

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any partof this work beyond that permitted by Sec
tions 107 and 108 of the United States CopyrightAct without the permissionof the
copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-46-9 -l

10 98765432 1 ^
COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) ,_.
275-9809, is one of theABC Publishing Companies and isnotassociated with any I
manufacturer of personal computers. TI-99/4A is a trademark of Texas Instruments.

Contents
Foreword v

Chapter 1: Sound and Graphics 1
Graphics 3
Sound 4
Speech Synthesis 5
Putting the Pieces Together 5
What You'll Need 6

Chapter 2: Introduction to Graphics 7
TI Graphics 10
TI Screen Characteristics 10

Character Definition 14
Defining Your Own Characters 18
Using DISPLAY AT 24
Changing Patterns 24
Color 25
Bars and Lines 27

Diagonals 30
Character Concatenation 33
Special Effects 35
High-Resolution Graphics 40

Chapter 3: Sprites 49
The TMS9918A Video Display Processor 52
VDP RAM 54
Putting It on the Screen 54
Defining Sprites 56
CALL Sprite Subprogram Examples 59
Sprite Sizes 61
Deleting Sprites 66
Sprite Color 66
Controlling Sprites in BASIC Programs 69
Changing a Sprite's Location 69
Changing a Sprite's Motion 70
Controlling Sprites with Joysticks 71
Controlling Sprites from the Keyboard 72
Joystick and Keyboard Control 75
Changing Sprite Patterns 76
Combining Techniques 77
Sprite Editor 80

in

Chapter 4: Advanced Sprite-Handling Techniques .. 85
Finding a Sprite's Screen Position 87
Determining When Sprites Are Coincidental 93
Determining Sprite Distances 97
Factors Affecting POSITION, COINC, and DISTANCE . 102
Writing a Graphics Program 103
The Scenario 103
Defining the Graphics 104
Controlling the Action 108

Chapter 5: Sound 113
What Is Sound? 115
Making Sound on the TI 115
Turning Sound into Music 117
Basic Notation 117
Making Music on the TI 126
Sound Effects 143
Rocket in Motion 144
Morse Code 144
Computer 144
Sirens 145
Bomb and Explosion 145
Bells 146

Chapter 6: Speech Synthesis 147
Expanding the Resident Vocabulary 155
The Text-to-Speech Diskette 161

Chapter 7: Putting It All Together 173
Mimic 175
Shooting Gallery 179
Alphabet Invasion 184
Banzai Bunny 190
Zone Defender 195
Addition Climber 198
Slot Machine 205

Index 209

IV

Foreword
If you're like most TI computer users, you've probably

wondered how to use its sophisticated graphics and sound in
programs of your own. Now, at last, here's a book that shows
you exactly how.

COMPUTEI's Guide to TI-99/4A Sound and Graphics
explores your computer's sound and graphics capabilities and
puts them into words that every TI user can understand. From
simple graphics to complex speech synthesis, every aspect is
thoroughly covered with step-by-step explanations. Clear, con
cise examples show you how specific sound and graphics com
mands are used, and longer programs demonstrate how those
individual commands can be combined into exciting and
captivating programs.

As you use this guide, you'll discover a great deal about
how your TI works. You'll see how displays are produced on
the screen. You'll learn how graphics characters are created
and controlled. You'll explore sound effects, music, and even
speech synthesis.

To show how sound and graphics techniques can actually
be used, a number of full-scale programs have also been
included. These range from "Alphabet Invasion," which chal
lenges you to unscramble letters after they are beamed down
by an alien spaceship, to "Mouse Maze," a joystick-controlled
version of cat-and-mouse. "Addition Climber" combines sprite
graphics and speech synthesis to form a fascinating educa
tional game for young children, while "Zone Defender" is an
arcade-style action game that rivals the best for excitement
and appeal.

Whether you're an advanced programmer or a beginning
computer hobbyist, you'll find this an extremely helpful book.
With it—and your own creativity—you'll be ready to explore
the exciting world of TI sound and graphics.

FP

•jiwaji

3

Sound and Graphics

COMPUTB's Guide to TI-99/4A Sound and Graphics is
written for anyone who owns, or plans to own, the
Texas Instruments TI-99/4A home computer. It is an
extremely powerful machine, in spite of its small size,

and it offers a great many sophisticated features for both
beginning and advanced programmers.

But it takes more than features to make a great computer
system. The key to getting more from any home computer is
to understand how its features work and how you can use
them in your programs.

This book provides you with a step-by-step guide to using
three of the most exciting features that your TI has to offer:
graphics, sound, and speech synthesis. The engineers at Texas
Instruments went to great lengths to place them at your dis
posal, and there is no better way to enhance a program than
by using one or more of them in your programs.

This book is geared toward users of Extended BASIC.
Available as a plug-in command module which fits into the TI
console, Extended BASIC is much more powerful than the
standard BASIC that's built-in. There is some overlap between
the two versions of the language. But since Extended BASIC
has far greater capabilities, it is better suited to most of the
techniques and concepts in this book.

If you're new to programming, you'll find it fun to dis
cover the many things that your TI can do. But even if you're
an experienced programmer, you can expect a surprise or two
as you work with this guide.

Graphics
There are very few programs that would not benefit from the
addition of graphics. But in spite of the obvious benefits, many
programmers hesitate to include graphics in their programs.
They fear that the techniques involved are tricky and esoteric.

^ But programming graphics on the TI is not that complicated.
In fact, it can be a lot of fun.

f" Chapter 2 introduces you to the concepts and terminology
of graphics programming and to nonsprite graphics tech-

fm niques. In addition, it includes a short discussion of high-

fW5> o

Sound and Graphics

resolution graphics, providing the necessary foundation for
subsequent discussions of sprites.

Sprites are graphics characters which, once defined, can
be manipulated on the screen in a variety of ways. They offer
a great many advantages over nonsprite graphics. Chapters 3
and 4 explain how these unique graphics characters are
defined, displayed, and controlled.

These chapters are presented in a how-to fashion,
progressing from basic concepts and terminology to the use of
advanced techniques. Numerous miniprograms are included to
illustrate various programming techniques, and all of these
programs are fully explained.

Since learning is best accomplished by doing, you should
type in and try the miniprograms. You'll gain a much greater
understanding of how graphics techniques work if you can see
them in operation.

In addition to the miniprograms, every chapter includes at
least one much larger program. Each such program uses a
combination of the techniques discussed in the chapter and is
accompanied by a detailed explanation of how it works.

Once you have gone through all the graphics chapters,
you should be well on your way to using many of the tech
niques in original programs of your own. But remember that
the graphics section covers quite a bit of material. If you start
skipping around, you are likely to miss some critical point, so
it's a good idea to work through the chapters in order.

Sound

Another useful feature that your TI has to offer is sound
generation, which is thoroughly examined in Chapter 5. That
chapter considers sound primarily as a program enhancement
device. An educational program, for instance, might include a
routine to reward a correct answer with a short musical pas
sage. Sound has obvious value in games, too. In a space game,
isn't it much more dramatic to hear, as well as see, your
spaceship fire its lasers? These are just two of the many cases
where your computer's ability to produce sound can add to a
program's effectiveness.

This chapter also shows you how to make music on your
TI. You don't know very much about music? That's OK; the
basics will all be explained.

You'll find several complete programs in this chapter too,

Sound and Graphics

including one that helps you learn the names of the notes on
a musical staff. Another program demonstrates your TI's artis
tic abilities by playing a Bach prelude—in three parts!

Speech Synthesis
The third major feature discussed in this book is speech syn
thesis. The ability to generate speech is a relatively new
capability for the home computer, and the extra dimension
that it adds opens up some intriguing possibilities.

Currently, speech synthesis is found primarily in educa
tional programs and in an occasional game. Its use in those
areas will certainly increase, but there are other applications
where it may have an even greater impact. For example, you
hear much these days about so-called "user-friendly" comput
ers. Although this phrase has been greatly overused, it takes
on special significance when you consider speech synthesis.
After all, what could be more friendly than a computer that
literally tells you what to do? Imagine a computer that
reminds a businessman of his appointments, not by listing
them on a monitor, but by actually speaking to him. How
about a home computer that reads to the disabled or blind?
Why not have the ever-patient computer teach Junior how to
spell? Speech synthesis technology has made all of these
things possible.

As mentioned earlier, the main focus of this book is on
concepts and techniques as they apply to Extended BASIC.
This provides us with two approaches to using the speech
synthesizer. One uses Extended BASIC'S resident vocabulary,
while the other takes advantage of the text-to-speech disk
software sold by Texas Instruments. Chapter 6 examines both
and includes several programs which illustrate the concepts
and techniques described.

Putting the Pieces Together
The final chapter consists of seven complete programs, which
combine the features and techniques discussed in the rest of
the book, along with a detailed explanation of how the parts
of each program fit together.

As you work through the chapters, you will notice that
most of the program examples are games. Games present one
of the most obvious uses of the graphics, sound, and speech
synthesis capabilities of your computer. Though recreation is a

Sound and Graphics

major reason to purchase a home computer like the TI, other
applications can also benefit from the use of the graphics,
sound, and speech synthesis. Several nongame programs are
included to illustrate such applications.

What You'll Need

To effectively use this book, you will need a TI-99/4A com
puter, the Extended BASIC command module, and at least a
black-and-white or monochrome monitor. In addition, the
following items will be helpful:

Color monitor or TV Most of the programs deal with multicolor
graphics. While they can still be run with a
black-and-white TV or a monochrome mon
itor, the effect will be much better in color.

Joysticks

Speech synthesis

Text-to-speech

Peripheral expansion
box, disk controller
card, and disk drive

Several of the game programs use these to
control the action.

Chapter 6 is devoted to TI's speech syn
thesizer module.

There are two ways to produce speech on
your TI. One uses the Extended BASIC res
ident vocabulary; the other uses this software
package.

Disks provide an efficient, convenient way to
save and reuse the programs in this book. Of
course, you will have to have a disk drive to
use the text-to-speech disk software.

tBGSH

G^M^

(.

\$$mi

Introduction to Graphics

Computer graphics can be thought of simply as pic
tures drawn on a TV or monitor. They can consist of
anything from a simple stick man to a complex three-
dimensional object, and you will find them used in

applications ranging from games and education to business,
science, and engineering.

Computer graphics have been around for quite some time,
although not with the degree of sophistication available today.
They first appeared in the mid-1950s, when display devices
were limited to oscilloscopes or relatively primitive black-and-
white television-type CRTs.

Like other aspects of computer science, graphics technol
ogy has evolved dramatically over the years. As a result, a
new vocabulary has been developed to describe various
aspects of the field. Most of the new terms don't apply to
home computers like the TI. But those that do are defined
here:

ASCII American Standard Code for Information Interchange.
This is a standardized code developed by the American
National Standards Institute (ANSI). It defines a charac
ter set (letters, numbers, special symbols) which can be
used by a wide variety of computers. This gives these
computers a common thread for talking to each other or
for using the same peripherals. Your TI uses the ASCII
character set.

Pixel A single picture element. Graphics images on a TV or
monitor are comprised of numerous dots which glow to
form the image. The pixel is the smallest dot that a com
puter can illuminate.

Resolution The relative clarity and quality of an image displayed on
a TV set or monitor. It is expressed as a matrix (for exam
ple, 256 x 192), usually in pixels, which identifies the
number of columns and rows available on the screen. If
you think of the screen as a piece of graph paper, you

„ can see that the larger the number of pixels, the better
1 the resolution.

L

Introduction to Graphics

TI Graphics
The TI-99/4A has four different modes for displaying charac
ters on the screen. They are called graphics mode, multicolor
mode, text mode, and bitmapped mode. Each serves a particular
purpose.

Graphics mode lets you display the full ASCII character set
as well as define your own characters. Characters are defined
by an 8 x 8 matrix, and each character can use any two of the
16 available colors. Graphics mode also gives you access to TI
sprites. This is the only mode available from BASIC.

Multicolor mode provides an easier method for drawing
pictures than does graphics mode. It defines each character on
the screen as a 4 x 4 matrix rather than as the standard 8x8
matrix. Each character can be assigned a color. This mode also
allows you to use sprites, but it cannot access the ASCII
character set.

Text mode divides the screen into 40 columns, rather than
32, by defining each character in a 6 x 8 matrix. It is limited to
one background (screen) color and one dot (character) color. It
does not support sprites. Text mode is most useful in word
processing applications. It is used by the Editor/Assembler
and TI-Writer.

Bitmap is the highest resolution mode available on the TI.
It allows you to define two colors for each 8x1 pixel group.
This would allow a single 8x8 character to contain all 16
colors. Although sprites may be used in this mode, the auto
matic motion features are not available. This mode is used in
games such as PARSEC and is accessible from Assembler
Language.

This book will center on graphics mode, since it is the
only one available from BASIC. The other modes were noted
for background information; for additional information
concerning them, you should consult the TI Editor/Assembler
manual.

TI Screen Characteristics

The TI-99/4A screen measures 32 character columns by 24
character rows (Figure 2-1). This gives a total of 768 possible
character locations. A particular character position on the
screen is defined by its row and column. For example, the
character in the first column of row three is located at row 3,
column 1.

10

M

£
c
o

8
o

M

0>

Introduction to Graphics

24 Rows

(A

J3

U

11

£
F

ig
u

re
2-

2.
T

I
S

cr
ee

n
D

o
t-

R
o

w
s

a
n

d
D

o
t-

C
o

lu
m

n
s

3
2

8
x

8
C

o
lu

m
n

s
o

r

3
6

D
o

t
C

o
lu

m
n

s

/
V

•
*•

*

2
4

8
x

8
R

o
w

s

o
r

1
9

2
D

o
ts

t
>

J
J

;J
<

J

8
x

8
G

ri
d

a
t

R
o

w
7

C
o

lu
m

n
1

9

>

P
ix

el
2

,7
in

T
h

is
G

ri
d

o
r

D
o

t
R

o
w

5
0

D
o

t
C

o
lu

m
n

1
5

1
o

n
2

5
6

x
1

9
2

S
c
re

e
n

I O a s ! e
n

j
i.

j

Introduction to Graphics

fm Each of the 768 screen positions is made up of an 8 x 8
L matrix, or grid (Figure 2-2), which results in a screen measur

ing 256 pixels (dot-columns) by 192 pixels (dot-rows). Simple
multiplication shows that the screen contains 49,152 pixels:
8 pixels x 8 pixels = 64 pixels per character
64 pixels per character x 768 characters = 49,152 pixels
256 columns x 192 rows = 49,152 pixels

That's a lot of pixels. The thing to keep in mind, however,
is that BASIC cannot access each of those pixels directly.
Instead, pixels must be accessed indirectly by determining the
character position to which they belong. For example, if you
wanted to turn on the pixel at dot-row 50 and dot-column
151, you would first have to determine the location of that
pixel within the 32 x 24 character grid. You could do this with
the following BASIC routine:

100 WORK=DOTROW/8
110 IF INT(WORK)=WORK THEN 150
120 CHARROW=INT(WORK)+l
130 BITROW=(WORK-INT(WORK))*8
140 GOTO 170
150 CHARROW=WORK
160 BITROW=8

170.

180.

190.

Line 100 divides the number of dot-rows (50 in our exam
ple) by the 8 dot-rows contained in each character-row. Line
110 determines whether or not the result of that division is an
integer. If it is, the routine branches to line 150. If the result
has a fractional remainder, the routine proceeds to line 120
where the character-row is determined by taking the integer
portion of the number and adding 1 to it.

Line 130 determines the bit-row of the pixel within the 8
x 8 grid by calculating the fractional portion of the character-

jmn row and multiplying it by 8 (bit-rows per character-row). Line
140 branches to the end of the routine, since the desired infor

ms, mation has already been calculated. Line 150 is processed if
the result of the division in line 100 is an integer. It simply

ym assigns the integer result to CHARROW. Line 160 sets the bit-
L row of the pixel to 8. In this case, no fractional portion of a

13

Introduction to Graphics

character-row is involved; thus, the pixel must be located in
the last bit-row of this character-row.

The same procedure can be used to determine the character-
column and the bit-column. Using the pixel in our example
would result in the following:

WORK=DOTROW/B
6.25=50/8
CHARROW=INT(WORK)+l
7=6+1

BITROW=(WORK-INT(WORK))*8
2=0.25*8

WORK=DOTCOL/8
18.875 = 151/8
CHARCOL=INT(WORK)+1
19=18+1

BITCOL=(WORK-INT(WORK))*8
7=0.875*8

Thus, that particular pixel resides at bit-row 2, bit-column 7
within the 8x8 character at character-row 7, character-column
19. You will soon see the importance of such information.

Character Definition

To display a character on the 32 x 24 screen, the TI has to
know the pattern for that character. The pattern is drawn on
an 8 x 8 grid. The individual dots, or bits, which are on within
the grid, determine what the character will look like on the
screen.

The TI has a set of these patterns built into ROM (Read
Only Memory), and the pattern used by a particular character
is determined by its ASCII character code (Table 2-1). For
example, you can see from the table that ASCII character code
65 designates the bit pattern for the letter A. The actual pat
tern in the 8x8 grid looks like this:

14

M$&

ucuon to varapnici

ipsa

r
Table 2-1. ASCII Character Codes

ASCII Character ASCII Character

30 (cursor) 67 C

31 (edge character) 68 D

32 (space) 69 E

33 ! (exclamation point) 70 F

34 " (quote) 71 G

35 # (number sign) 72 H

36 $ (dollar) 73 I

37 % (percent) 74 J
38 & (ampersand) 75 K

39 ' (apostrophe) 76 L

40 ((open parenthesis) 77 M

41) (close parenthesis) 78 N

42 * (asterisk) 79 O

43 + (plus) 80 P

44 , (comma) 81 Q
45 — (minus) 82 R

46 . (period) 83 S

47 / (slash) 84 T

48 0 85 U

49 1 86 V

50 2 87 w

51 3 88 X

52 4 89 Y

53 5 90 Z

54 6 91 [(open bracket)
55 7 92 (reverse slash)
56 8 93] (close bracket)
57 9 94 (exponentiation)
58 : (colon) 95 (underline)
59 ; (semicolon) 96

60 < (less than) 97-122 (lowercase letters a-z)
61 = (equals) 123 { (open brace)
62 > (greater than) 124

63 ? (question mark) 125 } (close brace)
64 @ (at sign) 126

65 A 127 DEL

66 B 128-143 (see note)

[PffiH

Note: ASCII codes 128-143 are undefined in normal opera
tion. They are, however, available to Extended BASIC
programs.

15

Introduction to Graphics

But how is such a pattern defined for the computer? The
first step is to break the 8x8 grid into two 4x8 sections. The
off bits (those not appearing on the screen) are assigned a
value of 0. The on bits (those that will be illuminated to form
the character) are assigned a value of 1. Then, working left to
right and top to bottom, the pattern is broken into groups of
four bits each. This results in 16 groups of 4 bits each (64 bits
total) and looks like this:

Bit Values

0000 0000

0011 1000

0100 0100

0100 0100

0111 1100

0100 0100

0100 0100

0100 0100

Combining all 16 groups, the bit pattern constitutes a
binary number that looks like this:

0000000000111000010001000100010001111100010001000
100010001000100

You may think that this is an awkward way to describe a
pattern, and you're right. Fortunately, there is a better way.
This 64-digit number can be reduced to just 16 digits by using
hexadecimal notation.

The digits of decimal numbers are based on the powers of
10 (10°=1, 10^10, 102= 100, 103= 1000, and so on). Hexa
decimal numbers, on the other hand, use the base 16 number
system. Each digit in a hexadecimal number is based on a
power of 16 (16°=1, 161 = 16, 162=256, 163=4096, and so
on).

If you think about it, you'll see that hexadecimal numbers
need more than ten symbols to represent the individual digits.
Try to imagine a 16-fingered Martian who regularly uses the
hexadecimal number system. If he were to count his fingers,
he would have to use a single-digit name for each of the first
fifteen fingers before he could count his sixteenth finger as
"10" ((1 x 16) + (0x 1)).

The letters A through F represent the additional digits

16

'.W«&nVJt

ESm\

Ji%$sJ

I

Introduction to Graphics

required by hexadecimal numbers. As a result, counting from
1 to 16 would go like this:
Decimal: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hex: 123456789ABCDEF10

What does this have to do with character patterns?
Remember that there were 16 four-digit binary numbers in the
pattern. As it turns out, any combination of four binary digits
can be represented by one hexadecimal digit (24 = 16). For
example, the binary number (or bit pattern) 1101 equals D in
hexadecimal, as shown:

Powers of 2:
Bit pattern:

842 1

110 1

equals
1x8 = 8

1x4 = 4

0x2 = 0

1 x 1 =J_
13 = D in hex

If you aren't comfortable with the math, you can use the
following table:

Binary Hex Binary Hex
0000 = 0 1000 = 8
0001 = 1 1001 = 9
0010 = 2 1010 = A
0011 = 3 1011 = B
0100 = 4 1100 = C
0101 = 5 1101 = D
0110 = 6 1110 = E

0111 = 7 1111 = F

By looking at the grid one more time, you can now see
that the pattern for the letter A is 003844447C444444:

Binary
= 0000 0000

= 0011 1000

= 0100 0100

= 0100 0100

= 0111 1100

= 0100 0100

= 0100 0100

= 0100 0100

Hex

= 00

= 38

= 44

= 44

= 7C
= 44

= 44

= 44

17

Introduction to Graphics

Extended BASIC has an instruction (CALL CHARPAT)
that will return the hexadecimal pattern for a particular ASCII ^
character. You can type in and RUN the following program to
confirm the pattern for an A:

100 CALL CLEAR
110 CALL CHARPAT(65,PAT$)
120 PRINT PAT$
130 STOP

Defining Your Own Characters
If you were limited to the standard ASCII character set, you
wouldn't have much flexibility in producing graphics on the
screen. Luckily, the TI gives you a way to define your own
characters: the CALL CHAR statement. It lets you change the
pattern for any ASCII character code and is, in effect, the
opposite of the CALL CHARPAT statement. It has the follow
ing format:

CALL CHAR (character code,pattern identifier)
Character code is the ASCII character code in which you

will place the new pattern. It can be either a numeric value in
the range 32-143 or a numeric variable which contains a value
of 32-143.

Pattern identifier is the hexadecimal pattern describing
what the new character will look like. It consists of a hexa
decimal number 0 to 64 digits long, or a string variable which
contains a hex number 0 to 64 characters long.

Ordinarily, it takes 16 hex digits to define a character. If
the hex number you provide is less than 16 digits long, the
computer assumes the rest of the digits are 0. For example, the
computer would translate the number 005C11FF1212 into
005C11FF12120000. If the number is between 17 and 32 digits
in length, then two consecutive ASCII character codes are
defined starting with the one indicated by character code. A
hex number 33 to 48 digits long defines three consecutive
ASCII character codes; a number 49 to 64 digits long defines
four.

The following examples show various ways of using the Z3
CALL CHAR statement:

100 CALL CHAR(91,"00327D0056127E12")

100 CALL CHAR(93,"FF003412") •">

18 I

4JW.WI

fs^jj

Introduction to Graphics

100 A$="4444FFE1E1004444"
110 CALL CHAR(112,A$)

100 A$ = "FFFFFFFFFFFFFFFF"
U0FORL=91 TO 96

120 CALL CHAR(L,A$)
130 NEXT L

You're now ready to take all of this information and
actually design a new character. The 8x8 character grid
below shows how the delta symbol might be defined:

Binary Hex

= 0000 0000

= 0000 0000

= 0000 0000

= 0001 1000

= 0010 0100

= 0100 0010

= 00

= 00

= 00

•• = 1 8

•

_

• = 24

_• •L = 42

c • • • •
wm = iooo oooi

^M = mi mi
= 8 1

= FF

The character pattern for this symbol is
0000001824428IFF. The pattern has to be assigned to an
ASCII character code, so refer to Table 2-1. You can see that
the codes 48-57 represent numbers, while codes 65-90 repre
sent uppercase letters. Since you would most likely want to
have all of those available, you would pick a code other than
one in those two ranges. The [(left bracket) is rarely used;
consequently, character code 91 would be a good choice.

The following program displays the new character on the
screen:

100 CALL CLEAR

110 CALL CHAR(91,"00000018244281FF")
120 DISPLAY AT (10,14):CHR$(91)
130 GOTO 130

Line 100 clears the screen. Line 110 defines the new

character pattern and assigns it to ASCII code 91. Line 120
DISPLAYS the new character on the screen. The CHR$ com
mand is used to display the pattern identified with ASCII code
91, which in this case is the delta symbol.

Note that even if you replaced CHR$(91) in line 120 with
[, the delta symbol would still appear. There is a simple reason
for this. When you press a key on the console, the computer

19

Introduction to Graphics

associates that key with a particular ASCII code, rather than
with the symbol on the key. So when you press [, the com
puter still interprets this as ASCII code 91, which now con
tains a new pattern. Line 130 causes an infinite loop. If you
didn't include this, the ASCII code would revert to the left
bracket when the program ended.

Many times, of course, the picture you want is larger than
one character, but the procedure is still much the same. To
display the robot shown below, you have to define four ASCII
characters:

03

03

03

01

01

OF

3F

2F

27

23

07

06

06

06

06

06

You can see from the diagram that the four patterns are:

top left
top right
bottom left

bottom right

03030301010F3F2F

C0C0C08080F0FCF4

2723070606060606

E4C4E06060606060

By assigning these patterns to ASCII codes 91 through 94,
the following short program would place four of these robots
on the screen:

100 CALL CLEAR

110FORL=1 TO 4

120 READ A$::CALL CHAR(90+L,A$)
130 NEXT L

140 FOR L=5 TO 20 STEP 5

150 DISPLAY AT(10,L):CHR$(91);CHR$(92)
160 DISPLAY AT(11,L):CHR$(93);CHR$(94)

20

jaEaMi'll

\wmt

L

Introduction to Graphics

170 NEXT L

180 GOTO 180
190 DATA "03030301010F3F2F"

200 DATA "C0C0C08080F0FCF4"

210 DATA "2723070606060606"
220 DATA "E4C4E06060606060"

Line 100 clears the screen. Lines 110-130 read the four
DATA statements, which contain the patterns, and assign the
patterns to ASCII codes 91 through 94. Line 140 sets up a
loop which will be executed four times. Line 150 displays the
top half of the robot by putting ASCII characters 91 and 92
side by side at row 10 and the column indicated by L. Line
160 displays the bottom halfof the robot in the same fashion
using ASCII codes 93 and 94. Line 180 is an infinite loop to
keep the robots on the screen.

This same method works for any shape defined with four
characters. Figure 2-3 illustrates two common shapes. Try
replacing the four DATA statements in the above program
with any of the patterns indicated in the figure.

Figure 2-3. Four-Character Shapes

DATA "000000183C7E7F7F"

DATA "000000183C7EFEFE"

DATA "3F1F0F0703010000"

DATA "FCF8F0E0C0800000"

DATA "000103070F1F3F7F"

DATA "0080C0E0F0F8FCFE"

DATA "7F3F1F0F07030100"

DATA "FEFCF8F0E0C08000"

21

Introduction to Graphics

This method can also be used for shapes which are larger
than four characters. The only difference is that you have to
define more characters. Program 2-1, "COMPUTE! Cat," pro
duces the display shown in Figure 2-4. Notice that it takes 36
characters to define the friendly feline.

Figure 2-4. COMPUTE! Cat

1

H_

—|4f

fa

—~^m|

-&£

How COMPUTE! Cat Works
Line(s)

Clear the screen.100

110-130

140-150

160

170-180

190

200

210-560

22

Read the 36 DATA statements and assign them to
ASCII character codes 91 through 126.
Set up two loops to display six rows and six columns.

Display the ASCII codes 91 through 126 one at a time.
When R=l, it displays codes 91-96; when R=2, it
displays codes 97-102, etc.
Close the loops.

Display COMPUTE! CAT literal.

Infinite loop.

DATA statements containing character patterns.

\

Jpfil

|§S£l

Introduction to Graphics

Program 2-1. COMPUTE! Cat
100 CALL CLEAR

110 FOR L=91 TO 126

120 READ A$:: CALL CHAR(L,A$)
130 NEXT L

140 FOR R=l TO 6

150 FOR C=l TO 6
160 DISPLAY AT(R+9/C+10):CHR$(84+(R*6)+C);
170 NEXT C

180 NEXT R

190 DISPLAY AT(18,7):"C
AT(20,12):"C A T"

200 GOTO 200
210 DATA "0102060408101010"
220 DATA "008080C0C0E0E3F4"

230 DATA "0000000007798545"
240 DATA "00000000E09EA1A2"

250 DATA "000101030307C72F"

260 DATA "8040602010080808"

270 DATA "101011110A0C1020"

280 DATA "F8C4820201000000"

290 DATA "2525151309050500"

300 DATA "A4A4A8C890A0A080"

310 DATA "1F23414080000000"
320 DATA "0808888850300804"

330 DATA "2842484248424844"
340 DATA "00000F3000070812"
350 DATA "0000C01010088848"

360 DATA "800003040408090A"
370 DATA "0000F00C00E01048"

380 DATA "1442124212421242"

390 DATA "20A078A778171010"

400 DATA "170F07C020D02E11"
410 DATA "4884040402020283"

420 DATA "0A111010202020E1"
430 DATA "E8F0E003040B7488"

440 DATA "04051EE51EE80808"
450 DATA "1008080808040202"

460 DATA "0E21100806010000"

470 DATA "43814000018E702A"

480 DATA "E2C18280403807AA"

490 DATA "7082040830C00000"
500 DATA "4810101010204040"

510 DATA "0100000000000000"

520 DATA "0080601F00000000"

530 DATA "3F0F0300C0201E01"
540 DATA "FEFCE00003047880"

550 DATA "000106F800000000"

560 DATA "8000000000000000"

O M P U T E I" DISPLAY

23

Introduction to Graphics

Using DISPLAY AT
You should have noticed that several of the preceding exam
ple programs used the DISPLAY AT command to place
characters on the screen. DISPLAY AT is much more versatile
than either PRINT or DISPLAY. It allows you to format a
screen by placing characters (standard ASCII or graphics) any
where on the 32 x 24 character grid. In addition, it doesn't
produce the normal scrolling action associated with the other
commands. DISPLAY AT has the following format:
DISPLAY AT(row,column)[BEEP][ERASE ALL][SIZE(numeric
expression)]:variable list

The data identified by variable list is displayed on the 32
x 24 character grid at the location indicated by row and col
umn. Items identified in variable list may be numeric vari
ables, string variables, numeric or string literals, and ASCII
character-code patterns returned by the CHR$ function. For
example:
100 DISPLAY AT(10,10):A1;" EQUALS ";CHR$(45)

BEEP causes a short tone to sound when the data is dis
played. ERASE ALL clears the screen before the data is dis
played. SIZE is used to blank the number of characters
indicated by numeric expression.

Changing Patterns
The TI allows you to change patterns dynamically in a pro
gram. In other words, the same ASCII character code can be
used for more than one pattern definition within the same
program. In fact, it can be used as many times as needed. The
following short program illustrates this concept:
100 CALL CLEAR

110 DISPLAY AT(12,14):CHR$(91)
120FORL=1 TO 4

130 FOR L2 = l TO 50 :: NEXT L2
140 READ A$:: CALL CHAR(91,A$)
150 NEXT L

160 RESTORE :: GOTO 120

170 DATA "1010101010101010"
180 DATA "006030180C060300"
190 DATA "000000FFFF000000"

200 DATA "0003060C18306000"

24

fPO

Introduction to Graphics

The program displays the standard character pattern
(open bracket) for ASCII code 91. Line 120 causes the program
to loop four times. Within the loop it reads the alternate pat
terns (the DATA statements) and changes the pattern for
ASCII code 91. Notice that it is not necessary to reDISPLAY
the character; it only has to be changed. Line 160 restores the
DATA statements at the end of the loop, then reinitializes the
loop. The overall effect is to give this single ASCII character
code an impression of motion.

Color
Character patterns displayed on the screen may contain two
colors. The patterns themselves may be either characters from
the standard ASCII character set defined by the TI or charac
ters you have defined yourself. The colors may be any two of
the 16 available (Table 2-2). The command that is used to
assign these colors is CALL COLOR. It has the following
format:

CALL COLOR(character set,foreground color,background
color)

Colors are not assigned to individual ASCII character
codes. Instead, they are assigned to an ASCII character code
set (Table 2-3). Each set, except set 0, consists of eight ASCII
character codes. Character set is the set number that identifies
the eight ASCII characters which will have the assigned color
combination. As you can see, there is a limited number of sets.
Consequently, it is important to plan ahead when defining
your own characters. You should, for example, use ASCII
character codes that fall within the same set when defining
characters that will have the same color.

Table 2-2. Color Codes

Color Code Color Code

Transparent
Black
Medium Green

1

2

3

Medium Red

Light Red
Dark Yellow

9

10
11

Light Green
Dark Blue

4

5

Light Yellow
Dark Green

12

13

Light Blue
Dark Red
Cyan

6

7

8

Magenta
Gray
White

14

15

16

25

Introduction to Graphics

Table 2-3. Character Sets

Set ASCII codes Set ASCII codes
0 30-31 8 88-95
1 32-39 9 96-103
2 40-47 10 104-111
3 48-55 11 112-119
4 56-63 12 120-127
5 64-71 13 128-135
6 72-79 14 136-143
7 80-87

Foreground color is the color assigned to the pixels which
are on. Background color is the color assigned to the offpixels.
In many cases, you would want the background color to be
transparent (#1). You can define colors for more than one
character set in the same CALL COLOR command. For
example,

CALL COLOR(8,2,1,9,7,1,10,6,16)

assigns a black foreground with a transparent background to
set 8 characters, a dark red foreground with a transparent
background to set 9 characters, and a light blue foreground
with a white background to set 10 characters.

The CALL COLOR command is also used to assign color
to sprites. The syntax to accomplish this is similar to that used
above and is discussed in detail in the next chapter.

The color of the screen itselfcan be changed by using the
CALL SCREEN command. It has this format:

CALL SCREEN(screen color)

Screen color is a number from 1 to 16 which represents one of
the colors in Table 2-2. The command sets all blank positions
on the screen (those that do not contain characters) to the
color indicated. The default screen color is cyan (8).

As you use these two commands, you will discover that
some color combinations work quite well, but others do not.
Black on cyan, for example, provides excellent visible contrast;
blue on red, on the other hand, appears smeared and murky.
The best way to determine good combinations is to
experiment.

Earlier in this chapter you saw how character patterns
could be changed dynamically within a program. Character

26

Introduction to Graphics

and screen colors can also be changed this way. The following
short program illustrates this capability, as well as the color
combinations available:

100 CALL CLEAR
110 DISPLAY AT(10,12):"COMPUTE!"
120FORL=1 TO 16

130 CALL SCREEN(L)
140FORL2 = 1 TO 16

150 CALL COLOR(5,L2,l,6,L2,l,7,L2,l)
160 FOR D=l TO 400 :: NEXT D

170 NEXT L2 :: NEXT L

Bars and Lines
Thus far, discussion has centered on defining and displaying
each individual character on the screen. Often, however, you
will want to use a single character many times—for instance,
when you are drawing bars, lines, or diagonals.

Your TI has two commands which were specifically
designed for this type of programming. They are CALL
HCHAR and CALL VCHAR. CALL HCHAR lets you repeat a
single character horizontally across the screen; CALL VCHAR
lets you repeat a single character vertically. They have the
following format:

CALL HCHAR(row,column,character-code,repetition) CALL
VCHAR(row,column,character-code,repetition)

The character's initial location on the 32 x 24 screen grid is
defined by row and column. Row has a value from 1 to 24; col
umn has a value from 1 to 32. Character code is the ASCII

character code used to define the desired pattern. Repetition
indicates the number of characters that will be placed on the
screen horizontally or vertically. The four parameters may be
numeric literals or numeric variables. The following examples
illustrate how these commands may be used:

100 CALL CLEAR

110 CALL CHAR(96,"FFFFFFFFFFFFFFFF")
120 CALL HCHAR(3,1,96,10)
130 GOTO 130

100 CALL CLEAR

110 CALL CHAR(96,"FFFFFFFFFFFFFFFF")
120 CALL CHAR(97,"0000FFFFFFFF0000")

27

Introduction to Graphics

130 CALL HCHAR(10,4,96,18)
140 CALL VCHAR(2,19,97,18)
150 GOTO 150

100 CALL CLEAR

110 CALL CHAR(96,"000000FFFF000000")
120FORL=1 TO 4

130 CALL HCHAR(L*2,L+6,96,L*3)
140 NEXT L

150 GOTO 150

These commands are very useful programming tools.
Depending on the character pattern, they can be used to draw
solid bars, lines, chains, rectangles, screen borders—in fact,
anything that requires repetitive characters. In addition, they
allow you to use all 32 columns on the screen. PRINT and
DISPLAY let you use only 28 columns (columns 3 through
30).

The following example, "Histogram," demonstrates how
these two instructions can be used to write a program. The
program produces a bar graph showing computer sales over a
12-month period. You may enter values yourself or request
the demonstration mode which generates values randomly. If
you enter the values, the program will automatically pick the
correct scale. The maximum value you may enter is 10000.
How Histogram Works
Line(s)
100 Clear the screen.

110 DIM statement for the 12 values allowed on the bar
chart.

120-190 Define the character patternsused in the program.
ASCII codes 96-99 define the characters used for the
actual bars. Code 96 is a complete block; 97 is a 3/4
block; 98 is a 1/2 block; and 99 is a 1/4 block. Using
four blocks in quarter steps allows higher resolution on
the bars. ASCII code 43 defines the Y-axis and tick
marks. Codes 104 and 112 define the horizontal mark
ing lines.

200 Assign colors to the various characters.

210-250 Display a selection menu. ""^

260-280 Draw X and Y axes and display literals.

290-300 Draw the marking lines in two colors.

28 '

CijJSV-.j

fiffSli

Introduction to Graphics

310-320 Display X and Y axes identification.

330 Determine the maximum value to be graphed. This is
used to determine the scaling.

340-360 Determine scale.

370-450 Draw the bars for the values on the graph. Lines 410-
440 determine which 1/4 block size is to be used on
the top of each bar to make it more accurate.

460 Display message indicating the scale used.

470-500 End of program control.

510-590 Accept values from keyboard.
600-630 Generate random values for demonstration.

Program 2-2. Histogram
100 CALL CLEAR

110 DIM V(12)
120 CALL CHAR(96,"FFFFFFFFFFFFFFFF")
130 CALL CHAR(97,"0000FFFFFFFFFFFF")
140 CALL CHAR(98,"00000000FFFFFFFF")
150 CALL CHAR(99,"000000000000FFFF")
160 CALL CHAR(43,"FFF0F0F0F0F0F0F0")
170 CALL CHAR(104,"FF00000000000000")
180 CALL CHAP(112,"FF00000000000000")
190 CALL CHAR(42,"FFFFFFFFFFFFFFFF")
200 CALL COLOR(9,5,1,10,3,1,11,7,1)
210 DISPLAY AT(4,1):"1 - ENTER VALUES MANUALLY" ::

DISPLAY AT(6,1):"2 - RUM DEMONSTRATION"
220 DISPLAY AT(8,1):"WHICH ONE? —>_"
230 ACCEPT AT(8,15)VAI,IDATE("12")SIZE(-l)BEEP:OPT
240 ON OPT GOSUB 510,600
250 CALL CLEAR

260 DISPLAY AT(2,10):"COMPUTER SALES" :: DISPLAY A
T(4,13):"BY MONTH"

270 CALL HCHAR(18,6,42,25)
280 CALL VCHAR(8,6,43,10)
290 FOR L=8 TO 12 :: CALL HCHAR(L,7,104,24):: NEXT

L

300 FOR L=13 TO 17 :: CALL HCHAR(L,7,112,24):: NEX
ywh* m t

310 DISPLAY AT(19,6):"J FMAMJJASOND"
pw 320 DISPLAY AT(8,1):"10";:: DISPLAY AT(13,2): "5 "; :
(: DISPLAY AT(17,2):"1";
_ 330 MX=0 :: FOR L=l TO NV :: MX=MAX(V(L),MX):: NEX
I T L

<W^

29

iSE&^Fk

Introduction to Graphics hb^i^^^hhm^ ^

340 IF MX<=10 THEN S=l am

350 IF MX>10 AND MX<=1000 THEN S=100 :: LIT$="HUND
REDS"

360 IF MX>1000 THEN S=10O0 :: LIT$="THOUSANDS"
370 FOR L=l TO NV

380 BAR=INT(V(L)/S):: FR=V(L)/S-INT(V(L)/S)
390 CALL VCHAR(18-BAR,6+(L*2),96,BAR)
400 FRP=18-BAR-1

410 IF FR>=.15 AND FR<.35 THEN CALL VCHAR(FRP,6+(L
*2),99,1)

420 IF FR>=.35 AND FR<.65 THEN CALL VCHAR(FRP,6+(L
*2),98,1)

430 IF FR> = .65 AND FR<.9 THEN CALL VCIIAR(FRP, 6+(L*
2),97,1)

440 IF FR>=.9 THEN CALL VCHAR(FRP,6+(L*2),96,1)
450 NEXT L

460 IF S>1 THEN DISPLAY AT(21,7):"IN ";LITS;" OF U
NITS"

470 DISPLAY AT(24,9):"PRESS ANY KEY"
480 CALL KEY(3,K,S):: IF S=0 THEN 480
490 CALL CLEAR

500 GOTO 210

510 CALL CLEAR

520 DISPLAY AT(4,1):"NUMBER OF VALUES 1-12? —>"
530 ACCEPT AT(4,27)VALIDATE(NUMERIC)BEEP:NV
540 IF NV>12 THEN 530

550 FOR L=l TO NV

560 DISPLAY AT(6+L,1):"VALUE # ";L
570 ACCEPT AT(6+L,13)VALIDATE(NUMERIC)BEEP:V(L)::

IF V(L)>10000 THEN 570
580 NEXT L

590 RETURN

600 FOR L=l TO 12

610 V(L)=INT(1+RND*10)
620 NEXT L

630 NV=12 :: RETURN

Diagonals
In many cases the bar or line you want to draw is not hori
zontal or vertical, but diagonal. One way to draw a diagonal is
to define each character in the diagonal's path. Sometimes
only one character definition is required, as illustrated by the ^
first diagonal in Figure 2-5. This character, once defined, is —
repeated for the length of the diagonal. In other cases, more ss^
than one character definition is required to draw the diagonal,
and a sequence of characters is repeated along the length of the «»
diagonal.

30

frtSEJ

l\$v£$

L

Introduction to Graphics

Figure 2-5. Drawing Diagonals

45-degree angle
Requires one character definition:

"0102040810204080"

30-degree angle (approximately)

Requires three character definitions:

"0000010618608000"

"1860800000000000"

"0000000000000106"

20-degree angle (approximately)

Requires three character definitions:

"0000000738C00000"
"031CEO0000000000"

"0000000000010E70"

45-degree angle with thick line

Requires two character definitions:

"070E1C3870EOC080"

"0000000000000103"

31

Introduction to Graphics

This method gives you a lot of control over the size and
resolution of the diagonal. By defining the characters and plac
ing them on the screen, you can create diagonal lines, zigzag,
geometric figures, and the like.

Sometimes, it is possible to use CALL HCHAR, CALL
VHCAR, or even DISPLAY AT to draw diagonals. It depends
primarily on the angle and the degree of resolution desired.
The following program shows how this might be done.
100 CALL CLEAR

110 CALL CHAR(42,"FFFFFFFFFFFFFFFF")
120 CALL CHAR(96,//FFFFFFFFFFFFFFFF")
130 CALL HCHAR(19,2,96,25)
140 CALL VCHAR(2,2,96,25)
150 CALL COLOR(2,5,l)
160FORX=1 TO 18
170 C=X

180 Y=X

190 IF Y>18 OR Y=0 THEN 220
200R=18-Y+1

210 DISPLAY AT(R,C):CHR$(42)
220 NEXT X

230 GOTO 230

The program simply draws an X and Y axis and plots a
line based on the equation in line 180. As you can see when
you RUN the program, the line produced is a 45-degree angle
with low resolution. If you change the pattern for ASCII code
42 to 0102040810204080, the program will produce a high-
resolution, 45-degree angle line.

But what if you wanted to change the equation in line 180
to Y=2*X? Several things occur as a result of this change.
First, the high-resolution pattern for ASCII code 42 no longer
works. It worked originally only because the angle of the line
was known and the pattern fit that angle. The line represented
by the new equation, however, has a different angle which is
unknown. Consequently, the pattern for ASCII code 42 must
be changed back to all F's.

The second thing affected by the change is the continuity
of the line: The line has the correct angle, but it is not
continuous. This happens because the program draws the line
by plotting individual points, and the new equation results in
a greater distance between these plotted points. Increasing the

32

(rV.'.VSJ

/$wE3

Introduction to Graphics

number of iterations in the program loop by adding STEP .5
to line 160 increases the number of points plotted and, con
sequently, decreases the distance between them. The resulting
line is continuous, but its resolution is quite low.

Character Concatenation
There are many cases when consecutive screen columns do
not contain the same character. For example, assume you had
five consecutive characters starting at column 1 on row 5 and
that each character required a different bit pattern. How would
you handle such a situation?

There are several possible approaches. You could use five
CALL HCHAR or DISPLAY AT statements to display the
characters one at a time, or you could display the characters
by using the CALL HCHAR or DISPLAY AT in a loop and
incrementing the column position.

But there is one other method that is faster and requires
fewer program lines. The characters can be concatenated into a
single character string. The TI lets you do this with the
ampersand symbol. Once the characters are concatenated, you
can use a single DISPLAY AT to display the entire string on
the screen.

The following program, "Plane," illustrates how the speed
inherent in this method can be used to simulate motion. A
four-character airplane, ten-character rope, and eight-character
sign are concatenated. Forty spaces are concatenated to each
end of this character-string. By DISPLAYing the string 28
characters at a time within a loop, and by shifting the starting
point of the string one place to the right for each iteration, the
plane appears to fly across the top of the screen.

How Plane Works

Line(s)
100 Clear the screen.

110-250 Define the characters used in the program. Character
codes 94-97 define the plane; 98 defines one length of
rope; 40 defines the,ground; and 128-130 and
136-138 define the house on the ground.

260 Assign the colors used by the various characters.

i

p» 270-330 Build the seven character strings which make up the
house.

33

Introduction to Graphics

340-370

380

390-410

420-450

460

Build the characterstring which consists of the plane,
rope, sign, and blank spaces. The four characters of the
plane are added to ten repetitions of the rope charac
ter, and the word COMPUTE! is added to this. Forty
spaces are added to each end to allow the plane to
travel across the screen.

Display the ground on the screen.

Display on the screen the strings which make up the
house.

Move the plane, rope, and sign across the screen. This
is accomplished by repeatedly displaying 28 characters
of the string within the loop. The start location in the
string is moved one position to the right for each itera
tion of the loop, thus creating the motion.
Repeat the process.

Program 2-3. Plane
100 CALL CLEAR

CHAR(94,
CHAR(95,
CHAR(96,
CHAR(97,
CHAR(98,
CHAR(40,
CHAR(104
CHAR(112
CHAR(120
CHAR(128
CHAR(129
CHAR(130
CHAR(136
CHAR(137
CHAR(138

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

34

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

"40405F7F7F4F4000")
"0002FBFFFFFF2070")
"0000FFFFFFFF0000")
"1E3EFEFEFCC04020")
"000000FF00000000")
"FFFFFFFFFFFFFFFF")
,"FFFFFFE7E7FFFFFF")
,"183C7EFFFFFFFFFF")
,"FFBBFFFFBBFFFFBB")
,"FFFFFFFFFFFFFFFF")
,"0103070F1F3F7FFF")
,"80C0E0F0F8FCFEFF")
,"FF1010FF101010FF")
,"FFFFFFFFFFFFFFB'D")
,"FDFFFFFFFFFFFFFF"):: CALL CHAR(

64,"0018181818180018")
CALL COLOR(2,3,1,5,7,16,6,7,16,7,7,16,10,2,16,
11,2,1,12,2,16,13,5,1,14,15,2)
HS(1)=RPT$(" ",2)&CHR$(129)&CHRS(130)
H$(2)=" "&CHR$(129)&CHR$(128)&CHR$(128)&CHR$(1
30)
H$(3)=CHR$(129)&RPT$(CHR$(128),4)&CHR$(130)
HS(4)=CHR$(128)&CHR$(136)&RPT?(CHR$(128),2)&CH
RS(136)&CHR$(128)
HS(5)=RPT$(CHRS(128),6)
HS(6)=CHR$(128)&CHRS(136)&CHR$(128)&CHR$(137)&
RPT$(CHRS(128),2)

/^fflj

Introduction to Graphics

330 HS(7)=RPTS(CHRS(128),3)&CHR?(138)&RPT?(CHR$(12
8),2)

340 PLS=RPTS(" ",40)
350 PL$=PL$&CHR$(94)&CHRS(95)&CHRS(96)&CHR$(97)&RP

T$(CHRS(98),10)
360 PLS=PL$&"COMPUTE"&CHRS(64)
370 PLS=PL$&PPT?(" ",40)
380 FOR L=22 TO 24 :: CALL HCHAR(L,1,40,32):: NEXT

L

390 FOR L=l TO 7

400 DISPLAY AT(14+L,16):H?(L)
410 NEXT L

420 FOR L=l TO 120

430 DISPLAY AT(3,1):SEG$(PL$,L,28)
440 FOR D=l TO 25 :: NEXT D

450 NEXT L

460 GOTO 420

Special Effects
You can enhance your programs, particularly your games, by
adding special effects to them. Special effects can range from
simulated motion and animation to laser beams and explo
sions. They are used to give programs action and a sense of
realism. You have already seen how to make a plane fly
across the screen. Now consider some other possibilities.

The program below illustrates how an alien ship can be
made to fire its laser, using only those programming tech
niques that have been discussed so far.
100 CALL CLEAR :: CALL SCREEN(2)
110 CALL CHAR(96,"00C0FCFFFFFCC000")
120 CALL CHAR(112,"000000FFFF000000")
130 CALL COLOR(9,6,l,ll,9,l)
140 FOR L=2 TO 14

150 CALL HCHAR(L-1,4,32,1) :: CALL HCHAR(L,4,96,1)
160 NEXT L

170FORL=1 TO 4

180 CALL HCHAR(14,5,112,25)
190 CALL HCHAR(14,5,32,25)
200 NEXT L

210 FOR L=l to 500 :: NEXT L :: STOP

Line 100 clears the screen and sets it to black. Line 110

defines the alien spaceship; line 120 defines the laser beam.
Line 130 sets the ship's color to blue and the laser to red. The

35

Introduction to Graphics

ship is brought down from the top of the screen by lines 140-
160. Lines 170-200 fire the laser four times. The program ends
on line 210.

Program 2-4, "Blinky," demonstrates that the computer
doesn't have to be a faceless collection of circuits and chips.
As you will see when you RUN the program, your TI can be
quite endearing.

How Blinky Works

Line(s)
100 Clear the screen.

110-160 Define the characters used in the program. ASCII code
96 is the border for the face. A$ contains the pattern
for the open eyes; B$ contains the pattern for the
closed eyes. Codes 97 and 98 define the corners of the
smile.

170-210 Draw the face on the screen.

220-270 Cause the eyes to blink five times.

280-300 Change the corners of the mouth to make a smile.

310-340 Cause the face to wink at the observer.

350-370 End the program.

Program 2-4. Blinky
100 CALL CLEAR

110 CALL CHAR(90,"FFFFFFFFFFFFFFFF")
120 AS="FF818181818181FF" :: B$="000000FFFF000000"
130 CALL CHAR(97,"0303030300000000")
140 CALL CHAR(98,"C0C0C0C000000000")
150 CALL CHAR(104,A$)
160 CALL CKAR(112,B$)
170 CALL HCHAR(10,12,96,8):: CALL HCHAR(18,12,96,8

)
180 CALL VCHAR(11,12,90,7):: CALL VCHAR(11,19,96,7

)
190 CALL HCHAR(12,14,104,1):: CALL HCHAR(12,17,104

200 CALL HCHAR(14,15,97,1):: CALL HCHAR(14,16,98,1
)

210 CALL HCHAR(16f14,112,4)
220 FOR L=l TO 5

230 FOR L2=l TO 600 :: NEXT L2

36

Introduction to Graphics

240 CALL CHAR(104,B$)
f" 250 FOR L2=l TO 40 :: NEXT L2

260 CALL CHAR(104,A$)
270 NEXT L

280 FOR L=l TO 100 :: NEXT L

290 CALL HCHAR(16,14,97,1):: CALL HCHAR(16,17,98,1
)

300 FOR L2=l TO 700 :: NEXT L2

310 CALL HCHAR(12,14,112,1)
320 FOR L2=l TO 80 :: NEXT L2

330 CALL HCHAR(12,14,104,1)
340 FOR L=l TO 200 :: NEXT L

350 DISPLAY AT (20, 10): "BYE NOVJl "
360 FOR L=l TO 500 :: NEXT L

370 CALL CLEAR :: STOP

The last program in this section, "Tank Attack," illustrates
how you can simulate a battle scene on the TI. In this pro
gram, an artillery piece is firing in the direction of an opposing
tank. The tank returns the fire, and the artillery piece is
destroyed. Figure 2-6 shows the character patterns used in this
simulation.

How Tank Attack Works

Line(s)
100 Clear the screen.

110-240 Define the characters used in the program. ASCII code
42 is the base of the display. The tank is defined by
the six ASCII codes 104-109. The artillery piece is de
fined by 112-114. ASCII codes 120-122 are used to
simulate the artillery piece firing. A$(0)-A$(3) contain
the character patterns to simulate the tank firing.

250-260 Assign the colors used for the character.

270 Draw the base of the screen.

280-290 Draw the tank.

300 Draw the artillery piece.

310 Timing loop.

320-370 Cause the artillery piece to fire four times. The loop
changes the pattern in front of the gun's muzzle rap-

I idly, giving the appearance of firing.

P» 380-450 Cause the tank to return fire four times. Again, the
- - loop causes the pattern to change rapidly, simulating
,„_ return fire.
i : 37

Introduction to Graphics

460-490

500-510

This loop alternately displays codes 121 and 122 at the
positions where the artillery piece was located. This
causes the artillery piece to explode.

End of program.

Figure 2-6. Tank Attack Character Patterns

ASCII 104

Tank

ASCII 105 ASCII 106

*•^^^^^^^^^^^H

^^^^H"

ASCII 107 ASCII 108 ASCII 109

38

Artillery

ASCII 112

'": ! ••••.•••'••• >B^^"''•"•

HHH-

ASCII 113 ASCII 114

Tank Fire

A$(0) A$(l)

A$(2) A$(3)

Artillery Fire

ASCII 120

-<—»—>--•:— <—••

ifiifc

ASCII 121 ASCII 122

*ttiS?E¥#

Introduction to Graphics

Program 2-5. Tank Attack
100 CALL CLEAR

110 CALL CHAR(42,"FFFFFFFFFFFFFFFF")
120 CALL CHAR(104,"0000000000003F00")
130 CALL CHAR(105,"0000000000FFFFFF")
140 CALL CHAR(106,"0000000000808080")
150 CALL CHAR(107,"001F1F7F7F7F3F1F")
160 CALL CHAR(108,"FFFFFFFFFFFFFFFF")
170 CALL CHAR(109,"80F8F8FEFEFEFCF8")
180 A$(0)="0000000000000000" :: A?(1)="00000000000

00101" :: A$(2)="0000000000010 703" :: A$(3)="0
00000241204030F07"

190 CALL CHAR(112,"0002060C183060C0")
200 CALL CHAR(113,"01031F1F1FFFFFFF")
210 CALL CHAR(114,"C0E0F0F0F0FFFFFF")
220 CALL CHAR(121,"0000004000A08090")
230 CALL CHAR(122,"8421084400A2C8E1")
240 CALL CHAR(120,A$(0))
250 CALL COLOR(2,13,1,12,9,1)
260 CALL SCREEN(6)
270 FOR L=22 TO 24 :: CALL HCHAR(L,1,42,32):: NEXT

L

280 FOR L=104 TO 106 :: DISPLAY AT(20,L-O0):CHRS(L
)7:: NEXT L

290 FOR L=107 TO 109 :: DISPLAY AT(21,L-83):CHR$(L
);:: NEXT L

300 DISPLAY AT(20,4):CHRS(112);:: DISPLAY AT(21,3)
:CHR$(113);:: DISPLAY AT(21,4):CHRS(114);

310 FOR L=l TO 1000 :: NEXT L

320 FOR L=l TO 4

330 DISPLAY AT(19,5):CHRS(121);
340 DISPLAY AT(19,5):CHRS(122) ;
350 DISPLAY AT(19,5):" ";
360 FOR L2=l TO 400 :: NEXT L2

370 NEXT L

380 DISPLAY AT(20,23):CHRS(120);
390 FOR X=l TO 4

400 FOR L2=l TO 300 :: NEXT L2

410 FOR L=l TO 3

420 CALL CHAR(120,AS(L))
430 NEXT L

440 CALL CHAR(120,A?(0))
450 NEXT X

460 FOR L=l TO 7

470 DISPLAY AT(20,4):CHR$(121); :: DISPLAY AT(21,4)
:CHR$(121);:: DISPLAY AT(21,3):CHRS(121);

480 DISPLAY AT(20,4):CHR$(122);:: DISPLAY AT(21,4)
:CHR$(122);:: DISPLAY AT(21,3):CHRS(122);

39

Introduction to Graphics

490 NEXT L
500 DISPLAY AT(20,4):"
510 GOTO 510

DISPLAY AT(21,3):"

High-Resolution Graphics
It is enjoyable, even exciting, to watch high-resolution graph
ics. A highly detailed graphic display will attract attention
faster than any other type of demonstration. Sometimes you
can even hear the oohs and aahs.

One of the main reasons for the popularity of the PAR-
SEC command module, for example, is its detailed multicolor
graphics. Achieving such detail and resolution usually requires
the use of Assembler Language. But this doesn't mean that
you need the Editor/Assembler package to do hi-res graphics
on your TI. You can actually do quite a bit from BASIC.

The biggest drawback to using BASIC is that you can't
access each of the 49,152 pixels directly. You can, however,
access each bit in a single 8x8 character. By defining and
putting enough of these characters together, you can produce
some very nice hi-res images on your TV or monitor.

Figure 2-7. 3-D Shapes

Ji^^^

t '

, 1 + ' ' '

—....

• .••• '•^"i

,.\:J * i .::;... ^ • -jT
'jP. ; •:

......

' ' I ! :| ':. ,•: | '

,-,,,, . i *.

...;.. ':•'::• J •:•

i '! "i i i
!

/ /
.......

...... ...r|;......
1"

m & h •

M #
: fc£

... •: •jT\:rt fl...., •....,

40

tlaMM

f^tHS^

UESKV-Zj

CBESfy

Introduction to Graphics

Figure 2-7 shows some three-dimensional shapes drawn
on graph paper. The area shown is eight characters by eight
characters. Each character is made up of an 8 x 8 matrix. By
assigning each character to a unique ASCII character code and
then defining the pattern for each character, you can write a
program to display these 3-D shapes on the screen. Program
2-6 illustrates how it can be done.

Program 2-6. 3-D Shapes

100 CALL CLEAR

110 FOR L=33 TO 44

120 READ A? :: CALL CHAR(L,A$)
130 NEXT L

140 FOR L=91 TO 142

150 READ A? :: CALL CHAR(L,A$)
160 NEXT L

170 FOR R=l TO 8

180 FOR C=l TO 8

190 CHAR==(R-l)*8+C+32
200 IF CHAR>44 THEN CHAR=CHAR+46

210 DISPLAY AT(R+8,C+8):CHRS(CHAR);
220 NEXT

ES"

GOTO

C :: NEXT R :: DISPLAY AT(20,9)

230 230

240 DATA "0000000000000000"

250 DATA "00000000001F2040"

260 DATA "0000000000FF0000"

270 DATA "0000000000FF0000"

280 DATA "0000000000E060A0"

290 DATA "0000000000000000"

300 DATA "0000000000000000"

310 DATA "00000000001F2143"

320 DATA "0001020408102040"

330 DATA "8000000000000000"

340 DATA "0000000000000000"

350 DATA "0102040810204080"

360 DATA "2020202020202020"

370 DATA "0000000000000000"

380 DATA "0001020408102142"

390 DATA "8509112142840810"

400 DATA "FF80808080808080"

410 DATA "FF00000000000000"

420 DATA "FF01010101010101"

430 DATA "0000000000000000"

440 DATA "2020202020202020"

450 DATA "0001030202020203"

460 DATA "8408F011121418F0"

"3-D SHAP

41

Introduction to Graphics

"2040800000000000"

"8080808080808080"

"0000000000000000"

"0101010101010101"

"0000000000000001"

"2020202020408000"

"0000000000000000"

"0000000000000000"

"0000000000000000"

"80808080808080FF"

"00000000000000FF"

"01010101010101FF"

"0204081020408000"

"0001020408102040"

"00FF000000000000"

"00FF000000000000"
"00FF030509112141"

"0000000000010101"

"00003F4385F90909"

"0000000000000000"

"0000000000000000"

"FF8080808F888888"

"FF000000FF20202U"

"FF010101F1111111"
"8101010101010101"

"0101010102040810"

"090909F911214284"

"0000000000000000"

"0000000000000000"

"8888888888888888"

"20202020203F4080"

"1111111111F11111"

"0101010101010101"

"2142FC84848586FC"

"0810204080000000"

"0000000000000000"

"0000000000000000"

"898A8C8F808080FF"

"000000FF000000FF"

"111111F1010101FF"

"0204081020408000"

470 DATA '

480 DATA '

490 DATA '

500 DATA '

510 DATA *

520 DATA '

530 DATA '

540 DATA '

550 DATA '
560 DATA '
570 DATA *

580 DATA '

590 DATA '

600 DATA *

610 DATA '

620 DATA '

630 DATA '
640 DATA *

650 DATA *

660 DATA '

670 DATA '

680 DATA *

690 DATA '

700 DATA '

710 DATA '

720 DATA '

730 DATA '

740 DATA '

750 DATA '

760 DATA '

770 DATA '

780 DATA '

790 DATA *

800 DATA '

810 DATA '

820 DATA '

830 DATA '

840 DATA '

850 DATA '

860 DATA '

870 DATA *

The second method for producing hi-res graphics on the
TI doesn't require you to predefine the image with CALL
CHAR statements. Instead, the TI itself will draw the image
based on an equation. It will determine which bits are needed,
and then it will turn them on.

42

JvHSEI

(fflKE^

Introduction to Graphics

This method still starts with the 64 ASCII character codes
used in the previous program. Rather than defining these
characters, however, all bits are initially turned off (set to
zero). These characters are located on the screen in the 8 x 8
arrangement shown in Figure 2-8. Of course, since all the bits
are turned off, nothing shows up on the screen at this point.

Figure 2-8. Character Arrangement for Graph

33 34 35 36 37 38 39 40

41 42 43 44 91 92 93 94

95 96 97 98 99 100 101 102

103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118

119 120 121 122 123 124 125 126

127 128 129 130 131 132 133 134

135 136 137 138 139 140 141 142

This arrangement is analogous to a 64 x 64 pixel matrix
on the screen. The equation determines which pixels in the 64
x 64 matrix must be turned on. But since the pixels can't be
accessed directly, the 8 x 8 character in which they reside
must be found. The pattern for that character is then changed
to reflect the on condition of the pixel. Slowly, the image is
drawn on the screen.

Program 2-7, "Graph," demonstrates how this technique
works. It may seem a bit complex at first, but if you study the
program, it should start to make sense.

There are two things to keep in mind when using this
routine. First, due to the number of computations required to
find and set the appropriate pixels, program execution is quite
slow. This is especially true with STEPs of .5 or less. The sec
ond thing to keep in mind is that the technique uses a lot of
memory, due to the large number of character definitions.

43

Introduction to Graphics

Figure 2-9 shows what you'll get if you modify the pro
gram for different equations.

Figure 2-9. Program Changes for Graph

Change lines to:

460 Y=X

460Y=-X

460 Y=8

460 Y=X+6

44

390 FOR X=0 TO 32 STEP .5
410 FOR X=0 TO -32 STEP -.5
460 Y=2*X-12

390 FOR X=0 TO 32 STEP .25
410 FOR X=0 TO -32 STEP -.25
460Y=.333*X+10

390 FOR X=0 TO 32 STEP .1
410 FOR X=0 TO -32 STEP -.1
460 Y=Xt2

WlWl
390 FOR X=0 TO 32 STEP .1

410 FOR X=0 to -32 STEP -.1
460 Y=SIN(X)*7

«fe?w^

.^HErJl

fi5S3

How Graph Works

Line(s)

Introduction to Graphics

100 DIMension arrays.

110-120 Clear the screen and display message.

130-140 Set up character patterns. BL$ is used to blank out the
characters used by the program. A$, B$, C$, and D$
are used to insert the X and Y axes in the display area.

150 Load four-digit bit strings into BITS$.
160-170 Blank out the ASCII characters used in the display

area.

180-230 Insert the X and Y axis lines in the display area.

240 Display the Xand Y axis values.
250-320 Load the A array with the ASCII character codes in the

display area. This is used later to determine which
ASCII character code to change.

330 Erase STAND BY message.

340-380 Display the 64 characters on the screen 8 characters at
a time. This builds the 8 x 8 display area.

390-400 Initiate the routine to plot the points for the positive
values of X.

410-420 Initiate the routine to plot the points for the negative
values of X.

430-450 End of program.

460 This is the equation which controls where the points
are plotted on the graph. Figure 2-9 shows possible
alternatives.

470-490 Determine the actual location of the point in the 64 x
64 pixel matrix. The program plots both positive and
negative values, but negatives in the actual matrix
aren't possible, hence the +32.

500-520 Determine the location of the pixel in the 8 x 8 charac
ter matrix. This must be done since the pixel cannot be
accessed directly.

530 Get the hex pattern of the character that contains the
pixel. The A array contains the ASCII codes of the
characters used. The pattern is placed in W$.

540-560 Determine which byte in the pattern contains the pixel.

45

Introduction to Graphics

570-620 Convert the one-byte hex pattern which contains the
pixel into an eight-digit bit pattern (for example,
00100110).

630-660 CI contains the column position of the pixel within the
8x8 character grid. If the bit in this position is not on,
it is turned on. If it is on, it stays as is.

670-690 Convert the bit pattern, with the updated pixel, back
into a hex pattern.

700-730 Combine the new one-byte hex pattern with the other
seven bytes in the pattern.

740 Change the pattern of the ASCII character code which
effectively plots the point on the screen.

750 Return from plot subroutine.
760-770 Hex pattern binary equivalents.

Program 2-7. Graph
100 DIM A(8,8),BITS$(15)
110 CALL CLEAR

120 DISPLAY AT(4,6):"PLEASE STAND BY"
130 BL$="0000000000000000" J: HEX$="0123456789ABCD

EF"

140 A$="0101010101010101" :: B$="8080808080808080"
:: C$="00000000000000FF" :: D$="FF00000000000

00000"

150 FOR L=0 TO 15 :: READ BITS$(L):: NEXT L
160 FOR L=33 TO 44 :: CALL CHAR(L,BL$):: NEXT L
170 FOR L=91 TO 143 :: CALL CHAR(L,BL$):: NEXT L
180 CALL CHAR(36,A$,44,A$,98,A$/122/A$,130,A$/138,

A$)
190 CALL CHAR(37,B$,91,B$,99,B$,123,B$,131,B$,139,

B$)

200 CALL CHAR(103,C$,104,C$,105,C$,108,C$,109,C$,1
10,C$)

210 CALL CHAR(111,D$,112,D$,113,D$,116/D$,117,D$/1
18,D$)

220 CALL CHAR(106,"01010101010101FF"):: CALL CHAR(
107, "80808080808080FF")

230 CALL CHAR(114,"FF01010101010101"): : CALL CHAR(
115,"FF80808080808080")

240 DISPLAY AT(6,13):"32" :: DISPLAY AT(11,19):"32
" :: DISPLAY AT(11,7):"-32";:: DISPLAY AT(17,1
2):"-32"

250 X=33

260 FOR L=l TO 8

46

jSpfflJ

•liiHDffliJ

Introduction to Graphics

_ 270 FOR L2=l TO 8
T 280 IF X=45 THEN X=91

290 A(L,L2)=X
300 X=X+1

310 NEXT L2

320 NEXT L

330 DISPLAY AT(4,1):" "
340 FOR L=l TO 8

350 L$=""
360 FOR X=l TO 8 :: L$=L$&CHR$(A(L,X)):: NEXT X
370 DISPLAY AT(7+L,10):L$r
380 NEXT L

390 FOR X=0 TO 32 STEP .3
400 COSUB 460 :: NEXT X
410 FOR X=0 TO -32 STEP -.3
420 GOSUB 460 :: NEXT X
430 DISPLAY AT(22,8):"PRESS ANY KEY"
440 CALL KEY(3,K,S):: IF S=0 THEN 440
450 CALL CLEAR :: STOP

460 Y=X

470 XX=INT(X+32):: YY=INT(Y+32)
480 IF XX>64 OR XX<=0 THEN 750
490 IF YY>64 OR YY<=0 THEN 750
500 R=64-YY+1
510 CC=INT((XX-l)/8)+l
520 RR=INT((R-l)/8)+l
530 CALL CHARPAT(A(RR,CC),W$)
540 Cl=XX-((CC-D*8)
550 Rl=INT((64-YY)-((RR-D*8)+l)
560 BYTE$=SEG$(W$,R1*2-1,2)
570 EXPAND$=""
580 FOR L3=l TO 2
590 B10LD$=SEG$(BYTE$,L3,1)
600 IF HOLD$>"9" THEN POINT=ASC(HOLD$)-55 ELSE POI

NT=VAL(HOLD$)

610 EXPAND$=EXPAND$&BITS$(POINT)
620 NEXT L3

630 NEWPAT$=""
640 FOR L2=l TO 8
650 IF CK>L2 THEN NEWPAT$=NEWPAT$&SEG$(EXPAND$, L2

,1)ELSE NE\7PAT$=NEUPAT$&"1"
660 NEXT L2

f» 670 HIGH$=SEG$(HEX$,8*VAL(SEG$(NEVJPAT$,1,1))+4*VAL
i (SEG$(NEUPAT$,2,1))+2*VAL(SEG$(NEWPAT$,3,l))+V

AL(SEG$ (NEV/PAT$, 4 ,1))+l, 1)
f 680 LOV7$=SEG$(HEX$,8*VAL(SEG$(NEWPAT$,5,l))+4*VAL(

SEG$(NEV/PAT$,6,1))+2*VAL(SEG$(NEWPAT$,7,1))+VA
f*1 L(SEG$(NE\7PAT$,8,1))+1,1)

690 BYTE$=HIGH$&LOW$

47

Introduction to Graphics •^•^^^^mh^h^mh

700 NEV7CHAR$=""
710 FOR L2=l TO 16

720 IF L2<>R1*2-1 THEN NEV7CHAR$=NEUCHAR$&SEG$ (V7$,L
2,1)ELSE NEV7CHAR$=NEV7CHAR$&BYTE$:: L2=L2+1

730 NEXT L2

740 CALL CHAR(A(RR,CC),NEV7CHAR$)
750 RETURN

760 DATA "0000","0001","0010","0011","0100", "0101"
,"0110","0111","1000"

770 DATA "1001","1010","1011","1100","1101","1110"
,"1111"

48

(

fftBS

Sprites

Chapter 2 introduced the basic concepts and tech
niques used to produce graphics on the TI, and even
if that was all you had, it would still be a decent
graphics machine. But the engineers at Texas

Instruments didn't stop there. In fact, they went considerably
further by giving your TI an outstanding feature: sprite
graphics.

Sprites are graphics characters which, once defined by the
program, are controlled by the TI itself. They can be made to
move independently of, and concurrently with, your BASIC
program. For example, your program can define a sprite in the
shape of an airplane, set the plane in motion across the screen,
and then go on to some other process. Meanwhile, the sprite
will continue to fly across the screen until your program either
interrupts it or ends.

Sprite motion is much smoother than motion controlled
by BASIC. Sprites can move from one location to the next a
single pixel at a time, eliminating the jumpy motion inherent
in character-to-character movement. In addition, since sprites
are controlled by the computer's hardware and system soft
ware, they offer a huge speed advantage over BASIC-
controlled graphics. Finally, unlike other graphics, sprites can
pass over other sprites or objects without erasing the previous
contents of a screen location.

Sprites are placed on the screen by pixel location rather
than character location. This means they can be placed virtu
ally anywhere on the 192 dot-row by 256 dot-column screen
matrix. The TI-99/4A allows for 32 independent sprites on the
screen at one time. Extended BASIC, however, limits this to
28. Each of the 28 sprites may be assigned its own color, and
any sprite's location, motion, velocity, shape, and color can be
changed dynamically within a BASIC program.

There are specialized commands which let you check the
status of sprites. You can, for example, determine a sprite's
location and decide whether or not it is coincident with
another sprite. Your program can also determine how far one
sprite is from another sprite or screen location. The magic
behind such capabilities is TI's sophisticated TMS9918A Video

51

Sprites

Display Processor (VDP). Although several other home
computers have sprite-type graphics, they do not have the
automatic motion and other features of the TI because they do
not have the TI chip.

The TMS9918A Video Display Processor
To fully appreciate this chip's capabilities and to better under
stand TI sprites, it is beneficial to take a look at the
TMS9918A Video Display Processor (VDP). The video for the
TI-99/4A is controlled by this chip, which is an advanced
large-scale integrated-circuit (LSI). Among the features pro
vided by the VDP are resolution of 256 x 192 pixels, 16 colors
(including transparent), 35 display planes for graphics control,
and sprites.

The VDP arranges the 99/4A's display into 35 geometric
planes (Figure 3-1) stacked on top of each other. These
stacked planes are displayed on the monitor as one composite
image. Any image on the first plane will block out that area
on planes 2-35, any image on the second plane will block out
that area on planes 3-35, and so on. Furthermore, if the image
on a particular plane is moving, it will appear to pass in front
of any images on planes in front of it. The overall effect is to
simulate a three-dimensional graphics display on the two-
dimensional screen of your monitor.

The first 32 planes, numbered 0-31, may contain one
sprite graphics character each. The sprite on the lowest-
numbered plane will always appear to pass over the other
sprites. The highest-numbered sprite will always appear to
pass behind the other sprites. The remaining sprites act
according to their precedence. Keep in mind that Extended
BASIC allows you to define only 28 sprites (numbered 1-28).

Behind the sprite planes is the pattern plane. This plane
contains the characters placed on the screen by BASIC com
mands such as DISPLAY and HCHAR. Behind this is the
backdrop plane, which appears as the display area background
and border on your TV or monitor. Its color is set by the
CALL SCREEN command.

The last plane in the stack is the external video plane.
This plane allows the VDP to mix external video signals into
the image. It is used only in specialized applications and has a
default color of black. It is this plane that causes the screen to
black out when you set the screen color to transparent.

52

%^MSfr~|

S^}

1

F
ig

u
re

3
-1

.
D

is
p

la
y

P
la

n
e
s

*»
N

V
N

V
>

V

C
s

<
b

\
*

V
H

V
*

a
a

j

a
i

\
f
c

\«
k

v
\

\
*

>
i\

\«
\

W
n

N
^

li
l

>N
v

^
^

"*
•

>
S\

^
^

^
x

^
~

^
l

*N
NX

»"
1

>
6v

•
^

T
r
l

T

i e
n

Sprites

VDP RAM

The actual patterns, sprite attributes, and other information ^
required to produce a screen display are stored in a block of
memory called VDP Random Access Memory (RAM). This
VDP RAM is segregated into sub-blocks containing various
tables that define the screen image. Five of the most important
sub-blocks are the Pattern Name Table, Pattern Generator
Table, Pattern Color Table, Sprite Attribute Table, and Sprite
Generator Table.

The first three tables define characters on the pattern
plane. The Pattern Name Table identifies each of the 768
character positions on the screen and points to the pattern
definition for that character position in the Pattern Generator
Table. The Pattern Generator Table contains the character pat
terns defined to the computer which can be displayed on the
screen at the locations determined by the Pattern Name Table.
The Pattern Color Table contains the color codes for the pat
terns defined in the Pattern Generator Table, and colors are
assigned to character sets (every eight contiguous characters)
rather than to individual characters.

Two separate tables are used to define and control sprites.
The Sprite Attribute Table identifies each sprite that has been
defined and contains information about its location and color.
It also contains a pointer to the sprite's entry in the Sprite
Generator Table. The Sprite Generator Table defines the pat
tern used for that sprite.

Putting It on the Screen
So the VDP RAM contains a lot of information. How is that
information used to place an image on the screen? Actually,
the screen image is constantly updated by the computer,
which continually scans the tables to determine what character
or sprite belongs in each screen position. Information about
each character or sprite (for example, color, pattern, size, etc.)
is collected from the tables and mapped onto the appropriate
plane, and the planes are then combined to form the actual
screen image (Figure 3-2).

Obviously, since the display appears to change constantly, ^
the process is being accomplished at microsecond speeds. VDP
RAM values are being changed (via BASIC instructions); pat- ^
terns, colors, and locations are being mapped onto display
planes; and display planes are being combined to form the "*)

54 •""!

Figure 3-2. Mapping the Display

Screen
Locations

768

TMS9918A VDP

POINTER

Sprite
Attribute Table

Pattern

Name

Table

PATTERN

Sprite Generator
Table

COLOR

Pattern

Color
Table

Planes 1-31

* •

/ *

Sprites

Backdrop and
External
Video
Planes

Monitor

or TV

image on your monitor. It is a complex process, and it goes on
continuously.

In addition, the VDP also keeps track of other infor
mation. It follows the velocity and direction of any sprites that

55

Sprites

are in motion, and it checks sprite size, sprite coincidence (two
or more sprites in the same display area), sprite distance from
other objects, and the number of sprites on a line.

Defining Sprites
Sprites are defined by using the CALL SPRITE subprogram. It
has the following format:

CALL SPRITE(#sprite number,character value,sprite color,dot-
row,dot-column,row velocity,column velocity,...)
Sprite number is a numeric value from 1 to 28 which

identifies the sprite. The numeric value is always preceded by
the # symbol and may be a numeric literal, variable, or
expression (for example, #2, #A, #X+1). If a sprite is defined
with a sprite number that already exists, the old sprite is
deleted and the new one takes its place.

When defining sprites in your program, keep in mind that
they will appear on sprite planes. Consequently, lower-
numbered sprites will pass over higher-numbered ones, and
all sprites will pass over other objects which are on the pattern
plane.

Character value identifies the ASCII character code that
contains the desired sprite pattern. The pattern is defined by
the CALL CHAR subprogram. Character value must be an
integer between 32 and 143, and it may be a numeric literal,
numeric variable, or numeric expression. For double-sized
sprites (discussed later), character value is the first ASCII code
of a four-code contiguous group.

Sprite color is an integer from 1 to 16 that determines the
sprite's color. The value itself may be a numeric literal,
numeric variable, or numeric expression. The colors are the
same as those used in the CALL COLOR and CALL SCREEN
commands. Sprite color identifies the foreground color only;
the background color is always transparent (1).

Dot row identifies a sprite's initial row location on the
screen, which is determined by pixel rather than character
location. As a result, a sprite can be positioned anywhere on
the TI's 192 dot row screen grid. The sprite is placed on the
screen with its top left pixel at the location indicated by dot-
row (Figure 3-3).

56

IBS)

1
1

1
1

^
3

F
ig

u
re

3
-3

.
S

p
ri

te
L

o
c
a

ti
o

n

(C
ol

um
n

1,
Ro

w
1)

CA
LL

SP
R

IT
E(

#1
,6

5,
2,

35
,6

7)
1

—
1

!
!
!
.!

!
'.

!
!
!
;
!
!
!

,
.
,
.
.
.
,

.
.
.
.
.
.

:;
:

::
:

:
,:

:
;

;
•:

:

.
.
.
:
:
.
.

:
.
.
-
.

.

,
:
,

,
.

::
:;

::
;

::
:.

,:
:

:
:
:
.:

:
:

.
.
.

.
.

H
•
•

1
1

!
'.

i

•;
•

::
:

::
:!

::
:

:,
'

;
:
:
•

.
'

'
!<D

Sprites

Dot row is an integer value in the range 1-256. It may be
a numeric literal, numeric variable, or numeric expression. The
upper limit is 256 instead of 192 because, although the TI has
the ability to address up to 256 rows, only the first 192 are vis
ible. The remainder (193-256) are off the bottom of the
screen, but sprites can still be located there.

Dot column identifies a sprite's initial column location on
the screen. The location may be any of the 256 columns on
the TI screen grid. As with dot-row position, a sprite is located
at the dot-column indicated by its top-left pixel.

Row velocity is an integer in the range —128 to 127 and
may be a numeric literal, numeric variable, or numeric
expression. It causes the sprite to have vertical motion. When
row velocity is positive, the sprite will move downward; when
row velocity is negative, the sprite will move upward. The
speed at which the sprite moves is determined by the row
velocity value. The higher the positive number, or the lower
the negative number, the faster the speed. The following scale
illustrates this:

faster slower faster

-128 < 0 > 127

css>

Column velocity is an integer in the range —128 to 127
and may be a numeric literal, numeric variable, or numeric
expression. It causes the sprite to have horizontal motion. A
positive value moves the sprite to the right; a negative value
moves the sprite to the left. The sprite's speed is determined
the same way as row velocity.

You can give a sprite diagonal motion by using both row
and column velocity. For example, a row velocity of 20 and
column velocity of 20 will cause the sprite to move down and
to the right at a 45-degree angle. Other values will produce
different directions and speeds. If you want the sprite to be _
stationary, you can either give it a row and column velocity of \T'
0 or exclude these two parameters altogether.

There are several other factors you should consider when
using sprites in your programs. Whenever a program hits a
breakpoint or you use CLEAR (FCTN 4) to stop the program, •

58 1

HMhJ

L

Sprites

all active sprites cease to exist. The CONTINUE statement will
not restore them. Also, the VDP is designed to handle a maxi
mum of four sprites on any one screen line. When this limit is
exceeded, the highest numbered sprites "disappear." They still
exist, however, and will reappear once they (or one of the
other sprites) move beyond the line.

CALL SPRITE Subprogram Examples
The best way to understand sprites is to see them in action.
The following short programs illustrate several variations on
the CALL SPRITE command. You should type in and RUN
these programs to know how the commands work.
100 CALL CLEAR
110 CALL SPRITE(#1,65,2,95,128)
120 GOTO 120

This program defines sprite number 1. The pattern for the
sprite is the normal pattern for ASCII code 65—the letter A.
The foreground color is black (2); the background is always
transparent. The sprite will be displayed on the screen with its
top left-hand corner pixel at dot-row 95 and dot-column 128.

As you can see when you RUN the program, the sprite
remains in the center of the screen. In order to put the sprite
in motion, it must be given row and/or column velocity.
Changing line 110 to the following does just that:
110 CALL SPRITE(#1,65,2,95,128,20,0)

The CALL SPRITE subprogram has now been given two
additional parameters. Its row velocity is now 20; the column
velocity is 0. The sprite will move smoothly downward at
medium speed. When it gets to the bottom of the screen, it
will wrap around the screen and reappear at the top, still in
motion. The motion will continue until you end (CLEAR) the
program.

If you change the row velocity to 90, the sprite's speed
will show a dramatic increase. Similarly, by changing the row
velocity to —20, you will make the sprite reverse direction
and move upward. Changing the velocity to —90 will move
the sprite upward at high speed.

Horizontal motion is controlled in the same way. When
you change the row velocity back to 0 and the column veloc
ity to 20, the sprite will move across the screen from left to

59

Sprites

right at medium speed. Changing the column velocity to —20
moves the sprite from right to left.

By providing both row and column velocities, you can -
move the sprite in any direction. For example, a row velocity
of 20 and a column velocity of 20 move the sprite down to the
right. Similarly, row velocity 20 and column velocity —20
move the sprite down and to the left, and —10 and —50
move the sprite up and to the left at a sharp angle.

Program 3-1 demonstrates three additional concepts relat
ing to CALL SPRITE. First, there may be multiple sprites—as
many as 28—on the screen at any one time. Second, the
parameters coded in the CALL SPRITE command may be gen
erated randomly. And finally, when a sprite number is reused
in a CALL SPRITE command, the sprite previously identified
by that number will be replaced by the new sprite indicated in
the command.

Program 3-1. Sprite Example 1
100 CALL CLEAR

110 CALL SCREEN(2)
120 RANDOMIZE

130 FOR L=l TO 26

140 ROWVEL=1+INT(RND*50)
150 IF RND<.5 THEN ROV/VEL=ROUVEL*-l
160 COLVEL=1+INT(RND*50)
170 IF RND<.5 THEN COLVEL=COLVEL*-l
180 COLOR=3+INT(RND*14)
190 CALL SPRITE(#L,L+64,COLOR, 95, 128, ROV/VEL, COLVEL

)
200 NEXT L

210 GOTO 130

Lines 100-110 clear the screen and set the color to black
(2). Line 120 seeds the random number generator. Line 130
sets up a loop which will repeat 26 times. Lines 140-170 ran
domly generate the row velocity and column velocity for each
26 sprites. The sprite number is determined by L (1-26); the
sprite pattern is determined by L+64 (which yields 65-90,
representing the letters A-Z).

The sprites will appear initially at dot row 95 and dot
column 128, with velocities determined by lines 140-170. Line
200 closes the loop. Line 210 branches to line 130, which
starts the process over again. As each sprite number (1-26) is

60

Sprites

L

reused, the sprite previously identified by a particular number
l is replaced on the screen by the new sprite now identified by

that number.
The example programs presented thus far have used let

ters of the alphabet for the sprite shapes. Sprites may, of
course, be any shape you define them to be. Program 3-2
combines sprites with character definition techniques discussed
in Chapter 2.

Program 3-2. Sprite Example 2
100 CALL CLEAR

110 CALL CHAR(33,"18182424424281FF")
120 CALL CHAR(34,"FF7E3C18183C7EFF")
130 CALL CHAR(35,"183C7EFFFF7E3C18")
140 CALL CHAR(36,"80E0F0FFFFF0E080")
150 CALL CHAR(37,"182442FFFF422418")
160 CALL SCREEN(2)
170 RANDOMIZE

180 FOR L=l TO 26
190 ROVJVEL=1+INT(RND*30)
200 IF RND<.5 THEN ROWVEL=ROV7VEL*-l
210 COLVEL=1+INT(RND*30)
220 IF RND<.5 THEN COLVEL=COLVEL*-l
230 COLOR=3+INT(RND*14)
240 PAT=33+INT(PND*5)
250 CALL SPRITE(#L,PAT,COLOR,95,128,ROWVEL,COLVEL)
260 NEXT L

270 GOTO 180

Line 100 clears the screen. Lines 110-150 define the
character patterns used for the sprites. These will be assigned
to ASCII codes 33-37. Line 160 sets the screen to black, and
line 170 seeds the random number generator. Line 180 sets up
the sprite definition loop, which is closed by line 260. Lines
190-220 randomly generate the row and column velocities.
Line 230 randomly selects the sprite color. Line 240 deter
mines the pattern to be used for each sprite by selecting a ran
dom number between 33 and 37 inclusive, and line 250
defines the sprite and sets it in motion. Line 270 starts the
process over.

<^u Sprite Sizes
Sprites displayed on the screen are not limited in size to a sin-

«« gle 8 x 8 character. There are, in fact, four different sprite sizes

61

Sprites

to choose from. These are formed by.specifying the sprite as
either single- or double-sized and magnified or unmagnified.

Single-sized sprites are defined by a single character pat
tern. Double-sized sprites, on the other hand, are defined by
four contiguous character patterns (for example, ASCII codes
100-103). The first pattern in the four-pattern group is defined
by an ASCII code evenly divisible by four (for example, 100).
If you specify a code that is not divisible by four, the com
puter will start with the next lowest ASCII code which is
divisible by four. For example, if you specify ASCII code 102
as the CALL SPRITE character code, the four-pattern sprite
will still be defined by ASCII codes 100-103.

Each character in an unmagnified sprite occupies the stan
dard 8x8 character grid. The overall size of a magnified sprite
character is increased by a factor of four. A single-sized mag
nified sprite occupies a 4-character 16 x 16 grid; a double-
sized magnified sprite occupies a 16-character 32 x 32 grid.

The CALL MAGNIFY subprogram is used to set the
desired sprite size. It has the following format:
CALL MAGNIFY(magnification factor)

Magnification factor is an integer from 1 to 4 that defines
the sprite's size. It can be a numeric literal, numeric variable,
or numeric expression. The size indicated by magnification
factor is assigned to all active sprites on the screen.

A magnification factor of 1 defines all active sprites as
single-sized and unmagnified. This is the default size if no
CALL MAGNIFY is specified in the program and is shown by
the following program:
100 CALL CLEAR
110 CALL MAGNIFY(l)
120 CALL SPRITE(#1,68,2,9,9)
130 GOTO 130

62

UvrSi

iwvjj

|BB|

TV

Sprites

A magnification factor of 2, as the next program shows,
defines all active sprites as single-sized and magnified. The
sprite pattern is displayed on the screen four times larger than
normal.

100 CALL CLEAR

110 CALL MAGNIFY(2)
120 CALL SPRITE(#1,68,2,9,9)
130 GOTO 130

63

Sprites

A magnification factor of 3 defines all active sprites as
double-sized and unmagnified. The sprite pattern is defined
by four contiguous characters. The first character code in the
four-character group is evenly divisible by four. Each of the
four characters is unmagnified (normal size).

100 CALL CLEAR

110 CALL MAGNIFY(3)
120 CALL SPRITE(#1,68,2,9,9)
130 GOTO 130

n F
E G

Notice that the above example displays the four letters D,
E, F, and G, the four-character group. If you change the
character code to 70 (not evenly divisible by 4), the computer
uses the next lowest number divisible by 4, which is 68. As a
result, the same four letters would be displayed.

Finally, a magnification factor of 4 defines all active
sprites as double-sized and magnified. The sprite pattern is
defined by four contiguous characters. In addition, each of the
four characters is four times its normal size.

100 CALL CLEAR

110 CALL MAGNIFY(4)
120 CALL SPRITE(#1,68,2,9,9)
130 GOTO 130

64

CE^j*

i

ChS$£|

ffEfl

pHEl

fBS)

Sprites

If you look at the two double-sized examples, you will
notice that the four characters making up the sprite are placed
on the screen in a specific order. The first ASCII character
forms the top left portion of the sprite. The second forms the
bottom left, the third forms the top right, and the fourth forms
the bottom right.

For simplicity's sake, the preceding examples used letters
of the alphabet to define the sprite patterns. However, you can
define whatever patterns you wish to use by using CALL
CHAR.

The short program below shows how that can be done. It
uses CALL CHAR to define a pattern in four contiguous ASCII
character codes. It then defines a double-sized unmagnified
sprite which moves across the screen.
100 CALL CLEAR
110 CALL CHAR(100,"00000003010307FF")
120 CALL CHAR(101,"FF07030103000000")
130 CALL CHAR(102,"103060E0C0C183FF")
140 CALL CHAT(103,"FF83C1C0E0603010")
150 CALL MAGNIFY(3)
160 CALL SPRITE(#1,100,2,90,220,0,-10)
170 GOTO 170

65

Sprites

Deleting Sprites
To remove a particular sprite from the screen, you must use
the CALL DELSPRITE subprogram. It has the following
format:

CALL DELSPRITE(#sprite number,...)

Sprite number is the number of the sprite you want to
delete. It is always preceded by the # symbol and may be a
numeric literal, numeric variable, or numeric expression. You
may delete more than one sprite in a single CALL DELSPRITE
subprogram as follows:

CALL DELSPRITE(#l,#D,#A+2)

In addition, you may delete all sprites in the program by using
CALL DELSPRITE(ALL).

Sprite Color
A sprite's color may be changed by using the CALL COLOR
subprogram. This command has the following format:
CALL COLOR(#sprite number,foreground color,...)

Sprite number identifies the sprite. It is always preceded
by the # symbol and may be a numeric literal, numeric vari
able, or numeric expression. You may assign a color to more
than one sprite in a single CALL COLOR command.

66

WSE?:::|

Sprites

Foreground color is the color that will be assigned to the
illuminated pixels in the sprite. A sprite's background color is
always transparent.

One way to get multicolor graphics on your TI is to com
bine sprites of different colors. Keep in mind that sprites reside
on planes, and remember that lower-numbered sprites pass in
front of higher-numbered sprites when two or more are
coincident (at the same location). However, only that portion
of the higher-numbered sprite that is behind the foreground
color of the lower-numbered sprite is actually blocked out.
The portion that is behind the background color (transparent)
still appears on the screen.

The following short program illustrates this. It defines two
sprites. One is a solid square; the other is a triangle. When the
two occupy the same location, you can see that only the por
tion of the square directly behind the triangle is blocked out.
100 CALL CLEAR
110 CALL CHAR(96,"FFFFFFFFFFFFFFFF")
120 CALL CHAR(97,"0000183C7EFF0000")
130 CALL MAGNIFY(2)
140 CALL SPRITE(#l,97,7,90,90,0,3,#2,96,3,90,140,0,-3)
150 FOR L=l TO 1400 :: NEXT L
160 GOTO 140

Program 3-3, "Kaleidoscope," shows how this concept can
be used to generate impressive multicolor graphics. It ran
domly displays four moving patterns (out of a possible six).
Each pattern is assigned a randomly selected color, and the
patterns and colors blend in a way that simulates a
kaleidoscope.

How Kaleidoscope Works

Line(s)
100 Clear the screen.

110 Seed the random number generator.

120 Set the letters of the alphabet to white.

130 Set the screen color to black.

140-190 Define the six patterns that will be used in the pro
gram. The patterns are simply symmetrical shapes that,
when combined, will form a kaleidoscope effect. The
sprites will have a magnification factor of 4, which
means each pattern defines four contiguous characters.

67

Sprites

Notice that the ASCII codes used to define the patterns
are all evenly divisible by four.

200 Load the C array with the six color codes that will be
used by the sprites.

210 Load the CS array with the ASCII codes which define
the six patterns.

220 Display the program title.

230 Set the sprite magnification factor to 4 (double-sized
and magnified).

240 Randomly select one of the six character patterns and
one of the six colors.

250 Define the sprite with the lowest precedence (#4). The
pattern and color come from the random selection in
lines 200-210.

260-320 Define the remaining three sprites. The character pat
tern and color are randomly selected. All four sprites
have the same initial screen location (row 90, column
100). Lines 270, 300, and 330 are timing loops.

350 Start the process over. The overall effect is a contin
ually changing kaleidoscope of patterns and colors.

Program 3-3. Kaleidoscope
100 CALL CLEAR

110 RANDOMIZE

120 FOR L=5 TO 8 :: CALL COLOR(L,16,1):: NEXT L
130 CALL SCREEN(2)
140 CALL CHAR(96,"FF80809F989493929393949S9F8080FF

FF0101F91929C94949C92919F90101FF")
150 CALL CHAR(104,"3E2AD3A2CE8EFC2121FC8ECEA2D32A3

E7C54CB4573713F84843F717345CB5'47C")
160 CALL CHAR(112,"FE8080838084921111928480838080F

E7F0101C10121498O88492101C1010'170")

170 CALL CHAP(120,"FFECD8B0E0C78485C584C7E0B0D8ECF
FFF371B0D07E321A1A121E3070D1B37FF")

180 CALL CHAR(128,"FFC0A093898492999992848993A0C0F
FFF0305C99121499999492191C9050 3FF")

190 CALL CHAR(136,"3F4F8783C1E0F0F8F8F0E0C183874F3
FFCF2E1C183070F1F1F0F0783C1E1F 2FC") «?

200 C(l)=13 :: C(2)=5 :: C(3)=9 :: C(4)=12 :: C(5) -'
=14 :: C(6)=16

210 CS(1)=96 :: CS(2)=104 :: CS(3)=112 :: CS(4)=12 :
0 :: CS(5)=128 :: CS(6)=136

220 DISPLAY AT(4,3): "KALEIDOSCOPE" *"*,
230 CALL MAGNIFY(4)

68 >

fpffll

CHiBSJ

Sprites

240 S4=1+INT(RND*6):: C4=1+INT(RND*6)
250 CALL SPRITE(#4,CS(S4)#C(C4),90,100)
260 S3=1+INT(RND*6):: C3=1+INT(RND*6)
270 FOR L=l TO 25 :: NEXT L
280 CALL SPRITE(#3,CS(S3),C(C3),90,100)
290 S2=1+INT(RND*6):: C2=1+INT(RND*6)
300 FOR L=l TO 25 :: NEXT L
310 CALL SPRITE(#2,CS(S2),C(C2),90,100)
320 Sl=l+INT(RND*6):: Cl=l+INT(RND*6)
330 FOR L=l TO 25 :: NEXT L
340 CALL SPRITE(#1/CS(S1),C(C1),90,100)
350 GOTO 240

Controlling Sprites in BASIC Programs
In order for sprites to be truly useful in your programs, you
need a way to control them. This is particularly true for
games, when the person at the keyboard must be able to con
trol a sprite's location, speed, or direction.

One way to do this is to have the program redo the CALL
SPRITE subprogram each time a change is required. This was
done in the previous program, "Kaleidoscope." Usually, how
ever, it is not necessary to completely redefine a sprite.
Extended BASIC provides several subprogram commands that
let you change only a specific parameter.

Changing a Sprite's Location
A sprite's location on the screen can be changed by using the
CALL LOCATE subprogram. All of the sprite's other attributes
are left intact.

CALL LOCATE(#sprite number, dot-row, dot-column,...)
Sprite number identifies the sprite that will have its loca

tion changed. It is an integer in the range 1-28 and may be a
numeric literal, numeric variable, or numeric expression. It is
always preceded by the # symbol.

Dot-row identifies the new row location for the sprite. It
is an integer in the range 1-256 and may be a numeric literal,
numeric variable, or numeric expression. Dot-column identifies
the new column location for the sprite and is also an integer
in the range 1-256.

The following short program illustrates how CALL
LOCATE works. It defines a sprite in the shape of an A and
then randomly locates it on the screen.

100 CALL CLEAR
110 CALL SPRITE(#1,65,2,90,125)

69

Sprites

120 FOR L=l to 500 :: NEXT L

130 CALL LOCATE(#1,1+INT(RND*192),INT(RND*250))
140 GOTO 120

Changing a Sprite's Motion
-A sprite's direction and speed can be changed using the CALL
MOTION subprogram. All of the sprite's other attributes are
left intact. The subprogram has the following format:
CALL MOTION(#sprite number, row velocity, column

velocity,...)

Sprite number identifies the sprite. It is an integer in the
range 1-28 and may be a numeric literal, numeric variable, or
numeric expression. It is always preceded by the # symbol.

Row velocity determines the sprite's vertical speed. It is
an integer in the range -128 to 127. A positive value moves
the sprite downward; a negative value moves the sprite
upward. The sprite's speed is determined by how far the row-
velocity value is from 0. That is, as the value increases from 0
to 127or decreases from 0 to —128, the speed increases. A
value of 0 indicates no vertical motion.

Column velocity determines the sprite's horizontal speed
and is also an integer in the range —128 to 127. A positive
value moves the sprite to the right; a negative value moves
the sprite to the left. Horizontal speed increases as the value
of column velocity gets further from 0.

Diagonal motion is achieved by using combinations of
row and column velocities. For example, a row velocity of 20
and column velocity of 20 moves the sprite down and to the
right.

The following short program illustrates how CALL
MOTION works. It creates a sprite in the middle of the screen
and then moves it around randomly by changing the row and
column velocities.

100 CALL CLEAR

110 RANDOMIZE

120 CALL CHAR(96,"81423C18183C4281")
130 DISPLAY AT(2,10):"DOODLEBUG")
140 CALL SPRITE(#1,96,2,90,125)
150 A=INT(RND*20)-INT(RND*20)
160 B=INT(RND*20)-INT(RND*20)
170 CALL MOTION(#l,A,B)
180 GOTO 150

70

\j&!Wsf

i

I

BPl

f9SV

PW^

^ISJ

Sprites

Line 100 clears the screen, and 110 seeds the random
number generator. Line 120 defines the sprite pattern. Line
140 creates the sprite in the middle of the screen. Lines 150-
160 generate row and column velocities between —19 and 19.
Line 170 issues the CALL MOTION subprogram for sprite #1
using the row and column velocities obtained randomly in
lines 150-160. Line 180 puts the program in an endless loop.

Controlling Sprites with Joysticks
Joysticks provide one means of communicating with your TI.
They allow you to move objects, control motion, and fire
lasers. Of course, the program must be designed to acknowl
edge the instructions coming from the joysticks. This is done
by using the CALL JOYST subprogram.
CALL JOYST(key unit, X-return, Y-return)

When your program encounters a CALL JOYST statement,
the TI queries the joystick port to determine the direction in
which the stick is pushed. Key unit is the number of the joy
stick being tested. It is an integer with a value of 1 or 2,
corresponding to joystick 1 or joystick 2.

Figure 3-4. CALL JOYST Return Values

(0,4)

(-4,4)

(-4,0)-h • X"h(4,0)

(-4,-4) \^ ^(4,-4)

(0-4)

71

Sprites

The result of the query is returned to your program as
values for the two variables identified by X-return and Y- ^
return. The values returned of variables indicate the direction
in which the stick was pushed. The following short program
illustrates how the values may be used to control motion. It
uses the joystick to move a crosshair sight around the screen.
The ALPHA LOCK key must be up.
100 CALL CLEAR

110 CALL CHAR(96,"181818FFFF181818")
120 CALL MAGNIFY(2)
130 CALL SPRITE(#1,96,2,90,125)
140 CALL JOYST(l,X,Y)
150 CALL MOTION(#l,-Y,X)
160 GOTO 140

Line 100 clears the screen. Line 110 defines the crosshair
pattern. Line 120 sets a magnification factor of 2, and line 130
defines the sprite on the screen. Line 140 queries the joystick
and places the returned values in X and Y. Line 150 then
moves the sprite based on the values of X and Y, and line 160
initiates a loop to continue the process.

If the joystick were pushed to the left, the returned values
would be X= —4 and Y=0. The row velocity in the CALL
MOTION command is determined by —Y, which results in
—0 or just 0. The column velocity is determined by X, which
is —4. A row velocity of 0 and column velocity of —4 moves
the sprite (crosshair) to the left.

The other joystick positions will return different values to
produce an appropriate effect on the sprite. When the joystick
is not pushed (0,0), the sprite will be stationary.

You can increase or decrease the sprite's speed by apply
ing a factor to the CALL MOTION velocities. For example, if
you wanted the sprite to move four times faster, you could use
the following line:

CALL MOTION(#l,-4*Y,4*X)

Controlling Sprites from the Keyboard
There are situations in which you might want to use the TI ^1
console keyboard, instead of joysticks, to control the action in
a program. For instance, a program might require more infor- "7
mation than just direction. Or, for that matter, you might not
have any joysticks. In such cases, the CALL KEY subprogram "*I

72 H

Sprites

lets you use the keyboard to control the program action.
CALL KEY(key unit,return variable,status code)

When a CALL KEY subprogram command is encountered
in a program, the computer queries the keyboard to determine
if a key was pressed. If one was pressed, a value returned by
the subprogram identifies the key. The value returned depends
on the key unit.

When key-unit is 0, the return variable value is the same
as the ASCII character code for that key, including lowercase
letters. In other words, pressing SHIFT-A would return a value
of 65, while pressing an unshifted A would return a value of
97. When key-unit is 3, the return variable value is the same
as the uppercase ASCII character code for that key. In this
instance, pressing either a shifted or unshifted A would return
a value of 65. In both cases, the full keyboard can be used.

When key unit is 1 or 2, the console is placed into the
split-keyboard mode. Key-unit 1 accepts input from the left
side of the keyboard, while key-unit 2 accepts input from the
right side. This allows each player in two-player games to
have his or her own set of control keys.

When the console is in split-keyboard mode, the return
variable is not the same as the ASCII code for that key.
Rather, the value returned is one of those listed in Table 3-1.

Status code indicates whether or not a key was pressed. A
status of 0 indicates that no key was pressed. A status of —1
indicates that the key pressed was the same as the last one
pressed; a status of 1 indicates a new key was pressed.

The following program illustrates how CALL KEY can be
used to control the action. It moves a crosshair around the
screen by using the E, X, S, and D keys in full-keyboard
mode. The ALPHA LOCK key must be depressed.

100 CALL CLEAR
110 CALL CHAR(96,"181818FFFF181818")
120 CALL MAGNIFY(2)
130 CALL SPRITE(#1,96,2,90,125)
140 CALL KEY(0,K,S)
150 Y=(K=88)-(K=69) :: X=(K=83)-(K = 68)
160 CALL MOTION(#l,-Y,X)
170 GOTO 140

Line 100 clears the screen. Line 110 defines the character
pattern for the crosshair. Line 120 sets a magnification factor

73

Sprites

Table 3-1. Split Keyboard Codies

Left Right Code
X M 0
A H 1

S J 2
D K 3
W U 4
E I 5
R o 6
2 7 7
3 8 8
4 9 9
5 0 10
T P 11
F L 12
V , 13
C

/ 14

Z N 15
SHIFT-B / 16
G

/ 17

Q Y 18
1 6 19

of 2 for sprites. Line 130 displays the sprite on the screen, and
line 140 queries the keyboard to see if a key was pressed.

Line 150 uses two logical expressions to set the values of
X and Y. A logical expression returns a value of —1 for a true
condition and 0 for a false condition. For example, if the S key
(ASCII 83) were pressed, K=83 would be true, resulting in a
value of —1; K=68 would be false, resulting in a value of 0.
Consequently, X would be —1 (—1 —0). Y would be 0 since
both K=88 and K=69 are false (0 - 0). These calculations
give the CALL MOTION statement in line 160 a row velocity
of 0 and a column velocity of —1. As a result, the crosshair
moves to the left. Line 170 continues the process.

When no key is pressed, all values would equal 0 and the
crosshair would be stationary. However, you could keep the
crosshair, or any sprite, moving in the direction indicated by
the last key pressed by adding the following line:
145 IFS = 0 THEN 140

74

dw&^l

CSSwf)

ii«Hi>

PflsSJ

p

f^ST)

Sprites

This instruction prevents a "no key pressed" condition
from reaching the CALL MOTION statement.

You could, of course, use a series of IF statements in place
of the logical expressions in line 150 to determine which key
had been pressed. For example, the following lines would
have the same result as the logical expressions:

150IFK=83THENY=-1
151 IFK=68THENY=1
152IFK=88THENX=1

153IFK=69THENX=-1

As you can see, however, this method requires more pro
gram lines than does the use of logical expressions. It is also
less efficient.

Joystick and Keyboard Control
Programs may be set up so that they can use either the joy
sticks or the keyboard to control the action, with the program
itself determining which will be used. The following program,
again using the crosshair sight example, shows how this is
accomplished. The ALPHA LOCK key must be up.
100 CALL CLEAR
110 CALL CHAR(96,"181818FFFF181818")
120 CALL MAGNIFY(2)
130 CALL SPRITE(#1,96,2,90,125)
140 CALL KEY(3,K,S):: IF S=0 THEN CALL JOYST(l,X,Y)::

GOTO 160
150 Y=((K=88)-(K = 69))*4 :: X=((K=83)-(K=68))*4
160 CALL MOTION(#l,-Y,X)
170 GOTO 140

Line 100 clears the screen. Line 110 defines the sprite pat
tern, and line 120 gives it a magnification factor of 2. Line 130
creates the sprite on the screen. Line 140 checks to see if a key
has been pressed. If not, the joystick port is checked, and the
logical expressions in line 150 are bypassed. If a key was
pressed, then the joystick check is bypassed, and the logical
expressions in line 150 are used to calculate the values for the
CALL MOTION subprogram in line 160. Line 170 continues
the process. The CALL KEY subprogram in line 140 uses key-
unit 3 so that the value returned will always represent an
uppercase letter. This is necessary since the logical expressions
in line 150 assume uppercase.

75

Sprites

Changing Sprite Patterns
There are many times when it is useful to change a sprite's
pattern in a program. For example, if a car-shaped sprite was
moving from left to right and then changed direction, you
would want the front of the car to be facing the new direction
and would need a sprite pattern for each direction the car
would face. Multiple patterns are also required whenever
animation is involved. Just as cartoons are created by contin
ually changing frames, computer animation is created by
changing sprite patterns. Of course, all necessary patterns
must first be defined.

A sprite's pattern can be changed by using the CALL
PATTERN subprogram. It has the following format:
CALL PATTERN(#sprite number,character code)

Sprite number identifies the sprite to be changed. Charac
ter code is a numeric literal, numeric variable, or numeric
expression that identifies the ASCII code to be used for the
sprite's pattern. It must be an integer in the range 32-143. The
desired pattern would have been defined earlier in the pro
gram by the CALL CHAR subprogram.

Program 3-4, "Birds At Night," demonstrates how CALL
PATTERN can produce animation. It displays a starlit night, a
full moon, and a flock of birds flying across the night sky.

How Birds at Night Works

Line(s)
100 Clear the screen.

110-120 Define the patterns used to animate the birds. ASCII
code 96 contains the pattern for birds with wings in
the up position; code 97 contains the pattern for birds
with wings in the down position.

130 Define the four characters that make up the moon.
140 Define the stars.

150-180 Randomly place 50 stars on the screen.

190 Create the four sprites which make up the moon.

200 Set the screen color to dark blue to simulate nighttime.
210-240 Generate ten sprites for the flock of birds.

250-260 Initiate a loop that repeats ten times. Each iteration
assigns the wings-down pattern to one of the sprites.

76

l#jH)

Sprites

270-280 Initiate a loop that repeats ten times. Each iteration
assigns the wings-up pattern to one of the
sprites.

290 Produces an endless loop to keep the process going.

Program 3-4. Birds at Night
100 CALL CLEAR

110 CALL CHAR(9G,"0041221408000000")
120 CALL CHAR(97,"0000007708000000")
130 CALL CHAR(12G,"00070F1F1F3F3F3F3F3F3F1F1F0F070

000E0F0F8FGFCFCFCFCFCFCF8F8F0E000 ")
140 CALL CHAR(112,"001"):: CALL COLOR(11,16,1)
150 FOR L=l TO 50

160 A=1+INT(RND*30):: B=1+INT(RND*22)
170 CALL HCHAR(B,A,112,1)
180 NEXT L

190 CALL SPRITE(#21,120,15,30,40,#22,121,15,38,40,
#23,122,15,30,48,#24,123,15,38,48)

200 CALL SCREEN(5)
210 FOR L=ll TO 20

220 CALL SPRITE(#L,96,2,35+INT(RND*50),240,0,-3)
230 FOR L2=l TO INT(RND*250):: NEXT L2
240 NEXT L

250 FOR L=ll TO 20

260 CALL PATTERN(#L,97):: NFXT L
270 FOR L=ll TO 20

280 CALL PATTERN(#L,96):: NEXT L
290 GOTO 250

Combining Techniques
The preceding programs have served primarily to illustrate
particular concepts and techniques. More elaborate programs,
however, usually combine several different techniques. Pro
gram 3-5, "Dot Gobbler," is the result of one such
combination.

The program displays a board covered with randomly
placed dots. In the middle of the board is the Dot Gobbler, a
creature that gets its nourishment by eating dots. The object of
the game is to consume dots by moving the Dot Gobbler
around the board with the E, X, S, and D (arrow) keys.

The Dot Gobbler eats dots as he moves across them. But
he can only move in a direction that has a dot, so you'll have

77

Sprites

to think ahead. Once the Gobbler can no longer move, the
game is over. Your score is based on the number of dots
eaten.

How Dot Gobbler Works

Line(s)
100 Clear the screen.

110 Seed the random number generator.
120-160 Define the five four-character patterns required for the

Dot Gobbler. ASCII code 96 defines the Gobbler with
his mouth closed; code 100 defines the Gobbler mov
ing to the right; code 104 defines the Gobbler moving
to the left; code 108 defines the Gobbler moving
upward; and code 112 defines the Gobbler moving
downward.

170 Define the border pattern for the board.
180 Define the dot pattern.
190 Draw the border.

200-230 Randomly place the dots on the board.

240 Set the Gobbler's magnification factor to 3.
250 Display the Gobbler (sprite) on the screen.
260-280 Set variables which contain the Gobbler's initial row

and column position. Display instruction.
290 Use full keyboard to get information from console.

Active keys are E, S, D, and X—the arrow keys.
300-330 Route the program to the appropriate logic as deter

mined by the key pressed.

340 End the game and start over.

350 Keep checking for a pressed key.
360-440 Control logic for moving to the right. Line 360 deter

mines if a move to the right is valid by checking to see
if the character to the right is a dot (ASCII 116). If not,
line 370 checks another key. If the character is a dot,
line 380 increments the sprite-column position by 8
(one character) and moves the sprite to that location.
Line 390 closes the Gobbler's mouth, and line 400
introduces a short delay. Line 410 then opens
the Gobbler's mouth. Line 420 updates the Gobbler's ~*\
character-column and erases the eaten dot. Line 430
updates the screen display, and line 440 checks for "^
another key.

78 "^

B'i!|

piscj

l'-'i\™j*!ft

Sprites

450-530 Control logic for moving to the left. Similar to lines
360-440 except sprite-column and character-column
are decremented by 8 and 1, respectively.

540-620 Control logic for moving upward. Sprite-row and
character-row are decremented.

630-710 Control logic for moving downward. Sprite-row and
character-row are incremented.

Program 3-5. Dot Gobbler
100 CALL CLEAR

110 RANDOMIZE

120 CALL CHAR(96,"001F3F7F7F7F7F7F7F7F7F7F7F3F1F00
00F8FCFEFEFEFEFEFEFEFEFEFEFCF800")

130 CALL CHAR(100,"001F3F7F7F7F7F7F7E787E7F7F3F1F0
000F8FCF6FEFEFE00000002FEFEFCF 800")

140 CALL CHAR(104,"001F3F6F7F7F7F010000407F7F3F1F0
000F8FCFEFEFEFEFEFE3EFEFCFEFCF800")

150 CALL CHAR(108,"001C3878787878787C7D7D7F7F3F1F0
000787C767E7E7E7EFEFEFEFEFEFCF800")

160 CALL CHAR(112,"001F3F7F7F7D7D7C7878787878381C0
000F8FCFEFEFEFEFE7E7E7E7E767C7800")

170 CALL CHAR(120,"FFFFFFFFFFFFFFFF"): : CALL COLOR
(12,14,1)

180 CALL CHAR(116,"0000001818000000")
190 CALL HCHAR(1,1,120,32):: CALL HCHAR(21,1,120,3

2):: CALL VCHAR(1,1,120,20):: CALL VCHAR(1,32,
120,20)

200 FOR L=2 TO 20 :: FOR L2=2 TO 31
210 IF RND>.30 THEN CALL HCHAR(L,L2,116,1)
220 NEXT L2 :: NEXT L

230 CALL HCHAR(11,16,116,6)
240 CALL MAGNIFY(3)
250 CALL SPRITE(#1,100,5,76,124)
260 CR=11 :: CC=17 :: SR=76 :: SC=124

270 DISPLAY AT(22,1):"E,S,D,X TO MOVE - Q TO QUIT"
280 DISPLAY AT(24,8):"SCORE: "
290 CALL KEY(3,K,S):: IF S=0 THEN 290
300 IF K=68 THEN 360

310 IF K=83 THEM 450

320 IF K=69 THEN 540

330 IF K=88 THEN 630

340 IF K=81 THEN CALL DELSPRITE(ALL):: SCOR=0 :: G
OTO 100

79

1

Sprites WKaaaaKmKmKaaBKKBKKKmKHHHHHmaaaaamammamm

J

350 GOTO 290 _
360 CALL GCHAR(CR,CC+1,CH) 1
370 IF CH<>116 THEN 290

380 SC=SC+8 :: CALL LOCATE(#1,SR,SC)
390 CALL PATTERN(#1,96)
400 FOR L=l TO 10 :: NEXT L

410 CALL PATTERN(#1,100)
420 CC=CC+1 :: CALL HCHAR(CR,CC,32 ,1)
430 SCOR=SCOR+l :: DISPLAY AT(24,16):SCOR
440 GOTO 290

450 CALL GCHAR(CR,CC-1,CH)
460 IF CH<>116 THEN 290

470 SC=SC-8 :: CALL LOCATE(#1,SR,SC)
480 CALL PATTERN(#1,96)
490 FOR L=l TO 10 :: NEXT L

500 CALL PATTERN(#1,104)
510 CC=CC-1 :: CALL HCHAR(CR,CC,32,1)
520 SCOR=SCOR+l :: DISPLAY AT(24,16):SCOR
530 GOTO 290

540 CALL GCHAR(CR-1,CC,CH)
550 IF CH<>116 THEN 290

560 SR=SR-8 :: CALL LOCATE(#1,SR,SC)
570 CALL PATTERN(#1,96)
580 FOR L=l TO 10 :: NEXT L

590 CALL PATTERN(#1,108)
600 CR=CR-1 :: CALL HCHAR(CR,CC,32,1)
610 SCOR=SCOR+l :: DISPLAY AT(24,16):SCOR
620 GOTO 290

630 CALL GCHAR(CR+1,CC,CH)
640 IF CH<>116 THEN 290

650 SR=SR+8 :: CALL LOCATE(#1,SR,SC)
660 CALL PATTERN(#lf96)

670 FOR L=l TO 10 :: NEXT L
680 CALL PATTERN(#1,112)
690 CR=CR+1 :: CALL HCHAR(CR,CC,32,1)
700 SCOR=SCOR+l :: DISPLAY AT(24,16):SCOR
710 GOTO 290

Sprite Editor
By now it should be obvious that sprites require a lot of pat
tern definition. Before you rush out to buy a dozen pads of
graph paper, however, take a look at the next program. Called "™1
"Sprite Editor," it lets you define sprites on the screen. It will
provide you with either an 8 x 8 (single-sized) or 16 x 16 "^
(double-sized) grid; you need only to indicate which pixels
should be turned on in the grid by moving the cursor and ^

80

&(£!:*!:'•; ;-i

filial

Sprites

pressing 1. When you're finished, the program will display the
sprite on the screen. You can magnify it and change its color.
If it doesn't look quite right, you can go back to the original
grid and modify the pattern. Once you are satisfied, the com
puter will display the hex character pattern required by CALL
CHAR.

Program 3-6. Sprite Editor
100 CALL CLEAR

CALL CHAR(96,"FF01010101010101")
CALL CHAR(104,"FFFFFFFFFFFFFFFF")
CALL CHAR(112,"FFC3A59999A5C3FF")
HEXS="0123456789ABCDEF"
CALL COLOR(9,2,16,10,2,2)
DISPLAY AT(4,3):"** SPRITE EDITOR **"
DISPLAY AT(8,1):"1 - ONE CHARACTER SPRITE"
DISPLAY AT(10,1):"2 - FOUR CHARACTER SPRITE"
DISPLAY AT (14,1):"SELECT >_"
ACCEPT AT(14,12)VALIDATE("12")SIZE(-1)EEEP:S
CALL CLEAR

FOR Ll=l TO S*8
DISPLAY AT(Ll+2,3):RPT$(CHR$(96), S*8)
NEXT LI
DISPLAY AT(1,1):"0=PIXEL OFF 1=PIXEL ON"

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

DISPLAY AT(20,1):"E = MOVE CURSOR
DISPLAY AT(21,1):"X = MOVE CURSOR
DISPLAY AT(22,1):"S = MOVE CURSOR
DISPLAY AT(23,1):"D = MOVE CURSOR
DISPLAY AT(24,1):"Q = QUIT SPRITE
ROV7=17 :: COL=33 :: CR=3 :: CC=3
CALL SPRITE(#l,112,7,ROW,COL)
FOR D=l TO 25 :: NEXT D

UP"

DOV7N "

LEFT"

RIGHT"
DEFINITION"

CALL KEY(3,K,ST):
IF K=81 THEN 570

THEN

THEN

THEN

THEN

THEN

THEN

IF ST=0 THEN 340

IF

IF

IF

IF

IF

IF

K=69

K=88

K=83

K=68

K=48

K=49

GOTO 320

IF ROU-8<17 THEN 450

ROW=ROW-8 :: CR=CR-1

RETURN

IF ROV7+8>(17+(63*S))THEN
ROV7=ROW+8 : : CR=CR+1

RETURN

GOSUB

GOSUB

GOSUB

GOSUB

GOSUB

GOSUB

430

460

490

520

550

560

480

81

Sprites ^KmmKaamKKKmBHHHHHHmaaaamKaaamKaMaamKaaKm

490 IF COL-8<33 THEN 510

500 C0L=C0L-8 :: CC=CC-1

510 RETURN
520 IF C0L+8>(33+(63*S))THEN 540
530 C0L=C0L+8 :: CC=CC+1

540 RETURN

550 DISPLAY AT(CR,CC):CHR$(96);:: RETURN
560 DISPLAY AT(CR,CC):CHR$(104);:: RETURN
570 CALL DELSPRITE(#1)
580 GOSUB 920

590 IF S=l THEN MG=1 ELSE MG=3

600 CALL MAGNIFY(MG)
610 CALL SPRITE(#2,120,2,40,190)
620 DISPLAY AT(19,1):"C = SET SPRITE COLOR"
630 DISPLAY AT(20,1):"M = MAGNIFY SPRITE"
640 DISPLAY AT(21,1):"P = CHANGE SPRITE PATTERN"
650 DISPLAY AT(22,1):"D = DISPLAY SPRITE PATTERN"
660 DISPLAY AT(23,1):"N = NEW SPRITE"
670 DISPLAY AT(24,1):"SELECT >_"
680 ACCEPT AT(24,11)VALIDATE("CMPDN")SIZE(-1)BEEP:

SELS

690 IF SEL$="C" THEN 740
700 IF SEL$="n" THEN 790

710 IF SEL$="P" THEN CALL DELSPRITE(#2):: CALL MAG
NIFY(l):: COTO 260

720 IF SEL$="N" THEN CALL DELSPRITE(ALL):: CALL MA
GNIFY(l):: CALL CLEAR :: GOTO 160

730 IF SEL$="D" THEN 840
740 DISPLAY AT(24,1):"SPRITE COLOR (1-16)?"
750 ACCEPT AT(24,22)VALIDATE(NUMERIC)BEEP:SC
760 IF SC<1 OR SC>16 THEN 750

770 CALL COLOR(#2,SC)
780 GOTO 620

790 IF MG=1 THEN MG=2

800 IF MG=2 THEN MG=1

810 IF MG=3 THEN MG=4
820 IF MG=4 THEN MG=3
830 CALL MAGNIFY(MG):: GOTO 620
840 DISPLAY AT(19,1):PAT?(1)
850 IF S=2 THEN 870

860 FOR Ll=20 TO 24 :: DISPLAY AT(L1,1):" " :: NEX
T LI :: GOTO 890

870 DISPLAY AT(20,1):PAT$(2):: DISPLAY AT(21,1):PA
TS(3):: DISPLAY AT(22,1):PAT$(4) ^

880 DISPLAY AT(23,1):" "
890 DISPLAY AT(24,1):" > PRESS ANY KEY" <=*\
900 CALL KEY(3,K,ST):: IF ST=0 THEN 900
910 GOTO 620 wmif
920 FOR L=19 TO 24 :: DISPLAY AT(L,1):" " :: NEXT

L

82 -'

GOTO 830

GOTO 830

GOTO 630

GOTO 830

930 DISPLAY AT(22,5):"STAND BY..."
940 CR=3 :: CC=3 ::

950 IF S=l THEN 990

960 CR=11 :: CC=3 :

970 CR=3 :: CC=11 :

980 CR=11 :: CC=11

SB=1

SB=2 :

SB=3 :

SB=4

990 CALL CHAR(120,PAT?(1)):
):: CALL CHAR(122,PAT$(3)):: CALL CHAR(123,PAT
$(4))

1000 RETURN

1010 PAT$(SB)="" :: FOR Ll=CR TO CR+7
1020 FOR L2=CC TO CC+7
1030 CALL GCHAR(L1,L2+2,CH)
1040 IF CH=96 THEN BITS(L2-CC+1)=0 ELSE BITS(L2-CC

+1)=1
1050 NEXT L2

1060 HIGH=BITS(1)*8+BITS(2)*4+BlTS(3)*2+BITS(4)+l
1070 LOW=EITS(5)*8+BlTS(6)*4+BITS(7)*2+BITS(8)+1
1080 PAT$(SB)=PATS(SB)&SEG$(HEXS,HIGH,1)&SEG$(HEX?

,LOV7,l)
1090 NEXT LI

1100 RETURN

GOSUB 1010

GOSUB 1010

COSuB 1010

: GOSUB 1010
CALL CHAR(121,PAT?(2)

Sprites

83

3

pnft

Advanced Sprite-Handling Techniques

The material in Chapter 3 examines various methods for
controllingsprites from BASIC. Simply controlling
sprites, however, is usually not enough to produce a
complete program. There must also be some type of

feedback mechanism that indicates the status of each of the
sprites on the screen; such status information can then be used
to make sprites interact with each other and with nonsprite
graphics.

TI Extended BASIC contains three useful subprogram
commands that allow your program to monitor sprites. CALL
POSITION can be used to find a sprite's current location on
the screen. CALL COINC can be used to determine if two
sprites, or a sprite and a screen location, are coincident (at the
same location). Finally, CALL DISTANCE can be used to
determine how far one sprite is from another sprite or from a
specified screen location.

This chapter shows you how to use these commands in
BASIC programs and how to write complete programs using
the various sprite subprogram commands.

Finding a Sprite's Screen Position
The CALL POSITION subprogram is used to determine a
sprite's current location on the screen. It has the following
format:

CALL POSITION (#sprite number,dot row,dot column,...)
Sprite number identifies the sprite and is always preceded

by the # symbol. It is an integer in the range 1-28 and may
be a numeric literal, numeric variable, or numeric expression.
The row and column locations of the sprite are returned to the
program in the two integer variables dot row and dot column.
Dot row identifies one of the 192 possible row positions
(actually 256 counting the "invisible" rows); dot column

pn identifies one of the 256 possible column positions.
In Figure 4-1, for instance, the CALL POSITION sub-

m* program would return 10 for the value of R and 15 for the
value of C. Notice that the locations returned are defined by

pm the top left pixel in the sprite. If the sprite identified by that
particular sprite number did not exist, the values would be 0,0.

(i-!!?i!fi®

87

Advanced Sprite Handling Techniques

Figure 4-1. Sprite at Row 10 and Column 15

'

! -

- -

-

\

K
-

_

•

*

- -

•

•

-

- .

•: ; :
' -

The values returned by the CALL POSITION subprogram
are determined by the location of the sprite at the time the
command is issued. Consequently, the values returned for a
moving sprite are only valid for a short period of time (that is,
while the sprite is still in that location). The values will not be
updated until another CALL POSITION subprogram com
mand is encountered.

The following short program lets you move a sprite
around the screen by using the E, S, D, and X keys. The
sprite's location, as determined by the CALL POSITION sub
program, is displayed at the bottom of the screen.
100 CALL CLEAR

110 CALL SPRITE(#1,65,2,90,125)
120 CALL KEY(3,K,S)
130 X=(K=83)-(K=68) :: Y=(K=88)-(K=69)

88

%mw;j

psaa

pan

/^k»

Advanced Sprite Handling Techniques

140 CALL MOTION(#l,-Y,X)
150 CALL POSITION(#l,R/C)
160 DISPLAY AT (23,2):"POSITION: ROW";R;"COL";C
170 GOTO 120

The information returned by CALL POSITION can be
very useful in your BASIC programs. You can, for example,
use the values to determine if a sprite has reached a particular
location on the screen. You can also prevent sprites from
wrapping around the screen by continually checking their
position and then stopping, or changing, their motion when
they reach the edge.

You can also use the values returned by the CALL
POSITION subprogram to have one sprite shoot at or chase
another sprite. Keep in mind that the dot row and dot column
values simply identify a sprite's location on the 256 x 192
screen grid. By identifying the location of both sprites, a sim
ple formula can be used to calculate the values required by the
CALL MOTION subprogram to move one sprite toward the
other.

To understand how this works, first look at Figure 4-2. It
shows the location for sprite #1 as dot row 50 and dot column
50. For the first example, assume that sprite #2 was located at
dot row 30 and dot column 30. Subtracting the dot row for
sprite #1 from the dot row for sprite #2 gives the row veloc
ity. Subtracting the dot column for sprite #1 from the dot-
column for sprite #2 gives the column velocity. These num
bers can then be used by the CALL MOTION subprogram. For
example:

30 (dot row sprite#2)
—50 (dot row sprite#l)
—20 (row velocity)

30 (dot column sprite#2)
—50 (dot column sprite#l)
—20 (column velocity)

Recall from the section on CALL MOTION (Chapter 3)
that a negative row velocity moves a sprite upward, while a
negative column velocity moves a sprite to the left. In this
case, a row velocity of —20 and column velocity of —20
would move sprite #1 up and to the left—directly toward
sprite #2.

89

8
F

ig
u

re
4

-2
.

R
el

a
ti

ve
S

p
ri

te
D

ir
ec

ti
o

n

S
pr

it
e

#
2

R
o

w
3

0

C
o

l
3

0

S
pr

it
e

#1
R

o
w

5
0

C
o

l
5

0

•

•
•

•

•

•

•

•

•
_

^
^

1
B

~
1

'

*
\ k

/
*

•
1

-

.1
.

•

•

S
pr

it
e

#
2

R
o

w
3

0

C
o

l
7

0

S
pr

it
e

#
2

R
o

w
6

5

C
o

l
5

0

5> <D a
. I i <

Q if C
/J

J
L

i
J

Advanced Sprite Handling Techniques

In similar fashion, if sprite #2 was located at dot row 30
and dot column 70, then the above formula would produce a
row velocity of —20 and a column velocity of 20. These veloc
ities would move sprite #1 up and to the right. If sprite #2
was located at dot row 65 and dot column 50, the formula
would produce a row velocity of 15 and a column velocity of
0. As a result, sprite #1 would move straight down.

The only problem with this approach is that a sprite's
speed is determined by its distance from another sprite. But
since distance would not generally be the controlling factor,
this could present a problem. It is easily remedied, however,
by dividing the resulting row and column velocities by their
respective absolute values. Using the first example above, —20
divided by 20 (the absolute value of —20) results in —1. A
row velocity of —1 and column velocity of —1 still moves the
sprite up and to the left. Since the values produced by the
division will always be 1 or —1, you could then multiply
them by the speed factor desired (for example, —1 * 8 = —8).

The following program, "Sprite Chase," demonstrates
how these concepts can actually be used. The program dis
plays two sprites on the screen. The red sprite will attempt to
chase the blue sprite, and the object is to use the E, S, D, and
X (arrow) keys to move the blue sprite to evade the red one.

How Sprite Chase Works

Line(s)
100 Clear the screen.
110 Define the pattern used by the two sprites.
120 Display the program title on the screen.
130-140 Define the two sprites. Sprite #1 is the red "chase"

sprite and is initially positioned at row 90, column 125.
Sprite #2 is the blue "chased" sprite and is initially
positioned at row 120, column 20.

150-160 Check for keyboard input. If a key has been pressed,
then line 160 uses logical expressions to determine the
values of X and Y. These values are then multiplied by
8 in order to give sprite #2 a relative speed of 8.

170 Determine the positions of both sprites. The row and
column for sprite #1 are placed in Rl and CI. The row
and column for sprite #2 are placed in R2 and C2.

180-210 These lines make sure that sprite #1 is not moved off
the screen because of row or column wraparound. If

91

Advanced Sprite Handling Techniques

the row position is less than 13 or greater than 170,
vertical motion is inhibited by the MIN and MAX func
tions in lines 180-190. If the column position is less
than 16 or greater than 232, horizontal motion is
inhibited by MIN and MAX functions in lines 200-210.
The overall effect is to prevent the sprite from moving
off the screen.

220 Put sprite #2 in motion in the direction indicated by
the X and Y values calculated in line 160. The idea is
to keep it away from the "chasing" sprite (#1).

230-240 Set variables A and B to the values required by the
CALL MOTION subprogram in line 270 to move sprite
#1 toward sprite #2. The values are determined by
subtracting the row and column position of sprite #1
from the row and column position of sprite #2. The
resulting values are then divided by their respective
absolute values in order to equalize the row and col
umn velocities. Finally, the equalized values are mul
tiplied by 9, which gives sprite #1 a relative speed of
9. Doing this gives sprite #1 a slight speed advantage.
The IF statements in these two lines make sure that
the subtraction does not cause a divide-by-zero error.

250 Check to see if the two sprites are at least six pixels
apart.

260 If the two sprites are not six pixels apart, sprite #2 has
been caught. This line displays the GOTCHA message
and ends the program.

270 If the two sprites are more than five pixels apart, sprite
#2 has not yet been caught. The CALL MOTION sub
program command in this line gets sprite #1 moving
toward sprite #2 by using the values calculated in lines
230-240.

280 Increment the score counter and display it on the
screen.

290 Branch back to start the process over.

Program 4-1. Sprite Chase
100 CALL CLEAR

110 CALL CHAR(96,"00183C7EFF7E3C1800")
120 DISPLAY AT(1,8):"SPRITE CHASE"
130 CALL SPRITE(#1,96,7,90,125)
140 CALL SPRITE(#2,96,5,120,20)
150 CALL KEY(3,K,S)
160 X=((K=83)-(K=68))*8 :: Y=((K=88)-(K=69))*8
170 CALL POSITION(#l,Rl,Cl,#2,R2,C2)

92

*sW;J

49Hm

f$!?SB)

Advanced Sprite Handling Techniques

180 IF R2<13 THEN Y=MIN(Y,0)
190 IF R2>170 THEN Y=MAX(Y,0)
200 IF C2<16 THEN X=MAX(X,0)
210 IF C2>232 THEN X=MIN(X,0)
220 CALL MOTION(#2,-Y,X)
230 IF Rl=E2 THEN A=0 ELSE A=(R2-R1)/ABS(R2-R1) *9
240 IF Cl=C2 THEN B=0 ELSE B=(C2-C1)/ABS(C2-C1)*9
250 IF ABS(R1-R2)>5 OR ABS(Cl-C2)>5 THEN 270
260 CALL DELSPRITE(ALL):: DISPLAY AT(10,12):"GOTCH

A!" :: STOP

270 CALL MOTION(#1,A,B)
280 CT=CT+1 :: DISPLAY AT(24,10):"SCORE:";CT
290 GOTO 150

Determining When Sprites Are Coincident
In programs involving sprites, it is often important to know if
two sprites are in the location (coincident) or if a sprite is at a
specified screen location. One way to do this is to get the loca
tion of each sprite by using CALL POSITION and then
comparing the locations. This is the method used in the pre
vious program.

Checking the values from a CALL POSITION subprogram
isn't really necessary, however, since Extended BASIC pro
vides a subprogram specifically designed to detect sprite
coincidence. This subprogram is CALL COINC, which may
have any of the following formats:
Format 1
CALL COINC(#sprite number, #sprite number, tolerance,

numeric variable)
Format 2
CALL COINC(#sprite number, dot row,dot-column,

tolerance, numeric variable)
Format 3
CALL COINC(ALL, numeric variable)

When Format 1 is used, the sprite identified by the first
sprite number is checked for coincidence against the sprite
identified by the second sprite number. Both numbers must be
integers in the range 1-28 and may be numeric literals,
numeric variables, or numeric expressions. Coincidence is
determined by the top left pixel of each sprite. When these
two pixels occupy the same row and column location on the
screen, the sprites are considered coincident and a value of

93

Advanced Sprite Handling Techniques

—1 is placed in numeric variable. When the two sprites are not
coincident, numeric variable contains a value of 0.

Tolerance is used to expand the area which two sprites can
occupy and still be considered coincident. For example, if the
tolerance is 0, then the top left pixel of each sprite must be at
exactly the same location to be considered coincident. How
ever, if a tolerance of 3 is specified, then the sprites are
considered coincident as long as the left-hand corners of the
two sprites are within three pixels of each other. Such
tolerances are especially useful when moving sprites make it
difficult to detect exact coincidence.

When Format 2 is used, the sprite identified by sprite
number is checked for coincidence against the screen location
identified by dot-row and dot-column. Coincidence exists
when the top left corner of the sprite is at the specified loca
tion or within the range indicated by tolerance.

With Format 3, coincidence is reported in numeric vari
able whenever any pixels in two or more sprites occupy the
same location.

The following short program demonstrates how CALL
COINC works. It displays two sprites on the screen and lets
you move them with the E, S, D, and Xkeys. The display at
the bottom of the screen indicates whether or not the sprites
are coincident.

100 CALL CLEAR

110 CALL CHAR(96,"FFFFFFFFFFFFFFFF")
120 CALL SPRITE(#1,96,2,70,125)
130 CALL SPRITE(#2,96,16,90,125)
140 CALL KEY(3,K,S)
150 X=(K=83)-(K=68) :: Y=(K=88)-(K=69)
160 CALL MOTION(#l,-Y,X)
170 CALL COINC(#1,#2,0,A)
180 IF A= -1 THEN DISPLAY AT (23,10)://COINCIDENT"

ELSE DISPLAY AT (23,10):" "
190 GOTO 140

Notice that the tolerance of the CALL COINC in line 170
is initially set to 0. The COINCIDENT message will appear
only when the two sprites are in exactly the same location. If
you change the tolerance to 3 and RUN the program again,
you will see the COINCIDENT message displayed as long as
the top left corners of the two sprites are within three pixels of
each other.

94

Advanced Sprite Handling Techniques

The next program, "Air Defense," demonstrates how
CALL COINC can actually be used in a program. The object
of the game is to shoot down the alien spacecraft. Your anti
aircraft gun is aimed by pressing the X and D keys and fired
by pressing the space bar.

How Air Defense Works

Line(s)
100 Clear the screen.

110 Seed the random number generator.
120 Initialize program variables.
130-220 Define the patterns used in the program. ASCII codes

96-98 define the pattern for a gun pointing straight up;
code 98 defines the pattern for a gun pointing up and
to the right. ASCII codes 100-102 define the patterns
used for various alien ships. ASCII code 104 defines
the pattern used for the base of the screen. ASCII
codes 112 and 113 define patterns that simulate an
exploding ship.

230-250 Draw the ground on the screen.
260 Create the antiaircraft gun sprite on the screen. It ini

tially points straight up.
270 Create an alien ship on the screen. The ship's pattern

is randomly chosen from one of the three available.
The ship moves from right to left, at random speed,
somewhere between rows 20 and 145.

280 Check to see if a key was pressed.
290-300 Calculate the player's rating and display it on the

screen.

310 If no key was pressed on the console, go back and
check again.

320-360 Determine which key was pressed. If it was S, the gun
is pointed to the left; if it was D, the gun is pointed to
the right. In either case, the new pattern for the gun is
assigned to sprite #1 in line 350, and the program goes
back to check for another key. If the space bar was
pressed, go to the routine to fire the gun.

370-400 Fire the gun. Line 370 creates the projectile pattern on
the screen. Its initial location is determined by the
direction in which the gun is pointing. Line 380 adds
to the SHOT accumulator. Line 390 sets the row veloc
ity to —30 and the column velocity to 30,0, or —30,
depending on which way the gun is pointed. Line 400
puts the projectile in motion.

410 Check to see if the projectile has reached the edge of
the screen. If so, the sprite is deleted.

95

Advanced Sprite Handling Techniques mhh^^h

420-430 Check to see if the ship was hit by the projectile. If the
projectile sprite (#2) and the ship sprite (#3) are ^
coincident within a tolerance of 5, the ship was hit. If
the ship wasn't hit, go back and check again until the
projectile is off the screen.

440-520 Register a hit. Line 440 changes the ship's color to red.
Line 450 deletes the projectile sprite. Lines 460 and
480 change the ship's pattern to the explosion patterns.
Lines 470 and 490 are timing loops between the pat
tern changes. Line 500 deletes the ship sprite. Line 510
counts the hit. Line 520 goes back and creates another
alien ship to start the whole thing over.

Program 4-2. Air Defense
100 CALL CLEAR

110 RANDOMIZE

120 PAT=97 :: SHOT=.l

130 CALL CHAR(96,"0000C06030187EFF")
140 CALL CHAR(97,"0000181818187EFF")
150 CALL CHAR(98f"000003060C187EFF")
160 CALL CHAR(100,"0000003C7EFF7E3C")
170 CALL CHAR(101/"187EFFFF24428100*')
180 CALL CHARJ102,"00007E7EFF7E7E00")
190 CALL CHAR(103, "0000000000181800«')
200 CALL CHAR(104,"FFFFFFFFFFFFFFFF"):: CALL COLOR

(10,13,1)
210 CALL CHAR(112,"0100001018004081")
220 CALL CHAR(113,"108081^082828114")
230 FOR L=22 TO 24

240 CALL HCHAR(L,1,104,32)
250 NEXT L

260 CALL SPRITE(#1,97,2,162,125)
270 CALL SPRITE(#3/100+INT(RND*3),5,20+INT(RND*125

),255,0,-(10+INT(RND*12)))
280 CALL KEY(3,KfS)
290 RATE=HIT/SHOT*100
300 DISPLAY AT(1,8):USING "####### ###":"RATING:",

RATE

310 IF S=0 THEN 280

320 IF K=83 THEN PAT=HAX(PAT-1,96)
330 IF K=68 THEN PAT=MIN(PAT+1,98) «
340 IF K=32 THEN 370 J
350 CALL PATTERN(#1,PAT)
360 GOTO 280 \
370 CALL SPRITE(#2,103,7,156,125-((97-PAT)*6))
380 SHOT=SHOT+l •**

Qtfi IBSfcl

jltffia

Advanced Sprite Handling Techniques

390 R=-30 :: C=((PAT-97)*30)
400 CALL MOTION(#2,R,C)
410 CALL POSITION(#2,X,Y):: IF X<12 OR Y<5 OR Y>25

0 THEN CALL DELSPRITE(#2):: GOTO 280
420 CALL COINC(#2,#3,5,CO)
430 IF CO=0 THEN 410

440 CALL COLOR(#3,9)
450 CALL DELSPRITE(#2)
460 CALL PATTERN(#3,112)
470 FOR L=l TO 30 :: NEXT L

480 CAi^L PATTERN(#3,113)
490 FOR L=l TO 30 :: NEXT L

500 CALL DELSPRITE(#3)
510 HIT=HIT+1

520 GOTO 270

Determining Sprite Distances
The CALL DISTANCE subprogram command is used to deter
mine the distance between two sprites or between one sprite
and a screen location. It may have either of two formats:

Format 1

CALL DISTANCE(#sprite number,#sprite number,numeric
variable)

Format 2

CALL DISTANCE(#sprite number,dot row,dot column,numeric
variable)

When Format 1 is used, the distance between the sprite
identified by the first sprite number and the sprite identified
by the second sprite number is found and placed in numeric
variable. The location of both sprites is determined by their
top left pixel. Both sprite numbers must be integers between
1-28 and may be numeric literals, numeric variables, or
numeric expressions.

The value placed in numeric variable is determined by the
following computation: The difference between the dot row of
the first sprite number and the dot row of the second sprite
number is found and squared. The difference between the dot-
column of the first sprite number and dot column of the sec
ond sprite number is found and squared. The two squares are
then added together and placed in numeric variable. If this
sum is greater than 32,767, then 32,767 is placed in numeric
variable. The actual distance between the two sprites is the
square root of numeric variable.

97

Advanced Sprite Handling Techniques

Figure 4-3. Distance Between Sprites

Sprite #1
Row 10, Column 10

^ r

• |
Sprite #2

4
Row 20

Column 18
.

20
-10

sprite #2 row
sprite #1 row

10

18

-10

sprite #2 column
sprite #1 column

8

102=
+ 82=

100

64

164 distance

Figure 4-3 shows two sprites. The first is located at dot
row 10 and dot column 10. The second is located at dot row
20 and dot column 18. The difference between the dot rows
(10) is squared, resulting in 100. The difference between the
dot columns (8) is squared, resulting in 64. The sum of the
two squares (164) is placed in numeric variable.

When Format 2 is used, the distance between the sprite
identified by sprite number and the location identified by dot
row and dot column is found and placed in numeric variable.
The computation used to find the distance is the same as the
one for two sprites.
98

)

Advanced Sprite Handling Techniques

The following short program displays the values com
puted for numeric variable. It places two sprites on the screen
and lets you move one of them with the E, S, D, and X keys.
The distance between the sprites is continuously displayed at
the bottom of the screen.

100 CALL CLEAR
110 CALL CHAR(96,"FFFFFFFFFFFFFFFF")
120 CALL SPRITE(#1,96,2,70,125)
130 CALL SPRITE(#2,96,16,90,125)
140 CALL KEY(3,K,S)
150 X=(K=83)-(K=68) :: Y=(K=88)-(K = 69)
160 CALL MOTION(#l,-Y,X)
170 CALL DISTANCE (#1,#2,D)
180 DISPLAY AT(23,10):"DISTANCE";D
190 GOTO 140

CALL DISTANCE may be used in place of CALL COINC
in your programs. While CALL COINC is used to test for
coincidence, CALL DISTANCE has the additional benefit of
providing the actual distance between sprites. This allows your
program to determine how close as well as hit or miss.

The next program, "Meteors," demonstrates how CALL
DISTANCE can be used in a program in place of CALL
COINC. The program displays a starship in the middle of the
screen. The ship can be pointed up, down, left, or right by
using the E, S, D, and X keys. The object of the game is to
shoot the meteors by pressing the space bar. You can fire only
one shot at a time. If your ship is struck by one of the mete
ors, the ship is destroyed. You have three ships to lose before
the game is over. Stay alert!

How Meteors Works

Line(s)
100 Clear the screen.
110 Seed the random number generator.
120-200 Define the patterns used in the program. ASCII code

96 defines the ship pointing up; code 97 defines the
ship pointing right; code 98 defines the ship pointing
down; code 99 defines the ship pointing left. ASCII
codes 104-106 are used to define three patterns for the
meteors. ASCII code 112 defines the projectile fired by
the ship. ASCII code 120 defines an "explosion"
character.

99

Advanced Sprite Handling Techniques

210-230 Set the screen to dark blue, initialize the ship counter,
and display the ship counter and score on the screen.

240 Place the ship sprite (#1) at the center of the screen,
pointing up (ASCII code 96).

250 Initialize the row and column velocities for the projec
tile so that it corresponds to the direction in which the
ship is pointing. These velocities will change as the
direction of the ship changes.

260-280 Call the routine that generates the three meteor sprites.
290-340 Check for keyboard input. If the space bar was

pressed, go to the routine to fire the projectile. If the E,
S, D, or X key is pressed, change the ship's pattern to
the one corresponding to that direction and load the
appropriate row and column velocities for the
projectile.

350-370 After checking the keys, check to see if one of the
three meteors has collided with the ship. The specified
distance of 73 allows for a collision if the ship and a
meteor are within roughly six pixels of each other. This
routine is within the main program loop since a meteor
could collide with the ship at any time.

380 Afterchecking for keyboard input and collisions, go
back and do it again.

390-480 This routine takes command when the space bar is
pressed, indicating that a projectile has been fired. Line
390 fires the projectile based on the direction in which
the ship is pointing (RV and CV). Line 400 begins a
loop that lasts for the duration of the projectile's flight.
Within this loop, lines 410-440 check to see if the
projectile hit one of the meteors. Again, a distance of
73 was used. If the projectile did hit a meteor, program
control is passed to line 610. After the loop in line 400
is completed, the projectile sprite (#2) is deleted.
Otherwise, the projectile would continue to wrap
around the screen. If there are still meteors on the
screen, line 460 branches back to the keyboard check
routine. If all the meteors have been destroyed, line
470 creates three more of them. One important thing
to notice is the second CALL DISTANCE in line 420.
This statement continues to check for ship and meteor
collision even while the projectile is being tracked.

490-530 Subroutine to create three meteors. The row and col
umn velocities are randomly generated.

540-600 Subroutine for a ship and meteor collision. Lines 540-
550 briefly change the ship's pattern to the explosion
character. The ship is then deleted in line 560. Line

100

WW

Advanced Sprite Handling Techniques

570 subtracts 1 from the ship count. If there are still
ships left, line 590 goes back to line 230 to place a
new ship on the screen. If there are no more ships, the
program is ended in line 600.

610-650 Subroutine for a meteor hit by a projectile. Line 610
changes the affected meteor to the explosion character.
Line 620 updates the meteor counter and score. Line
630 deletes the meteor sprite. Lines 640-650 display
the score and return to the calling routine.

Program 4-3. Meteors
100 CALL CLEAR

110 RANDOMIZE

120 CALL CHAR(96,"18183C3C3C7EFFFF")
130 CALL CHAR(97,"C0E0FCFFFFFCE0C0")
140 CALL CHAR(98,"FFFF7E3C3C3C1B18")
150 CALL CHAR(99,"03073FFFFF3F0703")
160 CALL CHAR(104,"387E3F7EFEFF7F1F")
170 CALL CHAR(105,"3C7E7EFFFFFF7E3C")
180 CALL CHAR(106,"7C7F3F3E1C3E7E3F")
190 CALL CHAR(112, "0000001818000000")
200 CALL CHAR(120,"01124201441811C3")
210 CALL SCREEN(5)
220 SHIPS=3

230 DISPLAY AT(24,6):"SHIPS:";SHIPS-1 :: DISPLAY A
T(24,15):"SCORE:";SC

240 CALL SPRITE(#1,96,15,90,125)
250 RV=-20 :: CV=0

260 FOR SP=3 TO 5

270 GOSUB 490

280 NEXT SP

290 CALL KEY(3,K,S)
300 IF K=32 THEM 390
310 IF K=83 THEN CALL PATTERN(#1,99):: RV=0 :: CV=

-20

320 IF K=68 THEN CALL PATTERN(#1,97):: RV=0 :: CV=
20

330 IF K=69 THEN CALL PATTERN(#1,96):: RV=-20 :: C
V=0

340 IF K=88 THEN CALL PATTERN(#1,98):: RV=20 :: CV
=0

350 FOR L2=3 TO 5

360 CALL DISTANCE (#1,#L2,DI): : IF DK73 THEN 540
370 NEXT L2

380 GOTO 290

390 CALL SPRITE(#2,112,16,90,125,RV,CV)
400 FOR L=l TO 6

101

Advanced Sprite Handling Techniques

410 FOR SP=3 TO 5

420 CALL DISTANCE(#2,#SP,DIST): : CALL DISTANCE(#1, ^
#SP,DI):: IF DK73 THEN 540

430 IF DIST<73 THEN GOSUB 610
440 NEXT SP :: NEXT L

450 CALL DELSPRITE(#2)
460 IF CT<3 THEN 290

470 FOR SP=3 TO 5 :: GOSUB 490 :: NEXT SP
480 GOTO 290

490 CALL SPRITE(#SP,104+INT(RND*3), 2,240,90)
500 SRV=3+INT(RND*5):: IF RND<.5 THEN SRV=-SRV
510 SCV=3+INT(RND*5):: IF RND<.5 THEN SCV=-SCV
520 CALL MOTION(#SP,SRV,SCV)
530 CT=0 :: RETURN

540 CALL PATTERN(#1,120)
550 FOR L2=l TO 15 :: NEXT L2

560 CALL DELSPRITE(ALL)
570 SHIPS=SHIPS-1

580 IF SHIPS=0 THEN 600

590 FOR L=l TO 300 :: NEXT L :: GOTO 23b

600 STOP

610 CALL PATTERN(#SP,120)
620 CT=CT+1 :: SC=SC+1

630 CALL DELSPRITE(#2,#SP)
640 DISPLAY AT(24,21):SC
650 L=99 :: SP=9 :: RETURN

Factors Affecting POSITION, COINC, and DISTANCE
There are two factors you should keep in mind when using
CALL POSITION, CALL COINC, and CALL DISTANCE in
your programs. Both have to do with speed.

The first involves the row and column velocities of the
sprites used in the program. If these velocities are high, the
values returned from the subprograms may not be right. The
reason is simple: The three subprograms get the values at the
instant they are executed in the program, but when sprites are
moving very fast, the subprograms have a much smaller mar
gin of error, or window, to work with. The results, of course,
are missed coincidences and incorrect distances.

The second problem is similar. It has to do with the rel
atively slow speed of BASIC. As an example, consider a pro- *"!
gram that contains eight sprites. You want the program to
check for coincidence between sprite #1 and the other seven ™*1
sprites. If your program contains seven CALL COINC sub
program statements in a row, the chances are very good that ^

102 "f

NW

Advanced Sprite Handling Techniques

the final two or three will miss the coincidence. By the time
the program gets to those lines, the sprites have moved out of
range.

There are ways to overcome, or at least reduce, these
problems. Use efficient programming techniques (multiple
statement lines, short variable names, etc.). Check your pro
gram for needless GOTOs or dead code. Where possible, com
bine repetitive code into a single subroutine. Make sure your
program is well-designed. Do you need to check every sprite
for coincidence in the same place? Can you use the ALL
keyword instead of checking each sprite? The list goes on.

Writing a Graphics Program
By this point, you should be familiar with defining characters,
displaying characters on the screen, assigning character colors,
defining sprites, controlling sprite motion, and determining
sprite status. But understanding these techniques is only the
first step toward working up a graphics program of your own.

This section will show you how to incorporate such tech
niques into a game program of your own. It will explain, step
by step, how a graphics program evolves from a rough idea in
the programmer's mind into the finished product.

The Scenario
The program will be a one-player maze game called "Mouse
Maze." The object of the game will be to get the mouse from
the top of the maze to the mouse hole at the bottom. It might
be easy—but unfortunately for the mouse, the maze will also
be occupied by two hungry cats.

The cats will have the ability to chase the mouse. They'll
have enough intelligence to know where the mouse is, but not
enough to backtrack when they reach barriers in the maze.
Neither the cats nor the mouse can jump the maze barriers.
Both the cats and the mouse will move at the same speed. The
mouse's only chance for survival, therefore, is to outsmart the
cats. The player will control the mouse by using the E, S, D,
and X keys.

The complete program listing is presented at the end of
this chapter. You should refer to it when particular sections of
code are being explained.

103

Advanced Sprite Handling Techniques

Defining the Graphics
Once the scenario is set, the next step is to identify and define
the required graphics characters. From the game description
you can see that two types of graphics are necessary for this
game.

Obviously, there must be a maze. Since the maze is, in
effect, the playing board, it should be designed first. The best
way to design a maze—or, for that matter, any other fixed
screen pattern—is to draw it on graph paper marked for 32
columns by 24 lines. The maze used in the program is shown
in Figure 4-4.

Figure 4-4. Mouse Maze Screen Layout

After plotting the maze, you must decide on a character to
make up the maze walls. You could use a standard ASCII pat
tern such as the X, but that would be a waste of the flexibility
that your TI provides.

It would be more effective visually to use a custom
character, and that is what has been done here. Line 120

104

rs?b#i

CSis^

d?l

(PfiSBO

J'.WjkCI

Advanced Sprite Handling Techniques

defines ASCII code 40 as a square with a dark red border and
a gray interior. When this character is used to make the maze
barrier, it gives the impression of bricks or blocks.

There still remains the matter of displaying your maze on
the screen. This is accomplished easily enough by looking at
the maze design, finding the starting location and length of
the barrier sections, and using CALL HCHAR and CALL
VCHAR to place them on the screen. Lines 370-590 do just
that.

But there's more to this maze game than its maze. The
sprites must also be defined. This particular scenario involves
two basic sprite shapes, one for the cats and one for the
mouse, and they should be displayed with reasonably high
resolution in order to provide realism. Double-sized
unmagnified sprites (line 240) would be the best choice, since
they provide a total of 256 pixels per animal.

Note that the size of the sprites determines the minimum
width of the maze corridors. In this case, with double-sized
unmagnified sprites, the corridors must be at least two charac
ters wide in every dimension. Remember, double-sized sprites
measure two characters by two characters.

Though you only have two types of creatures loose in
your maze, remember that each one can move in any of four
different directions. Consequently, four distinct sprites will be
required for each. Figure 4-5 shows the four patterns for the
mouse, which are defined in the program as four-character
ASCII codes 96, 100, 104, and 108, in lines 130-160. Figure 4-
6 depicts the patterns for the cats, which are defined as four-
character ASCII codes 112, 116, 120, and 124, in lines 170-
200.

The mouse is placed on the screen, in line 330, at row 17,
column 161. The cats, on the other hand, are initially located
at two of six possible locations (lines 340-350), which makes
the game less repetitious. The six possible locations are con
tained in the DATA statements in lines 1200 and 1210. These
are READ in lines 280-300. The two locations actually used
are randomly selected in lines 250-260. Line 270 makes sure
that the two locations are different.

Finally, the game should include some sort of animation
depicting the mouse being caught by a cat. This is accom
plished by alternating the three patterns shown in Figure 4-7.
They are defined in lines 210-230 as four-character ASCII
codes 128, 132, and 136.

105

20>

Iqs

r
roM0oHo»
«

90
)

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o

o
o

v
U

n
o

<
o

«
n

«
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

O
O

O
»

V
N

\
0

v
0

v
0

N
U

^
O

O
O

O
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

ao

•

<
oI

0
)

r
r

r
r
.\
o

20>

XtC
O

•goI

L
L

I.

4
5!o9

o
o

o
o

o
o

o
o

R
o

P
S

o
o

^
o

o
t
c
o

o
o

o
o

^
n

^
^
U

U
i
U

o
o

o
o

o
o

O
O

O
O

O
0

0
*

1
"
C

»
>

U
.C

1
«

-ii—
h

n
U

o
O

O
C

M
r
^
i
—

O
O

O
O

^
-
i
l
S

^
O

O
O

O

o
o

o
o

o
o

p
.
o

p
.o

o
o

o
U

v
o

o
o

o

o
o

o
o

U
o

p
^
'-

'P
'i

^
o

U
o

o
o

o
O

'
o

o
-
-
'
O

O
O

o
o

o
o

>
-
'
c
n

>
o

o
'

O

!
.

1

Advanced Sprite Handling Techniques

Controlling the Action
Since this game involves ongoing action, a main control loop
must be established. This loop must determine if the mouse
has been caught. It must also move the cats toward the mouse
without letting them jump the barrier, and it has to see if the
E, S, D, or X key is pressed and then move the mouse accord
ingly. Finally, it has to determine if the mouse has safely
reached the mouse hole.

The control loop begins in line 600. The first thing it does
is get the position of the mouse and the two cats. If the mouse
is past row 172, it has reached safety. The program then
branches to line 1140, which ends the game. Otherwise, the
program checks COINC in lines 610 and 620 to see if the
mouse has been caught. If the mouse is within eight pixels of
either cat, the mouse is caught. In that case, the program
branches to 1060 and initiates a loop that alternates ASCII
codes 128, 132, and 136. The effect is a cartoon-style cat and
mouse fight.

If coincidence is not reported, the program calls a routine
to move the cats (lines 630-680). The values from the earlier
CALL POSITION are used to determine the row and column
velocities necessary to move the cat toward the mouse (line
710). If the mouse is further away vertically than horizontally
(line 720), the cat attempts to move vertically (lines 790-840).
Otherwise, the cat attempts to move horizontally (lines 730-
780).

If the cat attempts to move vertically, but is blocked by
the barrier (line 820), it then attempts to move horizontally. If
it is still blocked, no movement occurs. The same applies
when the first attempt is horizontal (line 760).

Since the sprite measures two characters by two charac
ters, a cat can move vertically only when both positions in the
vertical direction are blank. To check for this condition, the
program converts the sprite row (adjusted for the move) and
column from the CALL POSITION into character row and col
umn (lines 790-800). It then issues two CALL GCHARs to
determine if the new locations are blank. If they are, the move
is made (line 670), and the cat pattern for that direction is
used (line 830). If the new locations aren't blank, and no hori
zontal movement attempt has been made (IF SW=0 in line
820), the program branches to the horizontal movement rou
tine (GOTO 730 in line 820). Horizontal movement is con
trolled in similar fashion in lines 750 and 760.

108

t3m^

Advanced Sprite Handling Techniques

After the cats have been moved, the program checks for
keyboard input (line 690). If there is keyboard input, lines
850-880 determine which key and invoke the appropriate rou
tine. For example, if the S key was pressed (moving the mouse
to the left), the program branches to line 900. The new loca
tion for the mouse is determined (line 900), and a CALL
GCHAR is issued (line 910) to see what's there. If the new
location is blank, the mouse is moved and its pattern changed
to coincide with that direction (line 920). If the new location
isn't blank, no movement is made. In either case, the program
RETURNS (line 930) and starts the process all over.

Program 4-4. Mouse Maze
100 CALL CLEAR

110 RANDOMIZE

120 CALL CHAR(40,"FF818181818181FF"):: CALL CCLOR(
2,7,15)

130 CALL CHAR(96,"00000000040F0302000000000000000O
000000040&F0E0200000000000000000 ")

140 CALL CHAR(100,"00000020100F0704000000000000000
00000000020F0C0400000000000000000")

150 CALL CHAR(104,"000010080407060606070C040000000
000000000000000000000000000000000")

160 CALL CHAR(108,"00000000040C0706060607040810000
000000000000000000000000000000000 ")

170 CALL CHAR(112,"000000002060E0E03F3F3F1F0808102
00000000000010204F8F8F8F010080810")

180 CALL CFIAR(H6, "00000000008040201F1F1F0F0810100
80000000004060707FCFCFCF810100804")

190 CALL CHAR(120,"040201000000000000000000000F070
3000000E6F9F0F0F0F0F0F0FCF2E10000")

200 CALL CHAR(124,"03070F0000000000000000000001020
40000E1F2FCF0F0F0F0F0F0F9E6000000")

210 CALL CHAR(128,"0000006030180C06O30103060C18000
0000000060C183060C080C06030180000")

220 CALL CHAR(132,"000006080G112044402044010000000
000003C80040404040460640000380000")

230 CALL CHAR(136,"00004040201008030F1121418202040
000000810204040C0F0E1080408040101")

240 CALL MAGNIFY(3)
250 LC1=1+INT(RND*6)
260 LC2=1+INT(RND*6)
270 IF LC1=LC2 THEN 260

280 FOR L=l TO 6

290 READ CRL(L),CCL(L),CCH(L)
300 NEXT L

109

Advanced Sprite Handling Techniques

310 X(1)=CRL(LC1):: X(2)=CRL(LC2)
320 Y(1)=CCL(LC1):: Y(2)=CCL(LC2)
330 CALL SPRITE(#1,100,16,17,161)
340 CALL SPRITE(#2,CCH(LC1),2,CRL(LC1),CCL(LC1))
350 CALL SPRITE(#3,CCH(LC2),2,CRL(LC2),CCL(LC2))
360 CALL SCREEN(6)
370 CALL HCHAR(2,2,40,30)
380 CALL HCHAR(5,5,40,6):: CALL HCHAR(5,13,40,10):

: CALL HCHAR(5,25,40,4)
390 CALL HCHAR(8,5,40,8):: CALL HCHAR(8,18,40,11)
400 CALL HCHAR(11,3,40,8)
410 CALL HCHAR(13,13,40,4):: CALL HCHAR(13,17,40,9

420 CALL HCHAR(16,5,40,9)
430 CALL HCHAR(17,22,40,9)
440 CALL HCHAR(19,8,40,3):
450 CALL HCHAR(20,8,40,3)
460 CALL HCHAR(21,8,40,3):

)
470 CALL HCHAR(24,2,40,9):

)
480 CALL VCHAR(2,2,40,23)
490 CALL VCHAR(19,5,40,5)
500 CALL VCHAR(14#7,40,2)
510 CALL VCHAR(11,10,40,3)
520 CALL VCHAR(5,13,40,6):
530 CALL VCHAR(13,16,40,4)
540 CALL VCHAR(8,18,40,3)
550 CALL VCHAR(19,19,40,3)
560 CALL VCHAR(8,22,40,3)
570 CALL VCHAR(13,25,40,2)
580 CALL VCHAR(8,28,40,7)
590 CALL VCHAR(2,31,40,23)
600 CALL POSITION(#l,Rl,Cl,#2,R2(l),C2(l),#3,R2(2)

,C2(2)):: IF Rl>172 THEN 1140
610 CALL COINC(#1,#2,8,CO):: IF CO<>0 THEN CO=2 ::

GOTO 1060

620 CALL COINC(#l,#3,8,CO):: IF CO<>0 THEN CO=3 ::
GOTO 1060

630 FOR L=l TO 2

640 GOSUB 710

650 NEXT L

660 FOR L=2 TO 3
670 CALL LOCATE(#L,R2(L-1)/C2(L-1))
680 NEXT L

690 CALL KEY(3,K,S):: IF S<>0 THEN GOSUB 850
700 GOTO 600
710 MS=0 :: SW=0 :: RV=Rl-R2(L):: CV=Cl-C2(L)
720 IF ABS(RV)>ABS(CV)THEN 790

110

CALL HCHAR(19,13,40,7)

CALL HCHAR(21,19,40,10

CALL HCHAR(24,13,40,19

CALL VCHAR(16,13,40,6)

ESs^il

nsi

Advanced Sprite Handling Techniques

730 IF CV<0 THEN COL=MIN(INT((C2 (L)-8)/8)+l,32)ELS
E COL=MIN(INT((C2(L)+16)/8)+l, 32)

740 ROV7=INT(R2(L)/8)+l
750 CALL GCHAR(ROW,COL,CH):: CALL GCHAR(R0V/+1,COL,

CH2)
760 IF CH<>32 OR CH2<>32 THEN IF SW=0 THEN SW=1 ::

GOTO 790 ELSE RETURN

770 IF CV<0 THEN C2(L)=C2(L)-8
1,112)ELSE C2(L)=C2(L)+8 ::
116)

780 RETURN

790 IF RV<0 THEN ROW=MIN(lNT((R2(L)-8)/8)+l,24)ELS
E R0V7=MIN(INT((R2(L)+16)/8)+l, 24)

800 COL=INT(C2(L)/8)+l
810 CALL GCHAR(ROW,COL,CH):: CALL GCHAR(ROV7,COL+l,

CH2)
820 IF CH<>32 OR CH2<>32 THEN IF SW=0 THEN SW=1 ::

GOTO 730 ELSE RETURN

830 IF RV<0 THEN R2(L)=R2(L)-8 :: CALL PATTERN(#L+
1,124)ELSE R2(L)=R2(L)+8 :: CALL PATTERN(#L+1,
120)

840 RETURN

850 IF K=83 THEN 900

860 IF K=68 THEN 940

870 IF K=69 THEN 980

880 IF K=88 THEN 1020

890 RETURN

900 ROV7=INT(Rl/8)+l :: COL=
910 CALL GCHAR(ROW,COL,CH)
920 IF CH=32 THEN Cl=Cl-8 :

CALL LOCATE(#1,R1,CI)
930 RETURN

940 ROW=INT(Rl/8)+l :: COL=INT((Cl+16)/8)+l
950 CALL GCHAR(ROW,COL,CH)
960 IF CH=32 THEN Cl=Cl+8 :: CALL PATTERN(#1,100):

: CALL LOCATE(#1,R1,CI)
970 RETURN

980 COL=INT(Cl/8)+l :: ROV/=INT((Rl-8)/8)+l
990 CALL GCHAR(ROW,COL,CH)
1000 IF CH=32 THEN Rl=Rl-8 :: CALL PATTERN(#1,108)

:: CALL LOCATE(#1,Rl,Cl)
1010 RETURN

1020 COL=INT(Cl/8)+l :: ROW=INT((Rl+16)/8)+l
1030 CALL GCHAR(ROW,COL,CH)
1040 IF CH=32 THEN Rl=Rl+8 :: CALL PATTERN(#1,104)

:: CALL LOCATE(#1,Rl,Cl)
1050 RETURN

1060 FOR LP1=1 TO 5 :: FOR LP2=1 TO 9 STEP 4

:: CALL PATTERN(#L+
CALL PATTERN(#L+1,

=INT((Cl-8)/8)+l

: CALL PATTERN(#1,96):

111

Advanced Sprite Handling Techniques

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

112

CALL PATTERN(#1,127+LP2):: CALL PATTERN(#C0,1
37-LP2):: CALL COLOR(#1,9+INT(RND*4),#C0,7+IN
T(RND*6))
FOR LP3=1 TO 15 :: NEXT LP3

NEXT LP2 :: NEXT LP1

CALL DELSPRITE(#1):: CALL COLOR(#CO,2):: CALL
PATTERN(#CO,116)

DISPLAY AT(1,5):"PLAY AGAIN? Y OR N"
CALL KEY(3,K,S):: IF S=0 THEN 1120
IF K=89 THEN RESTORE :: GOTO 100 ELSE CALL DE

LSPRITE(ALL):: CALL CLEAR :: STOP
CALL DELSPRITE(ALL):: CALL CLEAR
FOR LP1=1 TO 10

DISPLAY AT(12,10):"HOORAYI" :: FOR LP2=1 TO 4
0 :: NEXT LP2

DISPLAY AT(12,1):" " :: FOR LP2=1 TO 40 :: NE
XT LP2

NEXT LP1

STOP

DATA 169,17,124,169,113,116,89,25,116
DATA 81,185,112,41,113,112,105,81,124

HjWW-I

p3&

J I.V'MEiffiJ

Sound

As you've worked with your TI through the last few
chapters, you've discovered that it has some remark
able graphics capabilities. But graphics is only part of
the story. Your TI computer has an additional

capability that can make things even more exciting: sound.

What Is Sound?
Sound is the result of changes in air pressure, which stimulate
the ear drum and auditory nerves to produce the sensation of
hearing. Such pressure changes radiate from a source—for
instance, a vibrating guitar string—and travel through the air
much like waves travel across a pond when you toss in a
stone.

Sound can be characterized by volume, frequency, and
vibrational pattern. Volume is simply the magnitude of the
pressure waves, while frequency is nothing more than the
number of pressure changes per second. Frequency is meas
ured in hertz (Hz), or cycles per second, and most people can
hear sounds ranging from about 20 to more than 20,000 Hz.
The vibrational pattern embraces both the waveform (literally,
the shape of the pressure waves) and the regularity of the pat
tern and determines a sound's tone color. For example, regu
larly varying waves will produce sounds having a definite
pitch, while randomly varying waves will be heard as some
form of noise.

Making Sound on the TI
Using the CALL SOUND subprogram, your TI can produce
both musical tones and noise. CALL SOUND has the follow
ing format:
CALL SOUND(duration,frequency l,volume 1,...,frequency

4,volume 4)

Duration is an integer in the range from 1 to 4250 or —1
to —4250 and can be a numeric literal, numeric variable, or
numeric expression. It indicates the length of time in milli
seconds (1000 milliseconds equals one second) that a tone or
noise will last. Positive durations mean that a new CALL
SOUND subprogram will not be executed until the previous

115

Sound

CALL SOUND has finished. If you use the negative sign, it
tells the computer to execute a CALL SOUND immediately,
regardless of what else is going on, and can be particularly
useful in games or tutorials where sounds must change
quickly. You can specify only one duration parameter per
CALL SOUND subprogram.

The frequency parameter determines whether a sound is a
musical tone or noise. For musical tones, it is an integer from
110 to 44733 that corresponds to the desired frequency. For
noise, it is an integer from —1 to —8, depending on the type
of noise that you want. Several different noise types are
described in Table 5-1, along with their corresponding fre
quency values. In either case, the value can be a numeric lit
eral, numeric variable, or numeric expression.

Table 5-1. Noises

Frequency Description
—1 Periodic Noise Type 1
—2 Periodic Noise Type 2
—3 Periodic Noise Type 3
—4 Periodic Noise that varies with the frequency of the

third tone specified
—5 White Noise Type 1
-6 White Noise Type 2
-7 White Noise Type 3
—8 White Noise that varies with the frequency of the third

tone specified

Volume is an integer ranging from 0 to 30 and can also be
a numeric literal, numeric variable, or numeric expression.
Contrary to what you might expect, 0 represents the highest
volume. Higher numbers produce lower volumes, with 30
being used for the softest possible sounds.

A maximum of three frequencies and one noise form,
each with its own volume parameter, may be specified in the
same CALL SOUND statement. All of the sounds will then be
produced simultaneously.

The best way to learn your TI's sound capabilities is to
experiment. You can RUN the following examples to get
started, but don't hesitate to try different values and create
some sounds of your own.

116

asm

Jpffll

fnvWi

Sound

Frequency vs. Pitch
100 FOR F=110 TO 1760 STEP 50
110 CALL SOUND (500,F,0)
120 NEXT F

Duration
100 FOR D = 100 to 4250 STEP 1000
110 CALL SOUND (D, 262,0)
120 FOR X=l TO 1500 :: NEXT X
130 NEXT D

Volume

100 FOR V=0 TO 30
110 CALL SOUND (500,262,V)
120 FOR X=l TO 500 :: NEXT X
130 NEXT V

Noise
100 FOR N = l TO -8 STEP -1
110 CALL SOUND (3000,N,0)
120 FOR X=l TO 1500 :: NEXT X
130 NEXT N

Harmony
100 CALL SOUND (3000,262,0,330,0,392,0)

Discord
100 CALL SOUND(3000,110,0,672,0,151,0)

Turning Sound into Music
As you've probably discovered, your TI can produce some
interesting sounds. By themselves, those sounds can certainly
provide an evening's entertainment or add new dimensions to
your games. Your computer can also be a musician, and this
section will show you how to tap its talents.

The following section is a short introduction to musical
notation. If you already know how to read music, you might
want to skip ahead. If not, this short introduction will help
you phrase your musical thoughts in terms the TI understands.

Basic Notation
In written music, different tones are represented by notes
placed on a staff composed of five lines and four spaces. The
two most common staves are the treble staff, used for middle
to high tones, and the bass staff, used for middle to low tones.

117

Sound

Music is generally written on the grand staff, a combination of
the bass and treble staves. The treble portion generally con
tains the melody, while the bass portion contains the harmony
or accompaniment.

A note, by itself, simply indicates the duration of a tone.
It is the position of that note on the staff that specifies a given
tone, and each line or space is identified by one of the first
seven letters of the alphabet. Figure 5-1 shows how the letter
names and frequencies relate to the lines and spaces.

The interval from any note to the next one of the same
letter name is called an octave. For example, the interval from
the A with a frequency of 110 to the A with a frequency of 220
represents one octave. Each octave represents a doubling of
frequency, and the following program demonstrates that
relationship by playing each note and its octaves.

Program 5-2 will help you learn to identify notes by their
letter names. It draws a grand staff on the screen and places
labeled notes on the staff. As each note appears, CALL
SOUND is used to generate the corresponding tone. After all
the notes have been played, a short quiz reviews your note-
naming skills.

Using symbols called chromatic signs, notes called sharps
(#) or flats (p) can also be identified. Asharp will be slightly
higher in frequency than the un-sharped note, while a flat will
be slightly lower in frequency. The distance between two
adjacent tones—for example, between C and C#—is called a
half step; the distance between two tones with a single tone
between them—C to D, for instance—is called a whole step.
Chromatic signs which appear at the beginning of a piece are
called the key signature and affect every note in the piece,
while those appearing within the piece affect only a single
measure.

The natural sign (Q) may also be encountered. You can
think of it as a "neutralizer" which does away with a sharp or
flat. When placed in front of a note, it restores that note to its
unmodified pitch. For example, even though the key signature
might tell you to sharp every F, the natural sign can be used
to selectively remove the sharp whenever desired.

Your TI can generate more than 44,000 tones, but only a
few of them correspond to tones used in Western music. Table
5-2 lists those that do, along with the corresponding letter
names used to represent them.

118

fcsssa*^

N
O

F
ig

u
re

5-
1.

N
o

te
s

o
n

th
e

S
ta

ff

5

T
i

!
:

Q
*

*
•

:
!_

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i

A
B

C
D

E
F

G
A

B
C

D
E

F
G

A
B

C
D

E
F

G
A

B
C

(11
0)

(1
23

)
(13

1)
(1

47
)

(1
65

)
(1

75
)

(1
96

)
(2

20
)

(2
47

)
(2

62
)

(2
94

)
(3

30
)

(3
49

)
(3

92
)

(4
40

)
(4

94
)

(5
23

)
(5

87
)

(6
59

)
(6

98
)

(7
84

)
(8

80
)

(9
88

)
(1

04
7)

L
ow

M
id

dl
e

H
ig

h

(B
el

ow
R

an
ge

of
T

I)

X
L

1
1

e
n

Q

Sound

Table 5-2. Musical Tones Frequency
Frequency Note Frequency Note

110 A 440 A (above middle C)
117 A#, Bb 466 A#, Bb
123 B 494 B

131 C (low C) 523 C (high C)
139 C#, Db 554 C#, Db
147 D 587 D
156 D#, Eb 622 D#, Eb
165 E 659 E
175 F 698 F

185 F#, Gb 740 F#,Gb
196 G 784 G
208 G#, Ab 831 G#, Ab
220 A (below middle C) 880 A (above high C)
233 A#, Bb 932 A#, Bb
247 B 988 B

262 C (middle C) 1047 C
277 C#, Db 1109 C#, Db
294 D 1175 D
311 D#, Eb 1245 D#, Eb
330 E 1319 E
349 F 1397 F
370 F#, Gb 1480 F#, Gb
392 G 1568 G
415 G#, Ab 1661 G#, Ab
440 A (above middle C) 1760 A

Besides indicating pitch, notes also indicate duration. Dif
ferent notes represent different durations; other symbols,
called rests, indicate specific pauses. Figure 5-2 shows the
symbols used for various notes and rests, while Figure 5-3
shows how they relate to each other.

Figure 5-2. Notes and Rests

Whole note O Whole rest

Half note J Half rest

Quarter note J Quarter rest t

8th note } 8th rest
7

16th note } 16th rest f

32nd note } 32nd rest f

120

tBBWMl

I1$R^^

Sound

64th note 0> 64th rest $
Note: Two or more 8th, 16th, 32nd, or 64th notes are usually con
nected by a beam. For example,

n n n
Two 8ths Two 16ths An 8th and a 16th

Note that the stems of notes may point down instead of up. The
direction of the stem depends on the position of the note on the
staff.

Figure 5-3. Note Equivalents

S •or 4J ,or 8J ,or 16 J) or 32 J , or 64 0sOne whole note O equals 2

One dotted whole note O* equals 3

One half note

Onedotted half note fi/. equal

One quarter note

One dotted quarter note 0".. eq

One eighth note 0 eq

One dotted eighth note 0* equal

}
One 16th note 0 eq

One dotted 16th note 0' equal

One 32nd note

One dotted 32nd note 0 equal

J ,or 6J ,or 12 J ,or 24 J\ or 48 0. or 96 0s

0 equals 2J , or 4 J ,or 8J\ or 16 J ,or 32 0^

J J i }) Jd. equals 3 0 , or 6 0 , or 12 0 Ior 24 0 , or 48 0 '

; J equals 2J .or 4J\ or 8J , or 16 #n

J b } } 10.. equals 3 J , or6 0 . or12 0, or 24 01

>) j j? #1 equals 2# \ or 4 # , or8 #H

J> i 3 J^. equals 3 * \ or 6 * , or 12 0^

} })0' equals 2 # , or 4 0 '

i i j*' equals 3 # , or 6 *M

3 i0 equals 2 0>

} J0 equals 3 0 '

121

Sound

Note that different notes (and rests) represent relative
rather than absolute durations. In other words, a whole note
has no set length. But regardless of how long that whole note
actually lasts, a half note will last half as long, a quarter note
will last one-quarter as long, and so on.

A note can also be followed by a dot. The dot tells you to
prolong that note by half its time value. For example, if a half
note was followed by a dot, it would last three-fourths as long
as a whole note (1/2 + 1/4 = 3/4).

Regardless of duration, notes are arranged in groups
called measures. Measures divide music into segments with an
equal number of beats. The lines used to delineate measures
are called bar lines, and a double bar line is used at the end of
a piece. Figure 5-4 shows a grand staff divided into measures.

Figure 5-4. Measures and Time Signatures

Double Bar Line

Measure Measure Measure Measure

\ Bar Line Bar Line

Time Signature

Bar Line

4-4 beats to the measure

4 - Quarter note gets 1 beat
(Also indicated by a C)

Other Time Signatures

3-3 beats to the measure
4 - Quarter note gets 1 beat

2-2 beats to the measure
2 - Half note gets 1 beat

122

6-6 beats to the measure
8 - Eighth note gets 1 beat

2-2 beats to the measure
4 - Quarter note gets 1 beat

ess

GhbijI

fW!H9
I

Sound

po Information about the rhythm of a piece is given by the
time signature, a numerical fraction found at the beginning of
the grand staff. The top number tells you how many beats are
in each measure, while the bottom number indicates the type
of note that gets one beat. The time signature shown in Figure
5-4, for example, tells you that each measure contains four
beats and that the quarter note should be counted as one beat.
A half note would get two beats, and a whole note would get
four beats. Similarly, an eighth note would get half a beat, a
dotted half note would get three beats, and so on.

Program 5-1. Octaves
100 CALL CLEAR :: CALL SCREEN(2)
110 CALL MAGNIFY(2)
120 FOR L=l TO 7

130 READ N(L)
140 NEXT L

150 FOR L=l TO 7

160 F=N(L)
170 CALL SPRITE(#lf64+L,14f90f125)
180 FOR X=l TO 5

190 CALL SOUND(1500,F,0)
200 F=F*2

210 NEXT X

220 FOR T=l TO 1500

230 NEXT T

240 NEXT L

250 DATA 110,123,131,147,165,175,196

Program 5-2. Note Tutor

100 CALL CLEAR

110 RANDOMIZE

120 DIM NOTE?(22),ROW(22),FREQ(22),SW(22)
130 CALL CHAR(91,"000000FF00000000")
140 CALL CHAR(92,"0101010101010101")
150 CALL CHAR(93,"8080808080808080")
160 CALL CHAR(96,"1866818181661800")
170 CALL CHAR(100,"010101FF01010101010101FF0305091

f« 9313161FF47C9C9CDC5C7C3FF41616131")
180 CALL CHAR(104,"190D07FF01010101")

tmi 190 CALL CHAR(105,"C0A090FF0404040890A0C0FF8080808
0808080FFF0B88C86828181FF83838 68E")

200 CALL CHAR(109,"98B0E0FF80808080")
f* 210 CALL CHAR(110,"000000FF0F183060407038FF0000000

0000000FF00000000000000FF00000 700")

123

Sound

220 CALL CHAR(114,"000000FF00000000") ^
230 CALL CHAR(H5, "000000FFF01008080C0D0CFF0C0D0C0

C0C0C0CFF0C0C0C08181030FF70E00
000 ")

240 CALL CHAR(119, "000000FF00000000")
250 FOR L=l TO 22

260 READ NOTE?(L),ROW(L),FREQ(L)
270 NEXT L

280 CALL CLEAR

290 DISPLAY AT(4,1):"1 - NOTE DRILL" :: DISPLAY AT
(6,1): "2 - NOTE TEST"

300 DISPLAY AT(10,1):"SELECT ONE > " :: ACCEPT
AT(10,17)VALIDATE("12")SIZE(- 1)EEEP:OPT

310 CALL CLEAR

320 IF OPT=l THEN DISPLAY AT(1,10):"D RILL" ELS
E DISPLAY AT(1,10):"T E S T"

330 FOR L=5 TO 9

340 CALL HCHAR(L,2,91,30)
350 NEXT L

360 FOR L=14 TO 18

370 CALL HCHAR(L,2,91,30)
380 NEXT L

390 FOR L=5 TO 9

400 CALL HCHAR(L,2,95+L,1)
410 CALL HCHAR(L,3,100+L,1)
420 NEXT L

430 FOR L=14 TO 18

440 CALL HCHAR(L,2,96+L,1)
450 CALL HCHAR(L,3,101+L,1)
460 NEXT L

470 CALL VCHAR(5,1,92,14):: CALL VCHAR(5,32,93,14)
480 DISPLAY AT(21,4):"LOW{3 SPACESjMIDDLE HIGH"
490 IF OPT=2 THEN 620

500 C=33 :: FOR L=l TO 22

510 IF L=10 OR L=22 THEN CALL HCHAR(lNT(ROW(L)/8) +
1,3+L,91,3)

520 CALL SPRITE(#L,96,2,ROW(L),C)
530 C=C+8 :: DISPLAY AT(19,2+L):NOTE$(L)
540 CALL SOUND(800,FREQ(L),0)
550 FOR D=l TO 1200 :; NEXT D

560 NEXT L

570 DISPLAY AT(23,5):"** DRILL COMPLETE **" ""(
580 FOR D=l TO 2500 :: NEXT D "-1
590 CALL DELSPRITE(ALL) «
600 GOTO 280

610 GOTO 610

620 FOR L=l TO 22 :: SW(L)=0 :: NEXT L ~
630 CC=33 :: RIGHT=0 :: WRONG=0

124

Sound

640 DISPLAY AT(21,1):" "
650 FOR L=l TO 10
660 N=1+INT(RND*22): : IF SW(N)=1 THEN 660
670 SW(N)=1
680 CALL SPRITE(#L,96,2,ROW(N),CC)
690 IF N=10 OR N=22 THEN CALL HCHAR(lNT(ROW(N)/8)+

1,3+L,91,3)
700 CALL SOUND(800,FREQ(N),0)
710 CC=CC+8

720 DISPLAY AT(23,1):"WHAT IS THIS NOTE? _" :: ACC
EPT AT(23,20)VALIDATE("ABCDEFG")SIZE(-1): ANS$

730 CALL HCHAR(23,1,32,32)
740 IF ANS?=NOTE$(N)THEN DISPLAY AT(23,10):"R I G

H T I" ELSE DISPLAY AT(23,10):"W R O N G i"
750 IF ANS$ONOTE$(N)THEN DISPLAY AT (24,1): "THE CO

RRECT ANSWER IS ";NOTE$(N):: WRONG=WRONG+l ELS
E RIGHT=RIGHT+1

760 DISPLAY AT(19,2+L):NOTES (N)
770 FOR D=l TO 1500 :: NEXT D

780 CALL HCHAR(23,1,32,32):: CALL HCHAR(24,1,32,32
)

790 NEXT L

800 DISPLAY AT(23,1):"RIGHT: ";RIGHT;"{3 SPACES}WR
ONG:";WRONG

810 FOR D=l TO 2500 :: NEXT D

820 CALL DELSPRITE(ALL)
830 GOTO 280

840 DATA "A",133,110
850 DATA "B",129,123
860 DATA "C",125,131
870 DATA "D",121,147
880 DATA "E",117,165
890 DATA "F",113,175
900 DATA "G",109,196
910 DATA "A",105,220
920 DATA "B",101,247
930 DATA "C",73,262
940 DATA "D",69,294
950 DATA "E",65,330
960 DATA "F",61,349
970 DATA "G",57,392
980 DATA "A",53,440
990 DATA "B",49,494
1000 DATA "C",45,523
1010 DATA "D",41,587
1020 DATA "E",37,659
1030 DATA "F",33,698
1040 DATA "G",29,784
1050 DATA "A",25,880

125

Sound

Making Music on the TI
Now that you've completed the crash course in basic music
theory, you're ready to translate written music into the lan
guage of the TI. The simple piece shown in Figure 5-5,
consisting only of a melody line, will be used as the first
example.

Figure 5-5. Example Piece

Moderato

^F? m

m

m *P1

The first thing to do is to determine the tempo of the
piece. A tempo mark (generally an Italian word or phrase)
usually appears at the top left corner of a musical piece. In
this example, the tempo is marked Moderato, indicating that
the music should be played at a moderate rate of speed. Some
other commonly used tempo markings and their meanings are
listed in Table 5-3.

Table 5-3. Tempo Marks
In order of Increasing speed

Largo broadly, very slowly
Lento slowly
Adagio slowly, leisurely
Andante moderately slow, flowing
Andantino slightly faster than andante
Moderato moderately
Allegretto quickly, but not as fast as allegro
Allegro at a quick pace, lively
Vivace or Vivo lively
Presto very fast
Prestissimo faster than presto

126

fra^

Cw^

Sound

The tempo lets you decide on the relative durations of
individual notes. If the tempo indicated is fast, the notes
would be shorter than if the tempo were slow. For example, in
a piece marked presto a quarter note might last 250 milli
seconds, while in a piece marked lento it would last 1000
milliseconds.

Next, one type of note must be chosen as the basis for
determining the relative duration of the other notes in the
piece. A good choice would be the note indicated in the time
signature. This piece is written in 4/4 time; therefore, the
quarter note is a logical choice.

Since the piece has a moderate tempo, the quarter note
will be assigned a duration of 500 milliseconds. The durations
of other types of notes could be computed separately. But it is
simpler to assign the quarter note's duration to a variable and
then express the durations of other notes in terms of that vari
able. For example, if T represents the duration of a quarter
note, then a half note would be represented by 2*T, a whole
note by 4*T, an eighth note by T/2, and so on. This method
also lets you change the tempo of the entire piece simply by
changing the value of T.

Now you can determine the actual musical tones repre
sented by the notes. The frequencies of those tones could be
looked up note by note as the piece is transcribed; however,
going back and forth between the music, the frequency table,
and the keyboard can get rather tedious. The process is made
easier by first determining the range of specific frequencies
used in the piece and then assigning those frequencies to vari
ables. The variable names should correspond to the letter
names of the tones (that is, A, B, C, D, E, F, and G), and there
must be some way of distinguishing tones with the same letter
name. One variable-naming scheme for musical tones is
shown in Table 5-4.

In this piece, the tones range from middle C to high C.
However, before assigning frequencies to variable names, the
key signature must be checked to see if any notes are sharped
or flatted. This particular key signature indicates no sharps or
flats, so no variables representing sharp or flat tones will be
needed unless a sharp or flat appears in the body of the
music.

Once the duration parameter has been established and the
frequency variables have been defined, each note piece can be

127

Sound

translated into a CALL SOUND statement. "Music Demo 1"
shows how this is done. For simplicity's sake, a single volume
is used throughout the piece.

Table 5-4. Variable Names for Musical Tones

Musical Tone

A (110)
A#, Bb(117)
B (123)
Low C (131)
C#, Db (139)
D (147)
D#, Eb (156)
E (165)
F (175)
F#, Gb(185)
G (196)
G#, Ab (208)
A (220)
A#, Bb (233)
B (247)
Middle C (262)
C#, Db (277)
D (294)
D#, Eb(311)
E (330)
F (349)
F#, Gb (370)
G (392)
G#, Ab (415)
A (440)

Variable Name

LLA

LLAS or LLBF
LLB

LC
LCS or LDF
LD

LDS or LEF
LE

LF

LFS or LGF

LG

LGS or LAF
LA

LAS or LBF
LB

C

CS or DF

D

DS or EF
E

F

FS or GF

G

GS or AF
A

Musical Tone

A (440)
A#, Bb (466)
B (494)
High C (523)
C#, Db (554)
D(587)
D#, Eb (622)
E (659)
F (698)
F#, Gb (740)
G (784)
G#, Ab (831)
A (880)
A#, Bb (932)
B (988)
C (1047)
C#, Db(1109)
D (1175)
D#, Eb (1245)
E (1319)
F (1397)
F#, Gb (1480)
G (1568)
G#, Ab (1661)
A (1760)

Variable Name

A

AS or BF

B

HC
HCS or HDF
HD

HDS or HEF
HE

HF

HFS or HGF

HG
HGS or HAF
HA

HAS or HBF
HB

HHC
HHCS or HHDF

HHD

HHDS or HHEF
HHE

HHF

HHFS or HHGF

HHG

HHGS or HHAF
HHA

Program 5-3. Music Demo 1
100 T=500

110 C=262 :: D=294 :: E=330

=440 :: B=494 :: HC=523

120 CALL SOUND(T,HC,0)
130 CALL SOUND(T/2,HC,0)
140 CALL SOUND(T/2,B,0)
150 CALL SOUND(T,A,0)
160 CALL SOUND(T,A,0)
170 CALL SOUND(T,G,0)
180 CALL SOUND(T/2,G,0)
190 CALL SOUND(T/2,F,0)

: F=349 :: G=392 :: A

128

<sn

UtfftL'j

fipi>

fPOB

Sound

200 CALL SOUND(T,E,0)
210 CALL SOUND(T/2,E,0)
220 CALL SOUND(T/2,F,0)
230 CALL SOUND(T,G,0)
240 CALL SOUND(T,C,0)
250 CALL SOUND(T,D,0)
260 CALL SOUND(T,F,0)
270 CALL SOUND(T+T/2,E,0)
280 CALL SOUND(T/2,D,0)
290 CALL SOUND(T,C,0)

How Music Demo 1 Works

Line
100 Set the variable T to 500 (milliseconds). The variable T

represents the duration of a quarter note.
110 Define the variables representing the frequencies of the

notes from middle C to high C.

120 Translate the first note of the first measure into a
CALL SOUND statement. This note is a quarter note
representing the musical tone high C; therefore, its
duration is represented by T, and its frequency is
represented by HC.

130 Translate the second note of the first measure. This
note is an eighth note (T/2) representing the musical
tone high C (HC).

140 Translate the third note of the first measure. This note
is an eighth note (T/2) representing the musical tone B.

150 Translate a quarter note (T) representing the tone A.
160 Translate a quarter note (T) representing the tone A.

170 Translate a quarter note (T) representing the tone G.

180 Translate an eighth note (T/2) representing the tone G.
190 Translate an eighth note (T/2) representing the tone F.
200 Translate a quarter note (T) representing the tone E.

210 Translate an eighth note (T/2) representing the tone E

220 Translate an eighth note (T/2) representing the tone F.

230 Translate a quarter note (T) representing the tone G.
240 Translate a quarter note (T) representing the tone C.

250 Translate a quarter note (T) representing the tone D.

260 Translate a quarter note (T) representing the tone F.

129

Sound

270

280

290

Translate a dotted quarter note (T+T/2) representing
the tone E.

Translate an eighth note (T/2) representing the tone D.

Translate a quarter note (T) representing the tone mid
dle C

Note that a quarter rest constitutes the last beat of the last
measure. Had the rest appeared within the music, you would
have needed a pause with the same duration as a quarter note
(500 milliseconds). To get it, you could use a CALL SOUND
statement specifying any frequency but the softest volume
(30). For example, the following CALL SOUND statement
would produce the pause called for by a quarter rest:
CALL SOUND (T,l 10,30)

Figure 5-6 expands the example piece to include bass
accompaniment. Only minor program alterations are required.
The relative note durations remain the same. However, the
range of musical tones must be expanded since the bass notes
range from low C to middle C and include two flats in the
third measure. Once the variables for these additional tones
have been defined, the CALL SOUND statements can be
altered to include the bass notes.

Figure 5-6. Example Piece with Bass
Accompaniment

Moderato

mf

m^ i

ipi-0T

U0 +\>0>
i

*m

m
When corresponding treble and bass notes have the same

duration, as do the first treble and bass notes of the first mea
sure, adding the bass note is simply a matter of adding
another set of frequency and volume parameters. But if the
bass and treble notes do not have the same duration, the dura
tion parameter must be changed to correspond with the note

130

filfflD

fi*b>

Sound

that is shorter. The longer note must be distributed over two
(or more) CALL SOUND statements.

For example, the second treble note in the first measure is
an eighth note, while its accompanying bass note is a quarter
note. The CALL SOUND statement initiating both notes
would have to have a duration parameter corresponding to an
eighth note (T/2), which would complete the eighth note and
the first half of the quarter note. The remainder of the quarter
note would have to be completed in the next CALL SOUND
statement—but it would still sound as a single, uninterrupted
quarter note, even though it was distributed over two separate
CALL SOUND statements.

The following program demonstrates how the bass
accompaniment could be added to the example piece.

Program 5-4. Music Demo 2
100 T=500
110 LC=131 :: LD=147 :: LE=165 :: LF=175 :: LG=196

:: LAF=208 :: LA=220 :: LBF=233 :: LB=247
120 C=262 :: D=294 :: E=330 :: F=349 :: G=392 :: A

=440 :: B=494 :: HC=523

130 CALL SOUND

140 CALL SOUND

150 CALL SOUND

160 CALL SOUND

170 CALL SOUND

180 CALL SOUND

190 CALL SOUND

200 CALL SOUND

210 CALL SOUND

220 CALL SOUND

230 CALL SOUND

240 CALL SOUND

250 CALL SOUND

260 CALL SOUND

270 CALL SOUND

280 CALL SOUND

290 CALL SOUND

300 CALL SOUND

310 CALL SOUND

T,HC,0,LC,0)
T/2,HC,0,LE,0)
T/2,B,0,LE,0)
T,A,0,LF,0)
T,A,0,LF,0)
T,G,0,LG,0)
T/2,G,0,LB,0)
T/2,F,0,LB,0)
T,E,0,C,0)
T/2,E,0,C,0)
T/2,F,0,C,0)
T,G,0)
T,C,0,LBF,0)
T,D,0,LA,0)
T,F,0,LAF,0)
T ,E,0 ,LG, 0)
T/2,E,0,LF,0)
T/2,D,0,LF,0)
T,C,0,LE,0)

131

Sound

How Music Demo 2 Works

Line(s)

100 Set the variable T (duration of a quarter note) to 500.
110-120 Define the variables representing the frequencies of the

notes.

130 The bass note, low C, is added. Since both notes are
quarter notes, the duration remains the same.

140 Low E, a quarter note, is added. It must be included in
the next CALL SOUND since its duration is longer
than that of the eighth note it accompanies.

150 Low E is added again, and thus given its full duration.
160 Low F, a half note, is added. It must be included in the

next CALL SOUND since its duration is longer than
that of the quarter note it accompanies.

170 Low F is added again, and thus given its full duration.
180 Low G is added. Both notes are quarter notes.
190 Low B, a quarter note, is added. It must be included in

the next CALL SOUND since its duration is longer
than that of the eighth note it accompanies.

200 Low Bis added again, and thus given its full duration.
210 Middle C, a half note, is added. It must be included in

the next CALL SOUND since its duration is longer
than that of the quarter note it accompanies.

220 Middle C is added again, but must also be included in
the next CALL SOUND in order to be given its full
duration.

230 Middle C is added again, and thus given its full
duration.

240 A quarter rest accompanies a quarter note; therefore,
no note is added.

250 Low Bl> is added. Both notes are quarter notes.
260 Low A is added. Both notes are quarter notes.
270 Low A& is added. Both notes are quarter notes.
280 Low G, a quarter note, is added. In this case, this bass

note has a shorter duration than the treble note it
accompanies; thus, the duration must be changed (T)
and the treble note must be included in the next CALL
SOUND statement.

132

290

300

310

Sound

The treble note, E, is continued for the remainder of its
duration (T/2). Low F, a quarter note, is added. It must
be included in the next CALL SOUND since its dura
tion is longer than the remaining duration of the treble
note it accompanies.

Low F is added again, and thus is given its full
duration.

Low E is added. Both notes are quarter notes.

In the previous examples, both tempo and volume
remained constant. However, by varying the appropriate
parameters, the music can be given much more feeling. Most
musical compositions contain expression marks indicating
varying degrees of loudness as well as changes in tempo, and
some commonly used expression marks are shown in Figure
5-7.

Figure 5-7. Expression Marks

Pertaining to Volume

Sign Italian Name Meaning

PP pianissimo very soft

P piano soft

mp mezzo piano moderately soft

mf mezzo forte moderately loud

f forte loud

ff fortissimo very loud

-=rri crescendo play gradually louder
(cresc.)

- ^ decrescendo play gradually softer
(decresc.)

(No Sign) diminuendo

(dim., dimin.)

Pertaining to Tempo

play gradually softer

ritardando (rit.) —
slow down

accelerando (accel.) —
speed up

a tempo —
resume original tempo

133

Sound •^•^^^^••H^H^^^H^^^H^^^^H
fSBBl

The following program transcribes the musical piece „
shown in Figure 5-8. The volume and tempo are varied to give •
the piece expression.

Program 5-5. Music Demo 3

100 T=500

110 LD=147 :: LE=165 :: LFS=185 :: LG=196 :: LA=22
0 :: LB=247

120 C=262 :: D=294 :: E=330 :: FS=370 :: G=392 ::
A=440 :: B=494

130 HC=523 :: HD=587 :: HE=659 :: HFS=740 :: HG=78
4

140 CALL SOUND(T,HD,7,LB,7,LG,7)
150 CALL SOUND(T/2,G,7,LB,7,LG,7)
160 CALL SOUND(T/2,A,7,LB,7,LG,7)
170 CALL SOUND(T/2,B,7,LA,7)
180 CALL SOUND(T/2,HC,7,LA,7)
190 CALL SOUND(T,HD,7,LB,7)
200 CALL SOUND(T,G,7,LB,7)
210 CALL SOUND(T,G,7,LB,7)
220 CALL SOUND(T,HE,6,C,6)
230 CALL SOUND(T/2,HC,5,C,5)
240 CALL SOUND(T/2,HD,4,C,4)
250 CALL SOUND(T/2,HE,3,C,3)
260 CALL SOUND(T/2,HFS,2,C,2)
270 CALL SOUND(T,HG,0,LB,0)
280 CALL SOUND(T,G,0,LB,0)
290 CALL SOUND(T,G,0,LB,0)
300 CALL SOUND(T,HC,0,LA,0)
310 CALL SOUND(T/2,HD,0,LA,0)
320 CALL SOUND(T/2,HC,0,LA,0)
330 CALL SOUND(T/2,B,0,LA,0)
340 CALL SOUND(T/2,A,0,LA,0)
350 CALL SOUND(T,B,0,LG,0)
360 CALL SOUND(T/2,HC,0,LG,0)
370 CALL SOUND(T/2,B,0,LG,0)
380 CALL SOUND(T/2,A,0,LG,0)
390 CALL SOUND(T/2,G,0,LG,0)
400 CALL SOUND(T,A,2,C,2)
410 T=700

420 CALL SOUND(T/2,B,3,D,3)
430 CALL SOUND(T/2,A,4,D,4) «=bi
440 CALL SOUND(T/2,G,5,LD,5) —•
450 CALL SOUND(T/2,FS,6,LD,6) <_
460 CALL SOUND(3*T,G,7,LG,7) '

134 ^

1

o

g
©
Q

CA
3

to

a
o

3
s

•

00
I

m

9
to

9
0)

Sound

135

Sound

How Music Demo 3 Works

Line(s)
100 This piece has a moderate tempo, and its time sig

nature indicates that the quarter note would be a good
basis for the duration parameter. Therefore, the vari
able T represents the duration of a quarter note and is
set to 500 milliseconds.

110-130 Define the variables representing the frequencies of the
notes. Notice that the key signature indicates that all
F's are sharped throughout the piece.

140 High D (quarter note), low B (half note), and low G
(half note) are transcribed. The shorter duration of the
quarter note (T) is specified. The volume of the notes is
set to 7 since the expression mark (mp) indicates that
they are to be played moderately softly.

150 G (eighth note) is transcribed. Low B and low G are
continued. The shorter duration of G is continued. The
shorter duration of G (T/2) is used.

160 A (eighth note) is transcribed. Low B and low G are
continued for the remainder of their duration (T/2),
which is the same as the duration of A.

170 B (eighth note) and low A (quarter note) are tran
scribed. The shorter duration of B (T/2) is used.

180 High C (eighth note) is transcribed. Low A is contin
ued for the remainder of its duration (T/2), which is
the same as the duration of high C.

190 High D (quarter note) and low B (dotted half note) are
transcribed. The shorter duration of high D (T) is used.

200 G (quarter note) is transcribed. Low B is continued.
The shorter duration of G (T) is used.

210 G (quarter note) is transcribed. Low B is continued for
the remainder of its duration (T), which is the same as
the duration of G.

220 High E (quarter note) and middle C (dotted half note)
are transcribed. The shorter duration of high E (T) is
used. The expression mark indicates that the notes are
to be played gradually louder. Therefore, the volume
specified is gradually increased.

230 High C (eighth note) is transcribed. Middle C is contin
ued. The shorter duration of high C (T/2) is used.

136

jfflimwKf

^a

Sound

240 High D (eighth note) is transcribed. Middle C is
continued. The shorter duration of high D (T/2) is used.

250 High E (eighth note) is transcribed. Middle C is contin
ued. The shorter duration of high E is used.

260 High F sharp (eighth note) is transcribed. Middle C is
continued for the remainder of its duration (T/2),
which is the same as the duration of high F sharp.

270 High G (quarter note) and low B(dotted half note) are
transcribed. The shorter duration of high G (T) is used.

280 G (quarter note) is transcribed. Low Bis continued.
The shorter duration of G (T) is used.

290 G (quarter note) is transcribed. Low Bis continued for
the remainder of its duration (T), which is the same as
the duration of G.

300 High C (quarter note) and low A (dotted half note) are
transcribed. The shorter duration of high C (T) is used.

310 High D (eighth note) is transcribed. Low A is contin
ued. The shorter duration of high D (T/2) is used.

320 High C (eighth note) is transcribed. Low A is contin
ued. The shorter duration of high C is used.

330 B(eighth note) is transcribed. Low A is continued. The
shorter duration of B is used.

340 A (eighth note) is transcribed. Low A is continued for
the remainder of its duration (T/2), which is the same
as the duration of A.

350 B(quarter note) and low G (dotted half note) are tran
scribed. The shorter duration of B (T) is used.

360 High C (eighth note) is transcribed. Low G is contin
ued. The shorter duration of high C (T/2) is used.

370 B(eighth note) is transcribed. Low G is continued. The
shorter duration of B (T/2) is used.

380 A (eighth note) is transcribed. Low G is continued. The
shorter duration of A is used.

390 G (eighth note) is transcribed. Low G is continued for
the remainder of its duration (T/2), which is the same
as the duration of G.

400 A and middle C are transcribed. Both notes are quarter
notes (T). The expression mark indicates that the notes
should be played gradually softer; therefore, the vol
ume specified is gradually decreased.

137

Sound

410 The expression mark (rit.) indicates that the notes
should be played slower; therefore, the basis for the
duration parameter is lengthened.

420 B (eighth note) and D (quarter note) are transcribed.
The shorter duration of B (T/2) is used.

430 A (eighth note) is transcribed. D is continued for the
remainder of its duration (T/2), which is the same as
the duration of A.

440 G (eighth note) and low D (quarter note) are tran
scribed. The shorter duration of G (T/2) is used.

450 F-sharp (eighth note) is transcribed. Low D is contin
ued for the remainder of its duration (T/2), which is
the same as the duration of F-sharp.

460 G and low G are transcribed. Both notes are dotted
half notes (3 x T).

The final program in this section is the transcription of a
fairly complex Bach prelude. One problem which may arise
when working with such a piece is the need to play more than
three notes at one time. In such a case, one of the notes will
have to be excluded. Which to exclude is best decided by try
ing the possible combinations and letting your ear be the
judge. Another problem may be caused by notes below the
range of the TI. This can sometimes be handled by replacing
the note with the same note an octave higher; if that doesn't
sound right, the note will have to be excluded.

Program 5-6. Bach Prelude
100 T=500

110 LLA=110 :: LLBF=117 :: LC=131 :: LD=147 :: LE=
165 :: LF=175 :: LG=196 :: LA=

220 :: LBF=233

120 C=262 :: D=294 :: E=330 :: F=349 :: G=392 :: A
=440 :: BF=466

130 HC=523 :: HD=587 :: HE=659 :: HF=698 :: HG=784
:: HA=880 :: HBF=932

140 CALL CLEAR

150 CALL SCREEN(14)
160 DISPLAY AT(5,9):"P R E L U D E"
170 DISPLAY AT(9,9):"J. S. BACH"
180 FOR DEL=1 TO 1000 :: NEXT DEL
190 CALL SOUND(T/4,LA,10,LF,10)
200 CALL SOUND(T/4,HC,10)

138

O
^
C

^
C

\0
>

*
C

^
C

^
C

N
O

,^
C

^
<

£
>

(
X

)
-
J
^
U

1
*

i
>

t
d

t
O

I
-
'

S
S

S
S

Q
S

S
O

Q
<

S
S

v
O

C
O

^
C

T
>

U
i4

*
C

d
tO

l-
-,

<
S

V
O

C
D

''
-J

<
?

N
U

i4
il

iJ
N

>
M

C
iv

O
C

D
«

J
(
?

U
1

^
C

J
(
O

H
S

v
O

(
X

)
n

1
(
^
U

1
^
W

(
O

H
S

Q
S

Q
S

S
S

S
S

Q
Q

Q
S

S
I
S

I
S

l
S

S
I
S

S
S

Q
Q

Q
S

O
S

I
S

S
S

S
S

S
S

S
Q

C
S

a
Q

n
o
o
o
n
o
n
o
n
o
n
n
o
o
o
o
o
n
o
n
n
o
o
o
o
o
n
o
o
n
o
n

_

r
^
M
t
H
t
r
,
t
H
r
^
r
r
r
t
H
r
r
t
^
r
r
r
c
H
c
r
,
t
^
t
H
r
t
H
t
r
,
t
r
l
t
H
t
H
t
r
,
t
-
,
^
t
-
,
t
Ho
n
n
o
n
o
o
o
n
o
n
o
o
o
n
n
o

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

t
-
,
t
-
,
t
H
t
-
t
H
r
t
r
,
r
r
t
-
4
t
^
r
t
-
,
t
-
'
t
-
,
r

r
,
t
-
,
r
t
-
't

H
t
r
,
t
^
<

c
H

r
!
^
,
r
,
t
^
,
c
-
,
r
r
t
^
,
l
^
,

c
o

c
o

c
o

c
o

c
o

t
o

c
o

c
o

c
o

t
o

c
o

c
o

c
o

c
o

O
T

C
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

e
n

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
c
c
c
c
c
c
c
c
c
c
c
c
c
G

c
c
c
c
c
c
a
a
c
e
c
c
c

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

z
i
z
i
z
i
z
s
j
z
z
s
s
i
z
i
z
z
z
s
z
z
e
i
i
a
a
z
z
s
i
z
z
g

z
z

Z
!

S3
3

23
Z

z
i
z
s
i
z
z
z
z
s
s
z
z
z
s
s
s
s
z
z
z
:

o
o

o
o

a
a
o

o
o

a
o

o
o

a
a
o

a
o

o
c
a
o

o
u

o
o

o
a

a
a

a
a

o
o

o
a
a
c
D

O
O

D
D

o
a
c
o

o
o

•3
-3

"-
3

£>
4

^
4

*

••3
^

*
-

4
*

•-
3

>
3

»-
3

•-
3

«-
3

^3

4
*

4
*

4
*

t-
3

t-
3

h3

4
^

J
i.

4
^

•3
^3

*
»

4
*

•-
3

«-
3

»-
3

^

4&
4*

.
£>

£
»

•
^

»-
3

»-
3

«-
3

^3

4
^

J
i.

£>
4^

>
4

^

•3
>-

3
k3

4
^

4^
>

4
^

•3
^

>
3

>
3

£>
4

^
4s

»
4

^

•3
»-

3

*>
4

*

»-
3

*3
>-

3
^3

£>
4=

>
4

^
*

»

•3
»-

3

4
^

4*
»

t-
3

>
-3

•-
3

^
•3

t-
3

^3
^

^3

4
^

4
^

4^
>

4
^

4^
>

SC
W

f
a

E
C

a
k

a
s
c

a
F

O
E

C
O

E
C

O
E

C
O

F
O

F
O

T
1

E
e
>

E
D

E
C

E
C

D
O

E
C

O
E

C
0

3
E

C
C

iE
C

W
E

C
»

fl
E

C
C

O
E

C
^
E

C
>

E
C

T
l

E
C

>
o

-
o

^
T

l
-

T
l

»
T

l
T

l
*

T
l

»
t
i

h
3

»
*

tj
«

.
>

-
-

o
-

O
T

l
W

^
K

l-
W

»
n

M
>

•
D

*
d

o
>

»
a

t
i

o
"
•

o
»

o
*

o
-

*
o

>
-

G
\

»
-
J
»

-
J
-

0
3

«
•

C
D

*
.

v
O

-
v
O

-
M

-
M

-
M

l-
"
»

v
O

-
•»

•
•

«•
»

(j
>

*
>

•
•
»

<T
>

»
>

•
-«

j
«

«
•
»

C
D

•
•

V
O

-
V

O
-

M

O
w

c
\

<T
>
W

»
J

w
^
1

v
_

*
C

D
^

c
n

»
—

vO
v
o

s
h

q
h

s
s

p
v
-
r
o

>
j

0
>

o
>

<
y>

»
a

x
&

<T
>

«
—

-
J

-»
4

-
j

•
•

C
D

C
D

C
D

<
w

vO
»

v
O

-
1

-
<S

>
"
•

s
_

^
*

•
»

<
•

«
_

*
—

•»
-

v
-»

Q
*

-"
®

«
w

w
®

«
—

•-
»

w
t-

<
w

»
«

_
^

»
f

•
w

-
"
»

»
—

'
o

^
—

r1
®

-
D

C
E

C
C

O
E

C
E

C
>

B
R

v
*

w
^

F
r

w
r

o
C

O
o

•
>

>
-
-
n

c
d

O
"
3

a
n

O
>

o
>T

]
o

»
•n

*
vO

•
»

-

-
«

«
•

«
•

»
V

O
-

«
•

>
•

*
•
•

-»
J

•
•

C
D

»
v
O

M

o
G

\
^
J

-
J

0
0

•
.

v
O

-
J

O
N

c
\

a
v

>
•

•v
i

»
r

<
S

»
«

•
-

-
*

F
«

.
•
•

»
•
•

*
r»

»
F

•
n

F
-

f
f

F
F

F
T

l
F

f
f

f
r

t
j

f
T

J
*

T
l

F
to

to
T

J
C

O
>

*
>

T
l

T
l

*1
^

*
t
i

»
v
O

T
l

t
i

T
l

«
•

T
l

v
O

-
-

»
*

•«
-
j

-
C

D
*

-
»

vO
-

C
D

^
v
o

(T
>

ff
x

cr
>

«
-
^

^
j

-
^

e>
w

<
s

e
n

Q

Sound

700 CALL SOUND(T/4,E,6)
710 CALL SOUND(T/4,HBF,6,HE,6,LG,6)
720 CALL SOUND(T/4,E,6)
730 CALL SOUND(T/4,HG,6,HE,6,LBF,6)
740 CALL SOUND(T/4,E,6)
750 CALL SOUND(T/4,HA,7,HF,7,F,7)
760 CALL SOUND(T/4,C,7)
770 CALL SOUND(T/4,LA,8)
780 CALL SOUND(T/4,C,8)
790 CALL S0UND(T/4,LF,9)
800 CALL SOUND(T/4,LC,9)
810 CALL SOUND(T/4,LLA,10)
820 CALL SOUND(T/4,LC,10)
830 CALL SOUND(T/4,LF,10)
840 CALL SOUND(T/4,HA,10)
850 CALL SOUND(T/4fHF,10,LG,10)
860 CALL SOUND(T/4,HA,10)
870 CALL SOUND(T/4,HC,9,LLA,9)
880 CALL SOUND(T/4,HA,9)
890 CALL SOUND(T/4,HF,9,LBF,9)
900 CALL SOUND(T/4,HA,9)
910 CALL SOUND(T/4,HC,8,LC,8)
920 CALL SOUND(T/4,HG,8)
930 CALL SOUND(T/4,HF,8,LD,8)
940 CALL SOUND(T/4,HG,8)
950 CALL S0UND(T/4,HC,7,LE,7)
960 CALL SOUND(T/4,HG,7)
970 CALL SOUND(T/4,HE,7,LC,7)
980 CALL SOUND(T/4,HG,7)
990 CALL S0UND(T/4,A,6,LD,6)
1000 CALL S0UND(T/4,HF,6)
1010 CALL SOUND(T/4,HE,6,LE,6)
1020 CALL SOUND(T/4,HF,6)
1030 CALL S0UND(T/4,A,6,LF,6)
1040 CALL SOUND(T/4,HF,6)
1050 CALL S0UND(T/4,HD,6,LG,6)
1060 CALL SOUND(T/4,HF,6)
1070 CALL SOUND(T/4,A,6,LA,6)
1080 CALL SOUND(T/4,HE,6)
1090 CALL SOUND(T/4,HD,6,LBF,6)
1100 CALL SOUND(T/4,HE,6)
1110 CALL SOUND(T/4,A,6,C,6)
1120 CALL SOUND(T/4,HE,6)
1130 CALL SOUND(T/4,HC,6,LA,6)
1140 CALL SOUND(T/4,HE,6)
1150 CALL SOUND(T/4,F,6,LBF,6)
1160 CALL SOUND(T/4,HD,6)
1170 CALL SOUND(T/4,HC,6,LA,6)
1180 CALL SOUND(T/4,HD,6)

140

(mm?*}

1190 CALL SOUND(T/4,G,6,LG,6)
1200 CALL SOUND(T/4,HD,6)
1210 CALL SOUND(T/4,BF,6,LF,6)
1220 CALL SOUND(T/4,HD,6)
1230 CALL SOUND(T/4,G,6,LE,6)
1240 CALL SOUND(T/4,HC,6)
1250 CALL SOUND(T/4,BF,6,LC,6)
1260 CALL SOUND(T/4,HC,6)
1270 CALL SOUND(T/4,F,6,LF,6)
1280 CALL SOUND(T/4,HC,6)
1290 CALL SOUND(T/4,A,6,LE,6)
1300 CALL SOUND(T/4,HC,6)
1310 CALL SOUND(T/4,F,6,LD,6)
1320 CALL SOUND(T/4,BF,6)
1330 CALL SOUND(T/4,A,6,LG,6)
1340 CALL SOUND(T/4,BF,6)
1350 CALL SOUND(T/4,C,6,LE,6)
1360 CALL SOUND(T/4,BF,6)
1370 CALL SOUND(T/4,G,6,LC,6)
1380 CALL SOUND(T/4,BF,6)
1390 CALL SOUND(T/4,C,6,LF,6)
1400 CALL SOUND(T/4,A,6,LC,6)
1410 CALL SOUND(T/4,F,6,LLA,6)
1420 CALL SOUND(T/4,A,6,LC,6)
1430 CALL SOUND(T/4,C,6,LF,6)
1440 CALL SOUND(T/4,A,6,LLA,6)
1450 CALL SOUND(T/4,F,6,LC,6)
1460 CALL SOUND(T/4,A,6,LF,6)
1470 CALL SOUND(T/4,D,6,LLBF,6)
1480 CALL SOUND(T/4,A,6)
1490 CALL SOUND(T/4,F,6,LBF,6)
1500 CALL SOUND(T/4,A,6)
1510 CALL SOUND(T/4,D,6)
1520 CALL SOUND(T/4,F,6)
1530 CALL SOUND(T/4,A,6,LA,6)
1540 CALL SOUND(T/4,HC,6)
1550 CALL SOUND(T/4,D,10,LG,10)
1560 CALL SOUND(T/4,BF,10,LD,10)
1570 CALL SOUND(T/4,G,9fLLBF,9)
1580 CALL SOUND(T/4,BF,9,LD,9)
1590 CALL SOUND(T/4,D,8,LG,8)
1600 CALL SOUND(T/4,BF,7,LLBF,7)
1610 CALL SOUND(T/4,G,6,LD,6)
1620 CALL SOUND(T/4,BF,6,LG,6)
1630 CALL SOUND(T/4,E,5,LC,5)
1640 CALL SOUND(T/4,BF,5)
1650 CALL SOUND(T/4,G,6,C,6)
1660 CALL SOUND(T/4,BF,6)
1670 CALL SOUND(T/4,E,7)

Sound

141

Sound

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

142

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4
SOUND(T/4

G,7)
BF,7,LBF,7)
HD,7)
F,7,LA,7)
HC,7)
A,7,LC,7)
HC,7)
HF,7,LA,7)
HC,7)
A,7,LC,7)
F,7)
LG,10)
BF,10)
G,10,LC,10)

BF,10)
HE,10,LG,10)
BF,10)
G,10,LC,10)
E,10)
LF,10)
A,10)
F,10,LC,10)
A,10)
HD,10,LF,10)
A,10)
F,10,LC,10)
D,10)
LE,10)
G,10)
E,10,LC,10)
G,10)
HC,10,LE,10)
G,10)
E,10,LC,10)
C,10)
LD,10)
F,10)
D,10,LC,10)
F,10)
G,10,LLBF,10)
A,10)
BF,10,LG,10)
D,10)
G,10,LE,10)
A,10)
BF,10,LC,10)
E,10)
F,10,LA,10)
G,10)

Sound

2170 CALL SOUND(T/4fA,10,LF,10)
2180 CALL SOUND(T/4fC,10)
2190 CALL S0UND(T/4,D,9,LBF,9)
2200 CALL SOUND(T/4,F,9)
2210 CALL SOUND(T/4,A,8)
2220 CALL SOUND(T/4,HC,8)
2230 CALL SOUND(T/4,BF,7)
2240 CALL SOUND(T/4,A,7)
2250 CALL S0UND(T/4,G,6)
2260 CALL SOUND(T/4,BF,6)
2270 CALL SOUND(T/4,HD,5)
2280 CALL SOUND(T/4,HF,5)
2290 CALL SOUND(T/4,HE,4)
2300 CALL SOUND(T/4,HD,4)
2310 CALL SOUND(T/4,HC,3)
2320 CALL SOUND(T/4,HE,3)
2330 CALL SOUND(T/4,HG,2)
2340 CALL SOUND(T/4,HBF,2)
2350 CALL SOUND(T,HBF,0,HG,0,LE,0)
2360 CALL SOUND(T/2,HBF,30)
2370 CALL SOUND(T/2,HA,0,HF,0,LF,0)
2380 CALL SOUND(T/4,BF,0,LD,0)
2390 CALL SOUND(T/4,HG,0,HE,0)
2400 CALL SOUND(T/4,A,0,LLBF,0)
2410 CALL SOUND(T/4,HF,0,HD,0)
2420 CALL SOUND(T/4,G,0,LC,0)
2430 CALL SOUND(T/4fHF,0,HC,0)
2440 CALL SOUND(T/4,G,0,LC,0)
2450 CALL SOUND(T/4,HE,0,BF,0)
2460 CALL SOUND(T*2,HF,0,HC,0,LF,0)
2470 FOR X=l TO 500

2480 NEXT X

2490 CALL CLEAR

2500 PRINT "PLAY IT AGAIN?"

2510 PRINT

2520 PRINT "ENTER Y OR N:"

2530 CALL KEY(3,REPLY,STATUS)
2540 IF STATUS=0 THEN 2530
2550 IF REPLY=89 THEN 140

2560 IF REPLY<>70 THEN 2500

2570 END

Sound Effects
As you'll recall, a sound's character is determined by its vibra
tional pattern, frequency, and amplitude. That is true whether
the sound is music, footsteps, or the blast of a rocket engine.

Not surprisingly, a great many sounds other than musical

143

Sound

tones can be created by using the CALL SOUND subprogram.
The examples that follow demonstrate some of these sounds. c=5t
Keep in mind, however, that these examples represent only a
small fraction of the sounds the TI is capable of producing.
You will discover hundreds of others by experimenting with
CALL SOUND.

Rocket In Motion

The sound of a rocket's engines can easily be produced by
using noise frequency —7. For example, a continuous burn can
be simulated by placing a CALL SOUND statement in a loop,
as in the following example.

100 REM ROCKET IN MOTION

110FORL=1 to 10

120 CALL SOUND(1000,-7,3)
130 NEXT L

Morse Code

You can simulate a Morse code transmitter by using the RND
function to alternate between two durations. In the following
program, the 700 frequency is sounded for either 40 milli
seconds (short) or 150 milliseconds (long). The loop in line
130 introduces a slight delay so that the tones have time to
complete.

100 REM MORSE CODE
110 RANDOMIZE

120 IF RND>.5 THEN CALL SOUND(150,700,0) ELSE CALL
SOUND(40,700,0)

130 FOR D=l TO 20 :: NEXT D

140 GOTO 120

Computer
Movies about computers are generally accompanied by an
impressionistic conception of what a computer might sound
like. The following program example produces one such
sound. It randomly picks a frequency between 2500 and 4750,
in increments of 250, and plays it for 15 milliseconds. «

100 REM COMPUTER

110 RANDOMIZE <=^
120 FOR L=l to 200

130 CALL SOUND(15,2500 + (250*(RND)),0) «r
140 NEXT L

244 ^

EPKl

f'SSSt

^!il3Qk

Sound

Sirens
Sirens used by American police are generally identified by a
rising, and then falling, pitch. The first program uses two
loops to produce such a sound. The first loop increases the
frequency each time the CALL SOUND statement is
encountered, while the second loop decreases the frequency
for each CALL SOUND.

Notice that a negative duration is used. This causes the
last CALL SOUND to end as soon as the next one is
encountered. The result is a smoothly rising or falling tone.
The choice of 60 for duration was somewhat arbitrary, since
any negative duration immediately terminates the previous
CALL SOUND. Generally, any number above 50 will work. A
number below 50 produces a tone that will finish before
BASIC can complete the loop. In this case, the result is a gap
in the sound.

100 REM AMERICAN SIREN
110FORT=1 TO 10
120 FOR L=800 to 1200 STEP 8

130 CALL SOUND(-60,L,0)
140 NEXT L
150 FOR L=1200 to 800 STEP -8
160 CALL SOUND(-60,L,0)
170 NEXT L

180 NEXT T

To emulate a European-style siren, which alternates
between two distinct frequencies, RUN the following program.

100 REM EUROPEAN SIREN
110 FOR L=l to 10
120 CALL SOUND(400,500,0)
130 CALL SOUND(400,300,0)
140 NEXT L

Bomb and Explosion
You can simulate a falling bomb by combining decreasing
pitch with decreasing volume. Then use a low frequency (110)
and a —7 noise frequency, again with decreasing volume, to
produce the explosion. Negative duration was used to produce
a smooth decrease in pitch.

100 REM BOMB AND EXPLOSION
110FORL=1 to 90

145

Sound

120 CALL SOUND(-60,1400-(L*6),L/9)
130 NEXT L

140 FOR L=0 to 30

150 CALL SOUND(-60,110,L,-7,L)
160 NEXT L

Bells

When a bell is struck, several things occur. The bell vibrates at
its primary frequency, it vibrates at its secondary frequencies
(overtones), and its amplitude (volume) gradually decreases.

The next program imitates that sound, and the result is
unmistakably that of a bell. By using the three voices available
on the TI to produce the primary and secondary frequencies,
and by using a loop to produce a decaying amplitude, the bell
sound can easily be simulated with CALL SOUND.

100 REM BELL

110 FOR L=0 to 30 STEP 2

120 CALL SOUND(-50,700,L,2100,L/4200,L)
130 NEXT L

By lowering the frequencies and adding a second loop, a
clock-type bell can be produced.

100 CLOCK BELL

110FORL=1 TO 6

120 FOR L2=0 TO 30 STEP 3

130 CALL SOUND(-50,400,L2,1200,L2,2400,L2)
140 NEXT L2

150 FOR D=l TO 200 :: NEXT D

160 NEXT L

UiJH\

146 ^

[.Ml

Speech Synthesis

You've already seen that graphics, music, and sound
effects can mean the difference between an average
program and an outstanding one. But another impres
sive program addition is speech.

The possibilities for using computer-generated speech are
virtually endless. It can be incorporated into a game program
to verbally offer instructions, for instance, or to inject com
ments (good or bad) on the progress or skill of the players. In
a tutorial program, speech can be used to literally tell a stu
dent if an answer is correct—and, if the answer was wrong,
the speech synthesizer can give the correct answer. Speech
also permits verbal explanations in educational programs for
children who haven't yet learned to read. Besides, apart from
being useful in programs, it's fun to have a computer that can
talk.

In order to produce speech on your TI, you must have
TI's PHP-1500 speech synthesizer peripheral. This device
incorporates the Texas Instruments TMS5200 speech synthesis
processor chip, which was first introduced in 1978 as part of
TI's Speak and Spell product line. The TMS5200 uses linear
predictive coding (LPC) techniques to generate a mathematical
model of human speech from the incoming text string. The
resulting electronic vocal tract is passed through a digital-to-
analog converter, which yields an audio signal, and eventually
on to the speaker.

In Extended BASIC, there are two ways to add speech to
your programs. One is to use the speech synthesizer's resident
vocabulary (Table 6-1) which contains 373 letters, numbers,
words, and phrases. This vocabulary can be enlarged by
manipulating the speech codes that make up the words.

Alternatively, you can use TI's text-to-speech diskette
software, which is designed to work with TI's Extended BASIC
command module. It gives you the capability to synthesize
almost any word in the English language.

149

Speech Synthesis

Table 6-1. Resident Vocabulary

- (NEGATIVE) BOTTOM DOWN
+ (POSITIVE) BUT DRAW
. (POINT) BUY DRAWING
0 BY

1 BYE E
2 EACH
3 C EIGHT
4 CAN EIGHTY
5 CASSETTE ELEVEN
6 CENTER ELSE
7 CHECK END
8 CHOICE ENDS
9 CLEAR ENTER

COLOR ERROR
A COME EXACTLY
A (a) COMES EYE
Al (uh) COMMA
ABOUT COMMAND F
AFTER COMPLETE FIFTEEN
AGAIN COMPLETED FIFTY
ALL COMPUTER FIGURE
AM CONNECTED FIND
AN CONSOLE FINE
AND CORRECT FINISH
ANSWER COURSE FINISHED
ANY CYAN FIRST
ARE FIT
AS D FIVE
ASSUME DATA FOR
AT DECIDE FORTY

DEVICE FOUR
B DID FOURTEEN
BACK DIFFERENT FOURTH
BASE DISKETTE FROM
BE DO FRONT
BETWEEN DOES
BLACK DOING G
BLUE DONE GAMES
BOTH DOUBLE GET

150

t^^^a

iwpA

vwmi

CaB$fy

pssa

P4LJ

GETTING J
GIVE JOYSTICK
GIVES JUST
GO

GOES K

GOING KEY

GOOD KEYBOARD

GOOD WORK KNOW

GOODBYE

GOT L

GRAY LARGE

GREEN LARGER

GUESS LARGEST

LAST

H LEARN

HAD LEFT

HAND LESS

HANDHELD UNIT LET

HAS LIKE

HAVE LIKES

HEAD LINE

HEAR LOAD

HELLO LONG

HELP LOOK

HERE LOOKS

HIGHER LOWER

HIT

HOME M

HOW MADE

HUNDRED MAGENTA

HURRY MAKE

ME

I MEAN

I WIN MEMORY

IF MESSAGE

IN MESSAGES

INCH MIDDLE

INCHES MIGHT

INSTRUCTION MODULE

INSTRUCTIONS MORE

IS MOST

IT MOVE

Speech Synthesis

MUST

N

NAME

NEAR

NEED

NEGATIVE
NEXT

NICE TRY

NINE

NINETY

NO

NOT

NOW

NUMBER

O

OF

OFF

OH

ON

ONE

ONLY

OR

ORDER

OTHER
OUT

OVER

P

PART

PARTNER

PARTS
PERIOD

PLAY

PLAYS

PLEASE

POINT

POSITION

POSITIVE

PRESS

PRINT

151

Speech Synthesis

PRINTER SIDES THIRTEEN
PROBLEM SIX THIRTY

PROBLEMS SIXTY THIS
PROGRAM SMALL THREE
PUT SMALLER THREW
PUTTING SMALLEST THROUGH

SO TIME

Q SOME TO
SORRY TOGETHER

R SPACE TONE
RANDOMLY SPACES TOO
READ (read) SPELL TOP
READ1 (red) SQUARE TRY

READY TO START START TRY AGAIN
RECORDER STEP TURN
RED STOP TWELVE
REFER SUM TWENTY
REMEMBER SUPPOSED TWO
RETURN SUPPOSED TO TYPE
REWIND SURE
RIGHT U
ROUND T UHOH

TAKE UNDER
S TEEN UNDERSTAND
SAID TELL UNTIL
SAVE TEN UP
SAY TEXAS INSTRUMENTS UPPER

SAYS THAN USE

SCREEN THAT

SECOND THAT IS INCORRECT V

SEE THAT IS RIGHT VARY
SEES THE (the) VERY

SET THE1 (thuh)
SEVEN THEIR W

SEVENTY THEN WAIT

SHAPE THERE WANT

SHAPES THESE WANTS
SHIFT THEY WAY
SHORT THING WE

SHORTER THINGS WEIGH
SHOULD THINK WEIGHT
SIDE THIRD WELL

152

Iw^Vrl

F!5tt*

Speech Synthesis

WERE X

WHAT

WHAT WAS THAT Y

WHEN YELLOW

WHERE YES

WHICH YET

WHITE YOU

WHO YOU WIN

WHY YOUR

WILL

WITH Z

WON ZERO

WORD

WORDS

WORKING
WRITE

Extended BASIC'S resident vocabulary is accessed by
either the CALL SPGET subprogram or the CALL SAY sub
program. CALL SPGET is used to obtain the actual speech
codes that are used by the speech synthesizer to produce a
word. It has the following format:
CALL SPGET(word string,return string)

Word string can be a string constant, string variable, or
string expression corresponding to one of the entries in the
resident vocabulary. If a string constant is used, it must be
enclosed in quotation marks. The subprogram returns the
string of speech codes corresponding to word string and stores
it in return string, which must be a string variable.

The following example demonstrates how CALL SPGET
m works. Notice that there are many blank spaces in the

returned speech code string; that is because many of the codes
pan cannot be printed.

100 CALL SPGET("HELLO",w$)
f* 110 PRINT W$

153
firEm*

Speech Synthesis

The CALL SAY subprogram causes a word or words in
the resident vocabulary to be spoken by the computer. If the
subprogram is given a word which is not in the resident
vocabulary, the computer will spell out the word rather than
speak it. CALL SAY has the following format:
CALL SAY(word string,direct string,...)

Word string can be a string constant, string variable, or a
string expression and should correspond to one or more of the
entries in the resident vocabulary. If a string constant is used,
it must be enclosed in quotation marks. Direct string is a string
variable in which the speech codes corresponding to a word
have been stored by the CALL SPGET subprogram. The CALL
SAY subprogram may specify either of the two parameters
exclusively, or it may specify a combination of the two. The
two parameters are, however, positional; if one is omitted, its
omission must be indicated by an additional comma.

The following examples demonstrate how CALL SAY
works and illustrate the positional nature of its parameters.
100 CALL SAY("HELLO")

100 CALL SPGET("ARE",W$)
110 CALL SAY("WHO",W$,"YOU")
100 A$ = "HELLO"
110 B$ = "HOW ARE YOU"
120 CALL SAY(A$„B$)

100 CALL SPGET("GOODBYE",W$)
110 CALL SAY(,W$)

The speech produced by the CALL SAY subprogram can
be made more natural by the use of commas (,), periods (.),
and plus signs (+) within the specified string. As in actual
speech, a comma indicates a slight pause, and a period
indicates a slightly longer pause. A plus sign placed between
words will cause them to sound more connected; in fact, the
plus sign can be used to form new words out of old words (for
example, hand + some = handsome). In addition to these
symbols, number signs (#) may be used within a string to
enclose phrases which are listed in the resident vocabulary as
single entries (for example, #what was that#). If such phrases
are not enclosed in number signs, the computer will spell out
each word in the phrase.

154

(3333

Speech Synthesis

The following examples demonstrate how these symbols
«_' may be used within the CALL SAY subprogram.

100 CALL SAY("HOW ARE YOU. WELL, ANSWER ME.")
100 CALL SAY("WHO ARE YOU")
110 FOR L=l to 300 :: NEXT L

120 CALL SAY("WHO+ARE+YOU")

100 CALL SAY(I+AM+THE #TEXAS INSTRUMENTS*
HOME+COMPUTER")

Expanding the Resident Vocabulary
Although TI's resident vocabulary is limited to 373 entries, it
is possible to expand the vocabulary by manipulating individ
ual speech codes. Such manipulation lets you add suffixes to
words or create new words from two or more old words. Suf
fixes can be added by concatenating the string of speech codes
corresponding to the suffix with the string of speech codes
corresponding to the word. New words can be created by con
catenating part of the string of speech codes for one word with
part of the string of speech codes for another word.

The CALL SPGET subprogram provides access to the
speech codes for entries in the resident vocabulary. But to add
a suffix, you need some way to obtain the speech codes for
the suffix you have in mind. Fortunately, Texas Instruments
shows you how in Appendix M of the Extended BASIC man
ual. That appendix lists seven subprograms which build
speech code strings for the suffixes -ing, -s, -ed, and their vari
ations (as determined by the type of word to which they are
added). Since many of the speech codes cannot be printed,
their corresponding ASCII codes can be used instead.

The speech-code string corresponding to a particular word
ends with certain codes that affect the timing of sounds within
the word to make it sound more natural. In order to add a suf
fix while keeping the natural sound, some of those trailing
codes must be removed by truncating the speech-code string.
Which codes to remove is best determined by trial and error.
Truncation may also be used to isolate word segments for the

v formation of new words.
The following program, "Word Maker," demonstrates

how truncation and concatenation are used to add suffixes to
words and to create new words from old words.

155

Speech Synthesis

How Word Maker Works

Line(s)
110-110 Clear the screen and display the STAND BY message.

120-350 Build the speech code strings for the seven suffixes.
The speech codes for each suffix are stored as ASCII
character codes in DATA statements at the end of the
program. All the ASCII codes for a particular suffix are
READ, converted to actual characters (CHR$), and con
catenated together. The concatenated strings are then
stored in the subscripted variable SUF$.

360-410 Clear the screen and present the main selection menu.
The menu lets you choose between building a new
word by adding a suffix or building a new word from
two existing words.

420-670 Routine to build a new word by adding a suffix. Lines
440-480 display a menu which allows you to indicate
the suffix you wish to add. Line 490 lets you enter the
word to which the suffix will be added. Line 510 uses
the CALL SPGET subprogram to obtain the speech
string for the desired word. The length of the speech
string is placed in the LW variable in line 520. Line
530 asks you to indicate how many bytes to truncate
from the end of the word. This is a trial-and-error
procedure; a good practice is to start with five or ten
and increment by five. Line 540 makes sure you do
not try to truncate more bytes than are contained in
the string. Lines 550-570 build the new word. Line
550 subtracts truncated characters from the length of
the word string. The —3 allows for the first three
characters of the speech string, which are control
characters. Line 560 builds the truncated word by con
catenating the first two characters of the old string
(control characters), the length of the new string
(which is in the third position), and the remainder of
the old string after truncation (determined by TR). Line
570 adds the appropriate suffix to the new string. Line
580 then causes the computer to "speak" the new
word. Lines 590-600 allow you to try the word again
with a different truncation number or go back to the _
main menu. Lines 610-660 display the word, suffix, -J
and truncation number. These can be used in sub-
sequent programs that will use the new word. ?

680-900 Build a new word by combining part of one word with ^_
another word. Lines 700-710 ask you to enter the two '

156 ^

ISS

t^JB^I

/PBQ

Speech Synthesis

words. Line 720 uses CALL SPGET to get the speech
strings for the two words. Line 750 asks you the num
ber of bytes to truncate from the first word. Lines 790-
800 build the word by truncating the indicated number
of bytes from the first word and then adding the sec
ond word to the end. Line 810 "speaks" the new
word. Lines 820-830 let you try the word again or go
back to the menu. Lines 840-890 display the two
words and the truncation number for use by sub
sequent programs.

910-1100 DATA statments that contain the ASCII equivalents of
the speech strings for the seven suffixes.

Note: When using Word Maker, do not try to truncate more than 50
bytes at a time, or the program may crash.

Program 6-1. Word Maker
100 CALL CLEAR

110 DISPLAY AT(10,9):MSTAND BY..."
120 FOR L=l TO 55
130 READ A :: SUF?(1)=SUF?(1)&CHR$(A)
140 NEXT L

150 FOR L=l TO 29

160 READ A :: SUF$(2)=SUF$(2)&CHR$(A)
170 NEXT L

180 FOR L=l TO 20

190 READ A :: SUF$(3)=SUF$(3)&CHR$(A)
200 NEXT L

210 FOR L=l TO 37
220 READ A :: SUF$(4)=SUF$(4)&CHR$(A)
230 NEXT L

240 FOR L=l TO 13

250 READ A :: SUF$ (5)=SUF$(5) S.CHR? (A)
260 NEXT L

270 FOR L=l TO 29

280 READ A :: SUF$(6)=SUF$(6)&CHR$(A)
290 NEXT L

300 FOR L=l TO 39

310 READ A :: SUF$(7)=SUF$(7)&CHR$ (A)
320 NEXT L
330 FOR L=l TO 7

340 READ A$:: SUFFIX?(L)=A$
350 NEXT L

360 CALL CLEAR

370 DISPLAY AT(2,8):"WORDMAKER"
380 DISPLAY AT(6,1):"1 - ADD A SUFFIX" :: DISPLAY

AT(8,1):"2 - MAKE A NEV7 WORD"

157

Speech Synthesis

390 DISPLAY AT(12,1):"SELECT > _" :: ACCEPT AT(
12,13)VALIDATE("12")SIZE(-1)BEEP:OPT

400 ON OPT GOTO 420,680
410 GOTO 360

420 CALL CLEAR

430 DISPLAY AT(2,5):"ADD A SUFFIX"
440 DISPLAY AT(6,1):"1 - ADD ING" :: DISPLAY AT(8,

1):"2 - ADD S AS IN CATS"
450 DISPLAY AT(10,1):"3 - ADD S AS IN CADS" :: DIS

PLAY AT(12,1):"4 - ADD ES
460 DISPLAY AT(14,1):"5 - ADD

DISPLAY AT(16,1):"6 - ADD
470 DISPLAY AT(18,1):"7 - ADD
480 DISPLAY AT(20,1):"SELECT > _" :: ACCEPT AT(2

0,12)VALIDATE("1234567")SIZE(-1)BEEP:SF
490 DISPLAY AT(22,1):"WHAT IS THE WORD?" :: ACCEPT

AT(23,1)BEEP:WORD?
500 CALL CLEAR

510 CALL SPGET(WORD?,W?)
520 LW=LEN(W?)
530 DISPLAY AT(4,1):"TRUNCATE HOW MANY?" :: ACCEPT

AT(4,20)VALIDATE(NUMERIC)SIZE(-2)BEEP:TRUN
540 IF TRUN>=LW-3 THEN 530

550 TR=LW-TRUN-3

560 NW?=SEG?(W?/1,2)&CHR?(TR)&SEC?(W?,4,TR)
570 NEWWORD?=NW?&SUF?(SF)
580 CALL SAY(,NEWWORD?)
590 DISPLAY AT(18,1):"NEW WORD OK? Y OR N _" :: AC

CEPT AT(18,21)VALIDATE("YN")SIZE(-l)BEEP:OK?
600 IF OK?="N" THEN 500
610 CALL CLEAR

620 DISPLAY AT(4,1):"WORD: ";WORD?
630 DISPLAY AT(6,1):"TRUNCATE: "7TRUN
640 DISPLAY AT(8,1):"SUFFIX: ";SUFFIX?(SF)
650 DISPLAY AT(12,2):"PRESS ANY KEY TO CONTINUE"
660 CALL KEY(3,K,S):: IF S=0 THEN 660
670 GOTO 360

680 CALL CLEAR

690 DISPLAY AT(2,5):"MAKE A NEW WORD"

700 DISPLAY AT(6,1):"FIRST WORD:" :: ACCEPT AT(6,1
3)BEEF:FW?

710 DISPLAY AT(8,1):"SECOND WORD:" :: ACCEPT AT(8,
14)BEEP:SW? <=^

720 CALL SPGET(FW?,W?):: CALL SPGET(SW? ,W2?) -*•'
730 CALL CLEAR

740 LW=LEN(W?) <
750 DISPLAY AT(4,1):"TRUNCATE HOW MANY BYTES" :: D

ISPLAY AT(5,1):"FROM FIRST WORD?" «*|
760 ACCEPT AT(6,1)VALIDATE(NUMERIC)SIZE(-2)BEEP:TR

UN wb|

158

S AS IN CADS" ::

AS IN WISHES"

ED AS IN PASSED"

ED AS IN CAUSED"

ED AS IN HEATED"

— > " :: ACCEPT

Speech Synthesis

770 IF TRUN>LW-3 THEN 750

780 TR=LW-TRUN-3

790 NW?=SEG? (W?,1,2) &CHR? (TR)&SEG? (W?,4 ,TR)
800 NEWW0RD$=NW?&W2?
810 CALL SAY(,NEWWORD?)
820 DISPLAY AT(18,1): "NEW WORD OK? Y OR N _" :: AC

CEPT AT(18,21)VALIDATE("YN")SIZE(-1)BEEP:OK$
830 IF OK?="N" THEN 730
840 CALL CLEAR

850 DISPLAY AT(4,1):"1ST WORD: ";FW$
860 DISPLAY AT(6,1):"TRUNCATE: ";TRUN
870 DISPLAY AT(8,1):"2ND WORD: ";SW?
880 DISPLAY AT(12,2):"PRESS ANY KEY TO CONTINUE"
890 CALL KEY(3,K,S):: IF S=0 THEN 890
900 GOTO 360

910 REM ING SUFFIX

920 DATA 96,0,52,174,30,65,21,186,90,247,122,214,1
79,95,77,13,202,50,153,120,117,57,40,248

930 DATA 133,173,209,25,39,85,225,54,75,167,29,77,
105,91,44,157,118,180

940 DATA 169,97,161,117,218,25,119,184,227,222,249
,238,1

950 REM S SUFFIX (CATS)
960 DATA 96,0,26,14,56,130,204,0,223,177,26,224,10

3,85,3,252,106,106,128,95,44,4,240,35,11,2,126
,16,121

970 REM S SUFFIX (CADS)
980 DATA 96,0,17,161,253,158,217,168,213,198,86,0,

223,153,75,128,0,95,139,62
990 REM S SUFFIX (WISHES)
1000 DATA 96,0,34,173,233,33,84,12,242,205,166,55,

173,93,222,68,197,188,134,238,123,102
1010 DATA 163,86,27,59,1,124,103,46,1,2,124,45,138

,129,7
1020 REM ED SUFFIX (PASSED)
1030 DATA 96,0,10,0,224,128,37,204,37,240,0,0,0
1040 REM ED SUFFIX (CAUSED)
1050 DATA 96,0,26,172,163,214,59,35,109,170,174,68

,21,22
1060 DATA 201,220,250,24,69,148,162,166,234,75,84,

97,145,204,15
1070 REM ED SUFFIX (HEATED)
1080 DATA 96,0,36,173,233,33,84,12,242,205,166,183

,172,163,214,59,35,109,170,174,68,21
1090 DATA 22,201,92,250,24,69,148,162,38,235,75,84

,97,145,204,178,127

1100 DATA "ING","S AS IN CATS","S AS IN CADS","ES
AS IN WISHES","ED AS IN PASSED","ED AS IN CAU
SED",ED AS IN HEATED"

159

Speech Synthesis

The following example will help demonstrate how the
information obtained from Word Maker can be used in other
programs. Suppose you were writing a program which
included routines for loading and saving cassette files. Speech
could be added to let the computer tell the user when the cas
sette recorder is rewinding the tape. The TI's resident vocabu
lary doesn't include the word rewinding, but it does include
the word rewind. The -ing suffix can be added by using the
Word Maker program to find the truncation value that sounds
best. Once determined, that value (in this case, 32), along with
the ASCII codes for the desired suffix, can be used to create
the word rewinding. The process is illustrated in Program 6-2.

Program 6-2. Speech Demo 1
100 FOR L=l TO 55

110 READ A :: ING?=ING?&CHR? (A)
120 NEXT L

130 CALL SPGET("REWIND",W?)
140 TR=LEN(W?)-32-3
150 NW?=SEG?(W?,1,2)&CHR?(TR)&SEG?(W?,4,TR)
160 NEWWORD?=NW?EcING?
170 CALL SAY("I AM",NEWWORD?,"THE CASSETTE.")
180 STOP

190 DATA 96,0,52,174,30,65,21,186,90,247,122,214,1
79,95,77,13,202,50,153,120,117,57,40,248

200 DATA 133,173,209,25,39,85,225,54,75,167,29,77,
105,91,44,157,118,180

210 DATA 169,97,161,117,218,25,119,184,227,222,249
,238,1

Taking this one step further, suppose you wanted the
computer to remind the user to remove the cassette once that
job was complete. The word remove is not in the resident
vocabulary. However, the re portion of the word read can be
concatenated with the word move to produce remove.

Word Maker would determine the truncation value (in
this case, 50) needed to produce the re sound and use it to cre
ate the word remove in another program. This is illustrated in
Program 6-3.

Program 6-3. Speech Demo 2
100 CALL SPGET("READ",W?)
110 CALL SPGET("MOVE",W2?)
120 TR=LEN(W?)-50-3

160

Gjpsijji

JVSSJ

Speech Synthesis

130 NW?=SEG?(W?,1,2)&CHR?(TR)&SEG?(W?,4,TR)
140 NE\7WORD?=NW?&W2$
150 CALL SAY("NOW, YOU SHOULD",NEWWORD?,"THE CASSE

TTE")
160 STOP

The Text-to-Speech Diskette
Texas Instruments' text-to-speech diskette is specifically
designed to work with the Extended BASIC command module.
It lets the computer speak almost any word in the English lan
guage and, unlike the Terminal Emulator II command module,
enables this speech capability to be combined with the addi
tional programming features of Extended BASIC. Obviously, a
disk system (including a memory expansion unit, disk drive
controller, and disk memory drive) is required.

To understand how this software works, it is helpful to
know what phonemes and allophones are. A phoneme is the
smallest unit of speech by which a difference in meaning can
be perceived. For instance, the phonemes b and c distinguish
the words bat and cat.

The same phoneme can represent slightly different
sounds, depending on its position within a word and the let
ters that surround it. For instance, the a in addition has a
slightly different sound than the a in delta. These different
sounding forms of the same phoneme are called allophones.

Table 6-2 identifies the allophones used by the text-to-
speech software, along with their numeric codes. The sound
associated with each allophone is indicated by the way in
which that allophone is used in a word.

The text-to-speech software uses a specific set of speech
rules to translate strings of text into strings of allophones.
Those allophone strings are then converted to Linear Predic
tive Coding (LPC) strings and processed by the speech syn
thesizer to produce speech. A diagram illustrating this process
is shown in Figure 6-1.

161

Speech Synthesis

Table 6-2. Allophones
Allophone Allophone
Number Sound Number Sound

1 addition 38 issue

2 annuity 39 choice

3 delta 40 cook

4 on time 41 poorly
5 autonomy 42 horse

6 anonymity 43 boat

7 eliminate 44 shoot

8 enough 45 hut

9 context 46 boot

10 ancient 47 had

11 western 48 odd

12 synthesis 49 hide

13 mane 50 card

14 took on 51 loud

15 donation 52 saw;

16 annual 53 seed

17 unique 54 heel

18 above 55 hear

19 instrument 56 said

20 underneath 57 there

21 roses 58 day
22 basement 59 heard

23 seeker 60 hid

24 ratio 61 hi/1

25 funny 62 think

26 hat 63 boy
27 hot 64 could

28 height 65 poor

29 cart 66 core

30 house 67 low

31 sought 68 shoe

32 heat 69 mud

33 pierce 70 skull

34 set 71 pull
35 therapy 72 moon

36 take 73 like

37 hurt 74 howl

162

1
1

1
1

O
N

>
-»

K
-i

vO
V

O
vO

vO
vO

vO
vO

vO
vO

vO
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
V

lV
3

vq
vq

v3
l2

!>
O

O
v
O

t
»

N
O

\
O

l
i
|
i
W

I
\
3

M
O

v
O

O
O

v
a

O
s
U

l
^
W

N
)
M

O
v
O

Q
O

^
O

v
U

l
C

£2
t-

i
o

n
o

°
c
^

s
*

r
T

^
c
-
5

5
o

3"
K

'rK
*

ST
&>

o
2

.
2

.
!?

y
^

w
s
#

c
si

£
o e

r
o

r
o

r
o

i
o

r
o

r
o

M
t
o

^
^
^
i
^
H

^
^
h

-
»

t
-
*

i
-
>

*
-
»

o
o

o
o

o
o

p
o

c
E

2
M

O
s
U

l
^
W

N
J
H

O
^
O

O
N

O
v
U

I
^
W

N
J
H

O
v
O

O
O

S
O

N
U

l
^
W

N
i
H

O n

3
\g

§
.3

8
i"

g
I

s
*

*"
S

'
^

r
5j

x
-"

^
o

n>
3

0)
?t

*
o

o

r
\

fD
<T

>
X

-L
"»

«D
r*

S

C
O I 8-

1
1

Speech Synthesis

Figure 6-1. Text-to-Speech Diagram

Text .-» Translator

Text-to-Speech
Rules

—*• Allophone —*•
Allophone

Stringer

Allophone
Library

—•Speech

The translation process is accomplished by three machine
language routines—SETUP, XLAT, and SPEAK—which are
accessed by Extended BASIC as subprograms. Before Extended
BASIC can access these routines, however, the memory expan
sion unit must be initialized, and the three routines must be
loaded into memory. In an Extended BASIC program, you can
do it with the following lines; the text-to-speech diskette
should be in Disk Drive 1.

100 CALL INIT

110 CALL LOAD("DSKl.SETUP","DSKl.XLAT",
DSK1.SPEAK")

The CALL INIT subprogram prepares the computer to run
machine language programs by making sure that the memory
expansion unit is connected, removing any previously loaded
subprograms from memory, and loading a set of supporting
routines into memory. The CALL LOAD subprogram loads the
machine language object files for the three routines.

Once loaded, the three routines can be accessed by
Extended BASIC using the CALL LINK subprogram. CALL
LINK passes control to a machine language subprogram.

The following CALL LINK statement causes the execution
of the machine language routine SETUP.
120 CALL LINK("SETUP","DSK1.DATABASE")

164

IWW*

fifel

<Eflftt

Speech Synthesis

SETUP loads the speech data base from the text-to-speech
diskette into memory. This routine needs to be executed only
once in a program; the speech data base will remain in mem
ory until the memory expansion unit is turned off.

At that point the text-to-speech system is ready to convert
text into speech. The XLAT routine is used to translate text
strings into allophone strings, using a CALL LINK statement
having the following format:
CALL LINK("XLAT",text string,allophone string)

Text string may be a string constant, string variable, or
string expression, and represents the text string to be trans
lated. If a string constant is used, it must be enclosed in quota
tion marks. Text string is limited to 128 characters; if this limit
is exceeded, the error message STRING TRUNCATED is re
turned. XLAT returns the string of allophones corresponding
to text string and stores it in allophone string, which must be a
string variable. If the allophone string returned exceeds 255
characters, the error SPEECH STRING TOO LONG is
returned.

Once the text string has been translated into an allophone
string, the SPEAK routine is used to translate the allophone
string into an LPC string and then into speech. The CALL
LINK statement used to execute the "SPEAK" routine has the
following format:
CALL LINK("SPEAK",allophone string,pitch,slope)

Allophone string may be a string variable or string
expression and represents the allophone string to be translated
into speech. Pitch is an integer in the range 0-63 and may be
a numeric literal, numeric variable, or numeric expression.
Slope is an integer in the range 0-255 and may be a numeric
literal, numeric variable, or numeric expression. The normal
values for the pitch and slope parameters are 43 and 128,
respectively.

The pitch value determines the highness or lowness of the
spoken sounds. A value of 1 produces the highest voice, while
a value of 63 yields the lowest voice. If the value is 0, the
resulting voice is much like a whisper. The frequency asso
ciated with each pitch value is given in Table 6-3.

165

Speech Synthesis

Table 6-3. Pitch Frequencies

'itch Freq. Pitch Freq.
(Hz) (Hz)

1 571.4 33 133.3
2 533.3 34 129.0
3 500.4 35 125.0
4 470.5 36 117.6
5 444.4 37 111.1
6 421.1 38 108.1
7 400.0 39 105.2
8 380.9 40 98.7
9 363.6 41 94.1

10 347.8 42 91.9
11 333.3 43 88.8
12 320.0 44 83.3
13 307.7 45 80.8
14 296.2 46 77.6
15 285.7 47 74.7
16 275.8 48 71.4
17 266.6 49 68.3
18 258.1 50 65.5
19 250.0 51 62.9
20 235.2 52 60.1
21 222.2 53 57.5
22 210.5 54 55.1
23 200.0 55 52.9
24 195.1 56 50.9
25 186.0 57 48.7
26 177.7 58 46.7
27 166.6 59 44.9
28 163.2 60 43.0
29 156.8 61 41.2
30 148.1 62 39.6
31 145.4 63 37.9
32 140.3

{S3

!

The slope value determines the rate at which the pitch
changes within a spoken phrase. Best results are obtained
when the slope is approximately 3.2 times the pitch. For
example, if 40 is used for the pitch, the best value for the ^|
slope would be 3.2*40, or 128. To prevent garbled speech, the
slope should conform to the following limits: "H
slope < (pitch-1) * 16
slope < (63-pitch) * 16 H

166 **?

Speech Synthesis

The following program demonstrates how the text-to-
speech software can be used by an Extended BASIC program
to produce speech. It allows the user to enter any word or
phrase (line 180), translates the word or phrase into an allo
phone string (line 200), and translates the allophone string
into speech (line 210). In many cases, the words entered must
be misspelled in order to produce the proper pronunciation.

In addition to words and phrases, sound effects can be
created by entering various combinations of letters. Try the
following combinations to get an idea of the sound effects that
can be produced: TSTSTS, CKCKCK, YYYYY, ZDZDZD,
HAAALLP, and TKTKTK.

Program 6-4. Talker
100 CALL CLEAR

110 DISPLAY AT(6,10):"T A L K E R"
120 DISPLAY AT(14,10):"STAND BY..."
130 CALL INIT

140 CALL LOAD("DSK1.SPEAK","DSKl.XLAT","DSK1.SETUP

")
150 CALL LINK("SETUP","DSKl.DATABASE")
160 CALL CLEAR

170 DISPLAY AT(4,1):"ENTER PHRASE TO BE SPOKEN:"
180 LINPUT " ":PHR$

190 IF PHR$="" THEN 210
200 CALL LINK("XLAT",PHR$/ALL?)
210 CALL LINK("SPEAK",ALL?,43,128)
220 GOTO 160

In addition to translating alphabetic text, the text-to-
speech routines also translate certain special characters. These
special characters fall into four categories: numerical charac
ters, pause-and-break characters, inflection symbols, and spe
cial symbols. The numerical characters consist of the digits 0
through 9 as well as the comma, decimal point, minus, and
plus signs. When translated by the text-to-speech routines, the
digits 0 through 9 will always be spoken. However, the other
symbols in this category will be spoken only if they immedi
ately precede a numerical digit.

The pause-and-break characters consist of the comma,
period, exclamation point, question mark, colon, and semi
colon. The XLAT routine translates the comma into allophone
number 126, which when translated by the SPEAK routine,

167

Speech Synthesis

yields a short pause (50 milliseconds). The other pause-and-
break characters are translated into allophone number 127 and
produce a long pause (225 milliseconds). When used as pause-
and-break characters, the comma and period must be followed
by a space unless they appear as the last character in a text
string. As will be seen, the pause-and-break characters also
affect the inflection contour of a phrase or sentence which
contains a primary stress symbol (one of the inflection
symbols).

The inflection symbols consist of the primary stress sym
bol and the secondary stress symbol . The primary stress
symbol indicates that primary emphasis should be given to the
word it precedes. Only one primary stress symbol may be
used in a phrase or sentence. If this primary stress is used in a
phrase or sentence that ends with a comma or question mark,
the phrase or sentence will be characterized by a progressive
increase in pitch, starting at the primary stress symbol and
ending at the comma or question mark. If the primary stress
symbol is used in a phrase or sentence ended by any of the
other pause-and-break characters, the phrase or sentence is
characterized by a progressive decrease in pitch, starting at the
primary stress symbol and ending at the pause-and-break
character. When used in Program 6-4, 'Talker/' the following
text strings will demonstrate the inflection contours (rising and
falling) which can characterize a phrase or sentence.
"WHO ARE YOU?"
"WHO ARE YOU."

The primary stress symbol also indicates which syllable
should be accented. If used alone, it indicates that the first syl
lable of the word is to be given primary emphasis. Used in
conjunction with the shift indicator, it indicates that primary
emphasis should be shifted to one of the other syllables in the
word; the number of shift indicator symbols used determines
which syllable. For example, allophone indicates that primary
emphasis is to be given to the third syllable of the word
allophone.

The secondary stress symbol indicates that secondary
emphasis is to be given to the word it precedes. It causes the
word it precedes to be spoken at a higher pitch. More than
one secondary stress symbol may be used in a phrase or sen
tence, and each one encountered causes a progressive decline

168

i$m

r

Speech Synthesis

in pitch (although all words preceded by a secondary stress
symbol are spoken at a higher pitch than unstressed words). If
a phrase or sentence contains secondary stress symbols, it
should also contain a primary stress symbol; otherwise, the
unstressed words will have a flat sound. The secondary stress
symbol may also be used in conjunction with the shift
indicator to shift secondary emphasis to other syllables in the
word it precedes.

The special symbols category includes the symbols @, $,
%, &, *, (,), =, and /. When translated by the text-to-speech
routines, these symbols are spoken as the words at, dollar, per
cent, and, asterisk, open, close, equals, and slash. The translation
of special symbols and numerical characters is simply a matter
of stringing together the allophones which make up the words
corresponding to these characters. For example, the symbol (5)
is translated into the allophones corresponding to the word at.

Since pause-and-break characters and inflection symbols
do not correspond to spoken words, they must be handled dif
ferently. They are translated with a number of inflection
codes, which are listed in Table 6-4.

The following program will help demonstrate how text
strings are translated into allophone strings. First, it allows the
user to enter a text string. Then, after speaking the entered
text, it lists the allophone numbers and inflection codes used
to produce the corresponding speech.

Program 6-5. Allophone Number Lister
100 CALL CLEAR

110 DISPLAY AT(6,3):"ALLOPHONE NUMBER LISTER"
120 DISPLAY AT(14,10):"STAND BY..."
130 CALL INIT

140 CALL LOAD("DSK1.SETUP","DSK1.XLAT","DSK1.SPEAK

")
150 CALL LINK("SETUP","DSK1.DATABASE")
160 CALL CLEAR

170 DISPLAY AT(4,1):"ENTER PHRASE:"
180 LINPUT " ":PHR$
190 IF PHR$="" THEN 210
200 CALL LINK("XLAT",PHR$,ALL?)
210 CALL LINK("SPEAK",ALLS,43,128)
220 L=LEN(ALL$)
230 FOR X=l TO L

240 PRINT ASC(SEG$(ALL$,X,1))
250 NEXT X

169

Speech Synthesis

Table 6-4. Inflection Codes

Code Number

249 Indicates a secondary stress symbol. In an allophone
string, this code is placed before the first vowel allo
phone in the syllable which the stress symbol
precedes.

250 Indicates a break in the text. It is placed at the begin
ning of an allophone string, as well as wherever a
pause-and-break character appears. This code must be
followed by two parameters. If a primary stress symbol
is used in the text, the two parameters indicate the
number of secondary stress symbols before and after
the primary stress symbol. If the primary stress symbol
is used in conjunction with a comma or question mark,
the second parameter indicates the number of syllables
after the primary stress symbol. The first parameter
may optionally be given a value of either 254 or 255.
A value of 254 indicates that the entire phrase which
follows should have a rising contour; a value of 255
indicates that the entire phrase which follows should
have a falling contour. When either of these values is
used as the first parameter, the second parameter
specifies the total number of syllables in the indicated
phrase.

251 Indicates a new default slope value. It must be fol
lowed by one parameter indicating the new slope
value to be used.

252 Indicates a new default pitch value. It must be fol
lowed by one parameter indicating the new pitch value
to be used.

253 Indicates a primary stress symbol in a phrase charac
terized by a rising contour. In an allophone string, this
code is placed before the first vowel allophone in the
syllable which the stress symbol emphasizes.

254 Indicates a primary stress symbol in a phrase charac
terized by a falling contour. In an allophone string, this
code is placed before the first vowel allophone in the
syllable which the stress symbol emphasizes.

255 Indicates a temporary pitch level and modification for
the allophone immediately following it. It must be fol
lowed by one parameter indicating the pitch value to
be used.

170

Is^^j

&8BM
Speech Synthesis

Once you understand how to translate phrases and sen
tences, you can customize speech by stringing together the
character equivalents of allophone numbers and inflection
codes. The CHR$ function is used to obtain the character
equivalents; those characters are then concatenated together to
form the allophone string used by the SPEAK routine. Here is
how it can be done.

100 CALL INIT

110 CALL LOAD("DSK1.SETUP","DSK1.XLAT","DSK1.SPEAK

")
120 CALL LINK("SETUP","DSK1.DATABASE")
130 WS=CHR$(252)&CHR$(30)&CHRS(53)&CHR$(49)&CHR$(2

52)&CHR$(33)&CHR$(53)&CHR$(49)&CHR$(252)&CHR$(
36)&CHR$(67)

140 CALL LINK("SPEAK",W$,43,128)

The following program actually lets you create custom
speech. First, enter the number of syllables in the word or
phrase to be created (line 170). Then, following the program
prompts, enter the first allophone number or inflection code
(line 210). The prompt will repeat until the number 300 is
entered, indicating the final allophone number or inflection
code. The resulting allophone string is then used by the
SPEAK routine (line 260) to produce the corresponding
speech.

Program 6-6. Allophone Stringer
100 CALL CLEAR

110 DISPLAY AT(6,5):"ALLOPHONE STRINGER"
120 DISPLAY AT(14,10):"STAND BY..."
130 CALL INIT

140 CALL LOAD("DSK1.SETUP","DSK1.XLAT","DSK1.SPEAK
")

150 CALL LINK("SETUP","DSK1.DATABASE")
160 CALL CLEAR

170 DISPLAY AT(4,1):"ENTER NUMBER OF SYLLABLES" ::
DISPLAY AT(6,1):"IN WORD:"

180 ACCEPT AT(6,10)VALIDATE(NUMERIC)BEEP:N
190 W$=CHR$(250)&CHRS(255)&CHR$(N)
200 CALL CLEAR

210 DISPLAY AT(10,1):"ENTER ALLOPHONE NUMBER" :: D
ISPLAY AT(12,1):"OR 300 TO QUIT:"

171

Speech Synthesis ^^^^mmmm—ma—^m^ma^mmi

220 ACCEPT AT(12,17)VALIDATE(NUMERIC)BEEP:A
230 IF A=300 THEN 260

240 V/$=W$&CHR$(A)
250 GOTO 200

260 CALL LINK("SPEAK",W$,43,128)
270 GOTO 160

172

/pC9
Putting It All Together

Graphics and sound are two of the most exciting fea
tures of home computers. Add them together, per
haps with a little speech synthesis thrown in, and
you have programs with a great deal to offer. This

chapter contains seven such programs. A complete explanation
is included for each.

Mimic

This program illustrates that even modest use of graphics and
sound can produce an enjoyable program. Its graphics consist
of one horizontal bar, one vertical bar, and four solid-colored
stationary sprites; its sound is limited to four distinct tones.

"Mimic" first puts a cross in the middle of the screen. A
sequence of colored squares momentarily appears in the four
quadrants, and with each color a single-frequency tone
sounds. Its frequency depends on which quadrant contains the
square. The object of the game is to repeat the sequence in
which the squares appeared by pressing the appropriate num
ber keys (1-4).

As many as six people can play at one time. On a player's
first turn, only one square appears. Two squares appear on the
second turn, and a new square is added after each correct
response. An incorrect response ends the game.

How Mimic Works

Line(s)
100 Seed the random number generator.

110-140 Define the patterns used by the program. ASCII code
91 defines the character used to draw the cross; code
96 is used to define the solid-colored sprites. The
sprites may be one of four colors, depending on the
quadrant in which they appear. Line 130 predefines
the four colors. Line 140 clears the screen and sets it to
light red.

150-170 Display the introduction banner, leave it on the screen
for a few seconds, and then clear the screen.

175

Putting It All Together

180-250 Determine the number of players, get each player's
name, and set the difficulty level. The difficulty level is
used to determine how long each square will be dis
played on the screen.

260-280 Clear the screen and draw the cross.

290-350 Define the four sprites and display them in their
appropriate quadrant on the screen until the players
indicate they are ready to begin.

360 Set the color of all sprites (squares) to transparent (1).
The sprites remain on the screen, but are invisible.

370-420 Initialize the work areas for the game. SEQ$ contains
the square sequence for a particular player. It is ini
tially set to null. PLAYEROUT is a switch that tells the
program if a particular player is still in the game.
NUMOUT tells the program how many players are out
of the game. When NUMOUT equals the number of
players (PLAYERS), the game is over.

430-490 Begin the main game loop. Line 440 bypasses players
that are out. Line 450 displays the current player's
name, and lines 460-490 wait for him to indicate that
he is ready for his turn.

500 Add a new square to a player's sequence. The new
square is a random number between one and four. The
string equivalent of the number is concatenated to the
end of the player's previous square sequence (SEQ$).

510-590 Display the sequence of squares, one at a time, on the
screen. Line 510 goes through a loop the number of
times indicated by the length of SEQ$, which is
equivalent to the number of squares. Line 520 deter
mines the numeric value of each square stored in
string format in SEQ$. Lines 530-540 set on the color
of the appropriate square, which makes it appear on
the screen. Line 550 sounds the appropriate tone for
that square. The duration is determined by the diffi
culty level. Line 560 invokes a time delay loop, also
controlled by the difficulty level. This loop controls
how long the square appears on the screen. Line 570
sets the square's color back to transparent, which effec
tively removes it from the screen.

600 Instructs the player to repeat the sequence of squares
just presented.

176

Putting It All Together

610-860 Determine if the player responded with the correct
sequence. Line 610 sets up the loop as determined by
tne number of squares. Lines 610-630 wait for a
response from the player. Line 640 converts the ASCII
code of the pressed key into its numeric value. Lines
650-690 turn on color for the square indicated by the
player and sound the appropriate tone. Line 700 deter
mines the actual square in the sequence. If it matches
the key pressed by the player, line 710 branches to the
end of the loop for that square. Otherwise, the key
pressed by the player was incorrect. In this case, line
720 displays a message indicating an incorrect
answer. Line 730 sounds a tone; lines 750-820 display
the correct square on the screen; line 830 sets the
switch indicating the player is out; and line 840
increments the number-of-players-out counter.

900-980 Display the tally for all players at the end of the game.
The player with the highest tally is the winner.

Program 7-1. Mimic
100 RANDOMIZE

110 CALL CHAR(96,"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF")

120 CALL CHAR(91,"FFFFFFFFFFFFFFFF")
130 COLR(l)=9 :: COLR(2)=3 :: COLR(3)=14 :: COLR(4

)=16
140 CALL CLEAR :: CALL SCREEN(10)
150 DISPLAY AT(8f10):"M I M I C"
160 FOR LOOP=l TO 2000 :: NEXT LOOP

170 CALL CLEAR

180 DISPLAY AT(4,1):"NUMBER OF PLAYERS (1-6) _"
190 ACCEPT AT(4,25)VALIDATE("123456")SIZE(-1)BEEP:

PLAYERS

200 FOR LOOP=l TO PLAYERS

210 DISPLAY AT(6+(LOOP*2),l):"NAME OF PLAYER";LOOP
220 ACCEPT AT(6+(LOOP*2),18)BEEP:NAME?(LOOP)
230 NEXT LOOP

240 DISPLAY AT(22,1):"DIFFICULTY LEVEL (1-3)? _"
250 ACCEPT AT(22,25)VALIDATE("123")SIZE(-1)BEEP:LE

VEL

260 CALL CLEAR :: CALL SCREEN(8)
270 CALL HCHAR(12,10,91,13)
280 CALL VCHAR(6,16,91,13)
290 CALL MAGNIFY(4)

177

Putting It All Together ihiib^^h^^hh

300 CALL SPRITE(#1,96,9,47,78,#2,96/3,47,138,#3,96
,14,107,78,#4,96,16,107,138)

310 DISPLAY AT(9,10):"1";:: DISPLAY AT (9,IS): "2";
320 DISPLAY AT(15,10):"3";:: DISPLAY AT(15,18):"4 "

i

330 DISPLAY AT(22,1):"** PRESS ANY KEY TO BEGIN **
ii

340 CALL KEY(3,KEY,STATUS)
350 IF STATUS=0 THEN 340

360 CALL COLOR(#l,l,#2,l,#3,l,#4,l)
370 FOR L00P=1 TO PLAYERS

380 PLAYEROUT(LOOP)=0
390 SEQ$(LOOP)=""
400 NEXT LOOP

410 NUMOUT=0

420 IF NUMOUT=PLAYERS THEN 890

430 FOR LOOP=l TO PLAYERS

440 IF PLAYER0UT(L00P)=1 THEN 870
450 DISPLAY AT(3,9):NAME$(LOOP);"'S TURN"
460 DISPLAY AT(22,1):" > PRESS ENTER WHEN READY"
470 CALL KEY(3,KEY,STATUS)
480 IF STATUS=0 THEN 470

490 DISPLAY AT(22,1):" "

500 SEQ$(L00P)=SEQ$(L00P)&STR$(1+INT(RND*4))
510 FOR SEQ=1 TO LEN(SEQ$(LOOP))
520 A=VAL(SEG$(SEQ$(LOOP),SEQ, 1))
530 CL=COLR(A)
540 CALL COLOR(#A,CL)
550 CALL SOUND(400*(4-LEVEL),300*A,0)
560 FOR DELAY=1 TO 100*(4-LEVEL):: NEXT DELAY
570 CALL COLOR(#A,l)
580 FOR DELAY=1 TO 20 :: NEXT DELAY

590 NEXT SEQ

600 DISPLAY AT(22,1):"** NOW REPEAT THE SEQUENCE"
610 FOR SEQ=1 TO LEN(SEQ$(LOOP))
620 CALL KEY(3,KEY,STATUS)
630 IF STATUS=0 OR KEY<49 OR KEY>52 THEN 620

640 B=VAL(CHR$(KEY))
650 CL=COLR(B)
660 CALL COLOR(#B,CL)
670 CALL SOUND(400*(4-LEVEL),300*B,0)
680 FOR DELAY=1 TO 100*(4-LEVEL):: NEXT DELAY
690 CALL COLOR(#B,l)
700 A=VAL(SEG$(SEQ?(LOOP),SEQ,1))
710 IF A=B THEN 860
720 DISPLAY AT(22,2):"******* WRONG *******" ^
730 CALL SOUND(1000,150,0,300,0)
740 FOR DELAY=1 TO 500 :: NEXT DELAY m
750 CL=COLR(A)

178

Spvm&

Putting It All Together

760 FOR LOOP2=l TO 10
770 CALL COLOR(#A,CL)
780 CALL SOUND(400,300*A,0)
790 FOR DELAY=1 TO 100 :: NEXT DELAY

800 CALL COLOR(#A,l)
810 FOR DELAY=1 TO 30 :: NEXT DELAY

820 NEXT LOOP2

830 PLAYEROUT(LOOP)=l
840 NUMOUT=NUMOUT+l

850 SEQ=9999

860 NEXT SEQ

870 NEXT LOOP

880 GOTO 420

890 CALL CLEAR
900 DISPLAY AT(4,1):"PLAYER" :: DISPLAY AT(4,21):"

TURNS"

910 FOR LOOP=l TO PLAYERS
920 DISPLAY AT(6+(2*LOOP),l):NAME?(LOOP)
930 DISPLAY AT(6+(2*LOOP),20):USING "#####":LEN(SE

Q$(LOOP))-l
940 NEXT LOOP

950 DISPLAY AT(22,1):"PLAY AGAIN (Y/N)? _"
960 ACCEPT AT(22,19)VALIDATE("YN")SIZE(-1)BEEP:ANS

$
970 IF ANS$="Yn THEN 260

980 CALL CLEAR :: STOP

Shooting Gallery
This program shows how moving sprites can be combined
with sound to create a shooting gallery, complete with ducks,
smiling faces, and diamonds for targets. Players use joysticks to
control a crosshair sight, and the object is to position the sight
over the targets and shoot them by pressing the fire button.

This game is designed for as many as four players. Each
player has 15 shots, and there are a total of 13 targets. In
addition, every turn must be completed within a specified
time. If a player hits all 13 targets within the allotted time
period, bonus points are awarded for each second that
remains.

How Shooting Gallery Works
Line(s)
100 Seed the random number generator.

110 DIMension the array variables used by the program.

179

Putting It All Together

120-140 Set the point score for each of the three types of
targets.

150-220 Define the character patterns used by the program.
ASCII code 96 defines the ducks. ASCII code 97
defines the crosshair sight. ASCII code 100 defines the
smiling faces. ASCII codes 98 and 102 define the
diamonds, and ASCII code 101 defines the bars that
separate the targets. Line 160 invokes the routine that
displays the introduction banner.

230 Invoke the routines to display the instructions and
determine the number of players and difficulty level.

240-290 Draw the shooting gallery background and tote board.
300-360 Define the sprites used in the program and set the tar

gets in motion. The speed is determined by the diffi
culty level chosen.

370-400 Prompt the current player to get ready to start.
410-440 Set the initial values for the start of a player's turn.

Each player has 15 shots (SH) and 30 seconds (TIME).
TG is the counter for the number of targets hit. TI is
the timer mechanism.

450-500 Main control loop. Line 450 checks for player response
from the joystick and moves the crosshair accordingly.
If the fire button was pressed, the shooting sound is
made and program control is passed to line 510. Line
460 increments and displays the time. Line 480 dec
rements the shot counter and checks to see if all 15
shots have been taken or all targets hit.

510-680 Determine if a target was hit. Since there are 13 sepa
rate targets, checking all 13 sprites for coincidence
would require coding 13 CALL COINC statements in a
row. It was pointed out in Chapter 4 that this would
probably cause the last five or six CALL COINC state
ments to miss a coincidence because of the slow speed
of BASIC. Instead, line 510 determines the position of
the crosshair sight. Then, using the row position of the
sight, it determines which group of targets it could be
over. The ducks are at the top of the screen. The smil
ing faces are in the center, and two groups of
diamonds are at the bottom. The IF statement in line
510 branches to that particular group to check for
coincidence. Lines 520-550 check the ducks; lines 560-
600 check the smiling faces; lines 610-640 check the

180

Putting It All Together

first group of diamonds; and lines 650-680 check the
f™ second group of diamonds.

690-710 End of player's turn.

720-810 End of game.
820-880 Award bonus points when all targets hit and time

remains on clock.

890-970 Routine to indicate a hit. Lines 890-910 turn the tar
get's color to red and then delete it. Lines 920-960
update the player's score.

980-1060 Introduction banner.

1070-1210 Instructions.

1220-1280 Determine number of players and difficulty level.

Program 7-2. Shooting Gallery
100 RANDOMIZE

110 DIM TOT(4),SC(14)
120 FOR L=2 TO 5 :: SC(D=15 :: NEXT L
130 FOR L=6 TO 8 :: SC(L)=10 :: NEXT L
140 FOR L=9 TO 14 :: SC(L)=25 :: NEXT L
150 CALL CHAR(98,"081C3E7F7F3E1C08")
160 GOSUB 980

170 CALL CHAR(96,"0003021E3E7E0000")
180 CALL CHAR(97,"002020F820200000")
190 CALL CHAR(102,"10387CFEFE7C3810")
200 CALL CHAR(99,"FFFFFFFFFFFFFFFF")
210 CALL CHAR(101,"000000FFFF000000"):: CALL COLOR

(9,7,1)
220 CALL CHAR(100,"FCB4FCCCFCB4CCFC")
230 GOSUB 1070 :: GOSUB 1220
240 CALL CLEAR :: CALL HCHAR(4,1,99,32):: CALL HCH

AR(22,1,99,32)
250 PL=1

260 CALL HCHAR(9,1,101,32):: CALL HCHAR(15,1,101,3
2)

270 DISPLAY AT(1,1): "PLAYER 1: PLAYER 3: "
280 DISPLAY AT(3,1): "PLAYER 2: PLAYER 4: "
290 P=l

a 300 CALL MAGNIFY(2)
310 CALL SPRITE(#2,96,12,40,20,0,S1,#3,96,12,54,85

,0,SI,#4,96,12,40,150,0,SI,#5, 96,12,54,215,0,
SI)

320 CALL SPRITE(#6,100,14,85,30,0,-S2,#7,100,14,85
f*3 ,110,0,-S2,#8,100,14,85,190,0,-S2)

(FftS9

181

pB

Putting It All Together

330 CALL SPRITE(#9,98,5,130,30,0,S3,#10,98,5,13&,1
10,0,S3,#11,98,5,130,190,0,S3)

340 CALL SPRITE(#12,102,5,155,30,0,-S3,#13,102,5,1
55,110,0,-S3,#14,102,5,155,190,0,-S3)

350 CALL SPRITE(#1,97,2,90,120)
360 DISPLAY AT(23,1):" "
370 FOR L=l TO 10

380 DISPLAY AT(23,11):"PLAYER";PL :: CALL SOUND(30
,600,4):: FOR L2=l TO 20 :: NEXT L2

390 DISPLAY AT(23,11):"{12 SPACES}" :: FOR L2=l TO
15 :: NEXT L2

400 NEXT L

410 SH=15 :: TG=0

420 DISPLAY AT(24,1):"SHOTS LEFT:" :: CALL HCHAR(2
4,16,43,SH)

430 DISPLAY AT(23,1):"TIME:"
440 TI=0 :: TIME=30

450 CALL JOYST(l,X,Y):: CALL MOTION(#1,-Y*2,X*2)::
CALL KEY(1,K,S):: IF S<>0 THEN CALL SOUND(60,

-6,0):: GOTO 510
460 TI=TI+1 :: TlME=30-INT(Tl/5):: DISPLAY AT(23,7

):TIME :: IF TIME=0 THEN 690
470 GOTO 450

480 SH=SH-1 :: IF SH=0 OR TG=13 THEN 690
490 DISPLAY AT(24,1):"SHOTS LEFT:" :: CALL HCHAR(2

4,16,43,SH)
500 GOTO 450

510 CALL POSITION(#l,DR,DC):: IF DR<70 THEN 560 EL
SE IF DR>140 THEN 650 ELSE IF DR>110 THEN 610

520 CALL COINC(#l,#6,7,C):: IF C=-l THEN SP=6 :: G
OTO 890

530 CALL COINC(#l,#7,7,C):: IF C=-l THEN SP=7 :: G
OTO 890

540 CALL COINC(#l,#8,7,C):: IF C=-l THEN SP=8 :: G
OTO 890

550 GOTO 480

560 CALL COINC(#l,#2,7,C):: IF C=-l THEN SP=2 :: G
OTO 890

570 CALL COINC(#l,#3,7,C):: IF C=-l THEN SP=3 :: G
OTO 890

580 CALL COINC(#l,#4,7,C):: IF C=-l THEN SP=4 :: G
OTO 890

590 CALL COINC(#l,#5,7,C):: IF C=-l THEN SP=5 :: G
OTO 890

600 GOTO 480

610 CALL COINC(#l,#9,TL,C):: IF C=-l THEN SP=9 ::
GOTO 890

620 CALL COINC(#1,#10,TL+1,C): : IF C=-l THEN SP=10
:: GOTO 890

182

ffw

^B*

(

Putting It All Together

630 CALL C0INC(#1,#11,TL+1,C):
:: GOTO 890

640 GOTO 480

650 CALL COINC(#l,#12,TL+l,C):
:: GOTO 890

660 CALL COINC(#l,#13,TL+2,C):
:: GOTO 890

670 CALL COINC(#l,#14,TL+2,C):
:: GOTO 890

680 GOTO 480
690 DISPLAY AT(24,1):"{5 SPACES}GAME OVER PLAYER";

PL :: CALL SOUND(900,800,5):: FOR L=l TO 800 :
: NEXT L :: DISPLAY AT(24,1):" "

700 IF TG=13 AND TIME>0 THEN GOSUB 820
710 IF PL<NP THEN PL=PL+1 :: GOTO 290
720 FOR L=l TO 4
73G DISPLAY AT(24,1):" " :: CALL SOUND(40,400,4)
740 FOR L2=l TO 20 :: NEXT L2
750 DISPLAY AT(24,7):"PLAY AGAIN Y/N?"
760 FOR L2=l TO 15 :: NEXT L2
770 NEXT L

780 CALL KEY(3,K,S):: IF S=0 THEN 780
790 IF K=78 THEN CALL CLEAR :: STOP
800 IF K=89 THEN TOT(1)=0 :: TOT(2)=0 :: TOT(3)=0

:: TOT(4)=0 :: CALL DELSPRITE(ALL):: GOSUB 122
0 :: GOTO 240

810 GOTO 720
820 CALL SOUND(700,200,5,900,5)
830 DISPLAY AT(24,1):"*** BONUS POINTS AWARDED ***

ii

840 FOR L=l TO 800 :: NEXT L
850 TOT(PL)=TOT(PL)+(15*TIME)
860 DISPLAY AT(ROW,COL):TOT(PL);
870 DISPLAY AT(24,1):" "
880 RETURN

890 CALL SOUND(50,400,0)
900 CALL COLOR(#SP,9):: FOR L=l TO 5 :: NEXT L
910 CALL DELSPRITE(#SP)
920 TG=TG+1

930 TOT(PL)=TOT(PL)+SC(SP)
940 IF PL/2=INT(PL/2)THEN ROW=3 ELSE ROV7=l
950 IF PL=1 OR PL=2 THEN COL=10 ELSE COL=25
960 DISPLAY AT(ROW,COL):TOT(PL);
970 GOTO 480

980 CALL CLEAR :: CALL SCREEN(10)
990 DISPLAY AT(5,13):"T I" :: DISPLAY AT(8,7):"S H

O O T I N G" :: DISPLAY AT(11,8):"G A L L E R
Y"

1000 FOR L=l TO 1000 :: NEXT L

IF C=-l THEN SP=H

IF C=-l THEN SP=12

IF C=-l THEN SP=13

IF C=-l THEN SP=14

183

Putting It All Together

1010 FOR L=l TO 10

1020 CALL HCHAR(INT(RND*22+1),INT(RND*26+1),98,1):
: CALL SOUND(50,-6,0)

1030 FOR L2=l TO 20 :: NEXT L2

1040 NEXT L

1050 FOR L=l TO 500 :: NEXT L

1060 RETURN

1070 CALL CLEAR :: CALL SCREEN(8)
1080 DISPLAY AT(4,l):"DO YOU NEED INSTRUCTIONS?" :

: DISPLAY AT(6,1):"RESPOND Y/N"
1090 CALL SOUND(100,400,4)
1100 CALL KEY(3,K,S):: IF S=0 THEN 1100
1110 IF K=78 THEN 1210

1120 IF K<>89 THEN 1080

1130 CALL CLEAR

1140 CALL SPRITE(#2,96,12,15,20,#3,100,14,38,20,#4
,98,5,63,20):: CALL MAGNIFY(2)

1150 DISPLAY AT(3,8):"15 POINTS" :: DISPLAY AT(6,8
):"10 POINTS" :: DISPLAY AT(9,8):"25 POINTS"

1160 DISPLAY AT(12,1):"USE THE JOYSTICK TO POSITIO
N" :: DISPLAY AT(14,1):"THE CROSSHAIR ON THE
TARGET"

1170 DISPLAY AT(16,1):"AND PRESS THE FIRE BUTTON T
O" :: DISPLAY AT(18,1):"SHOOT. UP TO 4 PEOPL
E CAN"

1180 DISPLAY AT(20,1):"PLAY AT ONE TIME. EACH" ::
DISPLAY AT(22,1):"PLAYER HAS 15 SHOTS."

1190 DISPLAY AT(24,7):"PRESS ANY KEY"
1200 CALL KEY(3,K,S):: IF S=0 THEN 1200
1210 CALL DELSPRITE(ALL):: RETURN
1220 CALL CLEAR

1230 DISPLAY AT(4,1):"NUMBER OF PLAYERS? _" :: ACC
EPT AT(4,20)VALIDATE(,,1234M)SIZE(-1)BEEP:NP

1240 DISPLAY AT(8,1):"TARGET SPEED? (1-3) " :: DI
SPLAY AT(10,1):"(3 = FASTEST)" ~

1250 ACCEPT AT(8,21)VALIDATE("123")SIZE(-1)BEEP:DL
1260 S1=3*DL :: S2=2*DL :: S3=5*DL
1270 TL=4+(2*DL)
1280 RETURN

Alphabet Invasion
Take a challenging mind teaser, throw in some graphics and
sound, and you quickly have an enjoyable program for your
home computer. "Alphabet Invasion" is such a program.

The object of this game is to unscramble letters beamed
down by the alien spaceship. Up to four players may compete,

184

OSil

Putting It All Together

and each player has five words to unscramble. Scoring is
based on speed. If you let the timer run down to zero, your
turn is over.

How Alphabet Invasion Works

Line(s)
100-110 Clear the screen and seed the random number

generator.

120 Set the dimension limit for the program's vocabulary.
Up to 200 words can be used in the program at one
time.

130-150 Read the words stored in DATA statements into the
array. The program will continue to read DATA state
ments until the word END is encountered.

160-220 Define the character patterns used in the program.
ASCII code 96 defines the alien spaceship; ASCII code
97 defines the beam from the ship; ASCII code 104 is
a blank character used to erase the beam; ASCII codes
112, 113, and 114 are used to vaporize the letters; and
ASCII code 120 is used as a horizontal separation
character.

230-520 Present the introduction banner. Line 270 displays the
name of the game. Lines 290-330 define the spaceship
sprite and start it moving from left to right at the top
of the screen. Lines 340-360 shoot a beam toward the
word ALPHABET, and lines 370-400 "vaporize" it.
Lines 420-440 and 450-480 do the same thing to the
word INVASION. Lines 500-520 move the spaceship
off the screen.

540-570 Determine the number of players and the name of
each.

580-630 Display the game screen.
640-690 Main game loop. There will be five words to

unscramble for each player. Line 660 indicates the cur
rent player.

700-800 Select a word from the array. Line 700 selects a ran
dom number between 1 and NW, which is the number
of words in the array. If that element in the array is a
null, which means it has already been used, another
random number is selected. Line 710 puts the selected
word in WORD$. Line 730 sets the variable NL to the
length of the selected word and clears the variable

185

Putting It All Together

SCRAMBLES. Line 740 clears the array used to scram
ble the word. Lines 750-780 scramble the word by
randomly selecting numbers between 1 and NL. Line
760 insures that each number is used only once. Line
770 uses the selected number to place that position of
the word in the next available position of SCRAM
BLES. Line 790 makes sure the scrambled word isn't
the same as the original word.

810-960 Present the scrambled word to the player. Lines 810-
840 move the spaceship across the top of the screen.
Lines 850-900 beam down each letter in the scrambled
word. Lines 910-950 move the ship off the screen.

970-1040 Control loop for player's response. Line 990 looks for
keyboard input. Line 1000 checks to see if the timer
has run down to zero. If it has, the turn is over and
the program branches to line 1050. Line 1010
increments the counter and displays it on the screen.
Line 1020 checks to see if the ENTER key was pressed.
The ENTER key is pressed after the player has guessed
the word, so the program branches to line 1070. Line
1030 checks to see if the back arrow (FNCT S) key was
pressed. This allows the player to correct an entry.
Line 1040 handles any other key. The ASCII code for
the key is converted to a character and displayed on
the screen.

1050-1060 Indicate to the player that time has run out.
1070-1180 Check to see if the guess is correct. Line 1070 displays

RIGHT or WRONG accordingly. Lines 1090-1110
vaporize the scrambled letters. Line 1120 erases the
scrambled letters and displays the correct word. Lines
1150-1170 calculate the player's score and display it
on the screen.

1190-1200 Let player use back arrow key (FNCT S) to correct a
letter.

1210-1270 End of game.

1280-1410 DATA statements containing words. You may add
your own words to this list or replace it altogether. The
maximum number is 200 and the last word must be
END.

186

^^^^^^^^^mmammmmmm Putting It All Together

*« Program 7-3. Alphabet Invasion
100 CALL CLEAR

110 RANDOMIZE

120 DIM WORDS?(200)
130 NW=NW+1

140 READ WORDS?(NW)
150 IF WORDS?(NW)<>"END" THEN 130 ELSE NW=NW-1
160 CALL CHAR(96,"3C7EFFFF7E3C0000")
170 CALL CHAR(97,"1818181818181818")
180 CALL CHAR(104,"0000000000000000")
190 CALL CHAR(112,"10234719F618C291")
200 CALL CHAR(113,"048385718496F719")
210 CALL CHAR(114,"748D7391F3831174")
220 CALL CHAR(120,"0000FFFFFFFF0000")
230 CALL SCREEN(2):: CALL COLOR(9,9,1,10,1,1,11,11

,1,12,14,1)
240 FOR L=2 TO 8

250 CALL COLOR(L,16,l)
260 NEXT L

270 DISPLAY AT(15,7):"A L P H A B E T" :: DISPLAY
AT(21,7): "I N V A S I O N"

280 FOR L=l TO 1000 :: NEXT L
290 CALL MAGNIFY(2)
300 CALL SPRITE(#1,96,5,20,1)
310 FOR L=2 TO 120

320 CALL LOCATE(#1,20,L):: CALL SOUND(-l,500-L,7,-
3,0)

330 NEXT L

340 CALL VCHAR(4,16,97,12):: CALL SOUND(20,1500,5,
-6,0)

350 CALL VCHAR(4,16,104,12)
360 CALL SOUND(150,110,9,-6,0)
370 FOR L=l TO 4

380 FOR L2=112 TO 114

390 CALL HCHAR(15,9,L2,15)
400 NEXT L2 :: NEXT L

410 CALL HCHAR(15,7,104,17)
420 CALL VCHAR(4,16,97,17):: CALL SOUND(20,1500,5,

-6,0)
430 CALL VCHAR(4,16,104,17)
440 CALL SOUND(150,110,9,-6,0)
450 FOR L=l TO 4

I"™ 460 FOR L2=112 TO 114
470 CALL HCHAR(21,9,L2,15)

r» 480 NEXT L2 :: NEXT L

490 CALL HCHAR(21,7,104,17)
500 FOR L=121 TO 256

^Z 510 CALL LOCATE(#1,20,L): : CALL SOUND(-1,380+L,7,-
3,0)

187

Putting It All Together

520 NEXT L :: CALL DELSPRITE(#1)
530 CALL CLEAR

540 DISPLAY AT(4,1):"NUMBER OF PLAYERS? (1-4) _" :
: ACCEPT AT(4,26)VALIDATE("1234")SIZE(-1)BEEP:NP

550 FOR L=l TO NP

560 DISPLAY AT(6+(L*2),1):"NAME OF PLAYER";L :: AC
CEPT AT(6+(L*2),18)SIZE(9)BEEP:PN?(L)

570 NEXT L

580 CALL CLEAR

590 CALL HCHAR(16,1,120,32):: CALL HCHAR(19,1,120,
32)

600 DISPLAY AT(18,1):"TIME:" :: DISPLAY AT(18,12):
"WORD: "

610 DISPLAY AT(20,9):"** SCORE **"
620 DISPLAY AT(22,1):PN?(1);:: DISPLAY AT(22,16):P

N?(2);
630 DISPLAY AT(23,1):PN?(3);:: DISPLAY AT(23,16) :P

N?(4);
640 FOR PLAY=1 TO 5

650 FOR L=l TO NP

660 DISPLAY AT(1,8):"TURN: ";PN?(L)
670 GOSUB 700 :: GOSUE 810 :: GOSUB 970
680 NEXT L

690 NEXT PLAY :: GOTO 1210

700 WORD=l+INT(RND*NW):: IF WORDS?(WORD)="" THEN 7
00

710 WORD?=WORDS?(WORD)
720 WORDS?(WORD)=""
730 NL=LEN(WORD?):: SCRAMBLE?=""
740 FOR L2=l TO NL :: WA(L2)=0 :: NEXT L2
750 FOR L2=l TO NL

760 N=1+INT(RND*NL):: IF WA(N)=1 THEN 760
770 SCRAMBLE?=SCRAMBLE?&SEG?(WORD?,N,l):: WA(N)=1
780 NEXT L2

790 IF SCRAMBLE?=WORD? THEN 730
800 RETURN

810 CALL SPRITE(#1,96,5,20,1)
820 FOR L2=2 TO 84

830 CALL LOCATE(#1,20,L2):: CALL SOUND(-1,500,7,-3
,0)

840 NEXT L2

850 FOR L2=l TO NL

860 CALL VCHAR(4,10+(L2*2),97,9): : CALL SOUND(20,1
500,5,-6,0):: CALL VCHAR(4,10+(L2*2),104,9)

870 CALL HCHAR(14,10+(L2*2),ASC(SEG?(SCRAMBLE?,L2,
1)),1)

880 FOR L3=l TO 16

890 CALL LOCATE(#1,20,68+(L2*16)+L3):: CALL SOUND(
-1,380,7,-3,0)

188

We^J

fSSO

FSB

Putting It All Together

900 NEXT L3 :: NEXT L2

r* 910 CALL P0SITI0N(#1,DR,DC)
920 FOR L2=DC TO 256
930 CALL LOCATE(#1,20,L2):: CALL SOUND(-1,500,7,-3

,0)
940 NEXT L2

950 CALL DELSPRITE(#1)
960 RETURN

970 TI=0 :: TIME=100 :: ANS?=""
980 DISPLAY AT(18,19):"_"
990 CALL KEY(3,K,S)
1000 IF TIME=0 THEN 1050

1010 TI=TI+1 :: TIME=100-INT(Tl/8):: DISPLAY AT(1&
,6):TIME;:: IF S=0 THEN 990

1020 IF K=13 THEN 1070

1030 IF K=8 THEN 1190

1040 ANS?=ANS?ScCHR?(K): : DISPLAY AT(18,19):ANS?;::
GOTO 990

1050 CALL SOUND(1000,800,5,-6,0)
1060 DISPLAY AT(12,6):"** OUT OF TIME **" :: GOTO

1090

1070 IF ANS?=WORD? THEN DISPLAY AT(12,9):"** RIGHT
" ELSE DISPLAY AT(12,9):" WRONG **" :: C

ALL SOUND(1000,800,5,-6,0):: TIME=0 :: GOTO 1
090

1080 CALL SOUND(1000,200,4,2000,0)
1090 FOR L3=l TO 8 :: FOR L4=112 TO 114

1100 CALL HCHAR(14,12,L4,LEN(WORD?)*2-l)
1110 NEXT L4 :: NEXT L3

1120 CALL HCHAR(14,1,32,32):: CALL HCHAR(15,1,32,3
2):: DISPLAY AT(15,12):WORD? :: FOR DELAY=1 T
O 2000 :: NEXT DELAY

1130 CALL HCHAR(12,1,32,32):: CALL HCHAR(14,1,32,3
2):: CALL HCHAR(15,1,32,32)

1140 DISPLAY AT(18,6):"100";:: DISPLAY AT(18,19):"
ii

1150 SC(L)=SC(L)+TIME
1160 R=22+INT(L/3):: C=10 :: IF L=2 OR L=4 THEN C=

C+15

1170 DISPLAY AT(R,C):USING "###":SC(L);
1180 RETURN

1190 IF LEN(ANS?)<2 THEN ANS?="" ELSE ANS?=SEG?(AN
S?,1,LEN(ANS?)-1)

f53 1200 DISPLAY AT(18,19):ANS? :: GOTO 990
1210 CALL HCHAR(1,1,32,32)

f~ 1220 DISPLAY AT(1,8):"** GAME OVER **"
1230 CALL SOUND(500,220,0,294,0,349,0)
1240 CALL SOUND(500,196,0,330,0,698,0)

r_* 1250 CALL SOUND(500, 220,0,294,0,349,0)

189

Putting It All Together

1260 CALL SOUND(900,247,0,587,0,784,0)
1270 GOTO 1270 ™
1280 DATA "TRAIN", "BOOKS","DESK","PAPER","SOCKS","

BOUNCE","WRITE","CLOUT"
1290 DATA "COMPUTE","BORDER", "THINK","NUMERIC", "RE

GRET","FUNGUS","MONITOR","PRINTER","TONSIL"
1300 DATA "RULER","PURSUE","ANIMAL","FEMALE","CLOS

ET","CABLE","CURTAIN","TOWEL"
1310 DATA "SAUCER","INVADE","PICKLE","CURDLE", "STR

EET","AVENUE","PANTS","GRAPHIC","KNIGHT","PER
SON","RADICAL"

1320 DATA "GIGGLE","LEATHER", "MEDIUM","OBLONG", "SQ
UARE","JACKET","BREATH","AUTHOR","AUTUMN","TR
OWEL","METHOD"

1330 DATA "PISTOL","ROUGH","ROTUND","CLENCH","SURM
ISE","TRANSIT","TRAMPLE","VALIANT","WEIGHT","
HEIGHT","YEOMAN"

1340 DATA "ZIPPER","ZEALOUS","PROJECT","JUNGLE","H
EAVY","HEDGE","JUDGE","QUICK","CONSIST","BELI
EVE","BISCUIT","HARMONY","MUSICAL","SCALE"

1350 DATA "RADIO","VALUE","ARRAY","CHILD","MONTH",
"CROWN","SHELL","BIRTH","PROGRAM","STRING","A
SSIGN","TRACK"

1360 DATA "ADDRESS","POINT","ANALOGY","VERSION","E
NOUGH","COMPANY","REASON","GRADE","WORLD","CH
AIR","GUIDE","QUENCH","TURMOIL"

1370 "STATION","MAGIC","RESOLVE","MACHINE","MANAGE
R","VITAL","OBSCURE","REVOLT","EDUCATE","PROD
UCE","ELECT"

1380 DATA "DRIVE","ENTRY","ELICIT","ASPIRE","REFUT
E","BANANA","OUTSIDE","NORMAL","MAJOR","ACCEN
T","TRASH","BINDER","SPIRAL","REMOTE"

1390 DATA "SEARCH","CAREER","BEACH","LISTING","JOI
NT" ,"CAVITY" ,"WRECK" ,"MANUAL" ,"ECONOMY" ,"EXPA
ND","REVULSE","DESTROY","REPAIR"

1400 DATA "CAPTIVE","SOUND","WAYWARD","CRAFT","IMP
ULSE","IMAGINE","CRACKER","BECOME","BEMOAN","
AVOID","FETCH","FUTURE","INJURY","JUSTICE"

1410 DATA "END"

Banzai Bunny
"Banzai Bunny" demonstrates just how versatile TI sprites can a
be. It uses 24 of the 28 possible sprites and incorporates many
sprite subprogram commands, including CALL MAGNIFY, «
CALL MOTION, CALL POSITION, and CALL DELSPRITE. In]
addition, it uses two versions of the CALL COINC <ea
subprogram. w

190

Putting It All Together

_ Your job is to move the bunny from the bottom of the
screen across six lanes of traffic, over a polluted river on the
backs of turtles, and finally to safety on the far shore. The
bunny is controlled by the E, S, and D keys, and points are
scored by reaching the other side of the river. As many as
nine players may compete at one time. Each player has five
bunnies, and a player's turn continues until all five have been
lost.

How Banzai Bunny Works

Line(s)
100 Clear the screen.

110-220 Define the character patterns used in the program.
ASCII code 96 defines the bunny moving up, ASCII
code 100 defines the bunny moving to the right, and
ASCII code 104 defines the bunny moving to the left.
ASCII codes 108, 112, and 116 define the bunny jump
ing up, right, and left, respectively. ASCII code 140
defines the bunny's demise on the highway or in the
river. ASCII codes 120 and 124 defines the cars, while
ASCII code 128 defines the turtles.

230 Set the character pattern colors.

240-250 Determine the number of players.

260-450 Set up the screen. Lines 270-350 draw the highway,
the river, and the borders. Lines 370-420 define the
car sprites and set them in motion. Lines 430-450
define the turtle sprites and set them in motion.

460-510 Main game loop. Line 460 initiates the loop based on
the number of players. Line 470 sounds a series of two
tones to indicate the beginning of a player's turn. Lines
480-490 display the player number, number of bun
nies, and score. Line 500 transfers program control to
the routine to control the bunny.

520 Branch to end-of-game routine when no more players.
530 Define the bunny sprite.

540-600 Loop to control the bunny while on the road. Line 540
fs» looks for keyboard input. Line 550 transfers to a dif

ferent routine if the bunny is at a row position less
fs than 64, which indicates that the bunny is at the river.

Otherwise, the bunny is on the road. Line 560 checks
_^ to see if there is any coincidence. If there is, it can only

mean that the bunny was run over by a car. In that
case, the program branches to line 780. Lines 570-590

191

Putting It All Together

check to see if an arrow key was pressed. If so, the
routine to move the bunny in that direction is invoked.

610 Control routine for the bunny while at the river. Line
610 checks for coincidence. If there is, the bunny is on
a turtle, and consequently OK. If there is no
coincidence, the bunny is in the river. This is the
opposite condition from the routine for the road.

620 Sound routine for jumping bunny.

640-690 Routines to move the bunny. Lines 640-650 move the
bunny up; lines 660-670 move the bunny to the left;
lines 680-690 move the bunny to the right.

700-770 Loop to control bunny at the river. Line 700 looks for
keyboard input. Line 710 invokes the appropriate rou
tine to move the bunny. Line 720 determines the bun
ny's position. If the bunny is at row 1, he has reached
the other side of the river. Line 730 makes sure that
the bunny does not wrap around the screen hori
zontally. If the bunny reaches the edge of the screen,
he is dead. Based on the row position obtained in line
720, line 740 puts the bunny in motion to the left or
right, at the speed of the turtle at that row position.
The effect is to have the rabbit ride the turtle. Line 750
checks for coincidence. If there is no coincidence, then
the rabbit is in the river. In that case, the program
branches to the routine at line 780.

780-840 Routine for a bunny's demise. Line 780 produces a
squish sound. Line 790 changes the bunny's pattern.
Line 800 is a delay loop. Line 810 deletes the bunny
sprite. Line 820 decrements the bunny counter. If there
are no more bunnies for the player, the program
branches back to the main routine for the next player.

850-880 Routine to increment and display score for a bunny
that made it to the other side of the river.

890-940 End of game. The final score for all players is
displayed.

Program 7-4. Banzai Bunny
100 CALL CLEAR :: RANDOMIZE
110 CALL CHAR(40,"FFFFFFFFFFFFFFFF")
120 CALL CHAR(96,"00000003070903030303030100000000

0000000040C0808080C0C0C000000000")

192

C^j

Putting It All Together

^Vtt

pa 130 CALL CHAR(100,"000000000000070F0F0E000000O0000
0000000002010D8F8E030000000000000")

140 CALL CFIAR(104,"0000000004081B1F070C00000000000
0000000000000E0F0F070000000000000")

150 CALL CHAR(108,"0000000307090303030303010000000
00000404040808080808080C040400000")

160 CALL CHAR(112#"000000000000070F0F3800000000000
0000000002010D8F8E01C000000000000")

170 CALL CHAR(116,"0000000004081B1F073C00000000000
0000000000000E0F0F01C000000000000")

180 CALL CHAR(120,"00000000000102043F7FFFFF3810000
00000000000F04844FEFFFFFF1C080000")

190 CALL CHAR(124,"00000000000F12227FFFFFFF3810000
00000000000804020FCFEFFFF1C080000")

200 CALL CHAR(128,"0000070F3F3F7FFFFF7F3F3F0F07000
00000E0F0FCFCFEFFFFFEFCFCF0E00000")

210 CALL CHAR(132,"FFFFFFFFFFFFFFFF"): : CALL CHAR(
136,"000000000000000F")

220 CALL CHAR(140,"80C0607030300806030303060718180
0010203071C30708080C0607030100100")

230 CALL COLOR(2,5,1,13,4,1,14,2,1)
240 DISPLAY AT(4,1):"NUMBER OF PLAYERS? _"
250 ACCEPT AT(4,20)VALIDATE(NUMERIC)SIZE(-1)BEEP:M

P

260 CALL CLEAR

270 CALL HCHAR(23,1,132,32):: CALL HCHAR(24,1,132,
32)

280 CALL HCHAR(10,1,132,32):: CALL KCHAR(9,1,132,3
2)

290 CALL HCHAR(1,1,132,32):: CALL HCHAR(2,1,132,32
)

300 FOR L=12 TO 21 STEP 2

310 CALL HCHAR(L,1,136,32)
320 NEXT L

330 FOR L=3 TO 8

340 CALL HCHAR(L,1,40,32)
350 NEXT L

360 CALL MAGNIFY(3)
370 CALL SPRITE(#2,124,2,160,70,0,9,#3,124,9,160,1

50,0,9,#4,124,14,160,230,0,9)
380 CALL SPRITE(#5,124,15,144,10,0,12,#6,124,5,144

,100,0,12,#24,124,13,144,190,0,12)
p. 390 CALL SPRITE(#7,124,2,128,70,0,10,#8,124,9,128,

150,0,10,#9,124,11,128,230,0,10)
400 CALL SPRITE(#10,120,9,112,70,0,-10,*11,120,14,

[112,150,0,-10,#12,120,16,112,230,0,-10)
410 CALL SPRITE(#13,120,11,96,10,0,-12,#14,120,5,9

f® 6,100,0,-12,#25,120,14,96,190,0,-12)

193

GSffif

Putting It All Together

420 CALL SPRITE(#15,120,2,80,70,0,-9.,#16,120,10,80
,150,0,-9,#17,120,15,80,230,0,-9):: GOTO 460 ™

430 CALL SPRITE(#19,128,2,48,10,0,4)
440 CALL SPRITE(#21,128,2,32,10,0,-3)
450 CALL SPRITE(#22,128,2,16,10,0,5):: RETURN
460 FOR PL=1 TO NP

470 BUNNY=5 :: FOR D=l TO 5 :: CALL SOUND(300,500,
0):: CALL SOUND(300,300,0):: NEXT D

480 DISPLAY AT(24,1):USING "###### #":"PLAYER",PL;
:: DISPLAY AT(24,20):USING "####### #":"BUNNIE
S",BUNNY

490 DISPLAY AT(1,10):"SCORE:{4 SPACES}";
500 GOSUB 530

510 NEXT PL

520 GOTO 890

530 GOSUB 430 :: CALL SPRITE(#18, 96,16,176 ,125): :
R=176 :: C=125

540 CALL KEY(3,K,S)
550 IF R<64 THEN 610

560 CALL COINC(ALL,CO):: IF CO<>0 THEN 780
570 IF K=69 THEN GOSUB 640 :: IF R<64 THEN 700 ELS

E 540

580 IF K=83 THEN GOSUB 660 :: GOTO 540
590 IF K=68 THEN GOSUB 680 :: GOTO 540
600 GOTO 540

610 CALL COINC(ALL,CO):: IF CO=0 THEN 780 ELSE 570
620 CALL SOUND(70,500,5,-6,0):: CALL SOUND(30,300,

5,-4,0):: RETURN
630 RETURN

640 CALL PATTERN(#18,108):: R=R-16 :: SW=1 :: IF R
<1 THEN R=l

650 CALL LOCATE(#18,R,C):: CALL PATTERN(#18,96)::
COSUB 620 :: RETURN

660 CALL PATTERN(#18,116): : C=C-16 :: SV/=1 :: IF C
<1 THEN C=l

670 CALL LOCATE(#18,R,C):: CALL PATTERN(#18,104)::
GOSUB 620 :: RETURN

680 CALL PATTERN(#18,112):: C=C+16 :: SW=1 :: IF C
>240 THEN C=240

690 CALL LOCATE(#18,R,C):: CALL PATTERN(#18,100)::
GOSUB 620 :: RETURN

700 CALL KEY(3,K,S)
710 IF S<>0 THEN IF K=69 THEN GOSUB 640 ELSE IF K=

83 THEN GOSUB 660 ELSE IF K=68 THEN GOSUB 680 'H
720 CALL POSITION(#18,R,c):: IF R=l THEN CALL MOTI

ON(#18,0,0):; GOTO 850 "J
730 IF C<7 OR C>236 THEN 780
740 IF R<=48 AND R>32 THEN CALL MOTION(#18,0,4)ELS ••>

E IF R<=32 AND R>16 THEN CALL MOTION(#18,0,-3) "
ELSE CALL MOTION(#18,0,5)

194

ttadWf

caack

Putting It All Together

750 IF SW=1 THEN CALL COINC(ALL,CO):: IF CO=0 THEN
780 ELSE SW=0

770 GOTO 700

780 CALL SOUND(300,3500,0,5000,5):: CALL SOUND(-20
0,200,5,-6,0)

790 CALL PATTERN(#18,140):: CALL COLOR(#18,11)
800 FOR D=l TO 25 :: NEXT D

810 CALL DELSPRITE(#18)
820 BUNNY=BUNNY-1 :: IF BUNNY<1 THEN 630
830 DISPLAY AT(24,27):USING "S^'iBUNNY
840 GOTO 530

850 CALL SOUND(1500,400,5,1000,0):; FOR D=l TO 500
:: NEXT D

860 SC(PL)=SC(PL)+15
870 DISPLAY AT(1,17):USING "###":SC(PL);
880 GOTO 530

890 CALL DELSPRITE(ALL):: CALL CLEAR
900 DISPLAY AT(2,7):"** SCORE **"
910 FOR L=l TO NP
920 DISPLAY AT(4+L*2,4):USING "###### #{3 SPACES}*

##":"PLAYER",L,SC(L)
930 NEXT L

940 GOTO 940

Zone Defender
While the previous programs have used the keyboard or joy
stick to move a sprite around the screen, "Zone Defender"
demonstrates how sprites can be used to simulate a moving
window. In other words, your laser sight will remain sta
tionary while everything else moves.

You are the commander of a defensive space station at the
outer reaches of the solar system, and you are responsible for
defending your zone from invading spacecraft. The screen is
your window into space, and at its center is a targeting sight.
When an invading craft flies across the screen, you must track
it with your sight and destroy it. The joysticks control your
maneuvering rockets, which rotate the ship in the appropriate
direction.

The maneuvering rockets have a cumulative rotation
f^» effect. In other words, the longer the joysticks are pushed in a

certain direction, the faster the rotation of your ship. The ship
fm wiU continue to rotate in one direction until an equal amount

of rocket power is applied in the other direction.
f** To destroy an invading craft, you must first center it in

your sight. A message at the top of the screen will tell you

195

Putting It All Together

when you're locked on, and you can fire your laser using the
fire button on your joystick. There are ten invading ships, and
your final score is determined by how quickly you dispatch
the invaders.

How Zone Defender Works

Line(s)
100 Clear the screen and set its color to black.

110 Seed the random number generator.
120-200 Define the character patterns used by the program.

ASCII codes 100, 104, and 108 define the stars. ASCII
code 96 defines the sight. ASCII code 112 defines the
enemy spacecraft, ASCII code 120 defines the laser,
and ASCII codes 124 and 128 define the explosion
characters used when a ship is destroyed.

210 Set the character code colors.

220-270 Set the magnification factor to 3. Create the sprites for
the stars.

280 Transfer to the introduction banner.

290 Display the score.

300 Create the sprite for the sight.
310-320 Increment the enemy ship counter. If count exceeds

ten, branch to the end-of-game routine. Otherwise, dis
play the number of enemy ships remaining.

330-350 Determine a random row and column velocity for the
enemy spacecraft. Line 350 places the spacecraft on the
screen.

360 Check for joystick movement. If there is movement,
produces a sound to simulate rockets firing.

370 Check to see if the spacecraft is in the sight. If it is,
display the LOCKED ON message.

380 Check to see if fire button was pressed. If it was,
branch to laser firing routine at line 440.

390-400 Put stars in motion, based on the direction in which
the joystick is moved. Effect is cumulative.

410-420 Control the spacecraft's direction and speed based on
the direction in which the joystick is pressed. Again,
the effect is cumulative.

430 Check the joystick again.

196

Putting It All Together

440-530 Fire the laser. Line 470 checks to see if the sight and
the spacecraft were coincident. If they weren't, the pro
gram branches back to the main routine. Otherwise,
the spacecraft was hit. Lines 480-500 generate an
exploding sound and change the spacecraft sprite to
the explosion patterns. Line 510 displays the score.
Line 520 stops all motion in preparation for the next
spacecraft.

540-550 End of game.
560-600 Display introduction banner.

Program 7-5. Zone Defender
100 CALL CLEAR :: CALL SCREEN(2)
110 RANDOMIZE

120 CALL CHAR(100,"0100000000000000000000000000000
000000000000000000000000000000000")

130 CALL CHAR(104,"0000000000000000000000000000000
000000000000000000000000000200 000 ")

140 CALL CHAR(108,"0000000000000000000000000000000
000004000000000000000000000000 000 ")

150 CALL CHAR(96,"FF8080808E8888808088888E808080FF
FF0101017111110101111171010101FF")

160 CALL CHAR(120,"0001929291010828244440101282820
102828334207720383929202031104 041")

170 CALL CHAR(112,"0003070F0F3F3FFFFF3F3F0F0F07030
000C0E0F0F0FCFCFFFFFCFCF0F0E0C 000 ")

180 CALL CHAR(120,"8040201008040201010204081020408
001020408102040808040201008040201")

190 CALL CHAR(124,"00002020100804030F13214101020C0
000000810204040C0F0C8080408040 000 ")

200 CALL CHAR(128,"80A08248C2A288C48844A281C2808CC
301034182411344010402427382412 011")

210 CALL COLOR(3,16,1,4,16,1,5,16,1,6,16,1,7,16,1,
8,16,1)

220 CALL MAGNIFY(3)
230 CALL SPRITE(#4,100,16,2O,20,#5,104,16,20,160)
240 CALL SPRITE(#6,108,16,50,190)
250 CALL SPRITE(#7,104,16,80,150)
260 CALL SPRITE(#8,104,16,120,20,#9,108,16,120,80)
270 CALL SPRITE(#10,104,16,164,140)
280 GOSUB 560

290 DISPLAY AT(24,2):"SCORE:{4 SPACES}"
300 CALL SPRITE(#1,96,6,90,125)
310 CT=CT+1 :: IF CT>10 THEN 540

320 DISPLAY AT(24,20):"SHIPS";11-CT

197

Putting It All Together

330 X2=1+INT(RND*30):: IF RND<.5 THEN X2=-X2
340 Y2=1+INT(RND*30):: IF RND<.5 THEN Y2=-Y2
350 CALL SPRITE(#3,112,15,1+INT(RND*190),1+INT(RND

*240),X2,Y2)
360 CALL J0YST(1,A,B):: TI=TI+1 :: IF A<>0 OR B<>0

THEN CALL SOUND(-540,-6,0)
370 CALL COINC(#l,#3,6,CO):: IF CO<>0 THEN DISPLAY

AT(2,10):"LOCKED ON";ELSE DISPLAY AT(2,10):"
it

380 CALL KEY(1,K,S):: IF K=18 THEN 440
390 Y=MIN(Y+B,120):: Y=MAX(Y,-120):: X=MIN(X-A,120

):: X=MAX(X,-120)
400 CALL MOTION(#4,Y,X,#5,Y,X,#6,Y,X,#7,Y,X,#8/Y,X

,#9,Y,X,#10,Y,X)
410 Y2=MIN(Y2-B,120):: Y2=MAX(Y2,-120):: X2=MIN(X2

-A,120):: X2=MAX(X2,-120)
420 CALL MOTION(#3,-Y2,X2)
430 GOTO 360

440 CALL SPRITE(#2,120,9,90,125)
450 CALL SOUND(100,1200,4,-5,0):: CALL SOUND(-200,

900,5,-5,0)
460 CALL DELSPRITE(#2)
470 IF CO=0 THEN GOTO 360

480 CALL COLOR(#3,9):: CALL PATTERN(#3,124):: CALL
SOUND(-200,400,0,-6,0):: SC=SC+MAX(500-TI,0):

: TI=0

490 CALL PATTERN(#3,128)
500 CALL DELSPRITE(#3)
510 DISPLAY AT(24,9):USING "####":SC
520 CALL MOTION(#4,0,0,#5,0,0,#6,0,0,#7,0,0,#8,0,0

,#9,0,0,#10,0,0):: X=0 :: Y=0
530 GOTO 310

540 DISPLAY AT(2,8):"** GAME OVER **"
550 GOTO 550

560 DISPLAY AT(6,11):"Z O N E"
570 DISPLAY AT(10,7):"D E F E N D E R"
580 DISPLAY AT(20,8):"PRESS ANY KEY"
590 CALL KEY(3,K,S):: IF S=0 THEN 590
600 CALL CLEAR :: RETURN

Addition Climber

Since small children are usually unafraid of computers, it is lit
tle wonder that home computers are used more and more fre
quently in education.

A computer program designed for educational purposes
should have several important characteristics. First, it must
allow for increasing levels of difficulty in order to challenge

198

s>

Putting It All Together

«sn the child. Second, it should establish some specific goal as a
measure of success. Finally, it should offer encouragement and
a reward when that goal is achieved.

"Addition Climber" allows your child to practice addition
skills. The program uses the TI Speech Synthesizer to offer
encouragement or inform the child of an incorrect answer.
Speech synthesis gives any educational program a more per
sonal approach.

The program asks for the answers to ten addition prob
lems. For each correct answer, a gorilla climbs a little further
up a building. If all ten answers are correct, the gorilla reaches
the top of the building and does a short dance.

How Addition Climber Works

Line(s)
100 Clear the screen and seed the random number

generator.

110-180 Define the character patterns used in the program.

190 Set the colors for the character patterns.

200 Determine the difficulty level. The highest number
used in the problems is determined by the difficulty
level times five. In other words, the highest numbers
to add for a difficulty level four would be 20 + 20.

210-310 Set up the problem board. Line 230 draws the build
ing; line 270 creates the gorilla.

320-490 Main game loop. Line 340 determines the two num
bers for each addition problem. Line 350 invokes a
routine that presents the number on the screen as
magnified sprites. Lines 360-390 "speak" the problem
question (for example, "What is 10 plus 12?"). Line
400 accepts the answer from the child. Line 410 deter
mines if the answer is correct and invokes the appro
priate response routine. Line 420 calls a routine to
display the correct answer on the screen as 1 or 2 mag
nified sprites. Line 430-450 branch to routines which
speak words of encouragement. Line 460 displays the
tally of correct answers. Line 480 deletes the number
sprites in preparation for the next problem.

p-a 500-540 End of game. If all problems were answered correctly,
line 500 calls routines to speak congratulations to the
child and make the gorilla dance.

1- 550-600 Control which number is spoken.

199

IfflDI

Putting It All Together hmi^^^^hh^^^^^m

610-680 Indicate an incorrect answer. Line 640 randomly picks
one of three phrases to inform the child the answer is
wrong. Lines 650-670 inform the child of the correct
answer.

690-710 The three phrases for an incorrect answer.

720-800 Routine for a correct answer. Again, one of three
phrases is randomly picked to inform the child that the
answer is correct.

810-830 The three phrases for a correct answer.

840-990 Display the numbers for the current problem as mag
nified sprites.

1000-1070 Display the correct answer as magnified sprites.
1080-1160 Words of encouragement.
1170-1220 Make the gorilla climb the building.
1230-1320 Make the gorilla dance at the top of the building when

all answers are correct.

1330-2030 Speak the numbers.

Program 7-6. Addition Climber
100 CALL CLEAR :: RANDOMIZE

110 CALL CHAR(40,"000000FFFF000000")
120 CALL CHAR(96,"FFFFFFFFFFFFFFFF")
130 CALL CHAR(116, "0101010101010101«')
140 CALL CHAR(120,"FFF1FF81FF81FF81")
150 CALL CHAR(104,HFFFFC3C3C3C3FFFF")
160 CALL CHAR(112,"9999FF3C3C7E4242")
170 CALL CHAR(113,"1818FF3C3C3C2424")
180 CALL CHAR(114,"1818FFBDBD3C2424")
190 CALL COLOR(9,13,1,10,15,5,11,2,1,12,9,16)
200 DISPLAY AT(6,1):"DIFFICULTY LEVEL 1-7 _" :: AC

CEPT AT(6,22)VALIDATE("1234567")SIZE(-1)BEEP:D
L

210 CALL CLEAR

220 FOR L=19 TO 23 :: CALL HCHAR(L,1,96,14):: NEXT
L

230 FOR L=8 TO 18 :: CALL HCHAR(L,5,104,5):: NEXT
L

240 CALL VCHAR(4,7,116,4):: CALL HCHAR(4,8,120,1)
250 DISPLAY AT(1,5):"ADDITION CLIMBER"
260 CALL MAGNIFY(2)
270 CALL SPRITE(#10,112,2,128,40):: ROW=128 :: COL

=40

200

k**l»hj:|

r
Putting It All Together

280 DISPLAY AT(4,18):"TRIES:" :: DISPLAY AT(6,18):
L "RIGHT:"

290 CALL HCHAR(18,23,40,4)
300 CALL SAY("PRESS ANY KEY TO START.")
310 CALL KEY(3,K,S):: IF S=0 THEN 310
320 FOR L=l TO 10
330 DISPLAY AT(8,10):" " :: DISPLAY AT(23,13):" "
340 V1=1+INT(RND*(DL*5)):: V2=1+INT(RND*(DL*5))
350 GOSUB 840
360 CALL SAYC'WHAT IS"):: IF Vl>25 THEN Al=Vl-25 E

LSE A=V1

370 IF Vl>25 THEN GOSUB 570 ELSE GOSUB 550
380 CALL SAY("AND"):: IF V2>25 THEN Al=V2-25 ELSE

A=V2

390 IF V2>25 THEN GOSUB 570 ELSE GOSUB 550
400 DISPLAY AT(23,13):"ANSV7ER—>" :: ACCEPT AT(23,

23)VALIDATE(NUMERIC)BEEP:ANS$
410 IF VAL(ANS$)<>V1+V2 THEN GOSUB 610 ELSE GOSUB

720

420 GOSUB 1000

430 IF L=5 AND RIGHT=5 THEN GOSUB 1080
440 IF L=7 AND RIGHT=7 THEN GOSUB 1100
450 IF L=9 AND RIGHT=9 THEN GOSUB 1120
460 DISPLAY AT(4,25):USING "##":L :: DISPLAY AT(6,

25):USING "##":RIGHT
470 FOR D=l TO 1700 :: NEXT D
480 CALL DELSPRITE(#1,#2,#3,#4,#5,#6,#7)
490 NEXT L

500 IF RIGHT=10 THEN GOSUB 1230 :: GOSUB 1140
510 CALL SAY("DO YOU V7ANT TO TRY AGAIN"):: CALL SA

Y("IF SO, PRESS THE Y KEY")
520 CALL KEY(3,K,S):: IF S=0 THEN 520
530 IF K=89 THEN CALL DELSPRITE(ALL):: RUN
540 CALL DELSPRITE(ALL):: CALL CLEAR :: STOP
550 ON A GOSUB 1340,1350,1360,1370,1380,1390,1400,

1410,1420,1430,1440,1450,1460,1470,1480,1490,1
500,1510,1520,1530,1540,1550,1560,1570,1580

560 RETURN
570 ON Al GOSUB 1590,1600,1610,1620,1630,1640,1650

,1660,1670,1680,1690,1700,1710,1720,1730,1740,
1750,1760,1770,1780,1790,1800,1810,1820,1830

580 RETURN
**" 590 ON Al GOSUB 1840,1850,1860,1870,1880,1890,1900

,1910,1920,1930,1940,1950,1960,1970,1980,1990,
F- 2000,2010,2020,2030

600 RETURN

610 A=V1+V2

620 DISPLAY AT(8,18): "** V/RONG **"

201

Putting It All Together

630 IF A>50 THEN Al=A-50 ELSE IF A>25 THEN Al=A-25

640 ON l+INT(RND*3)GOSUB 690,700,710 ^
650 CALL SAY("THE CORRECT ANSWER IS")
660 IF A>50 THEN GOSUB 590 ELSE IF A>25 THEN GOSUB

570

670 IF A<=25 THEN GOSUB 550

680 RETURN

690 CALL SAY("UHOH. THAT IS NOT THE RIGHT ANSWER."
):: RETURN

700 CALL SAY("SORRY, BUT THAT IS NOT RIGHT."):: RE
TURN

710 CALL SAY("NO, THAT IS NOT RIGHT."):: RETURN
720 A=V1+V2 :: IF A>50 THEN Al=A-50 ELSE IF A>25 T

HEN Al=A-25

730 RIGHT=RIGHT+1

740 DISPLAY AT(8,1S):"** RIGHT **"
750 ON l+INT(RND*3)GOSUB 810,820,830
760 CALL SAY("THE CORRECT ANSWER IS")
770 IF A>50 THEN GOSUB 590 ELSE IF A>25 THEN GOSUB

570

780 IF A<=25 THEN GOSUB 550

790 GOSUB 1170

800 RETURN

810 CALL SAY("VERY GOOD. YOU GOT IT RIGHT."):: RE
TURN

820 CALL SAY("THAT IS RIGHT"):: RETURN
830 CALL SAY("THAT IS EXACTLY RIGHT."):: RETURN
840 S1=0 :: S2=0

850 FOR SL=10 TO VI STEP 10
860 Sl=Sl+l
870 NEXT SL

880 S2=V1-(S1*10):: SC2=48+S2
890 IF S1=0 THEN SCl=32 ELSE SCl=48+Sl
900 CALL SPRITE(#1,SC1,2,80,176,#2,SC2,2,80,192)
910 Sl=0 :: S2=0

920 FOR SL=10 TO V2 STEP 10
930 S1=S1+1

940 NEXT SL

950 S2=V2-(S1*10):: SC2=48+S2
960 IF S1=0 THEN SCl=32 ELSE SCl=48+Sl
970 CALL SPRITE(#3,SC1,2,112,176,#4,SC2,2,112,192)
980 CALL SPRITE(#5,43,2,112,160)
990 RETURN

1000 Sl=0 :: S2=0 j
1010 FOR SL=10 TO V1+V2 STEP 10

1020 Sl=Sl+l •**

1030 NEXT SL

1040 S2=(V1+V2)-(S1*10):: SC2=48+S2 «*
1050 IF S1=0 THEN SCl=32 ELSE SCl=48+Sl >

202

\

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

Putting It All Together

CALL SPRITE(#6,SC1,2,144,176,#7,SC2,2,144,192

)
RETURN

CALL SAY("YOU ARE DOING VERY WELL.")
RETURN

CALL SAY("YOU ARE DOING VERY GOOD WORK.")
RETURN

CALL SAY("YOU HAVE NINE RIGHT. ONLY ONE MORE
TO GO.")
RETURN

CALL SAY("YOU GOT ALL TEN PROBLEMS RIGHT. YO
U MUST BE A COMPUTER.")
FOR D=l TO 700 :: NEXT D

RETURN

ROW=ROW-8

CALL PATTERN(#10,113)
CALL LOCATE(#10,ROW,COL)
FOR D=l TO 10 :: NEXT D

CALL PATTERN(#10,112)
RETURN

ROW=P.OW-8 :: CALL LOCATE(#10, ROW, COL)
FOR L=l TO 18

FOR L2=0 TO 1

CALL PATTERN(#10,112+(L2*2))
CALL LOCATE(#10,ROW-(L2*8),COL)
NEXT L2

FOR D=l TO 40 :: NEXT D

NEXT L

CALL LOCATE(#10,ROW,COL)
RETURN

CALL SAY("ZERO"):: RETURN
CALL SAY("ONE"):: RETURN
CALL SAY("TWO"):: RETURN
CALL SAY("THREE"):: RETURN
CALL SAY("FOUR"):: RETURN
CALL SAY("FIVE"):: RETURN
CALL SAY("SIX"):: RETURN
CALL SAY("SEVEN"):: RETURN
CALL SAY("EIGHT"):: RETURN
CALL SAY("NINE"):: RETURN
CALL SAY("TEN"):: RETURN
CALL SAY("ELEVEN"):: RETURN
CALL SAY("TWELVE"):: RETURN
CALL SAY("THIRTEEN"):: RETURN
CALL SAY("FOURTEEN"):: RETURN
CALL SAY("FIFTEEN"):: RETURN
CALL SAY("SIX TEEN"):: RETURN
CALL SAY(
CALL SAY(

"SEVENTEEN"):: RETURN
"EIGHT TEEN"):: RETURN

203

Putting It All Together

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

204

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

SAY("NINE TEEN"):: RETURN
SAY("TWENTY"):: RETURN
SAY("TWENTY ONE"):: RETURN
SAY("TWENTY TWO"):: RETURN
SAY("TWENTY THREE"):: RETURN
SAY("TWENTY FOUR"):: RETURN
SAY("TWENTY FIVE"):: RETURN
SAY("TWENTY SIX"):: RETURN
SAY("TWENTY SEVEN"):: RETURN
SAY("TWENTY EIGHT"):: RETURN
SAY("TWENTY NINE"):: RETURN
SAY("THIRTY"):: RETURN
SAY("THIRTY ONE"):: RETURN
SAY("THIRTY TWO"):: RETURN
SAY("THIRTY THREE"):: RETURN
SAY("THIRTY FOUR"):: RETURN
SAY("THIRTY FIVE"):: RETURN
SAY("THIRTY SIX"):: RETURN
SAY("THIRTY SEVEN"):: RETURN

SAY("THIRTY EIGHT"):: RETURN
SAY("THIRTY NINE"):: RETURN
SAY("FORTY"):: RETU RN
SAY("FORTY ONE"):: RETURN
SAY("FORTY TWO"):: RETURN
SAY("FORTY THREE"):: RETURN
SAY("FORTY FOUR"):: RETURN
SAY("FORTY FIVE"):: RETURN
SAY("FORTY SIX"):: RETURN
SAY("FORTY SEVEN"):: RETURN
SAY("FORTY EIGHT"):: RETURN
SAY("FORTY NINE"):: RETURN
SAY("FIFTY"):: RETURN
SAY("FIFTY ONE"):: RETURN

TWO"):: RETURN
THREE"):: RETURN
FOUR"):: RETURN
FIVE"):: RETURN
SIX"):: RETURN
SEVEN"):: RETURN

SAY("FIFTY
SAY("FIFTY
SAY("FIFTY
SAY("FIFTY
SAY("FIFTY
SAY("FIFTY
SAY("FIFTY
SAY("FIFTY

EIGHT"):: RETURN
NINE"):: RETURN

SAY("SIXTY"):: RETU RN
SAY("SIXTY ONE"):: RETURN
SAY("SIXTY TWO"):: RETURN
SAY("SIXTY THREE"):: RETURN
SAY("SIXTY FOUR"):: RETURN
SAY("SIXTY FIVE"):: RETURN
SAY("SIXTY SIX"):: RETURN

Putting It All Together

2000 CALL SAY("SIXTY SEVEN")
2010 CALL SAY("SIXTY EIGHT")
2020 CALL SAY("SIXTY NINE"):

: RETURN

: RETURN

RETURN

2030 CALL SAY("SEVENTY"):: RETURN

Slot Machine
If you have a streak of gambler in you, you'll like this pro
gram. It turns your TI into a Las Vegas slot machine. You start
out with $25, but don't be surprised at how quickly it dis
appears. This program uses the combinations found on a typi
cal slot machine, and the payoff combinations are displayed
on the screen. Good luck!

How Slot Machine Works

Line(s)

100

110

120-200

210

220

230-250

260-280

290

300-470

480

490-510

520-540

Clear the screen and seed the random number
generator.

Set the screen color to black.

Define the character patterns used in the programs.
Images on the wheel will be double-sized unmagnified
sprites.

Set the character pattern colors.

Read the ASCII code and color code for the seven pos
sible patterns into PAT and COL arrays.

Read the combinations for each wheel of the slot
machine into the W array. Each wheel consists of 19
patterns (oranges, lemons, bars, etc.). The actual infor
mation read into the array is a number which can be
used as a subscript for the PAT and COL arrays.

Read the winning combinations (groups of three) into
the PAY array.

Read the payoff odds into the ODDS array for each of
the winning combinations.

Draw the slot machine, payoff board, and tote board.

Initialize tote board variables. If you want to start out
with more than $25 dollars (or coins), you change the
ONHAND variable to the desired amount.

Set the initial patterns on the three slot machine
wheels.

Display the current tote board status.

205

Putting It All Together

550-590 Check for press of the space bar to start the wheels in
motion. Line 590 picks a random starting position for
each of the three wheels.

600-720 Put the wheels in motion. The next figure in each
wheel is displayed in a rolling fashion. When any
wheel reaches 19, it is wrapped around to 1.

730 Invoke routine to see if you won.
740 Go back and do it all again.
750-880 Determine winnings, if any. Display won or lost mes

sages and update the appropriate counters. If the
amount on-hand (line 870) reaches 0, then the game is
over.

890-910 End of game.

920-970 DATA statements containing wheel information. Line
920 identifies the ASCII code numbers and color codes
for the seven figures appearing on the wheels. Lines
930-950 identify the 19 figures on each of the three
wheels. Line 960 identifies the winning combinations,
and line 970 identifies the payoffodds for each win
ning combination.

Program 7-7. Slot Machine
100 CALL CLEAR :: RANDOMIZE
110 CALL SCREEN(2)
120 DIM W(3,19),PAY(10,3),ODDS(10)
130 CALL CHAR(40,"3C3C3C3C3C3C3C3C"):: CALL CHAR(9

6,"FFFFFFFFFFFFFFFF")
140 CALL CHAR(100f"00000000FF91A2C48891A2FF0000000

000000000FF112345891123FF00000000")
150 CALL CHAR(104,"0003071F3F7FFFFFFFFF7F3F1F07030

000C0E0F8FCFEFFFFFFFFFEFCF8E0C 000 ")
160 CALL CHAR(108,"00000000FF8EB58DB4B58DFF0000000

000000000FF63ADAD23ABADFF00000 000")
170 CALL CHAR(112,"03070F3F3F7FFFFFFFFF7F3F3F0F070

3C0E0F0FCFCFEFFFFFFFFFEFCFCF0E 0C0 ")
180 CALL CHAR(116,"01030509113078FCFC7831030707030

180402010088C9EBFBF9E8CC0E0E0C080")
190 CALL CHAR(120,"010103070F1F1F1F3F3F3F3F3F7F7FF

F8080C0E0F0F8F8F8FCFCFCFCFCFEFEFF")
200 CALL CHAR(124#"000001071F7FFFFF7F1F07010000000

00080C0F0FCFFFFFFFFFCF0C080000 000")
210 CALL COLOR(2,16,1,3,16,1,4,16,1,5,16,1,6,16,1,

7,16,1,8,16,1,9,15,1,11,7,1)

206
GSwJ

CsPSJ

Putting It All Together

220 FOR L=l TO 7 :: READ PAT(L),COL(L):: NEXT L
230 FOR L=l TO 3 :: FOR L2=l TO 19

240 READ W(L,L2)
250 NEXT L2 :: NEXT L

260 FOR L=l TO 10 :: FOR L2=l TO 3
270 READ PAY(L,L2)
280 NEXT L2 :: NEXT L

290 FOR L=l TO 10 :: READ ODDS(L):: NEXT L
300 CALL VCHAR(1,14,40,24)
310 FOR L=l TO 7

320 CALL HCHAR(L,16,96,14)
330 NEXT L

340 FOR L=3 TO 4
350 CALL HCHAR(L,18,32,2): : CALL HCHAR(L,22,32,2):

: CALL HCHAR(L,26,32,2)
360 NEXT L

370 CALL MAGNIFY(3)
380 FOR L=l TO 8 :: FOR L2=l TO 3
390 CALL SPRITE(#L2+((L-1)*3),PAT(PAY(L,L2)),COL(P

AY(L,L2)),16+(L*16),8+(L2*16))
400 NEXT L2

410 DISPLAY AT(4+(L*2),9):USING "###":ODDS(L);
420 NEXT L

430 DISPLAY AT(21,2):CHR$(116);CHR$(118);CHR$(116)
;CHR$(118);

440 DISPLAY AT(22,2):CHRS(117);CHR$(119);CHR$(117)
;CHR$(119);"{5 SPACES)5";

450 DISPLAY AT(23,2):CHR$(116);CHR$(118);
460 DISPLAY AT(24,2):CHR$(117);CHR$(119);"

{7 SPACES}2";
470 DISPLAY AT(12,15):"ON-HAND";:: DISPLAY AT(14,1

5):"WAGERED";:: DISPLAY AT(16,15):"WON";
480 WON=0 :: WAGERED=0 :: ONHAND=25

490 FOR L=l TO 3 :: SEL=1+INT(RND*7)

500 CALL SPRITE(#25+L,PAT(SEL),COL(SEL),17,105+(L*
32))

510 NEXT L

520 DISPLAY AT(2,2):"**PAYOFF**";
530 DISPLAY AT(10,15): "****MOtTEY****"; :: DISPLAY A

T(12,23):USING "#####":ONHAND;:: DISPLAY AT(14
,23):USING "#####":WAGERED;

540 DISPLAY AT(16,23):USING "#####":WON;
550 DISPLAY AT(22,14):"PRESS SPACEBAR";
560 CALL KEY(3,K,S):: IF K<>32 THEN 560
570 CALL HCHAR(22,16,32,14)
580 ONHAND=ONHAND-l :: WAGERED=WAGERED+1

590 V7l=l+INT(RND*19):: W2=1+INT(RND*19):: W3=1+INT
(RND*19)

207

Putting It All Together

600 FOR L=l TO 40

610 IF L>24 THEN 650

620 Wl=Ul+l :: IF Wl>19 THEN Wl=l

630 CALL SPRITE(#26,PAT(W(1,Wl)),COL(W(l,Wl)),17,1
37)

640 CALL SOUND(-50,500,7,-7,0)
650 IF L>33 THEN 690

660 W2=W2+1 :: IF W2>19 THEN W2=l

670 CALL SPRITE(#27,PAT(W(2,W2)),C0L(W(2,W2)),17,1
69)

680 CALL SOUND(-50,500,7,-7,0)
690 W3=W3+1 :: IF W3>19 THEN V/3=l
700 CALL SPRITE(#28,PAT(W(3,W3)),C0L(W(3,W3)),17,2

01)
710 CALL SOUND(-50,500,7,-7,0)
720 NEXT L

730 GOSUB 750

740 GOTO 530

750 WINNINGS=0

760 IF W(1,W1)=5 THEN IF W(2,W2)=5 THEN WINNINGS=5
ELSE WINNINGS=2

770 FOR L=l TO 8

780 IF W(1,W1)=PAY(L,1)AND W(2,W2)=PAY(L,2)AND W(3
,W3)=PAY(L,3)THEN WINNINGS=ODDS(L)

790 NEXT L

800 IF WINNINGS=0 THEN 850

810 DISPLAY AT(22,15):"** WINNER **";
820 CALL SOUND(500,800,3,1000,5):: CALL SOUND(1500

,-6,0)
830 V70N=WON+WINNINGS :: ONHAND=ONHAND+WlNNINGS
840 RETURN

850 DISPLAY AT(22,14):"** YOU LOSE **";
860 FOR L=l TO 500 :: NEXT L

870 IF ONHAND=0 THEN 890

880 RETURN

890 DISPLAY AT(22,15):"MONEY GONE" :: DISPLAY AT(2
4,15):"GAME OVER"

900 DISPLAY AT(12,23):USING "#####":ONHAND;:: DISP
LAY AT(14,23):USING "#####":WAGERED;:: DISPLAY
AT(16,23):USING "#####":WON;

910 GOTO 910

920 DATA 100,3,104,14,108,16,112,10,116,7,120,5,12
4,12

930 DATA 1,2,3,4,5,4,3,2,3,6,2,4,5,4,3,2,3,4,5
940 DATA 1,6,2,6,5,6,5,6,3,6,3,6,5,6,5,4,5,6,3
950 DATA 1,7,4,7,2,7,4,7,4,7,2,7,6,7,4,7,2,7,4
960 DATA 1,1,1,3,3,1,6,6,6,6,6,1,2,2,2,2,2,1,4,4,4

,4,4,1,5,5,0,5,0,0
970 DATA 200,100,18,18,14,14,10,10,5,2

208
csa

(5&B

fwSE}

Index

"Addition Climber"

program 198-205
"Air Defense" program 95-97
allophone 161, 165, 168

table 162-63

"Allophone Number Lister"
program 169

"Allophone Stringer"
program 171-72

"Alphabet Invasion"
program 184-90

"American Siren" sound effect 145

ASCII 14, 18, 32
character code table 15
character sets 25-26
defined 9

Assembler Language 10
"Bach Prelude" program 138-43
background color 26
"Banzai Bunny" program 190-95
bass 130-31

"Bells" sound effect 146
"Birds at Night" program 76-77
bitmap mode 10
"Blinky" program 35-37
"Bomb and Explosion" sound

effect 145-46
CALL CHAR subprogram 18-19
CALL CHARPATsubprogram 18
CALL CLEAR subprogram 19
CALL COINC subprogram 87,

93-95, 102, 108
CALL COLOR subprogram 25, 26,

66
CALL DELSPRITE subprogram 66
CALL DISTANCE subprogram 87,

97-99, 102
CALL GCHAR subprogram 108, 109
CALL HCHAR subprogram 27, 32,

33

CALL INIT subprogram 164
CALL JOYST subprogram 71-72
CALL KEY subprogram 72-75
CALL LINK subprogram 164
CALL LOAD subprogram 164
CALL LOCATE subprogram 69-70
CALL MAGNIFY subprogram 62-65
CALL MOTION subprogram 70-71,

75, 89
CALL PATTERN subprogram 76

CALL POSITION subprogram 87-89,
93, 102, 108
CALL SAYsubprogram 153, 154
CALL SCREEN subprogram 26, 52
CALL SOUND subprogram 115-17,

128, 131, 145, 146
CALL SPGET subprogram

153, 154
CALL SPRITE subprogram 56-60

example programs 60-65
CALL VCHAR subprogram 27, 32
character codes 15, 73

changing 18
character concatenation 33
character definition 14-27
character grid 13, 14, 16-18
character set 25-26
CHR function 19
color codes

table 25

color monitor 6

"COMPUTE! Cat" program 22-23
"Computer" sound effect 144
custom characters 18-27

diagonals 30-33
disk controller card 6

disk drive 6

DISPLAY AT statement 19, 20,
24-25, 32, 33

display mapping 54-56
display planes 52-53
"Dot Gobbler" program 77-80
"European Siren" sound effect 145
expression marks, musical 133
Extended BASIC 3, 5, 149
foreground color 26
frequency (sound) 115
graphics mode 10
"Graph" program 43-48
hexadecimal notation 16-17
high-resolution graphics 40-48

BASIC and 40
"Histogram" program 28-30
inflection codes 170

joystick 6, 71-72
"Kaleidoscope" program 67-69
key-unit 73
linear predictive coding (speech

synthesis) 149
"Meteors" program 99-102

209

"Mimic" program 175-79
"Morse Code" sound effect 144
"Mouse Maze" program 103-12
movement, sprite 51, 69-75
multicharacter shapes 20-22
multicolor mode 10

"Music Demo 1" program 128-30
"Music Demo 2" program 131-33
"Music Demo 3" program 134-38
music theory 117-23
noise 116

"Note Tutor" program 123-25
number sign, CALL SAY and 154
"Octaves" program 123
pattern color table 54
pattern generator table 54
pattern identifier 18
pattern name table 54
Peripheral Expansion Box 6
phoneme 161
PHP-1500 speech synthesizer (see

speech synthesizer)
pitch 165

frequency chart 166
pixel 13, 40, 51

defined 9

"Plane" program 33-35
plus sign, CALL SAY and 154
resolution, defined 9
"Rocket" sound effect 144
"Shooting Gallery" program 179-84
slope 165
"Slot Machine" program 205-8
sound

defined 115
examples 117

sound effects 143-46
Speak and Spell products 149
speech synthesis 5, 149-72
speech synthesizer 149, 153
split-keyboard mode 73-74
sprite attribute table 54

210

"Sprite Chase" program 91-93
sprite collisions 87-112

speed and 102-3
sprite color 66-67
"Sprite Editor" program 80-83
sprite generator table 54
sprites 4,51-83

advantages of 51
bitmap mode and 10
changing 76
deleting 66
large 61-66
moving 69-75

"Talker" program 167
"Tank Attack" program 37-40
tempo, programming 127
text mode 10

text-to-speech diskette 6, 149,
161-72

"3-D Shapes" program 41-42
TI BASIC 3
TI Extended BASIC 3
TI screen 10-14

TI text-to-speech diskette software (see
text-to-speech diskette)
TMS5200 speech synthesis chip 149
TMS9918A video display processor

(see VDP)
tolerance, sprite collision and 93-94
transparency 52
VDP 52-54

display planes and 52-53
VDP RAM 54

vibrational pattern (sound) 115
vocabulary speech synthesizer 149

expanding 155
table 150-53

volume 115, 116
waveform 115

"Word Maker" program 156-61
"Zone Defender" program 195-98

ISS*-

GpnvfiJ

C3SJ?7

<Swl

^^^^^i^hhi^h^^^^h^^^ Notes

{•$$wgL#

<L

Notes wa^^m^^mi^^m^^^m^mm^m^^^^^M

COMPUTE! Books
P.O. Box 5406 Greensboro. NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly from COMPUTE!

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title P»ce

Machine Language for Beginners $14.95*
Home Energy Applications $14.95*
COMPUTEI's First Book otVIC $12.95*
COMPUTEI's Second Book ofVIC $12.95"
COMPUTEI's First Book ofVIC Games $12.95*
COMPUTEI's First Book of64 $12.95*
COMPUTEI's First Book ofAtari $12.95*
COMPUTE'S SecondBook ofAtari $12.95*
COMPUTEI's First Book ofAtari Graphics $12.95*
COMPUTEI's First Book ofAtari Games $12.95*
Mapping The Atari $14.95*
Inside Atari DOS $19.95*
The Atari BASIC Sourcebook $12.95*
Programmer's ReferenceGuidefor TI -99/4A $14.95*
COMPUTEI's First Book of TI Games $12.95*
Every Kid's First Book ofRobotsand Computers $ 4.95t
The Beginner's Guide to BuyingAPersonal
Computer $ 3.95t

*Add$2shippingana handling OutsideUS add $5airmail.$2
surface mail

t Add $1shipping and handling Outside US add $5an mail. $2
surface mail

Please add shipping and handling for each book
ordered.

Total enclosed or to be charged.

Total

All orders must be prepaid (money order, check, or charge). All
payments must be in US funds. NC residents add 4% sales tax.
• Payment enclosed Please charge my: DVISA Q MasterCard
• American Express Acc't. No. Expires /

Name

Address

City State i!P_

Country
Allow 4-5 weeks for delivery

If you've enjoyed the articles in this book you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!.

For Fastest Service,
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.O. Box 5406
Greensboro. NC 27403

My Computer Is:
• Commodore 64 QTI-99/4A • Timex/Sinclair DVIC-20 DPET
• Radio Shack Color Computer • Apple • Atari • Other
• Don't yet have one...

• $24 One Year US Subscription
• $45 TwoYear US Subscription
• $65 Three Year US Subscription
Subscription rates outside the US:
• $30 Canada
• $42 Europe, Australia New Zealand/Air Delivery
• $52 Middle East, North Africa, Central America/Air Mail
• $72 Elsewhere/Air Mail
• $30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment mustbe inUS Funds drawn on a US Bank International Money
Order, or charge card.
• Payment Enclosed • VISA
• MasterCard D American Express
Ace t. No. Expires /

If you've enjoyed the articles in this book you'll find
the same style and quality in every monthly issue of
COMPUTEI's Gazette for Commodore.

For Fastest Service
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTEI's WMMWWWffl
P.O. Box 5406
Greensboro. NC 27403

My computer is:
• Commodore 64 • VIC-20 • Other

• $20 One Year US Subscription
• $36 Two Year US Subscription
• $54 Three Year US Subscription

Subscription rates outside the US:

• $25 Canada
• $45 Air Mail Delivery
• $25 International Surface Mail

Name

Address

City

Country

State Zip

Payment mustbe in US Funds drawn on a US Bank International Money
Order, or charge card. Your subscription will begin with the next avail
able issue. Please allow 4-6 weeks for delivery of first issue. Subscription
prices subject to change at any time.

• Payment Enclosed
• MasterCard

Acct. No.

• VISA
• American Express

Expires

The COMPUTERS Gazette subscriber list is made available to carefully screened organiza
tions with a product or service which may be of interest to our readers. Ifyou prefer not to
receive such mailings, please check this box•.

	front-cover
	Binder1
	chapter000
	content000
	chapter001
	content001
	chapter002
	content002
	content002-b
	chapter003
	content003
	content003-b
	chapter004
	content004
	content004-b
	chapter005
	content005
	content005-b
	chapter006
	content006
	chapter007
	content007
	content007-b

	back-cover

