

TEXAS INSTRUMENTS
HOME COMPUTER

Starter Pdckl
PK McBrele

COLLINS
MICROSOFTWARE

©William Collins Sons & Co. Ltd., 1983
1103213-0000

123456789

Produced and printed by Contract Books Ltd,
1983. All rights reserved, no part of this
publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by
any means, electronic, mechanical,
photocopying, recording, or otherwise, without
the prior permission of the copyright owner.

Contents

Introduction 4

1 Getting started 6
2 Hands on 11
3 Hello, hello 13
4 Going round in circles 16
5 Coloured paper 20
6 Questions and answers 22
7 Introducing flowcharts 27
8 Working out sums 31
9 The number stores 33

10 Comparing numbers 35
11 Random numbers 38
12 Keeping count 42
13 Times tables and other things 45
14 Sound effects 49
15 Remember, remarks can remind you 54
16 Neater printing -56
17 Running totals 59
18 The character set 63
19 Graphics 67
20 Putting things in the right place 72
21 Coloured pictures 76
22 Branching programs 80
23 Keyboard tricks and games 86

Appendices
A ASCII codes 91
B BASIC words 93
C Using the cassette 95
D Some common errors 101

Introduction

This Pack is the first of a series of five which together form a
complete course in programming in TI BASIC using the
TI-99/4A home computer.

BASIC (Beginners All-purpose SymbolicInstruction Code)
is one of the easiest computer languages to learn, and the
language of almost all home computers. TI BASIC is a
version specially developed for Texas Instruments. It is
slightly different from other forms of the language in that it
has a number of special routines built into it to make
programming easier. However, you will find that once you
have learned TI BASIC, you can easily transfer to the
versions that other machines use. You will also find that the

programming skills you have mastered will make it easier to
learn other computer languages if you ever want to.

This Pack teaches the techniques and routines needed for
writing a wide variety of programs using simple BASIC.
Note that simple does not have to mean short. The program
TRANSPORT on the cassette uses little more than those

BASIC commands that are covered in this book.

Starter Pack 2 will take your understanding of BASIC a lot
further, and will help you to explore deeper into the Colour
and Sound capabilities of the 99. Bythe time you have
finished that part of the course, you will have all the skills
needed to write programs as complex as any that you see on
the cassettes in these Packs.

The two Gamewriter's Packs deal with the particular
techniques needed for writing many types of computer
games, and include a number of example games.

The last part of the course, the RecordKeeper's Pack looks
at the way in which computers handle information, and will
enable you to use the 99 for keeping your accounts, records

of collections, lists of addresses or other information. It also
deals with the analysis and presentation of statistics on
the 99.

Using the book

Work steadily through the book, trying out all the short
demonstration programs that are included and writing your
own programs using techniquesas they are covered. Take
your time, and play with each new idea until you are sure
that you have mastered it.

Don't worry if things go wrong. It happens all the time
when you are learning. Youwill find a list of common errors
in Appendix D which should help you to sort out any
problems.

Don't be afraid to experiment. TI BASIC will not let you
make many mistakes, and nothing you type in will damage
the computer. At the veryworst, you can alwaysswitch off
and start again.

Remember that you are learning a language, and that the
best way to do this is by using it. Rememberalso that there
are often several different ways of saying the same thing in
any language. BASIC is the same. What matters at this stage
is that the computer does what you want it to do.

Using the cassette

The programs on the cassette are intended to be used with
particular chapters in the book. KEYS (chapter 23),
CHARLIES (chapter 20)and TRANSPORT(chapter 22)
demonstrate the uses of particular techniques. EFFECTS
(chapters 5,13 & 22)and GRAPHICS (chapter 19)are
demonstrations, and also utilities. You may wish to use
some of the colour and sound special effects in your own
programs, and GRAPHICS provides you with a set of 32
graphics characters which you can use to make your own
pictures on screen.

For advice about the use of a cassette recorder, see
Appendix C at the back of the book.

Getting started

Set your computer up using the instructions in the "READ
THIS FIRST" handbook that came with the machine. Check
that the computer and T.V. are connected as shown in
figure 1, and that both are plugged into the mains and
switched on. The little red light at the front right of the 99
should be on.

to aerial

socket r

modulator

*
=

4p Texas Instruments

ON/OFF switch
Figure 1

¥ a

Choose a channel of your T.V. set that is not used for
anything else (ifpossible) and tune it into the computer. You
should get the master title screen (figure 2).The background
colour is cyan (pale blue.)

Figure 2

Press any key and you will move to the starting screen
(figure 3). Ifyou ever have a SolidStateSoftwaremodule
plugged into the 99, this is the time that you willpick
whether to use the module, or to work in TI BASIC.

Figure 3

Press [T] now and you will hear a short high beep and the
screen will change to figure 4. If you haven't heard any
beeps, it's because you haven't turned up the T.V. volume.
All the sounds from the computer are directed through the
T.V. loudspeaker.

Figure 4

The 99is now ready to startwork. Are you?

Trouble tuning in?

If you cannot find the picture from the computercheckthat
all the leads from the TI-99 to the modulator and onto the
T.V. areplugged in. Now try this. Turn up the volume on
the T.V. until you get areasonably loud hiss. Now keep
tapping the 99's spacebarwhile you tune in the set. Every
time you tap this key the computer willbeep. These beeps
canbe picked up over a wider rangethan the picture's
signal. Once you hear the beeps you will know that you are
nearly there.

Just one point though - allthat tapping has moved you
past the master title page. To get back to this hold down the
FunCTioN key (FCTN) and press d (QUIT).

The keyboard

The keyboard of the 99 is more or less the same as that of a
normal typewriter, and like a typewriter each key can do
more than one thing.

Each letter key can give you either a large or a small capital
letter. The small capitals arewhat will normally appear. To
get the largecapitals,hold either SHIFT key (they areboth

the same) and press the letter. To lock onto the large capitals,
press down the ALPHA LOCK key. This affects the letters
keys only. The number keys will still give you the number,
unless you hold SHIFT when you press them.

Try typing a few things on the screen to get the feel of the
SHIFT and ALPHA LOCK keys. It doesn't matter if it doesn't
make sense to the computer. The 99 is programmed to ignore
anything it doesn't understand. Press the ENTERkey after
typing in your name, or other message, and it will give you
the nonsense beep, and print up * INCORRECT
STATEMENT.

•

DEL INS ERASE CLEAR BEGIN PROCD AID REDO BACK QUIT
•

!

1
@
2

#

3
$
4

%

5

A

6

&
7

*

8
(
9

)
0

+

Q W E R T Y U I • P /

A S D F G H J K L
;

ENTER

SHIFT Z X C V B N M
< >

SHIFT

ALPHA

LOCK CTRL
FCTN

EXAMPLES
Key 4
Normal - 4

SHIFT - $
FCTN - CLEAR

KeyP
Normal - small

SHIFT - large
FCTN - ..

Figure 5

When you are typing in your programs later, it makes no
difference whether you use large or small capitals. The 99
will automatically turn all BASICwords into large capitals.
You may find it useful to leave the ALPHA LOCK on, and
turn it off only when you particularly want small letters.

There are two other keyswhich change the way the
number and letter keys behave. FCTN(FunCTioN, on the
right of the spacebar) gets you to the symbols printed on the
fronts of the keys, and also to the words on the slide-in
overlayabove the number keys. Hold FCTN and press g]
and you get QUIT which takes you back to the master title
page.

The CTRL (ConTRoL on the leftof the spacebar) key does
nothing - at the moment. We willput it to use later on.

Last, but by no means least, there is the ENTER key. Press
this when you have finished typing your instruction, or
message, or whatever. The 99will do nothing until you
ENTER.

Disappearing screens

If your picture suddenly disappears, don't worry. This is
simply the 99looking after your T.V. for you. Ifyou leave the
computer turned on, but do not use it, then after about
10 minutes it shuts off the screen display. This prevents
damage to the T.V. screen. Toget the picture back- press
any key.

10

Hands on

Some people only buy computers so that they can get their
name on the television screen. Just in case you are one of
those people, this is the first thing we will do

Type in:

PRINT

Check your spelling carefully. If you have made a mistake
then press ENTER. The 99 will print up "* INCORRECT
STATEMENT". Ignore it and start again. PRINT tells the
computer to put something on the screen. Any words you
want written there must be put in quotes. Press FCTN and
[F] to get the quote marks and type in your name. Now press
FCTN and [P] again to put another set of quotes at the end.
You should have something like this:

PRINT"ROGER"

Now press ENTER and the screen should look something
like figure 6.

Figure 6

11

You will always get the DONE message when the 99 has
finished a job. PRINT some more messagesand names.
Don't forget the quotes. If you get an * INCORRECT
STATEMENT message, then check that the quotes are there,
and that PRINTis spelt correctly. Start again, and do it right
this time.

NOTE: SPACES.

Obviously you can put spaces between words in your
messages. You can also leave a space between PRINT and
the first quotes. In fact, it is a good habit to get into. All
BASIC words on the 99must be followedby a space, or some
sort of punctuation (",;:), with a few odd exceptions.

12

3

Hello, hello

Time for a program, but first, isyourscreen cluttered up
with old messages? If it is then type in :

CALL CLEAR

This CALLs up a special built-in routinethat wipesthe
screen clean. The 99 has a number of these built-in routines,
and we will meet more of them later.

Now type in:

10 PRINT "HELLO" (and press ENTER)
20 PRINT "GOODBYE" (and press ENTER)

Make surethatyouleave a space between the number and
the wordPRINT. Ifyoumiss it out the 99 will be confused.
All commands start after a space. The numbers are very
important. They tell the99 nottodoanything yet, andthey
keepthe instructions in the rightorder.

Checkyour typingand then add:

RUN (and press ENTER)

There will be a shortpause, while the computer checks the
program, thenthescreen will turnlight green while it prints.
Thescreenreturns to cyanwhen the program has finished.
You should get a screen like figure 7.

RUN told the 99to go to the firstnumbered line, do what it
said, and move onto the next line, do that, move on until it
reached the end.

If there is a mistake in your program, then you will get a
message whichsays"* INCORRECT STATEMENT IN . . .".
Look closely at the linenumberedwhatever-it-was and try
and see what you have done. Haveyou mistyped "PRINT"?

13

Figure 7

It is also possible that you used a letter O and not zero in the
line number. Ifyou have then the 99willread the number 1
or 2 and try and make sense of the letter O that comes after
it.

Whatever the mistake, thebestthing todonowis to
retype theline. When you ENTER theline, thatnew (good)
line will replace the old (bad) line inthe 99's memory. The
rest ofthe program isleft asitwas. To see the new program
type in:

LIST (and press ENTER)

The program will be listed on the screen.
You can RUN a program as often as you like. When you

get tired of "HELLO" and "GOODBYE" then write a new
PRINTINGprogram

First type in

NEW (and press ENTER)

NEW wipesout the oldprogram, ready for a newone. It also
clears thescreen andprints up theREADY message.

Your PRINTing program can have asmany lines asyou
like. Make sure thateach line is typed correctly, andis
numbered in the rightorder. You cannumber yourlines 1,2,
3,4, etc, butgoing upin10's isusual. There isavery good
reason for this. Suppose you wanted toadd"How areyou?"
to the"Hello" program. The new line hastogobetween

14

"Hello" and "goodbye". Ifyou had numbered them 1 and 2,
then you would have to retypehalfthe programto make
your change.

You will very often find that you want to add to a
program, and numbering in 10'sleavesyou room to slip
extra lines in easily.

Any time that you want to see your program lines again
(and they may wellhave disappeared offthe top of the
screen after a few RUNS), then type:

LIST (and press ENTER)

The lines are printed up, in the right order, at the bottom of
the screen. Figure 8 shows the "Hello" program, after the
extra line was added.

Figure 8

15

4

Going roundin circles

This program could run forever.

10 PRINT "HELLO AGAIN"
20 GO TO 10

Type it in and run it: You will see that the GO TO in line 20
sends the 99 back to line 10 and printsthe message again.
Thescreenfills, and the flickering that you see on the bottom
lineiswherethe message isbeing continually reprinted. You
can't seeit, but the top lineisactually disappearing offthe
topofthe screen. This will make it clear. Stop the program
bypressing FCTN and |T] (CLEAR). You will getthe
message:

* BREAKPOINT AT LINE 10 (or20)

Now add:

15 PRINT "GOODBYE AGAIN"

Runthisand you will havea continually moving display.
Break out of that program, (bypressingFCTN and [I]) and
NEW it.

Now type in a line to print your name, and put a comma
after the last set ofquotes. Add a GOTOline, and you
should have something like this:

10 PRINT "SUSAN",
20 GO TO 10

Runthe program and youshould seea screen like figure 9.

Normally aftera print message, the nextmessage appears on
the nextline. Ifyou add a comma though, the nextmessage
is printed half a line further on.

16

Figure 9

What happens when you put 2, or 3 commas after the
print quotes?

The comma is what is known as a PRINT SEPARATOR.

There are several others and we will find out what they do
in a moment, but rather than retype that first line, we will
EDIT it.

Type in:

EDIT 10 (and ENTER)

Line 10is printed up at the bottom of the screen. Notice the
flashing block, called the CURSOR. We can move this over
the character we want to change by pressing FCTNand [d]->.
Hold those keys down for a moment and the 99's automatic
repeat comes into play. The cursor whizzes along the line,
until you lift your fingers off. Ifyou overshoot, then
press FCTN and [s]<-which moves the cursor left. Type a
semi colon (;) over the first comma, and spaces over any
other you have there, then ENTERthe new line.

You should now have something like this:

10 PRINT "SUSAN";
20 GO TO 10

Run this. Where is the next message printed after a semi
colon?

17

Try it with 2 or 3 semi-colons. Is it any different?
There is one last print separator and that is the colon. (:)

EDIT line 10 and replace your semi-colons with one colon.
What effect does this have: Try 2, 3 and more.
Try combining the different separators to see what effect

they have.

You will have noticed that whatever the punctuation, all
printing starts from the bottom of the screen and moves up
as new lines are printed. We can hold the printing on the
bottom line by clearing the screen each time round. Add in
this line:

15 CALL CLEAR

Run it now. You should have a flickering name at the bottom
left. CALL CLEAR clears the screen, and puts the print
position back to the bottom.

NOTE: GO TO can also be typed GOTO: the 99doesn't
mind. This is one of the odd cases where a space can be
missed from a BASIC word.

Even tighter circles

If you type in:

10 GO TO 10

and run it, what happens?
You have got the 99 running round in a very tight, and

totally useless circle. Well, not totally useless. The line can be
used to hold the computer at one point in the program. To
break out of this hold FCTN and press 4 (CLEAR). There will
be times when you are trying to get the layout of the screen
right, and it will be hopeless if as soon as the screen's
printing is done the whole lot gets shuffled up to make space
for the * DONE *message.

100 GO TO 100

18

will give you time to see what you are doing. When you are
happy with the rest of the program and want to get rid of this
line, then type in:

100

The new line replaces the old line 100. As the new line is an
empty one, it is then ignored.

Here is a program that uses a GO TO line to confuse
people.

10 CALL CLEAR

20 PRINT "TI BASIC READY"

30 PRINT ">"

40 GO TO 40

Type the program in and run it.
The first three lines produce a screen almost like the

normal starting screen (see figure 10). Anyone coming to the
computer now would think that it was ready for use. It all
goes to prove that you should never believe anything you
see on television.

There is one difference between your screen and the
normal starting screen - it is coloured light green, rather than
cyan. Don't worry, we can fix that, and will do in the next
chapter.

Figure 10

19

5

Coloured paper

Next time you are just starting a programming session, or
just after you have QUIT (FCTNand ±), look closely at the
title screen. You will be able to count 15 different colours on

the screen. (There are actually 16 colours, but one of these is
Transparent and therefore you can't see it.)

There are two colours at each character space. One of these
is the background colour - which you can think of as the
paper, and the second is the foreground (ink) colour.
Controlling the ink colours of different characters is a bit
fiddly, so we will leave that until later, but it is a simple
matter to change the colour of the screen.

The 99 knows its colours by their numbers, and here they
are.

20

Colour code Colour

1

2

Transparent
Black

3 Medium Green

4

5

Light Green
Dark Blue

6

7

Light Blue
Dark Red

8

9

Cyan
Medium Red

10

11

Light Red
Dark Yellow

12

13

Light Yellow
Dark Green

14

15

16

Magenta
Grey
White

Tochange the screencolour you use one of the 99'sbuilt in
routines:

10 CALL SCREENCIO)

Thiswillchange the screencolourto LightRed (code 10),
but you won't get much timeto see it, as the screenwillgo
backto cyanalmostimmediately. Hold the programby
adding:

20 GO TO 20

Changethe number in brackets in line 10and see what
you think about the screencolours. You can add variety to
your programsby fixing a different screen colour at the start
of each, or you may decide that there is one colour that you
likebest, and you willadd a CALL SCREEN line at the start,
to fix that colour.

Theactualqualityof the screencolours depends very
largely on the typeofT.V. setthatyouown. Some give much
sharper colours than others.

Ready?

You can now alter your trick READY program to make it
more realistic. Add

15 CALL SCREEN(8)

and you will have the normal cyan starting screen.

Easy editing

When you altered the code number in line 10, you probably
did it by typing

EDIT 10

There is another way to get lines back for editing, and it takes
less typing. Type in the line number only

10

and then hold down FCTN and press [I] f . Line 10 now
appears at the bottom, with the cursor in place ready for
editing.

21

Questions and answers

You are already using the computer's memory to store your
program lines. Now we are going to use it to store data -
numbers, names, answers to questions and other bits of
information.

Computers treat words and numbers differently. We will
start with words. This next program asks "WHO'S
THERE?", takes in the name, and prints a friendly "HELLO"
to whoever has answered.

10 PRINT "WHO'S THERE?" FCTN andQ]
FCTN and |o|

20 INPUT NAMES SHIFT and [I]

INPUT allows information to be typed into a program.

STRING STORES

A r\ i\ A A

Figure 11

22

The $ sign stands forSTRING. In the computer's memory are
stringstoreswherewordsarestored. Think ofeachstring
store as a luggage label (thesortyou tieon with string). See
figure 11. You canthen markeach label with itsown special
name. Here we have called it NAME$. We could have called
it N$, or ANSWERS or A$. Youcan use any letter or group of
letters for the string store labels (orSTRING VARIABLES as
they are properly called) - but follow these rules.

You must end with a $
you must start with a letter
you must not use spaces

Single letters or short words arebest, as they save typing
errors.

Let's finish the program:

30 PRINT "HELLO THERE ";NAMES

(Notice the semi-colon, and the space afterTHERE. What
happens if you miss it out?)

You maynot realise it but there is a very hardworking
Chipin yourcomputer. In figure 12 youcanseehim
working through this program.

At line 20(INPUT NAME$) he marks up a labelin the
string stores ready for later use
When the name is actually entered, he writes it on the label.

Figure 12

NAME
Chip) i RlCkj

23

Later, at line30 (PRINT"HELL0 THERE "; NAMES) he goes
back to the store to see what was written there, so that he can
print it out.

STRING STORES

1Chip 1Py

A /«\ /9\ /S\

R,c^HO 7

Figure 13

Run it a few times and type in differentnames. (Don't
forget topress ENTER after you have finished typing.)

Figure 13shows what happens when first Richard, and
then Amanda answers the computer's question.

Whatever is writtenon a stringstorelabel staysthe same
until something new is written there, or until the whole
program is wiped cleanwith NEW. You can see this ifyou
run the program, and then, afterthe*DONE *message,
type in (no line number):

PRINT NAMES

You should see the last name that was entered.

24

Let's add one more line, to keep the program running:

40 GO TO 10

Now invite the rest of the family in, and you should finish
with a screen something like figure 14.

When you run out of relatives and friends,
press FCTN and [4]CLEAR.

Figure 14

Notice that last INPUT answer. This shows an important
point about computers. They are very stupid and do not
think about what they are doing, unless you make them.
That is what we are going to do now.

Add these two lines to the program.

25 IF NAMES ="N0-0NE" THEN 50

50 STOP

IF and THEN mean the same in BASIC as they do in ordinary
English. At line 25 the computer will compare the word on
the NAME$ label with "NO-ONE" and IF they are the same
THEN it will jump to line 50. IF they are not the same it will
simply carry on to line 30.

You can change this program to set a trap for a friend.
EDIT line 25 and type a friend's name in place of NO-ONE. If
this name is shorter than "NO-ONE" then you will need to

25

rub out the remaining letters using the DELETE key. (Hold
down FCTN and press Q].)

If your friend's name is longer, you willneed to make
more space. You can do this by using INSERT (hold
down FCTN and press [2]) when you run out of room. Now
type in the rest of the name and the second half of the line
will shuffle up to make space.

Change line 50 so that there is a specialmessage for your
friend. Make it quite different from the normal "HELLO
THERE", and make sure that your friend sees a few normal
runs round the loop first. It might also be useful to wipe your
program off the screen by adding this line:

5 CALL CLEAR

Now when the program is run the screen will look like
figure 15 at the start.

Figure 15

NOTE: Don't be too disappointed if the trick doesn't work.
To make it work, you must have in line 25exactly the name
which your friend will use. Even if he types the name the
same, but adds a space, it won't work. As far as the
computer is concerned "FRED" and "FRED " are two
different things. To get a "thinking" computer you need a
very clever program.

26

Introducing flowcharts

As your programs become more complicated, so you will
need to plan them more carefully. To help us with our
program planning, computer scientists have developed
FLOWCHARTS. A Flowchart is a diagram that shows the
different steps a program must take.

Figure 16Ashows the flowchart of the "WHO'S THERE?'
program, as it was when we first wrote it.

c START D

PRINT

"WHO'S THERE?"

INPUT

NAMES

PRINT

"HELLO THERE";
NAMES

(STOP)

Figure 16A

The ends of the program are shown in oval shapes:

(START) (STOP)

Simple instructions are put in boxes:

PRINT "HELLO THERE ";NAMES

27

When we actually wrote the program it looked like this:

10

20

30

PRINT "WHO'S THERE?"

INPUT NAMES

PRINT "HELLO THERE NAMES

We didn't write STARTand STOP into our program, because
we didn't need to. Somtimes you will need to write in STOP.
It is a good habit to use them in your flowcharts, as they do
make things clearer.

Here you see the flowchart for the second version of the
program, where we had added a GO TO 10 line, so that it
looped round to the beginning after each run.

Figure 16B

Q START)

PRINT

"WHO'S THERE?"

ir

INPUT

NAMES

V

PRINT

"HELLO THERE ";
NAMES

—4

In the third version of the program we added an
IF. . .THEN. . . line. Here we are asking the computer to
make a decision. To show this on a flowchart we use a

diamond shape.

28

PRINT

"HELLO THERE";
NAMES

Figure 17

Notice that there are two lines leading from the diamond.
The computer goes one way if the INPUT word is the one it
is looking for, and the other way if it isn't.

Here's that version of the program. Compare it with the
flowchart.

10

20

25

30

40

50

PRINT "WHO'S THERE ?"

INPUT NAMES

IF NAMES ="N0-0NE" THEN 50

PRINT "HELLO THERE

GO TO 10

STOP

NAMES

The flowchart in figure 18A is for a program that asks if a
person likes computers. If the answer is "YES" the computer
prints a special message; any other answer gets a different
message. Work out the program lines using the flowchart.

29

PRINT "DO YOU

LIKE COMPUTERS?

C

INPUT A$

PRINT "THEN

GO AWAY

STOP J

PRINT "I LIKE

PEOPLE-"

STOP

Figure 18A

Figure 18Bis the same program with a little extra added.
Now it checks to see if the answer is "YES" or "NO". If the

answer is neither of these, it goes back to the INPUT line.
Change your program to make it run this way.

PRINT "DO YOU

LIKE COMPUTERS?

y f

i

INPUT A$

PRINT

"YES OR NO"
<Q A$="YES" ^>-

i i

No <^A$^'NO"^^

Yes

fYes

PRINT "THEN

GO AWAY

STOP D

Figure 18B

30

PRINT "I

LIKE PEOPLE"

STOP

8

Working out sums

You can use the 99 as a calculator. If you tell it to PRINT and
follow this with the sum WITHOUT QUOTES then it will
simply print the answer. Try this. Type in:

PRINT 2+2 SHIFT andg]

Press ENTERand you should have a screen like figure 19.

Figure 19

Try some sums of your own. Remember NO QUOTES. (See
what happens when you do put quotes round the sum.)

The symbols
ADD(+) SHIFT andg]
SUBTRACT (-) SHIFT and \j]
MULTIPLY (*) SHIFT and |T]
DIVIDE (/) UJonly

31

The 99 can also do far more complicated mathematics. If you
are interested in this you will find out more about it in
Pack 2.

WARNING!!

When you want the add sign, take great care to
press SHIFT and gj. If you press FCTN and g] you will get
QUIT and lose your program!

32

The number stores

You have already met the String Stores (or VARIABLES)
where the computer keeps a note of words. There is another
set of variables for numbers. You can think of number stores

as a set of pigeon holes, like figure 20. Notice that the
number stores are simply labelled with a single letter, or a
group of letters, or letters followed by a number.

A AGE A1 WEIGHT

HEIGHT CLASS Z Z1

Figure 20

This program shows the use of those stores:

10 PRINT "HOW OLD ARE YOU ?"

20 INPUT AGE

30 PRINT "YOU ARE ";AGE

When you run the program, the number you type in at
line 20 is stored in the box marked AGE. Here is what

happens when first Richard, and then his grandfather type
in their ages.

33

When Richard answers

A AGE A1

. ^
When Grandfather replies

A AGE A1

-^
Figure 21

You will see that a variety of store names have been used in
figure 20. What name you give to a store is up to you, as long
as you follow these simple rules.

Don't use spaces in the name (HOW MANY won't work)
Don't use the $ sign
Keep the name to less than 16 letters
Don't use any BASIC words. (check with the list in

Appendix B)
If the 99 doesn't like the name it will either tell you

"* INCORRECT STATEMENT" when you try to enter the
line, or you will get a "* BAD NAME" when you try to run
the program.

The name you give to a store should mean something to
you, and single letters or short words save typing errors. Nl
for the first number; WT for weight; AGE; COST and so on.

34

10

Comparing numbers

IF and THEN can also be used for checking numbers. They
are a key part of any SUMSprogram. Here is the simplest
type of sums program, where one person INPUTS two
numbers and a second person INPUTS the answer. The
computer then checks to see if it is right.

10 PRINT "FIRST NUMBER"

20 INPUT N1

30 PRINT "SECOND NUMBER"

40 INPUT N2

50 PRINT N1;"+";N2
60 INPUT A (A for Answer)
70 IF A=N1+N2 THEN 100

80 PRINT "WRONG.TRY AGAIN"

90 GO TO 60

100 PRINT "WELL DONE"

Notice how in line 70 we get the computer to find the right
answer by adding the two numbers together.

You can merge lines 10 and 20 into one line:

10 INPUT "FIRST NUMBER ":N1

This will print the words "FIRST NUMBER" instead of a
question mark in front of the INPUT cursor. Note the colon
(:) after the prompt: before the store name. You might like to
merge the other two PRINT and INPUT pairs into prompted
INPUTS. If you want a question mark to appear, you must
write it into the prompt. It will make for a neater screen if
you also include a final space in the prompt to separate it
from whatever is typed in.

35

Greater or less?

When you compare numbers, you can also get the computer
to check if one number is greater or less than the other. The
signs > (SHIFT and •) and < (SHIFTand £]) are used for
this.

9 > 7 means 9 is greater than 7
2 < 5 means 2 is less than 5

We can get a game out of this sort of comparison. The first
player types in a number, without the other player seeing.
The screen is cleared, and then the second player tries to
guess what the number was. This is what the program's
flowchart looks like.

Figure 22

36

INPUT N

V

CALL CLEAR

INPUT "GUESS":G
k

Yes ^^TOO ^"Ss-v^
^v. BIG?^^

PRINT

"TOO

BIG"

i Tno
PRINT

"TOO

SMALL"

Yes

^\SMALL?^^

'No

STOP

And here is the program:

10 INPUT "NUMBER ?":N (Note you can't use
NUMBER as a store

name)
20 CALL CLEAR

30 INPUT "HAVE A GUESS ":G

40 IF G>N THEN 60

50 IF G<N THEN 80 ELSE 100

60 PRINT "TOO BIG"

70 GO TO 30

80 PRINT "TOO SMALL"

90 GO TO 30

100 PRINT "THAT IS RIGHT"

110 STOP

jumps to line 80,otherwise (ELSE) it jumps to line 100.
IF. . .THEN. . .ELSE. . . is very useful if you have two

different jumps for the computer. Youwould get the same
effect if you missed off the ELSE 100, and wrote in an extra
line:

55 GO TO 100

Notice also that you do not need a line to check if the Guess
is the same as the Number. If it is neither greater nor less,
then it must be the same.

This sort of game is O.K. ifyou have a second player at
hand, but what if you haven't? You can turn the computer
into the second player, and that is what we will do next.

37

11

Random numbers

Firsta smalldetour. Sofar, when you have wanted to put a
number in a store you have used an INPUT line. You can
also givea value to your variables by writing it into the
program. Try this:

10 LET A= 99

20 PRINT A

Line 10 means "put 99 in the store labelled A".
The "LET" is not actuallyneeded. Ifyou change line 10to:

10 A=99

the program works just the same. Use LETif it makes the
line easier to find in a long program,but missit out ifyou
want to save a little bit of memory space.

This line puts a RANDOM NUMBERinto a store marked X.

10 X=RND

RND is short for RaNDom number. Add another two lines:

20 PRINT X

30 GO TO 10

Run the program, and BREAKwhen the screen starts to fill.
Youwill see a lot of long numbers, all of 10figures, and all

between 0 and 1. These are not nicenumbers to try and
guess, but we can make them friendlier. Change line 20 to
this:

20 PRINT X*10

Run it again, and you will see the same numbers, but with
the decimal point moved up so that they are now between

38

0 and 10. All we really want right now is the whole number.
Wecan get rid of the decimal part by using the INT
command. Thischops the decimals off, leavingjust the
INTEGER (the whole number). Change line 20 again:

20 PRINT INT(X*10) (don't forget the brackets)

Runthe programagain, and youshouldget something like
figure 23.

Figure 23

Runit again, and youwill getexactly the sameset of
numbers. They are not exactly random are they?

This is because the random numbers are actually part of a
very long sequence. Theproblemis, every timeyou run the
program the sequencestarts again at the beginning. Do not
despair, there is an answer. Add an extra line at the
beginning.

5 RAN DOM IZE (watch your spelling!)

Now run it again a couple of times. Better? RANDOMIZE
gets the computer to picka differentplace in the sequence to
get the Random number from.

Change the number guessing game in chapter 10so that
the computer picks the number you must guess. Don't forget
to add a RANDOMIZE line!

39

If you make line 10:

10 N =INT(RND*20)

you will be guessing at a number between 0 and 19. You will
never get 20because the INTcommand always rounds the
number down to the nearest whole number. Ifyou want
your numbers in the range of 1 to 20 then make line 10:

10 N=INT(RND*20)+1

You can use random numbers in sums practice programs.
The routine below is the basisof such a program. Here, the
sums are of the subtraction type, and numbers up to 20are
used.

10 N1=INT(RND*20)+1
20 N2=INT(RND*20)+1
30 IF N2>=N1 THEN 10 (thismakes sure that

the second number is

always smaller)
40 PRINT N1;" - ";N2;'^'
50 INPUT A

60 IF A = N1-N2 THEN 90
70 PRINT "WRONG"

80 GO TO 40

90 PRINT "RIGHT"

00 GO TO 10 (this program goes on for ever)

Notice the double check in line 30:

IF N2>=N1 THEN...

>= means 'is greater than or equal to'
You can combine other comparisons.

<= means 'is less than or equal to'.
<> means 'is greater than or less than'.

That last one is very important. Ifa number is greater or less
than another, then it is not equal to. Use <> when you want
to check that two numbers are not the same.

Write a program of your own that will compare the user's
age with your own, and print out a message something like

40

this - "YOU ARE OLDER THAN ME, JIM' /

Here is a flowchart to help you.

INPUT

NAMES

INPUT

AGE

PRINT "YOU

^^ Nv Yes ARE OLDER<T OLDER? J^ THAN ME/'

JNo
NAMES

)PRINT "YOU C STOP]
ARE YOUNGER

THAN ME

Yes <^Y0UNGER J>
NAMES

[No
C STOP ^ PRINT "WE

^ ARE THE

SAME AGE"

)C STOP J

Figure 24

41

12

count

In chapter 5 we had a version of the "WHO'S THERE?"
program that made the computer say "HELLO THERE" to
each new person, until "NO-ONE" was typed in. We can
add a few more lines to that program so that the computer
keeps a count of how many people there are. To do this we
need to use another number store in which to keep count.
We can watch a counter at work in this program.

10 LET C=0

20 PRINT C

30 LET C=C+1

40 GO TO 20

(C for Count)
(so you can see C)

You can see Chip keeping count in figure 25.

He starts by labelling a store, and putting a zero there.

LET C=0 c

0t

Then, each time round the loop, he changes the number in
the C store, to make it one more.

LET C=C+1

42

After 10 trips it looks like this.

Figure 25

We can combine this with the original "WHO'S THERE?'
like this. The new lines are numbers 5, 35 and 50

5 LET C=0

10 PRINT "WHO'S THERE ?"

20 INPUT NAMES

25 IF NAME$="N0-0NE" THEN 50

30 PRINT "HELLO THERE ";NAMES
35 LET C=C+1

40 GO TO 10

50 PRINT "THERE ARE ";C;"PE0PLE HERE."

43

Notice how the add-one-on line (35) is fitted into the loop so
that it only works if there is some-one there. If it was fitted in
between 10 and 25 somewhere, then it would also count
"NO-ONE"! At line 50 the computer goes back to the C store
and prints whatever number it finds there.

You could also add a counter to the number guessing
game, so that when the number is guessed right the
computer tells you how many guesses it took.

NOTE: You already know that you can miss out a LET
statement, and that "C=0" will work without it. You could
miss out the whole of the line and the program would still
work. If you don't open up a store, then Chip will do it for
you automatically. Prove this to yourself. Type in (no line
number):

PRINT N

What do you get? Now try "PRINT A", "PRINT B",
"PRINT COUNT". The computer assumes you want number
stores with those names, and labels them up. The value in
the store will always be 0 at the start.

It is a good habit though to write in a "LET C=0" line.
When you get to write more complicated programs you will
find it very useful to have the point where the store is set up
clearly marked by such a line.

44-

13

Tmes tables
and other things
One of the beauties of computer programming is that there is
never a single right answer to anything. There are always
several ways of getting the same result. You can see this in
the following examples. Each of these programs produces a
screen like figure 26.

/^%}li- 1'••**? "^ &^l#" £*v mJc^N
i >i9\-.. '• ' '/"£> *~,«:&'Zdffii ' :^??V -

. 3,, y - /6.M>- •':•"£',?.
4A • :i: tTyy; --^y

\-.$> •;•;;••-' ^/>."^'
\.\^x;J^Mh V^l^fc;?||p
• .8;: =-"';;.-?-" '^Mii^yM^]
1 ~y9-, '. -'/•"..••-• t8f*;-" .V"^
\' "It- ..'-. f:,'":'ISfffifHlIf ;^

5

v*» -©ONf^**; •"._ -'* ;s iC-JjpS'

Figure 21

Here is the first:

10 LET N =1 (N for Number)
20 LET T=2 (T for Two Times)
30 PRINT N,T (comma for half screen spacing)
40 LET N=N+1

50 LET T=T+2

60 IF N=11 THEN 80

70 GO TO 30

80 STOP

Notice that the stores N and T are given values of 1 and 2
when they are first opened. In the next version, only one
number store is used, but the number is doubled in the
PRINT line, so that the result is the same.

45

10 LET N=1

20 PRINT N,N*2
30 IF N=10 THEN 60

40 LET N=N+1

50 GO TO 20

60 STOP

Two points to note here.
1 You can do more or less anything to a number in a store,

add, subtract, multiply or divide by any other number.
2 Here the IF. . .THEN. . . line that gets you out of the

loop comes directly after the PRINT line, so it stops after
10. In the first of these programs, the line came after the
add-one-on line, and the computer jumped out of the
loop when N was 11 (but before it printed it). The result is
still the same.

And here is yet another way of doing the same thing. This
uses a different type of loop.

10 FOR N=1 TO 10

20 PRINT N,N * 2
30 NEXT N

This is called a FOR. . .NEXT. . . loop. What happens here is
that the computer takes every number from 1 to 10 in turn,
and does the same thing to each. When it runs out of
numbers, it stops. You do not need an IF. . .THEN. . . line
to check that a certain number has been reached.

FOR. . .NEXT. . . loops are very useful wherever you
want something to happen for a set number of times. When
the line reads "FOR. . .TO. . ."the computer will always
work through the numbers one at a time, but we can make it
take bigger, or smaller steps if we add a little more. Look at
this:

10 FOR N=0 TO 20 STEP 2

20 PRINT N

30 NEXT N

46

Type it in and run it. Now change line 10, so that when you
run the program you finish up with a screen like figure 27.

;>^^j^5*s

Figure 27

See what happens when you change line 10 to:

10 FOR N=0 TO 10 STEP .5

You can also STEP backwards.

TO 0 STEP -110 FOR N=10

20 PRINT N

30 NEXT N

40 PRINT "BLAST

50 PRINT

60 GO TO 50

OFF"

What happens when you run it?
You probably found that the program went through too

fast for you to see it very well. We can slow things down by
using a delay loop. What we are doing here is asking the 99
to do nothing, but it does nothing so quickly that we need to
ask it to do nothing lots of times to get any real delay. Add in
these lines:

22 FOR D=1

24 NEXT D

TO 100 (D for Delay)

47

This is what is known as an 'empty loop'. Bymaking the 99
whizz round doing nothing 100 times every time it gets to
that part of the program, we slow things down nicely. You
might like to add another pair of lines after the BLAST OFF
to slow down the scrolling.

NOTE - WATCH YOUR STEP.

Two minor points about using STEPs.
1 It doesn't matter if your last STEPtakes you past the last

number in the loop.

FOR N=1 TO 10 STEP 2

will go through 1, 3, 5, 7, 9 and then stop.
2 It does matter if you STEPthe wrong way.

FOR N= 1 TO 10 STEP -1

will work once only (when N is still 1). After the first
STEPN will be 0, which is outside the range of the loop.

And a last point about FOR. . .NEXT. . . loops. The
variable name need not be a single letter.

FOR TIMES = 1 TO 10

will work, as will

FOR T = 1 TO 10.

48

14

Sound effects

The 99 can produce avariety of sounds, both musical and
otherwise. You haveprobably already had a look at the
EFFECTS program, butifyou haven't, load itinnow and
have a listen to some of the possiblesound effects you can
get from the 99.

These effects areallproduced usingthe CALL SOUND
routine. Tomakeit workyou need to tell the computer three
things about each sound you want - how long itistolast,
what type of sound you want, and how loud itshould be.

Duration

Asoundcanlastanything between l/1000th ofa second, and
4i seconds. Eachunit of timefor the computer is l/1000th of
a second, so the numberto typein for onesecond ofa sound
is 1000.

Type or pitch
Soundscanbe oftwotypes, noises, and musical tones. We
will look at these in the programs below.

Volume

You canfix the volume bytyping in a numberbetween0and
30. 0 is the loudest, and 30is completely silent. (Sometimes
silent noises are useful!) As the sounds are actuallyproduced
through your T.V. set, you can further adjust thevolume by
using the T.V. controls.

The three numbers fit together like this:

CALL S0UND(1000,200,10)

49

This sound lasts for 1 second, has apitch of200 Hertz
(which is just above theGbelow middle C) and has avolume
level of 10.

Noises

There are 8types of noises available, and they have code
numbers between -1 and -8. Note that they are negative
numbers. Musical tones are positive numbers. Youcan listen
to these sounds by running the 8numbers through aloop.

10 FOR N= -1 TO -8 STEP -1 (you must
STEP

backwards

through
negative
numbers)

20 CALL S0UND(1000,N,10)
30 NEXT N

Type this in and run it.

Noises -1,-2 and -3 are all steady beeps ofdifferent
pitches. -4 gives you short regular beeps.

-5, -6 and -7 produce what is known as 'white noise'.
You have probably come across it as asound effect on games
ofthespace invader type. -8 isalso a'white noise', butthis
comes as a series of short crackles.

These noises canbe combinedwith musicaltones to
produce different effects.

Musical tones

These will bedealt with inmuch more detail inPack 2, but
letushave aquick look atthe range ofsounds that can be
produced. Type this in:

10 FOR P = 110 TO 40000 STEP 100.
(P for Pitch)

20 CALL S0UND(100,P,10)
30 NEXT P

50

That really is40000 in line 10! The 99 can make sounds as
high as44733 Hertz. This isway above anything anyperson
can hear. Because the range is sohuge we willinclude a
STEP in line 10. Without it this program would take over an
hour to run!

When you runthis program have your fingers poised over
the FCTN and CLEAR keys. Break into the programat the
point where you can nolonger hear the tone. (There will still
be the 'click' which marks the end of each separate sound.)
Now type in:

PRINT P (no line number)

Whatnumber do you get? It shouldbe somethingbetween
10000 and 18000. Differentpeople have different top limits to
theirhearing, and children canusually hearveryhigh
sounds better than older adults.

By fixing the time andpitch ofthenotes carefully, you can
get the 99 toplay tunes. This isvery fiddly though without
using more complicated programming techniques, andwe
will leave it untilPack 2. Ifyou do fancy struggling through
some short tunes, here are the numbers you need for the
notes of the scale of C.

Pitch (frequency in Hertz) Note

262 C

294 D

330 E

349 F

392 G

440 A

494 B

523 C

These can be combined to givechords of 2 or 3 notes. Fixthe
time for the chord, and then the pitch and volume of each
note.

CALL S0UND(1000,262,5,330,5)

This playsone second ofC(atlevel 5) and E(atlevel 5).

51

The next line plays 2 seconds ofF, A and C, allat level8.

CALL S0UND(2000,349,8, 440,8,523,8)

You can also combine musical tones and noises. This sounds
like a car horn.

CALL SOUND(1000,523,5,-1,5)

Yourmaximum at any one time is three notes and one noise.

Fading away

If you control the volume of the sound by aloop, you can
produce a fading effect, though not acompletely smooth
one. Try this:

10 FOR V = 0 TO 30

20 CALL SOUND(100,262,V,330,V,392,V)
30 NEXT V

Now change line 20 to this:

20 CALL SOUND(500,-5,V)

Could that bebursts offire from arocket ship asitclimbs into
the distance?Change line 10to:

10 FOR V = 30 TO 0 STEP -1

and your noisegets steadily louder.
Look again at the sounds section on EFFECTS and take

note of the lineswhichproducethe particular effects.
Experiment with somesounds ofyourown.

One point thatyou should notice from that program, and
which you could put togood useyourself, is this- the 99 can
dootherthings (printing onscreen, for example) while a
soundisbeing produced. The only thing it can'tdo is to
produce another sound. You can make this worl^ for you. If
^ou want tl\e program to wait until the end of asound before
it goes on to the next part, then put a silentnoiseat the end
of your sound.

52

10 CALL S0UND(1000,262/10)
20 CALL S0UND(1,262,30)
30 PRINTNEXT ITEM"

Line 10 produces one second ofmiddle C. Line 20, with the
volume setto 30 (silence) produces l/1000th ofasecond of
nothing. (There still must be afigure for pitch, even though
nothing sounds).

Try those three lines, and then take out line 20, and try
again.

53

15

Remember,
remarks can remindyou
IfyouLIST anyoftheprograms onthecassette, you will find
in them a number of lines that start with REM. These lines all
have some sort of note or REMARK written in them:

100 REM THESE LINES PRINT THE ANSWERS

... or something similar.

The computer ignores theREM lines. The only reason they
are there is to make the program easier to read.

There are threetimes wheneasy reading isimportant in a
program LIST.
1 Whenyou are DE-BUGGING the program - that is

sortingout the various mistakes that almost always find
their way into everybody's programs.

2 When you comebackto the programafter a few weeks,
or months. You will almost certainly haveforgotten
which store was used for which reason, and how the
differentroutines fastened together. If there are no REMs
tohelp you, it will take much longer tomake anychanges
or additions.

3 Whensomeoneelselooks at yourprogram. Thatis the
main reason why the REMs are in the programs on the
cassette.

TheREMarks shouldbe close to the lines theyrefer to.
100 LET C=0

101 REM C IS THE COUNTER

54

250 GO TO 500

251 REM WRONG GUESSES GO TO 500

A REM line can be as long as any other line in a program -
that is, it can actually take up to 4 lines of print on the screen.
Likeeverything else in a program though, REMs take up
memory space, so keep them short if you are writing a
lengthy program.

55

16

Neaterpitting

You are alreadyusing PRINT SEPARATORS (;,:) in your
PRINT lines, to givesome sort of spacingon the screen. You
haveprobably gotdouble spacing inyourlines ofprintby
including two colons at the end. In case you haven't try this:

10 FOR N=1 TO 10

20 PRINT " A FRIENDLY MESSAGE"
30 NEXT N

Run it, then EDIT 20, and add two colons at the end.

20 PRINT"A FRIENDLY MESSAGE"::

Now run it.

The extra spacing improves the appearance of the screen
and makes reading it a little easier.

Now here's another way to improve your print layouts.
Supposeyou havewrittena program to print out a variety of
times tables (x2, x3). You want the screen to look like
figure 28.

You could get this layout with a PRINT line like this

30 PRINT N;" ";N * 2;" ";N * 3

- except that it wouldn't quite work. When the computer
printed two-figure numbers it wouldpush the spacing
slightly out of line.

Here is a program whichdoes it, veryneatly. It uses the
TAB instruction. TAB is short for TABULATOR, and is used
for printing TABLES.

10 PRINT "NUMBER"; TAB(15);" X2";TAB(25);"X3"

TAB(15) means 'start at Column 15'. Notice the semi-colons

56

illL

Figure 28

separating the TABinstructions from the things that need
printing ("x2", "NUMBER", etc).

That first line will give us the headings to the table. Three
more lines will produce the numbers.

20 FOR N=1 TO 10

30 PRINT TAB(5);N; TAB(15);N*2; TAB(25);N*3
40 NEXT N

When typing this in take great care over the punctuation,
brackets and semi-colons, otherwise it won't work. An
"* INCORRECT STATEMENT" message will mean that you
have probably missed out a semi-colon.

Use the grid in figure 29 for working out PRINT lines
using TAB. You will see that the actual range of column
numbers is 1 to 28, but if you type PRINT TAB(30), it will still
work. The computer will see that it is over 28, and take 28 off
to produce TAB(2). The program below shows how the
computer keeps the TAB numbers within the range allowed.

10 FOR N=1 TO 100

20 PRINT TAB(N);N
30 NEXT N

Run it and watch what happens. Add a delay loop between
20 and 30 to slow it down if you like.

57

This program also shows up another minor point about
printing numbers. All positive numbers are printed with a
space in front of them. (Negative numbers have a - sign
there instead). This means that if you want a column of
numbers to start at column 10, you must write PRINT
TAB(9);. . . to allow for the space. You will also notice that
when the print position gets close to the right hand side, so
that the number should appear half on and half off the
screen, the 99 pushes the print position back to the start of
the line, so that the number can be printed in one.

.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure 29

58

17

Running totals

You read earlier how you can do anything to a number
variable that you can do to a number. This includes adding
(or subtracting, multiplying or dividing by) the number in
another store. You can see it in this program.

10 LET T=0

20 INPUT N

30 LET T=T+N

40 PRINT T

50 GO TO 20

Run it, and type in the numbers from 1 to 6. You should get
a screen like figure 30.

(1+2=3)

(3+3=6)
(6+4=10)
(10+5=15)

(15+6=21)

Figure 30

You could work this kind of totalling into a program that
asked how many sweets you ate each day for a week (or how
many hours each day you spent computing), and gave you a
total for the week at the end.

A flowchart for this sort of program is shown in figure 31.

59

T = 0

FOR D = 1 •ro 7 i r

PRINT "DAY";D

V

INPUT N

V

T = T + N

NEX T D

PRINT "TOTAL

THIS WEEK=";T

V

C STOP)

Figure 31

Notice how in this program you only want a limited number
of INPUTS (7 Days in the week). It makes sense then to
include the INPUT and totalling lines in a FOR. . .NEXT. . .
loop. It is useful to have a prompt printed before the INPUT
line-

PRINT "DAY ";D. A second prompt can then be included
in the INPUT line - INPUT "HOW MANY THAT DAY ?":N.

The following program also uses a totalling type line, but in
reverse. This is a game for two players. You start with a total
of 100, then each player in turn types in a number between 1
and 9. This number is taken from the total, and the winner is
the player who gets the total down to 0.

60

10 REM TAKING GAME

20 LET T=100

30 INPUT N

40 LET T=T-N

50 IF T=0 THEN 70

60 GO TO 30

70 PRINT "THE WINNER

This basic game can beimproved andaltered in several
ways.

You could add a line after the INPUT to make sure that the
number is no more than 9, and a second check line to make
sure that it is no less than 1.

You canvarythe rules ofthe game. Reaching 0could lose
thegame rather than win it.The range ofpermitted numbers
could also be changed.

It mightbe useful toadd a section at thebeginning to print
up the rules of the game.

All these changescouldreally messup your line
numbering, soit might beworth looking at anothernew
command.

Resequence

Try this whenyouhave got a program in thecomputer. Type
in (no line number):

RESEQUENCE (or RES - the short version works justas
well)

You will find that yourprogram hasbeenrenumberedfor
you. The lines arestill in theright order, andtheGO TO's
still goto the rightlines, even though theynowhavenew
numbers. These new numbers start at 100and go up in 10's.

Ifyoudon'twant your lines tobenumbered this way, then
you can control the renumbering.

RES 10,10

Will renumber so that the first line is 10 and the numbering
goesupinlO's.

RESEQUENCE 100,5

Will start from 100 and go up in 5's.
Howeveryou want the numbers to run, the generalshape

of the command is always:
RESEQUENCE (first line),(interval)
or RES (first line),(interval)

61

While weareon the subject ofline numbers, here'sa tipfor
when you are next typingin a program. The99 will do the
numbering foryouifyouaskit. All youhaveto do is typein

NUMBER (or NUM which works the same)

beforeyou begin your program.
Assoonas you press ENTER thenumber100 will appear.

Type yourfirst lineand enterit, and 110 popsup readyfor
thenext line. New line numbers, spaced in10's will keep
comingas long as you want them. Whenyou have finished,
press ENTER after the nextlinenumberappears, and your
program is ready to run.

Ifyou don't want to startat 100 and workup in 10's, then
you can fix your own numberingstylejust as you can with
RESEQUENCE.

NUM 10,5

Willstart at 10and go up in 5's.
Ifyouwant toadd lines to theend ofa program, typein

NUM followed by the next linenumberthat you want. It will
then number foryou (in10's) from that point.

You mayfind thisveryuseful, especially when typingin
programs from the book.

62

18

The character set

Computers cannotthinkin wordsand letters. Numbersare
all they can handle, (andbinarynumbers at that - see
'Creating your own characters' in Pack 2.)

Humans like to use words. BASIC translates words into
numbers for the computer, and backforus. It does this by
giving each letter and symbol a special code number. These
codes are more or less the same on every computer, and are
known as the ASCII codes. (American Standard Code for
Information Interchange).

If you type in:

10 FOR N=1 TO 127
20 PRINT N, CHR$(N) (CHR$(N) means the

character with code (N))
30 NEXT N

The complete set willbe printed out on screen.
Notice that some of the characters do not appear, or are

printed as blocks ofdots at random. Thisis becausesome
of the characters carry information for the computer's use
only - where the cursor should move, and things like that.
Youwill find a complete ASCII list in Appendix A.

You will notice that if you type in:

PRINT CHR$(65)

you get exactlythe same as if you type in:

PRINT "A"

soyou won't normally bother then to use the ASCII codesto
print characters that you have goton the keyboard. You
might use them though for charactersthat don't appear on
the keys. Wewillcometo them shortly.The charactercodes

63

areusedin writing on the screen when youdon't wantyour
words to scroll up from the bottom.

Youwill see some printing likethis in the cassette
programs, and the techniques are covered in Pack 2.

Character codes arealso usedfor crashproofing inputs,
and for various other specialeffects. These are dealt with in
Pack 2, and in the Games Packs. Finally, theycanbe used for
coding messages, ifyoufancy going intothespying
business. Here's how.

Secret codes

Type this in:

PRINT ASCC'A")

and you get - 65, unless you used a small "A", in which case
you get - 97. ASC gives you the ASCII code number of the
letter (or other character) in the quotes. It works with string
variables as well, as you will see with this program.

10 INPUT C$ (any Character)
20 PRINT ASC(C$)

30 GO TO 10

Run this, and enter S,P,Y. You should see this:

Figure 32

64

Use this program to turn a message into a series of code
numbers. Write down the code numbers and keep them for
later. You will need another program to turn your numbers
back into letters. Here it is:

10 INPUT N (the code Number)
20 PRINT CHR$(N)

30 GO TO 10

Use this to decode your message from earlier. You can also
use it to decode the message that Chip has received.

8769 72658669

6682 79756978

89798582 67796869

Why should Chip be worried?

Figure 33

Why should Chip be worried?
You can improve the security of your codes with a bit of

number juggling. Change the encoding program to this:

10 PRINT C$

20 PRINT ASC(C$)+5

30 GO TO 10

(extra number outside
brackets)

65

Now when you enter "A" you will get 70and not 65 as your
special code number.

The decoding program needs the opposite.

10 INPUT N

20 PRINT CHR$(N-5) (extra number inside
brackets)

30 GO TO 10

This 'code key number' can be anything you like. It could be
written into the program as a variable, so that the same
program could be used for different coded messages.

Alter the encoder program to this:

5 INPUT "CODE KEY NUMBER":K

10 INPUT C$

20 PRINT ASC(C$)+K

30 GO TO 10

Write a decoder program to work the same way, and then try
and decode this message from Chip. He seems to have left
his code key number lying around. No wonder people keep
breaking his codes!

Figure 34

66

9587938476

73 828774

917775907792

978793 84818377

95819280 928077

91779094817577

19

Graphics

Some home computers have sets of block graphics built into
them. The 99 doesn't. There are, however, 32 character
codes available at the end of the ASCII set which can be

defined to print new graphics characters using the CALL
CHAR routine. (See Pack 2). The GRAPHICS program does
just that. LOAD and run the program and you will have, for
your use, the characters shown below. Once the 99 is
switched off, these characters are, of course, lost. They can
be restored by LOADing the program again.

Character Code Character Code Character Code Character Code

136128

129

130

131

132

133

134

135

Figure 35

lis

ipi

;»P
g
mm

137

138

139

140

141

142

143

ri

144

145

146

147

148

149

150

151

h> "^N?

m

LI

152

153

154

155

156

157

158

Pi"
; k 159

67

There is a short demonstration written into the program to
give you a few ideas of the sort of things which are possible.
To convert the program for your own use, rub out the lines
indicated by the REMs, and add your own program from line
30 onwards. There is well over 8k of memory left for your
program, but if you do need more (it must be a long
program!) then rub out the demonstration lines. The REMs
will tell you when to stop.

Using the graphics set

You can get to the graphics characters in three different
ways. You can use the ASCII codes:

PRINT CHR$(153);CHR$(154)

. . . will print the two parts of the aeroplane.
You can also find the characters on the keyboard, by

holding down the CTRLkey and pressing the letter keys.

PRINT

CTRL and Y CTRL and Z

. . . prints the aeroplane as well.
Figure 36 shows where the different characters are on the

keyboard.

as ® Si
1 2 3 4 5 6 7 8 9 0 -

* ♦ Fl a m a m a H •
Q W E R T Y U I 0 P /

ii B n . a B 9 p a s ENTER

A s D F G H J K L ;

SHIFT B ia y a H B B D & SHIFT

z X c V B N M /

ALPHA

LOCK
CTRL SPACE BAR FCTN

Figure 36

68

The third way is to use HCHAR or VCHAR commands.
We will come to that later.

Any graphics printing starts on squared paper. Sketch a
rough outline first, and then find the graphics shapes that fit
best with what you want. Figure 37 shows the Mars 12
spaceship.

r

i: 0 t "J^ !-

*•

fil ."' >«

'.* I ^
sr—

X**
t

j
"' 'c 4i Y$!$$__

<

... M„V._,

W ~*r i
" *^ %•" - r

i' *" ~*5"V". • / S/*:

V V

V "s
/ s A

Figure 37

The picturenow needs to be turned into a set of Print
instructions. If you use CTRLand the letter keys, then the
shapes will show up in the print lines. This makes it easierto
check that you are typing it in correctly.

Work from the top down.
100 PRINT"n — i." (A,spaceRPSspaceA,)
110 PRINT "h • • «" (A, space P V P space A,)
120 PRINT "h — ••" (A, space PPP space A,)
130 PRINT "•••• ••••" (APPPVPPP,)
140 PRINT " 1—0—1" (APPPPPPP,)
145 PRINT".—• "

150 PRINT " ii — •" (A, space PPP space A,)
160 PRINT " •• r * ••" (A, space N space 0 space

A,)
170 PRINT "A a" (L M five spaces L M)

Figure 38 shows a patrolvessel of the Korth Imperial Space
Navy. Work out the print lines needed to get this on screen.

69

Figure 38

Youcan make your space ships take offup the screen by
writing in a set of empty print lines after the graphics lines.
The easiest way to do this is to use a loop.

200 F0RN= 1 TO 24

210 PRINT (change the linenumbersifyour
program goes beyond 190)

220 NEXT N

Hold it fora moment at the bottomof the screenby slipping
a delay loop in before the empty print lines.

190 FOR D = 1 TO 500
195 NEXT D

You can slow the travel up screen by including a short delay
between two of the lines of the Print loop.

214 FOR D=1 TO 50

216 NEXT D

Putting a Sound in the loop will also have a slow effect. Use
this, instead of the delay.

215 CALL SOUND(100,-5,5) (changethe
numbers to suit

yourself)

70

The PRINT command will move pictures up the screen very
nicely, but is littleuse for movement across. You can see it in
this program. It runs a car across the bottom of the screen.

100 FOR C=1 TO 27 (Column)
110 PRINT TAB(C);"W (CTRLQandQ])
120 CALL CLEAR (to keep the printing on the

bottom line)
130 NEXT C

Runs across the screen? More like bounces! Do not despair,
help is at hand.

71

20

Putting things
in the rght place
So far, everything you have printed on the screen has
scrolled up from the bottom. It is possible to put any
character you like, letter, number, symbol or graphic
anywhere you like on the screen. To do this we use one of
two special routines, CALL HCHAR and CALL VCHAR. If
you have not yet looked at the CHARLIES program, now is
the time to do it.

Type this in:

10 CALL CLEAR

20 CALL HCHAR(12,16,42)

You should see a single asterisk in the middle of the screen.
How did it get there? Look carefully at the three numbers in
brackets in line 20. The first number (12)is the row; the
second number (16) is the column; and the third number (42)
is the ASCII code for asterisk.

The screen is divided into 24 rows and 32 columns for

these routines. The numbering is shown in figure 39.

The question mark at the bottom of the figure was put there
by this line.

CALL HCHAR(22,16,63)

Two lines were needed to get the "HI" at the top.

CALL HCHARC1,15,72)
CALL HCHARd,16,73)

What three lines would you need to get the "END"?

Remember (Row, Column, Code number)

72

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

H 1

?

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 Z Z Z Z Z Z Z Z

19
—

2C

21

22 ?

23 E N D

24

Figure 39

you might think that you need 10lines to produce that
sleepy line of Z's. You don't.

The HCHAR sub-program is specially designed to allow
you to get lines of the same character. To do this, you need to
tell the computer where to start, what character to print, and
how many you want. (Ifyou don't tell it how many, it only
prints one, which is what happened earlier.)

CALL HCHAR(18,10,90,10)

produces the line of Z's.
HCHAR is short for HORIZONTAL CHARACTER

REPETITION and the lines are always Horizontally across
the screen. To get a Vertical line, you need VCHAR
(VERTICAL CHARACTER REPETITION).

73

Try this:

CALL VCHARC1,16,42,24)

You should have a line of asterisks down the middle of the

screen.

HCHAR and VCHAR can be used together to draw
pictures. The short program below produces the picture in
figure 40. (Ifyou have got the GRAPHICSprogram loaded in
at the moment, change the code number from 42 to 144. Your
'box' will then have solid edges, rather than asterisks.)

100 CALL CLEAR

110 CALL HCHAR(5,5,42,10)
120 CALL VCHAR(6,5,42,9)
130 CALL VCHAR(6,14,42,9)
140 CALL HCHAR(15,5,42,10)

Figure 40

Change the Row and Column numbers so that the same box
is drawn in the middle of the screen. Now add five more

lines to get the robot's face in figure 41.
Check your program with the one in figure 42. Don't

worry if your row and column numbers are slightly different.

74

Figure 41

100 CALL

110 CALL

120 CALL

130 CALL

140 CALL

150 CALL

160 CALL

170 CALL

180 CALL

190 CALL

Figure 42

CLEAR

HCHAR(8,11,144,10)

VCHAR(8,12,144,9)
VCHAR(8,20,144,9)
HCHAR(18,11,144,10)
HCHARdl,13,144)

HCHAR(11,18,144)
VCHARdI,15,144,3)
VCHARdI,16,144,3)
HCHAR(15,14,144,4)

character 144

from the

GRAPHICS set

use 35 or 42 if

GRAPHICS not

there

(one character
only, VCHAR
works just as well)

(nose)

(mouth)

75

21

Coloured pictures

You saw earlier in 'Coloured Paper' how to change the
screen colour, and you read then how each character space
has two colours, its foreground (ink) colour, and a
background (paper) colour. These colours can be any of the
available 16.

For colour changing purposes the characters are grouped
in sets of 8. To fix the colour of any one character, you have
to fix the colour for all the characters of that set. However,
the sets can all be very different from each other, which
means that you can have 16 different colour combinations on
screen at any one time. The program below shows this, but
first, the character sets.

Set number ASCII codes

1

2

3

32-39 1
40-47 J
48-55

all punctuation signs or
symbols
— numbers 0 to 7

4

5

56-63

64-71"
8,9 and punctuation

6

.7

72-79

80-87,
large capital letters

8

9

88-95

96-103

X, Y, Z, a few symbols

10

11

104-111

112-119
• lower case letters

12 120-127
>

13 128-135 ^ blanks foryourown
14 136-143 characters.

15 144-151 These are the ones used by
16 152-159 the GRAPHICS program

Next, the routine that changes the colour. It is one of the

76

TI BASIC sub-programs. Tochange the colour of Set 3
(numbers) to Red ink (code 9)on yellow paper (code 12)you
would use this line:

CALL C0L0R(3,9,12) (note the spelling of COLOR.
This is the American way)

And now, to save you turning back to the 'Coloured Paper'
chapter.

Colour code Colour

1 Transparent
2 Black

3 Medium Green

4 Light Green
5. Dark Blue
6 Light Blue
7 Dark Red

8 Cyan
9 Medium Red

10 Light Red
11 Dark Yellow

12 Light Yellow
13 Dark Green

14 Magenta
15 Grey
16 White

At last, the program to explore these colours.

10 PRINT (a very long message using as
many different characters as
possible.)

20 INPUT "SET": S (S = number of the character
set)

30 INPUT "INK ":I (I = code for foreground
colour)

40 INPUT "PAPER ":P (P = code for background
colour)

50 CALL C0L0R(S,I,P) (watch the spelling)
60 GO TO 20

77

Run this and see how the colourschange. You willnotice
that the actual characters remain the same (apart from
scrolling steadily up the screen) while their colours are
changed. You canfix the colours for a setofcharacters at any
point in a program that you like. The character does not have
to be on screen at that time. You can also make characters
disappear by giving them the same colours as the screen.
Some of the special effects youcanachieve usingthe CALL
COLOR routineare covered in the EFFECTS program.
Others will be dealt with in Pack 2.

For the moment you may wish to try somecoloured
picturesusing the GRAPHICS program's characters. They
have been grouped to keep the samekind ofcharacterin
each set for ease of colourchanging. Fix the coloursof each
set separately, or make them all the samecolourusing this
routine:

FOR S = 13 TO 16

CALL C0L0R(S,16,1)
NEXT S

Thismakes them white (16) on a transparent (1)
background.Afterthese numbers to suityour pictures.

And finally, beforewe leavecolour, you might liketo try this
routine from the EFFECTS program. It prints all the
characters from 32 to 126 on the screen 7 times, so that the
screen is more or less full. It then goes through the entire
range ofcolourcombinations, changing the colours ofevery
set. Notice how the FOR. . .NEXT. . . loops are nested
together. Whenever you have more than one loop running at
any time, you must always close the last loop first.

78

10 FOR T= 1 TO 7

i— 20 FOR N=32 TO 126

Tloop

nioop 30 PRINT CHR$(N);

L

Ploop

40

50

60

70

'.o'OPr 80
Sloop 90

L100
—110

—120

NEXT N

NEXT T

FOR P= 1 TO 16

FOR 1=1 TO 16

FOR S=1 TO 16

CALL C0L0R(S,I,P)
NEXT S

NEXT I

NEXT P

Run it. Fascinating, isn't it?

(we'll do it 7 times.)
(the range of
characters we can

print)
(the semi-colon is
VITAL)
(last loop first)

(Paper =
background)
(Ink = foreground)
(every Set)

(last loop first)

(first loop last)

79

22

Branching programs

Computers are muchused for sorting and classifying
information. Theyusuallydo this throughsomeform of
'branchingprogram'- that is, a program where the
computer can go along any one ofmany differentpaths. At
each dividing pointon those pathsisa question, and the way
the computer goes depends upon the answer to that
question. In figure 43 you can see the flowchart for a
branching program thatcanidentify (some) common pets.
While the programitself is fairly long(see figure 44), it is
actually made up ofa seriesofsimple stages. Thisis one of
the attractions ofbranching programs. You canwrite very
longand detailed programs thatwill sorta greatmany
objects into theirtypes, and it does notrequire any
complicated programming skills.What it does take is an
understanding ofyour subject, and a lotofpatience.

Have a look at the way the PETS program was put
together.

The first thing to decide was what categories the animals
were to be sorted into. Tokeep it simple the program would
only classifycats, dogs, rabbits, birds, monkeys and fish.

We now need a few key questions. The obvious one to
start with was 'How many legs has it?'. There are 4 possible
answers to this:

4 - so it must be either a cat, a dog, or a rabbit
2 - which leads to either a bird or a monkey
0 - so it must be a fish

Any other - the program won't recognise.
The key question for the 2-legged beast was whether or not it
had feathers, to sort 'bird' from 'monkey'. There were 3
possible 4-legged animals, so 2 key questions are needed.

80

'Does it eat carrots?' - must be a rabbit.

'Does it bark?' - must be a dog if it does, and a cat if it
doesn't.

Obviously, this is a very crude program, and you can think
of all sorts of animals that it will not work for, but by adding
more questions you could cover a wider selection of animals.
The ideal PETS program would have a branch that lead to
every possible type of pet. It could then be used to find out
the name of an animal that the user did not already know
himself. (You, the programmer, must have known it to be
able to include it.)

(START)

INPUT "HOW

MANY LEGS?";L

REM

A LEGS

"PONT KNOW" | | "FISH" | | "MONKEY" | | "BIRD" |

I STOP) (STOP) (STOP) (STOP)

Figure 43

I y 1
(STOP)

| "RABBIT" |

(" STOP)

I "DOG" I

7
(STOP)

81

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

Figure 44

REM PETS

INPUT "HOW MANY LEGS HAS IT GOT ?":L

IF L=4 THEN 80

IF L=2 THEN 210

IF L=0 THEN 290

PRINT "I DONT KNOW ONE WITH ";L;" LEGS"
STOP

REM 4-LEGGED BEASTS

INPUT "DOES IT EAT CARROTS?(Y/N)":A$

IF A$="Y" THEN 120

IF A$="N" THEN 140 ELSE 90

PRINT "IT'S A RABBIT"

STOP

INPUT "DOES IT BARK ?(Y/N)":A$

IF A$="Y" THEN 170

IF A$="N" THEN 190 ELSE 140

PRINT "IT'S A DOG"

STOP

PRINT "IT'S A CAT"

STOP

REM 2-LEGGED BEASTS

INPUT "HAS IT GOT FEATHERS ?(Y/N)":A$

IF A$="Y" THEN 250

IF A$="N" THEN 270 ELSE 220

PRINT "IT'S A BIRD"

STOP

PRINT

STOP

PRINT

STOP

'IT'S A MONKEY"

'IT'S A FISH"

Note: INPUT routines

Notice how the INPUT routines starting at lines 90,140 and
220all follow the same style. The INPUT prompts include
the acceptable answers (Y for Yes, N for No). This allows for
much easier checking. If you let the user reply anyway he

82

wanted, then you could have all sorts of replies
"Y","YES","SOMETIMES","ONLY IF I LET IT",
"N","NO"."NEVER".etc.YouneedanIF. . .THEN. . .line
to check every acceptable answer. Life is much easier if you
are only looking for "Y" and "N".

As the program stands, any answer apart from "Y" or "N",
will simply sent the computer back to the INPUT line.

You should also notice that each INPUT is taken into the

same string store (A$). There is no special reason for this.
You could just as well have used three different stores for the
different questions. There is, however, no harm in using the
same store several times, for different things, as long as you
don't want to keep the answer for later use in the program. It
is in fact quite useful to always use the same variable names
for the same things in all your programs, so that, when you
look through an old program and see A$ you will know it is
used for a "Y/N" answer. N$ could be the user's name; N the
number in a FOR. . .NEXT. . . loop; S the score in a game;
G the number of goes you have had.

Branching by numbers

Suppose your program had a key question which asked
"What is the animal covered in?", and the acceptable
answers were "fur", "feathers" or "scales". You could follow
the INPUT line with check lines like this:

IF A$="FUR" THEN 200

IF A$="FEATHERS" THEN 250

IF A$="SCALES" THEN 300

These lines will work very well, as long as your users can
spell properly. You can avoid the problems caused by poor
spelling, or typing errors, by asking them to enter a number.

PRINT " WHAT SORT OF COVERING HAS IT ?"

PRINT " ENTER 1 FOR FUR"

PRINT "ENTER 2 FOR FEATHERS"

PRINT "ENTER 3 FOR SCALES"

INPUT C (C for Covering)

83

The check lines are now simpler, and less likely to produce
problems.

IF C=1 THEN 200

Now here's a command which will save a little typing. You
can replace those three check lines by one instruction.

ON C GO TO 200,250,300

What happens now is that the computer goes to 200if C is 1,
250 if it is 2 and 300 if it is 3.

To make this work the numbers that can be input must
start from 1 and run in sequence. If 4 is entered the computer
will stop with a * BAD VALUEreport. To avoid this you will
need check lines, immediately after the INPUT.

100 INPUT C

110 IF C<1 THEN 100

120 IF C>3 THEN 100

Where you have only 3 branches, and you want to prevent
accidental errors, then ON. . .GOTO. . . is hardly worth
using, but it can be very handy where there are many
possible places for the computer to go to.

NOTE: If you use ON. . .GO TO. . . you will not need to
worry about the awkward customer who argues that
chickens have got scales and feathers, and enters 2.5. Chip
will deal with them.

84

2.5 is nearly 3

I'll go to 300

NEXT JOB

ON C GO TO...

200..

250..

300..

.(1)

.(2)

.(3)

Figure 45

In cases like this the 99 automatically round up or down to
the nearest whole number.

You will find another example of a branching program on
the cassette. It is called TRANSPORT, and it will give you the
names of a number of different vehicles in English, French or
German. All you have to do is to answer the questions which
let the computer classify the vehicle you are thinking about.
It is put together in exactly the same way as the PETS
program. The only complicationsare those needed for the
three languages.

85

23

Keyboard tricks
and games
One of the 99's built-in routines reads the keyboard directly,
without waiting for the ENTERinstruction. This allows the
computer to tell if a key is being pressed, and which key it is.
The routine has several different forms, but right now we are
only concerned with two of these. Look at this first:

10 CALL CLEAR

20 CALL KEY(3,K,S)
30 IF S=0 THEN 20

40 PRINT CHR$(K)

50 GO TO 20

Type it in and run it. Here is what is happening. The
computer checks the keyboard, (line 20). It looks to see what
key is pressed (K), and what the Status (S) of the keyboard is.
There are three possible statuses; either no key is pressed, in
which case S=0; or a new key has been pressed (S=l) or the
same key is still being pressed (S= -1). In this program if no
key is pressed the computer just waits until one is. The K
variable here collects the ASCII code of the key which is
touched, and this is turned back into the right letter or
symbol by the CHR$ in line 40. Add an extra line to the
program:

35 PRINT S

Now run it. Hold the same key down and you will see "—1"
printed before the letter as it reappears each time round. This
is the status part of the routine at work. Constant pressing
gives the —1 report. Press the same key repeatedly, but
taking your finger off in between, and you will see "1"
printed for the status report. You will probably realise that
this has important implications for games playing.

86

The next time that you know someone else will be using
the computer, get there first, type this program in, run it,
and leave it. When they ask you what you have been doing,
say you were just checking something out. Watch what
happens when they try to write a program!

10 CALL SCREEN (4)

20 CALL CLEAR

30 PRINT "TI BASIC READY" (the screen now
looks like a

normal starting
screen)

40 CALL KEY(3,K,S)
50 IF S=0 THEN 40

60 PRINT

70 PRINT "JUST A MOMENT" (or any other
suitable message)

80 PRINT

90 PRINT "I AM THINKING"

100 PRINT

110

120

FOR D=1 TO 5000 tt, uu , , , ,NEXT D (thoughtful delay)
130 PRINT "NEARLY READY"

140 PRINT

150 FOR D=1 TO 5000 (more:thinking time)
160 NEXT D

170 CALL CLEAR

180 PRINT "TI BASIC READY" (starting screen
again)

190 GO TO 190 (this locks everything up)

You can make the joke as elaborate as your imagination will
allow, and time it to last as long as the other user's good
humour! (See the program KEYS).

Lines like those at 40 and 50 can be usefully added to many
programs, where you want to let the user work through the
program at his own pace. Whenever the computer comes to
lines of that sort it will wait for a key contact. You will find
them in most of the cassette programs.

There is one more thing on the CALL KEY brackets that

87

needs to be thought about. That is the 3. We are here using
the third of the different CALL KEY routines. In this form

the whole keyboard is seen in its normal state, with the full
range of characters. Go round the keyboard trying the keys.
Hold SHIFT down and press some more.

There is another version of CALL KEYwhich splits the
keyboard into two parts. Change line 20 to:

20 CALL KEY(1,K,S)

Now run it. You should notice two things: nothing happens
when you touch the right hand side of the keyboard, and
pressing a key on the left side will give you a status report
(1 or —1) but nothing else.

CALL KEY(1

collects information from the left only, and it does not use
ASCII codes. The keys are still coded, and you can see these
by changing line 40:

40 PRINT K

The numbers you get will be between 0 and 19.
The right hand side of the keyboard is checked in exactly

the same way, but using the line:

CALL KEY(2,...)

CALL KEY (1 . 1 CALL KEY (2

1 / 2 / 3 / 4 / 5 /l6 / 7 / 8 / 9 / 0 /
=

/19 / 7 / 8 / 9 / 10 !/ 19 / 1 / 8 / 9 /io
Q / W / E / R/ T/|Y/ U/ 1 / 0 / P / /
/18 / 4 / 5 / 6 / 111/ 18 / 4 / 5 / 6 11 / 16

A/ S / D / F / G /JH / J / K / L / ; / ENTER

/ \ / 2 / 3 /12 /'17 J/1 / 2 / 3 / 12 X17

SHIFT
Z /

/'15

X /

//0

c /

/ 14

V /

/13

B /[N /
/16 I/15

M /

/ ° /14 /13
SHIFT

ALPHA

LOCK
CTRL SPACE BAR FCTN

Figure 46

88

Onceagain the codes for these keys are between 0 and 19. In
figure 46 you can seehow the 99 codes the keyboard when it
is working in a half-board mode.

You can use CALL KEY(1. . . and CALL KEY(2. . . in the
same program, next to each other.This allows you to use the
99 for two-player games. Hereis a simple example of a
split-keyboard game. Play it against a friend, or playyourleft
hand against the right!

10 FOR D=1 TO 200 (short delay, much needed
on repeats)

20 NEXT D

30 LET A=INT(RND*2)+1 (either 1 or2at
random)

40 LET B=INT(RND*2)+1

50 CALL CLEAR

60 PRINT A,B
70 FOR T=1 TO 10
80 CALL KEY(1,K1,S1)
90 CALL KEY(2,K2,S2)

100 IF S1=1 THEN 140
110 IF S2=1 THEN 190

120 NEXT T

130 GO TO 10 (two more numbers)
140 IF A=B THEN 170 (are the numbers the

same?)
150 PRINT "LEFT WRONG" (... they weren't)
160 GO TO 10 (for another pair of numbers)
170 PRINT "LEFT RIGHT"

180 GO TO 10
190 IF A=B THEN 220
200 PRINT "RIGHT WRONG " (this routine is the
210 GO TO 10 same as line 140 to
220 PRINT " RIGHT RIGHT" 180, except for the
230 GO TO 10 right side keys)

It's basicallycomputerised 'Snap'. If the two numbers are the
same, then the first player to press a key (any key on his half)

(ten times round
check left

check right
go if touched)

otherwise. . .

89

wins. Notice how lines 100and 110 only accept new key
touches. If a key is held down constantly, the Status (SI and
S2) report will be -1.

Variations:

1 Add two more number variables to keep track of the
scores. (LEFTS and RIGHTS perhaps). You will also now
need to add some means of escaping from the loops. A
check line after the first CALL KEY willdo the job:

85 IF K1=15 THEN 240 (15is the code for
"A")

Here are the other lines you will need to add:

175 LET LEFTS= LEFTS+1

225 LET RIGHTS=RIGHTS +1
240 PRINT "LEFT ";LEFTS:" RIGHT ";RIGHTS

2 Instead of boring old numbers, why not make some nice
graphics. Store them at Character 128,129and 130. To get
the computer to pick one of those numbers at random use
this sort of line

LET A= INT(RND*3)+128

Obviously, you can have as many characters as you like.
The more there are, the less often the computer will come
up with a matching pair. With only two characters, or
numbers, they will match, on average, half the time.
With three to choose from, one third of the pairs will
match; one quarter with four, and so on.

3 Reduce the time the players have by putting a smaller
number in the loop at line 70.

4 Add a set of instructions so that players who are new to
the game can find out what they are supposed to do.
RESEQUENCE the program, with the first line at 200,
and you have got lots of room before the game itself, in
which you can print out the rules.

90

Appendices
A

ASCIIcodes

The set numbers are for use with the CALL COLOR
command See chapter 21.

Code Character

Setl 52 4

32 (space) 53 5

33 ! (exclamationmark) 54 6

34 (quote) 55 7

35 # (hash - number sign)
36 $ (string-dollar sign) Set 4

37 % (per cent) 56 8

38 & (and) 57 9

39 (apostrophe) 58 : (colon)
59 /

(semi-colon)
Set 2 60 < (less than)
40 ((open bracket) 61 = (equals)
41) (close bracket) 62 > (more than)
42 * (asterisk - multiply) 63 ? (question mark)
43 + (plus)
44 (comma) Set 5

45 (minus) 64 @ (at sign)
16 (full stop) 65 A (Upper case capitals)
47 / (divide) 66

67

B

C

Set 3 68 D

48 0 69 E

49 1 70 F

50 2 71 G

51 3

91

Code Character

Set 6 100 D

72 H 101 E

73 I 102 F

74 J 103 G

75 K

76 L Set 10
77 M 104 H

78 N 105 I

79 O 106

107
J
K

Set 7
108 L

80 P
109 M

81 Q 110 N
82 R

111 O
83 S

84 T
Set 11

85 U
112 P

86 V
113 Q

87 W
114

115

R

s
Set 8

\ 116 T
88 X

117 U
89 Y

118 V
90 Z

119 W
91 [(square bracket)
92 \ (slant)

Set 12
93] (square bracket)

120 X
94 A (exponential power) 121 Y
95

—

(underline) 122 Z

Set 9
123

124
{ (left brace)

96 \ (grave)
125

1

} (right brace)
97

98

99

A

B

C

(Lower case capitals) 126

127

(tilde)
(this is DELETE)

The characters at ASCII 128 to 159 (sets 13to 16) areleft blank
to be defined by the user for his own graphics

•

92

B

BASIC words

This is a complete list of the words used in TI BASIC. Almost
half of these have been dealt with in this Pack, the others are
covered in other books in this series. After each word you
will see either a number or an abbreviation. These tell you
where the word is first used. The numbers refer to the
chapters of this book. The abbreviationsare : P2Starter
Pack 2; Gl Game Writer's Pack 1; RKRecord Keeper's Pack.

None of these words may be used as variable names.

BREAK P2 GOSUB P2

BYE P2 GOTO 4

CALL 3 IF 7

CHR$ 18 INPUT 6

CLOSE. RK INT 11

CON P2 INTERNAL RK

CONTINUE P2 LEN P2

COS P2 LET 11

DATA P2 LIST 3

DEF G2 LOG P2

DELETE RK NEW 3

DIM P2 NEXT 13

DISPLAY P2 NUM 17

EDIT 4 NUMBER 17

ELSE 10 OLD Appendix C
END P2 ON 22

93

OPEN RK

OPTION P2

OUTPUT RK

PERMANENT RK

POS P2

PRINT 2

RANDOMIZE 11

READ P2

REC RK

RELATIVE RK

REM 15

RES 17

RESEQUENCE 17

RESTORE P2

RETURN P2

RND 11

RUN 3

SAVE Appendix C
SEG$ P2

SEQUENTIAL RK

SGN P2

SIN T2

SQR P2

STEP 13

STOP 6

STR$ P2

SUB P2

TAB 16

TAN P2

THEN 7

TO 13

TRACE P2

UNBREAK P2

UNTRACE P2

UPDATE RK

VAL P2

VARIABLE 6

94

c

Using thecassette

Connecting the machines

The 99 has routines built into it to take much of the sweat out
of recordingprogramson tape and loading them backinto
the computer at a later date. Connectyou machinery up
properly to startwithand then follow a few simple rules.

You will need a TI Dual Cassette Interface Cable and a
reasonable cassette recorder.

The machine MUST have

Sockets for MICROPHONE
EARPHONE (or external speaker)
REMOTE CONTROL

Controls for Volume
and Tone (you might survive without this)

a DIGITALTAPE COUNTERis very useful for finding
programs, but is not essential.

Themajority ofrecorders will workperfectly well, but ifyou
do seem to be having trouble in saving or loading, then
check with your Texas dealer.

Notice that the cassette lead has two separate cables, one
endingin three plugs, the otherendingin two. You are only
interested in the three plug end at the moment. The other
lead is for connecting up a second cassette for particular
types of file handling programs. (See the RecordKeeper's
Pack.)

Plug the flat9-pinend into the socketnext to the mains
lead at the back of the 99 and connect the three jack plugs to
the cassette recorder like this:

RED lead to MICrophone socket
WHITE lead to EARphone socket
BLACK lead to REMote control socket (this is a mini-jack

plug.)

95

T.V.Iead

lead for second cassette

For best results position your recorder at least two feet away
from the T.V. set, as the magnetic fieldsfrom the T.V. may
interfere with the magnetic fields of the recorder itself and
spoil your recordings.

Tune the tone control of the recorder up to maximum
treble, and turn the volume controlabout halfway up.
Check that your recorder batteries are in good condition, or
that the machine is plugged into the mains, and you are
ready to go.

Loading a program from a cassette

Thefirst thing to do is findyour program. Whenyou record
your own programs you will do well to keep a careful note of
the tape counterpositionat the startofeachnew program.
Counter numbers are given on the cassette labels in this
Pack, but use them as a guide only. Tapecounters differ
slightly. Youwillfind it worth while to unplug cassetteleads
and play through the cassette once, listening to the tape and
noting counter numbers as you go. At the start of each
recording you will hear a steady high tone. This makes'sure
that the tape has had time to settleinto its proper running
speed. There then follows a minute or so of noisy crackling.
This is the program itself. Aimto start loadingyour program
at the start of that high tone. Once you have got the counter
numbers noted, reconnectyour leads and rewind the tape.

Everything connected properly?
Tape wound to the program you want?

96

T.V. on and TI BASIC READY?

Type in:

OLD CS1

OLD tells the 99 you want to load an OLD program.
CS1 tells it that you are loading from CaSsette recorder 1.

Press ENTER and you will see:

* REWIND CASSETTE TAPE CS1

THEN PRESS ENTER

You have already rewound, so just press ENTER. You get
this:

* PRESS CASSETTE PLAY CS1

THEN PRESS ENTER

Do it. It doesn't matter how slowly you do this. The tape
recorder is being controlled by the 99, so it won't actually
start to play until you press ENTER. You should now see this

* READING

You should hear, through the T.V. speaker, those noises you
listened to earlier. READING will take a minute or so for

most of the programs on the cassette, so be patient. All being
well, the next message you get will be:

* DATA OK

* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

If things are not well you will get this, after about
20 seconds:

* ERROR - NO DATA FOUND

PRESS R TO READ

PRESS C TO CHECK

PRESS E TO EXIT

There is not a lot of point in asking it to CHECK, because if it
didn't read the first time, it is unlikely to the next. Do your
own checking instead. Are the jacks in the right sockets?
Were you at the right point on the tape? If you started too far

97

back on the tape the 99would have got tired of waiting for
the program.

If the answer to each is yes, then try again with the volume
turned up. As a rough guide to the volume you need try this.
Take out the remote and earphone jacks and play part of the
program to yourself. If you can stand the level of noise, then
it's too quiet.

EXIT from the routine, rewind and start again. If you
continue to have trouble - and it is very unlikely that you will
- then check with your Texas dealer. You may need a new
recorder.

Once the program has been loaded into the 99, then type
RUN and sit back. At first nothing will appear to happen. In
fact the 99is very busy checking through the program and
sorting itself out ready to run. This takes a few seconds, and
the screen remains cyan at that time. When the program
actually starts to run the screen will normally turn light green
(unless another screen colour has been written into the
program).

The programs on the cassette are all written in TI BASIC
and are intended to be looked at. Some of them have LIST

INDEXESwritten in. These will tell you which lines to list to
see particular routines. If you wanted the lines from 1000
onwards you would type in:

LIST 1000-

and then wait with your fingers poised over FCTN and 4
(CLEAR). When the lines you want are all on screen, press
and stop the listing.

Saving programs on tape

When you have spent time working out a program and
typing it in and you like it - or you don't like it but haven't
got time to sort out its faults - SAVE it.

Connect up the recorder as before, put in a cassette wound
to a blank spot and note the counter number. Now type in:

SAVE CS1

98

You will see this:

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Your tape is alright, so press ENTER. Yousee this:

* PRESS CASSETTE RECORD CS1

THEN PRESS ENTER

Do it. The next message is:

* RECORDING

There is nothing to hear while the program is being
recorded, and nothing to see exceptfor the tape wheels
turning round. The length of time taken to record a program
depends directly on how longthe programis. Aftersome
seconds you should see this:

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

and then:

* CHECK TAPE (Y OR N)?

Press Y (it must be LARGECAPITALY). It is always worth
checking that the program has been recorded properly. More
instructions will appear. Follow these carefully.

* REWIND CASSETTE TAPE CS1 (you did note
THEN PRESS ENTER the counter

* PRESS CASSETTE PLAY CS1 number didn't

THEN PRESS ENTER you?)
* CHECKING

This will take as long as the recording did. The 99 is
comparing the program on tape with the one in its memory.
If they are exactly the same you get this:

* DATA OK

* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

99

If they are not the same you willget one of these messages:

* ERROR - NO DATA FOUND

* ERROR IN DATA DETECTED

If there is no data for the 99to find then the first thing to
do is to listen to that bit of the tape to hear if anything was
recorded. Do you need to set recording volume levels on
your recorder? Are your jack plugs in the right sockets?

If there is a program there then adjust the volume controls
and the tone setting (maximum treble) and try checking
again.

Ifyour cassette recorder willload in the programs from the
cassette in this pack, then it should save your own programs
perfectly well. It may just take a littleexperimenting to get
the levels right.

Error messages

Youmay occasionally comeacrosssomeerror messages
when using the recorder. They willall start like this:

* I/O ERROR...

I/O means Input and Output. The message willend with
two numbers. The first of these numbers will be either 5 or 6.
The second number willprobably be 3 or 6.

I/O ERROR 5... refers to an OLD command
I/O ERROR 6.. refers to a SAVE command

If you see:

I/O ERROR 53

Or I/O ERROR 63

then check your typing. The command must be either "OLD
CS1" or "SAVE CS1", typed in large capitals.

If you see

I/O ERROR 56

or I/O ERROR 66

then either your cassette recorder is not connected properly,
or the volume is too low.

100

D

Somecommon errors

This is by no means a complete list of the possible error
reports that you might see, but it does include all those that
you might meet using the BASICcommands and statements
that are covered in this book. A more complete account of
errors is given in Pack 2.
* BAD LINE NUMBER - you have probably told the
computer to GO TO a line that doesn't exist. Check the
number after THEN.

* BAD NAME - either you are trying to enter a line which
includes a variable name of more than 15 letters, or the
computer has run up to a CALL. . . line, and the routine
name is mis-typed, or the name doesn't start with a letter.
* BAD VALUE - check that the numbers you are using in the
line are within the possible ranges for that instruction. In
COLOR lines, all the numbers must be between 1 and 16,
either as Set numbers, or as colour codes. In HCHAR and
VCHAR the ranges are 1 to 24 (for rows) and 1 to 32 (for
columns).

This error can also occur in SOUND lines, and with CHR$
and TAB. Check your typing, and check the numbers again.
*CAN'T DO THAT - either the computer has found a
NEXT. . . line, and there is no FOR. . . line to match it
earlier,
- or you are trying to LIST, RUN or SAVE and there is no

program in the memory.
- or you have got COMMANDS and STATEMENTS mixed

up.

There are two sorts of instructions in TI BASIC:

COMMANDS are entered directly, without line numbers.
EDIT, LIST, NEW, NUMBER, OLD, RUN and SAVE are all
commands. You cannot use these in a program line.

101

STATEMENTS may only be used in a program, and will
not work if entered directly. FOR, GO TO, IF, INPUT, NEXT
and ON are the ones you have met so far.

Some instructions can be used both as commands and as

statements. PRINT and all of the CALL. . . routines are

examples of these.
FOR. . . NEXT ERROR This error might be reported

during the checking stage, after you have entered the RUN
command, but before the program starts. The computer has
noted a FOR. . . line, but cannot find a NEXT. . . to match.
Either the line is missing, or you have used a different
variable name at the other end of the loop.
* INCORRECT STATEMENT The most likely cause here is
that you have missed out the final quotes in a PRINTline.
You might also get this if you have used a BASICword as a
variable name. There are many other causes, but you are not
likely to come across them at this level.

The only thing to do is to look closely at the line you tried
to enter (it is still there on the screen) and retype it correctly.
You cannot pull the line down for editing, as the 99 never
accepted it.

The report might also occur during a program's run. Look
at the line number given in the report, and list that line by
typing in:

LIST

*

followed by the line number. Check the line carefully. If it is
a CALL SOUND line, then perhaps you have tried to use too
many sounds at once. If the line is part of a FOR. . .NEXT. . .
loop, then check that the variable name is right, that you
have included an = sign, and that the numbers that you are
working though are correct. FOR N=l TI 10 is a fairly
common typing error, and would produce this error report.
* LINE TOO LONG Your maximum line length is always
112 characters, which take up 4 lines on the screen. You are
limited here by the size of the INPUTBUFFER where
information is processed before going into memory. It might
crop up if you are trying to PRINT a very long message. Split

102

it up into several shorter PRINT lines instead. Short lines are
much easier to edit if you need to later.
* MEMORY FULL You have written an incredibly long
program. The 99 has 16k of memory available. 16k means
16 kilobytes, or 16 x 1024 bytes. (= 16384 bytes). Each letter
in your program takes one byte, and numbers and variables
take a little more, but on average each line of the program
takes up 20 to 25 bytes. So, to fill the memory you would
need to have written a program of about 700 lines or more!

There are other ways in which memory can get swallowed
up, but none that you will come across at the level of this
book.

* WARNING: INPUT ERROR IN. . .TRY AGAIN: You

will see this if you try to enter a letter when a number is
wanted. If the line was:

100 INPUT N

then the 99 will only accept a number entry.

103

English
Limited warranty U.K.

This Texas Instruments (TI)warranty extends
only to the original consumer purchaser.

1. The electronic and mechanical components
of the product are warranted for a period of
twelve (12) months from the date of
original purchase under normal use and
service against defective materials or
workmanship. This warranty is void if the
product has been damaged by accident,
unreasonable use, neglect, improper
service or other causes arising out of
defects in materials or workmanship.

2. Any implied warranties arising out of the
sale are limited in duration to the above
twelve (12)month period.

3. ** During the above twelve (12)month
period, the product will be repaired or
replaced with a new or reconditioned one
of equivalent quality at Texas Instruments
option, without charge to the purchaser
when the product is returned, with proof of
purchase date to a Texas Instruments
retailer. The repaired or replacement
product will continue to be warranted until
the end of the original twelve month period
or ninety (90)days from the date of repair
or replacement, whichever comes later.

4. Important notice of disclaimer regarding
the software programs and book materials
— read this carefully before purchasing the
console and/or programs.

T.I. does not warrant that the software
programs and book materials will be free
from error or will meet your specific
requirements. Each user is notified that the
programs may contain errors and assumes
sole responsibility for any decision made or
actions taken based on information
obtained from using the programs. No
information given concerning the utility of
the programs is to be construed as an
express or implied warranty.

5. ** In no event shall T.I. be liable to anyone
for special, incidental, or consequential
damages in connection with or arising out
of the purchase or use of the console.
Hardware and/or programs and the sole
and exclusive liability of T.I. shall not
exceed the purchase price of the console,
hardware and/or programs. T.I. shall not
be liable for any claim of any kind whatever
against the user of the programs by any
other party.

** Paragraphs 3 and 5 shall not affect the
statutory rights of the consumer as defined
in the consumer transactions (restrictions
of statements) order 1976, as amended.

Texas Instruments

Model
Modell
Modele

Modello

Serial N°
Serien Nr.
N5de serie
Numero di serie

1DMR. 2t
Herr
Monsieur
Sia. re

3 Miss, Mrs
Frau. Fraulein
Mme, Melle
Sig. ra,Sig.na
Mevr., Mej.
Fru.,frk.
Nti, Rva
Senhora, Menina
Sra.oSrta.

3 • Company
Firma
Societe
Ditta

Malli
Modelo

Last Name
Familienname
Norn
Cognome
Achternaam

Serie nr.
Sarja No
No de serie
N° de serie

Dhr.
Herr
Hr.
Hra.
Senhor
Sr.

Bolag.
Yhtid
Empresa

Efternarrtn
Efternavn
Sukunimi

Vorname
Prenom
Nome

Appellidos

Address
Adresse
Indrizzo
Adres
Gatuadress . ,..,._

F6rnamn
Fornavn
Etunimi
Primeiro nome
Nombre

Osoite
Endereco
Direccidn

Date, Datum, Data, Pavamaara, Town
Dato, Fecha Ort

Ville
Citta
Start

P.O. Code
Postleitzahl
Code Postal
Codice Postale
PnstrnrtA

Postnr.
Postinumero
Zona postal

• D. Postal

Country
Land
Pays
Paese
Man

PaisBy
Kaupunki
Citade/Vila
Ciudad

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005

	back-page

