fa)

•-)
fa)

b
)

P
O

P
S

X
>

-*
II

II
C

O
II

c
a

t
-

r
s
,

u
.

—
•

o
r
-

c
a

fa
.

fa
.

O
O

T
-
f
a

.
f
a

.
t
O

.
-
l
Z

t
-

Q
«

-
Q

f
a

«
O

i
-
»

f
a

]
h

)
-

O
O

r
t
u

O
I
-
M

O
Q

O
r
-
O

f
a

.
o

-
X

t
O

Q

c
a

o
t
-
f
a

.
o

i
-
i
.
-
3

.
-
i
x

t
t
i
n

w
i
h

Z
r

T
-

fa
.

o
o

s
p

s
t
c

P
C

•
P

S
g

P
B

Q
n

c
n

o
f
a

.
f
a

.
0

0
0

0
t
O
C
M

X
f
a
)
f
a
)

•
r
-

f
a
.
f
a
.
f
a
.
f
a
.
f
a
.
f
a
.

—
r
-

-
a

o
t
-
.
f
a
)
c
o

o
f
a
.
o

•
o

o
—

t
-

g
—

fa.
O

Q
Q

Q
Q

f
a
)
f
a
)
f
a
]
f
a
)

g
—
~
f
a
)
t
-
f
t
,
»
J
X
C
>
t
P
P
>
>
>
>
-

fa)
a

p
s
g

x
-

-
e
n

fa.
p
s
p
s

as
as

C
a

p
M

Q
Q

-
g

B
Q

.
J
M

-
fa.

fa]
fa]

fa)
h

)
~

W
||

Z
g

O
•C

O
C

O
C

O
C

O
0

C
_

l»
J
fa

.0
C

tO
—

X
«

B

O
O

O
b

)
O

p
a

p
s
O

X
X

g
>

f
a

)
f
a

)
b

)
f
a

)

o
o

T
-

—
v
>

f
a
]

—
X

—
—

-

p
s

fa)
—

|
q

a
.
t
-

fa)
t-i

Q
l

O
fa)

e
n

e
a

t
-
i

Q
r
-

t
-
t

g
—

-
c
o

g

f
a
)
p
s
t
o

T
-

fa)
O

<
-

t
-

-

S
<

o
a

c
m

o
o

C
O

f
t
.
C
M

E
-

P
S

Z
q

q
i
H

g
H

X
—

h
B

B
r
B

P
S

P
S

f
a

)
«

O
X

C
M

X
f
a

)
f
a

)
f
a

)
x
o

x
x
o

x
T

a
n

a
S

~
M

U
1

Q
Q

H
B

N
X

X
O

H
I

O
S

Q
~

^
II

C
O

W
J
P

.O
I
I
O

W
W

8
-
J
r
-
S

B
O

-
a

r
-
S

c
a

t
-

t^
.-

)
.o

fa
]
||p

p
fa

)
tip

p
p

.j>
j.o

a
x
a

o
x

-
x

x
x

x
a

t-
o

a.
u

o
to

.j
t-

55
55

35
55

55
S3

55
B

X
^

oa
S

»J
co

co
S

^
co

o.
>

j
»j

.-)
55

S3
B

t-«
fa)

—
t~

fa)
fr«

t-.
I-.t~

h)
55

co
ps

X
-

H
Q

>
]
X

ig
S

^
B

>
J
X

!
B

S
t^

w
fa

)
b

)
b

)
fa

)
fa

)
b

)
fa

)
fa

)
O

X
X

O
O

O
X

O
O

O
g

X
X

X
b

)
b

)
b

)
X

>
-
t-

.X
g

X
X

X
X

t-
b

)
fa

)
O

fa
)
W

fa
.O

O
X

fa
)
fa

)
fa

)
X

O
X

fa
)
X

O
O

O
E

B
B

B
B

B
B

>
»

)
O

^
B

O
O

>
J
B

O
O

>
.
O

O
O

B
B

H
Q

-
-

O
—

O
O

O
Q

Q
B

B
fa.B

fa)—
Q

Q
Q

g
B

B
O

fa.O
g

>
J

B
O

Q

c
o

O
O

O
fa

.3
5

0
—

3
5

ca
O

P
S

P
6

P
B

p
s

Q
B

O
—

t-
X

q
O

O
O

c
o

j
B

O
B

B
w

O
o

x
a

»-»
e>

55
c
a

>
r
-
c
M

t
o

g
i
n

i
D

i
s
,
c
o

o
n

o
r
-
C

M
t
o

o
o

o
o

C
M

M

-
j

i
-

to
n

p
p

i
d

i
s

c
o

e
n

o
t
-

g
i
n

i
D

i
s
.
c
o

e
n

o
T

-
c
M

t
o

g
t
n

u
>

i
s
,
c
o

t
o

t
o

t
o

t
o

g
g

g
g

g
g

g
g

g
g

i
n

i
n

t
n

i
n

m
i
n

i
n

i
n

i
n

X
fa

.
t
-

o
o

e
n

o
fa

.
-

c
a

—
0

0
a

s
u

.
o

o
o

e
n

o
fa

.
fa

.
S

3
E

i

a
X

O
r
-

O
O

-
O

fa
.

fa
.

P
o

a
~

o
fa

)
a

c
a

o
-

-
a

o
fa

.
fa

.
g

C
O

O
i
n

to

^
o

O
r
-

I
D

is
,

t
-

O
fa

.
fa

.
fa

.
a

s
g

—
•

C
O

o
-

o
o

fa
.

e
n

e
n

o
s

o
fa

.
fa

.
fa

.
t
o

to
+

-
ft.

v
>

o
r
-

r
s

-
-

p
-
b

.
fa

.
o

t
-

g
a

—
o

fa
)

g
O

O
r

g
g

O
O

fa.
fa

.
fa

.
o

o
t
o

a
t
o

r
-

C
O

o
•

o
r
-
o

o
O

g
fa.

o
fa.

fa
.

fa
.

o
X

a
—

t
o

X
«

0
0

«
a

—
O

O
T

-
C

O
O

-
T

-
O

fa
.

fa
.

o
a

s
!-•

>
«

—
(
-
.

-
j

c
a

—
o

s
-

a
s

O
t
-

•
o

r
-

o
I

-
j

3
:

fa.
-
o

fa
.

fa
.

o
X

x
—

—
^

a
x

~
>

-
>

.
>

.
b

)
o

-
~

—
—

_

b
)

a
X

<
A

o
o

*
-

i
to

o
3

fa.
a

o
fa

.
fa

.
o

a
b

)
•
j

c
o

t
-

r
s

m
|

o
o

t
-

-
-

-
Q

e
n

t
o

t
o

t
o

t
o

*£
c
o

O
•-)

O
r
-
o

c
o

x
o

s
O

f
a

.
t
-
o

fa
.

fa
.

fa
.

o
Q

ft.
T

-
|

*
-

-
1
£

~
—

c
o

g
t
o

t
o

t
o

g
r
s

o
.

.
.

O
»

«
—

X
O

O
T

-
ft.

—
O

S
fa

.
fa

.
-

fa
.

fa
.

fa
.

-
o

C
O

|
-

t
-

o
a

—
fa

)
-
-

—
o

o
o

—
m

I
D

r
s

C
O

C
O

O
ft.

b
)

fa.
5

5
O

T
-

O
O

ft.
Q

fa
.—

T
-

fa
.

fa
.

o
<

o
o

a
—

—
I

g
o

.
r
-

C
M

ft.
P

S
fa)

IO
a

a
1

*
p

^
T

-
x

O
e
n

e
n

o
n

e
n

e
n

C
M

fa
)

E
_

—
—

O
O

«
-

*
-•

Z
Q

fa
.

fa
.

O
O

fa.
I

o
g

A
fa

)
I
A

q
1

o
to

e
n

•
-
f
a

]
—

c
o

o
n

t
o

t*
-

-
-
o

.
53

t
-

-
-
-
.

C
O

O
t
-

O
-

-
o

fa.
o

a
o

-
T

-
O

fa.
1

o
g

o
a

s
c
a

x
Q

^
t-i

-
a

cm
t
-

«
5

3
a

f
e

a
i
o

i
s
,
c
o

O
f
a

)
O

o
I
D

I
D

c
o

u
>

x
a

s
»

C
O

i
n

X
g

fa)
r
«

r
E

O
O

-
O

U
.

-
-
fa

.
1

o
o

—
t
o

5
5

fa)
g

—
-
c
o

g
t
o

e
n

c
o

o
p

t
o

X
o

O
r
r
r
h

B
O

W
t
-

^
«

-
T

"

X
o

e
n

-
-
a

fa)
a

e
n

c
n

o
x

to
a

o
fa

.
a

C
M

fa
.

fa)
fa

.
ft.

T
-

t
-

c
a

p
a

t
o

a
t
o

t
-

fe
-

T
-

g
T

-
c
a

a
.

—
.
—

-
-

-
—

e
n

-
-

-

5
3

a
o

t
o

C
M

X
Q

X
1

-
-
T

-
c
a

^
c
o

f
i
O

f
a

.
t
-
1

o
fa.

g
b

.
o

X
s
s

g
-

fal
o

«
-

T
-

-
O

M
r

—
S

t
o

f
-

to
>

-
>

.>
-

O
S

—
t
-

-
>

-
>

*
>

-
>

>
-
J

C
M

—
*

-
-
a

—
x

i
fa)

C
O

o
O

-
-
O

fa.
X

r
-

fa.
—

-
O

o
o

P
a

t
o

a
s

-
a

ft.
T

-
1

O
S

i
d

c
o

a
a

i
I

i
x
t
^
+

o
1

I
1

1
x

a
s

0
0

-
O

O
•
•

fa)
1

g
—

-
t
O

B
f
a

.
f
a

.
O

f
a

.
—

-
fa

.
-
j

g
n

j
l-

i
—

g
fa)

Q
o

a
c
m

o
o

b
)

-
o

o
a

o
(
-
•
p

s
o

a
c
M

C
M

C
M

o
a

g
g

T
-

T
"

*
-

T
"

T
-

O
fa)

Q
—

(
B

r
H

X
O

—
X

tO
g

f
a

.f
a

.O
f
a

.C
O

a
fa.

fa)
o

fa
.

a
i
-

O
C

O
ft.

C
M

l-«
P

S
C

O
*

-
t-

i
o

—
a

s
X

O
—

X
c
m

c
m

c
m

—
o

s
e
n

C
M

C
M

C
M

C
M

—
t-

i
t
-

g
—

—
fa)

X
-

—
•
-
i
x
e
n

-
S

5
o

f
a

.
O

f
a

.
-

f
-

-
C

O
f

fa
)

o
T

-
—

t
o

O
O

•a;
~

—
a

C
M

•
»

~
-

^
J

X
fa)

0
3

•
—

t-i
||

fa)
-

—
—

~
—

•
—

H
E

Z
o

o
fa)

p
s

«
g

5
5

a
s

a
s

-
h

.
O

O
b

.
O

f
a

.
f
a

.
g

t
o

x
-
Z

i
n

o
i
H

t
-

X
~

*
t-

.
p

s
p

s
t
-

a
O

o
a

r
-

ii
p

s
o

a
s

p
ii

a
I
I
B

E
B

U
Z

H
O

a
a

a
s

a
s

a
x

fa)
m

o
o

e
n

o
fa

)
O

O
—

B
t
O

O
Q

x
-
J
X

f
a

l
t
-
O

O
O

O
f
a

.
fa

)
o

c
a

t
o

—
t
o

II
g

o
b

b
c
o

b
O

x
c
m

x
a

O
X

C
M

P
S

t
-
O

O
X

o
t
-
p

s
a

x
x
X

h
)
B

t
-
c
n

X
X

X
X

c
o

b
)

>
r
-

o
»

t
-

o
a

-
j

-
j

fa.
O

c
a

I
—

X
«

O
f
-
O

O
-
O

h
.

>
t
-

1
t
n

u
.

fa
)

fa
)

x
o

x
x
q

x
1

a
ii
a

s
•

r
-
o

a
ii

to
to

t
-

o
a

3
-
i
x
x
t
o

a
s
a

a
-
J
t
o

x
c
o

a
o

a
o

a
o

a

:
»

^
ll

II
T

-
II

ll
r
-

«
O

O
O

b
)

fa.
5

5
1

K
O

X
1

O
O

O
C

O
O

fa.
fa)

-
|

<
U

H
Q

Q
M

p
s

e
n

a
a

O
n

1
o

s
o

o
n

_1L
r

O
i

m
||

II
r

U
O

<
O

n
Q

O
O

O
to

1
-

ft.
-

O
r
s

o
is

.
o

r
s

o
||

U
U

M
Z

v
»

t
o

g
C

O
O

O
O

P
I

O
•—

5
5

1
e
a

o
o

e
n

o
fa.

c
o

a
I
e
a

o
p

s
o

-
x
x
g

o
o

o
c
o

i
a

o
a

a
«

»
g

>
o

S3
««

g
a

a
o

—
—

g
>

>
>

c
o

t
-
.
f
t
.
O

a
o

n
a

s
e
n

a
s

e
n

a
fa

)
n

J
r
-

55
c
o

«
j

T
-

£
c
a

t
-

g
t-

i
O

O
O

fa
.

t
-

o
_

o
1

0
a

ll
a

s
~

i
e
n

53
c
a

p
s

p
-
j

5
3

c
a

fa
)

E
-i

-
X

O
r
s

_
»

_
1

to
||

P
p

fa
)

II
p

p
P

-
j

-
J

.-J
P

S
x
a

o
x
o

o
x
o

f
a

.
x

a
x

!
-
•

a
a

o
o

fa)
-
j

t-i
-
J

•
-
)

E
i

fa)
II

P
P

-
J

g
tO

P
P

m
J

t
-

a
s

g
x

-
j

-
j

-
j

o
.

t
-

o
o

•J
Q

•J
Q

_
i

o
—

>
X

-»
c
a

•
£

-
j

C
O

C
O

3
7

•
j

C
O

a
.

-
j

•J
-J

55
53

fa)
5

5
t-ifa

)
—

S
5

t
-
<

O
O

t
-
i
O

b
.b

.
t
-
O

S
S

t
-
S

S
c
o

p
s

X
•

•
E

-i
Q

-
J

X
53

S
->

«
^

x
«

*
-
j

c
o

-
J
P

S
3

o
a

-
J
c
o

—
i
x

_
S

3
_

«
-

S
-J

-
J

->
55

o
.

-
j

t->
-
>

t-
i

l
-
l
l
-
i
-
1

o
x

x
o

o
o

X
O

O
O

g
X

X
X

b
)
b

)
t
-
i
b

)
X

>
-
^
b

)
X

O
O

X
O

b
.
f
a

.
X

-
.
b

)
X

f
a

)
f
a

)
O

b
)
B

fa
.

>O
O

X
fa)

fa)
fa)

X
O

X
fa)

X
O

O
O

X
O

O
X

O
O

X
b

)
f
a

)
X

II
b

)
X

X
X

f
a

)
O

g
O

X
O

X
O

X
O

X
O

l
O

J
K

U
O

-
J

B
O

O
—

O
O

O
B

B
O

B
Q

-
-
P

S
O

O
O

O
-
f
a

.f
a

.Q
f
a

J
0

5
Q

P
C

P
S

f
a

.0
S

f
a

)
—

1
1U

o
o

g
a

a
o

f
a

.
o

g
-
)
«

o
O

O
f
a

.
a

i
-
)
O

O
O

g
a

o
a

>
-
p

s
o

o
o

a
t
-
.
O

i
n

O
O

O
O

O
O

O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

e
n

o
v

C
M

t
o

g
i
n

t
D

r
s
o

o
c
n

o
r
-
c
M

t
o

g
i
n

t
o

r
s

c
o

e
n

o
r
-

c
m

t
o

g
i
n

i
d

r
s

c
o

e
n

o
r
-
c
M

t
o

g
i
n

i
D

r
s
c
o

e
n

o
^
c
M

t
o

g
i
n

i
D

i
s
c
o

c
n

o
v
-

c
m

t
o

g
i
n

t
o

r
s

o
o

e
n

o
^

c
m

t
o

g
i
n

©Q
J

|5

s
.

C
K

C
K

s
>

»

o«
o

<
u

C
O

eC
M

0
0

C
O

1
'

—Qft.

o
C

O

1
-

a

c
o

c
o

t
i

o
o

t->
XB

>
.

X
C

O
fa)

a

fa)
M

o

t-
i

9
-

>
«

-
5

3
0

0
Z

o
o

o
«

«
«

X
-
Q

«
«

g
o

z

«
t
o

«
o

z
—

T
-

X

*
-
j

«
m

3
0

0
-
B

i
n

«
M

«
g

o
—

e
n

g
t
-

*
g

«
a

g
—

Q

«
—

«
t
-

fa
)

B
fa)

O
P

«
3

«
P

Q
fa)

O
a

.
U

H
h

«
t
-

«
O

^
B

i-4
X

N

«
«

co
0

_
o

o
a

—
T

-
O

«
«

«
x

a
C

O
O

C
O

X
II

l|
o

_
>

.
-
J

_
1

Q

55
52

S3
S3

S3
53

SS
X

*
J

->
55

g
a

a

t
o

t
o

t
o

c
o

t
o

c
o

c
o

•
j

«
«

x
fa)

X
o

o
IO

B
B

B
B

B
B

B
a

.
O

O
B

B
f
a

.
f
a

.
_

_

c
o

o
o

o
o

o
o

o
o

o
o

O
O

o
«

-
c
m

t
o

g
i
n

i
d

r
s

o
o

e
n

o
T

-
C

M

(0

*-l

fa
.

—
C

O
0

0
0

0
—

—
0

0
o

0
0

o
0

1
>

-
fa

.
t
-
i

«
«

«
i
n

c
o

«
o

«
-

IlJ
o

.
-

fa
.

a
b

B
a

s
•

O
a

o
B

g
w

t
o

fa
.

O
X

X
X

+
ft.

—
X

o
X

—
o

g
C

M
fa

.
—

o
a

o
a

0
0

t-«
v
»

0
0

o
o

a
<

f
—

•
—

fa
.

fa)
+

+
+

o
o

a
g

+
o

+
—

-
t
-
i

g
>

-
fa

.
a

c
o

0
0

0
0

«
T

-
X

a
s

o
n

o
o

v
»

Z
—

t
o

.
.

fa
.

a
s

o
o

C
O

0
0

a
s

1
t-i

fa
)

0
0

o
e
n

•
J
O

C
O

a
—

—
C

O
fa

.
x

-
-

-
fa)

g
C

O
i-

.
-

o
-

fa)
—

Q
t-

i
>

.
0

0
.
—

a
fa

.
o

a
i
n

m
i
n

Q
a

-
t
i

i
n

o
o

i
n

o
a

t-
i

o
.

.
X

r
-

T
-

X
fa.

—
«

«
«

g
fa)

v
»

X
*

t
o

o
«

X
—

+
i
o

«
/>

1
-1

o
o

*
-

r
s

tn
l

o
a

o
n

a
a

a
—

t
-

a
ft.

B
0

0
o

B
•
J

C
O

T
-

a
z

ft.
o

a
T

-
1

T
-

-
1
3

-
o

fa)
Z

X
X

X
<

(
-
W

ft.
X

o
X

-
O

1
o

a
C

O
«

;
1

-
T

-
O

B
—

t-
i

o
-
i

—
o

a
o

a
0

0
5

3
X

1
-

O
oo

g
o

0
0

Z
ft.

g

o
a

fa)
—

t
-

I
O

ft.
T

-
C

M
ft.

B
fa

)
t
o

O
o

X
1

+
+

+
b

)
a

.
c
o

t
-

+
fa

)
•

+
fa

)
-

S
A

IO
t-

i
Q

.
.

1
cm

b
)

o
n

•
-
b

)
—

o
a

e
n

-
J

o
O

t-i
T

-
C

M
t
o

a
a

.
x

-
r
-

a
-

T
-

-
J

v
»

P

B
c
a

t
-

—
Q

T
-

t
i

-
a

cm
t
-

«
53

-
ft.

o
c
o

a
t
-

*
-

T
-

-
O

S
3

0
0

T
-

t
-

0
0

T
-

-
J

-
J

fa
)

3
s
x

Z
T

-
—

-
c
o

g
t
o

e
n

c
o

o
p

t
o

o
-
.

—
o

-
-

-
~

d
-
~

*
«

-
O

c
o
-
o

o
a

p
a

.
fa

)
—

a
t
o

r
-

r*
r
-

z
T

-
A

S
O

_
*

-
—

>
.

>
.

>
.

H
.

*
(
A

B
>

-
o

n
b

>
-

t-
i

o
a

«/>
o

S3
g

-
fa

)
>

-
O

t
-

T
-

-
O

to
T

-
—

3
-

o
a

a
to

>
.

>
-

>
-

g
C

M
O

X
>

•
A

X
>

"
—

o
X

a
-

P
B

fa)
B

.
.

-
3

o
.

T
-

1
O

S*
fa

)
o

to
x

o
a

i
1

1
—

II
fa)

0
0

|
v

o
a

1
c
o

g
T

-
•
-!

c
o

3

g
fa)

Q
O

—
a

o
i

o
o

t
o

-
O

O
B

O
I
-

o
o

a
—

b
c
m

C
M

C
M

+
g

to
+

T
-

g
+

o
-

0
0

II
—

t
-
Q

g

B
t
-

O
C

O
t
o

a
.

c
m

t
-

a
s

C
O

T
-

t-
i

O
—

a
X

o
_Q

_
—

fa)
X

C
M

C
M

C
M

f
O

II
e
n

c
m

a
s

o
C

M
X

Z
<

A
1

-
B

Q
fa

)
O

O
T

-
<

—
_

B
~

-
C

M
V

»
—

-
J

o
t
-

•-
a

s
o

a
—

—
—

II
-

•»
0

0
—

c
o

o
n

—
-

z
o

o
U

)
—

—

l
-

X
—

1
-

B
b

a
t
-

a
o

a
s

r
-

ll
a

a
s

P
o

II
a

ll
a

a
a

s
g

I
-

g
—

a
s

t
i

—
B

o
fa

)
—

fa
)

-
J

B
t
i

O
a

s
a

s
fa)

a
x

c
a

O
X

cm
x

a
O

X
C

M
B

t
i
O

O
X

o
•

T
-

t
-

X
B

X
X

X
B

—
B

a
s

x
t
-

a
X

•
—

'
a

f-
.

C
O

—
X

—

X
O

X
X

Q
X

f
a

)
X

I
a

ii
a

3
•

r
-

r
s

«
M

to
c
o

r
-

r
s

a
s

=
£

•J
II

>
_

IL
a

s
o

a
fa)

a
a

a
C

O
C

O
fa

)
—

x
a

X
X

a
B

>
-

t
-

-
II

o
a

C
O

b
g

a
a

o
t-

i
-
J

t-
i

1
O

3
O

O
ll

_JL
c
o

O
3

ca
||

l|
c
o

o
o

X
<

t
fa

.
a

O
—

Q
o

o
o

t-.
o

t->
u>

a
o

o
.

a
o

X
fa)

C
O

«
A

c
o

o
o

x
«

o
O

O
c
o

o
i

a
o

a
a

«
A

z
>

O
53

«»
Z

a
a

o
a

fa.
x

—
t
-

z
>

>
>

h
f
t
h

r
o

a
ft.

o
a

0
0

X
o

o
a

x
a

o
.

g

a
11

t
-

a
-
j

e
n

35
o

a
b

P
«-)

s
o

a
fa]

fa
.

o
a

fa]
z

—
X

t-i
X

•
o

|l
o

.
t
o

II
a

o
O

C
O

-
J

f-
•
-
)

z
•
j

-
j

t
-

c
o

II
p

p
-
)

z
to

p
p

-
)

t-
.

t-
i

fa
.

a
—

x
•-)

—
-
j

—
-
j

—
o

.
b

a
.

g
-
j

t
-
i

t
i

m
J

—
-
-
j

t
-

-
J

C
O

!-•
t
o

-
i

—
t
-

P

1
-

Q
-
J

X
3

=
!~

i
M

M
53

j
b

•-)
X

o
a

%
-
J

c
o

iJ
b

3
oa

-
i

C
O

-
J

X
35

to
b

.
a

a
ll

55
.
j

>
.

•-)
>

.
-
)

>
.

a
.

X
a

.
O

-
J

h
J

—
-
J

«
•
j

—
X

M
j

q
a

t
-

Q
-
J

C
O

X
t-«

h
-
O

O
X

c
o

t
o

X
B

-
—

f
a

)
X

O
X

f
a

)
X

O
O

O
X

O
O

X
O

O
X

f
a

)
f
a

)
X

f
a

.
O

X
>

-
f
a

]
X

>
.
X

>
.
X

>
-
O

t
-
O

i
—

x
x

t
o

fa.
x

fa.i
X

t
o

fa
)

X
fa

.
g

O
f
a

)
O

X
Q

f
a

)
f
a

)
—

o
o

o
g

a
o

f
t
.
t
o

B
O

f
a

.
o

g
•
j

a
o

o
o

fa.
a

•->
O

O
O

Z
B

55
fa

.
h

.
o

a
>

.
a

o
-
o

-
o

-
t-.

c
o

t
-

t
-

O
O

-
—

O
h

,i
o

••
g

o
—

t
o

fa
.

-
J

O
O

O
g

B

o
o

o
o

o
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

T
-

c
m

t
o

g
i
n

i
d

r
s

c
o

o
n

o
«

-
C

M
t
o

g
i
n

i
D

r
s
c
o

e
n

o
T

-
C

M
t
o

g
i
n

i
d

r
s

o
o

e
n

o
T

-
c
m

t
o

g
i
n

i
d

r
s

o
o

e
n

O
T

-
C

M
t
o

g
i
n

i
D

r
s
o

o
e
n

o
T

-
C

M

g
g

g
g

g
g

g
g

q
i
n

i
n

i
n

i
n

t
n

i
n

t
n

i
n

i
n

i
n

i
D

i
D

i
D

i
D

i
D

i
D

i
o

t
D

i
d

i
d

r
s

r
s

i
s

I
S

r
s

i
s

r
s

i
s

r
s

r
s

0
0

C
O

C
O

c
o

o
o

o
o

o
o

o
o

c
o

o
o

o
n

e
n

e
n

.
—

fa
.

„
o

fld
>

-
X

fa
.
*

-
T

"
fa

.
fa

.
fa

.
X

o
a

t
-
i

i
n

b
.

C
O

-

H
X

B
h

.
c
a

b
fa

.
fa

.
o

a
s

55
a

•
fa

.
O

_
z

V
ia*

»
-
i

X
O

T
-

X
fa

.
fa

.
o

X
p

ft.
a

s
s
s
n

-
f
a

.
o

a
z

C
O

O
O

r
-

-
g

h
.

o
o

B

M
M

O
O

fa
.

O
fa

,
o

fa
)

a
w

»
O

T
-

I
S

r
-

fa
,

O
m

J
t
i

g
O

O
T

-
-
f
a

.
fa

.
X

X
o

a
.

O
O

r
-

O
C

M
fa

.
fa

.
o

g
X

o
—

O
O

«
-

B
fa.

O
oa

to
O

B

i—
t
i

O
T

-
O

X
fa.

O
C

O
Q

—
X

C
O

x
o

o
r
-

0
0

-
O

to
-
j

g
t
i

a

C
O

O
•

O
*

-
O

-C
M

O
•
j

t
o

t
o

—
o

C
O

o
a

s
—

•
o

o
T

-
fa

.
T

-
fa

.
t
i

e
o

O
O

-

fa]
t
i

o
b

)
fa

.
•

O
T

-
O

fa
.

T
-

fa
.

—
X

fa)
Q

v
>

«
«

«
t
l

C
M

^
t
i

—
w

>
O

O
«

-
fa

.
-

-
H

n
I
m

K
Z

«
«

>
.

>
-

-
^
.

—
C

O
—

O
t
i

g
-

-
o

fa
.

t
o

o
O

O
•«

t
o

«
0

0
c
o

X
—

e
o

-
m

x
g

a
r
-
C

M
T

-
fa

.
a

s
c
m

b
b

a
a

C
M

—

«
a

«
M

X
o

o
-

-
i
d

-
b

t
o

t
o

e
n

o
n

o
fa.

X
r
-

O
O

O
O

ft.
*

-
H

«
x

«
o

O
»

-
l
O

T
-
C

M
X

Q
t
i

-
-
T

-
b

.
o

a
-

fa
.

fa
.

fa
,

fa
.

O
X

«
C

O
«

ID
>

.
O

-
j

—
m

-
-

-
a

—
t
i

fa)
t
o

o
h

.
-
c
o

Q
o

o
«

1
«

•
J
"

Z
C

M
X

T
-

0
0

-
O

r
N

O
X

g
—

-
fa

,
b

.
g

o
o

o
o

-
j

t
-

—

«
fa

)
«

•
n

x
ll

o
—

W
r
-
r

r
•
•

o
.

—
X

t
o

fa
.

fa
.

—
fa

)
fa

)
fa

]
fa

)
1

fa
.

«
fa

)
«

X
M

M
b

)
z

^
—

_
_

t
o

(-.
-

m
J

x
o

>
fa

.
fa

.
m

)
>

>
>

>
fa)

o
T

-
—

«
»

«
B

«
i—

c
o

X
t
i

C
O

b
l
B

B
B

B
g

X
B

fa
.

fa
.

t
o

a
s

a
s

a
s

a
s

z
T

-
e
n

t
i

g

«
a

«
P

e
o

55
B

X
e
n

fa
)
O

O
O

O
-
S

S
t
O

Q
^
-
M

fa
.

fa
.

C
O

t
o

t
o

t
o

t
o

—
t
o

ll
g

a
«

t
-

«
O

c
o

•-)
b

)
0

0
t
o

e
n

B
M

j
-
j
i
-
1

-
i
f
a

.
B

a
o

—
X

B
fa,

fa.
X

C
O

C
O

C
O

t
o

fa
.

t
o

c
o

c
o

«
«

o
a

a
x

>
t
o

t
o

i
n

e
n

O
O

O
O

O
C

O
O

S
3

B
O

X
fa

.
fa

.
o

a
t
o

c
o

fa
)

c
o

fa
)

fa
)

Q
Q

t
i

«
«

«
X

ft,
o

||
z

—
T

-
T

-
e
n

c
a

O
O

O
O

Q
b

.
P

O
—

33
fa

.
fa

.
-

b
a

a
a

p
a

s
O

-
t
-

—
fa

)
o

>
.

|l
II

II
g

t
-

fa
.

b
.

C
O

O
O

X

^
S

3
S

3
S

S
3

S
5

S
5

B
X

t
i
5

5
T

-
C

M
t
o

-
j

m
I
m

I
i
J
m

I
S

S
U

H
U

-
,
1

ID
t
i

fa
.

fa
.

t
i

t
i

t
i

t
-

C
O

£
C

O
B

X
-

fa
)

c
o

c
o

t
o

fa
)

t
o

fa
]

fa
)

o
a

.
M

M
—

a
:
X

X
X

X
f
a

)
b

)
t
i
X

>
t
i
e
n

X
f
a

.
f
a

.
X

X
X

X
t
i
b

)
b

)
O

f
a

)
B

T
t

a
a

a
B

B
B

B
>

C
O

o
o

>
-

>
*

>
-

o
o

o
o

o
a

a
o

a
-

-
-
a

b
.
h

i
b

.
Q

O
Q

Q
O

B
B

b
.
B

f
a

]

U
)

c
o

o
o

O
o

o
o

o
o

o
O

O
o

o
o

o
o

o
o

o
o

o
O

o
o

o
o

o
o

O
O

o
«

-
C

M
t
o

g
i
n

i
D

i
s
.
c
o

e
n

o
T

-
c
M

t
o

g
i
n

i
o

r
s
o

o
e
n

o
«

-
C

M
t
o

g
i
n

i
d

r
s

o
o

o
n

o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

g
<

/)

-
1

O
+

fa.
ft.

•
—

o
—

b
.

t
l

fa
.

*
-

—

t
o

0
0

fa
.

B
fa

.
~

-
I
i

a
«

fa
.

T
-

X
o

v
*

g
—

a
B

fa
.

1
t
-

o
•J

O
to

—
.

fa)
x

fa
)

fa
.

g
C

O
o

to
—

O
—

t
-

-
j

o
a

Q
fa

.
a

-
—

o
o

o
a

t
i

a
.

«
-

a
s

x
~

-
—

—
—

g
h

.
fa

)
V

*
v
»

—
g

o
—

X
—

+
m

I
o

o
t
^

>
.

>
-

>
.

—
o

t
i

a
s

g
t
o

o
o

o
t
o

-
J

C
O

T
-

-
1

3
-

—
t
o

g
-

-
-

x
o

1—
t
o

a
-

o
-

—
O

1
*

-
O

B
—

fa]
>

s.
—

c
p

I
D

I
D

S
3

o
X

t
-

t
o

r
s
g

o
o

o
Z

a
.

g

c
m

a
.

a
s

(
o

t
o

a
a

|
e
n

e
n

e
n

fa
)

o
a

.
c
o

t
i

e
n

c
o

o
e
n

fa)
-

53
-

t
o

—
o

a
e
n

t
o

t
i

-
-

-
a

.
a

o
a

.
x

t
-

-
a

o
-

^
J

«
A

p

cm
t
-

«
53

-
a

s
3

a
id

r
s

o
o

O
~

-
o

0
5

3
X

ID
t
i

O
ID

•
J

tO

e
n

c
o

o
p

t
o

X
O

O
T

-
T

-
T

-
1

-
—

o
t
i

—
ft,

T
-

O
T

—
O

c
o

—
O

-
T

-
g

T
-

t
i

o
«

•
/»

a
.

-
e
n

o
-

d
c
o

v>
o

t
o

,
3

-
f
a

l
t
-
.
C

O
>

-
>

.
>

.
B

Z
O

C
M

O
O

>
•

A
o

>
«

—
o

X
a

-
T

-
1

O
S

t
c
o

c
o

a
s

a
I

i
i
x

—
o

II
C

U
t
-

|
v

•
|

c
o

g
r
J
U

i
-
O

O
B

O
C

-iB
O

B
C

M
C

M
C

M
O

O
-
t-

o
g

C
O

-
T

-
z

-
o

-
c
o

II
~

t
-

o
g

T
-

t-»
O

B
X

O
—

X
C

M
C

M
C

M
T

-
O

O
II

r
s

C
M

B
0

0
C

M
M

S
«

h
B

o
~

M
l
*

•
—

•
-
j

a
s

t
o

o
o

t
i

tl
o

•—
i

V
*

e
n

—
c
o

e
n

—
-
g

O
O

c
o

—
—

1

O
S

T
-

II
K

a
p

[|
a

I
I
B

B
B

O
g

O
t
i

g
—

B
H

—
B

O
fa)

—
IO

-
J

K
t
l

X
c
m

a
s

t
-

o
o

X
O

E
-
i
B

B
X

X
X

f
a

)
B

>
—

B
b

x
t
i

b
x

—
a

t-.
c
o

—
X

«
-
i

a
ll

c
o

c
o

T
~

r
s

a
^

•
j
a

a
x
i
o

a
a

a
-
j

fa)
II

a
C

O
fa

)
—

x
a

x
x

a
>

.
t
-

—
ll

o
a

C
O

o
3

oa
||

II
C

O
O

O
X

O
o

a
Q

O
O

O
b

)
i
-
i
«

»
f
a

.
o

t
i
i
o

a
o

a
.
a

o
f
a

)
C

O
V

»
C

O
O

o
>

O
53

•»
z

a
B

O
—

—
g

>
>

>
t
o

t
i

B
fa

.
a

.
t
i

t
-

o
a

o
.

o
a

x
o

O
a

x
a

ft.
g

B
D

-
l
M

0̂
0

c
o

t
i

—
X

C
O

h
.
t
i

X
•

O
II

o
.

to
tl

B
-
J

g
fa)

p
p

.
j

t
-

a
s

g
x

-
j

-
j

-
j

ft.
t
i

fa
.

a
a

.
g

•
J

-
J

t
i

-
J

-
J

-
1

C
O

t
i

c
o

-
j

—
I
-

P
-
j

o
s

3
oa

-
J

C
O

-
j

X
5

3
B

—
5

3
-
J

-
i

-
J

5
2

ft.
C

O
fa

.
X

a
.

O
_

>
.
J

J
n

I
n

)
O

B
t
i

O
-
l

fa)
X

I
-

x
o

o
x

O
O

X
to

to
X

[
|
f
a

)
X

X
X

f
a

)
O

X
fa

.
t
i

o
-

X
X

fa.
X

X
X

fa.
g

O
c
o

O
X

Q
fa

)
fa

)

O
fa

.
B

-
J

O
O

O
g

B
0

0
>

.
0

S
O

O
O

B
t
-
S

3
fa.

c
o

1—
f-i

o
o

—
o

o
o

—
t
O

h
.
.
-
J
O

O
O

Z
B

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

O
O

O
O

O
O

O
O

O
O

O
O

o
o

c
n

o
«

-
C

M
t
n

g
t
n

u
>

r
s
e
o

c
n

o
T

-
c
M

i
o

g
i
n

t
D

i
s

C
O

e
n

o
v
-
c
M

t
o

g
i
n

i
o

r
s
c
o

e
n

o
T

-
C

M

r
s
o

o
o

o
c
o

o
o

o
o

o
o

o
o

o
o

c
o

c
o

e
n

e
n

e
n

0
0Jli

C
K

C
K«
o

O
QQ
J

EM GE

EM

CO

[+•
10
3

>

W
N

TOGO

N:

N =

TOGO

R

1

GjO

EM

N

TO

N

ROU

F|OU
2

3

GO"

R

I

Gto

EM

GO1

R

R

0

i
o

0
G

GO
G$

GO

EM

EM

Ti

B:

F

N

$
0

$

GO

GO

G

G

G

G

G

GO'

NI

D

1

T

E

g|o
9

IP

Tl

1

TH

GO

0
ON

S

T

E

1

CO!

21
IO

BO

2

4
4

IDOM

OM ROWS

ROW!

ROW!

MU

C

01
11

0|WS
c

IE

NO

1MB

TO

3

0

COl

RT

Tj

84 The Best of 99'er Volume 1

Tl

0

ON

'WE

go:

1$:

E

E

A

GO

DA

9
CA

TO

X$

X

M

Ti

0
L

M

FOR

N

C A

A

E

0

A

A

E

E

A

E

FlO
RE

CO

A

L

L

X

R

I

L

L

X

M

L

S

R

A

L

L

L

X

EM

D

5
'3

C

CO!

T

IC

IC

COl

ROW =

4

C

CHi

&GI

8
Al

BOR

HA

HA1

TO

D +

6

R

3

CK)

ROW

4

6
ROWl

C

CO

N

c

F

GO

R|0|W
T

[AH

R

L

MN
H

H

UMN|=
N'

L

L

+

C

L

K

TO

D

TO

TW1

CO

6

RN

CO

co

UMN

UMN

UMN

i+ N

6

)
5UMN

Copyright © 1983 Emerald Valley Publishing Co.

How to Write A BASIC Program
That Writes BASIC Programs

TVs Programming Aids III opens the door to some
powerful programming techniques. The Cross
Reference and Editor capabilities of this software will

be appreciated by the serious Extended BASIC program
mer. But the excitement really begins when you realize how
this software does its thing.

PA III can provide (1) a tabular, line-number cross
reference for all variables, arrays, keywords, functions, and
line-number references in a program and (2) the ability to
delete, move, or resequence specified groups of lines within
a program much more quickly than could be done manually
at the keyboard.

Required Hardware
Programming Aids HI is a set of four Extended BASIC

programs (LINPUT, CREF, CREFPRINT, and EDITOR)
available on disk at a suggested retail price of $19.95. In
addition to a disk controller, disk drive, and the Extended
BASIC Command Cartridge, a printer is a practical necessi
ty; either the TI Thermal Printer or an RS232-compatible
printer may be used. In fact, there is no provision for screen
display of the output from the Cross Reference procedure.
(I use the inexpensive "Paper-and-Pencil Printer," however,
and so modified the CREFPRINT program to display the
cross reference table on the screen, using the crude SHIFT
C—CONTINUE method to stop and start the output. These
simple changes are given at the end of this chapter.)

EDITOR
The EDITOR program makes possible virtually any

desired modification of line numbers in a BASIC or Ex

tended BASIC Program. Heretofore, the only way to rese
quence a program was to use the RESEQUENCE (RES)
command, which affects all line numbers within a program.
By contrast, EDITOR allows one to resequence specified
sections of a program without affecting others.

If, for instance, you have numbered subroutine statements
in a manner which is easy to remember (1000, 2000, 3000,
etc), you can retain this numbering and "open up" a
previous part of the program for insertion of additional
lines. An even more useful application would be the rear
rangement of sections of BASIC code. Suppose, for exam
ple, you want to merge several programs, each of which con
tains subroutines. Without EDITOR, you would be faced

Copyright © 1983 Emerald Valley Publishing Co.

PART 1:

A SURPRISING DISCOVERY
WITH TI'S PROGRAMMING AIDS III

with the time-consuming chore of moving all subroutines
to the end of the merged program. With EDITOR, this pro
cedure can be completed very simply and quickly by re
numbering all subroutine lines.

Finally, the EDITOR program allows deletion of sections
of BASIC code. If you want to get a subroutine out of one
program to use in another, it's no problem.

How EDITOR Works
If you are wondering how a BASIC program can alter

another BASIC program, be assured that it's not done with
mirrors. It is a relatively simple procedure which anyone
with Extended BASIC can use to write all custom utility
programs and even BASIC programs which write other
BASIC programs!

The technique is based upon what happens to a program
when it is saved with the MERGE option (see pp. 122-3 of
the TI Extended BASIC manual). If you have ever cataloged
a disk containing a file saved with the MERGE option, you
may have noticed that, unlike an ordinary program which
carries the Type description PROGRAM, a program saved
with MERGE is actually a data file consisting of display
code with variable length records having a maximum length
of 163 bytes. A BASIC program can access this sequential
file like any other file.

In addition to creating a data file form, saving a program
with MERGE makes two other important changes. First,
the order of program lines corresponds to the order of pro
gram line numbers. (By contrast, when a program is saved
without MERGE, the file is a program memory image, and
lines are placed in program memory in the order in which
they were entered—not according to line number.) Second,
the content of each line is represented in condensed format:
All non-essential information is deleted in a coding process.
When a program saved with the MERGE option is loaded
into memory with the MERGE Command and LISTed (see
TI Extended BASIC Manual, page 114), the coding pro
cess is reversed and each program is reconstructed.

In order to understand how the EDITOR program works,
it is necessary to know how line numbers are represented
in condensed format. The first two bytes of each record con
tain the line number represented in ASCII code. Table 1
shows how the line numbers "80" and "9020" are

represented in ASCII characters. Starting with the line

The Best of 99'er Volume 1 85

number 80, the first step involves representing the base 10
number in binary. Two bytes (8 bits each) are available for
this representation. Next, the base 10 representation of each
byte is determined and the corresponding ASCII symbol
produced. In this case, the character with an ASCII code
of 80 is "P". Applying this process to the number 9020 gives
the ASCII representation "#<".

Table 1
ASCII Coding of Line Numbers

Line Number 80

Byto 1 Byte 2
Binary 00000000 01010000

Bate 10 0 80
ASCII P

Line Number 902C

Byte 1 Byte 2
Binary 00100011 00111100
Bate 10 35 60
ASCII # <

Table 2
Sampl e Cross Reference Output

MUSIC 2/1
PROGRAM UNIT (MAIN).

STRING ARRAYS BASIC KEYWORDS REM
NS < 1 CALL 220

100 130 RETURN
120 230 260
140 240 STOP

250 210
NUMERIC ARRAYS DATA
NT () 190 BASIC FUNCTIONS

100 200 &
120 DIM 140
240 100

FOR SUBPROGRAMS
NUMERIC VARIABLES 110 CLEAR
1 ISO 130

110 GOSUB SOUND
120 160 230
140 NEXT 240
1B0 170 250

240 ISO
J PRINT LINE REFERENCES

160 •140 220
170 READ

120
160

In condensed code format, when the left-most bit of a
byte is "on," the software which reconstructs a program
from the code is signaled that some special action will be
required in the reconstruction process. In the case of line
numbers, this principle applies to the first bit of the first
of the two line-number bytes. When all bits except the left
most one are "on" in both bytes, the number represented
in base 10 is 32767 (in binary, 01111111 11111111), the
highest allowable line number in a program. When the left
most bit is added, the two-byte combination becomes an
end-of-file mark. Thus the first two bytes of the last con
densed format record must be CHR$(255)&CHR$(255),
equivalent to 65535 in base 10.

With this information, you should be able to understand
the basic operation of the EDITOR program. The program
to be edited is first saved with the MERGE option, and then
the EDITOR program is loaded and run. Upon entry of
the "OLD" command provided, EDITOR inputs each
record in the condensed format file and constructs the line
number from the ASCII codes of the first two bytes. Pro
gram line numbers thus obtained are stored in an array, with
array position corresponding to record number. After the
user has altered these numbers using the DELETE (DEL)
and RESEQUENCE (RES) commands provided, the SAVE
command initiates the process in which altered numbers are
reassigned to records in the file. As each record is read a
second time, the corresponding line number in the array is
translated into two ASCII characters which are substituted
for those on the record, and the new record is written to
a new file (after making the necessary changes to any line
references). At the end of this process, the end-of-file mark

86 The Best of 99'er Volume 1

is written as the last record on the new file. After initializ
ing program memory with the NEW command, all you need
to do is load the new file with the MERGE command. The
program will then be reconstructed and can be SAVEd in
the usual way.

CROSS REFERENCE
The remaining three programs (LINPUT, CREF, and

CREFPRINT) are used to produce a complete tabulation
of all lines in which each variable, array keyword, function,
and line number reference occurs. An independent tabula
tion is provided for each subprogram. The cross reference
table will give you detailed documentation for use in pro
gram development, and would also seem to be a useful tool
in analyzing a poorly documented program. (See Table 2)

As in the case of the EDITOR program, the first step
involves saving the program to be cross referenced by us
ing the MERGE option. The LINPUT program converts
the DISPLAY records of the merged file to INTERNAL
code, presumably to speed subsequent execution. The CREF
program then reads in each record of the file and analyzes
its contents for the presence of all keywords, functions, etc.,
which occur in TI Extended BASIC, as well as in the user's
variable names, arrays, line references, and subprograms.
The output, a list of the line numbers in which each ele
ment is found, is written to a disk file.The fileis then printed
by the CREFPRINT program.

The instructions recommend that the CREF program be
run in TI BASIC, rather than Extended BASIC, to speed
execution. Even with this advantage, however, the cross
referencing of a large program should be planned so that
you can be doing something else—like taking a trip to
Switzerland. Actually, it doesn't take quite that long: Cross-
referencinga program of moderate size (270lines) takes 35
minutes.

HOW CREF Works.
Although a detailed analysis of the cross reference pro

gram is beyond the scope of this article, generalization of
the principles involved presumes an understanding of the
structure of condensed code. As mentioned previously, the
method used to signal the reconstruction software that it
is encountering an "instruction" byte involves an "on"con-
dition in the left-most bit. In contrast to line numbers, most
"instructions" in condensed code consist of a single byte.
When the left-most bit is "on" (i.e., 10000000) the base 10
representation is 128. Instructions thus begin with the
number 10000001 or 129

ASCII byte codes used by the reconstruction software to
generate BASIC keywords, punctuation, etc., are
translatable with the program Condensed Format Code
Table. This program generates a file called
DSK1.FILENAME which is in condensed format. Each
record in the file contains a single byte in the third position
beginning with ASCII 129and ending with ASCII 254. This
byte will be interpreted as an "instruction" by the
reconstruction software. Preceeding the byte, a two-byte line
number is written; following it is an end-of-line mark, ASCII
0. Line numbers have been set equal to the ASCII code for
ease in subsequent interpretation of the results.

In order to view the reconstruction of each potential
BASIC element, you first initialize program memory with

Copyright © 1983 Emerald Valley Publishing Co.

the NEW command, then load the output file with the
MERGE command, as if it were a program, i.e., MERGE
DSK1.FILENAME. The result is given in Table 3. For
example:

CHR$(129) is reconstructed as ELSE
CHR$(130) as : :
CHR$(166) as WARNING

EH

EM

EH

EM

EH

EH

EH

EH

EM

EH

EH

EH

EH

EH

EM

EM

EM

EM

EM

PEI

TP1

EM

EM

EM

EM

EM

EH

EH

EH

EH

OR
EH

EH

EH

EH

EH

EH

EH

EH

EH

EH

EH

NB'

NB

EH

EH

EH

EH

EH

EH

EH

EH

EH

EH

EH

RI1

&l

EH

EH

EH

EH

EH

EH

EH

m

CO

p

D

S

IME

CO

OU

F

NG PA AHE

NG

RMA

E

I

NlAEHlE

RMA

AM

6H ON

TO

CA

SO

LN

WR CO

OO FO

Copyright © 1983 Emerald Valley Publishing Co.

FO

IO
s

L

7

7

7

7

7

7

7

8
8

8

8

8

8
8
8
8

8
9

9

9

3
4

5

6

7

8

9
0
1

2

3
4

5

6
7

8

9
0
1

2

0

0

0
0
0

0

0
0

0
0
0
0

0

0
0

0
0
0

0

0

N

R

R

R

R

R

R

R

R

R

P

R

R

R

R

R

R
R

C

S

EX

EM

EM

EM

EM

EM

EM

EM

EM

EM

RI

EM

EM

EM

EM

EM

EM
EM

LO

t|o

T

N

S

P

T

E

I

* * *

WRI

MAR

OF

* * *

#1

* * *

CLO

* * *

#1

*

T

K

6

*

*

S

*

*

E

5

*

C

*

E

*

•

5

*

H

*

*

*

E

3

*

R

*

F

*

*

N

L

5

*

$

*

I

*

*

D

I

*

I

*

L

*

*

N

*

2

•

E

*

*

0

E

*

5

*

*

*

F

*

5

*

A

*

•

N

*

)

*

N

*

* * *

FI L

UMB

* * *

&CH

* * *

D S

* * *

* *

E

ER

* *

RS

* *

TO

* *

*

*

(

*

P

*

*

*

2

*

*

5 5)

Table 3
Condensed Format Code Table

129 ELSE 171 ??? 213 LEN
130 : : 172 7?? 214 CHRS
131 1 173 777 215 RND
132 IF 174 777 216 SEGS
133 GO 175 777 217 POS
134 GOTO 176 THEN 218 VAL
135 GOSUB 177 TO 219 STRS
138 RETURN 178 STEP 220 ASC
137 DEF 179 , 221 PI
133 DIM 180 ; 222 REC
139 END 181 : 223 MAX
140 FOR 182) 224 MIN
141 LET 183 { 225 RPTS
142 BREAK 184 & 226 77?
143 UNBREAK 185 77? 227 ???
144 TRACE 166 OR 228 ???
145 UNTRACE 187 AND 229 ???
146 INPUT 188 XOR 230 ???
147 DATA 189 NOT 231 ???
14S RESTORE 190 • 232 NUMERIC
149 RANDOMIZE 191 < 233 DIGIT
ISO NEXT 192 > 234 UALPHA
151 READ 193 ♦ 235 SIZE
152 STOP 184 - 236 ALL
153 DELETE 195 • 237 USING
154 REM 196 / 238 BEEP
155 ON 197 A 239 ERASE
156 PRINT 188 77? 240 AT
157 CALL 199 7?? 241 BASE
isa OPTION 200 77? 242 ???
159 OPEN 201 77? 243 VARIABLE
160 CLOSE 202 EOF 244 RELATIVE
161 SUB 203 ABS 245 INTERNAL
162 DISPLAY 204 ATN 248 SEQUENTIAL
183 IMAGE 205 COS 247 OUTPUT
164 ACCEPT 206 EXP 248 UPDATE
165 ERROR 207 INT 249 APPEND
168 WARNING 208 LOG 250 FIXED
167 SUBEXIT 209 SGN 251 PERMANENT
168 SUBEND 210 SIN 252 TAB
169 RUN 211 SQR 253 # Ifilas)
170 LINPUT 212 TAN 254 VALIDATE

Table 4
Condensed Record Structure

OPEN #1:"DSK1.BASIC",(NPUT,D ISPLAY.VARIABLE 163

ASCII CODE FOR LINE 100

3 159* 23 179*
4 2S3* 24 162*
5 200* 25 179#
6 1 26 243#
7 49 1 27 200*
8 181' 28 3
9 199» 29 49 1

10 10 30 54 6
11 68 D 31 51 3
12 83 S 32 0
13 75 K
14 49 1

15 46 .
16 66 B
17 66 A

18 83 S
19 73 I
20 67 C
21 179*

22 146* PRESS ANY KEY TO CONTINUE

At the same time, several codes are reconstructed into
things which can't be understood directly (e.g., 171-175,185,
and 198-201). It is apparent that some of the ASCII codes
are used for purposes other than direct translation to
BASIC. Some might be used as descriptors of subsequent
bytes (e.g., for purposes of identifying trailing bytes as

The Best of 99'er Volume 1 87

numeric data, line numbers references, string data, etc.)
while other of these ASCIII codes may not be assigned at all.

Putting this question aside for the moment, let us see how
we could write a program that would remove all REM
statements from another program. The ASCII code for
REMARK (REM) is found in Table 3 to be 154. If we
assume that the ASCII character with code 154 will be found
in the third position of a REM statement in condensed for
mat (following the line-number bytes), we can write a REM
Remover program very simply. Such a program would need
to read a record from a program file saved with the MERGE
option, see if the third byte is CHR$(154), and if not, print
the record in a second file. That is what the following pro
gram does. To use it with the "Condensed Format Code
Table" program, save that program with the MERGE op
tion (SAVE DSKl.CODE,MERGE), run the REM
Remover, and load the output file, DSK1.REMFREE, with
the MERGE command (MERGE DSK1.REMFREE).
Presto, Chango! LISTing the program shows it to be
"REMless," and this version may now be saved in the usual
way under a new file name.

EM

EH

EH

E|M
E

E

R

N

P

P

P

PR

GO

PR

EM

CH

EM0

EOF

CHR

NAHE

StCHR

Of course, more complex applications require a more
detailed knowledge of condensed format structure. The
CondensedRecordStructureprogram listed below willallow
you to examine the condensed structure of every line in any
BASIC program. With such a representation and the list
of codes in Table 3, a great deal of additional information
can be deduced.

For purposes of illustration, let us treat the "Record
Structure" program itself as the program to be analyzed.
First enter the program without the REM statements, and
then save it as DSK1 .BASIC,MERGE. Now enter RUN to
display the code structure of each line. The display for the
first line is shown in Table 4.

The first column in each pair of columns shows the posi
tion of the byte code. The first position displayed is 3
because 1 and 2 are used for the line number. An asterisk
has been placed beside all ASCII codes which exceed 128

88 The Best of 99'er Volume 1

to easily identify them as "instruction" codes. Codes which
are between 32 and 94 are followed by their corresponding
ASCII character representations.

EH

EH

EM

EH

EH

EH

EH

EM

F

OlWt

CON

0M=

LA

olwl
I

CO

S

E

X

s

s

T

U|M =

1 =
0

R

CO

ED

ROW,
XS , I
RON,

CO

1

CO

CO

0

UM

ROW

CO

CO

Since it is known that the first line of the program is
OPEN #1;"DSK1.BASIC", INPUT, DISPLAY,
VARIABLE 163, let us see what sense can be made of the
corresponding condensed code. Codes 159 and 253 corres
pond to OPEN and #. Although the meaning of code 200
is not known, in looking ahead to colums 6 and 7 we might
hypothesize that 200 means "A number is about to be en
countered, and the next byte will give the number of bytes
used to represent that number."

Although 181 is a ":", 199 is another unknown. Look
ing ahead at positions 10-20, we might again hypothesize
that 199 is used for strings, in the way that 200 is used for
numbers. The "10" in position 10 is consistent with this
hypothesis since DSK1.BASIC is 10 characters long. Next,
we encountered the codes for INPUT, DISPLAY,
VARIABLE. In position 27 another 200 is encountered, and
the hypothesis applied earlier to the 200 in position 5 is con
sistent with what follows—a "3" in position 28 followed
by the 3 numbers "163". Finally, a 0 is encountered that
indicates end-of-line. By writing program lines specifically
for the purpose, you can use the Condensed Record Struc
ture program to deduce additional information about con
densed format.

Copyright © 1983 Emerald Valley Publishing Co.

How to Write A BASIC Program
That Writes BASIC Programs

PART 2:

RULES OF MERGE FORMAT

In the previous section, MERGE format was discussed
in connection with TI's ProgrammingAids III. When
an Extended BASIC program is saved with the

MERGE option (disk only), a data file is written such
that each record in the file contains a coded representa
tion of one line of BASIC code. This file can then be load
ed into program memory with the MERGE command.
Because the file is a data file, it can also be generated
by a BASIC program. If all of the rules of MERGE for
mat are observed, the file is indistinguishable from one
created by saving a program with the MERGE option and
can be loaded into program memory with the MERGE
command. Thus an Extended BASIC program can, in ef
fect, write another Extended BASIC program.

One can think of a variety of contexts in which this
program generation capability could be used. For in
stance, a program might allow preparation of music or
graphics in an interactive, "high level" format and then
use this data to write a BASIC program or subroutine
which produces the music or graphics display.

File Structure
The MERGE format file consists of sequentially

organized records, each corresponding to one line of
BASIC code. Records are of variable length with a max
imum length of 163 display format characters. The OPEN
statement for a MERGE format file might be:

OPEN #1:"DSK1.FILENAME",VARIABLE 163

Record Structure
Records in the file each represent a line of BASIC as

strings of ASCII characters. The ASCII codes of the first
two characters represent the line number, the last
character designates "end-of-line", and the BASIC state
ments) are represented in coded form in between.

Let's consider first how line numbers are represented.
You are probably aware that code numbers are associated
with the character patterns used to display information.
The character associated with a code can be obtained with
the CHR$ function; PRINT CHR$(65) displays the pat
tern of the character with ASCII code 65 on the screen—
the letter A. (ASCII, by the way, stands for American
Standard Code for Information Interchange.)

While some ASCII characters, like the letter A, have
an associated pattern, others do not. However, any of
the 256 ASCII characters can be accessed with the CHR$
function and subsequently used in strings just like any

Copyright © 1983 Emerald Valley Publishing Co.

of the more familiar characters. PRINT CHR$(32)&-
CHR$(255) displays two characters. Neither has a pat
tern, so neither can be seen, but the computer is able to
recognize each character nevertheless.

A character consists of a "byte," and a byte can be
thought of as an eight-place binary number. Just as the
decimal number system contains 10 digits (0-9), the binary
system contains two digits, 0 and 1. In the decimal system,
the first place to the left of the decimal point counts in
units of one. Each successive place counts in units of the
number base 10 multiplied times the units of the
preceeding place—i.e.,l's, 10's, 100's, 1000's, etc.
Similarly the first place in a binary number counts 1 and
successive places in units of the number base 2, multiplied
times the units of the preceeding base; i.e., l's, 2's, 4's,
8's, 16's, etc. Thus the eight-place binary number
00110001 is equivalent to 0 + 0 + 32+16 + 0 + 0 + 0+1 or
49 in decimal. The binary number 11111111 is equivalent
to 255 (128 + 64 + 32+16 + 8 + 4 + 2+1), and this is the
largest ASCII code because it is the largest number that
can be represented with a byte. The 256 ASCII characters
are thus numbered from 0 through 255.

The decimal equivalent of ASCII code is used to repre
sent the line number, but with only one byte, the largest
line number which could be represented is 255. To allow
representation of high line numbers, a second character
is added giving a total of 16 binary places. Applying the
same principle used above, the places count (from right
to left) in units of 256 (128*2), 512, 1024, etc. When plac
ed in the first two positions of a MERGE format record,
CHR$(2)&CHR$(8)—i.e., 00000010 00001000—would
represent the line number 520 (512 + 8). A quick method
of determining the decimal representation of any two
characters is to multiply the code of the first by 256 and
add the code of the second. In the above example,
520 = 2*256 + 8.

The highest allowable line number in TI BASIC is
32767 (01111111 11111111 or CHR$(127)&CHR$(255)).
Adding the left digit gives the end-of-file mark used in
MERGE format, equivalent to a line number of 65535.
These two bytes, CHR$(255)&CHR$(255) must be in the
first two positions of the last record in a MERGE for
mat file.

Just as these two characters signal the end of the file,
the byte CHR$(0) is used to signal the end of each line.
This character must be the last one in each record.

The Best of 99'er Volume 1 89

MERGE Format Code
This brings us to the question of what to put between

the line number and end-of-line mark and before the end-
of-file mark, viz., the coded BASIC statements. Many
elements which comprise Extended BASIC statements are
listed in Table 3 together with their ASCII character
tokens. In MERGE format, the BASIC elements listed
are represented by a single ASCII character. For instance,
CHR$(156) represents PRINT, CHR$(130) the statement
separator, CHR$(213) the LEN function, etc. In order
to prepare BASIC statements in MERGE format,
however, one must also know how to represent variable
names, numeric and string constants, and line numbers
occurring within statements.

The easiest of these to represent is the variable name;
the normal ASCII representation for each character of
the name is used. Consider the line:

10 PRINT XYZ

The MERGE format record used to represent this line
would be:

CHR$(0)&CHR$(10)&CHR$(156)&"XYZ"&CHR$(0)

That is, seven bytes would be concatenated in a string
and written in the appropriate disk file record. The first
two bytes represent the line number; the next, the
keyword PRINT; the next three, the variable name; and
the last, the end-of-line mark. Assuming that the com
plete file corresponds to the requirements of MERGE for
mat in other respects, when loaded into program memory
with the MERGE command LISTing, the program will
show it to contain the line intended.

Numeric constants and unquoted string constants are
handled differently from variable names: Each number
of unquoted string must be preceded by two identifying
bytes. The first is CHR$(200), the character which signals
the beginning of an unquoted string. Following
CHR$(200), a byte must be included to indicate the
number of subsequent characters in the string or number.
This byte is simply the character with the code equal to
the length of the string—i.e., if the string were five
characters long, CHR$(5) must be included; if 12
characters, CHR$(12). For example, consider the
statement,

10 PRINT X +345

The statement would be represented in MERGE format
with 11 bytes as follows:

CHR$(0)&CHR$(10)&CHR$(156)&"X"&CHR$(193)
&CHR$(200)&CHR$(3)&"345"&CHR$(0)

Here, CHR$(200)&CHR$(3)&"345" first indicates that
an unquoted string is to be encountered, then indicates
how long that string is, and finally gives the string.

Quoted strings are handled in much the same way, ex
cept that CHR$(199) is used instead of CHR$(200):

10 RUN "DSK.l.FILENAME"

would be represented as

CHR$(0)&CHR$(10)&CHR$(169)&CHR$(199)&
CHR$(13)&"DSK1.FILENAME"&CHR$(0)

90 The Best of 99'er Volume 1

Notice that quote marks are not explicityincluded in the
string representation. They are automatically provided
for by the use of CHR$(199).

Finally, line numbers included in program statements
such as GOTO and GOSUB must consist of two bytes
coded in the same way as the line number bytes which
begin each record. Moreover, these two bytes must be
preceded by CHR$(201) to indicate that they are to be
interpreted as a line number. The statement:

10 GOTO 200

would be represented as follows:

CHR$(0)&CHR$(10)&CHR$(134)&CHR$(201)
&CHR$(0)&CHR$(200)&CHR$(0)

Program Generation
Although MERGE format programs can be generated

with the above technique, its use would be
cumbersome—to say the least. The following method
simplifies the process considerably.

For the moment, let's put aside the question of
generating the portion of the character string associated
with the BASIC statement. Assume that this string is
generated and assignedto the string variable LINES. Each
time a LINES string is constructed, two line number bytes
must be added to the beginning, an end-of-line byte to
the end, and the whole thing must then be written as a
record in the MERGE format file. The easiest way to han
dle the operations which follow the construction of
LINES is to use a subroutine. Given a starting line
number, LN, the following subroutine constructs the two-
byte ASCII line number representation and writes the file
record. It then increments the line number by 10.

9000 PRINT #1: CHR$(INT(LN/256))&CHR$
(LN - 256*INT(LN/256))&LINE$&CHR$(0) ::
LN = LN+10 :: RETURN

After the BASIC statement portion of the record is
assigned to LINES, a simple GOSUB 9000 takes care of
all the rest.

The construction of LINES strings can be simplified
by assigning ASCII character codes to string variables
with easy to remember names. For instance:

100 REMS = CHR$(154)::FOR$ = CHR$(140)::NEXT$
= CHR$(150)::IF$ = CHR$(132)::THEN$ = CHR$(176)
::TO$ = CHR$(177)

Some string functions are followed by a "$" and are
reserved words. But in TI BASIC, they can be embedd
ed in a variable name so that one could use variable names
like @SEG$, @STR$, etc., for storage of the appropriate
ASCII character. Punctuation, arithmetic operators, and
characters 199-201 also must be assigned "creative" string
variable names: Q$ for quoted string, UQS for unquoted
string, CMS for comma, etc.—whatever will be easiest
for you to remember.

The next level of simplification involves user-defined
functions to include more than one byte whenever possi
ble. For example, it is clear that CALL will always be
followed by an unquoted string; CALL COLOR, CALL
SPRITE, CALL SOUND, etc. For that matter, the un
quoted string token will always be followed by a byte in
dicating string length. Construction of strings which in-

Copyright © 1983 Emerald Valley Publishing Co.

elude the call keyword can therefore be simplified by
defining function appropriately:

110 DEF UQ$(X) = CHR$(200)&CHR(X)::CALL$(X)
= CHR$(157)&UQ$(X)

A statement like CALL SCREEN (2) can then be written:

120 LINES = CALL$(6)&"SCREEN"&LP$&UQ$(1)&
"2"&RP$::GOSUB 9000

(if CHR$(183), the left parenthesis, had previously been
assigned to LPS and 182, the right parenthesis, to RPS)

By making the function definitions a little more complex,
the statement can be even further simplified:

110 DEF UQS(XS)= CHR$(200)&CHR$(LEN(X$))&X$
120 DEF CALL$(X$) = CHR$(157)&UQ$(X$)

makes it possible to write CALL SCREEN (2) like this:

130 LINES = CALL$("SCREEN")&LP$&UQ$(4'2")&
RP$::GOSUB 9000

It's beginning to look a lot like BASIC.
Built-in functions can similarly be defined to facilitate

construcion of MERGE format strings. For instance,

140 DEF INT$(X$) = CHR$(207)&LP$&X$&RP$

allows one to write X = INT(Y/256) as

150 LINES = "X"&EQ$&INT$("Y"&DIV$&UQ$
("256"))::GOSUB 9000
(if CHR$(190) had been previously assigned to EQS and
CHR$(196) TO DIVS)

Similarly, line numbers occurring within statements,
such as GOTO or GOSUB, can be simplified with the
following function:

160 DEF LN$(X) = CHR$(201)&CHR$(INT(LN/256))
&CHR$(LN - 256*INT(LN/256))

so that the statement GOTO 200 can be written simply as

170 LINES = GOTO$&LN$(200) :: GOSUB 9000
(if GOTOS had previously been assigned CHR$(134))

Using string variable names and user-defined string
functions, you can create your own custom "language"
for use in writing MERGE format records.

The following program may help to tie up the concepts
presented; it is a trivial example of a music program
generator. The program writes CALL SOUND
statements in the MERGE format file "DSK1.BASIC"
as the user presses a single key.

Copyright © 1983 Emerald Valley Publishing Co.

EM

EM

EM

M

EM

EM

CI

EM

EM

F

X

X

EM

EM

ElM
N

ElM

EM

EM

EM

L

S

E|M
EM

EM

EM

REJQ
AL

EM

EM

EM

MU

COtMJP
N

CMS

P$
TO

N

6
L

RM

N

EM

EM

R

L

EM

EM

EM

S

N-H1
WR

ME

DS

A

L

(

Kft)

R0|G
N

Y

AM

BA

EN

o;g AM TO

NG

NO

Y +

EQ

TM

CMS

UQ
UQ

CH

EW

The Best of 99'er Volume 1

E

OfW|

F

T|0

RG

UQ

TO

91

HOW

IS EXTENDED BASIC?

Nothing caused as much excitement and anticipa
tion in the TI-99/4A community as the announce
ment (which now seems like an eternity ago) that

Extended BASIC would be forthcoming. Well, now that
the new programming language is being gobbled up by
hungry Home Computer users, the question on
everyone's mind is, naturally enough, "Was it worth
waiting for?"

For the answer to this, and to help put the new soft
ware in proper perspective, we should first examine TI's
claims for the language (in the introduction to the
reference manual): "Texas Instruments Extended
BASIC. . .has the features expected from a high level
language plus additional features not available in many
other languages, including those designed for use with
large, expensive computers." The key words here are "ex
pected" and "not available." Features such as DISPLAY
AT, ACCEPT AT, PRINT. . .USING, IMAGE, ON
ERROR, multiple statement lines, expanded IF-THEN-
ELSE statements, PEEK, Boolean operators, and
assembly language subroutine calls are indeed "ex
pected." Unfortunately, they were expected in the or
dinary TI BASIC, since they're standard features of
various Microsoft BASICs found in other machines. But

just as plain, old, ordinary TI BASIC has its share of
surprises that aren 't commonly found in other BASICs
(e.g., CALL SAY, RESEQUENCE, complete EDIT,
TRACE, and BREAK utilities, plus its marvelously sim
ple character definition and color assignment facilities),
TI Extended BASIC also has its own unique bag of tricks
not found on other machines. And this bag of tricks in
cludes some mighty impressive feats of computing magic.

But before we get into these extended features, let's
examine some of the obvious changes from TI BASIC.
First, there's the matter of a slight reduction in usable
RAM. The maximum program size in Extended BASIC
is 864 bytes smaller than in TI BASIC. Although this
represents only about a 6% reduction, any reduction in
user memory is significant if it prevents certain applica
tions from being RUN. And, in fact, as little as 500 bytes
is frequently the critical amount of extra memory need
ed. (Witness the several programs in this volume that can
not be loaded or RUN with the disk controller's power
on—even with the CALL FILES(l) command that frees
all but the 500 bytes for the disk system.) So program
mers without the 32K RAM expansion should try
wherever possible to make up the loss with Extended
BASICs built-in memory saving features: multiple state

92 The Best of 99'er Volume 1

ment lines (with more allowable characters per line), ex
panded IF-THEN-ELSE statements, multiple variable
assignments, trailer comments that immediately follow
statements (instead of separate REMs), repetition of
strings with the RPTS function, and the use of MIN and
MAX functions.

The loss of user-definable characters in the character
sets 15 and 16 is another departure from the TI BASIC
standard. These custom characters are no longer available
to programmers since the memory area is needed to keep
track of sprites. Therefore, a TI BASIC program that
doesn't use these character sets is supposed to RUN in
Extended BASIC in most circumstances—unless, of
course, you've done something that will obviously cause
trouble, such as accidentally using a TI Extended BASIC
keyword as a variable in your TI BASIC program (e.g.,
DIGIT, ERASE, ERROR, IMAGE, MERGE, MAX,
MIN, SIZE, WARNING, etc.) [See the July/August 1981
issue of 99'er Magazine for an analysis of what is and
isn't interchangeable.—Ed.]

Now, let's take a peek (no pun intended) into the "bag
of tricks" I mentioned earlier. A good place to start is
with Extended BASIC'S exciting new graphics
capabilities. Nine new subprograms (plus 2 redesigned
ones) provide the ability to create and thoroughly con
trol the shape, color, and motion of smoothly-moving,
high-resolution graphics. These are the true sprites-
graphics that can be displayed and moved at any of 49,152
positions (192 rows x 256 columns) rather than the 768
positions (24 rows x 32 columns) CALLed by the
VCHAR and HCHAR statements of TI BASIC. But
that's only the beginning. Sprites can be set in motion
with simple X and Y velocity components and will con
tinue their motion without further control; they can grow
and shrink at will, be relocated or "hidden", and even
pass over and blot out fixed objects and other sprites to
give the illusion of depth and 3-D animation. [This is a
function of the three-dozen stacked image planes of the
Home Computer's video display processor chip—a uni
que graphics display explained more fully in "3-D Anima
tion."—Ed.]

Although games aficionados and educators have every
right to be overjoyed with the new sprites capability,
TI-99/4A users who are more interested in business,
scientific and professional applications will be drawn to
other Extended BASIC features. First on the list is the
impressive subprogram capability. Several options exist
for passing values (and entire arrays) between main and

Copyright © 1983 Emerald Valley Publishing Co.

subprograms. There's also built-in protection to prevent
subprogram's local variables from affecting the main
variables. Additionally, commonly used subprograms
may be SAVEd on a separate disk, and later MERGEd.
This will allow programmers to build up a library of
"universal" subprograms that can be called upon to
supply the appropriate cartridges for new programming
tasks—without time-consuming re-coding and debugging.

If this new subprogram flexibility is not enough for
your most demanding tasks, how about "program chain
ing," where one program can load and RUN another pro
gram from a disk. This means that multi-part programs
of almost unlimited size can now RUN on the TI-99/4A
if they are broken into pieces and each segment is allowed
to RUN the next. And at any point in this chain, a
"menu" may be inserted, allowing the user to choose with
a single keystroke the particular program to be RUN. Im
agine the possiblities!

Those of you with a speech synthesizer, or thinking of
purchasing one, will be happy to learn that Extended
BASIC includes a speech editor. You will no longer need
the separate Command Cartridge (with a retail price of
about $45). What's more, with the combination of CALL
SPGET, the capability of subroutine MERGEs, and the
data for the code patterns (that TI supplies in the appen
dix of the reference manual), you can now easily add the
suffixes ING, S, and ED to the roots of words in the resi
dent vocabulary. And if TI ever supplies users with their
master file of coded speech patterns and rules for com
bining them, it will be possible to create your own new
words. As of now, TI provides only one cryptic state
ment: "Because making new words is a complex process,
it is not discussed in this manual."

Incidentally, this capability of having the computer say
what you want it to say rather than being limited to a
fixed vocabulary will, in fact, be implemented through
a related approach. I'm referring to the "text-to-speech"
capability of the forthcoming Terminal Emulator II Com
mand Cartridge, which is programmable in TI BASIC.
Since only one Command Cartridge at a time can be at
tached to the TI-99/4A, text-to-speech cannot be used
with the Extended BASIC Command Cartridge. [See
"Text to Speech on the Home Computer."—Ed.]

The final two features I'm going to cover in this over
view provide a fair degree of software protection and
open the door to additional language capabilities. Con
sequently, these are the particular features that may have
the most profound impact on the entire TI-99/4A
community—ultimately determining the quality and
quantity of most of the commercial software for this
machine.

Copyright © 1983 Emerald Valley Publishing Co.

Extended BASIC programs can be SAVEd in a PRO-
TECTed form to guard against software piracy. This ir
reversible feature allows a program to be RUN or load
ed into memory only with an OLD command. A program
thus PROTECTed cannot be LISTed, EDITed, or SAV
Ed. If the program was originally SAVEd and PRO
TECTed on a disk, you must still use the protect feature
of the Disk Manager Command Cartridge to completely
"lock up" the software by preventing it from being
copied as well.

Extended BASIC has the capability to CALL and RUN
assembly language programs if the 32K RAM expansion
peripheral is attached to the computer. Since Assembly
Language has a much faster execution speed than BASIC,
many applications programs that are unfeasible to write
in either TI BASIC or TI Extended BASIC (and Extend
ed BASIC is not significantly faster than its predecessor)
can now be written in TMS9900 Assembly Language,
LOADed into the expansion memory peripheral, and
RUN on a TI-99/4A. This paves the way for some fairly
sophisticated applications programs that can now be
targeted for TI-99/4A users. [See the related assembly
language sections in this book.—Ed.]

Even though a TI-99/4A with Extended BASIC and
the memory expansion peripheral can CALL and RUN
Assembly Language programs and subroutines, it can
not be used to write them at present. And instead of a
direct implementation of the POKE command, TI gave
users an indirect implementation. To load data directly
into memory locations, they can use CALL LOAD with
the optional fields specifying a starting address followed
by data bytes. The TMS9900 Assembler, available on the
Editor/Assembler Command Cartridge and its accom
panying diskettes, allows Home Computer owners to
write their own Assembly Language programs and call
them up through Extended BASIC. Besides this obvious
use of an assembler, it opens up other exciting
possibilities: More exotic languages can be written in
TMS9900 Assembly Language especially for TI-99/4A
implementations. FORTH, for instance, is now available.

The bottom line is more software tools for developers
and more economic incentive for them to produce
valuable programs that can be protected against most
piracy. This means that the TI-99/4A user community
will be seeing a lot more useful software enter the market.
Being able to run this software should more than justify
the $100 (retail) price for this filled-to-capacity 36K byte
TI Extended BASIC Command Cartridge with accom
panying 224-page reference manual. Therefore, the
answer to the title's rhetorical question, "How Extend
ed is Extended BASIC?" is apparently, "Extended
enough. ..."

The Best of 99'er Volume 1 93

POCKET
TOWER
OF
HANOI

You are in an ancient temple at the center of the
earth where three diamond needles bear eighty
golden rings of graduated sizes. At the beginning

of time the rings were all on one needle; but now the tem
ple monks are transferring the rings, one at a time, from
needle to needle, never setting a ring on a smaller ring.
When they have moved all eighty rings to one of the other
two needles, the world will end . . .

Possibly you have seen a children's toy along these
lines—four or five disks of various colors and sizes,
drilled to fit on three wooden pegs. The object is to start
with the disks on one peg, and by moving one at a time—
and never setting a disk on a smaller one—transfer the
entire pile to another peg. If you don't have one of these
in your closet, here is a pocket program of the puzzle for
you and your friends.

When the program is run, four "rings" (they will
actually look more like short bars) will appear on the left
of the screen. There is room on the screen for three piles
of rings. (To make the game pocket-sized, the pegs were
left out.) To move a ring from one pile to another, press
key 1,2, or 3 to designate which pile (left, center, or right)
to take the ring from, and then press 1, 2, or 3 to
designate which pile to move the ring to. That's all there
is to it.

The program works this way: rings are represented by
the numerals 1, 3, 5, and 7. Peg (1), Peg (2), and Peg
(3)are variables in which the presenceof rings on the three
pegs (or piles) are recorded. Thus in line 200, which is
part of the initial setup portion of the program, Peg (1)
is given the value 1.357 corresponding to the presence of
all four rings on the first peg. The leftmost numeral is
the one on top.

At the beginning, pegs #2 and #3 are empty. When a
ring is moved from one peg to another, the values of the
"peg()" variables change accordingly. For example, if
our first move is to place the top ring from peg #1 onto
peg #2, then Peg (1) changes from 1.357 to 3.57 and Peg
(2) changes from 0 to 1.

These changes are performed in line 450 (where the
"size" of the ring being moved is figured out) and in lines
500 and 510 where the values of the "peg()"s are actually
changed. "From" and "too" identify the pegs. They are
given values when the keys 1, 2, or 3 are pressed. The
three "top()" variables are strictly for the graphic
display; they record the positions of the tops of the piles
on the screen. Conveniently, the rings are 1, 3, 5, and
7 characters wide.

94 The Best of 99'er Volume 1

A

A

A

A

A

A

F

A

F

RlOM
A

A

F

!A

F

TlOp
A

F

P

L

7

pe|g
PEG

GO

P

RlOtM
= IN

TOO

H

L

C

C

C

C

E

T

E

T

R

0

E

T

E

TAT

TOO

SO

OW

3

l|o
L

1

0
0
1

1

1

E

H

H

H

H

Y

U

Y

0

0M

U

Y

U

Y

S

4

R|OM<
3

C

S

REOtM]
Hi

ZE

ROM
TOO

TP

0M

HEN

UMMY

0
T|Op

H

OM

EG

G

P

Tto
8

TO

S

N

U|M|MY
H

OM

TOO

ROM

TlOO
F

S

R

TtOjO
E

1

ROM
Z

OMI

TOO

TOO

EG

ROM

TOO

ROM-

|O0

S

E

00

9 +

"Status" is used as part of the "call key" routine to
tell the machine when a key has been released so that the
program can go ahead. Now read through the program
and see if you can follow what is happening.

Stacks
The piles of rings in this program are particularly

graphic illustrations of the stack, a ubiquitous and very
important ideain practically every kindof software. Like
the rings in these piles, things stored on software stacks
(subroutine returnaddresses, interrupts, whatever . . .)
come off the stacks in reverse order to the way they went
on. Because the items stored on our pegs are only single
numerals, we areable to use a simple "trick"1 to repre
sent each of our three stacks. We just construct a number
for each digit we want to represent. The 99/4A employs
numbers accurate to 13 decimal places using a radix-100
representation, so we can push and pop numerals onto
and off the left end of these with abandon, multiplying
and dividing by 10 without fear of a roundoff error.

lIf you find an application for this "trick"ina program of your own, you will
be entitled to call it a "method." (A "method" is a trick used twice).

Copyright © 1983 Emerald Valley Publishing Co.

The History of LOGO
LOGO—a powerful, high-level computer language

designed for educational purposes especially as a pro
gramming language suitable for young children—is

now available on Texas Instruments' TI-99/4A Home Com

puters. For more than a dozen years, the LOGO Group at
the Massachusetts Institute of Technology has been develop
ing the LOGO language and related computer programming
activities. Under the leadership of MIT Professor Seymour
Papert, LOGO activities have been used with children as
young as nursery school age, with MIT undergraduates, and
with many students of al) ages in between. The philosopy
of LOGO'S developers has been: "No threshold, no ceil
ing." A beginner can make the computer do something
meaningful and interesting in the very first programming
session. Yet at the other extreme, LOGO is suitable for very
advanced programming projects.

The philosophy of LOGO has been derived primarily
from two sources: The developmental theories of the late
Swisspsychologist, Jean Piaget (with whom Seymour Papert
worked for several years before coming to MIT), and ideas
from a modern scientific field called Artificial Intelligence.
From Piaget comes the idea of creating learning en
vironments in which most of what children learn can occur

naturally—in the same way children learn to speak their
native language, walk or run, and play ball. From Artificial
Intelligence comes ideas about ways to use programming
languages to aid thinking and problem-solving. Program
ming a computer in LOGO is seen as the act of teaching
the computer a set of new commands, based on what it
already knows how to do. Each user is, in effect, creating
his or her own computer language, to suit his or her own
purposes. Readers interested in learning more about these
ideas should read Mindstorms, a recent book by Seymour
Papert, in which he develops and extends the vision of the
relationship between computers and learning that led to his
development of LOGO.

LOGO activities are designed to allow use of the com
puter in a way that is personally meaningful to the user.
Activities developed by the MIT LOGO Group have includ
ed using a computer to control the behavior of a robot tur

Copyright © 1983 Emerald Valley Publishing Co.

tle, to draw pictures and explore geometric environments
on a TV screen, to create computer animations, invent in
teractive computer games, compose, arrange, and play
music, and produce "poetry." The best known LOGO ac
tivity is using a simulated robot turtle on a TV screen to
produce geometric designs and cartoon-like drawings. Hun
dreds of children have learned computer programming and
problem-solving skills and developed mathematical exper
tise while writing programs for the turtle.

The LOGO language includes commands to make the tur
tle move and draw pictures. A student drawing with the tur
tle can make it move around on the TV screen by typing
familiar commands such as FORWARD and BACK or

RIGHT and LEFT. The information which beginners need
to control the turtle is already present in their own body
knowledge of how to move forward or back and how to
turn right and left. Programming becomes an extension of
something a learner already knows—rather than something
requiring the mastery of an elaborate technical language or
a complex coordinate system. The turtle becomes for the
learner what Seymour Papert has called "an object to think
with." Students using the computer as a programming tool
become more aware of both their own body motion and
the behavior of the computer.

The version of LOGO developed collaboratively by Texas
Instruments and the MIT LOGO Group for the TI-99/4A
includes an entirely new graphics environment called a
"Sprites World." Sprites are small objects that can move
rapidly around the screen, changing shape, color, speed and
direction. Large numbers of sprites can appear at the same
time to produce exciting animated designs or to be used as
elements in programs to create video games. Because of its
inherent attraction for so many people and because of the
geometric and problem solving ideas embedded in it, the
Sprites World promises to be one of the most exciting
computer-based learning environments yet invented.
The World of the Turtle

Let's take a closer look at what actually happens when
someone learns to program a computer using the LOGO
turtle. The turtle responds to simple commands typed at the

The Best of 99'er Volume 1 97

keyboard: FORWARD 100, BACK 50, RIGHT 90, LEFT
45, etc. FORWARD 100 moves the turtle forward "100 tur
tle steps," drawing a line on the TV screen in the process.
LEFT 45 makes the turtle rotate 45 degrees to its own left.
People learning LOGO find it natural to "identify" with
the turtle, imagining themselves going through its motions
as it carries out a particular task. At the same time, con
trolling the turtle becomes a metaphor for controlling the
computer itself: Like the turtle, the computer responds to
an ordered series of command, and "TO" procedures that
are defined as series of commands.

The ways in which the actions of the turtle can lead to
geometric designs, as well as the method used to define pro
cedures, is illustrated in the following simple examples. The
turtle can draw a square by repeating the commands FOR
WARD 100 RIGHT 90 four times. A procedure can be
defined by choosing a name (BOX, for example) and typ
ing in a series of commands in order.

To execute BOX enter the following:
TELL TURTLE

BOX

When the new command, BOX, is typed, the turtle im
mediately draws the shape shown in the figure. (The small
triangle shown in the figure represents the turtle by show
ing its position and heading). A similar procedure, TRI, can
be defined as follows:

TO
FORMA

H
0RWA

GH

fiorWa
R
E

ISH
ND

To execute TRI enter the following:
TELL TURTLE

TRI

A student who has defined procedures such as BOX and
TRI is beginning to "teach the computer" his or her own
private language. BOX and TRI can now be used in the
same way as other LOGO commands. They can be used
to create other drawings such as a simple "house" or an
abstract geometric "flower."

This approach to geometry and programming provides
the basis for a rich universe of activities known as Turtle
Geometry, which includes cartoon drawings (simple and
complex), geometric designs, mathematical theory building,
and computer games. Extensions of Turtle Geometry have
proven fruitful when used with advanced high school
students or MIT undergraduates. The universe of Turtle
Geometry provides a conceptual framework for such aspects
of mathematics as the relation between shapes and angles,
coordinate systems, positive and negative numbers, the use
of variables, symmetry and similarity, and even calculus and
differential geometry. The computer programming involved
in beginning LOGO activities can include procedures and
subprocedures, the naming of procedures and variables, pro

98 The Best of 99'er Volume 1

cedural hierachy, recursion and iteration, the use of condi
tional logic, and the development of problem-solving
strategies.

Within the universe of Turtle Geometry, there is room
for different students working individually to create their
own sub-universes or microworlds. They can do this with
their own limited (but expandable) sets of concepts and
related activities and projects. To teach LOGO is really to
help learners create, explore, and extend their own
microworlds.

I have used turtle geometry as an example of what can
be done with LOGO because it is easy for a reader to
visualize the commands and to see how they lead to pro
cedures that produce the results in the pictures—just as it
is for young children. Children learning LOGO have ac
tually carried out many other types of projects as well:mov
ing turtles, finding their way around race-tracks or mazes,
animated cartoons, interactive computer games such as Nim
or Tic-Tac-Toe, programs which generate sentences or
poetry (or even play Mad-Libs), and programs to translate
Englishinto Morse Code, or vice-versa. As LOGO becomes
available to owners of TI-99/4A computers, I hope that
these pages can be a forum for describingyour LOGO pro
jects. Since there will soon be more LOGO users than ever
before, we can expect more and different LOGO projects
to emerge. One of the best ways to build the culture of
LOGO is for users to share project ideas through the pages
of books such as this or magazines such as 99'er Home
Computer Magazine.

Although TI LOGO is a recent entry to the LOGO
World, a prototype versionhas alreadybeen testedwith hun
dreds of students between the ages of three and nine at the
Lamplighter School in Dallas, Texas, and by students in fif
teen elementary and junior high schools in New York City.
Using the Sprites World of animated graphics activities,
these students are busily creating a new universe of LOGO
activities to delight and educate a new generation of com
puter users. In an age in which computers are omnipresent
in society, and in which universal computer literacy is a
pressing national need, computer-based learning en
vironments like LOGO have become essential to the pro
cess of growing up literate in the last decades of the twen
tieth century.

Copyright © 1983 Emerald Valley Publishing Co.

The Lamplighter LOGO Project

"A
child is not a vessel to be filled, but a lamp to
be lighted." The quote from Alexandre*v is on
the plaque outside the Lamplighter school. That

sign advises any visitor that the school is very unusual.
The curriculum at Lamplighter is individually tailored to

meet the needs of each student. Individualization is applied
in science, language arts, math, drama, music, art, French,
and physical education. The Lamplighter is strongly sup
ported by the parents of its students and by its alumni, with
graduates of Lamplighter frequently dropping by to seetheir
former teachers. Such alumni loyalty might not be con
sidered unusual, except that the Lamplighter classes begin
with preschool (age 3) and end with the fourth grade-level!.

The physical arrangement of the school reinforces its ap
proach to learning. Classrooms have only three walls; the
fourth side of each class opens onto an airy, bright shared
space. Class rooms are clustered around these shared-spaces
by grade-level. Inside each classroom there are tables and
chairs for writing work and, on one side, a small tiered well
which is used for many other activities (e.g., reading, French,
music, or story telling). The staff, the facilities, the students,
and the parents all contribute to make Lamplighter a very
special private school.

Lamplighter has been a leader in the use of new
technology for learning. Calculators, Speak & Spells,
Systems 80 units, and Little Professors are abundant
throughout the school. Students regularly use these learn
ing tools and other learning games found in the shared
spaces. Teachers make extensive use of slides, films, and
video and audio tapes. When Mr. Erik Jonsson (co-founder
of Texas Instruments and Lamplighter Board of Directors
Chairman and benefactor) first proposed introducing com
puters into Lamplighter, his idea was well received. Mr.
Jonsson had earlier been in contact with Dr. Seymour Papert

Copyright © 1983 Emerald Valley Publishing Co.

of theDivision for Studyand Research in Education(DSRE)
at MIT, and found the LOGO languageand philosophyof
learning intriguing. Papert's initial explanation that LOGO
allowed students to program computersand not vice-versa,
enjoyeda favorable reception from the Lamplighter facul
ty. Later, as Papert elaborated on the LOGO philosophy,
it became clear the LOGO was very much in accord with
the philosophy and practice of Lamplighter.

In the fall of 1978, Papert and several others from DSRE
made a series of preparatory visits to Lamplighter to ar
rangefor the introductionof LOGO to the school.The plan
was to begin LOGO training for first the faculty and then
the students by using the Digital LSI-11 LOGO (in use at
the Brookline, Massachusetts, project) and later, bring TI
LOGO into the school as it developed.

Shortlyafter the first visitby Papert, Lamplighterrented
the first of two LSI-ll's that were to be used in the initial
two years of the project. Training sessions helped the initial
core of Lamplighter faculty (representing nursery school,
second grade, third grade, and fourth grade) become
familiar withLOGO. This "Computer Group" then began
working with third and fourth grade students. Shortly
thereafter, a second LSI-11 was rented, and by the end of
the spring term every third and fourth grade student had
had at least one hour of LOGO instruction on a computer.

The third and fourth graders considered it a treat to work
on the computer—partly becausethesespecial computer ac
tivities allowed them to missclasses, and partly becausethey
genuinely enjoyed working with LOGO. One student's
remark reflectsthe sentimentsof many of these pupils.After
he had spent an hour working at figuring line lengths, turn
angles, and sections of arcs in order to construct a com
puter picture of a cat, he thanked me for "getting out of
math class."

The Best of 99'er Volume 1 99

In the summer of 1979, the Computer Group was expand
ed, and two workshops were held to refresh the teachers'
memories. Subsequently, a 10 day workshop at MIT in
troduced the teachers to more elaborate LOGO program
ming and allowed them to participate in discussions on the
relationships between learning and LOGO. Then, as the new
school year started, the teachers were really surprised to
discover how little the fourth graders had forgotten about
LOGO. These students generally recalled all of the com
mands they had learned three months earlier—even though
they had had no contact with LOGO in the interim!

Midway through the fall semester of 1979, several early
prototypes of TI LOGO were tested at Lamplighter and
revisedby the MIT LOGO laboratory personnel in consulta
tion with Lamplighter and Texas Instruments. In January
1980, the pace of computing at Lamplighter accelerated as
an updated version of TI LOGO was implemented on the
TI prototypes. By the end of January, a dozen prototypes
were in use at Lamplighter, and a very few students con
tinued to use the LSI-11 LOGO. Most pupils, in fact,
switched to the TI prototypes even though that meant re-
learning much of LOGO.

In the middle of the spring semester, a few more pro
totypes arrived and all the machines were upgraded to a later
version of Tl-based LOGO. Before the school year ended,
all of the third and fourth graders had had at least one hour
on the new machines. One of the rented LSI-11 's was then

returned (though few noticed its departure). At that time,
several fourth graders were writing elaborate programs
which made use of recursion to create "movies" or "rain

bows" (changing colors), or elaborate scenes. Some students
were so taken with LOGO that their parents happily bought
them their own computers (at that time, TI LOGO was not
yet commercially available); other students became

100 The Best of 99'er Volume 1

enthralled with their ability to produce perfectly printed let
ters and numerals on a keyboard and later received
typewriters as presents from their parents.

By September 1980, a total of 50 TI LOGO prototypes
were in operation at Lamplighter. The version of LOGO
on these units was very close to that which TI is now
marketing. Then, late in the fall, the second LSI-11 was
returned, but its loss went completelyunnoticed because all
of the faculty and student interest was already focused upon
the TI LOGO prototypes. Since September, the Computer
Group has continued to work individually with third grade
students. In addition, the rest of the faculty is being train
ed in LOGO, and it has been introduced into all of the
classes as part of the regular school curriclulm.

The teams at each grade leveldecided the best way to in
troduce LOGO into their classes and worked out various
procedures for that introduction. For example, one teacher
developed special simplified LOGO programs for the
preschool children which required lesstyping in order to pro
duce interesting effects. And personifications of LOGO con
structs made LOGO easier for first and second graders to
understand. Currently, students can be seen at every shared-
space LOGO machine during lunch-hour, before school,
after school, and whenever other school activities are com
pleted. For the rest of the semester, LOGO will be used in
class by the teachers as they feel it is relevant for their lessons
and will continue to be available (as are the other learning
aids) to students during free periods.

The Lamplighter LOGO project was not intended to be
a formal experiment. Since there are no control groups,
strong causal claims for LOGO'S effects are inappropriate.
Several cognitive and psychological assessments, however,
were made at the beginning of the project and will be made
again at the conclusion of the present school year. And,
there already have been some indications of student attitude
and behavior change. This is best exemplified by the way
in which the pupils express their keen interest in acquiring
new LOGO knowledge.

It's always interesting to observe what motivates children
to learn. Because LOGO is so extensive, Lamplighter
teachers find it impossible to show students all the com
mands in the initial sessions. As a result, students have taken
the discovery of more LOGO commands as a sort of
treasure hunt and this new, "unauthorized," LOGO infor
mation is disseminated through an "underground network"
among the students. During a training session in which
teachers were learning to use MAKESHAPE (the LOGO
command with which users make their own shapes on a 16
x 16 grid), some students were secretly watching them.
Shortly afterward, a hand-copied "underground" LOGO
manual with clear and concise directions for the use of
MAKESHAPE was found on the floor of a classroom; at
the same time, a number of students began using
MAKESHAPE.

Students have discovered other information accidental
ly. One student typed MC instead of MS for
MAKESHAPE; this put him in MAKECHARACTER
mode. In this mode, LOGO users can modify old characters,
or make new characters. The student proudly shouted out
his discovery to his classmates, who quickly confirmed his
results and spread the news. New information has diffused
from grade to grade or class to class or from parent to child
in a similar manner.

Copyright© 1983 Emerald Valley Publishing Co.

Sharing among peers is the overwhelming response of
Lamplighter students to new LOGO information. Pupils
eagerly and proudly explain their accomplishments in
LOGO. At first, however, there were a few exceptions. A
couple of students were secretive about some LOGO infor
mation and effects. One student made the screen's
background color black so that no one could read what he
typed; another tried to sell LOGO programs to his
classmates! Afer they discovered that other students could
find different ways to achieve the same effects and were will
ing to share, they started sharing as well.

In at least one case, LOGO seems to be responsible for
a major behavioral change. Late last year, a fourth grader
who had not been performing well academically, and who
had been somewhat disruptive inclass, started programming
in LOGO. Asheplayed on thecomputer, his typing became
very fast (QWERTY keyboards are quite properly regard
ed bythe Lamplighter children as a stupidarrangement with
which they reluctantly work), and his program became
sophisticated. He was heard to remark, "I can't believehow
fast my fingers are typing." He also could not believe how
much fun school had become. Not only did he do well with
LOGO, but he also becamean attentive, productivestudent.

TO

F|OR|W|A
GH
ST
F

ORWA

NG

Figure 1.

00
TELL TURTLE
LAZY8

Comment:

TEST checks the heading of the Turtle. If it's not 0 (North), the Turtle
continues to draw the LAZY8.

After finishing the right-hand circle, the heading becomes 0 and the left-
hand circle is drawn.

To really understandwhythe left-handcircleevergetscompleted,you have
to knowsomethingabout microprocessors and stack operations. In keep
ing with the scope of this section, however, a simpleanthropomorpic ex
planation will have to suffice at this time. Other sections will take an in-

depth look at the technical aspect of the language.

Think ofthejob ofdrawing theLAZY8 as being given to a group of little
workmen inside the computer. The first workman carriesout the first four

lines then decides he needs a rest beforecontinuing. Noticethat in his in
itialcontract TOLAZY8he hasagreed to eventually carry out the FOR
WARD 4 andLEFT10specifications. Thework mustgo on while herests,
so he subcontracts out the nextstage to anotherlittleman. Thisworkman
also carries out the first four lines, then he too decides to rest. So before

he gets to the FOR WARD 4 LEFT 10 tasks, he decides to subcontract out

thebalance ofthe work on theright-hand circle. Thisprocess goes on with
enoughlittleworkmen (36 in thiscase)untilHEADING = 0. At thattime,
the last littleman carries out his FORWARD 4 and LEFT 10 tasks, and
gives thejob responsibilityback to the next-to-last workman who also car
ries outhisremaining FOR WARD 4andLEFT10tasks. This reverse pro
cess of finishing thelasttwotasks andrelinquishing responsibility goeson
until the original contractor finishes his original job with a singleFOR
WARD 4 and LEFT 10, thus completing the left-hand circle in the
LAZY8—Ed.

Copyright © 1983 Emerald Valley Publishing Co.

At present, most of the third and fourth graders—and
even some of the first and second graders—are writing
LOGO programs. And this includes some fairly
sophisticated programs which use recursion and the con
cept of state transparency. A few children even acquired
the skillof usingsubprocedures—i.e., breaking a complex
program down into its severalcomponent parts. This is one
of the most important features of procedural languages such
as LOGO. Most students had discovered recursive program
ming, or "cursives"as a few called it. In recursive programs,
one of the program lines calls for a new stack to execute
the program again. You do this by including the name of
the program withinthe program itself.All the recursive pro
grams written by the students, however, had the recursive
step in the last line. [When the recursive step occurs in the
last line before END, the procedure is said to have "tail-
end recursion." For an example of somewhat more
sophisticated usage, see the LAZY8 procedure in Figure
1—Ed.]

A number of programs produced exciting video scenes.
In EXPLODE, 32 differently colored balls splay out from
the centerof the screenbefore repeatingthe entireprocedure.
One third grader saw how he could place a program which
printed a message inside EXPLODE, and thus combined
recursion and subprocedures. RAINBOW had one or more
sprites continuously change colors for an attractive visual
effect. There were also programs which had the TV monitor
take on a series of sixteen colors, and programs which
changed the background of the screen to black and created
unusual perceptualillusions by shooting light-colored shapes
across the screen. Some even had jets, rockets, or airplanes
spouting fires from their engines.

Other children wrote programs
which put shapes together to create
scenes, such as a home with a car
driving down the street in front of
the home. Most students had writ

ten utilitarian programs like
VANISH (Figure 2) which caused
the sprites to move off screen, take
on the clear color, carry an empty
shape, and which caused all the
printing to be cleared from the
screen.

After spring break, several things happened which caus
ed a quantum leap in the computer work of the students.
First, the children wereshown how to save their programs
and shapes on cassette tape. Until then, the students had
to write in their computer notebooks anything they wanted
to save. That meant that any elaborate shape had to be
reproduced on a grid in an arduous manner, and long pro
grams or complex programs required a very long time typ
ing. (Remember these children are elementary pupils with
little typing experience before computers!).

Students had not used much of their work as founda
tionsfor futureworksimply because loading theold material
took so much of their time. Now, with the recorders, they
could useand improveeach session'sprograms just by tap
ingand playing back a cassette. Also, theycoulddesign and
SAVE complexshapes instead of seeingthem lost when the
computers were shut off.

The children were also shown the TELL TURTLE mode.
This opened up all of the turtle geometry features of LOGO.

The Best of 99'er Volume 1 101

(Turtle geometry is such a powerful idea that some Pascal
systems have adopted it.) This newlyacquired mode, coupl
ed with the previously learned SPRITE MODE, allowedthe
students to produce many interesting programs and visual
effects. As a result of these new developments, many of the
students soon exhibited a feeling of mastery over the
computers.

In the final eight weeks of school there was an exponen
tial explosion in the complexity of the students' programs
and in their ease with the machines. They quickly learned
to use variables as inputs, and consequently "discovered"
the famous turtle geometry POLYgon program which can
generate any regular polygon. (SeeFigure 3.) Then one stu
dent found that changing the angle of the turn on each recur
sion could produce beautiful patterns—including a striking
nested curl in a star pattern. Many students now began put
ting programs together in subordinate and superordinate
structures. Programs contained the unique LOGO controls
of TEST, IFT, and IFF, as well as the conditionals IF-
THEN-ELSE, plus BOTH and EITHER for conjunctive
and disjunctive branching. One of the third graders wrote
a CAI (Computer-Assisted Instruction) program to quiz his
first grade friends on addition facts using these control com
mands! He then added visual displays of the addends, and
encouraging remarks when a student made a mistake, or
a colorful scene as a reward for the correct answer.

TO

RWA

IGH
PO

Figure 3

NG

TELL TURTLE
POLY 90 150

Using combinations of several user-drawn shapes,
students began constructing very elaborate composite pic
tures. One third grade student also discovered how to change
the characters associated with each console key [by redesign
ing the characters on a grid "tile" with the MAKECHAR
primitive—Ed.], and decided to tease the teacher. She
replaced the 3 with a 2, and then called a teacher for a
demonstration. While instructing the computer to print 3
+ 3 (which now looked like a request for the sum of 2 +
2), she remarked to the teacher: "Look how dumb this com
puter is. . .it doesn't know 2 + 2."

The activity among the third grade students was exciting
to witness. One began programming dramas in which text
was printed at the bottom of the screen while the story was
enacted in SPRITE and TELL TURTLE modes at the top
of the screen. One other third grader was so intrigued by
the space shuttle's landing that on the same afternoon of
the landing, he began working on a shuttle program. First,
he used MAKESHAPE to construct a faithful replica of
the shuttle, complete with USA monogram, black-and-white
coloring, and auxiliary rocket engines. Then he worked for
part of the afternoon and a little of the next morning to
write and debug his programs. His final superprocedure

102 The Best of 99'er Volume 1

launched the shuttle with flames shooting from the engines,
jettisoned the auxiliary tanks, orbited the shuttle among
planets in outer space, returned the shuttle to a dry lake-
bed runway, taxiedit to the end of the runway, and stopped
it for a perfect landing. His programs are shown here in
Figure 4

Figure 4

WA

Note:

BG = BACKGROUND

FD = FORWARD

SC = SETCOLOR

SH = SETHEADING

SS = SETSPEED

1
HlOlMl

HOM

HOM

"OME

OM

OM

HOM

HlOME
6
H|0|M|E
6

HOM

[Note: Listings of TI LOGO procedures are just that—listings of pro
cedures. There's no wayto print out a transcription of the data needed
to MAKESHAPE and MAKECHAR as can be done with the HEX Codes in
TI BASIC and Extended BASIC The only way to show the graphics that
a program contains is to show it .isdrawn on a series of "tiles" on the
grids that appear on screen when the shapes and characters are first
designed. This issimilar toCHARDEF routine inProgramming Aids 1. The
listing of Ihe Space Shuttle program was included (without the tiles) in
thisarticleto demonstrate the simplicityof the language structure.—Ed.]

The gainsmade by the Lamplighter children with LOGO
have indeed been impressive. They confirm Papert's dic
tum [Mindstorms, Seymour Papert, Basic Books 1980] that
childrenshould program computers and not vice-versa. It's
obvious that LOGO has indeed furthered Lamplighter's goal
of igniting the imaginations and intellects of its children.
But more importantly, LOGO has the potential to fire up
imaginations everywhere.

Copyright © 1983 Emerald Valley Publishing Co.

Who is LOGO
For?

Its not just for
Turtles anymore . . .

Recently the question of LOGO'S relevance for children
and its relevance for adults has been stated as an im
plicit either/or issue. That the issue ever arose means

that people (including me) who write about LOGO have not
done their jobs as fully as they should. Perhaps the notion
that LOGO was just for children developed because of the
total attention children invest in LOGO. The position that
LOGO is too complex for children may have arisen because
published programsseem magic unless one actively explores
them (including seeing what happens when the programs
are changed). Presenting a program as a fait accompli to
be copied, run, stored, and used like any other software is
contrary to the philosophy of education behind LOGO.

LOGO is for humans. When Papert asked me if I felt
comfortable with my LOGO, I said that LOGO is like a
hologram—when you grasp just the smallest part of it, you
have a small, but complete picture; and later as your
understandinggrows, you stillhave a completepicture, albeit
larger. From that perspective,people can always learn more
from LOGO and do more with LOGO even though they
are able to use LOGO after the briefest of introductions.
This feature of LOGO is what Papert alludes to in his
slogan, "Low threshold, no ceiling."

The LOGO slogan invites empirical verification. In my
self-observations and studies of other adults, I have notic
ed that there are common, identifiable LOGO-
developmental stages. Among these are the discovery of
heuristics (i.e., powerful ideas), improved understanding of
numbers,appreciationof angles and heading,and awareness
of statesand state independence. Probably the greatestgain
people share in working with LOGO is the realization that
one can find out on the computer, rather than ignoring the
question or looking the answer up somewhere. This is so
obvious that it might appear trivial; it is not. All learning
theorists agree that active learning is preferable to passive
learning. This presents a dilemma for those writing about
LOGO: How do you capture the open activity of a LOGO
learning enterprise in a closed article?

The purpose of this article, however, is to reflect the
development of a LOGO game, and in that development
show how an apparently complex program is child's play,
even for adults. At the same time, I hope that the develop
ment willpoint to variations and will entice you into active
exploration. The program was initiated by a student in a
course I taught.

Copyright © 1983 Emerald Valley Publishing Co.

The program wassupposed to be a "Pong" type game.
As you follow its growth, find the point, if there is one,
where the program stops being a children's program.

The game begins not as a program, but simply a collec
tion of conditions.

HJOjM

L

R

COIL OR

These commands set a ball speeding left-to-right across the
middle of the screen.

The idea grows into a program as the ball is set to "boun
cing" off left and right boundaries. This is accomplished
any of several ways:

E

F

E

F

BOU

COR

GH
COR
GH

But BOUNCE1 sometimes doesn't work—occasionally
the sprite is "caught" at one end or the other. What hap
pensis that the spriteslipspast one of the boundaries (e.g.,
the computer is at line 2 of the program as the sprite moves
left through X coordinate equal to - 85); by the time the
computer reaches line 4, the sprite is well left of X coor
dinate -85. Then the computer turns the sprite right 180
(a right 180 functions equivalent to a left 180). Before the
sprite can move beyond the - 85 X coordinate, the com
puter checks line 4 again, turns the sprite 180 and sends it
still further to the left. Of course, when the computer reaches
line 4 a third time.the sprite is still left of - 85; the poor
sprite is stuck beyond the left-hand boundary! This bug
could be eliminated with a second type of BOUNCE
program:

CO
EA

C0|R
T
2

The Best of 99'er Volume 1 103

Now, regardless of how far beyond either boundary the
sprite travels, the program will change the sprite's heading
so that it will move back away from the boundary. A se
cond bug could occur if one used BOUNCE2 without first
typing in the setup commands, since BOUNCE2 requires
sprite 0 to have a shape, heading, and speed. To avoid any
problems, a better arrangement would be:

and

BO

GAMjE
UP
N

CO
HOKE

AD

P

B
LEOR LU

A ball bouncing between two boundaries is not much of
a pong game. A closer approximation would result if there
were a paddle for the ball to bounce off. This could be
achieved by merely putting two sprites together as a team
stacked vertically on top of each other, with each carrying
a box. Since the team of sprites is, like the sprite carrying
the ball, part of the initial game setup it should be part of
the SETUP program:

TO
TE

CAR
S
HOME

T

T
L

ClAR
X

E
E
E

P

B

CjOtLfOR

NG

BOX

TCDLOR

NG

BOX
LOR

NG

AC

Notice, however, that sprites 1 and 2 receive almost iden
tical commands, so that a cleaner SETUP program can be
written:

TO
TE

CAR
S
HOME

CA

P

B
LEOR

NGJ

2
BOX

9

NIG
LOR LA|CK

0

To make the game even more realistic, it is necessary to
change the heading of the ball, to have the player able to
move the paddle, and to keep a score. Obviously the ball
should bounce only when it hits the paddle! These addi
tions are complex, so one should apply a Papert "powerful
idea" and work on the complexity in smaller, simpler parts.

The movements of the paddles can be accomplished by:

104 The Best of 99'er Volume 1

TO

FORWA

and PADDLE is simply added to the GAME

T
AD

BOU

Ooops; there's a very bad bug in this—the ball never
bounces because PADDLE is recursive without a stop rule,
and the computer never reaches BOUNCE2. So the recur
sive line in PADDLE is removed:

PADD

ORWlAR

AC

But now, when GAME is run, there's another bad bug: The
program sets up, allows for one paddle movement and then
stays stuck in BOUNCE2. Once again the difficulty is that
a subprocedure is recursive. As a general rule, when a recur
sive program is used as a building block for a more com
plex program, there can be a bug. The bug is common
enough to deserve a name—the "Recursion Interface Bug."
When the bug is corrected by removing the recursive line
of BOUNCE2, a new bug appears.

B0|U|N|C
L

T XCOR
EA

COR
ING

NG

The ball doesn't bounce, or only bounces once, and the
paddles only work once. This bug is killed by:

TO

SE
PADtD
BOUN

GAME

END

GAME

With that fix, the paddles work, but a completely new
SETUP happens at every execution of GAME. A better
solution is to separate those subprocedures which should
be repeated from those which need to happen just once;

PADDLE

BOUNCE2

and construct a new, superprocedure:

s
GAME
"ND

SETUP

Copyright © 1983 Emerald Valley Publishing Co.

and alter GAME:

TO
PA

BOUN

GAME

GAME

There is still a small bug left in PADDLE: The computer
will wait at line 1 of GAME until a key is touched (to satisfy
the command CALL RC "A, it needs an RC). The com
puter needs to skip PADDLE if no key is touched. You can
accomplish this by using TEST and the operation RC? (RC?
answers "TRUE when a key is touched and "FALSE if no
keys are touched).

B
GAME
EN

F
0U1MC

|G|AME
RC

PADD

At last the programs are all bug-free and working. The
final tasks consist of linking the ball-bounce off the right
to hitting the paddle, keeping score, and making the flight
of the ball a little more eccentric. Again these are complex
problems, so each should be tackled separately.

The BOUNCE2 program now reads:

TO BOUNC

COR
TH

COR
NG

The second line causes the bounce off the right-hand bound
ary. If that TEST were altered so that it answered "TRUE
only when the ball is near the paddle or a new program were
designed to check the relationship of the ball to the pad
dle's Y coordinates when the ball is to the right of X coor
dinate 85, then the problem could be solved. The paddle
is always at X coordinate 100; since the ball is in motion,
the TEST at 85 is reasonable: When the ball passes through
XCOR = 85, it will approach XCOR = 100 by the time
the computer has completed all of the Y coordinate tests.
The paddle begins the game (through SETUP) with the ex
tremes of its Y coordinates between -16 and 16; each time
the E key is typed, the paddle advances 16 along the Y coor
dinate, and each time that X is typed, it backs up 16 on
the Y coordinate. Therefore, some PADDLETOUCH
operation is needed that can compare the Y coordinate of
the ball and that of the paddle:

00

PADD
L

T

[COR
0U

TOUCH

COR

This program will answer "TRUE whenever the ball (car
ried by sprite 0) is between :Y and (:Y - 32) on the Y coor
dinate. If the PADDLE program is altered, not just to move
the paddle but also to keep track of the Y coordinates of
the paddle through :Y, then PADDLETOUCH will func
tion nicely:

Copyright © 1983 Emerald Valley Publishing Co.

FORWA

CA
BA

Unfortunately, this doesn't quite work as intended because
it introduces a new bug: The CALL command CALL :Y
+ 16 "Y and CALL :Y - 16 "Y will not work unless there

is an initial value specified for :Y. Recall that the beginning
value for the top of the paddle on the Y coordinate is 16
(as achieved in SETUP). Since this happens just once, it
belongs in SETUP:

TO

CAR

HK>JME
H AD

LtJ

NGj

BOX

ACK

Next, it is trivial both to tie PADDLETOUCH into the
GAME program and to make the flight of the ball less
predictable. First of all, PADDLETOUCH is added to the
BOUNCE2 program:

TO

E

E

F

END

B0U

9
XC|0|R

CH

NC

ECS

TO

NG

Then BOUNCE2 gets changed to test for the edges of
the screen. Now, if the sprite reaches the top of the screen,
it bounces back down instead of "wrapping" to the bot
tom. If it reaches the bottom of the screen, it bounces back
up, and when it hits the left-hand boundary, it bounces at
a 70-degree heading instead of a 90-degree heading.

COR
CS

COR
TH EAD

COR
EAD

COR

TH

NG

NG

NG

This leaves just the problem of keeping score. Besides
keeping score, it would be nice to generate different noises
when the player scores and when the computer scores. When
the ball bounces off the paddle, then the player's score
should increase and be printed; when the ball misses the pad
dle, then the computer's score should be increased. Notice

The Best of 99'er Volume 1 105

that the CHECK program is invoked only if the ball is
beyond XCOR 85. Therefore, part of the scoring and noises
can be controlled after line 3 of BOUNCE2 by rewriting
the CHECK program:

WA

HOR
0

E

E

E

C
N
T

X

CK

L

E

E

T

T

YOU

PO
N|G
S

cloMP
i

p

s

c
COM

E

N

com

WA

TO

CO

CO

NO

E

100 R

It is necessary to set up an initial value for both the com
puter's score and the player's score as was done with :Y.
Sincethis is done just once, it belongs in SETUP. [The in
itial score is 0 to 0—as in the proverbial "soothsayer's"
prediction or score before it begins. . . .] So SETUP is
revised:

106 The Best of 99'er Volume 1

HOME

BOX
LOR

This game, like most LOGO projects, is open-ended. It
could be altered so that a winner is named at a score of 21,
revised for two players, changed to use joysticks or changed
so that the ball has topspin. With each addition, it is
necessary to make sure that the initial conditions are
established only once, that procedures to be repeated are
placed inside a recursive program, and that there are no
Recursion Interface Bugs.

BOUN

COR

c|0R
E

RCO

CO

Copyright © 1983 EmeraldValley Publishing Co.

LOGO'S

POWERFUL

PART 1: Language Structure and Syntax

LOGO was developed by Seymour Papert and his
associates at the MIT Artificial Intelligence
Laboratory in order to study the way people might

learn in a computer-rich environment. It was designed to
be a language so simple to use that a person could
manipulate objects or concepts by just thinking about what
he or she wanted to accomplish, and not have to worry
about programming. Such a language might stimulate a per
son to explore, to learn, and to grow.

The idea was to provide certain primitive commands and
operations that could be combined to form more complex
commands and operations. These more complex ones could
then be used exactly like the primitive ones. Thus it would
be possible to construct a single command to accomplish
anythingthat could be accomplished usingthe primitive con
cepts. Additionally, recursion—whereby a command could
call and activate itself—was allowed.

LOGO is a relative of LISP, the list processing language
used in artifical intelligence. LOGO and LISP share the
capability of manipulating numbers, words(character strings
without a space), and lists. A list is a recursively defined
object: It is an ordered set of objects, each of which may
be a number, a word, or a previously defined list. In LOGO,
a procedure is represented by a list; there are commands
to access a list that represents any procedure, and to define
new procedures from lists which might be the result of some
manipulation. Furthermore, a procedure may have inputs
and may have an output, and is activated by specifying its
name (a word) followed by its inputs (which may be
numbers, words, or lists). Defined procedures as well as
primitive commands and operations all have exactly the
same syntax. This is why LOGO is so simple to use. Its
power comes from its list processing capabilities.

I hope that the description given so far has made it ap
parent that LOGO isnot just for children. Although LOGO

Copyright© 1983 Emerald Valley Publishing Co.

SURPRISES!

can be used in elementary ways, it is much more than FOR
WARD 20 RIGHT 90. LOGO is a language for all people
who want to learn and expand their capacities.

The LOGO Turtle
The first experiments with LOGO were with junior high

school students who could appreciate manipulation of
words. Then a Turtle was created whose movements could
be understood by very young people.

The Turtle was originally a robot that could be command
ed to move about the floor. It had a pen which could be
either up or down. In an experiment at the University of
Pittsburgh Learning Center several years ago, one young
person used LOGO to command the floor turtle to draw
an alphabet of large letters. He also taught it to act like an
airplane, and "fly" between cities on a large map. The plane
had the possibility of going out of control, with the turtle
going into a spiral and spinning on the floor. The turtle is
now usually a small triangle on a terminal screen, but it can
still do such things, albeit on a smaller scale.

At the youngest levels, LOGO is being used to teach a
feeling for distances and angles. At levels through college
it is being used to advance a new subject in mathematics
called "Turtle Geometry." Some interesting theoretical
results have come about. (A wealth of examples and exer
cises is contained in Turtle Geometry by Abelson and
diSessa, where procedures are expressed in a language almost
exactly the same as LOGO.) Recursive designs such as
snowflake curves, space filling curves and trees are applica
tions of LOGO'S power.

TI LOGO
TI LOGO is marketed as a language for children, and

it was a pleasant surprise to discover that TI LOGO has
all of the list processing capabilities built into it. All the
recursive designs presented in Turtle Geometry can be
drawn. (The TI Turtle is, however, limited to 192 different

The Best of 99'er Volume 1 107

8x8 pixelcharacter positions. Thus, if a figure is verydense,
it can't be very large.)

The documentation that comes with TI LOGO doesn't
make it easy to discover LOGO'S power. Many of the com
mands needed for manipulating all but the simplest listsare
not documented.

At this point, it may be helpful to briefly describe just
what is available to a person who sits down to use TI LOGO.
The TI Turtle is an object that lives on a coordinate screen
with horizontal coordinates from -119 to +120 and ver
tical coordinates from -46 to +97. The bottom six lines
of the screen are used for text. The turtle can be assigned
a position, and "knows" where it is. It can be assigned a
heading (from 0 to 360 as the points of a compass) and
knows its heading. Its headingcan be changed by a given
angle, and it can be moved a given amount either in the
direction of or opposite to the direction of its heading. It
can make a dot at any position. The pen can be down, up,
or in "reverse" modes, and it can draw in any of 15colors.

Unique to the TI versionof LOGO are sprites—objects
familiar to those with TI Extended BASIC. There are 32
sprites (numbered 0 to 31) with each assigned to a 16x 16
pixelshape. Users may design and store 26 of these and can
direct anycollection of sprites to assume simultaneously an
attribute such as shape, color, position, heading, speed, or
velocity. The commands which control the turtle act similar
lyon the sprites. Motion iscontrolled by assigning a speed
(in the current direction)or a velocity (horizontal and ver
tical components). Not onlycan attributes be assigned, but
theycanalsobe obtainedas the output of operations because
a sprite alwaysknows its own number, shape number, col
or number, position (on the full screen), heading, speed,
and velocity.

Papert has described Velocity Turtles (which can have
velocities) and Acceleration Turtles (whosevelocities can be
incremented). Sprites can be both. Using sprites wecan even
simulate Papert's "Dynaturtle"—an acceleration turtle
which does not change direction when it is rotated, but
changes velocity only by accelerating in the direction it is
facing, thus obeying Newton's laws of motion.A dynatur
tle thereforebehaves like the ship in the popularAsteroids
arcade game. The example procedures that follow this arti
cle will demonstrate a dynaturtle which can have the force
of its "thruster" changed, and which can simulate an en
vironment with friction.

TI LOGO also has 256tiles(numbered0 to 255) that can
be given arbitrary 8x8 pixel designs. We can assign tiles
foreground and background colors and position them
anywhere on the 24 x 32 character screen or on the current
print line. Console characters are tiles, the number of each
tilebeingthe ASCII code of the character. (Note: The Tur
tle records its trace using tiles, so simultaneous use of the
Turtle and nonprinting characters is limited.)

Numbers, Words, and Lists
A number in TI LOGO is an integer from - 32,768 to

32,767. Numberscan be added, subtracted, multiplied and
divided (integer quotient), calculations being modulo32,768.
The restriction to integerarithmetic is a definite limitation,
but the limitation is not serious for most applications.

A word is a character string without a space. A feature
of LOGO distinguishing it from other programming

108 The Best of 99'er Volume 1

languages such as BASIC or Pascal is the capability of us
ing a word simultaneously as (1) the name of a command
or procedure, (2) a variable, and (3) data. For example, if
the word X is to be used as the name of an action, X itself
is used. When an object has been assigned to X, the object
is denoted :X. The word X as data is denoted "X. Suppose
that X has not been defined as an action and has not been

assigned a value. LOGO will respond to X with TELL ME
HOW TO X, to :X with :X HAS NO VALUE, and to "X
with TELL ME WHAT TO DO WITH X.

A word can be assigned any kind of data—i.e., a number,
word, or list as a value. This also distinguishes LOGO from
BASIC or Pascal where the data type of a variable must
be specified in advance. As a bizarre example, note that
MAKE "MAKE "MAKE and MAKE "MAKE [MAKE]
assign to MAKE first the word MAKE and then the list
whose single member is the word MAKE.

A list is the most powerful data object in TI LOGO and
is denoted by a left bracket followed by its members, then
a right bracket. Examples of lists are [], the null list; [HOW
NOW BROWN COW], a list of words; and [REPEAT 4
[FORWARD 20 RIGHT 90]], a list whose members are a
word, a number, and another list.

Data Manipulation in LOGO
Commands which are powerful in manipulating data in

clude the following: FIRST(F), LAST, BUTFIRST(BF),
BUTLAST(BL), SENTENCE(SE), FPUT, LPUT,
NUMBER?, WORD?, THING?, THING, WORD,
MAKE, RUN, TEXT, DEFINE. The last three are used
to execute a list of commands, to access the list which defines
a procedure and to define a procedure represented by a given
list. These are powerful commands, but to be able to make
use of them it is necessary to be able to construct lists whose
members themselves are lists. The following key (un
documented) commands, FPUT and LPUT, are helpful
here:

FPUT object list—outputs a list whose first member is ob
ject, and whose following members are the members of list.

LPUT object list—outputs a list whose last member is ob
ject and whose members all but the last are the members
of list.

If object is a word or a number, the results of these com
mands are the same as SENTENCE object list and
SENTENCE list object, respectively. But if object is a list,
FPUT object list adds object to the beginning of list while
SENTENCE object list adds the members of object to the
beginning of list. This is a crucial difference, making possi
ble the construction of arbitrarily complicated lists. The
other commands in the above list which are undocumented
are as follows:

NUMBER? object—returns TRUE if object is a number,
and FALSE otherwise.

WORD? object—returns TRUE if object is a word, and
FALSE otherwise.

THING? "name—returns TRUE if name has been assigned
a value, and FALSE otherwise.

Copyright© 1983 Emerald Valley Publishing Co.

THING "name—returns the object which has been assigned
to name, if name has a value.

WORD wordl word!—returns the word formed by con
catenating wordl and word2. (Compare with SENTENCE,
below.)

SENTENCE wordorlistl wordorlist2—(a documented com
mand), returns a list determined by the inputs. If an input
is a word, that word is put in the list. If an input is a list,
its members are included in the list.

Some of the undocumented commands were found by ac
cident; others by studying the documentation for MIT
LOGO. Still others were known to Jim Muller, president
of the Young Peoples' LOGO Association (YPLA). We en
courage readers to share other discoveries with us.

A Calculating Example
As a simple example, consider the problem of teaching

LOGO to act like a calculator. If one enters 2 + 3, the
responseisTELL ME WHAT TO DO WITH 2 + 3. Here,
desired output is 5, which is the result of executing PRINT
2+3. The problem is solvedby using SENTENCE to form
the list [PRINT 2 + 3] and then using RUN to execute the
list. A solution is the following:

SHAPE 10 A

I M I i
! i : l |_ |
I i • ; • 1

1 ' •1
• L11 J!| J •

i ™
i • i i W

-4 ; '—
'; ; i

• 1 |
! ! l i |

-t-r--1
! 111.

SHAPE 14 ^

SHAPE 18 ^

Copyright© 1983 Emerald Valley Publishing Co.

II
SHAPE 11

SHAPE 15 <\

SHAPE 19 o

LA

AD IN

EINC

After you enter CALCULATE, the computer accepts
arithmeticexpressions and prints out the resultingvalue until
just ENTER is pressed. The recursionthen "unwinds," and
the procedure stops.

The powerof a listprocessing languagesuch as TI LOGO
becomesapparent the more you use it. Yet for learning, all
of these advanced capabilities don't have to be utilized. This
is what makes the language so versatile—its built-in power
that is accessible on demand. And it is this versatility that
allows teachers to tailor LOGO for special applications, and
reassures all students that with LOGO there is always more
to learn.

PART 2: Constructing a DYNATURTLE

The instructions for using the dynaturtle are obtained by
typing HELP. The dynaturtle itself is activated by typing
DYNATURTLE. The procedure starts out drawing a cir
cle and displaying a white dynaturtle. Touching the E key

SHAPE 12 <7

SHAPE 16

SHAPE 20 \>

f

t

SHAPE 13 [>

SHAPE 17

SHAPE 21 k

The Best of 99'er Volume 1 109

causes a "thruster" to impart motion to the dynaturtle with
speed 3. Each touch of the E key adds a velocity with
magnitude 3 to the dynaturtle. Touching S or D makes the
dynaturtle face 30 degrees left or 30 degrees right from its
former heading. Velocities add like vectors. If the dynatur
tle is not facing in the direction of its motion, the force of
the thruster will cause it to head in a direction intermediate
between its heading and direction, exactly as if it were a
rocket in space obeying Newton's laws.

Touching F will turn friction on. In thisstate,thedynatur
tle will be sluggish and come quickly to a stop after each
kick. It will therefore be necessary to increase the force of
the thruster. To do this, touch K. You can then enter a
number, say 10or 20, and touch ENTER. The dynaturtle
will now be given an increase in velocity with magnitude
10or 20 with each touch of E. TouchingF again will turn
friction off. Youwill find the dynaturtle nowvery difficult
to control. Touch K again and readjust the thrust.

Whenfriction is off, the dynaturtle isseento act just like
theshipin theAsteroids arcadegame. Whenfriction ison,
it behaves as if it were riding ona rough surface—appearing
to skid as you direct it around the circle.

Description of Procedures
DYNATURTLE activates the procedures INITIALIZE,

SETDYNATURTLE and CONTROL.

INITIALIZE draws a circle and initializes the thruster
(sprite 0).

SETDYNATURTLE positions the dynaturtle and gives
it its initial shape(shape 10). Thesecret of the dynaturtle's
turning capability isthat thetwelve shapes (shape 10 through

CON

CON

GO

110

ION

N)OjT
I

TO

The Best of 99'er Volume 1

AN

T

Q[U I

TO

ION

21) contain designs for the dynaturtle, each rotated 30
degrees from the preceding.

CONTROL is the main loop. Friction is always checked
to see if it is on. If it is on, CHECKFRICTION decreases
the dynaturtle's speed. If one of the control keys is pressed,
the action is taken and control branches to label A. This
procedure keeps running until Q is touched.

KICK reads the velocityof sprite 0, which is always kept
heading in the direction the dynaturtle is facing. This velocity
is then added to the velocity of sprite 1, which carries the
shape of the dynaturtle.

ROTRIGHT adds 30 degrees to H, which maintains the
heading of the dynaturtle and causes sprite 1 to carry the
shapewithnexthighest number, unless that number is larger
than 21. If sprite 1 is carrying shape 21, it assumes shape
10. In this way, the dynaturtle appears to be rotating to the
right by 30 degrees.

ROTLEFT is similar to ROTRIGHT but gives the effect
of rotating the dynaturtle to the left.

SETFRICTION simply makes the value of the word
FRICTION? true if it is false, and false if it is true.

SETKICK gets a number from the console and assigns
it as the speed for sprite 0. The velocityfor sprite 0 (x- and
y- coordinates) is used to impart an acceleration to sprite
1. Note the command SS FIRST READLINE. The primitive
READLINE outputs a list, and SS requires a number for
input. The desired number is the first (only) member of the
list entered.

MA

ND

TO

R

L

E

SHlA CA RR

ON

SlMOO

TIO

TI0N

ON

R0UG

T0U

ROM

EG
EN

GO R0U

FOR

NA

WH
CARR

ON

NA

TO

Copyright © 1983 Emerald Valley Publishing Co.

EXT-E-N-D-I-N-G
Applications for Very Young Children

Seymour Papert designed LOGO to have a low
threshold so that even young children could benefit
from it. Unfortunately, the present technical require

ment that LOGO input and output be text-bound limits
LOGO to children who can read and type.

It is apparent that learning in a LOGO environment of
fers greater potential for pre-verbal children than for verb
al humans. This is simply because there is so much more
for them to learn. But it is equally apparent that the
reading/typing prerequisite is an artificial barrier to that
same environment. The ultimate solution—a computer
which can comprehend and generate speech—is not yet
available. (Programs such as TI text-to-speech, however, can
do a reasonable job of talking.) Still, there are ways LOGO
can be adapted to children who are only able to recognize
alphabetic characters or typewriter keyboard symbols.

Even before LOGO was implemented on the DEC LSI/11
or the TI-99/4, people in the MIT LOGO lab worked on
simplified LOGO systems. One approach yielded a special
LOGO input device which translated symbol cards1 inserted
into slots through a light scanner into ASCII code. Although
prototypesof the "slot machine" card reader worked well
enough, the idea was never developed commercially. A se
cond approach was followed by Bob Lawler, a graduate stu
dent at the time, who wanted his two children to be able
to use LOGO. He wrote a number of excellent LOGO pro
grams which allowed veryyoung children to draw with the
turtle, to play shoot-out games with the turtle, or to design
elaborate turtle pictures. Lawler's programs were written
for a large, mainframe computer version of LOGO, but his
ideas are compatible with TI LOGO. In fact because of the
excellent color graphics of TI LOGO, his ideas may involve
children more effectively when set up on the TI-99/4A. The
essence of his programs was to simplify access to turtle
geometry by simplifying and combining commands. One
simplification allows pupils to move the turtle forward or
backward a fixed amount, or to turn the turtle left or right
a fixed amount by pressing any of the four "arrow" keys:

AW

UR
IMP

1The cards carry labels liker*for RIGHT90, ♦ for FORWARD 10, as
well as symbols for recursion and sub-procedure calls.

Copyright © 1983 Emerald Valley Publishing Co.

MP

P

c

SW]E
SWE

SHE

SHE

SWE

IGH

FOR

With slightly more sophisticated children, or as children
work with DRAW, we can add other commands by merely
inserting them into SIMPLIFY. For example:

IF :ANSWER = X CLEARSCREEN

IF :ANSWER = "Q STOP

IF :ANSWER = "0 PENERASE

IF :ANSWER = "1 PENDOWN SETCOLOR 1

IF rANSWER = "4 PENDOWN SETCLOR 4

IF :ANSWER = "U PENUP

Then, as students master the fuller set of DRAW commands
and learn the idiosyncracies of QWERTY typewriter code,
they can be introduced to TELL TURTLE without using
DRAW any further.

Coleta Lewis, a teacher at the Lampligher school in
Dallas, adapted sprites for use by nursery school children.
(The Lamplighter school pioneered the use of TI LOGO
with children; see "The Lamplighter LOGO Project.") Two
"games" her children played allowed them either to move
a garage around the screen, move a car around the screen,
and vary the colors of each separately, or to construct a face
and then color in the parts of the face. Programming sprites
for very young children is not much more difficult than
DRAW. As one example of a sprite game for youngsters,
consider a game of blocks. It is fairly easy to create a
universe of blocks with simplified sprite commands. First,
it is necessary to make up some "blocks" using
MAKESHAPE. A circle (shape 4) and a square (shape 5)
already exist. A good set of blocks ought to have a triangle.

SHAPE 4

SHAPE 5

The Best of 99'er Volume 1 III

It would, however, be better to build triangles with four dif
ferent orientations'because the shapes of sprites cannot be
rotated.

These could be assigned shape numbers 6, 7, 8, and 9. A
good block set should also have a rectangle. To show the
two orientations, shape numbers 10 and 11 could be
designed as shown.

SHAPE 6

10

HOME

END

TO BD

LOR

LD

ROC
AND

DU

CAR

EN

SHAPE 7

EAN

LD

SHAPE 8

TO

SH
YOU

TO SON

ROC

Other shapes could be easily added. Children should be
able to color the blocks, move the blocks around, change
the shape of any of the blocks, and bring more blocks onto
the screen. In addition, when a child begins working with
one of the blocks, he or she should be able to identifywhich
one it is. (One way this identification can be aided is to have
them briefly flash colors.) The following programs imple
ment these ideas:

A

TO
UMB

MOV

SHAPE 9

NO M]OH

1)

TO FLASH

ROC

S

H

E

N

IGil

LOR

T

S AR

LA

H9

TO F
IMG

VOK

TO
CA

A[ND
T

NGL
ROC
K

S

ED TAK

A

A

LOR

ON

TO IOU COLOR

CO LOR ON Y

LOR

I

OtRlWlAlRlD

AND

PR
0MB

SWE
SWE

SWE

SWEAN

EN

AN SWE
FORWARD

EN

N

FlORlWA

AN
F|0|R|WAR

EN

SWE
R

SW|E
D

S

SfflE

TO
SHA

AND LOC

SW

B

C

E
MOV

DOWN

F

D
MOV

TH

SHER

ROGR

FORM

TO

AM

LOR L0

TO

NG

TO

II2 The Best of 99'er Volume 1

YOU
R

E

TO

FORK

ROC
TO

Y0

LOC

E

UMB

OWS

HANG

1

N

L!OC
4
SE

ANG
UMB

E

Y

WOU

LOC

HA

HANG

TH
SKA TO

TH

NG

CO

LO NA

LOR
WA

WA

Copyright © 1983 Emerald Vatley Publishing Co.

The LOGO Poet:
USING RECURSION
FOR LIST HANDLING

Since TI LOGO'S graphics capabilities are so vast and
so easy to use, there is a tendency to overlook its other
features. List handling is a case in point: By combin

ing some of LOGO'S list primitives—such operations as
FIRST, BUTFIRST, (or the converse LAST,
BUTLAST)—with recursive [see adjoining A Primer on
Recursion and List Primitives] OUTPUT lines, we can easily
write programs to reverse a list, alphabetize a list, or even
compose poetry. The several examples that follow will, I
hope, demonstrate to you the powerful simplicity and list-
manipulation potential of the language.

Verifying the presence or absence of a word in a list is
a problem commonly encountered in list processing. The
MIT LOGO group refers to this as the "MEMBER?" pro
blem because the program is to answer the question, "Is
a specified word in a specified list?" Some aspects of the
program are obvious. For example, once the answer is ob
tained (whether TRUE or FALSE), it should OUTPUT to
the user or program which called for the answer. It is also
obvious that if the list is empty, the word is not in the list.
Given just this much information, it is possible to frame
a MEMBER? program:

TO MEMB
IF : LIS

END

WOR
1 FA

Papert, following Polya, notes that one way of solving a
complex problemis to ignorethe complex whole and focus
on those parts whichcan easilybe solved. [See Mindstorms:
Children, Computers, and Powerful Ideas by Seymour
Papert—available from the 99'er Bookstore.] In the
"MEMBER?" problem, if the first word in the list were
thetargetword, then it would beeasyto detect it and solve
the problem using the LOGO primitive FIRST*, which
returns the first word in a list:

TfcH MeMb
s

END

fWOR
1
T

OU
WOR OU

Now all that remains is solving for those cases in which the
word is in an interior position or is absent from the list.

Copyright © 1983 Emerald Valley Publishing Co.

Were the word second in the list, the problem would be
solved by adding a line using the LOGO primitive BUT-
FIRST, which returns all but the first word in a list of words:

IF FIRST BUTFIRST

"TRUE

:LIST .WORD OUTPUT

since the second word in the list is the first word in a list

which excludes the first word. Similarly, the third word
becomes the FIRST of the BUTFIRST* of the BUTFIRST
of the list, the fourth word is the FIRST of the BUTFIRST
of the BUTFIRST of the BUTFIRST of the list. It would
be possible to write a separate line for each of those posi
tions as well as the fifth, sixth, seventh or any other poten
tial word position. However, a program that did this would
quicklygrow ponderous. Fortunately, in LOGO this is un
necessary. Notice that for each position an additonal BUT
FIRST is all that is needed. The problem therefore requires
only a single recursion line to complete the program:

TO EM

OU

WO

E

T

L

MEMB

OU
wo OU

Now when we run the program by typing MEMBER?
[A QUICK BROWN FOX] "FOX, the first stack checks
to see if the list is empty or if the first word in the list matches
the target word, FOX. Then it awaits the results of a se
cond stack which runs MEMBER? with the truncated list
and the target word. The second stack then awaits the results
of a third stack which runs MEMBER? on BROWN FOX
and "FOX. That stack then awaits the results of MEMBER?
FOX "FOX which returns "TRUE (from the match in the
second line). "TRUE is returned to the second stack which
outputs "TRUE to the first stack which outputs "TRUE
to the program which first called it (or to top level). In the
event that there were no matches, one of the stacks would
eventually run MEMBER? on an empty list and would out
put "FALSE.

Another common problem is to count the number of
words in a list of words. As before, this problem is solved
by outlining the obvious elements of the solution and the
simplest case.

TO COUNT "LIST

OUTPUT some number
END

The simplest case occurs when the list is empty.

TO COUNT :LIST

IF :LIST = [] OUTPUT 0
OUTPUT some number
END

When a list has just one word in it, the program should
recognize that and OUTPUT 1. Since a list with just one
word is one word away from an empty list, The LOGO

* FIRST returns the first word In a list of words, or the first letter in a list
of words, or the first letter in a word. LAST returns the last letter in a list
of words, or the last letter in a word. BUTFIRSTreturns all but the first word
in a list of words, or all but the first letter In a word. BUTLAST returns all
but the last word in a list of words, or all but the last letter in a word.

The Best of 99'er Volume 1 113

operation BUTFIRST applied to that list would yield the
empty list. If there were two words in a list, then obviously
the list is just two words away from an empty list. If a recur
sive line were put into the program which (a) applied BUT-
FIRST and (b) added 1 to the count for every application
of BUTFIRST, the program would count the words in the
list.

TO
IF

lou

COUN

COU

For another example, considera program whichwill reverse
a list. The simplest case would be a list with no words.

It
III

E

0
F

N D

R E

L

V

I

E

S
R
T

S E

I 1 0 U T P U T 1 1

The next simplest case would be a list with just one word.
For such a list we could have the program OUTPUT the
SENTENCE or the word and an empty list.

This solution can be applied to longer lists as well!
For a final example, let's use LOGO to "write" random

poetry.As a firsteffort at LOGO poetry, we'll attempt some
"free verse" by instructinga poet to string words together
randomly from a list we select. First, we will need a pro
gram like SELECT to output a selected item from a list.

Then we need a program to generate random numbers for
SELECT. Because LOGO'SRANDOM primitive provides
the integers through nine, if our list is less than ten, wecan
get a COUNT of it and use that COUNT.

UMB

RA

B|0
)
TOU

OUT

DOM
H ENG

By first typing

CALL COUNT :LIST "LENGTH

we can then use NUMB for the value of LENGTH. If we
then type:

TYPE SELECT (NUMB :LENGTH) [a list of words]
the computer types one of the words in the list. We can write
that as a program:

UM

II4 The Best of 99'er Volume 1

A PRIMER ON RECURSION
AND LIST PRIMITIVES

It is easier to understand recursion in LOGO if one imagines
that each LOGOprogram is a job for a contractor to perform. Each
contractor Is a specialist and can do only one job. Every contrac
tor follows strict working rules; these rules say that when the con
tractor sees STOP, he must stop, when he sees OUTPUT, he must
pass back some information and then stop. Of course, when a
contractor reaches an END, he also stops. When a contractor
sees the name of any LOGO program Inside of the program he
is completing, he subcontracts that job out to another contrac
tor. Thus, in COUNT [A, B, C], the first contractor reads the first
line of the program, but the condition isn't met, so he moves to
line two. There he is told to OUTPUT 1 + the COUNT of [B, C].
Since he can't do another program, he subcontracts the job. The
subcontractor reads line 1 of COUNTand since it doesn't apply,
he reads line 2. He is told to OUTPUT 1 + the COUNT of [C]. He
can't do that, so he also subcontracts that job. The third contrac
tor notes that line 1 doesn't apply and line 2 tells him to OUTPUT
1 + the COUNT of []. He also must subcontract the job out,
and so the fourth contractor reads line 1 of COUNT. Since the
list is empty, he OUTPUTS0 and passes the job back to the third
contractor; he in turn adds 1 and then OUTPUTS 2. The first con
tractor adds 1 to that and then OUTPUTS 3, which is the correct
answer. With this explanation, you should now be able to analyze
a program which gives you the answer to a number X raised to
N power.

TO EXPONENT :X :N

END

TO EXPONENT :X :N

IF :N = 0 OUTPUT 1

END

TO EXPONENT :X :N

IF :N = 0 OUTPUT 1
IF :N = 1 OUTPUT :X

OUTPUT (EXPONENT :X:N-1) * :X
END

To turn this into a line of poetry, we should have a random
number of such randomly picked words with a random
number of spacesbetweenwords (E. E. Cummings's style)
and then a carriage return:

DOM

DOM

UM NG

Note: PRINTCHAR 32 puts the character with ASCII code
32, a space, on the screen.

If we want continuing lines of poetry, we can write a recur
sive program:

TO

Now, putting this all together we get:

TO
CO NG

Copyright © 1983 Emerald Valley Publishing Co.

Now we can try converting POET into a program which
produces either rhyming verse, blank verse, or a finite
number of lines of verse. One way to modify POET to pro
duce rhymed verse is to give it two different lists—one of
words for the interior words of each line of verse, and
another of rhyming words for the last word in each line.
Then the program can be changed so that only rhyming
words are placed in end positions.

TO YME

ClOlMMODlAMU TWO

TO POE

COND

T

CIOUN

COUN

YME

YM

ROGR

YME

MU

AM

YME

MAN YM WOR

MU

END

EAT ANDOM

P|AC
2

COU|N
L

U

UMB

RAN

BOTtH

RHYME

DOM

ME

YME

YME

PAC

MB

TH

NOW

TH

ON

ER

ENGlTlH

NGT

EC UM

Copyright © 1983 Emerald Valley Publishing Co.

ENG

You probably recognize that the problem of generating
rhyming verse is one form of the problem of teaching the
computer to write text which follows a specified rule (in this
case each line must rhyme). The more general application
of rules to text is nothing less than grammar. One of the
grade school pupils in the Brookline project wrote a text
book rule program like POET which generated random
sentences. After she saw the effects of changing parts of
speech she exclaimed enthusiastically that she now
understood what a noun was.

POET can also be quickly adapted to a sentence generator
which young people can play with to make grammar
meaningful.

EN

AMMA

amma

E

NOU

AD

ND

3
AM4A

NOUN

U

U

UM

UMB

UMB

NO

NOUN

NO

COU

COUN

COU

COUN

COUN

AD ER

SENTENCES can be made a better grammarian by adding
distinctions of number and gender where appropriate; it can
be made a more sophisticated language generator if GRAM
MAR is altered to allow for conjunctions and subordinate
clauses. All of these changes and more can be programmed
by students as they learn both the specifics ofgrammar1
and the mathematics of LOGO.

1Papert would probably argue that most students know the grammar which
schools attempt to teach, but that the students do not have verbal labels
for syntactical rules and parts of speech, and do not see the relevanceof
the labels once they are told them. A sentence generator program can make
grammar "speech syntonic."

The Best of 99'er Volume 1 115

Avoiding
Turtle Traps

Seymour Papert and his colleagues purposefully decid
ed to structure LOGO to facilitate the writingof good
computer programs. The concept of good program

ming is not superficially apparent. Of course, a program
should accomplish its intended goal, but all programmers
recognize that any goal can be achieved by many different
types of programs. Beyond simply "working," there are a
number of criteria by which programs can be judged. Pro
grams which have multiple applications are generally bet
ter than single-purpose programs. Programs whichare easier
to debug and whichcan be understood by peopleother than
the authors (or which can be understood by the authors at
a future time)are more desirable. Pragmatically,programs
which run faster or with fewer bits of memory are better
than slower or more memory-intensive programs. Finally,
some programs are aesthetically more appealing than others.

It is possible to find examples of program applications
in which twoor moreof the criteria are inconflict. However,
it is more often the case that the criteria are in accord. All
of the criteria except for aesthetics are straightforward and
relatively objective. Still, writing aesthetic programs is so
satisfying that aesthetics will be considered first here.

For instance, you can writeGO in LOGO, but programs
withmany differentbranchesfrom GO commandsare par
ticularly inelegant: Why write poor programs when good
ones are easier to write? Also inelegant are programs with
hundreds of lines of code, especially when the code con
tains several repetitions of a series of commands. And pro
grams with many inputs are generally less aesthetic than
those with fewerinputs. Compare the aesthetics of two pro
grams which count the number of words in a list:

T|0

N

clou

COUN

OU

116 The Best of 99'er Volume 1

This program requires typing as input along with COUNT
and the list in question requires a starting value of :N-0.

co
ou

This program requires no superfluous input.
Elsewhere in this chapter, there is a fairly complex pro

gram, DYNATURTLE, which creates a turtle that obeys
Newtonian laws of motion. Despite the complexity of the
program, DYNATURTLE is relatively elegant:
DYNATURTLE has only three lines, which are IN
ITIALIZE, SETDYNATURTLE, and CONTROL. Each
of those lines is, in turn, a brief program which serves a
unique function. Contrast DYNATURTLE'S elegance with
a spaghetti-pole BASIC program which would achieve the
same effects. Such a program would be long and littered
with extensive GO-TO's.

A subtler example of elegant and inelegant programs can
be made from the GRAMMAR program. The program was
modified from a earlier POET program and was written:

AMMA

NOU

AMMA

NO

UMB

UMB

UMB

UMB

UM

OU

COU

COU

COU

COUN

COU NO

Copyright © 1983 Emerald Valley Publishing Co.

Notice how much of each line is repetitive. A better
LOGO program would have taken advantage of that redun
dancy and used a broader application program:

WjOR
s
x

UMB CO

Then GRAMMAR could be written:

TO

wo

WOR

PAC

WOR
PA

WOR

WOR

AMMA

NOUN

AMMAR

ND

NO

NOUN AD

The second GRAMMAR program is more elegant and
is shorter. It achieved greater simplicity by taking out of
GRAMMAR all of the repeated functions and placing them
in WORDS. All of the functions carrying out the program
WORDS are directed at placing a single word from a
designated set of words. The specification of the set and
type of words is left for GRAMMAR, the program sur
rounding WORD. A common format for many well-written
LOGO programs is:

TO DOSOMETHINGSPECIFICALLY :SPECIALINPUT

GENERALPURPOSEPROGRAM :GENERALINPUT

END

TO GENERALPURPOSEPROGRAM
:GENERALINPUT

LOGO commands :GENERALINPUT

END

On occasion it is necessary to string together several
general-purpose programs inside a specific-purpose pro
gram. In that case, the general program often requires that
there be some set-up steps and some "fix-up" steps before
and after the general program. Such programs have the
form:

TO GENERALPURPOSE

SETUP

GENERALFUNCTIONS

FIXUP
END

Mathematicians may indeed recognize a similarity be
tween the concept of elegance and aesthetics in program
ming and the expression of algebraic functions. There are
many ways to express algebraic functions, but it is often
more useful and always more elegant to express such func
tions in a form which collects common factors and simplifies
terms even where such simplification may require a set-up
or a quick fix-up manipulation along with the factoring.

There are two other major aspects to consider in order
to write better LOGO programs. One is writing programs
which don't run out of memory; the other is writing them

Copyright © 1983 Emerald Valley Publishing Co.

to run as fast as possible. It is important to understand the
major feat accomplished by Texas Instruments and by the
MIT LOGO Lab in putting LOGO on the 99/4. LOGO is
a very high level computer language which requires large
amounts of memory. The architecture of microcomputers
limits the speed with which large amounts of memory can
be addressed. The TI LOGO which emerged from the joint
efforts of TI and MIT represents an effort to compress code
to the minimum memory requirement without compromis
ing its applications. There are two tricks which they built
into TI LOGO to make LOGO feasible on a micro. If you
use these tricks you can gain even greater satisfaction from
your computer. The first feature is an automatic garbage-
collector. A garbage collector is a part of the operating
system which takes used memory and makes that memory
available for further uses. Of course, the garbage collector
should not destroy and overhaul all of memory's work. The
way that the automatic garbage-collector in LOGO
recognizes when a unit of memory has served its purpose
is by checking the instructions written in the memory. Below
are examples of programs which permit or exclude the
collector:

PO

PO

RWA

N

S
AlNfcL

YGO

GON

NG

AN

In this program, the garbage collector notes that each time
POLYGON is entered (referred to as the level of
POLYGON), there are no further commands or instruc
tions after the line POLYGON .-SIDES :ANGLES (called
the recursive call line). Thus the piece of memory that was
used to store POLYGON at that level is collected for reuse.

If all memory gets used up in TI LOGO, the message "OUT
OF SPACE" appears, but POLYGON will never generate
that message because it will never run out of memory.

RW|A
D

This program will never run out of memory in TI LOGO
because the program terminates.

FORWA

PO

T

H
YGPN

Y|G|0
D

A NG

NG

This program could use up all available memory before
it reaches its stop conditions because the garbage collector
cannot refurbish the memory used to execute this
POLYGON at any level. The program leaves work to be
done (namely PENUP) once control is passed back to the
level of POLYGON.

Unfortunately, the garbage collector is not empowered
with the authority to decide if any instructions following
the recursion call are worth keeping, and so the following
POLYGON program could run out of memory:

TO

FORMA

PO

P

W

T

YIGIO

g!on
s

NG

NG

The only difference between the first POLYGON pro
gram and the one here is the empty line following the recur-

The Best of 99'er Volume 1 II7

sion call and before END. The garbage collector sees that
there is a line of commands and cannot tell that the line
is useless, so it is barred from refurbishing the memory!
Empty lines use up memory and can block garbage collec
tion (depending on their location), so empty lines should
be eliminated from your programs.

Finally, the operating system can work faster when fewer
sprites are being used, i.e., programs which use no sprites
run faster than programs whichuse sprites.The more sprites
in use (generally), the slowerthe systemoperates.The reason
for the slight degradation in response time is obvious—the
system has to check to see which, if any, sprites must be
displayed or moved. The system checks on its sprites by
looking up the highest number of sprite called upon. For
example, TELL 31 or TELL SPRITE 31 would cause the
system to check on everysprite from 31 on through to sprite
0. Such a check is necessary (from the user's perspective)
onlyif all 32spritesare beingused. If only one sprite is need
ed, then the user should type TELL 0 or TELL SPRITE
0 and the system would skip the checkup on sprites 1 to
31, thus saving a small amount of time.

Student Reactions to a Four Week LOGO Class
By Gene Branum

Students pick up these principles quickly. For instance,
Gene Branum, a student in a four-week LOGO course,
reflects on this experience:

"The expectations of the students varied—we wanted to
know more about computers, we wanted a different Jan-
term experience, or maybe just a free Jan-term. Whatever
the motivation, all came away affected in some way by our
experience. All experienced both the frustration of failure
and the flush of triumph as the computer finally 'did what
it was supposed to.'

"The format for our experience was a four-week mini-
term (Jan-term) at Austin College. Our class met; fivedays
a week for two hours, and we were required to spend at
least one hour of work on our own as well. This require
ment was easily met; as one student put it, 'It was not
unusual to spend four hours at a time' on the computer.
Needless to say, the experiencewas very intense, and there
was a great deal of self-teaching. This was felt to be one
of the greatest strengths of the course.

Space Pylon Racer

Once set up, the player guides his saucer through pylons.
Two shapes must be made first (check graph paper). The
keys control the saucer. E moves it upward, X moves it
downward, D moves it forward, S moves it backward, F
speeds it up, A slows it down. If the ship hits a pylon, the
beep sounds.

Use arrow keys to change direction.
Use F for fast speed.
Use A for slow speed.

GAME

L

L

118 The Best of 99'er Volume 1

"Professor Hank Gorman did a fine job of teaching the
basics early in the course. As he told us his expectations,
we scoffed. After two weeks, he told us, we would be draw
ing cartoons and making up games. Even though his leader
ship was great, the majority were insecure about 'the
machine.' Our confidence, however, grew with experience
and familiarization.

"The two greatest aspects of the course for all of us were
(1) the team experience and (2) experience in general prob
lem solving skills. The true strength of LOGO is that
students, working together, can teach each other massive
amounts of material. The realization that everyone had
problems put us all on the same level. Sharing ideas and
solutions became important for everyone because no one
could work totally independently. Many social experiences
allow students to interact, but LOGO is one of the few that
forces students to think together.

"Without exception, all of the students involved in the
course commented that, after LOGO, they knew better how
to approach a complex problem. Dr. Gorman spent several
class periods on problem solving skills: decomposition,
recursion, naming, multiple descriptions, and the 'little
men.' These skills not only aided our search for solutions
to LOGO problems, but also for problems that require a
thinking solution. The overriding principle of LOGO is that
the simple builds to the complex, which is its major strength
as a system for any age-group.

"While it was widely agreed upon that none of us
'mastered' LOGO, each of us developed confidence in our
abilities to control the computer and make it do what we
requested. The LOGO experience allowed everyone to use
logical approaches to problem solving and gain valuable
hands-on experience in a discipline that continues to increase
in importance."

The following programs, which students wrote during this
course, show an emerging appreciation for elegance, speed,
and simplicity in programming. Except for correction of
typographical errors, their work hasn't been edited in an
attempt to find still more elegent ways of achieving their
programs' goals. Note, however, that they all grasp the
essentials of esthetic programming.

TO

S

R

COR

CO

BO

IGO
BO

|G0
BO

K30
B

GO

WA

BO

BO

BO

BO

BO

BOTH

BO

BO

COR
COR

COR

COR

CO

COR

NO

CO

CO

CO

Copyright © 1983 Emerald Valley Publishing Co.

•
MAKESHAPE 20
Saucer

TO

CA

ND

TO

CON

CON

CAR

XY

XY

SXY

T|OP
Z

E

X

D

S

F

A

MAKESHAPE 21
Pylon

Spinout

This program was designed as a cartoon to depict two
Indianapolis-style racing cars racing, crashing, burning, and
being towed away. The central program, SPINOUT, con
tains 7 subprograms. These short programs make the cen
tral program neat and concise.

MAKESHAPE 6 MAKESHAPE 7

TO
WAV
MOV

WA

sMe
iWA

TO

HOM

SI
L

R

6
E

L

4
0

HiOUE

i Inou

SH

CAR

9

X

Copyright © 1983 Emerald Valley Publishing Co.

CAR

WA

WA

TO

WA

AR

WA

CA

SH

WA

CA
AR

CA

MAKESHAPE 8

MAKESHAPE 9

MAKESHAPE 10

I II I 1 •I • •••
II I 1 •I 1 1 •1
II I 1 •I 1 1 •1

I •I 1 1 •1

•
• I I

•• ••
•• ••• I •• 1
•• ••• • •

I •• 1 1 •1 - I •
••I •• •• 1 1 •1 II 1 1

•• •• •I 1 1 •1 II 1 1 •
•• •• •• I 1 •1 II 1 I •

MAKESHAPE 11

Munchie

Munchie illustrates how one can program a sprite to move
to certain locations where an object may be found. After
testing coordinates within the procedure, it eats that object
and continues on until it eats all objects. You move Mun
chie by using arrow keys, and set speed by using keys 0,
5, and 1. You should stop Munchie when passing over the
object to be eaten.

NCHIE

MO

The Best of 99'er Volume 1 II9

O 5 n
r cf 3 ®

w
•
-
•

—
-

•
J

—
"
*

~
~

A
•—

"H
I

<
-t

n
S

H
H

j
a

n
"
§

•
H

H
-
i^

s
Z

-
l

w
£

~
*

"
4

S
g

S
O

>
4

W
O

P
1

H
S

B
f
l
H

H

C
"
i
)
H

-
4

S
O

I
-
»

T
i
-
j
i
n

-
i
c
/
>

-
»

T
i
-
i
u

i
-
»

t
n

c
n

O
•<

c—
c—

—
I
S

0
<

r
r

—
>

o
O

<
c
-

r
-
"
—

t>
o

n
'
n

'
q

H
*

q
«

a
9

r

-
H

•
-
•

H
O

w
c
-

c
—

~
i

w
p

i
P

i
c
-
r
-

"
4

w
w

w
r
«

r
>

~
i

w
w

O
•-

i
W

9
0

C
-

3

a
-
*

-
H

Z
O

-
i

•H
Z

O
-
*

-
«

s
c

9
»

3
»

>
>

*
•
*

•
X

0
3

3
3

3
3

3
3

0
0

w
•<

O
O

n
s
i
n

v
O

>
n

n
n

O
>

n
w

C
O

w
«

3
-
»

M
-
H

-
I

O
M

M
-
l

•-
!

e
w

M
H

•-
!

s
»

3
»

3
»

s
o

n
s

•
»

<

-
<

r
-
O

c
n

O
C

D
a

s
r—

e
n

O
c
a

9
0

t-
>

e
n

O
o

.
A

X
J

M
SO

||
it

11
ii

11
II

ll
r
-

r
-
O

-
»

n

w
r
-

-
1

H
t
i
a

t
*

H
H

n
a

r
•
4

•
4

X
e
n

e
n

—
K

>
e
n

e
n

—
K

J
e
n

e
n

—
M

s
o

r
-
1

1
-
1

*
»

o
c
n

S
B

W
-
<

Z
w

-
<

z
e
n

o
e
n

e
n

o
e
n

e
n

o
t
n

O
<

a
C

O
•
o

o
C

D
t
j

a
t
o

a
u

i
e
x
o

n
n

a
>

t
o

O
X

^
o

x
_

*
O

X
u

i
c
a

~
~

e
n

s
-
~

m
a

-
~

-
A

O
t
»

w
•
•

C
O

•H
i

o
o

c
n

M
O

•
a

e
n

•
-
I

o
c
a

c
a

c
a

«
»

c
n

c
n

c
n

c
n

c
n

c
n

c
n

w
*

e
n

S
B

6
e
n

S
C

O
e
n

»
o

n
w

w
e
n

e
n

e
n

SB
SB

Z
Z

•
•

•
o

r
e

s
o

o
o

9
0

C
O

s
o

w
w

n
c
a

S
B

*
-

e
•
<

m
o

•
<

m
«

a
»

<
T

O
T

*
•
n

n
j
u

o
^
w

e
M

*
-
•

o
A

w
O

V
w

O
V

w
o

C
D

S
«

J
3

»
W

w
o

•
o

w
O

T
J

w
O

^
*

*
*

o
o

«
a

m
m

>
s
o

1
>

S
O

A
S

-
s
o

1
3

"
9

»
>

-
1

•h
i

*
m

i
n

*
«

*
m

m
.
—

~
o

C
M

V
_

»
9

»
K

»
A

*
•
-
»

V
t
n

•
H

•H
•
-
i

3
»

i
n

e
1

-
^

X
•
—

i
n

3
0

1
•H

J
M

O
-
«

1
K

>
K

>
K

»
9

0
O

X
U

I
O

X
•
<

>
0

9
o

e
n

S
O

t
n

W
l

o
z

Z
z

s
o

e
a

o
"

•<
o

6
6

o
_

1
s
o

9
0

o
O

A
O

•
<

3
0

C
O

c
a

C
O

^
m

<

-
<

s
>

o
*•

o
P

I
w

w

o
V

s
o

s
u

n
S

O
o

A
t
n

w
w

Z
-
&

£
»

o
s
o

e
n

s
o

s
d

•
o

T
O

T
O

o
^

k
I

s
a

1
«

<
V

•
<

1
c
a

H
a

H
C

D
H

C
O

H
H

:
o

w
o

w
o

w
o

~

t
i
w

a
u

r
j
h

O
w

o
w

o
*

q
a

.
z
>

M
e
n

9
0

X
9

0

•
<

X
'-

c
5

'-
<

>
<

O
O

M
U

I
P

n
o

w
a

n

w
^
c
n

jg
en

o
»-

i»
j

w
en

en
Si

tn
aB

cn
:S

en
en

en
o

»h
»h

ti
3

in
H

3
it

«
W

H
O

H
^
ti

iH
P

iB
n

o
H

w
io

H
B

iB
iH

c
o

B
iH

a
c
o

H
^
H

w
m

m
w

h
o

h
a

»
K

>
'<

>
w

O
z

e
n

o
>

Z
>

Z
3

»
Z

e
n

se
s»

w
o

z
w

3»
w

—
en

z
w

*»
w

a»
w

o
Z

X
O

w
x
o

w
x
o

w
X

O
w

o
o

w
•-

Q
z
x
t
n

o
w

t
n

o
O

—
—

s
o

r
-

q
—

m
m

~
C

B
B

r
w

t—
s
a

t—
—

m
i

>
:
:
:
:
:
:
:
:
:
:
:
_

:
:
:

/N m
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

ty
>

>
:
:
_

:
:
:
:

:
:
_

_
:
:
:

2
"
"

>
:
:
:
:

^ m
m

i
to

_
"
•

Jii
iiO

E
*

T

>
l
l
l
l

^
,

^
,_

_
_

_
_

:_
_

:_
_

_
:_

_
_

>
i:

"
:
-
:
"
:
:
:
:
"
:
-
:
:

j
e C
!!

!!
!i

;;
!!

t;
:i

ii
?;

,.;
•"

.::
!;:

!
*

o

n
-
H

O
-
H

J
»

-
»

O
Z

t—
3

0
w

a
f
t
u

w
r
a

r
n

e
w

~
p

»
>

<

> 7
s

M
l

> m V
O

2 > 7
?

m t
o > •o r
n

0
0

o
r
u

i
o

i
-
i
t
o

r
i

w
n

»
w

-
»

—
O

O
M

W
O

B
W

O

iii
iil

lli
iii

ii
i!jj

i!'j
:jj!

jiB

g
z

a OF
Q © C
D

You push the stick forward, and the aircraft begins to
roll. You then gradually pick up speed and start mov
ing down the runway. After reaching takeoff speed,

you move the stick again, and suddenly you're airborne.
Now you have control of the skies—to fly high or low, do
loops and other maneuvers, and then land. But be careful
with your speed! You don't want to stall and crash.

This isn't flight training or a simulator. It is a TI LOGO
procedure that gives you the opportunity to fly by keyboard
or joystick. It uses either the arrow keys or the JOY 1 and
JOY 2 commands. The JOY commands return one of nine
values depending on the position of the joystick, thus open
ing a wide range of possibilities for interactive games and
other activities.

At first, it might appear that the nine values have little
relationship to each other. You'll note that the three and
the seven were omitted. However, the pattern of the values
is quite interesting.

Moving from left to right in each row, you'll note that
each digit is four more than the previous digit, i.e., 2 +
4 = 6, 6 + 4 = 10, etc. Moving from bottom to top in
each column, observe that each digit is one more than the
previous one.

These patterns begin to suggest why three and seven were
omitted from the values assigned. However, to make the
logic behind these patterns even more graphic, let's convert
them to binary numbers.

0010

0001

0000

0110

t
0101

' I
0100

1010

1001

1000

Copyright © 1983 Emerald Valley Publishing Co.

FLY AWAY

>r

with the

JOY

Commands

of Tl LOGO
Now look at the first two digits in each column. You'll

note that they are the same, representing from left to right,
0, 1, and 2. Also, if you look at the last two digits in each
row, you'll note that they are also the the same. Moving
from bottom to top, they also represent 0,1, and 2. So what
we really have here is a distinctive coordinate system with
real meaning, rather than what might first be perceived as
a random placement of values.

(0,2) (1,2)

(0,1)^(1,V— (2,D
(0,0r (1,0) ^(2,0)

Let X and Y be used to name these coordinates. The coor
dinates for the joysticks can be assigned with the command.

MAKE "Y (JOY1) / 4
MAKE "X (JOY1) - 4 * :Y

Now let's put these JOY commands to work in
FLYAWAY, a procedure developed by Roger Kirchner, a
fellow YPLA member. This is a procedure for one or two
players that tests each player's ability to take off and safely
land an airplane on the runway shown on the screen. Either
the direction keys on the keyboard or the joysticks can con
trol the plane.

The joystick commands are incorporated in the pro
cedure, STICK S. Push the stick forward, and the aircraft
increases its speed.

IF :X = 6 THEN FASTER

Pull the stick back and the aircraft slows down:

IF :X = 4 THEN SLOWER

To minimize the chance for error, direction commands
are accessed by merely moving the joystick to the left or

(2,2)

The Best of 99 er Volume 1 I2I

right. It does not matter whether you hit position 0, 1,2;
the aircraft will turn left.

IF :X > 4 THEN TURNLEFT

IF :X < 6 THEN TURNRIGHT

Of course, it would be possible to add additional maneuvers
usingeach of the nine joystick positions. This would require
a much more sensitive touch to the joystick, but that could
also add to the challenge of the flight.

With each turn of the aircraft, a new shape is called to
show that new position. These range from #10 through #18.
The first shape, #10, is similiar to the Plane shape in TI
LOGO. The next shape shows the aircraft at a 45° angle.
The other shapes depict the plane in a 90° angle, 135° angle,
at 180°, 225°, 270° and 315°. Shape #18 depicts the crash.

The CONTROLJOY and the CHECK P procedures con
trol the aircraft in the air. CHECK P monitors the speed
and "altitude" of the aircraft to test for the CRASH

parameters.

FLYAWAY is an excellent graphics program that begins
to tap the power of the LOGO language. It goes quite a
bit further than merely drawing pictures with the computer.
This is an important point to realize. But unfortunately, not
all educators do: In a November issue of Infoworld, one
educator stated that although he can understand young peo

SHAPE 13 SHAPE 12

SHAPE 14 SHAPE 18

1i B I'M

SHAPE 15 SHAPE 16

122 The Best of 99 er Volume 1

pleenjoying maybe 50to 100hoursof drawing pictures with
LOGO, he would imagine they would then tire of the
language and move on to the other things.

Do chess players ever tire of chess? Do chess masters ever
reallyfeel that they have mastered the game? Probably not.
The moves of chess can be easily learned by primary grade
youngsters, but entire lifetimes are spent learning the game.
Certainly the graphics capabilities and the speed of TI
LOGO are spectacular. Indeed, they tend to overshadow
the other attributes of the language. Where that happens,
it is most unfortunate because LOGO offers a young per
son so much more than just graphics—much more than
BASIC and some other high level languages.

For example, look closely at BASIC: It uses a finite
number of commands that must be strung together in
statements that tend to hide the operation of the program.
Were the operation of BASIC programs easily discerned,
TRACE would be unnecessary. LOGO, on the other hand,
is a virtually unlimited language. If the command doesn't
exist, use your imagination and create it! This is the
marvellous challenge of TI LOGO—using your imagina
tion and creativity to discover the real potential of the com
puter. Way back in the dark ages before microcomputers,
Albert Einstein expressed a truth that is especially relevant
to today's computer learning environments: "Imagination
is more powerful than knowledge." Undoubtedly, Einstein
would have approved of TI LOGO.

SHAPE 11

SHAPE 10

SHAPE 17

c
v
p

i

c
cs
PR I
HAK

E
ClON

NAME
L0

NAME

LOT

DC
TH

ON

EAD

ED

D0WN0

L
P

NlWA

AWAY

MOD
CON
CON

CON
E

X

X

X

X

X

X

X

X

X

K
R0

AN

10

EN

EN TO

LOT

LOT

C|0iN
?

TR

LOWE

LONE

URN

URN

RN

Copyright© 1983 Emerald Valley Publishing Co.

HELP

RWA

LAND

CON
EN

AN

CON

YAWA

OR

CON TROL

FA

ONER

URN

SA

PR

NHP
L

V

E

X

T

H

CAtN

BON OYASE

RO

CH

CH

THEN

JOY

AN

HOK

0

EC

ECK

HA

CK

OR

OR

OF

CA

Copyright © 1983 Emerald Valley Publishing Co.

MA

CH ECK

P

ED

Z|CjO{R
I

OWNO
RA SH

WHO

SH

CARR SH

ND

T

4

SHIA
CA

RN

LP WE
ED

FA ER

FA

TH

TH

COR

TH EN

TH EN

GH

R

LOWER

TOP

TOP

COR

EN WE COME

CA

CA

ED

ED

WE

WHO
D

TO CR

OU

COME

LAND NG

NOT SO GOO
WHO

E

GO

CAR

RUN

L T

L

E

8

OW

ROW

TH

COR

f

EN

sc

ROW

D

MAX

(

RblP

CO

EN

TO P

ROWI

The Best of 99 er Volume 1

LO

LOT

LOT

MAX

123

Problem Solving
WITH LOCO

It is pleasureable to work with a language like LOGO
because it gives us something to "think with," and it
encourages us to think in what Papert has called "mind-

sized bites." The solution of a problem can be identified
with the definition of a procedure. If the problem is sim
ple, we can specify the procedure directly. Otherwise, we
try to specify it in terms of a small number of simpler
procedures.

Often, this method leads to a complete solution of a pro
blem. But sometimes, a problem is so complex that the
method leads to an indefinite number of problems. A solu
tion seems hopeless.

But suppose that new problems have the same form as
previously encountered problems, and are simpler. The pro
blem will be solved at least "theoretically," if the rules lead
to a solution in a finite number of steps. Such a solution
is said to be recursive.

One of the beauties of a language such as LOGO is that
recursive procedure definitions are allowed. And writing a
LOGO procedure not only gives a theoretical solution, but
a practical one which can be carried out by executing the
procedure. Of course, for the latter, one needs access to a
TI-99/4A with TI LOGO (or some other implementation
of LOGO).

In thinking through the solution of a problem, one often
works "both ends." The big picture leads to smaller pic
tures. But also details occur which can be incorporated in
to procedures, which then make the solution of larger pro
blems easier.

Translating the Pig Latin
As a concrete example of these ideas, consider the

momentous task of translating an English word into Pig
Latin. According to my children, the rule is to add "HAY"
at the end of a word beginning with a vowel, otherwise to
take the consonant sound from the front, add "AY" to it,
and put it at the end. Thus "AND" translates to "AN-
DHAY", and "BREAK" translates to "EAKBRAY."

These rules lead immediately to a LOGO procedure for
accomplishing the task:

FOR

RN IG

IN

WA

GO

124 The Best of 99'er Volume 1

CWOR

NWO

IMEMB

AN

NWO
MEM

OU

:W

RAN VWOR

AlNCWO

This procedure reduces our problem to the solution of three
simpler problems, which we might need to reduce further.
The procedures we need are:

MEMBER object list
TRANVWORD word
TRANCWORD word

MEMBER returns TRUE if object is in list and returns
FALSE otherwise. TRANVWORD translates word if it
begins with a vowel. TRANCWORD translates word if it
begins with a consonant. We can hope that MEMBER is
a utility built into LOGO. It isn't, but this is no problem.
Nearly anything that isn't a primitive can be built in.

At any stage in the solution process we can decide to work
on big problems or focus on little ones. The solution of a
problem isn't a linear process, even if solutions are usually
presented as if the process were orderly and straightforward.
The LOGO procedures document and organize progress.

Let's focus on the problem of deciding membership. If
object is in a list, it is either the first item of the list, or else

W

K

K

W

clwo

vwo

cwo

OWE

VOWE

VOWE

WO

TO

TO MB

VWO

WOR

WOR

Copyright © 1983 Emerald Valley Publishing Co.

it is the first of a truncated list, or it is not in the list. The
definition is, naturally, recursive:

TO MEMB ER

EMB

With this definition, MEMBER FIRST :W [A E I O U
] will return TRUE if :W begins with a vowel, and FALSE
if it doesn't.

The definition of TRANVWORD is so simple we can
write the procedure anytime. Let's do it now:

VWOR
NOR : W

The (undocumented) primitive WORD takes two words as
input and outputs the word formed by joining them.

The definition of TRANCWORD takes more thinking.
We want it to be recursive. We want to move letters from

TOWER OF HANOI

Now we turn to a less frivolous example. The Tower of
Hanoi is a puzzle familiar to many. It consists of three
pegstands. One contains a "tower" of circular rings. The
object is to move the tower from one peg to another, mov
ing one ring at a time, and never putting a larger ring on
top of a smaller one. There is rumored to be a Buddhist
priest working on a puzzle with 64 rings; when he finishes,
the world will end. If he makes one move per second, how
much should we worry?

We can use LOGO to worry about this problem. We need
a procedure, say NUMMOVES, which takes for input the
number of rings and outputs the number of moves. Sup
pose we think of the task this way: Move the top n -1 rings
to an auxiliary peg, then move the largest ring, then move
the smaller n -1 rings onto the largest.

The way of viewing the problem leads to the following
recursive definition for NUMMOVES:

Copyright © 1983 Emerald Valley Publishing Co.

the beginning to the end until the first letter is a vowel, and
then add "AY". We are led to:

RANCWORD :(W
MEMBER FIRST :|W|

WO :|W
C|WO WOR

If we try (that is, think through, or execute in LOGO)
TRANCWORD "BREAK, we find it will return
EAKBRAY, as desired. And TRANCWORD "YOU
returns OUYAY. But TRANCWORD "BY runs out of

space because the recursion cannot end. Evidentally Y must
be added to the list of vowels. But then TRANCWORD
"YOU would return YOUHAY and not OUYAY.

Can you fix this bug? We want Y to count as a vowel
only if it isn't the first letter. One solution is to use two in
puts to TRANCWORD, one of which is a flag. This solu
tion, as well as the generalization to translating a sentence,
can be seen by reading the PIGLATIN procedure and the
procedures it calls. ^

UMMO

Trying this procedure, we find that NUMMOVES 2 =
3, and also that NUMMOVES 3 = 7. The reader might
try to find a formula for NUMMOVES n, and also the value
of NUMMOVES 64.

Of more interest is a procedure for actually solving the
puzzles, and beyond that, for implementing the solution
graphically. By the above reasoning, what we need is a pro
cedure SOLVE with four inputs:

SOLVE n pegl peg2 peg3

which would movethe top n rings from pegl to peg2 using
peg3. Using the rules we obtain:

TO

OL

To have LOGO print out the moves in order, we need
to implement two procedures called GETRING and
SETRING:

In the meantime, let's implement GETRING and SETR
ING simply so we can test our solution:

NG

CHA

The Best of 99 er Volume 1 125

NG

ON

Now, if we enter SOLVE 2 "A "B "C, the output will be:

PICK UP A SET ON C

PICK UP A SET ON B

PICK UP C SET ON B

The number of moves for three rings is 3, as expected.
What will be the seven moves for SOLVE 3 "A "B "C?

Try it!

We've looked at a LOGO procedure for solving the
Tower of Hanoi as an abstraction. This procedure, SOLVE,
prints out—as a list—the sequence of moves necessary for
the solution. But given the graphics power of LOGO, we
should be able to design a program—a series of
procedures—which will represent the actual movement of
rings from one peg to another graphically. And, in fact we
can use LOGO'S MAKECHAR command to define the re

quired graphics, called tiles, and we can move these newly-
defined tiles about, using LOGO procedures. So let's begin
at the beginning.

Let A, B, and C be the three pegs. When we know which
rings are on which pegs, we then know the particular state
of the puzzle. In our LOGO implementation, the variables
A, B, and C will be the names for lists which tell us which
rings are on each peg. Our puzzle will have 8 rings. Let us
number them 1 through 8 in order of increasing size. The
beginning position, with all rings on peg A, is represented
by:A = [1 2345 67 8], :B = [],and:C = []. Moving
the top ring from A onto B results in the state :A = [2
3 4 5 6 7 8], :B = [1], :C = []. In essence, a move con
sists of removing a number from the beginning of one list
and adding it to the beginning of another list. At the same
time, of course, the graphic representation ring must be
erased and redisplayed in the correct position.

Let us first construct a procedure HANOI, which will
allow us to play with the puzzle and then, when we want,
solve it automatically.

TO ANOI

INITIALIZE should set colors and define constants.

SETUP should display the puzzle with all the rings on peg
A. PLAY should allow us to pick rings up and put them
down by simply pressing the names of the corresponding
pegs. Play might continue until 'Q' is pressed. The puzzle
should then be redisplayed and solved automatically, begin
ning with the rings on peg B. The procedure SOLVE was
developed in the previous section. Procedures SETUP,
PLAY, and SOLVE will depend on workhorse procedures
GETRING and SETRING. The requirements for IN
ITIALIZE will become apparent as we make choices about
representation.

126 The Best of 99 er Volume 1

Assume that INITIALIZE assigns the value 8 to N and
:TOP is the number of the ring to be displayed. Then
SETUP can be:

TOP

NG MA TO

Using utilities MEMBER?, EMPTY, and ALARM, we
can write PLAY in such a way as to validate all inputs. We
want to accept either 'Q' or to stop PLAY the letters A,
B, and C only. (VALID will be initialized to [A B C].)
We also want to prevent an attempt to remove a ring from
an empty peg. If an error is made, we will cause an alarm
to be sounded. (See the listing for definitions of the utilities.)

PLAY

NOT
RM

EMP

GO

NO

C

Q
Me|mb

L

ElMIB
LGO

EN TO

NG

VA

In this procedure, note that the value of X, :X, is the name
of a peg, either A, B, or C. One might expect that the value
of :X would be denoted : :X, but this denotes the value of
':X'. The primitive THING must be used. THING :X is
the list named by :X.

In order to discuss GETRING and SETRING, we need
to be specific about how to represent the graphics. We could
use the turtle, but we choose tiles because this allows the
most colorful display. The LOGO screen is divided into 32
columns numbered 0 to 31 from left to right, and 24 rows
numbered 0 to 23 from top to bottom. We can place the
rings on the display by locating them relative to their

Copyright © 1983 Emerald Valley Publishing Co.

pegstands. Let ABASE, BBASE, and CBASE name the
coordinates for the centers of the pegstands. Reasonable
choices are :ABASE = [7 21], :BBASE = [25 21 J, and
:CBASE = [16 11]. Suppose a ring is the top one on a
given peg. Its center has as its column coordinate the same
column coordinate as the peg,and its rowcoordinate isequal
to the row coordinate of the base minus as many rings as
are on the peg. If we use TOP, COL, and ROW to contain
the number of the top ring and its column and row coor
dinates respectively, we are led to:

MAX

ET Rl|N]G|
P

BCIOJOIR

COL

TO

NG WOR

CPPRD
PMA

MA

X

D

END

COUN

ROW

AYR

ING

COOR

ROW

ING

F
F

PUN

TH

COOR

TH NG WORD

COO R

P

ClOOR

ING

In using these procedures, :P is a letter (A, B, or C). Thus
WORD :P "BASE will return the word ABASE, BBASE
or CBASE. Note how BF (BUTFIRST) and SE
(SENTENCE) are used to change the value of :P (which
willequal A, B, or C). By passing the name of the peg, we
can change its value. This would not be the case if we passed
the value of the peg to the procedure. (Computer scientists
call this passing parameters "by reference" rather than "by
value.")

We are left with the problem of actually displaying the
pegs and displaying and removing the rings. The work will
be done by STAND, DISPLAYRING, and ERASERING.
We need to choose the tiles and colors.

The bases will use tile 96 and be black. The pegs will use
tiles 104 and 105, and be white. Tile 104 is square, and tile
105 is rounded at the top. Recall that the number of rings
is :N, and the division in LOGO is integer division.

Ring
1
3
5

7

Ring
2
4

6 h
8 . _ _

No. Color No.
112-Red -114
128 -Yellow-130
144-Olive -146
160 - Blue -162

No. Color No.
120 -Orange-122
136-Lime -138
152-Sky -154
168 -Purple -170

Copyright © 1983 Emerald Valley Publishing Co.

MA

TAND

BCOOR

EA

ROW

ROW

1

CO
HlAlRlNUH

LA

ClOL

MA

NG

B

clolo
/

N

WOR

COORD

CO

ROW

Tiles and colors for the rings will be chosen as follows:
Theshapes for the tiles are designed so that ring k appears
to be k + 2 tiles wide, but it is actually 3 + 2*(k/2) tiles
wide. The accompanying figure shows the number and shape
of all the required tiles, which we will have to make using
MAKECHAR.

Ring Tiles Color Tiles wide
1 112,113,114 Red 3
2 120,121,122 Orange 5
2 128,129,130 Yellow 5
4 136,137,138 Lime 7
5 144,145,146 Olive 7
6 152,153,154 Sky 9
7 160,161,162 Blue 9
8 168,169,170 Purple 11

A ring appears when theright number of tiles of theright
shape and color aredisplayed.A ring is erased bydisplay
ing blanks and the peg tile. For effect, the rings will be
displayed from the center out and erased from the outside in.

E

w

I
END

MA

MA

MI

EA

MA

R

1

(+
|R|OW

I
ICIOJ

NG

YR

19
1

18
:(CJO
1
TIO

mem
i

:{CjO

:C0

TO

TOP
T

ROM

ING

4 H-
9
6
L

CO

TO

ROW

ID

1
TOP

TO

:C0

We are almost ready to play with the puzzle. IN
ITIALIZE (see listing) defines colors for the tiles, and
assignsvalues to N, VALID, ABASE, BBASE and CBASE.

No

96
Color

Black
104 White
113 Red
121 Orange
129 Yellow
137 Lime
145 Olive
153 Sky
161 Blue
169 Purple

Part

Base

Peg
Ring 1
Ring 2
Ring 3
Ring 4
Ring 5
Ring 6
Ring 7
Ring 8

No. Req'd
9x3
16
1
3
3
5

5
7
7

9

fit iS
» --&

105 White

Peg Top

3 Req'd

The Best of 99 er Volume 1 127

Before anything willhappen, though, the tilesmust be defin
ed usingMAKECHAR. (Seefigures.)Then, ENJOY! Recall
that to manipulate the rings, you just need to press the let
ter of the peg from which you want to take, or to which
you want to add a ring. Use the procedure HELP if you
forget.

After you have had some fun with the puzzle, you might
want to try a four peg variation. To implement a four peg
version, do the following:
Change INITIALIZE to include:

MAKE "VALID [A B C D]
MAKE "ABASE [8 10]
MAKE "BBASE [24 10]
MAKE "CBASE [8 23]
MAKE "DBASE [24 23 1

In SETUP, add:

MAKE "D []
STAND "D

The puzzle should then contain four pegs: A, B, C, and
D. It can be manipulated just like the three peg puzzle. The

ANO

D

A NIG
LOW
E

TO

BE

A

NO

EN

TO
IF

LIS
IF

T
OU
E|N

T

ICIS
p|r
1
P|R
PR
VIE
PR

PR

pro

|u|s
E

T

]A
sIe

A

A
A

IRE
9 6
MA
RE

PT
PT

|en

TO

MA

MA
S
M

MA
MA
K

DI

EN

RIM]

MEIMJB
I

automatic solution will still use just three pegs. But as a wor
thy challenge, you might try to write a better version of
SOLVE which takes advantage of the fact that there are
two auxiliary pegs instead of just one. The puzzle should
take fewer moves to solve. How many less than 2n - 1
moves are required if there are n rings and four pegs? I
would be interested in any of your results. Then can five
pegs be fit on the screen. . . ?

But if you are looking for a lesserchallenge, or just want
to experiment with a simpler puzzle, note that the number
of ringsis set in INITIALIZE and can be changed.Try this:
Enter INITIALIZE, and then MAKE "N 5 (or some other
integer). If you now enter SETUP, a puzzle with 5 rings
will be displayed. Enter PLAY, and you can manipulate
this puzzleuntil you pressQ. Now enter SETUP again, and
then SOLVE 4 "A "C "B. This will cause four rings to
be moved automatically to peg C. Then enter PLAY and
you can complete the puzzle by yourself. With LOGO, the
procedures are your own to do with or modify as you please.
Use your imagination, make up other puzzles, or just go
ahead and play with this section's puzzle as is.

NG TO

NG

OU

TO

CO ROW

TO

NO TO MA

ROW CO

128

ME

[GO

GO
NG

NG RM

EN

NG

The Best of 99'er Volume 1

OR

CH

D

C0!0

CO
ROW!

H

DOWN

QU
V

CO

+
low

r|o

1
CO
UM

ET NG

COOR

PPL
C

R|0W

YR NG

TOP
TH

AN
OMA

NG WOR

COO
COOR

CO

0W

COORD

COOR

BA

P
W

P

W
END

MA

CO

GE

EM

+

ROWI

NG
COO

TO
CO
K
ROIWI

CO

0W

TH

CO

WOR

NG
COORID

NG P

CpOR

Copyright © 1983 Emerald Valley Publishing Co.

TMSTOO
Machine &

Assembly
Language

PART 1: Electrical Signals, Number Systems & CPU Architecture

Ifyou're a reader of 99'er Home ComputerMagazine,
you are probably aware that there is a difference be
tween 8-bit and 16-bit computers . . . although just

exactly what that difference is—other than "16 bits are
twice as many as 8 bits"—might not be that obvious. My
purpose in this series of articles is, therefore, to discuss
the inner workings of your 16-bit computer by gradually
introducing you to its operation and low-level program
ming in a language much closer to the way your com
puter operates without any BASIC interpreter slowing
things down, or coming between you and the power of
your machine.

The heart of any computer is its microprocessor, and
the one we'll be examining is, naturally enough, the Texas
Instruments TMS9900—the 16-bit chip around which this
magazine is organized. To understand its operation, we
first have to know something about electrical signals and
number systems, so let's begin our discussion here.

Clocks, Pulses, Bits & Bytes
The electrical signals used by a computer are labeled

high and low, or 1 and 0, respectively. One of these
signals is called a bit. Inside the computer this cor
responds to one wire. All of the wires together are called
a bus. The computer reads and writes a part of the bus
called the data bus at specific intervals, which are
regulated by a clock. The signals that the clock produces
to tell the computer when to read and write are called
docA: pulses.

#3

J L
II II | I II

__|«»j [SH9± p«°_| [£~\ REA0 CYCLES

Chart 1

Copyright © 1983 Emerald Valley Publishing Co.

CLOCK PULSES

1 SIGNAL LINE

DATA RECEIVEO

2 SIGNAL LINES
READ TOGETHER

DATA RECEIVED

At each pulse of the clock, the computer reads a group
of lines. Your normal, run-of-the-mill microcomputer
uses groups of 4,8,or 16 bits. All the information read
or written is called data. If the computer is reading or
writing on 1 line, the data is called serial. If it is reading
or writing on a group of lines together, the data is called
parallel. 4 bits in parallel are called a nybble; 8 are a byte;
and 16 has no name, but I propose to call it agobbyl.

Look at Chart 1. The top line is the clock. In this ex
ample when the pulse is high, the computer reads the
signal lines. Notice that when there is only one signal line,
the data received can be only a 1 (when the line is high)
or a 0 (when the line is low). There are only two possible
codes you could see during one clock pulse. You would
see a 1 or a 0.

Now look at what happens when you have two signal
lines grouped together: 4 different codes are possible. On
clock pulse #1 both lines are low (code 00); on pulse #2
the bottom line is low and the top one is high (code 01);
pulse #3 has the bottom high and the top low (codelO);
and pulse #4 has both lines high (code 11).

1 -COLUMNS

4 —POSITIONS

4x1 = 4

- 1 « 10 =t0
- 0«I00=*
-0x1*00*0

TOTAL

1 —COLUMNS

DIGIT « VALUE

•0x 1= 0
• 1x2= 2

DECIMAL TOTAL =14

BINARY DECIMAL KEXIOECIMAL BINARY DECIMAL KEXIOECIMAL

0*00 =
000 1 =
0* 10 =
00 11 =
0 100 =
0 10 1 =
0 1 10 =
0 t I 1 =

00
01
02

03
04
05
06
07

1000

1001
10 10
10 1 1

1100
1 10 1
1 1 10
1111

Chart 2

08

09
10
1 1

12

13

14

15

The Best of 99'er Volume 1 I3I

Number Systems
These codes could also be considered numbers. Count

ing with only O's and l's is called binary (from the Latin
word for two) or base two counting. Ordinary, plain,
vanilla numbers that we use everyday that are called
decimal (from the Latin for ten, of course) or base ten
numbers. Even though we have only the ten digits from
0 to 9, we can make very large numbers by using the same
digits in different positions. Follow along on chart 2.

The position on the extreme right in a decimal number
is the ones column. For that matter, the position on the
extreme right in any base is the ones column. Why?
Because you find the column value by taking the number
of digits you have and raising it to the power of column
minus one. For example, if you have ten digits, and the
column is number 1 (from the right), then the value of
that column is 10 to the 1 minus 1, or 10 to the 0 power.
Any number to the 0 power is 1, so the first column is
always ones in any base.

The second column is a different matter. In base ten

it is 10 to the 2 minus 1, or 10 to the 1st power, or 10.
So if you write 14 what you mean is 4 groups of ones
and 1 group of tens. In base two the second column (from
the right) would be 2 to the 2 minus 1, or 2 to the 1st,
or 2. The second column or position in binary is the twos
column.

The thing that makes the zero so neat is that it holds
the position without giving it a value. Zero ones is zero!
If you just left a blank there, people would have to write
all their numbers in little boxes or pretty soon the col
umns would get all jumbled up. Is there one blank or
two? . . .or three?? Better use the zero.

The columns in binary numbers are just like the signal
lines in a computer. In theory, the columns go on
forever—and so do the numbers. Regardless of the base
you are in, you can keep writing numbers forever! But
wait! I just said that signal lines are usually groups of
4, 8, or 16. If signal lines are the same as columns, then
there is a limit to the size of number a computer can
understand. How big is the biggest number you can use?

To find out, raise the base to the same power as the
number of positions you have. On chart 1 when we used
two lines, that was 2 to the 2nd power, or 4 codes or
numbers. With 4 lines, there are 16 (2 to the 4th); with
8 there are 256; and with 16 lines there are 65536.

The last code on the chart is 1111, which in decimal
is 15. I said you could get 16 numbers with four lines,
so where is the last number? Don't forget to count 0! 0
through 15 is sixteen numbers, 0 through 255 is 256
numbers, and so on.

There are other bases, or course. The numbers marked
hexadecimal are from a base with 16 digits—the normal
10 digits from 0 to 9, plus the letters A to F. Use them
just like any other digits. For instance, on the chart, 1111
binary is 15 decimal and F in hexadecimal (hex for short).
The next number in hex is 10; in decimal it is 16; and
in binary you have to add a new position (sixteens) and
write 10000.

You can always add as many zeros to the front of a
number as you want without changing it. However, if you
make a binary number divisible into groups of four, an
interesting thing happens: Each group of four can repre
sent 16 codes or numbers. Since that is exactly the number

132 The Best of 99'er Volume 1

of digits in the hex number system, you can substitute!
This makes long binary numbers much easier to read, and
doesn't change their values at all.

Try a few yourself. They're easy!

1 0000 Binary number with S poiltlom. Equal to 10 HEX.
000 t 0000 Fill !o8 potltiombv adding ?<iro« to front.
0001 000jf Break into group!of 4.
""f (J Giveeachgroupthe proper HEXdigit (seechart21

1 " 10 If tha MEX valuetor 10.000bInery.

10 1 1 00 10 BINARY

B 2 HEX

1101 0 1K(101 1 10 1 1 0J0J
0 6 B B S

Ugg 0J0J 0J4.1 0-LJfl
e •» 7 6

VALUES

10 (0

iff

1 0 1 10 BINARY

1 6 HEX
POSITIONS 4 3 2 1

Chart 3

Hardware
The TMS9900 is called a 16-bit CPU (Central Proces

sing Unit). This means that when it fetches an instruc
tion from memory, it gets 16 bits in parallel. And when
it reads or writes data this is usually done in groups of
16 bits too. [In the TI-99/4A, however, this 16-bit group
is converted into an 8-bit data bus.—Ed.] You may hear
the term word used for 16 bits. If you are talking about
a 16-bit machine, the term is correct. But remember, if
you are talking about an 8-bit CPU, 8 bits (or byte) is
a word; if the CPU is 32 bits, the word is 32 bits.

It is necessary for a programmer to know about only
two kinds of memory. Random-access memory (RAM),
sometimes called read/write memory, is what stores the
user's program, data, etc. The user or the computer can
read or write in it. The memory location is chosen by the
lines on the bus called address lines. The data that is be
ing read or written appears on the data bus.

Read-only memory (ROM) comes in many varieties
and works just like RAM except for one thing—it can't
be written to. If you tell the computer to write, it will
go through the motions of writing, but it doesn't work.
The old data is still there.

Inside the CPU there are a few memory locations that
are not addressed by the address bus. The chip itself
knows where they are. These are called registers. All
machine language and assembly language programming
involves manipulating the data in these registers, because
that is all that the computer really can do!

How many registers there are and how big they are
varies widely. The chip manufacturer usually labels the
registers and decides on a short code, called an opera
tion code (op-code), for each of the manipulations that
the chip can do. An assembler is a program that reads
these op-codes and writes them into memory in the binary
form that the CPU understands. When you write a pro
gram using the op-codes, you are writing in assembly
language. If you write your own assembler you can devise
your own op-codes. But because the manufacturer
generally writes an assembler for his chip, you can use
his op-codes.

About the only thing all CPUs have in common is a
register called the Program Counter (PC). The address
bus is just an extension of the PC. Each bit of the pro
gram counter is, in effect, connected to one signal line
of the address bus. Since the TMS9900 chip was designed
especially for dedicated control purposes (e.g., produc
tion lines inspection or phone switching) where the pro-

Copyright © 1983 Emerald Valley Publishing Co.

9900 CPU
0-14 n MEMORYPROGRAM COUNTER

mmmmm 4000 H

CLOCK

• 10 10 1100 4000 Heus > \ ')
_

INSTRUCTION REGISTER

wiiiinm
SI ZJeltrMDoaOMB

1stFETCH " f 0001 0110 4001 H

0 =0 % III DATA BYTE 4002 H
4003 H

9909 CPU
0-14 KPROGRAM 60Un)TEA

4000 H

CLOCK

(EMORY

aacnfss \(,\. 1010 1100 «000Hl/
INSTRUCTION REGISTER

MMMtf
#1 2)«5«T0»Oia«KO

2nd FETCH1' t 0001 0110 4001 H

a 2nd DATA BYTE 4002 H

9909 CPU

"•— INCREMENT 2

1EXECUTE CYCLE
1EXECUTES INSTRUCTION

PROGRAM COUNTER

4002 H
CLOCK

MEMORY

mmmmm' 1010 1100 4000 H

INSTRUCTION REGISTER

wsmmssm

0001 011/) 4001H

4002 H

§ 1 Z34347S ttooaoHa

Chart 4

gram is always in ROM—and since at the time most
ROMs were made for 8-bit computers—the address bus
of the 9900 is a little unusual.

The bits of the PC allow the chip to address 65536
blocks of memory. The blocks could be any size, but as
I said, most ROMs were in blocks of 8 because most com
puters had an 8-bit data bus. The PC in the 9900 has 16
bits. These are labeled 0-15, from (left to right), most
significant bit (MSB) to least significant bit (LSB). Why
are there only 15 address lines? Follow on Chart 4 as we
go along.

Normally the PC advances after each instruction or
parameter it fetches so that it points to the next memory
byte. But the 9900 needs 16 bits instead of the 8 available
at each location in most ROMs. So the 9900 has two dif
ferent fetch cycles: it reads the byte indicated by the PC
on the first cycle, hooks the next byte to it on the second
cycle, then increments the PC by two. To the user this
all appears as one fetch, except that the PC is incremented
by two instead of by one as expected. By eliminating the
last bit, however, the address line appears to step nor
mally. The drawback is that you can address only 32767
words. It's still 65536 bytes though.

PART 2: Registers, Programming & The Need For Assemblers

Status Register
Almost every CPU has some kind of flag(s). These are

set (high) and reset (low) by actions performed in the
manipulations of data. Different instructions affect different
flags. Modern CPUs combine several flags into a single
Status Register. The TMS9900 is no exception. Its Status
Register (ST) is 16 bits long. Bits 7-11 are not used at pres
ent. The others are shown in the drawing below and are
explained in the text.

TMS9900 STATUS REGISTER

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L A EQ C OV P X

> > = XDP

o

V

E

R

F

L

O

w

UNUSED INTERRUPT
MASK

Each of these conditions will be discussed in more detail

as examples are shown. Until then, these simple descriptions
will help.

The four bits labeled 12-15 can select up to 16 interrupt
levels. All levels equal to or above the level indicated are
enabled.

Bit 0 is set after any operation where the destination value
(answer) is greater than the source (the first operand used;
it remains unchanged). All 16 bits are used for the
comparison.

Bit 1 is similar to bit 0 except that the values are com
pared as signed integers. The MSB (most significant bit)
designates the sign of the integer, with a 1 meaning negative
and a 0 meaning positive. The range is + 32,767 to - 32,768.

Copyright © 1983 Emerald Valley Publishing Co.

Negative numbers are represented in a two's complement
fashion.

Computer math is cyclic. This means that if you add 1
to the highest possible 16-bit number (FFFF hex), you go
back to 0000 hex with a carry bit that is set. If you subtract
1 from 0000 hex without the carry, you get an overflow;
but if the carry is set, you get FFFF hex. Therefore, - 1
is FFFF hex in two's complement. To see its usefulness, let's
add -1 and 1: FFFF hex plus 0001 hex equal 0000, the carry
is set, and the answer is zero. In a nutshell, this whole
business of two's complements and carry bits is simply a
way to subtract by adding.

Bit 2 is set if the two operands are equal.
Bit 3 is set if a 1 is shifted out of an operand, or if a carry

occurs in a math operation.
Bit 4 is set if the math requested cannot be done.
Bit 5 is set if the parity is odd, and reset if it is even. Odd

parity means that there is an odd number of Is in the binary
representation of an operand.

Bit 6 is set after an extended operation has been com
pleted. This is done because an interrupt is not checked for
after completion of an extended operation. (You therefore
may wish to have the software check for one if this flag
is set).

The ALU
Most CPUs have an Arithmetic/Logic Unit (ALU) where

the simple math is performed. An accumulator, a special
register used by the ALU, usually contains the answers to
the math. In the TMS9900 there is no accumulator because

the destination address serves as the equivalent of an ac
cumulator. This means, in effect, that any memory loca
tion can be the accumulator. There is an ALU on the

TMS9900 chip, but its operation is intrinsic to the
instructions.

The Best of 99'er Volume 1 133

Other Registers
Most CPUs have a few extra registers where quickly-

needed values can be stored, as well as a register called a
Stack Pointer which points to a section of memory where
more data can be "piled" and then quickly accessed. These
two concepts have been combined on the TMS9900 into a
single Workspace Pointer Register (WP). The WP points
to a block of 32 bytes of the memory arranged as 16
workspaces (WS), each 16 bits long. The workspaces are
synonymous with registers, and are used the same way. We
can change the WP in several ways and can save the old
WP when a new one is used. This allows us to return to

the old one if we need to. This set-up, in effect, acts like
an elaborate stack.

There are five different ways to use these WP registers
to indicate an operand for an instruction. These addressing
modes are as follows:

1. Workspace Register Mode
code 00

2. Workspace Register Indirect
code 01

3. WS Register Indirect
w/Auto-Increment
code 11

4. Symbolic or Direct
code 10

5. Indexed

code 10

Td or Ts equal 1-15

—the data in the in

dicated register is the
data used.

—the data in the

register is treated as
the address of the

real data.

—same as above, but
the register is in
cremented upon
completion.
—the address of the

data follows the in

struction in memory.
—same as above, but
the value in the index

register is added to
the address.

There are three other addressing modes not dealing with
registers per se: (1) The immediate mode has the data im
mediately follow the instruction code. In other words, the
address of the data is the address immediately following the
PC. (2) The CRUmode has the address of an external in
put/output (I/O) device determined by bytes 3-12 of register
12. (3) The IMP instruction(and all variations thereof) uses
the last 8 bits of the instruction to determine where on a
256 byte page to jump. The PC indicates the center of the
page, so the jump can be from PC -128 to PC +127. One
byte is taken up by the jump instruction itself. The 8 bits
store the relative jump in two's complement form.

Programming and the Need for Assemblers
If your CPU is the TMS9900, the simplest computer you

could construct would be composed of a clock, a CPU,
some memory, a few control switches, 16 data switches, 16
lights for read out, and 15 address switches. It would be
crude and slow to program, but once programmed, it would
operate as well as any other computer. But how could we
program it?

Suppose we wanted to load register 1 with zero, and then
increment it until its contents were equal to either 1024
(decimal) or the contents of register 2. The first step can

134 The Best of 99'er Volume 1

be done several ways. Immediately loading register 1 with
0 comes to mind first. A little investigation of the instruc
tions for the chip show that we could save a word of memory
by using the Clear command. Figure 1 shows the register
format for the various commands, and Figure 2 shows the
op codes for the instructions.

Using this information, we can now determine the binary
values of each word. Load Immediate uses the first 10 bits

as the op code; the 11th bit is not used; and bits 12-15select
the register. This means the first word is

00000010000X0001, where X can be 1 or 0.
The second word is the value to load, and in this case would
be all zeros.

Using our simplified computer, just flip each switch on
if there is a 1 at the corresponding bit, off if there is a zero.
Press the Input control switch (it might be called Load, or
. . .), and the instruction is stored in whatever address the
address switches are set to. Then add 1 to the address switch-

FORMAT 0 1|2 3 4 5 6 7 8 9 10|11 12|13|14 15

1

2

3

4

5

6

7

8

9

OP
CODE

B Td D Ts S

OPCODE RELATIVE JUMP

OP CODE D Ts S

OP CODE C Ts S

OP CODE C W

OP CODE Ts s

OP CODE N

OPCODE N| w
IMMEDIATE VALUE

OPCODE I D | Ts | S

KEY Td/Ts FIELD CODES
B 1=byte 0=word 00 Register

Trf destination address mode 01 Indirect
D destination address 10 with RO, symbolic

Ts source address mode 10 with R1-R15, indexed

S source address 11 Indirect with increment

C counter

W register number

N unused

RELATIVE JUMP from+127 to -128 Figure 1.

es (which adds 2 to the PC) and set all the data switches
to zero. Press Input again, and our complete instruction is
ready.

If instead, we use the Clear instruction, we would use the
single-operand general format with the first 10 bits being
the op code. The next two bits indicate address mode, and
the last 4 bits select the register. Since we want to clear the
register itself (not the word it points to), the code is 00,and
the whole instruction is 0000010011000001.

Even with a hex keypad and a small monitor program,
it would be a very time-consuming process to piece together
the binary words, and then convert to hex and type them
in. Typing in 04C1 is easier than setting switches to

0000010011000001,
but putting together those op codes is just the tedious, bor
ing kind of work that computers are supposed to free us
of. So why not use them for that?

Why not, indeed. . .That's exactly what we'll do when
we look at a TMS9900 assembler.

Copyright © 1983 Emerald Valley Publishing Co.

Figure 2.
Mnemonic Op Code Format Status Bits Affected Meaning

A 1010 1 0-4 Add words
AB 1011 1 0-5 Add bytes
ABS 0000011101 6 0-4 Absolute Value
Al 00000010001 8 0-4 Add immediate
ANDI 00000010010 8 0-2 And immediate
B 0000010001 6 Branch
BL 0000011010 6 Branch and Link (R11)
BLWP 0000010000 6 Branch, load WP
C 1000 1 0-2 Compare words
CB 1001 1 0-2,5 Compare byte
CI 00000010100 8 0-2 Compare immediate
CKOF 0000001111000000 7 External Control
CKON 0000001110100000 7 External Control
CLR 0000010011 6 _ Clear
COC 001000 3 2 Compare Ones Corresp. (OR)
CZC 001001 3 2 Compare Zero Corresp. (AND)
DEC 0000011000 6 0-4 Decrement by one
DECT 0000011001 6 0-4 Decrement by two
DIV 001111 9 4 Divide
IDLE 0000001101000000 7 Computer idles
INC 0000010110 6 0-4 Increment by one
INCT 0000010111 6 0-4 Increment by two
INV 0000010101 6 0-2 Invert (complement)
JEQ 00010011 2 (ST2=1) Jump if equal
JGT 00010101 2 (ST1=1) Jump greater than
JH 00011011 2 (ST0andST2=1) Jump high
JHE 00010100 2 (ST0orST2=1) Jump high or equal
JL 00011010 2 (ST0 and ST2=0) Jump low
JLE 00010010 2 (ST0=0 or ST2=1 Jump low or equal
JLT 00010001 2 (ST1 and ST2=0) Jump less then
JMP 00010000 2 (none checked) Jump unconditionally
JNC 00010111 2 (ST3=0) Jump no carry
JNE 00010110 2 (ST2=0) Jump not equal
JNO 00011001 2 (ST4=0) Jump no overflow
JOC 00011000 2 (ST3=1) Jump on carry
JOP 00011100 2 (ST5=1) Jump odd parity
LDCR 001100 4 0-2,5 Load CRU
LI 00000010000 8 0-2 Load immediate
LIMI 00000011000 8 12-15 Load immed. INT mask
LREX 0000001111100000 7 12-15 External control
LWPI 00000010111 8 Load immed. WP
MOV 1100 1 0-2 Move word
MOVB 1101 1 0-2,5 Move byte
MPY 001110 9 Multiply
NEG 0000010100 6 0-4 Negate (2's comp.)
ORI 00000010011 8 0-2 OR immediate
RSET 0000001101100000 7 12-15 External control
RTWP 0000001110000000 7 0-6,12-15 Return with WP
S 0110 1 0-4 Subtract word
SB 0111 1 0-5 Subtract byte
SBO 00011101 2 . Set CRU bit to one
SBZ 00011110 2 Set CRU bit to zero
SETO 0000011100 6 Set ones
SLA 00001010 5 0-4 Shift left (0 fill)
SOC 1110 1 0-2 Words (OR) Set ones corresp.
SOCB 1111 1 0-2,5 Bytes (OR) Set ones correso.

SRA 00001000 5 0-3 Shift right (MSB fill)
SRC 00001011 5 0-3 Shift right circular
SRL 00001001 5 0-3 Shift right zero fill
STCR 001101 4 0-2,5 Store from CRU
STST 00000010110 8 Store ST
STWP 00000010101 8 Store WP
SWPB 0000011011 6 Swap bytes
SZC 0100 1 0-2 Words (AND) Set zero corresp.
SZCB 0101 1 0-2,5 Byte (AND) Set zero corresp.
TB 00011111 2 2 Test CRU bit
X 0000010010 6 Execute
XOP 001011 9 6 Extended operation
XOR 001010 3 0-2 Exclusive OR

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 135

ITS SUPER
LANGUAGE

PART 1: Fundamentals of Assembly Language
Programming on the TI-99/4A

Before getting into the details of the TI-99/4A
Editor/Assembler package, we should first consider
what an assembler is and what it can do for us. Most

readers are already familiar with the TI BASIC language,
and many have already experienced the disk-oriented
features of Extended BASIC. These BASICS are interpreted
languages. When a BASIC program is being run, the BASIC
interpreter converts (interprets) the BASIC statements, one
statement at a time, into machine language—the binary ones
and zeros that the computer understands. It then executes
the statement it has just converted. Since a single BASIC
statement usually generates several machine instructions,
programs can execute relatively slowly. This is especially true
in programs containing loops because each statement in a
loop is interpreted each time it is encountered.

BASIC programs are simply input and RUN, but pro
gramming in assembly language involves an extra step which
is not apparent in BASIC programming—namely the
assembler stage: Assembly language programs must be in
put, then assembled and finally RUN. The assembler con
verts the assembly language statements (or source program)
to machine language; it is the machine-language (or object)
program which is RUN. Because there is no waiting for each
statement to be interpreted at runtime, programs written in
assembly language run extremely fast.

Another major difference between BASIC and assembly
language is the difficulty of writing programs. A BASIC pro
gram is relatively easy to code because the instructions are
English-like and the programmer does not have to worry
about where variables reside in memory or have to under
stand the structure of the machine. Assembly language pro
grams, on the other hand, are harder and more time-

136 The Best of 99'er Volume 1

consuming to write because the instructions are machine-
oriented (see "TMS9900 Machine and Assembly Language")
and the programmer must understand the structure of the
machine. Debugging assembly language programs is harder,
too. But these difficulties are not necessarily disadvantages,
because an understanding of the machine allows a program
mer to create more efficient programs. Programming in
assembly language is an education in itself, and is one of the
best ways to learn how a computer works.

A programmer must consider these tradeoffs in choos
ing the best language for each application. In general,
BASIC is faster to write and debug, but assembly language
programs execute faster. Happily, TI has made it possible
to choose both by enabling Extended BASIC programs to
CALL assembly language subroutines. This means that a
programmer can write mainly in Extended BASIC and use
assembly language for portions of the program where faster
execution is required (loops, and especially, sorts). Writing
short assembly language subroutines to CALL from Extend
ed BASIC programs is a good way to ease into assembly
language programming, and after some practice you may
find yourself writing entire applications in assembly
language.

What follows is a preliminary look at the TI-99/4A
Editor/Assembler package. It is, however, only an over
view of the product. Other sections will go into more depth
on specific features of the software.

Software Media and Required
Hardware

The Editor/Assembler software resides in a Command

Cartridge and on a disk. To run it, you'll need at least one

Copyright© 1983 Emerald Valley Publishing Co.

disk drive and the 32K expansion RAM. Both the Editor
and the Assembler are selectable from menus, and most of
the screensinclude easy-to-understand prompting messages.

The Editor

The Editor is used to input Assembly Language source
programs initially, to update programs previously saved on
disk and to print programs. The Editor's features compare
favorably to those of larger systems.

There are two modes: Edit Mode and Command Mode.
Edit Mode is always used to input a program for the first
time, but either mode can be used to change existing pro
grams after loading them from the disk or typing them in
Edit Mode.

Edit Mode is entered directly from the menu. The screen
is a 40 x 24 window on the source program. Function keys
allow you to move this window to the right or left in
20-character increments, or up and down 24 lines at a time.
(Sincemost of my Assembly Language programs have fewer
than 40 characters per line, I tend to view the leftmost 40
characters and make heavy use of the up and down scroll
ing). The four cursor keys are enabled in Edit Mode, mak
ing it especially easy to correct typographical errors. Whole
lines can be inserted into the text by moving the cursor to
the adjacent line and pressing the Insert function key; a new
blank line is inserted, and the user simply types in a new
line. Similarly, a whole line can be deleted by moving the
cursor there and pressing the Delete function key; the line
is removed and the line numbers of the following lines are
automatically decremented. There are also keys for insert
ing or deleting characters. A Tab key is also provided for
tabbing to columns 8 and 16. Edit Mode makes it very easy
to enter new programs because the user can both type the
source program in a natural manner and correct errors and
omissions as they occur. Edit Mode is exited via the Back
function key, which puts the Editor into Command Mode.

Command Mode reminds me of the UCSD Pascal editor.

The first line of the screen shows the Command Mode op
tions: Escape, Find, Replace, Move, Insert, Copy, Delete,

Larger system (TXMIRA):

Show, and Adjust. Line 2 is reserved for parameters to be
input by the user, so in this mode the text window is 40 x
22. Most options require further information to be given
on line 2, and very clear prompts given so the user knows
what line to enter.

Each option is selected by typing the first character of
the option name. For example, to find an occurrence of a
string in the source program, the user enters F. The system
responds with the prompt <count>< (start col, end
col) >/string/. To find the second occurrence of the string
ABCD between columns 1 and 50, the user would type
2(1,50) /ABCD/. The system would then display the sec
tion of the text containing the second such occurrence of
ABCD (if any) with the cursor over the A. The symbols
<> in the prompting message indicate optional parameters.
To find the next occurrence of the string ABCD in the whole
source program, the user need only type /ABCD/. The
Replace option is like Find, except that each specified oc
currence of the string is replaced by a second string given
by the user. Replace includes an optional verify operator
which allows the user to say yes or no to each replacement.
The Move option allows the user to move sections of text,
indicated by an interval of line numbers, to a different place
in the source program. Copy is similar, except that the sec
tion of text ends up in both the original position and the
new position. Delete allows easy removal of several con
tiguous lines from the text. Insert takes a file from disk and
places it anywhere you want in the program being edited.
Show is a way of moving the window so that a certain line
number is at the top of the screen. Adjust is an easy way
to make the line numbers disappear so that the window
shows the source program only. Escape gets you out of
Command Mode and back to the Editor's menu, where you
can choose to save the source program to disk, print it, purge
it or edit the same or another program.

The Editor performs all line numbering automatically as
lines are entered and maintains these numbers in sequence
as lines are added or deleted. The user can refer to them

for operating on sections of the program; they also appear

LI 2.0

LI !2,>CO

SBO >F

LDCR ©ZERO.II

SBZ >F

LOOP LDCR @AB(2),7

SBZ >8

SBZ >A

INC 2

CI 2.2

JLT LOOP

ZERO DATA 0

AB TEST *AB'

TI-99/4A assembler:

REF VMBW .

LI 0.0

LI. I.AB

LI 2,2

BLWP @V.VIBW

MOVE 0 TO REGISTER 2 FOR INDEX

SET CRU BASE ADDRESS FOR SCREEN

SELECT CRU WORD 1

MOVE CURSOR TO HOME POSITION

SELECT CRU WORD 0

PUT CHARACTER ON CRU LINE

STROBE CHARACTER TO SCREEN

INCREMENT CURSOR POSITION

ADD 1 TO INDEX REGISTER

COMPARE REGISTER 2 TO 2

LOOP IF MORE CHARACTERS

DATA DEFINITIONS

AB TEXT 'AB'

Copyright © 1983 Emerald Valley Publishing Co.

EXTERNAL REFERENCE TO ROUTINE UTILITY

VDP RAM ADDRESS = 0 FOR HOME POSITION

REGISTER 1 POINTS TO FIRST CHARACTER TO DISPLAY

REGISTER 2 = NUMBER OF BYTES TO WRITE

CALL UTILITY ROUTINE TO WRITE STRING

DATA DEFINITION Figure 1

The Best of 99'er Volume 1 137

on the Assembler output listing, which is handy for
debugging.

TI has incorporated most of the features found in editors
for larger systems into the 99/4A Editor. In fact, the abilities
to edit at the character, line, and group-of-lines levels are
not always all available in larger editors. The only feature
missing from the 99/4A Editor is a variable right margin—a
feature which is really not too significant for Assembly
Language source programs. [But that would pe nice for
word processing applications, since this editor already per
forms 95% of what most people would need for cor
respondence and document preparation.—Ed.]

The Assembler

The Assembler is a program which converts Assembly
Language source programs into object form—the machine-
language program that executes on the TI-99/4A. The ob
ject program is written to disk. Optionally, a user can print
out or write an Assembly Language listing to disk.

The 99/4A Assembler is a lot like the 9900 Assembler,
TXMIRA, which runs on larger TI systems. See sample
listing in Figure 1. A programmer who is familiar with
TXMIRA will be able to write Assembly Language pro
grams for the 99/4A without too much difficulty since the
same addressing modes are used and most of the instruc
tions operate in the same way.

One big difference, as might be expected, is in the way
a programmer handles input and output to the monitor. The
99/4A Editor/Assembler package includes three groups of
built-in subroutines, or macros: (1) Utility Routines for ac
cessing machine resources, such as screen I/O; (2) Extend
ed Utilities, for accessing routines built into the console
ROMs and GROMs; and (3) Basic Support Utilities for ac
cessing the parameter list in CALL LINK statements from
Extended BASIC. These utilities make it unnecessary to use
the CRU (Communications Register Unit) lines to the
monitor. Under TXMIRA, all peripheral devices are ad
dressed via a fairly complex arrangement of CRU lines. Each
device has its own CRU base address and CRU bit
assignments, which means that a programmer must have
very specific information about each device in order to per
form any input or output. On the 99/4A Assembler these
difficulties in handling the screen have been eliminated by
the Utility Routines. By loading a few registers and invok
ing the proper utility, a programmer can handle screen I/O
in a much simpler way. Figure 1 has the code segments which
might be used for writing the character AB to the upper
left portion of the screen.

You can see that the Utility Routines really make screen
handling easier: You can focus your attention on merely
the VDP RAM (the memory associated with the 99/4A
monitor) addresses, and not have to worry about the logistics
of the move. Furthermore, there is no apparent loss of ex
ecution speed in doing it this way.

Another difference between the 99/4A Assembler and
those for larger TI computers is that the IDLE instruction
is not implemented on the 99/4A. This causes no great dif
ficulty, but it is useful to know. The IDLE instruction just
causes the computer to wait for an interrupt; this can be
done via another Utility Routine or other means, depend
ing on which device will cause the interrupt.

The optional listing produced by the 99/4A Assembler
is quite complete. Statement sequence numbers, source
statements, and the hexadecimal code generated are all
shown clearly. A symbol table can also be given and, of
course, the number of errors is shown. Each error is also
flagged in the body of the listing with a descriptive message.
One very nice—and all too uncommon—feature is that a
display of the number of errors is on the monitor when the
Assembler is finished.

Running and Debugging
Once a program has been input, edited, and assembled

with no errors, it can be loaded and run by choosing this
option from the menu. Another menu option (RUN PRO
GRAM FILE) allows the user to run programs which were
assembled on other Texas Instruments systems or previously
assembled on your system.

The Editor/Assembler package has a special debugging
utility called DEBUG, which can be very helpful in isolating
program errors. For instance, the commands in DEBUG
allow you to set breakpoints in your program. When the
program hits a breakpoint and stops execution, you can then
use other commands to examine the contents of memory
locations and registers, the Workspace Pointer, the Status
Register, or the Program Counter, and if necessary change
them to alter the program's execution. DEBUG commands
will also allow you to search memory locations for a specific
value, or to search memory locations and print those which
don't have a specific value. DEBUG allows you to begin
executing your program at any point you determine; com
bined with the breakpoints, this allows you to go through
a program section by section. All in all, DEBUG provides
a good repertoire of useful tools which will make it easier
to find out why the program you wrote isn't working the
way you thought it would.

PART 2: Fundamentals of Assembly Language
Programming on the TI-99/4A

In Part I we gave you a preliminary look at TI's
Editor/Assembler for the TI-99/4 and TI-99/4A and

mentioned briefly the advantages of programming in
Assembly Language. Now let's explore the benefits of
Assembly Language more fully by comparing some pro
grams written in Assembly Language and BASIC.

Some Assembly Language Explanations
Before examining some programs, it would be useful to

mention some general characteristics of the TMS9900 proc

138 The Best of 99'er Volume 1

essor, and then some specifics on the structure of the
TI-99/4A.

All 9900 programs make use of 16 workspace registers,
each containing 16 bits (one word). Assembly Language pro
grams define 16 contiguous words of memory for these
workspace registers and set the hardware register called the
Workspace Pointer to point to the first of these memory
locations. Having these workspace registers resident in
memory rather than in the CPU is one of the most power-

Copyright © 1983 Emerald Valley Publishing Co.

ful features of the 9900-family processors. In an Assembly
Languageprogram, the hexadecimal numbers 0 through F
refer to the current workspace registers. (In addition, an
Assembly Language option allows you to refer to them as
RO through R15, which makes programs easier to read.)

The structure of the memory of the 99/4A is fairly com
plex. The following explanations cover concepts necessary
to understanding the programs in this article, but they only
begin to scratch the surface of the memory structure.

CPU RAM (Random AccessMemory) residesin the con
sole and is directly addressable by Assembly Language pro
grams. Workspace registers and other memory locations,
as well as the programs themselves, reside in CPU RAM.

VDP(Video Display Processor) RAM,alsolocated in the
console, takes care of the video screen. Sprites, colors,
character patterns, and the screen image itselfall reside in
VDP RAM. Unlike CPU RAM, however, VDP RAM is
not directly addressable by Assembly Language programs.
VDP RAM is accessed through specifically assigned CPU
RAM addresses. This is called memory mapping. Locations
0 through >02FF in VDP RAM contain the screenimage.
(The symbol ">" means hexadecimal notation;
>02FF = 767 in decimal notation.) This means that
whatever characters reside in this section of VDP RAM are
visible on the screen. To change the screen, the program
mer would place the desired character code(s) into VDP
RAM at the corresponding location(s). VDP RAM loca
tion0 corresponds to the home position(upperleft)on the
screen; location 48 (or>30) corresponds to the position
called row 2 and column 17 in BASIC. Let's say you want
to put an * on the screen at row 2, column 17. The ASCII
code for * is 42, or > 2A, and the desired VDP RAM loca
tion is > 30. You might be tempted to use a MOVB (Move
Byte) instruction to accomplish this, but remember, theVDP
RAM cannot be directly addressed from your Assembly
Language program. To access VDP RAM, you'll need to
use a Utility Routine. VSBW (VDP Single Byte Write) is
a macro instruction whichplacesthe most significant(left
most) byte of workspace register 1 at the VDP RAM ad
dress contained in register 0. Therefore, to place the * at
row 2, column 17, you'd write:

REF VSBW

LI 0,>30
LI 1,>2A00
BLWP @VSBW

UTILITY REFERENCE

R0 = VDP RAM ADDRESS
RI CONTAINS * IN MSB
MOVE TO VDP RAM

Most of the utilities use similar schemes of loading data in
to certain registers and calling the utility by name. I'll talk
more about some specific ones later.

The Game of Life
Life is a classic computer game. It is based on the idea

of a population whichgoesthrough lifecycles to form new
generations; each position on the screen corresponds to a
cell in the population.Cells which are alive are filled in (with
asterisksin my example); dead cellsare blank. The life cy
cle, or rules of the game, are applied to each generation to
obtain the next generation, and then the newgenerationis
displayed on the screen. The rules of the game determine
birth, death, or survival of individual cells, and depend on
the state of each cell's 8 neighbors (adjoining cells, con

Copyright © 1983 EmeraldValley Publishing Co.

sidered horizontally, vertically, and diagonally) as follows:

1. A live cell with 2 or 3 neighbors survives to the next
generation.
2. A live cell with 0 or 1 neighbor dies of loneliness; a live
cell with more than 3 neighbors dies of overcrowding.

The rules are applied to a generation as a whole, before the
next generation is displayed. Depending on the initial
population, you may see a colony whichgoes on changing
forever, one which dies out or becomes static after a few
generations, or one which oscillates among a few patterns.

There are a few restrictions on my implementation of Life
whichshould be explained. First, I have defined the initial
population in the programs, whereas other versions might
allow the user to enter the initial population on the screen
at the beginning of the game. In order to be sure the col
ony does not exceed the size of the 99/4A screen, which
is 32 x 24, I have forced the border (rows 1 and 24 and
columns 1 and 32)always to remain blank. This means that
when the colony becomes large it may lose its symmetry as
one side of the colony hits the border.

The two programs which follow are in BASIC (Listing
1)and in Assembly Language (Listing 3). Both follow the
same strategy: display the initial colony, calculate the next
generation byconsidering the neighbors of eachcell in turn,
clear the screen, display the new generation, and loop back
to calculate the next generation. The Assembly Language
version uses one byte to represent each cell; the BASIC ver
sion usesone entry in array SCRN for each cell. At the start
of each generation, livecells contain the value 1 and dead
cells contain 0. During the calculation of the next genera
tion, a cell can have the values 0 through 3 as follows:

0 = cell is dead and remains dead for the next generation
1 = live cell survives to the next generation
2 = dead cell will be born in the next generation
3 = live cell will die in the next generation

It is necessary to have these four possiblevaluesduring the
calculation so that the program can have the information
about the current state of each cell while calculating and
storing the next state of each cell. Just before the new
generation isdisplayed (ornotdisplayed if dead), thevalues
of the cellsare reset to 0 or 1 by means of the array AFTER.

In examining both versions of Lifewhich follow (Listings
1and 3),you mightwonderwhyanyonewouldusethe more
esoteric Assembly Language over the easier-to-understand
BASIC. The answer is simple: speed. On the 99/4A, the
BASIC program takes 2 minutes and 26 seconds between
generations; theAssembly Language program takes less than
one secondl The BASIC version is no fun at all to watch,
whereas the Assembly Language program provides fine
entertainment. [Theuseof the UtilityRoutine VMBW(VDP
Multiple Byte Write) in the Assembly language is partly
responsible for thisspeed. It shows each newgeneration all
at once. And fortunately, the monitor program is smart
enough to capitalize on this by showing only the changed
portions of the screen, rather than re-drawing the whole
screen each time. If fast enough, the human brain's "per
sistence of vision" allows us to see individual frames of mov
ing images as continuous rather than discrete pictures—
thus making realistic animation sequences truly possible.—
Ed.l

The Best of 99'er Volume 1 139

Using Assembly Language to Move Sprites
The ability to create sprites whichmove automatically is

one of the best features of the 99/4A. Sprites can be used
in ExtendedBASICand in Assembly Languageprograms.

VDP RAM has several areas dedicated to sprites. The
Sprite AttributeBlock, which gives the spritelocations, sprite
numbers, and colors, starts at address> 300. Each entry in
the SpriteAttribute Blockoccupiesfour bytes. A terminator
bytewithvalue> 0D denotes the end of the SpriteAttribute
Block. The Sprite DescriptorBlockcontains the sprite pat
terns(shapes), with8 bytes for eachpossible sprite. Although
the Sprite Descriptor Block starts at VDP RAM address 0
by default, we have already seen that VDP RAM locations
0 through >02FF are used for the screenimage table, and
locations> 0300 through >03FF for the sprite Attribute
Block. In order to avoid writing overthese areas, theSprite
Descriptor Block usually startsat location > 0400 for prac
tical purposes. The entries in the Sprite Descriptor Block
are defined to correspond to sprite numbers starting at 0
and occupying8 bytes each; therefore the entry at location
>0400 is for sprite number >80. Thus in Assembly
Language programs, the lowest sprite number is usually
> 80. The SpriteMotion Table, which gives the x- and y-
velocities of defined sprites, resides at VDP RAM location
>0780. Each entryin the MotionTableoccupies four bytes,
the last two of which are for system use. The Sprite Mo
tion Table is filled only if automatic motion is to be used.
An Assembly Language program could move the sprites
(non-automatically) by changing the x- and y-locations of
the sprites in the Sprite Attribute Block. But the system is
able to move thesprites for youviaan interrupt processing
routine: Each time a VDP interrupt occurs (60 times per
second), the interrupt processing routine moves any eligi
ble sprites according to the Sprite Motion Table. In order
to make use of this facility, the Assembly Language pro
gram must also load the number of moving sprites at CPU
RAM address > 837A and enable the VDP interrupts.

Assembly Language vs Extended BASIC
You are probably thinking that this sounds like a lot of

workto achieve moving sprites,especially comparedto the
simple CALL SPRITE statement of Extended BASIC.
However, thereare times when an Extended BASIC pro
gram is inadequate. Coincidence checking in Extended
BASIC isnot as responsive to velocity changes asyoumight
like.

The programs which follow (Listings 2 and 4) illustrate
how Assembly Language can be used to overcome these
deficiencies. The program simply moves a target from left
to right on thescreen while shooting an arrow from thetop
of the screento the bottom. Both sprites wrap around the
screen. Wheneverthe arrow hits the target, the spritesstop
moving, thetarget changes to an X, and theprogram delays
long enough to makethe blow-up visible. Thentheprogram
starts over. The Extended BASIC program relieson CALL
COINC to detect hits. You'llnotice, however, that thepro
gramdoesn'tseem to detect allhits. TheAssembly Language
program can stop the action by disabling the VDP inter
rupt while it checks for coincidence by comparingthe loca
tionsof the arrow and the target from the SpriteAttribute
Block. Moreover, the Assembly Language program can
check the point of the arrow against the target instead of
checking the upper lefthand corners of the sprites.

140 The Best of 99'er Volume 1

Because of thesedifferences, the Assembly Language pro
gram appears to detect more hits correctly. Of course, this
stop-motion processing must slow down the motion, but
it is not noticeable to me. (Oneindication of the speed of
Assembly Languageprogram executionis the large number
of statements executed in LOOP2while the hit shapebrief
ly remains on the screen.)

Another shortcoming of the Extended BASIC version is
that the hit shape appears quite a bit to the right of its ac
tual position when the hit occurred. That is because the
sprites have continued to move while two BASIC statements
(lines 190 and 200) are interpreted and executed. The
Assembly Language version has already stopped the mo
tion by disabling the VDP interrupt program via LIMI 0;
it doesn'tstart themotion again untilafter the hitsequence
is complete. Thus, only the Assembly Language program
actuallyshowsthe blow-up in the right placeon the screen.

Understanding An Assembler Listing
TheAssembly Language listing (Figure 4)wasoutput by

the 99/4A Assembler. You'll notice that the Assembler has
added a page number andshorttitle at thetop of each page
and added a cross-reference list and number-of-errors-
found-during-assembly message to the end. The cross-
reference list showsthe location of the symbolsused in the
program relativeto the beginningof the program. The line
numbers in the first column were supplied by the Editor
when the program was input and passed along by the
Assembler. The second column of the listing shows the
relative memory location where each statement or data area
will reside during program execution. The third column was
also supplied by the Assembler and shows the machine
language generated by the Assembly Language statement
to the right. The machine language (or object code) is ex
pressed in hexadecimal notation with oneword perline. The
Assembly Language sourceprogram(or source code) itself
starts in the fourth column, which contains the labels. The
fifth column contains the source program opcodes, and the
sixth column contains the operands. The seventh column
contains comments, and other comments are sprinkled
throughout the program with asterisks in column 1. Only
the fourth through seventh columns comprise the Assembly
Language source program; this is the only part entered by
the programmer. The Assembler generates the rest.

The Utility Routines VMBW, VSBW, VWTR, and
VMBRare used in the example program. The VDP Multi
ple Byte Write (VMBW) moves the number of bytes in
register 2 (R2) from the CPU RAM address in Rl to the
VDP RAM address in R0. VSBW, the VDP Single Byte
Write routine, was explained earlier. VDP Write To Register
(VWTR) puts the value that is in the rightmost byte of Rl
into the VDP register whosenumber is in the leftmost byte
of Rl. Among other things, these VDP registers are used
to select VDP modes and features. VMBR is the VDP Multi
ple Byte Read routine, which reads the number of bytes
specified in R2 into the CPU RAM location in Rl from the
VDP RAM location in R0.

The logic for detecting hits in the Assembly Language
program is based on the fact that the point of the arrow
is threepixels to the right and seven pixels belowthe corner
of the sprite which is obtained from the Sprite Attribute
Block.

Copyright© 1983 Emerald Valley Publishing Co.

Conclusion

Although they are more complex to write, Assembly
Language programs are far superior to BASIC programs
when it comes to execution speed and for controlling the
facilities of the 99/4A computer. In some cases, as in the
game of Life, the faster speed of Assembly Language turns

Listing 1 Life

a boring game into one which is fun to watch. In other cases,
as in the program SHOOT, Assembly Language is capable
of providing more accurate results. Thus, having the
capability to write programs or subroutines in Assembly
Language lets you achieve results which are impossible with
BASIC and Extended BASIC alone.

A

IM

EH

EM|
0

TO

TO

CO0W

ROW

0|W|
L

F0

W
F

F

N

E

F

F

GO

F

M=

M

UM

ROW

0

0

8

+|0
4

4

CO

T =

RlOW

OWI

OW|
L

OW
7

EW

F

)
loiwi

Listing 2 Shoot an Arrow
LL

EM

GO

Listing 3 Life

WS

SCRN

GENSCR

OFS ET

F STGEN

H00

H91
H02

B LNK

STAR

AFTER

H2000
L I FEA

•CLEAR

CLEAR

Copyright © 1983 Emerald Valley Publishing Co.

I DT

DEF

REF

BS S

B S S

B S S

DATA

DATA

DATA

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

EVEN

DATA

LWP I

' L I FEA '

L I FEA

VMBW

32

768

768

-33,-32,-31.-1
1,31,32,33
7,335,366,368
>00

>01

>02

>20
>2A

0,1,1,0

397,401 ,429,433

>2000

WS

SCREEN ARRAY.

LI R1,766
CLR @SCRN(R1 I
DECT R1
I L T I N 1 T
IMP CLEAR

START OF PROGRAM

LOOP COUNTER AND INDEX

CLEAR WORD

POINT TO WORD

DONE

The Best of 99'er Volume 1

^^

^^

I4I

Listing 3 Life continued

* LOAD

I N I T

INITIAL GENERATION AND DISPLAY.

R3-IOF CELLS
DOUB L E IT FOR WORDS

R4 R4 CONTA INS OFFSET
SCREEN POSITION

I N I TLP

NBRS

NXTNBR

CEL LON

CHANGE

NOCHG

•RESET

LOOP

LOOP1

BLDSCR

B LK

NXTPOS

OUTSCR

MOV

A

MOV

MOVB

DECT

I NE

BL

L IMI

•CALCULATE

CLCGEN LI

©FSTGEN
R3 , R3

@FSTGEN(R3)
@H01,§SCRN(R4)
R3

INITLP MORE
©SHOWIT SHOW
2 ENABLE

NEXT GENERATION.

R1,33 INDEX(ISUB)
LI R3.22 OUTER LOOP CTR(ROW)

CLCLP LI R4 ,30
•COUNT NEIGHBORS.
CLCNBR LI R5 ,0

R6 ,0
R1 , R7
©OFSET(R6),R7
@SCRN(R7), ©H00
NXTNBR

@SCRN{R7),©H02
NXTNBR

R5

R6

R6 ,1 6
NBRS

@SCRN(R1) ,@H01
CEL LON

R5 , 3
CHANGE

NOCHG

R3

TO DO

INITIAL GEN

VDP INTERRUPT

= 1

FOR QUIT

NEIGHBORS COUNTER|CNT)
LOOP CONTROL , INDEX TO OFSET

TO WORK ON

R7->DISP OF NEIGHBOR
NBR=0?

YES

NBR = 2 ?

YES

NEIGHBOR ON

L I

L I

MOV

A

CB

I EQ
CB

I EQ
I NC

I NCT

C I

I LT
CB

I EQ
C I

I EQ
IMP
C I

I EQ
C I

I EQ
AB

I NC

DEC

I NE
I NCT

DEC

I NE

SCRN

LI R5

LI R3

L I R4

MOVB

SRL

MOVB

I NC

DEC

J NE
I NCT

DEC

INE
B L

IMP
* SUBROUTINE
SHOW I T LI

COPY

R5 , 2
NOCHG

RS , 3
NOCHG

@H02,@SCRN(R1)
R1
R4

CLCNBR

R1

R3

CLCLP

ELEMENTS TO 0 FOR
, 33
. 22
, 30
@SCRN(R5),R6
R6 ,8
©AFTER(R6)
R5

R4

LOOP1

R5

R3

LOOP

©SHOWIT
CLCGEN

TO DISPLAY
RS ,767

DONE ?

LOOK AT

IS CELL

YES

3 NE IGHBORS ?
YES-BIRTH

NO

2 NEIGHBORS ?
YES-SURV IVE

3 NEIGHBORS ?
YES-SURVIVE

BIRTH OR DEATH

NEXT CELL

NEXT COL

NEXT NEIGHBOR

ON NOW?

SKIP

NEXT

TWO

ROW

EDGE CELLS

DEAD ,
I NDEX

ROW CTR

1 FOR ALIVE.
TO SCRN(I SUB }

R6 = CEL L
SHIFT TO

VALUE

LSB

CELL

IN MSB

SCRN(RS)
NEXT

NEXT

CHANGE

CELL

COL

TO 0 OR 1

SHOW NEW GENERATION
CALC NEXT GEN

GENERATION ON SCREEN.
R5 INDEXES BOTH SCRN

&GENSCR.

IS BYTE 0 (DEAD) ?
YES

NO-PUT • IN GENSCR

CB @H00,©SCRN{R5)
IEQ BLK

MOVB @STAR,©GENSCR(R5)
IMP NXTPOS
MOVB @BLNK,©GENSCR(RS)
DEC R5

I L T OUTSCR
IMP BLDSCR
CLR R0

LI R1,GENSCR
LI R2,768
L IMI 0

BLWP ©VMBW
L IMI 2
B »R1 1

END L I FEA

PUT B LANK I N GENSCR
POINT TO NEXT CELL
D I SP LAY IF DONE
LOOP IF NOT DONE
VDP RAM ADDRESS (HOME)
GENSCR CONTAINS DISP DATA
768 BYTES TO WRITE

WR I TE SCREEN

RETURN

fljfft

142 The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

Listing 4 Shoot an Arrow

99/4 ASSEMBLER „ „„ «. «««-
VERSION 1 .2 PAGE "81

0901 IDT' SHOOTA '
0902 DEF SHOOTA
0003 REF VMBW,VSBW,VWTR,VMBR
00040000 WS BSS 32
0005 0020 7C SAL BYTE >7C,>01,>80,>06 SPRITE 1 LOCN AND COLOR

0021 01
0022 80
00 2 3 0 6

9006 0024 01 BYTE >01 ,>7C ,>81 ,>01 SPRITE 2 LOCN AND COLOR
0025 7C

0026 81
0027 01

0007 0028 DO BYTE >D0 TERMINATOR
0008 0029 FF SHAPE BYTE >FF ,>81 ,>BD .>A 5 ,>A 5 ,>BD ,>81 ,>FF TARGET

002A 81

002B BD

002C AS

002D A5
002E BD

002F 81
00 30 F F

0009 0031 18 BYTE >18 ,>18 .>18 ,>18 ,>18 ,>18 ,>3C ,>18 ARROW
0032 18
0033 18
0034 18

0035 18
0036 18
0037 3C

00 38 18
0010 0039 81 HITSHP BYTE >81 ,>42 ,>24,>18 ,>18 ,>24 ,>42 ,>81 HIT SHAPE

003A 42

003B 24

003C 18
003D 18
003E 24

003F 42
00 40 81

0011 0041 00 SPEED BYTE >00,>64,>00,>00 SPRITE 1 VELOSITY
0042 64
0043 00

0012 0045 7F BYTE >7F,>00,>00,>00 SPRITE 2 VELOSITY
0046 00
0047 00
0048 00

0013 0049 00 H00 BYTE >00
0014 004A 02 H02 BYTE >02
0015 004B Y1 BSS 1
0016 004C X1 BSS 1
0017 004D DUMMY BSS 2
0018 004F Y2 BSS 1
0019 0050 X2 BSS 1
0020 0051 03 H03 BYTE >03
0021 0052 07 H07 BYTE >07
0022 EVEN
0023 0054 0020 H0020 DATA >0020
0024 0056 02E0 SHOOTA LWPI WS

0058 0000 *
0025 .Fill SCREEN WITH BLANKS.

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 143

Listing 4 Shoot an Arrow continued

99/4 AS SEMB LER

VERSION 1.2 PAGE 0002
0026 00SA 04C0 CLR 0 VDP RAM SCREEN HOME
0027 005C 0201 LI 1,>2000 BLANK IN MSB OF R1

005E 2000
0028 0060 0420 BLNKIT BLWP ©VSBW WRITE BLANK

0062 0000

002900640580 INC 0
0030 0066 0280 CI 0,768 DONE?

0068 0300

0031 006A 11FA JLT BLNKIT NOT YET
0032 *SET UP VDP REGISTER 1
0033 006C 0200 LI 0,>01E0 NORMAL SIZED SPRITES

006E 01 EO
0034 0070 0420 BLWP ©VWTR

0072 0000

0035 *SET UP SPRITE ATTIBUTE BLOCK.
0036 0074 0201 DEFSPR LI 1.SAL R1-MY ATTRIBUTE LIST

0076 0020'

0037 0078 0200 LI 0,>0300 RO->ADDRESS OF VDP SAB
007A 0300

0038 007C 0202 LI 2,9 9 BYTES TO WRITE
007E 0009

0039 0080 0420 BLWP ©VMBW WRITE TO VDP RAM
0082 0000

0040 'LOAD SPRITE DEFINITIONS
0041 0084 0201 LI 1, SHAPE R1->MY SPRITE SHAPES

0086 0029 '

0042 0088 0200 LI 0,>0400 ADDRESS OF FIRST SPRITE
008A 0400

0043 008C 0202 LI 2,16 16 BYTES TO MOVE
008E 0010

0044 0090 0420 BLWP ©VMBW WRITE TO VDP RAM
0092 0082 '

0045 >SET UP SPRITE MOTION TABLE.
0046 0094 0200 LI 0,>0780 R0->MOTION TABLE IN VDP RAM

0096 0780

0047 0098 0201 LI 1,SPEED R1->MY SPEED DATA
009A 0041 '

0048 009C 0202 LI 2,8 8 BYTES TO MOVE
009E 0008

0049 00AO 0420 BLWP ©VMBW WRITE
00A2 0092'

0050 *SET NUMBER OF MOVING SPRITES.
0051 00A4 D820 MOVB @H02,@>837A 2 MOVING SPRITES

00A6 004A '

00A8 837A

8052 'MAKE SPRITES MOVE BY INTERRUPT FROM 9901 I/O BOARD.
0053 OOAA 0300 MOVEIT LIMI 2 ENABLE INTERRUPT

OOAC 0002

0054 'CHECK FOR COINCIDENCE.
0055 O0AE 0300 LIMI 0 DISABLE VDP INTERRUPT

00B0 0000

0056 *GET SPRITE POSITIONS.
0057 0OB2 0200 LI 0,>0300 R0->Y OF SPRITE IN VDP RAM

00B4 0300

0058 00B6 0201 LI 1.Y1 BUFFER FOR READ
00B8 004B'

0059 OOBA 0202 LI 2,6 6 BYTES TO READ
OOBC 0006

0060 0OBE 0420 BLWP ©VMBR READ FROM VDP RAM

144 The Best Of 99'er Volume 1 Copyright ©.1983 Emerald Valley Publishing Co.

Listing 4 Shoot an Arrow continued

99/4 ASS EMB L ER
VERS ION 1.2 PAGE 0003

00C0 0000
9961 'CHECK COLUMNS FOR X1<=X2+3<=X1+7
0062 00C2 B820 AB @H03,@X2 X2=X2+S

00C4 0051 '

00C6 0050 '
0063 00C8 7820 SB @X1,@X2 X2+X2-X1

OOCA 004C*

OOCC 00 50'
0064 OOCE 11ED JLT MOVEIT NO HIT IF RESULT >0
0065 00D0 9820 CB @X2,@H07 COMPARE TO 7

0OD2 0050 '
00D4 0052 *

0066 00D6 15E9 IGT MOVEIT NO HIT IF RESULT >7
0067 'CHECKS ROWS FOR Y1< = Y2 + 7< = Y1 + 7 .
0068 00D8 B820 AB @H07,@Y2 Y2=Y2+7

OODA 0052 '

OODC O04F '
0069 00DE 7820 SB @Y1,@Y2 Y2=Y2-1

00E0 004B'
00E2004F'

0070 00E4 11E2 ILT MOVEIT NO HIT IF RESULT <0
0071 00E6 9820 CB @Y2,@H07

00E8 004F '
0OEA 0052 '

0072 OOEC 15DE IGT MOVEIT NO HIT IF RESULT >7
0073 'HIT
9974 'CHANGE SPRITE DEFINITIONS.
0075 0OEE 0201 LI 1,HITSHP R1->HIT SHAPE

O0FO 0039 '
0076 O0F2 0200 LI 0,>400 R0->VDP RAM

00F4 0400
0077 00F6 0202 LI 2,8 8 BYTES TO LOAD

00F8 0008
0078 OOFA 0420 BLWP ©VMBW WRITE TO VDP RAM

OOFC 00A2 '
9979 'WAIT TO LET BLOW UP BE SEEN.
0080 O0FE 0203 LI 3,10 OUTER LOOP CTR

0100 000A
0081 0102 0202 LOOP2A LI 2,12000 LOOP CUONTER

0104 2EE0
0082 0106 0602 LOOP2 DEC 2 DECREMENT
0083 0108 16FE JNE LOOP2 WAIT MORE
0084 010A 0603 DEC 3 DECREMENT OUTER CTR
0085 010C 16FA JNE LOOP2A WAIT MORE
0086 010E 10B2 IMP DEFSPR START OVER
9987 END SHOOTA

L

99/4 ASSEMBLER .. „„ «.
VERSION 1 2 PAGE 0004

' BLNKIT 0060 ' DEFSPR 0074 ' DUMMY 004D ' H00 0049
' HOO20 0054 ' H02 004A ' H03 0051 ' H07 0052

HITSHP 0039 ' LOOP2 0106 LOOP2A 0102 ' MOVEIT OOAA
R0 9999 R1 0001 R10 000A R11 000B
R12 0OOC R13 000D R14 000E R1S 000F
H2 0002 R3 0003 R4 0004 R5 0005
R6 0006 R7 0007 R8 0008 R9 0009

' SAL 0020 SHAPE 0029 D SHOOTA 0056 SPEED 0041
E VMBR 00C0 E VMBW OOFC E VSBW 0062 E VWTR 0072
• WS 0000 ' X1 004C ' X2 0050 ' Y1 004B

Y2 004F

0000 ERRORS

Copyright ©I 983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 145

MAGIC CRAYON

Like many other 99'ers, I was anxious to receive the
long-awaited Editor/Assembler package. I remember
the excitement of unwrapping the 470 page manual

when it arrived—and the sinking feelingwhen I read, "This
manual assumes that you already know a programming
language, preferably an assembly language."

My anxiety grew as I thumbed through it—there were no
pictures, cartoons, or fill-in-the-blank examples. It did say,
"There are many fine books available which teach the basics
of assembly language."So I called the local computerstores.
The only books they were aware of, however, also assumed
familiarity with basics.

I guess I had some fuzzy ideas about assembly language
in the back of my mind: It was qualitatively different from
higherlevel languages, requiringan in-depth knowledge of
digital electronics and a capacity for the most detailed sort
of logical-mathematical thought. In short—nothingseemed
more difficult. . .

And my experience thus far seemedto confirm my worst
fear. Learning assembly language presumed a prior
knowledge of assembly language; it was not merely
difficult—it was impossible. After running Tombstone Ci
ty a fewtimes and typing in Pat Swift's Life program (See
"Fundamentals of AssemblyLanguage Programming, Part
1"), I put the Editor/Assembler on a shelf thinking maybe
I'd learn about it gradually over the next year or two.

It would still be there gathering dust were it not for a back
injury that kept me flat on the floor, unable to do anything
except read the manual. I was surprised to discover that
writing an assembly language program is similar to, and in
some respects simpler than, writing a program in BASIC.
A new programming context or conceptual model is re

146 The Best of 99'er Volume 1

Learning

Assembly Language
The Hard Way

quired. But to get started, I found that this picture could
be primitive, containing many over-simplifications and
approximations.

The picture I developed enabled me to successfully for
mulate and execute a simple programming objective. The
program and associated underlying conceptsare presented
here to facilitate the learning process for others who, like
me, find it hard to overcome preconceived notions about
how difficult assembly language is.Theprogram should not
betaken asa model of exemplary programming technique;
at this point myconception of "goodprogramming" ispro
gramming that works . . . period. Youwill undoubtedly be
able to find ways to improve this one—to make it work
faster and utilize memory more efficiently—and in so do
ing, further develop the concepts presented.

In TMS9900 Assembly Language, four video display
modes are available: Graphics (or Pattern) Mode, Text
Mode, Bit-MapMode (99/4A only), and Multicolor Mode.
In Multicolor Mode, the screen is divided into a grid 64 x
48, with each box measuring 4 pixels on a side. Each box
can have a color assigned to it.

The programallows useof a joystickto movea flashing
cursor on the screen. Whenever the fire button is depress
ed, the cursor leaves a trail of small, colored boxes. The
following single key commands are available:

C—Change Color. Displays a color palette and pointer.
Move the pointerto the desired colorwiththe joystick. Press
the firebutton to make that the colorof the boxes, or press
the C key to make it the color of the screen background.

S—Save Screen. Saves the current contents of the screen
as DSK1.SCREEN.

R—Recall Screen. Loads the contents of DSK1.SCREEN

for subsequent modification.

E—Erase Screen. Erases the screen contents.

T—Terminate. Returns to the Master Title Screen.

In order to understand how the program works, it will
be helpful to differentiate two systems. You probably know
that the Central Processing Unit (CPU) in the Home Com
puter is the TMS9900. It has three built-in 16-bit "hard
ware" registers (the Program Counter, Workspace Pointer,
and Status Register) and makes use of sixteen workspace
registers located in read-write memory. Because these 16-bit
workspace registers are not located on the chip, they are
called "software" registers. The CPU can directly address
the read-write memory (RAM) in the Memory Expansion
Unit and CPU scratch pad, as well as ROM in the console,
Command Cartridges, and various peripherals. However,
it cannot directly address the 16K of RAM built into the
console.

The 16K RAM block is addressed by another
microprocessor—The TMS9918 (or 9918A if you have a
99/4A). This Video Display Procesor (VDP) has eight 8-bit
hardware registers and four 8-bit software registers. The
software registers are located in read-write memory loca
tions which can also be addressed by the CPU. The fact
that these four bytes can be addressed by both the CPU
and VDP makes it possible for the CPU and VDP systems
to transfer data back and forth. The CPU addresses of the
registers—8800,8802, 8C00,8C02—are assignedrespectively
to the symbols VDPRD (VDP Read Data Address),
VDPSTA (VDP Read Status Register), VDPWD (VDP
Write Data Address), VDPWA (VDP Write Address).

We don't have to be concerned with the details of mov

ing data to and from VDP RAM and to VDP registers,
however, thanks to some of the built-in programs called
utilities. The five utilities of use are identified by the sym
bols VSBW, VMBW, VSBR, VMBR, and VWTR. The
respective functions of these programs are VDP RAM:
Single Byte Write, Multiple Byte Write, Single Byte Read,
Multiple Byte Read, and Write to Register. User workspace
registers are used to pass parameters—e.g., the number of
bytes to read or write—to the utility.

The standard utilization of VDP RAM in the
Editor/Assembler is shown on Table 1. The blocks involved

in the multicolor mode are the Screen Image and Pattern
Descriptor Tables. Before entering multicolor mode, the
Screen Image Table is initialized. The 768 bytes of the table
are divided into six 128-byte sets. Each set is further sub
divided into four 32-byte groups. To initialize the table, the
numbers 1-31 are written in order into each of the four

32-byte groups in the first set: 0, 1, 2,. . . 31 four times.
Then the numbers 32-61 are written four times into the next

128-byte set. This process is continued until the numbers
160-191 are written four times in the sixth 128-byte set. In
my program, I didn't want this process to be visible on the
screen, so I first put the display in Text Mode and made
the foreground and background colors gray.

Once the Screen Image Table is initialized, color boxes
are placed on the screen by means of the Pattern Descrip
tor Table. Each 4x4 pixel box on the screen corresponds
to half a byte in the Pattern Descriptor Table. To place a
colored box on the screen, the appropriate color code is writ-

Table 1 VDP RAM MEMORY
— Editor/Assembler—

Address of Length
First Byte of Block, Contents

Decimal Hex Bytes

0 >0000 768 Screen Image Table
768 >0300 128 Sprite Attribute List
896 >0380 128 Color Table

1024 >0400 896 Sprite Descriptor Table
1920 >0780 128 Sprite Motion Table
2048 >0800 2048 Pattern Descriptor Table and

Peripheral Access Blocks
4096 >1000 10199 More Peripheral Access

Blocks and Buffers

14295 >37D7 2089 Reserved for Diskette Device
Service Routines

16383 >3FFF Last Address

Total 16384 Bytes

ten in the nybble (4 bits) in the Pattern Descriptor Table
which corresponds to the desired screen position.

The first eight bytes of the Pattern Descriptor Table cor
respond to the boxes in a column beginning in the upper
left corner of the screen. The first four bits in byte #1 con
tain the color of the box in the extreme upper left corner,
and the last four bits the color of the box immediately to
the right of the first box. Byte#2 contains the colorsof the
two boxes immediately under the first two, and so on for
the first eight bytes.

The ninth byte in the table contains the colors for the pair
of boxes in a new column beginning again at the top of the
screen. Subsequent bytes follow this pattern corresponding
to 32 columns of box pairs with eight pairs in each column.
This group of 256 bytes thus takes care of the top sixth of
the screen.

The 257th byte corresponds to the beginning of a new
column of box pairs starting again on the left side of the
screen.The six256-byte groups thus correspond to the 3,072
possible boxes in multicolor mode. [Since the colorof each
box is indicated in a name table in memory, and the names
are mapped onto the screen according to their position in
the table, this multicolor mode is a true memory-mapped
configuration. It does, however, trade off lowerresolution
for color memory-mapping capability, but the high-
resolution sprites are still available. For an explanation of
sprites and an introduction to the high-resolution bit-map
mode, see "3-D Animation".—Ed.]

In the program, a double-size sprite provides a reference
point for determiningwhere boxes will appear. The dot row
and dot column of the sprite can be determined at any time
by referringto the Sprite Attribute List in VDP RAM. Then,
since boxes are supposed to appear in the centerof the sprite,
the screen location can be calculated by adding 8 to the dot
row and dot column, which represent the sprite's upper left
corner. But in order to find the corresponding location in
the Pattern Descriptor Table, a few more calculations must
be performed.

If we let R and C be the dot row and dot column desired
for the box location, the number of complete 256-byte
groups above that location is the integer quotient of R/32.
Multiplying that number by 256 thus gives the first compo
nent of the offset in the Pattern Descriptor Table.

Similarly, the integer quotient of C/8 gives the number
of complete 8-byte columns to the left of the location. So

The Best of 99'er Volume 1 147

that number is multiplied by 8 and added to the offset.
Dividing the remainder of R/32 by 4 gives the number of
bytes above the location in the 8-byte column the location
is in. Adding that to the offset gives the offset for the byte
in the Pattern Descriptor Table.

But we still have to know if the desired location is the
most or least significant nybble of the byte, and to deter
mine that we can divide the remainder of C/8 by 4. If the
integer quotient is 0, it's the left nybble; if 1, it's the right
nybble. The appropriate color code then needonly be placed
in the correct nybble (leaving the other one unchanged),and
the box appears just where it should.

Let's consider an example: Suppose the upper left cor
ner of the sprite were at dot row 83 and dot column 147.
The center of the sprite would then be at 91 and 155. The
number of complete groups (32 columns with 8 bytes in
each) above that location is 2, i.e., INT(91/32). So the in
itial component of the offset is 2 * 256 or 512 bytes. The
number of 8-byte columns to the left of the location is
INT(155/8) or 19. That makes the offset 531. Above the
location, in its 8-byte column, there are 6 bytes—i.e.,
INT((remainder 91/32)/4)—giving an offset of 537.The re
mainder of 155/8 is3, and INT(3/4) is0, so the nybble of
interest is the most significant (left) oneof the 539th byte
of the Pattern Descriptor Table.

Now let's takea brieflookat thesource listing. Thefirst
section consists of a number of assembler directives. The
DEF directive makes the symbol MARKER available to
other programs, and the REF directives make several utilities
available for use of MARKER. Then there is a variety of
other assembler directives. The simplest type is EQUate,
which assigns a constant to a symbol at assembly time.
USRWS, for >20BA (8378), and that value replaces the
symbol wherever it appears in an operand; the label may
subsequently be substituted for the number.

148 The Best of 99'er Volume 1

The mnemonicBSSstands for BlockStarting withSym
bol. This directive causes the assembler to advance its loca
tion counter without writing anything into the object pro
gram. It leaves an empty area (of the number of bytes
specified intheoperand) which canthenbeused as a storage
space for data lateron. The label issetequalto the memory
location of the first byte in the block at the timethe object
program is loaded. (Since this program is relocatable, the
place where the loader program decides to start loading it
may change, depending on what other programs have
already been loaded.)

The DATA, BYTE, and TEXT directives are similar to
BSS except that the contents of the buffer are explicitly
defined in the operand field. The label is assigned the ad
dress of the firstbyteat the timethe objectprogram isload
ed. Allof these bufferareasare contiguous. For example,
look at the instructions immediately after the label
MARKER. The patterncodes for two double-size sprites,
thecursor and arrow, are loaded into the Sprite Descriptor
Table in VDP RAM. Since the pattern data for ARROW
is contiguous with that of CURSOR in both CPU and VDP
RAM, all 64 bytes can be loaded in one shot.

Youshould havelittletrouble figuring out the rest of the
program by reading the comments provided and referring
to the manual. But don't stop after you understand how
it works—try to make some changes. To start with, try
changing the shape and colors of the sprite cursor, the ar
rangement of the color palette on the screen, etc. Then try
to make the program more efficient in speed and utiliza
tion of memory.

Beprepared to run intoproblems; it's through encounter
ing andsolving them that you'll learn most rapidly. When
I decided to stop reading and start trying to write a pro
gram, I had visionsof seeinga curl of white smoke rise from
thecomputer's cooling vents, but that didn't happen to me
and probablywon't happento you either.So don't be afraid
to experiment.

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1 Magic Crayon

DEF MARKER

REF VSBW,VMBW,VMBR,VSBR
REF VWTR,KSCAN,DSRLNK

*

* DEFINITION OF LABELS

SCREEN BSS

P AL ET

P ATRN

ROW

COL

CURSOR

AT TR I B

ARRATT

PDAT A

ZERO

D32

D8

GRAY

MAX

COLMAX

LOAD

BLACK

ONE

TWO

FCOLOR

BCOLOR

H1 8

H1 4

H1 1

H07

H06

HOS

H02

MOKE Y

P AB

USRWS

PNTR

UNIT

FIRE

IOYS TY
IOYS TX

SPRITE

STATUS

GP LWS

BSS

BSS

BSS

BSS

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

TEXT

DATA

DATA

DATA

DATA

DATA

DATA

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

EQU

EQU

EQU

EQU

EQU
EQU
EQU

EQU
EQU

EQU

>300

>600

>60O

1

1

>8040

>0000

>01 02

>0000

>01 02

>0000

>0080

>0000
>5878

>6578

>0600

>000 B

' DSK1

>0000

>0020

>0008

>EEE E

>0 5 F F

>01 00
>05

>1 1

>01

>02

>1 0

>0E

>1 2

>0E

>0B

>07

>06

>0S

>02

>FF

>0F80

>20 B A

>83 56

>8374

>8375

>8376

>8377

>837A

>837C

>83E0

>201O
>0408

>0408

>201 0

>0408

> 000 0

>4020

>0 0 0 0

>8O0F

>8401

>1 000

SCREEN

>0804

>1020
>1020

>0804

>0000

>0000

>0000

>0000

>D000

>0000
>4080

>0000

>0201

> 0 0 0 0
>0000

> 0 0 0 0

> 0 0 0 0

>0000 ,>0600

DEFINE SPRITE PATTERNS FOR CHRS 128 AND 132

MARK ER LWP I

L I

L I

L I

B LWP

US RWS

R0 , >400
R1.CURSOR
R2 , 64
©VMBW

LOAD WORKSPACE POINTER / START

VDP ADDRESS CH 128 SPRITE DESCRIPTOR TABLE

CPU ADDRESS OF CHAR PATTERN

64 BYTES TO MOVE (2 PATERNS)
LOAD DATA TO VDP RAM

• SET FOREGROUND AND BACKGROUND TO GRAY

L I

B LWP

L I

B LWP

R0 , >01 F0
©VWTR
R0 , >07 E E
©VWTR

PLACE IN

WR I TE TO

SET FOR E

WR I T E TO

TEXT MODE

VDP R1

AND BACKGROUND

VDP R7

TO GRAY

INITIALIZE SCREEN IMAGE TABLE FOR MULTICOLOR MODE

LOOP0

LOOP1

LOOP 2

L I

L I

CLR

L I

L I

MOV B

MOVB

A I

DEC

J NE

DEC

R0
R1

R2

R3

R4

R2

R5

R5

R4

LOOP 2

R3

SCREEN

6

4

>20

R 5

• R0 +

>01 00

Copyright © 1983 Emerald Valley Publishing Co.

INITIALIZE

INITIALIZE

INITIALIZE

INITIALIZE

INITIALIZE

START

S TORE

POINTER

GROUP COUNT ER

VALUE

REP E T I

VALUE

REPETITION

VALUE IN ARRAY

CHANGE TO NEXT

COUNT DOWN FOR

DO NEXT VALUE

DEC REPETITION

T I ON S COUNTER

COUNTER

SCREEN

VALUE

NEXT VALUE

COUNT ER

The Best of 99'er Volume 1 149

150

Listing 1 Magic Crayon continued

I NE

A I

DEC

I NE

L I

L I

L I

B LWP

LOOP1

R2 ,>2000
R1

LOOPO

R0 ,>00
R1 , SCREEN
R2 ,>30O
©VMBW

DO NEXT REPETITION

NEXT STARTING VALUE

DEC GROUP COUNTER

DO NEXT GROUP

VDP ADDRESS FOR SCREEN IMAGE

CPU ADDRESS OF DATA BUFFER

768 BYTES TO WRITE

INITIALIZE VDP SCREEN IMAGE

INITIALIZE COLOR PALETTE SCREEN

LOOP 3

LOOP4

LOOP 5

LOOP 6

LOOP 7

L I

L I

MOV

DEC

I NE

CLR

L I

L I

MOVB

MOVB

MOVB

L I

MOV B

DEC

1 NE
MOV B

DEC

I NE

SWP B

A I

SWPB

DEC

I NE
L I

MOV B

DEC

I NE

RO
R1

>1O0
P AL ET

©GRAY

RO

LOOP 3

RO

R3 , 1 6
R4 , 2
©GRAY
©GRAY , *
©BLACK ,
R 5 , 4
R0 , * R1 +
R 5

LOOP6
©BLACK
R4

LOOP 5

RO

RO , >1 1
RO

R3

LOOP4

RO ,>300
©GRAY , * R1 +
RO

LOOP 7

R1 +

» R1 +

* R1 +

, * R1 +

• H1 +

INITIALIZE

INITIALIZE

STORE GRAY

DEC WORD COUNTER

WRITE NEXT WORD

INITIALIZE

INITIALIZE

INITIALIZE

STORE GRAY

STORE

S TORE

WORD COUNTER

POINTER FOR PALET ARRAY

COLOR >EEEE

COLOR VALUE

COLOR COUNTER

COLUMN COUNTER

BYTE

ANOTHER GRAY BYTE

BLACK BYTE

LOAD COUNTER FOR COLOR BYTES

STORE A COLOR BYTE

DEC COLOR BYTE COUNTER

STORE ANOTHER COLOR BYTE

S TORE A BLACK BYTE

DEC COLUMN COUNTER

DO SECOND COLUMN

SHIFT TO LEAST SIG BYTE

ADD 1 FOR NEXT COLOR NUMBER

SHIFT BACK TO MOST SIG BYTE

COUNT DOWN COLOR COUNTER

DO NEXT TWO COLUMNS

SET BYTE COUNTER FOR REMAINING
STORE A GRAY BYTE

COUNT DOWN

REPEAT UNTIL DONE

SCREEN

* INITIALIZE PATTERN TABLE - TRANSPARENT

CLEAR L I

L I

LOOP8 MOV

DEC

I NE

RO ,>300
R1 ,PATRN
©ZERO,•R1+
RO

LOOP8

LOAD PATTERN TABLE

L I

L I

L I

B LWP

R0 ,>800
R1 , PATRN
R2 ,>600
©VMBW

INITIALIZE WORD COUNTER

INITIALIZE POINTER FOR PATTERN ARRAY
STORE COLOR = TRANSPARENT

COUNT DOWN FOR NEXT WORD

WRITE NEXT WORD IN ARRAY

VDP PATTERN TABLE ADDRESS
CPU BUFFER ADDRES S

1536 BYTES TO WRITE
WRITE TO VDP RAM

* SELECT DOUBLE SIZE AND MULTICOLOR MODE

LI RO,>01EA
BLWP ©VWTR
SWPB R0

MOVB RO,@>83D4

TO WRITE 11101010 TO VDP R1
WRITE TO VDP R1

MOVE >EA TO MOST SIG BYTE
STORE COPY (>EA) IN CPU RAM

DEFINE ATTRIBUTES FOR SPRITE 10

LI RO,>300
LI R1.ATTRIB
LI R2 , 6
BLWP ©VMBW

DEFINE I OF ACTIVE SPRITES

MOV B ©ONE ,@S PR I T E

VDP SPRITE ATTRIBUTE LIST

LOCATION OF ATTRIBUTE LIST FOR SPRITE

6 BYTES TO MOVE
WRITE DATA TO VDP RAM

STORE NO. OF ACTIVE SPRITES IN CPU RAM

INITIALIZE CURSOR COLOR AND COLOR CHANGE COUNTER

L I

CLR

R3 , >0F01
R4

SPRITE COLORS - WHITE/BLACK IN RS

INITIALIZE COUNTER - COLOR CHANGE

START MAIN LOOP

CHECK JOYST FOR MOTION, FIRE BUTTON AND KEYS

CHECK LIMI

LIMI

The Best of 99'er Volume 1

ENAB LE INTERRUPTS

DISABLE INTERRUPTS

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1 Magic Crayon continued

NEXT1

NEXT2

NEXT3

NEXT4

L I

B L

MOVB

B LWP

CB

I EQ
CB

) NE
B

CB

I NE
B

CB

I NE
L IMI

LWP I

B LWP

CB

I NE

B

CB

I NE

RO . 1
©CHECKS
©ONE,@UNIT
©KSCAN
@F I RE ,@H05
CLEAR

@F I R E
NEXT1

©SAVE
@F I RE
NEXT 2

©RECALL
@F I RE ,@H1 1
NEXT3

2

GP LWS

©0000
@FI RE ,@H14
NEXT4

©SELECT
@F I RE ,@H18
SKIP

H02

H06

INDICATE REPETIONS OF CHECKS

BRANCH TO SUBROUTINE CHECKS

SELECT REMOTE UNIT TO SCAN

SCAN LEFT KEYBOARD

PRESSED?

GO TO CLEAR

PRESSED?

GO ON

BRANCH TO

PRESSED?

GO ON

BRANCH TO

PRESSED?

GO ON

INTERRUPTS

LOAD GP L WORK SPACE

RETURN TO MASTER TITLE SCREEN

WAS -C- PRESSED?

IF NO, GO ON

IF YES, GO TO COLOR SELECT ROUTINE
WAS FIRE BUTTON PRESSED?

IF NO, SKIP DRAW ROUTINE

WAS • E "

I F YES

WAS • S "

I F NOT ,
I F SO ,
WAS

. R .

I F NOT ,
I F SO ,
WAS ' T *

I F NOT ,
ENABLE

SCREEN

SAVE ROUT I N E

RECALL ROUT INE

• ROUTINE TO PLACE BLOCK ON SCREEN

DRAW

NOCORR

NOCORC

MARK1

MARK2

L I

L I

L I

B LWP

CLR

CLR

CLR

MOVB

SWPB

A I

C

I LT

S

D I V

SLA

A

SR L

A

CLR

CLR

MOVB

SWPB

A I

C

I LT
S

D I V

SLA

A

MOV

I LT

C

IGT

L I

BL

CLR

MOVB

SWPB

CLR

MOVB

SRL

I EQ
SRL

SWPB

SRL

S LA

IMP
SLA

SRL

SWPB

A

SWPB

MOVB

L I

L I

L I

RO , >300
R1,ROW
R2 , 2
©VMBR
R7

R8

R2

©ROW,R8
R8

R 8 9

R8 ', ©COLMAX
NOCORR

©COLMAX
@D32 , R7
R7 , 8

R2

2

R2

R7

R8

R8

R7

R8

©COL
R8

R8 , 8
R8,©COLMAX
NOCORC

©COLMAX
@D8 , R 7
R7 , 3

R2

R2

P

MAX

P

>1 4

©CHECKS
R1

©FCOLOR
R1

RO
©PATRN(2)
R8 . 2
MARK1

R1 , 4
RO
RO , 4
RO , 4
MARK2

RO , 4
RO , 4
RO

R1

RO
RO

RO

R1

R2

R7

R2

S K I

R2

SK I

RO

R8

R8

R8

R1

RO

RO

©PATRN(2)
>0800

PATRN

>600
BLWP ©VMBW

Copyright © 1983 Emerald Valley Publishing Co.

VDP SPRITE ATTRIBUTE ADDRESS

CPU BUFFER TO RECEIVE DATA

FETCH 2 BYTES

FETCH DOT ROW AND DOT COLUMN

INITIALIZE R7 AND R8

--FOR USE IN DIVIDE OPERATION

INITIALIZE OFFSET FOR PATRN ARRAY

PUT DOT ROW IN R8

MAKE IT LEAST SIG BYTE

ADD ROW OFFSET FOR COLOR BLOCK +1

IS THE DOT ROW > 2 55?

IF NOT, DO NOT APPLY CORRECTION

IF SO, SUB TRACT 2 55
DIVIDE DOT ROW OF BLOCK BY 32

CALCULATE BYTES IN PRECEEDING GROUPS

ADD I OF BYTES IN PREVIOUS 32X8 BYTE GROUPS

DIVIDE REMAINDER BY 4

ADD f BYTES ABOVE IN CURRENT 8 BYTE SET

INITIALIZE R7 AND R8

--FOR USE IN DIVIDE OPERATION

PUT DOT COLUMN IN R8

MAKE IT LEAST SIG BYTE

ADD COLUMN OFFSET FOR COLOR BLOCK

IS THE DOT COLUMN > 255?

IF NOT, DO NOT APPLY CORRECTION
IF SO, SUBTRACT 256
DIVIDE BY 8

CALCULATE BYTES IN PRECEEDING 8 BYTE SETS

ADD « BYTES IN PREVIOUS 8 BYTE SETS, THIS GROUP
CHECK

I F NOT

CHECK

I F NOT

REPEAT

BRANCH

F INSIDE PATTERN ARRAY

SKIP SCREEN PLACEMENT

F INSIDE PATTERN ARRAY

SKIP SCREEN PLACEMENT

SUBROUTINE CHECKS 20 TIMES

TO SUBROUTINE CHECKS

INITIALIZE R1 FOR BLOCK COLOR

STORE COLOR IN R1

MAKE IT LEAST SIG BYTE

INITIALIZE RO FOR CURRENT ARRAY ELEMENT

COPY ARRAY ELEMENT AT OFFSET INTO RO

CALCULATE WHETHER BLOCK IS LEFT OR RIGHT

IF 0 LEAVE BLOCK AS LEFT NYBBLE
IF 1 MAKE BLOCK RIGHT NYBBLE

MAKE CURRENT ELEMENT LEAST SIG BYTE

GET RID OF LEAST SIG NYBBLE

PUT REMAINING NYBBLE BACK

SKIP TO LABEL

GET RID OF MOST SIG NYBBLE

PUT BACK REMAINING NYBBLE

MAKE IT LEAST SIG BYTE

ADD NEW COLOR TO ADJACENT VALUE
MAKE IT MOS T SIG BYTE

MOVE IT TO ARHAY AT OFFSET

VDP PATTERN TABLE ADDRESS

CPU BUFFER

1536 BYTES TO MOVE
WRITE TO REDRAW SCREEN

N

EEN

The Best of 99'er Volume 1 I5I

Listing 1 Magic Crayon continued

CLR R5

CLR R6
MOVB ©IOYSTY,R5
NEG R5

SLA R5 , 2
MOVB ©JOYS TX , R6
SLA R6 , 2
SWP B R6

MOVB R5 , R6
L I R1,USRWS+12
L I RO , >0780
L I R2 , 2
B LWP @VMBW
B ©CHECK

CLEAR R5 AND R6 TO RECEIVE IOYST VALUES

PUT Y RETURN IN R5

MULTIPLY BY -1

MULTIPLY BY 4

PUT X RETURN IN R6

MULTIPLY TIMES 4

MAKE XVEL LEAST SIG BYTE

MOVE YVEL TO R6 AS MOST SIG BYTE
CPU ADDRESS OF VELOCITY BYTES (R6)
VDP ADDRESS OF MOTION TABLE

2 BYTES TO MOVE

WRITE DATA TO VDP RAM

START LOOP OVER AGAIN

* END OF MAIN PROGRAM LOOP
*

* COLOR SELECT ROUTINE

SELECT

LOOP9

CSCRN

CMARK

BACK

L I

B LWP

L I

L I

L I

B LWP

L I

L I

L I

B LWP

B L

L I MI

L IMI

MOVB

B LWP

CB

I EQ
CB

I EQ
CLR

MOVB

SLA

SWP B

L I

L I

L I

B LWP

IMP

B L

SWP B

MOVB

I MP

B L

SLA

MOVB

B L

CLR

MOVB

SWPB

MOVB

BLWP

L I

L I

L I

BLWP

L I

L I

L I

B LWP

B

RO ,>0 7
©VWTR
RO ,>80
R1,PAL
R2 ,>60
©VMBW
RO ,>30
R1 ,ARR
R2 , 4
©VMBW

©DEBNC
2

0

©ONE , ©
©KSCAN
©FIRE,
CMARK

©FIRE,
CSCRN

R 6

©IOYST

R6 , 2
R6

R1,USR
RO ,>07
R2 , 2
©VMBW
LOOP9

©DOTCO
R1

R1,@BC
BACK

©DOTCO
R1 , 1 2
R1,@FC
©DEBNC
RO

©BCOLO
RO

©H07 ,R
©VWTR
RO ,>80
R1,PAT
R2 ,>60
©VMBW
RO,>30
R1,ATT
R2 , 4
©VMBW
©SKIP

EE

0
ET

0

0
ATT

UN I T

@H1 8

@H1 4

X , R6

WS + 1 2

80

L

OLOR

L

OLOR

R , RO

0

0

RN

0

0

R I B

CHANGE

WR I TE T

VDP BUF

CPU BUF

1536 BY
DISPLAY

VDP BUF

ARROW A

4 BYTES
WR I TE D

BRANCH

ENAB LE

DISABLE

I DENT I F

SCAN LE

CHECK F

IF PRES

CHECK "

IF PRES

INITIAL

PUT

MP Y

MAKE

LOAD

LOAD

MOVE

LOAD

GOTO

DETERMI

MAKE I T

MOVE IT

JUMP TO

DETERMI

PUT IN

MOVE I T

DEBOUNC

PREPARE

PUT BAC

MAKE I T

IND I CAT

WR I TE I

VDP PAT

PATTERN

1536 BY

LOAD PA

VDP SPR

ADDRESS

4 BYTES

LOAD DA

BRANCH

IOY

BY

L E

CP

AD

2

DA

LO

GROUND

P R7

FOR PA'

FOR pa:

TO MOV

ETTE

FOR ATTRIBUTE LIST

BUTES

MOVE

TO GRAY

TTERN TABLE

L ETTE

E

DEBOUN

I NTERR

ERRUPT

MOTE U

BD AND

BUTTON

CHANG

EY

CHANG

R6

IN R6

BACK

0 VD

FER

FER

TES

PAL

FER

TTR I

TO

ATA

TO '

VDP

I NT

Y RE

FT K

1 RE

SED ,
C ' K

SED ,
I Z E

ST X

4

AST

U AD

DRES

BYTE

TA T

OP9

NE C

MOS

TO

BAC

NE C

PROP

TO

E

TO

KGRO

LEA

E WR

T TO

TERN

BUF

TES

TTER

I TE

OF

TO

TA T

TO L

CE * SUBROUT INE

UPT

NIT TO SCAN

REMOTE UNIT #1

E MARK COLOR

E SCREEN COLOR

TE

(R6)
OTION TABLE

SIG BY

DRESS

S OF M

S

O VDP RAM

OLOR F

T SIG

BCOLOR

K

OLOR F

ER POS

FCOLOR

RETURN

UND CO

ST SIG

I TE TO

R7

TABLE

FER IN

TO WR I

N SCRE

ATTR I B

CUR SOR

MOVE

O GET

ABLE S

ROM DOT COLUMN OF ARROW

BYTE

ROM DOT COLUMN OF ARROW

ITION FOR ©FCOLOR

SCREEN COLOR

LOR IN RO

BYTE

VDP R7

ADDRESS

CPU RAM

TE

EN

UTE TABLE ADDRESS

ATTRIBUTES

CURSOR SPRITE

K I P

» DSR ROUTINE TO SAVE SCREEN' PATTERN TABLE

SAVE L I

L I

L I

B LWP

L I

L I

L I

B LWP

L I

MOV

B LWP

RO ,>1000
R1,PATRN
R2 ,>600
©VMBW
RO,PAB
R1,PDATA
R2 , 21
©VMBW
R6,PAB+9
R6,©PNTR
©DSR LNK

152 The Best of 99'er Volume 1

PREPARE TO

CPU BUFFER

1536 BYTES
WRITE DATA

VDP PERIPHERAL ACCESS BLOCK

CPU BUFFER TO BE WRITTEN TO

21 BYTES TO WRITE
WR I TE PAB

SET POINTER TO NAME LENGTH

STORE IN >8356 >8357
EXECUTE SAVE OR LOAD

MOVE PATRN

ADDRES S

TO MOVE

TO VDP BUFFER

ADDRES S

VDP

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1 Magic Crayon continued

DATA

B (CHECK

• DSR ROUTINE TO RECALL

RECAL L L I

L I

L I

B LWP

L I

MOVB

B LWP

L I

MOV

B LWP

DATA

L I

L I

L I

B LWP

L I

L I

L I

B LWP

B

RO,PAB
R1 , PDATA
R2 , 21
©VMBW
RO,PAB
©LOAD,R1
©VSBW

R6 , PAB + 9
R6,©PNTR
©DSR LNK
8

RO,>1000
R1,PATRN
R2 , >600
©VMBR
RO ,>0800
R1.PATRN
R2,>600
©VMBW
©CHECK

IF SO, BRANCH BACK TO BEGINNING

SCREEN PATTERN TABLE

VDP PERIPHERAL ACCESS BLOCK ADDRESS

CPU BUFFER TO WRITE

21 BYTES TO WRITE
WRITE PAB

SUBSTITUTE 'LOAD' I/O OP CODE

MOVE OP CODE TO R1

WR I TE BYTE TO PAB

SET POINTER TO NAME LENGTH

STORE IN >8356 >8357
COPY DATA TO VDP BUFFER

PREPARE TO COPY FROM VDP TO PATRN

CPU BUFFER ADDRES S

1536 BYTES TO COPY
COPY BUFFER

NOW COPY TO PATTERN TABLE

ADDRESS OF CPU BUFFER

1536 BYTES TO COPY

COPY TO TABLE

BACK TO THE BEGINNING

• SUBROUTINE TO PERIODICALLY CHANGE SPRITE COLORS

CHECKS

CHANGE

RETURN

A I

I EQ
DEC

I NE
IMP
SWPB

MOV

L I

B LWP

RT

R4,>100
CHANGE

R0
CHECKS

RETURN

R3

R3 , R1
R0 ,>303
@VS BW

• DEBOUNCE SUBROUTINE

DEBNC MOVB

B LWP

CB

I NE

R T

©ONE ,©UN I T
©KSCAN
©FIRE,©NOKEY
DEBNC

ADD 256 TO R4

WHEN R4 REACHES

DEC COUNTER

IF NOT 0 ADD

BACK TO MA IN

SWITCH COLOR

PUT R3 IN R1

ADDRESS OF SPRITE 10 COLOR

WRITE MOST SIG BYTE OF R1

BACK TO MAIN PROGRAM

CHANGE COLOR

ANOTHER

PROGRAM

BYTES IN

256

R3

KEY UNIT TO CHECK

SCAN KEYBOARD

IS NO KEY PRESSED?

IF A KEY IS PRESSED, CHECK
GO BACK TO MAIN PROGRAM

IN VDP RAM

AGA I N

SUBROUTINE TO DETERMINE COLOR FOR ARROW

DOTCOL CLR

L I

B LWP

SWPB

A I

SRL

RT

R1

R0 ,>301
@VS BR
R1

R1 ,>07
R1 , 4

• 'END START "
*

AUTO END MARKER

Copyright © 1983 Emerald Valley Publishing Co.

INITIALIZE R1 TO RECEIVE DOT COLUMN

VDP ADDRESS OF DOT COLUMN

READ BYTE FROM ATTRIBUTE TABLE

MAKE IT LEAST SIG BYTE

ADD OFFSET FOR POINT OF ARROW

DIVIDE BY 16

RETURN

AUTOSTART

The Best of 99'er Volume 1 153

MINI

MEMORY

CARTRIDGE

There's More There
Than Meets the Eye
You know, looks can be deceiving. Who'd suspect

that a bespectacled, mild-mannered reporter for
the Daily Planet could leap over tall buildings with

a single bound? In the same way, there's more to TI's
Mini Memory Command Cartridge than meets the eye.
What appears to be a normal, garden-variety Command
Cartridge, however, really converts your TI Home Com
puter from a good BASIC machine to a trim and effi
cient assembly language instrument.

Even the name is a clever disguise: "Mini" Memory,
indeed! If you believe that there's just a tiny bit of
memory in there, you probably believe that the Trojan
Horse was nothing more than an overgrown hobby-horse!
This cartridge actually has 14K bytes of memory: 4K of
RAM, 4K of ROM and 6K of GROM.

RAM (read/write) memory is used by your computer
to store your programs. And you know that any program
you write disappears from the computer's memory when
you shut the computer off. But Mini Memory has a sur
prise for you: When you shut the computer off and
unplug the cartridge, your programs don't disappear
from the cartridge's RAM. A battery inside the cartridge
feeds a trickle of current to the CMOS devices—which
are real power misers—and keeps them alive. And now
you can carry your programs around with you, plug them
in, and instantly load them—no cassettes, no diskettes,
no messy cables, no long waits.

But there's more yet. Besides battery-backed RAM, this
cartridge also has 4K bytes of ROM (Read-Only Memory)
and 6K bytes of GROM (Graphics Read-Only Memory).
The ROM and GROM give you seven additional TI
BASIC subprograms, as well as access to many system
routines from assembly language programs. The ROM
also contains a powerful program debugger, EASY BUG,
which can help you exterminate those pesky "logic ver
min" which infest programs.

At this point, you may be saying to yourself, "What
good does all this Assembly Language access and debug
ging stuff do for me, anyway, without an assembler?"
Glad you asked. The Mini Memory Command Cartridge
comes with an assembler on cassette. You can load this
assembler into memory, enter assembly language

154 The Best of 99'er Volume 1

statements, and have the assembler translate them into
TMS9900 object code.

Let's explore this cornucopia one item at a time.

FILE STORAGE
Probably most persons will use the Mini Memory car

tridge most often for temporary storage of programs and
data. You can think of the Mini Memory cartridge as a
very fast-access storage device. [See "Getting Down to
Business" for a tutorial on random access files.—Ed.]

When you have the Mini Memory Command cartridge
plugged in, the 4K-byte RAM has the file name
MINIMEM for TI BASIC program and data storage. The
RAM occupies physical addresses 28672 through 32767
(hexadecimal 7000 through hexadecimal 7FFF). You can
save programs in this file and load programs from it. (For
example, to save a TI BASIC program, just enter the
command SAVE MINIMEM.) You can also store data
in this file using the file specification available for any
TI BASIC file. For example, the following statements
open the Mini Memory file and store data values in the
file.

OPEN #3 :"MINIMEM",RELATIVE,FIXED,
UPDATE,INTERNAL
PRINT #3: A,B,C,D
With the Mini Memory cartridge you can also access

a second new file. EXPMEM2 is the name of a 24K-byte
memory file located in the 32K Memory Expansion unit.
EXPMEM2 is available, however, only if you have the
Memory Expansion unit connected to your computer and
turned on.

ADDITIONAL TI BASIC SUBPROGRAMS
Seven additional TI BASIC subprograms are yours

with the Mini Memory cartridge. These subprograms are
PEEK, PEEKV, POKEV, CHARPAT, INIT, LOAD,
and LINK.

The PEEK subprogram reads bytes of CPU RAM data
and copies the data directly into TI BASIC variables. For
example, the statement:

CALL PEEK (8192,A,B,C,(8))

reads three bytes of data starting at address 8192, and
assigns the values read to the variables A, B, and C(8).

The PEEKV subprogram reads bytes from VDP RAM.
It works exactly like PEEK, except PEEKV accesses VDP
RAM instead of CPU RAM.

The POKEV subprogram stores data values into VDP
RAM. For example,

CALL POKEV(784,30,30,30)

writes the value 30 to VDP RAM locations 784, 785, and
786.

Copyright © 1983 Emerald Valley Publishing Co.

The CHARPAT subprogram reads a 16-character pat
tern identifier that specifies the pattern of a character
code. For example,

CALL CHARPAT(68,D$)

places the pattern defining character code 68 in the string
variable D$.

The three TI BASIC subprograms INIT, LOAD, and
LINK interface Assembly Language programs and TI
BASIC programs.

The INIT subprogram initializes the CPU memory for
Assembly Language programs. The LOAD subprogram
loads Assembly Language object files into CPU memory
and it loads data into the CPU memory.

There are two forms of the LOAD subprogram. One
form is used to load an object file from a storage device
into memory, and the second form is used to load data
directly into CPU memory. For example, the statement

CALL LOAD ("DSK1.DEMO")

loads the file DEMO from the diskette in Disk Drive 1.
The second form of the LOAD subprogram is a POKE

function for CPU RAM. For example, the statement

CALL LOAD (8197,85,40)

loads the value 85 into memory location 8197 and the
value 40 into memory location 8198.

The LINK subprogram passes control and, optional
ly, a list of parameters from a TI BASIC program to an
Assembly Language program. For example, the statement

CALL LINK ("PROGl",A,E(9))

passes control from a TI BASIC program to an Assembly
Language program named PROG1 and passes the
variables A and E(9) to the program.

ACCESS TO SYSTEM ROUTINES
The utility routines resident in the Mini Memory Com

mand Cartridge can be called from an Assembly
Language program to access machine resources and in
terface with the TI BASIC interpreter. It's fair to warn
you that the use of these routines requires a knowledge
of the routines themselves and the organization of data
used by the routines. You can get additional information
about these routines from the Editor/Assembler owner's

manual (available separately).
Two types of access programs are resident in the Mini

Memory Command Cartridge. One program contains a
collection of system utilities with which to link to
ROM/GROM routines, perform a keyboard scan, access
the VDP, etc. The individual utility programs are
classified as either Standard Utility programs or Extend
ed Utility programs.

A second program contains TI BASIC interface utilities
with which an Assembly Language program can access
variables passed through a CALL LINK statement in a
TI BASIC program. This program also contains an error-
handling utility to return exceptions to a TI BASIC
program.

STANDARD UTILITY PROGRAMS
The following standard system utilities become accessi

ble with the Mini Memory Command Cartridge:
—VDP Single Byte Write—Write a single-byte value to

a specified VDP RAM address.

Copyright © 1983 Emerald Valley Publishing Co.

—VDP Multiple Byte Write—Write multiple bytes
from CPU RAM to VDP RAM.

—VDP Single Byte Read—Read a single byte from a
specified VDP RAM address.

—VDP Multiple Byte Read—Read multiple bytes from
VDP RAM into CPU RAM.

—VDP Write to Register—Write single-byte value to
any of the VDP RAM registers.

—Keyboard Scan—Scan the keyboard and return a
key-code and status. This routine can also read the
position of the Wired Remote Controller.

EXTENDED UTILITY PROGRAMS
Extended utilities are provided to access routines in the

console GROMs and ROMs. These utilities are GPLLNK

(link to GPL routines in GROM), XMLLNK (link to
routines in ROM), and DSRLNK (link to Device Service
Routines).

GPLLNK Routines
The GPLLNK routines are as follows:

—Load Standard Character Set—Load the standard

character set into VDP RAM

—Load Small Character Set—Load the small

character set (for the 40-column Text Mode) into
VDP RAM.

—Execute Power-Up Routine—Initialize the system as
if the computer had just been turned on.

—Accept Tone—Issue an accepting tone for input.
—Bad Response Tone—Issue a bad-response tone

warning.
—Bit Reversal Routine—Provide a mirror image of a

byte of information.
—Cassette Device Service Routine—Access a cassette

tape recorder/player as a storage device.
—Load Lower Case Character Set—Load the

lower-case character set into VDP RAM.

The following floating point routines are also available
through GPLLNK:

—Convert a floating-point number to an ASCII string.
—Compute the greatest integer contained in a value.
—Raise a number to a specified power.
—Compute the square root of a number.
—Compute the inverse natural logarithm of a value.
—Compute the natural log of a number.
—Compute the cosine of a number.
—Compute the sine of a number.
—Compute the tangent of a number.
—Compute the arctangent of a number.

XMLLNK Routines

Routines in the console ROM can be accessed through
the XMLLNK routine, The following routines can be
called from an Assembly Language program using
XMLLNK:

—Floating-point addition.
—Floating-point subtraction.
—Floating-point mutiplication.
—Floating-point division.
—Floating-point compare.
—Floating-point stack addition.
—Floating-point stack subtraction.
—Floating-point stack multiplication.
—Floating-point stack division.
—Floating-point stack compare.

The Best of 99'er Volume 1 155

—Convert a string to a number.
—Convert a floating-point format number to an integer.
—Push a value onto the value stack.

—Pop a value from the value stack.
—Convert an integer number to floating-point format.

DSRLNK Routines
DSRLNK links an Assembly Language program to a

Device Service Routine (DSR) or a subprogram in ROM.
As with GPLLNK and XMLLNK, TI cautions you to
make sure you know what you are doing before using
DSRLNK. [A DSR is a machine language program that
TI has burned into ROMs found in each of its peripherals.
Since each peripheral contains its own custom "operating
system," the TI-99/4A did not have to be designed to
anticipate future peripheral requirements.—Ed.]

TI BASIC INTERFACE UTILITIES
TI BASIC interface utilities allow an Assembly

Language program to read or assign values to variables
passed in a parameter list from a CALL LINK statement
in a TI BASIC program. These utility routines include
argument-passing utilities and an error-reporting utility.

The following are the TI BASIC interface utilities:
—Assign a numeric value to a numeric variable.
—Assign a string to a string variable.
—Retrieve the value of a numeric parameter.
—Retrieve the value of a string parameter.
—Report an error. (The Assembly Language program

can report any existing TI BASIC error or warning
message upon returning to TI BASIC.)

EASY BUG DEBUGGER
Also inside the Mini Memory cartridge's ROM is

EASY BUG. EASY BUG is a versatile program develop
ment tool with which you can (1) debug your Assembly
Language programs, (2) access the input/output ports of
the computer, (3) load programs, and (4) store programs.
And it really is easy to use. With EASY BUG, you can
inspect and (optionally) modify the contents of CPU and
VDP memory, display the contents of ROM, run
Assembly Language programs from EASY BUG, directly
access the peripheral devices which are connected to the
computer via the 9900 microprocessor's serial I/O port
(the CRU), and save or load programs on cassette.

LINE-BY-LINE SYMBOLIC ASSEMBLER
A line-by-line symbolic assembler on a cassette tape is

supplied with the Mini Memory cartridge. It assembles
Assembly Language statements and stores the object code
directly into the 99/4A's CPU RAM. You can make both
forward and backward references to one- or two-
character labels with the Assembler. Each source state
ment you enter is immediately assembled into object code
and stored into memory. Because some source code is re
tained in a nine-page text buffer, you can scroll the screen
to review previously entered lines of source code by press
ing the up- and down-arrow keys. The source program
cannot be saved, however.

The Line-by-Line Assembler occupies about 2K bytes.
When it is loaded into the Mini Memory cartridge's 4K
byte RAM, you still have about 2K bytes of memory for
your Assembly Language program.

Assembler Directives
The Assembler recognizes seven directives:

156 The Best of 99'er Volume 1

—The AORG (Absolute Origin) directive establishes
the location counter value to set the starting address
of assembled code.

—The BSS (Block Starting with Symbol) directive re
serves a block of initialized memory.

—The DATA (Data Initialization) directive initializes
a word or words of memory to a specific value.

—The END (End Program) directive terminates the
assembler and causes a display of the number of
unresolved references, if any.

—The EQU (Equate) directive defines a value for a
symbolic constant.

—The SYM (Symbol Table Display) causes a display of
all symbols and their values in the program.

—The TEXT (String Definition) directive causes a
string of characters to be translated into their ASCII
code and stored as a part of a program.

[Rather than being strictly a part of the internal logic
of your program, assembler directives are commands
which direct the Assembler to perform certain operations
at assembly time.—Ed.]

DEMONSTRATION PROGRAM
Along with the Line-by-Line Assembler on the cassette

is an Assembly Language demonstration program called
LINES which draws a colorful line design on the screen.
The LINES program can be run only on the TI-99/4A
Home Computer, however, because it requires the
enhanced graphic processor contained on the TI-99/4A.

OPERATION
TI has a knack for creating complex and versatile pro

grams that are still simple to operate; they've definitely
done it again with the Mini Memory Command Car
tridge. When you plug in the cartridge, turn on the com
puter, and pass the opening credits on the Master Title
Screen, you are presented with a simple, three-choice
selection screen. You can choose TI BASIC, EASY BUG,
or MINI MEMORY.

If you select MINI MEMORY, you are presented with
a second three-choice selection screen. You can choose

to load an object program into memory and run it, run
a previously loaded program already in memory, or re
initialize the cartridge to prepare it for loading new pro
grams or storing data. Pick a number, pluck a key, and
you're off and running. It's as easy as eating oatmeal
cookies!

CONCLUSION
This has got to be one of the best deals around. 4K

bytes of RAM with battery backup assure that all the
good stuff stored in the RAM is not lost when you turn
off the console or even when you remove the cartridge.
10K bytes of ROM and GROM give you seven additional
TI BASIC subprograms (including PEEK and POKE),
access to system routines from Assembly Language, and
routines to allow you to interface Assembly Language
programs to TI BASIC. You've got a user-friendly pro
gram debugger, a symbolic line-by-line assembler, and
a captivating graphics demonstration program. All of
this, plus 84 pages of documentation, for $99.95 (sug
gested retail price). With all this to offer, it's really not
too hard to see why there's definitely more to the Mini
Memory Command Cartridge than meets the T-eye

Copyright © 1983 Emerald Valley Publishing Co.

A Screen Printing Utility
rwrrwyy.'.'.'.'.'.'.1.1.1.1.1.1.'.1.1.1.'.'.1.1.'.1.1.. ...in

PART 1: Design Considerations

One of the best features of the TI-99/4A computer
is its graphics capability. The programmer can
create a huge variety of screens by using the sim

ple character-definition commands of TI BASIC.
Wouldn't it be nice to dump those screens to your non
thermal printer? This two-part article presents a method
for doing this on the TI-99/4 impact printer. Part I
discusses the theory behind the screen dump. Part II will
provide the Assembly Language subroutine itself.

I should mention that the 99/4A has an improved video
processor (TMS9918A) which allows you to define up to
768 unique characters on the screen. However, this bit
map mode requires an extra 12K of memory to hold the
larger tables needed. We'll limit ourselves to the Graphics
I, or standard mode, in this discussion.

Approach—in English
The video screen contains 768 character positions, ar

ranged in 24 rows of 32 characters. Each character is com
posed of an 8 x 8 dot matrix, giving you a screen of 192
x 256 dots. The screen dump program will reproduce
the screen dot-for-dot on the printer.

With bit-image mode selected, the TI-99/4A prints
characters which are one dot wide and 8 dots high. Since
the screen characters are also 8 dots high, each screen
character can be represented by 8 TI-99/4A bit-image
characters, for a total of 64 possible dots per screen
character.

Accessing the Screen Image
The contents of the screen are stored in VDP RAM.

Since we are not concerned with color here, only two of
the screen tables in VDP RAM are of interest. The first
is the Screen Image Table, which starts at default
address > 0000 and contains 768 bytes. Each byte cor
responds to the character position on the screen and con

Copyright © 1983 Emerald Valley Publishing Co.

tains the character number occupying that screen posi
tion. VDP RAM addresses > 0020 through >003F cor
respond to the second screen row, and so on. Since each
character number is contained in one byte, you can see
that the character numbers must be between >00 and

>FF, or decimal 0 through 255.
The second table we'll need is the Pattern Descriptor

Table, which starts at VDP RAM address > 0800 by
default. This table contains the dot patterns for each of
the 256 characters which can be in use. The BASIC sub

program CHAR, which is used to define dot patterns for
characters, stores patterns in this table. Since a character
pattern takes 8 bytes to define, and there can be up to
256 different characters, the Pattern Descriptor Table oc
cupies 2084 bytes of VDP RAM.

Figure 1 shows the relationship between these two
tables. For a given screen ROW and COLUMN, the VDP
RAM address of the corresponding character number is
given by (ROW- 1) * 32 + COLUMN - 1. Once you
have obtained this character number, you can use it to
index to the correct spot in the pattern Descriptor Table.
The offset in this table is just 1024 + (N-32)*8 in
decimal, since each pattern description is 8 bytes long.
Figure 1 shows an example of finding the pattern for the
home position (ROW 1, COLUMN 1) on the screen. The
character number resides in the Screen Image Table at
address 0. If the home character on the screen is "A",
then VDP RAM address 0 contains the value 65 or >41.

From the offset in the Pattern Descriptor Table, we get
VDP RAM address > 800 + >200 = >0A00. The eight
bytes starting at >0A00 in VDP RAM contain the pat
tern for the character "A". You can see that for our pur
poses, the contents of the Screen Image Table are just
intermediate, though necessary, data. The character pat
tern is what we're really after.

The Best of 99'er Volume 1 157

The 8-byte character pattern represents the dot pattern
which appears on the screen in what I'll call row-wise
form. The top portion of Figure 2 illustrates this for the
character "A". The first byte of the pattern represents
the first row of the dots which comprise the character.
The hexadecimal notation is just a shorthand way to
group four bits at a time, with bits of value 1 standing
for dots which are turned on in the character.

Translating the Characters to
TI-99/4A Format

The TI-99/4 printer constructs its bit-image output in
a different way. It uses what I'll call column-wise form.
It still takes 8 bytes to produce the same character, but
each byte of data passed to the printer represents a col
umn (rather than a row) of dots in the finished character.
The bottom of Figure 2 illustrates this. If we think of
the character's dot pattern as an 8 x 8 matrix, then the
translation from TI internal format to TI-99/4A printer
bit-image format is equivalent to transposing the matrix.
We can't really treat each character pattern as a 64-bit
matrix because 9900 Assembly Language does not have
a BIT data type, but we can base the logic of the pro
gram on this idea.

Figure 1
>oooo, • rjrrr^ >41 -

i (ROW-1)*32+COL-1

I

99/4A screen

32 x 24 =
768 positions

0 j Screen Image
1 Table

r

11 >0800

I

J

768 entries

>02FF

1024 + (CHAR#-1)»8

i

I >0A00

>1000

PATTERN FOR CHAR » 0

>00 >38 >44 >44 >7C

PATTERN FOR CHAR # 255

8 BYTES

>44 >44

Pattern Descriptor Table
VDP RAM - — — -

• rauer

>44

TI-994A character pattern from Pattern Descriptor Table

Figure 2. >oo >38 >44 >44 >7C >44 >44 >44

each byte represents one row

character in binary form

0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

•c ach byte represents one column
r~

>00 >3F >48 >48 >48 >3F >00 >00

TI-99/4A printer bit-image pattern

Figure 3. TI-99/4A character in binary form
byte 0 1 2 7

in | oooo . oooo | QQ11 .100Q Ioioo . oioof ^oioo . 0100"
BIT 0123 4567

L
BIT 0123 4567 ill I "
DO| 0000 0000 | 0011 . 1111 | 0100 . 1000 |» \ oooo . oooo
BYTE 0 12 7

TI-99/4A printer bit-image data

Program Outline
The screen dump program reads the Screen Image

Table one byte at a time starting at the top (VDP RAM
address 0). The value of each byte is used to calculate
the position of the character pattern, and the 8-bytepat
tern is obtained from the Pattern Descriptor Table. These
8 bytes will be manipulated to produce 8 bytes of infor
mation encoded for the TI-99/4 printer. Figure 3 shows
how the bits of the TI-99/4A character pattern are
rearranged to formbit-image data for the printer. Notice
that the data at byte M, bit N is moved to byte N bit M—
or transposed. The program will also have to send cer
tain control characters for bit-image mode to the printer.

PART 2: Screen Dump

The Assembly Language subroutine for dumping
99/4 screens to the TI-99/4 impact printer is
designed to be called from console BASIC, and can

be entered into your system using either the
Editor/Assembler or the Line-by-Line Assembler in the
Mini Memory Command Cartridge.

VDP RAM Under Console BASIC
When the TI-99/4A is under control of the BASIC in

terpreter, VDP RAM contains two areas of interest here.
VDP RAM addresses >0000 - >02FF (0 - 767 in
decimal) contain the character numbers associated with
each screen position. The character patterns for character
numbers 32 - 159 start at VDP RAM address >0400
(1024). In the Pattern Descriptor Table address the 8-byte

158 The Best of 99'er Volume 1

character pattern corresponding to a character number
N is 1024 + (N-32) * 8 in decimal.

The dump subroutine (called DUMP) uses these facts.
Starting with VDP RAM address 0, DUMP gets the
screen character number and uses it to calculate the VDP
RAM address of the associated character pattern. It then
reads the 8-byte character pattern, transposes the matrix,
and writes the resulting 8 bytes to the printer. DUMP per
forms this process on each successive byte of screen
RAM, up to and including VDP RAM address >02FF
(767).

DSRLNK and Printer Output
The actual output to the printer is done by means of

a built-in Extended Utility Routine called DSRLNK.

Copyright © 1983 Emerald Valley Publishing Co.

Before calling DSRLNK, the Assembly Language
subroutine must set up a Peripheral Access Block (PAB)
in VDP RAM. Here is the format of the PAB we'll use
for the printer:

BYTE# CONTENTS

0 I/O opcode: >00 = open
>01 = close

>03 = write

1 Flag/status byte. > 12 is the code for se
quential file, output operation,
DISPLAY type data and variable length
records.

2, 3 Data buffer address in VDP RAM. We'll
use >1E00.

4 Logical record length.
5 Number of characters to write.

6, 7, 8 Not used here.
9 Length of file descriptor which follows.

10-35 File descriptor. We'll use RS232.PA = O.
DA = 8.BA = 9600.CR

We'll put the PAB in VDP RAM starting at address
> 1D00 (hereafter called V1D00), and we'll put the data
area containing the actual data for output to the printer
at V1E00. These addresses could have been elsewhere in
VDP RAM, as long as the locations chosen were not used
by something else.

To perform a printer operation, the program must do
the following:

1. Build the PAB in VDP RAM.

2. Put the address of the length of the file descriptor
(byte 9 of the PAB) into CPU RAM address >8356.

3. Call DSRLNK.

You'll notice that the call to DSRLNK must be
followed by a word (two bytes) containing the value 8,
which means that you want to link to a Device Service
Routine (DSR).

RS232 Considerations
Since the DUMP subroutine uses the RS232 interface

to communicate with the printer, some additional code
is needed to save and restore the address of the GROM.
This is because the GROM address is changed when the
RS232 DSR is used. At the beginning of the DUMP
subroutine, the GROM address is obtained one byte at
a time from the GROM Read Address at location >9802.

The GROM address increments itself when the first byte
is read (actually moved) from the GROM Read Address.
This makes the second byte of the GROM address one
too big, so it must be decremented by DUMP. Just before
returning to BASIC, the DUMP subroutine restores the
GROM address by moving it to the GROM Write Ad
dress at location >9C02, again one byte at a time.

Linkage to Console BASIC
A console BASIC program invokes the DUMP

subroutine by the statement CALL LINK("DUMP").
DUMP returns to the BASIC program by branching to
the contents of register 11 (Rll). Just before returning
to BASIC, the DUMP subroutine clears the error byte
at @>837C (sets it to 0). Failure to clear this byte can
result in an undeserved INCORRECT STATEMENT er
ror when you return to BASIC.

Copyright © 1983 Emerald Valley Publishing Co.

Transposing the 8x8 Character Matrix
Once a screen character's 8-byte pattern has been read

into CPU RAM (at label IN), the DUMP subroutine uses
the following technique to build the 8 bytes of output at
label DO.

The first byte of DO is composed of the first bit of
each of the 8 bytes starting at IN, the second byte of DO
is composed of each second bit of the bytes at IN, and
so on. Figure 2 of Part One shows the bit movements
for the pattern character of an "A".

DO is built from left to right, and R4 is used to hold
each byte of DO as it is built. R4 is cleared before each
byte is built, so DUMP has to turn on any bits necessary.

To tell if a certain bit of IN is on, DUMP compares
the value of the byte containing the bit in question to a
power of 2. To see how this works, consider the byte con
taining >82 (130 in decimal, 1000 0010 in binary). The
leftmost bit of the byte is on; in fact, the leftmost bit
would be on in any byte containing >80 (128) through
>FF (255). In other words, we could test for the left
most bit's being on by comparing the value of the byte
to decimal 128 (2 to the 7th power); if the value is less
than 128, we wouldn't have to turn on the corresponding
output bit.

This technique can be used to test any bit of a byte for
our purposes, using the appropriate power of 2. The
second-to-leftmost bit can be tested against 64, its
neighbor to the right against 32, and so on down to 1
for the rightmost bit. This works because we'll be con
sidering the bits from left to right in each byte. After each
bit is tested, it must be turned off (in CPU RAM, not
on the screen) so that it doesn't interfere with the test
of the following bit. To see this, consider the byte con
taining >82 (130) again. If we want to determine if the
second-to-leftmost bit is on, we would compare the byte
to 64. You can see that it would pass the test, even though
the bit in question is not on! However, if we had reset
the leftmost bit to 0 after testing it previously, the byte
would now contain >02 instead of >82, and the test
would fail, as it should.

Once we have decided that an input bit is on, we must
set on the corresponding bit in R4. This is done by add
ing the appropriate power of 2 to R4. To turn on the left
most bit, add 128; to turn on the rightmost bit, add 1.
Remember that the byte being built is in the right half
(LSB, or least significant byte) of R4.

DUMP uses R5 to contain the power of 2 for testing
whether the input bit is on, and R6 to contain the power
of 2 for setting the bit on for output. The LSB of R7 con
tains the input byte being tested, and the most signifi
cant byte of R7 is filled with zeros. This allows DUMP
to use the simpler and more plentiful register instructions,
and to completely avoid having the leftmost bit of a byte
interpreted as a sign bit.

Printer Consideration
DUMP writes one full screen line to the printer at a

time. Before each line, the program must write a 4-byte
control sequence to put the printer in graphics mode and
tell it how many graphics characters are coming next. This
sequence is >1B, >4B, >FF, and >00. The last two
bytes mean 255 characters will be written, with the order

The Best of 99'er Volume 1 159

of the bytes being reversed for evaluation (>00FF, or
255).

The program issues a carriage return and line feed on
ly after each of these writes, that is, at the end of each
screen line. DUMP uses the CZC (Compare Zeros Corre
sponding) instruction to accomplish this. R9 contains the
position in VDP RAM of the next screen character
number. Positions 0 - 31 (>00 - > IF) of VDP RAM
correspond to the characters on line 1 of the screen; posi
tions 32 - 63 (> 20 - > 3F) correspond to characters on
line 2, etc. The CZC instruction occurs right after R9 is
incremented and before the corresponding screen
character is decoded. Therefore, the carriage return and
line feed should be written whenever R9 is an even multi

ple of 32. The CZC instruction uses a mask of > IF (0000
0000 0001 1111 binary). If R9 is a multiple of 32, then
its last five bits will all be zero. Notice that the mask has
only the last five bits turned on. Under these cir
cumstances, the CZC instruction sets the equal status bit
on if and only if the last 5 bits of R9 are all zero, that
is, if and only if R9 contains an even multiple of 32. The
JNE instruction which follows the CZC instruction causes
the program to skip outputting the carriage return and
line feed when R9 does not contain a multiple of 32.

Left to its own devices, the printer will respond to a
line feed by spacing down 1/8" or 1/6". This would leave
blank stripes in the screen dump. The sequence ESCAPE
A 8 is written by DUMP to tell the printer to space down
only 8/72" on each line feed. This produces a continuous
image.

Mini Memory Considerations
To enter the DUMP subroutine via the Line-by-Line

Assembler, do the following:

1. Select MINI MEMORY and then RUN from the

first two menus.

2. Enter NEW as the program name.

160 The Best of 99'er Volume 1

3. When the Line-by-Line Assembler screen appears,
type a space, then AORG, another space, >7D14, and
then press [ENTER.] (From now on the spaces will be
assumed.) This sequence lets you start the program at
>7D14 instead of the traditional >7D00.

4. Enter the program as shown in Listing #1. Enter only
the label (if any), opcode, and operands. Don't enter
END yet.

5. Put the entry point for DUMP into the DEF/REF
table by entering the following lines:

AORG >7FE8(CR)
TEXT 'DUMP '(CR)
DATA >7D14(CR)

6. Set the last used address in Mini Memory by
entering:

AORG >701C(CR)
DATA >7F02(CR)

7. Indicate that you are finished by entering:
END(CR).

The system should show that you have no unresolved
references. Press enter twice, and then QUIT the Line-
by-Line Assembler.

8. Enter EASY BUG from the master menu.

9. Press any key to bypass the instruction screen.

10. Enter S7000 when the system prompts with ? and
then 7FFF when the system prompts TO? This tells the
system to save the contents of the Mini Memory to
cassette tape. Just follow the instructions presented by
the computer after this, and then QUIT EASY BUG
when you have saved and checked your tape.

You are now ready to use the DUMP subroutine. The
sample BASIC program in Listing #2 just draws a screen
and then waits for you to press the P key, at which point
DUMP is called to print out the screen. You can incor
porate DUMP into your own programs in any way you
choose. Happy dumping!

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1 Dump

L9

L3

L2

L1

AORG >7D1 4

MOVB @>9892,@S
SWP B @S 1
MOVB @> 9 8 8 2 ,@S
SWP B @S 1
DEC @S 1
L I 9,>1D99
L I 1 , PD
L I 2 , 36
B LWP @>69 28
L I 6,>1D99
MOV 6 ,@>83 56
B LWP @> 69 3 8
DATA 8

L I 19,>9499
MOV 19,@>7DEA
L I 9,>1D99
L I 1 , >9399
B LWP @>6924
L I 9 ,>1D9S
L I 1 , >9499
B LWP @>69 24
L I 9,>1E99
L I 1 , E2
L I 2 , 4
B LWP @> 69 28
MOV 6 ,@>8 3 56
B LWP @>6938
DATA 8
L I 19,59
DEC 19
I NE $-2

CLR 9

MOV 9 , 9
B LWP @ > 6 9 2 C
SRL 1 , 8
A I 1,-128
SLA 1 , 3
A I 1 ,1924
MOV 1 . 9
L I 1 , I N
L I 2 , 8
B LWP @>6939
L I 5,128
CLR 8

L I 6,128
CLR 3

CLR 4

CLR 7

MOV B @I N (3) ,7
SWP B 7

c 7 , 5
I LT L1

A 6 , 4
S 5 , 7
SWP B 7

MOVB 7,@IN(3)
I NC 3

SRA 6 , 1
JGT L2

SWP B 4

MOVB 4,@DO(8)
I NC 8
SRA 5 , 1
I GT L3

L I 9 . >1D95
L I 1 , >9999
B LWP @>6924
L I 9,>1E99
L I 1 , E1
L I 2 , 4
B LWP @>69 28
L I 6 , >1D99
MOV 6 ,@>8 3 5 6
B LWP @>69 38
DATA 8

L I 19,>9999
MOV 19 ,@> 7DEA
L I 9,>1D95
L I 1 , >9899
B LWP @>69 2 4
L I 9,>1E99
L I 1 . DO

Copyright © 1983 Emerald Valley Publishing Co.

GET MSB OF GROM ADDR INTO S1

GET LSB OF GROM ADDR

CORRECT FOR AUTO-INCREMENT

WRITE PAB TO VDP RAM

POINT TO DEVICE NAME LENGTH
DSRLNK TO OPEN PRINTER

PUT WRITE OP CODE IN PAB

PUT L ENGTH OF 4 IN PAB

PUT CODE FOR CARRIAGE RTN &

8/72' VERTICAL LINE SPACING
IN DATA BUFFER.

POINT TO DEVICE NAME LENGTH
DSRLNK-CHANGE VERT SPACING

DELAY

R9->NEXT SCREEN POSITION

PUT BYTE OF SCREEN RAM IN R1
SHIFT TO LSB OF R1

AD IUST FOR BASIC
* 8

PTRN ADDR = 1924+(CHAR 1-32) * 8

PUT PATTERN INTO IN
RS = BITI

R8 = OFFSET FOR DO
R6 = BYTE#

R3 = OFFSET FOR I N

R4 IS FOR BUILDING NEXT CHAR

R7 HOLDS BYTE BEING DECODED
PUT BYTE IN LSB OF R7
IS BIT ON ?

NO

YES, TURN OUTPUT BIT ON
TURN OFF INPUT BIT

PUT BYTE IN MSB OF R7

REWRITE TO IN

POINT TO NEXT INPUT BYTE
/ 2

DO NEXT BYTE, IF MOR E
PUT OUTPUT BYTE IN MSB OF R4
S TORE AT DO

POINT TO NEXT BYTE OF DO
/ 2

CONSTRUCT NEXT OUTPUT BYTE

PUT L ENGTH OF 4 IN PAB

PUT ESC K SEQ. IN DATA BUFF

POINT TO DEVICE NAME LENGTH
DSRLNK TO WRITE ESC K SEQ.

PUT L ENGTH OF 8 IN PAB

The Best of 99'er Volume 1 I6I

L4

I N

DO

MK

PD

CR

E1

S1

E2

Listing 1 Dump continued

L I

B LWP

MOV

B LWP

DATA

L I

DEC

I NE
I NC

C I

I GT
CZC

J NE
L I

L I

B LWP

L I

L I

L I

B LWP

MOV

B LWP

DATA

L I

MOV

IMP
L I

L I

B LWP

MOV

B LWP

DATA

L I

DEC

I NE
MOVB

SWP B

MOVB

S B

L I

DEC

I NE

B

BSS

B SS

DATA

DATA

2 , 8
@>69
6 ,@>
@>69
8

19,5
19

S-2

9

9,76
L4

@MK ,
L9

9 , >1
1 , >9
@>69
9 , >1
1 ,CR
2 , 2
@>69
6 ,@>
@>69
8

1 9 , >
10,®
L9

9 , >1
1 , >9
@>69
6 ,@>
@>69
8

19,5
19

S-2

@S1 ,
@S 1
@S 1 ,
@>8 3
19,5
19

$-2

* 1 1

8
8

>991
>991

28

8356

38

D95

299

24

E99

28

8356

38

9499
>7DEA

D99

199
24

8356

38

9

@>9C92

@>9C9 2
7C,@>837
9

2 , >1E99 ,

PUT DO INTO DATA BUFFER

POINT TO DEVICE NAME LENGTH

DSRLNK TO OUTPUT 8 CHARS

DELAY

POINT TO NEXT SCREEN POSITION

DONE WITH SCREEN YET?

YES

NO. ARE WE AT END OF LINE?

NO-DO NEXT SCREEN CHARACTER

YES-OPUTPUT CR LF

PUT LENGTH OF 2 IN PAB

PUT CR LF INTO DATA BUFFER

POINT TO DEVICE NAME LENGTH

DSRLNK TO OUTPUT CR LF

DO NEXT SCREEN CHARACTER

COME HERE WHEN FINISHED DUMP

PUT CLOSE OP CODE IN PAB

POINT TO DEVICE NAME LENGTH

DSRLNK TO CLOSE PRINTER

DELAY

RESTORE SAVED DATA TO GRMWA

C CLEAR ERROR BYTE FOR BASIC

DELAY

TEXT 'RS232.PA = 0

RETURN TO BASIC

AREA FOR SCREEN PATTERN

AREA FOR PRINTER PATTERN

MASK FOR EOL TEST

>FF99,>9999,>991 A
PAB DEFINITI ON

DA = 8. BA = 9699 .CR '

DEVICE NAME

CR LF

ESC K GRAPHICS SEQUENCE
SAVE AREA

CR AND ESC A VERT SPACING

DATA

DATA

BSS

DATA

END

>9D9A

>1B4B,>FF99
2

>9D1B,>4198

Listing 2 Screen Dump

162 The Best of 99'er Volume 1 Copyright© 1983 Emerald Valley Publishing Co.

Most kids aged 100 weeks to 100 years old are
fascinated by computers. And small kids are real
ly fascinated by a computer's video screen; it's

like a TV, but they can control it. When mine were just lear
ning the alphabet, they would wriggle in between Dad and
the computer, then push the "A" key so an "A" would
pop onto the screen. But the popping part was the problem.
A computer doesn't draw (write) letters on the video
screen—it "pops" up the whole letter at once. (Or at least
to our slow eyes it "pops" the whole letter at once.) But
kids can't just squeeze a crayon and have a letter pop onto
a piece of paper. They have to learn a series of hand mo
tions in order to make a recognizable "A" on a piece of
paper.

But just maybe the computer could make large letters by
popping short line segments in sequence onto the screen
if. . . . This was the start of my idea. The finished product
is in the program that follows, Preschool Block Letters. And
the intervening (gory) details are about data compaction.

Most home computers don't have point-addressable
graphics, but they do have character graphics that can pro
duce line segments at various angles. Thus, I thought, 1
would build the letters and numbers from short line

segments. Easier said than done. What I really needed to
build the letters and numbers was some help. Fortunately,
my wife, a teacher, retaught me the correct way to form
letters; I, in turn, taught the computer.

Then I had to store about 3500 pieces of information con
cerned with which line segments go where to form each let
ter and number. Each piece of information as a number
requires 4 to 8 bytes depending on the computer. But strings

EM

EM

EM

LCA

60

60

CA

I

I

AN

PD

WHO

d|u[a
s

IA

E

DO

WO

T

$

YO

HOO

WA

Copyright © 1983 Emerald Valley Publishing Co.

WO

AN

WI

PRESCHOOL
BLOCK

LETTERS
AND

DATA

COMPACTION
require only one byte for each stored character. And among
letters, numbers and punctuation marks, there are enough
different characters so that over 40 unique values can be
stored using only one byte per value.

Furthermore, strings can be very long, so this helps hold
down the overhead to identify each string. Thus, to change
the piece of information to the value of a valid ASCII
character, I just added a constant to each piece of infor
mation. The characters were thus grouped into strings, and
the strings stored in DATA statements. The SEG$ and ASC
functions retrieve the information as required. And that's
how computers came to draw rather than pop letters.
Note: Make sure ALPHA LOCK is DOWN.

EXPLANATION OF THE PROGRAM
Preschool Block Letters

Lines Nos.
130-230 Program initialization.
240-330 Scan keyboard looking for a letter or number

key.
340-360 Change ASCII code to number between 0 and

35.
Draw line segments of letter or number in an360-490

array.
560-590 Store geometry of "W" in array.
1700-2040 Define line segment characters used to make let

ters and numbers.
2050-2100 Input word from user.
2110-2320 Have little man hold up letter.
2330-2430 Get key pushed. If it matches letter that man is

holding, then draw letter.

30 RINT "PRESS A LETTER OR NUMBER KE

0

s|=
8

0

E

8

4

7

8

AR

Y =

The Best of 99'er Volume 1 165

P

i
n
i
n

a
,
i
x

t
-
i
n
c
u
t
o

r
x

o
o
s
c
m

m
o

p
s

o

r
O

K
O

.
5
2

f
x
_

C
O

«
-

I
x

r
«
.
o
a
.
t
o
i
n
a
s
»

*
»

i
n

u
>
o
a
.
w
q
"
N

-
-
c
u
t
o

i
n

o
c
u
t
o

o
o

t
o

-
-
c
u
r
x

S
O

I
H

I
f
t
r
U

l
O

"
f
t
.

C
O

g
q

i
N

Q
q

•
-

T
-

O
O

S
C

M
V

h
.
N

t
f

O
N

ft,
q

o
u

t
o

>
c
m

m
a

.
c
o

>
t
o

i
n

ft.
c
a

>
•

q
i
n

i
d

c
o

>
m

m
q

c
o

—
B

O
O

M

X
r
»

to
x

o
o

(
O

r
n

o

q
o

ft.
q

O
t
o

o
c
s

t
o

C
M

O
P

S
C

M

«
-

O
P

S
r
-

P

»
-
B
O
BO

C
O

•
ft,
.
.
.

C
O

b
4

C
B

O
P

S
0

0

•
Q

0
0

O
P

S
C

O

U
r
-

o
ps

c
o

—
C

O
O

X
I
O

O
P

S
C

O

0
0

C
O

i
n

o
p

s
o

a
O

i
x

r
x

oa
q

o
i-a

i
x

ft.
to

to
c
i

to
O

P
S

to
i
n

i
d

h
.

c
m

o
p

s
m

q
m

ft.
t
-

o
p

s
q

O
Q

n
I
H

V
Q

r
i
n

u
to

in
Q

o
o

p
s

to
^

o
B

a
O

•
-
£

•
O

q
C

O
o

>
o

-
-
>

q
v
o

o
"
>

-
o

-
-
>

-
o

>
•

o
>

o
e
n

a
s

o
•
-
>

•
o

e
n

s
o

>
c
m

i
n

u
.

q
•
-
>

c
m

o
>

o
•

•
ta

O
•
•

>
O

t
o

X
o

.
.

>
o

•
•

>
i
n

—
o

o
•
•

s
»

o
-
-
s
-
o

.
.

>
o

>
o

0
0

o
•
•

>
•

o
0

0
o

.
.

>
r
*

q
c
a

q
•
-

>
•

t
-

o
e
n

>
o

e
n

ta
-

o
o

>
o

C
M

—
o

C
O

S
»

o
o

o
i
s

•
•
x
o

c
n

>
>

o
e
n

>
o

e
n

>
•

o
e
n

>
o

r>
»

C
O

s
e
t

>
o

r
»

C
O

o
e
n

>
o

t
o

x
q

e
n

>
o

O
0

0
>

o
C

O
>

O
U

>
r

•
^

o
o

0
0

>
•

o
c
o

>
t
o

a
>

9
o

c
o

>
o

e
o

>
o

0
0

>
o

0
0

>
o

t
o

C
O

o
c
o

>
o

t
o

C
O

o
0

0
>

o
c
m

—
q

o
o

>
o

o
r
x

>
o

r
x

>
o

i
x

>
c
m

o
w

o
r>

»
>

o
r
»

>
<

o
o

o
s
o

r
>

.
s
»

o
r
o

.
>

o
r
x

>
o

i»
.

>
o

m
C

O
o

r
»

a
»

o
i
n

C
O

o
r
«

.
>

t
-

r
-

o
q

r«.
>

o
o

t
o

>
o

t
o

>
•

o
t
o

>
t
o

o
Q

o
t
o

>
G

(
0

>
I
O

r
>

D
O

(
D

>
0

(
0

>
0

t
o

>
•

o
t
o

>
o

q
C

O
G

I
D

>
S

q
C

O
o

t
o

>
c
m

o
u

q
t
o

>
o

o
m

s
>

o
i
n

S
»

o
i
n

>
q

o
P

S
o

i
n

>
o

i
n

>
(
D

i
o

s
o

t
n

>
o

t
n

>
o

i
n

>
o

i
n

>
o

t
o

X
O

i
n

S
r

o
t
o

X
o

i
n

>
t
o

o
o

q
i
n

>
o

o
q

>
o

q
>

0
"
J
>

m
o

ft.
o

q
t>

o
q

>
«

o
i
n

c
>

o
q

>
'
o

q
>

o
q

>
o

q
Sa

o
C

M
•
_

o
q

>
•

o
C

M
_

o
q

>>

q
o

p
s

q
q

>
o

o
t
o

>
•

o
t
o

>
O

IO
>

ID
o

p
o

t
o

>
o

n
>

o
9

0
0

M
>

s
n

>
s

t
o

>
o

t
o

>
T

"
r
"

o
o

«
>

r
T

-
u

o
t
o

i
n

o
p

u
q

t
o

>
o

O
C

M
>

o
C

M
E

»
o

c
m

>
r
x

•
^

0
0

o
C

M
>

G
M

>
i
o

n
D

S
N

>
e
n

>
e

C
M

>
O

a
C

M
•

>
a

C
M

O
M

O
C

M
>

C
M

O
w

o
C

M
>

to
o

ta
q

cm
>

o
O

T
-

>
o

•
^

>
S

r
>

C
O

C
M

a
-
"

o
•
^

>
S

r
>

l
D

N
9

S
r
>

O
r
>

0
•
^

>
o

i
x

«—
.
-
>

t
o

t
o

O
a

O
<

•-
>

t
o

o
a

o
T

*
>

h
r
«

9
r
>

0
o

o
>

o
o

>
O

O
>

C
O

t
o

a
s

o
o

>
O

O
>

t
0

r
-
S

O
O

>
O

O
:
>

O
o

>
o

r
.

o
•
•

>
•

c
o

q
o

P
S

o
o

>
q

o
P

S
o

o
>

o
o

c
m

—
q

o
>

o
«

•
a

•
•

>
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
•

a
a

r
x

a
e
n

a
C

O
a

a
>

a
a

a
a

>
,

,
«

a

»
•

a
a

i
x

0
0

C
O

•*!
r
-

•*
•
-
«

ft,
<

a
«

;
«

c
a

<
<

<
<

<
M

S
«

*
«

;
<

«
:
<

r
c
«

:
<

:
i
a

:
i
a

;
<

<
«

:
<

!
i
a

:
r
c
c
>

«
i

•
-
«

:
w

<
n

•<
r
»

•<
e
o

•<
«

:
<

"C
•<

*43
«t!

0
0

"IS
-
<

0
9

w
C

(O
<

•
-•a

;
s

<
<

«
:
>

(
<

<
>

«
•<

H
C

M
H

•
-
(
-
•

c
u

t->
r
*

t
i

"
1

—
ft,

[
-"

f
-

fr
-

t—
t
-

8
-«

t-a
a

t~
a

t-a
a

f
-
a

f
-
i
[
-
*

l
~

f
r
«

f
r
*

E
-
i
[
-
i
t
-
i
t
-
i
E

-
i
t
-
>

f
-
i
C

n
t->

•
•
t
-

w
i
-
r
»

t->
t
o

l->
C

O
f-

i
a

*-•
a

t
-
i

a
!
-
•
(
-
•

t->
t
-

r
»

t
-
l

•
H

M
i
H

I
O

H
•
•

l-H
"
h

h
h

H
H

H
h

w
;

to
w

;
•
-
«

:
ft,

rC
t
o

kC
.
-
<

a
,

•<
«

:
«

:
«

:
«

«
:

•
•
*

«
^

i
o

^
u

>
^

c
u

^
m

x
*

z
^

^
^

*
i
;
^

*
G

^
^

^
<

m
^

a
i
^

t
n

^
t
*

^
u

i
^

w
^

i
n

^
&

>
G

u
.
K

C
*

i
:
K

C
>

a
:
t
f
i
>

a
:
c
*

<
a

:
u

.
w

:
i
n

<
o

t
<

s
<

<
<

<
«

c
<

<
a

q
a

•
-
q

u
o

m
a

•
-
O

f
t
>

o
o

o
o

r
»

o
r
>

»
o

p
s
o

t
n

a
i
n

o
f
t
,
o

o
o

Q
O

O
O

O
O

o
o

o
o

c
n

o
c
o

o
c
o

a
r
H

o
q

o
c
o

o
t
o

o
o

o
o

o
o

o
o

t
o

o
o

o
c
i
o

i
n

o
c
o

o
^
o

a
o

o
a

o
o

o
o

o
o

o
o

O
O

O
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

e
n

o
«

-
C

M
m

q
i
n

t
o

r
x

o
o

c
>

o
•
J
"

C
M

t
o

q
i
n

t
o

r
x
e
o

c
n

o
r
-
c
M

t
o

q
t
n

t
o

r
x

0
0

o
>

O
f

C
M

t
o

q
i
n

t
o

r
*

.
o

o
e
n

o
r
-

C
M

t
o

q
i
n

t
o

r
»

o
o

o
n

o
e
n

o
o

o
o

o
o

o
o

o
o

•
^

•
J
-

T
-

t
"

T
-
t
r
»

r
r
,
T

,
T

-
W

«
«

«
N

«
«

C
M

C
M

C
M

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

q
q

q
q

q
q

q
q

q
q

i
n

o
i
n

o
o

0
0

V
P

S
O

e
n

s
t
o

•
-
>

t
o

o
c
u

a
•

a
o

0
0

»
-
«

a
a

a
i
n

t
o

O
S

C
M

e
n

O
U

a
a

a

-
t
o

T
"

o
a

t
x

V
K

r
•

t
o

t
o

•
-

>
i
n

o
c
u

r
n

u
o

e
n

s
e
o

.
.
c
o

q
t
o

'
P

S
t
o

i
n

ft)
C

O
C

O
—

O
C

M
•
^

r
«

.
C

M
—

»
C

D
V

P
S

C
M

-
ft.

t
o

e
n

>
q

o
c
u

c
m

r
x

i
d

*
-

•
o

a
o

o
•
•

c
o

t
o

t
o

P
S

q
i
n

ft,
o

o
e
n

x
q

q
C

O
K

.
t
o

X
i
n

V
P

S
t
o

-
O

t
o

c
o

s
»

t
o

o
ft.

t
o

r
x

q
C

M
-

ft.
c
o

e
n

c
o

*—
.
_

«
i
n

i
n

I
d

t
x

.
-
O

1
1

t
o

—
C

a
.

q
>

q
v

p
s

q
-

f
t
,

t
o

r
x

a
»

c
m

o
c
u

q
r
x

p
s

t
o

-

O
C

O
C

O
C

O
-
-

.
.

•
M

t
o

i
n

Q
C

O
.
.
Q

C
D

*
»

r
«

.
'

i
n

>
t
o

v
o

s
m

-
t>

3
t
o

t
o

>
•

*
-

o
f
t
,

i
n

r
x

p
s

q
-

f
t
.

o
o

r
x

c
o

•
•

e
n

s
r
x

q
O

•n
«

-
t
d

(-
O

S
r
»

.
t
o

>
C

M
V

p
s

t
o

-
Q

t
o

in
s
o

•
o

a
t
o

r
x

ft.
i
n

-
U

1
o

o
t
o

c
o

•
•

0
0

»
0

0
t
o

X
q

-
-
e
u

r
»

r
"

—
»

«
«

r
*

.
IX

.
>

r
-

v
o

s
r
x

.
O

I
D

«
>

r
-

u
.

r
x

r
x

o
t
o

_
Q

c
o

t
o

c
o

e
n

r
x

S
B

0
0

C
M

M
t
o

—
c
a

—
.

.
—

.
-

—
.

«
o

i»
»

0
0

»
O

V
P

S
C

O
e
n

X
t
o

tO
&

>
C

M
-

V
C

O
C

O
—

i
r
x

O
c
o

q
c
o

e
n

t
o

_
r
x

•
J
-

o
a

C
M

"
f
t
.

—
—

.
m

i
a

^
—

C
M

t
o

r
«

.
e
n

X
o

•
-
o

o
o

0
0

9
ID

C
M

>
IO

>
o

u
o

o
e
n

x
a

a
>

C
O

e
n

X
c
o

t
o

C
O

0
0

i
n

a
t
o

(
9

P
•
^

•
•

o
n

t
-

.
.

-
C

M
e
n

g
t
o

.
.

u
•
^

•
•
o

c
o

r
x

—
.

«
O

r
>

«
-

I
d

r
x

•
•
o

o
•
-

—
C

O
C

O
~

m
0

0
C

M
C

O
C

O
q

»
i
n

O
ft,

O
C

R
X

-
—

.
—

»
.
-
.

-
—

<
at

i
n

.
-

a
c
m

e
n

u
t
x

t
o

o
a

t
o

o
>

i
n

-
Q

t
o

-
-
o

^
•
•

x
r
x

r
x

o
a

r
x

c
m

o
r
x

t
o

s
q

O
P

S
o

o
o

—

t
"

«
J
-

C
M

-
—

—
•

r
-

w
»

*
v
»

q
•

-
M

t
o

o
o

o
t
o

i
n

P
e
n

i
n

o
u

t
o

.
O

i
n

-
-
i
d

t
-

e
n

—
t
o

t
o

P
t
o

t
o

o
r
x

C
M

_
t
o

o
P

S
O

r
x

c
o

c
o

-
-

,
—

C
M

O
c
o

P
S

•J
—

t
o

.
.

P
q

t
x

o
m

m
ft,

c
o

m
o

.
i
x

e
n

X
q

•
-
c
u

c
m

c
o

x
i
n

t
o

ft.
i
n

q
Q

t
o

a
—

B
C

M
o

P
S

o
t
o

o
»

—
-

*
^

^
O

«
-

—
S

3
4

A
L

£
C

M
.
-

u
.

a
a

a
l
A

t
D

U
l
O

q
O

t
x

i
n

O
a

r
x

0
0

s>
to

-
O

N
r
»

—
q

t
o

P
S

q
q

i
d

t
o

O
•
^

<
r
-

o
P

S
o

i
n

c
o

v
»

c
o

c
o

-
O

1
-1

v
»

a
U

M
«

•
^

o
a

o
"

t
-

t
o

i
n

o
t
o

t
o

o
t
o

i
n

o
u

i
x

r
x

•
_

C
M

-
-
f
t
.

t
o

t
o

x
t
o

i
n

P
t
o

q
ft.

o
.
-

X
O

.
.

>
o

q
t
o

P
S

_
—

r
-

o
o

o
P

S
>

,
«

a
g

«
«

o
e
n

a?
o

•
•

!-•
i
x

q
o

r
x

C
M

o
i
n

i
n

ft,
t
o

t
o

o
a

r
-

•
•

o
a

t
o

i
n

a
—

C
M

i
n

ft.
cm

q
o

o
•
•

a
—

O
a

.
.

a
>

«
o

t
o

X

w
m

a
w

u
t
o

^
1

o
e
n

t
-

c
o

t
o

x
o

o
P

o
e
n

s
>

q
q

x
t
-

•
>

ft,
O

C
M

-
~

—
P

S
O

S
—

»<
•<

v
t
o

S
Q

O
C

O
K

C
O

C
M

—
C

O
t
o

i
n

o
u

q
o

o
o

>
q

t
o

—
o

—
O

C
M

c
o

i
n

—
>

•
e
n

c
m

<
g

o
r
x

t-
i

i
x

a
—

p
a

r
x

c
m

i
n

c
u

t
o

r
x

x
i
n

c
m

x
o

•
>

O
U

C
M

O
I
d

U
l

—
~

«
O

Q
H

-
^
S

o
to

k
to

o
O

to
t
-

i
n

c
u

c
m

t
-

t
o

»
-~

i
n

»
^

»
^

»
j-

O
C

M
—

o
q

t
o

•
>

ft,
t
o

O
Q

o
i
n

t-a
i
n

o
ft.

i
n

c
m

i
n

x
i
n

o
c
u

c
m

c
m

o
I
d

t
o

•
>

i
d
g

o
p

s

O
o

—
•

r
O

O
o

q
t
-

q
o

p
c

q
c
m

q
—

q
o

c
u

t
o

—
o

t
o

q
>

o
i
n

o
ft.

>
>

tc
v
t3

T
O

U
h

)
«

l
Q

B
||

iM
O

t
-
c
o

X
X

C
M

II
O

C
M

a
^

o
t
o

t
-

t
o

o
o

t
o

o
ft,

o
t
o

>
o

q
>

t
o

t
o

x
t
o

o
c
u

q
o

x
q

o
o

s
q

t
o

X
o

r
x

to
••

>
u

t
o

o
O

t-
IO

n
(9

2
i
t

>
•

<
to

—
S

O
J
-

T
-

T
-

O
O

M
H

N
O

U
N

o
ft,

O
C

M
>

O
t
o

>
t
o

c
m

—
c
m

o
c
u

»
o

u
.

m
o

ft.
q

C
M

-
^

o
e
o

c
M

e
n

>
x
r
x
^
o

a

u
d

i
s
<

>
j

o
v
»

>
«

a
t

d
a

o
c
m

O
I
d

O
T

-
!-•

*
-

T
-

O
»J~

o
o

u
O

T
-

>
•

O
C

M
>

q
a—

X
T

-
o

e
u

t
O

a
o

>
O

a
t
o

o
O

m
T

"
X

O
0

0
T

-
0

0
>

—
C

O
C

M
-
-

t
-

O
O

c
O

O
O

<
-
)
(
d

ftl
||

P
S

«j-
X

«
«

»
-

to
o

a
O

O
1

-
O

C
M

—
O

o
ft,

o
o

>
o

•
y
-

s
»

q
o

—
o

O
f
t
,
i
x
.
r
x
r
-
c
M

o
o

—
r
x
T

-
o

a
m

o
—

O
N

O
N

>
m

0
0

M
X

II
c
o

c
o

—
c
o

X
(d

O
>

-
g

B
r
a

J
w

S
N

N
W

Z
i

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

r
x
a

t
O

a
M

,
,
,
,

a
a

a
tO

•
tO

a
C

9
a

.
.

—
4

•<
o

a
p

s
o

c
o

a
>

s
t
o

p
s

t
o

q
o

i
n

t
o

ft.

II
tl

tO
a

J
a

J
f-l

t
-

S
I
-

Q
l-i

||
||

||
—

S
3

<
«

«
<

<
<

<
<

<
<

«
:

<
<

<
<

•<
<

•<
<

<
<

tC
<

r
C

<
<

<
tn

r
C

tn
>

c
C

Q
r
C

«
<

J
:
»

a
:
«

:
•<

X
<

«
<

»
<

«
<

•
<

<
«

S
N

l
S

i
t
d

N
l
t
S

X
X

H
S

S
l
O

K
>

i
:
»

<
w

«
<

»
M

H
H

I
~

!-•
!-•

I—
!-•

!-•
I—

1
-

1—
!
-
•

t
-

t
-

!-•
!-•

!-•
1

-
!-•

H
h

H
H

h
H

H
«

H
i
n

H
U

H
H

H
H

>
t
-

a
1

-
a

H
M

H
I
O

H
B

H
H

H

O
l
d

O
O

I
K

<
O

U
U

U
U

t
i
l
U

O
W

U
t
-
N

M
B

U
a

l
i

<
<

<
<

•
<

«
:
<

<
<

«*:
•<

<
<

<
•«

<
<

<
»

i
:
«

i
:
a

j
:
a

a
:
«

j
:
«

:
t
o

<
t
o

<
Q

«
j
:
«

c
«

*
:
>

<
c
o

«
*

:
t
o

<
«

»
s
:
c
M

i
a

:
t
D

<
K

<
<

r
c

ft,O
S

U
P

S
O

O
O

ft.g
g

O
S

P
S

O
S

P
S

ft.O
S

g
?

^
^
<

P
S

O
>

O
>

a
a

o
o

a
o

o
o

o
a

O
a

Q
a

Q
Q

Q
Q

a
O

a
O

a
Q

O
O

O
O

o
a

c
M

O
t
o

o
u

o
a

o
o

r
x
o

t
o

o
K

O
v
-
o

t
o

o
x
o

a
o

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

^
O

O
o

o
o

o
o

o
o

o
o

o
o

O
O

O
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

e
o

e
n

O
T

-
C

M
i
o

q
i
n

t
o

i
x
o

o
c
n

o
^
c
M

i
o

q
t
n

t
o

r
x
o

o
e
n

o
T

"
C

M
t
o

q
i
n

t
o

r
x

c
o

e
n

o
T

-
c
m

t
o

q
i
n

t
o

r
x

c
o

ct>
o

t
-

c
m

t
o

q
i
n

t
o

r
x
e
o

e
n

o
•
^

C
M

t
o

q
i
n

t
o

ix
.

o
o

t
o

t
o

t
o

t
o

c
o

t
o

t
o

t
o

t
o

I
X

I
X

r
x

r
x

r
«

.
r
x

r
x

r
*

.
r
x

r
x

o
o

c
o

c
o

o
o

c
o

o
o

o
o

c
o

o
o

o
o

e
n

e
n

e
n

e
n

e
n

o
n

e
n

e
n

e
n

Q
>

5C
K

O
s

t
o

Q
>

C
O

N
O

«
:

o
c
u

-

0
3

I
d

I
d

0
0

»
«

/»
<

A
w

4
-
1

ft.
X

>
-

C
O

C
O

l£
*

1
-

o
l-a

I
d

I
d

g
g

l-a
P

S
X

o
a

«
;

«
«

—
I
d

ft,
I
d

—
o

-
J

I
-
.

S
X

>
•

a
v
»

t
o

l-a
fr

-
«

«
p

—
t
o

<
I
d

C
t

s
.
.

I
d

C
M

C
M

n
J

I
d

g
Q

C
O

—
g

>
-

X
O

a
a

s
—

O
J

O
•<

O
-
J

O
I
d

a
a

a
a

1
-

X
o

p
s

.
.

O
o

x
c
a

c
c

3
2

e
e

c
o

p
c

c
o

q
a—

q
a

.
0

0
—

o
—

>
*

o
••

^
C

O

o
o

o
n

c
o

n
e
x
;

ft,
I
d

S
>

<
—

X
C

0
X

X
X

X
X

X
(
A

i
d

O
O

r
-
q

O
O

O
O

I
d

—
I
d

X
Q

«
/>

-
t
A

X
q

X
X

K
K

K
K

9

O
S

S
r
C

O
M

t
-

1
-

C
O

a
o

I
d

C
O

X
to

+
q

+
+

+
+

+
-
f

t
-
o

o
C

O
v
-
t
M

O
O

C
O

x
C

O
f
t
.

<
1

-
I
d

g
K

g
a

s
o

g
«

d
-
—

>
O

T
-
t
o

t
o

a
j
-
c
»

i
c
C

i
n

r
x

o

G
O

O
r
t
O

N
U

K
S

a
X

<
X

O
—

.
«

+
o

<
X

M
X

X
X

X
X

X
r
H

M
M

O

0
0

C
M

C
M

O
O

O
ft.

X
—

a
d

C
O

—
•

C
O

T
-

—
K

t
O

X
X

K
X

K
X

q
t
O

C
M

C
M

C
M

o
o

o
t
-

q
r
-

U
l
A

Q
h

I
d

t
-

C
O

I
d

g
-

O
C

M
C

M
C

0
O

O
X

«
a

J
S

>
X

i
d

c
o

a
I
d

O
j
a

I
d

a
d

i
n

a
d

O
O

O
O

a
d

I
d

g
g

O

•
j-

o
o

o
q

r
-

X
O

ft.
X

a
x

a
d

>
-

t
-

•_
!>

-•
-
>

a
>

i
>

-
i
>

-
i
>

a
>

-
l
g

l
d

l
d

l
d

l-i

O
C

M
T

-
0

0
O

O
H

B
Z

B
I
A

I
d

t
-

O
S

K
I
O

K
K

K
X

X
X

t
d

X
X

X

a
-

o
o

o
q

r
x

«
•
_

ftl
»

a
s

i
-

S>
o

—
a

—

o
q

^
o

o
o

c
M

t
d

g
a

-
i

fr
i

ft.
9

H
*

ft,
O

S
t
-
i

X
II

>
a

|
-
.
K

K
X

K
K

X
K

K
f
-
>

0
II

>
-

T
-
o

o
o

c
M

e
n

t
-

—
-
j

C
>

ft.
O

U
Z

<
<

>
a

<
<

<
<

<
<

•<
<

<
—

-
t
j

0
0

IX
C

O
O

>
•

«
*

o

O
t
f
r
«

f
8

«
H

«
«

-i
o

<
-

>
-

-
J

~
I
d

T
-

X
<

j
T

-
x
x
x
x
x
x
x
x
«

N
>

-
«

m
i

q
c
o

•<
a-i

0
0

CM
O

O
O

CM
C

O
Id

••
fe

>
-

a
X

a
a

-
J

t
o

IL
o

—
X

•
j

Id
H

O
O

O
O

O
O

O
O

t
O

I
d

II
V

t
d

1
t
O

a
d

l
d

X
o

a
a

a
a

a
a

•
J

I
d

t
o

O
T

-
i
n

o
x

x
—

X
t
d

O
X

O
K

t
a

-
X

X
O

a
S

a
S

I
I
X

t
d

t
d

t
d

t
d

I
d

O
K

C
M

t_
g

a
(-*

H
-

a
l-a

a
—

«
-•

c
m

i
n

r
x

c
o

t
o

c
m

T
-

C
M

X
—

a
O

S
O

t
d

t
d

X
t
d

O
O

O
a

*
.<

<
<

<
<

g
«

«
;

X
g

1
-

•
g

O
a

J
t
o

II
II

J
l

II
II

II
II

•J
r
-

I
-

1
-

^
«

J
^
)
a

d
»

J
>

j
N

j
>

J
K

^
X

X
I
I
X

O
t->

t
-

o
1

-
fr

-
t-

i
l-a

f
-

fr
-

s
-

a
s

o
—

I
d

Q
—

o
ftl

-4
II

O
T

-
IO

a
J

O
g

»
d

K
_

J
-

X
a

s
X

0
S

_
1

-
J
—

1
.-

J
-
J
.-

1
.-

J
.-

1
n

J
C

d
M

c
O

K
X

X
t
-

Q

<
K

i
:
i
4

:
i
4

:
<

i
<

i
d

K
•z

O
S

-
J

O
S

a
s

t
-

g
«

*
-
J

X
X

X
X

>
«

<
>

*
0

<
X

t
d

O
t
d

O
<

<
»

<
<

>
<

i
<

<
>

<
f
t
i
<

f
t
i
f
t
.
t
d

T
-
O

O
t
d

t
d

o
g

Q
Q

Q
Q

Q
Q

X
f
t
,

ft.
*

Z
ft,

—
O

o
a

x
X

O
S

a
s

X
s

»
f
t
,
U

X
g

f
t
.
g

f
t
.
O

O
O

O
O

O
O

O
—

O
—

—
X

c
o

O
b

u
g

g
O

Id

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

e
n

o
T

-
c
M

t
o

q
i
n

t
o

r
x

c
o

e
n

o
a

j
-
c
M

t
o

q
i
n

t
o

r
x
o

o
e
n

o
r
-

C
M

t
o

q
i
n

c
o

r
x
o

o
c
n

o
v
-
c
M

t
o

q
i
n

t
o

i
x
o

o
o

i
o

a
^

C
M

t
O

e
n

e
n

o
o

o
o

o
o

o
o

o
o

r
-

^
t
-

T
-

T
-

T
-

T
-

T
-

T
"

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

t
O

t
O

t
O

I
O

t
O

t
O

t
O

t
O

t
O

t
O

q
q

q
q

T
-

T
-

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

a
a

e
n

t
o

X
t
o

II
a

s

O
>

•
C

O
C

M
•
—

C
M

II
a

s

r
-

>
•

C
O

T
-

X
r
-

II
a

s

C
M

>
a

.
.

0
0

o
—

a
a

a
o

II
a

s
t
o

>
•

t
o

"
X

q
.
-

X
o

•-
X

o
V

o
q

>
t
o

•
•

—
q

—
o

•
•

—
a

—
"

o
i
n

>
r
x

e
n

x
q

e
n

X
r
-

o
n

X
C

M
o

t
o

>
•

t
x

o
o

—
i
n

C
O

—
r
-

C
O

—
t
o

e
n

o
r
x

>
c
o

i
x

x
i
n

r
x

X
C

M
I
X

X
q

C
O

o
c
o

—
e
o

t
o

—
i
n

t
o

-
^

C
M

t
O

—
i
n

I
X

o
e
n

x
e
n

i
n

x
t
o

i
n

X
t
o

i
n

x
a

a
.

t
o

t
o

o
•

o
e
n

q
-
t
o

q
•
—

.
t
o

q
—

q
•
-
>

I
X

i
n

o
a

a
a

a
a

a
a

a
a

.
a

-
a

•
•

t
o

x
t
o

t
o

X
q

t
o

x
q

•
•

>
0

0
q

o
a—

a—
a

K
)

T
~

>
O

O
>

T
~

ft.
ft,

=
ft.

a
a

0
0

T
-

a
-
i
d

•
•

c
m

—
»

r
x

a
C

M
a

—
•

q
C

M
—

q
e
n

>
e
n

t
o

o
C

O
O

C
O

O
O

O
T

-
O

C
O

O
ft.

ft,
C

O
ft.

M
r
-

O
O

C
M

-
c
u

"
T

-
x

r
x

v
t
-

•
-

X
x

m
t
-

x
q

c
o

>
•
•

C
M

o
C

M
C

M
O

O
O

T
-
O

0
0

O
T

-
r
-
O

O
O

O
^

O
O

T
-
o

-
O

"
O

—
i
x

V
O

•
•

—
—

i
n

o
—

q
r
x

>
.
-

T
-

o
q

o
q

t
o

o
o

r
-
o

o
o

o
o

e
o

c
o

o
c
o

r
-

O
O

C
M

-
f
t
.

i
n

"
X

t
o

v
-
-
e
n

x
x

i
n

•
-

X
q

t
o

>
•

-
o

c
u

q
q

o
o

o
cm

o
q

o
r
-

r
-

o
o

o
o

o
o

o
r
-
o

•
o

a
i
n

•
•

—
t
o

II
-
c
o

—
•
—

in
•
•

—
q

i
n

>
•
•

o
ft.

C
M

O
C

M
o

t
o

o
c
m

o
q

o
O

0
0

0
0

O
a

0
0

T
-

o
o

q
e
n

x
9

e
n

x
t
o

l
i
e
n

t
x
x
x
q

e
n

x
m

q
u

e
n

o
c
u

t
o

0
0

0
0

O
tO

O
C

M
O

q
O

r
-
T

-
O

O
O

f
t
.

O
O

0
0

T
-
O

o
o

—
q

c
o

«
-.

c
m

11
o

o
to

—
—

q
o

o
—

t
o

t
o

u
0

0
o

ft,
i
n

t
o

r
-
o

r
-

o
.

o
o

c
m

o
q

O
O

0
0

0
0

O
ft.

0
0

f
o

o
q

ix
,

IO
t
o

IX
3

3
C

M
A

r
x
i
n

x
x
t
o

r
x
x
r
a

.
c
M

U
r
x

o
ft.

5
-

Q
0

0
O

C
O

a
O

tO
O

q
O

C
M

O
T

-
T

-
O

O
O

O
G

O
C

O
r
O

tO
C

O
tO

C
D

»-»
C

M
a

t
o

q
«

a
—

t
o

t
o

—
e
o

«
-

o
t
o

o
ft,

O
«

-
T

-
o

o
o

o
o

o
q

O
C

M
O

O
C

O
0

0
O

O
C

O
r
-

o
o

q
•la; n

c
o

c
m

i
n

x
r
-

A
i
n

t
o

x
x
c
M

i
n

x
e
n

o
o

m
o

c
u

o
o

-
q

o
q

o
o

o
o

q
o

cm
o

«
-
t
-
o

o
o

o
o

o
o

o
r
-
o

T
C

O
C

M
q

—
a—

«»•
q

c
m

—
.

—
c
m

q
—

q
q

o
a

q
o

ft.
i
n

l-
i

O
c
m

c
m

o
t
o

o
o

o
o

q
o

c
m

o
o

o
o

o
o

o
o

o
o

t
-

o
O

C
O

M
W

r
w

a
r

M
O

r
X

X
r
-
t
o

x
t
o

t
o

e
a

i
o

o
ft,

I
X

—
C

M
O

C
M

O
O

O
O

C
O

O
r
-

O
r
-

T
-

O
O

O
O

S
O

O
O

r
O

C
M

C
O

T
-

C
M

—
O

C
-
M

O
—

—
T

-
C

M
—

C
M

c
m

o
a

C
M

•
O

a
C

U
a

T
-

0
0

X
q

q
o

O
O

IO
O

O
0

0
O

T
-

O
O

0
0

0
0

O
O

a
C

O
r

o
O

C
O

r
-

C
O

O
a—

x
O

•
-
T

-
•
-

X
X

O
r
-

X
T

-
r
-

p
a

r
-

"
O

||
ft.

a
s

C
M

v
»

•<
T

-
O

r
-
t
O

O
O

O
C

O
O

T
-
O

f
t
.
r
-
O

f
t
.
O

O
f
t
.
O

O
O

O
v
-
0

O
C

O
o

o
—

o
"
O

•
•

•
—

—
o

o
—

1
9

o
o

o
o

•
•
o

l|
o

u
X

I
d

r
-

Q
X

C
O

C
O

O
O

O
O

O
O

0
0

O
r
-
f
t
.
O

C
0

f
t
.
O

O
f
t
.
C

0
r
-

o
o

0
0

a
a

a
«

a
a

•
-
a

e
n

a
X

a
a

a
a

a
a

a
e
n

a
||

a
K

a
s

tl
O

O
O

g
0

0
a

-
i

C
O

||
X

O
o

a
s

•tj
KJJ

<
as;

<
kC

•
•

<
r
x

<
x

<
«

*
.*

<
<

«*;
<

IX
<

IIJ
3

L
K

c
u

t-a
q

^
h

«
o

i
<

<
i
<

i
<

<
<

«
i
:
i
<

«
:
i
«

;
«

*
!
<

<
<

<
<

<
w

;
«

«
!
i
c
i
:
«

j
:
i
<

i
<

«
c
:

<
<

»
;
<

M
:
<

n
H

;
i
n

«
i
;
i
f
i
<

>
)
:
>

]
:
<

<
<

<
i
A

M
;

Jl.||
<

K
H

u
o

u
«

«
u

u
>

c
>

c
<

<
>

(
<

<
<

>
t
!
<

>
(
i
«

M
:
>

«
i
<

H
i
i
«

i
«

a
«

>
i
:
>

i
:
>

t
:
a

:
i
«

o
t
a

o
o

o
o

e
n

a
q

o
—

Q
Q

O
Q

O
O

O
q

O
II

O
K

c
O

K
b

a
X

O
g

X
Q

o
o

o
o

o
o

o
o

o
a

o
o

o
o

a
a

Q
o

o
o

o
Q

o
o

o
o

o
o

o
O

o
o

o
o

O
O

O
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
r
-

c
m

t
o

q
i
n

c
o

r
x

0
0

e
n

o
t
-

c
m

t
o

q
i
n

t
o

I
X

o
o

e
n

o
•
J
-

C
M

t
o

q
i
n

t
o

r
x
o

o
e
n

o
r
-
c
M

t
o

q
i
n

t
o

i
x
c
o

c
n

o
r
-
C

M
t
o

q
i
n

t
o

r
x

i
n

m
i
n

i
n

i
n

i
n

i
n

i
n

i
n

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

5bvO
Qq>

HDMEKORH HELPER

FRACTIONS
Homework Helper: Students do
their class assignments on paper
in the usual way. . . . and then
can use the Homework Helper to
quickly correct their assignments.

3.(a>

The Homework Helper series is designed to quickly
give answers to students checking their
assignments. It is not meant to be a tutorial; it does

not teach concepts nor quiz the student. Rather, it gives
the answers to the problems without showing all the in
termediate steps.

The students are encouraged to do their class
assignments on paper in the usual way, writing the pro
blems down and working the problems step-by-step.
Then, they can use the Homework Helper to correct their
assignments quickly.

Fractions

This program, involving fractions, is for correcting the
homework problems of elementary school math students
(4th, 5th, and 6th graders). Written in TI BASIC, it
employs color graphics and sound, and is interactive.
There are seven sections, each introduced with a simple
color representation of what that section is doing with
fractions. Musical phrases from Mendelssohn, Handel,
and Beethoven are played at the same time.

1. Equivalence. Two fractions are of the form

A = £.
B D

Any one of the four positions can be the unknown. The
user designates the unknown, and inputs the three given
values. The computer finds the unknown and prints the
equivalent fractions. A student can also use this section
to find equivalent ratios.

2. Simplification. The user inputs a numerator and a
denominator. The computer simplifies (reduces) the frac
tion or tells if it cannot be simplified.

3. Multiplication. The user designates the number of
fractions to be multiplied, then enters the numerator and
denominator for each one. The computer multiplies them
and simplifies the final fraction.

4. Division. Two fraction are entered; the first is then
divided by the second, and the answer is simplified.

5. Addition—Like Denominators. The user specifies
the number of fractions to be added, the common
denominator and then enters the numerators. The com
puter adds the numbers and simplifies the result.

6. Addition—Unlike Denominators. This section may
be used to add fractions with like or unlike denominators.
The user specifies the number of fractions up to five
(which should be sufficient for elementary school
mathematics), and then inputs the numerator and
denominator of each. The computer adds the fractions
and simplifies the result. A student can also use either
Section 5 or 6 for subtraction problems by entering a
negative numerator.

168 The Best of 99'er Volume 1

7. Comparisons. As many as ten fractions may be com
pared on a number line. The user enters the number of
fractions to be compared (up to ten), and then enters the
numerator and denominator of each. The computer then
arranges the fractions from the smallest to the largest and
prints them.

To stop any section of the program press SHIFT C.
To restart, enter RUN.

Simplifying Fractions
One basic technique of simplifying fractions is to start

with the numerator as the first factor and see if it can
be divided evenly into the denominator. If it can, both
numerator and denominator are divided by that factor
immediately to yield the simplified fraction. If the
denominator cannot be evenly divided, the factor is
reduced by one, and the numerator and denominator are
tested to see if they are divisible by the new factor.

In each successive test, the factor is reduced by one.
When both numerator and denominator can finally be
evenly divided by the factor, that factor is the greatest
common factor. The numerator and denominator are

then divided by this factor to yield the reduced fraction
For larger numbers, the technique can take a lot of

time. In this program, the algorithm has been made more
efficient by first checking to see which is smaller, the
numerator or the denominator. In improper fractions the
denominator will be smaller. The starting factor, PLIM,
is set equal to the smaller number (Statements 1380 to
1410).

Another efficiency technique is not to test all even fac
tors if either numerator or denominator is an odd

number. This technique cuts the search time in half. In
Statements 1420 to 1450 the step size, S, is set equal to
-2 if either the numerator or the denominator is odd;
S is set equal to - 1 if both numerator and denominator
are even numbers.

The simplifying algorithm is implemented with a FOR-
NEXT loop. The starting trial factor is reduced by the
step size, S, to a lower limit of 2 in line 1460.

Within the loop, Statements 1460 to 1510 set A = NS/P
(where NS is the numerator) and set B = DS/P (where DS
is the denominator). Then they check to see if
A = INT(A); if equal, then B = INT(B) is checked. If both
statements are true, the simplified fraction is A/B. Other
wise, P is incremented by S, and the loop continues. If
the lower limit is reached without finding a successful fac
tor, the user is notified that the fraction cannot be
simplified (Statements 1520-1540).

When combining several fractions in multiplication or
addition, another efficiency technique sets the starting

Copyright © 1983 Emerald Valley Publishing Co.

factor equal to the largest denominator of the orginal
fractions (Statements 2250-2340). The common denom
inator may be much larger than the original
denominators, but the largest factor will always be the
largest original denominator.
Comparisons

The schoolroom technique for comparing fractions is
to find the common denominator and then compare the
adjusted numerators. This technique is far too slow for
computers, especially when comparing many fractions
and/or fractions with large numbers. A very fast techni
que which achieves the same result is to compute and
compare the decimal equivalents of the fractions.

EXPLANATION OF THE PROGRAM

Homework Helper: Fractions
Line Nos.
160-170 Sets T and T2 for the time in the music

statements.

180-250 Defines characters and colors in four different
character sets for use in graphics.

260-390 Prints title screen,"HOMEWORK
HELPER".

410-550 Prints "Fractions" and blinks an outline of
asterisks around it.

580-640 Prints the menu screen for the seven sections
of the program.

670-730 The user presses a key to choose which of the
7 sections is wanted, and the computer
branches to that section.

749-890 Prints the screen for Equivalence.
900-960 Asks for the unknown, A,B,C, or D.
970-1190 Depending on which is the unknown, asks for

the given values and calculates the unknown.
If the unknown is not a whole number, it will
be rounded to two decimal places.

1200-1230 Prints the equivalent fractions.
1240-1310 Asks if there is another problem or to stop. If

"2" is pressed, the menu screen is returned.
1320-1350 Prints screen for Simplifying.
1360-1370 Asks for the fraction.
1460-1540 Simplifies and prints the result.
1550-1620 Continue, or go to menu screen.
1530-1650 Prints screen for Multiplying.
1660-1710 Asks for the fractions.
1720-1770 Multiplies the fractions.
1780-1800 Prints the problem and the simplified answer.
1810-1880 Continue, or go to menu screen.
1890-1930 Subroutine for printing the problem.

EM

EM

EM

EM

EM

EM

EM

EM

EM

C

C

C

C

C

D

R

FO

AL

00

15
L

L

L

L

L

L

L

L

L

L

A

TO

0

CH

CO

CH

CO

CH

CO

CH

CO

CL

CO

72

R

H|0|M|E|W|0
F

R

R

R

9
1

TK>

10

Copyright © 1983 Emerald Valley Publishing Co.

2.75

As the fractions are read in, the numerator NNN (I)
is divided by the denominator DD (I) and stored as a
decimal fraction in two identical arrays, FRC (I) and FRD
(1) (Statements 5170-5230). A standard sort routine sorts
the first array FRC from the smallest to the largest. The
subscripts are changed as the decimal fractions are ar
ranged in order (Statements 5250-5330).

The first element of FRC is compared with each ele
ment of the second array, FRD. When a match is made,
the subscript value J is used to retrieve the numerator and
denominator of the corresponding fraction for printing.
The process is repeated in order for each element in the
FRC array (Statements 5340-5390). ®

1940-2150
2160-2360

2370-2340
2440-2470
2480-2490

2500-2540
2550-2620
2630-2680

2690-2760
2770-2820

2830-2990
2910-2960

2970-3090

3100-3150

3160-3230
3240-4090
4100-5020
5030-5120
5130-5230

5240-5330

5340-5390
5400-5470
5480-5670

Subroutine for simplifying and printing.
Subroutine for sorting and simplifying. These
three subroutines are used for simplifying and
printing in other sections of the program also.
Prints screen for Dividing.
Asks for the two fractions.
Performs division.
Prints problem and simplified solution.
Continue, or go to menu screen.
Prints screen for Adding with like
denominators.
Asks for fractions and adds the numerators.
Prints the problem and the simplified sum.
Continue, or go to menu screen.
Prints screen for Adding with unlike
denominators.
Asks for the fractions and calculates a com
mon denominator.
Adds the adjusted numerators and prints the
problem and the simplified result.
Continue, or go to menu screen.
Sound subroutines musical phrases.
Draws color graphics for each title screen.
Prints screen for Comparisons.
Asks for fractions and converts fractions to
decimals.
Sorts fractions from the smallest to the
largest.
Prints fractions in order.
Continue, or go to menu screen.
Music and graphics for Comparisons.

To stop the program, press SHIFT C (BREAK). For the stu
dent's convenience, at the end of each problem he can choose
to do another problem of the same type or go to the menu screen
and do a problem of a different type.

L

H

Y

7

R

L

H

Y

H

V

V

H

7

R

L

H

Y

1

CO

C|0
I

The Best of 99'er Volume 1 169

c
-

Q
«

*
t
o

o
«

:
h

g

»<
~

g

«
g

w
in

O
X

o
g

g
h

~

n
ii

o
a

t
-

o
a

i
-

i
-

to
||

n
to

to

a
g

a
a

a
o

g
p

g
c
M

o
a

B
r=

"

<
—

•
g

~

II
C

U
A

ft.
—

ft.

fti
Q

o
g

I
-

—
-
to

Q
Q

I
-

g
a

j
ft.

I
-

<
fti

t
o

r
-
N

W
H

t
o

t
o

x
o

fti

"
«

fti
fti

O
V

l-«
X

Q
"
<

•
-•a

:
—

g
M

O
Q

g
g

a
ft.

t
-

g
q

X
x

—
-
t
o

o
o

S
Q

~w
g~

ft.
a

.
>

-
p

t
n

fti
i
n

<
o

t-a
o

«
to

in
o

t
-

x

M
H

q
>

)
w

s
a

t
-

O
h

O
—

~
U

t
a

t
a

—

fti
O

V
K

.
B

—
—

"
H

e
n

Q
~

ft.
>

»
a

o
u

s
t
o

•<
o

h
o

h
—

t
o

3*
—

M
H

O
a

J
t
O

Q
C

Q
a

j
-
g

t-«
Q

O
g

ft.
—

M
»

<
A

O
r
i
n

r
||

—
a

V
H

W
H

l
l
f
t
A

B
.

X
Q

g

ft.
O

x
"
O

B
.

M
W

H
-
n

h
h

t
-

p
a

o
a

h
I
-

V
II

a
-

H
a

I
-

X
g

II
II

ft

tO
—

tO
fti

ft.
I

X
g to

«c
to

oa
h.

g
fti

o
g

g
g

>
J
W

M
>-.

o
x
o

g
••

a
a

a
g

a
a

h
<

-<
-

h
h

h
g

a
a

g
g

-»
to

x
.-»

o
x

o
g

n
g

a
n

g
o

f
e
—

g
<

q
S

Q
x

—
—

»«
—

..
—

—
»a

>
jh

.
h

—
m

o
o

.
B

~
a

.
o

.
y

II
ii

ce
ii

ii
!«!

»
m

»
.

»
^
T

5
Z

T
"h

2
.

«
—

•»•
—

«_
L

J
t-

S
^

-^
z
:

P
X

P
g

g
f
t
.
a

j
P

.
-
J

[|
ft.

ft.
I
I
Q

||
ft.

l
l
f
t
.M

X
f
t
.O

X
x
x

<
f
t
.
f
t
.
w

;
o

f
t
.
o

x
O

f
t
O

—
—

—
ft.Q

ft.c
o

-
—

c
o

ft<
—

oa
—

g
c
u

—
O

<
x
..-

ft.ft,o
—

—
o

p
-
q

p
."

tO
C

O
C

fa
X

—
f
t
.f

t
,X

||
|
|
X

||
||

X
—

c
o

to
—

—
.
j

H
g

x
X

-
H

»
-

h
~

x

w
»

w
to

r
x

c
o

o
o

r
-
c
m

to
^

m
to

i
x

c
o

o
o

t
-
t
x
i

to
«

j
in

q
q

q
q

q
q

q
q

q
q

i
n

i
B

w
i
n

i
n

i
n

O
Q

g
O

X
g

g
f
t
l
g

Q
Q

g
Q

f
t
l
X

O
O

X
X

»
g

ft.ft.»
<

0
ft.0

0
X

ft1
X

ftlft..-
»

0
>

J
0

II
O

Q
-
h

B
.
-
-
Z

h
H

l
i
.
h

H
Z

l
l
.
O

O
f
l
.
.

ftO
—

—
O

O
—

Q
h

f
t
.g

f
t
.X

-
ft.Q

C
L

.ft,«
<

-
oa

n
o

s
r

o
o

o
o

o
i
n

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
q

m
t
o

t
x

e
o

e
n

o
t
-

i
i

q
i
n

t
o

r
x

o
o

e
n

o
t
-

c
m

in
m

to
to

to
to

to
to

to
to

i
D

t
o

i
o

r
s
t
s
i
M

M
s
N

r
s
M

s
f
s
c
a

c
a

c
a

w
c
a

m
t
o

i
x
o

o
c
n

c
n

o
a

-
r
t
t
n

a
j
m

t
o

t
x
c
o

o
o

T
-
C

M
t
o

'3
'

o
o

c
o

o
o

c
o

o
o

o
o

o
e
n

c
n

e
n

e
n

e
n

c
n

e
n

e
n

e
n

o
o

o
o

i
C

M
C

M
C

M
C

M
C

M

-
r
x

i
n

a
o

t
o

•
^

C
O

C
O

o
-

-
t
o

w
»

,

a
X

<
*

0
0

t
o

-
X

g
c
o

O
C

M
t
x

t
o

e
n

•
•

fti
X

H
-

-
-
T

"
a

•
J

o
•*:

••
o

e
n

t
o

-
*

>
•

o
a

H
g

t
o

t
o

*
-

t
o

g
a

O

g
s

—
o

~
g

~
g

~
-J

-
tO

O
fti

fti
Q

fti
fti

C
O

H
a

O
O

O
•
^

-
O

-
a

^
O

II
•
-

g
H

a
—

C
M

C_>
Q

U
Z

t
o

r
x

r
x

r
x

-
t
o

o
K

»
-

fti
o

o
o

o
-

—
.

~
—

.
.

o
O

C
O

C
O

^
g

a
a

M
O

-
o

0
0

o
t
-

m
X

O
tO

C
M

0
0

O
n

a
O

Q
—

.
<

O
Q

—
<

n
Q

~
<

a
u

—
.

.
i

-
x

a
o

•
—

fti
H

H
fti

—
C

O
t
a

g
g

g
r
x

-
—

o
-
•
^

—
H

-
O

O
T

-
*

-
-

C
M

C
M

C
M

C
M

•<
l
o

O
O

H
Z

M
T

"
_

3
ft.

a-1
a

t*S
a-1

a->
u

fti
fti

u
o

o
r
x

t
o

•
J

o
i
n

-
•
j

•?
"

«
^

»
—

•
—

o
a

a
a

a
X

a
a

a
fti

a
a

<
fti

a
a

a
fti

1
-
-
f
t
.

H
<

fti
IO

-
<

—
ft.

X
—

g
K

—
X

X
X

•
»

r
x

-
o

t
-

r
x

-
C

O
II

II
II

•
J
-

II
II

II
a

?
a

II
II

II
T

-
II

II
II

T
-

*
l«

H
X

T
~

C
M

>
a

J
—

Q
a-1

3
<

O
H

H
H

|
O

O
-

^
•«

a
-
t
o

>
»

—
g

g
g

g
<

o
a

O
Q

«
<

O
Q

«
<

«
Q

«
<

n
u

«
1

T
-
W

M
H

-
—

ft,
H

—
I

|
ft]

X
fti

h
t
o

i
n

C
M

-
-

i
n

-
-

fti
fti

fti
fti

*
c

o
a

o
C

k
g

a
g

a-J
>

Q
Q

s
O

o
e
n

m
o

X
X

X
X

X
X

x
x
x
m

—
x

x
x

i
n

—
x
x
x
i
n

—
x
x
x

i
n

—

X
fti

C
O

g
—

Q
O

O
«

J
in

—
Q

in
-~

O
H

H
H

h
W

fti
fti

fti
O

H
fti

I
d

fti
O

H
fti

fti
U

O
H

C
O

C
O

-
II

X
X

~
Q

-
tO

Q
-
J

X
H

H
H

O
g

B
O

<

Q
<

<
Q

O
O

O
V

V
A

O
X

c
n

r
x
~

c
o

f
t
i
f
t
i
x
>

<
M

O
c
o

r
x

<
M

M
r
t
t
C

O
H

«
i
n

x
H

»
I
-

I
-

O
g

h
h

h
S

Z
H

«
H

a
H

O
g

X
g

g
g

•
—

O
g

g
g

•
—

Q
g

g
g

•
—

O
g

g
—

<

fti
fti

O
V

H
X

•
J
M

r
W

H
C

t
l
l
U

D
M

O
C

t
^
a

O
O

O
M

O
t
t

w
>

Q
-
»

m
t
-

—
—

||
>

j
—

e
n

e
n

>
-
X

i
n

S
w

j
p

a
o

o
o

o
x
f
t
i
M

-
h

—
t
o

u
i

m
to

+
—

to
in

fti
in

H
m

x
m

m
+

—
m

•
o

M
Q

«
C

M
O

«
C

M
m

;
«

a-)

p
.

o
.

>
<

a
e
n

x
o

M
h

t
t
i
-
H

O

o
o

X
<

O
O

w
O

Q
C

M
t
O

B
O

I
M

B
>

•
O

x
x

—
II

II
II

II
e
n

C
M

O
x

«<
A

O
r
x

H
H

«
H

l-»
H

H
«

H
o

a
X

I
-

X
X

o
X

«
Q

Q
"

B
h

W
W

W
V

i
H

H
»

H
H

a
Q

H
H

H
Q

H
a

H
a

H
a

Q
H

a
H

a
H

<
O

|
H

a
H

l-i
*

-•
t
-

H
V

a
»

-
»

a
j
g

g
g

g
g

g
g

a
a

»
-
»

t
o

o
o

—
-
l
O

Q
a

a
;

t
-

-a
q

»
j

i
-

>
j

a
<

Q
a

-
i
H

a
a

a
x
x
x
x
g

o
a

a
a

«
x
o

a
a

a
*

x
o

a
a

a
*

w
o

a
a

a
*

x
>

-
»

g
g

g
g

g
>

j
c
o

x
a

J
O

C
O

C
O

—
>

C
O

I
D

h
m

i
f
l
^
B

B
j
^
X

^
W

h
t
D

i
n

B
w

i
^
X

W
f
l
.

-
H

o
.
o

.
a

.
M

r
h

o
.
c
u

a
.
B

i
r
t
-
i
a

.
a

.
o

.
i
i
i
i
r
H

P
.
a

.
f
l
i
i
a

r
a

J
Q

<
<

X
X

X
X

X
X

X
O

Q
a

<
U

«
U

.
f
t
.
g

«
<

Z
t
O

<
t
O

M
<

O
M

<
M

i
a

;
O

w
;
t
-
M

O
M

»
a

;
M

P
g

f
t
.
f
t
.
f
t
.
f
t
.
x
P

g
g

g
|
|

I
I
Q

g
g

g
l
l

I
I
Q

g
g

g
l
l

I
I
Q

g
g

g
l
l

|
|
<

X
X

X
X

X
»

<
f
t
.
f
t
,
<

0
Q

Q
O

f
t
.f

t
.f

t
a

f
t
i
f
t
i
f
t
.f

t
.0

0
O

—
—

—
O

O
O

C
M

Q
-
X

O
f
t
.
X

Q
g

Q
O

Q
-
C

f
t
X

O
g

Q
—

—
—

—
—

f
t
.Q

-
—

—
<

<
U

—
—

—
o

a
o

a
Q

-
—

—
O

O
O

—
—

—
O

Q
C

_
>

ft,ft.ft.ft,ft.Q
—

—
O

O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

c
o

o
>

O
T

-
c
M

t
o

«
y
m

t
o

r
x
c
o

<
n

o
T

-
C

M
K

>
«

a
,
i
n

t
p

i
n

m
t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

r
x
r
x
r
x
r
x
r
x
r
x
r
x

r
x

r
x
r
x
c
o
e
o
o
o
c
o
c
o
o
o
c
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

^
g

o
o

o
o

o
o

o
o

o
o

o
o

o
c
g

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
rx

c
o

e
n

c
jr

-
c
M

t6
<

r
in

to
N

c
o

m
B

r
w

w
q

i
f
l
i
o

N
m

m
o

r
p

i
w

o
u

n
D

N
w

m
B

r
w

w
q

u
x
D

N
c
o

o
i
o

r
p

i
w

q
i
f
l
a

i
s
c
o

c
i
B

r
w

o
o

c
o

c
o

e
n
e
n

a
o%

o
t
e
n

tn
C

ft
o

t
e
n
o

o
o

o
o

o
o

o
o

o
f

*
r
r
t
^
r

t
r
t
*

^
r
-
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
M

M
I
O

M

©I5J1*

O
n

O
Q

£

a
-

.
.

—

g
a

X
—

g
fti

a
a

fti
••

ft.
ad

W
.

.J
«

CO
>

Q
—

'
ta

T-J
oa

«
Q

«
<

••
«

g
~

-Q
.

55
—

^
p

ta
x

•
•<

as
••

o
!£>

x
co

<
;

co
c-

g
g

a
x

.
^

ft.
g

>«
x

co
•_:

a,
—

•
m

_
§?

p
g

<
p

g
>

.
«

l
l

in
m

in
m

in
in

to
H

»
—

Q
g

H
Q

>
d

*~
'

'
Z±

X
ft.

O
H

a-a
<

a-.
g

M
X

X
ft.

O
CO

q
Q>

CO
IX

IX
Z

x~~p
co

O
h

h
g

h
Q

O
x

Q
t-

e
n

e
o

in
e
n

o
o

oo
cm

~
g

H
—

X
<

O
X

—
Q

X
H

g
H

—
C

M
to

tx
to

to
in

in
-~

;
«

M
co
c
m

OS
X

X
S

<
g

Q
<

t
O
CO

t
O

C
M
C
M
C
M
C
M

-
~
C
M
C
M
C
M
C
M

C
M

C
M
C
M

^
^

=
O

O
X

CO
H

O
X

<"
^
H

g
X

a
O

C
M
C
M
C
M
C
M
C
M
-
-
-
-
C
M

C
M
-
-
-

-
CM
C
M
O
n

-
-
CM

CM
CM

CM
Q>

CM
CM

o
o

h
g

c
M

g
ft.o

o
•-<

—
Q

O
h

g
in

q
c
o

e
n

q
-

-
to

m
ix

tn
-

-to
o

to
-

-
-

-m
^_-_

u."h
*c

us
en

o
o

to
to

us
q

—
.

x
g

x
h

•<
x

cm
o

o
cm

q
o

co
co

en
in

co
co

o
to

cm
eo

cm
to

o
-

q
to

to
o

r»
q

to
c
o

w
—

H
B

fi
en

g
—

g
ta

>
-o

—
z

fti5
h

g
to

en
co

to
oo

co
en

rx
to

to
r*

en
•
a

o
w

in
in

m
q

o
q

q
cm

q
oo

co
-

a
w

-
N

M
H

sj
^

aa-?}
g~S»

o
"
g

g
a

j-c
M

to
H

in
c
o

o
ix

c
o

m
-

•
-

-to
q

-
-

-
-
q

q
o

-
-
in

q
in

r
x
o

to
o

n
~

1
Z

Q
H

—
X

<
—

a
X

O
-

g
CMCMCMCM

-
-CM

CM
CM

CM
-

-O
CM

CM
-

-
-

-O
-

-

T
.

to
~

to
-
M

X
fti

as"
••

O
—

M
X

Q
•—

~~
c
o

t
o

-
I
I
X

x
—

•
—

..—
•—

~~
—

—
^
,~

^
~

-
—

_
_

o
o

x
x
o

v
h

x
ac

o
—

-
g

a
d

o
fe

x
x

Q
<

—
o

—
—

o
o

x
x
o

v
h

x
x

ta
ta

ta
ta

ta
ta

ta
ta

ta
ta

ta
ta

ta
ta

ta
ta

ta
ta

ta
a

a
ta

ta
ta

ta
ta

ta
..

cm
tx

x
x

—
to

«c
o

h
o

«
q

••
x

g
cm

o
h

o
o

h
x

—
••

h
—

~
cm

en
x

as
~

co
<

o
h

o
z

z
z

z
z

z
z

z
z

z
z
z
z
z
z
z
z
z

z
z

z
z

g
g

z
g

g
_

o
enen

cu
o.

x
a

c
n

x
to

—
c
o

«
ix

x
a

o
x

to
o

x
ta

—
g

en
t-

o.
ft.

><
a

en
x

q
r

a
a

a
a

a
a

a
a

a
a

a
a

a
a

-
a

a
a

a
—

a
a

a
a

a
a

a
s»

o
£

.
.
„

.
.

td
°
S

"
to

o
S

.
q

..r
.

q
.

m
.

o
t-

.
•

.
Q

••r-ta
g

*-cm
.

.
X

H
q

.d
en

o
cm

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
n

^
x

<
A

O
cm

in
cm

II
't

o
II

*
—

11
O

+
~

M
t^

A
O

C
M

in
to

c
o

to
to

io
io

c
o

c
o

c
o

to
c
o

g
c
o

c
o

c
o

c
o

to
to

to
to

g
to

c
o

to
to

to
c
o

to
g

c
o

c
o

•=
1-

m
x

h
h

h
~

v
ii

t-c
a

h
*

i-t*
a

a
*

»
v
*

-u
*

-.
t~

**
t~

a
i~

~
-^

as
a>

a>
t*

t-
t-

v
II

•*
°f

.
.

S
.

.
-
H

g
a

a
z
g

a
d

c
o

x
a

d
o

x
o

g
a

g
g

g
a

a
h

g
o

o
<-

g
a

a
n

n
g

Q
H

H
a

a
g

g
^
x
x
>

d
O

x
o

>
d

>
d

^
»

d
^
^
^
>

d
^
^
a

^
^
^
>

d
^
^
»

d
»

d
a

^
>

d
>

d
>

d
^
>

d
>

d
a

^
>

d
—

X
-

tO
CO

>d
>

JH
H

-tO
-a

-a
-C

O
fta

-
Q

H
II

tlX
~

ftift.||X
~

X
H

II
X

C
O

C
O

~
-a

d
ad

H
*

"
'>

J
'-

a
>

J
>

J
'J

'J
'-

J
>

J
'J

»
J
H

'^
^
^
^
^
^
^
^
'-

'^
^
^
^
^
^

^
-r

f^
-g

-
f
^
t
«

i
a

a
r
>

r
>

f
g

i
g

i
a

;
f
t
.h

i
a

!
O

f
t
.o

x
P

x
x
x
O

Z
f
t
.X

H
P

g
Q

P
X

g
g

t
a

M
X

P
II

Z
X

P
P

X
X

<
ft.ft.<

P
ft.P

>
<

<
»

<
>

<
'<

<
w

;w
;<

<
»«»<

<
w

;<
-<

a
<

ig
:r

a
:x

<
<

»
<

<
<

M
:M

;x
«

>
:«

C
S

g
ft!

§
§

S
ft!

o
-
-
o

o
-
O

fto
"
"
"
o

-
-
S

o
H

H
iZ

o
-
-
o

o
-
S

o
o

u
o

o
o

o
o

o
o

x
o

o
o

o
o

o
o

o
o

a
o

o
o

o
o

o
o

w
o

-
o

o
o

o
o

o
o

o
o

o
o

o
i
n

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
m

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

"
»

j-c
M

to
q

in
tD

r
x
M

e
n

o
T

-»
j-C

M
to

q
tn

to
r
x
c
o

c
n

o
t-c

M
tn

g
in

to
r
x
c
o

e
n

o
T

-c
M

to
q

in
to

ix
c
o

e
n

o
T

-c
M

to
g

q
in

tD
r
x
o

o
e
n

o
t-c

M
to

q
in

to
ix

c
o

c
n

o
T

-C
M

io
q

in
to

ix
c
o

o
n

o
T

-C
M

io
q

in
to

c
o

c
o

o
o

c
o

o
o

c
o

c
o

e
o

c
o

o
n

e
n

o
n

o
n

c
n

c
n

c
n

c
n

c
n

e
n

e
n

o
o

o
o

o
a

o
o

a
a

r
r
r
r
r
r
r
r
r
r
w

w
w

w
w

w
fifiw

w
w

M
M

io
M

M
io

w
w

w
w

ttq
q

q
q

q
q

q
q

q
in

tn
in

in
tn

in
in

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

tO
IO

~tO
H

W
M

M
W

M
W

W
W

M
M

W
W

M
W

W
M

W
W

W
M

M
M

W
W

M
W

W
M

W
W

W
W

W
W

W
M

W
M

W
W

W
W

W
W

M

H

a
.
.

.
.

g

«
X

a
<

a
.

«
a

d
a

X
•
•

X
X

a
X

«
>

a
•
o

C
O

C
O

o
«

•<
•

a
H

a

g
—

X
X

X
<

t
o

O
O

.
.

.
.

X
X

o
e»-

g
X

i
n

g
a

g
a

a
d

H
X

—
o

.
.

t
o

H
O

.
.

—
.

H
Q

C
O

a
d

<
a

=
8

H

C
M

o
—

a
a

C
M

X
»

—
o

<
z

o
o

<

.
.

•<
H

g
t
a

•
^

»
?

-
C

M
C

M
a

X
ft,

o
H

ta
—

—
g

X

X
O

o
g

X
O

x
O

-
~

g
ta

g
a

g
o

o
o

«
.
H

g
H

X
X

o
.
.
.

I
X

r
x

u
s

ft.
<

X
—

C
M

•
•

H
—

t
o

•<
«<

o
o

ta
s

e
n

C
M

C
M

X
X

H
H

g
.
.
.
.

Q
x

c
o

X
C

M
K

g
x

g
«

s
a

o
»

«
.

C
M

C
M

H
o

X
O

—
•
-

o
a

o
X

O
H

X
X

X
g

C
M

o
•
•

.
—

o
g

x
<

II
II

II
II

•
•

x
o

h
g

q
—

a
X

g

C
M

«
O

.
.

g
g

t
-

0
0

a
-
a

H
m

X
*

x
x
»

•
•

H
•<

X
tO

o
P

H
X

H
X

g
a

^
•
-

r
x

X
X

X
+

C
M

t
a

X
X

•
J
-

•?
•

C
M

C
M

C
M

•
•

T
-

H
X

C
M

e
n

g
O

g
X

>
a

»

X
C

M
a

a
—

X
X

«
~

a
-a

C
M

—
X

a
—

z
a

z
a

ta
a

C
M

X
H

i
n

a
-
a

x
o

g
g

X
H

X
~

»
C

M
H

H
1

—
—

&
>

—
x

a
*

-
•
^

•
-

i
n

C
O

-
g

t
a

c
o

—
«C

K
—

H
g

a
.
.

ft.
_

~
ft.

a
a

j-
g

•
-
•

X
a

g
o

a
s

a
s

a
s

a
s

a
s

a
a

d
C

O
C

O
X

o
w

g
t
a

H
C

O
£

X
X

X

W
•
-

g
«

*
X

o
+

X
a

-
o

^
X

X
X

X
~

^
<

X
C

O
-

11
X

X
«

:
c
a

O
H

X
—

—

X
x

«
«

X
~

H
•
•

O
X

X
•
•

oH
H

^
.

O
II

M
X

.
—

.
O

O
X

>
O

T
-

t
»

h
*

*
*

h
+

h
-

a
a

o
x
x
o

v
h

x
X

O
a

_
<

X
O

S
t"

*
H

Q
-
-

p

'
^

H
H

V
—

-
^

H
ft.

r
-

«
C

M
X

—
W

Z
t
O

Z
Z

Z
Z

•
-£

L
I
X

X
X

—
t
o

<
O

H
O

«
C

I
X

K
X

T
-

Q
B

g
I
-

l
_

H
tO

H
-
^

.
-

g
g

—
a

II
~

-
O

«
i
n

H
t
a

x
—

0
0

X
X

X
X

C
M

C
M

C
M

i
d

e
n

>
o

u
>

.
a

o
>

x
o

o
«

I
f
l
H

h
h

O
I
X

S
X

g
g

g
X

•
•

*
-

II
C

M
«

-
—

«
g

g
tl

•=•
ft.

A
O

a
A

T
~

—
.
—

,
a

*
-

Q
C

M
a

q
a

a
a

a
W

•
•

»
•

Q
g

•
•

•
g

a
•
^

.
.

a
x

h
q

a
d

q
o

t
o

a
q

•
a

a
M

a
a

a
*

-
g

g
T

-

—
ft.

M
II

—
»

«
ii

«
-

—

J
t
a

g
«

«
X

<
A

O
C

M
i
n

C
M

II
+

-
II

II
A

H
II

H
O

H
X

H
X

.
—

.
V

^
.

V
—

a
—

—
+

•
j
n

f?
ii

n
X

H
n

II
H

X
H

H
H

X
H

H
H

—
H

g
—

a
a

H
Z

Q
X

Z
O

o
a

z
|
g

a
g

a
o

g
>

<
t
a

x
i
<

«
H

o
o

a
v
.

l|
H

C
O

M
a

a
g

a
g

g
g

g
a

a
a

a
a

g
t
a

g
g

g
g

a
g

g
a

d
t
o

x
-
»

o
X
o

z
a

z
z
z
a

a
a

g
o

a
h

h

X
H

H
—

H
_

«<
*

*
*

*
*

*
H

x
ta

H
H

II
II

X
II

a
s

a
w

.
~

-
«

•
X

C
O

H
—

•
•

C
O

—
_

.
_

,
_

,
c
o

ft.
ft.

ft.
c
u

||
y

—
—

—
•
—

C
O

—
—

a
d

a
d

H
H

—
C

O
—

—
—

C
O

x
c
u

-
II

X
X

II
X

X

ft.
X

II
II

ft.
X

O
ft.

II
II

a
s

u
s

a
s

X
o

n
II

ft.
||

ft.
g

t
a

x
S

O
ft.

II
q

a
•£

X
X

a
d

O
X

X
o

X
K

X
X

Q
g

g
g

g
g

t
a

x
x
x
x

p
X

X
<

ft,
ft,

<
0

X
O

K
O

X
K

K
O

g
g

x
g

o
a

s
a

s
x

o

—
g

«
:

X
—

ft.
o

—
O

X
ft.

X
ft.

X
ft.

c
a

.
<

«
-
.

X
—

H
H

Z
t
o

ft.
—

q
o

u
z

a
—

ft,
Q

X
ft.

•
O

O
h

ft.
ft,

ft.
Q

—
—

—
—

H
H

ft.
ft.

c
u

O
a

Q
ft,

c
u

o
—

—
O

Q
—

O
X

O
C

U
X

C
u

o
—

—
a

ft,
H

ft.
—

H
g

X

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

O
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
w

o
o

o
o

o
o

o
o

o
o

o
o

O
O

O
O

O

i
n

t
o

t
x
n

c
n

o
a

r
-
c
M

t
o

q
i
n

t
o

r
x
c
o

c
n

o
a

—
r
M

f
o

q
i
n

t
o

i
x
o

o
e
n

o
r
-
c
M

i
o

q
t
n

t
o

r
x
o

o
e
n

o
•
^

C
M

t
n

q
i
n

t
o

i
x
o

o
e
n

o
T

-
C

M
i
n

q
t
n

t
o

r
x
e
o

e
n

c
s
a

r
a

c
M

i
n

t
n

q
i
n

t
o

r
x
r
a

e
n

o
r
*

C
M

I
O

q
i
n

t
o

t
x

c
o

e
n

o

o
o

o
O

O
r
r
r

r
-

T
»

T
-

«
~

«
-

^
.

a
?

-
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
tO

tO
tO

IO
IO

tO
tO

tO
IO

IO
q

q
q

q
q

q
q

q
q

q
i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

t
D

t
o

t
D

t
o

t
o

t
o

t
o

t
D

t
o

t
o

t
o

t
x

r
x

C
M

CM
"C

M
C

M
C

M
r
x

r
»

.

C
M

C
M

i
x

r
*

.

C
M

C
M

I
M

M
S

I
S

C
O

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

r
«

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

_<u
b

\
o

\

0t
j

«
o

01
C

Q<
D

i£©

—
O

—
Q

~

a
e
n

a
c
m

a

c
m
t
o

q
o
o

•+
-

+

O
O

C
M

C
M

M
r

r
t
-

a
r
-

Q
X

X
X

X
H

X
X

<
X

a
ll

>
h

n
>

•
>

«
g

ii>
>

>
>

—
g

a
a

l
i
a

x
>

z
a

>
>

>
>

a
>

>
>

>
>

-
>

-
>

>
a

>
>

>
-
>

>
>

a
a

a
a

>
>

>
>

-
g

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
t
o

c
M

x
i
i
^
j
a

>
a

>
•

>
;

x
—

in
x

x
x

a
~

—
~

~

I
O
»
0

—*
>

—
—
*
—

—
q

q
c
m
c
m
c
m
t
o
t
o
t
o
i
n
c
m
c
m

—
•
•
—
c
m
c
m
t
o
t
o
t
o
t
o
t
o

m
c
m
c
m
q

q
c
m
c
m
i
n

—
-
~

X
X

H
X

a
a

c
M

a

-e
O

C
O

C
M

C
O

O
O

C
M

C
M

C
O

C
O

C
M

C
M

c
m

m
q

q
c
m
t
o

q
q

q
q

•
q

q
o

o
c
o

t
o

c
m

c
m

c
m

c
m

c
m

q
q

c
o
c
m
c
m
c
m
c
m
i
n
c
m
c
m
i
n
i
n
c
m
c
m
i
n
i
n

c
o
t
o
q

q
c
m
c
m
m

i
n
i
n
i
n
m

i
n
q

q
c
o
o
o
c
o
o
o
t
o
t
o
t
o
t
o
c
m
c
m
i
n
i
n
q

q
q

q

o
o

e
n

o
o

c
n

i
o

q
t
n

q
-
c
M

t
o

c
M

t
O

f
x
r
x
t
x

r
x

t
o

q
t
o

q

i
n

t
t
M

W
N

N
M

>
N

N
r
r
r
r
i
o

t
o

O
T
~
T
-
O

O
q

O
O

C
M
C
M

O
O

t
O

t
O

O
q

O
O

C
M

C
M

O
T
-
C
M

t
O
O

O
C
M

C
M

t
t
i
a

i
O

M
t
i
f
l
C

N
t
O

O
r
r

a
-
t
-
Q

M

a
x
x
x
x
x
a
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
a
x
x
x
x
x

x
x
x
x
a
x
x
x
x
x
x
x
x
x
x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
<

x
x

x
x

x
x

x
x

x
x

x
x

x
x

<
r
e
x

•
<
x

x
aa;
<
<
<
<
<
<
<
«
<

<
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
O

O
«~

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

Q
O

O
O

Q
O

O
O

O
O

O
O

O
O

O
O

O
O

O
Q

O
Q

rx

t
o

O
—

M
O

>
i

a
d
X
a
d
X
X
a
d
X
H
t
P
X
a
d
.
d
.
d
>
d
>
.
X
H
.
d
»
d
X
.
d
X
.
^
H
.
d
.
d
.
d
.
d
.
d
.
J
.
d
.
d
.
d
.
d
.
d
.
d
.
d
.
d
H
>
d
a
d
.
d
.
d
.
d
.
J
.
d
.
d
.
d
>
d
>
d

X
O
X
X
Q
X
X
X

||
Q

X
X

X
X

||
X
X
X
X
O
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
C
O
X
Q
X
X
X
O

O
X
O
Z
X
O
g
X
H
f
t
.
O
O
O
Q
.
»
-
g
X
O
O
X
O
g
O
X
O
O
O
O
O
O
O
O
O
O
O
O
O
O
X
O
O
O
O
O
O
O
O
O
O
O
O
O
O
X
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
X
t
a
-
X
X
X
Q
g
Q

in
to

r
x
c
o

o
o

r
c
M

io
q

in
o

r
x
o

o
c
n

o
T

-
c
M

io
q

in
o

ix
c
o

c
P

O
r
-
c
M

w
q

in
o

r
x
o

o
o

r
c
M

in
q

in
o

tx
^

rx
c
o

m
o

r
n

i
o

i
n

K
*

i
o

t
n

q
q

q
q

q
q

q
q

q
q

i
n

i
n

i
n

i
n

i
n

i
n

i
n

w
i
n

i
n

o
o

o
o

t
o

t
o

o
t
o

t
o

o
r
x
i
x
r
x
r
x
r
x
r
x
r
x
r
x
r
>

r
^

o
o

o
t-

*-
t-"

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
'
^
n

a
t
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

-
q

q
q

q
o

q
o

i
n

i
n

i
n

i
n

i
n

i
n

i
n

m
in

in
in

in
in

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

—
•

—
—

i
n
i
n
t
o
t
o

—
—
-
C
M
C
M
C
M
C
M

t
-
r
x

q
q

t
o
c
o
t
-

-
C
M
C
M
C
O

^
.—

.
o
o
c
o
r
x
t
o

m
q

t
o

q
i
n
t
o

-
C
M
C
M
C
M
C
M

—
C
M
C
M
C
M
C
M

O
t
O
t
O
C
M
C
M

•
c
m

o
q

o
e
n

q
o

m
e
o
e
o
e
o
t
o

t
o

r
e
n

q
»
—
o
n
t
o

o
c
M

O
i
x
t
o

r
x
q

o
q

c
M

t
o
t
o
i
n
i
n

i
n
o
o
i
n

o
o
o

q
e
n

m

o
o
o
o
e
n
c
o

r
*
»
o
o

t
o

i
n

c
M

q
c
n

c
o

t
o

t
o

o
q

c
m
t
o
t
o
t
o
t
o
C
M
C
M

t
o

o
q

e
n
t
o
e
n
c
m
e
n
e
n

•
q
t
n
q
c
M
q

q
e
n
q

o
o
c
m
o
o
e
n
q

e
n
e
n

t
-
.
-

t
o

I
x

-
-
|

C
M

q
q

q
c
M

q
i
n

q
t
o

o
q

t
n

q
i
n

i
n

t
n

q
q

q
t
n

*
-•

u
a

v
t

-
i
x

c
o

r
x

o
o

-
-C

M
C

M
C

M
C

M
O

O
O

O
O

O
O

O
C

M
C

M
C

M
C

M

C
M

C
M

-
-

t->
h

»
^

*
H

J
-

H
m

h
-

t-i
t
-

t
-

t
-

t->
*

-
I

C
M

-C
M

C
M

C
M

C
M

O

t^
i-

h
^

i-
>

t-
-
^

i—
i-

>
i-

i-
r
-

q
c
M

C
M

q
c
M

C
M

q
c
M

C
M

in

o
t
a

o
a

t
a

o
t
a
o
o
q
q
o
q
q
q
o

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

Q
Q
Q
Q
Q
O
Q

O
Q
Q
Q
Q
O
O
O
Q
Q

Q
O
O
Q
Q
Q
Q
Q
Q
Q

X
X
O
X

X
X

X
X

o

a
a
a
a
a
a
a

s
»

o
s
»

o
o

o
t
s
*

o
s
>

as
as

as
as

as
as

as
as

as
as

as
as

as
as

as
as

as
as

as
as

as
as

as
as

as
as

as
x
x
h
x

x
x

x
x

H
O

X
X

a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a

S
B

P
S

P
S

S
B

H
X

X

x
—
-
i
n

x
x

q
t
-

_
QH

Q
X

X
*
~
X
X

O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O

O
O
O
O
O
O
O
Q
O
O

O
O
O
O
O
O
O
O
O
Q

o
o
q
p

O
O
O
O

to
to

to
to

c
o

c
o

to
g

to
to

to
to

c
o

w
to

to
to

g
c
M

C
M

X
ll

S
M

-
w

g
ta

w
w

M
w

w
w

Z
w

w
w

w
w

w
w

w
w

w
g

to
x

to
to

m
w

m
m

'w
c
o

g
a

a
ll>

>
a

>
>

>
>

g
II

l
i
a

a
x
x
i
i
n

a
a

^
x

~_a
~

i
.
.
.
i
.
i
_

4
^
_

a
»

^
.

«
.
«

.
«

.
<

•
-
«

.«
-
.-

*
.«

»
»

._
«

»
_

m
l.

*
z

•
>

..
.

ta.
:—

:—
=

—
=

—
z"

—
z—

-
.

—
:—

z
—

z
—

z
—

=
—

z
—

r
—

r
—

-—
r
r
-^

—
£

?
—

X
H

X
H

i
J
a

l
t
J
a

l
a

l
•
)
•
)
>

!
J
a

l
a

l
a

i
^
D

H
j
l
O

H
a

d
a

a
d

a
d

a
d

a
d

n
J

a
d

t
d

»
d

.
d

a
d

.
d

.
d

»
d

.
d

a
i
J

_
a

d
_

;d
_

a
_

jd
_

jd
_

_
_

fd
J
H

_
jd

_
a

d
_

jd
_

y
d

_
a

_
•J

t-1
_

1
>

d
>

d
H

a
d

k
d

a
d

a
d

a
d

a
d

a
d

a
d

a
d

t
d

>
d

H
H

H
-
X

X
X

a
d

X
a

d
H

a
d

a
d

a
d

a
d

.
d

a
d

.
d

H
a

d
.
d

a
d

a
d

a
d

>
d

a
d

.
d

a
d

.
d

a
d

.
d

.
d

H
a

d
.
d

X
»

d
X

.
d

.
d

.
d

a
d

H
X

X
.
d

.
d

X
X

X
X

a
d

.
d

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
m

x
O

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
x
X

X
X

X
X

X
X

X
X

X
X

X
X

O
X

X
X

X
X

X
X

O
O

X
i
d

i
i
J
M

f
^
o

^
^
L

j
M

o
o
o
o
o
o
o
x
o
o
o
o
o
o
o
o
o
x
a
q
x
x
x
o
g
o
x
o
o
o
o
o
o
o
x
o
o
o
o
o
o
o
o
o
o
x
o
o
o
5
o
5
o
o
o
o
x
5
o
f
t
.
o
g
o
o
o
o
x
£
g
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

M
m

o
i
o

r
cm

to
t
t
u

n
D

s
c
o

o
i
s
r
N

w
q

t
n

X
a

x
.x

c
>

o
a

~
c
M

to
q

in
to

tx
r
o

c
n

o
T

-
'C

M
to

q
tn

x
r
x
x
c
>

O
T

-
c
M

"
in

in
in

to
tD

to
to

to
to

to
to

to
to

r
x
r
x
r
x
r
x
r
x
r
x

i
x
r
x
i
x
r
x
o

o
o

c
o

c
o

w
o

o
o

c
o

c
o

o
e
n

o
o

o
o

m
e
n

c
n

e
n

c
n

o
o

o
e
>

a
e
a

o
o

o
~

o
«

-
^
-

^
^

^
t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

m
t
o

t
o

t
n

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

m
t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

q
a

a
'

o
o

o
o

o
o

p
o

o
o

o
o

o
o

o
o

o
o

c
a

t
a

c
B

o
o

c
a

c
f
t

q
in

to
ix

c
o

er>
o

T
-
c
M

t
o

q
m

x
r
>

.m
c
>

o
r
-
c
M

t
o

q
t
n

x
t
x
x
c
>

O
T

-
c
M

t
o

q
T

-
a

—
T

-
C

M
C

M
C

M
C

M
C

M
tM

C
M

C
M

C
M

C
M

I
O

tO
tO

tO
tO

©.355f>

C
Q

fS

p

p

I

I

p

Gto
FO

S|W=
R

C

C

S|W=
X

FOR

FOR

F

1

T

sW=

DD

N6

OM MA

ow

T

0

0

TO

TO

MA

E

Y

RA ION

UME

NJOMI
/

1 +

+ 1

TO

IO

/";

Ion
eRG

DD D{ I)

EM

GO

GO

SOUN

CHA

CHA

SOD

HCHA

SOUND

SOUND

AR

CHAR

SOUND

SOUND

SOUND

VCHAR

VCHAR

SOUND

VCHAR

OUND

CHAR

SOUND

URN

4

4

4
1

7

1

4

4

8

1

1

4|0
4

4

2|0|0
7

2

TO

TA

HE

5

q

HDKIEKORK HELPER DIVISION

Homework Helper: Students do
their class assignments on paper
in the usual way. . . . and then
use the Homework Helper to
quickly correct their assignments.

Division gives the answers to three types of homework
problems an elementary school student may en
counter: division with a remainder, division with a

decimal in the quotient, and division to convert a fraction
to a decimal.

Only the answers are given, not the step-by-step process
of long division. The student is- encouraged to do the
homework—writing each step in the division process and
then using this program to check the answers. Music and
graphics enhance the interaction.
1. Division with Remainder. Most math problems can sim
ply be corrected with a calculator. However if there is a re
mainder, a calculator converts it to a decimal equivalent.
This program keeps the answer in quotient-plus-remainder
form. The student enters the divisor and dividend; the quo
tient and remainder are printed.

EM

EM

EM

HlOMEWO
I

HA 0000784444444478')

Copyright © 1983 Emerald Valley Publishing Co.

2. Division with Decimal. Usually after students master the
idea of a remainder, they are taught how to place a decimal
and keep dividing. In this section, a student enters the divisor
and dividend; the quotient with a decimal fraction is printed.
3. Convert Fraction to Decimal. A fraction is converted to
a decimal by dividing the numerator by the denominator.
The student enters the numerator then the denominator; the
equivalent decimal fraction is returned.

After each problem, a student may enter another pro
blem of the same type. If there are no more problems of
the same kind or the student wishes to stop, he enters zero
and the menu screen will return.

EXPLANATION OF THE PROGRAM

Homework Helper: Division
Line Nos.
130-770

780-1680

1690-1810
1820-1940
1950-2050
2060-2320

Prints title screen and blinks color while special
graphics characters are defined.
Plays music; prints menu screen and branches
appropriately for student's response.
Subroutine to print labels of division problem.
Routine for division with remainder.
Routine for division with decimal.
Routine for converting fraction to decimal.

The Best of 99'er Volume 1 173

d
d
d
d
d
d
d
d
d
d
d

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
x
c
g

c
g

^
.a

i
M

r
f
r
^
r
f
^
l
S

-
^
.^

1
^
"
"
,^

^
^

o
o
o
o
o
o
o
o
o
o
o
o
o
o
d
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
^
j
o
o
o
o
o
o
o
o
G
o
o
o
o
o
o
o
o
o
S
S
S
g
o
o
S
o
o
x
S
g
S
^
g
S

^—
*~-

—
-~

-
-~

-
-~-

-~
-

—
-—

—
—

^

a
f
C

M
t
n

q
t
n

t
o

r
x
c
o

e
n

o
T

-
C

M
i

—
o

q

q
t
n

x
t
x
x
o

c
a

r
-
c
M

t
o

q
i
n

t
o

i
x
x
o

o
T

-
C

M
t
o

q
t
n

t
o

r
x
x
r
o

o
T

-
r
^
r
t
-
r
M

M
M

M
M

f
i
i
f
i

C
M

C
M

C
M

q
i
n

t
o

r
x
c
o

e
n

o
r
-
C

M
t
n

q
i
n

t
o

r
x
c
o

e
n

o
a

^
r
M

t
n

t
n

m
t
o

t
n

t
n

t
n

t
o

q
q

q
q

q
q

q
q

q
t
j
i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

t
o

t
o

t
o

O
X

—
*

—
—

—

x
o

c
o

o
q

r
x

r
x

o

c
o

c
o

c
o

o
o

t
o

X
X

X
X

c
o

q
x

o
q

q
r
x

q
q

t
o

o
o

c
o

o
o

c
o

c
o

t
x

q
q

r
x

.—

x
q

q
q

q
o

x
o

o
x

x
x

Q
IX

x
x

—

X
X

o
x

t
o

q
i
n

t
o

i
x

c
o

e
n

t
o

t
o

t
o

t
o

t
o

t
o

t
o

o
t
-
c
m

t
o

q
i
n

t
o

i
x

r
x

r
x

r
x

r
x

r
x

r
x

o
o

o
e
n

—
t
o

e
n

c
o

q
o

q
q

q
o

o
i
x

q
x

q
q

q
i
x

o

_
«

_
w

_
q

o
i
n

x
X

O
X

X
t
o

—
i
n

—
q

t
o

m
-
i
n

—
t
-

*
-
—

-
-
—

<
•
q

—
t
-

—
c
m

q
q

q
c
o

o
t
o

o
o

x
c
o

x
x
x

-£=
r
o

-
w

w
q

w
-
B

G
-
a

o
-
N

t
t
-
q

t
'
-
r
i

q
to

—
r
x
p

—
o

o
—

o
t
o

—
o

~
o

x
—

-
o

r-
-~

x
x

~
x

o
—

x
x

—
x

x
w

w
q

w
t
t
w

f
i
w

q
w

w
w

o
w

w
w

M
w

w
~

x
x
to

q
g

-q
ix

x
x
o

x
x
ix

T
-c

o
to

q
o

r
x
o

c
o

to
o

q
r
x
o

o
to

^
o

r
x
o

x
to

o
r
x
tn

o
to

o
x
ix

c
o

x
to

x
x
r
x
x
x
to

o
-

x
r
-
^
S

^
c
n

^
-
^
^
^
-
^
^
^
g

^
e
n

^
-
^
!
^

""
•«

•»
--—

--••»
-

-
x

x
a-

x
x

-
o

to
t-

q
ix

-rx
to

t-
rx

9
-
o

o
t
-
o

c
o

-
c
o

ix
t-

q
-
o

o
t
-
o

t
-

-
x
x
t
-
x
o

-
x
x
*

-
x
»

j-
—

^
—

-
.«

>
.—

r=
—

r^—
.

_
,-.—

.
—

r=
—

r=
—

-E
-

*
r
*

-
C

M
t
n

q
-
m

o
to

-
o

-
r
x

-
o

o
o

X
.g

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
x

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
S
o
o
o
o
S
S
S
S
g
g
g
S
g
g
S
o
o
o
o
O
O
O
O

'
O

o
o

o
o

o
o

^
o

o
o

o
o

o
o

o
o

o
^
o

o
o

o
o

o
o

o
o

c
a

o
o

c
a

o
o

o
o

o
o

o
o

i
c
t
M

t
t
N

M
W

B
r
w

H
t
i
i
B

O
h

B
B

O
r
w

w
q

M
a

N
c
o

c
i
o

r
f
i
M

q
w

e
h

w
a

o
r
w

M
g

i
n

m
N

c
a

e
i
o

r
w

M
t
t
M

e
h

M
a

o
r
w

w
q

i
f
t
B

N
w

a
o

t-~cm
to

q
in

to
rx

co
en

o
c
M

C
M

C
M

C
M

C
M

C
M

H
>

i
n

t
n

t
n

t
o

H
»

t
o

t
n

t
n

t
n

q
q

q
q

q
q

q
q

q
q

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

o
o

o
o

o
o

o
o

©I20
\

C
Q

GO

A

R

GO

GO

CA

WI

TO

Copyright© 1983 Emerald Valley Publishing Co.

EMA

MA

EM

GlO

c

c

c

c

c

c

c

c

c

c

c

c

c

c

p

I

I

I

I

p

0

GO

R

P

GlO

CO

HA

HA

HA

HA

CHA

CH

HCHA

CHA

CH

CHA

CHA

NUM

ENOM

TH

SOR

EN

AC

TO

NA TO

CA NN

TO

The Best of 99'er Volume 1

IMA

175

NAME THAT
BONE

Time to review Ezekiel's "Dry Bones" song: "Leg
bone connected to the hip bone. . ." Or was it the
anklebone? Or what boneiswhere?? Thisprogram

is designed to teach the names of the major bones of the
human bodyand wherethey are located, and then turn what
could be a dry, repetitious drill into an enjoyable game of
Name That Bone.

The menuscreen of the programgives the choice of ma
jor partsof the body, head, arms, torso, and legs, or end
the program. Each section will label the main bones of the
part of the body chosen:
1. HEAD: frontal, parietal, zygomatic, temporal, max

illa, mandible.
2. ARMS: humerus, ulna, radius, carpus, metacarpus,

phalanges.
3. TORSO: spine, ribs, clavicle, scapula, sternum, ilium,

ischium, sacrum, coccyx.
4. LEGS: femur, tibia, fibula, patella, tarsus, metatarsus,

phalanges.
You may study thelabeled diagram of the bones as long

as you wish, then press ENTER. The labels will be erased
and it will be your turn to Name ThatBone. The bones are
listed in a random order at the left of the screen for your
choice of answers. A bone will bechosen randomly and will
blink red and white until you press a number correspond
ing to the name of the bone. If you arecorrect, an arpeg
gio is played; if you are incorrect, a noise is sounded. You
must press the correct answer to continue, and it won't take
long for you to learn the names of your bones.

After each bone is chosen once, you will be asked TRY
AGAIN? (Y/N). If the response is N, the program returns
to the menu screen. If the response is Y, the names of the
bones will be rearranged and the bones will be chosen in
a different order.

Programming Techniques
There are four main parts of the body from which to

choose, and each part uses the same program logic, so
subroutines are used. The subroutines are located at the
beginning program. For some microcomputers, execution
is faster for subroutines called closer to the beginning;
however, thespeed in TI BASIC does not seem to depend
upon the location of the subroutine.

176 The Best of 99'er Volume 1

OOO OOO O O O OO OOO OO
\o
O

O

O

O

O

O

O

O
OOO ooo00°oooo

For each part of the body, different characters are de
fined. The appropriate DATA statement is RESTOREd,
then the subroutine to define characters (lines 160-210) is
called. After the labels for the bones are printed, the bones
are drawn, again RESTOREing the corresponding DATA
statement and calling a subroutine (lines 320-360).

The main procedure is in Lines 370-980. The program
will read from DATA the names of the bones and the
character set number, then randomly print the bones and
choose the bones for the quiz.

The graphics characters were designed so that a specific
bone could be blinked by using CALL COLOR statements.
The characters of one bone must be in one character set,
and another bone in another character set. When the main
part of the body is firstdrawn, all the characters are yellow,
but as the bone is chosen, the characters in that set will blink.
An example is shown with the skull bones.

(NOTE: The wrist and hand bones are known either as
thecarpus andmetacarpus or carpals andmetacarpals. The
carpals aretheelements of thecarpus (wrist bone). You may
wish to relabel these parts to beconsistent with the way you
teach them.)

12 13 14 IS 16 17 18 -19 20 21

Copyright © 1983 Emerald Valley Publishing Co.

EXPLANATION OF THE PROGRAM
1270-1300 Clears labels.

Name That Bone 1310-1350 Main procedure for head.
Line Nos. 1360-1440 Defines character for arm.

150 Branches to title screen. 1450-1510 Labels arm bones.

160-210 Subroutine reads C and C$ from DATA to 1520-1590 Draws arm bones and waits for user to press
define graphics characters. enter.

220-310 Subroutine prints PRESS ENTER and waits for 1600-1630 Clears labels.

the user to respond. 1640-1680 Main procedure for arm.
320-360 Subroutine reads DATA to draw graphics. 1690-1830 Defines characters and colors for torso.

370-980 Subroutine for main program logic. 1840-1860 Labels torso bones.

370-390 For the number of bones R, reads the name of 1870-2030 Draws torso bones and waits for user to press
the bone and the corresponding character set ENTER.

number. 2040-2090 Clears labels.

400-520 Randomly prints the names of the bones for the 2100-2170 Main procedure for torso.
multiple-choice answers and arranges the cor 2180-2250 Defines characters for leg.
responding character set number and answer 2260-2270 Labels leg bones.
number. 2280-2380 Draws leg bones and waits for user to press

530-580 Prints NAME THAT BONE at the top of the ENTER.

screen. 2390-2420 Clears labels.

590-660 Randomly chooses a bone and blinks it red and 2430-2470 Main prodecure for leg.
white while waiting for the user to press the 2500-2610 Prints title screen and draws stick figure.
answer. 2620-2710 First time through the program defines the first

670-780 If the answer is correct, plays an arpeggio and character in each character set as a solid block.
goes to the next bone; if the answer is incorrect, It then asks if instructions are desired.
sounds a noise and awaits another key press. 2720-2800 Prints instructions and waits for user to press

790-980 Prints TRY AGAIN? (Y/N) and branches ap ENTER.
propriately after Y or N is pressed. 2810-2900 Prints choices of head, arms, torso, legs, or end

990-1100 Defines graphic characters for head. program.

1110-1120 Labels head bones. 2910-3000 Waits for user's choice and branches

1130-1260 Draws skull and waits for user to press ENTER. appropriately.

EM

EM

EM

EM

EM

AM

CHA

L

X

T

FOR

RAN

FO

AN

CA

FOR

CA

ON

BON

D|0|M
I

N

BON

TO

CHA

TO

HA BO

TH

Copyright © 1983 Emerald Valley Publishing Co.

5 30

EG

H

K

CIO
ck>
1

4

SOU

3

CIHIA

SOU

SOU

SO

SO

so

CO

CIHA

A

,32,84

The Best of 99'er Volume 1 177

o
s

o
-

>•«
q

X
x

J
=

_
S

_
X

X

X
-

<
*

*

X
X

o
x

O
X

O
X

T
-

I
X

I
X

X
O

O
O

M
O

O
X

r
x

t
x

x
o

x
o

x
o

x
x

o
x

o
o

r
x
x
x
o

x
x
x
o

r
x

.
-

a
-

i
x

t
x

x
o

x
x
x
o

x
x
x
o

x

o
x
o

x
o

x
x
o

o
o

x
o

a—
r
x

m
t
o

o
x

q
x

x
o

t
-

X
X

a
-
Q

U
4

<
-
O

X
T

-
O

X
t
x

Q
a

—
C

O
X

X
a

—
M

h
.
t
d

X
X

X
O

X

X
~

cm
r
x

o
-
x

rx
o

r
x

x
x

x
x

x
o

x
o

>
i
n

o
x
x
x
t
n

x
x
o

x
x
o

x
x
o

o
o

_
o

_

c
a

t
n

•
-

i
n

t
o

o
o

—
c
o

i
n

m
•—

—
C

M
C

M
X

—
'<

a
s

a
s

tO
X

-
a

—
g

g
g

O
X

•
O

O
f

O
O

X
-
X

l
x

-
O

X
-
o

x
-

*
>

*
>

x
SB

m
to

to
x

r
x

o
x

o
x

r
x

cm
o

x
x

x
t
-

r
x

x
o

o
x

o
o

o
x

cm
o

o
o

-
*

-
to

x
a

a
q

o
o

q
o

h
o

o

x
a

x
a

x
-
t
n

xO
c
a

X
O

X
X

T
-

r
x

X
a

f
X

X
T

-
O

X
<

-
-

Q
tQ

a—
X

I
X

X
X

•
h

a
o

h
x

x
o

x
x

-
x
x

e
o

x
o

a
i-

i
a t
n

a
a

x
q

x
x
T

-
m

a
g

a
-
.
.
d

.
d

g

C
O

O
T

-

C
O

0
0

0
0

r
x

-
r

-
0

0

q
i
n

o
q

C
M

C
M

q
C

M

a
t

r
C

O
r

-
^

w
c
u

-
-

tO
I
X

tO
^

«
-

.—

x
i
n

a
t

X

'
t
o

t
o

q
q

-

ao
x

>
x
c
o

C
O

T
-

C
M

O
C

M
«

^
C

M
C

M
C

M

r
-

T
-

C
M

-C
M

C
M

C
M

C
M

O

t
o

a
t

a
t

a
t

r
a

t
c
o

a
t

o

-
o

o

t
o

t
o

IO
O

<
o

_
s
_

s
_

-
a

s

p
-

Q
P

X
x

a
x

t
n

«
«

«
>

x
i
n

x
*

-

x
x

x
t
x

o
x

x
x

x
o

-
x

-
O

-
I
X

a
-

.

t
o

x
r
x
o

o
c
m

X
X

M
»

_
o

_
o

X
IX

X
O

X
X

O

x
r
x

x
r
x

r
x

x
r
x

x
o

x
x

o

r
o

x
x
x
r
x
i
x
c
o

IX
IX

X
T

-
X

X
O

O

X
X

T
-

I
X

-C
O

x
r
x
x
o

x
x
x
o

o
x

x
o

o
x

-
a

^
r
x
p

x
X

-
X

O
O

X
X

T
-
X

x
r
x

o
x

a
t

x
r
x

-
x

o
x

t
o

x
o

x
o

-
x
x
x
x

X
-
O

O
X

X
X

X
X

t
x

X
X

X
0

0
X

O
X

X
X

X
o

X
X

O
O

X
X

a
s

c
m

r
x

t
o

•
X

X
-
o

x
-
x
x
t
o

c
o

o
a

<
-
x
t
o

x
x
t
O

T
-
x
x
x
o

c
o

x
t
o

o
x
x

—
—

-
-

-
.

-
C

O
O

_
ffi_

t
-
x

q
U

a
x

t
o

c
o

x
<

n
x

-«

•d
H

*
X

C
O

X
0

0
X

O
X

x
i
n

x
x

-
r
x

a
a

n
x
^
q

a
x

a
h

a
o

h
x

x
x

x
w

x
x

r
x
o

x
x

M
W

M
W

M
i
l
h

r
r
M

M
H

M
a

w
h

W
H

r
l
i
.
h

h
i
O

H
h

r
H

l
i
.
e
i

»
^

—
a

v
^

«
^

-
a

.
a

-
a

v
^

-
a

.
a

^
—

-
a

.
a

*
.

-
-
^
i

a
^

—
»

*
.

«
a

g
a

*
a
i
.

T
~

••>
»

J
ia

a
*

^
»

^
a

^
M

5
a

a
—

l

<
W

W
H

W
H

O
W

|
H

h
.
r
h

l
i
.
M

"
O

r
h

r
O

H
a

W
W

»
Q

U
>

)
-
D

>
4

J
b

i
n

n
{
i
l
r
i
<

b
.
M

M
<

b
.
l
U

r
i
.
b

]
•
#

»
w

a
*

«
a

&
•*

)
a

*
a

_
r
.

-
w

*
a

^
ri

r
^
M

-
M

a
^
v
a

-
^
M

.
^
^
^

d
M

h
-
t
-

i
_

x
o

a
d

x
o

o
x
x
x
o

x
x
c
M

X
x
m

x
o

q
x

-
x
x
t
-
i
i
q

x
x
x
x
x
x
x
x
.
x
x
x
m

-
x
q

<
-
x
o

o
x

-
q

n
o

o
n

x
x

-
-
o

n
x

as
x

o
o

x
x

x
x

x
x

x
x

in
^
x
u

T
o

O
a

^
^
X

O
O

X
Q

O
r-O

X
T

-Q
X

l-O
O

l-O
O

O
C

O
Q

O
g

O
X

X
O

O
X

X
O

X
W

O
X

Q
-O

Q
O

r
M

O
C

M
q

a
ix

r
g

S
S

g
X

Q
r
-r

O
X

Q
X

X
O

O
X

Q
X

X
Q

X
-Q

X
O

Q
X

?

t
o

q
m

t
o
i
x

t
o
r
o
i
n
i
n
r
n

x
r
x

o
o

t
n

x
<
-

i

•
-
S

X
o

t
o

O
C
O
t
o

X

'
r
x

x
o

x
o

o

x
x
x
x
x
o

i
o

x
e
o

i
o

x
x
x
x
o

o
x

t
O

X
X

T
-
t
x
X

O
X

O
O

O
X

t
O

r
-
O

X
X

o

•
x
o

r
x
x
o

x
o

^
t
x
x
r
x
t
n

o
o

o
a

j
-

x
o

x
x
t
o

x
o

o
o

x
•
x
t
o

t
n

o
x
T

-
x
o

c
M

O
X

O
X

O
a

-
X

O
tn

-
O

r
H

N
r
f
c
i
a

r
x

t
o

t
n

q
x

c
a

x
o

t
-
x

o
-
o

x
t
n

c
o

r
n

x
t
-

x
<

Q

x
-
I

X
o

C
M

C
M

o
o

a
t

0
0

X
-
X

O
X

X
O

a
-

tn
Q

C
O

f
IX

X
X

O
IX

a
-

u
«

IX
m

r
x

X
M

S
-

—
—

o
x

a
s

a
s

•
X

O
O

X
O

r
x
Q

X
-
T

-
to

x
O

O
X

X
O

O
O

X
C

O
O

IX
Q

X
X

o
o

x
e
o

x
o

x
o

x
x
o

o
-
o

o
o

r
x
x
x
o

x
r
x
x
r
x

a
s

H
C

M
-
J

•
x

x
-
r
o

o
-
o

t
o

•
X

X
-
T

~
'

x
o

a
-
c
o

x
t
n

x
x
i
x
x
o

q
o

o
t
o

x
x
i
x
.

X
X

o
o

x
r
x
x
x
o

x
x
O

T
-
o

t
O

T
-
t
o

t
n

x
o

t
-

x
x

X
I
X

I
X

X

X
a

g
X

C
O

O
O

T
-
X

I
x
a

-
X

X
T

-
X

Q
a

—
O

Q
a

—
X

X
T

~
X

X T
-

C
M

O
C

O
C

M
I
X

X

X
O

x
x

a
-

r
x

x

o
o

o
r
x

x

•J
ad

a
h

x
to

o
x

x
o

x
x

-
x
x
o

x
o

-
x
x

-
x
x

-
x

-
x
x
x
x
r
x
a

g
a

d
»

d
H

c
f
l
i
H

X
X

H
X

H
O

O
O

H
X

P
H

X
C

M
H

i
n

O
O

H
X

X
X

a
-i

«
•—

x
x
x
x
x
o

o
x
x
o

x
x
o

x
x
o

x
o

m
x
x
*

-
x
x
c
M

X
C

M
X

X
x
x

n
Q

a
s

-a
a

s
a

t
O

O
a

X
Q

X
X

Q
X

O
Q

O
T

-
Q

r
x
t
n

Q
O

T
-
O

X
f
Q

X
T

-
Q

t
-
O

Q
X

X
g

Q
X

X
X

T
-

t
o

t
x

c
o

o
a

o

c
a

a
t

a
t

a
t

o

r
x
o
o
c
a

o
'

i
n
i
n
t
n

o
t
o
t
o

o
r
x
o
c
a

o

t
O

tO
t
O
t
O
I
X

r
r

c
m

r
r
t
f

r
r
t
t
r
i
f
l
t
t
r

q

•
c
m

t
o

-
»

j
-

q

i
r
»

-
r
-

r
x

•
a

-
i
n

a
^

-
a

-
.

Q

-
o

-
-
r
-
c
o

•
r
»

t
o

-
r

a
t

i
o

-
o

r
*

-
t
o

t
-

a
;-

i
n

x
-

r
r
x

h
x

r
n

q
x

«
«

O
•
X

r
x

c
m

x
-

-
x

-
-
x

oo
^

x
o

<
-
x

o
t
-
x

o
t
-
x

q
to

a
a

h
x

cm
a

B
H

r
r
h

l
l
l

-H
C

M
-H

C
M

-
H

C
M

-
H

C
M

O
tO

C
O

X
H

C
M

tO
C

O
tO

X
X

-
X

i
o

c
M

X
^
r
x
x

•
q

q
-

-
o

-
x
o

m
t
-
o

cm
c
o

q
-c

m
ta

•X
-

-
X

*
-

o
X

r
-

o
x

«
f

to
x

*
-

r
x

<
<

II
O

O
X

X
-

II
O

II
g

Q
O

X
O

O
g

Q
X

q
m

o
r
x

c
o

C
M

C
M

C
M

C
M

C
M

©iX
.

b
\

O
sO«
j

!PoC
O0
)

e
o

.
si

r
x

-
X

-
X

-
x

q
O

~
X

T
-

i
n

q
-

c
o

-
-
O

X
X

o
n

a
X

o
X

X
O

X
X

T
-

-
X

H
-

o
tP

-
C

M
tP

-
q

C
M

T
-

-
-

-
X

r
x

o
X

X
x

r
x

X
-

o
—

>
a

t
tp

-
-

C
M

-
C

M
I
O

-
•P

"
q

X
o

X
tr

I
X

X
O

X
X

X
t
n

H
a

t
-

o
-

t
o

-
-
C

M
T

-
•
r
-

-
3

X
a

p
-

-
-
X

-
X

-
X

tp
-

a
i
n

-
i
n

C
M

T
-

C
M

r
-

e
n

t
o

-
-

—
-

a
x

I
X

apa
t
o

X
T

-
X

a
t

x
-

.
.
.

a
t
o

T
-

-
-

-
-

-
-

X
tn

a

a
X

-
O

O
tp

-
X

C
M

X
t
o

X
I
O

-
•

i
n

t
r
-

-
T

~
o

C
M

r
x

q
i
n

—
a

X
•

0
0

X
C

M
-
I
O

r
-

X
•
-
•

X
T

*
t
r
-

o
I
X

a
s

-
t
~

-
t
o

-
q

t
-

-
X

t
n

g

o
o

f
-

0
0

o
-
X

-
X

-
o

X
•

•
X

I
O

T
-

C
M

T
"

o
r
*

-
t
n

—
.

a
s

O
•

o
in

-
a

t
t
o

X
X

X
X

X
X

o
X

H
-

-
C

M
-

q
-

I
X

C
M

H
X

0
0

t
p

-
-
£

«
-
o

t
o

X
O

X
X

X
X

X
•

-
X

t
r
-

t
r
-

t
r
-

i
n

r
-

I
X

-
-

-
H

X
C

M
a

tp
-

c
o

r
x

X
X

X
X

X
X

tp
a

H
a

H
—

—
-

-
-

r
-

-
•
"
"

C
M

tO
O

X
H

t
o

-
—

.
-

C
M

o
o

r
x

x
O

X
X

X
-

X
X

r
x

r
x

r
x

o
i
n

-
t
o

-
i
n

-
T

-
H

<
•

—
—

—

X
X

a
j

S
.
—

.
-

—
.

O
r
x

x
o

X
X

0
0

T
-

I
X

a
-
J

£
—

.
—

.
-

-
o

a
o

tr
*

tp
-

tr
*

q
-
C

M
-

X
«

.
a

—
.—

—
I
O

IX
.

tO

t
o

a
s

a
-
i

a
t
r
-

o
t
o

o
o

r
x

o
o

r
x

X
X

o
q

X
a

e
n

o
o

c
m

t
-

-
t
r
*

-
C

M
t
r

-
C

M
t
o

M
x
s
s

H
•

•
X

t
o

i
n

t
n

-
-

-

X
a

-.
-

-
-
•

C
M

C
M

C
M

X
X

x
o

c
o

x
x
o

o
x

t
r
-

a
X

.
-

^
C

M
t
o

-
t
o

-
t
o

-
•
r
-

-
a

d
-

X
-

-
-
t
o

t
o

t
o

r
x

x
a

r
*

a
a

-
-

t
r
-

r
-

o
o

I
X

O
X

O
IO

X
O

X
-

S
a

-
a

a
t
o

t
o

-
t
o

•
d

•
o

X
•

•
X

t
o

t
o

t
o

a
t

a
t

a
t

x
i
n

"
"
•

o
-

-
-

X
X

X
-

X
X

-
O

X
X

X
C

O
X

a
X

o
a

a
t

-
-

-
t
r
-

-
-

i
o

-
-

•
r
*

r
-

X
•
J
-

£
X

~
—

a
t

a
t

a
t

-
-

-

r
x

-
-

X
t
o

I
O

I
O

c
o

T
-

r
x

q
x
o

m
r
n

x
x
r
x
r
x

X
X

a
-

-
q

t
n

C
M

-
tp

-
a

t
•
*

*
t
r
-

t
o

a
^

-
H

-
X

•
•

X
—

•—
-

.
-
t
o

t
o

m

a
tp

-
i
n

a
-
a

t
p

-
r
*

T
-

X
X

X
r
-

X
X

C
M

O
X

-
o

t
o

X
a

a
d

.
-

q
i
n

-
-
-

t
r
-

-
a

p
-

-
C

M
-

q
-
•
I
-

X
t
n

g
X

v
*

-
m

i
n

i
B

r
r
r

-
-

o
n

-
-

-
-

0
0

tO
O

IX
a

-
X

O
a—

M
a

o
X

X
X

.
.
.

a
d

a
tp

-
»

J
-

-
-

t
p

-
tp

»
t
r

q
t
p

-
i
n

a
t

tp
-

i
n

c
m

x
a

a
•

X
X

IX
.

T
-

T
~

T
-

-
-

-

i
n

x
—

.
i
n

t
o

i
x

a
t

X
-
X

X
-

X
X

-
o

x
q

X
X

X
—

X
q

i
n

-
-

t
n

q
-

-
t
r

-
r
*

I
O

-
-

-
-

i
n

.
_

X

q
a

d
X

T
"

O
•
r
-

tr
*

t
p

-
o

r
a

o
x
r
x
x
x
o

x
x
x
t
p

-
C

O
O

X
q

H
T

-
a

C
M

C
M

•
r

tP
-

O
0

0
t
r
-

i
o

a
p

-
q

tr
*

0
0

O
C

M
tO

o
a

a
s

o
.
—

.
•

x
t
o

e
n

r
x
c
o

o
"
r
-
"
r
-
"
p

-

tJ
-

O
-

-
o

—
o

a
x

a
t

x
x

r
x

X
X

O
O

0
0

-
X

0
0

X
t
p

-
X

i
n

—
—

t
o

e
n

-
t
r
-

-
T

-
C

M
-

t
r
-

o
t
o

-
a

t
-

X
m

q
r
»

—
•

—
1

O
X

tp
-

a
s

X
X

a
-

O
-

x
r
x

x
X

X
X

x
r
o

r
x

t
o

x
X

~
X

X
a

s
a

x
x

x
a

s
tn

O
tp

-
i
n

-
c
m

i
n

-
q

-
c
m

-
X

H
r
-

q
a

s
_

»
.

•
X

—
'
K

K
K

K
K

X
K

X
>

r
-

>
-

(
M

O
X

X
X

O
C

M
X

X
X

-
r
x

X
-
o

T
-

-
O

o
-

X
o

X
a

X
X

t
O

X
X

X
X

t
M

l
O

O
t
j
-

t
r
-

•
t
-

q
O

O
C

M
tO

M
C

M
o

a
-

C
M

O
O

X
m

X
x
o

x
x
x
x
x
x

X
X

-
O

i
x

a
a

a
c
m

-
r
x

x
i
n

x
X

C
M

X
x

o
o

r
x

x
t
o

X
t
o

•<
•
-

h
h

x
a

a
a

a
tP

"
t
p

-
q

-
C

M
f
"

-
C

M
C

M
i
n

•
r
-

t
o

C
M

3
2

C
M

t
n

r
x

i
n

X
«

;
•

•
X

X
a

d
g

a
a

a
a

a
a

a
d

£
O

U
K

I
U

U
U

r
x
r
x
x
x
o

r
x
x
c
M

o
m

r
n

o
x
q

x
T

-
H

—
a

O
O

O
O

O
x

-
-

•
p

-
C

M
-

t
o

-
•
^

tO
C

M
x

-
t
o

-
t
o

X
•
T

-
X

u
s
»

n
q

>
d

H
x
a

o
o

o
o

o
o

o
o

o
a

o
K

>
•

>
>

C
M

x
a

t
r
x

X
•
-
-

X
X

T
-

X
O

T
~

IX
X

tp
-

X
q

.
.

g
>

>
>

>
K

c
m

i
n

f
"

T
-

r
x

C
M

•
f
-

x
q

*
r-

e
a

X
-

O
a

s
C

M
O

•
x
o

o
a

a
a

>
a

>
g

O
O

X
O

x
x

r
x

X
o

«
-

o
X

X
«

H
tp

-
H

X
O

tr
*

C
M

-
t
o

-
C

M
X

X
O

•
r
-

X
X

g
_

o
_

0
H

X

•d
X

X
-

n
a

.
d

.
d

a
d

O
i
-
'
X

r
x
x
x
x

x
x

-
x
x
o

x
x
o

a
g

•
—

g
q

d
d

d
-
j

a
d

H
X

-
t
r

X
t
o

•
r
-
X

t
n

t
n

o
a

a
n

x
t
o

-
a

X
a

d
x

h
a

o
X

_
1

g
•

•
a

d
d

a
J
a

J
a

J
b

l
b

l
d

-
J

H
x

i
o

o
a

t
n

i
n

-
j

•
d

•J
H

t
o

I
-

X
x

t
-

x
i
n

h
o

r
x

H
O

X
H

o
t
p

-
i
n

•
—

i
M

—
.

t
r
-

X
a

d
a

d
a

d
a

d
M

H
O

H
•
r
-

h
q

c
m

t
n

t
n
W

h
r

t
o

I
X

t
n

I
X

H
a

»
d

t
n

t
n

h
O

a
d

—
ii

»
4

>
d

a
d

a
d

>
d

>
d

a
d

>
d

X
X

H
tp

-
II

X
O

X
X

X
O

X
X

I
X

X
X

X
t
r

X
X

IO
X

X
-
x
x

II
o

a
s

X
«

K
—

a
x

x
x

x
x

x
t
r
-

a
p

-
X

t
-
»

q
X

•
T

-
O

II
O

O
X

X
-

C
M

II
O

[|
«

c
x

X
x

o
o

H
X

X
•

•
w

»
X

X
X

X
X

X
X

X

o
a

t
o

-
X

K
O

O
O

O
O

K
Q

X
X

Q
X

a
p

-
Q

O
T

-
o

o
o

t
n

o
o

g
O

X
H

X
x

X
X

o
o

o
o

x
o

-
a

-
tP

"
o

-
t
o

g
o

O
x

o
m

-
g

O
X

o
a

-
.

a
X

O
O

tn
O

X
x
o

o
o

o
o

o
o

o

o
o

o
o

o
o

o
O

O
o

o
o

o
o

o
o

o
o

O
o

o
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
O

o
o

o
o

o
o

o
o

o

o
a

o
T

-
c
M

t
n

q
i
n

t
o

i
x
c
o

m
o

t
r
-

C
M

t
o

q
i
n

t
o

r
x

o
o

a
t

o
tp

»
C

M
I
O

q
i
n

t
o

i
x

c
o

e
n

o
•
f-

c
m

t
o

q
t
n

t
o

r
x

e
o

o
a

o
•
r
-
c
M

t
n

q
i
n

t
o

i
x
o

o
c
n

O
tp

-
tP

-
tp

-
T

-
T

-
tr

*
t
r
-

T
"

tp
a

tp
-

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

t
o

t
o

t
o

t
o

t
o

t
n

t
o

t
o

i
n

i
n

*
j^

q
q

q
q

q
q

q
q

q
i
n

t
n

t
n

i
n

t
n

i
n

i
n

i
n

m
i
n

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

t
o

-
T

-
O

«
M

~
-

•
n

«
m

f
-

o
-

"
C

."
C

_
«•>

t—
-(—

-
q

-
w

-
a

t
q

-
e
n

O
-

-
t
p

-
q

«pa

o
i
n

X
o

x
u

.
^
»

-
o

-
«

—
m

l
.

—
t
a

-
f

«
«

C
M

a
t
-

-
t
r
-
r

a
f-a

r
-

T
-

tO
a

r
-
l
x

r
C

O
f
-
O

f
"

•
p

a
t
r

r
x

-
o

-

X
a

a
-

r
a

t
O

u
r
>

e
o

b
.
-

•
-
»

r
j

t
a

u
H

,
i
n

q
-
i
n

tp
-

I
X

a
f

"
f
-

o
o

b
u

l
x

t
»

.
^

b
-
«

-
•
-
»

t
l
-

X
*

-
X

•
A

-
e
n

t
o

-
t
o

O
O

C
M

tD
r
-

I
O

-
O

-
i
x
-

O
-

O
a

p
-

-
C

M
-

-
t
p

-

x
•

tO
0

U
b

.
-
b

l
-
t
»

-
t
a

J
(
_

>
H

-
t
o

-
o

I
O

f
V

I
-

-
-
-
-
-
-

r
-
r
-

a
r
-
q

f
r

a
r-

t
-

-r
-C

M
C

M
C

M
tr

t
n

c
m

•
x

-

O
X

o
-

r
>

t
o

-
K

i
r

C
M

r
-
r
*

-
t
o

tP
>

a

t
o

X
<

->
M

l
-
C

M
M

L
.

t
o

r
»

t
o

b
l

.
.

t
i

f
i
n

O
a

j-
o

o
t
n

o
q

i
n

r
t
n

r
«

«
-

o
i
n

ap-
O

q
-

-
t
p

-

O
X

Q
c
»

?
I
X

t
O

a
-
"
^

«
-
r
"
.

a
j
-
b

.
o

-
t
o

-
t
x
,

m
q

-
-

-
r

-
r

-C
M

-
I
O

-C
M

-
q

C
M

C
M

i
n

•

-
X

t
o

1
-

C
M

a
r
-

-
b

.
-
b

l
-
b

l
.
.

.
.3

q
-

i
n

f
-
f

f
r
x

«
-
q

t
o

r
t
o

r
C

O
r

m
r

K
»

r
C

M
r
»

r
-C

M
-
t
p

-

q
m

«
~

.
b

.
C

)
b

.
*

n
•
»

.
t
t
.

?-:
-
«

n
-

-
r

-
-

-
q

«
-

-
r
-
c
M

-
m

-
c
M

-
c
M

t
o

-
O

-
r
x

-

a
j-

O
a

t
x

•
f
B

l
l
i
.
l
L

b
.
b

.
I
i
-
U

a
.

•
-

E
"»

t
O

r
r

f
i
n

-
t
o

a
t

r
-

C
M

t
o

-
t
r
-
O

r
T

-
m

-
a

r-
a

r
-
O

ar*
O

t
a

r-
tp

-
C

O
-
C

O
-
o

•
J
-

I
O

t
-

r
x

f
-
C

O
^
b

.
0

b
.
d

>
r
a

.
f
i
.

b
i

*
s*

.
o

s
,

.
.

t
o

-
o

-
O

«
-

t
O

-
«

-
-
C

M
-
C

M
-
r

-
t
-

-
t
p

-
O

tp
-

C
m

C
M

-
O

r
X

S
m

O
C

L
.

b
.
b

-
b

^
b

l
-

a
r/>

r
i

—
q

q
t
o

f
0

)
C

M
•
r

o
r

•
-
-
-
«

-
o

-
r
x
-
n

-
r
o

-
o

i
n

-
.

.
i
n

tp
-

X
o

-
i
n

I
O

O
a

r
-
b

.
b

]
b

.
C

i
»

a
.
b

.
O

»
«Q

X
,

q
t
n

-
a

t
-
f

-
-

-
o

-
-
-
"
-
•
f
-
t
—

a
r-

t
o

a
r-

tO
a

r
-C

0
-
p

-
O

t
.

f
-

t
r
-

c
m

i
n

-
-

x
O

X
X

S
K

U
L

.
K

b
.
O

b
.
b

i
r
a

.
»

o
r
-

«
m

>
5

-
i
n

-
c
m

t
o

0
0

r
i
n

-
O

I
X

X
C

O
C

O
r

•
X

U
t
n

b
.
b

l
b

.
t
O

a
-
-

K
I
i
.
I
i
.

x
n

i
o

e
J
L

.
.

-
C

M
-

C
M

O
IX

.
C

M
a

t
_

..T
"

-
r
*

-
t
r
-

-
C

M
C

M
tp

»

X
X

x
x

B
K

U
L

.
M

I
i
.
L

]
(
)
n

L
.
I
i
]
K

«
C

t
_

.
C

M
t
o

f
q

r
r

f
-

-
-
i
n

-
-
r
r
r
W

r
r
O

r
M

r
r
W

W
r
r
M

N
C

M
f

-
i
n

t
o

-
-

X
o

c
o

p
X

X
I
O

b
.

.
b

-
A

b
.
t
i
.
r
a

.
.
b

.
"
•
a

-
J
O

>
•
-
.

j
j
.X

q
-
t
o

-
-
«

-
i
n

c
m

t
o

C
M

t
x

O
-

-
-
a

f-
-

-C
M

-
-
I
O

-
-
I
O

-
-C

M
-

-
-
C

M
-

-
•
P

-
0

0

X
X

("1
fx

-
-
C

I
.
.

a
-
q

-
a

-
t
o

t
o

-
-
«

-
-

-
c
»

u
i
o

»
r
i
o

i
n

r
r
C

*
r
r
B

r
W

i
n

r
r

tr
-

a
t

IO
r
x

o
C

M
tp

-

o
o

O
O

b
.

u
.

o
n

<
t

i
i
.

n
-
b

i
v
-
m

b
.

•
U

N
•

a
—

«
M

,
i
s
.

-
e
o

-
-
a

-
-
m

-
.

-
r

t
o

r
r

-
-
r

-
-
tr

»
-

-C
M

-
-C

M
-

-
q

-
-

-
i
n

-
-
t
p

"
.

.

o
o

O
f
O

p
i
b

O
n

r
i
L

n
n

n
i
d

a
a

K
f
t
-

•
-
%

C
M

.
.

.
.

M
*

•
>

«
-
«

-
t
X

a
j-

-
«

-
-
t
O

-
.
r
M

r
S

n
r
V

S
r
e
a

r
M

S
r
Q

O
|
x

tr
-

O
n

-
»

tp
-

o
-

to
f»

x
u

p
-
n

.
N

n
m

i
i
.
f

-
b

.
^
.

O
t
o

-
i
n

-
T

-
-

q
c
m

^
q

-
t
-
-

-
a

r
-
a

r
-

-
a

r
-
t
n

-
T

-
C

M
-
r
C

M
-

a
r-C

M
C

M
-
I
O

-
q

-
-

o
r
x

X
o

r
-

•
n

-
-
n

r
n

a
i
f

o
t
i
i
i
.
K

•
-
«

«
>

O
Q

.
.

O
J

O
.

«•>
c
m

t
o

q
-
i
s
.

-
i
n

t
a

-F
-

o
-

C
A

^
O

a
r-

i
n

-
a

r-
O

-
T

-
O

-
a

r-
M

-
a

t-
r
x

-
a

r
-

tr
-

I
X

-
O

C
M

tr
-

C
M

»

O
a

j-
r
l
S

S
U

b
.
M

i
n

S
S

r
»

B
-
b

,
c
-
a

i
i
]
C

i
.

~
~

-
f

<
-a-

a
«

M
*

*
a

t
—

t
n

-
•
o

e
n

f
-
«

-
-

«
-

O
a

t
f

r
a

j-
-
r
r
l

-C
M

tO
-

r
I
x

-
a

—
0

0
-
1

-
O

-
-
r

q
IO

I
O

-
I
O

C
M

O
T

-
h

.
S

S
l
L

.
M

O
O

S
h

.
n

n
a

-
a

-
n

L
.
h

r
e

n
a

1
f—

b
l

^
.

,
t
a

e
n

-
f

r
v
i

-
-
a

-
-

-
i
x
.

f
.
a

>
-

-
-
a

r
-

a
r-

-
a

r
-

O
-
r
-
O

-
f
i
x

-
a

r
-
O

-
C

M
i
n

O
-C

M
o

-
q

-
t
p

-

.
.

0
0

-
O

O
-
a

f
•
-

-
«

•
*

-
~

t
i
t
t

-
t
x
l
t
^

n
r
t
n

m
a

.
.

a
r
.

X
.
.

w
H

f
-

-
«

-
q

-
T

-
e
n

-
fa

.
-

•O
I
X

I
X

-
a

r
-

a
r-

-C
M

M
-
a

r
-
t
o

'
-
^

O
-
a

r
-
O

-
f
"

C
M

tp
*

-
O

O
C

M
O

-
I
O

-
o

IO
X

a
t-

IO
-

X
I
O

-
-
C

M
b

.
^
^
M

(
b

.
A

b
.
r
a

.
•
A

a
l

J
r
t
*

.
^
^

J
O

t
^
»

B
B

f
t
O

q
f

f
I
X

C
M

-
M

r
r

a
r
-
a

r
-
a

r
-
O

-
t
r
-
q

-
"
r
-
-
-
-

-
a

r
-
I
O

-
r
-
a

r
-

-a
p

-a
p

«
-

-
C

M
tp

-
c
m

m
C

M
C

M
O

-
I
X

C
M

•
r
-

X
W

r
r
W

N
i
i
l
-
-
i
M

i
-
n

-
«

u
i
i
.
«

U
L

a--
O

O
•"•

X
••

Q
.

I
-
.

c
a

b
i

r
>

-
t
o

-
-
«

-
o

-
r
-

O
-
C

M
«

-
-

-
*

-
«

»
-

-C
M

-
-
o

-
-C

a
.

-
-
c
o

-
-
O

o
-

-
•
O

C
M

X
-
M

-
O

a
p

-
t
o

r
l
a

.
O

r
M

U
.
r
a

B
U

i
-
i
i
.
n

f
K

b
.
f
t
i
.
i
s

c
>

r
»

r
>

e
n

tn
t
»

q
-

a
-
-
i
n

-
f
i
O

f
f
-
t
O

-
-
r
x

O
-
f
«

W
r
r
r
r
r
C

»
f
K

»
r
r
«

l
>

»
P

i
r
«

r
r

X
IO

-
C

M
tP

-
-

X
O

r
-

o
r
)

m
i

«a»
ia

»
u

*
b

.
u

b
.

«
•
_

t
n

t-
>

a
l-

a
^
,

n
t
o

-
i
n

-
o

t
n

-
o

-
r

-
c
m

-
c
m

-
i
n

-
c
m

-
q

X
X

o
q

N
»

IX
X

X
O

O
X

-
U

.
r
l
!
a

t
)
t
l
!
l
i
.
n

>
l
!
K

b
.
-
l
!
l
i
.

-
r
M

E
-
l
.
J
a

J
S

E
a

a
j
a

;
.
-

K
m

i
_

^
j

a
f!

t
-

t
o

a
t!

a
-

c
a

x
t
o

X
x

-
r

X
f

-
X

IO
ap-

X
O

ap-
X

q
ar-

X
O

ap-
X

^
«

-
X

O
X

O
r
-

q
a

a
h

x
c
m

-
X

t
p

-
r

t
o

a

H
O

S
H

U
.
a

H
U

M
H

i
n

•
h

t
i
.h

J
H

I
d

l
O

O
,"

>
d

>
j
a

i
...„

_
j
a

i
t
n

.
j

t
_

-
t
o

f
-

-
a

-
-

H
-

f
h

c
m

-
H

a
p

-
a

—
H

a
p

-
~

h
i

•-•
-

H
IO

-
H

C
M

-
H

C
M

-
H

C
M

H
H

I
-
n

w
i
o

n
h

-
I
O

H
-

-
•p

-
t
n

X
O

O
X

O
X

X
O

Id
•*•

b
.

C
O

w
A

U
.

.
0

!
K

M
ii

r
>

«
♦

M
i

t
e

—
-
a

c
B

S
h

u
t
e
B

!
-
}

-•r
*

i
n

-
X

f
-
*

£
-
t
x
X

-
-
X

a
p

a
O

X
r
i
n

X
"
J
-
l
O

X
»

J
-
a

X
.
X

r
a

p
a

X
r

<
r

C
D

II
p

O
X

X
o

-
X

tP
-

0
0

tl
o

.
.
«

»
Q

-
t
o
o

n
-
O

K
)

t
O

O
-C

M
O

-
T

»
O

-
r

O
-
r

O
-C

M
Q

-
Q

-
r

g
o

o
K

a
r
-

r
x

a
-c

m
a

s
o

O
O

O
«<

»
B

»
c
a

m
«

*
n

m
m

e
n

n
o

c
»

o
o

o
o

O
O

O
O

O
O

O
O

o
e

o
o

e
o

o
o

q
i
n

t
O

la
.

C
O

0
1

»
-
a

i
M

w
o

i
n

ID
r
>

.
e
a

t
n

c
a

a
r
-

C
M

t
o

q
i
n

o
r
x

o
o

e
a

o
tr

*
c
m

m
q

i
n

o
r
x

o
o

r
x

I
X

K
K

K
K

.
m

C
D

m
c
a

e
n

a
t

c
a

a
t

a
t

o
o

a
o

e
n

o
a

o
o

o
o

o
o

o
o

o

t
-

v
»

f
r

r
a

r
-

a
r
-

a
p

.
-
p

.
f
-

f
-

f
"

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

E5Jl)
b

\
O

n0oO
Q<
u

C
M

-
t
r
-

i
i

t
x

C
M

I
X

M
-
i
n

-
1

9
C

M
-

O
o

I
O

IO
t
o

C
O

-
o

-
o

tp
-

a
t

-
o

T
r

C
M

q
r
x

r
x

c
m

o
t

.

-
t
x

-
t
n

C
M

O

o
-

C
M

-
a

O

i
n

c
m

I
O

C
M

g
X

o

-
0

0
-
I
O

X
i
n

a
p

-

o
-

C
M

-
a

X
o

t
n

i
n

o
o

tp
-

H
X

o
-
t
o

_
u

>
C

M
C

M
a

d
O

t
n

-
a

t
-

T
P

-
x

i
n

e
a

c
m

r
x

o
o

C
M

X
1

•
—

t
p

-

-
m

-
I
X

m
X

—
.

O
II

H
tr

-
-

o
-

i
n

-
H

o
o

o
—

g
-
O

r
x

o
t
o

a
t

tp
-

t
n

—
tr

-
o

o
a

X
C

M
O

-
i
n

-
t
o

e
n

•a
t
o

o
c
m

q
S

-r-
O

o
a

-
C

M
-

i
o

r
x

c
m

-
-C

M
V

o
-

I
X

C
M

0
0

C
M

O
C

M
tp

-
X

X
g

X
a

s
o

o
-
I
O

-
t
o

r
—

O
—

-
-
g

X
—

—
H

C
M

-
o

-
o

o
a

s
O

t
X

o
x

a
+

x
X

X
O

X
o

i
x

e
o

IX
t
o

C
M

X
H

X
—

a
n

—
x
g

o
o

x
a

t
-
o

-
m

a
t
o

a
>

*
H

C
M

X
O

-d
X

q
r
x

-
q

-
x

o
r
x

c
m

o
x

i
n

i
n

.
d

•
O

0
0

m
l

c
m

t
o

m
e
o

c
m

x
a

II
O

O
B

r
K

M
r
l
O

A
O

o
q

o
o

c
m

t
o

o
X

>
«

V
II

X
H

I

O
X

-
t
n

x
-

H
i
d

Q
d

H
H

d
U

M
-
d

g
id

X
a

d

H
H

O
-
h

t
o

t
A

»
d

K
K

X
»

d
X

X
a

d
-

—
a

d
a

d
Q

O
X

O
ar-

X
O

X
X

O
O

X
X

X
X

X
X

X
X

X
K

X
g

X
g

O
Q

-
i
n

o
-
K

O
X

X
K

O
g

g
O

-
«

-
-
»

-
O

X
O

O
O

X

o
o

o
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
o

*
-

C
M

•
o

q
i
n

t
o

i
x
x
o

t
O

T
-
c
M

i
o

q
t
n

t
o

i
x
c
o

o
t
o

a
a

u
o

o
o

o
o

o
o

o
o

o
o

a
t

a
t

a
t
o

o
o

o

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

I
O

.
a

H
.

X
i
n

O
A

-
•

••
x

••

X
X

X
a

a
s

tn
x

X
£

x
o

••
x

.
h

x
x

a
o

o

£
a

g
-d

g
h

•
x

o
x

o
X

a

—
-
.

g
»

-
v

o
x

a
•

g
-
d

h
t
n

H
X

^
u

s
in

tn
m

i
o

a
H

a
x

to
—

g
o

x
g

—
—

h
x

rS
a

s
a

s
-

t
o

o
x

a
o

X
H

-
~

~
.

—
.

«
a

-
r»»

g
x

w
h

g
g

t
o

O
t
r
-
♦
»

X
Q

O
a

d
|

o
e
n

t
o

-
X

g
o

a
m

i
a

s
x

x
H

O
0

0
C

M
-

o
o

a
t

h
x

x
a

X
•

t
o

i
x

tr
-

c
m

t
r
-

a
-
.

i
n

o
to

c
o

g
x

o
g

•
a

o
t
r
-

-
-

*
H

—
0

0
C

M
X

H
a

d
>

.
o

X
S

3
H

-C
M

g
—

m
O

tn
c
m

>
->

X
X

i
n

-
x

+
+

a
-

g
X

x
•

x
tn

m
a

n
tr

-
c
m

a
r
x

o
t
o

X
X

g
X

s
x

a
a

—
h

S
O

-
d

—
.
_

-
H

—
o

H
-

x
a

g
C

O
H

x
a

>
•

h

X
X

O
K

—
t
n

o
a

H
x
a

o
—

•
«

n
a

g
a

o
X

O
C

M
h

o
a

s
g

—
H

X
O

00
s

••
~

H
•

•
x

o

St*
»

d
||

-
d

X
—

>
*

t
n

x
>

-
«

.
.

H
X

IO

O
O

O
r

o
a

a
U

C
O

C
O

d
O

-
•

X
C

M

>
o

x
II
o

o
—

C
M

M
i
x
.

A
O

a
X

O
C

M
a

d
II

H
II

V
H

H
H

H
"
H

K
H

O
K

II
a

d
a

d
X

a
d

a
d

H
O

g
a

d
X

X
>

d
g

»
g

g
«

g
X

g
«

a
O

>
d

a
d

X
-
d

>
d

X
X

—
.

m
l

•
d

_
i

.
.
_

.
_

.
S

B
•—

O
~

"
X

X
X

X
X

O
X

X
X

a
d

K
X

X
X

X
X

K
K

X
K

O
X

O
a

d
O

O
—

1 X
O

O
g

X
X

o
«-*

—
•

o
x

•
•

c
u

x
a

X
>

x
••

o
x

o
O

O
o

o
o

o
o

o
O

O
O

O
o

o
o

o
o

o
o

o
*

-
c
m

t
o

q
m

t
o

i
x

c
o

c
a

o
tr

-c
m

t
o

q
i
n

o
I
X

M
O

t
o

o
o

o
o

o
o

o
o

o
r
x

r
x

r
x

i
x

r
x

r
x

r
x

i
x

r
x

r
x

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

iX
.

juO
SQ
>

O
QC
D

Computer
Techniques
for Tutoring the
Mentally
Handicapped

Huzzah, the revolution has just started! And the fact
that you're reading The Best of99'er signifies that
you are very much a part of it—a revolution fueled

by the availability and affordability of computer power to
millions of consumers. As more and more software—
computer programs that can meet a large number of every
day needs, as well as solve problems encountered in special
areas—is developed, the computer will become as common
in our homes as the telephone.

Our task in this generation is to learn to take advantage
of this tool in a variety of areas, disciplines and endeavors.
In this article, we would like to focus the application of com
puter technology on what may seem at first to be a most
unlikely area—tutoring the developmental^ disabled.

Retardation is defined as "below average intellectual func
tioning that originates during the developmental stages with
associated maladaptive behavior." In the search for tools
to combat retardation, the microcomputer has shown itself
to be extremely valuable by assisting the retarded popula
tion to develop skills, abilities, concepts, and even behaviors.
Preliminary testing demonstrates that not only can these in
dividuals use a keyboard, but they can learn it very
quickly—finding it attractive, novel and magnetic. Options
such as the light pen, joystick, and voice synthesizer pro
vide capabilities that can be used to adapt numerous pro
grams for this special population.

Help for the Schools
Of more than eight million handicapped children in the

U.S., reportedly only half are receiving appropriate educa
tional services. School districts under ever-tightening budgets
struggle to meet the needs of these children. It therefore ap
pears highly probable that using microcomputers to assist
in meeting the needs of these children will be both an
economic boon to schools, and a valuable enhancement to
the learning process of these youngsters.

Despite traditional controversies regarding the learning
process, there are some areas of general agreement. These
areas have provided us with a basis for software geared to
the special learning needs of the retarded—programs utiliz
ing the unique qualities of the computer to further stimulate
learning.
Fascination With the Medium

Retarded and non-retarded alike are able to learn more,
as well as more easily, from teaching aids that effectively
focus their attention on the content. Attention management
for the retarded youngster is especially critical. In this regard,

Copyright © 1983 Emerald Valley Publishing Co.

the computer, keyboard, and CRT have a fascination that
commands attention with an immediacy that is unparalleled.
When a youngster is seated before a console, the attraction
of the mechanism coupled with the allure of a good inter
active program provides an incredible amount of motiva
tion and drive. If you have children who play computer
games or other electronic games using a microprocessor, you
already know just how difficult it is to distract them and
draw their attention to something else—like homework,
eating, or cleaning their room.
Nothing Succeeds Like Success

As human beings, we tend to strive toward success or try
to avoid failure. In the search for success, the "locus of con
trol" is usually internal. This is to say that in the process
of maturing, a person begins to realize a power or ability
to control events, and begins to set goals. We begin to
become efficient in attaining goals. Actually attaining them
brings a sense of success which is its own reward and
prompts one to continue to strive for success.

Avoiding failure, on the other hand, means maintaining
a mere minimum of effort so as not to incur some type of
punishment. Consequently, the locus of control is external.
For a majority of developmentally disabled, avoiding
punishment becomes the usual way of behaving. They are
not given to setting goals since they have not come to ex
perience the internal locus of control and the possibility of
success.

With the use of computers, a learning environment can
be created which can provide a retarded child or adult with
the experience of success. As the experience is repeated, the
locus of control begins to shift from without to within. This
is a natural reward process which has more lasting effects
than punishment or negative reinforcement. As the reper
toire is gradually expanded, the retarded individual begins
to realize a potential: a power for success.
A Multisensory Lens

Another important element in the learning process of the
retarded person is the ability to focus in on significant cues.
Once again, the hardware's attractiveness (or novelty, if you
will) is so engaging and attention-riveting (thereby limiting
external or irrelevant stimuli or signals) that the person learns
to be attentive to only the important and discriminating cues.
Furthermore, the multisensory impact of the computer pro
vides an additional quality which is extremely valuable in
the learning process of the retarded person: The more you
can use, engage, and impact many sensory modalities—

The Best of 99'er Volume 1 I8I

and do it repeatedly in an interesting manner—the greater
the likelihood of retention and learning.
An Example Program

Thefollowing isa simple program designed for teaching
retardedpersonsthe extremely abstractconcepts of number
recognition, counting and subtraction. We feel that the pro
gram demonstrates the principles stated in this article, as
well as the uniqueness of the computer as a tool especially
well-suited to meeting the learning needs of the develop-
mentally disabled. Wewish to emphasize that thecomputer
does not totally substitute for a teacher. The retarded in
dividuals on whom wetested the program required personal
assistance and encouragement at the beginning of the lesson.
Reaction to the computer ranged from reluctance to eager
enthusiasm. In somecases, wefirst used anotherprogram
(a keyboard trainer) to familiarize thestudent with thekey
locations on the console. The TI-99/4 keyboard is highly
suited for use by those unfamiliar with typewriters. We
found it helpful, however, to cover theletter keys with mask
ing tape to reduce distractions. Also, we noted some con
fusion created by the shift characters above each number—a
small problem we hope to overcome by trying a number
of key covers. Based on field testing of this program, we
areconvinced that thisapproach can beextended to many
areas of work with this group, a group whose needs are so
unique that conventional methods have been onlymoderate
lysuccessful. Using thistechnology, wehave a potential for
far greater success and the possibility of doing things that
were unthought-of for this segment of the population.
The Program

The program opens with several options which must be
selected. The instructor is informed that a performance
rating of the student's progressis available by pressing the
AID key. This rating gives the number of trials, correct
answers, and percent correct. If you wish to reset the op
tions later, simply press the BACK command and re-enter.
The AID and BACK commands can be entered during the
main lesson, thus giving the instructor flexibility in choos
ing the set of options most appropriate to the student's level
of ability. The program also has a speechselection option
that permits its use without the Speech Synthesizer and
SpeechEditor Command Cartridge. [The extensive use of
graphics in this program precludes the use of the speech
editor resident in theExtended BASIC CommandCartridge
with its fewer availablecharacter sets.—Ed.] Although the
actual lesson is designed for non-readers, the initial option
selection must be performed by an instructor or someone
who can read. These options can be selected in any com
bination from the following list:
Select:

1 = Random presentation
2 = Serial presentation
3 = End lesson

—Display the number above the gulls (Y/N)
—Pronounce each number as it is printed (Y/N)
—Computer says press_(number) after a row of gulls

is put on the screen (Y/N)
Select format for placing of gulls on the ocean:

1 = Horizontal Row
2 = Diagonal Pattern
3 = Random row placement
After the options are selected, the screen clears and a

seascape is painted on the screen. A picture of a deep blue

182 The Best of 99'er Volume 1

ocean and a steamship liner on the horizon moving toward
a tropical island focuses the student's attention immediate
ly. The gulls appear on the water from left to right, and
a shark's fin begins to circle the gulls while waiting for the
student to press the key representing the number of gulls.
If the response is correct, a musical fanfare is played,
followed by the computer saying "Right (number)," and
theshipmoves one columnto the left, emittingsmokepuffs
from the stacks (the number of puffs equal to the number
of gulls). However, if the student's response is incorrect,
the computer says, "Uh oh," and the shark stops circling
the gulls, emerges from the water and devours the last gull
(with sound effects)! Then the computer asks the student,
"What number is left?" and waits for the student to press
the key representing the number of remaining gulls. If in
correct again, the computer says, "That is incorrect," gives
a short laugh, and then engulfs the next gull! This can con
tinue until no gulls remain; the program then recycles and
another trial begins. On a correct response the computer
says "Right (number)" and the ship is advanced one col
umn to the left with the appropriate number of smoke puffs.
Each correct response advances the ship toward the island
until it is "docked" and the computers says, "You win."
It then recycles the program, placing the ship back at the
right side of the screen, and continues the lesson.

We recommend that students start with the Serial option
rather that the Random. This starts with the number 1 and
adds a number on each correct trial, but will not add a
number on an error. In this way, a student cannot be
challenged by the larger numbers until he has displayed
mastery of the smaller ones. In general, we also recommend
the strategy of starting a student with all prompt options
operating, then removing them as the student demonstrates
competence.

EXPLANATION OF THE PROGRAM

Computer Techniques for
Tutoring the Mentally Handicapped

Line Nos.
160-280 Sets all variables to zero.
290-820 Instructor selects program options.
830-1310 Defines characters and color codes.
1320-1450 Constructs seascape, boat, and island.
1460-1550 Calculates the appropriate number of gulls to

place on screen.
1560-1590 Clears screen from row 10 to 24.
1600-1820 Places gulls in the water.
1830-1890 Controls movement of shark fin from left to

right.
1900-1960 Evaluates key response while shark circles gulls.
1970-2120 Musical fanfare on correct response.
2130-2220 Controls movement of shark fin from right to

left background.
2130-2290 Evaluates key response.
2300-2530 Controls animation of shark eating gulls.
2540-2620 Evaluates key response and clears screen to right

of last gull after shark "eats" it.
2630-2660 Controls loop to eat next gull.
2670-2740 Verbal response to correct key press; increments

number of trials and right responses.
2750-2810 Moves ship, controls puffs of smoke and sound

effects from ship stacks.
2920-2950 Prompts to press a number if a letter was

pressed.
2960-3060 Routine when boat reaches island.
3070-3100 Calculates performance scores.
3110-3170 Prints option to end and branches appropriately.

Copyright © 1983 EmeraldValley Publishing Co.

D

P

L

N

C

NM|=
R

P

P

P

AM

N

C

I

I

I

S

P

c

GjO
SP

PR

owl

EM

EH

EM

EH

EM

EM

LOO

LlOjO
X

0

LOO

EH

RI

ME

N

P

S

L

S =

k|=
K

=1

=1

=1

TO

NG

ION
H

UMB

L

S|=
E

E

A

S

N

H

/

L

S

E

E

1

N

T

E

L

S

E

E

1

1

UMIB

NG

NG

YOU wi
E

W|AY0

OU

YO WA

YOU

EA

TO

E

R

S

S

N

S

EjQU

TO

R

S

E

BlAtC

NO

YOU

DO

PlON
;t

:e

TO

ROM

AN DOM

TO LA

TH

RO

COHP

WH

Copyright © 1983 Emerald Valley Publishing Co.

FO

A

T |0
S

RlOlG

TA

TO

720

GO

GO TO

D

DkDW

HA

CH

HCH

HC

C

CH

CH

C

CHlA
CIAL
0

DO

6

7

8

9

0
0

0
1

1

1

2

2

2
2

3

0
4

4

4

1

9
1

1

1

1
1

1

1

9
9
8

8

7

7

6
6
9

9

9
8

L|A
N

WA

GON

GU

The Best of 99'er Volume 1

0

HE

[DO

183

80

91

01

100
1

2l

3

41

5

6

7

8

184

ik TlH

HI

'0

7i

Nl

e|n| (1

NF

GO

N

GO

N =

R

FO

TO

N'

ElM
R

OOl

TOFO

NMI =NM+

R

I

I

P

g|o
p

L

L

NM

L

Dl

NM

:ai

A

A

EM

N

NM

R

E

C

C

CIA

GO

L

L

L

L

L

L

L

L

L

L

L

L

T|0
EM

IN

$

C

CIA

NM

SO

IO

WA

MU!

SE

1

•P

7 51
NM

gu:

NM|]
0
NMI

NH]

:ro:

The Best of 99'er Volume 1

WA'

IN:

F

GO

WEI

R =

F

CAl

T

F

C A

FO

FO

NM

N

E

NM

R

NM=

IEM

CO

K

L

T

NM-

1

'F

C

H

H

H

HC

HC

SO

T

A

Y

Y

Tl

P:

H

00

.00

HC

L

MO^

UHN

SO

=1

D

HI

4

:1

A

:T

1

.01

N

GO
F

A

TO

SI

N

HO

+

8

SWE

|WHi
E

HI

R

R

R

R

R

R

0

R

D

TO

S

TH

2

T

S

5
•o

,001

$

1

2

IA

WH

NM

NM

NM

NM

NH

0

UM

WRO

WA

R

:r +

0
14

14

X

X

X

0
A + l UHl

BO

3

2

ICOl

NG

Copyright © 1983 Emerald Valley Publishing Co.

«
O

S
0

1
P

S
«

_
~

C
O

H
'

«
C

O
is

*
•

o
w

II
o

a

1
-

^
o

u

a
—

O
!
-
•

z
•
•

Z
o

•
O

S
_

•
c
o

«
s

«
.
»

t
o

>

•
U

(
A

—

II
-
J

C
O

a
-
3

t
-

u
o

<
u

O
a

z
~

w
t
-

a
.

(G
a

o
a

1
-

a
Z

Z
c
*

o
.
-

o
a

o
o

o
T

"
u

.

>
o

S
C

O
—

W
i
n

t
o

II
I
-

C
O

C
O

<
r*

C
O

o
C

O
l
-
t

u
u

t
o

z
z

•
J

z
—

a
»-»

tx
s

Z
W

o
w

;
u

i
—

z
u

«
~

3

•
—

.
O

•-)
O

Q
o

u
b

;
t
-

O
S

B
G

<
t
-

g
~

o
a

t
-

o
K

-
u

•
-

•
U

>
>

-
1

-
o

c
o

>
o

.
a

t
u

o
n

i
n

•

•
i->

o
K

t
O

«
A

l-«
.
.

•
—

1
-

1
-

ii
11

V
!-•

O
Z

.
.

(
-

g
.

*
J

C
O

M
b

d
Z

II
-

*
-

a
_

•
.
.

•
J

—
a

g
a

a
O

a
s

•
<

u
.

u
.

U
.

a
z

z
o

.
e>

—
O

U
T

-
o

"
-

~
«

C
w

C
O

o
o

o
o

O
o

o
o

c
»

e
n

o
T

-
M

W
O

I
A

I
D

N

o
r
-

T
*

^
^

r
-

r
-

^
T

"

t
o

t
o

t
o

t
o

t
o

I
O

I
O

I
O

I
O

—
.

—
C

O

~
o

~
o

.
—

.
—

.
U

•
o

-
o

o
a

«
.

o
M

O
t
o

.
o

»
N

-
r
<

i
-

o
o

o
•
-

I
N

O
C

M
o

t
N

C
O

o
£

-
I
N

-
(
N

r
*

o
O

«
N

O
n

.
M

K
I
D

B
-
O

.
o

t
-

O
o

o
o

o
o

«C
Z

9
-

«
M

i
n

t
-

•n
i
n

•-a

u
»

a
»

Q
Q

Q
Q

Q
0

3
o

a
i
-
~

z
z
z
z
z
<

o
-
j

<

>
*

&
&

o
s

s
u

C
M

<
W

^
-
c

o
o

o
o

o
_

]
t
o

O
»

J

II
e
n

c
o

C
O

C
O

C
O

c
o

O
t
-

o
c
u

e
n

o
•-1

o
i
-
i

-
J

t-3
-
3

•
j

1
-1

•_
)

i
-
i
g

^
l
i
u

,
<

<
<

M
:
i
g

:
>

i
:
>

(
0

u
<

x
—

o
o

o
c_>

o
o

o
O

a
t>

o
o

o
o

o
o

o
o

o
o

o
o

1
^

C
O

O
l

o
r
N

M
Q

I
A

(
D

I
S

C
O

c
n

e
n

c
n

o
o

o
o

o
o

O
o

o

n
M

M
M

i
o

m
m

n
n

I
O

t
o

t
o

I
/)

0
0i5v
.

q
k

o
\

0<
u

O
Q

©

Typing for Accuracy provides practice for students
who are somewhat familiar with the keyboard.

Seven finger-placement categories using different
typewriter keys are offered: home keys; home row; top row,
middle finger; top row, pointer finger; ring finger; little
finger; and bottom row. A typist may choose one of the
categories for each drill.

The program uses graphics and sound effects to liven up
the drill: A rocket appears on the screen, and a word is
printed on the rocket while a 1.5-second tone sounds. A stu
dent then types and ENTERs the word. If it has been typed
incorrectly, the rocket blasts; if it has been typed correctly,
a second tone sounds and the score goes up. The rocket then
takes off {with gases trailing behind), and a different word
appears.

At the end of ten words the student's score is tabulated
and displayed as a percent accuracy rating. The student may
then choose from the seven drills or may exit the program.

This drill is not meant to be a speed drill because begin
ning typing students must gain accuracy and familiarity with
the keyboard before working on speed. However, if the stu
dent wants a timed test, an approximate words-per-minute
rate can be estimated using the tones—i.e., if the student
presses ENTER as the tone ends, the rate is 40 wpm.

®®a@Q0(u)(Tj(o)(7)(2)
®0®0®GDCH®(rj0B

186 The Best of 99'er Volume 1

Typing
for

Accuracy

EXPLANATION OF THE PROGRAM

Typing for Accuracy
Line Nos.
120

130
140-200
210
220
230
240-400

410-440
450-480

490
500-530

540
550
560-580
590
600-640

650-700

710-730

740-780

790

800
810-890

910
Subroutines:
920-1530
1540-1680
1690-1780
1700-2110

Dimensions the array A$ to allow for twenty
words.
Sets the y-coordinate for drawing the rocket.
Words used in the drills.
Prints the title screen.
Prints instructions.
Prints the menu screen of the seven categories.
Awaits the student's choice. Depending on the
category chosen, a certain DATA statement is
RESTOREd which contains the words for that
particular category.
Draws the rocket.
Reads the number of words in the category and
stores the words in the A$ array.
Initializes the score.
Randomly chooses a word. Once a word is
chosen it is not used again in the drill.
Calculates the coordinate for printing the word.
Sounds the tone for 1.5 seconds.
Prints the word to be typed on the rocket.
Awaits the student's typed word.
Compares the student's word with the given
word. If it is incorrect, a white noise is sound
ed; if it is correct, a tone sounds and the score
is incremented.
If it is the first word, draws the bottom of the
rocket.
If it is the second word, completes the fins of
the rocket.
The rocket moves up and has a trail under it.
The words are cleared.
A$ set to zero so the word cannot be used
again.
Returns for the next word.
Prints score and waits until student is ready to
continue.
END.

Prints title screen with music.
Prints instructions.
Prints menu screen of seven categories.
Draws the rocket.

Copyright © 1983 Emerald Vattey Publishing Co,

110 0
'1110
1|2

3
4

R

D

E

CK

GO

GO

GO

EM

EH

IM

2

T

AM

S

H

K

DE

A 1

GAY

S

2
OJW

SOD

L

L

T|A
LA

W

WA

wowl

BlOIMlB
U

N

ZOM

0

0

GO

RE

GO

RE

GO

RE

GO

RE

GO

RE

G|0
E

TO

TO

S

TO

TO

I|0
TO

DOM
K

N

A

FO

IW

CA

I

C

Gto
CA

C

C

C

CIA
GO

F

L

CO

F

A

A

A L

L

TlO
K<|>

s

65

SO

K

SOlUlN
1

CtHlA

B

AS

OD

W

ND

UN

slco
T

ClHA
CHA

CHA

C|H|A
4

TH

S

G

T

YIARID

NG

A

SA

HA

HAG

L

L

H|A
AR

FO

GA

l|a|g
H

E

RA

XAM

cto

AG

ED

EE

D

TA

S

S

HA

D

LAID

LA|G

ED

ED

E

da|y
TA

A

S

HA

SHlA

HAY

FA

W|0
K

W|0

E

WO

TOW

OWE LOO

X

QU
Z

P

X

A

H

H

GO TO

Z

E

E

MJE

W

N

ZlOlOM
CA RHI

32

EG W

Copyright © 1983 Emerald Valley Publishing Co.

0

CA

F

|GO

P

C

c

p

c

c

c

p

c

c

c

c

c

c

p

p

c

c

c

c

c

c

CA

A

CA

I =

CO

CO

OO

CHA

HA

ch|a
SO

T

LO

LO

UN

T|A
R

N

R

R

R

UND

CHAR

SOUN

CHAR

SOUN

CH

SOU|N|D
CHA

SO

HC

H

HCHAR

HCHAR

CH|A
CH

CHlA
HA

SOTJND

XX

HC|H
X

S|0|U|N
LOCO

YY = 1

HCtH

YY

SOIU

HCH

s

CjH
CH

SO

CHA

CHA

AR

UN[D
c|h|a|r

R

OiUiND

KE

6

T

7

T

8

1

T

9
T

1

1

1

1

1
1

1

1

T

0

X

T

2

TO

CO

18

CO

F0

8 3|C 3C

The Best of 99'er Volume 1

P

INU

ER

E

187

0
0

0
3 3 N
O

N
O

n ? 3 ®

o

i
<

n
o

i
o

)
o

>
c
>

o
>

o
>

o
>

o
)

a
i
w

i
u

i
w

w
u

n
n

w
u

i
w

w
o

o
o

o
o

o
o

o
o

o
o

o
o

0
9

^
(A

U
I

f
t
O

I
N

»
^
Q

<
O

M
M

a
"
'H

>
M

M
J

i
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

M
»

»
»

w
>

C
>

>
>

>
w

'n
>

M
a

M
»

»
t
i
a

»
a

a
>

>
>

w
>

>
>

g»

g
a

g
a

-<
t
-

•H
>

*
"
H

••
*

o
n

o
w

o
a

x
x

O
»

J
O

O
t
-

A
W

Q
C

O
Q

g
C

O
C

O
O

C
O

O
O

t-
>

O
O

B
O

»
-i

a
a

o

o
o

o
a

"

p
i

p
i

Q

r
-

»
w

Q
-
i

Q
P

I
>

a
Q

a
p

i
a

—
—

g

-
»

N
»

N
>

O
n

i
o

n
—

—

g
O

pi
~

-
£

x
6

C
O

g P
J

V
-<

T
»

-<
g

g
a

a
-
>

~
»

Q
—

g
~

P
»

»H
g

••
-»

Q
P

I
>

M
O

W
C

I
Q

I
Z

^
-

o
a

p
i

a
o

o
^
o

-
C

O
•-

«
O

"
fl

•-
)•

-<
X

—
g

•
H

x
t
o

g
x
a

x
t
o

p
i
a

o
u

-
^
"

a
t
i

~
Q

t
i
Q

~
p

i
q

>
-

p
i

»<
p

i
t—

q
a

q
g

a
a

»-
i"

>
-
i

>
o

o
-
t
-
i

W
W

M
Q

g
"

Q
%

—
B

W
W

8
M

M
W

f
-

g
P

I

O
t
-

g
c
o

o

>
o

O
a

~

H
H

M
l
Q

P
I

P
i

o

>
j*

o
«-

»

ft
»

-
J
-
_

M

s
o

o
o

i
Q

I
D

W
U

I
O

O
P

Q
(O

—
x
»

o
m

o
—

o
c
o

O
q

a
.c

*
w

o
»

—
o

O
H

M
Z

P
I

—
>

>
H

O
O

N
»

g
p

i
a

o
o

•H
O

P
I

C
O

»H

~
•

o
-

-

g
Q

d
o

_
»

o
—

O
•<

~
g

~
S

"

.
^

.
^
^
0

0
0

0
0

0
0

0
0

0
(
0

(
0

(
0

(
0

(
0

(
0

(
0

(
0

(
0

(
0

0
9

0
9

0
9

0
9

0
9

0
9

0
9

0
9

0
9

0
9

N
»
a

o
t
o

a
M

a
a

i
A

W
M

^
o

o
a

^
c
n

u
i
&

w
M

-
k
O

i
o

a
s
n

u
i
A

o
i
M

^
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

p
)
a

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

a
g

o
*

f
l
O

,
w

,
«

,
«

,
o

g
p

i
>

>
>

>
>

>
>

>
>

»
>

»
»

>
»

>
>

>
i
>

>
<

>
>

>
>

>
P

i
t
,
i
»

<
o

»
<

a
a

a
a

o

a
a

"
-

*
-i

-
i

"
H

-
i

g
o

o
<

<
<

<
<

:
'
<

<
<

-
<

<
S

'
<

'
<

-
<

«
S

'
<

<
<

<
o

o
g

—
O

11
c
o

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

r
-
,
t
-
,
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
c
-
,
t
~

'
t-

>
»

«
*

»
.

0
0

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

0
0

O
-
i

P
I

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
o

p
i

o
o

-
j

o
u

i

—
0

0
—

O
-

a
U

M
M

W
M

M
M

J
M

M
O

I
M

&
A

W
M

M
O

-
u

i
p

j
w

t-
>

a

_
»

-
.
<

>
<

.
<

.
<

.
<

.
<

.
<

.
<

.
<

•
<

»
<

.
<

.
<

.
<

»
<

»
<

•
<

•
-
<

-
*

-
O

«
*

*-
J

g
«

-
*

+
i

+
i

+
i

+
i
-

+
I

+
I

+
I

+
I
-
-

_»
-
*

•-
»

»-
»

o
*

»
T

>
O

t
-

—
M

S
W

1
—

u
>

_
k
(
0

-
k
(
0

(
0

(
0

(
0

M
(
0

-
»

(
0

^
(
0

(
0

(
O

(
0

-
o

—
M

o
v
j
o

a
n

o
o

n
^
M

Q
M

o
n

n
n

o
o

^
«

a
*«

i
g

a
o

—
o

—
—

M
M

M
M

—
—

_
»

-
»

^
-
*

—
>

%
g

p
i

—
—

_
k

^
k
»

N
»

s
»

«
a

—
—

—
.
—

.
»

p
i

»

a
<

-
-

t
\

E
l

1
0

CIVIL
ENGINEERING

SIMPLE

BEAMS
Tl

BASIC

The purpose of this program is to tutor civil engineer
ing students who are studying statics or structures.
It is limited to a simple determinate beam supported

at the ends and loaded with a concentrated load, a uniform
load, or a combination of a concentrated load and a uniform
load. Basic knowledge of elementary statics is a prerequisite.

1. Concentrated load at the center

Newton's laws of force and moments are reviewed. The

general solution of a load P applied at the center of a beam
of length L is developed for the reaction forces A and B
at each end of the beam. The student then does two prob
lems. The load P and the length L are chosen randomly for
the problems. If the student enters an incorrect solution,
the correct one is given, and he is given another problem,
2. Concentrated load anywhere

The general solution of a load P applied a distance D from
end A on a beam of length L is derived for the reaction
forces A and B at each end. An example problem is given
and solved. Then a problem is given for which the student
enters his answers. The program prints the method of solu
tion. For the next problem the student enters his solution.
If he is incorrect, the program shows him how to solve the
problem, and he is given another problem to solve.
3. Uniform load

The uniform load is considered as an equivalent concen
trated load acting at the centroid of the loading pattern. The
first example is a uniform load for the length of the beam
and is solved in general terms. The student is then given a
problem. If he enters an incorrect answer, he is shown the
correct solution and given another problem.
4. Combination loads

Instructions are provided for placing a beam with one
concentrated load and one uniform load. The student is then
given a problem with combination loads chosen randomly.

Copyright© 1983 Emerald Valley Publishing Co.

r/yss/sssT/sr*7.'ss/s/*?77y7,//y:>

The program draws and labels the beam for each problem.
If the student enters an incorrect solution, the correct solu
tion is printed and he is given another problem.
5. Problems

No instruction is given. The program randomly chooses
a beam length and loading pattern, and prints the problem.
It then draws and labels the beam. The student enters his
answers; if he is incorrect, the correct answers are given and
another problem is printed.
6. Your own problem

The student enters the beam length and loading specifica
tions. The program computes the reaction forces A and B
at the ends.

After each section has been completed with correct solu
tions, the student is given the choice of having more of the
same kind of problems, entering his own problems, or
returning to the menu screen.

Programming Techniques
This program is a teaching aid or tutor, so it incorporates

pauses, allowing the student to work on the problem before
continuing. The student must enter a correct solution to the
problem before he or she can go on to a different kind of
problem. If the student enters an incorrect solution, the cor
rect answers are printed and another problem of the same
type is presented.

The numbers for each problem are chosen randomly (yet
appropriately) for each beam. The length of the beam is
between 10 and 20 feet. The concentrated load is 100 times
a random number from one to twenty (i.e., 100 to 2000
pounds), and is placed at a distance D from end A (ran
domly chosen within the bounds of the length of the beam).

The uniform load is 10 times a random number from one

to ten (i.e.,to 100 pounds per foot). For some of the prob
lems, the uniform load is acting over the length of the beam.

The Best of 99'er Volume 1 189

For more advanced problems, it acts between two endpoints,
LI and L2, givenas distancesfrom end A. LI must be equal
to or greater than zero and lessthan the total length of the
beam. L2 must be greater than LI and less than or equal
to the total length of the beam.

The problems are written in "story problem" form by
using PRINT statements in subroutines, with the program
usingonly the statements that are necessary for each loading
condition.

After the student has had time to draw and label the prob
lemon hisown paper, the computer willask him to "PRESS
ENTER TO CONTINUE", and the beam will be drawn
on the screen with approximate proportions.

The general beam is drawn with a pin at end A and a
roller at end B.

The distances are approximated by using a variable y-
coordinate—an integer value of the fraction of the distance
(D or LI) divided by the total beam length multiplied by
the number of characters printed in the general beam. For
example, Statement 6750 is:

Y = INT(Ll/LL*22) + 6
Y is the y-coordinate used in CALL HCHAR or CALL
VCHAR statements. And 6 is the displacement of the end
of the beam from the left side of the screen.

In statement 6760:

Z = INT(D2/LL*22)-1
Z is the number of characters to be printed horizontally for
the uniform load. D2 is the distance L2-L1.

Figure 1.
Converts PP to a string variable.

LEN finds the length of LBS.

Calculation for y-coordinate.

LB$ = STRS(PP)

For 11 = 1 TO LEN(LBS)

JJ = II + J-4

CALL HCHAR(I-5,JJ,ASC

(SEG$(LB$,II,1)))

NEXT II

CALL HCHAR(I -5,JJ + 1,32)Prints a space after last digit

CALL HCHAR(1-5,JJ +2,76) Prints L.

CALL-HCHAR(I-5,JJ +3,66) Prints B.

CALL HCHAR(I-5,JJ +4,83) Prints S.

Prints each digit in order.

The labels for the values on the beam are variable and

are printed using string variables. For example, the concen
trated load P may be three or four digits long (100 pounds
to 2000 pounds) in the written problems, but the student
may input an even longer number. This label printed by us
ing Statements 5850-5930 (see Figure 1).

190

L

T

CO LO

LO

NG

AH

,5)

The Best of 99'er Volume 1

NG

TA

AM

EXPLANATION OF THE PROGRAM

Civil Engineering Fundamentals
Line Nos.
100-250 Prints the title screen.
250-330 Blinks a blue border.
340 Clears the screen.
350-540 Defines special graphics characters for draw

ing the beam and loading, and sets the color
for them.

550-680 Prints second screen, diagram of simple
beam.

690 Goes to menu screen for choice of problems.
700 Choices 1 and 2, concentrated loads, branch

to here.
710-810 Prints instruction screen.
820-900 Prints second instruction screen.
910 For choice 2, branches to 1720.
920-1000 Prints problem.
1010-1070 Draws and labels general beam.
1080-1180 Shows solution of reaction forces in general

terms.

1190-1270 Draws and labels beam with centrally-applied
load.

1280-1330 General statement for central load.
1340-1370 Chooses random numbers for problem.
1380-1400 Writes the problem.
1410-1440 Draws and labels the beam.
1450 Asks for A and B from student.
1460-1540 Compares student's answers with calculated

solution and prints appropriate remark.
1550-1580 Has another problem.
1590-1610 Asks if student wants more problems and

branches accordingly.
1620-1700 Draws and labels a beam for student's

problem.
1720-1790 Prints instructions for second type of beam,

concentrated load anywhere.
1800-1870 Draws and labels beam.
1880-1970 Solves the problem.
1980-2050 Chooses a problem and prints it.
2060-2160 Draws and labels the beam.
2170-2190 Solves the problem.
2210-2240 Compares input answers with calculated

solution.
2250-2270 If student is incorrect, solves the problem in

detail.
2280-2290 Returns for another problem.
2300-2330 Solution was correct. If it is the second pro

blem, another problem is chosen.
2340-2360 Offers the student the choice for more

problems.
2370-2530 Solves a problem the student enters.
2540-2600 Prints the general problem for a uniform

load.

LO

AY

L

Copyright © 1983 Emerald Valley Publishing Co.

GO

F

G|0
I

G|0
CA

I
GIO
CA

GO

R

LO

EW

S

AWl

B

IG
PO

1

owl

H

E

U|M
UM

CO

PO

AWS

B

UjM
m

s

IMJOM
B

B

B

Y

0

UM

F

LMOtM

LlWIA
E

F|0

OWN

T

MpJM
FO

Copyright © 1983 Emerald Valley Publishing Co.

AM

IO

EM

EM

EM

AM

P

Gp
GO

IF

EX

GO

GO

IF

I

X

P

L

GIO

GO

GO

GO

GO

GO

GO

GO

F

IF

PR

GO

GO

R

B

[OtM]

LO

10

EA

GI

S

A

P

D

T

57

TH

TH

N

OR

NC

UN

ET

|WE

AM

AM

ROM

TGH

NG mm
i

6

0)
AMI

ON

GNO

,OAl

E

AM

The Best of 99'er Volume 1 I9I

GO

AR

E

P

L

D

GO

GO

GO

GO

I
GIO
GO

GO

DD

FO

E

I

I

C

I

I
Gp
GO

A

GO

A

D|0|M
2

TO

LOA

PO

IS

R

W|

H|OUG
V

YO

)
6

AMI

DO

ROM

IM

A

G

A

AG

CO

AM

RM

FOO

192 The Best of 99'er Volume 1

GO

WW=

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

GO

S

S

S

S

S

S

S

=|w|w|

TO

H

H

H

H

B

B

T

T

T

B

OM

0

N

B

B

B

B

B

B

B

X|+
B

T

T

T

T

T

T

T

T

T

B

B

B

6

2

B

B

H

H

T

T

T

B

T

T

B

X +

0[M
B

B

22,19,115,7

CO

UtM
0

N|OlW|
5

w

MOM

UM

NG

FO

RlOEM
Bb

F

K)M

OM

A

S

Copyright © 1983 Emerald Valley Publishing Co.

i
-
.

a

a
a

•
i
-

C
M

t
n

O
a

•-)
•-)

o
>

•
•

•
=

t
•
j

.
.

o

o
—

g
a

a
»

j
•

•
—

-

e
n

a
w

a
s

g
-
•

>
_±

_
z

m
a

O
I
-

X
X

<
«

J
L

J
L

•-1
•
-
)

>
~

~
»

o
o

9
a

g
•

a
•
j

•
J

•
-
]

C
O

>
.

•
»

<
er

s
a

a
o

a
II

•
j
-

.
C

M
—

a
—

M
M

<
U

C
O

p
a

x
x

-
~

II
•
j

»
!

•
J

II
—

z
*

»
•

•
9

>
9

«
C

O
g

O
H

<
-

i
-

a
>

-i
a

V
*

-
V

-
V

—
P

C
O

s
«

•j
x

>
->

u
i

O
—

—
|«

,
-
~

.
.

5_
X

X
T

-
O

Q
a

g
g

u
P

a
a

r
s

—
e
n

-
o

S
ft*

•
Q

.
.

•
l
-

C
M

•-)
—

ft.
z

•
j

M
U

H
-

a
a

—
a

a
>

—
.

W
O

—
«

B
T

«
l
-
i
n

—
x

ft*
>

5
£

«
J

S
»

-9
J
L

-
~

•
p

a

a
a

o
o

o
a

u
i-i

a
~

o
-
i»

-
a

-
i

-
m

a
n

II
ja

.
o

o
o

C
M

C
M

•
-
o

O
O

O
—

.

h
-

i
-

t
o

a
s
h

l-
i

(
O

H
0

a
c
m

-
t
s
r

n
n

i
b

p
a

•
V

J
L

a
o

II
a

«
*

t
o

V
»

^
a

X
fa

a
—

»
o

C
M

a
o

>
o

g
•

X
-

+
*

»
-
+

+
+

-
O

Q
O

O
o

b
.

o
V

V
u

.
a

a
C

M
T

-
X

•
C

U
H

C
t
O

•1—

i
»

«
-

a
t
o

i
n

-
X

a
c
o

—
z

i
-
l

»
>

-
*

i
-
>

-
>

-
i
>

-
>

-
«

b
.

II
«

T
C

M
9

O
K

a
a

a
•
3

«*»
T

-
o

«
.
-

.
.

c
A

t
j
t
n

-

o
o

o
>

«
X

C
O

S
a

o
n

J
-

o
^
.

a
r
»

r
»

v
o

a
i-

.
«

o
a

•-)
—

a
•

a
a

-
C

M

•
•

o
g

g
a

.
-

0
0

>
-

a
X

—
i
n

M
N

r
r
r
r
-
r

ft.
9

O
•
»

«
*

-
O

C
O

«
»

O
g

g
«

a
a

a
>

•
z

z
—

*
•

A
A

a
a

a
»

.
-

<
J

>
z

1*
I

1
+

+
+

+
+

l
a

z
>

-
g

g
g

-
Z

a
a

-
Q

•
^

a
II

•*
X

u
a

a
t
n

—
.
~

«
a

a
O

•
SS

a
%

—
•

a
z

x
z

z
a

I
—

i
g

X
g

a
>

.
X

X
x

>
•

X
1

-
a

*
*

-
a

x
x

—
a

a

<
c
o

«
f
-

t
-

C
O

II
O

-
J
O

•
-
.

^
—

—
—

•
»

»
•—

—
~

i
3

O
a

i
-

a
a

a
Q

U
h

U
X

a
!
-
•

I
-
.

I
-
i

a
i2

.
Z

J
_

X
O

-
I
i

!-•
z

—

1
1

>
O

o
•

J
L

o
a

p
a

-
i

a
•

o
o

o
a

o
a

a
a

a
a

a
a

g
o

a
a

c
o

a
a

o
x

a
c
o

a
i
-

a
C

O
a

C
M

•
j

—
.

Q
'

II
o

z
o

a
u

o
a

x
a

•
•

o
>

o
o

n
*

"
•

•
X

e
n

o
x

O
fa

X
a

e
n

r
»

a
m

;
i
^
K

C
<

<
;
m

;
«

;
i
c
C

«
:
t
i
J

•
J
-

Q
i
-

—
H

-
F

-
C

O
o

o
_

H
-

_
•

i-
i

O
o

—
•jr

-
•
J

O
o

Q
J
^

—
X

e
n

x
*—

*
a

a
o

X
a

i
i

O
X

a
l
O

M
Q

W
<

c
o

t
n

o
a

>
.

>
.

•
i
n

t
o

t
n

a
t
o

x
a

a
a

a
s
s
i
-
j

t
o

b
.

Q
•

e
n

•-1
o

-
j

c
o

a
o

•
J

•
J

a
T

-
T

-
«

Q
«

o
_

a
i
n

•
>

~
a

i»
.

m
a

a
-
j

i
n

c
o

II
II

••
.
.

>
i
n

e
n

h
J

m
i
n

i
n

o
a

o
o

o
o

o
o

o
*

i
n

•
O

•
-
4

O
.
.

c
o

«
O

a
o

•
j

•
I"".

•
II

II
•

O
T

•
J

Sj;
«

C
M

k
J

.
.

•
a

••
a

||
||

a
•j

o
t
-

O
C

O
(
A

>
«

>
-

m
c
j

o
a

a
a

a
a

a
a

a
||

«
J

II
«

»
||

V
V

•
»

V
V

•
9

|
^

f
t.

1
J
l

a
>

•
•«

«
»

O
to

||
u

C
O

C
O

h
*

a
a

W
W

I-i
1

-
i
-

a
1

-
1

-
1

-
1

-
l->

a
II

a
a

a
i
-

a
1

-
ft.

1
-

A
A

*
-

*
-

sp
h

-
•
J
-

•
j
-

t
-

I-i
C

M
C

M
i
-

C
M

II
f
t.

a
f
t.

h
-

1
-

a
!
-
•

a
a

a

x
x
z
p

p
m

m
z

g
g

P
o

_
j

g
g

g
g

g
•
•
P

o
c
m

o
o

o
o

p
p

-
3

tD
z
o

p
bp

P
•
J

«
j

g
O

P
•
-a

•_]
z

o
•
J

a
—

T
-
o

.
z
z
p

z
»

j
a

a
o

_
1

i
-
l

>
o

—
•

C
O

C
O

•
—

>
_

•
-
i

C
O

i
-

•
j

—
_

_
,

_
•
—

•
a

•
J
-

T
-

II
II

l|
«

C
C

O
C

O
»

J
1

-
t
n

t
a

^
i
j
>

j
u

d
i
J
d

B
,

C
O

a
*

o
*

—
i-

i
c
u

f
t
.

—
I
-
i

f
t.

•
—

•
I
-
i

tl
X

II
II

II
»

—
i

C
O

—
_

i
i
-

o
•-)

>
j

a
i-a

b
.

b
.

C
S

O
O

b
.

u
,

a
c
o

a
a

O
O

X
a

a
a

a
a

•
•

O
||

II
•*•-

C
M

C
M
o

o
o

X
||

II
O

X
X

X
X

X
X

X
g

O
g

b
.
g

t
u

b
.
B

O
g

b
*

g
b

.
b

.
a

O
g

b
.

b
.

a
o

cm
o

C
O

C
O
x
a

a
o

a
X

b
.
b

.
p

Z
X

X
O

X
—

•—
f
a

O
O

—
—

f
a

—
f
a

a
.
O

O
O

ft*
ft*

fta
f
a

ft*
<

O
•
—

«
.
j

•
J

Q
•
-
i

O
O

O
>

*
N

O
O

O
O

O
O

O
O

"
O

>
—

—
«

_
—

c
u

O
•
—

"
-

—
*

—
•
—

o
.

O
•
-
«

~
-

•
—

ft.
O

Q
•
j

n
n

<
p

.
«

•
(
J

fa
u

•<
"
I

o
a

O
O

b
.

o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
O

o
o

o
O

o
o

o
o

o
o

O
O

O
O

O
O

O
O

O
o

o
o

o
O

O
o

o
O

o
O

o
O

o
o

o
O

o
o

o
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

I***
c
o

e
n

o
T

-
N

K
»

9
i
n

u
N

c
o

c
n

o
r
'
N

t
o

c
t

i
n

t
o

r
s
c
o

a
e

•
r
-
n

m
c
t
i
o

o
N

c
s
e
t
s
r
r
i
n

c
t
u

x
D

M
o

a
o

r
M

M
Q

I
A

I
D

N
C

O
O

I
S

.
r
-
N

K
I
«

l
f
l
l
D

N
C

O
O

I
O

r
r
<

K
I
C

}
i
n

i
D

M
O

O
)
O

r
N

n
N

N
f
M

t
o

t
o

m
IO

tO
M

M
K

)
K

I
M

I
}
9

Q
q

q
•
9

•
w

•
3

•
u

•
9

m
t
n

i
n

i
n

i
n

i
n

i
n

t
n

i
n

i
n

c
0

«
0

«
0

u
>

«
0

(
0

«
o

c
0

«
0

c
0

a
a

a
a

a
a

a
a

a
a

a
c
n

c
n

c
n

o
n

e
n

o
n

o
n

e
n

c
n

o
o

o
o

_
1

*
s

s

-
J

a
«

<
C

M
•

•
-
]

-
a

i
n

»
-
J

C
O

a
S

o

s
Q

o
x

a
o

II
_

S
O

•
*

;
a

a
o

jg_
a

o
o

.
C

O
+

1
-

b
.

X
•
j

X
•
o

u
*

•
_

]
•
J

a
a

.
j

i
n

a
-

2
z

c
u

a
i-<

~
^

o
g

II
o

O
II

O
>

«
*

-
p

.

o
»

—
z

v
a

v
i
-

O
«

t
-

X
b

.
i
-
i

•
J

C
O

.
j
-

+
—

*
C

O
S

u
.

•
I
-

•
i
-

C
M

X
U

i
a

x
>

•
-
]

—

•-9
—

*
—

•
x

-
-
.

o
C

O
n

J
U

3
-
J

z
—

C
O

C
O

H
i-

3
C

M
o

o
a

a
II

•
-
•

O
O

O
•
—

X
X

a
a

C
M

C
M

•
-
-

C
O

O
O

f->
t
-

*
M

O
a

•
j

O
a

Q
o

ll
g

a
o

v
a

i
-

n
I
H

U
o

o
-«»

a
—

•
•
J
-

r
-

r
-

O
—

•
«

t
o

O
II

o
i
n

v
x

n
e
n

£
g

a
g

o
o

C
M

o
o

C
M

T
-

T
-

«
t
o

t
o

t
o

t
o

i
n

u
.

^
a

<
l-H

t
o

a
H

w
w

r
O

u
o

a
o

a
a

t
o

•1
—

a
o

t
o

Q
«

•
-
1

0
0

t
o

i
o

a
X

oet
O

t
o

X
a

t
o

o
a

•->
o

>
g

a
s

b
.

«
o

•
J
-

•
»

+
C

M
C

M
—

a

+
O

O
a

X
0

0
g

g
O

-
t
o

—
g

g
•

I
-
I

X
o

i
n

o
r

•
»

•
»

»
»

«
a

c
m

"
—

g
g

O
>

•
•
-

•
-

a
a

a
z

z
o

C
g

-
o

a
a

-
.
.

o
S

53
T

-
—

z
C

M
Q

—
t
o

*
-
-

s—
a

u
i

o
a

•
«

a
a

i—
•
—

•
a

II
z

z
a

»
-

a
a

>
-

—
C

O
S

P
a

z
z

a
C

M
z

z
X

i->
a

C
M

g
a

a
a

!-•
1

-
O

a
a

£
•
-
•

a
a

a
i

i
-

i
-

o
c

«
X

S
3

U
i

t
-

z
a

a
X

«
a

t
o

O
Z

1
o

o
o

•
—

C
Q

i-«
!-•

*
o

O
II

II
o

o
a

O
Z

O
X

t-«
I-*

a
t
-

a
a

o
a

~
~

O
a

p
«

o
a

o
o

g
a

o
x
o

x
o

i
-
i
o

o
>

-
I
O

O
X

O
O

X
O

O
O

i
-
)
«

Q
i
n

i
n

—
•
—

0
0

«
O

l
o

C
O

o
n

o
o

n
o

*
•

X
i
n

a
•
^

o
u

.
o

o
1

-
O

o
o

«
-
»

-
*

O
o

i
o

o
x

a
l
-

Q
t
o

-
•

a
x

a
a

to
—

•
*

a
!
-
•

r
-

i-
i

a
t
o

««—
«

-
i
i
>

.
i
n

i
-
i
r
<

.
o

t
-
*

«
0

(
n

i
n

+
~

-
x

O
t

C
M

«
«

_
L

X
a

»
i
n

t
o

"
X

n
i
n

n
n

9
n

u
♦
»

_
i

t
o

•
j

o
•
-
,

u
>

<
<

•
J
m

S
H

N
l
t
J
I
A

I
A

N
C

O
a

«
;

•
s

»
i
n

a
N

a
r
*

1-3
C

O
•>

.
r
«

.
i-

3
a

a
-
»

t
o

o
n

t
o

i
n

m
t
O

N
Q

«
O

X
1

X
V

V
t
o

t
o

>
-

>
-

o
V

t
n

V
V

t
o

V
v

t
o

t
o

O
O

S
o

—
II

II
II

—
II

ll
a

.
I

+
n

a
a

O
u

A
<

0
0

(->
a

I
-
i

I
-
i

i
-
.

a
a

a
a

a
i
-

a
K

fe
i
-

I
-
i

•
^

•
f

*
-

H
I
N

N
H

A
i
-

1
-

i
-

*
-

e
-

a
o

a
a

o
1

-
C

O
a

.
a

s
a

r
-

C
O

a
1

-
C

O
a

j£
CO

CO
ft.

a
c
o

c
o

ft.
a

fa
P

P
-
j

T
"

•-»
X

a
g

P
O

g
g

g
p

O
P

M
M

•->
t
o

«
o

p
p

p
p

^
z

£
L

p
•-a

•
J
Z

O
P

-
i
-
i
Z

O
P

O
•
j

Z
z

g
g

g
p

•
j

Q
P

P
f
"

Z
p

ft.
p

^
P

-
j

p
p

a
z

p
p

$
a

s
f
a

P
p

p
—

*
-

ft.
c
o

to
[|

II
J
L

•
—

C
O

f
-

~
"
-

•
—

C
O

i
-

a
•
j

*
-

i
-

i
n

O
T

a
.

C
O

ft*
•
—

i
-
i

f
t
.

*
^

—
•

h
*

ft*
•—

1
-

O
T

1
-

m
l

—
•
-

«
^

-
—

C
O

•-1
g

C
O

C
O

II
~

C
O

a
U

i
C

O
c
o

T
-

—
C

O
a

a
c
o

U
i

a
c
o

II
ll

n
O

o
»

c
o

x
u

.
u

.
a

o
o

a
a

a
O

O
O

u
.

u
.

X
||

U
II_Q

_
z

O
z

b
.

a
O

z
-

b
.
b

.
a

O
Z

b
.
b

*
a

o
o

O
X

a
a

*
a

a
a

o
x
x
o

o
f
t.

II
o

b
.
O

b
.
O

b
.
0

0
II

II
O

O
b

.
O

O
b

.
O

O
O

a
c
o

x
O

U
«

m
x

«
-

•
-

fa
O

O
&

.
a

.
a

.
O

O
O

~
~

o
—

>
*

t<
4

O
•
—

O
•
—

•
-
i

ft*
9

~
m

•
•

—
•

—
ift.O

—
—

—
0

.
0

0
w

O
ft.

•
•

o
.

•
•

a
.

a
*

ft*
9

O
a

O
O

f
t
.

Q
O

•
—

H
•
—

O
—

O
O

—
O

O
—

O
O

—
O

O
O

a
to

x

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
O

o
o

o
O

O
O

O
O

O
O

O
O

O
O

o
o

o
o

o
o

o
o

o
o

o
o

o
O

o
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

r
M

n
c
t
i
n

u
N

C
o

a
o

«
-

c
M

t
o

Q
a

c
o

i
v
o

o
e
n

o
T

-
N

n
q

m
i
O

N
c
o

o
i
o

T
*

r
i
K

)
9

I
A

I
D

h
(
0

0
)
O

r
M

K
I

•
3

i
n

o
M

o
m

o
r
N

t
o

c
t
i
n

i
O

M
O

O
o

T
-

(
N

I
O

Q
i
n

U
>

N
C

O
O

)
0

*
-

(
M

M
C

t
U

t
t

i
n

i
n

i
n

u
>

i
n

i
n

i
n

u
)
i
n

u
>

(
D

t
O

(
O

U
>

(
O

U
>

(
O

i
D

(
D

i
s
i
s
i
>

.
r
s
r
s
r
.
r
s
i
M

s
i
s
c
o

a
a

a
a

a
a

a
a

a
o

t
o

n
o

n
a

a
o

n
o

n
a

a
o

>
o

o
o

o
o

o
o

o
o

o
fO

K
»

K
>
n

n
M

n
n

M
n

M
t
i
i
M

n
n

M
i
O

M
M

n
n

n
n

n
n

M
n

M
M

M
t
o

t
o

t
o

t
o

t
o

m
t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

q>

i5O
v

O
Sa!

O
Qa»©

»
-

-
a

d
C

O
S

S3
•
—

•
—

.
.
.

a
a

«
U

i
a

•
—

a
-
*

a
a

z
a

d

Q
a

•
j

-
-

~
^

U
i

a
p

a
a

X
o

a
•
»

w
>

a
a

a
o

o
•

a

o
a

O
a

fr
-

a
.
-

z
.
.

o
.

a
C

O
U

i

a
d

o
a

—
i

b
.

Q
p

•
a

a
.

5
3

a
J

•
b

.
f
a

•
—

•
•
—

•
X

a
.
.

o
1

a
z

a
a

S
l
-

«
»

v
»

»
a

d
a

f
a

•
>

a
—

.
a

a
d

a
o

Z
a

O
O

—
z

I
-
i

•—
«

<
o

•
-
Z

a
a

C
O

O
—

—

O
O

o
X

a
a

r
e

O
X

Q
a

-
-

fa
p

a
s

Q
O

Z
C

M
C

M

b
.

b
.

•
—

i-
i

C
O

C
O

—
-

—
•
—

1
.
.
.

o
o

II
f
a

o
£

z
a

—
-

.

•
—

-
-
^

i-
i

—
c
m

a
a

t
o

—
o

a
«

i
-
i

C
O

•
*

f
a

a
•
-
f
a

O
«

-
fa

X
c
m

n
o

r
t
o

Z
U

i
o

a
d

o
M

M
S

C
O

O
r
»

a
a

X
1

-
o

f
a

c
o

a
a

z
fr

-
X

fr
-

-
•

•1—
»

J
-

P
Q

X
a

C
O

-
.

-
-

—
C

O
-

-
-

p
z

f
a

•
-

a
a

I
d

II
—

X
z

z
a

C
M

C
M

•
J
-

T
-

r
»

t
o

Z
a

a
«/»

k
C

T
-

C
M

I
O

O
T

v
»

X
C

N
t
o

i
n

o
-

H
»

a
o

X
X

M
S

S
O

O
f

«t—
.

-

t
o

r
»

X
P

a
X

0
0

+
+

+
+

fr
-

-
+

+
+

(
O

r
s
t
-
C

O
U

£
II

II
ll

x
a

a
x

X
^

S
3

0
0

—
^
to

t
o

r
-

r
-

•
I
-

IM
.

.

o
•
j

a
d

a
-
»

«
«

a
^

a
—

b
.

•
-
^

•
^

a
^

a
_

O
M

D
C

f
o

-
>

o
•

1
-

X
a

fr
-
I
O

t
o

-
-

1
+

C
D

C
O

U
i

fa
a

•—
•

a
^

a
^

a
-
-

a
-
^

a
^

—
•

•
-
^

«
«

a
^

-
-

-
-
a

S
«

a
a

0
0

Q
b

.
O

f
a

>
a

p
C

O
>

-
c
o

o
a

>
.

>
-

>
-

>
-

•
^

*j—

—
,

«
X

a
Z

.
.
.
.

Z
-

-
-

-
M

s
t
W

C
O

X
a

Z
a

O
S

3
0

-
.

.
.

-
.

.
_

t
-

z
a

i
n

t
n

a
i
n

i
n

a
T

-
•J—

r
-

«
-

-
-

-
_

(
_

O
-

b
.

||
II

II
X

X
a

>
-

Q
>

-
g

g
T

-C
M

C
M

C
M

IO
^

a
%

X
•J

1
1

1
1

1
•
j

+
+

+
+

t
o

t
o

t
o

t
o

SB
I

b
.

O
a

-
a

a
a

i
i

1
1

1
+

a
s

O
—

"
•

•
—

—
.

_
.

—
.

_
.

—
•

•
-
•

•
—

i
•
—

a
_

C
M

C
M

C
M

C
M

M
a

X
X

i-«
a

•
o

W
W

-
X

X
X

—
—

a
_

—
i

a
•

-
Z

1*
f
a

O
—

—
—

a
d

O
X

o
S

S
3

1
X

a
>

-
a

O
-
f
r
-

fr
-

•
•
~

-
~

-

x
»

a
—

X
o

f
a

!-•
a

a
a

a
a

a
d

t
-

a
a

a
a

a
a

a
a

•—
•

o
X

«
O

O
P

X
o

X
II

II
a

>
*

g
o

a
a

a
a

O
O

a
a

I
-

b
.

b
.

a
a

—
•

O
T

X
<

<
<

<
—

X
X

X
X

•<
<

rC
<

p
s

o
n

I
-
i

f
a

z
a

a
|

a
•
s

T
-

~
m

t
-

X
X

X
X

n
m

<
«

;

«
O

»
Q

i
n

V
»

T
-

1
X

X
X

X
X

«
y
»

T
-

•
—

•
X

X
X

X
x

X
x

X
•
£

a
«

•
a

tO
a

fa
u

t
X

a
>

N
M

>
<

c
t
i
n

X
X

X
X

t
o

t
o

X
X

.
.

>
a

t
n

a
II

—
O

~
o

o
o

o
a

II
*

-
.

o
•
-
•
o

o
o

O
O

O
O

»
a

.
.

.
.

•
»

a
.
.

i
n

•
•

a
a

a
tO

a
<

.
.
a

a
a

V
A

O
O

O
O

i
n

a
o

o
z

z
i
-

—
h

x
—

•
X

X
X

X
z

I—
a
—

+
x

"
-
x
x
x
z
x
x
x
x

z
z

z
z

X
>

*
>

-
g

X
X

>
>

-
g

X
X

I
-

i
-

a
fr

-
I
-
i

C
O

a
c
o

_
.

_
a

C
O

•
—

C
M

a
i
-
i

a
a

!-•
I-.

fr
-

i
-

h
h

l
Q

I
S

h
h

f->
e—

c
o

a
fr

fr
-

fr
-

a
fr

-
fr

-
fr

-
fr

-
a

a
a

a
a

a

g
Z

P
z

z
•

p
p

(1
•
—

a
d

—
H

i
-
l
i
J
i
J
i
J

p
n

T
-

a
-
l

i-
i

•-3
a

J
a

J
p

»
J
a

J
a

-
3

a
-
3

Z
P

P
Z

Z
Z

Z
Z

Z
P

P
Z

Z
Z

Z
P

P
Z

P
P

a
z

g
g

g
a

d
M

M
p

a
d

a
d

a
d

a
d

p
a

.
^
P

P
a

d
a

d
~

-
.
f
r
-

•
—

-
•

•
—

•
C

O
fr

-
«

/»
K

I
I
-
.
-

X
;

a
d

i-
l

a
d

a
d

i
-

v
»

a
II

i-
J

X
a

-3
a-3

-
J

I
-
i

a
-3

-
J

a
-3

-
J

•
-
•

C
O

i-
i

_
•
-
•

*
-
•

•
—

«
-
*

W
H

i
-
a

*
—

a
-
.

C
O

1
-

f
a

f
a

i
-

a
-
.

a
a
-
i

—
.

_
i

a
d

fr
-

a
d

a
d

a
d

a
d

fr
-
r
t
O

M
i
f
l
i
a

a
d

a
d

a
a

a
a

a
•

O
a

a
o

—
X

—
M

X
X

X
X

W
fr-

o
•
^

X
~

b
i
x
x
x
a

x
x
x
x
a

o
a

a
a

a
a

a
a

o
a

a
a

a
a

o
a

a
*

z
z

a
a

»
>

•
a

a
a

x
b

>
u

.
a

x
x
x
x
a

II
II

II
O

O
X

X
o

.
fa

a
c
u

•
•

a
.

<
O

a
a

d
b

,
—

O
t
-

Z
O

O
O

O
a

t
u

b
.

-
~

O
T

-
z
o

o
o

a
o

o
o

o
f
a

O
a

f
a

o
.

fa
f
a

a
d

a
.

fa
O

a
fa

a
.

fa
fa

O
a

e
t.

*
>

.
—

—
a

f
a

c
o

f
a

f
a

f
a

O
~

~
-
a

o
o

o
o

a
—

>
-

esi
O

O
O

O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
O

o
o

o
O

O
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
a

a
o

•
^

C
M

m
c
f

i
a

w
i
s
c
o

c
n

o
T

-
w

r
o

c
r
i
n

c
o

i
N

c
o

a
o

T
-
M

m
%

t
t
o

<
o

i
s
c
o

c
n

t
9

•
^

C
M

tO
•
»

l
A

I
S

I
S

C
O

C
f
l
G

*
-

c
m

t
o

•
»

a
I
f
t
M

O
O

)
o

r
n

n
c
t
i
n

i
D

M
o

a
s
r

N
I
O

V
i
n

i
D

M
O

h
h

t
t
C

O
a

a
a

a
a

a
a

a
a

o
v

a
a

o
n

a
o

n
o

n
o

n
e
n

o
o

o
o

o
o

o
o

o
o

r
-

T
"

«
J
-

f
-

•i—
V

T
-

T
-

*
f

r
-

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

M
M

K
)
M

K
>

M
I
O

M
K

)
>

O
Q

C
}
C

t
«

Q
«

«
C

t
i
J

i
n

i
n

i
n

t
n

i
n

t
n

t
n

i
n

i
n

t
n

i
n

t
n

a
t
n

i
n

a
a

t
n

i
n

a
i
n

t
n

c
o

c
o

c
0

c
o

c
o

t
o

c
o

c
o

c
o

c
o

c
o

c
o

t
o

c
o

c
o

a
a

t
o

c
o

a
a

c
o

a
a

a
a

t
o

c
o

a
a

a
a

a
c
o

c
o

a
c
o

a
a

c
o

a
a

t
o

c
o

a
a

a
a

c
A

a
a

t
o

•
a

fr
-

X
-

a
S

3
z

fe
o

—
a

X
s

a
>

*
C

M
—

a
a

X

o
z

a
«

c
-

p
a

a
a

a

X
t
o

S
2

fr
-

z
•

a
b

.
a

-
a

a
-

X
X

a
-
i

C
O

•
a

o
Q

Q
a

C
O

-
-

o
a

x
fr

-
>

Q
O

X
a

X
X

Q
s

•
»

a
i
-
i

a
-3

z
s
s
g

g
fr

-
a

X

o
o

X
a

—
i
n

-
j

—
.

S
.

X
a

o
X

fr

•
j

a
d

•
o

>
•
j

C
M

u
.

a
•
•

C
M

o
a

a
d

b
.

O
X

U
i

•
j

>
-

a
•

•
-

O
a

<
—

.
-

—
a

a
o

a
d

it-

o
O

Q
•
j

O
•

~
—

o
•—

•
—

.
—

.
M

M
C

f
i
a

t
o

a
.

X
fr-

a
O

a
a

X
z

z
a

S3
—

o
r

—
o

r
o

O
o

O
J

II
•
^

o
C

M
—

O
O

O
O

.
—

.
-

.
—

.
fr

-
a

fr
-

a
O

fr
-

a
o

z

fr
-

fr
-

O
O

O
f
a

<
C

f
M

9
N

•*•"
T

"
r
*

.
z

C
M

-
~

—
o

—
c
o

a
c
o

o
•
•
•
d

a
T

-
X

a
<

a
a

a

X
X

a
d

«
-
.

a
c
m

-
C

M
-

C
M

C
N

-
—

X
-
J

—
-

c
m

e
n

r
-

(
9

-
-

.
.

a
t
o

O
o

O
a

o
fa

fr
-

b
.

r
-
O

fr
-

t
o

r
o

a

a
a

i
-

a
Z

O
-C

M
-
C

M
•
—

—
i
n

t
n

o
O

X
!-•

O
r
-

c
m

m
-
c
u

r
r
n

r
r

%
o

-
o

T
-

V
a

—
C

O
•
•
s
x

•
a

«
-

X
-
i
n

S
S

fr
-

fr
-

H
i

"
g

"
X

53
S

O
C

M
IO

C
M

tO
C

M
!
-
•

—
o

c
o

o
•
-

C
M

C
M

•j—
-
I
-
.

a
-
+

+
+

+
-
a

o
-

-
i
-

fr
-

a
I
—

a
a

o
z

z
z

a
z

a
o

a
t
o

-
t
o

-
r
-

C
O

z
z

•J
—

i*
.

IO
i-

i
z

z
T

-
T

-
-

a
c
m

S-*
X

X
X

X
X

•s
r

c
m

•
J
-

a
^

a
^

Z
c
o

•
•

C
O

O
a-3

z
s

fr-
c
o

z
a

a

a
a

O
•
-
•

a
d

fa
-
T

-
_

C
N

-
a

a
-

i
o

n
;
u

«
-

-
a

-
g

a
a

a
d

a
z

o
a

b
.

O
>

o
o

U
.

a
a

a
c
m

t
o

r
-

t
o

c
m

>
-•

X
X

—
C

M
o

X
-
J

X
a

a
c
m

r
-

*
j
-

C
M

C
M

C
M

tO
•
*

T
"

I
-

O
o

r
r
"

>
-

a
S

3
X

f
r
-

•
-

x
a

a
z

x

•
•

f
r
-

z
z

•
—

S
o

p
Q

-
-

-
-

a
a

I
-
i

i
-
i

m
-

!
-
.

O
z

s
o

-
-

-
+

+
a
+

+
+

+
+

+
+

fr*
1

I
a

a
x

a
a

>
fr-

a
O

P
fr-

fr-
a

O
O

o
Z

O
a

O
Z

i
-

r
-

r
-

r
-

a
a

a
o

r
—

a
a

O
o

n
a

X
X

•
-
•

*
—

c
o

X
fr

-
a-3

z
O

a
o

z
o

a
X

•
•

a
o

o
p

o
o

.
>

-
w

—
—

—
.

—
—

-
1

•
I
-

f
»

z
—

O
o

n
x

-
«

—
—

a
-

M
H

C
a

"
C

M
Z

O
fa

r
-

a
fr-

*
d

a
a

a
a

O
a

o
»

-
V

a
a

a
o

a
•
9

I-.
>

-.
C

O
>

-•
a

a
a

a
a

a
o

a
a

a
a

a
a

a
II

>
«

a
a

a
o

t
o

a
o

>
fa

A
O

O
•

II
b

.
.
.

i
d

•
^

C
M

t
o

o
r
i
n

a
r
>

»
X

X
X

X
f
r
-
0

—
t
o

to
t
o

•<
t
o

l-i_Q
_

a
-

a
x

a
o

X
•«

<
<

«
;

«
:

!
-
<

<
<

«
:
«

]
:

X
X

>
-

X
X

X
f
a

—
v

x
a

>
-

P
fr-

a
—

•
-
a

«
fr

-

C
O

a
>

a
a

a
a

a
x

X
X

X
-
3

>
•

a
u

o
a

a
-
J

o
o

•
l-

X
X

I-1
T

-
a

S
B

SB
SB

S
S

S
S

S
B

S
B

S
B

S
B

S
B

X
X

X
-
3

X
X

a
>

-
A

b
l

fa
o

C
O

•—
o

•
X

fa
O

•
-

X
.
.

*
.
.

.
.

.
.

.
.

-•
••

o
o

o
o

r
-

o
a

II
*

-
.

i
—

i
-3

O
•I'

o
-
.

e
n

||
.

«
•

tO
a

d
o

o
o

o
o

-
w

o
o

o
o

o
o

o
a

d
b

)
o

o
.
-

a
v

a
d

«
«

«
•

m
m

.
.

«
fa

—
Q

a

a
>

>
>

>
u

u
a

x
a

o
o

o
a

ll
O

to
o

to
A

a
z
o

x
x
x
x
x

ll
x
x
x
>

>
x
x
x
z
a

o
z
>

>
z

x
>

-
g

o
g

o
O

Z
Z

i-
i

i-
i

fr
-

fr
-

I
-
i

fr
-

fr
-

fr
-

fr
-

a
O

X
X

a
X

«
a-3

i-a
i-

i
I-i

a
X

a
a

a
a

fr
-

a
a

fr-
fr-

fr-
fr-

a
x

fr-
fr-

fr-
x

fr-
a

fr-
a

fr-
z

z
z

z
Z

Z
Z

S
5

Z
-
3

.
-
l
.
J
i
-
J

n
I
H

a
d

•
—

C
J

U
a

d
a

d
-
J

1
-

o
-

a-3
g

Z
P

O
P

a
d

a
d

a
d

a
d

a
d

a
d

a
d

a
d

a
d

a
d

a
d

fr-
a

d
a

d
P

fr-
P

a
d

a
d

p
Z

-
J

X
P

-
3

z
z

Z
Z

P
O

z
z

z
o

Z
P

Z
P

X
—

—
.
—

_
.

a
•
_

•
—

_
.

a
~

•
—

»
d

a
d

a
d

a
d

a
a

d
x

•
J

.Q
.

•
J

a
J

a
-
J

x
o

-
-
O

.
H

H
a

d
a

d
a

d
a

d
a

d
a

d
O

S
a

d
a

d
a

d
a

d
a

d
X

a
d

a
d

fc
-

a
x

fr-i
a

d
a

d
fr

-
a

—
a

d
fr

-
d

„
«

»
«

H
a

-
.

_
_

a
-

fr
-

a—
fr

-

u
a

a
a

*
a

a
a

a
a

a
a

x
x
x
x
o

x
a

x
x
f
a

b
.
x
x
o

x
a

z
a

b
.
a

a
z
o

a
x
x
x
x
x
x
o

x
x
x
x
x
a

x
x
a

o
a

b
i
x
x
a

a
x
f
a

u
x
a

a
a

a
a

i
u

a
a

a
b

.
a

a
a

a

Z
fa

fa
fa

a
fa

a
f
a

f
a

fa
f
a

f
t
.
O

O
O

O
b

.
O

Z
O

O
a
—

•
—

o
o

b
.

o
z

o
a

—
ifa

fa
—

o
a

o
o

o
o

o
o

b
i
O

O
O

O
O

z
o

o
a

b
i
Z

a
o

o
a

f
t
.
o

~
a

o
f
a

f
a

f
t
.
f
a

a
a

-
fa

•
fa

fa
a

-,
fa

pes
fa

a

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

^
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

4
u

t
t
e
r
s

a
a

o
1

—
M

K
)
<

f
i
n

i
o

M
V

O
)
s
r
r
i
n

9
i
n

i
D

N
n

n
o

r
N

N
C

t
l
A

t
t
N

O
O

S
r
-

c
m

K
I
4

I
A

I
9

N
0

0
(
)
)
S

r
M

n
O

U
I
I
D

N
(
0

0
)
O

r
N

M
4

l
l
l
l
O

N
a

O
I
O

•
i-

c
m

t
o

<
or

i
n

a
r
-

o
o

o
o

o
o

•
^

1
-

T
"

T
"

f
*

—
*

^
«

-
r
-
T

-
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
tO

K
i
i
v
>

M
K

>
i
o

M
i
o

M
t
o

9
9

Q
O

a
3

9
9

0
0

9
i
n

i
n

i
n

i
n

a
i
n

i
n

i
n

a
a

a
a

a
a

a
o

a
a

a
a

i
-
<

.
r
«

.
i*

.
r
«

.
i*

.
r»>

r
*

.
r
»

.

i
n

i
n

a
a

i
n

a
f
l
i
f
t
a

f
t
i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
A

i
A

i
n

i
f
l
i
A

i
n

i
n

i
n

i
n

i
n

i
n

i
A

i
n

i
n

t
n

i
n

i
n

a
a

i
n

a
a

a
a

a
a

a
a

M
m

a
a

i
n

i
n

t
n

i
n

t
n

i
n

a
a

i
n

a
a

a
a

a
a

i
n

m
a

m
a

a
t
n

i
n

t
n

i
n

i
n

a

©2

.
.
.

O
Nt
o

C
Q

0
1

l!
J

i
i
f

»XS
3

oab
.

T
-

—
+

fr
-

a
•i™

a
+

a
d

a
—

+
(
O

r
b

.
C

M
o

—
—

—
+

1
t
-

z
o

r
q

a

+
a

-~~
z

g
C

M
C

M
C

M
«

a
d

a
a

C
M

C
M

a
d

O
O

r
a

d
*

«
«

«

Z
—

«
r
-

C
M

a
d

a
d

a
fr-

to
53

t
-

5
3

C
M

m
l

ad
o

«
z

—
—

-
j l

a
-

Q
^

^
fr-

»
a-*

fr-
a

d
|

a-3
r
-

*
T

-
C

M

—
•—

Z
—

a
d

a-3
jfc

ad
C

i
g

fr-
«

—
fr-

a
d

fr-
g

1
*

•
g

fr-
a

g
o

||
g

||
g

a
cm

||
fr-

fr-
a

g
P

a—
T

-
T

"
a

-
C

M
—

P
a

d
o

z
Z

P

—
fr-

II
II

S
3

II
53

||
fr-

||
<

a
-

-
.

fr-
a

a
a

d
a

•—
*—

•—
cm

a
cm

o
II

II
a

fa
a

a
d

g
a

d
a

d
a

d
a

d
a

O
a

d
>

-
tSJ

0
3

o
o

o
o

o
o

o
o

o
o

o
o

o
o

q
u

x
s
h

c
o

o
t
o

t
"

c
m

t
o

o
r

t
n

a
r
»

a
a

t
0

c
o

t
o

a
i
>

.
r
a

.
r
«

i
-
>

.
r
a

.
i
-
a

.
r
a

.
r
.

I
D

I
D

I
D

I
D

O
I
O

I
S

I
D

I
D

I
D

I
O

I
D

I
D

I
S

-

«
*

S3
a

d
O

a
a

—
b

.

V
»

o
fr

-

a
a

a
a

—
b

,

O
—

.
—

.
a

a
I
D

N
S

C
t

.
_

X
—

tO
C

t
l
S

C
O

•
J
-

-
«

0
-

-
.

_
a

d

•
T

"
r*

.
r
-

c
m

t
o

o
r

.
.

-
1

-
+

+
+

+
a

v
»

W
a

a
a

a
a

tt
a-3

+
+

+
+

+
+

o
P

X
X

X
M

M
M

a
•
—

-
b

,

—
g

K
»

•
o

IO
t
o

IO
I
O

t
o

a
i

1
1

1
1

1
O

I
—

m
l

a
-

z
N

%
—

a
-
.

-
-

s
O

a
a

a
a

a
a

o
c
s

fr
-

e
si

—
fr-

X
x
x
x
x
x

to
to

o
+

«»>
X

x
x
x
x
x

t
o

t»»
x

>
>

a
t
-

o
o

o
o

o
O

a
i
n

a

g
—

fr-
||

x
—

a
x

x
x

a
a

z
a

fr
-

a
a

—
•

a
a

a
fr

-

fr-
—

*
»

a
*

d
r
-

x
a

d
a

d
a

d
a

d
a

d
f
r
-
C

O
O

T
a

_

to
n

ad
o

X
-
a

x
x
x
x
x
a

o
o

a
•

a
x
p

i
u

u
b

i
g

o
o

o
o

o
a

o
o

f
a

x

o
o

o
o

o
o

o
e
o

o
o

o
o

o
o

o
i
o

r
w

w
o

r
m

t
D

i
>

.
a

a
o

T
-
t
M

t
o

o
r
m

i
n

i
n

t
n

i
n

i
n

t
n

i
n

i
n

a
c
o

a
t
o

c
o

c
o

a
to

c
o

c
o

a
a

a
c
o

c
o

c
o

a
a

c
o

a

IT
)

u
.

o
s5P

O
Q

IS©i.

Almost Everything You Ever Wanted

to Know

About Music . • •

fTT BUT WERE AFRAID TO ASK
Is music terminology Greek to you? Do you feel defi

cient in certain areas of your musical ability? How are
your listening skills? If you enjoy music and want to

test and improve your abilities, TI's Music Skills Trainer
can be a valuable tool. This program provides practice in
aural recognition of pitches, intervals, and chords, and
develops your ability to remember musical phrases. You can
control the complexity of each drill by selectingvarious op
tions including note range, use of sharps (*) and flats (b),
types of chords and intervals, and the playing of random
music between examples.

Since the program is designed to provide drill and does
not teach the underlying concepts involved, this article will
first cover relevant aspects of music theory. We'll then
follow it up with a review of Music Skills Trainer.

Figure 1. Piano Keyboard

The Scale

The fundamental concept involved is that of the scale—
an ordered group of tones within an octave. The C Major
scale,with whichalmost everyone is familiar, provides the
standard pattern for every major scale (Do-Re-Mi-Fa-Sol-
La-Ti-Do). This pattern originated with the Greeks and is
based upon the tetrachord. A tetrachord can be thought of
as half a scale; it consists of four tones arranged so that
they contain two whole steps followed by a half step. Refer
to the diagram of a piano keyboard in Figure 1. Starting
at middle c, each progression up the keyboard represents
a half stepor semitone. For example, all the following repre
sent half steps: c-c *,c »-d, d-d *, d *-e, e-f, etc. The first
tetrachord for the C Major scale consists of the following
two whole steps: c-d and d-e followed by the natural half
step e-f. The second tetrachord begins with g and again con
sistsof two whole steps followedby a half step, ending with

196 The Best of 99'er Volume 1

c' (an octave above middle c). This tetrachord pattern
(1 + 1+ Vi) was referred to as a diatonic scale.

In order to accommodate Oriental and other music, Greek
theorists modified the two middle tones of the diatonic

tetrachord in several ways. One of these, called the
chromatic tetrachord, consisted of the pattern 1Vi + Vi + Vi
(e.g., c, d*, e, f,). Various combinations of these two
tetrachords necessitate the division of an octave into the

familiar twelve equally spaced intervals referred to as the
chromatic scale: c, c *, d, d *, e, f, f *, g, g *, a, a *, b, c'.

Pitch refers to the location of one of these tones in a scale,
and is defined by a regular frequency of vibrations. In the
United States the standard assignment for a above middle
c is 440 vibrations per second. It happens that a pure oc
tave differs from any reference pitch by a factor of exactly
2, so that a two octaves above middle c = 880 and A below
middle c = 220.

Although knowledge of frequencies is not required for
use of the Music Skills Trainer, you may be interested to
know how frequencies are assigned to other scale positions.
Because each octave is divided into twelve equally-spaced

intervals, the factor 2'2 is used to define the relative fre
quencies of successive tones. For example,

If a = 440;±
a* = 440x2'2,

b = a*x2'2 = ax2'2x2'2 = ax(2'2)2.

Given any reference frequency, f0, then the relative pitch
of any other scale position, f, can be calculated by coun
ting the number of half steps to that position, N, and using
the formula: ,

f=fo(2>r.
The following program calculates and plays a chromatic
scale beginning with middle c (262).

1

1

1

1

0
1

2

3

0

0
0
0

R

R

R

R

E

E

E

E

M

M

M

M

*

*

*

*

*

*

M
*

*

U
*

•

s
*

•

I
*

*

c
*

*

*

*

1
*

*

*

*

*

*

Copyright © 1983 Emerald Valley Publishing Co.

EM

EM

EM

T

TIOJP

Scales in Various Keys
Now let us return to the diatonic (major) scale. A major

scale can have a starting or root note of any of the twelve
chromatic pitches. As in the case discussed above, a major
scale is constructed, starting from the root, with two diatonic
tetrachords (1 + 14- Vi) separated by a whole step. A more
convenient way to construct a major scale is simply to
remember that half steps occur between the third and fourth
and the seventh and eighth tones. Referring to Figure 1, a
major scale with eb as the root would be constructed using
the following steps:

b b
c

-JL.

b,d'e1

Steps

This scale is referred to as an Eb Major scale, or a scale
in the Key of Eb, since eb is the root. Similarly, a major
scale in the key of G is constructed as follows:

9

1 Vi

d'

1

Steps

f»'

1 H

Steps
While there are twelve such different diatonic scales, they

all sound the same because they are based on the same pat
tern of diatonic steps. The following program plays these
scales beginning with C Major.

R

R

R

R

R

R

R

F

FOR

F =

F(OR
N

I

I

N

F

C|A

EM

MU

SOU

I
I

L S

0

E

)

2 5 0

Intervals
An interval is the difference in pitch between two notes.

Interval names indicate the number of included tones of the
major scale. Starting with middle c in Figure 1, the basic
interval names are as follows: c-c, unison (prime); c-d, se
cond; c-e, third; c-f, fourth; c-g, fifth; c-a, sixth; c-b,
seventh; and c-c', octave, c-f is a fourth because it includes

Copyright © 1983 Emerald Valley Publishing Co.

the following diatonic tones of the C Major scale: c, d, e,
and f. Similarly in the Eb Major scale, a fourth is eb-ab,
and in the G Major scale a fourth is g-c'. However, as in
the case of scales, an interval in one key sounds like that
interval in another.

Four of the eight intervals can exist in one of four forms.
If the upper note of the interval lieswithin the major scale
of the lower or root note, the interval may be classified as
major. If the upper note is lowered a half step, however,
the interval then becomes minor. For example, c-e is a ma
jor third and c-eb a minor third. This rule applies to four
intervals; the second,third, sixth, and seventh. The remain
ing intervals—fourth,fifth, and octave—are classified as
perfect: They do not exist in major and minor forms. The
following program plays all of the intervals above in the
C Major scale, i.e., with middle c as the lower or root note.

The remaining two categories of intervals—augmented
and diminished—are not used in the TI Music Skills Trainer
and so will not be discussed in detail. They are formed as
follows: augmented—a major or perfect interval is made
one half step larger; diminished—a minor or perfect inter
val is made one half step smaller.

Finally, intervals may be classified according to which
note is played first. If the lower note is played first, the in
terval is said to be ascending (c-e), and if the upper note
is played first, it is descending (e-c).

Chords
A chord is several notes played simultaneously, usually

three or more. When a chord consists of three tones it is
called a triad. Given any major scale, four triads can be
formed from the starting note (root) of that scale: major,
minor, augmented, and diminished. A major triad consists
of the root, the third, and the fifth. For example, in a C
Major scale, starting with the root c, the third is c-e, and
the fifth is c-g. The major chord is then c-e-g. Similarly,
in the Eb Major scale, given the root eb, the third g, and
the fifth bb, the major chord is eb-g-bb.

The major chord is changed to a minor chord by lower
ing the second note (i.e., the third) one half step. For ex
ample, the C Major chord c-e-g becomes the C minor chord
c-eb-g and the EbMajorchord becomes the Ebminorchord
eb.gb-bb.

A minor chord can further be changed to a diminished
chord by lowering the third note (i.e., the fifth) one half
step. For example, the C minor chord c-eb-g becomes the
c diminished chord c-eb-gb and the Eb minor chord eb-gb-
bbbecomes the Eb diminished chord eb-gb-bbb. (bbb is called
"b double flat" and is the same note as a.)

The augmented chord is formed by raising the third note
of the major chord (i.e., the fifth) one half step. For exam
ple, the C Major chord c-e-g becomes the C augmented
chord c-e-g* and the Eb Major chord becomes the Eb
augmented chord eb-g-b.

As in the case of scales and intervals, chords with the same
name sound alike. All major chords sound alike; all minor
chords sound alike, etc.

If the lowest note of the chord is the root, the chord is
said to be in roof position. All four types of triads (chords),
however, can be played in inverted form. For example, the
C Major chord c-e-g may be altered from its root position
form to one of the following inversions by making the lowest
note either the third or the fifth: e-g-c' and g-c'-e'. Similar-

The Best of 99'er Volume 1 197

ly, the inverted forms for theEb minor—which in root posi
tionis written or played eb-gb-bb—are gb-bb-eb' and bb-eb'-
gb'.

Chords of more than three notescan be formed, and there
are several different varieties. One of them, the seventh, is
used in the Music Skills Trainer. The seventh chord con
tains the root, third, fifth, and the seventh lowered by a
half step. For example, a seventh in the key of C Major
is c-e-g and b lowered by a half step or bb. Similarly, in
the key of eb theseventh chord is eb-g-bb-db (d lowered by
a half step).

While the seventh chord contains four notes, the
TI-99/4A can play only three notes simultaneously;
therefore, following traditional rules of harmony the fifth
of the chord (third note) may be omitted to give a seventh
in the form of c-e-bb. As in the case of triads, the seventh
may appear in inverted forms.

TI Music Skills Trainer
TheMusic Skills Trainer from Texas Instruments isa pro

gram written in TI BASIC (it will also run in Extended
BASIC without modification). The program isavailable on
cassette or diskette.

Four types of drill are provided: Pitch Guess, Interval
Recognition, Chord Recognition, and Phrase Recall. The
user selects the type of drill desired from a menu.

Pitch Guess

In thisdrill, you try to identify the pitchof a single note.
While it might seem that this would require perfect pitch,
you will find after several examples that you have "tuned
in" and are able to identify pitches by relating each new
one to the one that has preceded. The difficulty of this ex
ercise can be controlled by specifying the starting noteand
range size in halfsteps (up to twooctaves). In addition, you
can choose to have notesselected from either the C Major
diatonic or chromatic scales by answering "No" or "Yes"
to the option of including sharps and flats. TI has included
yet another means of increasing the level of difficulty-
Random Music. If chosen, randommusic is played between
examples, making it more difficult to remember the
preceding note. The program provides up to ten examples
and keeps score: 10 points for each correct answer.

We recommend that when first using this drill, you use
c as the starting note, a range size of 13 (one octave), no
sharps and flats, and no random music. Aftera little prac
tice, it shouldn't be that difficult to identify notes.

Interval Recognition
Thisdrill helps to develop yourability to recognize inter

vals. There are three levels, each of which adds more inter
vals to thoseincluded in the drill. For instance, if youchoose
Level 1, theexamples arecomposed of major thirds, fourths,
and fifths. Level 2 adds half steps, whole steps, and minor
thirds, and Level 3 sixths, sevenths, and octaves. You can
choose to have the intervals presented in ascending or
descending order. For an added difficulty, you can also
choose to have the lower note be random; it is otherwise
c each time. You can also choose to have random music

198 The Best of 99'er Volume 1

play between exercises. Up to ten examples are provided,
and you receive 10 points for each correct answer.

Chord Recognition
This drill provides practice in recognizing chords. Again

there are three levels, with Level 1 consistingof major and
minor chords, Level2 adding seventh and diminished, and
Level 3 adding augmented. If you choose the Random Bass
option, the root can be any note; otherwise it is a c. If you
choose the Random Inversions option, inverted chords will
be played; otherwise, a root-position chord is alwaysplayed.
If you choose the Chord Only option, the three notes will
be played simultaneously. If you don't choose it, the notes
comprising the chord are first played individually and then
together. As in the previous drills, you can select the Ran
dom Music option. You receive 10 points for each, up to
10 problems.

Phrase Recall

This drill develops your ability to remember a sequence
of as many as nine random notes. A blank keyboard
overlay, provided withthe program, is usedto label the keys
with their corresponding pitch, coveringtwo octaves much
like the layout of a piano keyboard. You can select the start
ing note and range size,and determinewhethersharps and
flats are to be included in theexamples. Youcan alsospecify
the number of notes which constitute the phrase (1-9). After
a phrase is played, you respond by entering notes from the
keyboard as if it were a piano. As you play the notes, you
hear them and they are displayed as well; if you make a
mistake, you can use SHIFT T to start over again without
penalty. When you have entered the notes that you think
correctly represent the phrase, you press ENTER. The cor
rect notes are then displayed below your response, and you
are awarded points based on the number of correct notes
and the number of notes includedin the phrase. Up to ten
examplesare given with a possible total score of up to 100
points. As in the previous drills, the Random Music option
can be chosen to make this drill even more difficult.

We feel that TI's Music Skills Trainer will be useful even
for experienced musicians who want to keeptheir auditory
skills sharp. We would also recommend it for novices in
terested in further developing their knowledge and abilities
in areas of music theory covered by the program.

Copyright © 1983 Emerald Valley Publishing Co.

Let's
Learn

Notes

Let's Learn Notes was designed for beginning music
students. A piano or organ teacher can use the pro
gram during a lesson to give the student a different

approach to learning musical notes, or a student can run
the program before or after the regular lesson.Students can
also use the program at home for additional practice in
learning musical notes. Even preschool children can begin
learning the notes with this program.

The program is written in TI BASIC and uses color
graphics to draw piano keyboards, musical staves, and
notes. In addition, the program generates musical tones.

This program provides three options: Keyboard Learn
ing,TrebleClef Learning and Bass Clef Learning. Each op
tion asks for ten responses. An incorrect response is
recognized by a slight non-musical noise; the correct
response must be enteredbefore the program will continue.

Keyboard Learning randomly selects and displays one of
two piano keyboards (starting at the left with either two
black keys or three black keys). It then randomly selects one
of the 11 displayedpiano keysand flashes a question mark
on the key. The student responds by pressing the letter on
the computer keyboard that corresponds to the letter name
of the piano key shown. If the response is correct, the cor
responding musical tone is played and the letter name is
printed on the piano key. The program randomly chooses
Keyboard 1 or Keyboard 2 for each question. If the

OTiffliwn
Keyboard 1

mtiM
Keyboard 2

Copyright © 1983 Emerald Valley Publishing Co.

keyboard chosen is the same as for the previous question,
the keyboard is not redrawn.

Treble Clef Learning displays a staff and treble clef. A
note is selected randomly from Middle C to high F (top line
of the staff) and displayed as a red quarter note. The stu
dent presses the letter on the computer keyboard that cor
responds to the letter name of the note. If the response is
correct, the corresponding musical tone is played and the
letter name is printed on the note.

Bass Clef Learning displays a staff and bass clef. A note
is selectedrandomly from low G (bottom line of the staff)
to Middle C and displayed as a red quarter note. The stu
dent presses the letter on the computer keyboard that cor
responds to the letter name of the note. If the response is
correct, a five-note scale is played and the letter name is
printed on the note.

§
Bass Clef Learning

This program is very easy to use and "student-
friendly"—even for the youngest piano learners. A student
can select the three learning options either at the beginning
of the program or after each option has finished, simply
bypressing 1,2, or 3 on the computerkeyboard. If a number
greater than 3 is pressed, the program ends.

The Best of 99'er Volume 1 199

This program makes repetitious drill much more fun for
the piano student and much lessboring for the teacher. TI's
color graphics and sound in this program greatlyenhance
the student's motivation to learn the letter names of piano
keys and notes.

EXPLANATION OF THE PROGRAM
Let's Learn Notes

Line Nos.

150 T= 1500 for the CALL SOUND(T,-,-)
statements.

170-450 Defines colors and characters for the title
screen.

460-1220 Displays the characters for musical notes and a
treble clef for the title screen. Musical tones of
the C Major scale and arpeggio are played while
the title screen is displayed.

1230 Asks which option the student wants and bran
ches to that option.

1240-1340 Option 1, Keyboard. Defines color and
characters for drawing the keyboard.

1360 COUNT set to zero and incremented for each
question. There are 10questions in each option.

1370 Keyboard number is randomly chosen, 1 or 2.
1380-1440 Prints "NAME THE KEY".
1450-1550 Draws the white keys.
1570-1730 Draws the black keys for one of the two piano

keyboards.
1740-1750 Chooses one of the 11 keys randomly.
1760-1810 Blinks a red question mark on the key.
1820-1830 Reads the student's response.
1840-2680 Tests the response. If it is incorrect, there is a

nonmusical sound and another response is re
quired. If it is correct, the corresponding
musical tone is played and the letter name of
the key is displayed on the key.

2690-2710 Delays, then erases the letter name.
2720-2730 Increments COUNT and determines if there

have been 10 questions.
2740-2750 Chooses keyboard pattern randomly. If it is the

same as the previous question, only a new key
is chosen; if it is different, a new keyboard is
drawn before the key is chosen.

100 RElMj *******************
110 REM *LET'S LEARN NOTES*
120 REM *******************
130 REM
140 REM
150 T=1500
160 CALL CLEAR
170 CALL C0L0R(11,18,1)
180 CALL C0L0R(12,13,1)
190 CALL C0L0R(1S,14,1)
200 CALL C0LOR(14,5,1)
210 CALL C0L0R(15,5,1)
220 CALL CHAR(112,'000002070
230 CALL CHAR(113,'050505030
240 CALL CHAR(114,'050D09103
250 CALL CHAR(115,'000000808
260 CALL CHAR(116,"40C1C2C28
270 CALL CHAR(117, 'C04040402
280 CALL CHARM18, "808040404
280 CALL CHAR(119,"C14040201
300 CALL CHAR(120, '202010111
310 CALL CHAR(121 ,'808080")
320 CALL CHAR(122,"109O90E0-
330 CALL SOUND(T,262,2)
340 CALL CHAR(136,"0000030F1
350 CALL CHAR(137,"0202E2FAF
360 CALL CHARM38, "1F1F0F03"
370 CALL CHARM39, 'FCFCF8E0"
380 CALL CHAR(140,'020202020

I 390 CAjLL C|HAJR(141 ,'000000030

200 The Best of 99'er Volume 1

2760
2770-2800
2810-3270

3280
3290-3340
3360-3450
3460
3470-3530
3540-3550
3560-4010

4020-4030

4040-4160

4170-4230
4240
4250-4310
4320-4330
4340-4900

4910-4920

4930-4970
4980-5060
5070-5210

5130-5210

5220-5390
5230-5240
5250-5260
5260-5390

5400-5430
5540-5490
5500

Treble Clef and Bass Clef option.
Resets colors for this screen.
Defines special characters for staff, treble clef,
and note.
Draws staff.
Prints "NAME THE NOTE".
Treble Clef option. Draws the treble clef.
Sets COUNT for number of problems.
Chooses note and draws it.
Reads the student's response.
Tests the response. If it is incorrect, there is a
nonmusical sound and another response is re
quired. If it is correct, the corresponding
musical tone is played and the letter name is
displayed on the note.
After a delay, erases the note and chooses a
new note. If there have been 10 notes, the op
tions are listed again.
Bass Clef option. Defines special characters for
the bass clef.
Prints bass clef.
Sets COUNT = 0 for the number of problems.
Chooses one of 11 notes randomly and draws it.
Reads the student's response.
Tests the response. If it is incorrect, there is a
nonmusical sound and another response is re
quired. If it is correct, a five-note scale is played
starting at frequency J, and the letter name is
displayed on the note.
After a delay, erases the note and chooses a
new note. If there have been 10 notes, the op
tions are listed again.
Subroutine for playing the 5-note scale.
Subroutine for drawing the staff.
Subroutine for drawing the note.
Draws the stem of the note up or down from
the note, depending on where the note is.
Subroutine for procedure after each note.
Delays
Increments and tests COUNT.
If COUNT< 10, erases the note and returns.
If COUNT = 10, prints menu screen of options.
Branches to Option 1, 2, or 3.
If 4 is pressed, the program ends.

C

C

c

c

c

c

s

7

3

OR

A

A

A

A

A

A

A

78
ES

OR

E

0

E

A

E

A

A

7

4

RE

FO

L

H

Y

S

7

OR

Y

H

Y

76

NE
X, ,G

Copyright © 1983 Emerald Valley Publishing Co.

DA

FOR

EAtD

CA

N

C

C

DA

R

FO

R

CA

NE

CA

DA

6

TOlR

S|OU
8

3

6

TO

,G

SOUN

vIclHA
6

7TOR

YR

AD

L

XT

LL

TA

FpR
E

E

CA

CA

DA

7

E

0

E

L

H

Y

SO

4

115

TOR

TO

CHlA
4

TO

YN
D

L

F

R

CIA
NE

CA

CA

CA

DA TA

FOR

EAD

CA

NE

CA

DA

1

8

E

0

E

CA

N

c|a
CA

GO

CA

CA

CA

CA

CA

CA

CA

CA

CA

CA

CA

H

Y

splu

Y

sotu

TO

HA

N

OlUN
CHA

HA

tHlCtHlA
1

4

L

cp
CO L

L

A

A

A

A

A

ICIHA
HA

ANDOMI

COlUtN
B

c|a

,G

,G

Copyright © 1983 Emerald Valley Publishing Co.

1390 TA

TO

TO

AD

HCH AR

AW

HCHA

HAR|HC
C

3
VCJHIAJR
VCHAR

v|c|h|a|r
Y

E

3

AR

TO

OA

BplASRlD
6

FO

CA

CA

N

CA

F

F

K>|N
0
0|N
0
CIA

GO

IF

CA

CA

GO

F

CA

CA

GO

F

(GO
F

GO

CA

GO

IF

A

L

GtoTO
EM

K

N

4

N

1

L

0

NP
L

CH

4

B|OA
9
6

TO

CHA

CH

TO

LO

LOR

Y

U

0

2

GO
2

pu
8 2[0
E

0|UlN|D
[HC

6
ENO

L

T

S

HIC
6

7

P|U|ND
HAR

L

TO
N|0

LL

K

LL

TO

LL

TO

NO

E

SOIU ND

CHA

6
E

0

IHC

UN

Sp|UN
T

90
HCHAR

90
<>

PIU

Y +

NP
1

EN 70

The Best of 99'er Volume 1 201

GO

CA

GO

F

Kl

LL

TO

LL

TO

Nt

Al

F

:a

GO

CA

GO

F

Tp
L

TjO
NO

L

KI

CIA
GO

GO

IF

CA

F

CA

GO

CA

GO

L

TO

N(

L

Kl

LL

TO

L

TO

9
TE<

so|u
2
CIH

SOUN

T

sp

CH|A
9

CHA

690
CHA1

9
NP
L

GO

CA

GO

F

:ai

F

A

GO

CA

GO'

F

go:

F

:ai

CAl

G01

0

L

0

NO

L

k:

0

NO

GO

F

TO

N(

L

L

I

T

LA

OU

F

B

F

EM

CO

N

B

T

so

2

HI

21

sou

2

SO

HC

2

T

S

HI

2i

T

S

U

H

A

L

H

CO

T;

2

A

TO

LOlCO

IHA1

T

EN

13

EN

0

Fl

Fl

2

"Fl

0
C

01
41

0
0'
2'
1|0

202 The Best of 99'er Volume 1

OF'

5

58
; 5 9

C

C

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

GO

IA

7
IE

FO

RE

C

R

C

N

C

R

N

M

GJO
F

Al

GO

i TO!

'A

1*

6

A

N

7

L

TO

N

X

HI

T

OEM
IT

•N

,T

GO

> >

Ol

5

E<:

1

TO

Gl

R

<:

TO

3(
ID
l

>67

M + '

M+'

THl 7 0

Copyright © 1983 Emerald Valley Publishing Co.

g
Q

A
tO

•<
O

A
W

>
<

O
A

W
>

«C
O

A
~

a
cm

v
o

a
r

v
o

>
a

o
m

m
q

o
o

i
u

q
o

o>
to

f
f
o

o
m

O
T

q
_

j-
_

_
S

_
5

L
tL

a
q

i
-

g
q

t
-

—
o

a

c
o

o
a

o
a

s
o

a
s

to
«.

o
a

k
)
<

o
a

to
m

:o
a

to
«<

o
a

K
K

Q
A

to
•<

o
a

o
a

«
^
v

e>
a

«<-
v

o>
a

<
-

v
o

.
a

t-
v

o>
B

r
v

—
-~

—
w

t
-

•£•
in

cm
—

r».
~

—
o

a
c
o

o
p

g
o

O
Q

<
O

A
W

t
W

B
h

Z
o

>
a

a
>

a
c
m

c
o

Q
t
T

H
a

l
q

o
o

w
q

u
o

i
n

c
t
o

a
u

t
t
o

o
w

q
o

o
w

q
o

m
u

a
t
O

w
w

r
Q

a
q

h
*

a
q

t
-

Q
-

Q
t-*

t
a

t
-

t
s

c
c

f
a

w
B

c
«

a
a

•a.
r
-

O
t
-

O
O

q
in

to
i
B

i
n

i
B

W
W

r
r
r

t
n

i
n

-
-

-

-
-
4

-
4

-
+

s
s
s
s
s

a
a

a
a

a

<
<

<
<

<

c
o

a
a

a
a

a

t-«
o

o
o

o
o

a
q

t-«
a

q
t-

a
q

«-
a

q
i-«

a
q

iic
o

in
—

a
i
^
i
i
a

x
i
i
a

a
x
i
a

o
a

a
a

a
a

O
N
m

o
in

oa
Q

tn
pa

O
co

oa
O
o

oa
Q

t»
oa

Q
cm

co
m

~
*-

a
to

x
x

a
g

..o
S

;s
..o

S
g

s
..o

S
s
g

..,g
s
s
S

s
^

»
j

+
t
^

a
a
-
»

m
l
t
-
«
a

S
g

::Ig
3

8
::J

l8
S

g
...!lB

..8
£

J
.i^

O
O
O
Q
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

w
o

iv
c
o

o
o

r
c
M

w
q

^
c
o

^
w

c
n

o
r
c
M

w
q

^
w

r
^
M

r
e
o

r
^

u
.

c
o

t
o

C
O

o
o

o
o

o
o

o

C
O

U
3

q
r
o

c
o

o
o

o
o

o
o

-
t
-
c
i

o
t
n

»
j
-
r
-
o

r
«

«
C

0
T

-
r
»

.

o
c
o

i-.
c
o

o
o

o
c
o

o
i

•{-
«

-
t*

.
^

c
o

t
o

q
a

w
-
u

w
o

o
o

o
o

-
T

-
r>

q
'
*

^
r
«

.
o

t
-

O
T

-
o

o
o

o
o

c
o

q
o

T
-
q

—
o

q

O
—
O
B
O
O
r
W
r
r
w
a
a

-
c
m

w
o

a
a

c
o

a
o

o
c
o

o
o

o
r

q
o>

a
c
m

i**»
o

>
r«»

r*
.

r»»
c
o

G
O

M
l
N

O
r
s
W

i
P

r
r

c
o

c
o

i
-

m
—

c
o

i
n

—
t
o

i
n

•—
c
o

i
n

—
c
o

t
n

—
c
o

e
n

—
c
o

t
n

—
r»»

o
t
o

r
*

»
o

o
h

.
o

o
o

o
c
o

t
o

t
O

T
-
r
»

-
o

c
>

o
a

<
q

c
m

r
»

m
m

-
t
o

C
M

-
c
o

•
c
o

o
c
o

u
.
i
-
o

o
o

o
*

r
*

«
i
—

m
o

o

g
q

<
-

g
o

t
-

g
w

r
g

o
*«—

g
q

g
t
o

r
-

g
r
»

.
T

-
g

o
g

w
r

O
M

n
C

O
h

.
h

.
f
a

B
U

.
O

I
i
.
K

I
U

.
W

K
)

O
u

.a
r
-
h

.u
.h

.O
u

.T
-
E

L
.O

f
c
L

.

i
q

c
o

c
o

g
q

_<
2_

•
w

u
j

q
tu

<
n

_
-
_

w
_

q

a
c
m

r
-

t^
g

Z
E

a
to

t
-

a
q

t
-

a
q

«
-

m
c
o

b
.

la
.

U
.

•
w

a
O

C
M

L
±

!=
.

a
m

a
c
o

t
-

—
g

't
-
f
-
t
-
't

-
l
"
.
!
*

*

T
T

g
-

i
-

-
4

-
q

c
m

to
q

m
c
o

-
o

to
o

>
r
-
.
c
o

o
»

o
o

o
o

c
M

q
q

q
q

q
o

>
r
-
o

q
-

x

M
4

-
4

-
Q

a
—

g
S

i
B

g

—
~

C
O

—
—

o
•

a—
_

^
u

>
—

—
c
o

C
O

—
o

>
—

—

a
ob

co
q

a
co

q
a

f»
o

a
r»

o
a

m
o

p
,

to
q

a
co

q
a

co
o

a
co

a
a

f»
o

a
o

~
-

~
~

~
—

H
-1

g
g

o
A

g
S

o
A

S
S

o
A

g
S

o
A

g
r
tO

A
g

^
Q

A
g

^
o

A
g

r
to

A
g

^
o

A
z
^
o

A
g

^
c
M

o
a

a
a

a
a

a
a

a
a

a
a

a
a

M
g

5
-
r
!

f^
.g

z
:
?

"
r
z
°

.,
r
l
:
.
.

w
-

2
~

w
^

~
~

w
^

3
,»

.
w

£
m

♦»■
w

S
«

w
v
b

b
w

v
a

a
c
M

C
o

w
;
<

<
»

a
;
<

<
»

a
;
-
<

«
<

«
t;

<
'<

'<
•

0
0

>
0

>
T

-
<

-
'i

-
T

-
*

t
-
*

f
«

^
T

-
T

-
T

-
0

>
•to

o
Q

a
s

-
<

a
s

a
o

v
Q

r
»

r
a

.r
-
m

.ig
.

—
o

t
t
^

c
o

o
5

S
^

g
5

o
^

g
5

S
«

g
5

o
^

S
5

S
«

5
G

o
^

^
S

o
^

5
c
3

o
^
a

q
t^

O
T

a
q

t^
O

T
a

q
i^

O
T

a
q

i-
*

O
T

a
q

i-
'O

T
a

q
t^

O
T

a
q

a
-
-
'O

T
a

q
t^

O
T

a
q

i-
'O

T
a

q
t-

iO
T

a
3

5
J
5

^
«

I
S

?
5

O
O

O

g
«

<
0

A
g

t
f
O

A
g

<
Q

A
g

<
0

A
g

<
Q

A
g

rt.
O

A
g

«t*
O

A
g

<
O

A
g

<
O

A
g

«g
O

A
g

-
g

C
M

O
«

«
«

^
W

«
^
^
^
^
^
^
*

^
a

S
cM

O
g

S
cM

O
a

a
cM

vS
a

cM
va

a
cM

va
a

cM
va

g
cM

va
a

cM
vS

a
cM

va
a

cM
va

a
c^

^
*

->
,v.

"
r:

,-,,•..«
.,.,

^
,
^
^
.
.
,
^
^
^
^
.
-
.
f
.
^
^
^
c
l
^
M

c
^
o

o
M

O
o

o
M

O
O

o
M

O
O

t
n

q
a

a
a

a
a

a
g

g
M

s
c
w

a
g

a
a

>
-

a
o

*
f
-
a

a
>

«
p

o
q

^
^
-
^
a

M
,
*

^
,
,
^
^
-
-
.
^

.
-

-
o

~
—

a
m

A
Q

o
m

-
o

-
•
w

o
o

o
o

o
o

o
o

o
o

o
o

o
r
-

-
P

i
r
t
a

r
ii

x
«

>
*

[|
S

n
g

v
a

a
m

«c
o

_
^
^
=

=
t->

O
g

I
oa

g
!-•

g
cm

Q
a

-
l
H

t
g

Q
-
«

O
p

g
i
-
»

>
J
N

J
O

T
g

C
O

a
^
p

g
.^

o
g

'.^
o

i.^
o

g
.^

o
g

.^
o

g
^
o

.i^
o

.
..

Z
.

..
_,

21,
_,

.j
Z

,
m

lm
lh

*
m

lm
lt-

aJ
a-lH

-
>

1
^

H
»J

»»
H

a
-»

>
Jt-

>
*

>
»

H
^
^
W

H
a

.a
.>

*
a

.a
J
a

*
a

i>
.>

J
a

ia
.>

*
>

.h
r
W

H
^C

»

S
o

o
^
o

o
S

-
o

o
S

^
o

o
g

^
o

o
S

-
o

_
.
.
.

Q
>

a
«

<
a

-
I
X

P
g

|
|
C

M
O

T
m

l
m

l
m

l
us

<
tn

-
O

tu
<

M
O

<
g

||
Q

m
u

<
<

<
b

.
g

C
O

Z
O

a
Z

S
E

O
—

O
O

O
—

Q
P

i
Q

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
^

O
T

-
C

M
a

a
»

q
a

«
O

I
^
O

O
O

,l~
C

M
M

q
in

C
O

r
^
W

O
O

'^
C

M
|a

^
a

ja
^
a

j»
^
w

»
w

»
a

i»
T

^
»

^
a

^
»

^
^
»

»
^
.-

~
w

—
.

—
-.—

^
.

c
p

o
c
p

c
o

c
o

o
c
o

o
o

o
r
»

.r
N

,t
^
i
-
M

.r
^
r
^
r
^
i
>

.r
N

.r
^
c
o

«
c
o

c
o

M
O

O
M

O
O

C
O

o
o

o
o

o
o

o
to

to
to

to
to

to
to

to
to

to
to

to
to

to
to

to
to

to
w

to
to

w
to

to
w

to
to

to
to

to
to

to
to

to
to

io
to

to
to

to
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

O
Q

Q
Q

Q
Q

Q
Q

Q
o

o
o

o
o

o
o

o
o

o
q

i
f
u

D
t
N

C
O

Q
i
a

r
r
i
H

i
q

u
x
o

^
M

O
O

r
w

w
't

i
/
x
o

M
O

c
i
i
a

r
w

q
a

o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
Q

a
f
-
c
M

t
o

q
t
n

c
o

f
»

.
c
o

c
>

o
<

-
c
M

t
o

q
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
tO

tO
tO

IO
tP

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

tNIO
Su>

O
Q©

D
H

i
a

S

O
O

M
<

z
i-»

a

O
O

a
m

g
o

O
o

a
o

t
a

.

t
n

u
9

-
a

«
e

q
m

i
C

O
C

M
—

U
f-a

«
g

W
C

M
a

J
t
n

X
t
u

t
o

t
u

a
.

-
a

a
o

_
t
u

t
o

a
O

O
O

q
t
v

o
e->

<
n

O
U

.U
.H

O
O

O
C

M
_

r
-

t
o

c
o

-
m

m
,

o
q

q
T

-
t
o

q
c
m

t
o

q
—

i
n

q
q

i
n

t
n

o
t
-

t
-

»
«

•
o

t
i
n

t
n

t
n

z
1

C
M

-

_
S

g
X

to
—

x
g

g
g

a
—

M
O

~
c
o

r
»

r<
>

r*
.

•
u

u
u

i-i
a

a
*

-
a

w
^
.
^
_

_
(
j

a
a

a
a

<
O

H
K

a
o

a
o

a
o

a
—

h
h

H
c
O

r
-

c
o

a
«

o
c
m

a
C

L
.

<
atC

<
>

-
q

||
t
o

o
t
o

m
r
-

o
»

H
h

H
W

N
r
C

f
)

1
t
u

t
n

>
i
n

v
i
i
a

t
«

s
g

M
i
n

i
A

t
t
M

S
z

X
P

C;
(
-

t~
t
.

t
-

ll
a

v
n

a
:

O
-J

O
Z

a
J
f
-
P

Z
Z

Z
Z

a
J
X

E
K

i
h

d
u

a
f
j

f
-
-
<

H
a

-
j

x
t
-

,
—

m
m

m
m

m
-,

m
l

S
Q

0
<

Q
l
u

Q
t
t
!
H

U
i
a

a
a

a
"
C

u
.
u

.
u

,
«

:
u

.
z

O
O

O
~

U
*

O
g

0
S

I
P

.
O

i
B

<
B

i
U

a
.
N

<
M

n
H

U

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
N

n
Q

t
n

i
o

r
s
n

c
n

o
r
N

M
c
f
i
A

i
o

r
s
a

o
i
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

q
q

q
q

q
q

q
q

q
q

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

t
n

i
n

t
n

i
n

i
n

t
n

i
n

i
n

i
n

i
n

t
n

t
n

oi
n

•
j
-

.
—

.
•n

c
o

m
_

.

a
m

c
o

o
>

C
O

C
O

o
—

-

—
i
n

—
t
o

->
o

t
n

C
M

C
M

O
0

0
T

"
I*

.
T

-
w

o
q

-
t
o

o
t
o

i
-

i
n

-
i
n

-
o

t
n

c
m

-
i
n

n
s
r
c
t

t
-

r*
.

o
o

t
o

q
t
o

o
q

t
n

c
o

«
«

-
-
i
-

c
o

c
o

*
-

g
-
T

-
t
n

t
O

T
-

•r
"

r
»

.
-

•**•
-

t
-

t
u

w
q

-
t
o

-
Z

i
n

r
r

r
-

i
n

W
H

O
E

r
r
Z

i
f
t
r

tu
-
4

-
-

|
O

l
i

»->
t
-

-
4

-
tu

-+•
a

z
s
s

s
s

g
g

4-
s
s
a

z
s
.

(
-
.

u
_

—
IU

1
-

1
-
O

—
—

I-i
(U

—
a

a
a

a
s

a
s

a
w

n
>

.
g

*
«

-
a

a
a

s
a

s
w

h
<

<
<

«
ts

«
c

i
-

O
>

«
«

:
a

l
l
K

C
-
c
t
o

t
-
w

;
ll

a
a

a
s

a
s

2
-
J
a

.
O

h
B

B
I
I

a
u

c
o

u
u

o
o

i
A

«
(
a

)
H

U
2

u
u

u
a

u
s

v
a

>
z

a
>

z
v
k
u

o
n

a
a

a
s

v
s
.
-

«
*

g
a

o
c

g
o

o
m

o
•
*

z
O

S
a

)
a

)
D

a
)
a

)
&

g
t
-
i
Z

O
a

J
a

J
O

Z
a

J
a

)
a

l
H

^
a

)
h

i
S

a
X

P
m

l
m

l
m

l
m

U
m

U
K

C
*

C
U

l>
<

3
;K

C
U

3
U

.U
O

U
O

l
a

.l
«

«
C

l
a

.a
U

«
C

—
«-«

o
o

a
o

o
a

—
a

u
.
z
o

«
o

o
—

—
o

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
n

e
t
i
n

u
N

o
a

a
•->

«
m

n
c
t

i
n

c
s

i
s

c
o

a
a

*->

i
n

i
n

t
n

t
n

i
n

t
n

t
n

i
n

i
n

i
n

t
n

t
n

i
n

i
n

i
n

t
n

i
n

i
n

t
n

©iv
.

C
N

O
Q

n

Recently I returned to my job as elementary music
teacher is the Rossford (Ohio) School District after
an exciting and rewarding summer. When reading

students' responses to the question, "What did you most
enjoy aboutmusic lastyear?" on a first-day questionnaire,
I was pleased to see the number of students responding,
"The computer." At New Horizons Academy for the
Gifted, a Computer-Assisted Music Program held in the
summer of 1981 elicited a similar response from students.
In both of these very different educational contexts, com
puter usage has proved to be a strong motivational force
in students' acquisition of music theory and skills.

Last year my husband and I purchased a TI-99/4 with
some rather nebulous ideas about potential applications in
thegeneral music curriculum. Together we worked on the
development of programs—trying to incorporate motiva
tional strategies which apply in virtually any teaching
situation—and experimented with various uses of commer
cially available software (e.g., the Music Maker Command
Cartridge and Music Skills Trainer). Wetriedmanytechni
quesin the classroomto determinethe children's responses.
The result has been the continuing evolution of a computer-
assisted music curriculum tailored to the needs of my
teaching situation. It hasbeen a stimulating year—one which
progressed from ignorance about using the computer and
apprehensions concerning itseffectiveness to one of the most
exciting experiences of my teaching career.

Whether you are a teacherplanning a Computer-Assisted
Instruction (CAI) project or a parent consideringthe poten
tial educational value of a computer in your home, it may
not be necessary to know exactlywhere you are going before
you take the first step. Our experience has shown that the
element of discovery inherent in developing a curriculum
interactively with childrencan be as rewardingand exciting
a learning process for the educator as is the useof the final
product for the student.

Glenwood School in the Rossford (Ohio) district is a
typical elementary school withan enrollment of 400students
in grades 1-6.1 incorporated the computer into my general
musiccurriculum for grades 4-6 during the fall semesterof
the 1980-81 school year (my first year in this system). Classes

Copyright © 1983 Emerald Valley Publishing Co.

Nbtjes
on a Com

Part 1 -

The TI-99/4 Conducts

Music Theory Drill

in a Traditional

Classroom Setting.

were intact groups which met for two35-minute periods each
week in the "music room"—a corner of the cafeteria.
Average class size was 25 students, with pupils from theAd
justedCurriculum Oearning difficulties) as well as Project
Horizons (gifted) programs mainstreamed into the regular
classes

My classes are organized around the belief that music
should be fun and providestudents with an outlet for their
creativity. Although music class can bea break from routine
academics, children must be equippedwith basic knowledge
of the fundamentals of music reading and theory upon com
pletion of a general music course. A variety of experiences
—singing, movement, listening and playing instruments-
should beprovided. The computerwasemployed as an ad
ditional enrichment activity—one which turned out to be
unusually effective for the students, as well as challenging
for the teacher.

The general approach 1 employ involves an initial ex
periential emphasis (e.g., singing and movement) followed
by instruction in the basic theory required to read music.
In addition to providing knowledge of theory, thisapproach
readies students for potential participation in band and
choir.

Two computer programs, Rhythm and Mystery Words,
were used to reinforce two aspects of the curriculum: (1)
aural recognition of rhythmic patterns, and (2) knowledge
of musical notation for note names in both treble and bass
clef.

In teaching students howto discriminate between various
note valuesand rests, I first used "Echo Clapping" in which
I clapped a rhythmic pattern and the students tried to
reproduce it. Next, students were taught to associate ap
propriate music terms with relative durations(whole, half,
quarter, eighth and their corresponding rests).

Then we progressed to an activitycalled "Rhythmic Dic
tation" in which students wrote in musical notation the
rhythms they heard clapped (e.g., JJJJ,J <Jf*J /JJ J~J J). So
as not to get too complex at the beginning, only theJ,J3
and f were taught.

Following presentation of the concepts and introduction
to initial rhythmic dictation exercises, many students reach

The Best of 99'er Volume 1 205

a plateau when acquiring the skill of describing rhythmic
patterns in musical notation. Representation of rhythmic
patterns by clapping is to some extent an abstraction because
it requires analysis of therelationship between a steady beat
and intervals between claps. Although most children are
highly motivated to acquire this skill, manyencounter dif
ficulties which result, in part, from its abstract nature.

To address this problem, we tried to incorporate two prin
ciples into the Rhythm program: (1) concreteness, and (2)
immediacy of feedback. At thesame time, inorder to op
timize the effectof one computer on 25children, wedecid
ed to use a game format—allowing for the possibility of
up to ten teams within a class. We also put a lot of effort
into the introductory portion of the program to catch
students' attentionwiththe colorand soundcapabilities of
the TI-99/4.

I initally introduced this program in mysixth grade classes
afterconsiderable timehad been spentpracticing rhythmic
dictation. Periodic quizzes showed that a fair number of
students in all three classes had not grasped the concept.
After three sessions with theRhythm program, almost every
student had become competent in clapped rhythmic
dictation.

I believe several factors contributed to this remarkable
improvement: The activity was conceptually moreconcrete
than rhythmicdictation, and it providedstudents with im
mediate feedback which included thecorrect response when
mistakes were made. Concentration and motivation were
improved, in part, simply by the uniqueness of the com
puter activity. It was not uncommon for several students
to show up in the music room shortly after their bus arriv
ed, inthehope of spending tenminutes working with a com
puter music game before school started. When teachers ar
rived after a general music class to take their students back
to theirclassrooms, weinvariably had to prysomeof them
away;.classes sometimes had to be actually extended 10to
15 minutes!

The group dynamics involved also played a significant
role. During the firstsession, the sixth graders askedto have
team scores added together for comparison with the other
sixth grade classes. Because each class represented an in
tact group with some history and cohesiveness, a positive
atmosphere prevailed in which the student working at the
computer was supported and encouraged by the cheers and
comments of fellow classmates. All students hadseveral op
portunities to make a contribution to the class total score.

Next, I used theRhythm program in thefifth grade. Most
students were aware through word-of-mouth that the sixth
graders had been using a computer and naturally were in
terested in the top score the sixthgraders had achieved. The
typical score for the first day in the sixth grade had been
15 to 20. By comparison, the first day scores in the fifth
grade were as high as 45! Similar enthusiam was observed
in the fourth grade.

Forthemost part, I anticipated these outcomes, although
theactual impressive results far exceeded my expectations.
There we're also some genuine surprises: First, using the
computer allowed meto observe and diagnose the problems
of individual students and, where necessary, to take them
aside and give special attention to their needs while the class
was occupied with the computer. Learning the concept was
important to them in order to make points for their class.

206 The Best of 99'er Volume 1

Another gratifying result was that the students with learn
ing difficulties found it easier to master this more concrete
activityand took a great deal of pride in their contributions
to the classscore. It was indeedrewarding to see their beam
ing faces as classmates cheered and patted them on the back
after their correct responses.

Following the computeractivity, nearlyeverystudent had
achieved competencyin the basic rhythms which had been
presented, and they were able to apply this knowledge in
the playing of rhythm instruments. I wrote several lines of
rhythmic patterns on the board in musical notation and
asked individuals or small groups to playthem.Subsequent
ly, the patternswere played to accompany class singing or
listening to records.

The rhythm unit was followed by the study of musical
notation for pitch. Students were introduced to this con
ceptthrougha discussion of the importanceof learning the
note names on the staff in order to read music when sing
ing or playing instruments. I compared note reading to
readinga foreign language, usingsymbolsand notes instead
of words to create a musical story.

Initial instruction presented the familiar phrases "Every
Good Boy Does Fine" and "F A C E" to facilitate learn
ing the position of notes in the treble clef, and this was
followed by drills to further reinforce note name recogni
tion. Students were promised that the computerwould be
brought back to class when they learned these note names
well enough to play a computer game. Thereafter, the
Mystery Words game listed at the end of this article was
introduced.

Mystery Words is a game that is based upon the use of
note name letters to spell a variety of words, for exam
ple,"cabbage," "bead," and "facade." The program ran
domly chooses oneof thesewords and represents it in music
notation graphics in the treble clef, the bass clef, or both.
The teacher has the option of excluding words with more
difficult meanings (such as "facade" or "accede") when
using the game with younger students.

The screen is divided in half with a red side and a blue
side corresponding to the red and blue teams into which the
class is divided. One member of each team is seated at the
console. Before the presentation of a Mystery Word each
player must signal he is ready by pressing the "1" or "0"
key. Aseach team member signals readiness, a traffic light
on each side of the screen changes from red to yellow to
green, the Mystery Theme is played, and the graphic
representationof the MysteryWord appears. The first stu
dent to decipher the word presses the 1 or 0 key, and the
graphic representation disappears. He is then instructed to
enter the answerusingthe keys3 through 9 whichhave been
labeled A through G on a blank keyboardoverlay. As each
letter is pressed, it appears in the graphics window. If the
entireword is enteredcorrectly, the graphic representation
reappears with notes above the letters entered by the stu
dent, and the team's score is incremented. In the event an
incorrect letter isentered, the opposingteam memberis in
structed to try.

When the game was introduced in class, only the treble
clef option was selected since previous instruction did not
include the bass clef. Prior experience suggested that the
presentation of both treble- and bass clefs was too confus
ing for the average elementary age student. But using the

Copyright © 1983 Emerald Valley Publishing Co.

computer, students quickly mastered treble clef note names
and requested that they be allowed to try working with the
bass clef as well. Their ability to learn bass clef note names
rapidly with minimal prior classroom work and to work with
both clefs simultaneously was truly amazing.

Use of Mystery Words was accompanied by the same in
tense interest and motivation as Rhythm. Although this
game was also constructed for intra-class competition,
students again asked that team scores be added together for
comparison with other classes. Some students began show
ing up before school with younger brothers and sisters to
explain the computer games to them, and I became a
popular figure among students in the cafeteria at lunch
time—the main topic of conversation being the computer.

Seymour Papert defines three components for learning
mathematics: the Continuity Principle, the Power Princi
ple and the Principle of Cultural Resonance.* These prin
ciples, of course, may be applied to the acquisition of any
content domain—not just mathematics. This is to say that
a concept or skill may be acquired with the least effort if
it (1) is continuous with what the learner already knows,
(2)empowers him to achieve personal objectives which could
not be achieved otherwise, and (3) makes sense within a
larger social context. Construing the computer-assisted units
on these principles may help to elucidate some of the
elements which I believe are critical to the success of this

application (and for that matter, of any learning
environment).

All children are intimately familar with music in their
everyday environment. The initial emphasis on those aspects

Line Nos.

130-200
210-270

280-350

360-420
430-490
500-700

710-840

850-870
888-980

990-1100

1110-1330
1340-1390

1400-1470

1480-1920

0E&
^-i^3

a

ITS

I

<3t

EXPLANATION OF THE PROGRAM
Mystery Words

Clears screen; sets screen color.
Accepts user input for word list.
Accepts user choice of type of drill.
Instruction for keyboard labeling.
Interrupts program for explanation to class.
Displays notes of treble clef for review.
Displays notes of bass clef for review.
Restores data pointer and dimensions arrays.
Defines character patterns and sets colors for in
itial graphic screen.
Displays initial graphics screen; plays associated
sounds.
Displays Mystery Words title screen.
Assigns word codes to SETS array; numeric
digits correspond to letters (1=A, 2=B, etc.).
Assigns coded print locations (potentially 2 for
each staff) for each of the 7 letter codes to ar
ray LINE.
Defines character patterns and sets colors used
in the game screen.

Copyright © 1983 Emerald Valley Publishing Co.

of music already familar to them, i.e., singing and move
ment, helped to give a sense of continuity with respect to
subsequent course material. Second, the computer activity
was integrated into a larger social context by the students
themselves when they asked that team scores be added
together for comparison with other classes. This
phenomenon was also apparent when students in lower
grades expressed interest in the scores obtained by the up
per grades and used this information in the setting of per
sonal goals.

But perhaps the most important element is the Power
Principle. Students perceived that the acquisiton of music
skills would enable them to make contributions toward
group achievementin the computer musicgame. Later they
found that they were able to play rhythm instruments and
read musical notation, and at the same time, they realized
that these skills may be useful to them in the future when
participating in band and chorus activities, which are
themselves part of a meaningful social context.

In summary, use of the computer increased student
motivation, and at the same time allowed abstract material
to be represented in a concrete way, leading to more rapid
acquisitionof skillsand concepts. The computer also made
it possible to diagnose individual weaknesses and provide
individualized remedial work. Discipline problems arising
from boredom and lack of interest were nonexistent when
the computer was in the classroom. In general, a positive
environment, cooperation, and mutual support
predominated. ggRft

♦Papert, S. Mindstorms: Children, Computers, andPowerful Ideas. New
York: Basic Books, 1980.

1930-2090 Displays basic elements of game screen.
2100-2110 Selects a Mystery Word randomly.
2120-2530 Determines a representation for word on

staff(s); when more than 1 possibility for a loca
tion exists, choice is random. The word is
played in invisible characters (white on white).

2540-3000 Displays READY message, changes traffic light
colors as player signal ready by pressing keys 1
and 0; plays Mystery Theme.

3010-3030 Makes representation of Mystery Word visible.
3040-3100 Accepts answer signals from players.
3110-3180 Flashes screen of red team.
3190-3250 Flashes screen of blue team.
3260-3280 Removes Mystery Word from view pending

player's response.
3290-3300 Instructs team to answer.
3310-3450 Accepts key 3-9 (A-G) input, checking each let

ter against correct spelling.
3460-3690 If answer is correct, displays Mystery Word

again with spelling; increments team score;
returns to line 1930.

3700-3820 If answer is incorrect, allows opposing team to
respond.

Subroutines:
3830-4330 Displays game screen.
4340-4470 Draws treble staff.
4480-4570 Draws bass staff.
4580-4630 Displays messages, MSG$.
4640-4700 Displays letters of answer.
4710-4830 Displays initial graphic screen.
4840-4900 Plays Mystery Theme.
4910-5140 Displays treble and/or bass clef notes for initial

review.
5160-5180 Erases screens after initial user input.

The Best of 99'er Volume 1 207

31

3!

401

208

EM

EM

EM

DOMI

WO

TOO

GO

GO

MSG

ROW =

CO

GO

1

CO

MY

E

EEl

R

TO

SOM

YOU

WOU

WO

SWE

TO

CO LO

GO

CA

ON

GO

r|ow|=
LCO

M

GO

ROW]
CK>
F

S

F

S

GfO
F

A

R =

GO

CL

5

0
R

GIO

EA

B 4480

TO

WOR

NG

YO

WO

E

L

MU

I

0

EG

The Best of 99'er Volume 1

WO

11

13

o|w|=
CO

MSG

GO

r|ow|
Lc

F

S

F

S

R

Gb
RE

0

C

c

c

c

c

R

GO

GO

M

MM

GO

GO

CA

CA

EG

N

FO

RE

A

G

NE

DA

1
7
D,

DA

I =

61 ,1

VA

18 17

Copyright © 1983 Emerald Valley Publishing Co.

20 DA TA

41

1!

,TA

7
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A]

Al

Al

Al

Al

Al

A

a:

A

A

A

A

A

A

A

FO

A

D

T

'A

2

2

4

t|a
5

TO

CHA

CHA

C|HA
[A

CH

H

H

H

:h

CH

C

C

C

C

C

C

C

C

CH

CH

H

CHA

4

4

TO

TO

TI

TO

Copyright © 1983 Emerald Valley Publishing Co.

:11

8

FO
:ac

N

C

c

N

WO

FO

N

I

FIO
L

I

GO

CA

C

g|o
L

F

F

A

GO

CA

C

C

N E

ROIW
[MSG
CO

GO

CO

GO

TO

IHAl

= 1

E

0
EL

SIGN
N

+

[CH|A
;f

[C|H|A
=1

R

R

T

$

TO

2

TO

EG:

23
El

WOI

[WOI

[WOI

The Best of 99'er Volume 1 209

2I0

I

GO

CO

GO

Al

K

K

0

L

L

L

L

L

L

L

L

Kl

TIO
L

CO

so

1

A

0

ND

TO

LO

M 1

CO

C

M

TO

A|M|S
IR

L

X

MSG

LO

TO

OK

3

I[=9
CO LO

0

HE

T

0

A

D

4

R

W|0

AM AM

WO

The Best of 99'er Volume 1

S

MS

GO

F

CO

GO

CO

GO

F

R

C

CO

GO

CO

SG

GO

GO

GO

gp
R

GIO

GO

F

FO

CA

TO

SlOU
RI

AM

0

R

T

R

TO

AR

A

TO

HA

CO

AM

Copyright © 1983 Emerald Valley Publishing Co.

CA

CA

CA

CA

OR

MSG

R

L

cWi
XT

T

R

L

L

L

L

L

H

HClH
CH

hIcih
IN

H

H

H

H

H

H

H

H

H

H

H

H

H

N

H

H

H

H

H

H

H

H

H

N

H

I

JN
MMM =

CH

A

A

A

A

A

A

A

A

A

A

A

A

CHA

CH

)
&EMISIG

2

3

OW

0 Ml
R.I6
R

5
tMJMi-

9

MSIG
CO

Copyright © 1983 Emerald Vatley Publishing Co.

FO

FO

FO

FO

MSG

EG MSG

MSG

MMM

SOD

N

SO

slou
u

CHA

IMSlG
0

H

)

D

D

D

D

D

D

TP
R

Tb

0

R

R

5
MtMh

TO

MSfclS
0

HA

BO

CHA

GOO

SG

MSG
+

DO

EG

EG

GOO

BO

OWS

The Best of 99'er Volume 1

MS

MSG

LWA

2II

Although the TI-99/4 proved itself a valuable enrich
ment tool in my traditional music classes, I began
to realizeits full potential during a summer program

for gifted children at New Horizons Academy. It was ex
citingto let a curriculumevolve as childrenenthusiastically
identifiedtheir own interests and pursued waysof express
ing them creatively through use of the computer.

The Educational Setting
New Horizons Academy is a private school that was

founded by Nanci Lucas in the belief that children are
naturally excited about learning and capable of handling
academic pursuits beyond their years. When an individ
ualized curriculum is designed to allow for advancement
through basic skills and extensive opportunity for enrich
ment and acceleration, children find learningto be exciting
and meaningful.

In addition to the regular academic curriculum, the
Academy periodically provides workshops that are open to
any interestedchildren. Since 1978,"Summer Spectacular"
has offered courses in computers, creative dramatics, ar
chaeology and photography. I became involved with New
Horizons last summer when I taught two sessions in "Com
puter Music" with our TI-99/4.
The Computer Music classes were intended to familiarize

students with basic music concepts and provide for in
dividualized and accelerated learning in a manner consis
tent with the philosophy of the Academy. A typical group
consisted of eight students ranging in age from 7-13. The
group was scheduled to meet eight times in a two week
period with each session lasting one hour. After the first
day, however, the students "demanded" that I arrive at 8:45
A.M. and not leave until 2:15 P.M. Several times it was
even 3:45! To see students asking to cut other classes, skip
ping lunch, and having their parents pick them up late—all
just so theycould work on their projects—was tremendously
rewarding.

The Educational Mode
I employed Renzulli's theoretical framework, TheEnrich

ment Triad Model.1 The model contains three constructs

212 The Best of 99'er Volume 1

Notes

Computer
Store:

- The TI-99/4 Assists

Gifted Children in

he Learning Process

which convey the types of learning activity believed to be
best for gifted children.

In General Exploratory Activities (Type I) students are
exposed to a broad range of possibilities. None of these is
presented in detail. The purpose is merely to introduce the
students to the range of possible alternatives open to them.
Group Training Activities (Type II) follow, providing the
students with fundamental information of potential use in
subsequent development of their interest areas. These ac
tivities are oriented toward content.

During the two preceding phases, students begin to iden
tify their interests and develop the skills to create a final
product. In Individual and Small Group Investigations of
Real Problems (Type III), each student determines a prob
lem or project of particular interest that is based on the in
formation obtained in the previous activities, and then pur
sues that choice in greater depth.

This final element of the Enrichment Triad is perhaps the
most important. Ideally, the students will exemplify the
"turned-on professional" and pursue their objectives with
intense motivation and commitment.

In many respects, Renzulli's model parallels Seymour
Papert's principles of continuity, power, and cultural
resonance. 2

Implementation of the Model
In the first few days, I exposed the students to a variety

of musical activities including a TI-99/4 concert of familiar
children's songs such as "Happy Birthday," "Yankee Doo
dle," and "Pop Goes the Weasel"—all complete with
graphics. We also played rhythm instruments, the autoharp,
resonator bells and recorders, drew on impressions of music
while listening to recordings, identified environmental
sounds, and discussed the commonalities and differences
of all sounds.

The Texas Instruments Music Maker Command Car
tridge contains two options with which children can write
music. In the exploratory activities, they utilized the Sound
Graphs option, in which "the composer" need not have any
prior knowledge of music notation and theory. In this mode
the students experimented with duration of notes by con-

Copyright © 1983 Emerald Valley Publishing Co.

trolling the length of the line in whatever voice they were
composing (3 voices or 3-part harmony is possible). Fre
quency is determined by the height of the line on the screen,
and there is a volume choice. From all of our exploratory
activities, students came to the conclusion that all sounds
have duration, frequency, and volume in common. These
concepts were effectively and concretely exemplified by the
Music Maker's Sound Graphs Mode.

In summary, I believe that the exploratory activities
altered the students' experienceof music. They began to see
music in a new way, as part of the continuum of sound and
noise; the "freshnesss" of this new perspective contributed
to their desire to move toward the next phases of the model.

Group Training Activities were concerned with content-
oriented learning. The objectives were to provide students
with a basic knowledge of music theory and an understand
ing of how a computer program is written—information
which they could use as tools in developing their interest
areas. Several computer music games and drills were used
by the entire group, but as a child's interest waned, he was
allowed to break away from the group activity and pursue
individual work in his primary interest area.

The computer games included (1) Mystery Words, in
which the players learned the names of treble and bass clef
notes; (2) Rhythm, which provided ear training in the
recognition of quarter notes, eighth notes, and quarter rest
patterns; and (3) TI's Music Skills Trainer, which contains

M

quarter, eighth and sixteenth and their corresponding rests
relate to each other and can be organized into a composi
tion that is musically correct.

In moving into Type III of Renzulli's model, almost all
students elected to write a computer program to play a
musical composition; some students selected pieces with
which they were already familar, and others wrote original
compositions. Many investigated how to use graphics and
color to enhance their creations, and designed title screens
to be displayed during the computer's performances of their
works. Compositions included "The Entertainer," "Mr.
Tambourine Man," "Amazing Grace," Beethoven's Ninth
Symphony (Odeto Joy), and "Jingle Bells." Three students,
Byron, Allan, and Peggy, exhibiteda competitivespirit when
comparing the number of lines and difficulty of their pro
grams. Steve wrote his program to play Beethoven's Ninth
Symphony in three-part harmony; Bryan wrote his original
composition to flash a change of screen color to emphasize
musical contrasts at appropriate points in the music; Peggy
reworked her original composition many times until she was
satisfied with the rhythmic structure .

It is important to note that not every student was equally
enthusiastic about programming. For example, Adrienne
seemed to prefer taking Computer Music for enjoyment and
the personal satisfaction of becoming familiar with it but
did not have a genuine interest in becoming a creative
producer.

wmm

Seeing your students

eagerly asking to cut

other classes. . . and

having their parents

pick them up late — all

just so they could work

on their projects — was

tremendously rewarding.

four games to improve the player's skills in recognition and
recall of pitches, intervals, chords, and phrases played by
the computer.

We took a look at the program listings for our favorite
songs and games and "brainstormed" about what all those
commands could possibly mean. Discovering how chang
ing the duration, frequency, and/or volume in a CALL
SOUND statement affects the tones produced by the com
puter was a popular Group Training Activity. The children
soon started drawing conclusions and generalizations about
how to program. At this point it was necessary to hand out
information from the User's Manual for students to take

home and study over the weekend—homework at their
request!

Additional content-oriented learning took place when
students experimented with the Traditional Mode of the
computer's Music Maker Command Cartridge. I used the
traditional mode to help children discover information about
key signatures, time signatures, tempo, and music
notation—including how various notes such as whole, half,

Copyright © 1983 Emerald Valley Publishing Co.

The satisfaction children feel from communicating the
results of their work to an audience was obvious when three

ladies from Springfield (Ohio) School District and a banker
visited our classroom one day. Byron stopped his work to
take over for Mrs. Lucas and me as we were explaining the
Computer Music Class. He and two others enthusiastically
gave a presentation of their music and proudly explained
what had gone into its composition. In addition, the already
high level of enthusiam increased when the class found out
they could present their finished products to their parents
and others on Visitation Day and possibly have them
published in 99'er Magazine.

With this group, I served mainly as a resource person and
passed the responsibility for learning and investigating on
to the students. Students were introduced to concepts of pro
gramming and music theory as they explored and used this
knowledge to make their programs more complex. It was
a good example of making material relevant. The Computer
Music course allowed for freedom of choice in that no

course requirements were established ahead of time; instead,

The Best of 99'er Volume 1 2I3

the class members were allowed to devolop their own
"courses of study" as their interests developed. Likewise,
the time allocations were flexible because the entire staff
allowed students to skip their classes and come to Computer
Music all day if they wanted.

By requiring students to play the games described in Type
II activities only until they no longer were interested, mastery
of competencies became more streamlined and exciting—
as Renzulli suggests. After playing Mystery Words about
ten minutes, seven-year-old Michael put it this way,"Do we
have to play it anymore? We know this now!"

It was interesting to observe how the gifted children
mastered the basics much more rapidly and efficiently than
my regular general music students. The need for in
dividualization and enrichment for the gifted is obvious
when one realizes that playing the same games which in
trigued my regular classes for several of their thirty minute
music periods tired the gifted in ten to fifteen minutes; they
then requested permission to return to programming their
own creations. This is an example of Renzulli's differentia
tion of "real investigative activities" for the gifted from
"training exercises." This differentiation prompted the
development of his Enrichment Triad Model.

It is important to point out that Renzulli's model is not
a fixed, rigid framework; the three activity types often
overlap. For example, while the actual composing of music
is Type III (Individual and Small Group Investigations), the
trial-and-error initial discoveriesof the computer's musical
capabilities might be considered Type I (Exploratory).
Likewise, there is overlap in some of the students' other
Type II activities.Since brainstorming provides children with
the skills needed to explore alternative solutions to problems,
our discussionsabout environmental sounds and computer
language were exercises in developing the processes that
enable a learner to deal more effectively with content, yet
took place during an exploratory activity.

214 The Best of 99'er Volume 1

Furthermore, process training (Type II) occurred when
students wrote their own programs. As Byron observed,
"The computer really programs you; you don't program
it." He was referring to the fact that the best programmers
learn to think like the computer, in that they think out the
process of writing their programs instead of memorizing
what to write. Essentially, they must consider how the com
puter thinks, then determine what to say to get the com
puter to accomplish their goals. Obviously, the program
ming required to achieve the final product is a Type III ac
tivity, yet the development of thinking processes involved
in Type II is also present.

The experience of teaching at New Horizons has given
me new insights into how children think and how different
their learning styles can be. It was exciting to allow a cur
riculum to evolve as children enthusiastically identified their
own interests and pursued ways of expressing these interests
creatively.

Postscript
Although the Academy already had four CBM computers

and a TRS-80, the magical attraction of students to our
TI-99/4 did not go unrecognized. Soon the Academy pur
chased a TI-99/4A, and subsequently a second one, together
with a variety of the high quality educational software of
fered by Texas Instruments.

My husband and I have conducted several other enrich
ment sessions at the Academy and have become increas
ingly excited about the profound potential of computer-
facilitated learning. flgffl

References ^^
1Renzulli, JosephS. TheEnrichment Triad Model: A Guide forDevelop

ing DefensibleProgramsfor the Giftedand Talented. Connecticut: Creative
Learning Press, Inc., 1977.

2 Papert, Seymour. Mindstorms: Children, Computers, and Powerful
Ideas. New York: Basic Books, Inc., 1980.

Copyright © 1983 Emerald Valley Publishing Co.

A Music
Text Editor

& File Player
for the TI-99/4A
For those readers who do not as yet have a Music

Maker but would like to experiment with music
writing anyway, we are offering a primitive music text

editor, which has two of the three voices of the TI99/4A,
as well as a file player program and the input required to
play.

The Music Text Editor program creates a tape file which
is read and played by the Music File Player that follows it.
Although the file can be played by the editor, the tempo
will be somewhat slower than when performed by the
separate player program.

Use the following symbols to write note values:

W-Whole H-Half

Q-Quarter E-Eighth
S-Sixteenth

For a dotted note value, put a period after the symbols, for
example, S.,Q., etc.

Use the following symbols for pitches:

A A# E

B FF#

CO G G#

D D# R-Rest (a pitch with value 0)

After each pitch, give the octave (1-4):
Octave Begins

1 Bass clef, bottom space (A= 110 cps)
2 Bass clef, top line (A = 220 cps)
3 Treble clef, 2nd space from bottom (A = 440 cps)
4 Treble clef, 1st ledger line above (A = 880 cps)

[NOTE: SAVE yourinput periodically! Aninputof anynote
plusanaccidental butwithoutan octavenumber (e.g., A#)
may cause your program to crash.]

The Music Text Editor will first ask you for the com
position's and the composer's names. Then the prompt M.M
will ask you for a tempo in quarter notes per minute—
corresponding approximately to a metronome beat—
between 56 and 126 per minute. (NOTE: The program won't
accept any value larger than 126; the computer will reject
an overly-funereal beat because the value put in the dura
tion parameter of CALL SOUND will be too large.)

The program then begins requesting input for the com
position, line by line for the two voices. After the program
displays the line number, you enter the duration (W, Q.,
S, . . .), followed by the pitch values and octave ranges for
each of the two voices. You must separate these values by

Copyright© 1983 Emerald Valley Publishing Co.

a slash (/), and end the line with a slash. For instance, to
play simultaneously the dotted eighth notes F * in octave
2 and C in octave 1, followed by a sixteenth rest in the first
voice and a Bb sixteenth note in the second, after the first
program line number prompts (1 =) you would enter:

1 = E./F#2/C1/

2 = S/R/A#l/

3 =

When the program prompts you for the next line of notes
(in this instance line 3), you may instead enter one of the
following commands:

CHANGE, REDO, LIST, PLAY, or SAVE.

CHANGE, REDO and LIST will ask for a range of lines.
The SAVE command merges new data with data already
stored in the tape file. Unless you answer the question,
"FINISHED?" with a "YES", no end-of-file mark will be
written on the tape file. Until the file has an end-of-file mark,
it can't be read. The Music File Player can read and play
a file consisting of up to 550 lines.

R

R

R

c

D

I

I

F

R

N

D

F

F

X

GO

N

S

N

N

C

P

R

I

I

P

C

GO

C

T

F

F

R

N

MU

E

1

T

CiOtM
T

I

R

T

I

K

T

IMA

N

MUtM
0

EMP (M M

,G

) Q U A

The Best of 99'er Volume 1 2I5

FO

X =

x=

GO

GO!

P

X

F

X

N

I

I

P

P

I

G|0
GO

IF

GO

GO

GO

GO

I F

GO

GO

GO!

GO

GO

GO

FOl

GO

FO

GO

I

I

C

GO

I

I

0
C

GO

OC =

GO

P

N

I

R

K

GO

L

TO

S

S

L

TO

K

X

SO

$

EG!

S

5

L

Eb
I

SO

58

)

H

S

t|o
I

2I6 The Best of 99'er Volume 1

CA

GO

:a

GO

GO

Ci

1

L

tio
L

TjO
P

L

0

L

T

U

FOl

P

N

R

P

I

S

P

Rl

Y:

II

X =

X:

r:

M =

Nl

F

:a

GO

F

:a

GO

U

K

L

0

K

L

TO

SI

M

GO

F

:ai

GO

GO

K

S

R

I

I

C

GlO

GO

GO

II
Q:

PI

0 =

Q =
FOl

X$:

FOl

FOl

F

e:

u

u

0:

L

TO

U

Q
L

0

0<

L

TO

0-
:+i

lou
13

SO

i;

L

K

S

1

P'

M+

K

S

1
KP

<M

SO

SO

R

TO
R + *
8

rA;

0
2

1

N

0

Tl

0|.
0

1:

L

Copyright © 1983 Emerald Valley Publishing Co.

EM

EM

EM

A

F

I Ml
E

1=Q/C2/R/
2-Q/D3/R/
3-Q/A#3/R/
4-E/A3/R/
5 = E/C2/R/
6 = E/A#3/R/
7-E/A3/R/
8-E/G2/R/
9-E/F#2/R/

10-E/A3/R/
11-Q/D2/R/
12-E/G2/R/
13-E/D2/R/
14-E/A3/R/
15-E/D2/R/
16-E/A#3/R/
17-S/A3/R/
18-S/G2/R/
19-E/A3/R/
20-E/D2/R/
21-E/G2/R/
22-S/D2/R/
23-S/G2/R/
24-E/A3/R/
25-S/D2/R/
26-S/A3/R/
27-E/A#3/R/

1

I(=1 TO 12

MU

ROGRAM

AR

28-S/A3/R/
29-S/G2/R/
30-S/A3/R/
31-S/D2/R/
32 = S/D3/R/
33-S/C3/R/
34-S/A#3/R/
35-S/A3/R/
36-S/G2/R/
37-S/A#3/R/
38 = S/A3/R/
39-S/G2/R/
40-S/F#2/R/
41-S/A3/R/
42-S/G2/R/
43-S/D2/R/
44-S/G2/R/
45-S/A3/R/
46-S/A#3/R/
47-S/C3/R/
48-S/D3/R/
49-S/E3/R/
50-S/F3/D2/
51 -S/E3/D2/
52-S/D3/R/
53-S/F3/R/
54-S/E3/A3/

TH

TA

E|QU
2

VO

Fugue in G
MM = 100

55 = S/D3/A3/
56 = S/C#3/R/
57-S/E3/R/
58-S/D3/F2/
59 = E/A3/F2/
60 = E/D3/F2/
61-S/E3/E2/
62-S/E3/E2/
63 = S/F3/D2/
64 = S/G3/D2/
65-S/F3/F2/
66 = S/G3/F2/
67-E/G3/E2/
68-E/G3/E2/
69 = E/G3/D2/
70-S/F3/D2/
71-S/G3/D2/
72-S/A4/C#2/
73-S/G3/C#2/
74 = S/A4/C#2/
75 = S/A#4/E2/
76-S/A4/E2/
77-S/G3/E2/
78-S/F3/A2/
79-S/E3/A2/
80-S/F3/D2/
81-S/A4/A2/

82-S/G3/A2/
83 = S/A4/A2/
84 = S/C#3/E2/
85 = S/A4/E2/
86 = S/G3/A2/
87 = S/A4/A2/
88-S/D3/F2/
89 = S/A4/F2/
90-S/G3/E2/
91-S/A4/D2/
92-S/C#3/E2/
93 = S/A4/E2/
94-S/G3/E2/
95 = S/A4/A2/
96 = S/F3/D2/
97-S/D3/D2/
98-S/C#3/A2/
99 = S/D3/D2/

100-S/G3/E2/
101-S/D3/A2/
102 = S/C#3/A2/
103-S/D3/E2/
104-S/A4/F2/
105-S/D3/F2/
106 = S/C#3/E2/
107-S/D3/D2/
108-S/G3/E2/

CopyHght © 1983 Emerald Valley Publishing Co.

G'O
C

1

NE

CA

PR

I

S

K

K

S

5

K

S

5

S

5

S|0

K

C

AG

AB

4

teo

minor

by Bach
109-S/D3/A2/
110-S/C#3/A3/
111-S/D3/G2/
112 = E/A3/F2/
113-E/F3/D2/
114-E/G2/E2/
115 = E/E3/C#2/
116-E/F2/D2/
117-E/A3/D2/
118-E/D3/F2/
119-S/F3/A3/
120-S/F3/B3/
121-E/D#3/C3/
122-E/A4/C3/
123-E/A4/D3/
124-E/D#3/A#3/
125-S/D3/C3/
126-E/D3/A#3/
127 = E/G3/A#3/
128-E/G3/A#3/
129-S/D3/A3/
130-E/D3/G2/
131=S/R/A#3/
132-S/C3/A3/
133-S/A#3/A3/
134-S/C3/G2/
135-S/D3/G2/

ROM

136-S/C3/F#2/
137-S/A4/F#2/
138-S/G3/D2/
139-S/A4/D2/
140-S/A#3/G2/
141-S/G3/R/
142-S/F#3/R/
143-S/G3/R/
144-S/A3/D2/
145-S/F3/R/
146-S/E3/R/
147-S/F3/R/
148-E/G1/A#2/
149-E/D#3/R/
150-E/G2/R/
151-E/A2/R/
152-E/A#2/E1/
153-E/R/D1/
154-E/R/F1
155-E/R/G1
156-Q/D1/R/
157-Q/A2/R/
158-Q/F1/R/
159-E/E1/R/
160-E/D1/R/
161-E/F1/R/
162-E/E1/R/

Q

163-E/D1/R/
164-E/C#1/A2/
165 = E/E1/A#2/
166-Q/A1/R/
167-S/R/F2/
168-S/R/E2/
169-E/D1/F2/
170-E/A1/R/
171-E/E1/C#2/
172-E/F1/D2/
173-Q/A1/D2/

The Best of 99'er Volume 1 2I7

Music

Maker

TI Command

Cartridge

To paraphrase Shakespeare, "The computer that hath
no music in its chips, nor is not programm'd with
concord of sweet sound is fit but for business,

mathematics, and sorts." The TI-99/4A is definitely not one
of these.

Outstanding music and sound effects capabilities are
among the many features which set the TI-99/4A apart from
other personal computers. A user can generate three
simultaneous tones and a noise, and can specify their dura
tion, pitch, and loudness—all with a single TI BASIC state
ment. The sound is played through the speaker of the color
monitor or TV display.

Of course, an assortment of beeps, "ta-daas" and outer
space sounds can greatly enhance a graphics presentation
and provide useful auditory feedback during the program
execution. But when the sophisticated sound capabilities of
the TI-99/4A become the focus of the programmer's at
tention, the Texas Instruments machine becomes a musical
instrument in its own right. Whether playing a Bach sonata
or your own composition, a successful TI-99/4A perfor
mance is worth the programming effort.

With the introduction of TI's Music Maker Command

Cartridge, you can take full advantage of the TI-99/4A's
sound capabilities without having to write a complex BASIC
program. The Music Maker allows you to write a composi
tion using either of two methods—Traditional Mode or
Sound Graphs. While Traditional Mode requires some
knowledge of fundamental music theory, Sound Graphs
does not. Both methods are graphics-based, in contrast to

218 The Best of 99'er Volume 1

other music editor formats which require entry of notes us
ing ASCII characters. Both also make superb use of the
TI-99/4A's outstanding color graphics capabilities. Notes
are entered by manipulating the cursor with either the
joysticks or the arrow keys. A composer can then print out
the bass and treble clefs of each measure—complete with
all notes, sharps, flats, and rests—with TI's thermal printer
(using its special graphic character set). It's also possible to
save the completed musical score on cassette tape or diskette.

Traditional Mode

In Traditional Mode, notes are entered directly on the
music staff using standard notation. The first step involves
defining the key, meter, and tempo. All possible key
signatures (0-7 sharps or flats) are allowed. The meter or
time signature options for the denominator are 1, 2, 4, 8,
and 16—corresponding to the unit of measure receiving one
beat (i.e., whole, half, quarter, eighth or sixteenth note).
The numerator of the time signature indicates the number
of such units which comprise a measure. Your options here
are restricted to values equal to, or less than, the
denominator. Examples of allowable time signatures are:

4 6 2 and 3 .
4 8 2 4

on the other hand,

2, 12 , and A
2 8 4

are not allowable, because the numerator exceeds the

Copyright © 1983 Emerald Valley Publishing Co.

denominator. This limitation is significant, because there
is a natural accent which falls on the first beat of every
measure when music is accurately interpreted by a per
former. This regular impulse, together with phrasing and
secondary accents in compound meter, gives a composition
its underlying rhythmic structure. The Music Maker does
not automatically provide for this natural rhythm. The im
plementation of accent is entirely up to you. For example,
a composition written in 4/4 time may be made to sound
like 3/2 time with proper phrasing and specification of ac
cent. Therefore, the time signature limitation does not ac
tually limit the music you can write with the cartridge. Final
ly tempo is specified as a number from 1 to 30, correspond
ing approximately to metronomic indications from 25 to 128
quarter notes per minute—sufficient range for nearly all
compositions.

After these parameters are defined, the graphics represen
tation for the first measure appears. Some music editors for
other machines do not use graphics at all. It is a great ad
vantage to see your composition displayed in standard nota
tion as you are writing it.

Up to three voices may be "drawn" using whole, half,
quarter, eighth and sixteenth notes and their correspond
ing rests. Single dotting can be used with notes, but not with
rests. The notes for each voice are represented in a different
color, which facilitates identification of voices when editing.

The pitch range is three octaves, extending from the
second A below middle c (bottom space of bass clef) to the
second a above middle c (first ledger line above treble clef).
This may seem like a wide range. In arranging several piano
pieces for the TI-99/4A, however, we found that it was fre
quently necessary to make octave transpositions for notes
extending beyond the Music Maker's pitch range in Tradi
tional Mode. On the other hand, the Music Maker is not
really intended for the transcription of existing music for
other instruments, but rather to facilitate original composi
tion. Like all instruments, it too has limitations which must
be taken into account when preparing an original
composition.

Accidentals (sharps, flats, or naturals different from the
key signature) must be written for each note; once written,
they do not carry over through the entire measure as they
do in standard notation. For someone who is accustomed
to standard notation, this may take a little getting used to.
Additionally, the large and legible graphic symbols that the
cursor picks up from the menu become too small to be easily
read when placed beside a note.
Graphics

Graphics characters for the notes themselves resemble
square notation, but we do not feel this detracts from their
readability (especially when compared with the legibility of
many manuscripts). However, in drawing clusters of two
or more notes, we encountered a peculiar graphics-related
difficulty. This is a function of the position (up or down)
of an existing note stem. You will find that a note for one
voice can not be placed at a pitch immediately above or
below an existing note if that pitch is occupied by the stem
of the existing note. The stems for voices one and two go
upward unless they are placed immediately below a note in
another voice which has its stem going upward. The op
posite is true of voice-three notes. This means that while
it is possible to represent any two-note cluster, the process
can be more involved than would seem necessary. For in
stance, suppose you have already written a voice-one quarter

Copyright © 1983 Emerald Valley Publishing Co.

note at middle c, and you want to write a voice-two note
at d immediately above it. Finding that you cannot do this
simply, you would have to do the following: Change voices,
erase the c, change voices, draw the d (voice-two), change
voices, redraw the c (stem down), and finally change back
to voice-two to continue. A cluster of three notes with ad

jacent pitches cannot be written at all. These problems will
be troublesome only in the event that the composer wants
to write dissonant chords in the form of clusters.

At the bottom of the display is a double row of squares;
the upper row is used to specify volume for each note. There
are eight levels of volume which allow a very smooth
crescendo or diminuendo without abrupt transitions from
one level to the next. Some other music editors do not allow

this degree of versatility in dynamics. This default value for
loudness is the maximum level of eight. If you want to ac
cent selected notes, say the first note of every measure, you
must drop the volume of all other notes. A default loudness
of six or seven might have been a little easier to use in this
regard.

The bottom row of squares is used to indicate the width
of each note; this is very helpful in positioning them. It also
allows one to create rests without using rest graphics by
simply leaving a gap between one note and the next. Two
adjacent notes of the same pitch are automatically tied. The
only way to articulate them is to leave a gap in between.
For instance, one might write a dotted quarter rather than
a quarter note, and the resulting gap would then prevent
a tie with the next note.

At any point during the writing of a measure, you can
play an individual voice or all voices. If you decide to make
a change, this is easily accomplished by erasing an individual
note or the entire voice. You cannot, however, insert or
delete notes without making necessary adjustments to other
notes in the measure.

Repetition is easily handled by copying an individual voice
or all voices from a previous measure, and this can save
a great deal of time. A given voice cannot, however, be
copied as another voice. So if you want to use the copy
feature to write rounds, they have to be scored differently
than they would be in traditional composition. Any two
voices can be copied by copying all three and then erasing
the one which is not wanted.

When you are finished with a measure, you can either
go on to the next measure or back to a menu which allows
you to edit, play, save, or print your composition. If you
choose to edit, you will be shown the number of measures
completed and the percentage of file space used, and you
will be given the option of changing the tempo. To play the
composition, you specify which voices are to be played, and
you are given the option of hearing the music transposed
up or down by as many as eleven half steps (twelve half
steps are an octave). If you transpose a note so that it falls
below the Music Maker's range, it will not be played. You
can interrupt the playing of a composition and view the
graphic representation of the measure being played at that
point, but graphics are not used when the piece is actually
being played.

There are a few features present in some music editors
for other machines which are not present in Music Maker.
For example, the only way to initiate repeats is by manual
ly pressing "SHIFT R" during the playing of a piece; no
form of looping can be structured into a compostition.

The Best of 99'er Volume 1 2I9

Given the relatively vast storage space available (compared
with music compositions written in TI BASIC), together
with the copying feature, the lack of repeat capability is less
significant than it might otherwise be. With 16K of RAM,
you will be able to write about 900 notes for each of the
three voices. For example, writing all sixteenth notes for
three voices, the file could be 57 measures long; with all
quarter notes, it could be 224 measures. Additionally, there
is no capability to write phrases and then arrange them in
different voices. This capability could be useful when
employing the device of imitation, such as writing canons
and fugues. Even so, the same effect can be achieved with
Music Maker—it just takes a little more effort.

In summary, despite the few shortcomings mentioned,
the Traditional Mode provides a beautiful graphics-based
editor which makes the process of writing music as enjoyable
as listening to the finished product. Even if this were the
extent of the Music Maker's capabilities, we feel it would
be an excellent investment at the suggested retail price of
$39.95.
Sound Graphs

While some knowledge of music theory is essential for
effective use of the Traditional Mode, the Sound Graphs
method may be used without any prior understanding of
music terminology. As the name implies, music is entered
in a Cartesian coordinate graph format. The frequency
graph can have a resolution of one-hundred-twenty vertical
positions (frequency) by twenty horizontal positions (dura
tion) per "measure." A Sound Graphs music file may con
tain up to 46 measures. A color-coded line is plotted on the
graph with the cursor, and as in Traditional Mode, a dif
ferent color is used for each voice.

The volume graph has a resolution of eight vertical posi
tions (volume) by twenty horizontal positions (duration),
and appears below the frequency graph. A separate volume
graph may be plotted for each voice appearing in the fre
quency graph (default is the highest volume). In addition
to the three voices, a Sound Graph may also include a noise
which is plotted on the volume graph.

The user has the option of either Discrete or Continuous
tones. Under the Discrete option, the vertical axis is divid

220 The Best of 99'er Volume 1

ed into thirty frequencies, consisting of C Major diatonic
pitches from the second A below middle c to the third b
above middle c. You can, however change any or all of these
pitches with the List Tones option. Although any frequen
cy from 110 Hz to 20,000 Hz can be used, tables are pro
vided in TI's excellent documentation, giving the frequen
cies for chromatic, pentatonic, and gypsy scales. The fre
quencies can be changed at any time, even during or after
the plotting of a Sound Graph.

Under the Continuous option you specify the upper and
lower limits of the frequency range. These can be changed
as often as you wish. The frequency axis is divided into 120
steps within this range, giving a frequency "slide" which
sounds continuous and can be used to create sound effects
such as whistles and sirens as well as interesting experimen
tal music sounds. When you take into consideration the fact
that a noise can be used in addition to three voices and that
the composition can be played as fast as twenty characters
per second, the range of possibilities is quite extensive.

In evaluating the noise, we were surprised to find that
we could not distinguish any difference between the periodic
and "white noise" groups—i.e., noises 1-4 and 5-8, respec
tively. Noise 1 appears to be the same as noise 5; noise 2
the same as 6, and so on. If you are familiar with the dif
ference between periodic noise and white noise in TI BASIC,
do not expect to find the same distinction in the Music
Maker.

Other aspects of using Sound Graphs are identical with
the corresponding procedures used in Traditional Mode
(namely editing, playing, saving, and printing).

If you have no knowledge of music theory, using Sound
Graphs is a great way to begin exploring the TI-99/4A's
music capabilities. Even if you are familiar with music fun
damentals, you will be amazed at the versatility of the Sound
Graphs method, and you will find that your TI-99/4A has
potential you would not have thought possible.

In conclusion, the Music Maker Command Cartridge will
greatly enhance one of the already outstanding features of
your computer—its capacity for sound and music. We
believe it is an accessory you will not want to be without.

Copyright © 1983 Emerald Valley Publishing Co.

Over the last couple of months, I've had virtually no
rest. First it was those pesky aliens: They hurled
bombs, missiles, mines, and laser blasts at me

around the clock. Some even tried to gobble me up on sight!
No respect at all. . . These hordes of menacing foes must
have come from nearly a dozen different hostile worlds.
(Why is it I've never seen a "friendly" alien?) Each of these
worlds evidently has its own individual concept of combat
strategy, weapon design, ethics and morality because the
modes and severity of attacks differed widely. One thing,
however, that all these dastardly devils had in common was
their quarry—me!

Some of the attacking hordes were accompanied by a
malevolent thumping as their precise marching formation
advanced hypnotically toward my flimsy barricade. Others
stayed stationary but hurled down torrents of lethal missiles
that I had to alternately duck and target my lasers against.
(My neighbors must have been really surprised when they
noticed all that debris strewn across their yards. . .) What?
Was I nervous? Not too—that is, not until I had to pilot
all those strange land and space craft—everything from X-
wing fighters to futuristic prairie schooners. Just when I'd
feel comfortable at the controls of one, Ka-boom!—I'd be
under vicious attack, or c-r-r-unch!—smack in the middle
of a deadly asteroid belt. Nothing like huge chunks of space
rocks whizzing around your head to keep you on your
toes. . .

But it didn't end with all those downright nasty aliens
and slimy, vile space creatures. Oh no, not by a long shot.
There were still the Empire forces to contend with. Here,
however, the battles were more scattered and slower paced;
I had time to launch torpedoes and probes, as well as assess
casualty reports and plan long-term strategy. Just when
everything was going so well, a Red Alert brought me back
down to earth. It seems the Cold War was no longer so
cold. . .and my country needed me to command a SAM
(surface-to-air missile) site. With all that sophisticated
RADAR equipment, it shouldn't have taken too long to
finish "locking in" on the enemy missiles and blasting them
to smithereens, but as fate would have it, another series of
emergencies sent me packing—first to rescue a downed

Copyright © 1983 Emerald Valley Publishing Co.

The
JOY

of

COMPUTER
GAMING

It's A Dirty Job,
But Somebody's Gotta Do It . . .

helicopter crew from shark-infested waters, and then on a
hazardous journey to the moon and Mars, where I had to
jockey my landing craft over some pretty rough terrain.

You'd think by then I should have received a few words
of thanks, wouldn't you? But no, the moment I landed on
Mars, some terrorists decided to have a field day. . .and
there I was right back in the thick of things—commanding
a bomb squad. Now defusing a time bomb is no Sunday
picnic! If my nerves could withstand that heart-thumping
activity, you'd think I'd be in pretty good shape for a few
more adventures yet to come.

But nothing prepared me for what I was up against next.
Certainly, no one told me when I took this job that hun
dreds of horrible deaths awaited just around the corner. All
they talked about was the treasure and glory! But when I
reached the edge of the high cliff, it was already too late
to turn back: On my left, a hungry python slithered toward
me; to the right, a quicksand bog surrounded by bleached
bones awaited; and behind me, a large grizzly bear blocked
my only path into the forest.

Well, luckily I got out of that one with my skin, but one
adventure led to another. . . And before I could take some

well-earned rest, 1 somehow had gotten involved in a pirate
treasure hunt, an escape from an ancient pyramid, the fer
reting out of an awesome secret on a savage island, saving
a Count trapped by a fiendish curse, preventing a nuclear
reactor from blowing its top, and alternately exploring a
ghost town, mysterious fun house, ancient alien civilization,
enchanted treasure world, and a dark kingdom populated
by ores, dwarves, an old dungeon master, a beautiful
princess in distress, and an evil ringwraith.

Whew—I never thought that one mortal could get so
tired. What 1 really needed was a chance to relax and un
wind. . . So, handing my ticket to adventure over to Indiana
Jones, I planned on doing nothing but sitting back in my
favorite easy chair and listening to some good music. But
They had other plans for me. It was no use complaining;
I'd heard the argument a hundred times before: "It comes
with the territory. . ." For some reason or other I was need
ed to run up a bankroll by betting on the ponies, to lead
a championship baseball team to victory, to bring back a

The Best of 99'er Volume 1 223

shiny bowling trophy, to don my skis to better the old slalom
record, to outrace a suicide car, and then to take part in
a grueling decathlon.

After somehow getting through that long, long decathlon,
I sat down to a nice big bowl of Wheaties and planned my
R&R. Nothing too strenuous. . .nothing too mentally
demanding. . .just some good clean fun. So off to the
casinos for some baccarat, blackjack, craps, poker, and the
slots. It was fun while it lasted, but They needed me back
on the job again.

I knew something really BIG must have been in the works
because of the way my training for the forthcoming mis
sion was being carried out: plenty of practice with challeng
ing word games, concentration exercises and contortions
with cantankerous colored cubes. They obviously wanted
my wits sharp for the BIG assignment coming up. But before
I'd find out what it was, there was an obstacle course to
negotiate, and then the final test of my state of mental
readiness—passage through a series of simply complex, com
plexly simple 3-D mazes. I almost didn't make it through
that one. . .

Now I was ready. The BIG assignment finally came in:
Someone was needed to guide a dumb chicken safely across
a 20-lane highway. . . What? Enough is enough! Tell 'em
I'm not here. Guide a chicken across a road like that? In
stant chicken salad—with me probably ending up being ac
cused of fowl play. . . Let 'em get somebody else for that
one. I wouldn't do it now even if They awarded me the
Pullet-ser Prize!

Micro Motivation Comes Full Circle
I've been sitting here now several hours thinking and

wondering—thinking about those psychedelic-sounding
escapades of mine, and wondering about the fantastic
powers of imagination that we all must have—letting us see
what we want or expect to see. In my case, it was easy
because I had a partner—one who was, incidentally, a lot
more patient than that dumb chicken I eventually got teamed
up with. Who was this patient partner? Some gaunt guru?
Or sinewy sorcerer? No, none of these. My partner in all
this was a friendly Texan—a TI Home Computer equipped
with the latest in games software.

I have never really cared very much for games. And even
when it became obvious that microcomputers were rapidly
becoming the ultimate "games machines," I still felt that
all the excitement of video games was just a passing fancy.
It was my belief that the popularity of computer games was
simply due to people just trying to find additional Uses for
machines that they bought primarily for other purposes.
Now I know better. . .

I
224 The Best of 99'er Volume 1

What we're now just starting to see happen is actually
the reverse: This year, several million consumers will be con
sidering interactive video games—as opposed to passive TV
watching—that they can play at home in the company of
friends and family, instead of plunking their quarters down
coin slots at crowded arcades or all-night grocery stores.
When they start to shop around and compare prices and
features, increasing numbers of them will start to find that
the stand-alone, cartridge-based, dedicated games machines
can be almost as much money as the new breed of lower-
cost microcomputers.

The handwriting is already on the wall: As the price of
microcomputers falls even lower, many, many more con
sumers who were initially looking for video games machines
will be able to justify the slightly higher cost of a full com
puter on the basis of potentially being able to do so much
more than "just play games." Ironic, isn't it. . .

A few years ago, the great topic of speculation and cause
for disagreement in the microcomputer industry was how to
best increase public awareness and acceptance of these miracle
machines so that a mass market with its lofty goal of "a com
puter in every home" could be eventually realized. Everything
from electronic mail and banking, to education, home
management, and tax/financial record keeping was
nominated as being a likely candidate for the magic catalyst.
Sure, entertainment was mentioned, but it was usually lumped
together somewhat amorphously with home management and
education. Nowhere do I remember anyone coming out and
stating that it would be computer gaming that would ultimate
ly be this catalyst and pave the way.

The Seriousness of Playing Games
But regardless of whether video games are a primary or

secondary motivation for getting a microcomputer, it's rap
idly becoming obvious that electronic game playing isn't all
just a game. Psychiatrists, psychologists, therapists and
educators are discovering how video games can dramatically
benefit their players. We hear reports of how the games are
speeding eye-hand coordination, sharpening driving and math
skills (since the intricate strategies and geometric patterns of
many video games provide painless instruction in logic,
trigonometry and physics), preventing youth from being
stricken by technological "future shock," and providing an
emotional rescue (by dissipating anger and frustration, assuag
ing loneliness and allowing both the recapture of lost athletic
prowess as well as the prowess that never was).

Application of video game playing as a form of therapy
is definitely on the rise. We're now seeing this technique
used in treating brain-damaged victims of strokes, accidents
and senile dementia. The most impressive results, however,

Copyright© 1983 Emerald Valley Publishing Co.

have come from work with retarded or emotionally dis
turbed children. Here, video games often break through
where other methods fail. Psychologists have credited this
to the "mastery experience" that is now possible for children
who formerly were not able to be good in anything else.
Until their exposure to games, they have never had a refuge
of accomplishment from which to deal with the outside
world. Once children become good at something (and, as
a result, proud of their achievements), their attitudes and
performance in other activities also dramatically improve.

The Hardware Sets the Stage
As opposed to video games machines that are designed

to be just "machines that play games," microcomputers are
usually designed to perform many types of jobs, or handle

Copyright © 1983 Emerald Valley Publishing Co.

certain types of work more efficiently. This architectural
design determines the gaming environment that a particular
computer will present to its users. Any limitations or con
straints will be very obvious. For example, if a computer
was designed without color graphics capability, then the
games software compatible with this particular machine
could not utilize color. Likewise, sound effects, music, 3-D
animation and synthetic speech are other game-enrichment
capabilities that a microcomputer may or may not possess.

A comparison of all presently available microcomputers
yields the surprising conclusion that only the Texas In
struments TI-99/4A personal computer has all the above
named capabilities and permits programmers to use them
all in the same program. This represents an abundance of
"raw materials" from which to construct games. When you
combine this with TI's fast and powerful 16-bit
microprocessor (TMS9900), it becomes apparent that these
Texas Instruments personal computers offer one of the best
gaming environments available.

The separate Video Display Processor chip (TMS9918A)
inside the TI-99/4A is a good example of TI implementing
internally in hardware what other computers require pro
grammers to do in software (if indeed it can be done at all).
This very sophisticated device gives the games programmer
the ability to simply access and set in motion (independent
ly of the program logic) 32 smoothly moving colored'ob-
jects called "sprites"—objects whose shapes can very easi
ly be defined, magnified, colored, given a 3-D overlapping
appearance and checked for collisions. These are the
modular components from which many more exciting
arcade-type games will be constructed in the future.

The Best of 99'er Volume 1 225

ANTI-AIRCRAFT

GUN

TI
BASIC

^
AX^

Despite the fact that action games programmed in a
high-level language such as TI BASIC run much
slower than in low-level languages such as 9900

Assembly Language or GPL (the programming language
of TI's Command Cartridges), it is indeed possible to create
reasonably fast "real-time" games if you observe a few rules:

1. Keep the number of moving objects to a minimum.
2. Keep all unnecessary statements out of loops used to

move objects.
3. Use only one character to define objects you want to

move quickly.
4. Increment the positions by two spaces each loop. This

makes the movement slightly jerky, but contributes greatly
to the illusion of speed.

I've followed these rules in writing Anti-Aircraft Gun.
The basic idea of the game is simple: You must shoot down
an attacking plane with your missile launcher before it blasts
you twice with its laser. The plane attacks at random heights
from both the left and right sides. Its speed and frequency
of laser fire are dependent on the skill level you choose. Your
missile launcher can move along the ground, and even hide
behind a barrier; but when it fires a missile, it is committed
to its last position until the missed shot passes off the screen.
You'll have to move around as much as possible because
the plane "remembers" your last position and there is higher
probability it will fire the laser near that position. And don't
expect too much protection from the barrier: After five laser
blasts (or less, if you launch missiles through it), it will
disintegrate and leave you exposed.

EXPLANATION OF THE PROGRAM 1620-1650 Decides whether plane will fire or not.
Anti-Aircraft Gun 1660-1760 Fires plane's laser; checks for hits.

1770-1780 Checks for a hit on the
Line Nos. plane by the tank's rocket.
100-670 Instructions. 1790-1890 Checks for plane at the edge of the screen.
680-810 Sets up levels of difficulty. 1900-2030 Determines new direction for the plane.
820-870 Sets up variables to make plane fire more as 2040-2090 If plane and tank hit simultaneously, the tank

difficulty increases. wins.
880-1110 Character definitions and color assignments. 2100-2180 Determines new direction for the plane.
1120-1170 Initial displaying of tank. 2190-2330 Calculates score.
1180-1220 Displays ground. 2340-2420 Prints score.
1230-1260 Calculates plane's height. 2430-2460 Plane is destroyed by the tank.
1270-1380 Determines the direction of the plane. 2470-2620 Calculates if a free game was won; starts over.
1390-1450 Reads keyboard, and branches to subroutines. 2630-2750 Moves tank left.
1460-1530 Fires tank's rocket. 2760-2880 Moves tank right.
1540-1610 Moves plane. 2890 END.

226 The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

M

EM

EM

EM

EM

EM

EM

EM

ON

CO

H

S

S

I

E

R

B

B

E

MA

WA

TO

N

E

Ck}ME
LO

EM

OS

H

R

TO

NG

YlO

T

N

A

GH

GH

R

RO

ON

S

N

IR

AS

OMl

YOO

S

R

L

S

L

S

Ho

T

FO

NO

I-

MA

TO

A

CON

YOO

MO

ROO

WH

WI

NG

CO

FO LOW

YOO

YOO

GAM

NG TO CO

Copyright © 1983 Emerald Valley Publishing Co.

MS

EM

RO

T

AS

$

S

s

$
R

L

R

A

A

A

A

CA

A

A

A

A

A

EMI

GO

M|0
F

F

F

F

e|m
L

A

DlOM
N

1

LO

CHA

HA

CHA

CHA

OMI

T(2
GO

HA

T

RE

CHA

NO

EG

RME

E

N

S

>5

NG MO

LAN

AN

Y +

ok)
)
RIOIC

T +

The Best of 99'er Volume 1

TAl

ION

227

228

A

T

F

A

GO

CA

CA

LL

1

C

3
MO

R

3
V

2

H|A

RAN DOMI

T

F

F

EM
F

F

A

F

A

A

A

A

GO

A

F

F

A

CA

CA

EM

ON

B

C

D

GlO

CA

R

L

R|A|N
A

I

GlO

B

B

B

B

L

L

L

L

0
L

B

A

L

L

L

B

B

L

A

B

B+tt)

2
T

I

L

5
6

1
>

ClHlA
<

H

3

8
bM

OO

CHA

CHA

ON

T

H

HA

Y +

+

R

GO

c|h
2

ClHA
ZDOMI

EM

EM

N

A

CA

C

R

B

0

B

DI

A

GO

D

C

R

CA

K

L

L

L

EM]

2
C|H
22

H

CHA

C

C

E

2

IGO

TW1

A +

A +

A +

Af

23
5

ND

RMl

OR

p

ING

LA

A

5
Svi

LAN

The Best of 99'er Volume 1

ION

GO

GO

GO
SC

MS

R

A

I

R

F

C

C

N

N

2

F

EfM|
0

V

A

E

!D|OM|I
N

1

|GO
FO

GO

EM|
AL

A

X

EM

P

N

S

I

P

E

R

sic
(GOTO

GO TO

R

I

C

T

G

T

CIA
CA

CA

CA

CA

CA

GO

GO

T =

CA

CA

C

C

C

C

GO TO

GO

68
MP
3
sb

BA

CHA

CHA

CHA

CHA

HCH

C

5

MO

SO

CH

CHlA

N 2210 ELSE 2230

E

M

I

ZH-

GAM

YOO

YOO

GAM

T

Tff
T +

TA

GH

E

GAM

Copyright© 1983 Emerald Valley Publishing Co.

BATTLE AT SEA
amn the torpedoes! Full speed ahead ..." Get
(ready, all you armchair admirals out there in
99'er-land. You're about to do battle with the

most crafty enemy of all—the Imperial TI Fleet. If you're
old enough to remember those rainy Saturdays in the pre-
TV age, you've probably spent many an hour with pencil
and paper playing Battleship. In the intervening years, Bat
tleship has been dressed up as a consumer item in many
forms: First it was "cardboardized," then "plasticized,"
and finally "electronicized."

Well gang, as it happened, one rainy Saturday afternoon
a few months ago, I had this mad urge to play Bat
tleship . . . The expensive electronic version looked really
enticing in a local toy store display, but I sure wasn't going
to spring for it—especially when I had my trusty TI-99/4
personalcomputer waitingto carry out my everycommand.
So program it I did. The result: Battleship has now been
"99'erized" into a 16K TI BASIC version, which I call Battle
at Sea.

Two 10x10 grids are displayed on the screen along with
the row and column designations. The computer will ask
you to enter coordinates for the placement of each of your
ships on the grid at the right. Each coordinate must be
entered separately; for example, first A 5 and then A 6 are
entered for the destroyer. Since the ships occupy different
numbers of grid squares, I've put in a counter for each ship
to indicate how many remaining squares must be entered.

After all the coordinates for a ship have been entered,
that ship will be displayed on the screen. Once all five ships
are set up, the computer will secretly set up its own ships
on the grid to the left. You won't be able to see the com
puter's ships, since the whole idea of the game is to try to
find them.

Di

Copyright © 1983 Emerald Valley Publishing Co.

Once the computer has set up its ships, it will ask you
for the coordinates of your shot at its grid (on the left). You
must enter your shot as a row letter, then a column number.
Valid coordinates are from A to J and from 0 to 9. Any
other entry will result in having to enter the coordinates
again. Your hit or miss will be marked on the grid and
displayed at the bottom of the screen as a MISS or **HIT**.
The computer will then take a shot at your grid. It cannot
see your ships, but it does keep track of where the hits and
misses are.

After a hit, any ship that has been sunk will be displayed
at the bottom of the screen. The score is also updated at
this time: one point for each ship sunk. The first player to
sink all five ships will win the game.

Because there are no moving objects in this game, speed
was not the most important factor in the game design. The
action happens to be fairly fast, but the critical factor was
programming the computer to make intelligent decisions.
With no limit on available memory, I might have been able
to write a program with flawless logic. But here that wasn't
the case—I had to stay within the confines of standard 16K
TI BASIC.

I started by giving the computer a set of rules and several
variables to test for a given situation. First, if a ship has
been hit only once, the computer will take random shots
around that hit until the direction is determined. It will then
continue in that direction until the ship either sinks, misses
a shot, or runs up to the edge of the grid. It will then reverse
and shoot at the other end if the ship was not sunk.

And now it's you against the Imperial TI Fleet!

The Best of 99'er Volume 1 229

EXPLANATION OF THE PROGRAM displaying those messages.

Battle At Sea 2870-2910 Keep track of which turn it is. Branch to either
user's shot, or computer's shot.

2920-3170 computer takes random shot at your grid if no
Line Nos. ships are hit.
100-630 Initializaton: Set up variables, character defini 3180-3340 Read keyboard; INPUT user's shot a com

tion, and color assignments. puter's grid.
640-870 Instruction page. 3350-3570 Check for valid INPUT, hit or miss.
880-1010 Display 10 x 10 grids. 3580-3710 Check for direction of hits on your ships.
1020-1100 Control loop for setting up your ships on the 10 3720-4150 Take random shot around last hit if only one

X 10 grid. hit on the ship.
1110-1360 Subroutines holding data on each ship. 4160-4450 If more than one hit on a ship takes another hit
1370-1380 Branch to subroutine: computer sets up its in proper direction.

ships. 4460-4620 Adjust varibales when computer gets a hit.
1390-1530 Display message for ship coordinates to be 4630-4770 Find out how many hits on each ship; used for

entered. • both computer and user.
1540-1710 Read keyboard; INPUT coordinates of ships. 4780-4980 Calculate score, and number of ships hit, but
1720-1950 Put the coordinates in order not sunk.
1960-2050 Check that all coordinates are valid. 4990-5020 Display any ships that have been destroyed after
2060-2220 Display ship on the 10 x 10 grid. every hit.
2230-2380 Control loop holding data for computer to set 5030-5090 Display scores.

up its ships. 5100-5190 End of game message.
2390-2600 Subroutine to set up computer's ships at 5200-5320 Re-initialize variables for next game.

random. 5330-5340 END of game.
2610-2860 Set up variables for messages; subroutines for 5350-5460 Subroutine to make sure ships are in line.

R

R

R

R

R

R

R

R

R

C

C

P

P

P

P

0

D

CA

CA

CA

EM

EM

EM

EM

EM

EM

EM

EM

CA

CA

CAL

DOMI

ION

230 The Best of 99'er Volume 1

HA

R

R

R

N

3
B

YlO

OWN
T

T

|M0

AM

M0

YOO

EMY

EMY

COMP

FO

COMP

Y|O0
E COMP

OMP

X +

L

E

E

0

YOO

COO

RO

R0|W

5

W

lAT
R

YlO

COMP

S

I

A

ION

HO

NG

ON

YO

MY

ON

Copyright © 1983 Emerald Valley Publishing Co.

I
II

V
"
5

T
g

~

_
-^

a
s
_

n
I

A

X
II

o
-

Q
O

II
to

to
w

r
r

t
o

r
"
~

~
X

X
X

I
I

—
x
w

II
«

-
x

w
w

II
c
a

X
r

x
a

a
a

x
a

a
x

a
a

x
—

t
-

o
»

j
aa

t
-

o

M
»

—
II

+
+

—
«

I
A

cm
+

o
~

l^
=

r
—

+

T
-

I

B
M

X
-

c
a

r
-

—
~

-
C

M
~

Q
—

O
-c

m
a

s
+

aa
+

C
M

S
B

«
B

C
J
"

—
t
o

c
o

t
o

•—
C

O
•—

t
-

g
—

O
*

-
i

g
~

-
*

r
—

<
-

-
M

(
S

+
M

P
S

I
O

S
I

t
-

aa
<

t
-

c
a

«<
r

aa
•*;

w
<

m
X

H
X

X
C

I
B

X
i
-

a
a

-
a

ffi
-
j

o
~

-
o

—

X
r
>

l
l
>

W
B

U
I
X

r
!
n

—
«

~
^
Z

—
A

C
O

Q
>

A
+

+
O

S

to
to

n
o

ii
a

x
>

j
•
i
-

x
>

J
N

»
j
a

>
D

t
t

•
J

f«
.

S
-

-
J

l»
»

X
II

~
«

-
q

+
o

—
c
m

x
c
a

Q
O

O
-
-

Q
_

O
O

M
Z

I
-
Q

Z
t
»

Q
Z

I
-
t
-
r
-

q
K

I
N

B
g

o
s

o
o

g
ca

Q
C

O
«-«

~
C

M
O

S
—

«
J
C

B
—

O
X

W
g

h
II

—
K

W
—

l
-
i

Q
g

(CM
I
-

g
II

»•
X

II
T

-
t
-

Z
C

M
>

-
—

P
C

M
P

C
M

p
Q

Q
~

X
g

~
O

g
-»

X
O

I"
co

II
cm

to
||

to
to

II
q

co
||

in
co

!-•
z

II
•»

II
*

-
~

||
S

M
H

K
O

X
H

^
K

V
l

X
H

t
O

K
o

n
r
>

t
i
.u

.T
-
^
a

e
a

a
i
i
M

u
.M

O
b

.c
o

M
O

O
u

.c
M

M
O

w
;
o

—
M

Q
i
i
O

f
a

.u
.t

o
O

c
o

—
u

.w
;
T

-
o

w
;
T

-
M

u
.«

t;
_

.
.
_

..
_

=
^
—

M
M

II
Q

M
II

Q
M

II
O

M
II

Q
M

||
Q

Q
<

M
b

.
II

<
-

Q
II

r
g

O
lu

M
O

-

(
N

M
Q

t
n

i
O

i
s
c
o

a
o

f
M

W
O

U
)

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

o
x
n

o
i
c
p

w
c
i

"
S

T

t
o

M
0

3
r
-

g
M

T
-

~
>

•
U

»
T

-

<
«

Q
W

g
!-•

fr«"p~
c
a

t
o

P
M

e
n

c
a

t
o

t
o

C
O

M
B

O
)

s
r
M

m
«

t
i
n

u
>

r
s
c
o

o
)
t
n

-
w

K
i
q

t
n

«
>

e
n

e
n

e
n

e
n

T
-
T
-

T
-
T
-

C
M
C
M
C
M
C
M
C
M

C
M
C
M

C
M
C
M

C
M
C
M

C
M

C
M

C
M
C
M

C
M

—
«ti

P
-C

M

to
X

+

*
-

-
X

-
~

O
S

—
M

C
O

Q
—

K
m

O
W

H
W

H
W

l
!

aa
o

pa
z

u
o

aa

tO
O

S
T

-
C

M

M
C

M
—

X
X

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

'C
B

c
a

c
a

c
a

Q
i
n

t
o

r
v

c
o

t
w

a
T

-
w

w
t
t
u

x
a

N
C

O
c
B

O
r
w

w
o

i
n

M
i
s
c
o

o
i
a

r
cm

cm
w

w
p

i
w

t
N

M
W

K
i
K

i
w

w
w

i
o

i
o

w
q

q
q

q
q

q
c
q

t
t
q

i
f
l
t
n

L
f
i
i
n

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

-
•

I

X

•«
—

c
a

e
n

e
n

—
c
m

—
c
a

e
n

e
n

o
r
-
H

O
t
n

t
n

H
i
f
l
h

t
t
t
t
t
t

C
M

C
M

C
O

tO
C

M
C

O
T

-
C

O
tD

w
q

h
t
t

||
•
tp

q
|

_

Q
l
l
i
l
w

M
M

tO
tO

T
-

IO
M

Z
C

M
g

g
X

Z
M

M
T

-
C

M
X

M
X

Z
M

M
I

I
W

N
M

M
C

t
O

*
C

M
i-J

O
S

C
M

-
"

-
M

«
«

—
—

aa
o

—
o

c
o

tc
o

c
c
a

aa
t
-
e
-

i<
t-i

«/>
<

t-i
kC

<
—

•
I
-

c
e

o
t
-
c
a

a
a

t-»
t
-

m
a

a
a

—
•—

x
m

-

i
z

c
a

w
;

•—
•—

1
-»

pa
li

ii
o

cm
c
a

z
c
a

«<
t
o

x
i>

_
0

_
a

a
aa

aa
>

-
to

q
^

p
^

aa
>

-r
->

<
c
o

r»
t
-

p
o

aa
t
-

c
o

Q
||

Q

Q
W

a
,M

<
F

M
O

v>
Q

T
-

M
O

r
O

Q
W

S
I
D

M
a

O
t
f
l
U

M
|

M
O

q
in

r
s
Q

tP
O

z
cm

g
to

Z
q

g
m

g
Io

a
a

c
M

~
.c

u
iic

o
>

x
p

a
a

q
ilto

>
x
lia

B
>

M
llv

A
<

-tO
T

->
x
iix

iiV
A

T
-to

T
->

x
x
x
to

x
j~

™
-
.«

(*-
,/•>

>
n

n
-

ro
N

«
r
n

e
a

e
e

z
II

co
X

II
C

u
X

II
X

t
^

T
-

t
-

K
»

f-
C

M
C

M
-

-'—
I

«
B

B
C

O
O

S
C

O
^
>

j^
ic

o
M

X
O

»
-»

O
i-»

«
-»

c
o

>
J
c
o

x
x
O

i-»
0

<
-»

c
o

c
o

o
.t-i-p

c
o

r-O
C

M
p

e
«

-.-»
x
«

»
«

-»
p

g
*

->
-»

X
P

e
i-»

»
-»

-»
k
j
h

j
j

.-»
ii

j
t-

m
j

—
—

m
x
c
o

IU
r_

IL
II

II

q
i
n

p
g

t
o

C
O

u
.

r
-
P

l
l
t
O

C
M

P
M

C
M

C
M

P
I-

-J
Q

M
»»

W
h

l
H

tl
—

J
*

»
C

O
P

Q
||

W
O

P
H

O
C

O
D

II
W

r
-
P

l
l
t
O

C
M

P
M

C
M

W
B

H
>

i
U

U
I
«

t
«

w
W

»
»

_
•«

-
—

~
—

"
«

»
'

y
/

—
y

"
—

~
-

*
—

—
v>

—
^

—
—

-
-
-

-
-

-
^

M
H

W
II

T
-

||H
W

||
CM

||h
W

||
tO

II
t-

«/>
II

^
IIH

W
||

W
||

t-
X

»J
I-

^
CO

.
K

r
•!

X
»

^
DC

r
^1

X
B

>J
^

-i
^

»J
t-

»J
»J

^J
1*

^
t"

|J
—•

~>
M

X
C

O
||

l~
Z

O
O

P
5

M
lltO

M
P

SM
II

W
M

PS
M

||C
O

M
P

C
M

||C
O

M
C

SM
II

W
M

M
K

O
||p

«
g

Q
P

<
M

P
e
<

O
P

<
M

O
<

<
<

fa
h

<
U

.O
<

O
<

<
h

<
<

b
»

^
U

.0
^
0

<
a

a
a

B
fa

<
~

M
O

t^
C

M
p

O
o

O
O

c
^
M

J
c
o

Q
p

a
c
^
>

J
to

o
o

3
c
u

>
J
c
o

O
p

e
P

u
»

J
c
o

O
P

S
O

t>
J
c
o

O
c
e
zo

0
^
to

—
h

.to
o

g
c
>

.o
u

.to
o

g
u

.o
o

o
~

~
~

0
0

0
0

0
~

0
~

»
-
«

~
O

O
O

O
to

c
o

~
o

.g
O

~
x
o

c
a

o
c
a

c
a

c
a

c
a

c
a

c
a

'
e
n

c
a

t
-

cm
w

q
t
n

t
o

r
«

.e
o

e
n

c
a

r
-
c
M

t
o

q
t
o

t
o

r
«

.e
o

o
>

c
a

t
-
C

M
t
o

^
't

o
t
o

r
«

.c
o

e
n

c
a

s
r

r
r
r
-

r
*

r
-

t
-

t
-

t
-

r
-

cm
cm

cm
C

M
C

M
C

M
C

M
C

M
C

M
C

M
to

to
to

to
to

to
to

to
to

to
q

t
o

t
o

C
N

.
c
o

r
-
c
M

to
q

io
to

n
«

e
o

e
n

c
a

T
-
C

M
io

q
to

to
r
^
e
o

c
n

o
^
c
M

to
q

io
to

r
«

.e
o

c
n

c
a

T
-
c
M

to
^
to

to
r
^
c
o

e
n

c
a

t-
9

q
-

o
9

«a-q
q

q
tfin

u
»

ifn
n

in
in

iftiftiflin
u

)
»

P
U

>
u

>
m

o
u

>
<

o
<

o
u

>
M

>
'f>

tfc
t>

'|s
^
^
I
N

I
S

g
>

tB

20
\

O
Q©

X
—
c
o
—
c
a
o
c
a
x

-
I
-
C
M
t
-

O
t
O
t
O

-

t
o

c
o
t
o

c
o
t
o
t
o
t
o

r
>
»

•
t
o

C
M

M
g

C
M

g
Z

C
M

C
M

M
M

X
Z

M
M

C
M

—
-
a
a

-
m

a
a

—

O

II
C

M

X
•—

—
I

q
o

«
«>

o
Q

p
a

q
r
s
p

a
t-

p
e~

X
g

X
O

X
z

a
>

-
'

c
o

r«
.

a
q

r«
.

-
a

a
o

O
m

i
M

B
q

i
n

m
f
l
q

w
o

o
w

M
Q

>
a
d

II
M

i
l

v
a

>
I

I
x

to
a

to
x
~

to
~

O
o

to
q

o
ii

o
cm

to
o

o
«>

||
o

w
o

n
c
o

>
»

x
x

a
cm

a
—

x
*

»
to

a
x
c
m

>
—

x
>

cm

<
M

II
<

a
-

—
a

t
o

O

o
_

_

Q
P

S
<

Q
t
-

P
S

g
<

il
c
m

p
a

—
t
-

a
<

o

J
t:

Oo

—
-

x
—

•
)
.J

i
n

j
(
a

M
)
!
«

i
^
M

M
O

J
^
O

O
u

-
>

i
-
>

i
O

w
^

.j
—

h.
Q

»ji
»jjto

r
f
-
h

i
J
O

r
O

B
M

"*
""

"*
'

II
II

>
j

>
j

f-
>

jw
>

iw
^

I
I
M

>
J
«

M
i
r
X

H
^
^
x
i
s
a

r
x
>

J
H

li~
i^

~
F

—

s
o
o
o
o
o
o
o
o
o
o
o
o

O
r
\
M

O
i
O

f
c
t
w

q
i
f
l
t
p

r
>

c
o

e
n
o

'
C

M
C

M
C

M
tO

I
O

tO
tO

tO
tO

tO
tO

tO
I
O

^
tq

O
t
o

t
o

t
o

t
o

t
o

i
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

+
«

t
-

—
•

C
O

«

o
t
o

t
o

r
»

c
o

e
n

q
q

q
q

t
t
«

»

t
o
t
o
t
o
t
o
t
o
t
o

O

O
m

M
p

»
S

c
o

t
-

O
B

O
p

a

x
-
x

it
>

•
o

o
o

co
o

«
co

r
-

o
t-

o
r
-

o
t-

o
j
H

Z
i
i
x
^
i
i
-
^
z
E

^
M

O
D

^
-
t
w

i
i
a

>
a

ii
a

>
z
n

a
x
n

a
e
"

c
e

>
-

•—
>

•
>

*

P
O

H
i

tO
P

C
P

S
C

U
P

S
"
^
O

H
i
<

P
O

S
M

P
g

a
o

"

1
"

P
II

II
II

II
II

II
II

II
o

q
w

t
o

r*
.

c
o

e
n

c
a

r
-

<
i
n
t
n
t
o
i
n
u
>
i
n
i
n

m
i
n
t
o
t
o
t
o
t
o
t
o

t
o
t
o
t
o

t
o
t
o
t
o
t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

_
S

_

O
o

s
O

a
s

i
-

x

t-»
p

-
a

—
i

s
:

O

o
«

_
!=

<
_

x
ii

a
x

«
q

>
»
»
«
>

a
m

a
a

m

t
O

l
s
C

O
d

t
s
C

O

T
-

I
P

A
W

N
A

C
M

v
q

t
o

v
q

M
Z

-
-

—
•J

M
T

-
Z

Z
t
-

g
ii

a
a

m
m

a
m

—
^

-
a

a
-
a

_
^
h

-
l-

M
t-

i-
>

_
±

_
—

^
-

a
r
*

^
-

a
^

C
O

II
—

A
II

•—
A

z
t
o

z
c
o

t
O

l
s
t
O

C
O

I
s
C

O
r
-
O

A
O

+
W

+
t
t

v
q

—
c
o

—
c
o

M
—

g
—

C
M

I
O

C
M

I
O

a
t
-

z
m

<
-

z
«

^
-t-

w
a

I
M

Q
O

Q
Q

y
a

t
-
»

T
-
a

z
f
r
"
Z

t
-

c
o

o
a

t
-

a
i
-
p

s
o

o
s

o

to
II

a
r
-

I
I
B

f
H —

Q
~

Q

r
^
A

r
^
A

g
r
g

w

+
C

M

Q
O

f
M

C
O

e
n

—
O

o
c
a
c
o
o

a
m

h
»

a

C
M

C
M

X
X

X
X

+
+

Q
a

o
.s

a
o

.a
j
s
^
o

a
o

.^
a

o
.g

W
^

~
•J

"
x

ii

S
a

s
g

S
S

S
g

s
a

s
a

a
s
S

S
U

-il-S
S

S
S

g
S

.:^
O

B
O

o
o

o
s
o

a
o

s
a

s
o

c
a

i

q
u

)
io

r
s
(
o

o
)
B

r
N

w
q

in
iD

is
c
o

c
>

o
r
'w

io
q

in
(
D

r
«

.a
>

o
)
B

t-
w

M
q

in
u

>
is

c
o

c
)
e

m
m

p
ta

a
tP

M
s
r
s
is

N
N

r
<

.N
M

«
.to

c
o

€
o

w
to

c
o

M
(
flW

iD
O

)
p

c
>

o
)
m

m
o

>
«

m
m

a
t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

i
o

t
o

t
o

t
o

i
o

t
o

t
o

i
o

t
o

t
o

t
o

t
o

i
o

t
o

t
o

t
o

o

a
s

C
O

C
O

•—
^

C
O

—
—

«
-

o

a
a

q
q

q
t
o

—
t
o

l«
»

C
M

c
m

t
o

+
q

a
z

a
a

z
1C

M
_±

_

T
-

+
a

a
«

o
i»>

a
i

-
x

—
o

t
o

t
o

I
-

tO
C

M
C

M

!-•
>

-•
C

O
C

M
tO

tO

e
n

e
n

M
P

r
r

o
s

c
a

o
m

11
a

r
-

C
M

C
M

C
M

X
C

O
C

M

<
«

t
c
m

a
m

«
o

—
—

P
S

P
S

—
I

•—
P

S
Q

P
S

P
S

O
P

S
—

—
-
m

a
a

B
B

N
h

N
Q

r
r
-
<

-
«

c
;
w

;
T

-
c
M

o
^
i
i
t
i
t
o

a
»

t
;
«

t
:
t
-
i
w

;
o

s
o

s
c
a

o
a

t
-

t
-

O
Q

C
M

~
T

-
~

-
x
x
a

a
x
r
-
c
a

x
a

n
a

a
a

<
<

t
o

—
t
-

a
s

a
s

o
s

—
t
-

-
-
o

o
-
t
o

e
n

-
o

—
o

o
o

«
-
o

O
O

c
m

m
o

to
r
s

A
O

K
i

a
c
-

—
p

a
^

<-»•-»
P

S
o

z
~

x
o

.
P

i
.
J
i
J
a
.
P

O
+

"
jj

x
x

a
a
x

w
e
«

r
i
a
i
e
>

i
i
>

»
-

z
a

a
x

i
i
v

a

-
j
—

h
p

>
)

>
j

a
>

j
a

tn
m

X
H

g
X

B
J
X

X
H

w
w

w
w

w
w

w
w

h
B

i
J
~

X
H

B
»

J
-
~

X
H

B
i
J
'
-
-
X

M
M

Q
b

-
M

Q
—

M
M

r
w

w
q

i
n

i
D

N
M

•-»
—

x
p

s
-
j
—

X
r
-

e
a

t
-

t
-

-
a

•-)
c
o

z
—

ii
x

ii
W

H
X

^
X

»
J
^
n

I
K

>
I
~

X
H

^
>

1
C

O
.-»

"
"
?

^
M

?
.T

M
"
^
5

5
S

S
D

g
g

P
^
^
"
"
P

^
~

"
"
0

<
~

"
0

<
~

M
O

,g
:
-
~

M
ttu*

"
°

"
X

'g
O

f.'g
»

r-
llr-U

.h
.X

tiu
.O

O
-X

-X
X

X
O

X
-M

M
X

X
O

X
U

.S
w

U
.

Z
P

S
b

.~
Z

b
<

O
Z

«
S

g
g

a
g

g
S

S
O

U
<

0
-

g
«

fc
O

~
Z

B
h

O
r
g

t.O
r
Z

fc
,O

r
g

H
^
H

O
H

O
O

O
M

B
X

X
I8

«
-<

>
.O

O
»

0
O

a
.O

D
.U

O
O

h
O

r
g

e
O

O
a

0
^
-=

-^
B

P
o

o
p

B
o

a
a

o
B

B
B

O
B

O
p

a
B

B
o

o
o

o
ca

ca
o

ca
o

o
o

c
a

c
a

o
s
o

e
e
B

B
a

a
e
a

o
o

o
o

o
a

o
s
B

B
a

o
a

o
a

o
o

B
a

o
q

tn
to

r»
c
o

e
n

o
T

-C
M

to
q

-in
to

f.c
o

c
r>

O
T

-c
M

to
q

in
iP

N
co

en
ca

t-
cm

to
q

in
to

r*.
w

r
o

a
t-

M
io

q
u

x
D

N
flX

B
O

T
-
c
iM

q
in

iP
N

c
o

o
ie

r
w

io
q

u
x
o

N
t
n

i
n

i
o

i
o

i
n

i
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

r
«

.
r
«

.
r
«

.
r
«

»
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
t
>
»

r
«
.

r
«
«

r
»
.

C
M
C
M
C
M
C
M

r
«
.
r
»
c
o
c
o

C
M
C
M
C
M
C
M

C
O
C
O
C
O

C
M
C
M
C
M

o
o

o
o

o
o

o
o

o
c
o

e
n

c
a

t
-

c
m

t
o

q
i
n

t
o

C
O
C
O
C
O

C
M
C
M
C
M

c
o

c
a

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
a

o
o

o
o

o
o

o
o

o
'

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

tO
IO

tO
tO

tO
IO

tO
tO

tO
tO

tO
tO

IO
tO

tO
tO

tO
tO

tO
tO

IO
IO

tO
tO

tO
tO

tO

©

O
N5f>oO
Q

tNtN

F

F

X =

X

F

GO!

GO!

F

F

F

X =

X

F

GO

H

GOI

F

F

1

F

GOS

H = H

GOT

F

11

F

II

X:

:1

F

GO!

GO

IF

H

I

I

X:

X'

G|0
H

GO

CA

CA

GO

FO

CA

N

C

8

Ci

8
SF

CA

C|A
P

H

H1

FC

FO

F

P

P

i+:

:H'

P

10:

'O

H:

1+ 1
P

H

P

0

H

TO

H 1

11-
(H

G|0|TO
0

001

SOI

4 +]
2:

L

2

CHA

CHA

TO

TO

TO

E

N

)M
)=<

M8

TH|E

Copyright © 1983 Emerald Valley Publishing Co.

EG! M8:

COR

ON

10
F

W

GO

D

D

|W+1
TO

CO

F

GO

GO

GO
NE

IF

W1

GO

W

GO

IC

A

0

A

E

e:

F

!Al

F

RE

CA

II

R!

PR

GO

PI

E

PI

PI

I

N

F

F

CA

GO

FO

FO

P

0

GO

AC,

S

N

A

FO

IF

F

F

F

IN

GO

a|a
N

R

N

N

0'

NG!

NG

L

Lr
L

L

L

T

T

N

SH

A

X

T

E|ND

GOS

2

C

H

3

H

lOY

V

CO

N

H

C|0
R

4

4

4

COIR
IE

0

TO

COMP!

YOl

F

:n"

NG!

00

5
TO

TO

TO

TO

TO

T

AA

H

H

1

TH

2

Wl

1

5
SH

CO!

2

COl

EG!

E + <

WI

GO"

X +

L

NO

AGA

ag|a:
:n'

The Best of 99'er Volume 1

M

233

You are the chiefsecurity officer in chargeof defend
ing the Earth's newest Battle Star from alien attack.
At first, thealiens arefew—trying only to probe your

weak points. Later, they attack in force from all four direc
tions. It's their somewhat ancient nuclear missiles against
your laser battery. One hit by a missile, however, and the
entire Battle Star isobliterated. The speed at which you can
react and move your fingers is the only thing that stands
between victory and total destruction . . .

To fire a laser in any oneof four directions, press any
of the arrow keys. These are the only keys used. You may
not moveyour BattleStar because of your geosynchronous
orbit and large size. Theentire game is an hand-eye coor
dination exercise. At one point in the game, the aliens
become so fast you may not beable to move fast enough
to prevent annihilation. There is, however, an "automatic
speed check" put into the program; if you can reach this
level andmaintain it, theendurance of your fingers will be
your only limiting factor. If you wish to make the game
even more difficult, you could adjust the limiting speed of
the missiles. This is done in lines 730, 760, 790, and 820.
The XandYvelocity in thesprite being defined (whichever
X or Y is not zero) can be adjusted. For example, in line
730 the X velocity formula is 11 -(L/10). This will allow
no speed greater than 10. Change this to 15-(L/10) and
the maximum speed will be 14, with theinitial speed being
5. If oneline ischanged, related lines must allbechanged.

234 The Best of 99'er Volume 1

Battle

The Program
The program is very short and simple—requiring only 3K

memory and Extended BASIC. There is plenty of room for
a good programmer to experiment and try adding to or im
proving the features. The action is simple, but can become
fairlyrapid—thusmaking the game verychallenging. A Bat
tle Star is positioned at the center of the screen, and made
up of 9 sprites (3x3). I did this for dramatic reasons: When
the Battle Star is hit, each section of it blows up and flies
in a different direction. An alien ship willappear to the left,
right, above, and below the Battle Star. At first, only the
ship will be displayed; later, the ship and a nuclear missile
willappear. For every missile knocked out of action, your
score will increase by 20 points. For every alien ship
destroyed, you will receive50 points. The trickiest part of
the program was to make the laser rays coming from the
Battle Star stop after encountering a missile. Since the missile
is a sprite, its location is checked using the CALL POSI
TION statement. Then, calculating the distance from the
Battle Star's cannon and dividing by 9 gives me the distance
(in number of characters) of the missile. I then use a CALL
HCHAR, or CALL VCHAR (first with the ray bolt) and
a CHR$(32) which represents a space. Finally, I delete the
givensprite. The result is a fast laser bolt and increased pro
gram speed.

One problem I encountered when the missiles were travel
ing at high speed was that they sometimes passed
through the base without a hit being detected. This problem
was alleviated by checking POSITION instead of COINC,
so that if the position was past the edge of the Battle Star,
the missile would blow up.

Copyright © 1983 Emerald Valley Publishing Co.

EXPLANATION OF THE PROGRAM
Battle Star

Line Nos.

170-290 Initializes colors and characters.
300 Initializes variables.
310 Jumps to subroutine to create Battle Star.
320-340 Main program loop.
350-380 Sets up sprites to create the Battle Star.
390-440 Reads keyboard; branches to fire laser cannon.
450-490 Fires laser up.
500-540 Fires laser left.
550-590 Fires laser down.
600-640 Fires laser right.
650-690 Checks position of missiles, and branches off if

Battle Star hit.

R

R

R

R

R

R

D

CA

6

C|A
C

CA

C

CA

EM

EM

EM

EM

EM

EM

EM

DOM

CA

CA

CA

CA

CA

CA

CA

CA

CA

FP
1

L

2

GlO
G|0
L

D

C|A
1

2

C|A
4

E

A

N

F

F

F

F

E

F

1

)
C-

L

AL

C|H
C

L

CO

L

C

A

H

HA

CH

CHA

C

L

A

A

C

A

h|a
CH

CjHjA
A

A

C|HA

1

R

1

1

1

1
1

1

1

R

TlO
T

5

B

V

ET|U

ec

GO SO

Copyright© 1983 Emerald Valley Publishing Co.

CO

3C

G|0
1

CA

LO

700 Checks the chance of another ship appearing.
710 Decides which ship will appear, and branches to

subroutine.
720-740 Places top ship on screen with missile if game

progressed.
750-770 Places left ship on screen with missile if game

progressed.
780-800 Places bottom ship on screen with missile if

game progressed.
810-830 Places right ship on screen with missile if game

progressed.
840-870 Battle Star is hit and destroyed.
880-910 Displays score. Play again? Accepts answer.
920-940 Re-initializes variables.
950 End.

C-

S

0
CA

HE

H

R

N

OO

2

R

L

C|H|A

L

stoiu

N

00

The Best of 99'er Volume 1

c+

235

•
—

—
o

a
•-a

«
p

a
•
•

p
-

i
-

f
t
.

v
»

^
»

m
t
o

-
a

1
•*•

—
p

a
C

M
.
.

c
o

c
o

fia
•
•

t
-

<
-

—
o

»
a

s
«

o
Z

ft.
l
a

.
.

—
i

.
.

o
o

Z
C

M
*

•
o

•C
c
o

i-
.

<
o

Z
P

C
•
•

t
o

O
1

X
^
"

—
M

—
II

t
o

a
V

ft.
.
.

.
-
•

—
M

r
-

O
.-a

a
—

O
f
t
.

P
II

C
O

—
.
.
c
a

H
S

Z
-

tO
O

M
t
o

•
t
o

-

t->
«

r
o

—
c
a

o
«

r
C

M
P

C
.
—

z
«

*
U

4
>

J
F

9
O

s
«

••
-
S

n
I
Q

•
S

>
•

ft.
P

C
C

O
_

>
—

<
*

r
-

Q
•
•

o
o

.-a
o

•
.
.

.

«
e

•J
-

-
•J

g
—

C
M

O
<

C
O

P
—

o
t
o

z
••

o
—

tO
C

M
-
«

P
C

t
o

C
M

O
O

o
m

i
n

o
ft.

M
»

•+
•

m
>

«C
—

O
-

«
a

s
>

-
i
i

e
n

t
o

a
—

z
t
-

-
O

O
I
i

r
-

C
M

-
•
•

P
«

c
t
o

C
M

H
t
f
W

r
C

M
C

M
g

-
-

r
-

"
O

o
Q

Z
ft.

t
-

a
|

<
•»

C
M

•
•

«-•
m

o
s
~

—
o

»
—

m
p

a

*
-

T
-

fr>
-

-
.

.
.

-
0

r
-

Q
*

4
•

»
J

«
•

fc
j

a
p

t
-

II
-

O
T

-
C

M
o

p
a

T
-

Z
•J

•
•

«
J

.
.

—
«

C
i
i
i
o

ft.
t
t
o

s
-

a
*

-
C

O
C

M
*

>
-

p
<

—
<

_
z

>
•

o
p

a
t
o

ll
t
o

—
O

r
-

I
—

o
O

—
t
o

~
,
«

-
^

—
.

O
<

ct
C

O
«

«
»

*
-

U
T

-
—

z
O

C
O

M
-

M
_

»
-
c
o

g
p

a
C

M
o

a
C

M
t
-

r
-

O
O

P
S

o
h

-
C

M
1

-
C

M
—

.
.
.
.

c
o

O
r

t
o

-
•
_

-
t-«

•
?

u
r
-

-
4

—
r
-

_
C

M
IO

II
••

z
•—

c
o

a
o

«
l-

i
—

n
4

P
S

•—
a

—
C

M
•
>

tO

4
K

Q
C

O
0

.
0

O
Q

K
.

a
rC

ft.
i-~

ft.
l-<

«*•
—

c
o

a
s

p
a

«
C

Z
-

c
o

o
r
-
z
«

c
S

U
l
O

<
U

i
a

>
C

Z
H

!
B

<
to

r
-

a
«

c
r«.

•
J

C
M

II
O

S
ft.

p
_

1
c
o

.-
a

—
rC

<
M

n
o

M
—

p
a

—
O

•
•

M
>

-
•
-
I
d

>
-

K
•J

C
M

o
z

«
*

z
e
a

t
o

Z
O

O
p

1
-

_
a

C
O

•
•

Q
•«

-
Q

4
0

h
l
i
.
U

O
n

II
z

O
C

<
(
O

T
-

a
z

p
a

Z
-
j

—
.-

a
o

^
•
C

f
t
.*

-
.

O
C

O
0

0
P

S
P

c
o

«
j

v
r
-

P
-
a

P
—

«
s

•
-a

c
m

m
J

ft.
*

-
_

a
f
t
.

H
h

l
r

>
ft.

P
I-.

_
l

.-J
-
T

-
!-•

_
a

O
—

•P
C

-
o

_
i

•
h

I
I
O

—
»

-)
C

O
>

*
O

"
»

J
II

T
-

.
1

-
o

m
u

.
<

«
r

n
M

<
C

O
C

M
i

O
pa

«
*

t
o

•<
—

e
a

k
c

M
.

k
C

O
•
•
<

d
l
R

M
i
l
2

(
C

-
O

U
.
»

t
f

K
O

-
U

.
P

-
-
C

0
O

I
O

O
«

«
u

o
>

J
e
C

O
c
o

a
.

a
m

o
o

o
c
a

c
a

o
o

o
o

o
c
a

O
O

O
o

o
O

r
-

C
M

t
o

«
t
o

t
o

t
o

c
o

C
O

o
T

-
C

M
I
O

9
I
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

c
o

c
o

c
o

e
n

c
n

e
n

e
n

c
n

c
n

C
O

i
n

p
-

u
.

"
"

II
u

.
«

*
T

-
"
-

•—
t
o

o
o

o
o

ft.
fr

-
o

—
—

T
-

—
—

il
M

t
o

t
o

c
o

e
n

M
t
o

M
p

a
M

C
M

.
.

f
«

.
.

t
o

C
D

t
o

t
o

Q
a

!»
»

.
.
i
-

c
o

•
•

i->
o

a
.
.

_
.

.
-

z
o

z
•
•

m
m

z
•
•

—
t
o

z
a

—
o

o
o

O
O

<
«

»
z

O
a

s
0

3
.
.

a
s

a
s

a
s

r
-

ft.
o

C
M

!-•
—

1
-

—
t
_

—
§

*
—

C
O

M
!
-
•

p
r
-

f
t
.

•
•

P
r
-

ft.
••

P
II

C
O

-
-l-

O
N

O
t
f
o

o
o

a
s

a
Q

K
II

t
o

—
K

II
C

O
••

1
-

I
O

—
O

O
ft.

O
ft.

O
ft.

O
ft.

r
-

Z
l-«

3
M

r
-

o
M

C
M

—
U

<
m

I
O

C
O

-
-

•
r
-

M
P

C
<

_
J

-
P

S
<

•J
—

a
c
o

•
j

t
-

(|
"
T

-
.-

t
O

v
a

o
C

O
C

O
_

]
—

c
o

»
j

o
•»

:-»
z

z
<

o
Z

«
r

z
-
O

J
c
o

-
-

ft.
—

A
M

•
•

O
r
-

M
•
•

O
V

M

O
r
S

N
O

M
O

V
—

O
C

O
z

a
•
•

-
V

.
a

•
•

«
a

a
—

z
+

II
»

II
*

.
II

«
II

«
U

S
A

Z
O

»
-

—
Z

-
J

fr*
—

z
—

H
M

U
r

C
M

—
«

—
t
o

—
C

O
—

O
c
a

t
o

M
—

C
M

M
I

*•
a

v
—

ft.
Z

ft.
Z

ft.
Z

ft.
g

ft.
h

.
•

•
T

"
*

"
a

|
r
*

r
-

a
T

»
r
-

r
-

!-•
1

«
-
o

-
o

-
o

-
o

C
D

—
•

•
II

T
-

1
-

r
-

t
l
r
-
H

t
-

II
.

*
»

r
-

—
t
o

"
t

i
a

—
.
t
o

—
C

O
O

r
-

C
M

-
t
o

t
o
o

o
—

ft.
I
l

ft.
1

-
ft.

l->
ft.

H
>

A
Z

••
r
-

p
a

t
o

o
-

o
a
t
o

o
o

p
a

r
-

ll
c
m

H
Z

—
>

—
>

_
.

—
t
«

»
«

:
.
.

+
C

O
T

-
II

o
C

O
-

||
-

C
O

-
t
O

T
-

l
-
.
C

C
Z

c
O

Z
t
O

Z
C

O
Z

t
O

f
t
.

—
-
r
-

c
m

C
M

C
M

t
o

t
o

o
a

-
—

.
p

M
O

M
O

W
O

M
O

C
M

-
J

<
cr

O
C

M
p

a
t
-

Q
r
m

r
3

.
C

M
c
o

t
o

c
s
f
-
«

z
f
t
.
a

f
t
>

a
a

>
a

f
t
>

p
5

v
«

*
io

z
—

c
o

-
Z

—
t
o

-
z

—
t>

»
O

.
U

H
t~

t->
fr

-
O

r
-

O
O

C
M

<
«

r
»

«C
P

C
0

0
<

P
C

Q
T

-
C

O
P

S
_

>
-
J

-
1

_
l

V
z

Z
O

O
•
«

O
T

-
<

Q
C

O
"
C

z
-

•j
o

«
j

o
•->

o
.-»

o
.-a

t
o

e
s

a
s

a
s

-
r
-

a
z

-
«

-
a

z
-

r
-

a
<

rs.
M

••
II

«
II

«
II

«
<

II
-
*

t
o

ft.
—

—
io

II
O

•<
r
»

II
o

•<
t*

.
II

o
a

-
r
O

w
O

W
O

t
f
O

A
—

t
-

H
O

)
«

-
8

-
z
c
m

a
-
z

t
o

a
o

t
o

e
a

p
a

p
a

p
a

r
-

a
Z

g
is

.
<

o
t
o

p
s

«
:

o
t
o

p
c

•<
C

O
r
-

»
J
C

9
C

O
M

C
O

M
c
O

M
tO

M
ft.Q

~
—

t
-
c
o

>
J
C

9
r

P
c
O

_
)
C

O
t
-
P

c
o

.
-
I

V
t
-

t
-

.—
3

tl
tO

tO
c
o

t
o

—
II

II
O

.->
V

t
-

1
-

fc
j

V
T

"
!-•

-
a

n
J

-
II

b
-
.O

C
O

Z
C

O
t
O

U
.K

C
.-

J
-

M
U

.
<

_
1

-
M

U
.K

C
t
o

r
n

O
p

a
—

m
—

H
«

M
—

•
M

—
A

Z
K

Z
h

-
O

T
»

'r
"

P
3

—
o

c
m

a
—

.
U

b
t
t
M

c
a

o
o

o
o

o
o

o
o

o
iB

O
O

O
<

O
<

cr
t
o

t
o

1
*

.
C

O
e
n

o
r
-

C
M

I
O

iv
t
o

t
o

r
»

o
o

c
n

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
»

r
*

.
1io

t»
»

r
s

r
s
M

s

©q>

50
\

s
-oV
J

Q
>

O
Q

TI
BASIC

The
HARRIED HOUSEWIFE

This matching game is dedicated to tired housewives
everywhere who face the daily battle of keepingtheir
houses clean amidst the unrelenting attacks from their

kids, husbands, dogs, cats, visiting relatives, unexpected
friends, and even home computers—those new family ad
ditions that seem to be forever spawning dust, out-of-piace
furniture, and loose papers.

Harried Housewife uses the color graphics of TI BASIC
to depicteight householdchores: dusting, sewing, washing
clothes, doing dishes, cooking, vacuuming, shopping, and
ironing. It is a matchinggame that evenyoungchildrenwill
enjoy playing. The rules are simple: An array of 16squares
is displayed on the screen. Each square represents one of
theeight chores, and thereare two of eachchoresomewhere
in the array. The object of the game is to find each pair.
Youdo this by choosing two squares at a time and entering
thecorresponding two letters. As a letterisentered,the chore
for that square is shown. If a match is made, the chore is
considered finished and is listed on the right side of the
screen. If a match is not made, the two selections are
covered, and two more letters may be chosen.

When all eight pairs are matched, the housework is com
plete;you have a clean house and the game isover. But you
mustn't take too long, because when the kids come home
(determined by the counter in line 1420) everything gets
scrambled and the harried housewife must start
over. . . And as all harried housewives undoubtedly know:
It's not easy to get a completely clean house. Often the goal
has to become somewhat more attainable—just seeing how
much can be accomplished before the kids come home.

Copyright © 1983 Emerald Valley Publishing Co.

If you get too harried and want to quit, pressS for stop.
The arrangement of the current array will be displayed.
After you have examined it, SHIFTC (BREAK) to endthe
program. If you really feel you must win more often —that
is, end up with everything matched to signify that elusive
"clean house" — you can keep the kids out of the house
longer by increasing the number in line 1420. Then enjoy
the fantasy of a completely clean house all the time. What?
Why can't yourhome computer make this fantasy actually
come true? Be patient. It's just a matter of time. . .
Anyway, in the words of a once-popular song: "Such are
the dreams of the everyday housewife. . ."

Programming Techniques
This program illustrates thecapabilities of TI-99/4A color

graphics. Characters are defined in each of theeight user-
defined character sets, and each set has a different color
scheme. Theseeight setsare used for the eight chores; and
for ease in programming, they are numbered 1 through 8.

Two characters in Set 2 are also redefined with a blue
foreground and a red background ("FFFFFFFFFFFFFFF
F" and "0") to draw the 16-squarecheckerboard array. It
is drawn with a triple-nested FOR-NEXT loop (statements
2040-2150).

The eight chores to be drawn are called in subroutines
(statements 2290 to 3060). The subroutines use x- and y-
coordinates to define the placement of the specialcharacters.
The coordinates are specifiedbefore the subroutine is called.
The coordinates of the chores for each of the sixteen squares
are listed in subroutines also (statements 5350-5980).

The Best of 99'er Volume 1 237

To setup the arrayof 16squares, twoarrays are actually
used: WORK(16) and HH(16). The WORK array is given
the numbers of the eight chores: WORK(l)=l;
WORK(2) = 2; . . . WORK(9)= 1; WORK(10) = 2; and so
on (statements 3370-3400). For the HH array, a subscript
RRis chosen as a random number from 1to 16. HH(RR)
isthensetequal to WORK(RR), and then WORK(RR) =0
so it won't be chosen again. This process continues until
all 16 numbers of the HH arrayhave been filled randomly
with the numbers from the WORK array (statements
3410-3470). These numbers are the chore numbers for the

squares. For example, HH(4) = 7 means that behind the 4th
square (D) would be chore number 7 (shopping).

The WORK array is then reset equal to the HH array
so the chores can be printed in order on the squares for a
"clean house" or for "stop".

As the game is being played, the HH elements are set
equal to zero if a match is made, so the match can only
be scored once. If a player chooses a square which has
previously been part of a matched pair, the word "DONE"
appears across the square.

EXPLANATION OF THE PROGRAM
Harried Housewife

Line Nos.
150-180

190-260
270-820

830

840-850

860

870-880

890-900
910-920
930

940
950

960-1010
1020-1130
1140-1160
1170-1200
1210

1220-1230

1240-1260

1270
1280-1330

1340-1350

1360-1390
1400

1410
1420

1430
1440

1450

1460

1470-1520

1530-1550

1560

1570-1620

1630

1640-1750

1760-1770

Prints title screen.
Defines colors for eight household chores.
Defines special characters for drawing the
chores.
Displays the eight chores on title screen.
Sets counters for the number of trial guesses
and the number of successful matches.
Dimensions arrays to handle 16 elements.
Redefines characters for checkerboard.
Delays for title screen.
Clears screen and makes it yellow.
Defines colors for checkerboard.
Draws checkerboard and labels it.
Assigns the chores for each square in array.
Prints HOUSEWORK.
Prints MATCH 2 LETTERS.
Prints two red lines for the letters chosen.
Waits for letter A-P to be pressed.
Prints the chosen letter.
Finds chore number and coordinates for square
chosen.

If the square has been previously matched,
prints DONE.
Draws first chore on square.
Waits for second letter to be pressed and prints
it.

Finds the chore number and coordinates for
that square.
Prints DONE.
Draws second chore on square.
Checks for a match.
Increments the number of trials.
If TIME= 10prints message to hurry.
If TIME= 12, kids come home.
Branches if TIME is less than 10.
Clears previous message.
Prints OH NO! KIDS ARE HOME!
Reprints checkerboard and scrambles chores for
a new game.

Prints PRESS ENTER TO CONTINUE and
waits for response, covers squares for next
choice.
Prints SPEED-KIDS WILL BE HOME SOON!
Same as 1540
Correct match is made, sounds tone of A,
prints finished chore.
Sets elements matched to zero so they can't be
scored again.

238 The Best of 99'er Volume 1

1780 Returns for next choice.
1790-1840 If all eight matches have been made, prints

CLEAN HOUSE!!
1850 Prints S if player wants to stop.
1860 Resets HH array to current arrangement.
1870-1910 Shows all chores in array.
1920-1980 Clears all other printing.
1990-2040 Prints HOUSEWORK NEVER ENDS.
2050 Holds screen until SHIFT C (BREAK) is

pressed.
Subroutines:
2060-2170 Prints checkerboard.
2180-2230 Prints letters A to P on squares.
2240-2300 Prints S = STOP and returns.
2310-2410 Draws feather duster.
2420-2490 Draws sewing machine.
2500-2600 Draws T-shirt for washing.
2620-2690 Draws cup and saucer for dishes.
2700-2780 Draws pan for cooking.
2790-2880 Draws vacuum cleaner.
2890-2980 Draws shopping basket.
2990-3080 Draws ironing board.
3090-3300 Places symbols on title screen.
3310-3380 Plays music for title screen.
3390-3420 Puts two sets of chore numbers in WORK

array.

3430-3490 Randomly arranges chores in HH array, two of
each chore.

3500-3520 Resets WORK array equal to HH array.
3530 Restarts number of matches.
3540-3580 Clears printed list of matches made.
3590-3620 Resets HH array to original WORK array for

printing.
3630-4490 When a match is made, blinks the picture and

prints the chore in the "Finished" list; prints
labels under pictures in the squares.

4500-4570 Prints PRESS ENTER TO CONTINUE and
waits for response.

4580-4590 Clears messages.
4600-4630 Covers squares again and relabels them.
4640 Return for next choice.
4650-5280 Subroutines for covering particular square.
5290-5320 Colors blue square.
5330-5360 Colors red square.
5370-6000 Designates the chore number and coordinates

for the square chosen.

Copyright © 1963 Emerald Valley Publishing Co.

o

tO
s
T

—
-

C
M

q
C

M
C

O

q
-
~

c
m

z
—

_52
E

i.

C
O

o

—
C

O

a
s

-

£2

C
O

o

e
n

t
o

q
t
o

O
C

O
C

O

T
-

tO
tO

—
t
o

tO
I
O

C
M

to
to

o
O

O
r

a
—

c
o

c
n

—
t
o

t
o

to
m

_S2
5=

•
!
-
•

0
0

r
-

r
-

-
t
o

t
o

t
o

r
-

r
-

>
-

t
o

C
M

C
M

-

-
r
-

Z
Z

Z
-

C
O

C
0

C
0

C
0

M
M

M
M

C
0

O
O

Z

p
t
o

t
o

a

o
o

>
o

>

-
O

I
O

O

t
o

t
o

-
t
o

t
o

-

t
o

o

r
-

t
o

c
m

t
o

tO
—

to
to

to
q

cmt
t
o

c
i
g

t
o

g
c
m

r
o

c
m

O
O

O
O

C
M

r
-
c
n

—
t
o

c
o

c
o

c
o

t»d

I
Q

C
M

I
-
C

O
C

M
C

M
C

M
-

O
O

*
Z

•
C

O
M

io
c
m

a
-
C

O

z
z

C
M

t
o

c
o

>
—

M
M

p
a

c
n

c
m

z
z

Z
z

a
p

a
c
n

c
m

m
a

s
c
m

P
C

O
M

M
M

M
M

C
O

t
-
P

C
O

—
t
-

!•»
C

M
IO

•
a

a
a

a
—

o
o

t
o

o
c
o

c
m

a

O

t
o

-
t
o

c
o

C
O

-
t
o

•
O

O
—

z
z

n
t
j
M

O
t
o

o
f
o

c
n

™
o

rz_

t
o

•C
O

O
—

-
B

B
B

-
—

Q
O

IO
O

c
n

o
i
-

c
s
p

c
a

o
i
-
i
-
i
-
.
e
e

—
i
q

c
o

a
o

c
o

Q
<

<
-

q
to

to
v
i
o

o
o

o
—

.
i
-

i
-

t
-

i
-

o
s

—
i
q

c
o

a
o

-
o

-
t
-
o

c
M

a
cm

-
o

p
q

1
0

to
V

to
o

||
O

o
II

M
r
r
o

w
l
M

n
r
H

to
to

q
cm

—
—

e
n

—
35

II
II

p
p

M
a

^
J
o

t
o

-
to

a
-

to
a

—
—

„
„

_
^
,

,
—

^
—

,-
-

O
O

»J
O

O
C
M
I
O
CM

m
c
m
a

O
I
O
M
c
m
a

O
C
O
M

cm
a

O
O

O
O

M
C
O
t
o
C
O
o

I
-
o
r

q
C
M
r
-
t
o
M
C
O
t
o
C
O
M

O
to

to
o

co
o

t
o

a
i
i
o

a
^
f
o

a
n

o
a

^
t
o

a
i
i
o

a
^
o

a
a

b
d

i
i
v
A

a
r
-

o
<

pa
pa

O
y>

O
>

«
O

>
*

~

_
i
m

a
:
>

-
i
o

t
o

o
B

to
to

-
—

-
q

o
o

—
c
n

>
«

to
to

o
r
-

a
a

,
.
,
.
-
.

^
M

M
t
f
i
m

n
-
M

t
o

a
o

M
-
H

S
g

v
t
a

i
s
W

g
1

1
0
8

^

-
c
o

e
n

tO
IO

-
C

D
M

O
q

C
O

C
M

T
W

Id
II

V
A

II
B

C
M
m

w
c
o

b
w

a
a

-
a

n
»

-
"
"

to
O

>
-.

aa
pa

H
to

to
Q

I
-

Q
»

J
H

«
P

P
M

O
<

-
i
o

t
-

—
o

H
*

O
>

•
O

>
•

r
-

t-
r
-

m
10

co
a

ca
a

-
cm

cm
cm

cm
tm

to
e
o

a
p

a
a;

as
-
w

i
i
"
"

M*
tL.

fl.ji.a
iH

Q
^
K

h
Q

>
j
i-

-a
-»

~»
~a

m
M

tm
>

jr
—

to
to

o
p

Q
o

o
»j

bd
&d

ad
M

>
jw

—
to

to
O

P
O

O
O

o
O

"
i-

«"
O

-J
•<

i-to
a

ta
:.->

»
iit-c

o
a

«
c
i.-»

x
t-c

o
a

<
.-a

»
:»

j.-a
.->

.-»
—

a
II

t
o

-
m

h
o

»j
-a

II
t
o

-
c
o

t-
o

35
i-

-a
t-

—
••

-•
'

•
__

-
-
-
;
•
•
—

.
-
'
-
'
-
.

J
.
^
.
J
.
^
.
-
-
-
^
.

_
—

_
,^

»
.

.
,

j-h
.

j
^

»
—

—
^

-
^

»"
»

I
m

.
T

.
^
a

M
»

»
v

_
^
h

r
.

.
<

^
^
^

r
.
.

*
^

o
w

r
.
.

^
^

r
«

.
r
*

.
^
\

•*
•

«
*

•

»
d

»
j
.
d

_
i
«

J
S

P
i
<

C
t
—

Q
i
J
H

i
e
r

a
N

i
l
-
,

n
;

I
-

t
J

"
-•

t—
»

-
i
.—

i
.—

i
—

i
a

g
p

n
p

B
.-

"
T

—
-
—

«
r
»

—
»

w
.
-
»

w
w

>
»

"
"
.
—

'—
•
—

»
»

.—
»

"»
—

—
»

—
-

^
»

-
w

w
^

—
~

--•
-

;
—

^
r

•
^
s

:
•

—
—

—
r
^
—

»
—

=
^
—

;
—

^
^
^
•.W

M
H

W
B

^
^
X

H
M

tfl^
X

H
W

B
tH

lX
^
^
^

»4
II

*Q
-

CO£
O

^
^

II
">

-
<"t-

^
g

g
^
^
P

.^
^
^
^
f.g

^
^
^
^
S

f-
H

;
gZ

E
g

W
irt

M
ia

lr
fQ

Q
r
tM

O
M

r
tM

X
M

O
M

X
M

K
.M

O
M

K
tiM

K
^
tfiia

tU
.lu

U
.^

C
O

Z
-O

fa
.Q

O
Z

C
o

«
C

;fa
.fa

.fa
.fa

.«
<

C
O

Z
-O

U
.Q

Q
h

.Z
fo

t4
.~

U
.

U
T

Q
<

<
W

U
Q

M
B

!
M

O
O

-
Q

<
CO

O
M

o
o

o
o

^
o

^
o

a
fa

;
a

o
z
o

a
£

a
o

z
o

a
£

a
o

z
o

o
o

o
~

~
~

o
c
o

o
o

io
~

o
o

o
c
M

O
~

~
~

~
o

to
o

o
fQ

~
o

o
~

o
c
M

.-
H

"
~

~
o

o
o

-
a

fa
.a

o
a

o
o

t-
0

0
-to

a

e
n

o
r
-
f
M

i
o

"
c
t
i
o

t
P

f
o

c
p

c
n

o
r
-
c
M

i
o

«
j
t
o

c
p

t
P

O
o

q
>

o
r
-

q
i
o

c
o

f
o

c
o

c
n

o
r
-
c
M

q
t
o

t
o

t
o

c
o

e
n

o
r
-

c
m

t
o

q
t
o

o
o

c
n

c
n

c
n

c
n

c
n

c
n

e
n

c
n

c
n

c
n

o
o

o
o

o
c
a

o
o

o
o

r
-
r
-
T

-
r
-
r
-
r
-
r
-
r
-
r
-
r
-
c
M

C
M

C
M

C
M

C
M
C
M
C
M
C
M

C
M
C
M
t
O
t
O
I
O
I
O
I
O
I
O

t
o
t
o
c
o
e
n

o

t
o
t
o
t
o
t
o

q

r
-

c
m
t
o

q
t
o
t
o
t
o

C
O

O
O

r
C
M

t
o
q

t
o
C
O

t
o

q
q

q
q

q
q

q
t
t
t
t
i
n
i
n
i
n
i
n
i
n
i
n
i
n
i
n

«
a

*

f
c
.
f
a
.
O

t
o

u
.

t
o
C
O
r
-

-
—

e
n

f
a
.
f
a
.
m

fa.
O

Q
c
a

f
a
.
f
a
.
o

f
a
.
c
o

O
f
a
.
o

M
—

r
-

O
f
a
.
f
a
.

f
a
.
o

o
f
a
.
o

o
f
a
.
f
a
.
O

f
a
.
f
a
.
o

<
c
n

o
c
m

f
a
.
M
—
O

f
a
.
Q

T
-

f
a
.
C
O

M
c
a

f
a
.
o

o
f
a
.
m

r
-

o
c
m
c
n

fa.
o

i
f
a
.
f
a
.
o

o
—

o
o

o
f
a
.
f
a
.
c
o

o
o

t
o

O
f
a
.
o

o
e
n

q
c
m

f
a
,
f
a
,
c
a
r
-

o
—

—

m
c
a
r
-

f
a
.
M

t
o

f
a
,
f
a
,
M

f
a
.

O
f
a
.
O

f
a
.
f
a
.
f
a
.

o
o

c
m
e
n

r
-

f
a
.
f
a
.
O

r
-

p
a

M
O

f
a
.
r
-
C
O

f
a
.
f
a
.
O

O
f
a
.

o
o

t
o

O
f
a
.
o

q
fa.

u
.

m
—

fa
iO

O
C

M
C

O
C

O
r
-

M
O

t
O

f
a
.
f
a
.

f
a
.
f
a
.
f
a
,
f
a
,
f
a
.

O
O

O
O

fa.
Q

o
o

c
a

f
a
.
f
a
.
f
a
.

r
-

f
a
.
O
O
O
O
O

"
Q
^
"

p
a
c
m

o
f
a
.
o
o
—

f
a
.
f
a
.
c
o
f
a
.
f
a
.

O
O

O
f
a
.
f
a
.
C
O

o
c
a
t
o

o
f
a
.
o

o
c
n

q
c
m
t
o

m
c
a
t
o

f
a
.
f
a
.
r
-

f
a
,
f
a
.
f
a
.
f
a
.
f
a
.

c
a

o
o

o
fa.

Q
o
o
o

f
a
.
t
o

o
o

o
c
m
e
n

o

O
O
O

f
a
.
O

M
t
O

f
a
.
O

C
O

f
a
.
f
a
.
O
O
O

—
f
a
.

o
o

o
f
a

.
f
a

.
t
o

-
fa

.o
—

u
.

co
t-

o
10

o
fa.

o
o

en
q

m
o>

o
o

o
fa

iC
M

O
to

.—
q

o
r
-

fa
.

o
i

fa
,

fa
,

fa
.

fa
.

fa
.

c
a

c
a

c
a

c
a

fa,
o

o
o

o
fa.

o
o

s
o

a
r
u

o
a

C
M

r
-

—
—

tO
—

O
O

O
f
a

i
O

f
o

M
fa.

Q
Q

fa.
fa.

O
O

O
f
a

.f
a

.l
O

f
a

.f
a

.f
a

.f
a

.f
a

.0
o

fa
.

t
o

o
c
n

o
o

o
fa.

fa.
m

;
e
n

a
O

—
r

r
-

to
C

M
—

r
-

to
O

'
fa

.M
O

O
-fa

.fa
.fa

.fa
.fa

.
—

O
O

O
O

fa
.fa

.fa
.—

O
O

O
O

fa
.Q

fa
.r

-fa
.fa

.r
-fa

.—
O

O
O

fa
.O

C
O

—
O

O
C

M
M

O
—

O
O

O
O

O
O

f
a

.f
a

.M
f
a

.f
a

.f
a

.f
a

.f
a

.0
o

o
M

O
t
D

'
o

o
o

f
a

.
f
a

.
c
n

r
-

•
r
-
O

O
O

f
a

i
O

l
O

f
a

.
fa

.
O

Q
fa

.
fa.

O
O

O
fa

.
fa

.
O

fa
.

<
W

H

M
»<

•
O

O
C

M
f
a

.
f
a

.
O

f
a

.
O

f
a

.

O
O

O
fa

.
'

»
•

»
»

fa.
fa.

fa,O
O

O
O

O
fa

.fa
.fa

.O
O

O
O

O
fa

.t*
.t*

«
r
-
fa

.fa
.r

-
fa

.O
r
-
C

0
O

fa
.M

O
O

O
O

fa
.C

0
O

O
O

O
O

r
-
fa

.^
<

O

1
c
m

t
o

q
t
o

c
o

•
o

r
-
C

M
i
o

q
i
o

t
o

t
o

c
o

e
n

c
M

C
O

r
-
r
-
r
-
r
-
r
-
r
-
r
-
l
P

t
P

C
O

C
n

O
O

O
O

O
O

O
O

O
'

'
c
n

e
n

o
>

c
n

'

q
to

to
io

c
o

c
n

o
r
-
C

M
io

q
io

to
c
o

c
n

o
r
-
c
M

to
to

io
c
o

c
n

o
r
-
C

M
q

to
c
D

to
c
o

c
n

c
M

to
q

to
tO

fo
c
o

c
n

r
r
r
r
T

.
r
f
)
W

P
i
W

W
W

f
<

r
i
w

w
w

w
w

w
w

w
w

q
t
t
t
t
t
t
q

N
t
t
f
q

t
f
i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

O
-

-

-
q

q

a
s

a
s

a
s

a
s

a
s

a
s

a
s

a
s

O
O

O
O

Q
Q

P
O

w
^
c
s
a

a
a

a
p

s
a

p
s
p

s
a

p
s
p

s
p

c
a

a
p

s
a

a
a

a
a

a
a

a
i
j
^
]
^
>

]
>

j
-
j
^
i
-
i
i
a

!
«

C
aa
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
i
o

?
~
"
»

Q
O
O
O
O
Q
O
Q
w
a
q

o
o
o
o
o
o
o
o
o
o

pa
ti

a
a

•
j>

j>
j>

j>
j>

j^
j"

J
>

J
»

J
>

4
>

J
>

J
-
J
>

J
>

J
»

-
»

>
J
p

M
O

»
^
'-

a
^
'^

'^
^
^
^
~

>
->

-^
i^

i^
j^

>
j^

»
a

»
a

^
a

>
j>

j>
j>

J
^
»

a
>

a
>

J
>

J
>

J
»

J
^
a

^
a

>
.a

>
J
^
J
-'>

J
'-a

M
i>

iiJ
H

>
>

4
^
^
>

i>
J
>

4
^
>

j>
J
>

iiJ
>

a
>

»
>

)M
i>

>
H

ia
>

ifc
i>

J
^
^
>

J
>

»
>

J
»

J
>

J
>

'>
'^

N
H

flg
H

g
>

4
fc

i
M

M
M

M
M

<
P

S
^P

S
^£

:^£
£

<
<

£
£

£
<

£
<

<
£

<
<

<
<

<
£

£
<

<
<

<
<

j-g
^
-^

^
I
Z

Z
Z

^
J
^
J
—

»
>

J
»

J
-
J
-
»

>
J
>

J
-
''J

>
J
-
J
'-

J
-
'-

'-
J
"
J

a
a
a
a
a
o
f
t
.
f
t
.
f
t
.
0

i
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
q

tn
to

to
c
o

o
o

r
-
c
M

to
q

to
to

io
e
o

e
n

o
r
-
c
M

io
q

in
to

to
c
o

'
q

c
o

t
o

t
s
.c

o
m

o
r
-
C

M
i
o

q
t
o

t
o

t
o

c
o

e
n

o
r
-
c
M

t
o

q
t
o

c
D

f
o

e
o

c
n

c
a

r
-
C

M
t
o

q
t
o

t
o

t
o

c
o

e
n

o
r
'

>
q

t
o

t
o

t
o

c
o

c
n

o

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

I
O

tO
I
O

tO
tO

I
O

I
O

tO
tO

I
q

q
q

q
q

q
q

q
q

q
to

io
to

io
io

to
io

to
to

to
o

o
to

o
to

o
to

o
o

o
r
^
io

to
to

fo
to

io
fo

io
io

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

I5O
n<
o

C
Q©

_Q
>

r
-
r
-
e
n

—
•

r
*

r
-

r
-

r
-

+
-
c
n

-
+

>
-
>

-
.>

-
.r

-
c
n

r
-
>

-
.>

<
>

.

-
-

I
-.±

_
_

r
-

r
-
r
-
>

«
>

-
.
>

«
r
-
r
-
r
-

I
I

-
-
-
+

+
+

_
X

X
X

X
X

X
X

X
X

r
*

C
O

t
o

r
-

>
-

r
-

>
-

r
r
-

>-•

+
r
-

>•»
r
-

>••
>

*
r
-

_
=

±
-

X
x

x
x

x
x

q
en

cn
o

cm
co

•
r
-

—
—

r
-

r
-

—
cm

—
cm

—
—

c
m

>
-
>

-
>

-
.r

-
r
-
r
-
>

-
.>

"
>

-
.

>
*

>
•

>-•
r
-

r
-

r
-

>
»

r
-
r
-
r
-
>

-
>

«
>

-
.
r
-
r
-

J
-
•

I
I

I
-
+

+
+

r
-

r
-

r
-

>
-.

>
-.>

-.
r
-

x
x
x
x
x
x
x
x
x

_
!
_

!
_

!
X

X
X

X
X

X
X

c
m

-
-

—
t
o

r
-

r
-

r
-

o
»

t
-

J
_

±
r
-

>
»

>
-.

r
-

r
-

>
-

>
•

&
-

r
-

r
-

>
"

>
<

r
-

r
-

X
X

X
X

X
X

X

to
q

q
—

q

r
-

r
-

r
-

t
o

C
O

o
r
-

-
t
o

t
o

—
q

I
+

I
»

«
>

«
>

-
>

«
r
-
r
-
>

-
.>

-

r
r
r
r
»

<
>

.
r
r

I
I

+
I

+
+

x
x
x
x
x
x
x
x

q
cm

oo
a

q
^

.
^
q

q

r
-

e
n

c
n

1
0

t
o

r
-

r
-

_
-
5

_
5

t
_

9
—

q
-

-

>
-
»

>
<

>
-
ir

-
T

-
r
-
>

<
>

-
.

r
-
r
-
r
-
S

-
>

«
>

*
r
-
r
-

I
I

+
+

+
x
x
x
x
x
x
x
x

t
o

—
t
o

—
IO

—

•
t
o

—
-
I
O

t
o

•
l
O

r
r

r
-

-•»
I

>
"
>

-
«

>
'r

-
r
-
>

-
.>

.r
-

1
r
-

>
>

>
-•

r
-

r
-

>
"

J
_

L
L

±
±

.
X

X
X

X
X

X
X

X

a
a
a
a
a
a
a
a
a
o

a
a
a
a
a
a
c
a

a
a
a
a
a
a
a
a
a
o

a
a
a
a
a
a
a
o

a
a
a
a
a
a
a
o

•
a
;
i
c
i
;
i
e
C
i
<
t
!
<
<
»
a
!
i
<
<
t
o

<
<

<
<

<
<

t
o

K
e
<
<
B
;
q
;
<
<
q
;
a
;
q

<
<
<
«
>
;
<
w
;
"
<
o

a
a
a
a
a
a
a
a
o

«
tj«

e
C

ia
;<

ie
C

<
K

C
c
n

<
w

;
»

<
w

;
w

;
«

t;
<

»
t;

to
a
a
a
a
a
a
a
a
a
o

O
O

O
O

O
O

O
O

O
I
O

a
a

a
a

a
a

to
O

O
O

O
O

O
t
o

a
a
a
a
a
a
a
a
a
c
o

a
a
a
a
a
a
a
o

a
a
a
a
a
a
a
o

a
a
a
a
a
a
a
a
c
M

a
a
a
a
a
a
a
a
o

<
a
!

<
<

a
j

a
;
<

a
;
r

a
a

a
a

a
a

a
a

o
o

o
o

o
o

o
o

q

a
a

a
a

a
a

a
a

o

a
a
a
a
a
a
a
a
q

o
o
o
o
o
o
o
o
q

z
a
a
a
a
a
a
a
a
a

z
a
a
a
a
a
a

o
o
o
o
o
o
o
o
o
t
o

o
o
o
o
o
o
o
q

o
o
o
o
o
o
o
q

o
o
o
o
o
o
o
o
q

z
a
a
a
a
a
a
a
a
a

z
a
a
a
a
a
a
a

z
a
a
a
a
a
a
B

«
a

pa
a

pa
a a

s
a

s
t^

a
s
a

s
a

s
a

s
a

s
a

s
z
a

a
a

a
a

a
a

a

-
^
^
^
^
^
^
^
^
^
>
J
P
P
'
-
<
'
-
J
'
^
'
-
'
>
^
>
J
P
P
'
J
^
>
J
>
J
^
a
>
j
>
j
K
j
^
-
a
p
p
^
a
>
j
>
j
»
j
N
j
>
j
>
j
p
p
>
j
>
j
f
c
j
^
>
^
^
^
a
a
f
c
j
(
j
>
J

>
J
>

4
U

>
lfc

l^
>

J
tJ

J
W

H
h

lh
lN

lN
)
>

j^
lftH

jN
lh

»
>

J
>

4
^
^
N

liJ
W

H
»

)
>

lH
lijN

lr
fiJ

W
H

N
lN

l^
>

J
>

>
h

»
^
w

z
a

a
a

a
a

a
a

>
z

p
a

a
«

-
a

.-
a

»
j
.j

p
p

.-
a

>
j
.-

a
»

-
a

.-
a

,j
,-

)
»

j
p

>
3

_
i
»

j
_

a
»

j
_

i
_

)

S
a

a
a

a
a

a
a

a
a

S
S

sa
a

a
a

^^^
S
?
^
?
!
?
0
^
0
^
0
.
0
.
0
.
!
!
?
?
?
?
.
^
^
^
^
^
^
—

*"
~
^
—
<
a
"
3
'
«
;
*
«
a
'
C
T
C
T
«
3
,
«
a
,
p
»
B
»
c
»
p
»
c
»
o
o
o
o
P
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
S
B
B
e
e
a
o
s
a
B
s
o
e
s
B
B
B

CM^
CMIOS

S
S
W
M
M
W
M

q
i
n

c
o
c
o

c
n

o
t
o

t
o
-
o

q

o
c
n
c
n
-
o

t
o
t
o
e
n

c
o
—

c
o
c
n

1
t
o
i
o

o
c
n

O
z

t
o

o
t
o
t
o

z
t
o

o
q

t
o

-
'

C
M
C
M
r
-

C
M

c
n

-
O

I
O
C
M

I
O
t
O

c
a
t
o
e
n

-
-
z

t
o

C
D
C
M

t
o
t
o
i
o

p
a
c
n

t
o
c
m

m
t
o

c
o
C
M

r
-

r
-
-
—

-
C
M

-
•

o
•
™

-
+

t
-
r
-

q
t
o
t
o

>
.

>
-

•
+

-

—
t
o
r
-
t
o

q
c
r
>
o

o
c
o
c
o
c
o
c
o
t
o
c
o

t
o

q
t
o
t
o
t
o
c
o

*
•
+

r
±

t
o

q
t
O

I
O
I
O
-
P

0
0

r
-
C
M

K
.

I
O
-
O
W
N

C
M

C
M

C
O
X

O
>
-

s
-

O
t
O
t
O

+
+

r
-
c
s
i
r
-
r
-
X
X
r
-
X
X

—
•

—
B
r
-

-
t
o

Q
—

Q
O

A
t
o
t
o

I
-

c
o

q
o

o
c
o

c
n

II
II

A
t
O

t
o

Q
a

c
a

o
e
n

o
c
o

—
i
r
-
c
o
o
o

p
s
p
s

a
O

c
s

c
o
c
n

o
c
m

•
t
o
c
n

—

e
n

-
c
n

o
o

o
o

o
a

a
o

a
a

'
O

O
X

C
M

C
M

C
M

C
M

C
M

C
M

•C
O

H
.

~
-

_
_

—

1
r
-

a
a

a
a

a
a

a
O

Z
I
-

V
t
o

r
-

o
p

•
<

a

v

—
t
o

q
q

a
-
t
o

<
o

>
t
-

p
to

to
—

e
n

<
<

V
H

«
;

o
to

to
<

-
t
-

a
t
o

t
o

-
C

O
c
o

t
o

O
-O

C
O

C
M

O
O

Q
CM

O
O

C
M

-
M

W
B

O
-
c
o

t
o

a
a

a
a

o
t
-
t
-
t
-
z
x
x
z
K

t
j
w

:
tO

»m
3

3
»

S
£13

3
C

•nj
<

<
«C

<
<

cm
a

o
t
o

o
s
o

o
M

C
M

a
o

II
O

a
>

-
q

to
i
i
t
-
t
o

a
ll

o
a

>
-

o
*

^
a

s
<

o
»

-

r
-
r
-
t
o

to
Q

to
-
M

t
o

a
o

O
to

r
-

—
•

q
I

i
i
-
t
o

t
o

a
i
i
o

a
>

-
a

ii
a

-
r
-

cm
«C

to
O

>
.

pa
co

i
r
N

W
Q

O
O

O
O

O
.

-
t
o

>
"

a
a

a
a

a
a

a
-s—

—
—

w
w

w
-
^

-
-
a

m
ii

-
o

o
o

o
o

o
o

q
g

o
to

-
—

-
c
o

a
a

i
-

iia
x
c
M

to
c
n

a
n

o
b

>
.

w
n

ii
i
i
c
o

a
8

c
o

a
B

>
-
x
i
>

a
i
o

e
n

T
-
a

o
x
a

o
a

a
a

a
a

B
to

co
a

ca
«a:

x
to

o
>-.

n
x

>-.
^-

-
q

p
o

**
*-

o
^

o
s

•*
*-•

q
**

*~
<

o
o

o
x

x
ag

•<
-
i-

q
-a

i-
>

j
p

to
co

to
to

o
o

^
>

j
>

j
a

^
I-

O
«C

-
i-

h
j
b

;
n

i
x
h

n
i
h

H
w

g
a

j
t
J
x
S

w
Q

M
<

M
Q

»
t;g

fa
.in

;M
O

M
«

t!M
II

||
.

..^
f
a

.
a

o
z
o

o
a

g
—

Q
a

f
a

.
a

o
z
x
>

<
o

q
a

a
—

q

Q
>

»
h

O
N

i
N

i
^
^
h

i
t
J
H

H
H

w
;

-
e
n

i
-

q
>

j
h

>
i
^
^
>

)
n

i
>

i
—

—
—

1
-n

.w
B

in
iM

W
M

W
B

i
a

m
-

p
-
x
j
^

a
>

jx
i-

^
c
o

c
o

a
»

<
>

jx
^
a

a
a

>
j>

j>
j^

i>
j>

jx
x
x
i-

w
•m

b
<

^
>

i>
»

^
>

i>
)>

)>
)

?
,—

-
-

**
^
*

°
M

Q
M

•*
"

<
O

Q
w

z
-o

z
c
m

m
<

<
fa

.o
«

t;
m

Q
«

;to
m

Q
M

<
m

o
o

o
o

<
k

<
<

w
;w

;m
m

m
<

-oo
m

q
m

«t
m

<
<

»
<

<
-<

'<
O

q
a

8
—

Q
-
a

f
a

.
a

O
Z

O
O

f
a

.
C

O
O

O
r
-

O
-
Z

O
O

—
L

u
O

S
c
C

J
O

-
c
e

fa.
r
e

r
i

on
r
n

ii-
tt.

d
.

r>
r>

r
w

w
«

r%
»

9
•»

«
—

!
=

p
o

o
o

o
o

o
o

o
c
a

o
o

o
o

o
o

o
o

o
r
-
c
M

t
o

q
t
n

c
o

t
o

c
o

e
n

o
r
-
C

M
i
o

q
t
o

c
o

to
c
o

c
n

t
O
C
O
C
O
t
O
t
O

t
o
t
o
C
O
C
O
C
O
C
D
t
o
t
o
t
o
t
o
t
o
t
o

t
o
t
o
t
o
t
o

o
r
-
C

M
i
o

q
t
o

t
D

t
o

w
c
n

e
o

o
o

o
o

o
o

o
3

c
p

c
o

c
o

c
o

o
o

z
o
o

—
b
-
o
z
o
o

-
a
f
a
.
a
o
z
O
f
a
.
f
a
.
f
a
.
o
o
o
o
o
o
g
z
z
o
q
r
-
a
f
a
.
a
o
z
o
o
o
o
o
o

r
-

c
m

t
o

q
t
o

t
o

t
o

c
o

e
n

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

0
)
0

0
)
0

)
0

)
0

1
0

1
0

1
0

1
o

r
-
c
M

t
o

q
t
o

c
o

t
o

c
o

c
n

o
T

-
C

M
t
o

q
i
n

t
o

i
o

C
T

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

o
o
o
o
o
o
o
o
o
o
o

c
n

o
r
-
C

M
t
o

q
t
o

t
o

t
o

c
o

e
n

r
-C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

©

2C
N

0
\«
o

O
Q

c
N

3090 X|=3 3870 CALL HCHAR (xl+2 ,Y+2,72)
3100 Y = 5 3880 RETURN
3110 GOSUB 2310 3890 CALL COLOR(12,3,16)
3120 X= 4 3900 CALL COLOR(12,16,3)
3130 Y=16 3910 CALL COLOR(12,3,16)
3140 GOSUB 2420 3920 CALL COLOR(12,16,3)
3150 Y=27 3930 CALL HCHAR(X + 2,25,68)
3160 GOSUB 2500 3940 CALL HCHAR(X+2,26,73)
3170 X= 8 3950 CALL HCHAR(X + 2,27,83)
3180 Y = 7 3960 CALL HCHAR(X + 2,28,72)
3190 GOSUB 2610 3970 CALL HCHAR{X + 2,29,69)
3200 X= 10 3980 CALL HCHAR(X + 2,30,83)
3210 Y=26 3990 RETURN
3220 GOSUB 2700 4000 CALL HCHAR(X+2,Y-1,68)
3230 X=17 4010 CALL HCHAR(X+2,Y,73)
3240 GOSUB 2790 4020 CALL HCHAR(X+2,Y+1,83)
3250 X= 16 4030 CALL HCHAR(X+2,Y+2,72)
3260 Y=15 4040 RETURN
3270 GOSUB 2890 4050 CALL COLOR(13,12 ,7)
3280 X=15 4060 CALL COLOR(13,7,12)
3290 Y=6 4070 CALL COLOR(13,12,7)
3300 GOSUB 2990 4080 CALL COLOR(13,7,12)
3310 CALL SOUND(300,494,2,196,7) 4090 CALL HCHAR(X +2 ,Y-1,67)
3320 CALL SOUND(200,440,2) 4100 CALL HCHAR(X +2 ,Y,79,2)
3330 CALL SOUND(200,392,2) 4110 CALL HCHAR(X+2,Y+2,75)
3340 CALL SOUND!390,440,2,185,8) 4120 RETURN
3350 CALL SOUND(200,392,3) 4130 CALL COLOR(14,8,5)
3360 CALL SOUND(200,370,3) 4140 CALL COLOR(14,5,8)
3370 CALL SOUND(1000,392,3,165,9) 4150 CALL COLOR(14,8 ,5)
3380 RETURN 4160 CALL COLOR(14,5,8)
3390 FOR Z=1 TO 8 4170 CALL HCHAR(X+2,25,86)
3400 WORK(Z)=Z 4180 CALL HCHAR(X +2,26,65)
3410 WORK(Z+8)=Z 4190 CALL HCHAR{X+2,27,67)
3420 NEXT Z 4200 CALL HCHAR(X +2,28,85 ,2)
3430 RANDOMIZE 4210 CALL HCHAR(X +2,30 ,77)
3440 FOR R=1 TO 16 4220 RETURN
3450 RR=INT(16*RND)+1 4230 CALL HCHAR(X +2,Y-1 ,86)
3460 IF WORK(RR)=0 THEN 3450 4240 CALL HCHAR(X+2,Y,65)
3470 HH(R)|=WORK(RR) 4250 CALL HCHAR (X+2,Y+1,67)
3480 WORK{RR)=0 4260 RETURN
3490 NEXT R 4270 CALL COLOR(15,16,15)
3500 FOR R=1 TO 16 4280 CALL COLOR{15,15,16)
3510 WORK(R)=HH(R) 4290 CALL COLOR(15,16,15)
3520 NEXT R 4300 CALL COLOR(15,15,16)
3530 MATCH =0 4310 CALL HCHAR(X +2,Y-1,83)
3540 FOR X=11 TO 18 4320 CALL HCHAR(X +2,Y,72)
3550 CALL HCHAR{X,23,32,9) 4330 CALL HCHAR(X+2,Y+1,79)
3560 NEXT X 4340 CALL HCHAR(X+2,Y+2,80)
3570 CALL HCHAR(24,3,32,22) 4350 RETURN
3580 RETURN 4360 CALL COLOR(16,16,3)
3590 FOR R=1 TO 16 4370 CALL COLOR(16,3 ,16)
3600 HH(R)=WORK(R) 4380 CALL COLOR(16,16,3)
3610 NEXT R 4390 CALL COLOR(16,3,16)
3620 RETURN 4400 CALL HCHAR(X+2,Y-1,73)
3630 CALL COLOR(9,15,7) 4410 CALL HCHAR(X+2,Y,82)
3640 CALL COLOR(9,7,15) 4420 CALL HCHAR(X+2,Y+1,79)
3650 CALL COLOR(9,15,7) 4430 CALL HCHAR(X+2,Y+2,78)
3660 CALL COLOR(9,7,15) 4440 RETURN
3670 CALL HCHAR(X+2,Y-1,68) 4450 CALL HCHAR(X,Y-1,68)
3680 CALL HCHAR(X+2,Y,85) 4460 CALL HCHAR(X,Y,79)
3690 CALL HCHAR(X+2,Y+1,83) 4470 CALL HCHAR(X,Y+1,78)
3700 CALL HCHAR(X +2,Y+2,84) 4480 CALL HCHAR(X,Y +2,69)
3710 RETURN 4490 RETURN
3720 CALL COLOR(10,12,13) 4500 DATA 80,82,69,83,83,32,69,78,84,69
3730 CALL COLOR(10,13,12) ,82,32,84,79,32,67,79,78,84,73,78,
3740 CALL COLOR(10,12,13) 85,69,32
3750 CALL COLOR{10,13,12) 4510 RESTORE 4500
3760 CALL HCHAR{X+2,Y-1,83) 4520 FOR Y=3 TO 26
3770 CALL HCHARIX+2,Y,69) 4530 READ GR
3780 CALL HCHAR(X+2,Y+1,87) 4540 CALL HCHAR{23,Y,GR)
3790 RETURN 4550 NEXT Y
3800 CALL COLOR(11,11 ,14) 4560 CALL KEY(0,KEY,ST)
3810 CALL COLORM1 ,14, 11) 4570 IF KEY<>13 THEN 4560
3820 CALL COLOR{11,11,14) 4580 CALL HCHAR(4,24,32 ,5)
3830 CALL COLOR(11,14,11) 4590 CALL HCHARI 23,2,32 ,25)
3840 CALL HCHAR(X+2,Y-1,87) 4600 ON (K1-64)GOSUB 4650,4690,47 30,477
3850 CALL HCHAR(X+2,Y.65) 0,4810,48 50,4890,4930,4970,5010,50
3860 C|ALL HCHAR {X|+2,Y|+1 ,83) 50 ,|5090 ,51|30 ,51 70 ,5210,52 50

oovrieht © I983 Emerald Vallev Publishing Co. The Best of 99'er Volume 1 241

63

0

0

0
0
0
0

0

0
0
0

30

40

50
60

'0
80

9|0|

GO

X

Y

GO
RE

X =

Y

GO

RE

X:

Y:

GO

Rl

X:

Y =

GO

RI

X:

Y =

GO

R]

X:

Y:

GO

R

X =

Y:

GO

Rl

X:

Y =

GO

Rl

X:

Y =

GO!

Rl

X:

Y:

GO!

X:

Y =

GO

ER

X

Y:

GO

R

X

Y

GO

Rl

X:

Y:

GO

Rl

X:

Y:

GO

Rl

X:

Y:

GO!

RET

f|o|r

TO

3
4

S

RN

XX =

X

GO

0

31

1(0 !x+ 2

242 The Best of 99'er Volume 1

CH

X

Y

R

C

X

Y

R

C

X

Y|=
RE

C

X:

Y:

R

c

X:

Y:

R

c

X:

Y =

R

C

X

Y:

R

CI

x|=
Y

TU

:x, f-1 3,4

I

Copyright © 1983 Emerald Valley Publishing Co.

i- Jal-

You are the Captain of the Force 1, a United Federa
tion of Planets police cruiser. A message has just
come in that a large number of alien bandits have

entered your sector and are planning an attack on your home
planet. The bandits cannot be taken alive and therefore must
be destroyed. The job won't be easy, so you'd better stay
alert.

Since the bandits are armed with short-range laser can
nons, they should be encountered when beyond their firing
range. As you become a better pilot, you may choose to
increase your ship's speed with higher levels of difficulty.
This means that the alien craft will be approached much
more rapidly, and more accuracy on your part is needed.

On first sighting, your radar screen will show the alien
to be no larger than the background stars, and very dif
ficult to pick out among them. As you approach the ship,
it will become larger and larger, until the alien is either in
range to fire its laser cannon, or slightlyout of range flying
right past you.

To maneuver your ship in order to set your gun sights
on the alien bandit, you must use the four arrow keys. If
you hold a key down continually, your ship will keep ac
celerating in that direction. This will, of course, cause the
star field and the alien ship to move more in the opposite
direction. For example, if the alien ship were moving off
to the right of the screen and you wanted to bring him back
into the center, you would hold the D key down until the
alien started moving toward the center. Then to halt all
movement by the alien and keep him from going to the left
of the screen, press the S key until the alien either stops or
slows down to a minimum speed. The idea is to slow his
horizontal and vertical speed to a minimum and position
him in the center of your gun sight. To fire your laser blaster,
press ENTER. Getting the alien in your gun sight may not
be as easy as it sounds, for the alien is intelligent and
periodically shifts course like all skillful space bandits. So
just when you think you have him, he's off in another
direction . . .

Copyright © 1983 Emerald Valley Publishing Co.

EXTENDED
BASIC

force i

You have 1000 units of time to complete your mission
before the strike on your planet. If 25 or more bandit ships
are destroyed, you will gain an extra 1000 units of time to
attack the second wave of aliens.

The Program
The program is written in Extended BASIC. I decided

here to make use of the MAGNIFY commands to create

a series of space ships that start off very small and gradual
ly become larger. This gives a more realistic view of an ob
ject coming closer. I gave the ship a random speed—slow
at first when it's at a great distance, and accelerating as it
gets closer. I also gave the ship the ability to change direc
tions randomly 10 percent of the time. The ability to use
sprites for both the ship and the star field made it possible
to create the illusion of actual motion—not just changing
the alien's direction in reference to yours, but also with
respect to every star in the star field. For example, take the
case of the alien ship traveling to the right of the screen and
all of the stars not moving. If you press the D key until the
alien stops moving, all of the stars will now be moving to
the left, and the alien will be still. This works the same way
vertically.

By using the COINCidence statement and the tolerance
option, I was able to make it more difficult to hit a ship
at a greater distance (where it needs to be a direct hit) than
to hit one that is nearby. There is however a slight time delay
from the time you press the [ENTER] key until the laser
fires. This makes it almost impossible to hit a moving target.
So the challenge will be to get the alien in your gun sights
and hold him there long enough to make a successful strike.

The laser bolts that you fire at the alien are there all of
the time, but kept invisible. 1 then use the CALL COLOR
statement twice—once to turn on the bolts, and once to turn
them back off.

If the alien ship is still in your gun sight when it reaches
maximum size, you will be within range of his laser cannon
and be fired upon. WARNING: Laser cannons never miss
at short range!

The Best of 99'er Volume 1 243

3Co

O
~

£

5
« N

o
t
o

<
♦
£

^
J
=

c
c

L
a

T
O

0
0

T
O

•
ae3O

o
.s>

«=
•

(/3
13

«j
"5

TO
T

O
n>

•°.9
0)

*</3
.

.5=
c

s
o

5
s
a
g

s
6

0
C

O
—

'
C

to
x
;

c
*

3

X
I

3

to
.*

,
a

.
o

«5
<

u
<

u
c

^
°

c
4>

*""
E

C
X

!
W

•
S

O
60

o
g

o

3
j-

C
C

O
O

U

3O

T
O

<
u

C
ro

6
0

—

'I
S

<
E

•SJS

.8-1
3

2

O
C

<_>
C

a>
to

a>
i>

o
o

o
<

:

is
2

«
»

*
S

6
0

•
a

to
to

TO
u,

a>

<U
v
i

+
3

«J
r
-jS

.2

tjS
a

.S3.52
2

<
Q

Q

.S3
C

S
S

2
o

o
o

o
a

\

^
t-

§\

aoO
u,

WXHf
a

OzoH<z<C
u

X

T
o

o
o

o
o

O
r~

-
O

v
«

N
v
o

o
o

«
n

o
—

«
c
n

<
n

c
m

O
n

—
«—

i
—

«
—

«
—

<

O
O

O

ti-
i
n

v
o

_
L

'
•

o
o

o

m
^

«r>

C
O

Q
O

O

O
O

O
o

c
o

«/•>
r
^

c
o

V
O

V
O

n
©

0
0

o
c
i

i
o0

0
N

O
V

O
v
o

V
O

-
J

a

s
c

g
I

C
O

C
O

-
»

C
M

•—
C

O

C
M

•
•

I
t
-

C
O

S2
«

<
o

-
^

II

i
n

<
w

c
a

i
n

w
i
f
l
c
n

I
O

-
H

o
>

Q
>

C
P

—
-

o

T
-

C
O

H
U

O
—

•
—

~
-
—

K
>

—

r»
»
t
-

r«
»
t
-

—
W

l
f
t
C

I
w

—

O
O

+
g

I
tO

+
g

I
M

||
g

C
M

I
C

M

II
Q

L
—

O
a

a
a

—
~

a

B
X

B
w

a
e
i
N

N
x
M

»
~

~
M

tfL
,

<
D

—
ffi

C
M

b
3

C
M

g
O

U
3

•
p

«
-
•
•
a

o
a

o
^
o

a
o

t
-

M
™

o
o

o
w

o
—

••
r
O

N
O

r
C

O
C

O
N

—

r
*

«<
c
o

—
<

i=
o

.•
—

Q
'

to
II

t
-

(I
II

^
II

-
O

s
a

c
o

—
a

r
-

C
O

C
M

g
-
"

q
.

^
_

,
.

.
^
p

^
(
e

^
—

—
...

Q
N

Q
W

Q
N

Q
W

—
O

Q
C

M
T

-
—

:
C

M
Z

M
Z

M
r
t
f
l
i
f
l

O
M

I
O

Z
Q

>
J
U

2
r
2

I
g

r
-
g

I
t
-

.
O

tO
Q

O
r
»

—
t
-

M
«

M
a

«
t
(
f
l
r
H

r

«
H

X
H

-
<

~
*

"
—

"
C

3
-
«

M
r

«
Q

M
A

M
V

M
A

M
V

«
V

a
b

h
b

«
o

a
<

a
»

<
a

p
o

a
c
a

»
-
i
c
o

g
O

~
-

U
K

)
«

"
"
•
H

Q
S

M
H

W
h

W
H

W
H

M
-
M

a
C

M
>

f>
«

J
5

_
L

'
g

g
Q

M
—

T
-

—
O

M
—

~
—

~
—

•
—

—
—

C
Q

~
-

to
0

0
O

M
H

Z
Q

+
t
i

c
o

t-t
h

-
{-•

t-i
t-

ir
-
H

i
t-<

*-•
H

r
h

H
H

r

<
•<

>
«

c
o

g
a

c
o

w
;

o
<

—
.

w
;

<
—

«
<

w
;

<
~

a
a

Q
«

D
M

O
W

g
—

n
)

O
lb

.
C

O
fc

.
w

u
.

C
O

tn
Ifl I

Q
O

H
r
l
i
)

O
Q

g
o

O
M

O
i
^
^
H

m
p

-
i
c
O

'-
'C

9
"
t
t
)
x
»

"
f
c
i
i
n

c
i
>

w
+

a
ca

q
n

i-
g

—
n

n
i|

||
q

~
v
&

r

r
C

M
^

l
i

t-
i

i
»

s
J
_

i2
II

"
Q

~
A

V
A

v
a

s
o

s
—

c
o

t
^

r
^

C
M

C
M

||
C

O
to

II

>
>

V
»

>
-

O
>

«
~

>
*

>
.•

<
>

.
»

<
>

.•<

^
•
J
D

^
D

C
O

>
J
>

J
M

g
~

i
n

M
O

Q
K

l
O

Q
O

Q
Q

i
-
»

C
O

~
I

<
b

j
m

b
;
0

«
<

h
;
u

.
iio

i-
iu

.
u

.
u

.
u

.
—•

••
Q

u
.

Q
t-

h
.u

.6
u

u
.

><
tu

C
T

»«;
<

~
o

-
«

'-
ia

;
»

^
o

>
~

~
>-•

^
»

^
q

^
cs

^
—

~
.

a
.

~
^

^
cu

O
O

K
O

O
D

O
O

M
H

r
t
x
i
n

-
i
n

^
i
f
t
^
u

i
o

—
c
3

»
.

q
„

_
„

„
>

,
o

^
|
i
,
w

o
h

n
q

,
o

q
—

Q
Q

Q
Q

q
•
•
O

B
Q

u
tQ

iflQ
'

O
O

c
o

O
H

t
M

W
q

i
O

(
D

q
c
f
q

c
t
q

N
C

O
O

I
Sm

q
»

-
i-

a
c5~

_
Q

=
_

M
o

o
r
w

w
q

i
n

j
r
t
t
p

c
o

t
o

c
o

c
o

•—
'

—
K

>
—

»
—

»
«

—

o
o

o
r
v
o

o
o

c
a

c
o

T
-
c
o

t
f
a

a
w
O
O
M
f
a
M
W
M
O
B

U
.

a
B

8
8

S
B

O
8

B
r
(
0

«
»

C
t
q

B
l
i
l
l
i
.
h

O
l
D

O
B

O
B

O
O

O
O

C
O

t
-
O

O
C

O
t
-
C

Q
O

C
M

C
O

r
x
O

t
u

M
C

O
O

O
~

O
Q

~
.

—
B

B
B

r
O

M
B

B
>

l
r
C

0
8

M
M

0
»

M
S

O
M

a
O

O
r
B

H
W

N
m

U
B

f
c
i
a

B
B

in
O

nJ
m

>
S

m
k
h

•<
t
-

a
r
O

M
M

M
D

r
a

i
r
i

Q
>

c
o

O
a

c
o

c
u

«
g

O
O

t
-
O

t
O

C
O

T
-
O

O
O

O
O

"
o

•<

C
f

C
M

M
M

i
.

h
.

O
K

>

C
M

q
h

.
U

h
h

l
O

t
O

T
-
C

O
O

»
—

C
O

o
~

1
O

—
O

O
B

h
r
C

)

«
«

«
O

o
—

—
••

•
•—

•
•«

<
r
w

w
Q

M
J
W

Q
r
r
a

B
f
c
.

-

tf>
—

k
>

e
ft

cr>
tr>

t
-

o

C
O

•
o

*
-
^

-
t
o

-
-
r
>

-
c
o

<
i
d

O
w

;
<

a
»C

—
«

t
v

<

C
U

—
«

*
-J

c
u

-^
*

c
u

i
J
!
l
!
i
J
W

4
f
l
l
^
~

i
J
>

<
>

4

C
L

.
O

O
.

(C
O

.
~

O
.

T
-

O
.

W
i

o
.

<
-l

1-1
>

»

c
u

c
u

<
C

O
t
i

»
J

C
O

K
>

C
O

•
C

Q
B

M
W

W
O

C
O

i
J

w

«
»

o
a

o
I
ff

U
)

l-»
c
o

o
a

o
c
o

c
o

o
r
^

f»
f»

o
o

o
o

a
q

•—
~

-
-
»

—
<o

—
a

a

•<
<

<
»<

o
a

o
a

«
;

<
h

.
w

;

«
!
B

<
•—

t
<

8
U

)
>

J
r

—
>

J
—

i-J
C

O
—

U
<

i-J
n

J

C
O

O
O

O
M

W
I
h

O
O

o
o

—
o

—
•

o
h

.
o

Q
»

Q
»

O
h

.
O

»
»

O
O

C
O

>
»

H
O

T
-

O
f
»

O
O

C
O

O
O

o
c
j

-»

—
r
*

o
o

O
U

.
O

—
O

h
.

o

O
IO

C
O

»
B

l
u

B

•
*

-
o

q
-
c
m

e
n

o
*

-
||

r
W

O
r
O

C
O

C
O

O
O

C
M

O
q

Q
>

C
O

C
O

C
T

t
C

O
O

O
t»

C
D

—
W

Q
r

—
t-»

!-•
q

o
—

r
«

.
o

—
o

o
c
m

t
o

o

O
o

n
i-a

c
o

—
o>

—
c>

—
o

>
—

—
c
n

~
—

e
n

-
"
-
c
o

w
r

—
-
-
a

n
*

O
T

»
T

-
O

T
-

O
Q

C
M

i

«
Q

«
B

H
h

~
—

i
n

t
-
>

—
—

«
«

«
<

«
;
«

;
<

h
-
<

«
O

«
w

•a;
c
o

<
<

*
U

»
«

•
_

]
>

•
>

«

o
—

a
—

a
—

a
—

a
a

—
a

~
a

a
a

o
»

a
—

b
k

-
«

<
o

m
—

i
g

a
<

a
»

<
a

«
<

a
«

<
o

a
«

t
!
a

a
;
o

«
t
;

-
<

o
«

t
-

<
—

a
t
-

a
o

a
—

o
t
o

—
-

—
—

C
O

—
*

t
'

m
m

:
b

b
!
b

»
<

;
b

«
!
b

.
j
>

i
!
b

<
b

>
j
b

n
b

o
>

«
<

p
b

h
u

h
o

a
t
-

a
a

o
c
o

w
j

-
o

•«;
-
^
<

^
w

;
i
t
i
o

a
a

o
»

a
a

a
1

-
r
-

•<
O

<

c
o

t
-

a
a

o
«

c
k
c

»<
>

-
i
-
<

&-•
t
-
t
-
g

q
a

H
i

o
«-»

II
a

•
•
a

a
o

a
o

a
o

a
o

o
a

o
a

o
o

o
c
n

o
-
a

t-
o

to
>

-
i

•
•
w

a
m

o
a

c
o

o
a

t
-
a

a
o

—
a

o
O

O
a

k
>

o
o

>
o

o
o

o
o

o
o

~
-
o

o
o

•
J
t
f
j
^
^
j
K

t
j
c
u

^
J
Q

Q
O

>
J

t
-

—
O

>
J

o
>

-a
r

a
>

J

S
S

S
>

j
m

w
••

io
o

.
>

.
in

a
.

o
—

a
w

•
•
p

w
iJ

«
g

>
J
M

!
i-

i>
t^

i<
>

jiJ
w

!
ij<

i4
>

j
-
>

4
m

.j
r

•-!
-
«

c
a

-c
o

>
j

a
M

M
M

«
<

-.^
>

.~
c
o

«
t!~

c
o

O
T

-»
«

;0
—

O
II

»
tO

B
!0

«
!O

B
;O

ia
!«

!O
M

!O
iii!.i!M

<
;r

»
C

O
<

i!W
O

O
h

O
M

;<
a

a
a

o
o

o
i
i
a

—
•j

o
—

«
c
—

a
u

.
t-

o
a

o
o

o
o

o
o

o
o

o
—

o
—

o
*

o
«

-
u

.
-
o

o
a

c
o

o
a

c
n

o

o
o

o
o

o
o

O
r
w

w
c
t
i
n

II
t
n

i
J
t
J
^
J
^
i
J
^
l
t
J
i
J
J
i
J
U

h
l
N

l
C

M
i-

l
0

0
-
I

Q
—

C
O

t
-

a
•-j

—
o

^
j

—
o

>
j
»

<
i
-
)
i
-
i
o

o
»

j
<

—
B

j
t
j
t
t
i
j

X
X

-
<

o
«

c
•<

.-»
o

a
a

>
j

o
-
»

O
O

O
I
B

O
»

<
o

«
«

;

tn
c
o

r««

I2

v
.

O
n<
o

C
U

C
Q

I
N

a
x

Q
O

J_
»

o
o

•
*

g
—

H
•
s
t

t->
II

i
-

a
•
•

«
.
.

.55.
>

•
o

«
-

Q
O

-
o

—
—

C
M

c
u

O
X

«
-

o
O

-
to

n
M

o
n

g
o

T
-

O
.

Q
J&

r
-

1
o

o
o

o
a

f
i

x
.

M
O

r
-

o
«

•P
-

n
J

li-
f

H
C

O
g

x
O

C
O

V
r
t

a
o

—
o

in
o

n
J

•
•

-
T

-
O

O
o

o
X

g
i
-

»
•

»
Z

J
-
Z

H
C

M
O

-
g

1
g

M

X
a

f>
g

g
—

A
—

C
M

T
-

C
M

•
t
-

S
•
j

•J
•
•

o
C

M
o

o
o

«
-

o
a

—
—

t
o

«
*

«
—

m
o

*p-
a

-
c
m

i
n

m
w

—
e
e

a

a
o

—
M

a
a

h
c
m

c
o

o
.
.

M
-
•

a
•
j

g
X

—
o

C
M

tO
t
n

-
r
s
.

o
.

II
«

*
T

-
a

'C
M

t
-

C
M

«
a

q
p

C
O

f
H

•
j

P
P

—
O

1
C

U
C

O
•
•

~
-
o

O
H

-
«

:
a

o
o

o
o

C
M

-
c
m

c
n

o
c
m

r
-

*
«

T
"

«
H

>
J
>

<
H

-
—

•
p

"
—

!-•
g

I
-

•-!

h
J

—
H

»
j

H
H

C
O

C
U

C
M

•
j

g
t~

o
*

-
X

O
p

-
~

T
-

i
n

c
m

c
m

C
M

-
•j

o
X

X
«

«
9

-
1

U
,

g
•
»

IO
C

O
-
Q

P
M

•-)

X
M

>
-•

X
c
o

b
u

c
u

Xo
M

M
O

O
Q

O
I
S

a
a

c
u

Q
c
u

g
m

•

M
C

D

C
O

T
-

II
M

O
O

•-a
•

i
-

i-
i

«
M

«
C

M
O

X
"
-

—
•

o
1

P
O

1
o

o
a

x

>
T

-
t
-

g
m

•
-

a
o

C
M

o
o

O
i
n

t
-

X
-

c
o

c
o

«
o

«
—

A
O

g
II

*P
-

—
t
o

»
»

*P
-

A
t
o

o

_
1

_
g

-
<

n
a

C
O

o
>

C
O

*
II

C
U

II
a

—
I

g
+

C
M

tO
C

M
C

M
O

O
*

-
«

a
«

i
-

*
v

o
c
m

-r
*

.
Q

C
M

t-
V

•P
"

M
g

-
)

.
.

.
.

•
•

j
«

;
c
o

T
"

^
•

^
~

•
O

Q
c
o

O
••

«
»

t
-

p
—

C
O

C
M

t
o

C
M

-
o

i
n

c
o

«
o

«
X

M
c
o

•
•
X

i
-
'*

P
'

*
O

r
-

—
C

O
•->

•
•

M

C
9

-
»

.
.

•
•

•
•

.-»
|

C
O

I
c
n

|
o

>
«

»
1

-
S

••
o

••
O

C
M

O
C

M
~~-

-
C

M
O

•
•

r
-

t
-

«
b

u
«

P
••

S
**

Q
-

-
«

J
C

O

M
O

X
X

Z
X

O

«
(
0

0
r

in
o

||
v

II
T

-
+

J
L
.
.
.

.C
O

-
W

C
M

C
M

C
M

-
•
•

r
-

O
.
.

—
.

«
«

>
~

g
b

u
—

•
•

—
g

g
o

o
c
u

x
a

«
j

M
C

M
C

O
O

O
A

O
A

H
T

-
II

C
M

II
m

a
•

•
a

o
r
-

»
«

«
Q

-
o

•
•

^
—

o
-
~

a
t
-

o
o

«
«

«
<

«
>

.
O

i
-
)

"
M

a
u

n
a

—
O

X
w

o

—
M

T
"

r
-

c
m

r
-

c
u
*

-
0

a
t
-

a
C

M
«

O
-
o

-
C

U
O

O
K

)
•-!

1
-

o
o

o
C

M
C

M
1

-
O

—
•

X
+

C
M

•
•

*
i
J
H

M
*

-*
f->

—
a

C
M

C
D

m
r
»

g
.
J

r
-

r
-

••
O

-
-

-
••

c
u

r
»

o
o

c
u

g
g

a
«

•
c
o

t
-

cm
«

:
O

+
<

r-
«•

r
-

-
II

«
t

t
o

o
«

-
O

O
C

D
—

—
t
o

o
"
O

O
+

a
g

o
•

-
•
•

o
o

«p-

»
»

M
X

—
g

•
P

"
1

"
T

-
—

*
*

g
M

g
M

g
-

•
•

—
..

o
w

+
o

m
c
o

o
-

-
O

C
O

C
M

«
-

O
n

•
m

t
-

C
O

C
O

0
0

—
o

—
o

—
c
u

-•
o

t
n

s
—

—
c
o

<
f"

a
o

«p-
a

3
t

t
t

«
Q

I
h

—
'

o
m

a
m

a
M

^
•
•

M
••

S
C

O
—

0
0

•
^
c
o

o
o

o
O

C
O

9
-
O

-
-

>
j

i
n

c
m

c
o

-
-

Q
C

O
O

M
C

M
C

O
-

V
P

O
c
o

r
*

»
J

r
-

O

_

h
_

p
g

—
w

g
a

s
-

a
t~

3
5

*
*

—
H

.
«

.
p

g
-
-

•
•

o
m

c
m

o
o

o
O

-
O

M
O

C
O

O
)

•-)
r

«
t
f

T
-

C
M

m
O

-
o

c
o

e
n

m
o

n
t
t

-
•
»

N
J

l
-

>
~

H
g

a
g

g
>

-
h

«
!
H

i-«
»

-.
—

-
~

—
T

-
•—

•
o

n
O

V
•
'
O

Q
r
M

i
n

C
D

r
«

J
«

r
r

c
m

c
m

x
a

—
•
T

"
«

T
"

r
-

"
1

-
x

•
»

•->
•?-

>
J

1
O

1
X

—
X

g
O

,
b

u
M

a
p

a
a

b
.

•
•

x
c
o

t
o

g
C

M
a

ii
g

J
L

O
—

Q
o

—
•—

—
—

—
C

O
M

—
O

t
-

t
-

o
o

a
m

—
—

-
-
M

«
•-)

—
bu

O
—

-
M

O
W

O

g
_

,
a

M
H

H
M

•—
•
•

O
S

C
O

t
o

•
t
o

o
a

C
U

Q
O

C
O

O
!-•

-
r
-

o
a

c
o

Q
O

Q
a

t
o

a
o

~
—

i
-

a
i->

i
-

*
-

!-•
>

*
o

*p-
o

X
r*

.
—

Q
o

h
a

H
O

g
H

u
n

n
z
-
o

r
-

c
o

e
n

•
e
n

.
~

—
C

O
~

c
o

-
K

l
+

T
-

X
P

g
g

g
g

••
r
-
o

o
a

a
•
•

—
—

x
x
x
o

h
—

i
g

g
o

«
0

0
g

X
v
»

II
II

O
H

a
H

H
Q

N
n

)
T

-
A

«
"

o
»

<
l-

c
n

i
-

g
•J

•
•

H
-

•
•

to
+

a
-
a

c
o

p
p

P
P

•
•

T
-

-
1

O
x
x

••
c
m

i
-

t
-

a
c
o

x
>

-
—

a
a

Q
"

1
p

—
s
-
e
c
-
-

C
O

t
o

u
X

x
x

x
x

o
V

C
M

J
_

«
-

1
T

-
O

-
Q

W
-
O

.
.

••
O

C
O

c
o

c
m

O
O

O
~

0
Q

O
—

to
O

O
a

a
—

ii
a

+
c
u

1
-

>
-

»
-

>
-
i
n

w
Q

p
—

•
•

z
"
O

O
m

m
c
u

—
r
-

—

H
S

i
f
l
S

IE
c
u

c
u

c
u

3
3

c
u

-
j

r
-

O
V

A
V

A
S

l
f
l
H

Q
£

.
.

—
C

U
~x.

x
>

>
•

O
C

O
C

M
C

O
•C

O
—

•
c
o

c
m

r
-

O
O

O
O

"
H

-
-
W

W
S

X
X

X
>

-
x

z
i
-

i
-

•
•

a
C

O
*

M
W

B
r
r

c
u

X
gX

—
C

9
Q

-•->
O

c
u

T
-

«
-

C
M

C
M

«
o

t
-

i
n

a
o

C
M

C
M

-
C

O
<

O
C

O
||

C
O

a
n

j
•->

•
j

C
O

g
P

M
g

—
•p

-
g

—
h

I
M

v
«

M
•
•

H
t»

»
J

+
•
J

.
_

i
_

i
_

i
*

-
kC

c
u

a
o

o
a

o
o

-
a

o
H

i
J
B

i
J

o
—

J
Q

O
C

M
•
J

•
•
k
J
C

O
>

J
•

•-)
-

•J
C

O
*

i-4
||

C
M

«
4

i-
j

o
t
-

i
n

>
j

1
-

p
c
u

C
u

C
u

P
X

<
-
)
O

a
«

r
-
f
-
i

+
o

*
J

T
-

-
J

W
-
Q

~

O
—

u
.

M
•-]

•_>
•_]

o
o

Q
a

l
iC

M
•J

«
•

X
•-!

O
>

J
II

>
-

•J
—

II
C

M
>

J
•
—

)
I

N
)
C

f
•J

0
0

"
J

1
II

-
»

*
»

.11.
•j

_
i

«
a

x
c
m

-
J

X
I-*

O
C

O
C

O
C

O
C

O
•-)

V
)

M
+

g
O

O
->

I
-
j

a
o

m

O
»

•
<

•<
H

*
C

U
u

.
g

u
.
t
o

L
u

c
u

i
o

.
u

X
+

M
X

T
-
x
x
u

.
x
a

a
-
<

—
<

-
<

I
x

|
X

-
«

»
X

T
"
i
-
X

X
-
O

t
-
*

X
M

H
g

—
<

—
•
-
•

O
c
o

X
••

•*
-

—
•—

II
I
I
M

X
O

X
O

b
H

x
g

o
o

o
•
P

"
O

9
-

O
O

O
-
g

—
«

c
_

•
T

-
t
-

—
O

W
g

O
T

-
O

l
O

—
O

X
C

O
C

M
O

C
O

O
O

O
•
o

• •
O

O
N

O
N

t
O

O
O

O
b

u
c
O

O
O

g
a

M
O

O
O

O
c
o

O
i
-
)
"
i
-
>

t
D

-
Q

Q
C

O
O

—
O

J
o

—
—

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
•P

"
C

M
*

n
•
»

i
n

c
o

IX
.

0
0

e
n

o
«

-
C

M
t
o

«
i
n

C
D

1
*

.
C

O
c
n

o
r
n

n
t
f

i
n

«
o

r
-
c
o

c
n

o
r
W

W
t
t

t
n

c
o

t*
.

o
o

e
>

o
*

p
-

C
M

M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

K
>

t
o

i
n

i
n

M
t
o

t
o

t
o

t
o

t
o

«
y

k
t
«

«
«

o
«

w
w

t
t
i
n

i
n

m
i
n

i
n

i
n

i
n

t
n

i
n

i
n

c
o

t
o

C
D

C
D

.
.

H
«

•p
-

o
u

.
c
n

c
o

O
^

C
M

o
•
•

-
r
»

.
—

C
M

C
J

-
j

a
c
u

C
O

g
-

M
O

1
-

X
O

*-•
M

M
-1

•
i—

a
t
-

c
u

—
—

Q
•
o

M
«

J
T

-
-

r
-

o
-

1
-

—
»

-
•
«

•
—

•
O

g
O

O
X

n
o

>
~

M
a

n
z

1
-

1
-

O
!-•

«
O

T
-

—
a

g
C

O
a

o
•
-]

1
-

.-a
—

o
0

0
o

«
»

o
K

i
-

•
-

a
a

o
O

>
p

c
o

•
o

o
c
o

O
O

H
X

O
t
o

•
C

O
O

c
m

c
u

a
—

o
O

h
-

-
)

X
•c

a
<

r-
o

«
o

a
x

x
»

c
o

p
—

a
>

j
O

X
*

c
o

(
O

H
O

C
O

>
g

M
O

H
«

O
H

«
C

O
—

a
o

•
«

o
r
C

U
O

<
r
-

C
O

o
-
o

M
—

C
O

g
a

o
m

c
o

o
a

g
C

O
•

•
-

X
P

-
t
o

X
••

X
g

"
i-J

M
O

H
•

•->
h

O
o

s
o

o
a

a
-

p
t
-

O
C

M
a

>
~

t
o

o
—

X
s
-

C
O

t
o

P
O

p
—

u
<

S
c
o

.
x

a
•

n
J

g
O

a

>
-

«
*

J
g

•
J

o
•
•
o

o
C

O
T

-
O

—
I
-

X
O

~
-

r*
.

q
!
-
•

-
W

O
O

»
Q

bu
||

m
o

a
m

C
U

M
to

X
M

O
C

O

X
Q

h
J

~
—

O
r
-

•
J

•
•

.
.

.
.

•
•
B

O
O

II
O

0
•J

^
g

T
-

o
g

C
O

O
S

o
>

-
O

M
X

M
i
-

-
a

x
p

*
-

a
a

o
—

*
-j

a
•
-
•

>
g

X
-

—
o

—
-

•
J

•
•

—
C

9
O

c
o

T
-

g
m

C
U

C
M

M
T

-
O

S
I
-

Q
O

a
a

to
a

W
!-•

h
-

!-•
O

M
I-.

U
H

N
C

U
«

X
"

tfe
•-

a
o

«p-
o

•P
-

C
M

<
—

>
—

C
M

t-1
^

>
-
•

—
P

C
M

C
O

M
o

o
1

-
M

M
•

•
to

a
o

M
a

(
-

>
«

m
a

e
•-

M

—
—

+
•J

o
-

O
t
-

i
n

c
m

-
i
J

^
•
•

a
O

O
II
-
O

a
M

Q
t
o

M
M

g
g

C
O

•
•

P
C

O
o

•4
O

bu
X

«
•-»

M
O

.
J
*

c
u

a
o

P
p

•

C
M

•P
"

•J
-
O

a
t

—
«

<
o

g
C

O
A

Q
*

*
O

—
t
o

»
-

M
SS

a
-
.

—
c
o

•
a

i
-

—
c
o

p
u

•—
•

b
u

b
u

a
a

—
ii

O
P

M
O

o
Q

—
_

1
-
-

C
O

•P
"

x
a

e
n

.
.

—
o

a
1

O
g

^
-

.
.

P
t
-

O
to

m
•j

a
o

1
-

—
O

X
U

.
X

M
•

•
-
•

tu
O

g
*

X
f
i

M
a

o
•->

>
-

to
>

-
g

M
C

M
•

i
n

o
-
e
>

.
.

w
f->

M
p

o
•
•

O
.
J

o
••

o
•«

M
M

O
«

<
H

O
I

H
U

M
x

a
a

a
a

m
•

a
a

g
a

>
,

«
.i

•
~

-

C
x
i

-
H

—
C

M
-
^

•
»

-
*

-•
M

C
M

"
O

i
n

o
C

O
~

3
C

O
•
•

*
J

-
O

o
o

O
>

M
M

T
-
p

a
{
-
i
O

g
o

b
u

M
>

j
p

P
M

t
-

—
W

P
P

P
P

O
•J

X
Q

•
O

>
-

«
C

M
g

C
M

«
C

M
C

M
C

M
o

—
«

-
a

.
.
.

C
O

-
«

-
«

»
X

—
l

-
j
p

i
N

o
i
r
M

o
i
-
i
a

a
a

^
O

P
X

P
O

c
n

M
a

o
o

a
a

.
j

S
o

o
o

o
h

)
U

U
,
Z

||
Q

~
-

c
o

i
n

—
«

o
o

o
T

-
-

li
a

II
O

o
—

—
O

II
C

O
•
J

O
1-3

O
o

•-
x

«
•

o
O

T
-
r
t
A

<
>

J
H

O
P

>
•

O
to

—
•P

"
X

e
a

o
>

~
>

-
i
-
o

x
—

o
>

-
>

-
»

->
(-•

t
o

X
>

X
M

»

—
.

.
II

>->
a

_
o

—
-
o

r
-

c
u

c
o

c
o

T
-

C
M

•J
C

M
O

Q
i
J

—
l
-
l

O
O

o
-

r
-

T
"

r
»

r
"

r
"

•
•
—

•
O

O
•

>
-

M
•

to
»

-
?ft

*
•

o
«

t
-

e
n

•
•

t
o

•
x

to
>

a
•

•
a

9
C

O
«

-
«

a
—

o
r
-

f«
.

C
O

C
U

C
O

O
*

-
-
i
J

-
O

C
O

X
••

C
M

X
t
o

C
O

•
<

r
'
"
•
•
S

t
•

•
>

.
!
_

.
.

>
.
.

C
O

.
.

i
u

•
•

g
b

u
•
•

»?•
•
•

•
•

•
X

a
••

to
x

••
o

—
M

•
P

"
T

"
o

o
~

Q
•
r
*

g
C

O
C

O
C

O
•
-
)

•
J

-
q

«
;
c
o

«
••

p
o

•
•

[|
M

••
«•

g
g

g
g

—
o

•
—

•
o

-
g

x
Q

.
—

>
M

—
—

i—
—

f->
•
-

—
Q

—
M

P
—

a
—

o
•P

-
H

-
-

g
h

~
^

•
P

"
a

t
*

.
-

-
M

a
-
j

O
C

M
O

1
*

f
•
•

C
O

—
O

M
Q

r
g

M
M

M
M

g
^

M
^

h
O

r
O

B
r
S

h
-

*
-
X

S
t
-

*P
*

*
O

*P
"

X
r
"

M
«

-
.
J
O

T
*

O
«P

"
C

O
-
g

C
M

T
-

g
a

g
•
P

"
II

p
r
-

O
g

a
O

"
<

o
^

-
-

o
•

•
c
m

e
n

»
-

g
O

X
M

a
a

a
a

w
-
s
m

-
O

O
-
0

8
O

-
-

.
.

i_
-
w

o
-
>

-
>

"•
-
H

g
-

O
M

T
-

T
"

M
—

—
•
P

"
C

O
H

C
S

a
n

C
M

M
h

.
o

i
n

-
••

N
r
O

O
.
.

-
e
n

—
X

c
o

U
t
-
i
!
-
i
f
-
i
i
-
i
t
-
i
t
-
>

a
9

X
g

r
*

.
•

•
•

<
e»

•
-

t
o

r*
.

•
•

O
•
»

•
B

N
«

•
N

Z
I
-
«

J
O

*
r
*

.
i—

«
•
»

•
O

M
C

•P
*

»

•
—

•
—

a
I

-
—

•
_

M
a

w
j

—
c
o

•
-

-
~

II
o

-
a

M
—

^
~

g
o

—
.
.
.
.

—
»

[
_

—
.

.
—

.
.

o
—

o
o

•—
«

o
—

a
<

.
.

_
.
.

—
—

S
3

—
.
.

h
a

h
i
J

r
*

.
•—

.
o

a
a

o
o

H
i

•
J

.
.
.
.

Q
T

O
O

c
o

•
•

a
c
o

c
m

c
u

o
m

••
to

to
a

o
o

o
o

e->
i
-

•
1

-
Q

O
i
-

w
.
.
|
i
*

«
i
-
0

>
l
-
W

W
t
-
-
-
O

I
-
i
-
K

'
-
'

«
H

>
C

O
H

O
H

«

X
*

c
_

.
•p

"
O

g
g

"C
.
.

.
.

g
-C

M
IO

g
C

O
•
•

X
t
o

-
c
o

C
O

C
M

•
•

D
I
S

B
.

C
t

M
N

T
-
i
n

x
a

c
o

x
c
o

o
X

M
^
-
i
x
a

X
c
o

p
X

•
P

"
X

O
O

X
*

X
c
o

O
X

-
•

X
O

c
o

X
*

-
X

g

a
O

H
«

O
.
.

«
J

-
.

p
r
-

O
—

P
C

M
-

H
»

P
M

-
o

•->
+

11
g

X
c
o

l|
II

H
II

II
P

X
g

c
o

t
-

—
p

a
O

•
p

*
X

X
x

•
•

M
>

>
X

g
~

•
—

•

>
->

o
II

g
o

.
o

o
o

1
^

r
*

.
O

t
-

W
-
O

"
C

M
i
j
m

c
o

u
o

a
o

o
a

-
J

A
A

A
A

A
>

•
O

>
-

«
-
-
>

-
X

C
U

>
-
f
-
0

»
-
i
M

>
-
>

-
>

-
S

3
g

>
«

0
"
>

-
>

0
—

>
.

M
O

•
.
-
a

s
*

.
•
•

>
-

X

x
a

g
T

"
*

*
t
-

•p
-

O
O

c
o

—
II

•
•

S
+

—
co

—
c
m

cm
co

••
+

g
O

-C
O

Q
O

O
O

m
O

M
O

O
O

O
O

<
>

*
>

>
X

X
*

X
-
J

«
X

P
C

O
X

—
•
X

O
X

X
X

X
P

X
*

>
X

b
u

X
O

X
>

*
X

•
x
o

•
j

a
c
u

||
-

+
•
p

-
•
P

-
C

M
T

-
•
•

a
o

a
a

*
-

•
J

a
o

-
c
o

o
o

>
q

o
o

o
o

o
n

j
.

a
-
»

t->
||

n
J

O
••

n
J

C
U

_
1

_
1

-
-

i_
l

1
-

•
-
*

Q
S

>
-
)
«

-
<

O
i-

)
••

K
d

K
C

h
O

l
i
J
K

K
i
J

•
*

4
X

c
u

•
-
)

p
c
o

C
M

r
-

II
+

i-
J

i
J
»

l
•

o
—

p
.

C
O

M
•j

«
;

-
B

>
d

G
II

p
.
•
j
i
n

n
i
J

II
C

O
T

-
••

•-*
C

O
C

O
C

O
to

c
o

c
u

••
O

c
u

C
U

M
c
u

Q
»

c
u

•
c
u

X
•

c
u

O
c
u

*
c
u

to
c
u

»
p

C
U

C
O

1
-

C
-

C
U

H
P

C
U

O
c
u

c
o

k
j

H
Q

«
*

C
D

<
r*

•
J

_
]

—
_

i
_

i
«

r
T

"
i
-

II
M

>
j
a

i
o

f
i
>

j
ii

<
-*

»
-•

•
j

i
n

-
•
_

>
O

l
l
-
J
J

t
o

•
1

-
C

O
X

a
c
o

x
^

c
o

g
II

t
o

O
c
o

V
c
o

>
>

•
•

c
o

a
-
-
c
o

c
o

to
X

'r
-

c
o

O
c
o

M
C

O
>

»

—
X

M
u

.
—

i
n

c
u

||
<

«
-
<

•
<

I
b

u
—

O
M

o
a

<
O

t
-

c
m

•<
b

;
M

X
-
O

X
O

K
*

M
M

X
•-!

C
u

u
.

u
.

u
.

u
.

—
*

c
o

•
—

•
O

O
—

a
w

—
o

w
—

M
g

—
—

_
1

•
—

w
.

—
g

—
C

O
«

~
g

>
-

—
o

c
s

i
—

X
o

o
a

«
"
M

M
C

O
•
J

O
-
O

O
-

—
>

<
c
m

«
c
o

o
c
o

o
a

-
-
O

c
o

•
•
K

O
N

I
s
O

M
-
g

-
O

X
"
-

~
•
-
•
-
-
Q

W
-

o
o

o
o

u
.

a
a

q
a

x
q

O
O

P
O

I
-

II
Q

U
>

•
Q

«
••

O
Q

—
•

o
X

e
n

Q
>

j

o
o

o
o

o
O

o
o

o
o

o
o

o
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

O
O

o
o

o
o

o
o

o

r
w

»
c
t

i
n

c
o

c
»

c
o

o
o

r
-

c
m

t
o

«
»

t
n

(
O

N
0

0
C

O
O

T
-

C
M

tO
9

t
n

t
o

r
*

.
C

O
o

>
o

r
-

c
m

•
o

•
»

i
n

t
o

r*»
o

o
c
n

C
O

C
O

C
O

0
0

C
O

C
O

C
O

C
O

C
O

e
n

c
n

c
n

c
n

e
n

e
n

c
n

e
n

e
n

c
n

o
o

o
o

o
o

o
o

o

t
-

r
»

T
-

r
-

<
c
-

T
"

T
-

^
•
^

T
-

«
^

T
"

•
"
-

<
r
-

*
p

»
*

p
-

r
*

*
-

V
•
p

"

t
o

IN5O
nto

O
Q©

o
o

•£.
a

.
0U

DODGE

Remember going to the amusement park and riding
the bumper cars or Dodge 'ems! Some people like
to drive and try not to hit any other cars. Other

drivers see how many cars they can hit. This computer ver
sion of Dodge'em has several cars randomly moving up and
down the screen. The object of-the game is to drive as quick
ly as you can from the right to the left of the screen. See
what your minimum time is for crossing. A short victory
melody will be played if you cross successfully (no crashing).
Of course, some of you players may tire of that and try to

see how many crashes you can have in each crossing or
within a certain time limit.

Programming
My goal for this game was to make a game in Extended

BASIC with as short a listing as possible so even the non-
typers would not take too long to key in a program to run.
Thisprogramisa total of 73statements yetcontains27mov
ing sprites. The actual game logic is contained in 21 lines
(Lines 160 to 360). You could really have fewer lines by
stacking statements if you don't mind long lines.

EXPLANATION OF THE PROGRAM

DODGE'EM

Line Nos. 330 If there is a crash, sounds a crashing noise and
100-150 Introductory REMarks; branches to title screen. increments number of crashes.
160 Clears screen. 340 If the car is not at the left border, program
170-180 Draws left and right borders; prints "TIME:" branches to Line 240.
190-220 Places 26 cars moving vertically at random 350-360 Stops the red car and prints the number of

speeds. crashes.
230-240 Initializes variables; randomly places red car at 370-410 If there were no crashes, plays victory melody.

right side of screen; beeps. 420-460 Asks if player wants to try
250-300 Depending on key pressed, sets row velocity and again and branches appropriately.

column velocity and moves red car. 470-570 Prints title screen while sounding crashing noises
310 Increments and prints time counter. and defining special characters.
320 Checks coincidence for a crash. 580-710 Prints instructions.

246 The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

® 3 in m
3

to r

A
A

A
O

f
O

f
O

f
C

M
O

f
O

f
O

f
W

W
W

M
M

M
M

M
K

»
I
x
l

K
>

K
»

tx
>

-
f
t

-
f
t

-
f
t

-
f
t

_
f
t
.
^

-
»

—
k

^
-
f
t

H
>

^
O

(
O

C
O

x
J
O

U
l

A
O

f
tx

t
-
f
t

o
t
o

»
x
a

t
n

c
n

A
O

f
•x

*
-
ft

o
t
o

0
0

x
4

t
n

c
n

A
O

f
i
x
*

-
f
t
o

O
O

o
o

o
o

a
o

o
o

o
o

o
o

o
o

o
c
a

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

•
D

o
o

o
D

a
i
t
a

—
o

o
o

o
o

o
-
*

o
—

—
—

—
O

—
•
o

a
a

^
-
o

n
a

o
a

o
o

o
a

a
a

a
a

•
—

A
>

Is
*

*
•

8
O

X
•*

i
—

>
-
1

**
•

>
>

II
J6

i
»T

J
*1

J
»t

j
*1

J
JS

«
-

>
<

X
—

>
O

>
-
^

—
~

>
>

O
X

n
X

X
X

C
O

- -
H

•
H

O
M

W
C

O
r~

>
a

r
*

t-
>

f
H

I
f

f
w

r
*

II
x

»
t
-

a
a

c
o

-
»

t-
>

t—
H

i
a

a
a

a
a

•O
«x

i
>

tn
>

—
H

O
"
o

r
n

^
r

f
+

f
X

X
W

X
f>

O
f

f
O

H
I

—
f

o
•
o

-
t-

>
f

o
P

>
0

0
Is

*
-
f
t
-

O
»

r
«

a
•
A

II
II

II
II

O
f

a
—

o
"

t-
1

C
M

•
»

»

>
A

in
M

M
O

II
M

V
!*

»
3

.
t
j

c
o

O
S

tn
c
o

o
o

e
n

x
«

—
C

O
••

—
H

I
C

O
II

S
f
>

-
»

<
O

A
•

»

•<
Is

*
-

C
O

O
-
*

n
0

-
<

O
K

lO
O

o
••

O
0

0
C

M
0

0
C

O
P

I
.
.

>
o

.
.

—
*

0
K

»
"
-

•
<

-
O

f
<

x
j

»
o

»
c
m

a
t

is
*

•
h

c
n

c
o

c
_

•
.
.

H
I

H
]

.
•

a
a

a
X

-
f
t

a
p

i
o

»
o

»
>

-
e
n

-
a

h
i

a
h

i
>

—
o

—
a

a
—

n
H

I
H

I
H

I
—

—
o

Z
«

>
-|

X
>

-
ft

>
>

*
o

*
»

H
c
n

c
d

c
m

-
o

o
a

-
i

o
-
j
o

o
o

o
a

a
a

a
o

o
H

i
x

O
H

I
O

m
i

is
*

a
a

»
o

»
—

-
t
n

O
f

_
»

o
n

—
a

—
—

—
_

•
a

p
i

p
j

p
i

w
-

>
x

II
»

w
—

-
—

»
X

»

•
a

t
o

o
—

^
=

5
O

f
—

<
5

-*
>

C
O

—
a

a
a

a
w

t
-
—

e
a

-
f
t

I
x
l

-
f
t

Is
*

-
*

»
-

»

4
k

-
-

"
C

D
-

•»
a

t
n

r
«

t
»

•H
i

-
c

*
tx

f
«t

>
*

x
l

-
A

-
»

X
»

-
C

M
O

f
A

-
ft

-
A

—
(
9

f
f

-f
t

o
n

a
a

c
o

-
f
t

.
.

-1
-

-
-
»

~
Is

*
»

5
»

-
f
t

C
D

t
o

ls
»

—
•

«
k

-
-

>
-

x
<

t
x

<
—

C
O

-
"

-
f
t
-

«
—

•
•

»
»

—
M

Is
*

a
•
•

O
••

O
-
»

1
D

H
i
a

u
II

II
II

O
-*

—
C

D
•

•
-
f
t

»
»

»

•
•

.
-

-
p

i
•

-
e
n

•
—

•
<

e
1

tn
1

Q
O

H
-

e
n

•
-
f
t

«
t
n

t
n

x
a

O
O

3
0

-
•
•

>
»

c
n

t
n

a
a

ii
o

-
H

I
Is

*

H
I

K
>

Is
*

H
I

X
»

—
O

o
"

H
I

O
"

•
•

o
-

o
—

t
n

•
-
•

-

»
O

f
O

f
>

>
-

.
—

—
—

«
x
l

-
a

Is
*

H
I

-
-

—
o

C
O

o
•
•

—
-
f
t

—
.
.

_
k
-

.
.

t
o

n
A

c
n

o
f

a
6

-
•
q

-
a

o
t
n

•
_

.
.

-
•

•
—

>
t
n

C
O

a
p

i
—

»
>

x
l

<
a

x
o

o
a

•
—

•
•
•

o
C

D
Ix

l
C

O
-

o
o

—
II

<
II

X
-

H
I

O
•

>
-

-
•

•
•

•
a

II
"

o
II

o
II

.
*

—
a

0
9

•
—

•
•
s
i

t
n

•
•

ll
O

H
I

o
o

c
m

a
ll

+
o

a
C

O
Is

*
«

—
o

c
o

a
o

-
f
t

>
•
o

A
o

*
o

-
•

i
i
»

H
I

x
4

o
-

e
-«

-
-

>
o

+
a

»
—

~
t
~

—
c
n

O
f

f
»

o
-
ft

p
i

O
-
f
t

—

~
<

c
n

O
f

r
-

o
a

—
0

0
1

•<
-
»

.
C

D
o

V
c
a

^
O

a
-

-
C

O
-
f
t

C
M

+
—

•
a

—
x
j

C
M

6
c
n

*
»

-
f
t

>
>

«
x
l

*
x
l

e
n

e
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

t
n

c
n

c
n

c
n

c
n

c
n

c
n

t
n

t
n

-
A

o
C

D
0

0
«

x
l

c
n

t
n

a
O

f
•
x
l

-
ft

0
(
O

C
O

M
<

n
u

I
&

W
M

^
O

U
>

0
)

•
s
i

o
t

t
n

A
O

f

o
.

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

i
o

o
c
a

>
o

O
O

w
o

o
o

o
H

i
o

a
o

o
a

o
o

o
x
o

o
a

o
o

o
o

o
o

o
o

o
o

o
o

e
»

o
«

o
«

•
•

—
o

a
>

C
O

~
-

—
•
—

—
—

>
-
.

—
•<

"
-

C
O

»
»

T
|

~
-

—
>

>
>

>
>

>
>

>
>

>
"
-

A
>

H
*»

1
*»

1
s
»

o
x

t—
H

I
C

O
C

O
•
<

c
o

o
C

O
C

O
C

O
C

O
x

c
o

c
o

o
t
o

a
c
o

c
o

C
O

O
t-

>
O

O
f

t-
»

r
*

>
»

,*
s
»

o
O

,o
»

*
o

*
t
»

a
,*

3
•
o

C
'o

s
d

'o
O

'O
'o

f
«

-
•

f
f

f
f

r
-«

c
->

f
r-

>
•
w

-
t
-
i

^
3

x
O

x
t
-

C
O

»
r
*

f
C

t
-

(
•
"
(
-
•

f
tx

l
f

C
O

t
-

w
f

S5
t
-

c
f

t
n

i
n

•H
X

P
I

X
H

I
>

>
>

C
O

>
>

«
-

>
•

>
—

>
p

i
>

>
>

n
o

o
o

o
o

o
c
o

o
c
o

>
—

o
II

O
II

x
P

i
•

<
-C

>
<

S
>

<
>

H
»

<
>

<
g

H
<

•
>

<
a

>
<

2
»

<
H

i
H

;
»

<
t
~

>
a

a
a

a
o

a
O

a
o

•
<

f
•x

l
0

0
X

-
I

h
;

•
>

O
H

I
o

•
a

n
>

>
>

>
t
-
>

e
>

c
3

w
0

0
Is

*
C

D
•<

o
>

—
>

>
x
c
;
»

>
>

t
9

>
>

0
>

>
•

>
>

w
>

>
>

t
a

a
a

a
o

a
a

a
a

i
f

»
•

O
f

—

o
o

•
H

H
I

«
h

i
•

h
i

h
i

•
n

H
I

H
I

h
i

•
h

i
h

i
a

—
—

S
B

—
o

—
O

H
I

a
H

I
O

H
I

O

-
(
O

C
O

C
O

s
I
—

-
ft

•
—

•
C

D
—

.
—

a
a

-

X
Is

*
-
f
t

•
a

-
f
t

-
f
t

.
a

0
0

•
x
l

c
n

c
n

ix
i

O
0

0
-
ft

A
-
ft

o
t
n

e
n

t
n

-
»

•
•

X
X

X

P
I

A
t
n

A
O

f
-
x

o
-

-
-

-
.

.
-

-
-
ft

A
o

-
o

i
-
f
t

•
•

a
a

p
i

»
<

-
-

-
-

-
•

•
>

«
-

-
o

•
o

-

-
K

>
M

Is
*

tx
»

Is
*

M
O

-
A

c
a

-
ft

-
ft

>
-

C
M

-
•
x
l

o
o

O
C

O

C
O

_
_

—
_

—
_

•
-

•
•

C
O

O
C

O
O

-
ft

o
1

00
1

—
>

*
»

—
i

—

—
.
.

.
.

•
•

.
.

.
.

t
a

•
•

a
•

•
O

M
O

t
M

-
o

t
n

x
j

x
j

•
•

f
f

C
O

•
•

•
•

•
X

H
I

H
I

a
o

o
A

o
o

o
o

o
-
ft

e
n

»
o

-
»

f
f

•
o

•
•

•
o

a
C

O
»<

O
x

a
o

—
a

o
a

o
t
n

-
ft

e
n

-
f
t

<
x
j

-
f
t

o
p

»

a
o

•<
O

H
I

"O
p

i
«

—
O

N
s
a

a
-
'
i
i

•
—

o
—

C
O

o
>

•
I

p
i

<
-i

a
t
s

H
I

a
x

T
I
X

I
O

I
O

1
1

O
f

6
6

f
•<

*
n

C
O

•
o

p
i

•
>

a
H

I
W

O
I
I
O

K
I

•»
!

0
0

a
X

C
O

C
O

»
a

c
»

h
i

a
p

i
«

9
X

ft
A

-
ft

*
i]

O
f

o
a

>
s
*

C
O

*
•

P
I

>
a

»
to

~
t

O
M

O
I
O

G
H

0
0

o
a

H
I

ll
>

o
C

O
•<

O
H

]
O

r
-1

—
a

O
K

»
IS

*
-
f
t

T
l

"
x
l

o
—

•
—

(
9

a
x

C
O

>
^

p
j

O
P

I
P

I
a

o
>

o
e
n

o
t
n

w
O

f

•
<

—
c
o

a
a

•d
p

i
O

-
ft

-
ft

-
ft

c
n

x
j

P
I

o
f

-

H
I

a
a

f
c
o

o
X

H
I

a
-

0
0

•
O

o
>

o
o

C
O

^

a
X

T
*

0
O

•
H

I
p

i
O

p
i

•
—

c
a

-
ft

—
O

f
-

-
X

—

p
i

P
I

•
*

•
•
<

C
O

*
d

O
p

i
—

0
0

o
0

0
1

.
.

2
-C

.
•

X
H

I
C

O
1

-
i

•
«

•
P

I
c
n

A
•

A
o

o
O

h
i

r
i
K

.
W

—
-

O
f

«

H
«

x
l

H
I

o
o

o
~

-
c
»

i
a

>
•

a
-
f
t

o

IP
O

O
a

*
o

n
a

•
-

"

Tl
BASIC

SPACE

WAR

Space War is a two-player game written in TI BASIC.
Each player has one rocket. The object of the game
is to destroy your opponent either by missile fire, forc

ing him to crash with an asteroid, or by causing him to use
up his allotment of fuel.

You can fire missiles in any of the eight directions select
able from each side of the split keyboard. Missiles emit a
nerve gas that paralyzes any moving object on the screen
until a hit is made or the missile goes out of range—i.e.,
off the screen. Firing a missile, however, does require an
expenditure of fuel.

Each rocket starts out with 50 units of fuel. One unit is
subtracted for each move, and a missile shot costs 5 units

of fuel, so you must try to move efficiently and shoot ac
curately. If you run out of fuel, the game ends and the other
player receives 2 points.

If your missile hits the enemy rocket, you score 5 points.
If you crash into an asteroid, your opponent receives 3
points. And if you crash into each other, no points are
awarded. If you shoot an asteroid you lose 1 point but the
game does not stop.

Note: If using a disk system, type CALL FILESfl) prior to RUNing.
Even so, you still might encounter some conditions during play when
the memory will fill and the program will halt. To eliminate this, you
can delete all the instructional PRINT statements.

EXPLANATION OF THE PROGRAM
bpace War

2160-2240 Receives players' input. If a key has been
pressed, branches accordingly. If no key has

Line Nos. been pressed, goes to the other player's
150-180 Clears screen, initializes fuel 50 units; makes keyboard input. Initializes variables. G indicates

black screen. who is playing. V = 1 when an asteroid has been
190-370 Definition of characters and colors for title hit.

screen and instructions. Characters 152-159 are 2250-2310 Procedure when yellow rocket fires a missile.
arrows. 2320-2470 Procedure when yellow rocket moves.

380-570 Draws title screen. 2480-2540 Procedure when blue rocket fires missile.
580-660 Draws border and blinks colors until user 2550-2700 Procedure when blue rocket moves.

presses a key. 2710-3460 Routines for moving the blue rocket different
670-800 Asks if user wants instructions and waits for directions.

response. 3470-4740 Routines for shooting missile different
810-1270 Prints instructions invisibly and makes white let directions.

ters appear on black screen. 4750-5500 Routines for moving yellow rocket different
1280-1350 Clears screen, resets letters to white on black directions.

and defines colors for game. 5510-5830 Sounds crashing noise and flashes graphics.
1360-1790 Defines characters for graphics. Characters start 5840-5980 Calculates and prints scores and ending remarks.

ing with R are the rockets in different direc 5990-6040 Prints option to play again and receives user
tions; V$ is for the missile; S indicates asteroids, input.
and D crashing graphics. 6050-6130 Subroutine to check if asteroid is shot; if so,

1800-1880 Clears screen for game, initializes variables and score is decreased one point.
draws rockets. Al, Bl are coordinates for 6140-6200 Subroutine to check if rocket is hit or if rocket
crashing; A, B, and C, D are the rockets' hits asteroid.
coordinates. 6210-6260 Subroutine to check if asteroid is in that posi

1890-2150 Draws center asteroid, then 7 random asteroids, tion; if so, V= 1.
making sure asteroids do not overlap. 6270-6330 Procedure if rocket runs out of fuel.

248 The Best of 99'er Volume 1 Copyright© 1983 Emerald Valley Publishing Co.

EM

EM

EM

GO

CA

FO

CA

C

S

C

C

C

C

C

C

C

C

C

C

C

C

H

1

H

1

CO

CO

=1

CO

A

V

I

H

H|C
CO

CO

1

0

EA

HA

CHA

HA

LO

LO

TO

LO

HA

CHA

HA

CHA

CO

TO

OR

N

TO

LO

TO

LO

WA

ON

GAM

Copyright © 1983 Emerald Valley Publishing Co.

WA

TWO

MEGA

CO

CO

CO LO

S

IM
B

0

1

MjO
S

Y

HOO
N

TO

IWlA
IRO

A

S

ME

RO

F

0

lOjR
S

HOWN

ROUGH

TO

M

N

7

1

Q
SE

TO

TH

PO

LOW

R 2

A

U

S

|MO
EN

S

E

IWlA

The Best of 99'er Volume 1

CH

GA

NG

RPM
D

249

r
s
o

o
o

o
o

t
o

i
s
.
—

o
o

t
t
a

t
t
i
n

w
w

a
.

c
o

c
o

e
n

o
'

g
g

t
f
t
f
l
f
l
l
B

a
g

g
g

g
g

M
M

Q
t
-
c
u

c
a

c
o

w
c
u

a
a

—

a
s

a
s

a
s

a
s

a
s

*
*

*
*

v
e

r
h

n
h

h
H

<
o

J
L

t
t
i
n

a
i
x
t
o

i
o

r
i
f
l
w

u
a

c
t
r
r
O

a
v

+
II

II
II

II
II

II
ll

a
cm

a
c
u

a

m
—

c
m

t
o

w
a

.
n

i
|

t
o

-
-

-

W
kC

m
xj

C
M

o
c
x
.
o

o
o

o
c
m

k
>

c
u

c
o
w

q
w

a
r
w

H

C
M

g
C

M
c
m

m
I

x
x

j—
~

^
~

^
a

a
a

g
a

a
c
a

m
—

t
-

a
a

q
M

h
-
b

j
c
j
u

a
c
u

a
a

a

<
<

g
«

B
H

!
a

i
H

h
i
<

0

q
l

o
a

a
p

t
-

n
n

i
-

«
t

a
v

o
o

o
tl

m
c
u

a
O

a
c
o

i
n

r
-

t
o

c
m

t
o

q
r
-

—
o

—
to

—
c
n

—
g

—
a

—
a

-—
a

~
-

a
—

~
-

g
—

g
O

M
C

m
i

e
n

a
«<

o
B

j
C

I
B

B
j
B

B
j
C

i
a

j
a

j
B

W
j
Q

B
B

i
B

«
c

c
n

a
«

c
o

a
o

t
-

a
m

a
o

h
i

a
a

o
t
-

a
m

a
o

t
-

a
m

a
o

i
-

a
m

O
t
o

O
t
-

52
_

&
.

52
V

c
a

c
u

"
+

"
'I

'
I'

«
II

M
II

X
X
X
X
X
X
X
X
«
J
Q
X

Q
||

M
-
1

>
1

-1
x
x
x
x
x
x
x
x
»

J
O

I
»

<
q

»
-
»

P
>

-
»

0
+

«<
«-J

P
>

>
J

O
+

I
<

p
a

>
-
H

p
g

•-»
t->

«
ti

-
J

I-.
«

tj

A
T

-
V

«
II

_
£

9
_

JL
«

II
•-»

p
>

•-»
O

l
w

h
i
j
d

>
>

i
O

|
+

«
;
q

a
»

j
p

>
»-j

o
|

•
J
h

B
i
W

•j
!-•

k
C

c
a

h
,U

.b
,h

,b
.U

,ls
h

.W
iO

b
.a

.b
.

||
11

II
Q

O
.

lu
B

!
<

B
!

||ta
.b

.b
.b

.b
.b

.b
.b

.«
«

:
0

II
Cu.

II
<

O
b

.
«<

Q
II

fa-
||

X
Q

ti.
<

Q
lib

.
II

<
O

U
.

<
Q

||
C

v
II

«t{
Q

b
.

<
Q

||
||

u
.

lib
.

II
w

!
O

b
.

<
O

II
>

.
M

»
»

M
M

»
^
Q

Q
M

B
>

«
M

l
h

O
O

w
>

<
O

O
O

O
M

»
»

-
-
-
-
-
o

O
i
i
!
^
B

!
0

0
-
o

o
<

»
<

m
;
-
o

o
a

M
a

O
O

-
O

O
W

M
m

o
O

-
O

O
B

!
w

»
i
<

-
a

o
O

-
O

O
i
<

i
i
i
»

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
"

tn
jo

^
_

e
o

_
o

»
_

o
^
_

C
M

jo
jc

tjn
o

_
ix

io
3

_
c
n

jo
_

^
jc

^
^

H
w

w
w

H
t
^
c
^
^
^
q

t
^
q

q
t
^
q

t
^
l
B

M
W

M
M

l
f
l
M

l
B

u
>

l
«

«
t
t
O

M
»

»
o

M
O

t
t
^
^
^
^
^
^
^
^
^
^
^
W

M
(
O

M
t
D

M
^
O

M
c
o

w
a

«
o

a
«

a
o

B
C

>
a

8
a

a
a

o
o

o
o

o
r
r
^
^

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

y
>

•—
—

—
—

«
/>

«
/>

>
J
«

>
W

W
M

B
»

1
8

i
»

J
^
W

W
W

W
W

W
W

W
Q

p
o

a
»

-
»

P
P

O
Q

«
o

«
o

<
~

c
M

i
n

*
>

<
-
c
M

i
o

q
a

a
a

a
a

a
a

a
a

x
Q

Q
Q

Q
O

t
o

t
o

t
o

c
o

t
n

q
't

n
t
o

r
x
.C

T
e
n

o
T

-
c
M

t
o

r
x
.c

o
o

o
q

t
n

c
o

r
x
.

s
o

s
a

e
o

a
r
r
r
w

w
w

w
o

o
q

q
t
f

c
c
a

a
a

a
a

«
a

a
a

a
a

a
a

a
a

a
a

a
»

<
<

;w
;w

!ia
!iit!«

<
:w

;w
;i<

t!«
t;«

<
»

<
»

ti»
<

«
<

ia
;i«

«
;<

M
g

a
a

:
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

»
-
j

b
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

c
n

t
-

t
o

t
o

r
x
.

c
o

r
x

+
+

•
i
n

t
o

t
o

C
M

C
M

a
a

a
a

a
a

a
o

a
o

~
-

«
*

*
-

a
o

w
_

o
~

H
B

O
M

«
<

i
<

0
»

<
i
<

b
!
<

h
m

o
m

«
:

to
a

<
«

«
N

W
W

B
B

r
H

a
a

>
-j

a
a

a
a

O
O

O
O

O
O

O
*

-
-
.

IIO
C

D
<

-
H

O
C

D
a

a
o

a
a

a
a

n
g

H
H

r
u

*
-

~
t
-

o
t
-

~
cm

t
-

a
b

a
a

~
x

w
a

>
i
i
j
l
j
»

4
j
^
^

»
-

o
a

a
~

x
i
i

~
o

~
~

J
L

O
T

-
X

-
T

-

+
to

c
o

—

_
L

_
L

a
a

a
a

c
o

c
o

c
o

t
o

o
<

<
<

«C
x
-

c
m

a
a

a
a

e
n

o
o

o
o

A
c
m

v
n

.
a

c
o

o
x

C
M

-—
C

M
C

O

C
M

C
U

IP
I

a

<
<

a
q

i
o

a
a

p
q

a
v

o
o

o
to

c
u

a
o

a
c
o

>
-

c
u

O
II

>
»

II
||

O
O

C
M

>
j

p
>

t
-

.-»
p

>
t
-

o
p

^
j
^
^
H

t
j

•
>

3
»

3
^
i
j
>

j
^
l
-
i
>

j
>

j
i
-
i
>

j
i
-
i
^
^
i
^
>

j
^
»

J
-
i
>

J
g

:
c
i
l

|
]
^
W

T
-
w

^
-
i
>

j
»

j
>

J
^
>

J
(
g

z
i
l

llK
i-

iw
x
a

«
-
»

c
o

x
n

a
n

^
t
j

.-»
-»

x
-
j

o
o

»
j

o
o

h-
o

a
c
m

i-
.

a

^
<

<
i<

.<
«

a
;ia

;w
!w

;«
g

w
;«

t;«
t!w

;«
t!i<

<
»

<
'<

'<
c
u

c
u

<
-T

-ii
n

n
n

»
<

»
<

»
<

<
K

C
»

<
w

;
o

w
;
a

>
o

«
c
:
o

b
.M

O
«

<
O

h
.M

O
ii

c
5

o
•g

a
:

m
;

m
a

;
ll

ll
u

.
•<

ll
i
i
b

.
o

u
.
c
u

u
.
i
i

n
u

o
c
u

cu
<

<
<

n
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
c
a

>
«

a
:
«

»
''C

:
«

O
O

O
O

O
O

O
O

O
fc

u
a

c
o

c
o

b
.O

O
~

a
b

.O
O

'-
g

O
:
>

O
O
O
g
O
O
>
"
O
Q
>

—
Q
"
>
-

—
M
b
.
Q
Q
>
.
»
-
.
0
0
0
0

Q
e
o

o
o

c
s
o

c
a

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

^
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
J
D

r
x
.o

e
n

o
r
-c

M
in

q
tn

to
r
x
.c

o
o

>
o

r
-C

M
io

s
ttn

tD
r
«

«
c
o

c
n

o
<

r
-c

M
W

>
q

.tn
m

r
-
c
o

o
>

o
r
r
iM

q
u

>
M

ix
c
o

«
n

o
r
r
<

w
q

in
«

D
r
-
.c

o
o

io
r
f<

M
q

in
tD

r
s
c
o

«
n

e
r
W

K
>

q
in

a
>

r
>

.c
9

C
)
O

t-
w

M
q

i
n

i
n

t
n

i
n

t
D

c
o

t
D

C
D

t
o

c
D

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

w
c
o

c
o

c
o

c
o

c
n

c
n

e
n

c
n

c
p

c
n

e
n

c
n

e
n

o
o

o
o

o
o

o
o

o
o

o
'

C
M

C
M

C
M

C
M

C
M

X
I
O

I
Q

I
P

m

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

©I0
\t
n

Q
Q

i
n

5 0
0

(f
t

to N
O

(f
t" 5 r (6 t
n

f
M

O
t
O

f
O

t
O

f
O

f
O

f
O

f
O

t
O

t
O

f
O

f
O

f
O

f
C

M
O

f
O

f
O

f
O

f
O

f
O

f
O

f
O

t
O

t
C

M
O

f
O

f
O

f
O

f
O

f
O

t
O

f
O

f
O

f
O

f
O

f
O

t
O

f
O

f
O

f
O

t
O

f
O

I
O

f
O

f
O

f
O

f
O

f
O

f
O

f
C

M
O

f
O

f
C

M

o
o

o
o

n
o

n
a

a
o

a
a

n
M

M
M

M
<

a
M

s
i
M

M
^
o

n
a

o
o

a
a

o
a

o
w

i
n

n
n

v
i
w

w
u

i
a

i
«

i
f
t
b

a
A

i
i
i
A

f
t
a

o
a

w
M

o
i
«

i
M

M
M

M
o

i
M

M
M

N
M

M
N

N
M

M
M

j
a

a
a

j
a

M
J
O

O
n

M
O

U
A

(
I
I
N

J
O

I
S

n
M

0
I
I
I
A

W
M

^
O

O
a

s
|
O

U
6

I
I
I
M

J
O

I
S

n
x
i
n

u
i
A

O
I
M

J
O

O
W

x
i
n

U
I
A

»
I
M

^
O

I
D

a
x
i
g

i
U

I
A

M
M

J
O

I
D

a
M

O
i
n

a
U

M
J
S

I
D

a
«

4
a

«
l
f
t

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
a

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

—
—

n
a

o
-

—
n

—
—

o
o

o
o

x
—

—
o

a
o

-
—

o
-

—
o

o
o

o
x

—
—

o
a

o
-

—
a

—
—

o
o

o
o

x
—

—
o

o
o

o
—

p
o

x
—

>
—

x
>

q
o

—
o

o
x
-
>

—
x
>

q
o

—
o

o
X

—
>

i
i
O

n
O

i
,i

O
'n

i
>

>
<

0
>

"
0

,f
l
''

i
O

M
O

'f
l
i
O

i
i
>

>
0

>
0

,f
l
,f

l
O

P
i
O

,i
^
O

i
'f

l
>

>
O

J
>

O
i
i
l
i
>

>
>

0
>

'n
O

>
'l

l
"
il

l
x

II
II

O
>

x
O

>
ll

"
il

l
x

ll
ll

O
>

x
O

S«
II

X
11

•
h

x
>

-
i

•-
•

c
r
-
'
c
o

t
-
'
B

>
-
i
x
m

m
r
T

»
c
o

r
»

«-
i

x
*

-i
»

h
r
*

f
u

>
t
-

a
a

r
*

i-
1

•H
t
-

c
o

e
-

cm
-
»

w
>

h
t
-

c
o

t—
-f

t
-f

t
x

>
h

i
[-

•
c
o

t-
«

O
f

Is
*

N
N

O
H

O
D

O
O

»
>

r
r
'
C

r
'

N
N

O
H

O
O

O
O

w
>

t
"
f
C

r
N

N
O

H
O

O
O

O
o

>
r
r
1

c
r

x
x
t-

>
c
-
<

o
i-

1
<

a
t-

>
*s

»
x

>
i

+
o

p
,
<

a
t
<

w
>

+
+

o
t-

>
<

5
c
a

t-
'

Is
*

X
A

A
11

A
A

A
A

X
—

A
11

A
A

A
A

X
—

A
l
l

A
A

A
A

W
—

A
II

||
X

A
A

-f
t

-f
t

||
X

A
A

-f
t

-f
t

||
X

A
v
t
o

K
»

—
t
n

v
v
t
n

v
v
a

a
n

i
i
v
t
o

i
x
*

—
t
n

v
v
t
n

v
v
a

a
q

ii
v

u
>

m
»

u
v

v
u

v
v

e
s
s

o
ii

v
to

c
o

q
k>

a
-f

t
o

v
v

k>
a

-f
t

o
v

v
k*

a
-f

t
ft

"
V

-f
t

to
-f

t
6

»
n

«
«

n
o

O
f
l
i
n

i
J
M

J
a

x
—

A
x

—
o

n
n

o
n

-
t
M

J
a

x
—

a
x

—
O

O
o

o
m

-
f
t
o

O
O

-f
t

O
o

o
o

k
»

-
*

o
m

o
cm

is
*

^
o

tn
o

O
o

sa
oo

oo
a

a
e
a

+
o

*
j

oo
oo

a
a

o
a

+
o

«x
i

oa
oo

a
a

o
a

i
o

c
:

a
o

t
a

>
h

o
a

tn
u

h
h

o
i
s

o
t

tn
o

t
a

>
h

o
a

~
M

H
O

O
H

H
S

H
H

>
>

0
>

>
>

a
H

a
O

H
H

O
H

H
>

>
S

>
.
>

U
I
H

O
O

H
H

O
H

H
>

>
0

>
^
A

H
Z

>
S

>
B

!
(
S

>
<

H
0

>
8

(
0

>
O

>
S

(O
|b

"
H

I

a
aa

a
s

a
a

a
»

o
»

a
a

a
a

a
a

a
o

a
a

a
a

a
a

a
a

o
a

a
o

a
a

x
o

a
a

h
i

a
x
o

a
h

i
h

i
a

x
o

a
a

•
-
I
X

X
X

X
X

—
•-

i
-
*

X
X

X
X

X
—

»•
)

"-
1

X
X

X
X

X
—

«
-f

<
H

X
—

•—
—

a
—

x
a

—
a

—
a

a
—

a
—

X
a

a
a

a
a

a
x
x

x
o

a
a

a
a

a
a

—
—

—
o

a
a

a
a

a
a

—
—

—
o

a
a

-*
x

>
>

a
x

>
>

x
x

>
>

a
X

-
-
-
X

-
-
-
X

-
-
-
M

O
-

-
t
n

-
a

-
t
n

-
a

a
-

t
n

-
a

o
f

cm
cm

cm
o

t
—

—
—

o
t

a
o

t
o

t
o

f
o

t
o

t
x

x
x

n
»

a
o

i
o

t
o

i
o

i
o

t
x

x
x

-f
t

a
o

i
o

x
X

A
X

O
f

M
A

X
X

A
M

O
f

to
o

o
o

o
o

o
o

o
-

-
-

m
<

sj
s
j

«s
i

x
^
>

j
.

-
-

a
c
n

tn
tn

tn
c
n

-
-

-
a

-
-

-
0

0
-

O
f

C
M

-
0

0
-

O
t
O

f
-
0

0
-

-
»

A
o

f
c
o

c
o

o>
«

n
o

i
-f

t
x

o
f

o
o

a
a

-
»

-
ft

cm
-f

t
x

o
t
o

f
c
o

c
o

c
n

c
n

o
i

-f
t

x
c
o

cm
m

a
x

-f
t

O
X

C
D

O
f

-f
t

O
X

1s
t

Is
*

-f
t

O
X

x
j

O
O

O
O

O
O

Is
*

-f
t

—
C

D
O

O
O

O
O

Is
*

-A
—

M
S

O
O

O
O

Is
*

-f
t

~
-

-*
O

i
O

A
—

o
—

o
x
j

«
a

—
'
O

o
o

o
—

O
tn

—
k>

-f
t

—
M

e
n

.
—

k
>

x
-f

t
o

O
f

O
Is

*
O

O
-
ft

o
—

o
—

o
—

x
o

—
—

—

o

1
-
f
t

0
0

0
0

o

-

o —
»

M
M

O
O

O
a

a
O

f
f
i
O

n
O

U
I
U

I
W

U
I
V

I
U

I
U

I
U

I
V

I
U

I
&

A
A

A
A

A
A

i
k
A

C
i
M

W
W

U
U

M
M

M
M

W
M

M
M

M
M

M
M

M
M

M
J
a

a
d

J
d

a
J
U

U
O

O
O

O
O

O
e
O

O
e
i
D

U
I
S

a
i
O

V
O

J
s
o

n
M

a
u

i
a

t
i
M

J
O

o
n

M
a

i
n

A
i
N

M
a

s
o

a
x
i
a

a
i
A

M
M

a
o

i
o

n
M

o
v
i
f
t
M

M
J
o

u
a

M
o

u
i
A

i
i
i
M

J
o

i
D

n
M

o
v
i
f
t
M

M
a

o
a

n
M

o
u

i
A

W
M

J
o

o
a

M
o

u
i
f
t
M

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

Q
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O

o
a

o
-
-
o

>
"
'
0

o
o

o
-
i
,
i
o

a
o

-
»

o
-
-
o

o
o

o
'
"
,
f
l
i
-
-
0

2
0

"
,
-
0

>
"
"
0

o
o

o
-
i
i
i
-
-

o
a

o
—

—
o

—
—

o
o

o
o

—
x
x

—
—

o
a

o
—

—
o

—
—

o
o

o
o

x
O

x
O

x
x
O

x
x
>

>
o

:
»

x
i
l

O
O

x
o

x
x
O

x
x
>

>
0

>
x
|
|

O
x
x
O

x
O

x
x
O

x
x
>

>
0

>
x
l
l

O
x

x
O

x
O

x
x
O

x
x
3

»
>

0
>

x
l
l

O
x
x
O

x
O

x
x
o

x
x
S

»
>

0
>

0
•H

X
«<

<
-i

f
I
-

C
O

I
-

-
f
l
a

H
X

H
»H

f
f
X

t
-

X
X

»
-
»

X
«

H
-
i

f
t
—

C
O

f
X

X
h

i
x

h
i

h
i

t
—

t
-
w

r
-

x
a

h
i

x
h

i
h

i
t
-
t
—

C
O

t
-

X

0
"
H

O
X

O
O

w
>

t
-
,
c
-
,
C

t
-
«

"
i
i
|

0
"
H

O
O

O
O

w
a

>
i
t
-
,
r
-
«

e
t
-
'"

i
+

t
x
i
x
O

'-
i
O

O
O

O
x
j
a

t
-
't

-
'e

a
t
-
'X

l
x
x

0
'
H

O
O

O
O

x
>

t
-
'
t
-
«

e
3

t
-
'
X

+
x
x
o

«
-
i
O

O
O

O
w

>
t
-
'
t
-
«

e
r
*

A
A

A
A

W
11

-
ft

—
A

A
A

A
X

II
-
»

—
A

11
A

A
A

A
X

II
-»

—
A

II
A

A
A

A
X

||
-f

t
—

A
11

A
A

A
A

x
'

—

•
a

—
t
n

v
v
t
n

v
v
a

a
n

o
u

m
—

t
n

v
v
t
n

v
v
a

a
o

w
n

v
j
m

-
o

i
v
v
u

i
v
v

E
e
a

o
o

n
v

-f
t

k
»

—
t
n

v
v
t
n

v
v
a

a
O

cm
n

v
-f

t
m

~
t
n

v
v
t
n

v
v
a

a
Q

ll
-
»

A
X

—
A

X
—

O
O

O
O

X
-
*

A
X

—
A

X
—

O
O

C
n

O
O

f
X

-f
t

O
-f

t
A

X
—

A
X

—
O

O
O

O
X

-f
t

O
-f

t
A

X
—

A
X

—
O

O
O

O
O

f
X

-f
t

O
-f

t
A

—
X

A
—

x
o

o
c
n

o
x

«
j

c
o

o
o

a
a

o
a

>
h

+
«

j
o

a
o

o
a

a
o

a
4

-
-
»

m
*

j
m

0
3

a
a

0
a

-1
1

0
-
f
t

x
j

c
o

o
o

a
a

o
a

i
o

o
«

j
c
o

c
o

a
a

o
a

i
O

0
»

l
>

H
O

*
H

>
H

>
>

0
>

a
-f

t
O

0
>

H
-
H

O
-
f
>

-
i
>

>
0

>
>

H
-f

t
O

O
0

>
H

-
J
O

-
f
-
H

>
>

0
>

a
-f

tC
D

O
0

-
H

-
)
0

-
l
>

H
>

:
»

.
0

>
-
l

-
»

C
O

O
0

<
H

-
H

O
^
-
i
>

H
>

>
0

>
-
f
t

a
a

a
a

a
a

o
a

x
a

a
a

a
a

a
o

a
a

-
i

a
a

a
a

a
a

o
a

x
-
t

a
a

a
s

a
s

o
o

s
o

^
a

t
a

s
—

t
a

s
a

s
a

a
a

a
o

a
x
x

X
X

'—
•

—
—

a
"
H

x
x

x
x

—
—

—
x

•
H

'
-
i
a

x
x

x
x

—
•—

•
•
—

a
—

i*
*

a
s

x
x

x
x

—
—

—
x

h
i

h
i

a
x
x

x
x

—
-—

—
H

I

a
a

a
a

—
—

—
0

a
a

a
a

—
—

—
a

o
a

x
a

a
a

a
—

—
—

o
a

x
a

a
a

a
—

—
—

a
o

a
x

a
a

a
a

x
x

x
O

-
-
-
a

.
.
.

p
i
a

-
-
-
A

x
a

-
-

x
a

-
-

-

A
A

A
A

X
X

X
x
j

Is
*

A
A

A
A

X
X

X
A

Is
*

a
A

A
A

A
X

X
X

O
f

-
ft

3
A

A
A

A
X

X
X

A
-
ft

a
A

A
A

A
—

—
—

-
f
t

«
x
j

x
j

e
n

e
n

-
-

-
-
*

a
m

e
n

c
n

t
n

-
-

-
t
n

a
a

o
t

c
m

o
t
o

f
-

-
t
o

a
M

M
-
ft

-
f
t
-

-
K

>
A

O
O

O
O

-
-

-

o
o

>
«j

x
j

c
m

-
»

x
o

t
n

t
n

is
*

is
*

0
1

-
ft

x
o

a
a

o
o

o
o

t
n

t
n

o
f

-
»

x
o

e
n

a
is

*
-f

t
-f

t
C

O
0

0
C

M
-
ft

X
Is

*
M

A
O

A
A

-f
t

-
ft

tM
-
ft

X
X

O
O

O
O

Is
*

-
ft

•—
O

O
O

O
M

-
k

—
O

V
I
M

O
O

O
O

Is
*

-
»

—
H

6
V

I
O

O
O

O
Is

*
-
ft

—
O

H
M

C
O

O
O

O
O

K
)

-
ft

—
H

I

—
Is

*
—

K
»

M
O

—
K

»
X

O
O

—
Is

*
X

C
M

O
—

I
s
*

X

—
—

O
—

X
o

—
X

o
—

X

1
1

1
-
f
t

^
-
f
t

(D 0
3

(f
t

to V
O

(f
t*

-J I (f
t

®

c
n

t
n

c
n

c
n

t
n

c
n

c
n

c
n

t
n

c
n

t
n

c
n

t
n

t
n

c
n

t
n

t
n

c
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

c
n

c
n

t
n

t
n

c
n

t
n

t
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

W
O

a
f
t
P

f
t
6

6
Q

O
f
t
O

I
M

M
M

M
M

W
W

M
O

I
I
J
M

K
I
M

M
M

M
M

M
M

J
J
^
J
J
^
^
^
^
J
O

a
O

O
O

O
O

O
O

O
M

«
O

O
O

O
M

«
W

"
w

a
M

W
M

M
r
o

M
n

W
s
l
^
^
^
^
^
^
^

O
M

M
M

a
M

a
ll

lM
J
O

M
M

^
O

U
I
a

M
M

J
O

M
W

M
a

u
if

tO
I
M

J
O

M
M

M
W

W
ft

M
M

J
O

I
D

W
M

O
(
n

ft
(
H

K
)
-
>

0
(
O

W
M

O
«

lt
tB

I
M

J
O

I
fl

B
M

O
g

ia
W

M
J
a

W
W

x
iO

tf
lf

tM
M

c
a

o
e
a

o
c
a

e
a

o
c
a

e
a

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

Q
O

O
o

o
o

o
o

o
o

o
e
a

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
Q

*
0

*
3

0
0

0
0

*
3

0
0

0

X
—

O
O

O
—

O
O

O
—

O
—

O
O

O
O

—
O

O
P

—
o

—
o

o
11

x
>

o
>

x
O

>
II

x
ll

x
ll

11
O

>
x

Q
>

ll
x

ll
x

11
ll
§
o

—
o

o

>
x

Q
>

o
—
o
o
o
o

—
o
o
o

—
o

—
o
o
o
o

—
o
o
o

o
o
o

—
O
O
O

—
o
o
o

—
o
o
o

—
o
o
o

—
o
o
o

—
o

—
—

^
—

^
II
O
>
x
Q
>

||
x

Tl
._

..
Q

H
It

—
M

fM
O

H
P

1
X

f-
ft

O
6

p
<

c
r

O
A

O
+

l
o

t
-
'
<

c
t
^
u

o
i
o

t
-
-
<

a
t
-

o
-
h

O
f
<

;
c
t
^
A

O
I
O

f
<

c
t
-
'

o
-
h

II
x

ll
x

II
11

O
>

x
o

>
ll

x
ll

x
ll

||
Q

>
x

Q
>

II
x

ll
O

>
x

O
>

II
x

II
O

>•
x

O
>

O
r
Q

r
i
<

C
r
M

O

II
X

o

H
C

x
j

B
B

H
O

a

a
a

o
>

a
c
o

>
a

x
o

a

a
—

—
a

—

O
O

H
I

f
I

•+
O

f
•<

C
f
'

II
X

x
j

a
h

i
o

a

o
>

a
c
o

>
a

x
o

a

-
=

r
s
—

=
~

O
O

H
f

Q
4

-
+

Q
p

«
<

;
C

t
-
i
s
*

O
A

O
I

A
-A

-f
t

II
X

A
A

O
O

H
I

t
-

o
"
o

~

M
8

H
Q

B
x
j

a
h

i
o

a

o
>

a
t
o

3
»

o
>

a
c
o

>
a

x
o

a
a

x
o

a

—
a

—
a

O
O

H
I
t
-

S
T

o

x
j

a
s

h
i

o
a

s
x
j

a
h

i
o

a
s

o
»

»
a

c
o

>
o

>
a

to
>

a
x

o
a

a
x

o
a

"
o

~

x
j

a
h

i
o

a

o
>

a
t
o

>
a

x
o

a
_

a
—

"
o

~

x
j

a
h

i
o

a

o
>

a
c
o

>
a

x
o

a —
a

o
x
_

o
o

o
a

o
o

a
a

a
o

o
a

a
o

i
o

o
o

e
n

N
I
K

>
K

>
l
s
*

l
x
*

l
s
*

K
J
^
-
f
t
-
f
t
-
f
t
-
f
t
-
f
t
-
f
t
-
f
t
-
f
t'

e
n

<
n

c
n

c
n

o
t
n

e
n

o
c
n

o
o

t
n

t
n

c
n

c
n

i
n

u
i
u

i
u

i
u

i
u

i
t
n

i
n

u
i
u

i
u

i
i
n

u
i
u

i
v
i
t
n

u
i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
u

i
v
i
u

i
u

i
c
n

u
i
u

i
w

u
i
u

i
u

i
w

Is
*

Is
*

^
c
a

o
o

o
o

o
o

o
o

o
c
o

o
c
o

o
(
D

U
i
i
o

o
v
K

D
w

n
n

a
a

a
o

i
a

a
a

M
M

M
M

M
M

M
M

M
M

n
a

o
a

a
a

Q
a

o
K

n
o

i
v
i
u

u
i
v
i
w

v
i
i
i
i
u

i
e
o

x
j
c
n

c
n

A
C

M
M

^
o

c
o

c
o

x
j
c
n

c
n

A
C

M
i
s
*

-
f
t
•
a

c
a

c
n

x
j
c
n

c
n

A
C

M
i
s
i
^
o

c
o

o
o

x
j
c
n

u
i
A

M
M

-
>

o
i
s
a

x
i
n

u
i
&

b
i
M

-
>

o
<

o
n

x
i
(
n

v
i
»

W
M

a
o

(
o

n
M

a
)
u

i
a

o
i
M

-
k
o

i
o

n
M

O
>

u
i
a

w
M

-
>

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

x
O

x
x
o

x
x
a

a
a

<
H

i
a

O
H

i
a

x
x
x

ii
—

X

x
o

a X

<
x

O
x

—
—

a
a

o
•<

O
x

—
—

x
c
o

o
—

—
X

X
X

.
-
c
x
o

x
x
x

—
x

—
o

x
x

—
a

o
o

x
o

—
o

—
o

o
—

o
—

—
o

o
—

o
—

—
X

—
>

—
O

O
X

X
o

X

a
o

II
H

I
O

H
I

X
X

M
x

O
e
«

O
l—

X
X

O
H

I
S

«
X

a
t
-
'B

H
I
t
-
'B

O
H

I
»

"
"

B
X

H
I
X

O
H

i
X

X
X

»
«

»
»

0
»

»
X

>
X

>
>

X
>

X
X

>
>

X
>

X
X

^
X

-
ft

X
>

>
II

11
O

II

O
H

I
C

O
—

H
I

X
—

H
I

X
H

I
-
ft

a
H

-
f
t

C
O

H
I

II
H

i
X

H
i

ll
H

i
T

a
o

f
x

r-
»

—
c
o

ii
—

H
I

X
H

—
C

O
H

I
I
I
—

x
t—

c
a

c
t-

>
t—

t-
>

t-
>

t-
>

i-
1

r
«

11
II

r-
>

C
x

»•
h

i
o

o
ll

a
o

II
a

a
h

i
a

X
a

II
o

C
D

X
X

C
3

H
O

"
C

6
X

x
x

x
t
-

to
e

o
a

ll
•<

a
o

ii
e
o

a
o

n
x
o

o
z
i
i
H

r
r

c
>

i
-
'X

t
-
,
i
-
«

x
c
-
>

>
x
i
-
*

i
—

i
j
e
i
t
-
'X

M
-
ft

X
-
A

X
l-

1
I—

o

Is
*

H
I

Is
*

H
I

a
a

A
x

a
O

f
A

11
a

f
t
-

V
A

X
W

H
j
H

O
r

H
I

O
t—

H
I

||
t
n

H
I

H
I

H
—

-f
t

-
ft

-f
t

-f
t

+
-
ft

-
ft

|
1

+

c
n

c
n

>
0

0

a
x

a
v

II
X

-
ft

a
o -
f
t

-
ft

c
m

a

A
Is

*

X
Is

*
1

Is
*

T
-
»

V
II

o
o

T
tn

+
is

*
x

c
n

a
—

o
o

ll
a

ii
a

ii
a

a
ii

a
n

-*
a

a
u

a
n

-f
t

^
k

-
»

o
a

t
n

t
o

-
f
t

-
f
t

.
A

-
f
t

O
X

-
ft

C
-<

«
A

•
>

>
X

a
C

D
X

«
V

C
D

•
V

O
O

-f
t

O
-f

t
O

-
*

O
O

-
*

O
-f

t
V

O
O

-f
t

O
-f

t
A

V
A

O
O

t
n

Is
*

x
n

•<
A

A
A

x
j

x
j

O
f

A
X

—
X

8
P

C
O

H
K

U
I

H
W

H
O

O
I

h
i

c
d

t
-
1

-
a

a
a

a
a

i
s
*

a
a

a
-
»

o
o

t
r
-

a
c
n

o
t
-

o
X

•H
A

O
H

I
O

o
H

i
A

>
X

P
-

C
O

o
X

X
O

c
o

r-
>

a
O

—
O

O
H

>
H

>
H

>
>

H
>

H
D

>
>

H
>

H
O

f
O

>
o

a
r
*

a
h

i
a

h
i

a
s

9
)
W

>
H

O
f"

t3
X

H
i

x
h

i
a

a
o

a
a

s
a

a
a

a
a

a
a

a
a

a
a

a
h

i
H

I
a

a

X
f

X
H

I
a

x
a

S
M

H
i

-
-<

X
X

t
-

x
a

a
•U

—
—

—
p

i—
M

—
—

M
—

M
H

I
—

—
x
—

M
a

a
H

I
—

—

6
a

o
X

z
x

a
o

-
f
t

«
A

M
O

x
O

x
-
f
t
-
f
t
-
f
t
M

a
x
a

x
x
a

x
a

a
x
x
a

x
a

x
X

a
-
ft

x

a
3=

a
a

.
>

—
.
.

€
SB

tn
a

>
a

a
a

o
-

-
-
*

-
+

+
m

i
i

i
a

a
M

A
-

a
O

-
ft

o
c
n

-
f
t

-
ft

o
•<

—
C

D
g

-
-

i
j

en
x

tn
-f

t-
ft

tn
-f

t
in

a
-
ft

-
ft

tn
-f

t
en

a
-

x

a
a

Is
*

A
O

-
f
t

o
O

A
—

>
f

X
SS

a
is

*
c
n

m
c
n

x
j

w
i

+
x
j

|
x
j
.

-
x
j
-

x
j

-
-

c
n

-
o

tn
i
n

t
a

X
a

O
x
j

-
f
t

t
n

O
x
j

X
J

A
—

—
f

—
C

O
O

0
0

—
o

o
-

-
-
ft

x
j

_
»

c
n

x
x
m

x
o

i
n

x
x

c
n

x
a

e
n

c
n

i
n

-
^

a
o

-
ft

o
c
n

o
V

Z
S

P
C

a
—

x
j

>
U

I
lx

>
K

»
-

O
-

O
-

I
O

+
O

x
j
-

+
O

I
O

X
J

-
f
t

t
n

is
*

c
m

O
C

O
o

o
>

-
o

•
x

X
•

o
O

—
—

-f
t

-f
t

-
ft

-
ft

-A
o

t
-
f
t
-
f
t

-f
t

o
o

C
O

—
o

a
a

•
•

—
A

A
O

f-
-

O
I
M

-
o

—

H
I

o
X

<
•
•

•
»

<
O

O
C

D
-f

t
«

*
C

D
-A

-f
t

a
f

X
8

P
_

—
—

O
f

O
f

—
O

f
O

f

b
H

I
C

O
H

I
C

A
X

x
j

0
0

«
x
l

0
0

X
M

a
h

i
—

—
-

—
"
-
*

6
x

a

X
X

o
a

•
»

a
-
f
t

—

X
X

o
t

-
f
t

X

t-
>

a
o

x
j

t
-

•
X

t
n

—

i—
O

R
P

a
•

n

MAZE

RACE
Maze Race is a game,written in Tl BASIC for two

players; one controls the red soldier, and one con
trols the blue soldier. The game starts out with

the opposing soldiers lost at the ends of a forest maze. The
object is to reach the safe zone across the field without
meeting the enemy. The first soldier to cross his boundary
into safety (through the entrance) wins the round, and the
game continues until one soldier scores ten times. If the
soldiers collide, neither one scores.

The maze is drawn randomly by the computer, so if an
impossible maze is drawn (an entrance blocked or a soldier
surrounded), it may be redrawn by answering the "Change
Maze?" option with "Y" for yes.

The red soldier is moved by pressing the arrow keys on
the left keyboard. The blue soldier is moved by pressing I
for up, J for left, K for right, and M for down. You may
wish to use the Video Games 1Command Cartridge overlay.
No diagonal moves are allowed, and a soldier cannot go
through a barrier. Once a key is pressed, the soldier moves
in that direction until another key is pressed.

The difficulty of the maze may be altered by adjusting
the PRINT statements 220-560. The & is a blank space on
the maze, and # is a barrier.

EXPLANATION OF THE PROGRAM
Maze Race

910-1070 Reads red soldier's keyboard entry to move.
170 Branches to title screen and instructions. 1080-1230 Checks where soldier will move and redraws
180-210 Subroutine to print messages on screen below soldier. Checks location for space, block, enemy

maze. entrance, or his goal.
220-570 Subroutines to print maze a line at a time. 1240-1400 Reads blue soldier's keyboard entry to move.
580-700 Clears screen and prints maze. Lines of maze 1410-1580 Checks blue soldier's move and location.

are chosen randomly then printed. 1590-1690 Routine if soldiers collide.
710-740 Places soldiers at opposite ends of maze in ran 1700-1760 Prints message when one soldier wins.

dom horizontal position. 1770-1940 Prints scores.
750-810 Prints message,"CHANGE MAZE?", waits for 1950-2000 Asks "TRY AGAIN?" and branches

response and branches accordingly. accordingly.
820-900 Initializes variables. RX, RY, BX, and BY are 2010-2180 Prints title screen and defines characters and

directional increments. RXC, RYC, BXC, and colors; asks if instructions are needed and waits
BYC are coordinates for the red and blue for response.
soldiers. RED and BLUE = 1 for a win, 0 for 2190-2270 Prints instructions if desired.
a loss. Sounds a "beep" to start game.

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 253

EtM
EM

EM

EM

EM

EM

GO

FO

R

P

&

R

P

I
R

P

&

R

P

&

R

P

&

R

P

&

R

P

&

R

C

R

C

FOR

AA =

ON

R

T

R

T

R

T

R

T

R

T

R

T

R

T

R

T

R

T

r|n
T

R

T

R

T

R

T

R

T

Rl

T

R

T

R

T

Rl

T

MA

L

DIOMI
HA

60

36

0

E R

3,

254 The Best of 99'er Volume 1

C

MS

X

610
A

F

F

CA

X

Y

X

Y

Y

Y

E

L

A

A

F

F

X

Y

g|o
F

160
F

B

BY

!GfO
F

BY

BX

60

A

X

Y

A

F

RE

60

A

F

F

X

X

60

0

A

0
TO

K

1

0
TO

K

1

0
TO

l|l

NG

C +

1

17

6C

WE

WE

X

IMA

WR WA

WRO N6 WA

R(BXC|+BX, C|+BY,DD)

WO

WO

Copyright© 1983 Emerald Valley Publishing Co.

f ® 3 D
o

to 3 t
n

t
n

1
0

0
0

0
9

0
0

0
9

0
0

0
0

0
}

O
O

C
O

0
0

e
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

t
n

i
n

t
n

t
n

i
n

t
n

t
n

t
n

i
n

c
n

a
a

o
c
o

o
o

x
j
c
n

t
n

A
O

f
i
x
»

-
f
t
e
9

t
o

c
o

x
j
<

n
c
n

A
t
M

i
x
i
-
A

O
t
o

o
o

x
j
c
n

w
A

O
f
i
o

-
f
t
o

c
D

O
O

x
j
c
n

t
n

A
O

t
i
x
i
-
f
t
o

t
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

c
a

c
a

e
a

o
o

o
o

o
o

o
o

o
—

O
O

O
O

—
X

X
O

X
S

O
X

3
O

S
—

O
O

O
X

S
a

o
o

x
o

o
o

o
0

0
—

O
X

X
O

O
O

—
—

o
>

>
X

>
O

>
>

X
f

X
O

II
to

O
II

*
»

»
O

f»
X

5«
"
O

O
I
I

«
•

X
>

>
O

>
>

9
*

o
t-

>
x
>

-
<

x
>

o
>

x
X

•
h

p
*

r
-

t
-

•
-
I

t-
«

P
-

a
o

X
•
x
l

II
C

O
I
x
l

Ii
-
*

11
t
-

•
4

C
O

•x
l

II
X

f
P

-
X

P
-

p
-1

p
-

-
H

a
r
-

O
O

p
»

•H
p

-

O
t-

"
i-

>
0

0
(-

•
O

«-
•

f
X

X
C

O
G

O
f

•
a

•
x
l

•
O

•
x

p
-

O
g

o
t

«
>

-i
p

*
p

"
P

"
r
»

r
*

O
x

to
r
-

11
II

p
-

O
"

p
*

o
o

p
*

X
X

|]
X

•
H

X
X

X
f

X
O

^
-
>

II
•
<

X
X

O
O

k
»

a
a

a
a

-f
t

a
a

o
ll

x
o

p
"

-
ft

x
g

a
-
f
t

G
—

O
O

II
a

a
a

—
ft

.
^

o
a

•<
x

a
C

O
X

||
||

O
O

O
x
O

l
D

O
O

c
n

e
o

x
-
f
t

•
H

-
»

a
x
j

O
X

O
t
o

-
ft

X
o

o
-
»

O
O

O
x
j

A
o

o
o

o
-
f
t

O
-
*

o
t

o
a

a
x

a
-
*

a
a

a
t
-

o
o

o
>

a
X

tn
II

a
o

t
o

o
P

*
e
—

f
a

a
a

o
v

a
+

+
a

o
G

O
0

0
o

>
>

a
>

o
>

>
-
ft

G
C

O
O

t
-

a
O

3
s

-
*

*
"

O
O

—
o

O
*

*
>

>
>

o
Ix

l
>

X
e
a

S
a

a
a

a
a

-
ft

a
a

a
o

x
+

<
—

X
—

X
X

O
X

X
B

a
m

:
X

B
O

-
f

X
X

X
—

a
-
t
~

—
—

—
•
H

—
—

.
-
H

X
•
x
l

I
x
l

•
x
l

K
»

M
-H

+
P

I
o

a
x

a
ix

i
O

O
-
f
t
.
^

-
f
t

a
B

O
S

a
x

0
0

-
ft

a
x

O
f

O
f

<
H

O
f

o
f

o
t

a
x

o
o

C
O

X
O

f
O

•x
i

k
»

m
x

x
x

X
X

X
i
n

x
a

-
-

a
-

-
-

X
r
*

X
m

a
-

«
*

-
-

O
O

O
a

o
o

o
a

O
f

lx
»

X
-
f
t

lx
»

-
f
t

a
a

X
-
*

a
-f

t
a

O
x
j

+
.

.
-

-
_

&

o
t
o

a
t
o

o
t
o

X
a

—
-
*

-
-

-
a

B
C

X
I

c
o

c
a

X
1

-f
t

i
n

-
-

-
-

-
-
a

—
X

x
j

C
M

X
x
j

e
n

x
•<

•<
-
ft

M
!

•<
x
l
U

I
M

A
A

-
^

a
A

A
0

9
X

A
K

»
O

—
•
—

-
O

O
O

O
o

-
t
o

o

o
o

t
o

t
o

X
o

o
t
o

e
n

X
-
i

O
-

p
"

a
•

-
-

-
o

o
—

—
-
ft

o
.

o
X

-
f

—
t
n

o
-<

-
f
t

O
f

-
f
t

O
f

•
~

^

O
C

O
o

—
3

A
—

O
Ix

l
0

9
.
a

0
0

+
2

X
—

X
+

o
—

•
x
l

—

A
X

X
a

—

0
0

«
C

O
•
<

I
x
l

—
•

-

o
-
f
t

—
K

>

X
X

o

t
-

-

a
•

•
x
l

X
—

•

Ix
l

Ix
l

K
»

I
x
l

K
>

•
x
l

•
x
l

I
x
l

I
x
l

•
x
l

•
x
l

I
x
l

•
x
l

•
x
l

I
x
l

I
x
l

K
>

N
»

•
x
l

K
l

•
x
l

I
x
l

I
x
l

I
x
l

•
x
l

•
x
l

•
x
l

•
x
l

-
f
t

-
A

-
f
t

-
f
t

-
f
t

-
f
t

-
f
t

-
f
t

-
f
t

O
O

o
o

o
o

O
O

O
O

C
D

t
D

t
D

C
D

l
D

l
O

t
O

l
D

I
D

x
j

c
n

c
n

A
O

f
•
x
l

-
ft

o
t
o

c
o

x
j

e
n

t
n

A
o

f
i
x
i
-
f
t
e
a

t
o

o
o

x
j
c
n

c
n

A
C

M
•
x
l

-
f
t

O
I
D

0
0

x
j

c
n

c
n

a
c
m

ix
i

-
f
t

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
O

O
O

O
O

O
O

O
O

O
O

O
O

^

X
—

O
X

X
O

X
«

X
«

X
o

—
—

o
x
o

o
o

o
o

o
o

o
o

o
.
.

.T
O

_
X

—
X

o
t
n

—
—

—
o

x
a

X
—

O
a

x
>

x
a

X
X

"
x
c
-
>

»
>

x
x
>

x
>

>
>

>
>

>
>

>
>

>
.
.

a
-
-

>
-
1

x
x
x
a

j
>

x
x
O

x
>

O
t
-

—
M

—
>

-
o

—
f

p
-

—
P

-"
p

-
p

-
p

-
p

-
P

"
P

-
p

*
p

-
p

-
.
.

—
—

=
_

.
p

-
O

p
*

—
X

B
P

-

X
r
-

a
a

o
a

-
h

a
c
o

a
f

X
X

P
-

a
P

*
p

»
p

-
p

-
t—

P
-"

f
r
-

p
-

p
-

•
•

a
»

a
»

a
p

-
X

x
x

c
o

p
-

a
-
*

B
r-

>

X
-
i

-
f

X
-
t

O
•H

-
I

-
J

X
X

-
i

-
i

•H
-
h

X
X

11
•H

O
X

-
e

x
o

-<
•
<

X
o

o
o

o
o

o
o

o
o

o
o

•
<

•
<

O
X

o
x

o
a

II
X

i
X

•
-
1

.
.

—
.

>
p

-
A

II
X

•
o

a
a

a
o

a
a

o
a

a
•
H

-
H

•H
p

*
A

II
X

•
X

P
W

O
-
ft

•
<

.
.

c
a

t
-

*
n

a
•

a
-
n

X
V

x
j

•<
"
5

p
«

>
>

>
p

-
>

>
P

-
>

>
>

>
>

X
V

C
0

H
-<

-
J

r
-

>
11

a
O

f
—

•
O

c
o

O
x

X
s~

>
0

0
0

0
-
~
>

o
a

a
x
o

x
x
o

x
x

C
S

X
X

>
x
j

t
o

a
—

•
B

>
-<

-
ft

>

o
>

.-
I

X
>

>
O

X
ID

o
a

a
a

0
0

X
O

•<
«

:
11

O
B

-
i
-

x
a

>
x

O
O

•
-
i
'

•
H

-
f
t

-
f
t

-
f
t

—
-

_
f
t

_
f
t

—
O

i
O

f
x
j

x
j

x
j

—

•
h

a
-

-
f
t

—

a
x

X
X

X
a
—

o
-
i

a
x

-
f
t

-
f
t

-
f
t

K
>

-
f
t

o
o

-
k

X
0

0
—

—
•

—
-
i

a
X

>
•H

K
>

X
X

x
c
o

X
g

x
a

X
M

—
—

ft
o

t
>

xi
o

o
t
n

a
a

x
-
ft

x
O

H
S

M

a
«

:
c
o

o
x

o
s

a
x

X
a

•<
a

-
f
t

3
«

»
=

=
x

a
t
o

•<
>

O
x

-
-

x
t
-

>
c
o

>
o

O
a

-
X

e
n

»
»

»
X

J
=

»
O

f
X

o
»

»
»

a
c
n

—
.

a
ix

i
i
n

c
o

O
x

—
a

f
c
o

t
n

c
o

•
H

-
X

-
A

A
-

X
-
ft

-
X

>
»

»
»

»
t
n

o
x

a
-
f
t

t
o

0
0

—
x

—
X

-
i

x
—

M
O

O
—

X
_

i
X

0
0

C
O

-
ft

X
0

0
-
f
t

X
—

»
>

2
*

»
-
ft

0
0

—
.
o

O
M

-

o
a

x
•

X
2

a
-
f
t

o
g

—
X

-
f
t

(
x
l

—
X

-
f
t

—
X

»
>

»
t
o

o
o

o
o

o

•H
X

•
c

s
a

c
n

o
X

0
0

(x
l

X
0

0
X

»
tx

l
»

e
n

—
O

O
r

X
X

C
O

.
.

o
a

C
O

>
o

•H
X

x
j

-
f
t

X
x
j

X
»

X
•

o
-<

O
G

f
X

•
O

•H
tM

C
O

—
X

X
A

X
X

X
»

»

a

X

c
n

«
»

X
X

O
o

X
-
ft

A
X

-
*

X
»

X
»

C
O

X
•H

~
o

o
X

•
f

a
X

0
0

I
D

X
C

O
X

»
>

*
—

+
O

t
-

O
x

—
.

o
X

X
-
A

-
»

X
-
f
t

X
»

O
»

«
A

•
x
l

f
X

a
—

•
•
o

X
0

0
A

X
C

O
X

»
X

*
•

0
0

K
»

X
z

>
o

X
X

Ix
l

Ix
l

X
Ix

l
X

»
»

—

m
-
t

o
o

a
—

X
A

»
x
l

X
A

X
*

»
«•

o
>

—
•
H

a
c
o

-
e

X
N

>
A

X
I
x
l

X
»

*

a
x

—
*

^
X

A
ID

X
A

X

•
H

•
O

C
O

>
a

X
»x

»
»

X
»

x
l

"»
1

-
H

-
t

>
O

X
—

X
A

—
X

A
>

>
>

f
l

•
f

«
x

•
•

•
•

«
—

X
X

H
i

P
-"

>
•
—

—
—

—
—

—

E
V

~
-
<

^
1

x
j

Tl
BASIC

Tex-Thello
Tex-Thello is a microcomputer version of the popular

Othello (a trademark of Gabriel Industries, Inc.)
board game. The program written in Tl BASIC, pits

the human player against the computer for an exciting game
on three levels of difficulty: On Level 1, the computer just
tries to capture the most markers. On Level 3 (the highest
level), the computer takes into account the edge squares and
corner squares—thus providing it with more of a theoretical
advantage. Level 2 is an intermediate level. The program
will check for illegal moves (sounding a warning tone within
30 seconds) and change the color of "captured" markers
according to the moves.

Game Rules

1. Since the first four squares in the middle of the board
must be occupied (in "checkerboard fashion") first, the pro
gram automatically provides this initial setup.

EXPLANATION OF THE PROGRAM

Tex-Thello

Line Nos.

160 Dimensions arrays for squares captured.
170-240 Stores the name "COMPUTER" for player.
250-400 Option screens; user presses a key for choices.
410-510 Players input names; stored in PLAY(1,10).
520-610 Initializes positions of board.
620-730 Prints labels for game.
740-920 Defines graphics characters and colors.
930-980 Draws starting Tex-Thello board.
990-1090 Draws starting four positions.
1100-1170 Initializes squares around four center squares;

starts for first player on move number 5.
1180-1230 Prints player's name (computer) and black

squares indicating whose move.
1240-1330 Player presses column number then row number

for move.
1340-1360 Computer prints move.
1370-1480 Checks for legal move.

256 The Best of 99'er Volume 1

2. The player alternates turns with the computer by enter
ing the grid coordinates for a move. A move consists of plac
ing a color square so that it "captures" (by completing the
outflanking of) one or more of the opposite color squares.
The computer will then change all the captured squares to
the opposite color.

3. A move must always consist of capturing at least one
square.

4. If a legal move cannot be made, it then becomes the op
ponent's turn to move.

5. Capturing may be accomplished horizontally, vertically,
or diagonally in one or more rows or directions.

6. The game is over either when the board is filled with col
or squares, when it is not possible for either opponent to
move, or when the board is filled (or partially filled) with
all one color. The opponent with the most squares is the
winner.

1490-1550 Sets values of surrounding squares to zero.
1560-1620 Shows move on screen and switches appropriate

captured squares; increments TURN (number of
moves).

1630-1740 Checks to see if board still contains two colors,
otherwise branches to end of game.

1750-1790 Changes player number for next turn and bran
ches to beginning of main loop.

1800-2040 Tallies squares for each player and prints score.
2050-2100 Asks if player wants to play again; branches ap

propriately or ends program.
2110-2250 Subroutine to check if there is a legal move.
2260-2510 Subroutine to place colored square on board

where player or computer indicates his move.
2520-2820 Subroutine to check how many squares may be

captured.
2830-2940 Subroutine to color captured squares.
2950-4240 Subroutine to calculate computer's move.

EXTRA is the number of squares that can be
captured; HARD is the level of difficulty (1, 2,
3). For the different levels, the board positions
have different values.

Copyright© 1983 Emerald Valley Publishing Co.

EM

EM

EM

EM

EM

EM

M

T

TO

WIMP
L

COMP

ow

A

F

COM]P
F

C

N

I

P

W

N

FO

FOR

FOR

COMP

N

0

L

T

ClOlM

6C

6C

CO

HlOiO
E

0

+

TH

EA

HOO

RM

0

+

EA

CHblO

LO

TWO

1

IGAM1E

COMP
2

Copyright © 1983 Emerald Valley Publishing Co.

LO

CO

NAME

CAMJE
HA

AME LO

C

N

C

C

I

C

I

X

c

c

I

Y

c

60

60

60

60

60

CO

CO

CO

L

T

L

L

COMP
L

S

E

L

L

S

E

L

CHA

SO

ClOMP LA

N +

MA

10

2

LOO

The Best of 99'er Volume 1 257

K
»

t
n

0
0 5 n 0
0 p to V
O

v
o

to
'

3 to

M
M

M
K

>
M

M
K

)
M

M
K

)
N

)
M

M
M

M
M

M
K

>
M

M
M

M
M

M
M

M
M

M
M

K
)
I
O

M
M

M
M

M
M

M
M

^
.
A

-
f
t

-
f
t

-
f
t

-
f
t

.
A

-
f
t

-
f
t

-
f
t

_
»

-
f
t

-
f
t

-
f
t

-
»

-
f
t

-
f
t

-
X

-
f
t

-
f
t

-
f
t

-
f
t

-
A

-
f
t

-
f
t

-
f
t

-
f
t

.
A

-
f
t

.
A

-
f
t

-
f
t

-
f
t

-
f
t

-
f
t

-
f
t

-
f
t

-
f
t

O
t
O

t
O

f
O

f
O

t
O

t
O

t
O

f
O

t
l
x
)

-
f
t
O

O
O

O
O

O
O

O
O

O
t
O

C
O

t
O

l
o

t
D

i
D

c
o

t
o

i
o

o
e
o

o
o

e
o

o
o

c
o

c
o

c
o

c
o

c
o

0
0

e
n

c
n

c
n

o

o
o

x
j

c
n

t
n

a
o

t
w

-
f
t

o
t
D

O
O

x
j
c
n

c
n

A
C

M
i
x
i

-
f
t

o
t
o

n
x
j

c
n

i
n

A
O

t
Ix

l
-
ft

o
c
o

r
a

x
j
c
n

i
n

A
o

t
i
x
i

-
ft

O
C

D
0

0
x
j

c
n

i
n

a
o

t
k
»

-
f
t

O
C

D
O

O
x
J
c
n

t
n

A
C

M
I
x
!

.
A

o
t
o

o
o

x
j
c
n

i
n

A
C

M
i
x
i
^
o

i
O

Q
O

x
j
c
n

c
n

A
O

f
Ix

l

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
Q

O
O

O
O

O
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

O
c
o

c
o

c
o

c
o

—
a

X
X

C
O

c
o

—
B

x
-
e
x
a

a
c
o

—
O

—
X

X
X

X
X

B
B

C
O

—
—

o
x
a

o
x
x
o

x
—

X
•-

*
X

x
O

x
—

a
a

-
i

o
*

*
—

—
X

X
*

*
*

*
X

B
O

X
O

X
—

o
a

a
—

—
x

x
s
»

o
>

o
O

A
C

M
M

-
f
t
X

O
A

t
M

t
x
l

-
f
t

T
l

X
X

II
II

X
X

*
X

O
x

O
O

I
x
l

E
X

]
SB

x
X

*
*

X
X

>
B

X
>

o
«

o
*

X
B

O
B

B
O

B
X

X
X

O
O

O
X

X
O

O
O

O
X

O
^

P
"

O
p

*
x

o
x

x
x

x
O

O
-
f
t

O
-
f
t

X
X

o

ll
II

II
II

I
T

II
II

ii
£

H
N

N
X

X
ll

X
B

B
•
<

X
ll

3
S

O
r
-«

—
X

P
-

B
—

.
—

.
—

*
*

—
•
—

•
—

X
X

*
*

*
*

B
»

-
J

*
*

a
3

•
-
f

ll
•H

II
•
-
i

X
X

B
B

ll
*

*
II

X

C
D

C
D

C
D

tO
-
4

C
N

N
*

*
*

*
-
f
t

X
G

>
II

II
o

X
x

x
*

-
a

•
H

t-
>

a
-
^
a

>
n

a
i
x
)
z
a

^
a

^
-
)
-
H

-
f
t
-
H

N
>

>
>

I
x
l

-
f
t

X
O

m
O

-
f
t

X
O

-
1

-
J

>
>

O
I

o
A

X
*

*
G

O
o

o
o

o
•<

o
C

D
0

0
x
j

c
n

•-<
-

B
•<

X
X

t
d

—
•<

X
•<

X
A

II
-
t

—
II

O
II

O
•*

•
-•

*
*

*
*

O
*

*
O

11
O

ll
—

—
11

II
O

*
-
•

.
—

—
—

—
t-

>
G

w

x
j

o
t
n

a
x

x
o

a
X

«
<

•
H

X
II

II
—

V
0

0
X

—
a

11
-
A

I
x
l

*
*

»
*

*
—

—
«

*
*

*
*

—
—

II
II

O
O

—
X

-
f
t

-
A

II
_

»
•
—

—
•

—
—

II
II

-
f
t

II
B

•
x
l

X
•
x
l

x
o

B
I
x
l
-

-
»

-
f
t

X
x
j

C
D

X
•
•

o
^

•
x
l

^
>

>
•
x
l

<
Ix

l
o

-
»

o
-

-
-
f
t

-
f
t

^
a

-
f
t

-
f
t

—
ft

0
0

-
-

-
f
t

-
f
t

c
n

-
ft

a
ix

i

A
A

A
A

t
-

>
«

!
•
<

0
0

•
<

>
a

O
V

'
>

O
O

A
*

-J
I
D

-
I

—
—

a
o

t
o

C
D

-
f
t

—
—

0
0

II
0

0
C

M
V

O
f

V
O

11
O

f
—

*
*

*
*

*
*

*
*

—
X

>
*

*
•
x
l

•
H

•
H

i
n

a
V

-
f
t

O
K

)
—

—
•
H

*
*

o
O

*
*

o
*

*
*

*
o

H
O

»

O
Ix

l
o

-
ft

X
O

O
A

O
O

a
*

*
a

o
t
-

a
o

O
O

O
>

«
-i

+
O

+
A

II
O

O
&

a
A

A
O

O
a

t
n

o

V
X

a
x
-

>
—

~
*

*
>

^
o

-
f
t

-
ft

V
O

f
>

X
V

11
X

-
i

*
*

o
<

-t
O

0
9

0
0

B
x

a
x

•<
•
x
l

^
•
x
l

•
-
i

A
0

0
0

9
—

a
>

-f
t

0
0

0
0

a
-
i

a
a

a
a

X
a

C
M

O
U

i
-
f
t

*
*

a
-
f
t

a
X

X
«

H
X

•
H

-
ft

C
O

>
-

•
H

O
•
h

a
-
f
t

*
*

-
f
t

X

a
a

o
a

a
>

•x
i

c
o

—
o

—
a

6
«

H
a

x
p

*
x
j

*
*

a
c
n

a

X
o

o
>

+
X

a
o

t
a

x
a

O
0

0
a

x
x
j

•
x
l

•
x
l

X
•
x
l

a
t
-

o
—

-
f
t

a
X

•
x
l

X
a

o
o

x
a

O
-
ft

C
M

C
M

O
I
x
l

X
o

a
-

<
a

-
f
t

X
a

0
9

C
D

O
t

>
-
f
t

•
x
l

o
•
o

X
•
x
l

—
o

*
*

-
ft

0
0

-
f
t

-
f
t

o
O

B
O

•
x
l

>
r
->

o
a

X
o

-
»

t
o

C
O

>
-
f
t

x
j

o

O
-
f
t

.
p

"
—

>
-
f
t

X
a

t
o

o
o

a
X

J
(X

l

O
•<

*
<

o
<

.
.

o
t

t
n

o
o

e
n

o

B
s

^
•
—

•*
•
x
l

o
o

O
O

a
X

o
>

X

G
•<

—
3

-
1

X

•
H

X
•

-
f
t

o
—

-
o

-
•

a
-
.

—

a
-

•
a

X
— —

*
*

•*

—
-

o
O *

*

>

-
•

r
-
«

W
M

W
M

M
U

I
W

W
M

M
O

I
M

W
O

I
W

M
M

U
I
M

M
M

M
M

M
M

M
M

M
M

M
M

M
N

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
^
U

^
^
U

J
k
U

^
O

O
O

O
O

O
O

O
O

O
ID

ID
ID

ID
ID

ID
C

D
C

D
C

D
C

O
0

9
0

9
O

0
0

O
O

0
0

O
0

0
0

0
0

9
x
j
x
j
x
j
«

j
«

j
«

j
«

j
«

j
x
j
x
j
o

>
c
n

c
n

o
o

o
c
n

o
c
n

o
t
n

i
n

t
n

t
n

c
n

c
n

c
n

t
n

t
n

t
n

A
A

A
A

A
A

A
A

A
A

O
f

x
J
O

M
A

O
f
M

^
O

t
D

O
x
j
o

i
c
n

A
O

t
l
x
l
-
f
t
O

l
O

O
O

x
j
c
n

i
n

A
C

M
I
x
l

.
^

o
c
D

O
O

x
j
c
n

i
n

A
o

t
i
x
i

^
O

C
D

O
O

x
J
o

i
c
n

A
O

t
l
x
l
^
O

t
D

O
O

x
j
c
n

i
n

A
O

f
l
x
l
-
f
t
O

t
O

O
O

x
x
l
o

t
i
n

A
O

t
l
x
l

-
f
t
O

t
O

X
x
j
c
n

U
I
A

t
M

r
x
l
-
f
t
O

t
D

o
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

a
—

—
o

—
x
x
x
a

a
»

<
x
a

>
o

»
<

x
x
»

<
X

B
B

x
a

a
o

-
<

G
x
x
x

—
<

g
—

—
—

—
—

<
g

—
—

—
—

—
•
<

G
x
x
x
x
B

O
O

O
O

»
<

'
<

x
x
e
o

e
o

e
o

e
o

O
X

X
X

X
X

X
X

X
X

X
X

X
X

S
»

X
X

O
X

O
O

X
X

X
|
|

|]
X

•
~

O
II

11
O

•<
X

X
X

X
X

X
O

II
11

X
•<

X
X

II
11

X
X

X
X

X
II

II
X

X
X

X
X

11
II

O
O

X
X

X
>

>
>

>
I
x
l

-
ft

Ix
l

-
ft

A
O

f
Ix

l
-
A

-
i

*
*

B
X

B
B

-
4

3
-
9

-
C

X
X

X
X

X
X

B
I
I

11
3

M
•
H

X
X

•<
G

-
J

"
<

X
<

G
•<

X
B

B
H

g
•
H

f
P

"
P

"
P

"
II

ll
ll

ll
ii

ii
ll

ll
*

*
b

b
x

•<
~<

x
x

a
-
e

-<
x

x
a

o
-
i

x
g

>
a

g
•<

x
^

-
G

•
<

X
-
C

X
G

a
-
i

•
H

•H
+

+
B

X
X

>
+

+
>

>
X

>
>

+
+

>
>

X
-
«

S
G

+
-f

-
B

o
>

>
»

II
II

II
11

>
11

II
11

11
>

ll
c
x
a

-
•<

x
>

a
*

<
X

—
—

w
B

>
o

o
o

s
»

x
x
-
~

o
o

P
-

O
O

P
-
ll

M
O

O
—

—
>

X
-
f
t

+
-f

t
+

-f
t

^
^

-f
t

II
II

X
x
j
K

»
x
j
t
o

B
C

O
-
f
t
C

O
-
f
t
B

-
f
t
B

-
t

x
ll

ii
x

o
a

X
~

-
X

X
II

o
a

II
•
-
.

x
^

—
—

II
•
H

-
I
G

—
—

G
G

I
I

G
G

—
—

G
G

11
~«

X
—

—
II

II
ii

x
a

a
a

a
a

+
Ix

l
+

Ix
l

tn
A

O
f

Ix
l

A
X

X
+

O
O

a
B

M
-

-f
t

-f
t

||
X

II
Ix

l
—

—
-
f
t

o
X

I
x
I
B

B
X

B
B

-
B

B
-

-
-
f
t
-

-
B

B
-

-
-
ft

B
B

-
f
t
-
f
t

-
ft

X
o

o
o

o
-
f
t

»
-
f
t

»

O
X

X
»

<
^
H

«
H

M
»

H
||

-
1

^
-
i

-H
11

A
>

tn
•<

|
n

X
M

p
*

X
x
j

x
>

>
<

:
<

•<
•<

<
<

<
-
j

-
i

*
*

a
a

a
a

-
«

X
x
i
h

h
»

a
a

a
a

i
x
i
B

B
B

B
-
f
t

c
n

||
o

t
—

-
t

-
i

-f
t

P
-1

x
j

•
H

o
-
i

•x
l—

<
—

*
H

'
•

—
x
-

—
i

-
*

—
.

—
H

a
a

-
-
H

H
B

>
>

>
>

O
B

B
K

X
X

X
X

X
X

X
X

x
J
O

O
A

O
O

O
O

+
o

o
B

B
c
a

a
ii

ii
ii

ii
ii

a
ii

a
11

11
a

x
x

o
o

>
B

B
B

B
>

>
+

a
a

a
a

<
H

a
a

a
a

>
H

V
o

o
•
x
l

>
3

»
<

G
X

C
M

A
X

M
l
l

A
o

i
x
a

a
+

+
o

f
a

a
-
i

-
i

o
o

o
o

o
3

X
>

1
-
r

t
-

a
-
ft

a
o

t
o

f
X

•
<

•
<

>
<

•
<

A
-
f
t
C

n
A

A
C

M
t
M

X
t
M

t
M

t
M

t
M

X
a

a
x

X
o

-
f
t

^
4

-
*

*
*

*
*

*
*

*
*

*
*

»
*

»
o

•
x
l

IX
)

-
f
t

-
f
t

•
a

o
o

-f
t

^
a

«x
i

ix
i
o

t
o

t
a

X
X

-
J

G
•
H

o
•x

l
8

S
M

9
B

H
S

X
M

M
U

I
G

.
.
.
.

-
ft

v
x
j

«
j

o
o

o
o

c
n

c
n

o
o

o
o

a
a

a
-
i

B
—

x
x

c
n

x
a

x
x

o
i
d

c
d

>
X

X
X

X
C

O
O

O
O

O
A

O
O

O
O

A
W

X
>

•
H

*
*

a
a

t
o

a
x

a
a

k
i

o
o

B
•
x
l

-
f
t

I
x
l

-
f
t

»
o

o
o

t
a

a
a

—
a

o
a

o
X

.
.
.
.

—
-x

j
x
j

O
-
ft

o
X

M
M

M
Ix

l
Ix

l
X

v
>

C
O

C
O

C
O

C
O

X
o

o
A

-»
A

3
a

a
x
j
v
j
x
j
K

i
c
n

e
n

p
*

A
O

f
Ix

l
-
ft

+
o

o
-f

t
o

O
O

tO
x
j

C
M

O
t

C
O

.

•<
-
ft

<
X

I
x
l

O
O

O
C

O
O

O
X

CO

0

V

I

E

I

I

FlO

I

E

N

Z

6|0

F

X

160

60

60

60

CO

FO

C|0
U

V

I

Gto
CO

Y

Y

TJO
7

7

A

R

ib

TO

A =

1 =

DC

EN

L +

Copyright © 1983 Emerald Valley Publishing Co.

)-

&b
T =

H

F

I

I

H

6|0
T

60

60

60

X =

Y =

E

E

F

0

0

F

X

Y =

D6

T)0
1

T

D6

ED6

T|0
1

A =

RA

TH

The Best of 99'er Volume 1 259

San Francisco
Tl

BASIC

Tourist

H~Y Ieft my heart in San Francisco ..." Designed to
highlight the sights that abound in and around the
City by the Bay, this Tl BASIC program is actual

ly two games in one.
First, try your skill at driving down Lombard Street

between Hyde and Leavenworth. It's on a steep hill and
is known as the "crookedest street in the world." Use
the left and right arrow keys (S and D) to steer down the
red brick road without bumping into the white concrete
sides—or onto someone's green lawn.

Nowdrive north across the Golden Gate Bridgeto Muir
Woods, a beautiful, peaceful forest with some of the
world's tallest living trees. Start at the upper left corner
of the screen and take a quiet walking tour through the
woods. Use the arrow keys to changedirection, then press
ENTER to mark the trees you've seen on your map.

Programming Techniques
This game program implements many of the features

discussed in the article Fun and Games. The title screen
presents the choice of games, and the player need only
press the key of his choice (wrong keys are ignored). The
program will then branch to the appropriate game, and a
screen of instructions is printed. The screen stays on the
instructions only as long as the player wishes. The player
can just press any key when he is ready to start the game.

Crookedest Street uses scrolling during printing to
simulate the road going past. A DEFinition statement
near the beginning of the program on line 170 defines
a random coordinate R between -3 and +3. A line of
road is printed offset R from the previous line. Lines 820
to 850 make sure the road line stays on the screen.

Both games move an" object (represented by one
graphics character for simplicity and speed) by using the
arrow keys. In Crookedest Street only the left and right
arrow keys are used. The car is always drawn on Row
7, and the arrow keys determine whether the car is drawn
in the same column, two columns to the left, or two col
umns to the right. Lines 930-980 keep the car on the
screen. In Muir Woods the person may move up, down,

I

260 The Best of 99'er Volume 1

left, or right, but will not wrap—staying at the edge, in
stead. The person will also continue to move in one direc
tion until another arrow key is pressed; the character is
moved in each CALL KEY loop.

CALL GCHAR(X,Y,G) is used in both games. In
Crookedest Street you need to know if the new position
of the car is a red square (okay), a white square (crash),
or a green square (fatal crash). After the new car posi
tion is drawn, the old position must be replaced by the
appropriately colored square.

Muir Woods uses GCHAR to determine positions of
trees for marking. Also, the person leaves a trail. So if
the square was a blank, the trail is printed; but if it was
a tree or a marked tree, that character stays there.

Muir Woods also demonstrates the use of a timer or
counter in the CALL KEY loop. You may change the
value 100 for SH in line 1910 for more or less time.

I wanted to use [ENTER] as the key to press for "fir
ing," so the split keyboard method of detecting the "fire"
key was not possible. If you use the split keyboard you can
alternate calling the halves of the keyboard and detect the
"fire" key sooner, but since the codes are different for the
99/4 and the 99/4A consoles, the game instructions would
have to be different. [ENTER] is not detected on the 99/4A;
you must press the period to return key code 13. In these
games the quickest way to detect [ENTER] is to let go of
the arrow keys before pressing [ENTER].

EXPLANATION OF THE PROGRAM
San Francisco Tourist

Line Nos.
150-170 Defines functions to be used as random

coordinates.
180-240 Clears screen; defines graphics characters for

bridge.
Prints bridge and title; if the program is just250-380
starting, plays "I Left My Heart in San
Francisco."

390 Prints choices of games.
400-420 Defines graphics characters for games.

Copyright © 1983 Emerald Valley Publishing Co.

430-460 Receives player's input and branches 1180-1210
appropriately. 1220-1250

470-500 Subroutine to press any key to start. 1260-1290
510-530 Subroutine to delay.
540-610 Prints instructions for Crookedest Street; 1300-1400

defines graphics characters; waits for player
to press a key. 1410-1470

620-750 Clears screen; defines graphics colors; prints
game screen. DATA contains coordinates for 1480-1520
printing road.

760-780 Initializes coordinates of road and car. 1530-1540
790-860 Prints 75 lines of crooked street randomly;

last 15 lines are straight. 1550-1860
870-980 Makes sound, draws new position of car

depending on key pressed; replaces old posi- 1870-1920
tion with proper graphics character.

990-1070 Tests for crash; makes a sound and in- 1930-2010
crements number of crashes. 2020-2100

1080-1170 Ending remarks; plays victory melody for
zero crashes. 2110-2120

MU

L

L

L

L

(
L

K

N

L

S

0

T

U

N

L

L

N

R|OJO
T

CH

CH

CH

CH

CHA

ch|a
SC

TlA

OU

ou

SOD

OU

souIn
sou

sou

ou

sou

WH

woo

R

R

R

(
+

AR

60

TO

P

P

P

4

P

P

P

P

4

H

ROlO

Tb
S

K

C

96

9
OMB

T

B

SAN

OO

3

C

R

OC

0

e

e

2

0

0

e

e

4

YOU

ST

3

Copyright © 1983 Emerald Valley Publishing Co.

TA

RA

IN

TO

ROC

S

RAIM

WO

RND

R

C

C

N

C

R

I
X

6

FO

C

C

I

I

X

I

X

CO

X

I

X

c

I

I

I

c

c

c

c

N

Procedure if car goes into green.
Delays, then waits for player to press a key.
Clears screen; returns colors to black; bran
ches to menu screen.
Prints instructions for Muir Woods and
defines graphics characters and colors.
Clears screen, randomly draws 70 trees on
screen.

Initializes time, marked trees, coordinates,
graphics.
Places person at entrance and sounds initial
beep.
Moves person depending on key pressed. Per
son will not "wrap" but stays at edge.
Increments time and prints time; if time= 100,
ends game.
Procedure for marking tree.
Ending statements; returns colors to black;
branches to menu screen.
Ends program.

6

1

C

S

c

CO

CIO
E

1

I
H

H

I

H

DtoMIl
8

7

9!

2

6C

1

6

2

bu

LON

NLL

B

"W

ID

E

7

6

E

R

OU

S

TO

D

UMlP

LL

OW

The Best of 99'er Volume 1

DOWN

CO

261

t
o

c
u

IP
I

—
.

'
—

o
r
a

«
/»

V
*

H
-

1
9

a
s

a
s

M
h

-
t->

o
r
-

C
O

t
o

o
o

«
—

—
-
J

o
«

»
<

A
o

O
o

a
r
»

—
M

M
o

o
—

C
O

—
t
o

>
«

r
-

a
—

—
~

-
•

>
o

c
o

O
c
u

O
.
.

>
«

f
-

—
C

O
—

t
o

.
.

M
o

«/»
«

:
—

*
»

w
;

.
X

r
-

o
a

-
O

O
O

—
a

-
O

o
o

O
«

»
—

H
O

C
M

-
r
«

t
n

i
-

a
t

c
u

>
-

•—
•

r
-

t
n

a
t

C
M

r
»

—
o

O
—

t
o

C
O

-f-
O

C
M

C
O

o
O

T
+

=
>

z
—

r
-

O
t
o

t
o

r
»

r
-

o
o

o
o

m
o

o
—

—
•

C
M

1
T

-
T

-
<

o
r
-

r
-

r
-

0
0

C
O

•
n

o
o

-
-

a
—

z
—

C
O

—
t
n

-C
M

O

a
>

-
•"•»

T
-

C
O

r
-

>
*

>
-

M
-

z
o

z
>

-
M

-
•
-
.

>
c
o

c
o

o
C

M
-

«

a
Z

a
M

r
-

T
-

-
-

_
i

r
-

M
O

H
-

-
J

M
C

O
-C

M
-
o

M
M

M
a

X
z

Z
X

X
C

M
a

t
-

a
x

C
M

M
O

T
M

X
O

r
-

»
a

a
a

H
«

z
M

z
u

o
—

i
-

—
(
-
•

—
o

~
S

M
a

-
z

•
H

»

i->
t->

i->
a

M
a

M
a

a
a

h
»

a
—

o
a

i
-

a
—

M
C

U
O

M
a

s
a

s
a

s
*

—
o

o
o

•
»

<
a

f
»

a
(
-
.
<

•
<

<
—

.
o

o
z

>
?

<
<

—
o

>
i->

a
o

«
—

n
s

<
o

O
a

s
C

M
0

0
C

M
C

O
C

M
tO

o
a

t
-

»
-•

a
a

r
-

a
—

o
m

a
o

a
r
-

a
—

1
*

.
»

i
-

r
-

.
-
>

<
H

U
.
J
i
J
O

<
r
»

t
o

r
»

c
o

I
-
.

C
O

r
-

o
o

t
-

O
O

r
-

II
O

r
-

r
-

t
n

O
r
-

O
II

o
-

0
0

m
-
-

M
•j

O
o

tn
a

s
T

-
A

r
-

A
T

-
A

tl
a

x
r
-

C
M

>
*

C
M

m
o

a
+

-
-

a
•

II
T

-
c
o

a
a

—
a

r
-

r
-

X
r
-

O
O

O
C

M
O

V
V

V
r
-

A
o

A
V

Q
A

v
a

—
—

a
v

m
r
-

_
.

t->
C

U
m

l-
t

V

O
M

O
r
-

O
X

r
-

o
O

x
o

1
o

r
*

.
-
j

+
x

X
o

+
>

>
>

-•
<

t-
*

j
*

a
c
o

.-J
—

i
1

-
c
o

O
•

O
-*

o
+

-
J

•-.
i
-
.

O
z

•
-

&
Z

«
J

c
o

•
J
h

I
-
i
O

i
J

I
-
.

II
II

*
-

II
II

I
-
.

II
II

O
-
J

X
T

-
C

M
>

-
C

N
1

M
_

1
_

1
||

0
3

-
J

-•
X

i
-

•
J

J
r

C
U

a
-
*

—
X

1
-

C
O

—
>

-1
•J

>
J

_
J

*
-

-
J

Q

O
u

.
x
»

-
>

o
u

.
x
»

»
o

u
.
x
>

-
.
u

.
II

<
II

U
.

II
u

.
II

II
U

.
II

u
.

ii
<

*
s

a
o

•
*

—
M

u
.

O
•<

u
.

<
II

II
o

•«
• -

M
O

a
i
-

o
a

«
:
u

.
M

:
>

a
:
r
c
o

"
*

:
z

o
~

o
o

o
~

o
o

O
"

o
a

—
•

O
O

X
—

X
—

X
>

H
—

>
.
«

&
-
o

o
O

T
u

.
o

a
z

—
O

O
—

O
O

c
u

u
.
0

—
-
Z

O
C

U
i
<

O
C

u
O

«
O

O
O

O
O

M

o
o

o
o

o
o

o
o

O
O

o
O

o
o

o
o

o
o

o
o

o
o

o
>

o
o

o
o

o
o

o
o

o
o

O
O

O
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

O
T

-
I
M

M
Q

l
A

O
N

U
O

t
O

r
-

N
K

)
9

i
n

u
>

r
v
o

o
<

n
o

T
-
N

i
o

9
i
n

(
o

r
s
n

o
)

o
r
-
C

M
K

»
«

l
O

l
0

r
»

C
O

O
o

r
-

C
M

m
c
r
t
n

t
o

r
o

c
o

c
n

o
r
-
c
M

tO
1

0
1

0
I
D

1
0

I
D

tO
I
D

tO
I
D

1
^
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
o

n
o

i
c
n

o
o

o
c
n

c
n

o
o

o
O

O
o

o
o

o
O

O
O

r
-

r
-

r
-

o
-
-

_
1

•
•

I
-
.

o
»

s
—

&
•

-
a

-
•

u
.

o
o

—
—

>
u

.
«

>
>

—
.

.
-

o
t
n

M
»

«
»

u
.

—
>

•
z

C
O

*

t
o

O
*

C
M

r
-

U
.

t->
°

3
C

O
C

O

a
s

-
«

:
*

c
m

o
r
-

a
o

S
M

H

M
o

>
s
.

C
M

r
-

0
0

<
C

O
>

a
m

X
t
n

<
c
o

c
m

m
i
n

m
«

_
.
.

c
u

a
s

s
t
o

—
o

o
9

u
.

<
p

a
>

o
•
•

i
-

9
-

o
O

r
-

—
o

c
n

t
o

z
»

>
.

a
m

-
C

O
O

o
o

«
t
-
o

«
:

m
«

;
c
o

«
X

•
•

•
C

M
o

•—
1

5
S

o
t
-

o
a

t
m

a
«

*
a

-
•

—

t
n

o
—

>
>

u
.

o
r
*

c
n

t
o

a
u

.
u

a
<

•
•

9
.
—

-
«

«
»

a
H

a
r
«

.
r
-

o
m

—
i
i

X
>

S
«

<
O

«
<

o
-

—
t
o

«
:

X
—

0
0

o
*

•
*

C
z

a
*

O
t
o

r
-

-

.
-

i
n

o
C

M
-

o
a

o
h

c
o

r
-

—
w

h
<

<
m

S
-
a

M
-

r
»

I
~

C
O

o
-

-
C

M
>

-
S

O
o

to
c
o

t
-

o
Z

c
o

S3
•<

o
t

a
M

C
O

—
a

t
o

—
-

-
t
n

r
»

m
M

z
*•

r
»

—
O

U
.

-
0

"
<

>
*

M
a

C
M

C
D

fO
O

r
-

o
t
o

c
a

J
_

o
-

a
»

<
o

T
-

r
-

*
O

O
r
-
r
-
U

.
x
O

.
-
>

U
.

O
C

U
•

M
t
-

*-•
a

a
t

r
-

K
>

t
o

M
C

M
C

M
-

-
-

r
-

f
-

a
.
—

.
«

»
.

«
«

r
-

r
-

-
»

»
t
-
%

O
O

Z
<

Z
X

Z
—

<
-

-
-

—
a

t
r
-

o
c
m

t
n

o
O

X
-

•
—

t
o

t
o

C
M

C
M

C
M

.
»

3
r
s

-
-

-
<

S
<

M
C

M
•
•

a
t

c
m

O
c
o

r
-

<
r
*

-
t
n

o
-

C
M

.
-
<

C
O

-
r
-

-
-

.
.
.
.

-
q

m
o

a
u

.
a

O
S

V
r
-

•
•

O
r
-

-
t
n

-
Z

£
c
m

o
r
»

r
-

C
M

r
«

.
C

M
>

-
o

.
H

X
C

M
T

-
-
O

K
O

O
O

r
-

O
(
-

a
a

o
~

-
•

r
»

a
C

M
r
-

X
Z

M
z

m
r
-

—
—

—
a

m
a

-
z

—
t
o

o
>

c
n

—
r
-
T

-
^
—

o
a

a
a

a
a

o
Z

M
~

-
-
M

a

o
O

w
io

r
-

o
a

a
a

s
a

s
a

s
a

s
C

U
o

M
a

a
a

a
a

S3
!-•

O
O

O
O

a
z

a
M

S
Q

.
a

a
o

o
a

i->

O
•
-

a
-
r
-

t
-

a
o

a
<

«C
O

o
*

•
—

•
a

<
o

o
n

a
a

o
a

a
o

>
C

O
Z

t->
>

-
>

-
•
<

—
>

O
•
*

M
—

tO
1

-
r
C

«
*

z
—

*
*

>
•

«
E

->
O

=
>

c
m

a
a

a
t
o

o
r
-

.
.

>
.

K
.

u
»

)
>

j
e

<
<

<
»

i
»

:
»

:
>

j
•
•

M
•

«
(
O

I
S

h
a

!-•
X

a
a

a
>

-
o

>
M

U
r

o
C

M
o

o
o

<
z

m
•
-

M
•
-
l
O

O
t
n

t
-
a

a
o

a
a

o
••

a
•
•
•
C

Z
"
U

M
«

i
J
U

<
—

r
-

o
O

O
M

X
tO

t
f
l
O

K
I
B

||
1O

T
C

O
•—

•
T

"
c
o

a
a

o
M

r
-

o
O

O
c
m

o
o

o
o

o
o

o
_

o
a

m
O

c
o

K
II

a
—

a
O

T
M

r
-

A

t->
M

A
O

—
I
-

>
-

X
1

-
V

i
-

*
-

u
.

1
-

M
f
-

t-
.

0
3

X
i
-

o
_

•
-
.

II
V

r
a

a
O

•<
K

>
1 q

.
-
j
i
-
0

'
-
J
-
>

.
-
3

Z
u

j
s
>

z
-
j

C
O

_
l.-

l.-
4

0
Z

b
i
i
J
i
J
i
J
>

J
^
Z

a
Z

X
c
o

Z
>

C
u

S
-
l

-
l

Z
O

•
j

i
-

o
(C

M
-
J

-
J

-
J

X
X

1
O

—
O

T
H

O
)
K

>
t
N

l
X

h
•
j

•
J

•
J

—
e
a

C
O

—
-
3

n
)
«

J
n

)
H

•
1

h
i

n
)

i
J

«
4

i
J

b
)

-
-
«

;
w

«
•
-

C
O

_
i

«
-
i

—
z

a
*

*
x

II
O

C
M

C
M

X
h

J
-
J

-
J

II
||

x
>

<
u

.
i
<

M
O

M
i
<

M
O

«
>

:
<

>
a

:
a

>
O

a
w

:
u

.
4

<
>

<
O

R
<

>
(
m

:
4

<
>

<
K

a
i
-

M
a

•
•
>

-
'
0

<
<

<
a

s
*

s
:
o

«
c

m
a

II
II

II
||

<
•<

rC
U

.
U

.
X

>
«

o
.

a
«

o
a

u
.
a

o
a

o
o

o
o

c
u

-
•

O
c
u

o
—

o
o

o
o

O
.
O

O
O

O
O

O
C

U
•

c
u

•
a

c
u

«
o

a
0

0
o

e
u

a
u

.
o

z
c
o

c
u

M
>

«
i
O

O
O

O
—

—
Q

O
,

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
O

io
o

o
o

o
o

o
o

o
o

o

o
o

r
n

n
c
t
i
A

O
M

O
n

o
r
-

N
m

Q
U

)
<

o
r
s
o

a
o

)
O

i
-
f
>

i
M

«
i
n

i
o

t
>

.
0

0
a

t
o

r
-
c
M

m
«

r
t
n

o
r
«

>
c
o

o
o

r
-
C

M
m

9
t
n

o
r
«

c
o

o

o
r
-

T
"

r
-

r
-

>r
-

r
-

T
"

<
P

*
r
-

r
»

C
M

C
M

N
M

N
M

M
M

N
N

M
M

M
M

i
n

m
M

n
K

>
m

t
f
t
t
Q

t
t
t
t
«

«
O

Q
c
f
i
n

i
n

i
n

i
A

i
n

i
n

i
n

i
A

i
n

i
n

©4
)

2O
n

O
Q

COUNTY
FAIR

DERBY

County Fair Derby is a party game in which up to
eight players bet on horses in a color-animated
race. Our family finds it quite exciting—especially

with three or more players. There is, however, only one
keyboard operator; the rest is up to the computer. In ad
dition to running the five horses, the computer keeps tabs
on each horse's track record, plus the bankroll of each
player. The program operation is simple and self-
prompting. To break the input loop, the word LAST
must be entered. If this word is misspelled, it then
becomes just another player's name. When this Tl BASIC

EXPLANATION OF THE PROGRAM
County Fair Derby

Line Nos.
140-340 Introduction display and odds table.
350-420 Introductory music and wait for key.
430-1060 Initialization and define characters to be used

for display.
1070-1560 Input routines: players' names, choices for horse

selection, kind of bet and amount. Typing
LAST for player's name breaks the INPUT
loop.

1570-1810 Draws track with lane numbers and plays post-
time tune.

1820 Z is a switch to control RETURN from
subroutine at 2490.

1830-2020 Positions horses on the track in the proper place
and color (subroutine at 2490 draws horse and
RETURNS if Z equals 1).

2030-2190 Rests Z; sets starting coordinates for horses (K
and S are variables used later in determing win,
place and show.) Waits for "S" key to start.

2200-2460 Generates random number from one to five to
determine which horse to move. Line number
2220 (ON N GOTO) finds position of horse,
sets coordinates for move routine and jumps to
move routine. (If the vertical coordinate has
been set to zero, the horse has finished and the
program jumps back for a new random
number.)

2470-2600 Moves horse through an animation loop and
redraws it two positions forward from where it
started. ("Q" is used as a control switch to pass
through the loop twice.)

Copyright © 1983 Emerald Valley Publishing Co.

program was loaded into Extended BASIC for the pur
pose of checking available memory left, the SIZE com
mand revealed that there were 4873 bytes left. This leaves
enough memory for you to add to, or use to modify the
program. You might try giving the computer a fixed
amount of money before the races start and having the
players try to "break the track." Other bells and whistles
I leave to your imagination. Here's hoping you enjoy the
program as much as 1enjoyed writing it. But don't waste
another minute. It's already post time—the horses will
soon be off and running

2610-2830 Checks if V>28 (end of race for that horse);
if not, sets new coordinate values and jumps
back for new random number.

2840-3120 Calculates the finishing horse (D). If S equals
0, the horse wins. Set S equals winning
number. Line 2870 (ON S GOSUB) sets color
for winning announcement. Line 2990 (ON S
GOTO) sets column to zero to remove horse
from race; jumps back for a new random
number and continues. If S< >0, then the
finishing horse becomes K for second place
and, (except for setting color) a similar
routine is followed. If K<>0, then D
becomes the third place horse and the race
stops.

3130-3510 Displays win, place, show announcement and
waits for key.

3520-3870 On KI(X) goes to the kind of bet player (X)
made. Checks to see if player (X) has won
and calculates the amount. If there are winn
ings, goes to subroutine 4090. For no winn
ings, GOSUB 3970. On return goes to 3880.

3880-3960 Increments (X). Checks to see if four results
have been displayed; if so, goes to 4130 and
waits for key before returning for next results
(3550); if not over four, goes directly to 3550.

3970-4010 Subroutine to update and display losers.
4020-4080 Subroutine to update and display losers in

debt.
4090-4120 Subroutine to update and display winners.
4130-4160 Wait for key and check for LAST before

continuing.
4170-4290 Update past records and display for players

betting on trends. Wait for key.
4300-4340 Loop back for INPUTS of next race.
4350-4380 Data for music. Use

"break" key to end program.

The Best of 99'er Volume 1 263

o
o

o
o

o
o

o
o

o
o

o
o

0
0

O
O

O
U

.
Q

w
w

w
i

o
t
o

u
.

0
0

O
O

O
U

.
o

K
>

X
K

>
r
-

X
U

.

o
a

c
o

o
o

o
o

u
.
r
-
m

m
w

>
o

C
O

C
O

o
o

o
o

C
O

C
O

O
O

O
O

u
.

r
-
i
n

m
o

o

0
0

C
O

r
-

O
u

.
Q

u
.

r
-
t
o

O
to

u
.

II
II

II
II

T
I
T

is
,

C
O

O
O

—
c
n

r
-

r
-

r
-

c
m

i
s
,

i
n

+
«

r
f
n

o
t
f
i
f
l
U

)
-

o
*

-
*

a
a

a
a

a
a

a
a

a
t-»

a<
o

a
tn

r
-

-J
Q

Q
Q

Q
Q

Q
Q

-
i

>
-a

H
O

Q
r
-
O
O
O
O
O
O
O
Q
o
o

O

_
s
_

o
—

z

_
=

<

H
Z

I-.
m

—
-
m

a
s

g
x

a
o

cu
o

w
o

'

M
O

h

g
a

cm
~

-tf_

_
=

Q
_

w
;

—
q

tn
«

O
a

-
J
M

z
<

o
a

•
•

_
Q

-
—

-
i

a
«ti

i
-

X
S

c
u

c
o

c
u

*
-

a
s

a
s

'I
"

'I
I'

Q
A

A
A

A
Z

q
q

O
X

O

_Q
.

=
L

—
a

s
t^

a
s

a
<

O
Q

O
O

O
O

O
<

«;>
.u.

*
a

^
B

:
^
o

o
S

^
o

o
..5

A
o

c
n

o
S

g
£

£
£

£
*

T
?

o
o

5
2

::£
*

~
g

^
2

S
5

A
o

2

t
-
.
j
-
.
f
r
-
l
-
.
l
-
.
~

~
W

O
t
-
O

t
-
i
M

r
-

a
i~

z
*••

t-»
a

:
oa

a
M

M
O

D
h

Z
W

D
a

O
D

O
+

D
Z

-
Z

P
C

U
O

P
t-C

O
-
W

O
.

h
W

H
X

H
x

S
—

C
U

x
io

io
q

q
q

c
M

**
+

t~
g

o
*

*
*

*
*

*
*

*
*

*
*

*

-
j
z
z

••
z

••
a

z
x

o
z

co
a

o
—

.j
a

o
a

m
a

a
o

p
o

z
p

z
z
z
z
z

-^
r

r
-
r
-
a

>
J
M

X
h

>
J
>

a
^
^
^
^
>

)
>

>
>

jr
>

»
»

>
.-

-
..(

i.
£

—
«

—
£

i-
.j

ot
£

—
co

cu
£

to
£

~
£.

~
..

II
^

_
—

g
g

g
g

^
l
l
.
l
P

<
l
l
"
>

-
9

l
«

'<
'«

^
^
^
^
l
l
<

W
K

"
»

g
>

.
>

.
Q

B
M

H
0

0
<

O
O

l
8

B
8

B
>

.
O

O
O

,
M

B
.
.
,
«

B
B

!
«
M
«
«
«
«
f
i
*
g
5
f
l
«
=
$
5
o
5
5
5
5
3
3
3
;
^

'
O

O
O

O
O

O
O

O
O

O
O

I

c
o

c
o

c
o

c
o

o
o

c
o

o
o

c
o

c
n

o
o

o
c
n

c
n

o
o

o
o

o
o

o
o

o
o

o
T

-

a
«

c
a

o
o

o
k
.

m
a

o

*
*

o
«

»

C
O

C
O

O
T

C
O

<
«

;
«

;
<

-
.

sa

c
u

c
u

c
u

c
u

o
o

o
o

o
o

o
o

cm
to

q
tn

to
is.

op
cn

o
r-

cm
to

q
in

to
is,

oo
cn

o
r-

cm
k>

q
tn

tn
is,

co
cn

o
t-c

m
w

c
m

n
D

N
a

o
i
s
"

«
"
*
"
*
"
*
"
*
*

«
"
*
"
*
*
«
*
C
M
C
M
C
M

C
M
C
M
C
M
C
M
C
M
C
M
K
»
X

X
X

K
>
x

to
to

i
n
x

q
q

q
q

q
q

q
q

q
q

t
n

o
^

M
H

Q
h

B
Q

O
O

i

i
n

t
n

i
n

t
n

t
n

r
—

_
isr^

—
o

o
o

o
o

o
o

o
o

o
r
-
o

c
o

w
>

o
U

.
o

o
_

P
g

g
b

,P
°
?

*
"
°
<

»
»

*
»

t
O

M
M

o
u

.o
o

o
o

o
o

e
»

o
o

o
m

c
o

r
-

m
o

o
x
u

T
o

"
u

.
o

o
is,

u
.

o
o

o
o

o
t
o

r
s
o

o
o

o
o

o
o

o
o

o
o

o
o

c
»

o
r
-
o

c
o

r
s
.
c
j

o
~

o
~

c
a

»
»

O
O

O
O

M
O

O
r
-
O

O
O

O
tO

C
P

r
s
c
P

O
O

O
O

c
a

c
»

o
o

c
»

O
O

M
W

r
-
W

>
O

X
O

O
r
-
m

O
O

O
X

O
O

O
O

O
X

tD
O

O
O

Q
O

r
«

.u
.u

.O
r
-
O

O
O

O
O

O
C

)
W

M
O

O
O

O
—

c
m

q
C

M
J
2

_

o
<

>
-

Q
g

-
a

<
O

a
—

—
a

*
c

*
—

~
-

—
o

o
o

o
q

S
C

U
O

T
c
u

*
o

•«
a

a
o

a
a

~
-

_
<

0
±

-_
Q

_
r
-

C
M

M
q

—
O

to
Q

o

o
o

ii
o

—
a

!-•
I
-

t
-

H
h

H
H

—
I
-

~
z

z
z

z
z
z
z
z

o
o

o
o

t
n

o
o

o
o

o
o

o
o

o
o

B
r
w

w
w

q
i
o

i
Q

M
B

a
a

P
W

H
q

i
n

t
o

is
,

r
-
r
-
r
-
r
-
r
-
r
-
r
-
r
-
r
'
r
-
r
-
C

M
C

M
i

C
M

C
M

C
M

C
M

*
-
Q

<
C

M
>

-_
c
o

_
q

z
-

«
o

a
«

o

B
fc

.a
B

B
ia

a
O

N
O

B
O

B
W

(
D

M
O

O
O

M
r
B

O
M

M
Q

M
I
i)

W
O

r
W

O
M

O
r

r
<

r
*

*
a

o
S

T
*

«
»

«
»

o
o

r
-
r
-
c
o

o
o

o
o

o
r
s
u

.u
.o

i
o

o
o

o
o

o
o

o
c
o

o
o

o
o

o
O

U
.O

C
M

O
O

C
M

O
IO

in
K

>
O

O
C

O
O

U
.M

O
O

X
X

O
O

M
M

M
O

b
.X

O
r
-X

O
X

O
r
-

q
,o

q
o

o
to

o
q

o
u

.u
.o

is
.o

o
o

o
o

T
-
o

T
-
o

r
x
0

0
0

0
r
.O

U
O

P
C

J
U

<
O

U
]

o
c
o

o
q

o
o

q
o

T
-
r
-
i
n

o
o

o
B

M
M

M
h

.o
K

>
x
o

o
c
o

o
u

.o
r
-
x
o

x
i
n

o
x
u

.r
^

0
0

«
M

O
O

O
O

C
M

O
U

.U
.O

|s
,O

O
O

O
O

t-
O

O
O

O
O

O
O

O
t-

O
O

O
O

O
U

.Q
U

.
.„

^
_

-^=
g

C
0

O
C

0
^
'»

t0
«

g
O

O
r
-O

O
C

0
U

O
t0

U
.O

X
O

O
O

C
0

O
|s

.tD
T

-X
O

X
X

O
X

U
.T

-
*°

M
F

«"
O

O
r
-
O

O
O

O
r
-
O

O
O

O
O

O
S

O
O

O
T

-
e
O

O
U

.O
O

O
O

T
-
r
-
O

O
O

O
O

O
O

U
.

OT
"*

-
»•»>

»«-
o

_
o

u
.

o
o

o
u

.o
o

o
o

o
o

o
o

o
o

o
o

T
-
O

O
O

C
B

0
^
tlu

r
.0

0
0

0
<

>
<

a
O

T
_

O
O

O
U

.O
O

O
O

O
O

O
O

Q
B

r
-
u

.X
U

.O
O

O
O

T
-
r
-
O

O
O

O
O

O
O

U
.

<
>

«
z

M
M

a
—

is
,

H
»

I
-

g
»

»
V

g
^
^
«

^
.
M

^
>J

Z
Z

--Z
~

~
~

t-
Q

Q
-
J
Q

Z
-
jo

t-
J
Z

Z
Z

&
&

E
r
6

&
*

*
*

*
a

S
*

*
>

i*
*

*
*

*
-*

~
~

*
—

—
—

—
»J

-
.

—
..

^
.

.j
^
t
J
B

l
n

i

a
a

a
m

o
a

a
M

Q
a

1

^
^
Z

H
'

"
r
?

^
g

g
S

S
O

b
,s

o
a

',,o
a

o
s
s
o

a
s
s
o

e
<

9
t-

P
«

»
P

«
>

«
"
''-

N
«

»
a

s
s
^
tc

r
M

M
tC

P
O

O
.

>
-

I
I
M

B
j
.t

B
l
l
f
l
O

O
O

k
O

O
O

t
.G

«
j_

ctj=
»

O
O

O
M

P
O

Q
C

Q
.

M
H

^
H

H
H

—
B

>
>

B
Q

II
M

M
X

<
O

H
II

II
11

II
II

"
II

H
II

II
II

II
II

II
11

II
II

II
II

11
II

11
II

II
II

II
II

II
II

II

i-
I-

t-
a

^
-

—
•

—
-

—
•~

o
r
-C

M
m

q
in

c
o

T
s
o

o
c
n

o
r
»

c
M

io
q

in
tD

is
,c

o
o

o
r
-C

M
x
q

tn
c
o

C
M

i
n

q
t
n

t
o

r
s
c
o

o
o

'
"
"
"
"
"
"
"
^
^
^
P
O
O
P
^
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
B
B
S
B
S
a

^
B
»
^
S
a
>
8
r
f
l
W
q
'
n
<
f
l
N
'
'
'
0
'
a
r
f
"
o
q
'
n
m
N
M
O
'
B
r
W
W
<
>
'
f
l
,
f
l
N
"
0
'
P
r
w
w

W
H

W
M

H
W

W
K

H
r
<

K
;|q

c
tC

q
<

tC
H

n
il)IB

W
IIII»

in
iB

II)in
m

O
O

m
iD

B
iD

O
B

(9
N

h
N

N
h

N
N

h
N

M
O

c
O

B
B

IO
n

0
\

5P<
u

ISC
m

tN
"
+

-
~

q
r
-
C

M
Q

C
M

-
+

+
-

—
q

r
-

O
O

r
-

I
—

^
L

±
.

c
m

t
n

o
o

r
-

C
M

C
M

C
M

C
M

Z
Z

Z
Z

l
i
l
M

M
M

a
a

a
a

O
H

O
o

O
r
-
>

~
r
-
>

>
O

Q
O

Q
|

-
.

-ft.
-

-
Q

to
—

C
M

>
r
-
>

>
r
-
r
-
r
s
t
n

to
C

M
-
+

-
-
+

+
-C

M
C

M
a

a
a

a
a

a
tn

-
z

z

M
e
e
a

a
a

a
Q

M
m

a
«

t
a

;
r
i
i
<

<
<

z
B

a
h

-
a

a
a

a
a

a
p

*
-

t
-

o
o

o
o

o
o

o
o

a
a

a
a

a
a

c
o

o
z
r
-

a
II

i
r
O

o
c
n

O
O

CM
o

z
o

z
o

z
o

z
o

z
o

a
a

a
a

a
v

Q
~
P
~
P
~
P
~
P
~
P
O
T
X

I
v

O
O

O
T

II
IP

a
x

o

II
11

II
II

~
o

r
Q

~
t_

~
~

,
r
H

Q
f
t
.
r m

c
u

~
~

—
~

>
J
~

—
X

P
Q

+
+

Q
I

>
-
+

-
Q

Q
~

0
I
-

r
-

>
Q

I
-

O
O

~
>

E
-
.
«

>
t
-
»

a
>

i
-
a

>
i
-
«

>
t
-
.

—

o
o

o
o

o
a

s
o

o
a

s
s
o

e
B

s
o

s
a

a
o

o
o

a
g

g
o

g
B

P
o

a
a

«
«

»
«

»
»

"
"
»

~
"
^
-
-
-
-
-
-
-
-

tn
o

is
,o

o
o

r
-C

M
x
q

tn
o

is
.o

o
o

r
-c

M
io

q
tn

o
^
o

m
o

r
-c

M
io

q
O

T
O

is
.r

o
o

o
r
-C

M
x
q

tn
to

is
c
o

o
o

to_t^_
'
•
•
*

"
•
—

—
.

_
—

r
t—

=
—

-
-^

-
—

.—
.
_

.—
•—

•—
.—

.
.»

»
.r%

.«
»

.
»

«»»
i
n

.
«

m
m

i
i
b

k
,

k
k

r
s
r
s
F

s
f
s
r
s
r
s
l
s
,
t
t
)
0

O
O

O
O

0
r
a

0
0

0
0

r
a

t
n

i
o

i
s
.c

o
c
n

o
r
-
C

M
x
q

t
n

i
o

r
s
m

o
o

r
-
c
M

i
o

q
i
n

i
o

r
s
x
c
n

o
r
-
c
M

i
o

^
r
i
n

t
t
n

-
'o

a
q

i
C

T
T

-
^
.^

.
^

...
~

^
-»

~
•"

~*
„

.......
.7.

"
I

H
L

i
•
«

w
»

i^
ir

t^
q

q
q

q
q

q
q

q
q

q
tn

tn
tn

in
in

tn
tn

in
O

T
tn

o
o

o
o

o
o

o
o

o
o

c
^
r
s
is

,r
s
r
s
is

,is
,r

s
r
s
is

.c
o

c
o

o
o

o
o

o
o

o
o

o
o

w
£
£

CM
CM

CM
CM

CM
CM

CM
CM

C*
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM

CM
CM_CM_CM_CM_

a
t

o
r
-

c
m

t
o

q
i
n

t
n

t
n

t
n

i
s

Q
C

M
C

M
C

M
C

M
C

M

o
c
m

q
t
o

c
o

—
i
n

a
s

m
a

O
O

a
o

w
:

a
o

t
-

to
O

a
o

a
a

a
a

a

q
z
f
r
"
Z

o
<

<
<

«
:
<

c
m

m
c
u

~
p

m
a

a
a

a
a

O
r
s

Q
Q

o
o

o

II
a

<
a

o
i
i
w

r
-
a

a
a

a
a

w
t
o

e
o

q

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

c
o

m
o

r
-
c
M

i
o

q
t
n

t
o

f
s
c
o

m
o

r
-
c
M

x
q

i
n

t
o

f
s
c
o

c
n

o
r
-

c
o

o
o

c
n

m
c
i
c
n

c
n

m
c
n

c
n

c
n

o
o

o
o

o
o

o
o

o
P

o
r
-
r
-
T

-
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
X

W
X

X
X

X
X

X
X

X
X

X
X

-f-
X

o
h

a
a

s
O

>
<

D
M

I
D

N
*

t-i

M
l
-

II
r
-

~
tn

Q
M

<
>

<
W

g
-
0

p
«

~
o

o
*

*
c
o

X
Q

Q
Z

Z
I
Q

tH
Q

II
0

0
U

.
C

M
Q

Z
I
-

~
—

~
o

*
j
+

t
-
t
-
>

g
g

*
*

Q
*

*
*

*
*

*
*

*
*

*

i-
.

-
i

—
~

a
X

.J
~

~
r
-
C

M
«

~
X

X
c
o

«
t
!

P
C

M
C

M
p

x
q

p
q

t
o

p
t
n

c
o

i
n

r
r
t
n

i
f
l

r
-
r
-
X

c
o

r
-
r
-
X

O
T

r
-
r
-
X

O
T

O
r
-
q

r
-
q

r
-
q

r
-
q

r
-
q

o
o

—
Z

—
<

X
T

-
I
-

U
3

U
.

r
-

t-'
o

a

o
ii

ii
iio

ii
ii

iio
ii

ii
ii

ii
ii

ii
ii

ii
ii

ii
ii

ll
ll<

^
*•

P
<

II
g

II
ll*-

II0
"

J*
"•^

±
-
^

O
o

a
>

o
~

e
>

o
x
<

—
—

—
M

U
.O

—
O

a
x
O

T
O

—
—

o
e
z
o

a
>

—
o

o
a

>
—

Q
O

«
>

o
<

a
•<

O
a

m
•<

<
•<

n
ii

o
<

ii
m

m
m

u
.

<
o

<
•<

«<
•<

•<
ii

ii
ii

II
O

II
II

II
Q

II
II

II
O

o
c
u

o
u

.
c
u

z
o

o
o

x
»

-
u

.
o

x
z
«

a
—

o
o

o
o

o
o

o
x
o

e
>

o
o

e
s
»

-
o

o
a

>

O
Q

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

*
>

P
o

o
o

o
c
9

0
0

o
e
0

o
r
s
o

o
o

r
-
c
M

x
q

O
T

to
r
s
c
o

c
n

o
r
-
c
M

in
q

tn
c
o

r
s
c
o

m
o

r
-
c
M

io
q

tn
io

r
s
o

o
m

o
r
-
c
M

in
q

tn
c
o

r
s
c
o

m
o

r
-
C

M
in

t
n

t
n

t
n

i
n

t
o

o
o

o
o

o
o

t
o

o
o

r
s
r
s
r
s
r
s
r
s
r
s
i
s
,r

s
r
s
r
s
c
o

c
o

o
o

o
o

c
o

o
c
o

c
o

c
o

o
o

c
n

c
n

m
c
n

o
o

»
c
n

c
n

o
o

o
o

^
o

q
t
n

t
o

i
s
,
w

o
>

o
r
-
c
M

i
n

q
t
n

t
o

r
s
c
o

c
n

o
r
-
c
M

x
q

t
n

t
o

r
s
o

o
o

o
r
-

^-r-C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

X
X

X
X

X
CM

CM
CM

CM
CM

CM
CM

~CM
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M

m>
o

2bsQ
J

Q
Q<
U©

R:

V:

X:

FO

Ci

X:

Nl

FO

CA

V

Nl

V =

R

FIO
CJ

V:

V + "
XT

V

Q =
3

3

=3
:ci

Y

CO

CO

Rh
V

I

C|A
C

X

F

ON

F

GO

60

BE

BE

GO

GO

F

F

GO

GO

BE

BE

GO

GO

F

F

F

GjO
GO

GO

g|o
i

i

GO

GO

N

K

HjO
SU

T|0
T

T(X
B

Tb
HO

TO

HO

HO

HO

CO

AM

3

)h

4

8

X

X

3

8

38

TO

TO

TO

TO

R

X

[GO

>5+:

3 +

HOWS
Y

266 The Best of 99'er Volume 1

3

3

3

3

3
3

3
3

3

3

3!

3!

3

39

2

30

11
12

3

250

80

GO

X

GO

GO

CA

GO

F

GO

F

TO

TO

LL

TO

X<

TO

TO

T

$

TO

AGA

TO'

C|A
L

0

W

GO

GO

DA

T

NIAJM1E
C

L

U

W

13

X

SO

:T0

YO

:T

E

TO'

TO'

WE

TO

GR

X

YO

E

0

X

X

NOW

X

OWE

HOI

X

T

NOlWl

15

X

;t

HA'

AM

N

AMI

AME

NO

NO

NO

HOW

W

HOW

5

SiHjOlWl

LA

wl
H|0|W

w|
HfO,VV

;wi

W

WI

•w

w

TH

(X Y01

to:

yo LO

TO

GOO

YOU W

Copyright © 1983 Emerald Valley Publishing Co.

Wait . . . Wait . . . Wait . . . When will they get
here? Wait . . . Wait . . . Wait . . . "Hi dear,
anything in the mail today? Didyoulookbetween

the doors? Oh. Shucks."
"HelloGinny. What? You accepted a package from UPS

for me? Great! Could you get it for me? Thanks."
"See you later dear, I'll be downstairs."

They're here . . .
The SPRITES are here . . .

NOW, WHAT CAN I DO WITH THEM?

Skim through the manual, page 25. Uh huh. OK. Yeah.
This looks great! Let's get a little deeper. Page 64. Oh, oh.
Looks like the ALL option of COINC doesn't tellyou which
SPRITES "coincidenced." I hope someone can find out
where to PEEK for this.

EXPLANATION OF THE PROGRAM
Sprite Chase

Line Nos.
170-200 Instructions.
210-280 Set up variations for play.
290-300 Reset for start of game.
310 Make clock numbers reverse image.
320-330 Put the Chaser somewhere in middle of the

screen.

340-360 Create the Chasees.
370-390 The chase has begun.
400-450 While waiting for a direction key to be pressed,

keep the clock going and check for a coin
cidence when the Chaser is stationary.

460-530 Start the Chaser in the direction of key pressed.
540-590 While awaiting release of direction key, check

for a coincidence when the Chaser is moving;
keep clock going.

Copyright © 1983 Emerald Valley Publishing Co.

EXTENDED
BASIC

SPRITE

CHASE

Now, what shall I do with them? Something simple.
Design some cute characters? No, let's just get those
SPRITES moving. Since it might take some time for
COINC (ALL,. . .) to figure out which SPRITES arecoin
cidental, I'll stick to one SPRITE versus another. How
about a series to chase? Numbers . . . Letters . . . ROTA
TION . . . That's it . . .

A short game chasing the 10numbers or a longer game
chasing the 26letters. I'll try the MAGNIFY too. I'll need
a numeric variable for the COINC tolerance for that. I guess
8 for normal size and 16 for double size. I'll generate the
number or letter SPRITES to go any which way at some
speed between -25 and 25. I'll stick to the 8 directions
around the arrows for the chaser or else I'll get so tangled
up in the math that I'll never move a SPRITE. Wish 1had
joysticks. I guess some kind of clock would be good for
scoring.

Well, here we go!

600-610

620-650
660-710
720

Stop the Chaser; wait for another key to be
pressed.
Caught one; go for the next one.
End of game.
That's it.

A FEW POSTSCRIPT NOTES:
If a SPRITEis moving slowly in a vertical direction, it might go

offthe top or bottom of the screen fora while,but it can be caught
there.

If you insert COINC statements between a lotof the instructions
and check the HIT field, you probably would reduce the number
of times a coincidence is missed.

Ifyou leavethe Chaser in its original position, all targets will even
tually pass through it. I wonder how long this would take?

(If it sounded like I was talking to myself, I was! Doesn't
everyone???)

The Best of 99'er Volume 1 267

1

2

2

2
2

24

39 0

EM

EM

EM

EM

EM

EM

EM

AL

R

W|
RS

PR

AO

P

R

CA

F

F

S

N

L

T

IGO

T

IGO

UIME
P

T

K

A

T

F

S

C

DJOIMJI
N

L

7

GIO

S =

LO

OU

MU
S

S

F

Gb
T

EQ

GO

E

!GO

FO

CAL |cp (#

OO

C

F

StMA

A

2

1
3

S

L

A

2

R|G
N

RIOW
H

EM

CO

268 The Best of 99'er Volume 1

ma|gn
E

20

F

3
F

3
F

0
A

A

F

CO

I

F

CA

GO

P|RI

Y

cb
Y

0

(Gb

S

Gp

GO

GO

GO

GO

0)
G|0

)
W

T

GIO
T

GIO

0

6
GO

8

0

A

N

1

S

9
T

8

TO

T =

GO

Gb
6GO H

54

GO

IGO
Y

ICO

T

[MO

SO

MO

A

C

TO

0
N

1

T +

ON

YOU

R

K

A

T =

S

GIO
T

HE

CO

Y

T

H

TO

MO

MO

MO

MO

MO

MO

MO

M|0

S

H

10

ON

ON

ON

ON

ON

AG

Copyright © 1983 Emerald Valley Publishing Co.

DOGFIGHT
EXTENDED

BASIC

Dogfight is a two-player game written in Extended
BASIC. Each player hascontrol of oneaircraft—a
biplane. You must outmaneuver your opponent and

shoot him down before he can do the same to you. If both
planes crash into each other, the score will not change. The
first player to destroy 10 enemy aircraft wins the game.

Your plane is controlled with four directional keys. Unlike
most games, the key pressed will not cause your plane to
immediately move in that particular direction. For exam
ple, if your plane is traveling down and to the right at a
bearing of 135 degrees and you press E or the up arrow,
your plane will turn its nose upand first change its heading
to90 degrees, then to 45 degrees, and finally to duenorth—
i.e., straight up. This gives theplane a more realistic move
ment and makes unrealistic, 180-degree hairpin turns
impossible.

To makea 180-degree turn to go duewest, youmustfirst
press either E or X to indicate the upward or downward
turn. Pressing S, the left directional key, will have no ef
fect. In a similar way, the player using the right-hand side
of the keyboard uses I, J, K, and M to move the plane.
(If you have the overlay for the Video Games Command
Cartridge, you might find it convenient.)

Pressing theF and H keys will fire theguns, butonly one
shotcan be fired at a time. Eachshot hasa limited rangeand
cannot be carriedover the edgeof the screen to the opposite
edge. You can't terminate a bad shot; it must first go off
screen. The limit of onlyone shot at a time was placed in
the program sothat the computer could make accurate coin
cidencechecks with rapidly moving objects on the screen.

Four levels of difficultymake the game easyenough for
beginners andchallenging enough to hold theinterest ofex
perts. The higher the level of difficulty, the faster the planes
and shots will move. The option to fly a day or night mis
sion will change thescreen color to either light blue or black.

Features of Extended BASIC Used in Dogfight
For you 99'er readers who are also programmers,

Dogfight illustrates many features of Extended BASIC.
Lines 190-280 define special graphics characters four at

a time. Then line 290, CALL MAGNIFY(3) indicates that
sprites will actually consist of four regular size characters,
and only the first character number needs to be specified.

CALLSPRITE(#1,96,2,120,20,0,5) defined Sprite#1 (the
first plane) as characters 96,97,98, and 99,black, starting

Copyright © 1983 Emerald Valley Publishing Co.

in dot-row 120and dot-column 20, and going zero velocity
upor down, and to the right at velocity 5. More than one
sprite may be defined at a time, as in line 310.

CALL DELSPRITE(#1)deletesSprite #1, and more than
one sprite may bedeleted at a time. This statement is used
when the planes are hit or they crash, or when the bullet
leaves the edge of the screen.

Complex IF-THEN-ELSE statements are used in lines
530-780 to determine in what direction the plane is headed.
CALL PATTERN then draws the plane depending on its
heading; all other sprite characteristics remain the same.

CALL POSITIONS 1,B1,B2) in line 1000 returns the row
and column position of Sprite #1 so the bullet can be shot
from that same position.

CALL MOTION can change the motion of a sprite
without affecting other characteristics.

CALLCO!NC(#2,#3,3*V,PC) determines if Sprite#2(se
cond plane) and Sprite #3 (bullet from first plane) are coin
cident within a tolerance of 3*V. If so, a value of - 1 is
returned for PC. Coincidence is reported only when the
CALL COINC statement is actually executed during the
program. At greater velocities of the sprites, coincidence will
not be detected if the program is busy elsewhere.

There are several ways to avoid concidences not being
detected: 1) CALL COINC more often; 2) increase the
tolerance level with increasing velocity; or 3) increase the
execution speedso that the CALL COINC statements are
executed more often. But, as with many programming pro
blems, thesolution involves a trade-off: Thefirst slows down
other action; the second could have planes crash when
they're not touching; the third means cutting back on other
types of action. One low-cost way to speed up execution,
however, is to use multiple statements per line: CALL
MOTION (#1,0,V)::RETURN executes faster than two
separate lines with those statements.

Although kept to a minimum, the coincidence problem
does still exist in thisprogram: Once in a while a bullet will
pass right through a plane. You'll just have to visualize a
three-dimensional situation—a bullet passing directly over
or under the plane but at a different altitude. Also, once
in a whilea bullet won't disappear at the edge of the screen,
but will "wrap." Just considerit a stray bullet—a frequent
occurrence in a real dogfight.

The Best of 99'er Volume 1 269

EXPLANATION OF THE PROGRAM
Dogfight

Line Nos.
170

180

190-290

300-340
350-360
370-420
430-460
470-490

500

510

520-660

670-810

820-850

860-890
900

910-980

990

1000-1100
1110-1180

1190-1210

1220-1340

1350-1410
1420-1490
1500-1560
1570-1630
1640

1650-1680

1690-1720

Clears screen, makes screen light blue.
P is the orientation of Plane 1; PI the orientation
of Plane 2.
Defines special characters for graphics. Using
CALL MAGNIFY(3) allows sprites to be defined
as 4 regular-sized graphics characters.
Draws title screen with two planes and sound.
Receives players' names for scoring.
Allows choice of one of four options.
Allows choice of day or night mission.
Starts Dogfight with planes going toward each
other at velocity V.
Waits for players to press key.
If no key is pressed, branches to checking
coincidence.
If key on left halfof keyboard is pressed,
checks which key and either moves Plane #1 that
direction or shoots.
If key on right halfof keyboard is pressed,
moves Plane #2 appropriately or shoots.
Checks for coincidence between bullets and planes
or between planes. If the sprites are coincident,
branches to section of program for crashing. If
not, continues sound of flying.
Deletes the bullet at the edges of the screen.
Returns to line 500 to check players' action.
Subroutines to move Plane #1 the correct direc
tion after turning.
Returns if a bullet from Plane #1 is in motion.
Starts a bullet from the plane.
Subroutines to move Plane #2 the correct
direction.
Returns if a bullet from Plane #2 is already in
motion; otherwise shoots from Plane #2.
Procedure if planes crash into each other; makes
crashing noise; draws planes falling; deletes sprites
at the bottom of the screen.
Procedure if Plane #1 is shot.
Increments score for Player 2 and prints score.
Procedure if Plane #2 is shot.
Increments score for Player 1 and prints scores.
Ends game if either player's score is 10.
If score is less than 10, players may choose to try
again or stop.
Prints final score and ending remarks.

EM

EM

EM

EM

EM

EM

EM

DOG

0E
30

270 The Best of 99'er Volume 1

3
9D

CIA
0

CA

CA

F

V

CA

YJO
T

CIA

P

T|H
F

F

GO

F

P<

TH

GO

F

P

P +
GO

F

>

P +
F

N

P

P

TlO

2

K2

<

=|8

ClHJA

1

C

MA|GN
A

AME

AM

K

Y

K

C

IWA T

ON

Y(
68

EN

P +

GO

P =

TH

ICO
1

0

s

cp

CO

GO

0
2

t

ON

EG

NO

TH

CO

RM

R0

CO

CO

DO

GH

AN

Copyright © 1983 Emerald Valley Publishing Co.

F

F

GO

F

P

P

F

F

GO

I

N

EN

GJO
F

P

N

F

GO

IGO
A

C

P

S

OIN

0

C

2

C

1=1

8

<

9

0

>

1

P

0
>

T

=P

9

p|a
B

0

:1

CO

:n

CO

;n

CO

HE

SO

1 =

PO

5

MjO
MO

MO

MO

MO

MO

MO

M|0
1

PIO

IGO
1

1

P

R

P

P

E

P

6

MO

MO

MO

MO

MO

MO

MO

MO

1 =

GO

ON

TO

P

1

GO

U

1

131

TO

1

V

TlU

Copyright © 1983 Emerald Valley Publishing Co.

URN

RN

CO

CO

CO

CO

CO

CO

C

C

I

L

C

I

C

C

D

D

El

D

D

GO'TO

GO

5

L

F

T[H
F

WlO

|G|0
I F

WlO

GO

BO

PO

MO

s

3

PjO
PO

>

ET

SOU

ION

c:

GO

)N

TO

t

MO ON

po:

SOON

POSI

<

MO

PO

s

sb
PO

ON

PO

D

T

6

PR

+ 1

EN

D

IWA

WA

1

ION
H

T

IWA
A

2

0

po:

3:

4

C

c

>

3 = 1

P

PO

0

R

iRAAAA

P =

PO

CAl

2

!4<

SH

BO' H EAM!

NO

LA

LA

E

L

B

*

0

2

44

CR

PO

CA

PO

CR

CA

PO

2

4

1)

AW A

PO

PO

WON

CO

COR

PO

PO

HAS WON

E I

U

A

E

0
|WA|N

CO

.SH

TH

AGA

HA S

NlOlW]
END

HA

HA

The Best of 99'er Volume 1 27!

Interplanetary
YDu are sitting there enjoying a cup of coffee at the

Interplanetary Rescue Lounge when the news arrives:
A cave-in on Moon Base 2 has seriously injured a

miner. Instantly you race for the shuttle, knowing you must
reach the moon base, pick up the injured miner, and return
to the base medical facilities. There's no time to waste!

Your ship is fueled and ready at the docking pad. In your
ship you sit in front of your TI-99/4A controller panel and
view the radar and instrumentation screen. You are now
ready to take off. Press T on the control panel and the shut
tle beginsto lift. Using your six thrust control buttons, you
adjust your climb to the desired level. The terrain between
you and Moon Base 2 is treacherous, and you must quick
ly ascertain the best route. Using your horizontal thrusters
(arrow keys), you start your trip across the lunar landscape.

Accidentsmay happen anywhere, and right now your In
terplanetary Rescue Team is in charge of the moon, Mars,
and Venus. Use the arrow keys (E,S,D,X) to control
horizontal movement. Horizontal velocity is listed on your
control screen.

The elevations of the terrain show up as different colors
on the map. At the right-hand side of the screen is a visual
representation of your altitude in relation to the elevation
colors. Your ship must be above the color on the right of
the screen to safely pass through that color on the radar
screen. Be careful not to overshoot the highest elevation col
or you plan to cross: You will waste valuable time getting
back down and precious fuel needed for the return voyage.

When you land on Moon Base 2, you must be traveling
at a vertical speed of less than 6 meters/second to make a
perfect landing. A rough landing of 6-10 meters/second will
cause a leak in your main fuel valve, causing a loss of half
your fuel. Any faster than 10 meters/second and you'll
crash, never to return home. Once safely on the ground,

272 The Best of 99'er Volume 1

Rescue
the injured miner is put on board, and you're ready for the
return trip. You won't haveas much fuel holdingyou down,
so it won't take as much thrust to accelerate vertically. Good
luck on your rescue mission . . . you may need it!

Instrument Displays:
ALT = altitude in meters. Each succeeding color on the

radar represents 2000 meters.

HVEL = horizontal velocity across the radar screen(depen
dent upon arrow keys).

VVEL = vertical velocity; + is climbing, - is falling.

TIME = number of seconds into the mission.

FUEL = weight of fuel remaining, in kilograms.

PWR = amount of thrust being generated. Each unit of
thrust equals 1000 newtons; each newton equals
approximately 2.05 kilograms of thrust.

Calculations and Variables
The gravity formula in line 950 is the formula for speed

of a falling object. V2 is the change in velocity in m/sec,
F is the thrust in newtons, S is the weight of the ship in kg.,
E is the weight of remaining fuel in kg., and G is the gravi
ty in m/sec2. The time is one second in this calculation. All
variables starting with D pertain to distance, and H is the
altitude.

Graphics
Characters accessible on the keyboard but not used in

printing messages have been redefined (lines 190-290). Then
by using DISPLAY AT and a string, you can display col
orful graphics very quickly without calling each square one-
by-one. This method was used to display the radar map

Copyright © 1983 Emerald Valley Publishing Co.

much more quickly than by using HCHAR and VCHAR.
The strings are read in as 21 DATA statements. By chang
ing the DATA statements in this program or adding some
of your own, you may easily change the maps.

Option
chosen

G

(Gravity)

2

4

6

E Take-off
(Fuel) thrust

20000 65000
45000 230000
80000 540000

Moon

Mars

Venus

Thrust

keys
T = initial thrust (displayed

as 65, 230, or 540).

Key: 1 O P

Units added: + 1 + 5 +10

Key: J K L

Units decreased: 1 -5 -10

Sprites were used to depict the two crafts on the screen
in order to be able to move with high resolution. Instead
of using CALL MOTION which makescontrol of position
difficult, we used CALL LOCATE which providesabsolute
control of the sprite's position.

EXPLANATION OF THE PROGRAM
Interplanetary Rescue

Line Nos.
100-160 Program header
170-310 Clears screen; defines specialcharacters and colors.
320-350 Initializes variables; branches to title screen and

options.
360-460 Main control loop; GOSUB 790 receives the

player's key presses. The VOL in the CALL
SOUND statement depends upon the power. H
is the altitude, and line 400 tests for crashes. If the
rescue craft has landed at either base, the program
branches.

470-680 DATA statements to draw the "Novice" map.
690-780 Subroutine to label the parameters and draw the

altimeter.
790-1020 Receives player's key responses and calculates

parameters.
1030-1090 Prints updated altitude, time, velocities, fuel, and

power.
1100-1150 Message and procedure for crashing into the hill.
1160-1180 Subroutine for procedure for any crash.
1190-1260 Prints score and option to play again; branches

appropriately.
1270-1400 Messages and procedure for crashing at high

velocity.
1410-1460 Procedure if craft lands safely; starts return trip.
1470-1580 Procedure for craft landing on return trip.
1590-1640 Prints and receives options of planet and level of

difficulty.
1650-1750 Depending on the options chosen, sets gravity,

fuel, and initial thrust, then prints appropriate
map.

1760-2380 DATA statements for three maps.
2390-2460 Prints title screen.

Copyright © 1983 Emerald Valley Publishing Co.

REM

M

EM

0
R

GO

RE

GO

0
F

F

VK>
F

2

L

A

C

C

0

D

T

H

T

T

E

0

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

0

P

P

P

P

P

0
2

B

MA CO

<?

VO

N

2

3
ME

GO

8

F

e

vo

LlOjO
sB

H

0

OU

L

L

M|E

PWR

HA

LL

14

The Best of 99'er Volume 1

GCI

273

CIA
R

C

2
R

C

S

I F

IF

GO

F

GO

F

g!o
F

GkD

F

F

GO

0

A

H

I

N

0
c

F

>

AL

TK3IP

L

2

L

3
Ul

L

S

K

TO

K

TO

K

TO

K

TO

K

6
+

3

+

L

A

A

A

6
A

A

A

N

H

C

R

I

0
A

A

1

E

1

1

SIOU

EA

AGA

0

GO

OC

TO

E-

GO

GO

GO

GO

TO

IGO

H + D

IME

GO

T

L

CO

0

274 The Best of 99'er Volume 1

HC

0

1

2

3

4

5

66

D

D

D

GO

F

F

I

IoIf

R

ION

U

CI

>

D

L

L

>

D

T|WO
L

I

Y

A

GH

AY

31

6
L

L

ElWME

L

A[MAjG
2

2

UGH

EA

[GO
S

0
T1 =

0002|3|0

4

2

IGO

H

5
X

D

1

AR

GO TO

TO

GO

N

GO

G

TO

GO

0

1

C

0

NG

GOO

CLO

P

GlO

IMA
7

D

OC

3
7

m|oo

E

HE

IdoPITb 68
E =

HI

Y

Y

9

Gb
u

A

Y

IGO
BA

A

IGO
R

S

T

L|A

2

D

IGO
2

B

EIWI

YO

IGO

D

NG

GO

TO

C

OP

MA

Copyright © 1983 Emerald Valley Publishing Co.

n -S ® 5 0
3

to N
O

N
O to
'

-» 3 fD

c
a

c
a

c
a

c
a

o
o

s
(
s
u

>
i
0

(
0

(
O

U
>

(
o

u
>

u
>

i
o

c
a

o
9

m
(
»

n
c
o

r
a

m
n

(
»

«
J
>

i
s
i
M

M
•»

*
>

j
«»

i
»

j
•
a

0
»

o
»

a
*

A
U

I
t
l
M

M
-
>

S
I
0

(
D

M
0

I
U

I
&

W
M

^
O

(
0

m
>

i
a

)
U

1
A

I
M

M
-
k
O

I
0

0
9

M
<

n
U

I
b

W
M

_
i

c
a

t
o

o
a

>
j

s
s
e
o

c
a

a
c
a

c
a

o
c
a

c
a

o
c
a

o
c
a

c
a

c
a

c
a

c
a

c
a

a
c
a

c
a

a
c
a

a
c
a

c
a

c
a

c
a

o
c
a

c
a

c
a

a
c
a

c
a

c
a

c
a

o

o
a

a
a

D
o

o
o

o
o

a
o

a
o

o
o

o
o

o
o

o
o

o
o

a
o

o
o

o
o

o
c
j

—
*

^
o

•
—

•
—

O
-

O
•
-
•

B
—

O
—

>
>

>
»

.
i
x
»

i
x
.
l
i
»

t
«

«
*

"
>

>
s
=

"
>

>
>

>
>

>
>

>
>

>
>

"
>

>
>

>
>

>
>

>
o

t
f
l
o

>
*

n
-
»

->
i

"
j

•*
i

E
»

"*
i

*
n

•
»

i

•
H

H
«

H
•
-
!

•
H

«
-
l
»

H
>

-
l
^
"
H

"
^
«

-
i
»

-
I
«

-
l
»

H
>

H
«

-
I
«

-
*

'-
l
'H

«
*

•
-
|
i
-
l
»

-
i
>

H
«

-
I
i
-
|
i
-
|
i
-
i
«

-
l
'-

i
w

o
a

r
«

«
i

-
*

_
i

B
"
i

>
>

>
>

3»
*»

in
to

t»
3»

>
{«

»
tw

t»
*»

*
•

3»
9»

»»
*

•
*

•
*•

>
>

>
>

t»
»

*
•

5t
»

>
>

a
t-

r
-

O
M

O
M

O
S

O
•
H

II
<

5
»

>
•-

«
1

9
«

>
1

9
w

a
w

o
S

O
i
n

•
o

1
>

>
>

>
>

—
—

.
—

—
»

•
|

|
I

»
>

>
>

>
>

>
>

.
_

.
_

_
_

.
_

.
_

_
_

O
*

2
0

f
M

M
M

M
1

0
c
a

^

»
>

>
>

>
»

•
—

—
~

—
-
o

»
»

|
|

>
»

>
>

>
>

i
s
>

II
n

It
II

II
II

V
c
a

II
>

>
>

>
>

O
-
i

-
*

>
«

(M
K

»
-
A

^
c
a

u
«

1
>

>
>

V
»

»
1

1
1

>
>

>
>

>
S

d
c
a

I
I

>
>

>
•
•

"
H

»
H

<
-H

•
-
i

•
H

•H
>

-
I

I
I

>
>

>
»

>
—

—
—

1
1

1
1

1
>

>
>

>
>

>
-•

n
o

-
-

S
B

a
S

B
S

B
s
s

S
B

>
>

>
l

1
>

>
•
—

—
—

1
1

1
1

1
>

>
>

»
>

>
s
o

P
I

p
i

P
I

P
I

o
P

I

»
>

»
>

1
>

>
>

•
—

—
1

1
>

>
>

>
!

1
1

>
S

B
S

B
S

B
S

B
S

S

^
—

»
>

»
»

*
»

—
•—

1
1

>
>

»
1

1
1

1
1

>
w

-
»

-
*

o
o

>
•
—

—
»

>
—

*
—

1
1

1
>

1
1

1
1

1
>

>
•
h

—
>

9
0

9
0

SO
SO

•
o

A
>

>
>

»
>

—
—

>
>

>
>

<
-
•
•
•
•
(
-
*

P
I

P
I

P
I

P
I

•
H

II
1

»
>

>
—

—
—

~
1

1
>

>
>

l
1

*
1

1
>

>
»

>
>

•
—

—
>

>
>

»
S

O
»

H
•
•

f
C

fl
t
o

C
A

C
A

-
*

o
n

I
I

>
>

>
>

»
—

•
—

—
>

>
>

>
!

i
i

»
i

i
s
s

p
i

•
H

•-
»

•-
i

•
-
i

II
I
I

>
>

>
»

>
—

—
•—

>
>

>
>

>
!

1
1

1
1

»
>

>
1

1
>

>
>

>
>

>
SO

9
0

O
©

6
O

6
o

t

>
l

1
>

>
>

»
»

>
—

>
>

»
>

>
>

!
1

1
1

>
>

1
1

>
>

>
»

>
>

>
Z

W
O

9
0

9
0

S
O

s
o

•
•

1
1

1
1

1
>

>
»

>
>

>
>

>
>

>
>

>
!

1
1

«
»

in
f

P
I

P
I

P
I

P
I

-
H

>
l

1
1

1
1

>
>

>
>

>
•
—

>
>

>
>

>
>

>
!

>
l

1
1

1
>

l
>

>
o

O
S

B
p

i

>
1

1
»

1
1

>
»

>
>

—
—

—
>

>
>

>
>

>
!

>
l

1
1

1
1

1
1

>
9

0
N

>
A

_
1

^
P

I
11

>
1

*
*

»
1

1
1

>
>

—
—

—
•—

>
>

>
>

>
i

>
>

l
1

1
»

1
1

1
1

.
.

•_
!

—
-
k

•«
J

U
>

>
J

S
S

0
0

>
>

l
1

P
I

0
0

0
9

c
a

•
x
l

o
n

c
a

>
>

l
1

,
»

|
(
|

»
»

»
>

>
1

1
1

1
1

>
»

S
S

9
0

-
c
a

c
a

c
a

>
-i

c
a

>
>

l
1

>
>

>
>

>
!

1
1

>
>

P
l

SB
-
»

O
c
a

>
>

>
l

1
1

>
»

>
>

.
_

_
_

.
_

_
._

_
—

—
>

»
»

>
>

!
>

>
>

X
•»

»
c
a

•
•

*
»

i
c
a

>
>

>
>

>
>

>
>

>
>

>
-
.

_
»

A
II

.
.

•
H

•
•

K
»

O
o

A
M

P
I

—
-
»

o
O

c
n

s
o

a
©

-
»

•
-
i

c
a

•-
*

M
M

N
>

M
K

»
K

>
K

»
M

M
tO

K
»

K
»

M
I
S

J
M

K
»

K
»

M
M

K
»

K
»

K
»

K
»

K
>

K
»

M
N

»
K

»
M

M
N

»
K

>
K

»
K

»
K

»
K

*
I
S

»
K

»
ls

»
K

»

^
A

C
k

«
k

A
A

a
M

M
M

W
M

O
I
M

W
M

W
M

M
M

M
M

M
M

M
M

M
^
a

a
a

a
u

a
a

u
J
O

S
O

c
n

c
n

O
O

*
N

>
^

c
a

(
0

0
a

M
0

>
U

I
A

«
N

M
^
O

«
Q

0
0

M
e
)
U

I
A

W
M

^
O

(
O

a
s
l
0

)
(
n

a
M

M
^
O

(
0

a
M

c
a

c
a

c
a

c
a

c
a

c
a

®
c
a

o
a

c
a

c
a

c
a

c
a

c
a

c
a

o
a

c
a

c
a

c
a

c
a

c
a

c
a

o
a

c
a

c
a

c
B

c
a

c
a

o
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

c
a

B
O

M
O

o
-

o
»

o
>

O
P

l
>

-
3

»
t
f
l
~

l
>

»
~

B
B

~
»

z
r

-
*

f
w

b
»
w

r
»

t
o

p
i

c
n

»
«s

i
r

o
r
p

'
d

-
f

»
»

q
o

»
»

b
»

••^
»

f
Q

f
»

f

o
I

>
w

c
o

s
s
tw

—
o

»
»

>
C

>
»

>
p

i
w

f
p

i
c
d

»
q

Q
»

»
-
<

p
i
'-

<
»

»
-
<

»
»

»
»

»
»

»
»

-
o

>
o

»

»
»

»
»

»
>

o
>

o
>

o
>

>
>

>
>

>

e
o

»
j

—
j
k

—
>

»
a

»
»

a
»

»
3

»
»

>
»

>
»

»
»

i
i

i

•
o

—
t
o

c
a

o
o

-
*

—
t

«
o

-<
»

»
o

"J
i

I
»

-o
-o

»
I

0
0

P
>

—
—

—
—

—
.

-
o

^
>

^
>

^
>

I
I

»
~

o
»

>
>

>
>

>
>

>
>

>
>

-
•
•

a
w

>
-
~

.
•
o

>
o

>
o

-
o

»
>

o
»

o
^
)

»

t
l
Q

O
X

N
*

N
*

^
>

^
>

^
>

^
>

^
>

.
o

»
>

o
»

»
»

»
»

I
>

l
I

I
*

o
>

o
»

»
»

>
o

•
«

o
-
o

^
»

»
I

»
»

I
>

l
I

I
I

I

—
>

>
\

I
I

I
I

-
C

O
—

K
*

Q
-*

>
-i

~
»

^
.
o

^
a

-
o

-
o

^
o

-
o

-
o

-
o

-
o

»
T

~
T

W
M

O
H

-
M

»
^
>

»
»

»
0

>
0

*
0

"
0

>
0

»
I

i
I

I
I

—
-
k

P
I

I
I

»
»

-
j
-
o

-
o

-
o

-
o

-
>

>
»

I
I

I
I

I
I

I
T

-
r

>
>

>
>

-
>

l
I

»
•%

>
>

o
-
o

-
o

I
»

•
^
-
0

-
O

^
>

»
0

"
0

-
O

»
»

»
|

I
I

«
^>

*
o

»
o

>
>

I
»

»
^
>

^
>

*
o

*
o

^
>

^
>

»
o

-
o

»
»

»
I

>
I

I
I

»
*

o
«

o
*

o
»

o
*

o
*

o
*

o
*

o
»

>
>

>
»

»
•
o

-
o

-
o

^
o

*
o

*
o

*^
>

»
•
o

-
o

»

»
^
j
*

o
^
>

^
>

*
»

»
o

*
o

»
«

)
»

>
>

»

»
»

I
_

v
—

>
>

>
>

»
»

I
I

I
I

»
-
o

^
>

-
o

«»
Q

-
J

EXTENDED
BASIC

N-VADER
AAfALA

N-Vader is a game for one or two players written in
Extended BASIC. Each player controls a "defense
ship" whose mission is to prevent alien creatures

from reachingEarth. The game is played using either the
keyboard or joysticks. If joysticks are used with the
TI-99/4A, be sure to put the ALPHA LOCK key in the
up position after setting the parameters of game play in
response to the screen prompts.

Aliens are destroyed by positioning the defense ship in
the immediate vicinity of the alien. No fire button or key
isneeded. Everytimean alienis destroyed, the playerscores
a point and another alien is introduced at the top of the
screen. Whenever an alien reaches Earth (bottom of the
screen), the aliens score.

One unusual feature of this game is its flexibility. When
the gamestarts, the player(s) can select the numberof aliens,
their speed, the speed of the defense ship and the defense
range. Defense range defines the proximity necessary for
a defense ship to destroy an alien.

Features of Extended BASIC Used in N-Vader
Several Extended BASIC features are used to make N-

Vader work. Sprites are, of course, fundamental to thepro
gram. CALL DISTANCE is used to determine the prox
imity of alien and defensive ship(s). CALL COINC is used
to determine when aliens reach Earth.

Becausesprites move independentlyof the program, alien
destructionis sometimes delayedor missed altogether.Aliens

EM

EM

EM

EM

EM

EM

EM

276 The Best of 99'er Volume 1

can also descend through the Earth for the same reason.
Fortunately, these quirks of sprites actually make the game
more enjoyable. For example, it is sometimes possible for
a defense ship to swoop down into the Earth and pick off
an alien at the last possible instant!

A subprogram (lines 1390-1510) is used to allow keyboard
input to be processed by the main program as joystick in
put. Programmers with diskettes may want to save this sub
program in a MERGE file for inclusion in other programs.

EXPLANATION OF THE PROGRAM
N-Vader

Line Nos.
100-160 Program header.
170 Define invader character.
180-270 Display title screen with sprites.
280-470 Instructions.
480-700 Get parameters.
710-790 Draw Earth.
800-820 Draw invader sprites.
830-840 Draw player sprites. Note that positioning

changes for Player #1 depending upon number
of players.

850-890 Check for player scoring.
900 Check for invaders at Earth.
910-940 Adjust player motion.
950-1140 Process end of game.
1150-1170 Subroutine to introduce new invader during

game.

1180-1190 Subprogram to simulate joysticks on keyboard.

Copyright© 1983 Emerald Valley Publishing Co.

850

CA

L

L

E

L

U

X

L

N

G

N

I

T

V

N

IOU
L

N

P|U
L

N

N

ga|m
R

0

FOR

T

T

Z

T

P

N

T

P

T

T

T

N

T

T

S

T

T

P

T

T

N'C
T

T

T

E

MI

PRITE

BO

UMB

SMA

YO

UM

Z

UM

0

P

<2 ,104,13,65,25

T

COMMA

WH

D

E

E

E

E

0

w|h
R

OF

T

WH

E

0

0

ON

COMP

WI

WH

YO

NG

CO RO

GAM

AM

AM

TH

N

0

IGAIME

3 +

NO

TO

Copyright © 1983 Emerald Valley Publishing Co.

860

LA

NG

Z

D

I

Z

D

GO

A

F

G|0
CA

H

F

Z

0

A

A

E

A

A

S

GO

NE

GO

A

N

A

N

P

L

L

T

L

L

0

TO

XT

TO

CO

MO

MO

<

E

T

)
TlO
NC

T

AN

TE

ND

60

H

+

T

T

2 +

AT

0

SOU

X

The Best of 99'er Volume 1

RO'

IT

C

INiG

277

EXTENDED
BASIC

SPACE
PATROL

The Earth is at war! Another planet is trying to gain
control of our solar system. You are the captain of
a patrol ship armed with high-powered lasers. Your

mission—destroy a fleet of 15 enemy supply ships en route
to theirBattle Star. Butbecareful, because thesupply ships
are armed with "killer satellites." When launched, the
satellites will move in on your ship and self-destruct unless
you destroy them first.

Your ship has a supply of 400energy units, and energy
is depleted by 10 units each time you fire your lasers. You
also have a deflector shield that is automatically activated

when a "killer" gets past your lasersand explodes near you.
This will deplete your energy by 50 units. Your on-board
computer will warn you if a "killer" has been launched.

At the start of the game, your gun sight will appear in
the center of the screen. You may use a joystick or the ar
row keys to position this on your target (depending on the
option chosen at the start of the game). Then press either
the FIRE button or the Y key to fire your lasers.
GOOD LUCK AND GOOD SHOOTING, CAPTAIN!!

Note: If using Joysticks with theTI-99/4A, release theALPHA LOCK key.

EXPLANATION OF THE PROGRAM 480
Space Patrol

490-530

Clears screen and makes it black.
Sets colors of letters and numbers to white.
Display tide and define characters. 540-590
Clears screen; lets user choose joysticks or
keyboard.
Clears screen; initializes energy and ships
destroyed; randomizes; lets user choose high or 600-610
low skill level; sets magnification 3 for high
level, 4 for low level. 620-680
Sets colors for stars; randomly places 40 stars
on screen. 690-720
Creates gun sight in center of screen.
Displays energy level and number of ships
destroyed at bottom of screen. 730-760
Randomly selects number from 2 to 6; if the
number is 5 or 6, branches to the satellite 770-850
routine; otherwise a supply ship is defined.
Changes colors of stars so they will twinkle. 860-880
Randomly sets speed, direction, and location of 890
supply ship. 900-950

Line Nos.
150

160

170-300
310-330

340-390

400-410

420
430

440

450

460-470

278

ClHA
0
0

CH AR

R0

0
0

S[HO
2

4

CO

The Best of 99'er Volume 1

Branches to joystick or keyboard input to move
gun sight.
Checks if fire button or key is pressed; if so,
stops motion of gun sight, makes laser display
and sound, checks for a hit, and decreases
energy.

If ship is hit makes red explosion and sound,
increments ships destroyed, reduces energy,
deletes sprite #3. Checks for end of game and
branches.
Sounds and prints warning for satellite
launching.
Creates satellite sprite and gradually increases
the size.
Moves scope if user indicates or tests for hit if
fire button or key is pressed. Energy is reduced
by 10 for each shot fired.
If satellite is hit, it explodes; if not there is a
larger blast and energy level is reduced by 50.
Sounds and messages for end of game depen
ding on number of ships or energy level.
Displays option to play again.
Subroutine to move gun sight with joystick.
Subroutine to move gun sight with arrow keys.

) =

1

0
IGU

0
1

A

0

01
0<
GH

CA

Copyright © 1983 Emerald Valley Publishing Co.

LOC

HA

CH

CH

CHA

BO|A
Y

E

>

DOMI

LA

OW

LL

K

FO

MAGN

FOR

D +

VM

1

L

0
R

P

S

4

0
L

R

m
0
E

CO

N

R

I

R

25
GO

Y

L

TO

TO

N|G

ROW

EY

IO

0
2

T

I

1

N

+

C|HA
4

1

1

VM

(
R

B

K

EmIo
3

CO

+ 1

ON

C

1

0
8D

HOO

EM

HOO

GH

9

S

ElMA

HM

HM =
N

0
T

HtMl

Copyright © 1983 Emerald Valley Publishing Co.

ME

LO

CA

D

(
L

Gb
A

stou
1

3D

HO

FO

EA

K

S

C

0
R

3

3

S

N|G
>

E|A|R
3

FO

ND +

TH EN

CO

SO

SPL

T

A

a-Hi
D

NP

K

D

72

MO

TO

G|0
Y

CO

AMAG

YOU

|GO
I

S

TO

YO

CA

1

3

5
YlOO

ND

CA

R

E

MO

SOU

MAGN

TO

f+2

3

TO

MAG

Y A

0

CO

0

LO

GO

SO

E|C|A
B E

VA

ib
X

I

0

E

YOD

YlOO
R

POO SHOO

LA

K

CA

Y:

9!
F

MjO
MO

MO

MO

CAD

RGY

0
M)0

T

L

N

N

N

N

TO

ON

BA TO

(

TO 0

F

L

Gb

TA

CA

OU

M|I

TO

ND

CA

s

E

F

T

A|G|A ?

K

E

IMO

blu
B

YOD

2
D

EM

WA

ROMO

COMMAN

8

7

Ion

The Best of 99'er Volume 1 279

Computer

Chess
The game of chess has fascinated men and women for

hundreds of years. People from all walks of life and
all ages have enjoyed the challenges and entertain

ment it provides. The universal popularity of chess is un
doubtedly due to its resemblance to life: Mastery of chess
requires many of the same elements necessary to mastery
of one's life—logicalthought, long-range planning, the abili
ty to recognize and act on sudden opportunities, persistence,
patience, concentration, steady nerves, confidence, objec
tivity and, of course, lots of experience! Yes, to do well in
chess does require all these things, but interestingly enough,
practicing the game greatly helps develop and nourish these
same characteristics and abilities! "Learning to play" is, in
reality, one and the same as "playing to learn."

And yet, for all its challenges and self-improvement at
tributes, the game is enjoyable at all levels of skill—from
raw novice to international master. Over the years, chess
has provided me with hundreds of hours of engrossing enter
tainment and many cherished friendships.

With the advent of strong chess-playing computer pro
grams, chess has entered an important new stage of develop
ment. People can learn chess much more rapidly than before
without the often deflating experience of losing many games
in public. This is especially true for children; losing badly
to adults or other children can often drive them from the

game. Having a ready and discreet opponent does indeed
have its advantages. . .

The TI Video Chess Command Cartridge is one of the
programs now available. It is a unique implementation since
it is contained in 30K of ROM (no time-consuming cassette
loading), can run on a "bare-bones" TI-99/4A (no disk
drives or other peripherals are needed), uses a keyboard
overlay to simplify commands, and has built-in chess clocks.
This last feature is useful for users who wish to eventually
play in tournaments where the use of chess clocks is man
datory. Playing under tournament conditions is now possi
ble in the privacy on one's own home!

In this initial section, I'll look briefly at the main features
of the video chess program, examine some of its strengths
and weaknesses, and make some suggestions for using the
program to learn chess.

There are four main options available for using the pro
gram. You can (1) play chess against the computer, (2) play
against another human opponent, (3) set up a problem for
the computer to solve, or (4) have the program play as many
as nine (!) opponents simultaneously. In addition, games
or positions may be stored on cassette—an especially useful

280 The Best of 99'er Volume 1

feature for postal players, or players without enough time
to finish their games in one sitting.

When playing against the computer, you can control the
playing characteristics of the program by choosing the ex
perience level (beginner, novice, or intermediate), the time
allotted to the computer for each move (30 seconds to 200
seconds), and the style of play (normal, defensive, or ag
gressive). The program also allows you to take back a move,
ask for advice, have your move evaluated, or even switch
sides!

In the problem mode, you can ask the program to solve
a checkmate in two, three, or four moves. This is, of course,
a potentially valuable learning tool, but the program's ver
satility doesn't stop there: You can also set up any position
and have the computer play a normal game starting from
the given position.

Based on many years of tournament experience, I would
estimate the maximum strength of the program to be slightly
less than the average player in a typical chess tournament.
This is superior to probably 90 percent of the world's chess
players! And presumably, stronger versions of the program
will be available in the future. To put this in perspective,
the strongest chess-playing program in the world, running on
the enormous and fast CYBER or CRAY computers, still
does not play at the level of a human chess master. (It will,
however, defeat 99 percent of the world's chess players!)

As an educational tool, the Video Chess program is ex
cellent. A beginning player can make rapid improvements
in his game by adjusting the strength of the program as his
own playing strength increases. If you're a new player, you
should have at least one good book on chess that is designed
for beginners. (There are many good ones on the market.)
Then as you learn new ideas and techniques from reading,
you can try them out against the computer immediately. For
example, it is important for every player to master the basic
checkmates: king and queen vs. king; rook and king vs.
king; two bishops and king vs. king. All good chess manuals
discuss these in detail. After reading about how to mate with
king and rook against king, for example, you can im
mediately try it out using the program. Learning can pro
gress much faster when a tireless, willing opponent is always
ready to play!

The weakest part of the program is in the problem mode
when asking for a mate in two, three, or four moves. For
example, when I gave the program Problem No. 1A (below),
it worked for two and one half hours without coming to
a conclusion. I finally turned it off. And I have had similar

Copyright© 1983 Emerald Valley Publishing Co.

disappointing results with rather easy mates in Problem No.
IB. Fortunately, this defect is not terribly important, and
may be alleviated in future versions of the program. The
best use for this problem-solving mode seems to be in set
ting up positions from which the computer will commence
playing as in a normal game. (Note: You can do this to learn
the basic checkmates mentioned previously.)

Problem No. 1A

While: Pawns: A2. B2. C2. F2, G2. H2
Knights: CI
Bishops: D2, Fl
Rooks: HI

Queen: D3
King: CI

Black: Pawns: A7. B7. C6. G7. H7

Knighis: B8. E4
Bishops: C8, F8
Rooks: A8. H8

Queen: E5
King: El

White to move and checkmate in three moxes.

Computer Chess
PART TWO

Ever wondered where your computer got the "in
telligence" to beat you in a game of chess? It's all
in the program, you say? But then where did chess-

playing computer programs come from? You might sup
posethat the impetus for the development of theseprograms
came from chess players themselves. But in fact, this was
not the case at all. It was researchers in the field of artificial
intelligence (psychologists and computer scientists) whom
we have to thank for those embarrassing checkmates. . .

The goal of these reseachers was to determine the nature
of intelligence itself: What precisely it was, and consequent
ly, what it was not. This was no easy task. They hoped to
shed some light on this problem by getting computers to
do things that if performed by a human would require "in
telligence." It didn't take long to figure out that chess was
a natural: It presumably required highly intelligent behavior,
and yet, it was "contained" enough so that initial programs
designed just to play "legal" games would not be pro
hibitively large. As these programs were developed, it soon
became obvious that to progress from legalgames to good
—or even just reasonable—play required close attention to
basic theory and concepts as understood by humans. For
example, the number of possible positions after only the
first ten moves in a game is a number having over a hun

Copyright © 1983 Emerald Valley Publishing Co.

Finally, I will leave you with two problems to solve. Pro
blem No. 1A comes from a game between two grandmasters
about sixty years ago. Problem No. IB is a famous
position—especially memorable because after Black made
the beautiful winning move, spectators showered the play
ing stage with gold coins. As it turned out, however they
were not showing their admiration. . .but rather, paying off
their bets in disgust!

Problem No. IB

While: Pawns A2, C2. F2. C2. H2
Knighis: None
Bishops: None
Rooks: C5, Fl
Queen: G5
King: CI

Black: Pawns: A7. B7, E6. G7, H7
Knighis: D4
Bishops: None
Rooks: H3, F8
Queen: C3
King: G8

Black to move and win

(Black has a single crushing mow).

dred zeros in it! Hence, looking at all possible positions is
clearly impossible.

As a consequence of this need for a higher level of
understanding of the game, strong chess players had to be
consulted. One of these was international master David Levy
of Scotland. Levy is perhaps best known for his $10,000
bet (made in August 1968) that even within a decade, there
still wouldn't be a computer program that could defeat him
in a match. In the years since his bet (which he won easily),
Levy has been a frequent visitor at computer conferences,
where he lectures and plays simultaneous exhibitions against
several of the current programs. Incidentally, he also acted
as a consultant to Texas Instruments in the development
of the Video Chess program.

Levy has therefore provided a valuable link between the
artificial intelligence commmunity and the large communi
ty of chess players. He, perhaps more than anyone else, has
been in the position to measure the rate of computer chess
progress. In his view (and mine as well), the rather recent
advent of microprocessor chess playing machines will make
chess popular and accessible as never before. The revolu
tion has just begun!

As indicated above, chess playing programs do not at
tempt to find a move by searching all posssible combina
tions of moves. Rather, chess programs combine chess
theory and concepts together with brute force searching
techniques to choose a move. Therefore, they are limited
by how well the program "understands" chess theory and
can "think" like a human player, and by speed and memory
considerations. The speed and available memory determine
how far ahead the program can be examined and evaluated
in a given amount of time. The number of moves the pro
gram can look ahead in a given position is called its search
horizon (Levy's term).

For these reasons, even though they play relatively strong
chess, chess playing programs have certain characteristic
weaknesses which can often be exploited. For example, a
program may sacrifice a bishop or a knight on one side of
the board to win a rook (with a knight usually) in a corner
on the other side. This will leave the knight trapped after
it captures the rook. To any human chess player, it would be

The Best of 99'er Volume 1 281

evident that the knight was permanently trapped and would
eventually be lost—leaving the player with only a rook (5
units) to show for the loss of two minor pieces (a total of
6 units). However, the computer would merely consider the
situation a gain of two units (lose a bishop or knight and
gain a rook) as long as the stranded knight could not be
captured within the number of moves in its search horizon.
The limited search horizon leads to other situations where
short term expedients are followed to the detriment of
position.

Future improvements in speed will extend the search
horizon of chess programs and thereby increase their play
ing strength even further. In my opinion, without con
siderable improvement in the longer range strategic
capabilities of these programs, they will not be able to reach
the level of world-class human players. However, weplayers
in the other 99.9 percent had better watch out!

As an experiment, I recently pitted my Video Chess (a
TI Command Cartridge) program against the Boris machine
with the Morphy cartridge. Boris-Morphy is reputedly the
strongest comercially available microprocessor chess play
ing machine. The match consisted of playing the Video
Chess program at its highest level (Intermediate, 200 seconds
per move) against the Boris-Morphy machine at three dif
ferent levels from high to low. Although the Boris-Morphy
program won all three games, the VideoChessprogram did

Problem No. 2A

While: Pawns: A2, B2. C2, D4, F2. C2. H2
Knights: E4. ES
Bishops: D3
Rooks: Al, HI
Queen: H5
King: El

Black: Pawns: A7. B6, C7, D7. E6, C7, H7
Knights: B8
Bishops: B7, F6
Rooks: A8, F8
Queen: E7
King: G8

White to move and mate in several moves.

Can you find the fewestnecessary?

Computer Chess
PART THREE

We have discussed the relationship between chess
programs and artificial intelligence, and examin
ed some general characteristics of chess playing

programs—both strengths and weaknesses. In this arti
cle, I'm going to illustrate some of these characteristics
through an actual game played between the TI Video
Chess program and myself. The game was played with
the program set on intermediate level, normal mode, with
200 seconds per move allowed.

White: J. Wolfe

1. E2 - E4

2. D2 - D4

Black: TI-99/4

with Video Chess

G7 -G6

F8-G7

These first two moves constitute the Pirc-Robatsch
defense to the opening move E2 - E4. You may have
noticed in your play that the program often makes the
first several moves quickly and then slows down. This
is because certain standard opening sequences are stored

282 The Best of 99'er Volume 1

obtain a winning position against the two lower levels (but
could not find the knock-out punch). The top level of Boris-
Morphy seems clearly stronger than Video Chess. All in all,
the results were not bad, and since the top current level of
Video Chess is called "Intermediate," we may look forward
to further strengthening of the program.

The two problems I'll leave you with are from games by
famous chess players. The first position is from a game of
"speed " chess played in 1912 between American Edward
Lasker (who died recently at age 96!) and former English
champion Sir George Thomas. The rules were, 1 believe,
that neither player could allow his own clock to get more
than five minutes ahead of his opponent's clock. To find
such a pretty mating combination at that speed is impressive.
The second position was played by the great American
champion Harry Nelson Pillsbury near the turn of the cen
tury in an exhibition where he played blindfolded against
22 different opponents simultaneously! Blindfold play is not
as difficult as you might think—try it against your Video
Chess program sometime—but to play 22 such games suc
cessfully is phenomenal. In recent times George Koltanowski
has played blindfolded against more than 50 opponents
simultaneously. But Pillsury's achievement is magnified by
the fact that he could perform well in blind simultaneous
play against masters*

Problem No. IB

White: Pawns: A2, C3, H2
Knights: None
Bishops: E3. E4
Rooks: None
Queen: H4
King: HI

Black: Pawns A7, B6, CS, H7
Knights: None
Bishops: C6
Rooks: None
Queen: F7
King: H8

Black to move and mate in three moves.

in the program and played automatically in the ap
propriate situation. As soon as these run out, or as soon
as the position is no longer standard, the program reverts
to its main programming and hence slows down.

3. Bl - C3 C7 - C6

Copyright © 1983 Emerald Valley Publishing Co.

The main purpose of the opening part of the game is
to bring out the pieces and to get a reasonable foothold
in the central part of the board. (More precisely, the
center is the square region whose corners are C3, C6, F6,
and F3. The squares D4, D5, E4, and E5 are especially
crucial.) Long experience has shown that the success of
future maneuvers depends on an adequate control of this
area. The last moves for each side fit well into this plan.
White brings out a knight that bears down on the center
while Black prepares to play D7 - D5 establishing his own
foothold there.

4. Fl

5. C4

C4

B3

B7 - B5

White develops a piece and temporarily prevents
D7 - D5. Black responds by driving back White's bishop
and preparing a later pawn advance on the queen-side
(i.e., the left-hand portion of the board).

5. . . . D7 - D6

This is a weak move because of the following tactic.

6. C3 - B5

Black cannot capture the knight because White then
plays 7. B3 - D5 and captures the rook at A8 coming out
with a two unit gain in material. (Recall that a rook is
worth 5 units and a bishop 3 units. These units represent
the relative strength of the two pieces.)

You might be wondering why the program missed such
a short sequence of moves. Well, the reason is fairly com
plex. The program has two basic features: The first is a
static evaluation feature which takes a given position and
evaluates it to decide which side is better and by how
much. This is done by assigning numerical values to cer
tain features of the position and summing these values
to get a numerical value for the position. For example,
being a pawn ahead in material might be worth, say, 75
points, while not being able to castle (ever) might be worth
minus 15 points. The program does this for both sides,
and the side with the largest score is judged to have the
best position. In this evaluation scheme, material advan
tage is given the largest positive weight by far.

The second basic feature of the program is a searching
procedure. When combined with the static evaluation
program, it allows the program to evaluate the conse
quences of various moves and to pick what it deduces
to be the optimum one. Unfortunately, time and memory
considerations limit the number of moves the program
can look ahead (i.e., its search horizon) and can also limit
the number of moves that are considered in response to
a contemplated move.

Thus, in examining the position after 5. ... D7 - D6,
White has 38 legal moves. In deciding which moves to
consider first as possible replies by White, the program
will not begin with moves that result in immediate
material loss by White. This again is due to the heavy
weight assigned to material superiority. Thus the con
tinuation 6. C3 - B5 might not even be reached in the
search within the time limit. Sacrifices of material are dif
ficult for all but the most advanced and powerful pro
grams to either make or predict.

6. . . . D6 - D5

Copyright © 1983 Emerald Valley Publishing Co.

This is a good move and is the other side of the argu
ment above. The program finds the only possible way to
regain the lost pawn. Here the emphasis on material is
helpful to the program.

7. B5 - C3 D5 -E4

8. C3 - E4 G7 - D4

9. Gl -F3

Thus, Black has not lost a pawn after all. However,
Black's position now has two unpleasant features: First,
his pawns at A7 and C6 are weakened since they cannot
be protected by pawns if attacked, but must be protected
by pieces. This can tie down Black's pieces and will make
the pawns vulnerable, especially in the later part of the
game when fewer pieces remain. Second, to regain the
pawn, Black has exposed his bishop to attack. Thus White
can develop a piece (G1 - F3) and at the same time force
Black to waste a move either guarding or retreating his
bishop. Note that White has three pieces developed and
no pawn weaknesses, while Black has only one developed
and definite pawn weaknesses. White already has a
distinct advantage.

9. . . . C6 - C5

This is another weak move. Black cannot retreat the
bishop to G7 or F6 because of the B3 - F7 check winning
the queen, but D4 - B6 is possible—preserving material
equality. There is some evidence from this game and
others I have played that the search horizon of Video
Chess is about two moves in complicated positions. This
would explain why C6 - C5 (so as not to waste a move
retreating) was considered best.

10. C2 - C3 D4 - F2 check

Now looking ahead two moves, the program apparent
ly can see that if D4 -G7, then B3 - F7 check and White
wins the black queen on the next move. However, later
when 1 set up the position after D4 - G7 and asked the
program to play White, it played Dl - D8 winning only
two pawns (the one on F7 and then the one on C5), leav
ing White two units ahead. Since giving up a bishop for
a pawn also leaves Black two units behind without hav
ing to trade queens, the move 10. ... D4 - F2 was
chosen. Thus it appears that the program made the right
move for the wrong reason!

11. El - F2 G8 - F6

Again the program does not see the third move in the
coming sequence.

12. E4 - F6 check E7 - F6

13. Dl - D8 check E8 - D8

14. B3 - D5

Thus White wins another piece.

14. . . . B8 - C6

15. D5 - C6 A8 - B8

White is so far ahead in material that winning is sim
ple. Accordingly, I will relate the rest of the game with
little comment.

16. B2 - B4

This move allows White to play CI - F4 without an
annoying check at the B2 by the black rook.

The Best of 99'er Volume 1 283

16. . , . C5 -B4

17. CI -F4 B8 •-B6

18. Al - Dl check Dl - E2

19. F4-• D6 check E7 •- D8

19. ... E7 - E6 leads to a quick mate after 20. HI
-El check E6 - F5; 21. Dl - D5 check F5 - G4; 22.
H2 - H3 mate.

20. D6 •- C5 check D8 -C7

21. C5 •• B6 check A7 •- B6

22. C6 •• D5 B4- C3

23. HI - El C7 •-B8

24. D5 -F7 C8 •-G4

25. El -• E7 G4 -F3

26. G2 - F3 F6- F5

27. Dl - D7 B8 ••C8

Computer Chess
PART FOUR

The computer chip has already revolutionized the game
and toy industry, and even bigger changes are ahead.
Chess playing machines, a specialized branch of this

new technology, are now widespread. There are several com
panies making what are essentially simple microcomputers,
completely devoted to playing chess (at least eight companies
at last count). This is, of course, in addition to numerous
packages of chess software that run on personal computers.

Competition between chess-playing machines has resulted
in a continuing strengthening and evolution in performance
to the point where there is now a world microcomputer chess
championship held each year. This now complements the
annual world computer championship which has been held
for several years, and which features powerful programs,
typically requiring large, fast computers.

28. F7 - E6 B6 - B5
29. D7 - A7 check C8 - D8
30. E7 - D7 check D8 - E8
31. A7 - A8 checkmate

Currently, the most powerful chess programs can look
ahead about six moves in fairly complicated positions.
Advancements in hardware should extend the capability
to nine moves. This is about twice as many moves as chess
masters can look ahead in complicated positions. Such
programs will be virtually impossible to trap in simple
tactical sequences and, in fact, the human playerwill most
likely be victim. To defeat such a program will require
superiorapplicationof chess theory and strategy, as well
as avoidance of open tactical situations where an eight
or nine move look-ahead program would be at its best.

In September 1981, the second annual World Microcom
puter Championship was held in Hamburg, Germany. Four
machines competed in the commercial division and eight in
the experimental group. The Chess Champion Mark V (Sci
Scys, Hong Kong) won the commercial group while the
Champion Sensory Challenger (Fidelity, U.S.A.) was a close
second and defeated the Mark V in their individual series

2'/2-l Vi. In the experimental group, Fidelity Experimental
(USA) was first, with Princhess (Sweden) second and a two-
way tie for third place between Pilidor Experimental
(England) and the Phoenix/Novag Experimental
(USA/Hong Kong).

Later in November, the twelfth annual North American
Computer Championships were held in Los Angeles. Six
teen programs were entered—from microcomputer pro
grams like Philidor mentioned above, to powerful "move
crunchers" like Belle of Bell Labs, and Cray Blitz using the
powerful Cray computer that carries out 80 million instruc
tions per second! The winner was the impressive program,
Belle (also the world computer champion!) which features,
in addition to the basic program, special hardware developed
expecially for chess. This program and hardware can ex
amine 23 million (!) chess positions in a three minute
period—almost seven times as many as its nearest com
petitor. Finishing in a tie for second were Cray Blitz,
Nuchess and Bebe. Even though Cray Blitz is backed up
by a computer a hundred times faster than Belle's, it can
only examine only about a million positions in a three minute
period. This demonstrates the great advantage of having
special hardware!

Just in case you're curious about how well these programs
play chess, I give you here the crucial last round game
between Belle and Cray Blitz for the championship.

White: Cray Blitz Black: Befle

1. E2-E4 E7-E5
2. Gl - F3 B8-C6
3. Fl - C4 G8-F6
4. F3 - G5 D7-D5

5. E4 - OS C6-A5
6. C4 - B5 check C7-C6
7. D5 - C6 B7-C6

(This is Two Knight's Defense in which black sacrifices a
pawn to gain a lead in development and lovelypiece play.)
8. Dl - F3 A8 - B8
9. B5-C6 check A5 - C6
10. F3-C6 check F6 - E7
11. D2-D3 F8-E7
12. G5-E4 C8-B7
13. C6 - A4 D8 - C7

(13.. . 0 • 0 may be better)
14. B8-C3 B7-C6

15. A4-C4 C7-C8(?)
(C7 - B7 is better, preventing C3 - DS and maintaining
pressure on the A8 - HI diagonal.)
16. C3-D4 C6-D5
17. C4 - D5 C7 - C2

18. 0-0 F7-F6
19. F2-F4? D7-B6
(19. CI - E3 was better for White who would then have the
advantage.)
20. D5-A5 C7-D3
21. A5-A7 0-0

22. A7-E7 D3-E4

23. E7-E6 check G8 - H8
24. F4-E5 F6-E5

25. Fl - F8 check B8 - F8
26. H2 - H3 E4 - El check

27. Gl - H2 H7 - H6
(So he can move his rook to Fl)
28. E6-B6??

(A blunder. Correct is CI • H6! which leads to perpetual
check and a draw)
28. . .. F8 - Fl
29. B6-D8 check H8 - H7
30. D8 - Fl check E5 - F4
31. D3 - Fl El - Fl

(D3 • Fl is forced to avoid checkmate.)
32. A2-A3 E4-E3
33. CI - E3 Fl - Al
and Black won in a few more moves.

284 The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

Computer Chess
PART FIVE

In this section we are going to look at some variations
of standard chess problems, as well as a few interesting
challenges associated with chess but not directly related

to playing the game. You'll be able to try all of this on your
T1-99/4A computer with the Video Chess Command
Cartridge.

Diversions

By now, of course, you are already well acquainted with
chess problems taken from positions in actual games. But
chess literature also abounds in problems that have little or
no relevance to practical play, but are nevertheless extremely
intriguing. Here are a few:

Problem 5A: This is called the "Knight's Tour." Place
a knight on an empty board (on Al for example) and move
the knight 63 consecutive times in such a way as to land
on each square exactly once and return to the beginning
square on the 64th move.

Problem 5B: Remove the squares HI and A8 from the
chessboard. Is the "Knight's Tour" still possible now? You
are required to prove that your answer is correct!

Problem 5C: This problem involves a knowledge of chess
plus the ability to make logical deductions. While playing
a game of chess, Black became irked at his losing position
and petulantly removed his king from the board. At that
moment, White was in the middle of making his move; for
an instant after removal of the black king, the board was
completely empty. After White completed his move, Black
cooled down and replaced his king. But then he made the
worst possible move on the board and White announced
mate in two moves. Your task is to reconstruct the position
just before White moved and give the exact sequence of
moves leading to the checkmate of the black king. (Yes, the
problem has a solution.)

Problem 5D: Place eight queens on an otherwise empty
board in such a way that no two queens are attacking each
other.

Problem 5E: Find the shortest number of moves necessary
to produce a stalemate starting position.

Copyright © 1983 Emerald Valley Publishing Co.

The above problems represent only a small sample, but
perhaps give someideaof the variety of possiblities. Oh yes,
I will provide solutions (for all but Problem 5E, for which
the minimal number is not known). It is a much smaller
number than one would think on first seeingthe problem.
Try it and see what you can come up with. . .

Versions
Besides the diversions provided by such puzzles, chess

players have also been attracted by variations on the basic
game of chess. "Speed Chess" (or five-minute chess) is a
version requiring a chess clock. Initially each player is given
five minutes of time. Play then proceeds until one side is
checkmated, a draw is declared, or until one side runs out
of time. (For those of you who are not acquainted with the
use of a chess clock, I should explain that the player has
his clock running until he makes his move. He then pushes
a button stopping his own clock and starting that of his op
ponent.) Thus each game lasts no more than ten minutes.
This version is widely popular at chess clubs and among
tournament players.

Another currently popular version, especially with
younger players, is called "Siamese Chess." This involves
four player divided into teams of two players each and re
quires two chess sets and (usually) two chess clocks. The
partners sit on the same side of the table and play opposite
colors. Thus the pieces that one partner captures will be the
same color as those his partner will be playing on the adja
cent board. As one partner captures a piece from his oppo
nent, he passes it to the other partner. The reason for this
is that, in addition to the usual moves of chess, one is allow
ed to place new pieces on the board anywhere that is not
occupied—with the one exception that pawns may not be
placed on the back ranks (squared Al - HI or A8 - H8)
where they could be promoted instantly to a more power
ful piece.

The placement of new pieces on the board causes the chess
battle to take place at an accelerated pace, and causes
unusual and often hilarious positions to occur. To make
matters worse, the clocks on each board are set for five
minutes as in speed chess! The game ends when either a
checkmate occurs in one of the games, both games are
drawn, or one side runs out of time.

Although chess is far from being "played out," so much
study has been devoted to the opening portion of the game
that it is possible to go through the first twenty moves in
some openings simply repeating moves that are already
known to be good. These are called "book moves" because
they can be found in chessbooks dealing with openings. This
means that a player may obtain a substantial advantage in
the opening stages of a game simply by memorizing several
sequences of moves found in opening books. At the grand
master level, this tendency is so refined that victory often
hinges on knowing the latest wrinkle in the theory of some
particular opening variation, and springing it on a less
prepared opponent—one who must then expend extra time
on his clock searching for the best reply to this surprise.
To combat this over-refinement of opening theory, a sim
ple variation of chess has been proposed. It is called
"Prechess" and is played exactly like ordinary chess except
for the first eight moves of the game. These proceed as
follows: Both sides line up their pawns in the usual
way, but leave the row behind the pawns empty. Then the

The Best of 99'er Volume 1 285

first eight moves consist of each side alternately (beginning
with White, as usual) placing down one piece at a time on
the back row anywhere that is unoccupied. This is done until
all eight pieces on each side are placed. Then the game con
tinues in the usual way. Since all opening theory is based
on the standard starting position (which this is usually not),
the printed variations found in the opening books are
useless.

This version of chess appeals to many serious players and
has the advantage that it can be played using a standard
set without any bizarre rule changes; basic chess principles
still apply as strongly as ever. By using the problem mode
of the Video Chess program to set up the initial position,
you can play "Prechess" on your computers. Try it some
time. Some very unusual and interesting games can result
from it.

Solutions to Chess Problems
Problem No. I A:

1. D3D8 check E8 - D8

2. D2 - G5 double check

(a)2. . . D8 - E8
3. Dl - D8 checkmate

(b)2. . . D8 - C7

3. G5 - D8 checkmate

Problem No. IB: 1. . . C3 - G3!!

Black appearedto be in trouble sinceafter the apparently forced retreatof his queen out of danger,
White could capture the rook on H3 and be decisivelyahead in material. Black had forseen all this,
however, and repliedwith the crushing move above. White has three ways to capture the black queen
(which must be captured else mate on H2 is inevitable)—all unsatisfactory.

(a) 2. H2 - G3 D4 - E2 checkmate.
(b) 2. F2 - G3 D4 - E2 check.

3. Gl - HI F8 - Fl checkmate.

(c) 2. G5 - G3 D4 - E2 check.
3. Gl • HI E2 - G3 check.

4. HI - Gl G3 - E2 check.

5. Gl - HI H3 - C3

and Black is a full pieceahead with an easy win. In the actualgame, White resignedafter I... C-G3.

Problem No. 2A

1. H5 - H7 check!! G8 - H7

2. E4 - F6 Double check H7 - H6 (else EF - G8 mate)
3. E5 - G4 check

4. F2 - F4 check

(a) 4. . . G5 - F4

5. G2 - C3 check F4 - G5

6. H2 - H4 checkmate or

5. . . F4 - F3

6. 0 - 0 checkmate.

(b) 4. .. G5 - H4
5. G2 - G3 check H4 - H3

6. D3 - Fl check B7 - G2

7. G4 • F2 checkmate

Problem No. IB

I n - Fl check

2. E3 - Gl Fl - F3 check!

3. E4 - F3 C6 - F3 checkmate.

286 The Best of 99'er Volume 1

Problem No. 5A:
Hereisa knight's lour beginningat A1. This solutionis my own, found after an appropriateamount

of trial, error and frustration!
Al •• C2 • El • G2 • H4 • F3 - Gl • H3 •• F2 • HI • G3 - Fl -

H2 . G4 • H6 - F7 • H8 - G6 - F8 - H7 - F6 - G8 - E7 - F5 -

G7 • H5 - F4 • E6 • G5 • E4 - D6 • E8 - C7 .• A8 •• B6 • C8 -

A7 •• C6 • D8 •• B7 • A5 •• C4 •• E5 •• D7 • B8 - A6 - B4 - A2 -

C3 • D5 • E3 - Dl - B2 - A4 • C5 • D3 •• CI - E2 • D4 • B5 -

A3 - Bl • D2 - B3 - Al Home Again!

Problem No. SB:
Removing the square HI and A8 makes the knight's tour impossible. The reasoningis as follows:

Both these squares are the same color (white) so there remain two more black squares than white.
But on a knight's tour the color of the squaresvisited alternates from move to move so that the total
number of dark squares and light squares must be the same if a tour is possible.

Problem No. SC:
It is clearthat White must have at least two piecesto checkmate black. The only legalmove in which
two piecesof the same color may be moved is castling.Thus White was in the act of castlingwhen
Black removed his own king and hence White has a king and a rook. The remaining problem is to
move the black king so that after White castles it can be moved to a square where checkmate in two
can be forced (counting the first Black move). A little experimenting leads to the conclusion that the
black king in on B3 and White was castling on the queenside. The final sequence is 1.0 - 0 - 0 B3
- A2 2. Dl - D3 A2 - AI 3. D3 - A3 checkmate!

Problem No. 5D:
It is easy to convince yourself that this one is impossible but it isn't. One solution is to place the
queens on A3, B4, C7, Dl, E4, F2, G8, and H6.

Copyright © 1983 Emerald Valley Publishing Co.

AND Don't
FOR6ETTHe

XCE!!
A MICRO

BARTENDER

TI BASIC ON THE ROCKS

Entertaining guests can indeed be a chore—
especially when you have to help them decide on
the choice of drinks, remember how to correctly

mix the selected drinks, and simultaneously explain to
your curious visitors exactly how you use the exotic com
puter in your livingroom. Now, this three-part task can
be handled much more enjoyably with Micro
Bartender—a. TI BASIC program.

The next time guests arrive just sit them in front of
your home computer and let them choose their own mixed
drinks. The program will not only provide easy-to-follow
recipes, but will also show your guests how the finished
drinks should appear—in full color, with proper glass and
garnish!

But what's the use of choosing drinks that are impossi
ble to make because you're missing one or more ingre-
diants? It's definitely slow and frustrating when the on
ly way to find "possible" drinks is by scanning all the
ingredients on page after page of recipes. But happily,
this tedious process is now a thing of the past. With
Bartender's built-in search routine, you can tell the com
puter what ingredients are actually on hand, and it will
tell you what drinks you can, in fact, make. Then, you
can look up the details of each recipe and see a graphic
representation of the finished drink's appearance.

Cramming nearly a score of drink recipes (plus the
associated graphics) into the TI-99/4's 16K of RAM
memory was no easy feat. Observant programmers will
notice our extensive use of data reconstruction techni
ques. For those programmers who happen to be non-
drinkers—and debugging alone could drive a man to
drink—the program logic and control structure is suitable

Copyright © 1983 Emerald Valley Publishing Co.

with manyother types of reconstructed "recipes." [On
ly kidding, of course, about "driving a man to
drink "—Ed.]

EXPLANATION OF THE PROGRAM
Micro Bartender

Line Nos.
200-240 Prints title screen.
250-290 Subroutine to determine color for graphics.
300-1350 Subroutine for graphics.
1360-1650 Defines special characters.
1660-1750 Reads data while title screen is displayed.
1760-1860 Prints screen of two major options.
1870-2220 First option. Prints two menu screens of the

list of drinks, receives user's choice.
2230-2250 Clears screen, sets colors of graphics for

drink chosen.
2260-2540 Prints name of drink and type of glass.
2550-2580 Prints amounts and ingredients in recipe.
2590-2650 Prints mixing instructions.
2660-2710 Prints cocktail or whiskey sour glass.
2720-2810 Prints garnish and sets colors for garnish.
2820-2850 Prints instructions for stir rod or straws.
2860-3000 Draws the drink.
3010-3020 User may press any key to continue program.
3030-3090 Second option. Prints instructions for ingre

dient inventory.
3100-3200 Receives user's input Y or N for each ingre

dient in INV$ array.
3220-3260 Prints message for no drinks possible.
3270-3370 Compares each drink's ingredients with inven

tory list and prints possible drinks to make.
3380-3400 User presses any key to go back to option

screen.

3410-3780 Data for DRINKS array of attributes for each
drink.

3790-3810 Names of ingredients for inventory list.

The Best of 99'er Volume 1 289

290

R

R

R

C

C

D

P

C

C

60

60

EM

CA

CA

FO

FO

C

N

N

R

R

C

F

C

N

F

C

N

C

F

C

N

FO

A

E

A

A

A

A

A

A

A

A

E

EiMl

CA

CA

CA

A

L

L

L

L

L

L

L

L

R

R

L

X

X

T

EM]

CO

N

ClOC
C

1

3
CO

CO

CO

CO

N

NO

C

RlMA
R

R

t|o
T

R

TO

TO

The Best of 99'er Volume 1

1 =

I

N

P

V

V

H

H

H

H

H

H

H

H

V

V

H

H

H

H

H

H

H

N

S

H

H

N

L

H

H

N

0

CO

CH

EMO

0

A

A

A

A

A

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

0
R

R

R

R

R

R

R

TO

OR

TO

HA

HA

TWI

L|OR(2, 7

Copyright © 1983 Emerald Valley Publishing Co.

CO

GO

PR

PR

'GO

GO

I

1

C

Cb

SOU

SIOU
Y

D

3

F

2

5

F

F

5

S

F

5

F

K3
SQ
10
5

TO

ND

(0

)+
GO

A

R

A

N

M|A

WA

MA

R

V

MIA

D

S

WH

CO

N

MA

A

A

A

MA

T

U

R

EWlD
K

T

R

D

MA

TA

NH

MA

T

Y

U

2

COO

WA

Y

R

N

AT

NH

MA

SO

V

Y

OG

C

OW

MA

N

TOM

FA

GH

TH

M

T

NG

WI

BA

I

G

H

L

E

H

E

Rb
c

L

I

IGIO TO

ME

RO

S

ION

UGA

ED

Copyright © 1983 Emerald Valley Publishing Co.

TO

2470 PRINT "2|- 3 DRbPS ANbbSTURA BITTERS

FO

TO

TO

IN

D

V

7

0

V

1

V

1

D

U

V

71

L

L

10
L

D

L

L

L

S

L

N

N

N

N

N

MU

WH

IGA
LO

GA

CH

SOU

TO

MO TW|
A

RO

BO

U|GH
E

N

GO

GO

TO

COC

bu
5

T

C

S

I

W

3

W

0

w

n|g
I

T

GO TO

TWO

)=

LOWI

$ (KK ,0

EMO

H

C

IGO

1

IGIO

H

GO

T

N

GO

SOD

7

0

TO

T|WI
0

AWS

The Best of 99'er Volume 1

w

291

s

A

N

E

R:

R

F

R

T

PR

GO

FO

0

T

S:

T

GO

N'

TO

R

R

IMA)
1

Dl

1

»

e:

1

MAI

T

NO

TO

T

MA

4

A

2

A

C

3

NG

MA!

MAI

SO

YOl

E

•i

I

IMAI

TO

1

2

YO

S

COI

iRO

292 The Best of 99'er Volume 1

D

D

2

D

D

1

D

D

2

D

D

1

D

D

I

D

DA'

DA

2

D

TA

Ui

A

GO

Rl

A

l|W|E

WH

'WAl

E|T

1

E

1

EWD

MAIN I :ait'

I

Z

. Al

IZ

DOlG

MA

SO

N

o;

OM

cooi

,D-

1

I,
GH

F

1

2

v|o
T

E|MOI
A

U

N

L

IOl

BOl

UM SWE

AM

N

T

IMlP
N

NG

2

R

RMJO

2

Wll

RO

rMo
H

W

Copyright © 1983 Emerald Valley Publishing Co.

"W
hy Mr. Templeton, you can't figure that!"
said the lady at the finance company. I had
merely asked her the formula for com

puting the payoff amount on the installment contract on
my 1978 Datsun.

This emphatic "can't do" sent me racing off to the
library in my soon-to-be-liberated Datsun. And it was
there that I discovered the existence of the Rule of 78.
So, armed with this knowledge, I decided to write a pro
gram that applied the Rule to installment contracts and
let my TI-99/4A do the figuring for me.

From the name of this article you might have expected
some sort of game, but the Rule of 78 is no game. It deter
mines the amount of money required to pay off an in
stallment contract at any given time, or the amount to
be re-financed when you trade in before making all the
payments. Should you be so unfortunate and have to
default, the Rule of 78 determines the balance that
becomes due and payable—the amount the finance com
pany would be entitled to recover by repossessing the car.
This Rule also is the method recognized by the Internal
Revenue Service for computing the portion of the finance
charge deductible each year during the life of the contract.

The Rule of 78 defines the fraction of the total finance

charge that is on the unused portion. The numerator of
the fraction is the sum of the numbers of the remaining
payments; the denominator is the sum of the numbers
of all payments. The number of the first payment is equal
to the number of payments in the contracts—e.g., 48
payments for a four-year contract. The number of each
succeeding payment is one less; the last payment is
number 1. At the time the Rule got its name, 12-payment
contracts were the usual type. The sum of 12, 11,. . .,
and 1 is 78, the denominator of the fraction. A more ap
propriate name in our day would be rule of 1176, which
is the sum of 48 through 1.

Many installment contracts allow an acquisition charge
to be deducted from the finance charge before multiply
ing it by the fraction. This is almost a prepayment penal
ty, but not quite—because you usually pay only a por
tion of the acquisition charge. When applicable, the ac
quisition charge affects the payoff amount of the
contract.

The Rule of 78 is also known as the Sum of the Month

ly Balances Method and the Sum of the Months Digits
Method. According to the Consumer and Commercial
Credit Installment Sales, a subscription service published
by Prentice-Hall, it is widely used in installment contracts.
From these volumes, which contain federal and state law
on the subject, I discovered that the Rule is required by
law in some states and allowed by law in all states. It ap
plies to installment contracts on automobiles, furniture,
and appliances, and to some types of loans. Internal
Revenue Service Publication 545, Interest Expense, ex
plains the Rule and its application to income tax
deductions.

Running the Program
The program is shown in the listing at the end of this

article. It is written in TI BASIC, but will also run in TI
Extended BASIC. Copy the program into your computer
and enter the RUN command.

Consult a copy of the contract. First, be sure it men
tions the Rule of 78 or one of its aliases in the section

Copyright © 1983 Emerald Valley Publishing Co.

THE RULE OF

on prepayment. Then locate the amounts requested in the
initial display. All of the amounts are usually typed in
except the acquisition charge; it is printed in the contract.
The display is as follows:

INSTALLMENT PAYMENTS

AMOUNT FINANCED: $
FINANCE CHARGE: $
ACQUISITION CHARGE: $
AMOUNT OF PAYMENT: $
NUMBER OF PAYMENTS:

FIRST PAYMENT DATE:

The prompts of the displays are typical of the names
used in contracts. The amount financed is the sum of the
price of the merchandise, sales taxes, insurance, etc., less
the down payment. The finance charge is the amount add
ed to the amount financed to compute the total of
payments. The acquisition charge is printed in the sec
tion on prepayment. (It is $25 in many contracts.) It is
easy to come up with the amount of payment: That's the
amount you pay each month. Typically, you make 12
payments on appliances and 48 on new cars. Enter the
date of the first payment expressed as three numbers
separated by slashes. The first number represents the
month, 1 through 12. The second is the day of the month,
1 through 31. The last number is the year, represented
by the last two digits. For example, if the first payment
were due December 23,1984, you would enter 12/23/84.

After you enter the figures, the program lists the op
tions as follows:

CHOOSE ONE
1. CONTRACT SCHEDULE

2. CONTRACT STATUS

3. TAX DEDUCTION

4. NEW CONTRACT

ENTER NUMBER:

The Contract Schedule option provides the date, total
paid, balance prepay amount, and amount saved by
prepaying for the first payment. By pressing ENTER you
request the next payment. By repeatedly pressing ENTER
you can display these five items for each payment of the
contract. On the display for December of each year, the
program also displays the tax deduction for the year.

When you specify the Contract Status option, the pro
gram requests a date. The program then displays the
status of the contract on that date. If the date is during
the period of the contract, the status display includes the
date, total paid, balance, prepay amount, amount saved

The Best of 99'er Volume 1 293

by prepayment, and the tax deduction for the year if the
contract is prepaid on that date. The status figures, of
course, apply only if all payments have been made up
to the requested date.

The Tax Deduction option shows you the allowable in
come tax deduction for each year of the contract. This
same information is provided in the contract schedule
displays; because this option gives you only the tax deduc
tion, it is much faster. In many cases, prepayment is not
possible, but deducting the proper portion of the finance
charge is important.

The New Contract option returns to the beginning of
the program and requests the inputs previously described.
If you were really into installment contracts, you could
compute the figures for the contract on your car, then
on your TV, etc. Option 4 would enable you to enter
figures for each additional contract.

If you select option 1, 2, or 3, the program lists the
values you entered at the top of the screen, as follows:

AMOUNT FINANCED: $2,545.73
FINANCE CHARGE: $ 781.03
ACQUISITION CHARGE:$ 25.00
AMOUNT OF PAYMENTS 92.41
NUMBER OF PAYMENT: 36

FIRST PAYMENT: 12/23/80

Below this display, the specific display for the selected
option appears. For the Contract Schedule option, the
following display is repeated for each payment:

CONTRACT SCHEDULE

AFTER PAYMENT ON 12/23/80

TOTAL PAID $ 92.41
BALANCE $ 3,234.35
PREPAY AMOUNT $ 2,558.92
SAVE BY PREPAY $ 675.43

DEDUCTION FOR 1980 $42.22

For the Contract Status option, the initial display requests
the date, as follows:

CONTRACT STATUS
ENTER DATE:

Enter a date in the format previously described. If you
enter a date before the month of the first payment, the
following is displayed:

STATUS ON 11/30/80
TOO EARLY

On the other hand, if you enter a date later than the last
day of the month in which you will make the last pay
ment, the following is displayed:

STATUS ON 12/1/83
PAID UP

When you enter a date during the period of the contract,
the following is displayed:

STATUS ON 12/31/81:

TOTAL PAID

BALANCE

PREPAY AMOUNT

SAVE BY PREPAY

$ 1,201.33
$ 2,125.43
$ 1,838.23
$ 287.20

294 The Best of 99'er Volume 1

DEDUCTIBLE IN 81 $ 451.61
IF PAID OFF ON 12/31/81

For the tax deduction option, the display is as follows:

IF YOU PAY ALL PAYMENTS

AS SCHEDULED, YOU MAY
DEDUCT FINANCE CHARGE

AS FOLLOWS:

YEAR AMOUNT

1980 $ 42.22

1981 $ 415.14

1982 $ 246.27

1983 $ 77.40

At the bottom of each screen, the program displays the
following message;

PRESS ENTER TO CONTINUE

OR 9 TO QUIT

For the Contract Schedule option, you get the figures
for the next payment when you press ENTER. When all
payments have been displayed, pressing ENTER displays
the list of options previously described. For options 2 and
3, which have one screen each, pressing ENTER displays
the option list.

The accuracy of the figures depends on the accuracy
of the computer. Texas Instruments claims ten digits of
accuracy for the TI-99/4A. In the case of the contract
on my 1978 Datsun, the finance company's figures were
not exactly the same as mine. The differences were a pen
ny or two, most likely due to differences in computer ac
curacy. Of course, I paid the amount their computer
wanted.

Changing the Program
If you have a printer, you will want to change the pro

gram to print the data displayed on the screen and you
will probably want to change the format as well. The con
tract schedule can be printed in tabular form, one line
per payment, on an 80-column printer.

The program has a subroutine for each option, but you
may not want all the options; if not, you can leave one
or two out. The contract schedule subroutine begins on
line 680, and ends on line 1540. The contract status
subroutine begins on line 1560 and continues through line
2280. The tax deduction subroutine occupies lines 2300
through 2650. Each subroutine is independent of the
other two; however, the driver (lines 170 through 660)
and the miscellaneous subroutines from line 2670 to the

end of the program are required for all subroutines.

Streamlining for TI Extended BASIC
You can run the program in Extended BASIC as it is,

or you can streamline it, exploiting some of the features
of the more powerful language. The power of the
DISPLAY statement of Extended BASIC is particularly
valuable in this program.

Line 170 is a DEF statement that defines a rounding
function. A format defined by an IMAGE statement
automatically rounds fractions, and this function is used
to align decimal points in the displays. The function is
not needed if you use a specified format.

The subroutine beginning at line 2880 displays a string
at a defined point on the screen. When you use a

Copyright © 1983 Emerald Valley Publishing Co.

DISPLAY statement with the AT option, this subroutine
is not required. Similarly, the subroutine at line 2940 adds
zeros to the right of the decimal point, where required.
It also inserts a comma between the hundreds and
thousands digit of numbers greater than 999.99. A
defined format adds least significant zeros but does not
insert the comma. If you want to use a format and give
up the comma, omit this subroutine.

To incorporate these changes, modify the program
shown in Listing 1 by performing the following steps:

1. Omit line 170 and modify line 180 as follows:
180 IMAGE" #####.##"

2. Omit lines 490 and 500; modify line 510 as follows:
510 PRINT USING "AMOUNT FINANCED

: :$#####.##":UB

3. Omit lines 520 and 530; modify line 540 as follows:
540 PRINT USING "FINANCE CHARGE :$

#####.##":FC

4. Omit lines 550 and 560; modify line 570 as follows:
570 PRINT USING "ACQUISITION CHARGE:

$###0#":AC

5. Omit lines 580 and 590; modify line 600 as follows:
600 PRINT USING "AMOUNT OF PAYMENT:

$###0#":PMNT

6. Omit line 630 and modify line 640 as follows:
640 PRINT USING "FIRST PAYMENT: ##/##/##"

;MO,DA,YR

7. Omit lines 810, 830, and 840; modify line 850 as
follows:

850 DISPLAY AT (14, 17):USING "##/##/##":

CMO, DA.CYR

8. Omit lines 880-910; modify line 930 as follows:
930 DISPLAY AT(15, 17):USING 180:TOTPD

9. Omit lines 950-990; modify line 1000 as follows:
1000 DISPLAYS AT(16, 17):USING 180:BAL

10. Omit lines 1080-1110; modify line 1130 as follows:
1130 DISPLAY AT(17, 17):USING 180:PREPAY

11. Omit lines 1140-1170; modify line 1190 as follows:
1190 DISPLAY AT(18, 17):USING 180:SAV

12. Omit lines 1280-1310 and 1330; modify line 1340 as
follows:

1340 DISPLAY AT(20,1):USING "DEDUCTION FOR
19## $###.##":CYR,ADED

13. Omit lines 1430-1460 and 1480; modify line 1490 as
follows:

1490 DISPLAY AT(20,1):USING "DEDUCTION FOR
19## $####.##":CYR,ADED

14. Omit lines 1830 and 1840; modify line 1850 as follows:
1850 PRINT USING "TOTAL PAID $ #####.##

":TOTPD

Copyright © 1983 Emerald Valley Publishing Co.

15.Omit lines 1880 and 1890; modify line 1900 as follows:
1900 PRINT USING "BALANCE $#####.##"

:BAL

16. Omit lines 1970 and 1980; modify line 1990 as follows:
1990 PRINT USING "PREPAY AMOUNT $ #####.##

":PREPAY

17. Omit lines 2000 and 2010; modify line 2020 as follows:
2020 PRINT USING "SAVE BY PREPAY $ #####.##

":SAV

18. Omit lines 2140 and 2150; modify line 2160 as follows:
2160 PRINT USING "DEDUCTIBLE IN ## $ #####.##"

:SYR,DEDUCT

19. Omit lines 2440 and 2450; modify line 2430 as follows;
2430 PRINT USING "19## $#####.##"

:DYR,DED

20. Omit lines 2590 and 2600; modify line 2580 as follows:
2580 PRINT USING "19## $#####.##"

:DYR,DED

21. Omit lines 2690-2710 and modify line 2720 as follows:
2720 DISPLAY AT(23,1):"PRESS ENTER TO

CONTINUE"

22. Omit lines 2730 and 2740; modify line 2750 as follows:
2750 DISPLAY AT(24,l):"OR 9 TO QUIT"

23. Remove references to function RND2 in the following
lines:

1050 SAV = RUL 78 (AFC)

1270 ADED = DEDUCT/DEN*FC

1400SAV = X

1420 ADED = DEDUCT/DEN*FC

1940SAV = RUL78(AFC)

2130 DEDUCT = DEDUCT-RUL78(FC)
2200 SAV= 1/DEN*AFC

2420DED = RUL78(FC)

2510 DED = NP/DEN*FC

2570DED = RUL78(FC)

2640DED=1/DEN*FC

The subroutine beginning at line 2810 is not required if an
ACCEPT statement is used to input the character. Omit
line 2770 and modify lines 2760 and 2780 as follows:

2760 ACCEPT AT(24,14):SEL$
2780 IF SEL$ = "9" THEN 2800

And don't forget to omit the subroutines (lines 2810-3070).
Extended BASIC allows further compression by putting
several statements on the same line and by using statements
in IF-THEN-ELSE statements. However, the changes I have
suggested provide a significant reduction in the size of the
program.

With this program in your computer, you have all the
secrets of the Rule of 78 at your disposal. Your computer
will tell you everything you ever wanted to know about an
installment contract, but didn't ask because you would not
have been told.

The Best of 99'er Volume 1 295

e|m
EM

EM

EM

EM

EM

Ml
F

F

F

LL

N

CA

R

N

N

N

F

N

N

N

N

MO

W=

L

MO

$

Gb

Pb
$

pb
Ml-
$

$

V

V

IGO
R

X

$

GO

GO

X

P

)
X

p

T

0

GK>
R EM

CMO

T

T

T

T

T

T

Yl

MO

D

YME

AlMIO
F

ACto

AMOU

UMB

$

$

[MO
A

HOO

CON

AMO

CQ

PMN

amo
i

p

UMB

$

F

g|o
0

E|W
R

N

S

CMO

HA

A

I

C

I

F

F

yMe

N +

N +

M+

ON

CO

UM

YME

AMOU

RG

YM

YME

296 The Best of 99'er Volume 1

Y|ME
U

C

s

PMN

NP

D

CMO =

GO

C

R

CA

GO

P

I

I

Q
S

I

P

R

GO

C

C

GO

R

X

Gb
c =

CA

g|o
N

GO

NE

I

Q
AD

C =

R =

X$

GO

CA

X

$

GO

GO

RE

SA

GO

X =

SA

GO

AD

XS

GO

C

R

$

GO

D

N

CMO
R

T

EM

C +

CiMO+
TO

+

H

B

1

C

MO

B

I

D

PMN

BA

10

PMN

Copyright © 1983 Emerald Valley Publishing Co.

fa
.

o
s

t
o

fa
]

c
m

+

g
I

O
S

fa
)

O

~
a

q
o

>

g
g

?
j

—
t
o

s
o

—
o

q
o

i
n

r
*

.

g
c
m

c
m

Q
I
K

S

g>
T

-
—

-
+

C
M

g
-
f

o
«

o
cm

•
u

o
.
g

r
q

o
q

c
a

r
-

cm
—

<
n

t
"
t
o

cm
c
o

^
33

cm
Q

v
»

C
M

»
O

••
C

M
Q

l
f
t
M

Q
W

c
u

g
g

o
s

g
I

>
-

V
11

r
-

g
o

s
g

g
C

M
g

Q
A

+
c
c
t-

'C
Q

i-
'

—
t
-
e
o

p
c
c
e

g
_

M
»

K
O

W
.

N
>

C
M

£
3

W
H

C
O

M

_
™

Q
_

o
s

O

O
X

-
-
~

pa
g

o
s

~
»

-
+

i
-

r
-

c
n

t
-

i
-

p
q

b
i
w

q
-

+
w

w
w

a
r
i

t
o

»
j
x
o

s
_

Q
_

:
~

*
o

r
-

<
t
o

g
t
o

A

h
t
B

O
H

Q
W

C
S

c
o

c
o

c
n

c
o

c
o

i
n

P
<

—
O

<
Z

H
Q

<
fa

)
X

—
•

I
to

to
oB

C
u

3
3

>
-

II
3

3
—

M
B

~
c
o

I
-

g
X

•
r
*

o
f*

.
«

o
-

fa)
CM

CM
CM

H
Z

Q
I
i
l
H

U
K

r
t
O

O
b

i
—

c
n

x
t
o

v
»

O
pa

pa
faj

o
s

-)
Z

^
B

M
M

iX
Z

O
.

H
-
B

-
'Z

M
^
O

^
Z

Z
c
B

C
M

J
8

N
-
Q

O
da"g

-
»

Q
C

O
||

II
U

]
O

C
v
»

to
g

fa)
fa]

to
O

S

p
q

•
p

to
p

co
p

C
u

C
M

C
M

||
tO

C
M

II
tO

T
-

tO

C
u

>
-

I
II

V
I

+
p

5
H

t
a

H
x
Q

O
Q

•
I
i
J
W

n
I
D

I
f
l
U

H
B

Q
Q

f
O

^
D

X
O

X
O

M
W

I
f
l
^
a

g
g

g
|
|
M

f
l
,f

t
,Q

Q
I
l
M

3
g
^
g

H
g

C
M

O
I
I
Q

g
g

Q
Q

lltO
P

g
—

g
p

P
I
I
O

»
J
X

m
»

P
q

•
P

tO
P

C
O

P
C

u
.J

.J
to

.J
P

™
^
^
J
^
V

V
V

~
r
^
~

7
^
,
„

,
,

„
r
~

^

OS
OS

--
O

>«
U

fa.
II

II
||M

w
O

e
B

iQ
»

<
h

.
||

Q
M

O
U

.b.
II

||fa
a

^
O

0
S

<
P

3
O

b
J
fa

J
O

M
«

C
fa

.
II

H
w

Q
II

to
Q

H
O

b
.M

H
M

i;«
l!b

.<
U

lM
O

||
<

fa]
fa)

fa]
||U

.U
.U

.M
w

q
v
*

q
»

»»
w

**
M

»
Cu

flu
«

g
q

c
u

~
C

u
g

Q
O

X
O

c
u

l~
g

O
~

C
u

tfO
t3

~
~

O
u

O
O

X
t3

0
u

.^
C

u
O

c
S

O
U

C
6

0
~

6
c
S

X
O

O
B
O
o
o
a
o
o
o
o
o
o
o
o
a

i
n

t
o

r>
»

c
o

c
n

c
a

•
c
m

m
q

i
n

t
o

r
v
c
a

a
i
o

r
q

i
n

(
D

r
>

c
o

e
i
o

m
n

n
m

m
q

q
q

q
q

q
q

q
q

q
t
n

i
n

t
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

t
o

M
^
N

r
s
N

N
I
s
r
^

C
B

C
0

C
0

t0
iD

W
0

0
C

0
e
0

C
0

0
>

tP
0

>
0

)
C

l>
0

1
0

l<
J
I
0

I
C

I
)
t»

O
O

O
O

P
S

O
O

c
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o

I

C
M

.
.
.

.
.
.

.
-

—
i
-

C
M

C
9

—
—

O
•

-
•

r
«

-
O

O
o

g
«

C
O

g
C

M
Z

g
g

—
v
>

I
-
i

fa
)

C
M

«
•—

•
—

.
—

•
/»

g

a
s

_
o

a
~

•
fa

)
fa]

•
•

C
M

t->
g

c
a

o
a

o
a

<
—

.
-

t
-

s
>

-
fa]

^
"

fa
)

<
<

<
i
i

o
«

o
<

>
-

«*
O

«
C

M
3

3
!-•

i
-

i
-

.
.

fa
.

O
S

a

o
|

H
-

.
.

.
.

.
-

<
—

>
«

C
O

e
u

<

C
M

?
!

||
c

.
•

C
O

t
o

•
-

P
3

3

^
IT

"
V

C
M

V
»

t
o

v
»

t
o

r
»

•
-

«
«

•
J

o
o

r
-

•
J

C
M

-
^
,

o
o

1
i
-
i

>
«

•
j

>
-

_
L

~
^

.
-

«
~

s
£

II
>

•
p

g
«

<
fa

]

g
v

^
C

u
t
-

o
i
-

—
1

-
<

c
»

O
S

g
Q

«
-
o

+
+

+
g

C
M

q
o

II
o

c
»

~
g

a
.

O
^

—
"
-
•

—
>

•
Q

g

T
"

^
g

g
S

+
r
-

1
c
m

r
«

.
A

s
C

M
D

O
p

b
)

q
V

-
C

M
fa

.
O

g
J
S

.
fa)

<

.
•

.

o
|

C
M

C
M

n
V

C
O

O
fa

.
C

M
p

O
S

^
C

M
a

fa
)

fa
.

fa
.

•
•

•
A

a
.

•J
g

,
(
O

.
t
O

t
o

jt
«

C
M

C
MW

~
o

T
-

~
-

o
<

C
M

X
c
u

C
M

g
•-1

Q
«

:
>

-
•
—

p
—

-
^

fa
]

—
,

fa
]

fa
)

_
«

-
g

C
O

JE
«

C
o

—
C

M
—

*
«

g
O

S
•
—

•
o

a
«

•
i
-
j

i
-

p
a

fa
.

I
K

"
i

l->
I
-

_
(
9

^
fa)

g
w

.
C

O
g

—
C

u
fa

)
C

M
C

O
>

>
-

>
-

g
fa

)
1

l
-

•
—

Q
g

c
u

O
S

o
o

fa]

.
<

.
<

«
e

„
i
-

II
C

U
SB

fa)
+

fa]
a

a
O

C
M

r*
.

g
<

<
>

«
e
a

>
fa)

s
—

t
-

o
»

-•
•
—

•
fa)

P
<

P
>

-
w

t
-

«
/>

Q
t
o

a
O

t
o

t
o

t
o

g
O

g
{
-

D
3

_
.

+
»

!-•
c
u

•
J

c
u

_
g

i
j

fa
]

C
O

O
U

<
—

<
n

t
-

*
-

O
P

O
<

Q
fa

)
a

o
o

fa
]

C
O

fa
]

C
O

t
o

0
_

<
P

S
>

*
1

-
O

S
1

—
g

1
-

«
S

t
-

•
j

<
g

P
s

J
_

fa
)

C
u

>
b

)
c
o

I
-

+
P

o
p

c
u

^
^

Q
fa)

fa.
C

O
p

1
-

JS
.

Q
>

-
1

tr->
l-

«
O

S
>

-
O

S
£

0
0

t
-

O
K

O
•-1

fa
)

O
S

!
-
•

J
O

S
o

fa
]

<
o

>
1

o
s

fa.
a

c
u

o
q

<
o

o
T

~
•
—

•
o

o
a

"
-

a

<
t
o

«
:

t
o

t
o

C
O

C
O

C
O

C
U

g
>

«
O

S
H

-
>

-
<

f
t
i
H

V
O

o
[
-

o
a

q
<

a
s

'
<

c
u

q
o

s
c
o

q
<

O
O

S
>

•
T

-
o

l
b

)
a

q
id

x
fa.

r
-

—
o

S
M

i
N

0
0

•
C

O
fa

)

Q
ja

.
o

O
O

^
,

^
g

+
!-•

>
-

II
II

O
S

O
o

«
~

-
o

»
!-•

fa
.

1
^
.

c
n

e
a

r
-

*
-

C
M

T
-

o
a

—
c
n

O
.

—
c
n

c
o

fa
.

5
-

T
-

«<
+

r
*

.
a

.
Q

~
—

c
n

q
•
—

•
t
o

C
M

tO
t
o

C
u

t
o

!
-
•

i
n

X
•<

Q

C
O

i
d

C
O

•i—
fa

]
fa

)
-
1

«
J

•-]
-
t
-
O

+
A

V
O

S
O

S
>

-
s

V
g

v
»

C
M

.
+

•-]
«

»
C

M
•

1
a

V
J
L

t
A

C
M

a
v
»

C
M

>
II

II
o

+
II

O
S

C
9

g
II

V
»

C
M

>
•
«

C
M

o
c
n

c
n

«
C

M
•

C
M

<
•

«

C
O

1
t
o

t
o

<
«

S
^
O

X
O

S
O

S
O

S
>

-
>

-
1

C
M

1
<

tl
O

S
e
a

<
c
c

g
^

g
>

>
H

O
S

O
S

1
-

O
S

£
O

S
O

S
C

M
>

-
C

M
—

i
-

O
S

O
g

g
r
-

T
-

g
C

M
t->

t
o

J
L

t
o

g
II

II
>

>
>

£
1

-
fr

>
«

>
-

C
O

to
O

S
«

-
O

X
o

r
O

H
«

H
p

o
a

I'
o

a
!-•

1
II

T
-

c
c

<
«

:
i
-

o
a

h
-

1
-

o
a

i
-

o
>

-
1

>
-

>
-

r
-

*
c

+
a

I
-

o
a

i-
i

g
f
-

o
a

O
S

O
S

•
9

K
o

a
O

S
t
-

l—
!-•

1
-

o
t
o

O
1

v
>

t
O

II
II

J
L

ii
II

it
C

O
C

O
^
.

>
-

«
s

+
t
o

+
c
u

to
P

g
ll

||
t
o

p
g

c
u

c
u

+
II

C
O

C
u

C
O

p
g

c
o

p
g

D
C

O
M

J
L

C
O

+
II

Q
C

u
P

C
O

P
g

•
-
•

g
P

P
II

O
t|

O
g

P
P

g
o

g
g

g

c
u

.0
_

e
u

a
<

O
S

o
«

e
O

S
o

o
O

S
t
o

g
t
o

g
g

1
-

l|
to

^
,

•
j

-
J

J
L

C
O

_
i

g
o

u
>

fa
]
J
L

C
O

~
II

c
o

•—
V

»
Q

^
O

S
fa

.
O

S
i->

fa.
g

o
II

t
o

"
-

•
«

-
C

O
1

-
>

i
-

>
1

-
•
—

C
O

K
.

—
H

«
£

•
—

"
-
•

"
-
•

II
.s

.
II

fl
O

>
-

£~
Q

>
-"

S
^

>
-

fa
.

fa
.

b
.

a
I

fa
.

II
II

tl
II

fa
.

II
O

v
*

O
P

C
«/»

<
<

v
>

O
O

S
*

o
II

fa
.

II
<

fa
.

O
S

v
t

O
O

S
t
o

«
o

O
O

S
X

fa
)

fa
.

II
>

-
fa

.
II

>
«

O
II

II
fa)

<
o

O
o

s
o

a
O

S
o

b
)

<
o

<
o

O
S
.Q

.
fa)

O
S

o
u

O
S

O
S

O
S

g
C

O
£

»
j

t
o

t
o

C
O

C
O

C
O

i
-

h
-

i-«
*

*
_

—
q

g
g

X
g

M
g

*
-

x
O

C
U

X
0

0
p

a
X

O
C

m
X

C
U

•_
•

O
tn

—
.

c
u

X
O

C
U

X
X

O
C

u
••

O
»

-
fa

.
<

•
—

fa.
<

O
c
u

O
r

a
x

O
C

u
<

C
U

O
o

s
C

O
o

C
O

o
C

U
O

O
S

o
.

O
O

S
c
u

flu
C

U

q
i
n
u
>
i
s
a
>
c
n

o
<

i
n
t
o

r
*
.
c
o
c
n
c
a
r
-
c
m

t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o
t
o

I
C
O
C
O
C
O
C
O
C
O
C
O

t
o
r
»
c
o
c
n
c
a

q
i
o

i
o

N
t
o

o
i

c
o
c
o
c
o
c
o
c
n

c
n
c
n
c
n
o
>
c
n

a
c
n
c
n
c
n

q
i
n

t
o

r
>

c
o

c
n

c
a

^
c
M

i
o

q
i
n

t
o

N
W

C
i
o

r
(
M

w
q

m
»

r
>

M
O

)
O

r
r
i

i
t
»

O
O

C
a

O
«

a
T

-
*

-
r
*

^
T

-
T

-
t
-

t-r
-T

-C
M

C
M

C
M

C
M

C
M

C
M

IM
C

M
C

M
C

M
tO

IO
K

>

IO
s

O
s

C
Q

Now that you have a personal computer, you've
probably been looking for ways to use it around
the house. When writing software for home ap

plications, it's often possible to create a general program
that functions in a variety of household situations. The
program accompanying this article follows this design
philosophy. With it, you can create a personal phone and
address directory, time events (such as elapsed telephone
connect time), have your computer dial or redial any
number in your directory, and set up an inventory of
household possessions for insurance and maintenance
purposes. All this in standard 16K TI BASIC—with some
room to spare for customizing the program according to
your preference.

GENERAL DESCRIPTION OF THE PROGRAM

Data Entry
When the program is first RUN, the screen options give

the user a choice of updating or using a previous data
file saved on cassette or disk, or creating an entirely new
data file for one of two options: (1) the phone and ad
dress directory, or (2) the household inventory. Both of
these options also provide sub-options: For example, the
program can draw on the data files to dial (by the dual-
tone method) an appropriate phone number, or sum the
total cost in the inventory, and then print hardcopy
listings of either. The category names for the file
organization are provided in the DATA statements 220
and 230.

The input data is stored in the arrays Al$, A2$, A3$,
A4$, and A5$. A dimension of 60 is assigned to each of
the arrays, and a maximum string length of 190characters
is allowed for each complete entry. Line 710 checks the
validity of each data set. At this stage, the program also
checks for dimension overflow and memory overflow
(lines 480 and 810), and appropriate warning messages
are displayed. These features prevent you from acciden
tally keying in excess data—a situation that would result
in an error and program termination. Additionally, the
cost category (A2$) in option 2 is designed to accept only
numerical input so that you can conveniently carry out
numerical operations on the data—for example, total the
cost of possessions. And keep in mind that you can, of
course, change the categories by altering the data in lines
220 and 230.

298 The Best of 99'er Volume 1

The Electronic

Home Secretary
Tl

BASIC

Sort Routine
An efficient sort subroutine is presented in the program

at line 2410. The routine employs a tree sort procedure
which needs approximately 2*N*(Log2 N-l) com
parisons to sort N entries. Since various versions of sort
ing routines have been previously published and are readi
ly available, I won't discuss the mathematical details of
the sorting procedure. [See reference 2, for example, or
any elementary book on numerical analysis.—Ed.] Here,
the sorting is based on the entries in the arrays Al$ (i.e.,
names or items in the default categories). The remaining
arrays are appropriately rearranged to be consistent with
the original data. The procedure is carried out without
the use of any intermediate arrays, thereby saving on the
core usage. Completely sorting and rearranging 50 en
tries takes about 4 minutes.

Data Deletion and Alteration
The subroutine at line 1010 updates any existing data

set. You can access any particular entry by its serial
number or by its name (or a segment of its name). A
search routine (line 1790) retrieves the data set with the
specified name, or the next higher one if the name match
is not exact. As previously described, the program
validates the altered data for allowable string length and
memory overflow. At this stage, you have the option of
moving up or down in the list, searching for a different
entry, or finishing the editing session. Any alteration of
the entry title (i.e., Al$) causes the variable FLAG2 to
be set equal to unity. Before the directory can be
displayed, the data set is resorted.

Display of the Directory
The program allows you to display the data directory

in two formats. The first format (at line 1420) provides
a concise, quick-reference listing of the complete direc
tory. This includes name and phone number for the
Phonebook option, and item and cost for the Inventory
option.

In the second format, you can display all the data con
tained in any single entry. Access to individual entries is
either by its serial number in the directory, or by a string
search as discussed in the previous section.

Additionally, you can get a hardcopy listing of the en
tire directory (line 4280) through an RS232-compatible
printer, or the TI thermal printer. The screen printing

Copyright © 1983 Emerald Valley Publishing Co.

routine at line 4150 was used to get a hardcopy print-out
of screen displays for this article. This portion (lines
4150-4260) can be deleted without affecting the opera
tion of the program.

Computerized Phone Dialing
Now let's look at Touch-Tone dialing with the

TI-99/4A. Since the telephone company prohibits direct
connections to the phone line of any user equipment not
approved by the FCC, the method we will have to use
involves simple proximity: Placing the microphone from
the phone handset in the front of the monitor speaker
dials the phone without any direct connection to the
phone lines.

Briefly, the Touch-Tone system of telephone dialing
operates by sending a specific pair of audio frequency
tones over the voice channel of the phone line for each
digit. The switching circuits at the telephone facility
decode the tones and actuate the appropriate circuits to
make the connection. The tone pairs consist of a low fre
quency group (697-941 Hz) and a high frequency group
(1209-1477 Hz) as shown in Figure 1. For example, to
dial the number 5, we have to send the audio tones at
770Hz and 1336 Hz simultaneously for a sufficiently long
time to be recognized by the switching circuits. There
should also be a sufficient gap between digits for each
digit to register individually. Although a 40 millisecond
signal duration followed by a 40 millisecond silence
should theoretically be adequate, a 150-200 millisecond
signal duration and a gap of about 100-150 milliseconds
is required for reliable operation with this system.

With the CALL SOUND (duration, frequency 1,
volume 1, frequency 2, volume 2) command of TI
BASIC, the TI-99/4A can generate the dual tones of
Figure 1. In doing this, however, an interesting problem
arises: If we examine the monitor's output on an
oscilloscope, we can observe that the so called "pure
tone" from the computer is, in fact, a square wave and
not a sine wave. By Fourier analysis, the square wave can
be decomposed into its constituent sine waves. (Interested
readers can refer to any elementary book of calculus for
the details of the analysis.) To be specific, the output from
CALL SOUND (100,500,1) is a square wave of 500 Hz
for a 100 millisecond duration at the volume level 1. This
is a combination of sine waves at 500 Hz, 1500 Hz, 2500
Hz, and so on. This can pose a problem when we try to
dial the first two members (i.e., 698 Hz and 770 Hz) of
the low frequency group. The third harmonics of these
frequencies, namely, 2091 Hz and 2310 Hz, are also
recognized by the switching circuits, resulting in the re
jection of the signal. The third harmonics of 852 Hz and
941 Hz seem to be outside the frequency response of the
switching circuits and pose no problem.

There are several ways we can overcome this problem
when dialing the digits 1 thru 6. One very simple and in
expensive way is to use a passive low-pass filter with a
cut-off frequency of about 1.5 KHz in the audio line to
the monitor, thereby attenuating the higher frequencies.
Figure 2 shows a block diagram for the installation. The
circuit for the filter (which I built for less than five dollars)
is shown in Figure 3.

Copyright © 1983 Emerald Valley Publishing Co.

HOW TO USE THE PROGRAM

Initial Set-Up
With the choice of N (for NO) for the Load Data op

tion in Display 1, the program has you select either the
Phone Directory or Household Inventory option. (If your
choice was Y, and you loaded a file, one of the data
elements on the file tells the program which option to
branch to.) You then key in the data file, guided by the
input prompts. The phone number can be entered with
spaces and parentheses, if desired. The most recent en
try can be re-entered by pressing R for the name (or item).
You can terminate by pressing E for EXIT; this causes
the data to be sorted and returns you to the master selec
tion list (Display 3).

Load Previous Data File
To load a previously stored data file, we select Y for

the Load Data option and follow the screen displays to
operate the cassette player or disk. When loaded, the
name of the data file, its size and the date of the previous
revision will be displayed (Display 2); the program will
then return you to the master selection list (Display 3).

^^^ High Frequency
Low Frequency ~-»«^Group

Group "-^^

1209 1336 1477
Hz Hz Hz

697 Hz

770 Hz

852 Hz
941 Hz

1 2 3
4 5 6

7 8 9
• 00

Figure1. Basic Frequenciesfor the Two-ToneSystem
of Telephone Dialing

1.5 K Hz
Low Pass

Filler

I
Audio |™H r~I

^l I Video In

Tl Monitor

TI-99/4
Console

Figure 2. Schematic Layout of Filter Location

100 OHMS 10 MIIII Henry 10 Milli Henry

Signal /p\
Input VS/ , 2 Micro Farads

MOO OHMS

Figure 3. Circuit Diagram of the Filter

Signal
Output

Note: On many touch-tone phone systems this filter will not be
needed for correct dialing. We suggest you first try without it—Ed.

The Best of 99'er Volume 1 299

LOAD DATA? (Y/N) N

PHONE BOOK? (Y/N) Y

ENTER

E TO EXIT

R TO REENTER

NAME:DOE —j
PHONE: 987 6543 *"^ -x
STREET:4321 NORTH SOUTH ST *"^
CITY & ZIP:HOLLYWOOD;CA99888 t~

MISC:JOHN; DATE OF BIRTH JAN «-*
1 1921;WIFE MARY;CHILDREN

JOE : SUSAN.WEDD ANNIV FEB

25; ^

DISPLAY 1 INITIAL SET-UP

Note:

^3 o pressing ENTER,
after the user's response

WHICH ONE; DOE -\
ENTER **^

NEW DATA AT CURSOR

'D' TO DELETE THE ITEM

'ENTER' FOR NO CHANGES

DOE?

987 6543; (424) 987 6543 ~\

4321 NORTH SOUTH ST? ~)
HOLLYWOOD; CA99888? ^)
JOHN; DATE OF BIRTH JAN 1 19

21; WIFE MARY; CHILDREN JOE
$ SUSAN: WEDD ANNIV FEB 25;? ~)

DISPLAY 4 DATA ALTERATION

DOE

(424) 987 6543

4321 NORTH SOUTH ST

HOLLYWOOD; CA99888'

JOHN; DATE OF BIRTH JAN 1 19

21; WIFE MARY; CHILDREN JOE

$ SUSAN; WEDD ANNIV FEB 25;
1(424) 987 6543

PRESS

R TO REDIAL

S TO START STOPWATCH

N FOR NEW NUMBER

PRESS ANY KEY TO CONTINUE -

PRESS

R TO REDIAL

S TO START STOPWATCH

N FOR NEW NUMBER

PRESS ANY KEY TO CONTINUE

HOLD DOWN

R TO DIAL AGAIN

ANY KEY TO CONTINUE

00:55

DISPLAY 7 PHONE DIALING AND

STOPWATCH

300 The Best of 99'er Volume 1

LOAD DATA (Y/N) Y
ENTER

1. CS1

2. DISK 1

3. OTHER

• REWIND CASSETTE TAPE

THEN PRESS ENTER

• PRESS CASSETTE PLAY

THEN PRESS ENTER

INVENTORY -1

LSIZE(3800)=1628

LAST UPDATE: MARCH 26 81

CS1

D
CS1

D

DISPLAY 2 LOAD PREVIOUS

DATA FILE*

(FOR OPTION 1)

OPTION 2: ENTER FILE NAME

OPTION 3: ENTER DEVICE NAME:

1. ARPACI JOE 321 1234

2. DOE (424) 987 6543

3. DOE MARY (424) 789 3456

4. MOORE N. 578 657 8901

5. NORTON P. 356 4473

6. OHSHIMA 368 8714

7. SASTRY M. 765 2345

8. SHIELD B. 654--789 4532

9. SHYAMALA 206 6808

0. SUBBAIAH (213) 356 4473

1. WONG V. 256 3902

PRESS ANY KEY TO CONTINUE

DISPLAY 5 SHORT FORM

DIRECTORY

TOTAL COST OF ALL THE ITEMS

$$sssst$«$*ss««««

*

«

»

ft 7450.6
*

ft

ft

ftfttftftftftftftftftftftftftftft

PRESS ANY KEY TO CONTINUE

DISPLAY 8 TOTAL COST OF

INVENTORY

PRESS

1 - TO ADD MORE DATA

2 - TO ALTER THE DATA

3 - TO DISPLAY THE DIRECTORY

4 - TO DISPLAY ONE ENTRY

5-TO USE THE DATA

6-TO STORE DATA FILE

7 - FOR PRINTER LISTING

8 - TO END PROGRAM

••• UPDATE DIRECTORY •••

DISPLAY 3 MASTER SELECTION LIST

WHICH ONE? DOE —>

DOE -*
(424) 987 6543

4321 NORTH SOUTH ST

HOLLYWOOD; CA99888

JOHN; DATE OF BIRTH JAN 1 19

21; WIFE MARY; CHILDREN JOE

& SUSAN.WEDD ANNIV FEB 25;

PRESS

E TO LIST UP

X TO LIST DOWN

S TO SEARCH MORE

PRESS ANY KEY TO CONTINUE

DISPLAY 6 SING LE ITEM DISPLAY

ENTER 1.CS1

2. DSK1

3. OTHER

YOUR CHOICE? -}
TODAY'S DATE: MARCH 7 1981 ~)
DIR. NAME: PHONE BOOK - 1 —\

• REWIND CASSETTE TAPE CS1

THEN PRESS ENTER ^)
• PRESS CASSETTE RECORD CS1

THEN PRESS ENTER ^)
• PRESS CASSETTE STOP CS1

THEN PRESS ENTER ^

DISPLAY 9 SAVE DATA FILE

Copyright © 1983 Emerald Valley Publishing Co.

Master Selection List and Its Functions
The master selection list (Display 3) provides access to

the program's various options. A banner (***UPDATE
DIRECTORY***) will be displayed if there has been any
alteration of the data file since the last update. This
should act as a constant reminder to save the revised ver
sion of the data on a cassette or disk. The different op
tions of the master selection list are as follows:

Option 1: Select this to add any new entry to the data
file. This leads to the data entry of Display 1.

Option 2: This leads to Display 4. You can access any
individual entry by its serial number in the directory (from
display 5) or by a string search. Here, entering a null
string (i.e., just pressingthe ENTER key) for any category
will leave it unaltered.

Option 3: This displays a short form of the directory
as in Display5. The display stops when the screen is fill
ed. Pressing any key causes the remaining data to be
displayed, or returns you to the master selection list if
no more data is to be displayed.

Option 4: This produces a complete listing of a single
entry(Display 6), selected byits serial number in thedirec
tory, or by a string search as in Display 4.

Option 5: This allows the program to usethe data files
when dialing/redialing in the Phonebook option, or to
obtain the total purchase cost of the inventory in the
Household Inventory option. If you are in the Phonebook
option, the program will advance to Display 6. If you
approve the display by pressing any key other than E,
X, and S, the computer dials the displayedphone number.
In the beginning, you may have to adjust the volumecon
trol of yourTV set or monitor for proper operation.The
digits will be displayed one by one as theyare dialed. If
the total number of characters in the phone number is
greater than or equal to 10, the routine recognizes it as
a longdistance call, and dials 1at the beginning (Display
7). After getting familiar with the operation, you may
want to reduce the time periods assigned in the CALL
SOUND statements in lines 3540, 3580, 3590. You can
redial the number by pressing R, start the stopwatch by
pressing S (and quickly releasing the key), or select a new
number using the choice N. Any other key (including a
prolonged pressing of S) terminates the dialing session
and the master selection screen will be displayed.

With the selection of S, the stopwatch routine on line
3700 is activated. The elapsed time is displayed at the
lowerright-hand corner (Display7). You can control the
accuracy of the stopwatch by adjusting the time delay
constants of the DATA statement in line 3320. Holding
down R starts the dialing procedure all over again; press
ingany other key returnsyou to the masterselection list
(Display 3).

EM

H

M

TA

AD

HOME

Copyright © 1983 Emerald Valley Publishing Co.

TA

In the Household Inventory option, choice 5 of the
master selection list will cause the program to calculate
the total purchase cost (Display 8) for all the items in the
data file. There's no adjustment here for inflation. This,
however, could easily be done. For example, you could
key in the consumer price index into the data file at the
time of an item's purchase and scale the purchase cost
with the current index when evaluating the SUM (in the
routine on line 3150). I felt, however, that this procedure
would be rather involved for day-to-day use.

Option 6: This permits storing the data file on either
cassette or disk. The computer asks (Display 9) for the
title of the data file and the date of revision for future
reference. This information will be displayed when you
re-load the data for another session.

Option 7: This produces a hardcopy listing (with nine
complete entries per page) on either the TI thermal
printer, or a printer connected to the RS232 interface.
The computer first asks you to verify that either the ther
mal printer or the RS232 interface is connected in order
to avoid the File-Error termination. As a precaution,
always SAVE the updated file on cassette or disk (op
tion 6) prior to printing.

SUMMARY AND FINAL REMARKS
This program is capable of performing a wide variety

of functions. We have seen how to use it to maintain a
computerized phone directory and dial your phone
automatically, as well as to maintain very flexible data
files for day-to-day use in the home. Typical applications
include an inventory of household valuables, a record of
credit cards and bank accounts, lists of author/subject
references for research, recipe files, etc. Some of the in
dividual subroutines (in particular, the sorting routine and
the stopwatch routine) should also be useful in many
other applications. The program, as presented here, is
contained within the standard 16K TI BASIC. A version
in Extended BASIC to access the additional 32K RAM
should give the program an even broader scope.

References

Floyd, R. W. "Algorithm 245, TREESORT 3." Com
munications of the A. C. M., December 1964, p. 701.

Blinchikoff, H. J. and Zverev, A. I. Filtering in the Time
and Frequency Domain. John Wiley and Sons, 1976,
Chapter 4.

Luff, P. P. "The Electronic Telephone." Scientific
American, March 1978, pp. 58-64.

Renbarger, J. "A Telephone-Dialing Microcomputer."
BYTE, June 1980, pp. 140-170.

D

D

C

L

0

R

4

PR

GO

,M
AT

Ml

aMe

EM

$

5

L|OA
1

HlO

CO

The Best of 99'er Volume 1

WH

CA

301

60

GO TO

EM

R

GO!

I

0

R

4

N

GO

GO

GO

EM

GO

E

PI

GO

F

N

IGO
N

2

N

N

N

GO

F

G|0
N

G|0
g|o

E

F

PR

GO

F

F

GO

ON

TO

0

U

TO

PU'

$
P

P

P

S

EW|
P

1
8

1

=1

6

3
i

CA'

CA

7

:a

=s

;a

ca

CA

7
2

EMb

T|0
L

A|G

BOO

T

El

TO

&A

RA'

N

TH

N

H

E

5
EN

WA NG EMO

TO

NG

TO

IGO
4

TO

HE

Y

ON

E

ROG

DI

RlAEM

R

302 The Best of 99'er Volume 1

&A

MO

43 «, 15

GO!

R

Ul

Ul

U'

M$:

R

I

I

P

A

E

G

GO

P

Fl

r

i =

GK>
T

G|0
N

F

F

A1

GO

N

R

T

UR!

EM

AG'

$

M

S

TMP

MI

IM)
B

1

Rl

Ml

$

S

N'

T

$
AJG

U

TMIP
[M]

UT

TMP

[M]
UT

TMP

M

UT

TMP

[Ml
GO!

F

R

GO!

GO!

GO!

ON

WH

:TMl

=TMP

[M

:TMP;

=TMP

IM

TMP;

70
2

GO

51

TO

s:

2
I'

Tb
:a

E

EMI
F

GO!

F

M:

M

F

F

GO

GO

NE

GO

ER

RE

N

F

GO

GO

PR

M

GO

ON

U

T

U

N

T|0

AG

NG

WH

6

$

Ml
65
TO

HE

4-

M

S

Db|W|N

EM

NE

1

ON

:M$

TMP

TMI

TMP

TM

TMP

M

TO

TO

FO

EW

NO

TOI

M

MO

Copyright © 1983 Emerald Valley Publishing Co.

6<
71

8

9

0
1

2

31

41

51

61

7

8

9
0

1

2

3

4

!5I

60

tMhM-'

M =

F

t=:

R

R

M=

=M+1

EM

m

F

[M^
F

M=

RE

FOl

M =

F

E

E

E

NG

MS

=N

MS

Nl

F

IE

GO

F

N

DE

GO

N

IP

1

N

FO

N

I

N e:

F

FO

E

F

GO!

P

P

P

I

I

0

D

GO

U

D

V:

TO

TO

V!

TO

PU

Li

GO

DE

GO

IN

IN

P

1

PR

FO

N

LOi

N

SA

,AG

T

1='

N

A

T

LpS
LAG

T

E

0

T

S

5

F

UP

TO

GO1

NAM!

:Ol

TO

ROl

)-

CTO

HO

FI

NO

-E

TH

MO

IAMS

Copyright © 1983 Emerald Valley Publishing Co.

[AMI

AM

AM

N

S

21

31

AME

NGl

8!

IAM!

IEM

'LA

IAL

F

RE

FO

N

Nl

II

GO

GO

IK

GO

GO

IN

F

GO

C

N

K:

GO

GO!

K

GO!

K

GO!

(GO
E

S

$

$

TM

T

Rl

A

A

A

A

A

R

A

A

A

A

A

R

R

C

C

R

R

P

+ '

TO

Ul

=A'

:A

:A

P

S

TI

$

S

S

$

s

T

$

s

$

s

s

lOl

:0
SOI

7i

00

GO

NT

SUfM:

NG

T

T

K + '

E

PR

ROl

0

SOI

S'

N

ROG AM!

TO CO!

The Best of 99'er Volume 1

IUE

303

304

FlO
S UMt

e:

R

IUM +

P

GIO

F

CA

H

V:

T!

L

P

R

A

A

A

:a

GO

E'

EM

EM

S

S

FOR

TMP

CI

V =

I

I

T

I

CA

GO

CA

:A

[GO!
F

F

F

R

N

GO!

F

R

R

H

V

TO

A

D

N

L

L+*

+ *

A!

A!

'A!

T.

L

TO

N'

T-

L

L

T

3

(
3

SIO
SO

CO!

11

7

7

7

HON!

LOC

E 3

7

2

5
2

YIO
0
TI

IM]

G!

Hi

TM

TM

T|MP
T

Nl

0

I-'

D

Fb
1

3

HO

ME

D

IWA

EW

:n

DOWlN

UM

8

8

)

FOl LOW

Ml TO

[Ml

UM

TMI

N

N

Ml

TO

IPWA'

TO
TO COl

'R

INU

TOl

LA'

FOl

A'

FOl

a:

FOl

,3 = <
FOl

,4 = -

I8 + ;
12 =

i8 + ;
3 = 1

8 + ;
4 =

t+;

IEN

WA'

TO

TO

TO

TO

The Best of 99'er Volume 1

EM!

AGA

GO!

IF

S

E

E

S

E

E

E

S =

GO

GO

E

CA

:a

TO

Ul

E'

EM

F

P

LO!

TI

EM

PN

PR

GO!

F

P0

T

FlO

41

1

3'

IN

ClOtM
!H

20

N

E

S

TO

TO
(GC

C

OM

E

A

V +

r+ 2
V +

V +

R

4:
2

0

NG

NG

N

M='

GO

NE

C

R

P

Y

C

RO

L

S=l

K = l

H-iM
9

DO

AM

N

E'

Si

A!

YOl Wl

LOS

0
EN

TO

L NM EMO

Copyright © 1983 Emerald Valley Publishing Co.

\fcRB I)

A Speech
Vocabulary

Expansion

Verbose is a program that was written in an evolu
tionary manner. One thing just leadto another. The
story goes something like this:

One day I decided to make a program speak a simple
sentence. After all, the TI Speech Synthesizer must have
something to say. Well, anyway, I came up with a simple
sentence—don't remember what it was now—in a program
which I entered and ran.

Wow—almost half of the words in the sentence were not
in the residentvocabulary! It wasclearlytime for me to read
the manual that came with the unit. Surprise. I found it had
a vocabularylimited to three or four hundred words. That
was not enough for me. Further research was definitely
called for.

Reading the TI Extended BASICmanual, I found a pro
gram on page 206 that allowed adding standard suffixes to
resident vocabularywords (e.g.,-ed, -ing, -s). After playing
withthissuffixprogramawhile, I realized it wouldbe possi
ble to concatenate two resident vocabulary words to pro
duce a totally new word: therefore, meanwhile, or update.
I wrote a routine to do this. Once this concatenation routine
wasworking, it seemed likea speech tool startingto evolve.

It would be nice, I thought, to have the resultsof the con
catenation routine printed in the form of DATA statements.
I could then write these DATA statements containing the
new word's speech data into other programs that needed
to speak the new word. So, I generated a routine to do this,
and added it to the concatenation routine.

All of these routines, including a method of building a
vocabulary file on disk, were combined into a nice, neat,
simple-to-use program. The result is Listing 4. As you can
see from the listing, I originally called the program Word
Builder. When I decided to write an article on it, however,
the name seemed too mundane. So in a fit of cleverness,
I renamed the program Verbose. My wife and my friends
just shook their heads and groaned. . .

A TV picture is worth a thousand words, right? Well,
perhaps not quite, so I havecombined sometext with screen
images to guide you through the operation of Verbose.

Copyright © 1983 Emerald Valley Publishing Co.

s£v£

)Y

EXTENDED
BASIC

Beforeyou start the Verbose program, make sure you have
either the TI Extended BASIC or TI Speech Editor Com
mand Cartridgeplugged in. Verbose uses the SPGET and
SAY subroutines that are available in these modules. OK,
now you're ready to load Verbose and type RUN.

+ + +WORD BUILDER + + +
ENTER NUMBER OF YOUR CHOICE

1-JOIN TWO WORDS
2-PRINT SPEECH DATA

3-STORE NEW WORD ON DISK
4-EXIT

Here we are at the main menu screen. Let's create a new
word by joining two words. The new word that we will
generate will be rewrite and will be made from vocabulary
words read and right. Type 1 and press the ENTER key.

ENTER FIRST WORD JOIN

We are asked for the first word that will be used in the
joining. Type READ and press ENTER.

ENTER SECOND WORD TO JOIN

Now type the word RIGHT and press ENTER.

ENTER THE SPELLING OF THE NEW WORD
?

Type in REWRITE and then press ENTER.

TRUNCATE HOW MANY BYTES?

OK, don't panic here! Verbose just wants to know how
much of the first word (READ) to truncate before it com-

The Best of 99'er Volume 1 305

bines it with the second word (RIGHT). We don't know
how much, so we make a wild guess of, say, 34. What we
want is to truncate the AD from READ and combine that
sound with RIGHT. Assoonas you press ENTER this time,
the T1-99/4A will say the new word for you.

SAY AGAIN? (Y OR N)

Here youcananswer thequestion with Yas many times
as you like to check the sound of the new word. After hear
ing enough of it, enter N.

SAY AGAIN? (Y OR N) N
1 -CHANGE SOME MORE
2-BACK TO MAIN MENU

Ifyou don'tthink the new word sounded quite right, type
1 and press ENTER.

TRUNCATE HOW MANY BYTES?

This time type 55 and press ENTER.
Listen to the word as many times as you like. With 55

bytes truncated, it sounds to meclose enough to use. When
you are satisfied, return to the main menu.

+ + +WORD BUILDER + + +
ENTER NUMBER OF YOUR CHOICE

1-JOIN TWO WORDS
2-PRINT SPEECH DATA

3-STORE NEW WORD ON DISK
4-EXIT

Here we are back at the ranch. Let's print the data for
our new word by selecting option 2. Don't forget to press
ENTER. (I'mnotgoing to remind you about thatanymore
'cause you've got the ENTER key down pat.)

ENTER THE WORD WHOSE DATA YOU WANT TO
PRINT - -

?

After you enter REWRITE and press the you-know-what,
theprinter will output what you see in Listing 1. It didn't
work? Well your printer must be set up differently from
mine. Go to Listing 4 and modify line 870 of Verbose (the
OPEN statement for the printer) to match your setup. If
you don't have a printer, delete lines 870 and 1070. Also
modify lines 940, 950, 990, and 1060 bydeleting the"#1:"
ofeach print statement. Now, instead ofgoing tothe printer,
everything will go to the screen of the TI-99/4A. The last
change is to enter this line:

1070 INPUT F$

Now it will stay onthescreen (so you can copy itonpaper)
until you press ENTER.

Look overListing 2. This isa sample TI BASIC program
that shows how the DATA statements for Verbose can be
used. You will note the DATA statements for the word
REWRITE areentered in lines 360-490 of Listing 2. Lines

306 The Best of 99'er Volume 1

280-330 build the string E$ which will cause REWRITE to
be spoken. The FOR-NEXT loop here is terminated when
the last byte is read. The loop counter limit (133) was the
number of bytes printed out for REWRITE by Verbose.
The subroutines SAY and SPGET are explained in the
speech synthesizer manual.

+ + +WORD BUILDER + + +
ENTER NUMBER OF YOUR CHOICE

1-JOIN TWO WORDS
2-PRINT SPEECH DATA

3-STORE NEW WORD ON DISK
4-EXIT

It is very tiring to enter all those DATA statements of
the previous sampleprogram. For those of you with a disk
system, an easier method of saving and using words from
Verbose is available with option 3. Go ahead and select it
now.

PUT THE DISK WITH "WORDS"
FILE IN DRIVE ONE.

PRESS ENTER WHEN READY

Thedisk on which you wish to keep your new vocabulary
words should now be placed in disk drive 1. The words that
will be saved will be appended to a file called WORDS on
thisdiskette.Seeline 1160 of Listing4 for the OPEN state
ment for this file.

PUT THE DISK WITH "WORDS"
FILE IN DRIVE ONE.

PRESS ENTER WHEN READY

ENTER THE WORD WHOSE DATA YOU WANT TO
SAVE - -

?

Enter the word REWRITE to save. The disk drive will
run and then Verbosewill return to its main menu. Use this
option to save a few more words that you choose. Then
run theSpelling Test Game in Listing 3 usingthe resultant
WORDS file.

The Spelling Test Game program will accept up to 20
words for theWORDS file. It thenspeaks each word, checks
the spelling that is input, and keeps score. Any children in
your home should find it useful for spelling drill.

Study Listing 3 and notice lines 230-270. The WORDS
file has a pair ofstrings foreach word saved. The first string
contains the spelling of the word. The second string con
tains the actual speech data.

As mentioned earlier, the program listing for Verbose is
Listing 4.

A final note of caution: Once you start that TI-99/4A
talking, BEWARE—you may have trouble gettinga word
in edgewise. . .

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

Listing

490

R

R

R

R

R

R

R

R

R

R

R

R

R

C

C

CA

CA

EM

EM

EM

EM

EM

EM

EM

EM

EM

EM

EM

EM

FO

R

E

N

C

R

D

4

D

6

D

D

1

D

I

D

1

D

2

D

0
DA

1

A

7

A

7

A

8

R

A

X

L

E

EM

A

AT

1
T

6
T

7

T

0
T

6

T

8
T

1

T

3

T

7

T

TA

++H-+-H++++M+H- +H+H+H*+
K-

+ HOW

PG

A

PG AM

EWR

AM

E

S

BA

EWR

4

OU

SI

ROG

HlOIWlS
F

A

AM

+

D +

+

+

|+++I+++++l+hr+H-H+H+ +H-++

Copyright © 1983 Emerald Valley Publishing Co.

Listing 3

48

EM

EM

EM

GO

A

+++

+

++++

++++++ + + + +

NG

+ + + + ++ + +++

+

++++++++++++++++++++

++

u

Iwo
c

M

++++++ + + + + + +

E

WO

Y

S

=|wio
s

R

IGU

WO

TO

T

EA

WO

p

R

Y

CO

CO R

CjO
;WO

R

YIOU

CO

E

NT

WO

YO

CO

GO

RE

R

WO

GA|M
0

WH

L

CA

IGOO

+ + +

WO

R

E

+ +++

WO

LL

E

CO

CO

AGA

The Best of 99'er Volume 1

SO

M

307

Listing 4

20

308

EfM
EM

EM

EM

EM

EM

EM

EM

EM

EM

EM

GO

A

N

EM

A

N

T

IMA
F

PR

GO

F

PR

GO

I

T|0
B

N

0

MA

S

+

+

+ + + + + ++++

B

+ + + + +

+++++++++++++++++ + +

HO

+H-+
E

T

IMA
BCOM

+ + +

GO

N

XB

MA

<MA

00

N

+ + +

EG|A

B

1

WO

wo

UMB

OW

TWO
S

NElW

Y0

WO

wo

TWO

MA

UMB

+ +

+ +

TO EW

+ + +

CHO

ON

+ + +

EW

A

?

WO

$

Y

+ +

EWD

T

EM

HO

+ +

A

R

N

F

A

G|0
B

CA

R

N

F

CA

GO

D

CA

R

N

N

E|W WO
T

TW|0
G

0

AGA

TWO

D

F

E

N

DIWO

R

DlWlO

CO

IrIeIm
wwo DS

TWO WO

wo

TMA

TWO

WO

TMA

DWO

TO

The Best of 99'er Volume 1

HO

EWD

GO

EM

EM

T

CI

HO

TMA

+ + +

EM TH

TO

EMI
PE

E

GO

VA

FO

GO

A

N

PR

A

GO

F

TU

F

F

:a

GK>
F

L =

WO

wo

MO

FO

E

E

W|A
1

TO

1

1

EG

+ + +

N

s

E

IWA

WO

+ + +

WO

A

(WIO

EWWO

EWDA

H

MA

HO

NG

N

CI

EME

OMESI

IMEI

MA

MO

ROU

WO WH

WO

NG

EW

m
4

WO

TM

WO

E

IWO

WO

EG

TO VOCA BU

WO

WHO

RO

Copyright © 1983 Emerald Valley Publishing Co.

/

~|
-

• I \

J ^^H ^^^H

pWV"

/ I \ I Extended BASIC lets you fill the screen with
I I rapidly moving sprites ofmany colors. See for ex-

X Aample Sprite Chase in "Computer Gaming."
Although the smooth and rapid motion possiblewith sprites
is indeedquite impressive and arcade-like, think how much
more spectacular these screen displays would be if we
animated the moving sprites: After all, why just move a
man-shaped sprite when you can also move his arms and
legs? Picture the visual impact of a bird-sprite flying across
the screen flapping its wings. How about a circus parade
with clowns tumbling, animals walking, and elephants mov
ing their trunks? All of this—and more—is possible with
sprite animation.

The technique of animation is old and well-known. First
we draw a series of figures with each figure in a slightly dif
ferent position and posture. Then, we rapidly flash the
figures one after the other on the screen, and persistence of
vision goes to work—fooling our eyesand causing us to see
figures move as if alive. Now with sprites we can duplicate
this movie animation technique on the TI-99/4 and 99/4A
through simple commands in Extended BASIC. [See"3-D
Animation with the TMS9918A Video Chip."—Ed.]

The usual trouble with computer animation is the tedious
series of tasks that you have to do after drawing the figures:
You have to figure out, keep track of, and key in those long
pattern identifiers. If you have chosen to work with sprites
that are four characters large, these codes then become 64
hexadecimal characters long! This situation prompted me
to write Spriter (Listing 1), a program that does much of
the work for you, and leavesyou free to concentrate on the
fun—drawing the figures for the animation sequence. Spriter
automatically computes, files, and saves an array of four-
character pattern identifiers that define sprites of magnifica
tion 3 or 4 (figurines). After you draw each figurine you
can output a model of it to the thermal printer (optional)
and when you are finished, you can save the whole file on
cassette tape or disk.

Copyright © 1983 Emerald Valley Publishing Co.

SPRITER
HIGH-SPEED

ANIMATION

WITH

SPRITES

EXTENDED
BASIC

When you run Spriter, it presents you with a 16 x 16
character work area in the screen's character display field.
Under your directon, the computer generates an enlarged
model of the figurine within the work area. The image is
madeup of dark and brightcharacter squares, eachof which
has a counterpart in the figurine. Changes in the display
field are automatically converted into changes of the
figurine's patternidentifier. The figurines in thecomputer's
memory (RAM) can be stored permanently on tape or disk
and later accessed by either Spriter or any other program
with animation recall capability. See, for example, the
animation demonstration program in Listing2. Spriter thus
allows you to generate new figurines, transfer any figurine
that you have stored on tape into RAM, and rework any
figurine that is present in RAM.

How to Run Spriter
Instructions are almost self-contained: A series of prompts

guides you through much of the program. First, you are
asked if you havea thermalprinter and if you want to in
put a file of characters from tape or disk. If so, you are
asked the corresponding file name. Then the work area is
framed on the screen. If you have chosen to show an ex
isting figurine by reading in an old file, Spriter copies that
figurine to the work area. When the cursorappears in the
upper lefthand corner of the work area, you are ready to
draw a new figurine or redraw an existing one. You can
move the cursor anywhere within the work area by using
the arrow keys for horizontal and vertical motion, and the
W, R, C, and Z keys for diagonal motions. When the cursor
is moved, it automaticallyleaves a trace as determinedby the
polarity keys: bright if the A key was pressed and dark if
the F key was previously pressed. When the cursor first ap
pears, the polarity of the trace is dark. Afterwards, by us
ing the motion and polarity keys you can draw and erase
portions of the modeluntilyou are satisfied with the results.
Then press the Q keyto exitthe drawingmode. A newseries
of prompts will guide you through the rest of the program.

The Best of 99'er Volume 1 309

T
Main

Program

I/O
OPTIONS

170-210

SPRITER

READ& 2
PRINT OLD

FILE

220-270

DRAW & SAVE
SPRITE CODES

280-420

RECORD
OUPUT

430-500

_ 1:

Oidor ol

Subprogram

CALLS

_L

CASTER

1260-1370

DRAWER

520-980

3.1.1

EXPANDER

1130-1250

3.1.2

ADDPIX

990-1120

3.1.3

SCREEPT

1380-1420

Order ol Program Execution •

How Spriter Works
Spacedoes not allowa line-by-line description of Spriter

(see Listing 1). But for those interested in exploring the in
tricacies of the program, I haveprovided a road map in the
form of a structurediagram(Figure 1).Functions identified
within the main program are depicted as boxes above the
dashed line; those identified with subprograms are below
the dashed line. The order of program execution in this
figure is from left to right, and the order of subprogram
calls is from top to bottom. The program line numbers to
which these various functions refer are listed at the bottom
of each box.

The main task of drawing a series of sprite figurines is
under the direction of Function 3 (Draw & Save Sprite
Listing 1

EM
EM

EM

EM

EM

e|m
L

GO

F

GO

F

CIHA
D

1

2
GlO
26
>

TO

YO

1

AIM]
2

R

H

D$
WA

FO

51
NT

RfOtM
F

FO

TO

RMA

NAME

3I0 The Best of 99'er Volume 1

Codes). The task of initializing the work area and handling
individual figurines and their models is directed by sub
program Expander, which constructs this model when given
the pattern identifier for the figurine. After this, Drawer
directs changes in the model display according to the user's
keyboard inputs. Then it calls upon subprogram Addpix
to make the corresponding changes in the pattern identifier
for the figurine that is being drawn. When the figurine is
complete, Drawer will call subprogram Screept to output
the model on the thermal printer (if this option is chosen).

A Demonstration Program
After you generate cassette or disk data files of figurine

pattern-identifierswith Spriter, you are ready to incorporate
these into an animation sequence within a program. The
short demonstration program (Listing 2) is a very simple
example. This program is in effect a continuous loop pro
jector that sequences through a series of sprite figurines to
produce animation of the sprite that is moved across the
screen. After the program reads the pattern identifiers from
cassette tape or disk, it goes into the animation loop. You
can stop the looping by pressing SHIFT C (on the 99/4)
or FCTN 4 (on the 99/4A).

Keep in mind that this program is just a very simple
demonstration of the sprite animation technique. You can
use it to study the figurines files created by Spriter, and
perhapsas a starting point for writingmore elaborate sprite
animationprograms that are more apt to your specific ap
plications [We've also included an additional program
(Listing 3) that incorporates DATA statements for those
wishing to get a feel for the animation process before work
ing with Spriter.—Ed.]

Dl

CON

OD

CO

MS

X

p

ION

DO

CO

Y

DO

YO

YO

I

Y

N

yk>u
D

TH

2

IGOTO

AM

WA

WAN

E

6
AtM|S
4

OF

S

@|F
@F

S

C|ON

$ =

AN

C

D

00

E

C

I

|M|A|G

E

NAM

Copyright © 1983 Emerald Valley Publishing Co.

9|2|o|

FIOR

i

CA

F

$

F

$

F

|CH
T

F

e|n
$

C|A
c

D

E

LIAY

ACC

L

A

N

K

x|+
K

X

K

X>

TH

Y

P

EG

P

S

P

S

AWE

00

NO GO TO

MO

CA

VCHlA
5

N

X|X|>

HCHA

G

4

ROW
SO

DA

C|A
RCHA

TH

MH-
0

Y

GIO
S

T

H

R

1

H

T

N

N

N

N|D
AND

Y = Y

AJND
Y

EN

HA

EG

EG

|CH
1

$

E

CH

HCHA

N

5

<M|+

Y

X|>
1

x>

Y +

X

Y

X

Y

<

E

X

1

X

7

X

3

X

4

IGO
C

<M +

<M +

EN

l=CtH
X

Gb
22
l|a
)

<M +

LO

N

F

F|0

EG

T|{ 1) : IJDS (

Copyright © 1983 Emerald Valley Publishing Co.

AN

A

MO

H

[GO

A

HA

W

ANG

T|H
4

M|+
L

3

vblH|A

I

TH

W

N

CIA HCHA

>

<MH-

<M +

H

C[H

$

AtM

T

A

E

EM
F

E

FO
F

F

F

C|R

B

4

Z

|G

w>

w>

w<

0

1

9
NlH

=1

1

4L

F

WO

iW
N X

T

M

EN

1

P|0
R

PO

L

S

R

N

N

L

N

wie
s

s EG

SC

4

YWl)

TO

EN

H

ZW=

D

E

0
T!H

T

L

GO

AM

N

Gb

GO

W0

I W0 I

Wl<

TO

WA

EP

TO

W<

ZW

W0

ZW

ZWH-

N

N

$

&IA

TH

8

8
T

TH

W0

TO

T

YW

LMn-
F K

55

IHCHIA

RWA

CH

N

K

N

IGO

00

TO

W0
W0

LSfV =
LW

ON

AN

F

LA

NH

&A

YW]=
W0

TH

EN

EN

NO

1 50

CA GCH

The Best of 99'er Volume 1 3II

Listing 2

CA1

16-'

OB

EM

eSmoi
NG

59

R

TI

MAGN

AME

AM

N

,Y

TO

;mo

ON

F

Y

AMI

312 The Best of 99'er Volume 1

MA

F

Listing 3

EM

EM

EM

EM EMO

OU

0

A|M|$
T

MA

MA

ROO

TO

41

0
IMA

7

0
IMA

2

0
MAN

MA

MA

MA

MA

MA

MA

0
8
MA

12

10

EMO

ON MA

EME

GO

Copyright © 1983 Emerald Valley Publishing Co.

COLOR

MAPPING

and the

TI-99/4A
One of the principal features of the new technology

exhibited by low-cost home computers is their
graphic capabilities. But these small computers'

graphic capabilities in the area of mapping is often
overlooked. Statistical mapping is not new; cartographers
have used the methods described in this article for
decades, and sophisticated mapping programs that run
on large mainframe computers have been available (from
Harvard University and elsewhere) for a number of years.
Their application for the small computer field, however,
especially in the classroom setting, should be further ex
plored and documented.

The program described in this article, United States
Choropleth Map, was written for the TI-99/4A. No
peripherals are needed, except for a cassette recorder to
store the program. Therefore, anyone with the console
can get started immediately and experience the excitement
of computer mapping. The program should benefit a
large number of users: For example, classroom teachers,
from the upper elementary grades through college levels
in geography, can utilize it; sales and marketing
managers, and others interested in the spatial distribu
tion of goods and services may also find it especially
useful; political scientists can easily see the national elec
tion results displayed almost instantaneously.

Choropleth Mapping
Simply defined, choropleth mapping has been likened

to a spatial table. Enumeration units—which can be cen
sus tracts, counties, states, or other small area
geography—are symbolized by different area patterns,
depending on the values they represent. Typically, the
original data are divided into a number of data classes
(map classes). The individual enumeration units will be
symbolized according to the map class into which their
data value falls. Enumeration units are put into classes
because it is usually impractical, or not feasible, to app
ly an area pattern for each data value.

Classing, of course, is similar to a sieve; individual
values "fall" into each group depending on the class
limits. This results in a generalization, and the final map
is a simplification of the original data. Nonetheless,
choropleth mapping has a number of advantages over a
simple table of values. It provides a third, or spatial
dimension to a rather dull list of values in tabular for

Copyright © 1983 Emerald Valley Publishing Co.

mat. In the bibliography, I've listed several good books
that discuss the methods and rationale of this form of
mapping.

Symbolizationon choropleth maps takes on severaldif
ferent forms. In the case of black and white mapping,
the enumeration units are symbolized by area patterns
to differentiate each class from all others. Different
shades of grey, ranging from near-black to near-white,
are often used. Color symbolization includes two forms:
(1) different hues (such as green, red, blue, etc.) for the
various classes, or (2) different values (shades) of the same
color. The present program uses the second method.

Main Features of the Program
Figure 1 illustrates the main components of the pro

gram's logic, and Figure 2 lists the most important
variables. I wrote the program with flexibility in mind:
New subroutines can be incorporated as different versions
are developed. Lines 170 to 260 of the program are used
for an opening screen, which displays the program name.

The first section, Program Instructions, provides the
option list and incorporates directions for data input. The
present version accommodates only data from the
keyboard. (You may wish to add program statements to
read data from a file system). The data is input by enter
ing the values to be mapped for each state, by the
alphabetical order of the states.

OPENING SCREEN

T
END

PROGRAM INSTRUCTIONS

SORT

CLASS LIMITS

PRINT LEGEND/TITLE

CLASS LIST OF STATES

STATE PLOTS
X

CLASS CHECK

370-880

890-970

980-1020

1030-1090

1100-1290

1300-3940

3950-4100

Figure 1 -Main program logic, showing subroutines, or United
States Choropleth Map.

The Best of 99'er Volume 1 3I3

sc -Map background color
MC •Map color (blue or green)
C(1-5) -Map class colors
V(1-50) •Values of each state to be mapped
TT$ •Map title
X1 •Limit for class 1
X2 •Limit for class 2
X3 •Limit for class 3
X4 •Limit for class 4
K(1-5) •Character sets
S(1-5) -ASCII character identifiers
SN$(1-50) •States' names
NN -State's number

Figure 2 -Principal variables used in mapping program.

After the data are entered, the main program directs
the flow to a simple bubble sort subroutine, where the
data values are sorted into ascending order. The data
values are then classed, and the class limits are selected
in the Class Limits section. There are a number of ways
in which data may be classed. This program will class the
data values into quintiles—that is, into five classes each
having the same number of values. As the data set has
been arrayed in ascending order, the values of the class
limits are computed rather easily.

Program flow is next directed to printing. With the
TI-99/4A and the BASIC language supplied with the
standard computer, printed ASCII characters must be
displayed before the color graphic blocks are called on
the screen. Otherwise, scrolling will move the color
graphics off the screen. The Print Legend and Title
subroutine displays the classed values and user-chosen
title on the lower portion of the screen.

State Plots is next. Each state is assigned an ordinal
number based on its alphabetical rank (1-50). As each
state is encountered, flow is directed to a subroutine,
Class Check, in which the state's ordinal number is used
to determine which color the state should be.

Outlines of the states are not variable, but the color
(symbolization) varies, of course, depending on the class
in which each state falls. Flow continues until each state
has been displayed on the screen. A color graphic block
is displayed adjacent to the printed legend values at the
bottom of the screen. The program ends with a GO TO
statement (line 3940); the screen will display the map un
til the user presses SHIFT C or FCTN = to BREAK
program.

M.4M*| I I ' !

L_L jT conh

"III

I I I

I Tt»ttnd to»«» I

Figure 3 • The graphic blocks used to identify the shapes of the
states in the choropleth map program. Each block's
color is generated with the CALL COLOR command.

314 The Best of 99'er Volume 1

Mapping on the TI-99/4A
The color graphic capabilities of the TI-99/4A include

a screen which is divided into 32 columns and 24 rows,
each block of which is addressable by a row and column
identifier in the CALL HCHAR and VCHAR com

mands. Any of 16 colors (including transparent) can be
specified. Further resolution is possible by using the
CALL CHAR command, with which the user can specify
the "on" and "off" condition of 64 dots in each graphic
block, through the use of hexadecimal codes. The pres
ent program utilizes only the 32 x 24 resolution screen,
and does not develop the refinements of the shapes of
the states that are possible with the CALL CHAR com
mand. The blocks used to identify the states are illustrated
in Figure 3. Although only an approximation is achiev
ed with this resolution, the shapes resemble fairly well
the individual states, and relative area is proportional to
real geographical areas. Other users may wish to modify
these (although I suspect that the 16K RAM will be tax
ed if they do).

The Choice of Color Symbolization
As mentioned previously one standard, acceptable way

to symbolize the areas on choropleth maps is to vary the
lightness or darkness of one color, in accordance with
the values represented. Classes having higher values are
rendered darker, and the lower-valued classes lighter. For
this program, the highest class is black, the lowest class
white, and the three intermediate classes are in three
shades of green or three shades of blue. The TI-99/4A
can display 15 different colors, and fortunately there are
three different greens and blues, each ranging from light
to dark. Symbolizing the color classes in this manner bet
ter shows the total form of the distribution over the map.
The map reader gets a better idea of the continuously
changing nature of the spatial attributes of the data.

Program Enhancements
You can make any number of useful changes to this

program. You may wish to provide alternate ways of
classing the data (e.g., quartiles, equal steps, standard
deviations, or others), to add new subroutines, or to enter
your own classes. A different color for each class could
be used in the color symbolization. The variable C(l-5)
need only be changed to conform to the other color code
options used by the TI BASIC. With small changes, data
sets could be input from external files rather than from
the keyboard. This would be especially useful in
classroom settings, where census or other data from
previous years (and other geographical data) can be com
pared with present patterns.

Computer-aided instruction (CAI) which uses inquiry
questions generated by the spatial distribution seen on
the screen could also be added to this program.
Geographical concepts could be brought out in this man
ner, and students could easily test hypotheses.

One most intriguing enhancement would be to in
troduce animation (dynamic cartography) to the pro
gram. Various data sets could be read (from files) and
displayed in fairly fast sequence to produce a dynamic,
changing image of the geographical distribution. For ex
ample, different population densities from 1850 to 1980
would show the steady drift of our population from east

Copyright© 1983 Emerald Valley Publishing Co.

<
u

x
:

o
ooz

c

«
-
a

e
i>

a
s

.2
*

3
oo

=
JS

b»
5

e
g

to

^
§

^
C

O

C
!

rt

C
03

^
1

8
»

c
.£

•
-
*

-
u

I
-

<
u

O
-
*

to
2

o
«/a

<
o

3
<->

°
-

o
ca

*->
o

>
>

.!2

2
^

03
ccj

•

•--
-a

^

ox).y
^

c
-c

r
:

a
5

«

s
s
s

^
O

>

&
.!§

£
c

*-•
•<->

°
'-5

c
o

«J
r

_
3

O

"
.H

S
o

E
S

S
*>

""
>

"S
w

73
.So

oIT
O

2
-
a

z<
u

T
3CC
N

•8o-c
:

i>
x
J

O
T

J

g
r

a
]

c0
c
j

•£
;

—
R

j
JD

Q
.

3
C

O

S2
c

3
C

C
O

M

>
a

.
«J

S
o

Q
5

.

O
£

n$
-
o

5
o

o

co
T

'
12

fl
«

p

5
2

§

o£
O I

O
^
i

a
c

2

o
.

o
•

>
C

O
•
•

•

•
C

O
M

>
O

.
C

O
•
•

M

C
O

M
>

_
]

M
M

M
•

C
O

g
O

H
.
.

1
-

O
M

.-»
•

•<
•
•

O
.
J

»
.
.

—
*

C
M

C
O

M
•
•

M

~
K

-
J

•
•

!-•
•

o
.

O
w

iJ
«

g
C

M
C

M
C

M
C

M

o
>

.
M

O
.

C
O

<
H

i
^

H
i

O
—

S
3

M
C

O
P

Q
<

t
u

g
M

O
U

t
-

O
C

9
O

^
.

_
w

x
H

«
i
n

H
i

k
g

.
•

k
«

*
—

.
h

.
S

O
O

i
J
w

g
g

c
o

o
S

O
S

S
d

.
—

—

»
-•

1
-

•
£

M
.

•
-

l-
i

M
—

i
o

n
K

r
M

M
C

f
h

•
N

M
C

t
>

o

C
O

M
K

s
C

O
O

S
M

K
>

~
9

S
H

m
1

X
X

X
>

-

Z
C

H
U

o
>

—
»

W
U

I
H

r
O

K
U

g
»

>
•

>
>

>
H

i
•

•
-

•
-

•
-

-
-
c
o

—

-
U

B
l
h

o
.
.

O
»

h
.

s
o

g
M

C
O

>
>

>
>

.
.
.
.
.
.

h
-

H
i

1
-

H
i

g
.

•
!-•>

->
<

—
•

B
g

«
«

C
O

—
H

1
1

1
1

-
—

1
1

1
1

o
_

C
O

>
t

g
C

O
M

M
«

:
u

s
d

«
;
h

m
i
-

H
i

C
O

o
T

-
.

»
•

«
-
J

o
o

n

P
S

M
c
o

(1
g

b
.

M
—

O
g

H
>

g
«

0
C

9
—

.
—

H
i

r
*

t
-

v
-

T
-

g
—

.
.
.
.

.
_

.
.
o

.
-

H
-

g
>

-
S

3
S

O
m

j
>

.
h

.
••

O
>

O
m

H
.

H
i

•
-
•
r
N

M
Q

U
>

r
M

n
q

_
.

~
^

g
H

O
<

«
a

•
«

•
-
-
0

S
•-J

•-4
S

O
>

X
X

X
X

M
H

i
O

-

u
c
o

<
S

•
1

-
O

<
B

.
.
.
.

.
.
.
.
.
.
.
.

.
.
—

m
o

n
o

<
_

-
~

.
-
.

>
>

>
>

M
—

c
o

o
n

<
M

C
O

O
in

—
—

_
<

^
_

_
^
.
M

-
f
l
)
B

C
f
h

>
>

a
•4

>
>

>
>

J
i
n

x
—

t
-

K
M

p
h

S
•
_

(
0

(
0

C
O

C
O

C
O

U
>

•
-)

C
O

—
C

O
>

—
>

ii
_

>
—

-
_

_
C

M
C

M
C

M
C

M
C

M
H

i
•—

g
—

-

tX
1

-
-
J

«
O

—
o

—
_

O
C

«
^

_
^

-
—

—
—

h
-
c
c
—

c
q

O
^

J
L

g
ii

—
c
o

+
+

+
+

H
.

O
K

U
K

<
<

o
.
O

>
<

O
O

H
n

—
.

a
j
m

a
a

n
«

r
a
a
«

>
i
;
n

>
i
:
H

i
H

+
V

H
«

C
O

—
.

*—
».—

.
^

s
^

n
n

n
n

A
H

>
O

b
)

K
M

Q
«

b
.

•
—

o
g

w
<

<
.
i
:
<

<
«

:
i
-
i
w

<
»

-
o

s
g

.
—

>
•

g
*

4
•
C

S
S

S
S

"
M

K
K

K
K

K
-
J

9
C

M
C

9
0

0
i-l

O
S

g

«
o

-
»

•
a

•
r
«

c
o

>
•-]

H
-

1
-

i-.
H

>
H

>
H

>
•

J
H

-
0

»
-

II
g

>
—

—
H

.
•
j
r
N

M
Q

I
S

i
J
H

H
H

h
H

>
-
l

(
9

V
C

M
K

>
C

D
O

T
-

C
M

C
M

T
-

O
O

O

o
o

t
o

t
n

r
-

r
*

(_>
II

il
—

o
O

W
II

H
—

II
>

>
•
J

g
O

_
_

>
-
^

.
0

<
O

K
o

n
T

-
^

^
W

»
o

n
r
"

T
-
T

-
T

-
M

O
H

iC
O

g

II
II

II
II

II
H

H
H

H
t
O

H
-

-
.

1
-

!
-
•

l
-
H

H
H

H
h

H
H

i
i
f
-
.

g
>

J
>

*
>

>
>

>
>

>
H

i
H

i
H

i
H

i
H

i
II

J
L

II
II

II
il

II
tl

il
II

H
>

a
s

o
•
_

•
g

H
>

N
j
g

g
g

g
g

g
g

S
>

J
g

g
>

H
i

H
i

>
>

>
>

•J
g

g
g

g
g

N
r
O

O
r
W

J
-
«

-
-
0

-
(
B

O
.

_
.

X
i-J

»
.
«

„
„
_

„
—

.
a
.
.
j
>

-
—

S
o

s
o

s
H

i
H

i
H

.
X

X
s

tl
II

11
II

S
r
-

C
M

M
«

•n
r
»

M
K

I
Q

W
B

i
J
X

-
l
i
J

>
•

O
S

W
«

5
0

C
P

3
0

S
0

3
p

3
B

S
0

C
Z

<
C

C
f
X

W
O

O
b

.
M

M
M

M
M

M
r
N

M
c
t
u

K
O

S
0

3
P

S
O

S
O

S
M

U
O

U
U

U
U

O
.
O

.
O

.
O

.
O

.
b

.
—

>
o

.
g

O
o

.
o

.
o

.
a
.
o

.
a
.
o

.
«

C
)
o

.
o

.
o

s
b

.
u

.
»

-
•
J
i
J
i
J

g
g

0
S

X
X

X
X

0
S

O
O

.
O

.
O

.
O

.
O

.
0

S
X

M
b

d
b

d
b

d
c
O

C
O

C
O

C
O

C
O

b
.
O

g
O

O

o
o

s
o

s
o

o
o

o
o

s
s
s

c
»

C
9

o
o

o
o

o
s
o

o
a

o
o

o
o

o
o

s
C

9
o

s
o

s
C

9
O

o
o

s
o

o
S

S
S

S
G

O
B

«
9

«
9

«
9

C
9

o
e
»

O
o

o
o

s
o

o
s
o

T
-
N

M
«

i
n

(
D

M
O

O
)
S

t
-

r
*

m
«

i
n

u
r
«

a
a
o

r
M

i
o

c
t
i
n

i
D

r
s
c
o

e
)
o

r
t
>

<
M

«
i
n

<
D

i
s
c
o

o
i
t
9

<
r
t
<

i
n

Q
i
n

a
>

i
s
c
o

a
i
e

^
n

n
c
t
i
n

i
D

r
.
c
o

o
)
O

i
-
N

M
«

i
n

(
D

U
>

I
O

I
O

(
O

I
O

I
O

I
D

(
D

N
^

»
p

^
o

o
o

o
o

o
o

o
o

o
c
o

o
o

o
o

o
o

o
o

o
n

o
n

o
n

o
n

o
n

o
n

o
n

o
n

o
n

o
n

1
9

c
s

c
v

c
s

c
o

i
-

—
.
-

-
o

k
o

.
-

C
O

0
3

•
g

S
-

C
O

O
rC

S
-

-
H

.
K

g
O

o
.

<
O

—
<

g
<

g
M

•<
•<

S
g

—
O

-
a

O

«
c

tr
f

—
—

C
O

«
S

1
-

M
S

g
»

-
"
-

1
-

o
g

-
O

i
n

£
e
s

i
-

<
z
-
i

o
i
-

-
O

g
s>

S
-

H
.

O
«

•
•

<
O

3
:

<
>

«
c
o

g
m

bd
<

O
o

s
O

O
>

»
-
M

<
b

d
O

S
M

O
O

S
•<

>
C

O
M

O
S

S
>

O
>

3
g

l
l

•<
g

g
-
<

g
S

—
Q

-»
-

>
—

O
S

g
S

O
M

M
g

g
-

«C
2

g
-
8

M
•«

«
:

-
>

h
.

e
>

Q
•

O
-
J

g
g

•-1
O

O
w

3
S

-
-
-
W

K
K

W
Z

g
c
o

O
U

Q
•-)

>
J

•
•

H
i

M

—
o

.
N

O
<

-
>

O
W

E
K

O
.
O

I
-
Z

—
K

H
.

g
O

S
D

S
U

i
J
U

•
•

<
M

«
«

«
o

Q
«

-
o

~
g

-
o

s
s
-
o

s
g

-
j

H
i

C
O

-
o

0
3

M
>

-
•
•

r
-

P
S

B

«
«

i
n

•
•

O
S

-
^

—
.

e
s

O
o

s
-
»

g
O

*
«

O
u

o
O

M
X

S
X

••
1

O
O

«
O

.
«

—
Q

C
O

Q
—

—
i
n

i
n

«
:

q
o

«
c

<
<

c
o

g
s

g
o

.
o

s
-
fc

s
o

D
H

H
i

.
II

»
j

1
«

<
«

>
M

M
B

G
r
s
i
f
l
w

r
-
K

M
g

£
C

J
C

O
M

-
-
<

C
O

-
K

K
—

K
b

d
X

>
-

JO
.

C
M

«
S

«
>

H
H

U
T

"
C

M
-

-
K

O
S

O
<

-
—

~
S

g
K

g
O

K
g

O
S

>
0

0
a

o
o

s
o

m
M

(
9

o
(
9

*
«

—
«

e
»

-
-

C
O

C
D

M
O

-
—

K
g

S
w

-
g

o
x

O
o

«
M

—
K

—
P

S
—

i
n

o
.
.

—
o

«
•

«
g

«
—

g
H

.
•

-
—

.
u

>
«

o
c
r
t
c
n

to
»

j
<

a
g

o
-
z
o

—
o

x
M

H
>

O
O

«
o

.
£

»
j

a
»

j
u

f
-

a
i
n

o
.

•
•

H
i
t
-

i
n

«
h

-
«

O
D

C
O

—
i
f
l
c
n

c
n

-
-

K
o

a
g

K
—

—
-
o

-
J
W

i
-

H
i

O
g

0
3

«
K

1
1

1
1

1
C

O
>

-
K

•
C

O
C

D

«
m

«
i
n

—
•

«
0

0
-

-
-

i
n

e
n

•
J
O

-
—

—
S

o
.«

C
—

O
B

D
-
g

—
o

,
•

a
r
N

M
C

t
I
A

-
M

g
]
g

W
-

g
«

_
1

«
«

M
.
-

.
-

—
.

i
n

«
i
n

-
C

M
K

-O
S

-C
O

-
O

.
O

M
0

S
O

O
M

-
3

E
.
.
.
.
.
>

.
M

M
»

>
-

g
M

«
O

.
«

>
•

r
-

m
-

-
-

e
n

-
-
K

O
c
o

—
e
n

—
K

w
K

-
c
o

U
S

O
O

_
M

«
-
-

m
M

i-J
M

M
g

«
o

«
-

—
«

e
<

i»
»

:
C

O
M

W
t
-
W

K
—

i-j
-
d

h
w

>
s
o

b
;

-
c
o

c
o

>
.

i
n

—
9

I
O

+
H

i
C

O
m

b
d

»
i->

*
O

S
*

—
g

«
-

V
1

-1
C

9
S

g
U

.
O

O
H

I
A

U
S

O
c
o

K
9

c
o

r
-

O
0

0
0

0
€

0
C

O
0

0
-

^
L

1
-
H

.
*

0
«

O
0

C
M

—
—

o
s
o

s
o

s
o

s
o

s
o

o
<

o
e

-
z
.
j
w

—
z
a

s
e
o

B
:

M
S

-
O

•
-
.

o
s

—
—

O
—

O
A

K
)

O
S

_C
L

T
-

C
9

C
9

«
S

«
u

k
u

m
m

••
•
O

K
w

j
K

C
K

r
M

o
a
O

w
—

-
c
o

c
o

-
u

a
i->

g
«

:
g

-
g

H
>

K
c
o

m
g

n
n

n
n

n
—

~*
«

i
n

«
9

K
g

»
—

c
»

i
n

«
t
)
«

—
U

K
<

<
•'

•
•-]

g
g

g
SB

K
U

.0
S

i
-
l
>

<
D

(
a

<
Z

K
<

>
-
l

g
K

—
v

»
M

K
K

t>
K

K
K

K
K

>
•

V
A

S
4

H
U

•
•

>
-

W
A

C
9

«
«

U
>

)
U

H
h

"
•

O
O

O
O

O
M

^
J

—
i

<
-4

bd
M

—
bd

-
0

-
»

c
o

M
•—

C
O

^
g

•J
H

i
H

i
»

H
i

H
i

H
i

H
i

H
i

M
>

.
V

<
c
-

1
j

•
•

•
M

M
V

H
>

«
«

«
«

g
O

c
o

•
O

>
g

g
>

O
S

«
!

J
b%

-
O

O
S

n
^
S

M
-

H
i

g
g

||
C

O
<

—
•

O
b

d
M

>
-

m
>

-
o

X
>

-
>

•
«

N
»

^
C

D

C
O

!-•
1

-
H

>
O

K
K

»
<

K
M

o
K

-
o

—
.

H
i

H
i

H
i

H
"

H
i

H
i

H
i

H
i

X
m

i
n

M
H

i
H

.
M

M
II

II
II

•J
.
J

g
g

g
•

n
J

_
)

•
J

•
-
i
i
j

l->
K

O
-»

O
K

K
<

c
o

K
O

S
c
o

K
-
M

I
-
>

K
O

O
Q

H
>

«
J

g
g

g
g

g
g

g
g

*
J

—
M

r
O

M
^
j

g
g

i
-
I
M

M
—

•
—

—
O

a
a
s
a
i
e
f
e
a
-
i
j
-
-

•
—

i
•

»
J

~
]

•-1
*

j
i
-
i

C
O

li
-
M

S
t
-
g

C
O

I
-
P

0
C

C
I
-
O

Q
O

H
i

O
S

C
O

O
S

K
X

II
H

i
II

M
l

•
—

i
—

-
J

N
M

C
t
H

M
M

M
M

M
M

«
<

<
0

S
0

S
0

S
•
>

(
<

<
<

<
U

«
C

t
a

Q
<

>
l
!
l
d

i
<

i
<

U
U

>
(
>

-
<

0
b

d
K

•—
•-•

O
b

J
H

K
0

3
O

S
O

S
•
•
C

S
P

3
P

S
P

S
e
S

K
b

.
b

.
O

O
O

K
B

S
P

S
K

b
.
b

.
O

0
S

0
S

0
S

«
0

S
0

S
O

O
U

O
.
O

.
O

.
•

O
O

O
C

J
O

O
S

Q
<

-
Q

O
M

S
Q

SB
—

Q
g

g
"<

O
>

s%
b

.
0

S
g

O
O

.
<

O
.O

.
•

O
.

O
.

O
.

O
.

O
.

O
"
-

"
-

C
O

P
C

O
0

0
.
0

.
0

—
—

o
o

o
o

O
O

O
O

O
C

9
0

0
0

0
0

C
9

o
o

(
9

o
o

s
o

o
e
»

«
9

C
9

«
9

C
9

o
o

e
s

o
e
»

S
S

0
0

B
S

S
B

S
S

0
0

S
S

8
0

S
S

S
0

S

O
r
M

K
)
9

i
n

t
f
)
M

a
O

)
S

^
N

I
O

C
t
l
f
l
t
O

M
n

G
O

O
T

-
C

M
t
o

Q
i
n

c
o

r
»

o
o

a
n

t
t
T

-
N

M
C

t
W

l
S

N
C

O
f
f
l
O

t
-
M

n
c
t
u

x
o

r
s
n

a
o

^
^
^
t
-
T

-
^
T

-
r
-
^
^
c
>

i
r>

i
w

r
i
r
i
«

«
«

f
«

i
c
m

m
m

K
»

m
h

i
p

t)
w

m
i
o

m
«

Q
(
f
4

Q
Q

9
<

t
c
t
9

i
n

u
i
i
n

i
n

i
n

i
f
l
i
o

i
n

i
n

i
n

«
o

1
/1i5bsC
Q

rS©

B
B
B

O
K
K

Q
K
K

C
J
K

K
M

O
K

O
K
K

O
K

O
K
K

O
K
K
K

O
K
K

«
9
K

K
K

O
K

K
K

O
K
K
K

O
K
K

B
P
3

K
C
O
K
K

C
O
K
K

C
D
K
K

C
D
K
K
g

c
o
K

c
p
K
K
c
o

C
O
K

g
C
D
K
K
g

C
D
K
K
K
c
o

C
D
K
K

C
Q
K
K
K
H
i

C
D
K
K
K
K

c
o
K
K
K

C
D
K
K

C
D
K

T
g

on
g

g
g

on
g

g
go

g
g

oo
g

g
—

co
g

co
g

g
co

en
g

o
en

g
g

g
oo

g
g

g
co

co
g

g
co

g
g

g
g

oo
g

g
g

co
co

g
g

g
>

oo
g

g
co

g
t5

—
k
>

O
O

K
to

O
O

>••
10

O
O

K
to

u
o

k
m

o
o

to
O

O
K

W
O

~
to

O
O

~
to

O
O

O
—

to
O

O
Q

to
O

O
O

Q
to

O
O

O
M

IP
Q

Q
Q

m
to

Q
Q

g
to

Q
-~

"~"
g

g
x

g
g

bd
g

g
»

J
>

>
ig

>
£

g
g

£
«

S
>

>
£

g
g

g
£

>
>

g
>

>
>

g
g

g
g

g
g

g
g

g
>

t>
g

g
g

m
a

co
co

r«.pa
oo

pa
co

pa
o

pa
^

pa
cm

pa
to

pa
^

pa
in

ca
co

co
r*.pa

co
pa

co
ca

o
r

q
.
j
.
j

t-
9

»J
i-J

r
D

i
J
i
J

r-
S

«J
«J

T
*

8
»J

CM
O

-J
i-J

CM
S3

.J
CM

8
*J

•->
N

D
>

J
<

J
^

CM
S>

nJ
-J

N
S

n
I
n

I
n

)
N

D
iJ

h
I
iJ

N
D

>
J
>

)^
M

D
n

IU
m

d
>

j
io

M
g

O
K

K
M

g
O

K
K

M
g

O
K

K
M

g
O

K
K

M
g

O
K

M
a

O
K

K
M

g
O

K
M

g
O

K
K

b
J
a

O
K

K
K

M
g

O
K

K
M

g
O

K
K

K
M

g
O

K
K

K
M

g
Q

K
K

K
M

Z
O

K
K

M
g

O
K

M
g

PC
g

Q
O

O
PC

g~ci>
O

O
K

g
C

»
O

O
g

g
C

»
O

O
K

a
O

O
K

a
C

»
O

O
K

g
O

O
K

g
O

O
O

K
g

O
O

O
O

K
g

O
O

O
g

g
O

O
O

O
K

g
O

O
O

O
K

g
O

O
O

O
K

g
O

O
O

g
g

O
O

g
g

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

i
n

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
q

i
n

c
p

r
N

.c
o

o
o

e
^
c
M

i
o

q
i
n

c
D

i
^
o

o
c
o

o
r
-
c
M

»
n

q
i
n

i
n

c
o

r
i
.c

o
c
o

c
a

^
-
C

M
i
o

q
i
n

c
D

r
^
c
o

c
a

r
-
c
M

i
n

q
i
n

c
o

r
^
m

B
B

B
B

B
S

r
r
r
r
r
r
r
r
r
r
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
M

W
c
t
c
t
q

c
t
c
t
c
t
c
t
t
f
c
t
c
t
i
n

i
n

i
n

i
f
t
i
f
t
i
n

i
B

i
B

M
i
r
i
t
t
m

a
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M

—
•

—
—

»
—

-
—

—
—

.
—

.
—

—
.
.
—

—
.

t
o

t
o

_
_

^
t
o

t
o

—
.

—
«

»
m

C
M

C
M

C
M

t
O

t
O

-
~

.
.
—

.
—

.
^
.

-
-

—
t
o

«
-

-
-

I
O

C
M

«
«

-
.
.
.

.
.
.

t
o

-
^

-
^

—
»

«
«

I
O

C
M

—
—

m
-

-
—

—
—

(
O

l
s

-
-

-
-

—
•
—

•
—

—
^

—
—

.
—

—
.

—
.

i
n

t
o

c
m

.
-

.
.

—
•
—

'
—

—
H

i
H

i
-

-
~

H
i

H
i

H
i

-
.

«
-
.

—
.

—
—

t
-
l

—
—

H
i

H
i

H
i

H
i

H
i

H
i

t
o

—
.
.
.

—
.
—

.
~

—
.

«
C

M
S

C
O

—
—

—
H

i
H

i
—

—
H

i
H

i
H

i
H

i
H

i
H

i
—

•
•

—
.
—

-
H

i
—

-
^

—
»

H
i

H
i

H
i

H
i

O
^
-

C
M

C
M

c
o

c
o

H
i

—
—

C
O

C
O

C
O

H
i

H
i

~
"
—

C
O

C
O

C
O

C
O

c
o

c
o

c
o

H
i

H
i

H
i

H
i

>
~

-
^
_

r
-

T
-

«
-

«
-

-
-

—
c
o

c
o

-
-

-
—

—
C

O
C

O
C

O
C

O
-

C
O

C
O

.
.
.

.
.
.

C
O

C
O

.
—

.
C

O
C

O
c
o

c
o

.
-

-
-

M
«

C
O

-
-
o

C
O

o
C

O
C

O
-

-
-

-
^

-
-

«
»

r
»

^
.

m
m

m
.

.
C

O
C

O
C

O
.

.
.

.

«
«

<
a*

4
C

M
C

M
-

0
0

C
O

T
"

^
C

M
-

-
c
o

r
«

.
t
-

T
-

T
-

o
o

C
M

C
M

C
M

C
M

C
M

C
M

V
C

M
.
.
.

O
T

-
C

M
I
O

.
.
.
.

-
.

^
.
.
.

-
-

w
i
n

-
-

T
-

T
-

-
t
o

t
o

.
.
.

.
.
.

.
.

r*
.

c
o

e
>

C
M

C
M

C
M

C
M

(
9

T
-

C
M

tO
i
n

t
o

-
V

t
~

^
«

-
T

-
-

-
V

C
M

-
.
(
9

»
-

c
o

r
*

.
o

o
t
o

9
i
n

*
-

t
o

.
.
.

.
.

.
.

C
M

C
M

C
M

C
M

K
T

*
*

-
r
"

r
"

r
"

r
"

r
*

«
-

i»
»

r
»

r
-

r
-

0
0

C
O

r
-

i
n

r
«

.
f

«
-

T
-

T
-

T
"

T
"

T
"

T
-

C
M

9
i
n

C
O

C
D

r
s

r«»
E

_
_

K
—

•
•
—

—
.

~
—

.
.
—

.
—

—
—

.
—

—
•

—
~

—
—

—
—

.
_

•
—

.
—

—
—

_
•

—
_

—
>

>
>

K
K

B
4

M
K

O
K

K
X

(
9

K
O

K
K

K
O

K
K

b
.

O
K

K
K

K
O

K
K

K
O

K
O

K
O

K
K

K
O

K
K

K
•—

O
K

K
O

O
K

K
K

O
K

K
O

K
K

K
K

K
K

e
a

C
D

K
K

c
o

C
O

K
N

C
D

K
K

K
C

D
K

K
—

C
D

K
K

K
K

O
C

D
K

K
K

g
c
o

k
ID

K
C

D
K

K
K

C
D

K
K

K
K

t
o

K
K

g
C

D
K

K
K

C
O

K
K

C
D

K
K

g
g

g
g

K
C

O
g

g
K

C
O

g
—

C
O

g
g

g
X

C
O

g
g

i-J
C

O
g

g
g

g
i-l

C
O

g
g

g
g

c
o

g
n

J
c
o

g
K

C
O

g
g

g
C

O
g

g
g

s
C

O
g

g
K

C
O

g
g

g
i-J

C
O

g
g

Q
C

O
g

g
O

O
O

O
-
J

t
o

O
O

-
J

t
o

O
K

t
o

O
O

O
K

t
o

O
O

K
to

O
o

o
o

o
t
o

O
O

O
O

tO
O

M
t
o

O
-
»

t
o

O
O

O
K

K
»

O
O

O
K

t
o

o
o

a
to

o
o

o
<

-»
t
o

O
O

g
t
o

o
o

K
g

td
b

e
K

>
>

K
g

K
>

>
>

K
>

>
•

o
>

>
>

>
•

o
g

g
g

O
g

a
g

b
.

g
g

g
a

S
B

3
C

9
B

C
m

>
>

—
>

>
>

—
s
>

>
~

>
>

p
a

e
a

p
a

o
a

p
a

p
a

p
a

p
a

p
a

o
p

a
*

-
o

a
c
m

c
a

t
o

p
a

«
r

o
a

•J
n

l
>

j
h

i
r

D
i
J
i
J

N
D

>
J

M
D

i
J

J
i
J

9
D

«
J

n
J

i
A

D
i
J
i
J
i
J
i
J

O
S

i
J
i
J
n

I
N

D
n

)
C

O
D

h
)

C
D

S
i
J
b

l
i
J

t
-

r
>

i-J
i-J

-
j

r
-

S
>

i->
-
J

^
9

_
i

*
j

_
i

r
D

-
J
-
J

*
•

E
D

»
J

-
1

•
J
i
J
i
J
^
^

I||
c
o

i
J
k
J
S

II
c
o

J
£

II
C

O
i-J

n
J

k
J

£
II

c
o

„
>

_»
g

tl
c
o

«
J

n
J

i-J
-J

£
II

c
o

-
i

»
J

-
J

£
II

c
o

*
j
£

II
C

O
J

£
II

C
O

i-J
h

J
i-J

£
||

C
O

i-J
»-4

i-l
£

II
C

O
k
J

i-l
g

||
c
o

«
J

-»
-
J

£
||

C
O

*
J

n
J

£
II

M
n

)
n

)

K
K

K
K

M
g

O
K

K
b

a
g

O
K

M
Z

O
K

K
K

M
g

O
K

K
M

g
O

K
K

K
K

M
g

O
K

K
K

M
g

O
K

M
Z

O
K

M
g

O
K

K
K

M
g

O
K

K
K

M
g

O
K

K
M

Z
O

K
K

K
M

g
O

K
K

M
Z

O
K

K
O

O
O

O
K

Z
O

O
O

K
Z

O
O

K
g

O
O

O
O

K
g

O
O

O
K

g
O

O
O

O
O

K
g

O
O

O
O

K
g

O
O

K
Z

O
O

K
Z

O
O

O
O

K
g

O
O

O
O

K
g

O
O

O
K

g
O

O
O

O
K

g
O

O
O

K
g

O
O

O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

c
D

r
«

o
o

c
o

o
T

-
C

M
K

>
«

i
n

c
o

r
^
c
D

o
o

o
«

-
c
M

M
O

'i
n

c
D

r
»

c
o

c
D

O
r
-
c
M

i
o

9
i
n

c
D

r
^
o

o
c
o

o
T

-
C

M
i
o

9
i
n

c
o

r
^
c
o

c
o

o
«

^

©2O
s

C
QO

A1
9

tia

.
—

^
—

—
.

—
.

c
m

c
m

r
>

c
o

i
n

t
o

—
—

m
—

.
—

.
.

«
-

C
M

t
o

t
o

«
«

«
O

O
O

O

—
•

-
—

C
M

tO
—

-
-

-
-

-
-

C
M

«
C

D
0

0

_
-
_

_
—

.
_

_
_

—
H

i
H

i
H

i
H

i
H

i
H

.
H

i
t
-

H
i

H
i

H
i

«
t

«0T
«C

f
«

»

C
O

C
O

C
O

C
O

C
O

C
O

C
O

H
i
H

i
—

«
—

C
O

H
i

H
i

—
—

~
-

—
•

^
.

^

C
O

C
O

-
C

O
C

O
C

O
C

O
C

O
C

O
C

O
g

g
g

g

Q
c
t
n

m
n

c
t
i
n

c
o

c
o

-
-

-
i
n

c
o

c
o

-
-

_
.

-
-

-
X

M
M

M
M

C
O

C
D

C
M

-
-

C
D

C
D

o
«

-
O

O
O

O
g

g
g

g
C

M
C

M
-

i
n

«
C

M
C

M
C

M
C

M
^
1

-
r
-

M
H

i
H

i
H

i
H

i

n
m

q
i
n

u
>

r
s

c
o

.
.
.

-
-
o

-
-

-
-

-
-

.
.
.

a
s

r
-

*
-

t
-

^
*

-
*

-
»

-
r
»

N
C

O
H

t
o

o
o

c
o

«
-

c
m

t
o

r>
»

o
o

t
o

t
o

i
n

i
o

r
s

O
r
M

K
i
c
t

^
-

«
^
—

.
_

.
_

_
_

—
.w

<
—

a
;

—
.
—

—
—

—
.
—

—
•—

'
*—

•—
*

X
X

X
X

O
K

K
K

K
K

K
K

O
K

K
K

O
O

K
O

K
K

K
O

K
K

O
K

K
O

K
K

O
K

K
K

C
O

||
||

||
||

c
o

K
K

K
K

K
K

K
g

C
D

K
K

K
g

(
D

K
C

D
K

K
K

g
C

D
K

K
K

C
O

K
K

O
C

O
K

K
C

D
K

K
K

O
c
O

V
V

V
V

X
C

O
g

g
g

g
g

g
g

K
C

O
g

g
g

K
C

O
g

c
o

g
g

g
c
o

c
o

g
g

>
o

o
g

g
c
o

C
O

g
g

O
C

O
g

g
g

a
K

—
-

—
M

M
O

O
O

O
O

O
O

H
i

t
O

O
O

O
M

t
O

O
K

M
O

O
O

K
M

O
O

M
O

O
-

IO
o

o
>

-
t
O

O
O

O
C

O
M

l
g

g
g

g
H

>
g

g
g

g
g

g
g

O
>

>
>

>
g

>
.

g
g

g
S

g
g

s
g

g
*

>
>

a
g

g
g

t
o

O
g

g
g

g
g

g
g

g
g

t
o

p
a

v
n

i
n

o
a

c
o

m
r
«

.
p

a
c
o

p
a

c
o

p
a

o
n

~
—

•
k

K
K

K
K

«
t
o

m
1

m
1

m
1

m
1

m
1

m
1

m
i

9
o

m
i

m
i

m
i

«
r
a

>
-
j

Q
O

m
!

m
!

m
!

«
o

*
J

m
!

O
D

i
J
^

Q
O

M
l

m
!

U
>

S
M

l
M

l
M

l
o

>
>

>
>

o
O

O
O

O
£

||cO
m

)m
)m

1
m

1
m

1
m

1
m

1
£

II
CO

J
-J

-J
£

II
CO

m
!J^

||
C

O
m

!
m

!
m

!
£

||
C

O
m

!
m

!
£

II
C

O
-
J

-J
£

11
C

O
M

l
M

l
£

II
(O

M
l

M
l

M
l

H
S

in
H

>
r
-

H
N

H
M

H
C

t
h

Q

M
Z

O
K

K
K

K
K

K
K

M
Z

O
K

K
K

M
Z

O
K

M
g

O
K

K
K

M
g

O
K

K
M

g
O

K
K

M
g

O
K

K
M

Z
O

K
K

K
O

M
b

.
b

.
b

.
b

.
|
|
M

II
M

||
M

||
M

II
M

g
K

g
O

O
O

O
O

O
O

O
K

g
O

O
O

O
K

g
O

O
K

g
O

O
O

O
K

g
O

O
O

K
Z

O
O

O
K

g
O

O
O

K
g

O
O

O
O

O
K

—
M

.
—

—
t-

m
t-

K
H

i
K

H
i

K
H

i
K

M

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
O

O
O

^
.
(
O

c
r
l
B

r
(
^
l
r
n

9
W

l
o

^
a

m
B

r
M

n
Q

l
n

<
o

^
n

c
n

o
r
^
l
l
o

«
l
n

l
o

^
c
s
o

l
S

r
t
N

M
Q

t
n

l
o

^
n

a
B

r
N

m
9

l
n

(
D

^
(
o

o
)
S

r
^
l

K
i
c
t
i
n

i
o

i
s
c
o

o
s

«
«

a
i
f
f
i
n

i
A

i
A

i
i
>

t
n

i
n

i
n

i
n

i
f
l
i
o

i
o

i
o

i
o

u
a

>
i
o

c
o

i
O

c
o

r
s
N

^
r
s
^
r
>

r
s
h

>
r
s
»

v
o

)
c
o

c
o

a
n

c
o

c
o

n
a

—
_

.
—

—
—

~
~

.
—

.
—

*
.
—

.
—

.
—

4
M

M
m

«
—

—
i
n

t
o

t
o

t
o

—
—

i
n

i
n

-
-

-
C

M
W

-
-

«
«

»
t
o

t
o

-
-

-
—

—
—

t
o

t
o

«
«

-
.

-
-

~
.

.
.

.
.

.
—

t
o

t
o

t
o

—
H

i
H

i
H

i
—

—
~

-
H

i
H

.
_

H
i

H
i

H
i

.
.
.

—
H

.
H

i
—

^
H

i
H

i

H
>

—
H

i
H

i
H

i
_

_
H

i
H

i
H

i
H

i
.
—

.
H

i
H

i
H

i
—

—
H

i
H

i
_

C
O

C
O

C
O

—
C

O
C

O
—

—
•

c
o

c
o

c
o

H
i

H
i

H
i

—
—

—
c
o

c
o

_
—

.
c
o

c
o

C
O

.
.
.

C
O

C
O

C
O

-
-

C
O

C
O

C
O

C
O

-
-

-
_

—
_

-
C

O
C

O
C

O
-

-
C

O
C

O
.

.

r
-

C
M

IO
.
.
.

C
D

C
O

.
-

.
.

9
C

D
C

D
C

O
C

O
C

O
.

.
.

r
v

o
o

.
.

r
-

«
-

C
O

^
^

*
-

r
»

C
D

C
O

C
M

C
M

«
<

»
«

i
n

^
*

-
t
-

.
.
.

C
D

C
D

T
-

C
M

C
M

«
r

w
C

M
C

M

C
M

.
.
.

(
N

C
M

C
M

-
-

r
-

r
-

c
m

c
m

-
.

-
«

«e»
«

»
C

M
C

M
I
O

-
-

T
~

T
-

.
.

*
-
»

-
*

-
.
.
.

t
-

C
M

-
-

-
-

T
-

C
M

IO
.
.
.

-
-

-
m

«
.

.
^

C
M

c
o

<
r-

^
^

t
o

«
i
n

t
-

*
-

C
M

IO
l"

»
l«

»
^

^
^
-

«
i
n

t
o

i
n

c
o

i
n

t
-

t
-

w
m

T
"

*
-

O
K

X
O

K
K

K
B

O
K

K
K

O
K

K
X

O
K

K
O

K
K

O
K

K
K

O
K

K
K

O
K

K
O

K
K

O
K

K
X

O
K

K
O

K
K

C
D

K
M

C
D

K
K

K
O

C
D

K
K

K
C

O
K

K
K

C
D

K
K

O
C

D
K

K
K

C
O

K
K

K
C

D
K

K
K

C
D

K
K

C
O

K
K

C
D

K
K

K
C

D
K

K
g

C
D

K
K

C
O

S
£

C
O

g
g

g
b

i
C

O
g

g
g

C
O

g
p

q
O

C
O

g
g

—
•

G
O

g
g

m
!

C
O

g
g

g
M

C
O

g
g

g
C

O
g

g
c
o

g
o

c
o

g
g

o
C

O
g

g
g

C
O

g
g

m
o

M
O

O
O

to
O

O
O

O
to

O
o

to
O

O
g

to
O

O
X

IO
O

O
O

K
t
o

O
O

O
K

t
o

o
o

—
t
o

o
t
o

o
o

M
O

O
M

t
o

o
o

g
g

>
>

>
Z

g
g

g
g

g
g

g
g

g
o

>
>

o
g

g
g

O
g

g
g

o
.

g
g

K
g

c
o

g
g

C
O

g
g

H
i

g
g

c
a

r
-

o
a

c
m

m
t
o

«
w

n
a

i
n

p
a

c
o

p
a

r*
.

o
a

o
o

p
a

c
o

p
a

o
o

a
*

-
o

a
c
m

o
a

O
m

!
M

O
m

)
m

1
m

)
M

D
^
i
J
i
J

K
I
D

i
J
i
J

t
o

D
i
J
n

)
M

P
m

I
-
I

IO
&

-
J

-
J

-
J

M
D

h
)

m
I
m

)
tO

S
M

l
M

l
K

>
S

M
l

«
»

D
M

l
M

l
O

O
M

l
M

l
Q

D
m

I
m

)

c
o

n
J

£
II

w
-
i

J
J

£
||

c
o

h
i

m
i

h
i

£
II

c
o

-J
.J

£
II

C
O

M
l

m
!

£
||

C
O

-
J

M
l

£
||

IO
M

l
M

l
M

l
£

II
C

O
M

l
M

l
M

l
£

II
C

O
m

1
m

1
£

||C
O

m
1

£
II

C
O

M
l

m
J

£
U

lO
M

lM
lg

U
C

O
M

l
M

l
O

K
M

g
O

K
K

K
M

g
O

K
K

K
b

4
g

O
K

K
M

g
O

K
K

M
g

O
K

K
M

g
O

K
K

K
M

g
O

K
K

K
M

g
Q

K
K

M
g

O
K

M
g

O
K

K
M

g
O

K
K

M
g

O
K

K
O

O
K

g
O

O
O

O
K

g
O

O
O

O
K

g
O

O
O

K
g

O
O

O
K

g
O

O
O

K
g

O
O

O
O

K
g

O
O

O
O

K
g

O
O

O
K

g
O

O
K

g
O

O
O

K
g

O
O

O
K

g
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
N

M
c
t
i
n

u
r
i
i
a

n
B

r
N

m
c
T

i
n

f
f
i
N

a
a

B
r
N

M
c
f
i
n

c
o

i
s
n

c
f
l
S

r
-
M

M
O

i
n

i
D

N
n

n
B

r
N

M
c
t
i
n

o
N

a
m

B
r
f
i
n

c
f
i
n

u
^
a

a

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

t
O

t
O

t
O

M
I
O

t
O

I
O

I
O

I
O

t
O

I
O

t
O

I
O

t
O

t
O

t
O

t
O

t
O

I
O

t
O

t
O

I
O

t
O

t
O

t
O

t
O

I
O

t
O

t
O

I
O

t
O

I
O

I
O

t
O

t
O

I
O

I
O

t
O

t
O

M

fOQ
)

5

v
.

to

O
n«
o

Q
>

C
Q©

OVERLAND FLOW

When rain falls to earth, part of it passes into the
soil (unless the surface is impervious, such as
concrete or asphalt) and the remainder disap

pears over a period of time either by evaporation or by
runoff (overland flow) or by both. In most engineering
drainage systems, the amount of water lost by evaporation
is negligible; thus, drainage must be provided for all rain
fall that does not infiltrate the soil or is not stored temporari
ly in surface depressions (lakes, swamps, etc.) within the
drainage area. Until recently, the Rational Method was used
for calculating design discharges for storm drains. This
method has various drawbacks and is of limited applicabili
ty. For that reason, the method used in this program is the
Izzard dimensionless hydrograph. This method has been
verified in laboratory tests and givescomputed overland flow
hydrographs agreeing closely with the measured
hydrographs. The result of Izzard's method can be used by
engineers in the design of drainage facilities for parking lots,
airports and highways, etc. (See sample problem.)

Program Description
Input to the Overland Flow Program consists of two

elements. The first consists of rainfall data and the second
consists of physical characteristics.

Standard curves (see Fig.l) may be developed to express
rainfall intensity-duration relationships with an accuracy suf
ficient for drainage problems. Rainfall intensity-duration
data have been published by the National Weather Service.

The following physical characteristics are needed: length,
width and slope of the area of interest, and a coefficient
to describe the surface. The computer program contains a
table from which the surface coefficient can be determined.

Output from the program can be displayed on the
monitor screen or TI thermal printer. The program displays
input data and the overland flow hydrograph in tabular
and/or graphic format. The program can calculate and
display two hydrographs at any one time. Thus, it is possi
ble to vary the input data and compare the results.

318 The Best of 99'er Volume 1

Definition of Terms.

Depression Storage: Rainwater retained in puddles,
ditches and other depressions in
soil surface.

Occurs when the intensity of ef
fective rainfall is equal to the
outflow discharge. See Figure 2.
Time in minutes to reach the

equilibrium condition. See
Figure 2.
Passage of water through the
soil surface into the soil.

Effective rainfall intensity in
inches per hour. Effective rain
fall is that which occurs after

depression storage and infiltra
tion capacities are met. See
Figure 2.

Equilibrium:

Equilibrium Time:

Infiltration:

Intensity:

Figure 1

10

M

£

i. 8
>-

W

m 6
H
Z

_l

1 4
u.

z

<

* 2

y 100 Ytor Frtquoncy
yr I

'20 Ytor Frtquanc

-3 Yoer Froquortey

0 20 40 60 80 100 120
DURATION (Min.)

Copyright © 1983 Emerald Valley Publishing Co.

Maximum Discharge:

Roughness Factor:

Length:

Slope:
Width:

////: IFUCTIVI KIMttAX'/Z/X

MAXIMUM

The discharge, in cubic feet per
second, when equilibrium is
reached. See Figure 2.
A coefficient that characterizes

the resistance to flow of a par
ticular surface type.
Distance, in feet, in the direction
of slope, on which overland flow
occurs. See Figure 3.
See Figure 3.
Distance, in feet, perpendicular
to the length, on which overland
flow occurs. See Figure 3.

Typical OvtrUnd Flow Hydrograph

Figure 2 Figure 3

Operating Instructions
Step 1: Insert the cassette into a recorder, type: OLD

CS1 and press ENTER. The computer then
displays directions for loading the tape.

Step 2: When the cursor appears, type RUN, and press
ENTER. When the title screen appears, press
any key. Then select the screen or thermal
printer as the device for output from the
program.

Step 3: After choosing the output device, the computer
asks for the input data needed to compute the
overland flow hydrograph. Type in the data re
quested and press ENTER.

Step 4: After all data is entered, the computer will
generate a hydrograph and display the menu.
Select one of the following options:
1. DISPLAY DATA (GIVEN AND

CALCULATED).
2. DISPLAY HYDROGRAPH.

3. COMPUTE ANOTHER HYDROGRAPH

AND COMPARE.

4. REDIRECT OUTPUT.

5. ENTER NEW PROBLEM.

6. END PROGRAM.

After completing any of options 1 through 5 the
computer returns to the menu.

OPTION 1: DISPLAY DATA (GIVEN AND
CALCULATED)—If you select option 1,
the computer will display the input data
that you entered and the calculated values
for equilibrium time and maximum
discharge.

OPTION 2: DISPLAY HYDROGRAPH—If you
select option 2, the computer asks you if
you want the hydrograph displayed in
tabular or graphic form or both. The
graphic form plots the hydrograph points

Copyright © 1983 Emerald Valley Publishing Co.

OPTION 3:

OPTION 4:

OPTION 5:

OPTION 6:

as percent of maximum discharge versus
time. When two hydrographs are plotted,
the maximum discharge is the greater of
the two hydrograph maximums.
COMPUTE ANOTHER HYDRO-

GRAPH AND COMPARE—If you select
option 3, the computer asks you to enter
another set of data in order to calculate
another hydrograph. Since the first
hydrograph is retained by the computer,
this option can be used to vary any of
the input data and examine the result (see
sample problems). The option can be
used as many times as the user wishes.
The computer always compares to the
original hydrograph computed when the
program was initially run. If a subsequent
hydrograph is preferred to the original,
select option 5 and enter the new
hydrograph as the original. Thus, all
other hydrographs computed via option 3
will be compared to the new hydrograph.
REDIRECT OUTPUT—If you select op
tion 4, you change the device to which
the output is displayed.
ENTER NEW PROBLEM—If you select
option 5, the program begins again. This
option is used to rerun the program
without having to type RUN. Also, use
this option in conjunction with option 3
to compare several hydrographs and select
one that is best suited to the problem.
END PROGRAM—This option returns
the computer to TI BASIC.

EXPLANATION OF THE PROGRAM
Overland Flow

Line Nos.
160-530 Program initialization: Character assignments

and array dimensioning.
540-1080 Data entry.
1090-1490 Calculation of Overland Flow Hydrograph.
1500-1800 Display hydrograph, in tabular form, on video

monitor or Tl thermal printer.
1810-1990 Display menu and go to portion of program ac

cording to option selected.
2000-3200 Display hydrograph, in graphic form, on video

monitor or TI thermal printer.
3210-3460 Subroutine to align numbers on display.
3470-3590 Display given and calculated data.
3600-3710 Prepare program to accept and calculate a

second hydrograph.
3720-3790 Subroutine to blank and restore screen when

displaying information on video monitor.
3930-4220 Scale and label axes of graph.
4230-4250 Common subroutine to check keyboard entry.
4260-4510 Select drive to program output.

Sample Problem 1
A parking lot 300 ft. long in the direction of the slope

and 900 ft. wide has a tar and gravel pavement on a slope
of .0025.Assuming a uniform rainfall intensity of 2.75 in/hr
for 30 minutes, what is the maximum discharge that a gut
ter should be designed for?

Type RUN, then press ENTER.

The Best of 99'er Volume 1 3I9

Sample Problem 1-cont.

Select the thermal printer as the output device.
Enter the following data:

Intensity 2.75
Duration 30

Length 300
Width 900

Slope .0025
Roughness Factor .017

Select option 1.
The gutter should be designed for a maximum discharge
of 17.2 cfs.

Sample Problem 2
If the parking lot described in problem 1 is resurfaced

with asphalt, what effect will this have?
After problem 1 is complete select option 3.
Enter the same data as for problem 1 with the exception

of the roughness factor. Enter .007.
Select options 1 and 2.

CA

CA

GO

T

M

)
p

F

F

F

F

S

FlOlR

0U

ON

(
L

D

D

D

D

OR

COD

C

I

9

8
0
1

1

9

1

1

9

1

1

6

1

1

ow

*0 LOW

QW

)
5

5

5

320 The Best of 99'er Volume 1

TO

WI

D

9

1

D

4

7

D

e

e

9

GOlS
Y

F

qos
GOT

PR

Nl

U

F

GO

GO

R

N

E

F

GO

GO

R

N

IWI
F

GO

GO

R

N

L

F

A

GO

F

F

R

F|0
E

Y

IWI

0

Dp
Fl

30

8

WI

WI

TO

S|MOO
N|D
L

ClONC
G

S

WI

ROUGH

NG

EM

OUG

W

TH

GU

Copyright © 1983 Emerald Valley Publishing Co.

.
1

l
-
i

.
.

-«;
o

.
o

—
g

M

M
1

X
—

g
1

-
o

.
.

O
C

M
C

M
«

M
.

O
«

A
O

1
a

a
p

.
•

•
•

•
•

C
O

C
M

-
r
*

•
•

O
0

5
o

g
1

M
X

•
•

-
.

c
n

o
o

—
.
.

O
X

.
-

•—
i

1
>

.
t
~

0
5

O
S

—
1

-
T

-
i
n

C
D

p
a

>
g

o

—
.

1
-

x
x

O
M

O
o

*
C

D
^

<
r
-

II
o

*
-

C
D

g
.

M
l

M
l

o
g

<
T

"
C

U
•

•
g

m
C

M
H

i
<**

c
a

C
M

T
-

o
c
u

o
0

5
H

i
•
—

•
H

.
-
-

M
-

o
.

M
.

C
M

•
—

o
•

c
o

O
a

O
pa

O
<

g
o

I
O

M
'

g
•
-
Q

m
O

M
.

M
l

>
•

g
<

O
S

H
>

o
t
-

C
O

Q
C

u
—

g
X

o
H

<
0

X
g

«
*

i
-

M
C

O
C

M
M

l
g

X
O

X
M

t
-

I
-
.

•
o

•
•

H
.

M
l

*
-

I
O

O
M

M
0

3
C

D
X

g
•

-
•

-
>

-
M

•
O

p
a

1
-

c
n

g
O

O
~

S
H

i
•
—

v
t

s
-

•
—

o
x

H
*

O
M

O
—

l|
.
—

.
.
—

.
o

—
o

M
o

M
O

«
/»

—
O

M
O

M
o

>
g

M
l

O
g

0
5

0
5

^
~

T
-

t
-

1
^

T
-

C
M

g
i
n

M
l

0
5

•
0

5
•

o
*

-
C

M

.
-

r>
«

X
—

X
c
u

O
.

m
C

M
.

O
.

•
•

9
-

-
«

-
H

>
T

"
•

Q
•

g
•
•

V
—

-

—
.

t*
.

o
o

a
^

«
C

O
s

a
•

•
o

i
n

O
c
o

•
o

O
g

—
C

M
.-

>
-
.

.
O

•
•

*
~

—
o

i
n

O
«

-
>

-
r
«

X
.
-

M
.

o
g

M
•£

•
•

o
A

T
-

C
D

o
o

M
O

C
M

—
X

«N
•

-
.

-
O

-
C

D
o

«

—
g

0
0

h
.

—
Q

O
c
u

0
5

M
•

•
C

D
>

-
^

C
D

o
C

D
c
n

g
M

C
M

g
C

M
*

.
—

C
M

X
A

C
M

1
-

C
D

T
-

«
g

X
*

-
.
.

«
o

•<
g

9
M

-
-

H
i

-
a

H
i

C
M

-
M

T
"

II
C

M
X

C
M

-
-

.

X
M

m
r
-

0
5

E
o

M
O

o
~

o
C

M
—

»
—

»
C

M
C

M
—

g
—

B
E

—
<

as
£

fa
.

o
C

O
C

M
o

o
n

1
-

g
C

O
g

«
-

C
O

«
—

«»
K

<
O

—
i
n

O
0

0
o

i
n

C
M

C
M

-
C

M
H

i
•

o
a

x
a

.
e
a

Q
-

—
o

0
0

C
O

|
-

i
n

o
-

1
-

C
O

M
C

O
1

p
a

o
M

0
5

C
M

+
C

M
r
*

•—
•

o
^

g
C

M
g

C
M

C
M

X
X

<
<

T
-

•
+

l«
«

.
^

_
—

r
»

c
m

m
.

M
M

M
g

g
M

1
X

0
5

H
i

O
—

fa
&

M
—

-
O

«C
H

»
•

O
S

H
i

C
M

—
g

.
—

.

O
M

l
O

0
5

o
0

5
O

m
!

H
«

O
0

5
O

M
0

5
«

i-
i

C
M

i
o

a
«

g
O

a
o

o
o

»
O

O
O

K
M

C
0

0
0

B
O

O
Q

0
5

g
0

-
~

C
M

g
g

C
M

0
3

T
"

^
•

•
-
u

•
•

fa
.

a
o

o
B

M
O

B
B

a
o

b
T

-
—

A
C

U
IO

X
0

0
—

K
K

N
U

U
,

>
-

M
p

s
z
i
o

m
c
t
s

2
S

2
<

u
c
t
(
n

<
C

D
r
-

g
<

^
H

i
tl

C
M

-
H

.
||

-
<

tl
<

y
t*

•
o

cm
o

P
S

II
O

H
i

X
M

H
>

O
O

g
H

>
x

C
M

fa
.

V
C

M
U

M
h

t
-

O
M

r
*

.
O

S
>

g
C

L
.

o
I*

-
C

M
v

«
•

o
o

»
o

m
o

s
1

^
M

C
M

0
0

O
M

—
A

•
—

t
-

A
C

M
M

A
•

fa.
1

O
S

fa
.

-
M

C
D

M
B

M
l

M
l

O
g

I
O

*
*

M
.

«
M

l
r
-

*
*

tl
I
N

M
l

t
o

o
c
n

g
>

>
.

•
•

>
O

m
«

>
.

e>
o

«
-

O
M

l
O

>
•

-
M

l
«

T
-

Q
-
^

T
f

X
S

~
r
-

X
M

l
X

a
«

1
o

«
*

M
•

M
l

M
^

T
-

m
i

o
c
n

o
O

O
r
O

M
l

o
M

.
H

i
o

C
O

M
.
-

a
a

C
O

M
r
-

c
o

C
O

O
C

O
M

O
O

c
o

O
O

" _J!
«<

o
g

II
<

!
g

O
<

O
S

1
9

-
O

ll
M

.
M

l
C

M
II

—
O

c
n

tl
o

o
—

to
II

g
—

p
a

h
«

—
.

H
l

p
a

O
h

.
C

O
o

p
a

1
-

o
a

>
H

i-
i

.
—

M
H

i
g

m
C

O
.

X
O

X
0

0
«

o
11

>
.

Si
II

tl
>

-
S

tl
s

_U
H

.
I

g
H

.
g

-
f
a

.
—

M
.

—
i

M
.

O
g

1
-

fa
.

g
o

M
l

1
1

g
H

.
H

l
f
-
.

M
l

O
M

l
g

X
M

.
g

g
O

0
3

g
M

M
l

o
o

—
M

M
l

H
i

M
l

M
l

M
l

~
<

»
M

l
O

H
i

M
l

M
l
O

X
g

O
X

X
g

H
i
X

M
l

o
X

g
1

g
M

c
n

—

C
O

—
X

M
.

C
O

M
l

—
X

M
l

C
O

M
l

M
.

h
.

O
M

.
M

.
^

«C
M

.
•
n

M
l

C
O

C
O

C
O

M
l

M
l

M
l

M
l

-
M

l
O

c
o

M
l

M
lJ

J
«

*
«

:
<

<
M

l
«<

—
1

II
—

Q
fa.

II
H

i
B

X
M

l
M

l
B

M
l

M
l

X
M

l
B

M
l

X

Q
K

U
b

.
0

3
0

4
0

K
U

fa.
O

X
O

X
b

•
-

.
K

•
«

—
O

l,
«

<
O

O
fa.

M
l
w

:
o

«
:
>

a
:
«

:
z
o

«
i
:
z
o

o
«

:
<

C
M

S
fa

.
f
a

.
S

S
b

.
fa

.
S

«
!

fa
.

S
K

'
0

5
—

O
b

.
C

M
O

O
M

X
X

O
X

X
M

X
O

X
M

O
c
u

g
M

.
c
u

•
•

O
O

O
c
u

g
M

«
o

o
o

o
c
u

«
X

'
C

U
•

0
L

.
p

a
»

C
L

,
o

o
o

M
.

M
O

O
O

O
O

O
O

O
m

O
O

O
O

fa.
<

?
—

-
.

O
H

.
M

.
M

.
H

.
O

M
.

O
C

u
-
-
O

C
u

O
•

M
.
f
a

.
O

f
a

.
g

O
O

f
a

.
O

O
g

O
f
a

.
O

g

O
O

O
o

o
o

o
O

O
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
O

O
O

o
o

O
O

O
o

o
O

o
o

O
O

O
o

o
o

o
o

a
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

W
O

r
-

I
N

•
o

c
t
i
n

<
O

N
c
o

a
s
i
-

C
M

IO
«

i
n

c
n

1
*

.
o

o
c
n

o
^

c
m

i
o

«
i
n

c
o

•>
.

c
o

c
n

o
r
-
n

n
c
f
i
n

i
o

i
^
n

a
s
r

c
m

i
o

«
i
n

c
o

r
-

o
o

c
n

o
t
-

c
m

•
o

«
•
n

c
D

r
»

e
o

c
n

o
«

-
C

M

C
O

0
0

0
0

C
O

C
O

C
O

C
O

C
O

o
o

o
o

e
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

o
^

^
o

o
o

o
^
^

o
o

^
«

-
t
r
-

^
^

«
-

^
^
»

^
^

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

I
O

I
O

I
O

T
-

t
-

T
-

T
*

^
T

"
«

-
«

-
^

^
«

-
^

T
"

^
«

-
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M

—
M

H
i

c
n

M
>

.
~

-
g

g
.
.

.
-

B
1

9
-

+
O

W
—

•
—

•
—

.
.

.
X

g
o

-
o

«
-
~

>
«

M
M

.
«

K
g

—
•

o
n

i
n

I
O

«
.
—

M
.

>
.

g
H

i
H

o
o

M
l

^
•

C
O

•
o

>
«

r
f

g
—

+
+

g
g

C
O

C
O

r
*

o
.

*
-

g
—

«
-

M
.

C
L

,
M

.

~
»

«
-

—
O

~
%

—
—

H
i

X
a

—
g

•
—

f>
»

g
M

>
«

a
»

-
>

*
>

•
g

B
•

•

o
o

—
M

—
•

M
M

l
»

+
g

.
-
.

g
g

M
.

0
-

-

g
o

>
-

—
.

g
>

•
«

g
«

>
«

—
0

5
o

<
>

M
.

C
M

g
I
O

1
-

g
i
n

H
i

.
~

fc
T

-
C

M
S

g
M

M
C

U
B

.
—

I
-

I
O

—
—

.
-
~

—
i
n

—
.

t7
1

^
-

o
^

.
H

i
H

i
Q

g
o

o
«

»
P

3
*

"
>

-
M

•
C

M
m

«
+

*
9

|
|

g
>

-
_

r
-

o
0

*
-
-

o
—

.
—

g
—

H
i

-
1

—
»

~
.

o
—

a
_

—
C

U
g

§
:

f
^

H
.

£
—

+
<

_
—

9
-

1
-
~

0
0

II
>

•
—

«
-

C
M

m
-
o

«
>

<
>

*
>

-
<

.
r
-

o
o

>
.

—
—

>
*

O
g

>
•

m
g

T
"

—
*

"
^
»

C
M

^
o

g
O

g
K

o
0

5
o

M
O

1
^

o
a

s
—

>
•

g
o

—
•

>
-

g
O

—
.

O
1

<
I
N

-
•
^

C
M

—
^

—
K

»
o

—
r
*

g
:

O
I

g
•—

>
-

g
—

A
M

g
—

—
-

A
^

—
C

O
H

i
—

^
1

>
.

M
.

w
-

—
.

a
c
o

o
O

i
n

O
c
n

i
n

C
D

I
O

M
g

M
g

—
M

—
f
-
i

—
»

>
-

M
.

a
V

ty
>

.
m

g
>

.
o

g
1

•
•

•«
O

r
a

o
^

0
5

^
H

i
r
-

1
T

-
g

M
M

l
M

Q
T

—
«

O
g

&
^

H
i

«
g

X
-

X
g

o
<

~
—

t
~

^
w

«
«

—
a

o
a

1
^

H
i

g
O

•
—

.
«

g
Q

*
«

S
~

O
o

•
—

«
g

H
i

—
•

•
—

^
>

g
—

O
i
n

g
*

«
g

>
.

X
g

g
^

t—
i
n

M
.

M
.

«
o

O
g

t
"

—
3

—
.

-
C

M
M

M
l

3
:

g
T

-
M

l
II

O
tl

II
a

o
o

m
i
n

i
n

M
g

>
-

H
i

M
.

M
•

C
M

o
c
m

—
>

-
*

—
I
O

^
—

-
^

—
Q

»
i

O
C

D
^

—
•

o
o

M
-
C

O
c
n

t
-

Q
•

g
C

M
r
*

g
g

.
.

g
.
.

g
•
•

C
M

g
(I

^
g

g
r
-

>
•

—
M

M
,

fl
tl

S
N

O
+

E
II

g
>

*
-
~

C
M

—
.

C
M

C
M

ii
+

o
O

II
H

.
•

H
M

H
M

M
H

M
M

—

V
o

s
_

P
S

M
—

o
g

•>
-

Q
i-

|l
•
—

.
—

•
C

M
T

"
o

—
.

II
—

H
i

g
—

—
O

^
-

M
.
r
-

t
-

«
II

||
•—

II
tl

O
0

5
o

M
l

M
l

M
l

M
l

O
g

—
i

—
o

—
—

r
»

o
i
i

X
M

g
o

~
-
M

i
-

«
o

^
I
N

M
T

-
-

-
H

i
H

i
H

i
C

M
—

>
>

m
h

.
+

|
+

+
C

M
C

D
N

O
-

—
^

•«;
O

•
•

H
i

M
.

O
M

4
M

.
.
.

o
—

>
•
•

H
i

H
i

-
m

.
T

-
m

»

>
-

<
t

c
m

M
0

5
M

.
O

m
a

O
o

i
n

M
,

r
-

r
-

O
r

«
-

T
»

g
M

l
—

T
-

o
g

g
-
~

.
r
-

C
M

C
M

«
A

r
C

M
0

0
M

J
L

.
.

fa
.

•
•

J
L

fa
.

fa
.

•
tl

fa.
.

C
M

C
M

-

3
3

9
O

^
M

l
o

•
II

•
->

II
«

~
T

"
r
-

C
M

-
-

-
II

M
O

-
^

M
O

-
-

tl
tl

—
r
»

^
-

—
-

-
-

0
0

-
-

-
V

-
.

t
-

M
l

M
.

•
•

T
-

«
•

^
~

.
M

«
•

*
»

—
M

«
ti

1
«

~
T

-
-

C
M

I
O

*
•

—
r
*

II
M

.
O

C
O

—
o

•
—

•
«

—
II

-
«

.
C

N
^

C
M

m
.

C
M

I
N

.
—

0
5

T
"

II
A

Jg
^

M
»

^
H

i
—

a
s

—
II

C
M

_
c
m

r
-

—
C

M
C

O
>

.
>

«
r
-

H
i

>
.

>
«

O
M

l
••

II
M

.
M

l
C

O
M

l
1

tl
*

~
M

.
.

0
5

P
0

•
—

H
i

.
.

>
.

_
•
o

x
>

~
o

^
M

-
-

-
—

.
-

>
.

o
-

—
.

-
-

g
>

.
O

«
„

.
.

.
-

I
O

g
g

-
g

g
g

O
M

.
H

i
•
•

—
H

i
—

M
.

H
i

H
«

fa
.

—
H

i
II

—
—

o
a

m
.

O
O

O
H

i
M

l
M

l
g

•
•

g
—

•—
X

g
II

—
ii

o
s
-
H

i
s
-
^
^
g

i
-
x
*

*
—

O
>

-
H

i
>

>
X

g
—

—
.

>
.

«
>

>
>

.
H

i
>

-
—

>
.

X
—

_
H

i
M

l
fa

.
g

•
•

g
V

I
fa.

g
g

O
fa.

g
1

—
g

«
—

*
-

o
—

m
C

O
I
-
i

0
5

X
m

1
M

l
—

II
T

-
tl

—
H

i
0

5
M

I
-

1
-

g
X

pa
g

g
—

C
O

H
i

c
n

O
S

*
t

g
X

g
—

II
>

-
0

5
W

—
g

g
X

g
C

O
O

.
O

.
g

C
L

.
O

L
,

M
l

—
•
•

0
5

m
.

B
M

.
M

.
M

.
1

B
II

g
tl

C
O

g
||

fa«
O

O
O

m
x

«;
0

3
•
•
M

X
—

M
M

g
O

fa
.

C
O

g
o

—
M

—
*

w
<

.
0

fa
.

M
.

.
M

~
-

fa.
a

o
g

o
M

—
«

0
L

,
O

l,
—

b
.

O
l,

—
C

U
~

o
<

fa
.

0
5

•
•

O
0

3
H

i
fa

.
B

B
M

fa
.

B
1

O
fa.

fa.
M

l
||

M
l

O
II

M
l

m
.

o
O

fa.
g

o
o

P
L

,
•
•
O

x
«

Q
t
-

M
fa

.
M

.
M

l
M

O
g

Z
g

M
g

O
O

S
O

-
fa

.
M

.
g

g
g

g
—

O
T

Q
—

fa
.

g
—

g
g

g
g

—
H

i
H

i
g

M
.
(
-
>

.
|
-
.
>

.
0

0
C

U
•
•

fa
.

c
u

c
o

C
U

C
U

O
—

c
u

1
fa.

M
.
M

.
M

.
g

U
.
O

g
f
a

.

O
O

O
O

O
O

O
O

o
o

o
o

O
o

o
o

o
O

O
o

O
o

o
o

o
o

O
o

O
O

O
O

O
O

O
o

o
O

O
o

O
O

O
O

o
o

o
o

o
o

o
o

o
O

O
O

O
O

O
O

O
O

O
o

o

9
i
n

t
o

r
»

o
o

e
n

o
V

C
M

K
>

q
i
n

«
o

r
«

n
c
n

o
T

»
C

M
I
O

C
t
l
O

t
D

N
c
a

n
s
r
-
M

M
^
i
n

i
o

C
o

0
0

c
n

o
^

C
M

i
o

9
i
n

c
o

r<
»

C
O

c
n

o
1

-
c
m

m
«

i
n

c
o

r
*

.
c
o

o
n

O
-
N

K
)
C

t
l
A

0
l
>

n
O

O
O

o
o

o
T

"
T

-
«

-
«

-
r
-

r
-

T
-

r
-

T
-

T
-

C
M

C
M

C
M

C
M

I
N

C
N

C
M

C
M

C
M

C
M

m
m

m
i
o

i
o

i
o

m
K

>
K

>
I
O

9
«

»
«

»
«

«
<

sr
«

9
«

c
t

i
n

i
A

i
n

i
n

c
n

i
n

i
n

i
n

i
n

i
n

C
O

C
D

C
D

C
D

C
D

C
O

C
D

C
D

C
D

tNE5

J
-

o
\

Q
J

O
Qo©i.

O

£2

g
o

~
••

tl

—
o

M
l

X

Q
••

•—
—

I
Q

->
I

B
C

O

.=
£

2
.

O
S

g
M

~
O

H
i

M
C

O

g
g

O
O

M
~

-

_
-
g

_
±

_

O
H

i
—

~
"

H
i

tl
g

o
—

o
C

I
d

'
-

Z
h

II
p

>
•

—
M

fa.
—

O
o

a
•
•

m
.

||
P

m
I

—
H

i
B

X
••

O
—

Q
g

fa.
>

-.
t
-

—
.

q
g

.
-
.

H
i~

-
~

«
g

o

—
—

—
M

g

g
T

-
O

X
tl

CM
B

O
+

X
g

-
r

CM
m

.
H

+
C

O
B

W
B

X
0

0
IO

g
O

•J
g

g
g

—
v
»

O

C
O

T
-

O
B

X

cm
c
u

m
O

x
g

O
O

fa.
w

O
II

t>
C

O
g

<
C

O
H

i
H

i
B

—
M

l
B

O
P

a
g

g
H

i
g

M
.

o
IO

g
o

o
n

11
II

J
L

<
T

Q
l
O

M
.
c
c
O

M
l
O

^
O

B
O

B
M

l
M

l
O

T
-
X

M
.
M

.
t
o

M
—

'

IO
v

a
II

m
I
m

!
T

-
i
J
W

i
J
W

K
«

»
.

m
.

m
.

»
+

o
u

.
a

fa.
q

o

M
||

N
>

M
l

M
II

<
g

M
.

||
g

Q
M

l

O
H

i
h

.
Q

p
M

l
U

.
g

ll
tl

H
i

II
X

H
i

M
l

C
M

X
H

i
X

M
l

M
l

H
i

11
II

11
11

11
M

l
J
L

J
L

H
.

||
B

11
X

J
L

C
O

O
c
O

b
.g

Q
X

b
.f

a
.m

g
O

g
X

X
M

c
N

<
-
C

U
0

U
»

»
>

1|
U

.
*

»
||

U
.U

.IO
-

||
Q

b
.<

O
f
a

.v
»

-
M

v
>

O
v
»

M
f
a

.«
O

M
X

f
a

.g
O

u
Q

c
u

—
O

O
O

—
m

.
O

Q
O

O
Q

g
g

g
M

.
b

.O
M

l
M

.Q
M

l
M

.M
.Q

M
l
Q

>
-
Q

M
.M

B
Q

b
.<

a
g

M
.M

B
O

M
.C

L
,

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
l

M
m

.
b

.
M

M
l

*
S

M
l

fa
.

H
i

fa
.

•—
b

.

t
W

O
^

||
ate

"
S

u
^
M

H
-
l

M
l

—
Q

g
g

»
^
A

B
i

fa.
S

v
••

»fc
Q

M
»

H
i

C
M

m
.

H
i

O
B

O
m

1

IO
X

IO
—

C
M

M
C

O
b

.

o
o

o
H

.
H

i
II

t
»

^
*

m
.

u
>

'

»
»

Z
a

*
g

C
O

~
g

g
—

Z
I

—
g

O
b

.
g

D
i
J
H

g
H

h
W

fi
Q

-

~
g

g
.

M
.

—
M

.
|

M
.

M
.

g
M

.
O

B
g

B
M

~
-
B

M
-
-
B

B
B

I
—

W
-<

X
11

B
B

C
M

X
X

O
X

O
B

M
Q

>
.
0

0
-
-
M

M
O

O
fa

.ft.C
U

C
U

H
ig

n
.M

l--0
.O

C
u

I
M

C
u

»
M

.c
u

-
-
O

U
O

c
u

Z
O

a
U

.b
.g

Z
Z

Q
b

.

o
o
o
o
o
o
o
o
o
o
o
o
o
o

c
d

h
.

o
o

c
n

O
«

-C
M

IO
9

W
C

D
r>

»
C

O
o

»
©

T
-C

M
IO

*
T

i
n

C
D

r*
.

e
o

o
>

Q
T

-
N

M
c
r
i
n

i
O

N
C

o
n

o
T

m
C

M
M

Q
i
n

C
O

I
s
C

O
O

)
O

T
"

C
M

I
O

•a
r

i
n

C
D

ix
.

0
0

O
l
O

r
M

M
Q

W
I
D

M
O

n
O

r
N

o
o

e
s
o

r
-
T

-
T

-
r
-
T

-
T

-
r
r
-
T

-
r
n

r
i
M

r
i
M

M
N

M
M

M
m

n
M

m
n

n
M

M
m

m
c
t
c
f
c
t
c
t
c
t
c
t
c
r
c
f
c
t
c
t

i
n

i
n

c
n

i
n

m
i
n

i
n

i
n

c
n

t
n

(
O

(
D

«
O

(
O

(
O

«
D

(
O

U
>

l
0

«
O

l
s
|
N

N
m

i
o

i
o

i
o

i
o

i
o

N
l

i
o

m
w

i
o

t
o

i
o

m
1

0
i
o

m
m

i
o

m
w

w
i
o

m
m

m
t
o

m
i
o

i
o

i
o

i
o

m
m

m
i
o

w
t
o

m
m

m
m

m
m

m
i
o

m
I
O

I
O

I
O

I
O

m
m

m
M

M
M

M
M

M
M

M
M

M
M

M
M

«
—

C
M

g
.

—

g
«

*
-

0
0

M
M

-
~

M
«

-
C

M
g

O
^

g
V

M
.

H
i

g
-

H
i

g
-

g
o

—
M

.

M
.

v
»

M
C

D
^

H
i

-

C
M

c
n

H
i

C
O

O
g

r
*

.
1

g
v
>

|
c
n

g
O

C
M

t
-

C
M

II
o

t
s
l

A
c
n

M
.

g
0

0
•
—

.
o

I
s
l

V
c
n

c
n

c
n

B
—

C
M

C
M

g
i
n

—

—
.

c
n

c
n

c
n

C
U

V
I

|
M

«
r

o
w

>

.
—

.
—

—
.

•
—

O
•

c
n

c
n

O
g

11
g

^
t
-

p
—

—
k
»

*
a

r
«

«
II

c
n

c
n

c
n

o
>

g
M

M
—

H
i

II
M

H
i

^
c
n

c
n

c
n

C
U

C
O

g
0

0
X

>
.

C
O

«
*

«
»

—
-

—
-

C
N

M
C

M
I
O

C
M

I
O

C
M

fO
g

«
c
n

•
X

.
—

.
—

H
i

C
M

«
-

—
•

M
^

—
-
^
O

^
O

—
O

O
O

O
O

O
O

O
X

x
c
n

c
n

c
n

O
B

v
»

O
A

|
+

X
—

O
—

X
c
n

«
-

^
r>

«
O

C
O

C
O

C
M

m
.

A
o

—
v
»

C
O

O
O

o

+
H

•
«

«
0

0
«

O
X

—
1

—
V

C
O

«
•

o
S

-
r
s
i

X
O

IO
C

D
C

O
—

h
i

c
n

X
X

C
M

«
g

-
X

II
+

—
•

r
x

i
n

C
M

•
-

g
N

l
-

o
o

o
o

o

-
-

-
-
c
n

o
c
n

c
n

c
n

r
-
^
"
^
T

-
T

-
c
M

C
M

C
M

C
M

-
-

^
X

X
«

—
—

-
.
—

.
—

M
C

M
^

0
0

•
•

X
—

M
.

N
O

K
I
K

I
•
o

r
-

—
*

£
£

g
g

-
m

-
o

c
n

c
n

A
C

D
C

M
«

/»
.
.

g
-

M
C

M

-
-

-
-
T

-
C

M
C

O
I**

O
O

O
O

O
O

O
O

O
S

-C
M

||
O

X
H

-
O

M
m

«ar
•
o

C
M

-C
M

V
II

g
X

0
0

.
—

.
c
a

•
•

C
O

M
4

IO
z

z
g

r
-
C

M
C

D
I
»

»
^
t
-
^
^
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
g

C
M

—
T

-
X

g
m

1
C

M
C

M
H

t
—

A
m

.
X

M
—

+
g

X
•

•
•

•
C

O
M

l
C

M
T

-
C

M
—

g
M

M
M

—
^

.
.

^
~

-
_

~
.
—

.
•
—

.
.
—

•
•
—

^
-

—
1

S
.
—

—
H

i
—

•
•

M
.

•
•

•
—

•
g

+
M

—
M

M
M

C
U

C
U

C
M

—
W

Z
K

g
g

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
O

O
O

+
M

.(p
r

o
M

.
M

.
o

O
B

o
O

B
h

o
+

H
i

—
O

g
v
>

M
l

M
l
B

O
B

o
f
c
r
l
S

W
H

H
H

i

i
<

«
j
:
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
i
n

H
i
H

.
—

m
-

-
m

O
H

i
X

H
i

H
.

X
+

—
o

—
W

1
"

H
i

B
M

.
M

.
C

U
H

i
X

M
O

H
.

H
i

—
C

U
H

i
g

o
o

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
c
n

i
r
-

M
»

.
.c

n
C

M
r
-

c
n

_
JL

g
g

—
O

C
M

^
C

M
o

•-^
g

b
.

b
.

g
N

r
a

Z
h

-
i
-

i
n

i
n

c
n

i
n

c
n

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
m

^
t
-

*
-

~
-

M
»

C
M

-
-

C
M

M
T

-
O

V
"

t
-

o
c
n

c
m

9
c
n

c
n

*
"

X
o

n
O

«
»

o
n

^
~

o
9

C
O

M
.

M
.

g
{
-.

o
.

.
o

•
o

>
>

>
>

>
>

>
>

>
g

g
g

g
g

g
g

g
II

II
II

C
U

—
M

,
M

,
—

M
l

»
II

>
M

.
II

II
O

II
11

ll
A

V
e
n

<
a

M
.

M
.

tl
>

—
.

«
-

1
|

m
.

g
c
n

c
n

v
v

M
V

IO

p
a

_
_

.
_

C
u

fe
p

a
o

a
M

.
II

—
—

>
M

.
M

.
M

.
p

a
x

m
V

X
O

H
i

V
v
»

H
i

H
i

•
M

.
p

a
T

-
C

M
|

m
.

||
||

r
-

C
M

C
M

—
O

H
i
O

O
g

g
O

H
H

i
fa

.
<

A
M

l
H

i
•

M
l

•
o

—
<

er
x

r>
»

—
C

M
g

x
c
o

p
a

i
-
g

H
i
g

II
M

l
h

D
O

B
>

b
O

+
>

<
X

h
H

N
O

H
r
O

b
b

r
»

II
II

C
O

II
11

c
o

x
X

C
O

B
M

l
X

B
II

B
M

l
C

O
^

•
O

C
O

c
n

II
X

—
X

M
.

V
»

B
M

l
X

C
O

H
i

II
II

cm
e
n

II
H

tl
H

.
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

O
O

O
f
a

.
c
n

T
-

C
M

o
T

-
C

M
O

M
M

fa.
O

o
x

-
M

O
v
»

O
X

fa.
fa.

O
fa.

II
fa.

II
fa

.
C

M
II

fa.
ll

v
»

M
B

M
B

n
O

<
M

O
O

T
-

C
M

||
||

b
.

b
.

b
.

b
.

c
o

O
fa.

c
o

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
U

.
b

.
—

C
M

C
U

c
u

O
C

U
C

U
o

g
g

•
—

g
>

fa
.

o
—

g
u

.
p

a
f
a

.
O

—
—

i
O

O
—

X
—

X
M

.
X

—
x

o
a

g
c
u

g
o

.
N

b
.

O
—
>

g
O

O
H

.
H

.
>

-
X

—
—

—
"
-

c
u

O
—

c
u

O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

O
O

O
O

o
o

O
O

o
o

O
O

O
O

O
O

O
O

o
o

o
o

o

n
c
t
t
n

i
o

r
>

>
c
o

c
f
l
o

<
r
M

m
c
}
i
n

i
D

N
a

o
)
0

r
N

M
c
r

i
n

c
d

r
-
.

o
o

c
n

o
r
"

C
M

K
>

9
i
n

c
o

r
»

o
o

o
n

o
r
-

c
m

i
n

«ar
i
n

c
o

r
s

o
o

m
o

r
M

M
c
t
i
n

i
o

N
n

t
n

o
r
N

M
Q

I
f
)
(
O

|
s
C

0
O

)
S

T
-

C
M

i
o

«
i
n

n
n

m
i
o

m
i
O

M
c
f
c
t
c
t
c
r
c
f
Q

c
f
c
t
c
f
c
t
i
A

i
n

i
A

U
i

i
n

i
n

i
n

i
n

i
n

i
n

c
o

c
o

c
o

c
o

C
D

C
O

c
d

c
o

c
o

c
o

!•»
r<

«
r
»

M
»

N
N

N
r
*

r
x
O

O
O

O
O

O
O

O
O

O
O

O
O

O
C

O
C

O
O

O
c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

o
o

o
o

o
o

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

I
O

I
O

tO
I
O

I
O

lO

©i2.0)
O
N

O
s

C
OQ
J

iS

T
-

—
M

.
6

^
-

-
.

B
O

g
m

m
—

V
I

g
C

U
•
o

X
1

9
-

«ar
O

r
-

•
o

B
v
i

M
.

O
—

M
l

•
9

C
M

H
i

C
M

H
i

•
X

M
l

—
—

C
M

X
•

£
g

X
H

i
V

I
•
»

g
>

B
M

S
O

—
M

g
B

V
»

M
g

H
i

•
g

H
.

o
O

C
O

M
C

O
•
•

H
i

g
M

•
—

g
M

•
•

r
-

C
O

O
H

i
Q

•
1

M

—
a

C
O

B
tl

—
—

o

—
O

O
X

C
M

H
i

o
—

.
T

-
T

-
O

r
-

M
.

V
I

C
O

r
-

V
I

-
1

D
fa

.
O

-
-

o
O

•
»

H
i

c
o

C
M

X
•

«ar
r
»

II
—

O
c
u

C
M

i
n

o
C

D
C

O
C

M
•S

f
o

O
H

i

—
-

—
o

X
—

r
-

H
i

I
O

H
.

A
T

"
C

D
«

•W
•o

r
c
u

r
-

o
H

i
i
n

g
r
*

H
.

+
c
n

C
O

C
M

O
>

>
T

-
C

O
9

«
H

i
T

-
O

—
-

—
T

-
—

—
—

A
-

•
w

o
C

O
M

-
-

g
O

.

g
r
-

a
s

w
z

g
-

V
>

-
•

C
O

X
O

O
g

g
M

o
O

B
B

M
+

—
M

M
M

»
M

g
•

-
M

—
i
n

o
M

•
M

g
-

O
M

M

m
g

a
s

m
T

cm
~

S
5

M
-

-
»af

|
c
u

O
B

—
g

M
Q

B
H

i
H

.
a

s
H

X
H

i
B

O
—

I
—

X
cm

oa

M
11

m
r*

.
X

^
s
:

c
o

t
o

«ar
o

g
o

g

r
x

c
m

v
i
a

p
r
p

«st
>

-
to

Q
io

Q
c
u

i
n

c
o

u

a
«

«
«

r
r

II
>

-
•

II
II

>
—

v
c
o

g
x

y
g

o
—

m
«

tt
c
o

«
e
f

c
o

o
>

.
r

O
«

»
—

II
O

II
-

—
m

.
IO

0
5

H
K

0
0

H
«ar

H
i

B
•

p
a

o
a

x
tl

M
||

11
M

11
fa.

M
|
|
B

H
i

H
i

H
>

B

M
l

H
i

V
I

C
O

V
»

m
!

—
H

i
i
-
O

m
I
C

O
O

m
I
O

Z
g

o
s

o
o

—
•

M
M

l
O

M
l
M

X
M

V
»

X
v
»

O
c
O

g
v
»

O
g

M
l

g
g

D
B

M
l

—
x

«ar
«

b
m

i
X

X
H

i
M

l
H

i
M

l
C

O
—

p
a

M
.

C
O

H
C

O
C

O
C

O
M

l
H

i
M

l
M

l
M

l
O

O
O

M
O

H
.

—
M

l
—

•
•

—
i
-
l

O
X

—
m

m
.

u
,

—
o

X
T

-
M

b
.

t
|
M

X
b

.
M

X
O

B
X

B
H

i
O

O
fa.

M
l

X
O

X
—

fa.
—

>
b

.
>

b
.
M

i
e
u

b
.
M

B
X

B
«

B
M

fa
.

o
—

B
H

-
H

U
.
O

-
g

—
X

B
O

—
B

O
O

C
u

H
i

C
U

g
O

O
—

M
O

O
O

f
a

.
—

b
.
O

—
O

—
O

O
O

B
C

u
O

e
u

M
C

u
E

o
o

o
o

o
o

o
o

0
9

O
O

O
O

O
O

O
O

O
o

O
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
O

O
O

T
-

C
M

M
C

t
l
f
l
l
D

N
C

O
<

n
o

r
-
C

M
M

9
i
n

c
o

r
.
c
o

c
n

O
r
-

c
m

n
c
t
u

x
o

i
s
c
o

n
o

r
i
N

M
c
t
i
n

u
i
N

e
o

o
i

O
T

"
C

M
•
n

t
o

t
o

t
o

m
i
o

i
o

i
o

i
o

i
o

<
e
r
«

a
r
«

t
«

a
r
>

9
>

9
>

9
«

t
«

*
«

r
t
n

c
n

-
•

r»
»

o
a

c
n

V
I

T
-

C
M

—
_

O
,

_
<

_
e
»

I
O

-
c
n

T
-

>
.

p
a

H
«

p
a

o
o

M
.

V
I

V
I

c
n

.
d

»

x
x
x

o
o

H
.

a
s

a
s

c
n

m

M
l

H
i

H
i

M
—

H
i

O
H

i
c
n

.
I
O

C
U

•
•

V
I

—
r*

»
—

c
n

V
I

c
n

C
O

•
•

•
•

g
O

V
I

O
V

I
c
n

tt
—

M
.

•
.

M
M

O
•
»

O
c
n

t
-

v
>

Q
1

T
-

g
g

o
C

O
O

—
M

M
•s

r
_

B

O

—
M

—

J
S

_
+

O
_

o
_

J!
-

-
O

X

JU
£

>
n

.

O
—

g
a

s
r
-

C
M

i
n

i
n

m
i
n

—
II

°>
<

-
«

Q

—
O

—
—

—
—

O
f
*

—
•—

q
~

c
n

g
O

B
p

a
o

a
o

o
o

c
n

O
O

B
O

—
«

a
s

b
O

1
-

O
X

c
n

oa
|

X
g

C
D

M
»

S
t
O

g
O

g
(
a

r
O

O
H

i
H

i
X

-
II

H
i

—
x

H
.

X
—

g
X

V
I

C
O

m
i

m
i

m
r
*

x
«

C
O

H
i

O
r
o

C
M

V
O

O
C

D
O

l
O

O
g

io
V

v
»

g
~

-
g

T
-

M
g

B
—

O
«~

O
m

i
io

hV
•-

C
O

•
•

O
K

»
«

a
r
>

-
c
n

o
c
o

o
>

-
r
-
r
-
r
-
o

i
x

t
-
b

o
v
»

O
II

g
O

g
O

o
—

g
i
i
o

—
g

o
—

M
C

O
M

IO
C

O
IO

C
O

M
H

i
•

(1
II

>
—

—
m

.
*£

||
H

i
g

O
g

O
H

>
g

—
o

B
—

0
5

p
a

H
>

C
D

B
H

i
o

a
«

x
m

m
II

«
m

-|-
a

s
o

—
c
o

M
C

O
II

X
m

H
D

M
l
H

i
D

M
l
O

g
—

C
U

••
g

.
I
O

m
I
O

O
—

•
W

m
!

O
m

!
II

h
v
i

b
i
M

h
h

r
h

r
II

m
!

C
O

M
l

I
O

M
l

H
i

V
I

X
J
X

h
K

J
X

H
J
W

-
H

Q
•

•
m

!
C

O
C

O
C

O
m

I
H

im
I
H

i
I
O

B
B

m
1

«
X

X
I
I

II
B

v
»

m
1

M
l

—
|

m
!

x
c
m

a
e

X
M

M
O

X
M

M
X

O
B

X
•

-
M

B
•
-
x
o

o
f
a

.
*

-
*

x
o

x
c
o

g
M

.
o

o
x
i
o

M
M

O
f
a

.
o

o
a

e
x

T
-

fa.
X

T
"

fa.
A

X
—

M
—

O
g

B
f
a

.
O

g
B

O
O

O
.
H

i
—

M
l

C
U

—
O

O
O

—
M

O
O

O
H

i
Q

H
i
f
a

.
f
a

.
0

-
g

g
c
o

—
u

i
U

.
H

U
-
—

O
-

—
V

O
g

H
i

fa
.

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

o
o

o
o

O
O

M
Q

U
X

O
I
s
C

O
C

O
O

r
-
t
N

I
O

t
i
f
t
i
o

i
.

c
o

c
n

o
r
-
c
N

i
o

*
a

r
c
n

c
o

r
<

»
o

o
c
n

o
«

-
c
M

i
o

<
t
r

i
n

c
d

f>
»

c
o

c
n

o

r
x
r
^
r
x
r
v
r
o

r
x
r
o

c
o

o
o

c
o

C
O

c
o

o
o

o
o

o
o

o
o

o
o

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

o
o

o
o

o
o

o
o

o
O

T
"

i
o

i
o

m
m

i
o

i
o

i
o

i
o

i
n

m
K

>

tN2o
\

c
oQ
>

©

o
o

'£.Q
.

O

U

Programming

Tl
BASIC

The special block graphics character sets that are built
into some printers can be extremely useful. In the
business world, for example, applications might in

clude the production of charts and graphs, the printing of
business forms, or even the design of a letterhead.

The following short program demonstrates how DATA
statements are used to format selected graphics characters
to produce a letterhead. The DATA statements here are for
use with the Epson MX-80 printer (without the GRAF-
TRAX option) but can be easily modified to accommodate
any printer with similar block graphics capabilities. Keep
in mind that this is a shell program; you can plan the DATA
statements to direct the printer to produce virtually any
design or pattern (within the limits of the resident block
graphics set). The actual graphic design (the letterhead) in
this example is unimportant; understanding how to plan and
implement it is crucial.

DATA statements are read sequentially from left to right,
using the READ statement. The Epson MX-80 printer uses
numerical codes 160 to 223 (ASCII 32 to 95 with a 1 for
the 8th bit) to generate graphics characters already defined
within the printer. Each graphics character is made up of
one to six squares within a 2 x 3 matrix as indicated below.

1 2

4 8

16 32

(The numbers within the squares are not important if you
have a coding table in front of you. They represent a par
ticular manufacturer's coding of the matrix print head. For
example, numerical code 165 would produce the fifth
character in the set, and would cause wires 1 and 4 to fire;
if we want the 21st character, wires 1, 4, and 16 would be
fired.)

324 The Best of 99'er Volume 1

The key part of the program lies in lines 430-470. This
controls what will happen when a DATA statement is read.
If the first DATA cell is a number greater than 100, that
character will be printed. If the first DATA cell is a number
greater than 0 but less than 100, the program will read the
second DATA cell, and then print it the number of times
specified in the first DATA cell. For example, if the first
DATA element is 8, and the next is 160 (a blank space),
the computer will print a blank space 8 times. This lessens
the amount of required DATA when it is necessary to repeat
the same character several times. If the first DATA cell read
is equal to 0, a Carriage Return will be executed.

Regular text can be printed on the same line with the
graphics. In this program a negative number inserted in the
DATA statement signals the program to print the text. The
value of the negative number designates which message is
to be printed out. This can also be used to change the
printer's type style, if your printer has that capability. For
example, if you want to print a graphics pattern on the left,
and a printed message on the right, you would place the
negative number just before the zero that causes the Car
riage Return. In that case, a message will be printed—
according to the directions in line 470—on the same line
before the Carriage Return.

Every time a character is printed—whether graphics, text,
or a control character—it should always be fol
lowed by a semicolon. This will insure that the next printed
character will be on the same line, until the Carriage Return
is executed. The only exception to this is in line 610 where
1 wanted the Carriage Return to be executed.

The following is an example of the DATA and the
graphics line it creates. This line can be found in the 8th
print line of the letterhead.

270 DATA 7,160,3,223,9,160,3,223,3,160,3,223,7
160,3,223,-4,0

Cop/right © 1983 Emerald Valley Publishing Co.

3 9 3 3 3 7 3

ii • • •
In this graphics line, I first needed to put seven blank spaces
between the first character position and the first graphics
character. This was done with the first two DATA cells.

When the program first READs A, its value is 7. Because
this value is less than 100 and greater than 0, the program
will READ B, the next DATA cell. The value of B is 160.
ASCII (160) is a blank character on the MX-80, so the pro
gram will now PRINT B (blank), A (7) times. On the next
cycle the value stored in A will be 3, and the value stored
in B will be 223. This will cause B (whose value is the ASCII
code for a solid 2x3 block) to be printed 3 times. This pro
cess is continued until a value less than or equal to zero is
encountered.

If the value in A is a negative number, the program will
branch off to a subroutine which will PRINT a text message.
In the above example, the value - 4 caused the message
"FOR USERS of TI-99/4" to be printed. These subroutines
are extremely versatile; you can change the type style, print
a message as 1 have done, continue the program to do
calculations, or run program lines.

Note: All the data necessary for one entire print line is con
tained in a single DATA statement (except for lines 310-320
and lines 330-340). This makes the program a little easier
to debug, because you don't have the confusion of count
ing across statement boundaries to find character positions
and their corresponding codes.

EXPLANATION OF THE PROGRAM

Line Nos. LETTERHEAD
200-390 Contains DATA formated to print the 99'er

Magazine letterhead.
400 OPENs a line to the RS-232 interface for output

to the printer.
410 Sets the printer for "Double Strike" mode.
420 Sets the printer for "Emphasized" mode.
430 READs the DATA statement and stores the

result in A.
440 Tests A; if A is greater than 100, then PRINT

the character stored in A.
450 Tests A; if A is greater than 0 and less than

100, then READ B; PRINT B, A times.
460 Tests A; if A is equal to zero, then do a Car

riage Return. This marks the end of a line.
470 A equals a negative number at this point;

ABS(A) controls the branching of subroutines
for special tasks, e.g., PRINT text.

490-500 Subroutine to execute the Carriage Return.
510-520 Subroutine to PRINT the value in A.
530-570 Subroutine to READ B, and PRINT B, A

times.
580-710 Subroutine to print normal text instead of

graphics.
720-740 End-of-print message on the screen; END of

program.

10

11

12

13

14

15

16

17

18

19

20

0

0

0

0

0

0

0
0

0
0

0

R

R

R

R

R

R

R

R

R

R

D

2

E

E

E

E

E

E

E

E

E

E

A

1

M

M

M

M

M

M

M

M

M

M

T

1

A

0

1

*

*

*

*

*

*

*

0

*

*

*

*

*

*

*

•

*

L

*

2

*

E

*

2

•

T

*

3

*

9

T

*

•

9

E

*

2

*

•

R

*

•

E

H

*

1

•

R

E

*

6

•

A

*

0

*

D

*

*

*

*

*

*

*

*

1

*

*

*

*

*

*

*

0 2 2 3 • 1 6 0 f 2 2 3 I 2

Copyright © 1983 Emerald Valley Publishing Co.

GO

GO

GO

1

EMIS

GO

TO

CO

TA

DO W

EM

BO

UG EGOl

FO

'MS!

COMPl

TM

TH

The Best of 99'er Volume 1 325

FROM

With TI's 99/4 Impact Printer, we can explore the
world of bit plot printer graphics. The following
program will also work with other printers (Ep

son's MX-80 with the Graftrax-80 option, for instance)when
suitable modifications are made to the program.

Bit-Plot Graphics
In bit-image mode, the printer produces in one dot-

column a character which may have any combination of
the eight dots in the printhead. This makes it possible to
duplicate exactly the 8 x 8 pixel graphics characters of the
TI-99/4 and TI 99/4A by printing 8 columns of up to 8
dots on the printer. The printer dots are turned on in ac
cordance with a binary format. For example, sending
CHR$(0) to the printer willproduce a blank space, one dot-
column wide; CHR$(1) will print only the bottom dot;
CHR$(7) will print the bottom three dots, CHR$(255) will
print all 8 dots, and so forth (see Figure 1). Under software
control you may select either 480 or 960 dot-per-line resolu
tion. This means that to print a full line in the 960 dot mode

Figure 1.

ASCII 64-116-80
0 0

0 1
ASCII 32+2-34

B7-0

B6-1

BS-0

B4-1

B3-0

B2-0

B1-0

BO-0

•

•

•

•

>50-80Dec >22<

B7-0

BS-0

BS-1

B4-0

B3-0

B2-0

B1-1

BO-0

34 Dae.

Dot wire

/2\

input data

B2IB1

Note: In the Bit language mod*,
the 9th dot wire cannot b* triad.

326 The Best of 99'er Volume 1

Using Bit-Plot
Printer Graphics
with a TI-99/4A

you would have to print a dot-column character 960 times.
The following program, for example, would print a line with
only the bottom dot "on" across the entire page width:

10 FOR X = 1 TO 960

20 PRINT #1: CHR$(1)
30 NEXT X

40 END

In the 960 mode, the line would appear solid with no space
between the dots. In the 480 mode, the line would have small
but visible spaces between the dots.

[Note: Thereare two options in the 960mode:the first at halfthe speed
of the 480mode, and the second at the same speed. This second mode
may only be used by high-speed Assembly Language driver routines.
BASIC Interpreters are too slow in execution to print in this mode. If
you try this mode using Extended BASICyou willlose many of the dots
on each line.When you use this high-speed mode, there is still another
restriction:The same needle may not be struck twice in a row because
the needles take 2 microseconds to hit and return to seat. Printing at
480speed, the printhead passes overa dot portionevery microsecond.
For this reason it is impossible to strike the same needle twice in a
row at this high speed. If you attempt a second stike, the printer will
automatically toss away the second consecutive dot. The printer will
also print bi-directionally in this mode. It should be noted that there
is some misalignment between passes of the printhead from opposite
directions.This willvary from printerto printer and must be compen
sated for with computer software.—Ed.]

To leave the TI-99/4's standard text mode and enter the
bit-image graphics mode, you must first send CHR$(27);
"L" or "K"; CHR$(X); CHR(Y); to the printer. The
ESCape "K" code will assign the 480 mode to the printer;
"L" will assign it the 960 mode. You must then tell the
printer how many graphics columns or characters are to be
printed. This is done with CHR$(X);CHR$(Y) where
0 < X < 255, and 0 < Y < 3. The number of columns of dots
or characters to follow is equal to (Y*256) + X.

The only problem I have encountered with this conven
tion is a difficulty with intermixing graphics and standard
characters on the same line without complicated program-

Copyright© 1983 Emerald Valley Publishing Co.

ming and file structures. The simplest method is to store
a CHR$(X) in a file or data statement and then print
CHR$(X) for each dot column across the page. This may
be time consuming and require more disk, tape or data
space, but it allows for the least complicated program [and
consequently is the simplest way to get you started using
this versatile graphics mode.—Ed.]

To program the graphics you must know how to format
the OPEN statement. First, you must tell the RS232 port
to output 8 bits instead of 7; then tell it to supress the
automatic carriage return and linefeed with the .CRLF soft
ware switch. The statement in line 560 will read:

OPEN #3: "RS232.BA = 9600.DA = 8.CRLF"

[If you have the Epson MX-80 with the Graftrax-80 op
tion, it will read:

OPEN #3:
"RS232.BA = 9600.DA = 8.PA = N.CRLF".—Ed.]

The Program
There are three main sections in the program. The first

part is a disk initializationsubroutine. This routine willopen
a file on a blank disk with the following parameters:
RELATIVE—random access of file records, and
INTERNAL.FIXED 24—a fixed record length of 24 to
store 12 CHAR$(X) values or 12 dot-columns of
information.

It is possible to store up to 3570 such recordson one 5Va "
single-density disk. The processof initialization is therefore
very slow and takes about half an hour. The initialization
programwill open the fileand print CHR$(0)to all records.
This helps speed file building in the second section of the
program.Whena largeclearspaceon the paper is required,
you do not need to enter all these zeros.

The second section of the program is a form of "word
processor," onlyhereit isdesigned to handle numbers from
0 to 255. The program works with 20 file records at a time
(240 charactervariables). Each group of 240variables will
be called one created line. The present line being worked
on is displayed at the top of the screen. The next value
displayed is the positionin that line, from 1 to 240. Below
the position indicator, the present CHR$ value at that posi
tion is displayed. Below that, the computer asks you for
the new value—from 0 to 255—that you want to assign to
that position. Several single-keystroke commands are
available to help you manipulate the data. If you merely
press ENTER without touching any other key, the value
of 0 will be assigned to the position indicated. The follow
ing is a list of commands and their explanations:

P—prints one line of data (240dot positions of the line
you are presently working on).

L—lists all 240 variables on the screen for inspection.
N—letsyou jump to a new line number and position—a

process that would take too long with the arrow keys
alone (below). Screen prompts willguide you. If you
just hit ENTER, the program willdefault to the cur
rent line number or position without changing
anything.

E—decrements the line number by 1.
X—increments the line number by 1.
S— decrements the position in a line by 1
D—increments the position in a line by 1.
Z—returns the user to the main menu screen.

Copyright © 1983 Emerald Valley Publishing Co.

After you enter a valid numeric value and press ENTER,
the position in the line will automatically increment by 1
to the next record. After you enter the 240th record of the
line, the previous line number will increment to the next line,
and the position will return to number 1. The previous line
will also be automatically stored on disk. (Note: Any time
you change line numbers, the current line will also
automatically go into disk storage. If you plan to exit to
the main menu or to turn off the system, you should first
go to any other line so that the data are stored; otherwise
the data on that line will be lost.)

The final part of the program is the routine that prints
your graphics. There are several options in this section. First
is the option to print single density (480 dots per line) or
double density (960 dots per line).

The second option is the line width: A line width of 240
will print one of the created lines in the create-file section,
(240 dots); a line width of 480 will print 2 of your created
lines according to the chosen parameters.

The last option is the number of lines you want printed:
You should specify the actual number of lines to appear
on the paper, not necessarily the number of created lines.
For example, if you want to print 5 lines with 480 width,
you will actually be printing 10 created lines.

Print
Line £Z

'created lines"

LineO
Line 2
Line 4
Line 6
Line 8

Line 1
Line 3

Line 5
Line 7
Line 9

1 — LineO Line 1 Line 2
2 — Line 3 Line 4 Line 5
3 — Line 6 Line 7 Line 8

5 printer lines
= 10 "created lines"
@ 480 width

3 printer lines
= 9 "created lines"
@ 720 width

EXPLANATION OF THE PROGRAM

DOTS TO PLOTS
Line Nos.

100-170 REM.
180-190 Initializes variables and arrays.
210-290 Data statement.
300 Subroutine to read data and display.
310 Subroutine to read data, display and accept

input.
320 Reads data only.
330 Initializes colors.
340-380 Checks for proper disk in drive #1.
390-400 Opens file #2 on disk ftI.
410 Clears screen with left to right scroll.
420-430 Controls subroutine to check for proper disk in

drive #1.
440 Reads multiple data statements and display.
450-470 Inputs record from disk #1.
480-500 Prints record on disk #1.
510-550 Improper disk in drive ftI message; option to try

again.
560 Opens a port to the printer if not already open.
570 Prints title page.
580 Prints option page and input option.
590 Checks input limits on option.
600 Branches to subroutines.
610-1120 Creates file subroutines.

610 Checks for proper disk in drive #1.
620 Initializes variables.
630 Branches to subroutines.
640-690 Inputs option for density (480 or 960). _

Continued

The Best of 99'er Volume 1 327

EXPLANATION Continued

700 Clears screen. Inputs first record.
710-720 Displays record variables.
730 Inputs new value or command.

740-830 Checks for a command input and does
necessary logic.

840-860 Checks that all characters in the new value are
numeric.

870-920 Assigns new value to array; advances to next
line position, and checks for end of line.

940-970 Subroutine to enter new line number and new
position.

980-1030 Subroutine to print one line (CHR$(X) = 240).
1040-1110 Subroutine to display array contents on the

screen.

1110 Subroutine to convert the input string into
ASCII form and store it in the array.

1120 Subroutine to re-convert the array into a string
for output to the disk.

1130-1270 Subroutine to print entire graphics page from
information stored on disk.

1130 Checks for file on disk.
1140 Inputs density (480, 960).
1150-1160 Inputs width of graphics in dot columns.
1170-1180 Inputs number of lines to be printed.
1190-1270 Prints file from disk onto the printer in the

form of bit-image graphics.
1280-1340 Initializes a new disk with all CHR$(0); will

destroy any records stored on that file.
1350 Closes files and ends.

400

EM

EM

EM

EM

EM

EM

EM

EM

2

M

TO

TA

ES

TA

D

DO

1

1

Gto

TO

DO

IME
P

N

E

TO

3

T

HO

NO

A

F

C

GO

00
E

L0

328 The Best of 99'er Volume 1

CON

E|W|

T

T

(

TO

)

R

R

C

IGO

CO

TO

GO

@$

NO

G|0
3

F

N

PG

GO

0

S

S

N

S

C

GO

D

T

U

D

1

)
A

I

H

P

L

7

GO

F

F

i

GO

1

R

Y

IGO

0

E

2

tGjO
TO

TO

2

GO

0
4

fGO
0

1

1

GO

GO

1

/

N

EN

DI

)

R

N

IGO

S

2
GjO
0

2

2

N

TO

GO

GO

G|0
1

SGO

GfO
1

D

2 +

H

H

GO

N

G

2

2

H

Gb
2

T

GO

TO

GO

0

I

E

G|0
B

>

N

0

A

GO

GO

1

U

GO

TH

HA

GO

GO

GO

GO

GO

IGO

P

TO

TO

5

K5K>

EW

GO TO

Copyright © 1983 Emerald Valley Publishing Co.

_
L

JK
=

_
Q

c
a

Y
g

6
'

<
0

3

II
a

-
-
o

>
«

o
x

c
o

'

11
td

Id

W
O

O
—

O
H

M
O

—
_

~
x

5
-=

^

-
<

~
g

w
;

•—
p

c
1

0

g
C

O
IP

»
-

0
8

g
—

-
~

-^~

<
o

>
~

>
r
-
o

~
O

r
*

O
S

O
c
u

o
a

Q
x

"
C

T
"

-
~

g
r-

g
-»

—
r-

oa
g

g
w

"
—

I
O

c
o

—
-
g

«
-

a
s

m
t
-

<
b

.
c
n

O
t
-

••
«

7
s
~

Q
H

>
«

H
D

—
O

•<
O

O
td

Q
>

-
a

g
O

>
-

h
i

o
*

tj
C

O

<
f»

••
M

Q
c
o

Q

~
II

c
o

'
"
O

O

•—
-
j

u
i

—
—

>
s
b

q
X

B
i
O

i
j

o
a

t
-

g
—

i-i
I
Z

B
K

l
r
w

c
t

r
—

-
'

Q
Q

C
A

t-i
U

3
t
-

~
o

-•
•S

t-i
q

»
r

io
O

g
g

t
o

•-»
«

u
t
d

p
a

~
g

~
Q

~
u

.
—

C
O

H
i

O
—

—
O

O
o

«C
q

>
*

a
—

I
d

r
-

—

H
>

*
X

P
C

Z
11

—

X
-
r
-

O
o

a

C
M

»<
r
-

C
O

C
O

•—
T

-

r
-

^
—

T
-

T
"

A
-—

—
II

H
.

•
T

T
C

D
—

H
i

H
«

IO

>
-•

m
o

o
g

~
«

»

c
u

—
>

-
i

p
a

c
a

c
u

c
u

w
w

a
.

I
w

c
u

a
p

a

c
o

i
o

g
c
o

o
a

o
Q

O
«

~
«

o
a

o
H

-
Z

W
T

-
—

_
g

_
•<

c
a

O
O

IO
g

C
C

o
C

t
H

^
^
c
-

<
M

ttj
M

H
<

II
11

II
X

C
M

IO

M
B

N
W

i
J
P

D
.

c
u

u
p

a
x
x
x

(
H

i
H

M
D

"
O

.
Z

U
3

U
.
C

N
»

-
0

0
X

II
H

i
H

»
a

t
o

a
a

c
u

C
8

—
M

X
W

H
C

!
(g)

II
—

CO
O

CO
CO~

C
O

C
O

SB
P

S
P

S
"
8

B
.
"

m
Q

O
Q

O
B

~
ll~

c
a
p

•
•
t
u

i
u

o
.
f
j
j

X
X

Q
C

O
>

4
C

Q
C

O
~

O
i
-
i

K
)
M

M
i
-
l
O

<
0

»
H

U
Z

Z
O

U
~

P
C

Q
Z

<
o

*
~

c
o

o
a

H
i

p
a

x

O
O

X
O

t
d

t
J
u

U
.
g

Q
N

H
M

M
M

Q
-c

a
ca

9
O

p
~

O
H

.
—

—
O

g
«

«
t
u

»
*

I
t
C

Q
K

l
O

O
0

5
-
~

«
<

O
Q

O
O

Q
>

O
5

-
t
o

c
o

•>
•

o
o

0
0

•
-

c
a

o
C

O
C

O
a

c
C

O
td

•<
tl

O
A

+
P

3
—

^
o

•
•

«
»

.
.

a
H

i
a

—
H

i
u

.
•
•

«
^

g
C

O
>

C
O

9
O

C
O

o
C

O
W

N
C

A
C

O

c
o

Q
c
o

O
•
-
I

"
II

<
J

II
J
O

.
N

I
A

O
i
n

O
O

X
—

-
-
X

P
C

o
o

m
r
-

o
9

O
C

O
o

t
o

c
u

I
d

I
d

C
U

II
C

>
C

U
c
sr

C
U

-
c
a

—
-
S

B
r
-

c
o

a
ii

9
O

<
C

N
t
o

.
.

o
u

.
g

_
1

V
-
J

•-I
—

«
N

P
S

—
O

O
o

o

C
O

r
-

.
.

o
r
%

C
N

.
.

0
0

•
•

—
1

O
—

—
O

B
O

—
o

—
»

X
—

•
-

c
a

r
-

C
O

O
c
u

r
-

o
a

A
o

.
.

i
n

i
-
i

g
C

A
H

>
P

C
a

—
«

»
N

U
-

»«1
.—

a
o

s
r>

»
O

O
>

«
^

.
.

<
J>

g
t
d

to
O

O
C

O
II

g
«

N
—

.-
!
>

.•
—

.—
g

C
O

0
Q

r
-

o
H

i
g

II
c
a

r
-

.
.

«
g

O
9

C
u

P
C

—
C

A
—

—
C

A
X

0
3
0

»
g

•
•

o
«

»
o

Q
_

0
0

o
c
u

o
II

o
g

H
i

<
O

9
a

c
a

O
S

—
C

O
0

3
-

a
O

c
o

0
Q

U
l

C
O

o
•
9

H
i

«
*

O
o

a
C

O
<

f
o

H
i

I
d

—
t
d

V
•
•

h
.

p
a

SB
X

—
«

r
-

H
i

9
a

a
s

o
t
o

r
-

o
>
i
l

V
Q

.
.

O
c
u

<
P

"
O

X
•

•
J

C
O

t
d

.
.

•
•

t
d

SB
O

-
c
a

O
r
-

t
d

.
.
o

C
O

H
«

I
O

1
2

.
—

SB
«

O
M

O
H

.
•

<
•->

g
o

—
a

s
o

•
-
•
»

P
S

•
0

3
o

«
»

c
a

o
a

c
a

—
I
d

o
o

J
L

>
t
d

—
•
»

C
N

J
S

3
—

I
N

•
•

O
O

a
a

a
.
.

—
r
-

SB
»

V
T

-
g

•
•

C
O

•
•

Q
O

C
A

—
>

j
<

n
t
d

r
-

•
•

c
a

-
N

O
~

-
•
•

c
n

.
.

o
c
a

C
O

C
O

o
c
o

.
.

C
A

-
H

-
J
L

>
_

d
t

t
d

a
•

•
•—

•
3

C
O

U
,

C
A

g
Z

^
-
-
a

X
«

-
-
-
X

c
a

•
•

11
•
•

g

t
-

a
o

O
0

0
O

>
-
J

C
A

g
T

»
»

O
C

O
a

t
a

t
s
b

•-•C
O

g
•
-
.

-
c
a

—
-
0

3
—

0
0

.
.

o
s

V
C

O
0

V
io

O
O

g
H

>
!>

.
>

c
u

H
>

I
O

O
•J

0
0

«
;

g
P

S
I
d

•
J

r
-

«
N

—
r
-

0
3

—
0

0
SB

o
•J

r
-

a

-*
Q

o
o

O
—

-
-
I
O

g
u

.
J
L

«
sr

S
II

t
-

o
W

«
r
;
O

!
0

Z
+

r
N

—
SB

X
•—

O
J
L

ll
O

H
i

s
C

N
Z

C
M

Z
_

g
_

g
_

IO
g

«r»
A

_
•

c
^

o
td

||
H

>
IV

.
C

O
—

H
i

tl
C

O
«

C
N

N
O

-
IO

•
-

I
O

C
M

I
d

Q
h

.
m

r>
.

t
d

I
d

I
d

I
d

>
*—

g
c
u

o
p

a
.
.

g
V

o
.
—

•
n

K
J
Q

•-J
O

—
.
-
«

>
_

-
.

c
u

•
•

•
-
)

tl
0

3
—

g
•
•

n
a

s
SB

O
B

p
a

•4
g

—
t
d

.
.

r
-

a
.
.

•
—

.
—

V
td

«
«

~
^

^
C

U
C

A
o

C
A

—
•
—

C
A

—
J
2

.
—

-
J

<
••

.o
.

H
i

O
.H

.
H

i
H

i
a

'
—

T
-

»
.
.

g
V

C
O

i-
J

C
A

.
.

>
•

O
V

•
j

o
e
a

«
N

0
3

—
t
o

P
S

X
r
-

•
•

m
J

•
•

H
>

H
C

O
o

«
»

-
H

i
—

I
d

*
J

O
o

O
g

C
O

I
d

C
U

||
0

0
C

O
•

•
—

C
N

SB
D

3
X

—
S

3
-

II
••

•
O

»
r
-

O
•

o
<

•
a

O
H

«
O

-
J

C
A

>
SB

O
r
*

O
l

g
C

O
+

c
o

r
-

O
~

«
o

_
o

_
O

-
c
a

o
o

•
•

g
H

i

x
+

O
c
u

O
-
J

C
M

g
1

2
.

I
d

H
>

•
>

g
H

>
Q

r
*

C
N

Z
<

»
J

O
<

N
O

A
C

U
O

H
i

T
-

••
H

i
•
•

M
P

S
••

r
-

-
J

o
-•

O

>
-
J

•
«

>
•

r
-

C
O

-
>

g
11

g
•
•

O
I
d

—
I
d

«
^

r
o

.
U

i
-
i
C

O
Z

O
.
r
O

IO
—

K
IO

—
—

•
o

r
-

r
-

g

11
11

II
II

II
11

.
.

II
—

*
»

_
1
J
L

—
—

.
•
m

i«
e

•
•

Q
tN

I
d

SB
i-J

—
-

I
O

«
n

J
g

•
a

•
-
.
—

«
»

r
-
*

N
U

«
N

—
•«*•

"
II

o
>

Q
—

1

C
A

i
-
l

c
a

v
»

C
A

C
A

.
.

•J
O

>
H

i
C

A
-
J

O
T

"
c
^

H
i

l^
.

P
C

t
-

<
C

A
—

—
P

S
ii

i
II

_
.
.

—
.

X
X

•
•

g
r
-

II

>
>

>
>

>
H

>
C

O
g

>
«

;
c
n

e
u

^
A

O
^

Q
ja

.
>

c
o

c
a
r
Z

i
^
O

n
r
-

C
I

H
i

•
-

X
H

i
C

A
—

H
i

C
A

t
d

•
J

II
c
a

>
-

g
•
•

r
-

g
O

g
O

g
g

O
<

—
H

i
g

>
•

1
^

-
-4-

C
u

C
N

+
«5

_Q
_

H
>

a
g

a
1

td
g

a
c
u

r
-

g
—

g
P

C
—

g
P

S
«

N
H

i
C

O
r
-

g
a

II
0

0
r
-

o
o

a
<

a
X

II
C

U
c
u

A
•J

H
<

s
C

O
•

U
.

«<
C

O
r
-

a
c

O
c
o

-
^

—
o

O
S

—
0

3
X

~
D

3
r
-

x
O

ll
"

•
-
)

c
o

o
a

u
.

c
u

U
.

O
l

u
.

r
s

u
.

u
.

I
O

O
u

.
O

t
d

u
.

>
z

—
.

II
u

.
«~

II
O

t
d

t
d

II
-

•
—

•
p

C
U

H
i

U
,

«
»

9
•

•
—

p
a

•—
O

03
O

-
0

3
O

1
—

•
I
d

-
J

c
a

•
•

O
O

—
o

—
~

—
I
-
i

b
u

•-•
t
d

g
•
-

Z
U

)
C

O
C

U
~

C
u

«
J

O
p

c
p

s
<

A
_

i
$

—
"
-
«

O
•
•

r
-

c
u

c
a

b
u

c
u

-
-
i
n

c
u

•
-

t
o

g
O

H
.

••
o

u
.

o
o

o
o

o
o

o
O

o
o

o
o

o
o

o
o

o
o

o
o

O
o

o
O

o
o

o
o

o
>

o
r
-

C
N

K
>

«
*

t
o

C
O

H
.

0
0

o
>

I
S

T
-

r
*

•
o

•
»

i
n

c
o

r«
»

0
0

n
o

r
-

«
N

K
>

«
»

I
O

C
O

h
.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

o
o

o
>

o
>

o
>

O
l

O
k

o
>

e
>

o
>

o
o

>
o

o
O

o
o

o
o

r
-

r
-

r
-

r
-

r
-

r
-

r
-

O
sE2

v
.

O
s«
o

O
QC
J

©

F
irst ofall, this true story has a moral to it, so we
might as well get it out of the way now:

"Before going to all the work of
writing a program to do a job,
find out if a Tl Command
Cartridge can do the job for you."

The TI Command Cartridges are well written, almost
totally error-free, and have been engineered for ease of
use by non-programmers. Let's talk about one of these
little jewels:

The Personal Record Keeping (PRK) Command Car
tridge, when combined with your imagination, is a very
flexible and powerful tool. In order to fully utilize this
power, however, your TI-99/4A system should include
a printer. The TI Thermal Printer works well and is prob
ably the easiest and least expensive to use, but I chose
a more expensive route: an Epson MX-80 printer
operating through the RS232 Interface. This gives me a
bit more power (e.g., longer print lines) for the PRK's
report formating. For most applications, you will also
needeither a cassette recorder or disk systemto store your
data files.

Before trying to set up and work with a data file using
the PRK, you should carefully read the manual and all
the examples that come with the cartridge. When you
have done that, take a break, come back a little later,
and do it again. That mild-mannered little PRK manual
contains the answersto questions that will surelypop up
when you start designing the solution to your problem.
So keep it handy!

OK, now comes the real challenge. How do we decide
that a problem can be solved using the PRK cartridge?
First, we must completely describe the problem. Second,
we must break the problem down into subproblems or
tasks. Third, we identify the tasks that can be performed
by the PRK cartridge. Fourth, we see if enough of the
tasks can be handled by the PRK cartridge to make its
use a reasonable solution to the overall problem. The rest
of this article is about such a challenge and a way to solve
it with the PRK cartridge.

And Now For Our Story . . .
Recently I had a customer ask me how much I would

charge to write a program for him. I told him that it is

330 The Best of 99'er Volume 1

Personal

Record Keeping
Managing a Mobile Home Park

difficult to determine until the programiscompleted, but
he could figure on $15.00 per hour for a minimum of
10 hours. At that point, he decided to be brave and tackle
the program himself. Of course, I was curious, so I ask
ed him what he wanted the TI BASIC program to do.

He told me that he was the owner of a mobile home
park. Each month he had to figure out the bill for each
individual renter in the park. He wanted the TI-99/4A
to save him time and decrease the chance for errors. After
thinking over this problem for a minute, I asked him for
details: What did he do to accomplish the job himself?

First,hewalked around to eachtrailerspace and copied
the electric meter and gas meter readings into his
notebook. A computer system could be designed to do
this task but it wouldtake extremely expensive peripheral
hardware. . .

When I asked him what else was in the notebook that
he used for this job, he said that it contained all the
previouselectricand gas meter readings. It also contained
miscellaneous charges for eachrenter, theelectric and gas
rates, and the actual space rental fees. At this point it
was obvious to me that the computer could easilyact as
a notebook and storeall that data on cassette tapeor flop
py disk.

Next, he sat down at his desk with the notebook, pen
cil, paper and a calculator. For each trailer space, he per
formed the following calculations:

GAS BILL = (CUR. GAS METER - PREV. GAS METER) x GAS RATE
+ GAS METER USE FEE

ELECTRIC BILL = (CUR. KWH METER - PREV. KWH METER) x KWH RATE
+ KWH METER USE FEE

TOTAL BILL = GAS BILL + ELECTRIC BILL + MISC. CHARGES
+ SPACE RENTAL FEE

He recorded each of the items in the notebook for

bookkeeping purposes, and then made out a statement
for each tenant. Finally, he figured the total gas bill, the
total electric bill, and the total income for the trailer park.
Of course, the computer could also record all the bill
items, perform the calculations, and make out statements.

After reading the PRK manual a couple of times, I
noted it offered the following capabilities:

1. Maintains files of data in a structured fashion.
2. Allows data additions and updates within the files.
3. Permits mathematical operations on any numerical

data structure or between numerical data structures.

Copyright© 1983 Emerald Valley Publishing Co.

4. Permits all data structures to be sorted in various ways.
5. Permits printing of data structures as reports, lists or

what have you.

After further consideration, I decided that most of the
tasks related to the "trailer park monthly billing pro
blem" could be solved using the TI-99/4A with the PRK
cartridge and a printer.

With my TI-99/4A fired up, PRK cartridge installed,
and manual in hand, 1 started toying around, setting up
the data structure of the file to use on this problem. I
finally settled on the structure shown in Table 1.

FILE STIUCTUtE

c Ksctimm or nt«ITEJI TTPC HII1H K

t space • DM 4 The trailer space «««tur
2twa CHAt IS tar* if tl» trailer wect reater

3 LAST WS KC It 3 T)m prcum aas Mter readi*t

4 CU. CAS KC 11 The cirrcst a,as Mter rcadita

SCAS IATE KC i The cm if the act per in it iiltM

i LAST W. KC 11 Trie preiiiu electric Mter reedinj
7 OR. I* KC 11 The cirrent electric Mter readmo.

9 IATE/WH KC » The cett if the elrctricur per »BH

« c.r. oat KC S > The MMhlr au Mtcr charae
11 CAS TOTAL KC 4 > The cut if ?cs »sed plit tlte «t«- chc-?e
11 E.H. DOE KC » > The M»thlj electric Mier chwae

12 ELEC.TCTL tec b ! The cm if IWH tsed pin the Mter cao.-a<

13 IEKT/IO. KC 6 > The trailer ipace nwtMf rental cm
14 MSe.MC KC ? 2 A«rether charge <»ayie dwsae ti lit...)
IS N). TOTAL KC 8 > Croud tital if 905, «*, rcat, and msc.

TABLE 1

Once a structure has been defined, you can't go back
and change it without redefining the entire file structure.
In order to minimize this problem, the best policy to
follow is to try out the file structure with a small amount
of test data. It is a real pain to spend 4 hours entering
real data into a file and then discover that one oddball
piece of data is too big! By theway, thesmaller you define
the width of a data item, the more data items you can
keep in memory. Asyoucansee, some caremust begiven
to the design of the file structure.

Look at Table 2. It shows my three sample file "pages"
of test data. This is the way the data would look after
putting in the initial values. Now look at Table 3. The
current utility meter readings and any miscellaneous
charges havenowbeenenteredas the trailerpark operator
would do once a month.

At this point, I realized I had to figure out how to use
the PRK cartridge's math transformations. That sounds
pretty ominous, doesn't it? But study of the manual
revealed that it is nothing more than a set of simple equa
tion templates. These are shown on page 25 of the PRK
manual and included here in Table 4. By substituting an
item name for the appropriate A, B, or C in the equa
tions, I built up a set of math transformations to figure
out the electric, gas, and total bills. The PRK cartridge
guides you through this process nicely. The tailored set
of math transformations is shown in Table 5 (in the order
of execution).

Notice that the tailored math transformations set up
the next month's LAST GAS, CUR. GAS, LAST KWH,
CUR. KWH item fields after the current data was used.
This means that next month the user won't have to worry
about moving the old "current" values to the "last"
fields for the next month too. (That ought to get your
imagination working!)

Now for the big test: Run the tailored math transfor
mations on the file of test data and see if it works. The
results are shown in Table 6. It is interesting to compare
Table 6 to Table 3. The comparison better illustrates the
work of these tailored equation templates.

With all the real data in the file, it takes about half
an hour to a full hour to process all the math. Sure, that
is slow, but it is accurate—and the manager can be eating
dinner while the PRK cartridge processes the data. After
dinner, he can start the PRK cartridge printing out a
report for each file page, as shown in Table 6. Finally,
after a nice relaxed dessert or brandy, he can cut apart
the pages of the report and tape them in the appropriate
spot of the form shown in Figure 1. There is a separate
form page for each space in the trailer park. By using
tape only at the top of the little PRK page, he can flip
through previous month's data (since the little pages are
overlapping).

An Automatic Manual Feature
By using the ANALYZE PAGES mode of the PRK

cartridge, you can read the total gas, electric, and monthly
income. After selecting the mode, select 5 SEE ITEM

FILEt RENTALS

DATEl 6/20/81
TITLE: TABLE 2

PAGE * 1 PAGE # 2 PAGE * 3

i,SPACE # A-23 1.SPACE t B-44 1.SPACE # B-45

2.RENTER SMITH>C.W. 2.RENTER JONES,SAM 2.RENTER HEIM,WILLIAM

3.LAST GAS 799972 465 3.LAST GAS 830.592 3.LAST GAS 990498.328

4.CUR. GAS 0.000 4.CUR. GAS 0.000 4.CUR. GAS 0.000

5.GAS RATE .1130 5.GAS RATE .1130 5.GAS RATE .1130

6.LAST KWH 128176 263 6.LAST KUH 18841.212 6.LAST KUH 130392.249

7.CUR. KUH 0.000 7.CUR. KUH 0.000 7.CUR. KUH 0.000

8.RATE/KUH .0231 8.RATE/KUH .0231 8.RATE/KWH .0231

9.G.M. CHRG 2.SO 9.G.H. CHRG 2.50 9.G.M. CHRG 2.50

iO.GAS TOTAL 0.00 IO.GAS TOTAL 0.00 IO.GAS TOTAL 0.00

ll.E.M. CHRG 5.00 ll.E.M. CHRG 5.00 ll.E.M. CHRG 5.00

12.ELEC.T0TL 0.00 12.ELEC.T0TL 0.00 12.ELEC.T0TL 0.00

13.RENT/MO. 98.00 13.RENT/MO. 105.00 13.RENT/MO. 105.00

14.MISC.CHRG

15.HO. TOTAL

0.00

0.00

14.MISC.CHRG

15.MO. TOTAL

0.00
0.00

14.MISC.CHRG
IS.MO. TOTAL

0.00
0.00

TABLE 2

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 331

FILEi RENTALS

DATE! 6/20/81

TITLE! JAttLE 3

PAGE *

"iTsPACE #
2. RENTER

3.LAST GAS

4.CUR. GAS
5.GAS RATE

6.LAST KWH

7.CUR. KWH

B.RATE/KWH

9.G.M. CHRG

IO.GAS TOTAL
ll.E.M. CHRG

12. ELECTOTL

13.RENT/MO.
14.MISC.CHRG

15.MO. TOTAL

TABLE 3

A-23

SMITH,C.W.
799992.46S

800124.732
.1130

128176.263

131002.097
.0231

2.50

0.00

5.00

0.00

98.00
0.00

0.00

ITEM TRANSFORMATIONS
1. A - B

2. A • B + C

3. A - B - C
4. A - B x C

5. A » B/C
6. A n B*C

7. A ° ABS(B)
8. A ° LOG 10(B)
9. A o LOGE(B)

IO. A » EXP(B)
11. A » ATAN(B)
12. A » TAN(B)
13. A - SIN(B)
14. A - COS(B)
15. A a !NT(B)
16. A » SGN(B)
17. A » PI

18. A o RND

(See the User's Reference Guide for a

discussion of these functions.)

PAGE *

"ITSPACE #
2. RENTER

3.LAST GAS
4.CUR. GAS

5.GAS RATE

6.LAST KUH
7.CUR. KWH

8.RATE/KWH
9.G.M. CHRG

IO.GAS TOTAL

ll.E.M. CHRG

12.ELEC.T0TL

13.RENT/MO.

14.MISC.CHRG

IS.MO. TOTAL

2

B-44

JONES,SAM
830.592
891.947

.1130

18841.212

23622.609
.0231

2,50

0,00

5.00

0,00

105.00
»17.50

0.00

PAGE *

1 .SPACE * B-45
2 .RENTER HEIM,WILLIAM
3 .LAST GAS 990498. 328

4 .CUR. GAS 990674 998
5 GAS RATE .1130

6 LAST KWH 130392 249

7 CUR. KWH 134305 045
8 RATE/KWH .0231

9 G.M. CHRG £.50

10 GAS TOTAL 0.00
11 E.M. CHRG 5,00

12 ELEC.TOTL 0,00
13 RENT/MO. 105,0 0
14 MISC.CHRG 0.00
15 MO. TOTAL 0.0 0

TABLE 4

ILORED MATH TRANSFORMATIONS FOR TRAILER PARK SILLING

LAST CAS a CUR. GAS -- LAST GAS

GAS TOTAL 3 LAST GAS X GAS RATE

GAS TOTAL 3 G.M. CHRG + GAS TOTAL

LAST CAS S CUR. GAS

CUR. CAS = 0.000

LAST KUH
-

CUR. KWH -• LAST KUH

ELEC.TOTL = LAST KUH X rtATE/KWH

ELEC.TOTL a E.M. CHRG + ELEC.TOTL

LAST KUH • CUR. KUH

CUR. KUH = 0 .000

MO. TOTAL » GAS TOTAL ♦ ELEC.TOTL

MO. TOTAL = MO. TOTAL *• RENT/MO.

MO. TOTAL s MO. TOTAL • MISC.CHRG

TABLE 5

FILEi RENTALS
DATEl 6/20/81

TITLE! TABLE 6

PAGE * i

1.SPACE # A-23
2.RENTER SMITH,CW.
3.LAST GAS 800124.732

4.CUR. GAS 0.000

5.GAS RATE .1130

6.LAST KWH 131002.097
7.CUR. KWH 0.000

8,RATE/KWH .0231

9.G.M, CHRG 2.50

IO.GAS TOTAL 17.45

ll.E.M. CHRG 5.00

12.ELEC.TOTL 70.28

13.RENT/MO. 98.00

14.MISC.CHRG 0.00

15,MO. TOTAL 185.72

TABLE 6

332 The Best of 99'er Volume 1

PAGE f 2

"ITSPACE ♦ B-44

2.RENTER JONES,SAM
3.LAST GAS 891.947

4.CUR. GAS 0.000

S.GAS RATE .1130

6,LAST KUH 23622.609

7.CUR. KWH 0.000
8.RATE/KWH . 0231

9.G.M. CHRG 2.50

IO.GAS TOTAL 9.43
ll.E.M. CHRG 5.00

12.ELEC.TOTL 115.45

13.RENT/MO. 105.00

14.MISC.CHRG 17.50

15,MO. TOTAL 247.38

PAGE i

1 .SPACE * B-4S

2 .RENTER HEIM,WILLIAM
3 .LAST GAS 990674.990

4 CUR. GAS 0.000

S GAS RATE .1130

6 LAST KWH 134305.045

7 CUR. KWH 0.000

8 RATE/KWH .0231

9 G.M. CHRG 2.50

10 GAS TOTAL 22.46

11 E.M. CHRG 5.00

12 ELEC.TOTL 95.39

13 RENT/MO. 105.00
14 MISC.CHRG 0.00

15 MO. TOTAL 222.85

Copyright© 1983 Emerald Valley Publishing Co.

STATISTICS. Then choose an item—such as GAS
TOTAL—and a display like Figure 2 will appear. The
gas total for the entire trailer park is contained in the
value of SUM. See what reading the manual reveals to
you.

Before getting out of the PRK cartridge, you must save
the data file on cassette tape or floppy disk for next time.
Yes, the math transformations are also saved
automatically at the same time.

Well, that's the story. I guess the only thing to add is
that the Personal Record Keeping Command Cartridge
isn't the solution to all problems. But if you study it and
experiment enough, you will be ready to wield this
valuable and flexible tool when the appropriate situation
arises. So go ahead—give the cartridge a try. I'll bet that
soon you too will be witnessing a "Command"
performance.

MOBILE HOME F>«F*K MONTHLY RECORD

8paca nurob«r __. A~£3

I9&IY«ar ' ^ v"^1

D«C — -— - -«

Nov

UCC ————————

Aug ——————

Jun —

May —

PAGE *

1.SPACE*
2.RENTER

1 JuME.
A-23
SMITH,CW. May —-

3.LAST GAS 80 0124.732
Apr - 4.CUR. GAS 0.000 •i,cw. ~—

5.GAS RATE .1130 ?2.465

Mar — 6.LAST KWH

7.CUR. KWH

131002.097

0.000
Feb - 8.RATE/KWH

9.G.M. CHRG

.0231

2.50

'6.263

Jan — IO.GAS TOTAL

ll.E.M. CHRG

12.ELEC.TOTL

13.RENT/MO.
14.MISC.CHRG

17. 4S

5.00

70.28

98.00
0.00

-15.MO. TOTAL 18S.72 i

94-15. MO . TOTAL 142.

Figure 1.

ITEM srATis'nxs

ITEM = GAS TOTAL

MEAN = 16.44666667

SID DEV = 6.S726S844

MAX VAL = 22.46

MIN VAL == 9,43

SUM = 49.34

DATA = 3

MISSING = 0

Figure 2.

Copyright © 1983 EmeraldValley Publishing Co. The Best of 99'er Volume 1 333

The Small Investor

& the TI-99/4A

A LOOK AT THE

DOW JONES NEWS SERVICE

Information utilities such as The Source and MicroNet
allow any individual with a microcomputer and
modem to tap into a rich vein of information

resources. These databases, however, are aimed almost
exclusively towardthe general consumer population and
as such cannot adequately cover the needs of serious,
small investors. That's where the Dow Jones News Ser
vice(DJNS) comes in: The combination of the DJNS and
the TI-99/4A may be the most significantadvance in in
vestment analysis since the electronic calculator made its
debut. . .

In addition to giving youhistorical stock quotes, DJNS
gives you current-day quotes foralllisted stocks, bonds,
options and U.S. Treasury issues. The DJNS also has
some specialized databases which you can access for in
formation about particular companies, market sectors or
market indicators.

Fora comprehensive review of a stock or industry, the
Media General database provides detailed technical and
fundamental indicators on the item of your choice.

The conservative investor can access the Disclosure On
line database fora profile onmost major companies, plus
a 10-K report that lists almost all the important (to the
investor) information thatcan befound ina corporation's
financial statement.

The Money Market Service database is a new service
introduced by Dow Jones in February 1981. Commen
tary, tablesand graphs on the economy are displayed for
most of the important indicators used in determining the
current business climate. Ofcourse, theever-popular Dow
Jones averages are alsoavailable, as are Trading Activi
ty, The MarketDiary, Market Volume, and manyother
valuable market statistics.

With everything there comesa price tag, and the news
service isnoexception. During thebusiness day(6:00 a.m.
to 7:00 P.M. EST) the charge for news is $1.20 per
minute. After7:00, thisrate isreduced drastically! Until
thenext morning, news canbeaccessed for 20cents per
minute, and historical market quotes for 15 cents. The
start-up fee for the service is $50, but there are no month

334 The Best of 99'er Volume 1

ly charges or minimum on-line times. For high-volume
users there is pricing option A. Under this option, there
is a $75 monthly fee in exchange for lower prime-time
rates during the business day. Pricing option B should
be satisfactory for most individual investors.

[To access the Dow Jones New Sevice and its databases
you will need the TI Terminal Emulator II Command
Cartridge to send and receive the appropriate signals, as
well as the TI RS232 Interfaceand an RS232C-compatible
telephone coupler (or modem).—Ed.]

After news has been obtained on the News Service,
there are really only two things that can be done with it:
(1) it can be kept temporarily, or (2) kept permanently.
News that is to be kept temporarily is best stored on a
disk or printed copy for ease of access and readability.
When keeping news permanently, cassette tapes can be
both cost effectiveand reasonablyefficient, especially if
bought in volume.

For aspects of the service other than news, there are
many different ways to use both the historical and cur
rent quote databases. The historical quotes are available
in eithermonthlyor quarterly format for any given item.
While a weekly format would be desirable, the monthly
quotes can be used to determine most long- and
intermediate-term trends. For the very short-term, one
month of daily quotes is always available. These can be
used to develop a 10-, 15- or 20-day moving average of
prices for the item being researched, and if saved over
a period of time, can be used in any format.

For the novice investor, the Media General database
provides a sufficient amount of both technical and fun
damental analysis. Fundamental analysis refers to infor
mation concerning aspects of a particular company or in
dustry, such as assets, net worth, or earnings. Technical
analysis refers to the study of the chart or graph of a com
pany, industry, or the market in general—in the hope that
past behavior as revealed in graphs can be used
to predict future price movements.

The serious investor may prefer to develop his or her
own analytical tools. One current theory on Wall Street

Copyright © 1983 Emerald Valley Publishing Co.

today maintains that about half of a stock's performance
is due to movement of the market in general, and about
half of the movement is due to characteristics peculiar
to that particular stock. Naturally, anyone who can
predict the movement of the market, even for a short
time, has a very powerful financial tool.

For this reason, my own predilection is for analyzing
the leading market indices. This analysis can be facilitated
by the TI Personal Record Keeping Command Cartridge
(PRK). Each page you set up with the PRK can repre
sent one day, and the first few lines can label the index
to be tracked. The remaining lines can be the 10-, 15-,
or 20-day averages of the aforementioned indices. The
use of math transformations in the PRK cartridge allows
you to compute the average for each of the indices, but
you must enter the average manually with the Change
Page option. The average has a useful by-product which
the PRK computes automatically: the standard deviation.
I have found this statistic to be a good indicator of market
volatility. It too can be entered and tracked with the
average. The ability of the Statistics Command Cartridge
to analyze data produced with the PRK cartridge is a
definite plus. Even though the Statistics cartridge is a
more sophisticated analytical device, and offers more
tools to work with than the PRK cartridge, I do not feel
that it is essential to index analysis—only helpful.

Investors with access to a TI-59 programmable
calculator as well as a TI-99/4A can perform some rather
astounding mathematical computations without a strong
math background. Quotes obtained through the News
Service can be processed in a LeastSquares CurveFit pro
gram detailed in a Texas Instruments publication,
Sourcebook for Programmable Calculators. This will

Copyright © 1983 Emerald Valley Publishing Co.

result in a series of simultaneous equations which can be
solved with either the Master Library-2 program on the
TI-59 or the Math Library-2 program on the TI-99/4A.
In theory, the resultingequation should be a reasonably
accuratedescription of the line from which the datapoints
were taken, and it can be used to predict the future
behavior of the line. Naturally, the number and quality
of the datapoints chosen determine the accuracy of the
predictive equation,and anyconclusion drawn fromsuch
analysis is at best highly speculative.

Fundamental analysis using the TI-99/4A also has
many applications. You can program balancesheet and
income statement analyses, and then compare them to
an "ideal" or average analysis in order to determine the
variances which may reveal the strengths or weaknesses
of a particular companyor industry. The informationfor
these analyses can be found in the 10-K section of the
Disclosure On-Line database of the News Service.

Of course, these are only a few of the applications that
are possible with the TI-99/4A and the Dow Jones News
Service. In the past, this mathematical analysis of the
market and its component stocks was inaccessible or
simply incomprehensible to the small investor. But now,
with the help of your TI-99/4A, it's both possible and
easy to takea sophisticated approach to market analyses.

I would recommend that any investor with a TI-99/4A
computer call Dow Jones on their toll-free number
(800-257-5114 except N.J.) to request their free informa
tion packet detailing prices and services.

Good luck, 99'ers! If this works for you, your only
problem may be writing a suitable income tax program!

The Best of 99'er Volume 1 335

When I started in business, I decided to utilize
my TI-99/4A as much as possible. One of the
things 1 wanted to do with the computer was

to generate customized business forms: purchase orders,
price lists, invoices, and sales orders.

Right away you may be thinking: "He could buy all
those forms ready made. . ." Yes, but that's notchalleng
ing or really as much fun. Not only that, but printing
up custom forms (ones that bear your company name and
address) is not cheap. Around here a minimum order of
triplicate invoices costs about $40 for 500. (And I prob
ably wouldn't use all 500 before wanting to modify the
form anyway. . .). Furthermore, multiplying that $40
figure bythe 12 different forms (including price list pages)
I presently use gives a starting cost of $480! That is almost
enough money to buy an Epson MX-80 printer!

Well, you guessed it: I bought the printer—plus the
serial interface, the RS232 cable, and the TI RS232 in
terface. The whole setupdid costmorethan the original
estimate, but I can write off the added cost as "hobby
money" for now. With the right software I could sit down
at the TI-99/4A keyboard, activatea program that would
prompt me to fill in the blanks of a form that was in
memory, and finally print out as many copies as I wanted
on the MX-80.

I wrote such a program and I called it the Interactive
Forms Generator. It is written in a general fashion to
work with any correctly formated data file. I then made
up a Form Data File for each of my forms. A Form Data
File is just a bunchof ASCII text lines stored in a string
array. Each text line may be written as a DATA LINE
to be printed on the MX-80 or as a COMMAND LINE
to direct the Interactive Forms Generator program.
How Does It Work?

The Interactive Forms Generator (IFG) program asks
questions of the operator via the TI-99/4A screen. IFG
accepts inputs from the operator via the keyboard and
interprets instructions from the Form Data File's COM
MANDLINES. In other words, the IFGprogram works
with you to load your Form Data File, fill out the form,
and finally print it out on the MX-80.

336 The Best of 99'er Volume 1

Interactive

Forms Generator

Let's say I am generating a SalesOrder Acknowledg
ment form to send to a customer. First, I load the IFG
program for diskette (or casette). Second, I type RUN
and hit ENTER. Third, the IFG program asks:

MAKE A CHOICE-

1. LOAD NEW FORM FILE
2. FILL OUT SAME FORM

3. PRINT COPIES
4. TERMINATE

I enter 1 and follow instructions from the IFG program
to load the SalesOrder Acknowledgment Form Data File.
Fourth, the program asks:

MAKE A CHOICE-

1. LOAD NEW FORM FILE
2. FILL OUT SAME FORM

3. PRINT COPIES
4. TERMINATE

?

I enter 2. Fifth, IFG will look through the Form Data
File for the COMMAND LINES. Interpreting the lines,
IFG will prompt me via the screen for the information
needed to fill out the form's blanks. Also, in interpreting
the COMMAND LINES,IFG mayperformsimple math
functions on fields of DATA LINES to calculate tax,
totals, etc. After all the COMMAND LINES have been
used, IFG again asks:

MAKE A CHOICE-
1. LOAD NEW FORM FILE
2. FILL OUT SAME FORM

3. PRINT COPIES
4. TERMINATE

?

This time 1 enter 3 and the IFG program asks:

ENTER NUMBER OF COPIES TO PRINT-

I enter some number and IFG sends only the DATA
LINES of the Form Data File to the MX-80, which does
the rest! See Figure 2 for a look at the completed form
sample.

Copyright © 1983 Emerald Valley Publishing Co.

Boy, isn't that slick. . .just like the big guys—perhaps
a little slower, but that's OK until the business grows to
the point that speed is important. (By the way, for
Christmas I can generate a very long form letter with a
year's worth of family news, then use IFG to fill out a
separate salutation for each relative. So the whole fami
ly gets the latest without my getting writer's cramp! I'll
bet that with your imagination and creativity you will
come up with some other neat applications for IFG,
too. . .)

OK, OK. You want to know how you can make one
of these Form Data Files, don't you? Well then, there
are a couple ways:

Building a Form Data File: Method 1
If you havesomekind of editor programthat will build

an ASCII text string array, you are all set. All you have
to do is make sure it will output the special ASCII con
trol codes used by the printer to do its tricks. It must also
output the Form Data File to cassette or diskette in a
compatible format. Listings 1 and 2 for subroutines
CASSOUT and DISKOUT illustrate what is needed. If
youdon't have an editor program, seeMethod 2, below:

Building a Form Data File: Method 2
This is a real simple—but much more tedious—method

of building the Form Data File.

STEP 1.
Sit down with pad of paper and a pencil. Now design

each character-string line of the form. Use the CHR$
() function to put in the string special codes that can't
be directly entered by a key on the 99/4A keyboard. The
codes can be looked up in the MX-80 (or other printer's)
manual. The samples shown below are: CHR$(27),
ESCape code; CHR$(13), Carriage Return code;
CHR$(10), Line Feed code:

CHR$(27)&"E"&"THE DOG RAN HOME
QUICKLY"&CHR$(10)&CHR$(13)

STEP 2
Now fire up your 99/4A. Enter the following program

lines:

EM

EM

EM

PT

IM

EM

ROG AM

Then enter your character-string lines from paper into
the string array via the TI-99/4A keyboard as follows:

R

A

ME

AS

A

H

S

EM

N

EM
$

2

D

EM

0|W
E

THE C

Copyright© 1983 Emerald Valley Publishing Co.

HARACTER NG

DOG HO

DOG

FO

Now enter the following lines of program code
101 (Ml |M

IiIneIs

CHO

NT

T

EM

M

EM

OU

WR

HO

C

E

C

[NOWl

EQ

GO

0

H|0

2
L

WjE

RO

TH

T

ION

UMB

0W

Finally, enter the two subroutines CASSOUT and
DISKOUT starting at lines 2000 and 3000.

STEP 3.

Type in RUN. You should end up with your own Form
Data File on tape or diskette. This can now be used with
the IFG program,

STEP 4.

Hold it! Don't turn off the TI-99/4A yet! SAVE your
Filebuild program on tape or diskette too. Chances are
you will want to modify that form because of errors or
change of design in the future. OK, now you can turn
off the computer and hit the sack. (Notice that this kind
of work is always done at midnight. . .)

To help clarify the above process, I generated a sim
ple Filebuild program (Listing 3). Note that text lines
A$(l)-A$(13) are DATA LINES and text lines
A$(14) - A$(19) are COMMAND LINES (more on these
next). Data File 2 shows the resulting Form Data File (as
printed by my editor program). Figure 1shows the results
of running IFG using this Form Data File.

KQMPUTAR WORKS

P.O.BOX 483
Figure 1.

143 SUNSET DRIVE
ELECTRIC CITY, WASHINGTON

9*123

SHIP TOb

MR. CHIP BUG6S

9900 SEAMCSS AVE. APT. • 102

ELECTRIC CITY
WASHINGTON

99123

Power to the IFG\
How do we get the Form Data File to tell the IFG what

to do? By making up COMMAND LINES. What makes
a COMMAND LINE special? It must start with these two
characters: !!. What can a COMMAND LINE tell IFG
to do? It can tell it to output a message to the TI-99/4A
display. How? Here's a sample:

!!"THIS MESSAGE WILL BE WRITTEN ON THE
99/4A DISPLAY"

Note that anything between quotes will be displayed.
What about telling it to get something from the 99/4A

keyboard? OK—whenever IFG does this, it stuffs the in
formation obtained into a line of the Form Data File
either right-justified or left-justified. To get input from
the keyboard and stuff it left-justified, use this FIELD
DEFINITION syntax:

The Best of 99'er Volume 1 337

!! :28:1:32: (!!: ilinetl:first charactenlast character.)

To get information right-justified (which is needed for
lining up decimals) do the same except add a **> " sign
after the first ":". Example:

!! :>28:1:32:

By the way, IFG will show you on the display how
much space you have to write in and will let you know
if you overflow.

Didn't I say something about IFG doing math calcula
tions, you ask? Right. You can write COMMAND
LINES to add, subtract, multiply, and divide. Each term
and operator simply must be enclosed in parentheses. A
term may be a FIELD DEFINITION or a constant. Here
are some samples:

!! (:28:1:32:) (*) (.05) (=) (:34:17:24:)
!! (:2:1:4:) (+) (:3:1:4:) (+) (:4:1:4:) (=) (:6:1:4:)
!! (:34:57:68:) (*) (:34:22:32:) (=) (:> 34:70:82:)
!! (12.1) (/) (:2:22:32:) (-) (33.3) (=) (:2:22:32:)

I know what you're probably saying right now: "Wow,
that is really a lot of power! Is that all IFG can do?"
Well, there is one more small thing. You can write a
COMMAND LINE sequence that will repeat a given
number of times. Each time the sequence is repeated, all
included FIELD DEFINITION line numbers are in
cremented. IFG always asks after each repeat cycle if you
want to do another. This last feature makes it simpleto
fill out a form with a multi-line list. Here is a sample
repeat sequence:

!!@10; "stock #?" :28:2:10:
!!"scheduled ship date?"
:> 28:58:62:

!!"unit price?" :>28:65:70:
!! (:28:58:62:) (*) (:28:65:70:) (=) (:> 28:72:79:) @

Listing 1

E

1

EjM
EM

E|M
R

LO

RO

M|U
S

x +

description?" :28:12:44:
28:46:56: "quantity?"

so

0

H UM

338 The Best of 99'er Volume 1

This sequence will start at Form Data File line 28 and
go to line38. Notice the repeat sequence is bracketed by
"@" symbols and the number between the first "@"
and the ";" tells howmanyrepeatcycles. Studythis sam
ple for a bit and figure out what it does. Then you can
look over DataFile 1. It isthewhole Form DataFile pro
duced by my editor program for my Sales Order
Acknowledgmentform. Figure 2 shows the results of run
ningIFG with the Sales Order Acknowledgment Form
Data File. The above repeat sequence is from lines 60-62
of that Sales Order Acknowledgement Form Data File.

KOMPUTAR MOPtKO Rgure 2,
P.O.Box 483

Elactrle City
Wadilngton

T»IJ3

lOOvl 433-2433

B«LEB ORDER ACKNOWLEDGEMENT

Data- APRIL 1 IVQI 0.0 .numbmr- oooi

Bold to- MR. CHIP BUOGS
APT. • 102

WOO SEAHOSS AVE.
ELECTRIC CITY
NASHIN3TON 97123

Shi P to- SAME
SAME

Ship via- U.P.B. BLUE LABEL

Stock a ! Daacrlptlo !Schaduladfduan-'Unlt 'Aaount
'•hip tfata'ttty 'price1

PKC0O4 !TI 99/4 HOME COMPUTER CONSOLE
PHA2O00 !DUAL CASSETTE CABLE
PHA4I0O MO" COLOR MONITOR
PHA2403 •BLANK OVERLArS (4 PACK1

'03-2-UI ' t '49V.Oft' 497. <t«
IOS-2-01 • 1 • II.iw ||..k
•03-2-0! • 1 '327.98' 7.27.MO
•04-2-01 • 2 • s.4b' |.v.

I ni l» IX ««r. bMHr •nrl « M>- MmtlilH
• m CMtt «•»..... U Mi ipM tW art*

SUBTOTAL - B-.'J

TAX - 4&

FREIGHT - <X<
TOTAL •* evr

Finally, Listing 4 is the Interactive Forms Generator
program. I recommend loading it without all the com
ment lines to save memory. If you use the disk drive
system, you should useCALL FILES(l) and NEW prior
to loading IFG. That will give space for about a 70-line
Form Data File.

Listing 2

E

U

EM

e[m
F

EM
R

0

R

E

RO

WH

D

F

MU

S

3

AIM

1

H

AM

AM

Copyright © 1983 Emerald Valley Publishing Co.

LFCR

LFCR

LFCR

LFCR

LFCR

LFCR

Data File 1
1 ESCFESCHDC4BC2LFCR

2 SISOESCEESCS K0HPUTA8 KQRKSLFLFCR
3 P.Q.Boi 483LFCR
4 Electric CityLFCR
5 KasbingtonLFCR
4 99123LFLFCR
7 (509) 633-2433LFLFIFLFCR

8 DC2BC4ESCrESCJIFCR

9 SOESCE SALES ORDER ACltK0W.ED5EKE)ITLFlRFCR

10 ESCFSISODate- S.O.Baiaer-CR

11 DC4DC2

12 LFCR

13 SISOSold to- Ship to-CR

14 DC4DC2

15 HT

16 HT

17 HI

IS HT

19 LFSlSOShip via-CR
20 8C«0C2

21

22 SISOStock

23 DC4DC2

24 SISO

25 5C4BC2

26 DC40C2CR

27 *•*

28 HT

29 HT

30 HT

31 HT

32 HT

33 HT

34 HT

35 HT

36 HT

37 HT

38 ***

LFLFCR

Description Scheduled Quia- Unit AtauntCR

ship date tity pnceCR

39 SISO

40 DC4BC2

(1 SISO

42 0C4SC2

43 SISO

44 0C40C2

45 SISO

16 DC4SC2

47 ESC3:KULCR

(8 VTSIThank you lor the order. Retctber 'cord of louth' advertising LFCR
49 keeps our costs dom So help spread the wrdlLFCR
50FFCR

51 !!'SALES ORDER ACttfflOIDSBIEmFLF' LFCR
52 !!'dite?' :ll:il:30: 'S.O. nucber?' :11:S5:64:CR
53 '"sold to?' :14:14:37: 'sold to address liaes*4LF'CR
54 M'address 11' :1S:13:36: *iddress!2' :16:13:36:CR

!'address 13' :17:13:36: 'address 14' :18:13:36:CR
1'ihip to?' :14:52:76: 'ship to address lines=4LF'CR
!'address II' :15:51:75s 'address 12' :16:51:7S:CR
!•address 13' :17:51:73: 'address 14* :18:S1:75:CR
!'shiA via?* :29:1S:S4:C8

SUBTOTAL «CR

TAI -CR

FREIGHT *CR

TOTAL «*CR

60 !!J10j 'stock I?' :28:2:10: 'description'' :28:12:44:CR
61 '^'scheduled ship date?' :28:46:56: 'quantity?' :>28:58:62:CR
62 "'unit price?' :>28:65:70: t:28:58:62:)<tH:28:63:70:)(*)l:>28:72:79:l SCR
63 !! 1:28:72:79:) (♦) 1:29:72:79: mH:30:72:79:)(+) 1:31:72:79:) (*)CR
64 :11:32:72:79:)(♦)I:33:72:79:)(+>I:34:72:79:)(*)(:35:72:79:H»)CR

65 !! l:36:72:?9:ll*H:37:72:79:)l*H:>40:73:80:)CR

66 il'tas rate (ie: .0544)?' :42:73:80: !:40:73:S0:)(1)1:42:73:80:)OCR
67 !' (:)42:73:80:) 'freight charge?' :>44:73:80: 1:40:73:60:1(»)CR
«8 !! 1:42:73:30:>(♦)1:44:73:80:1(*I(:>46:73:80:)CR

Data File 2
1 ESCESiSOKGhTUTAft WRKSLFCR

2 F-.0.80I 483LFCR
3 143 SUKSET WIVELFCR

4 ELECTRIC CITY, KASHIN6TOKIFCR
5 99123LFCR

6 IFLFLFLFLFCR

7 SO SHIP T0:LFCR

8 LFCR

9 LFCR

10 LFCR

11 LFCR

12 LFCR

13 LFLFIFLFLFCR

14 M'SHIrrMKLABEUFlF'CR

13 M'CUSTfBffR RA«':8:33:70:CR

16 »!'STREET ADDRESS':9:33:70:CR

17 !!'«TT':lO:35i70:CR

18 !!'STATE':11:35:70:CR

19 !!'IIPCD8€':I2:40:60:CR

Copyright © 1983 Emerald Valley Publishing Co.

LFCR

LFCR

*LFCR

LFCR

LFCR

LFCR

LFCR

LFCR

LFCR

LFCR

LFCR

LFCR

LFCR

«LFCR

LFCR

LFCR

LFCR

LFCR

Listing 3

EM

EM

T

M

EM

EM

M

S

$

)
$

4

$

$

EM

EfM
S

E|M|
1

R

R

R

N

EM

EM

E

1

M

E|X

NOW

C

K[OM

M|A
N

BlUll
NG

F|0
R

$

T

0

3

EC

CH

•WR

c

<

GlO
M0

low

Wo

X

p|r!oIg
"L"

HA

HO

S

MIE

RO

RA

WA

UM

IOl

NG!

C|H

(1

TlO

R

TO

NG

4

OME

CO!

3

:CH

AM

RE

3

(

:h

low.

UMBl

The Best of 99'er Volume 1 339

EM

RII

0

R

EX

LO

ET

EM

EM

EpM
R

N

F

R

N

F

1

EM

e|m
F

EtM

E

LIO
e|t|u[r

ROU IN

NVH

M|U
S

IT

1

H

ame

&

E

H

AM

This program (Listing 4) scans the file for lines that start with
!!. Then these Interactive COMMAND LINES are parsed for four
types of commands:

1. Comments or messagesto prompt the interactive
user. This typeof command is in the form of text preced
ed by a quote and followed by a quote.

2. Field-definition type commands define the physical field
into which the user's keyboard input will be stored. The
field has the form—
:<line number>: <start position >:
<end position>: Example— :23:5:22

A Sample COMMAND LINE is:
!!"Enter the serial number—" :19:7:22:

3. Repeat Command Sequence starts with—
!!@<Numeric Value>:- and must end with a @.
Everything in between will be repeated the numberof
times specified by the numeric value. A sample might be:
(Line 20) Serial Number— Model—
(Line 21) Serial Number— Model—
(Line 22) Serial Number— Model—
(Line TQ ""Fill in the table values that follow:"
(Line?+1) !!@3:"Enter serial number;" :20:15:24
(Line?+2) !!"Enter the model number:" '20'31'40' @

4. Math Transformations are made up of terms and operators.
Terms may be Field-definition or constant types. Operators

unit /iitt it
and "-". All terms and

operatorsmust each be enclosed in parentheses.
!!(:23:5:22) (*) (.0544) (=) (:> 23:17:35:)

Note the ">" in the last term which causes the answer to
be right justified in the field.

The IFG program issetup for use with an EPSON MX-80 printer
connected as device:

"RS232.CR.EC.DA = 8.BA = 9600"
If you are using a different baud rate, the OPEN statements for
the printer on line number 1380 must be changed.

You can useadifferent RS232 printer with theIFG program but
first check lines 190-360 to make sure these character sequences
arecompatible with your printer. Especially check RESETEPSON,
which initializes the printer.

340 The Best of 99'er Volume 1

Listing 4

EMI

GH

A[MP
E

p

Mil

MU

D

EQ

NO

EM|
A

R

R

R

R

R

R

R

N

F

2

PR

GO

ON
GO

EM|
UT

A

X

L0

ET

EM

RI

N

F

0
R

N

F

$

P

N

A

N

FOR

$
0

A

S

A

P

IMA
$

$

P

IN TE

SO

R|0W|$
$

N

E

MA

CO

GO

OA

RJM

R0 ME

D

L

NT

RtM I

HO

EW

OU

CO

NA

AG

RM

AME

EW F0 RM

F

IWH

ROM D

D

NO

AME

A|ME
AIM

NO

RM

AM

Copyright © 1983 Emerald Valley Publishing Co.

IMA
CA

TE

FO

M=

EM]
F

L

EM

F

RE

EQ
RE

MA

S

M

U

P

X

E

P

P

EM]

EM

>>

GO

1 =
GO

F

R

T

F

E

SI

K

TO

P

|M
>

S

N

GH

+

U

0

P

GO

GO

GO

1 =
GO

F

0
EM|
>

F

MiO
F

G|0
E

T|0
EA

M

EM

A

R

E

T

E

1Mb

MA

TO

A

IQUO

X

COMMA

GO

CO ON

AM

3

>>

EQU

H

>

EN

S +

MA

GO

GO

NO

M

EA

TO

SO

EG

A

N

TH

SU

MlA

S

E

AME

L

AM

ROlU

1

1

TH

RO

CO

S

UJMIB
T

Copyright © 1983 Emerald Valley Publishing Co.

F

k>k>
RM
S

PO

COM

EA

COMME

IG ROW

MA RM

AMP

CO

COMM

P

P

ClOMM

GO

R

EM

R

GO

P

[M

0
g|o
F

GT

GK>
E

F

)
K

TE

GO TO

M

D

CO

GO

COMM

= Q UO
(

TE

HE

)
C|OMM

E

Ml

COMME

X

T

EL

ST

EG

CO

GO

M

MA

GfO
>

TO

>

(
1

6

RMlS

RO

6
d|=p
RMS

PO

RM

EG

IOC
A

ROC

BA NG

ROO

NG QUO

) =

RM

EQ

RO

IGH TAR

TfOjO
THO

LO

LO

IAME'

NG'

ROW!

))
0

n|g
L

RM

RM

RM]

21

D

H

>

191

Al

0

TO

2

The Best of 99'er Volume 1 341

52

GO

TE

GjO
K

T

g!o

N

GH

+

a

s

KN-
RM

TO

GO TO
EM

>>

F

GO

EN

T

K

T

I

T

A

g|o
A

N

F

I

N

T

F

T

I

E

T

GjO
F

E

EMP
GO

F

EMP

TOGO

F

S

E

GO

R

N

G(0|T|0

D

D

0

D

IlGN
TO

GN

0
i =

:rm

RMS

E

E

E

CO

0
E

RM $ =
RM =

r[m=
T

F

5

RM

3

RM|=
3

A

RMS

CO

MP

TO

RMj
3
MA

RM

MA

E

1

RM

MA

NOW

RM +

RM-

MU

RtM]

IV

RM

TO

GH

LON

E

SLO

[MA
0

MA

RM]

RM

RMS

RMS

342 The Best of 99'er Volume 1

OWS

RM

RM

2

RM

H

R[Ml

N

RM

F

NO

R

GO

FO

E

E|M
F N

GH

L

S

RfM
RMS

N

T

L

MIA
U

E

S

E

E

E

RM

NO

EMP

|G|0
T

RM

EM

+

TO

EMP

RMS

RMS

S

6
E

E

T

S

E|G

N + 1

PIOS
EG

PO

EG

N +

n|o
R

D

E

F

RO

NO

RM

r|m
T

MA

PO

RMS

RM

MA

$

$

MP

RO

RM RO

RM

NO

TO

TO

CO LO

CO

NG

NG

D +

BA

LO

CO LO

CO

EG

RM

RO

Copyright© 1983 Emerald Valley Publishing Co.

Getting
D O

W
N

to Business

Risks and Benefits

You don't need to be reminded that microcomputers
are having more than a micro impact on business.
If you are reading this, it is because you would like

some of that impact to benefit you. In this seriesof articles,
we will explore some of those benefits and show you how
to incorporate them in your business or professional work.
They willbe at least partly cautionary—written to try to keep
you out of trouble. And don't expect only success stories.
After all, failures can be most instructive. . .

Planning Use vs. Integrated Use
It is important to distinguish between two major and very

different categories of business and professional use of the
computer. The first I will call planninguse. This category
includes a lot of activities that are helpful to business and
professional people. Applications in this category tend to
be analytical or evaluative. They need not be done on a
regular basis, but can often be a dramatic help in charting
future direction and improving the profitability of a
business.Some applications require rather little in the way
of input data and are essentially projections; others analyze
whatever body of historical data that might be available.
Some common examples are the following:

• Comparisons of ROI (Return On Investment) for the
various options.

• Interest calculations (e.g., effective interest rates on
installment loans).

• Profitability analyses for comparing charges and costs of
providing various services.

• Lease vs. purchase analyses.

The second category of use is what I call integrated use.
This category includes a lot of functions that support a
business on a minute-to-minute or day-to-day basis. These
are, for example:

• Maintenance of inventory records.
• Preparation of invoices,orders, servicecontracts, bills,etc.
• Accounts payable and accounts receivable.
• Maintenance of customer or mailing lists.
• Payroll records.
• General ledger and other accounting records.

Copyright © 1983 Emerald Valley Publishing Co.

The potential benefits to your business of applications like
these are enormous. But then, so are the risks! Before you
allow your business to become dependent on a microcom
puter (or any other computer) and set of computer pro
grams, there are a number of steps you must take to
safeguard it against the small and large catastrophes that
could be (at the least) a major setback for you. This is not
to discourage you from integrated uses, but rather, to en
courage you to be very careful about implementing them.
[You should also look at "Murphy's Law," which has some
steps we recommend you take to protect yourself against
this ubiquitous and insidious law: "If anything can go
wrong, it will!" It may apply (and indeed has applied-
more frequently than most would care to admit) to in
tegrated computer applications.—Ed.]

A good place for you to start using the power of your
microcomputer is in planning applications. They don't re
quire extensive systems of programs or comprehensive
detailed business records. They don't need to be done at
any given moment, at peril of disaster to your business. And
you don't have to chase down some itinerant programmer
or software house to update your program upon change of,
say, some federal tax formula—again, at peril of disaster.
Furthermore, you can implement some planning applica
tions yourself, without extra software, disk drives, exten
sive data files, or a lot of time.

Projections: A Planning Use
Perhaps you've heard the story of the wealthy Indian

maharajah who was challengedto a chessmatch by a shrewd
foreign merchant. The merchant put up one hundred gold
coins as his part of the wager, but only asked for rice if
the maharajah lost the game: one grain of rice on the first
square of the chessboard, two grains on the second square,
four on the third, eight on the fourth, and so on. The
maharajah was amused and somewhat skeptical that the
merchant would ask for only a few grains of rice, but never
theless accepted the challenge. Naturally—or there would
be no point to the story—the maharajah lost. And as the
prize was being paid, the full impact became shockingly
clear: So much rice did not exist in the world! And even
if it did, the immense wealth of the maharajah could have
paid for only a tiny fraction of it. . .

The Best of 99'er Volume 1 343

You are not often confronted with this type of wager.
But you do have opportunities to evaluate, just as the
maharajah should have. A computer can help you to pro
ject events into the future, vary the assumptions and tabulate
the projected results. Using a computer program, you can
analyze a much more complex situation than you would be
willing to do with just a pencil, calculator and paper. You
can change your assumptions and let the computer
recalculate and reprint the projections, and thus gain much
more understanding of the consequences of various con
tingencies as you play what is essentially a game of "What
if. . . ?" As an extra benefit, consider this effect: The
necessity of making clear and explicit assumptions usable
by the computer may force you to think more clearly and
objectivelythan you might have done otherwise. (I wonder
whether baseball clubs would pay as much for some of their
benchwarmers and stars if they evaluated the consequences
and contingencies objectively.)

A Program Outline
Perhaps the best thing about a projection program is the

ease with which you can write it yourself in BASIC. The
fundamental tool is a two-dimensional array. If you thought
anythingconnectedwith arrays was necessarily complexand
difficult, please read on. You'll soon discover that an array
application can be a lot easier than you imagined.

An array is nothing more than a table in computer
storage; a two-dimensional array has rows and columns. We
must assign meaning to each, and write our program to
honor those meanings. In a projection program, I let each
column represent a year (or month?). If the problem re
quires, I let the numbers in the first column represent in
itial values, investments, or costs; the numbers in the last
column represent residual values, or perhaps totals over all
years in the projections. Each row represents a significant
quantity that we want to project over the time span.

12 3 4

1981 1982 1983 1984

1 Rents

2 Vacancy loss

3 Gross revenue

4 Property tax

5 Insurance

6 Interest

7 Maintenance

8 Management

9 Depreciation

10 Gross expenses

11 Net income

Figure 1. Use of a Table for a Rental Projection

Figure 1showsa simpleprojectionof a rental operation.
There are four columns in the array; they represent 1981,
1982, 1983, and 1984. Each row represents a quantity
necessary to the projection of rental results. The array can
be declared in BASIC by:

60DIMT(11,4)

A BASIC program can refer to any number in the array:
For example, to refer to the maintenance expense in 1982
we refer to T(7,2).

344 The Best of 99'er Volume 1

1. Set initial (1981) values
2. FOR each additional year compute the projected values
3. FOR each row of the table PRINT a row of the table

Figure 2. Outline of a Projection Program

The outline of the program is shown in Figure 2. Let us
examine each of the steps of the outline and show how it
would be programmed in BASIC. A bunch of LET
statements takes care of the first step. If rental income for
1980 is projected to be $20,000, with a vacancy rate of 5
percent, property tax of $3200, insurance or $700, etc., the
first several BASIC statements would be:

1010 LET T(l,l) = 20000
1020 LET T(2,1)=.05*T(1,1)
1030 LET T(3,1) = T(1,1)-T(2,1)
1040 LET T(4,l) = 3200
1050 LET T(5,l) = 700

These illustrate several ways of assigning values:

• directly as a given number (as in statements 1010, 1040,
1050);

• as a multiple of another number (as in statement 1020)
• as sum or difference of other numbers (as in statement

1030);

It will be clear from your application how to assign each
of your values.

10 EM

AM

EM

EM

M

E|M
T

E

EtM]

SKEL

OtVS

E

UMN

TO

MS

RO

ON

COME

OG

OR

S

The second step of the program is probably the most com
plex. The idea is to march across the table, usually deriving
each number from the one to its left—that is, from the cor
responding entry for the previous year. However, some of
these entries, too, will be multiples, sums, or differences of
other numbers in the same columm. We can use the BASIC

statement FOR to good advantage here; it easily specifies
a repetition for each year. In our rental example, these
statements could be:

2000 FOR J = 2T0 4

2010 LET T(1,J) = T(1,J-1)*1.08
2020 LET T(2,J)= .05*T(1,J)

Copyright © 1983 Emerald Valley Publishing Co.

2030 LET T(3,J) = T(1,J)-T(2,J)
2040 LET T(4,J) = T(4,J-1)*1.06
2050 LET T(5,J) = T(5,J-1)*1.10

2200 NEXT J

These statements reflect assumptions that:
• Rental income increases at an 8% inflation rate.

• Vacancy continues at 5%.
• Property taxes increase at only (!) a 6% inflation rate.
• Insurance costs increase at a 10% inflation rate.

If you are not sure how all this works, take out your pencil
and, for J with a value of 2, play computer by filling in
numbers in the table yourself as the computer would.

Note how all the assumptions are built into the program;
each one can be changed at will. You should, in fact, change
several, and re-RUN the program several times in order to
see the effect of each of your assumptions. This is sometimes
call sensitivity analysis, but don't let big words scare you.

You may also use the full capabilities of BASIC for
special situations. For example, we might project that in the
third year, the property will be annexed to the city and taxes
willgo up 30 percent instead of 6 percent. We could replace
statement 2040 by:

2040 IF J = 3THEN 2047

2043 LET T(4,J) = T(4,J- 1)*1.06
2044 GOTO 2050

2047 LET T(4,J) = T(4,J- 1)*1.30

Getting
D

o
w N

to Business

In the first section, I defined two categories of com
puter applications for business: (1)planning—concerned
mostly with projections, and not having to be done at
particular moments at peril to a business; and (2) in
tegrated use—applications such as invoices, accounts
payable and receivable, mailing list maintenance, general
ledger, inventory, or others upon whicha business crucial
ly depends at particular times. In this article, we'll ex
plore some of the implicatons of integrated use.

Programs for integrated use are likely to be rather ex
tensive. After all, most such applications involve
organization and management of significant quantities
of data. This means that the programs must help you with
the data entry, help you monitor the validity and correct
ness of the data, and help you update the data. The pro
grams must also be able to retrieve data for processing,
summarizing, and answering inquiries. Depending on the
application, the programs may also have to generate con
trols for audit purposes, and provide tax reports.

The programs for an integrated use application must
be well-designed and form what we would call an infor

Copyright © 1983 Emerald Valley Publishing Co.

Also, suppose that in the same year we expect to have to
put on a new roof for $8000; this is a maintenance expense,
but one in addition to the regular budgeted maintenance.
And unlike the taxes, the extra maintenance does not con
tinue into 1984. We may use another form of the multiplica
tion here:

2070 IF J = 3 THEN 2077

2073 LETT(7,J) = T(7,1)*1,08 (J-l)
2074 GOTO 2080

2077 LET T(7,J) = T(7,1)*10.8 2 + 8000

In the last step we display the table. The print-out can
be prettied up with column headings, a description of each
row, and other features. A bare-bones approach is suffi
cient, really, and could look like this:

3000 FOR K=l TO 11

3010 PRINT K,T(K,1),T(K,2),T(K,3),T(K,4)
3020 NEXT K

This segment prints the four numbers of each row of the
table on one line, so the table appears on paper just the way
we have been thinking about it; each row of numbers is
preceded by the row number (K), which at least helps you
to identify and keep track of your output.

Listing 1 gathers these program segments into one
skeleton. With this as as guideline, you should now be able
to sit down and develop your own useful projection
programs—applied to sales, production, commissions, or
whatever else you need.

Evaluating a
Software Package

mation system. To develop such a system takes a substan
tial amount of work probably several months, if not
years, of programmer time. If your application is small
enough for you to think about doing it on a TI-99/4A
or other micro, it would be quite a mismatch of invest
ment for you to pay for even six months of a program
mer's time to develop a system. Therefore, you will want
to buy a system that is already developed, packaged, and
ready to install and use. You actually have a better chance
of getting a good working product by buying a package
than by having it done to your specifications by a
programmer.

OK, you're in the market for a package. Besides cost,
the most obvious criterion is whether a proposed package
will meet your needs. Now is the time—even before see
ing the details of a proposed package—to make yourself
a checklist of the features you want your package to in
clude. List each processing action that you think necessary
in your system. Consider the data elements you think
would have to be stored and related to each other in order
to provide the information you will need at any given mo-

The Best of 99'er Volume 1 345

ment. If done in a detailed and comprehensive way, this
would be close to what we would call a systems analysis
of your application.

Great detail and comprehensiveness are not needed; the
idea is to give you a starting point for judging the ade
quacy of a package you may be offered. You will prob
ably find that a particular package is organized differently
and operates differently from your outline. There's
nothing wrong with that. Concentrate on the results pro
duced and whether they are appropriate: Does the pro
posed package provide the information you consider
essential? Then, of course, you can also judge whether
the proposed package is convenient or awkward, and flex
ible or rigid.

A second suggestion is to talk to other users of the pro
posed package, and get their opinions of the package's
strengths and weaknesses. You may be surprised how will
ing other users are to share their experiences. Even if you
have to phone a couple of users long-distance, it will be
well worth the trouble and cost.

You should not expect your needs in an information
system to always remain the same. Your business changes;
auditors make new demands; federal or state regulations
change. This is where flexibility of a system comes in.
Chances are that there will come a time when you will
want your system to do something it was not designed
to do. Then, you will need help in modifying the system.
The supplier of the package is in the best position to know
how to modify your system. But will he be around when
you need him? Find out whether the source program is
supplied and accessible to you. If it is, then you have a
chance of getting someone near you to modify it when
needed. Try to find out from the supplier and users how
much trouble a minor modification would be. You may
not be able to trust an answer you get absolutely, because
judging how hard it will be to modify a program is dif
ficult, but this is the best suggestion I can make.

In the next section I will review some business-related
software. This will provide an opportunity for some more
specific suggestions about the analysis of a package.

Now let us turn our attention to something more
tangible—a program that should be of practical use to
many of you.

Effective Interest Rate or Return On Investment
Suppose you have an opportunity to buy an investment

for $1500. The investment is expected to pay $140 at the
end of each of the next five years, and at the end of five
years return a lump sum of $2000. What is the effective
interest rate or total yield on this investment? Or, put
another way, what is the return on this investment? This
problem can be stated in terms of capital in your business:
If you invest some amount in a certain piece of equip
ment or in a higher level of inventory or. . . ,you expect
some estimated improvement in revenues. What is your
expected return on this investment?

Since you have many opportunities and a limited
amount of capital, you need to compare the expected
rates of return on each of several opportunities in order
to be able to make the best decision. Of course, there are
usually intangible benefits, as well as variations in the
risks of different investments. A return-on-investment
calculation is, therefore, not the only—or necessarily the

346 The Best of 99'er Volume 1

deciding—criterion in your decisions. Nevertheless, it will
certainly provide valuable input in your decision-making
process.

The program presented here is a relatively simple one.
I define a component of the investment as one or more
payments of equal amounts made at regular intevals. An
investment will have two or more components; they are
the main input to the program. Each component is
described by:

(a) the amount of each payment (there may be only one).
(b) the time at which the first of these payments is made.

Time is measured in months from the current mo
ment, which is understood to be time zero.

(c) the number of months between payments. This is
irrelevant if there is only one payment in a compo
nent, but we require a number anyway.

(d) the number of payments in this component.

For instance, the example above includes three
components:

(a) (b) (c) (d)
1st Component 1500 0 1 1

2nd Component -140 12 12 5

3rd Component -2000 60 1 1

Note that the investment amount is given as a positive
number, but the returns on the investment are given as
negative numbers. The second component represents the
five annual payments (12 months apart) starting 12
months after the current time. The first and third com
ponents represent single payments: the initial payment
and the final payoff after five years (60 months).

The program makes provision for up to ten com
ponents; the number of components is the first input the
program asks for.

The program strategy is to compute the residual pre
sent value at one interest rate higher and one lower than
the effective interest rate. We use an interpolation for
mula to produce a better estimate of the effective interest
rate, then narrow the range of possible effective interest
rates, and repeat the process. The program stops when
the residual value is less than some fraction of the total
of the numbers used in computing the residual value, or
when the range of possible effective interest rates is less
than some tolerance. There are four parameters set in
statements 200-230 of the program that you may want
to change, depending on your requirements:

U9—starting upper bound for effective interest rate, set
now at 30%.

L9—starting lower bound for effective interest rate, set
now at 0%.

T9—tolerance for range of effective interest rate, set now
at .05%. When the possible range is less than this,
we conclude you have the rate closely enough.

P9—tolerance for residual present value, set now at .0001.
Because of round-off error during the calculations,
this tolerance should not be reduced much below
this value.

Copyright © 1983 Emerald Valley Publishing Co.

Figure 1
ENTER NUMBER OF PAYMENT COMPONENTS? 3

ENTER AMOUNT OF PAYMENT? 1500

ENTER TIME OF FIRST OF THESE PAYMENTS? 0

ENTER PERIOD BETWEEN THESE PAYMENTS, IN MONTHS? 1
ENTER NUMBER OF THESE PAYMENTS? 1

ENTER AMOUNT OF PAYMENT? -140

ENTER TIME OF FIRST OF THESE PAYMENTS? 12

ENTER PERIOD BETWEEN THESE PAYMENTS, IN MONTHS? 12
ENTER NUMBER OF THESE PAYMENTS? 5

ENTER AMOUNT OF PAYMENT? -2000

ENTER TIME OF FIRST OF THESE PAYMENTS? 60

ENTER PERIOD BETWEEN THESE PAYMENTS, IN MONTHS? 1
ENTER NUMBER OF THESE PAYMENTS? 1

RESIDUAL PRESENT VALUE

RESIDUAL PRESENT VALUE

RESIDUAL PRESENT VALUE

RESIDUAL PRESENT VALUE

RESIDUAL PRESENT VALUE

RESIDUAL PRESENT VALUE

RESIDUAL PRESENT VALUE

RESIDUAL PRESENT VALUE

RESIDUAL PRESENT VALUE

EFFECTIVE INTEREST RATE

IS 13.48053936

AT0%IS -1200

AT 30% IS 731.7656652

AT 18.63580073% IS 290.8235145

AT 15.00040794% IS 93.29345296

AT 13.91833345% IS 27.69506322

AT 13.60435554% IS 8.02691232

AT 13.5139594% IS 2.310160891

AT 13.48799321% IS .6635205027

AT 13.48053936% IS .1904640003

COMPOUNDED MONTHLY,

Figure 1 shows a transcript of the execution of the pro
gram with the sample data given above.

Note that the program uses a subroutine starting at line
720; a parameter R is supplied to the subroutine, and
parameters V and V3 are returned. If you have Extended
BASIC, you can make these parameters explicit in the
subroutine call. You can also rephrase some of the con
trol structures using IF-THEN-ELSE and multi-line
statements, and make the program much more readable.
I leave this for you to explore.

Lease vs. Purchase Analysis
Quite complex programs are available to determine

whether leasing or purchasing some piece of equipment
is more advantageous. The effective interest rate program
can be used for lease vs. purchase analysis, though it re
quires you to do some side calculation. One method of
the analysis would be essentially to calculate the return
on purchasing the equipment and leasing it back to so
meone else. You would include:

• cost of purchase(+)
• tax benefits from claimed depreciation (-)
• lease payments (-)
• maintenance cost, if maintenance is provided under the

lease (+)
• any difference in insurance or other costs between

purchasing and leasing (+ or -)
• expected cost of purchase at the end of lease period (-)

or trade-in value at the end of lease period (-)

The rate of return indicated by this analysis can be com
pared with your borrowing cost, and the comparison
would give you an indication of whether purchase or lease
would be more advantageous to you.

As a small example, suppose you are going to get a
widget-grinder. You can buy it for $12,000, or lease it
for three years at $300 per month. No maintenance is in
volved, and the insurance cost is the same under lease
or purchase. You expect that after three years you would

Copyright © 1983 Emerald Valley Publishing Co.

need to trade this one in on a larger model. If you buy
it, the trade-in allowance will be $6000. Assuming that
either depreciation or lease payments would cost a net
of only 60 percent of the actual amounts because of an
assumed 40 percent tax rate, the input to the program
would therefore be:

1st Component
2nd Component
3rd Component
4th Component

(a) (b) (c)
12000 0 1

-1200 12 12

-180 0 1

-6000 36 1

ML
1

3

36

1

If you want to check, this example gives an effective in
terest rate of about 14.1%. Presumably, it would be ad
vantageous to purchase the widget grinder instead of leas
ing it.

Effective Interest Rate Program:
Table of Variables

Al: amount of
component*

TI: time at which the first payment of that component
is made (in months, from current time = 0)

Fl: number of months between the payments in this
component

Nl: number of payments in this component

Arrays:
each payment in an investment

*An investment component is a series of one or more equal

payments made at fixed intervals. Payments may be paid out
(+) or received (-).

Parameters:
U9: upper limit for effective annual rate

L9: lower limit for effective annual rate

T9: tolerance: when the interval between upper and
lower limits (LI, Ul) is less than this, the pro
gram stops

U9: tolerance—when the residual present value at a
trial interest rate, divided by the sum of the ab
solute values of all components, is less than
this, the program stops

C: number of components

I: index of the current investment component
under consideration (always goes from 1 to C)

LI: current lower bound on effective rate

Ul: current upper bound on effective rate
R: trial interest rate, on which to calculate residual

present value V
V: residual present value, based on trial interest

rate R

L2: residual present value at lower limit LI

U2: residual present value at upper limit Ul

V3: sum of absolute values of component present
values

V4: present value of a component at rate R
V5: temporary variable used in computing V4

Rl: monthly increase factor, using rate R

The Best of 99'er Volume 1 347

c
u

0
3

U
p

•
j

O
S

u
.

>
.

o
c
*

g
U

l
<

SJ
U

l
B

a
g

U
l

1
o

O
u

i
o

>
*

-
•—

•
O

C
O

g
!
-
•

u
i

g
0

3
u

i
C

O
«

•
—

<
-

u
i

S
<

U
l

X
B

U
l

u
.

u
*

«
-

U
l

>
•

t
-

B
s
:

O
l
-

0
3

•
-
•

o
O

S
9

U
l

l-
l

«
C

U
l

o
o

_
.

_
l

—
1

>
p

<
S

c
o

.
J

s
s
-
s

U
l

U
l

—
U

l
^
-

•
-
1

O
S

0
3

S£
1

—
p

—
o

p
—

U
l

•«
fr

*
C

O
E

-i
o

g
0

3
u

i
p

1
-1

r
-

tl
•->

•
—

a
>

I
I

6
M

Q
O

I
d

O
C

O
p

C
U

•*
<

O
S

«
c

—
p

C
O

O
S

K
>

P
g

g
I-*

U
u

i
—

K
>

U
l

•
-
!

g
>

•
«

>
—

.
i
n

.-
J

1
-

U
l

.
-

T
O

g
p

p
S

!-•
c
m

t
o

o
•<

o
—

g
—

>
o

g
O

S
<

O
U

l
C

U
H

"
<

!
^
4

•*
>

o
•
J

—
•

U
l

l
-
l

~
-

«
g

U
l

U
l

S
u

i
o

a
i
-

g
U

a
s

I
g

.-
j

o
O

S
«

:
~

B
>

*
•
—

•
—

1
—

1
C

O
1

-
C

O

u
u

o
<

M
l

p
o

c
m

U
O

o
J

M
o

o
p

—
^

p
^

—
.

U
l

g
•—

I

S
9

M
O

I
U

-
j

P
s
u

n
:

o
T

O
1

-
U

l
T

O
a

t
-

a
u

.
M

l
-

O
S

~
-

H
^
s
i
n

O
S

•
U

l
<

~
S

-
0

3
p

r
*

t->
r
«

.
i
—

i-
i

U
l

.
-
•

«
—

C
O

c
u

-

«
:

t
-

u
i

p
t
o

n
•
-
•

~
~

~
a

t
o

g
U

l
*

c
C

O
I

O
C

O
C

O
—

T
-

U
l

U
l

>
-

t
o

>
g

>
O

)
o

O
<

O
S

—
«

w
—

•
U

l
g

0
3

g
U

l
•
—

«
<

u
C

O
1

—
.

l-
i

C
O

n
J

>
•
J

C
U

f-i
C

O
—

.
p

>
*

•
j

1
-

C
M

C
U

1
-

C
O

g
B

—
t

U
l

a
s

<
0

0
u

—
O

S
l
-
l

1
<

«
:

—
B

V
•-»

•*
B

1
-

o
o

•-1
v

•<
u

i
U

l
t->

tr
*

E
-i

B
fr

*
•
—

.
•
-
•

g
r
"

—
o

—
-

P
I
-
I

I
-
I

—
<

1
-

C
J

»
M

g
O

k
C

O
Is

*
—

O
S

O
S

B
p

«
:

C
J

I
-

u
i
g

o
g

J
—

U
l

U
l

g
<

*
t

o
>

u
g

M
D

(
f
l

U
l

c
j

<
K

D
U

r
K

>
1

-
T

O
o

*
-

U
l

o
U

l
<

^
l
-
l

£
.

o
1

r
-

i
-
i

>
—

I
.
-

U
l

o
>

O
g

O
b

u
o

u
i

W
g

g
P

>
N

)
l
f
l
Z

t
-

a
s

>
o

r
-

p
s

C
M

B
—

•<
p

>
-

o
0

3
.
J

—
C

O
<

b
u

g
o

-
-
-
•
O

V
b

u
g

B
«

I-*
p

1
o

-
-

•<
<

O
o

V
0

0
l
-
l

A
C

U
>

•
T

-
i
-

o
«

C
u

«
C

C
M

«
«

<
C

O
U

l
U

,

C
M

E
>

tO
—

C
S

W
<

0
-
J
O

Z
P

O
S

C
M

C
M

>
~

B
~

A
o

r
-

O
P

U
l

—
_

g
_

<
^

o
U

l
—

o
s
.

C
U

^
^

—
0

0
O

S
C

O
U

l
Q

r
»

—
u

r
a
^

>
•

i
n

.
—

.
0

0
O

P
r
»

~
O

S
M

M
T

O
•J

T
O

C
O

p
r
-

•
-
«

_
Q

_
C

U
O

S
0

0
O

C
U

"
-

0
0

o
-
~

^
O

S
-
a

w
<

«
—

s
U

l

c
o

o
s

«
«

c
a

n
b

u
«

c
o

t
-

a
«

J
C

D
1

i
n

•
j

_
!L

—
c
j

+
0

0
A

C
O

—
0

0
O

U
.

O
S

1
—

—
—

.
>

«
»

+
•
—

g
a

p
a

0
0

b
l

C
M

f
~

.
-
t
-
i

Q
O

S
^

0
0

0
0

g
(
d

<
•

^
«

c
•
—

T
-

U
l

T
"

V
^

o
+

T
"

—
^
-

>
t
n

*
-

S
5

0
3

I-i
{
i

g

P
>

K
«

t~
p

g
to

g
g

O
u

i
•
j

P
«

C
p

g
>

O
S

>
•

P
O

S
>

p
S

.
>

o
g

g
—

Q
O

S
g

o
^
*

<
Q

+
>

*
-

g
>

P
g

g
P

C
O

II
g

-
-

•J
«

-
P

*
*

S
c
u

g
—

c
a

g
O

<
II

II
1

-
II

II
i—

g
o

IL
0

3
"
g

"
o

II
i—

g
II

l
-
l

g
C

O
II

II
—

II
g

g
>

II
X

—
S

i
•—

1
•
-
•

O
a

O
C

M
b

u
U

C
O

U
.

O
S

•
-
K

O
O

U
C

U
U

J
||

O
b

u
U

l
0

0
C

O
b

u
t
-

C
M

O
T

»
C

M
b

u
O

U
l

-
3

II
M

O
b

u
U

l
«

O
t
h

U
C

t
o

U
l

U
l

T
-

i
n

—
9

U
<

II
i
n

U
l

O
S

O
S

U
l

0
3

O
S

C
u

g

C
3

P
—

o
s

O
—

e
u

»
C

U
C

O
O

O
S

P
O

S
O

S
C

9
—

O
S

"
-

P
P

o
•
J

•
J

~
O

e
G

O
>

U
.

"
-

o
s

>
-

>
u

—
>

o
s

>
U

o
s

~
0

3
6

*
^

>
•

0
3

>
>

g
C

U
O

S
c
u

e
u

g
U

l

o
O

O
O

O
(
9

o
o

o
o

o
O

O
O

O
o

o
o

o
o

o
o

o
o

O
O

o
o

o
o

o
o

o
o

o
o

o
O

O
o

o
o

o
o

O
O

o

<
n

o
T

-
C

M
K

»
«

»
i
n

t
o

r
*

C
O

C
A

O
T

-
C

M
n

c
t
i
n

i
o

i
s
n

c
n

s
*

-
C

M
H

)
«

i
n

C
O

r
^

c
o

t
o

o
^

C
M

t
o

<
ct

i
n

c
d

r
»

0
0

T
O

O
T

"
n

n
c
t

i
n

9
i
f
l
i
o

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

t
o

<
o

c
d

C
O

C
O

C
O

C
D

C
O

C
O

C
D

0
0

0
0

0
0

0
0

0
0

0
0

T
O

T
O

T
O

T
O

T
O

m

e
n

C
U

T
3

C
U

3

c
u

3
«

O
>

t/3
u

x
>

t
-

„
^

l
_

C

.2
c
u

C
U

C
U

>

o
L

a
c/>

•
o

=
t

o
.

c
u

S
3

Z
w

>
-

c
u

ccfl
c
u

cC
O

ol
_

c
u

"c33

3aEoC
J

OV
I

"a&
%

<u
S

«
*-

b
.

—

_
_

CO
«

.S

i
o

J0
5

d
a»

O
S

is

<
u

s(X

3EoC
3

C
O

T
33_C.S

1c
u

D
.

D
.

3T
JCn
j

i
-

c
u

oC
Q

C
U

«c
u

_3C
O

>cc
u

0
0

oC
U

oD
.

i-
i

c
u

.Sa>08

D
.

a3i
-

U

*
5c
u

oO
.

C
U

0
,^

m(Uu
.

C
/i

C
U

3O
.

aoc
u

C
U

c3Ou
.

n

C
U

173
O

c
u

0
0

u
.

Q
.

c
u

4
-
1
2

^
30
0

co
OS.

C
A

oZ
O

o
C

5
o

o
o

m
r-~

N
O

o
«

N
«

o

C
U

B

f
N

m
V

I
r
-

O
n

O
n

O
o

o
o

o
O

o
ii-»

o
o

\
C

N
r*">

U
C

N
f
N

r
r

«/->
r-~

O
n

g
C

O
U

l
0

0
p

a

o
U

l
U

l
g

O
S

«
*

*
C

J
•

-
B

C
O

>
-

p
O

S
a

s

«
«

—
»

1
—

U
l

•<
b

u
U

l
U

l

«
U

l
*

o
i
-
i

1
-

B
C

U
?5

c
u

•
•

1
-

*
T

-
g

g
b

u
1

-
C

O
o

c
u

*
"
C

*
—

U
l

U
l

P
U

l
Q

•
-
1

p

«
O

S
«

T
"

g
g

g
C

O
g

*
«

g
>

*
>

«
I-i

U
l

U
l

p
I-I

l
l

*
I-<

«
-

<
K

C
C

O
U

l
B

p
«

c
«

:

«
C

O
*

—
c
u

c
u

O
S

a
t
-

0
0

o

«
U

l
*

o
•
—

fr
U

l
t
n

u
i

«
a

s
*

r
"

O
u

u
*

b
u

i
l
l

b
u

0
3

p
T

O
P

«
U

l
•K

—
o

o
0

0
•
-

p
U

l
•
J

l
-
l

*
i
-
i

«
«

-
b

u
«

C
u

<
g

<
«

g
«

u
.

O
S

1
-

O
O

C
O

0
3

C
U

>
U

l
>

«
•
-
•

•*
-

U
l

g
o

s
U

l
p

B
«

*
—

i-
i

P
O

p
U

l
»

l-
l

P
0

•
J

f-l
l-

l

«
U

l
«

o
p

g
O

g
O

S
g

g
<

%
<

•<

*
>

•
«

^
c
u

p
g

u
i

O
p

p
T

O
P

«
—

•
«

—
g

g
«

c
1

-
c
u

g
g

O
S

U
l

a
c
u

a

*
l
-
l

«
^

—
.

U
l
l
l

.
—

I
V

—

*
O

*
l
l

0
3

o
0

3
0

3
•
-

O
S

g
O

S
^

<
C

O
—

C
O

«
U

l
«

-
E

-i
U

l
U

l
—

U
l

•
U

l
~

U
l

•
—

p
O

S
U

l
K

>
U

l

*
u

.
«

—
.

C
U

(
-

o
I
-

—
i

I
-

c
o

«
-
•
l
l

•
-
I

fr
*

•
—

•
J

a
s

>
•

a
s

«
b

u
«

o
c
t
u

z
•

-
h

*
g

—
g

h
-

g
-

g
—

•
U

l
o

-
~

«

«
U

l
«

«
"

1
U

U
l

«
U

l
«

-
U

l
g

^
U

l
C

O
*

-
U

l
^

K
.

>
t
-

C
M

>
•

I
-
I

«
«

—
o

i
n

u
i

o
*

C
O

u
T

"
»

<
>

U
l
l
l

•
K

i
b

u
«

g
U

l
.
-
.

U
l

r
*

—
U

l

«
«

*
V

o
o

<
H

II
S

g
•
—

c
o

l
l

a
c
o

O

«
;

o
.

I
-

g
I
-

i
—

i
H

H
H

H
>

«
H

I
-
l
i
3

H
H

••
•
*

*
l
l

O
T

O
T

O
c
a

0
0

t
o

O
o

T
-

g
U

l
P

g
g

p
g

K
C

P
g

g
p

g
«

p
t~

g
U

l
i-l

P
Q

T
-

P
>

•
«

!
O

T
-

^
_

g
_

g
s
_

s
_

g
_

s
_

g
_

g
_

s
_

II
II

II
II

g
-

g
C

U
O

S
•-•

—
C

U
•
-

c
u

c
u

—
>

-
c
u

~
C

O
c
u

X
.
—

g
u

.
II

J
L

g
g

.J
C

O
II

g
g

o
U

l
U

l
U

l
U

l
U

l
U

l
U

l
U

l
U

l
—

T
O

T
O

T
O

T
O

U
l

O
S

e
>

g
O

o
s

0
3

g
a

s
g

e
S

K
C

g
o

s
E

-
i
g

u
i
c
s
u

i
u

.
r
"

T
»

U
l

p
II

O
C

M
b

u
U

l
p

II
0

3
0

3
O

S
a

s
O

S
0

3
P

S
O

S
O

S
O

P
•
J

l-
l

C
U

O
S

c
u

C
U

•
—

U
h

e
u

C
U

—
C

U
U

l
1

-
^

C
U

C
u

•
—

c
u

g
—

g
C

U
0

3
U

l
m

J
P

03
O

O
S

O
-
1

—
O

S
O

0
3

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

O
T

-
M

n
c
f
i
n

c
A

i
s
c
o

m
o

T
-

M
M

C
t
I
A

C
D

r
»

0
0

T
O

o
*

r
C

M
M

9
i
n

C
D

•«.
0

0
T

O
o

^
C

M
n

c
t
i
n

o
i
s

o
o

r
*

^
^

K
—

^
T

-
r
*

t
-

T
-

«
"

T
"

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

H
i

K
>

M
m

IO
1

4
t
o

m
m

m
«

«
o

«
*

•
»

«
»

«
«

*
«

r

©E2C
N

C
N

O
QQ
J

0
0

Getting
D

O
W N

to Business

In this section, let's consider an inventory system for
your computer. I don't have a particular system to
review, but I want to discuss what should be involved

in an inventory system, and why. This has implications
for a number of other applications you might like for
your business, such as order processing, accounts
payable, and even a general ledger system.

We will address the kind of system you might use in
a sales organization—either in a store or for mail or
phone order. Some of the description also fits the situa
tion of a raw materials inventory or even miscellaneous
supplies. Since some of the activities may not fit you if
your business is small, be prepared to discount some of
the benefits.

First, it is important to know why you apply a com
puter to some task. You should have specific advantages
in mind and know what you have to do to attain those
advantages. And of course you should be prepared to
change your operations as necessary. 1 have seen
organizations that wanted to "put it on the computer"
without any clear reason. Often such organizations waste
time and resources changing the specifications, design,
and operation of a system as they struggle to develop
reasons for their system on the fly. Others merely wind
up with a system which is a burden to run, with no ad
vantages except an imagined prestige.

On the other hand, I did some work not long ago with
a company that was going to get a computer. I expected
that payroll would be one of their first applications, as
it is in so many companies. But no, they had payroll near
the bottom of their list. Because they had only 60 or so
employees, they were able to do their payroll manually
quite well and had other uses in mind that would give
them definite advantages. For them, one of the first
priorities was inventory.

What are some of the possible benefits of keeping your
inventory records by computer?

1. If you are processing orders by computer, you can im
prove the efficiency of your warehouse operation in
several ways:

a. The computer can recognize which orders cannot be
filled, and thus avoid sending the warehouse crew to
look for the items.

b. The computer can produce "pick slips" or a "pick
ing list" arranged in a sequence to make the picking
of the items from the warehouse efficient.

c. The computer can help manage back orders; when
new stock arrives, the computer automatically scans
the file of back orders and fills any back orders for
the items before allowing new orders a chance.

Copyright© 1983 Emerald Valley Publishing Co.

Inventory

2. The computer can help you manage your inventory
levels effectively and save you money. To do this, you
must have good projections of future demand for each
item. You can then time your reorders and calculate op
timal reorder quantities. At least in theory, you should
be able to reduce your working capital tied up in inven
tory, and at the same time be out of stock less often and
therefore be able to fill more orders and keep customers
happier.

Next, let's consider the information you must keep in
your inventory file in order to have an effective inven
tory system. This file has a record for each product (and
perhaps for each size, color, model and style). There is
inventory status information: current quantity on hand,
quantity on order from vendors, date expected, quantity
on back order to customers, and quantity sold since last
update. There is also historical demand information, such
as quantity sold in each month in perhaps the last year.
Finally, there is reorder and forecast information: i.e.,
preferred vendor, vendor's product number, vendor lead
time, order quantity, order frequency or reorder point,
and demand forecast.

If your computer is processing orders, you also main
tain files of back orders (if permitted). The order pro
cessing programs obviously use and update the inventory
file. If your computer is not used for processing orders,
you must find some other means of updating your in
ventory data. One of the troubles with this is that your
input data to the inventory system are likely to be much
less reliable than the order-processing input would be.

An inventory system must include a number of other
functions. There are simple updates to price, cost, and
warehouse location, as well as addition and deletion of
products. There are also inventory adjustments caused
by events such as return of an item from a customer, or
the removal of an item for product testing. The function
of receiving into inventory is complex: Quantities on hand
and on order must be updated. A payable transaction is
generated—with its necessary comparison of actual ar
rival amount with invoiced quanitity—so there is an in
terface with your accounts payable system, if you are us
ing one. Then your system must be sure to trigger the
filling of back orders from the new stock before letting
any new orders have access to it.

Periodically, you must count your physical inventory
and adjust your computer inventory accordingly, since
you need your inventory file to reflect reality, not wishful
thinking. Many events can cause a discrepancy in inven
tory counts—things such as pilferage, mislabeling, or
failure to make the minor adjustments necessitated by the
odd-but-authorized removal or replacement of items. The
computer should help the physical inventory process by

The Best of 99'er Volume 1 349

printing the stock list, and by making it easy to adjust
the inventory for discrepancies found.

And then there are the functions involved in reorder
ing: About once a week your system should sweep
through all products and determine what to reorder. You
of course have the opportunity to override the computer's
suggestions, but any such decisions must be recorded
(e.g., in quantity on order). Perhaps once a month your
system should update some analysis programs that keep
your demand history current and recompute forecasts,
reorder quantities, etc.

There is even a connection to your general ledger
system. After all, inventory is an asset, and any activity
that affects the value of that asset should be reflected in
your profit and loss, assets and liabilities.

All this is a great deal of work. Not only are there a
lot of things to do, but they must be done accurately.
I knew a company that went bankrupt, primarily because
the order processing and inventory control they did by
computer was not accurate. They tremendously over
stocked some items because the computer said there were
none on hand (and of course didn't fill orders because
it thought there was no stock), and ran out of stock on
other items because the computer thought there were
plenty. Naturally the company couldn't fill those orders
either! One of the causes of the snafu was the company's
lack of understanding of how the system was supposed

Getting

Do
w N

to Business

Random-access files are extremely important in any
conversational application that requires a data
base of some kind. This includes any kind of

business information system, but also includes a lot of
others as well. Unfortunately, the concept of what ran
dom access actually is often gives rise to misunderstand
ing and even fear—that is, the fear that using random
access is too complex to be attempted. In this article I
will try to correct some of the misunderstandings and start
you on your way to using random-access files.

The dictionary I took to college told me that random
meant "going, made, occurring, etc., without definite
aim, purpose, or reason." Synonyms given are
haphazard, chance, casual, aimless. Thus, when I first
heard of random access in reference to computer data,
it didn't sound like anything I would want. The good peo
ple didn't mean haphazard or chance, or any of those
other things; they meant access directly to a piece of data
specifically wanted, without having to pass sequentially
by a lot of other unwanted data to get there. To me, this
is much better described by the phrase direct access, and
I have been using direct access and talking against the
term random access for years. But enough. The ter
minology random-access appears in my newer dictionary,

350 The Best of 99'er Volume 1

to work, how to ensure its accuracy, and how to diagnose
inaccuracies.

On the other hand, another company, where I helped
install order and inventory processing, listened very
carefully to what we told them about operation for ac
curacy. They were not only willing to tighten some of
their operations, but were also eager to be able to con
trol their warehouse functions more closely. That com
pany is still prospering.

There's another side to consider too. If you have a
small list of products to keep track of, you probably do
rather well keeping track of them already. And as for
calculating optimal inventory levels, reorder quantities,
etc., you can probably do that rather well with a pocket
calculator and formulas you can find in many textbooks.
So honestly, would the computer help you do a better
job of managing inventory than you already do (or could
do manually with the same effort you would have to put
into a computer system)? If the answer is no, then save
yourself money, time, and management energy by not do
ing computer inventory. If there are real benefits you
would receive, I hope this section will make you a little
more aware of what you must prepare for and strengthen
your resolve to do it carefully, and do it accurately. The
stakes are too high for you to wander casually into a com
puter inventory system!

When Random Does

Not Mean By Chance

and is generally understood in computer circles to mean
"permitting access to stored data in any order the user
desires." From the standpoint of the storage unit, access
is random in the older sense, since the sequence of ac
cess requests is not at all predictable (compared with se
quential access, which is entirely predictable). So this is
the point—direct (I still like that word) access to whatever
data we want, in any sequence.

Why is this important? Suppose you are using an in
ventory system. You have a transaction for product 539.
Your last transaction was for product 762. What must
you do to retrieve, update, and rewrite the record for pro
duct 539? If your inventory file is an ordinary sequential
file, you must start at the beginning of the file, read all
the records up to product 539, and rewrite each to a new
file. Impossibly slow, yet it gets worse: After you do your
thing with product 539, you either have to finish copy
ing the rest of the records to the new files or postpone
that, in hope that the next transaction will be for a pro
duct after 539 so we can save a trip through the whole
file. What we clearly need is the ability to go directly to
record 539, read it, and write the updated record back
in the same place. Random-access files permit you to do
just that, and the savings in time are what make a data-

Copyright © 1983 Emerald Valley Publishing Co.

based system feasible—not only for inventory, but for
accounts payable or receivable, general ledger, etc.

Implementation in TI BASIC
In a random-access file, in TI BASIC and in every other

system I know, all records must be the same length. The
operating system knows the length of each record, knows
where the file begins on disk, and therefore can calculate
the exact location of the 367th record, or any other
record. This calculation is used whenever we ask to read
or write a particular record.

Let's look at the statements we use on random-access

files. They are the same statements we use on ordinary
(sequential) files, but some parameters are different. First,
when we OPEN a random-access file, we must declare:

• file organization is RELATIVE
• file type is DISPLAY or INTERNAL
• open mode is INPUT, OUTPUT, or UPDATE
• record type is FIXED

Don't ask why the word RELATIVE is chosen to
specify random access, but it may have something to do
with the address calculation: The location of each record

is computed relative to the beginning of the file. You may
well want to construct your random-access files as IN
TERNAL, to save space and time required for convert
ing DISPLAY (ASCII) files for internal use. An IN
TERNAL file cannot be listed directly, but you probably
need a program to list a random-access file anyway. An
open mode of UPDATE allows you to read and write
records in your file, and this is what you want most of
the time. UPDATE is also the default if you don't specify
an open mode. As well as specifying FIXED record type,
you may also specify the record length, and I recommend
that you do. As an example,

OPEN #1:"DSK1.INVENTORY",RELATIVE,
INTERNAL, UPDATE, FIXED 92.

opens the INVENTORY file on your DSK1 as your #1
file; the file has 92-byte records in internal format, for
random-access reads and writes. When you first create
a file, you can and should specify the number of records
to be allocated initially; the number follows the word
RELATIVE. For example, the program that first
established this file could have used:

OPEN #2: "DSK1.INVENTORY",RELATIVE
150,INTERNAL,OUTPUT,FIXED 92

To read a particular record, include the record number
(the first record is numbered zero) in the INPUT state
ment; if N = 119, for example,

INPUT #2,REC N: PN,D$,Q,PR

reads the 119th record from the file into the variables PN,
D$, Q, PR. The PRINT statement similarly includes the
word REC and the record number of the record to be

written:

PRINT #2,REC N: PN,D$,Q,PR

You can use the EOF function for a random-access file,
but this is not the best way. Better is to use the record
0 to hold special information about the file, especially
the length of the file. As soon as you open the file, read
that record:

Copyright © 1983 Emerald Valley Publishing Co.

INPUT #2, REC 0: FL

Then, before accessing any record, compare its record
number with FL:

230IFN>FLTHEN 260

240 INPUT #2,REC N: PN,D$,Q,PR
250 GOTO 280

260 PRINT "INVALID RECORD NUMBER.
REENTER"

When we wish, we are allowed to read or write records
sequentially in random-access file. And of course we
should CLOSE a file at the end of the program.

Which Record Contains What?
Okay, so you can easily get the 119th record in your

random-access file. But how do you know that the in
formation you want is in the 119th record? That is the
hard part. If you are willing to assign product numbers
1 to 200 to the 200 items in your inventory file, you have
no problem. At least, not until you discontinue some
products and add others. In many cases, you can't assign
the key to your file (product number, social security
number, account number, or whatever) like this at all.
So we need some scheme that associates a record number

with each of your keys.
There are a lot of ways to do this. I will show one here:

an index, which I keep in a file of its own. Actually, it
could be kept in the first several records of your random-
access file if you wish. Let's suppose an inventory system
with up to 200 products. The product numbers are already
assigned, as integers like 17, 29, 83, 104, 105, etc. We
can keep our index in a pair of arrays in main storage
while we run our system: these arrays don't take a lot
of room.

60 DIM IPN(200),ILOC(200)
70 OPEN # 1: "DSK1. INVINDEX'' .SEQUENTIAL

INTERNAL

180 FOR 1 = 1 to 200

190 INPUT #1: IPN(I),ILOC(I)
200 NEXT I

The IPN array holds the product numbers, and the IL-
OC array the record numbers in the random-access file
for the corresponding products. When we want to access
a product, we search the IPN array, find the record
number, then use it to access the product record directly.

Using this scheme, the sequence of records in the
random-access file matters very little. The sequence in the
index file (and therefore in the arrays) matters more. The
easiest thing, but least efficient, is to search the IPN ar
ray sequentially, with the product numbers in either
ascending sequence or no particular sequence. One bet
ter idea is to put the most frequently used records at the
front of the index file, thus cutting down on the average
number of index entries your program must search.
Studies have shown that in situations like this, 80 per
cent of the desired accesses are to 20 percent of the items.
A still more efficient (but longer to program) method is
a binary search, requiring that the index be in ascending
sequence by product number. But let's come back to that
idea another time.

The Best of 99'er Volume 1 35I

Putting It all Together
Let's see how some of this works. We will see, at least

in outline, how to (1) update a particular record, using
the index, and (2) how to add a new record to the file
(and of course to the index). First, let's be a little more
precise about how we keep information, again using an
inventory system as the context.
1. The RELATIVE file is named INVENTORY; its first
record (numbered 0) contains the allocated length of the
file; the number of records actually used must not ex
ceed that number. If the allocated length is 201 records,
for example, we might at some time be using 160, and
these would be numbered 1 to 160.

2. The index file is named INVINDEX; it contains an
index entry for each of the allocated records in INVEN
TORY. The index entries are in sequence by product
number. The unused records are identified in the index
by a product number like 32767, which is larger than any
actual product number. In addition at the very beginning
of the INVINDEX file are:

(a) the number of allocated records
(b) the number of currently active records

As part of our program initialization, we must open
the files and read the index into our arrays:

60 DIM IPN(200),ILOC(200)
70 OPEN #1: "DSK1.INVINDEX",SEQUENTIAL,

INTERNAL

80 OPEN #2: "DSK1.INVENTORY",RELATIVE,
INTERNAL,UPDATE,FIXED 92

90 INPUT #1: NALLOCNACTV
100 FOR 1=1 TONALLOC

110 INPUT #1: IPN(I),ILOC(I)
120 NEXT I

Now, suppose the program has accepted a product
number APN, and needs to retrieve the INVENTORY
record for that product; we will show for simplicity a
sequential, rather than a binary search through the in
dex file:

310 FOR J=l TONACTV

320 IF APN = IPN(J) THEN 370
330 IF ANP>IPN(J) THEN 350
340 NEXT J

350 PRINT "PRODUCT NOT ON FILE"
360 GOTO . .

370 INPUT #2,REC ILOC(J): PN,D$,Q,PR,. . .

352 The Best of 99'er Volume 1

If the program goes on to update some fields of the
record, the record can be rewritten with its updated con
tents very simply:

470 PRINT #2,REC ILOC(J): PN,D$,Q,PR,. . .

Inserting a new record for a new product number is
a little tricky. Where to put it in the inventory file is no
problem; it can go right after the last active record. The
index will make it accessible at the right time, with no
problem. But we have more to do with the index. We
must insert a new index entry in its proper place in se
quence. Let's look at that process. Suppose that the pro
duct number to be inserted is PN, and that we have ascer
tained that such a number is not in the file.

600 IN NACTV<NALLOC THEN 630
610 PRINT "NO MORE SPACE IN THE

INVENTORY FILE"

620 GOTO . .
630 NACTV = NACTV + 1
640 PRINT #2,REC NACTV: PN,D$,Q,PR
650 REM ADJUST INDEX

660 FOR J = 1 TO NACTV

670 IF PN>IPN(J) THEN 690
680 NEXT J

690 FOR K = NACTV TO J+ 1 STEP - 1
700IPN(K) = IPN(K-1)
710ILOC(K) = ILOC(K-1)
720 NEXT K

730IPN(J) = PN
740 ILOC(J) = NACTV
750 REM REWRITE THE UPDATED INDEX FILE

760 RESTORE #1

770 PRINT #1: NALLOCNACTV
780 FOR I = 1 TO NALLOC
790 PRINT #1: IPN(I),ILOC(I)
800 NEXT I

None of these operations takes very long. We always have
the index file, the index arrays, and the random-access
file itself in sync.

Do you have a better scheme? You may very well have,
especially for your particular application. There is a lot
of room for different ways of using and managing
random-access files. After all, what we have is really the
capability of managing large arrays—kept on disk instead
of main storage. I hope you can see the importance of,
and get some idea of how to use, random-access files from
this introduction.

Copyright© 1983 Emerald Valley Publishing Co.

Getting

Do
w N

to Business ^^

In an earlier section we discussed random access files,
and explored some details of using them. This section will
review a few of the main points, develop a further idea
or two, and then show a full example program using ran
dom access files.

A random access file is essentially a big array stored
on disk. We can treat it much as we would treat an ar

ray; we access an element of an array by using a subscript,
whose job is to select one particular element of the array:

350 K = A(SUBS)
360 B(SUBS) = L

These are ordinary BASIC statements that retrieve a value
from the A array and store one in the B array. Similarly,
we can specify exactly which record we want to read from
or write to a random access file:

440 SUBS = 37

450 INPUT #1,REC SUBS: PN,D$,Q,R
460 PRINT #2,REC SUBS: L$,AVE,RET

These statements read the 37th record from the #1 file

and write a record into the 37th record position of the
#2 file. So SUBS is used just like a subscript to select
which record to read or write.

The Index to the Random-Access File

In random-access files, the problem is knowing which
record should be stored (or found) in which location. In
my last section, I described a small inventory system in
which the key to each record was the product number,
an integer. There are at most 200 product numbers, but
they are not just the numbers 1 to 200. My storage scheme
stores product records arbitrarily, in the random-access
file, but includes an index file also. The index file con
tains a pair of numbers for each record: the product
number and the record number (the subscript in the
random-access file where the record for the product
number is stored). For example, Figure 3-a shows the in
dex and the file after four entries have been made to the

file. The records were inserted for products 67, 105, 29,
and 84, and the records are stored in the random-access
file in the sequence in which the records were created.
The function of the index is to keep a list of the product
numbers and the position of each record in the random-
access file.

Early in any program that uses the random-access file,
I read the index file into a pair of arrays, IPN and ILOC.
When I then want to access a product record, I can search
the IPN array at electronic speeds for the desired pro
duct record, and go directly to the product record.

Copyright © 1983 Emerald Valley Publishing Co.

DIVIDE

AND

CONQUER

Binary Search
In my last column, I showed a sequential search of this

table, and hinted that a binary search would be faster.
Let's take a look at a binary search: It is not very com
plex, is really a time saver, and can be applied in many
table-search situations.

First, let's be clear about the context. We have an ar
ray, whose elements may be numbers or strings. Let's use
numbers in our example, but strings can work exactly the
same way. The elements in the table must be arranged
in ascending sequence. We also have a number, called
the search key, that we want to find in the table. So the
objective in the search is to find the subscript for which
the table element matches the search key. If no match
for the search key exists in the table, we say the search
fails.

The idea is a divide-and-conquer strategy. At all times,
we keep track of the lower bound and the upper bound
of the possible subscript in the table. At the start of the
search, these bounds are the beginning and end of the
table, of course. The central idea is that each time through
the search loop, we compare the search key with the table
element half-way between the upper and lower bounds.
If that element matches the search key, the search is
finished successfully. Otherwise, if the search key is less
than this middle element, the desired table element must
be in the lower half of the currently remaining portion
of the table. So, we bring the upper bound down to the
entry just below the middle one. The final case is the one
in which the search key is greater than then middle ele
ment. So, the desired element must be in the upper half,
and we bring the lower bound up to the one just above
the middle. We repeat this process; each time through,
we reduce the remaining possible portion of the table by
half. The search ends either when we have found our table

element or when we find the lower bound is greater than
the upper bound; this last condition shows that the search
has failed.

Let's look at an example. Figure 1 shows a table of
twelve numbers (product numbers?) in ascending se
quence. Suppose we are searching for 135 in the table.
Our search starts with a lower bound of 1 and an upper
bound of 12. Our first iteration computes a middle of
(1 + 12)/2 = 6 (rounded down). The 6th table entry is
119; the search key is larger so the lower bound is set to
7, and we have eliminated the entire lower half of the
table from further consideration. In our second iteration

(7 + 12)/2 = 9, and we compare the search key with
the 9th entry, 158. This time, the search key is less, so
the upper bound becomes 8. The third iteration tests the
7th element itself and sets the lower limit to 8. The fourth

The Best of 99'er Volume 1 353

Figure 1 A table of numbers in ascending sequence.

17

29

83

104

105

119

130

135

158

183

197

262

iteration finds that the 8th element matches the search
key. Suppose our search key were instead 139; the itera
tions would be exactly the same, except that in the fourth
iteration, lower and upper bounds are both 8, and we find
that the search key is larger than the 8th table element.
Thus the lower bound exceeds the upper bound, and the
search fails.

Figure 2 A subroutine for a binary search.
1000 LOWB = 1

1010 REM 1000. SUBROUTINE TO BINARY SEARCH THE TABLE IPN.
1020 REM OF LENGTH NACTV, FOR SEARCH KEY APN.
1030 REM RETURNS ISUB = SUBSCRIPT OF MATCHING ENTRY,
1040 REM OR 0 IF THE SEARCH FAILS
1050 UPB = NACTV

1060 IF UPB < LOWB THEN 1140
1070 ISUB = INT ((LOWB + UPB)/2)
1080 IF APN = IPN (ISUB) THEN 1150
1090 IF APN < IPN (ISUB) THEN 1120
1100 LOWB = ISUB + 1
1110 GO TO 1060

1120 UPB = ISUB - 1

1130 GO TO 1060

1140 ISUB = 0

1150 RETURN

Figure 2 shows a subroutine that searches a table
named IPN for a search key named APN. The length of
the table in NACTV. The subroutine returns the value

of the subscript ISUB of the matching element in the
table, or returns ISUB = 0 if the search fails. Trace the
subroutine, using the table shown in Fig. 1, to verify that
the subroutine follows the logic described above.

Inserting and Deleting Records
If we are only inserting records into a random-access

file, there isn't much problem. We use the next record
position in the random-access file, and adjust the index
by moving the entries up to make room, in order to put
the new product number where it should go in sequence.
We showed this process in the earlier section. The pro
blem is more complex if we also delete entries from the
file from time to time. And, of course, we want to be
able to reuse vacated file positions.

To keep track of these positions, we use what the com
puter scientists call a linked list. We keep a variable, called
EMPTY, which gives the first available file position; if
there are no deleted record positions currently available
(they may all have been used up again, or maybe no
record have been deleted at all), EMPTY equals zero.
Suppose the record stored in the 11th position of the
random-access file has been deleted. Then EMPTY =

11. And the 11th record now contains the next available
file position, which might be 37. Then the 37th record
contains the next available file position, etc. The last
available file record contains a zero to mark the end of
the list.

354 The Best of 99'er Volume 1

When deleting a record, we store in that record posi
tion the current value of EMPTY, and record the file
position of this newly deleted record as the new value of
EMPTY. When we need to insert a new record in the file,
we look at EMPTY first, to see whether there are any
previously deleted records whose positions we can recy
cle. If so, we use the first one in the list, but first read
from it a new value to place in EMPTY, so the second
available file position is now first. If EMPTY = 0, we
are using all file position up to NACTV. In that case we
just use the next file position after NACTV, unless
NACTV = NALLOC, in which case we've run out of
space.

Figure 3

NALLOC

200

NACTV

4

EMPTY

0

29 3

67 1

84 4

105 2

1 67, WIDGET

2 105, WHATSIT

3 29, FRAMISTAN,...

4 84, GIMCRACK,....

3-a. File alter tour records are inserted

NALLOC

200

1

2

3

4

5

29 3

67 1

NACTV

5
84 4

93 5
EMPTY

0 105 2

1 67, WIDGET

2 105, WHATSIT,

3 29, FRAMISTAN,...

4 84, GIMCRACK

5 93, BAUBLE,

3-b. File after product 93 fs Inserted.

NALLOC

200

NACTV

3

EMPTY
4

29 3

93 5

105 2

1 0

*-2 105, WHATSIT,

»-3 29, FRAMISTAN,...

^•4 1

*-S 93, BAUBLE

3c. File after products 67 and 84 are deleted.

NALLOC

200 \ 2

•3

;4

29 3

NACTV
4

93 5

105 2
EMPTY

1

0

•-•.: .-"^-2

-,i4~*~3 29, FRAMISTAN,...
..;.-<.„^4 17, KLUDGE

••••*- 5 93, BAUBLE

3-d. File after produce! 17 Is inserted.

You can see the process in Fig 3. First, Fig. 3-c shows
the result of deleting first product 67 and then product
84 from the file. The list of empty file positions starts
at position 4 (as EMPTY tells us), and then continues
to position 1. The zero, stored at position 1, indicates
that there are no more empty records. The index table
records only the currently active products, and NACTV
tells how many there are.

When product 17 is inserted (Fig. 3-d), it is put into
the first available empty position, which is position 4. The
list of empty positions is reduced, and the index, of
course, is expanded. If two more products are inserted,
the first will go into file position 1, but then the EMPTY
list will itself be empty, so the next product will be put
in position 6.

Copyright © 1983 Emerald Valley Publishing Co.

Appendix
Your Guide to Keying In Programs from The Best of 99'er

To save yourself both time and effort, always make sure you have all the proper
hardware and software to RUN any program. The No Disk symbol is used to
designate programs which (as listed) will completely fill available memory and
cannot be RUN with the Disk Controller (and possibly the RS232 Interface) attached.

Some of the programs in The Best of99'er, Volume 1, are short (about twenty lines or less).
These brief sections of code are not typeset in our grid format. Lengthy programs with long
program lines, however, have been mechanically typeset on a grid background for readability
and proper spacing. Even with such clear listings, it is possiblefor you to make typing mistakes.
You should, therefore, carefully read the section on editing program lines in your Texas In
struments Iter's Reference Guide (pp.II-38 and 11-39) before beginning to key in programs.

Since entering long programs can lead to errors even for the most careful keypuncher, here
are a few of the most common ones to watch for:

• Typing one symbol for another.
The most common transformations are: substituting the letter O for the number
0, the letter I for the letter J, the lowercase letter L for the number 1, the letter S
for the $, and the uppercase B for the number 8. This error is especially likely if
you are working in hexadecimal numbers which are composed of the numbers 0-9
and the uppercase letters A-F.

• Transposing characters.
For example, typing in 000154000 instead of 000145000.

• Adding or deleting spaces.
Make sure you enter the same number of spaces as you find in the listing.

• DATA statements are often sources of hidden errors.

For example, if your computer gives you an error message such as "bad value in
260" the actual error may not be on line 260, but buried in a DATA statement
used by line 260. The best way to handle this kind of error is to type in DATA
statements very carefully and to verify them, by checking each character before
typing the next statement. This is much simpler in the long run than printing out
the values of all the variables in a given DATA statement. If you inadvertently
leave out a comma, or if you leave out a value or a set of values in a DATA
statement, the line that reads that DATA statement will give you an error message
when it tries to read the data.

Beforeyou attempt to run your typed-inprogram, first checkit for the kinds of errors listed
above to save yourself time and frustration.

If you do have some difficulty typing in the listings, refer to the Key-In Reference strip
below. Check the appearance of any character you are in doubt about with the character on
the Key-In Reference before you type it in.

EM]

Ik
R

P
VIW1X

FG MNO

To prevent the loss of a program while you are typing it in, it is a good idea to periodically
save portions of it. If you are using a cassette storage system, you may want to refer to A
Beginner's Guide to Cassette Operation with A Home Computer(on page 20 of this book)
which includes many helpful hints as well as a detailed description of an effective method of
saving programs on cassette tape. Basically, for each 25-50 lines you type in, use SAVE CS1
to save that program segment onto one of two tapes. Alternate between the two tapes each
time you save the program. Be sure to rewind to the beginning of each tape before saving,
so that you alwaysrecord over and replacethe shorter segmentof program lines with the pro
gressively longersegment. Byfollowing thisprocedure, you'll always retain most of your work
even if the lights go out, or someone turns off the computer before you are finished.

Copyright© 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 355

Index
to

The Best of 99'er
Volume 1

When using this Index, note that boldface page numbers indicate charts, tables,
listings or main sections (e.g.,129ff). Italics are used to designate article titles. In accor
dance with standard indexing procedures, "ff' has been used to represent subject discus
sions of more than 3 pages.

Animation, 30-32, 309-312
Ami-Aircraft Gun, 226-228
APPLESOFT, 73-75
Arrow keys, 50-51
ASPIC, 40
Assembly language, 37-38, 40, 129ff

learning, 146ff
Mini Memory command cartridge, 154-156
programming, 136ff
screen printing, 157ff
TMS9900, 131ff
vs. Extended BASIC, 93, 140-141

Auto-Top, 82
Bartender, 289-292
Bar-Topper, 81
BASIC, 12-13, 39-40, 69ff

APPLESOFT, 73-75
Extended BASIC, 85ff, 92-93
graphics, 78ff
screen printing, 76-77
TRS-80 BASIC, 71-72
vs. Assembly language, 138-141

Battle-At-Sea, 229-233
Battle Star, 234-236
Beams (civil engineering), 189ff
Bit-plot graphics, 30-32, 326-329
Business applications

business forms, 336ff
evaluating software, 245-248
information utilities, 24-25, 335-335
inventory, 298ff, 349-350
investment analysis, 334-335
planning, 343-345
random access files, 350ff
record keeping, 298ff, 330-333
Rule of 78, 293-297

Business forms, 336ff
CAI, 163ff
CALL SOUNDS, 45-47
Cassette operation List 1, 23
Cassette operation List 2, 23
Cassette recorders, 20-23
Cassout, 338
Checkbook balancing, 17
Chess, see Computer Chess

356 The Best of 99'er Volume 1

Children

Computer-assisted instruction, 163ff
Computer gaming, 221ff
LOGO, 95ff
Spelling Flash, 65

Choropeth Mapping, 313-317
Chuck-a-Luck, 52ff
Civil Engineering Fundamentals, 189ff
Color mapping, 313-317
Command cartridges

Editor/Assembler, 136ff
Extended BASIC, 85ff, 92-93
Mini Memory, 154-156, 158-160
Music Maker, 212-214, 218-220
Personal Record Keeping (PRK), 76-77, 330-333, 335
Speech Editor, 13, 305-308
Terminal Emulator II, 25, 26-27, 28-29, 334

Computer-assisted instruction (CAI), 163ff
Computer Chess, 280ff
Computer gaming, 48-51, 52-64, 221ff

Anti-Aircraft Gun, 226-228
Battle-At-Sea, 229ff
Battle Star, 234-236
Chuck-a-Luck, 52ff
Computer Chess, 280ff
County Fair Derby, 263-266
Dodge'em, 246-247
Dogfight, 269-271
Force I, 243-245
Harried Housewife, 237ff
Interplanetary Rescue, 272-275
Life, 139; listings, 141-142
Maze Race, 253ff
N-Vader, 276-277
San Francisco Tourist, 260-262
Space Patrol, 278-279
Space War, 248ff
Sprite Chase, 267-268
Tex Thello, 256-259

Computer purchase, 11-15
Computer Techniques for Tutoring the Mentally

Handicapped, 18Iff
Condensed Format Code Table, 87
Condensed Record Structure, 88
Counting Lesson, 183

Copyright © 1983 Emerald Valley Publishing Co.

County Fair Derby, 263-266
Debugging programs, 57-58, 68, 138
Diskout, 338
Division (math), 173-175
Dodge 'em, 246-247
Dogfight, 269-21 \
Dots to Plots, 326-329
Dow Jones News Service, 334-335
Down Loading, 25
Drills (education)

Let's Learn Notes, 199ff
Mystery Words, 205ff
Name That Bone, 176
Pocket Typing Trainer, 66
Spelling Flash, 65
Spelling Test Game, 306-307
Typing for Accuracy, 186-188

Editor/Assembler Command Cartridge, 136ff
Education programs

Computer-assisted instruction, 163ff
LOGO, Sec 4, 95ff
Math, 168ff
Music, 196ff
Spelling, 65, 306-307
Typing, 66, 186-188

Effective Interest Rate, listing, 348
Electronic mail, 25
Engineering

Civil Engineering Fundamentals, 189ff
Overland Flow, 318ff

Extended BASIC Command Cartridge, 85ff, 92-93
animation, 30-32, 309-312
Verbose, 305-308
vs. Assembly language, 140-141

Filebuild Program, 337
Flowcharting, 41-44
Flyaway, 121-123
Force 1, 243-245
Forecasting, 343-345
Forms generator, 336ff
FORTH, 40
Fractions, 168ff
Games, see Computer gaming
Getting Down to Business, 343ff
Gifted students, 212-214
Graphics

animation, 30-32, 309-312ff
Assembly language, 146ff
bar graphs, 79-80
BASIC, 78ff
bit-plot graphics, 30-32, 326-329
Chuck-a-Luck, 61-64
Computer-assisted instruction, 165-167, 176-180
Dynamic Manipulation of Screen Character
Graphics, 78ff
Extended BASIC, 92
LOGO, 95ff
loops, 78-80
mapping, 313-317
music, 219-220
Overland Flow, 318ff
screen printing, 157-162, 324-325, 326-329
Spriter, 309-312

Harried Housewife, 237ff
Home Secretary, 298ff
Homework Helper: Division, 173-175
Homework Helper: Fractions, 168ff
Household Inventory, 18
Information utilties, 24-25, 334-335
Integrated circuits

SN76489 (sound generation controller), 45-47
TMS5200 (speech synthesizer), 28-29
TMS9900 (CPU), 131-135, 146-147
TMS9918A (video display processor), 30-32, 147-148

Interactive Forms Generator, 336ff
Interplanetary Rescue, 272-275
Inventory, 18-19, 298ff, 349-350
Joysticks, 51, 121-123
Languages, 37-40

Assembly language, 129ff
BASIC, 69ff
LOGO, 95ff

Copyright© 1983 Emerald Valley Publishing Co.

UCSD Pascal, 67-68
Let's Learn Notes, 199ff
Letterhead, 99'er 325
Life, 136ff
LOGO, 39-40, 95ff

and adults, 103-106
and very young children, 111-112
history, 97-98
joysticks, 121-123
Lamplighter project, 99-102
list processing, 107-110, 113-115
problem-solving, 124-128
program quality, 116-120
recursion, 107-110, 113-115
Tower of Hanoi, 125-128

Machine language, 37
Magic Crayon, 146ff
Mapping, 313-317
Math, 168ff
Maze Race, 253-255
Memory

cassette recorders, 20-23
Mini Memory Command Cartridge, 154-156, 158-160
random access files, 350-354

Mentally handicapped students, 181-185
Micro Bartender, 289-292
Mini Memory Command Cartridge, 154-156, 158-160
Modems, 25, 26-27, 334
Music, 196-220

gifted students, 212-214
Let's Learn Notes, 199ff
Music File Player, 215-217
Music Maker Command Cartridge, 212-214, 218-220
Music Skills Trainer, 196-198, 212-214
Music Text Editor, 215-217
Mystery Words, 205ff
Theory drills, 205ff

Music Program Generator, 91
Name and address file, 289ff
Name That Bone, 176-180
N-Vader, 276-277
Operating system (UCSD Pascal), 67-68
Overland Flow, 318ff
Papert, Seymour (LOGO), 95ff
Pascal, see UCSD Pascal
Payments: 77ie Rule of 78, 293ff
P-code, 67-68
Personal Record Keeping Command Cartridge, 76-77, 330-333, 335
PILOT, 39
Pocket Tower of Hanoi, 94
Pocket Typing Trainer, 66
Power lines, 33
Preschool Block Letters, 165-167
Printing

graphics, 324-325, 326-329
screen printing, 76-77, 157ff

Problem-solving (LOGO), 124-128
Programming, 16-19, 41-44, 52ff, 85ff, 136ff

Assembly language, 136ff
flowcharting, 41-44
games, 48-51, 52ff
LOGO, 116-120
problems, 34
top-down design, 52ff

Programming Aids II (disk), 85ff
Programming languages, 37-40

Assembly languages, 129ff
BASIC, 69ff
LOGO, 95ff
UCSD Pascal, 67-68

Programs, 16-19, 41-44
applications, 16-19, 41-44
ASCII codes, 85ff
business, 293-297, 298-304, 330-333, 335-342
checkbook balancing, 17
Choropeth Mapping, 313-317
Chuck-a-Luck, 52-64
Computer-assisted instruction, 163ff
Computer gaming, 221ff
Data communications, 26-27
Dots to Plots, 326-329
downloading, 25

The Best of 99'er Volume 1 357

education, 163ff
evaluating, 345-348
games, see Computer gaming
graphics, 78ff, 309-312, 324-325
Home Secretary, 298ff
Interactive Forms Generator, 336ff
inventory, 18-19, 298ff
LOGO, 95ff
Magic Crayon, 146ff
Micro Bartender, 289-292
Music, 196ff
Mystery Words, 205ff
Overland Flow, 318ff
Pocket Typing Trainer, 66
Preschool Block Letters, 165-167
printer graphics, 324-325
recipe conversion, 17, 289-292
record keeping, 18-19, 298ff, 330-333
Rule of 78, 293ff
saving, 22, 34, 93
screen dump, 157ff
sounds, 45-47
spelling, 65, 306-307
Spriter, 309-312
typing, 66, 186-188
Verbose, 305-308

Projections, 343-345
Random access files, 154-156, 350-354
Recipe conversion, 17, 289-292
Record keeping, 18-19, 298ff, 330-333
REM Remover, 88
Reviews

Mini Memory Command Cartridge, 154-156
Music maker Command Cartridge, 218-220
Music Skills Trainer, 196-198

ROI analysis, 345-348
RS232 interface, 25, 26-27, 159, 334
Rule of 78, 293ff
San Francisco Tourist, 260-262
Saving programs, 22, 34, 93
Screen Dump, 161
Screen graphics, 78ff
Screen printing, 76-77, 157ff
SN76489 (sound generation controller), 45-47
Software evaluation, 345-348

358 The Best of 99'er Volume 1

Sorting, 18
Sound, 45-47, 218-220
Source, The, 24-25
Space Patrol, 278-279
Space War, 248-252
Speech Editor Command Cartridge, 13, 305-308
Speech synthesis, 28-29, 92-93
Spelling, 65, 306-307
Spelling Flash, 65
Spelling Test Game, 306-307
Sprite Chase, 267-268
Spriter, 309-312
Sprites

animation, 30-32, 309-312
Assembly language, 140, 146-153
Chuck-a-Luck, 61-64
LOGO, 95-128
Sprite Chase, 267-268
Spriter, 309-312

Storage, see Memory
Terminal Emulator II Command Cartridge, 25, 26-27, 28-29, 334
Terminology, 15, 38

Data communications, 26-27
Speech synthesis, 28-29
TMS9900 (CPU), 131-135

TEXNET, 25
Tex-Thello, 256-259
Three-Bars, 83
Timesharing, 24-25
TMS5200 (speech synthesizer), 28-29
TMS9900 (CPU), 131-135, 146-147
TMS9918A (video display processor), 30-32, 147-148
Top-down design, 52ff
Tower of Hanoi, 125-128
Transient voltage surges, 33
TRS-80 BASIC, 71-72
Turtles (LOGO), 95-128
Twinkle, 83
Typing, 66, 186-188
Typing for Accuracy, 186-188
UCSD PASCAL, 39-40, 67-68
Verbose, 305-308
Voltage surges, 33
Wired remote controllers, see Joysticks
X-mas Tree, 81

Copyright© 1983 Emerald Valley Publishing Co.

"After the initial excitement has worn off . . .
8 out of 10 machines are used less than once a month.
. . . and 1 year later, they are virtually forgotten!"

—From a recent home computer industry survey.

AN URGENT MESSAGE
FOR TI USERS

The reason behind this surprising statistic is quite sim
ple. Once the excitement of purchase has worn off,
home computer owners often find themselves

overwhelmed—left with a complex machine and little prac
tical knowledge or ongoing support.

TI-99/4A owners, especially, may feel left out of the
continuing excitement represented by innovations in home
computer systems and software. Fortunately, there is a
remedy: a monthly magazine devoted to the interests of
the TI user.

Home Computer Magazine (HCM) provides you with
the latest news, the latest product information, and
presents the most current programs and tips for getting the
most out of your TI Home Computer system.

While books and manuals provide basic, necessary in
formation, only a timely, ongoing publication can bring
continuing excitement and discovery into your home month
after month.

In every jam-packed issue of Home Computer Magazine
you'll find lively, informative articles with dynamic, full-
color illustrations—articles dealing with education,
business, and entertainment, as well as professional and
home applications. Each issue contains extensive tutorials
and fun-filled learning exercises for beginners, tips and
"how-to" articles for intermediate-level users, and ad
vanced programming techniques that keep the pros com
ing back for more—as well as page after page of ready-
to-run software for everyone.

To complement its traditional, in-depth coverage of the
Texas Instruments Home Computer, HCM has now add
ed coverage of the Apple, Commodore, and IBM home
systems—opening up an even wider world for TI owners
in 3 important ways:

(1) More software—You'll get first-time-ever
versions of Apple He, Commodore 64 and IBM
PCjr programs translated to run on your
TI-99/4A.

(2) More products—Third-party producers for the
Apple, IBM, and Commodore machines will now
present their Tl-compatible products exclusively
in the pages of HCM.

(3) More information—Our coverage of these
larger systems will increase your knowledge and
prepare you to make intelligent choices if you
should purchase a second system at a later date—
making all of your back issues that much more
valuable for reference use.

From the People Who Know The Home Computer Best

HOME COMPUTER
Formerly 99'er Home Computer Magazine

You've certainly made the rightchoices so far. First, you decid
ed it was time to bring a computer into your home. Next, you
purchased an excellent machine. Then you selected this book—
the most comprehensive information resource for that machine.
Now, you have the chance to put it all together by subscribing
to a magazinethat will ensure you get the most value from your
purchases—keeping you an active computer user. Don't be one
of the 8 out of 10 "drop-outs" cited above. Act NOW and
subscribe TODAY so you don't miss out on a singleissue.There
will never be a better time.

SATISFACTION GUARANTEED
or the unfilled Portion of Your subscription

will Be Refunded

I—I YES—Please sign me up as a subscriber. Enclosed
is payment or credit card billing information.

Term Canada

& Mexico

Foreign
Surface

Foreign Air

l-yr (12 issues) D$25 D$32 D$43 Inquire
2-yr (24 issues) • $45 • $52
3-yr (36 issues) D $63 D $70 Sample Issue D $3.95

DCheck or Money Order enclosed
(MUST BE IN US. FUNDS DRAWN ON US. BANK)

Name

Address

City State

Bill my: DviSA • MasterCard

• Expiration Date

Signature

Charge Card Number:

Zip

PLEASE

- PRINT

Please Mail

Your Order To:

Subscription Department (B99)
Home Computer Magazine
P. O. Box 5537
Eugene, OR 97405

MasterCard or VISA phone orders only call:
WEST

TOLL-FREE 1-800-828-2212 cT°af
Subscription Ordering Service M - F 7:00 AM - 5:00 PM. Sat 8.-00 AM- 4:00 PM

In Oregon, Alaska, Hawaii Tel. (503) 485-8796

SIDE A

Homework Helper Fractions (BASIC)
Homework Helper Division (BASIC)
Harried Housewife (BASIC)
SIDEB

Let's Learn Notes (BASIC)
Preschool Block Letters (BASIC)
Counting Lessons (BASIC)

SIDE A

Mystery Words (BASIC)
Name That Bone (BASIC)
Music Text Editor (BASIC)
Music File Player (BASIC)
SIDE B

Typing for Accuracy (BASIC)
Civil Engineering Fundamentals (BASIC)
Overland Flow (BASIC)

SIDE A

San Francisco Tourist (BASIC)
Space War (BASIC)
Maze Race (BASIC)
Space Patrol (Extended BASIC)
SIDEB

County Fair Derby (BASIC)
N-Vader (Extended BASIC)
Chuck-A-Luck (BASIC)
Dogfight (Extended BASIC)

SIDE A

Battle At Sea (BASIC)
Tex-Thello (BASIC)
Battle Star (Extended BASIC)
Sprite Chase (Extended BASIC)
SIDEB

Interplanetary Rescue (Extended BASIC)
Antl-Aircraft Gun (BASIC)
Dodge 'em (Extended BASIC)
Force I (Extended BASIC)

SIDE A

Spriter (Extended BASIC)
Home Secretary (BASIC)
Verbose (Extended BASIC)
Bartender (BASIC)
SIDE B

Rule of 78 (BASIC)
Choropleth Map (BASIC)
Interactive Forms Generator (BASIC)
Mini-Memory Screen Dump

(Assembly Language)

cave ""w6»*V AND 6RR<*£
A\fOlP *^oVa*s to° -curateKEY-W* ucho*

chore

tf VoU isette
^U?Ta«o"<>* cas

Save hundreds of typing hours!
Each cassette contains 6-8 programs.
Error-free software ready to load and RUN.

Any 1 Cassette . . . $10.00
Any 2 Cassettes. . . $18.00
Any 3 Cassettes. . . $25.00
Any 4 Cassettes. . . $31.00

* All 5 Cassettes. . . $35.00

• SPECIAL BONUS OFFER •

Buy all 5 cassettes and
receive a FREE copy of the
99'er Programmer's Guide
—regularly a $5 value.

ACT NOW TO TAKE ADVANTAGE
OF THIS SPECIAL OFFER!

Photocopy this coupon, or print all information on a separate sheet of paper.
Please send me the following copies of Best of 99'er on Tape:™

• Tape I • Tape 2 • Tape 3 • Tape 4 • Tape 5
U Total number of tapes ordered. Include $3.00 for U.S. shipping and handling.
MUST BE IN U.S. FUNDS DRAWN ON A U.S. BANK

Total: $ • Check or Money Order Enclosed

Telephone ()Bill My: DVISA DMasterCard

Account No.

NAME _

Expiration Date

Signature

ADDRESS

CITY

Tape Order Department (B99)
Emerald valley Publishing Co.
P.O. BOX 5537
Eugene, Oregon 97405

STATE ZIP

MasterCard or VISA phone orders: WEST

TOLL-FREE 1-800-828-2212 C™|T
Subscription Service M-F 7:00 AM-S40 PM, Sat 8:00 AM-4:00 PM

In Oregon, Alaska, Hawaii Tel. (503) 485-8796

	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	content09
	content10
	content11
	content12
	back-cover

