1722

NDAMENTALS OF

-99/4A

ASSEMBLY LANGUAGE

BY M. S. MORLEY

FUNDAMENTALS OF

TI-994A

ASSEMBLY LANGUAGE

BY M. S. MORLEY

TAB BOOKS Inc.

FIRST EDITION

FIRST PRINTING

Copyright © 1984 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Morley, M. S.
Fundamentals of TI-99/4A.

Includes index.

1. T1 99/4A (Computer)—Programming. 2. Assembler
language (Computer program language). I. Title.
QA76.73.A8M67 1984 001.64'24 83-24189
ISBN 0-8306-0722-6
ISBN 0-8306-1722-1 (pbk.)

Contents
.

List of Programs v
Preface vi
Introduction viii
Part I: Fundamental Concepts 1
1 Programming Languages 3

BASIC—Machine Language—Assembly Language—Summary

2 Memory 9
Address Bus—Data Bus—Control Bus—ROM and RAM—
Summary

3 Microprocessors 13
Arithmetic Logic Unit—Status Register—General Registers—
Program Counter—Control Unit—Summary

4 Microprocessor Operations 20
Data Transfer—Arithmetic—Logic—Shift and Rotate—Control
Transfer—Summary

5 Addressing Modes 28
Immediate—Direct—Indirect—Indexed—Relative—Summary

Part ll: The 9900 and the TI-99/4A Home Computer 31

10

"

12

13

14

The TMS9900
Architecture—Instruction Set—Addressing Modes—Summary

The TI-99/4A
CPU Memory—Video Data Processor RAM—Graphics Read
Only Memory—CRU Bits—Summary

The Mini Memory Module
Loading the Line-by-Line Assembler—Memory Map—Assembler
Syntax—Assembler Directives—EASY BUG—Summary

Part lll: Programs

Beginning Programs

16-Bit Data Transfer—64-Bit Data Transfer—16-Bit Addition—
32-Bit Addition—Find the Larger of Two Unsigned Numbers—
Sum of Squares—Table of Factorials

Simple Program Loops

16-Bit Sum of Data—32-Bit Sum of Data—Number of Negative
Numbers—Number of Zero, Positive, and Negative Numbers—
Find Maximum Value—Find Minimum Byte Value

Character-Coded Data

Length of a String of Characters—Find First Nonblank
Character—Find Last Nonblank Character—Replace Leading
Zeros with Blanks—Truncate Decimal String to Integer Form—
Pattern Match—String Comparison

Code Conversion

Hexadecimal to ASCII—ASCII to Hexadecimal—ASCIi to
Decimal—Decimal to ASCll—Binary-Coded Decimal to
Binary—Binary to BCD—Binary Number to ASCII-Binary
String—ASCII-Binary String to Binary Number—Binary Number
to ASCII-Hexadecimal String—ASCII-Hexadecimal String to Bi-
nary Number—Binary Number to ASCll-Decimal String—
ASCII-Decimal String to Binary Number

Arithmetic Problems
32-Bit by 32-Bit Multiply—64-Bit Division—Square Root—
Reciprocal of a Number—Sine of an Angle

Using the System Utilities

Clearing the Screen—Display Text—Generate Cursor—
Keyboard Input and Display—Convert String to Number—Raise
Number to a Power—Change Screen Color

Appendix : TMS9900 Instruction Set

Index

33

50

75
7

m

124

154

182

215
307

List of Programs

9-1. 16-Bit Data Transfer 82
9-2. 64-Bit Data Transfer 83
9-3. 16-Bit Addition 85
9-4. 32-Bit Addition 87
9-5. Find the Larger of Two Unsigned Numbers 80
9-6. Sum of Squares 91
9-7. Table of Factorials 94
10-1. 16-Bit Sum of Data 98
10-2. 32-Bit Sum of Data 100
10-3. Number of Negative Numbers 102
10-4. Number of Zero, Positive, and Negative Numbers 105
10-5. Find Maximum Value 106
10-6. Find Minimum Byte Value 108
11-1. Length of a String of Characters 113
11-2. Find First Nonblank Character 114
11-3. Find Last Nonblank Character 115
11-4. Replace Leading Zeros with Blanks 117
11-5. Truncate Decimal String to Integer Form 119
11-6. Pattemn Match 121
11-7. String Comparison 123
12-1. Hexadecimal to ASCHl 127
12-2. ASCII to Hexadecimal 129
12-3. ASCIl to Decimal 130
12-4. Decimal to ASCIl 131
12-5. Binary-Coded Decimal to Binary 135
12-6. Binary to BCD 138
12-7. Binary Number to ASCIl-Binary String 140
12-8. ASCII-Binary String to Binary Number 143
12-9. Binary Number to ASCli-Hexadecimal String 146
12-10. ASCIl-Hexadecimal String to Binary Number 148
12-11. Binary Number to ASCIl-Decimal String 150
12-12. ASCIlI-Decimal String to Binary Number 152
13-1. 32-Bit by 32-Bit Multiply 156
13-2. 64-Bit Division 160
13-3. Square Root 163
13-4. Reciprocal of a Number 169
13-5. Sine of an Angle 171
13-6. Sine of an Angle Using the BL Subroutine Call 177
13-7. Sine of an Angle Using the BLWP Subroutine Call 179
14-1. Clearing the Screen 184
14-2. Display Text 186
14-3. Generate Cursor 189
14-4. Keyboard Input and Display 192
14-5. Convert String to Number 197
14-6. Raise Number to a Power 205
14-7. Change Screen Color 212

Preface

This book was written to fill a need. I bought my TI-99/4A Home
Computer in December, 1982, for two reasons. First, I wanted to
get a game machine for my sons, but I also wanted to buy acomputer
so that they could be exposed to computer programming. I hoped
they might even try learning some BASIC. And this they have done,
at least to the extent of trying some graphics programs shown in the
TI Beginner's BASIC Teaching Manual and also typing in programs
published in COMPUTE! Magazine.

Second, I wanted to learn to write programs in assembly
language, having had some experience writing programs in BASIC
on a main-frame computer and having also had some experience
writing assembly language for a minicomputer. In particular, I was
very interested in learning how to program a 16-bit microprocessor,
something I had not yet done.

I began pursuing this second purpose within a month or so of
purchasing my Home Computer.

At first I looked at the TI Editor/Assembler software package.
However, the requirement to buy the Disk Memory System
seemed a very high price ($1000) just to learn assembly language.
And then I found out about the Mini Memory module, a software
cartridge that also comes with a Line-by-Line Assembler on cas-
sette tape. This was more like it—$84 and I was in business.

Or so I thought. I thought that the Mini Memory Owner's
Manual or the Line-by-Line Assembler Manual would explain the

vi

9900 instruction set and give me clear program examples illustrat-
ing each instruction. I was wrong. Page 9 of the Mini Memory
Owner's Manual says:

If you intend to use the Mini Memory module for creating
your own assembly language programs, it is assumed that
you are experienced in TMS9900 assembly language pro-
gramming and that you are familiar with the internal or-
ganization of data and file structures used by the Home
Computer. For a complete discussion of these topics, see
the Editor/Assembler owner’s manual.

This certainly wasn’t true for me, and I suspected that I was not
alone. I purchased the Editor/Assembler manual from Texas
Instruments for about $18 plus shipping, and I anxiously looked
forward to a good tutorial explanation of the 9900 instruction set.
Perhaps it would be similar to what TI had done for BASIC in their
Beginner's BASIC manual.

But I was wrong. The Editor/Assembler manual turned out to
be a good reference manual, but it was not, nor ever will be, a
self-teaching guide to 9900 assembly language programming.

I decided to write some assembly language programs anyway.
What I needed was a good problem set, ranging from very simple
assembly language programs to more complex problem solving
programs. So I began to look for a book, but no such book existed for
the 9900 microprocessor as far as I was able to determine. How-
ever, | did find assembly language books about other microproces-
sors. These assembly language books were tutorial in nature and
had similar problem sets. Using these books for program ideas, I
wrote many of the programs you will study in this book. Further-
more, after I got going I began to come up with my own program
ideas. I also wrote programs that use the internal resources of the
TI home computer.

These programs are the basis of this book. I have essentially
written the book that I could not find, and I hope it meets the needs
of those seeking such a book.

I want to thank Liz Akers and Kim Tabor of TAB BOOKS Inc.
for taking a chance on a new author.

I want to thank Texas Instruments for granting permission to
reprint the material found in the appendix. This information is not
readily available to those who do not work in an electronics en-
gineering environment.

Finally, I want to thank two very good friends, Diane Corbett
and Linda Tabor, and my wife, Alice, for typing the manuscript.

vii

Introduction

This book is written for anyone who wants to learn how to program
the TI-99/4A Home Computer in assembly language. No prior
knowledge of assembly language is assumed. It is assumed, how-
ever, that you have at least some experience writing programs in
BASIC, TI BASIC, or any other so-called dialect of BASIC and that
you are familiar with elementary programming terminology and
concepts such as loops and subroutines.

If you are a technician, engineer, or hobbyist who wants to
learn 9900 assembly language programming but do not have access
to high cost software development systems, then this book is for
you.

If you are a TI-99/4A owner who has little or no background in
electronics in general and microprocessors in particular and if you
want something else to do with your computer, then this book is for
you.

If you just want to learn an assembly language, especially a
16-bit microprocessor assembly language, and you are willing to
spend less than $200 (if you haven't yet bought a TI-99/4A), then
this book is for you also.

This book will:

O Teach you the fundamentals of 9900 assembly language.
O Give you good reference material on the TMS 9900 micro-
processor — material that is generally unavailable.

viii

O Give you a good understanding of how the TI-99/4A works
internally.

O Give you a skill that will help you understand and evaluate
the instruction sets of other microprocessors.

O Give you an appreciation of BASIC and other high-level
languages such as FORTRAN and PASCAL, which are simply very
complex programs written in assembly language.

This book is divided into three parts: The five chapters in Part I
briefly describe the fundamental concepts of programming lan-
guages and microprocessor systems. If you are already familiar with
these concepts, skip this section. Chapter 1 explains the differences
and similarities of BASIC, machine language, and assembly lan-
guage. Chapter 2 discusses the terminology and operation of the
memory in a microcomputer system. Chapter 3 examines the inter-
nal organizational features common to most microprocessors.
Chapter 4 discusses each of the five basic types of microprocessor
operations—data transfer, arithmetic, logic, shift and rotate, and
control transfer. Finally, Chapter 5 explains the addressing mode
concept.

In Part II the three chapters provide background and pro-
cedural information that you will need in order to write TI-99/4A
assembly language programs.

Chapter 6 overviews the TMS 9900 microprocessor and dis-
cusses the architecture, instruction set, and addressing modes of
the 9900. Chapter 7 discusses the internal organization and opera-
tion of the TI-99/4A. Chapter 8 explains how to use the Mini
Memory module and the Line-by-Line Assembler.

Part III contains six chapters of programs, their listings, and
explanations. The orograms have been selected and arranged to
teach you the 9900 instruction set and how to use other assembly

language routines that are stored in the Mini Memory module and
the TI-99/4A console.

Chapter 9 contains very simple assembly language programs
and explains all the procedural steps required to create and run an
assembly language program on the TI-99/4A. Chapter 10 contains
programs illustrating the instructions used in program loops.
Chapter 11 contains simple programs that process ASCII-encoded
strings. Chapter 12 contains 12 useful code-conversion programs.
Chapter 13 contains multiprecision arithmetic problem programs.
Chapter 14 contains programs that demonstrate how to use the
subroutines stored in your computer. In particular, you will learn

ix

how to input data from the keyboard and how to control the screen
display.

Finally, the appendix contains detailed instruction set infor-
mation on opcodes, status register effects, and instruction exam-
ples.

Part |
Fundamental Concepts

Chapter 1

L

= i
] A
I

Programming Languages

A computer is a data-processing machine designed to solve arith-
metic problems and perform other tasks such as accounting, elec-
tronic filing, or word processing. A simplified block diagram of a
typical home computer is shown in Fig. 1-1.

The brain of this machine is the microprocessor, which performs
arithmetic and logic functions; receives data from the keyboard;
stores data in and retrieves data from its memory; and displays data
on the television screen, monitor, or other output device. (A printer
will be required if a hard copy of the data is desired or if large
quantities of data are to be displayed).

The functions of the computer are controlled by programs
stored in its memory. Aprogram is a series of instructions written in
a language understood by the computer. Programming is the art of
writing a correct set of instructions. A well-written program uses as
few instructions as possible, and works.

Some programs are built in; they have been permanently
stored in the computer before it was shipped. These built-in pro-
grams are usually designed to enable you to write your own pro-
grams and to load and run programs written by the manufacturer or
other companies.

BASIC

All home computers have been programmed by the manufac-
turer to allow the user to write programs in BASIC, perhaps the

3

Memory

T,

Input Device S M Output Device
(keyboard) Microprocessor (television set or monitor)

Fig. 1-1. Basic components of a typical home computer.

easiest programming language to learn. BASIC stands for Begin-

ners All-purpose Symbolic Instruction Code. The simplicity of

BASIC is demonstrated by the program shown in Fig. 1-2.
Notice the following things about this BASIC program:

O 1t has line numbers. Line 10 reads INPUT. Line 40 reads
END.

O It uses plain English language words: INPUT, PRINT, and
END. These words are called statements.

O The form of the equation on line 20 differs very little from
the form used in algebra books or technical literature. Note that an
asterisk is used to indicate multiplication in BASIC.

Obviously, few BASIC programs are this simple. However,
this program demonstrates the essential features of BASIC. Note
that simple programs are easy to write in almost any computer
language and that complex programs are difficult to write because
they are complex, not necessarily because they are written in
BASIC.

The best thing about BASIC is that you can learn this pro-
gramming language without understanding the internal organization
and operation of the computer. You don’t even have to know how to
type, but it helps.

10 INPUTC

20 F=(9/5)*C+32
Fig. 1-2. Sample BASIC program. 30 PRINTF

40 END

MACHINE LANGUAGE

BASIC is often referred to as a high-level language. FOR-
TRAN, COBOL, PASCAL, and ADA are also high-level languages.
The term high-level language is used to distinguish these languages
from machine language, which is the most fundamental computer
language.

Machine language utilizes only two symbols: 0 (zero) and 1
(one). These symbols correspond to the two possible states of the
basic memory unit. The basic memory unit, or cell, is like a switch
and is either on or off. Thus, the cell has a binary nature, and the
number system used by the computer is the binary number system.

BASIC is actually a program which resides in the computer
memory in the form of 1s and Os. Furthermore, programs written in
BASIC must be translated into machine language before they can be
executed, or run. This process of translation is carried out key-
stroke by keystroke as the operator types. Thus, when you as the
operator type the word INPUT on the keyboard, the computer
actually receives a series of 1s and Os as follows:

0100100101001110010100000101001101010010

Also, the program BASIC consists of many subprograms,
called subroutines, all (of course) written in machine language. For
each BASIC statement, such as INPUT or PRINT, and for each
arithmetic operation such as addition or subtraction, there is a
corresponding machine-language subroutine having one or more
instructions. A machine-language subroutine to perform addition is
shown in Fig. 1-3.

This program performs the following steps:

1. Get first number.
2. Add to second number.
3. Store the result.

Note that there are two columns of numbers. The numbers on

0111110100000100
0111110100000110
0111110100001000
0111110100001010
0111110100001100
01111101060001110

1100000001100000
0111111000000010
1010000001100000
0111111000000100
1100100000000001
0111111000000000

Fig. 1-3. Sample binary machine language program.

7004 CO060

7006 7E02

7008 Aogo Fig. 1-4. Sample hexadecimal ma-
7D0A 7E04 chine language program.

7D0C €801

7D0E 7ECO

the left are memory locations, called addresses and correspond
conceptually to the line number in a BASIC program. The numbers
on the right are the data located at the memory addresses. The data
may be instructions as well as numbers and characters to be pro-
cessed. The énstruction corresponds conceptually to the statement
in BASIC.

It should be apparent that writing programs in machine lan-
guage is tedious and prone to error. Even after careful proofreading,
there could easily be one or more errors in the program shown in
Fig. 1-3.

Machine-language programming is made less tedious and sub-
ject to fewer errors if we use hexadecimal notation. Hexadecimal
uses the symbols 0 through 9 and A through F. One hexadecimal
number takes the place of four binary numbers, as shown in Table
1-1. Using this table you can convert the binary machine-language
program, shown in Fig. 1-3, to hexadecimal. The result is shown in
Fig. 1-4.

ASSEMBLY LANGUAGE
Assembly language is a symbolic form of machine language.

Binary Hexadecimal

0000 0

0001 1

0010 2

0011 3

Table 1-1. Binary to 0100 4

Hexadecimal Conversion. 0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 c

1101 D

1110 E

1M1 F

£3 LwPI WS
MOV @M1,R1 Fig. 1-5. Sample assembly language

A @M2.R1
MOV Ri.em3 | Program.
8 “RA11

Abbreviations, or mnemonics, are used in place of 1s and Os or
hexidecimal notation. A sample assembly language program is
shown in Fig. 1-5.

Each line of an assembly-language program has three sections,
or fields. The first field is the label field. The label is similar to the
line number in BASIC. While each line in BASIC must be numbered,
in assembly language the label is optional.

The second field is the opcode field. The opcode is the opera-
tion to be performed. Moving data from one memory location to
another, adding, and subtracting are a few of the operations that the
computer may perform. The opcode is similar to the statement in
BASIC.

The third field is the operand field. The operand may be a
number (to be added to another number, for example), or it may be
the number of a memory location (a memory address where a
number is located). There may be one or two operands in the
operand field. If there are two operands, they are separated by
a comma.

Before an assembly-language program can be run, it must be
translated into machine language. Fortunately this need not be done
by hand. There is a program which translates the assembly lan-
guage mnemonics into machine language. This program is called an
assembler. Each assembly language instruction (opcode plus
operand) is translated into one binary instruction. The assembly-
language program is called the source program. The binary result
(usually represented in hexadecimal) is called the object code.

The main advantage of assembly language is that it gives the
programmer direct control of the internal computer memory loca-
tion. The result is that assembly-language programs use fewer
memory locations and run faster than BASIC programs.

The disadvantage of assembly language is that it is more
difficult to learn than BASIC. Recall that to learn BASIC it is not
necessary to understand the internal operation of the computer.
This is not true for assembly language. Furthermore, there are as
many assembly languages as there are microprocessors. Thus, to
learn assembly language you must learn about microprocessors in

7

general, and in particular, you must learn at least some things about
the microprocessor that you want to program.

SUMMARY

In this chapter, I discussed three programming languages:
BASIC, machine language, and assembly language.

BASIC is an easy programming language to learn. The pro-
grammer is not required to understand the internal organization and
operation of the computer to use it.

Machine language is the most fundamental programming lan-
guage, utilizing only two symbols: 0 (zero) and 1 (one). The use of
hexadecimal notation makes machine language easier to read and
write.

Assembly language is a symbolic form of machine language.
Assembly language uses mnemonics in place of the binary code. To
learn assembly language, the programmer must have some knowl-
edge of the internal operation of the computer.

Chapter 2

Ve

|

[]E %g ,
Memory

The memory is that part of the computer where programs and data
are stored. Recall that the assembly-language programmer has
direct control over each memory location. Thus, understanding the
terminology and operation of the memory is essential to learning
assembly-language programming.

ADDRESS BUS

The basic interconnection between the microprocessor and the
memory is shown in Fig. 2-1. Each bus is a group of electrical
interconnections. The width of a bus is the number of lines in that
bus. Each line is called a bit.

The microprocessor sends out addresses of memory locations
on the address bus. The address is in the form of a binary number.
Recall that the binary number system uses only two symbols: 0
(zero) and 1 (one). The width of the address bus determines the
maximum number of memory locations that the computer may
address according to the following equation:

A=2r

A equals the maximum addressable memory and n equals the
width of the address bus. Thus a 16-bit address bus can address 26,
or 65536, memory locations. A 20-bit address bus can address 2%,
or 1048576, memory locations.

9

Address Bus

Microprocessor & Data Bus Memory

Control Bus

Fig. 2-1. Interconnection between the memory and the microprocessor.

In assembly language, memory locations are usually specified
using hexadecimal notation. Thus, the range of addresses for a
computer having a 16-bit address bus would be 0000 to FFFF, or
from 0 to 65535 in decimal notation. Note that 0, not 1, is the first
location. Also, don’t worry about not being able to quickly switch
back and forth between hexadecimal and decimal. Even experi-
enced programmers must either perform the conversion by hand, or
use a special-purpose calculator. Later on, I'll discuss number
systems and how to convert from one system to another.

DATA BUS

The data bus is bi-directional. That is, data can be transferred
from the microprocessor to the memory or from the memory to the
microprocessor. However, data cannot be transferred in both di-
rections at the same time.

Like the address bus, the information on the data bus is in the
form of a binary number. Although the width of the data bus may be
any length, it is usually one of the following widths: 4, 8, 16, or 32
bits. These widths usually correspond to the data width of the
microprocessor. Thus, a 4-bit microprocessor has a 4-bit data bus,
an 8-bit microprocessor has an 8-bit data bus, and so forth. This
means that an 8-bit microprocessor, for example, has been designed
to process, or perform operations on, 8-bit binary numbers.

Also like the address bus, the width of the data bus determines
the largest number that the computer can process according to the
following equation:

D=2"-1

D equals the largest number and n equals the width of the data
bus. Thus a computer with an 8-bit data bus can process any number
up to 255. A computer with a 16-bit data bus can process a number
up to 65535. By process I mean that the computer can perform a

10

single operation on a number no larger than that determined by its
bus width. Larger numbers, however, may be processed by multi-
ple operations.

Generally, there is one memory address per the number of bits
in the data bus. This is true for four and eight bit computers.
However, for 16-bit computers there is one address per eight bits,
called ytes. This gives the 16-bit computer additional flexibility. It
may transfer either one byte of data or two bytes of data at the same
time. Without this flexibility, memory space would be wasted in
those cases where the data was only eight bits wide.

CONTROL BUS

The control bus consists of two lines: the read control line and
the write control line. These lines are used in conjunction with the
address and data buses in two basic modes.

In the read mode, the microprocessor sends out an address to
the memory. The read line momentarily goes from the 1 state to the
0 state and back to the 1 state. While the read line is in the 0 state,
the memory sends the microprocessor the data contained in the
corresponding memory location. The write line is in the 1 state
during the read operation.

In the write mode, the microprocessor sends out both address
and data information to the memory. The write line momentarily
goes from the 1 state to the 0 state and back to the 1 state. While the
write line is in the 0 state, the binary information on the data bus is
written into the designated memory location. Previous data in this
location is overwritten. The read line is in the 1 state during the
write operation.

Both of these operations take less than one microsecond for
most types of microprocessors. One microsecond is one one-
millionth of a second (1/1,000,000 or 0.000001 seconds). This
means that a typical microprocessor may perform one million mem-
ory operations per second.

ROM AND RAM

There are basically two types of memory inside a home com-
puter: read only memory (ROM) and read/write memory (RWM).
Read only memory is exactly what its name implies: you can
only read the contents of this memory. The data in ROM cannot be
changed. The ROM in the computer contains prewritten programs
and associated data. These prewritten programs (which allow you

1

to write and run other programs) cannot be accidentally erased.
Even if you inadvertently try to write over a ROM location, nothing
will happen.

On the other hand, the read/write memory can be read or
overwritten. This memory is volatile. That means that when you
turn off the power the contents of the RWM is lost. Also, when you
turn the power on, the state of the RWM is indeterminate. The
read/write memory is that area where programs are temporarily
stored. To save new programs they must be stored on either
cassette tape or floppy disk. Old programs can be loaded into this
memory from cassette or disk.

Read/write memory is also called random access memory, or
RAM for short. Random access means that any memory location
may be accessed in any order. This term distinguishes this type of
memory from other types of so-called serial memories, such as
first-in-first-out (FIFO) or last-in-first-out (LIFO), which may not
be randomly accessed. Note, however, that read only memory is
also a random access memory although it is never referred to as
RAM. I'm sure there’s a story behind this inconsistency, but I don’t
know what it is.

SUMMARY

In this chapter, I discussed the basic terminology and operation
of the memory.

The microprocessor and the memory are connected by three
buses: the address bus, the data bus, and the control bus.

The two basic types of memory inside the home computer are
the read only memory and the read/write memory - the ROM and
RAM. The data in ROM is essentially permanent and can only be
read. The data in RAM may be changed as often as the programmer
desires. The data in RAM is lost when power is removed.

12

Chapter 3

|

ol %

Microprocessors

In the last chapter, I examined the interconnection, or interface,
between the memory and the microprocessor and discussed the
terminology and operation of the memory. In this chapter, I will go
inside the microprocessor, the so-called brain of the home com-
puter.

Recall that there are as many assembly languages as there are
microprocessors. There are two reasons for this: first assembly-
language instructions are directly related to the internal design, or
architecture, of the microprocessor; and second the architecture of

each microprocessor is different.
In this book, you are going to learn how to write assembly

language programs on the Texas Instruments TI-99/4A home com-
puter. The microprocessor inside the TI-99/4A is called the
TMS9900, also made by Texas Instruments. The 6502 micro-
processor, made by several manufacturers, is inside the ATARI,
VIC-20, and Apple II computers. The Intel 8088 microprocessor is
inside the IBM Personal Computer. The internal designs of these
microprocessors are all different, and the assembly language-
instructions for each microprocessor (and home or personal com-
puter) is consequently different.

To write assembly language programs for the TI-99/4A, you
will have to learn at least some things about the internal design of
the TMS9900. Before I do that, however, I am going to discuss the
terminology and internal design of microprocessors in general. This

13

will make it much easier to understand the TMS9900 later on.

Figure 3-1 shows a block diagram of a generalized micro-
processor. This drawing does not represent any commercial micro-
processor and has been simplified in order to clearly explain those
features that are common to many different types of microproces-
sors. Note the following primary functions within the microproces-
sor:

O The arithmetic logic unit (ALU).
O The status register.

O The general registers.

O The program counter.

O The control unit.

The multiplexers and demultiplexers are secondary functions

v

Demultiplexer

General Registers

| E—

Multiplexer Multiplexer

L4
Arithmetic Logic Unit

Status
Register

& W 5 pata Bus
1-—,| Program Counter H Address Bus

y

Control Unit f——> Control Bus

Fig. 3-1. Block diagram of a generalized microprocessor.
14

Operand A Operand B

ALU j&— Function

|

Status Result

Fig. 3-2. Inputs and outputs of the ALU.

which facilitate the movement of data between the main blocks and
also to the so-called outside world—the memory, the keyboard, and
the display unit.

ARITHMETIC LOGIC UNIT

Let’s begin with the arithmetic logic unit, or ALU, which is
considered the heart of the microprocessor. As its name implies,
this unit performs arithmetic and logic operations on either one or
two operands. In Fig. 3-2, these operands are called operand A and
operand B. Note that two outputs are generated each time an
operation is performed: one is the result of the operation and the
other is the status, or condition code.

Operand A, operand B, and the result are binary numbers. The
number of bits in both of these numbers corresponds to the width of
the data bus which I discussed in the last chapter. The TMS9900,
for example, is a 16-bit microprocessor. The data bus is 16 bits wide
and the ALU operands and result are also 16 bits wide. Thus, a
16-bit ALU performs arithmetic and logic operations on 16 bits of
data at one time. Operating on 32 or 64 bits would require multiple
operations.

The function select shown in Fig. 3-2 represents one or more
control lines which determine which of the following typical opera-
tions the ALU is to perform:

O A plus B.

O A minus B.

O B minus A.

O AORB.

O A AND B.

O A exclusive-OR B.

15

[Set result to all zeros.
[Set result to all ones.

Plus and minus are arithmetic operations (addition and sub-
traction). OR, AND, and exclusive-OR are logic operations. Set
result to all zeros and set result to all ones are neither arithmetic
nor logic operations (they do not involve input operands at all), but
are used when it is desirable to write all zeros or all ones to a
particular memory location. Each of these and other microproces-
sor operations will be explained in the next chapter.

STATUS REGISTER

As mentioned before, the ALU has two outputs: the result and
the status. The result, obviously, is the answer. If the operation
was addition, then the result would be a sum. The status, on the
other hand, gives us some additional information about the result.
The status word is a group of bits. The state (0 or 1) of each bit
corresponds to the occurrence or nonoccurrence of a particular
condition. The state of each condition is stored in the status regis-
ter. (Register is another name for a storage location.) One or more
status bits is updated at the end of each operation.

The four most common conditions that are monitored are
called carry, overflow, zero, and negative. When two numbers are
added, a carry may occur. If a carry does occur, then the carry bit is
set to 1, otherwise it is reset to 0. The overflow bit is set when the
result of the operation is too large or too small to be correctly
represented in 2s complement form (to be explained). The zero bit
will be set if the result is zero, and the negative bit will be set if the
result is less than zero.

The status of the bits is used as a basis for making decisions
during program operation. The programmer may want to branch, or
jump, to another part of the program depending on the state of one of
the status bits. He may want to perform one task if the result is
zero and a different task if the result is negative. Thus, just as the
BASIC programmer uses the IF-THEN-ELSE combination state-
ment to jump to another location in his program, the assembly
language programmer uses a jump on zero or other conditional
branching instruction which causes the computer to go to another
memory location (other than the next one in sequence) based on the
condition code contained in the status register.

GENERAL REGISTERS
A set of general purpose registers is often included in the

16

microprocessor to improve processor speed. It takes the processor
less time to read or write to an internal register than it does to read
or write to an external memory location.

Programming is also simplified. Earlier microcomputers had
only one register for ALU operations. It was called the accumulator.
To perform an ALU operation, the programmer had to first copy
data from an external memory location into the accumulator. Next
he added, for example, the contents of the accumulator to the
contents of a memory location (the address of which was previously
stored in a specific internal register) and then stored the result back
into the accumulator. Before the programmer could perform
another ALU operation he had to store the contents of the ac-
cumulator in an external memory location. Thus, it took at least four
assembly-language instructions to perform a simple addition. If,
however, the microprocessor has a number of general purpose
internal registers, then many ALU operations may be performed

Demulttiplexer

Register Register Register Register
]
) 12 l :
Multiplexer Multtiplexer
i
ALU

Status Register

> DataBus

Fig. 3-3. ALU and register set interconnection.
17

and it may not be necessary to ever store the results in external
memory.

Figure 3-3 shows the interconnection between the ALU and
the general register set. This figure shows only four registers, but
some commercial microprocessors have 16 or more. Note that the
purpose of the multiplexers is to select which register’s data will be
the source for operand A and which will be the source for operand B.
A multiplexer is conceptually identical to the channel switch on your
television set.

The demultiplexer selects which registers will be the destina-
tion for an ALU operation or a memory operation. For an ALU
operation the demultiplexer selects which register will be the
storage location for the result. For a memory operation, the demul-
tiplexer selects which register will contain a copy of the data in the
memory.

PROGRAM COUNTER

The program counter contains the memory address of the next
instruction to be executed. Normally all instructions are executed
sequentially. After an instruction has been read into the micro-
processor from the memory, the program counter is automatically
incremented by one. Most programs, however, involve jumping, or
branching, to some other location in memory. In these cases, the
program counter is first loaded with the new location and then
incremented thereafter or until another jump instruction is en-
countered.

When the microprocessor is instructed to begin a subroutine,
the contents (plus one) of the program counter is saved either in
another internal register or an external memory location. The
address of the first instruction in the subroutine is then loaded into
the program counter and incremented until a refurn instruction is
encountered. Then the old program counter value is loaded into the
program counter register and the program continues, executing
each instruction sequentially until encountering either a jump in-
struction or a subroutine call.

CONTROL UNIT

The control unit is the most complex of all the microprocessor
functions. It is shown as a simple block in Fig. 3-1. Not shown is the
fact that the control unit is connected to every other block.

The control unit causes the addresses to be sent out on the
address bus to the memory. The control unit sends out a read

18

command to the memory and reads the instruction (or data) that
comes back on the data bus. The control unit then decodes the
instruction and sends out appropriate signals to the ALU, the
multiplexers, demultiplexers, registers, and the program counter.
If the instruction was to store data in the memory, then the control
unit sends out the address and the data and a write command to the
memory.

SUMMARY

A typical microprocessor consists of five major functional
blocks. The ALU performs arithmetic and logic operations. The
status register records the effects of the ALU operations. The
general register set provides convenient additional storage loca-
tions for the programmer and, additionally, improves the execution
time for a program. The program counter contains the address of the
next instruction to be executed. The control unit decodes instruc-
tions, sets up all internal conditions necessary to execute the
instructions, and sends out read and write commands to the mem-
ory.

19

- Chapter 4

L

Il
MBI

= e

] .
N

Microprocessor Operations

Microprocessors perform five basic types of operations: data
transfer operations, arithmetic operations, logic operations, shift
and rotate operations, control transfer operations.

DATA TRANSFER

The move instruction is probably the most used instruction in
the entire instruction set of any microprocessor. This instruction is
used to transfer data from one location (the source) to another
location (the destination). These locations may be almost anywhere
in the microcomputer system. Thus, I may move data from the
memory to a register, from a register to the memory, from one
register to another register, or from one memory location to
another memory location.

By the word move I really mean that the data is copied. After I
move data from a memory location to a register, for example, the
original data is still in the memory—it has not been lost, nor is the
memory location empty. However, any data in the register (to
which I moved data) has been overwritten and is lost (unless
previously moved elsewhere, of course).

Load and store instructions are variations on the basic move
instruction. Generally, I load a register with data, where the data to
be loaded is located in the memory location immediately following
the memory location that contains the load instruction. Thus, in a
load instruction, only the destination needs to be specified because

20

the source is implied. Similarly, I store a result in a register or
memory location.

ARITHMETIC

Microprocessors perform two basic arithmetic operations: ad-
dition and subtraction. Recall that microprocessors perform opera-
tions on binary numbers and that the largest possible number is set
by the width of the data bus or, more particularly, the number of bits
that the ALU has been designed to operate upon. Thus, a 16-bit
microprocessor may perform addition or subtraction on any two
16-bit binary numbers. Let me illustrate how the computer per-
forms both of these operations. For simplicity I will use only 4-bit
numbers.

Binary Addition

Suppose I wanted to add the number 9 to the number 3. The
operation is shown in both decimal and binary. The binary equiva-
lents came from Table 4-1.

Decimal Binary
9 1001
43 +0011
12 1100

Binary addition is performed in the same manner that decimal
addition is performed. I start in the right hand column (the least
significant bit, or LSB) and move left one column at a time until I

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
- 5 0101
Table 4-1. Becimal-Binary Equivalents. e 0110
7 0111
8 1000
9 1001
10 1010
1 1011
12 1100
13 1101
14 1110
15 111

21

reach the leftmost column (the most significant bit, or MSB). When I
add two single-bit binary numbers, there are only four possible
combinations:

O 0 plus 0 equals 0. Carry equals 0.
0O 0 plus 1 equals 1. Carry equals 0.
O 1 plus 0 equals 1. Carry equals 0.
O 1 plus 1 equals 0. Carry equals 1.

The solution to the simple addition problem is as follows:
1. Start at the right hand column. 1 plus 1 equals 0 with 1 to
carry.
1
1001
+0011
0

2. Move one column to the left. Since I have a carry, I must add
twice. 1 (the carry) plus 0 equals 1 (no carry). 1 (result from last
add) plus 1 equals 0 with 1 to carry. The result of steps 1 and 2 are as
follows:

11
1001
+0011
00

3. Move one column to the left. 1 (the carry) plus 0 is 1 (no
carry). 1 (result from last add) plus O is 1 (no carry). The result of
steps 1, 2 and 3 are:

11
1001
+0011
100

4. Move one column to the left. 1 plus 0 equals 1 (no carry).
Addition is complete:

11
1001
+0011
1100

22

Binary Subtraction

Binary subtraction, unfortunately, is not as straightforward as
binary addition. Most computers perform binary subtraction by
what is called the addition of the 2s complement. In simple terms, this
means that instead of subtracting one number from another the
computer adds two signed numbers. The form for signed numbers is
called 2s complement.

Table 4-2 gives the 2s complement of all integers between +7
and -8. Note that this is the maximum number range for a 4-bit
microprocessor. The maximum number range for an 8-bit micro-
processor is +127 to —128. The maximum number range for a
16-bit microprocessor is +32,767 to —32, 768.

Also note that the 2s complement of a positive number is the
same as its binary representation. The 2s complement of a negative
number is formed by first changing all 1s to Os and Os to 1s and then
adding 1. For example, let's convert the number —3 to its 2s
complement form. First, I change 0011 to 1100. Then I add 0001 to
1100 and get 1101. The leftmost bit is called the sign bit: 0 indicates
a positive number, 1 indicates a negative number.

As an example of binary subtraction, let's subtract 4 from 7.
This is the same as adding +7 and —4. First, I convert each number
to its 2s complement form as outlined above or by looking up the
numbers in Table 4-2. The 2s complement for +7 is 0111 and the 2s
complement for —4 is 1100. Next, I add the 2s complement forms of
the numbers:

Table 4-2. 2s Complement of Signed Numbers.

Signed Decimal Binary 2s Complement
7 0111 o111
6 0110 0110
5 0101 0101
4 0100 0100
3 0011 0011
2 0010 0010
1 0001 0001
0 0000 0000
-1 -0001 111
-2 -0010 1110
-3 -0011 1101
-4 -0100 1100
-5 -0101 1011
-6 -0110 1010
-7 -0111 1001
-8 -1000 1000

23

0111
+1100
0011

The final carry is ignored. The result is in 2s complement form.
Using Table 4-2, notice that the number is +3, which is the correct
answer.

Now let’s subtract 7 from 4:

Decimal 2s Complement
+4 0100
=7 +1001

-3 1101

When you look up 1101 in Table 4-2 you will see that it is
equivalent to ~3. Since the result is negative, the status register
records this condition by setting the negative bit to 1.

What happens if I subtract 7 from —4?

Decimal 2s Complement
-4 1100

=7 +1001

-11 0101

When you look up 0101 in Table 4-2 you will see that it is
equivalent to +5, which is not the correct answer. This is because
the correct answer is outside the maximum allowable range for a
4-bit microprocessor. Consequently, the overflow bit in the status
register is set to 1. Note that it is the programmer’s responsibility
to make sure he is subtracting numbers that will give him legal
results.

LOGIC

Microprocessors perform three basic logic operations: AND,
OR and exclusive-OR.

The logic operation results on two single-bit operands are
shown in Table 4-3. This table shows the corresponding logic
operation results for the four possible combinations of 0 and 1 of the
input operands. Logic operations on 4, 8, or 16-bit operands are
performed on a single-bit basis.

As an example, let operand A equal 0101 and operand B equal
1100. Starting at either the left or right, look up the logic results in

24

Table 4-3. Logic Operation Results on Two Single-Bit Operands.

Logic Operation Resuit
Operand Operand

A B

AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Table 4-3 for each pair of bits. Starting at the leftmost bit, operand A
equals 0 and operand B equals 1. Therefore A AND B equals 0; A
OR B equals 1; and A XOR B equals 1. In the same manner, you can
look up the logic operation results for the next three pairs of bits.
The results are summarized as follows:

0101 AND 1100 equals 0100.
0101 OR 1100 equals 1101.
0101 XOR 1100 equals 1001.

SHIFT AND ROTATE

Microprocessors perform two basic shift operations: shift left
and shift right. Rotate operations are specialized shift operations.

In a shift left operation, all bits in a register or memory location
are shifted one position to the left. The leftmost bit is transferred to
the carry in the status register. The rightmost bit, after the shift, is
set to 0. This operation is typically called arithmetic shift left.

Let’s take a 4-bit number and perform an arithmetic shift left.
Let’s also assume the carry equals 0. Before the shift I have the
following:

Carry Register Contents
0 1011

After a left shift the carry and register contents look like this:

Carry Register Contents
1 0110

25

In a shift right operation, all bits in a register or memory
location are shifted right one position. The rightmost bit is trans-
ferred to the carry, and the leftmost bit, after the shift, is set to 0.
This operation is typically called logic shift right. Let’s perform a
logic shift right.

Before After
Register Contents Carry Register Contents Carry
1011 0 0101 1

Another shift right operation is called arithmetic shift right. The
difference between this operation and the logic shift right is that the
leftmost bit remains unchanged after an arithmetic shift right:

Before After
Register Contents Carry Register Contents Carry
1011 0 1101 1

Rotate

In rotate operations, the bits are circulated back into the
register. The carry may or may not be included in the loop. For
example, in a rotate left operation including carry, all bits would be
shifted to the left one position (same as the shift operation described
above). The leftmost bit would be transferred to the carry (same as
before), while the carry would be transferred to the rightmost bit
(different than before).

CONTROL TRANSFER

Microprocessors perform three basic control transfer opera-
tions. They are unconditional jump, conditional jump, and jump to
subroutine.

In an unconditional jump the computer is instructed to load a
new address into the program counter and then begin executing
instructions starting at that address. An unconditional jump in-
struction in assembly language is the same as the GOTO statement
in BASIC.

In a conditional jump, the program counter is loaded with a new
instruction address only if and when certain conditions have oc-
curred. The microprocessor reads the appropriate status register
bits to see if the condition has occurred. If so, then a jump occurs.
Otherwise the next consecutive instruction is executed. This is the
same as the IF-THEN statement in BASIC.

26

Subroutines are subprograms with one or more instructions in
them. Subroutines begin with a label that is used to call it up.
Subroutines end with a return instruction. When the computer
encounters a subroutine call, it loads the address of the first in-
struction in the subroutine and then begins executing the sub-
routine. Subroutines may contain conditional or unconditional
jumps as well as subroutines. When a subroutine contains a sub-
routine, then the two subroutines are said to be nested. This in-
struction is like the GOSUB statement in BASIC.

SUMMARY

Microprocessors perform five basic types of operation: data
transfer, arithmetic, logic, shift and rotate, and control transfer.
Move, load, and store are data transfer operations. Add and subtract
are arithmetic operations. AND, OR, and XOR are logic operations.
Shift and rotate operations involve the transfer of bits in a register
or memory location to the left or right. Conditional jumps, uncondi-
tional jumps, and subroutine calls are control transfer operations.

27

Chapter 5

/N

o«

151 B8
&5

Addressing Modes

)

One final concept remains to be explained before we discuss the
TMS9900 microprocessor and the TI-99/4A home computer and
begin writing assembly language programs. That concept is called
the addressing mode.

Microprocessors perform operations on data and place the
results in registers or memory locations. The data to be processed
and the address of the result are called operands.

The operand itself or the location of the operand within the
microcomputer system is determined by what is called the ad-
dressing mode, which must be specified for each operand in the
assembly language instruction.

If the operand is data, then the programmer must specify the
data itself or where the data can be found. If the operand is an
address, then the programmer must specify either the address
directly, or indirectly by specifying the register or memory location
where that address is stored.

There are five basic addressing modes that are common to
most microprocessors:

O Immediate
O Direct

O Indirect
O Indexed
O Relative

28

A single instruction with two operands may specify one ad-
dressing mode for the first operand and a different addressing mode
for the second operand. Let me illustrate each of these addressing
modes.

IMMEDIATE

Immediate addressing applies to data operands only. In the
instruction, load into register 1 the number 23, the number 23 is the
data. The addressing mode is called immediate because this in-
struction takes two memory locations; the first memory location
contains the machine code (binary) corresponding to “load into
register 1”; the memory location immediately following contains the
binary equivalent of 23.

DIRECT

Direct addressing applies only to address operands. In the
previous instruction, load into register 1 the number 23, register 1
is an address operand. It is specified directly, in contrast to indi-
rectly (which we will get to in a moment).

This mode is also called register direct, contrasting this mode
with memory direct addressing. The instruction, move the contents
of memory location 7E00 to register 1, is an example where both
operands are addresses, and both are specified directly. Neverthe-
less, the TMS9900 differentiates between register direct and
memory direct addressing and uses different mnemonics (symbolic
abbreviations) for each. Memory direct addressing is called sym-
bolic addressing in TMS9900 assembly language.

Note in the last example that a data operand is concealed in the
words “the contents of.” Thus, it is data that is moved, even though
the instruction contains an address operand. In fact, data operands
are specified directly only in the immediate addressing mode.
Confusing, isn't it?

INDIRECT

When the indirect addressing mode is specified, then the
address of either the data or the address must be looked up. In the
instruction, load the number 23 into the memory location the ad-
dress of which is stored in register 1, the microprocessor must read
the contents of register 1 to find out the destination address for the
number 23,

As another example, move the contents of register 1 to the

29

memory location the address of which is stored in register 2, the
first operand (the contents of register 1) is specified using the direct
addressing mode (indirectly specifying a data operand) and the
second operand (register 2) is specified using the indirect address-
ing mode. The words “the memory location the contents of which is
stored in” specify the addressing mode. These words are reduced to
a single symbol in TMS9900 assembly language —the asterisk (*).

INDEXED

When the indexed addressing mode is specified, the address is
formed by adding the contents of a register with a constant. In the
example, move the number 23 to the memory location the address
of which is the sum of the contents of register 2 and the number 5, if
register 2 contained the address 7D00, then the number 23 would be
stored in memory location 7D05.

RELATIVE

Relative addressing is specified for jump, or branch, instruc-
tions only. Jump forward 16 memory locations is an example of
relative addressing.

In this example, the number 16 is added to the address in the
program counter. This new address (the program counter plus 16) is
loaded into the program counter and is the address of the next
instruction to be executed. Note that the new program counter
address is relative to the old program counter address. With respect
to the old address, the new address is 16 memory locations forward.

Relative addressing is not the only way to specify a jump or
branch address. I could instruct the computer to jump to the address
stored in register 1 (indirect) or jump to address 7E0A (direct), for
example.

SUMMARY

Microprocessors perform operations on data and place results
in registers or memory locations. The data to be processed and the
address of the result are called operands.

The operand itself or the location of the operand within the
microcomputer system is determined by what is called the ad-
dressing mode, which must be specified for each operand in the
assembly language instruction.

There are five basic addressing modes common to most mi-
croprocessors: immediate, direct, indirect, indexed, and relative.

30

Part Il

The 9900 and the
TI-99/4A Home Computer

Chapter 6

N

|

= %@ =

The TMS9900

The TMS9900 is a 16-bit microprocessor. It is capable of address-
ing up to 65,536 bytes of memory; it performs both word and byte
operations, uses memory-to-memory architecture, and has 69 in- -
structions and 7 addressing modes. In this chapter, I will examine
the primary architectural features, the instruction set, and the
addressing modes of the TMS9900, hereafter simply referred to as
the 9900.

ARCHITECTURE

The following section briefly describes the primary architec-
tural features of the 9900. More detailed information can be ob-
tained by writing to Texas Instruments and asking for the TMS9900
data sheet.

Memory Addressing

The 9900 has a 15-bit address bus and a 16-bit data bus. This
means that the 9900 can address up to 32, 768 words of 16-bit data.

Internally, the 15-bit address bus is left-justified one bit to
form a 16-bit address. This means that all 16-bit data is essentially
stored at even addresses. However, because of the internal 16-bit
address bus, 8-bit byte data may also be addressed, and both byte
and word operations may be performed.

For example, the word at address 7D00 (even address) is
composed of two bytes. The address of the most significant byte is

33

7D00, and the address of the least significant byte is 7D01. The
9900 can perform a word operation on the word at 7D00 or it can
perform a byte operation on the byte at 7D00 or on the byte at 7D01.
However, when the 9900 performs a byte operation on either the
byte at 7D00 or the byte at 7D01, it reads both bytes, temporarily
stores them internally, and then performs the operation on the byte
specified in the instruction.

Program Counter

The program counter is a 16-bit register and contains the
address of the next instruction to be executed. The program counter
address is always an even address. After an instruction is fetched
from memory (but before the instruction is executed), the program
counter is incremented by two.

Workspace

A unique feature of the 9900 is its lack of an internal general
purpose register set. Instead, a set of sixteen 16-bit registers,
called the workspace, resides in external memory. The address of
the first register in the workspace is contained in an internal regis-
ter called the workspace pointer (WP).

Any area in the unused external read/write memory (the RAM)
may be designated as the workspace by the programmer. Let's
suppose, for example, that you decide to place the first register of
the workspace at memory address 70B8. This is accomplished by

Memory Address Register

7088
70BA
70BC
70BE

Table 6-1. Example 70C0

70C2
Workspace for WP-70B8. 7004

70C6
70C8
70CA
70CC
70CE
70D0
70D2
7004
7006

-
CQOUWONOMALWN=0O

b
-

-t b wd b
[R AN M

loading the number 70B8 into the WP register. Thereafter, memory
locations 70B8 through 70D6 are referred to as registers 0 through
15 of the workspace (See Table 6-1).

The 9900 does not have an internal accumulator. Instead, all 16
external workspace registers may be used as accumulators. This is
called memory-to-memory architecture. In the earlier microproces-
sors, data had to be first moved to an internal accumulator before an
operation could be performed on it. With memory-to-memory ar-
chitecture, data may be processed and stored back into memory by
using a single assembly language instruction.

Note that the programmer may allocate several areas in mem-
ory to be workspaces. Changing workspaces is as simple as loading
a new workspace pointer. Changing workspaces is called making a
context switch or changing the program environment. Thus, a context
switch or a program environment change can be accomplished using
a single instruction. This saves both in the number of instructions
and in execution time since the programmer does not have to worry
about saving the contents of his workspace registers. With other
microprocessors, the programmer would have to save each regis-
ter, using at least one instruction per register to be saved.

Communications Register Unit

Another unique feature of the 9900 is the communications-
register unit (CRU). Twelve lines of the address bus are used in
conjunction with the CRUIN (CRU input) line, the CRUOUT (CRU
output) line, and the CRUCLK (CRU clock) line to individually
address up to 4096 input lines and up to 4096 output lines. The data
bus is not used. CRU interface logic is required to decode the
individual addresses and store data sent out onthe CRUOUT line. A
simplified diagram of the CRU interface is shown in Fig. 6-1.

When an input line is selected, the logic state (0 or 1) is read via
the CRUIN line and stored in the 9900. When an output line is
selected, a 0 or 1 is sent out on the CRUOUT line and stored in an

A3-A14
CRUOUT CRU le—Inputs
9900 CRUIN Interface
CRUCLK Logic | — 5>Qutputs

Fig. 6-1. 9900 CRU interface.

external latch (a single-bit storage location) when the CRUCLK line
goes from the 0 state to the 1 state and back to the 1 state (a pulse, in
other words).

In the TI-99/4A home computer, the keyboard keys, the joy-
stick positions, and the cassette input and output lines are all
connected to the 9900 via a CRU interface logic integrated circuit
called the TMS9901 Programmable Systems Interface.

Interrupts

The 9900 has the capability of being interrupted during pro-
cessing. When an interrupt is requested (depressing the FUNC and
=keys on the TI-99/4A, for example), the interrupting device must
supply a 4-bit interrupt priority code. This code is read by the
computer and compared with a number called the interrupt mask
which is stored internally and may be changed by the programmer.

If the interrupt mask has been set to 5, for example, then
external devices with interrupt priority codes 0 through 5 will be
allowed to interrupt whatever the computer was doing. Note that 0
is the highest priority and 15 (F in hexadecimal) is the lowest. If in
our example an interrupting device supplied a code of 6 or higher,
then the computer would ignore the request.

If the code passed the priority test, then the computer would
look up new values for the program counter (PC) and workspace
pointer (WP). These values must be stored beforehand in reserved

Table 6-2. Interrupt Vector Locations.

Priority | Memory Address Containing Memory Address Containing
Code New Workspace Pointer Value | New Program Counter Value
0 0000 0002
1 0004 0006
2 0008 C00A
3 000C 00OE
4 0010 0012
5 0014 0016
6 0018 001A
7 001C 001E
8 0020 0022
9 0024 0026
10 0028 i 002A
1 002C 002E
12 0030 0032
13 0034 0036
14 0038 003A
15 003C 003E

36

Table 6-3. XOP Vector Locations.

XOoP Memory Address Containing Memory Address Containing
Number New Workspace Pointer Value New Program Counter Value
0 0040 0042
1 0044 0046
2 0048 004A
3 004C 004E
4 0050 0052
5 0054 0056
6 0058 005A
7 005C 005E
8 0060 0062
9 0064 0066
10 0068 C06A
1 006C 006E
12 0070 0072
13 0074 0076
14 0078 007A
15 007C 007E

memory locations called interrupt vector locations. There is a dif-
ferent set of memory locations for the new PC and WP values cor-
responding to each interrupt priority code. These locations are
listed in Table 6-2.

Having located the new PC and WP values, the computer next
saves the old PC, the old WP, and the contents of the status register
(ST) in the new workspace registers 13, 14, and 15, respectively.
The computer also loads the new PC and WP values at this time and
proceeds to execute the so-called service routine that corresponds to
the interrupt. When interrupt processing is completed, the old PC,
WP, and ST contents are restored.

Extended Operations

Just as memory locations are reserved by the 9900 to be used
as interrupt vectors, other memory locations are reserved for what
are called extended operation (XOP) vectors, or memory locations
which contain new WP and PC values.

The 9900 programmer has the option of defining up to 16
subprograms which may be called by a single XOP instruction. Each
XOP routine is assigned a number by the programmer who stores
corresponding WP and PC values in the reserved memory locations
prior to calling the routine. The 16 XOP vectors are given in Table
6-3. Note that there are two vectors per XOP, one for the new WP
value and one for the new PC value.

37

Status Register

The 9900 contains a 16-bit status register (ST). These bits are
defined as follows:

O Bit 0 LGT, logical greater than. Set to one when an un-
signed number (0 to 65,636 decimal) is compared to another un-
signed number and the first number is greater than the second.

O Bit 1 AGT, arithmetic greater than. Set to one when a
signed number (-32, 768 to +32, 767) is compared to another signed
number and the first number is less positive than the second
number.

OBit 2 EQ, equal to. Set to one when one number is compared
to another number and the first number is equal to the second
number.

O Bit 3 C, carry. Set to one when an arithmetic operation
results in a carry. Also set to one or cleared to zero in a shift or
rotate operation, depending on the state of the bit transferred to the
carry bit location.

0O Bit 4 OV, overflow. Set to one when the result of an
arithmetic operation results in a number too large or too small to be
correctly represented in 2s complement form.

O Bit5OP, odd parity. Set to one when the number of one bits
in the result is odd. For example, if the result was the number
0110001010110001 (62D1 hexadecimal), then the OP bit would be
set to one because the number of one bits in the result is 7, an odd
number.

O Bit 6 X, extended operation. Set to one when the XOP
instruction is used.

OBits 7-15 of the status register are not status bits in the usual
sense. Bits 7-11 are reserved for TI Model 990/10 computer appli-
cations. Bits 12-15 is the 4-bit storage location for the interrupt
mask.

INSTRUCTION SET

The following section contains a brief description of the 9900
assembly language instructions. Detailed information on each in-
struction is contained in Appendix A. The instruction set is divided
into nine groups: data transfer, arithmetic, comparison, logic, shift,
conditional jump, CRU, and control.

Data Transfer Instructions

LI, Load Immediate. Example: LI R7,5. The 16-bit binary
equivalent of the decimal number 5 is loaded into workspace regis-

38

ter 7. Note that the first operand (R7 in this example) must be a
workspace register.

LIMI, Load Interrupt Mask Immediate. Example: LIMI 5.
The 4-bit binary equivalent of the decimal number 5 is loaded into
bits 12-15 of the status register. Interrupt priority codes 0-5 are
enabled, codes 6-15 will be ignored.

LWPI, Load Workspace Pointer Inmediate. Example:
LWPI >70B8. The number 70B8 is loaded into the WP register.
Thus 70B8 becomes the address of register 0 of the workspace.
Note that the symbol > is used to denote hexadecimal representa-
tion in 9900 assembly language. The absence of the > before a
number indicates that the number is in decimal representation.

MOV, Move Word. Example: MOV R1, R3. The 16-bit con-
tents of register 1 is moved to register 3. The result is that registers
1 and 3 have identical contents.

MOVB, Move Byte. Example: MOVB@>7D00, R1. The
8-bit contents of memory location 7D00 is moved to the upper (or
leftmost or most significant) 8-bit byte of register 1. Note that the
symbol @ denotes the symbolic addressing mode in 9900 assembly
language. Addressing modes will be discussed in the next section.

SWPB, Swap Bytes. Example: SWPB R3. The most sig-
nificant byte of register 3 is moved to the least significant byte
position of register 3 and the least significant byte is moved to the
most significant byte position.

STST, Store Status. Example: STST R3. The contents of the
status register are stored in workspace register 3. Note that the
operand (R3 in this example) must be a workspace register.

STWP, Store Workspace Pointer. Example: STWP R3.
The contents of the WP register are stored in workspace register 3.
Note that the operand must be a workspace register.

Arithmetic Instructions

A, Add Words. Example: A R1, R2. The word stored in
register 1 is added to the word stored in register 2 and the sum is

stored in register 2. Hence, the previous contents of register 2 are
copied over.

AB, Add Bytes. Example: AB R1, R2. The most significant
byte of register 1 is added to the most significant byte of register 2

and the sum is stored in the most significant byte position of register
2.

Al, Add Immediate. Example: Al R1,>C. The number 000C
(12 in decimal) is added to the contents of register 1 and the sum is

39

stored in register 1. Note that the first operand (R1 in this example)
must be a workspace register.

S, Subtract Words. Example: S@>7E00,@>7E02. The
word at memory location 7E00 is subtracted from the word at
memory location 7E02 and the difference is stored at memory
location 7E02.

SB, Subtract Bytes. Example: SB@>7301, R1. The byte at
memory location 7E01 is subtracted from the most significant byte
of register 1 and the difference is stored in the most significant byte
position of register 1.

INC, Increment. Example: INC R1. The number 1 is added
to the contents of register 1 and the sum is stored in register 1.

INCT, Increment by Two. Example: INCT R1. The number
2 is added to the contents of register 1 and the sum is stored in
register 1.

DEC, Decrement. Example: DEC@>7E00. The number 1 is
subtracted from the contents of memory location 7E00 and the
difference is stored in memory location 7E00.

DECT, Decrement by Two. Example: DECT R4. The
number 2 is subtracted from the contents of register 4 and the
difference is stored in register 4.

NEG, Negate. Example: NEG@>7E00. The data in memory
location 7EQ0 is replaced by its 2s complement.

ABS, Absolute Value. Example: ABS R5. The data in reg-
ister 5 is replaced by its absolute value.

MPY, Multiply. Example: MPY@>7D00, R5. The 16-bit data
in memory location 7D00 is multiplied by the 16-bit data in register
5. The 16 most significant bits of the 32-bit product are stored in
register 5 and the 16 least significant bits of the 32-bit product are
stored in register 6. Note that the second operand (R5 in this
example) must be a workspace register and that the result is stored
in the designated register and the designated register plus one.

DIV, Divide. Example: DIV R4, R5. The 32-bit data con-
tained in registers 5 and 6 (register 5 containing the 16 most
significant bits) is divided by the 16-bit data in register 4. The 16-bit
quotient is stored in register 5 and the remainder is stored in
register 6. Note that the second operand (R5 is this example) must
be a workspace register.

Comparison Instructions
C, Compare Words. Example: C R1, R2. The 16-bit data in

40

register 1 is compared to the 16-bit data in register 2. The compari-
son is done on both a signed and unsigned number basis. On a signed
number basis, if the data in register 1 is more positive than the data
inregister 2, then the AGT (arithmetic greater than) status bit is set
to one. On an unsigned number basis, if the data in register 1 is
greater than the data in register 2, then the LGT (logical greater
than) status bit is set to one. In either case, if the 16-bit data in
register 1 is identical to the 16-bit data in register 2, then the EQ
(equal) status bit is set to one.

CB, Compare Bytes. Example: CB@>7D01, R2. The 8-bit
data in memory location 7D01 is compared to the most significant
byte of register 2.

CI, Compare Immediate. Example: CI R9,>F330. The 16-
bit data in register 9 is compared to F330. Note that the first
operand must be a workspace register.

COC, Compared Ones Corresponding. Example: COCR1,
R2. The data in register 1 is compared to the data in register 2. If for
each one bit (a bit with a value of one) in register 1 there is a one in
register 2 in the same position (bit 3 in both registers equals one, for
example), then the EQ (equal) status bit is set to one. Note that the
second operand (R2 in this example) must be a workspace register.

CZC, Compare Zeros Corresponding. Example: CZCR],
R2. The data in register 1 is compared to the data in register 2. If for
each one bit (a bit with a value of one) in register 1 there is a zero in
register 2 in the same position (bit 3 of register 1 equals one and bit
3 of register 2 equals zero, for example), then the EQ (equal) status
bit is set to one. Note that the second operand (R2 in this example)
must be a workspace register.

Logic Instructions

ANDI, AND Immediate. Example: ANDI R0,>6D03. The
16-bit data in register 0 is logically ANDed with the data value 6D03
on a bit by bit basis, and the result is placed in register 0. Note that
the first operand must be a workspace register and that the second
operand must be a data value.

ORI, OR Immediate. Example: ORI R5,>6D03. The 16-bit
data in register 5 is logically ORed with the data value 6D03 on a bit
by bit basis, and the result is placed in register 5. Note that the first
operand must be a workspace register and that the second operand

must be a data value.
XOR, exclusive-OR. Example: XOR@ >7E00,R2. The con-

41

tents of memory location 7E00 is logically exclusive-ORed with the
contents of register 2 and the result is placed in register 2. Note that
the second operand must be a workspace register.

INV, Invert. Example: INV R1. The contents of register 1 is
logically inverted and the result is placed in register 1. This means
that all ones in the register are changed to zeros and all zeros are
changed to ones.

CLR, Clear. Example: CLR R1. 0000 is placed in register 1.

SETO, Set to One. Example: SETO R1l. FFFF
(1111111111111111 in binary) is placed in register 1.

SOC, Set Ones Corresponding. Example: SOC R3,

>TE00. The contents of register 3 is logically ?Red with the
contents of memory location 7E00 and the result is placed in mem-
ory location 7E00. (Why didn’t TI just call this instruction OR?)

SOCB, Set Ones Corresponding—Byte. SOCB R5,R8.
The most significant byte of register 5 is logically ORed with the
most significant byte of register 8 and the result is placed in the
most significant byte position of register 8. (Why not ORB or OR
Byte?)

SZC, Set Zeros Corresponding. Example: SZC R5, R3. For
each one in register 5 the corresponding bit in register 3 is reset to
zero. Suppose bit 7 of register 5 was equal to one. This instruction
would reset bit 7 of register 3 to zero.

SZCB, Set Zeros Corresponding—Byte. Example: SZCB
@>7E00,@>7E01. For eachone in the byte at memory location
7E00, the corresponding bit in the byte at memory location 7E01 is
reset to zero.

Shift Instructions

SRA, Shift Right Arithmetic. Example: SRA R1,6. The
contents of register 1 is shifted to the right one bit six times. Bit 0
(the leftmost, most significant bit for TI microprocessors) is shifted
to bit 6, bit 1 is shifted to bit 7, and so forth. Vacated bit positions
are filled with the starting value (one or zero) of bit 0. In this
example, the carry status bit will contain the value of bit 10 of
register 1’s original contents. Note that the first operand must be a
workspace register. The second operand is the shift count and is a
number between 0 and 15. If the number is zero, then the shift count
equals the value of the four least significant bits of register 0. If the
four least significant bits of register 0 equal 0, then a 16-bit shift will
be performed.

SLA, Shift Left Arithmetic. Example: SLA R10,5. The

42

contents of register 10 are shifted to the left one bit five times.
Vacated bit positions are filled with zeros. The carry status bit is
equal to the value of the last bit shifted out to the left.

SRL, Shift Right Logical. Example: SRL R0,3. The con-
tents of register 0 is shifted to the right one bit three times. Vacated
bit positions are filled with zeros. The carry status bit is equal to the
value of the last bit shifted out to the right.

SRC, Shift Right Circular. Example: SRC R2,7. The con-
tents of register 2 is shifted to the right one bit seven times. Bit 15
(the rightmost, least significant bit for TI microprocessors) is
transferred to bit 0 each time a shift occurs. Hence, the contents of
the specified register are said to be circulated or rotated. The carry
status bit is not in the loop but will contain the value of the last bit
shifted out to the right.

Unconditional Branch Instructions

B, Branch. Example: B@>2166. The memory address 2166
is loaded into the program counter and becomes the address of the
next instruction to be executed.

BL, Branch and Link. Example: BL@>7D00. The memory
address 7D00 is loaded into the program counter and the old value of
the program counter is stored in workspace register 11.

BLWP, Branch and Load Workspace Pointer. Example:
BLWP@>2100.The data at memory location 2100 is loaded into the
workspace pointer register. The data at memory location 2102 is
loaded into the program counter. The old values of the workspace
pointer and program counter are stored in the new workspace
registers 13 and 14, respectively. The contents of the status regis-
ter are stored in register 15.

XOP, Extended Operation. Example: XOP@ >7E00,2.
Extended operation number 2 is called. The 16-bit contents of
memory address 0048 is loaded into the workspace pointer regis-
ter. The 16-bit contents of memory address 004A is loaded into the
program counter. (See Table 6-2 for XOP vector locations.) The
16-bit contents of memory location 7E00 is loaded into the new
workspace register 11. The old workspace pointer, program
counter, and status are stored in the new workspace registers 13,
14, and 15, respectively. Note that the first operand is a memory
address of a data value to be passed to and used by the XOP
subprogram. (A dummy address must be used if the subprogram
does not require a variable to be passed to it.) The second operand
is the XOP subprogram number between 0 and 15.

43

RTWP, Return with Workspace Pointer. No operands in
the instruction operand field. The contents of registers 13, 14, and
15 are loaded into the workspace pointer register, the program
counter, and the status register, respectively.

JMP, Unconditional Jump. Example: JMP —5. The pro-
gram counter is incremented by 2 and decremented by 10. Note that
the basic memory word width of the 9900 is 16 bits. Instructions
have even addresses and, thus, the value of the program counter is
always an even address. Also, after an instruction is fetched (and
before it is executed) the program counter is incremented by two.
The operand in the jump instruction is called the displacement and is
the relative number of program counter addresses forward (plus
sign) or backward (minus sign) from the value of the program
counter after the instruction has been fetched. Suppose our example
instruction JMP —5) was located at memory address 7D18. Before
execution the program counter equals 7D1A. Then the program
counter is decreased by 2 five times and equals 7D10. Schematically
we can see that 7D10 corresponds to a displacement of —5 for this
example:

Program Counter Displacement
7D10 -5
7D12 -4
7D14 -3
7D16 -2
7D18 -1
7D1A 0

No doubt this is confusing. You will see, however, that in
assembly language you can label a memory location with a
mnemonic (such as J1, for example). Thus, when you use the JMP
instruction with a label JMP J1, for example), the assembler will
compute the proper machine code for the displacement.

X, Execute. Example:X@>7D00. The instruction located at
7D00 is executed.

Conditional Jump Instructions

Conditional jumps to other locations in the program occur only
if certain status bits meet the condition required by the conditional
jump instruction. Conditional jump instructions have the same form
as the unconditional jump (JMP) instruction. For each of the follow-
ing instructions, the operand is a displacement value as explained

44

for the JMP instruction. Therefore, I will not use examples in this
section.

JH, Jump if Higher. A jump will occur only if LGT (the
logical greater than status bit) equals 1 and if EQ (the equal status
bit) equals 0.

JL, Jump if Lower. A jump will occur only if LGT equals 0
and if EQ equals 0.

JHE, Jump if Higher or Equal. A jump will occur only if
LGT equals 1 or EQ equals 1.

JLE, Jump if Lower or Equal. A jump will occur only if LGT
equals 0 or EQ equals 1.

JGT, Jump if Greater Than. A jump will occur only if AGT
(the arithmetic greater than status:bit) equals 1.

JLT, Jump is Less Than. A jump will occur only if AGT
equals 0 and EQ equals 0.

JEQ, Jump if Equal. A jump will occur only if EQ equals 1.

JNE, Jump if Not Equal. A jump will occur only if EQ equals
0.

JOC, Jump On Carry. A jump will occur only if C (the carry
status bit) equals 1.

JNC, Jump on No Carry. A jump will occur only if C equals 0.

JNO, Jump on No Overflow. A jump will occur only if OV
(the overflow status bit) equals 0.

JOP, Jump if Odd Parity. A jump will occur only if OP (the
odd parity status bit) equals 1.

CRU Instructions

SBO, Set Bit to Logic One. Example: SBO 15. A logic one is
stored in an external latch. The address of the latch (single-bit
storage location) is the sum of the number 15 and the 12-bit address
stored in bits 3 through 15 of workspace register 12. The operand
(15 in this example) is called the displacement value and is a number
between —128 to +127.

SBZ, Set Bit to Logic Zero. Example: SBZ 2. A logic zero is
stored in an external latch. The address of the latch is the sum of the
number 2 and the 12-bit address stored in bits 3 through 14 of
workspace register 12.

TB, Test Bit. Example: TB 4. The logic state of the selected
single-bit input line is stored in the EQ (Equal) status bit location.
The address of the selected input line is the sum of the number 4 and

the 12-bit address stored in bits 3 through 14 of workspace register
12.

45

LDCR, Load CRU. Example: LDCR@>7E00, 9. The 9 least
significant bits of the 16-bit data stored at memory location 7E00 is
transferred to external single-bit latches. The least significant bit
(bit 15 for TI microprocessors) is transferred to the latch designated
by the 12-bit address (the base address) stored in bits 3 through 14 of
workspace register 12. The next least significant bit (bit 14) is
transferred to the latch designated by the base address plus one, and
so forth. Note that the operand (9 in this example) is the number of
bits to be transferred and must be a number between 0 and 15. If the
number is 0 then a 16-bit transfer will be performed.

STCR, Store CRU. Example: STCR@>7E02, 5. The logic
states of 5 successive external lines are transferred to memory
location 7E02. The address of the first line is designated by the
12-bit address (the base address) stored in bits 3 through 14 of
workspace register 12. The logic state of the first line is stored in
the least significant bit (bit 7) of the byte located at 7E02. The logic
state of the next line (base address plus one) is stored in the next
least signficant bit (bit 6), and so forth.

Control Instructions

See Appendix A for details on these instructions. TI's Editor/
Assembler manual recommends that these instructions not be used
on the TI-99/4A home computer even though the instructions are
recognized and assembled. These instructions will not be used in
this book.

LREX, Load or Restart Execution.
CKOF, Clock Off.

CKON, Clock On.

RSET, Reset.

IDLE, Idle.

ADDRESSING MODES

The 9900 has seven addressing modes: immediate, register
direct, register indirect, register indirect with autoincrement,
symbolic (memory direct), indexed, relative.

Immediate
Seven instructions use the immediate addressing mode:

O LI, Load Immediate.
O LIMI, Load Interrupt Mask Immediate.

0 LWPI, Load Workspace Pointer Immediate.
O Al Add Immediate.

O CI, Compare Immediate.

0O ANDI, AND Immediate.

O ORI, OR Immediate.

Example: LI R1>,A70C. The data A70C is loaded into work-
space register 1. This instruction requires two words of memory.
The first word contains the machine code for LI R1 and the memory
word immediately following contains the number A70C. Note that no
other addressing modes are allowed with the immediate instruc-
tions. Also, no other instructions may use the immediate ad-
dressing mode.

Register Direct

If the register direct addressing mode is specified, then the
data to be processed is found in the workspace register specified
directly in the instruction. If the operand is a destination address
(where the result will be stored), then the address is specified
directly. No special symbols are used to indicate this mode.

Example: MOV R1,R2. The contents of register 1 is moved to
register 2. Both operands in this example are specified using the
register direct addressing mode.

Register Indirect

If the register indirect addressing mode is specified, then the
address of the data to be processed is found in the specified work-
space register. Hence, the location of the data is specified indirectly.
If the operand is a destination address, than that address is con-
tained in the specified workspace register. Hence, the destination
address is specified indirectly. The asterisk (*) symbol is used to
designate the register indirect addressing mode.

Example: MOV *R1, *R2. Move data. The source address (the
address where the data to be moved is located) is stored in register
1. The destination address (the address to which the data will be
moved) is stored in register 2.

Register Indirect with Autoincrement

If the register indirect with autoincrement mode is specified,
then the address of the data to be processed is found in the specified
workspace register. Additionally, the address in the specified reg-

47

ister is incremented after the instruction has been executed. The
address will be incremented by one if the data to be processed is a
byte. The address will be incremented by two if the data to be
processed is a word.

If the operand is a destination address, then that address is
contained in the specified workspace register. Additionally, the
destination address is either incremented by one or two after the
instruction has been executed—by one if the operation is a byte
operation, by two if the operation is a word operation.

A plus (+) sign is used to designate autoincrement.

Example: MOV *R1+, *R2+. The source address (the address
of the data to be processed) is contained in register 1. The destina-
tion address (the address of the memory location to which the data
will be moved) is contained in register 2. Since this is a word
operation, then the contents of both registers will be incremented
by two after the instruction is executed.

Symbolic

If symbolic addressing is specified, the data to be processed is
found at the memory location specified directly in the instruction. If
the operand is a destination address, then that address is specified
directly in the instruction. TI uses the @ symbol to indicate this
mode. Symbolic addressing is also called memory direct address-
ing.

Example: MOV@ >7E00,R1. The data at memory location
7E00 is moved to workspace register 1.

Example: MOV R1,@>7E00. The data in register 1is moved to
memory location 7E00.

Indexed

If indexed addressing is specified, then the source or destina-
tion address is formed by adding a constant to the contents of a
workspace register (called the index register). The constant is pre-
ceded by an @ sign and the workspace register to be used as the
index register is enclosed in parentheses.

Example: MOV R1,@2(R8).The data in register 1 is moved to
memory. The destination address is formed by adding the number 2
to the contents of register 8.

Note that any workspace register may be used as an index
register except register 0.

48

Relative

Relative addressing is used by the JMP(unconditional jump)
instruction and the twelve conditional jump instructions. In these
instructions, the new program counter address is specified in terms
of the number of program addresses forward (plus sign) or backward
(minus sign) from the value of the program counter after the in-
struction has been fetched. The number of addresses forward or
backward is called the displacement. In general terms, the new
program counter address (the jump address) is the value of the
program counter plus two plus twice the displacement. The dis-
placement value is limited to the range —128 to +127.

Example: JMP —5. The program counter is incremented by
two and then decremented by ten.

SUMMARY

The primary architectural features, instruction set, and ad-
dressing modes of the 9900 have been discussed.

The 9900 is a 16-bit microprocessor, addresses up to 65,536
bytes of memory, performs both byte and word operations, and uses
memory-to-memory architecture (no internal accumulators—uses
external workspace registers in memory). It has 69 instructions and
7 addressing modes.

49

Chapter 7

9

— I
o
The TI1-99/4A

The TI-99/4A is one of the best bargains in the home computer
marketplace. While the price has undergone many swings and TI
has announced that they will no longer produce the machine, it
offers more capabilities for the money than any other home com-
puter.

It was $199 after a $100 rebate when I bought mine. For my
$199 I got the console, video interface cable and RF modulator,
power supply module and power cable, 193-page Use?’s Reference
Guide, and a 143-page Beginner's BASIC teaching manual.

Internally, the TI-99/4A home computer has a 16-bit micro-
processor (the TMS9900), something no other home computer on
the market has at this time. The VIC-20, the Radio Shack Color
Computer, the Sinclair, the AT ARI 400/800, and the Commodore-64
all have 8-bit microprocessors. Even in the higher priced machines
($1000-5000) which are sometimes bought for the home (though
generally they are bought for business), very few have a 16-bit
microprocessor. The IBM Personal Computer is perhaps the most
popular, and it has the Intel 8088 16-bit microprocessor, but it costs
at least twenty times more than the TI. Obviously, the IBM PC is
the better computer; but if you're looking for a low-priced 16-bit
computer, the TI-99/4A is the one.

Looking at the TI-99/4A home computer from the standpoint of
learning how to write assembly language programs, you can see that
this machine is a very good choice for a low cost learning system. It

50

is possible to buy an inexpensive 8-bit microprocessor learning
systems, such as the Heathkit ET3400 or even the VIC-20 if you buy
the assembly language plug-in cartridge, but I know of no 16-bit
microprocessor learning system other than the TI-99/4A at a simi-
lar price.

Intel offers a system design kit, the SDK-86, for the 8086
16-bit microprocessor (the 8088 used in the IBM PC Personal
Computer is an 8-bit data bus version of the 8086 but is still
considered a 16-bit processor because internally it has the 8086
16-bit data bus and ALU). This kit costs about $700 and is a stripped
down system—no power supply included, no cover (all components
exposed), and most of all no assembler. All assembly language
programs must be translated by the programmer into machine code
and entered via a hexadecimal numeric keypad.

TI offers a similar kit for the TMS9995, a newer enhanced
version of the 9900 having an internal 256 byte RAM, internal clock
generator, internal timers, and an 8-bit data bus. This kit does come
with an assembler in ROM but still costs about $500. A power
supply is not included, and all components are exposed.

Neither of these kits is for the first time assembly language
programmer. These kits are actually low cost software develop-
ment and prototyping systems for companies who are in the busi-
ness of developing microcomputer-based products. By low cost, I
mean low compared to the more sophisticated software develop-
ment systems and in-circuit emulators which cost from $20,000 to
$50,000.

So, for 16-bit microprocessor students with a limited budget,
the TI-99/4A is currently the only choice. The only additional cost
to be able to learn assembly language on the TI home computer is

Fig. 7-1. The TI-99/4A home computer console.

51

"8105u09 JeIndwod swoy Vi/66-11 e jo uresberp sooiq pseysdus 2L Bid

10108UU0) 10}03UU0D) 10}08UU0D) 10jo8UU0) 10}08UU0D
08pIA/OIpNY 8|NPOY puBwWIWO) uoisuedx3 jesayduad sonshop apasse)
saunnoy aiseg
WNOHD 8 x M8lL
WVH daA
8 X M9l preoqfay
Wvd NdO
91 x 8el
(dan) aoepelu| swalsis
i0ss8001d BlEQ 09PIA 101e18UBD) woH a|qewwesboud
8166 SNL punos xa|dwo) 8josuo) 1066 SWN1
9l XM
|
10ss3201d0IOIN
0066 SW.L

52

Table 7-1. CPU Memory Map.

First Address |Last Address Description Number
(hexadecimal) | ‘hexadecimal) ' of bytes
0000 1FFF Console ROM 8,192
2000 3FFF Memory Expansion 8,192
4000 SFFF Peripheral Expansion 8,192
6000 7FFF Command Module ROM/RAM 8,192
8000 9FFF CPU RAM & Memory Mapped Devices| 8,192
A0CO FFFF Memory Expansion 24,576

the cost of the Mini Memory plug-in command module. This module
costs less than $100 (mine was $84 plus tax). It comes with a
Line-by-Line Symbolic Assembler on cassette tape.

A picture of the TI-99/4A home computer console is shown in
Fig. 7-1 and a simplified block diagram of the internal organization
of the console is shown in Fig. 7-2. In the rest of this chapter, I will
discuss the memory organization of the TI-99/4A, which has not
one, but three separate memories. In particular, I will focus on how
memory locations are allocated within the computer. Such informa-
tion is essential for the assembly language programmer. Memory
allocation will be shown in tables that are called memory maps.

CPU MEMORY

The CPU memory map is shown in Table 7-1. This memory
contains up to 65,536 locations with each location containing 8 bits,
or one byte. 8,192 bytes (or 4,096 words of 16-bit data) are con-
tained in the console ROM (see Fig. 7-2) and 256 bytes (128 words)
are contained in the CPU RAM.

The address of the first memory location in console ROM is
0000, and the last address is 1FFF (hexadecimal for 8191). This
ROM is called the system monitor ROM and controls the basic
computer operation; it displays the so-called START screen on
your TV set or monitor, allows you to get into BASIC, and so forth.

The address of the first memory location in the CPU RAM is
8300 (hex), the last address is 83FF (hex). This 256 byte read/write
memory is called a scratch pad and is used by various programs as a
workspace register area and as a general purpose temporary stor-
age area for variables.

Another area of the CPU Memory is allocated for memory-
mapped devices. Although space has been reserved for 7,936 bytes,
only 11 addresses have been decoded internally. These addresses

53

and their use are shown in Table 7-2. Note that these addresses are
not the addresses of specific 8- or 16-bit locations, such as ROM,
RAM, or general purpose registers. TI uses these decoded address
lines essentially as control lines to read and write data or address
information from or to one or more registers contained in these
memory-mapped devices.

Four devices are controlled by these 11 decoded address lines
in conjunction with the data bus. Three of the four devices are in the
console: the TMS9918A Video Data Processor, the Complex Sound
Generator, and the graphics read only memory (GROM). The one
external device for which there is internal address decoding is the
speech module.

The remaining CPU Memory is reserved for memory expan-
sion (addresses 2000-3FFF and A000-FFFF), peripheral expansion
(4000-5FFF) and command module ROM/RAM (6000-7FFF). All of
these are outside the console.

Memory expansion and peripheral expansion are accomplished
by connecting external memory (ROM or RAM) or peripheral de-
vices (such as an RS-232 interface for a printer) to the 44-pin
input/output port on the right side of the console. TI sells a
Peripheral Expansion System to facilitate expansion. This box has
its own power supply and can hold up to seven accessories plus one
disk drive.

Command module ROM/RAM is connected to the system
through the command module slot just to the right of the keyboard.
See Fig. 7-3.

VIDEO DATA PROCESSOR RAM
The second memory in the TI-99/4A is the Video Data Proces-

Address Function
(hexadecimal)
8400 Sound
8800 VDP Read Data
Table 7-2. Memory 8802 VDP Read Status
Mapped Devices. 8C00 VDP Write Data
8C02 VDP Write Address
9000 Speech Read
9400 Speech Write
9800 GROM Read Data
9802 GROM Read Address
9Co00 GROM Write Data
9Co02 GROM Write Address

54

Keyboard /

Command
module slot

Power switch

Fig. 7-3. Front view of console.

sor (VDP) RAM. This memory is completely separate from the
CPU Memory and has its own address space. It is completely
controlled by the TMS9918A Video Data Processor integrated
circuit and contains 16,384 bytes of read/write memory. This
memory is the so-called 16K RAM you read and hear about in the
advertisements for the TI-99/4A home computer.

The VDP RAM contains the current data for the video display.
Everything you see on your screen is contained in binary form in the
VDP RAM and was placed on the screen by the Video Data Proces-
sor integrated circuit. This memory contains the pattern descriptor
table (used for defining up to 256 patterns or characters), the color
table, screen image table (which specifies the characters that oc-
cupy each of the 768 screen positions), sprites (moving graphics),
sprite descriptor table (similar to the pattern descriptor table), and
sprite motion table. See Table 7-3.

Table 7-3. VDP RAM Memory Map.

First Last Description Number

Address Address of Bytes
0000 02FF Pattern Name Table 768
0300 037F Sprite Attribute List 128
0380 03FF Pattern Color Table 128
0400 077F Sprite Descriptor Blocks 896
0780 07FF Sprite Velocity Table 128
0800 OFFF Pattern Generator Area 2048
1000 137F Free Memory Space 896
1380 34FF Program File Load Buffer Area 8576
3500 3FFF Reserved for Disk Device 2816

Service Routine

55

Table 7-4. VDP RAM with BASIC interpreter.

First Last Description Number
Address Address of Bytes
0000 02FF Screen 768
0300 031F Color and Sprite Table 32
0320 038D Crunch Buffer 168
03BE 03FF BASIC Temporaries and 66
Interpreter Roll-Out
Area
0400 05FF Character Tables 512
0600 3FFF BASIC Tables and 14,848
Crunched Program

When BASIC is in use, the VDP RAM also contains the user’s
program and all the information required by the BASIC Interpreter
program (recall that BASIC is itself a program that allows you to
write in BASIC language) in order to convert the user’s program to
machine code. See Table 7-4.

Keep in mind that the VDP RAM space cannot be accessed
directly. This RAM is controlled by the VDP chip which interfaces
to the 9900 microprocessor via the data bus and four decoded
address lines which function as read/write control lines—to write
data to and read data from special purpose registers inside the VDP
chip. Thus, the assembly-language programmer may read and mod-
ify the VDP RAM indirectly by accessing the VDP registers.

Another way to access the VDP RAM is the use of the EASY
BUG debugging program, which I will discuss in the next chapter.

GRAPHICS READ ONLY MEMORY

The third memory in the TI-99/4A home computer is the
graphics read only memory (GROM). This memory is completely
separate from the CPU Memory and the VDP RAM and has its own
address space.

The TI-99/4A console contains three GROM chips, each with
6,144 bytes of ROM. These chips are not standard ROM devices
which are interfaced to a microprocessor via the address and data
busses. These GROM chips, which are unique to TI as far as I know,
have their own 13-bit program counter inside. Also, like the VDP
RAM, they interface to the 9900 through four decoded address lines
(see Table 7-2) which function as read/write control lines.

The three GROM chips in the console contain the BASIC

56

language routines. See the box labeled “18K x 8—BASIC
Routines” in Fig. 7-2. Up to five more GROM chips may be added
externally via the command module slot, giving the computer an
additional 30K bytes of memory.

CRU BITS

In addition to the three memories just discussed, up to 4096
single-bit lines or storage locations may be addressed by the 9900’s
communications register unit (CRU).

Only one device in the TI-99/4A home computer console
communicates with the 9900 through the CRU—the TMS9901
Programmable Systems Interface chip. This chip is used to inter-
face the keyboard, cassette tape recorder (external), and joysticks
(external) to the 9900 microprocessor. The TMS9901 contains all
the interface circuitry required to address 32 input/output lines.

Table 7-5. Allocation of TMS 9901 CRU Bits.

CRU Bits Functions
0 Control
1 External
2 VDP Vertical Synchronization
3 Clock interrupt, keyboard ENTER line, joystick
fire button

4 Keyboard “L" line, joystick left
5 Keyboard “P" line, joystick right
6 Keyboard “0" (zero) line, joystick down
7 Keyboard SHIFT line, joystick up
8 Keyboard SPACE line
9 Keyboard “Q" line

10 Keyboard “L" line

11 Not used

12 Reserved

13-15 Not used

16 Reserved

17 Reserved

18 Bit 2 of keyboard select

19 Bit 1 of keyboard select

20 Bit 0 of keyboard select

21 ALPHA LOCK

22 Cassette control 1

23 Cassette control 2

24 Audio gate

25 Magnetic tape output

26 Reserved

27 Magnetic tape input

28-31 Not used

57

CRU Bits Functions

0-2047 Internal
2048-2175 Disk Controller
2176-2303 Reserved
2304-2431 RS232, ports 1 and 2 Table 7-6. CRU
2432-2559 Reserved Allocation for the TI-89/4A.
2560-2687 RS232, ports 3 and 4
2688-2815 Reserved
2816-2943 Reserved
2944-3071 Thermal Printer
3072-3957 Future Expansion
3958-4095 P-Code Peripheral

Each of these lines is individually addressable by the CRU. The
TMS9901 CRU bits and their functions are listed in Table 7-5.

Note that CRU bits 0-15 are input lines. All but bit 0 are also
interrupt lines and, when active (logic 0), generate an interrupt
request and a priority code which is read by the 9900. (See Table 6-2
for interrupt vectors, the addresses of memory locations which
contain new workspace pointers and program counter values which
correspond to the priority codes.)

The entire CRU allocation for the TI-99/4A is given in Table
7-6. Bits 0-1023 (decimal) are reserved for internal use. Bits 1024-
2047 are reserved for future internal use (new console designs?).
And bits 2048-4095 are reserved for peripherals which are con-
nected to the system via the 44-pin port on the right side of the
computer console.

SUMMARY

Before memory expansion the TI-99/4A console includes a
little over 8K bytes of CPU Memory, 16K bytes of VDP RAM, and
18K bytes of GROM, for a total of 42K bytes. A fully expanded
system could address 128K bytes - 64K bytes of CPU Memory, plus
16K VDP RAM, plus 48K of GROM.

58

Chapter 8

/N

-

|

E]E %g
The Mini Memory Module

Unless you knew what you were looking for or took the time to read
the small print on the front of the box (the cover of the enclosed
manual to be exact), you would never know from its name that the
Mini Memory command module is a low-cost, assembly-language
development tool. The very name Mini Memory hardly invites a
second look to see what this remarkable command module has to
offer:

O 14K bytes of additional memory—4K bytes of ROM (CPU
memory address space 6000-6FFF), 4K bytes of RAM (CPU mem-
ory address space 7000-7FFF), and 6K bytes of GROM.

O 7 additional BASIC subprograms contained in the GROM.

O Built-in battery. You may save either BASIC or assembly
language programs on the Mini Memory module instantaneously
(versus slowly on cassette). The module should not be used as a
long-term storage medium but is excellent for temporary (days or
longer if not statically discharged) storage, especially during pro-
gram development. Data is saved even when the module is removed
from the console.

O The EASY BUG program in the ROM, most useful for
executing and debugging your assembly language programs.

O The Line-by-Line Symbolic Assembler, which is stored on
cassette tape and is loaded into the Mini Memory RAM.

All this for less than $100. This may not seem a bargain for

59

many T1 home computer owners, but for the person interested in
writing or learning how to write assembly-language programs, the
Mini Memory module with the Line-by-Line Assembler is an ex-
cellent low-cost program development tool and educational device.

The alternative method of writing assembly-language pro-
grams on the TI-99/4A is to use the Editor/Assembler software
package which costs about the same as the Mini Memory module
but cannot be used unless your system includes the following
accessories:

O Peripheral Expansion System, about $200

O Disk Drive, about $350

O Disk Drive Controller, about $200

O Memory Expansion Unit (32K bytes of RAM), about $250

The total, about $1000, is more than ten times the cost of either the
Mini Memory module or the Editor/Assembler alone.

There is no doubt that the Editor/Assembler is the more
powerful assembly-language development software and that the
disk system with the ability to write and save multiple files is
better. It just costs more. And chances are, if you buy all the
required accessories, then you will probably want a printer (about
$650, if you buy TI's) which requires the RS-232 interface (about
$150).

I do not recommend that you buy the Editor/Assembler and the
required accessories unless you are an experienced programmer
(having written assembly-language programs for at least one type of
microprocessor) and have a lot of money. I suspect that the average
owner of the TI home computer will never buy the big system.
Thus, for the average owner, the Mini Memory module is an
excellent choice and a good place to begin to learn about assembly
language. If you are an average owner and later on you lose interest
in assembly language (and many will just because it is harder than
BASIC and takes more time to learn and has fewer applications to
the average user), then you've only invested about $100 instead of
$1000 or $1800.

Having said all that, I suggest that if you haven’t bought the
Mini Memory module yet that you go out and get one now so that
you can follow along as I discuss the Mini Memory module and the
Line-by-Line Assembler.

LOADING THE LINE-BY-LINE ASSEMBLER
To load the Line-by-Line Assembler, perform the following
steps:

60

1. With power off, properly connect your cassette tape recorder to
the console. In case you can’t remember, hook up the CS1 wires as
follows: Red wire to the microphone jack, Black wire to the remote
jack, and White wire to the earphone jack.

2. Insert the Line-by-Line Assembler cassette into the tape re-
corder.

3. Plug in the Mini Memory module into the command module slot.
4. Tum on the console power.

5. Turn on the television set, channel 3 or 4, and set the rf mod-
ulator switch to the modulator position. Make sure the rf modulator
channel switch is set to the same channel as the tv. The so-called
START screen is displayed.

6. Press any key to begin. The screen looks like this:

TEXAS INSTRUMENTS
HOME COMPUTER

PRESS

1 FOR TI BASIC

2 FOR EASY BUG

3 FOR MINI MEMORY

7. Press 3 for Mini Memory. The screen looks like this:

* MINI MEMORY *

PRESS:

1 TO LOAD AND RUN
2 RUN

3 RE-INITIALIZE

© 1981 TEXAS INSTRUMENTS

LOAD AND RUN applies to assembly language programs de-
veloped with the Editor/Assembler package. RUN applies to as-
sembly language programs previously loaded into the Mini Memory
RAM. The RUN option also allows you to build new assembly-
language programs. More about this shortly.

8. Press 3 to RE-INITIALIZE. This step clears the Mini Memory
RAM to accept new programs. Old programs and data are lost. If the
memory has never been initialized, then the screen temporarily
goes blank and the Mini Memory selection list (shown above)
reappears. Otherwise the following screen is displayed:

61

* INITIALIZE MEMORY *
MEMORY ALREADY INITIALIZED
HIT “PROC’'D” TO CONFIRM

If this screen is displayed, then press PROC'D (the FUNC and 6
keys at the same time).

9. Press QUIT (FUNC and =). The START screen is displayed.
10. Press any key. The master selection list is displayed (as in Step
6).

11. Press 2 for EASY BUG. The screen displays the EASY BUG
commands and special function keys shown in Fig. 8-1.

12. Press any key. A question mark will appear at the lower left
hand corner of your screen.

13. Press the letter L.

14. Follow the displayed directions to load the data (the Line-by-
Line Assembler and the NEW, OLD, and LINES programs) from
the cassette to the Mini Memory RAM. If everything went right the
screen looks like this:

== COMMAND TYPES ARE ==

MXXXX MODIFY CPU MEMORY

GXXXX DISPLAY GROM MEMORY

VXXXX MODIFY VDP MEMORY

EXXXX EXEC. ASSEMBLY PROGRAM

CXXXX CRU SINGLE-BIT I/O

SXXXX SAVE CPU MEMORY TO CS1
(STARTING AT XXXX)

L LOAD STORAGE FROM CSt1

== SPECIAL FUNCTION KEYS ARE

AID DISPLAY THIS SCREEN
PERIOD ABORT A COMMAND
ENTER ENTER COMMAND/DATA
MINUS DISPLAY LAST MEMORY
(CURRENT UNCHANGED)
SPACE DISPLAY NEXT MEMORY
(CURRENT UNCHANGED)

NOTE CPU RAM 8370-83FF IS
RESERVED FOR EASY BUG

Fig. 8-1. EASY BUG commands and special function keys.

62

L

* REWIND CASSETTE TAPE CSt
THEN PRESS ENTER

* PRESS CASSETTE PLAY Cs1
THEN PRESS ENTER

* READING

* DATA OK

* PRESS CASSETTE STOP Cs1
THEN PRESS ENTER

?

15. Press QUIT.

16. Press any key.

17. Press 3 for Mini Memory

18. Press 2 to RUN. The screen displays:

RUN
PROGRAM NAME?

Directly below the P in PROGRAM there will be a flashing
cursor—a white rectangle.

19. Type NEW and press ENTER. The following screen is dis-
played:

LINE BY LINE ASSEMBLER
© 1982 TEXAS INSTRUMENTS

7D00 045B

There is also a solid square white flashing cursor in the second
space to the right of the B of the 4-digit hexadecimal code 045B.
You are looking at the memory address and the present contents of
the first memory location in the Mini Memory RAM that is available
for new assembly language programs. The assembler is waiting for
you to enter your first assembly language instruction. Before we do
this, let’s discuss the memory allocation of the Mini Memory mod-
ule.

MEMORY MAP

Notice that the first memory address that the assembler dis-
plays is 7D00. Now look at the Mini Memory map shown in Table

63

Table 8-1. Mini Memory Map with Line-By-Line Assembler Loaded.

First Last Segment Description Number
Address | Address of Bytes
6000 6FFF ROM Routines 4096
7000 70B6 Reserved RAM 168
7088 7006 User Program Workspace 32
70D8 7116 Reserved RAM 64
7118 7CD6 Line-By-Line Assembler 3008
7CD8 7CFE Symbol Table 40
7D00 7FE6 User Program 760
7FE8 7FEE User Program Name/Address 8
7FFO 7FF6 OLD Name/Address 8
7FF8 7FFE NEW Name/Address 8

8-1. This table shows the Mini Memory memory allocation after the
Line-by-Line Assembler has been loaded.

The Mini Memory adds 8K bytes to the CPU memory (not the
VDP RAM), 4K bytes of ROM, and 4K bytes of RAM. The Line-
by-Line Assembler itself uses approximately 3K bytes as you can
see from the table. 232 bytes of RAM are reserved for use by the
assembler and the utilities (subprograms stored in the Mini Memory
ROM which are used by the LINES program-and may be used by
programs that you write). Also, 32 bytes are reserved for the user’s
workspace, sixteen 16-bit general purpose registers beginning at
address 70B8.

The nominal 40-byte symbol table is also reserved for use by
the assembler. This table keeps track of any addresses or data
values that you have named when you created your assembly lan-
guage program. These names and their values are called references
and each one takes 4 bytes of memory—2 bytes for a two-character
name and 2 bytes for the value. Thus, nominally you are allowed 10
references. If you go over this amount, the assembler will write
over the beginning of your program—that is, if you started your
program at address 7D00. Note that there is no requirement to start
at 7D00, even though the assembler has been programmed to
display this address first.

Program names (such as NEW, OLD, or LINES) are stored at
the end of the RAM area. Also, the memory address where the
program starts is stored in this area. The starting address is the
address of the first instruction to be executed. Subprograms or data
values could be stored at lower addresses. Therefore, the starting
address is not necessarily the address of the first piece of code or

64

data in the program. For example, the starting address (the address
of the first instruction to be executed) for the LINES graphics
demonstration program is 7D9E. However, subprograms used by
the LINES program are stored in the RAM space 7CD6-7D9C.
7CDé6 contains the first RAM code of the LINES program, but 7D9E
contains the first instruction to be executed. The starting address is
also called the entry point.

Up to 6 characters are allowed for a program name. This takes
6 bytes. The starting address takes 2 bytes. Thus, the total for each
name/address group takes 8 bytes. When we first load the assem-
bler, the LINES name/address is stored in the space 7FE8-7FEE;
the OLD name/address is stored in the space 7FF0-7FF6; and the
NEW name/address is stored in the space 7FF8-7FFE. Also, the
entire LINES code (subprograms, main program, and data) is stored
in the space 7CD6-7FB0. What does this mean? First, there is very
little space left over for your program—>56 bytes. Second, if you
start your program at 7D00, you will be writing over the LINES
program. Thus, don’t expect LINES to work after you enter your
program. To run LINES after you have created a new program you
must reload the assembler.

How much RAM area is left for a program? If you start at 7D00,
don't use over 10 references, and save 8 bytes for name/address
storage, then you have 760 bytes—which is plenty for beginning
programs.

Now Let’s find out how to use the Line-by-Line Assembler.

ASSEMBLER SYNTAX

The assembly language instruction line is composed of three
sections, or flelds: the label field, the opcode field, and the operand
field.

The Line-by-Line Assembler allows only a two-character wide
label, suchasJ1 or WP. Labels essentially give the memory location
a symbolic name that can be referenced later on in the program. The
use of labels instead of 4-digit hexadecimal numbers within the
program usually reduces the amount of typing, relieves the pro-
grammer from some mental bookkeeping, and makes the program
easier to read at a later date. The label is conceptually identical to
the line number in BASIC. A BASIC program might contain the
statement GOTO 10, for example. An assembly language program
might contain the instruction JMP J1, where J1 is the label of the
instruction which the programmer wants to execute next (instead of
the next one in sequence).

65

Note that the label is optional in assembly language. If you
don’t want to use a label, just press the space bar and the cursor will
move to the next field, which is the opcode field.

The opcode field is from one to four characters wide and
contains one of the 69 TMS9900 instruction mnemonics such as
MOV, A, ANDI, or MPY. The opcode field always begins in column
4,

The third field is the operand field. It does not start at any
particular column number, but is separated from the opcode field by
at least one space. The operand field contains one or two operands,
depending on the instruction specified in the opcode field.
Mnemonics are used in the operand field to specify both the operand
and the addressing mode. An operand is either the data to be
processed or a workspace register number or memory location
where either the data is to be found (the source address) or where
the result is to be stored when the operation is completed (the
destination address). The addressing mode specifies how the
source or destination address is to be determined.

Comments may be placed immediately after the operand field.
Normally comments are very useful for program readibility. Com-
ments should indicate the intention of the instruction. “Store re-
sults” is a better comment than move “R1 to memory XYZ.” Good
comments are useful both as you write the program and as you try to
read the program days or weeks after the program was written when
the assembly language mnemonics no longer look familiar.

The TI Line-by-Line Assembler, however, saves neither the
assembly-language mnemonics nor the comments, both of which
make up what is called the source code. After you end a session using
the Line-by-Line Assembler, the source code is lost and only the
object code remains. The object code is the memory addresses and
their contents. Thus, unfortunately, there is no value in typing
comments in the comment field. However, you should keep your
own copy of the source code of your program and you should use
comments on your copy, whether handwritten or typed.

Now let’s enter an assembly language instruction to see how
the Line-by-Line Assembler works. Assuming that the assembler
has been loaded and you haven’t yet changed any data in the mem-
ory, the first line displayed by the assembler looks like this:

7D00 0458
Note the number of 045B. This is a current contents of memory

66

location 7D00, one of the memory locations used by the LINES
program (which we are going to write over). 045B is the machine
code for B *R11, a mnemonic which means branch to the address
contained in workspace register 11.

Now press the space bar. The cursor moved to column 4, the
beginning of the opcode field. Thus, the code you are about to enter
will not have a label.

Type MOV R1,R2. Don't put a period after it and don't press
ENTER. The line looks like this:

7D00 045B MOV R1,R2
Now press ENTER. The result is as follows:

7D00 Cos8t1 MOV R1,R2
7D02 C101

The assembler changed 7D00’s contents from 045B to C081
and then displayed the next memory address and data. The assem-
bler assembles code after each line is entered. That is why it is
called a line-by-line assembler in contrast to the Editor/Assembler
which will assemble an entire file of source code.

Note that the Line-by-Line Assembler displays two bytes of
data on each line. Thus the number in the address column incre-
ments by two as you build or step through a program. In the above
display, the byte of data at 7D02 is C1. The byte of data at 7D03 is
01. The next address to be displayed is 7D04.

Before I continue, let’s put the data back the way it was. Press
the space bar, type AORG>7D00,and press ENTER. The result is
as follows:

7D00 Co81 MOV R1,R2
7D02 C101 AORG >7D00
7D00 Co81

Note that I did not change the contents of 7D02. I only told the
assembler to display memory location 7D00 for us again. Now I can
restore 7D00’s original contents by pressing the space bar, typing
B *R11, then pressing enter:

7D00 Co081 MOV R1,R2
7D02 C101 AORG >7D00
7D00 045B B *R11

7D02 C101

67

AORG stands for absolute origin and is one of seven directives,
or commands recognized by the Line-by-Line Assembler. I will
discuss these directives in the next section.

If you want to break at this point, type END in the opcode field,
and press ENTER. The assembler displays 0000 UNRESOLVED
REFERENCES. Press ENTER. The assembler displays PRESS
ENTER TO CONTINUE. Press ENTER. The Mini Memory
selection list is displayed. Press QUIT. Turn the tv and the console
off.

ASSEMBLER DIRECTIVES

The following section describes each of the seven directives
recognized by the Line-by-Line Assembler.

AORG—Absolute Origin. This command tells the assem-
bler to display the address and data of another memory location.
This command is used to correct previous entries or to jump ahead
to enter more code. For example, if you wanted to locate your data
(to be processed by your program) at 7F00 and you were at 7E12
after finishing your program, then you would type AORG >7F00 in
the opcode field and press ENTER. The assembler would then
display 7F00 and its current contents. You could then enter data
using the DATA command.

BSS—Block Starting with Symbol. This command is used
to reserve a block of memory to be used by your program. Suppose
the following line is displayed by the assembler:

7D00 XXXX

XXXX means that the contents could be anything. Press the space
bar to get to the opcode field. Type BSS 32 and press ENTER. The
assembler displays the following:

7D00 XXXX
7D20 XXXX

BSS 32

In this example, 32 bytes (or 16 words) are reserved. Odd numbers
may be used but the assembler will round up to an even number.
This command does not affect data in memory. Note that this
command is similar to the AORG command, except that this com-
mand causes the assembler to jump ahead (and not back) a desig-
nated number of bytes rather than to an explicit or absolute memory
location.

68

DATA—Enter Data. This command is used to enter specific
data values into the memory. Again, suppose the following assem-
bler display:

7D00 XXXX

Press the space bar. Type DATA >6043 and press ENTER. The
display now looks like this:

7D00 6043
7D02 XXXX

DATA >6043

Press the space bar, type DATA 15 and press ENTER. The result is
as follows:

7D00 6043 DATA >6043
7D02 000F DATA 15
7D04 XXXX

Note that data values in hexadecimal representation must be
preceded by the > symbol, otherwise the assembler assumes that
the value is in decimal form. The assembler accepts only hexadeci-
mal or decimal. Decimal numbers are converted by the assembler
automatically, stored in memory in binary, and displayed in
hexadecimal.

Note also that the DATA command is used to enter 16-bit data.
To enter a single byte at an even address, you must enter two bytes
at the same time. Normally, if you did want to enter a single byte at
an even address for some reason you would make the second byte
zero, although any 8-bit number would work. If you are entering
data in hexadecimal, this is an easy operation. For example, if you
wanted to enter OF in location 7D04, you would enter the two byte
number 0F00 at that location as follows:

7D04 OFO0 DATA >0F00
7D06 XXXX

Performing this operation in decimal is more difficult. For example,
to enter the decimal number 15 at location 7D06, you must first
multiply 15 times 256. This effectively shifts the number by two
hexadecimal digits. The display would look like this:

7D06 OFO0 DATA 3840
7D08 XXXX

69

If you had just typed DATA 15 instead of DATA 3840 then OF would
have been entered into memory location 7D07:

7D06 000F DATA 15
7D08 XXXX

EQU—Equate. This command is used to equate an address or
data value to a one- or two-character symbolic name. This is espe-
cially useful if an address or data value is used more than once in
your program. It is simply easier to type CD in place of >A55A, for
example, if the value A55A is used several times in your program.

In general, it is a good practice to use symbolic names in your
program rather than explicit numbers. The symbols are often more
meaningful later on. Note that this applies more to the Editor/
Assembler than to the Line-by-Line Assembler, because as we have
said the Line-by-Line Assembler does not save the source code.
However, you yourself may save your source program for future
reference. All of the exercises in this book were written by hand on
paper first, entered into the assembler second, debugged using
EASY BUG third, and were finally typed on paper for a future
occasion—which turned out to be the writing of this book.

Equates are done at the beginning of a program and do not
affect data in the memory location currently displayed. Assume the
following assembler display:

7D20 0420

If you were to type CD EQU >A55A and press ENTER, the
assembler would display:

7D20 0420 CD EQU >A55A
7D20 0420

The assembler would store CD and the value AS55A in the
Symbol Table and display the same memory address and data that
was being displayed when we entered the equate.

SYM—Display Symbol Table. This command causes the
assembler to display all the references that have been entered into
the Symbol Table. References include those created by the EQU
command and those created when a label has been used in the
program. A one- or two-character name in the label field automati-
cally equates that name with the address of the instruction being
entered.

70

The following program uses five references:

7D00 XXXX WP EQU >70B8
7D00 XXXX M1 EQU >7D00
7D00 XXXX M2 EQU >7D02
7D00 XXXX AORG >7D04
7D04 3001 M3 DATA >3001
7D06 02E0 LWPI WP
7D08 70B8

7D0A 04CH CLR R1

7D0C COAO0 MOV@eM3,R2
7DOE 7D04

7D10R11FF JLT J2
7D12R13FF JEQ J2

7D14 0581 J1 INC R1

7D16 0A12 SLA R2, 1
7D18 15FD JGT J1

7D1A C802 J2 MOV R2,@ M1
7D1C 7D00

7D12*1303

7D10*1104

7D1E C801 MOV R1,@ M2
7D20 7D02

7D22 045B B *Ri1

This program is shown as it was entered. WP, M1, and M2
were made references by use of the EQU command. M3 and J1 were
made references by being placed in the label field.

J2 is different. It was first used at memory location 7D10. JLT
J2 is a conditional jump instruction—jump to J2 if the jump condition
is met. However, at this point in the program J2 has not yet
appeared in a label field nor was J2 defined by an EQU command,
and the assembler does not yet know how many memory locations
forward are specified by this instruction. That is why the R appears
between the address and data columns on that line. At this pointJ2 is
considered an unresolved reference. Assoonas]2 isusedinalabel
field the reference will be resolved and the assembler will finish
assembling the opcodes for the previous memory locations for
which it was not resolved. This is done at memory location 7D1A.
The assembler resolves the]2 references and displays the previous
memory locations with an asterisk between the address and data.

Using the SYM command after entering the above program will
cause the assembler to display three categories of references:

71

O Resolved references.
O Unresolved references (word).
O Unresolved references (jump).

Unresolved word references are unresolved references in any
instruction except a jump instruction. For example, at memory
location 7DOC of the above program, if I hadn’t previously equated
M3 with a specific memory address (by use of EQU, or by putting
M3 in a label field), then M3 would be an unresolved word refer-
ence.

TEXT—Enter Text. This command is used to enter a string
of characters into memory without having to first convert the
characters to ASCII (a one-byte code for each character) and then
enter the ASCII values using the DATA command. When you use
the TEXT command, the assembler automatically converts the
characters to ASCII and stores them in successive memory loca-
tions. The word MICROPROCESSOR would be entered as follows:

7D00 4D49 TEXT ‘MICROPROCESSOR'
7D02 4352

7D04 4F50

7D06 524F

7D08 4345

7D0A 5353

7D0C 4F52

7DOE XXXX

The ASCII code for M is 4D, the code for I is 49, and so forth.
The text to be entered is enclosed in single quotes. Blanks within
the quotes are recognized and encoded. If an odd number of charac-
ters is entered, then 00 will be added to the last ASCII byte to make
the number of bytes even.

END, End Program. This command is used to exit the
assembler. After you type the END command in the opcode field
and press ENTER, the assembler displays the number of unre-
solved references. If the number is zero, press ENTER. The
assembler will display PRESS ENTER TO CONTINUE. Press
ENTER again to return to the Mini Memory selection list, and
press QUIT to return to the START screen.

If there are any unresolved references, press the space bar.
This returns you to the assembler which displays the last address
and data. Type SYM in the opcode field. The assembler will display

72

the unresolved references. Then use the AORG command to move
to any location that needs to be corrected.

7DOOR10FF JMP J1
7D02 XXXX END
0001 UNRESOLVED REFERENCES
7D02 XXXX SYM
UNRESOLVED REFERENCES (JUMP)
J1-7D00
7D02 XXXX AORG >7CFE
7CFE C081 J1 MOV R1,R2
7D00*10FE
7000 10FE = END
0000 UNRESOLVED REFERENCES

EASY BUG

Return to the master selection list and press 2 for EASY BUG.
The screen displays and summarizes the EASY BUG commands and
special function keys as shown in Fig. 8-1. By now these commands
should be self-explanatory. However, when you write and execute
the first assembly language program, the EASY BUG commands
and special keys will be explained as you use them. For now, note
that the four Xs after a command letter indicate that a hexadecimal
memory address is to be supplied by the user. If you enter more
than four digits, only the last four are used by EASY BUG. If you
enter less than four digits, then whatever number you enter is
considered the last digits of a four-digit address.

EASY BUG is a program which allows you to display and
modify memory locations, execute assembly language programs,
load assembly language programs from cassette and store assembly
language programs on cassette (Earlier in this chapter I used EASY
BUG to load the Line-by-Line Assembler.)

I'am going to use EASY BUG to execute the programs in the
remainder of this book. I will also use EASY BUG to display certain
memory locations before and after I execute the program. And I will
use EASY BUG to modify certain memory locations so that I can try
my program on more than one data value without having to return to
the assembler.

SUMMARY
The Mini Memory module adds 14K bytes of memory to your

73

system; gives you 7 additional BASIC subprograms; has a built-in
battery which maintains power to the Mini Memory RAM when the
module is removed from the console; contains the EASY BUG
program; and comes with the Line-by-Line Assembler on a cassette
tape.

The Line-by-Line Assembler allows you to build your own
assembly language programs using instruction mnemonics and
labels. The assembler allows forward references even though code
is assembled on a line-by-line basis.

The EASY BUG program allows you to debug and execute your
assembly language program, read and modify the CPU and VDP
RAM locations, read GROM locations, read and modify CRU bits,
and load and store programs on an external cassette tape recorder.

74

Part lll

Programs
 —————

Chapter 9

L

4+—
T

|
I0]
a0

A

=—n
l——”
vV

i

Beginning Programs

In this chapter, you will create and execute some very simple
assembly language programs using the Line-by-Line Assembler and
EASY BUG. Each program will illustrate one o two new instruc-
tions or addressing modes. Each program will be discussed step by
step. After you have entered the program into memory using the
assembler, you will use EASY BUG and perform the following
tasks:

O Execute the program.

0O Examine the memory locations that should have been al-
tered by the program or contain the results of the program.

0O Modify memory locations that contain input data.

O Rerun the program on new input data.

O Examine the target memory locations again to verify that
the program works successfully on more than one data value or set
of data values.

Each listing follows the discussion of the program and has
ample room to the right of each line to add in your own comments.
You will find it very helpful to document all of these programs with
your own comments.

16-BIT DATA TRANSFER

Let’s enter Program 9-1. The procedure for entering (starting)
the Line-by-Line Assembler is repeated here for your convenience.

77

This procedure assumes that the Line-by-Line Assembler has al-
ready been loaded into the Mini Memory RAM by using the EASY
BUG program, and the START screen is displayed.

1. Press any key. The master selection list is displayed.

2. Press 3 for Mini Memory. The selection list is displayed.

3. Press 2 for RUN. PROGRAM NAME is displayed.

4. Type NEW and press ENTER.

The screen displays the assembler title, copyright, and two
4-digit hexadecimal numbers. The first number is memory address
7D00 and the second number is the contents of that address, as
follows:

7D00 XXXX

Your display does not show XXXX. However, I am using four
X’s to indicate that the contents could be anything at this point, and
since we are going to enter a new program we don't care.

Now type the first line but don’t press ENTER. The line looks
like this:

7D00 XXXX M1 DATA >2E56

As soon as you press ENTER, the assembler changes the data
in memory location 7D00 from whatever it was to 2E56 and displays
the next memory location as follows:

7D00 2E56 M1 DATA >2E56
7D02 XXXX

Note that the next memory location is two higher than the
previous one. This is because the assembler always displays two
bytes at a time. The byte at 7D00 is now 2E and the byte at 7D01 is
now 56. Later we will see that EASY BUG displays only one byte at
a time.

I have done two things on this line:

1. I equated the name M1 with the address 7D00. The assembler
also entered this information into the Symbol Table.

2. Tused the DATA command to enter data into a specific memory
location. Remember that the DATA command is not a TMS9900
assembly language instruction; it is an assembler directive. I could
have achieved the same result another way.

78

7D00 XXXX M1 EQU >7D00
7D00 2E56 DATA >2ES56
7D02 XXXX

Let’s continue:

7D02 XXXX M2 BSS 2
7D04 XXXX

This step reserves two bytes of memory and equates address
7D02 with the name M2. Let's continue:

7D04 02E0 LWPI >70B8
7D06 70B8
7D08 XXXX

This is the first instruction in the program. This instruction
loads the number 70B8 into the workspace pointer register. It tells
the computer which 16 16-bit memory locations are to be used as
workspace registers. Memory location 70B8 becomes register 0,
70BA becomes register 1, and so forth. Although TI has reserved a
User’s Workspace starting at address 70B8 when the Line-by-Line
Assembler is loaded, it is necessary to load 70B8 into the work-
space pointer register at the start of my program. Otherwise, I
would be using the workspace starting at address 83E0—the work-
space used by the EASY BUG program when it executes the pro-
gram.

Note that this instruction uses two words of memory, one for
the LWPI opcode (02E0) and one for the operand (70B8). Let’s
continue:

7D08 C820 MOV @M1,@m2
7D0A 7D00
7D0C 7D02
7DOE XXXX

This instruction moves the contents of memory location M1
(7D00) to memory location M2 (7D02). The symbolic addressing
mode is specified by both operands. Consequently, one additional
word of memory is required for each operand. The number C820 is
the opcode for the MOV instruction when both operands specify the
symbolic addressing mode.

79

This instruction illustrates the use of symbolic names as a
shorthand method of referring to specific addresses or data values.
The same result would have been achieved if I had entered MOV
@>7D00,@>7D02.

Let’s continue:

7D0E 045B B *R11
7D10 XXXX

This is the last instruction in the program. It says; branch to
the address contained in workspace register 11.

When using the Line-by-Line assembler to create an assembly
language program, workspace register 11 contains the number
609C which is the starting address of a routine which returns you to
EASY BUG after the program executes. The number 609C is put
into register 11 of the User’s Workspace (70B8-70D6) by the as-
sembler when the assembler is first started.

The program is complete. This program transfers a 16-bit
number from one memory location to another. This is a very com-
mon operation in assembly language programs. This first pro-
gram also illustrates the following basic steps in developing an
assembly language program for the TI-99/4A when using the Mini
Memory module and Line-by-Line Assembler:

O Assign symbolic names to addresses and data values as
required.

O Enter initial data values into memory locations as required.

O Reserve memory locations for results as required.

O Set up workspace.

O Enter program instructions.

O Enter return instruction.

The next step is to exit the assembler and go to EASY BUG. To
do this, use the following procedure:
1. Type END in the opcode field and press ENTER. The assembler
displays 0000 UNRESOLVED REFERENCES if you have cor-
rectly entered the program.
2. Press ENTER. (Any other key returns you to the assembler.)
The assembler displays PRESS ENTER TO CONTINUE.
3. Press ENTER. The Mini Memory selection list is displayed.
4. Press QUIT. The START screen is displayed.
5. Press any key. The master selection list is displayed.

80

6. Press 2 for EASY BUG. The EASY BUG commands and special
function keys are displayed.

7. Press any key. A question mark appears in the lower left hand
corner of your screen.

You may now enter any one of the seven EASY BUG com-
mands. To execute the assembly language program just created,
use the E (Execute) command. Type E7D04 (7D04 is the starting
address of our program) and press ENTER. The EASY BUG display
looks like this:

?E7D04
?

The question mark is displayed to indicate that our program
has finished and EASY BUG is ready for the next command. Since
the purpose of the program was to move the number 2E56 from
7D00 to 7D02, let’s look at CPU Memory location 7D02. Type
M7D02 and press enter. EASY BUG displays the following:

7M7D02
M7D02 =2E ->

The M command is used to modify CPU Memory. Con-
sequently, EASY BUG displays -> to prompt you to type new data
in the space to the right. At the moment, you don’t want to do that.
Instead, you want EASY BUG to display the next byte to see if 56
was moved to 7D03. To do this, just press the space bar. EASY
BUG displays the next byte as follows:

?M7D02
M7D02 =2E ->
M7D03 =56 ->

Recall that an even address may be used to refer to either a
16-bit word or an 8-bit byte. An odd address can refer only to an
8-bit byte. Thus, the word at address 7D02, for example, is com-
posed of the byte at address 7D02 and the byte at address 7D03.

The program worked. A 16-bit data value was transferred from
memory location 7D00 to memory location 7D02.

Let’s try another number. Press the period to return to the
EASY BUG command mode. Type M7DO00 and press ENTER.
EASY BUG displays the byte at 7D00:

81

7M7D00
M7D00 =2E ->

Now type FF to the right of the arrow and press ENTER.
EASY BUG displays the byte at 7D01. Type FF again and press
ENTER. The EASY BUG display should look like this:

?M7D00
M7D00 =2E -> FF
M7D01 =56 -> FF
M7D02 =2E ->

Now press the period, execute the program again, and verify
that FFFF moved from memory location 7D00 to memory location
7D02.

Program 9-1

7D00 2E56 M1 DATA >2E56
7002 XXXX M2 BSS 2

7004 02E0 LWPI >70B8
7006 7088

7008 C820 MOV @M1,eM2
7D0A 7000

700C 7002

7D0E 0458 B *R11
7010 XXXX END

64-BIT DATA TRANSFER

Enter Program 9-2. The purpose of this program is to move
four words (64 bits) of memory from one area of memory (7D10-
7D17) to another area of memory (7D18-7D1F). This is ac-
complished as follows:

1. The AORG command is used to display address 7D10. This
preserves the previous program.

2. 64 bits of data are entered 16 bits at a time using the DATA
command. Also, address 7D10 is equated to M1 in the same step.
3. A 64-bit block of memory is reserved for storage using the BSS
command. BSS 8 means reserve 8 bytes. Also, address 7D18 is
equated to M2 in this step.

82

4. The workspace is set up.
5. Workspace registers 0 and 1 are loaded with the values 7D10 and
7D18, respectively. 7D10 s the starting address of the block of data
to be moved and 7D18 is the starting address of the block of memory
locations to which the data will be moved.
6. The data is transferred one word at a time. Notice the MOV
instruction at address 7D2C. This instruction moves data. The
source address is contained in workspace register 0 and the desti-
nation address is contained in workspace register 1. Then it incre-
ments both registers by two after the data has been transferred.
Both operands specify the indirect addressing mode with au-
toincrement (asterisks and plus signs). After this instruction is
executed, the data at 7D10 will be at 7D18 and the contents of
registers 0 and 1 will be 7D12 and 7D1A, respectively.
The instruction is repeated three times in order to transfer 64 bits.
Note that the instruction at address 7D32 is different. Since all data
will have been transferred after this instruction, it is not necessary
to increment the registers any more.
7. The return instruction is entered.

Now go to EASY BUG and perform the following steps.
1. Execute the program. The starting address is 7D20.
2. Verify that the program worked by displaying locations 7D18-
7D1F.
3. Change the input data at locations 7D10-7D17 as follows:

?M7D10

M7D10 =3E -> 01
M7D11 =2A -> 23
M7D12 =42 -> 45
M7D13 =A1 -> 67
M7D14 =21 -> 89
M7D15 =F2 -> AB
M7D16 =60 -> CD
M7D17 =A0 -> EF

4. Execute the program again.

5. Verify that the data was transferred correctly.
Program 9-2

7D00 XXXX AORG >7D10

7010 3E2A M1 DATA >3E2A

7012 42A1 DATA>42A1

7D14 21F2 DATA>21F2
7D16 60A0 DATA >60A0
7D18 XXXX M2 BSS 8

7020 02E0 LWPI >70B8

7D22 7088
7D24 0200 LI RO,M1
7026 7010
7028 0201 LI R1,M2
7D2A 7018

702C CC70 MOV *RO+,*R1+
7D2E CC70 MOV *RO+,*R1+
7030 CC70 MOV *RO+,*R1+
7D32 C450 MOV *RO,*R1
7034 0358 B *R11

7D36 XXXX END

16-BIT ADDITION

Enter Program 9-3. The purpose of this program is to add two
16-bit numbers and store the result in memory. The first number is
located at address 7D36, and the second number is located at
address 7D38. The result will be stored at address 7D3A. This is
accomplished in three instructions, not counting the instruction to
set up the workspace and the return instruction.

1. The instruction at 7D40 moves the first number from M1 (7D36)
to workspace register 0.

2. The next instruction adds the contents of memory location M2
(7D38) to register 0 and places the result in register 0.

3. The third instruction transfers the result to M3 (7D3A). Note
that you can do a 16-bit addition in one instruction:

7D40 A820 A @M1,@M2
7D42 7D36
7D44 7D38
7D46 XXXX

This instruction adds the contents of M1 to the contents of M2
and stores the result at M2. You can see that when this instruction is

84

executed that the original contents of M2 will be lost. In some cases
this is alright. The approach used in Program 9-3 preserves M2.

Now go to EASY BUG and verify that the result at 7D3A is
3716 (hexadecimal). Change M1 and M2 to 17F5 and 2182, respec-
tively. Rerun the program and verify that the result at 7D3A has
changed from 3716 to 3977 (hexadecimal).

Program 9-3

7000 XXXX AORG >7D36
7036 10F5 M1 DATA>10F5
7038 2621 M2 DATA >2621
7D3A XXXX M3 BSS 2

7D3C 02E0 LWPI >70B8
7D3E 7088

7D40 CO20 MOV @M1,RO
7042 7036

7044 AO20 A @M2,RO
7046 7038

7048 C800 MOV RO,€M3
704A 7D3A

7D4C 0458 B *R1l
7D4E XXXX END

32-BIT ADDITION

Enter Program 9-4. The purpose of this program is to add two
32-bit numbers and store the result in memory.

The first number is 12A2E641 and is stored in two adjacent
16-bit memory locations. The most significant word (12A2) is
stored at location 7D4E and the least significant word (E641) is
stored at location 7D50. The second number is 001019BF. The
most significant word is stored at 7D52 and the least significant
word is stored at 7D54. The most significant word of the result will
be stored at 7D56 and the least significant word will be stored at
7D58.

Since the 9900 microprocessor has only a 16-bit ALU (arith-
metic logic unit), it can only add 16 bits at a time. Therefore, to
perform a 32-bit addition, two 16-bit additions must be performed.
In the first 16-bit addition, the least significant words are added. Ifa

85

carry results, then 1 must be added to the most significant word of
either of the addends. Next, the most significant words are added.

This is accomplished in Program 9-4 as follows:
1. Address 7D4E, the address of the most significant word of the
first number, is loaded into register 0. Then indirect addressing
with autoincrement is used to load the addends into registers 1
through 4. Two registers per addend are required. 12A2 is moved to
register 1, E641 to register 2, 0010 to register 3, and 19BF to
register 4. Note that after four operations, register 0 contains the
number 7D56, the address where I will store the most significant
word of the result.
2. The least significant words of the addends are added first. Thisis
done at 7D6A. The instruction adds the contents of register 2 to the
contents of register 4 and stores the result in register 4.
3. The next instruction (address 7D6C) jumps to J1 (7D70) if no
carry was generated; otherwise go on to the next instruction. If a
carry is generated you must add 1 to either register 1 or register 3.
These registers contain the next 16 bits to be added. Therefore, the
instruction at 7D6E increments register 1 (or adds 1 to the contents
of register 1). This instruction is performed only if a carry was
generated (carry bit of the status register set to 1), otherwise there
is a jump over it to J1.
4. Next add the most significant words of the addends. This is done
at 7D70.
5. Finally, the result is stored in memory. Conveniently, register 0
contains 7D56. Thus, the most significant word of the result is
stored first and increment the contents of register 0 by two again.
This is done, as before, by using the indirect addressing with
autoincrement. Since you are performing a word operation (as
opposed to a byte operation), then the contents of the specified
register are incremented by two. For byte operations, the contents
would be incremented by one.

Note that as you entered this program, the assembler dis-
played the following results starting at address 7D6C:

7D6CR17FF JNC J1
7D6E 0581 INC R1
7D70 AOC1 J1 A R1,R3
7D06C*1701

7D72 XXXX

The first time 7D6C is displayed (after the instruction is

entered), J1 is an unresolved reference. Consequently, the assem-
bler places an R between the address and data. Also, the FF in 17FF
is a dummy displacement value. (The 17 is the code for JNC.) After
the instruction at 7D70 is entered, however, J1 is resolved. Con-
sequently, the assembler displays the address and data of all previ-
ous lines (only one in this program) in whichJ1 was unresolved. The
new display shows an asterisk between the address and data, and
the data has been corrected.

Recall that the displacement value in a jump instruction is a
relative number. A displacement value of 1 does not mean that 1 is
added to the current program counter value, but means that the
program counter should be incremented by two 1 time, since the
program counter is always an even address and can only be in-
cremented or decremented by two or be replaced by an even
number. Also, the displacement value times two is added to the
program counter after the instruction is fetched. In Program 9-4,
after the instruction at 7D6C has been fetched, the program counter
equals 7D6E. Thus, the displacement value to jump to 7D70 is 1,
since the program counter would have to be incremented by two 1
time to be equal to 7D70. (Now aren’t you glad that you can use
labels and just let the computer figure out the displacement for
you?)

Now go to EASY BUG and verify that the result stored at
7D56-7D59 is equal to 12B30000. Using standard addition format,
the problem and solution is as follows:

1
12A2 E641
+ 0010 19BF
12B3 0000

Since the ALU adds 16 bits, or 4 hexadecimal digits, the numbers
are shown with a space between the fourth and fifth digits.
Notice that this choice of addends produces a carry. To com-
pletely verify the program, choose a set of values that will not
generate a carry. Therefore, change 001019BF to 001019BE.
Rerun the program and verify that the result is 12B2FFFF.

Program 9-4

7000 XXXX AORG >7D4E
7D4E 12A2 M1 DATA>12A2
7D50 E641 DATA>E641

87

7052 0010 DATA >0010
7054 198F DATA >19BF

7056 XXXX BSS 4

7D5A 02E0 LWPI >70B8
7D5C 7088

7D5E 0200 LI RO,MI1
7060 704E

7062 CO70 MOV *R0+,R1
7D64 COBO MOV *R0+,R2
7066 COFO MOV *R0+,R3
7068 C130 MOV *RO+,R4
7D6A A102 A R2,R4
706C 1701 JNC J1
7D6E 0581 INC R1

7070 AOC1 J1 A R1,R3
7072 CCO3 MOV R3,*RO+
7D74 C404 MOV R4,*RO
7D76 045B B *R1l
7078 XXXX END

FIND THE LARGER OF TWO UNSIGNED NUMBERS

Enter Program 9-5. The purpose of this program is to find the
larger of two unsigned numbers and to store the larger unsigned
number in memory. This is accomplished as follows:

1. The instructions at 7D82 and 7D86 move the unsigned numbers
to registers 0 and 1.

2. The instruction at 7D8A compares the contents of register 0 to
the contents of register 1. After this instruction is executed, three
bits of the status register are affected—LGT (logic greater than),
AGT (arithmetic greater than), and EQ (equal).

3. In the context of the program, the instruction at 7D8C essen-
tially says jump to J1 if the unsigned number in register 0 is greater
than the unsigned number in register 1. This instruction tests the
LGT and EQ status bits. If LGT equals 1 and EQ equals 0, then the
jump condition is met.

4. If the number in register 0 is larger, then jump to J1 (7D90). The

88

instruction at that location then moves the number in register 0 to
address M3 (7D7C).

5. If the number in register 0 is not larger, then perform the next
instruction in sequence (7D8E). This instruction moves the number
in register 1 to register 0. Then move the number in register 0 to
M3, as in step 4.

The 9900 instruction set includes six jump instructions to be
used when comparing unsigned numbers. These are listed in Table
9-1.

If I wanted to find the larger of two signed numbers, I would use
the JGT instruction instead of the JH instruction. See Table 9-2 for
the jump instructions to be used when comparing signed numbers.
Note that for signed numbers, there is no jump instruction for the
greater than or equal condition or for the less than or equal condi-
tion. To test for these conditions, the JEQ instruction would have to

Table 9-1. Jump Instructions for Unsigned Numbers.

Compare Condition Jump Instruction
Greater Than JH
Greater Than or Equal JHE
Equal JEQ
Not Equal JNE
Less Than or Equal JLE
Less Than JL

be used before or after the JGT to test for greater than or equal and
before or after the JLT to test for less than or equal.

Now go to EASY BUG and verify that you have entered the
program correctly. The number 9125 should be in memory location
7D7C.

Change 9125 at 7D78 to 1000 (hexadecimal) and rerun the
program. The number 102C should be in memory location 7D7C if
the program was entered correctly.

Table 9-2. Jump Instructions for Signed Numbers.

Compare Condition Jump Instruction
Greater Than JGT
Equal JEQ
Not Equal JNE
Less Than JLT

89

Program 9-5

7000 XXXX AORG >7078
7D78 9125 M1 DATA >9125
7D7A 102C M2 DATA >102C
7D7C XXXX M3 BSS 2

7D7E 02E0 LWPI >70B8

7080 7088
7082 C020 MOV @M1,RO
7084 7078
7086 CO60 MOV @M2,R1
7088 7D7A

7D8A 8040 C RO,R1
708C 1B01 JH J1

7D8E CO01 MOV R1,RO
7090 C800 J1 MOV RO,EM3
7092 707C

7094 0458 B *R1l
7D96 XXXX END

SUM OF SQUARES

Enter Program 9-6. The purpose of this program is to perform
the following arithmetic operation:

7 + 50 =2549 (decimal)
or 00072 + 00322 = 000009F5 (hexadecimal)

This is the sum of squares operation. The numbers to be
squared and added are stored in locations 7D96 and 7D98, respec-
tively. The most significant 16 bits of the 32-bit result will be stored
at location 7D9A, and the least significant 16 bits will be stored at
location 7D9C. This is accomplished as follows:

1. The address 7D96 is loaded into register 0.

2. Using indirect addressing, the first number is moved to register
1.

3. Using indirect addressing with autoincrement, the first number
is multiplied times the number in register 1. Since the number in

90

register 1 is the same, then the multiply operation has squared the
number.

Note that the second operand of the MPY instruction must be a
workspace register. In the instruction at 7DAS, the second operand
is register 1. This instruction multiplies the number whose address
is stored in register 0 times the number in register 1. Then it places
the most significant 16 bits of the 32-bit register in register 1, and
places the least significant 16 bits in register 2.

After this instruction the address stored in register 0 equals
7D98, the address of the next number that I want to square.

4. The instructions at 7DAA and 7DAC perform the same operation
(that was done in step 3 above) on the second number. The 32-bit
result is stored in registers 3 and 4. The address stored in register 0
now equals 7D9A, the address where I will store the 16 most
significant bits of the sum of the squares.

5. Instructions at 7DAE-7DB8 add the 32-bit squares and move the
result to memory locations 7D9A and 7D9C. These instructions are
identical to those used in Program 9-4 to perform the same task.

Go to EASY BUG and verify that the answer in 000009F5.

Program 9-6

7000 XXXX AORG >7D96
7096 0007 M1 DATA 7
7098 0032 DATA 50
7D9A XXXX BSS 4

7D9E 02E0 LWPI >708B8
7DA0 70B8

70A2 0200 LI RO,M1
7DA4 7096

7DA6 COS0 MOV *RO,R1
7DA8 3870 MPY *R0+,R1
7DAA CODO MOV *RO,R3
TDAC 38F0 MPY *R0+,R3
70AE A102 A R2,R4
70B0 1701 JNC J1
70B2 0581 INC R1
7084 AOC1 J1 A R1,R3

91

7DB6 CCO3 MOV R3,*RO+
7088 C404 MOV R4,*RO
70BA 0458 B *R1l
7DBC XXXX END

TABLE OF FACTORIALS

Enter Program 9-7. The purpose of this program is to deter-
mine the factorial of a number between 0 and 8. The factorial of a
number is defined as follows:

N FACTORIAL = N(N-1) (N-2) (N-3) . . . (N-M), where
M=N-1

The symbol for N FACTORIAL is N!. For example, 7! equals 7
times 6 times 5 times 4 times 3 times 2 times 1. 0! is defined as
being equal to 1. N! may also be defined as N times (N—1)!. Table
9-3 shows the factorials of numbers 0 through 8. The table could
easily be expanded, but has been limited to numbers whose facto-
rials are less than 65,535 so that no more than 16 bits are needed to
express the factorial in binary. (9! equals 362,880 and requires 17
bits.)

The approach taken in Program 9-7 is to have the computer
determine the factorial of a number by looking it up in a table instead
of computing the factorial according to the equation given above.
The table (limited to 9 values in this program) is stored in the
memory between locations 7DBC and 7DCC.

The number for which I want to find the factorial is located in
memory location 7DCE, and the factorial, when found, will be
placed in memory location 7DDO. This is accomplished in three
steps:

N N Factorial

0 1

1 1
Table 9-3. Table of Factorials. g g

4 24

5 120

6 720

7 5,040

8 40,320

92

Left Shift Count Multiplier

2=2!
4=22
8=2%
16=24
32=25
64=25 Table 9-4. Left Shift
128=27 Equivalent Muitiplier Values.
256=28
512=29
1,024=210
2,048=2""
4,096=212
8,192=213
16,384=2"4
32,768=2"5

- b b —d b
NP WN=0OCONONDBWN =

1. The number for which I want to find the factorial is loaded into
register 1. See the instruction at 7DD6.

2. The number is then multiplied by two. The position of the
factorial in the table is two times the number because each factorial
takes two bytes of memory. To find 5! I must add 10 decimal (000A
in hexadecimal) to the starting address of the table.

Notice the instruction at 7DDA. This instruction shifts the
contents of register 1 to the left 1 bit. This is a special way to
multiply by two. The SLA instruction may be used for multiplication
in the following cases:

O The multiplier must be an integer that can be expressed as
an integral power of 2 (see Table 9-4).

O The shift count must be less than the number of leading
zeros in the binary expression of the number, otherwise the answer
will be incorrect. For example, if the number 0000001101000111 is
left-shifted 1 bit 8 times, then the 1s that were in bit positions 6 and
7 will be lost. (Remember that TI numbers their bit positions from
left to right, from bit 0 to 15.)

3. The last step is to add twice the number to the starting address
and move the number at this address to M3 (7DD0). This is done ina
single instruction using the indexed addressing mode. The instruc-
tion at 7DDC moves data. The source address is the sum of M1 and
the contents of register 1. The destination address is M3. 000A is
added to 7DBC to get 7DC6. The number at 7DC6 is equal to 5!
(0078 hexadecimal) and is moved to address 7DDO.

93

Go to EASY BUG and run the program. Verify that the number
at 7DDO equals 0078. Try one or two other values by changing the
number at 7DCF from 05 to any number between 00 and 08.

Program 9-7

7000 XXXX AORG >7DBC
7DBC 0001 M1 DATA 1
70BE 0001 DATA 1
70C0 0002 DATA 2
70C2 0006 DATA 6
70C4 0018 DATA 24
70C6 0078 DATA 120
70C8 0200 DATA 720
70CA 1380 DATA 5040
70CC 9DSO DATA 40320
7DCE 0005 M2 DATA 5
70D0 XXXX M3 BSS 2
7002 0280 LWPI>70B8
7004 7088

70D6 CO60 MOV @M2,R1
7008 70CE

70DA OA11 SLA R1,1
700C C821 MOV @M1(R1),eM3
70DE 70BC

7DEO 7000

70E2 0458 B *R1l
7DE4 XXXX END

Chapter 10

O

‘_
1

o

|

\— [
= e
Simple Program Loops

In this chapter I present six example programs which have loops.
The primary purpose of a program loop is to save memory space.
Secondarily, the use of program loops saves time in writing the
program. For example, suppose you wanted to add a list of six
numbers. Let’s say that the address of the first number in the list is
stored in register 1 and that the sum will be stored temporarily in
register 0. Based on what you have learned so far, a program to add
six numbers would look like this:

CLR RO

A *R1+,R0
A*R1+,R0
A *R1+,R0
A *R1+,R0
A*R1+,R0
A *R1+,RO

This program clears register 0 and then adds each number in
the list to the contents of register 0. For six numbers this program is
probably alright. But for a list of sixty numbers, it would be a pain to
have to enter sixty addition instructions. Also, you would use sixty
memory locations. By using a program loop, this number can be
reduced.

A program that uses a loop will set aside a register to be what is

95

called a loop counter. Normally, the number of data items to be
processed will be stored in the loop counter register. After each
data item is processed, the loop counter is decremented by one and
then tested to see if it equals zero. If the loop counter value is not
zero, then the program jumps to the beginning of the processing
section. If the loop counter value is zero, then the program exits the
loop and executes the next instruction following the loop.

A program loop consists of the following steps:
1. Process data item. This step uses one or more instructions. In
the above example, the processing section would be only one
instruction, namely A *R1+,R0.
2. Set up conditions for next pass. In particular, the register which
contains the address of the data to be processed is incremented by
two. Using indirect register addressing with autoincrement, this
step may be combined with one of the instructions in step 1.
3. Decrement the loop counter.
4. Test the loop counter value. Jump to the beginning of the loop if
not zero, otherwise go on to the next instruction.

The program loop is preceded by one or more instructions to
set up, or initialize, registers or memory locations used by the loop.

The following six programs contain simple program loops. You
should enter each program into memory using the Line-by-Line
Assembler and execute each program using EASY BUG. Re-
member to use the starting address of the program when you use the
E command. The first instruction of all programs in this book is
LWPI >70B8. Usually, there will be one or more assembler com-
mands before this instruction. The assembler commands set up the
memory locations used by the program and also equate one or more
symbolic names to specific addresses used in the program.

16-BIT SUM OF DATA

The purpose of Program 10-1 is to add a series of 16-bit
numbers. The numbers to be added are stored at locations 7DE4-
7DES8. The result will be stored at 7DEA.

Memory location 7DEC contains the starting address of the
first number to be added. This makes the program flexible. If I
wanted to add a series of numbers somewhere else in memory, then
I only need to change the address at 7DEC to be equal to the address
of the first data item.

Memory location 7DEE contains the number of numbers to be
added, three in this case. This also makes the program flexible. The
program that follows operates on the number of data items at 7DEE.

96

This number may be changed. However, in this example, the

number may not be greater than three because I have only allocated

enough memory for three numbers. If, however, I had twelve

numbers stored in memory locations 7F00-7F16, I could change the

contents of 7DEC from 7DE4 to 7F00. Then the program that

follows (7DF0-7E08) could add those twelve numbers.
Workspace registers are used as follows:

O Register 0 is used as temporary storage for the subtotals
and for the total when all items have been added. Before any items
are added, this register is cleared. See instruction at 7DF4.

O Register 1 stores the address of the next data item to be
added. Initially, the address stored at 7DEC is moved to this
register.

O Register 2 is used as the loop counter. Initially, the number
at 7DEE is moved to this register.

The program loop consists of three instructions:

J1 A*R1+,R0
DEC R2
JNE J1

The first instruction fetches the contents of the address stored
in register 1 and adds this number to the number in register 0. After
the data is fetched, the address value in register 1 is incremented by
two.

The second instruction decrements the number in register 2.
After the number is decremented, it is compared to zero and the
LGT, AGT, EQ, C, and OV status bits are either set to one or
cleared to zero, depending on the new value in register 2.

The third instruction tests the EQ status bit. If EQ equals zero,
then the jump condition is met and the program jumps to J1. The
loop will be repeated until the loop counter equals zero, thereby
causing the EQ bit to be set to one. Then the program exits the loop
and goes on to the next instruction, which in this case moves the last
subtotal in register 0 to memory location M1 (7DEA). The final
result is 3EA4.

Note that a shorter program could be written if you always
wanted to add only three numbers. However, to add ten or twenty
numbers it is shorter (and usually better) to use a program loop.

97

Program 10-1
7000 XXXX AORG >70DE4
7DE4 2040 DATA >2040
7DE6 1C22 DATA >1C22
7DE8 0242 DATA >0242
7DEA XXXX M1 BSS 2
7DEC 7DE4 M2 DATA >70DE4
7DEE 0003 M3 DATA 3
7DF0 02EQ LWPI>7088
70F2 7088

7DF4 04CO CLR RO
70F6 C060 MOV €M2,R1
70F8 7DEC

70FA COAO MOV @M3,R2
7DFC 7DEE

70FE AO31 J1 A *R1+,RO0
7E00 0602 DEC R2
7E02 16FD JINE J1
7E04 C8C0 MOV RO,EM1
7E06 7DEA

7E08 0458 B *R11
7TEOA XXXX END

32-BIT SUM OF DATA

Program 10-1 has two problems: First, if the number at loca-
tion 7DEE were equal to zero before the program was started, then
the program would not work properly. The number in register 2
would be decremented from 0000 to FFFF after the first time
through the loop. The program would have to add 65,536 numbers
before the loop counter would be equal to zero again.

Second, only one 16-bit storage location has been allocated for
the result. This is alright if you know ahead of time that the sum will
never exceed sixteen bits. But if you are adding numbers which all
could be near the maximum (65,535 decimal for a 16-bit micro-
processor), then you should provide at least one extra bit per

98

number to be added. For example, if you are adding eight 16-bit
numbers each which may be near the maximum, then you should
reserve three bytes of memory for the result.

Program 10-2 solves both of these problems. The first problem
is solved by comparing the loop counter value to zero before the
program loop is entered. If the value is zero then the program jumps
over the loop and moves a zero subtotal to the memory locations
reserved for the total. The second problem is solved by simply
allocating two 16-bit memory locations for the total. Looking at
Program 10-2, you can easily see that two words of memory have
been reserved at addresses 7E10 and 7E12. It is not, however,
immediately obvious how the first problem is solved—that is,
where exactly before the loop is the loop counter compared with
zero. Let’s look at the program one section at a time.

The instructions at 7E1C-7E2A set up the workspace registers
as follows:

O Register 0 stores the destination address for the 32-bit
total.
O Register 1 is the temporary storage for the sixteen most
significant bits of the subtotal. This register is initially cleared and
then in the loop is incremented by one each time a carry results from
the addition of two 16-bit numbers.

O Register 2 is temporary storage for the sixteen least sig-
nificant bits of the subtotal. This register is initially cleared. Each
number in the list will be added to the contents of this register; and
the result will be stored in this register.

O Register 3 contains the address of the number to be added
to the contents of register 2. Initially, the address stored at memory
location 7E14 is moved to this register. Each time through the loop
the address in register 3 is incremented by two. This register is
used as what is called a data pointer because the contents of the
register always point to the next data item to be processed.

[0 Register 4 is used as the loop counter. Initially, the number
stored at memory location 7E16 is moved to this register.

Note the instruction at 7E2C. This instruction tests the EQ
status bit. The EQ status bit was either set or cleared by the
previous MOV instruction at 7E2E. That instruction moved the
loop counter value (the number of data items) to register 4. What is
not obvious is that the MOV instruction always compares the source
operand (the value to be moved) to zero. Consequently, a condi-

99

tional jump instruction can follow a MOV instruction—a savings of
one instruction. (C R4, R1 would work, for example, since register 1
equals zero at this point.)

The program loop is stored at locations 7E2E-7E36. Two
instructions (at 7E30 and 7E32) have been added to the program
loop of Program 10-1. These two instructions essentially add one to
the sixteen most significant bits of the subtotal each time a carry
occurs when adding the sixteen least significant bits.

The remaining instructions move the final result to memory
locations 7E10-7E12. The final result is 00011EA4.

Program 10-2

7000 XXXX AORG >7EOA
7EOA 2040 DATA> 2040
7E0C 1C22 DATA>1C22
JEOE E242 DATA >E242
7E10 XXXX M1 BSS 4
7E14 7EOA M2 DATA> 7EOA
7E16 0003 M3 DATA 3
7E18 0260 LWPI>7088
7E1A 7088

JEIC 0200 LI RO,M1
7E1E 7E10

7E20 04C1 CLR Rl
7€22 04C2 CLR R2
7E24 COEO MOV @M2,R3
7€26 7E14

7E28 C120 MOV @M3, R4
7E2A 7E16

7E2C 1305 JEQ J3
JE2E AOB3 J1 A *R3+,R2
7E30 1701 JNC J2
7632 0581 INC R1
7€34 0604 J2 DEC R4
7E36 16FB JNE J1

100

7E38 CCO1 J3 MOV R1,*RO+
7E34 C402 MOV R2,*RO
JE3C 045B B *R1l

JE3E XXXX END

NUMBER OF NEGATIVE NUMBERS

The purpose of Program 10-3 is to read a list of signed numbers
and determine how many of them are negative. The list of numbers
is stored in memory beginning at address 7E3E. The number of
negative numbers will be stored at 7E44. Memory location 7E46
contains the starting address of the list and memory location 7E48
contains the number of numbers in the list. The actual program
starts at address 7E4A.

The workspace registers are allocated as follows:

O Register 0 is used as temporary storage for the number of
negative numbers in the list. This register is initially cleared to
zero. It is incremented each time a negative number is found while
the list is being read.

[Register 1 is used as the data pointer. Initially, the address
stored at 7E46 is moved to this register. The register is in-
cremented by two each time a number is read from the list.

O Register 2 is used as a loop counter. Initially, the number
stored at 7E48 is moved to this register. The register is dec-
remented each time a number is read from the list.

O Register 3 is used as a temporary storage location for each
number as it is read from the list.

How is the list read? The list is read by moving a number in the
list (designated by the address in register 1) to register 3. This is
the first instruction in the program loop stored in memory locations
7E5A-7E64. Recall from our discussion of Program 10-2 that when a
MOV instruction is executed, the data that is moved is compared to
zero. If the number is greater than or equal to zero, then the
program jumps to J2. Otherwise, the number is negative and regis-
ter 0 is incremented by one.

When all the numbers have been read (register 2 equals zero),
the number in register 0 (which contains the number of negative
numbers) is moved to 7E44. In this example, two of the three
numbers are negative. See Table 10-1 for a partial list of 4-digit
hexadecimal signed numbers and decimal equivalents.

101

Table 10-1. Partial List of Signed Number Equivalents.

Hexadecimal Decimal
7FFF +32,767
7000 +28,672
6000 +24,576
5000 +20,480
4000 +16,384
3000 +12,288
2000 +8,192
1000 +4,096
0001 +96
0000 1
FFFF -1
F000 —4,096
E000 -8,192
D000 -12,288
C000 -16,384
B000 -20,480
A000 —24,576
9000 -28,672
8000 -32,768

Program 10-3

7000 XXXX AORG >7E3E
7E3E FIDC DATA >F10C
7E40 7ECA DATA >7EOA
7E42 8248 DATA >824B
7E44 XXXX M1 BSS 2
7E46 7E3E M2 DATA >7E3E
7E48 0003 M3 DATA 3
7E4A 02E0 LWPI >7088
7E4C 7088

7E4E 04C0 CLR RO
7E50 CO60 MOV @M2,R1
7E52 7E46

7E54 COAD MOV @M3,R2
7E56 7E48

7658 1306 JEQ J3
7ESA COF1 J1 MOV *R1+,R3

102

7E5C 1502 JGT J2
7ESE 1301 JEQ J2
7€60 0580 INC RO
7E62 0602 J2 DEC R2
7E64 16FA JINE J1
7E66 C800 J3 MOV RO,EM1
7E68 7E44

7E6A 0458 B *R1l
TE6C XXXX END

NUMBER OF ZERO, POSITIVE, AND NEGATIVE NUMBERS

The purpose of Program 10-4 is to read a list of signed numbers
and to determine how many of them are negative, how many are
equal to zero and how many are positive. The numbers and their
addresses are as follows:

Number Address

7602 7E6C
8D48 7TE6E
2120 7E70
0000 7E72
E605 7E74
0004 TE76

The final storage locations for the results are as follows:

Result Address
Number of negative numbers 7E78
Number of zero’s 7E7A
Number of positive numbers 7E7C

The starting address of the list is stored in memory location
7ETE, and the number of data items to be processed is stored at
7E80. The program begins with the instruction at 7E82.

The registers are allocated as follows:

Register Function
0 Contains final storage address for results.

103

Register Function

N counter—number of negative numbers.

Z counter—number of zero’s.

P counter—number of positive numbers.

Data pointer.

Loop counter.

Temporary storage - each number is moved here.

DO W=

Program 10-4 may be divided into three sections: initialization
(7E86-7E98), main processing loop (7TE9A-7EAC), and save results
and return (7TEAE-7EB4).

The initialization section consists of eight instructions: 7E82
initializes the workspace. 7E86 loads the starting address of the
block of memory that will be used as final storage for the results.
TE8A clears the N counter, 7E8C clears the Z counter, and 7ES8E
clears the P counter. 7E90 moves the address stored at 7E7E to the
data pointer register. 7E94 moves the number stored at 7E80 to the
loop counter. 7E98 tests the initial loop counter value. If zero, then
the program jumps to the instructions which save the N, Z, and P
counter values.

The main program loop consists of ten instructions: 7E9A
reads the number and increments the data pointer. 7E9C tests the
number to see if it equals zero. If so, then the program jumps to
7EA4 where the Z counter is incremented. 7E9E tests the number
to see if it is positive. If so, then the program jumps to 7EA8 where
the P counter is incremented. 7EAD increments the N counter.
There is no need to test the number to see if it is negative. If it is not
zero and not positive, then it must be negative. 7EA2 causes the
program to jump to 7EAA, jumping over the instructions that incre-
ment the Z and P counters. 7EA4 increments the Z counter. 7TEA6
causes the program to jump to 7EAA, jumping over the instruction
to increment the P counter.7EA8 decrements the loop counter.
7TEAC tests the loop counter value. If not zero, then the program
jumps to the beginning of the loop. You should be able to see that
only one counter (N, Z, or P) is incremented each time through the
loop.

The final section consists of four instructions, three of which
store the final N, Z, and P counter values in memory. Using the
numbers at 7E6C-7E76, the final values are 2, 0, and 3 respectively.
The last instruction (7EB4) returns control to EASY BUG.

Although there are no new instructions or addressing modes in

104

this program, the program is a good example of how the use of a
program loop can save instructions and programming time. Without
using a loop, the set of eight instructions at address 7E9A-7EA8
would have to be used for each number in the list. Thus, the 10 loop
instructions in Program 10-4 do the job of 48 nonloop instructions.
Quite a savings in memory and programming time.

Program 10-4

7000 XXXX AORG >7E6C
7E6C 7602 DATA >7602
7EGE 8D48 DATA>8D48
7E70 2120 DATA >2120
7E72 0000 DATA O
7E74 E605 DATA >E605
7E76 0004 DATA 4
TE78 XXXX M1 BSS 6
7E7E 7E6C M2 DATA >7E6C
7E80 0006 M3 DATA 6
7E82 02E0 LWPI >70B8
7€84 7088

7E86 0200 LI RO,M1
7E88 7E78

7E8A 04C1 CLR R1
7€8C 04C2 CLR R2
7E8E 04C3 CLR R3
7E90 C120 MOV @M2,R4
7E92 7E7E

7E94 C160 MOV @M3,R5
7E96 7E80

7E98 1304 JEQ J5
7E9A C1B4 J1 MOV *R4+,R6
TE9C 1303 JEQ J2
7E9E 1504 JGT J3
7EAO 0581 INC R1
7EA2 1003 JMP J4
TEA4 0582 J2 INC R2
TEA6 1001 JMP 04
TEA8 0583 J3 INC R3
7EAA 0605 J4 DEC RS
JEAC 16F6 JINE J1
7EAE CCO1 J5 MOV R1,*RO+

105

7EBO CCO2 MOV R2,*RO+
7EB2 C403 MOV R3,*RO
7EB4 0458 B *R1l
7EB6 XXXX END

FIND MAXIMUM VALUE

The purpose of Program 10-5 is to read a list of unsigned
numbers and determine which of them is the largest. Let me explain
how this is accomplished.

The first number in the list is compared to zero, the initial
value of register 0. If the number is larger than zero, then it is
moved to register 0 and becomes the number to which the next
number in the list is compared. The loop counter is decremented
and the next number is read. If the first number is equal to zero, then
zero is retained in register 0, the loop counter is decremented and
the next number is read.

Each time through the loop, the new number is compared with
the previous maximum that was found. When all items have been
read, the number in register 0 is moved to memory location 7EBE.
The maximum value in the list is E57A.

Program 10-5

7D00 XXXX AORG > 7EB6
7EB6 A48E DATA >-A48E
7EB8 71AC DATA>71AC
TEBA 34F1 DATA> 34F1
7EBC E57A DATA>ES7A
7EBE XXXX M1 BSS 2
7ECO 7EB6 M2 DATA >7EB6
7EC2 0004 M3 DATA 4
7EC4 02EQ LWPI >7088
7EC6 7088

7EC8 04C0 CLR RO
7ECA CO060 MOV @M2,R1
7ECC 7ECO

7ECE COAO MOV @M3,R2
7EDO 7EC2

7ED2 1306 JEQ J3

106

7ED4 COF1 J1 MOV *R1+,R3
7ED6 8003 C R3,R0
7ED8 1A01 JL J2

7EDA CO03 MOV R3,RO
7EDC 0602 J2 DEC R2
7EDE 16FA JNE J1
7EEQ €800 J3 MOV RO,@M1
TEE2 7EBE

TEE4 0458 B *R11
TEE6 XXXX END

FIND MINIMUM BYTE VALUE

Program 10-6 illustrates how the 9900 microprocessor handles
8-bit, or byte, data values. The purpose of this particular program is
to read a list of unsigned 8-bit numbers and determine which of them
is the smallest.

The 8-bit data values and their addresses are given below:

Value Address

65 7TEE6
79 TEE7
15 7TEE8
E3 7EE9
72 7EEA

Note that the values are hexadecimal numbers. Also, although
00 is stored at 7EEB, this number is not in the list. Since data values
must be entered two bytes at a time using the DATA command, this
byte was made equal to zero when the value 72 was entered.

Register 0 is used to temporarily store the minimum values as
they are found. Initially, this register is set to FFFF (all 1’s, the
highest possible 16-bit unsigned number) using the SETO (set to
ones) instruction. Note, however, that only the upper byte, or eight
most significant bits, of the register are used in the comparison
operation.

Data values are read using the MOVB (move byte) instruction.
The first time, for example, the byte at 7EE6 is moved to the upper
byte half of register 3. Using indirect addressing with auto-
increment, the data pointer is incremented by one. Recall that in the

107

auto-increment mode, the processor increments the specified reg-
ister contents by one for byte operations and by two for word
operations.

The CB (compare bytes) instruction at 7F04 compares the
upper byte in register 3 with the upper byte in register 0. The
MOVB instruction at 7F08 saves the lower value byte in register 0
(again, the upper byte half).

The MOVB instruction at 7FOE moves the final result (E3,
in this list) to location 7EEC. Note that the byte at 7EED is un-
changed by this program. In fact, I could save one word of memory
by storing the result at 7EEB, the lower byte of word location
7EEA. To do this, just change the instruction of 7FOE to MOVB R0,
@>7EEB, or go to EASY BUG and change the byte at 7F11 from EC
to EB.

Program 10-6

7000 XXXX AORG >7EE6
7EE6 6579 DATA>6579
7JEE8 15E3 DATA >1SE3
7EEA 7200 DATA >7200
JEEC XXXX M1 BSS 2
7EEE 7EEG M2 DATA >7EE6
7EFO 0005 M3 DATA 5
JEF2 02E0 LWPI >7088
7EF4 7088

7EF6 0700 SETO RO
7EF8 COG0 MOV @M2,R1
7EFA 7EEE

TEFC CORD MOV @M3,R2
7EFE 7EFO

7F00 1306 JEQ J3
TF02 DOF1 J1 MOVB *R1+, R3
7F04 9003 CB R3,R0
7F06 1801 JH J2

7F08 D003 MOVB R3,RO
7FOA 0602 J2 DEC R2

108

7F0C 16FA JNE J1
7FOE D800 J3 MOVB RO,@M1
7¢10 7EEC

7F12 0458 B *R11
7F14 XXXX END

109

Chapter 11

Ve

—
- —

|

= %ﬁ

Character-Coded Data

In this chapter, I will discuss seven short programs that process
strings. A string is a series of one or more characters that have been
translated into ASCII code. All data input via the keyboard, for
example, is ASCII encoded before it is stored in memory and
processed. Also, all information to be displayed on the screen must
be converted to ASCII beforehand.

ASCII is in 7-bit code for letters, numbers, symbols (such as
the comma, period, and so forth), and control characters (such as
CONTROL P, a combination of the CONTROL key and the P key)
all of which may or may not be on your keyboard. Since computers
basically operate on 8- or 16-bit data, ASCII codes are stored and
transferred as an 8-bit number with the leading bit always equal to
zero.

Table 11-1 is a partial list of characters and their corresponding
ASCII codes. For codes that are not included in the table, you
should see the TI-99/4A User’s Reference Guide supplied with your
computer. Note that the TI-99/4A has more than one keyboard
mode and some characters change code when the mode changes.
The characters that change codes are ones that are not included in
Table 11-1.

LENGTH OF A STRING OF CHARACTERS

The purpose of Program 11-1 is to determine the length of a
string of ASCII-encoded characters. The string “TI-99/4A” is

11

Table 11-1. ASCII Character Codes.

Character ASCII Character ASCIl Character ASCII
Carriage @ 40

Return oD A 41 a 61
Space 20 B 42 b 62
.'. 21 c 43 c 63
22 D a4 d 64
23 € 45 o 65
% 25 F a6 t 66
& 26 G 47 g 67
27 H 48 h 68
(28 1 49 i 69
) 29 J 4A i 6A
2A K 4B K éB
+ 28 L 4C | 8C
- 20 M 4D m 6D
. 2E N 4E n 6E
/ oF 0 aF ° 6F
t1) 30 P 50 P 70
! 31 Q 51 q 7
2 32 R 52 r 72
3 33 S 53 s 73
34 T 54 N 74
5 35 u 56 u 75
8 36 v 56 v 76
7 37 w 57 w 77
8 38 X 58 x 78
9 39 Y 59 y 79
: 3A z 5A z 7A
: B | [58 { 78
< 3 \ 5C i 7C
: 3] 5D } 70
? 3F A * 7E

stored at 7D00-7D07. 0D is the ASCII code for the ENTER key (or
carriage return) and is stored at 7D08 immediately following the
string to be processed. The 0D signals the program that the end of
the string has been reached.

7DO0A contains the number 7D00, the starting address of the
string. 7DOC is reserved for the result. The length of the string,
when determined, will be placed at this location.

7DOE is the starting address of the actual program. (Re-
member this when you go to EASY BUG to run the program. In this
book, all programs start with the instruction LWPI >70B8 which
initializes the workspace pointer.)

The instruction at 7D12 clears register 0 which is used as a
string character counter. 7D14 loads the ASCII code for the ENTER
key. Each character in the string is compared to 0D to see if the end
of the string has been reached.

7D18 moves the address at 7DOA to register 2 which is used as
the data pointer.

7D1C-7D22 contains the program loop. The first time through

112

the loop, 7D1C compares the first character in the string to 0D and
increments the data pointer by one. 7D1E causes the program to
exit the loop and go to 7D24 if the character equals 0D. Otherwise,
7D20 increments the character counter and 7D22 causes the pro-
gram to go through the loop again.

7D24 moves the final count to 7DOC and 7D28 returns control
to EASY BUG. You should go to EASY BUG and put 0D at an earlier
point in the string and see if the count changes accordingly. If you
want to try a different string, it will probably be easier if you go to
the assembler and use the TEXT command. Be sure to make 0D
your last character. Also, if you want to enter a string longer than
ten characters (including the terminator 0D), you should put the
string after 7D28 and then change the data in 7D0A to be equal to the
starting address of your string.

Program 11-1

7000 5449 TEXT 'TI-99/4A'
7002 2039

7004 392F

7006 3441

7008 0DOO DATA > 0DOO
700A 7000 M1 DATA >7D00
7D0C XXXX M2 BSS 2

700E 02E0 LWPI >70B8
7D10 7088

7012 04C0 CLR RO
7014 0201 LI RI,>O0D0O
7D16 0DOO

7018 COA0 MOV @M1,R2
7D1A 7D0A

7D1C 9072 J1 CB *R2+,R1
701E 1302 JEQ J2
7020 0580 INC RO
7022 10FC JMP J1
7D24 C800 J2 MOV RO,@M2
7026 700C

113

7028 0458 B *R11
702A XXXx END

FIND FIRST NONBLANK CHARACTER

The purpose of Program 11-2 is to find the first nonblank
character in an ASCII encoded string. The string “TI” is stored at
7D2A-7D2F. The starting address, 7D2A is stored at 7D30 and the
location of the first nonblank character when found will be stored at
7D32.

The program starts at 7D34. The instruction at 7D38 loads the
ASCII code for a blank in the upper byte half of register 0. 7D3C
loads the starting address of the string into register 1.

7D40-7D42 contains the loop which tests succeeding charac-
ters until a nonblank character is found. The first time through the
loop, the instruction at 7D40 compares the byte at 7D2A with the
byte 20 and increments the data pointer by one—from 7D2A to
7D2B. 7D42 causes the program to go back to 7D40 if the character
is a blank. When a nonblank character is found, the program exits
the loop and goes on to 7D44.

7D44 decrements the data pointer. This is necessary because
7D40 automatically increments the data pointer. Thus, when the
program gets to instruction 7D44 the data pointer is pointing at the
second nonblank character.

7D46 transfers the address of the first nonblank character to
address 7D32.

Program 11-2

7000 XXXX AORG >7D2A
702A 2020 TEXT ' TI °
702C 5449

702E 2020

7030 7D2A M1 DATA >7D2A
7D32 XXXX M2 BSS 2

7034 02E0 LWPI >7088
7036 7088

7038 0200 LI RO,>2000
7D3A 2000

703C CO60 MOV @M1,R1

114

7D3E 7030

7040 9031 J1 CB *R1+,RO
7042 13FE JEQ J1
7D44 0601 DEC R1
7D46 C801 MOV R1,BM2

7048 7032
7D4A 045B B *R1l
7D4C XXXX END

FIND LAST NONBLANK CHARACTER

The purpose of Program 11-3 is to read a string and determine
which character is the last nonblank character. The string “TI-
99/4A” is stored at 7D4C-7D57. For this string the program will
determine that the last nonblank character is located at address
7D55.

The starting address of the string is stored at 7D58 and two
bytes of memory have been reserved at 7D5A for the address of the
last nonblank character when found. The instruction at 7D60 loads
the ASCII code for a blank into the upper byte of register 0. 7D64
moves the starting address of the string to register 1.

The program contains two loops. The purpose of the first loop
(7D68-7D6A) is to skip over any leading blanks. The second loop
(7D6C-7D6E) reads characters until a blank is found.

7D70 decrements the data pointer (register 1) by two when the
first blank after a nonblank character has been found. This is neces-
sary because the autoincrement mode is used in the instruction of
7D6C and causes the data pointer to be pointing at the next charac-
ter after the first blank. In this case, the data pointer value equals
7D57 before the instruction at 7D70 is executed. The nonblank
character, A, is two locations back to 7D55. Thus, the data pointer
must be decremented by two.

7D72 moves the address at the last nonblank character to
memory location 7D5A.

Program 11-3

7D00 XXXX AORG >7D4C
7D4C 2020 TEXT ' TI-99/4A '
7D4E 5449

115

7050 2D39
7052 392F

7D54 3441

7056 2020

7D58 704C M1 DATA >7DAC
7D5A XXXX M2 BSS 2

705C 02E0 LWPI >708B8

7D5E 70B8

7060 0200 LI R0O,>2000
7062 2000

7D64 CO60 MOV @M1,R1
7066 7058

7068 9031 J1 CB *R1+,R0O
7D6A 13FE JEQ J1
706C 9031 J2 CB *R1+,R0
7D6E 16FE JINE J2
7070 0641 DECT R1
7072 C801 MOV R1,EM2
7074 7D5A

7D76 0458 B *R1l
7078 XXXX END

REPLACE LEADING ZEROS WITH BLANKS

The purpose of Program 11-4 is to read an ASCII encoded
number and replace all leading zeros with blanks.

The number to be processed, 00005, is stored at 7D78-7D7C.
The number is followed by a blank stored at 7D7D. The blank
signals the program that the end of the string (the number) has been
reached. The program has also been designed to look for the
carriage return code (ENTER on the TI-99/4A), OD, to see if the
string has ended.

Another common approach to determining when the string has
ended is to put the length of the string first. Then the program uses
the number as the initial value of a loop counter. For example, the
input data for processing the four character string 0005 would look
like this:

116

7D78 0004 DATA 4
7D7A 3030 TEXT ‘0005’
7D7C 3035

Of course, the program to process strings in this manner would be
different than Program 11-4.

Also, part of the problem in writing this program is to make
sure it can handle a string of all zeros. In this case, 1 want to replace
all leading zeros (before a blank or carriage return) except the last
one, which I want to preserve.

Now let’s look at Program 11-4. Instructions at 7D84-7DSE
load the ASCII codes for zero (30), blank (20) and carriage return
(0D) into registers 0,1, and 2, respectively. 7D90 moves the start-
ing address of the string to register 3.

7D94-7D9A tests the first character to see if it is a blank or
carriage return. If it is either one of these, then the program jumps
to 7DB4, which ends the program.

7D9C-7DA2 is a loop which tests each character to see if it
equals a zero. If so, the zero is replaced by a blank, the data pointer
is incremented, and the program jumps to the start of the loop. If a
nonzero character is discovered, the program exits the loop.

The remainder of the program determines whether or not the
string was all zeros. If not, then the program ends, since no new
characters need to be examined. If the string is all zeros, then the
program must put the last one back.

This is accomplished in 70A4-7DB0. 7DA4-7DAA compares
the first nonzero character with the blank and the carriage return. If
the first character (after replacing leading zeros) is either a blank or
a carriage return, then the string must have been all zeros and the
program jumps to 7DAE. 7DAE decrements the data pointer so that
the last zero can be put back by the instruction at 7DBO.

If the code at 7DA4-7DAA determines that the first nonzero
character is neither a blank or carriage return then the instruction at
7DAC is executed. 7DAC causes the program to jump to the end,
bypassing the code that puts a zero back in the string.

Program 11-4
7D00 XXXX AORG >7D78

7078 3030 TEXT '00005 '
7D7A 3030
707C 3520

117

707E 7078 M1 DATA >7D78
7080 02E0 LWPI >70B8
7082 7088

7084 0200 LI RO,>3000
7086 3000

7088 0201 LI R1,>2000
7D8A 2000

708C 0202 LI R2,>0D00
7D8E 0DOO

7080 COEO MOV @M1,R3
7092 707E

7094 9053 CB *R3,Rl1
7096 130D JEQ J4

7098 9093 CB *R3,R2
7D9A 1308 JEQ J4

709C 9013 J1 CB *R3,R0
7D9E 1602 JINE J2

7DA0 BCC1 MOVB R1,*R3+
7DA2 10FC JMP J1

7DA4 9053 J2 CB *R3,R1
7DA6 1303 JEQ J3

7DA8 9093 CB *R3,R2

7DAA 1301 JEQ J3

7DAC 1002 JMP J4
7DAE 0603 J3 DEC R3
70B0 D4CO MOVB RO,*R3
7082 045B J4 B *R1l
70B4 XXXX END

TRUNCATE DECIMAL STRING TO INTEGER FORM

The purpose of Program 11-5 is to read an ASCII encoded
multidigit number and replace the decimal point and following digits
with blanks. If no decimal point is found, then the number will be
unchanged.

118

The string processed in this example program is the ASCII
code for the number 3.1416. The string is stored at 7DB4-7DB8.
7DBA contains the ASCII code for carriage return. The starting
address of the string is stored at 7DBC. The starting address of the
actual program is 7DBE.

The instructions at 7DC2-7DDO initialize the registers. The
ASCII code for the decimal point (the period), the blank, and the
carriage return are loaded into registers 0, 1, and 2, respectively.
The starting address of the string is moved to register 3.

The instructions at 7DD2-7DDC test each character in the
string until a blank, a carriage return, or a decimal point is found. If
the character is either a blank or carriage return, then the program
jumps to the end and the string is left unchanged. If the characterisa
decimal point, then the program proceeds to the next processing
section.

After a decimal point is found, the instruction at 7DDE decre-
ments the data pointer. Again, this is necessary because the au-
toincrement addressing mode was used in the instruction at 7DDA.

7DE0-7DES8 replaces the decimal point and subsequent
characters with blanks until either a blank or carriage return is
found, in which case the program ends.

Program 11-5

7000 XXXX AORG >7DB4
70B4 332E TEXT '3.1416'
7086 3134

7088 3136

70BA 0DO0 DATA >0D00
7DBC 7DB4 M1 DATA>7DB4
70BE 02E0 LWPI >70B8
7DC0 7088

70C2 0200 LI RO,>2E00
704 2E00

706 0201 LI R1,>2000
7bC8 2000

70CA 0202 LI R2,>0000
7DCC 0D00

7DCE COEO MOV @M1,R3

119

7DD0 7DBC

7DD2 9053 J1 CB *R3,R1
7004 130A JEQ J3

7DD6 9093 CB *R3,R2
7008 1308 JEQ J3

70DA 9033 CB *R3+,RO
700C 16FA JNE J1

70DE 0603 DEC R3

7DEO DCC1 J2 MOVB R1,*R3+

7DE2 9053 CB *R3,R1
7DE4 1302 JEQ J3
7DE6 9093 CB *R3,R2
7DE8 16FB JNE J2
7DEA 0458 J3 B *R11
7DEC XXXX END

PATTERN MATCH

The purpose of Program 11-6 is to compare two strings and
determine if they match.

The first string, “GLASS,” is stored at 7TDEC-7DF1. Note that
GLASS has an odd number of characters. Thus, when the TEXT
command is used to enter the string, the assembler adds 00 to the
ASCII code to make the number of characters even. The program
interprets the 00 as the string terminator. If the string had been an
even number of characters, then it would have been necessary to
add 00 or some other code for a terminator. A blank, carriage
return, or FF are common terminators. The second string,
“GRASS,"” is stored at 7DF2-7DF7.

The starting address of the first string is stored at 7DF8 and
the starting address of the second string is stored at 7DFA. 7DFC
will be used to store the code for either a match (0000) or a
mismatch (FFFF). .

The instructions at 7E02-7E08 initialize the registers. Regis-
ter 0 is cleared. This register is used as temporary storage for the
match/mismatch code. The register is initialized with the match
code. If the strings are found to be different then the register
contents will be set to all ones and moved to 7DFC.

120

The starting address of the first string is moved to register 1,
and the starting address of the second string is moved to register 2.
Both registers are used as data pointers and are incremented as the
strings are read and compared character by character.

The instructions at 7EQC-7E14 form a program loop which
compares each character in string 1 to the corresponding character
in string 2. When a mismatch occurs, the program jumps to 7D16,
where the match code in register 3 is changed to the mismatch code
and then moved to 7DFC.

When a match occurs, the characters are tested to see if they
are equal to zero, meaning that the string has ended. If so, the
program jumps to 7E18 which moves the match code to 7DFC.

Note that the data pointers are incremented at different points
in the loop 7E0C-7E14. The data pointer for string 2 is incremented
at 7EOC, while the data pointer for string 1 is incremented at 7E10.
Also note that after a match, it is necessary to compare only one
character of one of the strings to zero. Finally, note that register 0
does double duty. Normally, it is used to store the match/mismatch
code. Since, however, it always equals zero at the point when I want
to see if a set of matched characters equal zero, then I may use it as
the reference for comparison.

Now you should be able to see why the data pointers must be
incremented at different times. If I incremented register 1 at 7E06,
then I would have to decrement it to perform the comparison at
7E10, otherwise I would not be testing the same character to see if
it equals zero. Then I would have to increment register 1 again
before the end of the loop. A more straight forward method (which
uses two more instructions) would look like this:

J1 CB *R1,*R2 Compare characters.

JNE J2 If mismatch, go set code to mismatch.
CB *R1,R0 Characters match. Has string ended?
JEQ J3 If yes, to move match code to memory.
INC R1 Increment string 1 data pointer.
INC R2 Increment string 2 data pointer.
JMP J1 Start loop over.

Program 11-6

7D00 XXXX AORG >7DEC
7DEC 474C TEXT 'GLASS'
7DEE 4153

121

70F0 5300
7DF2 4752 TEXT 'GRASS'

7DF4 4153

7DF6 5300

70F8 7DEC M1 DATA>T7DEC
7DFA 7DF2 M2 DATA >7DF2
TDFC XXXX M3 BSS 2
7DFE 02E0 LWPI>70B8
7E00 7088

7E02 04CO CLR RO
7E04 CO60 MOV @M1,R1
7E06 7DF8

7E08 COA0 MOV @M2,R2
TEOA 7DFA

7EQC 9C91 J1 CB *R1,*R2+
7EOE 1603 JNE J2
7E10 9031 CB *R1+,RO
7E12 1302 JEQ J3
7E14 10FB JMP J1
7E16 0700 J2 SETO RO
7E18 C800 J3 MOV RO,@M3
7E1A 7DFC

7EIC 0458 B *Rl1
7E1E XXXX END

STRING COMPARISON

The purpose of Program 11-7 is to compare two strings and
determine which is greater. This kind of program is useful when you
want to alphabetize string data. It is almost identical to Program
11-6. The only difference is in the program loop. Program 11-6
compares two corresponding characters of the strings and exits the
loop if they are not equal.

122

J1 CB *R1,*R2+

Program 11-7 compares two corresponding characters and
exits the loop if string 1 is greater than string 2.

J1 CB *R1,*R2+
JH J2

The instruction at J2 sets the contents of register 0 to all ones,
meaning that string 1 is greater than 2. If the JH condition is not met,
then the program tests to see if string 1 is less than string 2.

JL J3

The instruction at J3 moves the contents of register 0 (all
zeros) to 7E30, meaning that string 2 is less than or equal to string
2.

If the JL condition is not met, then the strings must be equal at
this point. The program then tests to see if the end of the string has
been reached. If not, the next pair of characters are compared.

Program 11-7

7000 XXXX AORG >7E20
7E20 5445 TEXT ‘TEXT *
TE22 5854

7E24 2000

7E26 5445 TEXT 'TENT '
7E28 4E54

7E2A 2000

7E2C 7E20 M1 DATA >7E20
7E2E 7E26 M2 DATA >7E26
7E30 XXXX M3 BSS 2

7E32 02E0 LWPI >7088
7E34 7088

7E36 0460 CLR RO

7E38 C060 MOV @M1,R1
7E3A 7E2C

7E3C COAD MOV 6M2,R2
7E3E 7E2E

7E40 9C91 J1 CB *R1,*R2+
7E42 1B04 JH J2

123

7E44 1A04

7E46 9031

7E48 1302
7E4A 10FA

JL J3
CB *R1+,R0
JEQ J3
JMP J1

7E4C 0700 J2 SETO RO
7EAE C800 J3 MOV RO,GM3

7E50 7E30
7E52 0458
7E54 XXXX

124

B *R11
END

Chapter 12

\o—

o

-

i

Code Conversion

So far I have discussed 20 example programs which have collec-
tively used the following 22 instructions:

A, Add Immediate
B, Branch

C, Compare Words
CB, Compare Bytes
CLR, Clear

DEC, Decrement

DECT, Decrement by Two
INC, Increment

JEQ, Jump if Equal

JGT, Jump if Greater Than
JH, Jump if Higher

JL, Jump if Lower

JMP, Unconditional Jump

JNC, Jump on No Carry

JNE, Jump if Not Equal

LI, Load Immediate

LWPI, Load Workspace
Pointer Immediate

MOV, Move Word

MOVB, Move Byte

MPY, Multiply

SETO, Set to Ones

SLA, Shift Left Arithmetic

In this chapter, I will discuss 12 more example programs which
will collectively use the following 10 new instructions:

Al, Add Immediate
AND], AND Immediate
CI, Compare Immediate
DIV, Divide

SB, Subtract Bytes

SOC, Set Ones Corresponding
SRC, Shift Right Circular
SRL, Shift Right Logical

JLE, Jump if Less Than or Equal SWPB, Swap Bytes

125

The twelve programs in this chapter are all code conversion
programs. The programs may be grouped in pairs. For example,
Program 12-1 converts a single hexadecimal digit to ASCII and
Program 12-2 converts an ASCII code to a single hexadecimal digit.
I will begin with simple single digit conversion programs and work
up to multidigit and ASCII string conversion programs.

The last two programs are especially important. One of my
goals is to show you how to write a program that reads data input via
the keyboard, processes that data, and then displays results on the
screen. Program 12-12 converts ASCII-encoded input data (gener-
ated when you press keys on the keyboard) to binary numbers.
Program 12-11 converts binary numbers to ASCII, a task that must
be performed before results can be displayed on the screen. Later
you will learn how to use some subroutines (already stored in the
Mini Memory module ROM) which read the keyboard and display
data on the screen.

HEXADECIMAL TO ASCII

The purpose of Program 12-1 is to convert a single hexadeci-
mal digit (0-9, A-F) to ASCIL. Numbers 0 through 9 are converted
simply by adding 30 to the number. ASCII for the number 0 is 30,
ASCII for the number 1 is 31, and so forth.

ASCII for the hexadecimal number A, however, is 41, not 3A.
If you go back and look at Table 11-1, you will see that codes 3A
through 40 are used for symbols and that the capital letters begin
with the ASCII code 41. Thus to convert the numbers A through F to
ASCII you must add the hexadecimal number 37.

Program 12-1 does not convert any specific hexadecimal digit
to ASCIL However, a one byte memory location (7E54) is reserved
for the digit to be converted, and a one byte memory location (7E55)
is reserved for the ASCII result. Before you run the program from
EASY BUG, enter a hexadecimal digit in memory location 7E54.
Since hexadecimal digits are only four bits wide, you must precede
your candidate digit by zero. For example, if you want to convert the
number C to ASCII, enter 0C into memory location 7E54. Run the
program (type E7E56 and press ENTER), and read the result in
memory location 7E55.

Let me explain how Program 12-1 converts hexadecimal digits
to ASCIL The instruction at 7E5A moves the candidate digit to the
upper byte half of register 0. 7ESE compares the digit to 0A to see if
the digit is in the range of 0 through 9. If so, 7E62 causes the
program to jump to 7E68 where 30 is added to the number.

126

If the number is not in the range 0 through 9, then 7E64 adds 07
to the number and 7E68 adds 30 to the number. This two-step
process eliminates the need for a jump instruction. See the follow-
ing alternate program.

LWPI >70B8
MOvVB@M1,R0
Cl R0,>0A00
JLJ
Al R0,>3700
JMP J2
J1 Al R0,>3000
J2 MOVB Ro@m2
B *R11

The instruction at 7E6C moves the result to 7E55. Note that
this program assumes that input digits are in the valid range—0
through 9, and A through F. No provision has been made to detect
out-of-range digits and store an error code in 7E55.

This program uses two new instructions—CI (compare im-
mediate) and Al (add immediate). The instruction at 7ESE com-
pares the contents of register 0 with the number 0A00. Note that
there is no compare immediate instruction for byte values. Since I
have moved the candidate digit to the upper byte half of register 0, I
must compare it with 0A00, not 000A. Although the lower byte
contents of register 0 are unknown, it doesn’t matter since compar-
ing with 0A0Q0 is sufficient to determine if the number in the upper
byte half of register 0 is in the range 0-9 no matter what is in the
lower byte half of register 0. Care must be taken when mixing byte
and word operations. Sometimes it is necessary to clear the regis-
ter before moving a byte value into the upper byte half of a register.

The instructions at 7E64 and 7E68 use the add immediate

instruction. 7E64 adds the contents of register 0 to the number 0700
and stores the result in register 0. Note that there is no add

immediate instruction for byte values. Also, as in the case of the
compare immediate instruction, be careful when mixing byte and
word operations.

Program 12-1
7000 XXXX M1 EQU >7E54
7D00 XXXX M2 EQU > 7ES5

7D00 XXXX AORG >7E56

127

7E56 02E0 LWPI > 70B8

7ES8 7088
7ESA D020 MOVB GMI,RO
7ESC 7E54
7ESE 0280 CI RO,>0AC0
7E60 OACO

7E62 1A02 JL J1
7E64 0200 Al RO, >0700

7E66 0700
7E68 0200 J1 AI RO, >3000
7E6A 3000
7E6C DBOO MOVB RO,@M2
TE6E 7ES5

7E70 0458 B *R11
JE72 XXXX END

ASCII TO HEXADECIMAL

Program 12-2 performs the function of Program 12-1 in re-
verse. ASCII codes are converted to single hexadecimal digits. The
program assumes that the ASCII codes represent the digits 0
through 9 and A through F.

As you might expect, conversion from ASCII to hexadecimal is
performed by subtracting 30 from codes 30 through 39 to obtain
digits 0-9 and by subtracting 37 from codes 41 through 46 to obtain
digits A-F.

The instructions at 7E78 and 7E7C load the values 30 and 07
into the upper byte halves of registers 0 and 1, respectively. This is
necessary because there is no subtract immediate instruction.

7E80 moves the ASCII digit from byte location 7E72 to the
upper byte half of register 2.

7E84 subtracts 30 from the ASCII digit and 7TE86 compares the
result with OA. If less than 0A (and hence in the range of 0-9), then
7E8A causes the program to jump to 7E8E. The instruction at 7TES8E
then moves the result to byte memory location 7E73.

If the result is not in the range 0-9, then the program assumes
that it is in the range A-F. The instruction at 7E8C subtracts 07 from
the previous result. The new result is now in the range A-F and is
moved to 7E73 by the instruction at 7ESE.

128

As in Program 12-1, no specific input number is processed.
Before you run the program in EASY BUG, enter a valid ASCII code
(see Table 11-1) in memory location 7E72.

Program 12-2

7000 XXXX M1 EQU >7E72
7000 XXXX M2 EOU > 7E73
7000 XXXX AORG 4 74
7E74 02E0 LWPI >70B8
7E76 7088

7E78 0200 LI RO, >3000
TE7A 3000

7E7C 0201 LI R1,>0700
7E7E 0700

7E80 DOAO MOVB @M1,R2
7E82 7E72

7E84 7080 SB RO,R2
7E86 0282 CI R2,>0A00
7E88 0AOO

7ESA 1A01 JL J1

7E8C 7081 SB R1,R2
7EBE D802 J1 MOVB R2, @M2
7E90 7E73

7E92 0458 B *R11

7E94 XXXX END

ASCII TO DECIMAL

Program 12-3 converts an ASCII code value at byte memory
location 7E94 to a decimal number between 0 and 9 and stores the
result at byte memory location 7E95. Because the conversion is a
simple process (less code than ASCII to hexadecimal conversion
which is also simple), I have added one feature: the program checks
to make sure the result is a valid decimal number between 0 and 9. If
not the error code FF is stored at 7E95.

The instruction at 7E9A sets the contents of register 0 to
FFFF. The upper FF will be moved to 7E95 if the conversion result

129

is not valid. 7E9C loads the value 30 into the upper byte half of
register 1. TEAO moves the ASCII code value to the upper byte half
of register 2. 7EA4 subtracts 30 from the ASCII code and stores the
result in the upper byte half of register 2.

TEA6 compares the result with 09FF. The FF is necessary
because the lower byte contents of the register are not known. Note
that I could have compared the result with 0AQ0 and used the JL
instruction at 7TEAA.

The instruction at 7EAA jumps to 7EAE if the contents of
register 2 is less than or equal to 09FF. If the result is valid, then
this instruction causes the program to jump over the instruction at
7TEAC which moves the error code FF to the upper byte half of
register 2.

7TEAE moves the contents of register 2, either a valid decimal
number (00 to 09) or the error code (FF) to memory location 7E95.

Program 12-3

7000 XXXX M1 EQU >7E94
7000 XXXX M2 EQU >7E95
7000 XXXX AORG > 7E96
JE96 02E0 LWPI > 70B8
7E98 7088

7E9A 0700 SETO RO
7E9C 0201 LI R1,>3000
7E9E 3000

JEAO DOAO MOVB @M1,R2
7EA2 7E94

JEA4 7081 SB R1,R2
7EA6 0282 CI R2, >09FF
7EA8 OSFF

7EAA 1201 JLE 01

7EAC D080 MOVB RO,R2
7EAE D802 J1 MOVB R2,QM2
7EBO 7E95

7EB2 0458 B *R11

7EB4 XXXX END

130

DECIMAL TO ASCHI

Program 12-4 is the reverse of Program 12-3. The program
converts a decimal value stored at 7EB4 to its ASCII equivalent and
stores the result at 7EB5. Additionally, input decimal values are
checked to make sure they are valid (0-9) before they are converted.
If input values are not valid, then error code 20 (ASCII code for a
space) is stored in memory location 7EB5.

Program 124
7000 XXXX M1 EQU > 7EB4

7000 XXXX M2 EQU > 7EBS
7000 XXXX AORG > 7EB6
7EB6 02E0 LWPI > 70B8
7EB8 7088

7EBA 0200 LI RO,>2000
7EBC 2000

7EBE D060 MOVB @M1,R1
7ECO 7EB4

TEC2 0281 CI R1,> OAOO
7EC4 0ACO

JEC6 1A02 JL N

7EC8 D040 MOVB RO,RI
7ECA 1002 JMP J2

7ECC 0221 J1 AI R1,>>3000
7ECE 3000

7EDO D80T J2 MOVB R1,eM2
7ED2 7EBS

7ED4 045B B *R11

7ED6 XXXX END

BINARY-CODED DECIMAL TO BINARY

Program 12-5 converts a 4-digit binary-coded decimal (BCD)
to binary. BCD is a convenient form in which to encode decimal
numbers. For example, the binary equivalent of 2,971 is
0000101010011010, or 0B9B in hexadecimal. The BCD form is
twice as long:

131

00000010000010010000011100000001

This BCD number is 02090701 in hexadecimal. In other words, each
digit in a decimal number is stored as a single byte in memory in its
binary equivalent. A 4-digit decimal number requires 4 bytes of
memory.

If BCD requires twice the memory, why use it? There are two
basic reasons. First, many instruments, such as a digital voltme-
ter, output digital data in BCD format. Thus, if a digital voltmeter or
a decade counter integrated circuit (such as Motorola MC14553) is
connected to the computer, then it is necessary to have a program to
convert the BCD value to binary.

Second, converting an ASCII-decimal string to binary is a
two-step process. The first step converts ASCII to BCD by sub-
contracting 30 from each digit. The second step converts the BCD
number to binary. An ASCII-decimal string is the usual form in
which numbers are entered into memory via the keyboard.

The conversion of the number 02090701 is performed as fol-
lows:

1. Multiply the most significant digit by 10.

Decimal Hexadecimal
2 0002
x 10 x_000A
20 0014

2. Add the next digit to the result of Step 1.

Decimal Hexadecimal
20 0014
+9 +_0009
29 001D

3. Multiply the result of Step 2 times 10.

Decimal Hexadecimal
29 001D
x 10 x (000A
290 0122

4. Add the next digit to the result of Step 3.

132

Decimal Hexadecimal

290 0122
+ 7 + 0007
297 0129

5. Multiply the result of Step 3 times 10.

Decimal Hexadecimal

297 0129

x 10 000A

2970 0B9A

6. Add the last digit to the result of Step 5.

Decimal Hexadecimal

2970 0B9A

+ 1 + 0001

2971 0B9B

Conversion is complete. The process is simple: multiply the
result by 10 and add the next digit. In step 1, the result is just the
first digit. Thereafter, however, the result is the sum of the previ-
ous product and the next digit. For a 4-digit BCD number, a total of
three multiplications and four additions are performed.

Now let’s look at Program 12-5 line-by-line. The instructions
at 7EEQ through 7EEC initialize the registers. Register 0 is used as
a loop counter. The initial value is 4 because the program processes
a 4-digit number. Register 1 contains the constant multiplier value,
10. Register 2 is the data pointer. It contains the address of the BCD
digit to be processed. The initial digit address is 7TED6. Register 3
is used as a subtotal register. All products are moved to this
register. Also, BCD digits are moved to register 4, and then added
to register 3. Initially, this register is cleared to zero.

The instruction at 7EEE causes the program to jump over the
multiplication portion of the loop. 7EF4 moves the first digit to the
upper byte half of register 4. 7EF6 shifts the digit to the lower byte
half and replaces the upper byte with zero. Now the digit is in the
proper position to be added to previous results by the instruction at
TE48. The first time through the loop the result in register 3 is zero.

TEFA decrements the loop counter and the instruction at 7ZEFC
causes the program to repeat the entire multiply-add routine if the
counter value is not zero.

133

7EF0 multiplies the sum in register 3 by 10. The 32-bit result
is stored in registers 3 and 4. For 4-digit BCD numbers, register 3
will always be zero after this multiplication. Since it is known ahead
of time that the product is less than sixteen bits, it is safe to move
the nonzero result in register 4 to register 3. This is done by the
instruction at 7EF2.

The instructions at 7EF4-7EFC bring in the next digit, shift it
to the proper position, and add it to the previous result stored in
register 3. This process (7EF0-7EFC) continues until the loop
counter equals zero. Then the final result is moved to memory
location 7TEDA.

To aid in understanding the conversion process and the use of
registers in this program, the intermediate register results are
shown in Table 12-1. Blanks in the table indicate that the result for
that register has not changed since the last entry.

Table 12-1. Intermediate Results of Program 12-8.

Instruction Register Results

Address RO R2 - -
7EEO 0004
7EES8 7ED6
7EEC 0000
7EF4 7ED7 0200
7EF6 0002
7EF8 0002
7EFA 0003
7EFO 0000 001
7EF2 0014
7EF4 7ED8 0900
7EF6 0009
7EF8 001D
7EFA 0002
7EF0 0000 0122
7EF2 0122
7EF4 7ED9 0700
7EF6 0007
7EF8 0129
7EFA 0001
7EFO 0000 0B9A
7EF2 O0B9A
7EF4 7EDA 0100
7EF6 0001
7EF8 0B9B
7EFA 0000

134

Program 12-5

7000 XXXX AORG > 7ED6
7ED6 0209 M1 DATA >0209
7ED8 0701 DATA > 0701
7EDA XXXX M2 BSS 2

7EDC 02E0 LWPI >70B8
7EDE 70B8

7EE0 0200 LI RO,4
7EE2 0004

7EE4 0201 LI R1,10
7EE6 000A

7EE8 0202 LI R2,M
7EEA 7ED6

7EEC 04C3 CLR R3
7EEE 1002 JMP J2
7EFO 38C1 J1 MPY R1,R3
7EF2 COC4 MOV R4,R3
7EF4 D132 J2 MOVB *R2+,R4
7EF6 0984 SRL R4,8
7EF8 AOC4 A R4,R3
7EFA 0600 DEC RO
7EFC 16F9 JNE J1
7EFE €803 MOV R3,eM2
7F00 7EDA

7F02 0458 B *RI11
7F04 XXXX END

BINARY TO BCD

Program 12-6 converts a 16-bit binary number (4-digit
hexadecimal) to BCD. The example number processed by the pro-
gram is 1C53. The method of conversion is as follows:
1. Divide the number by 1000. Store the lower byte (07) of the
result in memory. :

135

Decimal Hexadecimal

7 0007
1000/7251 03E8/1C53
7000 1B58

251 00FB

2. Divide the remainder by 100. Store the lower byte (02) of the
result in memory.

Decimal Hexadecimal
2 0002
100/251 0064/00FB
200 00C8

51 0033

3. Divide the remainder by 10. Store the lower byte (05) of the
result in memory.

Decimal Hexadecimal
5 0005
10/51 000A/0033
50, 0032
1 0001

4. Store the lower byte (01) of the remainder in memory. Conver-
sion is now complete. (Note that each divisor is one tenth of the
previous divisor. However, in Step 4, dividing by one is an un-
necessary operation.)

Program 12-6 stores the 8-bit BCD digits in memory locations
7F06-7F09. The divisors 1000, 100 and 10 are stored in locations
7F0A-7F(E.

Four registers are used in the conversion. Register 0 is used as
a loop counter. This register is initially set to 3, because the
division operation is performed three times, one for each of the first
three digits to be determined. The fourth digit is simply the remain-
der from the previous division.

Register 1 is one of two pointers. This register points to, or
contains the value of, the next divisor to be used. The first divisor is
1000. Register 2 is the second pointer. This register contains the
address to which the next BCD digit (when determined) will be
moved. The first digit will be moved to address 7F06.

Registers 3 and 4 are used in the division operation. In a divide

136

operation, the number to be divided (the dividend) must be a 32-bit
number and must be stored in two adjacent registers. The instruc-
tion at 7F26 divides the 32-bit number contained in register 3 and 4
by the number whose address is stored in register 1. The quotient is
stored in register 3, and the remainder is stored in register 4. Then
it increments the address in register 1 by two.

Initially, register 3 is cleared and the number to be converted
(1C53) is moved from 7F04 to register 4. After the first divide
operation register 3 contains 0007 and register 4 contains 00FB.

Table 12-2. Intermediate Results of Program 12-6.

Instruction Register Results

Address RO R1 R2 R3 R4
7F14 0003
7F18 7F0A
7F1C 7F08
7F20 1C53
7F24 0000 1C53
7F26 7FOC 0007 00FB
7F28 0700
7F2A 7F07
7F2C 0002
7F24 0000 00FB
7F26 7FOE 0002 0033
7F28 0200
7F2A 7F08
7F2C 0001
7F24 0000 0033
7F26 7F10 0005 0001
7F28 0500
7F2A 7F09
7F2C 0000
7F30 0100

Before the next divide operation, the lower byte of register 3 must
be saved and the register cleared, otherwise the next divide opera-
tion will be performed on the 32-bit number 000700FB.

The instruction at 72FA shifts the 8-bit BCD from the lower
byte half of register 3 to the upper byte half. This is necessary
because the MOVB (move byte) instruction at 7F2A moves the
upper byte of register 3 to the address stored in register 2.

The loop 7F24-7F2E is executed three times, one time for
each of the first three BCD digits computed. The fourth digit is the

137

last remainder. 7F30-7F32 moves the fourth digit to memory loca-
tion 7F09. This operation completes the conversion.

Table 12-2 shows the intermediate register results of Program
12-6.

Program 12-6

7D00 XXXX AORG >7F04

7F04 1C52 M1 DATA >1C53

7F06 XXXX M2 BSS 4

7FOA 03E8 M3 DATA 1000

7F0C 0064 DATA 100

7FOE CO0A DATA 10

7F10 02E0 LWPI >70B8

7F12 7088

7F14 0200 LI RO,3

7F16 0003

7F18 0201 LI R1,M3

7F1A 7FOA

7F1C 0202 LI R2,M2

TF1E 7F06

7F20 C120 MOV @M1,R4

7F22 7F04

7F24 04C3 J1 CLR R3

7F26 3CF1 DIV *R1+,R3

7F28 0A83 SLA R3,8

7F2A DC83 MOVB R3,*R2+

7F2C 0600 DEC RO

7F2E 16FA JINE J1

7F30 OA84 SLA R4,8

7F32 D484 MOVB R4,*R2

7F34 0458 B *R11

7F36 XXXX END

BINARY NUMBER TO ASCII-BINARY STRING
Program 12-7 converts a binary number to an ASCII string.

138

This type of program is necessary if you want to display a binary
number on the screen as a string of ones and zeros. This program
converts a 16-bit binary number to a 16-character string. For exam-
ple, in order to display 0011000111010010 (31D2, hexadecimal),
each bit must be encoded in ASCII—30 for 0 and 31 for 1. When
encoded in ASCII, 31D2 equals

30303131303030313131303130303130

Program 12-7 encodes the example number, 31D2, and stores
the ASCII string in memory locations 7F38-7F47. The method of
conversion begins by storing the number in a register. Shift left one
bit one time. If the carry status bit equals 1, then store 31 at memory
location 7F38. If the carry status bit equals 0, then store 30 at
memory location 7F38. After a one bit shift, the carry status bit and
register contents are as follows:

Carry Register Contents
0 0110001110100100

Thus, 30 is stored at memory location 7F38.
Shift the register contents left one bit again. The result is:

Carry Register Contents
0 1100011101001000

Thus, 30 is stored at memory location 7F39.
Shift the register contents left one bit again. The result is:

Carry Register Contents
1 1000111010010000

Thus, 31 is stored at memory location 7F3A.

Repeat this operation until all sixteen bits have been shifted to
the carry status bit and either a 30 or 31 for each bit has been stored
consecutively in memory.

Program 12-7 implements this conversion very simply. 7F4C
loads the number 16 into register 0, the loop counter. 7F50 moves
the example number from location 7F36 to register 1. This register
will be left-shifted one bit a total of sixteen times. The carry status
bit will be tested after each shift operation.

7F54 loads the address of the first memory location where the

139

ASCII string will be stored. 7F58 loads 30 (ASCII for 0) into the
upper byte half of register 3. 7F5C shifts the number one bit to the
left. 7F5E causes the program to jump to 7F64 if the carry status bit
is 0. (7F64 moves 30 to memory location 7F38 the first time the loop
is executed.)

If the carry bit equals 1, then 0100 is added to register 3. Thus,
the upper byte half of register 3 equals 31. Then 7F64 moves 31 to
memory. (7F64 moves 31 to memory location 7F3A the third time
the loop is executed.)

7F66-7F68 decrements the loop counter and causes the loop to
be reexecuted if not equal to zero. If zero, the conversion is
complete.

Note that each time through the loop, register 3 is reset to
3000. An alternative program follows. This program has one more
instruction, but it is more straightforward than Program 12-7.

LI RO,16
MOV eM1,R1
LI R2,M1
LI R3,>3000
LI R4,>3100
J1 SLAR1,1
JNC J2
MOVB R4,*R2+
J2 MOVB R3,*R2+
DEC RO
JNE J1
B *R11

Program 12-7

7000 XXXX AORG >7F36
7F36 3102 M1 DATA >3102
7F38 XXXX M2 BSS 16
7F48 02E0 LWPI >708B8

7F4A 70B8

7F4C 0200 LI RO,16
7F4E 0010

7F50 CO60 MOV GM1,R1
7F52 7F36

7F54 0202 LI R2,M2

140

7F56 7F38

7F58 0203 J1 LI R3, > 3000
7FSA 3000

7F5C 0A SLA R1,1
7FS5E 1702 JNC J2

7F60 0223 Al R3, >0100
7F62 0100

7F64 DC83 J2 MOVB R3,*R2+
7F66 0600 DEC RO

7F68 16F7 JINE J1

7F6A 0458 B *R11

TF6C XXXX END

ASCII-BINARY STRING TO BINARY NUMBER

Program 12-8 converts an ASCII string of ones and zeros to a
binary number. This type of program is necessary in order to
process a binary number entered into memory via the keyboard.
Program 12-8 converts the ASCII code for 0001110001010010
(1C52, hexadecimal) to binary. The ASCII code for 1C52 is as
follows:

30303031313130303031303130303130

The conversion begins by clearing a register to all zeros. Now
for every 31 in the ASCII string, set the corresponding bit in the
register to 1.

To set individual bits to 1 I must use the SOC, set ones
corresponding, instruction. To use this instruction I must set up a
reference, or mask, register. Program 12-8 uses register 3 as a
mask register. The initial value of register 3 is 8000, or
100000000000000 binary. In other words, register 3 has a 1 in bit
position 0 and Os in bit positions 1-15.

Let’s start with the first byte in the ASCII string, which
happens to be 30, or 0 binary.

1. Clear register 6.

2. Move the first byte to register 5.

3. Subtract 30 from register 5. The result is zero. Therefore, do
not set bit 0 of register 6.

141

4. Shift register 3 one bit to the right.

5. Move the next byte to register 5.

6. Subtract 30 from register 5. The result is zero. Therefore, do
not set bit 1 of register 6. Note that bit 1 of register 3 is a 1.

Register 6 Register 3
0000000000000000 0100000000000000

7. Perform steps 4-6 again. Register 5 equals 0. Therefore, do not
set bit 2 of register 6. Note that bit 2 of register 3 is a 1.

Register 6 Register 3
0000000000000000 0010000000000000

8. Perform steps 4-6 again. Register 5 equals 1. Therefore, set bit
3 of register 6 to a 1. Note that bit 3 of register 3is a 1.

Register 6 Register 3
0001000000000000 0001000000000000

Finally, a 31 is detected. The SOC instruction at 7FA6 in
Program 12-8 sets the bits in register 6 for which there are corres-
ponding 1s in the register 3. There is only 1 in register 3—in bit
position 3. Thus, bit 3 in register 6 is set to 1.

Table 12-3 shows the intermediate results for registers 3 and 6
after each execution of the instruction at 7FA6. Note that bits in
register 6 that have been set by prior SOC operations are unaffected
by succeeding SOC operations.

Program 12-8 has one other important feature. That is, it will
convert strings of variable length. The program looks for a 20 which
is ASCII for a space. Once a space is found, it is necessary to
right-justify the result. The number of bit positions that the result
must be shifted is contained in register 0.

The SRC (shift right circular) instruction is used instead of
SRL (shift right logical). This is necessary for the one case when
register 0 equals 0, meaning that a 16-character string has been
converted. In this case, the SRL would perform a 16-bit shift,
causing the result to be wiped out. All sixteen bits shifted would be
replaced by zeros.

The SRC instruction circulates the bits. This satisfies all
cases. Ifregister 0 equals 0, then 16-bit circulate shifts the previous
result back into the register. If register zero is greater than zero,

142

Table 12-3. Intermediate Register Results of Program 12-8.

Register 3 Register 6
0000000000000000 1000000000000000
0000000000000000 0100000000000000
0000000000000000 0010000000000000
0001000000000000 0001000000000000
0001100000000000 0000100000000000
0001110000000000 0000010000000000
0001110000000000 0000001000000000
0001110000000000 0000000100000000
0001110000000000 0000000010000000
0001110001000000 0000000001000000
0001110001000000 0000000000100000
0001110001010000 0000000000010000
0001110001010000 0000000000001000
0001110001010000 0000000000000100
0001110001010010 0000000000000010
0001110001010010 0000000000000001

then that number of zeros are circulated back into register 6,
causing the number to be right-justified.

When the conversion is complete, the result is moved to
memory location 7F7E. For this example, the result is 1C52,
hexadecimal.

Program 12-8

7000 XXXX AORG >7F6C

7F6C 3030 M1 TEXT '0001110001010010
7F6E 3031

7F70 3131

143

7F72 3030

7F74 3031

7F76 3031

7F78 3030

7F7A 3130

7F7C 2000

TF7E XXXX M2 BSS 2

7F80 02E0 LWPI >70B8
7F82 7088

7F84 0200 LI RO,16
7F86 0010

7F88 0201 L1 R1,>3000
7F8A 3000

JF8C 0202 LI R2,>2000
7F8E 2000

7FS0 0203 LI R3, >8000
7F92 8000

7F94 0204 LI R4,MI
7F96 7F6C

7F98 04C5 CLR RS

7F9A 04C6 CLR R6

7F9C D174 J1 MOVB *R4+,RS
7F9E 9085 CB R5,R2
7FAQ 1306 JEQ J3

TFA2 141 SB R1,RS
7FA4 1301 JEQ J2

JFA6 E183 SOC R3,R6
7FA8 0913 J2 SRL R3,1
7FAA 0600 DEC RO

7FAC 10F7 JMP J1

7FAE 0BO6 SRC R6,0
7FBO €806 J3 MOV R6,@M2

144

7FB2 7F7E
7FB4 0458 B *R11
7FB6 XXXX END

BINARY NUMBER TO ASCII-HEXADECIMAL STRING

Program 12-9 converts a 16-bit binary number to 4-character
ASCII string. This type of program is necessary when you want to
display a binary number on the screen as a 4-digit hexadecimal
number. For example, the assembler displays the memory address
and updated data and next address and current data each time you
enter an assembly language instruction. In order for the assembler
to display 7D00 31D2, the assembler must first convert the binary
equivalent of 7D00 and 31D2 to the ASCII codes 37443030 and
33314432, respectively.

Program 12-9 converts the example number, 31D2, to the
ASCII code 33314432. This is accomplished in two steps. Each step
is a small program in itself.

The first step (7D0A-7D2C) disassembles the 16-bit number
into four eight bit numbers and stores them in memory locations
7D02-7D05. The first four bits are converted to 03, the second four
bits to 01, the third four bits to 0D, and the last four bits to 02.

The second step (7D2E-7D4A) converts the 8-bit hexadecimal
digits to ASCII and stores results back in locations 7D02-7D05,
copying over the results of the first step. This second step is
essentially the same as Program 12-1. The main difference is that
Program 12-9 processes four digits and uses indirect addressing.

Now let’s look at how the digits are disassembled in the first
step. 7DOA moves the number 31D2 to register 0. 7DOE loads the
starting address of the four bytes where the results will be stored.
7D12 copies the number 31D2 into register 2. 7D14 shifts the
number to the right four bit positions. Positions vacated are re-
placed by zeros. Register 2 now equals 031D. 7D16 moves the byte
03 to 7D02. 7D18 copies the number 31D2 into register 2 again.

7D1A replaces the first four bits with zeros. The ANDI (AND

Immediate) instruction logically ANDs 31D2 with OFFF (called the

mask) and stores the result back in register 2. The AND operation is
performed bit by bit:

31D2 = 0011000111010010
OFFF = 0000111111111111
31D2 AND OFFF = 0000000111010010 = 01D2

145

Only in bit positions where both 31D2 and OFFF have a 1 willa
1 occur in the result. Looking at the hexadecimal representations,
you can see that a 0 in the mask number clears corresponding bits in
the other number and that an F in the mask number leaves the
corresponding bits in the other number unchanged.

Next, 7D1E moves the byte 01 to memory location 7D03.
7D20 swaps the bytes in register 2. 01D2 becomes D201. 7D22
shifts the D201 to the right four bit positions. Register 2 now equals
0D02. 7D24 moves the byte 0D to memory location 7D04. 7D26
shifts 7D20 to the left four bit positions. Register 2 now equals
D200. 7D26 replaces the first four bits with zeros. The result is
0200. 7D28 moves the last byte, 02, to memory location 7D05.

Program 12-9
7000 3102 M1 DATA >3102

7D02 XXXX M2 BSS 4
7006 02E0 LWPI >70B8

7008 7088

700A CO20 MOV @M1,RO
700C 7000

7DOE 0201 LI R1,M2
7010 7D02

7D12 C080 MOV RO,R2
7D14 0942 SRL R2,4

7D16 DC42 MOVB R2,*R1+
7D18 C080 MOV RO,R2
7D1A 0242 ANDI R2,>OFFF
7D1C OFFF

7D1E DC42 MOVB R2,*R1+
7D20 06C2 SWPB R2

7D22 0942 SRL R2,4

7D24 DC42 MOVB R2,*R1+
7D26 OR42 SLA R2,4

7028 0242 ANDI R2,>OFFF
7D2A OFFF

7D2C D442 MOVB R2,*R1

146

7D2E 0200 LI RO,4
7030 0004

7032 0201 LI R1,M2
7D34 7002

7036 £O91 J1 MOVB *R1,R2
7D38 0282 CI R2, >0A00
7D3A 0ACO

703C 1A02 JL J2

7D3E 0222 AI R2,>0700
7040 0700

7042 0222 J2 Al R2,>3000
7044 3000

7D46 DC42 MOVB R2,*R1+
7048 0600 DEC RO

7D4A 16FS JNE J1

7D4C 0458 B *R11

7DAE XXXX END

ASCII-HEXADECIMAL STRING TO BINARY NUMBER

Program 12-10 converts an ASCII string of four hexadecimal
digits to a binary number. This type of program is required to
process a 4-digit hexadecimal number which has been input via the
keyboard. For example, when you use the assembler and type
AORG >7DA4E, the assembler must convert the ASCII code for
7D4E to a binary number as part of the processing required to
display address 7D4E and the current data, and gets ready for you to
type the next command or assembly language instruction.

Program 12-10 converts the example ASCII code 33314432 to
the binary number 31D2 (hexadecimal form). First 7D58 loads
register 0 with the number 4. Register 0 is the loop counter. Four
bytes of ASCII will be processed.

7D5C loads the address of the first ASCII byte into register 1.
7D5E adds three to that address. The address in register 1 is now
7D51, the address of the last ASCII byte. Program 12-10 will
process the ASCII string backwards, starting with the last byte and
proceeding to the first byte.

7D64 and 7D66 load the values 30 and 07 into the upper byte
halves of registers 2 and 3, respectively. These constants will be

147

used to convert each ASCII byte to an 8-bit hexadecimal digit.

7D6C and 7D6E clear registers 4 and 5, which will be used to
assemble the 16-bit number 31D2 from the individual bytes 03, 01,
0D, and 02. ‘

7D70 moves the last ASCII byte, 32, to register 5. 7D72
subtracts 30 from 32. The result is 02. 7D74 compares 02 with 0A.
7D76 causes the program to jump to 7D7C if the number is in the
range 0-9, otherwise the next instruction 7D7A will subtract 07.
(Review program 12-2, if necessary.)

7D7C adds 0200 to 0000 (the initial value of register 4). The
result is 0200. 7D7E shifts 0200 to the right four bit positions and
circulates the right-most four bits into the left-most bit positions.
The result is 0020.

7D80 decrements the address in register 1. The address is now
7D50, pointing at ASCII byte 44, the next byte to be processed.

7D82 decrements the loop counter and causes the program to
jump to 7D70 if not zero. The second time through the loop,
7D70-7D7A converts the byte 44 to 0D. Then the instruction at
7D7C adds 0D00 to 0020 to get 0D20. 7D7E circulates 0D20 four bit
positions. The result is now 00D2.

The third time through the loop, 7D70-7D7A converts the byte
31 to 01. Then the instruction at 7D7C adds 0100 to 00D2 to get
01D2. 7D7E circulates 01D2 four bit positions. The result is now
201D.

The fourth time through the loop, 7D70-7D7A converts the
byte 33 to 03. Then the instruction at 7D7C adds 03 to 201D to get
231D. 7D7E circulates 231D four bit positions. The result is now
D231.

The loop counter now equals zero. The loop is exited and the
next instruction at 7D86 swaps the bytes in register 4. The result is
31D2. 7D88 moves the final result to memory location 7D52.

Program 12-10

7000 XXXX AORG>7D4E
7DAE 3331 M1 TEXT '31D2'
7D50 4432

7D52 XXXX M2 BSS 2

7054 02E0 LWPI >70B8
7D56 7088

7D58 0200 LI RO,4

148

705A 0004
7D5C 0201 LI R1,M

7D5E 7D4E

7060 0221 Al R1,3
7062 0003

7064 0202 LI R2,>3000
7066 3000

7068 0203 LI R3,>0700
7D6A 0700

706C 04C4 CLR R4

7D6E 04C5 CLR RS

7D70 D151 J1 MOVB *R1,R5
7072 7142 SB R2,RS
7074 0285 CI R5,>0A00
7D76 OA00

7078 1A01 JL J2

7D7A 7143 SB R3,R5
7D7C A105 J2 A R5,R4
7D7E 0B44 SRC R4,4
7080 0601 DEC R1

7082 0600 DEC RO
7084 16F5 JNE J1

7086 06C4 SWPB R4
7088 C804 MOV R4,@M2
708A 7D52

7D8C 0458 B *R11

7D8E XXXX END
BINARY NUMBER TO ASCII-DECIMAL STRING

Program 12-11 converts a 16-bit binary number to an ASCII
string in decimal form. This type of program is used to display a
program result on the screen as a decimal number. Program 12-11 is
a combination of three previous programs: 12-6, Binary to BCD,
12-4, Decimal to ASCII, and 11-4, Replace leading zeros with
blanks.

149

The instructions at 7DA2-7DCE convert 31D2 to
313237353420 (the decimal number 12754 followed by a space).
7DB4 divides the number by 10,000 (2710 hexadecimal). 7DB6
shifts the quotient 0001 to the left eight bit positions. The result in
register 3 is 0100. 7DB8 adds 3000 to 0100 to get 3100. 7DBC
stores 31 at 7D90.

The second time through the loop, the remainder from the first
division is divided by 1000 (03E8 hexadecimal). The result is 0002.
7DBC stores 32 at 7D91.

The third time through the loop, the remainder from the sec-
ond division is divided by 100 (0064 hexadecimal). The result is
0007. 7DBC stores 37 at 7D92.

The fourth time through the loop, the remainder from the third
division is divided by 10 (000A hexadecimal). The result is 0005.
7DBC stores 35 at 7D93. The loop is exited and 7DC2 shifts the
remainder 0004 to the upper byte position. 7DC4 adds 3000 to get
3400 and 7DC8 moves 34 to 7D94. 7DCA-7DCE loads 20 (ASCII for
a blank) into memory location 7D95. At this point conversion is
complete.

7DD0-7DES replaces leading zeros with blanks. To test this
code you should try a different example number that is less than
10,000 and see if the leading zeros (30 in ASCII) are replaced with
blanks (20). Try 0100 and see if the result at 7D90-7D95 is

202032353620 (256 decimal). Try 0000 and see if the result is
202020203020.

Program 12-11

7D00 XXXX AORG>7D8E
708E 3102 M1 DATA >31D2
7D90 XXXX M2 BSS 6
7096 2710 M3 DATA 10000
7098 03E8 DATA 1000
709A 0064 DATA 100
7D9C 000A DATA 10
7D9E 02E0 LWPI >70B8
7DA0 70B8

7DA2 0200 LI RO,4
7DA4 0004

7DA6 0201 LI R1,M3

150

7DA8 7D96
7DAA 0202

7DAC 7D90
7DAE C120
70BO 7DSE
7DB2 04C3
7084 3CF1
70B6 0A83
7088 0223
70BA 3000
70BC DC83
70BE 0600
70CO 16F8
70C2 0A84
7DC4 0224
70C6 3000

J1

7DC8 DC84
70CA 0201
7DCC 2000
7DCE D481
7DD0 0200
70D2 3000
70D4 0203
70D6 7D90
70D8 9013 J2
7DDA 1602
7DDC DCCl
7DDE 10FC
7DEO 9053 J3
7DE2 1301
7DE4 1002
7DE6 0603 J4

LI R2,M2

MOV @M1,R4

CLR R3

DIV *R1+,R3
SLA R3,8

Al R3,>3000

MOVB R3,*R2+
DEC RO

JNE 01

SLA R4,8

Al R4,>3000

MOVB R4,*R2+
LI R1,>2000

MOVB R1,*R2
LI RO, >3000

LI R3,M2

CB *R3,R0
JNE J3

MOVB R1,*R3+
JMP J2

CB *R3,R1
JEQ J4

JMP J5

DEC R3

7DE8 DC40 MOVB RO,*R3
7DEA 0458 J5 B *R11
TDEC XXXX END

ASCII-DECIMAL STRING TO BINARY NUMBER

Program 12-12 converts a 5-character ASCII code for the
decimal number 12754 to its binary equivalent. This type of pro-
gram is used to convert decimal numbers that are entered via the
keyboard.

This program is a composite of Program 12-3 (ASCII to deci-
mal) and Program 12-5 (Binary-coded decimal to binary).

7DFE-7E1E converts the ASCII code 3132373534 to
0102070504 and stores the result at 7DF2-7DF7. Each time a digit
is converted, register 5 is incremented. Conversion stops when a
20 is encountered. Register 5 then contains the number of digits
processed and will be used as a loop counter in the next section
(7D20-7E3C), which converts the BCD to binary and stores the
result 31D2 at memory location 7DF8.

Program 12-12

7000 XXXX AORG>7DEC
7DEC 3132 M1 TEXT '12754 '
70EE 3735

7DF0 3420

7DF2 XXXX M2 BSS 6

7DF8 XXXX M3 BSS 2

7DFA 02E0 LWPI>70B8
7DFC 7088

7DFE 0200 LI RO,>2000
7E00 2000

7E02 0201 LI R1,>3000
7E04 3000

7E06 0202 LI R2,M2
7E08 7DF2

7EOA 0203 LI R3,MI
7EOC 7DEC

152

TEDE 04C4
7E10 04cC5
7E12 D133
7E14 9004
7E16 1304
7E18 7101
7E1A DC84
7EIC 0585
7EIE 10F9
7E20 0201
7E22 GOOA
7E24 0202

7E26 7DF2
7E28 04C3

7E2A 1002
7E2C 38C)
7E2E COC4
7E30 D132
7E32 0984
7E£34 AOC4
7E36 0605
7E38 16F9
7E3A €803
7E3C 70F8
TE3E 0458
TE4D XXXX

CLR R4
CLR RS

J1 MOVB *R3+,R4
C8 R4,RO
JEQ J2
SB R1,R4
MOVB R4,*R2+
INC RS
L)]

J2 LI R1,10

LI R2,M2

CLR R3
JMP J4
J3 MPY R1,R3
MOV R4,R3
J4 MOVB *R2+,R4
SRL R4,8
A R4,R3
DEC RS
JNE J3
MOV R3,EM3

B *R11
END

153

Chapter 13

= = @

] . ,
N -

Arithmetic Problems

In this chapter, I will discuss the following five arithmetic prob-
lems: 32-bit by 32-bit multiply, 64-bit division, Square root, Recip-
rocal of anumber, and Sine of an angle. In addition, the sine problem
is repeated in programs 13-6 and 13-7 in order to demonstrate
simple subroutine techniques using the BL and BLWP instruc-
tions.

—
o”—

32-BIT BY 32-BIT MULTIPLY

Program 13-1 multiplies the 32-bit number 002468AC times
the 32-bit number 03281088. The result is the 64-bit number
000072ECB8C25B60. The multiplication is accomplished by per-
forming a total of four 16-bit by 16-bit multiplications. Partial
products are added to form a final 64-bit product. Register and
memory usage is shown in Fig. 13-1.

The instructions at 7E5C-7ESE move the multiplier to regis-
ters 2 and 3, the most significant sixteen bits 0024 to register 2 and
the least significant sixteen bits 68AC to register 3.

The instructions at 7E60-7E62 move the multiplicand to reg-
isters 4 and 5, 0328 to register 4 and 1088 to register 5.

7E64 multiplies 68AC times 1088. 7E66 saves the least sig-
nificant sixteen bits 5B60 in register 7. 7E68 saves the most
significant sixteen bits 06C2 in memory location 7E48. See Fig.
13-1. You should be able to see that the contents of registers 5 and 6
must be saved. Register 5 will be overwritten in the next three

154

REGISTERS MEMORY

R4 |0328] Rs [1088]| 7E40
R2 [0024] R3 [68AC]| 7E42
R5 [06C2] Re [5B60] | 7E44

Ra [014A] Rs [5EE0] 7E46

Rs [0002] Re [5320] 7E48

R4 [0000] Rs [71A0] 7E4A
R4 RS |[72EC| Re |B8C2| R7 [5B60]| 7E4C
7E4E

Fig. 13-1. Register and memory usage of Program 13-1.

multiplications. Register 6 will be written over in the multiplication
at 7E76.

7E6A multiplies 68AC times 0328. 7E6C saves SEEQ in mem-
ory location 7E4A and the instruction at 7E6E saves 014A in
memory location 7E4C. The two previous multiplications have
wiped out the multiplicand. Therefore, the instructions at 7E70-
7E74 are necessary to restore the multiplicand 03281088 to regis-
ters 4 and 5.

7E76 multiplies 0024 times 1088. 7E78 saves 0002 in memory
location 7E4E. It is not necessary to save 5320 (the contents of
register 6) because the next multiplication will not write over this
number. See Fig. 13-1.

7E7A multiplies 0024 times 0328. This completes the genera-
tion of partial products.

The instructions at 7E7C-7E9E add the partial products. The
contents of memory locations 7E48 and 7E4A are added to the
contents of register 6. Register 8 is used to keep track of carries.
Then the contents of memory locations 7E4C and 7E4E are added to
the contents of register 5. Any carries in register 8 are also added.
Register 4 is incremented if any carries result.

The final 64-bit result is now contained in registers 4 through 7
as you can see in Fig. 13-1. The instructions at 7TEA0-7EAA move
the final number to memory locations 7E48-7E4E, overwriting
partial products previously generated.

155

After you run the program in EASY BUG, run the program
again using the multiplier A02468AC and the multiplicand
E328C088. This combination generates a carry in register 8 and a
carry which is added to register 4. The result should be
8E19C6F140B89B60.

E328 C088
A024 68AC
4EB8 9B60
5CE0 DEEO
7870 1320
8E18 F1A0
8E19 C6F1 40B8 9B60

Program 13-1

7D00 XXXX AORG >7E40
7E40 0024 M1 DATA>0024
7E42 68AC DATA>68AC
7644 0328 DATA>0328
7E46 1088 DATA>1088
7E48 XXXX M2 BSS 8
7ES0 02E0 LWPI>70B8

7E52 7088
7E54 0200 LI RO,M1
7E56 7E40
7E58 0201 LI R1,M2
7ESA 7E48

7ES5C COBO MOV *RO+,R2
7E5E COFO MOV *RO+,R3
7E60 C130 MOV *RO+,R4
7E62 C150 MOV *RO,R5
7E64 3943 MPY R3,R5
7E66 C1C6 MOV R6,R7
7E68 CC45 MOV RS,*Rl+
7E6A 3903 MPY R3,R4
7E6C CCA5 MOV RS,*Rl+

156

7EGE CC44 MOV R4,*Rl+
7E70 0640 DECT RO
7E72 C130 MOV *RO+,R4
7E74 C150 MOV *RO,RS
7E76 3942 MPY R2,R5
7E78 C445 MOV R5,*Rl
7JE7A 3302 MPY R2,R4
7E7C 0201 LI R1,M2
7E7E 7E48

7E80 04C8 CLR P8
7E82 AIBl A *R1+,R6
7E84 1701 JNC J1
7E86 0588 INC RS
7E88 A1B1 J1 A *R1+,R6
7E8A 1701 JNC J2
7ESC 0588 INC RS
7EBE A171 J2 A *R1+,RS
7E90 1701 JNC J3
7E92 0584 INC R4
7E94 AL71 J3 A *R1+,R5
7E96 1701 JNC J4
7E98 0584 INC R4
7E9A A148 J4 A R8,R5
7E9C 1701 JNC J5
7E9E 0584 INC R4
7EAD 0201 J5 LI R1,M2
7EA2 7E48

7EA4 CCA4 MOV R4,*R1+
7EA6 CCA5 MOV RS5,*Rl+
7EAS CCA6 MOV R6,*Rl+
TEPA C347 MOV R7,*Rl
7EAC 0458 B *R1l

TEAE XXXX END

167

64-BIT DIVISION

Program 13-2 divides the 32-bit number A02468AC into the
64-bit number 8E19C6F140B89B60 to get the 32-bit quotient
E328C088 and a remainder of zero. The problem and solution in

hexadecimal notation and standard division representation looks
like this:

E328 C088

A024 68AC /8E19 C6F1 40B8 9B60
8E19 48E0 DEEOQ

7870 61D8 9B60

7870 61D8 9B60

0000 0000

Let’s look at Program 13-2 line-by-line to see how this is
accomplished. 7EC6 loads the number 2 into register 12, which will
be used as a loop counter. The loop 7EE4-7F16 is executed twice,
once to determine the sixteen most significant bits of the 32-bit
quotient and once to determine the sixteen least significant bits of
the 32-bit quotient.

7ECA loads the address 7EBA into register 13. 7EBA is the
address at the first memory location in an 8-byte block used to store
the 32-bit quotient and 32-bit remainder.

7ECE loads the dividend address 7EAE into register 0. 7DD2
loads the divisor address 7EB6 into register 1. TED6-7ED8 loads
8E19C6F1 into the register 2-3 combination. 7EDA-7EDE loads
8E19C6F140BS8 into the register 4-5-6 combination. 7EE0 loads
A024 into register 7.

I am now ready to perform a trial division. I will divide A024
into 8E19C6F1 and get a trial quotient. Then I will multiply the trial
quotient times the entire divisor A02468AC to get a 48-bit result
which I will compare with 8E19C6F140B8, which was stored in the
register 4-5-6 combination. If the 48-bit product is smaller than
8E19C6F140B8, then I will subtract that 48-bit product from
8E19C6F140B8. If the 48-bit product is larger than
8E19C6F140B8, then I must decrement the trial quotient by one
and multiply it times the divisor A02468AC again. The new 48-bit
product will be compared with SE19C6F140B8. If smaller (which it
should be at this point), then the 48-bit product is subtracted from
8E19C6F140B8. The difference is combined with 9B60 (the last
sixteen bits of the 64-bit dividend) to form the next dividend to be
divided into.

158

Let’s see what actually occurs. 7EE2 divides A024 into
8E19C6F1.

E329
A024 /8E19C6F1

I don’t care what the remainder is. E329 is the trial quotient.
7EE4 loads 68AC into register 9. 7EE6-7EEE multiplies E329
times A02468AC and adds the partial products to get
8E19EEA5478C which is contained in the register 7-8-10 combina-
tion.

R7 R9 [68AC

R2
R9 R10[478d]

R7 [BEI9] Rs
R7

7EF0-7EFE compares 8E19C6F140B8 (the first forty-eight
bits of our 64-bit dividend) to 8E19CEEA5478C sixteen bits at a
time. 8E19 (register 4) is compared to 8E19 (register 7). If the
number in register 4 had been lower than the number in register 7,
then the comparison process would have stopped. The program
would go to the next step, which is to subtract the 48-bit product
(generated by 7EE6-7EEE) from 8E19C6F140B8. If the number in
register 4 had been higher than register 7, then the trial quotient is
too high. The program would jump to 7F00-7F08 which decrements
the trial quotient, restores register 7 (register 9 is restored at the
first instruction in the loop), and causes the program to jump to the
beginning of the loop (7EE4).

Since however, the number in register 4 equals the number in
register 7, the next sixteen bits are compared. C6F1 (register 5) is
compared to EEA5 (register 8). C6F1 is lower. Therefore, the
program jumps to 7F00. 7F00 decrements the trial quotient from
E329 to E328. 7F02-7F04 restores A024 to register 7. 7F08 causes
the program to jump to 7EE4.

7EE6-7EEE now multiplies E328 times A02468AC to get
8E1948E0DEE(. 7EF(0-7EEE compares 8E19C6F140B8 to
8E1948E0DEEO sixteen bits at a time. 8E19 equals 8E19. But now
C6F1 is higher than the number to which it is compared—48E0.
Therefore, the program jumps 7F0A. 7F0A saves E328 in memory
location 7EBA.

159

7F0C subtracts DEEO from 40B8. A borrow occurs and C6F1
is decremented to C6F0. 7F12 subtracts 48E0 from C6F0.

8E19 C6F1 40B8
8E19 48E0_ DEEO

7870 61D8
The problem and partial solution are as follows:
E328

A024 68AC /SE19 C6F1 40B8 9B60
8E19 48E0 DEE0
— 7870 61D8 9B60

7F14 decrements the loop counter. Since it is not zero yet, the
program executes instructions 7F18-7F2A, which prepare the reg-
isters for the next pass through the loop.

7F18-7F1A loads 787061D8 into the register 2-3 combination.
7F1C-7F20 loads 787061D89B60 into the register 4-5-6 combina-
tion. 7F26 performs the trial division to get the next quotient, the
least sixteen significant bits of the final 32-bit quotient.

7F28 causes the program to jump to 7EE4, the beginning of the
loop. The second time through the loop the second half of the
quotient is generated—C088. 7F0A stores C088 at memory loca-
tion 7TEBC. 7F14 decrements the loop counter. Since it is now equal
to zero, the program jumps to 7F2C.

7F2C-7F2E moves the remainder to memory locations
7EBE-7ECO0. The remainder is zero. To get a nonzero remainder,
divide A02468AC into SE19C6F15AB99BAF. The remainder will
be 1A01004F. The quotient will be the same—E328C088.

Program 13-2

7000 XXXX AORG>7EAE
7EAE 8E19 M1 DATA>S8E19
TEBO C6F1 DATA>C6F1
7EB2 40B8 DATA>40BS
7EB4 9B60 DATA>9B60
7EB6 A024 M2 DATA>RA024
7EB8 68AC DATA>68AC
7EBA XXXX M3 BSS 8

7EC2 02E0 LWPI>70B8
7EC4 70B8

160

7EC6 020C
7EC8 0002
7ECA 020D
7ECC 7EBA
7ECE 0200
JEDO 7EAE
7ED2 0201
7ED4 7EB6
7EDS COBO
7ED8 COFO
7EDA C102
7EDC C143
7EDE C1BO
7EEO C1F1

7EE2 3C87
7EE4 C251 J1

7EE6 3A42
JEE8 39C2
TEEA A209
7EEC 1701
7EEE 0587
TEFO 81C4 J2
TEF2 1A06
7EF4 1BOA
TEF6 8205
7EF8 1A03
7EFA 1B07
7EFC 8286
7EFE 1405
7F00 0602 J3
7F02 0201
7F04 7EB6
7F06 C1F1

LI R12,2

LI R13,M3

LI RO,M1

LI R1,M2

MOV *RO+,R2
MOV *R0+,R3
MOV R2,R4
MOV R3,RS
MOV *RO+,R6
MOV *R1+,R7

DIV R7,R2
MOV *R1,R9

MPY R2,R9
MPY R2,R7
A R9,R8
JINC J2
INC R7

C R4,R7
JL J3

JH J4

C R5,R8
JL J3

JH J4

C R6,R10
JHE J4
DEC R2

LI R1,M2

MOV *R1+,R7

161

7F08 10ED
7FOA CF42 J4
7FOC 618A
7FOE 1801
7F10 0605
7F12 6148 J5
7F14 060C
7F16 130A

7F18 €085
7F1A COC6
7F1C C105
7F1E C146
7F20 C190
7F22 0201
7F24 7EB6
7F26 C1F1
7F28 3C87
7F2A 10DC

JMP J1

MOV R2,*R13+
S R10,R6
Joc J5

DEC RS

S R8,R5
DEC R12
JEQ J6

MOV RS,R2
MOV R6,R3
MOV RS,R4
MOV R6,R5
MOV *RO,R6
LI RO,M2

MOV *R1+,R7
DIV R7,R2
JMP J1

7F2C CF45 J6 MOV R5,*R13+

7F2E C746 MOV R6,*R13
7F30 0458 B *Rll
7F32 XXXX END
SQUARE ROOT

Program 13-3 takes the square root of the unsigned number
10,000 (2710 hexadecimal), using a successive approximation

method.

The first approximation is equal to the number (10, OOQ) di-

vided by 200, plus 2:

The second and succeeding approximations are as follows:

2nd approx. = ((10,000/52) + 52)/2 = (192 + 52)/2 = 122

162

1st approx. = (10,000/200) + 2 = 52

3rd approx. = ((10,000/122) + 122)/2 = (81 + 122)/2 = 101
4th approx. = ((10,000/101) + 101)/2 = (99 + 101)/2 = 100
5th approx. = ((10,000/100) + 100)/2 = (100 + 100)/2 = 100

In this case, the fourth approximation is the correct number. A
program to implement the above process can go on indefinitely
unless some criteria for ending the program is devised. One way is
to stop the program when two successive approximations are equal.
This will work for numbers with integer square roots only. It would
not work, for example, if the number to be processed was 10,003.

A second method is to stop the program when two successive
approximations are within plus or minus one. Program 13-3 uses a
combination of both methods.

7F3A loads the number 200 into register 0. 7F3E clears regis-
ter 1. The register 1-2 combination is used for the 32-bit dividend
which varies as the program is executed. The initial dividend is
10,000. 7F40 moves the number 10,000 (the candidate number) to
register 2. 7F44 divides 200 into 10,000 to get 50. 7F46 adds 2 to 50
to get 52, the first approximation. 7F48 saves 52 in register 3.
7F4A-TF4C loads 10,000 into the register 1-2 combination again.
7F50 divides 52 into 10,000 to get 192. 7F52 adds 52 to 192 to get
244,

7F54 divides 244 by 2 to get 122, the second approximation.
(Recall that a one-bit left shift is equivalent to division by 2.) 7F56
compares 52 to 192. If they were equal, the program would jump to
7F68 which saves the result in memory location 7F34. 7F5A sub-
tracts 192 from 52 to get —140. 7F4C compares —140to 1. If equal,
the program jumps to 7F68. 7F62 compares —140 to —1. If not
equal, the program jumps to 7F48 to derive the next approximation.

The next approximation is 101. The one after that is 100. The
program ends.

Program 13-3

7000 XXXX AORG >7F32
7F32 2710 M1 DATA 10000
7F34 XXXX M2 BSS 2
7F36 02E0 LWPI >70B8
7F38 7088

7F3A 0200 LI R0,200
7F3C 00C8

163

JF3E 04C1 CLR Rl
7F40 COAO0 MOV @M1,R2
TF42 7F32

7F44 3C40 DIV RO,R1
7F46 05C1 INCT R1
7F48 COC1 J1 MOV R1,R3
7F4A 04C1 CLRR1
7FAC COAO MOV @M1,R2
TF4E 7F32

7F50 3C43 DIV R3,R1
7F52 A043 A R3,R1
7F54 0911 SRL R1,1
7F56 8043 C R3,R1
7F58 1307 JEQ J2
7FS5A 60C1 S R1,R3
7F5C 0283 CI R3,1
7FSE 0001

7F60 1303 JEQ J2
7F62 0283 CI R3,-1
7F64 FFFF

7F66 16FO JNE J1
7F68 €801 J2 MOV R1,@M2
TF6A 7F34

7F6C 0458 B *R1l1
7F6E XXXX END
RECIPROCAL OF A NUMBER

Up to this point, I have been working with integers, or num-
bers with no fractional components. Now you will see how the
computer handles fractions. The purpose of Program 13-4 is to take
the reciprocal of the number 20. The reciprocal of 20 is 1/20 or 0.05
decimal. In binary, the fraction 0.05 may be expressed as

164

.0000110011001100

Each bit position to the right of the decimal point has a place
value. The place value of bit 0 (the first bit to the right of the decimal
point) is % or .5. The place value of bit 1 is % or .25. Each
succeeding bit position has half the value of the preceding bit
position. The place values of bits 0-15 are given in Table 13-1.

Using Table 13-1, I can compute the binary equivalent of 1/20
to sixteen bits. For each 1 in the above expression, I look up the
corresponding place value in Table 13-1 and compute the sum:

Bit 4 =.3125

Bit 5 =.015625

Bit 8 =.001953125

Bit 9 =.0009765625

Bit 12 =.0001220703125
Bit 13 = .00006103515625
Total = .04998779296875

Not exactly 0.05. One way to achieve more accuracy is to
extend the number of places from sixteen to thirty-two bits. How-
ever, even more bits will be required to accurately express the
reciprocal of a large number simply because the first several bits
following the decimal point will be zeros. (In the case of the above
example, there are only four zeros before we get to the first bit
position with a one in it.)

The solution to this problem is to use scientific notation. For
example, the decimal number 0.00001234 may be expressed as a
number times a power of ten:

Bit Position Place Value

5
25
125
.0625
.03125
.0165625

0078125
.00390625
001953125
.0009765625
.00048828125
1" .000244140625
0001220703125
.00006103515625
-.000030517578125
.0000152587890625

Table 13-1. Place
Values for Binary Fractions.

-t
COONOMHLWN -0

T QT Y
GawN

165

1.234 x 1075, or
1234 % 1078, or
0.1234 x 10™*

In the same way, binary numbers may be expressed as a
number times a power of two. The decimal number 0.05 in a binary
may be expressed as

.CCCCCCCC x 2FFFe

In this form, three words of memory are required to store the
number—two words for the fraction and one word for the exponent,
which is stored as a signed number (FFFC equals —4). It is not
necessary to store the decimal point (or binary point, to be precise),
the multiplication sign, or the number 2.

The greatest accuracy for a fixed number of bits (32 in this
case) is achieved when the number is expressed as the largest
possible fraction times a power of two. For example, the number
1/20 expressed as a binary 32-bit fraction

.00001100110011001100110011001100

This pattern of bits continues infinitely. Shifting the decimal
point four positions to the right allows room in the 32-bit fraction for
four more bits. The 4-bit shift right is equivalent to multiplying by
2¢. To keep the number the same value the shifted fraction must be
multiplied by 274,

.11001100110011001100110011001100 x 211111110 - op
.CCCCCCCC x 2FFFC hexadecimal

This is the result generated by Program 13-4. Let’s look at this
program line-by-line to see how this is accomplished. 7DOC loads
the candidate number, 20, into register 0. 7D10 loads the number 1,
the number to be divided into, into register 1. 7D14-7D16 clears
registers 3 and 4, which will be used as a temporary storage for the
32-bit fraction as it is derived. 7D18 sets register 5 equal to 16, the
initial value of the exponent. Thus the initial value of the result is
.00000000 x 2% hexadecimal. The exponent will be decremented
during the J1 loop based on the results of successive division
operations. This will be explained shortly.

7D1C loads the number 16 into register 7, which will be used

166

as a loop counter by the J2 loop. The J2 loop determines the value of
the last sixteen bits of the fraction. 7D20 loads the address where
the final results will be stored.

The J1 loop (7D24-7D32) determines the value of the first
sixteen bits of the fraction and the value of the exponent. 7D24
clears register 1, the first sixteen bits of the dividend. 7D26 divides
0014 into 00000001 (20 into 1, decimal) on the first pass. The
quotient is zero, and the remainder is 0001. This is to be expected.
20 won't go into 1 a whole number of times.

For the moment, let’s skip over the instructions at 7D28-
7D2C. These instructions don’t affect the results yet. 7D28 adds
zero to zero, no jump occurs at 7D2A, and 7D2C shifts a zero value
by one.

The next step is to multiply the remainder times 2 and try to
divide 20 into 2. This is fair as long as the remainder is divided by 2,
which can be done by decrementing the exponent value in register
5. The result so far is

.00000000 x 2%°F

The second time through the J1 loop 0014 is divided into
00000002. The quotient is again zero. The remainder is 0002.
Therefore, multiply by 2 and decrement the exponent. The result is

.00000000 x 2%0E

The third time through the J1 loop 0014 is divided into
00000004. The quotient is again zero. The remainder is 0004.
Therefore, multiply by 2 and decrement the exponent. The result is

.00000000 x 2%

The fourth time through the J1 loop 0014 is divided into
00000008. The quotient is again zero. The remainder is 0008.
Therefore multiply by 2 and decrement the exponent. The result is

.00000000 x 2%0¢

The fifth time through the J1 loop 0014 is divided into
00000010. The quotient is again zero. The remainder is 0010.
Therefore multiply by 2 and decrement the exponent. The result is
as follows:

167

.00000000 x 2%B

The sixth time through the J1 loop, 0014 is divided into
00000020. The quotient is 0001 and the remainder is 000C. The
result is:

.00010000 x 20%B or
.0000152587890625 x 2'* =.03125

To get more bits of accuracy, the division process must con-
tinue. I already know that 0014 won't divide into the remainder
000C. Therefore, I must multiply it by 2. (I have been doing this in
the previous iterations, but the result was always zero.)

Now let’s look at the instructions at 7D28-7D2C. 7D28 adds
the quotient to register 3. Before I divide into the remainder I must
add the quotient computed by 7D26 to previous results. 7D2A tests
the quotient in register 3 to see if there is a 1 in bit position 0, the
first bit position to the right of the decimal point. 7D2C multiplies
the quotient in register 3 by 2. Each time through the J1 loop, the
quotient in register 3 is multiplied by 2, the remainder is multiplied
by 2 and the exponent is decremented. This process will continue
until a 1 occurs in bit position 0. When this occurs, the largest
possible 16-bit fraction has been computed. Then the J1 loop is
exited, and the J2 loop is entered. The J2 loop will determine the
last sixteen bits of the fraction.

Let’s go through the J1 loop a few more times to see how the
reciprocal is built bit-by-bit. To repeat, the sixth time through the
J11oop, 0014 is divided into 00000020. The quotient is 0001 and the
remainder is 000C. The result after the instruction at 7D28 is
executed as:

.00010000 x 2°*®

7D2A tests to see if a 1 is in bit position 0. There is not,
therefore 7D2C-7D2E multiplies the quotient in register 3 and the
remainder in register 2 by 2 and decrements the exponent. The
result is:

.00020000 x 2%°A

Note that the value of the quotient has not changed, only the form.
The seventh time through the J1 loop, 0014 is divided into
00000018 (0000000C times 2). The quotient is 0001 and the re-

168

mainder is 0004. 0001 is added to 0002 in register 3. The reciprocal
value so far is:

.00030000 x 2°A or
.0000457763671875 x 2'° = .046875

The J1 loop is repeated until the result is:
.CCCCO0000 x 2FFFC = 04999924

The J2 loop determines the last sixteen bits in a similar man-
ner. Register 4 is used instead of register 3. The exponent was
determined and, therefore, is not changed. Register 6 keeps track
of the number of bits which remain to be determined.

7D44-7D48 moves the result to memory.

Program 13-4

7000 0014 M1 DATA 20
7002 XXXX M2 BSS 6
7008 02E0 LWPI 17088

700A 7088

700C C020 MOV @M1,RO
7D0E 7D00

7010 0202 LI R2,1
7D12 0001

7D14 04C3 CLR R3
7D16 04C4 CLR R4
7D18 0205 LI RS,16

7D1A 0010
7D1C 0206 LI R6,16
7D1E 0010
7020 0207 LI R7,M2
7022 7002

7D24 04C1 J1 CLR R1
7026 3C40 DIV RO,R1
7028 AOC1 A R1,R3
7D2A 1104 JLT J2

169

702C 0A13 SLA R3,l
7D2E OA12 SLA R2,1
7D30 0605 DEC RS
7032 10F8 JMP J1
7D34 0A12 J2 SLA R2,1

7036 04C1 CLR Rl

7038 3C40 DIV RO,R1
703A A101 A R1,R4
703C 0606 DEC R6
7D3E 1302 JEQ J3
7D40 0A14 SLA R4,1
7D42 10F8 JMP J2
7D44 CDC3 J3 MOV R3,*R7+
7046 CDC4 MOV R4,*R7+
7D48 C5C5 MOV RS,*R7
7D4A 0458 B *R11

7D4C XXXX END

SINE OF AN ANGLE

Program 13-5 finds the sine of an angle between 0 and 360
degrees. It does this by looking up the value in a table. Memory
locations 7D4C-7E00 contain the sine values for angles 0 through
90. The numbers are stored as integers in order to save memory.
For example, the sine of 1 degree is 0.0175. The hex equivalent for
175 is stored at 7D4E. To get the actual value, I divide by 10,000.
This is done after the sine value is looked up.

Note that it is only necessary to store values of angles 0
through 90. The sine of an angle between 91 and 180 is determined
by subtracting the angle from 180 and then looking up the value in
the 0-90 table. The sine of 91 exactly equals the sine of 89.

The sines of angles between 181 and 270 are equivalent to the
sines of 0-90 except that the sign is negative. The sines of angles
271-360 are equivalent to the sines of 91-180 except that the sign is
negative.

Memory location 7E02 contains the number of the angle for
which I want to find the sine. This number must be between 0 and

170

360 degrees. The example number is 45, or 002D in hex. Memory
locations 7E04-7E0QA are reserved for the result. 7E04 will contain
the sign, 0000 for positive sine values, 0001 for negative sine
values. 7E06-7E08 will contain the binary fraction. 7EOA will con-
tain the value of the exponent.

The program has two main parts. 7E10-7E38 looks up the
integer value in memory. 7E3A-7E70 divides the integer by 10,000
and stores the result in memory. The second part is identical to
Program 13-5 (Reciprocal of a number) except that in Program 13-5
the dividend is a constant and the divisor is a variable. In Program
13-6 the divisor is a constant and the dividend is the variable. The
loop up procedure begins at 7E1C. 7E1C clears register 3, which is
temporarily used to store the sign of the sine. A positive sign is
assumed until determined otherwise.

7E22 compares the angle value with 180. If greater than 180,
then register 3 is incremented to 1 and 180 is subtracted from the
angle. If the angle is less than 180, then the program jumps to 7E2A.
7TE2A stores the sign in memory.

7E2C compares the angle with 90. If greater than 90, then the
angle value is subtracted from 180. 7E32 moves the difference back
to register 4. This is necessary because the subtraction instruction
stores the result in register 1. The subtraction may or may not
occur, depending on the value of the angle. If the subtraction is
bypassed, then the angle is in register 4. If the subtraction is carried
out, then the result must be moved to register 4.

7E34 doubles the value of the angle. This is necessary because
indexed addressing is used to look up the sine and because each sine
value (16-bit integer form) uses two bytes of memory.

7E36 moves the integer sine value to register 2. The sine of 45
is.7071. Thus, 1B9F (hex for 7071) is moved from 7DAO to register
2. TE3A-7E70 divides 1B9F by 2710 (10,000 decimal) to get

.B504816F x 2%

or just . B504816F since 2"equals 1. Of course, the decimal point,
the times sign, and the 2 are not stored in memory. The sign is
0000, stored in memory earlier in the program.

Program 13-5

7000 XXXX AORG >7D4C

7D4C 0000 M1 DATA 0,175,349,523,698,872
7D4E OOAF

171

7050 015D
7D52 0208
7D54 02BA
7056 0368
7D58 0415
7DSA 04C3
7D5C 0570
7DSE 061C
7060 06C8
7062 0774
7D64 081F
7D66 08CA
7068 0973
7D6A 0A1C
706C 0AC4
7D6E 0B6C
7070 oC12
7072 0CB8
7D74 0D5C
7D76 OEQO
7078 OEA2
7D7A OF43
7D7C OFE3
707E 1082
7080 1120
7082 11BC
7084 1257
7D86 12F0
7D88 1388
7D8A 141E
708C 14B3
7D8E 1546
7090 1508

172

DATA 1045,1219,1392,1564,1736

DATA 1908,2079,2250,2419,2588

DATA 2756,2924,3090,3256,3420

DATA 3584,3746,3907,4067,4226

DATA 4384,4540,4695,4848,5000

DATA 5150,5299,5446,5592,5736

7092 1668
7094 16F6
7096 1782
7098 180D
7D9A 1895
7D9C 191C
7D9E 19A1
7DA0 1A23
7DA2 1AA4
7DA4 1B23
7DA6 1B9F
7DA8 1C19
7DAA 1C91
7DAC 1D07
7DAE 1D78

70B0 1DEC
7DB2 1ESB

70B4 1EC8
7DB6 1F32
7088 1F9A
7DBA 1FFF
70BC 2062
70BE 20C3
7DCO 2120
70DC2 217C
7DC4 2104
7DC6 222A
7DC8 227D
7DCA 22CE
7DCC 231C
7DCE 2367
7DDO 23AF

DATA 5878,6018,6157,6293,6428

DATA 6561,6691,6820,6947,7071

DATA 7193,7313,7431,7547,7660

DATA 7771,7880,7986,8090,8191

DATA 8290,8387,8480,8572,8660

DATA 8746,8829,8910,8988,9063

DATA 9135,9205,9272,9336,9397

173

70D2 23F5
7DD4 2438
7DD6 2478
7DD8 24B5
7DDA 24EF DATA 9455,9511,9563,9613,9659
70DC 2527
7DDE 255B
7DE0 258D
7DE2 25BB

7DE4 25E7 DATA 9703,9744,9781,9816,9848
7DE6 2610

7DE8 2635

7DEA 2658

7DEC 2678

7DEE 2695 DATA 9877,9903,9926,9945,9962
7DF0 26AF

7DF2 26C6

7DF4 2609

7DF6 26EA

70F8 26F8 DATA 9976,9986,9994,9998,10000
7DFA 2702

7DFC 270A

7DFE 270E

7E00 2710

7E02 002D M2 DATA 45

7E04 XXXX M3 BSS 8

7E0C 02E0 LWPI >70B8

7EOE 70B8
7E10 C120 MOV @M2,R4
7E12 7E02
7E14 0201 LI R1,180
7E16 00B4

174

7E18 0202 LI R2,90
7E1A 00SA

7EIC 04C3 CLR R3
7E1E 0207 LI R7,M3
7E20 7E04

7E22 8044 C R4,R1
7E24 1202 JLE J1
7E26 0583 INC R3
7E28 6101 S R1,R4
7E2A CDC3 J1 MOV R3,*R7+
7E2C 8084 C R4,R2
7E2E 1202 JLE J2
7E30 6044 S R4,R1
7E32 C101 MOV R1,R4
7E34 0A14 J2 SLA R4,1
7E36 COA4 MOV @M1(R4),R2
7E38 7DAC

7E3A 0200 LI RO,10000
7E3C 2710

7ESE 04C3 CLR R3
7E40 04C4 CLR R4
7E42 0205 LI R5,16
JE44 0010

7€46 0206 LI R6,16
7E48 0010

7E4A 04C1 J3 CLR R1
7E4C 3C40 DIV RO,R1
JE4E AOC1 A R1,R3
7ES0 1104 JLT J4
7ES2 0A13 SLA R3,1
7E54 0A12 SLA R2,1
TES6 0605 DEC RS

175

7E58 10F8 JMP J3
7ESA OA12 J4 SLA R2,1
7E5C 04C1 CLR R1

7ESE 3C40 DIV RO,R1
7E60 A101 A R1,R4
7E62 0606 DEC R6

7E64 1302 JEQ J5
7E66 OAl4 SLA R4,1
7E68 10F8 JMP J4

7E6A CDC3 J5 MOV R3,*R7+
7E6C CDC4 MOV R4,*R7+
7EGE C5C5 MOV R5,*R7
7E70 0458 B *R1l

7E72 XXXX END

Branch and Link

Program 13-6 performs the same function as Program 13-5
except that Program 13-6 uses the BL (Branch and Link) instruc-
tion.

The code at 7E3E-7E70 of Program 13-5 is used as a sub-
routine of Program 13-6. This code performs a generalized function
(integer division with results in sign plus fraction plus exponent, or
so-called floating point format) and, hence, is an excellent candidate
for a subroutine.

The BL instruction is one of three instructions used to call
subroutines: BL, branch and link, BLWP, branch and load work-
space pointer, and XOP, extended operation. The BL is the
simplest subroutine call. In Program 13-6, the instruction at 7EA6
branches to address M4 (7E3E) and saves the old program counter
(PC) value (7TEAA) in register 11.

Looking at Program 13-5, you can see that the instruction at
7E70 will cause the program to branch back to 7EAA. It is very
important to note that before executing a BL instruction that the
current contents of register 11 must be saved. Also, after executing
the subroutine, the old contents of register 11 must be restored. In
Program 13-6 this is done by the instructions at 7TEA4 and 7EAA. If]
was going to execute Program 13-6 once and once only, then
instruction at 7EAA would not be necessary and I could end the

176

program with a B *R10 instruction.

Recall that the assembler puts the address 609C in the Users’
Workspace (WP = 70B8) register 11 for us. Assume that I did not
restore the old PC value to register 11 and instead put B *R10 at
TEAA. Then, after executing Program 13-6 from EASY BUG, ad-
dress 609C would be in register 10, and 7TEAA would be in register
11. The program would continue to execute 7EAA forever because
TEAA branches to the address in register 10—which is 7EAA!
(Guess how I learned this?)

Program 13-6

7000 XXXX AORG D7E72
7E72 XXXX M1 EQU >7D4C
7E72 XXXX M2 EQU >7E02
7E72 XXXX M3 EQU >7E04
7E72 XXXX M4 EQU >7E3E
7E72 02E0 LWPI >70B8
7E74 7088

7E76 C120 MOV @M2,R4
7E78 7E02

7E7A 0201 LI R1,180
7E7C 0084

7E7E 0202 LI R2,90
7E80 005A

7E82 04C3 CLR R3
7E84 0207 LI R7,M3
7E86 7E04

7E88 8044 C R4,R1
7E8A 1202 JLE J1
7ESC 0583 INC R3.
7EBE 6101 S R1,R4
7E90 CDC3 J1 MOV R3,*R7+
7E92 8084 C R4,R2
7E94 1202 JLE J2
7E96 6044 S R4,P1

177

7E98 C101 MOV R1,R4
7E9A 0A14 J2 SLA R4,1
7E9C COA4 MOV GM1(R4),R2
7ESE 704C

7EA0 0200 LI RO,10000
7EA2 2710

7EA4 C288 MOV R11,R10
7EA6 06A0 BL €M4
7EA8 7E3E

7EAA C2CA MOV R10,R11
7EAC 0458 B *Rll
JEAE XXXX END

Branch and Load Workspace Pointer

Program 13-7 performs the sine look-up again, but this time
using the BLWP subroutine call. In order to use BLWP, two things
are necessary. First, the subroutine’s WP and PC values must be
stored somewhere in memory. 7EAE is used for the WP value
(7092, the Utility Workspace), and 7EBO is used for the PC value
(7EB2), which is the starting address of the subroutine.

Second, the subroutine code needs to be modified (and, hence,
rewritten and relocated) so that I can tell the subroutine the values
of the divisor, the dividend, and the address where the result is to
be stored. This is called parameter passing. This is not necessary
when using the BL instruction which uses the same workspace
(unless explicitly changed; then you will probably want to use
BLWP).

The BLWP instruction saves the old WP, PC and ST (status)
values in register 13, 14, 15, respectively. The instruction at 7TEB2
moves the old RO value to the new workspace R0. 7EB4 uses
indexed addressing to move the old R2 value to the new workspace
R2. The number 4 is added to 70B8 (stored in register 13) to get the
memory address of the old workspace R2 because each register
uses 2 bytes of memory. 7EB8 moves the old workspace R7 value
(address 70B8 plus 000E) to the new workspace R7. It just so
happens (for simplicity) that the register numbers stayed the same,
but this is not necessary.

Also note that the subroutine ends with a RTWP (Return with

178

Workspace Pointer) instruction.

The third subroutine instruction, XOP, is not demonstrated in
this book because the XOP WP and PC values are not stored in
RAM. ROM addresses 0040-007E are designed for the XOP WP
and PC values, or XOP software trap vectors, as TI calls them.
Unless you plan to develop a microprocessor-based machine (both
hardware and software), it is not necessary for you to learn how to
use the XOP instruction.

Program 13-7

7000 XXXX

AORG >7EAE

TEAE XXXX M1 EQU >7D4C
7EAE XXXX M2 EOU >7E02
7EAE XXXX M3 EQU>7E04
TEAE 7092 M4 DATA>7092

7EBO 7EB2
7EB2 CO1D
7EB4 COAD
7EB6 0004
7EB8 C1ED
7EBA 000E
7EBC 04C3
7EBE 04C4
7ECO 0205
7EC2 0010
7EC4 0206
7EC6 0010

DATA >7EB2
MOV *R13,R0
MOV @4(R13),R2

MOV @14(R13),R7
CLR R3
CLR R4

LI R5,16

LI R6,16

7EC8 04C1 J3 CLR R1

7ECA 3C40
JECC AOC1
7ECE 1104
7EDO 0A13
7ED2 0A12
7ED4 0605
7ED6 10F8

DIV RO,R1
A R1,R3
JLT J4
SLA R3,1
SLA R2,1
DEC RS
JMP J3

179

7ED8 0A12 J4 SLA R2,1
TEDA 04C1 CLRR1
7EDC 3C40 DIV RO,R1
7EDE A101 A R1,R4
7EEO 0606 DEC R6
7EE2 1302 JEQ J5
7EE4 0A14 SLA R4,1
7EE6 10F8 JMP J4
7EE8 CDC3 J5 MOV R3,*R7+
7EEA CDC4 MOV R4,*R7+
JEEC C5C5 MOV R5,*R7
7EEE 0380 RTWP

7EFO 02E0 LWPI >70B8
7EF2 7088

7EF4 C120 MOV @M2,R4
7EF6 TE02

7EF8 0201 LI R1,180
7EFA 00B4

7EFC 0202 LI R2,90
TEFE G05A

7F00 04C3 CLR R3
7F02 0207 LI R7,M3
7F04 7E04

7F06 8044 C R4,R1
7F08 1202 JLE J1
7FOA 0583 INC R3
7FOC 6101 S R1,R4
7FOE CDC3 J1 MOV R3,*R7+
7F10 8084 C R4,R2
7F12 1202 JLE J2
7F14 6044 S R4,R1
7F16 C101 MOV R1,R4

180

7F18 0A14 J2 SLA R4,1

7F1A COA4
TF1C 7D4C
TF1E 0200
7F20 2710
7F22 0420
7F24 JEAE
7F26 0458
7F28 XXXX

MOV @M1(R4),R2

LI R0,10000

BLWP @Ma

B *R11
END

181

Chapter 14

= =
= A
Using the System Utilities

The primary aim of the preceding chapters was to teach you
through the use of examples how to write assembly-language pro-
grams on the TI-99/4A. Not all of the 69 instructions were illus-
trated, but at this point you should be able to write programs in 9300
assembly language and be able to learn the remaining instructions
(when needed) as well as read and understand both the Mini Memory
Owner's Manual (which comes with the command module) and the
Editor/Assembler Manual (which you may purchase directly from
Texas Instruments).

The aim of this chapter is to show you how to use the utilities
(built-in subroutines) described in pages 34-50 of the Mini Memory
Owner's Manual. Seven programs will be listed and discussed.
Program 14-1 will illustrate the VDP Single Byte Write routine
which is accessed by the instruction BLWP@>6024. (Note that the
Mini Memory Owners Manual uses the 4-character mnemonic
VSBW for the memory address 6024 and other 4-character
mnemonics for other memory addresses. When using the Line-by-
Line Assembler, however, you are restricted to using either 2-
character address mnemonics or explicitly using the 4-digit
hexadecimal address.)

Program 14-2 will illustrate the VDP Multiple Byte Write
routine which is accessed by the instruction BLWP@>6028. Pro-
gram 14-3 will use both of the above routines and show you how to
generate a cursor. Program 14-4 will illustrate the Keyboard Scan

182

routine which is accessed by the instruction BLWP@>6020. Pro-
gram 14-5 will show you how to access ROM-resident routines, the
so-called XML routines, using the BLWP@>601C instruction.
Program 14-6 will show you how to access GROM-resident
routines (the so-called graphics programming language routines, or
GPL Routines) using the BLWP@>6018 instruction. This program
will also show you how to name your program and execute it from
the Mini Memory RUN option. Program 14-7, will show you how to
change the screen color using the VDP Write to Register routine,
accessed by the instruction BLWP@>6034.

CLEARING THE SCREEN

Program 14-1 shows you how to clear the screen using the
VDP Single Byte Write (VSBW) routine. Clearing the screen is
such a common operation that I decided to make this program into a
subroutine and use it in the programs that follow.

Memory locations 7D00 and 7D02 contain the subroutine
workspace pointer and program counter values. The 32-byte mem-
ory block starting at 7FDO is used as a workspace when executing
the subroutine and address 7D04 is the address of the first instruc-
tion in the subroutine. The subroutine at 7D04-7D16 is called by the
main program at 7D18 which consists of three instructions: load
workspace pointer, call subroutine, and branch back to EASY BUG.

Note that the VSBW subroutine is called by the subroutine
which clears the screen. This is called nesting. The only limitation
on the number of nesting levels is the amount of RAM available for
workspaces. In order to use the VSBW routine, I must place a VDP
RAM address in register 0 and the 8-bit data in the upper byte half of
register 1. The screen data is contained in VDP RAM address
0000-02FF, or 0-767 decimal. This corresponds to the 768 screen
positions, each screen position itself being an 8 by 8 matrix.

The data to be written into the first 768 bytes of VDP RAM is
the names, or codes, of characters or patterns defined elsewhere in
the VDP RAM. For example, to clear the screen I want to write a 20
into VDP RAM locations 0000-02FF. 20 is the ASCII code for a
blank, or a space. The pattern data for the space and all other
keyboard characters are stored in VDP RAM locations 0800-0FFF
when the console is first turned on. (Programs 14-3 and 14-6 will
show you how to create, store and name other patterns.)

The instruction at 7D04 clears register 0 to 0000, which will be
the first VDP RAM location that I will transfer a 20 to. 7D06 loads
20 into the upper byte half of register 1. 7DOA calls the VSBW

183

subroutine. 7DOE increments the VDP RAM address pointer. 7D10
compares the address to 0300 to see if all positions have been
written to. 7D16 causes the computer to return to the calling

program.
Program 14-1

7D00 7FDO M1 DATA >7FD0
7002 7004 DATA >7D04
7004 04C0 CLR RO
7006 0201 LI R1,>2000
7008 2000

7D0A 0420 J1 BLWP ©>6024
700C 6024

700E 0580 INC RO
7010 0280 CI RO,>300
7D12 0300

7D14 16FA JNE J1

7D16 0380 RTWP

7018 02E0 LWPI1>70B8
7D1A 7088

701C 0420 BLWP €M1
7D1E 7000

7020 0458 B *Rll

7D22 XXXX END

DISPLAY TEXT

Program 14-2 uses the VDP Multiple Byte Write (VMBW)
subroutine to display two strings of text on the screen at specific
locations. To use the VMBW subroutine you must: load the VDP
RAM destination address in register 0, load the source address of
the text in register 1, and load the number of bytes (the number of
characters, including blanks) to be transferred.

The only difficulty in using the VMBW routine is calculating
the VDP RAM address. One way is to draw up a grid 32 squares
across by 24 squares down and number them 0 through 767, starting
with 0 in the upper lefthand corner and number across. The first row
designates VDP RAM locations 0 through 31, the second row 32

184

A EEEEHEE

Fig. 14-1. Screen position numbers (decimal).

through 63, the third row 64 through 95, and so forth. This is what I
did to compute the VDP RAM locations used in the programs in this
chapter. However, I did not put a number in each box. Rather, I
labeled only the first column of boxes — 0,32,64,96, and so forth.
(See Fig. 14-1.)

Column
12345678 91011121314151617181920212_2,2_l24§§'_2_7.g_8_2_93_0‘3132
. =
2
3
4
5
6
7
8
9
10
1
12
Row 13
14
15
16
17
18
19
20
21
22
23
24

Fig. 14-2. Screen positions by row and column.
185

Another way (Fig. 14-2) is to make a 32 by 24 grid and number
the columns 1 through 32 across the top or bottom (not in the boxes)
and the rows 1 through 24 down the left or right sides. Exact VDP
RAM locations can be computed in terms of row and column as
follows:

VDP RAM ADDRESS = 32(ROW - 1) + (COLUMN - 1)

With either method you will probably want to draw a 32 by 24
grid and make copies to use as work sheets. This will save pro-
gramming time, although it is still very likely that you will make

changes to your program in order to shift the text a few positions left
or right, up or down, until you are satisfied with your display.

Program 14-2

7000 XXXX AORG >7022
7022 5052 M1 TEXT 'PROGRAM 14-2'
7024 4F47

7026 5241

7028 4D20

7D2A 3134

702C 2032

7D2E 4449 M2 TEXT 'DISPLAY TEXT'
7030 5350

7032 4c41

7034 5920

7D36 5445

7038 5854

7D3A 0260 LWPI>70B8
703C 7088

7D3E 0420 BLWP 6>7D00
7040 7000

7042 0200 LI RO,362
7044 016A

7046 0201 LI R1,M1
7048 7D22

7D4A 0202 LI R2,12

186

7D4C 000C
7DAE 0420 BLWP @>6028

7050 6028
7052 0200 LI RO,426
7D54 01AA

7056 0201 LI R1,™2
7058 7D2E

7D5A 0202 LI R2,12
7D5C 000C

7DSE 0420 BLWP €>6028
7060 6028

7062 0458 B *Rl11
7064 XXXX END
GENERATE CURSOR

Program 14-3 generates a cursor similar to the one you see
when you run BASIC. Since the cursor is not a standard ASCII
character, it is necessary to create it and store it in the Pattern
Generator Table in the VDP RAM.

Figure 14-3 shows an 8 by 8 matrix of boxes with X’s in those
boxes that define the cursor, a simple 5 by 7 rectangle. It takes 64
bits to define this pattern, a zero for each empty box and a one for
each filled box, as follows:

00000000
01111100
01111100
01111100
01111100
01111100
01111100

In hexadecimal, the code for this pattern, starting at the top and
reading across one line at a time, is

007C7C7C7C7C7C7C
It requires 8 bytes or 4 words of memory. The code at 7D70-7D80
187

Fig. 14-3. Cursor pattem.

x> x| x| x]|x]|x
x ||| x| x|x|x
X[IX|X]|x]x|Xx]|X
XXX X]|X]|X|X
XXX XX]X]|X

stores this pattern in the Pattern Generator Table in the VDP RAM.
The Pattern Generator Table starts at location 0800 in the VDP
RAM. Character number 00 is stored in the 8 bytes 0800-0807,
character number 01 is stored in 0808-080F, and so forth.

In creating a new pattern, the first step is to give the pattern a
number. In this case, I decided to number the cursor 1E, or 30 in
decimal (the same number used by TI BASIC). The next step is to
calculate the VDP RAM location where the pattern will be stored.
In hexadecimal the equation is as follows:

VDP RAM ADDRESS = 0800 + 08(PATTERN NUMBER)
For the cursor, the VDP RAM address is

0800 + 08(1E) = 0800 + 00F0 = 08F0

If you prefer to calculate the VDP RAM address in decimal, use the
following formula:

VDP RAM ADDRESS = 2048 + 8(PATTERN NUMBER)

In Program 14-3, the instruction at 7D70 loads 08FO0 into
register 0, 7D74 loads 7D64 (the address of the pattern data in CPU
RAM) into register 1, 7D78 loads the number of bytes (to be
transferred) into register 2, and 7D7C calls the VMBW subroutine.

Note that 7D70-7D80 is itself a subroutine. The subroutine
workspace pointer value is stored at 7D6C and the starting address
is stored at 7D6E. This subroutine will also be called by Program
14-4 (keyboard input and display).

The cursor pattern subroutine is called by the instruction at
7D86 of the main program. 7D8A clears the screen. 7DSE loads
VDP RAM address 0190 into register 0. This is approximately the
center of the screen. This is where we will display the cursor,
alternately turning it on and turning it off. 7D92 loads the character
number 1E into register 1. 7D96 loads the number 0400 into regis-
ter 2. This register will be used as a loop counter. 7D9A writes the

188

cursor pattern on the screen. 7DI9E decrements the loop counter and
7DAOQ causes the program to continue to write the cursor pattern on
the screen until register 2 equals zero.

After writing the cursor pattern 0400 times (1024 decimal), the
program exits that loop and enters another loop which writes a blank
(character number 20 in hexadecimal) to the screen 0400 times. You
may adjust the flash rate by changing the numbers at locations 7D98
and 7DA8. The present numbers cause the cursor to flash approxi-
mately 80 times per minute.

You also may move the cursor to another location by changing
the number at 7D90. In the next program, the cursor will move
across the screen automatically as you enter the text.

Program 14-3

7000 XXXX AORG>7D64
7D64 007C M1 DATA >007C,>7C7C>7C7C,>7C7C
7066 7C7C

7068 7C7C

7D6A 7C7¢C

7D6C 7FD0 M2 DATA>7FDO
7D6E 7070 DATA>7D70
7070 0200 LI RO,>08F0
7072 08F0

7074 0201 LI R1,M1
7076 7064

7078 0202 LI R2,8
7D7A 0008

7D7C 0420 BLWP @>6028
707E 6028

7080 0380 RTWP

7082 02E0 LWPI >70B8

7084 7088

7D86 0420 BLWP 8M2
7088 7D6C

7D8A 0420 BLWP ©>7D00
7D8C 7000

189

7D8E 0200 LI RO,> 0190
7090 0190
7D92 0201 J1 LI R1,>1ECO

7D94 1ECO
7096 0202 LI R2,> 0400

7D98 0400

7D9A 0420 J2 BLWP @>6024
7D9C 6024

7DSE 0602 DEC R2

7DA0 16FC JNE J2

7DA2 0201 LI R1,>2000

7DA4 2000
7DA6 0202 LI R2,>0400
7DA8 0400
7DAA 0420 J3 BLWP @> 6024
7DAC 6024

7DAE 0602 DEC R2
7DB0 16FC JNE J3
7082 10EF JMP J1
7DB4 XXXX END

KEYBOARD INPUT AND DISPLAY

Program 14-4 clears the screen, flashes the cursor in the upper
lefthand corner of the screen, and waits for you to enter text via the
keyboard. Each time you press a key, that key is displayed on the
screen and then the flashing cursor moves over one position. Other
features of the program are:

O The program stops when you press QUIT (FCTN and =).

O The FCTN and S combination causes the cursor to back up
one space, thus erasing previous keystrokes.

O After the screen is full, an additional keystroke causes the

program to start over. The screen is cleared and the program waits
for more entries.

By itself, the program is not very useful but it does show you
190

how to enter text or data via the keyboard using the keyboard scan
(KSCAN) routine. However, this program and the others in this
book can be used as modules or subroutines in programs that you
design yourself.

To use the KSCAN routine, first tell the computer the
keyboard device number used by your program. In most cases, this
will be 0. (See the User’s Reference Manual for the meaning of other
keyboard device numbers in the section which discusses the KEY
subprogram.) This number must be stored at 8374 before you call
KSCAN. In Program 14-4, the instruction at 7DB8 clears register 0
to 0000 and the instruction at 7DCC moves the byte 00 to memory
location 8374.

The next step is to call KSCAN repeatedly until a key has been
pressed. If a key has been pressed since the last call to KSCAN,
then bit 2 of the GPL status byte will have been set to one. Note that
the Mini-Memory Owner's Manual says bit 5. This is not correct.
The manual incorrectly labels the bits from left to right as bits 7
through 0. This is not the standard TI designation. The Editor/
Assembler Manual uses the standard TI bit numbering and is as
follows:

H GT Cond Carry OVF 0 0 0
0 1 2 3 4 567

The GPL status byte is located at 837C. To determine if bit 2
equals a one, Program 14-4 uses the COC (compare ones corre-
sponding) instruction at 7DEC. The upper byte half of register 3
contains the value 00100000 (binary). The upper byte half of regis-
ter 6 contains a copy of the GPL status byte (moved there by the
instruction at 7DE8). The COC instruction tests only those bits in
register 6 for which there is a corresponding one in register 3. In
this case, only bit 2 is tested. If bit 2 in register 6 equals a one
(meaning that a key has been pressed since the last call to KSCAN),
the EQU status register is set. (Don’t confuse the status register
inside the 9900 microprocessor with the GPL status byte at mem-
ory location 837C.)

In Program 14-4, the KSCAN routine is called approximately
2000 times per minute. The program alternately displays the cursor
pattern and a blank as was shown in Program 14-3.

7DD8-7DDC loads the character number for the cursor and the
loop counter value which determines how many times (and hence,
how long) the cursor pattern will be displayed before switching to
the blank.

191

7DEQ-7DF2 is the combination display-cursor and call-
KSCAN loop. The program stays in the loop either until the loop
counter is zero or a key has been pressed. If akey has been pressed,
then the program jumps to 7E12, where the program determines
which key was pressed and decides what to do next. If a key is not
pressed before the loop counter reaches zero, then when the
counter is zero the program loads a blank, restores the loop
counter, and then enters the combination display-blank and call-
KSCAN loop at 7DFC-7EQE.

If no key is detected after 128 calls, then the program jumps
back to the display-cursor and the call-KSCAN loop again. Once a
key is detected, the program proceeds.

7E12-7E16 writes a blank to the screen. This is necessary for
the case when the backspace key was detected after the cursor was
displayed. I don’t want to leave a black rectangle on the screen.

Next, 7E1A moves the ASCII byte value of the key to register
1 from memory location 8375 where the KSCAN routine stored the
key value it detected. (8375 contains an FF if no key was pressed
since the last KSCAN call.)

7E1E compares the value to 05, the TI code for the QUIT key.
If the key equals 05, then the program ends.

7E22 compares the value to 08, the TI code for the backspace
(FCTN and S) or left arrow (#). If the key is a backspace register 0 is
decremented and the program jumps to 7DD8 and waits for another
key input. Register 0 always contains the screen location where the
cursor is flashing.

If the key is neither QUIT nor backspace, then the key is
displayed by the instruction at 7E2A.

7E2E increments the screen location pointer (VDP RAM ad-
dress). 7E30 compares the VDP RAM address with 0300 (the end of
the screen). If the address equals 0300 then the program starts
over, clearing the screen. If the address is less than 0300 then the
program jumps to 7DD8, starts flashing the cursor and waits for the
next key input.

Program 14-4

7000 XXXX AORG>70B4
7DB4 02E0 LWPI >70B8
70B6 7088

70B8 04C0 J1 CLR RO

70BA 0202 LI R2,>0500

192

70BC 0500
708E 0203 LI R3,>2000

7DC0 2000
7DC2 0204 LI R4,>0300
7DC4 0300
70C6 0205 LI RS, 0800
7DC8 0800

7DCA 04C6 CLR R6
7DCC DBCO MOVB RO,@ > 8374

7DCE 8374

7000 0420 BLWP @ > 7D00
7DD2 7000

7DD4 0420 BLWP @ > 7D6C
7DD6 7D6C

7008 0201 J2 LI R1, > 1EQ0
70DA 1ECO

70DC 0207 LI R7,>80
7DDE 0080

7DEC 0420 J3 BLWP @ >6024
7DE2 6024

7DE4 0420 BLWP @> 6020
70E6 6020

7DE8 DIA0 MOVB @>837C,R6
7DEA 837C

7DEC 2183 COC R3,R6

7DEE 1311 JEQ J5
7DFO 0607 DEC R7

7DF2 16F6 JNE J3

7DF4 0201 LI R1,>2000
7DF6 2000

70F8 0207 LI R7,>80
7DFA 0080

7DFC 0420 J4 BLWP @> 6024

193

7DFE 6024

7E00 0420 BLWP ©>6020
7E02 6020
7E04 DIA0 MOVB @>837C,R6

7E06 837C

7E08 2183 COC R3,R6
7EOA 1303 JEQ J5
7EOC 0607 DEC R7
7EOE 16F6 JNE J4

7E10 10E3 JMP J2
7E12 0201 J5 LI R1,> 2000

7E14 2000

7E16 0420 BLWP @>6024
7E18 6024

7E1A D060 MOVB @>8375,R1
7E1C 8375

7E1E 9081 CB R1,R2
7E20 130A JEQ J7
7E22 9141 CB R1,R5
7E24 1602 JNE J6
7E26 0600 DEC RO
7E28 10D7 JMP J2
7E2A 0420 J6 BLWP @>6024
7E2C 6024

7E2E 0580 INC RO
7E30 8100 C RO,R4
7E32 13C2 JEQ J1
7E34 10D1 JMP J2
7E36 0458 J7 B *R11
7E38 XXXX END

CONVERT STRING TO NUMBER
Program 14-5 converts a number (entered via the keyboard) to
194

TT’s 8-byte floating-point format and then displays the TI floating-
point version as a 16-digit hexadecimal number. The aim of the
program is to illustrate the use of ROM-resident routines which are
accessed by the instruction BLWP@ >601C followed by a 16-bit
data value which references the desired ROM subroutine. In this
case, the Convert String to Number routine is accessed. The data
value to access this routine is 1000 hexadecimal.

Table 14-1 is a partial list of TI floating-point number equiva-
lents. This table was compiled by running Program 14-5 for each
entry in the table. TI's format is a variation on the standard binary-
coded decimal (BCD) format. Instead of using one byte per decimal
digit, TT uses one byte per two decimal digits. Also, the first byte
indicates both the sign and the place value of the next byte.
For example, the TI equivalent of 9012.3456789 is
415A0C22384E5A00. This may be broken down as follows:

41 - The next byte place value is 100
5A - 90 hundreds

0C - 12 ones

22 - 34 hundredths

38 - 56 ten thousandths

4E - 78 millionths

5A - 90 ten millionths

Table 14-1. Partial List of Tl Floating-Point Number Equivalents.

Decimal Number Tl Hexadecimal

Floating-Point Notation

100,000 420A000000000000
10,000 4201000000000000
1,000 410A000000000000
100 4101000000000000

10 400A000000000000

1 4001000000000000

1 3F0A000000000000

.01 3F01000000000000

.001 3E0A000000000000

.0001 3E01000000000000
111111 400B0B0B00000000
-11.1111 BFF50B0B00000000
-1 BFFF000000000000
-100,000 BDF6000000000000
3.1415926 40030E0F5C3C0000
9,012.3456789 415A0C22384E5A00
100,000.00000001 420A0000000000001

195

First
Byte Next Byte
Value Place Value (Decimal)
(Hex)
45 10,000,000,000
44 100,000,000
43 1,000,000
42 10,000 Table 14-2. Partial List
41 100 of Next-Byte Place Values.
40 1
3F .01
3E .0001
3D .000001
3C .00000001
3B .0000000001

Table 14-2 is a partial list of next-byte place values used by TI.
It appears that TI chose 40 to indicate that the next byte is the ones
digit because 40 is in the middle of the allowable range for positive
8-bit numbers. Negative numbers begin at 80 (hex). Thus, this
format can represent the same number of digits to the left and right
of the decimal point. Also, it appears from Table 14-1 that only the
first two bytes of negative numbers are in two’s complement form.
See, for example, the TI equivalents of +11.1111 and —11.1111.

Now let’s look at Program 14-5, which is long, but has a fairly
simple structure. 7E38-7E80 is the storage area for the text dis-
played by the program. 7E82 loads the workspace pointer. 7E86
clears the screen. 7E8A-7EB6 displays the first three strings of
text—PROGRAM 14-5, CONVERT STRING TO NUMBER, and
INPUT STRING:

7TEBA-7EFE displays the number as it is entered. This code is
similar to the code of Program 14-4. The main difference is that
there is no flashing cursor, which was intentionally left out to keep
the program as simple as possible. The backspace feature, how-
ever, has been left in. The program will accept positive and nega-
tive numbers, both integers and floating-point numbers. Pressing
the ENTER key (0D in ASCII) signals the program to go on to the
conversion portion of the program. (By the way, don’t let the term
floating-point number scare you. The term applies to all noninte-
gers, or all decimal fractions in which the number of digits following
the decimal point is not fixed. 1.3, 0.006, 1674.9, and 3.14159 are
floating-point numbers.)

7F00-7F04 calls the Convert String to Number ROM sub-
routine. To use this subroutine, it is necessary to first store the
address of the string at location 8356. This was done back at 7ED2.

196

The address of the string is the VDP RAM address corresponding to
the position on the screen of the first digit (or sign, if a negative
number was entered). In this case, the number to be converted is
stored at VDP RAM location 432 (decimal), the number in register 0

when the input-text routine began. The 8-byte result is stored at
834A-8351.

7F06-7F12 displays the text FLOATING-POINT NUMBER:
at screen location 514 (decimal). 7F16 loads the screen location 616
into register 0. 616 will be the location of the first digit of the
16-digit hexadecimal result when it is displayed on the screen.
7F1A-7F56 converts the 8-byte floating-point number located at
834A-8351 (the FAC, or floating-point accumulator) to ASCII and
displays the result on the screen. The conversion and display is
done four bits at a time.

A sample run looks like this:

PROGRAM 14-5
CONVERT STRING TO NUMBER

INPUT STRING: 3.1415926
FLOATING-POINT NUMBER:
40030E0F5C3C0000

Program 14-5

7000 XXXX AORG 7E38

7E38 5052 M1 TEXT 'PROGRAM 14-5'
7E3A 4F47

7E3C 5241

JE3E 4D20

7E40 3134

7E42 2035

7E44 434F M2 TEXT 'CONVERT STRING TO NUMBER'
7E46 4E56

7E48 4552

7E4A 5420

TEAC 5354

7EAE 5249

7E50 4E47

TES2 2054

197

7E54 4F20

7E56 4E55

7E58 4D42

7ESA 4552

7ESC 494E M3 TEXT 'INPUT STRING:
7ESE 5055

7E60 5420

7E62 5354

7E64 5249

7E66 4EA7

7E68 3A20

7E6A 464C M4 TEXT 'FLOATING-POINT NUMBER:
7E6C 4F41

TEGE 5449

7E70 4E47

7E72 2050

7E74 4F49

7E76 4ES54

7E78 204E

7E7A 554D

TE7C 4245

TE7E 523A

7E80 2020

7E82 02E0 LWPI >70B8
7E84 70B8

7E86 0420 BLWP @>7000
7E88 7D00

7E8A 0200 LI RO,138
7E8C 008A

7E8E 0201 LI R1,M1
7E90 7E38

7E92 0202 LI R2,12

198

7E94 000C
7E96 0420
7E98 6028
7E9A 0200
7E9C 00C4
7E9E 0201
7EAO0 7E44
7EA2 0202
7EA4 0018
7EA6 0420
7EA8 6028
7EAA 0200
7EAC 01A2
7EAE 0201
7EBO 7ESC
7EB2 0202
7EB4 000E
7EB6 0420
7EB8 6028
7EBA 04C0
7EBC 0202
7EBE 0D00
7ECO 0203
7EC2 2000
7EC4 0205
7EC6 0800
7EC8 04C6
7ECA D800
7ECC 8374
7ECE 0200
7EDO 01BO
7ED2 C800
7ED4 8356

BLWP @ >6028

LI RO,196

LI R1,M2

LI R2,24

BLWP @>6028

LI RO,418

LI R1,M3

LI R2,14

BLWP 0>6028

CLR RO
LI R2,>0D00

LI R3,>2000

LI RS,> 0800

CLR R6
MOVB RO,@> 8374

LI R0,432

MOV RO,@>8356

199

7ED6 0420 J1 BLWP @>6020
7ED8 6020

7EDA D1A0 MOVB @>837C,R6
7EDC 837C

7EDE 2183 COC R3,R6
7EE0 16FA JNE J1

7EE2 D060 MOVB @>8375,R1
7EE4 8375

7EE6 9081 CB R1,R2
7EE8 130B JEQ J3

JEEA 9141 CB R1,RS
7EEC 1605 JNE J2

7EEE 0600 DEC RO

7EFO C043 MOV R3,R1
JEF2 0420 BLWP @>6024
7EF4 6024

7EF6 10EF JMP J1

7EF8 0420 J2 BLWP @> 6024
7EFA 6024

7EFC 0580 INC RO

7EFE 10EB JMP J1

7F00 0420 J3 BLWP @> 601C
7F02 601C

7F04 1000 DATA>1000
7F06 0200 LI RO,514
7F08 0202

7FOA 0201 LI R1,M4
7FOC 7E6A

7FOE 0202 LI R2,24
7F10 0018

7F12 0420 BLWP @>6028
7F14 6028

7F16 0200 LI RO,616
200

7F18 0268

7F1A 0202 LI R2,>834A
TF1C 834A

7F1E 0203 LI R3,8
7F20 0008

7F22 04C1 J4 CLR R1

7F24 D072 MOVB *R2+,Rl
7F26 0941 SRL R1,4
7F28 0281 CI R1,> OAQO
7F2A 0A0O

7F2C 1A02 JL J5

7F2E 0221 AI R1,>0700
7F30 0700

7F32 0221 J5 AI R1,>3000

7F34 3000
7F36 0420
7F38 6024
7F3A 0580
7F3C 0A81
7F3E 0941
7F40 0281
7F42 0ACO
7F44 1A02
7F46 0221
7F48 0700
7F4A 0221
7F4C 3000
7F4E 0420
7F50 6024
7F52 0580
7F54 0603
7F56 16ES

BLWP @>6024

INC RO

SLA R1,8
SRL R1,4

CI R1,>0A00

JL J6
AI R1,>0700

J6 AI R1,>3000

BLWP @>6024

INC RO

DEC R3
JNE J4

201

7F58 045B B *R11
7F5A XXXX END

RAISE NUMBER TO A POWER

Program 14-6 raises a number to a power. The program
prompts you to input two numbers—X and Y. The result is X raised
to the Y power. A sample run looks like this:

INPUT X: 10
INPUT Y: 2

X4Y =100

Also, this program is different from all previous programs in that it
is executed from Mini Memory, not from EASY BUG.

The program illustrates the use of the GROM-resident
routines, or the GPL routines. A breakdown of the program goes
like this. 7D00-7D16 is the code for the subroutine that clears the
screen. 7D18-7D64 is the code for the subroutine that inputs data
from the keyboard and converts that data to the TI 8-byte floating-
point format. The instruction at 7D1C moves the contents of the old
workspace register 0 to the new workspace register 0. The number
inregister 0 is the VDP RAM address of the string (string, because
the number is ASCII-encoded as it is entered) to be converted to TI
floating-point, the form required by resident math routines. Also,
7D5A moves the VDP RAM address to location 8356. This is
necessary before calling the Convert String to Number routine.

7D66-7D6C is the code data for the exponentiation symbol
placed between the X and the Y in the display. See Fig. 14-4.
7D6E-7D82 is the code for the subroutine which stores the ex-
ponentiation symbol in the VDP RAM Pattern Generator Table.
0C00-0C08 is the VDP RAM location for character 128 (decimal),

Fig. 14-4. Exponentiation pattemn. X

X X|X|XIX]X}X

202

the first code number available after the standard ASCII codes.
(Note that any number from 128 to 255 is valid.) 7D84-7D98 con-
tains the text data to be displayed. 7D9A loads the workspace
pointer. 7D9E clears the screen. 7DA2 loads the exponentiation
symbol into the VDP RAM. 7DA6-7DB4 displays the text INPUT
X: 7DB6-7DBC inputs X and converts it to the 8-byte floating-point
number which is stored at 834A-8351.

7DBE-7DCA moves the floating-point number to VDP RAM
locations 1000-1007. This is done for two reasons. First, I need to
input Y. If I don’t move X from 834A-8351 (CPU RAM), it will be
lost when I input Y. Second, the exponentiation routine (or Involu-
tion Routine, page 43, Mini Memory Owner’s Manual) requires that
the base number (the number to be raised to a power) be located
somewhere in VDP RAM. Later, I will put the VDP RAM address of
the base number at location 836E. This must be done before the
exponentiation routine is called.

7DCE-7DDC displays the text INPUT Y:. 7DDE-7DE4 inputs
Y and converts it to the 8-byte floating-point number which is stored
at 834A-8351. Note that the exponent value must be at this location
before the exponentiation routine is called. Thus, there is no need
to move this number.

7DE6-7DF4 displays X Y =. 7DF6-7EC0 puts the exponenti-
ation symbol between the X and the Y of the previously displayed
text.

7E02-7E08 moves the VDP RAM address (1000, hexadecimal)
of the base number to location 836E.

TEOA-7EOE clears the GPL status byte at 837C. This step is
absolutely necessary. The GPL status byte must be cleared before
calling GROM-resident routines. Although this step is clearly
shown in the E ditor/Assembler manual, it is not shown in the Mini
Memory Owner's Manual.

7E10-7E14 calls the exponentiation routine. The result is in
the FAC (floating-point accumulator, 834A-8351).

7E16 clears location 8355. This step is done in preparation to
use the Convert Number to String routine, another GPL routine.
(See page 42 of the Mini Memory Owney’s Manual.) When 8355 is
set to zero, the output of this routine will be in TI BASIC format.
7E1A clears the GPL status byte. 7E1E-7E22 calls the Convert
Number to String routine. The ASCII-encoded output string is
located in CPU RAM at address 8300 plus the byte value stored at
8355. Location 8356 contains the length of the string.

7TE24-7TE3A displays the result on the screen. 7E28-7E30

203

computes the string address. 7E32-7E36 retrieves the string length
and shifts it from the upper byte position to the lower byte position
of register 2. TE38 calls the VMBW routine.

7E3C-7E50 maintains the display until any key is pressed.
TE52-7E56 clears the GPL status byte. This procedural step is
required, otherwise when you branch back to the calling program
(Mini Memory), you will get a meaningless error message. (Thank
you, Editor/Assembler manual.)

7FES8-7FED contains the name of the program—any name that
you want to give to it, up to six characters—and the starting
address. In this case, I named the program PWR. The starting
address is 7D9A. 7FE8-7FED previously contained the name and
address of the LINES program, which I have since overwritten
many times.

To run this program, select the RUN option after you have
selected MINI MEMORY from the master selection list. PRO-
GRAM NAME? will be displayed. Type PWR and press ENTER.
The screen will be cleared and the program will display

INPUT X:

in the upper left hand corner of the screen in black text on a light
green background.

Type the base number 10 and press ENTER. The screen will
display

INPUT Y:

just below the INPUT X: 10. Type 2 and press ENTER. The screen
will display

XY =100

Nothing further will happen until you press any key. When you
press any key, the computer will display PRESS ENTER TO
CONTINUE in white text on a dark blue background.

Press ENTER. The screen will display the Mini Memory
selection list. You may quit or rerun the program by selecting RUN
and then entering PWR again.

Note that this program (and any other program using GPL
routines) will not execute from EASY BUG. I have notified TI of this
anomaly, but I have not received areply as to why and/or what to do

204

so that programs using GPL routines may be run from EASY BUG.
This is probably not, however, a serious problem. After you learn
TI-99/4A assembly language, it is more likely that you will run your
programs from Mini Memory than fromEASY BUG anyway. Or you
will create assembly language routines that you will link to your
BASIC language programs.

Program 14-6

7000 7FCO DATA >7FCO
7002 7004 DATA > 7004

7004 04C0 CLR RO

7006 0201 LI R1,>2000
7008 2000

7D0A 0420 J1 BLWP @>6024
700C 6024

7DOE 0580 INC RO

7010 0280 CI RO, >300
7012 0300

7014 16FA JNE 31

7016 0380 RTWP

7018 7FC0 DATA >7FCO

701A 7D1C DATA > 7D1C

701C COID MOV *R13,R0
7DIE 0202 LI R2,>0D00

7020 0DOO
7D22 0203 LI R3,>2000
7D24 2000
7D26 0205 LI RS,> 0800
7D28 0800

7D2A 04C6 CLR R6

7D2C D806 MOVB R6,@> 8374
7D2E 8374

7D30 0420 J2 BLWP @>6020
7032 6020

205

7034 DIA0 MOVB @>837C,R6
7036 837C

7038 2183 COC R3,R6
7D3A 16FA JNE J2

703C D060 MOVB @>8375,R1
7D3E 8375

7D40 9081 CB R1,R2
7D42 130B JEQ J4

7044 9141 CB R1,R5
7046 1605 JNE J3

7048 0600 DEC RO

7D4A C043 MOV R3,R1
704C 0420 BLWP @>6024
7D4E 6024

7050 10EF JMP J2

7D52 0420 J3 BLWP @>6024
7D54 6024

7056 0580 INC RO

7058 10EB JMP J2

7D5A C81D J4 MOV *R13,@> 8356
7D5C 8356

7DSE 0420 BLWP @>601C
7060 601C

7D62 1000 DATA >1000
7D64 0380 RTWP

7066 0010 DATA >0010, > 3854,>1010,>1010
7068 3854

706A 1010

706C 1010

706E 7FCO DATA > 7FCO
7070 7072 DATA >7D72
7072 0200 LI RO,>0C00
7074 0C00

206

7076 0201
7078 7066
7D7A 0202
707C 0008
7D7E 0420
7080 6028
7082 0380
7D84 494E
7086 5055
7088 5420
708A 583A
708C 494E
708E 5055
7090 5420
7092 593A
7D94 5820
7096 5920
7098 3020
7D9A 02E0
709C 7088
7DSE 0420
7DA0 7000
7DA2 0420
7DA4 7D6E
7DA6 0200
7DA8 0022
7DAA 0201
7DAC 7084
7DAE 0202
7080 0008
7082 0420
7DB4 6028

LI R1,>7D66

LI R2,8

BLWP @> 6028

RTWP
TEXT ‘INPUT X:'

TEXT 'INPUT Y:'

TEXT ‘XY=

LWPI >7088

BLWP @ >7000

BLWP @>7D6E

LI RO,34

LI R1,>7084

LI R2,8

BLWP @>6028

207

7DB6 0200
7088 0028
7DBA 0420
7DBC 7018
7DBE 0200
7DC0 1000
7DC2 0201
7DC4 834A
7DC6 0202
7DC8 0008
7DCA 0420
70DCC 6028

7DCE 0200
7000 0042
70D2 0201
70D4 7D8C
70D6 0202
7008 0008
7DDA 0420
700C 6028
7DDE 0200
7DEO 0048
7DE2 0420
7DE4 7D18
7DE6 0200
7DE8 0082
7DEA 0201
7DEC 7094
7DEE 0202
7DFO 0005
7DF2 0420
7DF4 6028

208

LI RO,43

BLWP @8>7D18

L1 RO,>1000

LI R1,>834A

LI R2,8

BLWP @>6028

LI RO,66

LI R1,>7D8C

LI R2,8

BLWP @>6028

LI RO,75

BLWP @>7D18

LI RO,130

LI R1,>7D94

LI R2,5

BLWP @>6028

7DF6 0200
7DF8 0083
7DFA 0201
70FC 8000
7DFE 0420
7E00 6024
7E02 0200
7E04 1000
7E06 €800
7E08 836E
7EOA 04C1
7EOC D801
7EOE 837C
7E10 0420
7E12 6018
7E14 0024
7E16 D801
7E18 8355
7E1A D801
7E1C 837C
TE1E 0420
7E20 6018
7E22 0014
7E24 0200
7E26 0089
7E28 D060
7E2A 8355
7E2C 0981
7E2E 0221
7E30 8300
7E32 DOAO
7E34 8386

LI RO,131

LI R1,> 8000

BLWP @>6024

LI RO,>1000

MOV RO,@>836E

CLR R1
MOVB R1,@>837C

BLWP @>6018

DATA >24
MOvB R1,8>8355

MOVB R1,0.>837C

BLWP @>6018

DATA >14
LI RO,137

MOVB @>8355,R1

SRL R1,8
Al R1,> 8300

MOVB @> 8356,R2

209

7E36 0982
7E38 0420
7E3A 6028
7E3C 0203
7E3E 2000
7E40 04C6
7E42 D806
7E44 8374

SRL R2,8
BLWP @>6028

LI R3,> 2000

CLR R6
MOVB R6,0>8374

7E46 0420 J5 BLWP @> 6020

7E48 6020
7E4A D1AO
7E4C 837C
7E4E 2183
7E50 16FA
7E52 04C0
7ES4 D8CO
7E56 837C
7E58 045B
TESA XXXX
7FE8 5057
TFEA 5220
7FEC 2020
7FEE 7D9A
TF00 XXXX

MOVB @> 837C,R6

COC R3,R6

JNE J5

CLR RO

MOVB RO,@>837C

B *R11
AORG > 7FE8
TEXT 'PWR

DATA > 709A
END

CHANGE SCREEN COLOR

I personally don’t care too much for a light green (or is it
medium green?) screen background color. Consequently, I wrote
Program 14-7, which essentially changes the screen color, then
branches to Program 14-6. The text color is also changed and the
result is white text on a dark blue background, the same color
combination used by the Line-by-Line Assembler.

In order to change the background color (and text, the fore-
ground), I modified the Color Table in the VDP RAM. The Color

210

Table starts at VDP RAM address 0380 (hex). Each entry in the
table specifies the background and foreground colors of a group of
eight characters. The entry at 0380 specifies the colors of charac-
ters 00 through 07, the entry at 0381 specifies the colors of charac-
ters 08 through OF, and so forth.

There are 32 groups of 8 characters. To make sure that the
background and foreground colors of all characters are changed,
Program 14-7 changes all 32 entries in the Color Table.

The color codes are listed in Table 14-3. To change the entry in
the Color Table, I must specify both the foreground and background
codes. White characters on a dark blue background is specified as
F4 in the Color Table.

The instructions at 7TESE-7E72 write an F4 to all 32 entries in
the Color Table. This alone will change only the 32 by 24 central
rectangular area of the screen. There is still some background area
between this rectangle and the edge of your TV screen.

To change this border area, I must write a set of color codes to
one of the eight write-only registers inside the VDP chip. These
write-only registers are described on pages 326-328 of the Editor/
Assembler manual. They are not described i the Mini Memory
Owner's Manual.

Bits 0-3 of VDP register 7 contain the foreground color in the
text mode. (I have been using the graphics mode, the default mode.
See the E ditor/ Assembler manual for an explanation of the different
modes.) Bits 4-7 of VDP register 7 contain the color code of the
background color in all modes. These are the bits we want to
change.

Hexadecimal
Color Code

Transparent
Black
Medium green
Light green
Dark blue
Light blue
Dark red
Cyan
Medium red
Light red
Dark yellow
Light yellow
Dark green
Magenta
Gray

White

Table 14-3.
Color Codes.

MTMOODMPOONOIODLWN=O

211

To change the data in VDP register 7, Program 14-7 uses the
VDP Write to Register (VWTR) routine mentioned on page 36 of
the Mini Memory Owner's Manual.

The instruction at 7E74 loads the value 07F4 into register 0.
The 07 corresponds to register 7, the VDP write-only register that I
want to change. The F4 corresponds to the foreground and
background color codes. 7E78 calls the VWTR routine. 7E7C
branches to the beginning of the PWR program.

Finally, the address at 7FEE is changed to 7E5A so that the
program can be run from Mini Memory.

Program 14-7

7000 XXXX AORG >7ESA
7ESA 02E0 LWPI >7088
7ESC 70B8

7E5E 0200 LI RO,>0380
7E60 0380

7E62 0201 LI R1,>F400
TE64 F400

7E66 0202 LI R2,32
7E68 0020

TEGA 0420 J1 BLWP @>6024
7E6C 6024

JEGE 0580 INC RO

7E70 0602 DEC R2

JE72 16FB JNE J1

7E74 0200 LI RO,>O07F4

7E76 O7F4

7E78 0420 BLWP @> 6034
7E7A 6034

JE7C 0460 B @>7D9E
7E7E 7D9E

7E80 XXXX AORG > 7FEE
JFEE 7ESA DATA >7ES5A
7F00 XXXX END

212

CONCLUSION

If you have faithfully entered all the programs and carefully
read and understood the program descriptions, you should be ready
to do some serious assembly language programming on your TI-
99/4A Home Computer.

At this point, I recommend that you buy the E ditor/Assembler
manual if you haven’t already done so, especially if you plan to write
assembly language programs involving, sound, color, graphics, and
moving graphics called sprites. It would take another book to illus-
trate these advanced features of the TI Home Computer.

213

Appendix
TMS9900 Instruction Set

(Courtesy of Texas Instruments Incorporated)

215

INFWINOD SANVIIdO DJINOWANW TdEVI
'SMO[[0J SE SP[2Y INOJ JO ISISUD SIUAWAEIS 30.n0s dTenSue| A|quuasse [esouald 3y,

SLVIN¥O,] FOVNONV] ATEWASSY

“wasAs [euy a3 Jo Alowaw ut d13ymAue P3ed0] 3q 03 sanpows ureifod
ays SMO[[e 31 3outs S[qesayaid st apod 3|qEIed0[al ‘A[[esauan) ‘ureidoid ayy Surjquiasseas
ueys Jayio uonesado Aue Jo Japeo] ays Aq padueyo 3q J0UUED YOTYM SISSAIPPE AN[0sqE

SUTEJUOD IPOD ANJOSqY “UONIEDO] SIYI LRIM JUASISUOD 3q 03 pajsnipe e suondNIsul

{[€ JO SSOIPPE 9Y3 ‘UOHONNSUI ISIY SIYI JO UOKEJO] 3y SaY1oads uresFoud Jopeoj & 3ouo
e os uresSoad aenSue| Ajquiasse 3y Jo uOHONISUT ISIY Y3 03 IALIE]II UOHEULIOJUT
$S2IpPpE S} SeY 9p0d Yong “uonesado wesFoid SuiSueyd noyam Jo Junquiasseas

IOy ‘pasisap Alowaul JO }30[q AU 03Ul PIPEO] 3q UED YOIYM JEY) ST 3POD I[qEIBI0[RY
“Suipoo oZenSue| A|quiasse ayy uo Surpuadap ‘3jqeIed0]as J0 AINjosqe aq Lew apod

193(qo yong *3poo 193(qo pajreo st a3enJue] sty ut uanum sweidod Jo Ajquiasse ay woly
SINS31 1By} IPOD SUIYIEW Y], “UINLIM 3 UED SUOHINIISUI (0066 Y YoyM ul 2FenSue]
poo3siapun Aqipeas e st a8enSue| A[quiassy "po0IsIapun 3q Isnw sngejpuawou d3endue|
Ajquiasse ayp suonedtjdde pue suondiiosap uonINISUT AY) PUEISIIPUN 03 JIPIO UL

1 NOLLVIWYOANI ONINIAVIDOYd IOVNONVT XTINAISSY

216

‘aping) s sowuresSosg aFenSue] A|quiassy £0559001dosSTN 0066 SILL 193ndwod 066 [SPOIA woy sidisoxgf

‘-0 24nJ1,] UI PIZLIBWIWINS I 353Y | *9[qE[IEAL SIpOW SUISSIIPPE [BIIAIS

JO 3u0 3qLIISIP 03 ‘suoissaidxa 10 ‘sjoquiAs ‘yuEIsuod Suisn Aq paygioads aq ued suonedo]
Klowows 3y], *P[aYy dIUCWISUUI Y3 SMO[[0] JB3 {ue[q Ise] 33 Suimojoj suidaq poy sty],
-uononIIsul 3y} £q pasn 3q 03 e3ep aY3 Jo suonedo| Kowaw ayy Ajoads spuesado ayy,
PloLd spueiadQ

“paustojad 3q 03 st uonesado yorym saynUIP! 3 30uls panbas

S1 P2y JIUOWUW Y], "IUSWIAOW EIEP JOJ AQJAl PUE UORIPPE JOJ Y IPN[OUI SOUOWIUW
uondnNsut Jo sajdurexy ‘piaY [2qe] ay3 Suimofjoj yue|q IsE] Y3 JaygE suLdaq piRy SIY L,
‘suonesado pauyop weiSoid sy jo auo Sunuasaida joquis e 1o ‘saAndIIp IFenSue|
Ajquuasse 9y JO U0 ‘SUOLIINLISUI Y3 JO UO JO IPOD JUOWIUW Y} SUTEIUOD P[3Y SIY |,
PI31d 3p0d() JO JIUOWSUIA

*)SLI2)SE UE JO “Yue[q & 2q Aew | uonisod 1a3oereyd

‘pasn J0u st [2qE] € J] “AIOWW UT UOLIONIISUL 3Y3 JO SSIIPPE 3 SI pue [oquuks [3qe]

33 YIIM PIIBIDOSSE IN[EA Y3 SI SIY | “JOqUIAS [3qE] Y3 03 J2IUNOD UOTIEI0] 33 JO anjea
211N Y3 suSisse 31 UONONIISUT UE Ul [3qE] B SIUNOUI JI[QUIISSE Y3 UIY A\ “YUB|q U0
1589] 38 £q pareuriia) st pjay [2qe] Y.L, "Pi0931 30n0s Y3 Jo suo uonisod 1230eTeYO UI
Japdeseyd duaqeyde ue im Suruuidaq ‘s19308IBYD XIS 03 3UO WOJJ JO SISISUOD [3qe] Y I,
"SP[3Y UIMI3q PIJIISUI 3q ISNUI HUB[Q IUO ISEI] Iy "PI0J3I

321n0s 3y Jo suonisod 131081y ()9 ISIY Y3 UIYIIM IND30 ISNW SP[AY IIIY3 ISIY Y |,

217

8!

10

Po) P17
“L40%L

4 —7+5d
€4 —7+5d
(DN — (DN

(SN — (eI

4 —¢d

ims2y

+Se‘+ € AON

Se'Cs AON

[AON

Suipo)) ayduoxsy
uosImusu] AOW

(suonesado psom 10§
om) £q ‘suonesado a1hq
10 auo £q) uonesado
3Y) JAYE PAIUIWIIOU
st uy] 12351331 ssasppe
92aa1pu] Jasias ui sy

(DN

u 151921
aoedsyiom jJo sIuAU0O

ayy £q uaaid ssaIppy
vy
u 15182y aoedsyiopy

pafioads

uonr0] Kiowapyy

J0ULI0f
puvixdQ

wIWIHUI0INY
“watpu]
1915130y
dedsiop

1uTpU]
15189y
aoedsypop
15180y
oedsyzopy

Susuppy
Jo A1,

218

ot

ot

sapo Sussaippy “G-9 aundt]

“3uISS.pPE 13.1p 40 JHOQUIAS 40§ (SI U *U 1O} IPOD 1q INOJ I YAIM UT PIIY 16 YIIYM
‘SP|3Y 1q IN0J (J PUE § OS[E 1B 3.3y [, *3POD SUTYIBW UOKINNSUL I3 JO suon10d 31q om3 aIe Spjay *] pue Pl ayy
uorssaidxa 10 ‘saquinu ‘joquis e s1 dxa

“Buissa.ppe paxaput 10§ () 3q J0u Kew u LG Su () ast82a avedsIom Y JO JaquInu Y st U

(dxa 4+ uy)IN
dxa jo anfea
3y PUE UY JO SIUAIUOD

(da+ SHIW — (z+ W (da® (£)z® AOW 3y Jo wins Y3 st sSIPPY

(dxa)
*dxa jo anfea

(01N ~— (IANOIW 01® ANO® AOW Aq uan18 s1 ssasppy

(u)dxa®

dxa@

210N

Kiowapy

poxapu|

Kiowappp
drjoquikg

219

Aq papadaid suSip fewsoapexay jo Suins) s1a3aul [BUIIPEXIY 3q OS[E UED SIUEISUOD)
LSt

:ojdurexa Jo "SES*S9 + 03 89LTE —

J0 a8ue1 ay3 ut (s[esowinu Jo SuLNS € SB USNILIM) SI233UI [BWIDAP 3q UED SIUEISUOD)
SIUBISUOD)

*SIAIIDANP II[qUIISSE

pUe suononsut Jo spjay puesado auys ut pasn 3q osfe ued suoissaidxy -an[eA ANjosqe ue
Suraey [2qe[€ J0 ‘JUBISUOD SWM-A[QUIISSE AN[OSGE UE ‘JUBISUOD [BUITIIPEXIY JO [BWIIDIP

€ S W3] | "SIATIIAIIP JI[QUISSE PUE SUOHINIISUI JO SP[oY pue1ado ays Ul pasn e SuLid],

-1o10e8yd on13qeydpe ue yim SuruuiSaq ‘s1a3oeseyd dusumueydye jo Sutns e
st joquiis v ‘p[oy puesado 3 pue ‘pjay Jozesado Ay ‘pjay [3qe| Y UI pasn e sjoquiAg
STOSWAG ANV SWY3 |,

*3p02 193(q0 33 UO 1D3E ou IAeY Inq ‘Sunsi|

19[quiasse 3y Jo uontod 30n0S Y3 UT PIAASI| AJE SJUSUIUIOY) “JUSUIWIOD B S JUIUINEIS
20105 2.13U2 3y} () YSLISISE UE SUTEIUOD JUIWIEIS 30IN0s A Jo uonisod Jaroeseyd
353y 913 J] "P|°Y spue1ado 33 MO0 JE HUEBIQ ISE] S JOYE PAIAUI Iq UED SJUIWWOY)

PIRL] SIUBWIWO)

220

"2ARIP JY € Aq pouyop
10 [3qE[& SE pasn u23q .Y ISnW P3Y SANVIYAJO 4 Ut [oquifs Auy play AODdO

3Y3 Ul pasn 31e AP JOX Y3 YPIM PIULop S[oqUIAS 'UOLIONISUT 33 JO SSAIppE
a3 Jo sureu drjoquiks 3y st 31 UIS ‘30u0 A[UO [3qe| € S pasn 3q ued [oquiks udAlS y

‘ureagoad
Y3 UT UOKIEDO] JUSLIND 3y Juasaidas 03 (§) uBis sefop sy sauyapaid Jajquiasse ay |,

“Jo[quuasse ay3 Aq passaooad are joquifs e Jo s133oeIEYD
XI$ 3831 3y3 A[uQ "SUE[q OU UTEIUOD puE J33dereyd duaqeydie ue ym uiSaq Isnw sjoquikg
sjoquikg

' IV6(UaNLIM 3] [[IM JY6(Jequinu [eurrdapexay ay3 ‘ojdurexa
1o "s1aqumnu Q[3seq 330uap 03 pasn st g1 1dirosqns Iy yooq s1y3 InoySnoay |,

*17500 + .4, %8st = Xd,

:ajdurexs 104 ‘sazonb
3[3uis ur BuLns 13308IRYO PaJIsap Yy Suiso[dud £q Pasn 3q UED SULISUOD JAIDBIBY [[HSY

dveo <
:3]durexa Jo,] (<

221

ONI—HJTdVL +Td9V1
:uotssaidxa aya Jo 103y5 Ay ey YoIym

(ONI-)+dT1aVL+T1d9V'1
:s1 uoissasdxa ue ut snurw K1eun 3y jo asn 3y jo sdurexa
uy ySu 03 13| WoIJ paren[eAd st uoissaidxa ay3 uays pue 3s1y paurioysad st (joquuAs
Jo Jaquinu € Jo juoly ut uSs snutw e) snutwr Areup) “sjoquuks (pauyap AP JOXA)
pauyap uonesado papuaixa Jo S}UE[q PIPPIqUIT AUE UTEIUOD 10U ISNUI UOIssAIXD 3y],

‘(811 03 1§3)) / ‘4 ‘ — 4 s13duapadaid sozesado ay]
UoIsIAIp /
uonesrdnnw ,
uonoenqgns —
uontppe +

:suonesado
onaunpLre Suimofoj ays Aq pajesedas suLia) Jo SILIIS € JO WLID) E sI uolssaidxad

uy ‘siuswasess afenSue| A[quiasse Jo spiay SANVITJO Y Ut pasn e suoissaidxy
suorssasdxy

222

99 2undif

ur uaA1g ST S} SNIEIS UO 1033 JIAY) PUB SUODIINIISUI [[€ JO 31 3Y I ‘suonesado
ndinondur Ny pue ‘youeiq ‘yiys ‘[esi8o] ‘uostredwiod ‘onounpLre ‘19)sues
E3ep 15311030180 [esouad Surmoljoj ays oyut padnoiS aq ues suononnsut (66 YL
L3G NOLLONWISN] 0066 FHL 30 ATAUNG

ady —c¢/0vv
dId +914C
I+dn71d
suotssaxdxa pifea jo sajdurexs aie Suimojoj ay],

*3]qe1ed0[31 [[e ae uoissasdxa ays ur sjoquiAs

33143 33 J1 3]qEIED0[21 3q P[nNOM IIN[IE3 UIALS uoIssaidxa ay] *9In[osqe e suoissardxa
1330 [[y “suoissasdxa 33 w0y P33oeNIQNS SIULISUOD JO S[OqUIAS I[qEIEI0[RI JO

Jaquinu 313 uey 123€2.3 U0 ST UOISSaIdXD Y3 03 PIPPE SIUEISUOD JO S|OQUIAS IQEIEIO[.
Jo Jaquinu ayy usaym 3[qeIed0jas st uoissaidxs uy ‘uoissaidxa ays dn axew ey suEISUOD
pue sjoquiAs a3 Jo Aafiqesed0[as 3y Jo uonduNy e st uoissasdxa ue Jo AIIqeIedo}as Ay |,

223

e oL3s - - - X X X 1
e zds T - - X X X ¥oa1
-ttt s st dol - X X X X X 1o3a
st s d0f - X X X X X J3a
A S ONI[- - - X - - oy)
I T S S aN(- - X - - 200
R oNI[I 410
S dnf S NOXO
R xruf - - - - - - £ fo]
S al - - - X X X to)
R i X - - X X X €0
S aH[- - - X X X o)
S T T Hf S dmd
S T T T S 1of S 1d
A T T S oaf S 4
- - - X X X ANI - - - X X X IONV
- - X X X X X LONI - X X X X X v
- - X X X X X ONI - X X X X X sav
- - - - a1dI X X X X X X av
R S AlQ - X X X X X v
X dO A0 D 0F <V <T Jmowaup dO A0 D D4 <V <1 doWIU

224

suononasuf &4 pavaffly g smvis 9-9 aunSey

*Aj[euLIou s31q SNIEIS SIS UNNOIQNS Y PUE 135
$121q JOX 2 ‘2semyjos q pajuaws|dunt st uoNINASUL JOX UE USY A “UORINAISUT JEY) Joj Af[euriou siiq
STIEIS $39S UONINNSUL X Y3 AQ PIIND3xa UOHONNSUT Y3 411G STIEIS AUE 1D9JE 10U SI0P UCHONIISW X 3Y | 7
*1q JO Y3 I93YE 10U O SUORDNIISUL ISIY) ISIMIDYI() *SUOHINISUL
314q ur sE 33591 0 335 S131q JO Y3 *$53] J0 SI1q Y SIS SIAYSURII UCHONLISUT Y S 10 YT U Uy ' 910N

- - - - X X X Jox

T T T T T t t dOX

¢ Tt ¢ t© t tv t X

- - - - X - - aL e ogs
- X - - X X X 40Zs - X X X X X X as
- .- - X X X JZs - - X X X X X S
-t s s s a4dms X X X X X X X dm.Ld
- s s dm.Ls R L3sH
R LSLS - - - - X X X o
- - - X X X JOouLs - - X X X X X OdN
- - - X X X X TIS - st AdN
- - - X X X X o 2. - X - - X X X 4AON
- - - X X X X vis - - - - X X X AON
- X - - X X X a420s R IdMT
- - - - X X X J0S T pct. 19|
- - X X X X X VIS - st INI'T

225

*SuUOnNed0] Ja3s13a1
20edsyI0m 2AISSI0ONS OM] U paIols 3onpoud 31q Z¢ & UL} 03 piom 1335131 dedsyiom
e yum Kiowaur ut piom e jo uonedridnnw sa8aur pauSisun suLioj—&Gdnpy

L1owdw
ul spiom eiep payioads ay3 woly 7 JO [SIDBNQNS JO SPPY —/UIUILII(PUD JUSUIIIU]

*K1owow
Ul SPIOM BIEP JO IN[EA IN[0sqe Y3 s3xel Jo udts ayy saSueyo—anyny Imjosqy pup 1IN

"K1owaw Ut paJo3s saikq JO spiom
Areuiq pauSisun Jo pauSis Jo uondenqns Jo UonIPpe ULIOJIId—uoyInIIgNS puv UOYIPPY

SUOIONIISU] dLIURPLIY
*193s1321 20edsytom & ul 19351321 19jutod aoedsyiom Jo sniess 3y 2103s 03 pasn —au07g
*JOYIOUE 0} UONE0] KIOWIIW U0 WIOL) SIIAQ JO SPIOM IAOW 03 PIsn —A2op]

*an[eA paJisap e 0} 12151321 ddedsyiom Jo Jossasoid azifeniur 03 pasn —pooy

SUOIIONIISU] JIJSuel | eIe(]

226

"pIom U3 € ut suonisod auo 03 puodsariod
suonisod asoym (JZS) 019z 03 J0 (D) U0 03 SHq 39G—Juspuodsarior) sg 155

*siseq 31q £q 3iq & uo piom Liowodw
JIUIOUE (IM PIY AAISN[OXI 3q UED pIom 13381331 soedsyiom y—y O sassmpxy

*S3UO 0} 335 JO PaIedd
Jo ‘paruswojduwiod aq ued prom KI10WSW PIIII[3S € JO SN Y|, — 425y pup jususducr)

“JUBISUOD
3q 91 B YuMm PIQNYV 0 P 2q Ued piom 13351331 adedsyiom y ‘sprom Liowsw omy
3o s1q Surpuodsa1100 uo suonesado NV PUE YO PRYSEWUN JO PIASEW—TNF PUD YO

suondNIIsu] [ed130]

*JUBISUOD 31q 9] € 0} pJom 19351331 oedsyIom e Jo JayIouE 03 9Lq
Jo piom £10wdus 3uo Jo uostredwiod paysewun Jo paysew Joj apiaoid suononnsur asay |,

suonon.su O._NA—EOU

“puapiAIp ay3 jo 3de[d ur paiors
Japurewsas 31q 9 pue Jusnonb 31q 91 3y yIm piom Kiowdw e £q (s193s180a soedsyiom
AISSI0ONS OM3 UT PIUTEIUOD) PUIPIAIP J3833ul paudisun 31q 7€ © SIPIAI—apmalT

227

"0066 3 Jo surd FTONUD PUE LAONUD ‘NINAD 348 Sutsn (D) 3tun indino/nduy
19151891 SUONESIUNWWIOD 3Y) WO PUE 0} BIep SuLLIaysuen Joj apiaoid suononnsul asay |,

suoponAIsU] YO/ 00D

"UoLONIISUT Ay}
Jo uonuod puesado sy ut payroads anea yuawade[dsIp € pue anfea snotaaid it Jo wns oy
yaim papeoy st D oy apew st dum(e uay Ay "ano00 01 st dwnf j1 SuTwI=IEp 01 INQ sTIEls
ureyIad 3593 suondnasul dum([EuonIPUOd 3y I, "PIINDIXI ST UOTIONIISUT UINJIT SY) UIYM
P2103S31 ST USY) PUE SINDJ0 YOURI] Y3 U3YM PIAES SI) Y3 JO an[ea pjo oy Suryoueiq
3URNOJQNS U] "UOKONNSUI Youelq 3y Jo puesado ayp £q payidads anjea sy 03 paSueyo

aq [JaastSa1 Hd Y ‘sIndd0 yYoueaq € J] “Asowrow uresSoud ayp jo sired yuarayip

01 youeiq A[reuontpuosun uononnsul (dwnf) J[3y pue suononisul youeiq 3y,

SUOTIONIISU] Youelg

-suonisod 31q Q] 03 | WO 3q UED SABMIILD PUe SYIYs Y T, ‘WSu
a3 03 ParENOIID 10 (S2019Z Yim suonisod paredea ur Sut[y) 3] AY3 03 PAYYs 2q UEd
ssas18a1 ay I, S o 03 A{reaiSoy Jo A[eonswnyaire payrys aq ued 13351301 oedsyiom

suonONIISU] PIys

228

229

"PaJ1S3p J1 UOHONNSUT AU UT PIsn 3q UED SP[Y SIUAWIWOD pue sjaqe] *Ayordus oy
SP[2Y JUSWIWIOD JO [3qE[Y3 INOYIIM UINLIM 31k s3jdwexa pue suondridsap jewrsof ay I,

‘suonearddy

‘sojdwexyg

"S1ig SNIBIG 3Y3 UO UORONAISUT Y3 JO 3109
‘uondNIsul 3y jo uonesado ayy jo uondudsacy
"SIBULIO} 3P0d Jutydew pue agenSue| |quiassy
"UONONIISUT 3Y) JOJ JTUOWSUA]

"UONONIISUI Y3 JO JWIBN]

*SMOJ[0}
se st saadeyp siy3 Jo UONOIS IXIU Y UT UOLINNISUT YOBD 10§ papiacid uoneuwojur 3y |,
SNOLLAT4OS3(] NOLLONALSN]

:Se PaqLIOsap 3q UEd ‘1ojsuen; 3y Suunp 013z 03 BIEP (°D) 32IN0S Y

Suwredwod pue Py £q poyrads uoneso| piom Klowaws 3y 01 °) AQq PIsSIPPE SIUAU0D
piom Kxowsw oy Sursojsuen ‘sny [, "0 £q payoads 214q Liowaw ay3 330U3p 03

pasn st (D)GIN 'O Aq payroads piom A1owdw 3y3 I0UIP 03 PIsn ST AMIB[PUIWOU O

atp o) [oquiks atp Aq payroads spueiado 1o, -paBueyp st (p 1dudsqns ap Ym paedtpur)
puesado uoneunsap oy arym padueyd jou st (s 1drosqns ayp yIm pazedrpur) pueaado

22.n0s 3y ‘s13jsuex; u paSueyd jou axe spuesado ay ‘suostreduwod uf “uostredwiod

© 33EDIpUT 03 pasn St (5) UOJOD € PUE BIEP JO JIJSUEI] E IEJIPUT 0 Pasn SI (<—)MOLIE UE ‘ULIOY
uonenbs sy uf w0} uonenbs pue uSNLIM UT PaqLIdSIP ST uonesado uORINISUL Y,

“Burssasppe 31q (a1up) sesi3ay suonedUNWWO)) NYO—NYD
“SUORINIISUT ()37 PUE SYIYS JOJ N[EA JUNOD Y—IUD
-BurssoIppe JBIpaUIWIT UT Pasn 3q 03 IN[EA B—IN[EA

“UONE0O] € BDIPUT 03 pasn uoissaidxa Jo joquiks y—dxa
‘Surssasppe 1351301 oedsysopy —y

“(overpawuy) | 3dooxs panturiad st spows Suissasppe Auy—o

:spoquiks
SuImofjoj S LPIM USRLIM IIE YOIYM SPIaY pueIado om) JO SUO SIA[OAUT UOHONRSUT Yoey

230

0: @NON

£ —(E"@NO)N

:¢ J3151891 3oeds3jIom Jo sHUANUOS A 01 INO
[oquuds Y3 Jo anfeA ay3 Aq PIsSIIPPE pIoM AIOUWISUI Y3 JO SIUDIUOCD Y SIAOW YIIYM

£ANO® AONW

:3q p[noo uononnsut sy jo ydurexa syioads y

*DD AON
:uondnnsul AQA Yy £q paurioyrad uonerado ayp st yorym
0:"OIN

PO)N -~— (*O)IN

231

84 +— 4400 d4<‘g "
lHe— G s‘L N saduoxy

03'1OV'197 SIS uo affy

0 :pueiado ajeipaww
H<——a2njeA

“y 19151821 20edsyiom payroads ay3 out papeoj

ST UOnONIISUT Y3 SUIMO][[0] A[SIBIPIWLT PIOM U3 UI IN[EA BIED 3Iq QT Y], ‘40240

S1=u=0 " 000O0OTILO0OO0OGOT OO

b+0020) |4 4 4 PN SRS TR S T TR RN S T S |

SL vl €1 2L 11 O 6 8 Z 9 6 ¥ €2 ¢ 0
enjeA'y 1 owiog

I

FLVIGINN] GVO' |

~19351821 oeds3iom payroads & ur () Jasutod

aoedsyiom a Jo (] S) s21s1821 smaess ay3 Suraes Joj apiaoad suononusut FYOLS
3y], "sanfeA paJisap 03 s1sIFal IZI[enIuT 03 pasn a1k suondONISUl QY'Y Y.L “Hed
Jayioue 03 wiasAs ayp Jo red U0 WO BIEP JIJSURI] 03 PISN dJe SUOONISUT AOJA Y.L

SNOILLONYLSNI ¥JASNVI.L VILVA

232

"pazu80031 3q [sadnarajur wrsAs yorym
[013U00 03 yseur 3dn.1133ut 33 SZIERIU 03 PISN ST UORONNSUT [INT'] Y.L ‘wonooyddy

¢ ySnoy (speas] idnusym sojqeug
S NN Iduoxy
£uo 2poo yysew idnuriayuy :smorg uo pafy

nvaigy ——————

is
TR W VA NS WY N T SN SR S |
Sl vL €L 2L 1L OL 6 8 £ 9 S v € 2 I 0 Ssug

1139351321 snyess aup jo uonod ysewr idnsolut S oJuY PapPEO] ST UOBINISUT
a1 Sutmofioy Ajeretpawnut prom I ut (ST-Z] S1q) N[EA 3q 4 JOPIO MO| Y.L, UoLUdQ)

(00£0) 0 0 00 00O 0O 1 I+ 00O O0OOTU OO
1 I I 1 I I v 1 I 1 1 ' A I L
SL vLEL ZL ILOL 6 8 L 9 S v € 2 L 0
enjea INI ooy
—s_ _I_ ZLVIGIWW] JSV]A] LANHUAIN] aVO'|

*}Seus e3ep JO IN[BA JIIUNOD E SE YINS JUEISUOD
weioxd e yam 19351331 aoedsyiom e dzifentut 03 pasn st uonINNISUI [YL suosoddy

233

-ureaSoad

a1 JO uoNos € J0j Base Kiowaw oedsyiom Y YsI[qEIs? 03 pasn st [AM'T uosvonddy
"d M 24 03Ut papeo] 3q 03 °'(0S(Q SIeNe)

00S0< IdM1 duoxy

SUON] smoss uo Py

dM-<——an[ea

(d M) sautod aoedsysom ayp ojur papeo] st
uononusut sy SuImo[[o} A[SIEIPIWI PIOM U U PIUTEIUD IN[eA 1q 9T AL HONBLI0

(oz3z0) |]o o o0 0 0 + + ¢+ 0 ¢ 0 0 0 0 0 O
' A L 1 L L 1 L i Il 1 A I i L

SLvL €L 2 LLOL 6 B L 98 S v €2 L O

onjBA dMT IOuKO]

IdM TR TR0 DV AVO']

234

“wred saypoue 03 wiaxshs s o 1ed suo wouy wep Jagsuen 03 pasn st AQIN UoNDIIdY

2d+—2+(2H) ‘iIHe—2z+(1H)
0N ‘CUN-—C(HN +2Us‘'+1He AOW
0:(2+SHIN ‘tH=—(2+SH)N e(s)c® AOW
0:(SANON ‘(1H)N<=——(SINO)N 1+'SINOD® AOW
(1N ‘eH-—(HN tW'ide AOW
0'ld ‘EH-—IY cH'Id AOW saduoxgy

03 pue ‘LOV ‘LD Py g mmis

0:CO)N

CON -—(ON
3981321
STEIS Y3 UT paJogs uostredwiod ayp Jo Insa1 Iy Ym () 03 pasedwiod st (e3ep °n)) piom
“Jajsuex) oy SuLing “UOREdO] *D Y3 UT PaI0IS EIEP 33 Sundoye InoyIm Py £q payroads
uoned0| 3y 03 pasIdysuex) st °n £q payoads uonedo] Ay UL piom Y | oNRLIdD

—2) s 3 a °, o o 1
A 1

1 1 " 1 1 A [S |
SLvL €L 2L ILOL 6 8 L 9 S ¥ €2 &t O

D" AOW Jouu0]

AON O TROW

235

do‘03'19V ‘191 paafy seg smoig

o:("o)an

(Co)an<—~_Co)an
*19151821 snyess oy ul paols e uostredwod
33 Jo sInsal 3y pue 013z 03 pasedwiod st 31£q 201n0s A ‘19jsueny A Suung “a4q
3uedyruSis 1sea] Y3 399[9s SISSAIPPE PPO $334q IUEOYUTIS IS0W Y 30I[IS SISSAIPPE UIAD
‘asImIay3Q) "pa393]as st 914q JuedyruSis 1sow ay3 ‘Surssappe 12351821 oedsyiom st 9 §1
Py £q payioads uoneso] 214q ays 03 palsajsuesy st °n) Aq passaippe ALg Y], uonvsdQ

) S 5L a LU O R U
1 1 1 1 1 1 [l 1

1 1
St v#1 €1 21 1L OL 6 9 ¢ v € 2 1t 0

PO"D GAOW ‘1ouoyd

aA\ON A AAOW

1
8 ¢

236

“J3YIOUE 03 UOIEIO] 14 U0 WOy s31Aq Iq § IdJsue) 0) pasn st GAOIN -#oHvnddy

"P3103]3s $314q 33 3Je BIEP PAUI[IApUN Y],

200F 20V0 vy
ovolL ovol eeie
€212 €212 8y
az0e azvs Y]
9L0¢C 9102 vioL
42fsuvsy snfy Kgosgsuy uonvI0Y
ua180) Suu0) Ksowapy

:5309pe a[durexs SUIMO[|0J Y3 IABY P[NOM SUOLIONIISUT 3SIY [,

v'8. GAOW
E'vIOL<® @AOWN ‘Sojduvxy

237

‘suonesado 214q Juanbasqns 10§ papasu Ji s314q aZueyosasut 0y pasy) uoyvoyddy

€420 2084 SWAWODEH € GdMS ‘Jduoxy
Jsyy elojeg

QuopN] oIS uo 3y

-padueyoxa axe 0 Aq payoads uoneso] Arouraws
Y3 38 pIom 31 Jo s1Aq JuedyruSis Isea] dys pue 334q JuedyuSIs 150w Y], UoNLLd)

(s* %1 +0090) s ss |+ +t 0t 1t 00O OO
L 1 L L 1 L 1 L 1 i L 1 [
SL yL €L S LLOL 6 B 2 9 S ¢ €2 1 O

9 9dMS U0

adMS ST avRg

238

"32UDI2§21 13¥] J0J SILIS Y} IALS 03 PIsn St | SIS ‘uoyvoyddy
€4 Ol pauigjsues s |§ € ISIS yduoxy
SUON] :mp1g uo 13y

H4<+——oI]S
:poytoads
32151331 3oedsyIom ayy ur patols axe 19351801 STIEIS A JO WUAUD Y | “woLIIdD)
SI5H>0
-] 0 0 t ¢+ 0 I 0 0 O O O O
(4 +0020) L1 PR W SR U SN A SR S U S |
Sl vt €1 2L LL OL 6 B8 £ 9 S v € 2 |t 0

Y IS1Ss -ouwoy

n_-w._-w SNLVIS TWOLS

239

*30Ua19J21 Ja3e] J0j 13yutod aoedsyiom S IS 03 Pasn St JM LS ‘woNvIddy
€HOWIPOLIBJSUBSIAM € dMLS -Iduoxy
QUON] SIS U0 13y

He—dM
:pagroads

13151821 soedsryzom ap wr pasoss are sazutod aoedsyiom I JO SIUNUOD Y |, UoNLLG0

SLSHS0

] 0Ot 0t 0L 0 0 0 0 OO
(4 +0veo) 1 PO YRS W YR W T W Y A TR
m— vl €L N— 1L 0L 6 8 ¢L 9 S ¥ €2 1 0

4 dMIS Jouloy

n_>>._.m HIINIOJ 30VASHHO A\ TOLS

240

AO ‘D ‘D3 LOV ‘1D paaffy g smvss

0:Co)N + ('O
CON+—CO)N + ("OIN
1019z 03 pasedwod

st pue uoneso| Py ayy ut paoeyd st wns Junynsal ay J, *Po) £q payoads ssaappe sy
3& pa3e30] BEP 33 03 PIppeE SI °0) £q pay1oads sSIIPpE Y3 38 Pa3LIO] BIEp Y |, UoNRLId0)

—v) s 5 qQ PL o+ 0 4
1 '} A ' 1 Il A /| i A 1
SLvL €L 2 LLOL 6 8¢ 9 S ¢ €2 L 0
L0 0] v Jouiso]
Y STOAY ady

"sjuswasmbas wisisks Auewr Jo§ azenbape aq [19s uoonnsur Jiseq ay 1, “suonesado
a1seq asay Sutsn padojaaap 3q 1snw suonduny [ednewayIEw pazedrdwos IO

"an[eA 33njosqe pue ‘uone3au ‘uoisiatp ‘uonesrdninw ‘(piom Jo 214q) uonoengns (piom
J0 934q) uonppe :suonesado onaunpue d1seq Fuimol[oj 3y uuojsad suononysUT ALY |,

SNOLLONY.LSNI JLLINHLIYV

241

*UO 0S PUE “UOISIIAUOD IPOD ‘UOHIPPE [EWIIIIP ‘UONIPPE pIOMIINWI

op 01 surex3o1d dojaaap 03 pasn aq UEd UORINISUL STY T, *SUOTIOUNY [EONBWIYIEW
Kuews 21exouad 03 pasnbai uonesado snsuryLre Jiseq Iy st uonippe Areutq ‘uoyvIyddy

0 st (enbs) OF
J1 pUE 097 ST wms 33 JO 31q JuedyTuSIs 3SoW 3 J1 335 SI (UL 1932318 JNIWPLIE) | OV 4x

"Tenba aure spugsado yaoq o 31q Juedyrudis 1sow a3 pue (PO JO 31q JuedyruSis
1SOUI Y} WIOJJ JUIIIPIP ST WMS Y3 JO IIq JULIYIUSIS ISOW Y3 JI 3135 ST (MOPIIA0) A«

i 0 0 0 4 0008 000v agov

8 8 0 8 8 0002 0008 0004

0 8 8 0 0 0000 0001 0004

0 0 0 8 8 100t 1000 0001
*10 o) o L9V ID7 ung to)w Cow

:sojdwrexa Suimoyjoy ayp Surpnis £q poolsiapun
2q UED S31q SNJEIS UO $309jJE Uonippe L1eurq *ased yoes ut () 03 paseduwiod swns 3y pIm

(@UIN-— (@Y + €Y '€ v
(@18Y DN~ (31GVDW+SH I18VID'S v isapduoxy

242

dO ‘A0 ‘D ‘03°19V 191 paafly sug smvg

0:("o)aw + ("o)an

Co)an <—("o)an + (o)an
"0 03 payedwod st 214q
wns 3y 1, *334q Juedyru3is 1seS] 3y 393[9s SISSAIPPE Ppo pue 14q Juesyruis 3sow oy
309]35 SISSAIPPE UIA3 Jey3 [[BI3Y "UOnEd0] 34q P ayp ut paceld st 234q wms ayy pue Pr)
4q passappe 214q uoneuUnSIp Y3 03 Pappe st °r) q PassaIppe 934q 301n0s Y|, o440

(—a) s 5 Q L0t
i Il L Il L1 1

1 1 1
SL vt €L 2l 1L OL 6 8 £ 9 S ¢ € 2 |+ 0

"o av ooy
av SaLAg day

243

*$9p0D T[SV SE Yons ‘sItum 3iq g 3sN IBLR EIEp JO swaisAsqns (QIm Jutfesp uaym [nyasn
aq ued 359y 1. “0066 243 U0 d]qe(reat suonesado 214q ay jo uo st gy suonoIddy

"s914q padueyp pue passaIppE U IJE SILIUS PIUIIAPUN AL,

8d12 8012 €212

ozed 0ztd oziz
uorsppy uossppy uoyw0y
saify o au0foq oivq Koz

£zIZ<@'021z<® av
:patprus 2q pinoys djdwrexa Suimojoj Ay ‘syIoM gV P MOY S O,

SH+—GH+(avDan s‘'avi® av
pHe—2+bH ‘(PN -—HEN+EH D' av duoxyg

244

*393s182a aoedsytom
33 UT PauTeIuod SSAIPPE UE 03 Juswade[dsip Jueisuod e Juippe Joj [nyasn si uonesado
Ue yong *133s132a 30edsyIiom € 03 JUEISUOD B PPE 0} Pasn SI UONINIISUL SIY |, ‘uonooyddy

398
3q [[im S)Iq SIS OV PUe LT 343 pue **)00T 03 SIU2)U0D 31 3Fueypd [[1m uononnsul
ay3 uaYp 'O SUTEIUOD QY J] ‘9 Jaast3al aoedsyiom Jo SJUAU0D Y3 03 °') SpPY
a<'e v duoxy
A0 ‘D 0310V ‘191 paafy g smvis
OeneA+H ‘He—oneA+Y
*payidads 12351331 2oedsHiIom 33 JO SIUIRUOD Y3 03 PIPPE St
uondNIsul 3y3 SUIMO[[0j A[IBIpaWLLT PIOM U3 UT PIUTEIUOD IN[BA 3Iq 9T Y I, ‘Uonnsd)

m—WGWO
E O—OOO—QOOOOO
4 +0220) a4 T R T TR T S S T

SL ¥t €L 2L ILOL 6 8 2L 9 S v € 2 O

enjeA'y [\
\ TIVIGEAR] G0y

245

"uondenqns A1euq 3q 9| sapiaoiq ‘wonpoyddy
"0 03 33531 2q pom YIIYm [enba 3d30X3 T 03 135 3q PNOM PadIYE SIq STIEIS [[Y

(szz1-¢228) 3449 €zz8 TVAM3IN
seel seel AYAQT0
Suzu07) Suatu07) uon0Y
uonIviIgng 431l - uowpvugng asofog Kiowapy
:s3[nsas ajdurexa Suimoyjo} 3y ppaif pnom
WAMIND“IVAGI10D s syduoxg

A0 ‘0 D319V 19N parafly sug swoig
o:COIN - ("N
CON=—C(O)N - (PO
*0 03 pasedwiod st 3[nsas 3y |, *P) UONEI0|
uoneunsap ayy ut paoe(d 3nsas a3 Im (P £q payioads uoneso]) elep uoneunSIP
oY) woyy pasdenqns st (*n Aq payroads UOLIEIO]) BIEP 3Iq Q] I2IN0S Y |, 40D

-—9) s 5 a LT T
1 i L i - 1 1 1 1 1 1 1
SL vi €L 2L LLOL 6 8 £ 9 S ¢ € 2 L+ 0
PO S 1owsog

S0 Lovuldang

246

9y <+—— 1 +94
o:(ox)aw — 1y
1Y +——(94)an - LY L'+9, as ‘rouog

d0 ‘A0 ‘030 1OV ‘191 paaffy sng smvig

o:("o)an - ("o)aw

(*o)an-— ("o)an - "o)an
*pasn st 19381821
3y3 o 214q 3ueoyruBis 1sous syp ‘pasn st Suissasppe 1a1s1801 aoedsytom J1 -a1hq wesyrudis
1SB3] 313 303135 $3SSAIPPE PPO pue 314q JUBdYIUSIS ISOW Y} 19[S SISSAIPPE UIAT]
"0 03 paseduwod st 3nsaz oy [, *Po) uonedo] 214q ut paserd Insas oy Yam °n) q passaippe
214q uoneunsap ay wolj paroeNqns st °5) Aq passaIppe 314q 30In0s Y|, uon4adp

(—0) s 5 a LU FE R
'l A 1 1 i i 1 A [
St vt €l 9 6 ¥ €2t o

’5'n as wwuoy
gas ST ovaTEng

I 1
gL 1L oL 6 8 ¢

247

“waysAs
3y Aq pasmbau axe suonesado 31q g usym uonsenqns Lq sapiaoid gg uonoyddy

*0 39 P[NOM Pa1d3gE S STIEIS JOYI0 Y I[TYM | 03 335 3q P[NOM 31q SIEIs (Ut J33ead
feoiSo]) LT 2L 's934q padueyo pue passaippe Syp PIIEJIPU SAQUD PauTjIopun Ay |,

vv03 prel 1']

£2iy £z1e azi

aiel aiet 94
uosInLSUy UOKINAISU] uonmo0Y
423fy qua07) a.40/2g Su0D) Kowsapy

:3nsas sdurexs Suimofjoj a3 aaey pinom uonesado sy,

248

"uonesado sty sapnpout [eanewioine suononsul 334q uo Suissarppe SunuswassuoINy
"S13)UN0) 314q JUSWIOUT 0] PUE SISSIIPPE 31AQ IUSWIOUT 03 Pasn St JN]] UoNwIyddy

tHe—1 + (1Y) L ONI
Q8VDN -=——1+(1aVDN 18VLI® ONI ‘sydwoxy

AO ‘D ‘D3 1OV U9 paraffy sug smvig

0:1L+(OW
(ON<+— 1+ (O
*0 03 pasedwod pue uoneso| 1) ay3 ur pasejd
S13[NS3J Y3 PUE PAJUIWAIOUL ST) A PAIEDIPUL SSIIPPE Y I8 PIILIO| BIEP Y |, 404570

(—s0) S 58 Jo ¢+ + 0 L 0 0 0 0 O
Il

[" I S W | P B S |
SL v €L 2L LLOL 6 8 2L 9 S v €E 2 L O

9 ONI Joudoy

INI TN

249

*A[[eonEWoINE SIY3 SI0P SUONONLISUT PIOM
uo SunuswaIdUIoINE YSNOY) ‘sISSIIPPE PIOM JUIWIIIUT 03 PIsn 3q UL SN |, ‘uoyvIyddy

GHe—2+(SH) S L1ONI Iduoxyg
AO ‘D ‘D3 °19V ‘191 Paafy sug smoig
0:2+©OWN

ON=+—2+0ON
:0 03 paJedwod ST pue UONEJO] ©) Y3 B

pPaJ03s ST 3nsal 3y pue) £q payroads UOLEdO] Y3 IE BIEP Y3 O3 PIPPE S OM], U0yD4d()

M . 1 Y W T T UR T S |
SL v EL 2L LLOL 6 8 L 9 S

(—¢0) S st |t ¢+ Lt 0L 0O 0 0 0 O
1
v €2 1 0

O 10Nl Doy

1ONI o T]

250

*13pJ0 Sutpu3dsap ur sassappe 314q ySnoxp
3}I0M 03 JO SI33UNOD 23Aq JUIWIIIIP 03 PISN UIYJO ISOW ST UONIONIISUI SIY |, UoNmoyddy

(18YDN -— | —(IgYDN 1avi® 93a yduvxy
AO‘D'D3‘LOV ‘191 paraffy sng snivis
0:1-(OWNW

ON-—I1-0OWN
:0 03 paredwiod ST pue UONEIO] JBY) J& PAIOIS

st 3[nsaa 3 ‘0 £q payyroads uonEd0] Y3 I8 BIEP Y3 WOIJ PAIJBNQNS ST AUQ) UNLLIF()

(—80) s s o oo 1t 1 00O OO
i 'l | U T T VR U SR R S |

A A
SL vt €L 2L LLOL 6 B L 9 S ¥ € 2 1 O
5] 03Q w0y

251

*39pJ10 SUTpuIISIP UL SISSIIPPE pIOM
YSnouy3 I0Mm 03 pUE SISUNOD PIOM JUIWIIIIP 03 PIsn St UORINNISUL SN |, uoyvoyddy

gd<—2z2—(eH) € 103Q ‘Yduoxy
A0 ‘D ‘DI IOV 1D Pl spg smvis
0:2-(OW

®ON =—2-OWN
:0 03 pasedwiod s pue UONEJO] JBY3 IE PII0IS

S1 J[nsaJ 3y} pue o) £q payroads UONEIO] I IE BIEP Y3 WIOLJ PIAJBNIQNS ST OM |, 60104300

(--g0) S sg f+t 00t +t OO0 O0 OO
11

1 A1 'y ' A 1 'l A 1

'l 'l
St v €L 2L LLOL 6 8 L 9 G ¥ €2 L O

9 103a Joukoqd

262

"s1aquinu 31q 91 Jo Juswd[dwod s,z 3y3 w0y 03 pasn st N wonmIyddy

"1 03338 3q 03 $3Iq STIEIS | HY PUE .57 Y3 ISNED [[IM pUE *'Jq)¢

01 paBuBYD 0 SIUARUOD Gy Y3 ISNED PINOM UOLINLISUI SIY IZHEV PAUTEIU0D G J]
SH<—(SH)- § ©aN Jduoxy

(*'0008 = puesado uaum Auo 18s AO) AO ‘D3 ‘LOV ‘LD PPy sig smoig

0:(ON-
(OIN~—(OIN -
:0 03 paxedwiod st yynsas ay |

“uawd[dwod s om3 i1t Aq paserda st 0 q payroads ssaippe oy 1e I8P Y |, U011043d()

(--50) S 5y 00 1L 0t 0 0 0 OTUO
TR S| | I WY A W W W NN U |

1
Sl vt €L 2L 1L OL 6 8 2 9 S v € 2 1 0
) 93N Jows0,y

93AN N

253

‘uoneondninw se yans sunpLiose

snsunpLe pauSisun Joj pasn 3q PJNOO SIY], *3N[eA N|osqe SH Aq E3ep a3

aogidas ualp pue O UOREDO] UT EIEP Y 1593 03 PISN ST UORONIISUL S |, :uoywYddy
*] 03398

aq [LT PUe *'$00 03 padueypd aq [[1 3t 'OEAA St LSIT+ LY 38 TP 3 J]
Asn+ 8N =——Iusn+znl (D1sn® sav duoxy

(°'0008 = pueiado uaym A|uo 18 AO) AO ‘03 ‘1DV ‘1D paaffy sg smois

®ON —I(ON!
0: (O
:uonedo] O 3t ur paoed st e3ep SIY JO n[eA ANjosqe
ayp uay |, 0 03 pareduiod st 5 Aq payroads ssaappe AW Ie wIep Y |, ‘uoN2Id0

(—20) S :.o._-oeooo
(1 4 1 2 1 3 41 1 Il
m—v-n—wp:c—onuomvmm-o
o say Joukoy
ANTVA LLNT0SayY

254

*'10003444510N00Ud

ANVIINdILINN X H3NdILINN
1+ °y 9

*1 4 pue Y sssias aoedsysom uy paoerd st (sq g¢) 3onposd

Areuiq pouSisun ay |, -y 1915131 aoedsyiom payads ayy ur paureIuco erep 31q

91 2 4q parjdninw st °) Aq pereusisap sso1ppe oup I €IEp 3q 9 YL, uo24IdQ)

——¢) S 51 a 0t 1t 00
L4 4 1 1

| T i 1 1
SL viL €L 2L LL OL 6 8 £ 9 S ¢ € 2 1 O

"D AdWN ooy

AdIN TR

255

-uonedrdnnus

uq z¢ Aq 11q z¢ ® se yons spuediduinu pue ssardnnw Ja3re| Suiajoaur uonestdnnw
wiojsad 03 Aem € yons ul pauiquIod 3q UEd SIoNPodqns 31q Z€ YoNS 1243
-voneoydninui Axewq 1q 91 Aq 31q 91 uwioyad 03 pasn 3q ued AJIN wouLIHIdy

91y G0 UTEIUOD 03 9y PUE °')00Q UTEIUOD 03 G ISNED
[[1 UOBIONIISUL ST ‘917 () SUTEIUOD G PUE *'5000 St MAN UONEO] 3¢ E3Ep 33 J[

§'MaN® Adw duoxy
Suop] ‘smoi§ uo 1y

256

AN3aIAIg

HOSING H3ONIVN3Y AN3JILONO

(o 1+Py Py

Py UI pauTeIu0d

BIEp 3y} ueyy ..S«,o._m S O 38 JOSIAIp Y3 J1 A[UO JNDO [[IM UOISIAIP 3], *ISPUTEWI
31q 9T Y3 SUTEIUOD | + Py ddedsyiom pue Jusnonb aip sureyuod uarp Py 19151801
soedsipiom sy | °0 Aq poyroads ssaippe oy 1 paurEIu0d Eep 31q 9T Ay £q papiatp
SI T+ 7Y pue Py 19151821 20edsiIom UT PIUTEIUOD JOqUINU 31q Z§ Y], UoNRIGD

(—¢) S 51 a L 1L L L 0o

1 L I Il A A I 1 L

1 1
St rt €1 8 L 9§ v €2 1 0

u'® ANIQ rowsog

Ald oy

i
el 1L 0L 6

257

*Joquunu
3q 91 € Aq Joqumu 31q Z¢ € Jo uorsiatp Axeuiq oiseq sapiaoid A1Q ‘uonroyddy

0 29 prom
AO "*'€000 UTEIUOD 03 £3] PUE °*70(Q UTEIUOD 03 7 ISNED [[IM UORINISUL ST

16000 S DO SSIPPE I8 EIEp AP pue *}(JO((SUTEIUOD £ PUE () SUTEIUOD 7 JT
2001® NG yduoxy

"padueyp J0u are | + 7Y pue By 195 st AO JI **d
UI PSUTEIUCD EIEP AU UEL SSI] ST JOSIAIP 913 J1 335 SI (AQ) MOPIIAQ Smizi§ 1o 122l

258

0310V 191 parafy mg smois
o : Coln
“paSueydun
UTEWaJ SUOREDO] Y30q JO SIU3U0D Y |, *Pr) £q passaippe e3ep 3iq 91 Juswaduwiod
s.Z 3y 01 paredwiod st °) £q passaippe wep 1q 9 uswddwod s 7 3y |, uonrsadp

—8) S 5 a 1 o o o 1
1 Il 1 [l L 1 L L A 1 1
GL vi EL 21 1L OL 6 8 £ 9 S ¥ € 2 L O
L) 9 Jouwioyg
SQY0O A\ TUVANO))

*SUORIPUOD W] JO puewrwiod yndut

Jo uonru300a1 UT PUE ‘UOISIIAUOD JIQUINU ‘SUNILIOS[E UOISIAIP Jo s3dA) urersad
U1 pasn aJe suonesado yong "314q JO PIOM JIYIOUE YIIM JO JUEISUOD 30UIISYRI
e (s wop Surreduiod £q s314q J0 SpIoM 1593 03 Pasn 2J€ SUORINLSUT 95Y |,

SNOLLONY.LSNI NOSIIVdAINOD

259

‘uonu802a1 usaned pue ‘uoISIFAUOD Joqunu
‘UOISTAIp SE SUOTIOUN) WAASAS YINS UT SINID0 SpIoM oM} dredwiod 03 pasu 3y |, uoymnddy

0 t 0 0008 4442
3 0 0 dd44L 4447
0 0 I 4444 0008
0 0 . 0000 0008
0 4 I 0000 d44.
0 0 I 0000 . 4444

0F 1o U9T oy L uonmoo]
wossnduo) Jo symsay us o 10 o0
‘synsal O—QEGXO wcm\sO——Ou— Yl sey uononIsut sty J,
410) 9 3duvxy

260

a0

¥(214q ppo ue sassappe 7y Sutwnsse) jo synsai [eardA1 oy yam
%'t 80 durxy
*214q 221n0s 3y Ul SIIq JO JoqUINU Y3 UO paseq st (Kired ppo) O
do‘'03'1OV ‘191 Py g smvis

(Co)an : Colan

:Pry Aq passaippe 314q 31q § Juswadwod
s,z ay 03 pasedwod si °n) Aq passasppe 314q 11q g uswRdwod s 7 Y | wonnsadp

() S 5L a ° |t 0 0 1
| 1 1 Il 1 Il L 'y

A 1
Sl b1 €l 8 L 9 S v € 2 + 0
"D 80 puwuog

SALAG TWVANO,)

1
2L 1L Ot 6

261

‘swajqosd uonmuS0s91 pue uoISI2AU0D [e1>ads Joj suostredwiod 314q Suruniopsad
Jo sueaws € sapiaoad gy ‘pasmbas axe suonesado 31q g d19ym sased u] wonoIddy

*passappe 214q Y3 23LIPUL SALIUS PIUTISpUN Y |,

! 3 0 0 3200 003Z
1 0 0 ¥ 3734 0008
[0 (1] [§ 0044 0008
! 0 b ! 0044 60dZ
0 0 0 8 0044 4444
do o7 1oV I9T owod (CI)W op 1Y

uosupduso) fo synsay

262

"SPIOM PUBWIWIOD 3ZIUZ0031 03 JO PapaadXd
10 32w u3aq Ay sw] wresBosd Jo walshs 1 935 03 wEp 1593 03 pasn St [uoyLIIdy

"1 03335 3q [[Im (LOV) Uelp 1932218 onounpire

PUE 0 2q [s31q (LOT) weys 3938213 [eoiSof pue (D) [enba aup “*igg 7 sureuoo gy j1
oced<‘e 10 duoxy

03°19V 191 powaffy sug snvss

enjeA:y
:uondnAsut ayy Suimojoy A[arerpawruur piom
P3UTEIUOD IN[EA U 03 SIUUOD JAIst3a1 oedsytom payoads aup saredwiod [wonniadp

m.WmWo c 000 L 010OGOTUOT OO
(4 +0820) 1 PR SR TR TR U T TR TR SR TR

1 I
Siwela Lol 68 96 Vv EZCTL O
eNnBA'd 10 1ouLoy

10 ALVIGIAR] TAVARO)

263

"SPIOM BIEP JO $109dSE UTEIID SUTWIEXS 0} JO swalsAs-qns
UTELISD JO STIEIS Y3 oY 03 s3q Jo sdnoiF 1533 A[9ARd3|as 03 pasn st D)) wonvIyddy
"] € Suresuod osfe gy ‘(suomisod pautjsapun)
] © SUTEIUOD BIBP YSBWI 153} Y3 IIAYMAIIAS 20UIS | 03 335 3q pinom (DF) [enbs
01100000 11000}11 =8Y
0100 0000 1000 0011 =%SeW 1181531
1701 SuTEIU0d | 1.1 SH.L UOHEIO| pUE *'g)EF SUTEIU0D 8y I

8'LELS3L® 200 Fduoxy
03 paafly sug smois

"I 03395 3q [[im 31q sraeas (DF) [enbo o ‘eaep

*D 3y 4q pa1dajos suontsod 31q Y3 [[e UY SIUO SUTEIUOD Y JI ‘USYY, "y UI PAYOIYD q [[im
elEp °O) 33 UI S3UO UTEIU0D Jeyy uonisod 31q 3y Auo ‘st Jey | -y JsiSas oedsiiom ur
Pa1s21 2q 03 SIIq Y} JOJ YSBW € SE IJE °) Aq PIsSIPPE UONEDO] Y3 Ul BIEP Y |, ‘4024900

—=2) S ,p a 0 o 0 o o
1 A 1 1 L L
m, vl €l N_ m o. 6 8 L 9 m vy € m i °

u'® 000 ooy

264

"uonon.usul 5D Y3 03 e[S ‘uoNDINddy
"S9U0 SuTEu0d eIep I 19,1 SH.I. Y3 3eys suonisod ayy ur 019z a1 (uomisod
X 3Y3 310u) gy JO SIq Y3 [[E JI0U DUIS 0JIZ 0} 3351 3q p[noa 11q smess fenba oy

X —
1000 0000 1100 0100 =8Y
0100 0000 1000 00F L =©jeq 111531

“'IOE SureIu0d UOLESO| §Y Y3 PuE *'ZOT D) INJeA Y3 SUIEIUOD UONEDO] I I LS Y I
8'L181S31® 020 yduoxsg
03 paraffy sug smoss

"I 03335 3q [[1 31q sraEls (D) [enbs ays ‘suonisod 31q pards[as Iy [re

UT $30.9Z SUTEIUOD ¥ JI USY], "y Ul payd3yd aq 03 suonisod 1iq 3y3 1€ BIEp °0) Y3 UI SAUO
ute3uoo Jeys suonisod 31q 3y A[uo ‘st ey y, -y 13181801 soedsysom payoads ayp ut passa
3q 03 S31q 33 10j YseW € SE 308 °D) Aq poyioads ssaIppe ay3 ul Paredo] eiep ay | uonzsady)

(---2) S 5L a 10 0 L 0 O
1 1 1 1 1 1 'y A 1 I
¢l 1L oL 68 ¢ 9 S ¥ €2 10

u“o 020 vuiog
QN O SNIGNOJSZH¥0)) S309d7 TUVAWO,)

1
St vl €1

265

* axe sandut 709 31 A[uo | u s3nsas uonesado NV U B [[E93Y

O:onfeA ANV H
He——a=~8neA aNvV d
=y J91s1a1

oy ur paded st pue 019z 03 paredwiod st 3NsS3I 31q 9T YL, “UOHONNSUL Y3 SuImo[[o)
A[orETpoWIWIT PIOM Y3 UT PIUTEIUOD IN[EA JUBISUOD K1Bulq 3Iq 9T 33 Jo SIq Surpuodsaii0o
oy Im PINYV AjeorSof aue y sarstaa aoedsijzom payroads 3y Jo Sq Y I 4024340

SI5H=0 *] 00 1L 0O O0OUOO OO OO
(4 + 0v20) L 41 PN U T U WO U VY S WU SN |
GL L €L 2L LLOL 6 B8 2 9 S v € ¢ 0

eneA'Y IONY ouko]

[NV TVIGEN] ANV

“eyep wsAs uo pauriojsad aq ued uonouny
uesjooq Aue ‘a[qe[reat 238 (YOX) YO dA1Sn[xg pue ‘LYAANI YO ‘ANV 9IS
“warshs Y 0y d150] uesjooq uniosad 03 10ss3001d Iy MoO[[E suonINNSUT AF0] YT,

SNOILLONY.LSNI JIDOT

266

‘dnoi3 31q 1noj e se yons ‘piom sy jo suonzod
93g[0s! 10 s31q [3uls 1531 03 pasn 3q ued sty |, ‘padueydun (anfeA ul SSUO YIM 3s0Y3) SIq
P3393[35 Y3 3AEL3| PUE ISIIIUT JO JOU JJE Iy} $Iq [[e 0132 03 pasn st [NV ‘uonvoyddy

"1 03 33§ aJe S)iq SMIEIs | Oy pue 197 Y] "0y ul paseid st anpea sy |,

*'€00¥ = L LOO 0000 0000 00LO =anjeA ANV 04
Lot oLot 0100 10l =04
1100 0000 lott OLLO =8njep

#*'¢00¢ st (£0A9) ANV (AVzQ) usy *'gyzQ sureluod () 1as18a1 aoedsyiom
£0Q@9<‘0 IANY ‘/duioxy

03°19V ‘191 panaffy sng smoss

267

‘washs ayp ut d180] YO Y uswaidwt 03 pas() ‘uoywIHIdy
'] 03 33s Sutaq LT P

enleAHO SH= *'gvdd=110L 010l LELL LELL
LLI00 0000 LOLL OLlO=9nPeA
L10L 0oL 0100 10Ll =SH

*'gy] 03 paSueyd 3q [[IM ¢ U UGy Z(PIUTEIU0D O JI
£009<‘S MO aduoxsy

03 ‘19V ‘191 paraffy 9ig smois

-1 & st sindut 3y Jo Loy2 J1 | & Ul IMsas uonesado YO P 3P [[e03Y

o:enepA HO H
Y<——=anjeA HO H

1019z 03 paredwiod st pue Y Ut paoeld st 3Nsas 3q 9 Y], "UOHINNSUT SUIMO[[0}
A[ore1powun pI1om I UI PAUTEIUOD JUEISUCD AIeulq 31q 9T 3ys jo siq Surpuodsaiiod
Iy YaIM pIYO e Y 19151801 adedsysom payioads 3 Jo sIq YL, uon042d0

SI5U50
p o o c
(4 +0920) \ t \ 0ot - o o c c o

mp!n—m.:o—meu wm vam —o
enjeA'y IHO Iouioq

40 TV WO

268

"wasAs 3 1oy a130] YO Aisn(xd 33 uswajdunt 03 pasn st YOX uonvyddy

1 & st sandur a3 Jo suo Kguo 1 | e ur
3[nsa1 [[1m uoneado YO FAISN[IX3 AP IEY) 0N | 03335 3q [[Im 3Iq SIEIS L] Y pue
*'6vd8=1001 0l01L LLLL 110l =2H HOX (3ONVHOIW
oiot oLotL 0L00 0Ll =¢cd

100 0000 LOLL OLLO=Eled IONVHO
Tovdd

03 paBueyd aq [[im 7y ‘*'VYZ(SUTEIUOD 7Y PUE g9 SUTEIU0d FONVHD UOnEd0] J]
T'IONVHOD® HOX -Iduoxy

31OV 191 porafly sng smosg

0:°" HOX (O
‘He—"d HOX (O
:(03 pasedwiod st pue Py 12151321 vedsyIom

ur paoeyd st 3nsas ay |, Py Jaisi3aa adedsyiom Jo sua3UED Iy pue °ry Aq passaippe
e3ep 3y3 Jo s31q Jutpuodsa.iod usamiaq pauriosad st YO AISNPX3 Y], UoyrLad(

=—2) S 5 a 0t 0t 0O
| T | A 1 1 | W W S B |

1
GL vL ELZLLLOL 6 B ¢ 9 S ¢ €2 + 0
L Tho) HOX 100y

d0X JO TAsADXY

269

*BJEP WAISAS 313AUL
01 J0 ‘szaquinu reuiq 3iq 9T Jo uswa(dwod § [Y3 ULIO) 03 Pasn st AN suonomddy

*1 03 395 03 3q sTIEIS LT
a3 Sursned “91((),J] 03 SIUANUOD P a8ueyd pnom uononnsul Ay °*§,J00 SureIuod 11y JI
L ANl Fduoxy

0345V ‘191 paafly sug smis

0:(9)
(O — (O
:UOIIED0] ©) Y} J& PJ0IS SI PuE () 03 pasedwiod st Jnsax
ay I, uawajdwod Jtoyy £q paoe[das ase) Aq passaippe elep Y3 JO SIq Y, u031043d0)

(——50) S s g J+ 0+ Ot 0O O O OO
1 1 R T T W T R S S N

A i
GLyL €L 2L LLOL 6 8 £ 9 6 ¥ € ¢ 1 0
[5) ANl 1oukioq

ANI T

270

'suonesado dn-1ress waisAs Sutinp o1az 03 suoneso|
Ksowour 3zireniut 03 pue () 03 siuswngre wojqosd 33s 03 pasn st Y1) uonvoyddy
(1L <—"0000
STIEY ‘T 1Y JO SIUAUOD 3y £q PIssaIppe UOKEIO] Y3 JO SIUAUOD Y} JEI[O Pjnom
Lhe HID duoxy
SUON] :smp1s uo affly
(9IN ~—"'0000
*D 4Aq payrads uoneso] L1owaw sy ut paseld st *1900Q uonsdp

(——v0) S st L 00 L 0 0 O0 OO
1 A4 4 1 1 1 1 194 1

1
et tL oL 6 8¢ 9 S v €2 t o0
2] 19 ..NgQuN

VI

A
St oyl €1

27

A1) 03 Je[ung :uonwonddy

[3q 03 [TY JO S3q [[€ IsNED p[NOM
Ll 013§ yduoxy

suoN moss uo pafly

(OIN ——"4344 D Aq payroads uoneso| Ksowaus ay ut paveld st 444 woNmdO

IER

(—=10)

1

S

s jJo 0
L1

L1
1

0 0 0 0O

(!

St vi

1
€L

1
2t 11 0L 6 8 (L

9 S

v € ¢

[S
9 013S ouiogd
QO 0L 155

272

*KJowsw Ul spiom om) AUe UIIMIIQ UOTIDUNY YO Y3 SIPIN0IY ‘uonvIddy
[03335 3q [[im Nq smIEIs .97 Y3 PUE *'yV.4] 03 paSueyp 3q [MAN
UONEdO[JE SIUUO0D Y3 *2'()()] SUTEIUOD £y puE °'yY Y SUTEIUOD A\FIN UONLEJO] J]
MaIND'e 00s qduoxy
0319V 191 Parafy g suoig
0:("0)N HO (O
CoN+—-=C"2N HO (O
‘uonEd0| P9 3y ut paoeld st

pue () 03 pasedwiod st 3nsas 3y |, *Pr) Aq passappe ezep 3y pue °o) £q passaIppe elep 3y
Jo s11q Sutpuodsa.1100 uaamiaq uonesado YO 3y suuioprad uononnsut sy | uonRd(

(—=3) s U a o Jo 1 o1
1 ' 1 1 1 | 1 1 1 i
SL YL EL 2L LLOL 6 8 L 9 S v €2 4+ O

O N0) 008 -oukoy

J0S NGO SN0 T35

273

*s314q wiaisAs uo uonduny YO [e180] 3y sapiaoxd gHOS Y.L ‘wovvIyddy

"] 03395 3q [[Im 31q STIEIS [T Y pue *p7] UTEIUOD [[im Y JBYs 05 Py 03 padueypd
3q [[im 8Y Jo 234q edYISIs 350W Y3 V7YY SUTEIUOD GY PUE P'ET (] SUTEIIOD G I
8's 800§ yduoxy

d0 ‘03 °1oV ‘1971 paraffy sng oS

0:("m)an Ho (‘o)aw

(Fo)an-— (fo)an Ho (‘o)aw
:Pr) UONIEDO] UT
paoerd pue () 03 paredwod 3[nsas sy yam Py £q passasppe 21£q ay3 pue °) £q passaippe
214q ap jo snq Suipuodsaii0d usamiaq paurioprad st YO [ed180] Y |, wonviId)

(=) s 5y a L N O S S
L i A A Jl 1 L

A 1
Sl v €1 9 6 ¥ € ¢ 1L 0

14} ——.o_. 6 8 : L
*O"D 8I0S YouUi]

moom A1Ag ‘ONIANOJSTYUO)) SANQ) LIS

274

03°10V ‘191 Pl spg smoss

0:("D)N aNv (‘o)
CON+—~C"2)N aNv (DN
“uoneso|
PD 3y ut pa103s ST puE 0132 03 Pasedwiod ST 3NSAI Y T, Pasea[d e (°n) £q passaIppe)

EIEP 921n0S 343 JO S3Iq 3Up 3y 03 puodsariod Jey3 (P Aq passappe) esep uoneunsIp
Y3 Ur 31q 3y [, “uonesado SIy3 10 YSEW € SWHI0) °0) Aq PassaIppe BIep Y uonsId)

(=) S 51 [¢] L o o 1 o
'l L ' 1 1 L L 1

' L 1
SL vLELCL ILOL 6 8 2L 9 S v €2 L 0
"D 0z8 ‘1HUMOY
ONw SNIGNOJSIUN0,) SAOUTZ OL 135

275

‘uononusur 7S 3y Suisn
Aq pareapd aq ued 31q 1sanbaa adnaayur aup ‘paoialas usaq sey idniisyur ue uoym ‘sqdurexs
JoJ ‘SpI0M E3E JO SIIq Je3 A[oAnd9[es 03 JoururesSod aup smolpe OZS ‘wonvddy

"PaJea[D 3 03 38 S YOIYM SIEDIPUT SILIUS PIUTISPUN ST, ‘396 1q SMIEIS L] AP 1M

*'gv26 =000t 0L0L 0100 1001 = Unsey
0L0L OLOL 0100 LOLL=¢€YH
7100 0000 TOTT OT10 = (%sen) SH

1918y776 03 98uByd 03 Ss3UAIU0D
£3 3Up ISNED [[IM UOHONNSUL ST **'yyZ(SUTEIUOD £ puE °'gQ SUTEIU0d S JI

e's 028 ‘Adwoxy

276

's234q wa1sAs Jo s31q Jo SuLres]o 3ARI3|s sIPIAOI] UoNDIddy

V0 03 3 SurSueyo miep [.SH 1, JO sNq 1noy
3SJY 33 JEI[D [[IM UORONIISUL 3Y) ‘°', 77 BIBP I3 SIIBIO0] YDIYM SSIPPE %o UE SUTBIU0d

LSH.L uonedo| pue ‘') I BIEP Y3 S3IEI0] YDIYm SSAIPPE Zp0 U Si G] [UOLIEIO] J|
1s31®'sL1g® 8028 ‘Iduoxy
dO ‘03°1LOV ‘191 paraffy sug smvsg

0:(*0)an anv (‘o)aw
o)aw-—C0)aw anv ()aw

:914q Py 3y ur paoeid st pue 013z 03 paredwiod st 3nsal 3y |, *934q °0) Iy ur duo

24 Jey) S)q AU ATe PaIed] 3q [[IM Je A4q P Iy Ul s3Iq Y |, PO Aq passaippe hq
3y Jo s31q uTelI3d uraeapd Joj ysew e apiaoad [[im 0 £q passappe 214q 2y |, ‘uonnsadp

—9) s 8 a L} 101 o0
1 1 1 hd

A 1 1 TR B |
Si vl €L

u.s 9 S v € 2 1+ 0
Po'D @0zs ooy
mONm SALAG "ONIANOJSA¥Y0)) SI0UaZ OL 13

1
Sl L O 6

277

90319V 191 paraffy g smoss
H

0 = -+
St 0

:019Z 03 pasedwod st Jaqunu
payIys ay 1, :1q (31q JuedyruSis sows) uis ayp ypim uonisod 3iq paresea ayy Burfy ‘sown
) S payrys axe y 19351821 dedsxsom payroads 3yl Jo SJUNUOD Y |, UovLd)

(—80) L] o) 0O 0 0 t 0 0 O O
1 1 L 1 PN NS SRS SN S S |

1 1
SL vL €L 2L LL OL 6 8 ¢ 9 S ¢ € ¢ |t O

wo'y vus “Joukiod
<W_w SIIIWHINY 1HOTY LIHG
31q snyess () K11ed Y3 YaIm 31q udAId

€ QUIWIEXS 0} JOPIO UT PIOM 3Y} Ul S3Iq JO UONEJO] Y3 3ZULLIEaI 03 pue AIOWIdW Ul spIom
uo uorsialp pue uoneddunw Areurq afduns wiojsad 03 pasn dse sUONONIISUT 353Y |,

SNOILLONY.LSNI LAIHS

278

“yuol Aq uosiatp Areuiq sapiaoad vys -wouroyddy

0= A11eD puE Jos 8q PINOM | DY PUB | D HIUS GH U} Jeyy
| = Au1eD pue '18s 8q piNOM 157 8yl HIUS /Y 8y} Joy
6661 = LOLO LOLO LOLO LOOD = HIUS JouY SH
**GGSG5 = 1010 LOLO LOLO LOLO = HIUS 8I0jeg GY §i
*v334=0L0LOLLLOLLL LiLL=WUSI8YY /Y
*'vvv8=0101 0LOL OLOL LLOL = HIYS 2J0)0g /H §i
(Q st uondnNsul e Ut 3u)) suonisod 31q g payyIys
3q 03 £ 1351821 5NED [[IM UOHINIISUI PUOIIS Iy} USY) ‘°'Q UTEIUOD SHQ INOJ ISEI] ()Y J1

0'L wvus
4Bl suonsod 1q Z 54 HIYS e's wvus yduoxy

"pawiopsad st yyrys uonisod 31q 91

€ ‘0 2TE $31q IN0J 383U PUE JuD) y30q J] *(1211331 3oedsjiom Jo saiq JuedyruSIs 1se3] Jnoy
Y3 WI01J UINEI ST JUNOD JIYS Y3 3SED YIIYM UI 0IZ ST JUD) SSI[UN PIYIYS SIIq JO JoqUIMU
ay3 sayoads (G 03 () WOy UOHONIISUT 3y UT PIUTEIUOD Jaquunu) Ju?7) gy Jo soqunny

279

1ol £q uoneodnnu Lreutq suuiogiad 7§ :uowooyddy

"PSYIYs 31q ISE[Y3 JO AN[eA I3 ‘013Z 3q p[nom K11eD) ‘135 03 SIq (AQ) MOPIAA0
pue (L977) wetp 133e13 [eaiSo] (1Y) Uetp Jereaid snaunpiLe syy uisned YOIV
03 SJUJUOD SI1 IJUBYD P[NOM UOTIINIISUT A °'/ GET SUTEIUOD O 39351821 2oedsyiom J1

S0L VIS ydwoxy
AO ‘D ‘D3 1OV 191 Py g smois

]

St 0

:019Z 03 pasedwod st JaquINU PIYIYs

Y3 puE 3J3] Y3 03 INO PIYIYS 31q ISE[Y3 JO IN[EA Y3 SUTEIUOD ALIED Y], "S0IIZ [PIM
suonisod pazeoea ays Surj[y (0Y JO $3q noj 35e3] 3y £q payroads sowm Jo Jaqumu Ay

‘0 =13u7) J1 J0) SIWN JU7) Y3 PAYIYS e Y Ja1s1301 30edsHI0oM JO AU |, UoNLLIH)

(—v0) L} o] 0O L 01 0000

1 1 1
Sl v ElZl 1L Ol 6 82 96V E€Z L O
Wo'd VIS ouod

V1S STy T 10

280

1oC AQ UOISIAID Areuq suiogiag uonoonddy

*44L=10LL LLLL LLLE LOOO= WUS Jayy 0Y
"J34d=LLLLOLLL LLLL LELL =WUS 810jg OY
7T 01398 S1q O

PUe ‘LOT ‘LOV 34y Yaim ‘1] 2W0d3q P[noMm SIuIu0d 3y “°' J7] PoUTEIu0d (Y JI
€0 WS Iyduoxy

003°19V 1D paaffy sug smvig

B o IR

*013z 03 pasedwod st Jaqumu payrys sy pue 3ySu sy 03

INO PIYIYS 31q ISE] Y3 JO IN[EA Y] SUTEIUOD A1IED Y |, 'SI0JIZ tim suonisod pazedea sy
ut ut[[y (0 Jo s31q noj 1583] 3y3 Aq payrdads sawn Jo JoquInu Ay) = U7 Ji 10) sawWT
D y3u payrys sue Y Aq payroads 131181 asedsysom ays Jo sIUAIUD Ay, uonvaad()

(—60)] o) 1 00 + 00 OO

TR | TR | I W WS W N B |
Sl v €L 2l 1L Ol 6 8 L 9 S v € 2 t 0

WO'H WS ouog
|_ m_ w IVOIS0| 1HOTY 1dIHG

281

*s914q dems Jo ‘sdnoad 31q 4 jo uonedo]
a1 38ueyp ‘pIOM EEP Y1 U 31 UTELID € SUIWEXD 03 PAsn oq Ued DYS ‘uokoIyddy
“4440=LLLL LLLL LLLLTOTT= WIS JeuY 2d

"4344=LLLTOLLL LLLE LLLE =YyS 8l0jeg gH
‘101335)

PuUE LT YIm 1,1 J(J UTEIUOD [[Im 3 JIYs U Jo3ye udLp ‘*' g, SuTeIuod Arenrut 7y 31
LT 0uS duoxy

2'03°19V 191 panaffy sug smois

0 jeT= -] ¢
y St 0

103 JO SHq Jnoj JUBOYYUSS I5E3] A UT

PAUTEIUOD JaqUINU Y3 0 =1UD) JI JO Ju)) JoqUINU 3yp St pauriojad 3q 03 sYIYs Jo Joqunu

3y L "0 03 paedwiod st JaquInu P3yIys Y3 pue PIYIYs 3iq 1SE[AP JO IN[eA Y3 SUTEIUOD

K10 *() 31q 03Ul 3oBq PIYIYS ST ST 31q JO INO PIYTYS 31q AP YIYS Yoed UQ ‘6onnssd)

(—€0) Y o) t ¢+t 0t 00 OO

R PR T | [N W W N T W |
GL vi €L 2L 1L OL 6 8 L 9 S ¥ E 2 I 0

wo'd JUS soukod

odS — SIS T T

282

*pa3ajdwiod u23q sey Yses JuaLind
3y uaym wres3oad aup jo 1red satpoue 03 dwinf 03 pasn st uononysut sy | uoIYddy

{21 UORE30] WO PIUreIqo 3q [[i4 UOHONASUL IXAU A U ‘*')) g SUTEIU0D £y I
a ‘Iduoxy
SUON smoss uo I3[y

**r) £q pay1oads uonedso] ays wioly paureIqo aq o3
uononnsul 3xau oy Juisnes ‘133unod weiSosd ays ur paseyd st ssaappe °n) oy |, wonLsdp

€e

(=-+0) S

5L
e

L 0001t 00 0 OO
A4 1 1 & 4 ¢ 1 1

Sl vL €L 2L ILOL 6 8 (2 9 S ¢ €2 I O

d

'D

JOUL0.]

HONvYg

"P31INd20 Youelq Y YoTYm wioly 3utod A 03 uIas ued sowuresSoid ap

358D YoIym Ut ‘youeiq jo ad4) 3unnoIqns € 9q UED YourIq Y |, ‘PIINIIXI 3q 0} UOHONLISUI
axau a3 338 03 Kowaw ays Jo 1sed 1930 3wos 03 03 03 Jo 3ouanbas ur vononnsur

¥xau 3y wuogaad 03 Jutsooyd yo Aiqedes sy sowruresSosd sy 218 suononmsur asay g

SNOLLONY.LSNI HONVY4 TYNOILLIANOJNN

283

193unod wrex3od aup ou1 papeo] 3q 03 (3nfeA HJ Plo) SIUIIUOD | 1Y P SISNED YoM

Lo g
:3UBNOIQNS 3 JO Pud Y J& Pasn 3q Ued uondnsul Youeq Suimoljoy ayp Yutod youeiq
oy e urexJosd urew 3y 03 yjoeq 3198 01, 1351821 avedsriom sures ayp asn aunnogns
ays pue wesoud urew s tpog “dwnf sunnoiqns avedsyiom paeys e st sy | woyoyddy
"(onfea D4 pIo) *'70z€ anfea
pim papeo] aq [im 113 pue (NVULL) *'000Z 3n[ea 343 pim papeo] 2q [Od "*'000T
S NV.L 03 pousisse anfea oy pue °'0(z¢ IE Pajedo] st UOLINIISU g Y3 dwnssy
NVHI® 18 aduoxy

SUON] SIS 40 3fy

Lid<+—(Dd PIO)
Od-—"
*11 Ja1s13a1 aoedsspiom Ut paaes st uondnnsul g aypp Suimojjoj uononnsut
3l Jo ssasppe ay3 pue J3junod wexdoid ayy ur paserd s1 °n SSIIPPE I0IN0S Y |, ‘U0KL4IG()

(—90) S 51 0t 0 1t ¢t 0 0 O OO

TR | 1 T W WA NN U W SN S |
St vi €L el 1LOL 6 8L 9 S ¢ € 2 1 0

‘D 1 gowioy
19 NPT GV FONVIg

284

SUON mpig uo pafy

S 1LY MON <+—— (1S PIO)
¥4 MON <——(Dd PIO)
€Y MON <— (dM PIO)
Od<~—(2+"O)N
dM<——(9)N

:GT 49151321 oedsyiom mau ur pasoss

st Jaisidau snaess ays pue ‘[sa1s13a1 soedssiom mou 33 Ul paJo3s st anfea Hd pP[o Y
‘€1 Jaisidas adedsyiom mou o ut pasoss st Jautod aoedsxiom po oy “youeiq sy asneo
01 (Dd) s91unod wresSosd ap o3ur Papeo] st (Z + °D) Asowaw ur piom 1xou 3 pue (dm)
131uiod soedsxiom sy oaur papeo st *n) 2o1nos ays Aq payads piom ay], uonpssdp

(—v0) S 5 0 00 0t 0 00 0O
1 il 1 I} 1 I} L 1 1 Il I I 1
m_:n.ﬁ:o_mosomvuw.o

‘D dMI18 Touioy
mgl_m ¥ILINIOJ FOVASHUOA) GVO'] GNV HONVEG

285

‘suonesado aunnoiqns £q paqnasip
10U 258 SUAU0d 3oedsyiom uresSoid urew s pue aoedspom umo st 398 SunNOIgNS AP
seup st dunf g oy 1940 dum(sunnoqns st jo aSeueape ay 1, “(sss18a1 o1 35 AP

1) 1S PUe *9d ‘IAN JO SINJEA P[0 Iy dAes 03 33edSHIOM MU E 38N 3] *°D) Aq poyoads
UONED0| J0339A J3Jsuen AP I dwnf JUBNOIGNS YNIMS IXAUOD € S S|, wonroyddy

*UOTINJIXS UONINIISUL

30 pua 343 18 DFY] 3533 10U 0p JOX PUE IMTH “(0¥) *'0050 3& wi3aq [im soedsyiom
aunnoIqns 3 PuE *(Q[(SSIIPPE WIOLJ USYEY 3q [[IM UORONIISUL 3XaU YT, “**HTSO
UOREDO] Ur PaAes 3q [[# (LS) SNIEIS AP PUE “*X) G UODEDO] UT PIAES 3q [[im InfeA Dd PIO
3y ‘anfea J A PIO 343 Yam Papeo] 3q [[IM *'YTS() UOREO] ‘UYL, Q01 YIM PIpEO] 3q
03 D PUE QS0 YM POPEO] 3q 03 J W SISTIED UORONISU S ‘*GOT(SUTEIUOD Z0TT
UONES0] PUE P'G(G() SUTEIUOD 1) ¢ UONEO] PUE *HO)T SUTEIUOD £ Iets Surumnssy

€« dM18 Iduvxy

286

338 51 1q (X) uonesadQ papuaixy smwsg uo afly

11H MON -——"D

S 14 MaN <-—— (1S PIO)
14 MeN <+——(Od PIO)
€1H MmN -— (dM PIO)
Od -—(°'2v00 + ¥ X U)N
dM=<—C('0100 + ¥ X U

:urex3oadqns ayp 03 uonedo] eep Jo

wsum3re ue ssed 03 JopIo ur aoedsyom uresosdqns s jo 11y wr pacerd st °r) ssappe
2A13ys 3y], ‘wreaSoidqns Surpuodsariod aya 03 JOX WO YoUBIQ YOIMS IXIIUCD

313 Ut pasn aq 03 ST JOIIA JIysues3 uonesado papuadxa YIYM sayIdads u ‘wonoiad0)

(—2) S 5L a t t 0t 0O
1 1 1 [U W S S

L
SLveElci Lo 68 . 965 v €EZ 1O
u“p dOX Joukioy

d0X ROTVEE0 W

287

*J3s UOTIONLIISUI ()66 PIEPUEIS Y3 JuawISne
03 suononnsut asodind [erads suysp ued sournureiSoid sy sl e sy “uondnISUL
a[Suss & q payes 2q ues Jey wesSoxdqns e suysp 03 pasn 3q Ued SN |, uonDonddy

LigmeN (*'9E20)N<—"'05.0

SigmeN (*'3e20)N<——->(IS PIO)

vidmeN (“'OE20)W «—(0d PIO)

gldmeN (*'veZ0)WN <——(dMPIO)

Od =—(C'vr)N

dM ——C'8v)N
:9N[BA SNIEIS P[O Y3 YPIM PIpEO] 3q
I (STY Mau) P'FEZ(UOHEDO| pUE ‘anfeA Dd P[0 Y3 Yilm PIpEo] aq [[im *1DEZ(UOHEDO|
‘anfea A PIO Y Yim papeo] 3q [(€1 mau) 'y gz(uonedo] ‘(wreidosd urew ur
T JO SIU33U0D) *05 L0 YPIM PaPEO] 3q [[Im (TTY M3U) *'ggZ() UONEdO] ‘sny, ~dedsyiom
wexZodqns ay3 Jo O JO SSAIPpPE Y 3q [[Im SIYP °*QOZ(SUTEIUOD °'g4 UONEDO] J]
*9Ty74, SSOIPPE 1B PIOM Y3 Y3Im Papeo] st HJ pue (7 uonesado papuaixa J0j J0IOIA JJJSUEn
Jo 1ed 351y) 9184, SSIIPPE 3B PIOM Y3 YIIM PIPEO] ST J M “°TQS L0 SUTEIUOD [SWnssy

The dOX -Iduoxy

288

"uondNIsul J)T 10 ‘uonesado papuanxa ydniisjur ue se yons uonesado 103094
J9§suen € £q payoeas a1om ey swiesSo1dqns woly uINIaI 03 pasn St Sy | wonoddy

(SLY Jo s1uaYu0d oy} 83A18901 AS) IV pawaffy sng smoig

1S<-—2GlY
Od<+—+1Y
dM<+——¢|H

"Ajoanoadsas ‘19381831 1§ pUE ‘O d ‘A Y3 O ‘STY PUE b1y ‘STY sIasidas
adedsyiom aunnoiqns Jo s3uaju0d 3y Juriiajsuen £q UL 12381821 1S PUE ‘O ‘dM
2y Sun103sa1 4q $1N200 I 3UNBNOIGNS YOIMS IXIIUOD € WIOL UINIDI E SI SIY |, 4024300

(0880) [0 0 0 0 0 0 0 t + + 0 0 0 0 0 O
| S W W W SN N U SN SN N SR S S A |
SLvL ELEL LLO 68 L 9 S v € 2 L 0O
dMIM Iouso0q

n_ Em - ¥ILINIOJ FOVASNUOA\ HLIM NanIlay

289

“uononLsut
o 9P UED UBL 3500 AIOWIouI SSI] YAIM PUE 13358) paruawaidut aq Ued UORINISUL JIN(
a1 ‘sny [, ‘uonoNASU g Y Joj pambai are s3[Ad Liowrows om3 pue spIom Asoussuwr omy
apym JIAIL 3yp 30§ pasmbau st (30ua13)33 AloWwSW U0 puE) pIoM KIOWIW U0 juo 3outs
yoURIq [EUORIPUODUN U3 JOAO Pasajaid st JIAI [EuUOnIpUOIUN 3U3 ‘UOHEDO] UODINISUL
JINS 3 Jo spiom gz unpia st 03 padum(oq 03 uresBoadqns aup 31 wonw2sddy
-uononnsut 3 Jo pay puesado ayp ut uorssadxa Jo [aqe]

areudoadde o ased 03 spasu Kuo sowruresSoxd sy ‘voneIndulod ST sAfEW IIQUISSY
o 20uig (S — J0j) g 3q P[nom 3pod 103qo 3 ut paoeid anfea dxg 3y U “°'QTOO 38
P23830] UOHONIISUT Y JO [3qE] AP ST TYAH.L PUe 3100 38 P2180] ST UOHINISUL ST I
JYIHL dNr Fduoxg

JuoN smo1s o Pafly

‘uoneoo] uasad o Jo spIom /71 + 03 §ZT — UNpIA 3q Jsnul 03 padwnf

uoREdO] 9y I, “JA3unocd urexSoid ays JO IneA MIU Y3 AeIIUT 03 JNUNOD wreaSoud ap

JO SIUSJUOD JUILIND 33 03 pappe st JXH £q pauyap uawaoeydstp poudis oy |, ‘uonwsadQ

(—ou) dsia 0 00 0 ¢t 0 00O
PEY W T N WS N | L1 1 P N |

A
Stvielatito 68 . 96 v €2 L0
dX3 dNP roukod

m E—a dWn| TVNOLLIONOON()

290

*J0308)
3]qeLrea € uo Juapuadop st paIndsxa 3q 03 UOHINNISUT I USYM [Tyosn ST X uoyooyddy

*019Z 03 g J3151831 JO SIUIRUOD Y3 JEI[D P[NOM UORINIISUT 3INIIXD

SR US 7 YD 10§ UORINLSUL 343 SUTEIU0D °()()(UOLIESO] PUE °'(((T SUTEIUODd [T Y J]
Le X Hduoxy

peindexe uoponnsul ey uo spusdeq Pl sug smosg

"PaIndAXa si °n) £q payIoads ssaIppe Y3 38 PIIEd0] UOLINNSUT Y |, UoNRLad)

—+0) S L]0 t 00 1L 00O OO
i A A 1 1 1 Il 1 A [l 1 1 I
SLPLELZL ILOL 6 B8 L 9 S ¥ €2 L O

‘D X ouwsog

291

dor
ONF

doo1 ane
rATRIY] 0 yduoxy

SuoN ‘wig smosg uo 12

“uononysur dumf
U JO SPIOM 87T UTYIM 3q ISNW YIIYM ‘UORINIISUT IXU 3Y3 JO UOHEIO] Y} SUTULIAIOP

03 193unoo weiSoid Sy3 JO Infea JUSLND Y3 03 PIPPE SI 38yl JudWadE|dsip € souyap dxg
3P ‘st 3ey I, "uononnsut JIAIf [EUODIPUOSUN 3Y) UT Pasn sem se SuissaIppe aane}a1 Sulsn

NP 0990 i dumnf ot ‘onn st STUOWRUW YdUreIq Y3 £q Pa3edIpUl UCKIPUOD Ay I :uonsadQ

aor
anre
o3r
e
19r
r
JHP

L

HP

1) dsia 3000 L 0 00
1 A i 1 Il | 1 I 1 L 1 1 1
m_!m_m.:o,mwsumvnw,o

dx3 OoJucwouy IDULO]

*SuUOnINISUT
asay £q pa3sa) SIe JeY3 SUOHIPUOD 31q STILIS 3P Im Suofe /-9 gy Ul pazLrewwns
axe sowowauw uononnsut dunf feuonipuod ay], “weiSoxd ayp oyur pajesodioout
3q 03 Sunjews uoIsAp Mmof[e suondnnsul 3say |, ‘dumf ays £4q pasmbas suonipuod
9 399 S31q SNIEIS UTeIad Ji A[uo uonesado Suryouesq e wojrad suononnsut asay Y,

SNOLLONY.LSNI dJWNI TYNOLLIANOD

292

“JX3U Op 03 suonoNNSuT Jo ouanbas Yorym 3pap 03
suononsut asat 3mbai s1zpunoo dooj im suresSoad pue sunprioSie sop uowIyddy

"uonoNISY P J0j IPOD IURPEW A LIS 03 FAOIJO 242 JO PPY AAOD P Ul PN STIAODe
*UOISIZAUT JO UONESIU SUEIW UL) € SO0 au] € pue ‘uonesado YO 2p suesw
+ ‘voneiado NV 2 suesw @ YPWM Ul umoys st vonenbo [e1So} & ‘uumioo i dwinf 3y uy Dr0p

o) 1=d0 X - - - - - dof
6 0=A0 - X - - - - ON{
L 0=) - - X - - - ONf
8 =D - - X - - - aof
9 0=0d - - - X - - anNf
£ 1=041 - - - X - - oaf
I 0=0d+ <V - - - X X - Lf
S =<V - - - - X - Lof
(4 1=03+<1 - - - X - X cigl)
b =03+ <1 - - - X - X i3l
v 0=03+<1 - - - X - X 1
q =03 o<1 - - - X - X HI
«3a02 4 dung do 40 o) 07 <V <7 mowsuy

suoumasul K po1ss] g smois ‘19 qo]

"UYE3 J0U ST YoueIq A pue | =F ‘Tenbs are 7y pue
TH JI "U93E3 39 03 JOO'T 03 YPURIq 3y sasned uonsnasul FN [3 pue = ‘Tenba
10U a1e Aoy J] “0m3 puE uO S1s13a1 JO SIUNUOD Y3 saredwiod uondNISUT ISIY Y |

293

(—au) dsig t 01 1 1+ 0 0O

m-_v-hnpbw--:-o—_m.m s.o.m_v.m.m.—.c
_ dsip 08S uuOy
0gsS NG S50 OT T 5

"suonEdUNUIWOD (YD [[E

JOJ SS2IppE 3SEQ AIEMPIEY Y} SI SSAIPPE SIY], *Z | 12351321 aoedsiiom jo 4 ySnosp

€ S31q U1 POIEDO] SI YOIYm SSIIPPE 31 7| € £q P313[es A[[enpratput aq Aew et saul|
ndino 9g04 pue indut ggo4 Jo wnuixew e sapiaoxd) Y], “Alowdw Jo 334q Jo piom
® wioJj sanjea 31q 03 saut] Indino 1) Sumas jo sisisuod Indino [fe pue ‘Lzowrsw ouy
s[aaay 150] aur] Y7 Furpeas jo sisisuod ndur [y “seandwosoonu sy Joj Indino/ndur
pauwuresSoad 31q sjdnjnw pue 3[Futs sutioprad (YD) 3uN ISLZoI SUOKEIUNUIWIOD Y T,

SNOILLONY.LSNI (14D

294

"aull YD 3q 3j3uts € uo auo e nding ‘wouryddy
T8 03 714010 AUl (1Y 39S PInOMm uoRINIISUT IA0GE Y3 (Z puE | ‘g siq 3upnpoxa

1Y JO SIUAUOD 3P JO IN[EA A J[EY-3UO ST SSIPPE ISEQ IIEMPIEY 23) *1)] (0.

S1 $S2.ppe 3seq SIEMPIEY 343 JEY) 05 °H()Z() JO SSIIPPE ISEq SIEMYOS E SUTEIUOD 7Y J]
SL. o8S -Iduoxy
SUON] smiv1s u0 3y

(ssaippe aseq + dsip) g «— |

“Juswaoe|dstp
paudis e st dsip anfea ay] -z 19351591 3oedssiom Jo 1 y3nouys ¢ s11q st sseappe aseq
STEMPIEY SY 1, "3U0 03335 1 sS2PpE 3seq arempiey ayy snid dsip 3e 31q)y Yy L. uoyv4ad(Q)

295

*aur] (YD 3q 3|3uts e uo 013z e indinQ :woyvIyddy

"013z 03 *'7000 U1 NJD

1953 p[nOM UOLIINIISUT Y3 JEY3 OS () S! SSAIPPE 3Seq AIEMpIEY A ') SUTEIU0D ZTY JI
Tz z8s yduoxy

QUON] oIS U0 13y

(ssaippe aseq asempiey + dsip) g «e—0
Juawade|dstp
pausis e st dsip anfea ayJ, -z 9151821 aoedsyiom Jo 41 ySnosp ¢ s3q st ssasppe seq
SJEMPpIRY 9Y], ‘0JOZ O} 33534 S1 ssa1ppe aseq ays snid dsip 18 31q YD) Y I, ‘#0wr4d)

(-3 dSia 0O v+ Lt ¢+ t+ 0 OO0
L 1 A 1 1 1 1 L i L 'l L L L
SlL pL €L 2L LL OL 6 8 L 9 G v € C 1 O
dsip zg@s -1ouuog
wa 0¥dZ JI907] Ol g 13§

296

"PA19319s 31q (1Y) 3yp Indu] -wowmyddy

'HV0 Ul NAD =+ *'0V(U1 NYD Uo [243] ASo] 3 03
fenba apew 3q pinom (D) [enbd **Qv(St ss2ppe 58q 25EMPIEY POUILISPUN AU JEY} 10N

0000 0010 1000 0000 = Sluauod gLy
{(*"0410 JO J[ey-5UO ST YOIYM) S\ SI SSIPPE 35EQ BIEMPIEY AU “CY(H() SUTEIUOD ZTY I
v a1 ‘duoxyg
03 pavafly g smois
03 «+— (ssaippe aseq asempiey + dsip) ug

“Juouraoedsip paudis € st dstp anfea ayy, z1 JaxsiGas aoedsyjzom Jo 1 ySnoxy ¢ sq
S! SSQ.ppe 3seq JIEMPIEY SY T, *SUI] (YD Y3 U0 31q 3y3 JO 3n[ea Y3 03 31q smaess (D7) [enba
3 Jo anfea ays Sunas £q peau st ssasppe aseq ays snid dsip 38 31 YD) YL uoyvsadQ)

(=31 dsia 1L L Lt 1t 1 000
1 1 i L I 1 L i 1 1 i 1 L L
m_v_n_w_:o—mmuomvnm_o

ds|p aL ‘owso

a1 TF TS

297

8'WOL®D uOa1 ‘Idwoxy

*s31q $S3] JO § JO J3ysuen) Pim (Kired ppo) do
0319V 191 praffy sng smoig

*UO OS PUE ‘] 4 SSaIppe

aseq asempiey 3y3 Aq payioads aur] (YD) Y3 03 PIIIIYSUEI} SI JIq PUODIS Y} ‘sSAIppE
aseq ayempaey 3y3 Aq payroads aut| (YD Y3 SI 31q ISIY Y3 JO UOHBUNSIP Y |, “JIJSuer)
33 210j2q 013z 03 pasedwiod 1 BIEP 32INOS Y |, *SSIIPPE PIOM E SI SSIIPPE 30INOS Y3

‘91 03 ¢ S P2.IDJSUBI] 3G 03 SH(JO IIGUINU Y3 J] “SSIPPE 31Aq E ST SSIIPPE I0INOS AP
3313 03 2UO SI PaLISJSUEI] 3q 0} SHQ JO JIQUINU Y3 J] "9 S! PILIdJsuE) SHq JO Jsquinu
ay3 ‘g =1u) JI "Uo 0s pue 31q JuedYIUJIS ISEI| IXIU Y3 WOJJ 31q IXU I ‘BIep

SI Jo 31q JuedyTuSis 1SE3] Y3 WO PRLIASUEI] Iq ISTY SY3 tpim °D) £q payIdads ssappe
3Y) J& PaJEdO] BIEP Y} WOIJ PALIDJSURL) 3q O3 SHQ JO JAqUINU 3y say1oads 3u)) wonndQ

(—¢) S 5 o] 00 L t 0O
1 1 L]] L /| 'y 1 1 1
SiL vl €1 8 L 9 S v €2 1+ 0

WOy HOQ ooy

4od1 D @

1
el 11 0oL 6

298

14
w
14
Sv
144
P14
[44
34

oy

4€
S3NN YO

42fsuvss 2169 YOQ'T L9 ey

ssappeuMe LB SINOL 8'WOLD uoa1
@SN LON =X
WOl
xxxxxxxxoo-o——oowmmmog
AHOW3W
SL vt €L 2 1L OL 6 8 L 9 S ¥ € 2 1 O

£~9 24nJ4 UL UMOYS SI Jojsueny siyJ */ $00

Ul YD 03 patiaysuen 3q (3g) ISe[Y3 03 UO 05 PUE ‘PILISJSUET] JIq IXAU U JO SSIIPPE
2P 3q [* 1400 "PI1IYSULI] 31q ISTY A SALIA [[I JEL SUT] (1Y) Y3 SI YIIYM b0
SI SSOIPPE 358q AIEMPIEY 3 ©()G((SUTEIUOD 7Y J] "PISSAIPPE st 3Aq IuEdyUSIS 150U
Y3 “JaquINU UIA3 UE S1 \O,LL J] "SSIPPE 314q E ST \O, L ‘POIIaJSURT) AIE S3Iq § 0UIG

299

4afsuvd) progg 4OA'T 89 24n3ty
enoa® wom

Q3sN LON =X

t44 3

34)

oy !

€ LJ

S3NIN YO

WOL
{1 0 L+ 0 + 0O + X X X X X X X |ss3uaav
AHONEN

J] ﬂu A A A A A

GL #L €L 2 1L O 6 B8 L 9 S v € 2 + O
"UMOUS ST JOJSUEI] (3DINOS PasSIIPPE PIOM) 31 6 B YOIYM UI -9 24n%] Ul
uoAS st s19jsuen 334q sns1oA prom Jo ajdurexa Joyuny y "s3q JuedyruSis 10w A[9AISSIONS
0] SINURUOD pUE P[3Y DINOS Y} JO 31q JueoyruSis ISea| P YIm suLdaq J9jsuen Ay
‘our] SSOIppE 9s€q STeMpIey I3 J& Sumiers ‘saul] Y7 JAISSIDNS 03 ALq J0 piom Kiowow e
I0J) paLId)suen) 3q 03 (9T 03 | woly) suiq jo sequmu & sapiaoxd YA YL wowrnddy

300

*P31J3JSueL] 3q 03 31q ISIY Y} J0J O'QY, ST SSIIPPE ISeq ITEMPIEY Y} JBY OS P'()6 SUTEIUOD
1Y e Suiwinsse Jajsuens SIy SAARNSN[[L §-9 24ndtf “TY JO 4q uedyruSis 150w A 03
Pa419jsuet) 3q [[IM S3IqQ Y3 JBY3 OS J3JSUeI]) 3IAq € ST SIY3 PALIDJSURI] 3G 03 B S)Iq / DU

L'T ¥OlS ‘gduoxy

$S9[JO SIq § JO SsI9jsuen} JOJ dO
03°1OV ‘191 pawaffy sng smoig

‘0192

03 33521 3J€ S)Q PI[Yun AP ‘pIOM AIOWW IIRUS I [[Y I0U SIOP JIJSUeNn Y J] "019Z

03 paredwod aue palIajsue) SIq Y |, "PILIDJSULI] B SIq Q] 0 =3IU7) J] "SSAIPPE pIom

€SI °0) ‘3SIMIYI() "SSIPPE 314(E SI °0) SSI[IO g ST PILIYSUE SIq JO JAqUINU Y3 J] "SAq
jueoyruSrs 310w A[IAISs30oNS 03 S3q 2AIsSa0Ns Suriigysuen pue uonisod 31q JueoyruSis 1sea|
3 yam Suruuidaq **9 £q payoads uonedo] 3y 03 (ssaappe aseq drempaey S e Sun.res)
S3UI| (YD) FAISSIONS WIOL) PILIIJSURI) 3q 01 SIIq JO JAQUINU Y3 SAYIds D) ‘wonnad)

(—¢€) S 51 o] 1 0t + 0O
1

A
Siwielaitiol 68 L 95 v €2 10
WO"D HOLS 1ouu0y

4o1S ERELS

301

w [
w |
av | O
o |1
o |1]
w |o|
o | 1|
o |0 |
1w
S3NINNHD

ayduvxsy YO.LS 69 24n3f

LT 4¥ois
043z 011350 118

a3sn LON X

X X X X X X X X o0 + 0 t + o0 + o}

Sl ¥L €L 2 1L OL 6 8 L 9 S ¥ € 2 I O

*S)1q § UBY) SS9 S1 Jjsuen) Ji padueyoun ase G- Sy 70N

302

(oved) |o 0 0 0 0 +t 0 t t L 0 0 0 0 0 O H! 11l H NOXD
A4 0 2 1 1 4 1 1 1 2.2 1 1
SLYL EL2L LLOL 6 8¢ 9 6 ¥ E2 L 0
©2€0) o 0 0 0 0 0 t + 1+ L 0O 0O 0 O 0 O Tl HI|H 400D
LA 0 1 1 & 4 2 1 1 1.1 1 1 1
SLvi €L 2 1L 0L 6 82 9 G v €2 1 0
(30 |0 0 0 0 0 ¢t + 1 L 1 0 0 00O O H|l H]|H X341
AL 4 0 4 1 1 2 1 & 1. 3 1 .4 1
St vi €L 2L LLOL 6 B £ 9 S v € 2 t 0
3000d0 | ‘v | 'v | °w | uomonnsu}

*MO[2q UMOYs e 20[D NYD 2P

Buunp saut| ssaappe ays uo sfeuSis ()66 Y3 UO IIDYE Ue IALY SUOHINIISUT [O1UGD Y |,
'sfenuew s Jsowurer3o1d 1aindwod (g6 [opoyA Aeuidosdde ayy ur paiaaod are suondNnsUT
3591 Jo asn 3y Y, *(uoneunssp souersip Juo) Q"] Pue (2anos dursp Juof peo]) SAT
'suononasut uissaippe ouerstp Suo| ays spioddns osfe 01 /066 [PPOIA Y.L “(1reasaa)

XFYT ‘(U0 3p0[)) NOND ‘(B0 H001D) J0ND ‘TIAI ‘(1252Y) LASY 9 suononnsuy
asay |, “Jaandwio) 066 [PPOIN Y3 03 d[qedrdde AjLreurtsd are suononusur [ouod Sy,

SNOLLONY.LSNI TOYLNOD

303

*3TEMPJIEY [ELLIIXI [OJIUOD O} PIsn SUONINISUL Y} PUB PIPOIIP 3q UED 2y pue 'y
‘oy speudis ssasppe ay I, ‘syeuSis asayp 03 puodsai 03 pauSisop aq Ued arempIey [BUINXI
30UIS ‘SUONINIISUT [BUIIXD SE 0} PALIIJJ 2TE SUOLIONIISUT JA0GE Y (0066 21 10

Teults QO & (€ 0 ‘pajqeus st e adnusasur Kue (7 ‘Teudis 1HSHY © (1 4q ams
S[p! 9y WOy PIAOUIAI 3q Ued J0ssad0ad 2y], *93e3s STy} 23edIpUT 03 SI[ILD Ho0d XIs L1943
ndino YTONYD € $INEd pUE UORIPUOD JYP! 313 UL (066 4 sInd uononnsur TIAI ML

LI I B NHO
(ove0) |O 0 0 0 0 0 Lt 0 t ¢t 0 0 O 0 0 O 1 H] Enle]
A4 5 2 2 & 0 o 1 2 & 4 1 1 1
SLvLEL 2L LLOL 6 8L 9 S VY EZ L O
se0) Jo o 0 0 0 L + O L L 0 0 0 O OO H H 1 1334
A2 i L 2 2 4 1 0 0 2 a1 1 1
SL VL ELZLLLOL 68 L 9 S v €2 1 O
3000 dO V|V |V uopdNysu|

304

Index

Index
A

A
A, 39, 242
AB, 39, 244
ABS, 40, 255
Addresses, 6, 18
Addressing, CRU, 216
Addressing, immediate, 29, 46
Addressing, indexed, 30, 48
Addressing, register direct, 29, 47
Addressing, register indirect, 29, 47
Addressing, relative, 30, 49
Addressing, symbolic, 29, 48
Addressing modes, 28, 46
Al, 39, 248
AND, 24
ANDI, 41, 267
AORG, 68
Architecture, 13, 33
Architecture, memory-to-memory, 35
Arithmetic instructions, 39, 227
Arithmetic logic unit, 15
Assembier, 7
Assembler directives, 68
Assembler syntax, 65
Assembly-language formats, 217

B
B, 43, 284
BASIC, 3
Binary addition, 21
Binary number system, 5
Binary subtraction. 23

Bit, 9

BL, 43, 285

BLWP, 43, 286

Branch instructions, 229

Branch instructions, unconditional, 43
BSS, 68

Bus, 9

Bus, bidirectional, 10

Bus width, 9

Byte, 11

C, 40, 260

Carry bit, 16

CB, 41, 262

Cl, 41, 264

CLR, 42, 272

COC, 41, 265
Communications register unit, 35
Compare instructions, 228
Comparison instructions, 40
Condition code, 15

Control instructions, 46
Control line, read, 11
Control line, write, 11
Control transfer, 26

Control unit, 18

CRU, 35, 57

CRU Instructions, 45

CZC, 41, 266

DATA, 69
307

Data pointer, 999

Data transfer, 20

Data transfer instruction, 38, 227, 233
DEC, 40, 252

DECT, 40, 253

Direct addressing, 29, 47

DIV, 40, 258

E
EASY BUG, 59, 70, 73
END, 72
Entry point, 65
EQU, 70
Exclusive-OR, 24
Extended operation vectors, 37

Field, label, 7
Field, operand, 7
Fields, 65, 218-224
Function select, 15

GROM, 54, 56

H
Hexadecimal, 6

i
Immediate addressing, 29, 46
INC, 40, 250
INCT, 40, 251
Indexed addressing, 30, 48
Index register, 48
Indirect addressing, 29, 47
Instruction, 6
Instruction descriptions, 230
Instruction set, 38-49, 224
Interrupt mask, 36
Interrupt priority code, 36
Interrupts, 36
Interrupt vector, 37
INV, 42, 271

JEQ, 45
JGT, 45
JH, 45
JHE, 45
Ji, 45
JLE, 45
JLT, 456
JNC, 45
JMP, 44, 291
JNE, 45
JNO, 45

308

JOC, 45

JOP, 45

JUMP, 26

Jump instructions, 293

Jump instructions, conditional, 44

L
Label field, 7
Language, high-level, 5
Language, machine, 5
LDCR, 46, 304
LI, 38, 233
LM, 39, 234
Line-by line assembler, 59, 60
Line numbers, 4
LOAD, 20
Logical instructions, 228
Logic instructions, 41
LWPI, 39, 235

M
Memory map, 63
Microprocessor, block diagram of, 14
Microprocessor, program, 3
Mini Memory module, 53, 59
Mnemonics, 7, 29
MOV, 39, 236
MOVB, 39, 237
MOVE, 20
MPY, 40, 256

NEG, 40, 254
Negative bit, 16
Nesting, 27

0
Object code, 7, 66
Opcode field, 7
Operand field, 7
Operands, 15, 28
OR, 24
ORI, 41, 269
Overfiow bit, 16

P

Program, ASClI-binary string to binary
number, 140

Program, ASCllI-decimal string to bi-
nary number, 151

Program, ASCIli-hex string to binary
number, 146

Program, ASCII to decimal, 128

Program, BCD to binary, 130

Program, binary number to ASCII-
decimal string, 148

Program, binary to ASClI-binary
string, 137

Program, binary to ASCIl-hex string,
144

Program, binary to BCD, 134

Program, branch and link, 176

Program, branch and load workspace
pointer, 178

Program, change screen color, 210

Program, clearing the screen, 183

Program, convert string to number,
194

Program, decimal to ASCII, 130

Program, determine numbers, 103

Program, display the text, 184

Program, find first nonblank character,
113

Program, find last nonblank character,
114

Program, find maximum value, 106

Prog:aorr_;, find minimum byte value,

Program, find the larger number, 88

Program, generate cursor, 187

Program, hex to ASCII, 125

Program, how many negative num-
bers, 101

Program, keyboard input and display,
190

Program, length of string, 110

Program, make an integer, 117

Program, pattern match, 119

ngr:om, raise number to a power,
2

Program, reciprocal of a number, 164
Program, replace zeros, 115
Program, sine of an angle, 170
Program, 16-bit addition, 83
Program, 16-bit data transfer, 77
Program, 16-bit sum of data, 86
Program, 64-bit data transfer, 82
Program, 64-bit division, 158
Program, square root, 162

Program, string comparison, 121
Program, sum of squares, 90
Program, table of factorials, 92
Program, 32-bit addition, 85
Program, 32-bit by 32-bit multiply, 154
Program, 32-bit sum of data, 98
Program counter, 18, 34, 215
Programming, 3

RAM, 12
Random access, 12
References, 64, 72

Register, 16

Relative addressing, 30, 49
ROM, 11

ROTATE, 25, 26

RTWP, 44, 290

RWM, 11

S, 40, 247

SB, 40, 248

SBC, 297

SBO, 45, 295

SBZ, 45

Scratch pad, 53
SCZ, 42

Service routine, 37
SETO, 42, 273
SHIFT, 25

Shift instructions, 42, 229
SLA, 42, 281

SOC, 42, 274
SOCB, 275

Sound generator, 54
Source code, 66
Source program 7
SR, 42, 279

SRC, 43, 283

SRL, 43, 282
Starting address, 64
Statements, 4
Status, 15

Status register, 16
STCR, 46, 300
STORE, 20

STST, 39, 240
STWP, 39, 241
Subroutine, 5, 27
SWPB, 39, 239
Symbolic addressing, 29, 48
§2C, 276

SZCB, 42, 278
SYM, 70

TB, 298

TEXT, 72

TI-99/4A, block diagram of the, 52
TMS9900, 13, 33, 45

TMS9901, 57

TMS9918A, 54

Two's complement, 23

Utilitles, 182
309

v X
Video data processor RAM, 54 X, 44, 292
XOP, 43, 288
w XOR, 41, 270
Workspace, 34
Workspace, changing the, 35 3
Workspace pointer, 34 Zero bit, 16

310 Edited by Brint Rutherford

Fundamentals of TI-99/4A Assembly Language
by M. S. Morley

Whether you want to get more action from arcade-type games or
get more efficient performance from business or financial programs,
this book shows the way. It's a must-have handbook for every Tl
owner or user who wants to tap the potentials offered by Assembly
Language . . . faster, more efficient program execution and better use
of the machine’s memory space!

You'll learn about the architecture of the TI-99/4A and its 16-bit
TMS 9900 microprocessor—information most manuals “assume” you
already know! And you'll appreciate this easy-to-follow approach to a
language that is far less difficult than you've imagined!

Part | provides you with the fundamental concepts of program-
ming languages and microprocessor systems. You'll discover the
differences and similarities of BASIC, machine language, and assem-
bly language. You'll also examine the internal organizational features
common to most microprocessors and read about the five basic types
of microprocessor operations, and the addressing mode concept.

In Part Il, you'll learn how the Tl Mini Memory Module software
cartridge enhances and expands your assembly-language program-
ming efforts . . . learn the internal organization of data file structures
used inthe TI-99/4A . .. and find out the specifics of assembler syntax,
codes, and more.

Plus, there are 47 worked out program modules developed by the
author to illustrate the potentials offered by Assembly Language . . .
programs that you can use to do the jobs you want done!

If you are a technician, engineer, or hobbyist who wants to learn
9900 assembly language programming . . . a TI-99/4A owner who
wants more out of your computer . . . or a programmer who wants to
learn 16-bit assembly language . . . this book is for YOU!

M. S. Morley is a project manager for Rockwell International
Missile Systems Division, where he is primarily a hardware designer
and an assembly language programmer.

OTHER POPULAR TAB BOOKS OF INTEREST

Assembly Language Programming for the Machine and Assembly Language Programming
TRS-80™ Model 16 (No. 1649—$9.95 paper; (No. 1389—%9.95 paper; FPT $10.25; $15.95
FPT $10.25; $15.95 hard) hard)

TAB BOOKS Inc.

Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > $11-.50 IEZBN OD-430L-17F22-1

PRICES HIGHER IN CANADA 1095-0384

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013
	content014
	content015
	content016
	content017

	back-cover

