

Easy Programming
with the TI-99/4A

Easy Programming
with the TI-99/4A

Richard Guenette

and

James Vogel

Birkhduser

Boston • Basel • Stuttgart

Library of Congress Cataloging in Publication Data

Guenette, Richard.
Easy programming with the TI-99/4A

Bibliography: p.
Includes index.

1. TI 99/4A (Computer)-Programming. 2. Basic (Computer program language)
I. Vogel, James, 1952- . II. Title. IE. Title: Easy programming with the
T.I.-99/4A.

QA76.8.TB3G83 1983 001.64'2 83-15714
ISBN 0-8176-3166-6

All rights reserved. No partof this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior permission of thecopyright
owner.

©Birkhauser Boston, Inc., 1984

ABCDEFGHIJ

ISBN 0-8176-3166-6

Printed in USA

Foreword

Welcome to the world of computer programming. Your Texas
Instruments TI-99/4A is a real 16-bit microcomputer, complete with
sound and color graphics. Making these features do what you want may
seem impossible at first, but don't worry; there's nothing mysterious about
computer programming. Learning to programcomputers simply means
learning a new language-in this case, TI BASIC (for Beginner's All-
purpose Symbolic Instruction Code), a version of the most popular
language used on today's microcomputers. This book will teach you,
step by step, how to tell your machine what you wish it to do—inother
words, how to program it.

But that's not all. You'll also find chapters on general microcomputer
principles, cassette deck use, the TI-99/4A as a terminal for muchlarger
systems, options for expansion, and a list of resources for getting the
most out of your home computer.

With the 99/4A you have access to a large library of programs, or
software, already written by someone else. Without knowing anything
about programming, you can usethissoftware to playgames, learnmath,
or store addresses. But at some point you'll want to make your personal
computer really personal. Youmight wantto create yourownvideo game
or compose a tune. And that's when you'll want to learnprogramming.

Learning to program is like learningto ride a bicycle: you must over
come the fear of falling. Once you do, you move right along. Once you
overcome the fear of indecipherable computerese, you'll move right along
in programming, too. And, as with bicycle riding, you learn by doing.

To get the most out of this book, you'll need your computer, a TV
set (preferably color), a cassette tape recorder and connecting cable, your
User's Reference Guide, and the confidence that you can do it.

Remember: computers, personal or otherwise, are machines. They are
tools, extensions of the people who use them. Your TI-99/4A is an ex
tension of you, and the programs you writeare extensions of your own
imagination. So let's begin.

Contents

Foreword v

Chapter 1 Microcomputers in Brief *
Of Bits and Bytes 1
Storing Information *
Elementary Computer Architecture 2
Computer Languages 4

Chapter 2 Cassette Deck Notes • 5
Cassette Decks 5
Cassette Interface Cable 5
Loading and Saving Programs 6

Chapter 3 Keyboard Guide 8
Enter Key 8
Shift and Alpha Lock 9
Special Symbols 10
Mathematical Operators 10
Control Keys 10
Function Keys *1
Automatic Repetition 12
Using the Screen Editor 12

Chapter 4 Introducing TI BASIC 15
Commands, Functions, arid Statements 16

Immediate Mode 16
Using the PRINT Command 17
CALL Commands 17
Command Mode Calculator 19
Variables 19

Functions 20
Math Functions 20
TAB Function 21

Statement and Program Lines 22
GOTO 23

Chapter 5 Tools for Building Programs 26
Line Numbering 2"
RESEQUENCE 28
Editing Programs 30

LIST 30
Edit Mode^ 30

Starting and Stopping Programs 32
Diamond Track 33
RUN 34
CONtinue 34

BREAK and UNBREAK 34

END and STOP 36

REMark Statements 36

Chapter 6 Working with Numbers 37

Order of Arithmetic Operations 38
Relational Expressions 39

Chapter 7 Variables 40

Numeric Variables 40

Naming Numeric Variables 42

String Variables 43

The Role of Variables in Programming 43

Chapter 8 Using PRINT 45
The PRINT System 45

Quotation Marks 45

Print Separators 47

The TAB Function 49

The Sick Rose 50

Chapter 9 Branching Statements 52

The Unconditional Branchers 53
GOTO 53

GOSUBroutine 54

Conditional Branching Statements 56
ON-GOTO 56

ON-GOSUB 58

IF-THEN-ELSE 59

Chapter 10 Data Anyone? 62
INPUT ''' 62
The READ/DATA Statements 65
Setting Up a Data Bank 67

Checking Variable Status 68

Multiple-Variable READ/DATA Statements 69
RESTORE 70

Using Counters To Manipulate Data 73
Using Data Flags 74

Chapter 11 The FOR-NEXT Loop 77
Entering Data with FOR-NEXT Loops 78
Defining Loops With STEP 79
Nested Loops 81

Chapter 12 Debugging Programs 85
Error Messages 86
TRACE and UNTRACE 87
PRINT Debug 88

Chapter 13 Numeric Functions 90
INTeger 90

RANDOMIZE and the Random Number Function- (RND(X)) 90

Other Numeric Functions 93

ABS(X) 93
ATN(X) 93
COS(X) 93
SIN(X) 94
TAN(X) 94
EXP(X) 94
LOG(X) 94
SQR(X) ? 94
SGN(X) 94

User-Defined Functions 94

Chapter 14 Computer Sound and Music 98
The Sound Chip 98
CALLing Sound 100
Noise Settings 100
Negative Duration Values 101
Programming a Song for One Voice 102
RESTORE for Repeats 104
A Song for Three Voices 105
Sound Effects 108

Chapter 15 BASIC Graphics HO
The Screen 110
BASIC Graphics Statements Ill

CALL CHAR HI

CALL CLEAR 113
CALL HCHAR and CALL VCHAR 113

CALL COLOR 115

CALL SCREEN 117
The RANDOM Character Generator 119
Combining Characters in Space: White Knight 123
Combining Characters in Time: Running Man 124

Chapter 16 Interacting with Your Computer: Keyboard and Joystick 126
CALL KEYboard 126

Key-Unit ^1
Return Variable I27

Status Variable 128

Mazemaker 130

CALL JOYSTick 133

Joystick Mazemaker 134

Chapter 17 Arrays 136
Subscripted Variables and Simple Arrays 137
Using READ/DATA To Load Arrays 139
OPTION BASE 1 and the DIM Statements 139

Two-Dimensional Arrays 142

Chapter 18 String Functions 147
ASCII Vaiue-ASC 147

Character-CHR$ 148

Value-VAL 150
String Number-STR$ 151
Length-LEN 152
Position-POS 152
String Segment-SEG$ 154

Chapter 19 More Graphics 156
FOR-NEXT Looping 156
CALLing COLOR 157

Strings and String Functions 160
Using PRINT 160

Using SEGment and LENgth String Functions 161
Printing Text with HCHAR 162

Using Arrays in Graphics 163

Chapter 20 Live Time on the Keyboard 167
Links in a Chain 171

Chapter 21 Your Home Computer as a Terminal 176

Chapter 22 System. Options 179
Extended BASIC 179
Speech Synthesizer 179

Peripheral Expansion Box 180
RS232 Card 180

Disk Drive Controller Card 180
32K Memory Expansion Card 180
P-Code Card 180

Disk Drives 181
Printers 181
Telephone Modems 182

The Fully Configured System 182

Alternatives to the Peripheral Expansion Box System 182
Word Processing 182

Microsoft Multiplan™ 182
UCSD p-System™ 183
LOGO 183

Machine Language 183
FORTH 184

Voice Recognition 184

Winchester Hard Disk 184

Chapter 23 Resource List 185

Easy Prograrnming
with the TI-99/4A

1 Microcomputers in Brief

This chapter introduces microcomputers: their structure, methods of
storing information, and languages. You'll find this information useful
but not absolutely necessary for understanding how to program your
TI-99/4A. If you're eager to grapple with the machine on your desk,
skip right ahead.

OF BITS AND BYTES

On the most basic level, computers process information usingnumbers
having only one digit. These numbers are called binary numbers; each
digit is called a bit (short for "binary digit"). The value of a single bit
can either be 1 or 0. To the computer, a 1 means an electrical "on";
a 0 means "off." All computer operations are ultimately manipulations
of these binary numbers.

The basic building blocks, bits, are in turn assembled to form bytes.
A byte is a series of eight bits. Each byte is equivalent to a letter or
number, a keyboard symbol, or single character space in a page of text.
The word "byte," for instance, would occupy four bytes. The byte
representing the letter "A" is composed of the bits 01000001. Every time
you press theletter "A" thecomputer translates it into this series of bits.

STORING INFORMATION

Computers store information in different kinds of memory. One kind
is called random access memory, or RAM. RAM is like a blank sheet
of paperthat the computer allows youto write instructions, or programs,
on. There are two types of RAM, static and dynamic. Static RAM, found

T

in some expensive computers, retains information if the power is shut
off. Dynamic RAM, on the other hand, loses all its stored information
if power is even briefly interrupted. Your 99/4A has enough dynamic
RAM to hold 16,384 bytes of information. One thousand and twenty-
four bytes is termed a kilobyte, or IK; thus the 99/4A has 16K RAM.

Another type of memory isROM, or read only memory. ROM, which
cannot be changed or lost, determines many essential operating
characteristics of a computer system. It typically stores the computer's
operating system and BASIC language. ROM also stores the bytes that
define each of the characters on the computer's keyboard. The 99/4A
has 26K ofROM that contains TI BASIC, the graphics operating system,
a system monitor to regulate the computer's overall performance, and
the software for transferring information to and from a cassette deck.

For the record, two other kinds of computer memory are PROMs
and EPROMs. PROMs are programmable read-only memories.
EPROMs arePROMs which can beerased andre-programmed. PROM
and EPROM memories function much like ROM.

ELEMENTARY COMPUTER ARCHITECTURE

The heart of a computer consists of the integrated circuit chips called
microprocessors. Many microcomputers these days have morethan one
microprocessor. The 99/4A, for instance, has several: a main 16-bit
microprocessor, plus one for operating the video display and another
for generating sounds. The primary microprocessor, which coordinates
the activity of the entire computer system, iscalled the CPU, or central
processing unit.

Because a computer delivers processed information from data that
has been putinto it, it needs circuitry for performing input/output opera
tions. The main console of the 99/4A has input/output circuitry to sup
port several devices, or peripherals: the keyboard, joysticks, and a cassette
recorder.

Thus, the computer is a collection of parts: a central processing unit
and some lesser microprocessors dedicated to specific tasks, input/output
circuitry to connect the computer to external devices, and memory for
storing information. Other support circuitry and devices help these parts
work together.

A system clock generates the timing needed to synchronize each sec
tion with the whole. A power supply powers the system and regulates
the electrical voltages in the circuits. Interrupt circuitry interrupts the
functioning of the CPU when an outside device, such as a joystick, is

operating. Finally, open pathways connect the computer's various parts
so they can communicate. These pathways are called buses.

Buses come in several varieties. Two types deal directly with positioning
informationin memory: the address bus and the data bus. The address
bus allows the CPU to determine the address, or memory location, in
which to place or retrieve a piece of information. The data bus then
sends the information to the appropriate address. In addition to the
address and data buses the computer needs a control bus, which pro
vides a pathway for control signals, such as those associated with
input/output circuitry.

Inmany computers the address, data, and control buses are gathered
into a single system bus that carries all the needed signals. A computer
system can be extended by adding new circuitry to the system bus. The
99/4A's system bus allows you to extend your computer by plugging
aperipheral expansion box into the slot provided on the right side ofthe
main console (see Chapter 22, "System Options").

The diagram below shows a simplified version of general micro
computer architecture.

/
CENTRAL

PROCESSING

UNIT

PERIPHERAL

DEVICE

RAM

MEMORY

ROM

MEMORY

INPUT

OUTPUT

ox-J n ii i Ton
ADDRESS BUS

maHI te
DATA BUS

JT
CONTROL BUS

SUPPORT

DEVICE

O

SYSTEM BUS

_J

COMPUTER LANGUAGES

In the early days of computers, programs had to be written in a mode
that was directly accessible to the computer. As computers only under
stand binary numbers, earlyprograms appearedas long lists of ones and
zeroes. Such programming proved tedious indeed. Since then, the science
of software has given usa series of computer languages that have become
increasingly easy for people to use and understand.

A hierarchy of computer languages has emerged which reflects the
history of their development. We call the initial computer languages
machine language, or machine code, and think of them as "low-level"
languages. Although tedious to use, machine language is fast andpower
ful because it speaks directly to theCPUand requires no interpretation.

The next step toward a human-oriented language was assembly
language, which allows programmers to write machine language pro
grams by using symbolic names and abbreviations rather than strings
of binary numbers. Although easier to use than machine language,
assembly language is still not convenient for the average person to fool
around with.

The computer languages most of us use today are "high-level"
languages, such as BASIC, COBOL, PASCAL, FORTRAN, LOGO,
LISP, or FORTH. These languages make programming easier because
they use English-like commands that are relatively easy to understand.
The disadvantage of these languages is that their programs must be
translated into a form that can be used by the CPU which tends to make
them slower and less powerful than machine language.

A high-level computer language caneither beinterpreted or compiled
into machine language. Interpreted languages are translated into machine
code line-by-line as the computer is running. Compiled languages are
translated into machine code allat once before the program is run. Com
piled programs run faster than interpreted ones but are harder to cor
rect when something goes wrong.

TheTI BASIC language covered in this book is an interpreted high-
level language which represents years of work to make computer pro
gramming accessible to just aboutanybody. With a few keystrokes, you
can achieve the same results that would have taken hours of labor in
the first computer language.

2 Cassette Deck Notes

Ifyou're just starting out with your 99/4A, you'll find that a cassette
deck will give you ahandy and inexpensive means ofstoring and retrieving
information. This chapter contains equipment andmaintenance sugges
tions andreviews the program loading and saving procedures for cassette
decks.

CASSETTE DECKS

For easy operation and consistent information transfer, your tape deck
should have:

• earphone (external speaker), microphone and remote jacks
• tone control

• a pause button

• a tape counter

• an AC power supply

The frequency response ofthe recording head and the steadiness of
the tape transport mechanism may also affect performance. If you're
having trouble, try cleaning and demagnetizing the tape head and cleaning
the transport mechanism. Texas Instruments lists recommended tape
decks in the literature that comes with your 99/4A.

For best results, adjust the tone control to maximum treble and the
volume up half.

CASSETTE INTERFACE CABLES

Asingle cassette cable is all you need tostore and retrieve programs.

In the pastTexas Instruments marketed a dualcassette cable; they have
replaced this product bya single cassette cable. Although a single cable
is all you need, a dual cable allows you to use two cassette decks, making
simultaneous input and output possible. The dual cables may not,
however, be available on the market for long.

The ends of the dual cassette cable are marked 1 and 2, for Cassette
1 (CS1) and Cassette 2 (CS2). Single cassette cables and the dual cable
end marked 1 have three leaders, two that transfer information and one
that enables the computer to turn the cassette deck on and off. CS1 is
therefore used for loading and saving programs. The leads function as
follows:

WHITE LEAD: plugs into the EARPHONE jack; sends information to
the computer.

BLACK LEAD: plugs into the REMOTE jack; carries the switch that
allowsthe computer to control the tape deck. The black
lead is smaller than the other two.

RED LEAD: plugs into the MICROPHONE jack; carries the signal
from the computer.

Manydifferent portable cassette decks will work with the 99/4A, but
they must have these three jacks. The computer can send and receive
information from a tape deck without a switching jack for the black
lead, but you'll have to turn the tape deck on and off manually. Some
tapedecks have a switching jackwith the wrong electrical polarity; then
you must use an adapter or, again, work the deck manually.

LOADING AND SAVING PROGRAMS

The 99/4A gives you complete instructions right on the screen for
loading andsaving programs (see also page 1-10 of your User's Reference
Guide). You need only remember two commands:

SAVE CS1 (stores a program in memory onto tape).
OLD CS1 (reads a program on tape into memory).

To check for successful communication between computer and tape,
simply type a "Y" (for "yes") when the computer asks you to CHECK
TAPE (Y OR N)? The message DATA OK indicates that program
transfer has been successful.

Be sure to type all cassette commands in upper-case letters (use the
SHIFT key or depress ALPHA LOCK).

If a program fails to load, you will get one of two error messages:

ERROR IN DATA DETECTED (Volume too high, turn volume down)

ERROR-NO DATA FOUND (Volume too low, turn volume up)

You'll also get the following list:

PRESS R TO READ (to try again)

PRESS C TO CHECK (to check the data)

PRESS E TO EXIT (to stop the loading procedure)

If you stop the loading procedure, the computer will ask you to press
ENTER, issue a warning tone, and then display an I/O ERROR message.
Check the I/O ERROR message list in the back of the User'sReference
Guide; it may help solve your problem. If you try to reload your pro
gram, change the volume or tone settings on the tape deck.

Cassette tapes and decks can be quite finickyat times—withor without
a computer. Keep your tapes away from any strong magnetic influence
like a television. Do not use tapes longer than 30 minutes per side if
you can help it—certainly no longer than 45 minutes a side. If you're
still plagued by recording malfunctions, page 1-2 of the User's Reference
Guide has a good trouble-shooting list.

3 Keyboard Guide

The keyboard of the 99/4A produces 96different symbols. These sym
bolsinclude upper- and lower-case letters, numbers, numerical operators,
punctuation marks, and the empty space character. The lower-case let
ters actually appear as small upper-case letters. Each key produces at
least two symbols, and 12 of the keys produce three symbols. With a
little practice, you will find the keyboard of your computer easy to
operate.

ENTER KEY

ENTER is one of the most important and most often-used keys on
the keyboard. Pressing it places what you type into the computer's
memory. The computer cannot respond until you press ENTER; it
promptly performs commands such as PRINT, LIST, RUN, or numerical
operations when you do. When creating BASIC programs, you must

8

hit ENTERafterevery line. In short, youneed theENTERkey for almost
everything you do with your computer.

SHIFT AND ALPHA LOCK

Your keyboard has two SHIFT keys, located on either end of the
second row from the bottom. These shift keys work like those of an
ordinary typewriter to produce upper-case letters. TheALPHA LOCK
key at the lower left corner corresponds to the shift-lock key on a
typewriter, with onemajor difference. When ALPHA LOCK isup (off
position), your keyboard will produce lower-case letters unless you SHIFT
for upper-case; when it is down (or on), you will get only upper-case
alphabetic letters regardless of the SHIFT key's position. Unlike theshift
lock on a typewriter, ALPHA LOCK does not affect any keys other
than the alphabetic keys. You will always get the symbols on the bot
tom half or numeric and punctuation keys unless you press SHIFT.

Whenwriting a program, leave theALPHA LOCK down, as the com
puter will not accept certain commands if they arewritten in lower-case.
Moreover, when you LIST a program, your text will appear in upper
case letters unless it has been enclosed in quotation marks (more about
LIST in Chapter 4). Type in the following lines exactly as shown; be
sure to press ENTER after each line. If you make a mistake, use the
FCTN and left arrow keys to backspace, then retype the correct text.

100 CALL CLEAR

110 FOR X=l TO 5

120 PRINT "PRINT"

130 NEXT X

RUN (DON'T FORGET TO PRESS ENTER)

The computer prints the word "print" in lower-case letters five times.
If you type LIST and press ENTER, the computer displays the program
in upper-case except where the word "print" has been enclosed in quotes.

One quirk of the ALPHA LOCK key: when down, it can prevent
upward movement on the screen in some programs. If program
movements seem incorrect or non-existent, make sure the ALPHA LOCK
is up.

SPECIAL SYMBOLS

In addition to the four arrow keys (E, S, D, and X), 12other alphabetic
keys have an extra character on their front faces. To produce these
characters, hold down the FCTN (function) key in the lower right cor
ner while pressing the symbol you want.

MATHEMATICAL OPERATORS

The keyboardhas a numberof keys for doingmathematical operations:

+ addition

- subtraction

* asterisk (multiplication)

/ slant (division)

= equals

< less than

> more than

A caret (to get exponents)

Of these characters, the caret is probably the least familiar. It tells
the computer to raise a number to a power: to multiply the number by
itself a certain number of times. Let's say you want to find out what
three multiplied by itself four times is. You could ask the computer to:

PRINT 3*3*3*3

or

PRINT 3A4

In either case the answer is 81. By using the caret, however, you save
yourself several keystrokes.

CONTROL KEYS

Your computer has several special control characters that are activated
by simultaneously pressing the CTRL key to the left of the space bar.
These control characters function primarily in formatting text when you
are using your 99/4A as a terminal. To learn more about control
characters, see Chapter 21, "Your Home Computer As A Terminal."

10

FUNCTION KEYS

A number of special keys enable you to move material around on
the screen, edit programs, correct mistakes, and more. To use these func
tion keys, first press the FCTN key and hold it down while pressing the
desired function. We will indicate this operation with a colon—FCTN: 1,
for example.

If you haven't already done so, find the white plastic strip included
with your 99/4A that carries the legend for function keys in the top row.
Insert it into the tray above the keyboard. Now we can look at what
each function key does.

FCTN: — . The right arrow on the D key lets you move the cursor
to the right along a line without changing its text.

FCTN:«-. Like the right arrow, the left arrow on the S key moves
the cursor to the left along a line without changing it.

Use FCTN: -* together with FCTN:«- to position yourself on a line
when making insertions and deletions. Moving the cursor left and right
is known as scrolling left or right.

FCTN:1 (DELete). Pressing FCTN:1 deletes characters from the screen.
The delete function removes whatever character the cursor is positioned
over when it is pressed. At the same time, all characters to the right of
the deleted character are moved one space to the left. If you hold down
the delete key, all the characters to the right of the cursor will disappear
in rapid succession as if they were being sucked into the cursor. Type
in some letters, use FCTN and left arrow to backspace to the beginning
of your line, and try it.

PRINT GEUHELP

FCTN:2 (INSert). To insert characters into the middle of a line, you
must use the arrow keys to place the cursor one space to the right of
the space where you wish to make your insertion. Then press FCTN:2

11

and type in your insertion. Anything to the right of your insertion will
be bumped one space to the right to make room for each new character.

FCTN: t. When youare working outside a program, i.e. in Immediate
Mode, pressing the up arrow on the E key with the FCTN key has the
same effect as pressing ENTER within a numbered program line,
FCTN: I has special editing functions, which will be described in "Tools
For Building Programs," Chapter 5.

FCTN: 1. This combination has exactly the same effect as FCTN: t
has when used outside a program. We'll discuss these further in Chapter
5.

FCTN:3 (ERASE). Pressing the 3 key with FCTN erases the entire
line you are on with a single keystroke.

FCTN:4 (CLEAR). This combination lets you "escape" from a line
you are working^on without having it registered by the computer: it per
forms the opposite action of the ENTER key. FCTN:CLEAR has addi
tional uses described in Chapter 5.

FCTN: = (QUIT). Pressing FCTN:QUIT completely erases all infor
mation you've entered into the computer and returns you to the title
screen. Anything displayed on the screen as well as all program con
tents are lost when you hit FCTN.QUIT so use it carefully!

Special Functions. The function keys BEGIN, PROC'D (proceed),
AID, REDO, and BACK have special uses with various external soft
ware packages.

AUTOMATIC REPETITION

All the keys on the keyboard automatically repeat if held down. This
feature makes editing or entering repetitious data much easier. For in
stance, you can hold down the space bar to quickly erase major sec
tions of lines.

USING THE SCREEN EDITOR

Now let's have some fun working with the screen editor features that
let you make sweeping changes quickly and easily. With ALPHA LOCK
up, type in the following without hitting ENTER:

12

For score and even ears ago

our orefathes had bought for

only this here contnent an n

EW NATON. . .

Of course, this is a horribly mutilated version of the opening words
of Lincoln's Gettysburg Address, which should read:

Four score and seven years

AGO OUR FATHERS BROUGHT

FORTH ON THIS CONTINENT A

NEW NATION. . .

First, let's make our deletions. The underlined letters below need to
be deleted. Using the FCTN:— key and FCTN: — keys, place the cur
sor over each space to be deleted and press the FCTN:DEL key as shown
on your white function strip. Remember to delete the extra spaces be
tween words where appropriate.

For score and even ears ago

our qrefathes haq bought for

onlx this here contnent an

new naton. . .

You should now have:

For score and even ears ago

our fathes bought foron this

contnent a new naton. . .

Now using FCTN:INS, insert the underlined letters in the version
below. Again, use FCTN: <— and FCTN: — to position yourself within
the line. Remember to place the cursor just to the right of the space
into which you want to insert a character. Once in place, press FCTN:INS
and type your insertion. Then reposition the cursor for your next
insertion.

13

Four score and seven iears ago

our fathers brought forihon this

continent a new nation. . .

We are most of the way there. We now have:

Four score and seven years

agoour fathers brought forth

on thiscontinent a new nat 10

N. . .

The last step in this process is to insert some spaces between words
and at the end§ of lines in order to give the passage a finished look.
First insert a space between the words "ago" and "our." As this has placed
the last letter in the word "forth" on the next line, we will place the en
tire word on the next line by inserting four spaces after "brought." Now
break up "forthon" and "thiscontinent" with spaces and move the word
"new" to the beginning of the fourth line. Lincoln should now be able
to rest easy for you should see on your screen:

Four score and seven years

ago our fathers brought

forth on this continent a

new nation. . .

By now you may be sick and tired of using the delete and insertions
keys on this passage. If so, you may get your final revenge by practic
ing FCTN:ERASE and obliterating it.

14

4 Introducing TI BASIC

BASIC, which stands for "Beginners All-purpose Symbolic Instruc
tion Code," was developed in the 1960s by John Kemeny and Thomas
Kurtz of Dartmouth College. It is one of the most popular languages
used on today's microcomputers. Your 99/4A comes with TI BASIC,
a lightly modified version of the standard American National Standards
Institute (ANSI) version.

Like any written language, TI BASIC has rules for spelling, gram
mar, syntax, and punctuation. These rules make it possible for the com
puter to understand what we want it to do. Unlike English, which has
many thousands of words, TI BASIC has only seventy-nine, called
reserved words.

If 79 new words sounds like a lot, don't worry; most of them do ex
actly what you would expect. For instance, NEW tells the computer that
you are starting a new program: time to clear out the memory and get
ready to begin. Similarly, END, when placed in a program, instructs
the computer to stop the execution of that program.

Some BASIC words are specialized and rarely used; you will useothers
over and over again. Here and in following chapters, we will give you
a working knowledge of most of theBASIC reserved words; you'll then
be able to use your Reference Guide to figure out the remaining ones.

~ 15

COMMANDS, FUNCTIONS, AND STATEMENTS

TI BASIC has three kinds of words: commands, functions, and
statements. A command is an instruction that the computer performs
as soon as you press ENTER. Commands exist outside of programs and
allow you to communicate directly with the computer's operating system.

A function allows you to treat a complex operation—a procedure with
many steps, such as the calculation of square roots or logarithms —as
a single operation.

Statements are the fundamental building blocks of programs. A state
ment is an instruction to the computer that exists only inside a program;
it is always preceded by a line number. A program, then, is simply a
numbered list of statements written in BASIC.

Many BASIC words can operate either as commands or as statements.
When they arcused within a program, they act as statements; outside
a program they act as commands for immediate response. The fold-out
reference card accompanying your machine lists most TI BASIC words.
Each is followed by a brief explanation and a symbol indicating whether
it is a command, function, statement, or multi-category word.

COMMANDS

Immediate Mode

Let's try out a few commands. When you first press the 1 key to enter
TI BASIC, your computer is in Immediate, or Command, Mode. In
this mode, the computer immediately performs the BASIC commands
that you type.

Be sure to type the following sample commands exactly as they appear
here. Remember, BASIC has rules for spelling, punctuation, and spac
ing (see pages H-7 of the User's Reference Guide), and the computer
is very fussy about details. When you are done, check your work and
use the screen editor to change mistakes. When all is correct, press
ENTER: the computer will then execute the command. If, for some
reason, you have not correctly typed in the command, an error message
like INCORRECT STATEMENT or BAD NAME may appear. If this
happens, retype the command. We'll talk more about these error messages
a little later (or see pages HI-8 to III-12 of the User's Reference Guide).

16

Using The PRINT Command

You can print a message by typing the word PRINT, followed by
a space and your message enclosed in quotation marks (FCTN:P) and
ENTER:

PRINT "WORLDS ABOVE, WORLDS

BELOW"

You may PRINT more than one message at a time simply by enclosing
each message in quotes. The messages may be separated by using one
of three PRINT spacers. A colon placesblank linesbetween each message.
For example:

PRINT:::::"W0RLDS ABOVE"::::

:"WORLDS BELOW" (PRESS ENTER)

The computer will print WORLDS ABOVE five lines below the PRINT
command and WORLDS BELOW five lines below WORLDS ABOVE.

Commas and semicolons are the other two print separators. A comma
inserts a tab space between messages:

PRINT "WORLDS"/'APART" (Press ENTER)

WORLDS appears at the left of the screen and APART appears on the
same line but starting in the middle of the screen.

A semicolon instructs the computer to print the messages with no spaces
between them, thereby joining the displays:

PRINT "WORLDS";"IN COLLISION"

will print WORLDSIN COLLISION.
Remember: PRINT separators must be placed outside the quotation

marks; otherwise they will be considered part of the message's punctua
tion, like the comma in our first version.

CALL Commands

A quick look at the reference card shows a number of commands
that begin with the word CALL followed by another word such as

17

SCREEN or KEY. Some of these words are also statements unique to
TI BASIC. They are sometimes called the "knobs and whistles" of the
99/4A because of their dramatic effects. To see what we mean, type
NEW to clear the screen and the following command (don't forget to
press ENTER):

CALL HCHAR(5,7,42,10)

If you did this correctly, you should see a horizontal row of ten stars
in the upper left of your screen. HCHAR stands for horizontal character.
CALL HCHAR is a graphics command that instructs the computer to
display the graphics encoded by the numbers in parentheses. CALL
HCHAR can also double as a program statement. We'll show you how
it is used and what those four numbers means in Chapter 15, "BASIC
Graphics."

CALL HCHAR has a companion command, CALL VCHAR, which
controls the vertical graphics display. To see it in action, type in the com
mand below. Again, make sure the commas are in the right place and
that all words are spelled and spaced correctly. Remember to press
ENTER after you've checked your work.

CALL VCHAR(5,7,42,10)

Did you get a vertical column of ten stars at the upper left of your screen?
Another powerful command/statement is CALL SOUND. This com

mand controls the output of the sound chip. To hear it in action, type:

CALL SOUND(2000,440,0)

You will hear a sound pitched at 440 cycles per second and lasting two
seconds. The 99/4A has one of the easiest-to-use sound chips on the
home computer market. It has three programmable voices. If you would
like to hear them working together, type:

CALL SOUND(2000,440,0,294,0,

740,0)

We'll further explorethe sound chip in Chapter 14, "Sound and Music."
Sound and Music."

By now your screen is getting pretty crowded with commands. For
a clean slate, type in this next command (remember to press ENTER):

CALL CLEAR

CALL CLEAR erases the screen display. It is often used as a program

18

statement, usually at the beginning, so that any new graphics or print
outs will not be confused with previous displays.

Other CALL commands include CALL KEY, CALL SCREEN,
CALL COLOR, CALL CHAR, and CALL JOYST. We will explain
them all in later chapters.

Meanwhile, as long as we have a clean slate, let's go to the board and
do a little math.

Command Mode Calculator

You can use the PRINT command along with the symbols for addi
tion (+), subtraction (-), division (/), multiplication (*) and exponen
tiation (A) to turn your 99/4A into a calculator. The operations are sim
ple. For addition, type in the following (don't forget to press ENTER):

PRINT 4+5

and you will get the answer 9 on the following line. The process is similar
for the other mathematical operations:

PRINT 76-42

34

PRINT 25/5

PRINT 16*8

128

PRINT 9~2

81

Variables

In Immediate Mode, you can do calculations another way, by assign
ing a number value to a letter. For instance, if you type A = 3 and
press the ENTER key, the letter A will be stored in memory as having
a value of 3. You can now type the letter A in calculations, and the
computer will automatically figure it in as 3. To seewhat wemean, type
in the example below.

19

A=3

PRINT 4+5+A

12

You have just assigned a value to a variable. A variable is a quantity—
like the temperature - that varies. The letter A is the variable's name,
and its value is 3. There are two types of variables in TI BASIC: numeric,
defined in numbers, and strings, defined in characters. Variables play
a critical role in programming because a simple name like A or B can
represent a great deal of numeric information. Chapter 7, "Variables,"
will explain their use in more detail.

Your Immediate Mode calculator can do more than just simple opera
tions. For example, try out the problem below. First try working it out
with pencil and paper. Then use the 99/4A and see how fast the calculator
works.

A=5

B=6

C=9

PRINT (A+B)+(A+C)-C/6

23.5

Was your answer the same as the computer's? If not, check that you
typed in all the parentheses; otherwise, the 99/4A may have performed
the calculations in an order you did not expect. In all mathematical opera
tions, the T.I. follows a very specific set of rules. Refer to Chapter 6,
"Working with Numbers," or to page H-13 in your User's Reference
Guide.

FUNCTIONS

You will recall that a BASIC function allows you to treat an opera
tion involving a series of steps as a single procedure. What is actually
happening is that your computer interprets your single word, such as
SQR for square root, as a cue to perform a prescribed series of steps.
Let's return to our calculator to see how this works.

Math Functions

Perhaps you remember Pythagoras's famous theorem on right triangles,

20

Aa2 + BA2 = CA2. Let's use this theorem and the BASIC function

for finding square roots (SQR), to figure out the hypoteneuse of a right
triangle with side A four inches long and side B five inches long.

The first step is to calculate the sum of Aa2 + Ba2.

A=4

B=5

PRINT A~2+B~2

41

We now know that our hypoteneuse (C), squared, equals 41. Do you
know what the square root of 41 is? Your 99/4A does. Just type:

PRINT SQR(41)

6.403124237

Our hypoteneuse is 6.40312437 inches long.
Your computer has lots of built-in time-saving math functions that

we'll discuss in Chapter 13, "Numeric Functions."

TAB Function

TI BASIC also has a function to help format PRINTed text. It's called
TAB, and it works much like the tab key on your typewriter. To use
it, simply type TAB and then, in parentheses, the number of spaces you
wish to have your text moved. TAB function must be preceded and
followed by a print spacer. The only exception to this rule is the first
TAB, which needs no preceding spacer.

For a graphic demonstration, type in the line that appears below. You
may want to clear your screen with a CALL CLEAR command first.

PRINT TAB(5);"UPn::TAB(10);n

SIDE"::TAB(5);"D0WN"

The computer prints:

UP

SIDE

DOWN

21

Notice that UP and DOWN, though on different lines, both begin on
the fifth space while SIDE begins on the tenth. Print formatting is an
important part of programming. You can learn more about it in Chapter
8, "Using PRINT."

STATEMENTS AND PROGRAM LINES

We come now to the last, but by no means the least important, BASIC
word form: the statement. As mentioned before, statements are the
building blocks of programs. Each statement tells the computer how to
perform the work you want it to do. In TI BASIC only one statement
may be written on a single numbered program line. The computer will
execute each statement in numerical order, from lowest to highest.

To get a better picture of this, let's write a simple program that will
clear the screen display and then PRINT a not-so-simple tongue-twister.
Make sure when typing this program to leave a space between the line
number and the BASIC statement (and keep the ALPHA LOCK key
down). Press ENTER at the end of each line to store it in memory. When
are you done ENTERing your lines, type RUN and hit ENTER to see
your program at work.

One last tip: type NEW and hit ENTER before you begin. This will
clear the memory of any leftover statements from old programs.

100 CALL CLEAR

110 PRINT "PETER PIPER"

120 PRINT "PICKED A PECK OF"

130 PRINT "PICKLED PEPPERS"

If all went well, the screen turned green, cleared the display, and printed
your lines. The computer then printed DONE and the screen turned blue.
DONE is the 99/4A's way of telling you it has finished executing your
program. The green screen is the default screen color value when a pro
gram is running. In other words, unless you specify an alternative color
in your program, the screen will always be green when it RUNs. The
screen returns to blue when the final line has been executed.

The main difference between Immediate Mode and Program Mode
is that in Program Mode, we can tell the computer to respond to more
than just a single command.

22

If we wish to expand this program, we need only add more program
lines. To demonstrate this, let's add some lines so that the computer
PRINTS what happens when our tongue gets twisted. To do this we'll
have to use a new statement. It's called GOTO, and it's one of the easiest-
to-use BASIC program statements.

GOTO

As stated earlier, the computer will execute a program line-by-line in
numerical order. One way to get around or change this order is to use
the GOTO statement. You must always follow a GOTO with a line
number, such as GOTO 120. Make sure to leave a space between the
GOTO and the number. When the computer encounters a GOTO, it
will skip to the line indicated by the line number that follows the state
ment. Thus, GOTO 120 would instruct the computer to go to Line 120.
It would then execute Line 120 and move on to Line 130 again. Since
GOTO can change the order of the lines, you can see why it would help
demonstrate our tongue-twister.

23

Now let's change our program, which is still in memory. To make
sure it's still there, type LIST and press ENTER. Add the new statements
by typing in the lines that appear below. Don't worry if they seem out
of order. The computer doesn't care whether you type the lines in the
order they run; it has a built-in feature that automatically reorders pro
gram lines. Once again, make sure to press ENTER after you have typed
each line.

105 GOTO 130

135 GOTO 120

125 GOTO 110

115 END

To check your work, type LIST and pressENTER. Your program should
read:

100 CALL CLEAR

105 GOTO 130

110 PRINT "PETER PIPER"

115 END

120 PRINT "PICKED A PECK OF"

125 GOTO 110

130 PRINT "PICKLED PEPPERS"

135 GOTO 120

If you notice any mistakes, retype the line and press ENTER.
By numbering our original lines by tens, we made it easy to insert

our new lines in between the old ones. We could, if we wanted, add
Lines 101, 102, 103, etc. It's good programming practice to leave room
for line additions; you never know when you will need the space.

Now, to see your tongue-twisted program, type RUN and press
ENTER.

24

PICKLED PEPPERS

PICKED A PECK OF

PETER PIPER

** DONE **

GOTO has many other uses which we willexplore a little later. Now
that you've written your first program, you're ready for thenext chapter,
"Tools For Building Programs," but first, type in this final command,
press ENTER and see what happens.

BYE

25

5 Tools for Building Programs

As we saw in the last chapter, commands that can stand alone are
also tools for building programs. This chapter will review such com
mands and their roles in creating and editing programs. (Before begin
ning, be sure you're comfortable with the screen editor, described in
Chapter 3 and in your User's Reference Guide.)

LINE NUMBERING

All programs are simplylists of numbered lines (instructions) that the
computer performs one at a time. A program's logic depends, in part,
on the sequence of those lines.

Your 99/4A has a simple labor-saving feature that lets you auto
matically establish line numbers for your program. To activate this
feature, type NUMBER, or simply NUM. You are now working in
Number Mode. The number 100 appearsas your first program lineentry
because the default value of the NUMBER command produces a list
of lines that begins at 100 and proceeds by increments of 10. (Default
values are values that the computer assumes unless you tell it otherwise.)

If you wish, you may choose your own line numbers. Simply type
NUM followed by the line number with which you wish to begin your
program, then a comma, and the number of steps between line numbers.
In the following example we will set up a line list that starts at 1000
and proceeds by steps of 20. Type in a letter and hit ENTER after each
number as it appears on the screen:

26

NUM 1000/20

1000 A

1020 B

10^0 C

1060 D

If you ENTER a blank line, you will leave the Number Mode and
the computer will automatically stop providing new numbers.

If you wish to start at Line 100 but would like to proceed by fewer
or more than 10 steps per line, type NUM followed immediately by a
comma and the number of steps desired.

NUM, 8

gives 100, 108, 116, 124, etc. Conversely, to start at any number but
still proceed by steps of 10, type NUM followed only by a space and
the starting line number. For example,

NUM 600

gives you 600, 610, 620, 630, etc.
While in Number Mode, you may use the ENTER key to review an

existing program. Say you've previously stored this program:

100 A=2

110 B=3

120 C=h

130 PRINT A+B+C

If you want to look at Line 110, you can call it by typing NUM 110.
Each time you press ENTER the next program line will appear. You
can then change any existing line or leave it unaltered. If you wish to
exit the Number Mode at any time press FCTN:CLEAR If you edit a
line, the new version replaces the old, and the computer displays the
next line number in the sequence. If you want to erase a line from the
program, you must use Edit Mode (see below).

27

In Number Mode, the INSert and DELete functions, as well as the
left andright arrows, work exactly the same way asthey dointhescreen
editor. The FCTN: I and FCTN: I,however, work like the ENTER key:
both arrows merely display subsequent numbered lines, just as the
ENTER key does.

RESEQUENCE

A powerful programming tool in TI BASIC is the RESEQUENCE
command. RESEQUENCE allows you to completely renumber all pro
gram lines with the touch of a few keys; this is a fabulous convenience
when creating large, complex programs. To use the command, simply
typeRESEQUENCE or RES, followed by the number you wish to start
with, a comma, andthenumber of steps desired between program lines.
For instance, the command RES 500,50 changes the program on the
left to the one on the right.

28

100 A=2 500 A=2

110 B=3 550 B=3

120 GOTO 190 600 GOTO 950

130 C=4 650 C=k

]kfd D=5 700 D=5

150 GOTO 210 750 GOTO 1050

160 E=6 800 E=6

170 F=7 850 F=7

180 GOTO 230 900 GOTO 1150

190 PRINT A+B 950 PRINT A+B

200 GOTO 130 1000 GOTO 650

210 PRINT C+D 1050 PRINT C+D

220 GOTO 160 1100 GOTO 800

230 PRINT E+F 1150 PRINT E+F

See for yourself: clear the computer by entering NEW, then use
Number Mode to type in the program on the left. RUN it. Then type
RES 500,50, hit ENTER and LIST your renumbered program.

When you RUN the new program you'll see that it does exactly the
same thing as the original: it PRINTs the numbers 5, 9, and 13.

Thecomputer takes only a moment to resequence such short programs,
and perhaps as long as several minutes for very long ones. But think
of the typing you save with this tool!

The RESEQUENCE command produces a program beginning at Line
100 and proceeding by 10s if used without a trailing number. Keep in
mind that the maximum allowable line number is 32767; any request
to RESEQUENCE aprogram that would give aline number higher than
32767 produces the error message, BAD LINE NUMBER.

You'll see the beautyof this command as you put together elements
of complex programs. You might wish, for instance, to insert more pro-

29

gram steps in one spot than your current numbering system has room
for. RESequencing offers a painless solution. It can also help clean up
a program with a lot of odd line numbers.

EDITING PROGRAMS

Your 99/4A gives you several methods, besides the NUMBER com
mand for reviewing and editing program lines. These methods, which
use the LIST and EDIT commands as well the up and down arrows,
will make creating programs much easier.

LIST

When you type LIST and press ENTER, the computer displays the
program currently in memory, starting with the first line and proceeding
until the last. If the program is longer than 24 lines, the first ones to
appear will disappear off the top of thescreen as the display continues.
To stop a moving line list, simplypress FCTNrCLEAR. The forms the
LIST command can take are shown below:

LIST Lists the entire program.

LIST 200- Lists program lines from 200 onward.

LIST - 200 Lists program lines up to and including Line 200.
LIST 200-500 Lists Lines 200 to 250, inclusive.

LIST 200 Lists only Line 200.

If you ask to LIST a line number higher than any actual number in
a program, you'llget the last real line. Similarly, if you ask for a number
lowerthan any in the program, you'll get the lowest numberedline. Ask
ing for a line number greater than 32767 will bring a BAD LINE
NUMBER message. Attempting to list a non-existent program will pro
duce a CANT DO THAT message.

Edit Mode

To edit a program you will want to use Edit Mode. You may begin
editing at any line number bytyping EDIT followed bya space andthe
numberof the lineyouwish to review. You canget the same effect with
fewer keystrokes by typing injust the line number and then hitting either
the up- or down-arrow functions. Thus, typing

30

EDIT 220

220 [FCTN: t]

220 [FCTN: 1]

will all display Line 220 for you to review. Once the computer is in Edit
Mode, the up and down arrows can be used to review a program line
by line.

Type in the following program (clear out your old lines first with a
NEW command):

100 PRINT "USE EDIT"

110 PRINT "MODE TO"

120 PRINT "CORRECT"

130 PRINT "YOUR PROGRAMS"

140 PRINT "EASILY"

' 150 [ENTER A BLANK LINE HERE.]

Typing 100 followed immediately by FCTN: i will put you in Edit
Mode at Line 100. Pressing FCTN:i again will display the following
line:, number 110. If you hit FCTN:1 three more times, the computer
displays thenext three lines intheprogram, ending with Line 140. Thus,
FCTN:i moves you down through a program, displaying successively
higher numbers, asif the lines were printed ona sheet of paper. Hitting
FCTN: t, on the other hand, displays the next lower line numbers (130,
120, 110, 100), effectively moving you upward through your program-
on-paper. Note, however, that the cursor itself remains at the bottom
of your screen while your lines move upward. If you run out of line
numbers as you are ascending or descending the program list, you will
automatically leave Edit Mode.

Moving through the line list with theup and down arrows allows you
either to leave lines unchanged or to edit them. Any changes you make
will replace theoldversion when you next press thearrows to continue.
(The cursor may beanywhere ona line when you move to the next line.)

Thus, inEdit Mode FCTN: I and FCTN: t operate much like ENTER,
entering revised statements into memory. Pressing ENTER itself also

31

enters changes in a program line but takes you out of Edit Mode. Use
the arrow functions if you're planning further revisions.

You can INSert and DELete text with FCTN: — and FCTN: — in
Edit Mode as described in Chapter 3, except that you won't be able to
move the cursor over the line numbers themselves. In Edit Mode, you
cannot immediately delete the line number even using FCTN.ERASE.
Deletingall the text of a line will, however, deletethe line number from
memory. If you reLIST the program you'll see that the line number of
the erased line has disappeared.

A very handy tool to use in Edit Mode is FCTN:CLEAR. This com
bination lets you escape from making changes in a line if you suddenly
develop second thoughts. This isparticularly useful when you're work
ing on long and complicated lines or if you've covered some portion of
thetext with SSSSSSSS or DDDDDDDD byforgetting to press FCTN
while trying to move left orright. No matter how badly you've mangled
a line, you can always press FCTN:CLEAR and the computer will
preserve the orginal line. FCTN:CLEAR does putyou outof Edit Mode,
but this is a small price to pay, as you need only type the line number
followed by FCTN: t or FCTN: 1 to begin again.

STARTING AND STOPPING PROGRAMS

32

In this section we'll look at some commands for starting and stop
ping programs or parts of programs. This may sound trivial, but the
ability to run small program sections independently will help you analyze
and correct problems later.

Diamond Track

Thefollowing program graphically demonstrates theRUN, BREAK,
UNBREAK, CONTINUE, STOP, andEND commands. Typing it into
the computer will also give you some practice with Edit Mode. "Diamond
Track" is simply a group of print statements that have been run in a
loop to produce a continuous diamond shaped track. While the pro
gram RUNs each line number is displayed on the right hand side ofthe
screenas the line is executed. That way, you can keep track of the pro
gram as it RUNs. When typing, pay close attention to the blank spaces
in each print statement; otherwise, who knows what shape you'll get?

2 REM *** DIAMOND TRACK *** 70 PRINT " G G

3 CALL CLEAR 70"

6 PRINT TAB(20);"LINE #":: 80 PRINT " H H

10 PRINT " A 80"

10" 90 PRINT " i I

20 PRINT " B B 90"

20" 100 PRINT " J J

30 PRINT " C C 100"

30" 110 PRINT " K K

40 PRINT " D D 110"

W 120 PRINT " L L

50 PRINT " E E 120"

50" 130 PRINT " M

60 PRINT " F F 130"

60" 140 GOTO 10

Okay, RUN your program. On the left, the DiamondTrack will scroll
up the screen with each diamond connected to the next where the M
sits over the A. All the computer is doing is running a series of thirteen

33

PRINT program statements numbered 10 to 130, over and over again.
Now, hit FCTN:CLEAR to stop the program and let's look at some

commands.

RUN

You already know that typing RUNand pressing ENTER starts run
ning the program stored in memory. When you type RUN alone, the
computer starts the program at the lowest line number. If you add a
line number to the command, the program beings at that line. If you
now type RUN 70, Diamond Track will begin at the widest point of
the diamond byprinting two Gs separated byeleven empty spaces. Notice
that the number 70 appears on the right.

BREAK out of the program with FCTN:CLEAR; note the message
BREAKPOINT AT [line number].

CONtinue

Like RUN, CONtinue also runs a program, but always from a
BREAKPOINT where the program has been interrupted. To CONtinue,
you need only type CON and press ENTER. The first line performed
will have the same number as the number in the BREAKPOINT
AT.. .message. Break out of Diamond Track several times and restart
the program with the CON command.

The CON command will not work if you have edited any lines since
the last breakpoint. To start the program after editing a line, use RUN.

BREAK and UNBREAK

Pressing FCTN:CLEAR when a program is RUNning stops it, but
you can also use BREAKdirectly. For example, you may insert BREAK
as a numbered statement in the program itself. Type BREAK into the
Diamond Track program at a new linenumber-say, 55-and RUN it:
the program stops after Line 50 with the message BREAKPOINT AT
55. Now bring 55 up in Edit Mode and change it to read: 55 BREAK
20, 70, 110. Don't forget to put a space after the line number and after
the word BREAK as well as separating with commas the line numbers
including in the statement.

RUNning the program now produces breakpoints at Lines 20, 70, and
110.

Use CON to continue after each breakpoint. You'll notice that the
program doesn't stop at Line 20 the first time through because the com-

34

puter hasn't yet come to the BREAK statement at Line 55. The second
time through the loop however, the program BREAKs at Line20. The
values of variables in a program are not affected by a breakpoint.

Now, in Edit Mode, delete Line 55 with FCTN:ERASE. The pro
gram should again run without stopping.

Let's try using BREAK as a command. Hit FCTN:CLEAR to stop
the program. Without a line number, type BREAK 40, 60 and press
ENTER. If you RUN the program now, you'll get a breakpoint first
at Line 40(type CONto go on)and thenat Line 60. Typing CONagain
will start an uninterrupted run: outside a program, the BREAK com
mand breaks the program onlyoncefor eachspecified linenumber. To
get repeated BREAKs, you must include BREAK as a numbered pro
gram statement.

If youENTER a BREAK command for a non-existent line number,
the message BAD LINE NUMBER is displayed immediately. You can
enter a BREAK statement which refers to a non-existent line number,
but the computer will simply beep a BAD LINE NUMBER warning
when the BREAK statement is encountered and proceed with the pro
gram. If this happens, just delete or edit the BREAK statement.

UNBREAK removes breakpoints set by BREAK. UNBREAK may
be used either by itself or with a list of line numbers it is intended to
affect. For instance, UNBREAK 20,40 would be used to delete break
points at Lines 20and40. UNBREAK canbeused aseither a command
or as a statement. To ensure the effectiveness of UNBREAK, it is best
to use BREAK statements which refer to themselves such as

55 BREAK 55

Any numberof BREAK statements written in this fashion can be cancell
ed by a simply UNBREAK command or statement writtenat the begin
ning of the program. BREAK statements which do not specify one or
more line numbers cannot be cleared by UNBREAK. If you wish to
clear only one BREAK statement, follow your UNBREAK statement
or command with the line number in question. Following a BREAK com
mand with an UNBREAK command which specifies no line numbers
willcancel all breakpoints. If line numbers are specified with UNBREAK,
only the breakpoints at the specified line numbers will be eliminated.
If UNBREAK is used as a command, any breakpoint eliminated will
be reinstated if they are encountered in the program more than once.
To avoid this, use UNBREAK as a statement within the program.

~~ 35

END and STOP

END and STOP statements do just that: a program stops running at
the line saying END or STOP, and you get the message ** DONE **.
You cannot CONtinue a program that has been ENDed or STOPped;
use RUN to start again. In TI BASIC, END and STOP statements are
not required to complete your programs.

REMARK STATEMENTS

You can write notes to yourself within a program by typing REM
at the beginning of a number line. The computer completely ignores all
REM lines when running a program. Note, therefore, that references
within REMarks to other line numbers do not change when the RE
SEQUENCE command is used. Be sure to leave a space after REM
before typing in your remarks.

36

6 Working with Numbers

(0,4)

(-4,4) ^H—^ (4,4)

(_4,0)4-~H- (0,0) ~H-*4-(4,0)

V ! /
\ V \/

(~4,-4)/^v^i^/^ (4,-4)
(0,-4)

TI BASIC has very precise waysof dealing with numbers. When assign
ing values to numerical variables, you can represent and enter them in
two ways: as "real" numbers (integers and decimals) or in exponential
(sometimes called scientific) notation.

Numbers like 22, .0648, -99, 46.583, and -3.14 are all "real"
numbers. When entering large numbers, do not use commas or TI BASIC
will interpret one number as two. Four thousand six hundred twenty-
two must therefore be written 4622; the computer would read 4,622 as
4 and 622.

Negative numbers should be indicated by a minus sign before the
number, for example, -25. If you don't add any sign, the computer
will assume the number is positive, although you may put a plus (+)
sign before a positive number if you wish.

Exponential, or scientific notation is usually reserved for very large
numbers. 106, for example, means ten multiplied by itself six times (or
raised to the power of six); in other words, one million. 2 X 106 means
two times ten to the sixth power, or two million. Because you can't type
superscripts on your 99/4A, 2 X 106 is written2E6, whereE stands for
the 10. The number 3.4859E7 means, then, 3.4859 X 107 or 34,859,000.

37

Note that the E must be in upper case. The numbers before the b are
known as the mantissa and usually range from 1.000 to 9.999. The
number(s) following the E stand for the power of 10to which you wish
to raise your mantissa. Very small numbers have negative exponents;
thus 4.982 X 10-4 is written 4.982E-4 and equals .000492.

If you enter a number that is too large for the computer to handle,
or if a calculation results in such a number, you will see a "NUMBER
TOO BIG" error message. Oh well, if you need a number larger than
9.9999999999999E127 or less than -9.9999999999999E127, you'd bet
ter get another computer.

ORDER OF ARITHMETIC OPERATIONS

TI BASIC performs arithmetic operations according to strict rules.
The TI BASIC arithmetic operators are:

BASIC

Operation Symbol Example

Addition + X + Y

Subtraction — X-Y

Multiplication * X*Y

Division / X/Y

Exponentiation A XAY

When evaluating arithmetic expressions with more than one opera
tion, the computer performs the operations in a specific order:

1. All expressions within parentheses are evaluated first; if parentheses
are nested, the innermost expression will be evaluated first.

2. Exponents are evaluated next, from left to right.
3. Multiplication and division are next.

4. Addition and subtraction are last.

Thus the expression (4*(8/2) + 6)*5 is evaluated as follows:

1. (8/2) = 4 comes first because it is the innermost expression in
parentheses.

2. 4*(8/2) = 16 is performed next because, of the expressions remain
ing in the parentheses, multiplication takes priority over addition.

3. 4*(8/2) or 16 is then added to 6, as this is the next operation within
parentheses, yielding a total of 22.

4. 22, as the total of all the operations performed within the paren
theses is then multiplied by 5. The final solution is 110.

38

RELATIONAL EXPRESSIONS

The TI also has a set of relational expressions that indicate relations.
These relational exprssions are usually teamed withthe conditional logic
of the IF-THEN-ELSE statement (see Chapter 9). The symbols below
indicate the relationship between two numbers.

= equal to

< less than

> greater than

< > not equal to

< = less than or equal to

> = greater than or equal to

Relational expressions can also be used within numeric expressions.
When a relational expression is used within a numeric expression, the
numeric valueof - 1 is given if the statement is true, while the numeric
value of 0 is given if the relation is false. To clarify this, examine the
examples below:

PRINT 5>7 PRINT 5<7

0 -1

PRINT 5<>7 PRINT 5<=7

-1 -1

PRINT 5>=7 PRINT 5=7

0 0

There will be many occasions when you'll need arithmetic expressions
in yourprograms. If you follow these few simple rules for using numbers,
the 99/4A will respond with speed and accuracy.

39

7 Variables

Rnmon ACCESS
P05TAL SERVICE

A B C D

You can think of variables as a handy way to store information in
the computer's memory. Avariable's name identifies the memory loca
tion containing the information. The information may vary as a pro
gram runs. Computers recognize two types of variables, numeric and
string. A numeric variable stores numbers; a string variable stores a series
of letters, numbers, and symbols as a unit.

NUMERIC VARIABLES

The process of assigning a number to a letter in a program, is called
"initializing the variable." You can use the LET statement to initialize
a numeric variable.

40

100 LET A=99

Now, unless you change the value of A, the number 99 will be stored
in amemory location called A. To demonstrate this, type in the follow
ing program. Remember to press ENTER after each program line and
command.

100 LET A=99

110 PRINT A

120 A=A+1

130 PRINT A

H0 END

RUN

The computer prints

99

100

because Line 100 assigns the number 99 to the variable A.

Line 110 instructs the computer to PRINT the value stored as A.
Line 120 increases the value of A by 1.
Line 130 tells the computer to PRINT the (new) value stored as A.

Thelittle device in Line 120, A = A +1, lets youupdate variable values
easily. The statement simply reassigns to the variable named A a new
numeric value equal to the old A plus 1. To see this feature in action,
type in the program below. (This program will continue torun until you
break out by hitting FCTN.CLEAR.)

NEW 130 PRINT A::

100 LET A=99 140 A=A-1

110 PRINT A:: 150 GOTO 110

120 A=A+2 RUN

41

Line 100 assigns the number 99 to the variable A.

Line 110 prints the current value of A, then puts two blank lines in the
display.

Line 120 increases the current value of A by 2.
Line 130 prints the current value of A, then skips the display down two

more lines.

Line 140 decreases the current value of A by 1.

Line 150 sends the computer back to Line 110, thus creatinga continuous
loop comprising Lines 110 through 150 inclusive.

Using the LET statement to assign values to variables is the common
convention for most forms of BASIC. TI BASIC, however, allows you
to initialize a variable without using LET. You can write Line 100 as:

100 A=99

and the program will still run properly. Since this form is simpler and
more memory-efficient, we will use it from now on.

By the way, if you do not give a variable a value, the computer
automatically assigns it a value of zero.

NAMING NUMERIC VARIABLES

You must follow a few simple rules when naming numeric variables.
All variable names must begin with a letter and may contain only let

ters and numbers. Thus, Z, Z5, L41P, FQR, COLORADO, PLAYER2,
and PLAYERTWO are all legal variable names, but 5, 5Z, STREET#,
@LP-5, A? are not.

Different variables in the same program may not have the same name
because the computer will interpret them as the same variable. Minor
changes-one letter or number-are enough for the computer to
distinguish variables.

It helps if you name your variables according to the part they play
in your program. For example, DURATION is a good name for a
variablethat the controlsthe length of a particularevent, such as a musical
note or a graphics display.

A variable name must never exceed 15 letters. If it does, the com
puter responds with a BAD NAME error message.

One final rule about naming variables: You may not use BASIC re
served words as names. If you do, the computer will say CANT DO
THAT. You may, however, include a reserved word within a name; thus
RUN41 and HOMERUN are legal names.

42

STRING VARIABLES

-{gAT^TJogg^:

String variables are used for characters (letters, numbers, and sym
bols) rather than numbers. The same rules apply to naming string
variables as apply to numeric variables, with one exception: a string
variable name always ends with a dollar sign ($). Thus A$, NAMESS
and Z52$ are all legal string variable names.

String variables differ from numeric variables in two other ways. First,
numbers included in the string cannot perform or be used in mathematical
operations. Second, all characters within a string must be enclosed in
quotation marks. The following program shows how to use string
variables.

NEW

100 A$=MHERE ARE 3"

110 R^3$="**EXAMPLES**0F**n

120 BOB$=*'STRING VARIABLES"

130 PRINT ::A$::R«$::B0B$

RUN

THE ROLE OF VARIABLES IN PROGRAMMING

The main purpose of variables is to help us use the computer to pro
cess information in the form of numbers or strings. These fundamental
elements of information that are processed, and sometimes produced,
by the computer are called DATA. One function at which your com
puter is great is organizing this collection of information, known as
DATA, and presenting it in whatever orderyou have programmed. Your
task as a programmer is to convert your information into DATA, and
then structure it into a program that willpresent this DATA in the proper
order at the proper time.

TI BASIC offers many tools with which to accomplish this task.
Among them are a set of programming statements that allow you to

43

assign DATA to variables in a program. They include READ/DATA,
INPUT, and FOR-NEXT loops. In addition, there are a set of condi
tional statements such as IF-THEN which are used to check the status
of a variable. Their job is to check if a particular condition is true, and
when it is, to direct the computer to perform another operation. A third
set of statements known as branching statements allow you to transfer
control from oneline to another while a program isrunning. Branching
statements such as GOTO and GOSUB are largely responsible for con
trolling the flow of the program.

In Chapter 9, "Branching Statements," we will explore some of the
ways branching statements are used to control program flow. With this
knowledge we can then explore more fully some of the many uses of
variables and DATA assignment.

44

8 Using PRINT

PRINT is one of the most common and easy-to-use statements in the
BASIC language. But it also has great potential for sophisticated appli
cations. You'll find some of these applications illustrated in the
demonstration programs in this book. Long after you have learned to
program, you will still be discovering new ways to use PRINT.

THE PRINT SYSTEM

For printing purposes your computer's screen is divided into 28 ver
tical columns and 24 horizontal rows. The columns are numbered from

left to right, the trows from top to bottom. Each horizontal line of 28
characters is further divided into two 14-character zones, left and right.

A screen of PRINTed text always appears at the bottom, with each
new PRINT statement pushing any preceding material upward. This pro
cess may continue until previously PRINTed material is pushed off the
top of the screen. The placement on the screen of material produced
by each PRINT statement depends on the summed effect of all the
PRINT statements that make up a particular screen display.

You may use a PRINT statement to print one item or several dif
ferent items. The results you get depend on how you use four special
punctuation marks: quotation marks and the three print-separators;
colons, commas, and semicolons. Let's consider each of these in turn.

QUOTATION MARKS

Quotation marks are the most elementary PRINT punctuators. Because
the computer "thinks" in numbers, any time you want it to deal with

45

non-numeric information you must tell it to take that information literally,
not as a number. For instance, if you type PRINT BLUE, the com
puter will display a zero. This is because it interprets BLUE as the name
of a number, whose value has not yet been assigned. Since the com
puter always assigns a value of zero to undefined numeric variables, it
PRINTs a zero. If you want the computer to PRINT the word BLUE
as is, then you must place it within quotation marks. Placing informa
tion within quotation marks creates a string, a list of characters which
only represent themselves. Once you have made some piece of informa
tion into a string, you cannot freely perform manipulation of a numeric
nature on it. (There is a highly structured set of rules in TI BASIC govern
ing the relationship of strings and numbers primarily defined by the nam
ing and use of string and numeric variables and functions.)

Quotation marks must always be used in pairs —one at the beginning
of a string and one at the end. You may have more than one set of
quotation marks in a given PRINT statement, but they must always be
part of an opening and closing pair. Note also that blank spaces be
tween quotation marks will be preserved in your string, since the com
puter considers them as characters.

If you wish to PRINT quotation marks by themselves, you must use
a double set of quotation marks, two pairs to the left and two to the
right. To print ", you must type PRINT " " " "; PRINT " " " is incorrect.
To print a word in quotes, you must use altogether six quotation marks.
For instance, PRINT «««DOG""" produces the result "DOG."

You can get around using quotation marks to print strings. For
example:

100 A$=MH0USEM

110 A=12

120 PRINT A$

130 PRINT A

Line 100 defines the string variable A$ as "HOUSE."

Line 110 defines the numeric variable A as 12.

Line 120 displays the string HOUSE.

Line 130 displays the numeric value 12.

Thus, once you have created a string name you can print the string
itself merely by asking the computer to print the string's name. Line 130
shows that the computer doesn't need quotation marks to print a number;

46

any numeric expression can be printed directly.
One more difference between numbers and strings appears in PRINT-

ing. Numbers always leave an empty space before and after their loca
tion on the screen. These are called the leading and trailing spaces. In
negative numbers, the minus sign occupies the leading space. Strings,
on the other hand, have no leading and trailing spaces —so you can
PRINT a series of strings side by side without gaps.

A special symbol, the ampersand (&), links strings together in a chain.
If, for example, Line 120 in our previous program were changed to 120
PRINT A$ & A$, the computer would display HOUSEHOUSE. Such
linking is called concatenation.

PRINT SEPARATORS

Three PRINT separators—the colon, comma, and semicolon —allow
you to include more than one PRINT item in a program line. These
print separators govern the spacing of PRINT items within a single print
statement as well as PRINT items in different PRINT statements.

Colon (:). A colon places the next PRINT item at the beginning of
the next line. When you use more than one in a single statement, the
computer skips a line for every colon added to the first. Colons may
be used as the first or last item of a PRINT statement or between items.

Comma (,). The comma places the next item in a PRINT statement
in the next 14-character zone of the screen. If the preceding item is already
located at the 15th column (where the right hand print zone begins),
the next print item will appear at the beginning of the next row. Like
colons, a number of commas may be strung together in a single PRINT
statement. And, like colons, commas may be used before, after, or be
tween items.

47

Semicolon (;). Semicolons place PRINTed items next to each other.
For strings, there will be no space at all between items separated by
semicolons. Numbers, however, will still carry leading and trailing spaces.
Semicolons at the end of a PRINT statement can join items in succeeding
PRINT statements, but only if there is room to place the additional print
item(s) in the same screen row. If not, the additional item will PRINT
at the beginning of the next row.

Unlike colons and commas, a number of semicolons strung together,
will have the same effect as a single semicolon. There is no point to begin
ning a PRINT statement with a semicolon, since the new statement will
automatically place its contents in a new row unless instructed by a
semicolon at the end of the previous statement to do otherwise.

If a PRINT item needs to be set off by quotation marks, be sure to
place the PRINT separators outside the quotation marks. Note, too,
that the spacing between lines will not necessarily be the same if a print
separator is used at the beginning of a second line as if used at the end
of the first. This is because the computer automatically starts a new row
for each new PRINT statement before evaluating the print separators
within that line. Hence, print separators at the beginning of a line can
be used to push previously PRINTed material upward on the screen,
but not to bring it closer. To link items in different PRINT statements,
you must always put the proper punctuation at the end of the previous
statement.

This short program illustrates the points we've been discussing.

100 PRINT ,,THATM::,,WILLM:,,LA

ST":::

110 PRINT "HEY'VJUMPVALS

0M,,,

120 PRINT 12;13; 14

130 PRINT "COOK";

140 PRINT "BOOK"

Remember that you can also space items within a single PRINT state
ment by including empty spaces with the material within quotation marks.
The computer will faithfully reproduce these spaces.

48

THE TAB FUNCTION

Used with PRINT statements, the TAB function gives you added con
trol over the spacing of your material. TAB works much like the tabulator
key on a typewriter—by putting material a specific number of spaces
to the right. TAB is followed by a set of parentheses containing a number,
numeric variable, or numeric expression. If needed, the computer rounds
off this number to the nearest whole number; for instance, TAB(3.4)
will move material three spaces to the right.

TAB works within the 28-column framework of the TI PRINT system.
If you specify a TAB value greater than 28, the computer will subtract
28 from your value until it gets a number from 1 through 28. If your
value is less than 1, the computer will make it into a 1.

The computer regards TAB as a PRINT item like any other in a
PRINT statement; if you use more than one, you must separate them
with colons, commas, or semicolons. TAB does not require quotation
marks, however, and need not be preceded by a print separator if it is
the first item in a PRINT statement or followed by a print separator
if it is the last. Print separators affect TAB in the same manner as any
other print item.

If you have text in a PRINT statement followed by a TAB, the material
you want TABbed will only print on the same line as the preceding text
if the number in the TAB function is greater than the number of spaces
occupied by the previouslyprinted text: the TABbed material willappear
in the column whose value equals the value within the parentheses. If
more spaces are occupied by previously printed text than given in the
TAB function, the material will be TABbed to the same location in the
next row. If the PRINT item to be TABbed cannot fit between the

column specified in the TAB function and the end of that line, the
material will not be TABbed.

Remember that the TAB function places material into the Nth column
to the right of previously printed material, or from the beginning of a
row. This is not the same as skipping N number of spaces. TAB(IO)
does not skip the first ten columns to place material into the eleventh,
but actually places material in the tenth column.

The following program demonstrates the TAB function. The numbers
in Line 150 end up in different rows, even though TAB(4) and TAB(7)
leave spaces for the digits because not enough space is left for the
number's trailing spaces.

49

100 PRINT TAB(4),-"TABLE";TAB

(9);"TALK"

110 PRINT TAB(Mt);"HANDY"

120 PRINT TAB(^5);"MAN"

130 PRINT TAB(5);"C0NSERVATI

ON CREATES JOBS"

140 A=123

150 PRINT A;TAB(if);A;TAB(7);

160 PRINT TAB(if);"99AA";TAB

(27);"TI"

170 A$="WORK"

180 B$="HORSE"

190 PRINT TAB(5);A$;TAB(9);B

$

THE SICK ROSE

Before leaving the PRINT statement, let's look at two programs that
use different methods to format the same piece of text on the screen.
Our text is a poem by William Blake from his Songs ofExperience, en
titled "The SICK ROSE." In the first program, we will stick to simple
PRINT statements followed by quoted material. For spacing we willuse
additional PRINT statements to skip lines we wish to leave blank and
empty spaces within quoted material.

The second program is functionally identical to the first but uses print
separators to add the empty lines. In addition, we will store the poem
as a series of eight strings. All eight strings will be printed in a single
PRINT statement at the end of the program, formatted by print
separators. As you can see, print separators help create a more
sophisticated, space-saving program.

100 CALL CLEAR

110 PRINT "

ROSE"

120 PRINT

130 PRINT "

Blake"

50

1<t0 PRINT

The SICK 150 PRINT

160 PRINT "

T SICK."

by William 170 PRINT "

WORM,"

0 Rose thou ar

The invisible

180 PRINT " That flies in 230 PRINT " And his dark s

THE NIGHT" ECRET LOVE"

190 PRINT " In the howling 240 PRINT " Does thy life

STORM:" DESTROY."

200 PRINT 250 PRINT

210 PRINT " Has found out 260 PRINT

THY BED" 270 PRINT

220 PRINT " Of crimson joy 280 GOTO 280

100 CALL CLEAR ORM:"

110 PRINT TAB(9);"The SICK R 170 E$=" Has found out thy

OSE":: BED"

120 PRINT TAB(7);"BY WILLIAM 180 F$=" Of CRIMSON JOY:"

Blake:"::: 190 G$=" And his dark secr

130 A$=" 0 Rose thou art s et love"

ick." 200 H$=" Does thy life des

140 B$=" The invisible wor troy."

M,"

150 C$=" THAT FLIES IN THE 210 PRINT A$:Bt:C$:D$::E$:F$

NIGHT" :G$:H$:::

160 D$=" IN THE HOWLING ST 220 GOTO 220

51

9 Branching Statements

Branching statements transfer action from one line or statement in
a program to another bycreating different "branches" along which pro
gram action may flow. These action directors come in two forms: un
conditional statements that simply redirect program action; or condi
tional statements that allow two or more responses according to condi
tions set by the program's logic. Branching statements include GOTO,
GOSUB, ON-GOTO, ON-GOSUB and IF-THEN-ELSE.

52

THE UNCONDITIONAL BRANCHERS

GOTO

This is the simplest, easiest to understand, and most popular branch
ing command. It transfers program control from the numbered state
ment in which it appears to the numbered line specified in the GOTO
statement. Hence, 100GOTO 300transfers program control from Line
100 to Line 300, skipping over the lines in between.

Let's go back to the "Diamond Track" program introduced inChapter
5:

2 REM *** DIAMOND TRACK *** 70 PRINT " G G

3 CALL CLEAR 70"

6 PRINT TAB(20);"LINE #":: 80 PRINT " H H

10 PRINT " A 80"

10" 90 PRINT " I I

20 PRINT " B B 90"

20" 100 PRINT " J J

30 PRINT " C C 100"

30" 110 PRINT " K K

k& PRINT " D D 110"

k&" 120 PRINT " L L

50 PRINT " E E 120"

50" 130 PRINT " M

60 PRINT " F F 130"

60"]kQ GOTO 10

One of the most useful aspects of the GOTO statement is shown
graphically when this program is run: creation ofa simple program loop.
Sustaining program action bycreating simple loops with GOTO canbe
done in two ways. Where it is desirable to repeat program action again
and again, GOTO can be used to simply direct the program to restart
the steps leading to theGOTO statement. Inother cases, GOTO isused
to occupy the computer so that some program effect can be observed
at length. For instance:

53

500 CALL SCREEN(2)

RUN 500

turns the screen black-but only for a moment. If you add

510 GOTO 510

the screen stays black, because thecomputer has been tied up executing
a one-line loop in Line 510. Creatingsimple loops with GOTO can come
in handy when you want to see the effect of lines before you add them
to a larger program.

Let's look at GOTO's effect by entering GOTO 110 in a (new) Line
45 in the DiamondTrack program. The pattern now produces shrunken
diamonds because Lines 50 to 100 are skipped over by the GOTO at
Line 45. If we now insert a new line, 115 GOTO 50, the letters zig-zag
back and forth without meeting in themiddle (except at the beginning),
because program action has now been caught in a loop between Lines
50 and 115; the GOTO statement in Line 45 has been excluded.

Now insert a new line, 105 GOTO 120. Once again, the GOTO at
Line 105 intercepts the GOTO at Line 115, sending the program back
to the beginning.

These examples illustrate the properties of unconditional branching
statements. GOTOstatements can either exclude or leadinto one another,
depending on how they are placed in a program. When designing a pro
gram, you must decide if you wish GOTO to introduce change or to
preclude it.

GOSUBroutine

This unconditional branching statement implements program
subroutines. A subroutine is a subsection within a program that per
forms a series of steps, or routine, that is called upon repeatedly as the
program RUNs. The difference between GOTO and GOSUB is that
GOSUB "remembers" where it came from and returns to the next line
after the initial GOSUB statement. To ensure this, you must insert the
statement RETURN as the last step in a subroutine. The basic structure
of a subroutine with GOSUB and RETURN looks like this:

54

100 PROGRAM STATEMENT A

110 GOSUB 500

120 PROGRAM STATEMENT B

130 GOSUB 500

140 PROGRAM STATEMENT C

150 GOSUB 500

160 PROGRAM STATEMENT D

500 PROGRAM STATEMENT X

510 PROGRAM STATEMENT Y

520 PROGRAM STATEMENT Z

530 RETURN

First statement A is executed; then the program goes to Line 500, runs
through the steps of the subroutine (Lines 500-530) and returns at Line
530 to program statement B. This pattern repeats each time there is
another GOSUB statement.

Our next program demonstrates GOSUB in action. The first set of
statements place vertical columns characters on the screen. After each
of these statements has been performed, the subroutine starting at Line
240 is run; the program then RETURNS to the next call for characters
until it reaches the END in Line 230. The subroutine produces our sound
effects.

GOSUB Demo

100 CALL CLEAR

110 CALL VCHAR(1,11,71,24)

120 GOSUB 240

130 CALL VCHAR(1,13,79,24)

140 GOSUB 240

150 CALL VCHAR(1,15,83,24)

160 GOSUB 240

170 CALL VCHAR(1,17,85,24)

180 GOSUB 240

190 CALL VCHAR(1,19,66,24)

200 GOSUB 240

210 CALL VCHAR(1,21,83,24)

220 GOSUB 240

230 END

240 CALL SOUND(200,-2,0)

250 CALL SOUND(300,-3,0)

260 CALL SOUND(280,-5,0)

270 CALL SOUND (440,-1,0)

280 RETURN

55

also be true. Multiplication is the logical AND operator because both
expressions, A AND B, must be true, or the result is judged false.

Whenever the overall result of the expression between IF and THEN
is true, the computer moves to the linenumber immediately after THEN;
if false, it moves to the lines number given after ELSE. You need not
specify ELSE, however; the computer will proceed to the next line pro
gram statement automatically.

The IF-THEN statement is an incredibly flexible programming tool.
You can set up many essential shifts in program flow with IF-THEN
statements. You can also set limits to changes in variable values-limits
that can prevent program malfunctions. For example:

You can even call up another subroutine from a subroutine. Add the
following lines to our GOSUB Demo program:

255 GOSUB 300 300 CALL SCREEN(16)

i 310 CALL SCREEN (1<f)

I 320 RETURN

The new lines interrupt the sound subroutine each time it RUNs and
call a new subroutine that changes the screen color, first to white, then
to magenta.

CONDITIONAL BRANCHING STATEMENTS

Let's now turn to branching statements that actually selectamong alter
native program steps according to conditions set by program logic.
ON-GOTO, ON-GOSUB, and IF-THEN-ELSE statements can all
recognize program logic in different ways and with differenteffects. Using
these statements well is crucial to developing reasonably complex
programs.

ON-GOTO

This statement uses either the value of a numeric expression or variable
to determine which program statement to GOTO. The numeric expres
sion or the variable's name belongs between ON and GOTO in an ON-
GOTO statement.

The computer first finds the value of the numeric expression and
rounds it off to the next integer. This integer is then used as a pointer

56

which chooses among numbered program lines. If, for example, thevalue
reached is 1, the computer proceeds to the first line number given in
the ON-GOTO statement; if the value is 4, the computer moves to the
fourth line number in the ON-GOTO statement. For instance,

100 CALL CLEAR 130 ON (X/Y)*2 GOTO 140,150,

110 X=3 160

120 Y=2 160 PRINT "WOW"

prints "WOW" because 3 divided by 2 times 2 equals 3. Since 160 is
the third line number following the ON-GOTO statement in Line 130,
the computer goes to Line 160 and prints WOW. If the expression in
the ON-GOTO statement equals either zero or a number higher than
the number of lines listed in the statement, you willgetan error message.

100 REM ***0N-G0T0 DEMO*** 160 GOTO 120

110 CALL CLEAR 170 PRINT "YOU'LL GET A DOUB

120 PRINT "BATTER'S UP!! HOW LE!!"::

MANY BASES WILL YOU REACH?(180 GOTO 120

! JO k)"r. 190 PRINT "YOU'LL GET A TRIP

130 INPUT BASES LE!!!"::

140 ON BASES GOTO 150,170,19 200 GOTO 120

0/210 210 PRINT "HOME RUN HITTER!!

150 PRINT "YOU'LL GET A SING !!"::

LE!":: 220 G0T0 120

ON-GOSUB

This statementworks much like ON-GOTO exceptthat the computer
returns to the Une immediately after an ON-GOSUB statement when
it encounters a RETURN statement at the end of a given subroutine.
The following program uses three subroutines to calculate your age in
months, days, or hours. Based on the value of the input variable,

57

CHOICE, the ON-GOSUB in Line 180 directs the computer to the ap
propriate subroutine. When the computer RETURNS from each
subroutine, it executes Line 190 GOTO 100, and the program starts over.
Since there are only three different subroutines, CHOICE can take a
value from 1to 3 only; anyothernumber will produce an error message
and interrupt the program.

100 REM ***0N-G0SUB DEMO*** 200 GOTO 120

110 CALL CLEAR 210 M0NTHS=AGE*12

120 PRINT "HOW OLD WILL YOU 220 PRINT "YOU WILL BE";M0NT

BE ON YOUR NEXT BIRTHDAY?":: HS;"M0NTHS OLD"::

130 INPUT AGE

140 PRINT "TO FIND YOUR AGE

IN...."::

150 PRINT "MONTHS, PRESS (1)

160 PRINT "DAYS, PRESS (2)":

170 PRINT "HOURS PRESS (3)":

180 INPUT CHOICE

190 ON CHOICE GOSUB 210,240,

270

IF-THEN-ELSE

This conditional branching statement gives the computer a choice of
two different program steps or subroutines based on the evaluation of
either a numeric expression and a relational expression. Conceptually,
the IF-THEN-ELSE statement looks like this:

58

230 RETURN

240 DAYS=AGE*365

250 PRINT "YOU WILL BE";DAYS

;"DAYS OLD"::

260 RETURN

270 HOURS=AGE*8760

280 PRINT "YOU WILL BE";HOUR

S;"HOURS OLD"::

290 RETURN

IF (A is true) THEN

[line number] ELSE (A is false) [alternate line number]

where A is either a numeric expression or a statement of relationships
between two or more factors. For example, we might write:

IF A<=16 THEN 100 ELSE 200

meaning that if the variable Ais 16 orless, program control should go
to Line 100; otherwise, it should go to Line 200. The "GOTO" function
of the IF-THEN-ELSE statement is automatic.

The subtlety ofthe IF-THEN-ELSE statement comes into play when
two ormore expressions are combined into a single true or false result.
Each expression in an IF-THEN-ELSE statement is evaluated by the
computer and assigned a value. If false, the value assigned is a zero.
If true, the value is less than or greater than zero. The values assigned
toeach expression in an IF-THEN-ELSE statement can either be added,
or multiplied by, each other to produce an overall true/false value for
the entire statement.

The logic table below lists all the possible combinations of two ex
pressions (A and B) when they are either added or multiplied to yield
one overall true/false value.

TRUTH TABLE FOR LOGICAL AND AND OR

Both False One True/One False Both True

(A) (B) (A) (B) (A) (B)
ADDED: (0) + (0) = (KFalse) (-1) + (0) = -l(True) (-« + <-« = -2(True)

MULTIPLIED (0) * (0) = (KFalse) (-1) * (0) =0 (False) (-1) * (-1) = 1 (True)

As you can see, addition and multiplication yield the same results when
both A and Bare either true or false. When one expression is true and
one false, however, multiplication makes the final result false, while addi
tion makes it true. Addition istherefore termed the logical OR operator.
If either one expression OR the other is true, the combined results will
will quickly produce BAD VALUE IN 130 because the computer does
not recognize any valid value for screen color above 16. You can remedy
this problem easily by adding the line

135 IF X>15 THEN 110

which returns the value of the screen color to 1 as soon as X becomes
greater than 15. (There is no point in using ELSE 140 here because the

59

program naturally proceeds to Line 140 as long as X> 15 is false.)

IF-THEN Music

The following program will show you the kind of sophisticated con
trol you can have over program flow and changing variable values with
IF-THEN statements. The "IF-THEN Music" program merely moves
the frequency of a tone up and down between 120 cycles and 7500 cycles
per second.

The program is divided into two parts, one devoted to raising the pitch
in the CALL SOUND statement on Line 150, and the other to bringing
the pitch back down in the CALL SOUND statement on Line 210. There
are four IF-THEN statements on Lines 140, 160, 220, and 240. Those
on Lines 140 and 240 keep the sound frequency variable, X, between
120 and 7500 cycles by shifting program control between the rising and
falling parts of the program, thus changing the tone's direction. When
X gets low or high enough, these IF-THENs become true statements,
and program flow shifts.

The two IF-THEN statements at Lines 160 and 220 are a little trickier.

They set conditions under which the frequency being used in the CALL
SOUND statement will or will not be printed. Notice that Line 160 uses
the logical connector of addition, Line 220 the logical connector of
multiplication. Line 160 prints all frequency values less than 150 OR
greater than 6500. Line 220 sets up the conditions that direct the com
puter to print only those values greater than 1500 AND less than 2000.
Rising X values are printed on the left side of the screen and the falling
values on the right.

Switch the " + " in Line 160 to "*", and the "*" in Line 220 to " + ".
Check the results with the "Truth Table."

100 REM ***IF-THEN MUSIC*** 170 ELSE 130

110 CALL CLEAR 170 PRINT X

120 X=120 180 GOTO 130

130 X=X*1.05 190 X=7500

140 IF X>7500 THEN 190 200 X=X/1.05

150 CALL SOUND(70,X,0) 210 CALL SOUND(70,X,0)

160 IF (X<150)+(X>6500)THEN 220 IF (X>1500)*(X<2000)THEN

60~

230 ELSE 2**0

230 PRINT, X

2^0 IF X<120 THEN 120 ELSE 2

00

61

10 Data Anyone?

There are a number of ways by which we may enter DATA into a
program and manipulate it with the help of variables and branching
statements. So far, we've entered data, or defined variables in three ways:
the LET statement (LET A = 3), the simplified version (A = 3), and
our updating trick (A = A + 1). We can also use an INPUT statement.

INPUT

62

The INPUT statement allows you to enter values from the keyboard
while aprogram is running; the program pauses while you enter the data.

We'll use the simplest form of INPUT in the next program. When
you RUN the program aquestion mark appears. Type in aword or name
and press ENTER. The computer then PRINTs your word or name,
showing that the word has been stored as the value ofthe string variable
B$. Another question mark appears. This time, type in a number and
press ENTER. The computer PRINTs the number, which it has assigned
to the numeric variable C.

100 INPUT B$

110 PRINT B$

120 INPUT C

130 PRINT C

RUN

? SPOCK [You type SPOCK]

SPOCK [The COMPUTER PRINTS]

? hi [You TYPE kZ]

k2 [The COMPUTER PRINTS]

Data entered after an INPUT prompt (?) must be valid for the com
puter to accept it. For instance, if you tried to enter astring inresponse
to the second INPUT prompt, you would get the following error
messages:

* WARNING:

INPUT ERROR IN 120

TRY AGAIN:

This is because Line 120 is asking for a numeric value.
To avoid this problem you can write your own INPUT prompts.

Besides promoting INPUT accuracy, personalized prompts make your
programs truly interactive. You do need to follow two simple rules:
enclose your prompt text inquotation marks and follow it with acolon.

Here's a program which is similar in form to our earlier INPUT pro
gram. The main difference is the prompt. We've added the CALL

63

CLEAR and PRINT statements for effect. Make sure all your punc
tuation is correct. Also, leave blank spaces where we have.

100 CALL CLEAR

110 INPUT "WHAT IS YOUR NAME

?":B$

120 PRINT ::"VERY WELL, ";B$

130 INPUT "HOW MANY LANGUAGE

S DO YOU SPEAK?":C

140 PRINT ::C;"IS VERY IMPRE

SSIVE "B$

RUN

WHAT IS YOUR NAME? SPOCK [Response]

VERY WELL, SPOCK [PRINTS]

HOW MANY LANGUAGES DO YOU SP [Prompt]

EAK? hZ [Response]

kZ IS VERY IMPRESSIVE SPOCK

** DONE **

[Prints]

You can also combine INPUT with a PRINT statement, giving you
the ease of a simple INPUT statement plus the clarity of a prompt.

64

100 CALL CLEAR

110 PRINT "HOW OLD ARE YOU?"

120 INPUT A

130 PRINT "OH, YOU WERE BORN

IN"

140 PRINT 1983-A

RUN

HOW OLD ARE YOU

? 31

OH, YOU WERE BORN IN

1952

[Prints]

[Response]

[Prints]

[Prints]

Now that we have added INPUT to our list of statements for assign
ing values to variables, let's explore another TI BASIC statement that
does this in yet another way.

THE READ/DATA STATEMENT

One of the most efficient methods for entering and controlling both
large and small amounts of data in a program isthe READ/DATA state
ment. The READ/DATA statement comprises two parts. DATA
represents the information youwant to enter into the program; this in
formation goes into a section of the program called the DATA bank,
or DATA list. The READ portion of the statement extracts informa
tion from the DATA bank and assigns it to a variable.

Let's take a look at the READ/DATA statement in action. Type the
program below. When you RUN it, the computer will PRINT a list of
famous people bornon November 30. It will also give a *DATA ERROR
IN 130 message. Don't worry; we'll explain why.

65

100 REM *** STEP ONE ***

110 CALL CLEAR

120 PRINT "FAMOUS PEOPLE BOR

N ON NOV.30"::

130 READ A$

140 PRINT A$

150 GOTO 130

500 DATA JOHN BUNYAN,MARK TW

A IN, WINSTON CHURCHILL

510 DATA SHIRLEY CHISHOLM,AB

BIE HOFFMAN

If your program rancorrectly, your screen cleared andthecomputer
printed FAMOUS PEOPLE BORN ON NOV. 30 followed by the names
contained in the DATA bank. If not, go back and check yourwork for
errors. Are all the commas in the right places? They are very impor
tant. Spaces after the commas are, however, ignored.

Now, let's take a closer look.

Line 110 clears the screen.

Line 120 prints the program title; the two colons tell the computer to skip
two rows.

Line 130 instructs thecomputer to READ the first piece of DATA in the
DATA bank and to name it A$.

Line 140 prints the current value of A$.

Line 150 creates a loop, sending the computer back to Line 120 to READ
the next piece of DATA.

Lines 500-510 contain the DATA.

Whenever the 99/4A encounters a READ statement, it will imme
diately READ a piece of DATA. In this case, we instructed it to read
only one piece of DATAand to assign it to the variable A$. The com
puter will always READ DATA from left to right and from the lowest
line number to the highest; a DATA pointer keeps track of the com
puter's place inthe DATA bank. The individual DATA values are always

66

separated by commas. The last piece of DATA on any given line,
however, should not be followed by a comma. (We'll explain why in
the next section.)

Placing the READ statement in a loop, as we did, enters the DATA
intoour program piece bypiece. But our program hasno way to break
out of the loop once the computer has READ the DATA. That's why
we got the message DATA ERROR IN 130. The 99/4A READ the last
piece ofDATA, "ABBIE HOFFMAN", assigned it toA$, printed AB-
BIE HOFFMAN(A$), and was then sent back to Line 130 to READ
again. But this time through the loop, it found nothing in the DATA
bank and so printed the error message.

Canyou think of a way to get outof theloop? Hint: tryan IF-THEN
statement. (We'll tell you one possible solution after discussing how to
set up a DATA bank.)

SETTING UP A DATA BANK

A DATA bank may appear anywhere in your program. We usually
place itatthe end leaving plenty ofspace for future line additions. Some
programmers prefer to place their DATA statements toward the begin
ning; others put them near the READ statements. The choice is yours.

67

Although the DATA bank may go anywhere in your program, the
DATA must be written in the exact order that you want it READ into
the program. Remember: the computer READs DATA from left to right
and from the lowest line number to the highest.

There are a few simple rules to follow in setting up yourDATA bank.
First, choose a line number-inour case, Line 500. Then type ina space
and the word DATA followed by another space. You can now begin
typing in DATA values, but be sure that these values match the type
of variable you're assigning them to. Since we are using names in our
program, we need a string variable such as A$. For numeric DATA,
use a numeric variable name.

Asmentioned before, you must puta comma aftereach piece of DATA
except the last one. For numeric DATA, a comma after the last entry
on a given line throws the computer out of sync and causes an error
message. Placing a comma at theendof a DATA line containing strings
will print a blank line. For example, if you add a comma after WINSTON
CHURCHILLin Line 500, you would get a display with a blank line
between WINSTON CHURCHILL and SHIRLEY CHISHOLM. This
is because the computer assumes that you want to enter a null string
(one with no characters). Similarly, two commas placed one after the
other in a string DATA statement will be READ as a null string. Two
commas in a numeric DATA, incontrast, will produce an error message
(e.g., DATA ERROR IN 130).

If you wish to include a comma aspart of a string, you must enclose
the whole string in quotes. This rule also holds for leading and trailing
spaces. Thus MAYBE, TOMORROWwould appear in a DATA list as
follows.

500 DATA "MAYBE, TOMORROW"

Your 99/4A will accept up to four screen rows of DATA per line
number, but it's best to use only oneor two. This makes it quicker and
easier to spot and correct errors.

Onefinal rule about setting up your DATA bank: always include the
same number of DATA values as variable names in the READ state
ment; otherwise, the computer will look for a non-existent value. For
example, if you have a READ A,B statement inyour program, you could
not have a DATAstatement likeDATA 1,2,3. Thiswouldcausea DATA
ERROR message.

CHECKING VARIABLE STATUS

Now let's GET BACK to breaking out of the loop between Lines

68

130-150. You'll recall that we suggested using the IF-THEN statement:
IF a particular condition istrue, THENthecomputer moves to another
numbered line.

Let's insert an IF-THEN statement into our program on Line 145,
right after the PRINT A$ statement, and use it to check whether the
computer has READ the last DATA item (ABBIE HOFFMAN). IF it
has, THEN we'll tell it to go to Line400, where it will find an instruc
tion to END the program. To do this, type and ENTER the two lines
below.

145 IF A$="ABBIE HOFFMAN" TH

EN 400

400 END

Notice that we used quotation marks around the string in Line 145.
Although we are allowed to forego quotation marks in string DATA
statements, we must, according to the rules of TI BASIC, use them
around string values mentioned outside of the bank.

Now, RUN your program with the additions; if all goes well you should
see a cheery ** DONE **.

MULTIPLE-VARIABLE READ/DATA STATEMENTS
You are not limited to READingonlyonevariable at a time; in fact,

you can READ several lines at once (although anything more than about
seven or eight gets tricky). To see how multiple-variable assignment works,
let's add another set of information to our"Famous People" program:
the year each person was born. We'll need several changes, so you can
exercise your editing skills. The complete program appears below.

100 REM ***STEP TWO*** 150 GOTO 130

110 CALL CLEAR 400 END

120 PRINT "FAMOUS PEOPLE BOR 500 DATA JOHN BUNYAN,1628,MA

N ON NOV.30":: RK TWAIN,1835,WINSTON CHURCH

130 READ A$,YEAR ILL,1874

140 PRINT A$;TAB(18);YEAR 510 DATA SHIRLEY CHISH0LM,19

145 IF YEAR=1936 THEN 400 24,ABB IE HOFFMAN,1936

69

Aside from the slight change to the REM statement in Line 100, our
first real change occurs in the READ statement, Line 130:

130 READ A$,YEAR

This demonstrates the correct form for a multiple-variable READ state
ment. Here we have added the numeric variable name YEAR; a comma
separates it from the preceding variable A$. Alwaysplacea comma be
tween variables in a READ statement: READ A,B,D$,C is correct;
READ A B D$ C is not. With a second variable in the READ state
ment, the computer will now READ two pieces of DATA at a time.

The next change occurs in Line 140. Here we add the TAB function
to place the YEAR incolumn 18, thus separating it from the name (A$).

Line 145 contains an important change to the IF-THEN statement.
Since this line checks if the last DATA item has been READ, we must
adjust it to reflect our change in variables. Thus, A$ must be replaced
by YEAR, and "ABBIE HOFFMAN" must be replaced by 1936.

The final changes occur in the DATA statements. Here, we simply
INSERT the information for YEAR after the comma following each
name. Note that a comma must beadded after each new DATA entry.

With these changes, ourprogram should flow properly and print out
our famous people and the year they were born. You will find the
READ/DATA statement a valuable addition to your growing program
ming repertoire. A statement that goes hand-in-hand with the READ/
DATA statement is the RESTORE statement.

RESTORE

Once the DATA pointer has reached the final piece of information
in the DATA bank, the computer can READ no more and prints an
error message. At this point you must decide whether to break out of
the READ loop and go on to another part of your program, or to exit
the loop and END the program, or to reactivate the DATA with a
RESTORE statement.

RESTORE instructs the computer to reuse the DATA by resetting
thepointer to thebeginning of theDATA, or, if you wish, to thebegin
ning of anyDATA line. The computer then begins READing theDATA
over again, repeating a specific READ/DATA section of yourprogram.

Here is a samplegraphics program demonstrating the RESTORE state
ment. Typeit in and RUNit; since the programruns continuously, you'll
have to press FCT.CLEAR to break out.

70

100 CALL CLEAR

110 CALL SCREEN(16)

120 READ STARS

130 PRINT TAB(12);STAR$

140 IF STAR$="*********" THE

N 160

150 GOTO 120

160 RESTORE

170 GOTO 120

300 DATA *,**,***,****

310 DATA *****,******

320 DATA *******,********

330 DATA *********

When the program is RUN your screen should turnwhite and clear.
The pattern below should then scroll up your screen.

71

If your program does not RUN correctly, check for errors in typing,
spacing, punctuation, and the numberand placement of stars in the data
bank.

Here is a line-by-line description of how this program works.

Line 100 clears the screen.

Line 110 turns the screen color white.

Line 120 READs thefirst piece of DATA andassigns it to thevariable
named STARS.

Line 130 indents 12 spaces and PRINTs the currentvalue of STARS.
Line 140 tests to see IF STARS is equal to the last piece of DATA

(nine *s). IF it is, THEN the computer moves to Line 160
where it will receivean instruction to RESTORE the DATA.

Line 150 creates theREAD loop bysending thecomputer back to 120
to READ the next piece of information.

Line 160 RESTORES the DATA by setting the DATA pointer back
to the first piece of information in the DATA bank.

Line 170 creates another READ loop bysending the computer back
to 120 after the DATA has been RESTORED.

Lines 300-330 contain the DATA bank.

This program format is very similar to the "Famous People,, program.
The real difference occurs in Line 160, which RESTORES the DATA,
and Line 170, which causes the program to RUN in a continuous loop.

When the RESTORE statement stands alone, all the DATA is
RESTOREd. If you wish to RESTORE only part of it, you may add
a line number after the RESTORE statement. This moves the DATA
pointer to the first DATAitem in that line and starts the READing from
there. To see how this works type in this simple change.

160 RESTORE 310

Now RUN your program for an entirely different pattern. Note that
the first pass through this program is identical to the original pattern
because the computer first uses all the DATA. Only after the DATA
is RESTOREd does the change appear.

RESTORE comes in handy in many program situations. To use it
effectively, you should learn two more DATA-manipulatingdevices: the
counter (A = A + 1), which you have already used to update variables,
and DATA flags (also known as delimitors).

Let's look at counters first, as they are especially helpful when used
with RESTORE.

72 "

USING COUNTERS TO MANIPULATE DATA

In our last programthe RESTORE statementwas part of a continuous
loop; we had to press FCTN:CLEAR to stop the pattern. If you want
to specify the number of repetitions, you need a counter and an IF-THEN
statement.

Type in the following changes, and your star programwill RUN three
times:

160 RESTORE 190 GOTO 120

170 A=A+1

180 IF A=3 THEN 200

Your program should now look like this:

100 CALL CLEAR

110 CALL SCREENU6)

120 READ STARS

130 PRINT TAB(12);STAR$

140 IF STAR$="*********" THE

N 160

150 GOTO 120

160 RESTORE

200 END

170 A=A+1

180 IF A=3 THEN 200

190 GOTO 120

200 END

300 DATA *,**,***,****

310 DATA ***** ******

320 DATA ******* ********

330 DATA *********

73

The key to controlling the number of repetitions lies in Lines 160-200.

Line 160 RESTORES the DATA after the first pass.
Line 170 sets up a counter. Since A was not initialized (assigned a value)

earlier, it isautomatically setat zero. The first time the computer
passes the counter it registers 1 (0 + 1 = 1). The second time
it registers 2 (1 + 1 = 2), and the third time through, A becomes
3 (2 + 1 = 3).

Line 180 tests IF A = 3. IF it does, THENthecomputer goes to Line 200,
where it finds an instruction to END the program, thusbreaking
the loop.

Line 190 sends the computer back to Line 120 to start READing DATA
onceagain. Thisstatement is bypassed when A = 3. This is why
you must place the counter and the IF-THEN statement before
the looping GOTO statement in Line 190.

Line 200 ENDs the program after three repetitions.

Counters work efficiently in a variety of situations. The next section
will add another programming device counter to your bag of tricks.

USING DATA FLAGS

A DATA flag is an item in a DATA bank which acts as a marker
that canbetested byan IF-THEN statement. IF the flag isREAD, THEN
the computer will exit the READ/DATA loop; you can then re-enter
the loop or go on to something else.

Let's use flags to change our stars again. Make these additions and
changes to your program:

125 IF STAR$="-r THEN 250

180 IF A=2 THEN 200

250 Z=Z+1

260 IF Z=2 THEN 400

270 GOTO 120

310 DATA *****,_-! ,******

400 RESTORE

410 GOTO 120

74

This time, we're are not going to give you the complete program listing.
Instead, treat this as an editing exercise. To check your work, RUN the
program and compare your display with the one below.

**

75

Note that the top three lines of stars scroll off the top of your screen.
How do these changes affect the program?

Line 310 places a -1 in the DATA. The -1 is the flag.

Line 125 checks the value of the variable STARS. IF it equals - 1, THEN
the computer passes to Line 250. IF it does not equals -1, THEN
the PRINT statement is executed. Thus, we prevent the flag from
being printed in the program display.

Line 250 is executed only when the computer READs the -1 flag. The
counter set up here keeps track of how many times the flag has
been READ.

Line 260 checks the flag counter. IF the counter equals 2, THEN control
passes to Line 400. IF the counter equals any number other than
2, THEN the GOTO 120 statement of the next line (270) is
executed.

Line 400 RESTORES the DATA from the flag back to the DATA bank.

Line 410 loops back to the READ statement.

The first time the computer encounters the flag, it branches off to
Line 250 where it increments the counter. It then checks in Line 260

IF Z = 2. Since Z = 1, the GOTO statement of Line 270 sends control
back to the READ statement, where the rest of the DATA is READ
and PRINTed. This makes the first full pattern.

The second time the flag is passed, the flag counter Z becomes 2, and
the IF Z = 2 THEN 400 statement applies. The DATA is RESTOREd
and control passes once again to the READ STARS statement. In this
way the second, shorter pattern is generated.

On the final pass, Z = 3, which has no effect on PRINTing the DATA;
thus, a full pattern is created. Since a RESTORE statement was added
to the program in Line 400, we bypassed the RESTORE in Line 160
by changing A from 3 to 2 in Line 180.

To see just how and where the flag counter works, add this line:

255 PRINT Z

One final note on flags: always include as many flags in a DATA state
ment as you have variables in the READ statement . Thus, READ
A,B,B2 requires -1,-1,-1 added to the DATA. If you are short one
flag, the computer will READ some of your DATA as its flag, and that
DATA will no longer be available for use in the program. In most cases,
a DATA error message will appear somewhere down the line.

Now that you have a handle on the READ/DATA statement, let's
turn to another important programming statement, FOR-NEXT.

76

11 The FOR-NEXT Loop

In our last chapter, we learned how to enter data into a program by
placing the READ/DATA statement within a loop. We also learned how
to control the loop through the use of counters and the IF-THEN state
ment. The FOR-NEXT loop is another method that will enable you to
form loops and assign values to variables with fewer statements and
greater control than the previous method. This is because the FOR and
NEXT statements allow for a more concise definition of a loop.

Here is an example of a simple FOR-NEXT loop.
100 FOR X=l TO 5 1

110 PRINT X 2

120 NEXT X 3

RUN 4

** DONE **

Line 100 tells the computer how many times to runs through the loop. The
X in this statement is the loop variable: 1 is its initial value and
5 is its terminal value.

Line 110 PRINTS the current value of X.

Line 120 instructs the computer to return FOR the NEXT X.

The FOR and NEXT statements together perform the same function
as separate GOTO and IF-THEN statements. The loop variable starts
at the initial value, in this case, 1. It is then tested against the terminal
value (5) to see if the loop should continue. Since 1 is less than 5, con-

77

trol then passes to the next line, 110. Since 1 is the current value of X,
the computer will PRINT 1 and then pass control on to Line 120. The
NEXT statement of Line 120 then increments the loop variable by 1
and transfers control back to the line with the FOR statement, thus com
pleting the loop. This loop will cycle until the NEXT statement increments
the loop variable to 6 and transfers control back to the FOR X = 1
TO 5. At this point, the computer tests the value of X (6) against the
terminal value of X (5). Since X now exceeds the terminal value, the
computer breaks out of the loop, transferring control to the line im
mediately following the NEXT statement. In this case, no Line 130 ex
ists, so the computer PRINTs "DONE."

For a loop to work properly, a FOR statement must always be ac
companied by a NEXT. If you forget, the computer will return a FOR-
NEXT ERROR message. You must also include the variable name men
tioned in the FOR statement in the NEXT statement.

To see that the value of X indeed reaches 6 and that control then passes
to the line aftej: NEXT X, add this line to your program:

130 PRINT "X="; X

ENTERING DATA WITH FOR-NEXT LOOPS

We have seen how to use READ/DATA statements to enter DATA

into a program. Now let's try a FOR-NEXT loop.
In this program, we will enter five different values for the variable

X and multiply each value by 5.

100 CALL CLEAR 10

110 FOR X=l TO 5 15

120 PRINT 5*X 20

130 NEXT X 25

RUN ** DONE **

5

To get the same results with READ/DATA statements, you would
have to write:

100 CALL CLEAR 140 GOTO 110

110 READ A 150 END

120 PRINT A*5 200 DATA 1,2,3,4,5

130 IF A=5 THEN 150

78

The FOR-NEXT format is more concise in this case, but not always.
For each program you will have to assess the nature and the amount
of DATA you wish to process and choose your format accordingly. That's
the beauty of mastering several programming options. READ/DATA
and FOR-NEXT loops are just two of the BASIC ways to INPUT your
DATA; we'll discuss another format, called an array, in Chapter 17.

DEFINING LOOPS WITH STEP

We've seen that the FOR statement defines your loops, but you are
not limited to simple definitions like FOR X = 1 TO 5. You may, for
instance, set the initial value to something other than 1. Thus, FOR X
= 5 TO 28 would be a legal statement defining a loop that begins at
5 and ends at 28. This option is particularly apt when you want to enter
DATA that must fall within certain numerical limits.

The word STEP added to a FOR statement further defines a loop.
STEP increments the loop variable values by any number you insert after
the STEP expression. For example:

100 CALL CLEAR 5

110 FOR 1=5 TO 25 STEP 5 10

120 PRINT I 15

130 NEXT I 20

RUN 25

You may also use STEP with a negative number to enter your DATA
in descending order. If you do, remember to reverse the written order
of the initial and terminal loop variables values. FOR I = 5 TO 25 STEP
- 5 is thus an invalid statement, but FOR I = 25 TO 5 STEP - 5 is
valid. To see the negative STEP statement at work, change Line 110
of the last program to:

110 FOR I=25 TO 5 STEP -5

You should get

25 10

20 5

15

79

Although you don't need the STEP statement to increment a variable
by 1, you do need it for -1.

Here is a graphics program with simple and STEPped FOR-NEXT
loops. The loops enter DATA into a CALL HCHAR statement to create
a "Criss Cross."

As you will recall, CALL HCHAR controls the horizontal graphics
display. The format for this statement is CALL HCHAR(x,y,z) where
x equals the row number, y equals the column number and z equals
the character code number. We will use the character code 42 for the

asterisk. The variable X is used along with a counter to control the row
number, and the variable Y is used with the FOR-NEXT loop to con
trol the column number.

The program runs in a continuous loop, so you must use
FCTN:CLEAR to break out of the cycle.

100 REM ***CRISS CROSS***

110 CALL CLEAR

120 FOR Y=5 TO 28

130 X=X+1

140 CALL HCHAR(X,Y,*f2)

150 NEXT Y

160 X=0

170 FOR Y=28 TO 5 STEP -1

180 X=X+1

190 CALL HCHAR(X,Y,42)

200 NEXT Y

210 GOTO 210

RUN

80

Did you get a diagonal line of asterisks from the top left corner of
the screen to the bottom right corner? And a second diagonal from the
upper right to the lower left? Good.

Line by line:

Line 100 is the title.

Line 110 clears the screen.

Line 120 defines a loop that assigns the values 5 through 28 to the variable
Y (column numbers).

Line 130 sets up a counter to generate row numbers, X. Each time through
the loop, the counter increments by 1. Since the loop has 24
numbers, the counter generates the numbers 1 to 24.

Line 140 CALLs the horizontal character display. The first time through
the loop, X = 1 and Y = 5. The second time, X = 2 and Y
= 6. This continues until X = 24 and Y = 28.

Line 150 contains the NEXT statement to go with the FOR statement in
Line 120. It instructs the computer to increment the variable Y
and to return to the FOR statement.

Line 160 reinitializes the row counter X to 0. This allows us to re-use the

counter in the second loop. If we don't reinitialize X at this point,
then the next time we use it (in Line 180), X will equal 25 instead
of the 1 that we need.

Line 170 defines a second loop that assigns the numbers 28 down through
5 to the variable Y. Each time, the value of Y will decrease by 1.

Line 180 sets up the row counter X for the second loop.

Line 190 CALLS the horizontal character display for the second diagonal.
This time, on the first pass of the loop, X = 1 and Y = 28. The
second pass will assign 2 as the value of X and 27 as the value
of Y, and so on, down to X = 24 and Y = 5.

Line 200 is the NEXT statement that accompanies the FOR statement in
Line 170. It works much the same as the NEXT statement in Line

150, except that instead of adding 1, it subtracts 1 from the cur
rent value of Y.

NESTED LOOPS

It is possible to team several loops in still another way. All of one
loop may be part of another loop or group of loops. When we place
one loop inside another, we call it a nested loop. An example:

81

100 CALL CLEAR

110 FOR A=1 TO 2

120 PRINT "THIS IS LOOP A";A

130 FOR B=1 TO 5

H0 PRINT "THIS IS LOOP B";B

150 NEXT B

160 NEXT A

RUN

THIS IS LOOP A 1

THIS IS LOOP B 1

THIS IS LOOP B 2

THIS IS LOOP B 3

THIS IS LOOP B h

THIS IS LOOP B 5

THIS IS LOOP A 2

THIS IS LOOP B 1

THIS IS LOOP B 2

THIS IS LOOP B 3

THIS IS LOOP B *t

THIS IS LOOP B 5

** DONE **

In this example, loop B, which repeated five times, is nested inside
loop A, which repeats twice. You willnotice that although the FOR state
ment for loop A comes before the FOR statement for loop B, the order
of the NEXT statements is reversed. The NEXT B must come before

the NEXT A for the B loop to nest within A loop. See what happens
if you change Lines 150 and 160 to read:

82

150 NEXT A

160 NEXT B

When you RUN the program, it will display:

THIS IS LOOP A 1

THIS IS LOOP B 1

THIS IS LOOP A 2

THIS IS LOOP B 1

* CAN'T DO THAT IN 160

When using nested loops, you must be careful not to mix the FOR
of one loop with the NEXT of another. The second loop must always
be nested completely within the first.

A Second Side of a Triangle

In the last chapter we used a READ/DATA format to construct a
triangle composed of asterisks. We can use a nested loop to do the same
thing.

100 FOR P=1 TO 9 *

110 FOR H=1 TO P **

120 PRINT "*"; ***

130 NEXT H ****

Hf0 PRINT *****

150 NEXT P ******

RUN *******

DONE **

83

Besides nesting inside theP loop, theterminal value of loop variable
H is redefined by each pass of the P loop.

Line 100 defines the outer P loop.

Line 110 defines the inner H loop. The loop is initialized at 1 and has a
terminal value equal to the current value of P. Thus, the first time
through the P loop, the H loop is defined as 1 to 1, while the
second time, it is defined as 1 to 2, etc.

Line 120 PRINTs an asterisk. The semicolon is used to format the display.
As H is redefined, the line of asterisks increases by one. Each line
of asterisks represents a complete H loop.

Line 130 contains the NEXT H statement, nesting it inside the P loop.

Line 140 When the inner H loop has finished printing out the lines of
asterisks, the computer exits the loop and encounters the second
PRINT statement. As there is nothing to PRINT and there is no
semicolon, the computer PRINTs nothing. This line gives the next
pass of the inner loop, H, a new line on which to PRINT.

Line 150 increments the outer P loop, by 1 and transfers control back to
the FOR statement in Line 100, and the loop begins again.

There is no limit to the number of loops you can nest. You can make
this program print three triangles instead of one by nesting both loops
inside a third. To do this, add the following lines:

90 FOR D=1 TO 3

160 NEXT D

Used alone, FOR-NEXT loops are a powerful programming tool.
When combined with branching statements, conditional logic, and other
programming statements and functions, FOR-NEXT becomes even more
potent.

84

12 Debugging Programs

^H^ss. ^

Computer programmers call errors that keep their programs from
working, bugs. Bugs are famous for their ability to turn normally stable
programmers into frenzied lunatics.

Program bugs can be hard to find. Sometimes they are simple typing
mistakes-the letter "O" where a zero should be, or a lower-case "1" for
the number one. Computers are fussier than English teachers about
misplaced parentheses or quotation marks; they're real sticklers about
incorrect punctuation. Your99/4A even makes muchado about nothing:
forgetting an empty space after a line number or on either side of a
BASIC reserved word, you may have noticed, spawns bugs. Because
LISTed programs appear with the correctspacing, LISTing can help you
figure out where you really need spaces. Check your User's Reference
Guide for the correct form of any statement or command.

85

Some commands, such as those used with cassette tape decks, won't
work if typed in lower-case letters. In LISTed programs, all statements
and reserved words appear in upper-case letters. It is a good program
ming practice to leave the ALPHA LOCK down and write your pro
grams in upper case, except when enclosing text in quotation marks.

Another programming error results from the use of numeric variables
which return values not allowed by the computer. This kind of error
occurs most frequently with the "CALL" statements associated with the
use of graphics and sound. Each CALL statement has its own parameters
which define the range within which all values entered into the state
ment must fall. If the use of program logic returns values for variables
outside of the legal parameters, then a BAD VALUE error message
results. In such instances, the error often lies in a program line different
from the one specified in the error message. This is because the com
puter will often accept a range of values when they are first introduced
but will balk when it is asked to apply these values to a specific state
ment in a later portion of a program. The best defense against this kind
of error is to become thoroughly familiar with the appropriate range
of values allowed in TI BASIC statements and functions. In addition,
you need to scrutinize your programming logic to make sure that it does
not yield such values.

The computer generally responds to errors in one of two ways. It may
immediately reject a new program line when you try to enter it. If this
happens, you will have to type your line in again, with corrections. The
computer may also interrupt a program you are trying to RUN and
display an error message. When this happens you must hunt down the
fly in the ointment. Each statement in TI BASIC can fall prey to mistakes
peculiar to the way it works.

Perhaps the toughest bug to find is one that doesn't stop the program
or print an error message, but simply prevents the computer from doing
exactly what you want it to do. In such cases, you must play detective
and search through the program for clues to the bug 'whodunit.'

Fortunately, TI BASIC does give you some debugging help.

ERROR MESSAGES

Error messages are your first line of defense against programming bugs.
As previously mentioned, error messages occur when you try either to
enter a new line or while RUNning a program. Error messages can also
occur when the computer is preparing a "symbol table" prior to running
a program, before actually executing program steps. The symbol table

86

is the area in memory where the computer stores functions, arrays, and
variables. To do this, it must scan your program, and it can pick out
some errors in the process.

Although error messages help some, keep in mind that you may still
have to hunt for the source of the error: the problem may not really
he where the warning signal appears. Check pages HI-8 to 111-12 in your
User's Reference Guide for a complete list of error messages.

TRACE AND UNTRACE

TRACE and UNTRACE may be used either as commands outside
a program or as numbered program statements.

TRACE can help you find errors in program logicby letting you follow
each step in a program as it RUNs. Each line number is displayed on
the screen within brackets as it is performed. Previously performed steps
scroll continuously off the top of the screen while new line numbers
appear at the bottom.

TRACE may shift the location on the screen of PRINTed material
or graphics displays or it may cover them up with line numbers.

Try TRACEing the program, "Diamond Track" from Chapter 5 to
see this command in action. (Load or retype the program, then enter
TRACE and RUN.) Because "Diamond Track" has a sort of built-in
"trace," you will see line numbers on both the left and right sides of
the screen; those produced by TRACE will be bracketed. The TRACE
command will also show the execution of Line 140 (GOTO 10) not shown
by the original program.

When you TRACE a long and complex program the results can be
mystifying, as a steady stream of line numbers scrollup the screen.What
you reallywant to seeis a specific section that mightcontain a suspected
bug—hard to do when everything on the screen is moving.

RUN, BREAK, and CONtinue can come to the rescue. If you add
a BREAK statement after the last line of the program section you wish
to investigate, you can stop the action and scrutinize the results. For
instance, let's say we only want to trace Lines 20 to 60 in "Diamond
Track." Type in a new line:

15 TRACE

Next, add

65 BREAK

87

Now, when you RUN the program, TRACE only works on Lines 20
through 60, BREAKing at Line 65. To go on, type CONtinue; the trace
will continue until the next time Line 65 comes up. If you wish to stop
the TRACE at Line 65 without breaking out of the program, enter the
UNTRACE statement on Line 65.

You may use GOTO to view a short section of the program repeatedly
as it is TRACEd: erase Line 65 that you've just added and add

65 GOTO 20 (or whatever line you wish to TRACE from)

TRACE will run continuously, displaying only the lines between 20 and
65. With luck, these techniques will help you find your bug. (Keep in
mind that you can also start RUNning a program at any point by typ
ing RUN followed by the line number where you wish to start.)

PRINT DEBUG

As we mentioned before, misusing variables or bad variable values
often create program bugs. The BREAK and PRINT statements allow
us to see what value a variable has at a certain stage of a program.

In the following program

100 CALL CLEAR

110 FOR X=l TO 33

120 CALL HCHAR(12,X,36)

130 NEXT X

the computer displays a horizontal row of dollar signs across the screen
from left to right, but breaks out with the message

BAD VALUE IN 120

immediately afterward. (This is because the legitimate range for the
variable X in this location in the Horizontal CHARacter repetition state
ment is 1 to 32. The computer has only 32 columns across and will not
accept 33 as a good value.) If you type PRINT X after the error message
has been displayed, you will see the number "33" displayed —a dead
giveaway that something is amiss. Now let's add the following three lines:

125 IF X=15 THEN 126 ELSE 126 PRINT X

0 127 BREAK

88

Now our program stops when X has reached a value of 15 and goes
to Line 126; the computer PRINTs 15 and the message BREAKPOINT
AT 127. If we type CONtinue, the rest of the horizontal line of dollar
signs is printed out and, as before, the program breaks out on its own,
with a BAD VALUE message. PRINT X now displays the value 33.
If a program breaks out with a bad value message, take an educated
guess at which variable may be causing the program and ask the com
puter to PRINT it. If you edit a program line, the computer's memory
is cleared of variable values obtained while running a program-so use
PRINT before editing lines.

The most difficult bugs to eliminate usually are those which allow a
program to run but which prevent the computer from doing what you
want. Where variable changes resulting from program action are involved,
you can create a "mini-trace" for yourself, investigating the variable in
question by simply running that section of the program in a loop and
asking that the variable be printed each time.

Delete Lines 125 and 127 in the program above and RUN to witness
this effect. The program prints the value of X each time the previous
statement using it is executed, moving the display up one line at a time
in the process. Notice that the last value entered, 32, isthe last legitimate
value for X in this situation.

89

13 Numeric Functions

TI BASIC has a number of built-in numeric functions for complex
mathematical operations that you can incorporate into your programs.
This chapter examines these functions, particularly the random number
and user-defined functions.

INTEGER

INT(X) turns decimal numbers into whole numbers by lopping off
the part to the right of the decimal point Thus INT(1.99) equals 1, and
INT(1.01) also equals 1. The INT function is often used with the
RANDOM NUMBER function.

RANDOMIZE AND THE RANDOM NUMBER
FUNCTION (RND)

90

The BASIC statement RANDOMIZE is used with the RND, or
RaNDom number, function to generate a different set of random
numbers each time a program is run. Without a RANDOMIZE state
ment, the RND function willproduce the same set of numbers each time
the program is run. The nextprogramillustrates this; RUN, then reRUN
it and watch the list of numbers. You'll see that the "random" values
repeat each time you RUN the program after it BREAKs (Line 140tells
the computer to break whenever C = 1.)

100 FOR X=l TO 7

110 C=INT(9*RND)+1

120 PRINT C

130 IF C=1 THEN 140 ELSE 160

140 BREAK

150 UNBREAK

160 NEXT X

170 PRINT ::

180 GOTO 100

If youuseCONtinue instead, the computer generates a different series
of numbers each time. Reason: RUN starts the program from the begin
ning, repeating the first few steps; CON continues from the BREAK
with subsequent steps that generate different numbers. Try RUNning
the program, continue withCON, then reRUNand CONtinue a second
time: What happens to the numbers generated after both CONtinue
commands?

Another factor which enters into the use of the Random Number func
tion and the RANDOMIZE statement is the use of a seed. A seed is
established when a value is associated with the RANDOMIZE statements:
as, for example, RANDOMIZE 144. Whenever a seed is used, the
sequence of numbers generated depends on the number of the seed, and
will be the same each time the program is run. Each time the value of
the seed is changed, different numbers will be generated. To achieve a
truly unpredictableseries of numbers, you must use the RANDOMIZE
statement, without a seed, with the RND function.

91

To see what is actually happening with the Random Number func
tion, we can run the following program, and PRINT C to display the
actual values generated by the RND function.

100 CALL CLEAR

110 RANDOMIZE

120 C=(RND)

130 PRINT C

140 GOTO 110

As you can see, the computer produces a series of decimal numbers
between 1 and 0. Since such numbers are unwieldy, we usually use RND
with the INTeger function to get whole numbers. But if we simply rewrite
Line 120 as

120 C=INT(RND)

we get a set of zeros. This is because RND only generates decimal
numbers between the integers 0 and 1, and the INTeger function always
rounds to the next smaller whole number. We can add 1:

120 C=INT(RND)+1

but this just gives a battery of ones because, after all, we are just adding
a one to all those zeros. You must specify a value X within the paren
theses with the RND function, to generate a set of random numbers
from one to X: NUMBER = INT(X*RND) + 1, where X is the highest
value you wish to include in your range of numbers. To set random values
between two numbers higher or lower than zero, use
INT((Y-X+1)*RND) + X. For example,

NUMBER = INT((10 10+ 1)*RND)+ - 10.

gives random integers between 10 and -10 inclusive, where X is the
lower number, -10, and Y is the higher number, 10.

To illustrate the use of the RND function, we now turn to a program
designed to simulate the tossing of a coin. In this case, the computer
simply generates integer values of either 1 or 2 at Line 130, C =
INT(2*RND) + 1. If C equals 1, then the message "HEADS" is printed.
Otherwise, the program goes to Line 180 and prints "TAILS." RUN the
program; press any key when the computer asks, "HEADS OR TAILS?"

92

100 CALL CLEAR

110 PRINT " HEADS OR TAI

LS?" ::

120 CALL KEY(3,R,S)

130 IF S=0 THEN 120

H0 RANDOMIZE

150 C=INT(2*RND)+1

160 IF C=1 THEN 170 ELSE 190

170 PRINT /'HEADS"::

180 GOTO 110

190 PRINT /'TAILS"::

200 GOTO 110

For another program incorporating RANDOMIZE and RND, take
a look at "The Random Character Generator" in Chapter 15.

OTHER NUMERIC FUNCTIONS

Absolute Value-ABS(X)

This function gives you the absolute value of a numeric expression,
regardless of sign. If the value for X is equal to or greater than zero,
ABS(X) equals X. If X is less than zero (negative), ABS(X) is equal to
a negative X.

Arctangent - ATN(X)

The arctangent function gives you the arctangent of the value of X
as an angle, in radians, whose tangent is X. To convert to the same angle
in degrees, multiply the results of ATN(X) by 57.2957795.

Cosine-COX(X)

COS(X) gives you the cosine of the value X as an angle, in radians.
To convert an angle in degrees, multiply by 57.2957795. The value of

93

X must have an absolute value less than 1.5707963266375 times 1010 or
the program stops and gives you an error message.

Sine-SIN(X)

SIN(X) yields the sine of the value of X as an angle in radians. To
convert to an angle in degrees, multiply SIN(X) by 57.2955795. To con
vert back into radians from degrees, multiply the angle by the reciprocal
of this number. If a SIN(X) has an absolute value greater than
1.5707963266375 times 1010, the program stops and prints an error
message.

Tangent -TAN(X)

TAN(X) yields the tangent of the value of X as an angle, in radians.
To convert to an angle in degrees, multiply by 57.2957795. Again, if
TAN(X) has an absolute value greater than 1.5707963266375 times 1010,
you get an error message.

Exponential - EXP(X)

EXP(X) delivers the value of Xe where e = 2.718281828. The
EXPonential function is the inverse of the Natural Logarithm, or LOG,
function. Hence X = LOG(EXP(X)).

Natural Logarithm-LOG(X)

LOG(X) delivers the natural logarithm of the value X. The LOG func
tion is the inverse of the exponential, or EXP, function. Hence, X =
EXP(LOG(X)). If the value of X is equal to or less than zero, the pro
gram stops and gives you an error message.

Square Root-SQR(X)

SQR(X) delivers the square root of the value X. If X is lessthan zero,
an error message results.

Signum-SGN(X)

SGN(X) delivers the algebraic sign of the value X. If X = 0, then,
SGN(X) is zero. If X is greater than zero, then SGN(X) = 1. If X is
less than zero, then SGN(X) = -1.

USER-DEFINED FUNCTIONS

If you cannot find a built-in function for your needs, and you are

94

writing a program that performs one or more specific operations many
times, you may wish to create your own functions with the DEFine
statement.

To use DEFine, simply type "DEF" followed by a function name.
Follow the same rules in naming functions that you'd use for variables.
You may follow the function name by a parameter enclosed in paren
theses; the parameter must also be a valid variable name. Then make
your newly defined function equal to a numeric expression. For example,
if we wished to create a function to calculate the cubes of numbers, we

might write:

100 DEF CUBE(X)=Y*Y*Y

where CUBE is our function name, (X) is our parameter, and the results
are equal to Y*Y*Y. The following program prints the cubes of numbers
from 1 up.

100 DEF CUBE(X)=Y*Y*Y

110 Y=1

120 PRINT CUBE(X)

130 Y=Y+1

Tf0 60T0 120

If we add:

115 PRINT Y

and change Line 140 to GOTO 115 (instead of 120), the computer
PRINTs each new value of Y following by the corresponding value for
CUBE(X).

Once you have defined a function in your program, you can use it
anywhere just by entering its name. If you have not specified a parameter,
the function is evaluated with the values of the variables in the state

ment where it was originally defined. If you do specify a parameter,
the result of the numeric expression in which the function appears yields
the value of the parameter. The function is then evaluated using the newly
derived value of the parameter and the current program values of the
variables included in the definition of the function.

The parameter of a user-defined function may have the same name
as other variables in a program: using the function does not alter the
values of those variables. In other words, the parameter is "local" to

95

a given function.
The computer doesn't actually perform a function until you refer to

it in a numeric expression; it takes no action upon coming across the
statement where you DEFine your function. Be sure that you DEFine
your function before using it: your definition must have a lower line
number than other lines referring to the function.

A few other rules: do not use the name of a function as part of its
own definition. For instance, the computer will reject DEF B = B + 2
but will accept DEF B = 0 + 2. If you include a parameter, you must
include it every time you refer to your function. If, for instance, we drop
the (X) from Line 120 in our CUBE program, the program will not run.
Conversely, if you do not use a parameter in the original definition, don't
try to add one later. The following program is functionally identical to
our original CUBE program, but has no parameter specified.

100 DEF CUBE=Y*Y*Y 130 PRINT Y;

110 Y=0

120 Y=Y+1

Tf0 PRINT CUBE

150 GOTO 120

If we were to add (X) to CUBE on Line 140, the error message, NAME
CONFLICT IN 140, would result.

You can DEFine string functions as well as numeric ones. If so, follow
the rules for manipulating strings and string variables.

Now let's put together some of these functions in a short demonstra
tion program with INTeger, RND (random number), ABS (absolute
value), and SGN (signum). The program produces a series of random
numbers from 19 to -20 on the left hand side of the screen and plays
various tones, depending on the values of the numbers displayed.

100 CALL CLEAR

110 RANDOMIZE

120 X=INT(*f0*RND)-20

130 PRINT X

140 IF ABS(X)>16 THEN 200

150 IF SQN(X)=-1 THEN 160 EL 220 NEXT Y

SE 180 230 GOTO 120

160 CALL SOUND(200,120,0)

96

170 Q0T0 120

180 CALL SOUND(200,1600,0)

190 GOTO 120

200 FOR Y=1 TO k

210 CALL S0UND(100,800,0)

Lines 110-120 Together, the RANDOMIZE statement and the RND func
tion ensure a random sequence of numbers. The INTeger
function in Line 120 gives us whole numbers. We never get
20 though, because the INT function always rounds down.

Line 140 If the absolute value of any number printed is greater than
16, then the program skips to Line 200 and produces four
quick tones.

Line 150 If any of the numbers not caught and rerouted by Line 140
have a - 1 for a sign from the SIGNUM function, then the
computer makes the low tone requested in Line 160. Numbers
with a positive sign will cause the high-pitched sound defin
ed in Line 180.

Lines 160, 180, and 210 The CALL SOUND statements in these lines
produce tones determined by the values of the various
numeric functions.

97

14 Computer Sound and Music

THE SOUND CHIP

The TI-99/4A comes equipped with a sound chip capable of generating
music with three-part harmony and a wide variety of sound effects. The
designers of the chip have gone to a lot of trouble to build in labor-
saving features which facilitate sound programming. The most advan
tageous feature of all is that the chip operates independently, meaning
that while a sound is playing, the computer can go off to another part
of a program and perform other tasks simultaneously. This feature is
particularly useful when combining sound and graphics.

There is only one sound command in TI BASIC: CALL SOUND.
CALL SOUND is actually a sound sub-program that instructs the com
puter to produce tones with a frequency, volume, and duration that you
choose. A tone's frequency is measured in number of vibrations, or cycles,
per second, also called Hertz (Hz). The TI has a frequency range from
110 Hz at the low end (the A two octaves below the middle C on a piano)
to a high of 44,735 Hz, well above the range of human hearing which
ranges from about 20 Hz to about 20,000 Hz. The human voice has
a range from about 125to 1,000cycles per second, while a concert grand
piano has a range of 27.5 to 4,186.

The following sound program demonstrates the TFs frequency range

98

by producing tones from 110 to 25,000 cycles per second. You can use
this program to test your own hearing range: RUN the program, and
when you no longer hear the tone, press FCTN:CLEAR to stop the pro
gram. Then type PRINT FREQ and pressENTER. The TI will display
the frequency of the note it was playing when you stopped the program.
(Warning: this is not a true hearing test, as the results will be affected
by your TV or monitor speaker.)

100 FOR FREQ=110 TO 25000 ST

EP 20

110 CALL SOUND(-110,FREQ,3)

120 NEXT FREQ

The TI has 30 volume settings: 0 is the loudest and 30 is the softest.
Here is a program demonstrating these settings:

100 FOR VOL=0 TO 30

110 CALL SOUND(400,¥f0,VOL)

120 NEXT VOL

The period of time that a tone lasts is called its duration and is con
trolled by a duration setting in milliseconds. (One thousand milliseconds
are equal to one second.) A single CALL SOUND statement may be
programmed for a duration between one and 4,250 milliseconds.

This sample program plays six tones, each one lasting twice as long
as the one before.

100 READ DUR 150 GOTO 100

110 CALL S0UND(DUR, 110,3) 160 DATA 100,200,^00,800,160

120 IF DUR=3200 THEN 170 0,3200

130 FOR SILENCE=1 TO 600 170 END

Tf0 NEXT SILENCE

99

CALLING SOUND

Programming the values to be entered into a CALL SOUND state
ment is a simple operation. The proper format for programming a CALL
SOUND statement using one, two and three voices appears below:

One Voice: CALL SOUND(duration,frequency 1,volume 1)

Two Voices: CALL SOUND(duration,frequency 1,volume 1,
frequency 2,volume 2)

Three Voices: CALL SOUND(duration,frequency 1,volume 1,
frequency 2,volume 2,frequency 3,volume 3)

The duration value comes first and controls the duration of all the

tones in the statement. To program duration, just enter a number be
tween 1 and 4,250; the note will last for that number of milliseconds.

Then you enter a frequency for Voice 1, followed by its volume set
ting. Remember: the computer's frequency values range from 110 through
44,733 Hz. You'll find a frequency table for four full octaves of musical
tones on page III-7 of your User's Reference Guide. Feel free to make
up your own tuning systems; this is one of the major strengths of your
99/4A.

Setting the volume for Voice 1 is next. All you do is select a volume
setting from 0 to 30. This setting can be further controlled through the
use of the volume dial on your TV or monitor. Remember that 0 is the
loudest setting and 30 is the softest.

Programming the frequency and volume for the second and third voices
is just as easy. Simply add the new frequencies and volumes to the CALL
SOUND statement. A maximum of three musical voices may be obtained.

NOISE SETTINGS

Until now we have been discussing the production of pitched tones:
those that vibrate regularly at a certain number of cycles per second.
A sound that vibrates erratically or randomly is called noise. The sound
chip in your TI has eight pre-programmed noises for creating special
sound effects. Here is a program that plays all eight noises.

100 FOR EFFECT=-8 TO -1

110 CALL SOUNDC200,EFFECTS)

120 NEXT EFFECT

100

These effects are programmed by entering a negative frequency value
from -1 to - 8 inclusive. Settings of -1 through -4 give Periodic Noise
effects, while settings of - 5 through - 8 yield White Noise.

Duration and volume settings for sound effects are controlled the same
way as musical tones. You may even add a sound effect to a CALL
SOUND statement containing musical tones:

CALL SOUND (1000,^0,3,349,3,

330,3,-8,4)

This statement will produce three musical tones and one noise all played
together for one second.

NEGATIVE DURATION VALUES

When you CALL SOUND, the computer follows a special protocol
for running programs. Because the sound chip operates independently,
the computer can perform other program statements while a CALL
SOUND statement is being executed. If you've used more than one CALL
SOUND statement, the computer finishes the first before going on to
the next. Some sound effects, however, operate more smoothly, without
annoying clicking, when one statement can flow into another. In other
words, you'll want to interrupt one CALL SOUND by another before
the first statement is completed. You do this with a negative duration
setting, which instructs the computer to cut off the previous sound state
ment and execute the new one.

Try these two samples. The first uses a normal duration setting, and
the second, a negative duration setting; listen to the difference.

100 FREQ=220 100 FREQ=220

110 FOR SAMPLE=1 TO 15 110 FOR SAMPLE=1 TO 15

120 CALL SOUND(100,FREQ,3) 120 CALL SOUND(-100,FREQ,3)

130 FREQ=FREQ+20 130 FREQ=FREQ+20

140 NEXT SAMPLE 140 NEXT SAMPLE

101

You may have noticed that the second program ran much faster than
the first. In the second program, the computer did not wait for each
sound statement to finish. It simply cut off the sound which was play
ing as soon as it encountered the negative duration in the following sound
statement.

PROGRAMMING A SONG FOR ONE VOICE

Now that you understand the CALL SOUND settings, let's move head
and write a program for a song using one of the TFs three musical voices.
Whenever you are doing sound programming, you should consider the
context in which the sound is used. If it is strictly a sound program,
then one programming strategy might be to enclose the CALL SOUND
statement in a READ/DATA program format. If, however, you are using
sound with graphics, a series of CALL SOUND statements interspers
ed with graphics statements would prove more flexible. There is no one
way of programming sound—several different programming strategies
may yield very similar results. Here is a program that uses two different
programming strategies to play the same phrase.

100 REM ***THIS SECTION USES READ/DATA ***

CALL SOUND IN SERIES*** 190 READ DUR, FREQ

110 CALL S0UND(150,131,3) 200 CALL SOUND(DUR,FREQ,3)

120 CALL SOUND(150,165,3) 210 IF DUR=600 THEN 230

130 CALL SOUND(150,196,3) 220 GOTO 190

1<f0 CALL SOUND(150,262,3) 230 END

150 CALL S0UND(150,196,3) 240 DATA 150,131,150,165,150

160 CALL S0UND(150,165,3) ,196,150,262,150,196,150,165

170 CALL S0UND(150,165,3) ,600,131

180 REM ***THIS SECTION USES

For straight music programming, the READ/DATA format is a lot
easier because you don't have to keep typing CALL SOUND.

102

Let's use a modified version of the READ/DATA format to program
a song, "Joshua Fought the Battle of Jericho," a traditional spiritual.
The explanation that follows assumes that you can read music. If not,
skip ahead to "Programming Sound Effects," which requires no music
theory.

JOSHUA FOUGHT THE BATTLE OF JERICHO

(Traditional)

TttMHiJU li'J^fe
Wft

frT=3
4 * m^o

fih Jl J J),.
m* ^ J—*-<- 7 M /—i"*—•—•—4 '— j/f—*
J d £J! d '

§1 ^

100 READ DUR,FREQ

110 IF DUR=0 THEN 180

120 CALL SOUND(DUR*150,FREQ,3)

130 GOTO 100

140 DATA 1,294,1,277,1,294,1

,330,1,349,1,349,2,392

150 DATA 1,440,2,440,5,440,1

,392,2,392,5,392,1,440,2,440

,5,440

160 DATA 1,294,1,277,1,294,1

,330,1,349,1,349,2,392

170 DATA 1,440,2,440,3,440,1

,349,1,392,2,440,2,392,1,349

,1,349,2,330,2,294,2,220,4,1

,47,0,0

180 END

Thegeneral idea behind this method of programming music: thedura
tion and frequency of each note in the song are treated as separate
variables. We have chosen 150milliseconds as the duration of an eighth
note. By setting up a CALL SOUND statement that reads the duration
as DUR*150, we can vary each note's duration by changing the value
of DUR. Sincetime is proportional, this makesit easy to figure out the
duration values for each note. The table below illustrates the musical
notation equivalents for the duration values used here.

103

1*DUR = eighth note

2*DUR = quarter note

3*DUR = dotted quarter note

4*DUR = half note

By placing the duration number and the frequency number (from the
Frequency Table) into a DATA bank, we can play the notes in the proper
order with the correct frequency and duration values.

With this in mind, see if you can figure out how the program works.

Line 100 READs the first two pieces of DATA from the DATA list
and assigns them to the variables DUR and FREQ. The first
item in DATA is the duration value and the second is the
frequency.

Line 110 checks the duration value to see IF it is 0. IF it is 0, THEN
the computer skips to Line 180. IF it is not 0, THEN the
computer moves on to Line 120.

Line 120 CALLs the SOUND: the value of DUR is multiplied by 150,
the total number of milliseconds of duration; the value of
FREQ is taken as the frequency number; the volume remains
constant at 3.

Line 130 transfers control back to the READ statement in Line 100.

This creates a loop for READing and playing the notes.

Lines 140-170 contain the DATA for the duration and frequency of each
note. The last two pieces of information (0,0) are flags to
indicate the end of the DATA list.

Line 180 ENDs the program.

RESTORE FOR REPEATS

The RESTORE statement can be used along with counters and DATA
flags to repeat sections of music without your having to go through the
trouble of typing them in twice. If you add the lines below to your pro
gram, the entire piece will play twice.

First, change Line 180 so that it reads:

180 FLAG=FLAG+1

Then add these lines:

190 IF FLA6=2 THEN 220 210 GOTO 100

200 RESTORE 220 END

104

The FLAG counter in Line 180 keeps track of how many times the
DATA has been used. Line 190 checks the value of the FLAG. IF it
has been used once, THEN DATA will be restored andthe whole piece
will play over. IF it has been used twice, THEN the piece will END.

A SONG FOR THREE VOICES

Using all three musical voices makes the music sound much stronger.
You can approach programming for three voices in a number of ways.
The next program uses the method we have found to be flexible and
easy to use, as well as giving us accurate control of individual notes.

The program uses three CALL SOUND statements, although only
one is used at any given moment during the music. The first CALL
SOUND is used when there is note information for three voices. The
second is used when there is note information for two voices, and the
third isusedwhenonly onevoice is required. The program incorporates
a READ/DATA format for processing frequency and duration values.

In this program, we used 150 milliseconds for a sixteenth note: thus,
a 1 in the DATA statement represents a sixteenth note. Similarly, a 2
represents an eighth note and a four a quarter note. A zero is used as
a frequency value when the voice is not used for tone production.

Type inthis rather long program, and you will will be rewarded with
the music of the 99/4A's sound chip at its best. A line-by-line descrip
tion follows the program. If you have any trouble understanding how
the program works, we suggest you study this commentary.

100 CALL CLEAR

110 PRINT TAB(9);"LILI MARLE

NE" ::

120 PRINT "CREDITED TO NORBI

T SCHULTZE" ::

130 PRINT "PROGRAM DESIGN AN

D MUSICAL" ::

140 PRINT "ARRANGEMENT BY" ::

150 PRINT "JAMES VOGEL"

160 READ D,F1,F2,F3

170 IF D=0 THEN 400

180 IF (F2=0)*(F3=0)THEN 220

190 IF F3=0 THEN 240

200 CALL SOUND(D*150,F1,3,F2

,3,F3,3)

210 GOTO 160

220 CALL SOUND(D*150,F1,3)

230 GOTO 160

105

240 CALL SOUND(D*150,F1,3,F2

,3)

250 GOTO 160

260 DATA 3,330,196,131,1,330

,131,0,3,330,247,131,1,349,1

,31,0

270 DATA 4,392,294,233,4,330

,262,0,3,349,220,147,1,349,1

,47,0

280 DATA 3,349,262,208,1,523

,0,0,8,494,349,196,3,294,247

,220

290 DATA 1,294,196,0,3,294,1

96,175,1,330,147,0,4,349,247

,196

300 DATA 3,349,247,147,1,392

,147,0,3,494,294,196,1,440,3

,49,262

310 DATA 3,392,330,110,1,349

,294,220,7,330,196,131,1,262

,131,0

320 DATA 4,440,262,175,3,494

,392,220,1,523,440,0,4,494,2

106

62,185

330 DATA 4,440,370,220,4,440

,330,196,4,392,330,131,7,494

,330,131

340 DATA 1,440,262,330,4,392

,330,247,4,349,294,196,7,440

,349,247

350 DATA 1,392,330,247,4,349

,294,208,4,330,262,247,7,392

,262,196

360 DATA 1,330,262,123,7,392

,330,110,1,349,294,247,4,349

,294,196

370 DATA 4,587,494,349,8,523

,392,165,4,392,262,165,4,330

,262,110

380 DATA 7,392,262,220,1,349

,208,0,4,349,247,220,4,247,1

96,175

390 DATA 12,262,165,196,0,0,

0,0

400 END

Here is the line-by-line description.

Lines 100-150 format the print display. This is optional.
Line 160 READs the first four pieces of note information: duration,

Voice 1 frequency, Voice 2 frequency, and Voice 3 frequency,
respectively. These values are assigned to the variables DUR,
Fl, F2, and F3 respectively.

Line 170 checksthe current duration value. IF it is 0, control transfers
to Line 400. IF it is not 0, THEN control passes to Line 180.

Line 180 checks the current frequency values of Voices 2 and 3. IF
both values are zero (meaning that only Voice 1 is being us
ed), THEN control transfers to Line 220 (the CALL SOUND
for one voice). If the values are not both 0, THEN control
passes to Line 190.

Line 190 checks the current frequency value for Voice 3. IF it is 0
(meaning Voice 3 is not used), THEN control transfers to
Line 240 (the CALL SOUND for two voices). IF it is not
0, THEN control passes to Line 200.

Line 200 contains the CALL SOUND statement for three voices.

Line 210 loops back to Line 160 to READ the next four pieces of
DATA.

Line 220 contains the CALL SOUND statement for one voice.
Line 230 loops back to Line 160 to READ the next four pieces of

DATA.

Line 240 contains the CALL SOUND statement for two voices.
Line 250 loops back to Line 160 to READ the next four pieces of

DATA.

Lines 160-250 make up thebackbone of the program. They process the
note information and determine how many voices will play.

Lines 260-390 formthe DATA bankcontaining the duration value and the
frequency values for groups of three notes. Since theREAD
statement will always read four values, values must beentered
even if the voice is not used; hence a 0 for the frequency
of an unusedvoice. A duration of 0 represents a flag to leave
the READ loop (see Line 170).

Line 400 ENDs the program.

If you want to program a moment of silence, we suggest that you
actually program a very high frequency, such as 44,000. This will allow
you toremain in the READ/DATA format and continue processing note

107

information. Although the tone will be played, it is way beyond the range
of human hearing and will therefore pass for silence.

This program demonstrates only one of the many ways you can pro
gram the sound chip. Try composing a song of your own.

SOUND EFFECTS

Programming the sound chip for effects is easy, and can produce some
interesting results. Here are a few which you can use as models.

100 REM SONAR 140 FOR DELAY=1 TO 20

110 FOR A=1 TO 3 150 NEXT DELAY

120 FOR VOL=0 TO 25 160 NEXT VOL

130 CALL SOUND(-25,-1,VOL) 170 NEXT A

This program uses nested loops to help create the effect. TheA loop
makes the effect occur three times. The VOL loop enters a series of 25
volume settings which gives the effect its fadeaway quality. The DELAY
loop spaces out each sonar sound, giving the echo effect.

We used a - 1 frequency setting for the pre-programming tone and
a -25 duration setting to make the sound statements blend together.

Here is a similar effectwhich uses the sameprogram format. We used
a - 5 freuqency setting and a -250 duration for dramatically different
results.

100 REM DOOM 140 FOR DELAY=1 TO 25

110 FOR A=1 TO 3 150 NEXT DELAY

120 FOR VOL=0 TO 25 160 NEXT VOL

130 CALL SOUND(-250,-5,VOL) 170 NEXT A

The next program demonstrates a siren. It is created with the help
of the STEP command and two FOR-NEXT loops. To exit this pro
gram, press the FCTN.CLEAR, as the program runs in a continuous
loop.

108

100 FOR X=800 TO 1100 STEP 1 10

0 140 CALL SOUND(-100,Z,0)

110 CALL SOUND(-150,X,0) 150 NEXT Z

120 NEXT X 160 GOTO 100

130 FOR Z=1100 TO 800 STEP -

A combination of a steady rise in frequency coupled with a negative
duration value, which blends the tonestogether, produces the rising pitch.
The STEP statement causes the descending pitch.

Using one loop to control frequency and a second for volume can
create interesting arcade effects.

100 FOR T=2000 TO 800 STEP-2

5

110 CALL SOUND(-150,T,0)

120 NEXT T

130 FOR Z=0 TO 30

140 CALL SOUND(250,-7,Z)

150 NEXT Z

We suggest that you experimentwith different frequency, volume, dura
tion, and STEP values to create other effects using similar program
ming formats. You will be surprised how dramatically an effect can
change when you alter a single number.

SOUNDING A FINAL NOTE

If you are interested in further exploring the possibilities of the TI
sound chip, go on to Chapter 20. There we show you how to turn your
computer keyboard into a touch-sensitive organ keyboard. And you'll
find out how to mix sound with graphics.

109

15 BASIC Graphics

In this chapter we will explore the TI BASIC set of statements that
put images and colors at your fingertips. With practice, you'll soon be
creating your own spectacular displays.

THE SCREEN

Ingraphics mode the 99/4A's screen is divided into 32 vertical columns
and 24 horizontal rows (Figure 15.1). Each square iscalled a character
space, and there are 32 times 24, or 768, of these character spaces on
the screen. Because some television sets don't show the extreme left or
right columns, when you are typing in programs, you have access to only
28 columns. But when you RUN a graphics program, all 32 columns
can be displayed.

COLUMNS

110

' J 3 1 5 1 7 I 9 i 1 1 1 1. 1 IT i 19 1 2 1 23 1 25 1 2"

28

1
30

79J 3

32

1

R 2-
O 3
W 4 —
s >

6 —

8 —.

10 —

12 —»

14 —

16 —

18 —•

20 —

21
2- —

23 .
24 —.

I

Each character space is further broken down into a checkerboard of
eight by eight (64) tiny squares called pixels; the screen holds altogether
49,152 individual pixels (32 times 24 times 64). All the characters sent
out from the keyboard are made up of these pixels. TI BASIC allows
you to define your own characters by generating a code that determines
which pixels in a character space are "on" or "off."

BASIC GRAPHICS STATEMENTS

Each graphics statement has several terms following it inparentheses;
these terms let you specify exactly what you want the statement to do
and where. The correct form for each statement is given below.

CALL CHAR (character code, pattern identifier)

The CALL CHAR statement defines a character space by means of
the two terms in parentheses: a character name, or a character code;
and a pattern identifier. The appendix ofyour User's Reference Guide
lists thecharacter codes for all thekeyboard symbols, which areassigned
numbers from 32to 127. In addition to these codes, 32blank character
codes from 128 to 159 are available for you to define yourself.

You can even redefine the normal character spaces of the keyboard
symbols by using their character codes in a CALL CHAR statement.
For instance, you can make the number "6" represent a character you
choose byusing its character code (54) with a pattern identifier you create.
Any program in which you do this will show a new character in place
of "6" whenever you use character code 54 in a program line.

The 64 pixels ineach character space are functionally divided into 16
horizontal sections of four pixels each thatare read like an ordinary book
page from left to right and top to bottom:

1 2

3 4

5 ^^^^^^H 6

7 8

9 HH 10

11

13

^Bm^^Km 12
14

15 ^^^^^^1 16

111

To define the pixels in a character, you must use block codes. Each
of the four-pixel horizontal bars in a character space can have 16 dif
ferent combinations of light and dark squares. Hence there are 16 dif
ferent block codes, one for each possibility.

Blocks Code

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Let's saywewanted to create the image of a running figure and have
it appear in a program instead of the keyboard symbol "6." We could
write

CALL CHAR(5*f,,,0*f001'f0E050C12

21")

Block 1:

Block 3:

Block 5:

Block 7:

Block 9:

Block 11:

Block 13:

Block 15:

112

0

0

1

0

0

0

1

2

.•Block 2

:Block 4

:Block 6

:Block 8

.•Block 10

.•Block 12

.•Block 14

.•Block 16

You must be certain to enclose the pattern identifier in quotes when
writing CALLCHAR and to use only upper-case letters for the ABCDEF
of the block codes. To see the new character we have created, we can
enter the following simple program:

100 CALL CHAR(54,"0400140E05

0C1221")

110 CALL HCHARC12,16,54)

300 GOTO 110

After typing RUN, the image of the running man appears at row 12
andcolumn 16 on the screen. Notice thatthe"6" in the column number
after the HCHAR statement in Line 110 is also a running man because
we have redefined the character space for the number 6 for the dura
tion of the program. If you press FCTN:CLEAR, both images go back
to "6."

CALL CLEAR

Whenever you use CALL CLEAR, the computer places a blank in
all thecharacter spaces on the screen, erasing whatever was there before.
For this reason, CALL CLEAR is often a program's first statement.
It is useful whenever you want to switch from one set of images to
another. It can also help create the illusion of motion-something we'll
discuss at greater length later.

Try entering

90 CALL CLEAR

in our little CALL CHAR program. You can go one step further and
redefine the blank space (character code 32) with still another character;
if you do, you will fill the screen with that character when you use CALL
CLEAR. Try it by changing the 54 in Line 100 to a 32. Can you tell
why the 6 is still in the center of the screen?

CALL HCHAR and CALL VCHAR
(row, column, character code, number of repetitions)

113

<?

CALL HCHAR and CALL VCHAR display characters on the screen.
These two statements work much the same way, except that CALL
HCHAR displays character repetitions horizontally, and CALL VCHAR
displays them vertically. The first two terms in these commands specify
at which row and column number you want your character to start. The
third term specifies the character code-either one that displays akey
board symbol or a new one you have defined in a CALL CHAR
statement.

You must limit yourself to the number of screen rows and columns
when filling inthe first two terms of aCALL HCHAR or VCHAR state
ment. Thevalues for character codes, however, mayrun from 0to 32767
inclusive. But as a rule, you'll only use the values of the normal ASCII
character code list.

114

The last term of the HCHAR and VCHAR statement represents the
number of times you wish your character repeated. Again, the computer
can accept up to 32767 repetitions, but since 768 repetitions fill the en
tire screen, you'll see no change after the screen has filled once.

Go back to Line 110, add the number 200 after the character code
54, and reRUN the program. The computer displays 200 images of a
"6" horizontally, starting at row 12 and column 16. Now substitute a
"V" for the "H" in Line li0.

CALL COLOR (character set, foreground color, background color)

~=^SX-

The CALL COLOR statement allows you to change character
foreground and background color on the screen. The dots that actually
form a given character are in the foreground color; the rest of the
character space is in the background color. A third layer underlying both
foreground and background is the screen color. The values for the 16
colors your computer can generate are:

Value Color Value Color

1 Transparent 9 Medium Red

2 Black 10 Light Red

3 Medium Green 11 Dark Yellow

4 Light Green 12 Light Yellow

5 Dark Blue 13 Dark Green

6 Light Blue 14 Magenta

7 Dark Red 15 Gray

8 Cyan 16 White

Ifyou use transparent (1) as either aforeground or background color,
then whatever color the screen is will show through your character. If
you specify transparent for both the foreground and background color,
your character will be invisible. If you don't CALL a COLOR, the
foreground will be black and the background will be transparent.

115

CALL COLOR statements affect the color of character setscontain
ing eight characters. You must specify the correct character set tochange
a single character's color; conversely, all characters in that set change
color with one CALL COLOR statement. The computer uses 16 dif
ferent character sets, each corresponding to a section of the character
code list:

Set Character Codes Set Character Codes

1 32-39 9 96-103
2 40-47 10 104-111
3 48-55 11 112-119
4 56-63 12 120-127
5 64-71 13 128-135
6 72-79 14 136-143
7 80-87 15 144-151
8 88-95 16 152-159

Let's say you wanted to use an HCHAR or VCHAR statement to
display a white 6 on a black background. You'll recall from thecharacter
code list that the code for 6 is 54, which, from the table, falls into
character set 3. So you would write:

100 CALL CLEAR

110 CALL C0L0R(3,16,2)

120 CALL VCHAR(12,16,54,200)

130 GOTO 110

where 16 (white) is the foreground color, 2 (black) is the background,
and 3 is the character set containing the number 6.

Remember: each CALL COLOR statement only affects the eight
characters within a single character set; moreover, only one set may be
specified per statement. To change thecolor of characters from different
character sets, you must write separate CALL COLOR statements for
each set. If you specify a value of one for your character set, all of the
emptyspaces on the screen will change to the background colorbecause
the empty space is included in character set one.

116

CALL SCREEN (color-code)

You probably noticed that the short CALL COLOR program in the
previous section produced white characters onablack background, but
left the screen surrounding the characters green. The CALL SCREEN
statement changes screen color so you can match the screen to the
character background. The underlying screen color shows through in
any space not affected by an HCHAR orVCHAR command. It also
shows through if the foreground or background color is transparent.

To use CALL SCREEN merely put in parentheses one of the same
color code values you used in the CALL COLOR statement. For a solid
black background in our last program we would insert

105 CALL SCREEN(2)

The following program putsthe CALL COLOR andCALL SCREEN
statements to work. Numbers from character set 3 are displayed on the
screen by four CALL COLOR statements at Lines 100, 130, 160, and
190. A subroutine in Lines 230-320 prints the numbers in each new set
of colors. Line 220 loops the program back to the beginning. Notice
that each CALL SCREEN statement features the same color as the
background color in the previous CALL COLOR statement, maintain
ing a solid background over the entire screen.

100 CALL C0L0R(3,16,13) 220 GOTO 100

110 CALL SCREEN*13)

120 GOSUB 230

130 CALL C0L0R(3,13,16)

Hf0 CALL SCREENU6)

150 GOSUB 230

160 CALL C0L0R(3,6,2)

170 CALL SCREEN(2)

180 GOSUB 230

190 CALL C0L0R(3,2,12)

200 CALL SCREEN 12)

210 GOSUB 230

230 CALL CLEAR

2W A=765*t3210

250 B=123*f567

260 C=765«210

270 FOR X=l TO k

280 PRINT A;B;C:::::

290 NEXT X

300 FOR K=1 TO 1000

310 NEXT K

320 RETURN

117

Here is a program outline for the CALL COLOR demo program.

Lines 100-120, 130-150, 160-180, and 190-210 Each one of these groups
CALLs a different foreground and background color com
bination for the eight characters in character set 3. This new
information is then sent to a subroutine beginning on Line
230.

Lines 230-320 define a subroutine that includes two FOR-NEXT loops. The
first, Lines 270-290, PRINTs the characters represented by
theA, B,andC variables four times. The second loop, Lines
300-310, delays theprogram's display by counting K a thou
sand times.

Line 320 RETURNs the program to the line after the one that ini
tially directed the computer to the subroutine.

CALL GCHAR (row, column, numeric, variable)

The CALL GCHAR statementallows you to read the character code
of a character located at a specific row and column number. If we enter
the program

100 CALL CLEAR

110 CALL VCHAR(12,16,5^,200)

120 CALL GCHAR(2*t,22,X)

130 PRINT X

Tf0 CALL GCHAR(24,28,Y)

150 PRINT Y

160 GOTO 160

we see the familiar vertical columns of the number 6 (character code
54) and two numbers at the bottom left hand corner of the screen. The
first CALL GCHAR at row 24 column 22 is within a space filled by
the VCHAR statement with the number 6. Thus, when X is printed,
we see a value of 54. The second GCHAR statement reads the character
space at row 24, column 28. As you can see, this space is at the lower
right hand corner and is blank. Hence, when Y is printed, we see the
value for the blank space, 32.

118

THE RANDOM CHARACTER GENERATOR

The following program shows off the graphics statements we have
reviewed with a dazzling and ever-changing display. The program asks
youto enter a value within a certain range for alltheterms accompany
ing the CALL COLOR, CALL SCREEN, CALL VCHAR, CALL
HCHAR, CALL CHAR, and CALL GCHAR statements. Although
you cannot choose values outside the legitimate range of these statements,
you may include one, a few, or all the values for each term involved.
The program then randomizes the values you have given, staying within
your specified limits. If you enter small numbers the range of values
the program may select from will be small and the display will be relatively
simple. Using them all will produce entertaining complexity. Experiment
with different values will get a feeling for how the different graphics
statements interact and for your computer's overall graphics capability.

Something to keep in mind: when you CALL GCHAR, you affect
theoverall display. This isbecause to make thenumbers of theGCHAR
display readable, we must use CALL COLOR to change character sets
3 and 4 (which contain the numerals 0 to 9) to black on white; other

The CALL KEY statement at Line 420 allows you to interrupt and
restart the program with a new set of values by pressing any key. The
CALL COLOR statementsat the end of the program then resetthe screen
to black on yellow, so that you can clearly see the INPUT requests.

100 CALL CLEAR TO 16)":L

110 INPUT "COLOR SETS?(1 TO 180 IF (L<1)+(L>16)THEN 170

16)":I 190 INPUT "NUMBER OF R0WS?(1

120 IF (K1)+(I>16)THEN 110 TO 24)":M

130 INPUT "FOREGROUND COLORS 200 IF (M<1)+(M>24)THEN 190

?(1 TO 16)":J 210 INPUT "NUMBER OF COLUMNS

140 IF (J<1)+(J>16)THEN 130 ?(1 TO 32) ":N

150 INPUT "BACKGROUND COLORS 220 IF (N<1)+(N>32)THEN 210

?(1 TO 16)":K 230 INPUT "NUMBER OF CHARACT

160 IF (K<1)+(K>16)THEN 150 ERS? (0 TO 9k)":0

170 INPUT "SCREEN C0L0RS?(1 240 IF (O<0)+(O>94)THEN 230

U9

250 INPUT "CHARACTER REPETIT

IONS? (1 TO 768)":P

260 IF (P<1)+(P>768)THEN 250

270 PRINT "DISPLAY GCHAR?(Y

OR N)n

280 CALL KEY(3,X,Y)

290 IF Y=0 THEN 280

300 CALL CLEAR

310 GOSUB 440

320 CALL COLOR(A,B,C)

330 CALL SCREEN(D)

340 CALL VCHAR(E,F,G,H)

350 CALL HCHAR (E,F,G,H)

360 IF X=89 THEN 380

370 GOTO 420

380 CALL GCHAR(E,F,T)

390 CALL C0L0R(3,2,16)

400 CALL C0L0R<4,2,16)

410 PRINT T

420 CALL KEY(3,XX,Y)

430 IF Y=0 THEN 310 ELSE 540

440 RANDOMIZE

450 A=INT(I*RND)+1

460 B=INT(J*RND)+1

470 C=INT(K*RND)+1

480 D=INT(L*RND)+1

490 E=INT(M*RND)+1

500 F=INT(N*RND)+1

510 G=INT(0*RND)+32

520 H=INT(P*RND)+1

530 RETURN

540 CALL CLEAR

550 FOR SET=1 TO 8

560 CALL COLOR(SET,2,1

570 NEXT SET

580 CALL SCREEN(H)

590 GOTO 110

Lines 110-260 ask you to select a range of values for each of the graphics
commands. Each INPUT statement is followed by an IF-
THEN statement that checks if the INPUT value is ap
propriate. If not, the IF-THEN statement sends the com
puter back to the INPUT line for a new value. These
variables represent the range of values from which a single
value will later be randomly chosen for each aspect of the
program. Entering 16 when the computer asks for COLOR
SETS? thus gives the program colors sets 1 through 16 to
choose from.

120

The table below lists the variable names and which part of the pro
gram they affect. The column on the right lists the variables that will
later be associated with the INPUT variables in the subroutine in Lines
440-530. This last set of variables will be used to randomly choose a
value for each graphics feature.

Program Aspect INPUT Variable

Color Sets I

Foreground Colors J

Background Colors K

Screen Colors L

Number of Rows M

Number of Columns N

Number of Characters 0

Character Repetitions P

Randomizer Variable

A

B

C

D

E

F

G

H

Lines 270-290 let you decide whether to display the results of a CALL
GCHAR statement. CALL KEY provides this information
(by CALLing Y or N) after the DISPLAY GCHAR message
has been printed. Line290sends the computer back to Line
280 if no key is pressed.

Line 310 starts the subroutine at Line 440, which produces values for
the "randomizer" variables A through H.

Lines 310-350 comprise five graphics statements that are performed
repeatedly. The subroutine in Lines 440-530 determines the
values of the variables in these statements. The action in this
section of the program flows into Line 430 where the com
puter is directed to the GOSUB statement in Line 310 if a
key hasnot been pressed. This GOSUB statement thenrecalls
the subrountine in Lines 440-530 which generates a new set
of randomizer variables for each graphics statement. Thus
the statements in this section are performed again and again,
each time with a new set of variable values.

Lines 360-370 The variable corresponding to the character code for the
keyboard keys (defined intheCALL KEY statement in Line
280) is used to determine whether to display GCHAR. If a
"Y" for YES is pressed, the value of 89 is assigned to the
variable X. In this case, the program skips over Line 370
and performs the GCHAR routine. If X does not equal 89,
the computer moves to Line 370, which tells it to skip over
the GCHAR routine.

121

Lines 380-410 detail the routine that prints CALL GCHAR results on the
screen. The CALL GCHAR statement in Line 380 is fol
lowed by statements setting the color for character sets 2 and
3, which contain the number characters. Without these
statements you might not be able to read the results of the
GCHAR statement. But the screen display is also affected,
since other characters alreadyon the screen that happen to
belong in character sets 2 and 3 will also change. After the
colors for these sets have been set to black on white, the
results of GCHAR are printed at Line 410.

Lines 420-430 is the CALL KEY statement that lets you restart the pro
gram for a new set of INPUT variable values. If you simply
let the program run without pressing any key, the program
action goes back to Line 310 to fetch the subroutine for the
randomizer variables, as before. If you do press a key, the
action moves moves to Line 540, which prepares the screen
to restart the program.

Lines 440-530 contain the subroutine that defines variables A through H
for supplying randomized values to the variables named in
the graphics statements in Lines 320 to 350. The names of
the INPUT variable associated with each of these new ran
domized variables are enclosed within the parentheses of each
random number function. The random number function
multiplies each of these INPUT variables by a randomly
assigned value between one and zero. One is then added to
ensure that the result does not equal zero. Each of these
statements picks a single value randomly from the range of
values specifiedin your INPUT. (Check the table that accom
panies the explanation for Lines 110-260 to see which of the
original INPUT variables is associated with each of these new
variables.) The RETURNstatementreturns program action
to Line 320 where the graphics display begins.

Lines 540-590 prepare the program to begin again. While the program
RUNs, colorsand charactersetschangecontinually. To start
with a new set of INPUT values, we need a uniform color
scheme. After CALLing the screen CLEAR, a FOR-NEXT
loop calls a foreground colorof blackand a background col
or of dark yellow for all the characters in the first eight
character sets. Then Line 580 also turns screen color dark
yellow, and Line 590 returns us to the beginning.

122

COMBINING CHARACTERS IN SPACE:

WHITE KNIGHT

So far, we have looked only at creating characters in a single character
space, but we can also create larger images by piecing character spaces
together, much like a jigsaw puzzle. The following program demonstrates
this technique.

A chess piece, a knight, is constructed out of four character spaces
near the center of the screen. You are then asked to select foreground
and background colors for this knight. Enter values from one to six
teen for your colors. Press any key before choosing a new set of colors.

Notice the number of the row and column numbers in the HCHAR
statements. This spacing is graphically demonstrated by the technique
of using the character codes for the numbers 1 through 4, which have
been reassigned to represent each of the spaces making up the knight.
Because of this, you will see all of your INPUT numbers in the same
colors as the knight since they belong to the same character set which
determines the knight's colors. The numbers 1 to 4 will appear as pieces
of the knight itself since the character codes reserved for these numbers
have been redefined to make the knight. Try entering a value of 12 for
the foreground color and one of 34 for the background color. The pro
gram will BREAK because 34 is a bad color value, but the pieces of
the puzzle will be revealed!

100 CALL CLEAR 170 CALL HCHAR(10,15,51)

110 CALL CHAR(49, "0000010608

121021")

120 CALL CHAR(50,"000000C020

100808")

130 CALL CHAR(51,"2618010204

0F0000")

140 CALL CHAR(52,"8C84040408

F80000")

150 CALL HCHAR(9,15,49)

160 CALL HCHAR(9,16,50)

180 CALL HCHAR(10,16,52)

190 INPUT "FOREGROUND COLOR?

":F

200 INPUT "BACKGROUND COLOR?

":B

210 CALL C0L0R(3,F,B)

220 CALL SCREEN(H)

230 CALL KEY(3,X,Y)

240 IF Y=0 THEN 230 ELSE 110

123

COMBINING CHARACTERS IN TIME:

RUNNING MAN

Now let's look at a program that really RUNS. It uses four characters
like the previous one, but in a different way. Here only one character
is displayed at any given moment. It is the character's relationship in
time, rather than space, that we are interested in. Creating smooth move
ment in TI BASIC is difficult, because we can only display characters
block by block. To improve matters somewhat, this program displays
two characters for each character space—one that occupies either the
left or right side of a character space. Thus although four images are
produced, our running man only moves two spaces.

In Lines 120 to 150, we define the four characters which, when link
ed together, produce the illusion of motion. Characters 130 and 131 are
displayed in the same place, and characters 132 and 133 are similarly
paired. Each time character 131 is displayed, the computer moves the
column location in the COL variable one step to the left on the screen.
This also happens after character 133 is displayed. Between CALLing
CHARacters, we have inserted a CALL CLEAR statement to erase the
previous character before the next one is displayed. Thus, we create an
impression of smooth motion. The process is analogous to passing movie
frames one at a time through a projector.

You can control the running man's speed with the INPUT statement
in Line 160. FOR-NEXT loops in Lines 210-220, 250-260, 300-310, and
340-350create delays between character displays. By assigning a low value
to the variable X, you can make the runner run fast. To see each of
our runners' positions clearly, enter a delay of 100.

100 CALL CLEAR 150 CALL CHAR(133,"200020F82

110 CALL SCREEN(11) 0205840")

120 CALL CHAR(130,"0400140E0 160 INPUT "DELAY?(PRESS 0 FO

50C1221") R NO DELAY)":X

130 CALL CHAR(131,"200020F82 170 C0L=32

0205848") 180 Y=1

140 CALL CHAR(132,"0400050E1 190 C0L=C0L-Y

4050A04") 200 CALL HCHAR(15,COL,130)

124

210 FOR DELAY=1 TO X

220 NEXT DELAY

230 CALL CLEAR

240 CALL HCHAR(15,C0L,131)

250 FOR DELAY=1 TO X

260 NEXT DELAY

270 COL=COL-Y

280 CALL CLEAR.

290 CALL HCHAR(15,COL,132)

300 FOR DELAY=1 TO X

310 NEXT DELAY

320 CALL CLEAR

330 CALL HCHAR(15,C0L,133)

340 FOR DELAY=1 TO X

350 NEXT DELAY

360 CALL CLEAR

370 IF C0L<=2 THEN 160 ELSE

190

125

16 Interacting with
Your Computer:
Keyboard and Joystick

Two of the most commonly used devices for entering information into
a program are the keyboard and joysticks. The keyboard, strictly speak
ing, is not actually part of your computer but a built-in peripheral device
used to communicate with it. We are all aware that the keyboard can
be used to create programs to run on the computer. It is also true that
by using the CALL KEY command in TI BASIC, the keyboard can be
used to place information into a program while it is running. In this
chapter we will investigate the use of the CALL KEY command for
creating keyboard program interaction and the CALL JOYST command
which controls the use of joysticks.

CALL KEYBOARD

The CALL KEY statement works something like the INPUT state
ment: both allow you to enter data into a program while it is running.
But unlike INPUT, CALL KEY does not disturb the screen display, a
real advantage for graphics programs.

The CALL KEY statement has three terms: a key-unit, a return
variable, and a status variable. The correct form for a CALL KEY state
ment is:

200 CALL KEY(3,X,Y)

126

where "3" is the key-unit, "X" the return variable, and "Y" the status
variable.

Key-units

Key-units, from 0 to 5, define specific keyboard scanning modes that
tell the computer which values are placed in the return variable when
keys are pressed. Depending on which key-unit you specify, the com
puter refers to a different keyboard map to determine these values. Pages
IH-3,4 of your User's Reference Guide showsdiagrams of the keyboard
maps corresponding to each key-unit.

Key-unit 0:

Key-units 1 and 2:

Key-unit 3:

Key-unit 4:

Key-unit 5:

Return Variable

keeps the keyboard map called for in a previous CALL
KEY statement.

correspond to the left and right halves of the keyboard
and are used when you need two sources of CALL
KEY information, as in a two-player game. When two
CALL KEY statements with these key-units are used,
the keyboard is split into two independent input
devices. These key-units may also be used to establish
separate sources of control for two joysticks,

the standard 99/4A keyboard mode. In this mode
values for upper- and lower-case letters are returns as
upper-case letters. Values from 1 to 15 are returned
for functions like INSert, DELete, etc.

maps the keyboard for use with the Pascal language,

the TI BASIC key-unit. The computer generates
separate values for both upper- and lower-case letters
as well as for 15 function (FCTN) keys and 32 control
(CTRL) keys.

CALL KEY sends the computer off to its keyboard maps to find the
character codes corresponding to the ASCII (American Standard Code
for Information Interchange) character code for whatever key you press.
The computer then returns that character code as the value of this next
CALL KEY term, the return variable. For example, the character code
for the "1" key is 49.

Refer to the list of character codes in the Appendix of your User's
Reference Guide as you try the following exercise:

127

100 CALL KEY(5,X,Y)

110 PRINT X

120 GOTO 100

As the program runs, you'll see a string of - Is scrolling up the screen:
-1 is the value assigned to the return variable X if no key has been
pressed. Now try pressing some keys and see what happens. The numbers
PRINTed by the computer should correspond to the character codes
of the keys you press.

If you change the key-unit term to 3 you'll find that the codes for
lower-case letters are the same as those for upper-case letters. Values
returned by FCTN and CTRL keys are outside of the normal range of
values returned by your keyboard's symbols.

Status Variable

This term of the CALL KEY statement variable tells the computer
what the status of the keyboard action is. There are three possible values
for the status variable:

status =0 No key has been pressed.

status = 1 A new key has been pressed.

status = - 1 The same key has been pressed.

Change Line 110 in the above program to PRINT Y. The computer
prints a series of zeros until you touch a key. If you touch a key briefly,
you get a "1" and then more zeros. If you hold a key down, you get
a "1" and then some "- l's" until you let up on the key.

The CALL KEY statement gives you a way to stop program action
until you're ready to proceed. Programs with several pages of initial in
structions often use CALL KEY to hold text on the screen until a PRESS

ANY KEY TO CONTINUE direction is performed. Setting this up
simply requires telling the computer to GOTO the CALL KEY state
ment IF the status variable equals 0 (no key pressed).

The next program demonstrates how the return and status variables
interact by printing messages based on the values of these variables when
different keys are pressed. When you run the program, the message
PRESS ANY KEY TO CONTINUE appears. As soon as you press a
key, the character you have pressed appears in a sentence giving its
character code. If you hold down a particular key for more than a
moment, another message appears and repeats itself for as long as you
hold the key down.

128

100 CALL CLEAR R ";CHR$(R);" IS";R

110 PRINT " PRESS ANY KEY TO 160 IF S=-1 THEN 170 ELSE 12

CONTINUE"::

120 CALL KEY(5,R,S)

130 IF S=0 THEN 120

1Zf0 |F S=1 THEN 150 ELSE 160

150 PRINT "THE ASCII CODE FO

0

170 PRINT " ";CHR$(R);"'S C

ODE IS STILL";R;"!!"

180 GOTO 120

Experiment with the ALPHA LOCK key up (off) and press keys all
over the keyboard to see what happens. (Watch out for FCTN:CLEAR,
which will interrupt the program, and FCTN:QUIT, which will obliterate
everything and send you back to the TI start-up screen.) The key-unit
here is 5, so upper- and lower-case letters have separate codes. If the
ALPHA LOCK key is down, however, you'll only see upper case,
regardless of the position of the SHIFT key. Key-unit 5 also returns values
for 15 different FCTN combinations and 32 CTRL combinations. Those

strange characters that appear when you use the CTRL keys come from
within the computer's memory, but are not necessarily part of the pro
gram. You can define characters which are in the range of ASCII code
values returned by the CTRL and FCTN keys, however, and even enter
these characters directly into PRINT and DATA statements in your pro
grams by using these keys!

This program's logic goes like this:

Lines 100-130 set the initial screen and keep it in place until you do
something. Line 130 tells the computer to keep returning to
the CALL KEY in 120 as long as the status variable S equals
zero, or NO KEY PRESSED.

Lines 140-150 Line 140 directs the computer to go to Line 150 if the status
variable equals 1, or NEW KEY PRESSED; Line 150 then
prints its message.

Lines 160-180 IF the status variable now equals -1 or SAME KEY
PRESSED, the program proceeds to Line 170 and prints its
message. Line 180 loops back to the CALL KEY statement
in Line 120.

Note: The CHR$ in Lines 150 and 170 is a string function that allows
the program to print the character of each key pressed while the pro
gram is running through the print statements on these two lines. CHR$

129

produces the character whose ASCII code is R, the same as the return
variable R. We'll cover string functions in Chapter 18, "String Functions."

CALL KEY can accompany other statements in TI BASIC. The next
program is very similar to the one demonstrating the ON-GOTO state
ment in Chapter 9. But here we'll combine the ON-GOTO statement
with CALL KEY instead of INPUT.

First we have to convert the character code values of CALL KEY's

return variable into values that will allow the ON-GOTO statement to

choose among several line numbers. As you may remember, a value of
2 for X in ON X GOTO 160, 180, 200, 220, etc., transfers the program
activity to Line 180 because 180 is the second line number listed in the
ON-GOTO statement.

Lines 130 and 140 of our new program perform and control this tran
sition from the CALL KEY statement to the ON-GOTO statement. Line

130 limits the acceptable values in the CALL KEY return variable to
49, 50, 51, and 52—the character codes for the numbers 1, 2, 3, and
4, respectively. Line 140 then subtracts the number 48 from these code
values, actually converting them to 1, 2. 3, and 4. The ON-GOTO state
ment in Line 150 then picks one of its four destination line numbers,
depending on which key was pushed.

100 CALL CLEAR 160 PRINT "A SINGLE!"

110 PRINT "BATTER'S UP! HOW 170 GOTO 120

MANY BASES WILL YOU GET?(1 T 180 PRINT "A DOUBLE!"

0 Jf)" 190 GOTO 120

120 CALL KEY(3,X,Y) 200 PRINT "A TRIPLE!"

130 IF (X<*f9)+(X>52)THEN 120 210 GOTO 120

1^0 x=X-*f8 220 PRINT "HOME RUN!"

150 ON X GOTO 160,180,200,22 230 GOTO 120

0

Mazemaker

Now let's see how the information CALL KEY puts into a program
can control program flow and create interaction between you and the
program.

130

Starting at the center of a black screen, a white block appears. By
pushing the keys E, X, F, and S (marked with arrows), you may move
this block up, down, right, and left. If you go off the screen, the block
reappears on the other side at the same row or column location. By press
ing FCTN and one of those letters (as if you were using the editor), you
can erase blocks from the screen.

To get these effects, we need two characters—one to draw blocks and
another to erase them. Pressing FCTN first gives each of the four let
ters a second code. The eight codes can then be interpreted in CALL
KEY's return variable as alternative actions, drawing and erasing.

100 CALL CLEAR

110 CALL CHAR(131/'00FEFEFEF

EFEFEFE")

120 CALL CHAR(132,"000000000

0000000")

130 X=12

140 Y=16

150 CALL C0L0R(13,16,2)

160 CALL SCREEN(2)

170 CALL V CHAR(X,Y,131)

180 CALL KEY(3,F,G)

190 IF 6=0 THEN 180

200 IF F=69 THEN 310

210 IF F=11 THEN 310

220 IF F=88 THEN 400

230 IF F=10 THEN 400

240 IF F=83 THEN 490

250 IF F=8 THEN 490

260 IF F=68 THEN 580

270 IF F=9 THEN 580

280 IF F=32 THEN 100

290 GOTO 180

300 REM ***M0VING UP!***

310 X=X-1

320 IF X<1 THEN 330 ELSE 340

330 X=24

340 IF F=11 THEN 370

350 CALL VCHAR(X,Y,131)

360 GOTO 180

370 CALL VCHAR(X,Y,132)

380 GOTO 180

390 REM ***M0VING DOWN!***

400 X=X+1

410 IF X>24 THEN 420 ELSE 43

0

420 X=1

430 IF F=10 THEN 460

440 CALL VCHAR(X,Y,131)

131

450 GOTO 180

460 CALL VCHAR(X,Y,132)

470 QOTO 180

480 REM ***MOVING LEFT!***

490 Y=Y-1

500 IF Y<1 THEN 510 ELSE 520

510 Y=32

520 IF F=8 THEN 550

530 CALL VCHAR(X,Y,131)

540 GOTO 180

550 CALL VCHAR(X,Y,132)

560 GOTO 180

570 REM ***MOVING RIGHT!***

580 Y=Y+1

590 IF Y>32 THEN 600 ELSE 61

0

600 Y=1

610 IF F=9 THEN 640

620 CALL VCHAR(X,Y,131)

630 GOTO 180

640 CALL VCHAR(X,Y,132)

650 GOTO 180

Lines 100-170 set up the screen and program information before you touch
a key. The draw and erase characters are defined; the screen
is made black, the character colors are set, the square is
located and displayed in the center of the screen.

Lines 180-290 contain the CALL KEY statement to which the program
keeps returning. Lines 190 to 280 "decide" what to do depend
ing on what happens at the keyboard. Line 190 tells the com
puter to return to the CALL KEY in Line 180 if no key is
pressed. Lines 200 to 280 give instructions for the eight dif
ferent key codes corresponding to the four draw keys and
the four erase keys. Notice that each draw key code is paired
with an erase key code that sends the computer to the same
line number. "Draw" return variable values are 69, 88, 83,
and 68. When you press FCTN first (to erase), the codes
returned are 11, 10, 8, and 9.

Lines 300-380 move the draw and erase characters toward the top of the
screen. Line 310 determines the direction by making each
new row number one less than the previous one. Lines 320
and 330 prevent bad values in the VCHAR statement (there
is no row 0!) by sending the character back to the bottom
of the screen once it has gone off the top. Line 340 sends
the computer to the erase routine on Line 370 IF FCTN: I
has been pushed. Notice that unless this condition is fulfilled,

132

the program skips the erase routine by returning to the CALL
KEY in Line 360. Only the draw or the erase routine can
occur.

Lines 390-470, 480-560, 570-650 do exactly the same thing for the down
ward, left, and right motions that Lines 300-380 do for the
upward motion. At the end of each routine, the computer
returns to the CALL KEY statement for further instructions.

CALL JOYSTICK

Like CALL KEY, the CALL JOYST statement lets people interact
with programs. CALL KEY makes sense when you want to "talk" to
the computer in words of numbers; CALL JOYST, on the other hand,
is ideal for moving images around on the screen and playing games.

The CALL JOYST statement uses key-units 1 and 2 to split the
keyboard in two for two different sets of input —one for each joystick
in a two-person game, for example.

Joysticks have two sources of information: the stick itself and the "fire"
button. The fire button is actually a key requiring a CALL KEY state
ment with either key-unit 1 or 2, depending on which key-unit accom
panies CALL JOYST. The character code for the return variable of this
CALL KEY statement—whether key-unit 1 or 2, is 18.

The other source of input is peculiar to the joystick itself, which is
CALLed in a CALL JOYST statement. Fully punctuated, CALL JOYST
might look like this in a program:

200 CALL J0YST(1,H,V)

where the 1 is the key-unit, H is the horizontal movement value and
the V is the vertical movement value. There are nine possible combina
tions of horizontal and vertical values, all derived from combinations
of the integers 4, 0, and -4. This arrangement, including diagonal
movements and the at-rest position, appears in the following diagram.

(0,4)

(-4,4) ^-—h\ (4,4)

(-4,0)4-~H- (0,0) ~H^4-(4,0)

133

You must manipulate these sets of values in programs to get results from
the CALL JOYST statement.

To see how joystick input works, try this short program. NOTE:
joysticks work imperfectly when the ALPHA LOCK key is down; be
sure to leave it up when running joystick programs!

100 CALL KEY <1,R,S)

110 PRINT ,R;S

120 CALL JOYST <1,H,V)

130 PRINT H;V

140 60T0 100

Four columns of figures will appear on the screen. The two columns
on the left half of the screen are the horizontal and vertical values

generated by moving the joystick. The two columns on the right are the
return and status variables of the CALL KEY statement. Experiment
with the joystick circle and the fire button and see what values you get.

Joystick Mazemaker

This program is analogous to the CALL KEY Mazemaker but is built
around the CALL JOYST statement. You can see that this version is

shorter and gives you more directions to move in, including four
diagonals. Note that of the character blinks on and off when you push
fire button. To start a new maze, press the letter S.

100 CALL CLEAR 180 B=B-VA

110 CALL CHAR(36,"183C7EFFFF 190 IF A<1 THEN 200 ELSE 210

7E3C18") 200 A=32

120 CALL SCREEN(2) 210 IF B<1 THEN 220 ELSE 230

130 CALL COLOR(1,16,2) 220 B=24

1^0 A=16 230 IF A>32 THEN 240 ELSE 25

150 B=12 0

160 CALL J0YST(1,H,V) 240 A=1

170 A=A+H/4 250 IF B>24 THEN 260 ELSE 27

0

134

260 B=1

270 CALL KEY(1,R,S)

280 IF R=2 THEN 100

290 IF R=18 THEN 300 ELSE 34

0

300 CALL CHAR(40,"FFFFFFFFFF

FFFFFF")

310 CALL C0L0R(2,2,2)

320 CALL HCHAR(B,A,40)

330 GOTO 160

340 CALL HCHAR(B,A,36)

350 GOTO 160

Lines 100-150 define the shape and color of character 36, CALL the
SCREEN black, and placethe character in the center of the
screen (row 16, column 12).

Lines 160-180 The program revolves around the CALL JOYST statement
in Line 160. These lines define the movement of the
character-one space in any direction at a time-by dividing
the normal joystick input values of 4 and -4 by 4 to get
1 or -1.

Lines 190-260 prevent badvalues inthe CALL HCHAR statements inLines
320 and 340. (There can be no rows higher than the 24th
or lower than the first, or columns higher than the 32nd or
lower than the first.) These statements make the character
to "wrap around," reappearing on the opposite side of the
screen.

Lines 270-350 relate to the CALL KEY statement on Line 270. Line 280
returns program action to the beginning to clear the screen
if an S hasbeen pressed. If the fire buttonis being pressed,
Line 290 sends the action to 300-310 to produce a character
which erases the white character on the screen by covering
it with a black one. If the joystick fire button is not being
pressed (and R therefore does not equal 18), theELSE 340
in Line 290 sends the program on to draw another white
character. Notice that only the erase OR the drawing
character may be used, because of the combination of the
IF-THEN-ELSE statement in Line 290 and the GOTO in
Line 330, which separates the two actions.

135

17 Arrays

T T
<

I

z
3

H
5

OPTION &AS£ 1

HZ 28

*<o Hi ^
]2-t> W f*iHO so JgL
3o 2oJ$$fli

MRf\Y!

In Chapter 10 we saw how READ/DATA statements control the flow
of variable information within a program. Although these statements
are often useful, they have certain drawbacks.

For one thing, READ/DATA statements allow only limited DATA
maniuplation. We can either RESTORE the entire DATA list or
RESTORE part of the list by specifyinga particular DATA line number.
But what if we want to re-use a single item of DATA without the rest
of the items on the same line? Another drawback is that the computer
always READs DATA sequentially. There's no way to jump around the
DATA list and select individual pieces of information because the com
puter has no way to distinguish one piece of DATAfrom another. Finally,
the DATA must be arranged so that the program runs successfully; we

136

end up with long and cumbersome DATA lists because we are limited
in the ways wecan restructure the DATA while the program is running.

Fortunately, wecan getaroundthese problems using something called
an array.

Essentially, an array is nothing more than a list. What makes it dif
ferent from a list in a DATA statment, however, is that in creating an
array, we set aside a portionof the computer's memory to storethe list.
Once an array is stored in memory, we can access it as many times as
we like without having to RESTORE the information.

Arrays differ from lists, however, in that lists have only one dimen
sion, a single column of numbers. Arrays mayhave several dimensions.
For example; picture five rows of six numbers each: what you'd have
is a two-dimensional array. Each number's position in your array can
be pinpointed by its row and column number, something like locating
Paris by its latitude and longitude.

SUBSCRIPTED VARIABLES AND SIMPLE ARRAYS

This simple program uses an array to change the screen color four
times. There are easier ways of doing this, to be sure, but the program
clearly demonstrates certain properties of arrays.

100 SC(0)=i> 160 NEXT DELAY

110 SC(1)=7 170 1=1+1

120 SC(2)=13 180 IF I=4 THEN 200

130 SC(3)=16 190 GOTO Hf0

H0 CALL SCREEN(SC(I)) 200 END

150 FOR DELAY=1 TO 200

We create our array in Lines 100-130. It consists of four parts, or
elements, calledsubscripted variables. They are SC(0), SC(1), SC(2), and
SC(3). Part of the name-SC, for screen color-remains the same; the
other part—the subscript—varies. Thus, we have an array for SC, or
screen color, with individual elements, which are the colors.

When the computer encounters a subscriptedvariable such as SC(0),
it recognizes it as an array and immediately sets aside, or, dimensions
a portion of memory that can holdup to 11 elements. So even though
we only used four elements in our array, enough memory was

137

automatically reserved to hold SC(4)-SC(10). If you wish to create an
array with more than 11 elements, you need another array-devising pro
cedure that we'll describe shortly. This procedure requires the DIM
statement.

When creating an array with subscripted variables, the first character
in the name must be a letter. A second (optional) character may be a
number or a letter. Thus, SC(0), S5(0), and S(0)are all possible choices;
3S(0), 33(0), and 3(0) are syntactically illegal.

Lines 100-130 also assign the information to be held in the array, much
like assigning values to variables. Here we use a direct method of assign
ment by simply stating SC(0) = 5, SC(1) = 7 etc. The computer places
that information into memory, storing 5 as the first element on the SC
list, 7 as the second, and so on. Because zero is a perfectly good quan
tity to the computer, the first element of an array receives the number
0, while the second element receives the number 1, and so on.

Line 140 tells the computer to utilize this information each time it
passes through the loop between Lines 140 and 190. The loop consists
of the CALL SCREEN (SC(I)) statement, a FOR-NEXT loopthat keeps
the screen color on for a moment, a counter to keeptrack of the elements
in the array; and an IF-THEN statement to signal the loops' end. Finally,
the GOTO 140 statement on Line 190 creates the loop.

The first time through the loop, I will be 0, so the computer will in
terpret SC(I) as SC(0) and will respond by retrieving the pieceof infor
mation (5) that has been stored under the name SC(0). The second time
through the loop, I will be 1, so SC(1) will yield its value (7) and so
on. When I = 4, the IF-THEN statement will become true, and the
computer will leave the loop and END the program.

To see this more clearly, add the following line to your program:

145 PRINT l;SC(l)

When the program RUNs, the screen color changes; and as it does,
the subscript and value of each element in the array is PRINTed.

To verify that the array is indeed stored in memory or to check that
a particular element in the array is correct, try this little trick. Without
using a program line, simply type in: PRINT SC(2)+SC(1)

You should receive the answer 20 because SC(2) = 13 and SC(1) = 7.
You can get the same display with FOR-NEXT loops instead of

counters:

138

100 SC(0)=5 150 CALL SCREEN(SC(I))

110 SC(1)=7 160 F0R DELAY=1 TO 200

120 SC(2)=13 170 NEXT DELAY

130 SC(3)=16 180 NEXT I

140 FOR l=0 TO 3

USING READ/DATA TO LOAD THE ARRAY

Besides direct assignment, we can also READ a DATA list into an
array. The diffference between the DATA READ into an array and a
regular DATA listis that the DATA isnow stored in memory, and each
element of the list has been given a name. Let's write our program for
changing screen color once again, only this time we'll loadthe array using
the READ/DATA statements.

100 FOR l=0 TO 3 150 FOR DELAY=1 TO 200

110 READ SC(I) 160 NEXT DELAY

120 NEXT I 170 NEXT I

130 FOR 1=0 TO 3 180 DATA 5,7,13,16

140 CALL SCREEN(SC(I))

In this program, the first I loop loads the array; the second CALLs
the screen colors. The nested DELAY loop keeps the color on the screen.

After the program is run, without using a line number, type:

PRINT SC(0);SC(1);SC(2);SC(3)

The computer will print out the values stored in the array under those
names.

OPTION BASE 1 AND THE DIM STATEMENTS

When a subscripted variable is introduced into a program, enough
memory isset aside to hold 11 elements; inoursample programs, we've
called them SC(0)-SC(10). If however, you wish to store more than 11
elements in an array, you must use the DIMension statement.

"~ 139

The DIM statement instructs the computer to set aside, or"DIMension,"
enough memory to hold a list. Thus, DIM SC(25) would DIMension
an array to hold 26 elements: SC(0)-SC(25). If we do not DIMension
enough memory to hold ourlist, we'll get anerror when the program runs.

The DIM statement must appear in a program before any mention
of the array itself; otherwise the memory space will not be set aside in
time. For this reason, it's best to DIMension any arrays at the begin
ning of a program.

OPTION BASE(l) is a TI BASIC statement that allows you to set
the lower limit of the array subscript at 1instead of the usual 0. If you
find the concept of using a zero as the first element in the array and
a one as the second element too much of a double-think, then use the
OPTION BASE 1statement. This statement must appear before theDIM
statement and will affect all arrays in the program. No array can con
tain a 0 subscript if you use OPTION BASE 1.

The following program demonstrates all the array concepts covered
thus far. When you RUN the program for the first time, it will return
the following screen display.

INPUT NEW SUBSCRIPT (1"13)

140

By entering a number from 1through 13, you can change the subscript
and get a new graphics display.

100 CALL CLEAR

110 OPTION BASE 1

120 1=1

130 DIM F$(20)

Tf0 READ F$(I)

150 IF F$(I)="A" THEN 180

160 1=1+1

170 60T0 H0

180 1=1

190 IF F$(I)="A" THEN 240

200 PRINT F$(l)

210 1=1+1

220 GOTO 190

230 DATA *,** *** **** *****

****** ******* ****** *****
/ / / t

**** *** ** * A
/ / / / /M

2*f0 PRINT "INPUT NEW SUBSCRI

PT (1-13)"

250 INPUT I

260 GOTO 190

Line 100 clears the screen.

Line 110 instructs the computer to use 1 as the first subscript.

Line 120 initializes the array counter to 1 to coincide with the OPTION
BASE 1.

Line 130 DIMensions an array that can hold up to 20 elements.

Line 140 begins the array loading procedure by READing the first element
in the DATA list and assigning it to the first element in the array.

Line 150 tests to see if the FLAG "A" is READ. IF it is, THEN the com
puter stops READing DATA and goes to Line 180.

Line 160 increments the array counter I by 1.

Line 170 creates the array-loading loop by sending the computer back to
Line 140 to READ the next element into the array.

Line 180 resets the array counter I to 1 for the PRINT portion of the
program.

Line 190 checks for the FlagA. IF the computerencounters the flag, THEN
it leaves the PRINT loop and goes to Line 240.

Line 200 PRINTs the current value of F$(I).

Line 210 increments the array counter I by 1.

Line 220 creates the PRINT loop, by transferringcontrol back to Line 190,
which will check for the flag before PRINTing at Line 200.

Line 230 contains the DATA to be READ into the array.

Line 240 contains a prompt asking for a new subscript.

141

Line 250 inputs the new subscript into the program, reintializing the array
counter I.

Line 260 returns to the PRINT loop.

Although we used only 14 pieces of DATA, or elements, we DIMen-
sioned our array to hold 20. Ifyou're not sure how many elements you
need for an array, you can set aside more memory than you expect to
use. Ifyou start running out ofmemory, you can re-DIM the array later.

By placing a flag inthe DATA, we can end the loading process without
having to specifiy how many elements are to be loaded. We can also
use this flag again in the PRINT portion of the program as a signal to
leave the PRINT loop.

Try INPUTting a few new subscripts. As theOPTION BASE 1makes
the number 1the first element of thearrayand the number 4 the fourth
element, keeping track of the array becomes an easy process.

You might also try toenter a value larger than 14. The computer will
then return a BAD SUBSCRIPT IN 190 error message. This is because
you will have tried to enter a value that has not been stored in the array.

TWO-DIMENSIONAL ARRAYS

We are now going to add the flexibility of two-dimensional arrays
to our repertoire of programming techniques. The following program
stores nine sets of related numbers in a two-dimensional array. Each
set has three variables, representing the duration and frequencies of two
notes in a CALL SOUND statement. The program plays a scale four
times. The first time, it plays the entire scale. On the second pass, it
begins at the third note of the scale. On the third pass, it begins at the
fifth note, and on the final pass, it again plays the whole scale. (You
don't have to understand music to understand how the array works in
this program.)

100 REM ***L0AD THE ARRAY*** 150 V(Z,1)=DR

*********************** ...p. y.j 9^-Ffll

110 OPTION BASE 1 170 V(Z,3)=FQ2

120 DIM V(10,3) 180 Z=Z+1

130 z=1 190 IF DR=-1 THEN 220

140 READ DR,FQ1,FQ2 200 GOTO 140

142

210 REM ***PLAY THE MUSIC***

220 Z=1

230 IF V(Z,1)=-1 THEN 300

240 CALL S0UND(V(Z,1),V(Z,2)

,0,V(Z,3),2)

250 Z=Z+1

260 GOTO 230

270 DATA 200,262,659,200,294

,698,200,330,784,200,349,880

280 DATA 200,392,988,200,440

,1047,200,494,1175,600,523,1

319,-1,-1,-1

290 REM ***DATA CONTROL***

300 OC+1

310 ON C GOTO 320,340,360,38

0

320 Z=3

330 GOTO 230

340 Z=5

350 GOTO 230

360 Z=1

370 GOTO 230

380 END

We've divided the program into three parts. The first part READs
the DATA for note duration and frequencies into a two-dimensional
array. Let's take a closer look at how this array has been loaded.

Line 110 instructs the computer to use OPTION BASE 1.
Line 120 DIMensionsenough memory to hold an array with three groups

of information, each group holding a maximum of 10elements.
Line 130 sets up the array counter Z, which keeps track of the elements

being loaded. Since we are using OPTION BASE 1, the counter
starts at 1.

Line 140 READs the first threepieces of DATA from the DATA bank and
assigns them the names DR (duration), FQ1 (frequency for Voice
1), and FQ2 (frequency for Voice 2).

Line 150 assigns the variable DRto the first group, or table, of the array
V(Z,1). The first time through theloop, the first piece of DATA
(200), is assigned to the array location V(l,l).

Line 160 assigns the variable FQ1 to thesecond table of the array V(Z,2).
The first timethroughthe loop, the second piece of DATA (262),
is assigned to the array location V(l,2).

143

Line 170 assigns the variable FQ2 to the third table of the array V(Z,3).
The first time through the loop, the third piece of DATA (659),
is assigned to the array location V(l,3).

Line 180 increments the array counter Z by 1.
Line 190 checks the value of the variable DR. IF it equals - 1, our flag,

THEN the computer stops READing DATA and moves to another
part of the program, Line 220.

Line 200 creates the array-loading loop, by sending the computerback to
the READ statement in Line 140.

In the statement DIM V(10,3) 3 represents the three columns of in
formation loaded off the DATA. To get a more graphic understanding
of this concept, type in the line below. When added to your program,
this line will actually allow you to watch as your array is being loaded.

175 PRINT Z;V(Z,1);V(Z,2);V(

Z,3)

Now, when you run your program, you will receive the following print
out.

1 200 262 659

2 200 294 698

3 200 330 784

4 200 349 880

5 200 392 988

6 200 440 1047

7 200 494 1175

8 600 523 1319

9 -1 -1 -1

The first number represents the array element counter Z. The second
represents theduration, while thethird andfourth represent the frequen
cies for Voices 1 and 2.

If you type the following line:

PRINT V(4,2)

the computer will return 349, because the piece of DATAlocated in the
array as the fourth element of the second table is 349.

144

One important note: if you were not using OPTION BASE 1, then
the statementDIM V(10,3) would DIMension an array that wouldhold
four groups of DATA with eleven elements. This is because the com
puter would use zero as the first value.

The second part of our program(Lines 220-250) plays the music, us
ing the information stored in the array V.

Line 220 sets the array element counter Z to 1 since, at this point, it has
been incremented to 10.

Line 230 checks the current value of V(Z,1), the duration. IF it equals - 1,
THEN the computer moves on to Line 300.

Line 240 CALLs the sound. The first time through the loop, Z = 1, so
the sound statement asks for duration, located in the array as
V(l,l). It also asks for frequency values, encoded as V(l,2) for
Voice 1, and V(l,3) for Voice 2.

Line 250 increments Z by 1.

Line 260 createsa loop for the playsection of the program by transferring
control back to Line 230.

The final section of the programis the mastermind behind manipula
tion of the DATA stored in the array. Whenever the computer encounters
the flag in the DATA during the play portion of the program, it will
transfer control down to the DATA control section (Lines 300-380). Let's
take a closer look at this section.

Line 300 initializes the counter C. This counter keeps track of how many
times the computerhas played throughthe informationstored in
the array. Thecomputer uses theflag to tell it when it hasreached
the end of the DATA.

Line 310 is an ON-GOTO statement linked up with the counter C. When
C = 1, control is transferred to Line 320. When C = 2, control
passes to 340, etc.

Line 320 reinitializes the arrayelement counterZ to 3, thus startingthe scale
at the third note.

Line 330 sends the computer backto the play portionof the program with
Z set at 3.

Line 340 sets Z to 5, thus starting the scale at the fifth note.
Line 350 sends the computer backto the playportionof the programwith

Z set at 5.

Line 360 sets Z to 1 for another scale starting at the first note.

Line 370 sends thecomputer back to theplay portion of the program with
Z set at 1.

Line 380 ENDs the program.

145

You can insert the following lines to see how the DATA CONTROL
section interacts with the PLAY section of the program.

235 PRINT Z; V(Z,1);V(Z,2);V

(Z,3)

305 PRINT "DATA CONTROL"

Now when you RUN the program, the computer PRINTs out the
values stored in the array and then the values being taken out of the
array. Then it will play the music, using those values. The line "DATA
CONTROL" printed on the screen means that the computer has just
entered the third part of the program. Pay particular attention to the
first columnof numbers, representing the array element counterZ. They
will clue you in to which pass of the loop the computer is making. The
music is slow because the computer must PRINT all that information
before each note.

Entire books can be and have been written about arrays; this chapter
is onlyan introduction. Wesuggest that youtake some timeto investigate
their other possibilities. You will find that the time spent learning about
them will greatly facilitate your ability to use complex DATA structures
in your programs.

We'll take a final look at arrays in Chapter 20 when we'll use them
to build a program that will turn your computer keyboard into a touch-
sensitive chord organ.

146

18 String Functions

TI BASIC has many built-in functions for handling string variables.
Strings, you'll remember, are groups of characters enclosed in quota
tion marks such as "Hello there!" or "A = B + C." The last character
in a string variable name is always thedollar sign; for example, we could
call "Hello there!" A$, or even HELLOS. Strings can be up to 255
characters long. You can link strings together with the ampersand (&).
If A$ = "MOTOR" and B$ = "CYCLE," then A$ & B$ =
MOTORCYCLE.

TI BASIC string functions work two ways: some functions evaluate
a string to produce a number, andothers evaluate a numeric expression
to produce a string. The most common error you'll get when using strings
and string functions is a STRING-NUMBER MISMATCH. This hap
pens if you try to use a string, string variable, or string function to create
a numeric result, or use numeric arguments, expressions, or variables
where a string is required. For example, string functions that themselves
end with a dollar sign, such as the STRing-number (STR$) function,
always produce strings and cannot be used as part of a numeric
expression.

C^A¥T—T^l_3 = -^£AT PCC Jo£S

ASCII VALUE-ASC (String or String Variable)

The ASCIIvalue string function generates the ASCII-based character
code for the first character of a string. ASC("S") is 83. ASC("SOAP")
is also 83. If B$ = "SOAP" then ASC(B$) = 83. Keep in mind that

147

strings such as "MY NAME IS ALICE," which are sometimes called
string constants, require quotation marks to be recognized bythe com
puter asstrings while string variable names with the "$" do not. (To review
the ASCII character codes for all the characters on the keyboard, turn
backto the appendix of the User's Reference Guide or see the TI reference
card.)

The following program uses ASC to tell you what the ASCII code
value is for any key you press. The actual ASC string function is lurk
ing at the end ofLine 120 behind the semicolon-ASC(A$) for the input
of A$ in Line 110.

100 CALL CLEAR

110 INPUT "ASC(X) FOR WHICH

KEY? ":A$

120 PRINT:"ASC(,,,,";A$;,,,,")=

";ASC(A$): :

130 GOTO 110

The empty space has an ASCII code just $s any other character does.
In order to see it in this program, however, you must bracket your empty
space with quotation marks. If you were simply to hit the space bar and
enter it as an input, the computer would have no way of telling if you
meant to enter anything at all. As a result, A$ in ASC(A$) would be
a string of zero length (null string), and the error message BAD ARGU
MENT IN 120 would result.

CHARACTER-CHR$ (Numeric Expression)

The CHR$ string function is the logical inverse of the ASC function.
CHR$ delivers the character corresponding to the value of the numeric
expression enclosed in parentheses behind it. This value can be any
number from 0 through 32767, but in practice, it willbe one of the ASCII
character codes between 32 and 159.

ASCIIcodes from 128 to 159 will return user-defined graphic characters
(see Chapter 16). If you have redefined oneof thenormal keyboard sym
bols by renaming the ASCII value associated with it in a CALL CHAR
statement, the CHR$ function willdisplay your redefined character. This
effect is demonstrated in the following program. Line 110redefines the
ASCII value of 46, normally theperiod, intoa solid black block. If you

148

enter the value 46 into the program, you will see a block instead of a
period. When you press FCTN:CLEAR, the block disappears and you
get the period once again.

100 CALL CLEAR

110 CALL CHAR<Jf6,"FFFFFFFFFFFFFFFF">

120 INPUT "CHR$(X) FOR WHICH

VALUE? (0 TO 32767):

" : A

130 PRINT:"CHR$(";A;")=,,;CH

R$(A);:

140 GOTO 120

The first two"CHR$"s are in quotation marks as part of the display
when the program runs. The real function CHR$, which produces the
character displayed after the equals sign, comes at the end ofLine 130.

Using CHR$ to display user-defined characters can come in very handy
for graphics programming. The following program uses CHR$ in two
PRINT statements toproduce a checkerboard pattern onthe screen. The
first PRINT statement, at Line 140, prints the character whose ASCII
value is 33 (defined in Line 110) and then an empty space. The empty
space is printed before, rather than after, the character displayed by
CHR$(33) in Line 170. This pair of alternating print statements is repeated
twelve times to fill the screen.

100 CALL CLEAR 150 NEXT X

110 CALL CHAR(33,"FEFEFEFEFE 160 FOR Y=1 TO 14

FEFEFE") 170 PRINT " ";CHR$(33);

120 FOR T=1 TO 12 180 NEXT Y

130 FOR X=1 TO 14 190 NEXT T

140 PRINT CHR$(33);" "; 200 GOTO 200

149

VALUE-VAL (String Expression)

If you have numbers in a string and you wish to use them in calcula
tions, you need the VALue string function: VAL(A$) delivers the numeric
value of A$. Be sure that the string whose VALue you asked for really
has a valid numeric equivalent; otherwise theprogram you are running
will stop, and you'll get a BAD ARGUMENT error message. For in
stance, VAL(B$) makes no sense if B$ is the word "BOOK."

You cannot perform numeric operations within the parentheses of a
VAL string function, even if your strings have numerical equivalents.
You may, however, combine the numerals of two or more strings by
using the ampersand. For example, VAL(A$&B$) will produce 3310
if A$ is 33 and B$ is 10. This combining, or concatenation, of strings
is not at all the same as adding numbers.

If the numberyou produce by chaining two strings together in a VAL
function has more than 10 digits, the computer displays it on the screen
in scientific notation—just as it would any other numeric value of that
length.

When using VAL, avoid strings with no characters (empty strings).
The string E$, where E$ = ""will stop a program containing VAL(E$).
At the other extreme, a string longer than 254 characters in a VAL func
tion will also stop a program.

The following program demonstrates some examples of the VALfunc
tion; it ends by using VAL on a stringwith no character. Line 180shows
that you can perform numeric operations involving two VALfunctions.
In this case VAL(A$), which is 12, is multiplied by VAL(B$), which
is 3, to give 36.

100 A$="12M U0 PRINT VAL(A$&B$)

110 B$=n3" 180 PRINT VAL(A$)*VAL(B$)

120 C$=A$&B$ 190 PRINT VAL(A$&B$&C$)

130 D$="-.00if5n 200 PRINT VAL(D$)

m E$="222222222222" 210 PRINT VAL(E$)

150 F$="" 220 PRINT VAL(F$)

160 PRINT VAL(A$)

150

STRING NUMBER-STR$ (Numeric Expression)

The STRingnumber function is the logical inverse of the VALue func
tion: it changes the value of a numeric expression into a string. STR$
is useful when you need to use numbers in a program as both numbers
and strings. Changingnumbers into strings letsyou chain them together
with the ampersand. The next program demonstrates this effecton Line
150.

100 CALL CLEAR 130 A$="Y0U WERE BORN IN "

110 INPUT "HOW OLD ARE YOU?" 1^0 B$=STR$(Y-A)

:A 150 PRINT A$&B$

120 INPUT "WHAT YEAR IS THIS 160 60T0 110

?": Y

As Line 140 demonstrates, numeric operations can take place within
the parentheses of a STR$ function. The resulting value is then con
verted into a string. If the number resulting has more than 10 digits,
the resulting string will take the form of a number with scientific
notation-despite the fact that it is now a string. To produce a string
number which is more than 10 digits, without scientific notation, you
must link two strings together with an ampersand. The following ex
amples illustrate these effects.

PRINT STR$(22222222222+22222 PRINT STR$(22222222222*(STR$

222222) (33333333333)

k. kkmE+10 2.22222E+103.33333E+10

PRINT STR$(22222222)&STR$(33

333333)

In the third example above we again see scientific notation because
each time STR$ is performed, the number is longer than ten digits.

Once the STR$ function has been performed on a number, that
number can only bemanipulated as a string. Toperform numerical opera
tions once more, you must convert the string number created by the STR$
function into a number (again), by using the VALue string function (*).

f51

LENGTH -LEN (String Expression)

The LEN string function tells you how many characters there are in
a string or string expression. You may place either a string name within
the parentheses or a string itself. LEN(X$) gives the number of characters
ina string named X$. You may also combine two or more strings with
ampersands within the parentheses; and the value returned will be the
total numberof characters of all the combined strings. Youmustbracket
a string, in quotation marks, within the parentheses. LEN
("DOGFOOD"), for example, is 7.

If you use a string with no characters, (C$ = ""), with LEN; you'll
geta LENgth of zero. Butyou cannot perform numeric operations within
the parentheses. If you wish to use numeric operators you must place
them between, rather than within, LEN functions.

100 A$="TI BASIC IS FUN" 150 PRINT LEN(A$&B$)

110 B$="T0 USE" 160 PRINT LEN(A$)*LEN(B$)

120 C$="" 170 PRINT LEN(C$)

130 PRINT LEN(A$) 180 PRINT LEN("EDUCATION")

140 PRINT LEN(B$)

POSITION -POS (A$, B$, Numeric Expression)
The POSition function finds the starting position of one string within

another string. Thenumeric expression included within the parentheses
at the end tells the computer to start the search for the position of the
second string at a certain location within the first string. If, for instance,
the numeric expression yields a value of 4, the search for the second
string will begin at the fourth character of the first string. When the
value derived from the numeric expression is applied in the POS func
tion, it will be rounded to the nearest whole number, if necessary.

If the value of the numeric expression is rounded down to a zero,
a BAD VALUE error message results, and the program stops. If the
valueof the numeric expression is largerthan the number of characters
in thefirst string, a value of zero isreturned for theposition of thesecond
string: the computer returns a zero when itcannot find the second string
within the first string.

POS(A$,B$,14) tells the computer to look for the number of the
character in the A$ string at which the B$ string begins, and to begin

152

this search procedure at the 14th character in A$. In order for the posi
tion of the second string to be found, it must occur after the point at
which the computer has been instructed to begin its search procedure
in the first string. In the following program

100 D$="45555"

110 E$="V

120 PRINT P0S(D$,E$,1)

130 PRINT P0S(D$,E$,2)

the computer returns the number 1 in Line 120 and the number 0 in
Line 130. This is because E$, or "4," cannot be found if the search pro
cess begins at the second character of D$.

Thenext program uses a FOR-NEXT loop to search for the position
of B$ within A$ at every character of A$. FOR X= 1 TO 20 in Line
120 sets the starting point of the search for B$ at the first, second, third
character of A$ until the 20th character has been reached. A$ actually
has only 19 characters, but a 20th value for thesearch procedure shows
that it ispossible (ifuseless) to search beyond thelength of the first string.

When you RUN the program, you'll see two columns of numbers.
The numbers within parentheses represent the starting point of the search
within A$. The number paired with each of these starting locations is
the position of the first character of B$ ("CA") within A$. Notice that
this does not mean that just the "C" of B$ is being sought. The com
puter will not find the position of B$ unless all of B$ occurs at some
point within A$. In this program, for instance, the "CA" of B$ is not
found after the first character of A$, where it appears in the word CAN,
until it appears again in the word CATS which begins at the tenth
character of A$. The computer does not recognize the "CO" in the world
COLD which falls between these two points, as CO is not CA.

100 A$="CAN COLD CATS CATCH"

110 B$="CA"

120 FOR X=1 TO 20

130 PRINT "(";X;")";P0S(A$,B

$,X),

140 NEXT X

153

STRING SEGMENT-SEG$ (String Expression,
Numeric Expression #1, Numeric Expression #2)

If you wish to define a segment of a string to use later in a program,
use the string SEGment function. SEG$ returns a substring of your string,
derived from the string expression placed within the parentheses. This
string expression is followed by two numeric expressions. The value of
the first one determines which character in the first string will be the
first character of the new substring. If this value were 12, for instance,
then the 12th character of the original string would become the first
character of the new string segment. The number of characters in the
new string segment is determined by the value of the second numeric
expression. In the following example

100 A$="STRING SEGMENT FUNCT

ION"

110 PRINT SEG$ (A$,8,7)

the word SEGMENT is produced because the first character of the new
substring begins at the eighth character of A$ (or "S"). The number 7
defines the length of the new string segment as seven characters, thus
comprising the seven letters in the word SEGMENT.

If the number specifying the start of the string segment is bigger than
the total number of characters in the original string, SEG$ comes up
with a string without any characters (null string). You'll also get a null
string if the number specifying the length of the new string segment is
zero. If this number is larger than the number of characters remaining
in the orignial string after the start of the new segment, you get those
remaining characters. If Line 110 in the last example read

110 PRINT SE6$ (A$,8,50)

you'd get SEGMENT FUNCTION. Although you have asked fora string
segment with 50 characters, the computerhas nothing left to read after
the "N" of function.

Two kinds of values in the numeric expression of the SEG$ function
will stopa program. If you give a new segment a starting point less than
or equal to zero, you'll get a BAD VALUE error message. If you specify
segment length as less than zero, theprogram also stops. Thecomputer
rounds off decimal fractions in either of the numeric expressions to the
nearest whole number. A value of - .49 in string segment length, for
instance, would be rounded off to zero and give a null string instead
of stopping the program.

154

The next program is really two little programs in one. Lines 110 to
150 perform various SEG$ functions on the A$ string defined in Line
100. After this, a CALL KEY statement on Line 160 lets you look at
the results of the first half of the program before setting off the FOR-
NEXT loop in Lines 180 to 200 by pressing any key.

The first series of SEG$ functions are straightforward manipulations
of the A$ string, such as we've already seen. The FOR-NEXT loop,
however, produces a rather impressive, but perhaps confusing, effect.
Thirty-four new segments of the A$ string are printed, for the values
of X from 1 to 34, where X is used to determine both the starting loca
tion of each segment as well as its length. The resulting pattern printed
on the left half of the screen, is a large wedge pointing to the right. When
X = 1, the first character in A$ is printed in a segment one character
in length. When X = 2, the second and third characters of A$ are printed,
because this segment starts at the second character and is two characters
long. The FOR-NEXT loop continues in this fashion until the 34th
character of A$ becomes the first character of a segment.

The segments begin to get shorter when X = 18 because A$ has run
out of new characters to add. Hence, even though longer segments are
specified in the SEG$ functions from X = 18 onward, the lines grow
shorter as each segment begins at a later point in the A$ string.

If you redefine the characters within strings with CALL CHAR
statements and then call up your redefined characters in SEG$ function
loops like this one, you can create some really interesting graphics.

Since new segments called in the FOR-NEXT loop begin at successive
locations in the collection of characters which make up A$, you will
be able to read A$ in the leftmost vertical column on the screen.

100 A$="l NEVER MET A STRING 150 PRINT SEG$(A$,31,4)

I DIDN'T LIKE" 160 CALL KEY(3,R,S)

110 PRINT SEG$(A$,1,11) 170 IF S=0 THEN 160

120 PRINT SEG$(A$,13,1) 180 FOR X=1 TO 3k

130 PRINT SEG$(A$,15,6) 190 PRINT SEG$(A$,X,X);" ";X

1<f0 PRINT SEG$(A$,22,8) 200 NEXT X

155

19 More Graphics

In Chapter 15 we introduced the various graphics related statements
in TI BASIC as well as a few elementary concepts in graphics program
ming. Here wewill look at some techniques which panincrease the power
and sophistication of your program's graphics.

FOR-NEXT LOOPING

No matter what the program, but especially for complex graphics,
it is best to make your instructions as compact as possible. You could
tell the computer to do one thing per program line, but you'd end up
with long programs and tedious typing and debugging sessions; youmight
even run out of memory. FOR-NEXT loops can help cut down the
number of lines you need.

Let's say, for example, that you're writing a program to draw 24 lines
across the screen, so it looks like a sheetof notebook paper. You could
enter:

100 CALL CLEAR 130 CALL HCHAR(X,1,36,32)

110 CALL CHAR(36,"000000FF00 140 NEXT X

000000") 150 GOTO 150

120 FOR X=l TO 2h

Here, the FOR-NEXT loop in Lines 120-140 performs the HCHAR
statement 24 times for each of the row values from 1 to 24. You could

do the same thing with a separate HCHAR statement for each row, but
the program would be 27 lines long, not six!

156

We can use any variable in a graphics statement in a FOR-NEXT loop.
If you name the variable in your FOR-NEXT statement (the X in Line
130, for example), you can also use it in a STEP clause. For instance,
FOR X = 1 TO 24 STEP 2, would draw the lines on every other row.
You can also manipulate the variables in your graphics statements with
a loop without naming them in the FOR-NEXT statement, thus letting
you have more than one variable at work within the loop:

100 CALL CLEAR 140 CALL HCHAR(X,Y,36,8)

110 CALL CHAR(36,000000FF00 150 Y=Y+1

000000") 160 NEXT X

120 Y=1 170 GOTO 170

130 FOR X=1 TO 2k

Here we are manipulating both the row and column locations of the
HCHAR statement with the X and Y variables, respectively. You must
create an initial value for the variable Y before the FOR-NEXT loop
is performed. In this case the value of Y is already established when
the loop begins. Each time through the loop, the value of Y is increased
by one on Line 150. Thus each new line appears one column farther
to the right on the screen.

Sometimes you may need an IF-THEN statement to prevent bad values
in your graphics statments. Adding the following lines

150 Y=Y+2

155 IF Y=33 THEN 157 ELSE 16

0

157 Y=10

increases the column value in the HCHAR statement by two each time
through the loop, giving Y = 1, 3, 5, 7, 9, 11, etc. The 17th timethrough
the loop, the column value is 33, which could cause a BAD VALUE
error message at Line 140because there is no column 33 on the screen.
Lines 155 and 157 reset the value of Y when it is too high.

CALLING COLOR

Because CALL COLOR only CALLs a foreground and a background
color for a set of eight characters, you must plan carefully for programs

157

where you want many colors to appear simultaneously.
In the next program, the screen fills from left to right with two sets

of 16 vertical strips. Each vertical strip is one of the 16 possible colors
generated by the computer. To get this effect, characters from each of
the 16 character sets must appear in the VCHAR statement.

The program is set up as two FOR-NEXT loops. The first loop CALL
for COLOR 16 times, once for each character set as well as for
foreground and background colors. The second creates a character CH
and displays it 32 times. The value of CH is initialized at Line 140, before
the second FOR-NEXT loop begins. Within the second FOR-NEXT loop,
however, CH (the character number) is changed at each pass by the add
ing eight to it in Line 180. This also has the effect of placing each
displayed character in the next higher character set—and thus in a dif
ferent color—already determined for that set in the initial CALL COLOR
loop. If the value of CH gets too high, Lines 190 and 200 reset it at
the original 33.

100 CALL CLEAR 170 CALL VCHAR(1,Y,CH,24)

110 FOR C0=1 TO 16 180 CH=CH+8

120 CALL COLOR(CO,CO,CO) 190 IF CH=161 THEN 200 ELSE

130 NEXT CO 210

140 CH=33 200 CH=33

150 FOR Y=1 TO 32 210 NEXT Y

160 CALL CHAR(CH,"FFFFFFFFFF 220 GOTO 220

FFFFFF")

You may not see all 32 columns because many televisions drop off
a column or two on either the far left or right hand side of the screen.
The light green column between the white and black columns in the center
of the screen is actually transparent, so the screen colors show through.

When you press FCTN:CLEAR youTI see a different character in each
column: as the value of CH changes in the FOR-NEXT loop, it takes
on the character code values normally belonging to those characters. The
solid block of four black columns are user-defined character codes bet

ween 128 and 159. Because no other character definitions exist within

this range, the character displayed while the program was running is still
present.

158

At this point, we can only see one color in each column for two
reasons. First, the character defined in Line 160 is a solid block without
any background. Second, the loop in Lines 110-130 have made the
foreground and background the same value. To get different foreground
and background colors, let's redefine the character CH in Line 160 and
add the following lines:

160 CALL CHAR (CH,"0F0F0F0FF0]]k CF=INT(16*RND)+1

F0F0F0") 116 CB=INT(16*RND)+1

112 RANDOMIZE 120 CALL COLOR(CO,CF,CB)

Now we have assigned a random value from 1to 16to the foreground
color, called CF, and given a similar value to the background CB. A
different random value is chosen for both CF and CB for each of the
sixteen character sets. Our redefined character CH is now made up of
four smaller blocks, two for foreground color and two for background
color.

Now let's add one final twist to this program. Try adding these two
lines:

135 IF D<0 THEN 110

215 D=-1

220 GOTO 110

After the computerRUNsthrough the entire programonce, the CALL
COLOR loop is performed again and again. This is because the com
puter automatically assigns a value of zero to any variable not other
wise defined in a program. The first time the program encounters Line
135, D therefore equals zero; the IF-THEN condition does not holdand
the program continues Once D = -1 in Line 215, however, the pro
gram returns to Line 110, restarting the CALL COLOR loop.

Using CALL COLOR canbedifficult if you wish to use many colors
anddisplay text simultaneously. Because you must use different character
sets to get many colors simultaneously, you will probably need to use
characters within the character sets populated by either the alphabet or
numbers. You could stop using the lower-case letters or (although this
takes considerable effort) you couldrelocate the characters you wish to
leave out of your color manipulations, treating them as redefined
characters in one or several character sets. But if you do you'll also have
to write in the appropriate CALL KEY logic to find your relocated
characters when youpress keys on the keyboard, and that canbe really

159

tedious.

A better solution is to write your program to display graphics and
text on the screen at different times. With CALL CLEAR and FOR-

NEXT loops to redefine the colors for a series of character sets you can
make reasonably quick transitions from graphics to text. (Unfortunately,
keeping discrete sections of the screen reserved for graphics and text is
difficult because PRINT and INPUT displace graphics content by moving
the entire screen up from the bottom.)

You can print messages at selected locations on the screen, provided
they're stored in the program as strings, without disturbing graphic con
tents elsewhere by using CALL HCHAR or CALL VCHAR in con
junction with string functions. This technique will be explained later in
this chapter.

STRINGS AND STRING FUNCTIONS

You can use strings and string functions to produce graphics if you
create strings whose characters you have redefinedas graphics characters.
The trick is to invent strings that are spatial representations of the graphics
you desireand then manipulate the strings. If you don't mind designing
a screen from the bottom up, you can easily use PRINT statements.
But if graphics are already on the screen, and you wish to add new text
or graphics without disturbing them, you'll have to display your new
material with an HCHAR or a VCHAR statement combined with various
string functions. You might want to review the sections in Chapter 18
on the character (CHR$) and the segment (SEG$) string functions before
going on.

Using PRINT

When you are constructing a graphics screen by PRINTing strings,
you can control the location of your graphics by putting spaces within
the PRINT statements. You can either include the spaces within quota
tion marks in the PRINT statements, or use PRINT TAB (X), where
X is the desired number of spaces from the left.

The following program demonstrates these effects. Notice that the A,
B, and C$ strings are concatenated with ampersands on Line 200.

100 A$="0" 130 CALL CHAR(*f8,"F0F0F0F00F

110 B$="1" 0F0F0F")

120 C$="2" 1*f0 CALL CHAR(^9,"CCCCCCCCCC

160

CCCCCC") 180 NEXT X

150 CALL CHAR(50,"0000FFFF00 190 PRINT ::::

00FFFF") 200 PRINT TAB(13);A$&B$&C$

160 FOR X=1 TO 28 210 PRINT ::::

170 PRINT A$;B$;" ";C$;" "; 220 60T0 160

Now let's try using the STRing number function (STR$) for graphics.
Remember that STR$ takes the numeric expression X and makes it into
a string in the expression STR$(X). Numbers can be easily manipulated
in programs with simplearithmeticoperators. The problem with numbers
as print display items, however, is that they leave leading and trailing
spaces that you can't get rid of. To take advantage of numbers without
the side effect of these spaces, we can use STR$ to change a number
into a string before printing it. We can then concatenate any strings we
have formed.

The next program demonstrates using STR$ in this way. We first
set up the variable A = 10. We then redefine both 1 and 0 as the same
character. Each time the FOR-NEXT loop is performed, A is multiplied
by 10, and STR$(A) becomes one character longer. If you change Line
140to FOR X = 1 TO 10 you willget scientificnotation in your display.
To avoid this, you must concatenate two or more strings each 10 digits
or fewer in length to create one larger image.

100 CALL CLEAR 140 FOR X=1 TO 8

110 A=10 150 PRINT STR$(A)&STR$(A)

120 CALL CHAR(48,"F0F0F0F00F 160 A=A*10

0F0F0F") 170 NEXT X

130 CALL CHAR(<f9,"F0F0F0F00F 180 PRINT ::

0F0F0F") 190 GOTO 110

Using SEGment and LENgth String Functions

The SEGment and LENgth string functions give you some potent
graphics techniques. SEG$ is followed by your string's name as well as
two numeric expressions identifying the start and length of a new string
segment. SEG$ lets you have a master string of various characters from
which you can select any segment for display.

161

The next program shows off this feature. We have a FOR-NEXT loop
in Lines 130 to 150 nested within another that begins at Line 120 and
ends at Line 170. The inner loop merely PRINTs a character in A$, as
defined by X, ten times. The outer loop tells the computer to fetch the
next character —or value for X—in the A$ string, after each set of ten
characters has been printed. This is done until the value of X = LEN(A$),
or the total number of characters in A$. If you had defined a new
character for each letter in A$, you could then create different graphics
images.

100 CALL CLEAR 1^0 PRINT SEG$(A$,X,1);

110 A$="ABCDEFGHP 150 NEXT Y

120 FOR X=1 TO LEN(A$) 160 PRINT ::

130 FOR Y=1 TO 10 170 NEXT X

Printing Text With HCHAR

So how do we display messages on the screen without disturbing
graphics already there? By displaying a string with an HCHAR or
VCHAR character repetition statement. First, we have to supply an
ASCII character code for each string character we wish to show. We
can do this by using the ASCII string function with SEG$. For instance,
if the string A$ = "YELLOW" then

PRINT ASC(SEG$(A$,1,1))

will display the number 89, the character code for an upper-case Y. By
picking out single character string segments we can thus supply an
HCHAR statement with all the ASCII values it needs to display the string
for us anywhere we want on the screen.

We must also determine the column and row locations for our

displayed characters. For this we can use IF-THEN statements to
manipulate the row and column variables and to prevent bad values.

The next program demonstrates these techniques. The INPUT prompts
let you enter your message and select row and column locations. Be sure
to put a comma between the numbers used for the row and column loca
tion. Later, you might try rewriting Line 150 to read:

150 FOR C=LEN(A$) TO 1 STEP

-1

and the program will print your message backward!

162

100 CALL CLEAR 180 S=S+1

110 INPUT "PRINT:":A$ 190 IF Y+S=30 THEN 200 ELSE

120 INPUT "ROW?,COLUMN?:":X, 230

Y 200 S=0

130 CALL CLEAR 210 Y=3

Tf0 S=0 220 X=X+1

150 FOR C=1 TO LEN(A$) 230 NEXT C

160 CHAR=ASC(SEG$(A$,C,1)) 2*f0 GOTO 110

170 CALL HCHAR(X,Y+S,CHAR)

USING ARRAYS IN GRAPHICS

Because the data stored in arrays need not be read more than once
into a program, arrays are especially useful for setting up complex displays
and repeated graphics effects.

The following program uses arrays and draws either the letter A, B,
or C on the screen. Each of these letters is seven character spaces high
and five spaces wide. Line 110DIMensions a string array called LE$ in
two dimensions, 7 and 3. This gives an array containing three groups
of seven data items each. You can follow this pattern in the three DATA
statements at the end of the program: each data item contains five
character, each item is separated from the next by a comma, and each
DATA line has seven data items. The three DATA lines are the three

groups in the array's second dimension.
The beauty of this arrangement is that everytime we ask for LE$(4,2),

for instance, the computer reads in the fourth data item in the second
group. In this program, that correspondsto the fivecharacters that form
the center line of our large letter B.

Using a READ statement after DIMensioning the array, we ask the
computer to store it. This it does with two FOR-NEXT loops: the loop
associated with the array's first dimension is nested within that associated
with the second dimension. Once this process is complete, the computer
has mapped out the data structure which makes up the large letters and
has it "on tap."

Starting at Line 310is another set of nested FOR-NEXT loops. Much
as the first nested loops READ the data into the array, the second loop
puts out the data, displaying it on the screen. The programming tech-

163

nique here, on Line 330, is the same as the one we used in the "Printing
Text With HCHAR" section of this chapter. The only difference is that

now that we are dealing with LE$ as a two-dimensional array. So we
must always refer to the array as LE$(X,Y) where X and Y are the
variables associated with each dimension.

100 CALL CLEAR

110 DIM LE$(7,3)

120 FOR Y=l TO 3

130 FOR X=1 TO 7

140 READ LE$(X,Y)

150 NEXT X

160 NEXT Y

170 CALL CHAR(81,"FFFFFFFFFF

FFFFFF")

180 CALL CHAR(46,"0000000000

000000")

190 INPUT "R0W?(1 TO 18):":R

OW

200 IF (R0W<1)+(R0W>18)THEN

190

210 INPUT "COLUMN?(1 TO 28):

":C0L

220 IF (C0L<1)+(C0L>28)THEN

210

230 PRINT "A,B, OR C?:"

240 CALL SOUND(180,1400,5)

250 CALL KEY(3,R,S)

164

260 IF S=0 THEN 250

270 IF (R<65)+(R>67) THEN 25

0

280 CALL CLEAR

290 R=R-64

300 FOR X=l TO 7

310 FOR CH=1 TO 5

320 CHAR=ASC(SEG$(LE$(X,R),C

H,D)

330 CALL HCHAR(ROW,COL+SP,CH

AR)

340 SP=SP+1

350 NEXT CH

360 SP=0

370 R0W=R0W+1

380 NEXT X

390 GOTO 190

400 DATA .QQQ.,Q...Q,Q..,Q,Q

QQQQ,Q...Q,Q...Q/Q,..Q

410 DATA QQQQ.,.Q..Q,fQ.,Q,.

QQQ.,.Q..Q,.Q..Q,QQQQ.

420 DATA .QQQ.,Q...Q,Q Q

Line 110 sets up a two-dimensional array LE$(X,Y).
Lines 120-160 READ the array into memory, using two FOR/NEXT

loops built around a READ statement in Line 140.
redefine the characters for upper case Q and the period to
a solid block and empty space.

allow you to decide which letter to display and where. Lines
190 and 210 define the INPUT variables for ROW and COL

location. On Line 250 a CALL KEY statement lets you
choose which letter is displayed. The return variable values
in the CALL KEY statement for the keys of A, B, and C
are 65, 66, and 67 respectively. We need only subtract 64
from these values in Line 290 to get 1, 2, or 3 for "R" in
Line 320.

Lines 300-380 contain a double FOR-NEXT loop that puts the chosen let
ter on the screen. Line 300 starts the FOR-NEXT loop for
each of the seven layers of five characters making up each
letter. Line 310 starts the FOR-NEXT loop that displays each
of the five characters in each piece of data, which form one
of the seven layers of the letter to be displayed. Line 320
generates the ASCII character code needed by the HCHAR
statement in the next line to generate the large letter, character
by character. The variable CHAR is the code number pro
duced by the ASC string function and represents the value
of a particular one-character segment of LE$(X,R),CH,1.
Here X is one of the seven five-character layers of our large
letter. R is the value 1, 2, or 3, stipulating which element
of the second dimension of LE$(X,R) has been input by the
user on choosing to display an A, B, or C. CH is the
CHaracter at which the particular segment of LE$(X,R) is
to begin, from 1 to 5. The 1 at the end indicates that each
segment beginning at CHaracter CH is only one character
long. Line 330 is a CALL HCHAR statement that displays
the character with the ASCII value of CHAR at the ROW

and COLumn locations you entered earlier. These row and
column locations are manipulated by adding the value of the

Lines 170-180

Lines 190-290

165

Line 340

Line 350

Lines 360-370

Line 380

Line 390

Lines 400-420

166

variable SP to the column location each time the loop is per
formed. To begin with, SP is an uninitialized variable whose
value is zero. This value is restated each time a new layer
of a letter is begun by setting SP to zero in Line 360.

moves the column location one space to the right,

sends the CH loop back for another character,

reset the column position for the next layer of the letter be
ing constructed. The ROW location is also moved down one
to set the new layer.

sends the X loop back to draw another five-character sec
tion of the letter.

sends the program back to ask for new INPUT for a new
letter on Line 190.

are the DATA that go into array LE$(X,Y). These lines con
tain the raw materials for our large letters, A, B, and C.

20 Live Time on the Keyboard

167

It's time now to face the music—an 80-line program. Long? Yup, but
then, so is most developed software. And this software makes music.
The program includes arrays, CALL KEY, the sound chip, print for
matting, and a whole series of graphics commands. You've used them
all before; now let's combine them in a full-scale production.

Just so you know what you're getting into, here's what happens. First,
the screen clears and you'll see a short set of instructions. Then the screen
goes black and a white musical staff appears, line by line. After the staff
has been drawn, musical notes in different colors will appear on the staff,
and large block print, consisting of upper-case O's combined to make
letters, will announce COLOR above the staff and ORGAN below the
staff. When the graphics are all on the screen, you can start making
music with your computer. The middle two rows of the keyboard cor
respond to the black and white keys of a piano: WER YU OP/ are the
black keys, and ASDFGHJKL: are the white keys. Each time you press
one of these keys, a pre-programmed three-note chord sounds for as
long as you hold down the key. When you take your hand off the key,
the chord stops, and the notes on the staff change colors.

Here now is the program in all its lengthy glory. Type it in carefully,
RUN it, and check for bugs. If you find any (and in a program this
long you probably will), work them out until the program RUNs pro
perly. Then we'll look at the program in detail.

100 REM *** COLOR ORGAN ***

110 CALL CLEAR

120 PRINT TAB(9);"TI CHORD 0

RGAN"::::::

130 PRINT " PR06RAM DES

IGN BY"::" MIDNIGHT MADNE

SS, INC." ::::::::

H0 PRINT " WE'RE HERE....Y0

U'RE THERE"::

150 GOSUB 590

160 CALL CLEAR

168

170 PRINT " PRESS ONE OF T

HESE KEYS":::::::

180 PRINT " WER YU

OP/"

190 PRINT "ASDFGHJ

KL:"::

200 PRINT "(MIDDLE TWO

ROWS)":::::

210 PRINT " TO PLAY A THREE

NOTE CHORD" :::::

220 FOR T=1 TO 2000

230 NEXT T

240 CALL CLEAR

250 CALL SCREEN(2)

260 PRINT " 000 000 0 0

00 000"

270 PRINT " 0 0 0 0 0

0 0 0"

280 PRINT " 0 0 0 0 0

0 00"

290 PRINT " 000 000 000 0

00 0 0"::::::::::::

300 PRINT " 000 000 000 0

00 0 0"

310 PRINT " 0 0 0 0 0 0

0 00 0"

320 PRINT " 0 0 00 0 0 0

00 0 00"

330 PRINT " 000 0 0 0000 0

0 0 0":::

340 CALL C0L0R(13,16,1)

350 FOR Y=10 TO 14

360 CALL CHAR(128,"000000000

00000FF")

370 CALL HCHAR(Y,3,128,28)

380 NEXT Y

390 CH=40

if00 FOR W=5 TO 28 STEP 1.66

410 RANDOMIZE

420 Q=INT(13*RND)+3

430 R=INT(6*RND)+10

440 SET=(CH-24)/8

450 CALL C0L0R(SET,Q,1)

460 CALL CHAR(CH,"3C7EFFFFFF

FF7E3C")

470 CALL CHAR(129,"000101010

10101FF")

480 CALL HCHAR(R,W,CH)

490 IF R=10 THEN 500 ELSE 53

0

500 CALL CHAR(130,"000101010

1010101")

510 CALL HCHAR(R-1,W,130)

520 GOTO 540

530 CALL HCHAR(R-1,W,129)

540 CH=CH+8

550 IF CH=120 THEN 560 ELSE

570

560 CH=40

570 NEXT W

580 GOTO 760

169

590 DIM A(18)

600 DIM B(18)

610 DIM C(18)

620 DIM D(18)

630 FOR N=1 TO 18

640 READ A(N)

650 NEXT N

660 FOR N=1 TO 18

670 READ B(N)

680 NEXT N

690 FOR N=1 TO 18

700 READ C(N)

710 NEXT N

720 FOR N=1 TO 18

730 READ D(N)

740 NEXT N

750 RETURN

760 CALL KEY(3,X,Y)

770 IF Y=0 THEN 760

780 IF (Y=1)+(Y=-1)THEN 790

790 1=1

800 IF X=A(I)THEN 840

810 1=1+1

820 IF l<=18 THEN 800 ELSE 8

90

830 IF X<>A(18)THEN 890

170

840 CALL SOUND(-4000,B(I),0,

C(I),O,D(I),0)

850 CALL KEY(3,X,Y)

860 IF Y=0 THEN 890

870 IF Y=1 THEN 790

880 IF Y=-1 THEN 840

890 CALL SOUND (-1,40000,30,4

0000,30,40000,30)

900 RANDOMIZE

910 Q=INT(13*RND)+3

920 S=INT(10*RND)+2

930 CALL C0L0R(S,Q,1)

940 CALL C0L0R(6,Q,1)

950 GOTO 760

960 DATA 65,83,68,70,71,72,7

4,75,76,59,87,69,82,89,85,79

,80,47

970 DATA 175,196,220,247,262

,294,330,349,392,440,185,208

,233,277,311,370,415,466

980 DATA 220,247,262,294,330

,349,392,440,494,523,233,247

,311,370,466,554,622

990 DATA 262,294,330,349,392

,440,494,523,587,659,277,311

,349,415,466,554,622,740

LINKS IN A CHAIN

This program can be broken down into individual modules, each a
link in the chain of overall program logic.

Link 1

The first link is the title page, createdby the series of PRINT statements
that come after Line 100clears the screen. The title page comprises Lines
120-140. Normally, we would need a time loop to keep the display on
the screen. But in this case, Line 150 sendsthe computer into a subroutine
starting at Line 590, tying it upand thus keeping the display onthe screen.
The subroutine is the second link.

Links 2 and 3

The subroutine begins at Line 590and continues all the way to Line
750, which contains the RETURN statement. This subroutine loads four
arrays. While the computer loads the the arrays, the title pagestays on
the screen.

We named the four arrays A, B, C, and D, each DIMensioned in
Lines 590-620 to hold 19 elements. We in fact use only 18 elements; this
isjustanother way to call the first element in ourarray 1,without using
the OPTION BASE statement.

The DATA bank in Lines 960-990 is the third link in the chain. The
DATA is loaded into the arrays in Lines 630-740. Lines 630-650 load
array A using the DATA from Line 960 of the DATA bank. Array A
holds the character codes for the letters forming the organ keyboard.

Lines 660-680 load array B using the DATA from Line 970 of the
DATA bank. Array B holds the frequency information for Voice 1.
Eighteen different frequency numbers are loaded into this array.

Arrays C and D are loaded in the same way by Lines 690-710 and
720-740, respectively. These arrays hold the frequency information for
Voice 2 and Voice 3. Again, there are 18 notes for each voice.

The RETURN statement in Line 750 ends this section of the chain
and transfers control to the next.

Link 4

The RETURN statement moves the computer to Line 160, whichclears
thetitle page display. Control then passes to thenext line, which begins
a series of PRINT statements that tell you which keys to push. This
display is held on the screen by a time loop in Lines 220 and 230.

171

Link 5

The fifth link of our chain controls the permanent graphics display.
The screen is cleared in Line 240 and then turned black in Line 250.

This sets the stage for the block printing.
The block print is created in Lines 260-330 using PRINT statements

with the letter O and print separators. The procedure is simple to under
stand, but very exacting.

CALLing the screen black makes it possible to print all these Os on
the screen without your seeing it happen. This is because the letters, too,
are black; you will not see the block letters until the CALL COLOR
statement in Line 450 is executed.

After the block characters are printed, the computer moves on to its
next set of graphics statements (Lines 340-380), which will create the
musical staff.

Line 340 defines the staff color as white with a transparent background.
The character set is 13.

Lines 350-380 form a loop that places the staff on the screen. Line
350 defines the loop and generates values for the variable Y. Line 360
defines the character for part of a single line; Line 370 places this line
on the screen at the a proper location. This location is determined by
the value of Y for the row, 3 for the starting column, and 28 for the
number of character repetitions. The loop is performed five times, draw
ing a five-line staff.

Staff complete, the computer moves on to its next task, the rather
complex job of placing notes on the staff. This is accomplished by Line
390 and the long loop between Lines 400-570:

Line 390 defines the variable CH = 40. This variable will be used later

in the loop as a value for a character.

Line 400 initiates the loop for placing the note heads and stems on the staff.

Line 410 randomizes.

Line 420 creates a random color value Q for each pass through the loop.
The number will fall between 3 and 15.

Line 430 creates a random value for row placement. The number will fall
between 10 and 15 (determining on which line of the staff the note
will appear).

Line 440 assigns a value for a character set to the variable SET.

Line 450 SET and Q will be redefined each time through the loop.

Line 460 defines the character for the note head (the round part).

Line 470 defines the character for the note stem for all the notes except
those above the top line of the staff.

Line 480 displays the note head using a row location generated by Line 430,

YT2

a column location generated by Line 400, and a character code
initialized in Line 390 and incremented each time through the loop
by Line 540.

Line 490 tests IF the note head appears above the top line of the staff. IF
so, THEN 500 ELSE 530.

Line 500 defines a stem for a note that appears above the top line of the
staff.

Line 510 displays the stem for a note head that appears above the staff
one space above the note head.

Line 520 skips over 530, which displays the normal stem.
Line 530 displays the stem for all notes below the top line of the staff-

one space above the note head.

Line 540 increments the ASCII character code into the next character set.

Line 550 tests if CH = 120. IF it does, THEN 560 ELSE 570.

Line 560 resets CH to 40. This safeguards against altering the values in the
character sets holding the note heads and staff characters.

Line 570 loops back for the next note.

This loop solves an interesting graphics problem. Because the note
is so large, it intersects with the staff lines. We decided to let the bot
tom of the note replace part of the staff line, but create a full line above
the note head. We accomplished this by using the two different stems,
one for notes falling below the top line of the staff and one for notes
falling above the top line of the staff.The first stem looks like this: (J)
while the second looks like this: (I).

After the graphics have been completed in Line 570, Line 580 tells
the computer to leave thismodule and move on to the next (GOTO 760).

Link 6

The next link in the program logic chain starts on Line 760 and ends
on Line 950.This sectionof the program converts the computer keyboard
into an organkeyboard. It also changes thecolor of the graphics display
whenever a key is released, and no new key is immediately pressed.

The first step is a CALL KEY statement in Line 760. The return
variable is called X and the status variable is called Y.

The nextstep is to evaluate the character returned by the CALL KEY;
this happens in Lines 770-830. These lines also transfer control to other
sections of the program according to the values received.

In Line 770, if no key is pressed the computer returns to the CALL
KEY statement in the previous line. In Line 780, if a new key is press
ed, or if the same key is pressed, the computer moves to the next line.
Line 790 resets I to 1.

173

Lines 800-830 check if the character code of the key being pressed
equals any of the 18codes stored in array A. IF so, THEN control passes
to the CALL SOUND statement in Line 840 which plays a chord. IF
not, THEN control passes to a second CALL SOUND statement in Line
890 which plays a millisecond of silence. Thus you play chords when
you hit the keys whose codes reside in array A and play silence when
you hit keys outside the range of array A.

If you do press one of the chord keys, the CALL SOUND statement
of Line 840 comes into play. The value of the array element counter
(I) has been incremented in Line 810 for each pass of the search loop.
1 = 5 means that the character code of the key pressed equals the number
stored as the fifth element of the A array. The CALL SOUND state
ment then uses the fifth elements of the arrays B, C, and D for its fre
quency values. Thus we can associate the three notes of a chord with
a single key.

After the chord is played, the computer passes on to a new CALL
KEY statement in Line 850. Lines 860-880 check the status variable (Y)
for the new CALL KEY. IF no key is pressed, THEN control passes
to Line 890, which plays a millisecond of silence. This turns off the sound
of the previous CALL SOUND with a negative duration value. Control
then passes to Lines 900-950, which change the color of the permanent
graphics display and then returns to Line 760 for a new CALL KEY.

IF a new key is pressed, THEN Line 870, which checks the status
variable of the second CALL KEY, is true; control goes back to Line
790, which starts the search loop to evaluate the return variable of the
new note. If this return variable turns out to be one of the lucky 18,
another chord willbe played; if not, then silence. IF the key is held down,
THEN Line 800 is true and the CALL SOUND continues.

By using two CALL SOUND statements with negative durations, one
playing chords and the other playing silence, we enable our organ to
play the chord as long as the designated key is being pressed. When the
key is released, the sound becomes silence and the color of the graphics
display changes. The conditional statements make all this possible by
constantly monitoring the keyboard.

Link 7

Link 7 does not exist as a program line, yet it is in every line of a
program. In fact, it's the most important link of all. Without it, there
would be no program. Link 7 is you, the programmer.

Computers exist for one reason, so people can use them. For all their
machine-like logic, the programs that people create, are really extensions

174

of the human mind. If you've gotten this far, then congratulate yourself
because you now have the understanding and the tools to make the com
puter work for you. Whatever that work may be, we wish you the best.

175

21 Your Home Computer
As A Terminal

Although your TI-99/4A is a powerful tool by itself, a vast new world
opens for you when you use it as a terminal to interact with larger com
puters or computer networks. Electronic information utilities such as
The Source and CompuServe maintain huge data storehouses. Your hum
ble computer can give you access to hundreds of specialized databases
on topics from agriculture to zoology. Many computer networks offer
services such as electronic mail, financial reporting, travel reservations
and scheduling and bulletin boards. If you can get an account with a
university computer, you'll have access to new programming languages,
memory space, and even printing facilities. The possibilities for enhan
cing the way you learn and do business are limitedvirtually only by your
imagination.

To use the 99/4A as a terminal you'll need several pieces of equip
ment. The first is the Terminal Emulator II, a plug-in software module
sold by Texas Instruments, that bypasses the main microprocessor in
your computer so it can act as a terminal. Next you willneed a telephone
modem for "talking" with other computers. Because the data used by
computers are not compatible with signals normally sent over telephone
lines, a modem modulates computer signals into a form compatible with
telephone lines and demodulates these signals back into a form the com
puter understands. Last, you'll need an RS232 peripheral controller inter
face. A modem is a computer peripheral and cannot be controlled by
your 99/4A without this interface.

The speed of data transmission via a modem is measured in bits per
second, or baud. Ordinary phone modems operate at either 300 or 1200

176

baud but the Terminal Emulator will allow you to use only a 300 baud
modem. This translates roughly into a transmission rate of about 30 bytes,
or keyboard characters, per second.

Phone modems can either be acoustical or direct-connect. Acoustical

modems feature a cushioned receptacle for the handset of your telephone;
so the signals passing in through the phone speakers can be "heard" by
the modem. A direct-connect modem is directly wired into both com
puter and phone line. Direct-connect 300baud modems can be purchased
for as little as $100. The modem you buy should be compatible with
your RS232 interface. The general name for the appropriate modem is
the Bell 103 type. These devices are widely available, although not all
come with cables specifically adapted to the 99/4A.

Currently you have several possibilities for getting an RS232 inter
face. You can buy the peripheral expansion box made by Texas Instru
ments for the 99/4A and get the RS232 circuit card that goes with it.
You can also buy one of the RS232 interfaces built for the 99/4A by
other companies; these dock directly into your computer without the
peripheral expansion box. (Manufacturers of these products advertise
in the 99'er Home Computer Magazine.) You can also buy the TI Hex-
Bus peripheral system, comprising a Hex-Bus adapter that docks into
your main console and the HEX-Bus RS232that connects to the adapter.
Although the Hex-Bus peripheral system has been on TI's retail price
list for some months, the units were not available at the time of this
writing.

Your 99/4A can communicate with other computers because its
keyboard is ASCII encoded. (ASCII is an acronymn for American Stand
ard Code for Information Interchange.) When you press a key on your
keyboard, the collection of bits produced and transmitted over the
telephone line will be recognized as the same key by any other ASCII-
encoded computer system. In addition to an ASCII keyboard, your com
puter also contains ASCII text formatting commands that allow you to
format text on a computer system. A list of these commands can
be found in the Appendix in Section Three of your User's Reference
Guide.

When you are sending or receiving data over the telephone lines, you
are using serial transmission: all the bits making up the data are trans
mitted in a line, one behind the other. Data can also be transmitted in
parallel, but only where there's a group of parallel lines to carry all the
bits in a particular byte simultaneously, as in a ribbon cable hooked up
to a printer. Ordinary telephone lines cannot transmit in parallel.

177

Synchronous and asynchronous are the two major communication
techniques. Asynchronous communication exists when each character
is transmitted at random intervals of time such as those which exist when
hitting the keys of a keyboard. Asynchronous transmission takes place
more slowly than synchronous transmission which requires that data be
sent in lock-step as regulated by a clock. Your computer will deal ex
clusively with asynchronous transmission.

Computer systems use an error-checking mode known as parity.
When a byte composed of seven bits is sent out over the line, an extra
bit is added to it to achieve this purposecalled the parity bit. The parity
bit will either be a "1" or a "0" depending on whether even parity or
odd parity is beingused. In evenparity, the parity bit is changedto either
a "1" or a "0" in order to create an even number of "Is" in that byte.
Similarly, odd parity seeks to create an odd number of "Is" in a given
byte by adding either a "1" or a "0." Your Terminal Emulator II will
ask you to choose which parity to use. Familiarize yourself with the re
quirements of the system you are using.

The Terminal Emulator II will also ask you whether your host system
uses simplex, half-duplex, or full-duplex transmission. Simplex transmis
sion works in one direction only. Half-duplex transmission is two way,
but only one way at a time, and full-duplex transmission is simultaneous
two way transmission.

Most databases and informationutilities charge you for the time you're
"on line." Several factors-including the desirability of the database and
the time of day—affect these charges. Like ordinary telephone service,
database fees are often cheaper at night. Most databases and informa
tion utilities operate in conjunction with telecommunications networks
that provide local phone numbers for users. Some information services
include the charges for these communications networks in their fees;
others break their billing into separate charges.

Two widely known communication networks are Telenet and Tymnet.
Before you openan account with a database or information utility, find
out if there's a local network number on their system which can help
you save money on your phone bills.

If you're a smart shopper, you should be able to get the necessary
components for using your 99/4A as a terminal for $300 or $400. If
you also have a printer or a disk drive, the Terminal Emulator will enable
you to copy the information you receive. Although advanced closed net
works using synchronous transmission or a communication code other
than ASCII won't be available to you, the huge and growing store of
resources now ready for your 99/4A makes the price of admission well
worth paying.

178

22 System Options

Selling presently for a mere $100 (after rebate), the TI-99/4A is in
deed a remarkablebargain. But before you can use it in your business,
hook it up as a terminal, or do word processing, you will have to add
some equipment to thesystem. This chapter describes some of thehard
ware and software options you might try.

EXTENDED BASIC

Now that you're becoming comfortable with theTI BASIC that comes
with your machine, you may wish to add the Extended BASIC Com
mand Module. This plug-in module adds about 40new commands, ex
tending your computer's power and flexibility. Among the extra com
mands arethose that control sprites, smoothing-moving graphics images.

Extended BASIC allows you to put more than one statement on a
program line and is more memory-efficient. Programs in Extended
BASIC run faster than those in "normal" TI BASIC, and many tasks
that are either tedious or impossible in plain BASIC can be done with
Extended BASIC. Moreover, most of the best third-party software is
written in Extended BASIC, making the module well worth the price.

SPEECH SYNTHESIZER

The speech synthesizer is a small brushed aluminum unit that docks
directly into the main console. It can synthesize speech from external
software or from keyboard input. Speech synthesizers for microcomputers
used to cost several hundred dollars, but during 1982 and 1983, Texas

179

Instruments is running a promotion that gives you a free synthesizer with
purchase of six software modules.

PERIPHERAL EXPANSION BOX

For major expansion of your 99/4A computer system you need the
Peripheral Expansion Box. Thissolidly built silver box is actually larger
than the main console and contains a fan, power supply, a motherboard
with slots for seven peripheral cards, and space for either one full-size
or two half-size disk drives. (Disks, also called diskettes, are flat, cir
cular pieces of plastic with magnetic surfaces that, like tapes, can store
programs. Disk drives are analogous to the tape recorder, allowing the
computer to transfer information to and from the disk.)

The box connects to the console via a cable that plugs into the con
necting port on the right side.

RS232 Card

The RS232 card, a peripheral control interface that fits into the
peripheral expansion box, controls devices like printers and telephone
modems. It comes with one serial and one parallel port, although you
can buy an inexpensive device to convert the one serial port into two.
Thus outfitted, the RS232 card can control three separate devices.

Disk Drive Controller Card

You need a disk drive controller card to connect your computer to
a disk drive that "reads" and "writes" information from or on a disk.
Somedisk drives havetwo read-write mechanisms, called heads; others
have only one. The controller card can control up to four double-sided
disk drives, each storing about 180K bytes of information. It takes up
one slot in the peripheral expansion box.

32K Memory Expansion Card

The 32K memory expansion cards adds 32,768 bytes of memory to
your computer. You'll need this extra memory if you wish to use
sophisticated systems such as UCSD Pascal, LOGO or the Editor
Assembler (described later). This card also takes up one slot in the
peripheral expansion box.

P-Code Card

The P-code, or pseudo-code, card is the hardware component of the
UCSD p-System™ (see the section onthe UCSD p-System inthis chapter).

180

The P-code card also takes one slot of the peripheral expansion box.

Disk Drives

If you plan to do serious work with large amounts of information,
such as word processing or accounting, you really need disk drives-
ideally, youshould get two. Disks canstore far more information than
tapes, and disk drives transfer the information to and from the com
puter much faster than tape recorders. Furthermore, disk drive read/write
heads cango directly to a piece of information anywhere on a disk; tapes,
in contrast, must be read sequentially from the beginning.

The 99/4A uses40-track ANSI (American NationalStandards Institute)
standard 5V4 inch floppy disk drives manufactured by several companies.
("Floppy" refers to the disk, not the drive.) The drives may be either
one-sided (reading only one side of a disk) or double-sided and comes
in two sizes—full-size or the new space-saving half-size. One-sideddisks
store about 90,000 bytes of information; double-sided disks store twice
that much.

Printers

Printers are perhaps the most popular and useful computer peripherals.
Printers print by two methods: dot-matrix or daisy wheel. Dot-matrix
characters are printed as individual dots grouped together to form a let
ter, number or symbol. Daisy wheel printers put characters onthe page
much as does a conventional typewriter, onefully formed character after
another. The characters sit at the ends of little type bars arranged just
like the petals of a daisy. Daisy wheels are interchangeable to give you
different type styles.

Aprinter is controlled through either the serial orparallel port of the
RS232 card depending onhow it receives information. Parallel printers
are usually faster than serial versions because all the bits ina particular
byte arrive simultaneously at the printer through an interconnecting rib
bon cable. You can connect a printer to your computer through either
the serial or parallel port of the RS232 card.

Another option inobtaining a printer is touse an electronic typewriter
which is capable of being interfaced with the RS232 card or carries its
ownRS232 interface. Theproblem most often encountered in connect
ing printers to the computer is in acquiring, or creating, the appropriate
connecting cables. With such cables any printer compatible with the
RS232C standard will work with the peripheral expansion box system.

181

Telephone Modems

The telephone modem is the other commonly purchased computer
peripheral. It is used to allow your computer to communicate through
the phone lines to other computers or computer networks. For a fuller
explanation of this topic, seeChapter 21, "Using Your Home Computer
As a Terminal."

The Fully Configured System

The fully configured TI-99/4A computer system contains most of the
devices discussed to this point. You can always add new software,
operating systems, or peripherals, but the fully configured system gives
you a full-bore computer capable of professional work.

ALTERNATIVES TO THE PERIPHERAL

EXPANSION BOX SYSTEM

You don't necessarily have to buy all your equipment from Texas
Instruments for it to fit inside the peripheral expansion box. Several in
dependent companies now manufacture and sell compatible RS232 and
memory expansion cards. These companies also manufacture RS232 and
32K memory expansion peripherals that dock directly into the main con
sole without the peripheralexpansion box. Such products can help reduce
system costs if you just wish to run a printer or modem or to use LOGO.
If you want the full power of the system, however, you can't avoid the
peripheral expansion box because TI currently makes the only disk drive
controller card.

WORD PROCESSING

For efficientword processing work, you need a fullyconfigured system,
minus perhaps the modem and speech synthesizer. You could do without
one disk drive, but a single drive can be rather inconvenient.

Several software companies currently put out word processing packages
in Extended BASIC, and some packages in machine language are also
beginning to appear. TI WRITER, a word processing module produced
by Texas Instruments, is currently the most powerfuland sophisticated
word processing software for the 99/4A.

Microsoft Multiplan™

Microsoft Multiplan is a highly sophisticated second-generation elec-

182

tronic spreadsheet program. Marketed by Texas Instruments as a soft
ware module, it is widely regarded as more extensive and flexible than
the popular VisiCalC™ spreadsheed program.

UCSD p-System™

The UCSD p-System™ is a powerfuloperating systemfor your 99/4A
that provides an alternative to the original 99/4A operatingsystem. You
need the p-System to run the UCSD version of the computer language
Pascal—more powerful and much faster than TI BASIC. The UCSD
p-System™ consists of a P-code card that fits inside the peripheral ex
pansion box and several software diskettes. Youmaypurchase these com
ponents separately or as a package.

An important advantage of the UCSD system is that it hasbeen cross-
compiled for different microprocessors. In other words, software writ
ten in the UCSD system for one computer can be run on a different
computer with little or no modification. (Normally, programs written
for different microprocessors in different machines are incompatible.)
Thus software written in the UCSD p-System™ for an Apple II could
run on your 99/4A while it is using the UCSD system with little
modification.

This kind of compatibility gives you access to a wide variety of soft
ware, so we would expect use of the p-System on the 99/4A to grow.
But as of summer, 1983, using the p-System has not beencommon, and
Texas Instruments has not supplied much software. If you'd like to use
the UCSD p-System™, check the "Resource List" in Chapter 23 for a
group to contact.

LOGO

LOGO is a computer language designed primarily for those whohave
little or no computer experience and has become popular in elementary
and secondary school education. Texas Instruments has been involved
in LOGO'S development since the beginning and markets a version for
the 99/4A as a software module. Running LOGO requires 32K memory
expansion.

Machine Language

This is the native language of the 9900 microprocessor and as such
isthemost powerful language thecomputer canuse. Machine language
is the language used inthe solid state software modules for your 99/4A.

Texas Instruments makes several products that let you work with
machine language by writing in assembly language; the main one, the

183

Editor/Assembler, is available as a software module. The mini-memory
module also lets you to work with assembly language plus giving you
an extra 4,000 bytes of mini-memory. Contained within the module and
supported by battery power, the mini-memory retains its contents even
when detached from the main console. Many people are becoming in
terested in assembly language for the 9900, and more third- party soft
ware written in this language is appearing.

FORTH

FORTH is another fast and powerful languageavailable for the 99/4A
on diskette from Texas Instruments. FORTH requires the
Editor/Assembler and 32K expansion memory. A third party version
of FORTH on disk is now also available.

Voice Recognition

Milton Bradley willproduce a peripheral for the 99/4A called the Ex
pander, which can recognizes voices and enables you to speak to your
computer. The device comes with a set of headphones, a microphone,
and its own multi-position keypad; softwareis beingdeveloped. The Ex
pander plugs into the joystick port.

Winchester Hard Disk

For those not satisfied with floppy disk drives, a Winchester hard disk
information storage peripheral is being sold by Myarc, Inc. (P.O. Box
140, Basking Ridge, NJ 07920). This device comes in two models that
can store either five million ortenmillion bytes and is faster than floppy
disk systems. Myarc's hard disk system comes complete with built-in
software.

184

23 Resource List

We've compiled in this chapter some of the major contacts and
organizations which can help you make the most of your home com
puter by providing you with advice, information, and services.

Texas Instruments Customer Relations Hotline (800-858-4565)

This toll-free hotline provides answers to home computer rebate in
quiries, gives out exchange center locationsfor repairs, and answersminor
technical questions. In addition, marketing literature and referrals to other
TI company contacts are mailed from this location. Hours are 8:00 a.m.
to 4:15 p.m. Monday through Thursday and until 3:15 p.m. on Friday,
Central Standard Time.

Texas Instruments Software and Peripheral Hotline (800-858-4075)

You can place retail orders for hard-to-find software and peripherals
at this number. The staff will answer basic questions, mail marketing
literature, and make referrals to local retail outlets. Hours are 8:00 a.m.
to 4:15 p.m. Monday through Thursday and until 3:15p.m. on Friday,
Central Standard Time.

User's Group Coordinator

Updated lists of TI-99/4A User's groups are periodically published
in the Texas Instruments Home ComputerNewsletter. If you can't locate
the group in your area, or are thinking of starting one of your own,
contact: Texas Instruments, User's Group Coordinator, Mr. Ed Wiest,
P.O. Box 10508, Mail Station 5890, Lubbock, TX 79408.

185

Technical Assistance Line (806-741-2663)

These people can help with technical problems, especially those about
interfacing your computer with peripherals.

Repair and Service Contacts

You can find the location of your local repair and service center by
calling the Customer Relations Hotline. These centers require you to
appear in person. Mail-in service is done only at the following address:
Texas Instruments Repair Service, 2303 N. University Dr., Lubbock,
TX 79415

Computer Advantage Clubs (800-858-4069)
In Texas (800-692-1318)

Sponsored by Texas Instruments in a number of major metropolitan
areas around the country, the Computer Advantage Clubs offer introduc
tory computer courses for children and adults, including programming
in BASIC and LOGO, word processing, and Microsoft Multiplan. Call
the numbers above to get registration information and find out about
the courses being held in your area.

TexnetsM (800-336-3330)

Texnet is a unique service specifically designed for 99/4A owners which
is part of The SourceSM electronic information utility. Many services are
available to 99/4A owners under Texnet, including the ability to "bor
row" 99/4A software over the wire. Call the toll-free number above for
information.

International 99/4 Users-Group, Inc. (405-787-8521)

This is by far the oldest and most sophisticated independent 99/4A
support organization. The group has around 70,000 members and a soft
ware library exceeding 1,500 programs. The group publishes the Enthu
siast 99 magazine and acts as a mail-order retailer of 99/4A software
and peripherals. Membership costs $12/year; a presidential membership,
which includes special privileges, is $50/year. Contact: International 99/4
Users-Group, P.O. Box 67, Bethany, OK 73008.

99/4 Users of America (313-736-3774)

This organization puts out a newsletter and sells TI software to its

186

members at reduced rates. They maintain a programming assistance line
(at the number above) between 2:00 p.m. and 4:00 p.m., Eastern Stand
ard Time. The group sells software from a number of third party sources
and maintains a directory of programs. Dues are $20/year. Contact: 99/4
Users of America, 5028 Merit Dr., Flint, MI 48506.

99'er Home Computer Magazine

This is the largest and most highly developed periodical available to
the 99/4A owner. It contains many articles on educational applications,
entertainment, operating systems, software, peripherals, interfacing, pro
gramming and much more. The magazine also carries the largest cross
section of advertisers for TI home computer hardware and software found
in one place. Subscriptions in the U.S.A. are $25, $45, and $63 for one,
two, and three years respectively. Contact: 99'er Home Computer
Magazine, P.O. Box 5537, Eugene, OR 97405.

Young People's LOGO Association

Those interested in using TI LOGO should consider contacting this
group. YPLA produces two publications; Turtle News and LOGO
Newsletter and is actively involved in creating a network of local organiza
tions active in using LOGO. Membership is free to those under 18 years
of age. Contact: Young People's LOGO Association, 1208 Hillsdale Dr.,
Richardson, TX 75081.

UCSD Pascal Systems User's Society

This organization sponsors a special interest group for Texas Instru
ments computer users operating the UCSD Pascal System. The group
has a large volume of software available to members. Membership is
$20/year. Contact: UCSD Pascal System User's Society Secretary, P.O.
Box 1148, La Jolla, CA 92038.

Computer and Software News

Although not focused on specific computer system, this publication
is an excellent source of microcomputer market news and often carries
developments in the 99/4A market before they are noted elsewhere.
Subscription is $18/year. Contact: Computer &SoftwareNews, A Divi
sion of Lebhar-Friedman, Inc., 99 Park Ave., New York, NY 10157.

187

	front-cover
	Binder1
	content000
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010

	back-cover

