)]

)

2 8'0/0 0 98

)

0

CREATING

ARCADE
GAMES

ON THE

TI-99/4A

A step-by-step guide to writing your own games on
the T1-99/4A" including eight complete games
ready to type in and play.

Seth McEvoy

A COMPUTE! Books Publication §12.95

CREATING

ARCADE
GAMES

ON THE

TI-99/4A

3393999995533 393393999%,m

Seth McEvoy

COMPUTE! Publications,inc. @

One of the ABC Publishing Companies

Greensboro, Norrh Carolina

T-99/4Ais a registered trademark of Texas Instruments, Inc.

3323395333333 0

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by Section
107 and 108 of the United States Copyright Act without the permission of the copy-
right owner is unlawful.

Printed in the United States of America
ISBN 0-942386-27-2

10987654321
COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403 (919) 275-

9809, is one of the ABC publishing companies, and is not associated with any manufac-
turer of personal computers. TI-99/4A is a trademark of Texas Instruments Inc.

i

333333333333 33333333333033 3333

'

3333339

~

Con

Foreword il v
Chapter 1: StartingOut 1
Chapter 2: Putting Characters on the Screen........... 5
Chapter 3: Defining Custom Characters 17
Chapter 4: BeginningtoMove 31
Chapter 5: Keyboard and Joystick Control 47
Chapter6:Soundo, 69
Chapter 7: Martian Attack 79
Chapter 8: MartianRevenge 91
Chapter 9: Riverboat....................oooiiii 103
Chapter10: Sharkl 115
Chapter 11: Mushrooms 127
Chapter 12: Hobo Party 139
Chapter13: Moneybags. 159
Chapter 14: How to Create Your Own Game 179
Appendix A: Characters:ASCII Code Numbers and Sets. . 193
Appendix B: Color Values.......................... 195
Appendix C:InCaseof Error 196

i

0O0OEOCCOCCC00000000000COCDEO0COCENE

71777733997 7339373373339333333339333313

Whether you’re just beginning to program or have been
computing for years, Creating Arcade Games on the TI-99/4A will
show you how to write an arcade-style game. Step by step,
this book will show you how to create game characters, move
them on the screen, control them with the keyboard or
joystick, produce sound effects, and even keep score.

How do you create a videogame? How can you make
figures move about on a colorful screen? How can you make
the computer control some of the figures while you control
others by pressing keys or moving the joystick?

When you play arcade-style games, you take these things
for granted. But when you first try to create your own video-
game, you may find them difficult problems to solve.

You'll use the TI-99/4A’s built-in graphic and sound abili-
ties to enhance your games, and even see how to draw and
move sprites with the TI Extended BASIC cartridge. Starting
with an idea, you'll see how to develop a complete game by
following a simple step-by-step guide, from choosing the
game’s concept to testing and debugging the finished program.

Also included are eight complete games ready to type in
and enjoy. Because they’re fully explained, these games will
quickly lead you to a full understanding of the techniques
necessary to create your own exciting games. There’s even a
game written with TI Extended BASIC that uses sprites to
create an action-packed game of speed and skill.

Like all COMPUTE! books, you'll refer to this book not
just once, as you write your first game, but again and again.
You'll find it a valuable resource for more complex game ideas
and information on the TI-99/4A as you design other video-
games. With the ideas in this book, and your creativity, you'll
quickly be writing and playing your own arcade-style games.

Acknowledgments
Creating Arcade Games on the TI-99/4A is dedicated to Laure
Smith, who made the ideas in this book easier to understand.

st rIIaCoEITELITIEUEUERDEEIEEERERTEE

1 Starting Out

3131_51_1._131_11_51_33_35553\33133594.3355131

T332 3TIIRIIIAIIIBIIAIIINIITIIIINIIRATIIDIIANN

This book is designed to help you create fast-action, arcade-
style games, no matter how little or how much you already
know about the TI-99/4A computer. If you are new to
computers and computer programming, Chapters 2 through 6
will give a clear and simple step-by-step introduction to
BASIC, the language that provides the building blocks you'll
use to create videogame programs.

All videogames are made up of a small number of
programming pieces, called commands, functions, and opera-
tions. These pieces are then combined in many different ways
to create all kinds of arcade games.

The rest of the book consists of actual game programs,
which you can type in and play. Most important is the fact that
you can also change these programs. Experimenting with the
programs will help you because you'll often learn more from
seeing what changes when you alter a working program than
you can from discussions or examples of theory. By experi-
menting, you can discover a new and better way to do some-
thing. Above all, don’t worry about damaging your computer
by experimenting with the programs. Nothing you type in can
possibly hurt your TI-99/4A.

Even though BASIC is one of the easier computer
languages to learn, it is still a language, like French or Spanish.
You must learn it step by step, one word at a time. Some parts
of the language will be easy for you to learn and understand,
and other parts may seem more difficult. Reread the difficult
parts and be patient. It takes time to make a new language
natural and comfortable.

If you already know TI BASIC, you can skim the early
chapters until you find material new to you. However, if you
know BASIC only from other computers, it would be a good
idea to read everything. The TI-99/4A has features that you'll
need to be aware of.

Chapters 7 through 13 each contain a videogame, written
to show you how the TI-99/4A computer can be used to create
arcade-style games. You'll be shown how you can modify the
game to make it harder or easier, faster or slower. At least one
of these modifications will be outlined, complete with the
program lines you'll need to alter or add. You'll also be given
hints on what you can do to expand the game and make it

Starting Out

more interesting.

Each of the videogames is explained in great detail, and
any unusual techniques are explained fully. By the time you
have gone through each game, you’ll have an arsenal of tech-
niques and tricks that you can use to create your own video-
games on the TI computer.

TI has two BASIC languages. The first comes with your
computer, and is called TI BASIC. You can purchase a separate
cartridge to plug into your computer called TI Extended
BASIC. This language lets you use more BASIC keywords, and
includes sprites, which are moving characters that make
creating games even easier. Chapter 13 has a game that shows
you how sprites and Extended BASIC work.

Finally, Chapter 14 is a detailed, step-by-step outline that
will show you how to create new and original games. You'll
see how to get ideas, how to work those ideas into games, and
the steps necessary to make your game programs come alive.
By following this simple step-by-step process, and by using
the information throughout the book, you should have no
trouble designing the games that you've always wanted to
play.

Getting Help

Appendix C, “In Case of Error,” will help you in your own
programming when you make errors. All programmers make
errors. The secret is knowing what to do when something goes
wrong.

Equipment

All you need to begin programming videogames is your TI-99/
4A computer. If you have a TI-99/4 computer, you may be able
to adapt these programs to that earlier version of the 99/4A.
Most of the differences will be slight; check your TI-99/4
manual to see if the commands work the same. You will, of
course, need a TV set, and you should have a tape recorder or
disk drive to save your games once you’ve typed them in.

300

-
|

3003730030

4
1

333

]
L

(3

r
L

(.

,
]
Lk

30 DD

!
i
.

33330

|

s Ed T RICERUERUECIIETITIURIETETTLT v

2 Putting
Characters on
the Screen

ecceccecececceecoroproeceeECOCCCOCCE R

Characters on
the Screen

The first step in creating your own fast-action arcade game is to
learn how to get your TI computer to do exactly what you want
it to do.

You give the computer instructions by using keywords
that are part of the BASIC language. You'll learn many
different BASIC keywords in this book, but the ones that are
most important are those that put pictures on the screen.

PRINT is the first BASIC keyword you'll use to put letters,
words, and pictures on the screen. These drawings can look
like animals, people, spaceships, or whatever you want.

Often called characters, these pictures can be made to do
things and move around. If a game doesn’t have moving char-
acters, it isn’t a real arcade game.

How to Put Things on the Screen

When you turn on your TI-99/4A, you'll see the beginning
rainbow screen. Your Tl is ready. Press any key to begin. You
should see a message telling you to press 1 for TI BASIC, or 2
for any other cartridges you have in the machine. For now, if
you have any other cartridges in your computer, take them out.
(But only after turning off the computer—never insert or
remove a cartridge while the computer is on, because you can
damage it.)

Press the 1 key, and the screen will show TI BASIC READY
near the bottom. Below it, you'll see an arrow, which tells you
that the computer is ready for instructions.

Type PRINT. Nothing happened! This is because you must
tell the computer what you want to PRINT.

After the word PRINT, add a quote. On the TI-99/4A, you
get a quote to appear on the screen by pressing the FCTN key
at the lower right of the keyboard and the P key at the same
time. The FCTN (FUNCTION) key has a gray dot on it and lets
you use a key for more than one thing.

After you type the quote, type the letter A. Then add

another quote.
Your line should look like this:

PRINT “A”

Nothing has happened yet. To tell the computer that you
are finished with that line, press the ENTER key. It has a
yellow dot on it and is on the right side of the keyboard.

When you pressed ENTER, several things happened. First
of all, the line you typed moved up a few lines, and below it
appeared the letter A, all by itself. Then, a new arrow
appeared below, telling you that the computer is ready to do
something else.

Try using PRINT to put other letters on the screen. For
example, you can type:

PRINT “THE TI IS GREAT”

When you press ENTER, the computer will display THE TI IS
GREAT on the screen.

Note: When you start out with TI BASIC, smaller-sized
letters will appear on the screen. You will need to depress the
ALPHA LOCK key to get larger letters if you want to type
words inside quotes. Whatever is typed inside a pair of quotes
will stay that way. Whatever is typed outside quotes, like the
word PRINT, will be changed to large letters automatically by
the computer.

Making a Program

Line Numbers. You can’t make much of a game by just
typing PRINT. You must create a program, which allows you
to tell the computer to execute more than one line. If you just
use PRINT by itself, you'll be limited to seeing only what you
have typed. That isn’t much fun, and is certainly not a game.

A program is a group of commands and functions that
execute in order. You can tell the computer in what order you
want it to do things by putting line numbers before you type the
commands.

For instance, you can type:

1@ PRINT "TEXAS INSTRUMENTS"
This time, when you press the ENTER key, the line moves up,
but it doesn’t PRINT. This is because the TI is waiting for more

numbered lines, or for you to tell it what to do with the collec-
tion of numbered lines you have typed. When you typed

8

T3I3333IITIIDIIDIDIANTIIIDIIIDIRIDRITDIIRIIDDBID TN

PRINT “A” by itself, the computer did what you told it to do
right away. This is called the command mode, and you won't see
it used much in game programming, because a program that
creates a game must do many things to make a game play.

Line-Numbered Commands. By adding a line number
before a command, you're telling the computer to store the line
you type, after you press ENTER. The computer will use the
line number to keep track of every line you type.

The TI has a special command called NUM which will
automatically number the lines for you. You can type NUM
and press ENTER, and the lines will start at 100 and increment
by 10. If you don’t want your line numbers to start at 100 and
count up by 10s, you can change this by typing:

NUM first line, distance between lines
and pressing ENTER.

For example, if you want to start at line 10, and go up by 5
each time, just type NUM 10,5 and press ENTER.

RUN. When you're ready to use all the commands, you
simply type RUN and press ENTER. The computer will start at
the line with the lowest number and execute it. After it’s
finished with that line, it will go on to the line with the next
highest number, and so on. It will go through all the line-
numbered commands you've stored in memory until it comes
to the end. When it’s through, it will display:

%% DONE *%

If it doesn’t make it through, you'll see an error message. Refer
to Appendix C, “In Case of Error,” if you need help.
Running a Program. You have already typed:
1¢ PRINT "TEXAS INSTRUMENTS"
into your computer. You can add two more lines as follows:

20 PRINT “MAKES TERRIFIC"
30 PRINT "“COMPUTERS"

When you have finished typing, you can PRINT out all three
lines by typing RUN and pressing the ENTER key.
You should see:

TEXAS INSTRUMENTS
MAKES TERRIFIC

COMPUTERS
on the screen.

LIST and EDIT. LIST and EDIT are two BASIC keywords
that will help you make changes in your line-numbered
commands without retyping an entire line.

You may need to see the numbered lines you have stored
in memory. You can do this by typing the word LIST and
pressing ENTER. You can LIST one line by typing LIST and the
line number. For example, typing LIST 10 will print out line 10.
You can see a group of lines by typing:

LIST first line-last line

and pressing ENTER.

For example, if you want to see lines 10 through 20, type
LIST 10-20. You get the hyphen by typing SHIFT/.

When you're writing your programs and make a mistake
or want to change a line-numbered statement in your
program, you can type EDIT and the number of the line you
want to change. That line will appear at the bottom of the
screen and anything else on the screen will scroll up one line.

You’ll see the cursor after the line number of the line you
now want to edit. If the blinking cursor is on top of a letter on
the line you're editing, whatever you type will replace what
was there. You can use the arrow keys (FCTN and S to move
left, FCTN and D to move right) to move the cursor.

If you want to insert a letter or letters, type FCTN and 2.
Whatever you type will be inserted before the cursor. You can
type FCTN and 1 to delete anything under the cursor.

When you're through, press ENTER. The new line will
replace the old line. After editing, it's always a good idea to
use the LIST command to check your newly edited line.

Another way to edit lines is to enter the line number and
then press the FCTN key and the down-arrow key (the x key).
The line will display and can be edited just as you did using
the EDIT command. This method may be more useful if you're
editing several lines in sequence. To display the next line, just
press the FCTN key and down-arrow key, and it will appear.

Be Careful. When you're writing programs on the TI
computer, be careful not to accidentally press the FCTN key
and the = key at the same time. If you do, your program will be
erased! To erase a program, just turn off your TI or type NEW
and press ENTER. Typing FCTN and = together can be disas-
trous, especially if you thought you were typing a plus sign,
which is SHIFT and =.

10

Putting Characters on the Screen

33333303 BIIIDIIII

FT3333IIIBRIIRIDIIITIINIIINIINIDINIBIIITIINTIRT

‘Putting Characters on the Screen

Also to be safe, save your programs frequently to tape or
disk so that if there is a power failure, your program won't be
lost.

Where Can You Print?

So far you have had no choice as to where PRINT put the
letters and words on the screen. When you create your arcade
games, however, you'll want to position all elements of your
game exactly where you want them on the screen.

The TI screen can be used like a map, and you can use the
CALL HCHAR command to put your characters exactly where
you want them. The TI has several commands that use the
word CALL followed by another word. By using CALL, the TI
computer knows the word that follows will tell it to do some-
thing unusual, something that is not part of the standard
BASIC list of keywords used on other computers. CALL
HCHAR means to use the word HCHAR, which stands for
Horizontal CHARacters.

The map is blank when you start, and is divided up into a
grid. There are 32 columns across and 24 rows down, making
up 768 blocks. Each column and row has a number. The
columns are numbered from 1 to 32, with the first column on
the left. The rows are numbered from 1 to 24, with the first row
at the top. Figure 2-1, TI Screen Map, shows how the comput-
er’s screen is organized.

To use CALL HCHAR, you must give the computer three
or four numbers to tell it where to put a particular character.

When using CALL HCHAR, the first number you type,
after CALL HCHAR and a left parenthesis, is the row number.
Follow that with a comma, and then the column number. Next
you type the number which stands for the letter you want to
appear on the screen. Finally, type a right parenthesis and
press ENTER. Appendix A, “Characters,” shows what number
represents each letter, number, or symbol on the TI's keyboard.
For example, the number 72 stands for the letter H.

ASCII Numbers. The computer uses these numbers to
represent letters. These numbers are called ASCII codes; ASCII
stands for the American Standard Code for Information Inter-
change. This is a code agreed upon by computer makers, so
that an H is always represented by the letter 72, no matter
what computer it is.

The TI has a command called ASC. If you want to see

1

oo cocrceccrer

S

]

x|

f
o~

[
~

N
-

<0
-

©~
-

&
Lol

w
-

!
-

(2]
Ll

-
Ll

S
-

-

a

AN M g N O N ®

T€E 1€ OE 6C 8T LT 9C ST PT €0 T IT OC 61 81 LI 91 SIL %1 €1 2L IL O 6 8 L 9 § ¥ € T 1
uwnjo)

Purtt

dep uaans |1 "L-z 3inbi4 o

TI333TITIIDIDIDIIDIRDTIBDIIDIBRIDIDRIDRTIBIDDIDTD Y

2

what code value a letter, number, or symbol is represented by,
just type ASC(”letter”) and press ENTER. Be sure to put the
parentheses and quotes around the letter.

CALL HCHAR. Begin by typing:

CALL HCHAR (

but do not press ENTER yet. Be sure to type the left paren-
thesis (SHIFT 9).

Pick a row and column on the screen. Remember that the
row must be between 1 and 32, and the column between 1 and
24. For this example, pick row 15 and column 25. Next, pick a
letter, for instance, the letter A. If you look up A in Appendix
A, you'll see that it'’s represented by the code value 65. Finally,
type a right parenthesis (SHIFT 0).

Here’s an example:

CALL HCHAR (15,25,65)

Now, press ENTER. The letter A will appear somewhere
on the middle right of the screen.

More Than One Character. You can add one more number
to the CALL HCHAR command to tell the computer to print
more than one character at a time. If you want it to print 15
times, starting at the row and column you selected, all you
have to do is add another comma after the ASCII code value
and a number to represent the number of times you want it to
print. Be sure to add the final parenthesis (SHIFT 0). For
example, type:

CALL HCHAR (15,25,65,15)

When you press ENTER, a row of A’'s will PRINT, starting at
row 15, column 25. Eight A’s will print, and the other seven
will spill over and show on the next line, starting at the far left.
You could use the CALL HCHAR command to create almost
any kind of horizontal display that you want. If you wanted a
border at the top and bottom of the screen, for instance, all
you’d have to do is enter these lines in a program:

Program 2-1. Border

5 CALL CLEAR

19 CALL HCHAR(1,1,95,32)
20 CALL HCHAR(24,1,95,32)
58 GOTO 59

This creates a border using the underline symbol, which is

13

ASCII codé value 95. The top border is created by line 10,
which starts at row 1, column 1, and puts 32 underline
symbols across the screen. Line 20 does the same thing, but
near the bottom of the screen. It begins at row 24, column 1,
and places the symbols on the screen. Line 5 simply clears the
screen so you can see the borders easier, while line 50 holds the
characters on the screen. To break from this program, press the
FCTN key and the 4 key at the same time.

Using VCHAR. You can also use a similar command,
CALL VCHAR, which stands for Vertical CHARacter. It works
the same, except that the fourth number indicates how many
times you want a character to be PRINTed down.

For example, type:

CALL VCHAR (15,25,65,15)

When you press ENTER, you'll see ten A’s PRINT down, and
another four starting at the next column and at the top row.
Wait! Why do you have only 14 A's? Why not 15, the number
specified in the command?

When the TI executes a line in the command mode, the
screen moves up one row after the command is finished. You’ll
see how to avoid this later.

Using the CALL VCHAR command, you can complete the
border by adding left- and right-hand lines. Add these lines to
“Border.”

30 CALL VCHAR(2,1,124,22)
49 CALL VCHAR(2,32,124,22)

You'll notice that the ASCII code value is different from the
horizontal borders. ASCII code value 124 is used to create the
vertical borders. Line 30 draws the left-hand border by starting
at row 2, column 1 and PRINTing 22 symbols, just enough to
fill in the gap between the top and bottom borders. The right-
hand border is created by line 40, which PRINTSs 22 symbols
starting at row 2, column 32.

With only six lines, you've drawn a border. You can use
this technique in any game that requires a playing field
marked off from the rest of the screen.

You now have the most fundamental part of any arcade
game. Every game you create on the TI computer will use
CALL HCHAR or CALL VCHAR, because these commands
are necessary to create the screen, the world where the game
takes place. You'll use PRINT to put messages on the screen,

14

2

but your game won't play unless you can put your game charac-
ters exactly where you want them on the screen. That’s what
CALL HCHAR and CALL VCHAR do.

Of course, there are more things you'll learn before you
create your own games. You'll learn how to move characters on
the screen, both by computer and player control; how to tell if
two characters collide; and how to make sound effects with
your computer. This may seem like a lot, but you'll learn step
by step, so that in the end, you'll know how to put it together
to make a game of your own.

How a game looks is as important as how it plays. In the
next chapter, you'll see how to transform single letters of the
alphabet into graphic pictures that look like animals, people,
spaceships, or almost anything you can draw. Not only that,
but you'll be able to choose colors for your character pictures.

Review

In this chapter you've seen some of the building blocks that -
you'll use in programming arcade games on your TI-99/4A
computer.

* By using PRINT, you can put letters on the screen.

* A program is a group of commands, each command
having its own line number. RUN makes the computer
execute the program. You can also use LIST and EDIT to
make changes in your line-numbered commands.

« CALL HCHAR and CALL VCHAR place characters on
the screen, exactly where you want them.

The form for HCHAR and VCHAR is:

CALL HCHAR or CALL VCHAR (row, column, ASCII #, # of
chars)

15

P
-
-
-
-~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.
-
-
-
-
-
-
-
-

3 Defining
Custom
Characters

,3833511333&315_&.ﬂﬂﬂﬂﬂﬂﬂﬂ53133531131SQ

173733373323 32793333333337333333393333330

Your computer has the ability to change the shape and color of
its characters. You're not restricted to just the letters, numbers,
and symbols on its keyboard. You can use this to create crea-
tures, objects, people, or backgrounds, or almost anything you
want!

If you look closely at your TV screen, you'll see that each
letter is made up of dots in a pattern eight dots wide by eight
dots high. Each dot can be turned on or off—colored or not
colored. Their arrangement creates the shape of the character.
For example, the letter A would have a pattern like Figure 3-1.

Figure 3-1. Dot Pattern

To create your own custom game characters, you simply
change the dot patterns. It’s not even difficult.

CALL CHAR

The CALL CHAR command lets you create your own

custom character by changing the dot pattern of any standard
character. By using CALL CHAR, you can change the dot
pattern of the letter A so that it resembles a spaceship. This is

19

3 Defining Custom Characters

called redefining a character. After you have redefined a char-
acter, its new dot pattern will be printed on the screen when-
ever you use it in a PRINT, CALL HCHAR, or CALL VCHAR
statement in the program.

There are two codes that make CALL CHAR work. The
first is simply the ASCII code value of the character, from 32 to
159, that you want to change. You can look at Appendix A to
see which characters are represented by which ASCII values.
For example, the space is ASCII 32, the ! (exclamation mark) is
33, the # (number sign) is 35, and so on.

The TI divides these numbers into two groups for CALL
CHAR. When you use CALL CHAR to redefine the characters
whose ASCII numbers are between 32 and 127, they will stay
redefined only while your program is running. Then they will
go back to their normal patterns. For example, if you change an
A to a rocket ship, it will have that shape only while your
program is running. After you stop the program, the letter A
will come back. This is a handy feature because otherwise you
might change a character that you need to enter. It can get
confusing if you type A and a rocket ship appears on the
screen.

If you prefer, you can use the characters that have the
ASCII values 128-159, and they will stay changed until you
change them back yourself or turn off the machine.

Either set of numbers is all right, but you might want to
use only the values from 32-127 so that you won't accidentally
use an earlier redefined character.

Select a Character Number. First of all, you must select a
character you want to change. Usually you won’t want to
change the character whose ASCII number is 32, because that
is the space key, what the TI uses for any part of the screen that
doesn’t have a character on it. You might also want to save the
alphabet so you can print messages on the screen, like GAME
OVER or NEXT ROUND.

Usually a good group of standard characters to change is
the symbols which begin at ASCII 33 (!) and end at ASCII 47 (/).
While you will use some of these in your program, they will
not actually be redefined until the program runs, so that you
can type and LIST your programs and still see, for instance, a

For an example of how to use CALL CHAR, we’ll use the !
(exclamation point). Its ASCII number is 33.

20

3333233333333 23333333333333333333333393

2)

==t

Defining Custom Characters

Next, you have to decide what you want your new pattern
to look like.

Making a Picture. Some graph paper will be handy for the
next step. If you can find some that’s marked off in blocks of
eight by eight, that's even better. Otherwise, draw an eight-by-
eight block on the graph paper, and create your figure in it,
coloring in the squares that you want to appear on in the new
character, and leaving blank the ones that you want off. When
the custom character is placed on the screen, the on dots will
show in one color, while the off dots will appear in the same
color as the background.

For example, here’s a picture of the head of a caterpillar:

Figure 3-2. Caterpillar Head

The caterpillar is facing left, and has a mouth, eye, nose, and
feelers. You can change its shape it you want. The important
thing is to draw a picture first, and put it into an eight-by-eight
dot pattern.

After you have created the dot pattern, you must put the
pattern into a special code that the TI can read.

Think of each eight-by-eight block as if it were divided
into two parts, each four dots wide. For each four-dot section,
there are 16 possible combinations of on (colored) and off (not-
colored) dots. In the TI, a binary code is used to specify which
dots are on and which are off. In binary notation, a 0 stands
for off and a 1 stands for on. However, you can use a type of
shorthand, called hexadecimal, to indicate the combination of

21

3 Defining Custom Characters

colored dots in your own custom character.
Figure 3-3 shows each combination of on and off dots, as
well as the corresponding hexadecimal codes.

Figure 3-3. Character Combinations and Codes

Dot Combination Hexadecimal
Code

O .

mom g W™ > 0 0NN U e WON e

To create your own figure, you simply arrange the codes
for the four-dot sections in order, beginning at the top-left
corner and working to the right, then down to the next row,
proceeding until you reach the bottom-right corner. If you
remember that it's just like the way we read, starting at the top
and moving to the right, you won’t have any problem with it.

Make sure that the combinations match the code you've
chosen. For instance, the caterpillar head would have these
hexadecimal code values for its dot combinations:

22

333333333333 333333333333333333333333

T733333TIITIIFIIITIIANIIIIIIDIIITIINANIIDIDIAN

Defining Custorn Characters

Figure 3-4. Caterpillar Codes

BO
40
39
5F
DF
7D
08
30

The whole pattern for the caterpillar’s head is:
B040395FDF7D0830

Once you have created the number and letter pattern that
represents all the dots, you can put it into the CALL CHAR
command.

Here's how it works:

*» Type CALL CHAR.

* Enter a left parenthesis (SHIFT 9).

« Type the ASCII code value of the letter, number, or

symbol you want changed.

* Enter a comma, followed by a quote mark (FCTN P).

* Type all 16 letters and numbers that make up your
pattern, with no spaces in between. (If you type less
than 16, the computer will fill the rest with blanks, and if
you type more than 16, the computer will ignore the
remainder.)

» Finally, type another quote mark, and a right paren-
thesis (SHIFT 0).

In the example of our caterpillar head, type:

CALL CHAR (96, ”B040395FDF7D0830")

When typing this, be sure to put the parentheses, comma,
and the quotes in the right places, or the TI won’t know what
you want it to do.

Putting It on the Screen. If you typed a CALL CHAR
command by itself, nothing would happen. Actually, you

23

ng

would see the screen blink, but the command’s effect would be
over before you were able to see it.

What you have to do is create a program to see it.

First of all, type NEW and press ENTER. This will clear
your computer’s memory.

Before you begin typing, make sure that your ALPHA
LOCK key is pressed and locked down. Otherwise, you may
have problems with some of the letters you type.

Then enter :

120 CALL CHAR(96, "BO4@395FDF7D@830")

Custom Cha

5 Defini

However, if you run the program by typing RUN and
ENTER, you still won’t see anything. You must add a special
line afterward to keep the picture you've created on the screen
so that you see what has happened.

Type:

178 GOTO 170

GOTO is a command that tells the computer to go to a
specific line and execute that line. If you are on line 170 and
you tell the computer to GOTO line 170, the program will stay
stuck on that line, always going to itself, until you stop it. If
you don’t have something like this, when the program ends
and after it has processed the last command, the screen char-
acter shapes will go back to their original values. (See the
section “Stopping the Program” in this chapter to see how to
stop your program.)

You still can’t see the new character’s shape until you print
it on the screen. To do this, use CALL HCHAR.

To put the caterpillar’s head at row 5, column 10, for
example, you would add:

150 CALL HCHAR(5,10,96)

This will put character 96, the character you just redefined to
look like a caterpillar head, on the screen.

(Notice that you are able to type line 150 after you typed
line 170. However, if you LIST the program, you'll see that line
150 has been inserted between line 120 and line 170.) It's a
good idea to always use LIST to see if you’ve made any
mistakes.

Before you type RUN, however, add one more command:

1860 CALL CLFAR
This will clear the screen so that you will have an empty screen

24

TITIIIIIIIDIIDIINITIIDIINIIINIIIIBDIIIANDIDIINAND

when the program runs.
Now, when you type RUN and press ENTER, this short
program will display a caterpillar’s head on the screen.

Program 3-1. Caterpillar

168 CALL CLEAR
120 CALL CHAR(96, "BO4@395FDF7DG830")
150 CALL HCHAR(5,10,96)
178 GOTO 170

Stopping the Program. After you have typed RUN and
seen your caterpillar, you will notice that pressing the keys on
the keyboard has no effect. This is because line 170 has the
computer stuck in what is called an infinite loop. Hundreds of
times a second, the computer is executing line 170.

The only way to stop it, besides turning the computer off,
is to press the FCTN key, hold it down, and press the 4 key.
This should stop your program and you will see the message:

* BREAKPOINT AT 170

The computer will beep to tell you that it has stopped.

Also, you'll notice that your caterpillar’s head has changed
back to a single quotation mark, because it kept its redefined
shape only while the program was running.

Adding Legs and a Body. Your caterpillar might like a
body and legs. All you have to do is design a character to look
like a body segment. Here’s how it might look, complete with
dot combination codes:

Figure 3-5. Body and Legs

0o

EE
BF
FD
EF
FF
AA
AA

AA

25

:mmg Custom Characters

Add this line to the program we’ve been creating,
Program 3-1:

130 CALL CHAR(97, "0OEEBFFDEFFFAAAA")
To put the character on the screen, add this line:
160 CALL HCHAR(5,11,97,5)

This will put character 97, which you redefined in line 130,
into row 5, column 11. Column 11 was picked because it is one
column to the right of the caterpillar’s head. The fourth
number, 5, is the number of times that the character will be
repeated to make a long body.

When you type RUN and press ENTER, you’ll see a cater-
pillar, complete with head and body. You can make the body
longer or shorter by selecting a different value for the fourth
number in the CALL HCHAR command.

Adding Color

So far in this chapter, you've seen how to create new shapes.
But there’s another way you can make your characters unique,
and that's to add color. There are two ways to add color to the
screen. The first is by changing the whole color of the screen,
and the second is to give each character, or group of characters,
a different color.

Screen Color. Depending on how your TV screen is
adjusted, you should see a green background when your
program runs, and a blue background when you are typing.

If you would like to change the color of the background
screen, you use the CALL SCREEN command:

CALL SCREEN (n)

where 7 is a number from 1 to 16. Each number represents a
different color. For a list of the colors and their number values,
refer to Appendix B, “Color Values.” You could retype the
CALL SCREEN command 16 times to see each color, but an
easier way is to enter and RUN this short program. You’ll see
the color and its value for a moment on the screen.

Program 3-2. Screen Color

19 FOR COLOR=1 TO 16

20 CALL CLEAR

38 CALL SCREEN(COLOR)

40 PRINT "COLOR VALUE";COLOR
50 FOR DFELAY=1 TO 100@

TIIIINIDIRINIDIIIBIIIDNIIIIBIIINAIINDIANIANIAIIDIAND

T TT e

Defini

Characters 5

60 NEXT DELAY
79 NEXT COLOR
84 CALL CLEAR
9¢ GOTO 1@

As you can see from looking at the color value table in
Appendix B, color 1 is transparent. If you had a transparent
graphics character, it would be the same color as the screen. In
other words, it would be invisible. Specifying CALL SCREEN
(1), however, will make the screen black. Since the print on the
Tl is displayed in black too, you'll not see a message for the
black color in this program. In fact, because the transparent
screen color prints in black, the first two seconds of this
program will create a black screen.

Changing the screen color of our caterpillar program could
be done by simply adding this line:

1190 CALL SCREEN(16)

which will turn the screen color to white. Of course, you could
select a different color by entering another color value inside
the parentheses.

Character Color. You can also change the color of any stan-
dard or custom character. All you have to do is use the
command CALL COLOR.

The TI divides all the characters that it uses into groups of
eight characters, called character sets. For example, the charac-
ters that have ASCII numbers from 32 to 39 are all known as
character set 1, the characters that have ASCII numbers 40-47
are set 2, and so on. Appendix A “Characters,” also lists the
characters by set.

When you change a color, the entire set of eight characters
changes. For example, if you change character set 1, you
change the colors of the space, as well as those of the “#$% &’
symbols.

To use CALL COLOR, you must specify the character set
number, the foreground color, and the background color. The
foreground color sets the on dots in the character pattern, and
the background color sets the off dots. If you are using a char-
acter set that does not include the space, character set 2, for
instance, the background might be different from the space
color, so that you can have multicolored characters.

The form for CALL COLOR is:

CALL COLOR (character set number, foreground color
value, background color value)

27

Defining Custom Characters

For example, adding this line to Program 3-1, “Caterpillar,”
changes the character colors:

149 CALL COLOR(9,9,16)

This colors all of character set 9, so that the foreground color is
9, or medium red, and the background color is 16, which is
white.

If you use color 1, which is called transparent, then what-
ever the screen color is becomes the color for background or
foreground color.

In this example, you would get the same colors if you
typed:

148 CALL COLOR(9,9,1)

because the screen color was previously set to 16.

You can change the character colors, just as you changed
the screen color, by selecting another color value.

Here's the caterpillar program so far:

Program 3-3. Caterpillar Complete

106 CALL CLEAR

119 CALL SCREEN(16)

128 CALL CHAR(96, "B249395FDF7D@830")
136 CALL CHAR(97, "OOEEBFFDEFFFAAAA")
149 CALL COLOR(9,9,16)

150 CALL HCHAR(5,10,96)

160 CALL HCHAR(5,11,97,5)

178 GOTO 170

Flickers. You can even use the CALL COLOR command to
create flickering or blinking custom characters. To make the
caterpillar figure flicker rapidly, for example, you could use the
transparent color 1, alternating it with another character color.
Replacing line 170 in Program 3-3 and adding the new lines 180
and 190 would do this. The changes you would enter are:

170 CALL COLOR(9,1,1)

184 CALL COLOR{9,9,16)
196 GOTO 178@

RUN the program to see the difference this feature can make in
your character’s appearance. The character is made invisible by
line 170, and then visible in line 180. It all happens so quickly,
however, that it seems to flicker.

Disappearing Characters. You can make the character
blink off and on at a slower pace by making a few more

28

3333133333333 23333332323333323323333320233

T933333339393333T333 333333 IBIIDITIDNNN

" Defining Custom Characters

changes. The character is again made invisible and then visible,
only this time the delay loop in line 180 slows the process
down. Here are the lines you need to change and add to the
original version of Program 3-3 to see this happen:

176 CALL COLOR(9,16,16)

18¢ FOR DELAY=1 TO 100

190 NEXT DELAY
200 GOTO 1409

Solid Characters. There are two ways you can create solid
squares on the TI screen. These kinds of figures can be used in
games to draw borders, walls of mazes, or simple playing
fields.

One way to draw solid figures in color is to assign the
same color to both the foreground and the background in the
CALL COLOR command. This will make the eight-by-eight
dot pattern one color, no matter what the on-off combination of
dots. The only thing you should remember is that if you're
using character set 1, which includes the space (ASCII code
value 32), most of the screen will change to the new color. If
you want to create solid squares of color, you should not use
set 1.

As an example, let’s change the caterpillar figure into a six-
block bar. It’s easy. All you have to do is change line 140 in
Program 3-3:

148 CALL COLOR(9,9,9)

All the characters in set 9 now display in red, and the cater-
pillar becomes a solid red bar. The rest of the screen remains
white. If this had been set 1, almost all of the screen would
have changed to red, since much of the screen is filled with
spaces.

The other way to create solid blocks, of course, is to make
custom characters defined as 0. Although the character may
seem empty, all you have to do is set the figure’s foreground
and background colors to the same color value, as you did
with the caterpillar. If you want to type more on the keyboard,
you can draw a character as completely filled by entering
FFFFFFFFFFFFFFFF (16 F's). You would only have to specify
the foreground color, then; the background could be set to
anything and the square would still show on the screen.

But drawing characters is only part of the technique
needed to create your own arcade games. Another is motion.

29

Defining Custom Characters

3

Even if you have a dazzling screen and unique characters, it
still isn’t a game unless the characters on that screen move and
interact. The next chapter will show you how to do that.

Review

In this chapter you've learned how to make custom characters
by using CALL CHAR, which defines a dot pattern eight-by-
eight.
* CALL CHAR uses the ASCII character number and a
set of numbers and letters that represents the dot
picture. The form for the command is:

CALL CHAR (character number, “dot pattern code”)
« CALL HCHAR PRINTS the custom characters on the
screen.
* CALL COLOR can color your characters in the following
manner:

CALL COLOR (character set number, foreground color
number, background color number)

Each set of eight characters has a character set number, from 1
to 16, and each color has a number, from 1 to 16.

TE i e e R R R R T I T I T T T T

4 Beginningto

Move

eeccrececccocecccccéeocrereecrcccccereee

Now that you've seen how to redefine characters, it's time to
see how to make them move. Making figures move is what
arcade games are all about—if it doesn’t move, you don't really
have a game. This chapter will cover computer-controlled
movement—making the TI move your standard or custom
characters. The next chapter will explain how you can use the
keyboard or joystick to move figures under player control.

First of all, you'll need a figure for the computer to move
on the screen. Instead of a caterpillar, let’s change it into a
butterfly.

Here’s a dot pattern for a butterfly.

Figure 4-1. Butterfly

24
99
DB
FF
7E
FF

C3

81

To create the butterfly in Figure 4-1, type:
16 CALL CHAR(33,"2499DBFF7EFFC381")

This creates a figure as character 33, which is the exclamation
mark.

More about Color. You'll notice that some color combina-
tions work better on your TV set than others. A combination
that will work well for your butterfly figure is an orange char-
acter on a black background. To see this, you'd enter:

20 CALL SCREEN(2)

33

i

- Beginning to Move

(i

i

to make a black screen, then
30 CALL COLOR(1,7,1)

to make the orange character.

The first 1 refers to character set 1, which includes the
exclamation mark (ASCII 33). The 7 is actually dark red, but it
looks orange on most TV sets when they are properly
adjusted.

(When you are setting up your color TV and your TI
computer, adjust the TV set so that the flesh tones look right,
then switch back to the channel that your computer will be on.
This way, you can use colors in a way that will match what
other people will use.)

The third number in the CALL COLOR command is a1,
which means that the background of the butterfly’s eight-by-
eight grid will be transparent. As mentioned in Chapter 3, this
means that it will match whatever the screen’s color is.

To make sure you have an empty screen, it’s a good idea to
always type:

5 CALL CLEAR

Now, if you would like to see your butterfly on the screen,
enter

49 CALL VCHAR(5,10,33)
9948 GOTO 909

Line 40 puts character 33 in row 5, column 10. Line 900 is
there so that your program will keep running.
The program looks like this so far:

Program 4-1. Butterfly

5 CALL CLEAR

10 CALL CHAR(33, "2499DBFF7EFFC381")
20 CALL SCREEN(2)

30 CALL COLOR(1,7,1)

40 CALL VCHAR(5,1@,33)

900 GOTO 900

Making It Move
To make something appear to move on the screen, you'll go
through a four-step process:
* You draw it on the screen, by using CALL CHAR to
create your character in memory, and CALL VCHAR or
CALL HCHAR to put it on the screen.

3333223232333 323333353333333333335320233339

« Then you create a short delay. You need a delay because
the image must appear on the screen long enough for
you to see it. You create a delay simply by using a FOR/
NEXT loop.

A FOR/NEXT loop is made up of two parts. The FOR

portion of the loop would be written something like this:

FOR X = 1TO 500
This sets up a counting system for keeping track of how many
times X (or any variable) executes.

The NEXT part of the loop would be written as:

NEXT X

This sends the computer back up to the line that has the FOR
portion of the FOR/NEXT loop. The FOR/NEXT cycle will
continue as many times as specified in the statement. This
type of loop slows the computer down.

Another use of FOR/NEXT loops is to cause a certain kind
of action to happen a certain number of times. The first
number after the FOR is the starting number of the variable (X
in this case), and the second number is the final number. If you
want it to count in increments larger or smaller than one, you
can add the word STEP and the number you want to have it
increment by. For example, you could enter something like
this:

FOR X = 500 TO 1 STEP -1
and the computer would count backwards by ones.

Often you won't need to use a FOR/NEXT loop when
simulating motion, because you'll put necessary calculations in
the part of the motion cycle that comes between when a char-
acter is put on the screen and when it is erased. These calcula-
tions will slow the computer down.

+ Next you need to erase your character at its present loca-
tion before you move it to a new one. If you don't, it will
look like it's leaving a trail behind. You can erase a char-
acter by simply using CALL VCHAR or CALL HCHAR,
and using character 32, which is the space. Printing a
space on top of anything erases it.

» Finally, you put your character at its new location with
CALL VCHAR or CALL HCHAR, using a new row and
column value for its new location.

These four steps will create motion on your TI computer.

35

Beginning to Move

Here’s a sample program which will show you how to

make your butterfly character move. To Program 4-1, add the
following lines.

Program 4-2. Butterfly Motion

160 FOR X=1 TO 10

119 CALL VCHAR(5,10+X-1,32)
126 CALL VCHAR(S5,10+X,33)
130 FOR Y=1 TO 100

140 NEXT Y

1580 NEXT X

These six lines are very important for understanding how
motion works. The following explanation will help to clarify
these six lines, as well as the lines you typed in earlier.

Here is how the four steps of motion, mentioned earlier,
work.

Step 1. The character was first PRINTed in Program 4-1,
line 40. But each time it’s printed again, line 120 will place it at
its new row and column number. Line 120 uses the variable X,
which was set up in the FOR/NEXT loop in line 100. X will
increase by 1 each time the program goes through the loop,
starting at 1 and going to 10. Because of this, the computer can
use X and add it to the original column, 10. The first time
through the loop, line 120 will print the character at column 11
(10+1=11), the next time around the loop it will print at
column 12, and so on.

Step 2. The delay must come after the character is printed,
but not before the character is erased and a new one is printed.
Lines 130 and 140 use another FOR/NEXT loop, which creates a
delay as the computer goes through the loop 100 times. You
can, of course, make the Y loop longer or shorter by increasing
or decreasing the range of values. This will lengthen or shorten
the delay time.

Step 3. Next you erase the old character in line 110 by
PRINTing the space character (32) at the previous location.
This also uses the X in the loop, but subtracts 1 from it, since
you want to erase the old character. Since X starts out at 1, the
first time through the loop, the erasing will be at 10+ X — 1 (this
could also be stated as 10+1—1). Since 1—1is 0, it will erase at
column 10. The next time through the X loop, X will be 2, so
10+ X -1 will be 10+2 -1, or 11. The erasing is always one
column (or row, if it is moving up or down) behind where it
PRINTs.

36

Beginning to Move

Step 4. Finally, you PRINT the new character in line 120.
This must happen immediately after the erasing, with no
delays of any kind in between. Line 120 uses X to put character
33 in a new column. Moving usually involves a cycle of putting
characters on the screen, delaying, erasing, and putting them
on the screen at a new position.

You can have the character move up or down by adding
numbers to the row number instead of the column. For
example, change lines 110 and 120 to read:

110 CALL VCHAR(5+X-1,10,32)
120 CALL VCHAR(5+X,1@,33)

When you type RUN and press ENTER, your butterfly will
move downward instead of to the right.

By changing a few lines, you can make the butterfly move
back and forth across the screen in a continuous loop. What
you end up doing is creating another set of instructions to
move the character from right to left, erasing the previously
printed figure and reprinting it in the column to the left. Most
of these lines are duplications of ones you've already entered.

To move the butterfly back and forth, simply add these
lines to Program 4-2:

160 FOR X=10 TO 1 STEP -1
170 CALL VCHAR(5,10+X+1,32)
186 CALL VCHAR(5,10+X,33)
196 FOR Y=1 TO 50

200 NEXT Y

210 NEXT X

220 GOTO 140

960 GOTO 900

Line 160 moves the character from right to left by
assigning X a value starting with 10, so that the butterfly’s
position is at column 20 (10+10), its last location as it moved
left to right. Each time through the main movement loop of the
program, X decreases by 1, due to the STEP —1 statement.
Lines 170 and 180 first erase the previous character and then
print a new figure to the left. (The second time through the
loop, the butterfly shows up in column 19 {10+ 9]; the third
time through the loop, in column 18; and so on.)

Line 190 creates a delay loop, this time half as long as
when the character moved from left to right. Notice how much
faster the butterfly moves from right to left, compared to left to
right. Lines 200 and 210 are the NEXT part of the FOR/NEXT

37

@a Beginning to Move

loop begun in line 160, while line 220 simply sends the
program back to line 100, where the movement from left to
right executes again.

This movement will continue until you press the FCTN
and the 4 keys.

You could use something like this in a game of your own if
you wanted a target that constantly moved from side to side,
like the ducks in a carnival gallery. To move the butterfly up
and down, over and over, all you’d have to do is change lines
110 and 120 as you saw earlier, and then alter lines 170 and 180
to:

170 CALL VCHAR(5+X+1,14,32)
180 CALL VCHAR(5+X,10,33)

If you put a number of characters on the screen, each
moving in its own particular pattern, you could have the basis
for a simple arcade-style target-and-shoot game.

Random Motion

Often it's useful to have a character move in ways that the
player cannot predict. If you know that a character will always
move from left to right, for instance, the game may be too easy.

Your TI has a function called RND, which picks a number
that will be different each time. The number selected is always
a decimal function between 0 and 1. For example, it could be
.5, .33, .76934, or .102113.

This number by itself might not seem too useful, but you
can multiply it by any number to get a larger one. For example,
if you multiply it by 10, you’ll get random numbers between 0
and 9. They’ll still have several numerals after the decimal
point, however.

To use RND effectively, you must use another function,
called INT, which stands for INTEGER. This function knocks
off any fractional part of a number. For example, if you have a
number like 1.33, it will drop the .33, leaving you with the
integer 1.

Because RND picks numbers between 0 and 1, if you use
the INT command which rounds off fractions, you would
always end up with 0. You must be sure to multiply the RND
function inside the parentheses after the INT command. To
move up the range of possible numbers, you need to add a
number to the end of the statement.

Here’s a formula you can use.

3333133323333 33333333333333333333333373

7333333 IBIIIIDDIIDIIDIIDNIIDIIADIBIININIDIITINIIDND

4

To get a random number between 1 and X, use:
INT(RND*X) +1
For example, to get a random number between 1and 32, which
would be helpful in selecting a column on the screen at
random, the formula would look like this:

INT(RND*32) + 1
If the +1 were omitted, the range would be between 0 and 31.

Whenever you use this formula in your program, you’ll get
a different number between 1 and 32. (The * character is the
multiplication sign.)

A Fluttering Butterfly. To set up a program to move the
butterfly in random motion, in any one of eight directions (up,
down, left, right, or up-right, up-left, down-right, down-left),
enter the following new program:

Program 4-3. Random Butterfly

14 REM RUTTERFLY

20 CALL CLEAR

30 CALL SCREEN(2)

4¢ CcALL COLOR(1,7,1)

5@ OR=12

60 0C=16

76 CALL CHAR(33, "2499DBFF7EFFC381")
100 REM LOOP

116 X=INT(RND*3)-1

120 Y=INT(RND*3)-1

130 NR=OR+X

140 NC=0C+Y

15¢ CALL VCHAR(OR,OC,32)
160 CALL VCHAR(NR,NC,33)
179 OR=NR

186 OC=NC

200 GOTO 109

This program can be divided into two parts:

» The initial part, which sets up the beginning values of the
program. This includes lines 10-60, which create the shape,
colors, background, and initial position of the butterfly.

* The part of the program that moves the butterfly. In this
part, the numbers used to calculate the new position of the
butterfly are created, the rows and columns of both the
new and old position of the butterfly are calculated, the old
butterfly is erased, and the new butterfly is created. Finally,
the old row and column become the new row and column,

39

so that the process can start over again. Notice that there is
no FOR/NEXT loop to create a delay, as there was in the
last program. This is because there will be enough delay in
the calculation of the new and old row values. You could
still add a delay if you want, because one of the factors of
game design has to do with how long an image appears on
the screen. If it is too quick, the eye doesn't pick up all the
details, and if it is too slow, the player gets bored.

Here is a more specific line-by-line explanation.

Line 10 is a REMark; anything following REM will be
ignored by the computer, but it’s often important for you to
know what a program does. Adding remark labels will make
your programs easier to follow and is a good habit to get into,
especially in more complicated programs where you may want
dozens of REM statements to label all the different parts.

Line 20 clears the screen, line 30 sets the screen color to
black (2), and line 40 sets the color of the character to orange,
with a transparent background.

Lines 50 and 60 establish the variables OR and OC (Old
Row and Old Column). The starting position is row 12 and
column 16, which is roughly at the center of the screen.

Line 70 creates the butterfly using CALL CHAR.

Line 100 is another remark to show that you have started
the main part of the program. Line 100 is the start of the main
movement loop, with line 200 as its other end. The program
will go back and forth between line 100 and line 200.

Lines 110 and 120 set up random numbers. What you want
to do is get numbers that are either 1, 0, or —1, for both the
row and column change. INT (RND*3) will produce numbers
between 0 and 2, and subtracting 1 will make them between
—1and 1. X will be used for the row change, and Y will be
used for the column change.

Lines 130 and 140 calculate the new row and columns that
you want to print the butterfly at. NR and NC are the New
Column and New Rows. New and Old are used to show the
positions where the butterfly will be printed (New) and where
it will be erased (Old).

Lines 150 and 160 use CALL VCHAR to first erase the old
butterfly by putting character 32 (space) at row OR and column
OC. Then, character 33 (butterfly) is put on the screen at row
NR and column NC.

Lines 170 and 180 change the values of the old row and

40

3333223333333 333333333333333333333313)

" Beginning to Move 4

column to the new row and column. Only by using this will
the character erase when line 150 is executed the next time
through the main loop.

Line 200 simply sends the program back to line 100, so
that the loop repeats.

Checking for the Edge of the Screen. When you run the
program, you can watch the butterfly fly around the screen,
but after a while, the program will stop and you'll see an error
message, probably one that reads BAD VALUE IN LINE 160.

This is because the butterfly fluttered too close to an edge
and the NR and NC values were higher or lower than the TI
allows. Since the row numbers can be only from 1 to 24 and the
column numbers from 1 to 32, if your program has a row
number greater than 24 or less than 1, or a column number
greater than 32 or less than 1, you will get the BAD VALUE
error statement from the TIL.

To avoid this, you must add a way to check for row and
column values. The easiest way to do this is to add a GOSUB
command, which will make the program go to a subroutine,
do what is there, and then RETURN to the main program. You
could add the subroutine to the main program, but it's often
easier to understand if you have a simple main loop, and use
GOSUB commands to process more complicated kinds of
information by sending the computer out of the main loop to a
subroutine and then having it return. This way, you can use
the same subroutine over and over again without cluttering up
your main loop or having to rewrite the lines. For our example,
simply add the line:

145 GOSUB 300

This will check the NR and NC values that were just
created in lines 130 and 140.
Now add:
300 REM CHECK FOR SIDES
316 IF NR<1 THEN 400
320 IF NR>24 THEN 400
330 IF NC<l THEN 400
340 IF NC>32 THEN 400
350 RETURN

This subroutine has the REM statement CHECK FOR
SIDES in line 300. Lines 310 to 340 test NR and NC to see if
they are numbers that can be used by the TI for the CALL
VCHAR routine. If they are smaller or greater than the

41

eginning to Move

numbers that are legal, the program will jump to line 400.
Otherwise, the program will continue.

Line 350 is a RETURN command. RETURN must always
be the last line in a GOSUB subroutine, and it will make the
program go back to the last GOSUB command.

The subroutine to reset the values for NR and NC look like
this:

409 REM ERROR
410 NR=12

420 NC=16

430 RETURN

This is a separate part of the same subroutine that the
program will shift to if any boundary errors are found in lines
310-340.

Lines 410 and 420 change the new row and column
numbers from the edge of the screen to numbers that will be at
the center of the screen. Line 430 RETURNSs the program to
line 145, and the butterfly continues to move.

The complete program to move your butterfly character
randomly around the screen looks like this:

Program 4-4, Random with Edge Checking

16 REM BUTTERFLY

20 CALL CLEAR

3¢ CALL SCREEN(2)

49 CALL COLOR(1,7,1)

5@ OR=12

60 0C=16

79 CALL CHAR(33, "2499DBFF7EFFC381")
169 REM LOOP

195 RANDOMIZE

110 X=INT(RND*3)-1

115 RANDOMIZE

120 Y=INT{(RND*3)-1

130 NR=OR+X

140 NC=0C+Y

145 GOSUB 300

15¢ CALL VCHAR(OR,OC,32)
160 CALL VCHAR(NR,NC, 33)
170 OR=NR

188 OC=NC

200 GOTO 100

306 REM CHECK FOR SIDES
319 IF NR<1 THEN 4090

320 IF NR>24 THEN 400

3333333333333 333333333333333323333)33

3373737337373333333373739

e
3

79333 TIIIIIDTIIIND

330
340
350
400
410
420
430

| ennn

M@

IF NC<1 THEN 400
IF NC>32 THEN 400
RETURN

REM ERROR

NR=12

NC=16
RETURN

Another way to program this kind of movement is to use

the conditional OR to check if the character is close to a screen
edge. This method will shorten the program somewhat by
checking for two different things in one line. It would look like

this:

Program 4-5. Side Checker with OR

10

REM BUTTERFLY

20 CALL CLEAR

3% CALL SCREEN(2)

4@ CALL COLOR(1l,7,1)

58 OR=12

68 0C=16

76 CALL CHAR(33, "2499DBFF7FFFC381")

160
170
180
200
300
310
329
330
400
419
420
439

REM LOOP

RANDOMIZE
X=INT(RND*3)-1
RANDOMIZF
Y=INT(RND*3)-1
NMR=OR+X

NC=0C+Y

GOSUB 300

CALL VCHAR(OR,0C,32)
CALL VCHAR(NR,NC, 33)
OR=NR

oc=MC

GOTO 100

REM CHFCK FOR SIDES
IF (NR<1)+(NR>24)THEN 400
IF (NC<1)+(NC>32)THFN 400
RETURN

REM FERROR

NR=12

MC=16

RETURN

Lines 105 and 115 were added, lines 310-330 were changed, and
lines 340 and 350 were eliminated. Those are the only differ-
ences between this and Program 4-4.

Lines 105 and 115 contain a new command, RANDOMIZE.

43

Beginning to Move

This will create truly random numbers, which the RND func-
tion does not actually do. If you RUN a program which has the
RND function over and over, you would see the same
sequence of numbers again and again. This makes a game
using the RND function seem to follow a certain pattern,
something you probably don’t want. You want each game to be
a little different from the last.

To generate true random numbers, it’s a good idea to place
the RANDOMIZE command somewhere in your program.
Some programmers put it only near the beginning of the
program, but it's probably best to use RANDOMIZE just
before you use a statement with a RND function. This is what
lines 105 and 115 do.

Lines 310 and 320 may look confusing, but they’re really
quite simple to understand. You can use the + sign in an IF/
THEN statement to simulate the logical OR other computers
allow. The logical OR means that at least one of the parts of the
line (before and after the + sign) must be true to shift the
program. For instance, in line 310, if either NR<1 or NR>24 is
true, the program shifts to the subroutine at line 400. Only one
of those conditions has to be met for the program to move to
the subroutine. Notice that the parentheses are used to sepa-
rate the different conditions from the + sign. This eliminates
any possibility of the computer getting confused and thinking
that the value 1 is to be added to something.

In other situations, you may want to have both sections of
the line be true before a shift to another line takes place. You
can do this by using the logical AND, which is represented on
the TI by the * sign in an IF/THEN statement. For example, if
you wanted the subroutine at line 400 called only when both
NR<1 and NC>32 are true (in other words, only when the
butterfly is in the upper-right corner of the screen), you could
use a line such as:

IF (NR<1) * (NC>32) THEN 400

Both parts of the line must be true for the program to shift to
the subroutine. You could use this to call a subroutine congrat-
ulating you on winning the game, for example, if the object
was to get the butterfly from one corner of the screen to
another, perhaps avoiding flower obstacles on the way.
Character motion such as patterned and random move-
ment will be necessary for your arcade games because usually

44

JJI3JIIIII3I3I32B3333I33333333233333333333D3

T3333IIDIINIIIDIIIIIIIINIIIIINIAIIDINIANADG

~ Beginning to Move 4

you'll want to create some moving character for your game
player to react against.

However, there is one more kind of motion which is abso-
lutedly essential to arcade game play, and that is the motion
that happens when the player provides input and tells the
computer what to do by pressing a key or pulling a joystick.

In the next chapter you'll see how to have your player’s
wishes transferred to the computer program.

Review

In this chapter you saw how to create motion on the screen by
moving a butterfly character around in both patterned and
random ways.

The four steps to create movement are:

» Using CALL VCHAR or CALL HCHAR, you place a
character on the screen. You use CALL CHAR to create

ou own custom characters.

+ A FOR/NEXT loop can be used to create a short delay so
that the characters can be more easily seen. Sometimes
the main loop’s calculations do this for you.

» The character has to be erased at its old row and column
location. Printing a space character (ASCII 32) does this.

» Finally, the character is displayed on the screen at a new
row and column position. It's important that there be no
delay between the erasing and putting a new character
on the screen, or you will have the appearance of two
characters on the screen.

« It is also important to check that the row and column
numbers are within the limits of what the CALL VCHAR
command allows. Row numbers must be between 1 and
24, and column numbers between 1 and 32. Subroutines
can check for errors.

45

-
-~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
| -
-
-
-
™
-
™
-
-
-
-
-
-
-
-
-
-
-
-
-

5 Keyboard and
Joystick Control

FEAERREERESEEER RN NOENEEA R RN RN RN B

P733I3ITIIIITINIIDIIINIDIAIAAININIININIIADINIDIDIOND

In the last chapter you saw how to create motion by moving a
butterfly character. But simply moving things on the screen is
usually not a game: To have an arcade game, the player should
be able to interact with the game’s imaginary world.

The player should have some way to affect the computer
program. You can do this in two ways: the TI's keyboard, or

joysticks.

Using the Keyboard
The TI computer accepts commands from the keyboard when
you use one of two different BASIC keywords.

INPUT. The first way to use the keyboard is with the
INPUT command, but it really works too slow for player-
controlled movement. INPUT accepts as many keystrokes as
the player types in until the ENTER key is pressed. A use for
this might be to have the player type in his or her name. For
example:
1¢ INPUT "WHAT IS YOUR NAME?":A$

would have the computer first display the phrase WHAT IS
YOUR NAME?, and then it would store as A$ whatever was
entered. A$ could be printed later, perhaps at the end. For
example:

PRINT “CONGRATULATIONS, “; A$;”! YOUR SCORE WAS
“; SCORE ; “POINTS.”

The player’s name would appear in the message.

This is a nice way to embellish your game, but it'’s an
extra, not a necessary ingredient for a fast-action game.

Because the program stops to receive information when
you use INPUT, it's not as useful in a game situation as the
other keyboard command, CALL KEY.

CALL KEY. You can use the command CALL KEY, which
will look to see if a key has been pressed, to receive player
input.

CALL KEY has three parts to it.

Key-unit. The first part of the CALL KEY command is
called the key-unit and tells the TI how to refer to its keyboard.

49

You can use this to split the keyboard in two, look for upper-
and lowercase, or use a forced uppercase mode.

In this book, the programs will usually use a key-unit of 3,

which does three things:

* All input, whether it is lowercase or uppercase letters,
will be interpreted as uppercase letters. This is a safety
factor, because then the player doesn’t have to worry
about whether the SHIFT key or ALPHA LOCK key is
pressed.

* The key-unit of 3 also changes the function keys (which
are produced by simultaneously pressing the FCTN key
and another key) to specific numbers. This will prevent a
program being erased if the FCTN and the = keys are
accidentally pressed at the same time.

* The key-unit of 3 also ignores any control characters
(which are produced by simultaneously pressing CTRL
and another key). This insures that the player won’t acci-
dentally create a code that your game won’t understand.

Return-variable. The second part of the CALL KEY
command is called the return-variable. This can be any variable
you choose. When CALL KEY is used, the computer will put
the number of any pressed key into this variable. For example,
if you specify that the return-variable of the CALL KEY is K,
the ASCII number of a pressed key will be stored in the vari-
able K. You can use this variable to make later game decisions.

For example, if you use K as the return-variable, and the A
key was pressed, you’ll find that K has the number 65 stored
in it. If you use the key-unit of 3, it won’t matter whether you
press A or SHIFT A; you'll still get the number 65. Refer to
Appendix A, “Characters,” for the values for each key.

If no key is pressed, the number —1is put into the return-
variable.

Status-variable. The third part of the CALL KEY
command is the status-variable. This can be any variable you
choose. For example, you could call it S. When CALL KEY is
used, a number will be put into the status-variable that will tell
you one of three things:

* If the number is 1, you'll know that a new key was
pressed since the last time CALL KEY was used. This
can be helpful if, for example, you want to keep the
player from constantly pressing the same key.

« If the number is 0, you'll know that the same key was

50

333333230333 33333333333335333333333333)

7333333V INDIIIIININIIIANIDIIIININITIINITTIONN

 Keyboard and Joystick Ca

pressed as the last time CALL KEY was used. This could
be used to wait until a new key is pressed.

« Finally, if the number is —1, you'll know that no key was
pressed. You could use this to wait for any key to be
pressed.

Motion
While any keys could be used, you'll probably find it easiest
for the player to use the E, X, S, and D keys to make something
move. This is because arrows are printed on the sides of these
keys. The E key is up, the X key is down, the S key is left, and
the D key is right.

By using CALL KEY and testing the return-variable, you
can use the ASCII values that the return-variable contains to
move your character around. Here are the ASCII values for the

arrow keys:

Letter ASCII Value Arrow
E 69 up

X 88 down
S 83 left

D 68 right

Putting CALL KEY Together. To use CALL KEY, you need
the key-unit, the return-variable, and the status-variable in the
command. Here’s the form of the CALL KEY command:

CALL KEY (key-unit, return-variable, status-variable)

The key-unit is a number from 0 to 5; we’ll usually use 3. The
return-variable and status-variable can be any variable.

Here is a program that demonstrates how to move a char-
acter with CALL KEY. It’s divided into three parts:

» The beginning, which sets up the variables and gives

everything a starting value.

« The main loop, which checks to see if a key has been

pressed.

« A smaller section which the computer goes to if some-

thing happens. This is often a subroutine.

Often you will find that arcade game programs are set up
in this way. You must set things up, wait for something to
happen, and then make it happen.

The Setup. To set up the variables and character, you
could enter:

51

Keyboard and Joystick Control

Program 5-1. Setup

14 REM MOVE THE NET

20 CALL CLEAR

30 CALL SCRFEEN(2)

40 CALL COLOR(2,5,1)

5¢ CALL CHAR(42,“"152B55AR552R81081")
60 LET NOR=23

65 LET NNR=23

78 LET NOC=16

75 LET NNC=16

This looks similar to the beginning of the program from
the last chapter that set up the butterfly. CALL CLEAR and

CALL SCREEN are the same, but CALL COLOR has a 2 for the

first value because you'll be using a different character set.
Since you're creating a net to catch the butterfly, it would be
nice to have it a different color. If you used the same character
set as the butterfly, it would have to be the same color. In this
example, character number 42, which is the asterisk, will be
used from set 2.

In line 50, the asterisk character is redefined as a butterfly
net. Here is what it would look like:

Figure 5-1. Butterfly Net

15

2B

55

AB

55

2B

01

01

The code values used to create the butterfly net are:
152B55AB552B0101

In lines 60 and 70, the variables NOR and NOC stand for
the Net Old Row and the Net Old Column. They’re set to 12
and 16 to put the net in the center of the screen. Lines 65 and

52

I3 II33IDI3333333333333333333383333333)

7333 IVIIDIANIIIDIINIIIANIIIIIIINIDIIANITIIADIDIAND

n‘d amﬂ yn@ Control

3

75 set up an initial value of the Net New Row and the Net New
Column, variables NNR and NNC. You'll want to have the
new and old row and columns be the same before you actually
move.

Now you're ready to put it on the screen. The next line
does this:

8¢ CALL VCHAR(NOR,NOC,42)

The Main Loop. Now you’re ready to set up your main
loop. This is usually a very short part of the program that will
just go through and do one of two things:

» The program will check to see if a key is pressed, or

* Some form of automatic motion will take place, while the

player is deciding what to do.

In this example, only the first thing, which is to see which
keys are pressed, will take place.

Program 5-2. Main Loop

106 REM MAIN LOOP
116 CALL KEY(3,K,S)
120 IF K=69 THEN 300
130 IF K=88 THEN 400
140 IF K=83 THEN 500
158 IF K=68 THEN 600
196 GOTO 109

Lines 100 and 190 make up the main loop. The program
will go back and forth many times each second, and it will do
only what is between lines 100 and 190.

In this case, line 110 uses the CALL KEY command. 3 is
the key-unit and tells you that the keyboard will be used in an
all-uppercase way. K is the return variable, and tells you which
key, if any, has been pressed. S is the status-variable, and
won’t be used in this example, but since you must have some-
thing in its place, we’ll use S.

Lines 120-150 check to see if the key has been pressed. If it
has, you are interested only in whether the keys E, X, S, or D
were pressed. For example, if the E key was pressed, line 120
will tell the program to go to line 300. Similarly, the other lines
tell the program to go to specific lines, depending on which
key is pressed. If none of the four was pressed, the loop
continues.

Which Way to Move. Enter these lines for the actual move-
ment subroutines:

53

5 Keyboard and Joystick Control

Program 5-3. Movement Subroutines

306 REM E MOVE UP
310 NNR=NOR-1

32@¢ GoTo 708

408 REM X MOVE DOWN
41@ NNR=NOR+l

420 GOTO 709

560 REM S MOVE LEFT
51@ NNC=NOC-1

520 GOTO 700

600 REM D MOVE RIGHT
610 NNC=NOC+1

620 GOTO 709

These lines do the arithmetic calculations that will be used
to move the net to its new location. NNR and NNC are varia-
bles for the Net New Row and the Net New Column. To move
the net up, you simply subtract 1 from the old row. The
subroutine from lines 300-320 does this. If you want it to move
down, you add 1 to the old row. Lines 400-420 move the net
down. The columns change the same way, with subroutines
moving the character left in lines 500-520 and right on lines
600-620.

A move changes the row or column by one, either adding
or subtracting. Notice that lines 300, 400, 500, 600 all are REM
statements. A careful use of REM statements is a good
programming habit because you'll want to make sure you're
doing the right things in the right places. Typing REM E
MOVE UP will remind you that the E key moves things up.

Notice that you have not actually moved anything yet. The
new row and column are calculated, but the program must do
one more thing before it can move the net.

Checking for Edges. Whenever you have a character
moving, you need to check to see that the player’s move is
legal. Illegal moves can cause the program to stop, and you
may not even want the player-controlled figure moving to
certain places on the screen. To check for the screen edges with
our net movement program, you need to add only these lines:

Program 5-4. Checking Edges

789 REM CHFECK MOVE

710 IF (NNR<1)+(NNR>24)THEN 800
720 IF (NNC<1)+(NNC>32)THEN 800
738 CALL VCHAR(NOR,NOC, 32)

743 CALL VCHAR(NNR,NNC,42)

54

3333333333333 3333333333333383333338333)

7333 3IIIIIIAAIIDIANIAIAIIIIIARAIIIINIDRIINIAANND

) I
ﬂL

Keyb@atrdandj@ystmcﬂ(C@mmlﬂ .

750 NOR=NNR
768 NOC=NNC
776 GOTO 100

Lines 700-770 check to see if an error has occurred, and if
it has, the program goes to line 800. Since the screen row and
column must be between rows 1 and 24 and columns 1 and 32,
these are the legal boundaries. If the new row or column
would be outside these, an error has occurred.

If there’s been no error, the old position of the net is erased
and its new position is put on the screen. Finally, lines 750 and
760 change the new row and column into the old row and
column so that the program will be ready for the next move.
After this has happened, the program goes back to line 100, to
wait for the next key to be pressed.

Running into the Edges. All that’s left to do is to decide
what should happen when an error is committed. In this
example, nothing will happen; the character seems to wait
patiently at any screen edge.

Program 5-5. Staying Still

800 REM FERROR
81@ NNR=NOR
820 NNC=NOC
836 GOTO 140

Nothing happens here because the new net will not be
printed. This subroutine cancels the calculations of lines 300-
620 by resetting the variables NNR and NNC to what they
were before. You must always, if you want not to do some-
thing, make sure that the steps that led up to that decision
don't affect other parts. If, for example, you don’t change the
new row and column to the old row and column when the
program discovers an error, the next time you check NNR or
NNC, the program will think they are still out of bounds,
because you didn't reset them.

You’ll find that the following steps will be repeated for
most game programs.

* Set up your initial variables, clear the screen, choose you
colors, create your character shape, and put your char-
acter on the screen.

* Create a main loop that looks for keys pressed or creates
other kinds of automatic motion.

* Create smaller parts of the program, called subroutines,
that do specific things. In this example, subroutines

55

Keyboard an

board and Joystick Control

were created to calculate new rows and columns for the
net, to check for errors and screen edges, as well as to
force the character to remain on the screen.

« If there was no error, the old character was erased, a new
one put on the screen, and the variables for new row
and column were reset to the old row and column, so
that the main loop can execute again.

The complete program to create keyboard-controlled

movement would look like this:

Program 5-6. Keyboard Movement

13 REM MOVE THE NET

20 CALL CLFAR

39 CALL SCREEN(2)

49 CALL COLOR(2,3,1)

58 CALIL CHAR(42,“"152B55ABS552RQ181")
63 NOR=12

65 NNR=12

78 NOC=16

75 NNC=1l6

80 CALL VCHAR(NOR,NOC,42)
198 REM MAIN LOOP

118 CALL KEY(3,K,S)

120 IF K=69 THEN 300

139 IF K=88 THEN 400

149 IF K=83 THEN 500

150 IF K=68 THEN 600

190 GOTO 109

308 REM E MOVE UP

313 NNR=NOR-1

3280 GoTO 700

400 REM X MOVE DOWN

410 NNR=NOR+1l

420 GOTO 700

5¢0@ REM S MOVE LEFT

51@ NNC=NOC-1

520 GOoTO 7090

600 REM D MOVE RIGHT

610 NNC=NOC+1

620 GOTO 799

70% REM CHECK MOVE

718 IF (NNR<1)+(NNR>24)THEN 800
720 IF (NNC<1l)+(NNC>32)THEN 800
739 CALL VCHAR(NOR,NOC,32)
749 CALL VCHAR(NNR,NNC,42)
758 NOR=NNR

768 NOC=NNC

3333333335333 33333333333323333333333

3

7337333333933 I3ITIIITIIINIIAINIIDIIDIIIIDTIANTD

and Joystick Control

779 GOTO 1@@
800 REM ERROR
814 NNR=NOR
8203 NNC=NOC
838 GOTO 108

Joysticks

If you have a joystick for your TI computer, you can use it
instead of pressing a key. The Tl is set up to use two joysticks
that are wired together. For this example, only one joystick will
be used.

The joystick uses the CALL JOYST command, and needs
three steps to move a figure on the screen.

Key-unit. The first part of the CALL JOYST command is
called the key-unit. This simply tells the computer which
joystick you want to test. A key-unit of 1 tests joystick 1, while
the key-unit of 2 tests joystick 2.

For most of these examples, joystick 1 will be used.

Joystick Directions. The CALL JOYST command needs
two variables, which will hold the column and row directions
that the joystick pushes toward. If you push it to the right, it
gives a number which can be used to calculate a column to the
right. Similarly, pushing the joystick to the left gives a number
that can be used to calculate a column to the left. The same
procedure also applies to the row direction calculations when
the joystick is pushed up or down.

Here is the form for CALL JOYST:

CALL JOYST (key-unit, column-direction, row-direction)

Notice that the row and column are the opposite of what
you might expect from using the CALL VCHAR commands.
This is because TI calls them x-return and y-return and uses x to
represent the column number and y for the row number. Since
row and column will be more important here, the words
column-direction and row-direction will be used.

Column-direction and row-direction are variables that you
can choose. Each variable, when the CALL JOYST is used, will
store certain numbers. Here they are:

Joystick Direction Column Value Row Value
Up 0 4
Down 0 —4
Left -4 0

57

5 Keylboard and ﬂ@yslk Control

Joystick Direction Column Value Row Value
Right 4 0
Up-Left -4 4
Up-Right 4 4
Down-Left -4 -4
Down-Right 4 -4

Figure 5-2 shows these values for the joystick as if you were
looking from above.

Figure 5-2. Joystick Direction Values

(0.49)
[}

(-40) @

& (4,0)

v
0.-4)

If you pull the joystick up and to the right, say, the row
and column direction variables will be 4 and 4.

(Note: When using the joystick, make sure that the
ALPHA LOCK key is up. Otherwise, the joystick up pull will
be ignored.)

You can use these variable values in much the same way
that you used CALL KEY to control motion.

Example of CALL JOYST. In Program 5-6 in which you
just saw how to use CALL KEY, you could use CALL JOYST
instead. All you have to do is type these lines:

58

3333333333333 333353333333333333331333)

I Y 5 : T

Program 5-7. Joystick Main Loop

114 CALL JOYST(1,JC,JR)
126 IF JR=4 THEN 300
139 IF JR=-4 THEN 400
149 IF JC=-4 THEN 500

15 IF JC=4 THEN 600

These will erase the old lines 110-150 and create similar ones
that use CALL JOYST.

In this example, you'll use joystick 1. JC is the column
variable that stores the column-direction value, and JR will be
the row variable used to store the row-direction value.

Lines 120-150 send the program to the appropriate subrou-
tines that will move the net character in the direction the
joystick is moved. For example, if JR is equal to 4, the joystick
was moved up.

Diagonal Directions. What happens if you pull the
joystick in a diagonal direction? The way the program is
written now, the up and down movements of a diagonal push
on the joystick will happen first, because they’re tested first in
the main loop. If you want to test for true diagonal movement,
you can add these lines:

Program 5-8. Diagonal Joystick Movement

3@5 IF JC<>0 THEN 100
495 IF JC<>@ THEN 100
505 IF JR<>@ THEN 100
605 IF JR<>@ THEN 100

This will make sure that the character will move only if the
joystick is pushed straight up. By using <> (SHIFT COMMA
and SHIFT PERIOD), you are saying that JC or JR is not equal
to 0. If it is not 0, you are in a diagonal pull, and the program
goes back to line 100.

Because the TI joystick is somewhat unresponsive, you
may or may not want to use lines 305, 405, 505, and 605 to
keep your directions equal. If you don't, the up and down
directions will be used more often, unless you change the
order of lines 120-150. Most of the examples in this book will
use something like lines 305, 405, 505, and 605 so that the
directional movements are equal to the up, down, right, and
left directions.

To use a joystick on the TI to move the net figure, the
complete program would look like this:

59

£ A T NS |

5 Keyboard : and Joystick Control

Program 5-9. Joystick Movement

16 REM MOVE THE NET

20 CALL CLEAR

30 CALL SCREEN(2)

4@ CALL COLOR(2,3,1)

5@ CALL CHAR(42, "152B55AB552B0101")
63 NOR=12

65 NNR=12

70 NOC=1l6

75 NNC=16

80 CALL VCHAR(NOR,NOC,42)
166 REM MAIN LOOP

116 caLL JoysT(1,JC,JR)
120 IF JR=4 THEN 300

138 IF JR=-4 THEN 400

140 1IF JC=-4 THEN 500

150 IF JC=4 THEN 600

190 GOTO 10@

300 REM MOVE UP

305 IF JC<>@ THEN 100

319 NNR=NOR-1

3206 GoTO 700

403 REM MOVE DOWN

495 IF JC<>@ THEN 190

41% NNR=NOR+1l

420 GOTO 709

508 REM MOVE LEFT

535 IF JR<>0 THEN 100

510 NNC=NOC-1

520 GOTO 700

68@ REM MOVE RIGHT

605 IF JR<>% THEN 100

610 NNC=NOC+1

620 GOTO 700

708 REM CHECK MOVE

71¢ IF (NNR<1)+(NNR>24)THEN 800
720 IF (NNC<1)+(NNC>32)THEN 800
730 CALL VCHAR(NOR,NOC,32)
74@ CALL VCHAR(NNR,NNC,42)
758 NOR=NNR

760 NOC=NNC

776 GOTO 100

809 REM ERROR

819 NNR=NOR

820 NNC=NOC

833 GOTO 190

60

3333323333333 33333333333331333333333

7333333333333 TI3IIIIAIIIIINIIIIIIINIDIDND

Making a Game

Putting the Butterfly in. To make the butterfly and net
programs into a game, all you have to do is add the butterfly.

Since you already have a net, and you created a butterfly
in Chapter 4, it's a simple thing to mix the butterfly program
parts into the net program. Then, all you have to do is test to
see if the net and the butterfly are at the same place at the same
time.

In this game, your score will depend on how fast you
catch the butterfly with the net. To make it more difficult, the
butterfly will start out at a random place on the top of the
screen, and your net will start out at the bottom center.

Starting Out. First you must add the butterfly:

Program 5-10. Adding the Butterfly

45 CALL COLOR(1,7,1)
55 CALL CHAR(33, "2499DBFF7EFFC381")

9¢ LET OR=INT(RND*4)+1
95 LET OC=INT(RND*32)+1
97 CALL VCHAR(OR,OC,33)
99 LFT COUNT=0

These lines create the same butterfly as in Chapter 4. Lines
90 and 95 put it on the screen between row 1 and row 4 and
between column 1 and column 32.

Line 99 starts the COUNT variable at 0, and this is used to
keep track of the score. Most games are better if you can think
of a way to keep score. In this game, the longer you play, the
higher the number of your score. However, the idea here is to
get as low a score as possible.

Type these two lines to change the beginning location of
the net:

60 LET NOR=23
65 LET NNR=23

The Main Loop. Now add this line to the main loop:

162 LET COUNT=COUNT+1

This will add 1 to the variable COUNT, so that it will get
larger each time the main loop executes. The number of times
through will equal your score. The lower the number, the
better your score will be.

Enter:

125 GOSUB 200

61

5 Keyboard and Joystick Control

This will send the program to line 200, which is a subrou-
tine to print the butterfly. Since the loop always goes back to
line 100, you want to make sure you move the butterfly before
you check to see if you move the net. If you do it the other way,
the butterfly will never get a chance to move.

Move Butterfly Subroutine. Here’s the subroutine which
will move the butterfly:

Program 5-11. Butterfly Movement Subroutine
200 REM MOVE BUTTERFLY
210 I=INT(RND*3)-1

228 J=INT(RND*3)-1

230 LET NR=0OR+I

249 LET NC=0C+J

25@ IF NR<1 THEN 900

255 IF NR>24 THEN 900
260 IF NC<1 THEN 900
265 IF NC>32 THEN 900
278 CALL VCHAR(OR,O0C,32)
275 CALL VCHAR(NR,NC,33)
289 LET OR=NR

285 LET 0OC=NC

290 IF NR=NOR THEN 1000
292 IF NC=NOC THEN 1100
295 RETURN

Lines 200-285 are the same as those used in the last
chapter to create and move the butterfly.

Lines 210-240 create a new row and column by using
random numbers. Lines 250-265 check the new row and
column to see if there are any errors. If there are, the program
goes to line 900. Otherwise, the program continues, and lines
270 and 275 erase the old butterfly and put the new one on the
screen.

Lines 280 and 285 make the new row and column into the
old row and column so that the next time through, the
butterfly will be ready to move.

Lines 290 and 292 are new: They check to see if a collision
has occurred between the butterfly’s old row and column, and
the net’s old row and column. If the rows match (NR=NOR),
the program goes to line 1000. If the columns match
(NC=NOC), the program goes to line 1100.

Line 295 RETURNS the program to the main loop.

Butterfly Errors. Type these lines to take care of any error
that occurs if the butterfly flies too close to the edge:

62

3333333333333 33333333333332333333333)

3737797333 393337373737337339

[
\

733379737333333339

A 0 T T AT T (D)

Keyboard and Joystick Control

-

Program 5-12. Butterfly Edges

90¢ REM RUTTERFLY ERROR
910 LET NR=OR

920 LET NC=0C

93¢ GOTO 109

These lines set the new row and column back to their old
values, so that nothing happens when the butterfly tries to fly

off the screen. In other words, it will always remain on the
sscreen.

Checking for Collisions. You would add these lines to
check for the collisions between the butterfly and the net.

Program 5-13. Collision Checking

1606 REM ROW MATCH, CHFCK COLUMN
101@¢ IF NC=NOC THEN 2000

1323 RETURN

1100 REM COLUMN MATCH, CHECK ROW
11106 IF NR=NOR THEN 20¢@

1120 RETURN

Lines 1000-1020 were accessed from line 290, which found
a match between the rows of the butterfly and net. If a match is
found in line 1010 between the columns of the butterfly and the
net, you know that they must both be in the same row and
column. If this is so, the program will go to line 2000, which is
the end. If it is not a match—that is, if only the rows match—
the program RETURNS to the main loop.

Lines 1100-1120 serve the same purpose. Accessed from
line 292, which found a match between the columns of the
butterfly and net, line 1110 will shift the program to the subrou-
tine at line 2000 if NR = NOR. If the columns do not match, the
program RETURNSs to the main loop.

Ending the Game. If the butterfly and net have collided,
the game is over. The short subroutine that follows acts as an
end routine for our game.

You can also program your game to let the player choose if
he or she wants to play again. This is simple to do, and the end
routine includes this feature.

Program 5-14. Endings

200@ REM COLLISION
2085 CALL CLEAR

20@7 CALL SCREEN(3)

2018 PRINT "YOU CAUGHT THE BUTTERFLY"

e e T =

Keyboard and '

=

2020 PRINT "IN “;COUNT;" MOVES"
2030 PRINT "WANT TO PLAY AGAIN?"
2049 PRINT "PRESS Y FOR YES"
2050 CALL KEY(3,K,S)

2060 IF S=0 THEN 2050

2070 IF K=89 THEN 1@

2088 END

This routine ends the game by clearing the screen and
changing the screen color. The screen color must be changed
because the letters on the screen normally print in black, and
since we had a black screen, the letters wouldn’t show up
unless you changed the screen color.

Lines 2010-2040 let the player know that the game is over,
and what the score was, by printing the COUNT in line 2020.

Notice the way that line 2020 is spaced, and also the use of
the semicolon, to allow text and variables to be mixed in the
same print line.

CALL KEY is used in line 2050 to let the player choose to
play again. S is the status-variable, and if S is 0, no key has
been pressed. If none was pressed, the program goes back to
line 2050 and keeps going back until a key is pressed, which
changes the S variable to something else besides 0.

If a Y was pressed, K is set to 89, the ASCII number for Y,
If Y was pressed, the program begins again at line 10. If the
player typed anything other than a Y, the game is over.

Your First Game

“Flutters,” the butterfly and net game you’ve been developing
as you read, is your first complete game. Although you have
seen it in bits and pieces, it may be worthwhile to see it in a
complete form. Here it is.

Program 5-15. Flutters

14 REM MOVE THE NET

20 CALL CLEAR

30 CALL SCREEN(2)

40 CALL COLOR(2,5,1)

45 CALL COLOR(1,7,1)

5@ caALL CHAR(42,"152855A8552B0101")
55 CALL CHAR(33, "2499DBFF7EFFC381")
60 LET NOR=23

65 LET NNR=23

79 LET NOC=16

75 LET NNC=16

80 CALL VCHAR(NOR,NOC,42)

3333333333333 33333333333333333333313)

@atrd and Jl@ystlccﬂ« Control

|3

9¢ LET OR=INT(RND*4)+1l
95 LET OC=INT(RND*32)+1
97 CALL VCHAR(OR,OC,33)
99 LFT COUNT=@

100
102
185
110
120
13¢
149
159
160
196
200
210
220
230
240
250
255
260
265
270
275
280
285
290
292
295
300
305
310
320
400
495
410
420
500
505
510
520
600
695
610
620
7093
710
720
745

RFM LOOP

LET COUNT=COUNT+1
GOSUR 200

CALL JoysT(1l,JC,JR)
IF JR=4 THEN 300

IF JR=-4 THEN 400

IF JC=-4 THEN 500

IF JC=4 THEN 609
CALL SOUND(NOR*10+18,NOC*100+204,0)
GOTO 100

REM MOVE BUTTERFLY
I=INT(RND*3)-1
J=INT(RND*3)-1

LET NR=OR+I

LET NC=0C+J

IF NR<1 THEN 900

IF NR>24 THEN 900
IF NC<1 THEN 900

IF NC>32 THEN 900
CALL VCHAR(OR,O0C,32)
CALL VCHAR(NR,NC,33)
LET OR=NR

LET OC=NC

IF NR=NOR THEN 1000
IF NC=NOC THEN 1100
RETURN

REM MOVE UP

IF JC<>@ THEN 100
LET NNR=NOR-1

GOTO 700

REM MOVFE DOWN

IF JC<>@ THEN 100
LET NNR=NOR+1

GOTO 7080

REM MOVE LEFT

IF JR<>@ THEN 100
LET NNC=NOC-1

GOTO 709

REM MOVE RIGHT

IF JR<>P THEN 100
LET NNC=NOC+1

GOTO 799

REM CHECK MOVE

IF (NNR<1l)+(NNR>24)THEN 800
1F (NNC<1)+(NNC>32)THEN 840
CALL VCHAR(NOR,NOC,32)

65

o —
B

K

3 Key

750 CALL VCHAR{NNR,NNC,42)

760 LET NOR=NNR

776 LET NOC=NNC

7806 GOTO 190

800 RFM ERROR

81¢ LET NNR=NOR

82¢ LET NNC=NOC

825 CALI. SOUND(108,-6,7)

83% GOTO 100

990 REM BUTTERFLY FERROR

910 LET NR=OR

920 LET NC=0C

930 GOTO 109

1600 RFM ROW MATCH, CHECK COLUMN
191¢ IF NC=NOC THEN 2000

1020 RETURN

1100 REM COLUMN MATCH, CHECK ROW
1110 IF NR=NOR THEN 2000

1128 RETURN

2000 RFM COLLISION

2005 CALL CLEAR

2097 CALL SCREEN(3)

2010 PRINT “YOU CAUGHT THE BUTTERFLY"
2020 PRINT "IN ";COUNT;" MOVES"
2030 PRINT "WANT TO PLAY AGAIN?"
2040 PRINT "PRESS Y FOR YES"

2058 CALL KEY(3,K,S)

2060 IF S=0 THEN 2050

207¢ IF K=89 THFN 10

2080 FND

Board and Joystick Control

Saving Your Game. When you've finished typing all of
this in, type RUN and press ENTER. You must catch the
butterfly as quickly as you can. Each time you do, you'll be
told how long it took you, and you can try to improve your
score.

Before you turn off your computer, however, be sure to
save a copy of your game onto your cassette recorder or disk
drive. Typing SAVE CS1 if you have a cassette recorder, or
SAVE DSK1.FLUTTER if you have a disk drive, will place the
game under the filename FLUTTER.

Changing the Game
There are many things you could do to change and improve
this game.
* You could make the butterfly fly farther each time by
making it add or subtract a number larger than 1 to its
row or column.

66

3323332313333 3333333333233333333333333)

e T A ST TR s P\w——
g T bR | [
U

ear and ﬁ@yst@mr@ =)

* You could put in more than one butterfly.

« You could have butterflies flying in a pattern from left to
right, and try to see how many you could catch in a net
during a given time. :

Review
In this chapter you've seen how to use the keyboard and the
joystick to move an object around on the screen.
CALL KEY, which is used to detect a pressed key, has
three parts:
« The key-unit, which is used to define how the keyboard
will be read. Usually key-unit 3 is used.
* The return-variable stores the ASCII number of the
pressed key so that you can use it later in the program.
« The status-variable stores the status of the key that was
pressed. If the status-variable equals 1, a new key was
pressed. If it equals —1, the same key was pressed, and
if it is equal to 0, no key was pressed.
The form for CALL KEY is:

CALL KEY, (key-unit, return-variable, status-variable)

CALL JOYST reads the joysticks and needs three things:

+ The key-unit, which will be 1 for joystick 1, or 2 for
joystick 2.

* The x-return, which will be the same as the column direc-
tion, left or right. The numbers stored will be 0, 4, or —4.

« The y-return, which will be the same as the row direc-
tion, up or down. The numbers stored will be 0, 4, or —4.

The form for CALL JOYST is:

CALL JOYST (key-unit, left-right, up-down)

Tools of the Trade

You have all the BASIC building blocks that you'll need to
create your own arcade games. As you have seen in this
chapter, it’s relatively easy to design and write individual
pieces of a program, which, when added together, create an
entire game. In fact, you created a game that nets butterflies.
By using what you've already learned, you can create all kinds
of arcade games.

But you can make your game program even better by
adding sound to it. Sound effects can enhance any game, and
we almost always expect them in an arcade-style game.
Chapter 6 introduces you to the TI's sound capability.

67

COCECECEreCerererreeeorerrreeererreee

6 Sound

EDBRRRRDRRDDBBIRIDBBEIEIRDDRDIDDEDIBEDIDIDIBODND

oPoROORROOOOOOROREROOOOPOEORYROPPRRRRTY

1773333333333 333333333333333333333373 3

Using the CALL SOUND Command

You can enhance your games by using sound to provide infor-
mation to the player, as well as making the game more enter-
taining. The command CALL SOUND allows you to create
music, noises, or even individual tones.

CALL SOUND needs at least three numbers to create a
sound:

* Duration, which tells the computer how long to make the
sound. You can use a number from 1 to 4250, each incre-
ment representing 1/1000 second. If you use 400, for
example, you'll get the sound’s duration for 4/10 second;
4000 would set the duration to 4 seconds.

* Frequency, or the pitch of the sound. If it is a positive
number, the range can go from 110 to 44733. This is
expressed as cycles per second, with 110 being a very
low tone and 44733 higher than the human ear can hear.
The User’s Reference Guide, your manual to the TI,
includes an appendix listing the numbers which produce
various pitches on the musical scale. For example, 262
represents a middle C on the musical scale. If you know
how to read music, you can make your TI play tunes.
You can play up to three musical notes at one time, so
you can create three-part harmony.

If the number is negative, it must be between —1 and —8.
Negative numbers produce periodic and white noises, which
can be used for special effects.

Here’s how negative numbers work for the frequency part
of CALL SOUND:

Table 6-1. Noise Frequency Values

Number Effect

-1 High pitched buzz

-2 Medium pitched buzz

-3 Low pitched buzz

—4 A buzz related to the third tone in the group of
tones.

-5 High pitched white noise

-6 Medium pitched white noise

~7 Low pitched white noise

71

==

¢
I

e

-8 White noise that is related to the third tone in
the group of tones.

You can use buzzes for electronic sounds, while white

noises can be used for wind, explosions, surf, static, and so on.

* Volume, which is how loud a sound will be. 0 is the

loudest, and 30 the softest.

You can use CALL SOUND to create up to three sounds
and one noise at once by adding more frequency and volume
numbers after the initial set.

CALL SOUND looks like this:

CALL SOUND (duration, frequency, volume)

You can add more frequencies and volumes after the first
three variables, but be sure to always add them in pairs,
frequency first, followed by volume. You can have four sounds
in a single CALL SOUND command, but only one of them can
be a noise value (-1 to —8). If you have more than one sound
in a single CALL SOUND command, they’ll play at the same
time.

Here’s a typical sound:

CALL SOUND (100,262,0)

This would produce a middle C (262 cycles per second),
last 1/10 second, at the loudest volume of 0.

If you wanted to add a second note, you could change the
command to:

CALL SOUND (100,262,0,294,0)

This would add a middle D sound, also at the loudest
volume, to play two notes at once.

Sounds in Your Program. When you use CALL SOUND,
the TI will process the sound commands independently of the
rest of the program. In other words, the program will continue
with whatever comes after the CALL SOUND command, espe-
cially if the sound’s duration is long. You can use this to play
music or sound effects while the program is running, but when
there is no motion on the screen. Because of this, you must
plan your sounds so that they’ll end when you want them to.
Often a sound will continue while other things take place, so
you must try to time them by estimating how long you want

the sound to continue after the program has processed the
CALL SOUND command.

72

JI2JI33313233333333333333333393H333333233333

TIIIIRIIZIINIDBITIINITIAIIANAIIIIIIIDIDIIIDINIIDIIDNTD

You can also use CALL SOUND to provide a constant
background sound as the game is played. Let’s add sound to
“Flutters,” the game we created in Chapter 5.

160 CALL SOUND(NOR*10+1@,NOC*100+200,0)

Adding this line will create different sounds, depending on
where you move the net.

The variable NOR is the row and is used to calculate the
duration of the sound. If NOR is small, the duration will be
short.

NOC is the variable for the column and is used to calculate
the frequency. The smaller the value for NOC, the lower the
frequency.

When you add this line, you can tell where the net is by
how long the tone plays and what its pitch is.

You can add this line to create a sound effect in Flutters:

825 CALL SOUND(100,-6,8)

Now you’ll hear a short crashing sound whenever the net
bumps into the screen edge. The duration is 1/10 second, and
the tone is one of the white noise sounds the TI can make.

By using this, you can always tell when you’ve hit the
edge.

Sounds can be very useful for telling the player what has
happened, providing player feedback, as well as dressing up
the game by playing music.

Sound Parade
To see how to create several useful sounds, here’s a program
demonstrating effects you can use in your own games:

Program 6-1. Sound Parade

16 REM SOUND PROGRAM

20 CALL CLFEAR

30 CALL SCREEN(7)

4¢ RANDOMIZE

50 GOSUB 2000

60 LET 2$="123456789ARC"
65 CALL KEY(3,K,S)

78 IF S<1 THEN 65

75 LET F$=CHRS (K)

80 FOR I=1 TO 12

83 IF F$=SEG$(Z$,I,1)THEN 90
85 NEXT I

87 GOTO 65

73

98 LET X=I

100 ON X GOSUB 20%,300,408,500,600,700,800,900, 100
¢,1100,1200, 1300

118 GOTO 65

208 REM SCALES

205 RESTORE

210 FOR I=1 TO 8

220 READ A

23% CALL SOUND(200,A,0)

240 NEXT I

250 DATA 262,294,330,349,392,440,494,523

290 RETURN

300 REM TUNE 3 PART HARMONY

314 RESTORE

320 FOR I=1 TO 8

325 READ A

326 LET RB(I)=A

330 NEXT I

340 FOR I=1 TO 30

350
352
354
360
370
39¢
400
410
420
425
490
500
51@
530
590
600
610
620
622
627
630
650
690
700
785
71@
720
740
745
750

74

LET R=B(INT(RND*8)+1)

LET S=B(INT(RND*8)+1)

LET T=B(INT(RND*8)+1)

CALL SOUND(190,R,#,S,8,T,0)
NEXT I

RETURN

REM FALLING SOUND

FOR I=1 TO 30

CALL SOUND(1080,2090-50*1,0)
NEXT I

RETURN

REM BOUNCE

CALL SOUND(100,110,0)

CALL. SOUND(100,440,9)
RETURN

REM WAVES

FOR I=1 TO 4

CALL SOUND(480+INT(RND*200),-7,9)
CALL SOUND(2009,-6,5)

CALL SOUND(400@,-5,12)

CALL SOUND(INT(RND*200),44000,15)
NEXT I

RETURN

REM TICK TOCK

FOR J=1 TO 8

CALL SOUND(19,-5,9)

GOSUB 3009

CALL SOUND(10,-7,9)

GOSUB 3000

NEXT J

JJI33333233333333333333333333333333331338

3373733333979733333373339373333333333333737

790
800
81¢
820
830
849
890
900
910
920
930
940
950
990

RETURN

REM ALERT

FOR I=1 TO 8

CALL SOUND(200,440,0,400,0)
CALL SOUND(200,880,0,800,0)
NEXT I

RETURN

REM URGENT RUNNING

FOR I=1 TO 30

CALL SOUND(18,4408,0,450,%)
CALL SOUND(10,450,0,460,0)
CALL SOUND(10,468,0,470,0)
NEXT I

RETURN

1096 REM UFO MOVING
18684 FOR J=1 TO 8

1065 FOR I=1 TO 7

1616 CALL SOUND(108,-1,1,2000,8)
1070 NEXT I

1980 NEXT J

1098 RETURN

1100 REM DEATH RAY

1185 FOR I=1 TO 8

1116 CALL SOUND(1¢6,-3,08,880,0,890,0)
1156 NEXT I

1198 RETURN

1200 REM CRASH

1265 CALIL SOUND(2086,-5,0)

1210 FOR I=1 TO 3

1220 CALL SOUND(2¢4@*I,-7,1%5)
1230 NEXT I

1296 RETURN

1300 REM BLAST OFF

1385 FOR I=1 TO 15

1316 CALL SOUND(5@,-5,4)

1315 CALL SOUND(18,900+36*I,0)
1320 NEXT I

1350 CALL SOUND(2000,-7,0)

1390 RETURN

2000 REM TITLES

2065 PRINT “LIBRARY OF SOUNDS"
20086 PRINT

201¢ PRINT "TO HEAR A SOUND"
2015 PRINT "PRESS THE APPROPRIATE KEY"
2017 PRINT “(ALPHA LOCK DOWN)"

202@ PRINT

2030 PRINT "1 - SCALES"

2040 PRINT "2 - TUNE 3 PART HARMONY"
2056 PRINT "3 - FALLING SOUND"

75

2068 PRINT "4 - BOUNCE"

2078 PRINT "5 - WAVES"

2080 PRINT "6 - TICK TOCK"

209@ PRINT "7 - ALERT"

2140 PRINT "8 - URGENT RUNNING"
2113 PRINT "9 -~ UFO MOVING"
2120 PRINT "A - DEATH RAY"

2130 PRINT "B - CRASH"

2140 PRINT “"C - BLAST OFF"

220@ FOR I=1 TO 4

2219 PRINT

2220 NEXT I

2900 RETURN

30¢0 REM DELAY 1

3014 FOR DFLAY=1 TO 200
3020 NEXT DFLAY

3930 RETURN

When you type in the program and RUN it, you'll see
several choices displayed. Press the appropriate button to hear
a specific sound.

Each of the subroutines between lines 200 and 1390
contains a set of BASIC commands that use CALL SOUND in
various ways to produce a sound or group of sounds. Each of
the sound subroutines is called by the ON . . . GOSUB
command in line 100. You can analyze each of the subroutines
and see how they work, and even insert them into your own
game program.

You can look through each of the subroutines and see how
a slight change in one of the CALL SOUND variables will alter
the sound when it plays. By experimenting, you’ll be able to
come up with your own sounds.

Using Sound

Sounds can be used in a game program to do several things.
You can play music at the beginning of a program. If your
program will take a long time to set up, a tune can keep the
player’s interest while your program creates the screen and
sets variables.

You can add sounds for each action that happens, so that you
create a lively game. Arcade-game players like to have sounds
with their games, to add entertainment and interest.

However, don’t think that sounds are just for entertainment.
Sounds can be very important. You can use sounds to give the

76

3323333332333 33333333232333332333333333

3133733393373 333333373733337333333333339

player information. You can use sounds to alert the player that
something new has happened; for example, a new wave of oppo-
nents has started down the screen, or the clock shows less time.
When your player-controlled figure crashes or explodes, you can
reinforce the loss by sound, and if the player wins, you can use
sound to reinforce the victory.

Review
CALL SOUND. To add sound to your program you can use
CALL SOUND, which includes three necessary values:
« Duration. The values range from 1 to 4250 and are meas-
ured in 1/1000 second.
« Frequency. Values range from 110 to 44733 and are meas-
ured in cycles per second.
« Volume. 0 is loudest and 30 is softest.
The form for CALL SOUND is:

CALL SOUND (duration, frequency, volune)

Creating Your Game
In the chapters which follow, you'll see many different kinds of
games, but all of them will have the same basic structure.

Here are the three parts of my arcade game structure:

« The setup—determining the initial values for the objects
on the screen.

+ The main loop—checking to see if a key is pressed or a
joystick has been pushed, or moving a computer-
controlled figure, such as the butterfly in Flutters.

« Smaller programs—some of these are subroutines, and
others are just small program pieces that are executed by
GOTO statements. It helps to break a program down
into parts that you can easily deal with and change.
Often you can reuse these small programs and subrou-
tines in other programs.

Analyzing other programmers’ games is almost as educa-
tional as writing your own. When you look over a game
program listing, you can often find techniques you'll want to
use.

As you go through each of the following game chapters,
you’'ll not only have games that you can type in and play,
you'll also see how different kinds of arcade games are
programmed. You'll see hints on how to modify the games by

77

O Sound

making simple changes and in most cases see the program
lines to add or alter to make one of the modifications. By using
the principles that you've learned in the first six chapters, as
well as both old and new techniques in the games themselves,
you'll be able to write your own arcade games on the TI
computer.

The last game chapter focuses on the use of sprites and
other features which you can use if you have the TI Extended
BASIC cartridge. Sprites are special characters that can move
on the screen all by themselves, and have other properties that
make for even more exciting arcade games.

A final chapter will give you a step-by-step process that
you can use to design your own games.

78

QJJJJQQQJ$.QQ$$$§JJQQA_Q»JQ-QQQJQQ.QJ};

7 Martian Attack

BRABBRODBRABRBABPIRIBIINOEZRNIRZABZADD

ssecooootecocsooPORROPOORLORORORCRCRRRERTERY

......

String arrays can be used to store information, in this case the
computer-controlled opponents, in a game. You'll also see how to use
the joystick to operate the player-controlled character.

How to Play
After you've entered this program, type RUN and press
ENTER.

When you do, there’ll be a short pause, and the screen
will go black. You'll see a purple cannon at the bottom of the
screen, and four orange attackers at the top.

They’ll move down at a constant speed, making beeping
noises as they go. But the invaders keep shifting their position,
making it hard to stop them before they reach ground level.
You fire your cannon by pressing the fire button on joystick
number 1. A green missile will shoot up and eliminate an
invader—if your aim was good. To move your cannon, push
your joystick to the right or left.

If you hit an invader, there will be a short explosion and
one of the invaders will disappear. You must get all four
invaders before they reach ground level or you'll lose the
game.

Destroying all four invaders before they reach ground
level ends the game. You'll see a score based on how far away
the last invader was when you eliminated it, and the screen
will turn red.

Win or lose, you’ll have a chance to play again; type Y if
you want another game.

Program Structure

Like all other games in this book, this one also has three parts.
The first part, lines 10-90, is the setup, where the initial values
are assigned. The second part is the main loop, which runs
from line 100 to 140. The third part, various subroutines,
makes up the rest of the program.

Program 7-1. Martian Attack

18 REM MARTIAN ATTACK
15 LET GC=16

20 LET GR=23

25 CALL CLEAR

30 CALL SCREEN(1)

81

M)
Aﬂ
ﬂ
a
ﬂ
35 CALL COLOR(1,5,1) =
40 CALL COLOR(4,13,1) m
45 CALL COLOR(2,7,1)
50 CALL CHAR(33,"183C18183C187EFF") a=)
55 CALL CHAR(42, "FFC3663C18181818")
60 CALL CHAR(6@,"10383838387C7C44") -
65 LET COUNT=@ n
68 RANDOMIZE
69 FOR I=1 TO 8 =
70 LET AS$(I)=" *
71 NEXT I -
72 FOR I=1 TO 4
73 LET AS$(I*2)=CHRS(42) -
74 NEXT I S
75 LET IR=1
80 LET IC=INT(RND*16)+4)
90 CALL VCHAR(GR,GC, 33)
10¢ REM LOOP =
116 LET COUNT=COUNT+1
113 IF COUNT=1@ THEN 200 “
120 CALL KEY(1,K,S)
125 IF K=18 THEN 300 -
139 CALL JOYST(1,JC,JR) =
135 IF JC=~4 THEN 589 :
136 IF JC=4 THEN 550 any
140 GOTO 100
200 REM PRINT INVADERS -
206 LET COUNT=0
210 FOR I=1 TO 8 “
215 CALL VCHAR(IR,IC+I,32) -
220 NEXT I
225 LET IR=IR+l)
230 IF IR=23 THEN 700
233 LET IC=INT(RND*16)+4 =
235 FOR I=1 TO 8
249 CALL VCHAR(IR,IC+I,ASC(AS(I))) “3
242 CALL SOUND(5,800+16*I,0) -
245 NEXT I
250 GOTO 120 =)
300 REM FIRE
316 FOR I=22 TO IR+l STEP -1)
320 CALL VCHAR(I,GC,32)
325 CALL VCHAR(I-1,GC,60) -
327 CALL SOUND(1@,-2,0) -
330 NEXT I
335 CALL VCHAR(I,GC,32) -
340 FOR I=1 TO 8
345 IF ASC(A$(I))=42 THEN 360 -
350 NEXT I
‘3
ﬂ
ﬂ)

82

355
360
379
500
510
515
528
530
535
540
550
560
565
570
580
585
590
700
710
720
730
790
800
810
815
820
830
840
845
850
860
865
870

880
885
887
888
889
890

GOTO 139

IF GC=IC+1 THEN 800

GOTO 350

REM PULL LEFT

IF GC=1 THEN 1000

CALL SOUND(50,440,0)

LET GC=GC-1

CALL VCHAR(GR,GC+1,32)
CALL VCHAR(GR,GC,33)

GOTO 140

REM PULL RIGHT

IF GC=32 THEN 1000

CALL SOUND(59,440,0)

LET GC=GC+1

CALL VCHAR(GR,GC-1,32)
CALL VCHAR(GR,GC,33)

GOTO 140

REM GAME OVER

CALL SCREEN(8)

PRINT “THE MARTIANS HAVE LANDED"
PRINT "YOU HAVE LOST"
GOTO 880

REM GET ONE INVADER

LET A$(I)=CHR$(32)

CALL SOUND(398,-5,0)

FOR I=1 TO 8

IF ASC(AS$(I))=42 THEN 139
NEXT I

REM END

CALL CLEAR

CALL SCREEN(18)

PRINT “YOU GOT THEM ALL"
PRINT "YOUR SCORE WAS ";INT(10@*((23-IR)
/22));"POINTS"

PRINT "WANT TO PLAY AGAIN?"
PRINT "PRESS Y FOR YES"
CALL KEY(3,K,S)

IF S=@ THEN 887

IF K=89 THEN 10

END

10860 REM CRASH
1619 CALL SOUND(100,-6,0)
1620 GOTO 140

Here’s a line-by-line description of the game program:

Line 10 is the title of the game, put into a REM statement.

It's a good idea to have at least the title, and any other informa-
tion you want to remember about the game, here.

83

Lines 15-20 initialize the gun column and row at 16 and 23
respectively.

Line 25 clears the screen, and line 30 turns the screen
black. Putting these lines at the beginning of the program
makes sure the screen begins empty.

Lines 35-45 set the character colors to purple for the excla-

mation point, green for the < sign, and orange for the asterisk.

Lines 50-60 change the !, <, and * signs to new dot
patterns with CALL CHAR.

Line 65 sets the COUNT variable to 0, which is used to
decide when to move the invaders down.

Line 68 uses the RANDOMIZE command. If this were not
used, the same pattern would repeat every game.

Lines 69-71 contain something you've not yet seen used in
this book. Blanks are first put into the string variable array A$.
This is where the invaders are stored, and the blanks will
remove any display left from an earlier game.

Lines 72-74 put the invaders into the proper locations of
A$. Character 42 is the invader; it will be placed into every
other location of A$ (I*2).

Lines 75-80 set up the beginning invader row and column.
The row (IR) will be 1, at the top of the screen, and the column
(IC) will be set by a random number between 4 and 21. Since
the invader group is eight columns wide, this will center them.

Line 90 puts the gun (ASCII 33) at its proper row and
column on the screen.

Line 100 is a REM to remind you that the main loop starts
at line 100. The program will spend most of its time in this
loop.

pLine 110 adds 1 to the COUNT variable. Line 113 sees if the
COUNT variable is equal to 10. If it is, the program jumps to
the smaller program at line 200. This will move the invaders
down one line.

Line 120 checks the joystick fire button. If it was pressed,
line 125 tells the program to go to line 300, which fires a
missile.

Line 130 reads the joystick. If it was moved left, line 135
shifts the program to the subroutine at line 500; if it was
moved right, line 136 shifts the program to line 550.

Line 140 closes the main loop and sends the program back
to line 100.

Line 200 begins the routine that moves the invaders down.

JJIII3IDI33I3I3I333332333333333333333335333

Line 206 changes the COUNT variable back to 0 so that the
next time around, the main loop will start counting up from 0
again.

& Lines 210-220 PRINT spaces (ASCII 32) to erase the old
invaders before PRINTing new ones.

Line 225 increases the row (IR) of the invaders by 1,
moving them down.

Line 230 checks to see if the new row of the invaders is
equal to 23. If it is, the program jumps to 700, which ends the

ame.
8 Line 233 calculates a new column for the invaders between
column 4 and column 21.

Lines 235-245 put the new invaders on the screen, by
PRINTing the string variable array A$. If some of the invaders
have been destroyed, they won’t be printed. Line 242 creates a
sound as each invader is printed.

Line 250 shifts the program back to the main loop.

Line 300 begins the routine that executes the firing of the
missile.

Lines 310-330 fire the missile and produce a sound as it
moves. Line 310 calculates where the missile will begin and
end. The missile (ASCII 60) is erased in line 320 and put on the
screen in line 325. Notice that the missile is erased one row
below the place where it will be put on the screen. The missile
sound is created in line 327.

Line 335 erases the missile at the last point it was
PRINTed, but only after it's moved up as far as possible. This is
necessary because of the way that the FOR/NEXT loop works
in lines 310-330.

Lines 340-350 check to see if any invaders are in the proper
position. If they are, the program jumps to line 360. Other-
wise, the FOR/NEXT loop continues, and the program goes
back to the main loop at line 130.

Line 360 checks to see if any invader is in the same column
as the missile. If it is, the missile has hit one of the invaders,
and the routine at line 800 is called. Otherwise, the program
uses line 370 to return to the FOR/NEXT loop at line 350 so it
can check for more matches.

Lines 500-540 move the player’s figure if the joystick was
pushed to the left. Line 510 checks to see if the gun row is at
the left edge of the screen. If it is, the program jumps to line
1000.

85

Martian Attack

Line 515 produces a sound as the gun moves.

Line 520 decreases the gun column by one, and lines 530
and 535 erase the old gun and print it at its new location.

Line 540 sends the program back to the main loop.

Lines 550-590 operate like lines 500-540, except for right
joystick movement.

Lines 700-790 make up the routine which executes when
the invaders reach row 23. Line 710 changes the screen color
and lines 720-730 print out a message. Then the program goes
to line 880, for the ending message.

Lines 800-840 eliminate an invader. Line 810 puts a space
into the array A$ so that instead of an invader, a space is
PRINTed. An explosion sound effect is produced by line 815,
and lines 820-840 check to see if there are invaders left. If there
are one or more left, the program returns to the main loop.

Eliminating all the invaders sends the program to the final
message starting at line 850.

Line 850 clears the screen, line 860 changes its color, line
865 prints the message, and line 870 calculates your score,
based on how low on the screen the invaders reached.

Lines 880-890 let the player choose another game. Line 887
uses CALL KEY to see if a key was pressed; line 888 sees if any
key was pressed. If no key was pressed, CALL KEY is used
again. If a key was pressed, the program sees, in line 889, if a
Y (character 89) was pressed. If it was, the program starts
again at line 10. If it wasn't, the program ends at line 890 with
an END. It's a good programming habit to END your programs
to be on the safe side.

Lines 1000-1020 create the crashing sound effect used
when the player’s figure goes too far to the left or right.

Variables

GC Gun Column.

GR Gun Row.

COUNT Counting variable used to determine when to
lower the invaders one row.

A% String variable array used to store the invaders’
characters.

IR Invader Row.

IC Invader Column.

K Key pressed.

S Key status.

86

eI
L

Martian Attac

JC Joystick Column value.
JR Joystick Row value.

Special Notes. The use of string variable arrays in this
example is helpful so that you can keep track of which invaders
have been destroyed and which haven't. Notice that you must
use a string variable array if you want to change what is in the
string; otherwise, you could just use a string and read from it
by using the SEG$ function.

Arrays can make a program more efficient, especially if a
process is repeated many times. The use of a variable array in
“Martian Attack” is a good example. For more information on
string variable arrays, refer to the TI's User’s Reference Guide or
COMPUTE!'s Programmer’s Reference Guide to the TI-99/4A.

Changing the Game

There are many ways you could change Martian Attack.
Changes of colors, sounds, and character shapes would be
simplest.

« If you don’t have a joystick, you can use the methods
outlined in Chapter 5 to use the keyboard by using
CALL KEY.

* You can increase the number of invaders by putting
more of them in the array A$ or by making A$ larger and
changing the lines that use A$ to reflect this.

* You can make the game faster and harder by letting
COUNT go up to a smaller number in line 113, or you
can make it slower and easier by making the count go to
a higher number.

Although this was designed to be a simple program so
that you could analyze the parts easier, you could do much to
make this into a more elaborate game. Some of the things you
could do are:

» Make it so that each time a group of invaders is

destroyed, a new group starts out at a lower position.

* Also, you could design it so that as each new wave
begins, a different shape of invader attacks by using
CALL CHAR to redefine new characters.

« After going through some of the examples in later chap-
ters, you might want to add a feature that lets the
invaders drop missiles on the player’s character.

* You could also add other objects that could be shot

87

down. If you do, you might want to change the scoring
to include these objects, or you could change the scoring
if you have multiple waves.

* After you have seen later chapters, you could also
display the current score, the number of guns left (if you
want to add more than one gun destroyed before the
game is over), or the high score during multiple game
play.

Round 10. For an example of how to actually program a
change to the game, you could add a few lines so that you can
play ten rounds before the game ends.

Each round of play will have the invaders starting at a
lower row than before. You'll get a round score, and then, after
ten rounds, you’ll see a final score. .

It's not difficult. As you make these changes, you'll see
how easy it is to modify any arcade-style game.

To begin, you could add these lines to the game program.

12 LET ROUND=1
13 LET POINTS=#

These lines set the ROUND variable, which is used not only to
keep track of which round the game is in, but also to determine
where the invaders start on the screen. POINTS is the variable
for the total number of points earned.

Now enter these lines:
867 LET TEMP=INT(100*((23-IR)/22))

868 LET POINTS=POINTS+TEMP
875 GOTO 3000

The temporary variable, TEME stores only the points
earned that round. TEMP is added to POINTS to create a total
score. Line 3000 ends the round. Here’s the routine beginning
at line 3000:

3000 REM NEXT ROUND

3019 LET ROUND=ROUND+1

3015 FOR I=1 TO 1000

3016 NEXT I

3020 IF ROUND<>11 THEN 15

3030 PRINT "THE GAME IS OVER"

2@04¢ PRINT "YOUR FINAL SCORE IS ";POINTS
3358 GOTO 880

These lines increase the ROUND number, create a short
delay so you can read the round’s message, and then decide
whether the program has gone ten rounds. If not, the program

88

JJIJJI3I3IDII3333333I3333333333333333333333

o Man’tman Attacﬂ« 7

returns to line 15 to start another round.

If ten rounds have elapsed, lines 3030-3040 put the final
score on the screen and send the program to line 880 for the
end routine.

Some of the program lines need to be changed.

75 LET IR=ROUND

This line is changed so that IR, the invaders’ beginning
row, will equal ROUND. As ROUND increases, so will the
invaders’ row.

730 GOTO 867

This alters the program logic so that the game will not end
here, but go to the end of a round instead.
87@¢ PRINT "YOUR ROUND SCORE WAS ";TEMP;" POINTS"

The temporary round score, TEME is printed instead of
the total points.

You’ll also have to erase line 790, since line 730 now is a
GOTO command.

89

OO0 OO OO0 O DO O OO DO

8 Martian
Revenge

Tttt IR

sececcocooootOROOROORORORRORRRORERRRPE

D33 IIINIRDIIDRIDTIINIDIRNIDIRDIIIBIIDBDIDIEIDDND

Horizontal scrolling is difficult to simulate on many computors. But
by using a large string variable array, you can create a game which
makes it appear as if the screen were scrolling from right to left.

How to Play
Your ship starts out at the top, and the city is moving below
you. You can drop bombs by pressing the joystick fire button.

If you push the joystick to the right, your ship will go
forward, and the city will flow beneath you faster. If you push
the joystick to the left, your ship will drop back and the city
will scroll under you more slowly.

As you pass over a missile base, it may fire at you. If it
does, it may hit you and the game ends.

Hitting a building with a bomb increases your score by 10
points. If you hit a missile base, you receive 25 points. No
points are awarded if you hit an empty area.

When the game begins, there will be a pause while the city
array is filled, and then the title will PRINT. You see how many
bombs you have available and what your score is. You start out
with only 20 bombs; each time you drop one, the display
changes.

When you crash, the game is over, and your score is
shown.

Program 8-1. Martian Revenge

16 REM MARTIAN REVENGE

20 CALL CLFAR

25 CALL COLOR(3,16,1)

26 CALL COLOR(4,16,1)

30 CALL CHAR(93, "@038FFO9FFBSFFFF")
31 CALL CHAR(94, "FFABFFDS5FFABFFFF")
32 CALL CHAR(95, "666666FF89FF91FF")
33 CALL CHAR(96, "2A2A2A6EFE37FFFF")
34 CALL CHAR(97, "@6EFFFFFFFC3C3C3")
35 CALL CHAR(98, "3C1818383030FFFF")
36 CALL CHAR(33, "0OQOCOEGFEE3FEQO")
37 CALL CHAR(42, "00000000000849FF")
38 CALL CHAR(104, "10383838387C7C44")
39 CALL CHAR(11l2, "00@@00181800008")

93

Martian Revenge

)
=
a
AE)
*
49 CALL COLOR(1,7,1) -
41 CALL COLOR(2,14,1)
42 CALL COLOR(S,3,1) =
43 CALL COLOR(9,3,1) &=
44 CALL COLOR(5,16,1)
45 CALL COLOR({6,16,1) =)
46 CALL COLOR(7,16,1) -
47 CALL COLOR(14,5,1))
48 CALL COLOR(11,8,1)
49 CALL SCREEN(2))
5¢ DIM A$(128) &=
53 FOR I=33 TO 128 =
54 LET A$(I)=CHRS(INT(RND*6)+93) =)
56 NEXT I -
57 LET K=32 <=y
60 LET B$S="REVENGE{4 SPACES)}BOMBS{6 SPACFS}HITS "
61 FOR I=1 TO LEN(BS))
62 CALL VCHAR(1l,I,ASC(SEGS$(BS,I,1))) =
63 NEXT I -
65 LET COUNT=0 =
66 LET SCORE=0 --
67 GOSUB 400 =
78 LET SR=2 -
72 LET SC=16)
74 CALL VCHAR(SR,SC,33)
79 RANDOMIZE =
84 FOR I=1 TO 20 L)
82 LET AS$(INT(RND*96+33))=CHRS$(104) .
84 NFXT I e
99 LET BOMB=20 N
95 GOSUB 460 “
98 GOSUB 300 =
100 RFM MAIN LOOP
165 LET SPEED=SPEED+1 =
11¢ IF SPEFD<INT(5-SC/8)THEN 120
115 GOSUB 300 S
120 CALL KEY(1,KK,S)
125 IF KK=18 THEN 500 -
127 CALL JOYST(1l,JC,JR) -~
128 IF JC=4 THEN 600
129 IF JC=-4 THEN 658 =
130 IF .5>RND THEN 700
135 LET COUNT=COUNT+1 a=y
14¢ IF COUNT=5 THEN 800
190 GOTO 190)
300 REM PRINT CITY
310 FOR I=1 TO 32 =
320 LET AS(I)=AS$(K+I) =y
330 CALL VCHAR(24,I,ASC(AS$(I)))
ﬂ%
=
ﬂ

94

I3 IIIIITIIIITIRBINITINNIINIDIININIINITITITIIND

340
359
355
360
370
380
400
410
420
430
440

4690
465
470
475
480
485
490
500
503
505
506
510
520
525
530
532
535
537
540
545

547
550
555
557
560
600
605
610
615
620
630
650
655
660
665
670
680

PP

Martian Revel

NEXT I

LET K=K+1

LET SPEED=8

IF K<>96 THEN 380

LET K=32

RETURN

REM SCORE

LET B$=STRS (SCORE)

FOR I=1 TO LEN(BS$)

CALL VCHAR(1,27+I,ASC(SEGS$(B$,I,1)))
NEXT I

RETURN

REM BOMBS

LET B$=STRS (BOMB)

FOR I=1 TO LEN(BS)

CALL VCHAR(1l,17+I,ASC(SEG$(BS,I,1)))
NFEXT 1

CALL VCHAR(1,17+I,32)
RETURN

REM BOMBS AVAY

LET BOMB=BOMB-1

IF BOMB<@ THEN 139

GOSUB 469

FOR I=SR+1 TO 23

CALL VCHAR(I,SC,32)

CALL VCHAR(I+1,SC,112)
NEXT I

IF AS$(SC)=CHRS (42)THEN 545
IF AS$(SC)<>CHRS$(104)THEN 540
LET SCORE=SCORE+15

LET SCORE=SCORE+10

CALL VCHAR(24,SC,42)

LET AS(SC)=CHR$(42)
LET AS$(SC+K-1)=CHRS (42)
CALI. SOUND(1¢@,-5,0,200,0)
GOSUB 400

GOTO 139

REM MOVE RIGHT

IF SC=32 THEN 130

LET SC=SC+1l

CALL VCHAR(SR,SC-1,32)
CALL VCHAR(SR,SC,33)
GOTO 130

REM MOVE LEFT

IF SC=1 THEN 130

LET SC=SC-1

cALL VCHAR(SR,SC+1,32)
CALL VCHAR(SR,SC,33)
GOTO 130

ge

8

95

700
705
797
710
715
717
720
722
725
730
735
7490
75@
752
754
756
760
809
820
825
839
835
849
850
900
919
920
930
1000
101¢
102¢
1036
1040
1845
1050
1060

Prog

Lines 25 and 26 use CALL COLOR to change all numerals
to white, so they’ll show on the black background when the

Martian Revenge

REM MISSLES
IF AS(SC)<>CHRS$(104)THEN 135
RANDOMIZE
LET H=INT(RND*22)
FOR I=22 TO H STEP -1
CALL VCHAR(I+l,SC,32)
CALL VCHAR(I,SC,104)
CALL SOUND(1,-6,0,800-8*I,0)
IF SR=I1 THEN 750
NEXT I
CALL VCHAR(I+1,SC,32)
GOTO 135
CALIL SOUND(1000,-6,0,110,0)
CALL CLEAR
PRINT "YOU WERE HIT BY A MISSILE"
PRINT “YOUR SCORE WAS ";SCORE
GOTO 1000
REM COUNT
IF SR=23 THEN 900
LET COUNT=0
LET SR=SR+1
CALL VCHAR(SR-1,SC,32)
CALL VCHAR(SR,SC,33)
GOTO 100
REM CRASH
CALL CLEAR
PRINT "YOU CRASHED"
PRINT “YOUR SCORE WAS ";SCORE
REM END
PRINT "WANT TO PLAY AGAIN"
PRINT “PRESS Y FOR YFS"
CALL KEY(3,K,S)
IF S=0 THEN 1030
CALL CLEAR
IF K=89 THEN 50
END

ram Structure

game runs.

Lines 30-39 create the custom characters used in the game.
Lines 30-35 create the buildings of the city, line 36 creates the
player’s ship, line 37 creates rubble that is left after a bomb has
dropped, line 38 creates the missile, and line 39 draws the

player’s bomb figure.

Lines 40-49 color the various characters. Line 40 colors the

96

3333333333333 533333233I333333333333233

ey

3373237393723 39339323333333333333333333337

Martian Revenge

e (§

(@)

ship orange, while line 41 colors the rubble red. Lines 42-43
color the city characters green, lines 44-46 color the letters
white for display purposes, line 47 colors the missiles purple,
and line 48 colors the bomb blue. The screen color is set to
black in line 49.

Lines 50-56 fill the string variable array A$ with various
Martian city buildings. The array itself is used in two parts.
The first 32 positions store the current line on the screen, while
positions 33-128 are filled with the whole city. This creates a
long cityscape that is repeated every 96 moves. As the city
scrolls below the ship, new parts of the array A$ are put on the
screen.

Line 57 sets the variable K equal to 32; this keeps track of
which part of the city is on the screen. K is the number of the
leftmost portion of the city that is currently visible.

Lines 60-63 PRINT letters on the screen. Since you can’t
control where PRINT places letters (it will always PRINT near
the bottom), you have to use CALL VCHAR and PRINT one
letter at a time by reading from a string variable, in this case
B$. This technique is very useful for displaying titles and other
messages as the game runs.

Line 65 sets the COUNT variable to 0, which determines
when to lower the ship.

Line 66 is the variable for SCORE.

Line 67 shifts the program to the subroutine at line 400.
This puts the current score on the screen.

Lines 70-72 start the ship at row 2 and column 16, while
line 74 puts the ship on the screen.

Lines 79-84 put the 20 missiles in random locations into
the array A$.

Line 90 sets BOMB, the counter for the number of bombs.
Line 95 then GOSUBs to line 460, which displays the number.

Line 98 calls the subroutine at line 300, which prints the
current part of the city visible on the screen.

Line 100 begins the main loop.

Lines 105-110 control the speed of the city as it scrolls
beneath the ship. SPEED is actually a counter, and it increases
to a number calculated in line 110, depending on which column
the ship is in. If SC, the ship column, is large, the count is
reached quickly, and the program GOSUBs to line 300, which
puts the city on the screen. If SC is smaller, it takes longer to
get to the maximum SPEED, so the city scrolls by slowly.

97

Martian Revenge

Lines 120-125 check the joystick fire button. If it was
pressed, the program goes to line 500, which drops the bomb.

Lines 127-129 read the joystick. If it was pushed left, the
program goes to line 650; if it was pushed right, line 600 is
called.

Line 130 tests to see if a random number is less than .5. If
it is, the program will go to line 700, which will fire a missile.
A missile fires only half of the time.

Lines 135-140 check the COUNT variable. If it is equal to 5,
the program goes to line 800, which moves the ship downward
one row.

Line 190 ends the main loop.

Line 300 begins the subroutine that puts part of the city on
the screen. K is a counter that points to the place in A$ where
the current leftmost part of the city is.

Lines 310-340 move the city parts from the fixed part of the
array (elements 33-128) into the temporary part of the array
(elements 1-32). Also, the new part of the array is put on the
screen in line 330.

Line 350 increases K so it points to the next part of the city.

Line 355 sets the SPEED counter back to 0.

Line 360 checks K. If it is less than 96, the program returns
to the main loop. If it equals 96, the array resets K to 32, so it
can start at the beginning of the cityscape.

The subroutine in lines 400-450 puts the score on the
screen.

Lines 460-490 comprise a subroutine which displays the
number of bombs left on the screen.

Line 500 begins the bomb-dropping routine. Line 503
subtracts 1 from the number of bombs left, line 505 checks to
see if a bomb is left and goes to the main loop if all have been
used, and line 506 GOSUBs to line 460 to print the new
number of bombs left.

Lines 510-530 erase the bomb and PRINT it at the next row.

Line 532 checks to see if the bomb has hit rubble. If it has,
the program goes to line 545, so that the player’s score isn't
increased.

Line 535 checks to see if the bomb hit a missile base. If it
didn’t, the program goes to line 540, skipping over line 537.

Line 537 adds 15 points to the score and executes only if
the bomb hit a missile base.

Line 540 adds 10 points to the score. The bomb hit either a

98

SR EEENEEEENEAER BRI IR IV IR N PR

G

city character or a missile, so 10 points are added for a city and
a total of 25 for a missile base (15 points from line 537 + 10).

Line 545 PRINTS a rubble character on the screen, while
line 547 places the rubble character into the current array posi-
tion. Line 550 makes sure the rubble will reappear the next
time the ship flies over it.

Line 555 creates the exploding bomb sound effect.

Line 557 GOSUBs to the subroutine which displays the
new score, and line 560 returns to the main loop.

Lines 600-680 move the ship left or right, depending on
joystick movement.

Line 700 begins the routine that fires the missiles from the
city. Line 705 checks to see if a missile is at the same column as
the ship. If it isn’t, the program goes back to the main loop.

Lines 707-740 move the missile. The variable H determines
how high the missile will fly before it explodes. Lines 717-722
erase the old missile, put the new one.on the screen, and
produce the missile’s sound. Line 725 checks to see if the
missile has reached the same height as the ship row. If it has,
the program goes to line 750. If it hasn’t, the missile continues
until it reaches the height H. After that, it erases itself at its last
position, and the program goes back to the main loop.

If the missile hit the ship, line 750 creates the sound of an
explosion.

Lines 752-760 clear the screen and print the message. Then
the program goes to line 1000 and finishes the game program.

Line 800 begins the small program that moves the ship
downward one row at a time. Line 820 checks to see if the ship
has reached the bottom row; if it has, the program goes to line
900. Line 825 sets COUNT back to 0. Lines 830-850 add one to
the ship’s row, erase the old ship, and put the new ship on the
screen. Then the program goes back to the main loop.

Lines 900-930 print the crash message and your score.

Lines 1000-1060 print the final messages and reset the
game. Notice that in line 1050, the program goes back to line
50, not line 10. There’s no need to redefine the characters and
colors again.

Variables
A$ String variable array used to store the cityscape.
K Counter that points to the leftmost element in the

cityscape array currently displayed.

99

) Martian Revenge

B$ String which puts messages on the screen using
CALL VCHAR.

COUNT Counter to move the ship lower after a certain
number of times through the loop.

SR Ship Row.

SC Ship Column.

BOMB Number of bombs left.

KK Key pressed.

S Key status.

SPEED Counter variable that determines how fast the
city scrolls.

JC Joystick Column direction.

JR Joystick Row direction.

Special Notes. By using the string variable array A$, you
were able to simulate a scrolling screen. The array A$ is
actually split into two parts. The front end, elements 1-32,
stores the current group of characters that are on the bottom of
the screen. The rest of the array, elements 33-128, stores the
whole city, only a part of which can be on the screen at any one
time. K, a variable pointing to an element in the array, starts
out at 32 and counts up each time the city “moves.” When K
equals 96, the K turns back to 32 and the front part fills with
the earlier parts of the cityscape. This may sound confusing,
but if you study it, you'll see how this array is used to simulate
horizontal scrolling.

By using the SPEED variable as a special counter to deter-
mine when to scroll the city, and by checking against a variable
for the ship’s column, the player can vary the speed at which
the city scrolls. This creates the illusion of movement.

The technique used in line 130 gives you a way to produce
an inconsistent event. By using .5>RND, you are generating a
number between 0 and 1; if it’s less than .5, the event happens.
This is often useful when you want an efficient way to include
random events in your games.

Changing the Game
* Besides modifications similar to those in Chapter 7, you
could change this game radically by having the ship fly
past the city without crashing. You could even have more
than one array and create mountain and valley characters
in the bottom few rows and scrolling them together.
* You could vary the things that were in the arrays and have

100

I3IIIIBIIONIIIDIRIINIIIIITIRIRIIIDIIRIIAADNTIIIANN

different points for things you hit.

« To make the game easier or harder, you could vary the
speed of scrolling, give the player more bombs, or give the
Martians more missiles (or fire them more often).

« If you wanted to, you could have enemy rockets coming at
the player from the right side, and you could give the
player small missiles that could be fired sideways.

* You can be the attacker or the defender. By using the
second joystick, you could have one person be the attacker
and another be the defender.

Second City. You can make the city have a few towers
sticking up into the next row so that the effect of motion will
be stronger.

The towers are somewhat flimsy, and your ship will be
able to ram through them, as will the enemy’s missiles.

First, add these lines to the program:

51 DIM z$(128)

52 GOSUB 38090

These create a new string array, Z$, which holds additional
city characters in the same way that A$ did, except that Z$ will
display in row 23. The second row can be created by a subrou-
tine starting in line 3000.

325 LET Z$(I)=2Z$(K+I)
335 CALL VCHAR(23,I,ASC(Z$(I)))

The above lines are used in exactly the same way as the corre-
sponding lines for A$ (320 and 330), first to move the array
elements to the screen area, and second, to put the characters
on the screen in row 23.

3000 REM SECOND STORY
3918 FOR I=1 TO 128

3012 LET Z$(I)=CHR$(32)
3014 NEXT I

3920 FOR I=33 TO 128
3930 IF RND>.2 THEN 3850
3049 LET 7$(I)=CHRS$(98)
3050 NEXT I

3060 RETURN

This subroutine creates a second story for the city. The new
array, Z$, is filled with spaces, then, depending on the random
number from line 3030, a tower is put in the array. This should
draw one tower for every five spaces, on the average.

101

POOCOOLOOC0000000000CODCO0CH0DRNCONTE

-
P
-
s
-
-
-
-
-
-
‘-
-
-
-
-
-
-
-
-
-
-
-
-
™
-
E
-
-
-
.
-
-
-

9 Riverboat

socecooottoOCORPOCOOROOROLOOORORRRRORRRE

133333323393 IIIIIIIIIIRIANIIIIINIIIAN

Vertical scrolling can be used in many different types of games. In
“Riverboat,” it creates a river, obstacles in midstream, and even
factories on the riverbank.

How to Play
Green riverbanks are on either side, and your riverboat
appears at the top of the screen as the game begins.

You always move downriver, the vertical scrolling making
it seem as if the boat moves, while it is actually the scenery
which changes position beside your boat.

You may move the boat to the left or right with the
joystick, but be careful not to crash into the riverbanks, which
are always changing as the river winds back and forth.

Once in a while you'll see a blue factory with smokestacks
and a dock attached to it. Don’t crash into the factory or the
docks!

If you move alongside a dock, press the joystick fire
button and pick up cargo from the docks. If you do it correctly,
your score will show on the left side of the screen. If you miss
the cargo, the word oops appears instead.

The river goes on forever. If you crash into the bank or a
dock, a message appears, telling you how many times you
successfully loaded cargo.

Program 9-1. Riverboat

16 REM RIVERBOAT

2@ CALL CLEAR

25 CALL SCREEN(8)

3¢ CALL COLOR(1,7,1)

32 CALL COLOR(2,13,1)

36 CALL COLOR(9,5,1)

40 CALL CHAR(33, "FFFFFF7E7E7E3C18")
42 CALL CHAR(34,"7E7E7EO@FFFFFFFF")
44 CALL CHAR(42, "FFFFFFFFFFFFFFFF")
46 CALI, CHAR(96, "2A2A2A6EFEE7FFFF")
48 CALL CHAR(97, "000000000300A33FF")
50 LET RR=3

60 LET Lp=11

62 LET RB=21

64 FOR I=1 TO 3

65 GOSUB 300

66 NEXT I

69 LET RC=INT((RB+LB)/2)

105

345
350
360
365
370
375
380
382
385
400
419
420
439
431

106

FOR I=1 TO 20
GOSUB 300
NEXT I
GOSUB 200
LET SCORE=0

REM MAIN LOOP

GOSUB 400

GOSUB 700

GOSUB 200

GOSUB 900

GOSUB 300

GOTO 100

REM PRINT BOAT

CALL VCHAR(RR-2,RC,32)
CALL VCHAR(RR-1,RC, 34)
CALL VCHAR(RR,RC,33)
CALL SOUND(109,-5,08,910,15)
CALL SOUND(20@,-5,15,910,20)
RETURN

REM PRINT BANK
RANDOMIZE

CALL HCHAR(24,1,42,LB)
CALL HCHAR(24,RB,42,32-RB)
IF RND<.9 THEN 330

IF RND<.5 THEN 328
CALL VCHAR({24,LB+1,96)
CALL VCHAR(24,LB+2,97)
GOTO 330

CALL VCHAR(24,RB-1,96)
CALL VCHAR(24,RB-2,97)
LET RB=RB+INT{RND*3)-1
LET LB=LB+INT(RND*3)-1
IF RB-LB<6 THEN 380

IF TLB<7 THEN 360

IF RB>28 THEN 370
PRINT

RETURN

LET LB=LB+1l

GOTO 345

LET RB=RB-1

GOTO 345

LET LB=LB-1l

LET RB=RB+1

GOTO 345

REM PICK UP CARGO

CALL KEY(1,K,S)

IF K<>18 THEN 490

CALL GCHAR(RR-2,RC-1,C)
IF C=97 THEN 440

¢
|

IR NEREE R

JJIY2r2323332:33333 3333

f
\

-
'

3333333

432
433
434
435
436
437
449
445
450
455
460
490
500
510
520
53¢
535
560
600
610
620
630
640
700
710
720
722
730
750
752
754
760
762
765
780
782
784
790
792
795
800
805
8906

810
820
830
840
850

CALL GCHAR(RR-1,RC-1,C)

IF C=97 THEN 449

CALL GCHAR(RR-1,RC+1,C)

IF C=97 THEN 440

CALL GCHAR(RR-2,RC+1,C)

IF C<>97 THEN 500

LET SCORE=SCORE+1

CALL SOUND(200,440,9)

LET AS$=STRS (SCORE)

LET COL=1

GOSUB 600

RETURN

REM PRINT ERROR

LET A$="OOPS"

LET COL=1

GOSUB 609

CALL SOUND(1080,-1,0¢,200,9)
RETURN

REM PRINT MESSAGE

FOR I=1 TO LEN(AS)

CALL VCHAR(23,COL+I,ASC(SEG$(AS$,1,1)))
NEXT I

RETURN

REM BOAT JOYST

CALL JOYST(1,JC,JR)

IF JC=4 THEN 750

IF JC=-4 THEN 780

RETURN

CALL GCHAR(RR,RC+1,C)

CALL GCHAR(RR-1,RC+1,C)

IF C<>32 THEN 800

LET RC=RC+1

CALL VCHAR(RR-2,RC-1,32,2)
RETURN

CALL GCHAR(RR,RC-1,C)

CALL GCHAR(RR-1,RC-1,C)

IF C<>32 THEN 800

LET RC=RC-1

CALL VCHAR(RR-2,RC+1,32,2)
RETURN

REM CRASH

FOR I=1 TO 10

CALL SOUND(306,-6,I-1)
NEXT I

PRINT "YOUR BOAT CRASHED"
PRINT "YOUR SCORE WAS ";SCORE
PRINT "WANT TO PLAY AGAIN"
PRINT "PRESS Y FOR YES"
CALL KEY(3,K,S)

107

Riverboat

869 IF S=0 THFN 850

870 1IF K=89 THEN 10

880 END

99@ REM CHECK AHEAD

910 CALL GCHAR(RR+1,RC,C)
920 IF C<>32 THEN 800
930 RETURN

Program Structure

Line 20 clears the screen, and line 25 colors the screen blue.

Line 30 colors the riverboat dark red, line 32 colors the
riverbanks dark green, and line 36 colors the factories and
docks dark blue.

Lines 40-48 create the custom characters. Lines 40-42
create the riverboat, line 44 the riverbank, and lines 46-48 the
factory and dock.

Line 50 makes the riverboat’s row position equal to 3.

Lines 60-62 make the initial left bank column equal to 11
and the initial right bank column equal to 21.

Lines 64-66 set up a FOR/NEXT loop to run three times to
print the first three segments of the riverbank; this is needed
so that the riverboat doesn’t crash into the riverbank right
away.

Line 69 sets the riverboat column to the middle of the first
three segments of the riverbank.

Lines 70-78 create the rest of the riverbank, adding 20
more segments.

Line 80 uses a GOSUB to put the riverboat in the water,
and line 90 sets the SCORE to 0.

Lines 100-190 are the main loop. You'll notice that in this
game, the main loop uses nothing but GOSUB to subroutines.
This creates a cleaner game program, and makes the order of
the main loop elements easier to change. By looking to the
called subroutines, you can see what each main loop line does.

Lines 200-235 comprise the subroutine which puts the boat
on the screen and create the sound effect of the riverboat’s
paddlewheels. The boat is actually composed of three charac-
ters: the bow, the midship, and the stern, which is actually a
space. By putting a space at the end, you can easily make the
boat seem to move.

In lines 300-385 is a subroutine which puts the riverbank’s
next segment at the bottom of the screen and then scrolls it
upward with a PRINT statement. This subroutine is the heart

108

73123393233 3I333IIIIIIVIBIBNIIBIIBIDIIDD N

of the vertical scrolling technique.

Line 305 uses RANDOMIZE to make sure that each bank
is randomly drawn.

Lines 310-320 put the left and right banks on the screen.
The value was calculated the last time this subroutine was
called. By using HCHAR, and having several characters
PRINTed at once, you can create the left and right bank
quickly. The left bank starts at column 1 and goes to the
column number stored in the variable LB. The right bank starts
out at the column number in variable RB and PRINTSs charac-
ters to the right edge of the screen.

Line 322 generates a random number and checks to see if
it is less than .9. If it is, the program goes to line 330. If it isn't,
the program continues to line 324, which puts a factory on the
riverbank an average of one out of every ten times.

Line 324 generates another random number to determine
whether a factory will be put on the right or the left bank. If it
is less than .5, the program goes to line 328. If it isn’t, the
program continues.

Lines 325-327 put the factory and the dock on the left bank
and send the program to line 330, while lines 328-329 do the
same on the right bank.

Lines 330-340 create new values for the right and left
banks by adding 1 to or subtracting 1 from each bank’s value.

Lines 342-344 check the left and right bank (LB, RB) values
for various operations.

Lines 360-365 take care of what happens if the left bank
was less than 7. One is added to the left bank, and the
program goes to line 345 to complete the riverbank subroutine.
Lines 370-375 take care of what happens if the right bank is
greater than 28. One is subtracted from the right bank and the
program goes to line 345.

If the distance between the two banks is too small, lines
380-385 are executed. One is added to the left bank and one is
subtracted from the right bank.

Lines 400-490 execute when the joystick fire button is
pressed. Lines 410-420 check the fire button. Lines 430-437 use
CALL GCHAR to check for a dock next to either side of the
riverboat’s midship or bow. Lines 430, 432, 434, and 436 test
each of the four possibilities. Lines 431, 433, and 435 test to see
if the dock character is there. If it is, the program goes to line
440. If if gets all the way through without finding any docks,

109

S Riverboat

line 437 makes the program go to line 500, which tells you that
you missed.

Line 440 adds one point to your score, and line 445 makes
a sound to tell you that you were successful.

Lines 450-460 set up the call to the subroutine in line 600,
which displays your score.

Line 490 RETURNS the program to the main loop.

Lines 500-560 continue part of the subroutine that started
in line 400. A$ and COL are given the proper values to print
OOPS on the screen, and the subroutine at line 600 puts the
message on the screen.

The subroutine in lines 600-640 can be called from
anywhere to put a message on the screen. This subroutine
needs a column, which it finds in the variable COL, and a
string variable, A$, which contains the message or score you
want put on the screen. By setting up a message subroutine,
you can print scores, messages, or anything you want at any
place on the screen.

Lines 700-795 are a subroutine that moves the boat right or
left, depending on whether you have pushed the joystick or
not. This is similar to other joystick routines you've seen in this
book. The riverboat’s column is reduced or increased by one,
depending on the joystick direction, and its old location is
erased.

Lines 750-754 check for a crash when the riverboat moves
right, and lines 780-784 check for a crash when moving left.

Lines 800-880 are called if the boat does crash.

Lines 805-807 use FOR/NEXT loop to create a sound that
plays ten times, but softer each time, to simulate a large
explosion.

Lines 810-880 should be familiar. They PRINT a message,
the score, and provide an option to play again.

The subroutine in lines 900-930 checks for a head-on colli-
sion. Lines 910-920 use CALL GCHAR to test the row and
column immediately in front of the bow. If it is not water
(ASCII 32), there’s a crash and the program goes to line 800.
Otherwise, the program RETURN:Ss to the main loop.

Variables

RR Riverboat Row.

RC Riverboat Column.
LB Left Bank column.
110

D333 IIIDDIIBVVIIIIVDIDBIDIIIDIIBIDD

33339 IIIIIIIBIIIDIIIBITNDNDDITIRDRDI I

Riverboat 9

RB Right Bank column.

K Key pressed.

S Key Status.

C Variable used to store the character value found
by CALL GCHAR.

Special Notes. This program uses the PRINT statement to
create a scrolling river, simulating vertical movement.

The subroutine at line 600 is an example of a generalized
message display routine. You must put a column number into
COL and a message into the string variable A$ before you call
this subroutine. Whatever you put into these will be displayed
on the screen in the column you selected.

This program takes several safety measures. It checks
collisions in front and on the sides, and makes sure that the
riverbanks are within certain values so that the river doesn’t
run off the screen or get too narrow. The program must also
check all possibilities for getting cargo, and put a message on
the screen if you miss. Try to think of every possibility and
have the computer check for it. By setting limits in the creation
of the riverbanks, for example, you make sure that the game is
playable.

Putting a space behind a character, as is done with the
riverboat, insures that when the screen scrolls, and the new
character appears, it doesn’t need a separate erasure.

Extended BASIC. If you have the TI Extended BASIC
cartridge, you'll have to modify this program slightly. In
Extended BASIC, the PRINT statement starts printing one row
higher than in TI BASIC. Instead of printing at row 24, it prints
at 23.

To change the program to make it work in Extended -
BASIC, simply change the row values that everything starts at.
Change lines 310, 320, 325, 326, 328, and 329 so that the row
number is 23 instead of 24. Change line 620 so that the row
number is 22 instead of 23. Finally, change line 70 so that the
FOR/NEXT loop counts only to 19 instead of 20.

Changing the Game
* You can make the game more interesting by allowing the
riverboat to move forward or backward, and adjusting how
often the river scrolls forward by the method you saw for
changing scrolling speed in “Martian Revenge.”
* You could also add a different boat at the bottom, one able

111

Riverboat

to move upward. Allow each boat to fire, and have the
second boat controlled by joystick 2. You could then have a
riverboat battle between two players.

* Of course, you can have different factories with different
score values, or you could add floating mines that the
riverboat would have to avoid.

* You could put guns on the riverbanks and have them fire at
the riverboat and the riverboat fire back. You could create
drawbridges that would need to be raised for the riverboat
to pass; the only way to do so might be to dock a few rows
before the boat reaches the bridge.

* If you allow your riverboat to back up, you could also
create islands which split the river in two, and have one of
the side rivers dead-end so that the riverboat has to back
up before it crashes.

* Finally, you could change the game by having the water in
the river of varying depths, making it more complicated.
Some depths could be safe, others so low that the boat
might (depending on a random number) get stuck.

* You could dress up this world by putting houses and
forests on each side, or other boats in the river for you to
avoid.

Sandbars. You can change the game so that the river has
sandbars to make it more difficult to travel. At the same time,
by adding a few more lines, you can keep track of how far the
riverboat has traveled.

To start, you could add these lines:

55 CALL CHAR(116, "AAS55AAS55AA55AA55")

56 CALL COLOR(11,11,1)
57 LET DIST=0

These lines create the shape and color of the sandbar, and set
the initial DIST variable to 0, which is used to calculate the
distance.

304 LET DIST=DIST+l

The above line increases the distance every time a riverbank is
put on the screen.

321 IF RND<.1 THEN 3000

If the random number is less than .1, the program goes to
line 3000, which puts a sandbar in a river.

825 PRINT "YOU WENT *; (DIST-20)/28;"MILES"

112

3333333332332V IIIIIDIIIIIIIII

T e |
Riverboat 9

displays the final message so that you can see how far the boat
got.

3000 REM PUT SANDBAR IN RIVER
3965 IF DIST<1@ THEN 322
3010 LET BAR=(LB+RB)/2
3926 CALL VCHAR(24,BAR,116)
3030 GOTO 322

This routine puts a sandbar in the river. If the DIST vari-
able is less than 10, no sandbar is PRINTed; this might make
the start of the game too difficult. Line 3010 calculates the
center of the river, and line 3020 puts the sandbar in the river.

113

EEEEE R R R B R E R E R R P R R R P R R R E R R R R R R R

10 Shark

IR YERREEREERNRENEENER N ER ER RN R MR N NN B N

BI3T3IIIIIIIINIRNIDIRINIIINRIIITIBIIIITINAN

If you follow the river of no return long enough, you'll eventually
reach the ocean, and there you'll find sharks.

A target practice game that shows how to create complex auto-
matic motion, “Shark” also shows you a different way to use joysticks
to shoot at a target.

How to Play

The game starts out with the creation of a playing field. Your
mission is to stun a shark with your electro-zap gun. The shark
spends most of its time underwater, but due to the quirks of
the electro-zap gun, you can stun it more easily if you hit it
while it’s underwater.

If you stun the shark while it's underwater, you get 25
points; if it’s on the surface, you'll get only 5 points. You need
at least 200 points to immobilize the shark.

The shark starts out at the upper-left corner of the screen,
then swims to the right and left side, making a slow zigzag
pattern as it wends its way to the bottom of the screen.

If the shark reaches the bottom, it starts again at the top-
left corner.

Your score is displayed along the right border of the screen
as a striped bar chart. When you hit the shark on its fin, you
hear one kind of sound. When you hit it underwater, you'll
hear another. If you miss, you'll see your shot hit the water and
hear yet another sound.

You aim by setting the row and column pointers, which
are along the bottom and right sides of the screen, to match the
row and column of the shark. When you’re ready, press the fire
button. After you fire, there’ll be a short delay while the
electro-zap gun recharges.

Program 10-1. Shark

14 REM SHARK

20 CALL CLEAR

25 CALL SCREEN(6)

28 CALL CHAR(42, "FFFFFFFFFFFFFFFF")
29 CALL CHAR(194, "3FrgQ3r00@3F0@3Fgg")
30 CcALL CHAR(33, "80COEJFOFS8FCFEFF")
31 CALL CHAR(97, "010101FFFF@10101")
32 CALL CHAR(34,"0l103070F1F3F7FFF")
33 CALL CHAR(96, "181818181818FFFF")

117

Sharlk

CALL COLOR(10,16,1)
CALL COLOR(2,16,1)
CALL COLOR(9,7,16)
CALL VCHAR(1,39,42,24)
CALI HCHAR(24,1,42,30)
LET CC=15

LET CR=12

CALL VCHAR(24,CC,96)
CALL VCHAR(CR,30,97)
LET FLAG=1

LET SR=1

LET SC=2

LET SCORE=0

LET COUNT=0
LET SLOwW=0
LFT SHOTS=0
LET DELAY=0

REM MAIN LOOP

LET DELAY=DELAY+l
GOSUB 300

LFT SLOW=SLOW+1

IF SLOW=3 THEN 119
GOTO 130

LET SLOW=@

IF FLAG=1 THEN 700
IF FLAG=0 THEN 750
CALL KEY(1,K,S)

IF K=18 THEN 808
GOTO 100

REM TIME

FOR I=1 TO 250
NEXT I

RETURN

REM JOYSTICK

CALL JOYST(1,JC,JR)
IF JR=4 THEN 400

IF JR=-4 THEN 450
IF JC=4 THEN 500

IF JC=-4 THEN 558
RETURN

REM MOVE UP

IF JC<>@ THEN 335
IF CR=1 THEN 335
LET CR=CR-1

CALL VCHAR(CR+l,39,42)
CALL VCHAR(CR,39,97)
RETURN

REM MOVE DOWN

IF JC<>@ THEN 335

IRERRERRER

14
!

'
v

'3}

233732333323 3333I3II3 33D

460
470
480
485
490
500
505
51@
520
530
535
540
550
555
560
576
580
585
590
700
702
785
716
715
720
730
737
738
740
742
744
745
747
750
752

755
760
765
770
780
787
788

792
794
797
800
801
892

IF CR=23 THEN 335

LET CR=CR+1l

CALL VCHAR(CR-~1,30,42)
CALL VCHAR(CR,30,97)
RETURN

RFM MOVE RIGHT

IF JR<>?d THEN 335

IF CC=29 THEN 335

LET CcC=CC+1l

CALL VCHAR(24,CC-1,42)
CALL VCHAR(24,CC,96)
RETURN

REM MOVE LEFT

IF JR<>@ THEN 335

IF CC=2 THEN 335

LET cC=CC-1

CALL VCHAR(24,CC+1,42)
CALL VCHAR(24,CC,96)
RETURN

REM MOVE SHARK RIGHT
LET COUNT=COUNT+1

IF SC=28 THEN 740

LET SC=SC+1l

RANDOMIZE

IF RND>.2 THEN 737
CALL VCHAR(SR,SC,33)
CALL VCHAR(SR,SC-1,32)
GOTO 130

LET SR=SR+1l

CALL VCHAR(SR-1,SC,32)
LET FLAG=0

IF SR=24 THEN 850
GOTO 130

REM MOVE SHARK LEFT
LET COUNT=COUNT+1

IF SC=2 THEN 790

LET SC=sC-1

RANDOMIZE

IF RND>.2 THEN 787
CALL VCHAR(SR,SC,34)
CALL VCHAR(SR,SC+1,32)
GOTO 130

LET SR=SR+1

CALL VCHAR(SR-1,SC,32)
LET FLAG=l

GOTO 130

REM FIRE AT SHARK

IF DELAY<1@ THEN 100
LET SHOTS=SHOTS+1

119

803
8d4
805
806
807
8e8
809
810
815
825
826
827
830
832
835
836
837
850
851
855
860
662
865
870
880
885
886
887
890
900
914
920
1000
1010
1015
1020
1039
1040
1950
1060
1070
1080
1090
1895

LET DELAY=0

CALL GCHAR(CR,CC,C)

IF C<>32 THEN 810

CALL VCHAR(CR,CC,46)

GOSUB 200

CALL VCHAR(CR,CC,32)

CALL SOUND(1€,-6,0)

IF SR<>CR THEN 100

IF SC<>CC THEW 100

IF C<>32 THEN 830

CALL SOUND(20#,110,0)

LET SCORE=SCORE+29

LFT SCORE=SCORE+5

CALL SOUND(10#,880,0)

IF SCORE>20@ THEN 1000
GCOSUB 900

GOTO 100

REM SHARK STARTS OVER

LET A$="SHARK STARTS OVER"
FOR I=1 TO LEN(AS$)

CALL VCHAR(1,3+I,ASC(SEG$(AS,I,1)))
CALL SOUND(104,-2,0,440,9)
NEXT I
GOSUB 200
CALL HCHAR(1l,3,32,3+LEN(AS$))
LET SR=1
LET SC=2
LET FLAG=1
GOTO 130

REM PRINT SCORE
CALL VCHAR(1,31,104,INT(SCORE/10))
RETURN

REM GAME OVER

CALL CLEAR

CALL COLOR(9,2,1)

PRINT "YOU GOT THE SHARK"
PRINT "IT TOOK YOU ";SHOTS;:" SHOTS"
PRINT "AND THE SHARK SWAM ";COUNT;:" YARDS"
PRINT "WANT TO PLAY AGAIN"
PRINT "PRESS Y FOR YES"
CALL KEY(3,K,S)

IF S=0 THEN 1070

IF K=89 THEN 10

END

Program Structure
Line 20 clears the screen, and line 25 colors the screen

light

120

blue.

JIDIIIIIIIIIIZI2IIIIDIDIIIIIBBEIIDIIIDIIDIDIDIO

1737377333333 33333I3ITIIIIBIIIIIITIINIIAN

10

Lines 28-33 create the character shapes: the slot the
pointers fit in for the electro-zap gun is drawn in line 28; the
right-facing and left-facing shark fins in lines 30 and 32; the
column and row pointers in lines 31 and 33; while line 29
creates the bar chart.

Lines 34-39 color the bar chart white, the pointer slots
white, and the pointers dark red.

Using CALL VCHAR and CALL HCHAR, lines 40-41
create the slots that the pointers fit in.

Lines 60-62 create the beginning values of the pointers,
with the row and column of 12 and 15. Lines 65-66 then put the
pointers on the screen.

Lines 70-97 initialize the variables used in the game. Refer
to the variable list at the end of this section.

Lines 100-190 are the main loop. Line 105 increases the
DELAY variable by 1. This increases each time through the
loop, and is used to see if enough time has passed to allow the
gun to fire. If the joystick fire button is pushed, DELAY is
checked to see if it is 10 or more. After it's fired, DELAY is set
back to 0 again, and the count resumes.

Lines 115-125 move the shark every three times through
the loop and move it to the right or left depending on how the
FLAG variable is set. The computer-controlled movement of
the shark is a bit different than that used previously.

Line 115 adds 1 to the variable SLOW and line 117 sees if
SLOW is equal to 3. If it is, the program goes to line 119. If it
isn't, the program skips to line 130. Line 119 resets SLOW to 0,
and lines 120 and 125 check to see whether the FLAG variable
is 1 or 0, moving the shark right or left through later
subroutines.

Lines 200-230 create a time delay using a FOR/NEXT loop.
Delay loops can be placed in subroutines so they can be called
whenever you need to slow the program down.

Our standard joystick subroutine is in lines 300-335.

Lines 400-590 move the row and column electro-zap gun
pointers up, down, right, or left.

Line 410 checks the pointer row (CR). If it’s equal to 1, the
pointer cannot go any higher. Line 420 subtracts 1 from the
row pointer.

Lines 430-435 erase the pointer at its old location and put it
on the screen at its new position. Notice, in erasing, that the
slot (ASCII 42) is put on the screen, not a space, and that the

121

10 Shark ™

pointer has a white background to match the color of the slot.

Similarly, lines 450-590 perform the functions for down,
right, and left moves of the pointers.

Lines 700-747 move the shark right. This was gone to from
line 120 if the FLAG was 1. Line 702 adds 1 to the COUNT vari-
able and line 705 checks to see if the shark column is equal to
28. If it is, the shark cannot swim any further to the right. Line
710 then adds 1 to the shark column.

If the random number generated in line 720 is greater than
.2, the program goes to line 737, which makes sure the shark’s
fin is not printed. If the random number is less than .2, the fin
is PRINTed and erased.

Line 740 starts the sequence used to turn the shark
around. First the shark’s row is increased by 1, then line 742
erases the old character if it happened to be on the screen. Line
744 sets the FLAG to 0, which tells the main loop that the
shark is now swimming from right to left. Finally, line 745
checks to see if the shark row is 24, which is as far as it can go
down. If it is, the program goes to line 850, which starts the
shark over again.

Lines 750-797 move the shark left.

Lines 800-837 check to see what happens when the gun is
fired.

If the DELAY variable is less than 10, the program goes
back to the main loop. Line 802 adds 1 to the SHOTS variable,
and line 803 resets the DELAY variable to 0, so the main loop
executes 10 times before the gun is fired again.

Line 804 sees if anything is in the position pointed to by
the row and column gun pointers. Line 805 sees if it is not an
empty space. If it’s not a space (checked in line 805), the
program goes to line 810, indicating that you stunned the
shark.

Line 806 lets you see where your shot landed. Line 808
erases the shot, and line 809 makes the sound of the shot
hitting the water.

Lines 810-815 test to see if the shark’s row and column
match the pointers’ row and column.

Line 825 again uses the variable C; if C is not equal to 32
(space), the shark was hit and the program goes to line 830.

If a fin was not hit, but you have hit the shark, line 826
prints the victory sound for hitting the submerged shark, and
line 827 adds 20 to your score. The program goes to line 830,

122

where 5 points are added to the score if you hit the shark on
the surface.

Line 835 checks to see if the SCORE variable is greater
than 200. If it is, the shark has been immobilized and the
program goes to line 1000.

Lines 850-890 reset the shark if it has gone all the way to
the bottom-right corner.

A message shows on the screen so you'll know that the
shark is back at its starting place. Also, a warbling tone is
called from line 862.

Line 885-887 reset the shark row and column to the begin-
ning values and the FLAG variable to 1.

Lines 900-920 comprise a subroutine that puts the score on
the screen as a bar chart created with CALL VCHAR.

The ending routine is in lines 1000-1095. It PRINTs a
message telling you that you immobilized the shark, how
many shots it took, and how far the shark swam. Then it offers
another chance to play the game.

Variables

CC Column pointer for the gun.

CR Row pointer for the gun.

FLAG Variable used to tell whether the shark is
swimming left or right. If it is swimming right,
FLAG =1; if it is swimming left, FLAG=0.

SR Shark’s Row.

SC Shark’s Column.

COUNT Distance that the shark travels.

SLOW Counter variable used to move the shark three
times through the main loop.

SHOTS Stores the number of shots fired.

DELAY Makes sure the gun won't fire until the main
loop has executed at least 10 cycles.

K Key pressed.

S Key Status.

JR Joystick Row.

JC Joystick Column.

C Character value that CALL GCHAR findsin a

specific row and column.

Special Notes. The row and column pointers demonstrate
a different way to choose a row and column by pushing the
joysticks.

123

Sazrlk

The other main feature of this game is the computer-
controlled motion of the shark. It moves in a known pattern,
but because most of its trip is unseen, the game is different
from a normal shooting-style game. The shark moves until it
gets to a certain point, then it moves in a different direction. By
using this kind of patterned motion, you can create all kinds of
complicated characters which can take on personalities of their
own. Notice the use of FLAG to tell the computer which way
something is going. By using more complex flags, you can
control characters in any way you want.

Notice the sequence in lines 826-832. By adding scores and
sounds together, you can combine elements to create a total
that is either a single part or a total of both parts. If one thing
happens, one score and sound are obtained, but if another
event occurs, both scores and both sounds display and
execute.

Changing the Game

* You could fill the ocean with different kinds of creatures,
each with different points awarded for stunning them.

* This game could be modified so that the shark would be on
the surface all the time, but moving at varying speeds.

* You could, instead, have another character that appears on
the screen, for instance, a dolphin. If the shark appears,
you could stun it for points, but a dolphin, which would
have a fin of a different color, would have to left alone, or
you would lose points. You’d have to decide quickly.

* You could also change the game so that you’d have to
manipulate a third dimension. By pressing the joystick fire
button and moving the joystick up or down, you could
adjust the depth that your shot fired. Making the shark go
to different depths and awarding points for close shots
could also be included.

* You could turn this into a fast-action, two-player game by
having a second joystick with the pointers on the top and
left sides of the screen, and see who could get the shark
first.

* Add more sound to this game, by producing one kind of
splash when the shark surfaces and another when it dives
back below the water.

Dolphin. You can add a few lines to make it so a dolphin

is swimming with the shark. Sometimes the shark will be on

124

2030333333333 3:33333333 33333 IIIIIIIII

T3 TIIITIIIRINIIINNTIRITIIRIIDITIIANTITIDAN

Shark 1

the surface, other times the dolphin. If you hit a dolphin, you'll

lose your score.
To add the dolphin, begin adding these lines to Shark:

24 CALL COLOR(11,11,1)
26 CALL CHAR(112, "8@COEGFOFS8FCFEFF")
27 caLL CHAR(113, "@103070F1F3F7FFF")

The dolphin’s fin is the same shape as the shark’s, but is
yellow.

102 GOSUB 3000

Adding the above line to the main loop sends the program
to the subroutine at line 3000.

817 IF DF=@ THEN 825

819 CALL VCHAR(1,31,32,24)

820 LET SCORE=0

822 CALL VCHAR(SR,SC,32)

823 LET A$="YOU HIT A DOLPHIN"
824 GOTO 855

Insert these lines to check if you hit a dolphin. If DF is 0, the
shark is on the surface. If not, lines 819-824 take care of what
happens if you hit a dolphin.

Line 819 erases your score, line 820 sets the SCORE variable
to 0, line 822 erases the dolphin on the screen, and line 823
sets up the message to tell you that you hit a dolphin.

Line 824 sends the program to line 855, where the message is
printed and the game starts over again.

3008 REM SWITCH

3¢1¢ IF DF=1 THEN 3020
3¢912 LET DO=112

3913 LET DI=113

3915 LET DF=1

3817 GOTO 3030

3020 LET DF=0

3822 LET DO=33

3024 LET DI=34

3030 RETURN

To change the shark and dolphin positions, you'll need the
lines above. If DF is 1, the dolphin is on the surface, and the

program goes to line 3020.
If DF is not 1, DO and DI are set to give the dolphin
shapes, and DF is set to 1 so that the dolphin will be on the

surface.

125

If DF =1, the shark’s shape, DO and DI are set, and DF is
set to 0 so that the shark can move on the surface.
You'll also need to change these lines:

738 CALL VCHAR(SR,SC,DO)
780 CALL VCHAR(SR,SC,DI)

These lines put the fin above the water; if DO is 32 and DI is
33, a shark is printed; if DO is 112 and DI is 113, a dolphin is
shown.

126

liilliiillilllilllllllIlliilll--_l-l

11 Mushrooms

FEEYENNNESRER NN N AN R NN N RN E RN N KA BB BN NN

The caterpillar we designed earlier is back—now it's demonstrating a
technique which makes it seem to grow and grow and grow. You'll see
how to create a completely different kind of motion, one for a creature
that's always moving.

How to Play

A red-fenced garden for the caterpillar to crawl around in is
drawn, and the title and score appear. The caterpillar soon
starts crawling around the garden.

Unlike the other objects you’ve manipulated, the cater-
pillar is always moving. You affect the direction of the motion
by moving the joystick. If you push it left, the caterpillar
changes direction to move left; a right joystick move makes the
caterpillar go right, and so on.

Be careful. If you are moving left and pull the stick to the
right, the caterpillar will crash into itself.

This is a hungry caterpillar, and it eats mushrooms. As the
game continues, more and more mushrooms sprout in the
garden. Beware! Only the red mushrooms are good to eat.
Blue mushrooms are poison to your caterpillar.

Steer the caterpillar carefully. If it hits the red wall at the
edge of the garden, it will crash, and if it hits any of its own
body, it will also crash.

One more thing: Each time the caterpillar eats a mush-
room, it grows longer. How long can your caterpillar get before
it runs out of room?

When you crash, your score is shown, and you can play
again.

Program 11-1. Mushrooms

16 REM MUSHROOMS

26 CALL CLEAR

25 CALL SCREEN(15)

30 CALL CHAR(33,"143E2A7F436B3E36")
32 CALL CHAR(34, "GQEEBFFDEFFFAAAA")
34 CALL CHAR(42, "CCCCFFFFFFFFFFFF")
35 CALL CHAR(43, "FFFFFFFFFFFFFFFF")
37 CALL CHAR(104, "3CFFFF9918181818")
38 CALL CHAR(112, "3CFFFF9918181818")
40 CALL COLOR(1,13,1)

129

1

325

130

CALL COLOR(2,9,1)
CALL COLOR(14,14,1)
CALL COLOR(11,5,1)
CALL HCHAR(2,1,42,32)
CALL HCHAR(23,1,42,32)
CALL VCHAR(3,1,43,20)
CALL VCHAR(3,32,43,20)
LET A$="MUSHROOMS {8 SPACES}p = POISON"
LET ROW=1

LET COL=2

GOSUB 200

LET SCORE=0

LET A$="SCORE{3 SPACES)}"&STR$ (SCORE)
LET ROW=24

LET COL=10

GOSUB 200

LET COL=18

LET COUNT=g

DIM R(500)

DIM C(589¢)

LET CR=12

LET CC=16

LET R(1)=CR

LET c(1)=CC

LET D=1

LET K=1
LET M=0

REM MAIN LOOP

LET COUNT=COUNT+1

IF COUNT=3 THEN 300
CALL JOYST(1,JC,JR)
IF JR=4 THEN 500

IF JC=4 THEN 510

IF JR=-4 THEN 520

IF JC=-4 THEN 530

IF M>@ THEN 800

LET M=M+1

GOTO 100

REM MESSAGE

FOR I=1 TO LEN(AS)
CALL VCHAR(ROW,COL+I,ASC(SEGS$(AS,I,1)))
NEXT I

RETURN

REM UPDATE MOVE

LET COUNT=@

CALL VCHAR(CR,CC, 34)
ON D GOTO 320,33@,340,350
LET CR=CR-1

GOTO 360

3333333333333 333333333333I333333I3I333J

T333IIIIIINIIIIIBIININIIIIBIININIIITIITINIANN

330
335
349
345
350
360
365
367
378
372
373
374
380
381
382
384
387
388
390
391
392
393
394
395
397
400
4085
410
420
500
501
502
505
510
512
513
515
520
522
523
525
530
532
533
535
800
810
815
820

LET CC=CC+l

GOTO 360

LET CR=CR+1

GOTO 360

LET cC=CC-1

CALL GCHAR(CR,CC,N)
IF N=32 THEN 380

IF N=112 THEN 900

IF N<>1@4 THEN 400
LET SCORE=SCORE+1
LET A$=STRS (SCORE)
GOSUB 200

CALL VCHAR(CR,CC,33)
LET K=K+l

LET R(K)=CR

LET C(K)=CC

IF K>SCORE+3 THEN 394
GOTO 3900

CALL VCHAR(P.(1),C(1),32)
LET K=K-1

FOR I=1 TO K

LET R(I)=R(I+1)

LET C(I)=C(I+1)
NEXT I

GOTO 120

REM CRASH

CALL CLEAR

PRINT "“YOU CRASHED"
GOTO 930

REM MOVE UP

IF JC<>@ THEN 130
LET D=1

GOTO 130

REM MOVE RIGHT

IF JR<>@ THEN 130
LET D=2

GOTO 138

REM MOVE DOWN

IF JC<>@ THEN 130
LET D=3

GOTO 130

REM MOVE LEFT

IF JR<>@ THEN 130
LET D=4

GOTO 130

REM PUT DOWN MUSHROOMS
LET M=0

RANDOMIZE

LET MR=INT(RND*21)+2

1

131

Mushrooms

825 LET MC=INT(RND*38)+2
830 CALL GCHAR(MR,MC,N)
840 IF N<>32 THEN 820
842 IF RND<.7 THEN 845
843 CALL VCHAR(MR,MC,112)
844 GOTO 190

845 CALL VCHAR(MR,MC,1@4)
850 GOTO 100

990 REM POISON

910 CALL CLEAR

920 PRINT "YOU ATE A POISON MUSHROOM "

93¢ PRINT "YOUR SCORE WAS ":;SCORE;" MUSHROOM
Sﬂ

940 PRINT "WANT TO PLAY AGAIN"

95¢ PRINT "PRESS Y FOR YES"

960 CALL KEY(3,K,S)

970 IF S=0 THEN 960

980 IF K=89 THEN 10

994 END

Program Structure

Line 20 clears the screen, and line 25 colors it gray.

Lines 30-38 create the custom characters. Line 30 creates
the head of the caterpillar, line 32 the body, line 34 the top and
bottom of the garden fence, line 35 the sides, line 37 the edible
mushroom, and line 38 the poison mushroom.

Line 40 colors the caterpillar green and line 44 colors the
fence red. Line 47 colors the edible mushrooms dark red, while
line 48 colors the poison mushrooms blue.

Lines 52-58 use HCHAR and VCHAR to create the garden
fence.

Lines 60-64 put the title and warning about poison mush-
rooms on the screen. A generalized message subroutine that
starts at line 200 is used here. You supply the message in the
string variable A$, a value for the variable ROW, and a value
for variable COL.

Lines 66-69 put the current score on the screen. Notice
how the ampersand (&) is used to add two strings together.

Line 70 sets COL to 18 to PRINT the score.

Line 80 sets COUNT to 0. COUNT will check to see how
often the caterpillar moves.

Lines 82-83 create variable arrays R and C, which store the
current rows and columns of all the caterpillar’s segments.

Lines 85-86 create the row and column variables that will
hold the row and column values of the caterpillar’s head, and

132

e ——

lines 87-88 put the caterpillar’s head row and column into the
first elements of the arrays.

Line 90 sets D equal to 1. D is the direction that the cater-
pillar moves. If D is equal to 1, the caterpillar goes up; 2 moves
it right, 3 for down, and 4 for left.

Line 97 sets K equal to 1. K acts as a pointer to show how
long the caterpillar is and where its head is in the array that
stores the body parts.

Line 98 sets M equal to 0. M is a counter used to PRINT
mushrooms on the screen.

Lines 110-112 increase COUNT by 1. If COUNT is equal to
3, the program goes to line 300, which moves the caterpillar.

Lines 120-125 read the joystick. Depending on the result,
the program will go to lines 500, 510, 520, or 530, where the
direction of the caterpillar is changed. (Notice that these lines
do not move the caterpillar; they only change the direction of
the move.)

Lines 130-140 place the mushroom. If M is greater than 0,
the program creates a mushroom using the routine at line 800.
If it is equal to 0, 1 is added to M. Since M is reset to 0 when a
mushroom is added, and the program goes back to line 100,
this will PRINT a mushroom every other time the program
goes through a loop.

A message subroutine in lines 200-300 PRINTs a message
(A$) in row (ROW) and column (COL). This is similar to the
technique used in earlier games.

Lines 300-397 move the caterpillar in a way different from
other games in this book.

Line 307 PRINTs a new body segment at the place where
the head was. This is the first step in moving the caterpillar.

Line 310 uses a new command, ON GOTO. This takes a
variable, D in this case, and reads what is there. It goes to the
first line number it finds after the command if D=1. That’s line
320. If D=2, the program goes to line 330; if D=3, then line
340, and so on. Dis 1, 2, 3, or 4. If it is anything else, the
program stops. (If you use ON GOTO, make sure that your
variable cannot be greater or less than the number of line
numbers you have after GOTO.)

Lines 320-325 decrease the row of the head by 1, lines 330-
335 increase the column by 1, lines 340-345 increase the row by
1, and line 350 decreases the column by 1. All except the last
line number send the program to line 360, where the next part

133

@ﬁ ushms

of the program continues. The result of these lines, coupled
with line 310, is to change the row or column numbers of the
head in accordance with the direction variable, D, by using ON
GOTO.

Lines 360-370 check to see what is in the new column and
row before the head PRINTS. If a space is there, the program
goes to line 380. A poison mushroom in the location shifts the
program to line 900. If anything except an edible mushroom is
there, it must be a wall or a caterpillar body part, and the
program goes to line 400 where the crash begins.

Line 372 begins the routine that eats the mushroom.

Lines 373-374 displays the new SCORE by using the
general message subroutine beginning at line 200.

Line 380 then puts a new head in the proper row and
column, while line 381 adds 1 to the K pointer. Lines 382-384
put the new row and column of the head into the proper
elements of the arrays R and C.

Line 387 is a complex line that checks to see if the length of
the caterpillar is greater than the SCORE + 3. If it is, the
program goes to line 390, where the old tail position is erased,
causing the illusion that the caterpillar has moved. If you
create a new head and erase the old tail, the caterpillar will
seem to have moved. You want this to happen except in two
situations: You want the caterpillar to get longer when the
SCORE is increased (because the caterpillar must grow when it
eats), and you want the caterpillar to get longer when you first
start the game, so that it will be at least two body segments
and one head. At this point, K is one greater than the length of
the head and body.

If K is not greater than the SCORE + 3, line 300 PRINTS a
new head and body segment, and keeps doing so until the
length + 1is greater than the SCORE + 3.

Line 390 erases the tail.

Lines 391-395 take care of the array. You don’t want to
keep increasing the length of the array because it will get
longer than memory. What happens is that line 391 subtracts 1
from K, and lines 392-395 set up a FOR/NEXT loop which
transfers the head and body segment row and column back
one element in the two arrays. In other words, the row and
column numbers of the second-to-last segment is transferred
so it becomes the row and column of the end (because the end
was just erased). Since K is one less than before, the K + 1

134

3033333333333 333333333333333333333D3

3333V IIIIIIIBIIINIIDIIINIBINNINIDIIBIIIIIONN

~ Mushrooms 11

segment (the head) is transferred and becomes the K segment,
which is now the row and column of the head at the new K
position in the array. This may seem confusing, but it's a valu-
able technique for keeping track of something like the caterpil-
lar’s head and body segment rows and columns. As the
caterpillar gets longer, and K is a bigger number, the FOR/
NEXT loop is so large that it takes longer to make this transfer,
but that’s acceptable since a large caterpillar would naturally be
sluggish. Whenever you're creating a game, make sure that
programming problems fit into the context of the game’s
world.

Lines 400-420 PRINT the crash message and send the
program to line 930 for the ending routine. '

Lines 500-535 calculate the caterpillar’s direction, based on
the joystick movement.

Line 501 makes sure that diagonal movements are not
allowed.

Line 502 changes D, the direction variable, to 1, to point
the caterpillar up. Line 505 then sends the program back to the
main loop.

Similarly, lines 510-515 change the direction to the right;
lines 520-525, to down; and lines 530-535 change the direction
to the left.

Lines 800-850 put the mushrooms in the garden. Line 810
changes M, the counter, back to 0 for the next time through the
loop.

I:’RANDOMIZE is used in line 815 to make sure that RND
will be different each time.

Lines 820-825 create a random row and column for the
mushroom to appear in, and lines 830-840 check to see if some-
thing is already in that row and column. If so, the program
goes back to line 820 and tries again, until it finds an empty
space for the mushroom. This is important because you don't
want mushrooms appearing on top of the walls, caterpillar, or
other mushrooms.

Line 842 checks to see if the random number is less than
.7. Only then will the program PRINT an edible mushroom. A
poison mushroom is put on the screen if RND>.7.

Lines 900-990, the end routine, print the message that you
ate a poison mushroom, print your score, and let you have
another chance to play the game.

135

N T —

Variables

ROW Row number of the message.

COL Column number of the message.

COUNT Variable used to see how often the caterpillar will
move.

R Array that stores the row numbers of each
segment of the caterpillar’s body.

C Array that stores the column numbers of each
segment of the caterpillar’s body.

CR Row of the caterpillar’s head.

CC Column of the caterpillar’s head.

D Direction that the caterpillar will travel the next
time it's put on the screen.

K Pointer that shows where the head of the
caterpillar is stored in the arrays R and C.

M Counter used to see how often the mushrooms
will be put on the screen.

JR Joystick Row variable.

JC Joystick Column variable.

N Variable that CALL GCHAR uses to store the
character value it finds.

MR Mushroom Row.

MC Mushroom Column.

Special Notes. The caterpillar in this game is an unusual
kind of creature, since it can get longer and longer each time.
By using an array, you can keep track of every segment and
what row and column it’s in. Of course, you have to read just
the arrays every time you move, because the row and column
of the head and tail change.

Using arrays is often a good technique when you have
complex figures on the screen, or you are using changing
shapes. Just be sure you don’t have an array that gets bigger
than your memory can handle.

ON GOTO is a useful command that can help when the
program has to make complicated choices. One command can
replace, in this case, four commands. (The first would be IF D
= 1THEN 320, the second would be IF D = 2 THEN 330, and
so on.)

Often you must use tricky logic to make your program
work correctly. An example of this is line 370, which assumes
that if the object in the row and column is not an edible mush-
room, it must be a body segment or a wall, since everything

136

333 IIIIIIIIDIIIIIIIDIIIIIIIDIIIIIDIIIDIIDIS

T333393329I3399ITIBIIIIITIINNIBIININIINIIABAND

Mushr@@ ﬂﬂ

else was already tested for in lines 365-367. The logic in line
387 is especially tricky since it is testing for two separate cases,
one in which the caterpillar is less than three segments long,
and the other if the score has increased since the last time the
caterpillar was PRINTed. The use of the variable K in this
program is worth studying, because it is used as a pointer to
where the head row and column values are in the arrays. K
will increase and decrease as the array is first increased and
then shortened to accommodate the transfer of all elements
backward by one element.

Changing the Game

* You can change the counters in this program to create more
or fewer mushrooms each time the main loop is processed.
You can also change the counter that moves the caterpillar
so that it moves more or less often. If you move it more
often, you run the risk of having the joystick’s movements
not being acknowledged in time and your caterpillar may
crash. You can also make it harder by putting in a higher
ratio of poison to edible mushrooms.

* You could change this game quite a bit by putting in more
walls to make it a maze. If you do that, you could also add
creatures that chase the caterpillar, and you could have
different kinds of objects for your caterpillar to eat. By
using CALL GCHAR, you can create all kinds of obstacle
courses for a character to go through, testing each time to
see whether a wall or an edible object is there. (See “Hobo
Party” in Chapter 12 for an example of a maze-chase game.)

* You could make this game different by setting a top limit
on how big the caterpillar can get, so that it won't slow
down too much.

» To make this an interesting two-person game, you could
have two caterpillars on the screen, and keep them from
crashing into each other while they tried to get
mushrooms.

You could add sounds for munching the mushrooms,
sounds for each time the caterpillar moved, and sounds when
it ran into a wall or itself.

Lost in the Garden. To see how easy it is to change the
game by adding a few lines, you can create walls inside your
garden, and, at the same time, make it easier for the caterpillar
by having it grow to a length of only three segments.

137

@ﬂ Mushrooms

Whenever you're changing a game, make sure that it
remains balanced. If you make it harder, think about making
something else easier, or it will be foo hard.

Begin by adding:

59 GOSUB 3000

This will shift the program to line 3000 to place more walls
inside the garden. Here’s the subroutine which does that:

3000 REM PUT DOWN MORE WALLS

3004 RANDOMIZE

3905 LET 2$=""

3010 FOR I=1 TO 4

3020 LET ZR=INT(RND*18)+4

3025 FOR J=1 TO LEN(z$)

3026 IF CHRS$(ZR)=SEG$(z$,J,1)THEN 3029
3027 NEXT J

3030 LET Z$=%$&CHRS$ (ZR)

3040 CALL HCHAR(ZR,INT(RND*10)+2,42,INT(RND*2@)+1)
3050 NEXT I

3@6@ RETURN

This subroutine puts down four walls of random length at
random places in the garden.

Line 3004 adds RANDOMIZE to make sure that the walls
will be put in different places each time.

Z$ is used as a temporary variable to see at which rows
the walls have already been put down.

The main FOR/NEXT loop is between lines 3010-3050. Line
3020 sets up a random row number. A secondary FOR/NEXT
loop is between lines 3025-3027. Line 3026 tests to see if the
row just picked is inside the variable Z$. If it is, you want
another row, so the program goes back for another try.

Line 3030 adds the new row to Z$ by using & to add it to
the string. Line 3040 puts the wall down at the row that was
chosen, starting at a random column and going along for a
random length.

To complete the modification, change this line:

387 IF K>3 THEN 39¢

By changing this, you make sure that the caterpillar will grow
no longer than three segments.

138

DD 3D I I DI

JJ

)
\

I
|

3JIIIIIIIIIIIIIID

fffTdoTiToraaaIaIeaInoarIInnaLLnNas

e

12Hobo Party

sooceoooRROCERERRERORORROOORERROCRORRPRRRRRDRE

B33 IIIIIDIIIIDIIDNIIDIIDNDIDNDIDDIIIDIDTITIDND

=

12Hobo Party

Ever wonder how you can create animation on the TI? “Hobo Party”
will show you the principles of animation, creating characters that
move their legs and arms. You'll also see how to create mazes, and
characters that move in patterns inside the maze.

How to Play

The object of the game is for the hobo to gather all the pans
that are scattered throughout the junkyard before the time
limit is up.

You’re the hobo, and your legs are always moving. You
can move through the junkyard by using the joystick.
However, you can't cross any junk piles; instead, you must go
around them. You'll start out at a different place in the junk-
yard every time you play.

There’s a guard, and his arms are always waving as he
holds up his billy clubs. If he gets next to you, the game is over.

Along the bottom row you'll see a colored bar. This shows
how much time is left before the party starts. If you haven't
gathered up all the pans by then, you've lost the game. The bar
gets shorter as time passes.

You pick up a pan by simply moving on top of it. Each pan
you get will be transferred to the row immediately above the
time bar so you'll know how many pans you've gotten. There
are 32 pans you must pick up.

The game starts out by displaying the title and drawing
the maze. The maze walls are made up of old boots, tires, TV
sets, bottles, and trash bags.

After the maze is on the screen, the 32 pans are put on the
screen. Each time you play, the pans are placed in different
locations in the maze. Your hobo is then placed in the maze.

The guard is placed in the center of the maze and immedi-
ately starts coming after you. If the guard passes over a pan, he
moves it out of the way. Sometimes the guard doesn’t spot you
and will wander around, but sooner or later he’ll find you,
especially if you move around.

If you get all 32 pans before the time is up, the game’s over
and you’ll have another chance to play. If the guard catches
you first, the game ends, you’ll find out how many pans you
got, and you’ll have the option to play again.

141

125

Program 12-1. Hobo Party

10 REM HOBO PARTY

15 CALL CLEAR

17 RANDOMIZE

20 GOSUB 3000

30 GOSUB 2000

49 GOSUB 4000

160 REM MAIN LOOP

110 CALL CHAR(33, "1ClC@83E08142241")
112 CALL CHAR(42,"1ClD@936545C1414")
1260 LET COUNT=COUNT+1

122 IF COUNT<20 THEN 130

125 GOSUB 208

130 GOSUB 309

15¢ CALL CHAR(33, "1ClCO83E@8141414")
152 CALL CHAR(42,"1C5C4836151D1414")
160 GOSUB 500

199 GOTO 108

200 REM SCORF

205 CALL SOUND(10@,444,0)

210 LET COUNT=0

215 LET TIME=TIME-1

217 IF TIME=0 THEN 5008

22¢ CALL HCHAR(24,1,116,TIME)
225 IF TIME>31 THEN 230

227 CALL HCHAR(24,TIME+1,32)
230 CALL HCHAR(23,1,104,PAN)
2989 RETURN

300 REM JOYSTICK

319 cALL JOYST(1l,JC,JR)

32@0 IF JR=4 THEN 410

322 IF JR=-4 THEN 430

324 IF JC=4 THEN 420

326 IF JC=-4 THEN 440

330 RETURN

350 REM CHECK HOBO MOVE

355 CALL GCHAR(RR,CC,C)

360 IF C<>104 THEN 378

363 LET TIME=TIME+l

364 LET PAN=PAN+1

365 CALL SOUND(160,880,0)

366 CALL VCHAR(RR,CC,32)

367 GOSUB 200

368 IF PAN>31 THEN 9¢0

369 GOTO 380

370 IF C=32 THEN 380

375 CALL SOUND(109,110,9)

376 LET RR=HR

377 LET cC=HC

142

3323333333333 IIDIIIIIIIIDDI

I3IVIIIIIIIIDNINIRNIIDIDNNNRNDIDINIIIIIITIIN

378
380
381
382
383
390
400
410
412
414
420
422
424
430
432
434
440
442
444
500
582
503
505
506
510
512
514
515
520
522
523
525
527
530

533
535
550
552
555
557
558
560
565
566
570
572
575
580

GOTO 330

CALL VCHAR(HR,HC,32)
CALL VCHAR(RR,CC,33)
LET HR=RR

LET HC=CC

GOTO 330

REM MOVES U R D L
IF JC<>@ THEN 330
LET RR=HR-1

GOTO 350

IF JR<>@ THEN 330
LET CC=HC+l

GOTO 350

IF JC<>0 THEN 330
LET RR=HR+1l

GOTO 350

IF JR<>@ THEN 330
LET CC=HC-1

GOTO 350

REM CHECK GUARD MOVE
LET TRY=0

LET FLAG=0

LET CI1=0

LET RI=0

LET DR=HR-GR

LET DC=HC-GC

IF ABS(DR)>ABS(DC)THEN 530
LET FLAG=1

IF DC>@ THEN 525
LET CI=-1

GOTO 550

LET CI=1

GOTO 5508

IF DR>@ THEN 535
LET RI=-1

GOTO 550

LET RI=1

CALL GCHAR(GR+RI,GC+CI,C)
IF C=33 THEN 700

IF C<>104 THEN 560
LET STORE=184

GOTO 600

IF C<>32 THEN 584
LET STORE=32

GOTO 609

LFT RI=INT(RND*3)-1
LET CI=INT(RND*3)-1
GOTO 558

IF TRY=1 THEN 579

obo Par

12

143

12 Hobo Party

581
582
583
600
610
620
630
640
650
700
705
710
800
810
820
830
840
850
860
87@
875
880
900
905
919
920
2000
20508
2100
2119
2120
2130
2160
2165
2170
2180
2190
2200
2205
2210
2220
2230
2240
2250
2255
2260
2279
2280
2290

144

LET TRY=1

IF FLAG=1 THEN 530

GOTO 520

REM MOVE GUARD

CALL VCHAR(GR,GC,STORE)
CALL VCHAR(GR+RI,GC+CI,42)
LET GR=GR+RI

LET GC=GC+CI

RETURN

REM GUARD CATCHES HOBO
CALL CLEAR

PRINT “THE GUARD GOT YOU"
REM FINAL MESSAGE

PRINT

PRINT "YOU GOT ";PAN;" PANS"
PRINT

PRINT "WANT TO PLAY AGAIN?"
PRINT "PRESS Y FOR YES"
CALL KEY(3,K,S)

IF S=0 THEN 860

IF K=89 THEN 10

END
REM ENOUGH PANS
CALL CLEAR

PRINT "YOU GOT ENOUGH PANS!"
GOTO 800

REM MAZE GENERATOR

CALL CLEAR

LET A$="HOBO PARTY"

LET ROW=1

LET COL=11

GOSUB 2709

FOR II=1 TO 4

CALL VCHAR(1,2*II+2,33)
CALL VCHAR(1,2*II+21,33)
NEXT II

RESTORE

REM PUT MAZE ON SCREEN
RANDOMIZE

FOR J=3 TO 22

READ AS

FOR I=1 TO 32

IF SEGS(AS,I,1)<>"@" THEN 2260
LET EL=32

GOTO 2279

LET EL=INT(RND*5)+96
CALL VCHAR(J,I,EL)

NEXT I

NEXT J

3177997317393 733719333337939393733323339333 30

H@[blr WZ

2300 REM PUT PANS ON SCREEN

2310 FOR I=1 TO 32

2320 LET PR=INT(RND*18)+4

2325 LET PC=INT(RND*3@)+2

23309 CALL GCHAR(PR,PC,C)

2335 IF C<>32 THEN 2328

234@ CALL VCHAR(PR,PC,104)

2350 NEXT I

2409 RETURN

25@0 REM MAZFE DATA

251¢ DATA ©©$111111111111111111090111111100
2511 DATA 01100000000000000011111006111111
2512 DATA 110000009000000000000100000060001
2513 DATA 11001111111111110900000000000011
2514 DATA 10000011000000000000000011110810
2515 DATA 100000000000000000311081100069001
2516 DATA 10100009001111116611111000000091
2517 DATA 11111100009000011110000000091001
2518 DATA 01100000000000000100000000011001
2519 DATA 010000011110000011006011111106001
252¢ DATA 11000111100001001100010000000011
2521 DATA 10000000900001000100009000000110
2522 DATA l00090000000010001000000110000910
2523 DATA 10011111110001000109100010000001
2524 DATA 10000000000011000100100010000001
2525 DATA 10000000000010000000100010001001
2526 DATA 11000001111100000000110010001001
2527 DATA 1110000000000001000111060006010311
2528 DATA 011110000000001110001110006011110
2529 DATA ©99©91111111111106111116411111110600
270@ REM PRINT MESSAGE

27189 FOR I=1 TO LEN(AS)

2720 CALL VCHAR(ROW,COL+I,ASC(SEGS$(AS$,I,1)))
2730 NEXT I

2740 RETURN

3900 REM CHARACTERS

3010 REM TRASH

3020 CALL CHAR(96, "28133C7EFFFFFF7E")

3¢3¢ CALL CHAR(97, "3C7EE7C3C3E77E3C")

3940 CALL CHAR(98, "1408FF85878587FF")

3950 CALL CHAR(99, "008FOFOFOF3F7F77")

3060 CALL CHAR(10@, "44444EEEEEEEEEEE")
3070 REM PANS

3075 CALIL CHAR(104,"0000003E38380000")
3109 CALL SCREEN(4)

3119 CALL COLOR(9,13,1)

3120 CALL COLOR(14,9,1)

3200 RETURN

4000 REM INITIAL VARIABLES

145

12

4085 REM HOBO

4010 LET HR=INT(RND*18)+4

4015 LET ‘RR=HR

402@ LET HC=INT(RND*3@)+3

4025 LET CC=HC ’

4930 CALL CHAR(33,"1ClC@83E@8141414")
4035 CALL COLOR(1,2,1)

4040 CALL GCHAR(HR,HC,C)

4058 IF C<>32 THEN 4010

4060 CALL VCHAR(HR,HC, 33)

4100 REM GUARD

4105 LET GR=10

4106 LET GC=18

4130 CALL CHAR(42,"1C1D@936545C1414")
4135 CALL COLOR(2,2,1)

4169 CALL VCHAR(GR,GC,42)

4200 LET COUNT=0

4210 LET TIME=33

4220 CALL COLOR(11,9,1)

4225 CALL CHAR(11l6, "CCCCCCCCCCCCCC")
4230 LET PAN=0

4309 GOSUB 200

4319 LET STORE=32

4900 RETURN

5000 REM TIME IS UP

5010 CALL CLEAR

5020 PRINT "YOUR TIME IS UP"

5030 GOTO 800

Program Structure

Line 10 is the title, line 15 clears the screen, and line 17
uses the RANDOMIZE command.

Line 20 calls a subroutine which starts in line 3000. This
subroutine creates the characters and colors needed to create
the maze walls and pans. Since this subroutine and the next
(which creates the maze) take up a lot of space in the program,
it's better to put it in a subroutine nearer the end of the
program so that it will be out of the way. This speeds program
flow because the less you have at the beginning of a program,
the faster the TI finds things, since it starts looking for certain
things at the lowest line numbers.

Line 30 calls a subroutine that actually creates the maze,
starting in line 2000.

Line 40 calls a subroutine that starts in line 4000 which
sets up all the initial conditions of the rest of the game.

Line 100 starts the main loop.

146

3333323232333 3333338323333323333333333333)

D333V ITIIIBIIDIAIDIINIBIIDIDINDIIDINDIDIDDITDTDDD

Lines 110-112 use CALL CHAR to give a shape to both the
hobo and the guard. These shapes will be used to animate the
hobo and guard. (See lines 150-152 for more explanation.)

Lines 120-125 use the variable COUNT to keep track of
how much time passes in the game. Each time the program
goes through the main loop, COUNT is increased by 1. If
COUNT is less than 20, the program goes to line 130 and the
main loop continues. If COUNT equals 20, the program goes
to line 125. This sends the program to a subroutine in line 200
which changes the time display so the player knows time is
passing. (Notice that by using a jump to line 130, line 125 can
call a subroutine. This is needed because other parts of the
program will use the subroutine in line 200. Whenever
possible, use subroutines, for then they can be easily used
again and again.)

Line 130 sends the program to a subroutine starting in line
300, a joystick reading subroutine.

Lines 150-152 use CALL CHAR to give different shapes to
the guard and hobo. Compare these shapes to the CALL
CHAR commands in lines 110-112. They are similar, but the two
shapes for the hobo make the hobo's legs seem to move, and
the two shapes for the guard make his arms seem to move.
This is one way to create animation on the TI. All that’s been
done is to use CALL CHAR to create two shapes, but because
they change every time the program goes through the loop,
the characters seem to move. A simple addition like this can
make.a game more fun, even though it doesn’t affect game

lay.
P yLine 160 makes the program go to a subroutine that starts
in line 500. This subroutine makes the guard move in the direc-
tion of the hobo.

Line 190 ends the main loop.

Line 200 begins the subroutine that puts the time bar chart
on the bottom of the screen, and puts the number of pans that
the player has obtained on the row above the bar.

Line 205 uses CALL SOUND to let the player know that
the time and/or number of pans is being changed. This is
helpful since the player will be watching the center of the
screen most of the time.

Line 210 resets COUNT to 0 so that when the program
goes back to the main loop, it can count to 20 again.

147

Zz Hobo Party

Line 215 subtracts 1 from the variable TIME, which is used
to keep track of remaining time. :

Line 217 checks to see if time has run out. If TIME is 0, the
program jumps to line 5000 and ends the game.

Line 220 puts the bar chart on the screen. By using CALL
HCHAR, character 116 is PRINTed the number of time to equal
the value of variable TIME. TIME starts at 32 and decreases by
1 each time this subroutine is called.

Lines 225-227 put a space (character 32) after the time bar
chart’s end, so that the bar gets shorter. Line 225 checks to see
if the bar chart is 32, which it will be the first time through. If it
is, the program does not put a space after the bar chart’s end; if
the TIME variable is less than 32, line 227 puts a space at the
column that is one more than the length of the bar chart (meas-
ured by TIME). Without these two lines, you wouldn’t know
that the bar is getting shorter.

Line 230 puts the number of pans that the player has
gotten on the screen. By using CALL HCHAR with character
104, which is the pan character, the number of pans PRINTed
equals PAN. If PAN is 0, nothing is put on the screen.

Line 300 begins the subroutine that reads the joystick.

Lines 310-326 are the same as in other games in this book,
using CALL JOYST to see if the joystick has been moved, and
then sending the program to specific lines depending on the
joystick direction.

Lines 350-390 process the hobo’s intended move and see
whether the hobo can actually move. ,

Line 355 uses CALL GCHAR to see if the new move will
work. Whatever is in C is the object that is currently in the
location where you want the hobo to go, as determined by the
new row and column, RR and CC.

Line 360 tests to see if C is not equal to 104. If it isn’t, that
means the place you want to move the hobo to doesn’t contain a
pan, and the program goes to line 370.

If there is is a pan in the way, lines 363-369 take care of
what happens, because you'll be picking up that pan. Line 363
increases TIME by 1. The time will not actually increase, but
because the subroutine that puts the pans taken on the screen
also decreases TIME, you must increase it here so that there will
be no change in the TIME variable. Line 364 increases PAN.
Line 365 uses CALL SOUND to let the player know a pan has
been picked up. Line 366 erases the pan. Line 367 uses the

148

3313233330333 333333333333333333333333)

TIIITIIIIDDIIDDARDIRIDDBNIDNNNIDIDIARDNDNIIDIDIANDND

Hobo Party

subroutine in line 200 to put the new number of pans on the
screen. Line 368 checks to see if all the pans have been picked
up. If they have, the program goes to line 900, where the
program ends. Line 369 sends the program to line 380, where
the hobo is put on the screen at its new position.

If there is no pan in the way, line 370 tests to see if a space
is present. If it is, all is well, and the program goes to line 380.

If there is something else in the way, it must be one of the
junkyard walls or maybe the guard. If either is true, lines 375-
378 make sure that the hobo can’t go in that direction.

Lines 375-376 reset the new row and coumn variables so
that they are the same as the old row and column variables.

If all is well, lines 380-390 put the hobo at the new row and
column.

Line 380 uses CALL VCHAR to erase the hobo at the
hobo’s old row and column, HR and HC, and line 381 uses
CALL VCHAR to put the hobo at the new row column, RR and
RC.

Lines 382-383 change the old row and column to the new
row and column, so that the next time through the loop, the
old becomes the new.

Line 390 sends the program to line 330, which is a
RETURN to the main loop. A RETURN could have been put
here, but by sending all the branches of a complicated subrou-
tine like this to a central RETURN line number, you can see the
program flow easier, and you don't risk having a RETURN in
the wrong place.

First, line 410 checks to see if the joystick column variable
was 0. If it wasn't, the joystick was moved diagonally, and the
program goes to line 330, which returns to the main loop. (You
should always check for this kind of input problem to make
sure that what the player wants actually happens. It can be
very frustrating for the player to think that he or she is moving
the joystick up and have the character move sideways because
there was a slight diagonal tug on the joystick.)

Line 412 creates a variable RR, which is used for the new
row you want the hobo to move to. You don’t want to actually
change the row yet because the hobo might not be able to go in
that direction.

Finally, line 414 sends the program to line 350, where the
hobo’s move is processed.

Similarly, lines 420-444 test the joystick’s input for diagonals,

149

12 Hobo Parrty

create a new row or column variable that will be used to
see if the hobo can go in that direction, and shift the program
to line 350.

Lines 500-650 move the guard. Every time the program
goes through the main loop, the guard moves. Lines 500-575
calculate the guard’s move, and lines 600-650 move the guard.

Lines 502-503 create variables that will be used as flags to
test which way the logic will flow in this subroutine. TRY is 0
and will be used to see if one logic path was followed, and
FLAG will be used to see which way a different logic path
went.

Lines 505-506 set the variables CI and RI to 0. These will
be used for the increase (or decrease) of the guard’s row or
column.

Lines 510-512 create new variables which will be used to
calculate the difference between the row and column positions
of the hobo and guard.

Line 514 takes the absolute values of the differences between
the rows and columns of the hobo and guard, and sees which
is greater. You want to determine which way the guard will
move first. You've already calculated the differences between
the rows and columns, and you want to go in a pattern that
will use the shortest path, which will be the difference that is
greatest. In other words, if the distance between the rows is
greater than the distance between the columns, you want to
decrease that distance first. If the row difference is greater than
the column difference, the program will go to line 530; if the
column distance is greater than the row distance, the program
will go to line 520. Notice that the absolute values were taken
with ABS. This was used because you're concerned only with
the numerical distance. If you don't take the absolute value, you
might get wrong answers because the difference may be a
minus number if the hobo is, for example, to the left of the

ard.
g Lines 515-527 are used for the guard’s move calculation if
the column difference is to be decreased.

First of all, line 515 sets FLAG to 1. Line 520 tests to see
whether the difference between columns is greater than 0. If it
is, the hobo is to the left of the guard, and the program goes to
line 525. If it's not greater, the hobo is to the right of the guard,
and the program goes to line 522. :

Line 522 sets CI to —1. This will be used later to move the

150

3333333333333 333333233333333333303333

33333333 IIITIIINIBINIIIINININIIIINDRIINIDIONAN

Hobo Party 14

guard’s position to the left.

Lines 525-527 are used if the hobo is to the left of the
guard. CI=1is used later to move the guard right.

Lines 530-535 operate the same way as lines 515-527,
except that the hobo is above or below the guard, and CR is
changed to 1 or —1 to move the guard down or up, depending
on whether the hobo is below or above the guard. The only
difference is that FLAG is not changed, so that it will remain 0.
The FLAG variable will be used later to tell whether the guard
attempted to move left or right (FLAG = 1) or up or down (FLAG
= 0). Remember, at this point in the program, you are calcu-
lating only where the guard will attempt to move.

Line 550 uses CALL GCHAR to see where the attempted
move will go. The character in the row and column where the
guard wants to go is stored in the variable C.

Line 552 tests to see if C is 33. If it is, that means that the
guard has caught the hobo, and the program goes to line 700.

Line 555 tests to see if the attempted move is not equal to
character 104, which is the pan character. You must be careful
that the guard does not accidentally erase a pan. If no pan is in
the way, the program goes to line 560.

If a pan is in the way, the guard can move there. First, line
557 puts the number 104 into a variable called STORE. In the
initialization part of the program, STORE was set to 32. STORE
is used to leave behind either a space or a pan when the guard
moves. If a guard is about to move on top of a pan, STORE will
be set to 104 so that when it moves, the pan will be put where
the guard moved from. The program then goes to line 600 to
move the guard.

Line 560 tests to see if the position the guard moved to is
not equal to 32. If it is not, a maze wall is blocking the way, and
the program goes to line 580.

Line 565 makes sure that STORE contains a space (ASCII
32) so that when the guard is put in its new position, a space
will be put down in the old position. This is necessary to
prevent another pan from being PRINTed.

Line 566 sends the program to line 600 so that the guard

can be PRINTed.
Lines 570-575 are accessed if the first and second attempts

to move the guard failed. Lines 570-572 generate random
increases or decreases for the guard’s row and column, and
line 575 sends the program back to line 550 to test these new

151

Hobo Party

values. If they don’t work, lines 570-575 repeat again and again
until a path for the guard’s movement is found. When one is
found, the guard is moved by line 600.

Lines 580-583 determine the flow of the logic in the guard’s
attempts. The first time through the guard’s subroutine, the
program will attempt to move the guard in the row or column
direction that is still toward the hobo, but which is the greatest
difference in row or column direction. However, if this direction
didn’t work because something is in the way, the program will
next try to go in another direction toward the hobo. Here’s an
example: If the guard is in the middle and the hobo is to the
right or left, and the row difference is greater than the column
difference, the guard will first attempt to move toward the row
that is closer to the hobo. If the way is blocked, the guard will
next try to move toward the column that is closer to the hobo.
Finally, if neither of these ways works, a random move away
from the hobo takes place. This may help the guard escape
from a blind spot he may be trapped in.

Line 580 sees if TRY is equal to 1. If it isn’t, this is the first
time through the testing procedure. The first attempt has
failed, and now a second attempt is made.

Line 581 sets the TRY variable to 1, so that the next time
the program reaches this point, if the second attempt fails, line
580 sends the program for a third attempt.

Line 582 sees if the FLAG variable was set to 1. If it was,
the first try was in a column direction, so the program goes
back to line 530 and tries to see if moving in a row direction
will help. If FLAG was 0, the first attempt was in a row direc-
tion, so line 583 makes the program go back to line 520 to see if
moving in a column direction will help.

Lines 600-650 actually move the guard. Line 610 uses
CALL VCHAR to put a space where the old row and column of
the guard was. A space is put down if STORE is equal to 32,
but a pan is placed if STORE is equal to 104. Line 620 uses
CALL VCHAR to put the guard in the new row and column, as
calculated by GR+ RI and GC + CI. Finally, lines 630-640
change the old guard row and column to the new row and
column.

Lines 700-710 are accessed if the guard catches the hobo.
Line 705 clears the screen, and line 710 prints a message.

Lines 800-880 are the end of the program. This will be
gone to when the guard catches the hobo, the time runs out, or

152

Hobo Party 14

the hobo gets all the pans. This is programmed the same way
as the endings of other games in this book, to give the final
score, a chance to play again, and end the program.

Lines 900-920 are used if the hobo got all the pans. Line
905 clears the screen, line 910 prints the message, and line 920
sends the program to line 800 for the ending.

Lines 2000-2740 contain the subroutine that generates the
maze and puts the pans and the title on the screen.

Lines 2100-2130 set up variables which use the subroutine
starting at line 2700. The subroutine at line 2700 puts the title
message on the screen, HOBO PARTY, PRINTed at row 1,
column 11.

Lines 2160-2180 put the exclamations on either side of the
title. Dancing hobos appear from these characters when the
program is finally set up. The exclamation marks are put on
the screen using CALL VCHAR and a FOR/NEXT loop.

Line 2190 is the word RESTORE. This is a very important
safety measure when you're using DATA statements, such as
those which generate the maze. RESTORE makes sure that
when READ reads a DATA statement, it starts with the very
first statement.

Line 2200 begins the actual maze generation.

Line 2210 starts a FOR/NEXT loop that is used to put each
row of the maze on the screen. The first row is 3 and the last
row 22; J is used for the row number.

Line 2220 READ:s the first DATA statement it finds. The
DATA statements in this program are in lines 2500-2529. Each
DATA statement is a collection of 32 numbers read as one
string, A$. The numbers are either 0 or 1; a 0 indicates a space
and a 1indicates that a character is to appear on the screen.
The maze generator is set up this way so that the programmer
can easily make changes in the layout of the maze, by merely
changing the 0’s or 1's. There are 20 DATA statements, each
representing one row.

Line 2230 starts a second FOR/NEXT loop which is used to
translate the 0’s and 1's into specific objects to create the maze.
Variable 1 is used for the counter here and is also the column
number.

Line 2240 looks at each segment of the A$ variable. If the
segment is not equal to 0, the program will go to line 2260.
Notice that 0 is used because 0 is a string, not a numeric vari-
able. If the segment is a 0, the program goes to line 2250.

153

77 T 3 TR

2 Hobo Party

Line 2250 sets the variable EL (ELement) to 32. EL is later
used to decide what is put on the screen. Since the segment
was 0, EL will be 32 so that a space can be printed.

Line 2255 then sends the program to line 2270 so that the
space can be put on the screen.

Line 2260 is accessed if the segment of A$ is equal to
something besides 0 (in other words, if the segment is 1). This
line generates a random number, stored in EL, between 96 and
100. EL is the character printed. Trash bags, tires, TV sets,
boots, and bottles are the custom characters defined in the
subroutine at line 3000. Because EL is chosen randomly each
time through the loop, the maze consists of walls of varying
objects. The overall shape is the same, but the texture is
different each time because of what makes up the walls.

Line 2270 uses CALL VCHAR to put a character on the
screen in row J and column I.

Lines 2280-2290 close off the FOR/NEXT loops. When you
have one loop inside another, make sure that you have them
closed correctly. If the outer loop is], you should put NEXT]
last. When the program has gone through all of the J and I
loop combinations, the maze is on the screen.

Lines 2300-2350 put the pans on the screen. Line 2310 sets
up a FOR/NEXT loop that will put 32 pans on the screen. Lines
2320-2325 create a random row and column for the pan. Notice
that no number will be generated that will be outside the maze
boundaries. Line 2330 uses CALL GCHAR to see if the row
and column generated are already occupied. If they are not
equal to 32 (a space), the program goes back to line 2320 to try
again. Line 2340 is gone to if a space was at the row and
column numbers that were generated. CALL VCHAR puts a
pan (character 104) in the row and column selected.

Lines 2500-2529 are the DATA statements used to create
the maze. (Notice that these DATA statements are not part of
the program, in the sense that no GOTOs or GOSUBs go to
these lines. They could have been put in any part of the
program that is not in the program flow. When a READ state-
ment is used, the program starts at the beginning and looks for
the first DATA statement it finds. RESTORE must be used to
make sure that the first DATA statement is used; otherwise,
there is a chance that if you tried to reuse the DATA state-
ments, they would start after the last DATA statement.)

Lines 2700-2740 contain a subroutine which puts a

154

JJ3JI23333313333333333333333333333323333)

Hobo Party

message on the screen. This is similar to message subroutines
used in other programs in this book. CALL VCHAR is used to
take a string, A$, and by using ASC(SEG$), puts each char-
acter of the string in the proper row and column.

In lines 3000-3200 is a subroutine which creates the char-
acter shapes and colors of the maze and pans.

Lines 3020-3060 use CALL CHAR to create the shapes of
the trash bags, tires, TV sets, boots, and bottles.

Line 3075 creates the shape of the pan using CALL CHAR.

Line 3100 colors the screen light green.

Line 3110 colors the maze objects dark green. Dark green
is used with light green so that the shapes of the objects will
show through. If you use colors that contrast too much, some
of the dots that make up the objects will seem to blend into the
background. Line 3120 colors the pans medium red.

Lines 4000-4900 set up the initial variables that start the
game.

Lines 4005-4060 put the hobo on the screen. Line 4010 sets
the hobo’s beginning row to a random row number, HR. Line
4015 sets the new hobo row number variable, RR, to the same
value as HR.

Lines 4020-4025 create the old and new hobo column
number variables, in a manner similar to lines 4010-4015.

Line 4030 uses CALL CHAR to create the initial shape of
the hobo. This shape changes to produce animation in the
main loop.

Line 4035 colors the hobo black. Black is used for both the
hobo and the guard for the best visibility. You can tell them
apart because they have different shapes which are animated
to move the hobo’s legs and the guard’s arms.

Line 4040 uses CALL GCHAR to see what is in the row
and column generated for the hobo’s location. If the row and
column do not have a space (character 32), the program goes
back to line 4010 to try again. If the row and column do have a
space, line 4060 uses CALL VCHAR to put the hobo on the
screen.

Lines 4100-4160 put the guard on the screen.

Lines 4105-4106 create the guard’s beginning row and
column position, in a central location, in row 10 and column
18. Line 4130 creates the guard’s beginning shape, which is
animated in the main loop. Line 4135 colors the guard black,
and line 4160 puts the guard on the screen using CALL
VCHAR.

155

12 Hobo Party

Line 4200 sets COUNT to 0. COUNT is used in the main
loop to keep track of time.

Line 4210 sets TIME to 33. TIME is set equal to 33 because
the subroutine that uses TIME starts out by subtracting 1.
Remember that no more than 32 blocks can be on one line at a
time.

Line 4220 sets the color of the blocks that show how much
time has elapsed.

Line 4225 uses CALL CHAR to create the shape of one
block. The total number of blocks indicates how much time is
left.

Line 4230 sets the variable PAN equal to 0. Line 4300 uses
the subroutine starting at line 200 to put the number of pans
on the screen and also to show how much time has elapsed.

Line 4310 sets the variable STORE equal to 32. STORE is
used by the subroutine that moves the guard. Lines 5000-5030
are gone to when the time is up, and the player has not gotten
enough pans. Line 5010 clears the screen, line 5020 prints the
message that the time is up, and line 5030 sends the program
to line 800, where the ending takes place.

Variables

HR Hobo's current row.

RR Hobo’s attempted row when it tries to move.

HC Hobo’s current column.

CC Hobo’s attempted column when it tries to move.

GR Guard's current row.

GC Guard’s current column.

COUNT Variable used to keep track of time in the main
loop.

TIME Variable used to put the amount of remaining
time on the screen.

PAN Number of pans that the player has picked up.

STORE Variable used to see whether the guard is about
to move on top of a pan or space.

A% String variable which holds a message to be put
on the screen or a temporary variable for a DATA
statement.

ROW Row that the message will be PRINTed to.

COL Column that the message will be PRINTed to.

EL What is put on the screen when the maze is
generated.

156

JJIJIIJIIII3IIIIIIIIIIIBIIIIIIIIIIIIIIIIEI

Hobo Party 12

PR Pan row.

PC Pan column.

FLAG Variable to see whether the first attempt of the
guard’s move was in a row or column direction.

TRY Variable to see if the second attempt of the
guard’s move also failed.

I Increase or decrease of the guard’s column
position move attempt.

RI Increase or decrease of the guard’s row position
move attempt.

DR Difference between the hobo row and the guard
row.

DC Difference between the hobo column and the

ard column.

Special Notes. By changing the value that CALL CHAR
uses in the main loop, this program is able to animate the two
action figures. Even if they are standing still, they still move,
because arms wave and legs jump. Using this kind of simple
animation can make a game more fun because players expect
realistic character movement in arcade games.

The maze generated in this game is a fixed maze, in the
sense that the pattern will always be the same. It feels different
each time you play because the walls of the game are different.
Reading in the shape from DATA statements makes the maze
itself easy to modify.

This game shows how to display scores by using a bar
chart instead of just putting the number on the screen. Often it
is easier for a player to just glance at a bar chart and under-
stand its meaning than it is to see a number. Also, by using the
same technique, but with the shape of a pan instead of a block,
you can show how many pans have been picked up by the
hobo.

Study the logic of how the guard moves in lines 500-560.
In this game the idea is to make the guard as smart as possible,
so it will be able to catch the hobo. By anticipating all the
possible moves the guard can make, you can decide which
moves are best. If he can’t make one move, you can see which
is the best. However, it’s important to give the guard a way to
move, even if it is not the best way; otherwise, the guard may
get stuck, or worse yet, the program may become stuck in a
loop, always trying the best way.

Another interesting feature of this game is what happens

157

J Holbo Party

when the guard moves over a pan. When you have objects
scattered around a screen that you don’t want accidentally
erased, you must have a way to restore whatever is moved
over. This is a powerful technique. By using it, you could
create a detailed map and have objects move over the map and
store what they move over in a variable, leaving behind what
they just went over.

Changing the Game

Besides the usual changes of color, shape, and sound, you can
do a lot to change this game.

158

* The most obvious is to create mazes of different shapes.
You can create your own patterns, and enter them as
DATA statements.

* You can alter the maze each game by changing into a
space one of the five objects that make up the maze
walls. For example, if you make the trash bag into a
space, the walls will have different shapes. However, if
you do this, take care that the outside walls contain no
spaces, or the moving characters may be able to escape.

* You can make the game more difficult by letting the
guard move more often, or you can make the time
shorter. If you want to make the game more difficult,
you can create a way for the guard to blast holes in the
maze walls so that he can more easily get to the hobo.

* To make it easier, you could add an escape option: If the
joystick button is pressed, the hobo could be picked up
and carried to a new unknown position on the screen, as
a way to escape when the guard is closing in.

* Also, a second or third guard could be added, just by
duplicating the guard move routine for a second or third

uard.

. \g{ou could also create special items, like coffee pots. If
the hobo gets these special items, he can chase the guard
for a while. This will require the guard to do the oppo-
site of what he did before, and will make the game very
complex.

» Finally, you can create a series of mazes for the hobo and
guard to go through, and add things like traps, dogs,
and so on.

3333333333333 33333333334533333333304.

oo

13 Moneybags

eececeOCREEPRPORPEREPRRORRPORRRRRRRRCR RO

Using the TI Extended BASIC cartridge’s capability to create sprites,
you can easily create and move characters on the screen. (If you don’t
have the Extended BASIC cartridge, you can't use the commands in
this game.)

Sprites have the ability to move independently, can be larger
than normal characters, can move without erasing anything
created on the screen by normal characters, and can detect
collisions between one sprite and another.

“Moneybags” is a game that uses 14 sprites: 12 cars that
run on a freeway, one money truck that has a bad habit of
dropping money bags, and a player figure trying to pick up
the money without being run over by the cars.

Before you see how the game works, a short summary of
how sprites work on the Tl is in order.

First of all, you must have the TI Extended BASIC cartridge
plugged into your machine. Then, when you power up, and
after pressing any key, you'll be given an option between TI
BASIC and TI EXTENDED BASIC. Press the 2 key to use TI
EXTENDED BASIC.

Most of the differences between Extended and TI BASIC
won’t be covered here. However, if you want to edit a line,
instead of typing EDIT 10, you must type the line number you
wish to edit and then press FCTN and the E key simultane-
ously. Also, if you want to use PRINT to scroll the screen,
make sure you don’t have anything on line 24 (see the discus-
sion of scrolling in Chapter 9).

Also, you can combine more than one statement on a line
by putting two colons (::) between statements.

You can also see how much memory you have left by
typing SIZE.

Finally, Extended BASIC allows you to do many other
complicated things, such as a more generalized IF/THEN
command, using a GOSUB after THEN, or having a simple
command follow the THEN.

To use sprites effectively, here’s a summary of the
commands that affect sprites.

=
=
=
-
-
~
=
™
=
(wm
=
™
™
=
&
o=
G
e Sprites
=
FVT-M\
@
&
&~
™
™=
&~
=
=
e
.
=
(™
e
ff:‘ 161
P

CALL MAGNIFY. To use sprites, you must first decide
how large you want them. CALL MAGNIFY will make all the
sprites a particular size.

CALL MAGNIFY (1) makes sprites the same size as char-
acters, 8 dots wide by 8 dots high. Each sprite is made up of
one character, much the same way that a custom character is
made. CALL CHAR is used to create the sprite’s shape.

Take a look at Figure 13-1 for a moment. Similar to a
custom character, a sprite can be drawn using an 8 by 8 grid.

Momneybags

Figure 13-1. Sprite Grid

To draw the sprite, simply fill in the boxes representing
the on dots, then calculate the hexadecimal code values for
each four-dot pattern. Refer to Figure 3-3, Character Combina-
tions and Codes, for the 16 patterns and their code values.

An example of a sprite, already drawn and with its hexa-
decimal values calculated, is in Figure 13-2.

In fact, this sprite picture is used in Moneybags.

CALL MAGNIFY (2) is the same as CALL MAGNIFY (1)
except that the dots have been enlarged, so that they cover
more area.

CALL MAGNIFY (3) creates sprites that are 16 dots across
and 16 dots down. In other words, each sprite is actually made
up of four characters in a square, two characters by two charac-
ters. In fact, each CALL MAGNIFY (3) sprite is created from

162

3333333333333 3333333333383333333335333)

T3337T33I33TITITIIDIIRDIINIRIDRDIIRDIIDIITITIRRND

Moneybags

Figure 13-2. Bank Guard
Code Values

10

38

10

38
54
10
28
28

four characters in sequence, such as character numbers 32, 33,
34, 35. The first character is put in the upper-left corner, the
second in the lower-left corner, the third in the upper-right
corner, and the fourth in the lower-right corner. When you're
‘choosing four characters to make a sprite like this, pick four
that start at a number divisible by 4, such as 32, 36, 40, 44, and
so on.

A sprite drawn when CALL MAGNIFY (3) is used would
be created on a 16 by 16 dot grid, similar to Figure 13-3. Notice
that it’s actually four character grids put together.

You can use all four character grids if you want, or you can
use only one, two, or three of them. Unused grids will show as
blanks, or empty. You can use CALL MAGNIFY (3) to create
sprites that are long and thin, or tall and narrow, by using only
two of the grids, leaving the other two blank. Moneybags does
this creating a sprite like the one in Figure 13-4.

Four characters are needed to draw this sprite, but the charac-
ters n + 1and n + 3 were left blank. This way the car appears
twice as long as it is high.

CALL MAGNIFY (4) is the same as CALL MAGNIFY (3)
except that each dot has been enlarged. This is similar to the
difference between CALL MAGNIFY (1) and CALL MAGNIFY

(2).

163

Figure 13-3. CALL MAGNIFY (3) Grid

Character

n

Character n

+ 2

Character n

+ 1

Character n

+3

164

JJIJI3332333333333333333333323233333382333

Moneybags

Figure 13-4. Car Sprite

Code Values Code Values

07 EO
08 g0
10 90

7F FE
FF FE

FF FF
1c 38

1C 38

165

5 Moneybags

CALL CHAR. Once you have decided what CALL
MAGNIFY you want to use, create your sprite shapes by using
CALL CHAR to define them. This works the same way as
CALL CHAR did in creating custom characters. If you are
using a CALL MAGNIFY of 3 or 4, you must make sure to put
blanks in the characters that you don’t want to appear on the
screen. You can do this by simply saying CALL CHAR (n "),
which will put all zeros in character n.

CALL SPRITE. CALL SPRITE puts your sprite on the
screen. You can have up to 28 different sprites on the screen at
one time. Each sprite has a number (which you must put a #
sign in front of).

Each time you create a sprite, you must give it several
numbers:

* The first is the sprite number. Between 1 and 28, it must
have a # sign in front of it.

* The next value is the character number. If you have a
CALL MAGNIFY of 1 or 2, the number you put in will be
the ASCII number of the character you've defined, from
32 to 159.

If you have a CALL MAGNIFY of 3 or 4, you must put in
the first ASCII number of the first character, and the TI
will use the following three numbers to define the rest of
the sprite’s shape.

* Next is the number to color the sprite. Any number be-
tween 1 and 16 can be used.

* The dot-row number is next. Sprites use a different
system of rows and columns than normal characters.
The TI uses 256 dot-rows, from 1 at the top of the screen
down to the bottom. However, the bottom of the screen
is at dot-row 192, so any dot-rows beyond 192 are off the
bottom of the screen. These extra dot-rows can be useful
for hiding sprites temporarily.

Eight dot-rows are equal to one normal row, so you can
calculate a sprite’s position by multiplying a normal row
by 8 and subtracting 7. For example, dot-row 17 will be
at the top of normal row 3. Of course, there is the possi-
bility of overlapping, so you must calculate carefully.

* Next is the dot-column value. This is similar to the dot-
row numbers; there are 256 dot-columns, starting with 1
on the left side and ending at 256 on the right.

166

3335323333333 333353333353533833303333338333333)

D

Moneybags 13

o

» The sixth value is the row velocity, which causes the
sprite to move in a vertical direction. The speed depends
on the number. If you use positive numbers, the sprites
move down, and if you use negative numbers, they
move up. If the row velocity is 0, the sprites won’t move.
Row velocity values are from - 128 to 127, with the higher
numbers being quite fast. If the sprite goes off the top or
bottom of the screen, it will wrap around, coming back
onto the screen, moving in the same direction.

Finally, you need a value for column velocity. This works
the same as the row velocity, except that the movement
is horizontal. If the numbers are positive, the sprite will
move from left to right, and if the numbers are negative,
it will move from right to left. If the column velocity is 0,
the sprite will remain stationary. You can leave off the
row and column velocities and the sprite won’t move,
but it’s a good idea to define them both as 0 just to make

sure.
Here’s the form for CALL SPRITE:

CALL SPRITE (#sprite number, character number, color number,
dot-row, dot-column, row velocity, column velocity)

Once you have set up a sprite, it will keep moving until
the program tells it to do something else.

If you have both the row velocity and column velocity
numbers not equal to zero, the sprite will move diagonally.

CALL COINC. Once you have your sprites moving, it's
often useful to detect collisions with another sprite.

There are several different ways to use CALL COINC
(which stands for Coincide). We’ll use it to detect collisions
between two particular sprites.

CALL COINC needs three numbers and a variable to
make it work:

» The first number is the sprite number you want to test.
You must precede it by a # sign.

» The second value is the sprite number you want to check
to see if it has collided with the first. You must also
precede it by a # sign.

+ The third number is called the tolerance. This is the
distance between the upper-left corners of the two
sprites in question. If you have a tolerance of 1, the
program will detect a collision only if the sprites” upper-

167

Moneybags

left corners are in the same dot-row and dot-column. If
the tolerance is 8, the upper-left corners have to come
only within eight dot-rows and dot-columns of each
other.

* Finally, a variable must be inserted that contains a
number to tell you whether the two sprites collided or
not. The variable contains a 0 with no collision, and —1
with a collision.

CALL COINC'’s form looks like this:

CALL COINC (#sprite number, #sprite number, tolerance, variable)

You can also use CALL COINC to detect if any sprites
collide or if a sprite collides with a specific dot-row and dot-
column.

It's important to note that CALL COINC tells you only
whether there is a collision at the time the command is
processed. To use it properly, you should have it in the main
loop and test it frequently. Sometimes, if a sprite is moving
fast enough, a CALL COINC won’t happen at the moment of
the collision and you'll get a false reading.

CALL LOCATE. If you want to change a sprite’s position
on the screen, you can use CALL LOCATE to move it to a new
dot-row and dot-column.

This is useful for moving sprites with the joystick. You can
also use this to move a sprite off the screen if you want to hide
it temporarily, using CALL LOCATE to send it to a dot-row
value higher than 192.

CALL LOCATE needs the sprite #, a dot-row, and a dot-
column. Her’s how it would look:

CALL LOCATE (#sprite number, dot-row, dot-column)

CALL DELSPRITE. If you want to erase a particular
sprite, you can use DELSPRITE to remove a sprite from the
screen. All you have to do is specify the sprite you want
deleted. The form for the command is:

CALL DELSPRITE (#sprite number)

If you want to remove all sprites from the screen, you
could type:

CALL DELSPRITE (ALL)

Other Sprite Commands. The previous sprite commands
commands are the ones you probably will want to use in your

168

3323231333335 3383333335333333333333339

13

games, and are the ones used in the game Moneybags.
However, several other commands are used with sprites. They

are:

» CALL COLOR, which can be used for sprites by speci-
fying the sprite number (putting a # sign before it) and
the number of the foreground color. You can use this to
change colors of a sprite.

« CALL MOTION, which changes the motion of a sprite
by specifying the sprite number, the row velocity, and
the column velocity.

« CALL POSITION, which finds out where the sprite is by
specifying the sprite number, and two variables, which
contain the dot-row and dot-column. You could use this
to see if a sprite has moved to a certain part of the
screen.

« CALL DISTANCE, which tells you how far apart two
sprites are by specifying the two sprite numbers and a
variable that tells how far apart they are in terms of the
square of the distance; you can also find out how far
away a sprite is from a specific dot-row and dot-column,
in terms of the square of the distance.

« CALL PATTERN, which changes a sprite to a new
pattern by specifying the sprite number and the pattern
shape in a way similar to the CALL CHAR command.
You can use this to specify a pattern fora CALL
MAGNIFY of 3 or 4, using one string of numbers rather
than four different CALL CHAR commands.

Moneybags
Now that you've seen a short summary of how sprites work,
you're ready to see sprites in action.

The game starts by drawing a dotted line on the screen to

divide the highway. The title and score PRINT at the bottom.

A green money truck moves along the top of the screen.

They must have left the back door open, because money is
flying out of the door and scattering across the highway. As the
truck speeds off, a bank guard jumps out of the truck. The
guard’s job is to get all of the money without being run over.

This seems easy enough, but cars come from both sides of

the highway, six moving along the upper half of the highway
and six more along the lower half. Each car is a different color
and moves at a different speed.

169

13

You must guide the bank guard with your joystick,
moving him next to a moneybag, and picking it up by pressing
the fire button. Each moneybag you retrieve increases your
score by 1.

But be careful. If one of the cars hits the bank guard, the
game is over.

If the guard can pick up all the money on the screen,
another truck will come along and more money will be scat-
tered. This game requires not only fast action, but strategy. You
have to figure out the cars’ speeds so you won't be run over
when you try to pick up the money.

Program 13-1. Moneybags

10 REM MONEYBAGS

20 CALL CLEAR

25 CALL SCREEN(16)

30 CALL CHAR(194, "0708187FFFFFlClC")
31 CALL CHAR(106, "E¥9090FEFEFF3838")
32 CALL CHAR(185,"")

33 CcALL CHAR(187,"")

35 CALL CHAR(112, "7F44447FFFFF1lClC")
36 CALL CHAR(114, "E@9090FEFEFF3838")
37 CALL CHAR(113,"")

38 CALL CHAR(11l5,"")

4@ CALL CHAR(120,"@709@97F7FFF1ClC")
41 CALL CHAR(121,"")

42 CALL CHAR(122, "E01008FEFFFF3838")
43 CALL CHAR(123,"")

45 CALL CHAR(128, "@709@97F7FFF1ClC")
46 CALL CHAR(129,"")

47 CALL CHAR(130,"FE2222FEFFFF3838")
48 CALL CHAR(131,"")

5@ CALL MAGNIFY(3)

51 CALL CHAR(36,"1038183854102828")
52 CALL CHAR(37,"")

53 CALL CHAR({38,"")

54 CALL CHAR(39,"")

65 CALL CHAR(43, "FOF0000003000003")
66 CALL COLOR(2,10,1)

76 CALL HCHAR(12,1,43,32)

80 LET CR=1l

81 LET CC=8*16-7

86 CALL CHAR(96, "7F7F7F7FFFFFlClC")
87 CALL CHAR(97,"")

88 CALL CHAR(99,"")

89 CALL CHAR(98, "E@9090FEFEFF3838")
9¢ LET P$=“"MONEYBAGS{5 SPACES}SCORE "

IREEREER

Moneybags

91 LET PLACE=2

92 GOSUB 1000

93 GOSUB 808

94 CALL SPRITE(#1,36,14,CR,CC,9,0)
95 LET COUNT=1 :: LET SCORE=0

96 GOSUB 200

97 LET P$=STRS$ (SCORE)

98 LET PLACE=23

99 GOSUB 1000

220
222
230
240
250
252
260
262

270
280

285

REM MAIN LOOP
FOR I=2 TO 13

CALL COINC(#1,#1,7,a)

IF A=-1 THEN 300

NEXT I

CALL JOYST(1,JC,JR)

IF JR=4 THEN 500

IF JC=4 THEN 558

IF JR=-4 THEN 600

IF JC=-4 THEN 650

CALL KEY(1,K,S)

IF K=18 THEN 900

GOTO 100

REM NEW SPRITES

RANDOMIZE

CALL SPRITE(#3,104,4,INT(RND*88+90)+1,1,
@,RND*106+1)

CALL SPRITE(#12,104,3,INT(RND*80+90)+1,1
,9,RND*10+1)

CALL SPRITE(#4,112,12,INT(RND*80+90)+1,1
,@,RND*13+1)

CALL SPRITE(#13,112,5,INT(RND*8@+90)+1,1
,0,RND*10+1)

CALL SPRITE(#5,104,14,INT(RND*80+90)+1,1
,@,RND*10+1) ‘

CALL SPRITE(#2,112,1@,INT(RND*80+90)+1,1
,0,RND*10+1)

CALL SPRITE(#6,120,6,INT(RND*72)+9,31*8,
@,-RND*16-1)

CALL SPRITE(#10,120,11,INT(RND*72)+9,31%*
8,0,-RND*18-1)

CALL SPRITE(#7,120,7,INT(RND*72)+9,31%*8,
f@,-RND*10-1)

CALL SPRITE(#11,128,13,INT(RND*72)+9,31*
8,0,-RND*10@-1)

CALL SPRITE(#8,128,8,INT(RND*72)+9,31*8,
@,-RUD*10-1)

CALL SPRITE(#9,128,9,INT(RND*72)+9,31*8,
@,-RND*10-1)

RETURN

171

13 Moneybags

300
310
315
320
330
350
360
500
519
520
530
540
550
560
579
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
7508
752
755
760
800
802
804
885
819
815
820
830
835
837
840
846
848

172

REM COLLISION
CALL SOUND(800,-5,0,884,%,890,0)
CALIL CHAR(36,"18183C5A52181824")
FOR I=1 TO 300

NEXT I

PRINT "YOU WERE RUN OVER BY A CAR"
GCOTO 700

REM MOVE UP

IF JC<>@ THEN 150

IF CR>9 THEN LET CR=CR-8

CALL LOCATE(#l1,CR,CC)

GOTO 150

REM MOVE RIGHT

IF JR<>@ THEN 150

IF CC<243 THEN LET CC=CC+8

CALL LOCATE(#1,CR,CC)

GOTO 150

REM MOVE DOWN

IF JC<>@ THEN 150

IF CR<175 THEN LET CR=CR+8

CALL LOCATE(#1,CR,CC)

GOTO 150

REM MOVE LEFT

IF JR<>3 THEN 150

IF CC>9 THEN LET CC=CC-8

CALL LOCATE(#1,CR,CC)

GOTO 150

REM ENDING

PRINT "YOU GOT ";SCORE;"BAGS OF MONEY"
PRINT "WANT TO PLAY AGAIN"

PRINT "PRESS Y FOR YES"

CALL KEY(3,K,S)

IF S=0 THEN 740

CALL DELSPRITE (ALL)

IF K=89 THFEN 10

END

REM PRINT OUT MOMNEY

CALL SPRITE(#29,96,4,1,1,0,9)
LET COUNT=1

RANDOMIZE

CALL CHAR(136, "183C3CO0000000080")
CALL COLOR(14,11,1)

FOR I=2 TO 31

LET BAG=INT(RND*22)+2

CALL GCHAR(BAG,I,Q)

IF Q<>32 THEN 830

CALL VCHAR(BAG,I,136)

NEXT I

CALL DELSPRITE(#29)

3332333332333 3333353333332038333333338333))

1737373733733 33737373737373393373337373733373333330

13

yba

850 RETURN

90@ REM GET MONEY

910 LET ROW=INT(CR/8)+1

915 LET COL=INT(CC/8)+1

92¢ CALL GCHAR(ROW,COL,M)

922 IF M<>136 THEN 1060

925 LET SCORE=SCORE+l

927 LET COUNT=COUNT+1

928 IF COUNT>28 THEN GOSUB 800

93¢ CALL SOUND(16¢,-3,0,440,0)

932 LET P$=STR$(SCORE)

933 GOSUB 1000

95@¢ CALL VCHAR(ROW,COL,32)

955 GOTO 100

1900 REM PRINT

1010 FOR I=1 TO LEN(PS$)

1¢20 CALL VCHAR(24,I+PLACE,ASC(SEGS$(PS$,I,1))
)

1430 NEXT 1
1040 RETURN

Program Structure

Line 10 is the title, line 20 clears the screen, and line 25
colors the screen white.

Four different car shapes are created in lines 30-48. Lines
30-33 create one right-facing car; lines 35-38, a right-facing
station wagon; lines 40-43, a left-facing car; and lines 45-48, a
left-facing station wagon.

Line 50 is a CALL MAGNIFY (3) which makes each sprite
normal sized, but of four characters. For instance, characters
104-107 make up one car, with the second and fourth charac-
ters blank, since the cars are 16 dots long and only 8 wide.

Lines 51-54 create the characters that make up the bank
guard sprite. Since the bank guard is only an 8 dot by 8 dot
shape, the other three characters are left blank.

Line 65 creates the character used for the striped median
line of the highway. Line 66 colors it red, and line 70 puts it on
the screen with CALL HCHAR.

Lines 80-81 set up the initial row and column of the bank
guard.

Lines 86-89 create the group of characters for the money
truck sprite.

Lines 90-92 set the string variable P$ which PRINTSs the
title on the screen by setting the PLACE variable, which is the
column, and the subroutine at line 1000.

173

ﬂg mytbaags

Line 93 sends the program to line 800 to move the money
truck across the screen, scattering money.

Line 94 creates sprite #1, the bank guard, using character
36, color 14, row and column CR and CC, and 0 row and
column velocity. :

Line 95 shows how Extended BASIC can combine two
commands on one line. The first command sets COUNT at 1
(the COUNT will be used to see how much money is still on
the screen); the second command sets SCORE to 0. The two
are separated by a double colon (::).

Line 96 uses the GOSUB command to create the 12 cars,
sprites #2-#13.

Lines 97-99 put the score on the screen, using the subrou-
tine that starts in line 1000.

Lines 100-190 are the main loop.

In lines 122-128 is a FOR/NEXT loop that tests to see if any
of the sprites have collided with the bank guard sprite (sprite
#1). The variable I is used in CALL COINC to test whether any
one of the 12 sprites (numbered #2-#13) collided with sprite
#1. A tolerance of 7 is used so that if the sprites overlap at all,
a collision is detected. The collision result is stored in the vari-
able A. Line 125 sends the program to line 300 if A= —1, indi-
cating there was a collision.

Lines 130-136 read the joystick using the method from
earlier chapters. Lines 150-155 read the joystick fire button.

Line 190 ends the main loop.

Lines 210-240 set up the six sprites that move from left to
right. Notice that even though there are six sprites, only two
shapes are used: One begins with character 104, the other
begins with shape 112. Six colors are used, however. Each of
the sprites is assigned a random column velocity, so that each
moves at a different speed. Also, each sprite has a different
dot-row value, created with a random number, so that they
start out at varying rows. All of these right-facing cars start out
between dot-row 91 and dot-row 170. This moves the cars
along the bottom part of the screen.

Lines 250-280 set up the six sprites that move from right to
left. They are similar to the cars moving from left to right
except that they start in dot-column 31*8. (It’s often convenient
to multiply by eight so that you don't have to actually graph
out a 256 x 256 grid. 31*8 is 248, so the cars will always start at
the rightmost part of the screen.) Also, these cars are in dot-

174

3333333333333 3833333335333233333533333383313133

Moneybags 13

rows from 9 to 80, so that they move along the top half of the
screen. The sprites are made from characters that start with
numbers 120 and 128. Once all these sprites are set up and
moving, they will keep moving until one of them hits the bank
guard. If they move off the edge of the screen, they’ll just enter
on the other side.

Lines 300-360 take care of the results if one of the cars
collides with the bank guard. A sound is made in line 310, and
the character of the bank guard is changed in line 315 so that
the bank guard looks flattened. A delay is created in lines 320-
330, and a message is displayed in line 350. The program then
goes to line 700 where the ending routine executes.

Lines 500-690 move the bank guard, the up movement
taking place in lines 500-540.

Line 510 checks to see if the joystick column variable is 0.
If it isn’t, there is a diagonal joystick movement, and the
program returns to the main loop.

Line 520 checks to see if the bank guard’s dot-row is
greater than 9. If it is, it can move up. Line 520 shows the real
power of TI Extended BASIC. TI BASIC only allows an IF/
THEN to go to a line number, but Extended BASIC allows a
statement to follow the THEN. In this case, IF CR is greater
than 9, THEN 8 is subtracted from CR, by saying LET
CR = CR - 8. This saves a separate line.

Line 530 uses CALL LOCATE to move the bank guard to
the newly calculated row and column.

Line 540 sends the program back to the main loop.

Similarly, lines 550-590 move the guard right, lines 600-640
move down, and lines 650-690 move left.

Lines 700-760 end the game by printing the score and
asking the player if another game is desired. Notice that line
752 was added. This deletes all the sprites with DELSPRITE
(ALL). If this were omitted, the cars would still be on the
screen when the game started over again.

The subroutine in lines 800-850 scatters the money on the
highway.

Line 802 sets up the money truck sprite. It starts at the top
left and goes to the top right. The speed is adjusted so it will
reach the other side just as the last bit of money is put on the
screen.

Line 804 sets COUNT back to 1, so that the variable can
count to see if all the money has been picked up.

175

13

Lines 810-815 create the shape and color of the moneybag
while lines 820-846 set up a FOR/NEXT loop which provides a
random row for the moneybag to be placed in. Lines 835-837
test to see if something is already in the location, such as the
median strip between the two halves of the road. If something
is there, the program goes back and picks another random
number in line 830. Lines 848 then deletes the money truck
with CALL DELSPRITE.

Lines 900-955 operate the joystick fire button.

Lines 910-915 calculate the normal row and column from
the dot-row and dot-column of the bank guard sprite, and line
920 uses CALL GCHAR to see if something is in the row and
column.

Line 922 tests to see if the object CALL GCHAR found
was character 136, which is the bag of money. If it didn’t find
the money, the program goes back to the main loop. If it did,
line 925 adds 1 to SCORE.

Line 927 adds 1 to COUNT, so that line 928 can test to see
if COUNT is greater than 28. If it is greater, there’s only one
bag left on the screen, so the subroutine in line 800 is called,
which calls another money truck to scatter more money.

Line 930 creates the sound of picking up the money.

Lines 932-933 put the new score on the screen by using the
subroutine at line 1000.

Line 950 puts a space where the money was. Notice that
this has no effect on the bank guard sprite, because the sprites
do not interact with screen characters and in fact are always
put on top of any screen characters.

Line 955 returns this part of the main loop.

The subroutine in lines 1000-1040 puts a message on the
screen. It uses P$ for the message, and the variable PLACE for
the column.

Now that you’ve seen how this program works, you'll
notice how simple the structure of this program is. Imagine
trying to create a game that uses CALL VCHAR to move 13
objects around on the screen, and how slow it would be. This
is the power of sprites.

neylbag B

Variables

CR Bank guard row.

CcC Bank guard column.

P$ String variable used for screen messages.
176

333333333333333233333333333333333333

7373333333733

-~

13

PLACE Variable used to put messages at a specific
column.

COUNT Determines when there is only one moneybag
left on the screen.

SCORE Number of moneybags recovered.

A Variable used by CALL COINC to tell whether a
collision occurred.

JC Joystick column.

JR Joystick row.

K Key pressed.

S Key Status.

BAG Row in which a moneybag is put.

ROW Variable for the normal row that a dot-row is
translated into.

COL Variable for the normal column a dot-column is
translated into.

M Variable used by CALL GCHAR to see if a
moneybag was picked up.

Changing the Game

Now that you have seen how efficient sprites are, you may
want to go back and rewrite some of the games that you saw
earlier in this book.

« To make this game harder, you could occasionally test to
see if a sprite is near the edge it did not start from. If it
is, and you find it with a CALL POSITION, you could
erase it and put it at a new dot-row so that the cars
wouldn’t always be in the same dot-row.

* You could scatter different values of money (shown by
different colors) and get more points for picking up
different moneybags.

* You could have some of the cars change lanes to get
closer to the row the bank guard is in.

* You could even give the bank guard a time limit in which
to get all the money.

* To make the game look different, change CALL
MAGNIFY to 4, so that the cars and bank guard are
large. Try this to see what it looks like; it may be too
hard to play because there is no place for the bank guard

to hide.

177

Nk ok R e o o o A o o o ol o o o o ol o o o A o A o A A S A S oY e o

14 How to Create
Your Own
Game

ool rNqacaag

ssoooPRoOODOORORRROOORORREDRRRORRRROOY

3333233 TIIITIIIIIIIIINIIINIIINIINITINIIIAN

A game is, quite simply, a competition that takes place by
following certain rules to achieve a desirable goal. All you need
to create your own game ideas are three things: a goal, a
competition, and rules. Add the programming building blocks
that you have seen in earlier chapters, and you're ready to
create original arcade-style videogames.

This chapter will give you a step-by-step process that will
show you how to assemble all of the necessary pieces to make
a complete game. The first five steps show you how to create
your original game idea. The last ten steps show you how to
make that game come alive by creating a computer program.

Step 1 is the most important, because it gives you a
method to determine what the game’s goal should be. What is
the prize? What do you want to conquer, surpass, win, or
beat? It’s a good idea to plan beforehand, so that you won't
program half of a game and suddenly realize it’s not what you
wanted. If you make plans and follow them through, you
won’t limit yourself by what you think the machine can do.
Many beginning programmers limit themselves because they
don’t plan ahead.

Step 1: The Goal. In choosing a goal for your game, you
can look at other types of games for ideas. For example, what
is the goal of tennis, football, or chess? But you don't need to
stop at ordinary games. Examine the goals of other pursuits,
such as business, medicine, or politics.

Make a list of the goals that the people in these different
professions strive for. Things you might include in your list
would be: return the ball, make a touchdown, capture their
king, deliver the products, serve the customers, remove the
tumor, cure cancer, feed the poor, or end inflation.

Jot down as many goals as you can think of. When you
have your list completed, exchange some of the words and see
what you get. For example, instead of capturing the king, how
about returning the king, or curing the king?

181

How to Create Your Own Gai

Another way to do this would be to make two lists. The
first could be a list of types of actions, or verbs. The second list
could include types of objects, or nouns. If your list includes
verbs like eat, smash, or attack, and nouns like Martians,
invaders, or potatoes, you could create goal-type ideas like
smash the invaders, eat the potatoes, or attack the Martians.
You could even program your computer to store these lists and
pick combinations for you automatically.

Once you have a goal for your game, all you have to do is
create a way to reach that goal. What do you smash the
invaders with?

What eats up the potatoes? Or where do you attack the
Martians? The answers to these questions create the competi-
tion of your game.

Step 2: Hero and Enemy. You need to have someone or
something that is competing with the player for the same goal.
Usually there is a hero (the player) and an enemy (the
computer or another player). You must decide what the hero
should be and what the enemy should be.

Usually the player will be a human character, but not
always. The hero or the enemy can be Martians, mosquitos, or
even potatoes.

Step 3: Location. The hero and villain competing for the
same goal must have a location where they do this. Make a list
of location possibilities, such as on the moon, in your back-
yard, or underwater. Make a location choice from this list.

Step 4: Weapons. Now that you know who is competing
for what and where, all you need for the action to begin is an
object the competing players can use. The object could be
called a weapon.

The object is what the hero or villain uses to reach the
goal. It's the basis for the nature of the competition of the
game. In other words, it's what's used to smash, attack, eat
with, or invade. Some weapons you might use could be a ball,
aracquet, a gun, a boomerang, a book, an apple, a tank, a
spaceship, or a laser beam.

Again, make a list of possibilities and from that list choose
your weapons.

If you save all of these lists, you'll have a valuable resource
for game ideas.

Step 5: Rules. Once you've chosen the goal and competi-
tion elements of the game, you need to formulate the rules of

182

3333333333533 33533333333333533333833383333

IP3IIIITIIDIINIIIIIIIIIIIIIIIDIIARIININIIAIIIIZIIDIANN

How to Create Your Own Ga W

how these things interact. The rules you choose will depend
on what the goal is, where the location is, what the weapons
are, and who the hero and enemy are.

It's important to determine what it takes to win or lose the
game. How many points do you need? How do you get
points? How do you lose points? How much time do you
have? What happens if you go out of the boundaries? What
kinds of moves can or can’t be made? Think carefully about the
other rules you might need. Ask yourself questions like these,
and the answers will become the rules of your game. Write
down the rules.

Now that your game has its rules, goals, the hero and
enemy, the location, and weapons, you're ready to begin
programming.

Step 6: Outline. The first step in creating the computer
program for your game idea is to make a general outline on
paper of what you want the program to do.

Review the building blocks presented in Chapters 2-6 if
necessary. Or examine the games in Chapters 7-13 to see how
different kinds of movement are achieved. Make notes on how
your location background should be set up, how the hero
should move, how the enemy should move, and how the
weapons should work. You must consider how every piece of
your program will have to work.

After examining all the pieces of the game idea, you can
begin to create the actual computer program.

Now is a good time to get out graph paper and draw the
various characters you’ll want to use. Also, think about what
kinds of colors you want to use in the design of your charac-
ters, what colors you want the screen to be, and what kinds of
shapes and colors you might want to use for background
objects. When you are thinking about this, write down what
kind of sounds would enhance the game, and create a library
of sounds that you like or that signify something, such as
explosions, flying saucer sounds, or laser zaps.

Also, you should decide whether you want to use TI
BASIC or TI Extended BASIC.

Now that you’ve planned the main elements of your
game, the first and most important part of any game program
is the main loop.

Step 7: The Main Loop. The main loop of a program
usually does two things.

183

14 Fiow to Create Your Own Game

The first is that it reads the keyboard or joystick, so that it
can take action based on player input. If the player does not do
something, there is no real game. The main loop waits for
player input.

The second thing that the main loop does is to keep track
of time. After a certain number of times around the loop,
various things can happen. You can use this timing to move
the background, the enemy, or take other actions that make the
game work.

The major parts of a game are decided in the main loop, so
you should know what you want done here. Make it simple,
because complicated things take time, and you want as little to
actually happen in the loop as possible, so that the game plays
as quickly as possible. BASIC is often slow enough without
burdening the main loop with unnecessary calculations.

To keep the main loop from slowing down the game, you
can make the more complicated things happen in smaller
programs and subroutines, which the main loop goes to. Once
a key is pressed, the joystick is moved, or the program has
gone around the loop a certain number of times, the program
can go to a smaller program or subroutine.

Write down what you want the main loop to do. Study
main loops that have been presented in this book and write
down the BASIC statements that you want to use to make this
loop happen. Don't start using line numbers yet and don't
type anything into the computer. You must patiently plan
before you begin to actually program, to make sure that the
program pieces work together.

Step 8: Smaller Programs and Subroutines. The smaller
programs are accessed from the main loop, or sometimes from
other smaller programs. Each smaller program or subroutine
should do one or two things. When the smaller program is
finished, it goes back to the main loop.

Smaller programs can do many things, but you want to
keep them simple. If a smaller program is getting too compli-
cated, you might want to break it down into several even
smaller programs. The idea is to use smaller programs to break
the game down into simple steps.

For example, one smaller program might move a character
left, and another smaller program might move the same char-
acter right. A smaller program could fire a gun, move the back-
ground, or move the enemy. You can use smaller programs to

184

3333333333333 33333333333333333333339

)

7773733333737 3333233373333337333333333730

How to Create Your Own Game

ﬁl /

check to see if there will be a collision, to print or erase charac-
ters, to keep score, or keep track of time.

Often you can use a smaller program or subroutine in
more than one game, because it will do the same thing. Keep a
notebook and write down smaller programs that you might
want to use from one game to another.

Write down the BASIC statements for each of your smaller
programs or subroutines.

Step 9: The Line-by-Line Listing. Now that you've
written down the BASIC statements you want to use for your
main loop and your smaller programs, you must go through
and see what needs to be done to make it a program.

Almost always you'll need an initial setup of things that
must happen before the program goes to the main loop.

Part of this setup involves setting variables using LET
statements. Write down all the variables that will be used in
the program. Decide what their beginning values must be.

When this is done, write down the LET statements that
make the variables what they should start out to be. Write
down line numbers and have them be between 10 and 99, in
the order that seems logical.

Next, think about all the beginning setups that your
program may need, such as a background or putting your
characters on the screen before you start. If you have room,
you may want to print the instructions on the screen before
you play the game.

You should also clear the screen, put a REM title in, color
the screen, define characters with CALL CHAR, and do other
things that need to be done before the game starts.

The game doesn't actually begin playing until the program
gets to the main loop. Decide what you want to have happen
before then, and put all the setups after the LET statements,
but still between 10 and 99.

Now you're ready to write down exactly what you want in
the main loop. Make sure that it loops back on itself with a
GOTO statement at the end. Usually the main loop can use
line numbers between 100 and 190.

Finally, one at a time, write down the smaller programs
that you want to use, numbering each smaller program or
subroutine starting at a multiple of 100. In other words, the
first small program or subroutine should start at 300, the next
at 400, and so on.

185

B T P W A L Y g O R A T o)

ur Own Game

14

Go over everything you've written. Now that you have a

line-by-line listing of your program, you can begin to type in
_the actual statements.

Step 10: Typing the Setup and the Main Loop. Type in the
LET statements that give your variables their beginning values.
Then type in whatever else you want to happen before the
main loop begins, such as the printing of the background, the
beginning characters, the instructions, and colors.

Now, run the program and see if the background, charac-
ters, instructions, and other things are as you want them. It is
easier to change them now, because whatever you do now will
affect the whole program. Once you see the opening screen,
you may want to make changes. If so, make your changes and
note them.

After you have the opening the way you want, type in the
statements for the main loop. To test the main loop, type.in
dummy statements that are the line numbers of each subrou-
tine. Each dummy statement could be something like XXX
PRINT “STOP IN LINE n” (XXX and n are the line numbers)
and follow it with a STOP statement.

Then, run the program and test your mail loop. Press each
key or move the joystick and see what happens. The program
should go to the line you want it to, then stop. You can tell
which line it went to by the “STOP IN LINE n” report.

If part of your main loop uses a counter which counts to a
certain number before it jumps, test it by using PRINT to see
what value the variable had when the program stopped.

When you're satisfied that your main loop works the way
you want, you should SAVE the program on tape or disk.
Always get in the habit of saving parts of your program as you
write them. That way, when you make a mistake or acciden-

. tally erase part of the program, you can go back to the version
you saved and continue working again from there.

Step 11: Typing the Smaller Programs and Subroutines.
Now you're ready to type in each smaller program or subrou-
tine. Type one in at a time and test it. Run the program and
see if it does what it's supposed to do.

Always start with the simplest smaller program or subrou-
tine and work up to the hardest. For example, if you have a
smaller program to move the character, type that in first and
test it. When you press the left-arrow key, see if the character
moves to the left. Test the smaller programs thoroughly,

W t

186

333333333333 3333333333333353338338338339

]

@w to Create Your Own Game

making sure that they work properly.

As each smaller program works the way you want it to,
save the program. As you do more difficult smaller programs,
test the old ones to make sure they still work. If you have
trouble with your program at this point, read Appendix C, “In
Case of Error,” which contains helpful hints on how to detect
errors.

Experiment with each smaller program, and see what
happens when you make changes. Often you’ll get a new idea
as you are programming, and this is the perfect time to try it
out. Because BASIC often tells you if you have an error, you
can try out different statements and ideas, and see what effect
they have on the program.

Step 12: Keep Records. Make notes on each experiment
you make as you program. If you discover that something
doesn’t work, write it down. If you find something that you
like, write that down too. You could even keep a separate
notebook for smaller programs that can be reused in other
games.

SAVE to tape or disk all the versions of your program as
you create them. If you're using tape to store your program,
write down in a notebook the counter number on your
recorder which marks each place where you have a program
version. Put the date on each version, so you can later
remember what you were doing and be able to sort out each
version.

Step 13: Test. When all the smaller programs have been
added and tested, you can test the complete program game.
Make sure that all the parts do what you want them to, and
test to see that none of the characters can go off the screen, or
that no characters pass through each other without something
happening (unless you want it that way).

One good way to test your game at this point is to give it
to a friend to play. Another is to put the game away for a few
days and then go back to it and play the game as if you have
never seen it before.

Think about each part of the game: How do the hero and
villain interact with each other? How do they interact with the
boundaries? Do the weapons do what they should? Does the
scoring work? Are the characters moving as fast or as slow as
you want them to?

Step 14: Corrections. Make any corrections or additions

187

o
14 How to Create Your Own Game

necessary. Retest again and again. If you want your game to
really work, you must test it. Nothing is worse than having a
game that seems to work, but doesn’t when the player does
something that the programmer didn't think of. Try to see your
game from another person’s point of view, and forget for a
moment how the actual program works.

When you make your corrections, test all the other parts of
the game as well. Sometimes one error can cover up another,
and sometimes you think you are fixing one error when you’re
actually causing another.

Step 15: Copies. When you're satisfied with the completed
game and there are no mistakes in it, make two copies on two
separate tapes.

Now your videogame is complete. You can sell it, give it to
your friends, or play it yourself.

However, you should be warned that once you finish your
first game, you’ll want to go right back and create another that
is even better.

Copyrighting and Marketing .
Once you've created your own game, you have many options.
Assuming that you didn't copy your ideas from a commercial
game, you should probably copyright your game. Although
your game is actually protected under copyright law once
you've written it, you can insure this by putting a copyright
notice in your program, or writing to the Library of Congress
in Washington, D.C., for the papers needed to copyright your
program.

To put a copyright notice in your game, just type, near the
first line:

101 REM COPYRIGHT (C) 1984 YOUR NAME

and you are protected by common law copyright.

Once you've protected your game, you might want to
submit it to a magazine. Magazines will pay you for your game
and often will let you resell it elsewhere. When you sell a game
to a magazine, make sure you know what rights you're selling.

You can also try to sell your game to a company that sells
and distributes other videogames. If you want to do this, write
to them, describing your game in a most general way, and wait
for a reply. Don’t send in your game until they ask you to.
Usually they’ll send you a form to fill out and they’ll sign a

188

333332303333 33333323333333333333332339

7737379773933 7339391337233333337333333339

A
How to Create Your Own Game 14

letter saying that they won’t steal your idea.

You also could try to sell your game yourself. Many maga-
zines have low rates for small ads at the back of the magazine,
and you can sell your games by mail. However, if you do,
make sure you have plenty of copies on hand in case you get a
lot of orders. The Post Office has a regulation that says that if
you sell by mail, you must send out all orders or offer the
customer a refund within 30 days.

Often games are fun to play, but they may not be as good
as the best that are for sale, or you may not want to get this
involved. There’s probably a TI users group in your area, and
you might want to set up a tape exchange so you can trade
programs that you have written for programs that others have
written.

Whatever you do with them, writing games is fun for its
own sake. You can create games that play exactly the way you
want them to play, and when you get tired of the way they
play, you can change them or write new ones. The best part of
it all is that once you have your hands on a computer, you
don’t have to spend money to create an infinite number of
games, all the games you could ever want.

If you want hundreds of exciting, fast-action arcade
games, the TI has a lifetime supply built right in. All you need
is your imagination and programming skill!

189

Appendices

DD DIBIIBDIINOBBITRDBIDIIBBDIIIFIIAIBAND

aeecococOoROROORREROROORRROPRPORRORRRRORDERROY

- ~ A
= Appendix
- Characters:
~ ASCIHl Code Numbers and
e Sets
= ASCII Code # Character ASCII Code # Character
= Set #1 Set #5
: 32 (space) 64 @
& 33 ! 65 A
34 ' 66 B
= 35 # 67 C
- 36 $ 68 D
&= 37 % 69 E
& 38 & 70 F
39 ' 71 G
e Set #2 Set #6
= 40 (72 H
— 41) 73 I
& 42 * 74 J
& 43 + 75 K
44 76 L
™ 45 77 M
. 46 . 78 N
- 7 j 79 0
e Set #3 Set #7
™ 48 0 80 P
' 49 1 81 Q
&= 50 2 82 R
, 51 3 83 S
- 52 4 84 T
~ 53 5 85 U
54 6 86 \Y
= 55 7 87 W
™ Set #4 Set #8
56 8 88 X
= 57 9 89 Y
&= 59 ; 92 [
= 60 < 92 \
61 = 93]
. 62 > 94 A
= 63 ? 95 —
™ 193

ASCII Code #
Set #9

*There are no standard characters for sets 13 through 16. This
has no effect on your ability to define them and use them in
CALL HCHAR and CALL VCHAR statements, but it is very
difficult to use them in PRINT statements.

194

126
127

Set #10

Set #11

Set #12

Character

OZZ2 - R— —~ T OmMmoNnw>» -

S<CcHOLWIOD

{ =~ -~ N =< X

DEL

ASCII Code #

Set #13*
128
129
130
131
132
133
134
135

Set #14*
136
137
138
139
140
141
142
143

Set #15*
144
145
146
147
148
149
150
151

Set #16*
152
153
154
155
156
157
158
159

33333333333 335333332323333231333333333383

y

Color Values

Color
Transparent
Black
Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan
Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta
Gray

White

Number Value

195

C

Appendix
In Case of Error

When you're programming, you'll occasionally make mistakes.

The TI computer has the ability to check for three kinds of
errors, and you’ll see a fourth method that you can use
yourself.

The TI manual that came with your computer has an
appendix in the back called Error Messages that can help you
with certain kinds of errors. The three kinds the TI can find
are:

* Errors that you make while typing in a line. These will
usually be things that make no sense at all. You must
retype the line so that it makes sense in terms of BASIC
keywords and syntax.

* Errors that are caught just before the program starts
running. These usually have to do with variables, DIM
statements, being out of memory, and so on.

* Errors that cause the program to stop after it has started
to run, such as a GOTO to a line number that does not
exist or a value that is illegal for a HCHAR.

Anytime the TI tells you that you have made an error, you
can look up the error message in the manual’s index on Error
Messages. Go over your program carefully to locate the error.

Tracing Errors. The TI has a special command called
TRACE. By simply typing TRACE before you run a program,
you can see how the program flows. You will see a series of
line numbers enclosed by () symbols, such as (300) (310) (350).

You can follow the logic of your program and if it crashes,
where it stopped.

TRACE gives you two ways of finding errors. You can see
where your program stopped, if it stopped and you don’t
understand the error message. You can also use it to see the
logical flow of your program, which may help you to notice
that the program is not going to the lines it should, in the
proper order.

Type UNTRACE to turn off the TRACE command, so that
you can run your program normally.

Logical Errors
This is the fourth and hardest kind of error to catch. Your

program runs, you do not get an error message, yet something
is wrong.

196

3333333333333 333333353353333303338331333

3113937373333 3979337333733333337333333339 30

Appendix C

Here are some things to try:

» Use TRACE to follow the program logic again. See if you
typed what you thought you did. Check your program
to make sure you did not accidentally erase a line.

¢ Check all your GOTO statements to make sure you're
not accidentally sending your program into a loop that it
can't get out of.

* Check your FOR/NEXT loops to make sure you have
written them correctly. If you have one loop inside
another, make sure that the one inside ends before the
next begins, and that your FOR/NEXT loops use
different variables.

+ Make sure you don't confuse variables that seem alike.
A$, A, A$(2), and A(3) are all different kinds of variables.
The first is a string variable, the second is a numeric
variable, the third is a dimensioned string variable array,
and the fourth is a dimensioned numeric variable array.

» Check your logic carefully when you use operatives such
as AND, OR, NOT, or <>. What you think a statement
means may not be what it actually means.

« In complicated statements, use parentheses to sort out
mathematical operations. Don't type 3*A +2/B unless
you are sure which will be performed first.

How to Find Errors
Here are a few ways to find errors.

« If you’re not sure what value a variable has in a process,
you can always use PRINT AT to print out the variable
somewhere on the screen.

For example, if you are working out a complicated idea
like the creation of the river in “Riverboat,” you could print the
values of A and B on the side of the screen by using a general-
ized screen print routine with CALL VCHAR. You could put A
and B into strings and use SEG$ to put them on the screen,
one character at a time, in a location that won’t interfere with
the game play.

Then, when the program runs, you can see the values of A
and B. In “Mushrooms,” for example, you could PRINT the
values of the arrays R and C to make sure that they contained
the correct characters for each step of the program. You can
always take out the generalized screen print statements after
you are sure what you are doing, but they are very valuable if

197

€ appendix

you want to follow a process. If your screen is full and you
have a printer, you can always print out variables on the
printer.

* You can break your program into steps. Then, use the
command BREAK to stop your program at a certain
point. All you have to do is type BREAK (line number)
and the program will stop when it comes to that line
number. Using BREAK, you can see just how far your
program got before it stopped. Start at the beginning of
your program and work down.

Also, once your program has stopped at the line you think
it should, you can use PRINT as a command by itself (with no
line number) to print out variables to see what value a variable
had at the moment the program halted.

If your program runs to the point where it should, and all
the variables are what you think they should be, change the
BREAK line number and pick a new line number further in the
program.

Keep BREAKing your program until you have figured out
where the problem is. Once you’ve narrowed the area where
the error could be, you'll be able to track down the problem
eventually.

You can turn off BREAK by typing UNBREAK.

* Put in fixed numbers. If you are using a counter and it
doesn’t seem to work, try setting a variable equal to a
specific number and see what happens. Choose specific
numbers to see if they do what you think they should.
For example, if you have a counter that is supposed to
count to 3, set it equal to 3 the first time, and see if it
does what it’s supposed to do. Similarly, test out all
possibilities of a number. If you want a number between
3 and 20, try 3 and then try 20. The idea is to make sure
that all numbers are allowable. Often, if you are dealing
in random numbers, some of the numbers may be all
right and others may not, but because they are random,
you might not know which ones are causing your
program to have problems. If you take the highest and
lowest, you can assume that those in between will work
correctly.

« If all else fails, take a rest. Put your program away and
look at it later. Also, if you can't figure out a problem,
another person who is familiar with the TI may have an
insight into what is wrong with your program.

198

3332303233333 333333353333333333333333

IIIFI3IIIIIII7I3IIIIIINIAIIIIIIININIIANAND

Index

animation 141
CALL CHAR and 147
ASCII codes 11
custom characters and 20
table 193-94
automatic motion 117
background color 29
BREAK command 198
butterfly character 33-34
“Butterfly Motion” program 36
CALL CHAR 19-20, 23-24
animation and 147
custom characters and 155
CALL CLEAR 24
CALL command 11
CALL COINC 167-68, 174
CALL COLOR 27
in “Martian Revenge’’ 96
sprites and 169
CALL DELSPRITE 168, 176
CALL DISTANCE 169
CALL GCHAR
in “’Hobo Party” 148, 151, 154-55, 176
in “Mushrooms” 137
in “Riverboat” 109-10
sprites and 166
CALLHCHAR11, 12, 14, 24
in ’Hobo Party” 148, 173
CALL JOYST 57-58, 67
CALLKEY 49-51, 67
in “Martian Attack’” 86
key-unit and 49-50
return-variable and 50
status-variable and 50-51
CALL LOCATE 168, 175
CALL MAGNIFY 162-63, 166, 173
grid 164
CALL MOTION 169
CALL PATTERN 169
CALL POSITION 169, 177
CALL SCREEN 26
CALL SOUND 71-77
in "Hobo Party” 148
independent of program execution 72
CALL SPRITE 166-67
CALL VCHAR 14, 97
in “Hobo Party”” 149-55
cartridges, caution with 7
character insertion 10
characters 7
collision checking 63
color 26-28

chart 195
compound characters
in “Riverboat” 108
copyright 188-89
custom characters 19-30
in ““Hobo Party” 155
DATA statement 153
debugging techniques 196-98
diagonal movement, joystick and 59-60
disappearing characters 28-29
*“Dolphin’’ modification of “Shark” 124-26
duration (sound) 71
edge of screen, checking for 41-42
EDIT command 10
ending 63-64
Equals key, caution using with FCTN 10
experimentation, value of 3
FCTN Key 10
caution using with Equals key 10
filenames, disk 66
flickering 28
“Flutters” game 64-66
FOR/NEXT loops 35
delay and 35
foreground color 29
frequency (sound) 71
game characters 182
game design 77-78
concepts 181-89
game initialization
in ““Riverboat” 108
goal, in game design 181-82
GOSUB command 41
clear program design and 108
GOTO command 24
““Hobo Party”” game 141, 146-58
modifications 158
horizontal scrolling 93
IF/THEN statement 44
INPUT statement 49
INT function 38-39
joystick 49-57
in “Hobo Party” 149-50
in ““Shark” 123-24
joystick direction 57-58
table 58
keyboard 49-67
motion and 51
line-numbered commands 9
LIST keyword 10
main loop 53
in game design 183-84

199

marketing 188-89
“Martian Attack” game
discussion 83-87
modifications 87-89
program 81-83
“Martian Revenge” game
discussion 93, 96-100
modifications 100-1
program 93-96
“Moneybags” game
discussion 169-70, 173-77
modifications 177
program 170-73
movement 3345
in “Hobo Party”” 151-52
in “Mushrooms” 133-35
“Mushrooms” game
discussion 132-37
modifications 137-38
program 129-32
noise frequency 71-72
ON/GOTO command 136
OR operator, how substituted 4
patterned motion
in “Shark” 124
plus sign 44
PRINT AT command 197
PRINT statement 7-8
in “Martian Revenge’ 97
program editing 10
programming techniques 185-87
“Random Butterfly” program 39-42
RANDOMIZE command 43-44
random motion 38-43
READ statement 153
redefining characters 20
REM statement 40, 185
RESTORE statement 153
RETURN command 41
“Riverboat” game
discussion 108-11

200

modifications 111-13
program 105-8
RND function 38-39
RANDOMIZE and 44
rules, in game design 182-83
RUN command 9
SAVE command 66
screen color 26
changing 27
SEGS$ function 87, 197
“Shark” game
discussion 120-24
modifications 124-26
program 117-20
solid characters 29-30
sound, uses of 76-77
"“Sound Parade” program 73-76
sprite collisions 167-68
sprite grid 162
sprites 4, 161-69
stopping a program 25
string arrays 81
in “Martian Attack’ 84, 86
in ““Martian Revenge” 97, 100
subroutines
efficient placement of 146
in game design 184-85
TIBASIC 3, 4
TI Extended BASIC 4, 175
overview 161
sprites and 161
“Riverboat” and 111
TI-99/4A computer, hard to damage 3
TRACE command 196-97
UNBREAK command 198
UNTRACE command 196
vertical scrolling 105, 108-9
volume (sound) 71

JIIRIIIIIIIIIIIIIIIIRIIBIIIB33I33I33HD3

173723933 333933233733339333333733333333930

LI LI L]0

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!,

For Fastest Service,
Call Our Toll-Free US Order Line

800-334-0868

In NC call 919-275-9809

COMPUTE!

PO Box 5406
Greensboro, NC 27403

My Computer Is:

(O Commodore 64 [T-99/4A [Timex/Sinclair [(JVIC-20 []PET

O Radio Shack Color Computer [Apple [JAtari [(JOther ____
[] Don't yet have one...

[$24 One Year US Subscription
[] $45 Two Year US Subscription
[$65 Three Year US Subscription

Subscription rates outside the US:

[0 $30 Canada

[] $42 Europe, Australia, New Zealand/Air Delivery

[$52 Middle East, North Africa, Central America/Air Mail

[$72 Elsewhere/Air Mail

O $30 international Surface Mail (lengthy, unreliable delivery)

Name
Address
City State Zip

Country

Payment must be in US Funds drawn on a US Bank; international Money
Order, or charge card.

[Payment Enclosed O VISA
(] MasterCard [J American Express
Acct. No. Expires /

5. .
|

i
]
i

You'll quickly be creating your own action games on the
TI-99/4A when you use this step-by-step guide to game pro-
gramming. Here’s everything you need to design and write
video games, including:

® Creating your own custom game figures and characters

» Moving figures around the screen

o Using the keyboard or joystick to control movement

® Vertical and horizontal scrolling of the screen

@ Coloring the game characters and background

© Animation

® Drawing game mazes

® Making sound effects with the TI

® Creating and moving sprites with TI Extended BASIC

® A step-by-step process for designing and writing your
own games

® How to test and debug a game
® And eight complete games for you to type in and play

Best of all, you'll see several finished games and how each
works. You'll be able to follow the programs line-by-line, seeing
how programming techniques work in game situations. You'll
learn all the necessary techniques to create a wide variety of
effective, exciting video games.

Whether you're just beginning to program on the TI-99/4A
or have been computing for years, you'll find Creating Arcade
Games on the TI-99/4A a valuable resource, a book you'll turn to
again and again as you write action-packed video games.

ISBN 0-942386-27-2

CROAL AL OO AC R o o S0 S0 S el AL a0 S0 SC A o o€ A 0 S0 L o L

	front-cover
	Binder1
	chapter000
	chapter000
	content016

	content000
	chapter001
	content001
	chapter002
	content002
	chapter003
	content003
	chapter004
	content004
	chapter005
	content005
	chapter006
	content006
	chapter007
	content007
	chapter008
	content008
	chapter009
	content009
	chapter010
	content010
	chapter011
	content011
	chapter012
	content012
	chapter013
	content013
	chapter014
	content014
	chapter015
	content015

	back-cover

