

CRACKING
THE

99/4A

BRIAN PROTHRO

Copyright 1984 by Brian Prothro

All rights reserved

Published by Midnight Express
Box 26941

Austin, Texas 78755

ISBN 0-917915-00-3

To

"The Boy"

Artwork by
Wi1ey Akins

AND

Thank you L inda Lew is,
what's in a name?

FORWORD

Computers seem to get a lot of bad press these days. I'll admit that they
often come equiped with a maze of cable assemblies and the operator
manuals read like War and Peace in Swahili. But aside from all the publici
ty, computers are not so bad. They can do amazing feats of magic like play
munchman, multiplan, or beat I.R.S. and aside from eating a disk or tape
now and then, they are relativly easy to live with. Computers make great
companions!

Whether you are just learning BASIC, or are well on your way to
understanding programming, this book offers you the opportunity to get to
know your 99/4A. Often the best solutions to your programming needs are
learned by studying how others have solved their own programming pro
blems. For the most part, this book is not a BASIC tutorial, but offers an
opportunity to to learn while exploring finished programs, as well as
add to your software library.

The various submissions included in this book stretch from games to very
handy programing utilities in assembly language. You will find that the ma
jority of these programs and tips require extended basic and some, addi
tional hardware such as the 32K expansion memory. The hardware re
quirements for each program are printed at the beginning of each program
description.

CONTENTS

TUTORIALS
Basic Programming
Part I—Intro 1
Part II—Structured Programming 7
Part III—Linked Lists (The sortless sort) 11
Part IV—User Friendliness 22
Logical Operators 27

GAMES
Checkers
Tank About Math 49
Hangman For Two 53
Othello 63
Seek And Find Puzzle Generator 71

HOME

Checkbook Management/Analysis 80
Super Catalogger 100
Christmas Billboard 104

SPEECH
Speech control programs 115
Phonetic Speech Editor 126

UTILITY
Graphics Generator 134
Formatted Screen 143
Horizontal Scrolling 144
Vertical Printing 145
Assembly/Manipulating Disk Files 146
Assembly/Inspecting A Merged File 154

PROGRAMMING

TUTORIAL

Basic console

BASIC PROGRAMMING
PARTI

The tutorial will cover what I call a data manipulation program. This
type of program will allow its user to enter information, change it if
desired, save the data to a file, and reload it for later use. This is a type of
program that businesses frequently use. But don't let that stop you from
reading on! The techniques described here can be used by anybody who
has data to store, whether ifs data from a scientific experiment or a list of
monthly expenses.

Some things covered here are; files with cassette, structured programm
ing, and linked lists. To keep this discussion general, the program will be
written in standard console (i.e., not Extended) BASIC and use a cassette
recorder to store the data. Part 1 will deal with defining the data the pro
gram will manipulate, how it is stored on the file, and how to get it back.

The first thing that a programmer should do before beginning to write a
program is to decide what the program should accomplish and how it is to
be done. This is very important, because you should know where a
journey will end before it is begun. How else will you know when you've
finished? Describing what a program should do is also useful because
other people who might use it can examine the design. Suggestions can be
made while changes are easy to make, before the program is written.

The program to be described in this tutorial is a mailing address pro
gram. When it is finished, it will be able to do the following:

1) allow the user to keep an alphabetical list of addresses

2) be able to find an address using only a name

3) scan the addresses in the list

4) make changes in any listed address

5) keep all information on a cassette file

6) keep the following information for each address: name, two lines of
street address, city, state, zip code, and phone number

First we'll deal with how the data should be stored in memory and on
file.

Now that we know what data will be stored for each address in the list,
we need to decide how to store that information in memory. The best
method is to use a two-dimensional array. Imagine a two-dimensional array
as a large blackboard that has rows and columns marked on it. In our case,
each row on the blackboard will be used by one of the addresses to store
the information. Each column on the row, then, is the location where a
part of each address will be stored. For example, the first column of the
row will contain the name, the second column will contain the first line of
the address, the third column the second line of the address, the fourth
column the city, the fifth column the state, the sixth column the zip code,
and the last column will contain the phone number.

Within the BASIC program, it is easy to access a particuliar piece of in
formation using a two-dimensional array. For example, if we want to print
the phone number of the fifth address on the list, we can simply use the
code:

PRINT ADDR$(5,7)

A two-dimensional array has a name like any other variable. It is follow
ed by two numbers (thus the name two-dimensional) in parenthesis. The
first number is the row to access, the second in the column within that
row. From there on, the information located at the requested row and col
umn is handled like any other variable in BASIC.

In our program, all address information will be stored in the array named
ADDR$. In this first draft of the program, it will perform the following
tasks:

1) allow us to enter information into the mailing address array ADDR$

2) save that information into a file

3) read that information back into memory from the file

4) redisplay the information

The program will become more complex as we go along.

This is a listing of the controlling part of the program:

100 REM A SIMPLE MAILING ADDRESS PROGRAM

BY MIKE SCHULTZ

110 REM WRITTEN 7/1/1983
120 REM CRACKING THE 99/4A
130 OPTION BASE 1

140 DIM ADDR$(20,7)
150 CALL CLEAR

160 LSTADR=0

170 GOSUB 220

180 GOSUB 390

190 GOSUB 500

200 GOSUB 610

210 END

Notice the four gosubs. They correspond to the four tasks that I describ
ed above. Notice also the DIM statement. It tells BASIC that the array
ADDR$ is going to have 20 lines and 7 columns. We know that each line
is going to be used for a separate address. Finally, notice the variable
LSTADR. At any point in the program this variable will contain the last row
of ADDR$ that stores useful information. The program will change LSTADR
whenever a new address is added to the list. This is the subroutine that
will put information in the array. Note that this isn't going to be the final
version of this subroutine.

220 REM THIS ROUTINE ACCEPTS NAMES AND A

DDRS

230 INPUT "ANOTHER ADDRESS? ":Q$
240 IF Q$="Y" THEN 260
250 RETURN

260 LSTADR=LSTADR+1

270 GOSUB 290

280 GOTO 230

This routine will continue to execute till the user answers the question
"ANOTHER ADDRESS?" by anything other than Y. This is not necessarily
the best way to exit such a loop, but since it will be rewritten later, it will
do for now. (It would be better if the program continued when Y is
entered, returned to the controlling routine when an N is entered, and
reasked the question when anything else is entered.)

Notice that LSTADR is increased by one when another row is added to
the list. The routine located at line 290 asks the user for the information to
be stored on the row:

290 REM THIS ROUTINE ACCEPTS A SINGLE NA
ME

300 REM AND PLACES IT IN THE ROW INDICA
TED BY "LSTADR"

310 INPUT "NAME: ":ADDR$(LSTADR,1)
320 INPUT "ADDR: ":ADDR$(LSTADR,2)
330 INPUT "ADDR(2): ":ADDR$(LSTADR,3)
340 INPUT "CITY: ":ADDR$(LSTADR,4)

350 INPUT "STATE: ":ADDR$(LSTADR,5)
360 INPUT "ZIP: ":ADDR$(LSTADR,6)
370 INPUT "PHONE: ":ADDR$(LSTADR,7)
380 RETURN

Notice how LSTADR is used. This routine assumes that the calling
routine has correctly assigned LSTADR to the row where the information
will be stored. The INPUT statements simply ask the correct questions and
make sure that the data gets stored in the correct columns. When all the
data is entered, answer N to the question ANOTHER ADDRESS. The con
trolling routine then calls the routine that writes the data to the cassette
file.

Before we examine the routine that writes to the file, a few words about
files in general are necessary. The concept of a file is very similiar to the
files in a filing cabinet. Inside a file folder are pieces of paper containing
information that we wish to save (such as addresses). We want to save the
information because it may prove useful or necessary.

In a computer file, the equivalent of the pieces of paper in the file are
called records. The information placed in the record is converted to elec
trical impulses instead of ink marks on paper. The computer is capable of
creating these records on the cassette tape the same way that we are
capable of recording information on paper. The computer is also capable
of reading this information back into its memory.

Records have a length — the number of characters (bytes) that can be
stored in each. In general, records have a either fixed or variable size (just
like paper), but cassettes are very simple devices and are limited to a fixed
length record. Disk drives are more complicated and thus can have
variable length records. This is not a major problem with cassettes,
however, as the difference between a fixed or variable length record is
basically unimportant.

In a paper file, people can randomly flip through the file looking for a
particular piece of paper. There are random files that the computer can
use, but these files are available only on disk drives. The other way for the
computer to examine the records is sequentially; that is, to start with the
first record on the file, do something (or nothing) with the data, and then
proceed to the next record on the file. For the purpose of our program
(since we want to read every record into memory), sequential files will be
fine.

Lefs look at the routine to write our address array to the cassette file.

390 REM THIS ROUTINE SAVES THE ADDRESS T

O FILE

400 OPEN #1:"CS1",SEQUENTIAL,INTERNAL,OU
TPUT,FIXED 192

410 PRINT #1:LSTADR

420 FOR 1=1 TO LSTADR

430 FOR J=l TO 6

440 PRINT #1:ADDR$(I,J),
450 NEXT J

460 PRINT #1:ADDR$(I,7)
470 NEXT I

480 CLOSE #1

490 RETURN

This routine deserves careful examination. First, notice the OPEN state
ment. The cassette file is oPened as sequential because that is the only
type of file that a cassette can handle. It it opened as INTERNAL because
this file will be read by the program again (but at a later time). The INTER
NAL designation makes reading the information back into memory a lot
easier.

The file is opened as OUTPUT so that the user of the program will be
asked to press the RECORD switch on the recorder.

The file is opened as FIXED because the cassette can handle only FIXED
length records. It is set up with 192-byte records because that is the max
imum record for the cassette and will handle all situations. Line 410 writes
the value of LSTADR to the file, on a record all by itself. This will let the
program know when it is run later how many records of actual information
ADDR$ contained on this run.

The rest of the routine writes the information of the array ADDR$ to the
cassette file, one record containing one array row. On line 440, the com
ma at the end of the line is a signal from the program to BASIC that it is
not through writing the record. It is the PRINT statement on line 460 that
actually signals the end of the record. After this line, BASIC will advance
the cassette tape to the next record.

Notice that the program is not making any attempt to separate the infor
mation in the record by inserting spaces. Opening the file as INTERNAL
made this unnecessary. BASIC will put the needed information in the file
so as to separate the columns during input. After writing all the records,
the CLOSE command allows us to tell the user to turn off the cassette
recorder.

How is the information read back into memory later? It is simply the
reverse of the output process.

500 REM THIS ROUTINE READS THE ADDRESSES
FROM FILE

510 OPEN #1:"CS1",SEQUENTIAL,INTERNAL,IN

PUT ,FIXED 192
520 INPUT #1:LSTADR

530 FOR 1=1 TO LSTADR

540 FOR J=l TO 6

550 INPUT #1:ADDR$(I,J),
560 NEXT J

570 INPUT #1:ADDR§(I,7)
580 NEXT I

590 CLOSE #1

600 RETURN

Notice that the OPEN statement describes the file in essentially the same
way as in the output routine, except that INPUT is used.

The value of LSTADR is read from the file first so that the program can
know just how many lines of address information was stored on the file.

Next, the information is read from each record back into the array
ADDR$.

And finally, here is a simple routine to display the information that has
been read in from the file.

610 REM THIS ROUTINE PRINTS THE INFORMAT

ION IN ADDR$
620 FOR 1=1 TO LSTADR

630 PRINT "NAME: ";ADDR$(I,1)
640 PRINT "ADDR: ";ADDR$(I,2)
650 IF ADDR§(I,3)="" THEN 670
660 PRINT " ";ADDR$(I,3)
670 PRINT "CITY: ";ADDR$(I,4)
680 PRINT "STATE: ";ADDR$(I,5);" ZIP: ";
ADDR$(I,6)
690 PRINT "PHONE: ";ADDR$(I,7)
700 PRINT

710 NEXT I

720 RETURN

This is not a complete program. You'll notice that the program is not
very flexible. There is no way to change anybody's address. The addresses

are not in alphabetical order. Finally, the routine that prints the addresses
to the screen prints all of the addresses instead of allowing the user to be
selective. These (and other problems) will be fixed later in this tutorial.

PART II / STRUCTURED PROGRAMMING

Now we'll discuss more about the overall planning of a program and
how to make a more flexible control routine.

You may recall that there are four tasks the mailing address will do: 1)
allow us to enter the addresses to be kept by the program; 2) save that in
formation to a file; 3) read the saved information from the file back into
memory; 4) search the addresses stored in memory for a particular name.
The last section presented simple versions of solutions to all these tasks in
the form of BASIC subroutines. This concept of breaking a job into tasks is
worth a closer look as it is a major cornerstone for modern programming.

This technique, called modular programming, actually has roots in our
everyday life. When we are presented with something to be done, it is rare
ly a single simple problem, although we usually don't realize it. Take going
to the store to buy milk for example. This is in itself not a single task, but
at least two: 1) going to the store and 2) buying milk. Even the going to the
store task is not a simple one. It itself is made up of many subproblems in
volved with locating the car, getting it started, and so on, not to mention
the many problems encountered while travelling to the location, and final
ly locating a parking place. And yet, people solve these types of problems
regularly without conscious thought.

The same techniques can be applied to programming. When we have a
problem whose solution we would like to automate on a computer, we
must first know how we would solve that problem ourselves. If we don't
know that, then we must begin by breaking the problem down into smaller
pieces. Every time a problem is broken into pieces we must ask ourselves
if we know how to solve this piece of the problem in BASIC. If the answer
is yes, then this piece is small enough. If the answer is no, then we must
try and split the problem some more.

While we are performing this divide and conquer process, it is helpful to
know three things for each piece of the puzzle. 1) What will have occurred
before we get to this piece. 2) What will this piece do to help solve the
problem. 3) What will the state of things be after this piece has been
performed.

These things are very important to know because they can point out pro
blems in the solution. Forexample, looking at the way one piece of the
solution left things and how the next piece expects things may show us
that the first piece isn't doing the whole job for us.

Now at this point you may be scratching your head, asking what in the
world I'm talking about, so let's relate it back to the store example. The
piece we'll take for the example is the actual buying of the milk. We know
several things about what we've done at this point. We know that we have
successfully completed traveling to the store. We also know that we have
located the milk, picked it up, and gone to the checkout line. In this piece
of the problem we then pay for the milk, and leave the store. We are now
in the car ready to go home.

This may seem to be a large amount of unnecessary work to some peo
ple, but my experience has been that learning programmers get the most
confused and frustrated when they are trying to write code and they have
no idea where in the solution they are, or what has happened in the pro
gram before this point.

Now, how does this relate to BASIC? As I said earlier, each piece of the
problem will eventually become a BASIC subroutine. The piece is entered
via a GOSUB statement, does its job, and returns to the calling routine
(piece) via a RETURN command. Since a particular subroutine may be
itself made up of individual pieces, it calls the subroutines for theses
pieces for them to do their job.

So, subroutines can call other subroutines, which in turn can do the
same. This is all well and good, but somewhere there has to be a limit to
all this. There has to be a routine that calls the major subroutines. This is
the routine that is entered first when the user of the program types RUN
and should be the routine that returns control of the computer back to the
user. This is called the main program or controlling routine.

There are many techniques used for making controlling routines. The
technique used depends on the problem to be solved. A purely
mathematical problem would require the program to perhaps ask for some
input from the user and then begin calculating. This is essentially the type
of controlling routine that our mail address program currently has. As you
can see, it is not well suited for this type of program.

For the data manipulation type of problem we are considering, the
subroutines act as services that the whole program can perform for the
user. The controlling routine's job, then, is to ask the user how it may be of
service and call into action the appropiate subroutine to do the job. Thus,
this type of program does not solve one specific problem (such as find Joe
Cool's phone number for me) but many problems. In essence, the user of
the program is still in charge of solving the problem and the program is
providing tools for the solution.

The kind of controlling routine that I am going to show here is called a
menu-driven program. That is, it presents the user with a list of options
that they may chose at this time, takes the request from the user, and calls
the subroutine to do the job. When the subroutine has finished, it returns
to the controlling routine, which then asks the user what they would like
next. Eventually, the user will be finished with the program and tell it to
quit.

Our mail address programs will do the following things:

1) Since the program must have the addresses loaded into memory
before it is any good, it will call the subroutine that reads the file
first. Just in case the user wants to create a new address file, it will
ask about this before calling the read file subroutine.

2) Next, it will ask the user if they want to modify addresses in the list,
search the list for a name, or quit. When the user has made a valid
choice, the approiate routine is called. After the subroutine returns,
the controlling routine asks whafs next? When the user finally says
to quit, the controlling routine calls the subroutine to write the file
(in case any changes were made to the addresses) and then
terminate.

Now, our subroutines from part I won't do all of these things, but thafs
okay. They do enough for us to demonstrate that the controlling routine
works properly. Later we'll complete the subroutines.

Here is the controlling routine. Notice the line numbers. The routine can
be typed over the top of the existing control routine to replace it.

100 REM A SIMPLE MAILING ADDRESS PROGRAM

BY MIKE SCHULTZ

110 REM WRITTEN 7/30/1983
120 REM CRACKING THE 99/4A
130 OPTION BASE 1

140 DIM ADDR$(20,7)
150 CALL CLEAR

155 PRINT " THE MAILING LIST MANAGER":

156 INPUT "READ IN LIST FROM TAPE? ":Q$
157 IF Q$="Y" THEN 165
158 IF Q$o"N" THEN 156
160 LSTADR=0

162 GOTO 170

165 GOSUB 500

The code above displays a friendly message to let the user know that the
program is running and then asks about reading in the addresses from a
data file. It takes action based on the user's response.

170 CALL CLEAR

171 PRINT " THE MAILING LIST MANAGER"
172 PRINT : :" M - MODIFY THE LIST": :"

S - SEARCH THE LIST": :" Q - QUIT THE MA
NAGER": : : :"SELECT A FUNCTION:"

173 CALL KEY(0,F,S)
174 IF S=0 THEN 173

175 CALL HCHAR(23,22,F)
176 C=POS("QMS",CHR$(F),l)
177 IF C>0 THEN 180

178 CALL SOUND(500,220,0)
179 GOTO 173

This code displays the functions that the user can select and then waits
for the user to press the letter of the function desired (lines 173 and 174).
That letter is then redisplayed for the user (in line 175). The code at line
176 is a very nice way in BASIC of deciding if the letter selected is a valid
one. Notice that "QMS" are all letters of the valid functions. The POS
command will return the number that describes the selected letter's posi
tion in the "QMS" list; this number will be placed in the variable C. Thus
it tells us if the letter pressed was the first letter in "QMS" (Q), or the se
cond (M), or the third (S). If the letter selected is none of these, then POS
will have the value 0 and the controlling program can sound an error tone
and ask for a correct command.

180 IF C>1 THEN 190
185 GOSUB 390

186 END

This code is entered when the first letter in the list of valid commands is
entered (Q for Quit). The subroutine to write the file is called. Then the
program terminates.

190 ON C-l GOSUB 220,610
191 GOTO 170

And, finally, this code calls the appropriate subroutine for the other func
tions. Notice that the variable C still has the position of the selected func
tion's letter from the "QMS" list in the POS command. The ON GOSUB

10

command uses the value following ON to pick the correct line number
from the list following GOSUB. A normal GOSUB is then performed to
that line number. In our program, this command goes to the correct
subroutine for the function selected.

When the routine finishes (executes a RETURN), the next line of code
executed is 191. This line takes us back to the code that displays the menu.

715 INPUT "LIST COMPLETE: ":Q$

This line of code makes the search routine wait after it has displayed the
list before returning to the controlling routine, which will then quickly
clear the screen. This will give the user a chance to see the display before
it disappears.

The subroutine doesn't have to do anything but print a message that it
has been entered and return to the menu. Also notice that the order in
which the selection letters are displayed on the menu doesn't have to cor
respond with the order in which they are listed in the POS command.

PART III / LINKED LISTS

Now I will discuss how to sort (alphabetize) the names. There are a
number of ways of doing this and I considered many before settling on one
as the best for this series. It is a little more complicated to explain than
most, but will make a better program in the long run.

It also means that some major changes will have to be made in the rest
of the program as it was developed in previous sections, so the entire pro
gram is reproduced here again.

Most of the methods for sorting data involve the program first accepting
all thedata, then performing the sort. On small computers such as trie /4A,
this can mean a several minute to several hour wait. The method described
here, however, doesn't really sort the names so much as it keeps the names
in an alphabetical list as they are entered. This will mean a slight delay
between entering names into the list, but not enough to be a problem.

This method is called a LINKED LIST. It works like this: along with the
information that is kept for each entry, the location within the list of the
next person (in alphabetical order) is also kept.

In the previous version of the program, every row of the array ADDR$
could be thought of as a line on a blackboard or piece of paper (although
it really in memory) containing a person's name. Now, when another name

11

needs to be inserted into the list of names, if the list is already in
alphabetical order, we simply search down the list until we find the proper
place, and insert the new entry. The only problem with this is that now we
must move all lines below where the new entry is inserted down a line on
the imaginary blackboard or paper. Moving data around in the computer is
like copying the lines by hand for us; it's a very slow process. (In fact it is
the very reason that most of the other sorting methods are so slow.) So
how are linked lists better?

They're better because we don't have to move data around. Instead each
line, along with the person's name and address, contains the line number
of the "next person" (alphabetically) on the list. When we add a person to
the list, we put their information on the next available line on the
blackboard. We then find the name of the person who will come just
before the new entry in the list, and change their "next person" column to
contain the new entry's line number. Similiarly, we find the name of the
person that will follow the new entry in the list, and place the line number
of the next person into the new entry's "next person" column.

Let us see an example of this. Below is a short list of names. The left
most column is the line number of the entry, the middle column is the
person's name, and the last column is the line number of the name follow
ing this entry in alphabetical order.

Line Number Name Ne:

1 Jill 5

2 Sam 0
3

4 Ann 1

5 John 2

In this example, Ann on line 4 is the first person in the list. (We'll talk
later about how we knew this.) If we look at the "next" column, we find
that Jill in line 1 is next, then John on line 5, and finally Sam on line 2.

We knew that Sam was last because when we were building the list, we
made sure that the last person on the list had a 0 in their next column.

When we write a program that uses a linked list, we also have to keep a
variable that contains the line number of the the first name on the list.

Of course, we can no longer search the list by starting at the top and
working down to the bottom. Now we must follow the links given by the
"next" column until we find the name that we are looking for.

Now, lefs examine how a new person gets put into the list. First we must
find a free line in the list. Since we can delete items from the list, a free
line can occur anywhere. (We will examine in detail exactly how we find a
free line in a moment.) For an example we will use the list above, which
has line 3 free. Now let's place a new entry for the name Mike (just pulled

12

it out of my hat) into the list. The name is placed on the free line; then we
must place the line into the linked list.

We do this by scanning the list and finding the line containing the entry
which comes alphabetically just before the one we wish to insert. This is
relatively easy; we just start at the beginning of the list and compare it to
the name we wish to insert. If it is before the new name (alphabeticaly)
then we move on to the next name. When we find the name that comes
after the new entry, the number of that line goes into the "next" column of
the new entry, and the "next" column of the previous line receives the line
number of the new entry.

In our example, this means that we start at Ann (the first person), go next
to Jill, then to John, before we get to Sam. The name Mike will come after
John and before Sam.

To perform the actual insertion, it is first necessary to get a "next person"
number for the new entry; for this use the line number from the "next"
column of the entry just before the new one in alphabetical order. This
will cause the next person to come after the new entry, which is where we
want it. Then all we need is a new "next person" number for the entry we
just took the number from. This number, of course, is the line number of
the new entry. The insertion is now complete.

In the example that we have been using, this means that we would move
the 2 from line 5 to line 3, and put 3 in its place on line 5. The result
would look like this:

Line Number Name Next

1 Jill 5
2 Sam 0
3 Mike 2
4 Ann 1

5 John 3

When looking for free lines, we simply keep the free lines in a linked
list, too. We can do this by keeping a separate variable containing the
number of the first free line. The first free line then has the number of the
next free line in it's "next person" column. When an entry is deleted, that
line number must be added to the list of free lines. The new free line
becomes the first free line. To do this, the value of the variable containing
the first free line is put into the new free line's "next person" column. The
variable for the first free line then changes to the number of the new free
line.

Obviously, this is not a method that people use in real life to solve this
kind of problem, but computers can easily follow the links in the list and
make it appear to the user that the names are alphabetized in the more
standard manner.

13

Lefs examine the program and see how this is done in BASIC.

100 REM A SIMPLE MAILING ADDRESS PROGRAM

BY MIKE SCHULTZ

110 REM WRITTEN 8/4/1983
120 REM CRACKING THE 99/4A
130 OPTION BASE 1

140 DIM ADDR$(20,7),NEXTA(20)
150 MAXADR=20

160 MODADR$="N"
170 CALL CLEAR

180 PRINT " THE MAILING LIST MANAGER":

190 INPUT "READ IN OLD LIST FROM TAPE?":

Q$
200 IF Q$="Y" THEN 260
210 IF Q$<>"N" THEN 190
220 LSTADR=0

230 FIRSTA=0

240 FREE=0

250 GOTO 270

260 GOSUB 1510

270 CALL CLEAR

280 PRINT " THE MAILING LIST MANAGER"

290 PRINT : :" M - MODIFY THE LIST": :"

S - SEARCH THE LIST": :" Q - QUIT THE MA

NAGER": : : :"SELECT A FUNCTION:"

300 CALL KEY(0,F,S)
310 IF S=0 THEN 300

320 CALL HCHAR(23,22,F)
330 C=POS("QMS",CHR$(F),l)
340 IF C>0 THEN 370

350 CALL SOUND(500,220,0)
360 GOTO 300

370 IF C>1 THEN 410

380 IF MODADR$="N" THEN 400
390 GOSUB 1400

400 END

410 ON C-l GOSUB 430,1620
420 GOTO 270

14

The previous lines are essentially the controlling routine described in the
last article, with a few additions. Lines 230 and 240 initialize two new
variables, FIRSTA and FREE. These are the variables that indicate the first
lines in the lists of addresses and free lines. Ifthere are no names on the
list (a new list), then FIRSTA and FREE will have zero as their values.

One other new addition to this code is the array NEXTA on line 140. It is
a numeric array that contains the next person (or address) line number for
each line in array ADDR$.

430 REM THIS ROUTINE ACCEPTS NAMES AND A

DDRS

440 CALL CLEAR

450 PRINT "MODIFY THE MAILING ADDRESSES"

460 PRINT : :" A - ADD TO THE LIST": :"

M - MODIFY AN ADDRESS": :" D - DELETE AN

ADDRESS": :" Q - RETURN TO MENU"
470 PRINT : : :"SELECT FUNCTION:"

480 CALL KEY(0,F,S)
490 IF S=0 THEN 480

500 CALL HCHAR(23,20,F)
510 C=POS("QAMD",CHR$(F),l)
520 IF C>0 THEN 550

530 CALL SOUND(500, 220,0)
540 GOTO 470

550 IF C>1 THEN 570

560 RETURN

570 ON C-l GOSUB 590,730,960
580 GOTO 440

This is the menu routine for the code that modifies names on the mail
ing list. It follows the same ideas described in the last section. From this
menu, the user can enter commands toadd a name to the list, modify an
address on the list, or delete a name.

590 PRINT "ADD ADDRESS"

600 IF FREE=0 THEN 640

610 CURADR=FREE

620 FREE=NEXTA(FRE-2)
630 GOTO 690

640 IF LSTADR<MAXADR THEN 670

650 PRINT "SORRY, ADDRESS TABLE FULL"

15

660 RETURN

670 LSTADR=LSTADR+1

680 CURADR=LSTADR

690 GOSUB 1150

700 GOSUB 1260

710 MODADR$="Y"
720 RETURN

This routine handles the addition of a new name to the list. First it will
find a line on which to place the name. If there are no lines available in
the middle of the array (FREE=0), then LSTADR will be used to place the
new entry on the line after the very last used row in the array. LSTADR is
used to determine this row in much the same way it was used in the
previous version of this program.

If there is an available line from the middle of the array, then the number
of that line will be in FREE. Note in line 620 the code for obtaining the
next value for FREE.

In either case, the line number of the available line is placed in the
variable CURADR. Then the subroutine at line 1150 is called to get the in
formation from the user for the new entry (except, of course, the number
of the next alphabetical line). This subroutine then calls the routine at
1260to place the name into the correct location in the linked list.

730 PRINT "MODIFY ADDRESS"

740 GOSUB 1800

750 IF CURADR>0 THEN 770

760 RETURN

770 PRINT

780 PRINT

790 PRINT

800 PRINT

810 PRINT

820 PRINT

830 PRINT

1)NAME: ";ADDR$(CURADR,1)
2)ADDR: ";ADDR$(CURADR,2)
3) "7ADDR$(CURADR,3)
4)CITY: ";ADDR§(CURADR,4)
5)STATE:";ADDR$(CURADR,5)
6)ZIP: ";ADDR$(CURADR,6)
7)PHONE:";ADDR$(CURADR,7)

840 PRINT :"WHICH LINE TO CHANGE";
850 INPUT I

860 IF K=0+I>7 THEN 940
870 INPUT "NEW LINE: ":ADDR$(CURADR,I)
880 IF I>1 THEN 950
890 IF BACK1=0 THEN 920
900 NEXTA(BACK1)=NEXTA(CURADR)
910 GOTO 930

16

920 FIRSTA=NEXTA(CURADR)
930 GOSUB 1260

940 MODADR$="Y"
950 RETURN

This routine allows the user to modify the information on a line. It calls
the routine at 1800 to get from the user the name of the person whose ad
dress should be modified. This routine will search the list and return that
person's line number in the variable CURADR. It will also, by the way, set
the variable BACK1 to the line number of person in the list just before the
line we wish to modify.

This subroutine then displays the current contents of the line, asks for
the part of the line to change, and allows the user to enter the new value
(lines 770-870).

Now all is well unless the user modifies the name, in which case it may
have changed position in the list. Program line 880 checks for this and, if
the name was changed by the user, then lines 890-930 essentially remove
the line from the linked list (without putting it on the list of available lines)
and then call the routine at 1260 again to search the list and insert the
line.

960 REM THIS ROUTINE DELETES A NAME FROM
THE LIST

970 PRINT "DELETE ADDRESS"
980 GOSUB 1800

990 GOSUB 1700

1000 INPUT "DELETE (Y/N)? ":A$
1010 IF A$="Y" THEN 1040
1020 IF A$<>"N" THEN 1000
1030 RETURN

1040 IF BACK1=0 THEN 1070

1050 NEXTA(BACK1)=NEXTA(CURADR)
1060 GOTO 1080

1070 FIRSTA=NEXTA(CURADR)
1080 NEXTA(CURADR)=FREE
1090 FREE=CURADR

1100 FOR 1=1 TO 7

1110 ADDR$(CURADR,I)=""
1120 NEXT I

1130 MODADR$="Y"
1140 RETURN

17

This routine removes a name from the list. The routine at program line
1800 is called again to ask the user for the name of the person to be
removed from the list. It then finds the line number they are on. The
routine at 1700 is called to display the person's information so that the user
can be sure of deleting the right person's entry. Finally the user is given
one last chance to back out of the delete in lines 1000-1030.

If the user really does wish to delete the name and address, then the line
number is placed on the free line list. After that, the information on the
line is deleted (ifs completely gone, ifs too late now to change your
mind!).

1150 REM THIS ROUTINE ACCEPTS A SINGLE N

AME

1160 REM AND PLACES IT IN THE ROW INDICA
TED BY "CURADR"
1170 INPUT "NAME: ":ADDR$(CURADR,1)
1180 INPUT "ADDR: ":ADDR$(CURADR,2)
1190 INPUT "ADDR(2): ":ADDR$(CURADR,3)
1200 INPUT "CITY: ":ADDR$(CURADR,4)
1210 INPUT "STATE: ":ADDR$(CURADR,5)
1220 INPUT "ZIP: ":ADDR$(CURADR,6)
1230 INPUT "PHONE: ":ADDR$(CURADR,7)
1240 RETURN

This routine gets the information from the user about a new address. The
variable CURADR indicates on which line of the array ADDR$ the infor
mation should be placed.

1250 REM THIS ROUTINE LOCATES A NAME'S C
ORRECT LOCATION IN THE LIST AND PLACES I
T IN THE LIST

1260 I=FIRSTA

1270 BACK1=0

1280 IF 1=0 THEN 1330
1290 IF ADDR$(CURADR,1)<ADDR$(1,1)THEN 1
330

1300 BACK1=I

1310 I=NEXTA(I)
1320 GOTO 1280

1330 IF BACK1=0 THEN 1370
1340 NEXTA(CURADR)=NEXTA(BACK1)

18

1350 NEXTA(BACK1)=CURADR
1360 RETURN

1370 NEXTA(CURADR)=FIRSTA
1380 FIRSTA=CURADR

1390 RETURN

This routine finds the correct location within the linked list for the name
on the line indicated by CURADR. It modifies the linked list to accomplish
this.

It works like this: the variable I will be set to the line number of the first
line on the alphabetized list. The name on line I is compared to the name
contained on the new line, indicated by CURADR. The IF statement will
fail if the name indicated by CURADR is alphabetically past the name in
dicated by I. This means that we must look farther along the list. We do so
by making the variable I contain the line number of the next line in the list
(program line 1310). But before we do, remember that, in order to do the
insert, we also need to know the line number of the line before the new
line in the list. So we'll save a copy of the current line into BACK1, just in
case the next value of I indicates a name alphabetically after the name in
the line we want to add.

When the IF statement finds the correct location in the list, BACK1 will
contain the line number for the name justbefore the newentry in the list.
Remember, the NEXTA column of the entry indicated by BACK1 saves the
number of the line that follows the BACK1 entry; thus, this is the line that
will follow the new entry. The insertion can now be performed. Since the
NEXTA column of the line contains the number of the line to follow the
new entry, we move this number to the NEXTA column of the new entry.
And, since the new entry is to follow the BACK1 entry in the list, we place
the number of the new line (CURADR) into the NEXTA column of the
BACK1 entry and we are finished.

By now I am sure that I have given you a headache. If it is still not clear
exactly what is going on, take a pieceof paperand draw the process out.
It is really quite simple, it is not a technique that people use everyday, so it
takes some time to become comfortable with it.

The rest of the routine (program lines 1280, 1330 and 1370-1380) all deal
with the case when the line to be added is at the top of the list. In this
case, the variable FIRST needs to be updated, instead of the line indicated
by BACK1.

1400 REM THIS ROUTINE SAVES THE ADDRESS
TO FILE

1410 OPEN #1:"DSK1.CS1",SEQUENTIAL,INTER

19

NAL,OUTPUT,FIXED 192

1420 PRINT #1:LSTADR,FIRSTA,FREE
1430 FOR 1=1 TO LSTADR

1440 FOR J=l TO 7

1450 PRINT #1:ADDR$(I, J),
1460 NEXT J

1470 PRINT #1:NEXTA(I)
1480 NEXT I

1490 CLOSE #1
1500 RETURN

This routine is essentially the same as the save routine in the previous
version of the program, except that the current values of FIRSTA and FREE
also need to be saved (program line 1420) and the value of NEXTA for each
line needs to be saved (program line 1470).

1510 REM THIS ROUTINE READS THE ADDRESSE

S FROM FILE

1520 OPEN #1:"DSK1.CS1",SEQUENTIAL,INTER
NAL,INPUT ,FIXED 192
1530 INPUT #1:LSTADR,FIRSTA,FREE
1540 FOR 1=1 TO LSTADR

1550 FOR J=l TO 7

1560 INPUT #1:ADDR$(I, J),
1570 NEXT J

1580 INPUT #1:NEXTA(I)
1590 NEXT I

1600 CLOSE #1

1610 RETURN

This is the routine that reads the file in from the cassette. Notice that it is
essentially the reverse of the save routine.

1620 REM THIS ROUTINE PRINTS THE INFORMA

TION IN ADDR$
1630 CURADR=FIRSTA

1640 IF CURADR=0 THEN 1680

1650 GOSUB 1700

20

1660 CURADR=NEXTA(CURADR)
1670 GOTO 1640

1680 INPUT "LIST COMPLETE: ":Q$
1690 RETURN

This routine displays the current list to the user. It takes each line of the
list, starting with the first line, calls the routine at 1700 to display the con
tents of the line, and finds the next line by getting its number from the
NEXTA column of the current line.

Coming Attractions: This routine will be greatly enhanced in the next
section to allow the user to find an individual name on the list.

1700 PRINT "NAME: ";ADDR$(CURADR,1)
1710 PRINT "ADDR: ";ADDR$(CURADR,2)
1720 IF ADDR$(CURADR,3)="" THEN 1740
1730 PRINT " ";ADDR$(CURADR,3)
1740 PRINT "CITY: ";ADDR$(CURADR,4)
1750 PRINT "STATE: ";ADDR$(CURADR,5);
IP: ";ADDR$(CURADR, 6)
1760 PRINT "PHONE: ";ADDR$(CURADR,7)
1770 PRINT

1780 RETURN

This routine displays for the user the current contents of the line in
dicated by the variable CURADR. It is called by several routines (which
allows the user to see the lisfs entries displayed in the same format ever-
time). It displays the line currently being processed.

1790 REM THIS ROUTINE SEARCHES FOR A NAM

E AND RETURNS T'l'S LOCATION IN "CURADR".

"BACK1" IS ALSO SET UP

1800 INPUT "NAME: ":A$
1810 IF A$<>"" THEN 1840
1820 CURADR=0

1830 RETURN

1840 BACK1=0

1850 CURADR=FIRSTA

1860 IF CURADR=0 THEN 1910

1870 IF ADDR$(CURADR,1)=A$ THEN 1930

21

1880 BACK1=CURADR

1890 CURADR=NEXTA(CURADR)
1900 GOTO 1860

1910 PRINT "NAME NOT FOUND"

1920 GOTO 1800

1930 RETURN

And finally, this is the routine thats searches the list to find for the user
the line that matches the name provided by the user.

First it asks for the name to be found. It then starts at the first of the list
looking for the name. In case the name isn't actually on the list, we check
to see if we have reached the end of the list (line 1860). If we haven't
reached the end, we check to see if it is the one we want (line 1870). If
not, then we proceed to the next line. If it is, then we return the calling
routine with the desired line number in CURADR.

If we run out of list, the name is not there and we tell the user this. We
allow the user to enter the name again (lines 1910 and 1920).

That is the end of the program! Next, we'll discuss how to make the
routine that displays the names on the list (the search function), a bit more
usable.

PART IV / USER FRIENDLINESS

This section concludes our discussion about the program that we have
been using as an example, the simple mailing list program. In the previous
sections we have taken this program from an idea to an actual program
capable of 1) adding a person's name and address to the list, 2) deleting
the person from the list, 3) modifing a person's information, 4) storing and
retreiving the list to and from cassette, and 5) displaying the list to the user.

Now there are only two things left to do. We must change the routine
that displays the list to the screen to instead ask for the name of a person,
search the list for that person, and display the address. We must also
change the routine that searches the list to allow the user to enter a guess
for the person's name.

Both of these ideas fall under the concept of "User Friendliness". This
concept can be loosely thought of as making a program as easy to use as
possible. In this case, it is allowing a user to request the name of a par
ticular individual directly without having to watch every name on the list

22

slowly scroll by. In this case, it also involves building into one of the fun
damental routines of the program, the ability to allow the user to pick one
name from the many that may match the user's "guess".

Unfortunately, there are very few general techniques that we can use to
implement user friendly programs. But I do have a few rules that I follow:
1) Design the program so that it can be easily changed later. 2) Save as
many of the user friendly features for implementing last. Get the heart of
the program working first. 3) Pay attention to your (and other's) reactions to
using the program. The feeling or comment that "it sure would be easier
if...", is a clue to where improvement can be made, and what form it
should take. As you become more experienced in programming, then you
will remember these user friendly features when you write other programs
and design them in from the start.

Now, onto the new routine to display addresses.

1620 REM THIS ROUTINE SEARCHES THE INb'OR

MATION IN ADDR$
1630 CALL CLEAR

1640 PRINT TAB(8);"NAME SEARCH": :
1650 GOSUB 1800

1660 IF CURADR=0 THEN 1690

1665 PRINT

1670 GOSUB 1700

1680 GOTO 1640

1690 RETURN

This routine may be entered into the program from the last section by
simply loading the old program using the "OLD" command (you did enter
the program from last time didn't you?) and entering the above lines direct
ly. This will replace the routine in the old program and you can see this
new routine works.

This routine is quite simple, like the routine it replaces. At line 1650, the
search routine located at 1800 is called to iocate the name to display the
address for and if that name exists then the routine at 1700 is called to per
form the actual display.

Now enter the lines below to replace the routine at 1800 that searches
the list and see now it functions.

To the user of the program this routine has the following appearence:
The user enters the name they are looking for. This routine finds all the
names in the list that match the name entered and displays them. The user
then is requested exactly which one of the displayed names is desired and
location of that name is returned to the calling routine.

23

Please note that this routine, when it is searching for matches, it is look
ing at only the first part of the names in the list and comparing only as
many characters as in the orginal name to them. This means that if we
want to pick a name from the D's we enter a "D" and if we want to pick
from the David's we enter "DAVID".

1790 REM THIS ROUTINE SEARCHES FOR A NAM
E AND RETURNS ITS LOCATION IN "CURADR".
"BACK1" IS ALSO SET UP

1800 INPUT "NAME: ":A$
1810 IF A$<>"" THEN 1840
1820 CURADR=0

1830 RETURN

1840 BACK1=0

1850 CURADR=FIRSTA

1860 L=LEN(A$)

This part of the routine sets up for the search. Note line 1860 which
finds the length of the name that we are looking for.

1870 IF CURADR=0 THEN 2160

1880 IF SEG$(ADDR$(CURADR,1),1,L)>=A$ TH
EN 1920

1890 BACK1=CURADR

1900 CURADR=NEXTA(CURADR)
1910 GOTO 1870

This part of the routine searches the list for the first name that matches.
Notice the SEG$ string command which is used to isolate only that part of
the name on the list that we wish to look at.

1920 J=CURADR

1930 1=0

1940 C=l

1950 IF CURADR=0 THEN 2040

1960 IF SEG$(ADDR$(CURADR,1),1,L)>A$ THE
N 2040

1970 1=1+1

24

1980 PRINT I;ADDR$(CURADR,1)
1990 CURADR=NEXTA(CURADR)
2000 C=C+1

2010 IF C<=22 THEN 1950

2020 INPUT "ENTER # OF DESIRED NAME OR

0 TO CONTINUE: ":N

2030 IF N<=0 THEN 1940 ELSE 2070

2040 IF 1=0 THEN 2160

2050 PRINT "END OF LIST"

2060 INPUT "ENTER # OF DESIRED NAME: ":N

2070 IF (N<0)+(N>I)THEN 2060
2080 IF N=0 THEN 2160

This routine displays all the names in the list that match the desired
name. Note that variable I is used to keep a count of the matched names.
It is displayed with each name so that later can give the number of the
desired name. Note thatvariable C is used to keep a count of the number
of names currently displayed on the screen. When thescreen is full, this
part of the routine pauses to allow the user time to examine the screen or
to select the desired name, if it is already visible.

2090 CURADR=J

2100 IF N=l THEN 2150
2110 BACK1=CURADR

2120 CURADR=NEXTA(CURADR)
2130 N=N-1

2140 GOTO 2100

2150 RETURN

This part of the routine is entered whenever the user has selected the
number of the desired name. This part resets CURADR to the location of
the name that matched. Then, CURADR is zipped down the list the
desired number of names and control is returned to the calling routine.

2160 INPUT "NAME NOT FOUND":A$
2170 CURADR=0

2180 BACK1=0

2190 RETURN

25

This partof the routine is entered when either the routine or the user
can't find the desired name. The routine admits failure and returns.

And that concludes this tutorial of BASIC programming dealing with the
mailing program as an example.

Happy computing !

26

LOGICAL OPERATORS
Brian Prothro

PARTI

Learning to use logical operators isa lot like learningto juggle.Atfirst it's
total confusion, but once you master the task it'squite an impressive trick.
Attempts to encode logical algorithms in Basic, without understandinglogi
cal operators, can createcumbersome code withwith lengthly calculation
times. This tutorial provides a few examples on how to reduce your code to
a compact logical algorithm. You should have a familiar understanding of
Basic before you attemptthistutorial. If you arevery familiar, hangin there,
we'll soon get off the ground.

Unfortunately the most clearly understandable format for logical opera
tors (AN D,OR, NOTand XOR) isavailableonly with extended Basic.Howev
er regular Basiccan accomplish the same task using the mathmatical sym
bols (+) plus, (-) minus, (*) multiply, and(=) equals. First wewill learn simple
theory using extended Basic, it iseasierto read, then wewill duplicate the
code in regular Basic.

27

Here are the definitions for two of the four operators.

AND - Thestatement isTRUEif,and only ifboth expressions are TRUE. AND
means both.

OR - ThestatementisTRUEifoneexpression,orbothexpressionsareTRUE.
OR means one or both.

What do we mean by this? Try applying the OR definition to the coded
example below.

OR example: IF (A=10) OR (B=20) THEN PRINT "SUCCESS"

Reads like English, right! You are testing for the truth of two expressions.
IfA=10and/or ifB=20. Bythe OR definition, ifone ofthe expressions isTRUE,
or ifboth expressions are TRUE then the whole statement is TRUE, and the
word SUCCESS will be printed bythe computer. OR means one or both. The
only other possible result: Ifand only if both expressions in the statement
are FALSE will the computer not print SUCCESS.

You have probably seen that the (IF... THEN ...)statement is central to
the logical process. Ifthe resultofyour logicalcomparison afterthe IFisTRUE,
then your code after THEN will execute.

AND example: IF (A-10) AND (B-20) THEN PRINT "SUCCESS"

Withthe AND statement both expression must be TRUE for the statement
to be TRUE. Iffor instance, the variable (A) in the above statement were 5
when the expression asks forit to be equal to 10, then thisexpression inour
statement would be FALSE, the statement would not print SUCCESS. The en
tire statement would not be TRUE because both expressions are not TRUE.
Simple !

Here are two AND-OR truth tables. With these tables as a reference, you
can write or decifer logical statements with twoexpressions. The tables are
read horizontally, withthe results ofthe statementgiven. See howthe tables
reflect the above definitions. Try each one mentally.

AND TABLE

LOGICAL

OR TABLE

LOGICAL

(A) (B) RESULT (A) (B) RESULT

TRUE TRUE TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE FALSE TRUE

FALSE TRUE FALSE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE FALSE FALSE

28

All possible results for two expresionscanbededucedfrom theabove table.
Lets pick up the pace.

PART II

In a given program, you may eventually ask for a users input. Letssay you
only want this input to be within certain numerical limits. Forexample, the
number 2 and all numbers between 10 and 15. Examine the program code
below and see how the problem is solved.

100 PRINT "INPUT YOUR NUMBER"

200 INPUT X

300IFX=2 OR (X>=10ANDX<=15) THEN PRINT "ACCEPTED" ELSE 100
400 END

With the combined logical operators, we can see that if the users entry is
not 2, or a number from 10 to 15,then program control returns and asks that
the number be entered again. In this way you can screen a users input for
correct entries.

Before we continue, let's understand what the computer does when it in
terprets a logical operator. The computer weighs a statement such as A=10,
ifthis expression isTRUE then 99/4Alogicassigns a value of (-1) to the expres
sion. Ifthe expression is FALSE, a zero (0) isassigned. The value of this infor
mation is revealed when we use the regular Basic version of logical opera
tors.Although the extended Basicversion iseasier to understand, the regular
version ismore revealing, and ismathmaticallycloser to reality. It'sall simple
math !

These examples show two EQUIVALENT expressions.

EXTENDED: IF A=10 AND B=20 THEN PRINT "SUCCESS"

REGULAR: IF (A=10)*(B=20)< >0 THEN PRINT "SUCCESS"

Tosee how this regular Basicstatement iscomputed, lets assume that both
experssionsforAand Bare TRUE (-1), making the statement TRUE(-1). Since
the computer has assigned a valueof (-1) to each expression, the resultwould
look like this:

REGULAR: IF (-1)*(-1)< >0 THEN PRINT "SUCCESS"

29

Since (-I)X(-I) - 1,one isnot equal to zero, as the statement requires. Soour
equation/statement isTRUE, and the word SUCCESS will be printed bythe
computer. Tomake a long lessonshort, examine how the FALSE outcome below
is obtained.

IF (0)*(-D< >0 THEN PRINT "SUCCESS"

(0)X(-1) - 0,since zero isnot greateror lessthan (0),as the statement requires,
the statement is FALSE and SUCCESS will not be printed.

Letme now giveyou some standard formatsforcoding regular Basicstate
ments, although they can be written any number of different ways.

AND - Multiply the two expressions and check ifgreater or less than zero.

EXTENDED: IF A=10 AND B=10 THEN ...

REGULAR: IF (A=10)*(B=10)< >0 THEN . ..

OR - Add the two expressions and check if less than zero.

EXTENDED: IF A=10 OR B=20 THEN .. .

REGULAR: IF (A=10)+(B=20)<0 THEN . . .

The logical charts we examined before may now be viewed in a different
light, a mathmatical one.Theyare,ofcourse, equivalenttotheAND/ORcharts
shown previously.

(A)

AND logic chart
LOGICAL

(B) - RESULT (A)

OR logic chart
LOGICAL

(B) = RESULT

-1

-1

0

0

-1 -1

0 0

-1 0

0 0

-1

-1

0

0

-1 -1

0 -1

-1 -1

0 0

At thispointyou should putthisbookdownand physically trysomeexam
plesbeforeyougoon. You oftensee thissuggested, but in thiscase it'sgood
advice.

30

PART III

Iwill outline NOT and XOR briefly. With the logical charts on NOT and
XOR youshould be able to deduce what youneed when usingthem. These
lasttwo of the four operators reverse our thinking a bit.

DEFINITIONS:

XOR - The statement isTRUE if, and only if, ONE of the expres
sions are TRUE, but not ifboth are TRUE. XOR means either
one, but not both.

NOT - Isusedinconjunctionwithotheroperatorstoreversealogi-
cal outcome.

NOT LOGIC CHART

(A)

TRUE

FALSE

NOT(A)

FALSE

TRUE

NOT simply reverses logic,
(0) becomes (-1),
and (-1) becomes (0).
NOT can also reverse the logic
of an entire statement. It is
used where needed.

XOR LOGIC XOR LOGIC CHART
(A) (B) OUTCOME

(A) (B) RESULT

-1 -1 0 TRUE TRUE FALSE
-1 0 -1 TRUE FALSE TRUE
0 -1 -1 FALSE TRUE TRUE
0 0 0 FALSE FALSE FALSE

Get ready, these are equivalent statements for XOR:

EXTENDED: IF A=2 XOR B=4 THEN ...

REGULAR: IF-(((A=2 + B=4)<0)*((A=2 * B=4)=0))< >0THEN

31

Given this XORequation, we can reduce itstep bystep. Firstthe computer
reduces an equation to itssimplestform, then depending on ifthe expression
is TRUE or FALSE, it assigns a (-1) or (0) to the expressions. We now will as
sume, for this example, that Aisnot equal to TWO (FALSE), and that Bisequal
to FOUR (TRUE). The equation appears like this, and the final result will be
TRUE.

IF-(((A=2 + B=4)<0) * «A=2 * B=4)=0))<>0 THEN...

1) -(((o + -1)<0) * ((0 * -1)=0))<>0 THEN

2) -((-1 <0) * (0 =0))< >0 THEN

3) -((-1) * (-1))<>o THEN

4) -(1)<>0

5) -1 <>0

6) -1

Note that most of the steps are purely math, but in steps three and six
the computer is assigning logical values respective to the validity(TRUTH)
of each our statements.

XOR logic states that ifonly one expression is TRUE then (as is the case
above), the statement is TRUE (-1). Asyou can tell, it's easier to look at the
logic table and write your code than to figure itout from scratch. Given the
program resultsyou require,and one or more ofthe logicaltables/operators,
you can solve any problem.

NOTsimply reversesthe logicon an expression or on an entire state ment.
It is used as needed. Ifexpression (B) isTRUE then NOT(B) woul d be FALSE.
The code would look like this:

IF A=2 AND NOT B=4 THEN . . .

Forexample, ifyou wanted all resultsof the AND table to be reversed, then
you would write yourcode, as shown below, with the NOToperator leading
your statement.

IF NOT (A=2 AND B=4) THEN .. .

NOT simply reverses the logic. (0) becomes (-1) and (-1) becomes (0).

32

PART IV

Logical operations can be used to compare filenames,character strings, or
numbers, or to identify a particular segment oftext. This example is valid.
It checks to see if the ASCII characters in variable A$ are equivalent to aseg
mentof the string B$, or ifA$ equals the string "KLMN".

IF A$=SEG$(B$,4,LEN(B$)) OR A$="KLMN" THEN . . .

For example, we could use acall key statement in aprogram. Ausers input
could be screened so that only the ASCII characters 38,40 and 45 through
48 are accepted.

100 CALL KEY(A)

200IFA=38ORA=40OR(A>=45ANDA<=48) THEN300 ELSE 100
300 PRINT "CHARACTER ENTRY ACCEPTED"

ORDER OF PRECIDENCE

When the computerexecutesaseries ofexpressions containing logical oper
ators, it executes them in a specific order. Theorderof precidence (first to
last) is NOT, XOR, AND and OR. So ifyou have several ofthese in astatement,
the order ofexecution will not necessarily be from left toright. Ifyouarenot
careful, your code may kick up some unexpected results.

The first statement is an example. The second statementcontains parenthesis
and indicates thecomputers order ofpreference for the example. Innermost
parenthesis are always executed first.

WE SEE: IF A-10 AND B-17AND D-Y OR F-27 AND NOT E=12 THEN . . .

COMPUTER: IF ((A-10 AND B-17) AND D-Y) OR (F-27AND (NOT E-12)) THEN

NOT is executed first, so it is shown in the innermost parenthesis. Next,
expressions A=10, B=17, and D=Y are reduced to a logical TRUE or FALSE.
Then expressions F=27, and E=12. Last, theremaining values on both sides
ofthe OR operator are reduced, since OR is last in the order ofpreference.
Well see this type ofsolution in more detail with the next example, don't fret.

Ifthisorderdidnotgive us theresults our program required, we could force
the order of execution by including our own parenthesis. Lets do that using
the same expression. Iwill choose an arbitraray order by including parenthesis.

EXT. IFA-10 AND ((B-17AND D-Y) OR (F-27)) AND NOT E=12 THEN

33

Here is what the solution would look likegiven the following conditions.

A=10, FALSE B=17, TRUE D=YTRUE F=27, FALSE E=12, TRUE

IF A-10 AND ((B=17 AND D=Y) OR (F=27)) AND NOT E=12 THEN ...

LOGICAL EQUIVALENT: Rememberthis isa logicalsolution only,not math.

IF 0 AND ((-1 AND -1) OR (0)) AND - (-1) THEN . .

1) IF 0 AND ((-1 AND -1) OR (0)) AND 0 THEN . .

2) IF0AND((-1) OR 0)AND 0 THEN..

3) IF 0 AND (-1) AND 0 THEN . .

4) IF 0 AND 0 THEN . .

5) IF 0 THEN . .

1). TheorderstartswithE=12 having itslogicreversed bythe NOT operator.
Its TRUE becomes FALSE.

2). Next, the expressionsB=17 and D=Y. Theyare both TRUE so thisAND
comaprison results in TRUE.

3). Thenthissame resultwouldbe comparedwith F=27bythe ORopera
tor. F=27 is FALSE but in an OR statement only one expression is re
quired to be TRUE, so this results in TRUE. Now there remains three
expressions each seperated by AND's.

4). The first two, FALSE and TRUE result in FALSE (0).
5). Then this result iscomparedwith the lastvalueof . Again, since

both expressions are not TRUE, the final result is FALSE. Since the final
result of our statement is FALSE (0), our task will not execute.

Iwill finish this section with something simple, these two statements are
equivalent.

EXT. IF B>10 AND B<20 THEN PRINT "SUCCESS"

REG. IF 10<B<20 THEN PRINT "SUCCESS"

As you can deduce it is the ability of AND,OR, NOT & XOR to combine
in any number of waysthat allows you to compare and check an incredible
numberofconditions inone compact statement. (Ifyousodesire.) Like Isaid,
it's likelearningto juggle.When writingyourcode it requiresthought to en
sure that all possible combinations of your logicalexpressions will result in
the proper execution of your code. Ifyou find that you have trouble writing
a statement, make a loop that allows you to keep entering different values
for your variables. Then watch to see what your PRINT statement displays.

34

PART V—PROGRAM

As you can see the flexibility of logical expressions can be a trying ex
perience, but the effort is well worth the trouble in execution time and
reduction of program code.

Now I'll describe two logical statements from an example program. The
only thing this program does is allow you to input the upper,lower,left, and
right boundries within which a cursor will have limited movement. The
first statement we will look at validates your input. The second statement
is somewhat more complex.

100 REM CRACKING THE 99/4A
110 REM LOGIC DEMO #1

120 REM BRUCE WYCHE 02/08/84
130 CALL CLEAR

140 CALL SCREEN(2)
150 PRINT TAB(7);"LOGIC DEMO PROGRAM":TA
B(7);"CRACKING THE 99/4A"
160 FOR 1=1 TO 11

170 PRINT

180 NEXT I

190 PRINT " PRESS ANY KEY TO CONTINUE"

200 CALL SCREEN(15)
210 CALL KEY(3,K,S)
220 IF S=0 THEN 210

230 CALL CLEAR

240 INPUT " ENTER LEFT BORDER COLUMN #

(3 <= LB < 29) ":LT
250 IF (LT>2)*(LT<29)>0 THEN 280
260 PRINT "ERROR, TRY AGAIN"
270 GOTO 240

280 INPUT " ENTER RIGHT BORDER COL #

("&STR$(LT)&" < RB <=30) ":RT
290 IF (RT>LT)*(RT<31)>0 THEN 320
300 PRINT "ERROR, TRY AGAIN"
310 GOTO 280

320 INPUT " ENTER TOP BORDER ROW #

(1 <= TP <=23) ":TP
330 IF (TP>0)*(TP<24)>0 THEN 360
340 PRINT "ERROR, TRY AGAIN"

350 GOTO 320

360 INPUT " ENTER BOTTOM BORDER ROW #

("&STR$(TP)&" < BM <=24) ":BM
370 IF (BM>TP)*(BM<25)>0 THEN 400

35

380 PRINT "ERROR, TRY AGAIN"
390 GOTO 360

400 CALL CLEAR

410 CALL HCHAR(TP,LT,30,RT-LT+1)
420 CALL HCHAR(BM,LT,30,RT-LT+1)
430 CALL VCHAR(TP+1,LT,30,BM-TP-1)
440 CALL VCHAR(TP+1,RT,30,BM-TP-1)
450 R=TP

460 C=LT

470 CALL GCHAR(R,C,GC)
480 CALL HCHAR(R,C,30)
490 CALL KEY(0,K,S)
500 CALL HCHAR(R,C,GC)
510 IF S=0 THEN 480

520 REM COMPACT EXAMPLE OF LOGI
CAL OPERATORS

530 REM HCHAR WILL LEAVE ONE OF T
HREE CHOICES

540 REM DEPENDING ON WHICH KEY

WAS PRESSED

550 REM LEAVE OLD CHAR 'GC IF K
EY WAS ARROW, 'ENTER' OR 'Fctn
6'

560 REM LEAVE ' ' IS KEY WAS NON-

PRINTABLE CHAR

570 REM LEAVE NEW KEY PRESS AND
MOVE RIGHT IF KEY BETWEEN 32,

127
580 CALL HCHAR(R,C,GC*(K>7)*(K<14)+32*(K
>131)*(K<153)+K*(K>31)*(K<128))
590 IF K<>12 THEN 610

600 GOTO 450

610 IF K<>13 THEN 650

620 R=R-(R<BM)
630 C=LT

640 GOTO 470
650 R=R+(K=10)*(R<BM)-(K=11)*(R>TP)
660 C=C-(K=8)*(OLT)-((K>31)*(K<128)-(K=
9))*(C<RT)
670 GOTO 470

680 REM ADD YOUR OWN PROGRAM

690 REM CODE FROM HERE, DOWN

700 REM YOU ARE ON YOUR OWN.

710 END

36

Your left limit is entered in line 240. The input must be within the boun-
dries of the screen and is checked by line 250. It uses AND logic, so both
clauses must be true. This expression checks to see that the left boundry is
greater than 2 and less than 29.

IF (LT>2)*(LT<29)< >0 THEN 280

When both conditions are true your entry is accepted and line 280, the
next entry, is executed. In this case the above expression would look like
this;

IF(-1)*(-1)>0THEN280
true true

If either condition is false the returned value is zero so line 260 would
print an error message and reask you to enter your input.

You can see that the statements in lines 290,330, and 370 are similar for
the other boundries.

Line 580 shows three tests. CALL HCHAR will leave the old character
"GC" if the key pressed was an arrow, enter, or function 6. It leaves a space
if the key pressed was a non-printable character. It leaves the new key
pressed and moves right if the key was between ASCII 32 or 127.

Note: 'GC is the ASCII code for the original character in that row &col.

Line 580.

CALLHCHAR(ROW,COL,GC*(KEY>7)*(KEY<14)

+ 32*(KEY>131)*(KEY<153)

+ KEY*(KEY>31)*(KEY<128)

The code above is shown broken into ifs three logical tests. The
character printed by 'HCHAR' will be the sum of the three tests, each
seperated by "+".
First test; If 'KEY' was an arrow key (ASCII value 8,9,10or 11), then you get
'GC as the result. The other SUMS are each zero and 'fall-ouf of the
equation.

Second test; If 'key' was not printable : (ASCII 131 -> 153), then leave a
space.

Third test; If 'KEY' was a printable character (ASCII 32 -> 127), then
display it.
Note in this example that each logical test range must not overlap.

This short example is loaded with other logical expressions. You might
try a few on your own to increase your familiarity with this type of code.
Good luck!

37

GAMES

Extended Basic

CHECKERS FOR 16K

Almost everyone has enjoyed a game of checkers at one time or another,
so it is inevitable that some version of checkers would eventually make it
into your computer. This version of checkers fits into 16K of console
memory, while offering a fast game for beginners. The moves are timed
and the time allowed for a player to make a move is decided by the level
of play chosen. Level one allows a player 20 seconds to move whereas
level nine allows 180 seconds.

The computer displays the game board and clock, crowns kings, and as
you can guess, takes advantage of any multiple jumps left by the human
challenger! By removing the introduction or using the 32K memory expan
sion, one could add a few subroutines that would make this program quite
a contender.

All the rules are followed, including forcing the challenger to make any
available jumps. Good luck!

100 REM CHECKERS.TO RESIGN ENTER 'FCTN 8

110 REM ALLEN HOLLEY

120 REM CRACKING THE 99/4A
130 CALL CLEAR :: CALL HEADER

140 DIM Z(8,8)

39

150 DATA 1,0,1,0,0,0,-1,0,0,1,0,0,0,-1,0
#-1,9
160 CALL CHAR(112,"00000000070F0F0F0F0F0
F0700000000F0F0F0E00000000000000000E0F0F

0F0"):: CALL CHAR(116,"0000000000000000"
)
170 CALL CHAR(117,"0F0F0F0F0F0F0F0FF0F0F
0F0F0F0F0F0")
180 CALL CHAR(120,"00000000070F0F0F0F0F0
F0700000000F0F0F0E00000000000000000E0F0F

0F0"): : CALL CHAR(124,"FFFFFFFFFFFFFFFF"
)
190 CALL CHAR(125,"0F0F0F0F0F0F0F0FF0F0F
0F0F0F0F0F0")
200 CALL CLEAR :: CALL SCREEN(8):: CALL
COLOR(ll,2,9,12,16,9)
210 CALL HCHAR(5,1,124,32*16):: CALL VCH
AR(1,1,32,24*14):: CALL VCHAR(1,31,32,48
)
220 Y=8 :: FOR X=5 TO 19 STEP 2 :: CALL

HCHAR(X,13,48+Y):: Y=Y-1 :: NEXT X
230 Y=l :: FOR X=15 TO 29 STEP 2 :: CALL

HCHAR(22,X,64+Y):: Y=Y+1 :: NEXT X
240 FOR X=l TO 8 :: FOR Y=l TO 8 :: READ

J :: IF J>2 THEN 250 ELSE Z(Y,X)=J :: G
OTO 260

250 RESTORE :: READ Z(Y,X)
260 NEXT Y :: NEXT X :: YOU,ME=12

270 FOR X=l TO 8 :: FOR Y=l TO 8 :: GOSU

B 1630 :: NEXT Y :: NEXT X

280 DISPLAY AT(2,1):"ENTER LEVEL OF PLAY
" :: DISPLAY AT(3,1):" ENTER 1 THRU 9
1"

290 ON WARNING NEXT :: ACCEPT AT(3,20)VA
LIDATE(DIGIT)SIZE(-1)BEEP:LIM :: LIM=LIM
*20 :: TOUT=0

300 DISPLAY AT(1,1):"YOU HAVE";LIM;"SECO
NDS" :: DISPLAY AT(2,1):" TO ENTER EACH
MOVE" :: DISPLAY AT(11,1)SIZE(6):" TIME
ii

310 REM MY FIRST MOVE

320 A=6 :: RANDOMIZE :: CALL PEEK(-31880
,B):: B=INT(INT(B/25+l)*2)
330 C=5 :: RANDOMIZE :: CALL PEEK(-31880
,D):: D=INT(D/50):: D=B+1-D-D :: IF D=9

40

THEN D=7

340 REM MOVE MY MAN

350 GOSUB 1610 :: IF C=l AND Z(A,B)=-1 T
HEN Z(A,B)=-2 :: CALL SOUND(500,500,1) ::
RJ1=0

360 Z(C,D)=Z(A,B):: Z(A,B)=0 :: X=A :: Y
=B :: GOSUB 1630 :: X=C :: Y=D :: GOSUB

1630 :: IF RJ1=0 THEN 380
370 A=C :: B=D :: GOSUB 1470 :: IF RJ1>0

THEN 450 ELSE IF Z(A,B)=-2 THEN GOSUB 1
330 :: IF RJ1>0 THEN 450

380 DISPLAY AT(3,1):" " :: GOTO 770
390 REM MY MOVE

400 DISPLAY AT(1,1):" " :: DISPLAY AT(2,
1):" " :: DISPLAY AT(5,1)SIZE(9):" " ::
DISPLAY AT(3,1)SIZE(9)BEEP:"MY MOVE"
410 REM CK FOR JUMPS

420 OPP=l :: FOR A=8 TO 1 STEP -1 :: FOR

B=l TO 8 :: IF Z(A,B)<0 THEN GOSUB 1470
:: IF RJ1>0 THEN 450

430 IF Z(A,B)=-2 THEN GOSUB 1330 :: IF R
J1>0 THEN 450

440 NEXT B :: NEXT A :: GOTO 580

450 SJ1=RJ1 :: SJ2=RJ2 :: SJ3=RJ3 :: SJ4
=RJ4

460 FOR A=8 TO 1 STEP -1 :: FOR B=l TO 8

:: IF Z(A,B)<0 THEN GOSUB 1470 :: IF RJ
1>0 THEN 490

470 IF Z(A,B)=-2 THEN GOSUB 1330 :: IF R
J1>0 THEN 490

480 NEXT B :: NEXT A :: GOTO 500

490 GOSUB 1040 :: IF RJ5>0 THEN 550 ELSE
480

500 FOR A=8 TO 1 STEP -1 :: FOR B=l TO 8

:: IF Z(A,B)<0 THEN GOSUB 1540 :: IF RJ
10 THEN 32767

510 IF Z(A,B)=-2 THEN GOSUB 1400 :: IF R
J1>0 THEN 530

520 NEXT B :: NEXT A :: GOTO 540

530 GOSUB 1040 :: IF RJ5>0 THEN 550 ELSE

520

540 RJ1=SJ1 :: RJ2=SJ2 :: RJ3=SJ3 :: RJ4
=SJ4

550 A=RJ1 :: B=RJ2 :: C=RJ3 :: D=RJ4 ::

IF A<C THEN A1=A+1 ELSE A1=A-1

41

560 IF B<D THEN A2=B+1 ELSE A2=B-1
570 Z(A1,A2)=0 :: X=A1 :: Y=A2 :: GOSUB
1630 :: YOU=YOU-l :: IF Y0U<1 THEN 1720
ELSE 340

580 REM NO JUMPS CK FOR MOVE

590 OPP=-l :: FOR A=l TO 8 :: FOR B=l TO

8

600 IF Z(A,B)>0 THEN GOSUB 1330 :: IF RJ
1>0 THEN 620 ELSE IF Z(A,B)=2 THEN GOSUB
1470 :: IF RJ1>0 THEN 620

610 NEXT B :: NEXT A :: GOTO 630
620 SB=B :: SA=A :: GOSUB 1260 :: IF NJ=
0 THEN RJ1=0 :: GOTO 340 ELSE B=SB :: A=

SA :: GOTO 610

630 RJ1=0 :: B=2 :: FOR A=8 TO 4 STEP -2
:: IF Z(A,B)<>-1 THEN 640 ELSE IF Z(A-1

,B-1)=0 THEN C=A-1 :: D=B-1 :: GOTO 340
640 NEXT A

650 B=7 :: FOR A=7 TO 3 STEP -2 :: IF Z(
A,B)<>-1 THEN 660 ELSE IF Z(A-1,B+1)=0 T
HEN C=A-1 :: D=B+1 :: GOTO 340

660 NEXT A

670 A=2 :: FOR B=l TO 8 :: IF Z(A,B)=-1
THEN GOSUB 1120 :: IF C>0 THEN 340

680 NEXT B

690 FOR A=8 TO 3 STEP -1 :: FOR B=l TO 8

:: IF Z(A,B)>-1 THEN 710 ELSE GOSUB 112
0 :: IF C=0 THEN 710

700 GOSUB 1160 :: IF NJ=0 THEN 340

710 NEXT B :: NEXT A

720 FOR A=8 TO 3 STEP -1 :: FOR B=l TO 8

:: IF Z(A,B)<0 THEN GOSUB 1120 :: IF C>
0 THEN 340

730 NEXT B :: NEXT A

740 ME=0 :: GOTO 1720

750 REM SMALL DELAY

760 FOR DEL=1 TO 20 :: NEXT DEL :: RETUR

N

770 REM HIS MOVE

780 TIME=LIM :: OPP=-l :: FOR A=l TO 8 :

: FOR B=l TO 8

790 IF Z(A,B)>0 THEN GOSUB 1330 :: IF RJ
1>0 THEN 810 ELSE IF Z(A,B)=2 THEN GOSUB
1470 :: IF RJ1>0 THEN 810

800 NEXT B :: NEXT A

42

810 DISPLAY AT(22,1)SIZE(9):" " :: DISPL
AY AT(20,1)SIZE(9):" " :: DISPLAY AT(20,
1)SIZE(9)BEEP:"YOUR MOVE"
820 DISPLAY AT(13,1)SIZE(9):TIME :: TIME
=TIME-.119

830 CALL KEY(3,B1,STAT):: IF TIME<0 THEN
1720 ELSE IF STAT<1 THEN 820 ELSE GOSUB

760 :: IF Bl=6 THEN 1720

840 IF BK65 OR Bl>72 THEN 810 ELSE B=B1

-64 :: CALL HCHAR(22,3,B1)
850 CALL KEY(3,A1,STAT):: IF STAT<1 THEN
850 ELSE GOSUB 760 :: IF AK49 OR Al>56

THEN 810 ELSE A=Al-48 :: CALL HCHAR(22,
5,A1)
860 CALL KEY(3,D1,STAT):: IF STAT<1 THEN
860 ELSE GOSUB 760 :: IF DK65 OR Dl>72

THEN 810 ELSE D=Dl-64 :: CALL HCHAR(22,
8,D1)
870 CALL KEY(3,C1,STAT):: IF STAT<1 THEN
870 ELSE GOSUB 760 :: IF CK49 OR Cl>56

THEN 810 ELSE C=Cl-48 :: CALL HCHAR(22,
10,CI)
880 IF A+2=C OR A-2=C OR B+2=D OR B-2=D

THEN 970 ELSE IF Z(C,D)<>0 OR Z(A,B)<1 T
HEN 810

890 REM IF HE MOVES

900 IF RJ1>0 THEN 810 ELSE IF A+1=C THEN

910 ELSE IF A-loC THEN 810 ELSE IF Z(A
,B)<>2 THEN 810
910 IF B+1=D OR B-1=D THEN 920 ELSE 810

920 IF C<8 OR Z(A,B)=2 THEN 930 ELSE CAL
L SOUND(500,400,1):: Z(A,B)=2 :: RJ1=0
930 Z(C,D)=Z(A,B):: Z(A,B)=0 :: X=A :: Y
=B :: GOSUB 1630 :: X=C :: Y=D :: GOSUB

1630 :: IF RJ1=0 THEN 960

940 OPP=-l :: A=C :: B=D :: GOSUB 1330 :
: IF RJ1>0 THEN 810

950 IF Z(A,B)=2 THEN GOSUB 1470 :: IF RJ
1>0 THEN 810

960 DISPLAY AT(20,1)SIZE(9):" " :: GOTO
390

970 REM IF HE JUMPS

980 IF A+2=C THEN 990 ELSE IF A-2<>C OR
Z(A,B)<>2 THEN 810
990 IF B+2=D OR B-2=D THEN 1000 ELSE 810

43

1000 IF Z(C,D)<>0 OR Z(A,B)<1 THEN 810 E
LSE IF OA THEN A4=A+1 ELSE A4=A-1

1010 IF D>B THEN A5=B+1 ELSE A5=B-1

1020 IF Z(A4,A5)>-1 THEN 810
1030 Z(A4,A5)=0 :: X=A4 :: Y=A5 :: GOSUB
1630 :: ME=ME-1 :: IF ME=0 THEN 1720 EL

SE 920

1040 REM CHECK FOR DBL JUMP

1050 RJ5=0 :: IF RJ3-2<1 THEN 1080 ELSE

IF RJ4+2>8 THEN 1070

1060 IF Z(RJ3-1,RJ4+1)>0 AND Z(RJ3-2,RJ4
+2)=0 THEN RJ5=1 :: GOTO 1110
1070 IF RJ4-2<1 THEN 1080 ELSE IF Z(RJ3-
1,RJ4-1)>0 AND Z(RJ3-2,RJ4-2)=0 THEN RJ5
=1 :: GOTO 1110

1080 IF Z(RJ1,RJ2)=-1 THEN 1110 ELSE IF
RJ3+2>8 THEN 1110 ELSE IF RJ4+2>8 THEN 1

100

1090 IF Z(RJ3+1,RJ4+1)>0 AND Z(RJ3+2,RJ4
+2)=0 THEN RJ5=1 :: GOTO 1110
1100 IF RJ4-2<1 THEN 1110 ELSE IF Z(RJ3+
1,RJ4-1)>0 AND Z(RJ3+2,RJ4-2)=0 THEN RJ5
=1

1110 RETURN

1120 REM CHECK FOR MOVE

1130 C=0 :: IF B-Kl THEN 1140 ELSE IF Z

(A-1,B-1)=0 THEN C=A-1 :: D=B-1 :: RETUR
N

1140 IF B+l>8 THEN RETURN ELSE IF Z(A-1,
B+1)=0 THEN* C=A-1 :: D=B+1
1150 RETURN

1160 REM CAN HE JUMP ME IF I MOVE

1170 NJ=0 :: IF D>7 THEN 1180 ELSE IF Z(
C-1,D+1)>0 THEN 1250
1180 IF D<2 THEN 1190 ELSE IF Z(C-1,D-1)
>0 THEN 1250

1190 IF B>6 THEN 1200 ELSE IF Z(A-1,B+1)
<0 AND Z(A-2,B+2)>0 THEN 1250
1200 IF B<3 THEN 1210 ELSE IF Z(A-1,B-1)
<0 AND Z(A-2,B-2)>0 THEN 1250
1210 IF B>6 THEN 1230 ELSE IF A<3 THEN 1

220 ELSE IF Z(A-1,B+1)<0 AND Z(A-2,B+2)>
0 THEN 1250

1220 IF A>6 THEN 1230 ELSE IF Z(A+1,B+1)
<0 AND Z(A+2,B+2)>1 THEN 1250 ELSE IF B<

44

3 THEN RETURN ELSE IF Z(A+2,B-2)>1 THEN
1250

1230 IF B<3 THEN RETURN ELSE IF A<3 THEN

1240 ELSE IF Z(A-1,B-1)<0 AND Z(A-2,B-2
)>0 THEN 1250
1240 IF A>6 THEN RETURN ELSE IF Z(A+1,B-
1)<0 AND Z(A+2,B-2)>1 THEN 1250 ELSE RET
URN

1250 NJ=1 :: RETURN

1260 REM HE CAN JUMP ME

1270 IF RJ3>RJ1 THEN A=RJ3-1 ELSE A=RJ1-
1

1280 IF RJ4>RJ2 THEN B=RJ4-1 ELSE B=RJ2-
1

1290 IF Z(A-1,B-1)=0 THEN C=A-1 :: D=B-1
:: GOSUB 1160 :: IF NJ=0 THEN RETURN

1300 IF Z(A-1,B+1)=0 THEN C=A-1 :: D=B+1
:: GOSUB 1160 :: IF NJ=0 THEN RETURN

1310 IF Z(A,B)<>-2 THEN RETURN ELSE IF Z
(A+1,B-1)=0 THEN C=A+1 :: D=B-1 :: GOSUB
1160 :: IF NJ=0 THEN RETURN

1320 IF Z(A-1,B-1)=0 THEN C=A-1 :: D=B-1
:: GOSUB 1160 :: RETURN ELSE RETURN

1330 REM CK REQUIRED JUMP UP M

1340 RJ1,RJ2,RJ3,RJ4=0 :: IF A+2>8 THEN
1390 ELSE IF B-2<1 THEN 1370

1350 IF Z(A+l,B-l)=OPP AND Z(A+2,B-2)=0
THEN RJ1=A :: RJ2=B :: RJ3=A+2 :: RJ4=B-
2 :: GOTO 1390

1360 IF Z(A+l,B-l)=OPP+OPP AND Z(A+2,B-2
)=0 THEN RJ1=A :: RJ2=B :: RJ3=A+2 :: RJ
4=B-2 :: GOTO 1390

1370 IF B+2>8 THEN 1390 ELSE IF Z(A+1,B+
l)=OPP AtfD Z(A+2,B+2)=0 THEN RJ1=A :: RJ
2=B :: RJ3=A+2 :: RJ4=B+2

1380 IF Z(A+l,B+l)=OPP+OPP AND Z(A+2,B+2
)=0 THEN RJ1=A :: RJ2=B :: RJ3=A+2 :: RJ
4=B+2

1390 RETURN

1400 REM CK REQUIRED JUMP UP P
1410 RJ1,RJ2,RJ3,RJ4=0 :: IF A+2>8 THEN
1460 ELSE IF B+2>8 THEN 1440

1420 IF Z(A+l,B+l)=OPP AND Z(A+2,B+2)=0
THEN RJ1=A :: RJ2=B :: RJ3=A+2 :: RJ4=B+
2 :: GOTO 1460

45

1430 IF Z(A+1,B+1)=0PP+0PP AND Z(A+2,B+2
)=0 THEN RJ1=A :: RJ2=B :: RJ3=A+2 :: RJ
4=B+2 :: GOTO 1460
1440 IF B-2<1 THEN 1460 ELSE IF Z(A+1,B-
l)=OPP AND Z(A+2,B-2)=0 THEN RJ1=A :: RJ
2=B :: RJ3=A+2 :: RJ4=B-2 :: GOTO 1460
1450 IF Z(A+l,B-l)=OPP+OPP AND Z(A+2,B-2
)=0 THEN RJ1=A :: RJ2=B :: RJ3=A+2 :: RJ
4=B-2

1460 RETURN

1470 REM CK REQUIRED JUMP DOWN M
1480 RJ1,RJ2,RJ3,RJ4=0 :: IF A-2<1 THEN
1530 ELSE IF B-2<1 THEN 1510
1490 IF Z(A-l,B-l)=OPP AND Z(A-2,B-2)=0
THEN RJ1=A :: RJ2=B :: RJ3=A-2 :: RJ4=B-
2 :: GOTO 1530
1500 IF Z(A-l,B-l)=OPP+OPP AND Z(A-2,B-2
)=0 THEN RJ1=A :: RJ2=B :: RJ3=A-2 :: RJ
4=B-2 :: GOTO 1530
1510 IF B+2>8 THEN 1530 ELSE IF Z(A-1,B+
l)=OPP AND Z(A-2,B+2)=0 THEN RJ1=A :: RJ
2=B :: RJ3=A-2 :: RJ4=B+2
1520 IF Z(A-l,B+l)=OPP+OPP AND Z(A-2,B+2
)=0 THEN RJ1=A :: RJ2=B :: RJ3=A-2 :: RJ
4=B+2

1530 RETURN

1540 REM CK REQUIRED JUMP DOWN P
1550 RJ1,RJ2,RJ3,RJ4=0 :: IF A-2<1 THEN
1600 ELSE IF B+2>8 THEN 1580
1560 IF Z(A-l,B+l)=OPP AND Z(A-2,B+2)=0
THEN RJ1=A :: RJ2=B :: RJ3=A-2 :: RJ4=B+
2 :: GOTO 1600
1570 IF Z(A-l,B+l)=OPP+OPP AND Z(A-2,B+2
)=0 THEN RJ1=A :: RJ2=B :: RJ3=A-2 :: RJ
4=B+2 :: GOTO 1600
1580 IF B-2<1 THEN 1600 ELSE IF Z(A-1,B-
l)=OPP AND Z(A-2,B-2)=0 THEN RJ1=A :: RJ
2=B :: RJ3=A-2 :: RJ4=B-2 :: GOTO 1600
1590 IF Z(A-l,B-l)=OPP+OPP AND Z(A-2,B-2
)=0 THEN RJ1=A :: RJ2=B :: RJ3=A-2 :: RJ
4=B-2

1600 RETURN

1610 REM DISPLAY MY MOVE

1620 CALL HCHAR(5,3,B+64):: CALL HCHAR(5
,5,A+48):: CALL HCHAR(5,8,D+64):: CALL H

46

CHAR(5,10,C+48):: RETURN
1630 REM PLACE ON SCREEN

1640 ROW=16-(X*2)+5 :: COL=Y*2+13 :: IF
Z(X,Y)<>0 THEN 1670 ELSE IF (ROW+3)/4=IN
T((ROW+3)/4)AND(COL+3)/4=INT((COL+3)/4)T
HEN 1660

1650 IF (ROW+l)/4=INT((ROW+1)/4)AND(COL+
1)/4=INT((COL+1)/4) THEN 1660 ELSE 1710
1660 CALL HCHAR(ROW,COL,116,2):: CALL HC
HAR(ROW+l,COL,116,2):: GOTO 1710
1670 IF Z(X,Y)<0 THEN 1=120 ELSE 1=112
1680 CALL HCHAR(ROW,COL,I):: CALL HCHAR(
ROW+1,COL,1+1):: CALL HCHAR(ROW+1,COL+1,
1+2):: CALL HCHAR(ROW,COL+1,1+3)
1690 IF Z(X,Y)=-2 THEN 1=125 ELSE IF Z(X
,Y)=2 THEN 1=117 ELSE 1710
1700 CALL HCHAR(ROW+1,COL,I):: CALL HCHA
R(ROW+1,COL+1,1+1)
1710 RETURN

1720 REM GAME OVER

1730 IF TIME<0 THEN TOUT=TOUT+l :: CALL

SOUND(250,250,1):: TIME=LIM :: GOTO 810
1740 IF Bl=14 THEN MSGl$="YOU RESIGNED..
...GAME OVER" :: GOTO 1760

1750 IF YOU<ME THEM MSG1$="I WIN
GAME OVER" ELSE MSGl$="YOU WIN

....GAME OVER"

1760 DISPLAY AT(2,1):MSG1$
1770 IF TOUT>0 THEN DISPLAY AT(1,1):"YOU
TIMED OUT";TOUT;"TIMES"

1780 CALL KEY(3,KEY,STAT):: DISPLAY AT(2
3,1):" " :: DISPLAY AT(23,1):" ENTER
TO BEGIN NEW GAME" :: IF STAT=0 THEN 176

0

1790 DISPLAY AT(1,1):" " :: DISPLAY AT(2
,1):" " :: DISPLAY AT(23,1):" " :: CALL
VCHAR(1,1,32,24*12):: GOTO 240
1800 REM HEADER

1810 SUB HEADER

1820 CALL CLEAR :: CALL SCREEN(8):: RAND
OMIZE :: CALL MAGNIFY(4)
1830 CALL CHAR(36,"3C4299A1A199423CF9999
999FF999999")
1840 CALL CHAR(135,"183C7EFFFF7E3C18183C
7EFFFI.''7E3C18")

47

1850 CALL CHAR(128,"FFFFFFFFFFFFFFFF0000
0000000000000000000000000000FFFFFFFFFFFF

FFFF")
1860 CALL CHAR(124,"0000000000000000FFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000

0000")
1870 DISPLAY AT(8,10):"CHECKERS"
1880 DISPLAY AT(10,4):"By A. Hawley"
1890 DISPLAY AT(12,4):"Allan's Single Sy
stem"

1900 DISPLAY AT(15,14):"$ % 1983" :: 1=1
28 :: FOR A=l TO 15 :: IF 1=124 THEN 1=1

28 ELSE 1=124

1910 CALL SPRITE(#A,I,A+1,INT(RND*192)+1
,INT(RND*256)+1,INT(RND*100)-50,INT(RND*
100)-50):: NEXT A
1920 CALL KEY(0,K,S):: IF S=0 THEN 1920
1930 CALL DELSPRITE(ALL):: CALL MAGNIFY(
1):: CALL CHARSET :: SUBEND

48

Extended Basic

TANK ABOUT MATH

Tank about math is a creative exercise in simple math for children that
teaches multiplication and division. Rewards are built into the lessons
making the problems fun to work.

When the first screen appears, there are three gunners on the right side
and a tank on the left. The screen displays a random multiplication pro
blem using two numbers between one and ten. When you enter an answer
to the problem, one of your gunners fires at the tank. If the answer is
lower than the correct one, the shot falls below the tank. If the answer is
too high then the shot passes above. With each wrong answer the tank
takes a shot hitting one of your cannons untilI three wrong guesses are
counted. The computer then gives you the right answer and a new pro
blem appears.

After five correct answers the computer allows you to choose whether
you wouldlike to do multiplication or division and the upper limit for ran
dom numbers increases to fifteen. For each five sucessful answers the
numbers used in the lesson increase until they reach 25. A good sugges
tion for this program would be to add a short game or musical tune as a
reward for each set of problems correctly answered.

100 REM TANK ABOUT MATH

110 REM ALLEN HOLLEY C 1983

120 REM CRACKING THE 99/4A
130 CALL CLEAR :: CALL SCREEN(8)
140 DISPLAY AT(4,6):"TANK ABOUT MATH"
150 DISPLAY AT(6,1):" By A. Hawley"
160 DISPLAY AT(8,1):" Allan's Single Sys
tern"

170 DISPLAY AT(10,20):"_ *1983"
180 CALL CHAR(93,"FFFFFFFFFFFFFFFF")
190 CALL CHAR(95,"F9999999FF999999")
200 CALL CHAR(96,"3C4299A1A199423C")
210 FOR 1=24 TO 1 STEP -1 :: IF 1=6 THEN

230

49

220 FOR 11=32 TO 1 STEP -1 :: CALL HCHAR
(1,11,93):: NEXT II
230 NEXT I :: FOR 11=32 TO 1 STEP -1 ::
CALL HCHAR(6,11,93):: NEXT II
240 CALL CHAR(128,"FC00FCFFFFFC00FC")
250 CALL CHAR(129,"0000001818")
260 CALL CHAR(136,"0183C7EF7F3F7FFF")
270 CALL CHAR(137,"000010387C3810")
280 CALL CHAR(125,"894A2CF81F345291")
290 CALL CHAR(124,"8142241818244281")
300 CALL CHAR(94,"000010007C0010")
310 CALL CLEAR :: CALL COLOR(13,9,8)::CA
LL COLOR(14,3,8)
320 REM MAIN PROGRAM

330 CALL MAGNIFY(2):: MD,MS=1 ::LEVEL=15
:: PLAYLEVEL=1 :: ON WARNING NEXT

340 IF COUNT<5 THEN 440 ELSE COUNT=0 ::

IF LEVEL>5 THEN LEVEL=LEVEL-5 ELSE LEVEL
=LEVEL-1

350 REM CHANGE LEVELS

360 PLAYLEVEL=PLAYLEVEL+1 :: CALL DELSPR
ITE(ALL):: CALL CLEAR :: CALL SCREEN(9)
370 DISPLAY AT(8,6):"CONGRATULATIONS III"
:: DISPLAY AT(10,10):"5 IN A ROW"

380 DISPLAY AT(14,7):"WELCOME TO LEVEL"
:: DISPLAY AT(16,13):PLAYLEVEL

390 CALL HCHAR(1,1,42,96):: CALL VCHAR(1
,30,42,72):: CALL HCHAR(22,1,42,96):: CA
LL VCHAR(1,1,42,72)
400 CALL SOUND(300,392,1):: CALL SOUND(3
00,349,1):: CALL SOUND(300,333,1):: CALL
SOUND(500,392,1):: CALL SOUND(300,196,1

)
410 CALL SOUND(700,220,1):: CALL SOUND(l
000,300,30):: CALL SOUND(1,300,30):: CAL
L SCREEN(8):: CALL CLEAR
420 DISPLAY AT(10,6):"1 MULTIPLICATION"
:: DISPLAY AT(12,6)BEEP:"2 DIVISION"

430 CALL KEY(3,MD,STAT):: IF STAT=0 THEN
430 ELSE IF MD<49 OR MD>50 THEN 430 ELS

E MD=MD-48

440 REM SET UP SCREEN

450 CALL CLEAR :: CALL SPRITE(#10,128,9,
12*8,1*8)
460 CALL SPRITE(#1,136,3,6*8,29*8)::CALL

50

SPRITE(#2,136,3,12*8,29*8):: CALL SPRIT
E(#3,136,3,18*8,29*8)
470 CALL CLEAR :: DISPLAY AT(22,1):"Pres
s key to enter distance"
480 RANDOMIZE :: CALL PEEK(-31880,Nl)::
N1=INT(N1/LEVEL+1):: RANDOMIZE :: CALL P
EEK(-31880,N2):: N2=INT(N2/LEVEL)::N3=N1
*N2

490 REM PLAY

500 ON MD GOTO 520,510

510 DISPLAY AT(2,1):"DISTANCE TO TANK ="
;N3;"^";N2 :: HITGUN=0 :: GOTO 530
520 DISPLAY AT(2,1):"DISTANCE TO TANK ="
;N1;"X";N2 :: HITGUN=0

530 DISPLAY AT(4,1):" "::HITGUN=HITGUN+1
540 GOSUB 590 :: DISPLAY AT(4,10):"ENTER
HERE" :: ACCEPT AT(4,21)VALIDATE(DIGIT)B
EEP:ANS

550 ON MD GOTO 570,560

560 IF ANS=N1 THEN GOSUB 770 :: GOTO 340

:: ELSE COUNT=0 :: IF ANS<N1 THEN OT=l

:: GOTO 580 :: ELSE OT=2 :: GOTO 580

570 IF ANS=N3 THEN GOSUB 770 :: GOTO 340

:: ELSE COUNT=0 :: IF ANS<N3 THEN OT=l

ELSE OT=2

580 GOSUB 690 :: GOSUB 640 ::IF HITGUN=3

THEN 340 ELSE 530

590 REM FIRE TANK (MISS)
600 RANDOMIZE :: CALL PEEK(-31880,CI)::
Cl=INT(Cl/4+2)::IF CK9 OR Cl>14 THEN 61
0 ELSE 600

610 CALL SOUND(100,220,2):: MS=MS*-1 ::
CALL SPRITE(#11,129,9,12*8,3*8,C1*MS,50)
620 CALL KEY(0,KEY,STAT) :: IF STATO0 TH
EN 630 :: CALL POSITION(#ll,PR11,PC11)::
IF PC11<8*29 THEN 620 ELSE CALL DELSPRI

TE(#11):: GOTO 600
630 CALL DELSPRITE(#11):: RETURN
640 REM FIRE TANK (HIT)
650 IF HITGUN=2 THEN HG=0 ELSE IF HITGUN

=1 THEN HG=-11 ELSE HG=11

660 CALL SOUND(100,220,2):: CALL SPRITE(
#11,129,9,12*8,3*8,HG,50)
670 CALL SOUND(950,300,30):: CALL SOUND(
1,300,30):: CALL PATTERN(#HITGUN,124) ::

51

CALL DELSPRITE(#11)
680 CALL SOUND(600,-7,0):: CALL DELSPRIT
E(#HITGUN):: RETURN
690 REM FIRE CANNON (MISS)
700 ON HITGUN GOTO 710,720,730
710 AH3=6 :: IF OT=l THEN OC=20 :: GOTO

740 :: ELSE OC=15 :: GOTO 740
720 AH3=12 :: IF OT=l THEN OC=15 :: GOTO

740 :: ELSE OC=12 :: GOTO 740

730 AH3=18 :: IF OT=l THEN OC=ll ELSE OC

=9

740 CALL SOUND(300,-3,2):: CALL SPRITE(#
4,129,13,AH3*8-8,28*8-4,-10,-10)
750 FOR AH=1 TO OC :: CALL SOUND(10,300,
30):: CALL SOUND(1,300,30):: CALL MOTION
(#4,-10+AH,-10):: NEXT AH
760 CALL POSITION(#4,PRll,PCll)::IF PCll
>4 THEN 760 ELSE CALL DELSPRITE(#4):: RE
TURN

770 REM FIRE CANNON (HIT)
780 ON HITGUN GOTO 790,800,810
790 COUNT=COUNT+l :: AH3=6 :: OC=17 :: G

OTO 820

800 AH3=12 :: OC=13 :: GOTO 820

810 AH3=18 :: OC=10

820 CALL SOUND(300,-3,2):: CALL SPRITE(#
4,129,13,AH3*8-8,28*8-4,-10,-10)
830 FOR AH=1 TO OC :: CALL SOUND(10,300,
30):: CALL SOUND(1,300,30):: CALL MOTION
(#4,-10+AH,-10):: NEXT AH
840 REM CALL POSITION(#4,PR11,PCll):: IF
PC11>4 THEN 2980 ELSE CALL DELSPRITE(#4

):: RETURN
850 CALL PEEK(-31877,AH9)::IF AH9 AND 32
THEN 860 ELSE 850

860 CALL PATTERN(#10,125):: CALL DELSPRI
TE(#4):: CALL SOUND(600,-7,0):: CALL SOU
ND(l/300,30):: CALL DELSPRITE(#10):: RET
URN

52

Extended Basic
Speech unit optional

HANGMAN FOR TWO

Hangman is a computer version of the game we all played as children
where one player would draw a gallows and some dashes representing the
letters of a word, and the other player would try to guess the word by
guessing the letters. If the letter guessed was not among those that made
up the word, a part of a hanging man was added to the picture. The object
was to guess the word before the hanging man was completely drawn.
Sometimes, the hanging man had a head, body, arms, legs, and all his
fingers and toes. This, of course, gave the guesser a chance to win. In this
version of hangman, you only have seven guesses before you are complete
ly hung. This computer version has several features not found in other
computer versions:

1. Automatic scorekeeping
2. The ability to play against time
3. Entry correction
4. Automatic round keeping
5. The ability to enter phrases
6. Automatic blank removal

Automatic score keeping

The alphabet is displayed on the top of the screen with a number under
each letter. This number is the amount added to the guesser's score each
time that letter is successfully guessed. Ifa letter is guessed and the word
contains two of that letter, twice that letter's value is added to the guesser's
score.

If the entire word or phrase is guessed, the guesser receives four points
for every unguessed letter remaining in the word or phrase. Therefore it is
advantageous for a guesser to guess the entire word or phrase when he
can. The penalty, if wrong, is the same as missing a guess for one letter. If
a guesser enters more than one letter as a guess, HANGMAN assumes the
guesser is attempting to guess the entire word or phrase and compares
what was entered against the word or phrase to be guessed.

Playing against time.

When the game begins, HANGMAN asks for the players' names and
then HANGMAN asks agenst what time interval they

53

wish to play. Values from 0 to 999 are accepted, but values between 10
and 30 seconds are recommended. A countdown of the seconds are
shown on the left-hand side of the gallows picture.

The guesser has only the amount of time specified to make a guess; if he
does not guess correctly, another piece is added to the hanging man.
When playing against time the LEFT ARROW and the ERASE keys are
operational in addition to entering upper-case letters and spaces. This was
done to ensure easy correction of entries.

Entry correction.

If a player enters a word or phrase to be guessed and realizes a mistake
has been made, or changes his mind, the entry can be corrected by enter
ing 'CE', for "correct entry." This can be done only if no guess has yet been
made.

Automatic rounds.

This game is played in rounds. One round is complete when each player
has guessed one time. Any round number ending in .5 indicates the mid
dle of a round.

Enter phrases.

In most versions of HANGMAN, blanks (spaces) are not allowed. Conse
quently only single words could be entered. This version allows blanks;
Thus you can enter phrases such as "OVER THE RAINBOW." For example,
you may wish to play a game in which only the names of movies are
allowed. Up to 24 upper-case letters and blanks can be entered.

Automatic blank removal

Ifa player accidentally enters more than one blank between words when
entering a phrase or in guessing a phrase, HANGMAN will automatically
remove all but one blank. This helps ensure valid comparisons when a
player attempts to guess an entire phrase.

100 REM HANGMAN FOR TWO

110 REM COPYRIGHT JOHN COPE 83

120 REM CRACKING THE 99/4A
130 REM SPEACH (OPTIONAL)
140 CALL CLEAR

150 CALL SCREEN(12)
160 A1$=,,ABCDEFGHIJKLM" :: A2$="NOPQRSTU
VWXYZ"

170 DISPLAY AT(1,3):A1$&A2$
180 Nl$="1332142418513" :: N2$=M11391111
44849"

190 DISPLAY AT(2,3):N1$&N2$

54

200 GOSUB 2350 1TIMING ?

210 DISPLAY AT(5,2) .-"NAME 1 (1 TO 6 LETT
ERS)"
220 ACCEPT AT(6,2)SIZE(6):NAME1$
230 L=LEN(NAME1$):: L=INT((6-L)/2):: CN1
=3+L

240 DISPLAY AT(6,2)SIZE(8)
250 DISPLAY AT(6,CN1):NAME1$
260 DISPLAY AT(5,2):"NAME 2 (1 TO 6 LET
TERS)"
270 ACCEPT AT(6,11)SIZE(6):NAME2$
280 L=LEN(NAME2$):: L=INT((6-L)/2):: CN1
=12+L

290 DISPLAY AT(6,11)SIZE(8)
DISPLAY AT(6,CN1):NAME2$
DISPLAY AT(5,2)SIZE(24)
DISPLAY AT(8,4):USING "###":000
DISPLAY AT(8,13):USING "###":000
DISPLAY AT(11,3):"LETTERS GUESSED"
CALL COLOR(13,6,6):: CALL COLOR(14,3

300

3.10

320

330

340

350

,3)
360

370

380

390

400

410

420

,3)
430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

R=4 :: FOR 1=1 TO 8

CALL HCHAR(R,21,128,10)
R=R+1 :: NEXT I

R=12 :: FOR 1=1 TO 7

CALL HCHAR(R,21,136,10)
R=R+1 :: NEXT I

CALL COLOR(12,2,6):: CALL COLOR(11,2

CALL CHAR(120,"3C3C3C3C3C3C3C3C"
CALL CHAR(121,"FFFFFFFF00000000"
CALL CHAR(122,"FFFFFFFFFFFFFFFF"
CALL CHAR(123,"F0F0F0F0F0F0F0F0"
CALL CHAR(124,"0F0F0F0F0F0F0F0F"
CALL CHAR(125,"0000FFFFFFFF0000"
CALL CHAR(126, "3C3CFFFF b' I.*1 FF3C3C"
CALL CHAR(112,"3C3C3C3C3C3C3C3C"
CALL CHAR(113,"FFFFFFFFFFFFFFFF"
CALL CHAR(114,"FFFF000000000000"
CALL CHAR(115,"FCFC3C3C3C3C3C3C"
CALL CHAR(116,"3F3F3C3C3C3C3C3C"
CALL CHAR(127,"FFFFFFFF3C3C3C3C"
CALL CHAR(95,"7E7E7E7E7E7E7E7E")
CALL HCHAR(4,24,127)
CALL HCHAR(4/25,121,3)

55

590 CALL HCHAR(4,28,127)
600 CALL VCHAR(5,28,120,7)
610 CALL VCHAR(12,28,112,6)
620 CALL HCHAR(18,26,113,5)
630 DISPLAY AT(19,3)SIZE(1):"*"
640 OPTION BASE 1

650 DIM LG$(26),L$(24),TLG$(24)
660 A1R=22 :: A1C=1 :: A2R=23 :: A2C=1
670 ROUND=.5 :: L=0
680 WCOLS=2 :: WROWS=20 :: SC1R=8 :: SCI
C=4 :: SC2R=8 :: SC2C=13
690 RANDOMIZE :: N=10-(10*RND):: FOR 1=1
TO N :: P=INT(1+(2*RND)):: NEXT I

700 REM CHANGE TURNS

710 ROUND=ROUND+.5 :: NHITS=0 :: NNB=0 :

: DRAW=0
720 DISPLAY AT(4,7)SIZE(12):"ROUNDn;ROUN
D

730 DISPLAY AT(13,3)SIZE(15):: DISPLAY A
T(15,3)SIZE(15):: DISPLAY AT(17,3)SIZE(1
5):: DISPLAY AT(20,3)SIZE(24)
740 CALL VCHAR(5,24,128,7):: CALL VCHAR(
7,23,128,2):: CALL VCHAR(7,25,128,2):: C
ALL HCHAR(10,22,128,5)
750 CALL VCHAR(12,24,136):: CALL HCHAR(1
3,23,136,3):: CALL VCHAR(14,23,136,3)::
CALL VCHAR(14,25,136,3)
760 FOR 1=1 TO 26 :: LG$(I)="NULL" :: NE
XT I

770 IF P=l THEN P=2 ELSE P=l

780 IF P=l THEN GIVER$=NAME1$ ELSE GIVER
$=NAME2$
790 IF GIVER$=NAME1$ THEN GUESSER$=NAME2
$ ELSE GUESSER$=NAME1$
800 DISPLAY AT(A1R,A1C):">> "&GUESSER$&"
, TURN YOUR HEAD"
810 DISPLAY AT(A2R,A2C):">> "&GIVER$&",
ENTER WORD/PHRASE"
820 ACCEPT AT(20,3)SIZE(24)VALIDATE(UALP
HA," "):PHRASE$
830 PARM=1 :: GOSUB 2180

840 IF LEN(PHRASE?)=0 THEN 800
850 IF ASC(PHRASE?)=32 THEN 800
860 DISPLAY AT(20,3)SIZE(24)
870 L=LEN(PHRASE$)

56

880 FOR 1=1 TO L

890 L$(I)=SEG$(PHRASE?, 1,1)
900 IF ASC(L?(I))<>32 THEN NNB=NNB+1
910 NEXT I

920 R=20 :: C=3 :: FOR 1=1 TO L :: IF L?
(1)=" " THEN 930 ELSE DISPLAY AT(R,C):"_
ii

930 C=C+1 :: NEXT I

940 LGROW=13 :: LGCOL=3

950 G=0

960 REM GET A NEW LETTER

970 G=G+1

980 GOSUB 2790 'CLEAR AREA

990 IF T?="YES" THEN GOSUB 2450 :: GOTO
1020

1000 DISPLAY AT(A1R,A1C):">> "&GUESSER?&
",ENTER LETTER/GUESS"
1010 ACCEPT AT(A2R,A2C)SIZE(24)VALIDATE(
UALPHA," "):LG?(G)
1020 IF G>1 THEN 1030 :: IF LG?(G)<>"CE"
THEN 1030 :: NNB=0 :: GOTO 800

1030 IF LEN(LG?(G))=0 THEN 980
1040 F?=SEG?(LG?(G),1,1):: IF F?=" " THE
N 980

1050 IF LEN(LG?(G))=1 THEN 1060 ELSE GPH
RASE?=LG?(G):: G=G-1 :: PARM=2 :: GOSUB
2180 :: GOTO 1670

1060 FOR 1=1 TO G-l

1070 IF LG?(G)<>LG?(I)THEN 1120 ELSE CAL
L SOUND(500,440,4)
1080 GOSUB 2790

1090 DISPLAY AT(A1R,A1C)SIZE(28):">> ERR
OR. LETTER GUESSED"

1100 FOR 1=1 TO 350 :: NEXT I

1110 G=G-1 :: VRC=1 :: GOTO 960

1120 NEXT I :: VRC=0

1130 DISPLAY AT(LGROW,LGCOL)SIZE(l):LG?(
G)
1140 LGCOL=LGCOL+2

1150 IF LGCOL<18 THEN 1170

1160 LGCOL=3 :: LGROW=LGROW+2

1170 GOTO 1180

1180 REM CHECK IF HIT

1190 RC=0

1200 FOR J=l TO L

57

1210 IF LG?(G)=L?(J)THEN GOSUB 1250
1220 NEXT J

1230 REM CHECK IF MATCH

1240 IF RC<>0 THEN GOSUB 1280 ELSE GOSUB
1760 :: GOTO 960 1 GET ANOTHER LETTER

1250 REM MATCH: SHOW LETTERS
1260 RC=RC+1 :: WCOL=WCOLS+J :: NHITS=NH
ITS+1

1270 DISPLAY AT(WROWS,WCOL)SIZE(l):LG?(I
):: RETURN
1280 REM MATCH: FIND SCORE
1290 CALL SAY("GOOD GUESS")
1300 B=ASC(LG?(I))-64
1310 IF B=26 THEN 1460

1320 ON B GOTO 1330,1340,1350,1360,1370,
1380,1390,1400,1410,1420,1430,1440,1450,
1470,1480,1490,1500,1510,1520,1530,1540,
1550,1560,1570,1580
1330 S=(1*RC) m •

• • GOTO 1610

1340 S=(3*RC) • •
• • GOTO 1610

1350 S=(3*RC) • •
• • GOTO 1610

1360 S=(2*RC) • •
• • GOTO 1610

1370 S=(1*RC) • • GOTO 1610

1380 s=(4*RC) • •
• • GOTO 1610

1390 s=(2*RC) • •
• • GOTO 1610

1400 s=(4*RC) • •
• • GOTO 1610

1410 s=(1*RC) • •
• • GOTO 1610

1420 s=(8*RC) • •
• • GOTO 1610

1430 s=(5*RC) • •
• • GOTO 1610

1440 s=(1*RC) • •
• • GOTO 1610

1450 s= [3*RC) • •

• • GOTO 1610

1460 s= [9*RC) • • GOTO 1610

1470 s= ;i*RC) • •
» • GOTO 1610

1480 s=i!l*RC) ;: GOTO 1610
1490 S=! 3*RC) : ; GOTO 1610

1500 S=| 9*RC) > • GOTO 1610

1510 s=i 1*RC) 1 • GOTO 1610

1520 S=i[1*RC).i •
1 • GOTO 1610

1530 S=i[1*RC). GOTO 1610

1540 S=irl*RC);1 • GOTO 1610
1550 S=!'4*RC)s» • GOTO 1610

1560 S=l 4*RC): • GOTO 1610

1570 S=l 8*RC)j • GOTO 1610
1580 s=i 4*RC)j • GOTO 1610

1590 s=i 9*RC)i •
• GOTO 1610

58

1600 S=(9*RC)
1610 IF P=l THEN SC0RE2=SC0RE2+S ELSE SC

0RE1=SC0RE1+S

1620 GOSUB 2150

1630 IF NHITS<NNB THEN RETURN ELSE GOSUB

2790

1640 DISPLAY AT(A1R,A1C):">> "&GUESSER?&
", YOU GOT THEM ALL"
1650 CALL SAY("YOU GOT M ALL"):: DISPLAY
AT(A2R,A2C):" PRESS ANY KEY"

1660 CALL KEY(0,RV,SV):: IF SV=0 THEN 16
60 ELSE GOTO 700

1670 IF GPHRASE?=PHRASE? THEN DISPLAY AT
(WROWS,WCOLS+l):GPHRASE? ELSE GOTO 1700
1680 IF GPHRASE?=PHRASE? THEN GOSUB 2790
:: DISPLAY AT(AIR,A1C):">> CORRECT 11"

:: DISPLAY AT(A2R,A2C):" PRESS ANY KEY
n

1690 CALL SAY("CORRECT GOOD WORK"):: GOT
O 1730

1700 GOSUB 1760 :: CALL SAY("SORRY NOT C
ORRECT"):: DISPLAY AT(AIR,A1C):">> SORRY
, WRONG"

1710 CALL SOUND(500,440,5):: FOR 1=1 TO
350

1720 NEXT I :: GOTO 960

1730 IF P=l THEN SCORE2=SCORE2+(4*(NNB-N
HITS))ELSE SCOREl=SCOREl+(4*(NNB-NHITS))
1740 GOSUB 2150

1750 CALL KEY(0,RV,SV):: IF SV=0 THEN 17
50 :: GOTO 700

1760 REM NO MATCH

1770 CALL SAY("UHOH")
1780 DRAW=DRAW+1

1790 ON DRAW GOSUB 1860,1920,1980,2010,2
040,2090,2120
1800 IF DRAW<7 THEN RETURN

1810 DISPLAY AT(WROWS,WCOLS+l)SIZE(24):P
HRASE?
1820 GOSUB 2790

1830 DISPLAY AT(AIR,A1C):">> "&GUESSER?&
", YOU'RE HUNG 11" :: CALL SAY("SO SORRY

")
1840 DISPLAY AT(A2R,A2C):" PRESS ANY K
EY"

59

1850 CALL KEY(0,RV,SV):: IF SV=0 THEN 18
50 :: GOTO 700

1860 REM DRAW HEAD

1870 CALL VCHAR(7,23,124,2)
1880 CALL VCHAR(7,24,122,2)
1890 CALL VCHAR(7,25,123,2)
1900 CALL VCHAR(5,24,120,2)
1910 RETURN

1920 REM DRAW BODY

1930 CALL HCHAR(9,24,120)
1940 CALL HCHAR(10,24,126)
1950 CALL HCHAR(12,24,112)
1960 CALL HCHAR(11,24,120)
1970 RETURN

1980 REM DRAW RIGHT ARM

1990 CALL HCHAR(10,22,125,2)
2000 RETURN

2010 REM DRAW LEFT ARM

2020 CALL HCHAR(10,25,125,2)
2030 RETURN

2040 REM DRAW HIPS

2050 CALL HCHAR(13,23,116)
2060 CALL HCHAR(13,24,114)
2070 CALL HCHAR(13,25,115)
2080 RETURN

2090 REM DRAW RIGHT LEG

2100 CALL VCHAR(14,23,112,3)
2110 RETURN

2120 REM DRAW LEFT LEG

2130 CALL VCHAR(14,25,112,3)
2140 RETURN

2150 DISPLAY AT(SC1R,SC1C)SIZE(3):USING
"###":SCOREl
2160 DISPLAY AT(SC2R,SC2C)SIZE(3):USING
"###":SCORE2

2170 RETURN

2180 REM REMOVE EXCESS SPA

CES

2190 ON PARM GOTO 2200,2220
2200 NPHRASE?=PHRASE?
2210 GOTO 2230

2220 NPHRASE?=GPHRASE?
2230 Pl=POS(NPHRASE?," ",1)
2240 P2=POS(NPHRASE?," ",P1+1):: DIF=P2-
Pl

60

2250 IF P1=0 OR P2=0 THEN 2:280

2260 IF DIF=1 THEN 2290

2270 P1=P2 :: GOTO 2240

2280 ON PARM GOTO 2310,2330

2290 NPHRASE?=SEG?(NPHRASE?,1,PI)&SEG?(N
PHRASE?,P2+1,LEN(NPHRASE?))
2300 GOTO 2230

2310 PHRASE?=NPHRASE?
2320 GOTO 2340

2330 GPHRASE?=NPHRASE?
2340 RETURN

2350 REM ASK IF TIMING IS WANTED

2360 DISPLAY AT(5,2)SIZE(28):"TIME LIMIT
ON GUESSING? Y/N"

2370 CALL KEY(0,RV,SV)
2380 IF SV=0 THEN 2370

2390 IF RV=89 THEN T?="YES" :: GOTO 2420
2400 IF RV=78 THEN T?="NO" :: RETURN
2410 GOTO 2360

2420 DISPLAY AT(5,2)SIZE(28):"ENTER INTE
RVAL IN SECONDS"

2430 ACCEPT AT(6,2)SIZE(3)VALIDATE(DIGIT
):INTVL
2440 RETURN

2450 REM ACCEPT LETTER OR GUESS ON TIMER

2460 IF VRC=1 THEN INTER=INTER-1 :: T=l

:: GOTO 2480

2470 INTER=INTVL :: GOSUB 2790 :: T=l ::

IF LA=1 THEN E=E :: GOTO 2480 ELSE E,LA
=0

2480 DISPLAY AT(AIR,A1C):">> "&GUESSER?&
",ENTER LETTER/GUESS"
2490 FOR 1=1 TO INTER

2500 DISPLAY AT(18,20)SIZE(4):INTER
2510 FOR J=l TO 27

2520 CALL KEY(0,RV,SV)
2530 IF SV=-1 THEN GOTO 2560

2540 NEXT J

2550 INTER=INTER-1 :: NEXT I :: CALL SAY

("OUT OF TIME"):: GOSUB 1760 :: GOTO 247
0

2560 IF RV=32 AND T=l THEN 2540 :: IF RV

=32 AND TOl THEN 2570 :: IF RV<65 THEN

2620 :: IF RV>90 THEN 2620 :: LA=0

2570 TLG?(T)=CHR?(RV):: DISPLAY AT(A2R,A

61

2C+T+1):TLG?(T)
2580 DISPLAY AT(A2R,A2C+T+2): "_" :: T=T+
1

2590 IF T>24 THEN CALL SOUND(500,440,5):
: T=T-1 :: GOTO 2480 ELSE GOTO 2540
2600 FOR 1=1 TO 350 :: NEXT I :: GOTO 24

70

2610 GOTO 2540

2620 REM NON-ALPHA INPUT

2630 IF RV=13 THEN GOTO 2700

2640 IF RV=8 THEN T=T-2 :: IF T<0 THEN T

=0

2650 IF RV=8 THEN 2580
2660 IF RV=7 THEN 2770 ELSE T=T-1 :: IF

T<=0 THEN T=l

2670 CALL SOUND(500,440,5)
2680 REM DISPLAY AT(A1R,A1C):">> INVALID
CHARACTER" :: FOR 1=1 TO 350 :: NEXT I

2690 DISPLAY AT(A1R,A1C):GUESSER?&",ENTE
R LETTER/GUESS" :: INTER=INTER-1 :: GOTO
2490

2700 REM CHECK FOR HIT. IF 1 {ENTER CHA
RACTER ENTERED, PRESSED}THEN ASSUME HE'
S GUESSING A LETTER

2710 IF T=l THEN GOSUB 2790 :: DISPLAY A

T(A1R,A1C):GUESSER?&",ENTER LETTER/GUESS
" :: INTER=INTER-1 :: GOTO 2490

2720 IF T=2 THEN LG?(G)=TLG?(T-1):: RETU
RN

2730 TGPH1?=TLG?(1)&TLG?(2)&TLG?(3)&TLG?
(4)&TLG?(5)&TLG?(6)&TLG?(7)&TLG?(8)&TLG?
(9)&TLG?(10)&TLG?(11)&TLG?(12)
2740 TGPH2?=TLG?(13)&TLG?(14)&TLG?(15)&T
LG?(16)&TLG?(17)&TLG?(18)&TLG?(19)&TLG?(
20)&TLG?(21)&TLG?(22)&TLG?(23)
2750 TGPH3?=TLG?(24)
2760 LG?(G)=SEG?(TGPH1?&TGPH2?&TGPH3?,1,
T-l):: RETURN
2770 REM ERASE

2780 LA=1 :: E=E+1 :: IF E<=2 THEN GOTO

2470 ELSE T=l :: GOSUB 2790 :: GOTO 2480

2790 REM CLEAR AREAS

2800 DISPLAY AT(A1R,A1C):: DISPLAY AT(A2
R,A2C)
2810 RETURN

62

Extended Basic

OTHELLO
Brian Prothro

Othello is a popular game in which a player attempts to end up with the
majority of pieces on the board. A move consists of "outflanking" your op
ponent, flipping his disk(s) over to your color. To outflank means to place a
move so that your opponent's row (or rows) of disk(s) is boardered at each
end by a disk of your color.

EXAMPLE: A X X X B

Where; "X" stands for your opponents pieces.
"A" is your piece already on the board.
"B" is your move to outflank your opponents row.

All pieces then flip over and become your colored pieces.

In this version of Othello you play the computer, but don't be deceived.
The computer does some thinking before it moves. A move is made by
entering the desired row and column you want to appear on. A capture
must be made on each turn or your move must be forfeited. A disk may
outflank any number of disks in one or more rows, and includes the
diagional directions as well. Be careful, unexpected results may change a
great strategy when the computer makes a move that takes two or even
three rows of your pieces!

100 REM OTHELLO

110 REM CRACKING THE 99/4A
120 DIM A(9,9),R4(8),C4(8),C$(8),D$(2)
130 CALL CLEAR

140 CALL COLOR(8,9,16, 13,16, 15,14,5,16)
150 CALL SCREEN(6)
160 GOSUB 2580

170 GOSUB 2830

180 PRINT "Display instructions? (y/n)M
190 CALL KEY(0,KEY,ST) :: IB1 ST=0 THEN 19
0

200 IF KEY=78 THEN 240

63

210 PRINT "you are blue and must o
utflank the computer, thismeans you mus
t place your move so that you"
220 PRINT ". sandwich the computers pieceb
etween two of your own. watch out, on
e move can take up to three rows"
230 REM INITIALIZE

240 F2=0

250 PRINT :"Shall i use my":"best strate
gy? (y/n)?"
260 S2=0

270 CALL KEY(0,KEY,ST):: IF ST=0 THEN 27
0

280 IF KEY=78 THEN 300

290 S2=2

300 PRINT :,:"Wait, while i choose":"a s
trategy..."
310 B=-l

320 W=l

330 D$(B+1)="X"
340 D$(0+1)="."
350 D$(W+1)="0"
360 FOR K=l TO 8

370 READ R4(K),C4(K),C$(K)
380 NEXT K

390 DATA 0,1,A,-1,1,B,-1,0,C,-1,-1,D,0,-
1,E,1,-1,F,1,0,G,1,1,H

400 A(5,5),A(4,4)=W
410 A(5,4)fA(4,5)=B
420 P1,H1=2
430 Nl=4

440 Z=0

450 REM PLAYER CHOICES

460 P=W :: H=B

470 PRINT :"Do you want to go first? (y/
n)"
480 CALL KEY(0,KEY,ST):: IF ST=0 THEN 48
0

490 IF KEY=78 THEN 550

500 CALL CLEAR

510 GOSUB 2670

520 REM PRINT INITIAL BOARD

530 GOSUB 2430

540 GOTO 1140

550 CALL CLEAR

64

560 GOSUB 2670

570 GOSUB 2430

580 REM COMPUTERS MOVE

590 Bl=-1

600 R3,C3=0
610 T1=P

620 T2=H

630 REM LOOK FOR EMPTY SQUARE
640 FOR R=l TO 8

650 GOSUB 2580

660 FOR C=l TO 8

670 IF A(R,C)<>0 THEN 890
680 REM DOES SQUARE HAVE PLAYER AS A NEI
GHBOR?

690 GOSUB 2030

700 DISPLAY AT(21,6):"my move...":" che
eking row ";R
710 IF F1=0 THEN 890

720 REM FOUND PLAYER, HOW MANY CAN WE FL
IP

730 U=-l

740 GOSUB 2150

750 REM EXTRA POINT FOR BOARDER LOCATION

760 IF S1=0 THEN 890

770 IF (R-l)*(R-8)<>0 THEN 790
780 S1=S1+S2

790 IF (C-l)*(C-8)<>0 THEN 820
800 S1=S1+S2

810 REM IS POSITION BETTER THAN BEST SO

FAR?

820 IF SKB1 THEN 890

830 IF S1>B1 THEN 850

840 REM YES

850 B1=S1

860 R3=R

870 C3=C

880 REM END OF LOOP

890 NEXT C :: NEXT R

900 REM COULD WE DO ANYTHING?

910 IF B1>0 THEN 970

920 REM NO

930 IF Z=l THEN 1720

940 Z=l

950 GOTO 1140

960 REM MAKE THE MOVE

65

970 Z=0

980 DISPLAY AT(21,l):"i move to"
990 DISPLAY AT(21,12):R3;",";C$(C3):""
1000 R=R3

1010 C=C3

1020 U=l

1030 GOSUB 2150

1040 P1=P1+S1+1

1050 H1=H1-S1

1060 N1=N1+1

1070 FOR T=l TO 420 :: NEXT T

1080 DISPLAY AT(21,l):"i get";Sl:"of you
r pieces"
1090 REM PRINT OUT BOARD

1100 GOSUB 2430

1110 REM TEST FOR END OF GAME

1120 IF H1=0 OR Nl=64 THEN 1720

1130 REM HUMANS MOVE

1140 T1=H :: T2=P

1150 GOSUB 2580

1160 DISPLAY AT(21,1):"9 to forfit":"0 t
o quit"
1170 DISPLAY AT(21,19):"your move:"
1180 DISPLAY AT(22,20):"row col"
1190 ACCEPT AT(23,21)SIZE(1)BEEP:Q$
1200 IF Q$="0" THEN 2020
1210 IF Q$="9" THEN 1260
1220 IF Q$<"1" OR Q$>"8" THEN 1190
1230 R=VAL(Q$)
1240 ACCEPT AT(23,25)VALIDATE("ABCDEFGH"
)SIZE(1)BEEP:X$
1250 GOTO 1350

1260 GOSUB 2580

1270 DISPLAY AT(21,l):"you forfit your t
urn? (y/n)"
1280 CALL KEY(0,KEY,ST)z: IF ST=0 THEN 1
280

1290 IF KEY<>89 THEN 1150

1300 GOSUB 2580

1310 DISPLAY AT(21,1):"great, i'11 go."
1320 IF Z=l THEN 1720

1330 Z=l

1340 GOTO 590

1350 FOR C=l TO 8

1360 IF C$(C)=X$ THEN 1400

66

1370 NEXT C

1380 GOTO 1190

1390 REM CHECK IF BLANK

1400 IF A(R,C)=0 THEN 1450
1410 GOSUB 2580

1420 DISPLAY AT(21,1):"That's occupied,
try again."
1430 GOTO 1190

1440 REM CHECK FOR LEGAL NEIGHBOR

1450 GOSUB 2030

1460 IF Fl=l THEN 1510

1470 GOSUB 2580

1480 DISPLAY AT(21,1) .-"That's not next t
o one of mypieces, try again."
1490 GOTO 1190

1500 REM CHECK IF LEGAL RUN

1510 U=-l

1520 GOSUB 2150

1530 IF S1>0 THEN 1580

1540 GOSUB 2580

1550 DISPLAY AT(21,1):"Sorry, that dosen
't flank a row, try again."
1560 GOTO 1190

1570 REM IF LEGAL, MAKE PLAYERS MOVE
1580 Z=0

1590 GOSUB 2580

1600 DISPLAY AT(21,1):"That gives you";S
l:"of my pieces"
1610 U=l

1620 GOSUB 2150

1630 H1=H1+S1+1

1640 P1=P1-S1

1650 N1=N1+1

1660 REM PRINT OUT BOARD

1670 GOSUB 2430

1680 REM TEST FOR END OF GAME

1690 IF P1=0 OR Nl=64 THEN 1720

1700 GOTO 590

1710 REM END OF GAME DETAILS

1720 GOSUB 2580

1730 DISPLAY AT(20,1):"you have";H1;"pie
ces and":"i have";PI;"pieces"
1740 IF H1=P1 THEN 1780

1750 IF H1>P1 THEN 1800

1760 DISPLAY AT(22,1):"sorry, i won that

67

one"

1770 GOTO 1810

1780 DISPLAY AT(22,l):"a tie"
1790 GOTO 2000

1800 DISPLAY AT(22,l):"i guess you win"
1810 P1=P1-H1

1820 IF P1>0 THEN 1840

1830 P1=-C1

1840 P1=(64*P1)/N1
1850 FOR T=l TO 300 :: NEXT T

1860 IF P1=0 THEN 1910

1870 IF PK11 THEN 1930

1880 IF PK25 THEN 1950

1890 IF PK39 THEN 1970

1900 IF PK53 THEN 1990

1910 DISPLAY AT(23,1):"you played a perf
ect game 111"
1920 GOTO 2000

1930 DISPLAY AT(23,1):"you're great, i t
hought you had never played before111"
1940 GOTO 2000

1950 DISPLAY AT(23,1):"pretty good game.
but i got close 1"

1960 GOTO 2000

1970 DISPLAY AT(23,1):"maybe next time.
i take the game this time."

1980 GOTO 2000

1990 DISPLAY AT(23,1):"all i can say is
practice, practice, practice111"
2000 GOSUB 2830

2010 ACCEPT AT(1,21):Q$
2020 STOP

2030 FOR Rl=-1 TO 1

2040 FOR Cl=-1 TO 1

2050 IF A(R+R1,C+C1)=T2 THEN 2120
2060 NEXT CI

2070 NEXT Rl

2080 REM NO T2 FOUND,FAILURE

2090 F1=0

2100 RETURN

2110 REM SUCESS

2120 Fl=l

2130 RETURN

2140 REM

2150 S1=0

68

2160 FOR K=l TO 8

2170 R5=R4(K)
2180 C5=C4(K)
2190 R6=R+R5

2200 C6=C+C5

2210 S3=0

2220 IF A(R6,C6)<>T2 THEN 2400
2230 REM LOOP THROUGH RUN

2240 S3=S3+1

2250 R6=R6+R5

2260 C6=C6+C5

2270 IF A(R6,C6)=T1 THEN 2300
2280 IF A(R6,C6)=0 THEN 2400
2290 GOTO 2240

2300 S1=S1+S3

2310 IF UOl THEN 2400

2320 REM UPDATE BOARD

2330 R6=R

2340 C6=C

2350 FOR K1=0 TO S3

2360 A(R6,C6)=T1
2370 R6=R6+R5

2380 C6=C6+C5

2390 NEXT Kl

2400 NEXT K

2410 RETURN

2420 REM SUB PRINT BOARD

2430 CALL CHAR(92,"007F7F7F7F7F7F7F00FEF
EFEFEFEFEFE7F7F7F7F7F7F7F00FEFEFEFEFEFEF
E00")

2440 CALL CHAR(136,"007F7F7F7F7F7F7F00FE
FEFEFEFEFEFE7F7F7F7F7F7F7F00FEFEFEFEFEFE
FE00")
2450 FOR 1=2 TO 16 STEP 2

2460 FOR J=2 TO 16 STEP 2

2470 IF D$(A(l/2,J/2)+l)="X" THEN Al=92
2480 IF D$(A(l/2,J/2)+l)="." THEN 2540
2490 IF D$(A(l/2,J/2)+l)="0" THEN Al=136
2500 CALL HCHAR(I,3+J,A1)
2510 CALL HCHAR(I,4+J,A1+1)
2520 CALL HCHAR(l+I,3+J,Al+2)
2530 CALL HCHAR(l+I,4+J,Al+3)
2540 NEXT J

2550 NEXT I

2560 RETURN

69

2570 REM DELETE SUB

2580 DISPLAY AT(21,1):"":""s""
2590 RETURN

2600 REM SET UP NEW GAME

2610 FOR R=0 TO 9

2620 FOR C=0 TO 9

2630 A(R,C)=0
2640 NEXT C :: NEXT R

2650 RETURN

2660 REM INITIAL BOARD

2670 CALL CHAR(91,"FFFFFFFFFFFFFFFF")
2680 CALL CHAR(133,"0101010101010101")
2690 CALL CHAR(134,"00000000000000FF")
2700 CALL CHAR(135,"01010101010101FF")
2710 DISPLAY AT(1,3):" A B C D E F G H"
2720 FOR ROW=2 TO 17 STEP 2

2730 DISPLAY AT(ROW+l, 1):ROW/2
2740 FOR L=l TO 15 STEP 2

2750 CALL HCHAR(ROW,4+L,132,1)
2760 CALL HCHAR(ROW,5+L,133,1)
2770 CALL HCHAR(ROW+l,4+L,134,1)
2780 CALL HCHAR(ROW+l,5+L,135,1)
2790 NEXT L

2800 NEXT ROW

2810 RETURN

2820 REM TUNE

2830 CALL SOUND(170, 330,1)
2840 CALL SOUND(170,415,1)
2850 CALL SOUND(170,494,1)
2860 CALL SOUND(170,659,1)
2870 CALL SOUND(80,110,30)
2880 CALL SOUND(170,494,1)
2890 CALL SOUND(400/659,1)
2900 RETURN

70

Extended Basic

Printer Optional

SEEK AND FIND GENERATOR
Brian Prothro

Puzzles have occupied our minds for centuries. Like many other popular
games today we also find ourselves pitting our wits agenst computer
created puzzles.

Here is a SEEK AND FIND puzzle generator that lets you customize your
puzzles by allowing you to enter your own words (up to 35). You can send
messages, quotes, birthday greetings or enter vocabulary to study. The
possibilities are endless. You are limited only by your imagination.

Once entered, the generator embeds the word list within the puzzle
while criss-crossing and overlapping some of the words with common let
ters. You can play the puzzle on the screen, or print copies with a printer.
Be forewarned, the words appear within the puzzle written forward,
backward, up, down and diagonally. Tough !

The list allows up to 35 words with a maximum of 10 letters each. In
valid words (including numbers or words that are too long) are not ac
cepted and may be reentered or changed. Entering the number nine ter
minates the word entry mode and starts the puzzlerworking. Once having

71

entered the word list the program then asks if you want to watch where the
words will appear as they are written into the puzzle. You should watch
this a few times, it is fastinating to see how the puzzles are constructed.

When creating a word list be careful not to enter too many lengthy
words at the end of a long list. The computer randomly tries to fit the
words into the remaining spaces in the puzzle and toward the end it can
be a tight fit. In this case the computer uses one hundred random tries in
which to fit the word. Then it asks whether to delete the word or continue
attempting insertion. You may continue the attempt as many times as
desired. After the puzzle is generated you have the option of playing the
screen or printing copies to the printer. Line 1380 of the program contains
the OPEN statement for the printer. You may need to modify this code to
fit your printers parametes.

PLAYING THE SCREEN

Keys one through four movethe cursor around the screen. After the cur
sor is located over a word, press ENTER to check your guess. The program
keeps track of each correctly guessed word. When you press the S' key to
scroll the word list you will notice the message "USED WORD" in place of
each correctly guessed word. Once guessed, the words cannot be guessed
again, and will give a "wrong guess" message.

CODE DESCRIPTfON

After the word list is loaded into the array, one at a time the words are
tested and placed into the puzzle array. Lines 350-370 randomly select a
starting point and direction for the placement of a word. Where the
variable RD is a random direction, and R and C are a random starting row
and column.

Lines 390-580 check to see if the length of the word will exceed the
puzzle boundries in the given direction. If the word fits then lines 590-650
check each letter position for the word in the puzzle array to see if the
position is occupied (Coincidental letters of equal value are acceptable,
creating the possbility of overlapped words). If the space is not occupied
(P$(R,C)=0) then lines 1090-1180 continue to incriment in the direction
chosen for the word untill the placement checkout is complete.

Assuming the puzzle positions for the word are all clear or acceptable,
lines 680-800 then will save the letters of the word into the puzzles array
(PUZ$(R,C)). At this point if the option to watch the puzzle be constructed
was chosen by the user (SEE=1) then each letter will also appear on the
screen as it is placed in the puzzle array.

When all the words are placed within the puzzle, lines 1310-1360 fill the
remaining empty positions of the puzzle array with ramdom letters. Due to
the time consumed in generating a random character in line 1330, The
puzzle fill time for this routine can take up to one minute. Although not
included, this would be a good line to recede using a CALL PEEK to gain
access to a random number. The speed gained would be worthwhile.

72

100 REM SEEK/FIND GENERATOR
110 REM CRACKING THE 99/4A
120 CALL CLEAR

130 DIM CHAR$(26),W$(35),PUZ$(20,20),P$(
20, 20),Z$(35),RR(35),CC(35)
140 GOSUB 870

150 PRINT :,:,:,:,"PLEASE WAIT..."

160 GOSUB 960

170 CALL CLEAR

180 DISPLAY AT(10,4):"ENTER YOUR WORD LI
ST":" ENTER 9 TO FINISH"

190 FOR 1=1 TO 35

200 PRINT I

210 ACCEPT AT(23,5)SIZE(10)BEEP:W$(I)
220 IF W$(I)="9" THEN 250
230 GOSUB 1020

240 NEXT I

250 W$(I)="" :: TW,1=1-1
260 CALL CLEAR

270 GOSUB 1530

280 DISPLAY AT(23,4):W$(LOOP)
290 DISPLAY AT(23,1):"SEE WORD LOCATIONS
(Y/N)"

300 ACCEPT AT(23,27)VALIDATE("YN")SIZE(1
)BEEP:Q$
310 DISPLAY AT(23,1):" PLEASE WAIT..."
320 IF Q$="Y" THEN SEE=1 ELSE SEE=0
330 LOOP=LOOP+l

340 RANDOMIZE

350 RD=INT(RND*8)+1
360 R=INT(RND*20)+1
370 C=INT(RND*20)+1
380 ROW=R :: COL=C

390 REM CHOOSE DIRECTION

400 LN=LEN(W$(LOOP))
410 TRIES=TRIES+1

420 IF TRIES>100 THEN GOSUB 1200

430 ON RD GOTO 440,460,480,500,520,540,5
60,580

440 IF C+LN>20 THEN 340 ELSE GOSUB 600

450 GOTO 600

460 IF C-LN<0 THEN 340 ELSE GOSUB 600

470 GOTO 600

480 IF R+LN>20 THEN 340 ELSE GOSUB 600

490 GOTO 600

73

500 IF R-LN<0 THEN 340 ELSE GOSUB 600

510 GOTO 600

520 IF C-LN<1 OR R-LN<1 THEN 340 ELSE GO

SUB 600

530 GOTO 600

540 IF C+LN>20 OR R+LN>20 THEN 340 ELSE

GOSUB 600

550 GOTO 600

560 IF C-LN<1 OR R+LN>20 THEN 340 ELSE G

OSUB 600

570 GOTO 600

580 IF C+LN>20 OR R-LN<1 THEN 340 ELSE G

OSUB 600

590 REM LOCATION FREE?

600 FOR M=l TO LEN(W$(LOOP))
610 IF R<1 OR R>20 OR C<1 OR C>20 THEN 3

40

620 IF P$(R,C)="0" THEN 640
630 IF PUZ$(R,C)=SEG$(W§(LOOP),M,l)THEN
640 ELSE 340

640 GOSUB 1090

650 NEXT M

660 R=ROW :: C=COL

670 REM PRINT WORD TO MEM.

680 RR(LOOP)=R :: CC(LOOP)=C
690 IF R<1 OR R>20 OR C<1 OR C>20 THEN 3

40

700 FOR L=l TO LEN(W$(LOOP))
710 PUZ$(R,C)=SEG$(W$(LOOP),L,l)
720 P$(R,C)="1"
730 IF SEE=1 THEN 740 ELSE 760

740 D=ASC(PUZ$(R,C))
750 CALL HCHAR(R+1,C+5,D)
760 GOSUB 1090

770 NEXT L

780 IF LOOP=I THEN 800

790 GOTO 330

800 DISPLAY AT(23,1):" THE WORDS ARE IN
PLACE.":"I'M NOW FILLING THE SPACES."

810 GOSUB 1310

820 DISPLAY AT(23,1):"PRINT TO PRINTER?
(Y/N)":""
830 ACCEPT AT(23,26)SIZE(1)BEEP:Q$
840 IF Q$="Y" THEN 850 ELSE 1630
850 GOSUB 1380

74

860 GOTO 820

870 FOR 1=1 TO 226

880 DISPLAY AT(1/2+1,7):"SEEK AND FIND":
CUSTOMIZED":" PUZZEL GENERAT

OR"

890 READ CHAR$(I)
900 DISPLAY AT(1/2+1,1):"":"":""
910 NEXT I

920 DATA A,B,C,D,E,F,G,H,I, J
930 DATA K,L,M,0,N,P,Q,R,S,T
940 DATA U,V,W,X,Y,Z
950 RETURN

960 FOR R=l TO 20

970 FOR C=l TO 20

980 P$(R,C)="0"
990 NEXT C :: NEXT R

1000 RETURN

1010 REM VALIDATE WORD ENTRY

1020 FOR J=l TO LEN(W$(I))
1030 IF SEG$(W$(I),J,1)>"Z" OR SEG$(W$(I
),J,1)<"A" THEN 1040 ELSE 1060
1040

d"

1050

1060

1070

1080

1090

DISPLAY AT(23,1):" invalid wor

1=1-1 :: GOTO 1070

NEXT J

RETURN

REM DIRECTION

ON RD GOTO 1100,1110,1120,1130,1140
,1150, 116'*, 1170
1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

C=C+1

C=C-1

R=R+1

R=R-1

R=R-1

R=R+1

R=R+1

R=R-1

RETURN

REM TROUBLE FITTING WORD

TRIES=0

DISPLAY AT(23,1)

GOTO

GOTO

GOTO

GOTO

C=C-1

C=C+1

C=C-1

C=C+1

1180

1180

1180

1180

GOTO

GOTO

GOTO

1180

1180

1180

"STUCK ON WORD:

W$(LOOP):"DELETE IT? (Y/N)"
1220 ACCEPT AT(24,25)SIZE(1)BEEP:Q$
1230 DISPLAY AT(23,1):"":""

75

1240 DISPLAY AT(23,1):" PLEASE WAIT..
it

1250 IF Q$="Y" THEN 1260 ELSE 1290
1260 TRIES=0

1270 W$(LOOP)="" :: DISPLAY AT(23,1):"CU
RRENT WORD DELETED":""

1280 TW=TW-1

1290 RETURN

1300 REM FILL BLANKS

1310 FOR R=l TO 20

1320 FOR C=l TO 20

1330 IF PUZ$(R,C)="" THEN PUZ$(R,C)=CHAR
$(INT(RND*26)+1)
1340 CALL HCHAR(R+1,C+5,ASC(PUZ$(R,C)))
1350 NEXT C :: NEXT R

1360 RETURN

1370 REM PRINT TO PRINTER

1380 OPEN #1:"RS232/1.BA=1200"
1390 FOR R=l TO 20

1400 FOR C=l TO 20

1410 LINE$=LINE$&PUZ$(R,C)&" "
1420 NEXT C

1430 PRINT #1:LINE$
1440 LINE$=""
1450 NEXT R

1460 PRINT #1

1470 FOR R=l TO I STEP 2

1480 PRINT #1:W$(R),W$(R+1)
1490 NEXT R

1500 CLOSE #1

1510 RETURN

1520 REM DRAW BOX

1530 CALL CHAR(95,"FFFFFFFFFFFFFFFF")
1540 CALL CHAR(124,"FFFFFFFFFFFFFFFF")
1550 CALL HCHAR(1,5,95,22)
1560 CALL HCHAR(22,5,95,22)
1570 FOR J=l TO 22

1580 CALL VCHAR(J,5,124)
1590 CALL VCHAR(J,26,124)
1600 NEXT J

1610 RETURN

1620 REM PLAY SCREEN

1630 DISPLAY AT(23,1):"P=PLAY SCREEN N=N
OT":""

76

1640 ACCEPT AT(23,28)VALIDATE("PN")BEEP:
Q$
1650 FOR TM=1 TO 150 :: NEXT TM

1660 IF Q$="P" THEN 1680
1670 IF Q$="N" THEN 820 ELSE 1630
1680 DISPLAY AT(23,1):"PRESS (ENTER) TO
GUESS A WORD, S' TO SCROLL LIST."
1690 U,R,C=1

1700 CALL KEY(0,K, S)
1710 IF K=83 THEN GOSUB 2030

1720 CALL HCHAR(R+1,C+5,124)
1730 CALL HCHAR(R+1,C+5,ASC(PUZ$(R,C)))
1740 IF K=13 THEN GOSUB 1830

1750 IF K<49 OR K>52 THEN 1700

1760 RD=K-48 :: GOSUB 1090

1770 IF R<1 THEN R=l

1780 IF C<1 THEN C=l

1790 IF R>20 THEN R=19

1800 IF C>20 THEN C=20

1810 GOTO 1700

1820 REM ACCEPT WORD

1830 DISPLAY AT(23,1):"HOW LONG IS YOUR
WORD GUESS?":""

1840 ACCEPT AT(24, 3)VALIDATE(NUMERIC)BEE
P:LENG

1850 IF LENG<1 OR LENG>10 THEN 1840

1860 FOR D=l TO I

1870 IF R=RR(D)AND C=CC(D)AND LENG=LEN(W
$(D))THEN GUESS=1 ELSE 1890
1880 SS=D

1890 NEXT D

1900 IF GUESS=1 THEN 1920 ELSE 1990

1910 RETURN

1920 DISPLAY AT(23,1):"CORRECT GUESS"
1930 CALL SOUND(200,400,1,500,1):: CALL
SOUND(300,600,1,800,1)
1940 W$(SS)="used word!!"
1950 AL=AL+1

1960 IF AL=TW THEN DISPLAY AT(23,1):"YOU
GOT THEM ALL !!!!!!!!" ELSE 1980

1970 GOTO 2070

1980 GUESS=0 : : RETURN*

1990 DISPLAY AT(23,1):"WRONG, GUESS AGAI
N! !"

2000 CALL SOUND(100,137,1):: CALL SOUND(

77

420,127,1)
2010 RETURN

2020 REM SCROLL WORDS

2030 DISPLAY AT(23,1):W$(U);TAB(13);W$(U
+1):W$(U+2);TAB(13);W$(U+3)
2040 U=U+2

2050 IF U>I-2 THEN U=l

2060 RETURN

2070 CALL SOUND(200,247,1):: CALL SOUND(
200,330,1):: CALL SOUND(200,415,1):: CAL
L SOUND(200,494,1)
2080 CALL SOUND(40,300,30):: CALL SOUND(
200,414,1):: CALL SOUND(350,494,1)
2090 INPUT "HIT ENTER TO QUIT.":Q$

78

HOME

Extended Basic

CHECK MANAGEMENT

Checkbook Management/Analysis is a set of two programs that allow the
user to:

1. Balance his checkbook.

2. Save check information on a monthly basis (or on any interval
desired).

3. Analyze each month's checks to determine: (1) the grand total of
money spent using checks; (2) the number of checks and total spent
in each of 20 categories (14 pre-defined and 6 user-defined); and (3)
the percentage each category's total is of the grand total.

4. Maintain a cumulative record (in all categories as kept monthly), of
where money has been spent, and analyze this cumulative record at
any time. In effect, this shows the average spent in each category
based on the number of months the cumulative file has been
updated.

As stated, this is a set of two programs; they are called BALANCE and
ANALYZE. BALANCE is run first and, if the user so chooses, BALANCE
RUNs ANALYZE (using the Extended BASIC capablity of one program run
ning another), so that they appear to the user as one program. However, it
is possible to RUN ANALYZE by itself, but only after BALANCE has been
run. You get exactly the sameresults.

INSTRUCTIONS

The balance program begins by asking you to enter, in the form mmyy,
the month and year of the bank statement to be balanced. This creates the
file CHECKSmmyy. If9999 is entered for mmyy, BALANCE will create a
data set called CHECKSTEMP when it is asked to save check information
for analysis, regardless of whether a data set by this name already exists.
The purpose of this feature is to analyze checks at any point during a pay
period.

If you respond to mmyy with a date other than 9999, BALANCE ex
amines the directory of the disk to ensure that a file for the month and
year specified does not currently exist. Check information for a month is
saved for ANALYZE in files with the general name format of CHECKSm
myy. These monthly files can be kept as long as needed, and analyzed at
any time with ANALYZE.

80

After validating your entry, the balancing of the checkbook begins. The
user enters information about (1) checks, (2) deposits, and (3) withdrawals
(other than checks). For each of these three categories you can add, delete,
and list entries. No matter what order the checks are entered, they are
always listed in ascending numerical order. When finished entering all
checkbook entries, the balance can be determined. At any time prior to
terminating the program or invoking ANALYZE, you can make any correc
tions or changes required and re-calculate the balance.

You have the option to save the information and return later to complete
the balancing activity. In this case, all input information, including deposits
and withdrawals, are saved in a file with the general name SAVEmmyy.
SAVEmmyy is deleted when BALANCE is terminated if the last save/fetch
activity forSAVEmmyy was fetch.

When terminating BALANCE, the user is given three options: (.1) saving
check information on a file for analysis (CHECKSmmyy or CHECKSTEMP),
(2) terminating the program, or (3) returning to the primary menu.

When (1) is selected the check file CHECKSmmyy is created if any
month and year other than 9999 is specified; if 9999 was specified, the
file created is named CHECKSTEMP. In addition, if a month and year other
than 9999 is specified, another file, CMON, is created or updated, depen
ding on whether or not it currently exists (BALANCE determines this by ex
amining the disk directory). The CMON file contains one record: the
mmyy as a string variable of the check file just created. This is to record
the current month, or the most recent month balanced. This file is used by
ANALYZE to determine the name of the data set to analyze when it is in
voked by BALANCE or RUN independently.

If (1) is chosen, a menu appears giving the opportunity to terminate
BALANCE with or without invoking ANALYZE.

If (2) is chosen, it means the user does not want the month analyzed and
is using the system only for balancing purposes.

The analyze program can be run by selecting the "SAVE CHECKS TO
FILE" option when terminating BALANCE or by RUNing it independently
sometime after BALANCE. In either case, ANALYZE immediately accesses
the CMON file and attempts to read the data set CHECKSmmyy, where the
mmyy was obtained from the CMON file. The program will crash if the
CMON file does not exist. In other words, ANALYZE will attempt to
analyze the most recent month balanced when it is run without any menu
appearing.

The report produced by ANALYZE consists of displaying on the screen
all category names, the total number of checks written in each category,
the total amount of money spent in each category, and the percentage of
the month's total each category's total represents. In addition, displayed in
the lower left-hand corner, there is the mmyy of the month being analyzed:
"CUM" if you analyze the CUMULATIVE file, or TEMP if you are analyzing
CHECKSTEMP.

81

If it is the first execution of ANALYZE, ANALYZE will create the
CUMULATIVE file. After analyzing the current month, ANALYZE will at
tempt to integrate the current month's data into the CUMULATIVE file. If
ANALYZE is RUN some other time after the current month is integrated,
integration will be bypassed because ANALYZE checks the CINT file,
which is updated by ANALYZE after an integration and tells the last month
integrated.

After integration has occurred or been bypassed, as the case may be, a
menu appears, giving you a choice between;

(1) analyzing the current (most recently balanced) month again.

(2) analyzing the CUMULATIVE file.

(3) analyzing any month the user chooses.

(4) analyzing the CHECKSTEMP file.

(5) terminating the program. If the month selected is not on the disk,
an error message indicating this is displayed.

Itwould be best to put thisprogramonaseperatediskinorderto haveroom
foryourdata files.

The following describes the files used in this program.

CMON is created and updated by the BALANCE, and interrogated by
ANALYZE. This file holds one string variable indicating the last month and
year balanced. The purpose of this file is todetermine the proper month to
analyze and to prevent ANALYZE from integrtating into the CUMULATIVE
file the check data from the last month balanced.

CHECKSTEMP is created by BALANCE. If you enter 9999 as the month
and year being balanced/analyzed, this indicates that you are entering only
a portion ofa months checks. This file can be analyzed from the menu
and allows you to analyze thecheckbook at anytime during the month.

CHECKSmmyy is created by BALANCE. If you specify any date other
than 9999 as the month and year being balanced/analyzed. The mmyy of
this data set is placed as a string variable into the CMON file, CMON is
interrogated by ANALYZE when it is RUN in order to determine which
month to analyze.

SAVEmmyy is created and retrieved by BALANCE when requested via
menu. This file saves all information already input, including deposits and
withdrawals. This is to be used if you are interrupted while balancing the
checkbook and saves temporarily what you've done so that you can finish
later.

CINT is created, interrogated, and updated by ANALYZE. This file tells
ANALYZE the mmyy of the last month integrated into the CUMULATIVE
file, which prevents integrating a month twice.

82

The BALANCE program is large and consequently, it will save to disk
under the file attributes; BALANCE INTVAR 254. This is peculiar to the
99/4A and creates no problems. The program can be loaded from disk
with the usual OLD and RUN commands.

100 REM CHECKBOOK/MANAGEMENT
110 REM C 1983 BY JOHN COPE

120 REM CRACKING THE 99/4A
130 OPTION BASE 1

140 CALL CLEAR :: CALL SCREEN(4):: BC=33
:: RP=21 :: CALL CHAR(BC,"FFFFFFFFFFFFF

FFF"):: CALL COLOR(l,13,1)
150 DIM CKNO(101),CKAMT(101),CKCAT(101),
CKOUT(101),WITH(31),DEP(31),L$(18),MON$(
127):: MAXDEP,MAXWITH=30 :: MAXCK=101
160 CK=1 :: DP=1 :: WI=1

170 DISPLAY AT(4,1)ERASE ALL:" WARNING
: DO NOT USE": :" COMMAS WHEN ENTERING

": :" AMOUNTS OF MONEY."

180 DISPLAY AT(15,1):" SUCH ENTRIES WI
LL BE": :" FOUND TO HAVE AN": :" INV

ALID FORMAT." :: GOSUB 3110 :: GOSUB 347

0

190 DISPLAY AT(4,1)ERASE ALL:" ENTER THE
MONTH AND YEAR":" OF THE STATEMENT

TO BE":" BE BALANCED, IN THE":" FOLLOWI
NG FORMAT: MMYY"

200 DISPLAY AT(15,1):" OR ENTER 9999 FOR
TEMPORARY":" CHECK ANALYSIS."

210 DISPLAY AT(9,1):" WHERE 'MM' = 01 FO
R JAN,": :" 11 = NOV, ETC, AND YY=YEAR."
:: GOSUB 3110

220 ACCEPT AT(20,4)VALIDATE(DIGIT)SIZE(4
):MMYY
230 MY$=STR$(MMYY):: IF LEN(MY$)<3 THEN
220 :: IF LEN(MY$)=3 THEN MY$="0"&MY$
240 IF MMYY=9999 THEN MY$="TEMP" :: GOTO
370

250 OPEN #33:"DSK1.",INPUT ,RELATIVE,INT
ERNAL

260 C=l :: FOR 1=1 TO 127 :: INPUT #33:A
$,A,J,K
270 IF LEN(A$)=0 THEN 300

83

280 MON$(C)=A$:: C=C+1
290 NEXT I

300 CLOSE #33
310 DSN$="CHECKS"&MY$
320 FOR 1=1 TO C :: IF DSN$=MON$(I)THEN
350

330 NEXT I

340 GOTO 370

350 DISPLAY AT(4,1)ERASE ALL:">> ERROR.
DISK ALREADY HAS": :" CHECKS FOR THE

MONTH": :" AND YEAR ENTERED (";MY$;").
ii

360 GOSUB 3110 :: GOSUB 3470 :: GOTO 190

370 REM CHECKBOOK BALANCING

380 DISPLAY AT(8,6)ERASE ALL:"BALANCE CH
ECKBOOK." :: GOSUB 3110 :: GOSUB 3470

390 DISPLAY AT(4,1)ERASE ALL:" *** BALAN
CE CHECKBOOK ***"

400 DISPLAY AT(6,1):" *** PRIMARY MENU

410 DISPLAY AT(8,1):" 1 - PROCESS A CHEC
K"

420 DISPLAY AT(10,1)
OSIT"

430 DISPLAY AT(12,1)
HDRAWAL"

440 DISPLAY AT(14,1)
ANCE"

450 DISPLAY AT(16,1)
ANCING"

460 DISPLAY AT(18,1)

2 - PROCESS A DEP

3 - PROCESS A WIT

4 - CALCULATE BAL

5 - TERMINATE BAL

6 - SAVE CHECKBOO

K" :: DISPLAY AT(20,1):" 7 - FETCH CHECK
BOOK"

470 GOSUB 3500 :: GOSUB 3110 :: GOSUB 34

80

480 RV=RV-48 :: IF RV<1 THEN 470 :: IF R

V>7 THEN 470 :: ON RV GOSUB 500,1590,213
0,2630,2910,3140,3240
490 GOTO 390

500 REM PROCESS A CHECK

510 DISPLAY AT(4,1)ERASE ALL:" ** PROCES
S A CHECK **"

520 DISPLAY AT(7,1):" 1 - ADD A CHECK"
530 DISPLAY AT(9,1):" 2 - DELETE A CHECK

84

540 DISPLAY AT(11,1):" 3 - LIST THE CHEC
KS"

550 DISPLAY AT(13,1):" 4 - RETURN TO PRI
MARY MENU"

560 GOSUB 3500 :: GOSUB 3110 :: GOSUB 34

80

570 RV=RV-48 :: IF RV<1 THEN 560 :: IF R

V>4 THEN 560 :: ON RV GOSUB 590,1340,147

0,580
580 RETURN

590 REM ADD A CHECK

600 DISPLAY AT(3,1)ERASE ALL:" ENTER A C
HECK THIS WAY:"

610 DISPLAY AT(5,1):" CKNO,AMOUNT,CATE
GORY[,l]"
620 DISPLAY AT(7,1):" WHERE ,1 IS CODED
ONLY WHEN THE CHECK IS OUTSTANDING."

630 DISPLAY AT(9,1):" VALID CATEGORY COD
ES:"

640 DISPLAY AT(11,1):"1=CASH 2=HOUSE
3=CLOTHES":"4=MEDICAL 5=AUTO 6=CHARGE

":"7=FOOD 8=MISC 9=INSUR":"10=DONAT

E 11=UTILI 12=PHONE"

650 DISPLAY AT(15,1):"13=FUN 14-20 YO
U DEFINE":

660 DISPLAY AT(17,1):" PRESS <ENTER> TO
RETURN TO THE PRIMARY MENU." :: GOSUB 3

110

670 IF CK=1 THEN 720 :: IF CK>MAXCK-1 TH

EN 3050

680 IF CKOUT(CK-1)=0 THEN 710
690 DISPLAY AT(20,1):"LAST: ";LCKNO :: D
ISPLAY AT(20,13):USING 3530:LCKAMT :: DI
SPLAY AT(20,23):LCKCAT;LCKOUT
700 GOTO 720

710 DISPLAY AT(20,1):"LAST: ";LCKNO :: D
ISPLAY AT(20,13):USING 3530:LCKAMT :: DI
SPLAY AT(20,23):LCKCAT
720 ACCEPT AT(23,5):CK$
730 IF CK$<>"" THEN 740 :: RETURN
740 GOSUB 980

750 IF VALRCO0 THEN 590

760 REM CK FOR DUPLICATE

770 FOR 1=1 TO CK-1

780 IF CKNO(I)=CKNO(CK)THEN 810

85

790 NEXT I

800 GOTO 870

810 DISPLAY AT(4,1)ERASE ALL:" >> ERROR.
DUPLCATE CHECK NUMBER."

820 DISPLAY AT(7,1):" THE FOLLOWING C
HECK HAS ALREADY BEEN ENTERED:"
830 DISPLAY AT(10,5):USING 3520:CKNO(I),
CKAMT(I),CKCAT(I)
840 DISPLAY AT(12,1):" YOU ENTERED:"
850 DISPLAY AT(14,5):USING 3520:CKNO(CK)
,CKAMT(CK),CKCAT(CK)
860 GOSUB 3110 :: GOSUB 3470 :: GOTO 590
870 REM VALIDATE CAT CODE

880 IF CKCAT(CK)>20 THEN 960 ELSE CK=CK+
1 :: GOSUB 1330 :: IF CKNO(CK-1)>LGC THE
N LGC=CKNO(CK-l):: GOTO 670
890 FOR 1=1 TO CK-2

900 IF CKNO(CK-l)<CKNO(I)THEN 930
910 NEXT I

920 DISPLAY AT(4,1)ERASE ALL:" >> ERROR.
CANNOT PLACE": :" CHECK NUMBER IN":

:" SEQUENCE." :: GOSUB 3470 :: GOTO 30
90

930 SCK=CK :: FOR J=l TO CK-I :: CKNO(CK
)=CKNO(CK-l):: CKAMT(CK)=CKAMT(CK-1):: C
KCAT(CK)=CKCAT(CK-1):: CKOUT(CK)=CKOUT(C
K-l):: CK=CK-1 :: NEXT J
940 CK=SCK :: CKNO(I)=CKNO(CK):: CKAMT(I
)=CKAMT(CK):: CKCAT(I)=CKCAT(CK):: CKOUT
(I)=CKOUT(CK)
950 CKNO(CK)=CKAMT(CK)=CKCAT(CK)=CKOUT(C
K)=0 :: GOTO 670
960 DISPLAY AT(4,1)ERASE ALL:" >> ERROR.
INVALID CATEGORY CODE";CKCAT(CK)

970 GOTO 860

980 REM VALIDATE FORMAT

990 IF LEN(CK$)>18 THEN 1290
1000 Cl=POS(CK$,",",l):: IF C1=0 THEN 12
90

1010 IF Cl>5 THEN 1290

1020 PP=POS(CK$,".",l)
1030 C2=POS(CK$,",",C1+1):: IF C2=0 THEN
1290 :: IF LEN(CK$)=C2 THEN 1290

1040 IF PP=0 THEN 1050 ELSE IF C2-PP>3 T

HEN 1290

86

1050 C3=POS(CK$,",",C2+l)
1060 IF C3=0 THEN CKOUT(CK)=0 ELSE CKOUT
(CK)=1
1070 IF C3=0 THEN 1090

1080 IF LEN(CK$)-C3<>1 THEN 1290 :: IF S
EG$(CK$,LEN(CK$),1)<>"1" THEN 1290
1090 IF C2=0 THEN 1290

1100 IF C2-C1<=1 THEN 1290

1110 IF PP=0 THEN 1160

1120 IF PP<C1 THEN 1290

1130 IF PP>C2 THEN 1290

1140 PP2=POS(CK$,".",PP+1)
1150 IF PP2O0 THEN 1290

1160 FOR 1=1 TO LEN(CK$)
1170 L$(I)=SEG$(CK$,I,1)
1180 NEXT I

1190 FOR 1=1 TO LEN(CK$)
1200 IF ASC(L$(I))=44 THEN 1230 :: IF AS
C(L$(I))=46 THEN 1230
1210 IF ASC(L$(I))<48 THEN 1290
1220 IF ASC(L$(I))>57 THEN 1290
1230 NEXT I :: CKNO(CK)=VAL(SEG$(CK$,1,C

1-1))
1240 CKAMT(CK)=VAL(SEG$(CK$,C1+1,C2-C1-1
))
1250 IF C3=0 THEN CKCAT(CK)=VAL(SEG$(CK$
,C2+1,LEN(CK$)-C2))
1260 IF C3<>0 THEN CKCAT(CK)=VAL(SEG$(CK
$,C2+1,C3-C2-1))
1270 VALRC=0

1280 RETURN

1290 DISPLAY AT(4,1)ERASE ALL:" >> ERROR
. CHECK INFORMATION NOT ENTERED IN TH

E CORRECT FORMAT."

1300 DISPLAY AT(12,1):" YOU ENTERED":
:" ";CK$

1310 GOSUB 3110 :: GOSUB 3470

1320 VALRC=4 :: GOTO 1280

1330 LCKNO=CKNO(CK-l):: LCKAMT=CKAMT(CK-
1):: LCKCAT=CKCAT(CK-1):: LCKOUT=CKOUT(C
K-l):: RETURN
1340 REM DELETE A CHECK

1350 DISPLAY AT(4,1)ERASE ALL:"ENTER THE
NUMBER OF THE": :"CHECK TO BE DELETED."

1360 GOSUB 3110 :: ACCEPT AT(10,5)VALIDA

87

TE(DIGIT)SIZE(4):A$:: IF A$="" THEN 370
ELSE A=VAL(A$)

1370 FOR 1=1 TO CK-1

1380 IF A=CKNO(I)THEN 1420
1390 NEXT I

1400 DISPLAY AT(4,1)ERASE ALL:" >> ERROR
. CHECK NUMBER ":" ";A;" NOT
FOUND."

1410 GOSUB 3110 :: GOSUB 3470 :: GOTO 50

0

1420 FOR J=I+1 TO CK

1430 CKNO(J-l)=CKNO(J):: CKAMT(J-l)=CKAM
T(J):: CKCAT(J-1)=CKCAT(J)
1440 NEXT J

1450 CKNO(CK)=0 :: CKAMT(CK)=0 :: CKCAT(
CK)=0 :: CK=CK-1 :: IF A=LGC THEN LGC=CK
NO(CK-1)
1460 GOTO 500

1470 REM LIST THE CHECKS

1480 IF CK=1 THEN CALL CLEAR :: GOTO 158
0

1490 1=1

1500 CALL CLEAR :: FOR J=l TO 15

1510 IF CKOUT(I)=0 THEN 1540
1520 DISPLAY AT(J+4,1) .-USING "####" :CKNO
(I):: DISPLAY AT(J+4,8) .-USING 3530:CKAMT
(I):: DISPLAY AT(J+4,19):CKCAT(I):: DISP
LAY AT(J+4,24):CKOUT(I)
1530 GOTO 1550

1540 DISPLAY AT(J+4,1):USING "####":CKNO
(I):: DISPLAY AT(J+4,8) .-USING 3530:CKAMT
(I):: DISPLAY AT(J+4,19):CKCAT(I)
1550 1=1+1 :: IF I=CK THEN 1580

1560 NEXT J :: PRINT :: GOSUB 3110 :: GO
SUB 3470 :: GOTO 1500

1570 CALL CLEAR

1580 GOSUB 3510 :: GOSUB 3110 :: GOSUB 3
480 :: GOTO 500

1590 REM PROCESS A DEPOSIT

1600 TYPE$=" DEPOSIT "
1610 DISPLAY AT(4,1)ERASE ALL:" * * PR
OCESS A DEPOSIT * *"

1620 DISPLAY AT(7,1):" 1 - ADD IN A DEPO
SIT"

88

1630 DISPLAY AT(9,1):" 2 - DELETE A DEPO
SIT"

1640 DISPLAY AT(11,1):" 3 - LIST DEPOSIT
S ENTERED"

1650 DISPLAY AT(13,1):" 4 - RETURN TO PR
IMARY MENU"

1660 GOSUB 3500 :: GOSUB 3110 :: GOSUB 3

480

1670 RV=RV-48 :: IF RV<=0 THEN 1660 :: I

F RV>4 THEN 1660 :: ON RV GOSUB 1690,186

0,2060,1680
1680 RETURN

1690 REM ADD A DEPOSIT

1700 GOSUB 3430

1710 IF DP=1 THEN 1730 :: IF DP>MAXDEP T

HEN 3070

1720 DISPLAY AT(10,1):"LAST ENTERED:" ::
DISPLAY AT(10,16) .-USING 3530 :DEP(DP-1)

1730 GOSUB 3440

1740 IF D$<>"" THEN 1750 :: RETURN
1750 GOSUB 1760 : : IF RCO0 THEN 1840 EL

SE 1820

1760 P=POS(D$,",",l):: IF P<>0 THEN 1830
1770 FOR 1=1 TO LEN(D$)
1780 IF ASC(SEG$(D$,I,1))<48 THEN 1790 :
: IF ASC(SEG$(D$,I,1))>57 THEN 1830 :: G
OTO 1800

1790 P=POS(D§,".",1):: IF P=0 THEN 1830
:: Pl=POS(D$,".",P+1):: IF P1<>0 THEN 18
30 :: IF LEN(D$)-P>2 THEN 1830
1800 NEXT I :: RC=0

1810 RETURN

1820 DEP(DP)=VAL(D$):: DP=DP+1 :: GOTO 1
700

1830 RC=4 :: GOTO 1810

1840 GOSUB 3400

1850 GOSUB 3110 :: GOSUB 3470 :: GOTO 16

90

1860 REM DELETE DEPOSIT

1870 GOSUB 3450

1880 IF D$="" THEN 1910
1890 GOSUB 1760

1900 IF RCO0 THEN 1980 ELSE 1920

1910 RETURN

1920 FOR 1=1 TO DP-1

89

1930 IF VAL(D$)=DEP(I)THEN 2010
1940 NEXT I

1950 GOSUB 3410

1960 GOSUB 3110 :: GOSUB 3470

1970 RETURN

1980 GOSUB 3400

1990 GOSUB 3110 :: GOSUB 3470

2000 GOTO 1970

2010 FOR J=I TO DP-1

2020 DEP(J)=DEP(J+1)
2030 NEXT J

2040 DEP(DP-1)=0 :: DP=DP-1
2050 GOTO 1970

2060 REM LIST DEPOSITS

2070 CALL CLEAR

2080 FOR 1=1 TO DP-1

2090 IF DEP(I)=0 THEN 32767
2100 DISPLAY AT(I+3,10):USING 3530:DEP(I

)
2110 NEXT I

2120 GOSUB 3510 :: GOSUB 3110 :: GOSUB 3

480 :: RETURN

2130 REM WITHDRAWALS

2140 TYPE$=" WITHDRAWAL "
2150 DISPLAY AT(4,3)ERASE ALL:"** PROCES
S WITHDRAWALS **"

2160 DISPLAY AT(7,2):"1 - ENTER A WITHDR
AWAL"

2170 DISPLAY AT(9,2):"2 - DELETE A WITHD
RAWAL"

2180 DISPLAY AT(11,2):"3 - LIST WITHDRAW
ALS"

2190 DISPLAY AT(13,2):"4 - RETURN TO PRI
MARY MENU"

2200 GOSUB 3500 :: GOSUB 3110 :: GOSUB 3

480

2210 IF RV<49 THEN 2200

2220 IF RV>52 THEN 2200

2230 RV=RV-48 :: ON RV GOSUB 2250,2460,2
390,2240

2240 RETURN

2250 REM ENTER WITHDRAWAL

2260 GOSUB 3430

2270 IF WI=1 THEN 2290 :: IF WI>MAXWITH

THEN 3060

90

2280 DISPLAY AT(10,1):"LAST ENTERED:" ::
DISPLAY AT(10,15):USING 3530:WITH(WI-1)

2290 GOSUB 3440

2300 IF D$="" THEN 2310 ELSE 2320
2310 RETURN

2320 GOSUB 1760

2330 IF RC<>0 THEN 2360

2340 WITH(WI)=VAL(D$)
2350 WI=WI+1 :: GOTO 2270

2360 GOSUB 3400

2370 GOSUB 3110 :: GOSUB 3470

2380 GOTO 2130

2390 REM LIST WITHDRAWALS

2400 CALL CLEAR

2410 FOR 1=1 TO WI-1

2420 IF WITH(I)=0 THEN 32767
2430 DISPLAY AT(6+1,10) .-USING 3530:WITH(

I)
2440 NEXT I

2450 GOSUB 3510 :: GOSUB 3110 :: GOSUB 3

480 :: RETURN

2460 REM DELETE A WITH.

2470 GOSUB 3450

2480 IF D$<>"" THEN 2490 :: RETURN
2490 GOSUB 1760

2500 IF RCO0 THEN 2560

2510 FOR 1=1 TO WI-1

2520 IF WITH(I)=VAL(D$)THEN 2570
2530 NEXT I

2540 GOSUB 3410

2550 GOSUB 3110 :: GOSUB 3470 :: GOTO 22

40

2560 GOSUB 3400 :: GOSUB 3470 :: GOTO 26

20

2570 FOR J=I TO WI-1

2580 WITH(J)=WITH(J+1)
2590 NEXT J

2600 IF WI=1 THEN 2620

2610 WITH(WI-1)=0 :: WI=WI-1
2620 RETURN

2630 REM FIND BALANCE

2640 SCK,SDP,SWI,SOUT=0

2650 DISPLAY AT(4,1)ERASE ALL:"ENTER BAL
ANCE FROM PREVIOUS": :"MONTH:" :: GOSUB

91

3110 :: ACCEPT AT(8,5)VALIDATE(DIGIT,"."
):D$
2660 IF D$="" THEN 370
2670 GOSUB 1760 :: IF RC<>0 THEN 2630
2680 FOR 1=1 TO CK-1

2690 SCK=SCK+CKAMT(I)
2700 NEXT I

2710 FOR 1=1 TO DP-1

2720 SDP=SDP+DEP(I)
2730 NEXT I

2740 FOR 1=1 TO WI-1

2750 SWI=SWI+WITH(I)
2760 NEXT I

2770 NOUT=0

2780 FOR 1=1 TO CK-1

2790 IF CKOUT(I)=0 THEN 2820
2800 NOUT=NOUT+l

2810 SOUT=SOUT+CKAMT(I)
2820 NEXT I

2830 BAL=VAL(D$)-SCK-SWI+SDP
2840 DISPLAY AT(4,1)ERASE ALL:" ITEM" ::
DISPLAY AT(4,11):"NUMBER" :: DISPLAY AT
(4,24):"SUM"
2850 DISPLAY AT(8,1):"PRIOR BAL." :: DIS
PLAY AT(8,20):USING 3530:VAL(D$)
2860 DISPLAY AT(10,1):"CHECKS" :: DISPLA
Y AT(10,13):CK-1 :: DISPLAY AT(10,20):US
ING 3530:SCK

2870 DISPLAY AT(12,1):"DEPOSITS" :: DISP
LAY AT (12,13).-DP-1 :: DISPLAY AT (12,20):
USING 3530:SDP

2880 DISPLAY AT(14,1):"WITHDRAWALS" :: D
ISPLAY AT(14,13):WI-1 :: DISPLAY AT(14,2
0):USING 3530:SWI
2890 DISPLAY AT(16,1):"OUT CKS." :: DISP
LAY AT(16,13) .-NOUT :: DISPLAY AT(16, 20):
USING 3530:SOUT

2900 DISPLAY AT(20,5) .-"BALANCE = " :: DI
SPLAY AT(20,15):USING 3530:BAL :: GOSUB
3110 :: GOSUB 3470 :: RETURN

2910 REM WRITE NEW ONES

2920 DISPLAY AT(4,1)ERASE ALL:" ** TERMI
NATING MENU **":::" 1 - SAVE CHECKS FO

R":" ANALYSIS": :" 2 - TERMINATE PRO

GRAM"

92

2930 DISPLAY AT(12,1):" 3 - RETURN TO PR
IMARY":" MENU" :: GOSUB 3500

2940 GOSUB 3110 :: GOSUB 3480 :: RV=RV-4

8 :: IF RV<0 THEN 2940 :: IF RV>3 THEN 2

940 :: ON RV GOTO 2950,3090,370
2950 OPEN #2:"DSK1.CHECKS"&MY$,SEQUENTIA
L,OUTPUT,INTERNAL,VARIABLE 64
2960 FOR 1=1 TO CK-1

2970 PRINT #2:CKNO(I),CKAMT(I),CKCAT(I)
2980 NEXT I

2990 CLOSE #2

3000 IF MY$="TEMP" THEN 3020
3010 OPEN #1:"DSK1.CMON",OUTPUT,DISPLAY
,FIXED 10 :: PRINT #1:MY$:: CLOSE #1
3020 DISPLAY AT(4,5)ERASE ALL:" * * EXI
T MENU * *"

3030 DISPLAY AT(9,1):" 1 - RUN ANALYSIS"
: :" 2 - TERMINATE PROGRAM" :: GOSUB 350

0 :: GOSUB 3110 :: GOSUB 3480 :: RV=RV-4

8 :: IF RV>2 THEN 3030

3040 IF RV=1 THEN DELETE "DSKl.SAVE"&MY$
:: RUN "DSKl.ANALYZE" ELSE 3090

3050 DISPLAY AT(4,1)ERASE ALL:"MAXIMUM O
F 70 CHECKS HAS": :"BEEN REACHED." :: GO

SUB 3080 :: GOSUB 3110 :: GOSUB 3470 ::

RETURN

3060 DISPLAY AT(4,1)ERASE ALL:"THE MAXIM
UM OF 10 WITH-": .-"DRAWALS HAS BEEN REAC

HED." :: GOSUB 3080 :: GOSUB 3110 :: GOS

UB 3470 :: RETURN

3070 DISPLAY AT(4,1)ERASE ALL:"THE MAXIM
UM OF 10 DEPOSITS": :"HAS BEEN REACHED."

:: GOSUB 3080 :: GOSUB 3110 :: GOSUB 34

70 :: RETURN

3080 DISPLAY AT(10,1):"CALCULATE BALANCE
, SAVE": :"CHECKS, AND START PROGRAM": :
"AGAIN." :: RETURN

3090 IF FUNC$="FETCH" THEN DELETE "DSKl.
SAVE"&MY$
3100 CALL CLEAR :: END

3110 REM MAKE BORDER

3120 CALL COLOR(l,l,l):: CALL VCHAR(1,31
,BC,RP):: CALL VCHAR(1,32,BC,RP):: CALL
VCHAR(1,1,BC,RP):: CALL VCHAR(1,2,BC,RP)
3130 CALL HCHAR(1,1,BC,31):: CALL HCHAR(

93

2,1,BC,31):: CALL HCHAR(22,1,BC,32):: CA
LL COLOR(1,13,1):: RETURN
3140 REM SAVE CHECKBOOK

3150 FUNCS="SAVE"

3160 OPEN #44:"DSK1.SAVE"&MY$,OUTPUT,INT
ERNAL,SEQUENTIAL,VARIABLE 64
3170 FOR 1=1 TO CK-1

3180 PRINT #44:CKNO(I),CKAMT(I),CKCAT(I)
,CKOUT(I):: NEXT I :: PRINT #44:99999,99
999,99999,99999
3190 FOR 1=1 TO DP-1

3200 PRINT #44:DEP(I):s NEXT I :: PRINT
#44:99999

3210 FOR 1=1 TO WI-1

3220 PRINT #44:WITH(I):: NEXT I :: PRINT
#44:99999

3230 PRINT #44:LGC,LCKNO,LCKAMT,LCKCAT,L

CKOUT :: CLOSE #44 :: RETURN

3240 REM FETCH CHECKBOOK

3250 FUNC$="FETCH"
3260 OPEN #44:"DSKl.SAVE"&MY$,INPUT ,INT
ERNAL,SEQUENTIAL,VARIABLE 64
3270 FOR 1=1 TO MAXCK

3280 INPUT #44:CKNO(I),CKAMT(I),CKCAT(I)
,CKOUT(I):: IF CKCAT(I)=99999 THEN 3300
3290 NEXT I

3300 CK=I

3310 FOR 1=1 TO MAXDEP

3320 INPUT #44:DEP(I):: IF DEP(I)=99999
THEN 3340

3330 NEXT I

3340 DP=I

3350 FOR 1=1 TO MAXWITH

3360 INPUT #44:WITH(I):: IF WITH(I)=9999
9 THEN 3380

3370 NEXT I

3380 WI=I

3390 INPUT #44:LGC,LCKNO,LCKAMT,LCKCAT,L

CKCAT :: CLOSE #44 :: RETURN
3400 DISPLAY AT(4#1)ERASE ALL:">> ERROR.
ti. TYPES ;"ENTERED" : :" IN INVALID FORMA

T." :: GOSUB 3420 :: RETURN

3410 DISPLAY AT(4,1)ERASE ALL:">> ERROR.
••. Type$;"ENTERED" : :" NOT FOUND. " :: G

94

OSUB 3420 :: RETURN

3420 DISPLAY AT(10,4):"YOU ENTERED:" ::
DISPLAY AT(13,8):D$:: RETURN
3430 DISPLAY AT(4#1)ERASE ALL:"ENTER AMO
UNT OF";TYPE$;".": : : :"PRESS <ENTER> W
HEN NO MORE." :: RETURN

3440 DISPLAY AT(18,1):"AMOUNT:" :: GOSUB
3110 :: ACCEPT AT(18,12)VALIDATE(DIGIT,

"."):D$:: RETURN
3450 DISPLAY AT(4,1)ERASE ALL:" ENTER AM
OUNT OP": :TYPE$;"TO BE DELETED.": : : :
" PRESS <ENTER> IF NO MORE."

3460 GOSUB 3110 :: ACCEPT AT(18,8)VALIDA
TE(DIGIT,"."):D$:: RETURN
3470 DISPLAY AT(23,1):" >>> PRESS ANY
KEY":" TO CONTINUE."

3480 CALL KEY(0,RV,SV)
3490 IF SV=0 THEN 3480 :: RETURN

3500 DISPLAY AT(23,3):">> PRESS NUMBER F
OR":" FUNCTION DESIRED" :: RETURN

3510 DISPLAY AT(24,4):" ** LISTED **
" :: RETURN

3520 IMAGE #### #####.## ##

3530 IMAGE #####.##

ANALYSIS

PROGRAM

100 CALL SCREEN(4):: BC=33 :: CALL CHAR(
BC,"FFFFFFFFFFFFFFFF"):: CALL CLEAR
110 CALL CHARPAT(37,PCEN$,36,DLR$):: CAL
L CHAR(91,PCEN$,93,DLR$):: GOTO 450
120 REM CHECKBOOK MGMT

130 REM UTILITY/ANALYSIS
140 REM C JOHN COPE 1983

150 REM CRACKING THE 99/4A
160 OPTION BASE 1

170 DIM T(20),P(20),SC(20),CT(20),CSC(20
),MON$(127)

95

180 DISPLAY AT(4,1)ERASE ALL:" *** PRIM
ARY MENU ***"

190 DISPLAY AT(6,1):" 1 - ANALYZE ANY MO
NTH"

200 DISPLAY AT(8,1):" 2 - ANALYZE CURREN
T MONTH"

210 DISPLAY AT(10,1):" 3 - ANALYZE CUMUL
ATIVE"

220 DISPLAY AT(12,1):" 4 - ANALYZE TEMP.
CHECKS": :" 5 - TERMINATE PROGRAM"

230 DISPLAY AT(23,1):" PRESS NUMBER FOR
FUNCTION DESIRED."

240 GOSUB 1180 :: GOSUB 1250 :: IF RV>5
THEN 240

250 ON RV GOTO 270,450,1040,260,1290
260 MY$="TEMP"
270 REM ANALYZE ANY MONTH

280 FOR 1=1 TO 20 :: T(I)=0 :: SC(I)=0 :
: NEXT I :: S=0 :: IF MY$="TEMP" THEN GO
SUB 320 :: GOTO 390

290 DISPLAY AT(4,1)ERASE ALL:"ENTER MONT
H AND YEAR": :"OF MONTH YOU WANT TO": :"

ANALYZE, IN THE FOLLOWING": :"FORMAT:"

300 DISPLAY AT(12,1):" MMYY": : :"WHER
E 'MM' IS THE MONTH": :"(E.G., 02=FEB, 1
l=NOV)": .-"AND YY = THE YEAR."
310 GOSUB 1180 :: ACCEPT AT(23,5)VALIDAT
E(DIGIT)SIZE(4):MY :: MY$=STR$(MY):: IF
LEN(MY$)<3 THEN 310 :: IF LEN(MY$)=3 THE
N MY$="0"&MY$:: GOSUB 320 :: GOTO 390
320 OPEN #32:"DSK1.",INPUT ,RELATIVE,INT
ERNAL

330 C=l :: FOR 1=1 TO 127

340 INPUT #32:A$,A,J,K
350 IF LEN(A$)=0 THEN 380
360 MON$(C)=A$:: C=C+1
370 NEXT I

380 CLOSE #32 :: RETURN

390 DSN$="CHECKS"&MY$
400 FOR 1=1 TO 24

410 IF DSN$=MON$(I)THEN 480
420 NEXT I

430 DISPLAY AT(4,1)ERASE ALL:">> ERROR.
FILE DOES NOT": :" EXIST FOR THE MONTH

96

": :" AND YEAR YOU CHOSE": :" (";MY$
;")."
440 GOSUB 1180 :: GOSUB 1240 :: GOTO 120
450 REM ANALYZE THIS MO.

460 FOR 1=1 TO 20 :: T(l)=0 :: SC(I)=0 :
: NEXT I :: S=0
470 OPEN #33:"DSKl.CMON",INPUT ,DISPLAY
,FIXED 10 :: INPUT #33:MY$:: CLOSE #33
480 CALL CLEAR

490 OPEN #1:"DSK1.CHECKS"&MY$,SEQUENTIAL
,INTERNAL,INPUT ,VARIABLE 64
500 INPUT #1:A,B,C

510 GOTO 540

520 CLOSE #1

530 GOTO 550

540 S=S+B :: T(C)=T(C)+1 :: SC(C)=SC(C)+
B :: IF EOF(1)<>0 THEN 520 :: GOTO 500
550 FOR 1=1 TO 20

560 P(I)=(SC(I)/S)*100
570 NEXT I

580 GOSUB 590 :: GOSUB 620 :: GOTO 120
590 DISPLAY AT(1,1)ERASE ALL:" CAT. NO
. PER TOTAL"
600 DISPLAY AT(3,1):"CASH":"HOUSE":"CLOT
HES":"MEDICAL":"AUTO":"CHARGE":"FOOD":"M
ISC":"INSUR":"DONATE":"UTILI":"PHONE":"F
UN":"YOUR 14"
610 DISPLAY AT(17,1):"YOUR 15":"YOUR 16"
:"YOUR 17":"YOUR 18":"YOUR 19":"YOUR 20"
:: RETURN

620 FOR 1=1 TO 20

630 DISPLAY AT(2+I,9):USING "## ##.##[
]#####.##":T(I),P(I),SC(I)
640 NEXT I

650 DISPLAY AT(24,5):USING 1300:S
660 DISPLAY AT(24,1)SIZE(4):MY$
670 CALL KEY(0,RW,SV) :: IF SV=0 THEN 67
0

680 GOTO 690 !GO INTEGRATE

690 REM COMBINE RESULTS

700 IF INTG=1 THEN 120 :: INTG=1 :: CALL

CLEAR :: DISPLAY AT(4,1)ERASE ALL:" IN
TEGRATING ... PLEASE": :" WAIT"

710 GOSUB 320

720 FOR 1=1 TO C

97

730 IF MON$(I)="CINT" THEN 760
740 NEXT I

750 OPEN #25:"DSK1.CINT",OUTPUT,DISPLAY
,FIXED 10 :: PRINT #25:MY$:: CLOSE #25
:: GOTO 770

760 OPEN #25:"DSK1.CINT",INPUT ,DISPLAY
,FIXED 10 :: INPUT #25:CINT$:: CLOSE #2
5 :: IF CINT$=MY§ THEN GOSUB 1210 :: GOT
O 120 ELSE 750

770 OPEN #32:"DSK1.",INPUT ,RELATIVE,INT
ERNAL

780 FOR 1=1 TO 127 :: INPUT #32:A$,A,J,K
:: IF LEN(A$)=0 THEN ANS$="N" :: GOTO 8

10

790 IF A$="CUMULATIVE" THEN ANS$="Y" ::
GOTO 810

800 NEXT I :: ANS$="N"
810 CLOSE #32

820 IF ANS$="Y" THEN 890
830 OPEN #1:"DSK1.CUMULATIVE",INTERNAL,O
UTPUT,SEQUENTIAL,FIXED 50
840 FOR 1=1 TO 20

850 PRINT #1:T(I),SC(I)
860 NEXT I

870 CLOSE #1

880 GOTO 120

890 OPEN #1:"DSK1.CUMULATIVE",INTERNAL,S
EQUENTIAL,UPDATE,FIXED 50
900 FOR 1=1 TO 20 :: CT(I)=0 :: CSC(I)=0
:: NEXT I

910 FOR 1=1 TO 20

920 INPUT #1:CT(I),CSC(I)
930 NEXT I

940 FOR 1=1 TO 20

950 CT(I)=CT(I)+T(I)
960 CSC(I)=CSC(I)+SC(I)
970 NEXT I

980 RESTORE #1

990 FOR 1=1 TO 20

1000 PRINT #1:CT(I),CSC(I)
1010 NEXT I

1020 CLOSE #1

1030 GOTO 120

1040 REM ANALYZE CUMULATIVE

1050 FOR 1=1 TO 20 :: SC(I)=0 :: T(I)=0

98

:: NEXT I :: S=0

1060 OPEN #1:"DSK1.CUMULATIVE",INTERNAL,
SEQUENTIAL,INPUT ,FIXED 50
1070 FOR 1=1 TO 20

1080 INPUT #1:T(I),SC(I)
1090 NEXT I

1100 CLOSE #1

1110 FOR 1=1 TO 20

1120 S=S+SC(I)
1130 NEXT I

1140 FOR 1=1 TO 20

1150 P(I)=(SC(I)/S)*100
1160 NEXT I

1170 MY$="CUM " :: GOSUB 590 :: GOSUB 62
0 :: GOSUB 1250 :: GOTO 120

1180 REM MAKE BORDER

1190 CALL COLOR(l,l,l):: CALL VCHAR(1,1,
BC,24):: CALL VCHAR(1,2,BC,24):: CALL VC
HAR(1,31,BC,24):: CALL VCHAR(1,32,BC,24)
1200 CALL HCHAR(1,1,BC,31):: CALL HCHAR(
2,1,BC,31):: CALL HCHAR(22,1,BC,31):: CA
LL COLOR(l,13,l):: RETURN
1210 DISPLAY AT(10,1):" INTEGRATION BYP
ASSED - ": :" CURRENT MONTH ALREADY": :
" INTEGRATED."

1220 GOSUB 1180

1230 FOR 1=1 TO 2000 :: NEXT I :: RETURN

1240 DISPLAY AT(23,1):" PRESS ANY KEY TO
CONTINUE"

1250 CALL KEY(0,RV,SV)
1260 IF SV=0 THEN 1250

1270 RV=RV-48

1280 RETURN

1290 CALL CLEAR :: END

1300 IMAGE " GRAND TOTAL =]#####.##"

99

Extended Basic

SUPER CATALOGGER

As you've probably found, there are a number of catalog listers available.
Often you will find thata program, oncefound in the listing, then must be
loaded and run. This program overcomes this inconvenience and offers a
few additional options.

When running the program, the first prompt to appear asks whether you
would like a copy of the catalog sent to the printer. The letter "N" for NO
is the default that appears under the cursor, and may be selected simply by
pressing enter. Otherwise pressing "Y" for YES will lead you through a
series of parameters such as the RS232 port number you are using, the
number of bits used (7 or 8), and the baud rate. Again, the letter the cursor
flashes above will be the default value if you press the enter key.

Following the printer option, the program loads all program names, file
sizes, and file types into an array and displays the directory on the screen
in one shot. (Listings longer than one screen may be continued by pressing
< ENTER >. Any program may be chosen and RUN by entering the
number that appears next to the program name. What a time saver!

100 REM CRACKING THE 99/4A
110 REM SUPERCATALOGGER

120 REM BRUCE WYCHE 02/08/84
130 ON BREAK NEXT :: ON WARNING NEXT ::

ON ERROR 700

140 UNTRACE :: CALL CHARSET

150 DIM AA(127)
160 DIM B$(5),0$(127),G$(127),TP$(5)
170 BL$=RPT$(" ",56):: DEC$="0123456789"
180 CALL CLEAR :: CALL PEEK(-24576,@)::
IF @<>0 THEN CALL INIT :: CALL LOAD(-318
06,16):: CALL LOAD(-31878,0)
190 RESTORE 640 :: FOR 1=1 TO 5 :: READ

100

B§(I),TP$(I):: NEXT I

210 DISPLAY ERASE ALL AT(2,1):" SUPERCA
TALOGGER PROGRAM"

220 DISPLAY AT(4,1):" READ OR PRINT
OUT"

230 DISPLAY AT(6,1):" AUTOMATIC RUN O
PTION"

240 RESTORE 650 :: NK=1 :: GOSUB 610 ::

IF A$(1)="N" THEN 270
250 NK=3 :: GOSUB 610
260 PF=-1 :: OPEN #2:"RS232/"&A$(1)&".DA
="&A$(2)&".BA="&B$(VAL(A$(3)))
270 DISPLAY AT(20,1):"READING CATALOG, S
TANDBY...."

280 OPEN #1:"DSK1.",INPUT ,RELATIVE,INTE

RNAL :: INPUT #1:@$,@,J,K
290 H$="DSK."&@$&" "&"AVAIL "&STR$(K)&"/
"&STR$(J)
300 H$=H$&RPT$(" ",ABS((LEN(H$)<29))*(28
-LEN(H$)))&"NM FILENAME SIZ TYPE LEN P
ii

310 1=0

320 1=1+1 :: INPUT #1:G$(I),AA(I),J,K ::
IF LEN(G$(I))=0 THEN LF=I-1 :: CLOSE #1
:: GOTO 360

330 0$(I)=STR$(I)&RPT§(" ",3-LEN(STR$(I)
))&G$(I)&RPT$("-",INT(10-LEN(G$(I))))&ST
R$(J)&RPT$(" ",3-LEN(STR$(J)))&TP$(ABS(A
A(I)))
340 IF ABS(AA(I))<>5 THEN 0$(I)=0$(I)&RP
T$(" ",3-LEN(STR$(K)))&STR$(K)
350 GOTO 320

360 DISPLAY ERASE ALL AT(1,1):H$:: IF (
PF)THEN PRINT #2:SEG$(H$,1,28):SEG$(H$,2
9,56)
370 R=2

380 FOR P=l TO LF

390 R=R+1

400 DISPLAY AT(R,1):0$(P):: IF (PF)THEN
PRINT #2:0$(P)
410 IF R<>22 THEN 490

420 DISPLAY AT(23,1):STR$(P+l)&" PROGRAM
";TAB(13);"(ENTER=CONTINUE)"

101

430 ACCEPT AT(23,1)VALIDATE(DEC$&CHR$(13
))BEEP SIZE(-3):@$
440 IF @$=STR$(P+1)THEN R=2 :: CALL HCHA
R(3,1,32,672):: GOTO 490 ELSE @=VAL(@$)
450 IF @<1 OR @>LF THEN M$="MUST BE BETW
EEN 1 AND "&STR$(LF):: GOSUB 690 :: GOTO
420

460 IF ABS(AA(@))=5 THEN 730
470 IF AA(@)=4 THEN 730
480 M$="MUST BE A PROGRAM FILE 111" :: G
OSUB 690 :: GOTO 420

490 NEXT P

500 DISPLAY AT(23,l):"NO MORE FILES, SEL
ECT ONE : 000=AGAIN XXX=PGM 999=STOP"
510 ACCEPT AT(24,1)VALIDATE(DEC$)SIZE(-3
):<a$:: <a=VAL(@$)
520 IF @<>0 THEN 550

530 IF (PF)THEN PF=0 :: CLOSE #2
540 GOTO 180

550 IF @<>999 THEN 590

560 IF (PF)THEN CLOSE #2
570 CALL CLEAR :: CALL CHARSET

580 STOP

590 IF @>LF THEN M$="MUST BE BETWEEN 1 A
ND "&STR$(LF):: GOSUB 690 :: GOTO 500
600 IF ABS(AA(@))=5 OR ABS(AA(@))=4 THEN
730 ELSE M$="MUST BE A PROGRAM FILE Ml

" :: GOSUB 690 :: GOTO 500

610 REM ACCEPT SUBROUTINE

620 FOR K=l TO NK :: READ R,C,AR,AC,SZ,V

$,M$:: DISPLAY AT(R,C):M$:: ACCEPT AT(
AR,AC)VALIDATE(V$)SIZE(SZ):A$(K):: NEXT
K

630 RETURN

640 DATA 300,DIS/FIX,1200,DIS/VAR,2400,I
NT/FIX,4800,INT/VAR,9600,PROGRAM
650 DATA 12,1,12,24,-l,YNyn,PRINTOUT OF
CATALOG ? NY

660 DATA 14,1,14,24,-1,12,RS232 PORT NUM

BER : 12

670 DATA 15,1,15,24,-1,78,NUMBER OF BITS

102

USED ? 87

680 DATA 16,1,19,18,-1,12345,BAUD RATE (
BITS/SEC) 1=300 2=1200 3=2400

4=4800 5=9600 YOUR
CHOICE ? 5

690 FOR 1=1 TO 4 :: DISPLAY AT(23,1):BL$
:: CALL SOUND(-400,110,8):: DISPLAY AT(

23,1):M$:: CALL SOUND(99,110,30):: NEXT
I :: RETURN

700 CALL ERR(E,T,S,L)
710 M$="<<< wEiRd0 error "&STR$(E)&" >>>
" :: GOSUB 690

720 RETURN 180

730 REM GENERAL PURPOSE LOADER 99ER

MAGAZINE USED BY PERMISSI

ON

740 CALL CHARSET

750 CALL PEEK(-31952,I,J):: CALL PEEK(I*
256+J-65534,I,J):: K=I*256+J-65534 :: @$
="DSK1."&G$(@) :: CALL LOAD(K,LEN(@$))
760 FOR 1=1 TO LEN(@$):: CALL LOAD(K+I,A
SC(SEG$(@$,I,1))):: NEXT I :: CALL LOAD(
K+1,0)
770 RUN "DSK1.1234567890"

103

Basic console

CHRISTMAS BILLBOARD

This is one of the few programs that requires only the basic console.
Although this program has limited uses, it is included because it is creative
and reveals an extensive use of what console basic can do. You will find
the code is somewhat lengthy, but self documenting.

On the left side of the screen the program displays a Christmas tree with
wrapped packages underneath. Up to seven messages of your choice are
displayed, one at a time, on the right side of the screen. The length of time
that each message is displayed is also selectable. The program prompts
you for each message and its associated time of display. For however long
a message is displayed, the lights on the Christmas tree blink as rapidly as
possible; a random number generator is used to select which light to
blink.

After the Christmas tree is drawn, the song "I'll be home for Christmas" is
played. As each note is played, a light on the Christmas tree blinks.

After the last message has been displayed, the screen is blanked and the
program starts over at its beginning, drawing the Christmas Tree and
repeating your messages.

When entering a message, as soon as you press ENTER you will
see the statement 'VALIDATING YOUR MESSAGE" on the screen. If a word
is longer than the number of columns allocated for message display, or if
the number of words are greater than the dimension of the variable used to
hold them, or if the combination of words are such that they will not fit in
the amount of space reserved on the screen for message display, an ap
propriate error message is displayed on the screen. This is probably the
most difficult and interesting code in the program.

100 REM COPYRIGHT 1983

110 REM JOHN ROBERT COPE

120 REM CRACKING THE 99/4A
130 REM BASIC

140 REM GET I/P INFO
150 OPTION BASE 1

160 MNO=l

170 CALL CLEAR

180 PRINT "ENTER YOUR CHRISTMAS M

ESSAGE NO.";MNO;"OF 6": : :

104

190 PRINT " ENCLOSE MESSAGE IN QUOTES

(HOLD DOWN <FCTN> AND THEN PRESS
<P> TO MAKE A QUOTE).": :

200 PRINT " EACH MESSAGE CANNOT BE

LONGER THAN 4 LINES.": :

210 PRINT " IF YOU WANT A QUOTE IN
THE MESSAGE, PUT TWO OF THEM WHERE

YOU WANT IT.": : :

220 BL$=" "
230 PRINT "IF NO MORE MESSAGES, JUST P

RESS ENTER.": : :

240 INPUT ">":MSG$(MNO)
250 IF MSG$(MNO)="" THEN 740
260 GOSUB 430

270 CALL CLEAR

280 PRINT "ENTER THE TIME - IN SECONDS -

THAT YOU WANT THIS MESSAGETO REMAIN ON

THE SCREEN BEFORE GOING TO THE NEXT

MESSAGE.": :

290 IF MN0>1 THEN 310

300 PRINT "IF YOU HAVE GIVEN ONLY ONE M

ESSAGE AND YOU WANT IT TO BE DISPLAYED

PERMANENTLY, ENTER ZERO.": :
310 PRINT "ACCEPTABLE VALUES ARE FROM O

NE (1) TO SIXTY (60) SECONDS": : :
320 INPUT ">":SEC(MNO)
330 IF MN0>1 THEN 350

340 IF SEC(MNO)=0 THEN 740
350 IF MNO=6 THEN 740

360 IF SEC(MNO)<=60 THEN 380
370 SEC(MNO)=60
380 IF SEC(MNO)>0 THEN 400
390 SEC(MNO)=l
400 MNO=MNO+l

410 GOTO 170

420 REM VALIDATE MSGS

430 CALL CLEAR

440 PRINT " VALIDATING YOUR MESSAGE...":

• •

450 DIM WD$(6,40),L(13)
460 PTR=1

470 WORD=l

480 SP=POS(MSG$(MNO),BL$,PTR)
490 IF SP<>0 THEN 520

500 WLEN=LEN(MSG$(MNO))-PTR+l

105

510 GOTO 570

520 WLEN=SP-PTR

530 IF WLENO0 THEN 570

540 REM SIDE BY SIDE BLANKS

550 PTR=PTR+1

560 GOTO 480

570 WD$(MNO,WORD)=SEG$(MSG$(MNO) ,PTR,WLE
N)
580 IF WLEN>13 THEN 2310

590 REM NO MORE WORDS ?

600 IF SP=0 THEN 670

610 PTR=SP+1

620 WORD=WORD+l

630 IF WORD<=40 THEN 480

640 CALL CLEAR

650 PRINT "SORRY. NO MORE THAN 40 W

ORDS PER SENTENCE."

660 GOTO 3890

670 GOSUB 3720

680 IF SRC=0 THEN 720

690 CALL CLEAR

700 PRINT "SORRY. THIS PARTTICULAR C

OMBINATION OF WORDS WILL NOT FIT ON TH

E SCREEN AREA."

710 GOTO 3890

720 RETURN

730 REM ALL VALIDATED

740 CALL CLEAR

750 CALL SCREEN(12)
760 PASS=0

770 LET TRANS=1

780 LET BLACK=2

790 LET MEDGR=3

800 LET LTGR=4

810 LET DKBLU=5

820 LET LTBLU=6

830 LET DKRED=7

840 LET CYAN=8

850 LET MEDRED=9

860 LET LTRED=10

870 LET DKYEL=11

880 LET LTYEL=12

890 LET DKGR=13

900 LET MAGEN=14

910 LET GRAY=15

106

920 LET WHITE=16

930 REM DEFINE SHAPES

940 LET CNDL$="FFE7C3C3C3C3C3FF"
950 LET BLOCK$="FFFFFFFFFFFFFFFF"
960 LET EMPTY$="0000000000000000"
970 LET LRTRI$="0103070F1F3F7FFF"
980 LET LLTRI$="80C0E0F0F8FCFEFF"
990 LET ULTRI$="FFFEFCF8F0E0C080"
1000 LET URTRI$="FF7F3F1F0F070301"

RBLK§="0F0F0F0F0F0F0F0F"
LBLK$="F0F0F0F0F0F0F0F0"
TLINE$="FF00000000000000"
BLINE$="00000000000000FF"
MLINE$="000000FFFF000000"
ULST$="01012311090543FF"
URST$="8080C48890A0C2FF"
LLST$="FF43050911210301"

LRST$="FFC2A0908884C080"
REM MAKE THE TREE

CALL CLEAR

CHAR(136,LRTRI$)
CHAR(137,LLTRI$)
COLOR(14,DKGR,LTYEL)
HCHAR(6,9,136)
HCHAR(6,10,137)
CHAR(138,BLOCK$)
HCHAR(7,9,138,2)
HCHAR(8,8,136)
HCHAR(8,9,138,2)
HCHAR(8,11,137)
HCHAR(9,8,138,4)
HCHAR(10/7,136)
HCHAR(10,8,138,4)
HCHAR(10,12,137)
HCHAR(11,7,138,6)
HCHAR(12,6,136)
HCHAR(12,7,138,6)
HCHAR(12,13,137)
HCHAR(13,6,138,8)
HCHAR(14,5,136)
HCHAR(14,6,138,8)
HCHAR(14,14,137)
HCHAR(15,5,138,10)
HCHAR(16,4,136)
HCHAR(16,5,138,10)

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

LET

LET

LET

LET

LET

LET

LET

LET

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

107

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

HCHAR(16
HCHAR(17
HCHAR(17
HCHAR(17
COLOR(13
CHAR(128
CHAR(129
HCHAR(18
HCHAR(18
COLOR(15
CHAR(144
CHAR(145

15,137)
3,136)
4,138,12)
16,137)
BLACK,LTYEL)
RBLK?)
LBLK$)
9,128)
10,129)
GRAY,LTYEL)
BLOCK$)
URTRI$)

CHAR(1466,ULTRI?)
HCHAR(19
HCHAR(19
HCHAR(19
HCHAR(20
COLOR(16
CHAR(152
CHAR(153
CHAR(154
HCHAR(19
HCHAR(19
CHAR(155
HCHAR(19
HCHAR(20
HCHAR(20
HCHAR(20
HCHAR(21
HCHAR(21
HCHAR(21
COLOR(12
CHAR(120
CHAR(121
HCHAR(19
HCHAR(20
HCHAR(21
COLOR(11
CHAR(112
CHAR(113
CHAR(114
CHAR(115
HCHAR(4,9,112)
HCHAR(4,10,113)
HCHAR(5,9,114)

8,145)
11,146)
9,144,2)
9,144,2)
LTBLU,LTRED)
BLOCK?)
ULTRI$)
LRTRI?)
4,152)
5,153)
EMPTY$)
6,155)
4,153)
5,155)
6,154)
4,155)
5,154)
6,152)
CYAN,DKRED)
BLOCK?)
MLINE?)
13,120,3)
13,121,3)
13,120,3)
WHITE,TRANS)
ULST?)
URST?)
LLST?)
LRST?)

108

1820 CALL HCHAR(5,10,115)
1830 REM DRAW CANDLES

1840 CALL CHAR(139,CNDL?)
1850 CALL CHAR(96,CNDL?)
1860 CALL CHAR(104,CNDL?)
1870 CALL C0L0R(9,DKGR,DKBLU)
1880 CALL COLOR(10,DKGR,MEDRED)
1890 CALL HCHAR(10,9,139)
1900 CALL HCHAR(8,10,96)
1910 CALL HCHAR(12,11,104)
1920 CALL HCHAR(13,8,139)
1930 CALL HCHAR(14,6,96)
1940 CALL HCHAR(15,10,104)
1950 CALL HCHAR(14,13,139)
1960 CALL HCHAR(16,8,139)
1970 CALL HCHAR(16,12,96)
1980 CALL HCHAR(17,5,104)
1990 CALL HCHAR(17,14,96)
2000 GOSUB 3190

2010 REM MAINLINE ROUTINE

2020 IF PASS>0 THEN 2060

2030 MNO=l

2040 PASS=1

2050 REM GO WRITE A MSG

2060 GOSUB 2210

2070 IF SEC(MNO)=0 THEN 2110
2080 TWTM=(6*(SEC(MNO)))
2090 IF TWTM=0 THEN 2110

2100 FOR T=l TO TWTM

2110 GOSUB 2660

2120 IF SEC(MNO)=0 THEN 2110
2130 NEXT T

2140 MNO=MNO+l

2150 IF MNO=8 THEN 2180

2160 IF MSG?(MNO)="" THEN 2180
2170 GOTO 2060

2180 MNO=l

2190 GOTO 1110

2200 REM ERASE

2210 CALL CHAR(140,EMPTY?)
2220 FOR C=18 TO 32

2230 CALL VCHAR(24,C,140,24)
2240 NEXT C

2250 REM INIT

2260 V=3

109

2270 W0RD=1

2280 H=19

2290 PTR=1

2300 GOTO 2360

2310 CALL CLEAR

2320 PRINT "SORRY. CHARACTER SEQUENCES
CANNOT BE LONGER THAN 13 CHARACTERS."

2330 PRINT

2340 PRINT "THE SEQUENCE ": :"'";WD?(MNO
,WORD);"'": :"IS ";LEN(WD?(MNO,WORD));"
CHARACTERS."

2350 GOTO 3890

2360 FOR NL=1 TO LEN(WD?(MNO,WORD))
2370 L(NL)=ASC(SEG?(WD?(MNO,WORD),PTR,l)
)
2380 PTR=PTR+1

2390 NEXT NL

2400 FOR NL=1 TO LEN(WD?(MNO,WORD))
2410 REM WRITE A WORD

2420 CALL HCHAR(V,H,L(NL))
2430 H=H+1

2440 NEXT NL

2450 WORD=WORD+l

2460 IF WD?(MNO,WORD)<>"" THEN 2480
2470 RETURN

2480 IF H<31 THEN 2560

2490 H=19

2500 V=V+2

2510 IF V<24 THEN 2290

2520 CALL CLEAR

2530 PRINT "SORRY. THIS COMBINATION OF

WORDS WILL NOT FIT ON THE SCREEN."

2540 IF H<30 THEN 2560

2550 GOTO 2590

2560 CALL HCHAR(V,H,32)
2570 H=H+1

2580 IF LEN(WD?(MNO,WORD))<=32-H THEN 22
90

2590 H=19

2600 V=V+2

2610 IF V<24 THEN 2290
2620 CALL CLEAR

2630 PRINT "SORRY. THIS COMBINATION OF

WORDS WILL NOT FIT ON THE SCREEN."

2640 GOTO 3890

110

m
v
o

r
*

V
O

V
O

V
O

C
N

C
N

C
N

C
N

Qr>
-

0
3

C
N

Q
Q

Q
•
H

C
N

c
o

r
*

r
^

r
-

C
N

C
N

C
N

C
O

C
N

Q
II

K
•H

<S\
&

D
II

II
<

E
h

C
O

C
O

S
H

>
ffl

U
«

Q

Q
cr»

<
s

Q
c
o

«
C

N
rH

||0
5

C
0

II
K

^
II

K
tn

Q
II

3
^

<*)
II

3
\0

II
«

VO
CN

D
h

h
«

D
h

o
o

«
D

h
\
o

«
D

h
h

«
D

h
h

b
;
d

h
c
O

(
i
;
d

h
h

E
h

II
II

<
E

h
II

II
<

Eh
II

II
<

E
h

II
II

<
E

h
II

II
<

Eh
II

II
<

Eh
II

II

B
U
«
>
E
U
«
>
K
U
«
>
a
3
U
«
>
a
3
U
0
;
>
E
U
«
>
B
U
«
>
a
3

^
in

v
o

r
^
c
D

O
N

Q
H

C
N

c
o

^
in

v
o

r
^
c
x
)
C

J
>

Q
fH

C
N

c
o

^
u

iv
D

r
^
o

o
c
^
Q

r
H

C
N

c
n

^
u

^
v
o

r
^
o

o
r
^
r
^
r
^
r
^
r
^
r
^
c
o

c
o

c
o

o
D

c
o

c
o

o
D

O
D

(
X

)
c
o

o
\c

ftc
^
o

>
c
^
c
x
»

a
\c

y
v
<

r
>

c
^

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

r
O

O
O

fO
r
o

r
O

(n
o

o
r
^

3090 CHAR=96

3100 RETURN

3110 VS=17

3120 HS=5

3130 CHAR=104

3140 RETURN

3150 VS=17

3160 HS=14

3170 CHAR=96

3180 RETURN

3190 REM MUSIC

3200 QNOTE=375

3210 HNOTE=750

3220 TNOTE=1125

3230 FNOTE=1500

3240 VOL=10

3250 CALL SOUND(TNOTE,262,VOL-5,523,VOL)
3260 GOSUB 2660

3270 CALL SOUND(QNOTE,247,VOL-5,494,VOL)
3280 GOSUB 2660

3290 CALL SOUND(TNOTE,294,VOL-5,587,VOL)
3300 GOSUB 2660

3310 CALL SOUND(QNOTE,262,VOL-5,523,VOL)
3320 GOSUB 2660

3330 CALL SOUND(HNOTE,196,VOL-5,392,VOL)
3340 GOSUB 2660

3350 CALL SOUND(FNOTE,196,VOL-5,392,VOL)
3360 GOSUB 2660

3370 CALL SOUND(TNOTE,220,VOL-5,440,VOL)
3380 GOSUB 2660

3390 CALL SOUND(QNOTE,196,VOL-5,392,VOL)
3400 GOSUB 2660

3410 CALL SOUND(TNOTE,233,VOL-5,466,VOL)
3420 GOSUB 2660

3430 CALL SOUND(QNOTE,220,VOL-5,440,VOL)
3440 GOSUB 2660

3450 CALL SOUND(2*FNOTE,147,VOL-5,294,VO
L)
3460 GOSUB 2660

3470 CALL SOUND(TNOTE,294,VOL-5,587,VOL)
3480 GOSUB 2660

3490 CALL SOUND(QNOTE,262,VOL-5,523,VOL)
3500 GOSUB 2660

3510 CALL SOUND(TNOTE,294,VOL-5,587,VOL)
3520 GOSUB 2660

112

3530 CALL SOUND(QNOTE,262,VOL-5,523,VOL)
3540 GOSUB 2660

3550 CALL SOUND(TNOTE,196,VOL-5,392,VOL)
3560 GOSUB 2660

3570 CALL SOUND(TNOTE,220,VOL-5,440,VOL)
3580 GOSUB 2660

3590 CALL SOUND(QNOTE,220,VOL-5,440,VOL)
3600 GOSUB 2660

3610 CALL SOUND(HNOTE,294,VOL-5,587,VOL)
3620 GOSUB 2660

3630 CALL SOUND(HNOTE,330,VOL-5,659,VOL)
3640 GOSUB 2660

3650 CALL SOUND(HNOTE,262,VOL-5,523,VOL)
3660 GOSUB 2660

3670 CALL SOUND(HNOTE,294,VOL-5,587,VOL)
3680 GOSUB 2660

3690 CALL SOUND(2*FNOTE,262,VOL-5,523,VO
L)
3 700 GOSUB 2660

3710 RETURN

3720 REM FIT ON PAGE ?

3730 WRD=1

3740 LINE=1

3750 LEFT=13

3760 LEFT=LEFT-LEN(WD?(MNO,WRD))
3770 IF LEFT<0 THEN 3820

3780 WRD=WRD+1

3790 IF WRD>40 THEN 3870

3800 IF WD?(MNO,WRD)="" THEN 3870
3810 GOTO 3760

3820 LINE=LINE+1

3830 IF LINE>11 THEN 3850

3840 GOTO 3750

3850 SRC=4

3860 RETURN

3870 SRC=0

3880 GOTO 3860

3890 PRINT

3900 PRINT "PRESS ENTER TO RE-ENTER

MESSAGE";MNO;"."
3910 CALL KEY(0,RV,SV)
3920 IF SV=0 THEN 3910

3930 FOR 1=1 TO 40

3940 WD?(MNO,I)=""
3950 NEXT I

3960 GOTO 170

113

SPEECH

Speech unit
TE II cartridge

SPEECH CONTROL

The Tl SOLID STATE SPEECH SYNTHESIZER is a small add on peripheral
for the TI99/4AHOME COMPUTER. The speech unit measures less than 2
1/4 inches wide, and 5 inches deep. The unit plugs into the right hand side
of the Computer Console. The Peripheral Expansion cable attaches to the
right hand side of the Speech Module, so that the Speech Module fits bet
ween the Console and the Expansion Box.

Addition of speech brings spice to programs that are dull and lifeless. To
utilize speech in a program requires the use of a command module that
provides grom routines that access the speech unit, or use of Extended
Basic, Assembly, or UCSD PASCAL programing languages.

USE WIT!1! OTHER COMMAND MODULES

The easiest way to utilize speech within a program is to use Ti Basic
with a command module like the Speech Editor, or the TEII Terminal
Emulator Command cartridge. Each of these modules provide Speech firm
ware support via their groms. In most cases, the user programs speech I/O
in the same manner as that of a variable or a fixed sequential file.

The following programs illustrates this point. Notice that output to the
speech unit is also similar to that of output to the crt screen.

100 REM SPEECH EXAMPLE

110 REM

120 REM PURPOSE: TO ALLOW EXPERIMENTATI
ON OF SPEECH PHRASES
130 REM WITH THE TEII COMMAND MODULE

140 REM

150 REM REQUIRES USE OF TEII COMMAND MO

DULE

160 REM

170 REM WRITTEN BY JOEL RODRIGUEZ 12/83
180 REM ALL RIGHTS ARE RESERVED BY AUT

HOR

115

190 REM

200 REM **** PROGRAM START ****

210 REM INIT VARS,SCREEN,& SPEECH UNIT
220 REM

230 LET DEFAULT$="//43 128"
240 LET UDEF$="//43 128"
250 LET T$="WHAT DO YOU WANT TO SAY"
260 CALL CLEAR

270 OPEN #1:"SPEECH",OUTPUT
280 PRINT #1:DEFAULT$
290 REM

300 REM OUTPUT MAIN TITLE SCREEN

310 REM

320 GOSUB 670

330 REM

340 REM RUN DEFAULT MODE(?)
350 REM

360 GOSUB 1340

370 IF D$="Y" THEN 420
380 GOSUB 1480

390 REM

400 REM GET SPEECH TEXT

410 REM

420 GOSUB 1210

430 REM

440 REM EXECUTE SPEECH

450 REM

460 GOSUB 1800

470 GOSUB 2460

480 IF D$="Y" THEN 510
490 GOSUB 1920

500 GOTO 520

510 PRINT #1:T$
520 GOSUB 2460

530 REM

540 REM END PROGRAM ACTION

550 REM

560 GOSUB 2170

570 IF A$="Y" THEN 470
580 IF A$="C" THEN 420
590 IF A$="M" THEN 360
600 END

610 REM

620 REM SUBROUTINES ****************

630 REM

116

640 REM

650 REM INSTRUCTIONS

660 REM

670 CALL SCREEN(4)
680 PRINT "SPEECH PITCH & SLOPE TESTER"
690 PRINT #1:"SPEECH PITCH AND _SLOPE __T
ESTER"

700 PRINT " "
710 PRINT "DEFAULT MODE ALLOWS REPEATED

EXECUTION OF THE USER SET"
720 PRINT " PITCH & SLOPE PARAMETERS."
730 PRINT " "
740 PRINT "NON-DEFAULT MODE ALLOWS RE-"
750 PRINT " PEATED EXECUTION OF VAR-"
760 PRINT " IABLE PITCH & SLOPE PARMS."
770 PRINT " "

780 FOR DELAY=1 TO 500

790 NEXT DELAY

800 RETURN

810 REM

820 REM CHANGE DEFAULT

830 REM

840 PRINT " "
850 PRINT "THE DEFAULT PROGRAM PITCH &

SLOPE PARMS ARE ://43 128."
860 PRINT " "
870 PRINT "CURRENT USER DEFAULT PARMS
ARE :"&UDEF$&"."
880 PRINT " "
890 IF E$o"Y" THEN 920
900 PRINT #1:"CHANGE DEFAULT"
910 GOSUB 2520

920 INPUT "CHANGE DEFAULT(Y/N) - ":A$
930 IF A$="Y" THEN 950
940 GOTO 1070

950 IF E$o"Y" THEN 970
960 PRINT #1:"__ENTER NEW DEFAULT"
970 INPUT "ENTER NEW DEFAULT(//XX YYY) :
":UDEF§

980 PV$=SEG$(UDEF$,3,2)
990 SV$=SEG$(UDEF$,6,3)
1000 IF PV$<" 0" THEN 1050
1010 IF PV$>"63" THEN 1050
1020 IF SV$<" 0" THEN 1050
1030 IF SV$>"255" THEN 1050

117

1040 GOTO 1070

1050 GOSUB 1110

1060 GOTO 960

1070 RETURN

1080 REM

1090 REM OUTPUT VALID PARMS

1100 REM

1110 PRINT " "

1120 IF E$<>"Y" THEN 1140
1130 PRINT #1 .-"INVALID"
1140 PRINT "XX IS PITCH, RANGE 0-63."
1150 PRINT "YYY IS SLOPE, RANGE 0-255."
1160 PRINT " "

1170 RETURN

1180 REM

1190 REM INPUT SPEECH TEXT

1200 REM

1210 PRINT " "

1220 PRINT "CURRENT SPEECH TEXT IS :"

1230 PRINT " "

1240 PRINT T$
1250 PRINT " "

1260 IF E$o"Y" THEN 1280
1270 PRINT #1:"ENTER SPEECH TEXT"
1280 PRINT "ENTER SPEECH TEXT"

1290 INPUT T$
1300 RETURN

1310 REM

1320 REM RUN DEFAULT MODE

1330 REM

1340 CALL SCREEN(8)
1350 PRINT " "

1360 INPUT "ECHO PROMPTS TO SPEECH UNIT

(Y/N) - ":E$
1370 PRINT " "

1380 IF E$o"Y" THEN 1410
1390 PRINT #1:"DEFAULT MODE"

1400 GOSUB 2520

1410 INPUT "DEFAULT MODE(Y/N) - ":D$
1420 IF D$="N" THEN 1440
1430 GOSUB 840

1440 RETURN

1450 REM

1460 REM PROMPT VARIABLE PARMS

1470 REM

118

1480 PRINT " "

1490 IF E$o"Y" THEN 1510
1500 PRINT #1:"ENTER PITCH RANGE"

1510 PRINT "ENTER PITCH RANGE"

1520 PRINT " "

1530 IF E$<>"Y" THEN 1550
1540 PRINT #1:"STARTING VALUE IS"

1550 INPUT "STARTING VALUE(0-63) : ":PS
1560 IF E$o"Y" THEN 1580
1570 PRINT #1:"ENDING VALUE IS"

1580 INPUT "ENDING VALUE(0-63) : ":PE
1590 IF E$o"Y" THEN 1610
1600 PRINT #1:"INCREMENT BY"

1610 INPUT "INCREMENT VALUE : ":PI

1620 PRINT " "

1630 IF E$o"Y" THEN 1650
1640 PRINT #1:"ENTER SLOPE RANGE"

1650 PRINT "ENTER SLOPE RANGE"

1660 PRINT " "

1670 IF E$o"Y" THEN 1690
1680 PRINT #1:"STARTING VALUE IS"

1690 INPUT "STARTING VALUE(0-255) : ":SS
1700 IF E$<>"Y" THEN 1720
1710 PRINT #1:"ENDING VALUE IS"

1720 INPUT "ENDING VALUE(0,255) : ":SE
1730 IF E$o"Y" THEN 1750
1740 PRINT #1:"INCREMENT VALUE BY"

1750 INPUT "INCREMENT VALUE : ":SI

1760 RETURN

1770 REM

1780 REM OUTPUT START

1790 REM

1800 CALL SCREEN(12)
1810 PRINT " "

1820 PRINT "STARTING SPEECH TEST RUN"

1830 IF E$<>"Y" THEN 1850
1840 PRINT #1:"STARTING SPEECH TEST RUN"

1850 PRINT #1:UDEF$
1860 PRINT " "

1870 GOSUB 2460

1880 RETURN

1890 REM

1900 REM EXECUTE PARMS

1910 REM

1920 FOR PITCH=PS TO PE STEP PI

119

1930 FOR SLOPE=SS TO SE STEP SI

1940 LET P$=""
1950 IF PITCH>9 THEN 1970

1960 P$="0"
1970 P$=P$&STR$(PITCH)&" "
1980 LET S$=""
1990 IF SLOPE>99 THEN 2010

2000 S$=S$&"0"
2010 IF SLOPE>9 THEN 2030

2020 S$=S$&"0"
2030 S$=S$&STR$(SLOPE)
2040 C$="//"&P$&S$
2050 PRINT #1:C§
2060 PRINT " "

2070 PRINT "PITCH ="&P$&" SLOPE ="&S$,"
CONTROL ="&C$
2080 PRINT #1:T$
2090 CALL KEY(0,K,S)
2100 IF S<>0 THEN 2130

2110 NEXT SLOPE

2120 NEXT PITCH

2130 RETURN

2140 REM

2150 REM END ACTION

2160 REM

2170 CALL SCREEN(4)
2180 PRINT " "

2190 IF E$o"Y" THEN 2230
2200 PRINT #1:DEFAULT$
2210 PRINT #1:"RUN "AGAIN"
2220 GOSUB 2520

2230 INPUT "RUN AGAIN(Y/N) - ":A$
2240 IF A$="Y" THEN 2420
2250 PRINT " "

2260 IF E$o"Y" THEN 2290
2270 PRINT #1:"CHANGE SPEECH TEXT"

2280 GOSUB 2520

2290 INPUT "CHANGE SPEECH TEXT(Y/N) - "
A$
2300 IF A$o"Y" THEN 2330
2310 A$="C"
2320 GOTO 2420

2330 PRINT " "

2340 IF E$o"Y" THEN 2370
2350 PRINT #1:"CHANGE MODE"

120

2360 GOSUB 2520

2370 INPUT "CHANGE MODE(Y/N) - ":A$
2380 IF A$o"Y" THEN 2410
2390 A$="M"
2400 GOTO 2420

2410 STOP

2420 RETURN

2430 REM

2440 REM DELAY ROUTINE

2450 REM

2460 FOR DELAY=1 TO 250

2470 NEXT DELAY

2480 RETURN

2490 REM

2500 REM MISC SPEECH PROMPTS

2510 REM

2520 PRINT #1:"YES. OR. NO"

2530 RETURN

2540 END

121

The program was conceived to allow experimental output to the speech
unit, and also to provide program development capabilites for the speech
programmer. First a brief description of the code is in order.

Lines 100-320 : Program start text, and program
initialization code.

Lines 330-600 : Code to select mode and
parameters, input speech text,
speek text, and end program action

Lines 640-800 : TITLE SCREEN MENU

Lines 810-1070 : Code to set execution mode

Lines 1080-1300: Messages

Lines 1310-1760 : Mode prompts

Lines 1770-1880 : Starting Execution message

Lines 1890-2130 : Variable execution control

Lines 2140-2420 : End action prompts

Lines 2430-2530 : Misc subroutines

USING THE PROGRAM:

As well as experimenting with speech itself, program may be used for
determining which pitch and slope parameters are required to effect the
voice quality of the resulting speech. The tonal quality may be varied from
hi to lo, or set at a whisper. The lower pitch values produce a hi mouse
like voice while the higher pitch values produce a deep masculine voice.
The slope may be varied to some degree to shape the resulting speech.
The following two equations govern the recommended slope value for a
particular pitch, and a range of of valid slopes for a particular pitch. Ex
ceeding the valid range of slope will garble the speech; with some in
teresting and some not so interesting results.

RECOMMENDED : SLOPE = 32 * INT(.1 * PITCH)

RANGE : SLOPE < (PITCH—1) * 16 or
SLOPE < (63—PITCH) * 16

122

The program may also be used to vary the stress points of a sentence,
and to add pauses and delays. Asentence may have ifs primary stress
point word preceded by the ± symbol. Secondary stress points may be in
dicated with the symbol preceding the word. Note that a sentence may
have only one primary stress point, but can have multiple secondary stress
points. To use these inflection symbols just type them in preceding the
word in the sentence where you would like to change the stress points.

Pauses may be implemeted with the '.' or' ' charactersappended to the
appropriate word. The '. ' sequence will cause a .45 second delay while
the ',' sequence will cause a .1 second delay after the word is spoken.
Each of these symbols consist of two characters. The comma or period
followed by a space.

In addition, the contour of the word may be altered to either rise or fall.
Thecontour refers only to the stress point of the sentence and may only be
used on words that are preceded by an inflection symbol.(± or) The '.'
and ? symbols both specify a rising contour, while the symbols ', ', !, :, and
; all specify falling contours! CONFUSED? YOU BET!

50 what does all this mean to you? Well, back to the program. Use the
program to experiment. Type in a sentence and listen. Change the
sentence. Listen again. Soon you will be able to determine what works
and what doesn't work.

TO USE THE PROGRAM:

1] Insert the TEII Command Module and bring up
Ti Basic.

2] Load the program.

3] Run the program.

4] The program will clear the screen and if the
speech unit is attached, will speak the
title of the program.

The Title menu appears as follows:

"SPEECH PITCH & SLOPE TESTER"

"DEFAULT MODE ALLOWS REPEATED"
"EXECUTION OF THE USER SET PARAMTERS"

"NON-DEFAULT MODE ALLOWS RE^'
"PEATED EXECUTION OF VARi'
"IABLE PITCH & SLOPE PARMS."

51 The program will prompt for initial values
and desired mode of operation, as follows :

123

"ECHO PROMPTS TO SPEECH UNIT (Y/N)-w

If you want the program to speak the prompts then answer Y, else
prompts appear on the computer monitor only.

"DEFAULT MODE(Y/NM'
If you wish to use the default mode of the program, then enter Y, else
enter a N to change the program mode of operation.

If you choose the default mode the following sequence of prompts
appears:

'THE DEFAULT PROGRAM PITCH & SLOPE PARMS ARE ://43 128
"CURRENT USER DEFAULT PARMS ARE : //XX YYY"

"CHANGE DEFAULT(Y/NM'

If you wish to set the default pitch and slope parameters, then enter Y, else
enter N to use the default, or last setting entered.

If you enter a Y, then the following prompt appears:

"ENTER NEW DEFAULT(//XX YYY) : "

Enter your pitch and slope setting. If you incorrectly enter the values, the
program will will respond with the following messages:

"XX IS PITCH, RANGE 0-63."
"YYY IS SLOPE, RANGE 0-255."

You are then reprompted for the user default pitch and slope parameters.

Ifyou entered N to the default mode prompt, then the following sequence
of prompts appears:

"ENTER PITCH RANGE"

"STARTING VALUE(0-63) : "
"ENDING VALUE(0-63) : "
"INCREMENT VALUE : "

"ENTER SLOPE RANGE"

"STARTING VALUE(0-255) : '
"ENDING VALUE(0,255) : "
"INCREMENT VALUE : "

124

The program then displays the last speech text data input.

"CURRENT SPEECH TEXT IS :"

"ENTER SPEECH TEXT"

Enter the textas desired and press the enter key. The program will respond
by displaying the following prompt:

"STARTING SPEECH TEST RUN"

6 The program executes.

7] The program prompts whether or not to
continue in the current mode. Answer Y
to reexecute the program in the current
mode. Answering anything else results in
the opportunity to change the mode of
operation or exit the program.

125

Speech unit
TE II cartridge

PHONETIC SPEECH EDITOR

Are you trying to get your speech unit to pronounce words that are
understandable, while misspelling and patching your vocabulary together?
Tired of doing endless searches for that particular allophone that would
solve your pronunciation problems? Here is a program to help you along
in your struggle with the Terminal Emulator II cartridge.

The speech utility listed below allows a programmer to exchange
allophones in a given phrase in order to achieve proper pronunciation.
Phrases can be made phonetically correct without having to misspell any
words. Once a proper set of allophones are selected they can be incor
porated into your programs.

You may enter up to one line of text at a time, and can do three opera
tions on the phrase.

1. SWAP > Choose and swap allophone from the alternates list.
2. NEW > Clear and enter a new phrase.
3. SPEAK> Speak customized phrase.

The phrase you enter appears vertically on the screen with the cor
responding allophone numbers beside each letter. The cursor can be mov
ed up and down the phrase until the desired letter is chosen. At this point
pressing the SWAP command will list all the words with similiar sounding
allophones. The chosen letter will appear capitalized within each word.

Example: The letter S' as in Ship, or S' as in talks.

The cursor may now moved down the alternates list until an appropriate
substitution letter for the phrase is found. Pressing <ENTER> then places
the chosen allophone into your origional phrase. The phrase now may be
spoken with the SPEAK command. When the phrase is correct, copy down
the allophone numbers next to the phrase for use in your programs.

The following shows how to use the correct allophone numbers in your
program.

Allophone numbers for the word HAPPY are;

119,26,109,25

126

You would: OPEN #1:"ALPHON",INTERNAL

Then: PRINT #1:CHR$(119)&CHR$(26)&CHR$(109)&CHR$(25)

Or

Set: A$=CHR$(119)&CHR$(26)&CHR$(109)&CHR$(25)

Then: PRINT #1:A$

Note pages 37 through 40 in the booklet that comes with the TEII
module. Especially, the second program on page 39. This sections explains
the use of additional numbers at the beginning of your allophone numbers
that effect the final sound of your phrase. Also see page 207 of appendix
M in the Extended Basic manual, line numbers 530 on down, for an exam
ple on how to speak a given allophone string.

10 REM CRACKING THE 99/4A
20 ALLOPHONE EDITOR

30 BRUCE WYCHE 02/08/84
100 OPTION BASE 1

110 DIM A$(125),ALO(125),B(22),M(26),0(2
6)
120 CALL CLEAR

130 CALL SCREEN(2)
140 TRUE=-1

150 OPEN #1:"SPEECH",OUTPUT
160 OPEN #2:"ALPHON",INTERNAL
170 SPEAK=TRUE

180 M§="TYPE PHRASE, PRES
S ENTER 12 3

NEW SPEAK SWAP"

190 PRINT " PHONETIC SPEECH EDITOR"::

200 PRINT " LOADING..PLEASE WAIT.."

210 CALL SCREEN(15)
220 RESTORE

230 FOR 1=1 TO 121 STEP 5

240 READ A$(I),A$(I+1),A$(I+2),A$(I+3),A
$(1+4)
250 NEXT I

260 O(l)=0
270 J=0

280 RESTORE 1920

290 FOR LETTER=1 TO 26

300 READ M(LETTER)

127

310 FOR 1=1 TO M(LETTER)
320 J=J+1

330 READ ALO(J)
340 NEXT I

350 IF LETTER=1 THEN 370

360 0(LETTER)=0(LETTER-1)+M(LETTER-1)
370 NEXT LETTER

380 REM 111 MAIN LOOP 1!1

390 GOSUB 1090

400 GOSUB 540

410 IF ((KK<49)+(KK>51))<0 THEN 400
420 ON KK-48 GOSUB 1110,1650,1180

430 GOTO 400

440 REM DISPLAY M$ @(R,C)
450 C=CL

460 FOR CC=1 TO LEN(M$)
470 CALL HCHAR(RW,C+CC-1,ASC(SEG$(M$,CC,

1)))
480 NEXT CC

490 IF SPEAK<>TRUE THEN 520

500 PRINT #1:M$
510 SPEAK=0

520 RETURN

530 REM KEY SCAN W/CURSOR
540 CALL KEY(5,KK,SS)
550 CALL HCHAR(ROW,COL,30)
560 CALL HCHAR(ROW,COL,32)
570 IF SS=0 THEN 540

580 CALL SOUND(90,1000,1)
590 RETURN

600 REM GET PHRASE SUBR

610 X$=""
620 PRINT #1:"ENTER FRAYZ. PLEEZ."
630 CNT=1

640 CALL GCHAR(ROW,COL,GC)
650 CALL KEY(5,KK,SS)
660 CALL HCHAR(ROW,COL,30)
670 CALL HCHAR(ROW,COL,GC)
680 CNT=CNT+1

690 IF CNT>250 THEN 620

700 IF SS=0 THEN 650

710 IF KK>31 THEN 760

720 IF KK=13 THEN 800

730 COL=COL-(COL>2)*(KK=8)+(KK=9)*(COL<3
2)

128

740 X$=SEG$(X$,1,C0L)
750 GOTO 650

760 CALL HCHAR(ROW,COL,KK)
770 X$=X$&CHR$(KK)
780 COL=COL-(COL<32)
790 GOTO 650

800 CALL HCHAR(1,1,32, 704)
810 PRINT #1:X$
820 INPUT #2:N$
830 NL=LEN(N$)
840 IF (NL-3)<23 THEN 870
850 NL=22

860 N$=SEG$(N$,1,NL)
870 J=l

880 FOR 1=4 TO NL

890 V=ASC(SEG$(N$,I,1))
900 B(J)=V
910 J=J+1

920 M$=STR$(V)
930 RW=I-3

940 CL=3

950 GOSUB 440

960 M$=A$(V)
970 CL=7

980 GOSUB 440

990 NEXT I

1000 RETURN

1010 M$="UP DOWN ENTER"
1020 RW=21

1030 CL=2

1040 GOSUB 440

1050 RETURN

1060 M$="....WORKING "
1070 GOSUB 440

1080 RETURN

1090 CALL CLEAR

1100 PRINT M$;
1110 CALL HCHAR(1,1,32,640)
1120 SPEAK=TRUE

1130 ROW=20

1140 COL=2

1150 REM GET PHRASE

1160 GOSUB 610

1170 RETURN

1180 ROW=l

129

1190 C0L=2

1200 GOSUB 1010

1210 GOSUB 540

1220 IF KK=13 THEN 1250

1230 ROW=ROW-(ROW>l)*(KK=ll)+(ROW<(NL-3)
)*(KK=10)
1240 GOTO 1210

1250 GOSUB 1060

1260 REM GET LETTER FROM ALO

1270 FF=0

1280 FOR JJ=1 TO LEN(A$(B(ROW)))
1290 Z§=SEG$(A$(B(ROW)),JJ,l)
1300 IF Z$<="Z" THEN 1320
1310 NEXT JJ

1320 REM PRINT ALO-MATCHES

1330 IF Z$=OS$ THEN 1480
1340 LETTER=ASC(Z$)-64
1350 FOR 1=1 TO 21

1360 CALL HCHAR(I,18,32,14)
1370 NEXT I

1380 FOR RW=1 TO M(LETTER)
1390 ZZ=ALO(0(LETTER)+RW)
1400 M$=STR$(ZZ)
1410 CL=18

1420 GOSUB 440

1430 M$=A$(ZZ)
1440 CL=22

1450 GOSUB 440

1460 NEXT RW

1470 OS$=Z$
1480 N=ROW

1490 GOSUB 1010

1500 ROW=l

1510 COL=17

1520 GOSUB 1720

1530 B(N)=ZZ
1540 M$=STR$(ZZ)
1550 RW=N

1560 CL=3

1570 CALL HCHAR(RW,CL,32,14)
1580 GOSUB 440

1590 M$=A$(ZZ)
1600 CL=7

1610 GOSUB 440

1620 ROW=N

130

1630 C0L=2

1640 RETURN

1650 REM SPEAK PHRASE

1660 B$=CHR$(250)&CHR$(255)&CHR$(NL-3)
1670 FOR 1=1 TO NL-3
1680 B$=B$&CHR$(B(I))
1690 NEXT I

1700 PRINT #2:B$
1710 RETURN

1720 REM SUB SWAP ALO

1730 GOSUB 540

1740 IF KK=13 THEN 1770
1750 ROW=ROW-(ROW>l)*(KK=ll)+(ROW<M(LETT
ER))*(KK=10)
1760 GOTO 1730

1770 ZZ=ALO(0(LETTER)+ROW)
1780 RETURN

1790 DATA Addition,Annuity,deltA
1800 DATA ON,Autonomy,anOnimiity
1810 DATA Eliminate,Enough,contEXt,ancIE
nt,westERn,synthEsIs
1820 DATA Inane,tOOk,donation,annual,Uni
que,Above,instrument,Underneath
1830 DATA rosEs,basemEnt,seekEr,ratio,fu
nnY,hAt,hOt,hEIght,cARt,hOUse,sOUght
1840 DATA hEAt,pIERce,sEt,thERapy,tAke,h
Urt,Issue,choice,cOOk,pOORly
1850 DATA hORse,bOAt,shOOt,hUt,bOOt,hAd,

Odd,hide
1860 DATA cARd,10Ud,sAw,sEEd,hEEl,hEAR,s
Aid, thERE,dAY,hEARd,hid,hill,thINk,bOY
1870 DATA cOUld,pOOR,CORE,10W,shOE,mUd,s
kULL,pULL,mOOn,Like,bowL,weLL,May
1880 DATA huM,Nice,saNe,thiNk,thiNG,Real
,Witch,WHich,You,Bad,daB,Dig,biD,Give
1890 DATA Go,baG,Jug,buDGE,THis,cloTHE,V
ine,aliVE,Zoo,doeS,aZure,beiGE,sKate,Cas

e

1900 DATA maKe,Key,Cough,sPace,Pie,naP,s
Take,Tie,laTe,CHurch,Fat,lauGH,Hit,Home
1910 DATA Hut,Seem,miSS,SHine,waSH,THing
,wiTH
1920 DATA 9,1,3,18,26,36,47,52,56,58

1930 DATA 2,86,87
1940 DATA 3,104,107,114

131

1950 DATA 2,88,89
1960 DATA 18,7,8,9,10,11,12,21,22,23,32,
33,34,35,53,54,55,57,59
1970 DATA 1,115

1980 DATA 5,90,91,92,94,102
1990 DATA 4,116,117,118,119
2000 DATA 6,13,28,38,49,60,61
2010 DATA 1,93
2020 DATA 3,103,105,106
2030 DATA 4,70,73,74,75
2040 DATA 2,76,77

2050 DATA 5,62,78,79,80,81
2060 DATA 24,4,6,14,15,24,27,30,31,39,40
,41,42,43,44,46,48,51,63,64,65,66,67,68,
72

2070 DATA 3,108,109,110
2080 DATA 0

2090 DATA 3,29,50,82
2100 DATA 5,100,120,121,122,123
2110 DATA 7,95,96,111,112,113,124,125
2120 DATA 9,5,16,17,19,20,37,45,69,71
2130 DATA 2,97,98
2140 DATA 2,83,84
2150 DATA 0

2160 DATA 3,2,25,85
2170 DATA 2,99,101

132

UTILITY

Extended Basic

GREAT GRAPHICS GENERATOR

Although computers leave a lot to be desired in lending creative talent,
they can help make your job a loteasier. This program allows you to
create graphic images dot bydot (up to 32x32 pixels) and then prints out a
hexidecimal code equivalent to use for your program graphics. From here
the computer asks a few questions, invokes a few magic words, and presto!
The image appears actual size, in color, and with motion. When the im
ages are drawn to form, the code then may be saved for future reference or
copied into your programs.

The computer first asks which of four available windows you would like
to fill in. Keys one through eight move the cursor around a MAGNIFIED
version of a 16x16 pixel area. In effect you are redefining four 8x8 pixel
characters in one window. Having positioned the cursor over the desired
position, keys nine and zero turn the dot on or off. This way you can ex
periment as you go or can copy artwork from a predrawn image from
graph paper.

I suggest you try the program as you read the description.

134

Since there are four windows that may be drawn and put together, you
have the capability of redefining 16 characters, drawing a 32 x 32 pixel
area. One window is equivalent to one sprite. In effect this program puts
four sprites together in order to display all four windows.

From the menu you may choose to:

1. DRAW a chosen window.
2. SEE all windows displayed.
3. Display hex CODES for all windows.
4. EDIT a chosen window.

DRAW

When a window to draw is selected, the computer clears that window's
memory. Be careful not to select a window that has already been defined
and has not been saved. A small display on the right will show the
numbers of all USED windows that have been previously defined. Selecting
a NEW window and pressing ENTER immediately thereafter clears the
chosen windows memory and deletes it from the USED WINDOW display.

Keys one through eight move the cursor around the window while keys
nine and zero turn the dot or pixel on and off. When finished, press
ENTER and the computer will calculate and display the hex code
equivalent of the design. The four hexidecimal strings that will appear on
the screen correspond to the image in the same order that hex codes cor
respond to sprites.

Char. #1—Upper left corner
Char. #2—Lower left corner
Char. #3—Upper right corner
Char. #4—Lower right corner

Also, like the four characters that make up one window, the four win
dows also fit together in the same order. When coding a composite image
using two or more windows, the window numbers must be assigned to
your image corresponding to the order shown below so that the pieces of
your composite image will appear on the screen in their proper positions.
This is the order in which the program displays windows on the screen,
though your own programs may display graphics in any way desired.

Sprite #1. Upper left corner. (Window 1)
Sprite #2. Lower left corner. (Window 2)
Sprite #3. Upper right corner. (Window 3)
Sprite #4. Lower right corner. (Window 4)

EDIT

You may EDIT any window. The computer will redisplay any previously
drawn window on the screen so that it may be modified without redrawing

135

the entire image. After modifying the window, ENTER is pressed to
recalculate the new hex code.

SEE

Selecting the SEE option displays all four windows in one composite im
age. When the screen appears, you are prompted to enter the magnifica
tion, Xand Y values for motion, sprite image color and screen color (use
numeric values). All colors except transparent are available. Callinga black
screen will change the color of the characters so that the information on
the screen is readable. All parameters may be changed as many times as
desired in order to duplicate the appearance of the images for a program.

CODE

When the CODE option is selected, all hex codes are displayed and the
word AVAILABLE is displayed for each empty window. Remember to copy
down any codes before you clear or alter a window.

TIPS

There are several options for displaying graphics. Motionless graphics
may be displayed by redefining the existing character sets using CALL
CHAR. The CALL HCHAR or CALL VCHAR statement may be used to
display the redefined characters. You can then piece the image together by
placing the redefined characters onto the screen in the desired rows and
columns. Ifyou are going to have printed messages on the screen with
yourgraphics, remember not to redefine the upperor lowercase alphabet
set to be used.

The second option displays a larger image using the CALL SPRITE state
ment. This allows you to display an image occupying a 16x16 pixel area.
The CALL SPRITE statement lets you manipulate the motion, color and
position of the sprite in one statement. One window is the largest image a
sprite may display (16x16 pixels).

CODE DESCRIPTION

The CALL LOAD(-31806,16) in line 130 may be new to you. This disables
the quit key so that you cannot quit the program accidently.

The information for a window, when input by a user, is stored in the
three dimensional array G(X,R,C), where X equals the number of a window
(one through four), and R and C are each 16 elements corresponding to
the 16 rows and columns in a window (same as pixels in a sprite).

The movement of the cursor around a window in the program reflects
the movement around the 16 X 16 elements of the array. If a dot is turned
on in the window, a value of "1" is stored in that position of the array. If a
dot is turned off a value of "0" is stored. It is also from these ones and
zeros that the edit function of the program redisplays a previously drawn
window. It scans the array row by row displaying a corresponding dot on

136

the screen for each value of one it encounters in the array.

Lines 240-310 display the menu command line. Lines 320-350 allow you
to choose a window. Lines 410-450 flash the cursor and display a local dot
whether it is on or off, and Lines 480-570 are the code for moving the cur
sor around the screen in the eight available directions.

Lines 590-690 create the cursor wrap around feature. This cuts time
when moving from one side of the window to the other. Lines 620 and
630, although somewhat misplaced, are the code which assign a value of
one or zero to the array G(X,R,C).

Lines 710-790 keep track of and display which windows are used by
looking at the value of A$(l) which contains the hex code equivalent for
the corresponding windows (64 characters long). The RPT$ code in line
760 checks to see if the string variable A$(D is greater than the string value
of RPT$("0",64), a string of 64 zeros. If A$(l) is greater than RPT$("0",64)
then the window has been previously used and contains hex code.

Lines 1490-1580 loop through all the positions of the array and create the
dual function of clearing the values in a given array, or of redisplaying a
window for the edit function depending on the command chosen. Under
the NEW window option line 1500 checks to see ifA$(X)< ="0" this
says that the chosen window is already empty and causes the clear win
dow code (which fills the array with zeros) to be skipped, thus saving time.
This code is also skipped if QQ$="E". This says you are in the EDIT mode
and enables line 1540 to reprint an image from the predrawn windows ar
ray.

Row by row, the code in lines 1640-1710 convert the 256 elements in the
array G(X,R,C) to a windows hexidecimal equivalent. A string 64 characters
long. It is this converted code which is used by the CALL SPRITE
statements in lines 1190-1220 to display the window under the SEE option.

100 REM GRAPHICS GENERATOR
110 REM CRACKING THE 99/4A
120 CALL INIT
130 CALL LOAD(-31806,16)
140 CALL LOAD(-31878,4)
150 DIM G(4,16,16),C$(16)
160 CALL CLEAR :: CALL SCREEN(6):: GOSUB
810
170 CALL COLOR(12,5,16,9,6,16,10,2,16)
180 CALL CHAR(124,"03030303030303FF")
190 CALL CHAR(125,"FFFF8080808080FFn)
200 CALL CHAR(101,"80808080808080FF")
210 CALL CHAR(104,,,FF818181818181FF,,)
220 CALL CHAR(105,"FFFFFFFFFFFFFFFF")

137

230 REM MENU

240 DISPLAY AT(7,10):"MENU":,:"N=DRAW WI
NDOW":,:"E=EDIT OLD WINDOW":,:"S=SEE WIN
DOWS":,:"C=SEE WINDOW CODES"
250 DISPLAY AT(23,1):"N=NEW S=SEE C=CO
DE E=EDIT":" >"

260 ACCEPT AT(24,4)VALIDATE("SCNE")SIZE(
1)BEEP:QQ$
270 ON POS("SCNE",QQ$,l)GOSUB 1030,1390,
300,300

280 GOSUB 710

290 GOTO 250

300 GOSUB 880

310 R=l :: C=l

320 DISPLAY AT(21,3):"WHICH WINDOW? 1-4"
330 CALL KEY(0,X,S)
340 CALL SOUND(1,200,8)
350 IF X>48 AND X<53 THEN 360 ELSE 330

360 X=X-48

370 DISPLAY AT(13,20):"<WINDOW";X
380 GOSUB 1490

390 DISPLAY AT(21,1):"":"KEY: (l-4)=MOVE
(9,0)=ON/OFFM

400 REM MOVE CURSOR

410 CALL KEY(0,K,S)
420 CALL HCHAR(R+1,C+3,104)
430 IF G(X,R,C)=1 THEN CALL HCHAR(R+1,C+
3,105)ELSE CALL HCHAR(R+1,C+3,101)
440 IF S=0 THEN 410

450 IF K=13 THEN 460 ELSE 480

460 GOSUB 1600

470 GOTO 690

480 IF K>=48 AND K<=57 THEN 490 ELSE 410

490 ON K-47 GOTO 630,520,530,500,510,540
,550,560,570,620
500 C=C-1 : : GOTO 590

510 C=C+1 : : GOTO 590

520 R=R+1 •: : GOTO 590

530 R=R-1 : : GOTO 590

540 C=C+1 : : R=R+1 :: GOTO 590

550 C=C+1 : : R=R-1 :: GOTO 590

560 C=C-1 : : R=R+1 :: GOTO 590

570 C=C-1 : : R=R-1

580 REM CURSOR WRAP AROUND

590 IF R=0 OR R=17 THEN 650

138

600 IF C=0 OR C=17 THEN 670

610 GOTO 410

620 G(X,R,C)=1 :: GOTO 640
630 G(X#R#C)=0
640 GOTO 410

650 IF R=0 THEN R=16 ELSE R=l

660 GOTO 410

670 IF C=0 THEN C=16 ELSE C=l

680 GOTO 410

690 RETURN

700 REM USED WINDOWS DISPLAY

710 V$=""
720 DISPLAY AT(4,23):"USED"
730 CALL HCHAR(5,23,95,7)
740 CALL HCHAR(7,23,95,7)
750 FOR 1=1 TO 4

760 IF A$(I)>RPT?("0",64)THEN V$=V$&STR$
(I)&" "
770 NEXT I

780 DISPLAY AT(6,21):V$
790 RETURN

800 REM LOAD COLORS

810 FOR 1=1 TO 16

820 READ C$(I)
830 NEXT I

840 RETURN

850 DATA CLEAR,BLACK,M. GREEN,L. GREEN,D
. BLUE,L. BLUE,D. RED,CYAN,M. RED

860 DATA L. RED,D. YELLOW,L. YELLOW,D. G
REEN,MAGENTA,GRAY,WHITE
870 REM GRAPH SUB

880 CALL CLEAR

890 N$="1234567812345678"
900 FOR R=l TO 16

910 DISPLAY AT(1+R,1):SEG$(N$,R,1)
920 DISPLAY AT(1+R,18):SEG$(N$,R,1)
930 CALL HCHAR(R+1,4,101,16)
940 NEXT R

950 FOR 1=1 TO 2

960 DISPLAY AT(1+D,2):"1234567812345678"
970 D=17

980 NEXT I

990 D=0

1000 GOSUB 710

1010 RETURN

139

1020 REM SEE GRAPHICS

1030 CALL CLEAR

1040 PRINT :"MAGNIFY(3 OR 4)":"MOTION(-9
9 TO 99)":" X AXIS":" Y AXIS":"SPRITE
COLOR 2-16":"SCREEN COLOR 2-16"

1050 ACCEPT AT(18,19)VALIDATE("34")SIZE(
1)BEEP:M
1060 IF M<3 OR M>4 THEN M=4

1070 ACCEPT AT(20,10)VALIDATE(NUMERIC)SI
ZE(3)BEEP:M1
1080 IF MK-99 OR Ml>99 THEN 1070
1090 ACCEPT AT(21,10)VALIDATE(NUMERIC)SI
ZE(3)BEEP:M2
1100 IF M2<-99 OR M2>99 THEN 1090

1110 ACCEPT AT(22,19)SIZE(2)BEEP:C
1120 IF C<2 OR C>16 THEN C=2

1130 ACCEPT AT(23,19)VALIDATE(NUMERIC)SI
ZE(2)BEEP:SC
1140 IF SC<2 OR SC>16 THEN SC=6

1150 CALL SCREEN(SC)
1160 IF M=4 THEN S=16 ELSE S=0

1170 CALL CHAR(128,A$(1),132,A$(2),136,A
$(3),140,A$(4))
1180 CALL MAGNIFY(M)
1190 CALL SPRITE(#1,128,C,100,66+S)
1200 CALL SPRITE(#2,132,C,116+S,66+S)
1210 CALL SPRITE(#3,136,C,100,82+S+S)
1220 CALL SPRITE(#4,140,C,116+S,82+S+S)
1225 CALL M0TI0N(#1,M1,M2,#2,M1,M2,#3,M1
,M2,#4,M1,M2)
1230 FOR TM=1 TO 300 :: NEXT TM

1240 CALL CLEAR

1250 DISPLAY AT(22,1):"SPRITE COLOR IS "
;C$(C)
1260 DISPLAY AT(23,1):"SCREEN COLOR IS "
7C$(SC)
1270 REM DISPLAY COLORS DFLT

1280 0=15

1290 IF SC=2 THEN GOSUB 1360

1300 INPUT "MODIFY SPRITE ATTRIBUTES?":Q

$
1310 IF SEG$(Q$,1,1)="Y" THEN 1030
1320 CALL DELSPRITE(ALL)
1330 CALL SCREEN(6)
1340 0=2 :: GOSUB 1360

140

1350 RETURN
1360 CALL COLOR(0,O,1,3,O,1,4,O,1,5,O,1,
6,0,1,7,0,1,8,0,1)
1370 RETURN

1380 REM DISPLAY HEX CODES

1390 CALL CLEAR

1400 FOR 1=1 TO 4
1410 PRINT :,,WINDOW";I;,,HEX="

1420 IF A$(I)="" THEN 1430 ELSE 1440
1430 PRINT " AVAILABLE " :: GOTO 14

50

1440 PRINT " ";SEG$(A$(I),1,16):M ";SEG$
(A$(I),17,16):" ";SEG$(A$(I),33,16):U ";
SEG$(A$(I),49,16)
1450 NEXT I

1460 PRINT

1470 RETURN

1480 REM CLEAR CHOSEN WINDOW

1490 DISPLAY AT(21,1):" PLEASE WAIT."
1500 IF A$(X)<="0" THEN 1580
1510 FOR 1=1 TO 16

1520 FOR J=l TO 16

1530 IF QQ$="E" THEN 1540 ELSE 1560
1540 IF G(X,I,J)>0 THEN CALL HCHAR(I+1,J
+3,105)ELSE 1570
1550 GOTO 1570

1560 G(X,I,J)=0
1570 NEXT J :: NEXT I

1580 RETURN

1590 REM WINDOW TO HEX CONV.
1600 HC$="0123456789ABCDEF"
1610 CALL SOUND(333,1110,1)
1620 Z1$,Z2$=""
1630 DISPLAY AT(22,1):" CONVERTING YOUR
HEX CODE"

1640 FOR R=l TO 16
1650 CD1=G(X,R,1)*8+G(X,R,2)*4+G(X,R,3)*
2+G(X,R,4)+l
1660 CD2=G(X,R,5)*8+G(X,R,6)*4+G(X,R,7)*
2+G(X,R,8)+l
1670 CD3=G(X,R,9)*8+G(X,R,10)*4+G(X,R,11
)*2+G(X,R,12)+l
1680 CD4=G(X,R,13)*8+G(X,R,14)*4+G(X,R,1
5)*2+G(X,R,16)+l

141

1690 Z1$=Z1$&SEG$(HC$,CDl,1)&SEG$(HC?,CD
2,1)
1700 Z2$=Z2$&SEG$(HC$,CD3,1)&SEG$(HC$,CD
4,1)
1710 NEXT R

1720 A$(X)=Z1$&Z2$
1730 DISPLAY AT(18,2):SEG$(Z1$,1,16):" "
;SEG$(Z1$,17,16):" ";SEG$(Z2$,1,16):" ";
SEG$(Z2$,17,16):""
1740 RETURN

142

Extended Basic

FORMATTED SCREEN

This short listing can be used as a subroutine in your programs.
Wherever a program accepts inputs, one can GOSUB to this routine and a
colored band will appear to the right of the cursor indicating the accep
table length of the entry. Entries may appear anywhere on the screen and
entry length can be controlled. This colored entry format lets the user
know the limit of each entry and makes the appearance of the program
more attractive.

The routine uses a CALL KEY statement to concanternate key inputs into
the variable K$. Just before sending program control to this routine, set the
row and column you want the input to appear on into the variables "R"
and "C". The length of an entry is assigned to the variable "L". Now,
GOSUB to the routine to accept user input. The BACK ARROW and the
ENTER keys may be used to edit during all entries. Pressing ENTER accepts
an input and returns control back to the main program. The variable K$
now contains the users entry. To save the users input for future use, assign
K$ to an appropriatevariable that can be accessed later on during the
program.

EXAMPLE:

100 R=(accept at row)
110 C=(accept at column)
120 L=(max. entry length)
130 GOSUB (routine line#)
140ANSWER$=K$

100 REM FORMATTED SCREEN

110 REM CRACKING THE 99/4A
120 CALL COLOR(14,2,7)
130 K$=""
140 GOTO 250

150 CALL KEY(0,K,ST)
160 CALL HCHAR(R,LEN(K$)+6,142)
170 CALL HCHAR(R,LEN(K$)+6,31)
180 IF ST<1 THEN 150

143

190 IF K=8 AND LEN(K$)<2 THEN 130
200 IF K<>8 THEN 220

210 K$=SEG$(K$,1,(LEN(K$))-1):: GOTO 250
220 IF K=13 THEN 270

230 K$=K$&CHR$(K)
240 IF LEN(K$)-1=L THEN 210
250 DISPLAY AT(R,C):K$&RPT$(CHR$(143),L-
LEN(K$))
260 GOTO 150

270 RETURN

Extended Basic

HORIZONTAL SCROLLING

This is a very simple routine that can be accessed as a subroutine or in
serted inbetween program code. It is short and can be useful for displaying
messages when space is limited.

Before sending program control to this routine, assign to the variable
ROW the number of the row on which the message is to appear. Next
assign the phrase to the variable PHRASE$. The phrase can be as long as
can fit when assigning it to the variable. When running the routine, if the
scrolling is too fast to read comfortably, insert a FOR NEXT loop or other
code between the program lines.

100 REM HORIZONTAL SCROLL

110 REM CRACKING THE 99/4A
120 K=l :: L=28

130 FOR I=28+LEN(PHRASE?)TO 1 STEP -1
140 IF L>1 THEN J=J+1 ELSE K=K+1
150 DISPLAY AT(ROW,L):SEG$(PHRASE?,K,J)
160 L=L-1

170 NEXT I

144

VERTICAL PRINT

This routine allows you to print messages on your screen vertically. Set
the variable WORD$ with a phrase. Be careful not to let it exceed 24 rows
and spaces. The message starts on row one. The column for display can be
set in the variable COL. Ifyou want to starton another row, change the
variable ROW= in line 120. Be sure not to let the message exceed row 24.

100

110

120

130

)))
140

REM PRINT VERTICALLY

REM CRACKING THE 99/4A
FOR ROW=l TO LEN(WORD?)
CALL VCHAR(ROW,COL,ASC(SEG$(WORD$,ROW,1

NEXT ROW

145

FILE I/O ASSEMBLY ROUTINES

MANIPULATING DISK FILES IN ASSEMBLY LANGUAGE

Casual users of the 99/4A may never need to use disk files in assembly
language. This is because both Ti Basic and Ti Extended Basic contain a
wealth of support calls for file handling. Many types of algorithms may be
implemeted using these two languages.

Care must be used in choosing which algorithms to use due to the
relatively slow process of using a Basic Interpreteron the 99/4A. Sequen
tial searches should be avoided with long files! Many program applications
can be coded with an acceptable execution time.

But what about the person who demands a little preformance out of his
$100 machine? What about the person who is programminggames and
needs to access records of bit map mode pattern data, sprite pattern data,
speech data, and sound data? Basic is much to slow to serve in these
capacities.

Programming in assembly provides the key. A typical instruction on the
99/4A takes only a few micro seconds to execute. Thus many instructions
can be executed very quickly, relative to that of the basic interpreter. But
unlike programming in Basic, the assembly language programmer is faced
with the task of providing the system services that are provided transparent
ly by the Basic interpreter.

For file manipulation this means the programmer must be aware of what
a PAB is, and how to sucessfully call and use the Rom & Grom routines at
his disposal. Certainly the programmer must be experienced in 9900
assembly language programming!

The following program was developed as one of the first modules in an
assembly langauge programming arsenal. It is a very simple rendition of
file service calls for use by any application. The routines include a general
purpose file I/O call, which is used to open, read, write, and close a file. A
general purpose routine is included for determining if any errors were en
countered during DSR execution. Three routines were designed to provide
Ram and Vdp Ram buffer management. Finally, a routine is included to
read the file status of a device.

An application uses the routines by including a REF for each routine that
requires access, and also defines a FCB for each file needed. The Editor
assembler is then used to load the file I/O object module into memory
after your application program. This method is used to speed up develop
ment of the application program. This is achieved via seperate compilation
of the file i/o routines, thus avoiding recompiling the file I/O routines each
time the application program is re-compiled. This also saves printing time,
as few of us can afford a truely fast printer(or the reams of paper)!

146

TITL 'FILE I/O'

* *

* MODULE : FILEIO *

* PURPOSE : Provide file services to *

* the 994/a programmer *

* AUTHOR : Joel Rodriguez *

* SITE : Austin, Texas *

* REGISTERS: R0-R2 : Scratch *

* R8 : Error return address *

* R9 : Feb Base Address *

* R10 : Ram Base Address *

* HISTORY :
*

Original 12/83 *

*

* ALL RIGHTS RESERVED BY AUTHOR 1983 *

* *

DEF IOFLE,FLECHK,GVDP,PVDP,CLRRAM,G$STAT
REF VMBW,DSRLNK,VSBR,VMBR

* General Equates
*

REG1 EQU 2 OFFSET OF Rl FROM WP

RETADR EQU 8 R8 = ERROR RETURN ADDR

FCB EQU 9 R9 = FCB ADDRESS

RAMADR EQU 10 R10= RAM ADDRESS

DSRPTR EQU >8356
*

*

DSR I/O POINTER
*

*

* IOFLE : Routine to write the file Pab to *

* Vdp Ram, and issue call to the *

* Dsr. *

* • ••••-*

IOFLE EQU

MOV

FJtfTRY POINT

MOV

MOV

AI

MOV

BLWP @VMBW

*R11+,FCB

@VDPADR(FCB),R0
FCB,R1

R1,PAB

@PABLEN(FCB),R2

MOV @VDPADR(FCB),R0
AI R0,DESCLN

MOV R0,@DSRPTR

147

Write the pab to vdp

Format address for dsr

BLWP @DSRLNK

DATA 8

RT

Do file I/O

Return
*

* • • • . • —

* FLECHK: Routine to read the file Vdp Pab
* and report any errors.
*,_ . . , —

FLECHK EQU

MOV *R11+,RETADR
AI R0,STATUS
STWP Rl

AI R1,RB31
BLWP @VSBR

CLR R0

MOVB R1,R0
MOV R0,R2
SLA R0,3
JOC FLHVISG

RT

ENTRY POINT

Store error address

Add status offset

Get workspace address
Add offset to Rl

Read status into Rl

Copy status for testing

Any of 1st 3 bits set
Yes, go report error

* FLEMSG: Routine to output error messages. *
* *

FLEMSG SRL

SLA

MOV
*

R2,13

R2,l

@MSGTBL(R2),R1

Justify
make index

Load message address

TEMP SOLUTION

TEMP SOLUTION

TEMP SOLUTION

ERRl

ERR2

ERR3

ERR4

ERR5

ERR6

ERR7

OHOH

*

LI R0,>102

LI R2,28
BLWP @VMBW

MOV RETADR,R11

RT

TEXT 'Error, file write protected
TEXT 'Error, in file open
TEXT 'Error, illegal file op
TEXT 'Error, table/buffer overflow
TEXT ' ** End of file **

TEXT 'Error, device error
TEXT 'Error, file type
TEXT 'Error, programming

MSGTBL DATA MSG$E-$
DATA ERRl

DATA ERR2

DATA ERR3

DATA ERR4

DATA ERR5

DATA ERR6

DATA ERR7

MSG$E
*

*

DATA OHOH

*

* G$VDP : XFER Vdp ram buffer to ram buffer *
* TO CALL: Load R0 with fcb address *
* Do a EL @G$VDP *

* DATA BUFFER *

* where BUFFER is the ram buffer address *
* RETURNS: XFER count in R0 *

* REGS
*

: R0 - Input word count *
*

G$VDP EQU $ ENTRY POINT

MOV *R11+,RAMADR Save ram buffer address

MOV R0,FCB Save file fcb address

AI R0,VDPADR

MOV *R0,R0 Get vdp address
AI R0,COUNT of record count

CLR Rl

BLWP @VSBR Get record count

SWPB Rl

MOV R1,@XFCT Save XFER count

MOV R1,R2
MOV RAMADR,R1

AI FCB,PAB+BUFADD

MOV *FCB,R0
BLWP @VMBR Get the record

MOV @XFCT,R0 Return the XFER count

*

RT

XFCT DATA 0 Temp xfer count storage
*

* P$VDP : XFER ram buffer to VDP ram buffer
* TO CALL: Load R0 with fcb address

* Load Rl with XFER count
Do a BL @P$VDP

DATA BUFFER

where BUFFER is the ram buffer address

149

REGS : R0 - Input word count
Rl - Input xfer count

P$VDP EQU

MOV

MOV

MOV

MOV

AI

MOV

BLWP

RT

*R11+,RAMADR
R0,FCB

R1,R2
RAMADR,R1

FCB,PAB+BUFADD

*FCB,R0
@VMBW

ENTRY POINT

Fetch Ram address

Store Feb address

Write Vdp Ram
Return

* G§STAT : Obtain the file status byte of the Pab. *
* TO CALL: Load R0 with Vdp Pab Address *

Do a BL @G$STAT *
On return R0 contains the status byte in *
the Msb byte. *

REGS : R0 - Vdp Pab address/File status *

G$STAT EQU $
AI R0,FLESTS
STWP Rl

AI R1,REG1

BLWP @VSBR
CLR R0

MOVB R1,R0

RT
*

ENTRY POINT

Add file status offset

Add Rl offset from Wp
Fetch file status byte

Return in MSB of R0

CLRRAM : Clear ram buffer

TO CALL: Load R0 with word count

Do a BL @CLRRAM

DATA BUFFER

where BUFFER is the ram buffer address

REGS : R0 - Input word count

CLRRAM EQU

MOV

MOV

A

CLR

CLRLP MOV

*R11+,R1
R1,R2

R0,R2

R0

R0,*R1+

150

ENTRY POINT

Get ram address data

Format ram end address

Clear ram word

C R1,R2 ? End address reached

JNE CLRLP No, go do it again
*

RT
*

*

*

* FCB DORG
*

DORG 0

PABLEN DATA 0 Length of Pab
VDPADR DATA 0 Pab vdp ram address
PAB DATA 0,0,0,0 PAB

BYTE 0

N$LEN BYTE 0 Length of file name
F$NAM BSS 15 File name text
RSERV BYTE 0

RORG
*

**

*

*

* PAB BLOCK TO DSR's
*

DORG 0

OPCODE BYTE 0 I/O OPCODE
STATUS BYTE 0 DSR STATUS BYTE

BUFADD DATA 0 DATA BUFFER ADDRESS

LRL BYTE 0 LOGICAL RECORD LENGTH

ODUNT BYTE 0 XFER COUNT

RECNUM DATA 0 REL REC NUMBER

FLESTS BYTE 0 FILE STATUS

DESCLN BYTE 0 NAME DESCRIPTOR LENGTH

RORG
**

DESCRIPTION OF THE FILE I/O ENTRY POINTS

IOFLE— This routine writes the
pab to Vdp Ram, and issues
a call to the DSR. No
verification of the pab is
performed.

151

FLECHK— This routine reads the file pab
status byte from vdp ram.
If an error is detected
error action is taken including
returning control of the program
to an error address.

G$VDP— Transfers a buffer of Vdp Ram
to Ram memory.

P$VDP— Transfers a buffer of Ram memory
to Vdp Ram.

G$STAT— Reads the file status byte of the
file pab in Vdp Ram.

The copy files FCB/SRC and PAB/SRC contain DORG's which define the
offsets of the various elements with the data structures. The copy files are
handy ways of maintaining some unity of equates among various modules.

The Feb copy file contains :

*

*

FCB DORG

DORG 0

PABLEN DATA 0 Length of Pab
VDPADR DATA 0 Pab vdp ram address
PAB DATA 0,0,0,0

BYTE 0

PAB

N$LEN BYTE 0 Length of file name
F$NAM BSS 15 File name text

RSERV BYTE 0

*

RORG

The Pab copy file contains :

*

* PAB BLOCK TO DSR's
*

DORG 0

OPCODE BYTE 0 I/O OPCODE

152

STATUS BYTE 0 DSR STATUS BYTE

BUFADD DATA 0 DATA BUFFER ADDRESS

LRL BYTE 0 LOGICAL RECORD LENGTH

COUNT BYTE 0 XFER COUNT

RECNUM DATA 0 REL REC NUMBER

FLESTS BYTE 0 FILE STATUS

DESCLN BYTE 0 NAME DESCRIPTOR LENGTH

RORG

Next some background! A PAB (Peripheral Access Block) is a data structure
which is used to pass information between one's program logic and the
Rom Dsr routines of the 99/4A. The Pab is 5 words long, plus 1 byte for
each character in the file pathname. Thus the Pab for the file named
"DSK1TEST" is 5 words plus 9 bytes, or 19 bytes. The Pab must be located
in Vdp Ram before a call to the Dsr may be made. It is this programming
consideration that makes the use of a file i/o module both a code and time
saver!

Vdp Ram is that block of memory that is managed by the TMS9918A Video
Display Processor Chip. This chip was used to cut the costs associated
with the internal hardware memory management architecture. It is the chip
that provides all the reasons I bought the 99/4A. GRAPHICS. But, it is also
the cause for some not so standard programming techniques. That is, the
programmer must be aware that he must treat Vdp memory differently than
that normal for expansion ram.

The requirement for the FCB(File Control Block) is thus born. The FCB
resides in readily accessable ram. It contains the Pab, and also includes
two additonal words; the total length of the FCB and the Vdp address for
the Pab. The Feb is used to pass data to the file I/O routines and finally to
Vdp Ram. The FCB is more important in concept than in implementation
details. Readers are encouraged to develop their own Fcb's if needed.

The major factor in constructing the file I/O routines is the decision to
maintain the various file Pab's in Ram, then copying the Pab to Vdp Ram
each time a file I/O request is made. This allows accidental destruction of
Vdp Ram to occur while assuring that Vdp ram is correct during file i/o.
This benefit should be obvious to those having attempted assembly
langauge programming on the 99/4A!

If you like to optimize, or must optimize the execution speed of the file
I/O routines you may choose to maintain your file Pab's in Vdp Ram. The
support routines would then include provisions for modifying single bytes
of the Pab on the fly. This approach was not initially coded due to the
slightly longer code generation cycle, and the uncertain cloud that is tell
ing me I may not need any extra speed!

153

INSPECT MERGED FILE

And finally I have coded an example using the file I/O routines. This exam
ple was intended to help provide some insight into the structure of the
Basic Merge File; in hopes of finding a key to allow program development
without the Basic Editor. The idea is to allow generation of basic text files
that could be converted to Basic program images. The Basic merge file just
happens to be void of tagged object code for the interpreter. The elimina
tion of that hurdle was encouraging.

But, the example clearly demonstrates the use of the file I/O routines. Be
forwamed. The logic shown here does not provide for formatting of
records longer than 80 characters, and are lost! But you didn't want to look
at all of the merge file anyway, did you? Also no attempt was made to for
mat I/O to the screen, that is best left for your tastes and needs.

**

* MODULE : INSMRG

* PURPOSE: Inspect a MERGED BASIC
* PROGRAM FILE

* AUTHOR : Joel Rodriguez
* SITE : Austin, Texas
* HISTORY: Original 12/83

* ALL RIGHTS RESERVED BY AUTHOR 1983
*

**

TITL 'INSPECT MERGE FILE'
*

* DSRLNK Caimand
*

Equates

OPEN EQU >0000 OPEN FILE

CLOSE EQU >0100 CLOSE FILE

READ EQU >0200 READ RECORD

WRITE EQU >0300 WRITE RECORD

RESTOR EQU >0400 FILE RESTORE

LOAD EQU >0500 LOAD IMAGE FILE

SAVE EQU >0600 SAVE IMAGE FILE

DELETE EQU >0700 DELF/PE FILE

SCRTCH EQU >0800 SCRATCH REL RECORD

RDSTAT EQU
*

*

>0900 READ FILE STATUS

*

TXTFLE EQU >0012 OPEN TEXT FILE

MERGE EQU >0014 OPEN MERGE FILE

154

OPNPGM EQU >0004
*

OPEN FILEIO OBJECT

* VDP Ram Equates
*

TXTPAB EQU >F80 IMAGE FILE PAB

MRGPAB EQU >FA0 TEXT FILE PAB

MSGPAB EQU >FC0 MESSAGE FILE PAB

TXTBUF EQU >1000 TEXT RECORD BUFFER

MRGBUF EQU >1100 MERGE RECORD BUFFER

MSGBUF EQU >1200
*

MESSAGE RECORD BUFFER

* Program equates
*

and data area

USERWP EQU >20BA PROGRAM WORKSPACE

BUF$TX BSS >100 TEXT FILE BUFFER

BUF$IM BSS >100 MERGE FILE IMAGE BUFFER

BUF$MG BSS >100 MESSAGE FILE BUFFER

R11SAV DATA 0 RETURN ADDRESS STORAGE

RDCT DATA 0 INPUT RECORD COUNT

WRTCT DATA 0 OUTPUT RECORD COUNT

LSTREC DATA 0
*

LAST RECORD READ FLAG

*

* File Control Blocks (FCB)
*

EVEN

MRGFCB EQU $
DATA TAILM-PABMRG

DATA MRGPAB

PABMRG DATA MERGE

DATA MRGBUF

DATA MRGLRL,0

BYTE 0

BYTE TAILM-MRGNAM

MRGNAM TEXT 'DSK1 .MERGET/IN
TAILM EQU $-2
*

*

*

EVEN

TXTFCB EQU $
DATA TAILT-PABTXT

DATA TXTPAB

PABTXT DATA TXTFLE

DATA TXTBUF

155

MERGE FILE CONTROL BLOCK(FCB)

MERGE FILE DSR PAB

NAME OF IMAGE FILE

TEXT FILE CONTROL BLOCK(FCB)

TEXT FILE DSR PAB

TXTNAM

TAILT
*

DATA TXTLRL,0
BYTE 0

BYTE TAILT-TXTNAM

TEXT 'DSKLMERGEr/OUT
EQU $-1

*

*

Feb equates

TEXT FILE PAB BLOCK

NAME OF TEXT FILE

IMGLRL EQU >0000

TXTLRL EQU >5000

MRGLRL EQU 163
*

MERGE FILE LRL(DSR RETURNS)
TEXT FILE LRL

MERGE FILE LRL IS 163

Register Equates

BASADR EQU 3

TXTPTR EQU 4

FCBPTR EQU 5

BUFPTR EQU 6

RECNM EQU 7

REG1 EQU 2
*

GPLSTS EQU >837C

HEADER TEXT 'REC*'

Program defs/refs

BASE ADDRESS REGISTER

TEXT BUFFER POINTER REGISTER

FILE CONTROL BLOCK POINTER

BUFFER POINTER REGISTER

RECORD NUMBER REGISTER

Rl ADDRESS OFFSET FROM WP

GPL STATUS BYTE

OUTPUT TEXT STRING

DEF INSMRG

REF IOFLE,FLECHK#P$VDP#G$VDP,CLRRAM,G§STAT
EVEN

**

* Program entry
**

INSMRG MOV R11,@R11SAV
LWPI USERWP

Open a merged program file

BL @IOFLE
DATA MRGFCB

LI R0#MRGPAB

BL @FLECHK

DATA F$EXT

156

Check for errors

Error recovery address

*

*

Open text output file

BL @IOFLE

*

DATA TXTFCB

LI R0, TXTPAB Check for errors

BL @FLECHK

*

DATA F$EXT Error recovery address

*

*

Clear Ram record buffers

LI R0,>100

BL @CLRRAM Clear text buffer

DATA BUF§TX
LI R0,>100

BL @CLRRAM Clear Image buffer
DATA BUF$IM
LI R0,>100

BL @CLRRAM Clear Msg buffer
DATA BUF$MG

*

PAGE

*

*

Read a merge file record into Ram

CLR RECNM R7 = WRITE RECORD NUMBER

RDREC LI TXTPTR/BUF$TX R4 = @EUF$TX
LI FCBPTR,MRGFCB R5 = EMERGE FILE FCB

LI BUFPTR,BUF$IM R6 = @BUF$IM

LI BASADR,READ

MOVB BASADR,(aPAB(FCBPTR)
BL 0IOFLE

DATA MRGFCB

Update fcb to read

LI R0,MRGPAB

BL @FLECHK

DATA F$MRG

Check for errors

LI R0,MRGFCB

BL @G$VDP
DATA BUF$IM
MOV R0,@RDCT

Xfer record to ram

Count returned in R0

Save count

LI BASADR,RDSTAT
MOVB BASADR,@PAB(FCBPrR) Change Pab to read status

157

BL @IOFLE

DATA MRGFCB
*

Read the file status

LI R0,MRGPAB

BL @FLECHK Check for dsr errors

DATA F$MRG
*

CLR @LSTREC

LI R0,MRGPAB
BL @G$STAT Go get file status
ANDI R0,>100 ? Last record read

JEQ WRTREC No, go continue
SETO @LSTREC Set last record flag
JMP NXTCHR Go process last two bytes
PAGE

*

* Format text ram buffer
*

WRTREC CLR @WRTCT Clear write byte count
LI BASADR,HEADER
MOV *BASADR+/*TXTPTR+ Output ,REC#'
MOV *BASADR+/*TXTPTR+

NXTCHR

HITST

OONVRT

INCT @WRTCT Bump write count
INCT @WRTCT

MOV @RDCT,R0
CI R0,2

JLE NXTCHR

MOV *BUFPTR+,R0
BL @HEXASC

DATA 2

DECT @RDCT

CLR R0

MOVB *BUFPTR+,R0
CI R0,>2000
JHE HITST

JMP OONVRT

CI R0,>6E00
JLE DATAOK

BL @HEXASC

DATA 1

JMP ENDBUF

158

Get input count
More than 2 bytes
No, then skip rec process
Process record number

Convert two bytes

Get a byte
? Ascii lower bound

Yes, check upper bound

? Ascii upper bound
Yes, go write the byte

Convert byte to Ascii Wbrd

DATAOK

MOVB R0,*TXTPTR+
INC @WRTCT

DEC @RDCT

JNE NXTCHR

ENDBUF

Write the Ascii character

? Eiid of image byte stream
No, continue processing

Set up Vdp ram, TXTFCB, and write the record

LI FCBPTR,TXTFCB

LI BASADR,WRITE

MOVB BASADR,@PAB(FCBPTR) Set opcode to write

MOV PCBPTR,R0
AI R0,PAB+COUNT

SWPB @WRTCT

MOVB @WRTCT,*R0

LI R0,TXTFCB

SWPB @WRTCT

MOV @WRTCT,R1
BL @P$VDP
DATA BUF$TX

Modify word to byte data
Set write count in Pab

Restore count as data word

Write the ram buffer

BL @IOFLE Write the text re<

*

DATA TXTFCB

LI R0, TXTPAB Check for errors

BL @FLECHK

*

DATA F$EXT

INC RECNM

ABS @LSTREC \? Last input record

*

JED RDREC No, process again

*

*

Close output file and exit

F$EOF
F$MRG

LI FCBPTR,TXTFCB

LI BASADR,CLOSE

MOVB BASADR,@PAB(FCBPTR)
BL @IOFLE Close the test f:

DATA TXTFCB

F$EXT
CLR R0

159

MOVB R0,@GPLSTS
MOV @R11SAV,R11
RT

Clear Gpl status
Restore return address

RETURN TO CALLER

TITL 'SUBROUTINES'

* SUBROUTINES *

* HEXASC : Formats decimal values to printable
* Ascii, and writes Ascii stream to that
* pointed to by TXTPTR.
* TO CALL: Load R0 with hex data word, byte data
* data in Msb.
* BL @HEXASC
* DATA X where x is 1 or 2 byte conversion
*

TOKEN EQU 8

NIBBS DATA 1

HEXSAV DATA 0

HEXCHR TEXT ' >
*

Number of nibbles to convert

Return address storage

HEXASC EQU

MOV

MOV

MOV

LI

MOVB

MOVB

INCT

HEX$LP
MOV

ANDI

SRL

BL

MOVB

MOV

BL

MOVB

INCT

MOV

CI

JEQ

DEC

SWPB

JMP

*R11+,@NIBBS
R11,@HEXSAV
R0,TOKEN

BASADR, HEXCHR

*BASADR+, *TXTPTR+
*BASADR, *TXTPTR+
@WRTCT

Save return address

Save token byte

Output ' >'
Bump write count

TOKEN,R0

R0,>F000

R0,4

^ADJUST

R0,*TXTPTR+
TOKEN, RBI

@ADJUST

R0,*TXTPTR+
(aWRTCT

@NIBBS,R1
Rl,l
HEXEND

@NIBBS

TOKEN

HEX$LP

Process msb nibble

160

Process lsb nibble

? Last nibble

Yes, then exit

HEXEND MOV @HEXSAV,R11
RT

*

* ADJUST : Adjust hex nibble to an Ascii byte.

Restore return address

* Nibble is in bits 4-7 of R0. The Ascii byte
*

*

is returned as the Msb of R0.

BAS EQU >0900 Compare value
BAS9 EQU >3000 Increment to Base Ascii '0'
BASA EQU >3700 Increment to Base Ascii 'A1
NMASK EQU >0F00 Nibble Mask
ADJUST EQU $

ANDI: R0,NMASK Mask unwanted bits

CI R0,BAS ? Nibble > 9
JGT TENADJ Yes, adjust to Ascii 'A'
AI R0,BAS9 Adjust based at >30, Ascii '9'
JMP ADJEND and return

TENADJ AI R0,BASA Adjust based at >41, Ascii *A'
ADJEND
*

RT Return

*

*

* PAB BLOCK TO DSR's
*

DORG 0

OPCODE BYTE 0

STATUS BYTE 0

BUFADD DATA 0

LRL BYTE 0

COUNT BYTE 0

RECNUM DATA 0

FLESTS BYTE 0

DESCLN BYTE 0

RORG

*

*

*

FCB DORG

DORG 0

PART,FN DATA 0

VDPADR DATA 0

PAB DATA 0,0,0,0

BYTE 0

I/O OPCODE
DSR STATUS BYTE

DATA BUFFER ADDRESS

LOGICAL RECORD LENGTH

XFER COUNT

REL REC NUMBER

FILE STATUS

NAME DESCRIPTOR LENGTH

161

Length of Pab
Pab vdp ram address
PAB

N$LEN BYTE 0 Length of file name
F$NAM BSS 15 File name text
RSERV BYTE 0

RORG
*

The use of IOFLE is straight forward. It is the job of the application to set
up and maintain the various Fcb's. The call to IOFLE is made with the ad
dress of the appropriate Feb passed as a data item following the
call.

BL @IOFLE
DATA FCBADR

All good programmers check their external calls for errors after execu
tion. The FLECHK routine is called by loading R0 with the Vdp Ram ad
dress of the Pab, calling the routine followed by an error return address
data word.

LI R0,RAMPAB

BL @FLECHK

DATA ERRRET

The details of adding screen i/o to the file i/o routines is left for the
industrious.

To issue a read or a write to the file after you have opened it, just modify
the RAM pab to reflect the needed operation and call IOFLE again.

Use the CLRRAM routines to clear out any ram buffers you are using.
After all, all good programmers intialize their data areas! To use CLRRAM
just load R0 with the number of WORDS you wish to clear, and call the
routine follwed by the data address of the ram buffer.

LI R0,>100
BL @CLRRAM

DATA RAMADR

162

To geta buffer ofdata from Vdp Ram to ram memory use the G$VDP
routine. Load R0 with the Feb address, and call the routine with the ram
address following the call.

LI R0,FCBADR

BL @G$VDP
DATA RAMADR

Conversly, to transfer a buffer from ram memory to Vdp Ram use the
P$VDP routine. Load R0 with the Feb address, load R1 with the buffer byte
count, and call P$VDP with the address of the ram data buffer following
the call.

LI R0,FCBADR

LI Rl,LENGTH

BL @P$VDP
DATA RAMADR

The status of any file may be obtained by calling G$STAT This will tell
you if the file is a program file, or a text file. Itwill also tell you if the disk
is full, or the file is currently at ifs last written record. To call the routine,
load R0 with the Vdp Ram address of the file, and call the routine. The file
status will be returned in R0.

LI R0,VDPADR
BL @G$STAT

.END OF TRANSMISSION.

163

PROGRAM ORDER FORM

Most of the programs in this book are available on diskette. All orders may
be sent to:

MIDNIGHT EXPRESS PUBLISHERS

BOX 26941

AUSTIN, TEXAS 78755

The programs completely fill the diskette and are listed below. Booksare
$12.95, and diskettes are $6.95. Add one dollar shipping per book.

ADDRESS-BASIC TUTORIAL

CHECK MANAGEMENT/ANALYSIS

CHRISTMAS BILL BOARD

CHECKERS FOR 16K

GRAPHICS GENERATOR

HANGMAN FOR TWO

OTHELLO

PHONETIC SPEECH EDITOR

SEEK AND FIND PUZZLE GENERATOR

SPEECH CONTROL PROGRAM

SUPER CATALOGGER

TANK ABOUT MATH

164

CORRECTIONS

There are a few necessary changes.
The last example on page 31, and the first
example on page 32 reads.

IF -(((A=2 + B=4)<0)*((A=2 * B=4)=0))<>0 THEN ..

Should read:

IF -(((A=2)+(B=4)^0)*((A=2)*(B=4)=0))<>0 THEN ..
Excuse me for allowing you to struggle

through the books complex sample of exclusive
OR. Here is a simple example.

IF (A=2)-(B=4)=0 THEN ...

Delete four lines on page 34 that read;

I will finish this section with something
simple. These two statements are equivalent.
EXT; IF B>10 AND B^20 THEN PRINT "SUCCESS"
REG. IF 1(KB<20 THEN PRINT "SUCCESS"

The Basic tutorial program 'ADDRESS' has
been modified on the diskette to run using disk
also. Line numbers are.changed as follows.

Additional line numbers;
121 122 165 400-404 835 876 1171 1401-1409
1511-1519 1665 1701 1751 1761 2161 2021-2063

Changed line numbers;
190 430 770 772 780 790 800 820 860 930 1170
1180 1200-1230 1700 1702 1710 1730-1750 1760
2020 2160 2190

Moved line numbers;
405 772 875 1702

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013
	content014

	back-cover

