

Get Personal with Your
TI-99/4A

Get Personal with Your
TI-99/4A

William A. Manning
and Lonlngalsbe

SB
dilithium Press

Beaverton, Oregon

• 1984 by dilithium Press. All rights reserved.

No part of this book may be reproduced in any form or by any
means, electronic or mechanical, including photocopying, record
ing or by any information storage and retrieval system without
permission in writing from the publisher, with the following excep
tions: any material may be copied or transcribed for the nonprofit
use of the purchaser, and material (not to exceed 300 words and one
figure) may be quoted in published reviews of this book.

Where necessary, permission is granted by the copyright owner for
libraries and others registered with the Copyright Clearance Cen
ter (CCC) to photocopy any material herein for a base fee of $1.00
and an additional fee of $0.20 per page. Payments should be sent
directly to the Copyright Clearance Center, 21 Congress Street,
Salem, Massachusetts 01970.

10 987654321

Library of Congress Cataloging in Publication Data

Ingalsbe, Lon
Get personal with your TI-99/4A.

Includes index.

1. TI-99/4A(Computer)-Programming. 2. Basic (Computer
program language) I. Manning, William A. II. Title.
QA76.8.T133I54 1984 001.64'2 83-20994
ISBN 0-88056-098-3

Cover: Bruce Fleming

Printed in the United States ofAmerica

dilithium Press

8285 S.W. Nimbus

Suite 151

Beaverton, Oregon 97005

Preface

This book is designed to provide background information and
programming skills for the TI-99/4A personal computer. This com
puter brings computer power to the user's fingertips for a fraction
of the cost of computers in the past. The TI-99/4A comes standard
with 16,000 characters of memory, color, sound, graphics ca
pability, and a state-of-the-art processor unit. We have seen this
machine configured with peripheral devices (printers, disks, tapes,
etc.) to electronically process all the accounting activities in a
medium-sized distribution company. This computer is not a toy! It
is a powerful tool to help you with daily activities. This book
intends to give you all you need—some background information
and programming skills.

To enjoy this book, you do not need a computer. You can develop
the programs and carry out the activities at the end of each chap
ter. You can imagine the color and graphics involved. If you are
thinking of buying a Texas Instruments computer, this book helps
you pick appropriate hardware and software combinations.

Ifyou have a TI now, use it to work through the exercises in this
book. Make your own changes, modifications, and improvements
on the program listings. Can you improve on the program's logic or
output quality? Can you do the problems another way? There are
many ways to get the same answer in programming. Make
changes and see what happens. You can always go back to the
original form.

Section I of the book focuses on an introduction to personal
computing and orients you to the TI-99/4A computer. It discusses
available hardware and software programs and their approximate
costs.

Section II addresses programming in the BASIC language for
the TI-99/4A; fundamental concepts of how to design and write
programs; and detailed coverage of the most common statements.
As the chapters progress, more and more of the statements com
bine into meaningful programs. It also discusses the concept of
computer files.

Introduction

The Ultimate Goal-

Increasing Your Computer Literacy

Your major educational goal with computers should be to in
crease your literacy and help you feel more comfortable with the
subject matter. While there is no well-defined definition, most
experts agree that it should include at least these subjects:

1. A basic understanding of computers and what they can and
cannot do.

2. A minimum level of skill in programming a computer in a
popular language.

3. Some understanding of the impact computers will have on
our future lives.

Table ofContents

rreiace

Introduction

v

vi

Section I Some Helpful Background Information

Chapter 1 Welcome to Personal Computing
The Technology 3

What Makes a Computer Personal 7

Chapter 2 An Introduction to the TI Home Computer
Background 11

Evaluation of the TI Home Computer 11

Hardware for the TI Personal Computer 12

Software 16

Sources ofHardware and Software 20

Keeping Informed 22

Why learn about Computers? Or
Opportunities! 23

Section II An Introduction to BASIC Programming
What is BASIC? 25

Chapter 3 The Nature of Computers:
Programmer's Perspective

RAM & ROM Memory
ROM Memory
RAM Memory
Programming Languages
Operating Levels for the TI-99/4A
More than one BASIC Program

28

28

29

31

32

34

viii Get Personal with Your TI-99/4A

Chapter 4 Algorithms-The Computer's Recipe
The Nature of Computer Programs 41
Flowcharts 42

Chapter 5 Writing and Editing BASIC Programs
Printing Literals 53
The Computer's Message Board 54
Listing the Program 55
Importance of Line Numbers 56
Inserting a Program Line 56
Editing a Program Line 57
Important Program Line Commands 61
BASIC Commands Summary 62

Chapter 6 TI BASIC Calculations
Computations 67
Parentheses 69

Numeric Functions 70

Chapter 7 Input and Reading Data
Variables 83

Numeric and String Variables 85
More on the PRINT Statement 88

Inputting a Value to fill a Variable Basket 93

Chapter 8 Program Branching and Loop Structures
Rem Statements 105

Programs for many Users 109
Loop Structures 114

Chapter 9 Arrays
One-Dimensional Arrays 130
Two-Dimensional Arrays 134
Three-Dimensional Arrays 139

Chapter 10 An Introduction to Sound and Color-Graphics
or. Fun with Your TI

Call Sound 152

Call Clear 158
Call Screen 158
Call Color 160
CallHCHAR 160
CallVCHAR 164
Some Fun Applications of TI Sound and

Color-Graphics 167

Contents IX

Chapter 11 Program and Data Files
Saving a BASIC Program
Loading a BASIC Program

178

180

Chapter 12 String Functions and Subprograms
String Functions
SomeApplications ofTI String Functions

183

187

Appendices

Appendix I Reserved Words in TI BASIC 207

Appendix II ASCII Character Codes 209

Appendix III Color Codes and Set Numbers 213

Appendix IV Musical Note Frequencies 215

Appendix V TI Error Messages 217

Appendix VI Built-in Numeric Functions 223

Index 227

Get Personal with Your TT-99/4A

Section I

Background

Ifyousufferfromcyberphobia (fearofcomputers) or cyberphilia
(obsession with computers), this book can cure both!

Microcomputers have become a mass-produced, consumer-ori
ented items. They are everywhere. Recently, at a mountain resort,
a man was sunbathingby the pool,a portable microcomputer in his
lap. He was preparing memos for an office meeting the following
week and was obviously enjoying the best of both worlds. Tech
nology had added another dimensionto his work and play.

Welcometo the exciting world ofmicrocomputers! How much do
youknowabout computers right now? Take the computerliteracy
test in Chapter 1 and again when you complete the book. You
should see the dramatic increase in your knowledge and under
standing ofcomputers andhow they work! Youwillalsobepleased
with how much you have learned about the Texas Instruments
home computer.

Knowledge of the microcomputer industry and how people use
them increases your comfort zone with computers and gives you
ideas of how to use your computer in your home and career. Turn
your imagination looseas you read this chapter.

Chapter 2 introduces the Texas Instruments company and its
home computer. It discusses the development and evolution ofthe
home computer, the computer parts themselves, and some of the
computer programs available for the system. This computer is
expandable. As your knowledge, abilities, uses and budget grow,
you can add devicesto the computerconsole unit to help carry out
those applications. Let's begin-with a brief orientation to the
personal computing industry.

Get Personal with Your TI-99/4A

Chapter 1

Welcome To Personal
Computing

Welcome to the most fabulous realm of life in the twenty-first
century-personal computing. It is to the information revolution
what the auto was to the industrial revolution and your life may
never be the same. Before you begin, take the test in Figure 1.1.
When you complete the book,take this test again to see how much
you have learned.

THE TECHNOLOGY

What's a half inch in length, a half inch in width, as thick as a
dime and has revolutionized the computer industry? The micro
computer miracle chipl Computers-that only 25 years ago filled
rooms with vacuum tubes and mazes of wires—are reproduced
today at very lowcost in the postage stamp-sized integrated circuit
chip. This technology has spawned a new industry-the microcom
puter industry. Had the auto industry advanced as rapidly as
computers, a Rolls-Royce that today costs $85,000 would instead
cost $3.00, get two million miles per gallon, and deliver enough
horsepower to drive a battleship. And the trend continues. The
keys to the success of this industry are portability, miniaturiza
tion, and low cost.

This book specifically concerns personal computers developed by
Texas Instruments, Inc.; as versatile home computers within the
financial reach of our society. The machine will become the home
computing and information center as well as a link between the
home and our electronic society. It is what the telephone was to the
home 100 years ago. Microcomputers and robots will no doubt
cause many social dislocations-and opportunities. Author James
Martin predicts that the microcomputer industry will make thou
sands ofnew millionaires.

Get Personal with Your TI-99/4A

Since Apple Computer first introduced its personal computer in
1976, the market has grown from nothing to over $6 billion in
seven years. Estimates are that by 1986 sales will exceed $21
billion. At an average cost of $1000, this would mean 21 million
computers in operations, worldwide. And most people feel this is
only the beginning. Costs will continue to drop and capabilities
will continue to increase as time and technology advance.

Answer each question; 5 = Complete Understanding... thru 1 = No
Understanding.

After

Reading
Question Now Book

1. What is a computer?
2. What is a computer program?
3. What is a "canned" program?
4. List 10 computer applications?
5. How have computers affected our lives?
6. What do computers do best?
8. What are RAM and ROM?
9. What is a "byte"?

10. What do you know about Texas Instruments?.
11. What does a programmer do?
12. What is aflowchart?

13. What does BASIC standfor?

14. What does an IF/THEN statement do?
15. What's involved in "debugging"?
16. What does the CALL SOUND command do? .
17. What is a computer file?
18. Name some future applications of software ...
19. How much do you know about your

TI computer?
20. Are you glad you bought this book?

Total

Average

Figure 1.1 The computer literacy test.

Some Computer Applications

But what use do microcomputers have? Consider-this:
It was the sort of situation that gets people killed.

Welcome to Personal Computing

A troubled man had taken his wife and infant daughter
hostage in a trailer house in Cottonwood, Arizona. They
subsequently escapedbutthemanhada rifle andhadthreat
ened to kill anyone who tried to capture him.

A little, one-armed robot rolled up to the trailer, and ex
plained inamonotone voice that theman should give up. The
robot spunonits wheels andleft to return seconds later. It
deposited a ringing telephone and announced that the police
chiefwascalling. A half hour later that man surrendered-
marking an historic first for computer technology and law
enforcement.

Never before in America had anyone been brought to a
peaceful surrender withthe aid ofa robot. As the man was
arrested,he commented that he thoughthis experience with
the four-foot-tall 210-pound, six-wheeled machine was neat.

"It broke the ice and took my mind off my problems," he
said.
View computers as tools tohelp thehuman do hiswork. Agood

toolsaves time, money, and energy.Ascrewdriver helps us loosen
a fastner weotherwisecouldnot remove.Apulley helps us achieve
a mechanical advantage and lift a load we otherwise could not
handle. Computers should give us a mental advantage or relieve
us ofthe boredom fromtasks weotherwisecouldor wouldnot do-
manually figure each payroll check for 1000 employees, for exam
ple. Computers should be used tocomplement human skills. Ide
ally paired, man and computer make a powerful team. Look at
space travel, medical research, ormedical technology. But how do
wepair up?Whichdoeswhich?

Figure 1.2 liststheadvantages ofcomputers andhumans. Com
puters are extremely fast! Computer processing times are now
measured in nanoseconds orbillionths ofa second. Within one-half
second, a large computer can: a) monitor 100 heart patients and
alert doctors to trouble, b)figurepaychecks for 1000employees, c)
post 3000 checks to250 different bank accounts, d) score 150,000
answers to a questionnaire anda few perform otherchores!

Butcomputers are dumb. You havetotell themwhattodo-and
in veryexactterms. They cando computations witha highdegree
of accuracy (take figures to many decimal places) and are very
reliable. That means if a computer totals a list of 100 numbers 50
different times, it gets the same answer each time. Humans are
notoriouslybad at this activity. Computerscan also quickly store,

Get Personal with Your TT-99/4A

retrieve, and display large amounts of data. With these charac
teristics, computers excel in applications that require repetitive
tasks where large amounts ofdata must be analyzed.

COMPUTERS

Characteristics Applications

Date storage/
retrieval

HUMANS

Characteristics Applications

CreativityHigh-speed
computations

Accuracy Computations Conceptual

Design

Implementation

Human Skills

Travel

Reliability

Large storage
capability

Summarization

Classification

and sorting

Sensitivity to
Environment

Mobility

Multiple senses Persuasion

Figure 1.2 Computers vs. Humans.

One major characteristic ofcomputer applications is high vol
umeofa large task doneoverandover, suchaspaychecks ora large
number of requests for information from a collection of data such
as airline reservations or bank account balances. In payroll, the
process is called batch processing because the pay records are
collected over a pay period and then run all at once. The bank or
airline reservation systemis a query oron-line applicationbecause
information requests occur on a random or demand basis to a
continuously updated data base.

Humans, on the other hand, identify the application for the
computer, define how the computer is to solve the problem, and,
ultimately, use the computer's output as part of the solution.
Humans begin and end the computer application. Humans inter
act with other humans at home or work to design and implement
the computer's output.

Computerssupplythe computational skills. Humans supplythe
management skills. The two together are greater than either one
can be separately.

Whether the benefits of computerization outweigh the cost is a
major consideration. Will the application pay for itself? You can
estimate costs of hardware, software, personnel, supplies, fur
niture, and the physical space. But the benefits are much less
tangible and very difficult to determine. Computers costing hun-

Welcome to Personal Computing

dreds of thousands of dollars are often purchased with little formal
evaluation of the computer's benefits.

In personal computing or desk top computing, many of the stan
dard applications in the home or organization are already pro
grammed and available in canned form for a reasonable price.
Figure 1.3 lists the common personal computer applications and
the software programs Texas Instruments has in those areas. If
programs already exist for an application, it is usually smart to
buy them rather than write an original program. Prepackaged
programs can save a beginning computer user time and money.

Applications TI Software

Home Management Home Budget Management
Personal Record Keeping
Tax Planning

Word Processing TI Writer

Electronic Spread Sheet Multiplan

Education Miliken Math
Plato

Scot Foresman

Family Entertainment/
Games PARSEC

Hunt the Wampus
TI Invaders

Original Applications TI BASIC Programming

Figure 1.3 Typical applications and canned software available.

WHAT MAKES A COMPUTER PERSONAL?

A computer is a general purpose, electronic machine that
rapidly and reliably stores and processes data. This data may be
numbers or alphabetical letters. Computers come in all sizes—
some fill large rooms and cost millions of dollars, some are hand
held and sell for $49. Why such a difference?

Speed, storage capabilities and hardware accessories are the key
differences. How fast a computer can transfer data from one part of
the computer to another is called access time or cycle time. The
faster the access time, the faster the computer. Large machines
cycle in nanoseconds or billionths of a second. A nanosecond is the

Get Personal with Your H-99/4A

time it takes light to travel one foot. (Light travels at 186,000 miles
per second or seven times around the world in one second.) Per
sonal computers that transfer data in thousandths of a second are
much slower.

Storage size affects two areas-word size and primary core mem
ory. Word size is the storage area allocated to a single piece of data.
The large IBM 370, model 3033 has a word size four times larger
than the TI-99/4A and eight times larger than the original Apple H
computer. A large machine can perform an operation in one move
while a microcomputer may take several steps. Larger computers
also access larger blocks ofdata from the general memory area and
do so more rapidly.

Finally, more information can be stored in the memory of larger
computers. The TI-99/4A has a 16K memory (K equals 1024 char
acters or "bytes"-one byte can store one character). Thus, approx
imately 16,000 characters can fit in the TI's memory at any one
time. The characters may be changed during the program, but
cannot exceed 16,000. With some accessories, the TI can be ex
panded, but the standard model is 16K. Other personal computers
range in storage from 2K to 512K. Large, business and scientific
computers may have millions of characters of primary memory
area.

Price is the ultimate distinction. Personal computers normally
cost less less than $5,000. In the $1,000 to $5,000 price range,
Apple, IBM and Radio Shack are the leaders. These desk-top com
puters are used by small businesses and other organizations for
record-keeping, word processing and company planning. The sys
tem typically consists of a keyboard, controller unit (heart of the
computer), CRT (cathode ray tube) monitor, printer, and one or two
disk drives. Purchased software programs run the machines al
though they can be programmed in BASIC (Beginners All-purpose
Symbolic Instruction Code) language. Some of these systems find
their way into the home for education, entertainment, and home
management applications.

The market for computers costing less than $500 has exploded.
Estimates are that 3.5 million units will be sold in 1983,100 times
the 1980 volume of 35,000 units sold. Texas Instruments, Timex-
Sinclair, Commodore, Atari, and RadioShack are the prime com
petitors. As technology improves and competition stiffens, prices
will continue to tumble and capabilities continue to expand. The
purchaser will continue to be perplexed by what to buy and when.

Welcome to Personal Computing

SUMMARY

The revolution in the electronic age has been phenomenal in the
past 25 years. Room-sized computers shrank to desk tops, and costs
shrank with them.

This put computer capabilities into the hands of the ordinary
person.

Humans and computers work together. Computers do the boring
work and don't complain. Humans are then freed to do the creative
work. Computers complement human skills, but one becomes de
pendent on the other. Computers process in nanoseconds. They are
dumb but accurate. They store and retrieve large amounts ofdata.
Humans tell them what to do and manage them.

Costs vary from $500 to $5,000. The key differences that deter
mine cost are their storage capabilities and hardware accessories.

The future looks bright for the computer industry. In the elec
tronic society, more and more activities and services will be com
puter centered. Home computers today may be a luxury but will
soon become our link to the outside world and our most necessary
home appliance.

REVIEW ACTIVITIES

1. Visit a retail computer store. Ask about computer prices and
capabilities. Review store brochures. Tell a friend about your
experiences.

2. Read a recent issue of a computer magazine. Look at the ads
and the story coverage. Can you understand the articles?

3. Watch your local newspaper for computer-related stories.
Clip out a story and show it to a friend. Discuss the article and its
implications for you, your friend and society.

4. List ten instances in which you could justify the cost and use
of a computer in your life. Are they being done by someone else?

5. Discuss the future of computers with a friend. How do you see
your life and society being changed by computers and information
technology? When will it happen? What is the time frame?

10 Get Personal with YourTI-99/4A

Chapter 2

Introduction To the
Texas Instruments

Home Computer

BACKGROUND

Texas Instruments (TI) is the leading producer of semiconductor
products. It develops, manufactures, and sells electronic equip
ment such as calculators, microprocessors, and small business and
home computers. Headquartered in Dallas, Texas, Texas Instru
ments has 50 plants in 20 countries and was a $4.3 billion company
in 1982. It employs over 80,000 people. Products include a variety
of electronic devices for industrial, consumer and government
markets. Over 30,000 shareholders own 23 million shares of TXN
(New York Stock Exchange symbol) stock.

EVOLUTIONOFTHE TI HOME COMPUTER

Always a leader in electronic education, TI introduced the
TI-99/4A home computer in 1979 at an original cost of over $1,000.
A flat keyboard, limited software and an expensive price gener
ated lagging sales for this unit. The 16,000 character, random
access memory (RAM) machine was ultimately discounted to $650
before it was discontinued in 1981.

The TI-99/4A home computer succeeded the original version. It
featured many extras—a standard keyboard wth upper and lower
case lettering, an automatic key repeat function, keys designed to
access specific computer functions, and expanded software applica
tions. The price had shrunk to $525. That price continued to fall
until August, 1982, when the basic unit sold for $299. TI an
nounced a $100 factory rebate on all TI-99/4A home computer sales
to bring the actual retail price to $199. With this incentive, the
ensuing Christmas season, and an aggressive multimedia adver
tising campaign that featured Bill Cosby, sales soared from an

12 Get Personal with Your TI-99/4A

estimated 30,000 units prior to 1982 until they passed 500,000
consoles and continued to grow. In March 1983, the company
discounted the TI-99/4A again to bring the unit down to $149 after
the rebate. Recently, prices have dropped to under $50.

By 1990, seven out of every 10 homes (nearly 50 million house
holds) in the United States will have at least one personal com
puter.

HARDWARE FOR THE TI PERSONAL COMPUTER

Hardware refers to the physical machines or components that
make up the computing system. They take up space, generate heat,
and make noise, as they carry out the physical activities of com
puter application such as printing, storing, displaying, and trans
ferring data.

The Console

The heart of the TI-99/4A Home Computer system is the system
console. It comes standard with 16K (16,000 characters) of RAM
(random access memory), a state-of-the-art 16 bit microprocessor
and 26K of ROM (read only memory). A standard BASIC language
premanently resides in ROM. The typewriter keyboard comes
with upper and lower case characters. Graphics are possible in 16
different colors and sound in tones ranging from 110 Hz to 40,000
Hz can be programmed. Factory supplied with the RF modulator,
the console can be attached to any color or black-and-white televi
sion set. The set serves as an output device or monitor for the
console. Figure 2.1 is a photo of the internal components of the
console that show the integrated circuits, the storage chips, and
the keyboard module.

Some Accessories

Depending on your needs, you can configure your system with a
variety of optional accessories available. Figures 2.2 and 2.3 show
a complete system. Figure 2.4 explains the components you will
need for various configurations.

First, you purchase the console. Then if you want to do word
processing, you need a printer. If you want to store programs or
data, you need an off-line storage medium like tape (regular cas
sette recorder and connecting cables) or diskette (requires pe
ripheral expansion system, disk controller card, and a disk drive).
Tape storage is much less expensive, but extremely slow compared
to diskette storage. Because ofthe time and effort you put into your

Introduction to the TI-99/4A 13

programs and the fact that you will lose them ifthey are not stored
before the console is turned off,your second purchase should be a
cassette recorder or disk drive system.

i&m am res cm a]

e m St Uy lu ii Po
! < I -

D Jf g 1h (j (k i'L.
i >

i c v b iN im s< ;

Figure 2.1 The Internal components of the TI-99/4A and the keyboard
module.

Figure 2.8 shows that the peripheral expansion box, or P-box, as
it is called, is the heart of any major system enlargement. This
modular expansion system allows your computer to use diskette
storage, printers, memory expanders, and telecommunications
when combined with the device and its associated peripheral ex
pansion card or circuit box. These expansion cards plug into the
P-box.

Decide what you want your home computer to do. Then use these
figures and approximate prices to configure your system and esti
mate its cost.

14 Get Personal with Your TI-99/4A

Figure 2.2 A complete system.

Figure 2.3 A complete system.

Introduction to the TI-99/4A

Telephone
1

Disk Programs

Impact
Printer

PHP 2500

Telephone
Coupler

PHP 1600

Disk

Drive

PHP 1250

i

• i >

RS-232 32KRAM Disk

Card Memory Controller

PHP 1220 PHP 1260 PHP 1240

. ! > ' r

Peripheral Expansion System
PHP 1200

Cassette Programs

1
Cassette Tape

Recorder

Television

i •*

Joysticks
PHP 1100

Cable

PHA2000

TI-99/4A Home Computer
PHC 004A

Command

Module

Programs

h->

Disk

Drive

PHP 1850

P-Code

Card

PHP 1270

Speech
Synthesizer
PHP 1500

To use the diagram above, find the item you would like to add to your
computer system. Then trace through the diagram to the computer itself,
the things you go through are required for hookup. Example: Ifyou want
to connect a printer (PHP 2500) to the computer (PHC 004A), you'll need
an RS-232 card (PHP 1220) and a Peripheral Expansion System (PHP
1200). Prices of the computer equipment (hardware) are listed.

Figure 2.4 Required components.

15

16 Get Personal with Your TI-99/4A

Figure 2.5 The speech synthesizer.

SOFTWARE

Programs that direct the computer to solve specific problems and
oversee its operations are called software. This is the single most
significant factor in a successful computer application. As a per
sonal computer user you can either write original software for each
application or buy already written canned software. You can use
both types.

Prepackaged Software

If it can be purchased and is appropriate for the application,
canned software is ideal. It may be expensive but has many bene
fits. Prepackaged programs are available for immediate use—no
startup, no development time and no expense. The programs are

Introduction to the T1-99/4A 17

usually well-documented (or explained) and error-free. User-
friendly programs guide the first-time user through the entire
process. Youdonot have to knowa programming language. Popu
lar prepackaged programs available for the TI-99/4A include Par-
sec, Munchman, TI Invaders, Personal Record Keeping, and
Multiplan.

Figure 2.6 The TI impact printer.

Software Formats

Programs currently available for the TI-99/4A come in three
different forms-solid-state software or command modules, cas
settes, and diskettes. Theright form foryoudepends onyour type
of computer hardware. If you only have the console and a TV
monitor, command modules are your only choice. These are ap
plication programs in high demand that have been programmed
into a ROM(read only memory) chip. When a command module is

18 Get Personal with Your TI-99/4A

inserted in the console, the entire instruction set is available to the
user. Command modules are sometimes called firmware (as op
posed to hardware or software) because they are burned into a
silicon chip and the instructions cannot be changed. Command
module prices range from $19.95 to over $100. Each module comes
with a booklet that documents the operation of the program. This
form of software is ideal for first-time users, children, and highly
structured applications.

Other prepackaged programs are in cassette or diskette form.
These are typically larger programs with smaller demand. The
original program is simply copied onto blank cassettes or disk
ettes, packaged, and sold much like stereo tapes and records. Your
computer must be equipped with the required hardware devices to
utilize either medium. TI offers a large supply of excellent applica
tion software in cassette and diskette format. And the number is

constantly growing. Estimates are that within a year, over 1,000
application programs will be available for the TI-99/4A.

Figure 2.7 The TI program cassette recorder.

Introduction to the TI-99/4A 19

Figure 2.8 The peripheral expansion system.

Application Areas

Home computer application programs fall into three distinct
classes-education, home/financial management, and home enter
tainment. There is a variety of software in each category for the
TI-99/4A.Some ofthese programs were developed by Texas Instru
ments and others were developed by private companies for the
retail market.

The educational benefits of home computers can justify their
purchase. According to studies, it takes approximately 140 contact
hours in the classroomto advanceone grade level in most subjects
at the elementary level. Computers and educational software can
cut that time to 40 hours. Gifted children can advance at their own
pace. Slower children get personalized attention. And the comput
ers fill the learning environment with sound, color, voice, graph
ics, and positive reinforcement. We have worked with four-year-
old children, teaching them fundamentals of arithmetic and read
ing. Watching their excitement and enthusiasm is pure joy. In
time, programs will be available for more advanced subjects-
calculus, physics, statistics, foreign languages, biology,etc.

TI has software to suit many daily needs. Our home, our finan
ces, and our body can all be managed better by computers. Pro
grams that track personal and household expenses and budgets

20 Get Personal with Your TI-99/4A

can strengthen personal finances. Meal and diet planning pro
grams can lead to better health. A completeexercise program on a
command module (see Physical Fitness) is tailored to age and
current physicalcondition. Timemanagementprogramshelp allo
cate our most precious resource-time. Many people use home
computers for their personal investing decisions. Mortgages, fi
nancing, stocks and bonds, option trading, and accounting are
some popular applications.

Home entertainment is epitomized by the arcade games. They
are typicallythe first programsthe user buys.Theyare a first step
in computer literacy. Such games eliminate fear of the computer
and show that computers can actually be fun. You can become
familiar with the keyboard layout and functions. Once the games
are mastered however, you should pursue more valuable uses for
yourcomputeror it willnot reachits fullestpotential valueforyou.

SOURCES OF HARDWARE AND SOFTWARE

Hardware and software are both expensive. It is important to
make sure the hardware and software you buy will do the job you
need done. Always try the equipment and programs beforeyou buy
them. Observe the program's ease ofuse or user friendliness. Does
it guide you through or must you be totally familiar with the
program's operations before you can start? Do you know other
people who have used the equipment and program and are they
satisfied? Scan through the program's documentation manual. Is it
easy to read and follow? Arethere examples? Does the program do
what you need done? Is it worth the price? The same is true for
hardware?

Retail Stores

Retail stores are the primary source of hardware and software.
K-Mart, Jafco, Toys-R-Usand J.C. Penney are just a few. Regional
and local stores also handle TI computers. Prices vary substan
tially from one store to another. Watching newspaper ads and a
few phone calls will result in large savings. Visiting the retail
store will allow you to try various software programs and assess
their value.

Service is another consideration. If you have questions or prob
lems with your system, a knowledgeable outlet can help. Working
with computers can becomefrustrating and having a friend to turn
to will ease these frustrations.

Introduction to the T1-99/4A 21

Mail Order

Mail order houses can offer substantial discounts on TI compo
nents and programs. They deal in volume sales on a national level.
Discounts ofup to 25 percent are possible. Be sure you know what
you want! Once you open the package, few mail order houses will
accept returned merchandise. Also make sure the firm is reputa
ble. Most vendors require prepayment and have long delivery
times. Once you send your payment, you must rely on the organiza
tion's integrity to make delivery.

Magazines and newspapers are prime sources for names ofmail
order firms. The 99'er Magazine, discussed later in this chapter, is
an excellent reference. Most firms publish price lists in their ads so
you can do comparative shopping. Most accept checks or credit
cards. Note expected delivery times and who pays the shipping
charges. Small, inexpensive items may cost more to ship than they
are worth. Local and national newspapers typically have a classi
fied section dealing with computers. Advertisements cover equip
ment, sale items, services retailers and mail order firms.

Tronics, Inc.

Tronics Sales Corporation, located in Fort Worth, Texas, is the
largest single distributor of the TI-99/4A. Founded by Jody Black,
the firm uses a vertical or pyramid marketing structure to sell and
distribute electronic equipment for the home through Tronics dis
tributors. Once established, a distributor finds other people who
are interested in buying equipment and software, sells to them and
then they in turn, solicit others, forming the pyramid. The pro
gram has been successful. Nationally, there are over 10,000 Tro
nics distributors. Each may be considered an independent
businessperson. Distributors are paid based on the credit volume
or sales they make plus a percentage of the volume of the dis
tributors down the line from them. Tronics is in no way affiliated
with Texas Instruments, Inc., except as a distributor. For more
information about the organization, write:

Tronics Sales Corporation
2563 East Loop 820 North
Fort Worth, Texas 76118

Each of these alternatives has its advantages and disadvan
tages. Take care in selecting the one best suited to your particular

22 Get Personal with Your TT-99/4A

needs. You can save money by carefully shopping among these
choices.

KEEPING INFORMED

Once you buy a TI Home Computer, how can you keep informed
of new developments for your unit? Explore books, reference man
uals, magazines, user groups and clubs to help you better utilize
your new computer.

What Comes with the Computer?

When you buy your TI-99/4A, you will receive three helpful
items: the Beginner's BASIC manual, the User's Reference Guide
and the Reference Card. Beginner's BASIC, a step-by-step hands-
on approach to learning the TI BASIC language, covers some
introductory statements in BASIC and shows the results when
they are run on the computer. Printing, computations, looping,
color, and some graphic capabilities are briefly covered. The book
does not cover the most difficult aspect of programming-how to
write your own original program. This book provides that help.

The User's Reference Guide explains each individual statement
in TI BASIC. The manual shows how each statement is formed (the
"syntax" or structure of the statement), all the variations allowed
in each statement and the variety of statements available. When
you make a programming mistake, the ReferenceGuide helps you
find the error. It explains 82 TI BASIC commands and error mes
sages are discussed in detail in Section III of the Appendix.

The third helpful item in your packet of materials is the
TI-99/4A BASIC Reference Card. As you become more familiar
with programming, you will only need a quick refresher on the
form of a particular statement. Does it need a comma or a period,
an apostrophe or a quotation mark? The quick Reference Card
shows this as well as the complete vocabulary of statements, color
codes, and character codes for graphics. It is an excellent resource
and you will use it frequently. These documents will make pro
gramming your TI-99/4A easier and more fun.

Magazines

A number of personal computer magazines are now being pub
lished. Many are directed at the more expensive computers, those
over $1,000 and often used in business or organizations. These
inlcude BYTE, Creative Computing, Personal Computing, PC
Magazine, PC World and InterfaceAge. Typically the articles deal

Introduction to the TI-99/4A 23

with the IBM PC, Apple, Radio Shack, and Osborne computers as
well as software programs for those machines. Not much is dis
cussed about the T1-99/4A, Commodore or Atari.

Our favorite magazine is the 99'er Home Computer Magazine
that covers only Texas Instruments home computers. Published
monthly, the newsstand price is $3.50. An annual subscription is
$25 in the U.S.A. Their address is:

99'er Home Computer Magazine
P.O. Box 5537

Eugene, OR 97405
(503)485-8796

A recent issue covered such topics as reviews of TI's new CC-40
Compact Computer, robots, new computer games, LOGO, and
computers and the handicapped. Many program listings for ap
plications and gamesappear in the magazine.Youcan simply type
in the listings and save them on your cassettes, or, for a nominal
fee, purchase preprogrammed cassettes containing all the pro
grams in one particular issue, which are offered by the magazine.
Advertisements show the newest hardware and software available
for your home computer. The articles are interesting and educa
tional. It is a good way to keep informed.

Texas Instruments Computer Advantage Club

To help meet the challenge of the expanding need for computer
awareness, Texas Instruments has established its own Computer
Advantage Club. The objective is to give hands-on training with
the TI-99/4A Home Computer. Training sessions are for adults adn
young people ages 8 and up. Club members receive both small
group and individualized instruction in computer operation and
applications. The clubs are active in 27 cities throughout the
nation and their goal is to be in 100 cities by the end of 1983. They
charge an education fee for each participant. For more information
on the club nearest you, call toll free:

Outside Texas: 1-800-858-4096

Inside Texas: 1-800-692-1318

WHY LEARN ABOUT COMPUTERS? OR
OPPORTUNITIES!

In July 1982, William Turner, Texas Instruments assistant vice-
president and consumer products marketing manager, told report-

24 Get Personal with Your TI-99/4A

ers in Lubbock, Texas, that "a child or adult who is not computer
literate will be a misfit in the late 1980s and 1990s." The computer
"is a one-product alternative to multiple specialty products for
each application in the household," he added. These statements
are indicative of the impact of the computer field on our society.
Those without computer literacy will surely feel disadvantaged in
tomorrow's world.

Opportunities for computer literates are unlimited. Many peo
ple have found new, exciting careers in the computer field. In their
book How to Make Money with Your Microcomputer (dilithium
Press), Carl Townsend and Merl Miller discuss how to write com
puter articles, how to develop and sell software, how to open your
own computer store, how to make money teaching others about
computers, and how to operate a computer repair business.

A recent article in the Wall Street Journal highlighted Paul
Lutus, 37, "Oregon's millionaire oracle of the computer age." Liv
ing as a "mountain hermit" for years in the mountains of southern
Oregon, Lutus writes and sells computer programs. Lutus wrote
Apple Writer, a computer program for word processing on the
Apple computer, which makes between $5,000 and $7,000 a day in
royalties for Lutus, as he receives 25 percent of the wholesale price
ofeach program sold.

One evening Lutus was typing on the keyboard of his Apple
computer and the keys became stuck. Lutus, totally engrossed in
his work got up from his chair and realized that the cabin tem
perature had dropped below freezing. The keys on his computer
had begun-to freeze!

William Gates, at age 19, formed Microsoft, Inc., a software
development firm in Bellevue, Washington. Last year his com
pany's sales were estimated at $40 million, and IBM asked the
company to write the operating system software for IBM's new
personal computer.

Similar success stories abound. As the market grows for per
sonal computers, new opportunities open up for creative and inno
vative individuals in our society. "After growing wildly for
decades, the computer industry now appears to be approaching its
infancy," states a U.S. Government report on computing. So get
started!

Section II

An Introduction to
BASIC Programming

Coding the solution solves, or at least clarifies most computer
problems. But before you can code the problem, you must first
develop a tentative way to solve the problem-an algorithm or
sequence of steps that leads to the desired solution. This book
includes program segments and problems that portray concepts
which will help beginning programmers and indicate the princi
ples of good programming practice.

A series of practical programming applications in each chapter
unifies previous programming concepts and statements and gives
computing tools that you can apply to personal computers.

WHAT IS BASIC?

BASIC the acronym for Beginnners All-purpose Symbolic In
struction code, is the primary language for the TI and all other
personal computers. It was developed at Dartmouth College to be
an easy language for people who have had no experience with
computers or computer language. Each statement begins with a
keyword in plain English. These are such words as READ, LET,
FOR, NEXT, etc. The word stands for the process which that state
ment performs. READ reads numbers or letters into the computer.
FORtells the computer to repeat a portion of the program, etc. This
section discusses program design and writing programs in BASIC
especially for the TI computer.

26 Get Personal with Your TT-99/4A

Chapter 3

The Nature of

Computers:
Programmer*s

Perspective

Most people initially believe that computers are extremely intel
ligent, artificial life-forms that they must learn to coax into
working for them. The facts are:

1. Computers cannot be coaxed but must be told exactly what to
do.

2. They have I.Q.s of 0 (zero) and need to have a specific set of
instructions before they can do anything.

3. Computers remember instructions only for as long as they are
turned on.

These sets of instructions are programs. Given a program, or set
of programs, the computer becomes a tool which may act as a fast,
reliable, and inexpensive source of labor or entertainment. With
out programs, the computer is worthless to us.

You can write programs for the TI-99/4A then give them to the
computer in a variety of ways. You need to know where the com
puter keeps its programs, how it may be given its programs, and
understand how to write your own programs for the computer to
follow.

The computer has memory, which is the space to store the
computer's program, and the results, or answers (data), obtained
by the computer from following the instructions in that program
(executing the program).

Units called bytesmeasure this memory space. A byte of memory
is roughly equal to the memory needed to hold one character, such
as the letter A or the number 3. One thousand bytes make up a
single .K" of memory so that a computer with 16K of memory is able
to hold 16 thousand characters.

28 Get Personal with Your TI-99/4A

Let's say, for instance, your name is Chris and you have written
a program that instructs the computer to do two things: 1) ask
what your name is, and 2) remember it.

The program itself uses memory. When the computer executes
your program, it asks what your name is. When you type in your
name, the computer has data to put in its memory. That data will
use approximately five more bytes of the computer's memory since
"Chris" has five characters in it.

RAM & ROM MEMORY

There are two types of memory inside the computer:
1) a portion of memory called Read Only Memory(ROM) and,

2) the current memory, usually called Random Access Memory
or RAM.

Computer Memory

RAM

(Current Memory)

ROM

Figure 3.1 Computer memory.

ROM Memory

ROM is memory that has special computers permanently etched
into it. These programs cannot be changed, added to, or erased.
ROM can only hold programs, not data.

The programs of the ROM memory inside the TI-99/4A relate,
for the most part, directly to the computer rather than anything
that you might want the computer to do. This ROM holds the sets
of instructions the computer needs to operate correctly. That is,
many of the program in this ROM are there to help the computer
get started when it is first turned on. They instruct the computer to
check all of its parts to see ifany are missing or not working, check

The Nature of Computers 29

to see what, if any, attachments are connected to it, and perform
the other housekeeping chores necessary for the computer to func
tion properly while it is being used.

Computer Memory

RAM

(Current Memory)

ROM

Command Module

ROM

Figure 3.2 Computer memory.

The ROM memory inside the TI-99/4A also contains a special
programcalledTI BASIC. This set ofinstructions in necessaryfor
the computer to have while you write your own sets of instructions
(BASIC programs) for the computer to execute.

ROM Software

Software is another name forprograms, or sets ofinstructions,
the computer follows in order to work for you. There are a number
of Command Modules available for the TI-99/4A. These modules
are actually ROM memory chips that may be attached to the
computer by inserting them into the module outlet. These software
modules expandthe ROM ofthe computer to includethe programs
contained in the ROM ofthe Command Module.

RAM Memory

The computer uses its RAM, or current memory, as another
place to hold its programs. When the computer is turned off,
however, this part of its memory is wiped clean. Since RAM
memory is temporary in nature, it is called the computer's current
memory.

RAM is used to hold other types of software available for the
TI-99/4A and the data that the computer might obtain from execut-

30 Get Personal withYour TI-99/4A

ing any program. RAM space is also used to hold your BASIC
programs. RAM is the portion of computer memory which is
extremely versatile, capable of holding a variety of programs and
data. It is, however, only temporary memory.

A third type of memory, magnetic memory, must be used ifyou
want to permanently store the programs and data that the com
puter's current memory temporarily holds.

Magnetic Storage

You can save your programs and data on some type of magnetic
storage medium, which, in the case ofthe TI-99/4A, can be either a
cassette recorder's tape, or a computer diskette.

By keeping programs or data stored on this magnetic storage,
you overcome the problem of the computer's inability to remember
the programs or data held in its RAM after it has been turned off.
To do this, you simply give the computer the programs or data it
needs from the magnetic storage each time it needs them.

Magnetic tape or diskettes act as a computer's filing cabinet to
hold its programs and data while it is turned off. In fact, we refer to
the individual programs and sets of data on magnetic storage as
files. (Refer to Appendix I for saving BASIC programs.)

Software available for the TI-99/4A, other than ROM chip Com
mand Modules, are programs written on magnetic storage of some
type, either cassette tape or diskette.

Loading the Current Memory

In general, when you want the computer to have a particular set
of data or a program in its current memory, you connect the device
(either cassette recorder or diskette drive) to the computer, and
type in the appropriate command instructions for the computer to
execute. The computer then:

1. finds the data or program on the tape or diskette,
2. reads what is there, and,
3. memorizes that set of instructions or data.

We call this loading a program or reading a data file.
When you load a program, or have the computer read data from

magnetic storage, part of the computer's current memory is used to
hold a copy ofthat program or data. As you write your programs for
the computer, the effect is the same. That is, as you type in your
program, the computer's current memory holds your set of instruc
tions as you type them in.

The Nature of Computers

Computer Memory

RAM

(Current Memory)

Program/Data

ROM

31

Diskette

Cassette

Figure 3.3 Computer memory.

PROGRAMMING LANGUAGES

A program, the set of specific instructions for the computer to
follow or execute, must be written in a form that the computer can
understand, i.e., in a programming language. Actually, the com
puter only understands one language, appropriately called ma
chine language. This is an example of how we might visualize
machine language:

11001011 01111001 01001001 10010111 11001011
01001001 10010111 01001001 01001001 11001011
01111001 01001001 10010111 01001001 01001001
10010111 10010111 01001001 01001001 10010111

Some people have the technical knowledge to write programs in
this highly complex pattern of Is and 0s. In fact, the programs in
the computer's ROM and most of the TI software programs are
written in this way.

Fortunately, these same people write special types of machine
language programs that allow you to write your programs in a way
you can read and understand.

These machine language programs are called programming lan
guages. But from the computer's perspective, they are programs
that interpret what you type on the keyboard into something the
computer can understand, i.e., Is and 0s.

32 Get Personal with Your TI-99/4A

Thus programming languages are simply go-between programs
that aid you in your attempt to communicate your instructions to
the computer. Your instructions are interpreted for the TI-99/4A
with a programming language called TI BASIC.

TI BASIC is one of the more than 50 versions of BASIC in

existence today. Although each version of BASIC has its indi
vidual characteristics, the similarities are far more striking than
the differences.

When you first turn on the TI-99/4A, a menu screen is presented
after the title screen to indicate that you should press the number 1
(one) key FOR TI BASIC. When you type 1 (one), the screen clears
and the message, TI BASIC READY appears. At this point you are
at the ROM BASIC operating level.

title

screen

menu

screen

TI BASIC

READY

screen

Figure 3.4 The first three screens.

OPERATING LEVELS FOR THE TI-99/4A

ROM memory holds the programming language program TI
BASIC. When you press the number one key you tell the computer
to follow the instructions in this program. As long as the computer
is following those instructions, you can communicate with it by
typing in the commands and statements of BASIC. You can also
begin to write your own set of instructions, a BASIC program, for
the computer to follow. When you write your BASIC program (or
load one from the magnetic storage), you create another level for
the computer, the BASIC program operating level. When you
finish writing or loading your BASIC program and are ready to
have the computer begin executing it, type RUN.

At this point the computer jumps from the ROM BASIC operat
ing level to the BASIC program operating level. That is, the
computer starts following the instructions in your own BASIC
program. The computer will stay at your program's operating
level until:

The Nature ofComputers 33

1. the set of instructions ends, or,
2. the computer finds a particular instruction that was written

incorrectly, or,
3. you intentionally interrupt the program's execution by press

ing the FCTN/4 (CLEAR)keys on the keyboard.
You know the computer has finished executing your instruc

tions without finding a single incorrect statement when the mes
sage:

* * DONE * *

appears on the monitor screen.
Ifthe computer finds an instruction that was typed incorrectly or

that it simply does not understand, it will give you a different
message, an error message. Several error messages may appear,
and a list of them along with an explanation of what could have
caused them appears in Appendix V.

Ifyou interrupt the execution of your BASIC program by press
ing the FCTN/4 (CLEAR)keys, the computer stops executing your
program and gives you a BREAK POINT message that tells you
what instruction it would have executed next.

In any case, when the computer stops executing the BASIC
program, it drops back to the ROM BASIC operating level where
you can either change instructions, add instructions, or store the
finished program on magnetic storage.

Computer Memory

RAM

(Current Memory)

BASIC Program-

ROM BASIC

Figure 3.5 Computer memory.

Cassette

34 Get Personal with Your TI-99/4A

MORETHANONE BASIC PROGRAM

You can only have one BASIC program at a time in the com
puter's current memory. This means that if you want to write or
use another BASIC program, you first have to erase any BASIC
program that is currently in RAM.

Ifyou are not going to store the BASICprogram, or already have
stored it on magnetic storage, you can type NEW. This BASIC
command tells the computer to erase the BASIC program from the
current memory but to stay at the ROM BASIC operating level so
you can type in a new BASIC program.

Instead of typing NEW, you can type BYE. The command BYE
tells the computer to erase the current memory and leave the
ROM BASIC level. BYE causes the computer to return to the title
screen you started with. If you load a BASIC program from mag
netic storage, the computer automatically erases any BASIC pro
gram it may have in its current memory before it loads the new
program.

Either way (typing NEW, BYE, or loading a program from
magnetic storage), any BASIC program in the current memory
will be lost forever if you have not saved it on magnetic storage.

SUMMARY

You must realize the difference between intelligence and mem
ory if you are going to understand the computer. Man has
intelligence, the computer has only memory. As you learn how to
use the computer, advanced as it is, you will gain a new apprecia
tion for the "90 percent water-based grey-matter computer" you
have used every day of your life.

This chapter introduced several key tems and concepts that you
will be using in the remaining chapters on BASIC programming
for the TI-99/4A. The following is a brief summary of some of the
more important ones.

KEY TERMS AND CONCEPTS

PROGRAM A set of specific instructions for the com
puter to follow in order to perform a task.

EXECUTE The computer's process offollowing the in
structions in a program.

DATA Words or numbers generated during a pro
gram's execution that need to be retained

The Nature of Computers

BYTE

K

RAM

ROM

SOFTWARE

COMMAND

MODULE

MAGNETIC

STORAGE

FILES

BASIC

OPERATING

LEVEL

RUN

NEW

BYE

35

in the computer's memory or stored on
magnetic storage.

A unit of memory space equal to one char
acter.

One thousand bytes.

Random Access Memory or current mem
ory. Used to hold programs and/or data on a
temporary basis.

Read Only Memory. The portion of com
puter memory with programs permanently
etched into it.

Another name for a program but implies
that it is a purchased program.

A ROM memory chip containing software
fortheTT-99/4A.

The means to save programs and data for
the computer's current memory.

Sets of data or individual programs stored
on a magnetic medium (cassette tape or
diskette).

A machine language program that is used
to interpret English type instructions into
ones and zeros.

The set of instructions (program) that the
computer is executing at a given moment.

The BASIC command that tells the com
puter to start executing the BASIC pro
gram that is in its current memory.

The BASIC command that erases only the
BASIC program that is currently in the
computer's current memory.

The BASIC command that instructs the
computer to leave the ROM BASIC operat
ing level. Any BASIC program in RAM is

36 Get Personal with Your TI-99/4A

erased and the computer returns to the ti
tle screen.

FCTN/4 The two keys that, when pressed together,
interrupt the execution of a BASIC pro
gram.

* * DONE * * The message the computer gives when it
has completed the program without find
ing an incorrect statement. Otherwise, the
computer gives you an error message.

CHAPTER CHALLENGE

1. What sets of instructions does the computer follow in order to
do anything?

2. When the computer is following the instructions that make up
a program, what is the process called?

3. Inside the computer is memory which is simply room to store
the computer's programs and the results of executing pro
grams. What are these results called?

4. Memory space is measured in units called what? And 6.5K
equals how many of these units?

5. What two types of memory are inside the computer?
6. What kind of memory has programs permanently etched into

it and is used to get the computer started when it is turned on?
What programming language program does it contain?

7. What kind of memory is temporary in nature and holds BASIC
programs and many of the software packages available for the
TI-99/4A?

8. Command Modules are actually what kind of memory chips
that can be connected to the computer to give it software
programs to execute?

9. What do you use to save the programs that are held in the
computer's current memory? Name the two types.

10. What are programs that have been saved for the computer on
magnetic storage called?

11. What is the only language that the computer really under
stands? What is the special program called that interprets
what you type into this language?

12. What BASIC command causes the computer to start executing
the BASIC program that is in its current memory?

13. At what BASIC program level will the computer be when it is
executing a BASIC program?

The Nature of Computers 37

14. How many BASIC programs can you have in the computer's
current memory at a time?

15. If you type NEW, what kind of memory is erased? If you type
BYE, the computer leaves what kind of operating level? Ei
ther way, what will be erased in the computer's memory?

ANSWERSTO EXERCISES

1. programs
2. executing
3. data

4. bytes; 6,500
5. RAM (or current) and ROM

6. ROM; BASIC
7. RAM (or current)
8. ROM

9. Magnetic storage; cassette tape and diskette
10. files

11. machine language; BASIC
12. RUN

13. operating
14. one

15. RAM (or current); ROM BASIC; BASIC program

38 Get Personal with Your TI-99/4A

Chapter 4

Algorithms -The
Computer's Recipe

AhgoTithm-a rule of procedure for solving a problem
that frequently involves repetition of an operation,
Merriam-Webster, 1983

You are now ready to write BASIC programs for the TI-99/4A.
First and most important, understand how the computer follows
program instructions.

Even though BASIC is a programming language program that
makes it easier to write a set of instructions for the computer, you
cannot escape the ultra-logic of the machine. Your instructions
must be absolutely precise and ordered in a logical sequence before
the computer can execute them.

A set ofinstructions is an algorithm that conformsto the logicof
the computer. It is the recipe to solve a problem. It represents the
type and order of instructions that the computer will follow to
execute a program that has been typed in. Algorithms are not
written in the statements and commands of a programming lan
guage like BASIC but in a general form with their instructions in
English. You can then translate these instructions into any pro
gramming language because the order and character of them is
computer correct.

We can use the algorithm ofa simple problem to demonstrate the
three fundamentals of computer program execution. Imagine a
robot computer that is just smart enough to understand English
but needs a specificset of instructions before it can do anything.
Unless the robot is instructed otherwise, it follows instructions,
one after another and will not stop until you tell it to do so. The
robot sits at a table with a deck of cards turned face up before it.
The robot is supposed to go through the deck, pick out the four
kings in the deck, and set them to its right. The robot will set any

40 Get Personal with Your TI-99/4A

other card to the left. When it has found all four kings, it is
supposed to stop. Study the following instructions for the robot to
follow carefully.

Instruction 1-THE TOTAL KINGS SO FAR EQUALS
ZERO

Instruction 2-READ THE TOP CARD

Instruction 3-IF THE TOP CARD IS A KING THEN

GO TO INSTRUCTION 6 AND

CONTINUE FROM THERE

Instruction 4-SET THE TOP CARD TO THE LEFT

Instruction 5-GO TO INSTRUCTION 2 AND

CONTINUE FROM THERE

Instruction 6-SET THE TOP CARD TO THE RIGHT

Instruction 7-ADD ONE TO THE TOTAL KINGS SO

FAR

Instruction 8-IF THE TOTAL KINGS SO FAR IS

LESS THAN FOUR THEN GO TO

INSTRUCTION 2 AND CONTINUE

FROM THERE

Instruction 9-STOP

ASSIGNMENT-CONDITION-ITERATION:

Three Fundamentals of Program Execution

ASSIGNMENT- instructions that tell the computer
that something has a value.

The first instruction in our robot algorithm (THE TOTAL
KINGS SO FAR EQUALS ZERO) is an assignment instruction
that tells the robot it has found no kings. This would be obvious if
you were doing this job, but that is not the case with computers.

The next instruction (READ THE TOP CARD) is also an assign
ment instruction. The computer is told that something (THE TOP
CARD) will change in value as instructions are followed. THE TOP
CARD may be any card in the deck, and the computer robot has to
READ it to know its value.

Finally, instruction 7 (ADD ONE TO THE TOTAL KINGS SO
FAR) is another assignment. Here you tell the computer robot to
change the value ofsomething (THE TOTAL KINGS SO FAR) and
increase that value by one every time that instruction is executed.

In each case, the computer robot is instructed to assign a value to
something so that the set of instructions can be successfully ex
ecuted.

Algorithms-The Computer's Recipe 41

CONDITION-the decision-making ability of the
computer. IF a condition is true,
THEN the computer is instructed to
GO TO another instruction. If the

condition is not true, the computer
moves on to the very next instruction.

In instruction 3, the robot is told that IF THE TOP CARD IS A
KING THEN GO TO INSTRUCTION 6 AND CONTINUE FROM
THERE. The condition is IF THE TOP CARD IS A KING. If the
condition is true, then why tell it to go to instruction 6? Unless told
otherwise, the robot will move to the next instruction which is 4
(SET THE TOP CARD TO THE LEFT). That is not what should be
done if that card is a king. By sending the robot to instruction 6
(SET THE TOP CARDTO THE RIGHT) the cards end up either on
the right or on the left, depending on their values, king or no king.

Every time the robot finds a king, it executes instruction 6, then
instruction 7 (ADD ONE TO THE TOTAL KINGS SO FAR).

The next instruction, 8 (IF THE TOTAL KINGS SO FAR IS
LESS THAN FOUR THEN GO TO INSTRUCTION 2 AND CON
TINUE FROM THERE), is the other conditional instruction in the
algorithm. This means that the robot continues to go through the
deck ofcards until it finds four kings. When it has found four kings,
THE TOTAL KINGS SO FAR will not be less than four. It will be

equal to four and the condition will no longer be true. The robot
will move on to the very next instruction, 9 (STOP).

ITERATION-an instruction that causes the

computer to execute one or more
instructions over again.

There are two places in the set of instructions where the robot is
told to GO TO INSTRUCTION 2 (READ THE TOP CARD) AND
CONTINUE FROM THERE. This starts the whole process over
with a new TOP CARD. When an instruction causes a repetition of
a process (called a loop)it causes iteration, a very powerful charac
teristic of computers. The instructions could have had the com
puter read a card, set it to the left or the right and stop when it
found all four kings, then repeat those same instructions 52 times
in the algorithm. Instead, iteration uses the same set of instruc
tions over and over until the job was done.

THE NATURE OF COMPUTER PROGRAMS

In the robot algorithm there were three elements: INPUTS, the
original deck of playing cards; a PROCESS, sorting them by

42 Get Personal with Your TI-99/4A

whether or not they were kings; and OUTPUTS, two stacks of
sorted cards, one on the left and one on the right.

All computer programs share these same three elements. The
three fundamentals of assignment, condition, and iteration make
up the model which defines the nature of computer programs.

MODEL OF A PROGRAM

INPUT(SMPROCESS(ESHOUTPUT(S)
\ Assignment

Condition

Iteration

Figure 4.1 A model of a program.

This model shows that computer programs have INPUTs, which
can be numbers, names, even pictures that the computer can see
with the aid of optical scanning devices. It tells us that these
INPUTs must be defined with values that can be ASSIGNED to a

memory location within the computer.
Once the INPUTs are in the computer's memory, it can compare

them with each other through CONDITION. It can also perform
addition and other mathematical operations on them, sort them
alphabetically, search for a particular INPUT, or perform a great
number of PROCESS(ES), many of which will be covered in the
following chapters.

It can perform these PROCESSes over and over through ITERA
TION, one of the strongest features of the computer, and finally,
OUTPUT the results in a form that can be understood and used.

FLOWCHARTS

Another way to define the set of instructions that were given to
the robot is with a diagram.

Established symbols represent the various instructions used in
computer programs. These symbols are combined to illustrate the
program in a flowchart. Although there are many of these symbols,
you need only three to flowchart most programs.

THE IMPORTANT FLOWCHART SYMBOLS

1. / / The INPUT/OUTPUT
symbol

2. I I ThePROCESS symbol
3. (\ The DECISION symbolo

Algorithms-The Computer's Recipe 43

These symbols are connected together with arrows to indicate
howyou are to executethe program, and have short explanations
printed beside them to tell more specifically to what the symbols
refer. Thefollowing flowchart is forthe robotcomputeralgorithm.

output

PUTTOPCARD

TOTHE LEFT

Begin KINGS = 0

input / READTOPCARD

End

TOPCARD = "King"?

PUT TOP CARD

TO THE RIGHT

KINGS = KINGS+1

KINGS < 4?

Figure 4.2 The robot computer algorithm flowchart.

44 Get Personal with Your TI-99/4A

THE BASIC PROGRAM

10 LET KINGS = 0

20 READTOPCARD$
30 IF TOPCARD$ = "K" THEN 60
40 PRINT TOPCARD$
50 GOTO 20

60 PRINT TAB(20);TOPCARD$
70 LET KINGS = KINGS+1

80 IF KINGS < 4 THEN 20

90 DATA 2,3,4,5,6,7,8,9,10,J,Q,K,A
100 DATA 2,3,4,5,6,7,8,9,10,J,Q,K,A
110 DATA 2,3,4,5,6,7,8,9,10,J,Q,K,A
120 DATA 2,3,4,5,6,7,8,9,10,J,Q,K,A
130 END

This is how you type in the BASIC program as defined by its
algorithm and flowchart.

The BASIC program, its flowchart, and its algorithm demon
strate several points:
1. The computer executes a BASIC program from the top-down,

one instruction after another, until an instruction alters its
sequence by sending it to another instruction. Then it will begin
at that instruction and continue to execute the program in the
same manner as before.

2. All BASIC instructions are numbered with a line number to tell

the computer that one instruction follows another since its line
number is greater. These line numbers do not have to be in
increments of 10 as is shown in this example. However, that is
standard procedure.

3. Each line has one BASIC statement on it, and that statement is
always the first word on that line. The exception is a BASIC
statement that is optional, that is, it is implied to be the first
word on that line.

SUMMARY

There are over 80 statements, commands, and functions in the
TI BASIC programming language, many ofwhich are for advanced
computer use.

However, it is not the number of statements, commands or
functions you know that makes or breaks you as a programmer. To
say that you know all 80 of them, therefore you are a BASIC
programmer, is like saying you know the 26 letters of the alphabet,

Algorithms-The Computer's Recipe 45

therefore you are a writer. It is the logical relationship of the
statements you use that describe your ability as a programmer.

This relationship is often quite complicated. By flowcharting or
writing the algorithm for programs before you type them in, you
formally address the true nature ofyour program. In the long run,
you save yourselfmuch time and frustration by defining the prob
lem first.

The fundamentals ofprogram logic are important to you because
you will use them as long as you write programs.

CHAPTER CHALLENGE

1. Name three fundamentals ofprogram execution that match the
following definitions:
a. an instruction that causes the computer to execute one or

more instructions over again.
b. instructions that tell the computer that something has a

value.

c. the decision-making ability of the computer.
2. Name the three elements of all computer programs.
3. Match these three flowchart symbols with their correct names.

a. / / The PROCESS symbol.
b. I | The DECISION symbol.

The INPUT/OUTPUT symbol.0
Every instruction in a BASIC program has at least two things.
Name them.

Suppose you are going to write a new program for the computer
robot that will instruct it to go through the same deck of cards
until it finds the jack of hearts. After the robot finds this card,
you want it to stop. Here is the algorithm.

Instruction 1 -READ THE TOP CARD
Instruction 2-IF THE TOP CARD IS THE JACK OF

HEARTS THEN GO TO
INSTRUCTION 5

Instruction 3-THE TOP CARD TO THE LEFT
Instruction 4-GO TO INSTRUCTION 1 AND

CONTINUE FROM THERE
Instruction 5-STOP

a. Which instructions) are ASSIGNMENT instructions)?
b. Which instructions) are CONDITION instructions)?

46 Get Personal with Your TI-99/4A

c. Which instructions) cause ITERATION?
d. Now fill in any necessary remarks and connect the symbols

in the following flowchart of the algorithm.

/ 7
PUTTOPCARD

TOTHE LEFT

Begin

/ 7
READ TOP CARD

0 TOP CARD = "Jack ofHearts"?

End

6. Suppose you want the robot to pick out both the jack of hearts
and the ten of clubs, then stop. Here is the flowchart; now write
the algorithm.

CARDSFOUND = 0

READ TOPCARD

TOP CARD = "Jack ofHearts"?

TOP CARD = 'Ten ofClubs'?

PUT TOP CARD

TO THE LEFT

7. Why doyou need to count the CARDSFOUND in this program?
8. What would happen if the deck of cards was missing the ten of

clubs and the robot followed your instructions?

Algorithms-The Computer's Recipe

ANSWERS

1. a. ITERATION

b. ASSIGNMENT

c. CONDITION

2. INPUT(s)
PROCESS(es)
OUTPUT(s)

3. a.

47

The PROCESS symbol.

The DECISION symbol.

the INPUT/OUTPUT symbol.

c.

4. A line number and a BASIC statement.
5. a. Instruction 1

b. Instruction 2
c. Instruction 4

Begin

READ TOP CARD

TOP CARD = "Jack ofHearts"?

PUT TOP CARD

TO THE LEFT

End

48 Get Personal with Your TI-99/4A

6. Instruction 1-CARDS FOUND EQUALS ZERO
Instruction 2-READ THE TOP CARD

Instruction 3-IF THE TOP CARD IS A JACK OF HEARTS
THEN GO TO INSTRUCTION 7 AND CON

TINUE FROM THERE

Instruction4-IF THE TOP CARD IS A TEN OF CLUBS THEN
GO TO INSTRUCTION 7 AND CONTINUE

FROM THERE

Instructions -PUT THE TOP CARD TO THE LEFT

Instruction 6-GO TO INSTRUCTION 2 AND CONTINUE
FROM THERE

Instruction 7-PUT THE TOP CARD TO THE RIGHT
Instruction 8-ADD ONE TO CARDS FOUND

Instruction 9-IF CARDS FOUND EQUAL 2 THEN GO TO
INSTRUCTION 11

Instruction 10-GO TO INSTRUCTION 2 AND CONTINUE
FROM THERE

Instruction 11-STOP

7. It is necessary to stop the execution of the program after the
robot has found both cards. You can do this by keeping track of
the number of cards it has found, and sending it to the STOP
instruction when that number equals 2.

8. The program will blow up on the robot when it trys to READ
the 52nd card, as there won't be one there to READ. The robot
may just have a nervous fit, the computer would give you an
error message.

Developing Original Programs

Program development is a well-defined process. To minimize pro
gramming errors, follow the steps shown in Figure 4.4. Be as
explicit as possible at each step. Toremember this processuse the
acronym CONSTRUCT (see Figure 4.3).

Acronym Stands for
C Collect the facts
O Organize the steps
N Develop a Network of the flow
S Eliminate Syntax errors
T Test the program with data

Ru Run applications of program
C Compose a documentation file
T Tutor others on program's use

Figure 4.3 Howto construct original programs.

Algorithms-The Computer's Recipe 49

Start

1. Define Problem

2. Design Problem
Solution

I

3. Write Program

4. Syntax Errors?

I

5. Test Program

I
6. Program

Completed

I
7. Document the

Entire Process

8. Educate Users

Stop

Recognize the problem. Determineoutputs
required. What inputs are necessary? Determine
what calculations are needed (how can input
documents be processed or transformed into
required outputs?).

Divide problem into subunits. Write out
sequence of activities. Use flowchart to visualize
logic flow.

Codesolution in BASIC language.

Enter in computerfordebuggingand editing.

Check logicofprogram using previously
validated solutions.

rogram free of logic and syntax errors.

Collectresults ofsteps 1-6.Write up the entire
process. Deposit material in documentation
manual.

Teach others howto use the program.

Figure 4.4 Steps in program development.

50 GetPersonalwith YourTI-99/4A

Step 1-Define the problem: You recognize the needfor cer
tain types of information about decisions you must make. What
types ofinformation do you need? Listthem. Try tosketch theform
and content ofthe ideal output document fromthe program.What
input documents would be necessary and where will they come
from? Getcopies ofthesesource documents aspart oftheprogram's
documentation.

Step 2-Design the Solution: Breakthe problem down to sub-
tasks. Write a sentence or two about each task. Explain the task.
Arrange the tasks in ascending order. You now have the begin
ningsofa flowchart orroadmap. Aflowchart isa visualdiagram of
the activities and their sequence in a project. Flowcharts are
excellent communication tools to explain and coordinate what has
to be done. Theydocument the program foryouand other users.A
good flowchartmakes programmingeasier and reducesyour error
rate. Get into the habit of documenting your efforts through
flowcharts. They are an integral part ofprogram design.

Step 3-Write the program: With the flowchart complete,you
are ready to code the solution in BASIC. Each activity in the
flowchartsuggestsoneormoreBASIC statements. Figure 4.6 lists
each flowcharting symbol, its meaning, and the BASIC instruc
tions that perform that activity. How to write these programs in
BASICis the subject ofthe rest ofSectionII in this book.

Step 4-Syntax Error: If BASIC statements are improperly
formed and don't conform to the rules of the language, a syntax
error occurs.Misspelling a keywordlike REED instead ofREAD
is a syntax error, and the computer will display an error message
when the statement is entered or when the program is RUN.
Removethese errors by retyping the statement correctly and reen
tering it. Even if there is onlyonesyntax error in the program, it
will not run. If you don't understand the mistake, a listing oferror
messages is shown in Appendix V.

Step 5-Test Program: When the program is free of syntax
errors, you must retest its logic. Is it looping and branching cor
rectly?Input data forwhichyoualreadyknowthe results. Does the
program replicate the known answers? Is the program's output
reasonable? Try to test each branch or conditionin the program. A
payrollprogrammight compute paycorrectly forregular time but
not when overtime occurs. You often hear of people who get large
refunds or paychecksby mistake from a computer.Somewherein
the program an error has occurred; it can be embarrassing and
expensive.

Algorithms-The Computer's Recipe 51

Step 6-Completed Program: The program is done and opera
tional. It works. Now begin to use it for its intended purpose.
Maybe improvements, or enhancements, will be made later.

Step 7-Document the Process: Collect the results of the
previous six activities and deposit them in a folder or three-ring
binder. This wouldinclude program listings, flowcharts, operating
instructions, examples of outputs, source documents, file names
and formats and any helpful hints about the program or the ap
plication. Now you have a user's manual for future reference.

Step 8-Educate Users: Teach others how to use the program.
The user's manual will help. Having others benefit from your
effort is helpful to them and rewarding to you. Perhaps you can
market your program to others. Regardless, the CONSTRUCT
process will make programming easier and faster for you.

Programming Errors

Every programmer makes mistakes. Making and correcting
errors are excellent learning experiences. Programming is a skill
and in any skill, you learn by doing.Viewcorrecting programming
errors as a challenge to your mind or as a detective might view
solving a complexcase. The process should be fun and exciting, not
tedious and frustrating. In debugging programs, we have spent up
to eight hours searching for one error. But when we found it, it was
exhilarating. Programming the TI comptuer will add excitement
to your life.

Programming erros fall into three broad categories: syntax,
execution, and logic.

Syntax errors-A BASICstatement is not formed according to
the rules of the language-misspelled keyword, missing comma,
undefined label, etc. Here the computer helps you find the error by
printing error messages or diagnostics. These messages identify
the cause and location (statement number) of the error. Simply
retype the statement correctly and the error disappears.

Execution errors-After the computer translates each state
ment and understands it (no syntax errors), the program is ex
ecuted. It is here that an execution error can occur. Examples are
division by zero, a calculated value exceedsthe computer's storage
capability, the program runs out of data, etc. Error messages are
also printed for execution errors so you can find and correct the
errors.

Logic errors-Here the statement sequence or algorithm you
have written does not correctly express the problem and thus the

52 Get Personal with Your TI-99/4A

results are incorrect. Common examples might be an improper
formula, branching to the wrong location, or printing the wrong
variable. These are the most difficult to find, since no error mes
sages occur. The CONSTRUCT process suggested earlier helps
reduce logic errors. Step 5 in CONSTRUCT is a check for the
presence of logic errors in your program.

Withthis background, youcanbegin towriteprograms foryour
TI-99/4A.

EXERCISES-CHAPTER 4

Definitions

1. What is a logic diagram?
2. What does BASIC stand for?
3. What advantages docomputers have overhumans?
3. What advantages dohumans have overcomputers?
5. What are the characteristics ofgood computerapplications?
6. List fiveofthe mostcommon typesofapplicationsforpersonal

computers.
7. What does CONSTRUCT stand for?
8. What is a flowchart?
9. Name three types of programming errors.

10. Whichofthe three error typesis hardest tofind and why?

ACTIVITIES

11. Develop a flowchart showing howtobake a cake.
12. List ten applications wherecomputers are beingusedtodayin

our society.
13. List five applications where you could personally use a com

puter. Do prepackaged programs exist for the application?
Find out.

14. Develop a flowchart for selectinga newjob.
15. Think of another acronym for the eight steps in computer

program development. What do each ofthelettersstandfor?

Chapter 5

Writing and Editing
BASIC Programs

The next step to writing in BASIC is to learn how to type in
instructions andtounderstand how the computer recognizes them.
Examples explain this process best, so here is your first BASIC
statement: PRINT.

PRINT is called an output statement It is an instruction that
tellsthecomputer toputsomething either onthe monitor screen,
on magnetic storage, or on the printer. The PRINT statement has
many variations, butfor thepurpose ofusingit in theseexamples,
you will cover only one of them.

PRINTING LITERALS

The PRINT statement may be used to output to the monitor
screen what is called a literal. A literal is enclosed in quotes and
follows the PRINT statementon a BASIC program line.

the line number the literal

10 PRINT "This is an example."

the PRINT statement

Figure 5.1 A program line that contains a literal.

This short program tells the computer that its first and only
instruction is to PRINT, on the screen, the words:

This is an example.

As it executes this short program, the computer will PRINT
literallyandprecisely whatyou have typed between the quotes in
the PRINT statement.

54 Get Personal with Your TI-99/4A

THE COMPUTER'S MESSAGE BOARD

As you type the BASICprogram, the line you are typing appears
on the monitor screen as it would on a piece of paper if you were
using a typewriter. A small blinking marker called the cursor
indicates where the next character will appear on the screen when
you type it in. When you finish typing the line, press the ENTER
key. This causes the cursor to jump to the beginning of the next
line, just as a typewriter jumps to a new line when you press its
carriage return key.

Although the computer's keyboard and monitor screen behave
like a typewriter with paper in it, they are quite different.Think of
the computer's monitor screen as a type of electronic message
board. When you type a program line, you are writing a message on
the message board for the computer. When you press the ENTER
key, you send that message to the computer for it to enter into its
current memory. Once that particular message is in the com
puter's memory, you can write other messages for it in the same
way.

This message board works both ways. It lets the computer send
messages to you. In the last example,for instance, you wouldtype
RUN then press ENTERto send the message the computerneeds
(the BASIC command) to begin executing your program. The com
puter wouldrespondby sendinga message (the program output)
back to you by PRINTing it on its message board, the monitor
screen.

> 10 PRINT "This is an example."
>RUN

This is an example.

* * DONE * *

The > character at the far left of the screen is a prompt from the
computer that says it is your turn to type in a message.When you
see this prompt it means that you are at the ROM BASIC operat
ing level and that the computer is waiting for you to type some
thing, a BASIC program line or a BASIC command. When the
computersendsa message, suchas the outputofa BASIC program
or the computer's * * DONE * * message, it leaves offthe >.

These are the messages you could expect to appear on the
monitor screen as you type and RUN the following:

Writing and Editing BASIC Programs 55

> 10 PRINT "This is an example."
> 20 PRINT "We are going to"
>30 PRINT "PRINT literals"
>RUN

This is an example.
We are going to
PRINT literals

* * DONE * *

CLEANING OFF THE MESSAGE BOARD

You can clean off your message board any time you want by
typing:

> CALL CLEAR

Remember to press the ENTER key.
When you CLEAR the screen, it is important to note that the

BASIC program is not cleared away. Only those messages that
happen to be left on the message board are cleared away. Some of
those messages were the lines ofthe BASICprogram, but you have
already sent these messages to the computer with the ENTER key.
The computer has these program lines stored in its current mem
ory.

LISTINGTHE PROGRAM

If you want the computer to put your BASIC program back on
the screen, type LIST then press ENTER. This BASIC command
causes the computer to put all of the lines in the BASIC program
back on the screen.

>LIST

10 PRINT "This is an example."
20 PRINT "We are going to"
30 PRINT "PRINTliterals"

>

You can also tell the computer to: LIST just one line of your
program; LIST all of the lines from one line number through
another line number; LIST all of the lines up to a particular line
number; or, LIST all of the lines from a particular line number on.
The following are examples of how we can use the LIST command.

56 Get Personal with Your TI-99/4A

Example Explanation
> LIST 20 Lists line 20 only.
> LIST 50-100 Lists line 50 through 100

only.
> LIST -50 Lists lines up to 50.
> LIST 100- Lists lines 100 on.

IMPORTANCE OF LINE NUMBERS

The computer will always LIST and RUN (execute) the BASIC
program in order of that program's line numbers. It totally dis
regards the order in which you send the messages, it is only
concerned with the order in which the lines numbers say the
messages should be. Using the previous example, you can type in
LIST and RUN in this way:

>30 PRINT "PRINTliterals"

> 20 PRINT "We are going to"
> 10 PRINT "This is an example."
>LIST

10 PRINT "This is an example."
20 PRINT "We are going to"
30 PRINT "PRINTliterals"

>RUN

This is an example.
We are going to
PRINT literals

* * DONE * *

INSERTING A PROGRAM LINE

To insert a program line into your BASIC program, type in and
send the message (program line) to the computer using a line
number that is between the number of the line which will preceed
the new line and the number of the line which will follow it. For
instance, if you wanted to insert a new PRINT statement between
lines 20 and 30, you could type in a line with the line number 25.
This is why program lines are usually numbered by ten. It gives
you nine possible extra lines that you can insert between any two
original lines. Here is an example ofwhat messages would appear
on the screen as you insert a new line into the sample program.
Note: the lines with a > are the lines which you type.

Writing and Editing BASIC Programs

>LIST

10 PRINT

20 PRINT

30 PRINT

>25 PRINT

>LIST

10 PRINT

20 PRINT

25 PRINT

30 PRINT

>

"This is an example.
"We are going to"
"PRINT literals"

"insert a line and"

'This is an example.
"We are going to"
"insert a line and"

"PRINT literals"

57

Removing a line from a BASIC program is even simpler. Type
the line number then press ENTER. The following is what you can
expect to see on the monitor screen as you delete the line that you
just inserted in the example program:

>UST

10 PRINT

20 PRINT

25 PRINT

30 PRINT

>25

>LIST

10 PRINT

20 PRINT

30 PRINT

>

'This is an example.
'We are going to"
'insert a line and"

'PRINT literals"

'This is an example.
'We are going to"
'PRINT literals"

EDITING THE LINE YOU ARE TYPING

As you type a program line, there are several ways to correct any
mistakes you may make before you ENTER that line. A special
key, marked FCTN (FUNCTION), is used with various other keys
on the TI-99/4A keyboard. This key lets you edit the line you are
typing. The FCTN key is pressed and held, while a second key is
struck, in order to perform the action you desire. For instance,
pressing and holding FCTN, then tapping the S key will move the
cursor to the left, back along the program line, one character at a
time.

Most ofthe keys on the TI-99/4A keyboard will repeat ifthey are
held down. This means if you hold the FCTN key down and the S
key down, the cursor keeps moving to the left until you release the

58 Get Personal with Your TI-99/4A

S key. It also means that ifyou are a heavy-handed typist, you will
see a lot ofTHISSSSSSSSS on the screen from time to time.

The following describes the methods and keys you can use to edit
BASIC program lines as you type them.

Retyping Characters

Use the cursor-left keys (FCTN S) to move the cursor backwards
along the program line. This simply moves the cursor over the
characters on that line. When the cursor is over a mistake or typo,
you can retype that part and then either ENTER that line or move
the cursor back to the end of the line with the cursor-right keys
(FCTN D) and continue typing the line.

Inserting Characters

FCTN and the number key marked 2 cause whatever you type to
be INSerted at the current position of the cursor. This means you
can move the cursor back in a line (FCTN S), press the FCTN 2
keys, and insert into, rather than retype over, that part of the
program line. FCTN 2 turns on an insert mode that stays on until
you finish typing. When you move the cursor with a FCTN key or
press ENTER, the insert mode turns off.

Deleting Characters

Next to INS (FCTN 2) is DEL (FCTN 1). This is the key that,
when struck or held with the FCTN key, deletes characters from
your program line. If you move the cursor back and delete a
character, the rest of the characters to the right of the cursor shift
one space to the left. If you hold the delete key down, the cursor
looks like it is gobbling up the characters in the rest ofthat line.

Erasing the Entire Program Line

FCTN and the number key marked 3 will erase the program line
you are currently typing. This has the effect of removing that
message from the message board, which lets you start typing that
entire message (including line number) over again.

After you have typed and edited the BASIC program line, press
the ENTER key to send that line to the computer for it to put in its
memory. The cursor can be anywhere on that line when you EN
TER it. The computer will know that you are sending it that entire
line.

Writing and Editing BASIC Programs 59

EDITING A LINE AFTER IT HAS BEEN ENTERED

One way to change a BASIC program line after it has been
entered is to type that line over again. Any time you send the
computer a program line with the same number as a line it has
already received, it replaces the old line with the new one. In other
words, when you send a message with the same line number as one
you have already sent, the computer assumes the first message
was wrong.

Many times there are only one or two incorrect characters in a
line. There is a fast, easy way to correct these mistakes in one or
more ofyour program lines.

The Edit Command

Remember the screen is an electronic message board and you
can cause the computer to put those messages back on the screen
by typing LIST. Another command, EDIT causes the computer to
do something similar. When you type EDIT [line number], the
computer will put that line back on the screen, with the cursor at
the first position of the first BASIC statement. From there you can
edit that line in the same manner that you edit a line before you
have ENTERed it. That is, you can retype, insert, or delete with
the FCTN keys to make corrections and press the ENTER key to
send that corrected program line (message) to the computer. When
you press the ENTER key, the computer leaves the EDIT mode
and you can continue writing new program lines in the normal
manner.

You can also EDIT several program lines, one after another, by
using the FCTN keys: FCTN X (cursor-down) and FCTN E (cursor-
up), instead of the ENTER key, when you are through editing a
program line. These two FCTN keys will ENTER the corrected
program line then move to the next line in the program without
causing the computer to leave the EDIT mode. The next line can be
either the line before, FCTN E (cursor-up), or the line after, FCTN
X (cursor-down) the line you are on.

EDITING KEYS SUMMARY

(Del) (Ins) (Erase)

60 Get Personal with Your TI-99/4A

EDIT line before
(cursor=up)

Cursor = left — - Cursor = right

EDIT line after

(cursor = down)

Figure 5.2 A summary of the editing keys.

FCTNS Moves cursor to the left on current line.

FCTND Moves cursor to the right on current line
FCTN1 Deletes character at current cursor

position.
FCTN 2 Inserts character at current cursor

position.
FCTN 3 Erases current program line.
FCTNE Displays line before current line for

EDITing.
FCTNX Displays line after current line for

EDITing.

When typing a program line you can make a TTBASIC program
line four times longer than the length of the screen (112 characters
vs. 28 characters). When you type in over 28 characters, the pro
gram line wraps around and continues one line down on the other
side of the screen. The computer still considers this to be one
program line. To avoid confusion, a BASIC program line is referred
to as a logical line.

Writing and Editing BASIC Programs 61

OTHER IMPORTANT PROGRAM LINE COMMANDS

Number

The computer can automatically generate line numbers while
you type in the BASIC programs.Todothis, type NUM and press
ENTER. The computer then starts by setting up line 100 and will
set up a new line (increased by 10), each time you ENTER a
finished BASIC programline.TypingNUM then pressing ENTER
puts the computer in the NUMber mode and pressing the ENTER
key without typing anything on a line just generated causes the
computer to leave the NUMber mode.

Resequence

Youcan RESequence line numbers by typing RES then press
ing ENTER. This causes the computer to renumber the BASIC
program lines. RES is particularly useful when you want to insert
a line but can't because the two line numbers on either side of
where you want to insert the new line are tooclosetogether, such
as line 10 and line 11.RESequencing will result in the program
beginning with the line number 100. Each one after that will have
a line number increased by 10.

SUMMARY

What is the difference between a BASIC command and a BASIC
statement? Generally, an instruction is a command when you
ENTER it without a line number. RUN, LIST, and EDIT are
examples ofwhat are usually referred to as commands. Statements
are used primarly in the BASIC programs and so have line num
bers preceeding them.

Lack of distinction comes because instructions, usually called
commands, are used in programs as statements, and instructions,
usually called statements, are used without line numbers as
BASIC commands. The cause ofthe confusion is the strong inter
relationship between the BASIC program operating level and the
BASIC operating level. It is more important to remember that
these are two different operating levels than it is to worry about
what is a command and what is a statement.

The following BASIC commands help jog the programmer's cur
rent memory when it needs it. They include a few commands listed
that have not been discussed thus far but include brief explana
tions that you should understand fairly well.

62 Get Personal with Your TI-99/4A

BASIC COMMANDS SUMMARY

CALL CLEAR clears the screen of all messages.
EDIT 60 displays line 60 for editing.

EDIT mode keys
FCTN S moves cursor to the left on line 60.
FCTN D moves cursor to the right on line 60.
FCTN 1 (del)etes character at current cursor position.
FCTN 2 (ins)erts character at current cursor position.
FCTN 3 (erase)s line 60 from the screen (not memory).
FCTN E enters line 60 and displays line 50 for EDITing.
FCTN X enters line 60 and displays line 70 for EDITing.

LIST lists all lines of the BASIC program in current memory on
the monitor screen.

LIST 40 lists line 40.
LIST 40-100 lists lines 40 through 100.
LIST 100- lists lines 100 on.

LIST -100 lists line up to 100.
NEW erases all BASIC program lines from the current memory.

BYE erases all BASIC program lines from the current mem
ory and returns to title screen.

NUM starts automatic line numbering with line 100 and by incre
ments of 10.

NUM 50 starts wtih line 50 and by increments of 10.
NUM 200,50 starts with line 200 and by increments of 50.
NUM ,5 starts with line 100 and by increments of 5.

RES renumbers all of the program lines, starts with the number
100 and increments by 10.
RES 50 starts with line 50 and by increments of 10.
RES 200,50 starts with line 200 and by increments of 50.
RES ,5 starts with line 100 and by increments of 5.

RUN begins execution of the BASIC program in current memory.
RUN 50 starts program execution at line 50.
FCTN 4 (CLEAR) stops program execution. Exits EDIT and

NUM modes.

CHAPTER CHALLENGES

The first part of this Chapter Challenage is an exercise that uses
many of the BASIC commands covered in this chapter. The idea
here, is to gain keyboard familiarity and a general feel for the
TI-99/4A's behavior when it is given a command.

Writing and Editing BASIC Programs 63

There will probably be a number of error messages the computer
will sendyou while you do this exercise, but that is part of what you
are learning: how nit-picky this machine can be.

Feel free to experiment; try different commands. Ifthe computer
complains, type in that line or command again. Remember, there
is no way to hurt the computer by typing on the keyboard.

1. Turn on the computer and follow the screen instructions until
the TI BASIC READY message appears. At the bottom of the
screen there should be a > •

2. Now type NUM and press ENTER. The computer generates
line numbers for the BASIC program. This is what you should
see at the bottom ofthe screen:

>100D

3. Type in the following BASIC program. Remember that the
computer will leave the NUMber mode if you press the EN
TER key just after a line number has been generated.

>100 CALL CLEAR

>110 PRINT "This program will"
>120 PRINT "instruct the computer "
> 130 PRINT "to PRINT out this "

>140 PRINT "message. "
>150 [ENTER]
>

4. Be sure the computer is no longer in the NUM mode then type
RUN and press ENTER.

5. Now type LIST then press ENTER.
A. Try LISTingjust one line of this program.
B. Try LISTing lines 120 through 140 only.
Type CALL CLEAR ENTER to clear the screen then LIST
the whole program again.

6. Type in the new program lines:

> 125 PRINT "to first clear the screen"

>126 PRINT "and then PRINT out this"

LIST the program again. This is what it should look like:

100 CALL CLEAR

110 PRINT "This program will"

64 Get Personal with Your TI-99/4A

120 PRINT "instruct the computer"
125 PRINT "to first clear the screen"

126 PRINT "and then PRINT out this"

130 PRINT "to PRINT out this"

140 PRINT "message."

7. Now remove line 130 by simply typing 130 and pressing EN
TER. LIST the program again. RUN the program. This is
what the output should look like:

This program will
instruct the computer
to first clear the screen

and then PRINT out this

message.

8. Type RES then press ENTER and LIST the program again.
Notice that the line numbers have changed.
A. Try typing RES 10,10 and LISTing the program.
B. Try typing RES 500,100 and LISTing the program.
RES, CALL CLEAR the screen and LIST the program. This
is what it should look like:

100 CALL CLEAR

110 PRINT "This program will"
120 PRINT "instruct the computer"
130 PRINT "to first clear the screen"

140 PRINT "and then PRINT out this"

150 PRINT "message."

9. Now type EDIT 110 then press ENTER. Move the cursor to the
right with the FCTN D keys until it is over the p in program.
Press the FCTN 2 keys to turn on the INSert mode and type the
word BASIC (add a space to separate the two words). The line
110 should look like this:

110 PRINT "This BASIC program will"

10. Instead of pressing the ENTER key, press the FCTN X keys so
that line 110 will be entered without the computer leaving the
EDIT mode. This should bring line 120 to the screen for you to
EDIT. Move the cursor to the right until it is over the t in the
and type in my TI Computer so that line 120 looks like this:

120 PRINT "instruct my TI Computer"

Writing and Editing BASIC Programs 65

11. Press the FCTN X keys again so that you can EDIT line 130.
Move the cursor over the /"in first and use the FCTN 1 keys to
DELete this word from this line. Now press the ENTER key.
This causes the computer to leave the EDIT mode and you can
RUN the EDITed program. This is what the output should
look like:

This BASIC program will
instruct my TI Computer
to clear the screen

and then PRINT out this

message.

Here are a few pictures that you can draw using only PRINT
statements and keyboard characters in the BASIC program. Try
writing the programs that, when executed, will PRINT these
pictures on the screen with their titles.

1) ROCKET SHIP

S

A

/ \
3) STRAWBERRY

AA7
() (

() ()

() (
()

(

() ()

) () ()

() ()
)()

()

2) FIGHTER PILOT

4) SHIP AT SEA

[] f-
o o o o

66 Get Personal with Your TI-99/4A

Chapter 6

TI BASIC Calculations

At times you will want the computer to perform mathematical
calculations while it executes BASIC programs. The TI-99/4A is
well equipped to solve problems that involve buying and selling
goods, figuring percentages, analyzing finances, etc.

You may think that computers are useful only if you know
algebra, calculus, or other forms of advanced mathematics. But the
computer's usefulness lies in its ability to perform repetitious
calculations at a very fast rate without fatigue or errors. The
volume, not the complexity of calculating work makes computers
valuable tools.

For most of us, volumes ofwork means adding up rows and rows
of figures, dividing several numbers several times to find percent
ages, or repeatedly performing fairly simple calculations on many
different sets of numbers. To perform these tasks on the computer,
you need to be able to instruct the TI-99/4A to do computations.

COMPUTATIONS

There are five basic operations in mathematics: addition, sub
traction, multiplication, division, and exponentiation (powers of
numbers). When you do these operations by hand, you can say the
same thing in several ways. For instance, 3x2,3(2), and 3*2, are
all different expressions for 3 times 2.

But the computer understands only one expression for each
operation. Figure 6.1 is a list of the five operations and their
computer formats.

68 Get Personal with Your TI-99/4A

3+2 three plus two V Addition

3-2 three minus two / Subtraction
3*2 three times two * Multiplication
3/2 three divided by two - Division
3A2 three to the second

power (three squared)
+ Exponentiation

Figure 6.1 Operations and their formats.

More than One Operation at a Time

Inaddition to knowing the format of mathematical operations,
you also need to know the order of execution the computer will
follow to solve aproblem thatincludes more than one operation.

Take the simple equation, 3+5*2,for example. Three plus five
is eight, andeight times two is 16. On the other hand, five times
twoequals ten, and ifyouaddthree to ten, the answer is 13.

So,the equation 3+5*2 couldhave twoanswers.

3+5*2=? 3+5*2=?
8 *2 = 16 3+ 10 =13

Isthecorrect answer 16 or13?Withoutknowing theorder inwhich
you should execute the problem, you have no way ofknowing the
correct answer.

Thecomputer handles this type ofproblem with a set ofrules
given to it by the TI BASIC language program. But all program
ming languages have similar instructions for the computer to
follow. They are called "rules ofpriority", and they tell the com
puter to execute certain operations before others.

The following table describes which operations the computer has
been instructed toexecute, inorder oftheirpriority.

EXECUTION PRIORITY

1st Priority

2nd Priority
3rd Priority
4th Priority

Any operation or set of
operations in parentheses
()
Exponentials A
Multiply,Divide *,/
Add, Subtract +, -

Figure 6.2 Execution priority.

TI-99/4A BASIC Calculations 69

The computer's approach to solving this example problem,
3+5*2, would be to first perform the multiplication, 5*2 = 10,
then perform the addition, 3+10 = 13. This is because multiplica
tion has a higher execution priority than addition.

Suppose you are actually trying to calculate the total pieces of
bread necessary to make three ham and five tuna fish sandwiches.
If this were the case, you would first want to add three and five to
get the total number of sandwiches, then multiply that times two
(no triple deckers in this problem) to get the correct number of
pieces of bread-16. To get the computer to come up with the
correct answer, you have to modify the way you write the equation.

PARENTHESES

You can make the computer alter its order of execution by
placing operations inside parentheses or sets of parentheses. The
operations inside of the parentheses will then have the highest
priority, that is, those operations will be executed first.

(3+5)*2

Typing in your equation as shown above instructs the computer
to first add three and five (ham and tuna fish sandwiches) then
multiply that by two (the pieces of bread per sandwich).

You may also use parentheses inside parentheses to control the
computer's order ofexecuting the problems. When you do this, the
operations of the inside parentheses have a higher priority then
the operations of the outside parentheses.

For example, suppose you take a vacation and plan to make
those ham and tuna sandwiches for lunches each day. The vacation
will last five days but you are going to have lunch at a restaurant
on two ofthose days. You already know how to get the computer to
compute the pieces ofbread you will need each day:

(3+5)* 2

and now you want to type in the equation for calculating how much
bread to buy for the vacation.

Sandwiches per day
times

bread per sandwich

((3+5) * 2) * (5T2)

times

days we will make sandwiches

Figure 6.3 Sandwiches.

70 Get Personal with Your TI-99/4A

When the computer reaches this equation, it goes straight to the
innermost parentheses (3+5) and performs that operation first.
This will leave it with:

(8*2)*(5-2)

Then the computer will perform the two operations, 8*2 and 5-2,
since these are both still inside of parentheses. The computer
treats these two operations with equal priority. You don't know
which one it will do first. You only know that they will both be done
before anything else. This will leave the computer with:

16*3

This is the last operation the computer has to perform, and it will
compute the final answer to your problem as 48, the number of
pieces ofbread you will need for your vacation lunches.

When there is more than one operation inside a single set of
parentheses, the computer follows its standard order of execution
to perform those operations until all of the operations inside that
parentheses are performed. Also, parentheses are used throughout
BASIC programs in several statements, commands, and functions.
Generally, they are the way to tell the computer to "Do this first"
or, as in the case of BASIC functions, parentheses are often used to
tell the computer to "Do this only."

To summarize the discussion of execution priorities, you have an
example of a more complicated equation, one that has several
operations in it, and which shows the order of execution the com
puter will follow as it computes your answer.

Equation
„ 7-S
3+—

parentheses 1st
exponent 2nd
division 3rd

addition 4th

Example

Computer Format

3+(7-5)/2A2

(7-5) = 2
2A2=4

2/4 = .5

3 + .5 = 3.5

Figure 6.4 Example.

Answer

3.5

leaves 3+2/2A2

leaves 3+2/4

leaves 3+.5

leaves 3.5

NUMERIC FUNCTIONS

The best way to describe functions is to say they are built-in
tricks that the computer can do. Numeric functions are computa-

TI-99/4A BASIC Calculations 71

tions done with numbers for which it would otherwise require
considerable time to write BASIC instructions.

Functions usually start with a three-letter word that stands for
the type of trick that function does. The three-letter word is usually
followed by a set of parentheses with something inside them. The
function will perform its computation on the numeric value within
the parentheses.

For instance, the function SQR which stands for square root
function will find the square root of the numeric expression in its
parentheses. To find the square root of 16 type:

SQRU6)

and the computer will find, or compute, the square root of 16 when
it reaches this part of the BASIC program.

The number 16 is a numeric expression. A numeric expression
can be a number or an equation. This means you can type:

SQR(4*5-4)

In this case, the computer first solves the equation inside the
parentheses. Then it will find the square root of the answer to the
equation, the square root of 16 in this example.

Whatever you put inside the function's parentheses (the first or
outside set of parentheses) is called the argument of the function.

If you remember all of regular mathematics, you might re
member that a negative number does not have a square root since a
negative number times itself is a positive number. Ifyou type in:

SQIK-16)

the computer gives you the error message, BAD ARGUMENT.
This does not mean you failed to convince it to find the square root
ofnegative 16. It means that it can't do that particular trick (SQR)
with the information you have typed inside of the function's paren
theses—its argument.

There are twelve numeric functions built-in to the TI-99/4A, but
most of these are for advanced graphics, engineering, or scientific
applications. Two of them, however, are useful in a number of
situations.

INT (NUMERIC EXPRESSION)-INTEGER FUNCTION

An integer is a whole number. There is no fractional part at
tached to it, such as 2.3766. An integer is a whole number such as
2,5,199,0, -3, etc.

72 Get Personal with Your TI-99/4A

The INTeger function turns its numeric expression, or argu
ment, into a whole number by truncating (computer language for
chopping off) anything to the right of the decimal point. This
means that 2.3766 gets changed to 2 and so does 2.9999999. In
other words, INT doesnot round offthe number, it simply chopsoff
the fractional part.

This is such a handy function because it gives you control over
what the numbers will look like when you go to read answers, or
output, on the monitor screen. To explain how you can do this, you
first need to look at what the TI-99/4A comes up with when it
computes an answer.

Ifyou type 1+3 and have the computer print the answer on the
monitor, it prints 4 with no problem. But, if you have the computer
print the answer to 1/3 (1 divided by 3), it prints .3333333333.

Now if you were writing a program that was splitting a dollar
three ways and wanted output so that it could be read as cents
instead of .3333333333, you would type:

INT((1/3)*100)

When the computer reaches this part ofthe program, it first goes to
the innermost parentheses, (1/3), and computes the answer as
.3333333333. It will then multiply that by 100 to get 33.33333333.
Then it will convert that to an INTeger and the final answer will
be 33, the number ofwhole cents in one-third ofa dollar.

Another example would be to say you have $10.00 to split three
ways and you want output in dollars and cents display (3.33)
instead of 3.3333333333. To do this type:

INT((10/3)*100)/100

Here the computer will:

First Divided 10 by 3 to get 3.3333333333
Second Multiply 3.3333333333 by 100 to get

333.3333333

Third Convert that to an INTeger to get 333
Fourth Divide 333 by 100 to get 3.33

Notice what this last example tells us about numeric functions.
They have an execution priorityjust as the operations have. In fact
their priority is higher than all operations unless those operations
are in parentheses.

TT-99/4A BASIC Calculations 73

In both of these examples you control your output by first mov
ing the decimal place in the number, converting it to an INTeger,
and then moving the decimal place back ifyou wish.

Rounding with the INT Function

If you want to round off the answer, add .5 to the numeric
expression after you have moved the decimal to the right as far as
you want to round.

For example, take the two numbers 1.234 and 1.236 and follow
how the computer rounds them offwith the INTeger function.

INTU.234 * 100+.5)/100 INT(1.236 * 100+.5)/100
INTU23.4+.5)/100 INT(123.6+.5)/100
INT(123.9)/100 INT(124.1)/100
123/100 124/100

1.23 1.24

RND-Random Number Function

A random number is meant to be a surprise. You don't know
what number the computer is going to come up with when you use
this function. RND does not use an argument to come up with a
random number. You simply type in RND and the computer will
generate a number for you.

Random numbers are useful when you want to write a program
that is unpredictable even by you. Computer Aided Instruction
(CAD programs often use random numbers to give unpredictable
problems. Computer games are another major area where random
numbers may be desirable and finally, random numbers are often
used to test programs or simulate different situations to see if a
complicated equation works under a variety of conditions.

There are several ways that the computer may generate random
numbers. To explain them, you will need a new BASIC statement
and a simplified explanation of how the computer comes up with its
random numbers.

Imagine that the computer has a long list of random numbers to
use. Ifyou simply tell the computer to RND, it starts at the top of
this list and sends the first number on it. The problem is that the
computer will send the same number every time you RUN your
program, that is, it starts at the top ofthe list again.

Ifyou want the computer to start at a different spot in this list of
random numbers, you need to use the BASIC statement RAN-

74 Get Personal with Your TI-99/4A

DOMIZE in the beginning of the same program. This statement
may then be followed by a number that tells the computer to start
at a spot somewhere other than the top of the list:

RANDOMIZE 121

The number you type in is called a random numberseed, and this
number is what determines where the computer will start on the
list ofrandom numbers. Even though the spot will be different, the
computer will still start at that same spot on the list, every time
you RUN your program. That is unless you change your random
number seed in the RANDOMIZE statement.

Ifyou want the computer to start on a totally unpredictable spot
on its list, each time you RUN the program type in the RAN
DOMIZE statement without the random number seed. That is,
simply type RANDOMIZE.

When the computer generates a random number, that number is
a 10-digit number greater than or equal to zero and less than one. A
typical random number might look like this:

.5209795429

After a random number has been generated it is up to you to turn it
into the type of number you want. This is another time that the
INT function comes in handy. If you want to generate a random
number between one and 100 type:

INT(RND*100)+1

The computer will execute this numeric expression in the follow
ing manner:

INT05209795429 * 100)+1
INT(52.09795429)+1
52 + 1

53

MORE ON THE PRINT STATEMENT

One of the things that a PRII^T statement can do is PRINT, on
the monitor screen, the answer to a numeric expression. All you
have to do is write the BASIC line as:

10 PRINT [numeric expression]

For example, you could type in and RUN a short program that
uses some ofthe examples covered in this chapter.

TI-99/4A BASIC Calculations 75

>10 PRINT 3+5

>20 PRINT 1/3

>30 PRINT3+(7-5)/2A2

>40 PRINTSQR(4*5-4)
>50 PRINT INT(RND* 100)+1
>RUN

8

.3333333333

3.5

4

53

* * DONE * *

Now you can combine the literals discussed earlier with numeric
expressions in the PRINT statements to add meaning to the
answers the computer comes up with. Some examples might be:

10 PRINT ,'4dividedby5is',;4/5
RUN

4 divided by 5 is .8

* * DONE * *

10 PRINT "The answer is $ "';INT(l/3 * 100V100
RUN

The answer is $ 3.33

* * DONE * *

10 PRINT ' 'Put'' ;30/5; '' cows in each barn ''
RUN

Put 6 cows in each barn

* * DONE * *

Notice that since you have the computer PRINT more than one
thing (literals and numbers in these examples), you insert a semi-
colon(;) between each thing on the PRINT line. The semicolon
used this way is called a PRINT separator which is necessary to
tell the computer that one thing is separate from the next.

PRINT SEPARATORS

You can use three PRINT separators: semicolons (;), colons (:),
and commas (,). Each of these separators tells the computer that

76 Get Personal with Your TI-99/4A

one thing on the PRINT program line is separate from the next
thing, but each of them also carries its own special message for the
computer.

The semicolon (;) tells the computer to stay on the same line for
the next thing it is going to PRINT.

The colon (:) tells the computer to move to the beginning of the
next line for the next thing it is going to PRINT.

The comma (,) tells the computer to move to the next print zone
for the next thing it is going to PRINT.

There are two PRINT zones on the monitor screen, one on the
left- and one on the right-hand side of each line. Each line on the
screen is 28 character spaces wide, and the right-hand zone begins
at the fifteenth space. When you use a comma as a PRINT sepa
rator the next thing is printed in the next zone which will either be
on the right-hand side of the same line, or on the left-hand side of
the next line down.

The following examples show how you can use PRINT sepa
rators to control your output.

Examples: PRINT separators

V SAME LINE

>10 PRINT "This is";
>20 PRINT " an example"
>RUN

This is an ex.ample

* * DONE * *

>

"," NEXT PRINT ZONE

>10 PRINT "This", "is
an", "example"

>RUN

This is an

example

* * DONE * *

>

TI-99/4A BASIC Calculations 77

":" NEXT LINE COMBINATIONS

>10 PRINT "This": "is >10 PRINT "This","is an"::,
an": "example"

>RUN

>20 PRINT "example"
>RUN

This This is an
is an

example

* * DONE * *

example

* * DONE * *

>
>

Figure 6.5 Examples: Print separators.

Notice that several commas or colons may be used at a time to
send a separator's message more than once, and that the message
the separator sends can be at the end of a PRINT program line.
The computer will then remember that message until it is told to
PRINT again.

TAB [NUMERIC EXPRESSION] FUNCTION

Another way to control output is with the TAB function. This
function is used in a PRINT program line to tell the computer to
move forward to a certain character space before PRINTing the
next thing.

As mentioned, the monitor screen is 28 character spaces wide. If
you want the computer to move forward to the eighth space before
PRINTing something else, you can type TAB(8). The following
example shows how you type this function into your PRINT pro
gram lines.

PRINT literal stay on same line
stay on same line /

>10 PRINT "Hello ";TAB(8); "There •'

move to8thspace |
PRINT literal

Figure 6.6 A PRINT program line.

78 Get Personal with Your TI-99/4A

The TAB function is very useful for lining up columns of output.
You can use several TABs in your PRINT line to set up these
columns.

>10 PRINT TAB(5)
"Hours "

>20 PRINT TAB(5)

"Hours "

> 30 PRINT TAB(5)
"Hours "

>40 PRINT TAB(5)
"Hours "

>50 PRINT TAB(5)
"Hours "

>RUN

Mon 8 Hours

Tues 6 Hours

Wed 5 Hours

Thurs 4 Hours

Fri 2 Hours

* * DONE * *

You should notice that you cannotTAB to a character space that
the computer has already passed on that line. In other words, you
cannot TAB backwards. You do not get an error message, but the
computer will move to the next line down to PRINT the rest of
what is in that PRINT program line.

SUMMARY

Although the TI-99/4A can be used as a calculator, it has much
more potential. Once you learn how to type in equations to get the
right answers, you can write programs to output the answers in a
report form, easily read by anyone.

You have now started to build a vocabulary ofcomputer instruc
tions. Like building blocks, these instructions are individual parts
of BASIC programs that can be put together in a variety ofways to
do the same thing. For instance, all of the following program lines
instruct the computer to PRINT the word "Hello" in the same
place on the screen.

10 PRINT " Hello "

10 PRINT, "Hello "
10 PRINT TAB(15); "Hello "

Given an equation such as;

"Mon ";TAB(10);40/5;TAB(15);

"Tues ";TAB(10);30/5;TAB(15);

"Wed ";TAB(10);25/5;TAB(15);

"Thurs ";TAB(10);20/5;TAB(15);

"Fri ,,;TAB(10);10/5;TAB(15);

TT-99/4A BASIC Calculations 79

16+4 „
^o"x3

you may find that there is more than one correct computer format
for it.

((16+4)/10)*3
3*((16+4)/10)

Also like building blocks, these instructions provide you with
the opportunity to be original and creative in writing your pro
grams. For instance, in the last Chapter Challenge we had the
computer PRINT a rocket ship made out of keyboard characters
on the screen. The finished program should have looked something
like this:

>100 PRINT" A
>110 PRINT

>120 PRINT"

>130 PRINT"

>140 PRINT "

>150 PRINT "

>160 PRINT "

>170 PRINT "

>180 PRINT "

>190 PRINT "
/ \

Figure 6.7 A program to print a rocket.

Now ifyou add a line

>200 PRINT::::::::::::::::::::::::::::::::

and RUN this program, the rocket ship appears to be taking off as
the computer starts to execute all the "move to the next line" colons
in the last PRINT line. Actually, the screen is scrolling by.

The fact that the screen scrolls has not been mentioned before
because it is one of many things that should become obvious as you
learn to program. As you continue to learn new instructions, it
should be pointed out that it would be impossible to itemize every
combination into which those instructions can be put. Therefore, it
becomes increasingly important that you experiment, try different
combinations of instructions, and observe how the computer be
haves when it reaches those program lines. This is the challenge
and fun of programming and is fundamental to learning how to
build programs out of the available building blocks.

80 Get Personal with Your TI-99/4A

CHAPTER CHALLENGE

Write the following as numeric expressions:
'1. 2 times 6

2. 1 plus 5
3. 8 minus 3 *
4. 4 divided by 2
5. 3 squared

What are the computer's answers to the following numeric ex
pressions?

6. 3+6/3

7. 4*2 + 1

8. 2A2-6/2

9. (8+2)/5
10. 9/3+4/2

11. ((4/2+3*2)+4)/3
12. SQR(6-2)
13. INT((1/4)*100)
14. INT(RND*10)+1

The following exercises contain a wide range of difficulty. For
readers who have not studied math for some time and are not sure
how the equation should be worked, the answers to them may be
found on the far right-hand side ofthe page. This still does not tell
how to work the equation but if you work it one way, and you get
the answer shown, the odds are that you worked it correctly.

Convert these equations to their computer format then type
them in as a BASIC program that PRINTs 'The answer is" [nu
meric expression].

EXAMPLE

7+(2*3)/3 10

10 PRINT "The answer is";7 +(2 * 3)/2

COMPUTER FORMAT ANSWER

„ 2x3
7+ 2

EQUATION

3+715. 2

16. (2x5)+3

H„ 16+4 0
17. _ x3

10

13

6

TI-99/4ABASIC Calculations 81

,« 15x3 „18. w+7 12

^ (2xl2)+6 K
19. y 5 10

20.
3+5 V 4

10-6

o, o™ 300x.0521. 300+ = 168>33

(1 + .05)12

22. 5x1,;:;;;.« 2016x4

(3+5) (1/2)

In these problems, combineliterals with numeric expressions and
PRINT separators with TAB functions to create output that is
clear and easy to read.
23. Write a BASICprogram that will output the number ofhours,

minutes, and seconds in a year.
24. Youcan convertdegreesFahrenheit to degreesCentigrade by

subtracting 32 degrees from the Fahrenheit temperature,
then multiplying that number by 5/9ths. Write a BASIC pro
gram that will output a conversion of98 degrees Fahrenheit to
degrees Centigrade.

25. Write a BASICprogram that converts 55 miles per hour to the
number offset per secondone is traveling at that speed.There
are 5280 feet in a mile and 60 seconds in a minute.

ANSWERS

1. 2*6

2. 1+5

3. 8-3

4. 4/2

5. 3A2

6. 5

7. 9

8. 1

9. 2

10. 5

11. 4

82 Get Personal with Your TI-99/4A

12. 2

13. 25

14. A surprise number between 1 and 10
15. (3+7)/2
16. 2*5+3

17. ((16+4)/10)*3
18. (15*3)/(6+3)+7
19. (2*12+6)/2-5
20. ((3+5)/(10-6))2A2
21. (300+((300*.05)/5))/(l+.05)Al2
22. 5*((16*4)/(3+5)*(l/2))A.5
23. 10 CALL CLEAR

20 PRINT TAB(7); "HOW TIME FLIES "::
30 PRINT

40 PRINT

50 PRINT

60 PRINT

70 PRINT

Hours in a year = ";TAB(20);365*24
Minutes in a year = "';TAB(20);365 * 24 * 60
Seconds in a year = '' ;TAB(20);365 * 24 * 60 * 60

24. 10 CALL CLEAR

20 PRINT TAB(6); "ITS NOT THAT HOT "::
30 PRINT "********************#*******•'..

40 PRINT 98;TAB(6); "Degrees Fahrenheit "
50 PRINTTAB(13); "is only "::
60 PRINTINT((85-32)*(5/9)*100)/100; "Degrees

Centigrade "::
70 PRINT ****************************** "::::

25. 10 CALL CLEAR
20 PRINTTAB(3); "LIFE IN THE "; ; "FAST

;"LANE"::
30 PRINT "<<<<<<<<<<<<<<

>>>>>>>>>>>>>> "::
40 PRINT TAB(2);55; "MPH may seem slow but "::
50 PRINT TAB(5);INT((55*5280)/60)/60);

"feet per second "::
60 PRINT " is as fast as we should go "::
70 PRINT ">>>>>>>>>>>>>>

<<<<<<<<<<<<<< ":::::

Chapter 7

Input and Reading Data

VARIABLES

While the computer can compute answers and PRINT them on
the monitor screen, it doesnot automatically save those answers in
its memory. It only PRINTs the answers on the screen. Computa
tion instructions in BASIC programs include a way to save the
answers so that you can use them later in the program. To save
an answer, the computer must be told that something is to hold
what the answer is. That "something" is called a variable.

Although variables can be used to do much more than hold
answers, look for now at how you can type in a program line that
uses a variable.

BASIC statement "LET"* *
line number / equation

10 LETANS =(3+5)*2<^"^
variable

Figure 7.1 A program line with an ANS variable.

**The LET statement is optional with TI BASIC and
will be omitted in future examples. For instance, this
line 10 will be written as:

10 ANS = (3+5)*2

This tells the computer that you have made up a name for the
variable (ANS), and that ANS is the name of the variable it is to
use to hold the answer to this equation. From our point ofview, the
variable ANS acts like a "basket" for the computer to put the
answer to the equation into. After this program line has been

84 Get Personal with Your TI-99/4A

executed, the variable ANS will have taken the value of 16. That
is, the value 16 will be in the basket named ANS. Here are the
three steps that the computer takes when it executes this program
line.

1) Make a basket

named ANS,
3) Solve this numeric

expression
A

10 ANS =^(3 + 5) *2

^^2) Put the answer to
the following in
that basket

Figure 7.2 The three steps of execution.

The name variable tells you a great deal about what it is.
Variables are baskets that can hold any single value at a time. In
other words, once the basket ANS has been made, it can hold the
value of 12, or 19, or 109923, or any number.

A
ANS = 6 + 6

Figure 7.3 The answer variable.

You are the one who decides what to name variables used in the

program. The names have certain criteria:
1. They must start with a letter (A, B, C,...);
2. they can be up to 15 letters or numbers only in length (no

spaces, commas, etc.), and;
3. They must not be a word the computer is programmed by TI

BASIC to recognize as a statement or command such as
PRINT, LET, EDIT, LIST, etc. (called reserved words). (See
Appendix I for a complete list of reserved words.)

Use of variables is fundamental to programming. They are the
means by which the computer can handle volumes of work. The
earlier reference to assignment as an instruction that tells the
computer that something has a value, is a direct reference to the

Input and Reading Data 85

use of variables in computer programs, and an understanding of
variables is necessary to our understanding of BASIC program
ming.

NUMERIC AND STRING VARIABLES

When the computer puts a value into a variable, that value can
be either a number such as the answer to an equation or a number
you type in. It can also be a group of words, string of letters, or
characters such as the literals used in the PRINT program lines.
The variables used to hold numbers are called numeric variables
and the variables used to hold wordsare called string variables.

Numeric Variables

Numeric variables are the baskets that hold numbers. Before
the computer puts a number into a numeric variable, that variable
automatically holds the number zero. Once a numeric variable has
been assigned a number, that number may be added, subtracted,
etc., with the numbers in other numeric variables. The answer can
then be assigned as a value to another numeric variable.

>10 A = 5

>20 B = 3

>30 C=A*B

In this example there are three numeric variables named: A, B,
and C.Asthis program is executed,the first twoprogram lines (10
and 20) tell the computer to put the numbers 5 and 3 into the
variablesAand B.Thethird line(30) tells the computertoperform
a computationusing the numbers in those variables and assign the
answer to the third variable, C.

After line 30 is executed, the variable namedC willbe holding
the number 15.

MORE ON VARIABLE NAMES

To develop good programming technique, take another look at
the names that have been given to variables. When BASIC was a
relativelynewprogramming language, variablenamescould only
be a single letter, A through Z. It waspretty confusing to read a
program full of variables whose names didn't tell you anything
about the values they held.

Newer versions of BASIC expanded the number of characters
you could use, so now you can give variables names that make

86 Get Personal with Your TI-99/4A

sense in terms of the BASIC program's purpose. For instance, if
you were using the equation in the last example to compute the
number ofsquare feet on the side ofa small wall, five feet long and
three feet high, you might want to rename your variables as:

10 LENGTH = 5

20 HGHT = 3

30 SQFT = LENGTH*HGHT

There may be a few drawbacks to using these longer variable
names in your BASIC programs.
1. More opportunity for typing error. If you mistype a variable

name the computer may assume you mean makea new basketin
which case there will be the value zero in it.

10 LENGTH = 5

20 HGHT = 3

30 SQFT = LENTH*HGHT

Misspelled LENGTH, the computer creates a new variable
"LENTH" with the value 0 in it, then puts the answer to 0 * 3
in the basket named SQFT.

2. Reserved words. There are a number ofwords that have been
reserved by TI BASIC. With longer variable names, you run the
risk of accidentally using one of these words. The problem is
easy to overcome but difficult to spot. When you use a reserved
word as a variable name, the computer gives the error message
INCORRECT STATEMENT or CAN'T DO THAT, both of
which may mean several things. This is what makes the prob-
lem difficult to spot. After you have figured out that it is a
reserved word problem, you simply add or 3ubtract a character
or two from the variable name and the computer will accept it.

>10 NUM = 25

♦CANTDO THAT

>10 NUMB = 25

>

3. Memory space. Remember that the computer has memory
space measured in bytes. One byte is roughly equivalent to one
character, such as a single letter or a number. Your variable
name uses memory, one byte per character. What is in that
variable, its value, also uses memory. Therefore, in the case of

Input and Reading Data 87

longer variable names, you may find that the variable's name
uses more memory than the value you have in it.

This is the least pressing of the drawbacks since it only
becomes a factor when your BASIC program is approaching
the limits of your TI-99/4A's memory.
The tradeoff then, is program readability for the extra time and

care required in the choice to use variable names longer than one
or two characters. In an effort to make example programs as
readable as possible, this book uses multi-character variable
names more often than not.

STRING VARIABLES

String variables are the baskets that hold words or anything
with characters and/or spaces. The literals used in the PRINT
program lines are examples of what are called strings.

Before the computer puts a string into a string variable, that
variable automatically holds a null string. In other words, it does
hold something, but null means no characters at all.

String variables can hold numbers but, ifthey do, those numbers
cannot be added, subtracted, etc. A telephone number or a postal
zip code are good examples of numbers you might assign to string
variables since normally there is no reason to do computations
with these numbers.

On the other hand, the computer will not put a string into a
numeric variable, so you need a way to tell the computer that your
variable is meant to hold strings instead of numbers. To do this,
type in your string variable names with a dollar sign ($) on the end.
The dollar sign tells the computer that the variable is to hold a
string instead of a number.

The computer follows these four instructions when it executes
this program line:

1) Make a basket
named WALL

2) The basket is
to hold a string

4) The "string'

10 WALLS = "Southwall"

3) Put the following
string in the basket

Figure 7.4 The four instructions the computer follows.

88 Get Personal with Your TI-99/4A

After the computer executes this short program, the string vari
able WALL$ will have the value South Wallassigned to it.

When you assign a value to a string variable in this way, enclose
the word(s) in quotes. Spaces are often included in strings and are
considered to be characters by the computer. The quotes tell the
computer exactly where the stringbegins and ends, and whether to
include any leading or trailing spaces in the string. The computer
does not consider the quotes themselves to be a part ofthe string.

MORE ON THE PRINT STATEMENT

There is another variation ofthe PRINT statement to examine.
Besides PRINTing literals and the answers to numeric ex
pressions, you can PRINT the value held by any variable on the
monitor screen. To do this type:

PRINT [variable name]

For instance, using our last two examples and combining them
with a literal in the PRINT program line (line 50), you have the
following short BASIC program:

>10 WALL$= "South Wall"
>20 LENGTH=5
>30 HGtfT = 3
>40 SQFT = LENGTH *HGHT
>50 PRINT WALL$::SQFT;"square feet"
>RUN

South Wall

15 square feet

* * DONE * *

After you have assigned values to the variables, the computer is
instructed to perform a computation (line 40) and then output the
results (line 50). The PRINT program line can be broken down into
its individual instructions as:

PRINT the value in WALL$ PRINT this literal
next line same line /

\ next line^x^ /
>50 PRINT WALL$"::1SQFT ^uare feet"

PRINT the value in SQFT

Figure 7.5 The PRINT program line.

Input and Reading Data 89

This program can now be expanded into a program that can be
used to solve a real life problem. This example program will be the
basis to explain some of the many ways that variables are used in
the BASIC programs.

EXAMPLE PROGRAM "BRICK IN THE WALL"

Suppose you plan to build a small wall on the south side of the
hot tub in your back yard. You are going to build it of bricks that
measure 2% x 8% inches on a side. You want to know how many
bricks it is going to take to build the wall in Figure 7.6.

2.5 in.

_L
— 8.5 in.—I

T
3 ft.

1

•Ji1 - ' • •
w
w
I 1 I .UJ.

r=n

| 5ft. ♦

Figure 7.6 How many bricks will it take to build the wall?

Here is how you write the BASIC program.

BASIC program lines

10 WALLS = "South

Wall"

20 LENGTH = 5

30 HGHT = 3

40 BLEN = 8.5

50 BHGHT = 2.5

INPUT

INPUT

The Flowchart

Wall name, size as length
and height in feet

Brick size (on a side) as
length and height in inches

90

60 SQFT = LENGTH
*HGHT

70 WINCH = SQFT *
144

80 BINCH = BLEN *

BHGHT

90 BRKS = WINCH /

BINCH

100 PRINT

WALLS: :"needs'

BRKS;"bricks"

PROCESS

PROCESS

PROCESS

OUTPUT

Figure 7.7 A flowchart.

Get Personal with Your TI-99/4A

Compute wall size in
square inches (144 sq.
inches/sq. foot)

Compute brick size in
square inches

Divide wall size by brick
size to get number of
bricks

Output the number of
bricks required

This program demonstrates an important point about variables:
a logical order of statements is necessary to get the program to
RUN correctly. That is, first put the values in the variables (IN
PUT), then perform the computations (PROCESS) and PRINT the
results (OUTPUT),.

INPUT - PROCESS -» OUTPUT

The first five lines of the program contain all of the strings and
numbers that the final answer depends on. These five lines contain
the inputs to your program.

>10 WALL$= "SouthWall"
>20 LENGTH = 5

>30 HGHT = 3

>40 BLEN = 8.5

>50 BHGHT = 2.5

Input and Reading Data 91

Another way to input these five values is to use the READ and
DATA statements ofTI BASIC.

READ-DATA STATEMENTS

The READ statement tells the computer to look for a DATA
statement and put what is there into a variable. One advantage of
the READ and DATA statements is that you can assign several
values to several variables in fewer program lines. For instance,
the first five lines of the BRICK IN THE WALL program could be
written in two lines as:

>10 READWALL$,LENGTH,HGHT,BLEN,
BHGHT

> 20 DATA South Wall,5,3,8.5,2.5

After line 10 is executed, the five variables in line 10 will be
assigned the five values in line 20 in order of what is in the two
lines. Thus when the computer reaches the first READ statement
in a BASIC program, that statement tells it to find the first DATA
statement in that program and assign the first value it finds there
to the first variable in the READ statement it is executing. Ifthere
is another variable in that READ statement, the computer puts
the next value it finds in the DATA statement in that variable,
and so on. Unless you use a special BASIC statement(RESTORE),
the computer will not READ a value in a DATA statement more
than once while it executes a BASIC program. For instance, you
could write your READ-DATA statements for this program as:

>10 READWALL$,LENGTH
>20 READHGHT,BLEN,BHGHT
>30 DATA South Wall,5,3,8.5,2.5

After the computer executes line 10, WALL$ and LENGTH will
have the values South Wall and 5 assigned to them. At this point
the computer puts an invisible marker at the value 3 in the DATA
statement, like a book marker reminds you where you have
stopped reading a novel.

* *marker

>30 DATA South Wall,5,3,8.5,2.5

When the computer reaches line 20 where it is told to READ
again, it starts with the value 3 in the DATA statement and
assigns that value to the first variable in the second READ state-

92 Get Personal with Your TI-99/4A

ment (HGHT). It then continues to assign the rest of the values in
the DATA statement to the rest of the variables in that READ

statement, in their order of appearance.
In fact, it really doesn't matter how many READ or DATA

statements you use to assign values to your variables. It only
matters that the variables and the values are in the correct order

and number. For instance, both of these examples will assign the
right values to the right variables in the program.

>10 READWALL$,LENGTH,HGHT,BLEN,
BHGHT

> 20 DATA South Wall,5,3
>30 DATA 8.5,2.5

>10 READWALL$
>20 READLENGTH,HGHT,BLEN,BHGHT
>30 DATA South Wall

>40 DATA 5,3,8.5,2.5

The correct number means that there must be at least as many
values in the DATA statement as there are variables in the

READ statement. If there are fewer values than variables, the
READ statement tells the computer to READ something that
isn't there. The computer will not like this. It will complain and
give the error message:

* DATA ERROR

The statement actually executed is the READ statement. You
must be sure these statements are in the proper logical place in
your BASIC program.

DATA statements, on the other hand, are non-executable state
ments and can be placed anywhere in your program. The DATA
statement is only there as a place to type in the values that you will
be READing. Even though DATA statements can be scattered
throughout the BASIC program, there is a rule of good program
ming that says to put them at the end ofthe program. This makes
programs easier for you to read, even ifthe computer doesn't care.

>10 READWALL$,LENGTH,HGHT,BLEN,
BHGHT

>20 SQFT=LENGTH*HGHT

Input and Reading Data 93

>30 WINCH = SQFT* 144
>40 BINCH = BLEN*BHGHT

>50 BRKS = WINCH/BINCH

>60 PRINT WALL$:: "needs ";BRKS; "bricks"
> 70 DATA South Wall,5,3,8.5,2.5

There are two things to notice about how you type in values
when you use a DATA statement.

>70 DATA South Wall,5,3,8.5,2.5

1. Use commas to tell the computer that one value is separate from
the next value. The last value in the DATA statement is not
followed by a comma.

2. Since commas tell the comptuer where one value stops and
another begins, you need not put quotes around your strings. If
you want leading or trailing spaces in the string, put the
comma, to the left or the right of that string, the correct number
of spaces. If for some reason you want a comma in the string,
then you can enclose the string in quotes.

DATA "South,Wall ",5,3,8.5,2.5

So far you have been able to input values into variables two
different ways. Either way, when you RUNyour program, you find
out that it takes 101.6470588 bricks to build a wall five feet long
and three feet high.

But suppose you are not sure just how long or high you want to
build this wall. Suppose instead thatyou are more concerned about
he fact that you have 247 bricks to use and would really rather
have a wall five feet high and eight feet long. Or, you may consider
building two walls, one on the south side of the hot tub and one next
to the back porch. Actually, you could do a lot of things and are not
really sure what you want to do with your 247 bricks.

INPUTTING A VALUE TO FILL A VARIABLE BASKET

In many cases it is desirable to have a program that allows the
user to INPUT values (strings or numbers) from the keyboard.
This lets you use the same program over and over with different
values each time.

To do this, type an INPUT statement that: 1. tells the user what
type of information to enter (prompts the user), and 2. assigns that
INPUTto an appropriate variable.

94 Get Personal with Your TI-99/4A

INPUT statement put the answer into this variable
\ wait for an answer \

>130 INPUT "Name ofwall? :WALL$

PRINT this prompt

Figure 7.8 Using the INPUT statement.

When the computer reaches an INPUT statement, it will print
the INPUT prompt on the monitor screen and then wait for you to
type something in from the keyboard. The variable directly follow
ing the INPUT prompt is the variable basket for what you type.
That is, whatever you type and ENTER, your answer to the
prompt, is put in that variable. After you have ENTERed your
answer, the computer moves on to the next program line and
continues to execute your BASIC program.

Now you are going to change three of the lines in the example
program so you can ENTER, from the keyboard, a new set of values
for the brick wall. By doing this you can ENTER a different set of
values each time you RUN the program. The rest of the program
stays the same as your original example.

> 10 INPUT "Name ofwall? ":WALL$
>20 INPUT "Length of wall? ":LENGTH
>30 INPUT "Height of wall? ":HGHT

Now when you RUN the program, it starts with an exchange of
messages between you and the computer. What you type in re
sponse to the prompts gives the computer the information it needs
to compute the number of bricks you will need.

>LIST

10 INPUT "Name ofwall? ":WALL$
20 INPUT "Length of wall? ":LENGTH
30 INPUT "Height of wall? ":HGHT
40 SQFT=LENGTH*HGHT
50 WINCH = SQFT* 144
60 BINCH = BLEN*BHGHT

70 BRKS = WINCH/BINCH

80 PRINT WALL$:: "needs ";BRKS; "bricks "
>RUN

Name of wall? South Wall

Length ofwall? 8

Input and Reading Data 95

Height ofwall? 5
South Wall

needs 271.0588235 bricks

You don't have enough bricks to build the wall eight feet long
and five feet high, but you do have a BASIC program that will let
you INPUT the size walls you are considering, then tell you how
many bricks you need to build them.

Another method ofwriting an INPUT statement is to precede it
with a prompting PRINT statement and not use the prompt option
ofthe INPUT statement. In this example, we could type:

The semicolon keeps the INPUT
on the same line as the prompt

/
>10 PRINT "Name ofwall";
>20 INPUT WALL$
>RUN

Name ofwall?

Figure 7.9 Using the PRINT statement to prompt for input.

Notice that ifyou use the INPUT statement without its prompt, it
automatically gives you a question mark. Otherwise you need to
include a question mark in the INPUT prompt as you did in the
example program. Note also, when you use the INPUT statement
this way, you do not use the colon before the INPUT variable as
you do when you use the INPUT prompt.

This alternative method ofwriting INPUT statements is impor
tant because only one variable can be in an INPUT program line:
the variable into which the user's answer will go.

There may be times however, when you will want to use a
variable as part of your prompt to the user. For instance, you could
write the first few program lines as:

>10 INPUT "Name of wall? " WALL$
>20 PRINTWALL$; "Length- ";
>30 INPUT LENGTH

>40 PRINTWALL$; "Height- ";
>50 INPUT HGHT

>RUN

Name ofwall? South Wall

South Wall Length-?5
South Wall Height-?3

96 Get Personal with Your TT-99/4A

In this example, your prompts use the name of the wall (WALL$)
when asking for the length and height of the wall.

SUMMARY

You should be able to write significant BASIC programs now
that you have been introduced to the use of variables in programs.
With the two types of variables-numeric and string-and the
memory to hold their values, the computer becomes much more
than a calculator; it becomes a processor of both words and num
bers.

There are three ways to put values into variable baskets: the
direct assignment (a = 5); the READ-DATA statements (READ
A, DATA 5); and the INPUT statement (INPUT "Enter a
number":A). Each way accomplishes the same thing, it puts the
value 5 into the variable A, but each of them may be a more
suitable method depending on circumstances or preferences.

For instance, ifyou were sure of the size wall you were going to
build and were trying to decide which size brick you were going to
buy, you would write the program to INPUT the different size
bricks you are considering and use direct assignment or READ-
-DATA statements for the rest of the information.

To determine cost of the project, you could write a program line
to INPUT various prices per brick and have the computer output
not only the total number of bricks required, but also the total cost
ofthe bricks.

Ifyou were in business and buildingbrick walls and making bids
on jobs were every day occurances, you could write a program to
consider all ofthe costs (bricks, mortar, labor, etc.) which would let
you INPUT those values that vary from job to job and would
output an estimate of what you should bid.

The computer's full processing power will become more apparent
to you as you study the statements and functions of BASIC. With
what you have learned already, you can turn the computer into a
valuable tool.

CHAPTER CHALLENGE

1. What will be the output of this program?
10 A = 5

20 B = A+1

30 A = B

40 PRINT A

Input and Reading Data 97

2. What will be the output of this program?
10 A = 5

20 A = A+1

30 PRINT A

3. What is wrong with this program?
10 A = 5

20 READANSWER$
30 READB.C
40 ANS = A*C+B

50 PRINT ANSWER$;ANS
60 DATA 2,4,The answer is

4. What will be the output of this program?
10 A = 5

20 READANSWER$
30 READB,C
40 PRINT ANSWER$;A*C+B;
50 DATA The answer is,2,4

5. What will be the output of this program?
10 A = 5

20 READANSWER$
30 READB,C
40 ANS = A*C+B

50 PRINT ANSWER$;ANS
60 DATA The answer is,2,4

6. What is wrong with the logical placement ofthe program lines
in this program?
10 A = 5

20 ANS = A*C+B

30 PRINT ANSWER$;ANS
40 READANSWER$,B,C
50 DATA The answer is,2,4

7. What will be the output of the last program?
8. Batting Averages

Your little league team would like to know the batting
averages for each ofits members. A batting average equals the
number of hits each member has had, divided by the oppor
tunities to get a hit (number of times at the plate minus walks
and sacrifices). This number is then multiplied by one thou
sand to get the standard expression.

IfBill had been to the place 60 times, had eight walks, three
sacrifices and had 16 hits, Bill would be batting 327 for the
game.

98 Get Personal with Your TI-99/4A

(16/(60-(8+3)))* 1000

Write a BASIC program that will let you INPUT:
1. the team member's name;
2. the number ofhits;
3. how many times that member came to bat;
4. the number ofwalks; and
5. the number of sacrifices.

The program should PRINT the member's name and his/her
batting average in the following way:

Batting avg. for Chris-327
* * DONE * *

9. Remodel the House

You have decided to put new carpets and wallpaper in all of
the rooms in a five room house. To keep the family budget in
line, you are going to remodel one room at a time and need a
program that gives a rough estimate for the cost of remodeling
each room. You have the following information to work with.
1. All of the rooms in the house have eight foot ceilings.
2. The average cost of wallpaper is $0.45 per square foot of
wall.

3. The average cost of carpet is $2.25 per square foot of floor.
Write a BASIC program that will allow you to INPUT the

name of a room, the length of the room and the width of the
room. The program should then PRINT the room's name, the
number of square feet and cost of both the wallpaper and
carpet needed to finish that room. It should also PRINT the
total cost for remodeling that room.

10. Gas Dollars

You know that gas mileage for your car is now important,
but what really concerns you is the dollar cost of driving.
Suppose you have three cars in the family. They all use differ
ent types of gas (at different prices) and are driven different
amounts of miles in a week. You use a credit card, 1.5%
interest per month, to charge all ofyour gas.

How much a month is it going to cost you to pay for the gas to
drive each car. You have not figured the gas mileage for these
cars yet so, write a BASIC program that will let you INPUT:
1. beginning mileage;
2. ending mileage;
3. gallons to fill the tank;

Input and Reading Data 99

4. cost per gallon of gas; and
5. estimated miles per week you will be driving.
The program should PRINT the gas mileage figure and the
estimated cost of driving that car for one month (including
interest). There are 4.3 weeks in a standard month.

11. Ham and Tuna Sandwiches

Thirty-five couples have been invited to a lawn party. Ham
sandwiches and tuna sandwiches are going to be served. The
portion and price figures for the ingredients of these sand
wiches is given below.

Table 7.1 Portions and prices ofham and tuna sandwiches.

Ham Tuna

Sandwich Sandwich Cost

Ham 3 ounces — $0.15/oz.

Tuna — 2 ounces $0.20/oz.

Bread 2 pieces 2 pieces $010/pc.
Mayonnaise Vzounce 1 ounce $0.05/oz.
Mustard Vi. ounce — $0.08/oz.
Pickles — Vz. ounce $0.07/oz.

Write a BASIC program that uses READ-DATA state
ments to input these portion and price figures and allows the
user to INPUT:

1. a predicted percentage of couples attending;
2. an estimated number of sandwiches needed for each cou

ple; and
3. an estimate of the percentage of sandwiches that will

need to be ham sandwiches.

The program should then PRINT the total quantity of each
ingredient needed to make the sandwiches and the total cost of
making them.

ANSWERS

1. 6 (The variable A takes a new value in line 30.)
2. 6 (Line 20 canbe read as "A takes the value of itselfplus one")
3. The computer will give an error message when it tries to

READ "The answer is" into the variable C.
4. The answer is 14. (You can PRINT the answer to numeric

expressions that use variables.)
5. The answer is 14.

100 Get Personal with Your TI-99/4A

6. The READ statement should be before line 20. Otherwise the
computer is instructed to perform computations and output
with variables that have not been assigned values yet.

7. 0

8. Batting Averages
>10 CALL CLEAR

>20 INPUT "Name? ":MEMB$
>30 INPUT "Hits? ":HITS

>40 INPUT "Times at bat? ":UPS

>50 INPUT "Walks? ":WALKS

>60 INPUT "Sacrifices? ":SACS

>70 CHANCES = UPS-(WALKS+SACS)
>80 AVG = (HITS/CHANCES)* 1000
>90 CALL CLEAR

>100 PRINT "Battingavg. "::MEMB$; "- ";INT(AVG+.5)
>RUN

[screen clears]
Name ? Chris

Hits? 16

Times at bat? 60

Walks? 8

Sacrifices ? 3

[screen clears]
Batting avg.

Chris-327

* * DONE * *

9. Remodel the House

>10 CALL CLEAR

>20 HGHT = 8

>30 PAPER = .45

>40 RUG = 2.25

>50 INPUT "Name ofroom? ":RM$
>60 INPUT "Length in feet? ":LGNTH
>70 INPUT "Widthinfeet? ":WDTH

>80 FLOORSQFT = LGNTH*WDTH
>90 WALLSQFT=(LGNTH+WDTH)*HGHT*2
>100 CALL CLEAR

>110 PRINT "*** ";RM$;" *** "::
>120 PRINT "Wall Paper- ";WALLSQFT; "Square feet "
>130 PRINT TAB(12);INT(PAPER*WALLSQFT);

"dollars "::

InputandReading Data 101

>140 PRINT "Carpet - ";FLOORSQFT; "Square feet "
>150 PRINTTAB(12);INT(RUG*FLOORSQFT); "dollars "
>RUN

[screen clears]
Name ofroom ? 2nd Bedroom

Length in feet? 17
Width in feet? 14

[screen clears]
* * * 2nd Bedroom * * *

Wall paper—496 Square feet
223 dollars

Carpet —238Square feet
535 dollars

* * DONE * *

10. Gas Dollars

>10 CALL CLEAR

>20 INPUT "Beginningmileage? ":BMILE
>30 INPUT "Endingmileage? ":EMILE
>40 INPUT "Gallons to fill? ":GALS

>50 INPUT "Cost of gas/gallon? ":GASCOST
>60 INPUT "Miles/week will drive? ":MILES

>70 MPG=(EMILE-BMILE)/GALS
>80 MONTHCOST = ((MILES*4.3)/MPG)*GASCOST)*

1.015

>90 CALL CLEAR

>100 PRINT " * * * GAS * * * "

> 110 PRINT "*** MILEAGE/MONTHLY

COST * * * "::

>120 PRINT INT(MPG*100)/100; "Miles per gallon "::
>130 PRINT "$ ";INT(MONTHCOST*100)/100; "Monthly

gas bill "
>RUN

[screen clears]
Beginning mileage ? 347
Ending mileage ? 544
Gallons to fill? 13.2

Cost ofgas/gallon ? 1.13
Miles/week will drive ? 220

[screen clears]

* * * GAS * * *

102 Get Personal with Your TI-99/4A

* * * MILEAGE/MONTHLY COST * * *

14.92 Miles per gallon

$ 72.7 Monthly gas bill

* * DONE * *

11. Ham and Tuna Sandwiches
(Note: programsections are labeledto helpreading.)
>5 CALL CLEAR
input values
>10 PAIRS = 35

>20 READHAM,HBRD,HMAYO,HMUST
>30 READTUNA,TBRD,TMAYO,TPICK
>40 READHAMCST,TUNACST,BRDCST,MAYOCST,

MUSTCST,PICKCST

>70 INPUT "Attendance %? ":PER
>80 INPUT "Sandwiches per couple? ":SANDS
>90 INPUT "Hamsandwich%? ":HPER
compute number ofsandwiches
>100 TOTALSANDS = PAIRS*PER*SANDS
>110 HAMS = INT(TOTALSANDS*HPER)
> 120 TUNAS = INT(TOTALSANDS - HAMS)
compute total cost
>50 HSAND = HAM*HAMCST+HBRD*BRDCST +

HMAY*MAYOCST+HMUST*MUSTCST
> 60 TSAND = TUNA * TUNACST+TBRD * BRDCST+

TMAYO *MAYOCST+TPICK *PICKCST
> 130 TOTALCST = HAMS * HSAND + TUNAS * TSAND
compute total portions
>140 TOTHAM = HAM*HAMS
>150 TOTTUNA = TUNA*TUNAS

>160 TOTBRD = HBRD*HAMS+TBRD*TUNAS
>170 TOTMAYO = HMAYO*HMAS+TMAYO*TUNAS
> 180 TOTMUST = HUMST * HAMS
>190 TOTPICK = TPICK* TUNAS
output the answers
>195 CALL CLEAR

>200 PRINT " * * * PARTY SANDWICHES * * * "::
>210 PRINT HAMS; "Ham sandwiches "::
>220 PRINTTUNAS; "Tunasandwiches "::
>230 PRINT " =====^r^T^= ^ •'..

Input and Reading Data 103

>240 PRINT "Ham ",TOTHAM;TAB(22); "ounces "
>250 PRINT "Tuna ",TOTTUNA;TAB(22); "ounces "
>260 PRINT "Bread ",TOTBRD;TAB(22); "pieces "
>270 PRINT "Mayonaise ",TOTMAYO;TAB(22); "ounces
>280 PRINT "Mustard ",TOTMUST;TAB(22); "ounces "
>290 PRINT "Pickles ",TOTPICK;TAB(22); "ounces ":::
>300 PRINT "TOTALCOST-$";TOTALCST
data

>310 DATA3,2,.5,.5
>320 DATA 2,2,1,-5
>330 DATA.15,.2,.1,.05,.08,.07

>RUN

screen clears

Attendance % ? .75

Sandwiches per couple ? 3
Ham sandwich % ? .65

screen clears

* * * Party Sandwiches

51 Ham sandwiches

27 Tuna sandwiches

Ham 153 ounces

Tuna 54 ounces

Bread 156 pieces
Mayonaise 52.5 ounces

Mustard 52.5 ounces

Pickles 13.5 ounces

TOTAL COST- $ 51.05E

* * DONE * *

104 Get Personal with Your TI-99/4A

Chapter 8

Program Branching and
Loop Structures

Instructions of assignment, one of the three fundamentals of
computer programs, was discussed in the preceeding chapter.
Along with the other two fundamentals, condition and iteration,
you begin to realize the full processing power of the TI-99/4A.

As the power of the programs increases, so does the difficulty in
reading the program LISTings. Such techniques as using longer
variable names are useful to help remember what they are hold
ing. Keeping track of what value is in what variable is by far the
most challenging aspect of using program variables. A technique
ofprogram documentation is the REM statement.

REM STATEMENTS

REM statements are the way you write notes to yourselfwithin
the program. First type in the line number then REM, which
stands for remark. After REM you can type anything you want.
REM tells the computer to ignore what is on that line; it is not an
instruction but simply a note to yourself.

100 REM Program Name-Home Budget

180 REM Input the dollar values

250 REM Compute avg. car expense

106 Get Personal with Your TI-99/4A

520 REM This is the output section

and so on

As your programs become longer and more complicated, you
may want to include REM statements to remind yourselfwhat the
program is doing at that particular point. As the example pro
grams progress, you will use them frequently.

PROGRAM BRANCHING

A program branch instructs the computer to alter its normal
sequence of excecuting program lines one after another by telling
it to GO TO another line number and continue from there. In its
simplest form, the GO TO statement (which may be typed as either
GO TO or GOTO) is used to create what is called an unconditional
branch.

The GOTO statement The line number to GO TO

>60sGOTO120

Figure 8.1 An unconditional branch.

When the computer reaches line 60, it will unconditionally GO TO
line 120 and continue executing the BASIC program from there. It
will skip over any lines between lines 60 and 120.

The only reason this is known as an unconditional branch is the
fact that you can also have what is known as a conditional branch.
You can tell the computer that IF a certain condition is true,
THEN go to another line number.

The condition. The linenumber to go to

> 60n?X=-5 THEN 120
Figure 8.2 A conditional branch.

The IF-THEN statement gives the computer the ability to
decide ifit should go to another line number or not. This statement
works by setting up a condition: IF the condition is met (is true),
THEN the computer is instructed to go to another line number.
Otherwise (in this case if A does not equal 5), the computer moves

Branching and Loop Structures 107

on as it would normally and executes the next line in the program.
Notice that the GOTO is implied in an IF-THEN statement and
that the statement is madeup of two words separated by the condi
tion that you want to check.

The key to using IF-THEN statements in the BASIC programs
is the type of conditions that you may use. These conditions almost
always involve at least one variable and are typed in using the
standard signs:

< less than

> greater than
= equal to

Relational Operators

The signs <, >, = are known as relational operators since they
describe a relationship (less than, greater than, or equal to). The
following is a list of all the possible relationships that the variable
A can have with the number 5 and shows how you can type in those
conditions.

IFA<5 IfA is less than 5

IFA<=5 IfAis less than or equal to 5
IF A = 5 IfA equals 5
IF A <> 5 IfA is less than or greater than 5 (not

equal)
IF A = > 5 IfA is equal to or greater than 5
IF A > 5 IfA is greater than 5

All of these possible relationships apply to string variables and
literals as well. For instance,

IF ANS$ = "YES" THEN 300

is a perfectly valid expression in BASIC. The ability to compare
strings is how the computer can alphabetize lists ofnames, etc., or
check to see (as in this case) if a user INPUT is a particular answer,

IFANS$="YESM

It is interesting to note how the computer views a condition in an
IF-THEN statement. IF the condition is met (is true) then the
computer assigns the value 1 to that condition. If the condition is
not met (is not true) then the computer assigns the value zero to
that condition.

108 Get Personal with Your TI-99/4A

The computer then checks to see ifthe value for that condition is
something other than zero (0 = not true). Only if the value is some
thing other than zero will the computer continue to the next part of
the IF-THEN statement: GO TO a line number. If the value is
zero then the computer ignores the GO TO instruction and moves
on to execute the next line in that program.

This means you can check two or more conditions at the same
time by either multiplying or adding the values that the computer
assigns to each condition in an IF-THEN statement.

Logical Operators

Logical operators test two or more conditions at the same time.
The two logical operators you will use are and and or.

IF A > B and C = D THEN [line number]
IF A < C or B = A THEN [line number]

You cannot use the words and or or in a program line, but you
can accomplish the same thing with the mathematical operations
* (multiplication) and + (addition).

IF(A > B) * (C = D) THEN [line number]
IF (A < C)+(B = A) THEN [line number]

IF Condition and Condition

Suppose that: A = 6, B = 4, C = 7, D = 7.

Tm\condition is true, its value is 1

If**A>B)*(C =D)THEN[line number]

This condition is true, its value is 1

1 times 1 equals 1 (true), the condition is met and the computer
goes to the line number stated after the THEN part of this
IF-THEN statement.

If either of the conditions in this and example had been false,
that is had the value 0, the answer to (Condition*Condition)
would have been false, i.e., 1*0 = 0 and 0*1 = 0.

Only if both conditions, Condition 1 and Condition 2 are true
(equal to 1) does the computer go to the stated line number.

Branching and Loop Structures 109

IF Condition or Condition

Supposeagain that: A =6, B=4, C= 7, D= 7.

This condition is true, its value is 1
\

IF (A < C)+(B = A) THEN [line number]

This condition is not true, its value is 0

1 plus 0 equals 1 (true) and the computer goes to the line number
stated in the IF-THEN statement.

If either condition 1 or Condition 2 are true (have the value 1),
adding them together results in a value greater than zero and the

- computer goes to the stated line number.
Only ifboth conditions are false (0+0) will the computer ignore

the GO TO instruction in the IF-THEN statement and move to
the next line in your BASIC program.

PROGRAMS FOR MANY USERS

There are times when you want BASIC programs to handle a
variety of computations or processes, depending on the particular
circumstances. When this is the case, you can write programs to
ask the users questions about the situation, and based on their
answers, branch your program to the appropriate computations or
processes for that user.

For example, you write a program that will PRINT out the ideal
body weight for a person to have. Ideal body weight may depend on
three things: the person's height, sex, and frame. If the program is
to work it needs to be able to branch to the computation that fits the
individual person.

When you reach this level of sophistication in the BASIC pro
grams, you flowchart the program before you type it in. The follow
ing flowchart describes the BASIC program you are about to write.

Begin the program by asking for the person's height, then ask if
they are male or female.

>100 INPUT "Your height in inches? ":HGHT
>110 INPUT "(M)aleor(F)emale? ":SEX$

So far, the user is expected to first type and enter their height in
inches and then enter either an M for male or an F for female (a
string value). Now use your first IF-THEN statement to begin
branching to the appropriate places:

110 Get Personal with Your TI-99/4A

> 120 IFSEX$ ="M"THEN270 ,

Ifthe user does not enter an M in line 110, the computer will not
go to line 270. This means you can write the next line (130)with the
assumption that the user is a female. Actually, you will write
several lines to set up the next branches, different frame sizes for
females.

>130 PRINT " Female Frame Size "

>140 PRINT " "
>150 PRINT " 1) Large
> 160 PRINT" 2) Medium "
>170 PRINT " 3) Small
>180 INPUT "Enter the correct number ":FRAME

Conceptually, the program branches look something like this:

Height?

Male or Female?

Frame?

i.Y Lg.? Med.? Sm.?

\ fTl
Ans. Ans. Ans. Ans. Ans. Ans

Output the Correct Answer

Figure 8.3 A branching model.

At this point, a female should type in the number 1,2, or 3. Based
on what number she enters, the program branches to the right
computation for her.

>190 IF FRAME = 2 THEN 230

>200 IF FRAME = 3 THEN 250

Branching and Loop Structures 111

>210 WEIGHT = HGHT* 1.95
>220 GOTO 400

>230 WEIGHT = HGHT* 1.70
>240 GOTO 400

>250 WEIGHT = HGHT* 1.55
>260 GOTO 400

Immediately after doing the correct computation and putting
theanswer inthevariable basket WEIGHT, you will branch again
(GOTO 400),sending the computer to the PRINT statement that
tells the user his/her ideal weight. At line 400 you will have the
statement:

>400 PRINT "Your ideal weight is ";WEIGHT

What if the user is a male?Remember that you sent the com
puter to line 270 if the INPUT SEX$ = "M". Start at line 270 then
anddo thesame type ofthingyou did for thefemale computations.
The finished program looks like this:

>90 REM PROGRAM IDEAL WEIGHT
>100 INPUT "Your height in inches? ":HGHT
>110 INPUT "(M)aleor(F)emale? ":SEX$
> 120 IF SEX$ = "M • THEN 270
>130 PRINT " Female Frame Size "
>140 PRINT" ••

> 150 PRINT " 1) Large
> 160 PRINT" 2) Medium
>170 PRINT " 3) Small "::
>180 INPUT "Enter the correct number ":FRAME
>190 IF FRAME = 2 THEN 230
>200 IF FRAME = 3 THEN 250
>210 WEIGHT = HGHT*1.95
>220 GOTO 400

>230 WEIGHT = HGHT* 1.70
>240 GOTO 400

>250 WEIGHT = HGHT* 1.55
>260 GOTO 400

> 270 PRINT " Male Frame Size "
>280 PRINT " ••

>290 PRINT " 1) Large
>300 PRINT " 2) Medium
>310 PRINT " 3) Small "::
> 320 INPUT "Enter the correct number ":FRAME

112 Get Personal with Your TI-99/4A

/ 7lNPUT Height in inches

J 7 INPUT Sex

3 Is sex male ?

INPUT Frame (Female)

? Is frame medium ?

? Is frame small ?

Compute large WEIGHT

Compute medium WEIGHT

Compute small WEIGHT

INPUT Frame (Male)

? Is frame medium ?

Compute large WEIGHT

Compute medium WEIGHT \

W a±JL
Compute small WEIGHT ¥ WEIGHT;7

Output "ideal" weight

Figure 8.4 A flowchart for an ideal-weight program.

Branching and Loop Structures 113

>330 IF FRAME = 2 THEN 370

>340 IF FRAME = 3 THEN 390

>350 WEIGHT = HGHT* 3.20

>360 GOTO 400

>370 WEIGHT = HGHT* 2.75

>380 GOTO 400

>390 WEIGHT = HGHT* 2.25

> 400 PRINT "Your ideal weight is ";WEIGHT

Note: A capital letter has a different value than the same letter
in lower case. Ifyou want you program to recognize M or m in line
120, type:

>120 IF(SEX$= "M")+(SEX$= "m") THEN 270

This sample program illustrates a more subtle lesson about
computer programming.

GIGO stands for Garbage In, Garbage Out. It refers to the fact
that computers depend on correct input to give correct output. If
you entered height as a negative two inches (-2), sex as Z and
frame as 17, by the instructions in your program the computer
would assume that the user was female and her frame was large. It
would then output:

Your ideal weight is -3.9

* * DONE * *

To avoid this problem of GIGO, have your programs PRINT out
the INPUTs with which it is working, when it provides its final
answers. For instance, you can include a few lines in the BASIC
program for the following final output:

HEIGHT = 68

SEX = F

FRAME = 2

Your ideal weight is 115.6

* * DONE * *

On the other hand, there is the little known acronym, GAG
which stands for Garbage, All Garbage. This occurs when the
assumptions built into the program are incorrect or not understood
by the user.

114 Get Personal with Your TI-99/4A

The example program, Ideal Weight demonstrates the idea of
branching a program. Very few medical experts would recommend
that you pay any attention to this program's output. Aside from the
fact that many experts don't believe there is such a thing as ideal
weight by height, sex, and frame, there is also the fact that the
figures by which you multiply HEIGHT to get WEIGHT were
made up. There is absolutely no scientificbasis for the answers this
program comes up with.

Even though you improve the program's reliability and reduce
the chance of GIGO, there is no way to overcome the program's lack
of validity and its output is Garbage All Garbage regardless of the
INPUTs.

Far too many people are willing to change their lifestyles or
their behavior in some way because the computer produced a
report. Remember that the program produced the report and that
the program is only as good as the programmer's ability or inten
tions.

LOOP STRUCTURES

You have heard of loops as something a computer program does.
A loop instructs the computer to repeat the execution of one or
more instructions already executed. To do this, it uses statements
that branch backwards in the program. The fundamental of itera
tion, mentioned previously, refers directly to loops in the BASIC
programs.

Loops combine variables with a process, using new values in the
variable baskets, each time the process is repeated. The following
example program demonstrates a simple loop.

>10 PRINT X;
>20 X = X+1

>30 GOTO 10

There are a total ofthree lines in this program. The last one, line
30, instructs the computer to GOTO line 10. This instruction sets
up a loop that keeps the computer executing the program until you
either turn offthe machine or interrupt execution with the FCTN 4
keys. For this reason, it is known as an endless loop.

As the computer begins to execute this short program, it starts
with line 10. Here it is told to PRINT the value in the variable

basket X. Since the variable has not been assigned a value yet, it
automatically holds the value of zero. So the computer will print
zero. The semicolon at the end of the PRINT statement tells the

Branching and Loop Structures 115

computer to stay on the same line to PRINT the next thing it is
told to PRINT.

The computer is finished with line 10 so it moves to line 20. This
line instructs the computer to assign a new value to X: the value it
already has, plus one. In other words, the variable X is to take a
new value, the value ofitself plus one.The value assigned to X is
now one (X = 0+1).

The computer is finished with line 20 so it moves to line 30 which
simplytells the computer toGOTO line10,which it does. Arriving
at line 10,the computer is instructedto PRINT the valueassigned
to X which is now one.

The net effect ofrunning this program is to have the computer
PRINT every whole numberfromoneto infinity (orat least until
it reaches a very large number). That is, the computer is instructed
to print X, increase X, print X, increase X, and so on. The variable
X is used as what is commonly called a counter variable. For all
practical purposes, it countsthe number oftimes the loop is com
pleted. Youcanbegin to appreciate the potential powerofiteration
when you consider that three lines of program generate, essen
tially, an infiniteamountofoutputin this simpleexample.

Thistypeofendless loop isnotvery practical. Forprogramming
purposes, you need to control the number of times a loop is ex
ecuted. One way to do this is to include a condition statement
inside the lqop. The following uses an IF-THEN and GOTO
statement to tell the computer to leave the loopwhen the value in
X is greater than 25.

>10 PRINT X;
>20 X = X+1

>25 IF X> 25 THEN 40
>30 GOTO 10

>40 END

>

>RUN

0 12 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

* * DONE * *

TheENDstatementtells the computer it is throughexecuting
the program. It is not always necessary, but including it in your
programs is generally considered to be goodform.

116 Get Personal with Your TI-99/4A

Another way of accomplishing the same thing is to write the
program using an IF-THEN statement as the instruction that
starts and stops the loop.

>10 PRINT Z;
>20 Z = Z+1

>30 IF Z< 26 THEN 10

>40 END

>

>RUN
12345678
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

* * DONE * *

In either case,youuse a GOTO instruction to establish a loop, a
counter variable to keep track of how many times the loop is
executed and a condition statement to stop execution of the loop.

There is another way to set up loopswithin the BASICprogram.
It is fundamentally the same as the loops youhave just covered. It
too uses a value held in a counter variable as the key to starting
and stopping the loop,and, it uses a type ofcondition statement to
monitor that variable during the loop'sexecution. The difference is
mostly in its readability and shorthand type format.

THE FOR-NEXT LOOP

FOR-NEXT Example Explanation
>10 FORX = 0TO25 >10 Start X at 0 and end

the loop when X = 25
>20 PRINT X >20 Print the value in X
>30 NEXTX >30 Add one to X. If X is

less than or equal to 25,
THEN GOTO line 20.

Otherwise continue on to

line 40

>40 END

In this type ofloop a statement at the beginning sets the number
of times the loopwill be completed.It uses a counter variable, like
the X = X+1 in the GOTO loop; but this counter is assigned its
beginning value in the FOR statement and is increased by one at

Branching and Loop Structures 117

the NEXT statement. The condition statement is hidden in both
the FOR and the NEXT statements. The FOR statement sets the
limit for the variable, then the NEXT statement makes com
parisons to see if that variable is over its limit.

The FOR statement can also set how much X is increased when
the computer reaches the NEXT statement. When you want X to
increase by a number other than 1, add STEP [the number] to the
FOR statement as follows:

>10 FORX = 0TO25STEP5
>20 PRINT X;
>30 NEXTX

>40 END

Since Xisincreased byfive rather than byoneeachtimethe loop is
executed, the results of RUNing this program would be:

>RUN

0 5 10 15 20 25

* * DONE * *

Youcan count the values in Xbackwards. The following shows
howyoucouldchange this program to start Xwith the value of25,
decrease it by fiveeach time through the loop and stop when X is
less than zero.

>10 FOR X = 25 TOO STEP -5
>20 PRINT X;
>30 NEXTX

>40 END

>

>RUN

25 20 15 10 5 0

* * DONE * *

Nested Loops

Nested loops are loops withinloops. You can usenested loops to
repeat a loop with a new set ofvariables for it to work on. One of the
morepopularforms ofnested loops are nested FOR-NEXT loops.
A simple example shows the mechanics of how a nested loop is
executed by the computer.

>100 F0RX = 1T03

>110 F0RY=1T05

118 Get Personal with Your TI-99/4A

>120 PRINT X*Y;
>130 NEXTY

>140 PRINT iteration *;X::
>150 NEXTX

>RUN

12 3 4 5 iteration 1

2 4 6 8 10 iteration 2

3 6 9 12 15 iteration 3

* * DONE * *

The inside loop is this:

>110 F0RY = 1T0 5
>120 PRINT X*Y;
>130 NEXTY

It PRINTs X*Y five times and is repeated three times by the
outside loop:

>100 FORX = lT0 3

>110

>120

>130

>140 PRINT "iteration ";X::
>150 NEXTX

Outputfor the inside loop(PRINTX * Y); changes as the counter
variables change while the loops are being executed.

>RUN

1 2 3 4 5 iteration 1

2 4 6 8 10 iteration 2

3 6 9 12 15 iteration 3

* * DONE * *

As the inside loop(FOR Y = 1TO 5)is executed, Y will take the
value one through five, and the inside loopis executed three times
by the outside loop(FOR X= 1TO 3).SinceXtakes a new value at
each iteration of the outside loop, output (X* Y) will change each
time the outside looploops.The value ofXchanges as the output of
the outside loop (PRINT "iteration";X::) is executed.

Branching and Loop Structures

SORRY JUNIOR/ output
TRY AGAIN

?IsTRYS = 3?

Let's try j output
another

problem

* TRYS = 0

119

INPUT How many problems

INPUT First number

INPUT Second number

Compute CORRECT answer

INPUT Junior's ANS

?IsANS = CORRECT?

* * * GOOD JOB JUNIOR!

* * * (##) IS CORRECT! * * *

? Are problems all done ?

Figure 8.5 A flowchart fora math problems program.

120 Get Personal with Your TI-99/4A

Here's how you could write a BASIC program using nested loops
to help a friend with his homework.

Homework Helper

Junior is learning his multiplication tables at school. He said
that his teacher sent him home with a whole page of problems to
complete. Since Junior isn't the "brightest light on the porch"
when it comes to math, write a BASIC program to help him with
the problems.

You are going to write a programthat will startby asking Junior
how many problems he has to work. Then you are going to write a
program that gives Junior three chances to answer each problem.
If he gets the answer right, then the program will ask Junior for
the next two numbers he has to multiply.

90 REM Homework Helper
100 INPUT "How many problems Jr.? ": PROBS
110 FORX = lTOPROBS

120 TRYS = 0

130 INPUT " First number ? ": A

140 INPUT " Second number ? ": B

150 CORRECT = A*B

160 PRINT "What is the answer to"

170 PRINT A; "times";B;
180 INPUT ANS

190 IF ANS = CORRECT THEN 250

200 TRYS = TRYS+1

210 IF TRYS = 3 THEN 270

220 PRINT "SORRY JUNIOR"

230 PRINT "TRY AGAIN"

240 GOTO 160

250 PRINT " * * * GOOD JOB JUNIOR

! * * * "

260 PRINT "***";ANS; "IS CORRECT
! * * * "

270 CALL CLEAR

280 PRINT "Let's try another problem"
290 NEXT X

First have Junior enter the number of problems he brought
home. Put this number in the variable PROBS. Note: Use the

variable PROBS to set the limit on how many times the outside

Branching and Loop Structures 121

loop is executed. This means that you can use the same program to
do 10 or 15 or any number ofhomework problems.

TRYS is the counter variable for your IF-THEN loop (the inside
loop). This is the variable that lets Junior have up to three TRYS to
get the correct ANS. Since TRYS counts for your inside loop
(TRYS = TRYS+1), set it back to zero each time you execute that
loop. Otherwise, Junior would only get three incorrect TRYS for
the whole set of problems.

You can exit the inside loop in two ways, either Junior gets the
right answer, or he uses up his TRYS Gine 190 or line 210). Either
way, the program will end up on NEXT X where the computer
checks to see if the outside loop has been executed PROBS times.
That is, ifPROBS = 1 then once, ifPROBS = 2 then twice, etc. Ifthe
outside loop has not been executed PROBS times, Junior starts all
over again by entering two new numbers to multiply.

SUMMARY

Branching and loops can become quite complicated. Multiple
branches and loops within loops are common in programming. A
beginning programmer will need practice before program branch
ing and loop structure become second nature.

All of the loops in this section had indented lines to show at a
glance where the loop began and ended. This is a form ofdocumen
tation and has nothing to do with how the program executes. In
fact, the spaces in front of a program line typed on the TI-99/4A
are automatically erased when that line is LISTed.

Note: Program branches and loops are a powerful means to
instruct the computer. Also, variables are the key to efficient use of
branches and loops in the BASIC programs.

This completes the introduction of the three fundamentals of
program execution—assignment, condition, and iteration. By now,
you should be getting a feel for the nature of programming. There
are many ways to combine instructions; but, you must follow a
particular structure. This is a logical structure, and as long as you
stay within the structure, what you can do with your program
instructions is limited only by your imagination.

CHAPTER CHALLENGE

1. What will be the output of this program?
>10 X = 5

122 Get Personal with Your TI-99/4A

>20 Y = 3

>30 GOTO 50

>40 PRINT "HELLO ";
>50 PRINT X*Y

>60 END

2. What will be the output of this program?
>10 A$= "TEST1"
>20 IFA$= "TEST2 " THEN 60
>30 PRINT A$
>40 A$= "TEST2"
>50 GOTO 20

>60 PRINT A$
>70 END

3. What will be the output of this program?
>10 PRINT X;
>20 IFX*X = 81THEN50

>30 X = X+1

>40 GOTO 10

>50 END

4. What will be the output of this program?
>10 IF NUMB = 9999 THEN 80

>20 READ NUMB

>30 IF NUMB < 20 THEN 50

>40 GOTO 10

>50 PRINT NUMB;
>60 GOTO 10

>70 DATA 15,35,12,66,22,13,7,9999
>80 END

5. Border Bucks

When you perform conversions such as feet to inches, gallons
to liters, weeks to day, etc., it is often desirable to be able to
perform those conversions both ways. One such conversion
might be the exchange of Canadian dollars for American
dollars.

Every day you find an exchange rate listed in the newspaper
for these two currencies. This rate is listed as the portion of a
Canadian dollar that is equal to one American dollar. Your
conversions then, would be computed as follows:

Canadian to American American to Canadian

Can$ * rate Amer$ * (1/rate)

Branching and Loop Structures 123

If, for example you wanted to convert 500 American dollars to
Canadian dollars at an exchange rate of .82375, your equation
would be:

500*(l/.82375)

and your answer would be $606.98 Canadian dollars.
Write a BASIC program that lets the user INPUT which conver

sion is desired and the amount of currency being converted along
with the most recent exchange rate. The program should then
output the amount after conversion.
6. Miles vs Mouth

You should all know that your weight is a matter of the
calories you take in and the calories you burn off.If they are the
same, your weight stays the same.

Suppose that jogging is your way to keep your calorie intake/
burn off at a desirable level and that you know that one mile of
jogging burns off85 calories.

What you want is a BASIC program that will tell you 1. how
many miles you need to run to burn off INPUT X number of
calories; or 2. how many calories you will burn off by running
INPUT M number ofmiles.

Write a program that allows the user to INPUT which com
putation is desired then INPUT the appropriate numbers. The
program should output the answer with a simple word of en
couragement.

7. Travel Expense
Suppose you have two cars, an older Pontiac that runs on

regular gas at 17 miles to the gallon and a newer Mercury
station wagon that gets 11 miles to the gallon with unleaded
regular, or 13 miles to the gallon with unleaded supreme gas.
You want to have a program that will tell you how much the gas
will cost for various trips you are planning. You know that this
will depend on which car you plan to take and what type of gas
you plan to use ifyou are planning on taking the Mercury.

Write a BASIC program that lets the user INPUT:
1. the length of the trip in miles;
2. the car being taken;
3. if the car is the Mercury, then what type of gas will be

bought; and
4. the price of the type of gas for the car being taken.

124 Get Personal with Your TI-99/4A

The program should then OUTPUT the amount ofmoney it will
cost to buy gas for the trip.

8. More Junior

You are still having problems with Junior. His teacher sent
home a note to express her concernthat, although Junior got all
the problems on his homework assignment correct, he failed to
pass a test on the subject the very next day. Evidently, Junior
figured that he could RUN the program you wrote for him over
and over until he had guessed all the correct answers. But you
are not discouraged!

Write a BASIC program that will generate RANDOM num
bers between one and 10, and that uses two of those numbers at
a time to set up multiplication problems for Junior to solve.
Write the program so that it sots up 10 problems and keeps
track of how many times Junior answered correctly and how
many times he answered incorrectly.

If Junior gets anything less than 90 percent correct answers,
i.e., nine out of10correct, the program shouldset up another 10
problems. When he does get over 90 percent, the program
should PRINT out a message telling Junior where you hid a
bag of his favorite candy for him.

P.S. Just hope Junior doesn't figure out how to LIST a pro
gram.

Answers

1. 15 The program skips over line 40 PRINT "HELLO"
2. TEST1

TEST2

The order that the computerwill execute this program is (by
line number): 10,20,30,40,50,20,60,70

3. 01234567689
When X*X equals 81 (X = 9), the condition is met and the

computer will go to line 50.
4. 15 12 13 7

NUMB has a new value put in it each time the comptuer is
instructed to READ NUMB. That value is then checked with a
condition and PRINTed if it is less than 20. The first condition
IF NUMB = 9999 is placed there to stop the computer when it
runs out ofDATA. This is often referred to as using a sentinel or
a flag and means that you have placed an unusual value at the
end of your DATA statement as a way to tell the computer it
has reached the end ofthe DATA.

Branching and Loop Structures 125

5. Border Bucks

>10 CALL CLEAR

>20 PRINT " * * EXCHANGE AMOUNTS * * "::

> 30 PRINT " 1) American to Canadian "::
> 40 PRINT " 2) Canadian to American":::
>50 INPUT " Number of your choice ? ":A
> 60 PRINT:: "Current exchange rate ? ":RATE
>70 CALLL CLEAR

>80 IF A = l THEN 150

>90 PRINT "CANADIAN FOR AMERICAN"::

> 100 INPUT " $ Amount Canadian ? ": CAN
>110 ANS = INT(CAN*RATE*100)/100
> 120 PRINT $;CAN; "Canadian"::" is"
> 130 PRINT "$ ";ANS; "American":::
>140 GOTO 200

> 150 PRINT " AMERICAN FOR CANADIAN"::

>160 INPUT "$ Amount American? ":USA
>170 ANS = INT(USA*(1/RATE)*100)/100
> 180 PRINT "$";USA; "American"::" is"
>190 PRINT "$ ";ANS "Canadian ":::
>200 END

6. Miles vs Mouth

>10 CALL CLEAR

>20 PRINT "CALORIECONTROL::

> 30 PRINT " 1) Miles into Calories "::TAB(10); "or "::
>40 PRINT "2) Calories into Miles":::
>50 INPUT "Which one (lor 2)? ":A
>60 CALL CLEAR

>70 IF A = 2 THEN 110

>80 INPUT "Number ofmiles? ":MILES

> 90 PRINT MILES; "miles burns" :MILES * 85; "calories
>100 GOTO 130

>110 INPUT "Number ofcalories ":CALS

> 120 PRINT INT(CALS/85); "miles burns" ;CALS;
"calories":::

> 130 PRINT" * * * Keep on jogging * * * "
>140 END

7. Travel Expense
>10 CALL CLEAR

>20 PRINT "< < < TRIP PLANNER > > > ":::

>30 INPUT "Miles to go? ":MCLES
>40 INPUT "(P)ontiacor(M)ercury":CAR$

126 Get Personal with Your TI-99/4A

>50 CALL CLEAR

>60 IF(CAR$= "M")+(CAR$= "m") THEN 100
> 70 INPUT "Price of regular gas B:GASP
>80 PRINT :: "$ ";INT((MILES/17)*GASP); "dollars for the

trip"
>90 GOTO 180

>100 INPUT "(R)egularor(S)upreme":TYPE$
>110 IF(TYPE$= "S")+TYPE$ = "a")THEN 120
>120 INPUT "Price of reg. unleaded ":GASP'
> 130 PRINT :: "$ ",INT((MILES/11)*GASP); "dollars for

the trip"
>140 GOTO 180

>150 INPUT "Price of super unleaded ":GASP
> 160 PRINT :: "$ ";INT((MILES/13)*GASP); "dollars for

the trip"
> 170 PRINT::: " Drive carefully"
>180 END

8. More Junior

>10 RANDOMIZE

>20 CALL CLEAR

>30 PRINT "GETSET"

>40 PRINT " GET READY "

>50 PRINT "GO"

> 60 FOR PAUSE = 1 TO 100
>70 NEXT PAUSE

>80 WRONG = 0

>100 A = INT(RND*10+1)
>110 B = INT(RND*10+1)
>120 CORRECT = A*B

> 130 PRINT "What is the answer to"::
> 140 PRINT A; "times" ;B;
>150 INPUT ANS

> 160 IF ANS = CORRECTTHEN 200
> 170 WRONG = WRONG+1

> 180 PRINT ::WRONG; "wrong answers so far"
>190 GOTO 210

> 200 PRINT:: "Correct Jr., very good! "
> 210 FOR PAUSE = 1 TO 100
>220 NEXT PAUSE

>230 CALL CLEAR

> 240. NEXT PROBS
>250 IF WRONG/10 <.90 THEN 20

Branching and Loop Structures

>260 PRINT " * * * YOUDIDIT. * * *

>270 PRINT "!! JUNIOR!!"::

>280 PRINT "Your tootsie pops are "
>290 PRINT " in the closet."

>300 END

127

128 Get Personal with Your TI-99/4A

Chapter 9

Arrays

Up to now a variable name could have only one value at a time.
But ifyou wanted to store a large number of values in the computer
at one time, each value needed a different variable name. This is
awkward and time consuming. For example, ifyou wanted to find
the average age of 50 different people you know, each person must
supply you with their age. Now you have 50 different pieces of
data. You also want the lightest and heaviest weights in the group.
Until now, you could only do something like this:

10 READWEIGHT1

20 READWEIGHT2

30 READWEIGHT3

500 READWEIGHT50

510 TOTAL1 = WEIGHT1+WEIGHT2+... +

WEIGHT10

520 T0TAL2 = WEIGHT11+WEIGHT12... +

WEIGHT20

560 AVERAGE = (TOTALl +TOTAL2 +...
TOTAL5)/50

570 PRINT "AVERAGE = "jAVERAGE
580 DATA 155,210,110,125,155,...
590 DATA ,255
600 END

130 Get Personal with Your TI-99/4A

This will work but it is very cumbersome and inefficient. A better
way is by using arrays to store the weight data. Figure 9.1 con
trasts data storage using the two methods.

Single Variable Names Array Variable Name

WEIGHT1 1

(1)

(2)

(3)

(50)

WEIGHT

155 155

WEIGHT2

210 210

WEIGHT3

215 215

WEIGHT50

225 225

Figure 9.1 Data storage formats.

ONE-DIMENSIONAL ARRAYS

A BASIC language array is a set of data identified by a single
variable name (WEIGHTin this example).Toidentify a particular
value within the array you may reference its position within the
array. In the example above, the third weight in the array
WEIGHT is 215, or WEIGHTO) = 215.

The position within the array is enclosed in parentheses follow
ing the variable name. This positionindicator is calleda subscript.
The general form of an array is given below.

array name(subscript)

The subscript can be a constant or a variable. Using the informa
tion in Figure 9.1, what values would these variables generate?

WEIGHT(2) =
WEIGHT(50) =
WEIGHTU) =

Answer: 210

Answer: 225

Answer: 155

Example 9.1: AGE Array

Let AGE = 12,14,80,61,15,42,36. Then:

AGE(l) = 12 (element in the first position ofAGE
array)

Arrays 131

AGE(3) = 80 (element in the third position of AGE
array)

AGE(2) = (element in the position ofAGE
array)

AGE(7) = (element in the position ofAGE
array)

AGE(4) = (element in the position of AGE
array)

Now you have the capability to input, process and output large
amounts ofdata under one name. You can even pinpoint a particu
lar piece of data by specifying its physical location in the array.
What you need is a subscript manipulator. But we already have
one! Remember the FOR-NEXT loop! Remember the control vari
able in the FOR statement?

[line#] FOR [control variable] = [initial value] TO
[final value] STEP [amt]

That control variable is the ideal subscript variable for these
arrays. Watch how they work together.

Example 9.2: WEIGHT Array
10 REM EXAMPLE 9.2

20 REM ARRAY EXAMPLE TO READ AND PRINT

FIVE WEIGHTS

30 REM INPUT THE FIVE WEIGHTS

40 FORI = lT0 5

50 READWEIGHTd)
60 NEXT I

70 REM PRINT OUT ALL THE WEIGHTS

80 FORI = lT05

90 PRINT WEIGHTO)
100 NEXT I

110 DATA 155,210,215,165,195
120 CALL CLEAR

130 REM PRINT OUT THE SECOND WEIGHT

140 PRINT "WEIGHT #2 = ";WEIGHT(2)
150 END

Answers:

155

210

215

132 Get Personal with Your TI-99/4A

165

195

WEIGHT#2 = 210

The subscript I points to the box within the array WEIGHT in
which an activity is to be performed and the subscript value comes
from the FOR statement.

In Exercise 9.1 below, try to answer the questions following the
exercise.

Exercise 9.1: Array Computations

Given the following program, write the final values for the
variable shown at the end of the listing.

10 REM EXERCISE 9.1

20 REM PROGRAM USING ARRAYS IN

COMPUTATIONS

30 F0RI = 1T0 6

40 READHEIGHTO)
50 NEXT I

60 SUM = HEIGHT(2)+HEIGHT(4)
70 AMOUNT = (HEIGHT(l)+HEIGHT(3))/2
80 DIFFER = HEIGHT(2)+HEIGHT(6)-HEIGHT(1)
90 DATA 68,72,65,69,76,62
100 END

HEIGHT(2) =
HEIGHT(6) =
SUM =

AMOUNT =

DIFFER =

Answers:

HEIGHT(2) = 72
HEIGHT(6) = 62
SUM = 141

AMOUNT = 66.5

DIFFER = 66

Notes on Subscripts

The subscript's sole purpose is to point to an exact location or box
within a list of array values. Subscripts (values within the paren
theses) may be integer constants like 1,40,11, etc. They may also

Arrays 133

be variable names like I, J, K, KOUNT, POINT or SPOT. They
may even be expressions like I+2,I*Jor(A*B+C)/2. Expression
results are rounded to the nearest whole number. That number
becomes the pointer. Subscripts cannot be negative. From the list
below, which subscripts are acceptable?

Exercise 9.2: Valid Subscripts

Acceptable Subscript
Variable Name

a.B(I) (Yes)

b. B(3+4) (Yes)

c. CDICa+5) (Yes)

d. SUM(-4) (No)

e.VALUE(K*J-3) (Yes)

f. TEST(T/4-3*CCl + (Yes)

TTACT)
g. DATA3(AMOUNT) (Yes)

h. FINAIX-3-4) (No)

Dimension Statements

Arrays allow for large volumes of data storage. Once the array
size exceeds ten elements, a DIMENSION is needed. The form of
this statement is:

[line#] DIM [array nameKtinteger^integergjintegera])

The DIM statement allocates blocks of storage to the array name
specified. Each position in the array requires one space in the
array's dimension. DIM statements are normally placed at the
beginning of the program and must precede the first occurrence or
reference to the array name in the program. DIM statements act
like reservations at a restaurant: "Reserve me a table for eight
under the name Johnson." Space reserved in the DIM statement
must equal or exceed the actual number of elements in the array.
Allocating excessive space in the DIM statement is wasteful and
may exhaust core storage space in larger, more complicated pro
grams.

Arrays may have one dimension (rows only), two dimensions
(rows and columns), or three dimensions (rows, columns and tiers
or levels or planes). The DIM allows up to three subscripts. Unless
specified in a DIM statement, all array values are automatically

134 Get Personal with Your TI-99/4A

assigned a DIM value of 10. Ifyour array will fit in 10 or less boxes,
you do not need to dimension the name ahead of its use in the
program. Note that subscripts in the array name in the DIM
statement must be constants (no variables or expressions allowed).
Also, more than one array name can be in a DIM statement. Each
array name is separated by a comma.

Exercise 9.3: DIMENSION Statements

a. 10 DIMA(10)
b. 45 DIM ARRAY(10,20)
c. 36 DIMVALUES(40,30,20),IDATA(20,15)
d. 50 DIMTOTALS(20),SUMS(12),AMT(30,40)

How many total words of storage would be allocated to the
following variables using the DIM statements shown above?

Answers
l.A = 10

2. ARRAY = 200(10*20)
3. VALUES = 24000(40*30*20)
4. IDATA = 300(20*15)
5. TOTALS = 20

6. SUMS = 12

7. AMT = 1200

Two-Dimensional Arrays

Two-dimensional arrays have rows and columns. The array
VALUES(5,3) would looklike Figure 9.2after executing:

10 DIMVALUES(5,3)

(1)
(2)

Rows(3)
(4)

(5)

Columns

(1) (2) (3)

Figure 9.2 The layout ofan array.

Arrays 135

Now fill the array or matrix with data. You have asked five
people (rows) their age (column one), weight (column two) and
height (column 3). They reported the following:

Age(Yrs) Weight(#) Height(")
Person 1 32 165 66

Person 2 40 225 74

Person 3 16 140 64

Person 4 9 83 57

Person 5 74 136 63

Write a BASIC program to allocate space for this data and then
read the data into that space. The program requires a DIM state
ment and a READ loop. You will fill the array by storing all the
data about one person first, then go on to the second person, the
third, and so on. Look at Example 9.3 to see how it will look.

Example 9.3: Two-Dimensional Array

10 REM EXAMPLE 9.3
20 REM THIS PROGRAM CREATES AND FILLS

AN ARRAY

30 REM WITH DATA ABOUT FIVE PEOPLE.

40 REM FIRST, ALLOCATE ARRAY SPACE
50 DIMVALUES(5,3)
60 REM NOW READ IN PEOPLE DATA

70 FORI = lT05

80 REM NOW READ IN DATA ABOUT PEOPLE

90 FORJ = lT0 3

100 READVALUESa,J)
110 NEXT J

120 NEXT I

130 REM HERE ARE THE DATA RECORDS FOR

FIVE PEOPLE

140 DATA 32,165,66
150 DATA 40,225,74
160 DATA 16,140,64
170 DATA 9,83,57
180 DATA 74,136,63
190 END

The matrix VALUES is now loaded and looks like this:

136

(1)
(2)
(3)
(4)

(5)

Get Personal with Your TI-99/4A

(1) (2) (3)

32 165 66

40 225 74

16 140 64

9 83 57

74 136 63

Figure 9.3 Matrix values.

You can identify any value in the array by specifying the person
(row position) and characteristic (column position).

What would VALUES(3,3) contain? Answer: 64, third person's
height

What would VALUES(4,2) contain? Answer: 83, fourth person's
weight.

So far, you have only stored the data base. You have not pro
cessed it or printed it on the screen. How would you find the
average age or average weight or average height of the partici
pants?

One way would be to hold the column value constant and add all
the row values in that column. The following statement would find
the average age of the participants.

185 AVERAGE = (VALUES(1,1)+VALUES(2,1)+
VALUES(3,l)+VALUES(4,l)+VALUES(5,l))/5

This could also be done for weight and height, but that would be
very cumbersome if, for example, you had 100 participants and 30
characteristics. Then it would be difficult to use this approach.
Couldyou use the control variable in the FOR statement to manip
ulate the row and column pointers? The answer is an emphatic
"Yes"!

Examine this option. In statement number 185, look at what
subscripts are moving and what subscripts are constant. The row
values vary as you search through the people and the column
values stay constant (locked onto the characteristics-age). The
following program finds the average ofeach variable (age, weight,
and height) and presents the results on the screen. Assume the
data above has already been read in VALUES.

Example 9.4: Averaging Data in a Two-Dimensional Array

200 REM EXAMPLE 9.4

210 REM AVERAGING IN TWO-DIMENSIONAL

Arrays 137

ARRAYS

220 F0RJ = 1T0 3
230 TOTAL = 0

240 REM SEARCH THROUGH PEOPLE
250 F0RI = 1T0 5

260 TOTAL =TOTAL + VALUES(I,J)
265 NEXT I

270 AVERAGE =TOTAL/5
280 PRINT "AVERAGE FOR VARIABLE ";J;

" = ";AVERAGE
290 NEXT J

300 END

Answers:

AVERAGE FOR VARIABLE 1 = 34.2

AVERAGE FOR VARIABLE 2 = 149.8

AVERAGE FOR VARIABLE 3 = 64.8

The outside loop(the J loop)moves slowly through the variables
while the inside loop(the I loop) searches through all the people for
the same variable.

WhenJ = l:I = l,2,3,4,5
WhenJ = 2:I = l,2,3,4,5
WhenJ = 3:I = l,2,3,4,5
With this understanding and capability, large volumes of data

can be processed quickly and efficiently. You have harnessed the
two most powerful capabilities of the BASIC language-loops and
arrays. Loops allow cycling through array data, and loop values
serve to point to exact locations within the array itself, using
subscripts as the pointers.

Example 9.5: Bank Survey

Imagine you havejust completed a large survey for a bank on the
attitudes of its customers. You surveyed 50 customers and asked
them 20 questions about the bank's services.

Question 1: How would you rate the bank's advertising? (1 =
Excellent, 2 = Very Good, 3 = Average, 4 = Below Average, 5 =
Poor)

Question 2: How would you rate the bank's tellers? (Same rating
scale as above, 1 = Excellent... 5 = Poor)

138 Get Personal with Your TI-99/4A

Question 20: What's your overall impression ofthis bank? (Same
rating scale as above, 1 = Excellent... 5 = Poor)

How many pieces of data would you have from the survey?
Answer: 50 people * 20 questions = 1000 pieces of data

Write the program to find the average response for each of the 20
questions.

10 REM EXAMPLE 9.5

20 REM PROGRAM TO ANALYZE BANK SURVEY

DATA

30 REM READ IN DATA ARRAY

40 DIMSURVEY(50,20)
50 FORI = lTO50

60 FORJ=lTO20

70 READSURVEY(I,J)
80 NEXT J

90 NEXT I

100 DATA 3,2,5,4,1,2,2,3,1,2,3,4,3,4,2,3,4,5,1,2
110 DATA 4,3,2,4,3 4

129 DATA 3,2,3,4,5,2,3,4,2,1,2,3,4,2,3,2,1,5,1,2
130 REM NOW COMPUTE AVERAGES

140 REM FOR EACH QUESTIONS
150 REM HOLD COLUMN POINTER

(QUESTION*)
160 REM VARY ROW POINTER (PERSON #)
170 FORJ=lTO20

180 TOTAL = 0

190 FORI = lTO50

200 TOTAL = TOTAL+SURVEY(I,J)
210 NEXT I

220 PRINT "QUES# ";J; "AVERAGE = ";TOTAL/50
230 NEXT J

240 END

In example 9.5 above, how many times are the
following statement numbers executed when the
program is run?

Answers

a. #50: 50

b. #70: 1000(50*20)

Arrays

c. #180:

d. #200:

e. #230:

20

1000(50*20)

20

139

Three-Dimensional Arrays

You can add a third layer to the matrix in TI BASIC by adding
another dimension. Now you have rows, columns, and planes. The
storage would look like a Rubies cube.

/ / / /
/ / / //

//
//
//

Figure 9.4 A three-dimensional array.

What ifyou were keeping statistics about NBA basketball teams
or NFL football teams? Suppose you need to keep statistics on the
starting five for each offour NBA teams. For each player you need
height, weight, total playing time this season, and total points
scored. The data matrix would be three-dimensional. The four

teams are: Los Angeles, Philadelphia, Milwaukee, and San An
tonio. One team's statistics would be kept in a matrix form similar
to that shown in Figure 9.4.

Imagine four layers or planes in the above matrix, one layer for
each team, and you have a three-dimensional matrix. The rows are
the positions (guards, forwards, and center); the columns equal the
statistics (height, weight, etc.); and the planes would be the four
teams.

Example 9.6: Basketball Statistics

Write a program to read the data from DATA statements and
store them in a three-dimensional matrix. Then have your pro-

140 Get Personal with Your TI-99/4A

gram find the average height of the four centers.
Hint: Where are the heights of the four centers? What box

locations are they?

Answers:

(3,1,1)
(3,1,2)
(3,1,3)
(3,1,4)

L. Guard

R. Guard

Center

L. Forward

R. Forward

Figure 9.5 NBA team statistics matrix.

Note: which of these subscripts are constant and which vary?

Solution:

10 REM EXAMPLE 9.6

20 REM THIS PROGAM USES THREE-

DIMENSIONAL ARRAYS

30 REM TO PROCESS NBA TEAM STATISTICS

40 REM FIRST, READ IN TEAM STATISTICS
50 DIMSTATS(5,4,4)
60 FORK = lTO-i

70 FORI = lT05

80 FORJ=lT0 4

90 READSTATSa,J,K)
100 NEXT J

Arrays 141

110 NEXT I

120 NEXTK

130 DATA 76,210,2460,1640
140 DATA 80,218,2550,1710

920 DATA 82,235,2145,1510
930 REM NOW FIND AVERAGE HEIGHT

940 REM OF THE FOUR CENTERS

950 REM MUST LOCK ON ROW AND COLUMN
POSITIONS

960 REM VARY THE PLANE POSITION
970 TOTALHT = 0

980 FORK = lT04

990 TOTALHT = TOTALHT+STATS(3,l,K)
1000 NEXTK

1010 PRINT "AVER. CENTER HEIGHT = ";
TOTALHT/4

1020 END

Exercise 9.4: NBA Stats

a. How many times is statement number 90 executed?
Answer: 80

b. How many pieces of data are stored in STATS matrix?
Answer: 80

c. What do columns stand for in the STATS matrix?

Answer: player characteristics

d. Write a series of BASIC instructions that would modify the
program in Example 9.6 to find the average weight of all left
guards. (Hint: Which subscripts would stay constant and
which would vary?)
Answer:

970 TOTALWT = 0

990 TOTALWT = TOTALWT+STATS(l,2,K)
1010 PRINT "AVE. WEIGHT OF L. GUARDS = ";

TOTALWT/4

Exercise 9.5: Advanced NBA Statistics (Optional review)

If you really want to get fancy, see if you can compute the
average points scored by the starting five players of each team.

142 Get Personal with Your TT-99/4A

Assume there are 82 games played during the regular season and
the matrix contains the final total points scored during the 82-
game season. How would the program look? (No answer is pro
vided.)

SUMMARY

Arrays let you store large amounts of data under one variable
name. To access a particular value within the array, you need the
coordinates of that value within the array, referred to as the row
position in a one-dimensional array, or the row and column posi
tion in the two-dimensional array or a row, column, and plane
position in the three-dimensional array. Arrays of more than 10
elements must be dimensioned in the program before the first
reference to the array name. The DIM statement defines the name
of the array and allocates a block of storage in core for the array's
values.

When arrays are combined with FOR-NEXT loops and the
FOR statement's control variable, you have a very powerful com
puting tool. The control variable becomes a pointer to a specific
location or box in the array. Array values can be sorted, summed,
tested against another value, or redefined to a new value. If you
find yourself naming variables in your program, i.e., AMOUNT1,
AMOUNT2, AMOUNT3, and so on, you should be using arrays
instead of single-valued variable names. Most powerful BASIC
programs make extensive use of arrays. Try to incorporate them
into your future programming applications.

REVIEW ACTIVITIES

1. Which of the following are valid array names?

Answers

Name Valid?
a. SUM(4) (Yes)
b. SUME(4) (Yes)
c. AMOUNTd) (Yes)
d. AMOUNTKI+J) (Yes)
e. TOTALd * J/K,L) (Yes)
f. TOTAL(-6) (No)
2. Which of the following are valid DIM statements?

Answers

Statement Valid?

a. DIMA(4) (No)
b. DIMB4(6) (No)

Arrays 143

c. 50 DIMA(J) (No)
d. 60 DIM A(4,3),B(20) (Yes)
e. 10 DIM SUM(30 * 10) (No)
3. In the following gasoline bill program, what values would be

output for the variables listed?

5 REM REVIEW ACTIVITY 9.3: GASOLINE BILL

10 DIMDOLLAR(7)
20 FORI = lT0 7

30 READDOLLARO)
40 NEXT I

50 DATA 11,15,6,7,3.5,12,14 •
60 C = D0LLAR(3)+D0LLAR(5)
70 D = C/2

80 E = C+D+DOLLAR(2)
90 F = C-D+DOLLAR(6)
100 PRINT C,D,E,F

Answers

C= 9.5

D= 4.75

E= 29.25

F= 16.75

4. List the results of the output from this calorie counter program.

10 REM REVIEW ACTIVITY 9.4: CALORIE

COUNTER

20 DIMCALORIE(7)
30 TOTAL = 0

40 WEIGHT = 160

50 FORDAY = lT07

60 READCALORIE(DAY)
70 TOTAL = TOTAL+CALORIE(DAY)
80 NEXT DAY

90 PRINT "MONDAY = B;CALORIE(l)
100 PRINT "TOTAL = ";TOTAL
110 WEEKEND = CALORIE(6)+CALORIE(7)
120 AVECALORIE = TOTAL/7

130 POUND=TOTAL/WEIGHT

140 DATA 1580,2140,1960,2100,1800,3500,3200
150 PRINT "AVE

CAL = ";AVECALORIE, "POUND"; POUND
160 PRINT "WEEKEND ";WEEKEND

144 Get Personal with Your TT-99/4A

Answers

TOTAL = 16280
WEEKEND = 6700
AVECALORIE = 2325.714286
POUND = 101.75

5. Given the following list ofdaily meal expenses for a week, write
a BASIC program to find the total and average amounts spent.

Amount

Monday 10.40
Tuesday 14.10
Wednesday 7.85
Thursday 7.50
Friday 11.50
Saturday 18.00
Sunday 12.75

10 REM REVIEW ACTIVITY 9.5: EXPENSE
ACCOUNT

20 DIMMEALS(7)
25 TOTAL = 0

30 FORI = lT07

40 READMEALS(I)
45 TOTAL = TOTAL+MEALSd)
50 NEXT I

60 DATA 10.40,14.10,7.85,7.50,11.50,18.00,12.75
70 AVERAGE = TOTAL/7

80 PRINT "TOTAL ", "AVERAGE "
90 PRINT TOTAL,AVERAGE
100 END

Answers: TOTAL-82.10; AVERAGE-11.7285

6. Write a program to compute, load, and output the multiplica
tion tables from 1 to 10. Store the results in a two-dimensional
matrix. (Hint: DIM TABLE(10,10))

Example
12 3 ...

1 I 1 I 2 I 3 I ..

2 I 2 I 4 I 6 I ..

Arrays 145

3 I 3 I 6 I 9 I

Answer:

10 REM REVIEW ACTIVITY 9.6:

MULTIPLICATION TABLE DRILL

20 DIMTABLE(10,10)
30 FORI = lTO10

40 FORJ = lTO10

50 TABLE(I,J) = I*J
60 PRINT I; "* ";J; " = ";TABLEa,J)
70 NEXT J

80 NEXT I

90 END

7. To extend Review Activity number 6 above, have the computer
drill students in their math skills. This exercise is an example of
a multiplication drill. It is called COMPUTER FLASH CARDS.
With minor modifications this program can add, subtract, and
divide. Speed of response can also be varied.
Write a BASIC program to drill students in multiplication.
Number values will be limited to 1-10.Then specify the length of
delay in seconds before the answer is shown on the screen. Say
the answer out loud before it appears on the TV screen. Use
parts ofReview Activity number 6 in this program.

Answer:

10 REM REVIEW ACTIVITY 9.7: COMPUTER

FLASH CARDS

20 DIMTABLE(10,10)
30 FORI = lTO10

40 FORJ = lTO10

50 TABLE(I,J) = I*J
60 NEXT J

70 NEXT I

80 CALL CLEAR

90 PRINT "WELCOME TO: "

100 PRINT "COMPUTER FLASH CARDS!!"
110 PRINT

120 PRINT

130 PRINT "# OF SECONDS ANSWER DELAY"
140 INPUT N

145 PRINT "BEGIN FIVE DRILL EXERCISE"

146 Get Personal with Your TI-99/4A

150 F0RK = 1T0 5
160 CALL CLEAR
170 PRINT "INPUT 1ST NUMBER(1-10) "
180 INPUT I

190 PRINT "INPUT 2ND NUMBER(1-10) "
200 INPUT J

210 PRINT " ";I; "X ";J; " = ";
220 FOR DELAY = 1 TO 400 *N

230 NEXT DELAY

240 ANS=TABLE(I,J)
250 PRINT ANS
260 FOR DELAY = 1 TO 2000

270 NEXT DELAY

280 NEXTK

290 END

Think how this program can be modified to:
a. divide

b. subtract

c. add

d. allow larger input numbers

8. Write a program to keep a check register for up to 50 checks per
month. The register would look like the one shown below. Use a
two-dimensional array for storage. Print a check listing. For
each check in the register, record check number, day of month,
amount, and category of expenditure code (1 = food, 2 = utilities,
3 = auto expense, etc.).

Hint: DIM REGISTER(50,4)

Possible Format:

Check Day of Category
Number Month Amount Code

1 3 10.85 3

2 4 26.45 6

Answer:

10 REM REVIEW ACTIVITY 9.8: CHECK

REGISTER

20 DIMREGISTER(50,4)

Arrays 147

30 REMN= NUMBER OF CHECKS
40 PRINT "INPUT NUMBER OF CHECKS IN

CHECK REGISTER"
45 INPUT N

50 PRINT "CHECK# DAY AMOUNT CODE "
55 PRINT "==== === ====== ===_."

60FORI = 1TON

70 F0RJ = 1T04

80 READREGISTERa,J)
90 NEXT J

100 F0RK = 1T04

110 PRINT REGISTER(I,K); " ";
120 NEXTK

130 PRINT

140 NEXT I

150 DATA 1,1,30.00,10
160 DATA 2,4,18.40,4

500 END

Think of what information could be gathered from REGIS-
TER(50,4).
a. dollars spent in each category code;
b. total dollars spent per month;
c. total dollars spent by week;
d. dollars spent in two or more category codes;
e. etc.

9. Write a program to budget next year's monthly expenses for
food, shelter, utilities, auto,and recreation.Total each category
and compute a grand total for the year. Your budget layout
might look like the one below. Load this budget into a two-
dimensional matrix called BUDGET. Print January's budget.

Item

Food(l)

Shelter(2)
Utilities(3)
Auto(4)
Recreation(5)

Jan Feb Mar Dec Total

(1) (2) (3) (12) (13)

Grand Total

148 Get Personal with Your TI-99/4A

Answer:

10 REM REVIEW ACTIVITY 9.9: HOME BUDGET

20 DIMBUDGET(5,13)
30 F0RI = 1T05

40 TOTCATEGORY = 0

50 GRANDTOT = 0

60 F0RJ = 1T012

70 READBUDGET(I,J)
80 TOTCATEGORY = TOTCATEGORY+

BUDGETa,J)
90 NEXT J

100 BUDGET(I,13) = TOTCATEGORY
110 NEXT I

120 F0RI = 1T0 5

130 GRANDTOT = GRANDTOT+BUDGET(I,13)
140 NEXT I

150 DATA 100,120,120,130,130,140,140,140,140,145,
145,165

200 PRINT "CATEGORY ", "AMOUNT "
210 F0RI = 1T05

220 PRINT I,BUDGET(I,1)
230 NEXT I

240 END

The program computes category totals for the entire year
(contained in BUDGET(I,13)). How would you compute and
print monthly totals of all the categories?

10. Time is your most important asset. Write a time management
program. Estimated how many hours per week you spend in
the categories below. The total must equal 168 hours (24*7).

ivity
1

Activity
Sleeping
Work

Eating
TV

Commuting
Reading
Exercise

Hours

Per Week

Percent

ofTime

2

3

4

5

6

7

Arrays 149

8 Recreation

9 Visiting
10 Other

Total 168

Write a program to enter these data in a matrix or array
called TIME. Compute the percentage of time you spend in
each activity and place that value in column two of the TIME
matrix. Print the time spent and percentage of time for each
category. How do they look?

Answer:

10 REM REVIEW ACTIVITY 9.10: TIME

MANAGEMENT

20 DIMTIME(10,2)
30 TOTAL = 0

40 FORI = lTO10

50 READTIME(I,1)
60 TOTAL = TOTAL+TTME(I,1)
70 NEXT I

80 REM COMPUTE % TIMES

90 FORI = lTO10

100 TIME(I,2) = TIME(I,1)*100/TOTAL
110 NEXT I

120 DATA 50,46,10,15,4,10,11,9,5,8
130 PRINT "ACTIVITY "; "TIME "; "%TIME "
140 FOR 1 = 1 TO 10

150 PRINT I; " ";TIMEa,l),TIME(I,2)
160 NEXT I

170 END

RUN

Activity Time %Time

1 50 29.76190476

2 46 27.38095238

3 10 5.952380952

4 15 8.928571429

5 4 2.380952381

6 10 5.952380952

7 11 6.547619048

8 9 5.357142857

9 5 2.976190476

10 8 4.761904762

150 Get Personal with Your TI-99/4A

Keep an actual time logfor oneweek!See how it compares
to your estimates above.Reviseyour program DATA state
ments and recompute the percentages. Do they differ
greatly from your estimates?

11. Home inventories are important, yet few people get orga
nized enough to take one. Let the computer be your incen
tive. Combine learning and value. Write a program using a
three-dimensional array to collect and analyze your house
hold belongings. List the major items you own by room. For
each item, classify it according to some category codes (see
below) and estimate its value.

Category Code Category

1 Jewelry
2 Appliances
3 Furniture

4 Art

5 Coins

6 Silverware

In this example, rows stand for a particular item, columns
represent characteristics of the item (category and value) and
tiers or planes would be rooms (living room, bedroom, kitchen,
etc.).

Write a TI BASIC program to:
1. Read the data from DATA statements into a three-dimen

sional array called INVENTORY.
2. Determine the total inventory value of each room.
3. Determine the value of all jewelry items.
4. Determine the number of jewelry items in the master bed

room.

(Optional-no solution supplied.)

Chapter 10

Introduction to Sound
and Color-Graphics or:

Fun with Your TI

Sound and color-graphics capabilities are two of the strongest
features ofyour TI-99/4A.Ifyou have ever played one ofTI's arcade
games (i.e., Parsec, TI Invaders, or Munchmari), you have seen
sound and graphics at work. Have you ever wondered how they
developed those screen colors, character movements, and sound?
The answer is graphics.

Graphics and sound provide excellent opportunities to present
your program output in a powerful and interesting way. The pro
gram communicates better with its users if the results are cap
tivating and enjoyable. Watch little children use the educational
command modules in arithmetic or grammar. Learning becomes
fun and rewarding. You need to know how to develop graphic
output and use it in your programs.

Graphics comesfrom the wordgraph. Imagine the output screen
as a sheet of graph paper. The graph has 24 lines or rows (horizon
tal to the screen) and 32 columns (vertical to the screen). You can
then display any character you want, any place you want, simply
by identifying the character and a specificrow and column position
on the screen. At the intersection of those two positions (called
coordinates) on the screen, the character will appear. The screen
becomes a giant scratch pad. With graphics you can draw a picture,
a graph, a chess or checker board, even animated characters like
Walt Disney's Mickey Mouse or Pluto. With sound you can make
these pictures move with musical backgrounds.

TI has built in a number ofgraphic and sound capabilities in its
language. All you do is request one of these subprograms, supply
the command with a set of instructions or parameters, and the
computer does the rest. A series of these commands can make
interesting applications.

152 Get Personal with Your TI-99/4A

The commands include CALL SOUND, CALL CLEAR, CALL
SCREEN, CALL COLOR, CALL HCHAR, and CALLVCHAR.
All of these commands work in the immediate mode as well as in

program statements.

CALL SOUND

You can play your TI-99/4A like a musical instrument. It will
generate notes and tones over a range of several octaves. You can
specify how long the tone is played (called duration), what tone is
played (called frequency), and how loud the tone is played (called
volume).

The format, or syntax, of the CALL SOUND command is:

[line #] CALL SOUND(duration,frequency,volume,
[frequency,volume])

where the three values stand for:

Value Allowable Range
duration 1 to 4250, inclusive

and -1 to -4250, inclusive
(1000 = 1 second)

frequency 110 to 44733, inclusive
(tone or note) or -1 to -8, inclusive (noise)

volume O(loudest) to 30(quietest), inclusive

Duration

The duration ofa note can range from one millisecond (1/1000 of
one second) to 4250 milliseconds or 4% seconds. The duration is
specified first in the CALL SOUND command. If the duration
value is positive, the computer continues to execute the program,
even if another CALL SOUND command is encountered. If the

duration value is negative and a second CALL SOUND command
is executed, the first command will terminate immediately and let
the second CALL SOUND command begin.

Frequency

Frequency may either be a tone or a type of noise. Tones are
measured in cycles per second or Hertz (named after Heinrich
Hertz, a German scientist). One cycle per second = 1 Hertz = 1 Hz.
Frequency values may range from 110 Hz, which is equal to an A

Having Fun with Your TI-99/4A 153

note below low C on the piano keyboard, to a high of 44733 Hz, a
tone well above human hearing limits. Some common notes and
their frequencies are shown in Figure 10.2.

Your TI-99/4A can make noises, too. Sounds like cars idling,
racing, and crashing add to the reality of games. Explosions and
other types of sounds are also possible. Frequency values between
the range of -1 to -8 generate those noises. The duration and
volume values work with these sounds. Try these commands on
your computer and you will experience these sounds that are hard
to describe.

Up to three frequencies and one noise can be played at one time.
This allows you to form chords and sound-action combinations.
Sound is an excellent positive reinforcement for children when
they have successfully completed a computer game or exercise.

Volume

Volume simply sets the loudness control on the sounds. The
larger the number, the softer the sound. In this chapter, we have
included a hearing test to demonstrate the volume control. Re
member, the volume control on your monitor or TV set will deter
mine the beginning volume level ofthe CALL SOUND command.
Raising the TV volume raises the starting volume range for the
sound control command.

Try some sounds on the TI-99/4A.

Example 10.1: The Low A Note

Write an instruction to play note A below low C on the piano
keyboard. Play the note for two seconds. What's the command?

Answer: 10 CALL SOUND (2000,111,15)

Example 10.2: Can You Hear This?

Write a program to test your hearing of sounds. Play low C below
middle C from softest (30) to loudest (0) in increments of two. Print
out the loudness level and mark the ones you can hear. Also try
middle C and C above middle C. On the chart below record the
results.

Note Sound Level

LowC
Middle C
C Above Middle C

154 Get Personal with Your TI-99/4A

Solution

10 REM EXAMPLE 10.2: CAN YOU HEAR THIS

20 NOTE(l) = 131
30 NOTE(2) = 262
40 NOTE(3) = 523
50 F0RI = 1T0 3

60 FOR J=30 TOO STEP -2

70 CALLSOUND(500,NOTE(I),J)
80 PRINT "HZ = ,,;NOTE(I)
90 PRINT "LOUDNESS LEVEL = ";J
100 PRINT "CAN YOU HERE THIS? YES/NO-

MARK ON CHART"

110 NEXT J

120 NEXT I

130 END

RUN

Look at the piano keyboard below. Note the key locations and
the Hz values for selected keys.

\ Low "C"x2 = Mid "C"_A Mid "C"x2 = High "C"__\
(131 Hz. x 2 = 262 Hz.) (262 Hz. x 2 = 524 Hz.)

Figure 10.1 A piano keyboard.

Example 10.3: Playing As and Cs

Write a program in TI BASIC to play three A notes in three
octaves beginning with low A. Then play three C notes beginning
with low C. Play each note for one second, loudly.

Having Fun with Your TI-99/4A 155

Solution

10 REM EXAMPLE 10.3: PLAYING A'S AND C'S
20 REM PLAY THREE "A " NOTES, THEN THREE

"C " NOTES
30 F = 55

40 F0RI = 1T0 3

50 F = F*2

60 CALLSOUND(1000,F,1)
70 NEXT I

80 IFF<>440THEN 110
90 F = 65

100 GOTO 40

110 END

RUN

Hear the notes? Sing along! "Play it again, TI."

Example 10.4: Playing Chords

The TI can play up to three notes at one time. This allows you to
play songs. Write a program to play a C-major chord (middle C, E
and G notes). Hold the chord for two seconds. Play it loudly, middle
range and softly. Note how delay loops are used to break between
durations of the chord.

Solution

10 REM EXAMPLE 10.4: CHORDS

20 REM THIS PROGRAM PLAYS A C-MAJOR

CHORD

30 REM NOTE HOW A LOOP (STATEMENTS 80-90)
IS USED TO BREAK

35 REM DURATION OF THE CHORD!

40 FORI = lT0 3

50 C = 262

60 E = 330

70 G = 392

80 CALL SOUND(2000,C,5 * I,E,5 * I,G,5 * I)
90 FORK = lTO1600

100 NEXTK

110 NEXT I

120 END

RUN

156 Get Personal with Your TI-99/4A

Hear the chord? Can you change its duration? (Hint: Change
2000 value in statement number 80.)

Example 10.5: Playing Songs
(Optional, unless you read music.)

Write a program to play this song. Doyou recognize the tune?

Am

SE 3

Some - where

S
^

Em

*

r " r r
0 - VER THE RAIN-BOW

G ' C c

high,

E
£

Solution

10 REM EXAMPLE 10.5: PLAYINGSONGS
20 CALL SOUND(2000,131,15,165,15,262,15)
30 CALL SOUND(2000,220,15,330,15,523,15)
40 CALL SOUND(1000,165,15,196,15,494,15)
50 CALLSOUND(500,392,15)
60 CALLSOUND(500,440,15)
70 CALLSOUND(1000,494,15,196,15)
80 CALLSOUND(1000,523,15,165,15)
90 CALL SOUND(2000,262,15,175,15,220,15)
100 CALL SOUND(2000,440,15,262,15,175,15)
110 CALLSOUND(2000,392,15,165,15)
120 END

RUN

Note: To repeat this song, type:

115 GOTO 20

Noise

The TI-99/4A can produce noise as well as tones. The actual
sound of the noises is hard to describe. The best way to experience
them is to play with some programs that generate noise. Use the
CALL SOUND command and instead of inserting Hertz values
for the tones, insert a number from -1 through -8. These numbers
produce the variousnoises. Thefollowing programproduces all the

Having Fun with Your TI-99/4A 157

noises. In the table below, write your description of the noise that
each value generates.

Noise # Sounds Like?

-1

-2

-3

-4

-5

-6

-7

-8

Example 10.6: Noises

Write a program to play each noise in the TI-99/4A.

Solution

10 REM EXAMPLE 10.6: NOISES
20 FORI = 8T01STEP -1

30 LEVEL = 1-9

40 PRINT "NOISE#";LEVEL;" SOUNDS LIKE
THIS "

50 CALLSOUND(2000,LEVEL,1)
60 PRINT "WHAT DOES IT SOUND LIKE?"

70 FOR DELAY = 1 TO 2000

80 NEXT DELAY

90 NEXT I

100 END

RUN

Exercise 10.1: Drag Race

Write a program using noises to simulate the sound ofa dragster
on the drag strip. How would it sound? Use the results from
Example 10.6 to pick your sounds. Rerun Example 10.6 if
necessary.

Exercise 10.2: Cannon Fire

Write a program that sounds like a cannon shooting a shell into
the air. Did it explode?

158 Get Personal with Your TI-99/4A

CALL CLEAR

The CALL CLEAR command inserts blank characters in all
768 spaces (24 rows x 32 columns) on the TV screen and thus
erases any instructions or output that was previously on the
screen. CALL CLEAR gives you a fresh screen foryour program's
listing or output. This statement is often one of the first statements
in an application. Remember, all the following statements can be
used in immediate mode or with line numbers in a program.

Examples

[In immediate mode]
> PRINT "HOWARE YOU? "

HOWARE YOU

> CALL CLEAR

[Screen goes blank]

[In program mode (note line numbers and RUN command)]
10 PRINT "'THIS IS A TEST ''

20 PRINT " WILL IT CLEAR THIS MESSAGE?"
30 CALL CLEAR

40 GOTO 10

RUN

(Press CLEAR Function keys to halt execution.)

Make up some of your own examples. Can you develop a flashing
message on the screen? (Hint: Use FOR-NEXT loops to delay
execution ofthe CALL CLEAR instruction.)

Can you develop a digital clock for your TI-99/4A? (Hint: Time
your clock with the FOR-NEXT loop.)

CALL SCREEN

Unless instructed otherwise, the screen color on your monitor is
blue and the characters are black. When you execute a program,
the screen changes to light green. But there are 16 screen colors
you can use. Figure 10.2 lists the screen colors and their codes.

Color Color Code
Transparent 1
Black 2

Medium Green 3

Light Green 4
Dark Blue 5

Having Fun with Your TI-99/4A 159

Color Color Code

Light Blue 6
Dark Red 7
Cyan 8
Medium Red 9
Light Red 10
Dark Yellow 11
Light Yellow 12
Dark Green 13

Magenta 14
Gray 15
White 16

Figure 10.2 TI screen colors.

The instruction to change screen color is:

CALL SCREEN(color code)

When you execute the CALL SCREEN, the screen color imme
diately changes to the color specified by the color code. Any charac
ters on the screen remain unchanged-only the surroundings
change. Try this example to become familiar with the CALL
SCREEN command.

Example 10.7: Screen Colors

10 REM EXAMPLE 10.7

20 REM CALL SCREEN COLORS
30 CALL CLEAR

40 PRINT "HOW DOES THIS MESSAGE LOOK? ";I
50 FORI = lT016

60 CALL SCREENS
70 FOR DELAY = 1 TO 500

80 NEXT DELAY

90 NEXT I

100 RUN

This will show you all 16 screen color options. Did you see 16
messages? Why or why not?

CALLCOLOR

A companion instruction to CALL SCREEN is CALL COLOR.
Together they become the artist's palette and paintbrush. Pre-

160 Get Personal with Your TI-99/4A

viously you learned that there are 768 separate spaces or addresses
on the screen (24 rows x 32 columns) that you can isolate and
activate. Once you get to one of these boxes or locations and want to
print a character, the character consumes only a small portion of
the box. This is referred to as the foreground of the box and is the
actual characer itself. Surrounding the character, but still within
the confines of the box is the background. This is shown in Figure
10.2 below.

Through the CALL COLOR command you can specify fore
ground and background colors. The command format is:

CALL COLOR(character-set-number,foreground-
color-code,background-color-code)

Foreground

Background

2222

—-22 22

22 22
22

22

22

22

22

22

22222222222222

Figure 10.2a Foreground and background colors.

The Color code numbers range from 1 to 16 and are the same as
those specified under the CALL SCREEN section above (i.e.,
1 = transparent, 2 = black, etc.). These three values within the
parentheses can be specified as constants, variables or
expressions.

CALL HCHAR

The CALL HCHAR subprogram positions a row character any
where on the screen and optionally reproduces that character a
specified number of times in that row. The HCHAR command
format is:

Having Fun with Your TI-99/4A 161

CALL HCHAR(row-number,column-number,
character code[,number of repetitions])

The intersection ofthe row and column numbers locates the first
character. Character code specifies the character to be printed
there and the optional repetition value tells how many times to
print that character. With no repetition value, only one character
is printed. As with the other graphic commands, values in the
CALL CHAR list may be constants, variable names or ex
pressions. The maximum row number is 24 and the maximum
column number is 32.

Character codes correspond to letters, numbers, and special
characters. A directory of these codes and their characters is shown
in Appendix H.

Example 10.8: Printing a B.

Write a program segment to print a capital B in row 10, column
14 ofyour screen.

10 REM EXAMPLE 10.8

15 CALL CLEAR

20 CALLHCHAR(10.14,66)
30 END

RUN

What happens when you run this? What is the character code
forB?

Example 10.9: Printing Bs

Write a program segment to print 10 Bs starting in row 8 and
column 6.

10 REM EXAMPLE 10.9

15 CALL CLEAR

20 CALLHCHAR(8,6,66,10)
30 END

RUN

What happens?

Example 10.10: Repeating Characters on the Screen

Write a program segment to print three $s, in the configuration
shown below, across the screen beginning in the upper left-hand
corner and moving down to the lower right-hand corner.

162 Get Personal with Your TI-99/4A

Figure 10.3 Repeating characters on the screen.

10 REM EXAMPLE 10.10: A DIAGONAL OF $$$'s

15 CALL CLEAR

20 F0RI = 1T0 24

30 CALLHCHAR(I,I,36,3)
40 NEXT I

50 END

RUN

Does the output look like the picture above?

Example 10.11: Question Marks

Write a program segment to fill the screen (24 rows x 32 col
umns) with ?. Then clear the screen.

5 REM EXAMPLE 10.11: QUESTION MARKS
10 F0RI = 1T0 24

20 CALLHCHAR(I,1,63,32)
30 NEXT I

40 CALL CLEAR

50 END

RUN

????????????????????????????????

????????????????????????????????
9999999999999?999999999999999999

????????????????????????????????

????????????????????????????????

Figure 10.4 A full screen.

Having Fun with Your TI-99/4A 163

Example 10.12: A Border Test

For a variety ofreasons,columns 1,2,31, and 32may not appear
on your screen. Thus, column displays should be limited to col
umns 3-30.Write a program to fill these two vertical edges with the
"at" sign (@). Can you see them on your screen?

10 REM EXAMPLE 10.12: A BORDER TEST
15 CALL CLEAR

20 F0RI = 1T0 24

30 FORJ=lT02

40 CALLHCHAR(I,J,64)
50 CALLHCHAR(I,30+J,64)
60 NEXT J

70 NEXT I

80 END

RUN

Another way to program this application is shown below. What
are the differences betweenthis program and Example 10.12?

COLUMNS

12345678901234567890123456789012

ROWS

23
24

Figure 10.5 A screen with borders.

10 REM EXAMPLE 10.12A: A BORDERTEST (AN
ALTERNATIVE WAY)

15 CALL CLEAR

20 F0RI = 1T0 24

30 CALLHCHAR(I,1,64,2)
40 CALLHCHAR(I,31,64,2)
50 NEXTI

60 END

RUN

Can you think ofanother way?

164 Get Personal with Your TI-99/4A

The HCHAR command allows you to pinpoint a row and column
position on the screen, then fill the row from that position with one
or more duplicates of the specified character. An alternative to the
HCHAR command is the VCHAR command.

CALLVCHAR

This command works much like the HCHAR command, except
that the characters fill the screen vertically from the starting
point, instead ofhorizontally. Ifyou run to the bottom ofthe screen,
the string ofcharacters will continue at the top ofthe next column
to the right. If you run off the right side of the display, the char
acter string will wrap-around to column 1 on the left side of the
screen.

The general form ofthe CALL VCHAR command is:

CALL VCHAR(row number,column number,
character code[,number ofrepetitions])

Example 10.13: A Screen Full of Equals

Write a program segment to fill the screen with equal signs (=).
Use the VCHAR command. This can be done a number ofways.

10 REM EXAMPLE 10.13: A SCREEN FULL OF

EQUALS
15 CALL CLEAR

20 CALLVCHAR(1,1,61,768)
30 END

RUN

This program would fill the screen from position (1,1) through
(24,32) with =. Why 768? Remember the screen has 24 rows and 32
columns. 24 x 32 = 768 spaces on the screen. Fill them all with
equal signs.

Example 10.14: Using the CALL VCHAR Command

How many of the CALL HCHAR examples shown above can
you convert to the CALL VCHAR command? Let's do one; Exam
ple 10.12, the border test. Remember, this one asks you to fill
columns 1,2,31, and 32 with @ signs. It is actually easier to do this
example using the CALL VCHAR command than it is with the
CALL HCHAR command.

Having Fun with YourTI-99/4A 165

10 REM EXAMPLE 10.14: USING THE CALL
VCHAR COMMAND

20 CALLVCHAR(1,1,64,48)
30 CALLVCHAR(1,31,64,48)
40 END

RUN

This example shows the wrap-around feature of the CALL
VCHAR command. When the string ofoutput characters reaches
the bottomofthe screen,the output continueson the topofthe next
column. The 48 in the command fills two complete columns of
output with the @ sign.

Now you have all the building block commands to do some fun
activities in TI sound and color graphics. You have:

CALL CLEAR clears the screen ofall output
(your eraser command)

CALL SOUND for musical backgrounds
CALL SCREEN for backdrop colors
CALL COLOR for character colors
CALL HCHAR for character identification,

and location and duplication
CALLVCHAR

You also have all the BASIC language commands available too!
How can you put them together in some fun and exciting
applications?

Think about these ideas:

• Write a program to create a musical, digital clock.

• Animate an ant or a flea on the screen.

• Fire a missile at a target.

• Create a flashing sign with random colors.

• Draw a large heart on the screen. Can you make it beat? With
a musical background?

• Draw a Christmas tree. With lights. With music.

We will investigate some of these applications in the section
below.

166 Get Personal with Your TI-99/4A

Table 10.1 Hearing chart.

Note

Loudness

Level

Can You K

(Yes

Your Answer

[ear This?

Wo)

Friend's Answer

131 so

2fi

22

1ft

u

10

fi

2

262 30

2fi

22

1ft

14

10

fi

2

523 30

2fi

22

1ft

14

10

fi

2

1047 30

2fi

22

18

14

10

fi

2

Having Fun with Your TI-99/4A 167

SOME FUN APPLICATIONS OF TI SOUND AND COLOR
GRAPHICS

Application 1: A Hearing Test

How about a program to test your hearing? The following pro
gram will do that. Enter this program in your TI-99/4A and use the
chart below to test your level of hearing. Have a friend run the
program and compare your results.

Program: A Hearing Test

10 REM APPLICATION #1-HEARING TEST
20 CALL CLEAR

30 PRINT "-SETTVVOLUMENOW- "
40 PRINT •' "

50 PRINT "'SET VOLUME UNTIL YOU CAN JUST

BARELY HEAR THIS TONE "'

60 CALLSOUND(4200,140,18)
70 FORK = lTO900

80 NEXTK

90 NOTE(l) = 131
100 NOTE(2) = 262
110 NOTE(3) = 523
120 NOTE(4) = 1047
130 FORI = lT04

140 PRINT

150 FOR J = 30 TOO STEP -4

160 CALLSOUND(1500,NOTE(I),J)
170 PRINT ,,Hz= ,,;NOTE(I)
180 PRINT •LOUDNESSLEVEL = ";J
190 PRINT 'CAN YOU HEAR THIS? YES/NO-

MARK ON THE CHART "

200 PRINT •' "

210 PRINT " "
220 FORKK = lTO1000

230 NEXTKK

240 NEXT J

250 PRINT " "

260 PRINT " •'

270 FORM = 1 TO 1900

280 NEXTM

290 CALL CLEAR

300 NEXT I

310 END

RUN

168 Get Personal with Your TT-99/4A

Application 2:The Star Spangled Banner

Ever wonder what it would be like to be in battle and hear the
"Star Spangled Banner"? Listen to this song and hear "the bombs
bursting in air" as you enter and run this next TI BASIC program.

Program: Star Spangled Banner

10 REM APPLICATION #2: BATTLE AND THE

STAR SPANGLED BANNER

20 CALLSOUND(1000,330,15)
30 CALLSOUND(1000,294,15)
40 CALLSOUND(1000,262,15)
50 CALLSOUND(1000,330,15)
60 CALLSOUND(1000,392,15)
70 CALLSOUND(3000,523,15)
80 CALLSOUND(1000,659,15)
90 CALLSOUND(1000,587,15)
100 CALLSOUND(1000,392,15)
110 CALLSOUND(1000,330,15)
120 CALLSOUND(1000,370,15)
130 CALLSOUND(2000,392,15)
140 FOR I = 130 TO 1400 STEP 7

150 CALLSOUND(l,I,15)
160 NEXT I

170 FORI = 6T0 7

180 CALL SOUND(1000,-1,9)
190 NEXT I

200 END

RUN

Modify this program by adding more notes from the "Star Span
gled Banner".

Application 3: Your Heartbeat

In medicine, computers are used to search the human body for
disease. Computers show blood flow, organs in operation, joints
moving, and lungs expanding and contracting. These displays are
often in color on computer monitors. You can simulate some of
these activities on the TI-99/4A. How would a heart look as it beat

and pumped blood through the body? How could you show it ex
panding and contracting? Computer graphics are the key.

Having Fun with Your TI-99/4A 169

This next program uses the CALL SOUND, CALL HCHAR,
CALL SCREEN, CALL CLEAR, and CALL COLOR graphics
command to simulate the beating ofa heart. The sound is included
to simulate the sound ofthe heart beat. Load this program, run it,
and modify the instructions to make the simulation better. Use
this as an example to see what changes you can make.

Note: How the screen is treated as a grid and the CALL
HCHAR command positions the characters on the screen to repre
sent the heart.

H H
HHHHH HHHHH

HHHHHHHHH HHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHH
HHHHHHHHHHHH

HHHHHH
HH

Figure 10.6 Using characters to make a heart.

What other organs could you reproduce using TI sound and color
graphics? Could you show how the leg moves? How would the eye
look on the TV screen? What types of sound would you add to the
movement ofyour human part?

Program: The Human Heart

10 REM APPLICATION #3: THE HUMAN HEART

20 DIMC(19),N(19),C1(19),N1(19)
30 REM READ NORMAL HEART SIZE DATA

40 M = 72

50 SWITCH = 1

60 FORI = lT013

70 READC(I),N(I)
80 DATA 10,13,9,15,9,15,9,15,9,15,9,15,10,13
90 DATA 10,13,11,11,12,9,13,7,15,3,16,1
100 NEXT I

110 REM READ EXPANDED HEART SIZE

170 Get Personal withYourTI-99/4A

120 F0RI = 1T015

130 READC1(I),N1(I)
140 DATA 7,19,7,19,7,19,7,19
150 DATA 7,19,7,19,7,19,8,17,9,15,10,13,11,11
160 DATA 12,9,13,7,15,3,16,1
170 NEXT I

180 CALLSCREEN(8)
190 CALLCOLOR(6,7,7)
200 CALL CLEAR

210 CALLSOUND(1500,131,2)
220 CALLHCHAR(7,12,72,2)
230 CALLHCHAR(7,19,72,2)
240 CALLHCHAR(8,11,72,5)
250 CALLHCHAR(8,17,72,5)
260 F0RI = 1T013

270 CALLHCHARd+8,C(D,72,N(D)
280 NEXT I

290 REM SHOW EXPANDED HEART

300 CALLSOUND(1500,262,3)
310 REM SIMULATE HEART BEAT

320 CALLHCHAR(5,10,M,3)
330 CALLHCHAR(5,20,M,3)
340 CALLHCHAR(6,19,M,5)
350 CALLHCHAR(6,9,M,5)
360 CALLHCHAR(7,8,M,7)
370 CALLHCHAR(7,18,M,7)
380 CALLHCHAR(8,7,M,9)
390 CALLHCHAR(8,17,M,9)
400 F0RI = 1T013

410 CALLHCHARa+8,Cl(I),M,Ca)-Cl(I))
420 CALLHCHARa+8,C(D+N(I),M,(Nia)-N(I))/2)
430 NEXT I

440 CALLHCHAR(22,15,M,3)
450 CALLHCHAR(23,16,M,1)
460 SWITCH = SWITCH*(-l)
470 IF SWITCH >0THEN 500

480 M = 32

490 GOTO 510

500 M = 72

510 GOTO 210

520 END

RUN

HavingFunwith Your TI-99/4A 171

When this program is typed in and run, you will see a large, red
heart expanding and contracting on the screen. Modify the pro
gram to improve it. Can you add veins and arteries? Can you show
the chambers in the heart? Can you show the blood flow? Try some
ofthese modifications.

Application 4: A Colorful Chime and Digital Clock

Do you own a digital clock? Do you own a TI-99/4A? Then you
own a digital clock! Your TI can be programmed to become a digital
clock. It will also have sound and color. The computer changes
screen color and chimes on the hour. Imagine your friends' reac
tions when they see your computer keeping time in your home or
apartment.

The following program simulates a digital clock for your
TI-99/4A.

Program: Digital Clock

10 REM APPLICATION #4: DIGITAL CLOCK

SIMULATION

20 CALL CLEAR

30 PRINT "SET YOUR CLOCK NOW

40 FOR DELAY = 1 TO 100

50 NEXT DELAY

60 INPUT ,,WHATISTHEHOUR?(l-12)":HOUR
70 INPUT ,,WHATISTHEMINUTE?(1-59),,:MIN
80 INPUT ,,WHATISTHESECOND?(l-59),,:SEC
90 CALL CLEAR

100 CALLSCREEN(HOUR+2)
110 PRINTTAB(8);HOUR; ": ";MIN; ": "jSEC;
120 F0RI = 1T0138

130 NEXT I

140 CALL CLEAR

150 IF SEC > 58 THEN 180

160 SEC = SEC+1

170 GOTO 510

180 IFMIN>58THEN220

190 SEC = 0

200 MIN = MIN+1

210 GOTO 510

220 IFHOUR>11THEN470

230 SEC = 0

172 Get Personal with Your TI-99/4A

240 MIN = 0

250 HOUR=HOUR+l

260 FOR K = 1 TO HOUR

270 CALLSOUND(600,130*K,2)
280 F0RT = 1T0135

290 NEXTT

300 NEXTK

310 SEC = SEC+HOUR

320 GOTO 510

330 HOUR = l

340 MIN = 0

350 SEC = 0

360 CALLSOUND(200,130,2)
370 GOTO 80

380 STOP

390 IF HOUR > 12 THEN 470

400 SEC = 0

410 MIN = 0

420 HOUR = HOUR+l

430 FOR K = 1 TO HOUR

440 CALLSOUND(200,130,2)
450 NEXTK

460 GOTO 510

470 HOUR = l

480 MIN = 0

490 SEC = 0

500 CALLSOUND(200,130,2)
510 GOTO 90

520 END

RUN

Application 5: A Christmas Tree

The following program combines music with sound and color
graphics to play the song, "O Christmas Tree" as it constructs a
tree on the screen. Lights blink different colors on the tip ofthe tree
as the background color changes and the notes in the song change.
It is a festive program.

Having Fun with Your T1-99/4A 173

0

T
0 TTT 0
| TTTTT |

<i»i»|»|»Hrprfvpm

0 TTTTTTTTTTTTT 0
I Trnvr*i,,i,r,i*i*r,riTriirrrivni I

f|YpfiYpi»|»|»|rpTVirpnifiyfvryi»Typl|»p

TTTTT
'lMTTT

TTTTT

" O CHRIST MAS TREE, O CHRIST MAS TREE
HOW BEAU TI FUL AND BRIGHT."

Figure 10.7 The tree displayed by the program.

Program: Christmas Tree

10 REM APPLICATION #5: CHRISTMAS TREE

20 REM THIS PROGRAM CONSTRUCTS A

CHRISTMAS TREE

30 REM IT ALSO PLAYS THE SONG "O

CHRISTMAS TREE " AND PRINTS THE WORDS

TO THE SONG

40 CALL CLEAR

50 PRINT "THE PROGRAM PUTS A CHRISTMAS

TREE ON THE SCREEN, PLAYS A SONG AND
PRINTS THE WORDS TO THE SONG. "

60 PRINT

70 PRINT "THE WORDS ARE: "

80 PRINT

90 PRINT

100 PRINT

110 PRINT "O CHRIST MAS TREE "

120 PRINT "O CHRIST MAS TREE "

130 PRINT "HOW BEAU TT FUL AND BRIGHT.

140 PRINT

150 PRINT

160 PRINT

170 FORI = lTO2300

174 Get Personal with Your TT-99/4A

180 NEXT I

190 CALL CLEAR

200 CALLCOLOR(7,13,13)
210 CALLHCHAR(3,16,84)
220 CALLHCHAR(4,15,84,3)
230 CALLHCHAR(5,14,84,5)
240 CALLHCHAR(6,13,84,7)
250 CALLHCHAR(7,12,84,9)
260 CALLHCHAR(8,11,84,11)
270 CALLHCHAR(9,10,84,13)
280 CALLHCHAR(10,9,84,15)
290 CALLHCHAR(11,8,84,17)
300 CALLHCHAR(12,7,84,19)
310 CALLHCHAR(13,6,84,21)
320 CALLHCHAR(14,5,84,23)
330 CALLHCHAR(15,15,84,3)
340 CALLHCHAR(16,15,84,3)
350 CALLHCHAR(17,14,84,5)
360 CALLHCHAR(18,14,84,5)
370 CALLHCHAR(19,14,84,5)
380 REM LOCATE LIGHT STEMS
390 CALLHCHAR(2,16,33)
400 CALLHCHAR(5,13,33)
410 CALLHCHAR(5,19,33)
420 CALLHCHAR(8,10,33)
430 CALLHCHAR(8,22,33)
440 CALLHCHAR(11,7,33)
450 CALLHCHAR(11,25,33)
460 CALLHCHAR(13,5,33)
470 CALLHCHAR(13,27,33)
480 ICOLOR = 3

490 JCOLOR = 5

500 CALLCOLOR(6,ICOLOR,JCOLOR)
510 CALLHCHAR(1,16,79)
520 CALLHCHAR(4,13,79)
530 CALLHCHAR(4,19,79)
540 CALLHCHAR(7,10,79)
550 CALLHCHAR(7,22,79)
560 CALLHCHAR(10,7,79)
570 CALLHCHAR(10,25,79)
580 CALLHCHAR(12,5,79)
590 CALLHCHAR(12,27,79)

Having Fun with Your TT-99/4A 175

600 CALL SOUND(500,262,2,131,2,220,2)
610 GOSUB910

620 CALL SOUND(375,262,2,349,2,175,2)
630 GOSUB910

640 CALL SOUND(125,262,2,349,2,175,2)
650 GOSUB910

660 CALL SOUND(500,262,2,349,2,175,2)
670 GOSUB910

680 CALL SOUND(500,330,2,392,2,131,2)
690 GOSUB910

700 CALLSOUND(375,349,2,440,2,175,2)
710 GOSUB910

720 CALL SOUND(125,349,2,440,2,175,2)
730 GOSUB910

740 CALL SOUND(750,349,2,440,2,175,2)
750 GOSUB910

760 CALLSOUND(250,349,2,440,2,175,2)
770 GOSUB910

780 CALL SOUND(250,175,2,330,2,392,2)
790 GOSUB910

800 CALL SOUND(250,349,2,440,2,349,2)
810 GOSUB910

820 CALLSOUND(500,392,2,233,2,165,2)
830 GOSUB910

840 CALL SOUND(500,330,2,131,2,233,2)
850 GOSUB910

860 CALL SOUND(500,294,2,392,2,175,2)
870 GOSUB910

880 CALLSOUND(500,262,2,349,2,175,2)
890 CALLSOUND(250,4000,30)
900 GOTO 600

910 IFJCOLOR = 12THEN950

920 JCOLOR = JCOLOR+l

930 ICOLOR = ICOLOR+l

940 GOTO 970

950 JCOLOR = 3

960 ICOLOR = 5

970 CALLCOLOR(6,ICOLOR,JCOLOR)
980 CALLSCREEN(ICOLOR)
990 RETURN

1000 END

RUN

176 Get Personal with Your TT-99/4A

Check your input listing if you don't see a flashing Christmas
tree and hear music.

REVIEW ACTIVITIES

1. What does the CALL SOUND command do?

2. What are the variables you must specify in the CALL SOUND
statement?

3. How many notes can you play within one CALL SOUND
statement?

4. What is a Hertz and what does it have to do with CALL
SOUND?

5. What is noise in the CALL SOUND statement and how can we
use it?

6. List a number of other commands in TT color graphics and tell
what they do.

7. How many different colors can be specified in the CALL
SCREEN command?

8. What is the difference between the CALL VCHAR and the
CALL HCHAR commands?

9. List the parameters or variables in the CALL COLOR
command.

10. What is the purpose ofthe character-set number in the CALL
COLOR command?

11. What are the dimensions of the screen? Are all positions
usable?

12. Define what this command would do:CALL COLOR(l,2,8)

13. What other comand is often used together with the CALL
COLOR command?

14. What color would the screen be with this command: CALL
SCREEN(8)

15. Why is it important to program sound and color graphics into
computer applications?

Chapter 11

Program and Data Files

Storing the BASICprograms and data on magnetic storage is a
subject broad enough to fill a book.Saving certain types offiles on
cassette tape is the onlyarea ofstoring a BASIC program that will
be dealt with here.

The first accessory for your TI-99/4Athat you should consider
buying is a cassette recorder on which to store BASIC programs.
You need the following equipment:

1. A cassette tape recorder with:
a. an output jack (earphone or extension speaker jack);
b. an input jack (microphone jack);
c. volume control;
d. tape counter (a necessity);

2. a cassette interface cable; and
3. a high quality blank cassette tape not longer than 60 minutes.
The cassette recorder is connected to the TI-99/4A with the

interface cable so that the red tail is plugged into the microphone
jack, the white tail is pluggedinto the earphone jack, and the other
end of the cable is plugged into the back of the computer. If the
cassette recorder has a remote jack, plug the black tail into it.

You may have as many as two recorders at the same time
connected to the computer with device names that the computer
will recognize, CSl and CS2. Here you are going to use only one
recorder, and it must be connected as CSl. This connection makes
a difference only if you have the double cassette interface cable.

Before you save or record or load a program or data from tape, be
sure that the recorder's

1. volume is set at about one-half;
2. treble (if there is tone control) is set at maximum; and
3. tape counter is set at the appropriate spot (000for beginning).

178 Get Personal with Your TI-99/4A

SAVING A BASIC PROGRAM

When you SAVE a BASIC program, the computer is actually
converting your program into a noise that it can understand. Once
it has made this noise code copy of the program, it records it on
cassette tape.

After you have written the BASIC program and are ready to
SAVE it, type:

> SAVE CSl

Note: The letters used to type in this command must be
in upper case (capitals).

This command starts a ROM program that you cannot interrupt
without the computer leaving the ROM BASIC operating level
which will cause you to lose the BASIC program you are trying to
SAVE. The SAVE program, however, may interrupt itself. If it
hits a problem it will stop execution and give you an error message.
In this case you will not lose the BASIC program. You will simply
have to try to correct the problem and start the SAVE program
over again. Assuming the computer has not encountered a problem
so far, it will respond with the message:

* REWIND CASSETTE TAPE CSl

THENPRESS ENTER

You rewind the tape to the spot where you want to start record
ing and write down the position given by the tape counter for
future reference. Then press ENTER. Next the computer sends the
message:

* PRESS CASSETTE RECORD CSl
THEN PRESS ENTER

This means you press the button(s) that start the cassette tape
recording and then press ENTER. Next you will see the message:

^RECORDING

After a short wait, you may hear the special computer to cassette
code that actually records on the tape. When the computer is
through recording the program on the tape it will send the mes
sage:

* PRESS CASSETTE STOP CSl

THEN PRESS ENTER

Program andDataFiles 179

Now push the button(s) that stop the cassette recording and
press ENTER. You should write down the tape counter position so
you know where the program begins and ends on the cassette tape.
Then the computer will ask:

* CHECK TAPE (Y OR N)?

It is always a good idea to have the computer check the program on
the cassette tape to see if it was saved without any problems. Ifyou
type a Y (without ENTER), the computer will continue by sending
the message:

* REWIND CASSETTE TAPE CSl

THEN PRESS ENTER

When you do that, it will tell you to:

* PRESS CASSETTE PLAY CSl
THEN PRESS ENTER

At this point press the Play button(s) on the cassette recorder and
press ENTER on the computer. The computer will respond with
the message:

* CHECKING

After a short wait, and if everything is OK, the computer tells
you:

* DATA OK

PRESS CASSETTE STOP CSl

THEN PRESS ENTER

After you press ENTER, the computer will stop executing this
ROM program and you can continue to write programs in BASIC
or whatever.

Note: The computer does not actually take your program and put
it on tape, it copies the program onto the tape. If you now LIST
your program, you will find that it is still in the computer's current
memory.

All of the above assumes that the computer did not encounter a
problem trying to SAVE the program. Ifthis was not the case, here
are some possible areas to check.

First make sure the cassette recorder is working; try recording
your voice. Check the batteries and plug. Ifyou can, make sure the
microphone jack works. Plug in a microphone and record your
voice. If the recorder has a volume setting for recording, turn it to
about halfvolume.

180 Get Personal with Your TT-99/4A

Next check to seee if the remote is working. When the computer
gives the message:

*PRESS CASSETTE RECORD CSl
THEN PRESS ENTER

If the tape does not start turning after you have pressed ENTER,
unplug the remote (black) tail from the remote jack and plan to
start and stop the computer manually.

Next check that the computer, monitor, and recorder are not on a
continuous metallic surface. Computers and TVs generate an un
usual amount of electrical noise that you can't hear but the tape
recorder can. The further away from these two pieces ofequipment
the tape recorder is, the better.

Ifall else fails, consult your TI-99/4AUser's Guide. It has a very
good section on this subject.

LOADING A BASIC PROGRAM

Loading a program is how the computer retrieves a program that
you have previously saved. Like saving a program from the cur
rent memory onto tape, the computer does not actually take your
program away from the tape. It makes a copy of it and puts it into
its current memory. When you are ready to load a program you
have saved, type in:

> OLD CSl

Remember that this must be in upper case (capital) letters. The
computer will then respond by sending the message:

* REWIND CASSETTE TAPE CSl

THEN PRESS ENTER

This tells you to set the tape recorder at the tape counter position
that marks the beginning of where the program is saved. After you
press ENTER, the computer will tell you to:

* PRESS CASSETTE PLAY CSl
THEN PRESS ENTER

When you have done this, the computer will give you the mes
sage:

DREADING

which will stay on the screen until it has memorized your program
(or until it recognizes that there is a problem). If the program was

Program and Data Files 181

successfully loaded, the computer will tell you:

* DATA OK

*PRESS CASSETTE STOP CS1

THEN PRESS ENTER

at which point you turn offthe recorder and press ENTER. You can
then LIST or RUN your program as you please.

Since the computer does not take your program away from the
tape, there is no reason to resave it after you are through with it
unless you have changed (added to or EDITed) the program.

182 Get Personal with Your TT-99/4A

Chapter 12

String Functions and
Subprograms

STRING FUNCTIONS

So far you have been processing primarily numbers or numeric
data. You have yet to explore the area that processes characters
instead of numbers. Data processing, referred to as word process
ing, alphabetic processing, or string processing is a big application
area for computers. Some people estimate that 30 to 40 percent of
all personal computers sold are purchased to do word processing.
Texas Instruments has a large, powerful, packaged program which
can be purchased for the home computer. It is called TI Writer.

How does the compute process string data? What can it do with
letters? Two obvious applications of this process are corres
pondence and letter writing. Letters are keyed into the computer,
then displayed on the screen for editing, storage, and printing. In
this way you can personalize form letters and make multiple
copies. Some companies even combine word and data processing
applications by sending letters to customers that contain past due
amounts retrieved from billing records. Word processing lets you
cut-and-paste or rearrange paragraphs in a letter or speech or
move paragraphs from one letter to another. Word processing is
even used to analyze speeches from Russian and Chinese leaders to
measure the hostility index of the speech. Key words are assigned
point values and the speech is scanned for these words. When a key
word is encountered, the program assigns its point value to a
running total hostility value for that speech. By monitoring these
speeches, the U.S. Government measures changes in attitudes
within that country's leadership.

In the office of the future, word processing will be a critical
concern. Letters will be stored on disks and sent electronically
from one office to another or from the company to the customer.

184 Get Personal with Your TI-99/4A

Electronic libraries are possible where you can access the books or
periodicals you would like to read. An actual copy of the book or
article could be sent to your home computer for reading at your
leisure. Newspapers and classified ads could work the same way.
Word processing will be an integral part of life in the future.

How does it work on the TI-99/4A? Remember that alphabetic
letters and special characters in the computer are stored in ASCII
numeric representation. Each character converts to its pre-
assigned numeric code. Thus letters can be processed because they
are stored numerically in the computer. A collection of one or more
letters is called a string. Finally, signal the computer that a vari
able name stands for a string of characters instead of a number by
attaching the $ character to the end of the variable name. Figure
12.1 reviews the use ofvariable names.

Variable Name Numeric or String Data
TEST Numeric Data
TEST$ String Data
SUM Numeric Data
SUM$ String Data
B(4) Numeric Data
B$(A+B) String Data
INFORMATION String Data

Figure 12.1 Naming variables.

Texas Instruments *has supplied its home computer with a
number ofbuilt-in BASIC string functions or commands. They are
used to process the strings ofalphabetic and special character data
($,;'# etc.) in the program. Typically, they evaluate the status or
content of the string and return some information about the string
back to the program. You can also modify or add string data
together to form new strings. This is identical to what you can do
with numeric data. A complete vocabulary of string commands or
functions is shown in Figure 12.2.

The ASCII Function

The ASC function gives the ASCII character code of the first
character in the string expression. This function converts charac
ters to their numeric equivalent in the computer. Remember, the
complete list of ASCII character codes is shown in Appendix I.

String Functions and Subprograms

Form

ASC(string expression)

Answer: 72

185

Example
10 B$="HELP"
20 PRINT "THE ASCII CODE

FORH=";ASC(B$)
RUN

The CHaRacter String Function

The CHR$ string returns the character corresponding to the
ASCII code in the numeric expression. The normal range of nu
meric values is between 32 and 127. The CHR$ performs the
opposite function of the ASC command.

Form

CHR$(numeric expression)

Answer: 1

M&m

Example
100 A$ = CHR$(49)
110 B$ = CHR$&

CHR$(39)&CHR$(109)
120 PRINT A$
130 PRINT B$
RUN

The LENgth Function

The LEN function returns the number of characters in a string
expression. This function answers the question: How long is the
string? Blanks in the string are valid characters and add to the
string's length. A null string, one with no characters or not de
fined, yields a zero from the LEN function. Note also that this
function does not end with a $. Thus it returns a number rather
than a string result.

Form

LEN(string expression)

Answer: 5 1

FIVE 5

Example
100 B$= "5"
110 C$= "FIVE"
120 PRINT B$;LEN(B$)
130 PRINT C$;LEN(C$)
RUN

186 Get Personal with Your TI-99/4A

The POSition Function

Assume stringl is the source string, and string2 is the match
string. The POSition function searches stringl to see ifit contains
string2. This is a very powerful function. If the second string is in
the first string, the function returns the position number of the
first occurence of that string in the original string. If the string is
not found, POS returns a value ofzero.Note that it stops searching
after the first occurrence. If string2 occurs more than once in
stringl, the search must be restarted from that point. The numeric
expression argument or parameter identifies the starting position
for the search in stringl.

Form

POS(stringl,string2,
numeric expression)

Form

SEG$(string expression,
numeric expressionl,
numeric expression)

Example
100 MESSAGE$= "WHAT IS

IT?"

110 TEST1$= "AT"
120 PLACE =

POS(MESSAGE$,
TEST1$,1)

130 PRINT TEST1$;
"OCCURSIN ";PLACE;

140 PRINT " RD ";
"POSITION OF";

MESSAGE$
RUN

Answer: AT OCCURS IN 3 RD POSITION OF WHAT IS IT?

The SEGment Function

The SEGment function returns a substring or segment of a
source string. The substring begins at numeric expressionl and is
numeric expression2 in length. The substring can be assigned to
another string variable using the LET statement. Imagine using
the POS statement explained aboveto find a string and then using
the SEG function to assign that string to another string variable.

Example
100 SOURCE$= "HELLO

BILL "

110 N$= BSEG$
(SOURCE$,7,4)

120 PRINT "MY NAME

IS ";N$

String Functions and Subprograms 187

130 END

RUN

Answer: MY NAME IS BILL

The STRing Function

The STRing function converts a number to a string. When a
number is converted to a string, the leading and trailing blanks
are eliminated. The STRing function, for example, would convert
the number portion of an address to its string equivalent. Then the
entire address could be stored as a string variable.

Form Example
STR$(numeric expression) 100 VALUE = 100.5

110 NUM$ = STR$(VALUE)
120 PRINT VALUE,NUM$
130 END

RUN

Answer: 100.5 100.5

(Which is string, which is numeric?)

The VALue Function

The VALue function performs the opposite function of the
STR$ function. The VALue function converts string data to their
numeric equivalent, and then allows numeric processing of the
results. This would be used to convert string data such as
"10/22/83" for sorting by date of occurrence. The string would have
to be converted to its numeric equivalent. Then all dates could be
sorted. An example of this is given later in the chapter.

Form Example
VAL(string expression) 100 NUM$= "100.5 "

110 VALUE = VAL(NUM$)
120 AMOUNT = VALUE*4

130 PRINT

NUM$;VALUE;AMOUNT
140 END

RUN

Answer: 100.5 100.5 402

SOME APPLICATIONS OF TI STRING FUNCTIONS

Consider how you can use these seven functions in various
applications. In the examples below, the string functions are com-

188 Get Personal with Your TI-99/4A

bined to perform the required activity. As you read and review
these examples, think ofhow you might use these functions in your
applications. Develop your programs and enter them for testing on
yourTI-99/4A

Example 12.1: Letters in a Word

How many S's are in MISSISSIPPI? Write a TI BASIC program
to find the number of S's in any word. What functions would you
need to use? How would you change the search letter?
Solution:

10 REM EXAMPLE 12.1

20 REM PROGRAM TO FIND S s IN WORDS

30 COUNT = 0

40 READWORD$
50 LETTER$= "S "
60 START = 1

70 CHECK = POS(WORD$,LETTER$,START)
80 IF CHECK = 0 THEN 120

90 COUNT=COUNT+l

100 START = CHECK+1

110 GOTO 70

120 PRINT "THERE ARE ";COUNT;LETTER$; "'s IN ";WORD$
130 DATA "MISSISSIPPI"

140 END

RUN

Answer: THERE ARE 4 S's IN MISSISSIPPI

What would you change to find the number of R's in RAILROAD
TRACKS?

Answer: 10 REM PROGRAM FOR R s

50 LETTER$= "R "
130 DATA "RAILROADTRACKS"

Example 12.2: Reversing Name Fields

Names on forms are often written or reported as:

Last Name, First Name.

Yet, this is very impersonal. Write a program using string func
tions to change this form to:

First Name Last Name.

String Functions and Subprograms 189

The process requires you to:
1. find a comma in the name field;
2. assign the characters to the left of the comma to LAST-

NAME$;
3. assign the characters to the right of the comma to FIRST-

NAME$;
4. PRINT FIRSTNAME$, a blank and then LASTNAME$.

Solution:

100 REM EXAMPLE 12.2

110 REM THIS PROGRAM REVERSES

120 REM THE NAME FIELD FROM

130 REM LAST NAME, FIRST NAME TO FIRST NAME LAST
NAME

140 PRINT "INPUT NAME(LAST,FIRST)-MUST BE EN
CLOSED IN QUOTES"

150 INPUT NM$
160 PRINT NM$
170 SPOT = POS(NM$,"," ,1)
180 LAST$ = SEG$(NM$,l,SPOT-l)
190 FIRST$ = SEG$(NM$,SPOT+l,25)
200 PRINT FIRST$;" ";LAST$
210 END

RUN

Answer: HANSON, MARSHA
MARSHA HANSON

CHANSON, MARSHA" was the name entered in state
ment 150.)

BASIC String
Function

1. ASCfetring
expression)

2. CHR$(numeric

expression)

3. LEN(string
expression)

Operation Example

Returns ASCII character ASC(H)is72

code for the first character

in the string expression.

Returns the character

corresponsing to the
ASCII code in the

numeric expression.

Returns the number of

characters in the string
expression.

CHR$(72)is

N$= "NEW YORK

LEN(N$)is8

190 Get Personal with Your TI-99/4A

4. POS(stringl, Returns the location of M$«="TI-99/4A
string2,numeric string2 within stringl. N$="99"
expression) Search for stringl for

string2 begins at numeric
expression.

POS(M$,N$,l)

5. SEG$(string Returns a portion of TEST$= "BASIC
expression.numeric "string expression" SEG$)TEST$.l
expressionl, beginning at numeric "BASIC"

numberic expression2) expressionl position and
running for numeric
expression2 characters.

6. STR$(numeric Changes a number to its A = 400.6

expression) string equivalent. STR$(A)is "

7. VAIXstring Changes a string A$= "361.61"
expression) expression to its numeric

equivalent.
VAL(A$)is3

Figure 12.2 TI BASIC string functions.

Notes:

1. Function names ending in "$" (CHR$, SEG$, STR$) return
string values.

2. Function names without "$" (ASC, LEN, POS, VAL) return
numeric values.

3. ASC and CHR$ functions are inverse functions or perform
opposite functions of each other.

4. STR$ and VAL functions are also inverse functions of each
other.

Example 12.3: Date Conversions

Often data are supplied in an alphabetic format. It is easy for
people to enter data in that format. Yet, to do processing, you need
the data in its numeric form. Many documents collect the date in
the form:

month/day/year
or

mm/dd/yy

String Functions and Subprograms 191

Ifyou want to sort these documents by date, you need to convert to
a numeric format first and then sort. To do this imagine the data
comes in the following form in DATA statements:

300 DATA "08/26/83"

Write a program to INPUT these data, convert them to their
numerical equivalent and then PRINT them.
Solution:

100 REM EXAMPLE 12.3

110 REM THIS PROGRAM CONVERTS
120 REM STRING DATE DATA TO
130 REM NUMERIC DATE DATA.
140 REM ORIGINAL DATA IN THE

150 REMFORMOFMM/DD/YY.

160 REM CONVERTED DATA IN THE
170 REM FORM YY,MM,DD.
180 READTDATE$
190 PRINT "ORIGINAL FORM"

200 PRINT TDATE$
210 START = 1

220 BREAK$=7"
230 DATA "10/11/83"

240 FORI = lT02

250 SPOT = POS(TDATE$,BREAK$,START)
260 NMBR = SPOT-START

270 VALUE$(I) = SEG$(TDATE$,START,NMBR)
280 START = SPOT = 1

290 NEXT I

300 YEAR$ = SEG$(TDATE$,SPOT+1,2)
310 PRINT

320 PRINT "CONVERTEDFORMS"
330 PRINT "YEAR= M;VAL(YEAR$)
340 PRINT "MONTH = ";VAL"(VALUE$(1))
350 PRINT "DAY= ";VAL(VALUE$(2))
360 PRINT

370 PRINT "DATA NUMBER"

380 DATEY = 10000 * VAL(YEAR$)

192 Get Personal with Your TI-99/4A

390 DATEM = 100* VAL(VALUE$(1))
400 DATED = VAL(VALUE$(2))
410 PRINT DATEY+DATEM+DATED

420 END

RUN

Answer: ORIGINAL FORM
10/11/83

CONVERTED FORMS
YEAR = 83

MONTH = 10

DAY = 11

DATE NUMBER

831011

Example 12.4: Search and Replace Words

Can youwrite a programto change the a word to an anword in
the following sentence?

"What a great day!"

Change the sentence to read:

"What an great day!"

Review the following example to see how string functions are
used to find and replace a word in a sentence.
Solution:

10 REM EXAMPLE 12.4
20 REM THIS PROGRAM SEARCHES FOR A KEY WORD

AND REPLACES
30 REM THAT WORD WITH ANOTHER WORD.
40 REM IN THIS EXAMPLE, "A"
50 REM IS THE SEARCH WORD
60 REM AND "AN" IS THE REPLACE WORD.
70 PRINT "INPUT SENTENCE TO BE SEARCHED"
80 PRINT "(ENCLOSE SENTENCE IN QUOTES)"
90 INPUT SENTENCE$
100 PRINT "WHAT IS THE SEARCH WORD"
110 PRINT "(ENCLOSE WORD IN QUOTES-WITH LEAD

ING AND TRAILING BLANKS)"

String Functions and Subprograms 193

120 INPUT SEARCH$
130 PRINT "WHAT IS THE REPLACE WORD? ENCLOSE IN

QUOTES AND BLANKS"
140 INPUT REPLACE$
150 START = 1

160 SPOT = POS(SENTENCE$,SEARCH$,START)
170 NSENTENCE$ = SEG$(SENTENCE$,l,SPOT-l) &RE-

PLACE$&SEG$(SENTENCE$,SPOT+3,
180 PRINT

190 PRINT "ORIGINAL = ";SENTENCE$
200 PRINT "REVISED = ";NSENTENCE$
210 END

RUN

Answer: ORIGINAL = WHAT A GREAT DAY!

REVISED = WHAT AN GREAT DAY!

In summary, you can write very complex programs to process
string data. There are some programming langugaes used ex
clusively for string processing such as SNOBOL 4 and LISP. TI
BASIC has seven string processing functions. They are very
powerful and their use is limited only by your ability to understand
how they can be included in your programs. Working through the
previous examples and the exercises at the end of this chapter will
help you learn these string functions. Try to think of applications
for string variables. You will start to see how word processing
programs manipulate their data.

Subprograms

Subprograms are separate small programs that can be written
and incorporatedinto a larger calling or mainline program. They
are used to carry out an activity that is used quite often in the
program. String functions discussed in the previous section are
good examples of subprograms. The seven string functions are
called upon by the programmer to perform some activity or func
tion related to string data. Subprograms may be built-in to the
language like the string functions or they may be written by the
programmer to dospecial tasks. In a payroll application, the main
line programmight read in data about the employee and separate
subprograms or subroutines could:

1. compute gross pay;
2. compute deductions;

194 Get Personal with Your TI-99/4A

3. print the paycheck; and
4. print the pay stub (showing deductions and year-to-date fig

ures).

Numeric Functions

Functions are subprograms supplied with the BASIC language.
They perform commonly-used computations on string or numeric
data. Numeric functions compute such things as:

1. absolute value of a number (no sign, all positive);
2. rounding routines;
3. trigonomic functions like sine, cosine, and tangent values;
4. converting values to their INTeger equivalents (removes the

decimal portion of the number); and
5. a variety ofother activities.
Functions are independent programs which have the ability to

return one computed result to the calling program. The arguments
or parameters are given to the function in a list (values after the
function name enclosed in parentheses). The function returns the
results of its computation by assigning the answer to the function
name. The function format is:

function name (argument list)

The function can be used as an expression in the right-hand side
of a computation or LET statement like:

20 LET RESULT = ABS(-4* 16)
(Takes the absolute value of -4 H* 16 or 64 and assigns
this value to ABS which in turn assigns it to
RESULT.)

or

300 LET WHOLE = INT(B * SUM)
(Assigns integer portion, no decimal, of B *SUM
computation to INT which in turn assigns it to
WHOLE.)

Functions can also be used to stand alone such as in an output
statement or a computation statement or in a decision statement
like:

50 IFK>INT(C*D)THEN60
(Compares K to integer result of C H«D.)

String Functions and Subprograms 195

Typically,program executionofsubprograms wouldbe like the
flow diagram shown in Figure 13.3. Note the logic flow in this
diagram.

Calling or Mainline Program Subprograms

100

HO y-» 300 Subprogram A
120 / 310
130 / 320
140 call tosubprogram A / 330
150 340

160 350
170 \ 360
180 X 370
190 A 38O Return to Mainline-
200 END

Figure 12.3 Subprogram logic flow.

The mainline program calls the subprogram. Any values com
puted in the subprogramare than available for use by the calling
program.

Appendix VI lists the 12 built-in functions in TI BASIC. The
examples belowshow howthey can be used in programs.

Example 12.5: Generating random numbers (numbers with
equal chance ofoccurrence).

Write a program to compute and print 10 random numbers
between zero and one.

10 REM EXAMPLE 12.5

20 REM PROGRAM TO FIND 10 RANDOM NUMBERS
30 PRINT " RANDOM #'S "'
40 PRINT " ===== "

50 FORI = lTOl0

60 VALUE = RND

70 PRINT VALUE

80 NEXT I

90 END

RUN

Answer: RANDOM ^S

.5291877823

196 Get Personal with Your TI-99/4A

.3913360723

.5343438556

.3894551053

.2555008073

.5621974824

.2553391577

.5882911741

.7000201301

.0010849577

Note: All of these numbers fall within the range of less than 1 and
greater than or equal to zero.

Example 12.6: Absolute and Integer Values

Absolute values are values with no signs. All values are positive.
The absolute value of a positive number is the same positive
number. The absolute value of a negative number is the same
number, but stripped ofits sign. The absolute value of10 is 10. The
absolute value of -10 is 10. Another way to write this is /-10/ is 10
where / / stands for absolute value ofthe number inside the slash
marks. Integer values are numbers stripped of their decimal por
tions. In this example we find and print the absolute values and
integer values of five number: 10.1, -16.3, 11.51, 143.001 and
-16.51.

Solution:

10 REM EXAMPLE 12.6

20 REM PROGRAM TO FIND ABSOLUTE AND INTEGER

VALUES OF NUMBERS

30 PRINT "VALUE ";TAB(10); "ABSOLUTE ";TAB(20);
"INTEGER "

40 PRINT •' ==^:^^ "

50 FORI = lT05

60 READ A

70 B = ABS(B)
80 C = INT(A)

90 PRINT A;TAB(10);B;TAB(20);C
100 DATA 10.1, -16.3,11.51,143.001, -16.51
110 NEXT I

120 END

RUN

String Functions and Subprograms 197

Answer:

VALUE

10.1

-16.3

11.51

143.001

-16.51

Example 12.7: Rounding Values

In this exampleyou develop a program to find the cents equiv
alent of five random numbers. Remember the range for random
numbers?Roundthese valueswhere necessary.For example:

if random value = 0.4611348, cents = 0.46
ifrandom value = 0.9350005, cents = 0.94

Solution:

10 REM EXAMPLE 13.7

20 REM ROUNDING PROGRAM
30 PRINT "RANDOM#CENTS"
40 PRINT "==

50 FORK = lT05

60 A = RND

70 CENTS = INT((A+0.005)*100)/100
80 PRINT A,CENTS
90 NEXTK

ABSOLUTE INTEGER

10.1 10

16.3 -17

11.51 11

143.001 143

16.51 -17

100 END

RUN

Answer:

RANDOM # CENTS

.5291877823 .53

.3913360723 .39

.5343438556 .53

.3894551053 .39

.2555008073 .26

Example 12.8:Trigonometry Functions

Anglescan be measuredbya number oftrigonometric functions.
TI BASIC has many ofthese functions included in its language.
Theyincludesine,cosine, tangent, etc.Writea programto findthe
sineandcosine of0degrees, 30degrees, 60degrees, and90degrees.

198 Get Personal with Your TI-99/4A

Remember, the argument for SIN and COS must be in radians. To
convert degrees to radians, multiply degrees by pi/180 where
pi = 3.14159 or 22/7. Note in the example that both these values for
pi are used.
Solution:

10 REM EXAMPLE 12.8

20 REM PROGRAM TO FIND THE

30 REM SINE AND COSINE OF

40 REM 0,30,60, AND 90 DEGREES
50 PRINT "DEGREES ";TAB(10); "SINE ";TAB(20); "COSINE "
60 PRINT " = "

70 FORI = lT04

80 READ DEGREES

90 DATA 0,30,60,90
100 SVALUE = SIN(DEGREES*(22/7/180))
110 SAVLUE = INT(SVALUE*1000+0.5)*0.001
120 CVALUE = COS(DEGREES*3.14159)/180)
130 CVALUE = INT(CVALUE * 1000+0.5)* 0.001
140 PRINT DEGREES;TAB(10);SVALUE;TAB(20);CVALUE
150 NEXT I

160 END

RUN

Answer:

DEGREES SINE COSINE

0 0 1

30 .5 .866

60 .866 .5

90 1 0

Think of other applications for these functions. Think of ways
they can be put together. How many functions can you put in one
statement and still determine the output? Try it. Now let's move on
to subroutines.

Subroutines

Subroutines can return one or more values to the calling pro
gram. Any value computed and assigned to a variable in a
subroutine is available to the calling program after the value has
been computed. One subroutine may even call another subroutine.
Key statements in subroutines are the GOSUB statement, the

String Functions and Subprograms 199

RETURN statement, the STOP statement and the END state
ment. The following figure shows how control and execution are
passed from the calling program to the subprogram and back
again.

In Figure 12.4, the GOSUB statement in line 150 passes execu
tion to line 400, the first statement in the subroutine. Sequential
execution continues in the subroutine until the RETURN state
ment in line 500 is encountered. Control then passes back to the
next statement beyond the GOSUB in the calling program, in this
case line 160. Sequential execution continues in the calling pro
gram until statement 200, the STOP statement, is encountered.
This terminates execution of the entire program. Note the END
statement in line 510 of the subroutine. This is the highest line
number in the program and it must contain the final record in the
program file-the ENDstatement.

Calling Program

100 REM MAINLINE

PROGRAM -
HO

120

130

140

150 GOSUB 400

160 REM CONTROL

RETURNS HERE-

170

180

190

200 STOP

Subroutines

400 REM SUBROUTINE

—•PROGRAM

410

420

430

440

1_J 450

60 -

470

480

490

500 RETURN

510 END

Figure 12.4 Subroutine format and program control.

Now look at some subroutine examples. Subroutines are very
useful in BASIC programming. If you find yourself repeating a
series of BASIC code more than once in a program, you should be
using a subroutine and a calling program configuration.

Example 12.9: Payroll Computation

Write a mainline program to read in four employees' hourly
wage rate and hours worked this week. Print out the employee

200 Get Personal with Your TI-99/4A

number and gross pay. Use a subroutine to compute gross pay.
Solution:

10 REM EXAMPLE 12.9

20 REM PROGRAM TO COMPUTE EMPLOYEES PAY
30 PRINT "EMPLOYEE ";TAB(10); " HOURS "; " GROSS PAY
40 FOR EMPLOYEE = 1 TO 4

50 READRATE,HOURSWORKED
60 GOSUB 110

70 PRINT EMPLOYEE;TAB(12);HOURSWORKED; TAB(20);
GROSS

80 NEXT EMPLOYEE

90 DATA 8,40,7,36,10,40,6.50,35.5
100 STOP

110 REM GROSS PAY SUBROUTINE

120 GROSS=RATE* HOURSWORKED
130 RETURN

140 END

RUN

Answer:

EMPLOYEE HOURS GROSS PAY

1 40 320

2 36 252

3 40 400

4 35.5 230.75
Note:

1. The STOP statement halts mainline program execution.
Otherwise the mainline program would run into the subroutine.
There may be more than one STOP statement in a program.

2. The END statement is always physically the last statement
in a program (as determined by its line number). The END state
ment terminates the program listing. There is always only one
END statement in a program.

Example 12.10: Sorting

Sorting is a major activity ofcomputer programs. Often you may
need an alphabetical listing of people or cities or products. Or you
need to sort part numbers, dates, or purchase amounts in ascend
ing or descending order. BASIC programs can do this for you.

Write a calling program to read the weights of six people into an
array called WEIGHT. Then call a subroutine to find the heaviest
weight in the group. Finally, have the calling program print the
weight of the heaviest person.

String Functions and Subprograms 201

Solution:

10 REM EXAMPLE 12.10

20 REM PROGRAM TO FIND LARGEST NUMBER IN AN AR
RAY

30 DIMWEIGHT(6)

40 HEAVIEST = 0
50 PRINT "BEGINNINGWEIGHTS"
60 F0RI = 1T06

70 READWEIGHTOO
80 PRINT TAB(6);WEIGHT(D
90 NEXT I

100 DATA 165,145,315,185,210,261
110 GOSUB 150

120 PRINT

130 PRINT "LARGESTWEIGHT = ";HEAVIEST
140 STOP

150 REM SUBROUTINE TO FIND LARGEST NUMBER IN AN

ARRAY

160 FORI = lT0 6
170 IFHEAVIEST>WEIGHT(DTHEN190
180 HEAVIEST = WEIGHT(D
190 NEXT I

200 RETURN

210 END

RUN

Answer:

BEGINNING WEIGHTS

165

145

315

185

210

216

LARGEST WEIGHT = 315

Example 12.11: More Sorting

Write a program to sort the six weights in Example 12.10 above
into ascending order (small to large). Use a subroutine to sort and a
mainline routine to input the data and output the results.
Solution:

10 REMEXAMPLE12.il

202 Get Personal with Your TI-99/4A

20 REM PROGRAM TO SORT ARRAY DATA FROM SMALL
TOLARGE

30 DIMWEIGHT(6)
40 FOR INDEX = 1 TO 6
50 READWEIGHTONDEX)
60 NEXT INDEX

70 DATA 165,145,315,185,210,261
80 GOSUB 150

90 PRINT "RANK ", "WEIGHT "
100 PRINT "==", "=="
110 FOR INDEX = 1 TO 6

120 PRINT INDEX,WEIGHT(INDEX)
130 NEXT INDEX

140 STOP

150 REM SORT ROUTINE

160 FORl = lT06

170 FORJ = lT0 6

180 IFWEIGHT(D<=WEIGHT(J)THEN220
190 TEMP = WEIGHT(J)
200 WEIGHT(D = WEIGHT(J)
210 WEIGHT(J) = TEMP
220 NEXT J

230 NEXT I

240 RETURN

250 END

RUN

Answer:

RANK WEIGHT

1 145

2 165

3 185

4 210

5 261

6 315

Note: Look closely at the activity in this subroutine to under
stand sorting. Follow the subscript values (set from the indexes in
the two nested loops) and array values as the program executes.
The following table might be helpful.

String Functions and Subprograms 203

Since WEIGHIXJ) is less than WEIGHT(I) you must switch the
values of these two. This is explained below:

IsWEIGHTd)
Step# I Value J Value WEIGHT© WEIGHIXJ) <=WEIGHT(J)?

1 1 1 165 165 YES

2 1 2 165 145 NO

Figure 12.5 shows that when a new, smaller weight is found, the
two elements in the array must change places. Statement 190 in
the subroutine temporarily stores its contents in TEMP. In the
second step, statement 200 shifts its contents into the first position
of the array WEIGHT. Remember, this is a smaller number than
what was previously stored there, and your objective is to sort
small to large. Now statement 210 shifts the contents of TEMP
back into the second position of the array WEIGHT.

Before

WEIGHT

1 1 165 1

TEMP

1 165 1

1st, #190

1 2nd #200

3rd #210

After

WEIGHT

- 1 145 1

2 1 145 1 1 165 1

3 1 315 1 1 315 1

4 1 185 1 1 185 1

5 1 210 1 1 210 1

6 1 261 1 1 261 1

Figure 12.5 The switch routine when sorting.

204 Get Personal with Your TI-99/4A

With this shift complete, the process continues. Now
WEIGHT(l), the new, smallest weight will be compared to
WEIGHT(3) through WEIGHT(6) to see if any of these are smaller
than WEIGHT(1). If any one is, the switch routine will be imple
mented again and a new smallest weight will be placed in
WEIGHT(1). Eventually the smallest value in the array will bub
ble-up to the first location and remain there. When I changes to 2
(in statement 160), the sort will begin to sort for the second small
est number. Eventually that value will bubble-up to WEIGHTX2).
The process continues until all values are arranged from small to
large.

Question: How would you change this program to sort from large
to small?

Answer: Change statement 180 to read:

180 IFWEIGHT(I)>=WEIGHT(J)THEN220

A careful review of Example 12.11 will add greatly to your
understanding of sorting.

Example 12.12: Alphabetical Sorts

Remember that letters are sorted using ASCII codes for each
character. A has a lower code than B. Strings are stored as long
numeric values. Thus you can ask if STRING1$ > STRING2$ and
get an answer. Look at this example ofan alphabetical sort routine
for names.

Write a calling program to read four names, print them out
unordered (last name, first name). Then call a subroutine to sort
those names alphabetically. Finally, have the mainline routine
print the sorted names.
Solution:

10 REM EXAMPLE 12.12

20 REM ALPHABETIC SORT ROUTINE
30 PRINT "NAME BEFORE SORTING"
40 PRINT " ^ "

50 DIMNAMES$(4)
60 DATA "PHONES,BILL","MARSH,HENRY","MARS,

JIM"

70 DATA "WINSLOW,MARSHA"
80 FORIl = lT04

90 READNAMES$(I1)
100 PRINT NAMES$(ID
110 NEXT II

String Functionsand Subprograms 205

120 GOSUB 200

130 PRINT

140 PRINT "NAMES AFTER SORTING"
150 PRINT " .^r^= "

160 F0RK = 1T04

170 PRINT NAMES$(K)
180 NEXTK

190 STOP

200 REM ALPHA SORT ROUTINE

210 FORI = lT04

220 FORJ=IT0 4
230 IFNAMES$(D<=NAMES$(J)THEN270
240 TEMP$ = NAMES$(D
250 NAME$(D = NAMES$(J)
260 NAMES$(J) = TEMP$
270 NEXT J

280 NEXT I

290 RETURN

300 END

RUN

Answer:

NAMES BEFORE SORTING

PHONES, BILL
MARSH, HENRY
MARS, JIM
WINSLOW, MARSHA

NAMES AFTER SORTING

MARS, JIM
MARSH, HENRY
PHONES, BILL
WINSLOW, MARSHA

SUMMARY

Subprograms can be called by a mainline program and return
values to the calling program. Two types of subprograms are
functions and subroutines. Functions return a single value to the
calling program. TI BASIC comes with a number of built-in func
tions, some processing string data and others used for numeric
values. Parameters or arguments, contained in parentheses just

206 Get Personal with Your TI-99/4A

after the function's name, describe whatthe function should pro
cess. The functions supplied by Texas Instruments in their BASIC
language perform a number of tasks that are often needed when
programming.

If a function is not available to doyour task, subroutines are the
answer. They are written by the programmer to doa specific task.
A subroutine may return a number ofvalues to the calling pro
gram and may be called as many times as needed, often being
supplied with new data to analyze at each call. GOSUB and
RETURN statements control the program flow in and out of a
subroutine. Ifyoufindyourselfrepeating similar segmentsofcode
in your program, you should probably be using a function or
subroutine programming format.

CONCLUSION

With the purchaseofa home computer and this book, youhave
taken the first step towardlifein the 21st century. Youare aware
of what personal computers can do and in what areas. You have
learned how to communicate with computers using BASIC pro
gramming, the most popular computer language today. Youhave
used the mostpopular homecomputeronthe market, the TI-99/4A.
You have read aboutTexas Instrumentsand its technology. You
have taken a giant leap towardcomputer literacy. Youare aware
of the impact computers might have on life in the future. Your
home computer may well become your communications link with
society's networks.

Not all computer applications are beneficial or even cost effec
tive. The computer is only a tool for human decision-makers.
Computer power is real. Capturing and directing this power is a
function of the user. It can be used for freedom or control. The
ultimate limitationis the imagination, character, andingenuityof
the user. You have the opportunity and the responsibility to be
come as effectiveas possiblein the applicationofthis technologyin
your lifeand work.Continueto read and keepinformedin the area.
Search out opportunities for advancement. As the old scout motto
says,"Beprepared."Getreadyforlifein the next century.Youcan
be certain of only one thing-it will be different!

Good luckand Godspeed onyourjourney intothe computer age!

Appendix I

Reserved Words in TI
BASIC

There are some reserved, or keywords, in TI BASIC that you
may not use as variable names in your computer programs. Some
of these are used as function names, some are system commands,
and some are keywords in BASIC instructions. To use these names
as variables in your program will cause errors. A list ofTI BASIC
reserved words is given below.

ABS

APPEND

ASC

ATN

BASE

BREAK

BYE

CALL

CHR$
CLOSE

CON

CONTINUE

COS

DATA

DEF

DELETE

DIM

DISPLAY

EDIT

ELSE

END

EOF

EXP

FIXED

FOR

GO

GOSUB

GOTO

IF

INPUT

INT

INTERNAL

LEN

LET

LIST

LOG

NEW

NEXT

NUM

NUMBER

OLD

ON

OPEN

OPTION

208 Get Personal with Your TI-99/4A

OUTPUT SEQUENTIAL
PERMANENT SGN
POS SIN
PRINT SQR
RANDOMIZE STEP
READ STOP
REC STR$
RELATIVE SUB
REM TAB
RES THEN
RESEQUENCE TO
RESTORE TRACE
RETURN UNBREAK
RND UNTRACE
RUN UPDATE
SAVE VAL
SEG$ VARIABLE

Appendix II

ASCII Character Codes

All characters that print to the screen-letters, numbers, and
symbols are assigned a character code. The standard characters
are representedby character codes ranging from32through 127.A
list of the characters and their codes is given bleow. Capital letters
are represented by the codes 65 through 90. Small letters are
representedby the codes97through 122.These character codesare
used with the graphics and string commands.

ASCII Code Character

32 [blank] (space)
33 ! (exclamation point)
34 " (quote)
35 # (number or pound sign)
36 $ (dollar)
37 % (percent)
38 & (ampersand)
39 ' (apostrophe)
40 ((open parenthesis)
41) (close parenthesis)
42 * (asterisk)

43 + (plus)
44 , (comma)
45 - (minus)
46 . (period)
47 /(slant)

48 0

49 1

50 2

210 GetPersonal with YourTI-99/4A

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58

59

60

61

62

63

64

65

: (colon)
; (semicolon)
< (less than)
=(equals)
> (greater than)
? (question mark)
@ (at sign)
A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 0

80 P

81

82
Q
R

83 S
84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

91 [(open bracket)

ASCII Character Codes 211

92 Mreverse slant)
93] (close bracket)
94 A(exponent)
95 (underscore)
96 v (grave)
97 a

98 b

99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 J
107 k

108 1

109 m

110 n

111 0

112 P

113 q

114 r

115 s

116 t

117 u

118 V

119 w

120 X

121 y

122 z

123 {(left brace)
124 | (vertical line)
125) (right brace)
126 ~ (tilde)

127 DEL(appears on screen as a blank)

212 GetPersonal withYour TT-99/4A

Appendix III

Color Codes and Set
Numbers

The following two tables showthe colorcodesand set numbers
that are used with the color-graphics commands. The codes are
contained here for reference. A complete description of their use is
contained in Chapter 10, "An Introduction to Sound and Color-
Graphics".

The character codes shown in Appendix II are grouped into 12
sets for use by color-graphics programs. The sets and their codes
are shown below.

Set Numbers

Character Character Character

Set # Codes Set# Codes Set# Codes

1 32-39 5 64-71 9 96-103

2 40-47 6 72-79 10 104-111

3 48-55 7 80-87 11 112-119

4 56-63 8 88-95 12 120-127

Two additional characters are preset on the TI-99/4A. The cursor
is assignedASCII code 30andthe edgecharacter is assignedASCII
code 31.

Color Codes

Color Code# Color Code#
Transparent 1 Light Blue 6
Black 2 Dark Red 7
Medium Green 3 Cyan 8
Light Green 4 Medium Red 9
Dark Blue 5 Light Red 10

2*4 Color Codes andSetNumbers

DarkYellow 11 Magenta 14
LightYellow 12 Gray 15
Dark Green 13 White 16

Appendix IV

Musical

Note Frequencies

Frequency Note Frequency Note

110 A 440 A (above middle C)
117 A*.Bb 466 A*.B>
123 B 494 B

131 C(IowC) 523 C(highC)
139 C*.D> 554 C*.D>
147 D 587 D

156 D*.Eb 622 D*.E>
165 E 659 E

175 F 698 F

185 F*.G* 740 F*.G»
196 G . 784 G

208 G*.A> 831 G*.A>
220 A (below middle C) 880 A (above high C)
233 A*.B> 932 A*.B*
247 B 988 B

262 C (middle C) 1047 C

277 C*.D* 1109 C*,D*
294 D 1175 D

311 D*.E> 1245 D'.E*
330 E 1319 E

349 F 1397 F

370 F*.G> 1480 F*.G*
392 G 1568

G*V415 G*.A> 1661

1760 A

This Appendix shows the frequencies of four octaves of musical
notes including sharps (#) and flats (b). Remember, the frequen
cies go well above 1760Hz. Use values from this Appendix with
the CALL SOUND command.

216 Get Personal with Your TT-99/4A

Appendix V

TI Error Messages

Error messages or diagnostics occur when the computer encoun
ters something in your program it cannot do. This error message
will help you identify the type of error where it has occurred.
Expect to make mistakes and try to learn something from each
error. Every programmer makes mistakes. View each error as a
mental challenge or treasure hunt. Search, find, and remove the
elusive bug!

THREE TYPES OF ERRORS

The TI-99/4A checks for errors at three different times while it
processes your program. The first check occurs as you enter each
line of code from the keyboard. Ifthe statement does not conform to
the rules of BASIC, the computer beeps and prints an error mes
sage on the screen. This is called an entry error or Type I error or
syntax error.

When all the statements in the program are entered correctly,
but before running the program, the computer assigns space for
the variables, checks to see if branching statements connect, if
arrays are dimensioned, etc. It does this through a symbol table.
Now the computer may find errors that were not obvious when
individual lines were entered. Here, the computer prints an error
message and the line number containing that error. A FOR state
ment without a matching NEXT would be caught in the symbol
table. Type II errors are printed while the screen is still blue. Once
all Type II errors are corrected, the program RUN begins, and the
screen turns to light green on a color TV. Any errors printed on the
light green screen are Type III errors and occur during the actual
running of your program. To advance this far, your program must
be free ofType I and Type II errors.

218 Get Personal with Your TI-99/4A

If the program passes the symbol table check and begins
RUNing, it may encounter an execution error. Here you have
asked the computer to do something it cannot do. Division by zero
or not enough space in a dimensioned variable are two examples.
An error message and statement number are printed after the
RUN command.

Below are listed the common error messages for each type of
error.

TYPE IERRORSORENTRY ERRORS

Bad line Number. Line numbers must be greater than zero
and less than 32768. Also, if the RESEQUENCE command gener
ates a value greater than 32767, this error occurs.

Remedy:Retype line numbers within acceptable limits.

Bad Name. Variable name exceeds 15 characters.
Remedy:Retype line numbers within acceptable limits.

Cant Do That. This message is caused by a number of different
errors. Key BASIC statements such as FOR, NEXT, RETURN
entered without line numbers generate this error. Or if you use
system commands such as RUN, LIST, NEW, OLD, SAVE with
line numbers, the error message is CAN'T DO THAT.

Remedy: Check your line numbers. Make sure they are used only
with BASIC instructions.

Incorrect Statement. Common causes of this error include:
unmatched quotation marks around literal output messages; no
valid separator (colon, comma, quote mark) between variable
names in a READ, INPUT or PRINT statement; invalid print
separator between numbers in system commands (LIST,
NUMBER, RESEQUENCE or RUN).

Remedy: Check punctuation in input/output statements. Check
punctuation in system commands.

Line Too Long. More than three lines of code entered in one
statement. This exceeds the size of the input buffer.

Remedy: Break large statements into smaller ones.

Memory Full. The last line you entered causes the program to
exceed the available core storage.

Remedy: Rework your program to reduce or streamline the lines
ofcode.

TI Error Messages 219

TYPE IIERRORSOR SYMBOLTABLE ERRORS

These errors occur immediately after the RUN statement is
entered, but before execution begins. The screen color is still blue.

Bad Value. Dimensions for an array exceed 32769 (machine
capacity), or an array dimension may be assigned zero when the
OPTION BASE = 1 command is in effect.

Remedy: Check array dimension sizes. Check the status or condi
tion ofthe OPTION BASE command.

Cant Do That. There is more than one OPTION BASE com
mand in your program or the OPTION BASE statement occurs
after (higher line number) the DIM statement.

Remedy: Check the status and locations of the OPTION BASE
commands.

For-Next Error. There are unmatched FOR-NEXT state
ments (one is occurring without another) in your program. Also,
you cannot branch into a FOR-NEXT loop unless you start at the
front door-at the FOR statement in the loop.

Remedy: Check for balanced FOR-NEXT loops. Also, check all
branches to FOR-NEXT loops.

Incorrect Statement. A DIM statement in your program has
more than three dimensions or no dimensions or a variable is used
in a DIM subscript. Also, OPTION BASE command may not be
formed correctly-no zero or one argument or a missing key word.

Remedy: Check all DIM statement values. Look at the argu
ment values in OPTION BASE commands.

Memory Full. Array size exceeds the available core memory or
your program and data exceed space available.

Remedy: Review and reduce dimensioned array space. Stream
line program code.

Name Conflict. Two arrays have the same name or an array has
the same name as a single-valued variable.

Remedy: Check names of all arrays. Resolve duplicate names.

TYPE III OR PROGRAM EXECUTION ERRORS

This error halts execution of the program. As part of the error
message, the number of the line causing the error will be printed.
This helps pinpoint the problem. The screen color is green.

220 Get Personal with Your TI-99/4A

Bad Argument. A built-in function has a bad argument (value
inside parentheses). Remember that VAL and ASC arguments
must be defined.

Remedy: Check to see if arguments for VAL and ASC are
defined and that VAL arguments are strings.

Bad Line Number. This means you are trying to branch to a
line that does not exist.

Remedy: Check your branching statement to see if the branch
line number exists.

Bad Name. Subprogram name in a CALL statement is invalid.
Remedy:Check spelling on subprogram name. Retype.

Bad Subscript. Subscript value exceeds array size specified in
DIM statement or subscript value is zero when OPTION BASE 1
was specified.

Remedy: Check subscript computation and size of array argu
ments against its dimensioned size.

Bad Value. This occurs when some value in the statement
exceeds its acceptable limit. Screen and color statements cannot
exceed 16 color choices. The sound command is confined to loud
ness and frequency limits. CHAR statement arguments must be
valid ASCII codes. If a STEP is in the FOR statement, the STEP
must be defined and not zero.

Remedy:Check limit values for all arguments in the error state
ment. If the arguments are computed, check their formulas. The
computer can't work outside its specified limits for each type of
statement.

Cant Do That. This is caused by an unmatched pair of state
ments such as a RETURN with no GOSUB or a NEXT without a
FOR. The looping or branching operation cannot be performed.

Remedy: Check for a companion, matching statement for the
flagged error statement. Add or modify statements to make this
match.

Data Error. Here, you have run out of data in DATA state
ments before the READ statement was completed.

Remedy: Compare the number of pieces of data in the DATA
statement against the number of variables in the READ state
ment. Look for missing commas in the DATA statement list. Be
especially careful of dimensioned variables. Do they have the right
number ofpieces ofdata?

TI Error Messages 221

File Error. This occurs when you try to close a file that was not
opened or reopen a previously opened file. Improper reading from
or writing to a file will also cause this error.

Remedy:Check the status and condition of the file referenced in
the error statement. Modify open or closed status.

Incorrect Statement. This common error is caused by an im
proper use of BASIC. The computer has encountered an instruc
tion it cannot process. Some common causes are: missing or
unmatched parentheses; missing comma; expression or arithmetic
operation using +,-,*,/ improperly formed; missing key word;
string expression assigned to a numeric value, or the reverse, or
missing punctuation.

Remedy: Review the BASIC format of the statement. You have
either too much in the statement or have left something out.

Input Error. Data entered from the keyboard is either too long,
or alphabetic data is entered when a numeric value is expected. It
can also occur when more data is entered (separated by commas)
than is expected.

Remedy: Prepare a screen message for the user to guide and
explain the data entry format required, such as:

200 PRINT "SEPARATE DATA WITH COMMAS"

The I/O error generates a two-digit code that helps explain the
error. For example, I/O ERROR 66 IN 300, means error 66 occurred

I/O Error. This is caused by a problem with a peripheral device,
typically a cassette recorder.The messagemay occurwhen youtry
to save or retrieve a program from the recorder. Either the pro
gram does not exist, the file name is incorrect, the recorder is not
on or is disconnected, or you have an illegal input/output com
mand.

Table A.1 I/O Error Codes

First "X" Second "Y"

Number Operation Number Error

0 OPEN 0 Invalid device or file name

1 CLOSE 1 Write Protect in effect

2 INPUT 2 Bad open attribute
3 PRINT 3 Illegal operation
4 RESTORE 4 Insufficient space on storage

medium

222 Get Personal with Your TI-99/4A

5 OLD 5 File past end
6 SAVE 6 Peripheral device not insatalled,

defective or not activated

7 DELETE 7 File does not exist

in line 300. The 66 actually consists of two values, XY, where X
represents the I/O operation that caused the error and Y repre
sents the kind of error that occurred. The range of X and Y is 0
through 7. The following table lists the possible values and mean
ings of X and Y in the I/O ERROR message.

Remedy. Check condition of cassette recorder. Is it on; cable
connected correctly; cassette tape mounted? Is the cassette re
corder compatible with the TI-99/4A?Is the device correctly spec
ified in the DELETE, SAVE, or OLD command? Make the
necessary corrections.

Memory Full. Program contains too many subroutine branches
with no RETURN command or a GOSUB statement branches to
its own line number for example:

450 GOSUB 450

Also a relational, string, or numeric expression may be too long.
Remedy: Check for matching GOSUB and RETURN com

mands. Check all GOSUB statements. Divide large expressions
into two separate statements and then combine.

Number Too Big. (Warning only-the computer substitutes the
largest or smallest value possible on the TI-99/4A and continues
execution. Obviously, this is not the proper solution to your prob
lem.)

A numeric operation has produced a result that the computer
cannot store. This is called overflow. It is often caused by dividing a
number by zero.

Remedy: Check the values of each variable in the expression. Is
each defined? Is it typed correctly?

String-Number Mismatch. This is caused by attempting to
assign a number to a string variable or a string to a numeric
variable. It may also occur when a string variable is used in a
numeric function like TAB(A$) or LOG(B$). Finally, using a
string for a file number in an OPEN or CLOSE statement will
generate this error.

Remedy: Check for compatability of variable and its value or a
function and its argument in the error statement. Correct as neces
sary.

Appendix VI

Built-in Numeric
Functions

Section A of this appendix is a summary of the 12 functions,
including their name and format. This may be enough information
for some users. Section B gives more detail about each function.
Use whichever section helps you the most.

SECTION A

Summary of the Built-in Functions

Name

1. ABS-Absolute Value

2. ATN-Arctangent
3. COS-Cosine

4. EXP-Exponential
5. INT-Integer
6. LOG-Natural Logarithm
7. RANDOMIZE Statement

8. RND-Random Number

9. SGN-Sign Function
10. SIN-Sine

11. SQR-SquareRoot
12. TAN-Tangent

Format

ABS(numeric expression)
ATN(numeric expression)
COS(numeric expression)
EXP(numeric expression)
INT(numeric expression)
LOGKnumeric expression)
RANDOMIZE[seed]
RND

SGN(numeric expression)
SIN(numeric expression)
SQR(numeric expression)
TAN(numeric expression)

224

SECTION B

Detailed Review of Built-in Functions

TI BASIC

Numeric

Function

1. ABS(numeric
expression)
Absolute value

function

2. ATN(numeric
expression)
Arctangent
function

3. COS(numeric
expression)
Cosine function

4. EXP(numeric
expression)
Exponential
function

5. INT(numeric
expression)
Integer function

Description

Returns absolute

value of the

argument.

Returns the

arctangent of the
argument. Result is
in radians.

Returns the cosine of

the argument when
the argument is
expressed as an
angle in radians. To
convert an angle to
radians, multiply
the angle by pi/180
where pi = 22/7.

Returns the value of

A(x) where x is the
argument and
e = 2.71828.

Returns the largest
integer (whole
number, no decimal
part) that is not
greater than the
numeric expression.
For positive values,
the decimal is

dropped. For
negative arguments,
the next smallest

integer is used.

Get Personal with Your TI-99/4A

Example

ABS(-21)is21
ABS(4+10)isl4

ATN(0.44) is 0.4145

COS(1.047)is0.5

EXPO) is 8103.08

INT(-4.64)is-5
INT(3.1619)is3
INT(4.991)is4

Built-in Numeric Functions

6. LOG(numeric
expression)
Natural

logarithm
function

7. RANDOMIZE

[seed]
Randomize

statement

8. RND

Returns the natural

log of the argument.
The argument must
be greater than zero.
The natural log of X
islog(basee)ofX.

This optional
statement is used in

combination with

the RND function.

Without

RANDOMIZE, the
random numbers

generated by RND
will always be the
same series. When

RANDOMIZE is

used, without a seed,
each call of RND

generates a different
set of random

numbers. The

optional seed value
defines the starting
position for the
random number

table. If two

RANDOMIZE seed

values are the same,
the random values

will be the same.

Returns a pseudo
random number

between

0<=RN<l.The

sequence of random
numbers for each

program run will be
the same unless

RANDOMIZE is

used.

225

LOG(3.5) is 1.2528
LOG(-l)is "BAD
ARGUMENT "

RANDOMIZE

gives a new set of
random numbers

each time.

RANDOMIZE 14

gives the same set of
random numbers for

each program run.

A = INT(10*RND)
+ lis6

226

9. SGN(numeric
expression)
Sign function

10. SIN(numeric
expression)
Sine function

11. SQR(numeric
expression)
Square root
function

12. TAN(numeric
expression)
Tangent function

Get Personal with Your TI-99/4A

Returns the

algebraic sign of the
argument. If the
numeric expression
is:

<0,thenSGN=-l
= 0,thenSGN = 0
>0,thenSGN = l

Returns the sine

value of the

argument when the
angle is expressed in
radians. Ifthe angle
is in degrees,
multiply the degrees
by pi/180 where
pi = 22/7, to get the
angle in radians.

Returns the square
root of the positive
argument. If the
argument is
negative, "BAD
ARGUMENT " error

message occurs on

the screen and the

program halts.

Returns the tangent
of the argument
when the argument
is expressed in
radians. To change
angle in degrees to
radians, multiply by
pi/180 where
pi = 22/7.

SGN(-ll)is-l
SGN(0)isO
SGN(413)isl

SIN(30* 22/7/180) is
0.5

SIN(0.523598776)is
approximately 0.5

SQR(81)is9
SQR(-6)is "BAD
ARGUMENT"

TAN(0.7854)is
approximately 1
TAN((22/7)/180*45)
isl

Index

99'ER Home Computer
Magazine 23
107

= 107

107

absolute values 196

access time 7

accessories 12

algorithm 39
alphabetic processing 183
applications 19
arcade games 20
argument 71
arrays 129, 142
ASC 189
ASCH 184

ASCII character codes 208
ASSIGNMENT 40

Bad Argument 71, 220
Bad line Number 218, 220
Bad Name 218, 220
Bad Subscript 220
Bad Value 219, 220
BASIC 8,12, 25, 32, 35, 39,

85,199
BASIC command 61

BASIC statement 61

batch processing 6

Beginner's BASIC 22
built-in numeric functions 223
BYE 34, 35, 62
CALL CLEAR 55, 62,158
CALL COLOR 159

CALL HCHAR 160

CALL SCREEN 158
CALL SOUND 152

CALL VCHAR 164

Can't Do That 218, 219, 220
canned software7

cassette recorder 12

cassettes 17

character string function 185
♦CHECK TAPE (Y or N)? 179
♦CHECKING179
CHR 185, 189
circuit box 13

colon 76
color codes 213

color-graphics 151
comma 76

command module 17, 29, 35
computations 67
computer 7
Computer Advntage Club 23
computer applications 4
CONDITION 41

228

conditional branch 106
configuring 12
connecting cables 12
console 12

CONSTRUCT 48
control variable 131,142
COS 198

Creative Computing 22
current memory 28
cursor 54

cyberphilia 1
cyberphobia 1
cycle time 7
data 34

Data Error 220

data files 177

♦DATA OK PRESS CAS
SETTE STOP CSI THEN

PRESS ENTER 179
data processing 183
DATA statement 91

deleting characters 58
DIM 133

dimension statements 133

disk controller card 12

disk drive 12

diskette 12,17, 30
diskette storage 12
** DONE ♦♦ 33, 36
earphone jack 177
EDIT 59, 62, 84
EDIT command 59
editing 57, 59
education 19

electronic society 9
END 115,199
endlessloop 114
entryerrors 217, 218
erasing 58
error messages 33, 217
execute 34

execution errors 51, 218

Get Personal with Your TI-99/4A

FCTN57

FCTN 1 58, 60, 62
FCTN 2 58, 60, 62
FCTN 3 60, 62
FCTN D 60, 62
FCTN E 59, 60, 62
FCTN S 58, 60, 62
FCTN X 59, 60, 62
FCTN/4 33, 36
File Error 221

files 30, 35
FOR-NEXT 25, 117,131,
142,158
For-Next Error 219

functions 194, 205
GO TO 41,106
GOSUB 198, 206
graphics 12
hardware 12

home entertainment 19
home/financial management 19
How toMake Money With Your

Microcomputer 24
I/O Error 221

IF-THEN 41,106
Incorrect Statement 218,219,

220

Input Error 221
INPUT statement 93

INPUT values 93

INPUTS 41

inserting 56, 58
INT 71

integer function 71
integer values 196
Interface Age 22
interface cable 177

INERATION 41

K8, 35
keyboard 12
LEN185,189
LET 25, 83, 84

Index

Line Too Long 218
LIST 55, 59, 62, 84
literal 53

loading 30,180
logic errors 51
logicalline 60
logical operators 108
loop 114
loop structures 114
machine language 31
magazines 22
magnetic memory 30
magnetic storage 30, 35,177
magnetic tape 30
mail order 21

memory 8, 28
memory expanders 13
Memory Full 218, 219, 222
memory space 86
microphone jack 177
miracle chip 3
Multiplan 17
Munchman 17, 151
musical note frequencies 215
Name Conflict 219

nanosecond 7

nestedloops 117
NEW 34, 35, 62
null string 87
NUM 61, 62
number 61

Number Too Big 222
numeric expression 71
numeric functions 70,194
numeric variables 85

OLD 180

on-line application 6
one-dimensional arrays 130
operating level 32, 35
output statement 53
OUTPUTS 42

P-box 13

229

parentheses 69
Parsec 17,151
PC Magazine 22
PC World 22

peripheral expansion system 12
Personal Computing 22
Personal Record Keeping 17
POS 186, 190
position function 186
prepackaged software 16
♦PRESSCASSETTE PLAY

CSI THEN PRESS ENTER

179

♦PRESSCASSETTE RECORD

CSI THEN PRESS ENTER

178

♦PRESSCASSETTE STOP

CSI THEN PRESS ENTER

178

primary corememory 8
PRINT 53, 74, 84, 88
print separators 75
print zone 76
printer 12
process 41
program 27, 31,34
program branching 106
program execution errors 217,

219

program files 177
programming errors 51
programminglanguages 31,39
query application 6
Random Access Memory (RAM)

11, 12, 28, 35
random number function 73

random number seed 74

RANDOMIZE 74

READ 25

♦READING180

Read Only Memory (ROM) 12,
28,35

230

READ statement 91

♦RECORDING178
Reference Card 22
relational operators 107
REM statements 105
remote jack 177
RES 61, 62
resequence 61
reserved words 84, 86, 207
RESTORE 91

retail stores 20

RETURN 199, 206
retyping characters 58
♦REWINDCASSETTE TAPE

CSI THEN PRESS ENTER
178

RF modulator 12

RND 73

ROM memory 32
ROM software 29

rounding values 197
rules of priority 68
RUN 32, 35, 54, 62
SAVE 178

saving 178
scrolling 79
SEG 186,190
segment function 186
semicolon 76

semiconductor products 11
setnumbers 213

SIN 198
software 16, 29, 35
software formats 17

solid-state software 17
sorting 200
sound 151

sources of hardware and
software 20

SQR71
square root function 71
STOP 199

Get Personal with Your TI-99/4A

STR 187, 190
string 184
string functions 183,187,193
string variables 87
String-Number Mismatch

222

strings 87
structure 22

subprograms 193, 205
subroutines 198, 205
subscript 130
symbol table errors 217, 219
syntax 22
TAB 77

TAB function 77

tape storage 12
technology 3
Texas Instruments 11

three-dimensional arrays 139
TIBASIC 29, 32,193
TIInvaders 17, 151
TI Writer 183

trigonometry functions 197
Tronics Sales Corporation 21
truncating 72
two-dimensional arrays 134
unconditional branch 106
User's Reference Guide 22
VAL 187,190
value function 187

variables 83

word processing 183
word size 8

	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	content09
	back-cover

