T GET
PERSONAL

WITH YOUR

WILLIAM A. MANNING, LON INGALSBE

(et Personal with Your
TI-99/4A

Get Personal with Your
TI-99/4A

William A. Manning
and Lon Ingalsbe

dr

dilithium Press
Beaverton, Oregon

© 1984 by dilithium Press. All rights reserved.

No part of this book may be reproduced in any form or by any
means, electronic or mechanical, including photocopying, record-
ing or by any information storage and retrieval system without
permission in writing from the publisher, with the following excep-
tions: any material may be copied or transcribed for the nonprofit
use of the purchaser, and material (not to exceed 300 words and one
figure) may be quoted in published reviews of this book.

Where necessary, permission is granted by the copyright owner for
libraries and others registered with the Copyright Clearance Cen-
ter (CCC) to photocopy any material herein for a base fee of $1.00
and an additional fee of $0.20 per page. Payments should be sent
directly to the Copyright Clearance Center, 21 Congress Street,
Salem, Massachusetts 01970.

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging in Publication Data

Ingalsbe, Lon
Get personal with your TI-99/4A.

Includes index.

1. TI-99/4A (Computer)—Programming. 2. Basic (Computer
program language) I. Manning, William A. II. Title.
QA76.8.T133154 1984 001.642 83-20994
ISBN 0-88056-098-3

Cover: Bruce Fleming

Printed in the United States of America
dilithium Press

8285 S.W. Nimbus

Suite 151
Beaverton, Oregon 97005

Preface

This book is designed to provide background information and
programming skills for the TI-99/4 A personal computer. This com-
puter brings computer power to the user’s fingertips for a fraction
of the cost of computers in the past. The TI-99/4A comes standard
with 16,000 characters of memory, color, sound, graphics ca-
pability, and a state-of-the-art processor unit. We have seen this
machine configured with peripheral devices (printers, disks, tapes,
etc.) to electronically process all the accounting activities in a
medium-sized distribution company. This computer is not a toy! It
is a powerful tool to help you with daily activities. This book
intends to give you all you need—some background information
and programming skills.

To enjoy this book, you do not need a computer. You can develop
the programs and carry out the activities at the end of each chap-
ter. You can imagine the color and graphics involved. If you are
thinking of buying a Texas Instruments computer, this book helps
you pick appropriate hardware and software combinations.

If you have a TI now, use it to work through the exercises in this
book. Make your own changes, modifications, and improvements
on the program listings. Can you improve on the program’s logic or
output quality? Can you do the problems another way? There are
many ways to get the same answer in programming. Make
changes and see what happens. You can always go back to the
original form.

Section I of the book focuses on an introduction to personal
computing and orients you to the TI-99/4A computer. It discusses
available hardware and software programs and their approximate
costs.

Section II addresses programming in the BASIC language for
the TI-99/4A; fundamental concepts of how to design and write
programs; and detailed coverage of the most common statements.
As the chapters progress, more and more of the statements com-
bine into meaningful programs. It also discusses the concept of
computer files.

Introduction

The Ultimate Goal -
Increasing Your Computer Literacy

Your major educational goal with computers should be to in-
crease your literacy and help you feel more comfortable with the
subject matter. While there is no well-defined definition, most
experts agree that it should include at least these subjects:

1. A basic understanding of computers and what they can and

cannot do.

2. A minimum level of skill in programming a computer in a

popular language.

3. Some understanding of the impact computers will have on

our future lives.

Preface

Table of Contents

Introduction

Section I
Chapter 1

Chapter 2

Section II

Chapter 3

Some Helpful Background Information

Welcome to Personal Computing
The Technology
What Makes a Computer Personal

An Introduction to the TI Home Computer
Background
Evaluation of the TI Home Computer
Hardware for the TI Personal Computer
Software
Sources of Hardware and Software
Keeping Informed
Why learn about Computers? Or

Opportunities!

An Introduction to BASIC Programming
What is BASIC?

The Nature of Computers:
Programmer’s Perspective

RAM & ROM Memory
ROM Memory
RAM Memory
Programming Languages
Operating Levels for the TI-99/4A
More than one BASIC Program

11
11
12
16
20
22

23

25

28
28
29
31
32
34

~R

viii Get Personal with Your TI1-99/4A

Chapter 4 Algorithms—The Computer’s Recipe

The Nature of Computer Programs 41
Flowcharts 42
Chapter 5 Writing and Editing BASIC Programs
Printing Literals 53
The Computer’s Message Board 54
Listing the Program 55
Importance of Line Numbers 56
Inserting a Program Line 56
Editing a Program Line 57
Important Program Line Commands 61
BASIC Commands Summary 62
Chapter 6 TI BASIC Calculations
Computations 67
Parentheses 69
Numeric Functions 70
Chapter 7 Input and Reading Data
Variables 83
Numeric and String Variables 85
More on the PRINT Statement 88

Inputting a Value to fill a Variable Basket 93
Chapter 8 Program Branching and Loop Structures

Rem Statements 105

Programs for many Users 109

Loop Structures 114
Chapter 9 Arrays

One-Dimensional Arrays 130

Two-Dimensional Arrays 134

Three-Dimensional Arrays 139

Chapter 10 An Introduction to Sound and Color-Graphics
or: Fun with Your TI

Call Sound 1562
Call Clear 158
Call Screen 158
Call Color 160
Call HCHAR 160
Call VCHAR 164

Some Fun Applications of TI Sound and
Color-Graphics 167

Contents ix
Chapter 11 Program and Data Files
Saving a BASIC Program 178
Loading a BASIC Program 180
Chapter 12 String Functions and Subprograms
String Functions 183
Some Applications of TI String Functions 187
Appendices
AppendixI Reserved Words in TI BASIC 207
Appendix II ASCII Character Codes 209
Appendix III Color Codes and Set Numbers 213
Appendix IV Musical Note Frequencies 215
Appendix V TI Error Messages 217
Appendix VI Built-in Numeric Functions 223
Index 227

Get Personal with Your TI-99/4A

Section I

Background

If you suffer from cyberphobia (fear of computers) or cyberphilia
(obsession with computers), this book can cure both!

Microcomputers have become a mass-produced, consumer-ori-
ented items. They are everywhere. Recently, at a mountain resort,
a man was sunbathing by the pool, a portable microcomputer in his
lap. He was preparing memos for an office meeting the following
week and was obviously enjoying the best of both worlds. Tech-
nology had added another dimension to his work and play.

Welcome to the exciting world of microcomputers! How much do
you know about computers right now? Take the computer literacy
test in Chapter 1 and again when you complete the book. You
should see the dramatic increase in your knowledge and under-
standing of computers and how they work! You will also be pleased
with how much you have learned about the Texas Instruments
home computer.

Knowledge of the microcomputer industry and how people use
them increases your comfort zone with computers and gives you
ideas of how to use your computer in your home and career. Turn
your imagination loose as you read this chapter.

Chapter 2 introduces the Texas Instruments company and its
home computer. It discusses the development and evolution of the
home computer, the computer parts themselves, and some of the
computer programs available for the system. This computer is
expandable. As your knowledge, abilities, uses and budget grow,
you can add devices to the computer console unit to help carry out
those applications. Let’s begin—with a brief orientation to the
personal computing industry.

Get Personal with Your TI-99/4A

Chapter1

Welcome To Personal
Computing

Welcome to the most fabulous realm of life in the twenty-first
century—personal computing. It is to the information revolution
what the auto was to the industrial revolution and your life may
never be the same. Before you begin, take the test in Figure 1.1.
When you complete the book, take this test again to see how much
you have learned.

THE TECHNOLOGY

What’s a half inch in length, a half inch in width, as thick as a
dime and has revolutionized the computer industry? The micro-
computer miracle chip! Computers—that only 25 years ago filled
rooms with vacuum tubes and mazes of wires—are reproduced
today at very low cost in the postage stamp-sized integrated circuit
chip. This technology has spawned a new industry —the microcom-
puter industry. Had the auto industry advanced as rapidly as
computers, a Rolls-Royce that today costs $85,000 would instead
cost $3.00, get two million miles per gallon, and deliver enough
horsepower to drive a battleship. And the trend continues. The
keys to the success of this industry are portability, miniaturiza-
tion, and low cost.

This book specifically concerns personal computers developed by
Texas Instruments, Inc.; as versatile home computers within the
financial reach of our society. The machine will become the home
computing and information center as well as a link between the
home and our electronic society. It is what the telephone was to the
home 100 years ago. Microcomputers and robots will no doubt
cause many social dislocations—and opportunities. Author James
Martin predicts that the microcomputer industry will make thou-
sands of new millionaires.

4 Get Personal with Your TI-99/4A

Since Apple Computer first introduced its personal computer in
1976, the market has grown from nothing to over $6 billion in
seven years. Estimates are that by 1986 sales will exceed $21
billion. At an average cost of $1000, this would mean 21 million
computers in operations, worldwide. And most people feel this is
only the beginning. Costs will continue to drop and capabilities
will continue to increase as time and technology advance.

Answer each question; 5 = Complete Understanding. . .thru 1 =No
Understanding.

After
Reading
Question Now Book

. Whatisacomputer?
. What is a computer program?
What is a “canned” program?
. List 10 computer applications?
How have computers affected our lives?
What do computersdobest?
. Whatare RAMandROM?

. What do you know about Texas Instruments? .
. What does a programmerdo?
. Whatisaflowchart?
. What does BASIC stand for?
. What does an IF/THEN statementdo?
. What's involved in “debugging”?
. What does the CALL SOUND command do? .
. Whatisacomputerfile?
. Name some future applications of software . . .
. How much do you know about your

bbb b ek ek ek ek pd e
COIDINAWNHROORON DA WM

TIcomputer?covviinnvenenn.

20. Areyou glad you bought thisbook? —_—
Total
Average.................

Figure 1.1 The computer literacy test.

Some Computer Applications

But what use do microcomputers have? Consider: this:.
It was the sort of situation that gets people killed.

Welcome to Personal Computing 5

A troubled man had taken his wife and infant daughter
hostage in a trailer house in Cottonwood, Arizona. They
subsequently escaped but the man had arifle and had threat-
ened to kill anyone who tried to capture him.

A little, one-armed robot rolled up to the trailer, and ex-
plained in a monotone voice that the man should give up. The
robot spun on its wheels and left to return seconds later. It
deposited a ringing telephone and announced that the police
chief was calling. A half hour later that man surrendered—
marking an historic first for computer technology and law
enforcement.

Never before in America had anyone been brought to a
peaceful surrender with the aid of a robot. As the man was
arrested, he commented that he thought his experience with
the four-foot-tall 210-pound, six-wheeled machine was neat.

“It broke the ice and took my mind off my problems,” he
said.

View computers as tools to help the human do his work. A good
tool saves time, money, and energy. A screwdriver helps us loosen
a fastner we otherwise could not remove. A pulley helps us achieve
a mechanical advantage and lift a load we otherwise could not
handle. Computers should give us a mental advantage or relieve
us of the boredom from tasks we otherwise could or would not do—
manually figure each payroll check for 1000 employees, for exam-
ple. Computers should be used to complement human skills. Ide-
ally paired, man and computer make a powerful team. Look at
space travel, medical research, or medical technology. But how do
we pair up? Which does which?

Figure 1.2 lists the advantages of computers and humans. Com-
puters are extremely fast! Computer processing times are now
measured in nanoseconds or billionths of a second. Within one-half
second, a large computer can: a) monitor 100 heart patients and
alert doctors to trouble, b) figure paychecks for 1000 employees, c)
post 3000 checks to 250 different bank accounts, d) score 150,000
answers to a questionnaire and a few perform other chores!

But computers are dumb. You have to tell them what to do—and
in very exact terms. They can do computations with a high degree
of accuracy (take figures to many decimal places) and are very
reliable. That means if a computer totals a list of 100 numbers 50
different times, it gets the same answer each time. Humans are
notoriously bad at this activity. Computers can also quickly store,

6 Get Personal with Your TI-99/4A

retrieve, and display large amounts of data. With these charac-
teristics, computers excel in applications that require repetitive
tasks where large amounts of data must be analyzed.

COMPUTERS HUMANS
Characteristics Applications Characteristics Applications
High-speed Date storage/ Creativity Design
computations retrieval
Accuracy Computations Conceptual Implementation

Sensitivity to Human Skills
Reliability Summarization Environment
Large storage Classification =~ Mobility Travel
capability and sorting

Multiple senses Persuasion

Figure 1.2 Computers vs. Humans.

One major characteristic of computer applications is high vol-
ume of a large task done over and over, such as paychecks or a large
number of requests for information from a collection of data such
as airline reservations or bank account balances. In payroll, the
process is called batch processing because the pay records are
collected over a pay period and then run all at once. The bank or
airline reservation system is a query or on-line application because
information requests occur on a random or demand basis to a
continuously updated data base.

Humans, on the other hand, identify the application for the
computer, define how the computer is to solve the problem, and,
ultimately, use the computer’s output as part of the solution.
Humans begin and end the computer application. Humans inter-
act with other humans at home or work to design and implement
the computer’s output.

Computers supply the computational skills. Humans supply the
management skills. The two together are greater than either one
can be separately.

Whether the benefits of computerization outweigh the cost is a
major consideration. Will the application pay for itself? You can
estimate costs of hardware, software, personnel, supplies, fur-
niture, and the physical space. But the benefits are much less
tangible and very difficult to determine. Computers costing hun-

Welcome to Personal Computing 7

dreds of thousands of dollars are often purchased with little formal
evaluation of the computer’s benefits.

In personal computing or desk top computing, many of the stan-
dard applications in the home or organization are already pro-
grammed and available in canned form for a reasonable price.
Figure 1.3 lists the common personal computer applications and
the software programs Texas Instruments has in those areas. If
programs already exist for an application, it is usually smart to
buy them rather than write an original program. Prepackaged
programs can save a beginning computer user time and money.

Applications TI Software

Home Management Home Budget Management
Personal Record Keeping
Tax Planning

Word Processing TI Writer

Electronic Spread Sheet Multiplan

Education Miliken Math
Plato
Scot Foresman

Family Entertainment/

Games PARSEC
Hunt the Wampus
TI Invaders

Original Applications TI BASIC Programming

Figure 1.3 Typical applications and canned software available.

WHAT MAKES A COMPUTER PERSONAL?

A computer is a general purpose, electronic machine that
rapidly and reliably stores and processes data. This data may be
numbers or alphabetical letters. Computers come in all sizes—
some fill large rooms and cost millions of dollars, some are hand-
held and sell for $49. Why such a difference?

Speed, storage capabilities and hardware accessories are the key
differences. How fast a computer can transfer data from one part of
the computer to another is called access time or cycle time. The
faster the access time, the faster the computer. Large machines
cycle in nanoseconds or billionths of a second. A nanosecond is the

8 Get Personal with Your TI-99/4A

time it takes light to travel one foot. (Light travels at 186,000 miles
per second or seven times around the world in one second.) Per-
sonal computers that transfer data in thousandths of a second are
much slower.

Storage size affects two areas—word size and primary core mem-
ory. Word size is the storage area allocated to a single piece of data.
The large IBM 370, model 3033 has a word size four times larger
than the TI-99/4A and eight times larger than the original Apple I
computer. A large machine can perform an operation in one move
while a microcomputer may take several steps. Larger computers
also access larger blocks of data from the general memory area and
do so more rapidly.

Finally, more information can be stored in the memory of larger
computers. The TI-99/4A has a 16K memory (K equals 1024 char-
acters or “bytes”—one byte can store one character). Thus, approx-
imately 16,000 characters can fit in the TI's memory at any one
time. The characters may be changed during the program, but
cannot exceed 16,000. With some accessories, the TI can be ex-
panded, but the standard model is 16K. Other personal computers
range in storage from 2K to 512K. Large, business and scientific
computers may have millions of characters of primary memory
area.

Price is the ultimate distinction. Personal computers normally
cost less less than $5,000. In the $1,000 to $5,000 price range,
Apple, IBM and Radio Shack are the leaders. These desk-top com-
puters are used by small businesses and other organizations for
record-keeping, word processing and company planning. The sys-
tem typically consists of a keyboard, controller unit (heart of the
computer), CRT (cathode ray tube) monitor, printer, and one or two
disk drives. Purchased software programs run the machines al-
though they can be programmed in BASIC (Beginners All-purpose
Symbolic Instruction Code) language. Some of these systems find
their way into the home for education, entertainment, and home
management applications.

The market for computers costing less than $500 has exploded.
Estimates are that 3.5 million units will be sold in 1983, 100 times
the 1980 volume of 35,000 units sold. Texas Instruments, Timex-
Sinclair, Commodore, Atari, and Radio Shack are the prime com-
petitors. As technology improves and competition stiffens, prices
will continue to tumble and capabilities continue to expand. The
purchaser will continue to be perplexed by what to buy and when.

Welcome to Personal Computing 9

SUMMARY

The revolution in the electronic age has been phenomenal in the
past 25 years. Room-sized computers shrank to desk tops, and costs
shrank with them.

This put computer capabilities into the hands of the ordinary

" person.

Humans and computers work together. Computers do the boring
work and don’t complain. Humans are then freed to do the creative
work. Computers complement human skills, but one becomes de-
pendent on the other. Computers process in nanoseconds. They are
dumb but accurate. They store and retrieve large amounts of data.
Humans tell them what to do and manage them.

Costs vary from $500 to $5,000. The key differences that deter-
mine cost are their storage capabilities and hardware accessories.

The future looks bright for the computer industry. In the elec-
tronic society, more and more activities and services will be com-
puter centered. Home computers today may be a luxury but will
soon become our link to the outside world and our most necessary
home appliance.

REVIEW ACTIVITIES

1. Visit a retail computer store. Ask about computer prices and
capabilities. Review store brochures. Tell a friend about your
experiences.

2. Read a recent issue of a computer magazine. Look at the ads
and the story coverage. Can you understand the articles?

3. Watch your local newspaper for computer-related stories.
Clip out a story and show it to a friend. Discuss the article and its
implications for you, your friend and society.

4. List ten instances in which you could justify the cost and use
of a computer in your life. Are they being done by someone else?

5. Discuss the future of computers with a friend. How do you see
your life and society being changed by computers and information
technology? When will it happen? What is the time frame?

10

Get Personal with Your TI-99/4A

Chapter 2

Introduction To the
Texas Instruments
Home Computer

BACKGROUND

Texas Instruments (T1I) is the leading producer of semiconductor
products. It develops, manufactures, and sells electronic equip-
ment such as calculators, microprocessors, and small business and
home computers. Headquartered in Dallas, Texas, Texas Instru-
ments has 50 plants in 20 countries and was a $4.3 billion company
in 1982. It employs over 80,000 people. Products include a variety
of electronic devices for industrial, consumer and government
markets. Over 30,000 shareholders own 23 million shares of TXN
(New York Stock Exchange symbol) stock.

EVOLUTION OF THE TTHOME COMPUTER

Always a leader in electronic education, TI introduced the
T1-99/4A home computer in 1979 at an original cost of over $1,000.
A flat keyboard, limited software and an expensive price gener-
ated lagging sales for this unit. The 16,000 character, random
access memory (RAM) machine was ultimately discounted to $650
before it was discontinued in 1981.

The TI-99/4A home computer succeeded the original version. It
featured many extras—a standard keyboard wth upper and lower
case lettering, an automatic key repeat function, keys designed to
access specific computer functions, and expanded software applica-
tions. The price had shrunk to $525. That price continued to fall
until August, 1982, when the basic unit sold for $299. TI an-
nounced a $100 factory rebate on all TI-99/4A home computer sales
to bring the actual retail price to $199. With this incentive, the
ensuing Christmas season, and an aggressive multimedia adver-
tising campaign that featured Bill Cosby, sales soared from an

12 Get Personal with Your TI-99/4A

estimated 30,000 units prior to 1982 until they passed 500,000
consoles and continued to grow. In March 1983, the company
discounted the TI-99/4A again to bring the unit down to $149 after
the rebate. Recently, prices have dropped to under $50.

By 1990, seven out of every 10 homes (nearly 50 million house-
holds) in the United States will have at least one personal com-
puter.

HARDWARE FOR THE TI PERSONAL COMPUTER

Hardware refers to the physical machines or components that
make up the computing system. They take up space, generate heat,
and make noise, as they carry out the physical activities of com-
puter application such as printing, storing, displaying, and trans-
ferring data.

The Console

The heart of the TI-99/4A Home Computer system is the system
console. It comes standard with 16K (16,000 characters) of RAM
(random access memory), a state-of-the-art 16 bit microprocessor
and 26K of ROM (read only memory). A standard BASIC language
premanently resides in ROM. The typewriter keyboard comes
with upper and lower case characters. Graphics are possible in 16
different colors and sound in tones ranging from 110 Hz to 40,000
Hz can be programmed. Factory supplied with the RF modulator,
the console can be attached to any color or black-and-white televi-
sion set. The set serves as an output device or monitor for the
console. Figure 2.1 is a photo of the internal components of the
console that show the integrated circuits, the storage chips, and
the keyboard module.

Some Accessories

Depending on your needs, you can configure your system with a
variety of optional accessories available. Figures 2.2 and 2.3 show
a complete system. Figure 2.4 explains the components you will
need for various configurations.

First, you purchase the console. Then if you want to do word
processing, you need a printer. If you want to store programs or
data, you need an off-line storage medium like tape (regular cas-
sette recorder and connecting cables) or diskette (requires pe-
ripheral expansion system, disk controller card, and a disk drive).
Tape storage is much less expensive, but extremely slow compared
to diskette storage. Because of the time and effort you put into your

Introduction to the TI-99/4A 13

programs and the fact that you will lose them if they are not stored
before the console is turned off, your second purchase should be a
cassette recorder or disk drive system.

w E MR T Ly lu
It 1 ' -

A S D IF 6 'H tu
A
v 8 iN

Figure 2.1 The Internal components of the TI-99/4A and the keyboard
module.

Figure 2.8 shows that the peripheral expansion box, or P-box, as
it is called, is the heart of any major system enlargement. This
modular expansion system allows your computer to use diskette
storage, printers, memory expanders, and telecommunications
when combined with the device and its associated peripheral ex-
pansion card or ciicuit box. These expansion cards plug into the
P-box.

Decide what you want your home computer to do. Then use these
figures and approximate prices to configure your system and esti-
mate its cost.

14 Get Personal with Your TI-99/4A

ATV
RTINS RIS

Figure 2.2 A complete system.

LR ITTUINTIeY

Figure 2.3 A complete system.

Introduction to the T1-99/4A

16

Telephone Disk Programs
4 I
Impact Telephone Disk Disk
Printer Coupler Drive ..| Drive
PHP 2500 |4 | PHP 1600 PHP 1250 PHP 1850
[
]
L]
RS-232 32K RAM Disk P-Code
Card Memory Controller Card
PHP 1220 PHP 1260 PHP 1240 PHP 1270
Peripheral Expansion System -
PHP1200 @ [~————
Cassette Programs
Cassette Tape
Recorder
Television
/
Cable /,
PHA 2000 /
/
l /
/
TI-99/4A Home Computer S
Y - peech
PHC 004A Synthesizer
‘[PHP 1500
Joysticks Command
PHP 1100 Module
Programs

To use the diagram above, find the item you would like to add to your
computer system. Then trace through the diagram to the computer itself.
the things you go through are required for hookup. Example: If you want
to connect a printer (PHP 2500) to the computer (PHC 004A), you'll need
an RS-232 card (PHP 1220) and a Peripheral Expansion System (PHP
1200). Prices of the computer equipment (hardware) are listed.

Figure 2.4 Required components.

16 Get Personal with Your TI-99/4A

Figure 2.5 The speech synthesizer.

SOFTWARE

Programs that direct the computer to solve specific problems and
oversee its operations are called software. This is the single most
significant factor in a successful computer application. As a per-
sonal computer user you can either write original software for each
application or buy already written canned software. You can use
both types.

Prepackaged Software

If it can be purchased and is appropriate for the application,
canned software is ideal. It may be expensive but has many bene-
fits. Prepackaged programs are available for immediate use—no
startup, no development time and no expense. The programs are

Introduction to the TI-99/4A 17

usually well-documented (or explained) and error-free. User-
friendly programs guide the first-time user through the entire
process. You do not have to know a programming language. Popu-
lar prepackaged programs available for the TI-99/4A include Par-
sec, Munchman, TI Invaders, Personal Record Keeping, and
Multiplan.

Figure 2.6 The TI impact printer.

Software Formats

Programs currently available for the TI-99/4A come in three
different forms—solid-state software or command modules, cas-
settes, and diskettes. The right form for you depends on your type
of computer hardware. If you only have the console and a TV
monitor, command modules are your only choice. These are ap-
plication programs in high demand that have been programmed
into a ROM (read only memory) chip. When a command module is

18 Get Personal with Your TI-99/4A

inserted in the consolé, the entire instruction set is available to the
user. Command modules are sometimes called firmware (as op-
posed to hardware or software) because they are burned into a
silicon chip and the instructions cannot be changed. Command
module prices range from $19.95 to over $100. Each module comes
with a booklet that documents the operation of the program. This
form of software is ideal for first-time users, children, and highly
structured applications.

Other prepackaged programs are in cassette or diskette form.
These are typically larger programs with smaller demand. The
original program is simply copied onto blank cassettes or disk-
ettes, packaged, and sold much like stereo tapes and records. Your
computer must be equipped with the required hardware devices to
utilize either medium. TI offers a large supply of excellent applica-
tion software in cassette and diskette format. And the number is
constantly growing. Estimates are that within a year, over 1,000
application programs will be available for the TI-99/4A.

Figure 2.7 The TI program cassette recorder.

Introduction to the TI-99/4A 19

Figure 2.8 The peripheral expansion system.

Application Areas

Home computer application programs fall into three distinct
classes—education, home/financial management, and home enter-
tainment. There is a variety of software in each category for the
TI-99/4A. Some of these programs were developed by Texas Instru-
ments and others were developed by private companies for the
retail market.

The educational benefits of home computers can justify their
purchase. According to studies, it takes approximately 140 contact
hours in the classroom to advance one grade level in most subjects
at the elementary level. Computers and educational software can
cut that time to 40 hours. Gifted children can advance at their own
pace. Slower children get personalized attention. And the comput-
ers fill the learning environment with sound, color, voice, graph-
ics, and positive reinforcement. We have worked with four-year-
old children, teaching them fundamentals of arithmetic and read-
ing. Watching their excitement and enthusiasm is pure joy. In
time, programs will be available for more advanced subjects—
calculus, physics, statistics, foreign languages, biology, etc.

TI has software to suit many daily needs. Our home, our finan-
ces, and our body can all be managed better by computers. Pro-
grams that track personal and household expenses and budgets

20 Get Personal with Your TI-99/4A

can strengthen personal finances. Meal and diet planning pro-
grams can lead to better health. A complete exercise program on a
command module (see Physical Fitness) is tailored to age and
current physical condition. Time managemént programs help allo-)
cate our most precious resource—time. Many people use home
computers for their personal investing decisions. Mortgages, fi-
nancing, stocks and bonds, option trading, and accounting are
some popular applications.

Home entertainment is epitomized by the arcade games. They
are typically the first programs the user buys. They are a first step
in computer literacy. Such games eliminate fear of the computer
and show that computers can actually be fun. You can become
familiar with the keyboard layout and functions. Once the games
are mastered however, you should pursue more valuable uses for
your computer or it will not reach its fullest potential value for you.

SOURCES OF HARDWARE AND SOFTWARE

Hardware and software are both expensive. It is important to
make sure the hardware and software you buy will do the job you
need done. Always try the equipment and programs before you buy
them. Observe the program’s ease of use or user friendliness. Does
it guide you through or must you be totally familiar with the
program’s operations before you can start? Do you know other
people who have used the equipment and program and are they
satisfied? Scan through the program’s documentation manual. Isit
easy to read and follow? Are there examples? Does the program do
what you need done? Is it worth the price? The same is true for
hardware? :

Retail Stores

Retail stores are the primary source of hardware and software.
K-Mart, Jafco, Toys-R-Us and J.C. Penney are just a few. Regional
and local stores also handle TI computers. Prices vary substan-
tially from one store to another. Watching newspaper ads and a
few phone calls will result in large savings. Visiting the retail
store will allow you to try various software programs and assess
their value.

Service is another consideration. If you have questions or prob-
lems with your system, a knowledgeable outlet can help. Working
with computers can become frustrating and having a friend to turn
to will ease these frustrations.

Introduction to the TI-99/4A 21

Mail Order

Mail order houses can offer substantial discounts on TI compo-
nents and programs. They deal in volume sales on a national level.
Discounts of up to 25 percent are possible. Be sure you know what
you want! Once you open the package, few mail order houses will
accept returned merchandise. Also make sure the firm is reputa-
ble. Most vendors require prepayment and have long delivery
times. Once you send your payment, you must rely on the organiza-
tion’s integrity to make delivery.

Magazines and newspapers are prime sources for names of mail
order firms. The 99°er Magazine, discussed later in this chapter, is
an excellent reference. Most firms publish price lists in their ads so
you can do comparative shopping. Most accept checks or credit
cards. Note expected delivery times and who pays the shipping
charges. Small, inexpensive items may cost more to ship than they
are worth. Local and national newspapers typically have a classi-
fied section dealing with computers. Advertisements cover equip-
ment, sale items, services retailers and mail order firms.

Tronics, Inc.

Tronics Sales Corporation, located in Fort Worth, Texas, is the
largest single distributor of the TI-99/4A. Founded by Jody Black,
the firm uses a vertical or pyramid marketing structure to sell and
distribute electronic equipment for the home through Tronics dis-
tributors. Once established, a distributor finds other people who
are interested in buying equipment and software, sells to them and
then they in turn, solicit others, forming the pyramid. The pro-
gram has been successful. Nationally, there are over 10,000 Tro-
nics distributors. Each may be considered an independent
businessperson. Distributors are paid based on the credit volume
or sales they make plus a percentage of the volume of the dis-
tributors down the line from them. Tronics is in no way affiliated
with Texas Instruments, Inc., except as a distributor. For more
information about the organization, write:

Tronics Sales Corporation
2563 East Loop 820 North
Fort Worth, Texas 76118

Each of these alternatives has its advantages and disadvan-
tages. Take care in selecting the one best suited to your particular

22 Get Personal with Your TI-99/4A

needs. You can save money by carefully shopping among these
choices.

KEEPING INFORMED

Once you buy a TI Home Computer, how can you keep informed
of new developments for your unit? Explore books, reference man-
uals, magazines, user groups and clubs to help you better utilize
your new computer.

What Comes with the Computer?

When you buy your TI-99/4A, you will receive three helpful
items: the Beginner’s BASIC manual, the User’s Reference Guide
and the Reference Card. Beginner’s BASIC, a step-by-step hands-
on approach to learning the TI BASIC language, covers some
introductory statements in BASIC and shows the results when
they are run on the computer. Printing, computations, looping,
color, and some graphic capabilities are briefly covered. The book
does not cover the most difficult aspect of programming—how to
write your own original program. This book provides that help.

The User’s Reference Guide explains each individual statement
in TIBASIC. The manual shows how each statement is formed (the
“syntax” or structure of the statement), all the variations allowed
in each statement and the variety of statements available. When
you make a programming mistake, the Reference Guide helps you
find the error. It explains 82 TI BASIC commands and error mus-
sages are discussed in detail in Section III of the Appendix.

The third helpful item in your packet of materials is the
TI-99/4A BASIC Reference Card. As you become more familiar
with programming, you will only need a quick refresher on the
form of a particular statement. Does it need a comma or a period,
an apostrophe or a quotation mark? The quick Reference Card
shows this as well as the complete vocabulary of statements, color
codes, and character codes for graphics. It is an excellent resource
and you will use it frequently. These documents will make pro-
gramming your TI-99/4A easier and more fun.

Magazines

A number of personal computer magazines are now being pub-
lished. Many are directed at the more expensive computers, those
over $1,000 and often used in business or organizations. These
inlcude BYTE, Creative Computing, Personal Computing, PC
Magazine, PC World and Interface Age. Typically the articles deal

Introduction to the TI-99/4A 23

with the IBM PC, Apple, Radio Shack, and Osborne computers as
well as software programs for those machines. Not much is dis-
cussed about the TI-99/4A, Commodore or Atari.

Our favorite magazine is the 99°er Home Computer Magazine
that covers only Texas Instruments home computers. Published
monthly, the newsstand price is $3.50. An annual subscription is
$25 in the U.S.A. Their address is:

99’er Home Computer Magazine
P.O. Box 5537

Eugene, OR 97405

(5603) 485-8796

A recent issue covered such topics as reviews of TI’s new CC-40
Compact Computer, robots, new computer games, LOGO, and
computers and the handicapped. Many program listings for ap-
plications and games appear in the magazine. You can simply type
in the listings and save them on your cassettes, or, for a nominal
fee, purchase preprogrammed cassettes containing all the pro-
grams in one particular issue, which are offered by the magazine.
Advertisements show the newest hardware and software available
for your home computer. The articles are interesting and educa-
tional. It is a good way to keep informed.

Texas Instruments Computer Advantage Club

To help meet the challenge of the expanding need for computer
awareness, Texas Instruments has established its own Computer
Advantage Club. The objective is to give hands-on training with
the TI-99/4A Home Computer. Training sessions are for adults adn
young people ages 8 and up. Club members receive both small
group and individualized instruction in computer operation and
applications. The clubs are active in 27 cities throughout the
nation and their goal is to be in 100 cities by the end of 1983. They
charge an education fee for each participant. For more information
on the club nearest you, call toll free:

Qutside Texas: 1-800-858-4096
Inside Texas: 1-800-692-1318

WHY LEARN ABOUT COMPUTERS? OR
OPPORTUNITIES!

In July 1982, William Turner, Texas Instruments assistant vice-
president and consumer products marketing manager, told report-

24 Get Personal with Your TI-99/4A

ers in Lubbock, Texas, that “a child or adult who is not computer
literate will be a misfit in the late 1980s and 1990s.” The computer
“is a one-product alternative to multiple specialty products for
each application in the household,” he added. These statements
are indicative of the impact of the computer field on our society.
Those without computer literacy will surely feel disadvantaged in

tomorrow’s world. ,
Opportunities for computer literates are unlimited. Many peo-

ple have found new, exciting careers in the computer field. In their
book How to Make Money with Your Microcomputer (dilithium
Press), Carl Townsend and Merl Miller discuss how to write com-
puter articles, how to develop and sell software, how to open your
own computer store, how to make money teaching others about
computers, and how to operate a computer repair business.

A recent article in the Wall Street Journal highlighted Paul
Lutus, 37, “Oregon’s millionaire oracle of the computer age.” Liv-
ing as a “mountain hermit” for years in the mountains of southern
Oregon, Lutus writes and sells computer programs. Lutus wrote
Apple Writer, a computer program for word processing on the
Apple computer, which makes between $5,000 and $7,000 a day in
royalties for Lutus, as he receives 25 percent of the wholesale price
of each program sold.

One evening Lutus was typing on the keyboard of his Apple

_ computer and the keys became stuck. Lutus, totally engrossed in
his work got up from his chair and realized that the cabin tem-
perature had dropped below freezing. The keys on his computer
had begunto freeze!

William Gates, at age 19, formed Microsoft, Inc., a software
development firm in Bellevue, Washington. Last year his com-
pany’s sales were estimated at $40 million, and IBM asked the
company to write the operating system software for IBM’s new
personal computer.

Similar success stories abound. As the market grows for per-
sonal computers, new opportunities open up for creative and inno-
vative individuals in our society. “After growing wildly for
decades, the computer industry now appears to be approaching its
infancy,” states a U.S. Government report on computing. So get
started!

Section II

An Introduction to
BASIC Programming

Coding the solution solves, or at least clarifies most computer
problems. But before you can code the problem, you must first
develop a tentative way to solve the problem—an algorithm or
sequence of steps that leads to the desired solution. This book
includes program segments and problems that portray concepts
which will help beginning programmers and indicate the princi-
ples of good programming practice.

A series of practical programming applications in each chapter
unifies previous programming concepts and statements and gives
computing tools that you can apply to personal computers.

WHAT IS BASIC?

BASIC the acronym for Beginnners All-purpose Symbolic In-
struction code, is the primary language for the TI and all other
personal computers. It was developed at Dartmouth College to be
an easy language for people who have had no experience with
computers or computer language. Each statement begins with a
keyword in plain English. These are such words as READ, LET,
FOR, NEXT, etc. The word stands for the process which that state-
ment performs. READ reads numbers or letters into the computer.
FOR tells the computer to repeat a portion of the program, etc. This
section discusses program design and writing programs in BASIC
especially for the TI computer.

26

Get Personal with Your TI-99/4A

Chapter 3

The Nature of
Computers:
Programmer’s
Perspective

Most people initially believe that computers are extremely intel-
ligent, artificial life-forms that they must learn to coax into
working for them. The facts are:

1. Computers cannot be coaxed but must be told exactly what to
do.

2. They have 1.Q.s of 0 (zero) and need to have a specific set of
instructions before they can do anything.

3. Computersremember instructions only for as long as they are
turned on.

These sets of instructions are programs. Given a program, or set
of programs, the computer becomes a tool which may act as a fast,
reliable, and inexpensive source of labor or entertainment. With-
out programs, the computer is worthless to us.

You can write programs for the TI-99/4A then give them to the
computer in a variety of ways. You need to know where the com-
puter keeps its programs, how it may be given its programs, and
understand how to write your own programs for the computer to
follow.

The computer has memory, which is the space to store the
computer’s program, and the results, or answers (data), obtained
by the computer from following the instructions in that program
(executing the program).

Units called bytes measure this memory space. A byte of memory
is roughly equal to the memory needed to hold one character, such
as the letter A or the number 3. One thousand bytes make up a
single K of memory so that a computer with 16K of memory is able
to hold 16 thousand characters.

28 Get Personal with Your TI1-99/4A

Let’s say, for instance, your name is Chris and you have written
a program that instructs the computer to do two things: 1) ask
what your name is, and 2) remember it.

The program itself uses memory. When the computer executes
your program, it asks what your name is. When you type in your
name, the computer has data to put in its memory. That data will
use approximately five more bytes of the computer’s memory since
“Chris” has five characters in it.

RAM & ROM MEMORY

There are two types of memory inside the computer:
1) a portion of memory called Read Only Memory (ROM)and,

2) the current memory, usually called Random Access Memory
or RAM.

Computer Memory

RAM
(Current Memory)

ROM

Figure 3.1 Computer memory.

ROM Memory

ROM is memory that has special computers permanently etched
into it. These programs cannot be changed, added to, or erased.
ROM can only hold programs, not data.

The programs of the ROM memory inside the TI-99/4A relate,
for the most part, directly to the computer rather than anything
that you might want the computer to do. This ROM holds the sets
of instructions the computer needs to operate correctly. That is,
many of the program in this ROM are there to help the computer
get started when it is first turned on. They instruct the computer to
check all of its parts to see if any are missing or not working, check

The Nature of Computers 29

to see what, if any, attachments are connected to it, and perform
the other housekeeping chores necessary for the computer to func-
tion properly while it is being used.

Computer Memory
RAM
(Current Memory)
Command Module
ROM ROM

Figure 3.2 Computer memory.

The ROM memory inside the TI-99/4A also contains a special
program called T1 BASIC. This set of instructions in necessary for
the computer to have while you write your own sets of instructions
(BASIC programs) for the computer to execute.

ROM Software

Software is another name for programs, or sets of instructions,
the computer follows in order to work for you. There are a number
of Command Modules available for the TI-99/4A. These modules
are actually ROM memory chips that may be attached to the
computer by inserting them into the module outlet. These software
modules expand the ROM of the computer to include the programs
contained in the ROM of the Command Module.

RAM Memory

The computer uses its RAM, or current memory, as another
place to hold its programs. When the computer is turned off,
however, this part of its memory is wiped clean. Since RAM
memory is temporary in nature, it is called the computer’s current
memory.

RAM is used to hold other types of software available for the
TI-99/4A and the data that the computer might obtain from execut-

30 Get Personal with Your TI-99/4A

ing any program. RAM space is also used to hold your BASIC
programs. RAM is the portion of computer memory which is
extremely versatile, capable of holding a variety of programs and
data. It is, however, only temporary memory.

A third type of memory, magnetic memory, must be used if you
want to permanently store the programs and data that the com-
puter’s current memory temporarily holds.

Magnetic Storage

You can save your programs and data on some type of magnetic
storage medium, which, in the case of the TI-99/4A, can be either a
cassette recorder’s tape, or a computer diskette.

By keeping programs or data stored on this magnetic storage,
you overcome the problem of the computer’s inability to remember
the programs or data held in its RAM after it has been turned off.
To do this, you simply give the computer the programs or data it
needs from the magnetic storage each time it needs them.

Magnetic tape or diskettes act as a computer’s filing cabinet to
hold its programs and data while it is turned off. In fact, we refer to
the individual programs and sets of data on magnetic storage as
files. (Refer to Appendix I for saving BASIC programs.)

Software available for the TI-99/4A, other than ROM chip Com-
mand Modules, are programs written on magnetic storage of some
type, either cassette tape or diskette.

Loading the Current Memory

In general, when you want the computer to have a particular set
of data or a program in its current memory, you connect the device
(either cassette recorder or diskette drive) to the computer, and
type in the appropriate command instructions for the computer to
execute. The computer then:

1. finds the data or program on the tape or diskette,

2. reads what is there, and,

3. memorizes that set of instructions or data.

We call this loading a program or reading a data file.

When you load a program, or have the computer read data from
magnetic storage, part of the computer’s current memory is used to
hold a copy of that program or data. As you write your programs for
the computer, the effect is the same. That is, as you type in your
program, the computer’s current memory holds your set of instruc-
tions as you type them in.

The Nature of Computers 31

Computer Memory

RAM
(Current Memory)

/ Diskette
Program/Data

AN
ROM E

Cassette

Figure 3.3 Computer memory.

PROGRAMMING LANGUAGES

A program, the set of specific instructions for the computer to
follow or execute, must be written in a form that the computer can
understand, i.e., in a programming language. Actually, the com-
puter only understands one language, appropriately called ma-
chine language. This is an example of how we might visualize
machine language:

11001011 01111001 01001001 10010111 11001011
01001001 10010111 01001001 01001001 11001011
01111001 01001001 10010111 01001001 01001001
10010111 10010111 01001001 01001001 10010111

Some people have the technical knowledge to write programs in
this highly complex pattern of 1s and 0s. In fact, the programs in
the computer’s ROM and most of the TI software programs are
written in this way.

Fortunately, these same people write special types of machine
language programs that allow you to write your programs in a way
you can read and understand.

These machine language programs are called programming lan-
guages. But from the computer’s perspective, they are programs
that interpret what you type on the keyboard into something the
computer can understand, i.e., 1s and Os.

32 Get Personal with Your TI-99/4A

Thus programming languages are simply go-between programs
that aid you in your attempt to communicate your instructions to
the computer. Your instructions are interpreted for the TI-99/4A
with a programming language called TI BASIC.

TI BASIC is one of the more than 50 versions of BASIC in
existence today. Although each version of BASIC has its indi-
vidual characteristics, the similarities are far more striking than
the differences.

When you first turn on the TI-99/4A, a menu screen is presented
after the title screen to indicate that you should press the number 1
(one) key FOR TI BASIC. When you type 1 (one), the screen clears
and the message, TI BASIC READY appears. At this point you are
at the ROM BASIC operating level.

title menu TI BASIC
screen screen READY
screen

Figure 3.4 The first three screens.

OPERATING LEVELS FOR THE TI-99/4A

ROM memory holds the programming language program TI
BASIC. When you press the number one key you tell the computer
to follow the instructions in this program. As long as the computer
is following those instructions, you can communicate with it by
typing in the commands and statements of BASIC. You can also
begin to write your own set of instructions, a BASIC program, for
the computer to follow. When you write your BASIC program (or
load one from the magnetic storage), you create another level for
the computer, the BASIC program operating level. When you
finish writing or loading your BASIC program and are ready to
have the computer begin executing it, type RUN.

At this point the computer jumps from the ROM BASIC operat-
ing level to the BASIC program operating level. That is, the
computer starts following the instructions in your own BASIC
program. The computer will stay at your program’s operating
level until:

The Nature of Computers 33

1. the set of instructions ends, or,

2. the computer finds a particular instruction that was written
incorrectly, or,

3. youintentionally interrupt the program’s execution by press-
ing the FCTN/4 (CLEAR)keys on the keyboard.

You know the computer has finished executing your instruc-
tions without finding a single incorrect statement when the mes-
sage:

* * DONE * *

appears on the monitor screen.

If the computer finds an instruction that was typed incorrectly or
that it simply does not understand, it will give you a different
message, an error message. Several error messages may appear,
and a list of them along with an explanation of what could have
caused them appears in Appendix V.

If you interrupt the execution of your BASIC program by press-
ing the FCTN/4 (CLEAR) keys, the computer stops executing your
program and gives you a BREAK POINT message that tells you
what instruction it would have executed next.

In any case, when the computer stops executing the BASIC
program, it drops back to the ROM BASIC operating level where
you can either change instructions, add instructions, or store the
finished program on magnetic storage.

Computer Memory
RAM
(Current Memory) 0
Diskette
BASIC Program \
ROM BASIC Cassette

Figure 3.5 Computer memory.

34 Get Personal with Your TI-99/4A

MORE THAN ONE BASIC PROGRAM

You can only have one BASIC program at a time in the com-
puter’s current memory. This means that if you want to write or
use another BASIC program, you first have to erase any BASIC
program that is currently in RAM.

If you are not going to store the BASIC program, or already have
stored it on magnetic storage, you can type NEW. This BASIC
command tells the computer to erase the BASIC program from the
current memory but to stay at the ROM BASIC operating level so
you can type in a new BASIC program.

Instead of typing NEW, you can type BYE. The command BYE
tells the computer to erase the current memory and leave the
ROM BASIC level. BYE causes the computer to return to the title
screen you started with. If you load a BASIC program from mag-
netic storage, the computer automatically erases any BASIC pro-
gram it may have in its current memory before it loads the new
program.

Either way (typing NEW, BYE, or loading a program from
magnetic storage), any BASIC program in the current memory
will be lost forever if you have not saved it on magnetic storage.

SUMMARY

You must realize the difference between intelligence and mem-
ory if you are going to understand the computer. Man has
intelligence, the computer has only memory. As you learn how to
use the computer, advanced as it is, you will gain a new apprecia-
tion for the “90 percent water-based grey-matter computer” you
have used every day of your life.

This chapter introduced several key tems and concepts that you
will be using in the remaining chapters on BASIC programming
for the TI-99/4A. The following is a brief summary of some of the
more important ones.

KEY TERMS AND CONCEPTS
PROGRAM A set of specific instructions for the com-
puter to follow in order to perform a task.
EXECUTE The computer’s process of following the in-
structions in a program.
DATA Words or numbers generated during a pro-

gram’s execution that need to be retained

The Nature of Computers

35

BYTE

ROM

SOFTWARE

COMMAND
MODULE

MAGNETIC
STORAGE

FILES

BASIC

OPERATING
LEVEL

RUN

BYE

in the computer’s memory or stored on
magnetic storage.

A unit of memory space equal to one char-
acter.

One thousand bytes.

Random Access Memory or current mem-
ory. Used to hold programs and/or dataon a
temporary basis.

Read Only Memory. The portion of com-
puter memory with programs permanently
etched into it.

Another name for a program but implies
that it is a purchased program.

A ROM memory chip containing software
for the TI-99/4A.

The means to save programs and data for
the computer’s current memory.

Sets of data or individual programs stored
on a magnetic medium (cassette tape or
diskette).

A machine language program that is used
to interpret English type instructions into
ones and zeros.

The set of instructions (program) that the
computer is executing at a given moment.

The BASIC command that tells the com-
puter to start executing the BASIC pro-
gram that is in its current memory.

The BASIC command that erases only the
BASIC program that is currently in the
computer’s current memory.

The BASIC command that instructs the
computer to leave the ROM BASIC operat-
ing level. Any BASIC program in RAM is

36

Get Personal with Your TI-99/4A

erased and the computer returns to the ti-
tle screen.

FCTN/4 The two keys that, when pressed together,

interrupt the execution of a BASIC pro-
gram.

* % DONE * % The message the computer gives when it

has completed the program without find-
ing an incorrect statement. Otherwise, the
computer gives you an error message.

CHAPTER CHALLENGE

1.

2.

10.

11.

12,

-183.

What sets of instructions does the computer follow in order to
do anything?

When the computer is following the instructions that make up
a program, what is the process called?

. Inside the computer is memory which is simply room to store

the computer’s programs and the results of executing pro-
grams. What are these results called?

. Memory space is measured in units called what? And 6.5K

equals how many of these units?

. What two types of memory are inside the computer?
. What kind of memory has programs permanently etched into

it and is used to get the computer started when it is turned on?
What programming language program does it contain?

. What kind of memory is temporary in nature and holds BASIC

programs and many of the software packages available for the
TI-99/4A?

Command Modules are actually what kind of memory chips
that can be connected to the computer to give it software
programs to execute?

What do you use to save the programs that are held in the
computer’s current memory? Name the two types.

What are programs that have been saved for the computer on
magnetic storage called?

What is the only language that the computer really under-
stands? What is the special program called that interprets
what you type into this language?

What BASIC command causes the computer to start executing
the BASIC program that is in its current memory?

At what BASIC program level will the computer be when it is
executing a BASIC program?

The Nature of Computers 87

14.

15.

How many BASIC programs can you have in the computer’s
current memory at a time?

If you type NEW, what kind of memory is erased? If you type
BYE, the computer leaves what kind of operating level? Ei-
ther way, what will be erased in the computer’s memory?

ANSWERS TO EXERCISES

OO Ok W

. programs

executing

data

bytes; 6,500

RAM (or current) and ROM

ROM; BASIC

RAM (or current)

ROM

Magnetic storage; cassette tape and diskette
files

. machine language; BASIC

. RUN

. operating

. one

. RAM (or current); ROM BASIC; BASIC program

38

Get Personal with Your TI-99/4A

Chapter 4

Algorithms -The
Computer’s Recipe

Al-go-rithm—arule of procedure for solving a problem
that frequently involves repetition of an operation,
Merriam-Webster, 1983

You are now ready to write BASIC programs for the TI-99/4A.
First and most important, understand how the computer follows
program instructions.

Even though BASIC is a programming language program that
makes it easier to write a set of instructions for the computer, you
cannot escape the ultra-logic of the machine. Your instructions
must be absolutely precise and ordered in a logical sequence before
the computer can execute them.

A set of instructions is an algorithm that conforms to the logic of
the computer. It is the recipe to solve a problem. It represents the
type and order of instructions that the computer will follow to
execute a program that has been typed in. Algorithms are not
written in the statements and commands of a programming lan-
guage like BASIC but in a general form with their instructions in
English. You can then translate these instructions into any pro-
gramming language because the order and character of them is
computer correct.

We can use the algorithm of a simple problem to demonstrate the
three fundamentals of computer program execution. Imagine a
robot computer that is just smart enough to understand English
but needs a specific set of instructions before it can do anything.
Unless the robot is instructed otherwise, it follows instructions,
one after another and will not stop until you tell it to do so. The
robot sits at a table with a deck of cards turned face up before it.
The robot is supposed to go through the deck, pick out the four
kings in the deck, and set them to its right. The robot will set any

40 Get Personal with Your TI-99/4A

other card to the left. When it has found all four kings, it is
supposed to stop. Study the following instructions for the robot to
follow carefully.

Instruction 1-THE TOTAL KINGS SO FAR EQUALS
ZERO

Instruction 2—-READ THE TOP CARD

Instruction 3—-IF THE TOP CARD IS A KING THEN
GO TO INSTRUCTION 6 AND
CONTINUE FROM THERE

Instruction 4—SET THE TOP CARD TO THE LEFT

Instruction 5—GO TO INSTRUCTION 2 AND
CONTINUE FROM THERE

Instruction 6-SET THE TOP CARD TO THE RIGHT

Instruction 7—-ADD ONE TO THE TOTAL KINGS SO
FAR

Instruction 8—IF THE TOTAL KINGS SO FAR IS
LESS THAN FOUR THEN GO TO
INSTRUCTION 2 AND CONTINUE
FROM THERE

Instruction 9-STOP

ASSIGNMENT -CONDITION-ITERATION:
Three Fundamentals of Program Execution

ASSIGNMENT~instructions that tell the computer
that something has a value.

The first instruction in our robot algorithm (THE TOTAL
KINGS SO FAR EQUALS ZERO) is an assignment instruction
that tells the robot it has found no kings. This would be obvious if
you were doing this job, but that is not the case with computers.

The next instruction READ THE TOP CARD) is also an assign-
ment instruction. The computer is told that something (THE TOP
CARD)will change in value as instructions are followed. THE TOP
CARD may be any card in the deck, and the computer robot has to
READ it to know its value.

Finally, instruction 7 (ADD ONE TO THE TOTAL KINGS SO
FAR) is another assignment. Here you tell the computer robot to
change the value of something (THE TOTAL KINGS SO FAR) and
increase that value by one every time that instruction is executed.

In each case, the computer robot is instructed to assign a value to
something so that the set of instructions can be successfully ex-
ecuted.

Algorithms—The Computer’s Recipe 41

CONDITION -the decision-making ability of the
computer. IF a condition is true,
THEN the computer is instructed to
GO TO another instruction. If the -
condition is not true, the computer
moves on to the very next instruction.

In instruction 3, the robot is told that IF THE TOP CARD IS A
KING THEN GO TO INSTRUCTION 6 AND CONTINUE FROM
THERE. The condition is IF THE TOP CARD IS A KING. If the
condition is true, then why tell it to go to instruction 6? Unless told
otherwise, the robot will move to the next instruction which is 4
(SET THE TOP CARD TO THE LEFT). That is not what should be
done if that card is a king. By sending the robot to instruction 6
(SET THE TOP CARD TO THE RIGHT) the cards end up either on
the right or on the left, depending on their values, king or no king.

Every time the robot finds a king, it executes instruction 6, then
instruction 7 (ADD ONE TO THE TOTAL KINGS SO FAR).

The next instruction, 8 (IF THE TOTAL KINGS SO FAR IS
LESS THAN FOUR THEN GO TO INSTRUCTION 2 AND CON-
TINUE FROM THERE), is the other conditional instruction in the
algorithm. This means that the robot continues to go through the
deck of cards until it finds four kings. When it has found four kings,
THE TOTAL KINGS SO FAR will not be less than four. It will be
equal to four and the condition will no longer be true. The robot
will move on to the very next instruction, 9 (STOP).

ITERATION —an instruction that causes the
computer to execute one or more
instructions over again.

There are two places in the set of instructions where the robot is
told to GO TO INSTRUCTION 2 (READ THE TOP CARD) AND
CONTINUE FROM THERE. This starts the whole process over
with a new TOP CARD. When an instruction causes a repetition of
a process (called a loop) it causes iteration, a very powerful charac-
teristic of computers. The instructions could have had the com-
puter read a card, set it to the left or the right and stop when it
found all four kings, then repeat those same instructions 52 times
in the algorithm. Instead, iteration uses the same set of instruec-
tions over and over until the job was done.

THE NATURE OF COMPUTER PROGRAMS
In the robot algorithm there were three elements: INPUTS, the
original deck of playing cards; a PROCESS, sorting them by

42 Get Personal with Your TI-99/4A

whether or not they were kings; and QUTPUTS, two stacks of
sorted cards, one on the left and one on the right.

All computer programs share these same three elements. The
three fundamentals of assignment, condition, and iteration make
up the model which defines the nature of computer programs.

MODEL OF A PROGRAM
INPUT(S)»PROCESS(ES)-»OUTPUT(S)

Assignment
Condition
Iteration
Figure 4.1 A model of a program.

This model shows that computer programs have INPUTSs, which
can be numbers, names, even pictures that the computer can see
with the aid of optical scanning devices. It tells us that these
INPUTSs must be defined with values that can be ASSIGNED to a
memory location within the computer.

Once the INPUTS are in the computer’s memory, it can compare
them with each other through CONDITION. It can also perform
addition and other mathematical operations on them, sort them
alphabetically, search for a particular INPUT, or perform a great
number of PROCESS(ES), many of which will be covered in the
following chapters.

It can perform these PROCESSes over and over through ITERA-
TION, one of the strongest features of the computer, and finally,
OUTPUT the results in a form that can be understood and used.

FLOWCHARTS

Another way to define the set of instructions that were given to
the robot is with a diagram.

Established symbols represent the various instructions used in
computer programs. These symbols are combined to illustrate the
program in a flowchart. Although there are many of these symbols,
you need only three to flowchart most programs.

THE IMPORTANT FLOWCHART SYMBOLS

A The INPUT/OUTPUT
symbol
2. [1] The PROCESS symbol

3. <> The DECISION symbol

Algorithms—The Computer’s Recipe 43

These symbols are connected together with arrows to indicate
how you are to execute the program, and have short explanations
printed beside them to tell more specifically to what the symbols
refer. The following flowchart is for the robot computer algorithm.

Q KINGS = 0
___/ input / READ TOP CARD

TOP CARD = “King”?

PUT TOP CARD
TO THE LEFT

PUT TOP CARD
TO THE RIGHT

process KINGS = KINGS+1

yes

KINGS < 4?

no

End

Figure 4.2 The robot computer algorithm flowchart.

44 Get Personal with Your TI-99/4A

THE BASIC PROGRAM

10 LET KINGS=0

20 READ TOPCARD$

30 IFTOPCARDS$="K"THEN 60
40 PRINT TOPCARD$

50 GOTO 20

60 PRINT TAB(20);TOPCARD$
70 LET KINGS=KINGS+1

80 IF KINGS < 4 THEN 20

90 DATA 2,34,5,6,7,8,9,10,J,Q,K,A
100 DATA 2,3,4,5,6,7,8,9,10,J,Q K,A
110 DATA 2,3,4,5,6,7,8,9,10,J,Q K,A
120 DATA 2,3,4,5,6,7,8,9,10,J,Q K,A
130 END

This is how you type in the BASIC program as defined by its

algorithm and flowchart.

The BASIC program, its flowchart, and its algorithm demon-
strate several points:

1. The computer executes a BASIC program from the top-down,
one instruction after another, until an instruction alters its
sequence by sending it to another instruction. Then it willbegin .
at that instruction and continue to execute the program in the
same manner as before.

2. All BASIC instructions are numbered with a line number to tell
the computer that one instruction follows another since its line
number is greater. These line numbers do not have to be in
increments of 10 as is shown in this example. However, that is
standard procedure.

3. Each line has one BASIC statement on it, and that statement is
always the first word on that line. The exception is a BASIC
statement that is optional, that is, it is implied to be the first
word on that line.

SUMMARY

There are over 80 statements, commands, and functions in the
TI BASIC programming language, many of which are for advanced
computer use.

However, it is not the number of statements, commands or
functions you know that makes or breaks you as a programmer. To
say that you know all 80 of them, therefore you are a BASIC
programmer, is like saying you know the 26 letters of the alphabet,

Algorithms—The Computer’s Recipe 45

therefore you are a writer. It is the logical relationship of the
statements you use that describe your ability as a programmer.

This relationship is often quite complicated. By flowcharting or
writing the algorithm for programs before you type them in, you
formally address the true nature of your program. In the long run,
you save yourself much time and frustration by defining the prob-
lem first.)

The fundamentals of program logic are important to you because
you will use them as long as you write programs.

CHAPTER CHALLENGE

1. Name three fundamentals of program execution that match the
following definitions:
a. an instruction that causes the computer to execute one or
more instructions over again.
b. instructions that tell the computer that something has a
value.
c. the decision-making ability of the computer.
2. Name the three elements of all computer programs.
3. Match these three flowchart symbols with their correct names.

a. : The PROCESS symbol.
b [] The DECISION symbol.

c. Q The INPUT/OUTPUT symbol.

4 Every instruction in a BASIC program has at least two things.
Name them.

5. Suppose you are going to write a new program for the computer
robot that will instruct it to go through the same deck of cards
until it finds the jack of hearts. After the robot finds this card,
you want it to stop. Here is the algorithm.

Instruction 1-READ THE TOP CARD
Instruction 2—-IF THE TOP CARD IS THE JACK OF
HEARTS THEN GO TO
INSTRUCTION 5
Instruction 3— THE TOP CARD TO THE LEFT
Instruction 4 — GO TO INSTRUCTION 1 AND
' CONTINUE FROM THERE
Instruction 5 — STOP

a. Which instruction(s) are ASSIGNMENT instruction(s)?
b. Which instruction(s) are CONDITION instruction(s)?

46 Get Personal with Your TI-99/4A

c. Which instruction(s) cause ITERATION?
d. Now fill in any necessary remarks and connect the symbols
in the following flowchart of the algorithm.

Begin

E READ TOP CARD
E O TOP CARD = “Jack Of Hearts”?

PUT TOP CARD
TO THE LEFT End

6. Suppose you want the robot to pick out both the jack of hearts
and the ten of clubs, then stop. Here is the flowchart; now write
the algorithm.

\ Begin CARDSFOUND = 0

End)
' | ves \
CARDSFOUND = 2? no E READ TOP CARD

ADDONETO e "
CARDS FOUND TOP CARD = “Jack of Hearts”?

yes
PUT TOP CARD 1o
TO THE RIGHT

yes

TOP CARD = “Ten of Clubs™?

no
f ; PUT TOP CARD
TO THE LEFT

7. Why do you need to count the CARDS FOUND in this program?
8. What would happen if the deck of cards was missing the ten of
clubs and the robot followed your instructions?

Algorithms—The Computer’s Recipe 47

ANSWERS

1. a. ITERATION
b. ASSIGNMENT
c¢. CONDITION

2. INPUT(s)
PROCESS(es)
OUTPUT(s)

3. a.

/ / The PROCESS symbol.
b.
The DECISION symbol.
C.
the INPUT/OUTPUT symbol.

4. A line number and a BASIC statement.
5. a. Instruction 1
b. Instruction 2

¢. Instruction 4
d.

Begin

I READ TOP CARD

i ; TOP CARD = “Jack of Hearts™?

PUT TOP CARD
TO THE LEFT

—

End

48 Get Personal with Your TI-99/4A

6. Instruction 1-CARDS FOUND EQUALS ZERO
Instruction 2—-READ THE TOP CARD
Instruction 3—IF THE TOP CARD IS A JACK OF HEARTS
THEN GO TO INSTRUCTION 7 AND CON-
TINUE FROM THERE

Instruction 4—IF THE TOP CARD IS A TEN OF CLUBS THEN
GO TO INSTRUCTION 7 AND CONTINUE
FROM THERE

Instruction5—PUT THE TOP CARD TO THE LEFT

Instruction 6—GO TO INSTRUCTION 2 AND CONTINUE

FROM THERE

Instruction 7—-PUT THE TOP CARD TO THE RIGHT

Instruction 8— ADD ONE TO CARDS FOUND

Instruction 9-IF CARDS FOUND EQUAL 2 THEN GO TO .
INSTRUCTION 11 _

Instruction 10-GO TO INSTRUCTION 2 AND CONTINUE

FROM THERE

Instruction 11-STOP

7. It is necessary to stop the execution of the program after the
robot has found both cards. You can do this by keeping track of
the number of cards it has found, and sending it to the STOP
instruction when that number equals 2.

8. The program will blow up on the robot when it trys to READ
the 52nd card, as there won’t be one there to READ. The robot
may just have a nervous fit, the computer would give you an
error message.

Developing Original Programs

Program development is a well-defined process. To minimize pro-
gramming errors, follow the steps shown in Figure 4.4. Be as
explicit as possible at each step. To remember this process use the
acronym CONSTRUCT (see Figure 4.3).

Acronym Stands for

C Collect the facts

0 Organize the steps

N Develop a Network of the flow
S Eliminate Syntax errors

T Test the program with data
Ru Run applications of program
C Compose a documentation file
T Tutor others on program’s use

Figure 4.3 How to construct original programs.

Algorithms—The Computer’s Recipe

49

1. Define Problem

!

2. Design Problem|
Solution

§

3. Write Program

:

4. Syntax Errors?

:

5. Test Program

1

6. Program
Completed

|

7. Document the
Entire Process

!

8. Educate Users

Recognize the problem. Determine outputs

required. What inputs are necessary? Determine

what calculations are needed (how can input
documents be processed or transformed into
required outputs?).

Divide problem into subunits. Write out

sequence of activities. Use flowchart to visualize
logic flow.

Code solution in BASIC language.

Enter in computer for debugging and editing.

Check logic of program using previously
validated solutions.

rogram free of logic and syntax errors.

Collect results of steps 1-6. Write up the entire
process. Deposit material in documentation
manual.

Teach others how to use the program.

Figure 4.4 Steps in program development.

50 Get Personal with Your TI-99/4A

Step 1-Define the problem: You recognize the need for cer-
tain types of information about decisions you must make. What
types of information do you need? List them. Try to sketch the form
and content of the ideal output document from the program. What
input documents would be necessary and where will they come
from? Get copies of these source documents as part of the program’s
documentation.

Step 2—Design the Solution: Break the problem down to sub-
tasks. Write a sentence or two about each task. Explain the task.
Arrange the tasks in ascending order. You now have the begin-
nings of a flowchart or roadmap. A flowchart is a visual diagram of
the activities and their sequence in a project. Flowcharts are
excellent communication tools to explain and coordinate what has
to be done. They document the program for you and other users. A
good flowchart makes programming easier and reduces your error
rate. Get into the habit of documenting your efforts through
flowcharts. They are an integral part of program design.

Step 3— Write the program: With the flowchart complete, you
are ready to code the solution in BASIC. Each activity in the
flowchart suggests one or more BASIC statements. Figure 4.6 lists
each flowcharting symbol, its meaning, and the BASIC instruc-
tions that perform that activity. How to write these programs in
BAGSIC is the subject of the rest of Section II in this book.

Step 4-Syntax Error: If BASIC statements are improperly
formed and don’t conform to the rules of the language, a syntax
error occurs. Misspelling a keyword like REED instead of READ
is a syntax error, and the computer will display an error message
when the statement is entered or when the program is RUN.
Remove these errors by retyping the statement correctly and reen-
tering it. Even if there is only one syntax error in the program, it
will not run. If you don’t understand the mistake, a listing of error
messages is shown in Appendix V.

Step 5-Test Program: When the program is free of syntax
errors, you must retest its logic. Is it looping and branching cor-
rectly? Input data for which you already know the results. Does the
program replicate the known answers? Is the program’s output
reasonable? Try to test each branch or condition in the program. A
payroll program might compute pay correctly for regular time but
not when overtime occurs. You often hear of people who get large
refunds or paychecks by mistake from a computer. Somewhere in
the program an error has occurred; it can be embarrassing and
expensive.

Algorithms—The Computer’s Recipe 51

Step 6— Completed Program: The program is done and opera-
tional. It works. Now begin to use it for its intended purpose.
Maybe improvements, or enhancements, will be made later.

Step 7-Document the Process: Collect the results of the
previous six activities and deposit them in a folder or three-ring
binder. This would include program listings, flowcharts, operating
instructions, examples of outputs, source documents, file names
and formats and any helpful hints about the program or the ap-
plication. Now you have a user’s manual for future reference.

Step 8- Educate Users: Teach others how to use the program.
The user’s manual will help. Having others benefit from your
effort is helpful to them and rewarding to you. Perhaps you can
market your program to others. Regardless, the CONSTRUCT
process will make programming easier and faster for you.

Programming Errors

Every programmer makes mistakes. Making and correcting
errors are excellent learning experiences. Programming is a skill
and in any skill, you learn by doing. View correcting programming
errors as a challenge to your mind or as a detective might view
solving a complex case. The process should be fun and exciting, not
tedious and frustrating. In debugging programs, we have spent up
to eight hours searching for one error. But when we found it, it was
exhilarating. Programming the TI comptuer will add excitement
to your life.

Programming erros fall into three broad categories: syntax,
execution, and logic.

Syntax errors—A BASIC statement is not formed according to
the rules of the language—misspelled keyword, missing comma,
undefined label, etc. Here the computer helps you find the error by
printing error messages or diagnostics. These messages identify
the cause and location (statement number) of the error. Simply
retype the statement correctly and the error disappears.

Execution errors—After the computer translates each state-
ment and understands it (no syntax errors), the program is ex-
ecuted. It is here that an execution error can occur. Examples are
division by zero, a calculated value exceeds the computer’s storage
capability, the program runs out of data, etc. Error messages are
also printed for execution errors so you can find and correct the
errors.

Logic errors—Here the statement sequence or algorithm you
have written does not correctly express the problem and thus the

52 : Get Personal with Your TI-99/4A

results are incorrect. Common examples might be an improper
formula, branching to the wrong location, or printing the wrong
variable. These are the most difficult to find, since no error mes-
sages occur. The CONSTRUCT process suggested earlier helps
reduce logic errors. Step 5 in CONSTRUCT is a check for the
presence of logic errors in your program.

With this background, you can begin to write programs for your
TI-99/4A.

EXERCISES-CHAPTER 4
Definitions ’

What is a logic diagram?

. What does BASIC stand for?

. What advantages do computers have over humans?

. What advantages do humans have over computers?

. What are the characteristics of good computer applications?
List five of the most common types of applications for personal
computers.

7. What does CONSTRUCT stand for?

8. What is a flowchart?

9. Name three types of programming errors.

10. Which of the three error types is hardest to find and why?

ACTIVITIES

11. Develop a flowchart showing how to bake a cake.

12. List ten applications where computers are being used today in
our society.

13. List five applications where you could personally use a com-
puter. Do prepackaged programs exist for the application?
Find out.

14. Develop a flowchart for selecting a new job.

15. Think of another acronym for the eight steps in computer
program development. What do each of the letters stand for?

O UL oo

Chapter 5

Writing and Editing
BASIC Programs

The next step to writing in BASIC is to learn how to type in
instructions and to understand how the computer recognizes them.
Examples explain this process best, so here is your first BASIC
statement: PRINT.

PRINT is called an output statement. It is an instruction that
tells the computer to put something either on the monitor screen,
on magnetic storage, or on the printer. The PRINT statement has
many variations, but for the purpose of using it in these examples,
you will cover only one of them.

PRINTING LITERALS

The PRINT statement may be used to output to the monitor
screen what is called a literal. A literal is enclosed in quotes and
follows the PRINT statement on a BASIC program line.

the line number the literal
10 PRINT "This is an example. "
the PRINT statement
Figure 5.1 A program line that contains a literal.

This short program tells the computer that its first and only
instruction is to PRINT, on the screen, the words:

This is an example.

As it executes this short program, the computer will PRINT
literally and precisely what you have typed between the quotes in
the PRINT statement.

54 Get Personal with Your TI-99/4A

THE COMPUTER’S MESSAGE BOARD

Asyou type the BASIC program, the line you are typing appears
on the monitor screen as it would on a piece of paper if you were
using a typewriter. A small blinking marker called the cursor
indicates where the next character will appear on the screen when
you type it in. When you finish typing the line, press the ENTER
key. This causes the cursor to jump to the beginning of the next
line, just as a typewriter jumps to a new line when you press its
carriage return key.

Although the computer’s keyboard and monitor screen behave
like a typewriter with paper in it, they are quite different. Think of
the computer’s monitor screen as a type of electronic message
board. When you type a program line, you are writing a message on
the message board for the computer. When you press the ENTER
key, you send that message to the computer for it to enter into its
current memory. Once that particular message is in the com-
puter’s memory, you can write other messages for it in the same
way.

This message board works both ways. It lets the computer send
messages to you. In the last example, for instance, you would type
RUN then press ENTER to send the message the computer needs
(the BASIC command) to begin executing your program. The com-
puter would respond by sending a message (the program output)
back to you by PRINTing it on its message board, the monitor
screen.

>10 PRINT "This is an example. "
>RUN
This is an example.

* % DONE % x
>

The > character at the far left of the screen is a prompt from the
computer that says it is your turn to type in a message. When you
see this prompt it means that you are at the ROM BASIC operat-
ing level and that the computer is waiting for you to type some-
thing, a BASIC program line or a BASIC command. When the
computer sends a message, such as the output of a BASIC program
or the computer’s % % DONE * * message, it leaves off the >.

These are the messages you could expect to appear on the
monitor screen as you type and RUN the following:

Writing and Editing BASIC Programs 55

>10 PRINT “This is an example. "
>20 PRINT "We are going to "
>30 PRINT "PRINT literals "
>RUN

This is an example.

We are going to

PRINT literals

* *k DONE * 3k

CLEANING OFF THE MESSAGE BOARD
You can clean off your message board any time you want by
typing:
>CALL CLEAR

Remember to press the ENTER key.

When you CLEAR the screen, it is important to note that the
BASIC program is not cleared away. Only those messages that
happen to be left on the message board are cleared away. Some of
those messages were the lines of the BASIC program, but you have
already sent these messages to the computer with the ENTER key.
The computer has these program lines stored in its current mem-

ory.

LISTING-THE PROGRAM

If you want the computer to put your BASIC program back on
the screen, type LIST then press ENTER. This BASIC command
causes the computer to put all of the lines in the BASIC program
back on the screen.

>LIST
10 PRINT "This is an example. "
20 PRINT "We are going to”
30 PRINT "PRINT literals "

>

You can also tell the computer to: LIST just one line of your
program; LIST all of the lines from one line number through
another line number; LIST all of the lines up to a particular line
number; or, LIST all of the lines from a particular line number on.
The following are examples of how we can use the LIST command.

56 Get Personal with Your TI-99/4A

Example Explanation
>LIST 20 Lists line 20 only.
>LIST 50-100 Lists line 50 through 100

only.
>LIST -50 Lists lines up to 50.
>LIST 100- Lists lines 100 on.

IMPORTANCE OF LINE NUMBERS

The computer will always LIST and RUN (execute) the BASIC
program in order of that program’s line numbers. It totally dis-
regards the order in which you send the messages, it is only
concerned with the order in which the lines numbers say the

messages should be. Using the previous example, you can type in
LIST and RUN in this way:

>30 PRINT "PRINT literals”
>20 PRINT "We are going to "
>10 PRINT "This is an example. "
>LIST

10 PRINT "This is an example. "

20 PRINT "We are going to”

30 PRINT "PRINT literals”
>RUN

This is an example.

We are going to

PRINT literals

* %k DONE %} %
>

INSERTING A PROGRAM LINE

To insert a program line into your BASIC program, type in and
send the message (program line) to the computer using a line
number that is between the number of the line which will preceed
the new line and the number of the line which will follow it. For
instance, if you wanted to insert a new PRINT statement between
lines 20 and 30, you could type in a line with the line number 25.
This is why program lines are usually numbered by ten. It gives
you nine possible extra lines that you can insert between any two
original lines. Here is an example of what messages would appear
on the screen as you insert a new line into the sample program.
Note: the lines with a > are the lines which you type.

Writing and Editing BASIC Programs 57

>LIST

10 PRINT "This is an example. "

20 PRINT "We are goingto”

30 PRINT "PRINT literals"
>25 PRINT “insert alineand”
>LIST

10 PRINT "This is an example. "

20 PRINT “We are going to "

25 PRINT “insert aline and "

30 PRINT "PRINT literals"
>

Removing a line from a BASIC program is even simpler. Type
the line number then press ENTER. The following is what you can
expect to see on the monitor screen as you delete the line that you
just inserted in the example program:

>LIST
10 PRINT "This is an example. "
20 PRINT "We are going to”
25 PRINT “insert aline and "
30 PRINT "PRINT literals”
>25
>LIST
10 PRINT "This is an example. "
20 PRINT "We are goingto”
30 PRINT "PRINT literals™
>

EDITING THE LINE YOU ARE TYPING

Asyou type a program line, there are several ways to correct any
mistakes you may make before you ENTER that line. A special
key, marked FCTN (FUNCTION), is used with various other keys
on the TI-99/4A keyboard. This key lets you edit the line you are
typing. The FCTN key is pressed and held, while a second key is
struck, in order to perform the action you desire. For instance,
pressing and holding FCTN, then tapping the S key will move the
cursor to the left, back along the program line, one character at a
time.

Most of the keys on the TI-99/4A keyboard will repeat if they are
held down. This means if you hold the FCTN key down and the S
key down, the cursor keeps moving to the left until you release the

58 Get Personal with Your TI-99/4A

S key. It also means that if you are a heavy-handed typist, you will
see a lot of THISSSSSSSSS on the screen from time to time.

The following describes the methods and keys you can use to edit
BASIC program lines as you type them.

Retyping Characters

Use the cursor-left keys (FCTN S) to move the cursor backwards
along the program line. This simply moves the cursor over the
characters on that line. When the cursor is over a mistake or typo,
you can retype that part and then either ENTER that line or move
the cursor back to the end of the line with the cursor-right keys
(FCTN D) and continue typing the line.

Inserting Characters

FCTN and the number key marked 2 cause whatever you type to
be INSerted at the current position of the cursor. This means you
can move the cursor back in a line (FCTN S), press the FCTN 2
keys, and insert into, rather than retype over, that part of the
program line. FCTN 2 turns on an insert mode that stays on until
you finish typing. When you move the cursor with a FCTN key or
press ENTER, the insert mode turns off.

Deleting Characters

Next to INS (FCTN 2) is DEL (FCTN 1). This is the key that,
when struck or held with the FCTN key, deletes characters from
your program line. If you move the cursor back and delete a
character, the rest of the characters to the right of the cursor shift
one space to the left. If you hold the delete key down, the cursor
looks like it is gobbling up the characters in the rest of that line.

Erasing the Entire Program Line

FCTN and the number key marked 3 will erase the program line
you are currently typing. This has the effect of removing that
message from the message board, which lets you start typing that
entire message (including line number) over again.

After you have typed and edited the BASIC program line, press
the ENTER key to send that line to the computer for it to put in its
memory. The cursor can be anywhere on that line when you EN-
TER it. The computer will know that you are sending it that entire
line.

Writing and Editing BASIC Programs 59

EDITING A LINE AFTER IT HAS BEEN ENTERED

One way to change a BASIC program line after it has been
entered is to type that line over again. Any time you send the
computer a program line with the same number as a line it has
already received, it replaces the old line with the new one. In other
words, when you send a message with the same line number as one
you have already sent, the computer assumes the first message
was wrong.

Many times there are only one or two incorrect characters in a
line. There is a fast, easy way to correct these mistakes in one or
more of your program lines.

The Edit Command

Remember the screen is an electronic message board and you
can cause the computer to put those messages back on the screen
by typing LIST. Another command, EDIT causes the computer to
do something similar. When you type EDIT (line number], the
computer will put that line back on the screen, with the cursor at
the first position of the first BASIC statement. From there you can
edit that line in the same manner that you edit a line before you
have ENTERed it. That is, you can retype, insert, or delete with
the FCTN keys to make corrections and press the ENTER key to
send that corrected program line (message) to the computer. When
you press the ENTER key, the computer leaves the EDIT mode
and you can continue writing new program lines in the normal
manner.

You can also EDIT several program lines, one after another, by
using the FCTN keys: FCTN X (cursor-down) and FCTN E (cursor-
up), instead of the ENTER key, when you are through editing a
program line. These two FCTN keys will ENTER the corrected
program line then move to the next line in the program without
causing the computer to leave the EDIT mode. The next line can be
either the line before, FCTN E (cursor-up), or the line after, FCTN
X (cursor-down) the line you are on.

EDITING KEYS SUMMARY
(Del) {Ins) (Erase)

60 Get Personal with Your TI-99/4A

FCTN
EDIT line before __ E
(cursor =up)
Cursor =left --- S D --- Cursor =right
X — . . EDIT line after
(cursor = down)

Figure 5.2 A summary of the editing keys.

FCTN S Moves cursor to the left on current line.

FCTND Moves cursor to the right on current line.

FCTN1 Deletes character at current cursor
position.

FCTN 2 Inserts character at current cursor
position.

FCTN 3 Erases current program line.

FCTNE Displays line before current line for
EDITing.

FCTN X Displays line after current line for
EDITing.

When typing a program line you can make a TI BASIC program
line four times longer than the length of the screen (112 characters
vs. 28 characters). When you type in over 28 characters, the pro-
gram line wraps around and continues one line down on the other
side of the screen. The computer still considers this to be one
program line. To avoid confusion, a BASIC program line is referred
to as a logical line.

Writing and Editing BASIC Programs 61

OTHER IMPORTANT PROGRAM LINE COMMANDS

Number

The computer can automatically generate line numbers while
you type in the BASIC programs. To do this, type NUM and press
ENTER. The computer then starts by setting up line 100 and will
set up a new line (increased by 10), each time you ENTER a
finished BASIC program line. Typing NUM then pressing ENTER
puts the computer in the NUMber mode and pressing the ENTER
key without typing anything on a line just generated causes the
computer to leave the NUMber mode.

Resequence

You can RESequence line numbers by typing RES then press-
ing ENTER. This causes the computer to renumber the BASIC
program lines. RES is particularly useful when you want to insert
a line but can’t because the two line numbers on either side of
where you want to insert the new line are too close together, such
as line 10 and line 11. RESequencing will result in the program
beginning with the line number 100. Each one after that will have
a line number increased by 10.

SUMMARY

What is the difference between a BASIC command and a BASIC
statement? Generally, an instruction is a command when you
ENTER it without a line number. RUN, LIST, and EDIT are
examples of what are usually referred to as commands. Statements
are used primarly in the BASIC programs and so have line num-
bers preceeding them.

Lack of distinction comes because instructions, usually called
commands, are used in programs as statements, and instructions,
usually called statements, are used without line numbers as
BASIC commands. The cause of the confusion is the strong inter-
relationship between the BASIC program operating level and the
BASIC operating level. It is more important to remember that
these are two different operating levels than it is to worry about
what is a command and what is a statement.

The following BASIC commands help jog the programmer’s cur-
rent memory when it needs it. They include a few commands listed
that have not been discussed thus far but include brief explana-
tions that you should understand fairly well.

62 Get Personal with Your TI-99/4A

BASIC COMMANDS SUMMARY

CALL CLEAR clears the screen of all messages.
EDIT 60 displays line 60 for editing.

EDIT mode keys
FCTN S moves cursor to the left on line 60.
FCTN D moves cursor to the right on line 60.
FCTN 1 (deDetes character at current cursor position.
FCTN 2 (ins)erts character at current cursor position.
FCTN 3 (erase)s line 60 from the screen (not memory).
FCTN E enters line 60 and displays line 50 for EDITing.
FCTN X enters line 60 and displays line 70 for EDITing.

LIST lists all lines of the BASIC program in current memory on
the monitor screen.
LIST 40 lists line 40.
LIST 40-100 lists lines 40 through 100.
LIST 100- lists lines 100 on.
LIST -100 lists line up to 100.
NEW erases all BASIC program lines from the current memory.
BYE erases all BASIC program lines from the current mem-
ory and returns to title screen.
NUM starts automatic line numbering with line 100 and by incre-
ments of 10.
NUM 50 starts wtih line 50 and by increments of 10.
NUM 200,50 starts with line 200 and by increments of 50.
NUM ,5 starts with line 100 and by increments of 5.
RES renumbers all of the program lines, starts with the number
100 and increments by 10.
RES 50 starts with line 50 and by increments of 10.
RES 200,50 starts with line 200 and by increments of 50.
RES 5 starts with line 100 and by increments of 5.
RUN begins execution of the BASIC program in current memory.
RUN 50 starts program execution at line 50.
FCTN 4 (CLEAR) stops program execution. Exits EDIT and
NUM modes.

CHAPTER CHALLENGES

The first part of this Chapter Challenage is an exercise that uses
many of the BASIC commands covered in this chapter. The idea
here, is to gain keyboard familiarity and a general feel for the
TI-99/4A’s behavior when it is given a command.

Writing and Editing BASIC Programs 63

There will probably be a number of error messages the computer
will send you while you do this exercise, but that is part of what you
are learning: how nit-picky this machine can be.

Feel free to experiment; try different commands. If the computer
complains, type in that line or command again. Remember, there
is no way to hurt the computer by typing on the keyboard.

1. Turn on the computer and follow the screen instructions until
the TI BASIC READY message appears. At the bottom of the
screen there should be a > O

2. Now type NUM and press ENTER. The computer generates
line numbers for the BASIC program. This is what you should
see at the bottom of the screen:

>1000

3. Type in the following BASIC program. Remember that the
computer will leave the NUMber mode if you press the EN-
TER key just after a line number has been generated.

>100 CALL CLEAR

>110 PRINT ''This program will "
>120 PRINT '‘instruct the computer "
>130 PRINT “to PRINT out this "
>140 PRINT “message. "

>150 [ENTER]

>

4. Be sure the computer is no longer in the NUM mode then type
RUN and press ENTER.

5. Now type LIST then press ENTER.
A. Try LISTing just one line of this program.
B. Try LISTing lines 120 through 140 only.
Type CALL CLEAR ENTER to clear the screen then LIST
the whole program again.
6. Type in the new program lines:

>125 PRINT "to first clear the screen ”
>126 PRINT “and then PRINT out this "

LIST the program again. This is what it should look like:

100 CALL CLEAR
110 PRINT “This program will "

Get Personal with Your TI-99/4A

7.

10.

120 PRINT “instruct the computer "
125 PRINT “to first clear the screen”
126 PRINT "and then PRINT out this "
130 PRINT "to PRINT out this "

140 PRINT "message. "

Now remove line 130 by simply typing 130 and pressing EN-
TER. LIST the program again. RUN the program. This is
what the output should look like:

This program will
instruct the computer

to first clear the screen
and then PRINT out this
message.

. Type RES then press ENTER and LIST the program again.

Notice that the line numbers have changed.

A. Try typing RES 10,10 and LISTing the program.

B. Try typing RES 500,100 and LISTing the program.

RES, CALL CLEAR the screen and LIST the program. This
is what it should look like:

100 CALL CLEAR

110 PRINT "This program will

120 PRINT ‘“instruct the computer “
130 PRINT “to first clear the screen”
140 PRINT "and then PRINT out this"
150 PRINT “message. "

. Now type EDIT 110 then press ENTER. Move the cursor tothe

right with the FCTN D keys until it is over the p in program.
Pressthe FCTN 2 keys toturn on the INSert mode and type the
word BASIC (add a space to separate the two words). The line
110 should look like this:

110 PRINT "This BASIC program will *

Instead of pressing the ENTER key, press the FCTN X keys so
that line 110 will be entered without the computer leaving the
EDIT mode. This should bring line 120 to the screen for you to
EDIT. Move the cursor to the right until it is over the ¢ in the
and type in my TI Computer so that line 120 looks like this:

120 PRINT "instruct my TI Computer "

Writing and Editing BASIC Programs : 65

11. Press the FCTN X keys again so that you can EDIT line 130.
Move the cursor over the fin first and use the FCTN 1 keys to
DELete this word from this line. Now press the ENTER key.
This causes the computer to leave the EDIT mode and you can
RUN the EDITed program. This is what the output should
look like:

This BASIC program will
instruct my TI Computer
to clear the screen

and then PRINT out this
message.

Here are a few pictures that you can draw using only PRINT
statements and keyboard characters in the BASIC program. Try
writing the programs that, when executed, will PRINT these
pictures on the screen with their titles.

1) ROCKET SHIP 2) FIGHTER PILOT
AN /\
S ulsla
A
/ \

/IN /1A

3) STRAWBERRY

I 4) SHIP AT SEA
\/

=3

o~ N

* /-

-~ Aaaa I Ana

—~ o~
e W S e I
A~ o~ S~
D e i e
~ o~ e~ N

0O 00 o

~ana AAA AAMAAAAAAAAAAAAAAAAAAAAA

- 66

-Get Personal with Your TI-99/4A

Chapter 6
TI BASIC Calculations

At times you will want the computer to perform mathematical
calculations while it executes BASIC programs. The TI-99/4A is
well equipped to solve problems that involve buying and selling
goods, figuring percentages, analyzing finances, etc.

You may think that computers are useful only if you know
algebra, calculus, or other forms of advanced mathematics. But the
computer’s usefulness lies in its ability to perform repetitious
calculations at a very fast rate without fatigue or errors. The
volume, not the complexity of calculating work makes computers
valuable tools.

For most of us, volumes of work means adding up rows and rows
of figures, dividing several numbers several times to find percent-
ages, or repeatedly performing fairly simple calculations on many
different sets of numbers. To perform these tasks on the computer,
you need to be able to instruct the TI-99/4A to do computations.

COMPUTATIONS

There are five basic operations in mathematics: addition, sub-
traction, multiplication, division, and exponentiation (powers of
numbers). When you do these operations by hand, you can say the
same thing in several ways. For instance, 3 x 2, 3(2), and 3% 2, are
all different expressions for 3 times 2.

But the computer understands only one expression for each
operation. Figure 6.1 is a list of the five operations and their
computer formats.

68 Get Personal with Your TI-99/4A

3+2 three plustwo v Addition

3-2 three minustwo / Subtraction

3:%2 three timestwo % Multiplication

3/2 three divided by two - Division

3A2 three to the second + Exponentiation
power (three squared)

Figure 6.1 Operations and their formats.

More than One Operation at a Time

In addition to knowing the format of mathematical operations,
you also need to know the order of execution the computer will
follow to solve a problem that includes more than one operation.

Take the simple equation, 3+5%2, for example. Three plus five
is eight, and eight times two is 16. On the other hand, five times
two equals ten, and if you add three to ten, the answer is 13.

So, the equation 3+5 %2 could have two answers.

3+5%2=? 3+45%2=2
8 *%2=16 3+ 10 =13

Is the correct answer 16 or 13? Without knowing the order in which
you should execute the problem, you have no way of knowing the
correct answer.,

The computer handles this type of problem with a set of rules
given to it by the TI BASIC language program. But all program-
ming languages have similar instructions for the computer to
follow. They are called “rules of priority”, and they tell the com-
puter to execute certain operations before others.

The following table describes which operations the computer has
been instructed to execute, in order of their priority.

EXECUTION PRIORITY
1st Priority Any operation or set of
operations in parentheses
()
2nd Priority Exponentials A
3rd Priority Multiply, Divide %,/
4th Priority Add, Subtract +, -

Figure 6.2 Execution priority.

TI-99/4A BASIC Calculations 69

The computer’s approach to solving this example problem,
3+5%2, would be to first perform the multiplication, 5%2=10,
then perform the addition, 3410 =13. This is because multiplica-
tion has a higher execution priority than addition.

Suppose you are actually trying to calculate the total pieces of
bread necessary to make three ham and five tuna fish sandwiches.
If this were the case, you would first want to add three and five to
get the total number of sandwiches, then multiply that times two
(no triple deckers in this problem) to get the correct number of
pieces of bread—16. To get the computer to come up with the
correct answer, you have to modify the way you write the equation.

PARENTHESES

You can make the computer alter its order of execution by
placing operations inside parentheses or sets of parentheses. The
operations inside of the parentheses will then have the highest
priority, that is, those operations will be executed first.

(8+5)%2

Typing in your equation as shown above instructs the computer
to first add three and five (ham and tuna fish sandwiches) then
multiply that by two (the pieces of bread per sandwich).

You may also use parentheses inside parentheses to control the
computer’s order of executing the problems. When you do this, the
operations of the inside parentheses have a higher priority then
the operations of the outside parentheses.

For example, suppose you take a vacation and plan to make
those ham and tuna sandwiches for lunches each day. The vacation
will last five days but you are going to have lunch at a restaurant
on two of those days. You already know how to get the computer to
compute the pieces of bread you will need each day:

(83+5)%2

and now you want to type in the equation for calculating how much
bread to buy for the vacation.

Sandwiches per day
times
bread per sandwich
(@B+5) % 2) x (6-2)
times

days we will make sandwiches
Figure 6.3 Sandwiches.

70 Get Personal with Your TI-99/4A

When the computer reaches this equation, it goes straight to the
innermost parentheses (3+5) and performs that operation first.
This will leave it with:

(8%2)%(5-2)

Then the computer will perform the two operations, 82 and 5 - 2,
since these are both still inside of parentheses. The computer
treats these two operations with equal priority. You don’t know
which one it will do first. You only know that they will both be done
before anything else. This will leave the computer with:

16%3

This is the last operation the computer has to perform, and it will
compute the final answer to your problem as 48, the number of
pieces of bread you will need for your vacation lunches.

When there is more than one operation inside a single set of
parentheses, the computer follows its standard order of execution
to perform those operations until all of the operations inside that
parentheses are performed. Also, parentheses are used throughout
BASIC programs in several statements, commands, and functions.
Generally, they are the way to tell the computer to “Do this first”
or, as in the case of BASIC functions, parentheses are often used to
tell the computer to “Do this only.”

To summarize the discussion of execution priorities, you have an
example of a more complicated equation, one that has several
operations in it, and which shows the order of execution the com-
puter will follow as it computes your answer.

Example
Equation Computer Format Answer
3+ 3+(7-5)/2A2 3.5
parentheses 1st (7-5)=2 - leaves 3+2/2A2
exponent 2nd 2A2=4 leaves 3+2/4
division 3rd 2/4=.5 : leaves 3+.5
addition 4th 3+.5=35 leaves 3.5
Figure 6.4 Example.
NUMERIC FUNCTIONS

The best way to describe functions is to say they are built-in
tricks that the computer can do. Numeric functions are computa-

TI-99/4A BASIC Calculations 71

tions done with numbers for which it would otherwise require
considerable time to write BASIC instructions.

Functions usually start with a three-letter word that stands for
the type of trick that function does. The three-letter word is usually
followed by a set of parentheses with something inside them. The
function will perform its computation on the numeric value within
the parentheses.

For instance, the function SQR which stands for square root
function will find the square root of the numeric expression in its
parentheses. To find the square root of 16 type:

SQR(16)

and the computer will find, or compute, the square root of 16 when
it reaches this part of the BASIC program.

The number 16 is a numeric expression. A numeric expression
can be a number or an equation. This means you can type:

SQR(4 k5 -4)

In this case, the computer first solves the equation inside the
parentheses. Then it will find the square root of the answer to the
equation, the square root of 16 in this example.

Whatever you put inside the function’s parentheses (the first or
outside set of parentheses) is called the argument of the function.

If you remember all of regular mathematies, you might re-
member that a negative number does not have a square root since a
negative number times itself is a positive number. If you type in:

SQR(-16)

the computer gives you the error message, BAD ARGUMENT.
This does not mean you failed to convince it to find the square root
of negative 16. It means that it can’t do that particular trick (SQR)
with the information you have typed inside of the function’s paren-
theses—its argument.

There are twelve numeric functions built-in to the TI-99/4A, but
most of these are for advanced graphics, engineering, or scientific
applications. Two of them, however, are useful in a number of
situations.

INT NUMERIC EXPRESSION)-INTEGER FUNCTION

An integer is a whole number. There is no fractional part at-
tached to it, such as 2.3766. An integer is a whole number such as
2,5,199, 0, -3, etc.

72 Get Personal with Your TI-99/4A

The INTeger function turns its numeric expression, or argu-
ment, into a whole number by truncating (computer language for
chopping off) anything to the right of the decimal point. This
means that 2.3766 gets changed to 2 and so does 2.9999999. In
other words, INT does not round off the number, it simply chops off
the fractional part.

This is such a handy function because it gives you control over
what the numbers will look like when you go to read answers, or
output, on the monitor screen. To explain how you can do this, you
first need to look at what the TI-99/4A comes up with when it
computes an answer,
~ If you type 1+3 and have the computer print the answer on the
monitor, it prints 4 with no problem. But, if you have the computer
print the answer to 1/3 (1 divided by 3), it prints .3333333333.

Now if you were writing a program that was splitting a dollar
three ways and wanted output so that it could be read as cents
instead of .3333333333, you would type:

INT((1/3):100)

When the computer reaches this part of the program, it first goes to
the innermost parentheses, (1/3), and computes the answer as
.3333333333. It will then multiply that by 100 to get 33.33333333.
Then it will convert that to an INTeger and the final answer will
be 33, the number of whole cents in one-third of a dollar.

Another example would be to say you have $10.00 to split three
ways and you want output in dollars and cents display (8.33)
instead of 3.3333333333. To do this type:

INTY((10/3)%100)/100
Here the computer will:
First Divided 10 by 3 to get 3.3333333333
Second Multiply 3.3333333333 by 100 to get
333.3333333
Third Convert that to an INTeger to get 333
Fourth Divide 333 by 100 to get 3.33

Notice what this last example tells us about numeric functions.
They have an execution priority just as the operations have. In fact
their priority is higher than all operations unless those operations
are in parentheses.

TI-99/4A BASIC Calculations 73

In both of these examples you control your output by first mov-
ing the decimal place in the number, converting it to an INTeger,
and then moving the decimal place back if you wish.

Rounding with the INT Function

If you want to round off the answer, add .5 to the numeric
expression after you have moved the decimal to the right as far as
you want to round.

For example, take the two numbers 1.234 and 1.236 and follow
how the computer rounds them off with the INTeger function.

INT(1.234%100+.5)/100 INT(1.236 % 100+.5)/100

INT(123.4+.5)/100 INT(123.6 +.5)/100
INT(123.9)/100 INT(124.1)/100
123/100 124/100

1.23 1.24

RND-Random Number Function

A random number is meant to be a surprise. You don’t know
what number the computer is going to come up with when you use
this function. RND does not use an argument to come up with a
random number. You simply type in RND and the computer will
generate a number for you.

Random numbers are useful when you want to write a program
that is unpredictable even by you. Computer Aided Instruction
(CAI) programs often use random numbers to give unpredictable
problems. Computer games are another major area where random
numbers may be desirable and finally, random numbers are often
used to test programs or simulate different situations to see if a
complicated equation works under a variety of conditions.

There are several ways that the computer may generate random
numbers. To explain them, you will need a new BASIC statement
and a simplified explanation of how the computer comes up with its
random numbers.

Imagine that the computer has a long list of random numbers to
use. If you simply tell the computer to RND, it starts at the top of
this list and sends the first number on it. The problem is that the
computer will send the same number every time you RUN your
program, that is, it starts at the top of the list again.

If you want the computer to start at a different spot in this list of
random numbers, you need to use the BASIC statement RAN-

74 Get Personal with Your TI-39/4A

DOMIZE in the beginning of the same program. This statement
may then be followed by a number that tells the computer to start
at a spot somewhere other than the top of the list:

RANDOMIZE 121

The number you type in is called a random number seed, and this
number is what determines where the computer will start on the
list of random numbers. Even though the spot will be different, the
computer will still start at that same spot on the list, every time
you RUN your program. That is unless you change your random
number seed in the RANDOMIZE statement.

If you want the computer to start on a totally unpredictable spot
on its list, each time you RUN the program type in the RAN-
DOMIZE statement without the random number seed. That is,
simply type RANDOMIZE.

When the computer generates a random number, that number is
a 10-digit number greater than or equal to zero and less than one. A
typical random number might look like this:

5209795429

After arandom number has been generated it is up to you to turn it
into the type of number you want. This is another time that the
INT function comes in handy. If you want to generate a random
number between one and 100 type:

INT(RND*100)+1

The computer will execute this numeric expression in the follow-
ing manner:

INT(.5209795429%100)+1
INT(52.09795429)+1
52+1

53

MORE ON THE PRINT STATEMENT

One of the things that a PRINT statement can do is PRINT, on
the monitor screen, the answer to a numeric expression. All you
have to do is write the BASIC line as:

10 PRINT [numeric expression]

For example, you could type in and RUN a short program that
uses some of the examples covered in this chapter.

TI-99/4A BASIC Calculations 75

>10 PRINT 3+5
>20 PRINT 1/3
>30 PRINT 3+(7-5)/2A2
>40 PRINT SQR(4 %5-4)
>50 PRINT INT(RND*100)+1
>RUN

8

.3333333333

3.5

4

53

* % DONE % *x

Now you can combine the literals discussed earlier with numeric
expressions in the PRINT statements to add meaning to the
answers the computer comes up with. Some examples might be:

10 PRINT “4divided by 5 is '*;4/5
RUN
4 divided by 5 is .8

* *k DONE * x

10 PRINT ‘‘The answeris $ ';INT(1/3 % 100)/100
RUN
The answeris$ 3.33

* * DONE * 3

10 PRINT ‘"'Put ";30/5; ' cows in each barn "'
RUN

Put 6 cows in each barn
* % DONE % k

Notice that since you have the computer PRINT more than one
thing (literals and numbers in these examples), you insert a semi-
colon(;) between each thing on the PRINT line. The semicolon
used this way is called a PRINT separator which is necessary to
tell the computer that one thing is separate from the next.

PRINT SEPARATORS

You can use three PRINT separators: semicolons (;), colons (3),
and commas (,). Each of these separators tells the computer that

76 Get Personal with Your TI-99/4A

one thing on the PRINT program line is separate from the next
thing, but each of them also carries its own special message for the
computer.

The semicolon () tells the computer to stay on the same line for
the next thing it is going to PRINT.

The colon () tells the computer to move to the beginning of the
next line for the next thing it is going to PRINT.

The comma (,) tells the computer to move to the next print zone
for the next thing it is going to PRINT. '

There are two PRINT zones on the monitor screen, one on the
left- and one on the right-hand side of each line. Each line on the
screen is 28 character spaces wide, and the right-hand zone begins
at the fifteenth space. When you use a comma as a PRINT sepa-
rator the next thing is printed in the next zone which will either be
on the right-hand side of the same line, or on the left-hand side of
the next line down.

The following examples show how you can use PRINT sepa-
rators to control your output.

Examples: PRINT separators

";" SAME LINE

>10 PRINT "Thisis";
>20 PRINT " an example "
>RUN

This is an example

* % DONE % x
>

"," NEXT PRINT ZONE

>10 PRINT "This", "is
an"”,"example "
>RUN
This isan
example
* %k DONE % %

>

TI-99/4A BASIC Calculations 7

*:" NEXT LINE COMBINATIONS
>10 PRINT “This":"is >10 PRINT "This","is an":,
an":"example" >20 PRINT “example”
>RUN >RUN
This This isan
isan 1
example examp-e
% % DONE * % * % DONE * *
> >

Figure 6.5 Examples: Print separators.

Notice that several commas or colons may be used at a time to
send a separator’s message more than once, and that the message
the separator sends can be at the end of a PRINT program line.
The computer will then remember that message until it is told to
PRINT again.

TAB [NUMERIC EXPRESSION] FUNCTION

Another way to control output is with the TAB function. This
function is used in a PRINT program line to tell the computer to
move forward to a certain character space before PRINTing the
next thing.

As mentioned, the monitor screen is 28 character spaces wide. If
you want the computer to move forward to the eighth space before
PRINTIing something else, you can type TAB(8). The following
example shows how you type this function into your PRINT pro-

gram lines.
PRINT literal stay on same line
stay on same line
>10 PRINT "Hello ";TAB(8); "There "
move to 8th space

PRINT literal

Figure 6.6 A PRINT program line.

78 Get Personal with Your TI-99/4A

The TAB function is very useful for lining up columns of output.
You can use several TABs in your PRINT line to set up these
columns,

>10 PRINT TAB(5); “Mon ";TAB(10);40/5;TAB(15);

"Hours "
>20 PRINT TAB(®5); "Tues '";TAB(10);30/5;TAB(15);
“"Hours "
>30 PRINT TAB(®); "Wed ";TAB(10);25/5;TAB(15);
"Hours "
>40 PRINT TAB(5); "'Thurs '";TAB(10);20/5;TAB(15);
“Hours *'
>50 PRINT TAB(5); ""Fri ";TAB(10);10/5;TAB(15);
"Hours
>RUN

Mon 8 Hours

Tues 6 Hours

Wed 5 Hours

Thurs 4 ° Hours

Fri 2 Hours

% * DONE * %

You should notice that you cannot TAB to a character space that
the computer has already passed on that line. In other words, you
cannot TAB backwards. You do not get an error message, but the
computer will move to the next line down to PRINT the rest of
what is in that PRINT program line.

SUMMARY

Although the TI-99/4A can be used as a calculator, it has much
more potential. Once you learn how to type in equations to get the
right answers, you can write programs to output the answers in a
report form, easily read by anyone.

You have now started to build a vocabulary of computer instruc-
tions. Like building blocks, these instructions are individual parts
of BASIC programs that can be put together in a variety of ways to
do the same thing. For instance, all of the following program lines
instruct the computer to PRINT the word “Hello” in the same
place on the screen.

10 PRINT *~ Hello
10 PRINT, "Hello "
10 PRINT TAB(15); "Hello "

Given an equation such as;

TI-99/4A BASIC Calculations 79

16+4
o~ X3
you may find that there is more than one correct computer format
for it.
((16+4)/10)%*3
3%((16+4)/10)

Also like building blocks, these instructions provide you with
the opportunity to be original and creative in writing your pro-
grams. For instance, in the last Chapter Challenge we had the
computer PRINT a rocket ship made out of keyboard characters
on the screen. The finished program should have looked something
like this:

>100 PRINT * /\ -
>110 PRINT * -
>120 PRINT * -
>130 PRINT UlSIA

>140 PRINT
>150 PRINT /N
>180 PRINT / \
>190 PRINT * - =

>160 PRINT "
Figure 6.7 A program to print a rocket.

>170 PRINT

Now if you add a line
>200 PRINT e

and RUN this program, the rocket ship appears to be taking off as
the computer starts to execute all the “move to the next line” colons
in the last PRINT line. Actually, the screen is scrolling by.

The fact that the screen scrolls has not been mentioned before
because it is one of many things that should become obvious as you
learn to program. As you continue to learn new instructions, it
should be pointed out that it would be impossible to itemize every
combination into which those instructions can be put. Therefore, it
becomes increasingly important that you experiment, try different
combinations of instructions, and observe how the computer be-
haves when it reaches those program lines. This is the challenge
and fun of programming and is fundamental to learning how to
build programs out of the available building blocks.

80 Get Personal with Your TI-99/4A

CHAPTER CHALLENGE

Write the following as numeric expressions:
‘1. 2times 6

2. 1plusb

3. 8 minus 3

4, 4 divided by 2

5. 3 squared
What are the computer’s answers to the following numeric ex-
pressions?

6. 3+6/3

7. 4%2+1

8. 2A2-6/2

9. (8+2)/5
10. 9/3+4/2
11. ((4/24+3%2)+4)/3
12. SQR(6-2)
13. INTY((1/4)*100)
14. INT(RND *10)+1

The following exercises contain a wide range of difficulty. For
readers who have not studied math for some time and are not sure
how the equation should be worked, the answers to them may be
found on the far right-hand side of the page. This still does not tell
how to work the equation but if you work it one way, and you get
the answer shown, the odds are that you worked it correctly.
Convert these equations to their computer format then type
them in as a BASIC program that PRINTs “The answer is” [nu-
meric expression].
EXAMPLE

7 +2_><E>: T7+(2%3)/3 10

2
10 PRINT "The answer is ";7 +(2% 3)/2

EQUATION COMPUTER FORMAT ANSWER

347

15. 37 5
16. 2x5)+3 , 13
17, 16+4 5 6

10

TI-99/4A BASIC Calculations 81

15%3

19. W-s 10
3+5 Vs 4
2&&53)
05
21.3oo+§99§1—— 168.33
(1+.05)=

, 16 x4
22. 5x mz—)' 20

In these problems, combine literals with numeric expressions and
PRINT separators with TAB functions to create output that is
clear and easy toread.

23. Write a BASIC program that will output the number of hours,
minutes, and seconds in a year.

24. You can convert degrees Fahrenheit to degrees Centigrade by
subtracting 32 degrees from the Fahrenheit temperature,
then multiplying that number by 5ths. Write a BASIC pro-
gram that will output a conversion of 98 degrees Fahrenheit to
degrees Centigrade.

25. Write a BASIC program that converts 55 miles per hour to the
number of feet per second one is traveling at that speed. There
are 5280 feet in a mile and 60 seconds in a minute.

ANSWERS

. 2%6
. 1+5
.8-3
. 4/2

3n2

HO©EID TR WM

ey
BTN =W D

82

Get Personal with Your TI-99/4A

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

25.

2
25
A surprise number between 1 and 10
3+7)2
2%5+3
((16+4)/10)%3
(15%3)(6+3)+7
(2:%12+6)2-5
((8+5)(10-6))2A2
(300-+((300:¢.05)/5) Y(1+.05)A12
5% ((16k4)/(3+5)*%(1/2))A.5
10 CALL CLEAR
20 PRINT TAB(7); "HOW TIME FLIES "::
30 PRINT "
40 PRINT "Hours in a year = '";TAB(20);365 %24
50 PRINT ''Minutes in a year = ";TAB(20);365 *x24 360
60 PRINT ''Secondsin ayear= ";TAB(20);365 %24 %6060
70 PRINT " Mo
10 CALL CLEAR
20 PRINT TAB(6); "ITS NOT THAT HOT *'::
30 PRINT o0 3 sk 3k 3k ok ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok sk sk ok sk ki ok sk ok "::
40 PRINT 98;TAB(6); ''Degrees Fahrenheit "
50 PRINT TAB(13); “isonly ":
60 PRINT INT((85 — 32)*(5/9)% 100)/100; "Degrees
Centigrade ''::
70 PRINT e sk ok ok ok ok ok ok ok ok ok 3K ok ok ok sk ok sk sk ok ok ok ok ok ok ok ok ok ok ":::::
10 CALL CLEAR
20 PRINT TAB(3); "LIFEINTHE ;" " " "; "FAST ";
ot LANE Ui
30 PRINT "<<<<<<<<<<L<<<L<L<L
>S>>>>>>>>>>>>>"n
40 PRINT TAB(2);55; "MPH may seem slow but ""::
50 PRINT TAB(5);INTY((553 5280)/60)/60);
"'feet per second "'::
60 PRINT ' is as fast as we should go ""::
70 PRINT ">>>>>>>>>>>>>>
<< <LK LK M

Chapter 7

Input and Reading Data

VARIABLES

While the computer can compute answers and PRINT them on
the monitor screen, it does not automatically save those answers in
its memory. It only PRINTSs the answers on the screen. Computa-
tion instructions in BASIC programs include a way to save the
answers so that you can use them later in the program. To save
an answer, the computer must be told that something is to hold
what the answer is. That “something” is called a variable.

Although variables can be used to do much more than hold
answers, look for now at how you can type in a program line that
uses a variable.

BASIC statement “LET”**
line number equation
AN —

10 LET ANS=(3+5)*%2
variable

Figure 7.1 A program line with an ANS variable.

**The LET statement is optional with TI BASIC and
will be omitted in future examples. For instance, this

line 10 will be written as:
10 ANS=(3+5)*2

This tells the computer that you have made up a name for the
variable (ANS), and that ANS is the name of the variable it is to
use to hold the answer to this equation. From our point of view, the
variable ANS acts like a “basket” for the computer to put the
answer to the equation into. After this program line has been

84 Get Personal with Your TI-99/4A

executed, the variable ANS will have taken the value of 16. That
is, the value 16 will be in the basket named ANS. Here are the
three steps that the computer takes when it executes this program
line.

Y ﬁda?i:; :I?Sk ot 3) Solve this numeric

expression

10 ANS =_(@3+5) *2
\2) Put the answer to

the following in
that basket

Figure 7.2 The three steps of execution.

The name variable tells you a great deal about what it is.
Variables are baskets that can hold any single value at a time. In
other words, once the basket ANS has been made, it can hold the
value of 12, or 19, or 109923, or any number.

— //\ — | /\
/N — |A) — 1A
ANS =6 +6 X l 12|1g ANS = 35 }/} Lst':JI;
_ N VAN

Figure 7.8 The answer variable.

34

You are the one who decides what to name variables used in the
program. The names have certain criteria:

1. They must start with a letter (A, B, C,. . .);

2. they can be up to 15 letters or numbers only in length (no

spaces, commas, etc.), and;

3. They must not be a word the computer is programmed by TI
BASIC to recognize as a statement or command such as
PRINT, LET, EDIT, LIST, etc. (called reserved words). (See
Appendix I for a complete list of reserved words.)

Use of variables is fundamental to programming. They are the
means by which the computer can handle volumes of work. The
earlier reference to assignment as an instruction that tells the
computer that something has a value, is a direct reference to the

Input and Reading Data 85

use of variables in computer programs, and an understanding of
variables is necessary to our understanding of BASIC program-
ming.

NUMERIC AND STRING VARIABLES

When the computer puts a value into a variable, that value can
be either a number such as the answer to an equation or a number
you type in. It can also be a group of words, string of letters, or
characters such as the literals used in the PRINT program lines.
The variables used to hold numbers are called numeric variables
and the variables used to hold words are called string variables.

Numeric Variables

Numeric variables are the baskets that hold numbers. Before
the computer puts a number into a numeric variable, that variable
automatically holds the number zero. Once a numeric variable has
been assigned a number, that number may be added, subtracted,
etc., with the numbers in other numeric variables. The answer can
then be assigned as a value to another numeric variable.

>10 A=5
>20 B=3
>30 C=A%*B

In this example there are three numeric variables named: A B,
and C. As this program is executed, the first two program lines (10
and 20) tell the computer to put the numbers 5 and 3 into the
variables A and B. The third line (30) tells the computer to perform
a computation using the numbers in those variables and assign the
answer to the third variable, C.

After line 30 is executed, the variable named C will be holding
the number 15.

MORE ON VARIABLE NAMES

To develop good programming technique, take another look at
the names that have been given to variables. When BASIC was a
relatively new programming language, variable names could only
be a single letter, A through Z. It was pretty confusing to read a
program full of variables whose names didn’t tell you anything
about the values they held.

Newer versions of BASIC expanded the number of characters
you could use, so now you can give variables names that make

86 Get Personal with Your TI-99/4A

sense in terms of the BASIC program’s purpose. For instance, if
you were using the equation in the last example to compute the
number of square feet on the side of a small wall, five feet long and
three feet high, you might want to rename your variables as:

10 LENGTH =5
20 HGHT =3
30 SQFT=LENGTH*HGHT

There may be a few drawbacks to using these longer variable
names in your BASIC programs.
1. More opportunity for typing error. If you mistype a variable
name the computer may assume you mean make a new basket in
which case there will be the value zero in it.

10 LENGTH =5
20 HGHT =3
30 SQFT=LENTH *HGHT

Misspelled LENGTH, the computer creates a new variable
“LENTH?” with the value 0 in it, then puts the answer to 053
in the basket named SQFT.

2. Reserved words. There are a number of words that have been
reserved by TI BASIC. With longer variable names, yourun the
risk of accidentally using one of these words. The problem is
easy to overcome but difficult to spot. When you use a reserved
word as a variable name, the computer gives the error message
INCORRECT STATEMENT or CAN'T DO THAT, both of
which may mean several things. This is what makes the prob-
lem difficult to spot. After you have figured out that it is a
reserved word problem, you simply add or subtract a character
or two from the variable name and the computer will accept it.

>10 NUM =25

* CAN'T DO THAT
>10 NUMB =25
>

3. Memory space. Remember that the computer has memory
space measured in bytes. One byte is roughly equivalent to one
character, such as a single letter or a number. Your variable
name uses memory, one byte per character. What is in that
variable, its value, also uses memory. Therefore, in the case of

Input and Reading Data 87

longer variable names, you may find that the variable’s name
uses more memory than the value you have in it.

This is the least pressing of the drawbacks since it only
becomes a factor when your BASIC program is approaching
the limits of your TI-99/4A’s memory.

The tradeoff then, is program readability for the extra time and
care required in the choice to use variable names longer than one
or two characters. In an effort to make example programs as
readable as possible, this book uses multi-character variable
names more often than not.

STRING VARIABLES

String variables are the baskets that hold words or anything
with characters and/or spaces. The literals used in the PRINT
program lines are examples of what are called strings.

Before the computer puts a string into a string variable, that
variable automatically holds a null string. In other words, it does
hold something, but null means no characters at all.

String variables can hold numbers but, if they do, those numbers
cannot be added, subtracted, etc. A telephone number or a postal
zip code are good examples of numbers you might assign to string
variables since normally there is no reason to do computations
with these numbers.

On the other hand, the computer will not put a string into a
numeric variable, so you need a way to tell the computer that your
variable is meant to hold strings instead of numbers. To do this,
type in your string variable names with a dollar sign ($) on the end.
The dollar sign tells the computer that the variable is to hold a
string instead of a number.

The computer follows these four instructions when it executes

this program line:
2) The basket is
1) Make a basket to hold a string
named WALL

4) The "string "

10 WALLS = “South wall”

3) Put the following
string in the basket

Figure 7.4 The four instructions the computer follows.

88 Get Personal with Your TI-99/4A

After the computer executes this short program, the string vari-
able WALLS$ will have the value South Wall assigned to it.

When you assign a value to a string variable in this way, enclose
the word(s) in quotes. Spaces are often included in strings and are
considered to be characters by the computer. The quotes tell the
computer exactly where the string begins and ends, and whether to
include any leading or trailing spaces in the string. The computer
does not consider the quotes themselves to be a part of the string.

MORE ON THE PRINT STATEMENT

There is another variation of the PRINT statement to examine.
Besides PRINTing literals and the answers to numeric ex-
pressions, you can PRINT the value held by any variable on the
monitor screen. To do this type:

PRINT [variable name]

For instance, using our last two examples and combining them
with a literal in the PRINT program line (line 50), you have the
following short BASIC program:

>10 WALLS$ = "South Wall"
>20 LENGTH=5
>80 HGHT =3
>40 SQFT =LENGTH *xHGHT
>50 PRINT WALL$:SQFT; " square feet "
>RUN
South Wall

15 square feet
* * DONE *x 3k

After you have assigned values to the variables, the computer is
instructed to perform a computation (line 40) and then output the
results (line 50). The PRINT program line can be broken down into
its individual instructions as:

PRINT the value in WALL$ PRINT this literal
next line same line

\ /xext lin/

>50 PRINT WALLS$": SQF‘T ; "square feet "
PRINT the value in SQFT
Figure 7.5 The PRINT program line.

Input and Reading Data

89

This program can now be expanded into a program that can be
used to solve a real life problem. This example program will be the
basis to explain some of the many ways that variables are used in

the BASIC programs.

EXAMPLE PROGRAM “BRICK IN THE WALL”

Suppose you plan to build a small wall on the south side of the
hot tub in your back yard. You are going to build it of bricks that
measure 2% x 8% inches on a side. You want to know how many
bricks it is going to take to build the wall in Figure 7.6.

__85 in.._|

-

3ft.

Figure 7.6 How many bricks will it take to build the wall?

Here is how you write the BASIC program.

BASIC program lines

10 WALLS = “South

Wall”

20 LENGTH = 5
30 HGHT = 3
40 BLEN = 8.5

50 BHGHT = 2.5

INPUT

INPUT

The Flowchart

Wall name, size as length
and height in feet

Brick size (on a side) as
length and height in inches

90 - # Get Personal with Your TI-99/4A

60 SQFT = LENGTH o
* HGHT Compu?e wall size in

70 WINCH = SQFT * PROCESS square inches (144 sq.
144 inches/sq. foot)

80 BINCH = BLEN * Compute brick size in
BHGHT PROCESS square inches

90 BRKS = WINCH / l?xvnde wall size by brick
PROCESS size to get number of
BINCH bri
ricks
100 PRINT
WALLS$::“needs”; OUTPUT bor?;i‘:reqtt‘i’re:umber of
BRKS;“bricks”

Figure 7.7 A flowchart.

This program demonstrates an important point about variables:
a logical order of statements is necessary to get the program to
RUN correctly. That is, first put the values in the variables (IN-
PUT), then perform the computations PROCESS) and PRINT the
results (OUTPUT),

INPUT — PROCESS — OUTPUT

The first five lines of the program contain all of the strings and
numbers that the final answer depends on. These five lines contain
the inputs to your program.

>10 WALLS$ = "South Wall "
>20 LENGTH=5

>30 HGHT =3

>40 BLEN=8.5

>50 BHGHT =2.5

Input and Reading Data 91

Another way to input these five values is to use the READ and
DATA statements of TI BASIC.

READ-DATA STATEMENTS

The READ statement tells the computer to look for a DATA
statement and put what is there into a variable. One advantage of
the READ and DATA statements is that you can assign several
values to several variables in fewer program lines. For instance,
the first five lines of the BRICK IN THE WALL program could be
written in two lines as:

>10 READ WALL$,LENGTH,HGHT,BLEN,
BHGHT
>20 DATA South Wall,5,3,8.5,2.5

After line 10 is executed, the five variables in line 10 will be
assigned the five values in line 20 in order of what is in the two
lines. Thus when the computer reaches the first READ statement
in a BASIC program, that statement tells it to find the first DATA
statement in that program and assign the first value it finds there
tothe first variable in the READ statement it is executing. If there
is another variable in that READ statement, the computer puts
the next value it finds in the DATA statement in that variable,
and so on. Unless you use a special BASIC statement (RESTORE),
the computer will not READ a value in a DATA statement more
than once while it executes a BASIC program. For instance, you
could write your READ-DAT A statements for this program as:

>10 READ WALL$,LENGTH
>20 READ HGHT,BLEN,BHGHT
>30 DATA South Wall,5,3,8.5,2.5

After the computer executes line 10, WALL$ and LENGTH will
have the values South Wall and 5 assigned to them. At this point
the computer puts an invisible marker at the value 3 in the DATA
statement, like a book marker reminds you where you have
stopped reading a novel.

**marker
>30 DATA South Wall,5,3,8.5,2.5

When the computer reaches line 20 where it is told to READ
again, it starts with the value 3 in the DATA statement and
assigns that value to the first variable in the second READ state-

92 Get Personal with Your TI-99/4A

ment (HGHT). It then continues to assign the rest of the values in
the DATA statement to the rest of the variables in that READ
statement, in their order of appearance.

In fact, it really doesn’t matter how many READ or DATA
statements you use to assign values to your variables. It only
matters that the variables and the values are in the correct order
and number. For instance, both of these examples will assign the
right values to the right variables in the program.

>10 READ WALLS$,LENGTH,HGHT,BLEN,
BHGHT

>20 DATA South Wall,5,3

>30 DATA 8.5,2.5

>10 READ WALLS$

>20 READ LENGTH,HGHT,BLEN,BHGHT
>30 DATA South Wall

>40 DATA5,3,8.5,2.5

The correct number means that there must be at least as many
values in the DATA statement as there are variables in the
READ statement. If there are fewer values than variables, the
READ statement tells the computer to READ something that
isn’t there. The computer will not like this. It will complain and
give the error message:

** DATA ERROR

The statement actually executed is the READ statement. You
must be sure these statements are in the proper logical place in
your BASIC program,

DATA statements, on the other hand, are non-executable state-
ments and can be placed anywhere in your program. The DATA
statement is only there as a place to type in the values that you will
be READing. Even though DATA statements can be scattered
throughout the BASIC program, there is a rule of good program-
ming that says to put them at the end of the program. This makes
programs easier for you to read, even if the computer doesn’t care.

>10 READ WALLS$,LENGTH,HGHT,BLEN,
BHGHT
>20 SQFT=LENGTH *HGHT

Input and Reading Data 93

>30 WINCH=SQFT*144

>40 BINCH =BLEN %k BHGHT

>50 BRKS =WINCH/BINCH

>60 PRINT WALLS$:: "needs ";BRKS; “bricks "
>70 DATA South Wall,5,3,8.5,2.5

There are two things to notice about how you type in values
when you use a DATA statement.

>70 DATA South Wall,5,3,8.5,2.5

1. Use commas to tell the computer that one value is separate from
the next value. The last value in the DATA statement is not
followed by a comma.

2. Since commas tell the comptuer where one value stops and
another begins, you need not put quotes around your strings. If
you want leading or trailing spaces in the string, put the
comma, to the left or the right of that string, the correct number
of spaces. If for some reason you want a comma in the string,
then you can enclose the string in quotes.

DATA "South,Wall *,5,3,8.5,2.5

So far you have been able to input values into variables two
different ways. Either way, when you RUN your program, you find
out that it takes 101.6470588 bricks to build a wall five feet long
and three feet high.

But suppose you are not sure just how long or high you want to
build this wall. Suppose instead that you are more concerned about
he fact that you have 247 bricks to use and would really rather
have a wall five feet high and eight feet long. Or, you may consider
building two walls, one on the south side of the hot tub and one next
to the back porch. Actually, you could do a lot of things and are not
really sure what you want to do with your 247 bricks.

INPUTTING A VALUE TO FILL A VARIABLE BASKET

In many cases it is desirable to have a program that allows the
user to INPUT values (strings or numbers) from the keyboard.
This lets you use the same program over and over with different
values each time.

To do this, type an INPUT statement that: 1. tells the user what
type of information to enter (prompts the user), and 2. assigns that
INPUTto an appropriate variable.

94 Get Personal with Your TI-99/4A

INPUT statement put the answer into this variable
wait for an answer

>130 INPUT "Name of wall? ": WALLS$
PRINT this prompt

Figure 7.8 Using the INPUT statement.

When the computer reaches an INPUT statement, it will print
the INPUT prompt on the monitor screen and then wait for you to
type something in from the keyboard. The variable directly follow-
ing the INPUT prompt is the variable basket for what you type.
That is, whatever you type and ENTER, your answer to the
prompt, is put in that variable. After you have ENTERed your
answer, the computer moves on to the next program line and
continues to execute your BASIC program.

Now you are going to change three of the lines in the example
program so you can ENTER, from the keyboard, a new set of values
for the brick wall. By doing this you can ENTER a different set of
values each time you RUN the program. The rest of the program
stays the same as your original example.

>10 INPUT "Name of wall? ":WALL$
>20 INPUT “Length of wall? ":LENGTH
>30 INPUT "Height of wall? “:HGHT

Now when you RUN the program, it starts with an exchange of
messages between you and the computer. What you type in re-
sponse to the prompts gives the computer the information it needs
to compute the number of bricks you will need.

>LIST
10 INPUT "Name of wall? ":WALLS$
20 INPUT "Length of wall? ":LENGTH
30 INPUT "Height of wall? “:HGHT
40 SQFT =LENGTH *HGHT
50 WINCH =SQFT* 144
60 BINCH=BLEN ** BHGHT
70 BRKS = WINCH/BINCH
80 PRINT WALLS$:: "'needs '';BRKS; "bricks "
>RUN :
Name of wall? South Wall
Length of wall? 8

Input and Reading Data 95

Height of wall? 5
South Wall

needs 271.0588235 bricks

You don’t have enough bricks to build the wall eight feet long
and five feet high, but you do have a BASIC program that will let
you INPUT the size walls you are considering, then tell you how
many bricks you need to build them.

Another method of writing an INPUT statement is to precede it
with a prompting PRINT statement and not use the prompt option
of the INPUT statement. In this example, we could type:

The semicolon keeps the INPUT
on the same line as the prompt

>10 PRINT "Nameof wall "';
>20 INPUT WALL$
>RUN

Name of wall?

Figure 7.9 Using the PRINT statement to prompt for input.

Notice that if you use the INPUT statement without its prompt, it
automatically gives you a question mark. Otherwise you need to
include a question mark in the INPUT prompt as you did in the
example program. Note also, when you use the INPUT statement
this way, you do not use the colon before the INPUT variable as
you do when you use the INPUT prompt.

This alternative method of writing INPUT statements is impor-
tant because only one variable can be in an INPUT program line:
the variable into which the user’s answer will go.

There may be times however, when you will want to use a
variable as part of your prompt to the user. For instance, you could
write the first few program lines as:

>10 INPUT "Name of wall? " WALLS$
>20 PRINT WALLS; " Length- "';
>30 INPUT LENGTH
>40 PRINT WALLS; " Height— "';
>50 INPUT HGHT
>RUN

Name of wall? South Wall

South Wall Length—-?5

South Wall Height—-73

86 Get Personal with Your TI-99/4A

. In this example, your prompts use the name of the wall (WALL$)
when asking for the length and height of the wall.

SUMMARY

You should be able to write significant BASIC programs now
that you have been introduced to the use of variables in programs.
With the two types of variables—numeric and string—and the
memory to hold their values, the computer becomes much more
than a calculator; it becomes a precessor of both words and num-
bers.

There are three ways to put values into variable baskets: the
direct assignment (a = 5); the READ-DATA statements (READ
A, DATA 5); and the INPUT statement (INPUT “Enter a
number”:A). Each way accomplishes the same thing, it puts the
value 5 into the variable A, but each of them may be a more
suitable method depending on circumstances or preferences.

For instance, if you were sure of the size wall you were going to
build and were trying to decide which size brick you were going to
buy, you would write the program to INPUT the different size
bricks you are considering and use direct assignment or READ-
-DATA statements for the rest of the information.

To determine cost of the project, you could write a program line
to INPUT various prices per brick and have the computer output
not only the total number of bricks required, but also the total cost
of the bricks.

Ifyou were in business and building brick walls and making bids
on jobs were every day occurances, you could write a program to
consider all of the costs (bricks, mortar, labor, etc.) which would let
you INPUT those values that vary from job to job and would
output an estimate of what you should bid.

The computer’s full processing power will become more apparent
to you as you study the statements and functions of BASIC. With
what you have learned already, you can turn the computer into a
valuable tool.

CHAPTER CHALLENGE

1. What will be the output of this program?
10 A=5
20 B=A+1
30 A=B
40 PRINT A

Input and Reading Data 97

2. What will be the output of this program?
10 A=5
20 A=A+1
30 PRINT A
3. What is wrong with this program?
10 A=5
20 READ ANSWERS$
30 READB,C
40 ANS=A*%C+B
50 PRINT ANSWERS$;ANS
60 DATA 2,4,The answer is
4. What will be the output of this program?
10 A=5
20 READ ANSWERS$
30 READB,C
40 PRINT ANSWER$;A % C+B;
50 DATA The answer is,2,4
5. What will be the output of this program?
10 A=5
20 READ ANSWERS$
30 READB,C
40 ANS=A%C+B
50 PRINT ANSWER$;ANS
60 DATA The answer is,2,4
6. What is wrong with the logical placement of the program lines
in this program?
10 A=5
20 ANS=A*%C+B
30 PRINT ANSWER$;ANS
40 READ ANSWERS$,B,C
50 DATA The answer is,2,4
7. What will be the output of the last program?
8. Batting Averages
Your little league team would like to know the batting
averages for each of its members. A batting average equals the
number of hits each member has had, divided by the oppor-
tunities to get a hit (number of times at the plate minus walks
and sacrifices). This number is then multiplied by one thou-
sand to get the standard expression.
If Bill had been to the place 60 times, had eight walks, three
sacrifices and had 16 hits, Bill would be batting 327 for the
game.

98

Get Personal with Your TI-99/4A

10.

(16/(60 - (8+3)))*1000

Write a BASIC program that will let you INPUT:
the team member’s name;
the number of hits;
how many times that member came to bat;
the number of walks; and
. the number of sacrifices.
The program should PRINT the member’s name and his/her
batting average in the following way:

Batting avg. for Chris—-327
% %k DONE * x

Frb 00 N0

. Remodel the House

You have decided to put new carpets and wallpaper in all of
the rooms in a five room house. To keep the family budget in
line, you are going to remodel one room at a time and need a
program that gives a rough estimate for the cost of remodeling
each room. You have the following information to work with.
1. All of the rooms in the house have eight foot ceilings.

2. The average cost of wallpaper is $0.45 per square foot of
wall.
3. The average cost of carpet is $2.25 per square foot of floor.

Write a BASIC program that will allow you to INPUT the
name of a room, the length of the room and the width of the
room. The program should then PRINT the room’s name, the
number of square feet and cost of both the wallpaper and
carpet needed to finish that room. It should also PRINT the
total cost for remodeling that room.

Gas Dollars

You know that gas mileage for your car is now important,
but what really concerns you is the dollar cost of driving.
Suppose you have three cars in the family. They all use differ-
ent types of gas (at different prices) and are driven different
amounts of miles in a week. You use a credit card, 1.5%
interest per month, to charge all of your gas.

How much a month is it going to cost you to pay for the gas to
drive each car. You have not figured the gas mileage for these
cars yet so, write a BASIC program that will let you INPUT:
1. beginning mileage;

2. ending mileage;
3. gallonsto fill the tank;

Input and Reading Data 29

11.

4. cost per gallon of gas; and
5. estimated miles per week you will be driving.
The program should PRINT the gas mileage figure and the
estimated cost of driving that car for one month (including
interest). There are 4.3 weeks in a standard month.
Ham and Tuna Sandwiches

Thirty-five couples have been invited to a lawn party. Ham
sandwiches and tuna sandwiches are going to be served. The
portion and price figures for the ingredients of these sand-
wiches is given below.

Table 7.1 Portions and prices of ham and tuna sandwiches.

Ham Tuna
Sandwich Sandwich Cost
Ham 3 ounces - $0.15/0z.
Tuna - 2 ounces $0.20/0z.
Bread 2 pieces 2 pieces $010/pc.
Mayonnaise % ounce 1 ounce $0.05/0z.
Mustard % ounce - $0.08/0z.
Pickles - 1 ounce $0.07/0z.

Write a BASIC program that uses READ-DATA state-
ments to input these portion and price figures and allows the
user to INPUT:

1. apredicted percentage of couples attending;

2. an estimated number of sandwiches needed for each cou-

ple; and

3. an estimate of the percentage of sandwiches that will

need to be ham sandwiches.
The program should then PRINT the total quantity of each
ingredient needed to make the sandwiches and the total cost of
making them.

ANSWERS

1
2

3.

. 6 (The variable A takes a new value in line 30.)

. 6 (Line20canberead as“A takes the value of itself plus one”)
The computer will give an error message when it tries to
READ “The answer is” into the variable C.

The answer is 14. (You can PRINT the answer to numeric
expressions that use variables.)

The answer is 14.

100 Get Personal with Your TI-99/4A

6. The READ statement should be before line 20. Otherwise the
computer is instructed to perform computations and output
with variables that have not been assigned values yet.

7.0

8. Batting Averages
>10 CALL CLEAR
>20 INPUT "Name? ":MEMB$
>30 INPUT "Hits? '":HITS
>40 INPUT ‘“'Times at bat? ":UPS
>50 INPUT "“Walks? ":WALKS
>60 INPUT "'Sacrifices? ":SACS
>70 CHANCES = UPS -(WALKS+SACS)
>80 AVG=HITS/CHANCES)*1000
>90 CALL CLEAR
>100 PRINT ''Batting avg. ":MEMBS$; " - ';INT(AVG+.5)
>RUN
[screen clears]

Name ? Chris
Hits ? 16

Times at bat ? 60
Walks ? 8
Sacrifices ? 3
[screen clears]
Batting avg.

Chris-327

% % DONE % 3x

9. Remodel the House
>10 CALL CLEAR
>20 HGHT =8
>30 PAPER = .45
>40 RUG=2.25
>50 INPUT "Name ofroom? ':RM$
>60 INPUT ‘'Lengthinfeet? '":LGNTH
>70 INPUT "Width infeet? ":WDTH
>80 FLOORSQFT =LGNTH *x WDTH
>90 WALLSQFT =(LGNTH+WDTH)*x HGHT 2
>100 CALL CLEAR
>110 PRINT “:ksksk ';RMS; " ksksk "
>120 PRINT "'Wall Paper— ";WALLSQFT; "'Square feet "
>130 PRINT TAB(12);INT(PAPER * WALLSQFT);
“dollars "'::

Input and Reading Data 101

>140 PRINT 'Carpet - ";FLOORSQFT; "Square feet "
>150 PRINT TAB(12);INT(RUG ** FLOORSQFT); "'dollars
>RUN

[screen clears])

Name of room ? 2nd Bedroom

Length in feet ? 17

Width in feet ? 14

[screen clears]

% % %k 2nd Bedroom % %

Wall paper—496 Square feet
223 dollars

Carpet —238 Square feet
535 dollars

* % DONE * *
10. Gas Dollars
>10 CALL CLEAR
>20 INPUT ''Beginning mileage ? ":BMILE
>30 INPUT "Ending mileage ? ":EMILE
>40 INPUT "‘Gallons tofill? *":GALS
>50 INPUT "Cost of gas/gallon ? ":GASCOST
>60 INPUT ‘'Miles/week will drive ? '‘:MILES
>70 MPG=(EMILE - BMILE)/GALS
>80 MONTHCOST =((MILES:*k4.3)/MPGQG):* GASCOST)*

1.015
>80 CALL CLEAR
>100 PRINT - *%kk GAS kkx "
>110 PRINT ''*x %% MILEAGE/MONTHLY
COST *ksk*x "u

>120 PRINT INT(MPG *100)/100; "‘Miles per gallon '':

>130 PRINT $ ";INT(MONTHCOST *100)/100; ‘'Monthly
gasbill "

>RUN

{screen clears]

Beginning mileage ? 347

Ending mileage ? 544

Gallons tofill ? 13.2

Cost of gas/gallon ? 1.13

Miles/week will drive ? 220

[screen clears]

*%kk GAS k%%

102 Get Personal with Your TI-99/4A

% %% MILEAGE/MONTHLY COST k%%
14.92 Miles per gallon

$ 72.7 Monthly gas bill

* *x DONE 3 3k

11. Ham and Tuna Sandwiches
(Note: program sections are labeled to help reading.)
>5 CALL CLEAR
input values
>10 PAIRS=35
>20 READ HAM,HBRD,HMAYO,HMUST
>30 READ TUNA,TBRD,TMAYO,TPICK
>40 READ HAMCST,TUNACST,BRDCST,MAYOCST
MUSTCST,PICKCST

>70 INPUT *Attendance % ? ':PER

>80 INPUT ‘'Sandwiches per couple ? ":SANDS

>90 INPUT "Ham sandwich % ? ":HPER

compute number of sandwiches

>100 TOTALSANDS =PAIRS % PER * SANDS

>110 HAMS =INT(TOTALSANDS } HPER)

>120 TUNAS =INT(TOTALSANDS - HAMS)

compute total cost

>50 HSAND=HAM*HAMCST+HBRD * BRDCST +
HMAY *MAYOCST+HMUST % MUSTCST

>60 TSAND =TUNA *TUNACST+TBRD % BRDCST +
TMAYO*MAYOCST+TPICK % PICKCST

>130 TOTALCST=HAMS*HSAND+ TUNAS* TSAND

compute total portions

>140 TOTHAM =HAM *xHAMS

>150 TOTTUNA =TUNA *TUNAS

>160 TOTBRD = HBRD % HAMS+TBRD % TUNAS

>170 TOTMAYO =HMAYO*HMAS+TMAYO %TUNAS

>180 TOTMUST = HUMST x HAMS

>190 TOTPICK =TPICK *kTUNAS

output the answers

>195 CALL CLEAR

>200 PRINT "*k*% PARTYSANDWICHES k:3k:% :

>210 PRINT HAMS; "Ham sandwiches '':

>220 PRINT TUNAS; “'Tuna sandwiches '':;

>230 PRINT *

’

Input and Reading Data 103

>240 PRINT '"Ham ",TOTHAM;TAB(22); "ounces "
>250 PRINT "Tuna ",TOTTUNA;TAB(22); "ounces '
>260 PRINT “Bread ",TOTBRD;TAB(22); "pieces "
>270 PRINT '"Mayonaise *",TOTMAYO;TAB(22); "ounces "
>280 PRINT “Mustard ", TOTMUST;TAB(22); "‘ounces '
>290 PRINT ‘Pickles ", TOTPICK;TAB(22); "'ounces "::
>300 PRINT “TOTAL COST-$ ";TOTALCST

data

>310 DATA3,2,5,.5

>320 DATA2,2,1,.5

>330 DATA .15,.2,.1,.05,.08,.07

>RUN

screen clears

Attendance % ? .75

Sandwiches per couple ? 3

Ham sandwich % ? .65

screen clears

%k %k Party Sandwiches % %k

51 Ham sandwiches

27 Tuna sandwiches
Ham 153 ounces
Tuna 54 ounces
Bread 156 pieces
Mayonaise 52.5 ounces
Mustard 52.5 ounces
Pickles 13.5 ounces

TOTAL COST-$ 51.055
* *k DONE % *

104

Get Personal with Your TT-99/4A

Chapter 8

Program Branching and
Loop Structures

Instructions of assignment, one of the three fundamentals of
computer programs, was discussed in the preceeding chapter.
Along with the other two fundamentals, condition and iteration,
you begin to realize the full processing power of the TI-99/4A.

As the power of the programs increases, so does the difficulty in
reading the program LISTings. Such techniques as using longer
variable names are useful to help remember what they are hold-
ing. Keeping track of what value is in what variable is by far the
most challenging aspect of using program variables. A technique
of program documentation is the REM statement.

REM STATEMENTS

REM statements are the way you write notes to yourself within
the program. First type in the line number then REM, which
stands for remark. After REM you can type anything you want.
REM tells the computer to ignore what is on that line; it is not an
instruction but simply a note to yourself.

100 REM Program Name—Home Budget

180 REM Input the dollar values

250 REM Compute avg. car expense

106 Get Personal with Your TI-99/4A

520 REM This is the output section

and so on

As your programs become longer and more complicated, you
may want to include REM statements to remind yourself what the
program is doing at that particular point. As the example pro-
grams progress, you will use them frequently.

PROGRAM BRANCHING

A program branch instructs the computer to alter its normal
sequence of excecuting program lines one after another by telling
it to GO TO another line number and continue from there. In its
simplest form, the GO TO statement (which may be typed as either
GO TO or GOTO) is used to create what is called an unconditional
branch.

The GOTO statement The line number to GO TO

>60 GOTO 120
Figure 8.1 An unconditional branch.

When the computer reaches line 60, it will unconditionally GO TO
line 120 and continue executing the BASIC program from there. It
will skip over any lines between lines 60 and 120.

The only reason this is known as an unconditional branch is the
fact that you can also have what is known as a conditional branch.
You can tell the computer that IF a certain condition is true,
THEN go to another line number.

The line number to go to

The condition \ "
>60 IF A=5THEN 120

Figure 8.2 A conditional branch.

The IF-THEN statement gives the computer the ability to
decide if it should go to another line number or not. This statement
works by setting up a condition: IF the condition is met (is true),
THEN the computer is instructed to go to another line number.
Otherwise (in this case if A does not equal 5), the computer moves

Branching and Loop Structures 107

on as it would normally and executes the next line in the program.
Notice that the GOTO is implied in an IF-THEN statement and
that the statement is madeup of two words separated by the condi-
tion that you want to check.

The key to using IF-THEN statements in the BASIC programs
is the type of conditions that you may use. These conditions almost
always involve at least one variable and are typed in using the
standard signs:

< lessthan
> greater than
=equal to

Relational Operators

The signs <, >,= are known as relational operators since they
describe a relationship (less than, greater than, or equal to). The
following is a list of all the possible relationships that the variable
A can have with the number 5 and shows how you can type in those
conditions.

IFA<5 IfAislessthan5

IFA< =5 IfAislessthanorequaltob

IFA=5 If A equals 5

IFA<>5 If Aislessthan or greater than 5 (not
equal)

IFA=>5 IfAisequaltoorgreater than5

IFA>5 If A is greater than 5

All of these possible relationships apply to string variables and
literals as well. For instance,

IF ANS$ = "YES “ THEN 300

is a perfectly valid expression in BASIC. The ability to compare
strings is how the computer can alphabetize lists of names, etc., or
check to see (asin this case) if a user INPUT is a particular answer,

IF ANS$ = "YES"

It is interesting to note how the computer views a condition in an
IF-THEN statement. IF the condition is met (is true) then the
computer assigns the value 1 to that condition. If the condition is
not met (is not true) then the computer assigns the value zero to
that condition.

108 Get Personal with Your TI-99/4A

The computer then checks to see if the value for that condition is
something other than zero (0 = not true). Only if the value is some-
thing other than zero will the computer continue to the next part of
the IF-THEN statement: GO TO a line number. If the value is
zero then the computer ignores the GO TO instruction and moves
on to execute the next line in that program.

This means you can check two or more conditions at the same
time by either multiplying or adding the values that the computer
assigns to each condition in an IF-THEN statement.

Logical Operators
Logical operators test two or more conditions at the same time.
The two logical operators you will use are and and or.

IF A>B and C =D THEN [line number]
IF A<Cor B=ATHEN [line number]

You cannot use the words and or or in a program line, but you
can accomplish the same thing with the mathematical operations
* (multiplication) and + (addition).

IF(A >B)*(C =D) THEN [line number]
IF (A<C)+(B =A) THEN [line number]

IF Condition and Condition
Suppose that: A=6,B=4,C=7,D="7.

This condition is true, its value is 1

IF (A>B)*(C =D) THEN [line number]

This condition is true, its value is 1

1 times 1 equals 1 (true), the condition is met and the computer
goes to the line number stated after the THEN part of this
IF-THEN statement.

If either of the conditions in this and example had been false,
that is had the value 0, the answer to (Condition*kCondition)
would have been false, i.e.,1%k0=0and 0%k 1=0.

Only if both conditions, Condition 1 and Condition 2 are true
(equal to 1) does the computer go to the stated line number.

Branching and Loop Structures 109

IF Condition or Condition
Suppose again that: A=6,B=4,C=7,D="7.

This conditigl is true, its valueis 1
IF (A <C)+(B = A) THEN {line number]
This condition is not true, its value is 0

1 plus 0 equals 1 (true) and the computer goes to the line number
stated in the IF-THEN statement.

If either condition 1 or Condition 2 are true (have the value 1),
adding them together results in a value greater than zero and the

- computer goes to the stated line number.

Only if both conditions are false (0+0) will the computer ignore
the GO TO instruction in the IF-THEN statement and move to
the next line in your BASIC program.

PROGRAMS FOR MANY USERS

There are times when you want BASIC programs to handle a
variety of computations or processes, depending on the particular
circumstances. When this is the case, you can write programs to
ask the users questions about the situation, and based on their
answers, branch your program to the appropriate computations or
processes for that user.

For example, you write a program that will PRINT out the ideal
body weight for a person to have. Ideal body weight may depend on
three things: the person’s height, sex, and frame. If the program is
to work it needs tobe able to branch to the computation that fits the
individual person.

When you reach this level of sophistication in the BASIC pro-
grams, you flowchart the program before you type it in. The follow-
ing flowchart describes the BASIC program you are about to write.

Begin the program by asking for the person’s height, then ask if
they are male or female.

>100 INPUT "Your height in inches? “:HGHT
>110 INPUT "(M)ale or (F)emale? ":SEX$

So far, the user is expected to first type and enter their height in
inches and then enter either an M for male or an F for female (a
string value). Now use your first IF-THEN statement to begin
branching to the appropriate places:

110 Get Personal with Your TI-99/4A

>120 IF SEX$="M" THEN 270

If the user does not enter an M in line 110, the computer will not
go to line 270. This means you can write the next line (130) with the
assumption that the user is a female. Actually, you will write

several lines to set up the next branches, different frame sizes for
females.

>130 PRINT " Female Frame Size

>140 PRINT “— — - — e "
>150 PRINT " 1) Large "
>160 PRINT " 9) Medium *
>170 PRINT " 3) Small

>180 INPUT "Enter the correct number " FRAME

Conceptually, the program branches look something like this:

Male or Female?
v ? Frame?
Lg.? Med? Sm.? Lg.? Med ? Sm ?
Ans. Ans. Ans. A
\ I | T
Output the Correct Answer

Figure 8.3 A branching model.

At this point, a female should type in the number 1, 2, or 3. Based
on what number she enters, the program branches to the right
computation for her.

>190 IF FRAME =2 THEN 230
>200 IF FRAME =3 THEN 250

Branching and Loop Structures 111

>210 WEIGHT =HGHT % 1.95
>220 GOTO 400
>230 WEIGHT =HGHT %1.70
>240 GOTO 400
>250 WEIGHT =HGHT *1.55
>260 GOTO 400

Immediately after doing the correct computation and putting
the answer in the variable basket WEIGHT, you will branch again
(GOTO 400), sending the computer to the PRINT statement that
tells the user his/her ideal weight. At line 400 you will have the
statement:

>400 PRINT “Your ideal weight is ";WEIGHT

What if the user is a male? Remember that you sent the com-
puter to line 270 if the INPUT SEX$ = “M”. Start at line 270 then
and do the same type of thing you did for the female computations.
The finished program looks like this: -

>90 REM PROGRAM IDEAL WEIGHT

>100 INPUT "Your height in inches? “:HGHT
>110 INPUT "(M)ale or (F)emale? “:SEX$
>120 IF SEX$ = "M " THEN 270

>130 PRINT “ Female Frame Size *

>I40PRINT "———— - — e __ "
>150 PRINT * 1) Large "
>160 PRINT * 2) Medium "
>170 PRINT " 3) Small

>180 INPUT "Enter the correct number “:FRAME
>190 IF FRAME =2 THEN 230

>200 IF FRAME =3 THEN 250

>210 WEIGHT =HGHT *1.95

>220 GOTO 400

>230 WEIGHT =HGHT *1.70

>240 GOTO 400

>250 WEIGHT =HGHT *1.55

>260 GOTO 400

>270 PRINT * Male Frame Size

>280 PRINT "— — —— — —— . __ .
>290 PRINT " 1) Large -
>300 PRINT * 2) Medium

>310 PRINT " 3) Small "

>320 INPUT "Enter the correct number ":FRAME

112 Get Personal with Your TI-99/4A

INPUT Height in inches

INPUT Sex

.2Issexmale?

INPUT Frame (Female)

? Is frame medium ?

?Is frame small ?

Compute large WEIGHT

Compute medium WEIGHT

_{:' Compute small WEIGHT

INPUT Frame (Male)

? Is frame medium ?

? Is frame small ?

Compute large WEIGHT

\
Compute medium WEIGHT \\

‘ __C Compute small WEIGHT
o ' Output "ideal " weight

Figure 8.4 A flowchart for an ideal-weight program.

Branching and Loop Structures 113

>330 IF FRAME =2 THEN 370

>340 IF FRAME =3 THEN 390

>350 WEIGHT =HGHT *%3.20

>360 GOTO 400

>370 WEIGHT =HGHT %2.75

>380 GOTO 400

>390 WEIGHT = HGHT *2.25

>400 PRINT “Your ideal weight is "; WEIGHT

Note: A capital letter has a different value than the same letter
in lower case. If you want you program to recognize M or m in line
120, type:

>120 IF (SEX$ = "M ")+(SEX$= "m ") THEN 270

This sample program illustrates a more subtle lesson about
computer programming.

GIGO stands for Garbage In, Garbage Out. It refers to the fact
that computers depend on correct input to give correct output. If
you entered height as a negative two inches (-2), sex as Z and
frame as 17, by the instructions in your program the computer
would assume that the user was female and her frame was large. It
would then output:

Your ideal weight is -3.9
* * DONE * %

To avoid this problem of GIGO, have your programs PRINT out
the INPUTSs with which it is working, when it provides its final
answers. For instance, you can include a few lines in the BASIC
program for the following final output:

HEIGHT =68

SEX=F
FRAME =2

Your ideal weight is 115.6
% *k DONE * %

On the other hand, there is the little known acronym, GAG
which stands for Garbage, All Garbage. This occurs when the
assumptions built into the program are incorrect or not understood
by the user.

114 Get Personal with Your TI-99/4A

The example program, Ideal Weight demonstrates the idea of
branching a program. Very few medical experts would recommend
that you pay any attention to this program’s output. Aside from the
fact that many experts don’t believe there is such a thing as ideal
weight by height, sex, and frame, there is also the fact that the
figures by which you multiply HEIGHT to get WEIGHT were
made up. There is absolutely no scientific basis for the answers this
program comes up with.

Even though you improve the program’s reliability and reduce
the chance of GIGO, there is no way to overcome the program’s lack
of validity and its output is Garbage All Garbage regardless of the
INPUTs.

Far too many people are willing to change their lifestyles or
their behavior in some way because the computer produced a
report. Remember that the program produced the report and that
the program is only as good as the programmer’s ability or inten-
tions.

LOOP STRUCTURES

You have heard of loops as something a computer program does.
A loop instructs the computer to repeat the execution of one or
more instructions already executed. To do this, it uses statements
that branch backwards in the program. The fundamental of itera-
tion, mentioned previously, refers directly to loops in the BASIC
programs.

Loops combine variables with a process, using new values in the
variable baskets, each time the process is repeated. The following
example program demonstrates a simple loop.

>10 PRINT X;
>20 X=X+1
>30 GOTO 10

There are a total of three lines in this program. The last one, line
30, instructs the computer to GOTO line 10. This instruction sets
up a loop that keeps the computer executing the program until you
either turn off the machine or interrupt execution with the FCTN 4
keys. For this reason, it is known as an endless loop.

As the computer begins to execute this short program, it starts
with line 10. Here it is told to PRINT the value in the variable
basket X. Since the variable has not been assigned a value yet, it
automatically holds the value of zero. So the computer will print
zero. The semicolon at the end of the PRINT statement tells the

Branching and Loop Structures 115

computer to stay on the same line to PRINT the next thing it is
told to PRINT.

The computer is finished with line 10 so it moves to line 20. This
line instructs the computer to assign a new value to X: the value it
already has, plus one. In other words, the variable X is to take a
new value, the value of itself plus one. The value assigned to X is
nowone (X=0+1).

The computer is finished with line 20 so it moves to line 30 which
simply tells the computer to GOTO line 10, which it does. Arriving
atline 10, the computer is instructed to PRINT the value assigned
to X which is now one.

The net effect of running this program is to have the computer
PRINT every whole number from one to infinity (or at least until
it reaches a very large number). That is, the computer is instructed
to print X, increase X, print X, increase X, and so on. The variable
X is used as what is commonly called a counter variable. For all
practical purposes, it counts the number of times the loop is com-
pleted. You can begin to appreciate the potential power of iteration
when you consider that three lines of program generate, essen-
tially, an infinite amount of output in this simple example.

This type of endless loop is not very practical. For programming
purposes, you need to control the number of times a loop is ex-
ecuted. One way to do this is to include a condition statement
inside the lgop. The following uses an IF-THEN and GOTO
statement to tell the computer to leave the loop when the value in
X is greater than 25.

>10 PRINT X;

>20 X=X+1

>25 IF X>25THEN 40

>30 GOTO 10

>40 END

>

>RUN
0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

* % DONE * *

The END statement tells the computer it is through executing

the program. It is not always necessary, but including it in your
programs is generally considered to be good form.

116 Get Personal with Your TI-99/4A

Another way of accomplishing the same thing is to write the
program using an IF-THEN statement as the instruction that
starts and stops the loop.

>10 PRINT Z;

>20 Z=Z+1

>30 IFZ<26 THEN 10

>40 END

>

>RUN
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

% % DONE * *

In either case, you use a GO TO instruction to establish a loop, a
counter variable to keep track of how many times the loop is
executed and a condition statement to stop execution of the loop.

There is another way to set up loops within the BASIC program.
It is fundamentally the same as the loops you have just covered. it
too uses a value held in a counter variable as the key to starting
and stopping the loop, and, it uses a type of condition statement to
monitor that variable during the loop’s execution. The difference is
mostly in its readability and shorthand type format.

THE FOR-NEXT LOOP

FOR-NEXT Example Explanation
>10 FORX=0TO25 >10 StartXat0andend
the loop when X =25

>20 PRINT X >20 Print the valuein X

>30 NEXT X >30 Addoneto X.If X is
less than or equal to 25,
THEN GOTO line 20.
Otherwise continue on to
line 40

>40 END

In this type of loop a statement at the beginning sets the number
of times the loop will be completed. It uses a counter variable, like
the X=X+1 in the GOTO loop; but this counter is assigned its
beginning value in the FOR statement and is increased by one at

Branching and Loop Structures 117

the NEXT statement. The condition statement is hidden in both
the FOR and the NEXT statements. The FOR statement sets the
limit for the variable, then the NEXT statement makes com-
parisons to see if that variable is over its limit.

The FOR statement can also set how much X is increased when
the computer reaches the NEXT statement. When you want X to
increase by a number other than 1, add STEP [the number] to the
FOR statement as follows:

>10 FORX=0TO 25 STEP 5
>20 - PRINTX;

>30 NEXT X

>40 END

Since X is increased by five rather than by one each time the loopis
executed, the results of RUNing this program would be:

>RUN
0 5 10 15 20 25

* % DONE % *

You can count the values in X backwards. The following shows
how you could change this program to start X with the value of 25,
decrease it by five each time through the loop and stop when X is
less than zero.

>10 FORX=25TO 0 STEP -5
>20 PRINT X;
>30 NEXT X
>40 END
>
>RUN
25 20 15 10 5 0

* %k DONE * %

Nested Loops

Nested loops are loops within loops. You can use nested loops to
repeat a loop with a new set of variables for it to work on. One of the
more popular forms of nested loops are nested FOR~-NEXT loops.
A simple example shows the mechanics of how a nested loop is
executed by the computer.

>100 FORX=1TO 3
>110 FORY=1TO5

118 : Get Personal with Your TI-99/4A

>120 PRINT X*Y;
>130 NEXT Y
>140 PRINT ‘iteration X::
>150 NEXT X
>RUN
1 2 3 4 5 iteration 1

2 4 6 8 10 iteration 2
3 6 9 12 15 iteration 3
% % DONE *

The inside loop is this:
>110 FORY=1TO5
>120 PRINT X *kY;

>130 NEXTY

It PRINTSs X * Y five times and is repeated three times by the
outside loop:

>100 FORX=1TO3

>110

>120

>130

>140 PRINT “iteration";X::
>150 NEXT X

Output for the inside loop (PRINTX * Y); changes as the counter
variables change while the loops are being executed.

>RUN
1 2 3 4 5 iteration 1

2 4 6 8 10 iteration 2
3 6 9 12 15 iteration 3
% % DONE * %

As the inside loop FOR Y = 1 TO 5) is executed, Y will take the
value one through five, and the inside loop is executed three times
by the outside loop (FOR X =1 TO 3). Since X takes a new value at
each iteration of the outside loop, output (X *Y) will change each
time the outside loop loops. The value of X changes as the output of
the outside loop (PRINT “iteration”;X::) is executed.

Branching and Loop Structures 119

INPUT How many problems

INPUT First number

INPUT Second number
Compute CORRECT answer
INPUT Junior’'s ANS
SORRY JUNIOR
TRY AGAIN

?1s ANS = CORRECT?

?1sTRYS =
% % % GOOD JOB JUNIOR!
% %k %k (##) IS CORRECT! % % %
Let'stry output
another
problem

= ? Are problems all done ?

END

Figure 8.5 A flowchart for a math problems program.

120 Get Personal with Your TI-99/4A

Here’s how you could write a BASIC program using nested loops
to help a friend with his homework.

Homework Helper

Junior is learning his multiplication tables at school. He said
that his teacher sent him home with a whole page of problems to
complete. Since Junior isn’t the “brightest light on the porch”
when it comes to math, write a BASIC program to help him with
the problems.

You are going to write a program that will start by asking Junior
how many problems he has to work. Then you are going to write a
program that gives Junior three chances to answer each problem.
If he gets the answer right, then the program will ask Junior for
the next two numbers he has to multiply.

90 REM Homework Helper
100 INPUT "How many problems Jr.? “: PROBS
110 FOR X=1TO PROBS
120 TRYS=0
130 INPUT " First number ? “: A
140 INPUT " Second number ? “: B
150 CORRECT=A*B

160 PRINT "What is the answer to "

170 PRINT A; “times ";B;

180 INPUT ANS

190 IF ANS=CORRECT THEN 250

200 TRYS=TRYS+1

210 IF TRYS =3 THEN 270

220 PRINT "SORRY JUNIOR *

230 PRINT "TRY AGAIN"

240 GOTO 160

250 PRINT "**x:* GOOD JOBJUNIOR
1 okkk”

260 PRINT " * % % “;ANS; "IS CORRECT
1 skkk”

270 CALL CLEAR
280 PRINT "Let’s try another problem "
290 NEXT X

First have Junior enter the number of problems he brought
home. Put this number in the variable PROBS. Note: Use the
variable PROBS to set the limit on how many times the outside

Branching and Loop Structures 121

loop is executed. This means that you can use the same program to
do 10 or 15 or any number of homework problems.

TRYS is the counter variable for your IF-THEN loop (the inside
loop). This is the variable that lets Junior have up to three TRYS to
get the correct ANS. Since TRYS counts for your inside loop
(TRYS=TRYS+1), set it back to zero each time you execute that
loop. Otherwise, Junior would only get three incorrect TRYS for
the whole set of problems.

You can exit the inside loop in two ways, either Junior gets the
right answer, or he uses up his TRYS (line 190 or line 210). Either
way, the program will end up on NEXT X where the computer
checks to see if the outside loop has been executed PROBS times.
That is, if PROBS = 1 then once, if PROBS =2 then twice, etc. If the
outside loop has not been executed PROBS times, Junior starts all
over again by entering two new numbers to multiply.

SUMMARY

Branching and loops can become quite complicated. Multiple
branches and loops within loops are common in programming. A
beginning programmer will need practice before program branch-
ing and loop structure become second nature.

All of the loops in this section had indented lines to show at a
glance where the loop began and ended. This is a form of documen-
tation and has nothing to do with how the program executes. In
fact, the spaces in front of a program line typed on the TI-99/4A
are automatically erased when that line is LISTed.

Note: Program branches and loops are a powerful means to
instruct the computer. Also, variables are the key to efficient use of
branches and loops in the BASIC programs.

This completes the introduction of the three fundamentals of
program execution—assignment, condition, and iteration. By now,
you should be getting a feel for the nature of programming. There
are many ways to combine instructions; but, you must follow a
particular structure. This is a logical structure, and as long as you
stay within the structure, what you can do with your program
instructions is limited only by your imagination.

CHAPTER CHALLENGE

1. What will be the output of this program?
>10 X=5

122 Get Personal with Your TI-99/4A

>20 Y=3
>30 GOTO 50
>40 PRINT "HELLO ";
>50 PRINT X*Y
>60 END
2. What will be the output of this program?
>10 A$= "TEST1 "
>20 IF A$ = "TEST2 " THEN 60
>30 PRINT A$
>40 A$= "TEST2 "
>50 GOTO20
>60 PRINT A$
>70 END
3. What will be the output of this program?
>10 PRINT X;
>20 IFX*X=81THEN 50
>30 X=X+1
>40 GOTO 10
>50 END
4. What will be the output of this program?
>10 IF NUMB =9999 THEN 80
>20 READ NUMB
>30 IF NUMB <20 THEN 50
>40 GOTO 10
>50 PRINT NUMB;
>60 GOTO 10
>70 DATA 15,35,12,66,22,13,7,9999
>80 END
5. Border Bucks
When you perform conversions such as feet to inches, gallons
to liters, weeks to day, etc., it is often desirable to be able to
perform those conversions both ways. One such conversion
might be the exchange of Canadian dollars for American
dollars.
Every day you find an exchange rate listed in the newspaper
for these two currencies. This rate is listed as the portion of a
Canadian dollar that is equal to one American dollar. Your
conversions then, would be computed as follows:

Canadian to American American to Canadian
Can$ *krate Amer$ *(1/rate)

Branching and Loop Structures 123

If, for example you wanted to convert 500 American dollars to
Canadian dollars at an exchange rate of .82375, your equation
would be:

500:(1/.82375)

and your answer would be $606.98 Canadian dollars.

Write a BASIC program that lets the user INPUT which conver-
sion is desired and the amount of currency being converted along
with the most recent exchange rate. The program should then
output the amount after conversion.

6. Miles vs Mouth

You should all know that your weight is a matter of the
calories you take in and the calories you burn off. If they are the
same, your weight stays the same.

Suppose that jogging is your way to keep your calorie intake/
burn off at a desirable level and that you know that one mile of
jogging burns off 85 calories.

What you want is a BASIC program that will tell you 1. how
many miles you need to run to burn off INPUT X number of
calories; or 2. how many calories you will burn off by running
INPUT M number of miles.

Write a program that allows the user to INPUT which com-
putation is desired then INPUT the appropriate numbers. The
program should output the answer with a simple word of en-
couragement.

7. Travel Expense
Suppose you have two cars, an older Pontiac that runs on
regular gas at 17 miles to the gallon and a newer Mercury
station wagon that gets 11 miles to the gallon with unleaded
regular, or 13 miles to the gallon with unleaded supreme gas.
You want to have a program that will tell you how much the gas
will cost for various trips you are planning. You know that this
will depend on which car you plan to take and what type of gas
you plan to use if you are planning on taking the Mercury.
Write a BASIC program that lets the user INPUT:
1. the length of the trip in miles;
2. the car being taken;
3. if the car is the Mercury, then what type of gas will be
bought; and
4. the price of the type of gas for the car being taken.

124 Get Personal with Your TI-99/4A

The program should then OUTPUT the amount of money it will
cost to buy gas for the trip.
8. More Junior

You are still having problems with Junior. His teacher sent
home a note to express her concern that, although Junior got all
the problems on his homework assignment correct, he failed to
pass a test on the subject the very next day. Evidently, Junior
figured that he could RUN the program you wrote for him over
and over until he had guessed all the correct answers. But you
are not discouraged!

Write a BASIC program that will generate RANDOM num-
bers between one and 10, and that uses two of those numbers at
a time to set up multiplication problems for Junior to solve.
Write the program so that it sots up 10 problems and keeps
track of how many times Junior answered correctly and how
many times he answered incorrectly.

If Junior gets anything less than 90 percent correct answers,
i.e., nine out of 10 correct, the program should set up another 10
problems. When he does get over 90 percent, the program
should PRINT out a message telling Junior where you hid a
bag of his favorite candy for him.

P.S. Just hope Junior doesn't figure out how to LIST a pro-

gram.
Answers

1. 156 The program skips over line 40 PRINT "HELLO "
2. TEST1
TEST2
The order that the computer will execute this program is (by
line number): 10, 20, 30, 40, 50, 20, 60, 70
301 2 3 456176 89
When X*X equals 81 (X =9), the condition is met and the
computer will go to line 50.
4.15 12 13 7
NUMB has a new value put in it each time the comptuer is
instructed to READ NUMB. That value is then checked with a
condition and PRINTed if it is less than 20. The first condition
IF NUMB = 9999 is placed there to stop the computer when it
runs out of DATA. This is often referred to as using a sentinel or
a flag and means that you have placed an unusual value at the
end of your DATA statement as a way to tell the computer it
has reached the end of the DATA.

Branching and Loop Structures 125

5. Border Bucks
>10 CALL CLEAR
>20 PRINT " * k EXCHANGE AMOUNTS %k % "::
>30 PRINT " 1) American to Canadian "::
>40 PRINT " 2) Canadian to American "::
>50 INPUT " Number of your choice ? ":A
>60 PRINT :: "Current exchangerate ? :RATE
>70 CALLL CLEAR
>80 IF A'=1THEN 150
>90 PRINT "CANADIAN FOR AMERICAN "::
>100 INPUT " $ Amount Canadian ? ": CAN
>110 ANS=INT(CAN *RATE % 100)/100
>120 PRINT $;CAN; "Canadian"::" is”
>130 PRINT "$";ANS; “"American "::
>140 GOTO 200
>150 PRINT " AMERICAN FOR CANADIAN ":
>160 INPUT " $ Amount American? ": USA
>170 ANS=INT(USA *(1/RATE)*100)/100
>180 PRINT "$ ";USA;"American"::" is”
>190 PRINT "$ “;ANS "Canadian ":::
>200 END

6. Miles vs Mouth
>10 CALL CLEAR
>20 PRINT " CALORIE CONTROL::
>30 PRINT " 1) Miles into Calories "::TAB(10); "or ":
>40 PRINT " 2) Calories into Miles ":::
>50 INPUT " Whichone(lor2)? ":A
>60 CALL CLEAR
>70 IFA=2THEN 110
>80 INPUT "Number of miles ? “:MILES .
>90 PRINT MILES; “miles burns “:MILES % 85; “calories ":::
>100 GOTO 130
3110 INPUT "Number of calories ":CALS
>120 PRINT INT(CALS/85); "miles burns ";CALS;

“calories “:::

>130 PRINT "k %k %k Keep on jogging % % % *
>140 END

7. Travel Expense
>10 CALL CLEAR
>20 PRINT "< < < TRIPPLANNER > > > “:::
>30 INPUT "Miles togo ? ":MILES
>40 INPUT "(P)ontiac or M)ercury ":CAR$

126 Get Personal with Your TI-99/4A

>50 CALL CLEAR
>60 IF (CAR$="M")+(CAR$= "m") THEN 100
>70 INPUT "Price of regular gas ":GASP
>80 PRINT :"$ ";INT((MILES/17)% GASP); "dollars for the
trip "
>90 GOTO 180
>100 INPUT "(R)egular or (Sjupreme ":TYPE$
>110 IF(TYPE$ = "S")+TYPE$ = "s ") THEN 120
>120 INPUT "Price of reg. unleaded ":GASP *
>130 PRINT :: "$ ", INT((MILES/11) % GASP); "dollars for
the trip "
>140 GOTO 180
>150 INPUT "Price of super unleaded “:GASP
>160 PRINT ::"$ ";INT((MILES/13) GASP); "dollars for
the trip "
>170 PRINT : * Drive carefully "
>180 END
8. More Junior
>10 RANDOMIZE
>20 CALL CLEAR
>30 PRINT " GETSET
>40 PRINT " GETREADY "
>50 PRINT "GO "
>60 FORPAUSE =1TO 100
>70 NEXT PAUSE

>80 WRONG=0

>100 A=INT(RND*10+1)

>110 B=INT(RND*10+1)

>120 CORRECT=A*B

>130 PRINT "What is the answer to "::
>140 PRINT A; "times ";B;

>150 INPUT ANS

>160 IF ANS=CORRECT THEN 200
>170 WRONG =WRONG+1

>180 PRINT ::WRONG; "wrong answers so far "
>190 GOTO 210 .

>200 PRINT :: "Correct Jr., very good! "

>210 FOR PAUSE=1TO 100
>220 NEXT PAUSE

>230 * CALL CLEAR

>240 'NEXT PROBS

>250 IF WRONG/10<.90 THEN 20

Branching and Loop Structures 127

>260 PRINT " *:x % YOUDIDIT %k k% "
>270 PRINT " ' JUNIOR !! "::

>280 PRINT "Your tootsie pops are "

>290 PRINT " in the closet. "

>300 END

‘ 128 Get Personal with Your TI-99/4A

Chapter 9

Arrays

Up to now a variable name could have only one value at a time.
But if you wanted to store a large number of values in the computer
at one time, each value needed a different variable name. This is
awkward and time consuming. For example, if you wanted to find
the average age of 50 different people you know, each person must
supply you with their age. Now you have 50 different pieces of
data. You also want the lightest and heaviest weightsin the group.
Until now, you could only do something like this:

10 READ WEIGHT1
20 READ WEIGHT2
30 READ WEIGHTS3

500 READ WEIGHTS50

510 TOTAL1=WEIGHT1+WEIGHT2+. ..+
WEIGHT10

520 TOTAL2 = WEIGHT11+WEIGHT12.. . +
WEIGHT20

560 AVERAGE =(TOTAL1+TOTAL2+...+
TOTALS5)/50

570 PRINT "AVERAGE = ";AVERAGE

580 DATA 155,210,110,125,155,. . .

590 DATA 255

600 END

130 Get Personal with Your TI-99/4A

This will work but it is very cumbersome and inefficient. A better
way is by using arrays to store the weight data. Figure 9.1 con-
trasts data storage using the two methods.

Single Variable Names Array Variable Name

WEIGHT1 WEIGHT

155 1 155
WEIGHT2

210 (2) 210
WEIGHT3
®) 215
WEIGHTS50

(50)

Figure 9.1 Data storage formats.

ONE-DIMENSIONAL ARRAYS

A BASIC language array is a set of data identified by a single
variable name (WEIGHT in this example). To identify a particular
value within the array you may reference its position within the
array. In the example above, the third weight in the array
WEIGHT is 215, or WEIGHT(3) = 215.

The position within the array is enclosed in parentheses follow-
ing the variable name. This position indicator is called a subscript.
The general form of an array is given below.

array name(subscript)

The subscript can be a constant or a variable. Using the informa-
tion in Figure 9.1, what values would these variables generate?

WEIGHT(?) = Answer: 210

WEIGHT(50) = Answer: 225

WEIGHT(1) = Answer: 155
Example 9.1: AGE Array

Let AGE = 12, 14, 80, 61, 15, 42, 36. Then:

AGE(1) = 12 (element in the first position of AGE
array)

Arrays

131

AGE(3) = 80 (element in the third position of AGE
array)

AGE@2) = (elementinthe position of AGE
array)

AGE(7) = (elementinthe position of AGE
array)

AGE4) = (elementinthe position of AGE
array)

Now you have the capability to input, process and output large
amounts of data under one name. You can even pinpoint a particu-
lar piece of data by specifying its physical location in the array.
What you need is a subscript manipulator. But we already have
one! Remember the FOR-NEXT loop! Remember the control vari-
able in the FOR statement?

[line#] FOR [control variable] =[initial value] TO
[final value] STEP [amt]

That control variable is the ideal subscript variable for these
arrays. Watch how they work together.

Example 9.2: WEIGHT Array

10 REM EXAMPLE 9.2

20 REM ARRAY EXAMPLE TO READ AND PRINT
FIVE WEIGHTS

30 REM INPUT THE FIVE WEIGHTS

40 FORI=1TO5

50 READ WEIGHT(®)

60 NEXT1I

70 REM PRINT OUT ALL THE WEIGHTS

80 FORI=1TOS5

90 PRINT WEIGHT()

100 NEXTI

110 DATA 155,210,215,165,195

120 CALL CLEAR

130 REM PRINT OUT THE SECOND WEIGHT

140 PRINT "WEIGHT #2 = ";WEIGHT(2)

150 END

Answers:
155
210
215

132 Get Personal with Your TI-99/4A

165
195
WEIGHT #2 = 210

The subscript I points to the box within the array WEIGHT in
which an activity is to be performed and the subscript value comes
from the FOR statement.

In Exercise 9.1 below, try to answer the questions following the
exercise.

Exercise 9.1: Array Computations

Given the following program, write the final values for the
variable shown at the end of the listing.

10 REM EXERCISE 9.1

20 REM PROGRAM USING ARRAYS IN
COMPUTATIONS

30 FORI=1TO6

40 READ HEIGHT()

50 NEXT1I

60 SUM = HEIGHT(2)+HEIGHT(4)

70 AMOUNT =(HEIGHT(1)+HEIGHT(3))/2

80 DIFFER =HEIGHT(2)+HEIGHT(6) - HEIGHT(1)

90 DATA 68,72, 65,69,76,62

100 END

HEIGHT(2)=
HEIGHT(®6)=
SUM =
AMOUNT=
DIFFER =

Answers:
HEIGHT(2)="72
HEIGHT(6) =62
SUM =141
AMOUNT=66.5
DIFFER =66

Notes on Subscripts

The subscript’s sole purpose is to point to an exact location or box
within a list of array values. Subscripts (values within the paren-
theses) may be integer constants like 1, 40, 11, etc. They may also

Arrays

133

be variable names like I, J, K, KOUNT, POINT or SPOT. They
may even be expressions like I+2, 1% J or (A *B+C)/2. Expression
results are rounded to the nearest whole number. That number
becomes the pointer. Subscripts cannot be negative. From the list
below, which subscripts are acceptable?

Exercise 9.2: Valid Subscripts

Acceptable Subscript

Variable Name

a. B() (Yes)
b. B3+4) (Yes)
¢. CDICI+5) (Yes)
d. SUM(-4) (No)
e. VALUEXK *dJ - 3) (Yes)
f. TEST(T/4 -3*CC1+ (Yes)

TTACT)
g. DATA3(AMOUNT) (Yes)
h. FINAI(-3-4) (No)
Dimension Statements

Arrays allow for large volumes of data storage. Once the array
size exceeds ten elements, a DIMENSION is needed. The form of
this statement is:

{line#] DIM [array namel(integer,,integerg,integers])

The DIM statement allocates blocks of storage to the array name
specified. Each position in the array requires one space in the
array’s dimension. DIM statements are normally placed at the
beginning of the program and must precede the first occurrence or
reference to the array name in the program. DIM statements act
like reservations at a restaurant: “Reserve me a table for eight
under the name Johnson.” Space reserved in the DIM statement
must equal or exceed the actual number of elements in the array.
Allocating excessive space in the DIM statement is wasteful and
may exhaust core storage space in larger, more complicated pro-
grams.

Arrays may have one dimension (rows only), two dimensions
(rows and columns), or three dimensions (rows, columns and tiers
or levels or planes). The DIM allows up to three subscripts. Unless
specified in a DIM statement, all array values are automatically

134 Get Personal with Your TI-99/4A

