

FUNDAMENTALS OF

TI-99/4A
ASSEMBLY LANGUAGE

BY M. S. MORLEY

TAB BOOKS Inc.
BLUE RIDGE SUMMIT. PA. 17214

FIRST EDITION

FIRST PRINTING

Copyright © 1984 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Morley, M. S.
Fundamentals of TI-99/4A.

Includes index.
1. Tl 99/4A (Computer)—Programming. 2. Assembler

language (Computer program language). I. Title.
QA76.73.A8M67 1984 001.64'24 83-24189
ISBN 0-8306-0722-6
ISBN 0-8306-1722-1 (pbk.)

Contents

List of Programs v

Preface vi

Introduction viii

Part I: Fundamental Concepts 1

1 Programming Languages 3
BASIC—Machine Language—Assembly Language—Summary

2 Memory 9
Address Bus—Data Bus—Control Bus—ROM and RAM-
Summary

3 Microprocessors 13
Arithmetic Logic Unit—Status Register—General Registers-
Program Counter—Control Unit—Summary

4 Microprocessor Operations 20
Data Transfer—Arithmetic—Logic—Shift and Rotate—Control
Transfer—Summary

5 Addressing Modes 28
Immediate—Direct—Indirect—Indexed—Relative—Summary

Part II: The 9900 and the TI-99/4A Home Computer 31

6 TheTMS9900 33
Architecture—Instruction Set—Addressing Modes—Summary

7 TheTI-99/4A 50
CPU Memory—Video Data Processor RAM—Graphics Read
Only Memory—CRU Bits—Summary

8 The Mini Memory Module 59
Loadingthe Line-by-Line Assembler—Memory Map—Assembler
Syntax—Assembler Directives—EASY BUG—Summary

Part III: Programs 75

9 Beginning Programs 77
16-Bit Data Transfer—64-Bit Data Transfer—16-Bit Addition—

32-Bit Addition—Find the Larger of Two Unsigned Numbers-
Sum of Squares—Table of Factorials

10 Simple Program Loops 95
16-Bit Sum of Data—32-Bit Sum of Data—Number of Negative
Numbers—Number of Zero, Positive, and Negative Numbers-
Find Maximum Value—Find Minimum Byte Value

11 Character-Coded Data 111
Length of a String of Characters—Find First Nonblank
Character—Find Last Nonblank Character—Replace Leading
Zeros with Blanks—Truncate Decimal String to Integer Form-
Pattern Match—String Comparison

12 Code Conversion 124
Hexadecimal to ASCII—ASCII to Hexadecimal—ASCII to
Decimal—Decimal to ASCII—Binary-Coded Decimal to
Binary—Binary to BCD—Binary Number to ASCII-Binary
String—ASCII-Binary String to Binary Number—Binary Number
to ASCII-Hexadecimal String—ASCII-Hexadecimal String to Bi
nary Number—Binary Number to ASCII-Decimal String—
ASCII-Decimal String to Binary Number

13 Arithmetic Problems 154
32-Bit by 32-Bit Multiply—64-Bit Division—Square Root-
Reciprocal of a Number—Sine of an Angle

14 Using the System Utilities 182
Clearing the Screen—Display Text—Generate Cursor-
Keyboard Input and Display—Convert String to Number—Raise
Number to a Power—Change Screen Color

Appendix: TMS9900 Instruction Set 215

Index 307

List of Programs

9-1. 16-Bit Data Transfer 82

9-2. 64-Bit Data Transfer 83
9-3. 16-Bit Addition 85

9-4. 32-Bit Addition 87

9-5. Rnd the Larger of Two Unsigned Numbers 90
9-6. Sum of Squares 91
9-7. Table of Factorials 94

10-1. 16-Bit Sum of Data 98

10-2. 32-Bit Sum of Data 100

10-3. Number of Negative Numbers 102
10-4. Number of Zero, Positive, and Negative Numbers 105
10-5. Find Maximum Value 106
10-6. Rnd Minimum Byte Value 108
11-1. Length of a String of Characters 113
11 -2. Rnd First Nonblank Character 114
11 -3. Rnd Last Nonblank Character 115
11-4. Replace Leading Zeros with Blanks 117
11-5. Truncate Decimal String to Integer Form 119
11-6. Pattern Match 121
11-7. String Comparison 123
12-1. Hexadecimal to ASCII 127
12-2. ASCII to Hexadecimal 129
12-3. ASCII to Decimal 130
12-4. Decimal to ASCII 131
12-5. Binary-Coded Decimal to Binary 135
12-6. Binary to BCD 138
12-7. Binary Number to ASCII-Binary String 140
12-8. ASCII-Binary String to Binary Number 143
12-9. Binary Number to ASCII-Hexadecimal String 146

12-10. ASCII-Hexadecimal String to Binary Number 148
12-11. Binary Number to ASCII-Decimal String 150
12-12. ASCII-Decimal String to Binary Number 152
13-1. 32-Bit by 32-Bit Multiply 156
13-2. 64-Bit Division 160
13-3. Square Root 163
13-4. Reciprocal of a Number 169
13-5. Sine of an Angle 171
13-6. Sine of an Angle Using the BL Subroutine Call 177
13-7. Sine of an Angle Using the BLWP Subroutine Call 179
14-1. Clearing the Screen 184
14-2. Display Text 186
14-3. Generate Cursor 189
14-4. Keyboard Input and Display 192
14-5. Convert String to Number 197
14-6. Raise Number to a Power 205
14-7. Change Screen Color 212

Preface

This book was written to fill a need. I bought my TI-99/4A Home
Computer in December, 1982, for two reasons. First, I wanted to
get agame machine formy sons, but I also wanted to buy acomputer
so that they could be exposed to computer programming. I hoped
they might even try learningsome BASIC. Andthis they have done,
at least to the extent of trying some graphics programs shown in the
Tl Beginner's BASIC TeachingManualandalsotyping in programs
published in COMPUTE* Magazine.

Second, I wanted to learn to write programs in assembly
language, having had someexperience writingprograms in BASIC
on a main-frame computer and having also had some experience
writingassembly language fora minicomputer. In particular, I was
very interested in learninghowto programa 16-bitmicroprocessor,
something I had not yet done.

I began pursuing this secondpurpose within a month or so of
purchasing my Home Computer.

At first I looked at the Tl Editor/Assembler software package.
However, the requirement to buy the Disk Memory System
seemed a very high price ($1000) just to learnassembly language.
And then I found out about the Mini Memory module, a software
cartridge that also comes with a Line-by-Line Assembler on cas
sette tape. This was more like it—$84 and I was in business.

Or so I thought. I thought that the Mini Memory Owner's
Manual or the Line-by-Line Assembler Manual would explain the

vf

9900instructionset andgive me clear program examples illustrat
ing each instruction. I was wrong. Page 9 of the Mini Memory
Owner's Manual says:

If you intend to use the Mini Memory module forcreating
your own assembly language programs, it is assumed that
you are experienced in TMS9900 assembly language pro
gramming and that you are familiar with the internal or
ganization of data and file structures used by the Home
Computer. For acomplete discussion of these topics, see
the Editor/Assembler owner's manual.

This certainly wasn't true forme, andI suspected that I was not
alone. I purchased the Editor/Assembler manual from Texas
Instruments for about $18 plus shipping, and I anxiously looked
forward to a good tutorial explanation of the 9900instruction set.
Perhaps it would be similarto what Tl had done for BASIC in their
Beginner's BASIC manual.

But I was wrong. The Editor/Assemblermanual turned out to
be a good reference manual, but it was not, nor ever will be, a
self-teaching guide to 9900 assembly language programming.

I decided to write someassembly language programs anyway.
What I needed was a good problem set, ranging from very simple
assembly language programs to more complex problem solving
programs. So I beganto look forabook, but no such book existed for
the 9900 microprocessor as far as I was able to determine. How
ever, I did find assembly language booksabout other microproces
sors. These assembly language books were tutorial in nature and
had similar problem sets. Using these books for program ideas, I
wrote many of the programs you will study in this book. Further
more, after I got going I began to come up with my own program
ideas. I alsowrote programs that use the internalresources of the
Tl home computer.

These programs are the basis of this book. I haveessentially
written the bookthat I could not find, and I hopeit meets the needs
of those seeking such a book.

I want to thank Liz Akers and Kim Tabor of TAB BOOKS Inc.
for taking a chance on a new author.

I want to thankTexas Instruments for granting permission to
reprint the material found in the appendix. This information is not
readily available to those who do not work in an electronics en
gineering environment.

Finally, I want to thank two very good friends, Diane Corbett
and Linda Tabor, and my wife, Alice, for typing the manuscript.

vii

Introduction

This book is written for anyone who wants to learn how to program
the TI-99/4A Home Computer in assembly language. No prior
knowledge of assembly language is assumed. It is assumed, how
ever, that you have at least some experience writing programs in
BASIC, Tl BASIC, or any other so-called dialect of BASIC and that
you are familiar with elementary programming terminology and
concepts such as loops and subroutines.

If you are a technician, engineer, or hobbyist who wants to
learn 9900 assembly languageprogramming but do not have access
to high cost software development systems, then this book is for
you.

If you areaTI-99/4A ownerwho has little or nobackground in
electronics in generaland microprocessors in particular and if you
want something else to dowith yourcomputer, then this book is for
you.

If you just want to learn an assembly language, especially a
16-bit microprocessor assembly language, and you are willing to
spend less than $200 (if you haven't yet boughta TI-99/4A), then
this book is for you also.

This book will:

• Teach you the fundamentals of 9900 assembly language.
• Give you good reference material on the TMS 9900 micro

processor-material that is generally unavailable.

viii

• Give you a good understandingof how the TI-99/4A works
internally.

• Give you a skill that willhelp youunderstandand evaluate
the instruction sets of other microprocessors.

• Give you an appreciation of BASIC and other high-level
languages suchas FORTRAN andPASCAL, which are simply very
complex programs written in assembly language.

This book is divided into three parts: The fivechapters in Part I
briefly describe the fundamental concepts of programming lan
guages and microprocessor systems. Ifyou are already familiar with
these concepts, skip this section. Chapter 1explains the differences
and similarities of BASIC, machine language, and assembly lan
guage. Chapter 2 discusses the terminology and operation of the
memory in a microcomputer system. Chapter 3 examines the inter
nal organizational features common to most microprocessors.
Chapter 4 discusses each of the five basic types of microprocessor
operations—data transfer, arithmetic, logic, shift and rotate, and
control transfer. Finally, Chapter 5 explains the addressing mode
concept.

In Part II the three chapters provide background and pro
cedural information that you will need in order to write TI-99/4A
assembly language programs.

Chapter 6 overviews the TMS 9900 microprocessor and dis
cusses the architecture, instruction set, and addressing modes of
the 9900. Chapter 7 discusses the internal organization and opera
tion of the TI-99/4A. Chapter 8 explains how to use the Mini
Memory module and the Line-by-Line Assembler.

Part HI containssix chapters of programs, their listings, and
explanations. The orosprams have been selected and arranged to
teach you the 9900 instruction set and how to use other assembly
language routines that are stored in the Mini Memory module and
the TI-99/4A console.

Chapter 9 contains very simple assembly language programs
and explains all the procedural steps required to create and run an
assembly language program on the TI-99/4A. Chapter 10contains
programs illustrating the instructions used in program loops.
Chapter 11contains simple programs that processASCII-encoded
strings. Chapter 12contains 12useful code-conversion programs.
Chapter 13contains multiprecision arithmetic problem programs.
Chapter 14 contains programs that demonstrate how to use the
subroutines stored in yourcomputer. In particular, you will learn

ix

howto input data from the keyboard and how to control the screen
display.

Finally, the appendix contains detailed instruction set infor
mation on opcodes, status registereffects, and instruction exam
ples.

Parti

Fundamental Concepts

Chapter 1

Programming Languages
A computer is a data-processing machine designed to solve arith
metic problems and performother tasks such as accounting, elec
tronic filing, or word processing. A simplified block diagram of a
typical home computer is shown in Fig. 1-1.

The brain of this machine is the microprocessor, whichperforms
arithmetic and logic functions; receives data from the keyboard;
stores data in andretrieves data fromits memory; anddisplays data
on the television screen, monitor,orother output device. (A printer
will be required if a hard copy of the data is desired or if large
quantities of data are to be displayed).

The functions of the computer are controlled by programs
stored in its memory, kprogram is a series of instructions written in
a language understood by the computer. Programming is the art of
writingacorrectset of instructions. A well-writtenprogram uses as
few instructions as possible, and works.

Some programs are built in; they have been permanently
stored in the computer before it was shipped. These built-in pro
grams are usually designed to enable you to write your own pro
grams and to load and run programs written by the manufacturer or
other companies.

BASIC

All home computers have been programmed by the manufac
turer to allow the user to write programs in BASIC, perhaps the

Input Device

(keyboard)

Memory

A

v

Microprocessor >*
Output Device
(television set or monitor)s

Fig. 1-1. Basic components of a typical home computer.

easiest programming language to learn. BASIC stands for Begin
ners All-purpose Symbolic Instruction Code. The simplicity of
BASIC is demonstrated by the program shown in Fig. 1-2.

Notice the following things about this BASIC program:

• It has line numbers. Line 10 reads INPUT. Line 40 reads

END.

• It uses plain English language words: INPUT, PRINT, and
END. These words are called statements.

• The form of the equation on line 20 differs very little from
the form used in algebra booksor technical literature. Note that an
asterisk is used to indicate multiplication in BASIC.

Obviously, few BASIC programs are this simple. However,
this program demonstrates the essential features of BASIC. Note
that simple programs are easy to write in almost any computer
language and that complex programs are difficult to write because
they are complex, not necessarily because they are written in
BASIC.

The best thing about BASIC is that you can learn this pro
gramming language without understanding the internal organization
andoperation of the computer. Youdon't even haveto knowhowto
type, but it helps.

Fig. 1-2. Sample BASIC program.

10 INPUT C

20 F=(9/5)*C+32
30 PRINT F

40 END

MACHINE LANGUAGE

BASIC is often referred to as a high-level language. FOR
TRAN, COBOL, PASCAL, and ADA are also high-level languages.
The termhigh-level language isusedtodistinguish these languages
from machine language, which is the most fundamental computer
language.

Machine language utilizes only two symbols: 0 (zero) and 1
(one). These symbolscorrespond to the two possible states of the
basicmemory unit. The basic memory unit, or cell, is like a switch
and is either on or off. Thus, the cell has a binary nature, and the
numbersystem used by the computer is the binary numbersystem.

BASIC is actually a program which resides in the computer
memory in the formof Is and Os. Furthermore, programs written in
BASIC mustbetranslated into machine language before they can be
executed, or run. This process of translation is carried out key
stroke by keystroke as the operator types. Thus, when you as the
operator type the word INPUT on the keyboard, the computer
actually receives a series of Is and Os as follows:

0100100101001110010100000101001101010010

Also, the program BASIC consists of many subprograms,
called subroutines, all (ofcourse) writteninmachine language. For
each BASIC statement, such as INPUT or PRINT, and for each
arithmetic operation such as addition or subtraction, there is a
corresponding machine-language subroutine having one or more
instructions. A machine-language subroutine to perform addition is
shown in Fig. 1-3.

This program performs the following steps:
1. Get first number.

2. Add to second number.
3. Store the result.

Note that there are two columns of numbers. The numbers on

0111110100000100 1100000001100000

0111110100000110 0111111000000010

0111110100001000 1010000001100000

0111110100001010 0111111000000100

0111110100001100 1100100000000001

0111110100001110 0111111000000000

Fig. 1-3. Sample binary machine language program.

7D04 C060

7D06 7E02

7D08 A060
7D0A 7E04

7D0C C801
7D0E 7E00

Fig. 1-4. Sample hexadecimal ma
chine language program.

the left are memory locations, called addresses and correspond
conceptually to the line number in a BASIC program. The numbers
on the right are the data locatedat the memory addresses. The data
may be instructions as well as numbers and characters to be pro
cessed. The instruction correspondsconceptuallyto the statement
in BASIC.

It should be apparent that writing programs in machine lan
guage is tedious and prone to error. Even after careful proofreading,
there could easily be one or more errors in the program shown in
Fig. 1-3.

Machine-language programming is made less tedious and sub
ject to fewer errors if we use hexadecimal notation. Hexadecimal
uses the symbols 0 through 9 and A through F. One hexadecimal
number takes the place of four binary numbers, as shown in Table
1-1. Using this table you can convert the binary machine-language
program, shown in Fig. 1-3, to hexadecimal. The result is shown in
Fig. 1-4.

ASSEMBLY LANGUAGE

Assembly language is a symbolic form of machine language.

Table 1-1. Binaiyto
Hexadecimal Conversion.

Binary Hexadecimal

0000 0
0001 1

0010 2
0011 3

0100 4

0101 5

0110 6
0111 7

1000 8
1001 9

1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

E3 LWPI WS
MOV (9M1.R1
A 0M2.R1
MOV R1.3M3
B •R11

Fig. 1-5.Sample assembly language
program.

Abbreviations, or mnemonics, are used in place of Is and Os or
hexidecimal notation. A sample assembly language program is
shown in Fig. 1-5.

Eachline of anassembly-language programhas three sections,
or fields. The first field is the label field. The label is similar to the
line number in BASIC. While each line in BASIC must be numbered,
in assembly language the label is optional.

The second field is the opcode field. The opcode is the opera
tion to be performed. Moving data from one memory location to
another, adding, and subtracting are a few of the operations that the
computer may perform. The opcode is similar to the statement in
BASIC.

The third field is the operand field. The operand may be a
number (to be added to another number, for example), or it may be
the number of a memory location (a memory address where a
number is located). There may be one or two operands in the
operand field. If there are two operands, they are separated by
a comma.

Before an assembly-language program can be run, it must be
translated into machine language. Fortunately this need not be done
by hand. There is a program which translates the assembly lan
guage mnemonics into machine language. This program is called an
assembler. Each assembly language instruction (opcode plus
operand) is translated into one binary instruction. The assembly-
language program is called the source program. The binary result
(usually represented in hexadecimal) is called the objectcode.

The main advantage of assembly language is that it gives the
programmer direct control of the internal computer memory loca
tion. The result is that assembly-language programs use fewer
memory locations and run faster than BASIC programs.

The disadvantage of assembly language is that it is more
difficult to learn than BASIC. Recall that to learn BASIC it is not
necessary to understand the internal operation of the computer.
This is not true for assembly language. Furthermore, there are as
many assembly languages as there are microprocessors. Thus, to
learn assembly language you must learnaboutmicroprocessors in

general, and in particular, you must learn at least some things about
the microprocessor that you want to program.

SUMMARY

In this chapter, I discussed three programming languages:
BASIC, machine language, and assembly language.

BASIC is an easy programming language to learn. The pro
grammer is not required to understand the internal organization and
operation of the computer to use it.

Machine language is the most fundamental programming lan
guage, utilizing only two symbols: 0 (zero) and 1 (one). The use of
hexadecimal notation makes machine language easier to read and
write.

Assembly language is a symbolic form of machine language.
Assembly language uses mnemonics in place of the binary code. To
learn assembly language, the programmer must have some knowl
edge of the internal operation of the computer.

8

Chapter 2

ac E ""

^.

21
in

i£3
Memory

The memory is that partof the computer where programs and data
are stored. Recall that the assembly-language programmer has
directcontrol over eachmemorylocation. Thus, understanding the
terminology and operation of the memory is essential to learning
assembly-language programming.

ADDRESS BUS

The basicinterconnectionbetween the microprocessorandthe
memory is shown in Fig. 2-1. Each bus is a group of electrical
interconnections. The width of a bus is the number of lines in that
bus. Each line is called a bit.

The microprocessor sendsout addressesof memory locations
on the addressbus. The address is in the form of a binary number.
Recall that the binary number system uses only two symbols: 0
(zero) and 1 (one). The width of the address bus determines the
maximum number of memory locations that the computer may
address according to the following equation:

A = 2n

A equals the maximum addressable memoryand n equals the
width of the address bus. Thus a 16-bitaddress bus canaddress 216,
or 65536, memory locations. A 20-bit address bus can address 220,
or 1048576, memory locations.

9

AddressBus ^

Microprocessor Memory^ Data Bus
*

X

k
Control Bus

Fig. 2-1. Interconnection between the memory and the microprocessor.

In assembly language, memory locationsare usually specified
using hexadecimal notation. Thus, the range of addresses for a
computer having a 16-bit address bus would be 0000 to FFFF, or
from 0 to 65535 in decimal notation. Note that 0, not 1, is the first
location. Also, don't worry about not being able to quickly switch
back and forth between hexadecimal and decimal. Even experi
enced programmers must either perform the conversion by hand, or
use a special-purpose calculator. Later on, Til discuss number
systems and how to convert from one system to another.

DATA BUS

The data bus is bi-directional. That is, data can be transferred
from the microprocessor to the memory or from the memory to the
microprocessor. However, data cannot be transferred in both di
rections at the same time.

Like the address bus, the information on the data bus is in the
form of abinary number. Althoughthe width of the databus may be
any length, it is usually one of the following widths: 4, 8, 16, or 32
bits. These widths usually correspond to the data width of the
microprocessor. Thus, a 4-bit microprocessor has a 4-bit data bus,
an 8-bit microprocessor has an 8-bit data bus, and so forth. This
means that an8-bit microprocessor, forexample, has been designed
to process, or perform operations on, 8-bit binary numbers.

Also like the address bus, the width of the data bus determines
the largest number that the computer can process according to the
following equation:

D = 2n -1

D equals the largest number and n equals the width of the data
bus. Thus a computer with an8-bit data bus can process any number
up to 255. A computer with a 16-bit data bus can process a number
up to 65535. By process I mean that the computer can perform a

10

single operation on a number no largerthan that determined by its
bus width. Larger numbers, however, may be processed by multi
ple operations.

Generally, there is one memory address per the number of bits
in the data bus. This is true for four and eight bit computers.
However, for 16-bit computers there is one address per eight bits,
called bytes. This gives the 16-bit computer additional flexibility. It
may transfer either one byte of dataor two bytes of dataat the same
time. Without this flexibility, memory space would be wasted in
those cases where the data was only eight bits wide.

CONTROL BUS

The control bus consists of two lines: the read control line and
the writecontrol line. These lines are used in conjunction with the
address and data buses in two basic modes.

In the readmode, the microprocessor sends out anaddress to
the memory. The readlinemomentarilygoes fromthe 1 state to the
0 state and back to the 1 state. While the read line is in the 0 state,
the memory sends the microprocessor the data contained in the
corresponding memory location. The write line is in the 1 state
during the read operation.

In the write mode, the microprocessorsends out both address
and data information to the memory. The write line momentarily
goes from the 1 state to the 0 state and back to the 1 state. While the
write line is in the 0 state, the binaryinformationon the data bus is
written into the designated memory location. Previous data in this
location is overwritten. The read line is in the 1 state during the
write operation.

Both of these operations take less than one microsecond for
most types of microprocessors. One microsecond is one one-
millionth of a second (1/1,000,000 or 0.000001 seconds). This
means that a typical microprocessor may perform one million mem
ory operations per second.

ROM AND RAM

There are basically two types of memory inside a home com
puter read only memory (ROM) and read/write memory (RWM).

Read only memory is exactly what its name implies: you can
only read the contents of this memory. The data in ROM cannot be
changed. The ROM in the computer contains prewritten programs
and associated data. These prewritten programs (which allow you

11

to write and run other programs) cannot be accidentally erased.
Even if you inadvertently try to write over a ROM location, nothing
will happen.

On the other hand, the read/write memory can be read or
overwritten. This memory is volatile. That means that when you
turn off the power the contents of the RWM is lost. Also, when you
turn the power on, the state of the RWM is indeterminate. The
read/write memory is that area where programs are temporarily
stored. To save new programs they must be stored on either
cassette tape or floppy disk. Old programscan be loaded into this
memory from cassette or disk.

Read/write memory is also called random access memory, or
RAM for short. Random access means that any memory location
may be accessed in any order. This term distinguishes this type of
memory from other types of so-called serial memories, such as
first-in-first-out (FIFO) or last-in-first-out (LIFO), which may not
be randomly accessed. Note, however, that read only memory is
also a random access memory although it is never referred to as
RAM. Tm sure there's a story behind this inconsistency, but I don't
know what it is.

SUMMARY

In this chapter, I discussed the basicterminology andoperation
of the memory.

The microprocessor and the memory are connected by three
buses: the address bus, the data bus, and the control bus.

The two basic types of memory inside the home computer are
the read only memory andthe read/write memory - the ROM and
RAM. The data in ROM is essentially permanent and can only be
read. The data in RAM may be changed as often as the programmer
desires. The data in RAM is lost when power is removed.

12

Chapter 3

44E
D
^3

Microprocessors

In the last chapter, I examined the interconnection, or interface,
between the memory and the microprocessor and discussed the
terminology and operation of the memory. In this chapter, I will go
inside the microprocessor, the so-called brain of the home com
puter.

Recall that there areas manyassembly languages as there are
microprocessors. There are two reasons for this: first assembly-
language instructions are directly related to the internal design, or
architecture, of the microprocessor; andsecond the architecture of
each microprocessor is different.

In this book, you are going to learn how to write assembly
language programs on the Texas Instruments TI-99/4A home com
puter. The microprocessor inside the TI-99/4A is called the
TMS9900, also made by Texas Instruments. The 6502 micro
processor, made by several manufacturers, is inside the ATARI,
VIC-20, and Apple II computers. The Intel 8088 microprocessor is
inside the IBM Personal Computer. The internal designs of these
microprocessors are all different, and the assembly language-
instructions for each microprocessor (and home or personal com
puter) is consequently different.

To write assembly language programs for the TI-99/4A, you
will have to learn at least some things about the internal design of
the TMS9900. Before I do that, however, I am going to discuss the
terminology and internal design of microprocessors in general. This

IE
in

n

13

will make it much easier to understand the TMS9900 later on.
Figure 3-1 shows a block diagram of a generalized micro

processor. This drawing does not represent anycommercialmicro
processor andhas been simplified in order to clearlyexplain those
features that are common to many different types of microproces
sors. Note the following primary functions within the microproces
sor:

• The arithmetic logic unit (ALU).
• The status register.
• The general registers.
• The program counter.
• The control unit.

The multiplexers and demultiplexers are secondary functions

I
Demultiplexer

if

General Registers

i

\ f \ /

Multiplexer Multiplexer

\ f \ /

Arithmetic Logic Unit

> f

Status

Register

+ \)ata Bus

Program Counter ^ / Address Bus

•£ > oontroi unit — r

Fig. 3-1. Block diagram of a generalized microprocessor.

14

Operand A Operand B

ALU ^— Function
Select

i i
Status Result

Fig. 3-2. Inputs and outputs of the ALU.

which facilitate the movement of data between the main blocks and
alsoto the so-called outside world—the memory, the keyboard, and
the display unit.

ARITHMETIC LOGIC UNIT

Let's begin with the arithmetic logic unit, or ALU, which is
considered the heart of the microprocessor. As its name implies,
this unit performs arithmeticand logic operationson either one or
two operands. In Fig. 3-2, these operands arecalledoperandA and
operand B. Note that two outputs are generated each time an
operation is performed: one is the result of the operation and the
other is the status, or condition code.

Operand A, operand B, and the result are binary numbers.The
number of bits in both of these numbers corresponds to the width of
the data bus which I discussed in the last chapter. The TMS9900,
forexample, is a 16-bitmicroprocessor. The data bus is 16bits wide
and the ALU operands and result are also 16 bits wide. Thus, a
16-bit ALU performs arithmetic and logic operations on 16 bits of
data atone time. Operating on32or64bitswould require multiple
operations.

Thefunction select shownin Fig. 3-2 represents one or more
control lines which determine whichof the following typicalopera
tions the ALU is to perform:

• A plus B.
• A minus B.
• B minus A.

DAORB.

• A AND B.

• A exclusive-OR B

15

• Set result to all zeros.

• Set result to all ones.

Plus and minus are arithmetic operations (addition and sub
traction). OR, AND, and exclusive-OR are logic operations. Set
result to all zeros and set result to all ones are neither arithmetic

nor logic operations (they do not involve input operands at all), but
are used when it is desirable to write all zeros or all ones to a
particularmemory location. Each of these and other microproces
sor operations will be explained in the next chapter.

STATUS REGISTER

As mentioned before, the ALU has two outputs: the result and
the status. The result, obviously, is the answer. If the operation
was addition, then the result would be a sum. The status, on the
other hand, gives us some additional information about the result.
The status word is a group of bits. The state (0 or 1) of each bit
corresponds to the occurrence or nonoccurrence of a particular
condition. The state of each condition is stored in the status regis
ter. (Registeris another name for a storage location.) One or more
status bits is updated at the end of each operation.

The four most common conditions that are monitored are

called carry, overflow, zero, and negative. When two numbers are
added, a carry may occur. If a carry does occur, then the carry bit is
set to 1, otherwise it is reset to 0. The overflow bit is set when the
result of the operation is too large or too small to be correctly
represented in 2s complement form (to be explained). The zero bit
will be set if the result is zero, and the negative bit will be set if the
result is less than zero.

The status of the bits is used as a basis for making decisions
during program operation. The programmer may want to branch, or
jump, to another partof the programdepending on the state of one of
the status bits. He may want to perform one task if the result is
zero and a different task if the result is negative. Thus, just as the
BASIC programmer uses the IF-THEN-ELSE combination state
ment to jump to another location in his program, the assembly
language programmer uses a jump on zero or other conditional
branching instruction which causes the computer to go to another
memory location (other than the next one in sequence) based on the
condition code contained in the status register.

GENERAL REGISTERS
A set of general purpose registers is often included in the

16

microprocessor to improveprocessor speed. It takes the processor
less time to reador write to aninternal register thanit does to read
or write to an external memory location.

Programming is also simplified. Earlier microcomputers had
only one register for ALU operations. It was called the accumulator.
To perform an ALU operation, the programmer had to first copy
data from an external memory location into the accumulator. Next
he added, for example, the contents of the accumulator to the
contents of a memory location(the address of which was previously
stored in a specific internal register) and then stored the result back
into the accumulator. Before the programmer could perform
another ALU operation he had to store the contents of the ac
cumulator in an external memory location. Thus, it took at least four
assembly-language instructions to perform a simple addition. If,
however, the microprocessor has a number of general purpose
internal registers, then many ALU operations may be performed

«-

f

Demultiplexer

^ |_

1 ' v V \ r

Register Register Register Register

1

^ >if \f V N* Jm/ t

Multiplexer Multiplexer

, .> ' > f

ALU

* f

Status Register

>
f > f •^ Data Bus 1

Fig. 3-3. ALU and register set interconnection.

17

and it may not be necessary to ever store the results in external
memory.

Figure 3-3 shows the interconnection between the ALU and
the generalregister set. This figure shows only four registers, but
some commercial microprocessorshave 16or more. Note that the
purpose ofthemultiplexers is to selectwhich register's data willbe
the source for operand A and which willbe the source for operand B.
A multiplexer is conceptually identical to the channel switchon your
television set.

The demultiplexer selectswhich registerswillbe the destina
tion for an ALU operation or a memory operation. For an ALU
operation the demultiplexer selects which register will be the
storage location for the result. For amemoryoperation, the demul
tiplexer selects which registerwillcontain acopyof the data in the
memory.

PROGRAM COUNTER

The program counter contains the memory address of the next
instruction to be executed. Normally all instructions are executed
sequentially. After an instruction has been read into the micro
processor from the memory, the program counter is automatically
incrementedby one. Most programs, however, involvejumping, or
branching, to some other location in memory. In these cases, the
program counter is first loaded with the new location and then
incremented thereafter or until another jump instruction is en
countered.

When the microprocessor is instructed to begin a subroutine,
the contents (plus one) of the program counter is saved either in
another internal register or an external memory location. The
address of the first instruction in the subroutine is then loaded into
the program counter and incremented until a return instruction is
encountered. Then the old program countervalueis loaded into the
program counter register and the program continues, executing
each instruction sequentially until encountering either a jump in
struction or a subroutine call.

CONTROL UNIT

The control unit is the most complex of allthe microprocessor
functions. It is shownasasimpleblockin Fig. 3-1.Not shownis the
fact that the control unit is connected to every other block.

The control unit causes the addresses to be sent out on the
address bus to the memory. The control unit sends out a read

18

command to the memory and reads the instruction (or data) that
comes back on the data bus. The control unit then decodes the
instruction and sends out appropriate signals to the ALU, the
multiplexers, demultiplexers, registers, and the program counter.
If the instruction was to store data in the memory, then the control
unit sends out the address and the data and a write command to the
memory.

SUMMARY

A typical microprocessor consists of five major functional
blocks. The ALU performs arithmetic and logic operations. The
status register records the effects of the ALU operations. The
general register set provides convenient additional storage loca
tions for the programmer and, additionally, improves the execution
time foraprogram. The program countercontainsthe addressof the
next instruction to be executed. The control unit decodes instruc
tions, sets up all internal conditions necessary to execute the
instructions, and sends out read and write commands to the mem
ory.

19

Chapter 4

±±5k *=J=

^3 ^

n
B

ffi
Microprocessor Operations

Microprocessors perform five basic types of operations: data
transfer operations, arithmetic operations, logic operations, shift
and rotate operations, control transfer operations.

DATA TRANSFER

The move instruction is probably the most used instruction in
the entire instruction set of anymicroprocessor. This instruction is
used to transfer data from one location (the source) to another
location (the destination). These locations may be almost anywhere
in the microcomputer system. Thus, I may move data from the
memory to a register, from a register to the memory, from one
register to another register, or from one memory location to
another memory location.

By the word move I reallymeanthat the datais copied. After I
move data from a memory location to a register, for example, the
original data is still in the memory—it has not been lost, nor is the
memory location empty. However, any data in the register (to
which I moved data) has been overwritten and is lost (unless
previously moved elsewhere, of course).

Load and store instructions are variations on the basic move
instruction. Generally, I loadaregister with data, where the data to
be loaded is located in the memory locationimmediately following
the memory location that contains the load instruction. Thus, in a
load instruction, only the destination needs to be specified because

20

the source is implied. Similarly, I store a result in a register or
memory location.

ARITHMETIC

Microprocessors performtwo basic arithmetic operations: ad
dition and subtraction. Recallthat microprocessors perform opera
tions on binarynumbers andthat the largest possible number is set
by the width of the databus or, more particularly, the number of bits
that the ALU has been designed to operate upon. Thus, a 16-bit
microprocessor may perform addition or subtraction on any two
16-bit binary numbers. Let me illustrate how the computer per
forms both of these operations. For simplicity I will use only 4-bit
numbers.

Binary Addition

Suppose I wanted to add the number 9 to the number 3. The
operation is shown in both decimal and binary. The binary equiva
lents came from Table 4-1.

Decimal Binary
9 1001

+3

12

+0011

1100

Binary addition is performed in the same manner that decimal
addition is performed. I start in the right hand column (the least
significant bit, or LSB) and move left one column at a time until I

Table 4-1. Decimal-Binary Equivalents.

Decimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

21

reachthe leftmost column (themost significant bit, or MSB). WhenI
add two single-bit binary numbers, there are only four possible
combinations:

• 0 plus 0 equals 0. Carry equals 0.
• 0 plus 1 equals 1. Carry equals 0.
• 1 plus 0 equals 1. Carry equals 0.
• 1 plus 1 equals 0. Carry equals 1.

The solution to the simple addition problem is as follows:
1. Start at the right hand column. 1 plus 1 equals 0 with 1 to

carry.

1

1001

+0011

2. Move one column to the left. Since I have acarry, I must add
twice. 1 (the carry) plus 0 equals 1 (no carry). 1 (result from last
add) plus 1equals 0 with 1 to carry. The result of steps 1and2 are as
follows:

11

1001

+0011

00

3. Move one column to the left. 1 (the carry) plus 0 is 1 (no
carry). 1(result from last add) plus 0 is 1(no carry). The result of
steps 1, 2 and 3 are:

4. Move one column to the left. 1 plus 0 equals 1 (no carry).
Addition is complete:

22

Binary Subtraction

Binary subtraction, unfortunately, is not as straightforward as
binary addition. Most computers perform binary subtraction by
what is called theaddition ofthe 2s complement. In simple terms, this
means that instead of subtracting one number from another the
computer adds two signednumbers. The form for signed numbers is
called 2s complement.

Table 4-2 gives the 2s complementof all integers between +7
and -8. Note that this is the maximum number range for a 4-bit
microprocessor. The maximum number range for an 8-bit micro
processor is +127 to -128. The maximum number range for a
16-bit microprocessor is +32,767 to -32,768.

Also note that the 2s complement of a positive number is the
same as its binaryrepresentation. The 2s complement of a negative
number is formed by first changingall Is to Os and Os to Is and then
adding 1. For example, let's convert the number -3 to its 2s
complement form. First, I change 0011 to 1100. Then I add 0001 to
1100andget 1101.The leftmost bit is called the sign bit: 0 indicates
a positive number, 1 indicates a negative number.

As an example of binary subtraction, let's subtract 4 from 7.
This is the same as adding+7 and-4. First, I convert each number
to its 2s complement form as outlined above or by looking up the
numbers in Table 4-2. The 2s complement for +7 is 0111 and the 2s
complement for -4 is 1100. Next, I add the 2s complement forms of
the numbers:

Table 4-2. 2s Complement of Signed Numbers.

Signed Decimal Binary 2s Complement

7 0111 0111
6 0110 0110
5 0101 0101
4 0100 0100
3 0011 0011
2 0010 0010
1 0001 0001
0 0000 0000

-1 -0001 1111
-2 -0010 1110
-3 -0011 1101
-4 -0100 1100
-5 -0101 1011
-6 -0110 1010
-7 -0111 1001
-8 -1000 1000

23

The final carryis ignored. The result is in2scomplement form.
UsingTable4-2, noticethatthe numberis +3, whichis the correct
answer.

Now let's subtract 7 from 4:

Decimal 2s Complement
+4 0100

-7 +1001

-3 1101

When you look up 1101 in Table 4-2 you will see that it is
equivalent to -3. Since the result is negative, the status register
records this condition by setting the negative bit to 1.

What happens if I subtract 7 from -4?

Decimal 2s Complement
-4 1100

-7 +1001

-11 0101

When you look up 0101 in Table 4-2 you will see that it is
equivalent to +5, which is not the correct answer. This is because
the correct answer is outside the maximum allowable range for a
4-bit microprocessor. Consequently, the overflowbit in the status
register is set to 1. Note that it is the programmer's responsibility
to make sure he is subtracting numbers that will give him legal
results.

LOGIC

Microprocessors perform three basic logic operations: AND,
OR and exclusive-OR.

The logic operation results on two single-bit operands are
shown in Table 4-3. This table shows the corresponding logic
operation results forthe four possible combinations of 0 and1of the
input operands. Logic operations on 4, 8, or 16-bit operands are
performed on a single-bit basis.

As anexample, let operand A equal0101 andoperand B equal
1100. Starting at either the left orright, lookupthe logic results in

24

Table 4-3. Logic Operation Results onTwo Single-Bit Operands.

Operand

A

Operand

B

Logic Operation Result

AND OR XOR

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

1

0

1

1

0

Table4-3foreachpairofbits.Startingat theleftmost bit,operand A
equals0 andoperand Bequals 1. Therefore AAND B equals 0; A
OR Bequals 1; and AXOR Bequals 1. Inthesame manner, you can
look up the logic operation results forthe nextthree pairsofbits.
The results are summarized as follows:

0101 AND 1100 equals 0100.
0101 OR 1100 equals 1101.
0101 XOR 1100 equals 1001.

SHIFT AND ROTATE

Microprocessors performtwo basic shift operations: shift left
and shift right. Rotate operationsare specializedshift operations.

Shift

Ina shiftleftoperation, allbits ina register or memory location
are shifted one position to the left. The leftmost bit is transferred to
the carry in the status register. The rightmost bit, after the shift, is
set to 0. This operation is typically called arithmetic shift left.

Let's take a 4-bit numberand perform an arithmetic shift left.
Let's also assume the carry equals 0. Before the shift I have the
following:

Carry Register Contents
0 1011

After a left shift the carry and register contents look like this:

Carry Register Contents
1 0110

25

In a shift right operation, all bits in a register or memory
location are shifted right one position. The rightmost bit is trans
ferred to the carry, andthe leftmost bit, after the shift, is set to 0.
This operation is typically called logic shift right. Let's perform a
logic shift right.

Before After

Register Contents Carry Register Contents Carry
1011 0 0101 1

Anothershift rightoperation is called arithmetic shift right. The
differencebetween this operation andthe logic shift rightis that the
leftmost bit remains unchanged after an arithmetic shift right:

Before After

[ister Contents Carry Register Contents Carry
1011 0 1101 1

In rotate operations, the bits are circulated back into the
register. The carry may or may not be included in the loop. For
example, inarotate leftoperation including carry, all bitswould be
shiftedtothe left oneposition (same asthe shiftoperation described
above). The leftmost bit wouldbe transferred to the carry (same as
before), while the carry would be transferred to the rightmost bit
(different than before).

CONTROL TRANSFER

Microprocessors perform three basic control transfer opera
tions. They are unconditional jump, conditional jump, and jump to
subroutine.

In an unconditional jump the computer is instructed to loada
new address into the program counter and then begin executing
instructions starting at that address. An unconditional jump in
structionin assembly language is the sameasthe GOTOstatement
in BASIC.

Inaconditional jump, the program counteris loaded with anew
instruction address only if and when certain conditions have oc
curred. The microprocessor reads the appropriate status register
bits to see if the condition has occurred. If so, then a jump occurs.
Otherwise the next consecutive instruction is executed. This is the
same as the IF-THEN statement in BASIC.

26

Subroutines are subprograms with one or more instructions in
them. Subroutines begin with a label that is used to call it up.
Subroutines end with a return instruction. When the computer
encounters a subroutine call, it loads the address of the first in
struction in the subroutine and then begins executing the sub
routine. Subroutines may contain conditional or unconditional
jumps as well as subroutines. When a subroutine contains a sub
routine, then the two subroutines are said to be nested. This in
struction is like the GOSUB statement in BASIC.

SUMMARY

Microprocessors perform five basic types of operation: data
transfer, arithmetic, logic, shift and rotate, and control transfer.
Move, load, andstore aredata transferoperations. Addandsubtract
arearithmeticoperations. AND, OR, andXORarelogicoperations.
Shift and rotateoperations involve the transfer of bits in a register
or memory locationto the left or right. Conditional jumps, uncondi
tional jumps, and subroutine calls arecontrol transfer operations.

27

Chapter 5

Addressing Modes

One final concept remains to be explained before we discuss the
TMS9900 microprocessor and the TI-99/4A home computer and
begin writing assembly language programs. That concept is called
the addressing mode.

Microprocessors perform operations on data and place the
results in registers or memory locations. The datato be processed
and the address of the result are called operands.

The operand itself or the location of the operand within the
microcomputer system is determined by what is called the ad
dressing mode, which must be specified for each operand in the
assembly language instruction.

If the operand is data, then the programmer must specify the
data itself or where the data can be found. If the operand is an
address, then the programmer must specify either the address
directly, or indirectly by specifyingthe register or memory location
where that address is stored.

There are five basic addressing modes that are common to
most microprocessors:

• Immediate

• Direct

• Indirect

• Indexed

• Relative

28

A single instruction with two operands may specify one ad
dressing mode for the first operand and adifferent addressing mode
for the second operand. Let me illustrate each of these addressing
modes.

IMMEDIATE

Immediate addressing applies to data operands only. In the
instruction, load into register 1 the number 23, the number 23 is the
data. The addressing mode is called immediate because this in
struction takes two memory locations; the first memory location
contains the machine code (binary) corresponding to "load into
register 1"; thememory location immediately following contains the
binary equivalent of 23.

DIRECT

Direct addressing applies only to address operands. In the
previous instruction, load into register 1 the number 23, register1
is an address operand. It is specified directly, in contrast to indi
rectly (which we will get to in a moment).

This mode is also called register direct, contrasting this mode
with memory directaddressing. The instruction, move the contents
of memory location 7E00 to register 1, is an example where both
operands are addresses, and bothare specified directly. Neverthe
less, the TMS9900 differentiates between register direct and
memory direct addressing and uses differentmnemonics (symbolic
abbreviations) for each. Memory direct addressing is called sym
bolic addressing in TMS9900 assembly language.

Noteinthe last example that adata operand isconcealed inthe
words "thecontents of."Thus, it is data that is moved, even though
the instruction contains an address operand. In fact, data operands
are specified directly only in the immediate addressing mode.
Confusing, isn't it?

INDIRECT

When the indirect addressing mode is specified, then the
address of either the data or the address must be looked up. In the
instruction, load the number 23 into the memory location the ad
dressofwhichis storedinregister1, the microprocessor must read
the contents of register 1 to find out the destination address for the
number 23.

As another example, move the contents of register 1 to the

29

memory location the address of which is stored in register 2, the
first operand (the contents of register 1) is specified using the direct
addressing mode (indirectly specifying a data operand) and the
second operand (register 2) is specified using the indirect address
ing mode. The words "the memory locationthe contents of which is
stored in" specify the addressing mode. These words are reduced to
a single symbol in TMS9900 assembly language—the asterisk (*).

INDEXED

When the indexed addressing mode is specified, the address is
formed by adding the contents of a register with a constant. In the
example, move the number 23 to the memory location the address
ofwhich is the sum of the contents of register 2 and the number 5, if
register 2 contained the address 7D00, then the number 23 would be
stored in memory location 7D05.

RELATIVE

Relative addressing is specified for jump, or branch, instruc
tions only. Jump forward 16 memory locations is an example of
relative addressing.

In this example, the number 16 is added to the address in the
program counter. This new address (the program counter plus 16) is
loaded into the program counter and is the address of the next
instruction to be executed. Note that the new program counter
address is relative to the old programcounter address. With respect
to the old address, the new address is 16memory locations forward.

Relative addressing is not the only way to specify a jump or
branchaddress. I could instruct the computer to jump to the address
stored in register 1 (indirect) or jump to address 7E0A (direct), for
example.

SUMMARY

Microprocessors perform operations on data and place results
in registers or memory locations. The data to be processed and the
address of the result are called operands.

The operand itself or the location of the operand within the
microcomputer system is determined by what is called the ad
dressing mode, which must be specified for each operand in the
assembly language instruction.

There are five basic addressing modes common to most mi
croprocessors: immediate, direct, indirect, indexed, and relative.

30

Part II

The 9900 and the

TI-99/4A Home Computer

Chapter 6

The TMS9900

The TMS9900 is a 16-bitmicroprocessor. It is capable of address
ing up to 65,536 bytes of memory; it performsboth word andbyte
operations, uses memory-to-memory architecture, and has 69 in
structions and7 addressing modes. In this chapter, I will examine
the primary architectural features, the instruction set, and the
addressing modes of the TMS9900, hereaftersimplyreferred to as
the 9900.

ARCHITECTURE

The following section briefly describes the primary architec
tural features of the 9900. More detailed information can be ob
tainedby writingto Texas Instruments and askingfor the TMS9900
data sheet.

Memory Addressing

The 9900 has a 15-bit address bus and a 16-bit data bus. This
means that the 9900 can address up to 32,768 words of 16-bit data.

Internally, the 15-bit address bus is left-justified one bit to
form a 16-bit address. Thismeans that all 16-bit data is essentially
stored at even addresses. However, because of the internal 16-bit
address bus, 8-bitbyte data may also be addressed, and bothbyte
and word operations may be performed.

For example, the word at address 7D00 (even address) is
composed of two bytes. The address of the most significant byte is

33

7D00, and the address of the least significant byte is 7D01. The
9900 can perform a word operation on the word at 7D00or it can
perform abyte operation onthe byteat7D00 oronthe byte at7D01.
However, when the 9900 performs a byte operation on either the
byte at 7D00 or the byte at 7D01, it readsboth bytes, temporarily
stores them internally, andthen performsthe operation on the byte
specified in the instruction.

Program Counter

The program counter is a 16-bit register and contains the
address of the next instruction to be executed. The program counter
address is always aneven address. After an instruction is fetched
from memory (but before the instruction is executed), the program
counter is incremented by two.

Workspace

A unique feature of the 9900 is its lack of an internal general
purpose register set. Instead, a set of sixteen 16-bit registers,
called the workspace, resides in external memory. The address of
the first register in the workspace is contained inaninternal regis
ter called the workspace pointer(WP).

Anyarea inthe unused external read/writememory(the RAM)
may be designated as the workspace by the programmer. Let's
suppose, for example, that youdecide to place the first registerof
the workspace at memory address 70B8. This is accomplished by

34

Table 6-1. Example
Workspace for WP-70B6.

Memory Address Register

70B8 0
70BA 1

70BC 2

70BE 3
70C0 4

70C2 5

70C4 6

70C6 7

70C8 8
70CA 9

70CC 10

70CE 11

70D0 12

70D2 13

70D4 14

70D6 15

loading the number 70B8 into the WP register. Thereafter, memory
locations 70B8 through 70D6 are referred to as registers 0 through
15 of the workspace (See Table 6-1).

The 9900 does not have an internal accumulator. Instead, all 16
external workspace registers may be used as accumulators. This is
called memory-to-memory architecture. In the earlier microproces
sors, data had to be first moved to an internal accumulator before an
operation could be performed on it. With memory-to-memory ar
chitecture, data may be processed and stored back into memory by
using a single assembly language instruction.

Note that the programmer may allocate several areas in mem
ory to be workspaces. Changingworkspaces is as simple as loading
a new workspace pointer. Changing workspaces is called making a
contextswitch or changingtheprogramenvironment. Thus, a context
switch or a program environment change can be accomplished using
a single instruction. This saves both in the number of instructions
and in execution time since the programmer does not have to worry
about saving the contents of his workspace registers. With other
microprocessors, the programmer would have to save each regis
ter, using at least one instruction per register to be saved.

Communications Register Unit

Another unique feature of the 9900 is the communications-
register unit (CRU). Twelve lines of the address bus are used in
conjunction with the CRUIN (CRU input) line, the CRUOUT (CRU
output) line, and the CRUCLK (CRU clock) line to individually
address up to 4096 input lines and up to 4096 output lines. The data
bus is not used. CRU interface logic is required to decode the
individual addresses and store data sent out on the CRUOUT line. A

simplified diagram of the CRU interface is shown in Fig. 6-1.
When aninput line is selected, the logic state (0or 1) is read via

the CRUIN line and stored in the 9900. When an output line is
selected, a 0 or 1 is sent out on the CRUOUT line and stored in an

A3-A14

< Inputs

>Outputs

9900

CRU
Interface

Logic

CRUOUT

CRUIN

CRUCLK

Fig. 6-1. 9900 CRU interface.

35

externallatch (a single-bit storage location) whenthe CRUCLK line
goesfrom the0 stateto the 1stateand back tothe 1state(a pulse, in
other words).

In the TI-99/4A home computer, the keyboard keys, the joy
stick positions, and the cassette input and output lines are all
connected to the 9900 via a CRU interface logic integrated circuit
called the TMS9901 Programmable Systems Interface.

Interrupts

The 9900 has the capability of being interrupted during pro
cessing. When an interrupt isrequested (depressing theFUNC and
= keys ontheTI-99/4A, for example), the interrupting device must
supply a 4-bit interrupt priority code. This code is read by the
computer and compared with a number called the interrupt mask
which is stored internally andmay be changedby the programmer.

If the interrupt mask has been set to 5, for example, then
external devices with interrupt priority codes 0 through 5 will be
allowed to interrupt whatever thecomputer wasdoing. Notethat0
is the highest priority and 15(F inhexadecimal) is the lowest. If in
ourexample an interrupting device supplied a code of 6 or higher,
then the computer would ignore the request.

If the code passed the priority test, then the computer would
look up new values for the program counter (PC) and workspace
pointer (WP). These values mustbe stored beforehand inreserved

Table 6-2. Interrupt Vector Locations.

Priority Memory Address Containing Memory Address Containing
Code New Workspace Pointer Value New Program Counter Value

0 0000 0002

1 0004 0006

2 0008 000A

3 oooc 000E

4 0010 0012

5 0014 0016

6 0018 001A

7 001C 001E

8 0020 0022

9 0024 0026

10 0028 002A

11 002C 002E

12 0030 0032

13 0034 0036

14 0038 003A

15 003C 003E

36

Table 6-3. XOP Vector Locations.

XOP Memory Address Containing Memory Address Containing
Number New Workspace Pointer Value New Program Counter Value

0 0040 0042
1 0044 0046
2 0048 004A
3 004C 004E
4 0050 0052

5 0054 0056
6 0058 005A
7 005C 005E
8 0060 0062

9 0064 0066
10 0068 006A
11 006C 006E

12 0070 0072
13 0074 0076
14 0078 007A

15 007C 007E

memory locations called interrupt vector locations. There is a dif
ferent set of memory locations for the new PC and WP values cor
responding to each interrupt priority code. These locations are
listed in Table 6-2.

Having located the new PCand WP values, the computernext
saves the old PC, the oldWP, andthe contents of the status register
(ST) in the new workspace registers 13, 14, and 15, respectively.
The computer also loads the new PC and WP values at this time and
proceeds to execute the so-calledservice routine that corresponds to
the interrupt. When interrupt processingis completed, the old PC,
WP, and ST contents are restored.

Extended Operations

Just as memory locations are reserved by the 9900 to be used
as interrupt vectors, other memory locations are reserved for what
are calledextended operation (XOP) vectors, or memory locations
which contain new WP and PC values.

The 9900 programmer has the option of defining up to 16
subprogramswhich may be calledby asingle XOPinstruction. Each
XOP routine is assigned a number by the programmer who stores
correspondingWP andPCvalues in the reserved memory locations
priorto calling the routine. The 16 XOPvectors are given in Table
6-3. Note that there are two vectors per XOP, one for the new WP
value and one for the new PC value.

37

Status Register

The 9900 contains a 16-bit status register (ST). These bits are
defined as follows:

• Bit 0 LGT, logical greater than. Set to one when an un
signed number (0 to 65,636 decimal) is compared to another un
signed number and the first number is greater than the second.

• Bit 1 AGT, arithmetic greater than. Set to one when a
signed number (-32,768 to +32,767) is compared to another signed
number and the first number is less positive than the second
number.

DBit 2 EQ, equal to. Set to one when one number is compared
to another number and the first number is equal to the second
number.

• Bit 3 C, carry. Set to one when an arithmetic operation
results in a carry. Also set to one or cleared to zero in a shift or
rotate operation, depending on the state of the bit transferred to the
carry bit location.

• Bit 4 OV, overflow. Set to one when the result of an
arithmetic operation results in a number too large or too small to be
correctly represented in 2s complement form.

• Bit 5 OP, odd parity. Set to one when the number ofone bits
in the result is odd. For example, if the result was the number
0110001010110001 (62D1 hexadecimal), then the OP bit would be
set to one because the number of one bits in the result is 7, an odd
number.

• Bit 6 X, extended operation. Set to one when the XOP
instruction is used.

DBits 7-15 of the status register are not status bits in the usual
sense. Bits 7-11 are reserved for TI Model 990/10 computer appli
cations. Bits 12-15 is the 4-bit storage location for the interrupt
mask.

INSTRUCTION SET

The following section contains a brief description of the 9900
assembly language instructions. Detailed information on each in
struction is contained in Appendix A. The instruction set is divided
intoninegroups: data transfer, arithmetic, comparison, logic, shift,
conditional jump, CRU, and control.

Data Transfer Instructions

LI, Load Immediate. Example: LI R7,5. The 16-bit binary
equivalent of the decimal number 5 is loaded into workspace regis-

38

ter 7. Note that the first operand (R7 in this example) must be a
workspace register.

LIMI, Load Interrupt Mask Immediate. Example: LIMI5.
The 4-bit binary equivalent of the decimal number 5 is loaded into
bits 12-15 of the status register. Interrupt priority codes 0-5 are
enabled, codes 6-15 will be ignored.

LWPI, Load Workspace Pointer Immediate. Example:
LWPI >70B8. The number 70B8 is loaded into the WP register.
Thus 70B8 becomes the address of register 0 of the workspace.
Note that the symbol > is used to denote hexadecimal representa
tion in 9900 assembly language. The absence of the > before a
number indicates that the number is in decimal representation.

MOV, Move Word. Example: MOVRl, R3. The 16-bit con
tents of register 1 is movedto register 3. The result is that registers
1 and 3 have identical contents.

MOVB, Move Byte. Example: MOVB@>7D00, Rl. The
8-bit contents of memory location 7D00 is moved to the upper (or
leftmost or most significant) 8-bit byte of register 1. Note that the
symbol©denotes the symbolic addressingmode in 9900assembly
language. Addressing modes will be discussed in the next section.

SWPB, Swap Bytes. Example: SWPB R3. The most sig
nificant byte of register 3 is moved to the least significant byte
position of register 3 and the least significant byte is moved to the
most significant byte position.

STST, Store Status. Example: STSTR3. The contents ofthe
status register are stored in workspace register 3. Note that the
operand (R3 in this example) must be a workspace register.

STWP, Store Workspace Pointer. Example: STWP R3.
Thecontents ofthe WP registerare storedinworkspace register 3.
Note that the operand must be a workspace register.

Arithmetic Instructions

A, Add Words. Example: A Rl, R2. The word stored in
register 1 is added to the word stored in register 2 and the sum is
stored in register 2. Hence, the previouscontentsof register 2 are
copied over.

AB, Add Bytes. Example: AB Rl, R2. The most significant
byteofregister 1 is added to the most significant byteofregister 2
and thesumisstoredinthemost significant byteposition ofregister
2.

AI, Add Immediate. Example: AIRl, >C. The number 000C
(12 indecimal) is added to thecontents ofregister 1andthe sumis

39

stored in register 1. Note that the first operand (Rl in this example)
must be a workspace register.

S, Subtract Words. Example: S@>7E00,@>7E02. The
word at memory location 7E00 is subtracted from the word at
memory location 7E02 and the difference is stored at memory
location 7E02.

SB, Subtract Bytes. Example: SB@>7301, Rl. The byte at
memory location 7E01 is subtracted from the most significant byte
of register 1 and the difference is stored in the most significant byte
position of register 1.

INC, Increment. Example: INC Rl. The number 1 is added
to the contents of register 1 and the sum is stored in register 1.

INCT, Increment by Two. Example: INCT Rl. The number
2 is added to the contents of register 1 and the sum is stored in
register 1.

DEC, Decrement. Example:DEC@>7E00. The number 1 is
subtracted from the contents of memory location 7E00 and the
difference is stored in memory location 7E00.

DECT, Decrement by Two. Example: DECT R4. The
number 2 is subtracted from the contents of register 4 and the
difference is stored in register 4.

NEG, Negate. Example: NEG@>7E00. The data in memory
location 7E00 is replaced by its 2s complement.

ABS, Absolute Value. Example: ABS R5. The data in reg
ister 5 is replaced by its absolute value.

MPY, Multiply. Example: MPY@>7D00, R5. The 16-bit data
in memorylocation7D00is multiplied by the 16-bitdata in register
5. The 16 most significant bits of the 32-bit product are stored in
register 5 and the 16 least significant bits of the 32-bit product are
stored in register 6. Note that the second operand (R5 in this
example)must be a workspace register and that the result is stored
in the designated register and the designated register plus one.

DIV, Divide. Example: DIV R4, R5. The 32-bit data con
tained in registers 5 and 6 (register 5 containing the 16 most
significant bits) is dividedbythe 16-bitdata inregister 4. The 16-bit
quotient is stored in register 5 and the remainder is stored in
register 6. Note that the second operand (R5 is this example) must
be a workspace register.

Comparison Instructions

C, Compare Words. Example: C Rl, R2. The 16-bitdata in

40

register 1 is compared to the 16-bit datainregister 2. The compari
sonis done onbothasigned and unsigned number basis. Ona signed
numberbasis, if the data in register 1 is more positive than the data
in register 2, then the AGT(arithmeticgreater than) status bit is set
to one. On an unsigned number basis, if the data in register 1 is
greater than the data in register 2, then the LGT (logical greater
than) status bit is set to one. In either case, if the 16-bit data in
register 1 is identical to the 16-bitdata in register 2, then the EQ
(equal) status bit is set to one.

CB, Compare Bytes. Example:CB@>7D01, R2. The 8-bit
data in memory location 7D01 is compared to the most significant
byte of register 2.

CI, Compare Immediate. Example: CI R9,>F330. The 16-
bit data in register 9 is compared to F330. Note that the first
operand must be a workspace register.

COC, Compared Ones Corresponding. Example: COCR1,
R2. The datainregister 1is compared to the datainregister 2. Iffor
each one bit (a bit with a value ofone) in register 1 there is a one in
register 2 inthe sameposition(bit3 inbothregisters equalsone, for
example), then the EQ (equal) status bit is set to one. Note that the
second operand (R2inthis example)must be a workspace register.

CZC, Compare Zeros Corresponding. Example: CZCR1,
R2. The datainregister 1iscompared to the datainregister 2. Iffor
each one bit (a bit with a value ofone) in register 1 there is a zero in
register 2 in the same position (bit3 ofregister 1equalsone andbit
3 ofregister 2 equals zero, forexample), then the EQ (equal)status
bit is set to one. Notethat the second operand (R2 inthis example)
must be a workspace register.

Logic Instructions

ANDI, AND Immediate. Example: ANDI R0,>6D03. The
16-bitdata in register 0 is logically ANDedwith the data value 6D03
on a bit bybit basis, andthe result is placed inregister 0. Note that
the first operand must be a workspace register and that the second
operand must be a data value.

ORI, OR Immediate. Example: ORIR5,>6D03. The 16-bit
data in register 5 is logically ORed withthe datavalue6D03ona bit
bybitbasis, and the resultisplaced inregister5. Note that the first
operandmust be a workspace register andthat the secondoperand
must be a data value.

XOR, exclusive-OR. Example:XOR@>7E00,R2. The con-

41

tents ofmemory location 7E00 is logicallyexclusive-ORed with the
contents of register 2 and the result is placed in register 2. Note that
the second operand must be a workspace register.

INV, Invert. Example: INV Rl. The contents of register 1 is
logically inverted and the result is placed in register 1. This means
that all ones in the register are changed to zeros and all zeros are
changed to ones.

CLR, Clear. Example: CLR Rl. 0000 is placed in register 1.
SETO, Set to One. Example: SETO Rl. FFFF

(1111111111111111 in binary) is placed in register 1.
SOC, Set Ones Corresponding. Example: SOC R3,

>7E00. The contents of register 3 is logically ?Red with the
contents of memory location 7E00 and the result is placed in mem
ory location 7E00. (Why didn't TI just call this instruction OR?)

SOCB, Set Ones Corresponding—Byte. SOCB R5,R8.
The most significant byte of register 5 is logically ORed with the
most significant byte of register 8 and the result is placed in the
most significant byte position of register 8. (Why not ORB or OR
Byte?)

SZC, Set Zeros Corresponding. Example: SZC R5, R3. For
each one in register 5 the correspondingbit in register 3 is reset to
zero. Supposebit 7 ofregister 5 was equal to one. This instruction
would reset bit 7 of register 3 to zero.

SZCB, Set Zeros Corresponding—Byte. Example: SZCB
@>7E00,@>7E01. For each one in the byte at memory location
7E00, the corresponding bit inthe byteat memory location 7E01 is
reset to zero.

Shift Instructions

SRA, Shift Right Arithmetic. Example: SRA Rl,6. The
contentsof register 1 is shifted to the rightonebit six times. Bit 0
(the leftmost, most significant bit forTI microprocessors) is shifted
to bit 6, bit 1 is shifted to bit 7, and so forth. Vacated bit positions
are filled with the starting value (one or zero) of bit 0. In this
example, the carry status bit will contain the value of bit 10 of
register l's original contents. Note that the first operand must be a
workspace register. The second operand is the shiftcount and is a
number between 0 and 15. If the number is zero, then the shift count
equals the valueof the fourleast significant bits ofregister 0. If the
four leastsignificant bitsofregister0equal 0, thena16-bit shiftwill
be performed.

SLA, Shift Left Arithmetic. Example: SLA R10,5. The

42

contents of register 10 are shifted to the left one bit five times.
Vacated bit positionsare filled with zeros. The carry status bit is
equal to the value of the last bit shifted out to the left.

SRL, Shift Right Logical. Example: SRL R0,3. The con
tents of register 0 is shifted to the right one bit three times. Vacated
bit positionsare filledwithzeros. The carry status bit is equal to the
value of the last bit shifted out to the right.

SRC, Shift Right Circular. Example: SRC R2,7. The con
tents of register 2 is shifted to the right one bit seven times. Bit 15
(the rightmost, least significant bit for TI microprocessors) is
transferred to bit 0 each time a shift occurs. Hence, the contents of
the specified register are saidto becirculated or rotated. The carry
status bit is not in the loop but will contain the value of the last bit
shifted out to the right.

Unconditional Branch Instructions

B, Branch. Example:B@>2166. The memory address 2166
is loaded into the program counter and becomes the address of the
next instruction to be executed.

BL, Branch and Link. Example: BL@>7D00. The memory
address 7D00is loaded intothe programcounter andthe old value of
the program counter is stored in workspace register 11.

BLWP, Branch and Load Workspace Pointer. Example:
BLWP@>2100.Thedataat memory location2100is loadedinto the
workspace pointer register. The data at memory location 2102 is
loaded into the program counter. The old valuesof the workspace
pointer and program counter are stored in the new workspace
registers 13and14, respectively. The contentsof the status regis
ter are stored in register 15.

XOP, Extended Operation. Example: XOP@>7E00,2.
Extended operation number 2 is called. The 16-bit contents of
memory address 0048 is loaded into the workspace pointer regis
ter. The 16-bit contents of memory address 004Ais loaded into the
program counter. (See Table 6-2 for XOP vector locations.) The
16-bit contents of memory location 7E00 is loaded into the new
workspace register 11. The old workspace pointer, program
counter, and status are stored in the new workspace registers 13,
14, and 15, respectively. Note that the first operand is a memory
address of a data value to be passed to and used by the XOP
subprogram. (A dummy address must be used if the subprogram
does not require a variable to be passed to it.) The secondoperand
is the XOP subprogram number between 0 and 15.

43

RTWP, Return with Workspace Pointer. No operands in
the instruction operand field. The contents of registers 13,14, and
15 are loaded into the workspace pointer register, the program
counter, and the status register, respectively.

JMP, Unconditional Jump. Example: JMP -5. The pro
gram counter is incremented by 2 and decremented by 10. Note that
the basic memory word width of the 9900 is 16 bits. Instructions
have even addresses and, thus, the value of the program counter is
always an even address. Also, after an instruction is fetched (and
before it is executed) the program counter is incremented by two.
The operand in the jumpinstruction is calledthe displacement and is
the relative number of program counter addresses forward (plus
sign) or backward (minus sign) from the value of the program
counterafter the instruction has been fetched. Suppose ourexample
instruction (JMP -5) was located at memory address 7D18. Before
execution the program counter equals 7D1A. Then the program
counter is decreased by 2five times and equals 7D10. Schematically
we can see that 7D10 corresponds to a displacement of -5 for this
example:

Program Counter Displacement
7D10 -5

7D12 -4

7D14 -3

7D16 -2

7D18 -1

7D1A 0

No doubt this is confusing. You will see, however, that in
assembly language you can label a memory location with a
mnemonic (such as Jl, for example). Thus, when you use the JMP
instruction with a label (JMP Jl, for example), the assembler will
compute the proper machine code for the displacement.

X, Execute. Example:X@>7D00. The instruction located at
7D00 is executed.

Conditional Jump Instructions

Conditional jumps to other locations in the program occur only
if certain status bits meet the condition required by the conditional
jump instruction. Conditional jump instructions have the same form
as the unconditional jump QMP) instruction. For each of the follow
ing instructions, the operand is a displacement value as explained

44

for theJMPinstruction. Therefore, I will not use examples in this
section.

JH, Jump if Higher. A jump will occur only if LGT (the
logical greater thanstatus bit)equals 1 andifEQ (the equalstatus
bit) equals 0.

JL, Jump if Lower. Ajump will occuronly if LGTequals 0
and if EQ equals 0.

JHE, Jump if Higher or Equal. A jumpwill occur only if
LGT equals 1 or EQ equals 1.

JLE, Jump ifLoweror Equal. AjumpwilloccuronlyifLGT
equals 0 or EQ equals 1.

JGT, Jump if Greater Than. Ajump willoccuronlyif AGT
(the arithmetic greater than statusibit) equals 1.

JLT, Jump is Less Than. A jump will occur only if AGT
equals 0 and EQ equals 0.

JEQ, Jump if Equal. Ajump will occuronly ifEQequals1.
JNE, Jump ifNot Equal. Ajump will occuronly ifEQequals

0.

JOC, Jump On Cany. AjumpwilloccuronlyifC (the carry
status bit) equals 1.

JNC, Jump on No Carry. AjumpwilloccuronlyifCequals0.
JNO, Jump on No Overflow. Ajump will occuronly if OV

(the overflow status bit) equals 0.
JOP, Jump if Odd Parity. Ajumpwill occur only if OP (the

odd parity status bit) equals 1.

CRU Instructions

SBO, Set Bit to Logic One. Example: SBO15. Alogicone is
stored in an external latch. The address of the latch (single-bit
storage location) is the sum of the number 15 and the 12-bit address
stored in bits 3 through 15ofworkspace register 12. The operand
(15in this example) is calledthe displacementvalueandis a number
between -128 to +127.

SBZ, Set Bit to Logic Zero. Example: SBZ 2. Alogic zero is
stored in an external latch. The address of the latch is the sum of the
number 2 and the 12-bit address stored in bits 3 through 14 of
workspace register 12.

TB, Test Bit. Example: TB 4. The logicstate of the selected
single-bit input line is stored in the EQ (Equal) status bit location.
The address ofthe selected input lineis the sumofthe number4 and
the 12-bit address stored inbits3 through 14ofworkspace register
12.

45

LDCR, Load CRU. Example: LDCR@>7E00, 9. The 9 least
significantbits of the 16-bitdata stored at memory location 7E00 is
transferred to external single-bit latches. The least significant bit
(bit 15forTI microprocessors)is transferred to the latchdesignated
by the 12-bitaddress (the base address) stored inbits 3 through 14of
workspace register 12. The next least significant bit (bit 14) is
transferred to the latchdesignatedbythe base address plusone, and
so forth. Note that the operand(9 in this example)is the number of
bits to be transferred and must be a number between 0 and 15. If the
number is 0 then a 16-bit transfer will be performed.

STCR, Store CRU. Example: STCR@>7E02, 5. The logic
states of 5 successive external lines are transferred to memory
location 7E02. The address of the first line is designated by the
12-bit address (the base address) stored in bits 3 through 14 of
workspace register 12. The logic state of the first line is stored in
the least significant bit (bit 7)ofthe byte locatedat 7E02.The logic
state of the next line (base address plus one) is stored in the next
least signficant bit (bit 6), and so forth.

Control Instructions

SeeAppendix Afor details ontheseinstructions. TFsEditor/
Assembler manual recommends that these instructions not be used
on the TI-99/4A home computereven though the instructions are
recognized and assembled. These instructions will not be used in
this book.

LREX, Load or Restart Execution.
CKOF, Clock Off.
CKON, Clock On.
RSET, Reset.
IDLE, Idle.

ADDRESSING MODES

The 9900 has seven addressing modes: immediate, register
direct, register indirect, register indirect with autoincrement,
symbolic (memory direct), indexed, relative.

Immediate

Seven instructions use the immediate addressing mode:

• LI, Load Immediate.
• LIMI, Load Interrupt Mask Immediate.

46

• LWPI, Load Workspace Pointer Immediate.
• AI, Add Immediate.
• CI, Compare Immediate.
D ANDI, AND Immediate.
• ORI, OR Immediate.

Example: LI Rl >, A70C. The data A70C is loaded into work
space register 1. This instruction requires two words of memory.
The first word contains themachine code for LIRl and the memory
word immediately following containsthe number A70C. Note that no
other addressing modes are allowed with the immediate instruc
tions. Also, no other instructions may use the immediate ad
dressing mode.

Register Direct

If the register direct addressing mode is specified, then the
data to be processed is found in the workspace register specified
directly in the instruction. If the operand is a destination address
(where the result will be stored), then the address is specified
directly. No special symbols are used to indicate this mode.

Example: MOV R1,R2.The contentsof register 1 is moved to
register2. Both operands in this example are specified usingthe
register direct addressing mode.

Register Indirect

If the register indirect addressing mode is specified, then the
addressof the data to be processed is found in the specifiedwork
space register. Hence, the location ofthe data is specified indirectly.
If the operand is a destination address, than that address is con
tained in the specifiedworkspace register. Hence, the destination
address is specified indirectly. The asterisk (*) symbol is used to
designate the register indirect addressing mode.

Example: MOV*R1, *R2. Move data. The source address (the
address wherethe data to be moved is located) is storedinregister
1. The destination address (the address to which the data will be
moved) is stored in register 2.

Register Indirect with Autoincrement

If the register indirect with autoincrement mode is specified,
thentheaddress ofthedata tobeprocessed is found inthe specified
workspace register. Additionally, the address in the specified reg-

47

ister is incremented after the instruction has been executed. The
address will be incremented by one if the datato be processed is a
byte. The address will be incremented by two if the data to be
processed is a word.

If the operand is a destination address, then that address is
contained in the specified workspace register. Additionally, the
destination address is either incremented by one or two after the
instruction has been executed—by one if the operation is a byte
operation, by two if the operation is a word operation.

A plus (+) sign is used to designate autoincrement.
Example: MOV*R1+,*R2+.The sourceaddress(the address

of the data to be processed) is contained inregister1. The destina
tion address (the address of the memory location to which the data
will be moved) is contained in register 2. Since this is a word
operation, then the contents of both registers will be incremented
by two after the instruction is executed.

Symbolic

If symbolic addressing is specified, the data to be processedis
found at the memorylocation specified directly inthe instruction. If
the operand is a destination address, then that address is specified
directly in the instruction. TI uses the @symbol to indicate this
mode. Symbolic addressing is alsocalled memory direct address
ing.

Example: MOV@>7E00,Rl. The data at memory location
7E00 is moved to workspace register 1.

Example: MOVR1,@>7E00.The data inregister1is moved to
memory location 7E00.

Indexed

If indexed addressing is specified, then the source or destina
tion address is formed by adding a constant to the contents of a
workspace register (called the index register). The constant is pre
ceded by an @ sign and the workspace register to be used as the
index register is enclosed in parentheses.

Example: MOV Rl,@2(R8).The data in register 1 is moved to
memory. The destination address is formed by adding the number2
to the contents of register 8.

Note that any workspace register may be used as an index
register except register 0.

48

Relative

Relative addressing is used by the JMP(unconditional jump)
instruction and the twelve conditional jump instructions. In these
instructions, the new program counter address is specified in terms
of the number of programaddresses forward (plus sign) or backward
(minus sign) from the value of the program counter after the in
struction has been fetched. The number of addresses forward or

backward is called the displacement. In general terms, the new
program counter address (the jump address) is the value of the
program counter plus two plus twice the displacement. The dis
placement value is limited to the range -128 to +127.

Example: JMP -5. The program counter is incremented by
two and then decremented by ten.

SUMMARY

The primary architectural features, instruction set, and ad
dressing modes of the 9900 have been discussed.

The 9900 is a 16-bit microprocessor, addresses up to 65,536
bytes of memory, performs both byte and word operations, and uses
memory-to-memory architecture (no internal accumulators—uses
external workspace registers in memory). It has 69 instructions and
7 addressing modes.

49

Chapter 7

The TI-99/4A

The TI-99/4A is one of the best bargains in the home computer
marketplace. While the price has undergone many swings and TI
has announced that they will no longer produce the machine, it
offers more capabilities for the money than any other home com
puter.

It was $199 after a $100 rebate when I bought mine. For my
$199 I got the console, video interface cable and RF modulator,
power supply module and power cable, 193-page User's Reference
Guide, and a 143-page Beginner's BASIC teaching manual.

Internally, the TI-99/4A home computer has a 16-bit micro
processor (the TMS9900), something no other home computer on
the market has at this time. The VIC-20, the Radio Shack Color
Computer, the Sinclair,the ATARI 400/800, andthe Commodore-64
all have 8-bit microprocessors. Even in the higher priced machines
($1000-5000) which are sometimes bought for the home (though
generally they are bought for business), very few have a 16-bit
microprocessor. The IBM Personal Computer is perhaps the most
popular, and it has the Intel 808816-bit microprocessor, but it costs
at least twenty times more than the TI. Obviously, the IBM PC is
the better computer; but if you're looking for a low-priced 16-bit
computer, the TI-99/4A is the one.

Looking at the TI-99/4A home computer fromthe standpoint of
learning how to write assembly language programs, you can see that
this machineis a very goodchoice fora low cost learning system. It

50

is possible to buy an inexpensive 8-bit microprocessor learning
systems, such as the Heathkit ET3400 oreven the VIC-20 if you buy
the assembly language plug-in cartridge, but I know of no 16-bit
microprocessor learning system other than the TI-99/4A at a simi
lar price.

Intel offers a system design kit, the SDK-86, for the 8086
16-bit microprocessor (the 8088 used in the IBM PC Personal
Computer is an 8-bit data bus version of the 8086 but is still
considered a 16-bit processor because internally it has the 8086
16-bitdata bus and ALU). This kit costs about $700and is a stripped
down system—no power supply included, no cover (all components
exposed), and most of all no assembler. All assembly language
programs must be translated by the programmer into machine code
and entered via a hexadecimal numeric keypad.

TI offers a similar kit for the TMS9995, a newer enhanced
version of the 9900 having an internal 256 byte RAM, internal clock
generator, internal timers, and an 8-bit data bus. This kit does come
with an assembler in ROM but still costs about $500. A power
supply is not included, and all components are exposed.

Neither of these kits is for the first time assembly language
programmer. These kits are actually low cost software develop
ment and prototyping systems for companies who are in the busi
ness of developing microcomputer-based products. By low cost, I
mean low compared to the more sophisticated software develop
ment systems and in-circuit emulators which cost from $20,000 to
$50,000.

So, for 16-bit microprocessor students with a limited budget,
the TI-99/4A is currently the only choice. The only additional cost
to be able to learn assembly language on the TI home computer is

Fig. 7-1. The TI-99/4A home computer console.

51

(7
1

T
M

S
9

9
0

1

P
ro

gr
am

m
ab

le
S

ys
te

m
s

In
te

rf
ac

e

C
a

s
s
e
tt

e

C
o

n
n

e
c
to

r

K
ey

bo
ar

d

Jo
ys

ti
ck

C
o

n
n

e
c
to

r

T
M

S
9

9
0

0

M
ic

ro
pr

oc
es

so
r

4
K

x
1

6

C
o

n
s
o

le

R
O

M

1
2

8
x

1
6

C
P

U
R

A
M

1
8

K
x

8
G

R
O

M

B
a

si
c

R
o

u
ti

n
e
s

C
o

m
p

le
x

S
o

u
n

d
G

e
n

e
r
a

to
r

T
M

S
9

9
1

8

V
id

e
o

D
a

ta
P

ro
c
e
ss

o
r

(V
D

P
)

1
6

K
x

8

V
D

P
R

A
M

P
er

ip
he

ra
l

E
xp

an
si

on
C

o
n

n
e
c
to

r

C
o

m
m

a
n

d
M

o
d

u
le

C
o

n
n

e
c
to

r

A
u

d
io

/v
id

e
o

C
o

n
n

e
c
to

r

R
g.

7-
2.

Si
m

pl
ifi

ed
bl

oc
k

di
ag

ra
m

of
th

e
T

I-
99

/4
A

ho
m

e
co

m
pu

te
r

co
ns

ol
e.

First Address
(hexadecimal)

0000
2000

4000

6000

8000
A000

Table 7-1. CPU Memory Map.

Last Address

(hexadecimal)

1FFF
3FFF

5FFF
7FFF

9FFF

FFFF

Description

Console ROM
Memory Expansion
Peripheral Expansion
Command Module ROM/RAM
CPU RAM & Memory Mapped Devices
Memory Expansion

Number

of bytes

8.192
8,192
8.192
8.192
8.192

24.576

the cost of the Mini Memory plug-incommand module. This module
costs less than $100 (mine was $84 plus tax). It comes with a
Line-by-Line Symbolic Assembler on cassette tape.

A picture of the TI-99/4A home computer console is shown in
Fig. 7-1 anda simplified block diagram of the internal organization
of the console is shown in Fig. 7-2. In the rest of this chapter, I will
discuss the memory organization of the TI-99/4A, which has not
one, but three separate memories. In particular, I will focus on how
memory locations are allocated within the computer. Such informa
tion is essential for the assembly language programmer. Memory
allocation will be shown in tables that are called memory maps.

CPU MEMORY

The CPU memory map is shown in Table 7-1. This memory
contains up to 65,536 locations with each location containing 8 bits,
or one byte. 8,192 bytes (or 4,096 words of 16-bit data) are con
tained in the consoleROM (see Fig. 7-2) and 256 bytes (128 words)
are contained in the CPU RAM.

The address of the first memory location in console ROM is
0000, and the last address is IFFF (hexadecimal for 8191). This
ROM is called the system monitor ROM and controls the basic
computer operation; it displays the so-called START screen on
yourTV set or monitor, allows you to get into BASIC, and so forth.

The address of the first memory location in the CPU RAM is
8300 (hex), the last address is 83FF (hex). This 256 byte read/write
memory is called a scratchpad and is used by various programs as a
workspace register area and as a general purpose temporary stor
age area for variables.

Another area of the CPU Memory is allocated for memory-
mapped devices. Although space has been reserved for 7,936 bytes,
only 11 addresses have been decoded internally. These addresses

53

and their use are shown in Table 7-2. Note that these addresses are

not the addresses of specific 8- or 16-bit locations, such as ROM,
RAM, or general purpose registers. TI uses these decoded address
lines essentially as control lines to read andwrite data or address
information from or to one or more registers contained in these
memory-mapped devices.

Four devices are controlled by these 11 decoded address lines
in conjunctionwith the databus. Three of the fourdevices are in the
console: the TMS9918A Video DataProcessor, the Complex Sound
Generator, and the graphics read only memory (GROM). The one
external device for which there is internal address decoding is the
speech module.

The remaining CPU Memory is reserved for memory expan
sion (addresses 2000-3FFF and A000-FFFF), peripheral expansion
(4000-5FFF) and command module ROM/RAM (6000-7FFF). All of
these are outside the console.

Memory expansion andperipheral expansionareaccomplished
by connecting external memory (ROM or RAM) or peripheral de
vices (such as an RS-232 interface for a printer) to the 44-pin
input/output port on the right side of the console. TI sells a
Peripheral Expansion System to facilitate expansion. This box has
its own power supply andcanhold up to seven accessories plus one
disk drive.

Command module ROM/RAM is connected to the system
through the command module slot just to the right of the keyboard.
See Fig. 7-3.

VIDEO DATA PROCESSOR RAM

The second memory in the TI-99/4A is the Video DataProces-

54

Table 7-2. Memory
Mapped Devices.

Address Function
(hexadecimal)

8400 Sound

8800 VDP Read Data

8802 VDP Read Status

8C00 VDP Write Data

8C02 VDP Write Address

9000 Speech Read
9400 Speech Write
9800 GROM Read Data
9802 GROM Read Address

9C00 GROM Write Data

9C02 GROM Write Address

Keyboard

Peripheral expansion

Command
module slot

Power switch

Fig. 7-3. Front view of console.

sor (VDP) RAM. This memory is completely separate from the
CPU Memory and has its own address space. It is completely
controlled by the TMS9918A Video Data Processor integrated
circuit and contains 16,384 bytes of read/write memory. This
memory is the so-called 16K RAM you read and hear about in the
advertisements for the TI-99/4A home computer.

The VDP RAMcontains thecurrent data for the videodisplay.
Everything yousee onyourscreenis contained inbinary form inthe
VDP RAM andwas placed on the screen by the Video DataProces
sor integrated circuit. This memorycontains the pattern descriptor
table (used for defining up to 256 patterns or characters), the color
table, screen image table (which specifies the characters that oc
cupy eachof the 768 screen positions), sprites (moving graphics),
spritedescriptor table(similar to the pattern descriptor table), and
sprite motion table. See Table 7-3.

Table 7-3. VDP RAM Memory Map.

First Last Description Number
Address Address of Bytes

0000 02FF Pattern Name Table 768
0300 037F Sprite Attribute List 128
0380 03FF Pattern Color Table 128
0400 077F Sprite Descriptor Blocks 896
0780 07FF Sprite Velocity Table 128
0800 OFFF Pattern Generator Area 2048
1000 137F Free Memory Space 896
1380 34FF Program File Load Buffer Area 8576
3500 3FFF Reserved for Disk Device

Service Routine
2816

55

Table 7-4. VDP RAM with BASIC Interpreter.

First Last Description Number
Address Address of Bytes

0000 02FF Screen 768

0300 031F Color and Sprite Table 32

0320 03BD Crunch Buffer 158

03BE 03FF BASIC Temporaries and
Interpreter Roll-Out
Area

66

0400 05FF Character Tables 512

0600 3FFF BASIC Tables and
Crunched Program

14,848

When BASIC is in use, the VDP RAM also contains the user's
program andall the information requiredby the BASIC Interpreter
program (recall that BASIC is itself a program that allows you to
write in BASIC language) in order to convert the user's program to
machine code. See Table 7-4.

Keep in mind that the VDP RAM space cannot be accessed
directly. This RAM is controlledby the VDP chipwhich interfaces
to the 9900 microprocessor via the data bus and four decoded
address lines which function as read/write control lines—to write
datato andreaddatafromspecial purposeregisters inside the VDP
chip. Thus, the assembly-language programmer may readandmod
ify the VDP RAM indirectly by accessing the VDP registers.

Another way to access the VDP RAM is the use of the EASY
BUG debugging program, which I will discuss in the next chapter.

GRAPHICS READ ONLY MEMORY

The third memory in the TI-99/4A home computer is the
graphics read only memory (GROM). This memory is completely
separate from the CPU Memory andthe VDP RAM andhas its own
address space.

The TI-99/4A console contains three GROM chips, each with
6,144 bytes of ROM. These chips are not standard ROM devices
which are interfaced to a microprocessor via the address and data
busses. These GROMchips, whichareuniqueto TI as far as I know,
have their own 13-bit program counter inside. Also, like the VDP
RAM, they interfaceto the 9900throughfour decodedaddress lines
(see Table 7-2) which function as read/write control lines.

The three GROM chips in the console contain the BASIC

56

language routines. See the box labeled "18K x 8—BASIC
Routines" in Fig. 7-2. Upto five more GROM chipsmay be added
externally via the command module slot, giving the computer an
additional 30K bytes of memory.

CRU BITS

In addition to the three memories just discussed, up to 4096
single-bitlines or storagelocations may be addressedby the 9900's
communications register unit (CRU).

Only one device in the TI-99/4A home computer console
communicates with the 9900 through the CRU—the TMS9901
Programmable Systems Interface chip. This chip is used to inter
face the keyboard, cassette tape recorder (external), and joysticks
(external) to the 9900 microprocessor. The TMS9901 contains all
the interface circuitry required to address 32 input/output lines.

Table 7-5. Allocation of TMS 9901 CRU Bits.

CRU Bits Functions

0 Control
1 External
2 VDP Vertical Synchronization
3 Clock interrupt, keyboard ENTER line, joystick

fire button
4 Keyboard "L" line, joystick left
5 Keyboard "P" line, joystick right
6 Keyboard "0" (zero) line, joystick down
7 Keyboard SHIFT line, joystick up
8 Keyboard SPACE line
9 Keyboard "Q" line

10 Keyboard "L" line
11 Not used
12 Reserved
13-15 Not used
16 Reserved
17 Reserved
18 Bit 2 of keyboard select
19 Bit 1 of keyboard select
20 Bit 0 of keyboard select
21 ALPHA LOCK
22 Cassette control 1
23 Cassette control 2
24 Audio gate
25 Magnetic tape output
26 Reserved
27 Magnetic tape input
28-31 Not used

57

CRU Bits Functions

0-2047 Internal
2048-2175 Disk Controller
2176-2303 Reserved
2304-2431 RS232, ports 1 and 2
2432-2559 Reserved
2560-2687 RS232, ports 3 and 4
2688-2815 Reserved
2816-2943 Reserved
2944-3071 Thermal Printer
3072-3957 Future Expansion
3958-4095 P-Code Peripheral

Table 7-6. CRU

Allocation for the TI-99/4A.

Each of these lines is individually addressable by the CRU. The
TMS9901 CRU bits and their functions are listed in Table 7-5.

Note that CRU bits 0-15 are input lines. All but bit 0 are also
interrupt lines and, when active (logic 0), generate an interrupt
request andapriority codewhich is readby the 9900. (See Table 6-2
for interrupt vectors, the addresses of memory locations which
containnew workspace pointers andprogram counter values which
correspond to the priority codes.)

The entire CRU allocation for the TI-99/4A is given in Table
7-6. Bits 0-1023 (decimal) are reserved for internal use. Bits 1024-
2047 are reserved for future internal use (new console designs?).
And bits 2048-4095 are reserved for peripherals which are con
nected to the system via the 44-pin port on the right side of the
computer console.

SUMMARY

Before memory expansion the TI-99/4A console includes a
little over 8K bytes of CPUMemory, 16K bytes of VDP RAM, and
18K bytes of GROM, for a total of 42K bytes. A fully expanded
system could address 128K bytes - 64K bytes of CPU Memory, plus
16K VDP RAM, plus 48K of GROM.

58

Chapter 8

The Mini Memory Module
Unless you knew what you were looking for or took the time to read
the small print on the front of the box (the cover of the enclosed
manual to be exact), you would never know from its name that the
Mini Memory command module is a low-cost, assembly-language
development tool. The very name Mini Memory hardly invites a
second look to see what this remarkable command module has to

offer

• 14K bytes of additional memory—4K bytes of ROM (CPU
memory address space 6000-6FFF), 4K bytes of RAM (CPU mem
ory address space 7000-7FFF), and 6K bytes of GROM.

• 7 additional BASIC subprograms contained in the GROM.
• Built-in battery. You may save either BASIC or assembly

language programs on the Mini Memory module instantaneously
(versus slowly on cassette). The module should not be used as a
long-term storage medium but is excellent for temporary (days or
longer if not statically discharged) storage, especially during pro
gram development. Data is saved even when the module is removed
from the console.

• The EASY BUG program in the ROM, most useful for
executing and debugging your assembly language programs.

• The Line-by-Line Symbolic Assembler, which is stored on
cassette tape and is loaded into the Mini Memory RAM.

All this for less than $100. This may not seem a bargain for

59

manyTI home computer owners, but for the person interested in
writing or learninghow to write assembly-language programs, the
Mini Memory module with the Line-by-Line Assembler is an ex
cellent low-cost program development tooland educational device.

The alternative method of writing assembly-language pro
grams on the TI-99/4A is to use the Editor/Assembler software
package which costs about the same as the Mini Memory module
but cannot be used unless your system includes the following
accessories:

• Peripheral Expansion System, about $200
• Disk Drive, about $350
• Disk Drive Controller, about $200
• Memory Expansion Unit (32K bytes of RAM), about $250

The total, about $1000, is more than ten times the cost ofeither the
Mini Memory module or the Editor/Assembler alone.

There is no doubt that the Editor/Assembler is the more

powerful assembly-language development software and that the
disk system with the ability to write and save multiple files is
better. It just costs more. And chances are, if you buy all the
required accessories, then you will probably want a printer (about
$650, if you buy TI's) which requires the RS-232 interface (about
$150).

I do not recommend that you buy the Editor/Assembler and the
required accessories unless you are an experienced programmer
(having written assembly-language programs forat least one type of
microprocessor) andhave a lot of money. I suspect that the average
owner of the TI home computer will never buy the big system.
Thus, for the average owner, the Mini Memory module is an
excellent choice and a good place to begin to learnabout assembly
language. If you are anaverageowner andlateron you lose interest
in assembly language (and many will just because it is harder than
BASIC and takes more time to learn and has fewer applications to
the average user), then you've only invested about$100 instead of
$1000 or $1800.

Having said all that, I suggest that if you haven't bought the
Mini Memory module yet that you go out and get one now so that
you can follow alongas I discuss the Mini Memory module and the
Line-by-Line Assembler.

LOADING THE LINE-BY-LINE ASSEMBLER
To load the Line-by-Line Assembler, perform the following

steps:

60

1. With poweroff, properly connect yourcassette tape recorderto
the console. Incase you can'tremember, hook up the CS1 wires as
follows: Red wire to the microphonejack, Black wire to the remote
jack, and White wire to the earphone jack.
2. Insert the Line-by-Line Assembler cassette into the tape re
corder.

3. Plug in the Mini Memory module into the command module slot.
4. Turn on the console power.
5. Turn on the television set, channel 3 or 4, and set the rf mod
ulator switch to the modulator position. Make sure the rf modulator
channel switch is set to the same channel as the tv. The so-called

START screen is displayed.
6. Press any key to begin. The screen looks like this:

TEXAS INSTRUMENTS

HOME COMPUTER

PRESS

1 FOR Tl BASIC

2 FOR EASY BUG

3 FOR MINI MEMORY

7. Press 3 for Mini Memory. The screen looks like this:

* MINI MEMORY *

PRESS:

1 TO LOAD AND RUN

2 RUN

3 RE-INITIALIZE

© 1981 TEXAS INSTRUMENTS

LOAD AND RUN applies to assembly language programs de
veloped with the Editor/Assembler package. RUN applies to as
sembly language programs previously loaded intothe Mini Memory
RAM. The RUN option also allows you to build new assembly-
language programs. More about this shortly.
8. Press 3 to RE-INITIALIZE. This step clears the Mini Memory
RAMto acceptnew programs. Oldprograms anddata arelost. If the
memory has never been initialized, then the screen temporarily
goes blank and the Mini Memory selection list (shown above)
reappears. Otherwise the following screen is displayed:

61

* INITIALIZE MEMORY *
MEMORY ALREADY INITIALIZED

HIT "PROC'D" TO CONFIRM

If this screen is displayed, then press PROC'D (the FUNC and 6
keys at the same time).
9. Press QUIT (FUNC and =). The START screen is displayed.
10. Pressanykey. The masterselection list is displayed (asin Step
6).
11. Press 2 for EASY BUG. The screen displays the EASY BUG
commands and special function keys shown in Fig. 8-1.
12. Press any key. A question markwill appear at the lower left
hand corner of your screen.
13. Press the letter L.

14. Follow the displayed directions to load the data (the Line-by-
Line Assembler and the NEW, OLD, and LINES programs) from
the cassette to the Mini Memory RAM. If everything went right the
screen looks like this:

« COMMAND TYPES ARE "

MXXXX MODIFY CPU MEMORY
GXXXX DISPLAY GROM MEMORY
VXXXX MODIFY VDP MEMORY
EXXXX EXEC. ASSEMBLY PROGRAM
CXXXX CRU SINGLE-BIT I/O
SXXXX SAVE CPU MEMORY TO CS1

(STARTING AT XXXX)
L LOAD STORAGE FROM CS1

-SPECIAL FUNCTION KEYS ARE

AID DISPLAY THIS SCREEN
PERIOD ABORT A COMMAND
ENTER ENTER COMMAND/DATA
MINUS DISPLAY LAST MEMORY

(CURRENT UNCHANGED)
SPACE DISPLAY NEXT MEMORY

(CURRENT UNCHANGED)

•NOTE* CPU RAM 8370-83FF IS
RESERVED FOR EASY BUG

Fig. 8-1. EASY BUG commands and special function keys.

62

?L

* REWIND CASSETTE TAPE CS1

THEN PRESS ENTER

* PRESS CASSETTE PLAY CS1

THEN PRESS ENTER

* READING

* DATA OK

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

?

15. Press QUIT.
16. Press any key.
17. Press 3 for Mini Memory
18. Press 2 to RUN. The screen displays:

♦RUN*

PROGRAM NAME?

Directly below the P in PROGRAM there will be a flashing
cursor—a white rectangle.
19. Type NEW and press ENTER. The following screen is dis
played:

LINE BY LINE ASSEMBLER

© 1982 TEXAS INSTRUMENTS

7D00 045B

There is also a solid square white flashing cursor in the second
space to the right of the B of the 4-digit hexadecimal code 045B.
You are looking at the memoryaddress andthe presentcontents of
the firstmemory location inthe MiniMemory RAM that is available
fornew assemblylanguage programs. The assembler is waiting for
you to enter your first assembly language instruction. Before we do
this, let's discuss the memoryallocation of the MiniMemory mod
ule.

MEMORY MAP

Notice that the first memory address that the assembler dis
playsis 7D0O. Now look at the Mini Memory map shownin Table

63

Table 8-1. Mini Memory Map with Une-By-Une Assembler Loaded.

First Last Segment Description Number

Address Address of Bytes

6000 6FFF ROM Routines 4096

7000 70B6 Reserved RAM 168

70B8 70D6 User Program Workspace 32

70D8 7116 Reserved RAM 64

7118 7CD6 Line-By-Une Assembler 3008

7CD8 7CFE Symbol Table 40

7D00 7FE6 User Program 760

7FE8 7FEE User Program Name/Address 8

7FF0 7FF6 OLD Name/Address 8

7FF8 7FFE NEW Name/Address 8

8-1. This table shows the MiniMemory memory allocation after the
Line-by-Line Assembler has been loaded.

The Mini Memory adds8K bytes to the CPUmemory (not the
VDP RAM), 4K bytes of ROM, and 4K bytes of RAM. The Line-
by-Line Assembler itself uses approximately 3K bytes as you can
see from the table. 232 bytes of RAM are reserved for use by the
assembler andthe utilities (subprograms stored inthe Mini Memory
ROM which are used by the LINES program and may be used by
programs that youwrite). Also,32bytes arereserved forthe user's
workspace, sixteen 16-bit general purpose registers beginning at
address 70B8.

The nominal 40-byte symbol table is also reserved for use by
the assembler. This table keeps track of any addresses or data
values that you have namedwhen you created your assembly lan
guage program. These namesandtheir values arecalledreferences
andeach one takes 4 bytes of memory—2 bytes fora two-character
nameand 2 bytes for the value. Thus, nominally youareallowed10
references. K you go over this amount, the assembler will write
over the beginning of your program—that is, if you started your
programat address 7D00. Note that there is no requirement to start
at 7D00, even though the assembler has been programmed to
display this address first.

Program names(such asNEW, OLD, or LINES)arestoredat
the end of the RAM area. Also, the memory address where the
program starts is stored in this area. The starting address is the
address of the first instruction to be executed. Subprograms or data
values could be stored at lower addresses. Therefore, the starting
address is not necessarily the address of the first pieceof code or

64

data in the program. For example, the starting address (the address
of the first instruction to be executed) for the LINES graphics
demonstration program is 7D9E. However, subprograms used by
the LINES program are stored in the RAM space 7CD6-7D9C.
7CD6containsthe first RAM codeof the LINES program, but 7D9E
contains the first instruction to be executed. The starting address is
also called the entry point

Up to 6 characters are allowed for a programname. This takes
6 bytes. The starting address takes 2 bytes. Thus, the total for each
name/address group takes 8 bytes. When we first load the assem
bler, the LINES name/address is stored in the space 7FE8-7FEE;
the OLD name/address is stored in the space 7FF0-7FF6; and the
NEW name/address is stored in the space 7FF8-7FFE. Also, the
entire LINES code (subprograms, main program, anddata)is stored
in the space7CD6-7FB0. Whatdoes this mean? First, there is very
little space left over for your program—56 bytes. Second, if you
start your program at 7D00, you will be writing over the LINES
program. Thus, don't expect LINES to work after you enter your
program. To run LINES after you have created a new program you
must reload the assembler.

How much RAM areais left fora program? If you start at 7D00,
don't use over 10 references, and save 8 bytes for name/address
storage, then you have 760 bytes—which is plenty for beginning
programs.

Now Let's find out how to use the Line-by-Line Assembler.

ASSEMBLER SYNTAX

The assembly language instruction line is composed of three
sections, orfields: the label field, the opcode field, andthe operand
field.

The Line-by-Line Assembler allows only atwo-character wide
label, such asJl or WP. Labelsessentially give the memory location
a symbolic name that canbe referenced lateron in the program.The
use of labels instead of 4-digit hexadecimal numbers within the
program usually reduces the amount of typing, relieves the pro
grammer from some mental bookkeeping, and makes the program
easier to read at a later date. The label is conceptually identical to
the line number in BASIC. A BASIC program might contain the
statement GOTO 10, for example. An assembly language program
might contain the instruction JMP Jl, where Jl is the label of the
instruction which the programmerwants to execute next (instead of
the next one in sequence).

65

Note that the label is optional in assembly language. If you
don'twantto use alabel, just pressthe space barand the cursorwill
move to the next field, which is the opcode field.

The opcode field is from one to four characters wide and
contains one of the 69 TMS9900 instruction mnemonics such as
MOV, A, ANDI,or MPY. The opcode field always beginsincolumn
4.

The third field is the operand field. It does not start at any
particularcolumn number, butis separated from theopcode field by
at leastonespace. The operand field contains oneortwo operands,
depending on the instruction specified in the opcode field.
Mnemonics areused inthe operand field to specifyboththe operand
and the addressing mode. An operand is either the data to be
processed or a workspace register number or memory location
where either the data is to be found (the source address) or where
the result is to be stored when the operation is completed (the
destination address). The addressing mode specifies how the
source or destination address is to be determined.

Comments maybe placed immediately afterthe operand field.
Normally commentsare very useful for program readibility. Com
ments should indicate the intention of the instruction. "Store re
sults" is a better comment than move "Rl to memory XYZ." Good
comments are useful both as you write the programandas you try to
readthe program daysorweeks afterthe program waswritten when
the assembly language mnemonics no longer look familiar.

The TI Line-by-Line Assembler, however, saves neither the
assembly-language mnemonics nor the comments, both of which
makeupwhatis called thesource code. Afteryouendasessionusing
the Line-by-Line Assembler, the source code is lost andonly the
object code remains. The object code is the memoryaddressesand
their contents. Thus, unfortunately, there is no value in typing
comments in the comment field. However, you should keep your
own copy of the source code of your program and you should use
comments on your copy, whether handwritten or typed.

Now let's enter an assembly language instruction to see how
the Line-by-Line Assembler works. Assumingthat the assembler
has been loadedand you haven't yet changedany data in the mem
ory, the first line displayed by the assembler looks like this:

7D00 045B

Note the number of045B. This is a current contents ofmemory

66

location 7D00, one of the memory locations used by the LINES
program (which we are going to write over). 045B is the machine
code for B *R11, a mnemonic which means branch to the address
contained in workspace register 11.

Now press the space bar. The cursor moved to column 4, the
beginning of the opcode field. Thus, the code you are about to enter
will not have a label.

Type MOV R1,R2. Don't put a periodafter it and don't press
ENTER. The line looks like this:

7D00 045B MOVR1.R2

Now press ENTER. The result is as follows:

7D00C081 MOVR1.R2
7D02C101

The assembler changed 7D00's contents from 045B to C081
and then displayed the next memory address and data. The assem
bler assembles code after each line is entered. That is why it is
called a line-by-line assembler in contrast to the Editor/Assembler
which will assemble an entire file of source code.

Note that the Line-by-Line Assembler displays two bytes of
data on each line. Thus the number in the address column incre

ments by two as you build or step through a program. In the above
display, the byte of dataat 7D02 is CI. The byte of data at 7D03 is
01. The next address to be displayed is 7D04.

Before I continue, let's put the data backthe way it was. Press
the spacebar,type AORG>7D00,'and press ENTER.The result is
as follows:

7D00C081 MOVR1,R2
7D02C101 AORG>7D00

7D00 C081

Note that I didnot change the contents of 7D02.1only told the
assemblerto display memorylocation 7D00 forus again. Now I can
restore 7D00's original contents by pressingthe space bar, typing
B *R11, then pressing enter

7D00C081 MOVR1.R2
7D02C101 AORG>7D00
7D00 045B B*R11

7D02C101

67

AORGstands for absolute origin and is one ofseven directives,
or commands recognized by the Line-by-Line Assembler. I will
discuss these directives in the next section.

If you want to break at this point, type END in the opcode field,
and press ENTER. The assembler displays 0000 UNRESOLVED
REFERENCES. Press ENTER. The assembler displays PRESS
ENTER TO CONTINUE. Press ENTER. The Mini Memory
selection list is displayed. Press QUIT. Turn the tv and the console
off.

ASSEMBLER DIRECTIVES

The following section describes each of the seven directives
recognized by the Line-by-Line Assembler.

AORG—Absolute Origin. This command tells the assem
bler to display the address and data of another memory location.
This command is used to correct previous entries or to jump ahead
to enter more code. For example, if you wanted to locate your data
(to be processed by your program) at 7F00 and you were at 7E12
after finishing your program, then you would type AORG >7F00 in
the opcode field and press ENTER. The assembler would then
display 7F00 and its current contents. You could then enter data
using the DATA command.

BSS—Block Starting with Symbol. This command is used
to reserve a blockof memory to be used by your program. Suppose
the following line is displayed by the assembler:

7D00 XXXX

XXXXmeans that the contents could be anything. Press the space
bar to get to the opcodefield.Type BSS 32 andpress ENTER. The
assembler displays the following:

7D00 XXXX

7D20 XXXX

BSS 32

In this example, 32 bytes (or 16 words) are reserved. Odd numbers
may be used but the assembler will round up to an even number.
This command does not affect data in memory. Note that this
command is similar to the AORG command, except that this com
mand causes the assembler to jump ahead (and not back) a desig
nated number of bytes rather than to an explicit or absolute memory
location.

DATA—Enter Data. This command is used to enter specific
data values into the memory. Again, suppose the following assem
bler display:

7D00 XXXX

Press the space bar. Type DATA >6043 and press ENTER. The
display now looks like this:

7D00 6043

7D02 XXXX

DATA >6043

Press the space bar, type DATA 15 and press ENTER. The result is
as follows:

7D00 6043 DATA >6043

7D02 000F DATA 15

7D04 XXXX

Note that data values in hexadecimal representation must be
preceded by the > symbol, otherwise the assembler assumes that
the value is in decimal form. The assembler accepts only hexadeci
mal or decimal. Decimal numbers are converted by the assembler
automatically, stored in memory in binary, and displayed in
hexadecimal.

Note also that the DATA command is used to enter 16-bit data.

To enter a single byte at an even address, you must enter two bytes
at the same time. Normally, if you did want to enter a single byte at
an even address for some reason you would make the second byte
zero, although any 8-bit number would work. If you are entering
data in hexadecimal, this is an easy operation. For example, if you
wanted to enter OFin location 7D04, you would enter the two byte
number 0F00 at that location as follows:

7D04 0F00 DATA >0F00
7D06 XXXX

Performing this operationindecimal is moredifficult. For example,
to enter the decimal number 15 at location 7D06, you must first
multiply 15 times 256. This effectively shifts the number by two
hexadecimal digits. The display would look like this:

7D06 0F00 DATA 3840

7D08 XXXX

Ifyou hadjust typed DATA 15 instead of DATA 3840 then OFwould
have been entered into memory location 7D07:

7D06 000F DATA 15

7D08 XXXX

EQU—Equate. This command is used to equate an address or
data value to a one- or two-character symbolic name. This is espe
cially useful if an address or data value is used more than once in
your program. It is simply easier to type CD in place of > A55A, for
example, if the value A55A is used several times in your program.

In general, it is a good practice to use symbolic names in your
program rather than explicit numbers. The symbols are often more
meaningful later on. Note that this applies more to the Editor/
Assembler than to the Line-by-Line Assembler, because as we have
said the Line-by-Line Assembler does not save the source code.
However, you yourself may save your source program for future
reference. All of the exercises in this book were written by hand on
paper first, entered into the assembler second, debugged using
EASY BUG third, and were finally typed on paper for a future
occasion—which turned out to be the writing of this book.

Equates are done at the beginning of a program and do not
affect data in the memory location currently displayed. Assume the
following assembler display:

7D20 0420

If you were to type CD EQU >A55A and press ENTER, the
assembler would display:

7D20 0420 CD EQU >A55A

7D20 0420

The assembler would store CD and the value A55A in the

Symbol Table and display the same memory address and data that
was being displayed when we entered the equate.

SYM—Display Symbol Table. This command causes the
assembler to display all the references that have been entered into
the Symbol Table. References include those created by the EQU
command and those created when a label has been used in the
program. A one- or two-character name in the label field automati
cally equates that name with the address of the instruction being
entered.

70

The following program uses five references:

7D00 XXXX WP EQU >70B8

7D00 XXXX M1 EQU >7D00

7D00 XXXX M2 EQU >7D02

7D00 XXXX AORG >7D04

7D04 3001 M3 DATA >3001

7D06 02E0 LWPI WP

7D08 70B8

7D0A 04C1 CLRR1

7D0C C0A0 MOV@M3.R2
7D0E 7D04

7D10R11FF JLTJ2

7D12R13FF JEQJ2

7D14 0581 J1 INCR1

7D16 0A12 SLA R2, 1
7D1815FD JGTJ1

7D1AC802J2 MOV R2,@ M1
7D1C7D00

7D12*1303

7D10*1104

7D1EC801 M0VR1,@M2
7D20 7D02

7D22 045B B*R11

This program is shown as it was entered. WP, Ml, and M2
were made references by use ofthe EQU command. M3 andJl were
made references by being placed in the label field.

J2 is different. It was first used at memory location 7D10. JLT
J2 is a conditionaljump instruction—jump to J2 if the jump condition
is met. However, at this point in the program J2 has not yet
appeared in a label field nor was J2 defined by an EQU command,
and the assembler does not yet know how many memory locations
forward are specified by this instruction. That is why the R appears
between the address and datacolumns on that line. At this point J2 is
considered an unresolved reference. As soon as J2 is used in a label
field the reference will be resolved and the assembler will finish

assembling the opcodes for the previous memory locations for
which it was not resolved. This is done at memory location 7D1A.
The assembler resolves the J2 references and displays the previous
memory locations with an asterisk between the address and data.

Using the SYM command after entering the above program will
cause the assembler to display three categories of references:

71

• Resolved references.

• Unresolved references (word).
• Unresolved references (jump).

Unresolved word references are unresolved references in any
instruction except a jump instruction. For example, at memory
location 7D0C of the above program, if I hadn't previously equated
M3 with a specific memory address (by use of EQU, or by putting
M3 in a label field), then M3 would be an unresolved word refer
ence.

TEXT—Enter Text. This command is used to enter a string
of characters into memory without having to first convert the
characters to ASCII (a one-byte code for each character) and then
enter the ASCII values using the DATA command. When you use
the TEXT command, the assembler automatically converts the
characters to ASCII and stores them in successive memory loca
tions. The word MICROPROCESSOR would be entered as follows:

7D00 4D49 TEXT 'MICROPROCESSOR1
7D02 4352

7D04 4F50

7D06 524F

7D08 4345

7D0A 5353

7D0C 4F52

7D0E XXXX

The ASCII code for M is 4D, the code for I is 49, and so forth.
The text to be entered is enclosed in single quotes. Blanks within
the quotes are recognized and encoded. If an odd number of charac
ters is entered, then 00 will be added to the last ASCII byte to make
the number of bytes even.

END, End Program. This command is used to exit the
assembler. After you type the END command in the opcode field
and press ENTER, the assembler displays the number of unre
solved references. If the number is zero, press ENTER. The
assembler will display PRESS ENTER TO CONTINUE. Press
ENTER again to return to the Mini Memory selection list, and
press QUIT to return to the START screen.

If there are any unresolved references, press the space bar.
This returns you to the assembler which displays the last address
and data. Type SYMin the opcode field. The assembler will display

72

the unresolved references. Then use the AORG command to move
to any location that needs to be corrected.

7D00R10FF JMPJ1

7D02 XXXX END

0001 UNRESOLVED REFERENCES
7D02 XXXX SYM

UNRESOLVED REFERENCES (JUMP)
J1-7D00

7D02 XXXX AORG >7CFE
7CFEC081 J1 MOVR1,R2
7D00*10FE

7D00 10FE END

0000 UNRESOLVED REFERENCES

EASY BUG

Return to the master selection list andpress 2 forEASY BUG.
The screen displays andsummarizes the EASY BUG commands and
special function keys as shown in Fig. 8-1. By now these commands
should be self-explanatory. However, when you write and execute
the first assembly language program, the EASY BUG commands
and special keys will be explained as you use them. For now, note
that the four Xs after a command letter indicate that a hexadecimal
memory address is to be supplied by the user. If you enter more
than four digits, only the last four are used by EASY BUG. If you
enter less than four digits, then whatever number you enter is
considered the last digits of a four-digit address.

EASY BUG is a program which allows you to display and
modify memory locations, execute assembly language programs,
load assembly language programs from cassetteand storeassembly
language programs oncassette(Earlier inthischapter Iused EASY
BUG to load the Line-by-Line Assembler.)

I am going to use EASY BUG to execute the programs in the
remainderof this book. I willalsouse EASY BUGto display certain
memory locations before andafter Iexecute the program. And I will
use EASY BUG to modify certain memory locations sothatIcan try
my programon more than one datavalue without having to return to
the assembler.

SUMMARY

The Mini Memory module adds 14K bytes of memory to your

73

system; gives you 7 additional BASIC subprograms; has a built-in
battery which maintains power to the Mini Memory RAM when the
module is removed from the console; contains the EASY BUG
program; and comes with the Line-by-Line Assembler on a cassette
tape.

The Line-by-Line Assembler allows you to build your own
assembly language programs using instruction mnemonics and
labels. The assembler allows forward references even though code
is assembled on a line-by-line basis.

The EASY BUG program allows you to debug andexecute your
assembly language program, read and modify the CPU and VDP
RAM locations, read GROM locations, read and modify CRU bits,
and loadand store programs on anexternal cassette tape recorder.

74

Part III

Programs

Chapter 9

as

r^3! ip^

u
c

T
S

Beginning Programs
In this chapter, you will create and execute some very simple
assembly language programs using the Line-by-Line Assembler and
EASY BUG. Each program will illustrate one of two new instruc
tions or addressingmodes. Eachprogram will be discussed step by
step. After you have entered the program into memory using the
assembler, you will use EASY BUG and perform the following
tasks:

• Execute the program.
D Examine the memory locations that should have been al

tered by the program or contain the results of the program.
• Modify memory locations that contain input data.
D Rerun the program on new input data.
• Examine the target memory locations again to verify that

the program works successfully on more than one data value or set
of data values.

Each listing follows the discussion of the program and has
ampleroomto the rightof each lineto add in yourown comments.
You will find it veryhelpful to document all of these programs with
your own comments.

16-BIT DATA TRANSFER

Let's enter Program 9-1. The procedure forentering(starting)
the Line-by-LineAssembler is repeatedhere for yourconvenience.

77

This procedure assumes that the Line-by-Line Assembler has al
ready been loaded into the Mini Memory RAM by using the EASY
BUG program, and the START screen is displayed.
1. Press any key. The master selection list is displayed.
2. Press 3 for Mini Memory. The selection list is displayed.
3. Press 2 for RUN. PROGRAM NAME is displayed.
4. Type NEW and press ENTER.

The screen displays the assembler title, copyright, and two
4-digit hexadecimal numbers. The first number is memory address
7D00 and the second number is the contents of that address, as
follows:

7D00 XXXX

Your display does not show XXXX. However, I am using four
X's to indicate that the contents could be anything at this point, and
since we are going to enter a new program we don't care.

Now type the first line but don't press ENTER. The line looks
like this:

7D00 XXXX M1 DATA >2E56

As soon as you press ENTER, the assembler changes the data
in memory location 7D00 from whatever it was to 2E56 and displays
the next memory location as follows:

7D00 2E56 M1 DATA >2E56

7D02 XXXX

Note that the next memory location is two higher than the
previous one. This is because the assembler always displays two
bytes at a time. The byte at 7D00 is now 2E and the byte at 7D01 is
now 56. Later we will see that EASY BUG displays only one byte at
a time.

I have done two things on this line:
1. I equated the name Ml with the address 7D00. The assembler
also entered this information into the Symbol Table.
2. I used the DATA command to enter data into a specific memory
location. Remember that the DATA command is not a TMS9900

assembly languageinstruction; it is an assembler directive. I could
have achieved the same result another way.

78

7D00 XXXX M1 EQU >7D00

7D00 2E56 DATA >2E56

7D02 XXXX

Let's continue:

7D02 XXXX M2 BSS 2

7D04 XXXX

This step reserves two bytes of memory and equates address
7D02 with the name M2. Let's continue:

7D04 02E0 LWPI >70B8

7D06 70B8

7D08 XXXX

This is the first instruction in the program. This instruction
loads the number70B8intothe workspace pointerregister. It tells
the computer which 16 16-bitmemory locations are to be used as
workspace registers. Memory location 70B8 becomes register 0,
70BAbecomesregister 1, and so forth. Although TI hasreserved a
User's Workspace starting ataddress 70B8whenthe Line-by-Line
Assembler is loaded, it is necessary to load 70B8 into the work
space pointer register at the start of my program. Otherwise, I
wouldbe usingthe workspace startingat address83E0—the work
space used by the EASY BUG program when it executes the pro
gram.

Note that this instruction uses two wordsof memory, one for
the LWPI opcode (02E0) and one for the operand (70B8). Let's
continue:

7D08 C820 MOV@M1,@M2
7D0A 7D00

7D0C 7D02

7D0E XXXX

This instruction moves the contents of memory location Ml
(7D00) to memory location M2 (7D02). The symbolic addressing
mode is specified by both operands. Consequently, one additional
word of memory is required foreach operand. The number C820 is
the opcode for the MOV instruction whenbothoperands specifythe
symbolic addressing mode.

79

This instruction illustrates the use of symbolic names as a
shorthand method of referring to specific addresses or data values.
The same result would have been achieved if I had entered MOV
@>7D00,@>7D02.

Let's continue:

7D0E 045B B*R11

7D10 XXXX

This is the last instruction in the program. It says; branch to
the address contained in workspace register 11.

When using the Line-by-Line assembler to create anassembly
language program, workspace register 11 contains the number
609C which is the starting address of a routine which returns you to
EASY BUG after the program executes. The number 609C is put
into register 11 of the User's Workspace (70B8-70D6) by the as
sembler when the assembler is first started.

The program is complete. This program transfers a 16-bit
number from one memory location to another. This is a very com
mon operation in assembly language programs. This first pro
gram also illustrates the following basic steps in developing an
assembly language program for the TI-99/4A when usingthe Mini
Memory module and Line-by-Line Assembler:

• Assign symbolic names to addresses and data values as
required.

D Enter initial datavalues into memory locations as required.
• Reserve memory locations for results as required.
• Set up workspace.
• Enter program instructions.
• Enter return instruction.

The next step is to exit theassemblerandgoto EASY BUG. To
do this, use the following procedure:
1. Type END intheopcode field and pressENTER.The assembler
displays 0000 UNRESOLVED REFERENCES if you have cor
rectly entered the program.
2. Press ENTER. (Any other key returns you to the assembler.)
The assembler displays PRESS ENTER TO CONTINUE.
3. Press ENTER. The Mini Memory selection list is displayed.
4. Press QUIT. The START screen is displayed.
5. Press any key. The master selection list is displayed.

80

6. Press 2 for EASY BUG. The EASY BUGcommandsand special
function keys are displayed.
7. Press any key. A question mark appears in the lower left hand
corner of your screen.

You may now enter any one of the seven EASY BUG com
mands. To execute the assembly language program just created,
use the E (Execute) command. Type E7D04 (7D04 is the starting
address of our program) and press ENTER. The EASYBUG display
looks like this:

7E7D04

?

The question mark is displayed to indicate that our program
has finished and EASY BUG is ready for the next command. Since
the purpose of the program was to move the number 2E56 from
7D00 to 7D02, let's look at CPU Memory location 7D02. Type
M7D02 and press enter. EASY BUG displays the following:

7M7D02

M7D02 =2E ->

The M command is used to modify CPU Memory. Con
sequently, EASY BUG displays -> to prompt you to type new data
in the space to the right. At the moment, you don't want to do that.
Instead, you want EASY BUG to display the next byte to see if 56
was moved to 7D03. To do this, just press the space bar. EASY
BUG displays the next byte as follows:

7M7D02

M7D02 =2E ->

M7D03 =56 ->

Recall that an even address may be used to refer to either a
16-bit word or an 8-bit byte. An odd address can refer only to an
8-bit byte. Thus, the word at address 7D02, for example, is com
posed of the byte at address 7D02and the byte at address 7D03.

The program worked. A 16-bit data value was transferred from
memory location 7D00 to memory location 7D02.

Let's try another number. Press the period to return to the
EASY BUG command mode. Type M7D00 and press ENTER.
EASY BUG displays the byte at 7D00:

81

7M7D00
M7D00 =2E ->

Now type FF to the right of the arrow and press ENTER.
EASY BUG displays the byte at 7D01. Type FF again and press
ENTER. The EASY BUG display should look like this:

7M7D00

M7D00=2E-> FF

M7D01 =56 -> FF

M7D02 =2E ->

Now press the period, execute the program again, andverify
that FFFFmoved from memory location 7D00to memory location
7D02.

Program 9-11

7D00 2E56 Ml DATA>2E56

7D02 XXXX M2 BSS 2

7D04 02E0 LWPI >70B8

7D06 70B8

7D08 C820 MOV @Mlt@M2

7D0A 7D00

7D0C 7D02

7D0E 045B B *R11

7010 XXXX END

64-BIT DATA TRANSFER

Enter Program 9-2. The purpose of this program is to move
four words (64 bits) of memory from one area of memory (7D10-
7D17) to another area of memory (7D18-7D1F). This is ac
complished as follows:
1. The AORG command is used to display address 7D10. This
preserves the previous program.
2. 64 bits of data are entered 16 bits at a time using the DATA
command. Also, address 7D10 is equated to Ml in the same step.
3. A 64-bitblockof memory is reserved for storage usingthe BSS
command. BSS 8 means reserve 8 bytes. Also, address 7D18 is
equated to M2 in this step.

82

4. The workspace is set up.
5. Workspace registers 0 and1 are loadedwith the values 7D10 and
7D18, respectively. 7D10is the startingaddressof the block of data
to be moved and7D18 is the starting address of the block of memory
locations to which the data will be moved.
6. The data is transferred one word at a time. Notice the MOV

instruction at address 7D2C. This instruction moves data. The
source address is contained in workspace register 0 and the desti
nation address is contained in workspace register 1. Then it incre
ments both registers by two after the data has been transferred.
Both operands specify the indirect addressing mode with au-
toincrement (asterisks and plus signs). After this instruction is
executed, the data at 7D10 will be at 7D18 and the contents of
registers 0 and 1 will be 7D12 and 7D1A, respectively.
The instruction is repeated three times in order to transfer 64 bits.
Note that the instruction at address 7D32 is different. Since all data
will have been transferredafter this instruction, it is not necessary
to increment the registers any more.
7. The return instruction is entered.

Now go to EASY BUG and perform the following steps.
1. Execute the program. The starting address is 7D20.
2. Verify that the program worked by displaying locations 7D18-
7D1F.

3. Change the input data at locations 7D10-7D17 as follows:

7M7D10

M7D10 =3E -> 01

M7D11 =2A -> 23

M7D12 =42 -> 45

M7D13 =A1 -> 67

M7D14 =21 -> 89

M7D15 =F2 -> AB

M7D16 =60 -> CD

M7D17 =A0 -> EF

4. Execute the program again.
5. Verify that the data was transferred correctly.

Program 9-2

7D00 XXXX AORG >7D10

7D10 3E2A Ml DATA >3E2A

7D12 42A1 0ATA>42A1

83

7014 21F2 0ATA>21F2

7D16 60A0 DATA>60A0

7018 XXXX M2 BSS 8

7020 02E0 LWPI >70B8

7D22 70B8

7024 0200 LI R0,M1

7D26 7010

7028 0201 LI R1.M2

7D2A 7018

7D2C CC70 MOV *R0+,*R1+

7D2E CC70 MOV *R0+,*R1+

7030 CC70 MOV *R0+,*R1+

7D32 C450 MOV *R0,*R1

7034 045B B *R11

7036 XXXX END

16-BIT ADDITION

Enter Program 9-3. The purpose of this programis to add two
16-bit numbers and store the result in memory. The first number is
located at address 7D36, and the second number is located at
address 7D38. The result will be stored at address 7D3A. This is
accomplished in three instructions, not counting the instruction to
set up the workspace and the return instruction.
1. The instruction at 7D40 moves the first number from Ml (7D36)
to workspace register 0.
2. The next instruction adds the contents of memory location M2
(7D38) to register 0 and places the result in register 0.
3. The third instruction transfers the result to M3 (7D3A). Note
that you can do a 16-bit addition in one instruction:

7D40 A820 A @M1,@M2
7D42 7D36

7D44 7D38

7D46 XXXX

This instruction adds the contents of Ml to the contents of M2

and stores the result at M2. You can see that when this instruction is

84

executed that the original contents of M2 will be lost. In some cases
this is alright. The approach used in Program 9-3 preserves M2.

Now go to EASY BUG and verify that the result at 7D3A is
3716 (hexadecimal). Change Ml and M2 to 17F5 and 2182, respec
tively. Rerun the program and verify that the result at 7D3A has
changed from 3716 to 3977 (hexadecimal).

Program 9-3

7D00 XXXX AORG >7D36

7036 10F5 Ml DATA>10F5

7038 2621 M2 DATA>2621

7D3A XXXX M3 BSS 2

7D3C 02E0 LWPI >70B8

7D3E 70B8

7D40 C020 MOV @M1,R0

7D42 7D36

7044 A020 A @M2,R0

7046 7D38

7048 C800 MOV R0.8M3

704A 7D3A

7D4C 045B B *R11

7D4E XXXX END

32-BIT ADDITION

Enter Program 9-4. The purpose of this program is to add two
32-bit numbers and store the result in memory.

The first number is 12A2E641 and is stored in two adjacent
16-bit memory locations. The most significant word (12A2) is
stored at location 7D4E and the least significant word (E641) is
stored at location 7D50. The second number is 001019BF. The
most significant word is stored at 7D52 and the least significant
word is stored at 7D54. The most significant wordof the result will
be stored at 7D56 and the least significant word will be stored at
7D58.

Since the 9900 microprocessor has only a 16-bit ALU (arith
metic logic unit), it can only add 16 bits at a time. Therefore, to
perform a32-bit addition, two 16-bit additions mustbe performed.
Inthe first 16-bit addition, the least significant words are added. Ifa

85

carry results, then 1 must be added to the most significant word of
either of the addends. Next, the most significant words are added.

This is accomplished in Program 9-4 as follows:
1. Address 7D4E, the address of the most significant word of the
first number, is loaded into register 0. Then indirect addressing
with autoincrement is used to load the addends into registers 1
through 4. Two registers per addendare required. 12A2 is moved to
register 1, E641 to register 2, 0010 to register 3, and 19BF to
register 4. Note that after four operations, register 0 contains the
number 7D56, the address where I will store the most significant
word of the result.

2. The least significantwords of the addendsare added first. This is
done at 7D6A. The instruction adds the contents of register 2 to the
contents of register 4 and stores the result in register 4.
3. The next instruction (address 7D6C) jumps to Jl (7D70) if no
carry was generated; otherwise go on to the next instruction. If a
carry is generated you must add1 to either register 1 or register 3.
These registers containthe next 16bits to be added.Therefore, the
instruction at 7D6E increments register 1(or adds 1 to the contents
of register 1). This instruction is performed only if a carry was
generated (carrybit of the status register set to 1), otherwise there
is a jump over it to Jl.
4. Next addthe most significantwords of the addends. This is done
at 7D70.

5. Finally, the result is stored inmemory. Conveniently, register 0
contains 7D56. Thus, the most significant word of the result is
stored first and increment the contents of register 0 by two again.
This is done, as before, by using the indirect addressing with
autoincrement. Since you are performing a word operation (as
opposed to a byte operation), then the contents of the specified
register are incremented by two. For byte operations, the contents
would be incremented by one.

Note that as you entered this program, the assembler dis
played the following results starting at address 7D6C:

7D6CR17FF JNCJ1

7D6E 0581 INCR1

7D70 A0C1 J1 A R1.R3
7D6CM701

7D72 XXXX

The first time 7D6C is displayed (after the instruction is

86

entered), Jl is an unresolved reference. Consequently, the assem
bler placesanR between the address anddata. Also, the FF in 17FF
is adummy displacement value. (The 17 is the code forJNC.) After
the instruction at 7D70 is entered, however, Jl is resolved. Con
sequently, the assembler displays the addressanddata of all previ
ous lines (only one in this program)in whichJl was unresolved. The
new display shows an asterisk between the address and data, and
the data has been corrected.

Recall that the displacement value in a jump instruction is a
relative number. A displacement value of 1 does not mean that 1 is
added to the current program counter value, but means that the
program counter should be incremented by two 1 time, since the
program counter is always an even address and can only be in
cremented or decremented by two or be replaced by an even
number. Also, the displacement value times two is added to the
program counter after the instruction is fetched. In Program 9-4,
afterthe instruction at7D6C hasbeen fetched, the program counter
equals 7D6E. Thus, the displacement value to jump to 7D70 is 1,
since the program counterwouldhave to be incremented by two 1
time to be equal to 7D70. (Now aren't you glad that you can use
labels and just let the computer figure out the displacement for
you?)

Now go to EASY BUG and verify that the result stored at
7D56-7D59 is equal to 12B30000. Using standard addition format,
the problem and solution is as follows:

1

12A2 E641

+ 0010 19BF

12B3 0000

Since the ALUadds 16bits, or4 hexadecimal digits, the numbers
are shown with a space between the fourth and fifth digits.

Notice that this choice of addends produces a carry. To com
pletely verify the program, choose a set of values that will not
generate a carry. Therefore, change 001019BF to 001019BE.
Rerun the program and verify that the result is 12B2FFFF.

Program 9-4

7000 XXXX A0RG>7D4E

7D4E 12A2 Ml DATA>12A2

7050 E641 DATA>E641

87

7052 0010 DATA>0010

7054 19BF 0ATA>19BF

7D56 XXXX BSS 4

7D5A 02E0 LWPI >70B8

7D5C 70B8

7D5E 0200 LI R0,M1

7060 704E

7062 C070 MOV *R0+,R1

7064 C0B0 MOV *R0+,R2

7066 COFO MOV *R0+,R3

7068 C130 MOV *R0+,R4

7D6A A102 A R2.R4

7D6C 1701 JNC Jl

7D6E 0581 INC Rl

7070 A0C1 Jl A R1.R3

7072 CC03 MOV R3,*R0+

7074 C404 MOV R4,*R0

7D76 045B B *R11

7078 XXXX END

FIND THE LARGER OF TWO UNSIGNED NUMBERS

Enter Program 9-5. The purpose of this programis to find the
larger of two unsigned numbers and to store the larger unsigned
number in memory. This is accomplished as follows:
1. The instructions at 7D82 and 7D86 move the unsigned numbers
to registers 0 and 1.
2. The instruction at 7D8A compares the contents of register 0 to
the contents of register 1. After this instruction is executed, three
bits of the status register are affected—LGT (logic greater than),
AGT (arithmetic greater than), and EQ (equal).
3. In the context of the program, the instruction at 7D8C essen
tially says jump to Jl if the unsigned number in register 0 is greater
than the unsigned number in register 1. This instruction tests the
LGT and EQ status bits. If LGT equals 1 and EQ equals 0, then the
jump condition is met.
4. If the number in register 0 is larger, then jump to Jl (7D90). The

88

instruction at that location thenmovesthe number in register0 to
address M3 (7D7C).
5. If the number in register 0 is not larger, then perform the next
instruction in sequence (7D8E). This instruction moves the number
in register 1 to register 0. Then move the number inregister 0 to
M3, as in step 4.

The 9900 instruction set includes six jump instructions to be
usedwhencomparing unsigned numbers. These arelisted inTable
9-1.

If I wantedto find the larger of two signed numbers, I woulduse
the JGT instruction instead of the JH instruction. See Table 9-2 for
the jump instructions to be usedwhen comparing signed numbers.
Note that for signed numbers, there is nojump instruction for the
greaterthan or equal condition or for the less than or equal condi
tion. To test for these conditions, the JEQ instruction would have to

Table 9-1. Jump Instructions for Unsigned Numbers.

Compare Condition Jump Instruction

Greater Than
Greater Than or Equal
Equal
Not Equal
Less Than or Equal
Less Than

JH
JHE

JEQ
JNE

JLE

JL

beused before orafter theJGT to test for greater than orequal and
before or after the JLT to test for less than or equal.

Now go to EASY BUG and verify that you have entered the
program correctly. The number9125shouldbe in memory location
7D7C.

Change 9125 at 7D78 to 1000 (hexadecimal) and rerun the
program. The number102C should be in memory location 7D7C if
the program was entered correctly.

Table 9-2. JumpInstructionsfor Signed Numbers.

Compare Condition Jump Instruction

Greater Than
Equal
Not Equal
Less Than

JGT
JEQ
JNE
JLT

89

Program 9-5

7D00 XXXX A0RG>7078

7D78 9125 Ml DATA>9125

7D7A 102C M2 DATA>102C

7D7C XXXX M3 BSS 2

7D7E 02E0 LWPI>70B8

7D80 70B8

7D82 C020 MOV ©Ml.RO

7D84 7D78

7086 C060 MOV GM2.R1

7D88 7D7A

7D8A 8040 C R0.R1

708C 1B01 JH Jl

7D8E C001 MOV Rl.RO

7090 C800 Jl MOV R0.6M3

7D92 7D7C

7D94 045B B *R11

7D96 XXXX END

SUM OF SQUARES

Enter Program 9-6. The purpose of this program is to perform
the following arithmetic operation:

T + 5(? = 2549 (decimal)
or 00072 + 00322 = 000009F5 (hexadecimal)

This is the sum of squares operation. The numbers to be
squared and added are stored in locations 7D96 and 7D98, respec
tively. The most significant 16bits of the 32-bit result will be stored
at location 7D9A, and the least significant 16 bits will be stored at
location 7D9C. This is accomplished as follows:
1. The address 7D96 is loaded into register 0.
2. Using indirect addressing, the first number is moved to register
1.

3. Using indirect addressing with autoincrement, the first number
is multiplied times the number in register 1. Since the number in

90

register 1 is the same, then the multiply operation has squared the
number.

Note that the second operandof the MPY instruction must be a
workspace register. In the instruction at 7DA8, the second operand
is register 1. This instruction multiplies the number whose address
is stored in register 0 times the number in register 1. Then it places
the most significant 16 bits of the 32-bit register in register 1, and
places the least significant 16 bits in register 2.

After this instruction the address stored in register 0 equals
7D98, the address of the next number that I want to square.
4. The instructions at 7DAA and7DAC perform the same operation
(that was done in step 3 above) on the second number. The 32-bit
result is stored in registers 3 and4. The address stored in register 0
now equals 7D9A, the address where I will store the 16 most
significant bits of the sum of the squares.
5. Instructions at 7DAE-7DB8 addthe 32-bit squares andmove the
result to memory locations 7D9A and 7D9C. These instructions are
identical to those used in Program 9-4 to perform the same task.

Go to EASY BUG and verify that the answer in 00Q009F5.

Program 9-6

7000 XXXX A0RG >7D96

7D96 0007 Ml DATA 7

7098 0032 DATA 50

7D9A XXXX BSS 4

7D9E 02E0 LWPI >70B8

7DA0 70B8

7DA2 0200 LI R0.M1

7DA4 7096

7DA6 C050 MOV *R0,R1

7DA8 3870 MPY *R0+,R1

7DAA C0D0 MOV *R0,R3

7DAC 38F0 MPY *R0+,R3

7DAE A102 A R2.R4

7DB0 1701 JNC Jl

7DB2 0581 INC Rl

70B4 A0C1 Jl A R1.R3

91

7DB6 CC03 MOV R3,*R0+

7DB8 C404 MOV R4,*R0

7DBA 045B B *R11

7DBC XXXX END

TABLE OF FACTORIALS

Enter Program 9-7. The purpose of this program is to deter
mine the factorial of a number between 0 and 8. The factorial of a
number is defined as follows:

N FACTORIAL = N(N-1) (N-2) (N-3)
M=N-1

. (N-M), where

The symbol for N FACTORIAL is N!. For example, 7! equals 7
times 6 times 5 times 4 times 3 times 2 times 1. 0! is defined as

being equal to 1. N! may also be defined as N times (N-l)!. Table
9-3 shows the factorials of numbers 0 through 8. The table could
easily be expanded, but has been limited to numbers whose facto
rials are less than 65,535 so that no more than 16 bits are needed to
express the factorial in binary. (9! equals 362,880 and requires 17
bits.)

The approach taken in Program 9-7 is to have the computer
determine the factorial of anumber by looking it up in atable instead
of computing the factorial according to the equation given above.
The table (limited to 9 values in this program) is stored in the
memory between locations 7DBC and 7DCC.

The number for which I want to find the factorial is located in

memory location 7DCE, and the factorial, when found, will be
placed in memory location 7DD0. This is accomplished in three
steps:

Table 9-3. Table of Factorials.

92

N N Factorial

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5,040

8 40,320

Left Shift Count Multiplier

1 2=21
2 4=22
3 8=23
4 16=24
5 32=25
6 64=26
7 128=27
8 256=28
9 512=29

10 1,024=210
11 2,048=211
12 4,096=212
13 8,192=213
14 16,384=214
15 32,768=215

Table 9-4. Left Shift
Equivalent Multiplier Values.

1. The number for which I want to find the factorial is loaded into

register 1. See the instruction at 7DD6.
2. The number is then multiplied by two. The position of the
factorial in the table is two times the number because each factorial
takes two bytes of memory. To find 5! I must add 10 decimal (000A
in hexadecimal) to the starting address of the table.

Notice the instruction at 7DDA. This instruction shifts the

contents of register 1 to the left 1 bit. This is a special way to
multiply by two. The SLA instruction may be used formultiplication
in the following cases:

D The multiplier must be an integer that can be expressed as
an integral power of 2 (see Table 9-4).

• The shift count must be less than the number of leading
zeros in the binary expression of the number, otherwise the answer
will be incorrect. For example, if the number 0000001101000111 is
left-shifted 1 bit 8 times, then the Is that were in bit positions 6 and
7 will be lost. (Remember that TI numbers their bit positions from
left to right, from bit 0 to 15.)

3. The last step is to add twice the number to the starting address
and move the number at this address to M3 (7DD0). This is done in a
single instruction using the indexed addressing mode. The instruc
tion at 7DDC moves data. The source address is the sum of Ml and
the contents of register 1. The destination address is M3. 000A is
added to 7DBC to get 7DC6. The number at 7DC6 is equal to 5!
(0078 hexadecimal) and is moved to address 7DD0.

93

Go toEASY BUG and run theprogram. Verify that thenumber
at 7DD0 equals 0078. Try one or two other values by changing the
number at 7DCF from 05 to any number between 00 and 08.

Program 9-7

7000 XXXX A0R6>7DBC

7DBC 0001 Ml DATA 1

7DBE 0001 DATA 1

7DC0 0002 DATA 2

7DC2 0006 DATA 6

7DC4 0018 DATA 24

7DC6 0078 DATA 120

7DC8 0200 DATA 720

7DCA 13B0 DATA 5040

7DCC 9080 DATA 40320

7DCE 0005 M2 DATA 5

70D0 XXXX M3 BSS 2

7DD2 02E0 LWPI>70B8

7DD4 70B8

7DD6 C060 MOV GM2.R1

7DD8 7DCE

7DDA 0A11 SLA Rl.l

7DDC C821 MOV $M1(R1),@M3

7DDE 7DBC

7DE0 7DD0

7DE2 045B B *R11

7DE4 XXXX END

94

Chapter 10

3E

5=i

21
15

ffi
Simple Program Loops

In this chapter I present six example programs which have loops.
The primary purpose of a program loop is to save memory space.
Secondarily, the use of program loops saves time in writing the
program. For example, suppose you wanted to add a list of six
numbers. Let's say that the address of the first number in the list is
stored in register 1 and that the sum will be stored temporarily in
register 0. Based on what you have learnedso far, a programto add
six numbers would look like this:

CLRRO

A*R1+,R0
A*R1+,R0
A*R1+,R0
A*R1+,R0
A*R1+,R0
A*R1+,R0

This program clears register 0 and then adds each number in
the list to the contentsofregister0. Forsixnumbers this program is
probably alright. But for alist of sixty numbers, it would be apain to
haveto enter sixty addition instructions. Also, youwoulduse sixty
memory locations. By using a program loop, this number can be
reduced.

A program thatuses aloop willset asidearegisterto bewhatis

95

called a bop counter. Normally, the number of data items to be
processed will be stored in the loop counter register. After each
dataitem is processed, the loopcounter is decremented by one and
then tested to see if it equals zero. If the loop counter value is not
zero, then the program jumps to the beginning of the processing
section. If the loopcounter value is zero, then the programexits the
loop and executes the next instruction following the loop.

A program loop consists of the following steps:
1. Process data item. This step uses one or more instructions. In
the above example, the processing section would be only one
instruction, namely A *R1+,R0.
2. Set up conditions for next pass. In particular, the register which
contains the address of the datato be processed is incremented by
two. Using indirect register addressing with autoincrement, this
step may be combined with one of the instructions in step 1.
3. Decrement the loop counter.
4. Test the loopcounter value.Jumpto the beginning of the loop if
not zero, otherwise go on to the next instruction.

The program loopis preceded by one or more instructions to
set up, or initialize, registers ormemory locations used by the loop.

The following six programs contain simple program loops. You
should enter each program into memory using the Line-by-Line
Assembler and execute each program using EASY BUG. Re
member to use the startingaddressof the program when youuse the
E command. The first instruction of all programs in this book is
LWPI >70B8. Usually, there will be one or more assembler com
mands before this instruction. The assembler commands set up the
memory locations used by the programand also equate one or more
symbolic names to specific addresses used in the program.

16-BIT SUM OF DATA

The purpose of Program 10-1 is to add a series of 16-bit
numbers. The numbers to be added are stored at locations 7DE4-

7DE8. The result will be stored at 7DEA.
Memory location 7DEC contains the starting address of the

first number to be added. This makes the program flexible. If I
wanted to add a series ofnumbers somewhere else in memory, then
Ionly need to changethe addressat 7DECto be equalto the address
of the first data item.

Memory location 7DEE containsthe number of numbers to be
added, three in this case. This alsomakes the programflexible. The
program that follows operatesonthe numberofdata items at 7DEE.

This number may be changed. However, in this example, the
number may not be greater than three because I have only allocated
enough memory for three numbers. If, however, I had twelve
numbers stored in memory locations 7F00-7F16,1 could change the
contents of 7DEC from 7DE4 to 7F00. Then the program that
follows (7DF0-7E08) could add those twelve numbers.

Workspace registers are used as follows:

• Register 0 is used as temporary storage for the subtotals
and for the total when all items have been added. Before any items
are added, this register is cleared. See instruction at 7DF4.

• Register 1 stores the address of the next data item to be
added. Initially, the address stored at 7DEC is moved to this
register.

• Register 2 is used as the loop counter. Initially, the number
at 7DEE is moved to this register.

The program loop consists of three instructions:

J1 A*R1+,R0
DECR2

JNEJ1

The first instruction fetches the contents of the address stored
in register 1 andaddsthis numberto the numberin register 0. After
the data is fetched, the address value inregister 1is incrementedby
two.

The second instructiondecrements the number in register 2.
After the number is decremented, it is compared to zero and the
LGT, AGT, EQ, C, and OV status bits are either set to one or
cleared to zero, depending on the new value in register 2.

The thirdinstruction tests the EQstatusbit. IfEQequalszero,
then the jump condition is met and the program jumps to Jl. The
loop will be repeated until the loop counter equals zero, thereby
causing the EQ bit to be set to one. Then the program exits the loop
and goes on to the next instruction, which in this case moves the last
subtotal in register 0 to memory location Ml (7DEA). The final
result is 3EA4.

Note that a shorter program could be written if you always
wanted to addonly three numbers. However, to addten or twenty
numbers it is shorter (and usually better) to use a program loop.

97

Program 10-1

7000 XXXX AORG >7DE4

7DE4 2040 DATA >2040

7DE6 1C22 DATA>1C22

7DE8 0242 DATA >0242

7DEA XXXX Ml BSS 2

7DEC 7DE4 N2 DATA>7DE4

7DEE 0003 M3 DATA 3

7DF0 02E0 LWPI>70B8

7DF2 70B8

7DF4 04C0 CLR RO

7DF6 C060 MOV @M2,R1

7DF8 7DEC

7DFA COAO MOV GM3.R2

7DFC 70EE

7DFE A031 Jl A *R1+,R0

7E00 0602 DEC R2

7E02 16FD JNE Jl

7E04 C800 MOV R0,@M1

7E06 7DEA

7E08 045B B *R11

7E0A XXXX END

32-BIT SUM OF DATA

Program10-1 has two problems: First, if the number at loca
tion 7DEE were equal to zero before the programwas started, then
the program would not work properly. The number in register 2
would be decremented from 0000 to FFFF after the first time
through the loop. The program would have to add65,536 numbers
before the loop counter would be equal to zero again.

Second, only one 16-bitstoragelocation hasbeen allocatedfor
the result. This is alrightif youknowahead of time that the sum will
never exceed sixteen bits. But if you are addingnumbers which all
could be near the maximum (65,535 decimal for a 16-bit micro
processor), then you should provide at least one extra bit per

98

number to be added. For example, if you are adding eight 16-bit
numbers each which may be near the maximum, then you should
reserve three bytes of memory for the result.

Program10-2solves both of these problems. The first problem
is solved by comparing the loop counter value to zero before the
program loop is entered. If the value is zero then the programjumps
over the loop and moves a zero subtotal to the memory locations
reserved for the total. The second problem is solved by simply
allocating two 16-bit memory locations for the total. Looking at
Program 10-2, you caneasily see that two words of memory have
been reserved at addresses 7E10 and 7E12. It is not, however,
immediately obvious how the first problem is solved—that is,
where exactly before the loop is the loop counter compared with
zero. Let's look at the program one section at a time.

The instructions at 7E1C-7E2Aset up the workspace registers
as follows:

• Register 0 stores the destination address for the 32-bit
total.

• Register 1 is the temporary storage for the sixteen most
significantbits of the subtotal. This register is initially cleared and
then in the loop is incremented by one each time acarryresults from
the addition of two 16-bit numbers.

• Register 2 is temporary storage for the sixteen least sig
nificant bits of the subtotal. This register is initially cleared. Each
number in the list will be added to the contents of this register; and
the result will be stored in this register.

• Register 3 contains the address of the number to be added
to the contents of register 2. Initially, the address stored at memory
location 7E14is moved to this register. Each time through the loop
the address in register 3 is incremented by two. This register is
used as what is called a data pointer because the contents of the
register always point to the next data item to be processed.

• Register4 is usedasthe loop counter. Initially, the number
stored at memory location 7E16 is moved to this register.

Note the instruction at 7E2C. This instruction tests the EQ
status bit. The EQ status bit was either set or cleared by the
previous MOV instruction at 7E2E. That instruction moved the
loop countervalue (the number of data items) to register4. Whatis
notobviousis that the MOVinstruction always compares the source
operand (the value to be moved) to zero. Consequently, a condi-

99

tional jump instruction can follow a MOV instruction—a savings of
one instruction. (C R4,Rl wouldwork, forexample, sinceregister 1
equals zero at this point.)

The program loop is stored at locations 7E2E-7E36. Two
instructions (at 7E30 and 7E32) have been added to the program
loopof Program 10-1. These two instructions essentiallyaddone to
the sixteen most significant bits of the subtotal each time a carry
occurs when adding the sixteen least significant bits.

The remaining instructions move the final result to memory
locations 7E10-7E12. The final result is 00011EA4.

Program 10-2

7D00 XXXX AORG >7E0A

7E0A 2040 DATA>2040

7E0C 1C22 DATAMC22

7E0E E242 DATA >E242

7E10 XXXX Ml BSS 4

7E14 7E0A M2 DATA>7E0A

7E16 0003 M3 DATA 3

7E18 02E0 LWPI>70B8

7E1A 70B8

7E1C 0200 LI R0,M1

7E1E 7E10

7E20 04C1 CLR Rl

7E22 04C2 CLR R2

7E24 C0E0 MOV 8M2.R3

7E26 7E14

7E28 C120 MOV @M3V R4

7E2A 7E16

7E2C 1305 JEQ J3

7E2E A0B3 Jl A *R3+,R2

7E30 1701 JNC J2

7E32 0S81 INC Rl

7E34 0604 J2 DEC R4

7E36 16FB JNE Jl

100

7E38 CC01 J3 MOY Rl,*RO+

7E34 C402 NOV R2,*R0

7E3C 045B B *R11

7E3E XXXX END

NUMBER OF NEGATIVE NUMBERS

The purposeof Program 10-3is to readalist of signednumbers
and determine how many of them are negative. The list of numbers
is stored in memory beginning at address 7E3E. The number of
negative numbers will be stored at 7E44. Memory location 7E46
contains the starting address of the list and memory location 7E48
contains the number of numbers in the list. The actual program
starts at address 7E4A.

The workspace registers are allocated as follows:

• Register 0 is used as temporary storage for the number of
negative numbers in the list. This register is initially cleared to
zero. It is incremented each time a negative number is found while
the list is being read.

• Register 1 is used as the data pointer. Initially, the address
stored at 7E46 is moved to this register. The register is in
cremented by two each time a number is read from the list.

• Register 2 is used as a loop counter. Initially, the number
stored at 7E48 is moved to this register. The register is dec
remented each time a number is read from the list.

D Register 3 is used as a temporary storage location for each
number as it is read from the list.

How is the list read? The list is readby moving anumber in the
list (designated by the address in register 1) to register 3. This is
the first instruction in the program loop stored in memory locations
7E5A-7E64. Recall fromour discussionof Program10-2that when a
MOV instruction is executed, the datathat is moved is compared to
zero. If the number is greater than or equal to zero, then the
program jumps to J2. Otherwise, the number is negative and regis
ter 0 is incremented by one.

When allthe numbershavebeen read(register 2 equals zero),
the number in register 0 (which contains the number of negative
numbers) is moved to 7E44. In this example, two of the three
numbers are negative. See Table 10-1 for a partial list of 4-digit
hexadecimal signed numbers and decimal equivalents.

101

Table 10-1. Partial Listof Signed Number Equivalents.

Hexadecimal Decimal

7FFF +32,767

7000 +28,672
6000 +24,576
5000 +20,480
4000 +16,384
3000 +12,288
2000 +8,192
1000 +4,096
0001 +96

0000 1

FFFF -1

F000 -4,096
EOOO -8,192
DOOO -12,288
COOO -16,384
BOOO -20,480
AOOO -24,576
9000 -28,672
8000 -32,768

Program 10-3

7000 XXXX AORG >7E3E

7E3E F1DC DATA >F1DC

7E40 7E0A DATA >7E0A

7E42 824B DATA >824B

7E44 XXXX Ml BSS 2

7E46 7E3E M2 DATA >7E3E

7E48 0003 M3 DATA 3

7E4A 02E0 LWPI >70B8

7E4C 70B8

7E4E 04C0 CLR RO

7E50 C060 MOV @M2,R1

7E52 7E46

7E54 COAO MOV @M3,R2

7E56 7E48

7E58 1306 JEQ J3

7E5A COFl Jl HOV *R1+,R3

102

7E5C 1502 JGT J2

7E5E 1301 JEQ J2

7E60 0580 INC R0

7E62 0602 J2 DEC R2

7E64 16FA JNE Jl

7E66 C800 J3 MOV R0,@M1

7E68 7E44

7E6A 045B B *R11

7E6C XXXX END

NUMBER OF ZERO, POSITIVE, AND NEGATIVE NUMBERS

The purpose of Program 10-4 is to readalistof signednumbers
and to determine how many of them are negative, how many are
equal to zero and how many are positive. The numbers and their
addresses are as follows:

Number Address
7602 7E6C

8D48 7E6E

2120 7E70

0000 7E72

E605 7E74

0004 7E76

e final storage locations for the results are as i

Result Address

Number of negative numbers 7E78
Number of zero's 7E7A

Number of positive numbers 7E7C

The starting address of the list is stored in memory location
7E7E, and the numberof data items to be processed is stored at
7E80. The program begins with the instruction at 7E82.

The registers are allocated as follows:

Register Function
0 Contains final storage address for results.

103

Register Function
1 N counter—number of negative numbers.
2 Z counter—number of zero's.

3 P counter—number of positive numbers.
4 Data pointer.
5 Loop counter.
6 Temporary storage - each number is moved here.

Program 10-4 may be divided into three sections: initialization
(7E86-7E98), main processing loop(7E9A-7EAC), and save results
and return (7EAE-7EB4).

The initialization section consists of eight instructions: 7E82
initializes the workspace. 7E86 loads the starting address of the
block of memory that will be used as final storage for the results.
7E8A clears the N counter, 7E8C clears the Z counter, and 7E8E
clears the P counter. 7E90 moves the address stored at 7E7E to the
data pointer register. 7E94 moves the number stored at 7E80 to the
loopcounter. 7E98 tests the initial loopcounter value. If zero, then
the program jumps to the instructions which save the N, Z, and P
counter values.

The main program loop consists of ten instructions: 7E9A
reads the number and increments the data pointer. 7E9C tests the
number to see if it equals zero. If so, then the program jumps to
7EA4 where the Z counter is incremented. 7E9E tests the number

to see if it is positive. If so, then the program jumps to 7EA8 where
the P counter is incremented. 7EAD increments the N counter.

There is no need to test the number to see if it is negative. If it is not
zero and not positive, then it must be negative. 7EA2 causes the
program to jump to 7EAA,jumpingover the instructions that incre
ment the Z and P counters. 7EA4 increments the Z counter. 7EA6
causes the program to jump to 7EAA, jumpingover the instruction
to increment the P counter. 7EA8 decrements the loop counter.
7EAC tests the loop counter value. If not zero, then the program
jumps to the beginning of the loop. You should be able to see that
only one counter (N, Z, or P) is incremented each time through the
loop.

The final section consists of four instructions, three of which
store the final N, Z, and P counter values in memory. Using the
numbers at 7E6C-7E76, the final values are 2,0, and 3 respectively.
The last instruction (7EB4) returns control to EASY BUG.

Althoughthere are no new instructions or addressing modes in

104

this program, the program is a good example of how the use of a
program loop can save instructions and programming time. Without
using a loop, the set of eight instructions at address 7E9A-7EA8
would have to be used for each number in the list. Thus, the 10 loop
instructions in Program 10-4 do the job of 48 nonloop instructions.
Quite a savings in memory and programming time.

Program 10-4

7000 XXXX A0RG>7E6C

7E6C 7602 DATA>7602

7E6E 8D48 DATA>8D48

7E70 2120 DATA >2120

7E72 0000 DATA 0

7E74 E605 DATA >E605

7E76 0004 DATA 4

7E78 XXXX Ml BSS 6

7E7E 7E6C M2 DATA >7E6C

7E80 0006 M3 DATA 6

7E82 02E0 LWPI >70B8

7E84 7068

7E86 0200 LI R0.M1

7E88 7E78

7E8A 04C1 CLR Rl

7E8C 04C2 CLR R2

7E8E 04C3 CLR R3

7E90 C120 MOV 8M2.R4

7E92 7E7E

7E94 C160 MOV $M3,R5

7E96 7E80

7E98 130A JEQ J5

7E9A C1B4 Jl MOV *R4+,R6

7E9C 1303 JEQ J2

7E9E 1504 JGT J3

7EA0 0581 INC Rl

7EA2 1003 JMP J4

7EA4 0582 J2 INC R2

7EA6 1001 JMP J4

7EA8 0583 J3 INC R3

7EAA 0605 J4 DEC R5

7EAC 16F6 JNE Jl

7EAE CC01 J5 MOV R1,*R0+

105

7EB0 CC02 MOV R2,*RO+

7EB2 C403 MOV R3,*R0

7EB4 045B B *R11

7EB6 XXXX END

FIND MAXIMUM VALUE

The purpose of Program 10-5 is to read a list of unsigned
numbers and determine which of them is the largest. Let me explain
how this is accomplished.

The first number in the list is compared to zero, the initial
value of register 0. If the number is larger than zero, then it is
moved to register 0 and becomes the number to which the next
number in the list is compared. The loop counter is decremented
and the next number is read. If the first number is equal to zero, then
zero is retained in register 0, the loop counter is decremented and
the next number is read.

Each time through the loop, the new number is compared with
the previous maximum that was found. When all items have been
read, the number in register 0 is moved to memory location 7EBE.
The maximum value in the list is E57A.

Program 10-5

7D00 XXXX A0RG>7EB6

7EB6 A48E DATA>A48E

7EB8 71AC DATA>71AC

7EBA 34F1 DATA>34F1

7EBC E57A DATA>E57A

7EBE XXXX Ml BSS 2

7EC0 7EB6 M2 DATA>7EB6

7EC2 0004 M3i DATA 4

7EC4 02E0 LWPI >70B8

7EC6 70B8

7EC8 04C0 CLR R0

7ECA C060 MOV GM2.R1

7ECC 7EC0

7ECE C0A0 MOV @M3,R2

7ED0 7EC2

7ED2 1306 JEQ J3

106

7ED4 COFl Jl MOV *R1+,R3

7ED6 8003 C R3.R0

7ED8 1A01 JL J2

7EDA C003 MOV R3.R0

7EDC 0602 J2 DEC R2

7EDE 16FA JNE Jl

7EE0 C800 J3 MOV R0,@M1

7EE2 7EBE

7EE4 045B B *R11

7EE6 XXXX END

FIND MINIMUM BYTE VALUE

Program 10-6 illustrates how the9900 microprocessor handles
8-bit, orbyte, data values. Thepurpose ofthis particular program is
to read a list of unsigned 8-bit numbers and determine which ofthem
is the smallest.

The 8-bit data values and theiraddresses are given below:

Value Address
65 7EE6

79 7EE7

15 7EE8

E3 7EE9

72 7EEA

Note that the values are hexadecimal numbers. Also, although
00 is stored at 7EEB, this number is not in the list. Since datavalues
must be enteredtwo bytes atatime usingthe DATAcommand, this
byte was made equal to zero when the value 72 was entered.

Register0 is used to temporarily store the minimum valuesas
they are found. Initially, this register is set to FFFF (all l's, the
highest possible 16-bit unsigned number) usingthe SETO (set to
ones) instruction. Note, however, that only theupper byte,oreight
most significant bits, of the register are used in the comparison
operation.

Data values are read using the MOVB (move byte)instruction.
The first time, for example, thebyte at7EE6 ismoved totheupper
byte half of register 3. Using indirect addressing with auto-
increment, the data pointer is incremented byone. Recall thatinthe

107

auto-increment mode, the processor increments the specified reg
ister contents by one for byte operations and by two for word
operations.

The CB (compare bytes) instruction at 7F04 compares the
upper byte in register 3 with the upper byte in register 0. The
MOVB instruction at 7F08 saves the lower value byte in register 0
(again, the upper byte half).

The MOVB instruction at 7F0E moves the final result (E3,
in this list) to location 7EEC. Note that the byte at 7EED is un
changed by this program. In fact, I could saveoneword of memory
by storing the result at 7EEB, the lower byte of word location
7EEA.To dothis, justchange the instruction of7F0E to MOVB R0,
@>7EEB, orgoto EASYBUG and change thebyteat7F11 from EC
toEB.

Program 10-6

7D00 XXXX A0R6>7EE6

7EE6 6579 DATA>6579

7EE8 15E3 DATA >15E3

7EEA 7200 DATA >7200

7EEC XXXX Ml BSS 2

7EEE 7EE6 M2 DATA >7EE6

7EF0 0005 M3 DATA 5

7EF2 02E0 LWPI >70B8

7EF4 70B8

7EF6 0700 SET0 R0

7EF8 C060 MOV SM2.R1

7EFA 7EEE

7EFC C0A0 MOV GM3.R2

7EFE 7EF0

7F00 1306 JEQ J3

7F02 D0F1 01 MOVB *R1+, R3

7F04 9003 CB R3.R0

7F06 1B01 OH J2

7F08 D003 MOVB R3.R0

7F0A 0602 J2 DEC R2

108

7F0C 16FA ONE Jl

7FOE D800 J3 MOVB R0,@M1

7F10 7EEC

7F12 045B B *R11

7F14 XXXX END

109

Chapter 11

Character-Coded Data

In this chapter, I will discuss seven short programs that process
strings. A string is a series of one or more characters that have been
translated into ASCII code. All data input via the keyboard, for
example, is ASCII encoded before it is stored in memory and
processed. Also, all information to be displayedon the screen must
be converted to ASCII beforehand.

ASCII is in 7-bit code for letters, numbers, symbols (such as
the comma, period, and so forth), and control characters (such as
CONTROL P, acombination of the CONTROL key and the P key)
allof whichmay or may not be on yourkeyboard. Since computers
basically operate on 8- or 16-bit data, ASCII codes are stored and
transferred as an8-bitnumber with the leading bit always equalto
zero.

Table 11-1 is apartial listofcharacters and theircorresponding
ASCII codes. For codes that are not included in the table, you
shouldsee the TI-99/4A User's Reference Guide suppliedwith your
computer. Note that the TI-99/4A has more than one keyboard
mode and some characters change code when the mode changes.
The characters that change codes are ones that are not included in
Table 11-1.

LENGTH OF A STRING OF CHARACTERS

The purpose of Program 11-1 is to determine the length of a
string of ASCII-encoded characters. The string "TI-99/4A" is

111

Table 11-1. ASCII Character Codes.

Character ASCII Character ASCII Character ASCII

Carriage @ 40
Return OD A 41 a 61

Space 20 B 42 b 62
1 21 c 43 c 63

22 D 44 d 64
23 E 45 e 65
% 25 F 46 f 66
& 26 Q 47 g 67

27 H 48 h 68
(28 I 49 I 69
) 29 J 4A j 6A
• 2A K 4B k 6B
+ 2B L 4C I 6C
— 2D M 4D m 6D

2E N 4E n 6E
/ 2F 0 4F 0 6F
0 30 P 50 p 70
1 31 Q 51 q 71
2 32 R 52 r 72
3 33 s 53 8 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 V 76
7 37 w 57 w 77
8 38 X 58 X 78
9 39 Y 59 y 79

3A z 5A z 7A
; 3B [5B {

l

7B
< 3C \ 5C 7C
— 3D I 5D } 7D
> 3E A 5E 7E

'

3F 5F

stored at 7D00-7D07. ODis the ASCII code for the ENTER key (or
carriage return) and is stored at 7D08 immediately following the
string to be processed. The OD signalsthe program that the end of
the string has been reached.

7D0A contains the number 7D00, the starting address of the
string. 7D0C is reserved for the result. The length of the string,
when determined, will be placed at this location.

7D0E is the starting address of the actual program. (Re
member this when you goto EASY BUGto runthe program. In this
book, all programs start with the instruction LWPI >70B8 which
initializes the workspace pointer.)

The instruction at 7D12 clears register 0 which is used as a
string charactercounter. 7D14loadsthe ASCIIcode forthe ENTER
key. Eachcharacterin the string is comparedto OD to see if the end
of the string has been reached.

7D18 moves the address at 7D0A to register 2 which is used as
the data pointer.

7D1C-7D22 contains the program loop. The first time through

112

the loop, 7D1C compares the first character in the string to OD and
increments the data pointer by one. 7D1E causes the program to
exit the loopandgo to 7D24if the characterequals OD. Otherwise,
7D20 increments the character counter and 7D22 causes the pro
gram to go through the loop again.

7D24 moves the final count to 7D0C and 7D28 returns control

to EASY BUG. You should go to EASY BUG andput OD at anearlier
point in the string and see if the count changesaccordingly. If you
want to try a different string, it will probably be easier if you go to
the assembler and use the TEXT command. Be sure to make OD

your last character. Also, if you want to enter a string longer than
ten characters (including the terminator OD), you should put the
string after 7D28andthen changethe datain7D0A to be equal to the
starting address of your string.

Program 11 -1

7000 5449 TEXT 'TI-99/4A'

7D02 2039

7004 392F

7D06 3441

7D08 0D00 DATA > 0D00

7D0A 7000 Ml DATA >7D00

7D0C XXXX M2 BSS 2

7D0E 02E0 LWPI >70B8

7D10 70B8

7D12 04C0 CLR R0

7014 0201 LI RI,>0D00

7D16 0D00

7D18 C0A0 MOV <?M1,R2

7D1A 7D0A

7D1C 9072 Jl CB *R2+,R1

7D1E 1302 JEQ J2

7D20 0580 INC R0

7D22 10FC JMP Jl

7D24 C800 J2 MOV R0,0M2

7D26 7D0C

113

7D28 045B B *R11

7D2A XXXX END

FIND FIRST NONBLANK CHARACTER

The purpose of Program 11-2 is to find the first nonblank
character in an ASCII encoded string. The string"TI" is stored at
7D2A-7D2F. The startingaddress, 7D2Ais storedat 7D30andthe
location of the first nonblank character when found will be stored at
7D32.

The program startsat7D34. The instruction at7D38 loads the
ASCII code for a blank in the upper byte halfof register 0. 7D3C
loads the starting address of the string into register 1.

7D40-7D42 contains the loop which tests succeeding charac
ters until a nonblank character is found. The first time through the
loop, the instruction at 7D40 compares the byte at 7D2A with the
byte 20 and increments the data pointer by one—from 7D2A to
7D2B. 7D42causes the program to gobackto 7D40if the character
is a blank. When a nonblankcharacter is found, the programexits
the loop and goes on to 7D44.

7D44decrements the data pointer. This is necessary because
7D40 automatically increments the data pointer. Thus, when the
program gets to instruction 7D44 the data pointeris pointing at the
second nonblank character.

7D46 transfers the address of the first nonblank character to

address 7D32.

Program 11-2

7D00 XXXX A0RG >7D2A

7D2A 2020 TEXT • TI

7D2C 5449

7D2E 2020

7D30 7D2A Ml DATA >7D2A

7D32 XXXX M2 BSS 2

7D34 02E0 LWPI >70B8

7D36 70B8

7D38 0200 LI R0,>2000

7D3A 2000

7D3C C060 MOV GM1.R1

114

7D3E 7D30

7D40 9031 Jl CB *R1+,R0

7D42 13FE JEQ Jl

7D44 0601 DEC Rl

7D46 C801 MOV Rlt@M2

7D48 7D32

7D4A 045B B *R11

7D4C XXXX END

FIND LAST NONBLANK CHARACTER

The purpose of Program 11-3is to read a string anddetermine
which character is the last nonblank character. The string "TI-
99/4A" is stored at 7D4C-7D57. For this string the program will
determine that the last nonblank character is located at address
7D55.

The starting address of the string is stored at 7D58 and two
bytes of memory have been reserved at 7D5Afor the address of the
last nonblank character when found. The instruction at 7D60 loads
the ASCII code for a blank into the upper byte of register 0. 7D64
moves the starting address of the string to register 1.

The program containstwo loops. The purposeof the first loop
(7D68-7D6A) is to skip over any leading blanks. The second loop
(7D6C-7D6E) reads characters until a blank is found.

7D70decrements the datapointer (register 1)by two when the
first blank after a nonblank character has been found. This is neces
sary because the autoincrement mode is used in the instruction of
7D6Candcauses the data pointerto be pointingat the next charac
ter after the first blank. In this case, the data pointer value equals
7D57 before the instruction at 7D70 is executed. The nonblank
character, A, is two locations back to 7D55. Thus, the data pointer
must be decremented by two.

7D72 moves the address at the last nonblank character to
memory location 7D5A.

Program 11-3

7D00 XXXX A0RG>7D4C

7D4C 2020 TEXT • TI-99/4A »

7D4E 5449

115

7D50 2D39

7D52 392F

7D54 3441

7D56 2020

7D58 7D4C Ml DATA>7D4C

7D5A XXXX M2 BSS 2

7D5C 02E0 LWPI>70B8

7D5E 70B8

7D60 0200 LI R0»>2000

7D62 2000

7D64 C060 MOV GM1,R1

7D66 7D58

7D68 9031 Jl CB *R1+,R0

7D6A 13FE JEQ Jl

7D6C 9031 J2 CB *R1+,R0

7D6E 16FE JNE J2

7D70 0641 DECT Rl

7D72 C801 MOV R1.0M2

7D74 7D5A

7D76 045B B *R11

7D78 XXXX END

REPLACE LEADING ZEROS WITH BLANKS

The purpose of Program 11-4 is to read an ASCII encoded
number and replace all leading zeros with blanks.

The number to be processed, 00005, is storedat 7D78-7D7C.
The number is followed by a blank stored at 7D7D. The blank
signals the program thatthe endof the string(the number) hasbeen
reached. The program has also been designed to look for the
carriage return code(ENTERonthe TI-99/4A), OD, to see if the
string has ended.

Another common approach to determining when the string has
ended is to put the length of the string first. Then the program uses
the number as the initial value of a loop counter. For example, the
input data for processing the four character string 0005 would look
like this:

116

7D78 0004 DATA 4

7D7A 3030 TEXT '0005'
7D7C 3035

Of course, the program to process stringsin this manner wouldbe
different than Program 11-4.

Also, part of the problem in writing this program is to make
sureit can handle astring ofall zeros. In thiscase, 1want to replace
all leading zeros (before ablank orcarriage return) except the last
one, which I want to preserve.

Now let's look at Program 11-4. Instructions at 7D84-7D8E
load the ASCII codes for zero (30), blank (20) and carriage return
(0D) intoregisters 0,1, and 2, respectively. 7D90 moves the start
ing address of the string to register 3.

7D94-7D9A tests the first character to see if it is a blank or
carriage return. If it is either one ofthese, thenthe program jumps
to 7DB4, which ends the program.

7D9C-7DA2 is a loop which tests each character to see if it
equals azero. If so, the zerois replaced byablank, the data pointer
is incremented, and the program jumps to the start of the loop. Ifa
nonzero character is discovered, the program exits the loop.

The remainder of the program determines whether or not the
string was all zeros. If not, then the program ends, since no new
characters need to be examined. If the stringis all zeros, then the
program must put the last one back.

This is accomplished in 70A4-7DB0. 7DA4-7DAA compares
the first nonzero character withtheblank and thecarriage return. If
the firstcharacter (afterreplacing leading zeros) is either ablank or
a carriage return, then the string must have been all zeros and the
program jumpsto 7DAE. 7DAE decrements the data pointerso that
the last zero can be put back by the instruction at 7DB0.

If the code at 7DA4-7DAA determines that the first nonzero
character is neither ablank orcarriage returnthen the instructionat
7DAC is executed. 7DAC causes the program to jump to the end,
bypassing the code that puts a zero back in the string.

Program 11-4

7D00 XXXX A0R6>7D78

7D78 3030 TEXT '00005 •

7D7A 3030

7D7C 3520

117

7D7E 7D78M1 0ATA>7D78

7D80 02E0 LWPI>70B8

7D82 70B8

7D84 0200 LI RO,>30Q0

7D86 3000

7D88 0201 LI Rlt>2000

7D8A 2000

7D8C 0202 LI R2,>0D00

7D8E 0D00

7D90 COEO MOV 6M1.R3

7D92 7D7E

7D94 9053 CB *R3,R1

7D96 130D JEQ J4

7D98 9093 CB *R3,R2

7D9A 130B JEQ J4

7D9C 9013 Jl CB *R3,R0

7D9E 1602 JNE J2

7DA0 DCC1 MOVB R1,*R3+

7DA2 10FC JMP Jl

7DA4 9053 J2 CB *R3,R1

7DA6 1303 JEQ J3

7DA8 9093 CB *R3,R2

7DAA 1301 JEQ J3

7DAC 1002 JMP J4

7DAE 0603 J3 DEC R3

7DB0 D4C0 MOVB R0,*R3

7DB2 045B J4 B *R11

7DB4 XXXX END

TRUNCATE DECIMAL STRING TO INTEGER FORM

The purpose of Program 11-5 is to read an ASCII encoded
multidigitnumberandreplace the decimal pointandfollowing digits
with blanks. If no decimal point is found, then the number will be
unchanged.

118

The string processed in this example program is the ASCII
code for the number 3.1416. The string is stored at 7DB4-7DB8.
7DBA contains the ASCII code for carriage return. The starting
address of the string is stored at 7DBC. The starting address of the
actual program is 7DBE.

The instructions at 7DC2-7DD0 initialize the registers. The
ASCII code for the decimal point (the period), the blank, and the
carriage return are loaded into registers 0, 1, and 2, respectively.
The starting address of the string is moved to register 3.

The instructions at 7DD2-7DDC test each character in the

string until a blank, a carriagereturn, or a decimal point is found. If
the character is either a blank or carriage return, then the program
jumps to the end and the string is left unchanged. If the character is a
decimal point, then the program proceeds to the next processing
section.

After a decimal point is found, the instruction at 7DDE decre
ments the data pointer. Again, this is necessary because the au
toincrement addressing mode was used in the instruction at 7DDA.

7DE0-7DE8 replaces the decimal point and subsequent
characters with blanks until either a blank or carriage return is
found, in which case the program ends.

Program 11-5
7D00 XXXX A0R6 >7DB4

7DB4 332E TEXT '3.1416

7DB6 3134

7DB8 3136

7DBA 0D00 DATA>0D00

7DBC 7DB4 Ml DATA>7DB4

7DBE 02E0 LWPI >70B8

7DC0 70B8

7DC2 0200 LI R0,>2E00

7DC4 2E00

7DC6 0201 LI Rl,>2000

7DC8 2000

7DCA 0202 LI R2,>0D00

7DCC 0000

7DCE C0E0 MOV GM1.R3

119

7DD0 7DBC

7DD2 9053 Jl CB *R3,R1

7DD4 130A JEQ J3

7DD6 9093 CB *R3,R2

7DD8 1308 JEQ J3

7DDA 9033 CB *R3+,R0

7DDC 16FA JNE Jl

7DDE 0603 DEC R3

7DE0 DCC1 J2 MOVB R1,*R3+

7DE2 9053 CB *R3,R1

7DE4 1302 JEQ J3

7DE6 9093 CB *R3,R2

7DE8 16FB JNE J2

7DEA 045B J3 B *R11

7DEC XXXX END

PATTERN MATCH

The purpose of Program 11-6 is to compare two strings and
determine if they match.

The first string, "GLASS," is stored at 7DEC-7DF1. Note that
GLASS has an odd number of characters. Thus, when the TEXT
command is used to enter the string, the assembler adds 00 to the
ASCII code to make the number of characters even. The program
interprets the 00 as the string terminator. If the string had been an
even number of characters, then it would have been necessary to
add 00 or some other code for a terminator. A blank, carriage
return, or FF are common terminators. The second string,
"GRASS," is stored at 7DF2-7DF7.

The starting address of the first string is stored at 7DF8 and
the starting address of the second string is stored at 7DFA. 7DFC
will be used to store the code for either a match (0000) or a
mismatch (FFFF).

The instructions at 7E02-7E08 initialize the registers. Regis
ter 0 is cleared. This register is used as temporary storage for the
match/mismatch code. The register is initialized with the match
code. If the strings are found to be different then the register
contents will be set to all ones and moved to 7DFC.

120

The starting address of the first string is moved to register 1,
and the starting address of the second string is moved to register 2.
Both registers are used as data pointers and are incremented as the
strings are read and compared character by character.

The instructions at 7E0C-7E14 form a program loop which
compares each character in string 1 to the corresponding character
in string 2. When a mismatch occurs, the programjumps to 7D16,
where the match code in register 3 is changed to the mismatch code
and then moved to 7DFC.

When a match occurs, the characters are tested to see if they
are equal to zero, meaning that the string has ended. If so, the
program jumps to 7E18 which moves the match code to 7DFC.

Note that the data pointersare incremented at different points
in the loop7E0C-7E14. The data pointer forstring2 is incremented
at 7E0C, while the data pointer for string 1 is incremented at 7E10.
Also note that after a match, it is necessary to compare only one
characterof one of the strings to zero. Finally, note that register 0
does double duty. Normally, it is used to store the match/mismatch
code. Since, however, it alwaysequals zero at the pointwhen I want
to see if a set of matched charactersequal zero, then I may use it as
the reference for comparison.

Now you should be able to see why the data pointers must be
incremented at different times. If I incremented register 1 at 7E06,
then I would have to decrement it to perform the comparison at
7E10, otherwise I would not be testing the same characterto see if
it equals zero. Then I would have to increment register 1 again
before the end of the loop. A more straight forwardmethod (which
uses two more instructions) would look like this:

J1 CB *R1,*R2 Compare characters.
JNE J2 If mismatch, go set code to mismatch.
CB *R1 ,R0 Characters match. Has string ended?
JEQ J3 If yes, to move match code to memory.
INC R1 Increment string 1 data pointer.
INC R2 Increment string 2 data pointer.
JMP J1 Start loop over.

Program 11-6

7D00 XXXX A0RG>7DEC

7DEC 474C TEXT 'GLASS'

7DEE 4153

121

7DF0 5300

7DF2 4752 TEXT 'GRASS'

7DF4 4153

7DF6 5300

7DF8 7DEC Ml DATA>7DEC

7DFA 7DF2 M2 DATA >7DF2

7DFC XXXX M3 BSS 2

7DFE 02E0 LWPI>70B8

7E00 70B8

7E02 04C0 CLR RO

7E04 C060 MOV GM1.R1

7E06 7DF8

7E08 C0A0 MOV @M2,R2

7E0A 7DFA

7E0C 9C91 Jl CB *R1,*R2+

7E0E 1603 JNE J2

7E10 9031 CB *R1+,R0

7E12 1302 JEQ 03

7E14 10FB JMP Jl

7E16 0700 J2 SETO RO

7E18 C800 J3 MOV R0,@M3

7E1A 7DFC

7E1C 045B B*R11

7E1E XXXX END

STRING COMPARISON

The purpose of Program 11-7 is to compare two strings and
determine which is greater. This kindof program is useful when you
want to alphabetize string data. It is almost identical to Program
11-6. The only difference is in the program loop. Program 11-6
compares two corresponding characters of the stringsandexits the
loop if they are not equal.

J1 CB*R1,*R2+
JNEJ2

122

Program 11-7 compares two corresponding characters and
exits the loop if string 1 is greater than string 2.

J1 CB*R1,*R2+
JHJ2

The instructionatJ2sets the contents of register 0 to allones,
meaningthat string1is greaterthan2. If theJHcondition is not met,
then the program tests to see if string 1 is less than string 2,

JL J3

The instruction at J3 moves the contents of register 0 (all
zeros) to 7E30, meaning that string2 is less than orequal to string
2.

If theJLcondition is notmet, thenthe strings must be equal at
this point. The program thentests to see if the endofthe stringhas
been reached. If not, the next pair of characters are compared.

Program 11-7

7D00 XXXX A0R6 >7E20

7E20 5445 TEXT 'TEXT •

7E22 5854

7E24 2000

7E26 5445 TEXT 'TENT •

7E28 4E54

7E2A 2000

7E2C 7E20 Ml DATA>7E20

7E2E 7E26 M2 DATA>7E26

7E30 XXXX M3 BSS 2

7E32 02E0 LWPI >70B8

7E34 70B8

7E36 0460 CLR R0

7E38 C060 MOV SM1.R1

7E3A 7E2C

7E3C C0A0 MOV GM2.R2

7E3E 7E2E

7E40 9C91 Jl CB*R1,*R2+

7E42 1B04 JH J2

123

7E44 1A04 JL J3

7E46 9031 CB *R1+,R0

7E48 1302 JEQ J3

7E4A 10FA JMP Jl

7E4C 0700 J2 SETO RO

7E4E C800 J3 MOV R0.GM3

7E50 7E30

7E52 045B B *R11

7E54 XXXX END

124

Chapter 12

Code Conversion

So far I have discussed 20 example programs which have collec
tively used the following 22 instructions:

A, Add Immediate
B, Branch
C, Compare Words
CB, Compare Bytes
CLR, Clear
DEC, Decrement

DECT, Decrement by Two
INC, Increment
JEQ, Jump if Equal
JGT, Jump if Greater Than
JH, Jump if Higher

JL, Jump if Lower
JMP, Unconditional Jump
JNC, Jump on No Carry
JNE, Jump if Not Equal
LI, Load Immediate
LWPI, LoadWorkspace

Pointer Immediate

MOV, Move Word
MOVB, Move Byte
MPY, Multiply
SETO, Set to Ones
SLA, Shift Left Arithmetic

Inthis chapter, I willdiscuss12more exampleprograms which
will collectively use the following 10 new instructions:

AI, Add Immediate SB, Subtract Bytes
ANDI, AND Immediate SOC, Set Ones Corresponding
CI, Compare Immediate SRC, Shift Right Circular
DIV, Divide SRL, Shift Right Logical
JLE, Jump if Less Than or Equal SWPB, Swap Bytes

125

The twelve programs in this chapter are all code conversion
programs. The programs may be grouped in pairs. For example,
Program 12-1 converts a single hexadecimal digit to ASCII and
Program12-2converts anASCII code to a single hexadecimal digit
I will begin with simple single digit conversion programsand work
up to multidigit and ASCII string conversion programs.

The last two programs are especially important One of my
goalsis to show you how to write a program that reads datainput via
the keyboard, processes that data, and then displays results on the
screen. Program 12-12 converts ASCII-encoded input data (gener
ated when you press keys on the keyboard) to binary numbers.
Program 12-11 converts binary numbers to ASCII, a task that must
be performedbefore results canbe displayed on the screen. Later
you will learn how to use some subroutines (already stored in the
Mini Memory module ROM) which read the keyboard and display
data on the screen.

HEXADECIMAL TO ASCII

The purpose of Program 12-1is to convert a single hexadeci
mal digit (0-9, A-F) to ASCII. Numbers 0 through 9 are converted
simply by adding 30 to the number. ASCII for the number 0 is 30,
ASCII for the number 1 is 31, and so forth.

ASCII for the hexadecimal number A, however, is 41, not 3A.
If you go back and look at Table 11-1, you will see that codes 3A
through 40 are used for symbols and that the capital letters begin
with the ASCII code 41. Thus to convert the numbers A through F to
ASCII you must add the hexadecimal number 37.

Program 12-1 does not convert any specific hexadecimal digit
to ASCII. However, a one byte memory location (7E54) is reserved
forthe digit to be converted, andaone byte memory location(7E55)
is reserved for the ASCII result. Before you run the program from
EASY BUG, enter a hexadecimal digit in memory location 7E54.
Since hexadecimal digits are only four bits wide, you must precede
your candidate digit by zero. Forexample, if you want to convert the
number C to ASCII, enter 0C into memory location 7E54. Run the
program (type E7E56 and press ENTER), and read the result in
memory location 7E55.

Let me explain how Program 12-1converts hexadecimaldigits
to ASCII. The instruction at 7E5A moves the candidate digit to the
upper byte halfof register 0. 7E5E compares the digit to 0A to see if
the digit is in the range of 0 through 9. If so, 7E62 causes the
program to jump to 7E68 where 30 is added to the number.

126

If the number is notintherange 0through 9, then7E64adds 07
to the number and 7E68 adds 30 to the number. This two-step
process eliminates the need forajump instruction. See the follow
ing alternate program.

LWPI >70B8

MOVB@M1,R0
CI R0,>0A00
JLJ1

Al R0,>3700
JMPJ2

J1 Al R0f>3000
J2 MOVB R0,@M2

B*R11

The instruction at 7E6C moves the result to 7E55. Note that
this program assumes that input digits are in the valid range—0
through 9, and A through F. No provision has been made to detect
out-of-range digits and store an error code in 7E55.

This program uses two new instructions—CI (compare im
mediate) and Al (add immediate). The instruction at 7E5E com
pares the contents of register 0 with the number 0A00. Note that
there is no compare immediate instruction for byte values. Since I
have moved the candidate digit to the upper byte halfof register 0,1
must compare it with 0A00, not 000A. Although the lower byte
contents of register 0 are unknown, it doesn't matter since compar
ing with 0A00 is sufficient to determine if the number in the upper
byte half of register 0 is in the range 0-9 no matter what is in the
lower byte halfof register 0. Care must be taken when mixing byte
and word operations. Sometimes it is necessary to clear the regis
ter before moving abyte valueintothe upperbyte halfof aregister.

The instructions at 7E64 and 7E68 use the add immediate
instruction. 7E64 addsthe contents of register 0 to the number 0700
and stores the result in register 0. Note that there is no add
immediate instruction for byte values. Also, as in the case of the
compare immediate instruction, be careful when mixing byte and
word operations.

Program 12-1
7D00 XXXX Ml EQU >7E54

7D00 XXXX M2 EQU>7E55

7D00 XXXX A0R6>7E56

127

7E56 02E0 LWPI > 70B8

7E58 70B8

7E5A D020 MOVB ©Ml ,R0

7E5C 7E54

7E5E 0280 CI RO,>OAOO

7E60 0A00

7E62 1A02 JL Jl

7E64 0200 Al R0,>0700

7E66 0700

7E68 0200 Jl Al R0,>3000

7E6A 3000

7E6C D800 MOVB R0,@M2

7E6E 7E55

7E70 045B B *R11

7E72 XXXX END

ASCII TO HEXADECIMAL

Program 12-2 performs the function of Program 12-1 in re
verse. ASCII codes are converted to single hexadecimaldigits. The
program assumes that the ASCII codes represent the digits 0
through 9 and A through F.

As you might expect, conversion from ASCII to hexadecimal is
performed by subtracting 30 from codes 30 through 39 to obtain
digits 0-9 and by subtracting 37 from codes 41 through 46 to obtain
digits A-F.

The instructions at 7E78 and 7E7C load the values 30 and 07
into the upper byte halves of registers 0 and1, respectively. This is
necessary because there is no subtract immediate instruction.

7E80 moves the ASCII digit from byte location 7E72 to the
upper byte half of register 2.

7E84 subtracts 30 from the ASCII digit and7E86 compares the
result with 0A. If less than 0A (and hence in the range of 0-9), then
7E8A causes the program to jump to 7E8E. The instruction at 7E8E
then moves the result to byte memory location 7E73.

If the result is not in the range 0-9, then the program assumes
that it is in the range A-F. The instruction at 7E8C subtracts 07 from
the previous result. The new result is now in the range A-F and is
moved to 7E73 by the instruction at 7E8E.

128

As in Program 12-1, no specific input number is processed.
Before you run the program inEASYBUG, enteravalid ASCIIcode
(see Table 11-1) in memory location 7E72.

Program 12-2

7D00 XXXX Ml EQU>7E72

7D00 XXXX M2 E0U>7E73

7D00 XXXX A0R6 A 74

7E74 02E0 LWPI >70B8

7E76 70B8

7E78 0200 LI R0,>3000

7E7A 3000

7E7C 0201 LI Rl,>0700

7E7E 0700

7E80 D0A0 MOVB @M1,R2

7E82 7E72

7E84 7080 SB R0,R2

7E86 0282 CI R2,>0A00

7E88 0A00

7E8A 1A01 JL Jl

7E8C 7081 SB R1.R2

7E8E D802 Jl MOVB R2.8M2

7E90 7E73

7E92 045B B *R11

7E94 XXXX END

ASCII TO DECIMAL

Program 12-3converts an ASCII code value at byte memory
location 7E94 to a decimal number between 0 and 9 and stores the
result at byte memory location 7E95. Because the conversion is a
simple process (less code than ASCII to hexadecimal conversion
whichis alsosimple), Ihaveadded one feature: the program checks
to make sure the result is a valid decimal number between 0 and 9. If
not the error code FF is stored at 7E95.

The instruction at 7E9A sets the contents of register 0 to
FFFF. The upper FF will be moved to 7E95 if the conversion result

129

is not valid. 7E9C loads the value 30 into the upper byte half of
register 1. 7EA0 moves the ASCIIcodevalueto the upperbyte half
of register 2. 7EA4 subtracts30 from the ASCIIcodeandstores the
result in the upper byte half of register 2.

7EA6 compares the result with 09FF. The FF is necessary
becausethe lower byte contentsof the register arenot known. Note
that I could have compared the result with 0A00 and used the JL
instruction at 7EAA.

The instruction at 7EAA jumps to 7EAE if the contents of
register 2 is less thanor equal to 09FF. If the result is valid, then
this instruction causes the program to jump over the instruction at
7EAC which moves the error code FF to the upper byte half of
register 2.

7EAE moves the contents of register 2, either a valid decimal
number (00 to 09) or the error code (FF) to memory location 7E95.

Program 12-3

7D00 XXXX Ml EQU >7E94

7D00 XXXX M2 EQU >7E95

7D00 XXXX A0RG > 7E96

7E96 02E0 LWPI > 70B8

7E98 70B8

7E9A 0700 SETO R0

7E9C 0201 LI Rl,>3000

7E9E 3000

7EA0 D0A0 MOVB @M1,R2

7EA2 7E94

7EA4 7081 SB R1,R2

7EA6 0282 CI R2,>09FF

7EA8 09FF

7EAA 1201 JLE Jl

7EAC D080 MOVB R0,R2

7EAE 0802 Jl MOVB R2,@M2

7EB0 7E95

7EB2 045B B *R11

7EB4 XXXX END

130

DECIMAL TO ASCII

Program 12-4 is the reverse of Program 12-3. The program
convertsadecimal value storedat7EB4to its ASCIIequivalent and
stores the result at 7EB5. Additionally, input decimal values are
checkedtomakesuretheyare valid (0-9) before theyareconverted.
If input values are not valid, then error code 20 (ASCII code for a
space) is stored in memory location 7EB5.

Program 12-4

7D00 XXXX Ml EQU > 7EB4

7D00 XXXX M2 EQU > 7EB5

7000 XXXX A0RG > 7EB6

7EB6 02E0 LWPI > 70B8

7EB8 70B8

7EBA 0200 LI R0,>2000

7EBC 2000

7EBE D060 MOVB @M1,R1

7EC0 7EB4

7EC2 0281 CI R1,>0A00

7EC4 0A00

7EC6 1A02 JL Jl

7EC8 D040 MOVB R0,R1

7ECA 1002 JMP J2

7ECC 0221 Jl Al Rl,>3000

7ECE 3000

7ED0 D801 J2 MOVB Rl,@M2

7ED2 7EB5

7ED4 045B B *R11

7ED6 XXXX END

BINARY-CODED DECIMAL TO BINARY

Program 12-5converts a 4-digit binary-coded decimal (BCD)
to binary. BCD is a convenient form in which to encode decimal
numbers. For example, the binary equivalent of 2,971 is
0000101010011010, or 0B9B in hexadecimal. The BCD form is
twice as long:

131

00000010000010010000011100000001

This BCD number is 02090701 in hexadecimal. In otherwords, each
digit in a decimal number is stored as a single byte in memory in its
binary equivalent. A 4-digit decimal number requires 4 bytes of
memory.

If BCD requires twice the memory, why use it? There are two
basic reasons. First, many instruments, such as a digital voltme
ter, output digital datain BCD format. Thus, if adigitalvoltmeter or
a decade counter integrated circuit (such as Motorola MC14553) is
connected to the computer, then it is necessary to have a program to
convert the BCD value to binary.

Second, converting an ASCII-decimal string to binary is a
two-step process. The first step converts ASCII to BCD by sub
contracting30 from each digit. The second step converts the BCD
number to binary. An ASCII-decimal string is the usual form in
which numbers are entered into memory via the keyboard.

The conversion of the number 02090701 is performed as fol
lows:

1. Multiply the most significant digit by 10.

Decimal Hexadecimal

2 0002

x 10

20

x OOOA

0014

2. Add the next digit to the result of Step 1.

Decimal Hexadecimal

20 0014

+ 9

29

+ 0009

001D

3. Multiply the result of Step 2 times 10.

Decimal Hexadecimal

29 001D

x 10 x OOOA

290 0122

4. Add the next digit to the result of Step 3.

132

Decimal Hexadecimal

290 0122

+ 7

297

+ 0007

0129

». Multiply the result of Step 3 times 10.

Decimal Hexadecimal

297 0129

x 10 OOOA

2970 0B9A

6. Add the last digit to the result of Step 5.

Decimal Hexadecimal

2970 0B9A

+ 1 + 0001

2971 0B9B

Conversion is complete. The process is simple: multiply the
result by 10 and add the next digit. In step 1, the result is just the
first digit. Thereafter, however, the result is the sum of the previ
ous product and the next digit. For a 4-digit BCD number, a total of
three multiplications and four additions are performed.

Now let's look at Program 12-5 line-by-line. The instructions
at 7EE0 through 7EEC initializethe registers. Register 0 is used as
a loopcounter. The initialvalue is 4 because the programprocesses
a 4-digit number. Register 1contains the constant multiplier value,
10. Register 2 is the datapointer. It contains the address of the BCD
digit to be processed. The initial digit address is 7ED6. Register 3
is used as a subtotal register. All products are moved to this
register. Also, BCD digits are moved to register 4, andthen added
to register 3. Initially, this register is cleared to zero.

The instruction at 7EEE causes the programto jump over the
multiplication portion of the loop. 7EF4 moves the first digit to the
upper byte half of register 4. 7EF6 shifts the digit to the lower byte
half and replaces the upper byte with zero. Now the digit is in the
proper position to be added to previous results by the instruction at
7E48. The first time throughthe loopthe result inregister 3 is zero.

7EFA decrements the loopcounter andthe instruction at7EFC
causes the program to repeat the entire multiply-add routine if the
counter value is not zero.

133

7EF0 multiplies the sum in register 3 by 10. The 32-bit result
is stored in registers 3 and 4. For 4-digit BCD numbers, register 3
will always be zero after this multiplication. Since it is known ahead
of time that the product is less than sixteen bits, it is safe to move
the nonzero result in register 4 to register 3. This is done by the
instruction at 7EF2.

The instructions at 7EF4-7EFC bring in the next digit, shift it
to the proper position, and add it to the previous result stored in
register 3. This process (7EF0-7EFC) continues until the loop
counter equals zero. Then the final result is moved to memory
location 7EDA.

To aid in understanding the conversion process and the use of
registers in this program, the intermediate register results are
shown in Table 12-1. Blanks in the table indicate that the result for

that register has not changed since the last entry.

Table 12-1. Intermediate Results of Program 12-5.

Instruction

Address

Register Results

RO R2 R3 R4

7EE0 0004

7EE8 7ED6

7EEC 0000

7EF4 7ED7 0200

7EF6 0002

7EF8 0002

7EFA 0003

7EF0 0000 0014

7EF2 0014

7EF4 7ED8 0900

7EF6 0009

7EF8 001D

7EFA 0002

7EF0 0000 0122

7EF2 0122

7EF4 7ED9 0700

7EF6 0007

7EF8 0129

7EFA 0001

7EF0 0000 0B9A

7EF2 0B9A

7EF4 7EDA 0100

7EF6 0001

7EF8 0B9B

7EFA 0000

134

Program 12-5

7D00 XXXX AOR6>7E06

7ED6 0209 Ml DATA> 0209

7ED8 0701 DATA>0701

7EDA XXXX N2 BSS 2

7EDC 02E0 LWPI>70B8

7EDE 70B8

7EE0 0200 LI R0,4

7EE2 0004

7EE4 0201 LI Rl,10

7EE6 OOOA

7EE8 0202 LI R2,M1

7EEA 7ED6

7EEC 04C3 CLR R3

7EEE 1002 JMP J2

7EF0 38C1 Jl1 MPY R1.R3

7EF2 C0C4 MOV R4.R3

7EF4 D132 J2 MOVB *R2+-,R4

7EF6 0984 SRL R4,8

7EF8 A0C4 A R4.R3

7EFA 0600 DEC RO

7EFC 16F9 JNE Jl

7EFE C803 MOV R3.&M2

7F00 7EDA

7F02 045B B *R11

7F04 XXXX END

BINARY TO BCD

Program 12-6 converts a 16-bit binary number (4-digit
hexadecimal) to BCD. The example number processed bythe pro
gram is 1C53. The method of conversion is as follows:
1. Divide the number by 1000. Store the lower byte (07) of the
result in memory.

135

Decimal Hexadecimal
7 0007

1000/725T 03E8/1C53
7000 1B58

251 00FB

2. Divide the remainder by 100. Store the lower byte (02) of the
result in memory.

Decimal Hexadecimal
2 0002

100/251 0064/00FB
200 00C8

51 0033

3. Divide the remainder by 10. Store the lower byte (05) of the
result in memory.

Decimal Hexadecimal

5 0005

10/51 000A/0O33
50 0032

1 0001

4. Store the lower byte (01) of the remainder in memory. Conver
sion is now complete. (Note that each divisor is one tenth of the
previous divisor. However, in Step 4, dividing by one is an un
necessary operation.)

Program 12-6 storesthe 8-bit BCD digits inmemory locations
7F06-7F09. The divisors 1000, 100 and 10 are stored in locations
7F0A-7F0E.

Four registersare usedintheconversion. Register0is usedas
a loop counter. This register is initially set to 3, because the
division operation is performed threetimes, onefor each ofthe first
threedigits to be determined. The fourth digit is simply the remain
der from the previous division.

Register 1 is one of two pointers. This register points to, or
containsthe valueof, the next divisorto be used. The first divisoris
1000. Register 2 is the second pointer. This register contains the
address to which the next BCD digit (when determined) will be
moved. The first digit will be moved to address 7F06.

Registers 3 and 4 are usedinthe division operation. Inadivide

136

operation, the numberto be divided(the dividend) must be a32-bit
number and must be stored intwo adjacent registers. The instruc
tion at7F26 divides the32-bit number contained in register 3and 4
bythenumberwhose address isstored inregister 1. Thequotient is
stored inregister 3, and theremainder is stored inregister 4. Then
it increments the address in register 1 by two.

Initially, register 3 is cleared and the number to be converted
(1C53) is moved from 7F04 to register 4. After the first divide
operation register 3 contains 0007 and register 4 contains 00FB.

Table 12-2. Intermediate Results off Program 12-6.

Instruction
Address

Register Results

R0 R1 R2 R3 R4

7F14 0003
i

7F18 7F0A
7F1C 7F06
7F20 1C53
7F24 0000 1C53
7F26 7F0C 0007 OOFB
7F28 0700
7F2A 7F07
7F2C 0002
7F24 0000 OOFB
7F26 7F0E 0002 0033
7F28 0200
7F2A 7F08
7F2C 0001
7F24 0000 0033
7F26 7F10 0005 0001
7F28 0500
7F2A 7F09
7F2C 0000
7F30 0100

,.

Before the next divide operation, the lower byte ofregister3 must
be savedandthe register cleared, otherwise the next divide opera
tion will be performed on the 32-bit number 000700FB.

The instruction at 72FA shifts the 8-bit BCD from the lower
byte halfof register 3 to the upper byte half. This is necessary
because the MOVB (move byte) instruction at 7F2A moves the
upper byte of register 3 to the address stored in register 2.

The loop 7F24-7F2E is executed three times, one time for
eachof the first three BCD digits computed. The fourth digit is the

137

last remainder. 7F30-7F32 moves the fourth digit to memory loca
tion 7F09. This operation completes the conversion.

Table 12-2shows the intermediate register results of Program
12-6.

Program 12-6

7D00 XXXX A0R6>7F04

7F04 1C52 Ml DATA >1C53

7F06 XXXX M2 BSS 4

7F0A 03E8 M3 DATA 1000

7F0C 0064 DATA 100

7F0E OOOA DATA 10

7F10 02E0 LWPI >70B8

7F12 70B8

7F14 0200 LI R0.3

7F16 0003

7F18 0201 LI R1.M3

7F1A 7F0A

7F1C 0202 LI R2,M2

7F1E 7F06

7F20 CI 20 MOV @M1,R4

7F22 7F04

7F24 04C3 Jl1 CLR R3

7F26 3CF1 DIV *R1+,R3

7F28 0A83 SLA R3,8

7F2A DC83 MOVB R3,*R2+

7F2C 0600 DEC R0

7F2E 16FA ONE Jl

7F30 0A84 SLA R4,8

7F32 D484 MOVB R4,*R2

7F34 045B B *R11

7F36 XXXX END

BINARY NUMBER TO ASCII-BINARY STRING

Program 12-7 converts a binary number to an ASCII string.

138

This type of program is necessary if you want to display a binary
number on the screen as a string of ones and zeros. This program
converts a 16-bit binary number to a 16-characterstring. For exam
ple, in order to display 0011000111010010 (31D2, hexadecimal),
each bit must be encoded in ASCII—30 for 0 and 31 for 1. When
encoded in ASCII, 31D2 equals

30303131303030313131303130303130

Program 12-7encodes the example number, 31D2, andstores
the ASCII string in memory locations 7F38-7F47. The method of
conversion begins by storing the number in a register. Shift left one
bitonetime. If the carry statusbitequals 1, thenstore31atmemory
location 7F38. If the carry status bit equals 0, then store 30 at
memory location7F38. After a one bit shift, the carry status bit and
register contents are as follows:

Carry Register Contents
0 0110001110100100

Thus, 30 is stored at memory location 7F38.
Shift the register contents left one bit again. The result is:

Carry Register Contents
0 1100011101001000

Thus, 30 is stored at memory location 7F39.
Shift the register contents left one bit again. The result is:

Carry Register Contents
1 1000111010010000

Thus, 31 is stored at memory location 7F3A.
Repeat this operation until all sixteen bits have been shifted to

the carry status bit and either a 30 or 31 for each bit has been stored
consecutively in memory.

Program 12-7 implements this conversion very simply. 7F4C
loads the number 16 into register 0, the loopcounter. 7F50moves
the example numberfrom location 7F36 to register1. This register
willbe left-shifted one bit atotal of sixteen times. The carry status
bit will be tested after each shift operation.

7F54loads the address of the firstmemory location where the

139

ASCII string will be stored. 7F58 loads 30 (ASCII for 0) into the
upperbyte halfof register3. 7F5C shifts the number one bit to the
left. 7F5E causesthe program to jump to 7F64 if the carry status bit
is 0. (7F64moves 30to memory location 7F38the first time the loop
is executed.)

If the carrybit equals1, then 0100is addedto register 3. Thus,
the upperbyte halfof register 3 equals31. Then 7F64moves 31 to
memory. (7F64 moves 31 to memory location 7F3Athe third time
the loop is executed.)

7F66-7F68 decrements the loopcounter andcauses the loop to
be reexecuted if not equal to zero. If zero, the conversion is
complete.

Note that each time through the loop, register 3 is reset to
3000. An alternative program follows. This program has one more
instruction, but it is more straightforward than Program 12-7.

LI R0,16
MOV@M1,R1
LI R2,M1
LI R3,>3000
LI R4,>3100

J1 SLAR1,1
JNCJ2

MOVB R4,*R2+
J2 MOVB R3,*R2+

DECR0

JNEJ1

B *R11

Program 12-7

7D00 XXXX A0RG >7F36

7F36 31D2 Ml DATA>31D2

7F38 XXXX M2 BSS 16

7F48 02E0 LWPI >70B8

7F4A 70B8

7F4C 0200 LI R0.16

7F4E 0010

7F50 C060 MOV @M1,R1

7F52 7F36

7F54 0202 LI R2,M2

140

7F56 7F38

7F58 0203 Jl LI R3,>3000

7F5A 3000

7F5C 0A11 SLA Rl.l

7F5E 1702 JNC J2

7F60 0223 AI R3r>0100

7F62 0100

7F64 DC83 J2 MOVB R3,*R2+

7F66 0600 DEC RO

7F68 16F7 JNE Jl

7F6A 045B B *RU

7F6C XXXX END

ASCII-BINARY STRING TO BINARY NUMBER

Program 12-8converts anASCII string of ones and zeros to a
binary number. This type of program is necessary in order to
process a binary number entered into memory via the keyboard.
Program 12-8 converts the ASCII code for 0001110001010010
(1C52, hexadecimal) to binary. The ASCII code for 1C52 is as
follows:

30303031313130303031303130303130

The conversionbeginsby clearing aregister to allzeros. Now
for every 31 in the ASCII string, set the corresponding bit in the
register to 1.

To set individual bits to 1 I must use the SOC, set ones
corresponding, instruction. To use this instruction I must set up a
reference, or mask, register. Program 12-8 uses register 3 as a
mask register. The initial value of register 3 is 8000, or
100000000000000 binary. In other words, register 3 has a 1 in bit
position 0 and 0s in bit positions 1-15.

Let's start with the first byte in the ASCII string, which
happens to be 30, or 0 binary.
1. Clear register 6.
2. Move the first byte to register 5.
3. Subtract 30 from register 5. The result is zero. Therefore, do
not set bit 0 of register 6.

141

4. Shift register 3 one bit to the right.
5. Move the next byte to register 5.
6. Subtract 30 from register 5. The result is zero. Therefore, do
not set bit 1 of register 6. Note that bit 1 of register 3 is a 1.

Register 6 Register 3
0000000000000000 0100000000000000

7. Perform steps 4-6 again. Register 5 equals 0. Therefore, do not
set bit 2 of register 6. Note that bit 2 of register 3 is a 1.

Register 6 Register 3
0000000000000000 0010000000000000

8. Perform steps 4-6again. Register 5 equals 1. Therefore, set bit
3 of register 6 to a 1. Note that bit 3 of register 3 is a 1.

Register 6 Register 3
0001000000000000 0001000000000000

Finally, a 31 is detected. The SOC instruction at 7FA6 in
Program 12-8 sets the bits in register 6 for which there are corres
ponding Is in the register 3. There is only1 in register 3—in bit
position 3. Thus, bit 3 in register 6 is set to 1.

Table 12-3 shows the intermediate results for registers 3 and 6
after each execution of the instruction at 7FA6. Note that bits in
register 6 that have been set bypriorSOCoperationsare unaffected
by succeeding SOC operations.

Program 12-8 has one other important feature. That is, it will
convert strings ofvariablelength.The programlooksfora 20 which
is ASCII for a space. Once a space is found, it is necessary to
right-justify the result. The number of bit positions that the result
must be shifted is contained in register 0.

The SRC (shift right circular) instruction is used instead of
SRL (shift right logical). This is necessary for the one case when
register 0 equals 0, meaning that a 16-character string has been
converted. In this case, the SRL would perform a 16-bit shift,
causing the result to be wiped out. All sixteen bits shifted would be
replaced by zeros.

The SRC instruction circulates the bits. This satisfies all

cases. Ifregister 0equals0, then16-bitcirculateshiftsthe previous
result back into the register. If register zero is greater than zero,

142

Table 12-3. Intermediate Register Results of Program 12-8.

Register 3 Register 6

0000000000000000 1000000000000000

0000000000000000 0100000000000000

0000000000000000 0010000000000000

0001000000000000 0001000000000000

0001100000000000 0000100000000000

0001110000000000 0000010000000000

0001110000000000 0000001000000000

0001110000000000 0000000100000000

0001110000000000 0000000010000000

ooom oooi oooooo 0000000001000000

0001110001000000 0000000000100000

0001110001010000 0000000000010000

0001110001010000 0000000000001000

0001110001010000 0000000000000100

0001110001010010 0000000000000010

0001110001010010 0000000000000001

then that number of zeros are circulated back into register 6,
causing the number to be right-justified.

When the conversion is complete, the result is moved to
memory location 7F7E. For this example, the result is 1C52,
hexadecimal.

Program 12-8

7000 XXXX A0RG>7F6C

7F6C 3030 Ml TEXT '0001110001010010

7F6E 3031

7F70 3131

143

7F72 3030

7F74 3031

7F76 3031

7F78 3030

7F7A 3130

7F7C 2000

7F7E XXXX M2 BSS 2

7F80 02E0 LWPI >70B8

7F82 70B8

7F84 0200 LI R0.16

7F86 0010

7F88 0201 LI Rl,>3000

7F8A 3000

7F8C 0202 LI R2,>2000

7F8E 2000

7F90 0203 LI R3,>8000

7F92 8000

7F94 0204 LI R4.M1

7F96 7F6C

7F98 04C5 CLR R5

7F9A 04C6 CLR R6

7F9C 0174 01 MOVB *R4+,R5

7F9E 9085 CB R5,R2

7FA0 1306 OEQ 03

7FA2 7141 SB Rl,R5

7FA4 1301 OEQ 02

7FA6 El83 SOC R3,R6

7FA8 0913 02 SRL R3,l

7FAA 0600 DEC RO

7FAC 10F7 OMP 01

7FAE 0B06 SRC R6.0

7FB0 C806 03 MOV R6,@M2

144

7FB2 7F7E

7FB4 045B B *R11

7FB6 XXXX END

BINARY NUMBER TO ASCII-HEXADECIMAL STRING

Program 12-9 converts a 16-bitbinarynumber to 4-character
ASCII string. This type of program is necessary when you want to
display a binary number on the screen as a 4-digit hexadecimal
number. Forexample, the assemblerdisplaysthe memory address
and updated data and next address andcurrent data each time you
enter an assembly language instruction. In order for the assembler
to display7D0031D2, the assemblermust first convert the binary
equivalent of 7D00 and 31D2 to the ASCII codes 37443030 and
33314432, respectively.

Program 12-9 converts the example number, 31D2, to the
ASCIIcode33314432. This is accomplished intwo steps. Eachstep
is a small program in itself.

The first step (7D0A-7D2C) disassembles the 16-bit number
into four eight bit numbers and stores them in memory locations
7D02-7D05. The first four bits are converted to 03, the second four
bits to 01, the third four bits to 0D, and the last four bits to 02.

The second step (7D2E-7D4A) converts the 8-bit hexadecimal
digits to ASCII and stores results back in locations 7D02-7D05,
copying over the results of the first step. This second step is
essentially the same as Program 12-1. The main difference is that
Program 12-9 processes four digits and uses indirect addressing.

Now let's look at how the digits are disassembled in the first
step. 7D0A moves the number 31D2 to register 0. 7D0E loads the
starting address of the four bytes where the results will be stored.
7D12 copies the number 31D2 into register 2. 7D14 shifts the
number to the right four bit positions. Positions vacated are re
placed by zeros. Register 2 nowequals031D. 7D16 moves the byte
03 to 7D02. 7D18 copies the number 31D2 into register 2 again.

7D1A replaces the first fourbits with zeros. The ANDI (AND
Immediate) instruction logically ANDs31D2 with OFFF (called the
mask) and stores the resultback inregister2. The ANDoperation is
performed bit by bit:

31D2 = 0011000111010010

OFFF = 0000111111111111

31D2 AND OFFF = 0000000111010010 = 01D2

145

Only inbitpositions where both 31D2 and OFFF have a1will a
1 occur in the result. Looking at the hexadecimal representations,
you can seethat a0inthemask number clears corresponding bitsin
the other number and that an F in the mask number leaves the
corresponding bits in the other number unchanged.

Next, 7D1E moves the byte 01 to memory location 7D03.
7D20 swaps the bytes in register 2. 01D2 becomes D201. 7D22
shiftsthe D201 to theright four bit positions. Register2nowequals
0D02. 7D24 moves the byte OD to memory location 7D04. 7D26
shifts 7D20 to the left four bit positions. Register 2 now equals
D200. 7D26 replaces the first four bits with zeros. The result is
0200. 7D28 moves the last byte, 02, to memory location 7D05.

Program 12-9

7D00 31D2 Ml DATA>3102

7D02 XXXX M2 BSS 4

7D06 02E0 LWPI >70B8

7D08 70B8

7D0A C020 NOV m ,R0

7D0C 7D00

7D0E 0201 LI R1.M2

7D10 7D02

7D12 C080 MOV R0.R2

7D14 0942 SRL R2.4

7D16 DC42 MOVB R2,*R1+

7D18 C080 MOV R0,R2

7D1A 0242 ANDI R2,>0FFF

701C OFFF

7D1E DC42 MOVB R2,*R1+

7D20 06C2 SWPB R2

7D22 0942 SRL R2,4

7D24 DC42 MOVB R2,*R1+

7D26 0A42 SLA R2.4

7D28 0242 ANDI R2,>0FFF

7D2A OFFF

7D2C 0442 MOVB R2,*R1

146

7D2E 0200 LI R0.4

7030 0004

7D32 0201 LI R1,M2

7034 7002

7036 0091 01 MOVB *R1,R2

7D38 0282 CI R2,>0A00

7D3A 0A00

7D3C 1A02 JL 02

7D3E 0222 AI R2,>0700

7040 0700

7042 0222 02 AI R2,>3000

7044 3000

7046 DC42 MOVB R2,*R1+

7048 0600 DEC RO

7D4A 16F5 ONE 01

7D4C 045B B *R11

7D4E XXXX END

ASCII-HEXADECIMAL STRING TO BINARY NUMBER

Program 12-10 converts an ASCII string of four hexadecimal
digits to a binary number. This type of program is required to
process a 4-digit hexadecimal number which has been input via the
keyboard. For example, when you use the assembler and type
AORG >7D4E, the assembler must convert the ASCII code for
7D4E to a binary number as part of the processing required to
displayaddress 7D4Eand the current data, andgets ready for you to
type the next command or assembly language instruction.

Program 12-10 converts the example ASCIIcode 33314432 to
the binary number 31D2 (hexadecimal form). First 7D58 loads
register 0 with the number 4. Register 0 is the loop counter. Four
bytes of ASCII will be processed.

7D5C loads the address of the first ASCIIbyte into register 1.
7D5E adds three to that address. The address in register 1 is now
7D51, the address of the last ASCII byte. Program 12-10 will
process the ASCIIstring backwards, starting with the last byte and
proceeding to the first byte.

7D64 and 7D66 load the values 30 and 07 into the upper byte
halves of registers 2 and 3, respectively. These constants will be

147

used to convert each ASCII byte to an 8-bit hexadecimal digit.
7D6C and 7D6E clear registers 4 and 5, which will be used to

assemble the 16-bit number 31D2 from the individual bytes 03, 01,
OD, and 02.

7D70 moves the last ASCII byte, 32, to register 5. 7D72
subtracts 30 from 32. The result is 02. 7D74compares 02 with 0A.
7D76 causes the program to jump to 7D7C if the number is in the
range 0-9, otherwise the next instruction 7D7A will subtract 07.
(Review program 12-2, if necessary.)

7D7C adds 0200 to 0000 (the initial value of register 4). The
result is 0200. 7D7E shifts 0200 to the right four bit positions and
circulates the right-most four bits into the left-most bit positions.
The result is 0020.

7D80 decrements the address in register 1. The address is now
7D50, pointing at ASCII byte 44, the next byte to be processed.

7D82 decrements the loop counter and causes the program to
jump to 7D70 if not zero. The second time through the loop,
7D70-7D7A converts the byte 44 to 0D. Then the instruction at
7D7C adds 0D00 to 0020 to get 0D20.7D7E circulates 0D20 four bit
positions. The result is now 00D2.

The third time through the loop, 7D70-7D7A converts the byte
31 to 01. Then the instruction at 7D7C adds 0100 to 00D2 to get
01D2. 7D7E circulates 01D2 four bit positions. The result is now
201D.

The fourth time through the loop, 7D70-7D7A converts the
byte 33 to 03. Then the instruction at 7D7C adds 03 to 201D to get
231D. 7D7E circulates 231D four bit positions. The result is now
D231.

The loop counter now equals zero. The loop is exited and the
next instruction at 7D86 swaps the bytes in register 4. The result is
31D2. 7D88 moves the final result to memory location 7D52.

Program 12-10

7000 XXXX A0RG>7D4E

7D4E 3331 Ml TEXT '3102'

7D50 4432

7D52 XXXX M2 BSS 2

7054 02E0 LWPI>70B8

7D56 70B8

7D58 0200 LI R0,4

148

7D5A 0004

7D5C 0201 LI R1.M1

7D5E 7D4E

7060 0221 AI R1.3

7062 0003

7064 0202 LI R2,>3000

7066 3000

7068 0203 LI R3,>0700

7D6A 0700

7D6C 04C4 CLR R4

7D6E 04C5 CLR R5

7D70 0151 3'1 MOVB *R1,R5

7D72 7142 SB R2,R5

7D74 0285 CI R5,>0A00

7D76 0A00

7078 1A01 OL 02

7D7A 7143 SB R3,R5

7D7C A105 02 A R5.R4

7D7E 0B44 SRC R4.4

7080 0601 OEC Rl

7082 0600 DEC RO

7D84 16F5 ONE 01

7086 06C4 SWPB R4

7D88 C804 MOV R4f(3M2

708A 7D52

7D8C 045B B *R11

7D8E XXXX END

BINARY NUMBER TO ASCII-DECIMAL STRING

Program 12-11 converts a 16-bit binary number to an ASCII
string in decimal form. This type of program is used to display a
programresult on the screenasadecimalnumber. Program 12-11is
a combination of three previous programs: 12-6, Binary to BCD,
12-4, Decimal to ASCII, and 11-4, Replace leading zeros with
blanks.

149

The instructions at 7DA2-7DCE convert 31D2 to
313237353420 (the decimal number 12754 followed by a space).
7DB4 divides the number by 10,000 (2710 hexadecimal), 7DB6
shifts the quotient0001 to the left eightbit positions. The result in
register 3 is 0100. 7DB8 adds 3000 to 0100 to get 3100. 7DBC
stores 31 at 7D90.

The secondtime through the loop, the remainder from the first
division is dividedby 1000(03E8 hexadecimal). The result is 0002.
7DBC stores 32 at 7D91.

The third time through the loop, the remainder fromthe sec
ond division is divided by 100 (0064 hexadecimal). The result is
0007. 7DBC stores 37 at 7D92.

The fourth time through the loop, the remainder from the third
division is divided by 10 (000A hexadecimal). The result is 0005.
7DBC stores 35 at 7D93. The loop is exited and 7DC2 shifts the
remainder 0004 to the upper byte position. 7DC4adds 3000 to get
3400 and 7DC8 moves 34 to 7D94. 7DCA-7DCE loads 20 (ASCII for
a blank) into memory location 7D95. At this point conversion is
complete.

7DD0-7DE8 replaces leading zeros with blanks. To test this
code you should try a different example number that is less than
10,000andsee if the leading zeros (30 in ASCII)are replacedwith
blanks (20). Try 0100 and see if the result at 7D90-7D95 is
202032353620 (256 decimal). Try 0000 and see if the result is
202020203020.

Program 12-11

7D00 XXXX A0R6>7D8E

7D8E 31D2 Ml DATA>31D2

7D90 XXXX M2 BSS 6

7D96 2710 M3 DATA 10000

7D98 03E8 DATA 1000

7D9A 0064 DATA 100

7D9C 000A DATA 10

7D9E 02E0 LWPI >70B8

7DA0 70B8

7DA2 0200 LI R0.4

7DA4 0004

7DA6 0201 LI R1,M3

150

7DA8 7D96

7DAA 0202 LI R2.M2

7DAC 7D90

7DAE C120 M0V@M1.R4

7DB0 7D8E

7DB2 04C3 Jl CLR R3

7DB4 3CF1 DIV *R1+,R3

7DB6 0A83 SLA R3,8

7DB8 0223 AI R3,>3000

7DBA 3000

7DBC DC83 MOVB R3,*R2+

7DBE 0600 DEC RO

7DC0 16F8 JNE Jl

7DC2 0A84 SLA R4,8

7DC4 0224 AI R4f>3000

7DC6 3000

7DC8 DC84 MOVB R4,*R2+

7DCA 0201 LI Rl,>2000

7DCC 2000

7DCE D481 MOVB Rl,*R2

7DD0 0200 LI R0,>3000

7DD2 3000

7DD4 0203 LI R3.M2

7DD6 7D90

7DD8 9013 J2 CB *R3,R0

7DDA 1602 JNE J3

7DDC DCC1 MOVB Rl ,*R3+

7DDE 10FC JMP J2

7DE0 9053 J3 CB *R3,R1

7DE2 1301 JEQ J4

7DE4 1002 JMP J5

7DE6 0603 J4 DEC R3

151

7DE8 DC40 MOVB R0,*R3

7DEA 045B J5 B *R11

7DEC XXXX END

ASCII-DECIMAL STRING TO BINARY NUMBER

Program 12-12 converts a 5-character ASCII code for the
decimal number 12754to its binary equivalent. This type of pro
gram is used to convert decimal numbers that are enteredvia the
keyboard.

This program is acomposite of Program 12-3 (ASCII to deci
mal) and Program 12-5 (Binary-coded decimal to binary).

7DFE-7E1E converts the ASCII code 3132373534 to
0102070504 and stores the result at 7DF2-7DF7. Each time a digit
is converted, register 5 is incremented. Conversion stops when a
20 is encountered. Register 5 then contains the number of digits
processed and will be used as a loop counter in the next section
(7D20-7E3C), which converts the BCD to binary and stores the
result 31D2 at memory location 7DF8.

Program 12-12

7D00 XXXX A0RG>7DEC

7DEC 3132 Ml TEXT '12754 '

7DEE 3735

7DF0 3420

7DF2 XXXX M2 BSS 6

7DF8 XXXX M3 BSS 2

7DFA 02E0 LWPI>70B8

7DFC 70B8

7DFE 0200 LI R0,>2000

7E00 2000

7E02 0201 LI Rl,>3000

7E04 3000

7E06 0202 LI R2.M2

7E08 7DF2

7E0A 0203 LI R3.M1

7E0C 7DEC

152

7EDE 04C4 CLR R4

7E10 04C5 CLR R5

7E12 D133 Jl MOVB *R3+,R4

7E14 9004 CB R4.R0

7E16 1304 JEQ J2

7E18 7101 SB Rl,R4

7E1A DC84 MOVB R4,*R2+

7E1C 0585 INC R5

7E1E 10F9 JMP Jl

7E20 0201 J2 LI Rl,10

7E22 OOOA

7E24 0202 LI R2.M2

7E26 7DF2

7E28 04C3 CLR R3

7E2A 1002 JMP J4

7E2C 38C1 ,J3 MPY Rl ,R3

7E2E C0C4 MOV R4,R3

7E30 D132 J4 MOVB *R2+,R4

7E32 0984 SRL R4,8

7E34 A0C4 A R4,R3

7E36 0605 DEC R5

7E38 16F9 JNE J3

7E3A C803 MOV R3t@M3

7E3C 7DF8

7E3E 045B B *R11

7E40 XXXX END

153

Chapter 13

sra

Arithmetic Problems

In this chapter, I will discuss the following five arithmetic prob
lems: 32-bit by32-bit multiply, 64-bit division, Square root, Recip
rocal of anumber,andSineofanangle. Inaddition, the sine problem
is repeated in programs 13-6 and 13-7 in order to demonstrate
simple subroutine techniques using the BL and BLWP instruc
tions.

32-BIT BY 32-BIT MULTIPLY

Program 13-1 multiplies the 32-bit number 002468AC times
the 32-bit number 03281088. The result is the 64-bit number
000072ECB8C25B60. The multiplication is accomplished by per
forming a total of four 16-bit by 16-bit multiplications. Partial
products are added to form a final 64-bit product. Register and
memory usage is shown in Fig. 13-1.

The instructions at 7E5C-7E5E move the multiplier to regis
ters 2 and 3, the most significant sixteenbits0024 to register2 and
the least significant sixteen bits 68AC to register 3.

The instructions at 7E60-7E62 move the multiplicand to reg
isters 4 and 5, 0328 to register 4 and 1088 to register 5.

7E64 multiplies 68AC times 1088. 7E66 saves the least sig
nificant sixteen bits 5B60 in register 7. 7E68 saves the most
significant sixteen bits 06C2 in memory location 7E48. See Fig.
13-1. You should be ableto see that the contents of registers 5 and6
must be saved. Register 5 will be overwritten in the next three

154

R4 0000

REGISTERS

R4

R5

014A

0002

R5 71A0

R4 03281 R5

R3

1088

R2 0024 68AC|

R6R5 06C2 5B60

R5 5EE0

R6 5320

R4|00001 R5 |72EC| R6 |B8C2[R7 |5B60

MEMORY

7E40

7E42

7E44

7E46

7E48

7E4A

7E4C

7E4E

0024

68AC

0328

1088

06C2

I5EE0

014A

0002

Fig. 13-1. Register and memory usage of Program 13-1.

multiplications. Register6willbewrittenoverinthe multiplication
at 7E76.

7E6A multiplies 68AC times 0328. 7E6C saves 5EE0 in mem
ory location 7E4A and the instruction at 7E6E saves 014A in
memory location 7E4C. The two previous multiplications have
wiped out the multiplicand. Therefore, the instructions at 7E70-
7E74arenecessary to restore the multiplicand 03281088 to regis
ters 4 and 5.

7E76 multiplies 0024 times 1088. 7E78 saves0002 inmemory
location 7E4E. It is not necessary to save 5320 (the contents of
register 6) because the next multiplication will not write over this
number. See Fig. 13-1.

7E7A multiplies 0024 times 0328. This completes the genera
tion of partial products.

The instructions at 7E7C-7E9E add the partial products. The
contents of memory locations 7E48 and 7E4A are added to the
contents of register 6. Register 8 is used to keep track of carries.
Then the contents of memory locations7E4C and7E4E are addedto
the contents of register 5. Any carries in register 8 are also added.
Register 4 is incremented if any carries result.

The final 64-bit result isnowcontained inregisters 4 through 7
as you can see in Fig. 13-1. The instructions at 7EA0-7EAA move
the final number to memory locations 7E48-7E4E, overwriting
partial products previously generated.

155

After you run the program in EASY BUG, run the program
again using the multiplier A02468AC and the multiplicand
E328C088. This combination generates acarry in register8 and a
carry which is added to register 4. The result should be
8E19C6F140B89B60.

8E18

E328 C088

A024 68AC

4EB8 9B60

5CE0 DEEO

7870 1320

FIAO

8E19 C6F1 40B8 9B60

Program 13-1

7D00 XXXX A0R6>7E40

7E40 0024 M]. DATA>0024

7E42 68AC DATA>68AC

7E44 0328 DATA>0328

7E46 1088 DATA>1088

7E48 XXXX M2 BSS 8

7E50 02E0 LWPI>70B8

7E52 70B8

7E54 0200 LI R0.M1

7E56 7E40

7E58 0201 LI R1,M2

7E5A 7E48

7E5C C0B0 MOV *R0+,R2

7E5E C0F0 mov *ro+,r3

7E60 C130 my *rq+,r4

7E62 C150 MOV *R0,R5

7E64 3943 MPY R3,R5

7E66 C1C6 MOV R6,R7

7E68 CC45 MOV R5,*R1+

7E6A 3903 MPY R3.R4

7E6C CC45 MOV R5,*R1+

156

7E6E CC44

7E70 0640

7E72 C130

7E74 C150

7E76 3942

7E78 C445

7E7A 3902

7E7C 0201

7E7E 7E48

7E80 04C8

7E82 AlBl

7E84 1701

7E86 0588

7E88 AlBl

7E8A 1701

7E8C 0588

7E8E A171

7E90 1701

7E92 0584

7E94 A171

7E96 1701

7E98 0584

7E9A A148

7E9C 1701

7E9E 0584

7EA0 0201

7EA2 7E48

7EA4 CC44

7EA6 CC45

7EA8 CC46

7EAA C447

7EAC 045B

7EAE XXXX

MOV R4,*R1+

DECT RO

MOV *R0+,R4

MOV *R0,R5

MPY R2.R5

MOV R5,*R1

MPY R2.R4

LI R1.M2

CLR R8

A *R1+,R6

JNC Jl

INC R8

Jl A *R1+,R6

JNC J2

INC R8

J2 A *R1+,R5

JNC J3

INC R4

J3 A *R1+,R5

JNC J4

INC R4

J4 A R8,R5

JNC J5

INC R4

J5 LI R1.M2

MOV R4,*R1+

MOV R5,*R1+

MOV R6,*R1+

MOV R7,*R1

B *R11

END

157

64-BIT DIVISION

Program 13-2 divides the 32-bit number A02468AC into the
64-bit number 8E19C6F140B89B60 to get the 32-bit quotient
E328C088 and a remainder of zero. The problem and solution in
hexadecimal notation and standard division representation looks
like this:

E328 C088

A024 68AC /8E19 C6F1 40B8 9B60

8E19 48E0 DEEO

7870 61D8 9B60

7870 61D8 9B60

0000 0000

Let's look at Program 13-2 line-by-line to see how this is
accomplished. 7EC6loads thenumber 2 intoregister 12,which will
be used as a loopcounter. The loop 7EE4-7F16 is executed twice,
once to determine the sixteen most significant bits of the 32-bit
quotient and once to determine the sixteen least significant bits of
the 32-bit quotient.

7ECA loads the address 7EBA into register 13. 7EBA is the
address at the first memory locationin an 8-byte blockused to store
the 32-bit quotient and 32-bit remainder.

7ECE loads the dividend address 7EAE into register 0. 7DD2
loads the divisor address 7EB6 into register 1. 7ED6-7ED8 loads
8E19C6F1 into the register 2-3 combination. 7EDA-7EDE loads
8E19C6F140B8 into the register 4-5-6 combination. 7EE0 loads
A024 into register 7.

I am now ready to perform a trial division. I will divide A024
into8E19C6F1 andget a trial quotient. ThenI willmultiply the trial
quotient times the entire divisor A02468AC to get a 48-bit result
whichI willcomparewith8E19C6F140B8, which was stored in the
register 4-5-6 combination. If the 48-bit product is smaller than
8E19C6F140B8, then I will subtract that 48-bit product from
8E19C6F140B8. If the 48-bit product is larger than
8E19C6F140B8, then I must decrement the trial quotient by one
and multiply it times the divisor A02468AC again. The new 48-bit
productwillbe compared with8E19C6F140B8. Ifsmaller (which it
shouldbe at this point), then the 48-bit product is subtracted from
8E19C6F140B8. The difference is combined with 9B60 (the last
sixteen bits of the 64-bit dividend) to form the next dividend to be
divided into.

158

Let's see what actually occurs. 7EE2 divides A024 into
8E19C6F1.

E329

A024 /8E19C6F1

I don't care what the remainder is. E329 is the trial quotient.
7EE4 loads 68AC into register 9. 7EE6-7EEE multiplies E329
times A02468AC and adds the partial products to get
8E19EEA5478C which is contained inthe register 7-8-10 combina
tion.

R7lA024l R9 |68ACl
R2 IE329I

R915CEH R10l478Cl
R7 (8EI31 Rfi [91C41

R7|8E19l R8|EEA5l R10[478Cl

7EF0-7EFE compares 8E19C6F140B8 (the first forty-eight
bits of our 64-bit dividend) to 8E19CEEA5478C sixteen bits at a
time. 8E19 (register 4) is compared to 8E19 (register 7). If the
number inregister 4 had been lower than thenumber inregister 7,
then the comparison process would have stopped. The program
would go to the nextstep, which is to subtract the 48-bit product
(generated by 7EE6-7EEE) from 8E19C6F140B8. If the number in
register 4had been higher than register 7, then thetrial quotient is
toohigh. The program would jump to 7F00-7F08 which decrements
the trial quotient, restores register 7 (register 9 is restored at the
first instruction inthe loop), and causes theprogram tojump to the
beginning of the loop (7EE4).

Since however, thenumber in register 4equals thenumber in
register 7, thenextsixteen bitsare compared. C6F1 (register 5)is
compared to EEA5 (register 8). C6F1 is lower. Therefore, the
program jumps to 7F00. 7F00 decrements the trial quotient from
E329 to E328. 7F02-7F04 restores A024 toregister 7. 7F08 causes
the program to jump to 7EE4.

7EE6-7EEE now multiplies E328 times A02468AC to get
8E1948E0DEE0. 7EF0-7EEE compares 8E19C6F140B8 to
8E1948E0DEE0 sixteen bitsatatime. 8E19 equals 8E19. Butnow
C6F1 is higher than the number to which it is compared—48E0.
Therefore, the program jumps 7F0A. 7F0A saves E328 inmemory
location 7EBA.

159

7F0C subtracts DEEO from 40B8. A borrow occurs and C6F1
is decremented to C6F0. 7F12 subtracts 48E0 from C6F0.

8E19 C6F1 40B8

8E19 48E0 DEEO

7870 61D8

The problem and partial solution are as follows:

E328
A024 68AC /8E19 C6F1 40B8 9B60

8E19 48E0 DEEO

7870 61D8 9B60

7F14decrements the loopcounter. Since it is not zero yet, the
program executes instructions 7F18-7F2A, which prepare the reg
isters for the next pass through the loop.

7F18-7F1A loads 787061D8into the register 2-3 combination.
7F1C-7F20 loads 787061D89B60 into the register 4-5-6 combina
tion. 7F26 performs the trial division to get the next quotient, the
least sixteen significant bits of the final 32-bit quotient.

7F28 causesthe program tojump to 7EE4, the beginning of the
loop. The second time through the loop the second half of the
quotient is generated—C088. 7F0A stores C088 at memory loca
tion 7EBC. 7F14decrements the loopcounter. Since it is now equal
to zero, the programjumps to 7F2C.

7F2C-7F2E moves the remainder to memory locations
7EBE-7EC0. The remainder is zero. To get a nonzero remainder,
divide A02468AC into 8E19C6F15AB99BAF. The remainder will
be 1A01004F. The quotient will be the same—E328C088.

Program 13-2

7D00 XXXX A0R6>7EAE

7EAE 8E19 Ml DATA>8E19

7EB0 C6F1 DATA>C6F1

7EB2 40B8 DATA>40B8

7EB4 9B60 DATA>9B60

7EB6 A024 M2 DATA>A024

7EB8 68AC DATA>68AC

7EBA XXXX M3 BSS 8

7EC2 02E0 LWPI>70B8

7EC4 70B8

160

7EC6 020C

7EC8 0002

7ECA 020D

7ECC 7EBA

7ECE 0200

7E00 7EAE

7ED2 0201

7ED4 7EB6

7E06 C0B0

7ED8 COFO

7EDA C102

7EDC C143

7EDE C1B0

7EE0 C1F1

7EE2 3C87

7EE4 C251 Jl

7EE6 3A42

7EE8 39C2

7EEA A209

7EEC 1701

7EEE 0587

7EF0 81C4 J2

7EF2 1A06

7EF4 1B0A

7EF6 8205

7EF8 1A03

7EFA 1B07

7EFC 8286

7EFE 1405

7F00 0602 J3

7F02 0201

7F04 7EB6

7F06 C1F1

LI R12,2

LI R13,M3

LI R0,M1

LI R1,M2

MOV *R0+,R2

HOY *R(H,R3

MOV R2,R4

MOV R3,R5

MOV *R0+,R6

MOV *R1+,R7

DIV R7.R2

MOV *R1,R9

W>Y R2.R9

MPY R2.R7

A R9.R8

JNC J2

INC R7

C R4.R7

JL J3

JH J4

C R5,R8

JL J3

JH J4

C R6,R10

JHE J4

DEC R2

LI R1.M2

MOV *R1+,R7

161

7F08 10ED JMP Jl

7FOA CF42 J4 MOV R2,*R13+

7F0C 618A S R10.R6

7F0E 1801 JOC J5

7F10 0605 DEC R5

7F12 6148 J5 S R8,R5

7F14 060C DEC R12

7F16 130A JEQ J6

7F18 C085 MOV R5,R2

7F1A C0C6 MOV R6,R3

7F1C C105 MOV R5,R4

7F1E C146 MOV R6,R5

7F20 C190 MOV *R0,R6

7F22 0201 LI R0,M2

7F24 7EB6

7F26 C1F1 MOV *R1+,R7

7F28 3C87 DIV R7.R2

7F2A 10DC JMP Jl

7F2C CF45 J6 MOV R5,*R13+

7F2E C746 MOV R6,*R13

7F30 045B B *R11

7F32 XXXX END

SQUARE ROOT

Program 13-3 takes the square root of the unsigned number
10,000 (2710 hexadecimal), using a successive approximation
method.

The first approximation is equal to the number (10,000) di
vided by 200, plus 2:

1st approx. = (10,000/200) + 2 = 52

The second and succeeding approximations are as follows:

2nd approx. = ((10,000/52) + 52)/2 = (192 + 52)/2 = 122

162

3rd approx. = ((10,000/122) + 122)/2 = (81 + 122)/2 = 101
4th approx. = ((10,000/101) + 101)/2 = (99 + 101)/2 = 100
5th approx. = ((10,000/100) + 100)/2 = (100 + 100)/2 = 100

In this case, the fourth approximation is the correct number. A
program to implement the above process can go on indefinitely
unless some criteria for endingthe program is devised. One way is
to stop the program whentwo successive approximations areequal.
This willwork for numberswith integer square roots only. It would
not work, forexample, if the number to be processed was 10,003.

A secondmethod is to stop the program when two successive
approximations arewithin plusor minusone. Program 13-3uses a
combination of both methods.

7F3Aloads the number 200intoregister0. 7F3E clearsregis
ter 1. The register 1-2 combination is used for the 32-bit dividend
which varies as the program is executed. The initial dividend is
10,000. 7F40 moves the number 10,000 (the candidate number) to
register 2. 7F44divides 200into 10,000to get 50. 7F46adds 2 to 50
to get 52, the first approximation. 7F48 saves 52 in register 3.
7F4A-7F4C loads 10,000 into the register 1-2 combination again.
7F50 divides 52into 10,000 to get 192. 7F52 adds 52to 192 to get
244.

7F54 divides 244 by 2 to get 122, the second approximation.
(Recall that a one-bit left shift is equivalent to division by 2.) 7F56
compares 52 to 192. If they were equal, the program would jump to
7F68 which saves the result in memory location 7F34. 7F5A sub
tracts 192 from 52to get -140. 7F4C compares -140 to 1. If equal,
the program jumps to 7F68. 7F62 compares -140 to -1. If not
equal, the programjumpsto 7F48 to derivethe next approximation.

The next approximation is 101. The one after that is 100. The
program ends.

Program 13-3

7D00 XXXX A0RO7F32

7F32 2710 Ml DATA 10000

7F34 XXXX M2 BSS 2

7F36 02E0 LMPI >70B8

7F38 70B8

7F3A 0200 LI R0.200

7F3C 00C8

163

7F3E 04C1 CLR Rl

7F40 COAO MOV 8M1,R2

7F42 7F32

7F44 3C40 DIV R0.R1

7F46 05C1 INCT Rl

7F48 COC1 Jl MOV R1.R3

7F4A 04C1 CLR Rl

7F4C COAO MOV @M1,R2

7F4E 7F32

7F50 3C43 DIV R3,R1

7F52 A043 A R3.R1

7F54 0911 SRL Rl.l

7F56 8043 C R3,R1

7F58 1307 JEQ J2

7F5A 60C1 S R1.R3

7F5C 0283 CI R3,l

7F5E 0001

7F60 1303 JEQ J2

7F62 0283 CI R3.-1

7F64 FFFF

7F66 16F0 ONE Jl

7F68 C801 J2 MOV R1,@M2

7F6A 7F34

7F6C 045B B *R11

7F6E XXXX END

RECIPROCAL OF A NUMBER

Up to this point, I have been working with integers, or num
bers with no fractional components. Now you will see how the
computerhandlesfractions. The purpose of Program 13-4is to take
the reciprocal of the number20.The reciprocal of 20is 1/20 or 0.05
decimal. In binary, the fraction 0.05 may be expressed as

.0000110011001100

164

Each bit position to the right of the decimal point has a place
value. Theplace value ofbit0 (thefirstbittothe rightofthe decimal
point) is Va or .5. The place value of bit 1 is V4 or .25. Each
succeeding bit position has half the value of the preceding bit
position. The place values of bits 0-15 are given in Table 13-1.

Using Table13-1,1cancompute the binary equivalent of1/20
to sixteen bits. For each 1 in the above expression, I look up the
corresponding place value in Table 13-1 and compute the sum:

Bit 4 = .3125

Bit 5 = .015625
Bit 8 = .001953125
Bit 9 = .0009765625
Bit 12 = .0001220703125
Bit 13 = .00006103515625
Total = .04998779296875

Not exactly 0.05. One way to achieve more accuracy is to
extend the number of places from sixteen to thirty-two bits. How
ever, even more bits will be required to accurately express the
reciprocal of a large number simply because the first several bits
following the decimalpoint willbe zeros. (In the case of the above
example, there are only four zeros before we get to the first bit
position with a one in it.)

The solution to this problem is to use scientific notation. For
example, the decimal number 0.00001234 may be expressed as a
number times a power of ten:

Table 13-1. Place
Values for Binary Fractions.

Bit Position Place Value

0 .5

1 .25

2 .125

3 .0625

4 .03125

5 .015625

6 0078125
7 .00390625
8 .001953125
9 .0009765625
10 .00048828125
11 .000244140625
12 .0001220703125
13 .00006103515625
14 .000030517578125
15 .0000152587890625

165

1.234 x 10-5, or
1234 x 10-8, or

0.1234 x 1(T4

In the same way, binary numbers may be expressed as a
number times apower of two. The decimal number 0.05inabinary
may be expressed as

.CCCCCCCC x 2FFFC

In this form, three wordsof memoryarerequired to store the
number—two words for the fraction and one word for the exponent,
which is stored as a signed number (FFFC equals -4). It is not
necessary to storethedecimal point (or binary point, tobeprecise),
the multiplication sign, or the number 2.

The greatest accuracy for a fixed number of bits (32 in this
case) is achieved when the number is expressed as the largest
possible fraction times a power of two. For example, the number
1/20 expressed as a binary 32-bit fraction

.00001100110011001100110011001100

This pattern of bits continues infinitely. Shifting the decimal
point four positions totheright allows room inthe32-bit fraction for
four more bits. The 4-bitshift right is equivalent to multiplying by
2*. To keepthe number thesame value theshifted fraction mustbe
multiplied by 2"4.

.11001100110011001100110011001100 x 2im111111111100, or

.CCCCCCCC x tf™ hexadecimal

This is the resultgenerated by Program 13-4. Let's lookatthis
program line-by-line to see how this is accomplished. 7D0C loads
the candidate number, 20, intoregister0. 7D10 loads the number1,
the number to be divided into, into register 1. 7D14-7D16 clears
registers 3 and 4, which will beused asatemporary storage for the
32-bit fraction as it is derived. 7D18sets register 5 equal to 16, the
initial value of the exponent. Thus the initial value of the result is
.00000000 x 20010 hexadecimal. The exponent will be decremented
during the Jl loop based on the results of successive division
operations. This will be explained shortly.

7D1Cloads the number 16 into register 7, which will be used

166

asaloop counterby theJ2loop. The J2 loop determinesthe valueof
the last sixteen bits of the fraction. 7D20 loads the address where
the final results will be stored.

The Jl loop (7D24-7D32) determines the value of the first
sixteen bits of the fraction and the value of the exponent. 7D24
clears register 1, the first sixteen bits of the dividend. 7D26 divides
0014 into 00000001 (20 into 1, decimal) on the first pass. The
quotient is zero, and theremainder is 0001. This is tobeexpected.
20 won't go into 1 a whole number of times.

For the moment, let's skip over the instructions at 7D28-
7D2C. These instructions don't affect the results yet. 7D28 adds
zero to zero, no jump occurs at 7D2A, and 7D2C shifts a zero value
by one.

The next stepis to multiply the remainder times 2 and try to
divide 20into 2. Thisis fair aslong astheremainder isdivided by2,
which can bedone bydecrementing the exponent value inregister
5. The result so far is

.00000000 x 2000F

The second time through the Jl loop 0014 is divided into
00000002. The quotient is again zero. The remainder is 0002.
Therefore, multiply by2and decrement theexponent. The result is

.00000000 x 2000E

The third time through the Jl loop 0014 is divided into
00000004. The quotient is again zero. The remainder is 0004.
Therefore, multiply by2and decrement theexponent. Theresult is

.00000000 x 2°°°D

The fourth time through the Jl loop 0014 is divided into
00000008. The quotient is again zero. The remainder is 0008.
Therefore multiply by 2 and decrement theexponent. The result is

.00000000 x 2000C

The fifth time through the Jl loop 0014 is divided into
00000010. The quotient is again zero. The remainder is 0010.
Therefore multiply by2 and decrement theexponent. The resultis
as follows:

167

.00000000 x 2°°°B

The sixth time through the Jl loop, 0014 is divided into
00000020. The quotient is 0001 and the remainder is OOOC. The
result is:

.00010000 x 20OOB, or

.0000152587890625 x 211 = .03125

To get more bits of accuracy, the division process must con
tinue. I already know that 0014 won't divide into the remainder
OOOC. Therefore, I must multiply it by 2. (Ihavebeendoing this in
the previous iterations, but the result was always zero.)

Now let's look at the instructions at 7D28-7D2C. 7D28 adds
thequotient to register 3. Before Idivide intotheremainder Imust
add the quotient computed by7D26 to previous results. 7D2A tests
the quotient in register 3 to see if there is a 1 inbit position 0, the
first bit position to the right of the decimal point. 7D2C multiplies
the quotient in register 3 by 2. Each time through theJl loop, the
quotient inregister3 is multiplied by 2, theremainder is multiplied
by 2 and the exponent is decremented. This process will continue
until a 1 occurs in bit position 0. When this occurs, the largest
possible 16-bit fraction has been computed. Then the Jl loop is
exited, and the J2 loop is entered. The J2 loop will determine the
last sixteen bits of the fraction.

Let's gothrough theJl loop a few more times to see howthe
reciprocal is builtbit-by-bit. To repeat, the sixthtime through the
Jl loop, 0014 is divided into00000020. The quotient is 0001 and the
remainder is OOOC. The result after the instruction at 7D28 is
executed as:

.00010000 x 2000B

7D2A tests to see if a 1 is in bit position 0. There is not,
therefore 7D2C-7D2E multipliesthe quotient in register 3 andthe
remainder in register 2 by 2 and decrements the exponent. The
result is:

.00020000 x 2°°°A

Note that thevalue ofthequotient has notchanged, only the form.
The seventh time through the Jl loop, 0014 is divided into

00000018 (0000000C times 2). The quotient is 0001 and the re-

168

mainder is 0004. 0001 is added to0002 inregister 3. The reciprocal
value so far is:

.00030000 x 20OOA, or

.0000457763671875 x 210 = .046875

The Jl loop is repeated until the result is:

XCCCOOOO x 2FFFC = .04999924

The J2 loop determines the last sixteen bits in a similar man
ner. Register 4 is used instead of register 3. The exponent was
determined and, therefore, is notchanged. Register6 keeps track
of the number of bits which remain to be determined.

7D44-7D48 moves the result to memory.

Program 13-4
7D00 0014 Ml DATA 20

7D02 XXXX M2 BSS 6

7008 02E0 LWPI >70B8

7D0A 70B8

7D0C C020 MOV 0M1.RO

7D0E 7D00

7D10 0202 LI R2.1

7D12 0001

7014 04C3 CLR R3

7D16 04C4 CLR R4

7D18 0205 LI R5,16

701A 0010

7D1C 0206 LI R6,16

7D1E 0010

7D20 0207 LI R7.M2

7022 7002

7D24 04C1 Jl CLR Rl

7026 3C40 DIV R0.R1

7D28 A0C1 A R1.R3

7D2A 1104 JLT J2

169

7D2C 0A13 SLA R3,l

7D2E 0A12 SLA R2,l

7D30 0605 DEC R5

7D32 10F8 JMP Jl

7D34 0A12 J2 SLA R2,l

7D36 04C1 CLR Rl

7D38 3C40 DIV R0,R1

7D3A A101 A R1.R4

703C 0606 DEC R6

7D3E 1302 JEQ J3

7D40 0A14 SLA R4,l

7D42 10F8 JMP J2

7D44 CDC3 J3 MOV R3,*R7+

7D46 CDC4 MOV R4,*R7+

7D48 C5C5 MOV R5,*R7

7D4A 045B B *R11

7D4C XXXX END

SINE OF AN ANGLE

Program 13-5 finds the sine of an angle between 0 and 360
degrees. It does this by looking up the value in a table. Memory
locations 7D4C-7E00 contain the sine values for angles 0 through
90. The numbers are stored as integers in order to save memory.
For example, the sine of 1 degree is 0.0175. The hex equivalent for
175 is stored at 7D4E. To get the actual value, I divide by 10,000.
This is done after the sine value is looked up.

Note that it is only necessary to store values of angles 0
through 90. The sine of an angle between 91 and 180 is determined
by subtracting the angle from 180 and then looking up the value in
the 0-90 table. The sine of 91 exactly equals the sine of 89.

The sines of angles between 181 and 270 are equivalent to the
sines of 0-90 except that the sign is negative. The sines of angles
271-360 are equivalent to the sines of 91-180except that the sign is
negative.

Memory location 7E02 contains the number of the angle for
which I want to find the sine. This number must be between 0 and

170

360 degrees. The example numberis 45, or 002D in hex. Memory
locations 7E04-7E0A are reserved for the result. 7E04 will contain
the sign, 0000 for positive sine values, 0001 for negative sine
values. 7E06-7E08 will contain the binary fraction. 7E0A will con
tain the value of the exponent.

The program has two main parts. 7E10-7E38 looks up the
integervaluein memory. 7E3A-7E70 dividesthe integerby 10,000
and stores the result in memory. The second part is identical to
Program 13-5 (Reciprocal ofanumber) except thatin Program 13-5
the dividend is a constant and the divisoris a variable. In Program
13-6 the divisor is a constant and the dividend is the variable. The
loopup procedurebegins at 7E1C. 7E1Cclearsregister 3, which is
temporarily used to store the sign of the sine. A positive sign is
assumed until determined otherwise.

7E22 compares the angle value with 180. If greater than 180,
then register 3 is incremented to 1 and 180 is subtracted from the
angle. If the angleis less than 180, then the programjumpsto 7E2A.
7E2A stores the sign in memory.

7E2C compares the anglewith 90. If greater than 90, then the
angle value is subtracted from 180. 7E32 moves the difference back
to register 4. This is necessary because the subtraction instruction
stores the result in register 1. The subtraction may or may not
occur, depending on the value of the angle. If the subtraction is
bypassed, then the angleis inregister 4. If the subtractionis carried
out, then the result must be moved to register 4.

7E34 doubles the value of the angle. This is necessary because
indexed addressing is used to lookup the sine andbecause each sine
value (16-bit integer form) uses two bytes of memory.

7E36 moves the integer sine value to register 2. The sine of 45
is. 7071. Thus, 1B9F(hex for 7071) is moved from 7DA0to register
2. 7E3A-7E70 divides 1B9F by 2710 (10,000 decimal) to get

.B504816F x 20000

orjust .B504816F since 20000equals 1. Ofcourse, the decimal point,
the times sign, and the 2 are not stored in memory. The sign is
0000, stored in memory earlier in the program.

Program 13-5
7D00 XXXX A0RG >7D4C

7D4C 0000 Ml DATA 0,175,349,523,698,872

7D4E 00AF

171

7D50 015D

7D52 020B

7D54 02BA

7D56 0368

7D58 0415

7D5A 04C3

7D5C 0570

7D5E 061C

7D60 06C8

7D62 0774

7D64 081F

7D66 08CA

7D68 0973

7D6A 0A1C

7D6C 0AC4

7D6E 0B6C

7D70 0C12

7D72 0CB8

7D74 0D5C

7D76 OEOO

7D78 0EA2

7D7A 0F43

7D7C 0FE3

7D7E 1082

7080 1120

7D82 11BC

7D84 1257

7D86 12F0

7D88 1388

7D8A 141E

7D8C 14B3

7D8E 1546

7D90 15D8

172

DATA 1045,1219,1392,1564,1736

DATA 1908,2079,2250,2419,2588

DATA 2756,2924,3090,3256,3420

DATA 3584,3746,3907,4067,4226

DATA 4384,4540,4695,4848,5000

DATA 5150,5299,5446,5592,5736

7092 1668

7D94 16F6

7D96 1782

7D98 180D

7D9A 1895

7D9C 191C

7D9E 19A1

7DA0 1A23

7DA2 1AA4

7DA4 1B23

7DA6 1B9F

7DA8 1C19

7DAA 1C91

7DAC 1D07

7DAE 1D7B

7DB0 1DEC

7DB2 1E5B

7DB4 1EC8

7DB6 1F32

7DB8 1F9A

7DBA 1FFF

7DBC 2062

7DBE 20C3

7DC0 2120

7DC2 217C

7DC4 21D4

7DC6 222A

7DC8 227D

7DCA 22CE

7DCC 231C

7DCE 2367

7DD0 23AF

DATA 5878,6018,6157,6293,6428

DATA 6561,6691,6820,6947,7071

DATA 7193,7313,7431,7547,7660

DATA 7771,7880,7986,8090,8191

DATA 8290,8387,8480,8572,8660

DATA 8746,8829,8910,8988,9063

DATA 9135,9205,9272,9336,9397

173

7DD2 23F5

7DD4 2438

7DD6 2478

7DD8 24B5

7DDA 24EF DATA 9455,9511,9563,9613,9659

7DDC 2527

7DDE 255B

7DE0 258D

7DE2 25BB

7DE4 25E7 DATA 9703,9744,9781,9816,9848

7DE6 2610

7DE8 2635

7DEA 2658

7DEC 2678

7DEE 2695 DATA 9877,9903,9926,9945,9962

7DF0 26AF

7DF2 26C6

7DF4 26D9

7DF6 26EA

7DF8 26F8 DATA 9976,9986,9994,9998,10000

7DFA 2702

7DFC 270A

7DFE 270E

7E00 2710

7E02 002D M2 DATA 45

7E04 XXXX M3 BSS 8

7E0C 02E0 LWPI >70B8

7E0E 70B8

7E10 C120

7E12 7E02

7E14 0201

7E16 00B4

174

MOV @M2,R4

LI R1.180

7E18 0202 LI R2.90

7E1A 005A

7E1C 04C3 CLR R3

7E1E 0207 LI R7.M3

7E20 7E04

7E22 8044 C R4,R1

7E24 1202 OLE 01

7E26 0583 INC R3

7E28 6101 S R1.R4

7E2A CDC3 01 MOV R3,*R7+

7E2C 8084 C R4.R2

7E2E 1202 OLE 02

7E30 6044 S R4,R1

7E32 C101 MOV R1.R4

7E34 0A14 02 SLA R4,l

7E36 C0A4 MOV ®M1(R4),R2

7E38 7D4C

7E3A 0200 LI RO,10000

7E3C 2710

7E3E 04C3 CLR R3

7E40 04C4 CLR R4

7E42 0205 LI R5.16

7E44 0010

7E46 0206 LI R6,16

7E48 0010

7E4A 04C1 03 CLR Rl

7E4C 3C40 DIV R0,R1

7E4E A0C1 A R1.R3

7E50 1104 OLT 04

7E52 0A13 SLA R3.1

7E54 0A12 SLA R2.1

7E56 0605 DEC R5

175

7E58 10F8 OMP 03

7E5A 0A12 04 SLA R2,l

7E5C 04C1 CLR Rl

7E5E 3C40 DIV R0.R1

7E60 A101 A R1,R4

7E62 0606 DEC R6

7E64 1302 OEQ 05

7E66 0A14 SLA R4,l

7E68 10F8 OMP 04

7E6A CDC3 05 MOV R3,*R7+

7E6C CDC4 MOV R4,*R7+

7E6E C5C5 MOV R5,*R7

7E70 045B B *R11

7E72 XXXX END

Branch and Link

Program 13-6 performs the same function as Program 13-5
except that Program 13-6 uses the BL (Branch and Link) instruc
tion.

The code at 7E3E-7E70 of Program 13-5 is used as a sub
routine of Program 13-6. This code performs a generalized function
(integer division with results in sign plus fraction plus exponent, or
so-calledfloating point format) and, hence, is an excellent candidate
for a subroutine.

The BL instruction is one of three instructions used to call

subroutines: BL, branch and link, BLWP, branch and load work
space pointer, and XOP, extended operation. The BL is the
simplest subroutine call. In Program 13-6, the instruction at 7EA6
branches to address M4 (7E3E) and saves the old program counter
(PC) value (7EAA) in register 11.

Looking at Program 13-5, you can see that the instruction at
7E70 will cause the program to branch back to 7EAA. It is very
important to note that before executing a BL instruction that the
current contents of register 11 must be saved. Also, after executing
the subroutine, the old contents of register 11 must be restored. In
Program 13-6 this is done by the instructions at 7EA4 and 7EAA. If I
was going to execute Program 13-6 once and once only, then
instruction at 7EAA would not be necessary and I could end the

176

program with a B *R10 instruction.
Recall that the assembler puts the address 609C in the Users'

Workspace (WP = 70B8) register 11 for us. Assume that I did not
restore the old PC value to register 11 and instead put B *R10 at
7EAA. Then, after executing Program 13-6 from EASY BUG, ad
dress 609Cwould be in register 10, and7EAA would be in register
11. The program would continue to execute 7EAA forever because
7EAA branches to the address in register 10—which is 7EAA!
(Guess how I learned this?)

Program 13-6

7D00 XXXX A0R6 >7E72

7E72 XXXX Ml EQU >7D4C

7E72 XXXX M2 EQU >7E02

7E72 XXXX M3 EQU >7E04

7E72 XXXX M4 EQU >7E3E

7E72 02E0 LWPI >70B8

7E74 70B8

7E76 C120 MOV @M2,R4

7E78 7E02

7E7A 0201 LI Rl,180

7E7C 00B4

7E7E 0202 LI R2,90

7E80 005A

7E82 04C3 CLR R3

7E84 0207 LI R7,M3

7E86 7E04

7E88 8044 C R4,R1

7E8A 1202 JLE Jl

7E8C 0583 INC R3

7E8E 6101 S R1,R4

7E90 CDC3 Jl MOV R3,*R7+

7E92 8084 C R4,R2

7E94 1202 JLE J2

7E96 6044 S R4,R1

177

7E98 C101 MOV R1.R4

7E9A 0A14 J2 SLA R4,l

7E9C C0A4 MOV 0M1(R4),R2

7E9E 7D4C

7EA0 0200 LI RO,10000

7EA2 2710

7EA4 C28B MOV R11.R10

7EA6 06A0 BL @M4

7EA8 7E3E

7EAA C2CA MOV R10,R11

7EAC 045B B *R11

7EAE XXXX END

Branch and Load Workspace Pointer

Program 13-7 performs the sine look-up again, but this time
using the BLWP subroutinecall. Inorder to use BLWP, two things
arenecessary. First, the subroutine's WP and PC valuesmust be
stored somewhere in memory. 7EAE is used for the WP value
(7092, the Utility Workspace), and7EB0 is used for the PC value
(7EB2), which is the starting address of the subroutine.

Second, the subroutine code needs to be modified (and, hence,
rewritten and relocated) so that I can tell the subroutine the values
of the divisor, the dividend, and the address where the result is to
be stored. This is called parameterpassing. This is not necessary
when using the BL instruction which uses the same workspace
(unless explicitly changed; then you will probably want to use
BLWP).

The BLWP instruction saves the old WP, PC and ST (status)
values in register 13,14,15, respectively. The instructionat 7EB2
moves the old R0 value to the new workspace R0. 7EB4 uses
indexed addressing to move the old R2 value to the new workspace
R2. The number 4 is added to 70B8 (stored in register 13) to get the
memory address of the old workspace R2 because each register
uses 2 bytes of memory. 7EB8 moves the old workspace R7 value
(address 70B8 plus 000E) to the new workspace R7. It just so
happens(forsimplicity) that the register numbers stayed the same,
but this is not necessary.

Also note that the subroutineends with a RTWP (Return with

178

Workspace Pointer) instruction.
The third subroutine instruction, XOP, is not demonstrated in

this book because the XOP WP and PC values are not stored in

RAM. ROM addresses 0040-007E are designed for the XOP WP
and PC values, or XOP software trap vectors, as TI calls them.
Unless you planto develop a microprocessor-based machine (both
hardware and software), it is not necessary for you to learn how to
use the XOP instruction.

Program 13-7

7D00 XXXX A0R6 >7EAE

7EAE XXXX Ml EQU >7D4C

7EAE XXXX M2 EOU >7E02

7EAE XXXX M3 EQU>7E04

7EAE 7092 M4 DATA>7092

7EB0 7EB2 OATA >7EB2

7EB2 C01D MOV *R13,R0

7EB4 COAD MOV @4(R13),R2

7EB6 0004

7EB8 C1ED MOV @14(R13),R7

7EBA 000E

7EBC 04C3 CLR R3

7EBE 04C4 CLR R4

7EC0 0205 LI R5.16

7EC2 0010

7EC4 0206 LI R6,16

7EC6 0010

7EC8 04C1 J3 CLR Rl

7ECA 3C40 DIV R0,R1

7ECC A0C1 A R1.R3

7ECE 1104 JLT 04

7ED0 0A13 SLA R3.1

7ED2 0A12 SLA R2.1

7ED4 0605 DEC R5

7ED6 10F8 JMP J3

179

7ED8 0A12 04 SLA R2,l

7EDA 04C1 CLR Rl

7EDC 3C40 DIV R0,R1

7EDE A101 A R1.R4

7EE0 0606 DEC R6

7EE2 1302 OEQ 05

7EE4 0A14 SLA R4,l

7EE6 10F8 OMP 04

7EE8 CDC3 05 MOV R3,*R7+

7EEA CDC4 MOV R4,*R7+

7EEC C5C5 MOV R5,*R7

7EEE 0380 RTWP

7EF0 02E0 LWPI >70B8

7EF2 70B8

7EF4 C120 MOV GM2,R4

7EF6 7E02

7EF8 0201 LI Rl,180

7EFA 00B4

7EFC 0202 LI R2.90

7EFE 005A

7F00 04C3 CLR R3

7F02 0207 LI R7,M3

7F04 7E04

7F06 8044 C R4,R1

7F08 1202 OLE 01

7F0A 0583 INC R3

7F0C 6101 S R1,R4

7F0E CDC3 01 MOV R3,*R7+

7F10 8084 C R4.R2

7F12 1202 OLE 02

7F14 6044 S R4.R1

7F16 C101 MOV R1,R4

180

7F18 0A14 02 SLA R4,l

7F1A C0A4 MOV @M1(R4),R2

7F1C 7D4C

7F1E 0200 LI RO,10000

7F20 2710

7F22 0420 BLWP @M4

7F24 7EAE

7F26 045B B *R11

7F28 XXXX END

181

Chapter 14

4-4E

«f=i ^

n n

T

e
Using the System Utilities

The primary aim of the preceding chapters was to teach you
through the use of examples howto write assembly-language pro
grams on the TI-99/4A. Not all of the 69 instructions were illus
trated, butatthis point youshould beable towriteprograms in9900
assembly language and be able to learn the remaining instructions
(when needed) aswellasread and understand boththeMiniMemory
Owner's Manual (which comes with the command module)andthe
Editor/Assembler Manual (which you may purchase directly from
Texas Instruments).

The aim of this chapter is to show you howto use the utilities
(built-in subroutines) described in pages 34-50 of theMini Memory
Owner's Manual Seven programs will be listed and discussed.
Program 14-1 will illustrate the VDP Single Byte Write routine
which is accessed by the instruction BLWP@>6024. (Notethatthe
Mini Memory Owner's Manual uses the 4-character mnemonic
VSBW for the memory address 6024 and other 4-character
mnemonics for othermemory addresses. When usingthe Line-by-
Line Assembler, however, you are restricted to using either 2-
character address mnemonics or explicitly using the 4-digit
hexadecimal address.)

Program 14-2 will illustrate the VDP Multiple Byte Write
routine which is accessed by the instruction BLWP@>6028. Pro
gram 14-3 willuse bothof theabove routines and show you howto
generate acursor. Program 14-4 will illustrate the Keyboard Scan

182

routine which is accessed by the instruction BLWP@>6020. Pro
gram 14-5 will show you how to access ROM-resident routines, the
so-called XML routines, using the BLWP@>601C instruction.
Program 14-6 will show you how to access GROM-resident
routines (the so-called graphicsprogramminglanguage routines, or
GPL Routines)usingthe BLWP@>6018 instruction. This program
will also show you how to name your programand execute it from
the Mini Memory RUN option. Program 14-7, will show you how to
change the screen color using the VDP Write to Register routine,
accessed by the instruction BLWP@>6034.

CLEARING THE SCREEN

Program 14-1 shows you how to clear the screen using the
VDP Single Byte Write (VSBW) routine. Clearing the screen is
such a common operation that I decided to make this programinto a
subroutine and use it in the programs that follow.

Memory locations 7D00 and 7D02 contain the subroutine
workspace pointer and programcounter values. The 32-byte mem
ory block starting at 7FD0is used as a workspace when executing
the subroutine and address 7D04 is the address of the first instruc
tion in the subroutine.The subroutine at7D04-7D16 is calledby the
main program at 7D18 which consists of three instructions: load
workspace pointer, call subroutine, and branch back to EASY BUG.

Note that the VSBW subroutine is called by the subroutine
which clears the screen. This is callednesting. The only limitation
on the number of nesting levels is the amount of RAM available for
workspaces. In order to use the VSBW routine, I must placeaVDP
RAMaddress inregister0and the8-bitdata inthe upperbyte halfof
register 1. The screen data is contained in VDP RAM address
0000-02FF, or 0-767 decimal. This corresponds to the 768 screen
positions, each screen position itself being an 8 by 8 matrix.

The data to be written into the first 768bytes of VDP RAM is
the names, or codes, of characters or patterns defined elsewhere in
the VDP RAM. Forexample, to clearthe screen I want to write a20
into VDP RAM locations 0000-02FF. 20 is the ASCII code for a
blank, or a space. The pattern data for the space and all other
keyboard characters are stored in VDP RAM locations 0800-OFFF
when the console is first turned on. (Programs 14-3 and 14-6 will
show you how to create, store and name other patterns.)

The instruction at 7D04clearsregister 0 to 0000, which will be
the first VDP RAM location that I will transfer a 20 to. 7D06 loads
20 into the upper byte half of register 1. 7D0A calls the VSBW

183

subroutine. 7D0E increments the VDP RAM address pointer. 7D10
compares the address to 0300 to see if all positions have been
written to. 7D16 causes the computer to return to the calling
program.

Program 14-1

7D00 7FD0 Ml DATA >7FD0

7D02 7D04 DATA >7D04

7004 04C0 CLR R0

7D06 0201 LI Rl,>2000

7D08 2000

7D0A 0420 Jl BLWP @>6024

7D0C 6024

7D0E 0580 INC R0

7D10 0280 CI R0,>300

7D12 0300

7D14 16FA JNE Jl

7D16 0380 RTWP

7018 02E0 LWPI>70B8

7D1A 70B8

7D1C 0420 BLWP @N1

7D1E 7000

7D20 045B B *R11

7022 XXXX END

DISPLAY TEXT

Program 14-2 uses the VDP Multiple Byte Write (VMBW)
subroutine to display two strings of text on the screen at specific
locations. To use the VMBW subroutine you must: load the VDP
RAM destination address in register 0, load the source address of
the text in register 1, and loadthe number of bytes (the number of
characters, including blanks) to be transferred.

The only difficulty in using the VMBW routine is calculating
the VDP RAM address. One way is to draw up a grid 32 squares
across by 24 squares down andnumber them 0 through 767, starting
with 0 in the upper lefthand corner andnumber across. The first row
designates VDP RAM locations 0 through 31, the second row 32

184

0

32

64

88

128

160

192

224

256

288

320

352

384

416

448

480

512

544

576

608

640

672

704

736

Fig. 14-1. Screen position numbers (decimal).

through 63, the third row 64 through 95, and so forth. This is what I
did to compute the VDP RAM locations used in the programs in this
chapter. However, I did not put a number in each box. Rather, I
labeled only the first column of boxes — 0,32,64,96, and so forth.
(See Fig. 14-1.)

Row

1 2 3 4 5 6 7 8 9 1011121314151617181920 2122 232425 26 2728 29 30 31 32
1

2

3

4

5

_

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Fig. 14-2. Screen positions by row and column.

185

Anotherway (Fig. 14-2) is to makea32by 24grid andnumber
the columns1through32acrossthe top orbottom(notin the boxes)
andthe rows 1 through 24 down the left or right sides. ExactVDP
RAM locations can be computed in terms of row and column as
follows:

VDP RAM ADDRESS = 32(ROW -1) + (COLUMN -1)

With either methodyouwill probably wantto draw a 32 by 24
grid and make copies to use as work sheets. This will save pro
gramming time, although it is still very likely that you will make
changes to your program inorder toshiftthetext afew positions left
or right, up or down, until you are satisfied with your display.

Program 14-2
7D00 XXXX A0R6 >7D22

7D22 5052 Ml TEXT 'PROGRAM 14-2'

7D24 4F47

7D26 5241

7D28 4D20

7D2A 3134

7D2C 2D32

7D2E 4449 M2 TEXT 'DISPLAY TEH

7D30 5350

7D32 4C41

7D34 5920

7D36 5445

7D38 5854

7D3A 02E0 LWPI >70B8

7D3C 70B8

7D3E 0420 BLWP G>7D00

7D40 7D00

7D42 0200 LI R0,362

7D44 016A

7D46 0201 LI R1,M1

7048 7D22

7D4A 0202 LI R2,12

186

7D4C OOOC

7D4E 0420 BLWP @>6028

7D50 6028

7D52 0200 LI R0.426

7D54 01AA

7D56 0201 LI R1.M2

7058 7D2E

7D5A 0202 LI R2.12

7D5C OOOC

7D5E 0420 BLWP @>6028

7D60 6028

7D62 045B B *R11

7D64 XXXX END

GENERATE CURSOR

Program 14-3 generates a cursor similar to the one you see
when you run BASIC. Since the cursor is not a standard ASCII
character, it is necessary to create it and store it in the Pattern
Generator Table in the VDP RAM.

Figure 14-3shows an8 by 8 matrixof boxes with X's in those
boxes that define the cursor, asimple 5 by7 rectangle. It takes 64
bits to define this pattern, azero for each empty box and aone for
each filled box, as follows:

00000000

01111100

01111100

01111100

01111100

01111100

01111100

In hexadecimal, the code for this pattern, starting at the top and
reading across one line at a time, is

007C7C7C7C7C7C7C

It requires 8 bytes or4 words ofmemory. The code at 7D70-7D80

187

X.2L2LJL-*
*. 2L.L2L2S

2L2L2L2L21
2L2L212L2£
x x x x x

Rg. 14-3. Cursor pattern.

stores thispattern inthePattern GeneratorTable intheVDP RAM.
The Pattern Generator Table starts at location 0800 in the VDP
RAM. Character number 00 is stored in the 8 bytes 0800-0807,
character number 01 is stored in 0808-080F, and so forth.

Increating anew pattern, the first step is to give the patterna
number. In this case, I decidedto number the cursor IE, or 30 in
decimal (the same numberused by TI BASIC). The next step is to
calculate the VDP RAM location where the patternwill be stored.
In hexadecimal the equation is as follows:

VDP RAM ADDRESS = 0800 + 08(PATTERN NUMBER)

For the cursor, the VDP RAM address is

0800 + 08(1E) = 0800 + 00F0 = 08F0

If youprefer to calculate theVDP RAMaddress indecimal, use the
following formula:

VDP RAM ADDRESS = 2048 + 8(PATTERN NUMBER)

In Program 14-3, the instruction at 7D70 loads 08F0 into
register 0, 7D74 loads 7D64 (the address ofthepattern data inCPU
RAM) into register 1, 7D78 loads the number of bytes (to be
transferred) intoregister2, and 7D7C calls theVMBWsubroutine.

Note that 7D70-7D80 is itself a subroutine. The subroutine
workspacepointervalueis storedat 7D6C andthe startingaddress
is stored at 7D6E. This subroutine will also be called by Program
14-4 (keyboard input and display).

The cursor pattern subroutine is called by the instruction at
7D86 of the main program. 7D8Aclears the screen. 7D8E loads
VDP RAM address0190into register 0. This is approximately the
center of the screen. This is where we will display the cursor,
alternately turning it onand turning it off. 7D92 loads the character
number IE intoregister1. 7D96 loads the number 0400 intoregis
ter 2. This registerwillbe usedasaloop counter. 7D9A writes the

188

cursorpattern on the screen. 7D9Edecrements the loop counterand
7DAO causes the programto continueto write the cursor pattern on
the screen until register 2 equals zero.

After writing the cursor pattern 0400 times (1024 decimal), the
program exits that loop and enters another loop which writes a blank
(character number 20 in hexadecimal) to the screen 0400 times. You
may adjust the flash rate by changing the numbers at locations 7D98
and 7DA8. The present numbers cause the cursor to flash approxi
mately 80 times per minute.

Youalso may move the cursor to another location by changing
the number at 7D90. In the next program, the cursor will move
across the screen automatically as you enter the text.

Program 14-3

7000 XXXX A0RG>7D64

7064 007C Ml DATA>007C,>7C7C^7C7C^7C7C

7066 7C7C

7D68 7C7C

7D6A 7C7C

7D6C 7FD0 M2 DATA>7FD0

7D6E 7070 DATA>7070

7070 0200 LI R0t>O8F0

7072 08F0

7074 0201 LI R1.M1

7076 7064

7078 0202 LI R2.8

7D7A 0008

7D7C 0420 BLWP @>6028

7D7E 6028

7080 0380 RTWP

7082 02E0 LWPI>70B8

7084 70B8

7086 0420 BLWP m

7088 7D6C

7D8A 0420 BLWP 9>7000

7D8C 7000

189

7D8E 0200 LI R0,>0190

7090 0190

7D92 0201 Jl LI R1,>1E00

7094 1E00

7096 0202 LI R2,> 0400

7098 0400

7D9A 0420 J2 BLWP @>6024

7D9C 6024

7D9E 0602 DEC R2

7DA0 16FC ONE J2

7DA2 0201 LI Rl,>2000

7DA4 2000

7DA6 0202 LI R2f>0400

7DA8 0400

7DAA 0420 J3 BLWP ®> 6024

7DAC 6024

7DAE 0602 DEC R2

7DB0 16FC ONE J3

7DB2 10EF JMP Jl

7DB4 XXXX END

KEYBOARD INPUT AND DISPLAY

Program14-4clears the screen, flashesthe cursor in the upper
lefthand corner of the screen, and waits for you to enter text via the
keyboard. Each time you press a key, that key is displayed on the
screen and then the flashing cursor moves over one position. Other
features of the program are:

• The program stops when you press QUIT (FCTN and =).
• The FCTN and S combinationcauses the cursor to back up

one space, thus erasing previous keystrokes.
D After the screen is full, anadditional keystroke causes the

programto start over. The screen is cleared and the program waits
for more entries.

By itself, the program is not very useful but it does show you

190

how to enter text or data viathe keyboard usingthe keyboardscan
(KSCAN) routine. However, this program and the others in this
bookcan be used as modules or subroutines in programs that you
design yourself.

To use the KSCAN routine, first tell the computer the
keyboarddevice numberused by yourprogram. Inmost cases, this
willbe0. (See the User's Reference Manual for the meaning ofother
keyboard device numbers in the section which discusses the KEY
subprogram.) This numbermust be stored at 8374 before you call
KSCAN. InProgram 14-4, the instruction at7DB8 clears register 0
to 0000 and the instruction at 7DCC moves the byte 00 to memory
location 8374.

The next step is to call KSCAN repeatedly untilakey hasbeen
pressed. If a key has been pressed since the last call to KSCAN,
then bit 2of the GPL status byte will have been set to one. Note that
the Mini-Memory Owner's Manual says bit 5. This is not correct.
The manual incorrectly labels the bits from left to right as bits 7
through 0. This is not the standard TI designation. The Editor/
Assembler Manual uses the standard TI bit numbering and is as
follows:

H GT Cond Carry OVF 0 0 0
0 1 2 3 4 5 6 7

The GPL status byte is located at 837C. To determine if bit 2
equals a one, Program 14-4 uses the COC (compare ones corre
sponding) instruction at 7DEC. The upper byte halfof register 3
containsthe value00100000 (binary). The upperbyte halfof regis
ter 6 contains a copy of the GPL status byte (moved there by the
instruction at 7DE8). The COCinstructiontests only those bits in
register 6 for which there is a corresponding one in register 3. In
this case, only bit 2 is tested. If bit 2 in register 6 equals a one
(meaningthat akey hasbeen pressed since the last call to KSCAN),
the EQU status register is set. (Don't confuse the status register
inside the 9900 microprocessor with the GPL status byte at mem
ory location 837C.)

In Program 14-4, the KSCAN routine is called approximately
2000times perminute. The program alternately displays the cursor
pattern and a blank as was shown in Program 14-3.

7DD8-7DDC loads the character number for the cursor and the
loopcounter value which determines how many times (and hence,
how long) the cursor pattern willbe displayed before switching to
the blank.

191

7DE0-7DF2 is the combination display-cursor and call-
KSCAN loop. The program stays in the loop either until the loop
counter is zero or akey hasbeen pressed. If akey hasbeen pressed,
then the program jumps to 7E12, where the program determines
which key was pressed anddecideswhat to do next. If a key is not
pressed before the loop counter reaches zero, then when the
counter is zero the program loads a blank, restores the loop
counter, and then enters the combination display-blank and call-
KSCAN loop at 7DFC-7E0E.

If no key is detected after 128calls, then the program jumps
back to the display-cursor and the call-KSCAN loop again. Once a
key is detected, the program proceeds.

7E12-7E16 writes a blank to the screen. This is necessary for
the case when the backspacekey was detected after the cursor was
displayed. I don't want to leave a black rectangle on the screen.

Next, 7E1A moves the ASCII byte value of the key to register
1 frommemory location 8375where the KSCAN routine stored the
key value it detected. (8375 contains an FF if no key was pressed
since the last KSCAN call.)

7E1Ecompares the value to 05, the TI codefor the QUITkey.
If the key equals 05, then the program ends.

7E22 compares the valueto 08, the TI code forthe backspace
(FCTN andS) or left arrow(•). Kthe key is abackspaceregister 0 is
decremented andthe program jumpsto 7DD8andwaits foranother
key input. Register 0 alwayscontains the screenlocation where the
cursor is flashing.

If the key is neither QUIT nor backspace, then the key is
displayed by the instruction at 7E2A.

7E2E increments the screen location pointer (VDP RAM ad
dress). 7E30 compares theVDPRAMaddress with0300 (theendof
the screen). If the address equals 0300 then the program starts
over, clearingthe screen. If the address is less than 0300 then the
program jumps to 7DD8, starts flashing the cursorandwaits for the
next key input.

Program 14-4

7000 XXXX A0R6>7DB4

7DB4 02E0 LWPI >70B8

7DB6 70B8

7DB8 04C0 Jl CLR R0

7DBA 0202 LI R2,>0500

192

7DBC 0500

7DBE 0203 LI R3,>2000

7DC0 2000

7DC2 0204 LI R4,>0300

7DC4 0300

7DC6 0205 LI R5,>0800

7DC8 0800

7DCA 04C6 CLR R6

7DCC D800 KOVB R0,@>8374

7DCE 8374

7DD0 0420 BLWP 9 > 7D00

7DD2 7000

7DD4 0420 BLWP @>7D6C

7DD6 7D6C

7DD8 0201 J2 LI R1,>1E00

7DDA 1E00

7DDC 0207 LI R7,>80

7DDE 0080

7DE0 0420 J3 BLWP G >6024

7DE2 6024

7DE4 0420 BLWP $> 6020

7DE6 6020

7DE8 D1A0 MOVB @>837C,R6

7DEA 837C

7DEC 2183 COC R3.R6

7DEE 1311 JEQ J5

7DF0 0607 DEC R7

7DF2 16F6 ONE J3

7DF4 0201 LI Rl,>2000

7DF6 2000

7DF8 0207 LI R7,>80

7DFA 0080

7DFC 0420 J4 BLWP 9>6024

193

7DFE 6024

7E00 0420 BLWP e»6020

7E02 6020

7E04 D1A0 KOVB G>837C,R6

7E06 837C

7E08 2183 COC R3,R6

7E0A 1303 JEQ J5

7E0C 0607 DEC R7

7E0E 16F6 ONE 04

7E10 10E3 JMP J2

7E12 0201 J5 LI Rl,> 2000

7E14 2000

7E16 0420 BLWP S>6024

7E18 6024

7E1A D060 MOVB G>8375tRl

7E1C 8375

7E1E 9081 CB R1.R2

7E20 130A JEQ J7

7E22 9141 CB R1,R5

7E24 1602 JNE J6

7E26 0600 DEC RO

7E28 10D7 JMP J2

7E2A 0420 J6 BLWP @>6024

7E2C 6024

7E2E 0580 INC RO

7E30 8100 C R0,R4

7E32 13C2 JEQ Jl

7E34 10D1 JMP J2

7E36 045B J7 B *R11

7E38 XXXX END

CONVERT STRING TO NUMBER

Program 14-5converts anumber (entered via the keyboard) to

194

TPs 8-byte floating-point format and then displays the TI floating
point version as a 16-digit hexadecimal number. The aim of the
program is to illustrate the use of ROM-resident routines which are
accessed by the instruction BLWP@>601C followed by a 16-bit
data value which references the desired ROM subroutine. In this

case, the Convert String to Number routine is accessed. The data
value to access this routine is 1000 hexadecimal.

Table 14-1 is a partial list of TI floating-point number equiva
lents. This table was compiled by running Program 14-5 for each
entry in the table. TI's format is a variation on the standard binary-
coded decimal (BCD) format. Instead of using one byte per decimal
digit, TI uses one byte per two decimal digits. Also, the first byte
indicates both the sign and the place value of the next byte.
For example, the TI equivalent of 9012.3456789 is
415A0C22384E5A00. This may be broken down as follows:

41 - The next byte place value is 100
5A - 90 hundreds
0C -12 ones

22 - 34 hundredths

38 - 56 ten thousandths

4E - 78 millionths

5A - 90 ten millionths

Table 14-1. Partial Listof TI Floating-Point Number Equivalents.

Decimal Number TI Hexadecimal
Floating-Point Notation

100,000 420A000000000000
10,000 4201000000000000

1,000 410A000000000000
100 4101000000000000

10 400A000000000000
1 4001000000000000

.1 3F0A000000000000

.01 3F01000000000000

.001 3E0A000000000000

.0001 3E01000000000000
11.1111 400B0B0B00000000

-11.1111 BFF50B0B00000000
-1 BFFF000000000000

-100,000 BDF6000000000000
3.1415926 40030E0F5C3C0000

9,012.3456789 415A0C22384E5A00
100,000.00000001 420A0000000000001

195

First
Byte Next Byte

Value Place Value (Decimal)
(Hex)

45 10,000,000,000

44 100,000,000

43 1,000,000
42 10,000 Table 14-2. Partial List

41 100 of Next-Byte Place Values.
40 1

3F .01

3E .0001

3D .000001

3C .00000001

3B .0000000001

Table 14-2is a partial list ofnext-byte place valuesused by TI.
It appears that TI chose 40 to indicate that the next byte is the ones
digit because 40 is in the middle of the allowablerange for positive
8-bit numbers. Negative numbers begin at 80 (hex). Thus, this
format can represent the same number of digits to the left andright
of the decimal point. Also, it appears fromTable 14-1that only the
first two bytes of negative numbers are in two's complement form.
See, for example, the TI equivalents of +11.1111 and -11.1111.

Now let's look at Program 14-5, which is long, but has a fairly
simple structure. 7E38-7E80 is the storage area for the text dis
played by the program. 7E82 loads the workspace pointer. 7E86
clears the screen. 7E8A-7EB6 displays the first three strings of
text-PROGRAM 14-5, CONVERT STRING TO NUMBER, and
INPUT STRING:

7EBA-7EFE displays the numberas it is entered. This code is
similar to the code of Program 14-4. The main difference is that
there is no flashing cursor, whichwas intentionallyleft out to keep
the program as simple as possible. The backspace feature, how
ever, has been left in. The program will accept positive and nega
tive numbers, both integers and floating-point numbers. Pressing
the ENTER key (0D in ASCII) signals the program to go on to the
conversion portion of the program. (By the way, don't let the term
floating-point number scare you. The term applies to all noninte-
gers, or alldecimal fractions inwhich the number of digits following
the decimal point is not fixed. 1.3, 0.006, 1674.9, and 3.14159 are
floating-point numbers.)

7F00-7F04 calls the Convert String to Number ROM sub
routine. To use this subroutine, it is necessary to first store the
address of the stringat location 8356. This wasdone backat 7ED2.

196

Theaddress ofthestring istheVDP RAM address corresponding to
the position on the screen of the first digit (or sign, if a negative
number was entered). In this case, the number to be converted is
stored atVDP RAMlocation 432 (decimal), thenumber inregister0
when the input-text routine began. The 8-byte result is stored at
834A-8351.

7F06-7F12 displays the text FLOATING-POINT NUMBER:
at screen location 514 (decimal). 7F16 loads the screen location 616
into register 0. 616 will be the location of the first digit of the
16-digit hexadecimal result when it is displayed on the screen.
7F1A-7F56 converts the 8-byte floating-point number located at
834A-8351 (the FAC, or floating-point accumulator) to ASCII and
displays the result on the screen. The conversion and display is
done four bits at a time.

A sample run looks like this:

PROGRAM 14-5

CONVERT STRING TO NUMBER

INPUT STRING: 3.1415926
FLOATING-POINT NUMBER:

40030E0F5C3C0000

Program 14-5

7D00 XXXX AORG 7E38

7E38 5052 Ml TEXT 'PROGRAM 14-5'

7E3A 4F47

7E3C 5241

7E3E 4D20

7E40 3134

7E42 2D35

7E44 434F M2 TEXT 'CONVERT STRING TO NUMBER'

7E46 4E56

7E48 4552

7E4A 5420

7E4C 5354

7E4E 5249

7E50 4E47

7E52 2054

197

7E54 4F20

7E56 4E55

7E58 4D42

7E5A 4552

7E5C 494E M3 TEXT 'INPUT STRING:

7E5E 5055

7E60 5420

7E62 5354

7E64 5249

7E66 4E47

7E68 3A20

7E6A 464C M4 TEH 'FLOATING-POINT NUMBER:

7E6C 4F41

7E6E 5449

7E70 4E47

7E72 2D50

7E74 4F49

7E76 4E54

7E78 204E

7E7A 554D

7E7C 4245

7E7E 523A

7E80 2020

7E82 02E0 LWPI >70B8

7E84 70B8

7E86 0420 BLNP @>7D00

7E88 7D00

7E8A 0200 LI R0.138

7E8C 008A

7E8E 0201 LI R1.M1

7E90 7E38

7E92 0202 LI R2.12

198

7E94 OOOC

7E96 0420 BLWP @>6028

7E98 6028

7E9A 0200 LI R0,196

7E9C 00C4

7E9E 0201 LI R1.M2

7EA0 7E44

7EA2 0202 LI R2.24

7EA4 0018

7EA6 0420 BLWP @>6028

7EA8 6028

7EAA 0200 LI R0.418

7EAC 01A2

7EAE 0201 LI R1,M3

7EB0 7E5C

7EB2 0202 LI R2.14

7EB4 OOOE

7EB6 0420 BLWP @>6028

7EB8 6028

7EBA 04C0 CLR RO

7EBC 0202 LI R2,>0D00

7EBE ODOO

7EC0 0203 LI R3,>2000

7EC2 2000

7EC4 0205 LI R5t>0800

7EC6 0800

7EC8 04C6 CLR R6

7ECA D800 MOVB R0,@>8374

7ECC 8374

7ECE 0200 LI R0.432

7ED0 01B0

7ED2 C800 MOV R0,G>8356

7ED4 8356

199

7ED6 0420 Jl BLWP @>6020

7ED8 6020

7EDA D1A0 MOVB @>837C,R6

7EDC 837C

7EDE 2183 COC R3.R6

7EE0 16FA JNE Jl

7EE2 D060 MOVB @>8375,R1

7EE4 8375

7EE6 9081 CB R1.R2

7EE8 130B JEQ J3

7EEA 9141 CB R1,R5

7EEC 1605 JNE J2

7EEE 0600 DEC RO

7EF0 C043 MOV R3,R1

7EF2 0420 BLWP @>6024

7EF4 6024

7EF6 10EF JMP Jl

7EF8 0420 J2 BLWP @> 6024

7EFA 6024

7EFC 0580 INC RO

7EFE 10EB JMP Jl

7F00 0420 J3 BLWP G> 601C

7F02 601C

7F04 1000 DATA >1000

7F06 0200 LI R0.514

7F08 0202

7F0A 0201 LI R1,M4

7F0C 7E6A

7F0E 0202 LI R2.24

7F10 0018

7F12 0420 BLWP G>6028

7F14 6028

7F16 0200 LI R0.616

200

7F18 0268

7F1A 0202 LI R2,>834A

7F1C 834A

7F1E 0203 LI R3,8

7F20 0008

7F22 04C1 04 CLR Rl

7F24 D072 MOVB *R2+,R1

7F26 0941

7F28 0281

7F2A OAOO

7F2C 1A02

7F2E 0221

7F30 0700

SRL Rl,4

CI R1,>0A00

OL 05

AI Rl,>0700

7F32 0221 05 AI Rl,>3000

7F34 3000

7F36 0420 BLWP 9 > 6024

7F38 6024

7F3A 0580 INC RO

7F3C 0A81 SLA Rl,8

7F3E 0941 SRL R1.4

7F40 0281 CI R1,>0A00

7F42 OAOO

7F44 1A02 OL 06

7F46 0221 AI Rl,>0700

7F48 0700

7F4A 0221 06 AI Rl,>3000

7F4C 3000

7F4E 0420 BLWP @>6024

7F50 6024

7F52 0580 INC RO

7F54 0603 DEC R3

7F56 16E5 ONE 04

201

7F58 045B

7F5A XXXX

B *R11

END

RAISE NUMBER TO A POWER

Program 14-6 raises a number to a power. The program
prompts youto input two numbers—XandY. The result is X raised
to the Y power. A sample run looks like this:

INPUT X: 10

INPUT Y: 2

XtY = 100

Also, this program is different from all previous programs in that it
is executed from Mini Memory, not from EASY BUG.

The program illustrates the use of the GROM-resident
routines, or the GPL routines. A breakdown of the program goes
like this. 7D00-7D16 is the code for the subroutine that clears the

screen. 7D18-7D64 is the code for the subroutine that inputs data
from the keyboard and converts that data to the TI 8-byte floating
point format. The instruction at 7D1C moves the contents of the old
workspace register 0 to the new workspace register 0. The number
in register 0 is the VDP RAM address of the string (string, because
the number is ASCII-encoded as it is entered) to be converted to TI
floating-point, the form required by resident math routines. Also,
7D5A moves the VDP RAM address to location 8356. This is

necessary before calling the Convert String to Number routine.
7D66-7D6C is the code data for the exponentiation symbol

placed between the X and the Y in the display. See Fig. 14-4.
7D6E-7D82 is the code for the subroutine which stores the ex
ponentiation symbol in the VDP RAM Pattern Generator Table.
0C00-0C08 is the VDP RAM location for character 128 (decimal),

Fig. 14-4. Exponentiation pattern.

202

x_
__x_ X.-X.-
X X X

X_
x^
x_
X

the first code number available after the standard ASCII codes.
(Note that any number from 128 to 255 is valid.) 7D84-7D98 con
tains the text data to be displayed. 7D9A loads the workspace
pointer. 7D9E clears the screen. 7DA2 loads the exponentiation
symbol into the VDP RAM. 7DA6-7DB4 displays the text INPUT
X:7DB6-7DBC inputsX and convertsit to the 8-byte floating-point
number which is stored at 834A-8351.

7DBE-7DCA moves the floating-point number to VDP RAM
locations 1000-1007. This is done for two reasons. First, I need to
input Y. If I don't move X from 834A-8351 (CPU RAM), it will be
lost when I input Y. Second, the exponentiation routine (or Involu
tion Routine, page43, MiniMemory Owner's Manual) requires that
the base number (the number to be raised to a power) be located
somewhere inVDP RAM. Later, Iwill put the VDP RAM address of
the base number at location 836E. This must be done before the
exponentiation routine is called.

7DCE-7DDC displays the text INPUT Y:. 7DDE-7DE4 inputs
Y andconverts it to the 8-byte floating-point numberwhich is stored
at 834A-8351. Note that the exponent value must be at this location
before the exponentiation routine is called. Thus, there is no need
to move this number.

7DE6-7DF4 displays X Y =. 7DF6-7E00 putsthe exponenti
ation symbol between the X andthe Y of the previously displayed
text.

7E02-7E08 moves the VDP RAM address (1000, hexadecimal)
of the base number to location 836E.

7E0A-7E0E clears the GPL status byte at 837C. This step is
absolutely necessary. The GPL status byte must be cleared before
calling GROM-resident routines. Although this step is clearly
shown in the Editor/Assembler manual, it is not shown in the Mini
Memory Owner's Manual,

7E10-7E14 calls the exponentiation routine. The result is in
the FAC (floating-point accumulator, 834A-8351).

7E16 clears location 8355. This step is done in preparation to
use the Convert Number to String routine, another GPL routine.
(See page 42 of the Mini Memory Owner'sManual) When 8355 is
set to zero, the output of this routine will be in TI BASIC format.
7E1A clears the GPL status byte. 7E1E-7E22 calls the Convert
Number to String routine. The ASCII-encoded output string is
located in CPU RAM at address 8300 plus the byte value stored at
8355. Location 8356 contains the length of the string.

7E24-7E3A displays the result on the screen. 7E28-7E30

203

computesthe stringaddress. 7E32-7E36 retrievesthe stringlength
andshifts it from the upperbyte positionto the lower byte position
of register 2. 7E38 calls the VMBW routine.

7E3C-7E50 maintains the display until any key is pressed.
7E52-7E56 clears the GPL status byte. This procedural step is
required, otherwise when you branch back to the calling program
(Mini Memory), youwill get ameaningless errormessage. (Thank
you, Editor/Assembler manual.)

7FE8-7FED contains the name of the program—any name that
you want to give to it, up to six characters—and the starting
address. In this case, I named the program PWR. The starting
address is 7D9A. 7FE8-7FED previously containedthe name and
address of the LINES program, which I have since overwritten
many times.

To run this program, select the RUN option after you have
selected MINI MEMORY from the master selection list. PRO
GRAM NAME? will be displayed. Type PWR andpress ENTER.
The screen will be cleared and the program will display

INPUT X:

in the upper left hand cornerof the screen in blacktext on a light
green background.

Type the base number 10 and press ENTER. The screen will
display

INPUT Y:

just below the INPUTX:10. Type 2 andpress ENTER. The screen
will display

XtY = 100

Nothing furtherwill happen until you press anykey. When you
press any key, the computer will display PRESS ENTER TO
CONTINUE in white text on a dark blue background.

Press ENTER. The screen will display the Mini Memory
selectionlist. You mayquitor rerun the program by selectingRUN
and then entering PWR again.

Note that this program (and any other program using GPL
routines)will not execute from EASY BUG.IhavenotifiedTI of this
anomaly, but Ihavenot receivedareplyasto why and/orwhatto do

204

so that programsusing GPL routines may be run from EASY BUG.
This is probably not, however, a serious problem. After youlearn
TI-99/4A assembly language, it ismore likely that you willrun your
programs from Mini Memory than fromEASY BUGanyway. Or you
will create assembly language routines that you will link to your
BASIC language programs.

Program 14-6

7D00 7FC0 DATA >7FC0

7D02 7D04 DATA > 7D04

7D04 04C0 CLR R0

7D06 0201 LI Rl,>2000

7D08 2000

7D0A 0420 Jl BLWP &>6024

7D0C 6024

7D0E 0580 INC R0

7D10 0280 CI R0,>300

7D12 0300

7D14 16FA JNE Jl

7D16 0380 RTWP

7D18 7FC0 DATA >7FC0

7D1A 7D1C DATA > 7D1C

7D1C C01D M0Y *R13,R0

701E 0202 LI R2,>0D00

7D20 0000

7D22 0203 LI R3,>2000

7D24 2000

7D26 0205 LI R5,>0800

7D28 0800

7D2A 04C6 CLR R6

7D2C 0806 M0VB R6,G>8374

7D2E 8374

7D30 0420 J2 BLWP @>6020

7032 6020

205

7D34 D1A0 MOVB S>837C,R6

7D36 837C

7D38 2183 COC R3.R6

7D3A 16FA JNE J2

7D3C D060 MOVB @>8375,R1

7D3E 8375

7D40 9081 CB R1.R2

7D42 130B JEQ J4

7D44 9141 CB R1,R5

7D46 1605 JNE J3

7D48 0600 DEC RO

7D4A C043 MOV R3.R1

7D4C 0420 BLWP 9>6024

7D4E 6024

7D50 10EF JMP J2

7D52 0420 J3 BLWP ®>6024

7D54 6024

7D56 0580 INC RO

7D58 10EB JMP J2

7D5A C81D J4 MOV *R13,G>8356

7D5C 8356

7D5E 0420 BLWP S>601C

7D60 601C

7D62 1000 DATA >1000

7D64 0380 RTWP

7D66 0010 DATA>0010,>3854,>1010,>1010

7D68 3854

7D6A 1010

7D6C 1010

7D6E 7FC0 DATA >7FC0

7D70 7D72 DATA >7D72

7D72 0200 LI RO,>OCOO

7D74 OCOO

206

7D76 0201 LI R1,>7D66

7D78 7D66

7D7A 0202 LI R2,8

7D7C 0008

7D7E 0420 BLWP 0> 6028

7D80 6028

7D82 0380 RTWP

7D84 494E TEXT 'INPUT X:1

7D86 5055

7D88 5420

7D8A 583A

7D8C494E TEXT 'INPUT Y:»

7D8E 5055

7D90 5420

7D92 593A

7D94 5820 TEXT 'X Y « •

7D96 5920

7D98 3D20

7D9A 02E0 LWPI >70B8

7D9C 70B8

7D9E 0420 BLWP 9>7D00

7DA0 7D00

7DA2 0420 BLWP @>7D6E

7DA4 7D6E

7DA6 0200 LI R0.34

7DA8 0022

7DAA 0201 LI R1,>7D84

7DAC 7D84

7DAE 0202 LI J12,8

7DB0 0008

7DB2 0420 BLWP @>6028

7DB4 6028

207

7DB6 0200

7DB8 002B

7DBA 0420

7DBC 7D18

7DBE 0200

7DC0 1000

7DC2 0201

7DC4 834A

7DC6 0202

7DC8 0008

7DCA 0420

7DCC 6028

7DCE 0200

7DD0 0042

7DD2 0201

7DD4 7D8C

7DD6 0202

7DD8 0008

7DDA 0420

7DDC 6028

7DDE 0200

7DE0 004B

7DE2 0420

7DE4 7D18

7DE6 0200

7DE8 0082

7DEA 0201

7DEC 7D94

7DEE 0202

7DF0 0005

7DF2 0420

7DF4 6028

208

LI R0.43

BLWP 0> 7D18

LI R0,>1000

LI R1,>834A

LI R2.8

BLWP G>6028

LI R0.66

LI R1,>7D8C

LI R2,8

BLWP 0>6O28

LI R0,75

BLWP G>7D18

LI R0.130

LI R1,>7D94

LI R2,5

BLWP 9>6028

7DF6 0200 LI R0.131

7DF8 0083

7DFA 0201 LI Rl,>8000

7DFC 8000

7DFE 0420 BLWP 0>6O24

7E00 6024

7E02 0200 LI R0,>1000

7E04 1000

7E06 C800 MOV R0,G>836E

7E08 836E

7E0A 04C1 CLR Rl

7E0C D801 MOVB R1,@>837C

7E0E 837C

7E10 0420 BLWP @>6018

7E12 6018

7E14 0024 DATA >24

7E16 D801 MOVB Rl,0>8355

7E18 8355

7E1A D801 MOVB R1,@.>837C

7E1C 837C

7E1E 0420 BLWP @>6018

7E20 6018

7E22 0014 DATA > 14

7E24 0200 LI R0,137

7E26 0089

7E28 D060 MOVB 9>8355,R1

7E2A 8355

7E2C 0981 SRL Rl,8

7E2E 0221 AI Rl,>8300

7E30 8300

7E32 DOAO MOVB 9>8356,R2

7E34 8356

209

7E36 0982 SRL R2.8

7E38 0420 BLWP &>6028

7E3A 6028

7E3C 0203 LI R3,>2000

7E3E 2000

7E40 04C6 CLR R6

7E42 D806 MOVB R6,@>8374

7E44 8374

7E46 0420 J5 BLWP @> 6020

7E48 6020

7E4A D1A0 MOVB @> 837CR6

7E4C 837C

7E4E 2183 COC R3.R6

7E50 16FA JNE J5

7E52 04C0 CLR RO

7E54 D800 MOVB R0,@>837C

7E56 837C

7E58 045B B *R11

7E5A XXXX AORG >7FE8

7FE8 5057 TEXT 'PWR

7FEA 5220

7FEC 2020

7FEE 7D9A DATA > 7D9A

7F00 XXXX END

CHANGE SCREEN COLOR

I personally don't care too much for a light green (or is it
medium green?) screen background color. Consequently, I wrote
Program 14-7, which essentially changes the screen color, then
branches to Program 14-6. The text color is also changed and the
result is white text on a dark blue background, the same color
combination used by the Line-by-Line Assembler.

In order to change the background color (and text, the fore
ground), I modified the Color Table in the VDP RAM. The Color

210

Table starts at VDP RAM address 0380 (hex). Each entry in the
table specifies the background and foreground colors of a group of
eight characters. The entry at 0380 specifies the colors of charac
ters 00 through07, the entry at 0381 specifies the colors of charac
ters 08 through OF, and so forth.

There are 32 groups of 8 characters. To make sure that the
background and foreground colors of all characters are changed,
Program 14-7 changes all 32 entries in the Color Table.

The color codesare listedinTable 14-3. Tochange theentry in
the Color Table, Imustspecify boththe foreground and background
codes. White characters on a dark blue background is specifiedas
F4 in the Color Table.

The instructions at 7E5E-7E72 write an F4 to all 32 entries in
the Color Table. This alone will change only the 32 by 24 central
rectangular area of the screen. There is still some background area
between this rectangle and the edge of your TV screen.

To change this border area, I must write a set of color codes to
one of the eight write-only registers inside the VDP chip. These
write-only registers aredescribed on pages 326-328 of the Editor/
Assembler manual. They are not described in the Mini Memory
Owner's Manual

Bits 0-3of VDPregister7 contain the foreground color in the
text mode. (I have been using the graphics mode, the default mode.
See theEditor/Assembler manual for an explanation of the different
modes.) Bits 4-7 of VDP register 7 contain the color code of the
background color in all modes. These are the bits we want to
change.

Color
Hexadecimal

Code

Transparent 0

Black 1

Medium green 2

Light green 3

Dark blue 4

Light blue 5

Dark red 6

Cyan 7

Medium red 8

Light red 9

Dark yellow A

Light yellow B

Dark green C

Magenta D

Gray E

White
-

F

Table 14-3.
Color Codes.

211

To change the data in VDP register 7, Program 14-7 uses the
VDP Write to Register (VWTR) routine mentioned on page 36 of
the Mini Memory Owner's Manual

The instruction at 7E74 loads the value 07F4 into register 0.
The 07 corresponds to register 7, the VDP write-only register that I
want to change. The F4 corresponds to the foreground and
background color codes. 7E78 calls the VWTR routine. 7E7C
branches to the beginning of the PWR program.

Finally, the address at 7FEE is changed to 7E5A so that the
program can be run from Mini Memory.

Program 14-7

7D00 XXXX A0RG>7E5A

7E5A 02E0 LWPI >70B8

7E5C 70B8

7E5E 0200 LI R0,>0380

7E60 0380

7E62 0201 LI Rlt>F400

7E64 F400

7E66 0202 LI R2,32

7E68 0020

7E6A 0420 Jl BLWP @>6024

7E6C 6024

7E6E 0580 INC R0

7E70 0602 DEC R2

7E72 16FB JNE Jl

7E74 0200 LI R0,>07F4

7E76 07F4

7E78 0420 BLWP @> 6034

7E7A 6034

7E7C 0460 B ©> 7D9E

7E7E 7D9E

7E80 XXXX A0R6 > 7FEE

7FEE 7E5A DATA>7E5A

7F00 XXXX END

212

CONCLUSION

If you have faithfully entered all the programs and carefully
read and understood the program descriptions, you should be ready
to do some serious assembly language programming on your TI-
99/4A Home Computer.

At this point, I recommend that you buy the Editor/Assembler
manual if you haven't already done so, especially if you plan to write
assembly language programsinvolving, sound, color, graphics, and
moving graphics called sprites. It would take another book to illus
trate these advanced features of the TI Home Computer.

213

Appendix
TMS9900 Instruction Set

(Courtesy of Texas Instruments Incorporated)

215

r
o °

A
SS

E
M

B
LY

LA
N

G
U

A
G

E
P

R
O

G
R

A
M

M
IN

G
IN

F
O

R
M

A
TI

O
N

t

In
or

de
r

to
un

de
rs

ta
nd

th
e

in
st

ru
ct

io
n

de
sc

ri
pt

io
ns

an
d

ap
pl

ic
at

io
ns

th
ea

ss
em

bl
y

la
ng

ua
ge

no
m

en
cl

at
ur

e
m

us
tb

e
un

de
rs

to
od

.A
ss

em
bl

y
la

ng
ua

ge
is

ar
ea

di
ly

un
de

rs
to

od
la

ng
ua

ge
in

wh
ich

th
e

99
00

in
str

uc
tio

ns
ca

n
be

w
rit

te
n.

Th
e

m
ac

hi
ne

co
de

th
at

re
su

lts
fro

m
th

e
as

se
m

bl
y

of
pi

'o
gr

am
sw

ri
tte

n
in

th
is

la
ng

ua
ge

is
ca

lle
d

ob
je

ct
co

de
.S

uc
h

ob
je

ct
co

de
m

ay
be

ab
so

lu
te

or
re

lo
ca

ta
bl

e,
de

pe
nd

in
g

on
th

e
as

se
m

bl
y

la
ng

ua
ge

co
di

ng
.

R
el

oc
at

ab
le

co
de

is
th

at
w

hi
ch

ca
n

be
lo

ad
ed

in
to

an
y

bl
oc

ko
fm

em
or

y
de

si
re

d,
w

it
ho

ut
re

as
se

m
bl

in
g

or
w

ith
ou

tc
ha

ng
in

g
pr

og
ra

m
op

er
at

io
n.

Su
ch

co
de

ha
si

ts
ad

dr
es

s
in

fo
rm

at
io

n
re

la
tiv

e
to

th
e

fir
st

in
st

ru
ct

io
n

o
ft

he
as

se
m

bl
y

la
ng

ua
ge

pr
og

ra
m

so
th

at
on

ce
a

lo
ad

er
pr

og
ra

m
sp

ec
ifi

es
th

e
lo

ca
tio

n
of

th
is

fir
st

in
str

uc
tio

n,
th

e
ad

dr
es

so
fa

ll
in

st
ru

ct
io

ns
ar

e
ad

ju
ste

d
to

be
co

ns
is

te
nt

w
ith

th
is

lo
ca

tio
n.

A
bs

ol
ut

e
co

de
co

nt
ai

ns
ab

so
lu

te
ad

dr
es

se
s

w
hi

ch
ca

nn
ot

be
ch

an
ge

d
by

th
e

lo
ad

er
or

an
y

op
er

at
io

n
ot

he
rt

ha
n

re
as

se
m

bl
in

g
th

e
pr

og
ra

m
.G

en
er

al
ly

,r
el

oc
at

ab
le

co
de

is
pr

ef
er

ab
le

sin
ce

it
al

lo
ws

th
e

pr
og

ra
m

m
od

ul
es

to
be

lo
ca

te
d

an
yw

he
re

in
m

em
or

y
of

th
e

fin
al

sy
ste

m
.

A
ss

em
b

ly
L

a
n

g
u

a
g

e
F

o
rm

a
ts

Th
e

ge
ne

ra
la

ss
em

bl
y

la
ng

ua
ge

so
ur

ce
sta

te
m

en
ts

co
ns

ist
of

fo
ur

fie
ld

sa
sf

ol
lo

ws
:

L
A

B
E

L
M

N
E

M
O

N
IC

O
P

E
R

A
N

D
S

C
O

M
M

E
N

T

T
he

fir
st

th
re

e
fie

ld
s

m
us

to
cc

ur
w

it
hi

n
th

e
fir

st
60

ch
ar

ac
te

r
po

si
tio

ns
o

ft
he

so
ur

ce
re

co
rd

.
A

t
le

a
st

o
n

e
b

la
n

k
m

u
st

b
e

in
se

rt
ed

b
e
tw

e
e
n

fi
el

d
s.

L
a

b
e
l

F
ie

ld

T
he

la
be

lc
on

si
st

s
o

ff
ro

m
on

e
to

si
x

ch
ar

ac
te

rs
,b

eg
in

ni
ng

w
it

h
an

al
ph

ab
et

ic
ch

ar
ac

te
r

in
ch

ar
ac

te
r

po
si

tio
n

on
e

o
ft

he
so

ur
ce

re
co

rd
.T

h
e

la
be

l
fie

ld
is

te
rm

in
at

ed
by

at
le

as
t

on
e

bl
an

k.
W

h
en

th
e

as
se

m
bl

er
en

co
un

te
rs

a
la

be
li

n
an

in
st

ru
ct

io
n

it
as

si
gn

s
th

e
cu

rr
en

t
va

lu
e

o
ft

he
lo

ca
ti

on
co

un
te

r
to

th
e

la
be

ls
ym

bo
l.

T
hi

s
is

th
e

va
lu

e
as

so
ci

at
ed

w
it

h
th

e
la

be
ls

ym
bo

la
nd

is
th

e
ad

dr
es

s
o

ft
he

in
st

ru
ct

io
n

in
m

em
or

y.
If

a
la

be
l

is
no

tu
se

d,
ch

ar
ac

te
r

po
si

ti
on

1
m

ay
be

a
bl

an
k,

or
an

as
te

ri
sk

.

M
n

e
m

o
n

ic
o

r
O

p
c
o

d
e

F
ie

ld
T

hi
s

fie
ld

co
nt

ai
ns

th
e

m
ne

m
on

ic
co

de
o

fo
ne

o
ft

he
in

st
ru

ct
io

ns
,o

ne
o

ft
he

as
se

m
bl

y
la

ng
ua

ge
di

re
ct

iv
es

,o
ra

sy
m

bo
lr

ep
re

se
nt

in
g

on
eo

ft
he

pr
og

ra
m

de
fin

ed
op

er
at

io
ns

.
T

hi
s

fie
ld

be
gi

ns
af

te
r

th
e

la
st

bl
an

k
fo

llo
w

in
g

th
e

la
be

l
fie

ld
.

Ex
am

pl
es

of
in

st
ru

ct
io

n
m

n
em

o
n

ic
s

in
cl

ud
e

A
fo

r
ad

di
ti

on
an

d
M

O
V

fo
r

da
ta

m
o

ve
m

en
t.

T
h

e
m

n
em

o
n

ic
fi

el
d

is
re

qu
ir

ed
si

nc
e

it
id

en
tif

ie
s

w
hi

ch
op

er
at

io
n

is
to

be
pe

rf
or

m
ed

.

O
p

er
a

n
d

s
F

ie
ld

T
he

op
er

an
ds

sp
ec

ify
th

e
m

em
or

yl
oc

at
io

ns
o

ft
he

da
ta

to
be

us
ed

by
th

e
in

st
ru

ct
io

n.
T

hi
s

fie
ld

be
gi

ns
fo

llo
w

in
g

th
e

la
st

bl
an

k
th

at
fo

llo
w

s
th

e
m

ne
m

on
ic

fie
ld

.T
he

m
em

or
y

lo
ca

tio
ns

ca
n

be
sp

ec
ifi

ed
by

us
in

g
co

ns
ta

nt
s,

sy
m

bo
ls,

or
ex

pr
es

sio
ns

,t
o

de
sc

rib
e

on
e

of
10

se
ve

ra
la

dd
re

ss
in

g
m

od
es

av
ai

la
bl

e.
T

he
se

ar
e

su
m

m
ar

iz
ed

in
Fi

gu
re

6-
5.

•nI
tE

xc
er

p^
fr°

m
M

od
el

99
0c

om
pu

te
rT

M
S

99
00

M
ic

ro
pr

oc
es

so
r

As
se

m
bl

y
La

ng
ua

ge
Pr

og
ra

m
m

er
's

G
ui

de
.

r
o

o
o

T
yp

eo
f

A
dd

re
ss

in
g

O
pe

ra
nd

F
o

rm
a

t

M
em

or
yL

oc
at

io
n

Sp
ec

ifi
ed

M
O

y
In

st
ru

ct
io

n

E
xa

m
pl

e
C

od
in

g
R

es
u

lt
T

6o
rT

%

F
ie

ld
C

o
d

e

W
or

ks
pa

ce
R

eg
is

te
r

n
W

or
ks

pa
ce

R
eg

is
te

r
n

R
n

M
O

V
3,

5
R

3
—

-
R

5
0

0

W
or

ks
pa

ce
R

eg
is

te
r

In
d

ir
e
c
t

*
n

A
dd

re
ss

gi
ve

n
by

th
e

co
nt

en
ts

o
fw

or
ks

pa
ce

re
gi

st
er

n
M

(R
n

)

M
O

V
*

3
,*

5
M

(R
3)

*
M

(R
5

)
0

1

W
or

ks
pa

ce
R

eg
is

te
r

In
di

re
ct

,

*
n

+
A

s
in

re
gi

st
er

In
di

re
ct

;
ad

dr
es

s
re

gi
st

er
R

n
is

in
c
re

m
e
n

te
d

a
ft

e
r

th
e

M
O

V
*3

+
,*

5
+

M
(R

3
)

-M
(R

5
)

R
3

+
2

-
R

3

R
5

+
2

-
R

5

11

A
u

to
in

c
re

m
e
n

t
op

er
at

io
n

(b
y

on
e

fo
r

by
te

op
er

at
io

ns
,b

y
tw

o
fo

r
w

or
d

op
er

at
io

ns
)

-
a

.

Sy
m

bo
lic

@
ex

p
Ad

dr
es

si
sg

ive
n

by
M

O
V

@
O

NE
,@

10
M

(O
NE

)
-M

(1
0)

10
M

em
or

y
va

lu
e

of
ex

p.
M

(e
xp

)

In
de

xe
d

@
ex

p(
n)

Ad
dr

es
si

st
he

su
m

of
th

e
M

O
V

@
2(

3)
,@

DP
(5

)
M

(R
3+

2)
-M

(R
5+

D
P)

10
M

em
or

y
co

nt
en

ts
o

fR
n

an
d

th
e

va
lu

eo
fe

xp
M

(R
n

+
ex

p)

N
ot

es
:

n
is

th
e

nu
m

be
ro

fth
e

wo
rk

sp
ac

e
re

gi
ste

r:
0<

n<
15

;n
m

ay
no

tb
e

0
fo

r
in

de
xe

d
ad

dr
es

sin
g.

ex
p

is
a

sy
m

bo
l,n

um
be

r,
or

ex
pr

es
si

on

T
he

T
d

an
d

TB
fie

ld
s

ar
e

tw
o

bi
tp

or
tio

ns
of

th
ei

ns
tru

ct
io

n
m

ac
hi

ne
co

de
.T

he
re

ar
ea

lso
S

an
d

D
fo

ur
bi

tfi
eld

s,
wh

ich
ar

e
fil

led
in

wi
th

th
e

fo
ur

bi
tc

od
e

fo
r

n.
n

is
0

for
sy

m
bo

lic
or

di
re

ct
ad

dr
es

sin
g.

F
ig

ur
e

6-
5.

Ad
dr

es
sin

gM
od

es

§
C

o
m

m
e
n

ts
F

ie
ld

C
om

m
en

ts
ca

n
be

en
te

re
d

af
te

r
th

e
la

st
bl

an
k

th
at

fo
llo

w
s

th
e

op
er

an
ds

fie
ld

.
If

th
e

fir
st

ch
ar

ac
ter

po
sit

io
n

of
th

e
so

ur
ce

sta
te

m
en

tc
on

ta
in

sa
n

as
te

ris
k

(*
),

th
e

en
tir

e
so

ur
ce

st
at

em
en

ti
sa

co
m

m
en

t.
C

om
m

en
ts

ar
e

lis
te

d
in

th
e

so
ur

ce
po

rt
io

n
o

ft
he

as
se

m
bl

er
lis

tin
g,

bu
th

av
e

no
af

fe
ct

on
th

eo
bj

ec
tc

od
e.

T
e
rm

s
a

n
d

S
y
m

b
o

ls

Sy
m

bo
ls

ar
eu

se
d

in
th

e
lab

el
fie

ld,
th

e
op

er
at

or
fie

ld,
an

d
th

e
op

er
an

d
fie

ld.
A

sy
m

bo
li

s
a

str
in

g
of

al
ph

an
um

er
ic

ch
ar

ac
te

rs
,b

eg
in

ni
ng

w
ith

an
al

ph
ab

eti
c

ch
ar

ac
te

r.

Te
rm

s
ar

e
us

ed
in

th
e

op
er

an
d

fie
ld

s
of

in
str

uc
tio

ns
an

d
as

se
m

bl
er

di
re

ct
iv

es
.A

te
rm

is
a

de
ci

m
al

or
he

xa
de

ci
m

al
co

ns
ta

nt
,a

n
ab

so
lu

te
as

se
m

bl
y-

tim
e

co
ns

ta
nt

,o
r

a
la

be
lh

av
in

g
an

ab
so

lu
te

va
lu

e.
Ex

pr
es

sio
ns

ca
n

al
so

be
us

ed
in

th
e

op
er

an
d

fie
ld

so
fi

ns
tru

ct
io

ns
an

d
a

ss
em

b
le

r
d

ir
ec

ti
ve

s.

C
o

n
st

a
n

ts

Co
ns

ta
nt

sc
an

be
de

cim
al

in
te

ge
rs

(w
rit

te
n

as
as

tri
ng

of
nu

m
er

al
s)

in
th

e
ra

ng
e

of
—

32
,7

68
to

+
65

,5
35

.
F

or
ex

am
pl

e:

2
5

7

C
on

sta
nt

s
ca

n
al

so
be

he
xa

de
ci

m
al

in
te

ge
rs

(a
st

ri
ng

of
he

xa
de

ci
m

al
di

gi
ts

pr
ec

ed
ed

by

>
).

F
or

ex
am

pl
e:

>
0

9
A

F

A
SC

II
ch

ar
ac

te
r

co
ns

ta
nt

s
ca

n
be

us
ed

by
en

cl
os

in
g

th
e

de
si

re
d

ch
ar

ac
te

r
st

ri
ng

in
si

ng
le

qu
ot

es
.F

or
ex

am
pl

e:

iD
X

,=
4

4
5

8
1

6
4

ir
+

00
52

I6

T
hr

ou
gh

ou
t

th
is

bo
ok

th
e

su
bs

cr
ip

t
16

is
us

ed
to

de
no

te
ba

se
16

nu
m

be
rs

.F
or

ex
am

pl
e,

th
e

he
xa

de
ci

m
al

nu
m

be
r

0
9

A
F

w
il

lb
e

w
ri

tt
en

09
A

F
ie

.

Sy
m

bo
ls

Sy
m

bo
ls

m
us

tb
eg

in
w

it
h

an
al

ph
ab

et
ic

ch
ar

ac
te

r
an

d
co

nt
ai

n
no

bl
an

ks
.O

nl
y

th
e

fir
st

si
x

ch
ar

ac
te

rs
o

fa
sy

m
bo

la
re

pr
oc

es
se

d
by

th
e

as
se

m
bl

er
.

T
he

as
se

m
bl

er
pr

ed
ef

in
es

th
e

do
lla

r
si

gn
($

)
to

re
pr

es
en

tt
he

cu
rr

en
tl

oc
at

io
n

in
th

e
p

ro
g

ra
m

.

A
gi

ve
n

sy
m

bo
lc

an
be

us
ed

as
a

la
be

lo
nl

y
on

ce
,s

in
ce

it
is

th
e

sy
m

bo
lic

na
m

e
of

th
e

ad
dr

es
s

of
th

e
in

st
ru

ct
io

n.
Sy

m
bo

ls
de

fin
ed

w
it

h
th

e
D

X
O

P
di

re
ct

iv
e

ar
eu

se
d

in
th

e
O

P
C

O
D

E
fie

ld
.

A
ny

sy
m

bo
li

n
th

e
O

P
E

R
A

N
D

S
fie

ld
m

us
th

av
e

be
en

us
ed

as
a

la
be

l
or

ro
de

fi
ne

d
by

a
R

E
F

di
re

ct
iv

e.

{^
E

xp
re

ss
io

ns

Ex
pr

es
sio

ns
ar

e
us

ed
in

th
eO

P
E

R
A

N
D

S
fie

ld
s

of
as

se
m

bl
y

la
ng

ua
ge

st
at

em
en

ts
.A

n
ex

pr
es

si
on

is
a

te
rm

or
a

se
ri

es
of

te
rm

s
se

pa
ra

te
d

by
th

e
fo

llo
w

in
g

ar
ith

m
et

ic
op

er
at

io
ns

:

+
a

d
d

it
io

n

—
su

b
tr

a
c
ti

o
n

*
m

ul
ti

pl
ic

at
io

n

/
d

iv
is

io
n

T
he

op
er

at
or

pr
ec

ed
en

ce
is

+
,

—
,*

,/
(l

ef
tt

o
ri

gh
t).

T
he

ex
pr

es
sio

n
m

us
tn

ot
co

nt
ai

n
an

y
im

be
dd

ed
bl

an
ks

or
ex

te
nd

ed
op

er
at

io
n

de
fin

ed
(D

X
O

P
di

re
ct

iv
e

de
fin

ed
)

sy
m

bo
ls

.U
na

ry
m

in
us

(a
m

in
us

sig
n

in
fro

nt
of

a
nu

m
be

r
or

sy
m

bo
l)

is
pe

rf
or

m
ed

fir
st

an
d

th
en

th
ee

xp
re

ss
io

n
is

ev
al

ua
te

d
fro

m
le

ft
to

ri
gh

t.
A

n
ex

am
pl

e
of

th
e

us
e

o
ft

he
un

ar
y

m
in

us
in

an
ex

pr
es

si
on

is:

L
A

B
E

L
+

T
A

B
L

E
+

(
-

IN
C

)

w
hi

ch
ha

st
he

ef
fe

ct
o

ft
he

ex
pr

es
si

on
:

L
A

B
E

L
+

T
A

B
L

E
-

IN
C

IS C
O

T
he

re
lo

ca
ta

bi
lit

y
of

an
ex

pr
es

sio
n

is
a

fu
nc

tio
n

of
th

e
re

lo
ca

ta
bi

lit
y

of
th

e
sy

m
bo

ls
an

d
co

ns
ta

nt
s

th
at

m
ak

e
up

th
e

ex
pr

es
si

on
.

A
n

ex
pr

es
si

on
is

re
lo

ca
ta

bl
e

w
he

n
th

e
nu

m
be

r
of

re
lo

ca
ta

bl
e

sy
m

bo
ls

or
co

ns
ta

nt
sa

dd
ed

to
th

e
ex

pr
es

sio
n

is
on

e
gr

ea
te

r
th

an
th

e
nu

m
be

r
of

re
lo

ca
ta

bl
e

sy
m

bo
ls

or
co

ns
ta

nt
ss

ub
tra

ct
ed

fro
m

th
e

ex
pr

es
sio

ns
.A

ll
ot

he
r

ex
pr

es
si

on
s

ar
e

ab
so

lu
te

.T
he

ex
pr

es
si

on
gi

ve
n

ea
rl

ie
r

w
ou

ld
be

re
lo

ca
ta

bl
e

if
th

e
th

re
e

sy
m

bo
ls

in
th

e
ex

pr
es

si
on

ar
ea

ll
re

lo
ca

ta
bl

e.

T
he

fo
llo

w
in

g
ar

e
ex

am
pl

es
of

va
lid

ex
pr

es
si

on
s.

B
L

U
E

+
1

2
*

1
6

+
R

E
D

4
4

0
/2

-
R

E
D

S
u

rv
ey

o
f
th

e
9

9
0

0
In

st
ru

c
ti

o
n

S
e
t

T
he

99
00

in
str

uc
tio

ns
ca

n
be

gr
ou

pe
d

in
to

th
e

fo
llo

wi
ng

ge
ne

ra
lc

at
eg

or
ies

:d
at

a
tra

ns
fe

r,
ar

ith
m

et
ic

,c
om

pa
ris

on
,l

og
ica

l,
sh

ift
,b

ra
nc

h,
an

d
C

RU
in

pu
t/o

ut
pu

t
op

er
at

io
ns

.T
he

lis
to

fa
ll

in
str

uc
tio

ns
an

d
th

ei
re

ffe
ct

on
sta

tu
sb

its
is

gi
ve

n
in

F
ig

ur
e

6-
6.

§
M

n
e
m

o
n

ic

A A
B

A
B

S

A
I

A
N

D
I

B B
L

B
L

W
P

C C
B

C
I

C
K

O
F

C
K

O
N

C
L

R

C
O

C

C
Z

C

D
E

C

D
E

C
T

L
D

C
R

L
I

L
>

A
>

E
Q

C
O

V
O

P
X

X X X X X

X X X X X

X X X X X

X
X

X

X
X

X

X
X

X

X X X X

X X X X

X X X X X X

X X X X X X

X X X X X X

M
n

e
m

o
n

ic

D
IV

ID
L

E

IN
C

IN
C

T

IN
V

JE
Q

JG
T

JH JH
E

JL JL
E

JL
T

JM
P

JN
C

JN
E

JN
O

JO
C

JO
P

S
B

Z

S
E

T
O

L
>

A
>

E
Q

C
O

V
O

P
X

X
X

X
X

X

X
X

X
X

X

X
X

X
-

~

L
IM

I
S

L
A

X
X

X
X

X
_

_

L
R

E
X

s
o

c
X

X
X

-
.

_
_

L
W

P
I

S
O

C
B

X
X

X
-

>

X
_

M
O

V
X

X
X

-
-

-
-

S
R

A
X

X
X

X
_

.
_

M
O

V
B

X
X

X
-

-
X

-
S

R
C

X
X

X
X

_
.

_

M
P

Y
S

R
L

X
X

X
X

_
.

.

N
E

C
X

X
X

X
X

-
-

S
T

C
R

X
X

X
-

_

1
_

O
R

I
X

X
X

-
-

.
.

S
T

S
T

R
S

E
T

S
T

W
P

R
T

W
P

X
X

X
X

X
X

X
S

W
P

B
S

X
X

X
X

X
-

-
S

Z
C

X
X

X
_

.
•

_
_

S
B

X
X

X
X

X
X

-
S

Z
C

B
X

X
X

-
_

X
_

S
B

O
T

B
-

-
X

-
-

-
.

X
2

2
2

2
2

2
2

X
O

P
2

2
2

2
2

2
2

X
O

R
X

X
X

-
-
-
-

No
tes

:
1.

W
he

n
an

L
D

C
R

or
ST

C
R

in
st

ru
ct

io
n

tr
an

sf
er

s
ei

gh
tb

it
so

rl
es

s,
th

e
O

P
bi

ti
ss

et
or

re
se

ta
si

n
by

te
in

st
ru

ct
io

n
s.

O
th

e
rw

is
e

th
e
se

in
st

ru
ct

io
n

s
d

o
n

o
t

a
ff

ec
t

th
e

O
P

b
it

.

2.
T

he
X

in
st

ru
ct

io
n

do
es

no
ta

ffe
ct

an
y

st
at

us
bi

t;
th

e
in

st
ru

ct
io

n
ex

ec
ut

ed
by

th
e

X
in

st
ru

ct
io

n
se

ts
st

at
us

bi
ts

no
rm

al
ly

fo
rt

ha
ti

ns
tr

uc
tio

n.
W

he
n

an
X

O
P

in
st

ru
ct

io
n

is
im

pl
em

en
te

d
by

so
ftw

ar
e,

th
e

X
O

P
bi

ti
s

se
t,

an
d

th
e

su
br

ou
ti

ne
se

ts
st

at
us

bi
ts

no
rm

al
ly

.

r
o g

F
ig

ur
e

6-
6.

St
at

us
Bi

ts
Af

fe
ct

ed
by

In
str

uc
tio

ns

T
O

D
a

ta
T

ra
n

sf
e
r

In
st

ru
c
ti

o
n

s

Lo
ad

—
us

ed
to

in
iti

al
iz

e
pr

oc
es

so
r

or
w

or
ks

pa
ce

re
gi

st
er

s
to

a
de

si
re

d
va

lu
e.

M
ov

e—
us

ed
to

m
ov

e
w

or
ds

or
by

te
s

fr
om

on
e

m
em

or
y

lo
ca

tio
n

to
an

ot
he

r.

St
or

e—
us

ed
to

st
or

e
th

e
st

at
us

or
w

or
ks

pa
ce

po
in

te
rr

eg
is

te
rs

in
a

w
or

ks
pa

ce
re

gi
st

er
.

A
ri

th
m

e
ti

c
In

st
ru

c
ti

o
n

s

A
dd

iti
on

an
d

Su
bt

ra
ct

io
n—

pe
rf

or
m

ad
di

tio
n

or
su

bt
ra

ct
io

n
o

fs
ig

ne
d

or
un

si
gn

ed
bi

na
ry

w
or

ds
or

by
te

s
st

or
ed

in
m

em
or

y.

N
eg

at
e

an
dA

bs
ol

ut
e

Va
lu

e—
ch

an
ge

s
th

e
si

gn
or

ta
ke

st
he

ab
so

lu
te

va
lu

e
o

fd
at

a
w

or
ds

in
m

e
m

o
r
y
.

In
cr

em
en

ta
nd

D
ec

re
m

en
t—

A
dd

s
or

su
bt

ra
ct

s
1

or
2

fr
om

th
e

sp
ec

ifi
ed

da
ta

w
or

ds
in

m
e
m

o
r
y
.

M
ul

tip
ly

—
Pe

rf
or

m
s

un
si

gn
ed

in
te

ge
rm

ul
tip

lic
at

io
n

o
fa

w
or

d
in

m
em

or
y

w
it

h
a

w
or

ks
pa

ce
re

gi
st

er
w

or
d

to
fo

rm
a

32
bi

t
pr

od
uc

ts
to

re
d

in
tw

o
su

cc
es

si
ve

w
or

ks
pa

ce
re

gi
st

er
lo

ca
tio

ns
.

D
iv

id
e—

D
iv

id
es

a
32

bi
tu

ns
ig

ne
d

in
te

ge
r

di
vi

de
nd

(c
on

ta
in

ed
in

tw
o

su
cc

es
si

ve
w

or
ks

pa
ce

re
gi

st
er

s)
by

a
m

em
or

y
w

or
d

w
ith

th
e

16
bi

tq
uo

tie
nt

an
d

16
bi

tr
em

ai
nd

er
st

or
ed

in
pl

ac
e

o
ft

he
di

vi
de

nd
.

C
om

pa
re

In
st

ru
ct

io
ns

Th
es

e
in

str
uc

tio
ns

pr
ov

id
e

fo
r

m
as

ke
d

or
un

m
as

ke
d

co
m

pa
ris

on
of

on
e

m
em

or
y

w
or

d
or

by
te

to
an

ot
he

r
or

a
w

or
ks

pa
ce

re
gi

st
er

w
or

d
to

a
16

bi
tc

on
st

an
t.

L
og

ic
al

In
st

ru
ct

io
ns

O
R

an
dA

N
D

—
m

as
ke

d
or

un
m

as
ke

d
O

R
an

d
A

N
D

op
er

at
io

ns
on

co
rr

es
po

nd
in

g
bi

ts
of

tw
o

m
em

or
y

w
or

ds
.

A
w

or
ks

pa
ce

re
gi

st
er

w
or

d
ca

n
be

O
R

ed
or

A
N

D
ed

w
it

h
a

16
bi

t
c
o

n
s
ta

n
t.

Co
m

ple
m

en
ta

nd
Cl

ea
r—

T
he

bi
ts

of
a

se
le

ct
ed

m
em

or
y

w
or

d
ca

n
be

co
m

pl
em

en
te

d,
or

cl
ea

re
d

o
r

se
t

to
o

n
es

.

Ex
cl

us
iv

e
O

R
—

A
w

or
ks

pa
ce

re
gi

st
er

w
or

d
ca

n
be

ex
cl

us
iv

e
O

R
ed

w
it

h
an

ot
he

r
m

em
or

y
w

or
d

on
a

bi
tb

y
bi

tb
as

is
.

Se
tB

its
Co

rre
sp

on
din

g—
Se

tb
its

to
on

e
(S

O
C

)o
rt

o
ze

ro
(S

ZC
)

wh
os

e
po

sit
io

ns
p

co
rr

es
po

nd
to

on
e

po
sit

io
ns

in
a

re
fe

re
nc

e
wo

rd
.

0
9

S
h

if
t

In
st

ru
c
ti

o
n

s

A
w

or
ks

pa
ce

re
gi

st
er

ca
n

be
sh

ift
ed

ar
ith

m
et

ic
al

ly
or

lo
gi

ca
lly

to
th

e
rig

ht
.T

he
re

gi
ste

rs
ca

n
be

sh
ift

ed
to

th
e

le
ft

(fi
lli

ng
in

va
ca

te
d

po
si

tio
ns

w
it

h
ze

ro
es

)
or

ci
rc

ul
at

ed
to

th
e

ri
gh

t.
T

he
sh

ift
s

an
d

ci
rc

ul
at

es
ca

n
be

fro
m

1
to

16
bi

tp
os

iti
on

s.

B
ra

n
c
h

In
st

ru
c
ti

o
n

s

T
he

br
an

ch
in

st
ru

ct
io

ns
an

d
th

e
JM

P
(ju

m
p)

in
st

ru
ct

io
n

un
co

nd
iti

on
al

ly
br

an
ch

to
di

ffe
re

nt
pa

rts
o

ft
he

pr
og

ra
m

m
em

or
y.

If
a

br
an

ch
oc

cu
rs

,t
he

P
C

re
gi

st
er

w
il

lb
e

ch
an

ge
d

to
th

e
va

lu
e

sp
ec

ifi
ed

by
th

e
op

er
an

d
of

th
e

br
an

ch
in

st
ru

ct
io

n.
In

su
br

ou
tin

e
br

an
ch

in
g

th
e

ol
d

va
lu

e
of

th
e

P
C

is
sa

ve
d

w
he

n
th

e
br

an
ch

oc
cu

rs
an

d
th

en
is

re
st

or
ed

w
he

n
th

e
re

tu
rn

in
st

ru
ct

io
n

is
ex

ec
ut

ed
.T

h
e

co
nd

iti
on

al
ju

m
p

in
st

ru
ct

io
ns

te
st

ce
rt

ai
n

st
at

us
bi

ts
to

de
te

rm
in

e
if

ju
m

p
is

to
oc

cu
r.

W
he

n
a

ju
m

p
is

m
ad

e
th

e
P

C
is

lo
ad

ed
w

it
h

th
e

su
m

of
it

sp
re

vi
ou

s
va

lu
e

an
d

a
di

sp
la

ce
m

en
tv

al
ue

sp
ec

ifi
ed

in
th

e
op

er
an

d
po

rt
io

n
of

th
e

in
st

ru
c
ti

o
n

.

C
o

n
tr

o
l/

C
R

U
In

st
ru

c
ti

o
n

s

T
he

se
in

st
ru

ct
io

ns
pr

ov
id

e
fo

r
tr

an
sf

er
ri

ng
da

ta
to

an
d

fr
om

th
e

co
m

m
un

ic
at

io
ns

re
gi

st
er

in
pu

t/o
ut

pu
tu

ni
t(

C
RU

)
us

in
g

th
e

C
R

U
IN

,C
R

U
O

U
T

an
d

C
R

U
C

L
K

pi
ns

of
th

e
99

00
.

is <
o

In
st

ru
c
ti

o
n

D
e
sc

ri
p

ti
o

n
s

T
he

in
fo

rm
at

io
n

pr
ov

id
ed

fo
r

ea
ch

in
st

ru
ct

io
n

in
th

e
ne

xt
se

ct
io

n
of

th
is

ch
ap

te
r

is
as

fo
ll

o
w

s:

N
a

m
e

o
f

th
e

in
st

ru
ct

io
n

.

M
n

e
m

o
n

ic
fo

r
th

e
in

st
ru

ct
io

n
.

A
ss

em
bl

y
la

ng
ua

ge
an

d
m

ac
hi

ne
co

de
fo

rm
at

s.

D
es

cr
ip

ti
on

o
ft

he
op

er
at

io
n

o
ft

he
in

st
ru

ct
io

n.

E
ff

e
c
t
o

f
th

e
in

st
ru

ct
io

n
o

n
th

e
S

ta
tu

s
B

it
s.

E
xa

m
pl

es
.

A
pp

li
ca

ti
on

s.

T
he

fo
rm

at
de

sc
ri

pt
io

ns
an

d
ex

am
pl

es
ar

e
w

ri
tte

n
w

ith
ou

tt
he

la
be

lo
rc

om
m

en
tf

ie
ld

s
fo

r
si

m
pl

ic
ity

.L
ab

el
s

an
d

co
m

m
en

ts
fie

ld
s

ca
n

be
us

ed
in

an
y

in
st

ru
ct

io
n

if
de

si
re

d.

g
Ea

ch
in

str
uc

tio
n

in
vo

lv
es

on
e

or
tw

o
op

er
an

d
fie

lds
wh

ich
ar

e
w

rit
te

n
wi

th
th

e
fo

llo
wi

ng
sy

m
bo

ls
: G

—
An

y
ad

dr
es

sin
g

m
od

e
is

pe
rm

itt
ed

ex
ce

pt
I(

Im
m

ed
ia

te
).

R
—

W
or

ks
pa

ce
re

gi
st

er
ad

dr
es

si
ng

.

ex
p—

A
sy

m
bo

lo
re

xp
re

ss
io

n
us

ed
to

in
di

ca
te

a
lo

ca
tio

n.

va
lu

e—
a

va
lu

e
to

be
us

ed
in

im
m

ed
ia

te
ad

dr
es

si
ng

.

cn
t—

A
co

u
n

t
va

lu
e

fo
r

sh
if

ts
a

n
d

C
R

U
in

st
ru

ct
io

n
s.

C
RU

—
C

RU
(C

om
m

un
ic

at
io

ns
R

eg
is

te
r

U
ni

t)
bi

ta
dd

re
ss

in
g.

T
he

in
str

uc
tio

n
op

er
at

io
n

is
de

sc
rib

ed
in

w
ri

tte
n

an
d

eq
ua

tio
n

fo
rm

.
In

th
e

eq
ua

tio
n

fo
rm

,a
n

ar
ro

w
(—

•)
is

us
ed

to
in

di
ca

te
a

tra
ns

fe
ro

fd
at

a
an

d
a

co
lo

n
(:)

is
us

ed
to

in
di

ca
te

a
co

m
pa

ris
on

.I
n

co
m

pa
ris

on
s,

th
e

op
er

an
ds

ar
e

no
tc

ha
ng

ed
.I

n
tra

ns
fer

s,
th

e
so

ur
ce

op
er

an
d

(in
di

ca
ted

wi
th

th
e

su
bs

cr
ip

ts
)i

sn
ot

ch
an

ge
d

wh
ile

th
e

de
sti

na
tio

n
op

er
an

d
(in

di
ca

ted
wi

th
th

e
su

bs
cr

ip
td

)i
sc

ha
ng

ed
.F

or
op

er
an

ds
sp

ec
ifi

ed
by

th
e

sy
m

bo
lG

,t
he

M
(G

)n
om

en
cla

tu
re

is
us

ed
to

de
no

te
th

e
m

em
or

y
wo

rd
sp

ec
ifi

ed
by

G
.M

B(
G

)i
su

se
d

to
de

no
te

th
e

m
em

or
y

by
te

sp
ec

ifi
ed

by
G

.T
hu

s,
tra

ns
fe

rr
in

g
th

e
m

em
or

y
wo

rd
co

nt
en

ts
ad

dr
es

se
d

by
G8

to
th

e
m

em
or

y
w

or
d

lo
ca

tio
n

sp
ec

ifi
ed

by
Gd

an
d

co
m

pa
rin

g
th

e
so

ur
ce

(G
8)

da
ta

to
ze

ro
du

rin
g

th
e

tra
ns

fe
r,

ca
n

be
de

sc
rib

ed
as

:

o

C
O

M
(G

8)
^
M

(G
d

)

M
(G

s)
:0

w
hi

ch
is

th
e

op
er

at
io

n
pe

rf
or

m
ed

by
th

e
M

O
V

in
st

ru
ct

io
n:

M
O

V
G

„,
G

d

A
sp

ec
ifi

c
ex

am
pl

e
o

ft
hi

si
ns

tr
uc

tio
n

co
ul

d
be

:

M
O

V
@

O
N

E
,3

w
hi

ch
m

ov
es

th
e

co
nt

en
ts

of
th

e
m

em
or

y
w

or
d

ad
dr

es
se

d
by

th
e

va
lu

e
of

th
e

sy
m

bo
l

O
N

E
to

th
e

co
nt

en
ts

of
w

or
ks

pa
ce

re
gi

st
er

3:

M
(O

N
E

)—
R

3

M
(O

N
E

):
0

H
D

A
T

A
T

R
A

N
S

F
E

R
IN

S
T

R
U

C
T

IO
N

S
r
o

T
he

M
O

V
in

st
ru

ct
io

ns
ar

e
us

ed
to

tr
an

sf
er

da
ta

fr
om

on
e

pa
rt

o
ft

he
sy

st
em

to
an

ot
he

r
pa

rt
.T

h
e

L
O

A
D

in
st

ru
ct

io
ns

ar
e

us
ed

to
in

iti
al

iz
e

re
gi

st
er

s
to

de
si

re
d

va
lu

es
.T

h
e

S
T

O
R

E
in

st
ru

ct
io

ns
pr

ov
id

e
fo

rs
av

in
g

th
e

st
at

us
re

gi
st

er
(S

T
)

or
th

e
w

or
ks

pa
ce

po
in

te
r

(W
P

)
in

a
sp

ec
ifi

ed
w

or
ks

pa
ce

re
gi

st
er

.

L
o

a
d

Im
m

e
d

ia
te

F
or

m
at

:
L

I
R

,v
a

lu
e

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

T
1

1
1

1
1

1
I
T

0
0

0
0

0
0

1
0

0
0

0
0

-
r

(0
2

0
0

+
R

)

0
^
R

<
S

1
5

O
pe

ra
tio

n:
T

he
16

bi
td

at
a

va
lu

e
in

th
e

w
or

d
im

m
ed

ia
te

ly
fo

ll
ow

in
g

th
e

in
st

ru
ct

io
n

is
lo

ad
ed

in
to

th
e

sp
ec

ifi
ed

w
or

ks
pa

ce
re

gi
st

er
R

.
v
a

lu
e

^
R

im
m

ed
ia

te
o

p
er

a
n

d
:

0

A
ffe

ct
on

St
at

us
:

LG
T,

A
G

T,
E

Q

E
xa

m
pl

es
:

LI
7,

5
5

-R
7

L
I

8
,>

F
F

00
F

F
16

^
R

8

L
I

8

Ap
pli

ca
tio

ns
:T

he
L

Ii
ns

tru
cti

on
is

us
ed

to
in

iti
al

ize
aw

or
ks

pa
ce

re
gi

ste
rw

ith
a

pr
og

ra
m

co
n

st
a

n
t

su
ch

as
a

co
u

n
te

r
va

lu
e

o
r

d
a

ta
m

a
sk

.

L
o

a
d

In
te

rr
u

p
t

M
a

sk
Im

m
ed

ia
te

F
or

m
at

:
L

IM
I

v
a

lu
e

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

i
i
—

i
—

i
—

i
—

I
—

i
—

i
—

i
—

i
—

r
—

i
—

i
—

i
—

r
—

o
o

o
o

o
o

i
i

o
o

o
o

o
o

o
o

L
IM

I

(0
3

0
0

)

Op
era

tio
n

Th
e

low
or

de
r4

bi
tv

al
ue

(b
its

12
-1

5)
in

th
e

wo
rd

im
m

ed
ia

tel
y

fo
llo

wi
ng

th
e

in
str

uc
tio

n
is

lo
ad

ed
in

to
th

e
in

te
rr

up
tm

as
k

po
rti

on
of

th
e

sta
tu

sr
eg

ist
er

:
B

IT
S

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

S
T

4
B

IT
V

A
L

U
E

Af
fe

ct
on

St
atu

s:
In

te
rr

up
tm

as
k

co
de

on
ly

E
xa

m
pl

e:
LI

M
I

5

E
na

bl
es

in
te

rr
up

tl
ev

el
s

0
th

ro
ug

h
5

Ap
pli

ca
tio

n:
Th

e
LI

M
Ii

ns
tru

ct
io

n
is

us
ed

to
in

iti
al

ize
th

e
in

te
rr

up
tm

as
k

to
co

nt
ro

l
w

hi
ch

sy
ste

m
in

te
rr

up
ts

w
ill

be
re

co
gn

iz
ed

.

L
O

A
D

W
o

rk
sp

a
ce

P
o

in
te

r
Im

m
ed

ia
te

F
o

rm
a

t:
L

W
P

I
v
a

lu
e

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

T
1

1
I

I
1

1
1

1
1

0
0

0
0

0
0

1
0

1
1

1
0

0
0

0
0

L
W

P
I

(0
2E

0)

Op
er

ati
on

:T
he

16
bi

tv
al

ue
co

nt
ai

ne
d

in
th

e
wo

rd
im

m
ed

ia
te

ly
fo

llo
wi

ng
th

e
in

str
uc

tio
n

is
lo

ad
ed

in
to

th
e

w
or

ks
pa

ce
po

in
te

r(
W

P
):

v
a

lu
e

»
W

P

A
ffe

ct
on

St
at

us
:

N
on

e

E
xa

m
pl

e:
LW

PI
>

05
00

C
au

se
s0

50
01

6
to

be
lo

ad
ed

in
to

th
e

W
P

.

Ap
pli

ca
tio

n:
LW

PI
is

us
ed

to
es

ta
bl

ish
th

e
wo

rk
sp

ac
e

m
em

or
y

ar
ea

for
as

ec
tio

n
of

th
e

p
ro

g
ra

m
.

8

M
O

V
E

W
o

r
d

F
o

rm
a

t:
M

O
V

a
.G

,

0
1

2
3

4
5

6
7

—
i
—

r
—

r

o
o

r
—

r
-

0

9
1

0
11

12
13

14
15

T

(C
—

)

M
O

V

O
pe

ra
tio

n:
T

he
w

or
d

in
th

e
lo

ca
tio

n
sp

ec
ifi

ed
by

G8
is

tr
an

sf
er

re
d

to
th

e
lo

ca
tio

n
sp

ec
ifi

ed
by

Gd
,w

ith
ou

ta
ffe

ct
in

g
th

e
da

ta
sto

re
d

in
th

e
G8

lo
ca

tio
n.

D
ur

in
g

th
et

ra
ns

fe
r,

th
e

w
or

d
(G

a
da

ta
)

is
co

m
pa

re
d

to
0

w
it

h
th

e
re

su
lt

of
th

e
co

m
pa

ris
on

st
or

ed
in

th
e

sta
tu

s
re

gi
st

er
. M

(G
.)

-M
(G

d)
M

(G
.)

:0

St
at

us
B

its
A

ffe
ct

ed
-

LG
T,

A
G

T,
an

d
EQ

E
xa

m
pl

es
:

M
O

V
R

1,
R

3
R

1
—

^R
3

,
R1

:0
M

O
V

•R
1.

R
3

M
(R

1)
*R

3,
M

(R
1)

:0
M

O
V

@
O

N
E

S,
»1

M
(O

N
ES

)
-M

(R
1)

,
M

(O
N

ES
):0

M
O

V
@

2(
5)

,3
M

(R
5

+
2)

i-
R

3.
M

(R
5

+
2)

:0
M

O
V

*R
1

+
,*

R
2

+
M

(R
1)

H
v1

(R
2)

,
M

(R
1)

:0
.

(R
1)

+
2

—
^

R
1

,
(R

2)
+

2
—

^
R

2

Ap
pl

ica
tio

n-
M

O
V

is
us

ed
to

tra
ns

fe
rd

at
a

fro
m

on
e

pa
rt

of
th

e
sy

ste
m

to
an

ot
he

r
pa

rt.

M
O

V
E

B
y
te

F
or

m
at

:
M

O
V

B
G

„
G

d
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
"
T

"
T

T

1
1

0
1

T
d

1
1

1

0

i
I

i
I

s
(D

)

M
O

V
B

O
pe

ra
tio

n:
T

he
B

yt
e

ad
dr

es
se

d
by

G8
is

tr
an

sf
er

re
d

to
th

e
by

te
lo

ca
tio

n
sp

ec
ifi

ed
by

G
d.

If
G

is
w

or
ks

pa
ce

re
gi

st
er

ad
dr

es
si

ng
,t

he
m

os
ts

ig
ni

fic
an

tb
yt

e
is

se
le

ct
ed

.O
th

er
w

is
e,

ev
en

ad
dr

es
se

s
se

le
ct

th
e

m
os

ts
ig

ni
fic

an
tb

yt
e;

od
d

ad
dr

es
se

s
se

le
ct

th
e

le
as

ts
ig

ni
fic

an
t

by
te

.D
ur

in
g

th
e

tr
an

sf
er

,t
he

so
ur

ce
by

te
is

co
m

pa
re

d
to

ze
ro

an
d

th
e

re
su

lts
o

ft
he

co
m

pa
ri

so
n

ar
e

st
or

ed
in

th
e

st
at

us
re

gi
st

er
.

M
B

(G
.)

—
M

B
(G

.)
:0

*M
B

(G
d)

St
at

us
B

its
Af

fe
ct

ed
:

LG
T,

AG
T,

EQ
,O

P

t
o 53

E
xa

m
pl

es
:

M
O

VB
@

>
1C

14
,3

M
O

V
B

*
8

,4

T
he

se
in

st
ru

ct
io

ns
w

ou
ld

ha
ve

th
e

fo
llo

w
in

g
ex

am
pl

e
af

fe
ct

s:
M

em
or

y
C

on
te

nt
s

C
on

te
nt

s
Lo

ca
tio

n
In

iti
al

ly
A

fte
r

Tr
an

sfe
r

1
C

1
4

2
0

1
6

2
0

1
6

R
3

5
4

2
B

2
0

2
B

R
8

2
1

2
3

2
1

2
3

2
1

2
3

1
0

4
0

1
0

4
0

R
4

O
A

O
C

4
0

0
C

T
he

un
de

rl
in

ed
da

ta
ar

e
th

e
by

te
ss

el
ec

te
d.

A
pp

lic
at

io
n:

M
O

V
B

is
us

ed
to

tr
an

sf
er

8
bi

tb
yt

es
fr

om
on

e
by

te
lo

ca
tio

n
to

an
ot

he
r.

IO C
O

0
0

S
w

a
p

B
y
te

s

F
o

rm
a

t:
S

W
P

B
G

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
1

1
1

I
I

1
1

1
1

—

0
0

0
0

0
1

1
0

1
1

T

T
$

t
—

r
—

r

s

S
W

P
B

(0
6C

0+
T

,,
S)

Op
er

ati
on

:T
he

m
os

ts
ig

ni
fic

an
tb

yt
e

an
d

th
e

le
as

ts
ig

ni
fic

an
tb

yt
es

of
th

e
w

or
d

at
th

e
m

em
or

y
lo

ca
tio

n
sp

ec
ifi

ed
by

G
ar

e
ex

ch
an

ge
d.

A
ffe

ct
on

St
at

us
:

N
on

e

B
e
fo

r
e

A
ft

e
r

Ex
am

pl
e:

SW
PB

3
R3

C
on

te
nt

s:
F3

02
02

F3

Ap
pl

ica
tio

n:
U

se
d

to
in

te
rc

ha
ng

e
by

te
s

if
ne

ed
ed

fo
r

su
bs

eq
ue

nt
by

te
op

er
at

io
ns

.

C
O

C
O

S
to

r
e

S
ta

tu
s

F
o

rm
a

t:
S

T
S

T
R

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
I
—

I
—

r
n

r
T

—
i
—

I
—

I
—

i
—

r

0
0

0
0

0
0

1
0

1
1

0
0

"
i
—

i
—

r

R
(0

2
C

0
+

R
)

0
<

S
R

=
S

1
5

S
T

S
T

Op
era

tio
n:

Th
e

co
nt

en
ts

of
th

e
sta

tu
sr

eg
ist

er
ar

e
sto

re
d

in
th

e
wo

rk
sp

ac
e

re
gi

ste
r

sp
ec

ifi
ed

: S
T

-
R

A
ff

ec
to

n
St

at
us

:
N

on
e

E
xa

m
pl

e:
ST

ST
3

ST
is

tr
an

sf
er

re
d

to
R

3

A
pp

lic
at

io
n:

S
T

S
T

is
us

ed
to

sa
ve

th
e

st
at

us
fo

r
la

te
r

re
fe

re
nc

e.

1

S
to

r
e

W
o

rk
sp

a
c
e

P
o

in
te

r

F
o

rm
a

t:
S

T
W

P
R

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
I
—

i—
i—

i—
i—

i—
i—

i—
l—

I
—

i—
I
—

i—
r

0
0

0
0

0
0

1
0

1
0

1
0

(0
2

A
0

+
R

)

0
<

R
<

;1
5

S
T

W
P

O
pe

ra
tio

n:
T

he
co

nt
en

ts
o

ft
he

w
or

ks
pa

ce
po

in
te

r
ar

e
st

or
ed

in
th

e
w

or
ks

pa
ce

re
gi

st
er

sp
ec

ifi
ed

: W
P

-
R

A
ffe

ct
on

St
at

us
:

N
on

e

E
xa

m
pl

e:
ST

W
P

3
W

P
is

tr
an

sf
er

re
d

in
to

R
3

Ap
pl

ica
tio

n:
ST

W
P

is
us

ed
to

sa
ve

th
e

w
or

ks
pa

ce
po

in
te

r
fo

r
la

te
r

re
fe

re
nc

e.

8

A
R

IT
H

M
E

T
IC

IN
S

T
R

U
C

T
IO

N
S

Th
es

e
in

str
uc

tio
ns

pe
rfo

rm
th

e
fo

llo
wi

ng
ba

sic
ar

ith
m

et
ic

op
er

at
io

ns
:a

dd
iti

on
(b

yt
e

or
w

or
d)

,s
ub

tra
ct

io
n

(b
yt

e
or

w
or

d)
,m

ul
tip

lic
at

io
n,

di
vi

sio
n,

ne
ga

tio
n,

an
d

ab
so

lu
te

va
lu

e.
M

or
e

co
m

pl
ic

at
ed

m
at

he
m

at
ic

al
fu

nc
tio

ns
m

us
tb

e
de

ve
lo

pe
d

us
in

g
th

es
e

ba
sic

op
er

at
io

ns
.T

he
ba

sic
in

str
uc

tio
n

se
tw

ill
be

ad
eq

ua
te

fo
r

m
an

y
sy

st
em

re
qu

ire
m

en
ts.

A
d

d
W

o
r
d

s

F
o

rm
a

t:
A

G
M

G
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
I
—

I
—

r
n

—
r

D
1

0
1

0
i

» s
(A

)

O
pe

ra
tio

n:
T

he
da

ta
lo

ca
te

d
at

th
e

ad
dr

es
s

sp
ec

ifi
ed

by
G8

is
ad

de
d

to
th

e
da

ta
lo

ca
te

d
at

th
e

ad
dr

es
s

sp
ec

ifi
ed

by
G

d.
T

he
re

su
lti

ng
su

m
is

pl
ac

ed
in

th
e

G
d

lo
ca

tio
n

an
d

is
co

m
pa

re
d

to
ze

ro
:

M
(G

.)
+

M
(G

d)
^M

(G
d)

M
(G

.)
+

M
(G

d)
:0

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,C

,O
V

ft

E
xa

m
pl

es
:

A
5,

@
T

A
B

L
E

R
5

+
M

(T
A

BL
E)

-M
(T

A
B

LE
)

A
3

,«
2

R
3

+
M

(R
2)

-M
(R

2
)

w
it

h
th

e
su

m
sc

om
pa

re
d

to
0

in
ea

ch
ca

se
.B

in
ar

y
ad

di
tio

n
af

fe
ct

s
on

st
at

us
bi

ts
ca

n
be

un
de

rs
to

od
by

st
ud

yi
ng

th
e

fo
llo

w
in

g
ex

am
pl

es
:

M
(G

J
M

(G
J

Su
m

L
G

T
A

G
T

**
E

Q
C

O
F

*
1

0
0

0
0

0
0

1
1

0
0

1
1

1
0

0
0

F
0

0
0

1
0

0
0

0
0

0
0

0
0

1
1

0
F

0
0

0
8

0
0

0
7

0
0

0
1

1
0

1
1

4
0

0
0

4
0

0
0

8
0

0
0

1
0

0
0

1

*O
V

(o
ve

rf
lo

w
)

is
se

ti
ft

he
m

os
ts

ig
ni

fic
an

tb
it

o
ft

he
su

m
is

di
ff

er
en

tf
ro

m
th

e
m

os
t

si
gn

ifi
ca

nt
bi

to
fM

(G
d)

an
d

th
e

m
os

ts
ig

ni
fic

an
tb

it
o

fb
ot

h
op

er
an

ds
ar

ee
qu

al
.

**
A

G
T

(a
ri

th
m

et
ic

gr
ea

te
r

th
an

)
is

se
ti

ft
he

m
os

ts
ig

ni
fic

an
tb

it
o

ft
he

su
m

is
ze

ro
an

d
if

E
Q

(e
qu

al
)

is
0.

A
pp

lic
at

io
n:

B
in

ar
y

ad
di

tio
n

is
th

e
ba

si
c

ar
ith

m
et

ic
op

er
at

io
n

re
qu

ir
ed

to
ge

ne
ra

te
m

an
y

m
at

he
m

at
ic

al
fu

nc
tio

ns
.

T
hi

s
in

st
ru

ct
io

nc
an

be
us

ed
to

de
ve

lo
p

pr
og

ra
m

s
to

do
m

ul
ti

w
or

d
ad

di
ti

on
,d

ec
im

al
ad

di
ti

on
,c

od
e

co
nv

er
si

on
,a

nd
so

on
.

i

A
d

d
B

y
te

s

F
o

rm
a

t:
A

B
G

„
G

d

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
14

1
5

1
1

1

1
0

1
1

i
1

1
1

0
T

,
S

A
B

(B
—

)

Op
er

ati
on

:T
he

so
ur

ce
by

te
ad

dr
es

se
d

by
G8

is
ad

de
d

to
th

e
de

sti
na

tio
n

by
te

ad
dr

es
se

d
by

Gd
an

d
th

e
su

m
by

te
is

pl
ac

ed
in

th
e

Gd
by

te
lo

ca
tio

n.
Re

ca
ll

th
at

ev
en

ad
dr

es
se

s
se

le
ct

th
em

os
ts

ig
ni

fic
an

tb
yt

e
an

d
od

d
ad

dr
es

se
ss

el
ec

tt
he

le
as

ts
ig

ni
fic

an
tb

yt
e.

T
he

su
m

by
te

is
co

m
pa

re
d

to
0.

M
B

(G
8)

+
M

B
(G

d)
—

•
M

B
(G

d)
M

B
(G

.)
+

M
B

(G
d)

:0

St
at

us
Bi

ts
Af

fe
ct

ed
:

LG
T,

AG
T,

EQ
,C

,O
V,

O
P

I

Ex
am

pl
e:

A
B

3,
*4

+
R3

+
M

B(
R4

)
-M

B
(R

4)
,

R4
+

2
-R

4
A

B
@

T
A

B
,5

M
B(

TA
B)

+
R

5
-R

5

T
o

se
eh

ow
th

e
A

B
w

or
ks

,t
he

fo
llo

w
in

g
ex

am
pl

e
sh

ou
ld

be
st

ud
ie

d:
A

B
@

>
2

1
2

0
,@

>
2

1
2

3

M
em

or
y

D
at

a
Be

fo
re

D
at

a
A

fte
r

L
oc

at
io

n
A

dd
it

io
n

A
dd

it
io

n
21

20
£

3
2

0
F

32
0

2
1

2
3

2
1

0
6

21
JF

9

T
h

e
un

de
rl

in
ed

en
tr

ie
sa

re
th

e
ad

dr
es

se
d

an
d

ch
an

ge
d

by
te

s.

Ap
pli

ca
tio

n:
AB

is
on

e
of

th
e

by
te

op
er

at
io

ns
av

ai
la

bl
eo

n
th

e
99

00
.T

he
se

ca
n

be
us

ef
ul

wh
en

de
al

in
g

wi
th

su
bs

ys
te

m
so

rd
at

a
th

at
us

e
8

bi
tu

ni
ts,

su
ch

as
AS

C
II

co
de

s.

O
l

A
d

d
Im

m
e
d

ia
te

F
or

m
at

:
A

l
R

,V
a

lu
e

0
1

2
3

4
5

6
7

8
9

1
0

11
12

1
3

14
1

5
i
—

i
—

i
—

i
—

r

0
0

0
0

0
0

1
0

0
0

1
i
—

r
-

R
(0

2
2

0
+

R
)

0
<

;R
£

1
5

A
l

O
pe

ra
tio

n:
T

he
16

bi
tv

al
ue

co
nt

ai
ne

d
in

th
e

w
or

d
im

m
ed

ia
te

ly
fo

llo
w

in
g

th
e

in
st

ru
ct

io
n

is
ad

de
d

to
th

e
co

nt
en

ts
of

th
e

w
or

ks
pa

ce
re

gi
st

er
sp

ec
ifi

ed
.

R
+

V
al

u
e

•
R

,
R

+
V

al
u

e:
0

St
at

us
B

its
A

ffe
ct

ed
-

LG
T,

A
G

T,
E

Q
,C

,O
V

E
xa

m
pl

e:
A

l
6

,>
C

A
dd

sC
16

to
th

e
co

nt
en

ts
of

w
or

ks
pa

ce
re

gi
st

er
6.

If
R

6
co

nt
ai

ns
10

00
16

,t
he

n
th

e
in

st
ru

ct
io

n
w

ill
ch

an
ge

its
co

nt
en

ts
to

10
0C

16
,a

nd
th

e
L

G
T

an
d

A
G

T
st

at
us

bi
ts

w
ill

be
s
e
t.

A
pp

lic
at

io
n:

T
hi

s
in

st
ru

ct
io

n
is

us
ed

to
ad

d
a

co
ns

ta
nt

to
a

w
or

ks
pa

ce
re

gi
st

er
.S

uc
h

an
op

er
at

io
n

is
us

ef
ul

fo
ra

dd
in

g
a

co
ns

ta
nt

di
sp

la
ce

m
en

tt
o

an
ad

dr
es

s
co

nt
ai

ne
d

in
th

e
w

or
ks

pa
ce

re
gi

st
er

.

s
S

u
b

tr
a

c
t

W
o

r
d

s

F
or

m
at

:
S

G
„

G
d

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
-
1

—
r

T

T
d

n
—

r

o
(6

)

O
pe

ra
tio

n:
T

he
so

ur
ce

16
bi

td
at

a
(lo

ca
tio

n
sp

ec
ifi

ed
by

G
8)

is
su

bt
ra

ct
ed

fr
om

th
e

de
st

in
at

io
n

da
ta

(lo
ca

tio
n

sp
ec

ifi
ed

by
G

d)
w

it
h

th
e

re
su

lt
pl

ac
ed

in
th

e
de

st
in

at
io

n
lo

ca
tio

n
G

d.
T

he
re

su
lt

is
co

m
pa

re
d

to
0.

M
(G

d
)-

M
(G

.)
-M

(G
d

)
M

(G
d

)-
M

(G
.)

:0

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,C

,O
V

E
xa

m
pl

es
:

S
@

O
LD

V
A

L,
@

N
E

W
V

A
L

w
ou

ld
yi

el
d

th
e

fo
llo

w
in

g
ex

am
pl

e
re

su
lts

:

M
em

or
y

B
ef

or
e

Su
bt

ra
ct

io
n

L
o

ca
ti

o
n

C
on

te
n

ts

O
L

D
V

A
L

N
E

W
V

A
L

1
2

2
5

8
2

2
3

A
ft

er
Su

bt
ra

ct
io

n
C

on
te

n
ts

1
2

2
5

6F
F

E
(8

2
2

3
-1

2
2

5
)

A
ll

st
at

us
bi

ts
af

fe
ct

ed
w

ou
ld

be
se

tt
o

1
ex

ce
pt

eq
ua

lw
hi

ch
w

ou
ld

be
re

se
tt

o
0.

A
pp

lic
at

io
n:

P
ro

vi
de

s
16

bi
tb

in
ar

y
su

bt
ra

ct
io

n.

S
u

b
tr

a
c
t

B
y
te

s

F
or

m
at

:
S

B
G

,G
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
1

1
1

I
1

1
1

0
T

»
"
1

l
~

~
l

S
(7

—
)

S
B

Op
er

ati
on

:T
he

so
ur

ce
by

te
ad

dr
es

se
d

by
G

.i
ss

ub
tra

cte
d

fro
m

th
e

de
sti

na
tio

n
by

te
ad

dr
es

se
d

by
Gd

wi
th

th
e

re
su

lt
pl

ac
ed

in
by

te
lo

ca
tio

n
Gd

.T
he

re
su

lt
is

co
m

pa
re

d
to

0.
E

ve
n

ad
dr

es
se

s
se

le
ct

th
e

m
os

ts
ig

ni
fic

an
tb

yt
e

an
d

od
d

ad
dr

es
se

s
se

le
ct

th
e

le
as

t
sig

ni
fic

an
tb

yt
e.

If
wo

rk
sp

ac
e

re
gi

ste
ra

dd
re

ss
in

g
is

us
ed

,t
he

m
os

ts
ig

ni
fic

an
tb

yt
e

of
th

e
re

gi
st

er
is

us
ed

.
M

B(
G

d)
-

M
B

(G
.)

•M
B

(G
i)

M
B

(G
d)

-M
B

(G
,)

:0

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

C
,E

Q
,O

V,
O

P
F

or
m

at
:

SB
•e

+
.l

R
1-

M
B

(R
6)

•F
H

R
1

-M
B

(R
6

):
0

R
6

+
1

^
R

6

S

T
hi

s
op

er
at

io
n

w
ou

ld
ha

ve
th

e
fo

llo
w

in
g

ex
am

pl
e

re
su

lt:
M

em
or

y
Co

nt
en

ts
Be

fo
re

Co
nt

en
ts

A
fte

r
L

oc
at

io
n

In
st

ru
ct

io
n

In
st

ru
ct

io
n

R
6

1
2

1
D

1
2

1
E

1
2

1
D

3
1

2
3

4
1

2
3

R
1

1
3

4
4

F
0

4
4

T
he

un
de

rl
in

ed
en

tr
ie

s
in

di
ca

te
d

th
e

ad
dr

es
se

d
an

d
ch

an
ge

d
by

te
s.

T
he

L
G

T
(lo

gi
ca

l
gr

ea
te

r
th

an
)s

ta
tu

s
bi

tw
ou

ld
be

se
tt

o
1

w
hi

le
th

eo
th

er
sta

tu
s

bi
ts

af
fe

ct
ed

w
ou

ld
be

0.

Ap
pl

ica
tio

n:
SB

pr
ov

id
es

by
te

su
bt

ra
ct

io
n

w
he

n
8

bi
to

pe
ra

tio
ns

ar
e

re
qu

ire
d

by
th

e
sy

st
em

.

In
c
re

m
e
n

t

F
o

rm
a

t:
IN

C

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
IS

T

0
T

$
s

(0
5—

)
t
—

i
—

r

0
0

0
0

0
1

0

T
T

1
1

IN
C

Op
er

at
io

n:
T

he
da

ta
lo

ca
te

d
at

th
e

ad
dr

es
s

in
di

ca
te

d
by

G
is

in
cr

em
en

te
d

an
d

th
er

es
ul

ti
s

pl
ac

ed
in

th
e

G
lo

ca
tio

n
an

d
co

m
pa

re
d

to
0.

M
(G

)
+

1
•M

(G
)

M
(G

)
+

1
:0

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,C

,O
V

E
xa

m
pl

es
:

IN
C

IN
C

@
T

A
B

L
1

M
(T

A
B

L
)+

1
—

(R
1

)+
1

-R
1

M
(T

A
B

L
)

Ap
pli

ca
tio

n:
IN

C
is

us
ed

to
in

cr
em

en
tb

yt
e

ad
dr

es
se

sa
nd

to
in

cr
em

en
tb

yt
e

co
un

te
rs

.
Au

to
in

cr
em

en
tin

g
ad

dr
es

sin
g

on
by

te
in

str
uc

tio
ns

au
to

m
at

ic
al

ly
in

cl
ud

es
th

is
op

er
at

io
n.

t
o

0
1

o

In
c
re

m
e
n

t
b

y
T

w
o

F
o

rm
a

t:
IN

C
T

G

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5

—
1

—
r

1
1

1
1

1
1

1

0
0

0
0

0
1

0
1

1
1

1
1

1
1

S
(0

5
-)

IN
C

T

O
pe

ra
tio

n:
T

w
o

is
ad

de
d

to
th

e
da

ta
at

th
e

lo
ca

tio
n

sp
ec

ifi
ed

by
G

an
d

th
e

re
su

lt
is

st
or

ed
at

th
e

G
lo

ca
ti

on
an

d
is

co
m

pa
re

d
to

0:
M

(G
)

+
2

^M
(G

)
M

(G
)

+
2

:
0

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,C

,O
V

E
xa

m
pl

e:
IN

C
T

5
(R

5)
+

2
"-

R5

Ap
pl

ic
at

io
n:

T
hi

s
ca

n
be

us
ed

to
in

cr
em

en
tw

or
d

ad
dr

es
se

s,
th

ou
gh

au
to

in
cr

em
en

tin
g

on
w

or
d

in
st

ru
ct

io
ns

do
es

th
is

au
to

m
at

ic
al

ly
.

e
n

D
e
c
re

m
e
n

t

F
or

m
at

:
D

E
C

G

0
1
2
3
4
5
6
7
8
9

1
0

1
1

1
2

1
3

1
4

1
5

i
i

I
I

I
I

I
I

I
1
—
r
—
r

s
0
0
0
0
0
1

1
0
0
0

D
EC

(
0
6
-
)

O
pe

ra
tio

n:
O

ne
is

su
bt

ra
ct

ed
fro

m
th

ed
at

a
at

th
e

lo
ca

tio
n

sp
ec

ifi
ed

by
G

,t
he

re
su

lt
is

st
or

ed
at

th
at

lo
ca

tio
n

an
d

is
co

m
pa

re
d

to
0:

M
(G

)-
1

^M
(G

)
M

(G
)
-
1

:
0

St
at

us
B

its
A

ff
ec

te
d

LG
T,

AG
T,

EQ
,C

,O
V

E
xa

m
pl

e:
D

EC
@

T
A

B
L

M
(T

A
B

L
)-

1-
M

(T
A

B
L

)

Ap
pl

ica
tio

n:
T

hi
si

ns
tr

uc
tio

n
is

m
os

to
fte

n
us

ed
to

de
cr

em
en

tb
yt

e
co

un
te

rs
or

to
w

or
k

th
ro

ug
h

by
te

ad
dr

es
se

s
in

de
sc

en
di

ng
or

de
r.

0
1

1
0

D
e
c
re

m
e
n

t
b

y
T

w
o

F
o

rm
a

t:
D

E
C

T
G

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
1

—
1

—
1

—
1

—
i—

i—
1

—
r
™

r
-
"
"

0
0

0
0

0
1

1
0

0
1

T
»

1
1

1

S

D
E

C
T

(0
6

-)

O
pe

ra
tio

n:
T

w
o

is
su

bt
ra

ct
ed

fro
m

th
e

da
ta

at
th

e
lo

ca
tio

n
sp

ec
ifi

ed
by

G
an

d
th

e
re

su
lt

is
st

or
ed

at
th

at
lo

ca
tio

n
an

d
is

co
m

pa
re

d
to

0:
M

(G
)-

2
-M

(G
)

M
(G

)-
2

:0

St
at

us
B

its
A

ff
ec

te
d

LG
T,

A
G

T
,E

Q
,C

,O
V

E
xa

m
pl

e:
D

EC
T

3
(R

3
)-

2
-R

3

Ap
pl

ic
at

io
n:

T
hi

s
in

st
ru

ct
io

n
is

us
ed

to
de

cr
em

en
tw

or
d

co
un

te
rs

an
d

to
w

or
kt

hr
ou

gh
w

or
d

ad
dr

es
se

s
in

de
sc

en
di

ng
or

de
r.

o
i

C
O

N
e
g

a
te

F
or

m
at

:
N

E
G

G

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
—

I
—

I
—

r
t
—

i
—

i
—

r

0
0

0
0

0
1

0
1

0
0

H
I

N
EG

<
0

5
~

)

Op
era

tio
n:

Th
e

da
ta

at
th

e
ad

dr
es

ss
pe

cif
ied

by
G

is
re

pl
ac

ed
by

its
tw

o's
co

m
pl

em
en

t.
T

he
re

su
lt

is
co

m
pa

re
d

to
0:

-M
(G

)
-M

(G
)

-
M

(G
)

:
0

St
at

us
Bi

ts
Af

fec
ted

:
LG

T,
AG

T,
EQ

,O
V

(O
V

se
to

nl
y

w
he

n
op

er
an

d
=

80
00

16
)

E
xa

m
pl

e:
N

EG
5

-(
R

5)
R5

If
R5

co
nt

ain
ed

A3
42

16
,t

hi
si

ns
tru

cti
on

wo
uld

ca
us

e
th

e
R5

co
nt

en
ts

to
ch

an
ge

d
to

5C
B

E1
6

an
d

w
ill

ca
us

e
th

e
L

G
T

an
d

A
G

T
st

at
us

bi
ts

to
be

se
tt

o
1.

Ap
pl

ica
tio

n:
N

EG
is

us
ed

to
fo

rm
th

e
2'

sc
om

pl
em

en
to

f1
6

bi
tn

um
be

rs
.

r
o

C
JI

A
b

so
lu

te
V

a
lu

e

F
o

rm
a

t:
A

B
S

G

0
1

2
3

4
5

6
—

i
—

r
-

7
8

9
1

0
11

1
2

1
3

14
1

5
T

i
i

i
—

i
—

i
i

0
0

0
0

0
1

1
1

0

l
—

r

s
(0

7
—

)

O
pe

ra
tio

n:
T

he
da

ta
at

th
e

ad
dr

es
s

sp
ec

ifi
ed

by
G

is
co

m
pa

re
d

to
0.

T
he

n
th

e
ab

so
lu

te
va

lu
e

o
ft

hi
s

da
ta

is
pl

ac
ed

in
th

e
G

lo
ca

tio
n:

M
(G

):
0

|M
(G

)|
—

M
(G

)

A
B

S

St
at

us
Bi

ts
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,O

V
(O

V
se

to
nl

y
w

he
n

op
er

an
d

-
80

00
,6

)

E
xa

m
pl

e:
A

B
S

@
L

IS
T

(7
)

|M
(R

7
+

LI
ST

)|
•

M
(R

7
+

LI
ST

)

If
th

e
da

ta
at

R
7

+
L

IS
T

is
FF

3C
16

,i
tw

il
lb

e
ch

an
ge

d
to

00
C

41
6

an
d

L
G

T
w

il
lb

e
s
e
t

to
1

.

A
pp

lic
at

io
n:

H
ii

s
in

st
ru

ct
io

n
is

us
ed

to
te

st
th

e
da

ta
in

lo
ca

tio
n

G
an

d
th

en
re

pl
ac

e
th

e
da

ta
by

it
sa

bs
ol

ut
e

va
lu

e.
T

hi
s

co
ul

d
be

us
ed

fo
ru

ns
ig

ne
d

ar
ith

m
et

ic
al

go
ri

th
m

s
su

ch
as

m
ul

tip
lic

at
io

n.

r
o

0
1

0
1

M
u

lt
ip

ly

F
o

rm
a

t:
M

P
Y

G
„

R
d

0
1

2
3

4
5

6
7

8
T

—
I
—

I
—

I
—

I
—

I
—

I
—

I
—

T
0

0
1

1
1

0
0

9
1

0
11

12
13

14
15

t
—

1
—

1
—

1
—

r

T
$

S
(3

)

M
P

Y

Op
er

at
io

n:
T

he
16

bi
td

at
a

at
th

ea
dd

re
ss

de
sig

na
te

d
by

G8
is

m
ul

tip
lie

d
by

th
e

16
bi

td
at

a
co

nt
ai

ne
d

in
th

e
sp

ec
ifi

ed
wo

rk
sp

ac
e

re
gi

ste
r

R.
T

he
un

sig
ne

d
bi

na
ry

pr
od

uc
t(

32
bi

ts
)

is
pl

ac
ed

in
w

or
ks

pa
ce

re
gi

st
er

s
R

an
d

R
+

1:

M
U

L
T

IP
L

IE
R

R
d

R
d+

1

M
U

L
T

IP
L

IC
A

N
D

PR
O

D
U

C
T«

SF
FF

E0
00

1M

0
1

o
>

Af
fe

ct
on

St
atu

s:
N

on
e

Ex
am

pl
e:

M
PY

@
N

EW
,5

If
th

e
da

ta
at

lo
ca

tio
n

N
E

W
is

00
05

16
an

d
R

5
co

nt
ai

ns
00

12
l6

,t
hi

si
ns

tr
uc

tio
n

w
ill

ca
us

e
R

5
to

co
nt

ai
n

00
00

16
an

d
R

6
to

co
nt

ai
n

00
5A

16
.

Ap
pli

ca
tio

n:
M

PY
ca

n
be

us
ed

to
pe

rfo
rm

16
bi

tb
y

16
bi

tb
in

ar
y

m
ul

tip
lic

at
io

n.
Se

ve
ra

ls
uc

h
32

bi
ts

ub
pr

od
uc

ts
ca

n
be

co
m

bi
ne

d
in

su
ch

aw
ay

to
pe

rfo
rm

m
ul

tip
lic

at
io

n
in

vo
lv

in
g

la
rg

er
m

ul
tip

lie
rs

an
d

m
ul

tip
lic

an
ds

su
ch

as
a3

2
bi

tb
y

32
bi

t
m

ul
tip

lic
at

io
n.

53

D
iv

id
e

F
or

m
at

:
D

IV
G

,,R
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

~
T

1
1

1
1

1
1

1
1

1
1

1
1

1
1

—
0

0
1

1
1

1
D

T
$

S

D
IV

(3
)

Op
er

ati
on

:T
he

32
bi

tn
um

be
rc

on
ta

in
ed

in
wo

rk
sp

ac
e

re
gi

ste
rs

Rd
an

d
Rd

+
1

is
di

vid
ed

by
th

e
16

bi
td

ata
co

nt
ai

ne
d

at
th

e
ad

dr
es

ss
pe

cif
ied

by
G8

.T
he

wo
rk

sp
ac

e
re

gi
st

er
Rd

th
en

co
nt

ai
ns

th
e

qu
ot

ie
nt

an
d

w
or

ks
pa

ce
Rd

+
1

co
nt

ai
ns

th
e

16
bi

t
re

m
ai

nd
er

.T
he

di
vi

sio
n

wi
ll

oc
cu

ro
nl

y
if

th
e

di
vi

so
r

at
G

is
gr

ea
te

rt
ha

n
th

e
da

ta
co

nt
ai

ne
d

in
R<

j:

«
V

-i
M

(G
)

Q
U

O
T

IE
N

T
R

E
M

A
IN

D
E

R
D

IV
IS

O
R

D
IV

ID
E

N
D

0
1

0
0

Af
fe

ct
on

St
atu

s:
O

ve
rf

lo
w

(O
V)

is
se

ti
ft

he
di

vi
so

r
is

le
ss

th
an

th
e

da
ta

co
nt

ai
ne

d
in

R
d.

If
O

V
is

se
t,

R
d

an
d

Rd
+

1
ar

e
no

tc
ha

ng
ed

.

E
xa

m
pl

e:
D

IV
@

L
O

C
,2

If
R

2
co

nt
ai

ns
0

an
d

R
3

co
nt

ai
ns

00
0D

16
an

d
th

e
da

ta
at

ad
dr

es
s

L
O

C
is

00
05

16
,

th
is

in
st

ru
ct

io
n

w
il

l
ca

us
e

R
2

to
co

nt
ai

n
00

02
16

an
d

R
3

to
co

nt
ai

n
00

03
16

.O
V

w
o

u
ld

b
e

0
.

Ap
pl

ica
tio

n:
D

IV
pr

ov
id

es
ba

sic
bi

na
ry

di
vi

sio
n

of
a

32
bi

tn
um

be
r

by
a

16
bi

t
n

u
m

b
e
r.

0
1

C
O

C
O

M
P

A
R

IS
O

N
IN

S
T

R
U

C
T

IO
N

S

Th
es

e
in

str
uc

tio
ns

ar
e

us
ed

to
te

st
w

or
ds

or
by

te
sb

y
co

m
pa

ri
ng

th
em

w
ith

a
re

fe
re

nc
e

co
ns

ta
nt

or
w

ith
an

ot
he

rw
or

d
or

by
te

.S
uc

h
op

er
at

io
ns

ar
e

us
ed

in
ce

rta
in

ty
pe

s
of

di
vi

sio
n

al
go

rit
hm

s,
nu

m
be

r
co

nv
er

sio
n,

an
d

in
re

co
gn

iti
on

of
in

pu
t

co
m

m
an

d
or

li
m

it
co

nd
it

io
ns

.

C
o

m
p

a
re

W
o

r
d

s

F
or

m
at

:
C

G
„

G
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
1

—
1

—
1

—

1
0

0
0

—
I
—

—
1

—
1

—
r
—

D

—
1

—
1

1
1

S
(8

—
)

O
pe

ra
tio

n:
T

he
2'

sc
om

pl
em

en
t

16
bi

td
at

a
ad

dr
es

se
d

by
G8

is
co

m
pa

re
d

to
th

e
2'

s
co

m
pl

em
en

t
16

bi
td

at
a

ad
dr

es
se

d
by

G
d.

T
he

co
nt

en
ts

o
fb

ot
h

lo
ca

tio
ns

re
m

ai
n

un
ch

an
ge

d. M
(G

.)
:

M
(G

d)

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ

IO O
)

o

E
xa

m
pl

e:
C

@
T

1,
2

T
hi

s
in

st
ru

ct
io

n
ha

st
he

fo
llo

w
in

g
ex

am
pl

e
re

su
lts

:
D

at
a

at
D

at
a

in
R

es
ul

ts
of

C
om

pa
ris

on
u

it
io

n
T

l
R

2
L

G
T

A
G

T
E

Q
F
F
F
F

0
0
0
0

1
0

0

7
F
F
F

0
0
0
0

1
1

0

8
0
0
0

0
0
0
0

1
0

0

8
0
0
0

7
F
F
F

1
0

0

7
F
F
F

7
F
F
F

0
0

1

7
F
F
F

8
0
0
0

0
1

0

Ap
pl

ica
tio

n:
T

he
ne

ed
to

co
m

pa
re

tw
o

w
or

ds
oc

cu
rs

in
su

ch
sy

st
em

fu
nc

tio
ns

as
di

vi
si

on
,

nu
m

be
r

co
nv

er
si

on
,a

nd
pa

tt
er

n
re

co
gn

it
io

n.

IN
)

o
>

C
o

m
p

a
re

B
y
te

s

F
or

m
at

:
C

B
G

„G
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1
0

0
1

T
„

1
1

1

D

1 T
s

1
T

"
"
T

S
(9

)

Op
er

at
io

n:
T

he
2'

sc
om

pl
em

en
t8

bi
tb

yt
e

ad
dr

es
se

d
by

G8
is

co
m

pa
re

d
to

th
e

2'
s

co
m

pl
em

en
t8

bi
tb

yt
e

ad
dr

es
se

d
by

G
d:

M
B

(G
.)

:
M

B
(G

d)

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,O

P

O
P

(o
dd

pa
rit

y)
is

ba
se

d
on

th
e

nu
m

be
r

of
bi

ts
in

th
e

so
ur

ce
by

te
.

E
xa

m
pl

e:
C

B
1,

*2

w
ith

th
e

ty
pi

ca
lr

es
ul

ts
of

(a
ss

um
in

g
R2

ad
dr

es
se

sa
n

od
d

by
te

):

C
B

o
>

r
o

R
es

ul
ts

of
C

om
pa

ris
on

R
1

da
ta

M
(R

2)
D

at
a

L
G

T
A

G
T

E
Q

O
P

F
F

F
F

F
F

O
O

1
0

0
7

F
0

0
F

F
O

O
1

1
0

8
0

0
0

F
F

0
0

1
0

0
8

0
0

0
F

F
Z

E
1

0
0

7
F

0
0

0
0

7
F

0
0

1

T
h

e
un

de
rl

in
ed

en
tr

ie
s

in
di

ca
te

th
e

by
te

ad
dr

es
se

d.

Ap
pl

ica
tio

n:
In

ca
se

sw
he

re
8

bi
to

pe
ra

tio
ns

ar
e

re
qu

ire
d,

C
B

pr
ov

id
es

a
m

ea
ns

of
pe

rfo
rm

in
g

by
te

co
m

pa
ris

on
s

fo
r

sp
ec

ia
lc

on
ve

rs
io

n
an

d
re

co
gn

iti
on

pr
ob

le
m

s.

IV
)

o
>

C
O

C
o

m
p

a
re

Im
m

ed
ia

te

R
vV

al
i

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

C
I

F
or

m
at

:
C

I
R

,V
a

lu
e

t
—

i
—

i
—

i
—

i
—

r
.

0
0

0
0

0
0

1
0

1
0

0
0

-
l
—

i
—

r

R
(0

2
8

0
+

R
)

0
<

R
<

1
5

Op
er

at
io

n:
C

Ic
om

pa
re

st
he

sp
ec

ifi
ed

w
or

ks
pa

ce
re

gi
ste

r
co

nt
en

ts
to

th
e

va
lu

e
co

nt
ai

ne
d

w
or

d
im

m
ed

ia
te

ly
fo

llo
w

in
g

di
e

in
st

ru
ct

io
n:

R
:

V
a

lu
e

St
at

us
Bi

ts
Af

fe
ct

ed
:

LG
T,

AG
T,

EQ

E
xa

m
pl

e:
C

I
9,

>
F

33
0

If
R9

co
nt

ai
ns

21
83

16
,t

he
eq

ua
l(

EQ
)a

nd
lo

gi
ca

lg
re

at
er

th
an

(L
G

T)
bi

ts
wi

ll
be

0
an

d
ar

ith
m

et
ic

gr
ea

te
r

th
an

(A
G

T
)

w
il

lb
e

se
tt

o
1.

Ap
pli

ca
tio

n:
CI

is
us

ed
to

te
st

da
ta

to
se

e
if

sy
ste

m
or

pr
og

ra
m

lim
its

ha
ve

be
en

m
et

or
ex

ce
ed

ed
or

to
re

co
gn

iz
e

co
m

m
an

d
w

or
ds

.

2
C

o
m

p
a

re
O

n
e
s

C
o

rr
e
sp

o
n

d
in

g

F
or

m
at

:
C

O
C

G
$t

R

0
1

2
3

4
5

6
7

8
9

1
0

11
12

13
14

15
T

—
i
—

r
—

i
—

i
—

I
—

i
—

i
—

i
—

I
—

i
—

I
—

i
—

r
—

t

0
0

1
0

0
0

D
T

$
S

(2
)

C
O

C

O
pe

ra
tio

n:
T

he
da

ta
in

th
e

lo
ca

tio
n

ad
dr

es
se

d
by

G
sa

ct
as

a
m

as
k

fo
rt

he
bi

ts
to

be
te

st
ed

in
w

or
ks

pa
ce

re
gi

st
er

R
.T

ha
t

is
,o

nl
y

th
e

bi
t

po
si

tio
n

th
at

co
nt

ai
n

on
es

in
th

e
G

8
da

ta
w

ill
be

ch
ec

ke
d

in
R

.T
he

n,
if

R
co

nt
ai

ns
on

es
in

al
lt

he
bi

tp
os

iti
on

s
se

le
ct

ed
by

th
e

G8
da

ta
,t

he
eq

ua
l

(E
Q

)
st

at
us

bi
tw

il
lb

e
se

tt
o

1.

St
at

us
B

its
A

ffe
ct

ed
:

E
Q

E
xa

m
pl

e:
C

O
C

@
T

E
ST

B
IT

,8

If
R

8
co

nt
ai

ns
E3

06
™

an
d

lo
ca

tio
n

T
E

S
T

B
IT

co
nt

ai
ns

C
10

21
6,

T
E

ST
B

IT
M

a
sk

=
1

1
0

0
0

0
0

1
0

0
0

0
0

0
1

0
R

8
=

H
1

0
0

0
1

1
0

0
0

0
01

10

eq
ua

l(
E

Q
)

w
ou

ld
be

se
tt

o
1

si
nc

e
ev

er
yw

he
re

th
e

te
st

m
as

k
da

ta
co

nt
ai

ns
a

1
(u

nd
er

lin
ed

po
si

tio
ns

),
R

8
al

so
co

nt
ai

ns
a

1.

A
pp

lic
at

io
n:

C
O

C
is

us
ed

to
se

le
ct

iv
el

y
te

st
gr

ou
ps

o
fb

it
st

o
ch

ec
k

th
e

st
at

us
o

fc
er

ta
in

su
b-

sy
st

em
s

or
to

ex
am

in
e

ce
rt

ai
n

as
pe

ct
s

o
fd

at
a

w
or

ds
.

8

C
om

pa
re

Z
er

o
es

C
o

rr
es

p
o

n
d

in
g

10
11

12
13

14
15

F
or

m
at

:
C

Z
C

G
„

R

0
1

2
3

4
5

6
7

8
9

i
i

i
i

l

0
0

1
0

0
1

1
1

1

0

i T
s

1
1

1

S
(2

—
)

C
Z

C

Op
er

ati
on

:T
he

da
ta

lo
ca

ted
in

th
e

ad
dr

es
ss

pe
cif

ied
by

G8
ac

ta
sa

m
as

k
for

th
e

bi
ts

to
be

te
ste

d
in

th
e

sp
ec

ifi
ed

wo
rk

sp
ac

e
re

gi
ste

r
R.

Th
at

is,
on

ly
th

e
bi

tp
os

iti
on

st
ha

tc
on

ta
in

on
es

in
th

e
G8

da
ta

ar
e

th
e

bi
tp

os
iti

on
s

to
be

ch
ec

ke
d

in
R

.T
he

n
if

R
co

nt
ai

ns
ze

ro
es

in
al

lt
he

se
le

ct
ed

bi
tp

os
iti

on
s,

th
e

eq
ua

l(
EQ

)
sta

tu
s

bi
tw

ill
be

se
tt

o
1.

St
at

us
B

its
A

ffe
ct

ed
:

EQ

E
xa

m
pl

es
:

C
Z

C
@

TE
ST

B
IT

,8

If
th

eT
ES

TB
IT

lo
ca

tio
n

co
nt

ai
ns

th
e

va
lu

e
C1

02
16

an
d

th
e

R8
loc

ati
on

co
nta

ins
23

01
16

>
T

E
ST

B
IT

D
at

a=
11

00
00

01
00

00
00

10
R

8
=

0
0

1
0

0
0

1
1

0
0

0
0

00
01

X

th
e

eq
ua

ls
ta

tu
s

bi
tw

ou
ld

be
re

se
tt

o
ze

ro
sin

ce
no

ta
ll

th
e

bi
ts

of
R8

(n
ot

e
th

e
X

po
si

tio
n)

ar
e

ze
ro

in
th

e
po

si
tio

ns
th

at
th

e
T

E
S

T
B

IT
da

ta
co

nt
ai

ns
on

es
.

A
pp

lic
at

io
n:

Si
m

il
ar

to
th

e
C

O
C

in
st

ru
ct

io
n.

o
>

L
O

G
IC

IN
S

T
R

U
C

T
IO

N
S

T
he

lo
gi

c
in

str
uc

tio
ns

al
lo

w
th

e
pr

oc
es

so
r

to
pe

rfo
rm

bo
ol

ea
n

lo
gi

c
fo

r
th

e
sy

ste
m

.
Si

nc
e

A
N

D
,O

R
,I

N
V

E
R

T
,

an
d

E
xc

lu
si

ve
O

R
(X

O
R

)a
re

av
ai

la
bl

e,
an

y
bo

ol
ea

n
fu

nc
tio

n
ca

n
be

pe
rf

or
m

ed
on

sy
st

em
da

ta
.

AN
D

Im
me

dia
te

A
N

D
I

F
o

rm
a

t:
M

ID
I

R
,V

a
lu

e
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
-
i
—

i
—

r
—

i
—

i
—

I
—

I
—

i
—

r

0
0

0
0

0
0

1
0

0
1

0
0

I
1

R

(0
2

4
0

+
R

)

0
<

R
^
1

5

Op
er

ati
on

:T
he

bi
ts

of
th

e
sp

ec
ifi

ed
wo

rk
sp

ac
e

re
gi

ste
r

R
ar

e
lo

gi
ca

lly
AN

D
ed

w
ith

th
e

co
rr

es
po

nd
in

g
bi

ts
of

th
e

16
bi

tb
in

ar
y

co
ns

ta
nt

va
lu

e
co

nt
ai

ne
d

in
th

e
wo

rd
im

m
ed

ia
te

ly
fo

llo
wi

ng
th

e
in

str
uc

tio
n.

T
he

16
bi

tr
es

ul
ti

sc
om

pa
re

d
to

ze
ro

an
d

is
pl

ac
ed

in
th

e
re

gi
st

er
R

:
R

A
N

D
V

a
lu

e
•R

R
A

N
D

V
a

lu
e

:
0

Re
ca

ll
th

at
th

e
A

N
D

op
er

at
io

n
re

su
lts

in
1

on
ly

if
bo

th
in

pu
ts

ar
e

1.

o
>

St
at

us
Bi

ts
Af

fe
ct

ed
:

LG
T,

AG
T,

EQ

E
xa

m
pl

e:
AN

D
I

0,
>

6D
03

If
w

or
ks

pa
ce

re
gi

st
er

0
co

nt
ai

ns
D

2A
B1

6.
th

en
(D

2A
B)

A
N

D
(6

D
03

)
is

40
03

16
:

V
a

lu
e

=
0

1
1

0
1

1
0

1
0

0
0

0
0

0
1

1
R

0
=

»
1

1
0

1
0

0
1

0
1

0
1

0
1

0
1

1
R

0
A

N
D

V
al

ue
=

01
00

00
00

00
00

00
11

-
40

03
16

T
hi

s
va

lu
e

is
pl

ac
ed

in
R

0.
T

h
e

L
G

T
an

d
A

G
T

st
at

us
bi

ts
ar

e
se

tt
o

1.

A
pp

lic
at

io
n:

A
N

D
I

is
us

ed
to

ze
ro

al
lb

it
s

th
at

ar
e

no
t

o
fi

nt
er

es
t

an
d

le
av

e
th

e
se

le
ct

ed
bi

ts
(th

os
e

w
ith

on
es

in
Va

lu
e)

un
ch

an
ge

d.
Th

is
ca

n
be

us
ed

to
te

st
sin

gl
e

bi
ts

or
iso

la
te

po
rti

on
s

of
th

e
w

or
d,

su
ch

as
a

fo
ur

bi
tg

ro
up

.

o
>

0
9

O
R

Im
m

e
d

ia
te

F
or

m
at

:
O

R
I

R
,V

a
lu

e
0

1
2

3
4

5
6

7
6

9
10

11
12

13
14

15

0
0

0
0

0
0

1
0

0
1

1
0

i
i

i

R

O
RI

(0
2

6
0

+
R

)

0
^
R

*
1

5

Op
er

at
io

n:
T

he
bi

ts
of

th
es

pe
ci

fie
d

w
or

ks
pa

ce
re

gi
st

er
R

ar
e

O
Re

d
w

ith
th

e
co

rr
es

po
nd

in
g

bi
ts

of
th

e
16

bi
tb

in
ar

y
co

ns
ta

nt
co

nt
ai

ne
d

in
th

e
wo

rd
im

m
ed

ia
te

ly
fo

llo
w

in
g

in
str

uc
tio

n.
T

he
16

bi
tr

es
ul

ti
sp

la
ce

d
in

R
an

d
is

co
m

pa
re

d
to

ze
ro

:
R

O
R

V
a

lu
e

•R
R

O
R

V
a

lu
e

:
0

Re
ca

ll
th

at
th

e
O

R
op

er
at

io
n

re
su

lts
in

a
1

if
ei

th
er

of
th

e
in

pu
ts

is
a

1.
St

at
us

B
its

A
ffe

ct
ed

:
LG

T,
AG

Tf
EQ

E
xa

m
pl

e:
O

RI
5,

>
6D

03

If
R

5
co

nt
ai

ne
d

D
2A

B
j6

,t
he

n
R

S
w

il
lb

e
ch

an
ge

d
to

F
F

A
B

^:
R

5
-1

1
0

1
0

0
1

0
1

0
1

0
1

0
1

1
V

a
lu

e
=

0
1

1
0

1
1

0
1

0
0

0
0

0
0

1
1

11
11

11
11

1
0

1
0

1
0

1
1

-F
F

A
B

,,
«

R
5

0
R

V
a

lu
e

w
it

h
L

G
T

be
in

g
se

t
to

1.

Ap
pl

ic
at

io
n:

U
se

d
to

im
pl

em
en

tt
he

O
R

lo
gi

c
in

th
e

sy
st

em
.

C
O

E
x
c
lu

si
v
e

O
R

F
or

m
at

:
X

O
R

Gs
R<

j
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
—

1
—

1
—

1
—

1
—

1
—

0
0

1
0

1
0

1
T

-
l

0
T

,

i
i

r

S

X
O

R

(2
-

Op
er

ati
on

:T
he

ex
cl

us
iv

e
O

R
is

pe
rfo

rm
ed

be
tw

ee
n

co
rr

es
po

nd
in

g
bi

ts
of

th
e

da
ta

ad
dr

es
se

d
by

G8
an

d
th

e
co

nt
en

ts
of

wo
rk

sp
ac

e
re

gi
ste

r
R<

|.T
he

re
su

lt
is

pl
ac

ed
in

w
or

ks
pa

ce
re

gi
st

er
R^

an
d

is
co

m
pa

re
d

to
0:

M
(G

.)
X

O
R

R
d

-R
d

M
(G

.)
X

O
R

R
d

:0

St
at

us
B

its
Af

fe
ct

ed
:

LG
T,

AG
T,

EQ

E
xa

m
pl

e:
XO

R
@

C
H

A
N

G
E

,2

If
lo

ca
tio

n
C

H
AN

G
E

co
nt

ai
ns

6D
03

16
an

d
R2

co
nt

ai
ns

D
2A

A1
6,

R2
wi

ll
be

ch
an

ge
d

to
B

F
A

91
6:

C
H

A
N

G
E

D
a

ta
=

0
1

1
0

1
1

0
1

0
0

0
0

0
0

1
1

R
2

-1
1

0
1

0
0

1
0

1
0

1
0

1
0

1
0

M
(C

H
A

N
G

E
)

XO
R

R
2=

10
11

11
11

10
10

10
01

'=
BF

A9
lfl

an
d

th
e

L
G

T
sta

tu
s

bi
tw

ill
be

se
tt

o
1.

N
ot

e
th

at
th

e
ex

cl
us

iv
e

O
R

op
er

at
io

n
wi

ll
re

su
lt

in
a

1
if

on
ly

on
e

o
ft

he
in

pu
ts

is
a

1.

Ap
pl

ica
tio

n:
XO

R
is

us
ed

to
im

pl
em

en
tt

he
ex

cl
us

iv
e

O
R

lo
gi

c
fo

r
th

e
sy

ste
m

.

r
o

In
v
e
r
t

F
o

rm
a

t:
IN

V
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

(0
5

)
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

0
1

0
1

T
s

1
r

i

s

IN
V

Op
er

ati
on

:T
he

bi
ts

of
th

e
da

ta
ad

dr
es

se
d

by
G

ar
e

re
pl

ac
ed

by
th

ei
rc

om
pl

em
en

t.
Th

e
re

su
lt

is
co

m
pa

re
d

to
0

an
d

is
st

or
ed

at
th

e
G

lo
ca

tio
n:

M
(G

)
•

M
(G

)
W

(S
):

0

St
at

us
B

its
Af

fe
cte

d:
LG

T,
AG

T,
EQ

E
xa

m
pl

e:
IN

V
11

If
R

ll
co

nt
ai

ns
00

FF
16

,t
he

in
st

ru
ct

io
n

w
ou

ld
ch

an
ge

th
ec

on
te

nt
s

to
FF

00
16

,c
au

sin
g

th
e

L
G

T
st

a
tu

s
b

it
to

se
t

to
1.

Ap
pli

ca
tio

n:
IN

V
is

us
ed

to
fo

rm
th

e
TS

co
m

pl
em

en
to

f1
6

bi
tb

in
ar

y
nu

m
be

rs
,o

rt
o

in
ve

rt
sy

st
em

da
ta

.

C
le

a
r

F
o

rm
a

t:
C

L
R

G

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
0

0
0

0
1

0
0

1
1

T
s

S

C
L

R

(0
4

)

Op
er

ati
on

:0
00

0i
6

is
pl

ac
ed

in
th

e
m

em
or

y
lo

ca
tio

n
sp

ec
ifi

ed
by

G
.

00
00

l6
-M

(G
)

A
ff

ec
to

n
St

at
us

:
N

on
e

E
xa

m
pl

e:
C

L
R

*1
1

w
ou

ld
cle

ar
th

ec
on

te
nt

s
of

th
e

lo
ca

tio
n

ad
dr

es
se

d
by

th
e

co
nt

en
ts

of
R

l1
,t

ha
ti

s:
00

00
16

-M
(R

1
1

)

Ap
pli

ca
tio

n:
C

LR
is

us
ed

to
se

tp
ro

bl
em

ar
gu

m
en

ts
to

0
an

d
to

in
iti

al
ize

m
em

or
y

lo
ca

tio
ns

to
ze

ro
du

rin
g

sy
ste

m
sta

rt-
up

op
er

at
io

ns
.

IV
)

S
e
t

T
o

O
n

e

F
o

rm
a

t:
S

E
T

O
G

0
1

2
3

4
5

6
7

t
—

i
—

r

9
10

11
12

13
14

15
t—

i—
i—

i—
i—

i—
i—

t—
i—

I
—

i—
I
—

i—
•
—

r
0

0
0

0
0

1
1

1
0

0
T

$
S

(0
7

)

Op
er

at
io

n:
FF

FF
16

is
pl

ac
ed

in
th

e
m

em
or

y
lo

ca
tio

n
sp

ec
ifi

ed
by

G:
FF

FF
16

-

A
ffe

ct
on

St
at

us
:

N
on

e

E
xa

m
pl

e:
SE

T
O

11
w

o
u

ld
ca

u
se

al
l

b
it

s
o

f
R

l
1

to
b

e
1.

A
pp

lic
at

io
n:

Si
m

ila
r

to
C

L
R

SE
T

O

M
(G

)

3

S
e
t

O
n

es
C

o
rr

es
p

o
n

d
in

g

F
or

m
at

:
SO

C
G

„G
d

0
1

2
3

4
5

6
7

8
9

1
0

11
12

13
14

15

1
1

1
0

I
i

i
i

0
T

,
1

1
1

S
(E

)

SO
C

Op
er

ati
on

:T
hi

s
in

str
uc

tio
n

pe
rfo

rm
s

th
e

O
R

op
er

at
io

n
be

tw
ee

n
co

rr
es

po
nd

in
g

bi
ts

of
th

e
da

ta
ad

dr
es

se
d

by
G8

an
d

th
e

da
ta

ad
dr

es
se

d
by

G
d.

T
he

re
su

lt
is

co
m

pa
re

d
to

0
an

d
is

pl
ac

ed
in

th
e

G
d

lo
ca

tio
n:

M
(G

g)
O

R
M

(G
d)

-M
(G

d
)

M
(G

.)
O

R
M

(G
d

):
0

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ

E
xa

m
pl

e:
SO

C
3,

@
N

E
W

If
lo

ca
ti

on
N

E
W

co
nt

ai
ns

A
A

A
A

16
an

d
R

3
co

nt
ai

ns
F

F
00

,6
,t

he
co

nt
en

ts
at

lo
ca

ti
on

N
E

W
w

ill
be

ch
an

ge
d

to
FF

AA
16

an
d

th
e

L
G

T
st

at
us

bi
tw

il
lb

e
se

tt
o

1.

A
pp

lic
at

io
n:

P
ro

vi
de

s
th

e
O

R
fu

nc
tio

n
be

tw
ee

n
an

y
tw

o
w

or
ds

in
m

em
or

y.

5!

S
et

O
n

es
C

or
re

sp
on

di
ng

,
B

y
te

F
or

m
at

:
S

O
C

B
G

„
G

d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1
1

"
"
"
l

1
1

1
1

1
1

1
1

D
T

s

I
i

i

S
(F

)

SO
C

B

O
pe

ra
tio

n:
T

he
lo

gi
ca

l
O

R
is

pe
rf

or
m

ed
be

tw
ee

n
co

rr
es

po
nd

in
g

bi
ts

o
ft

he
by

te
ad

dr
es

se
d

by
G

sa
nd

th
e

by
te

ad
dr

es
se

d
by

G
d

w
it

h
th

e
re

su
lt

co
m

pa
re

d
to

0
an

d
pl

ac
ed

in
lo

ca
ti

on
G

d:

M
B

(G
.)

O
R

M
B

(G
d)

-M
B

(G
d

)
M

B
(G

.)
O

R
M

B
(G

d
):

0

St
at

us
B

its
A

ffe
ct

ed
:

L
G

T
,A

G
T,

EQ
,O

P

E
xa

m
pl

e:
SO

C
B

5,
8

If
R

5
co

nt
ai

ns
F0

13
i6

an
d

R
8

co
nt

ai
ns

A
A

24
16

,t
he

m
os

ts
ig

ni
fic

an
tb

yt
e

o
fR

8
w

il
lb

e
ch

an
ge

d
to

FA
16

so
th

at
R

8
w

il
lc

on
ta

in
F

A
24

i6
an

d
th

e
L

G
T

st
at

us
bi

tw
il

lb
e

se
tt

o
1.

A
pp

lic
at

io
n:

T
he

SO
C

B
pr

ov
id

es
th

e
lo

gi
ca

lO
R

fu
nc

tio
n

on
sy

st
em

by
te

s.

3

S
e
t
to

Z
er

o
es

C
o

rr
es

p
o

n
d

in
g

F
or

m
at

:
SZ

C
G

„G
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
I
—

0
1

0
0

T
,

S
Z

C

(4
)

Op
er

ati
on

:T
he

da
ta

ad
dr

es
se

d
by

G8
fo

rm
s

a
m

as
k

fo
r

th
is

op
er

at
io

n.
T

he
bi

ts
in

th
e

de
sti

na
tio

n
da

ta
(a

dd
re

ss
ed

by
Gd

)t
ha

tc
or

re
sp

on
d

to
th

eo
ne

bi
ts

of
th

es
ou

rc
e

da
ta

(a
dd

re
ss

ed
by

G8
)a

re
cl

ea
re

d.
T

he
re

su
lt

is
co

m
pa

re
d

to
ze

ro
an

d
is

sto
re

d
in

th
e

Gd
lo

ca
ti

o
n

. M
(G

7)
AN

D
M

(G
d)

*M
(G

d)
M

(S
T)

AN
D

M
(G

<)
:0

St
at

us
Bi

ts
Af

fe
ct

ed
:

LG
T,

AG
T,

EQ

E
xa

m
pl

e:
SZ

C
5,

3

If
R

5
co

nt
ai

ns
6D

03
16

an
d

R
3

co
nt

ai
ns

D
2A

A
l6

,t
hi

s
in

st
ru

ct
io

n
w

il
lc

au
se

th
e

R
3

co
nt

en
ts

to
ch

an
ge

to
92

A8
16

:
R

5
(M

as
k)

-
0

1
1

0
1

J0
1

0
0

0
0

0
0

U
R

3
-1

1
0

1
0

0
1

0
1

0
1

0
1

0
1

0
R

es
u

lt
-1

0
0

1
0

0
1

0
1

0
1

0
1

0
0

0
-

9
2

A
8

„

w
it

h
th

e
L

G
T

st
at

us
b

it
se

t.
T

h
e

un
de

rl
in

ed
en

tr
ie

s
in

di
ca

te
w

hi
ch

bi
ts

ar
e

to
be

cl
ea

re
d.

Ap
pl

ica
tio

n:
SZ

C
al

lo
ws

th
e

pr
og

ra
m

m
er

to
se

le
ct

iv
el

y
cl

ea
rb

its
of

da
ta

w
or

ds
.F

or
ex

am
pl

e,
w

he
n

an
in

te
rr

up
th

as
be

en
se

rv
ic

ed
,t

he
in

te
rr

up
tr

eq
ue

st
bi

tc
an

be
cl

ea
re

d
by

us
in

g
th

e
SZ

C
in

st
ru

ct
io

n.

r
o 3

S
et

to
Z

er
o

es
C

o
rr

es
p

o
n

d
in

g
.

B
y

te
s

F
or

m
at

:
S

Z
C

B
G

,G
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

(5
)

1
1

1

0
1

0
1

—
1

-
1

1
-

0

—
1

—
i

1
1

S

S
Z

C
B

O
pe

ra
tio

n:
T

he
by

te
ad

dr
es

se
d

by
G8

w
ill

pr
ov

id
e

a
m

as
k

fo
rc

le
ar

in
g

ce
rta

in
bi

ts
of

th
e

by
te

ad
dr

es
se

d
by

G
d.

T
he

bi
ts

in
th

e
G

d
by

te
th

at
w

ill
be

cl
ea

re
d

ar
e

th
e

bi
ts

th
at

ar
e

on
ei

n
th

e
G8

by
te

.T
he

re
su

lt
is

co
m

pa
re

d
to

ze
ro

an
d

is
pl

ac
ed

in
th

e
Gd

by
te

:
M

B
(G

J
A

N
D

M
B

(G
d)

-M
B

(G
d

)
M

B
(G

.)
A

N
D

M
B

(G
d

):
0

St
at

us
Bi

ts
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,O

P

Ex
am

pl
e:

SZ
C

B
@

B
IT

S,
@

TE
ST

If
lo

ca
tio

n
B

IT
S

is
an

od
d

ad
dr

es
s

w
hi

ch
lo

ca
te

s
th

e
da

ta
18

F0
16

>
an

d
lo

ca
tio

n
T

E
ST

co
nt

ai
ns

an
ev

en
ad

dr
es

sw
hi

ch
lo

ca
te

st
he

da
ta

A
A

24
16

>
th

e
in

st
ru

ct
io

n
w

ill
cl

ea
rt

he
fi

rs
t

fo
ur

bi
ts

of
T

E
ST

da
ta

ch
an

gi
ng

it
to

0A
24

16
.

Ap
pl

ica
tio

n:
Pr

ov
id

es
se

le
ct

iv
e

cl
ea

rin
g

of
bi

ts
of

sy
ste

m
by

te
s.

I\
3 3

S
H

IF
T

IN
S

T
R

U
C

T
IO

N
S

T
he

se
in

st
ru

ct
io

ns
ar

e
us

ed
to

pe
rf

or
m

si
m

pl
e

bi
na

ry
m

ul
tip

lic
at

io
n

an
d

di
vi

si
on

on
w

or
ds

in
m

em
or

y
an

d
to

re
ar

ra
ng

e
th

e
lo

ca
tio

n
of

bi
ts

in
th

e
w

or
d

in
or

de
r

to
ex

am
in

e
a

gi
ve

n
bi

tw
it

h
th

e
ca

rr
y

(C
)

st
at

us
bi

t.

S
h

if
t

R
ig

h
t

A
r
it

h
m

e
ti

c

F
or

m
at

:
S

R
A

R
,C

n
t

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
I
—

i
—

i
—

i
—

i
—

I
—

i
—

I
—

I
—

i
—

i
—

I
—

i
—

r

0
0

0
0

1
0

0
0

C
R

S
R

A

(0
8

—
)

O
pe

ra
tio

n:
T

he
co

nt
en

ts
of

th
e

sp
ec

ifi
ed

w
or

ks
pa

ce
re

gi
st

er
R

ar
e

sh
ift

ed
ri

gh
tC

nt
tim

es
,f

ill
in

g
th

e
va

ca
te

d
bi

tp
os

iti
on

w
it

h
th

e
si

gn
(m

os
ts

ig
ni

fic
an

tb
it

)b
it:

T
he

sh
ift

ed
nu

m
be

r
is

co
m

pa
re

d
to

ze
ro

: 0
1

5

1 •

C

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,C

t
o 3

Nu
mb

er
of

Sh
ifts

:C
nt

(n
um

be
r

co
nt

ai
ne

d
in

th
e

in
str

uc
tio

n
fro

m
0

to
15

)s
pe

cif
ies

th
e

nu
m

be
ro

fb
it

s
sh

if
te

d
un

le
ss

C
nt

is
ze

ro
in

w
hi

ch
ca

se
th

e
sh

if
tc

ou
nt

is
ta

ke
n

fr
om

th
e

fo
ur

lea
st

sig
ni

fic
an

tb
its

of
wo

rk
sp

ac
e

re
gi

ste
r0

.I
fb

ot
h

Cn
ta

nd
th

es
e

fo
ur

bi
ts

ar
e

0,
a

16
bi

tp
os

iti
on

sh
if

ti
s

pe
rf

or
m

ed
.

E
xa

m
pl

e:
SR

A
5,

2
Sh

ift
R

5
2

bi
tp

os
iti

on
s

rig
ht

S
R

A
7

,0

If
R0

lea
st

fou
r

bi
ts

co
nt

ai
n

61
6,

th
en

th
e

se
co

nd
in

str
uc

tio
n

wi
ll

ca
us

e
re

gi
ste

r7
to

be
sh

ift
ed

6
bi

tp
os

iti
on

s
(C

nt
in

th
at

in
st

ru
ct

io
n

is
0)

:

If
R

7
B

ef
or

e
Sh

if
t

-1
0

1
1

10
10

10
10

10
10

=
BA

AA
1C

R
7

A
ft

er
Sh

if
t

=
1

1
1

1
1

1
1

0
1

1
1

0
1

0
1

0
-

F
E

E
A

*
If

R
5

B
ef

or
e

Sh
if

t
-=

01
01

01
01

01
01

01
01

«5
55

51
6

R
5

A
ft

er
Sh

if
t

-
00

01
01

01
01

01
01

01
-1

55
51

6
A

ft
er

th
e

R
7

sh
if

tt
he

LG
T

w
ou

ld
be

se
t,

an
d

C
ar

ry
-

1
A

ft
er

th
e

R
5

sh
if

tL
G

T
an

d
A

G
T

w
ou

ld
be

se
ta

nd
C

ar
ry

-
0

Ap
pl

ica
tio

n:
SR

A
pr

ov
id

es
bi

na
ry

di
vi

sio
n

by
2C

nt.

S
h

if
t

L
e
ft

A
ri

th
m

e
ti

c

F
or

m
at

:
S

L
A

R
,C

n
t

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
r
—

i—
i—

i—
i—

i—
i—

i—
i—

r
—

t

0
0

0
0

1
0

1
0

S
L

A

(0
A

-)

Op
er

ati
on

:T
he

co
nt

en
ts

of
wo

rk
sp

ac
e

re
gi

ste
r

R
ar

e
sh

ift
ed

le
ft

C
nt

tim
es

(o
ri

fC
nt

=
0,

th
en

um
be

ro
ft

im
es

sp
ec

ifi
ed

by
th

e
le

as
tf

ou
r

bi
ts

of
R0

)
fil

lin
g

th
e

va
ca

te
d

po
sit

io
ns

w
ith

ze
ro

es
.T

he
ca

rr
y

co
nt

ai
ns

th
e

va
lu

e
of

th
e

la
st

bi
ts

hi
fte

d
ou

tt
o

th
e

le
ft

an
d

th
e

sh
if

te
d

nu
m

be
r

is
co

m
pa

re
d

to
ze

ro
:

0
1

5

c
R

St
at

us
B

its
Af

fe
ct

ed
:

LG
T,

AG
T,

EQ
,C

,O
V

E
xa

m
pl

e:
SL

A
10

,5

If
wo

rk
sp

ac
e

re
gi

ste
r

10
co

nt
ai

ns
13

S7
l6

th
e

in
str

uc
tio

n
w

ou
ld

ch
an

ge
it

sc
on

te
nt

s
to

6A
E0

16
,c

au
sin

g
th

ea
rit

hm
et

ic
gr

ea
te

rt
ha

n
(A

G
T)

,l
og

ica
lg

re
at

er
th

an
(L

G
T)

,a
nd

ov
er

flo
w

(O
V)

bi
ts

to
se

t.
C

ar
ry

w
ou

ld
be

ze
ro

,t
he

va
lu

e
of

th
el

as
tb

it
sh

ift
ed

.

Ap
pli

ca
tio

n:
SL

A
pe

rfo
rm

sb
in

ar
y

m
ul

tip
lic

at
io

n
by

2C
nt

IN
)

0
0

S
h

if
t

R
ig

h
t

L
o

g
ic

a
l

F
or

m
at

:
S

R
L

R
,C

n
t

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
0

0
0

1
0

0
1

1
1

I

C

1
1

T

R
(0

9
-)

S
R

L

Op
er

ati
on

:T
he

co
nt

en
ts

of
th

e
wo

rk
sp

ac
e

re
gi

ste
r

sp
ec

ifi
ed

by
R

ar
e

sh
ift

ed
rig

ht
Cn

t
tim

es
(o

ri
fC

nt
=

0,
th

e
nu

m
be

ro
ft

im
es

sp
ec

ifi
ed

by
th

e
lea

st
fo

ur
bi

ts
or

R0
)f

ill
in

g
in

th
e

va
ca

te
d

po
si

tio
ns

w
ith

ze
ro

es
.T

he
ca

rr
y

co
nt

ai
ns

th
e

va
lu

e
of

th
e

la
st

bi
ts

hi
fte

d
ou

t
to

th
e

rig
ht

an
d

th
e

sh
ift

ed
nu

m
be

r
is

co
m

pa
re

d
to

ze
ro

:

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,C

E
xa

m
pl

e:
SR

L
0,

3

If
RO

co
nt

ai
ne

d
FF

EF
16

,t
he

co
nt

en
ts

wo
ul

d
be

co
m

e
1F

FD
16

w
ith

th
e

A
G

T,
LG

T,
an

d
C

b
it

s
se

t
to

1:

R
0B

ef
or

eS
hi

ft
=

11
11

11
11

11
10

11
11

=F
FE

F1
6

R
O

A
fte

rS
hi

ft
=

00
01

11
11

11
11

11
01

=1
FF

D
16

Ap
pl

ic
at

io
n:

P
er

fo
rm

s
bi

na
ry

di
vi

si
on

by
2C

nt

8
S

h
if

t
R

ig
h

t
C

ir
c
u

la
r

F
or

m
at

:
S

R
C

R
,C

n
t

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

I
I

1
1

1
I

I
1

—
I

1
1

—
I

1
1

I
—

0
0

0
0

1
0

1
1

C
R

S
R

C

(Q
B

-)

O
pe

ra
tio

n:
O

n
ea

ch
sh

ift
th

e
bi

ts
hi

fte
d

ou
to

fb
it

15
is

sh
ift

ed
ba

ck
in

to
bi

t0
.C

ar
ry

co
nt

ai
ns

th
e

va
lu

eo
ft

he
la

st
bi

ts
hi

ft
ed

an
d

th
e

sh
if

te
d

nu
m

be
r

is
co

m
pa

re
d

to
0.

T
h

e
nu

m
be

ro
fs

hi
fts

to
be

pe
rf

or
m

ed
is

th
e

nu
m

be
rC

nt
,o

ri
fC

nt
=

0,
th

e
nu

m
be

r
co

nt
ai

ne
d

in
th

e
le

as
ts

ig
ni

fic
an

tf
ou

r
bi

ts
o

fR
0:

0
1

5
I

i

R
C

St
at

us
B

its
A

ffe
ct

ed
:

LG
T,

AG
T,

EQ
,C

E
xa

m
pl

e:
SR

C
2,

7

If
R

2
in

iti
al

ly
co

nt
ai

ns
FF

EF
l6

,t
he

n
af

te
r

th
e

sh
ift

it
w

ill
co

nt
ai

n
D

FF
F1

6
w

ith
L

G
T

an
d

C
se

t
to

1. R
2

B
e
fo

re
S

h
if

t=
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

1
=

F
F

E
F

„
R

2
A

ft
er

S
h

if
t

=
ll

fi
l

11
11

11
11

11
11

=
D

FF
F1

6
Ap

pl
ica

tio
n:

SR
C

ca
n

be
us

ed
to

ex
am

in
e

a
ce

rta
in

bi
ti

n
th

ed
at

a
w

or
d,

ch
an

ge
th

e
lo

ca
tio

n
o

f4
bi

tg
ro

up
s,

or
sw

ap
by

te
s.

8

U
N

C
O

N
D

IT
IO

N
A

L
B

R
A

N
C

H
IN

S
T

R
U

C
T

IO
N

S

Th
es

e
in

str
uc

tio
ns

gi
ve

th
e

pr
og

ra
m

m
er

th
e

ca
pa

bi
lit

y
of

ch
oo

sin
g

to
pe

rfo
rm

th
e

ne
xt

in
str

uc
tio

n
in

se
qu

en
ce

or
to

go
to

so
m

e
ot

he
r

pa
rt

of
th

e
m

em
or

y
to

ge
tt

he
ne

xt
in

str
uc

tio
n

to
be

ex
ec

ut
ed

.T
he

br
an

ch
ca

n
be

a
su

br
ou

tin
e

ty
pe

of
br

an
ch

,i
n

w
hi

ch
ca

se
th

e
pr

og
ra

m
m

er
ca

n
re

tu
rn

to
th

e
po

in
t

fro
m

w
hi

ch
th

e
br

an
ch

oc
cu

rr
ed

.

B
ra

n
c
h

F
o

rm
a

t:
B

G
t

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1
1

1
1

1
1

—
1

—
1

1

0
0

0
0

0
1

0
0

0
1

1 T
,

—
r
—

i
—

i
—

s

B

(0
4

—
)

Op
er

ati
on

:T
he

G8
ad

dr
es

si
sp

la
ce

d
in

th
e

pr
og

ra
m

co
un

te
r,

ca
us

in
g

th
e

ne
xt

in
str

uc
tio

n
to

be
ob

ta
in

ed
fro

m
th

e
lo

ca
tio

n
sp

ec
ifi

ed
by

G
8.

A
ff

ec
to

n
St

at
us

:
N

on
e

E
xa

m
pl

e:
B

*3

If
R3

co
nt

ai
ns

21
CC

i6
,t

he
n

th
e

ne
xt

in
str

uc
tio

n
wi

ll
be

ob
ta

in
ed

fro
m

lo
ca

tio
n

21
CC

,6
.

Ap
pli

ca
tio

n:
Th

is
in

str
uc

tio
n

is
us

ed
to

ju
m

p
to

an
ot

he
r

pa
rt

of
th

e
pr

og
ra

m
wh

en
th

e
cu

rr
en

tt
as

k
ha

s
be

en
co

m
pl

et
ed

.

2
B

ra
n

c
h

a
n

d
L

in
k

F
or

m
at

:
B

L
G

, 2
3

4
5

6
"
1

1
I

I

0
0

0
0

0

7
8

9
1

0
11

1
2

1
3

14
1

5
1

1
1

—
—

r
—

1
0

B
L

(0
6

-)

O
pe

ra
tio

n:
T

he
so

ur
ce

ad
dr

es
s

G8
is

pl
ac

ed
in

th
e

pr
og

ra
m

co
un

te
r

an
d

th
ea

dd
re

ss
of

th
e

in
str

uc
tio

n
fo

llo
w

in
g

th
e

B
L

in
str

uc
tio

n
is

sa
ve

d
in

w
or

ks
pa

ce
re

gi
ste

r
11

.
G

,
-P

C
(O

ld
P

C
)—

-R
1

1

A
ff

ec
to

n
St

at
us

:
N

on
e

E
xa

m
pl

e:
B

L
@

T
R

A
N

As
su

m
e

th
e

B
L

in
str

uc
tio

n
is

lo
ca

te
d

at
32

00
16

an
d

th
e

va
lu

e
as

sig
ne

d
to

T
R

A
N

is
20

00
16

.P
C

w
ill

be
lo

ad
ed

w
it

h
th

e
va

lu
e

20
00

16
(T

R
A

N
)

an
d

R
l1

w
ill

be
lo

ad
ed

w
ith

th
e

va
lu

e
32

02
l6

(o
ld

P
C

va
lu

e)
.

Ap
pl

ica
tio

n:
Th

is
is

a
sh

ar
ed

wo
rk

sp
ac

e
su

br
ou

tin
e

ju
m

p.
Bo

th
th

e
m

ai
n

pr
og

ra
m

an
d

th
e

su
br

ou
tin

e
us

e
th

e
sa

m
e

w
or

ks
pa

ce
re

gi
ste

rs
.T

o
ge

tb
ac

k
to

th
e

m
ai

n
pr

og
ra

m
at

th
e

br
an

ch
po

in
t,

th
e

fo
llo

w
in

g
br

an
ch

in
st

ru
ct

io
n

ca
n

be
us

ed
at

th
e

en
d

o
ft

he
su

br
ou

tin
e:

B
*

1
1

wh
ic

h
ca

us
es

th
e

R
l1

co
nt

en
ts

(o
ld

PC
va

lu
e)

to
be

lo
ad

ed
in

to
th

e
pr

og
ra

m
co

un
te

r.

B
ra

nc
h

an
d

L
o

a
d

W
o

rk
sp

a
ce

P
o

in
te

r

F
or

m
at

:
B

LW
P

G$

,1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
t
—

i
—

i
—

r

0
0
0
0
0
1
0
0
0
0

u
n

B
L

W
P

(0
4

—
)

Op
era

tio
n:

Th
ew

or
ds

pe
cif

ied
by

the
so

ur
ce

G8
is

loa
de

di
nto

the
wo

rks
pa

ce
po

int
er

(W
P)

an
dt

he
ne

xt
wo

rd
in

me
mo

ry
(G8

+
2)

is
loa

de
di

nto
the

pr
og

ra
m

co
un

ter
(P

C)
to

ca
us

et
he

br
an

ch
.T

he
old

wo
rks

pa
ce

po
int

er
is

sto
red

in
the

ne
w

wo
rks

pa
ce

reg
ist

er
13

,
the

old
PC

va
lue

is
sto

red
in

the
ne

w
wo

rks
pa

ce
reg

ist
er

14
,a

nd
the

sta
tus

reg
ist

er
is

sto
re

d
in

ne
w

w
or

ks
pa

ce
re

gi
st

er
15

:
M

(G
.)

M
(G

,+
2)

-
(O

ld
W

P
)-

(O
ld

P
C

)-
(O

ld
S

T
)-

-W
P

—
P

C

—
^
N

e
w

R
1

3
-
^
N

e
w

R
1

4

-•
N

e
w

R
1

5

A
ff

ec
to

n
St

at
us

:
N

on
e

58 CD

E
xa

m
pl

e:
BL

W
P

*3

As
su

m
in

g
th

at
R3

co
nt

ai
ns

21
00

l6
an

d
lo

ca
tio

n
21

00
16

co
nt

ai
ns

05
00

16
an

d
lo

ca
tio

n
21

02
16

co
nt

ai
ns

01
00

16
,t

hi
si

ns
tr

uc
tio

n
ca

us
es

W
P

to
be

lo
ad

ed
w

it
h

05
00

16
an

d
P

C
to

be
lo

ad
ed

w
it

h
01

00
16

.T
he

n,
lo

ca
tio

n
05

1A
16

w
il

lb
e

lo
ad

ed
w

it
h

th
e

ol
d

W
P

va
lu

e,
th

e
ol

d
P

C
va

lu
e

w
il

lb
e

sa
ve

d
in

lo
ca

tio
n

05
1C

16
,a

nd
th

e
st

at
us

(S
T

)
w

il
lb

e
sa

ve
d

in
lo

ca
tio

n
O

Sl
E^

e.
T

he
ne

xt
in

st
ru

ct
io

n
w

il
lb

e
ta

ke
n

fr
om

ad
dr

es
s

01
00

16
an

d
th

e
su

br
ou

tin
e

wo
rk

sp
ac

e
wi

ll
be

gi
n

at
05

00
16

(R
O)

.B
LW

P
an

d
XO

P
do

no
tt

es
tI

RE
Q

at
th

e
en

d
of

in
st

ru
ct

io
n

e
x
e
c
u

ti
o

n
.

Ap
pli

ca
tio

n:
Th

is
is

ac
on

te
xt

sw
itc

h
su

br
ou

tin
e

ju
m

p
wi

th
th

e
tra

ns
fe

rv
ec

to
rl

oc
at

io
n

sp
ec

ifi
ed

by
G8

.I
tu

se
sa

ne
w

wo
rk

sp
ac

e
to

sa
ve

th
e

ol
d

va
lu

es
of

W
P,

PC
,a

nd
ST

(in
th

e
la

st
th

re
e

re
gi

ste
rs

).
T

he
ad

va
nt

ag
e

of
th

is
su

br
ou

tin
e

ju
m

p
ov

er
th

e
B

L
ju

m
p

is
th

at
th

e
su

br
ou

tin
e

ge
ts

its
ow

n
w

or
ks

pa
ce

an
d

th
e

m
ai

n
pr

og
ra

m
w

or
ks

pa
ce

co
nt

en
ts

ar
e

no
t

di
st

ur
be

d
by

su
br

ou
tin

e
op

er
at

io
ns

.

23

E
x
te

n
d

e
d

O
p

e
ra

ti
o

n

F
or

m
at

:
X

O
P

G
„

n

1
2

3
4

5
6

7
8

9
1

0
11

12
13

14
15

-
i
—

r
—

t
—

r

i
i

0
0

X
O

P

(2
—

)

O
pe

ra
tio

n:
n

sp
ec

ifi
es

w
hi

ch
ex

te
nd

ed
op

er
at

io
n

tr
an

sf
er

ve
ct

or
is

to
be

us
ed

in
th

e
co

nt
ex

ts
w

itc
h

br
an

ch
fr

om
X

O
P

to
th

e
co

rr
es

po
nd

in
g

su
bp

ro
gr

am
.T

he
ef

fe
ct

iv
e

ad
dr

es
s

G
s

is
pl

ac
ed

in
R

l1
o

ft
he

su
bp

ro
gr

am
w

or
ks

pa
ce

in
or

de
r

to
pa

ss
an

ar
gu

m
en

t
or

da
ta

lo
ca

tio
n

to
th

e
su

bp
ro

gr
am

:

M
(n

x
4

+
0

0
4

0
1

6
)—

•W
P

M
(n

x
4

+
00

42
16

)
*-

P
C

(O
ld

W
P

)
^
N

e
w

R
1

3
(O

ld
P

C
)

•N
e
w

R
H

(O
ld

ST
)

^
N

e
w

R
1

5
G

,
•N

e
w

R
II

A
ffe

ct
on

St
at

us
:

E
xt

en
de

d
O

pe
ra

ti
on

(X
)b

it
is

se
t.

IO 0
0

0
0

E
xa

m
pl

e:
XO

P
»1

f2

A
ss

um
e

R
l

co
nt

ai
ns

07
50

16
.W

P
is

lo
ad

ed
w

it
h

th
e

w
or

d
at

ad
dr

es
s

48
16

(fi
rs

t
pa

rt
o

f
tr

an
sf

er
ve

ct
or

fo
r

ex
te

nd
ed

op
er

at
io

n
2)

an
d

P
C

is
lo

ad
ed

w
it

h
th

e
w

or
d

at
ad

dr
es

s
4A

16
.

If
lo

ca
tio

n
48

16
co

nt
ai

ns
02

00
16

,t
hi

s
w

il
lb

e
th

e
ad

dr
es

s
o

fR
O

o
ft

he
su

bp
ro

gr
am

w
or

ks
pa

ce
.T

hu
s,

lo
ca

tio
n

02
36

16
(n

ew
R

ll
)

w
ill

be
lo

ad
ed

w
ith

07
50

16
(c

on
te

nt
s

of
R

l
in

m
ai

n
pr

og
ra

m
),

lo
ca

tio
n

02
3A

16
(n

ew
R1

3)
w

ill
be

lo
ad

ed
w

ith
th

e
ol

d
W

P
va

lu
e,

lo
ca

tio
n

02
3C

16
w

il
lb

e
lo

ad
ed

w
it

h
th

e
ol

d
P

C
va

lu
e,

an
d

lo
ca

tio
n

02
3E

l6
(n

ew
R

15
)w

il
l

b
e

lo
a

d
ed

w
it

h
th

e
o

ld
st

a
tu

s
va

lu
e:

M
(4

81
6)

-W
P

M
(4

A
l6

)
-P

C
(O

ld
W

P
)

-
M

(0
23

A
l6

)
N

e
w

R
1

3

(O
ld

P
C

)
-

M
(0

23
C

16
)

N
e
w

R
1

4

(O
ld

ST
)

-M
(0

2
3

E
l6

)
N

e
w

R
1

5

07
50

l6
^M

(0
2

3
6

1
6

)
N

e
w

R
1

1

Ap
pl

ica
tio

n:
Th

is
ca

n
be

us
ed

to
de

fin
e

a
su

bp
ro

gr
am

th
at

ca
n

be
ca

lle
d

by
a

sin
gl

e
in

st
ru

ct
io

n.
A

s
a

re
su

lt,
th

e
pr

og
ra

m
m

er
ca

n
de

fin
e

sp
ec

ia
l

pu
rp

os
e

in
st

ru
ct

io
ns

to
au

gm
en

tt
he

st
an

da
rd

99
00

in
st

ru
ct

io
n

se
t.

r
o

Re
tu

rn
w

ith
W

or
ks

pa
ce

Po
in

te
r

-
R

T
\A

/P
F

o
rm

a
t:

R
T

W
P 0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

t
—
i
—
i
—
i
—
i
—
i
—
i
—
\
—
i
—
i
—
i
—
i
—
i
—
r

0
0
0
0
0
0
1

1
1
0
0
0
0
0
0
0

(0
38
0)

Op
er

ati
on

:T
hi

s
is

a
re

tu
rn

fro
m

a
co

nt
ex

ts
wi

tc
h

su
br

ou
tin

e.
It

oc
cu

rs
by

re
sto

rin
g

th
e

W
P

,P
C,

an
d

ST
re

gi
ste

r
co

nt
en

ts
by

tra
ns

fe
rr

in
g

th
e

co
nt

en
ts

of
su

br
ou

tin
e

w
or

ks
pa

ce
re

gi
ste

rs
R1

3,
R1

4,
an

d
R1

5,
in

to
th

eW
P

,P
C

,a
nd

ST
re

gi
ste

rs
,r

es
pe

ct
iv

el
y.

R
1

3
^
W

P
R

1
4

•P
C

R
1

5
—

^
S

T

St
at

us
B

its
A

ffe
ct

ed
:

A
ll

(S
T

re
ce

iv
es

th
e

co
nt

en
ts

of
R1

5)

Ap
pli

ca
tio

n:
Th

is
is

us
ed

to
re

tu
rn

fro
m

su
bp

ro
gr

am
s

th
at

we
re

re
ac

he
d

by
at

ra
ns

fe
r

ve
ct

or
op

er
at

io
n

su
ch

as
an

in
te

rr
up

t,
ex

te
nd

ed
op

er
at

io
n,

or
B

L
W

P
in

st
ru

ct
io

n.

C
O

o

UN
CO

NP
rno

NA
LJ

um
p

.I
M

P
F

o
rm

a
t:

J
M

P
E

X
P

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

-
i—

i—
i—

i—
r
—

i—
i—

t
—

i
—

r
-
r

0
0

0
1

0
0

0
0

D
IS

P
(1

0
-)

Op
era

tio
n:

Th
e

sig
ne

dd
isp

lac
em

en
td

efi
ne

d
by

EX
P

is
ad

de
d

to
th

ec
ur

re
nt

co
nt

en
ts

of
th

e
pr

og
ra

m
co

un
ter

to
ge

ne
ra

te
th

e
ne

w
va

lu
eo

fth
e

pr
og

ra
m

co
un

ter
.T

he
lo

ca
tio

n
ju

m
pe

d
to

m
us

tb
e

wi
th

in
-1

28
to

+
12

7
wo

rd
so

fth
e

pr
es

en
tl

oc
at

io
n.

A
ffe

ct
on

St
at

us
:

N
on

e

E
xa

m
pl

e:
JM

P
TH

ER
E

If
th

is
in

st
ru

ct
io

n
is

lo
ca

te
d

at
00

18
16

an
d

T
H

E
R

E
is

th
e

la
be

lo
ft

he
in

st
ru

ct
io

n
lo

ca
te

d
at

00
10

16
,

th
en

th
e

Ex
p

va
lu

e
pl

ac
ed

in
th

e
ob

je
ct

co
de

wo
ul

d
be

FB
(fo

r
-5

).
Si

nc
e

th
e

As
se

m
bl

er
m

ak
es

th
is

co
m

pu
ta

tio
n,

th
e

pr
og

ra
m

m
er

on
ly

ne
ed

st
o

pl
ac

e
th

e
ap

pr
op

ria
te

la
be

lo
re

xp
re

ss
io

n
in

th
e

op
er

an
d

fie
ld

of
th

ei
ns

tr
uc

tio
n.

Ap
pli

ca
tio

n:
If

th
e

su
bp

ro
gr

am
to

be
ju

m
pe

d
to

is
wi

th
in

12
8

wo
rd

so
fth

eJ
M

P
in

str
uc

tio
n

lo
ca

tio
n,

th
eu

nc
on

di
tio

na
lJ

M
P

is
pr

ef
er

re
d

ov
er

th
e

un
co

nd
iti

on
al

br
an

ch
sin

ce
on

ly
on

em
em

or
y

wo
rd

(a
nd

on
e

m
em

or
y

re
fer

en
ce

)i
sr

eq
ui

re
d

for
th

eJ
M

P
wh

ile
tw

o
m

em
or

y
wo

rd
sa

nd
tw

o
m

em
or

y
cy

cle
sa

re
re

qu
ire

d
for

th
e

B
in

str
uc

tio
n.

Th
us

,t
he

JM
P

in
str

uc
tio

n
ca

n
be

im
pl

em
en

ted
fes

ter
an

d
wi

th
les

sm
em

or
y

co
st

th
an

ca
n

th
e

B
in

st
ru

ct
io

n
.

E
x
e
c
u

te

F
o

rm
a

t:
X

G
.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1
1

1
1

1
1

1
1

1

0
0

0
0

0
1

0
0

1
0

1 T
*

1
1

1

s

X

(0
4

—
)

O
pe

ra
tio

n:
T

he
in

st
ru

ct
io

n
lo

ca
te

d
at

th
ea

dd
re

ss
sp

ec
ifi

ed
by

G8
is

ex
ec

ut
ed

.

St
at

us
Bi

ts
A

ffe
ct

ed
:

D
ep

en
ds

on
th

e
in

st
ru

ct
io

n
ex

ec
ut

ed

E
xa

m
pl

e:
X

M
l

If
R

l1
co

nt
ai

ns
20

00
16

an
d

lo
ca

tio
n

20
00

16
co

nt
ai

ns
th

e
in

st
ru

ct
io

n
fo

r
C

L
R

2
th

en
th

is
ex

ec
ut

e
in

st
ru

ct
io

n
w

ou
ld

cl
ea

rt
he

co
nt

en
ts

of
re

gi
st

er
2

to
ze

ro
.

Ap
pl

ica
tio

n:
X

is
us

ef
ul

w
he

n
th

e
in

str
uc

tio
n

to
be

ex
ec

ut
ed

is
de

pe
nd

en
to

n
av

ar
ia

bl
e

fa
ct

o
r.

C
O

C
O

N
D

IT
IO

N
A

L
T

U
M

P
IN

S
T

R
U

C
T

IO
N

S
JH

Th
es

e
in

str
uc

tio
ns

pe
rfo

rm
ab

ra
nc

hi
ng

op
er

at
io

n
on

ly
if

ce
rta

in
sta

tu
sb

its
m

ee
tt

he
JL

co
nd

iti
on

s
re

qu
ire

d
by

th
ej

um
p.

T
he

se
in

st
ru

ct
io

ns
al

lo
w

de
ci

sio
n

m
ak

in
g

to
be

Jf
lE

in
co

rp
or

at
ed

in
to

th
e

pr
og

ra
m

.T
he

co
nd

iti
on

al
ju

m
p

in
st

ru
ct

io
n

m
ne

m
on

ic
s

ar
e

••
r

su
m

m
ar

iz
ed

in
Ta

bl
e6

-1
al

on
g

w
ith

th
e

st
at

us
bi

tc
on

di
tio

ns
th

at
ar

e
te

st
ed

by
th

es
e

in
st

ru
ct

io
ns

.
^ JL

T

JE
Q

JN
E

JO
C

F
or

m
at

:
M

n
em

o
n

ic
E

xp

2
3

4
5

6
7

8
9

10
11

12
13

14
^5

(1
—

)
0

0
0

-
i
—

i
—

r

C
O

D
E

n
—

I
—

i
—

I
—

i
—

r

D
JS

P

Op
er

ati
on

:I
ft

he
co

nd
iti

on
in

di
ca

ted
by

th
e

br
an

ch
m

ne
m

on
ic

is
tru

e,
th

ej
um

p
wi

ll
oc

cu
r

JN
C

us
in

g
re

la
tiv

e
ad

dr
es

sin
g

as
w

as
us

ed
in

th
e

un
co

nd
iti

on
al

JM
P

in
st

ru
ct

io
n.

T
ha

ti
s,

th
e

J^
Q

Ex
p

de
fin

es
ad

isp
lac

em
en

tt
ha

ti
sa

dd
ed

to
th

e
cu

rre
nt

va
lu

e
of

th
e

pr
og

ra
m

co
un

te
rt

o
i/%

p
de

te
rm

in
e

th
e

lo
ca

tio
n

o
ft

he
ne

xt
in

st
ru

ct
io

n,
w

hi
ch

m
us

tb
e

w
ith

in
12

8
w

or
ds

of
th

e
ju

m
p

in
st

ru
ct

io
n.

Ef
fe

ct
on

St
at

us
Bi

ts:
N

on
e

E
xa

m
pl

e:
C

R
1,

R
2

J
N

E
L

O
O

P

T
he

fir
st

in
str

uc
tio

n
co

m
pa

re
st

he
co

nt
en

ts
of

re
gi

ste
rs

on
e

an
d

tw
o.

If
th

ey
ar

e
no

t
eq

ua
l,

E
Q

=
0

an
d

th
e

JN
E

in
st

ru
ct

io
n

ca
us

es
th

e
br

an
ch

to
L

O
O

P
to

be
ta

ke
n.

If
R

l
an

d
R

2
ar

e
eq

ua
l,

E
Q

=
1

an
d

th
e

br
an

ch
is

no
tt

ak
en

.

Ta
bl

e
6-

L
St

at
us

Bi
ts

Te
ste

d
by

In
str

uc
tio

ns

M
ne

mo
ni

c
L

>
A

>
EQ

C
O

V
O

P
Ju

mp
if:

CO
D

E*

JH
X

-
X

JL
X

-
X

JH
E

X
X

JL
E

X
X

-
JG

T
-

X
-

JL
T

-
X

X
JE

Q
X

JN
E

X
JO

C
X

JN
C

X
JN

O
-

JO
P

-

L
>

#
E

Q
»

1
B

L
>

+
E

Q
=

»
0

A

L
>

+
E

Q
=

1

L
>

+
E

Q
=

1
4 2

A
>

=
1

5

A
>

+
E

Q
=

0
1

E
Q

-1
3

E
Q

=
0

6

C
=

l
8

C
=

0
7

O
V

«
0

9

O
P

»
l

C

No
te:

In
th

eJ
um

p
if

co
lu

m
n,

al
og

ica
le

qu
ati

on
is

sh
ow

n
in

wh
ich

•
m

ea
ns

th
e

A
N

D
op

er
at

io
n,

+
m

ea
ns

th
eO

R
op

er
at

io
n,

an
d

al
in

e
ov

er
a

te
rm

m
ea

ns
ne

ga
tio

n
or

in
ve

rs
io

n.

♦
C
O
D
E

is
en

te
re

d
in

th
e

C
O

D
E

fie
ld

of
th

e
O

PC
O

D
E

to
ge

ne
ra

te
th

em
ac

hi
ne

co
de

fo
rt

he
in

str
uc

tio
n.

{g
ap

pli
ca

tio
n:

M
os

ta
lg

or
ith

ms
an

d
pr

og
ra

ms
wi

th
loo

p
co

un
ter

sr
eq

ui
re

th
es

e
in

str
uc

tio
ns

ca
to

de
ci

de
w

hi
ch

se
qu

en
ce

o
fi

ns
tr

uc
tio

ns
to

do
ne

xt
.

r
o 2

C
R

U
IN

S
T

R
U

C
T

IO
N

S

T
he

co
m

m
un

ic
at

io
ns

re
gi

st
er

un
it

(C
R

U
)p

er
fo

rm
ss

in
gl

e
an

d
m

ul
tip

le
bi

tp
ro

gr
am

m
ed

in
pu

t/o
ut

pu
t

fo
rt

he
m

ic
ro

co
m

pu
te

r.
A

ll
in

pu
t c

on
si

st
s

of
re

ad
in

g
C

R
U

lin
e

lo
gi

c
le

ve
ls

in
to

m
em

or
y,

an
d

al
lo

ut
pu

tc
on

si
st

s
o

fs
et

tin
g

C
R

U
ou

tp
ut

lin
es

to
bi

tv
al

ue
sf

ro
m

a
w

or
d

or
by

te
of

m
em

or
y.

T
h

e
C

R
U

pr
ov

id
es

a
m

ax
im

um
of

40
96

in
pu

ta
nd

40
96

ou
tp

ut
lin

es
th

at
m

ay
be

in
di

vi
du

al
ly

se
le

ct
ed

by
a

12
bi

ta
dd

re
ss

w
hi

ch
is

lo
ca

te
d

in
bi

ts
3

th
ro

ug
h

14
of

w
or

ks
pa

ce
re

gi
st

er
12

.T
hi

s
ad

dr
es

si
s

th
e

ha
rd

w
ar

e
ba

se
ad

dr
es

sf
or

al
l

C
R

U
c
o

m
m

u
n

ic
a
ti

o
n

s.

S
e
t

B
it

to
L

o
g

ic
O

n
e

F
or

m
at

:
S

B
O

d
ls

p

0
1

2
3

4
5

6
7

8
9

1
0

11
12

13
14

15
"
T

—
i
—

i
—

r
—

t
—

i
—

i
—

I
—

i
i

i
—

i
—

i
—

i
—

r

0
0

0
1

1
1

0
1

D
IS

P
(1

D
-)

S
B

O

e
n

Op
era

tio
n:

Th
e

CR
U

bi
ta

td
isp

plu
st

he
ha

rd
wa

re
ba

se
ad

dr
es

si
ss

et
to

on
e.

Th
e

ha
rd

wa
re

ba
se

ad
dre

ss
is

bit
s3

thr
ou

gh
14

of
wo

rks
pa

ce
re

gis
ter

12
.T

he
va

lue
dis

pi
sa

sig
ne

d
di

sp
la

ce
m

en
t.

1
•*

B
it

(d
is

p
+

ba
se

ad
dr

es
s)

A
ff

ec
to

n
St

at
us

:
N

on
e

E
xa

m
pl

e:
SB

O
15

If
R1

2
co

nt
ai

ns
a

so
ftw

ar
e

ba
se

ad
dr

es
so

f0
20

01
6s

o
th

at
th

e
ha

rd
wa

re
ba

se
ad

dr
es

si
s

00
10

16
(th

e
ha

rd
w

ar
e

ba
se

ad
dr

es
s

is
on

e-
ha

lf
th

e
va

lu
e

of
th

e
co

nt
en

ts
of

R1
2

ex
cl

ud
in

g
bi

ts
0,

1
an

d
2)

,t
he

ab
ov

e
in

str
uc

tio
n

wo
ul

d
se

tC
RU

lin
e

01
0F

16
to

a
1.

Ap
pl

ica
tio

n:
O

ut
pu

ta
on

e
on

a
sin

gl
e

bi
tC

RU
lin

e.

n
o

C
O

C
D

S
e
t

B
it

to
L

o
g

ic
Z

e
r
o

F
or

m
at

:
S

B
Z

d
is

p

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

t
—

i
—

i
—

i
—

r
—

t
—

i
—

I
—

i
—

i
—

i
—

i
—

i
—

i
—

r

0
0

0
1

1
1

1
0

D
IS

P
(I

E
—

)

S
B

Z

O
pe

ra
tio

n:
T

he
C

R
U

bi
ta

td
is

p
pl

us
th

e
ba

se
ad

dr
es

s
is

re
se

tt
o

ze
ro

.T
he

ha
rd

w
ar

e
ba

se
ad

dr
es

s
is

bi
ts

3
th

ro
ug

h
14

o
fw

or
ks

pa
ce

re
gi

st
er

12
.T

h
e

va
lu

ed
is

p
is

a
si

gn
ed

di
sp

la
ce

m
en

t.
0

•
B

it
(d

is
p

+
h

a
rd

w
a

re
b

a
se

a
d

d
re

ss
)

A
ff

ec
to

n
St

at
us

:
N

on
e

E
xa

m
pl

e:
SB

Z
2

If
R

12
co

nt
ai

ns
00

00
16

,t
he

ha
rd

w
ar

e
ba

se
ad

dr
es

si
s

0
so

th
at

th
e

in
st

ru
ct

io
n

w
ou

ld
re

se
t

C
R

U
li

n
e

00
02

16
to

ze
ro

.

A
pp

lic
at

io
n:

O
ut

pu
ta

ze
ro

on
a

si
ng

le
bi

tC
R

U
li

ne
.

Te
st

B
it

t
q

Fo
rm

at
:

T
B

di
sp

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

—
I

1
1

1
1

1
1

—

0
0

0
1

1
1

1
1

t
—

i
—

r

D
IS

P
(I

F
-)

Op
era

tio
n:

Th
e

CR
U

bi
ta

td
isp

plu
st

he
ba

se
ad

dr
es

si
sr

ea
d

by
se

tti
ng

th
e

va
lue

of
th

e
eq

ua
l(

E
Q

)s
ta

tu
sb

it
to

th
e

va
lu

e
of

th
e

bi
to

n
th

e
C

R
U

lin
e.

T
he

ha
rd

w
ar

e
ba

se
ad

dr
es

s
is

bi
ts

3
th

ro
ug

h
14

of
w

or
ks

pa
ce

re
gi

ste
r

12
.T

he
va

lu
e

di
sp

is
as

ig
ne

d
di

sp
lac

em
en

t.

B
it

(d
is

p
+

ha
rd

w
ar

e
ba

se
ad

dr
es

s)
•

E
Q

St
at

us
Bi

ts
A

ffe
ct

ed
:

EQ

E
xa

m
pl

e:
T

B
4

If
R1

2
co

nt
ain

s0
14

01
6,

th
e

ha
rd

wa
re

ba
se

ad
dr

es
si

sA
01

6(
wh

ich
is

on
e-

ha
lfo

f0
14

01
6):

R
1

2
C

o
n

te
n

ts
=

0
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

No
te

th
at

the
un

de
rli

ne
d

ha
rd

wa
re

ba
se

ad
dr

es
si

s0
A0

16
.E

qu
al

(E
Q)

wo
uld

be
m

ad
ee

qu
al

to
th

e
lo

gi
c

le
ve

lo
n

C
R

U
lin

e
0A

01
8

+
4

=
C

R
U

lin
e

0A
41

6.

ro
A

pp
lic

at
io

n:
In

pu
tt

he
C

R
U

bi
ts

el
ec

te
d.

C
O

0
0

L
o

a
d

C
R

U

F
or

m
at

:
L

D
C

R
G

„
C

n
t

0
1

2
3

4
5

6
7

8
9

1
0

11
12

13
14

15
—

I
1

1
1

1
1

1
1

—
I

1
1

1
1

1
1

0
0

1
1

0
0

C
T

,
S

(3
)

L
D

C
R

O
pe

ra
tio

n:
C

nt
sp

ec
ifi

es
th

e
nu

m
be

r
o

fb
it

s
to

be
tr

an
sf

er
re

d
fr

om
th

e
da

ta
lo

ca
te

d
at

th
e

ad
dr

es
s

sp
ec

ifi
ed

by
G

8,
w

it
h

th
e

fir
st

bi
tt

ra
ns

fe
rr

ed
fr

om
th

e
le

as
ts

ig
ni

fic
an

tb
it

o
ft

hi
s

da
ta

,t
he

ne
xt

bi
t

fr
om

th
e

ne
xt

le
as

ts
ig

ni
fic

an
t

bi
ta

nd
so

on
.I

fC
nt

=
0,

th
e

nu
m

be
r

o
fb

it
s

tr
an

sf
er

re
d

is
16

.I
ft

he
nu

m
be

r
o

fb
it

s
to

be
tr

an
sf

er
re

d
is

on
e

to
ei

gh
t,

th
e

so
ur

ce
ad

dr
es

s
is

a
by

te
ad

dr
es

s.
If

th
e

nu
m

be
r

o
fb

it
s

to
be

tr
an

sf
er

re
d

is
9

to
16

,
th

e
so

ur
ce

ad
dr

es
s

is
a

w
or

d
ad

dr
es

s.
T

h
e

so
ur

ce
da

ta
is

co
m

pa
re

d
to

ze
ro

be
fo

re
th

e
tr

an
sf

er
.T

h
e

de
st

in
at

io
n

o
ft

he
fir

st
bi

ti
s

th
e

C
R

U
li

ne
sp

ec
ifi

ed
by

th
e

ha
rd

w
ar

e
ba

se
ad

dr
es

s,
th

e
se

co
nd

bi
ti

s
tr

an
sf

er
re

d
to

th
e

C
R

U
li

ne
sp

ec
ifi

ed
by

th
e

ha
rd

w
ar

e
ba

se
ad

dr
es

s
+

1
,

an
d

so
on

.

St
at

us
B

its
Af

fe
ct

ed
:

LG
T,

AG
T,

EQ
O

P
(o

dd
pa

ri
ty

)
w

it
h

tr
an

sf
er

o
f8

or
le

ss
bi

ts
.

E
xa

m
pl

e:
LD

C
R

@
TO

M
,8

C
O

Si
nc

e
8

bi
ts

ar
e

tra
ns

fe
rr

ed
,T

O
M

is
a

by
te

ad
dr

es
s.

If
T

O
M

is
an

ev
en

nu
m

be
r,

th
e

m
os

ts
ig

ni
fic

an
tb

yt
e

is
ad

dr
es

se
d.

If
R1

2
co

nt
ai

ns
00

80
16

,t
he

ha
rd

w
ar

e
ba

se
ad

dr
es

s
is

00
40

,6
w

hi
ch

is
th

e
C

RU
lin

e
th

at
w

ill
re

ce
iv

e
th

e
fir

st
bi

tt
ra

ns
fe

rr
ed

.0
04

1,
6

w
ill

be
th

e
ad

dr
es

so
ft

he
ne

xt
bi

tt
ra

ns
fe

rr
ed

,a
nd

so
on

to
th

e
la

st
(8

th
)

bi
tt

ra
ns

fe
rr

ed
to

C
RU

lin
e

00
47

,6
.T

hi
s

tr
an

sf
er

is
sh

ow
n

in
Fi

gu
re

6-
7.

M
E

M
O

R
Y

A
D

D
R

E
S

S
T

O
M

X
-N

O
T

U
S

E
D

Fi
gu

re
6-

7.
LD

C
R

by
te

tra
ns

fe
r

9
1

0
11

12
13

14
15

L
D

C
R

@
T

O
M

,8
TO

M
is

an
ev

en
ad

dr
es

s

C
R

U
L

IN
E

S

3
F

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

8 O
Ap

pl
ica

tio
n:

T
he

LD
C

R
pr

ov
id

es
a

nu
m

be
ro

fb
its

(fr
om

1
to

16
)t

o
be

tra
ns

fe
rr

ed
fro

m
a

m
em

or
y

w
or

d
or

by
te

to
su

cc
es

si
ve

C
R

U
lin

es
,s

ta
rt

in
g

at
th

e
ha

rd
w

ar
e

ba
se

ad
dr

es
s

lin
e;

th
e

tr
an

sf
er

be
gi

ns
w

it
h

th
e

le
as

ts
ig

ni
fic

an
tb

it
of

th
e

so
ur

ce
fie

ld
an

d
co

nt
in

ue
s

to
su

cc
es

si
ve

ly
m

or
e

si
gn

ifi
ca

nt
bi

ts
.A

fu
rt

he
r

ex
am

pl
e

o
fw

or
d

ve
rs

us
by

te
tr

an
sf

er
s

is
gi

ve
n

in
Fi

gu
re

6-
8,

in
w

hi
ch

a
9

bi
t(

w
or

d
ad

dr
es

se
d

so
ur

ce
)

tr
an

sf
er

is
sh

ow
n.

8
9

1
0

11
1

2
1

3
14

1
5

M
E

M
O

R
Y

A
D

D
R

E
S

S

T
O

M

X
X

X
X

X
X

X
1

0
1

0
1

0
1

1
1

C
R

U
L

IN
E

S

3
F

1
4

0

1
4

1

1
4

2

0
4

3

1
4

4

0
4

5

1
4

6

0
4

7

X
-

N
O

T
U

S
E

D
1

4
8

L
D

C
R

@
T

O
IM

4
9

Fi
gu

re
6-

8.
LD

C
R

W
or

d
tra

ns
fe

r

s

S
to

re
C

R
U

F
or

m
at

S
T

C
R

G
„

C
nt

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

T

0
0

1
1

0
1

C
T

$
S

(3
)

S
T

C
R

O
pe

ra
tio

n:
C

nt
sp

ec
ifi

es
th

e
nu

m
be

r
o

fb
it

s
to

be
tr

an
sf

er
re

d
fr

om
su

cc
es

si
ve

C
R

U
li

ne
s

(s
ta

rt
in

g
at

th
e

ha
rd

w
ar

e
ba

se
ad

dr
es

s)
to

th
e

lo
ca

tio
n

sp
ec

ifi
ed

by
G8

>
be

gi
nn

in
g

w
it

h
th

e
le

as
ts

ig
ni

fic
an

tb
it

po
sit

io
n

an
d

tr
an

sf
er

ri
ng

su
cc

es
siv

e
bi

ts
to

su
cc

es
si

ve
ly

m
or

e
sig

ni
fic

an
t

bi
ts

.I
ft

he
nu

m
be

ro
fb

it
st

ra
ns

fe
rr

ed
is

8
or

le
ss

,G
8

is
a

by
te

ad
dr

es
s.

O
th

er
w

is
e,

G
8

is
a

w
or

d
ad

dr
es

s.
If

C
nt

=
0,

16
bi

ts
ar

e
tr

an
sf

er
re

d.
T

he
bi

ts
tr

an
sf

er
re

d
ar

e
co

m
pa

re
d

to
ze

ro
.

If
th

e
tr

an
sf

er
do

es
no

tf
ill

th
e

en
ti

re
m

em
or

y
w

or
d,

th
e

un
fil

le
d

bi
ts

ar
e

re
se

tt
o

z
e
r
o

.

St
at

us
B

its
A

ffe
ct

ed
:

L
G

T
,A

G
T

,E
Q

O
P

fo
r

tr
a

n
sf

er
s

o
f

8
b

it
s

o
r

le
ss

E
xa

m
pl

e:
ST

C
R

2,
7

Si
nc

e
7

bi
ts

ar
e

to
be

tr
an

sf
er

re
d

th
is

is
a

by
te

tr
an

sf
er

so
th

at
th

e
bi

ts
w

il
lb

e
tr

an
sf

er
re

d
to

th
e

m
os

ts
ig

ni
fic

an
tb

yt
e

of
R

2.
Fi

gu
re

6-
9

ill
us

tr
at

es
th

is
tr

an
sf

er
as

su
m

in
g

th
at

R
12

co
nt

ai
ns

90
16

so
th

at
th

e
ha

rd
w

ar
e

ba
se

ad
dr

es
s

is
48

16
fo

r
th

e
fi

rs
tb

it
to

be
tr

an
sf

er
re

d.

8 t
o

N
ot

e:
B

its
8-

15
ar

e
un

ch
an

ge
d

if
tr

an
sf

er
is

le
ss

th
an

8
bi

ts
.

R
2

X
N

O
T

U
S

E
D

B
IT

0
S

E
T

T
O

Z
E

R
O

Fi
gu

re
6-

9.
ST

CR
Ex

am
pl

e

8
9

1
0

11
1

2
1

3
1

4
1

5

S
T

C
R

2
,7

C
R

U
L

IN
E

S

4
7

4
8

4
9

4
A

4
B

4
C

4
D

4
E

4
F

§ C
O

C
O

N
T

R
O

L
IN

S
T

R
U

C
T

IO
N

S

T
he

co
nt

ro
li

ns
tru

ct
io

ns
ar

e
pr

im
ar

ily
ap

pl
ic

ab
le

to
th

e
M

od
el

99
0

C
om

pu
te

r.
Th

es
e

in
st

ru
ct

io
ns

ar
e

R
SE

T
(R

es
et

),
ID

L
E

,C
K

O
F

(C
lo

ck
of

f),
C

K
O

N
(C

lo
ck

on
),

L
R

E
X

(r
es

ta
rt)

.T
he

M
od

el
99

0/
10

al
so

su
pp

or
ts

th
el

on
g

di
sta

nc
e

ad
dr

es
sin

g
in

str
uc

tio
ns

:
L

D
S

(L
oa

d
lo

ng
di

st
an

ce
so

ur
ce

)
an

d
L

D
D

(L
on

g
di

st
an

ce
de

st
in

at
io

n)
.T

he
us

e
of

th
es

e
in

st
ru

ct
io

ns
ar

e
co

ve
re

d
in

th
e

ap
pr

op
ri

at
e

M
od

el
99

0
co

m
pu

te
r

pr
og

ra
m

m
er

's
m

an
ua

ls.

T
he

co
nt

ro
li

ns
tru

ct
io

ns
ha

ve
an

af
fe

ct
on

th
e

99
00

sig
na

ls
on

th
e

ad
dr

es
s

lin
es

du
rin

g
th

e
C

R
U

C
lo

c
k

as
sh

o
w

n
b

el
o

w
:

In
s
tr

u
c
ti

o
n

A
o

A
,

A
,

O
P

C
O

D
E

H H H

H H L

H L H

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

L
R

E
X

0
0

0
0

0
0

1
1

1
1

1
0

0
0

0
0

(0
3E

0)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

C
K

O
F

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

(0
3

C
0

)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

C
K

O
N

0
0

0
0

0
0

1
1

1
0

1
0

0
0

0
0

(0
3

A
0

)

8

In
st

ru
c
ti

o
n

A
.

A
,

A
,

O
P

C
O

D
E

L L L

H H L

H L L

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
IS

R
S

E
T

0
0

0
0

0
0

1
1

0
1

1
0

0
0

0
0

(0
36

0)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

ID
L

E
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

0
(0

3
4

0
)

C
R

U

T
he

ID
L

E
in

st
ru

ct
io

n
pu

ts
th

e
99

00
in

th
e

id
le

co
nd

iti
on

an
d

ca
us

es
a

C
R

U
C

L
K

ou
tp

ut
ev

er
y

si
xc

lo
ck

cy
cl

es
to

in
di

ca
te

th
is

st
at

e.
T

he
pr

oc
es

so
r

ca
n

be
re

m
ov

ed
fro

m
th

e
id

le
st

at
e

by
1)

a
R

E
SE

T
si

gn
al

,2
)a

ny
in

te
rr

up
tt

ha
ti

se
na

bl
ed

,o
r

3)
a

L
O

A
D

si
gn

al
.

F
or

th
e

9
9

0
0

th
e

ab
ov

e
in

st
ru

ct
io

ns
ar

e
re

fe
rr

ed
to

as
ex

te
rn

al
in

st
ru

ct
io

ns
,s

in
ce

ex
te

rn
al

ha
rd

w
ar

e
ca

n
be

de
si

gn
ed

to
re

sp
on

d
to

th
es

e
si

gn
al

s.
T

h
e

ad
dr

es
s

si
gn

al
s

A
o,

A
l9

an
d

A
2

ca
n

be
de

co
de

d
an

d
th

e
in

st
ru

ct
io

ns
us

ed
to

co
nt

ro
l

ex
te

rn
al

ha
rd

w
ar

e.

Index

Index

A, 39, 242
AB, 39, 244
ABS, 40, 255
Addresses, 6,18
Addressing, CRU, 216
Addressing, immediate, 29, 46
Addressing, indexed, 30, 48
Addressing, register direct, 29, 47
Addressing, register indirect, 29, 47
Addressing, relative, 30, 49
Addressing, symbolic, 29, 48
Addressing modes, 28, 46
Al, 39, 246
AND, 24
ANDI, 41, 267
AORG, 68
Architecture, 13, 33
ArcMtecture, memory-to-memory, 35
Arithmetic instructions, 39, 227
Arithmetic logic unit, 15
Assembler, 7
Assembler directives, 68
Assembler syntax, 65
Assembly-language formats, 217

B, 43, 284
BASIC, 3
Binary addition, 21
Binarynumber system, 5
Binary subtraction. 23

Bit, 9
BL, 43, 285
BLWP, 43, 286
Branch instructions, 229
Branchinstructions, unconditional, 43
BSS.68
Bus, 9
Bus, bidirectional, 10
Bus width, 9
Byte, 11

C
C, 40, 260
Carry bit, 16
CB, 41, 262
CI, 41,264
CLR, 42, 272
COC, 41,265
Communicationsregister unit, 35
Compare instructions, 228
Comparison instructions, 40
Condition code, 15
Control instructions, 46
Control line. read. 11
Control line, write. 11
Control transfer. 26
Control unit. 18
CRU, 35. 57
CRU instructions. 45
CZC. 41,266

0

DATA. 69

307

Data pointer, 999
Data transfer, 20
Data transfer instruction, 38,227,233
DEC, 40, 252
DECT, 40, 253
Direct addressing, 29, 47
DIV, 40, 258

EASY BUG, 59, 70, 73
END, 72
Entry point, 65
EQU, 70
Exclusive-OR, 24
Extended operation vectors, 37

Field, label, 7
Field, operand, 7
Fields, 65. 218-224
Function select, 15

GROM. 54, 56

Hexadecimal, 6

I
Immediate addressing, 29, 46
INC, 40, 250
INCT, 40, 251
Indexed addressing, 30, 48
Index register, 48
Indirect addressing, 29, 47
Instruction, 6
Instruction descriptions, 230
Instruction set, 38-49, 224
Interrupt mask, 36
Interrupt priority code, 36
Interrupts, 36
Interrupt vector, 37
INV, 42. 271

JEQ, 45
JGT.45
JH.45
JHE.45
JL.45
JLE, 45
JLT, 45
JNC, 45
JMP, 44, 291
JNE, 45
JNO, 45

308

J

JOC.45
JOP.45
JUMP, 26
Jump instructions, 293
Jump instructions, conditional, 44

Label field, 7
Language, high-level, 5
Language, machine, 5
LDCR, 46, 304
LI, 38, 233
LIMI, 39, 234
Une-by line assembler, 59, 60
Line numbers, 4
LOAD, 20
Logical instructions, 228
Logic instructions, 41
LWPI, 39, 235

Memory map, 63
Microprocessor, block diagram of, 14
Microprocessor, program, 3
Mini Memory module, 53, 59
Mnemonics, 7, 29
MOV, 39, 236
MOVB, 39, 237
MOVE, 20
MPY, 40, 256

NEG, 40, 254
Negative bit, 16
Nesting, 27

Object code, 7, 66
Opcode field, 7
Operand field, 7
Operands, 15, 28
OR, 24
ORI, 41,269
Overflow bit, 16

Program, ASCII-binary string to binary
number, 140

Program, ASCII-decimal string to bi
nary number, 151

Program, ASCII-hex string to binary
number, 146

Program, ASCII to decimal, 128
Program, BCD to binary, 130
Program, binary number to ASCII-

decimal string, 148

Program, binary to ASCII-binary
string, 137

Program, binary to ASCII-hex string,
144

Program, binary to BCD, 134
Program, branch and link, 176
Program, branch and load workspace

pointer. 178
Program, change screen color, 210
Program, clearing the screen, 183
Program, convert string to number.

194

Program, decimal to ASCII, 130
Program, determine numbers, 103
Program, display the text, 184
Program, find firstnonblank character,

113

Program, find last nonblank character,
114

Program, find maximum value, 106
Program, find minimum byte value.

107

Program, find the larger number, 88
Program, generate cursor, 187
Program, hex to ASCII, 125
Program, how many negative num

bers, 101
Program, keyboard inputand display,

190
Program, length of string, 110
Program, make an integer, 117
Program, pattern match, 119
Program, raise number to a power,

202

Program, reciprocalof a number, 164
Program, replace zeros, 115
Program, sine of an angle, 170
Program, 16-bit addition, 83
Program, 16-bit data transfer, 77
Program, 16-bit sum of data, 96
Program, 64-bit data transfer, 82
Program, 64-bit division, 158
Program, square root, 162
Program, string comparison, 121
Program, sum of squares, 90
Program, table of factorials, 92
Program, 32-bit addition. 85
Program. 32-bitby32-bitmultiply, 154
Program, 32-bit sum of data, 98
Program counter, 18, 34, 215
Programming, 3

RAM, 12
Random access, 12
References, 64, 72

Register, 16
Relative addressing, 30, 49
ROM, 11
ROTATE, 25, 26
RTWP, 44, 290
RWM, 11

S
S, 40, 247
SB, 40, 248
SBC, 297
SBO, 45, 295
SBZ.45
Scratch pad, 53
SCZ.42
Service routine, 37
SETO, 42, 273
SHIFT, 25
Shift instructions, 42, 229
SLA, 42, 281
SOC, 42, 274
SOCB, 275
Sound generator, 54
Source code, 66
Source program 7
SR, 42, 279
SRC, 43, 283
SRL, 43, 282
Starting address. 64
Statements. 4
Status. 15
Status register, 16
STCR, 46, 300
STORE, 20
STST, 39, 240
STWP, 39, 241
Subroutine, 5, 27
SWPB, 39, 239
Symbolic addressing, 29, 48
SZC, 276
SZCB, 42, 278
SYM, 70

TB, 298
TEXT, 72
TI-99/4A, block diagram of the, 52
TMS9900, 13, 33, 45
TMS9901.57
TMS9918A, 54
Two's complement, 23

Utilities, 182
U

309

V
Video data processor RAM, 54 X, 44, 292

XOP, 43, 288
W XOR.41,270

Workspace, 34
Workspace, changing the, 35
Workspace pointer, 34 Zero bit, 16

310 Edited by Brtnt Rutherford

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013
	content014
	content015
	content016
	content017

	back-cover

