L.A. 99ers PRESENTS

S -_—— ====

ASSEMEL. Y
DIGEST

<# Feb. 1985 x>

36 3 3 96 36 3 W I 3 396 I I H I I I eI T 3 T I T I I I I I e A€

A Collection of articles, tutorials and Programs
H**”il*i“*********4******************************&*#

» rrevil ew e
Ry Hector Santos

Review: Asseakly Lancuase Sooks
by Hector Sastes

Tt is ironic that veers of the TI-99/4A had ¢o suffer a
dearth cf cocd hoaks ang softuare for their ccssuter unti!
Texas Instrusents annzucced their withdramal froa the hoae
cosouter aarvet. These are now availahle like never befare,
Where we settled fcr less than the ideal, our problea, nowm,
is in sifting throush those that are availadle and seiectinq
uhat we realrv neeg¢.

Such is the cas2 with hooks relating to the TES9900
Assestly Language. Ne used to have the Edito-/Asseadier
Manual and the Software Cevelopsent Handbock from Texas
Instrusents . Me now Rave at least five other sources. We
will cover three of tres in this article and hope to cover
the cthers in a subsacvent article.

The three books are:

introductien ts fsseably Language for the Tl Hoae
Coazuter by Ralzx melesworth, Sfeve Davis Publishing
119 pages, softcover, 814,93

Learning T1-99/44 keae Caosputer Assenbly Language
Prograsaing :I ira FcComic, Pretice-Hal

331 pagas, sottzever, $1¢. 8¢
Fundasentals cf TI-29/4A Assesbly Lanquage
by M. S, PMorley, Tat Books

210 pages, softcever, $11,50

Introductics %2 fecean!v Lansuage for ‘e 71 Hoas
Czasuter, by Ralsh "zlesworth, wae the first to cose out. |
attescts to tescn asseedly languige by adking toszarisons t
BASIC statzaents. Presusably, Ris helps you learn faster
by letting you drae on vour BAZIT prograsaing ckill,

After ‘an alece: cursory excianation cf asseably
language, aadressiss foraate, sl the regisiars, you are
thrown inte progrisaing. The instructicn set is not covered
separately, and ceti:ied eesory a23s and apcendices are nal
arcvided hecause <= ook wae agzant to b2 uvzed with the
Cditor/Asszadler Marual. At the £ad of th2 zarly chaoters
are referencas %z caces in the Editor/Asszxsler Manual and
words in the floesarv that should be reac. Yeu learr)
assesbly lancuaze v ‘ollowing the explaraticns provided in
the illustrative nragrass. Th2 srocraes cover Input/Qutput,
4ile handlino, anz ssrting and haraling arravs. Gf interest
is Chapter !f, «hi2h diccucsss how tec incorcorate asseebly
languaze routines :n your 2ASIC jregrams. The difference 1n
coding fcr the Ez:tor/Acseztler and the Fini-Meaory aodules
are c?ezrlv explained, Asscacling and running pragraes
using the two mcz..es are als: explainec.

Oafortunatels, *he doak was nst provided with an index,
a necessityv in a Szctoof this nature, De oot tlame the
suthor: it ic uegally the pudblisner’s respoasibility to
srgvida 3a tades.

A the title states, tha Szck is an intrcductien . It
thoui de enount 2 cet vou started 1n the richt direction,
t.t “4p not expest *3 learn advanced procraaaing technriques
lire setting zorites 1a zstics ang chacking for therr

e

t

soipgidence,

-

The next book, Learning T1-99/4A Hoae Cosputer Asseadly
Lancuage, by Ira RcCogic, is aore forealiy crianizec,
Althoug :t has a tutorial quality in the way that you are
guiced through sasple pregraas, its fersat 1s scre like 3
college text, After 3 shcrt intrcduction to assesbly
lanquage, data structure, and the TI-99/4A architecture, an
overview cf the instruction sat is presentzd th spre
detailad exclenation later in the book. Two chacter§ are
devoted tp a discussicn cf the addressing forsats with
Exaaples to illustrate how each 1s used, Chapters 9 and 10
cover the us2 of the Editcr, the Asseebler, the Loader, and
the Debucger utilities of the package.

The took was written acre for use with the
Editor/Asseaaler. 0f course, the princicles veu learn are
just as valid for the PKini-Meacry cr the p-Systes
Asseatler-Linker. A ver qood description of how assesbly
tanguage is hancdled by (hz Mini-desory aodule is presented
in Chaoter 18 as well as @ .cescristion of the capabilities
of the p-Systes Asseabler-Linker.

Il1lustrations and tables are used throughout the book,
helping you visualiza the storage and szovesent of data and
the sanioulation of bits in the registers. These pake it 3
\ot easier to learn the subject than with text-oniy
saterial,

Aoperdices are also included, The most useful is the
alohatetical list of instruction code, Decigned for quick
ret-rence, detailed and concise information 1s previded for
each instruction codel deliave that after vou i&3rn assestly
language, this is one book that you will keep referring back
te.

Tn contrast, Fundasentals of the TI-9/4A Asseadly
Lanzuaqe, by M.S. Morley, was written specificaily for use
¥ith the Hini-Mesory sodule. The author had in sind users
who want to learn asseably language tut who de not own an
expansion systea , The Mini-Mesory , in conjunction with the
line-by-lire assesbler , enables you to get started with
very little investaent.

torley starts out alsost)ike Mclosic, covering assesdly
language, the T1-99/4A architecture, acdressing zcte:z, ard
the instruction set. Then, the use of ‘he Mini-hecory is
excleined, You are chown how tc enter the source z22e, and
hos to asseeble and debug the pregras.

At n1s point, McCoarc arc Morley diverge in tSeir
treateent of the subject. Mclesic zcaes back ang “iscusses
the 1nstruction set 1n detai). 2nd uses proqraes *:
tidustrate the togics . Moriey cevotes the last tzo-thirds
of his boeck tc rcutines. These sav be incerpcrate? in your
own drcgrass and are very thercuchly explaines. The
sppendix sumarizes all the cceration coces, greuzed by
catucories, ¥hile not as coeplete as McCecmic's boci, it
still 15 very useful,

. ¥e have three books, each differing fros the cthers in
its aporoach to teaching asseably language. Whit scaut the
Editor/Assesbler Manual ? | have heard a lot of peopls
criticize the book, saying it 15 impossible Lo learr
assesbdly language from 1t, The Mancal is a reference bock
&nd was not seant to teach. It is a very good tcci: very
tharcuch. very detailed in is ccverage of the subject,

¥hen we try tc learn a new subject, we turs to tutorials
for help. Once we leaarn it, tvtorials becoae of les use and
we turn to refercnce aanuals for quicy and contise
inforeation, | resarber xhea | wac trying to learn T
BASIC, I really liked Eeginner’c RASIC, N3w I find tha
T1-99/4A User’'s Feference Euide arre veefuj,

Assesbly language 1g subetantially sore difficult then
BASIC. | suspect that there tan never te a book, tutorial or
xhalever, that ®ill eake it eacy tc learr.

EDITOR RSSEMBLER TUTORIAL: Part II by M. Baker

Welcome back to amother blinding session of assembly
language. Before we really get into this new language it is
imoerative that we pet sove tasics out of the may, The
predominant mede in assewdly lantuage is its use of numbers,
raturaily., Rlthouch oecisal can be used for the most part an
understanding of HEX is extremely desirable. Adcresses for
examole are HEX numoers, To differentiate between decimal
and HEXadecimal numpers we place the ‘*greater than® symooi
) before the number such as)768.

What is hexadecisal? First, what is decimal? Deci peans
ten and HEX means sixteen. The ters refers to and dictates
the "BASE" of the nuaber systes in use. The nusber of DIBITS
in any nusber systes always counts up to ONE LESS than the
BRSE. So, in our everyday nusber system of decimal the
digits are @, 1, &, 3; 4 5, 6,7, 8, and 3. There are 18
gigits and we can count up to 9. The number TEN is not a
digit but composed of fwo digits, '1' .and '@'. (Only single
dipit or character reoresentations ray be used. Wien we are
converting from ore base to another it may "ajzear® this is
not true Dut that is mot the case. RAlso, resetcer, couniing
starts from ZERD and not ONE!

Well we already said that hex peans cixteen. Kewrmmas,
That's two dipgits. Ome less than the base is fifteen and
that too is two dipits. The prooles 1s in our thinking, not
the numders. We are thinking in bise 1@ of a nusher sysiex
higher than base 18, We don't have toc much of a probles
when we use base 2 (BIMARY) or base 8 {OCTAL) since those are
'within' our present number usage. Since nuzlers are merely
representations of ouantities dictated by us we couid
actually use amvthine to reoresent a numoer system, How
apout hieroglyonics! Mayoe Roman Nusesrals? fs vou oropadiy
aiready know these are reoresentations that san nas usec. ke
don't want to overcoeoiicaie things do we, ke alreagy have
tea dioits and ali we need are six more, why not letters?

-

Ok. which ones? In tne worid of =mathematics sox=zire a long
time azo very arbitrarily set uo that letiers of the alphace:
could inoeed reoresent nuabers. Not only that but ietters in
the beginning of the alphavet should cereraily represert
unvaryiry guantities wnile those at the erd represent
chancin: values. That is varianles or unkrowns, The
groverdial x. (Boy, I tell ya, soweone almays cozes up with
sowe king of rule.) Let's do that tner. The letters of
course are R, B, C, D, E, AND F. Now we nave sixteen
'aigits’ or characters to reoresent our hewadeciza: hase. In
orger now they are: 8,1,2,3,4,5,6,7,8,9,A,8,C,D,E .

Just as 10 in decimal represents a 'juzy' to the rext
"unit' so does)18 in HEX. However their Values or
weightings are very different.)18 is eouivaiert to 16 in
decisal and 10 is eguivalent to)A in HEX, Llet's snow a
numper line to pet the 'fecl' of all tms:

d®f...9 181112131415 16...25 26 27

28 23 3¢ 31 ...
hoi{..9 A BCDEFIB..IFIRAIBICIDIE!

f2d...

Let's do some simple hex arithmetic. If we acd)3 ard
)4 we coee up with)9. Looks easy. That's the saze answew
as in gecimal. But, if we aod)5 anc)5 we row cet JA, How
about)33 ang)66, A nice)93, Everything morvs szoothiy
until the oproverdial CARRY. It' not so bac Dut you €o nees
15 fingers. rHow about)43 and)66, Wnat cid you zes? i ncce
it was)AS. I'm not poing to get 1nto conversict now sirce
that wiil take an awful lot of space. The sizglist way to
attack this hex stuff is to use tanles. You remeszzer tnose.
Just like the muitiolication tasies you were forces to leamn
as a oild. Rfier you get the 'feel' of fex w::n tnat you
can do sose reading (unfortunately on your ownl. You wiil
then pe better equiped to tackle conversions, etc.

To pet you on the move I've inciuded ine taxles _.‘cr
adgition and multiplication in hex. Booc Lucy, toed reading
(wnich you MUST do) ana see you rext rewsietter.

Let ‘s look into the memory architecture of the 99/44

A

9

]
0

S

“

This block diagram came from TI and may be of general interest-
a picture is worth a thousand words!

TI-99/4(A) MEMORY ARCHITECTURE

from:

Rockey Mountain

99ers

"TIC TALK"

CRU FOR BANK SWITCHING 7
| THS9900 |CONZOLE | MEMORY |LEVICE |[UPT-L : !
CENTRAL ROM EXPAN |SERVICE|CoMMAND| SEE MEMCRY EXPANSION
FROCESTR PART 1 |ROMS MODULE PART 2
RUM/RAM| BELOW s
~ &K BYTE|SK BYTE|3K BYTE|2K BYTE 24K BYTES
CPU MEMORY===3 ‘ :
0000 2000 4000 6000 3000 A0OO €000 E00O
FAST SOUND | VDP VDP SPEECH |SFEECH |GROM GROM_ |
RAM MEMORY~- | READ WRITE |READ WRITE |READ WRITE |
MAFPED FORTS=> |@€200 |MAPPED |MEMORY-|MEMORY -|MEMORY- |MEMORY=|MEMURY= | MEMORY~
256 PORT MAPPED |MAPPED |MAPPED |MAPFED |MAPRED |MAPPED
BYTES FORT FORT PORT FORT PORT FORT
€000 €400 3€00 £C00 9000 400 $500 9COU
THS 9919 TH39912A TM3S200 GROM CMTRL

SOUIUND CHIP
WT DATA=2400

GFOM BANIK 0=>
GROM EBANK 1=>
GRCOM BANK 2=>
GROM RaAnE 1S=>

RD DATA=ES00
RD STAT=2E02
WT DATA=&1200
WT ADDR=8CO02

SPEECH SY¥YN

RD DATA=9200
RD ADDR=9202
WT [DATA=YC00
WR ADDR=2CO02

R e b pp——

VDP RAM VOCAB ROM
1¢K BYTES 32K BYTES
/ A
\
CUNSOLE GROM GROM (RAPHIC3S READ COMLY MEMORY)
! GRAFHICS READ ONLY IN COMMAND MODULES OR FERIFHERALS
<EMORY) :
- UP TO 16 BANKS UF UP TO 40K BYTES EACH|
13K BYTEZ ACTIVE IN ' ' :]
ALL EANKS Z L Z. / 7
2z Z <. 7
: : AR V4 / A /
HOOO 2000 3000 6000 3000 AOO COOU EC00

=g
~AVY LINEZ INDICATE FEATURES INCLUDED WITH CONSCLE

<Page 4>

TMS 8900

16-BIT MICROPROCESSOR

FEATURES: we T T st h oo
@ 16-Bit Instruction Word. TMS 9900 PIN el o
® Full Minicomputer Instruction Set Capability including ABSIGNMERTS w40 (4 o' Nwe
Multiply and Divide. -::s:”v ;: : e

® Upto 65,536 Bytes of Memory. “a g b’
@ 3 MHz Speed (4 MHz option).) ook = o
® Advanced Memory-to-Memory Architecture. st 3 0ie
430 54 1

® Separate Memory, 1/0, and Interrupt-Bus Structures. . Jf T n{jg':
® 16 General Registers. . TaEn woon
4 o 410" e Vo

® 16 Prioritized Interrupts. a8 s 50 5;0
® Programmed and DMA /O Capability. et L. 53:
® N-Channel Silicon-Gate Technology. e g e 47 2oe
as (J 1o wh oS
as (V20 as D«
a0dn wipy
“2on 43002
Al 23 Qo
a0 (24 « Ooc

o (29 %0 Jvgg
vss gu 39 Jnc
w0 G227 38 ne
() 28 371 nC

Jew 29 36 e
CmuOuT b 3% g(\
900 mil .MEJI)"ﬁcz

DESCRIPTION: kit moluenio

The TMS 2900 microprocessor is a single-chip 16-bit central processing unit (CPU) produced using N-channel silicon-gate MQOS technology. The
instruction set of the TMS 9900 includes the capabilities offered by full minicomputers. The unique memory-to-memory architecture features
multiple register files, resident in memory, which allow faster response to interrupts and increased programming flexibility. The separate bus
structure simplifies the system design effort. Texas Instruments provides a compatible set of MOS ana TTL memory and logic function circuits to
be used with 3 TMS 9900 system. The system is fully supg.ried by software and a compiete series of gevelopment systems.

The memory word of the TMS 2800 is 16 bits long. Each word is also defined as 2 bytes of 8 bits. The instruction set of the TMS 9300 allows both
word and bvte operands. Thus, all memory locations are on even address boundaries and byte instructions can address either the even or odd byte
The memory space is 65,536 bytes or 32.768 words.

The TMS 9900 utilizes a versatile direct command-driven I/Q interface designated at the communications-register unit (CRU). Thg CRU provides up
10 4096 directly addressable input bits and 4096 directly addressable output bits. Both input and output bits can be addressed individually or in
fields from 1 to 16 bits. The TMS 9900 employs three dedicated I/O pins (CRUIN, CRUOUT, and CRUCLK) and 12 bits (A3 through A14] of the
address bus to interface with the CRU system. The processor instructions that drive the CRU interface can set, reset, or test any bit in the CRU array

or move between memory and CRU data fieids.
RECOMMENDED OPERATING CONDITIONS

MIN NOM MA X UNIT
Supoty voltage Vgg -52% -5 -47% v
Suppiy voilage VCC 475 S 529 v
Suaory voilage. VOO N 114 12 12.6 \2
Suooty voitege. VSS 0 v
Hegn-level mpul voitage ViM (3l souts escept clocks! 2.2 2.4 vee - v
rhgn-level CIOCK iNOU! vOI12Qe. Vire. vVoOD-2 vYDOo v
Low-level input voitage V)L (il viouts excapt CIOCks) -1 04 cB8 v
Low-revet cloch mput voltage Vi(ig, -0.3 03 G6 v
Operatuing free-au temperature Ta NLJOL e 70 e
JDE* -40 85 5
~—T
a00atSs AU
l‘bi ' vee
AJ . [
|-n::l;n K(, e s _ﬂ =% 1 W[o Sn1008
I om ey : g" = = —TREA
‘:L—ET-.‘ SN a0
ey . \ a2
vt :?‘:: o " -.:c act ‘:’:":" sxee™S e
SR . , . .
il :O L cmvout ' i T Lt
s [snie0s s 9900
e Y- - -
et f\' Dave Bt '
s iea o . = 8 o | smseam
~rresacs - |
= sureim - 2 . o [-\ «l
— il
~riosraci SNIeres l‘P—__'_‘
TR TV ThY 1T 9907
— et o -
MAXIMUM TMS 9900 SYSTEM TMS 9900 INTERRUPT INTERFACE
ORDERING 'NFORMATION' TMS 9900 JDE - 64 PIN, —40/-85°C
° TMS 9900-40 NL - 64-PIN PLASTIC DIL (4 MHz) (0/70°C)
TMS 9900 NL - 64-PIN PLASTIC DIL (3 MHz) (0/70°C) e
TMS :900 JDL - 64-PIN CERAMIC DIL (3 MHz) (0/70°C) TMS 9900-40 JDL - 64-PIN CERAMIC DIL (4 MHz) (0:70°C)

Op Code

1010

1011

0099011101
00060010001
000G0G 10010
0000010001
0000011310
0000010000

1000

1001

00000010150
0000051111000000
00C0001110100000
©000010011
001000

001001
0€00011000
0000011001
001111

0000001 101000000
0000010110
0000010111
0000010101
00010011
00010101
00011011
00010100
00011010
00010010
00010001
00010000
00010111
00010110
00011001
00011000
00011100

001100
00000010000
00000011000
0000001111100000
00000010111

1100

1101

001110
0000010100
00000010011
0000001101100000
0000001110000000

-0110

0111
00011101
00011110
0000011100
00001010
1110

11
00001000
00001011
00001001
001101
00000010110
00000010101
0000011011
0100

0101
00011111
0000010010
001011
001010

Formet

WOONL2NVD RNV UIONN—-2LANNOOD=22RNOIAEANNNNNNNNNNNNNOOONONAWWANND A2 NO 0D = -

Figure 2.

Status

0-2

12-15

0-6, 12-15
04
0-5
04
0-2
0-2,5
0-3
0-3
0-3
0-2,5
0-2
0-2,5
2

- o -

6
0-2

Bits Affected

(ST2=1)

(ST1=1)

(STO and ST2=1)
(STO or ST2=1)
(STO and ST2=0)
(STO=0 or ST2=1
(ST1 and ST2=0)
(none checked)
(ST3=0)

(ST2=0)

(ST4=0Q)

(ST3=1)

(ST5=1)

Words (OR)
Bytes (OR)

Words (AND)
Byte (AND)

Mazning

Add words

Add bytes

Absolute Vaiue
Add immediate
And immediste
Branch

Brancn and Link (R11)
Branch, load WP
Compare words
Compare byte
Compare immediate
External Comtrol
External Control
Clear

Compare Ones Corresp. (OR)
Compare Zero Corresp. (AND)
Decrement by one
Decrement by two
Divide

Computer idles
Increment by one
Increment by two
Invert (complement)
Jump if equal

Jump grester than
Jump high

Jump high or equal
Jump iow

Jump low <~ equal
Jump less then
Jump unconditionally
Jump no carry
Jump not squal
Jump no overfiow
Jump on carry
Jump odd parity
Losd CRU

Load immediaste
Load immed. INT mask
External control
Losd immed. WP
Move word

Move byte

Muitiply

Negate (2's comp.)
OR immediate
Extemal control
Return with WP
Subtract word
Subtract byte

Set CRU bit to one
Set CRU bit to zero
Set ones

Shitt left (O fill)

Set ones corresp.
Set ones correso.
Shitt right (MSB fill)
Shift right ciceular
Shift right zero fill
Store from CRU
Store ST

Store WP

Swap bytes

Set 2ero corresp,
Set zero corresp,
Test CRU bit

E xecute

Extended operstion
Exciusive OR

“Paoe A

The Best of 99°er

Volume 1

I XA R SR LR R el R Al A R 2R X2 R RS RS R XX R R R R X R X R R XX 2 2 R R R S

43 FORUM
2222 22222 RS2 L 2R S22 XX X2 X222 RRTLELLLERRL R RS E R R R R R R L & R 8

(Central I0WA) "REVIEWS *®

SECTOR O
Meaning (of the 256 bytes in the sector)

e e T e ET e T T T Tt e S e S e e s e e e e EE D e T S e e S T e e e - e e m— S S S e M S S S W T
ERE R R R E R R F B I PP 2S5 P 2RS5BT

The disk name you assigned

Number of sectors initialized (ex >0168 = 360)

Number of sectors per track (ex >09 = 9)

Tl identifier - "DSK" or >44534B

Cocpy protection (ex >20 = none, >S5S0 = protected)

Number of tracks (ex >28 = 40)

Number of sides (ex >01 = single, >02 = double)

Disk density (ex >01 = single, >02 = double)

not used

This is a bit map of all the sectors on the disk

Use depends on if the disk is SS, DS, SD, or DD

1) Take each byte (45 bytes for 3460 sectors)

2) Convert to bits (8 bits per byte)

3) Reverse the order of the 8 bits

4) If the bit is "O" then the corresponding
sector (0 to 359) is free. If the bit is
*“1" then the sector is used.

[& RN

2
2 not used
b

—— e s =
=====

Tells sector of 1st "alphabetic" file directory
Tells sector of 2nd "alphabetic" file directory
("aiphabetic" means that if the filenames were

sorted this would be the 1st, 2nd. etc filename)
Tells sector of the 127th "alphabetic" file dir.
0000 is always after the last filename (if there
was only one file then 0000 would be at >02-03)

oD
OE-OF
10
11
12-13

14-1B
1C
1D=1E

—— - - ———————— —— - ———— — —— —— — = —a—

Dec
o- 9
10- 11
12
13- 15
16
17
18
19
20— 395
S6-100
102-146
148-192
194-238
101,147
193,239
240-255.-
Dec
o- 1
2= S
252;253
254-255
Dec
o- Q
i0- 11
12
13
14- 1S
16
17
18- 19
20—~ 2235
26
27— 28

e e e T T T T T T T T T T - 3 %
35 & ¥ F B R R R R Rk R PR B R PR R R H kR R R

The file name that you used
not used

File Type bit O - O=fixed i=variable length
bit 4 - O=none il=write protected
bit 6 - O=display i=internal format
bit 7 - O=data i=program file

Number of records per sector (n/a for program)
Number of sectors per file

End of file offset in last sector (n/a for fixed)
Record size (n/a for program)

Number of records per file (n/a for program)

note - the bytes are reversed (ex >0102 = >0201)
not used

Sector where file is located } repeats as needed
Number of sectors following >} to use any sector

note - the bytes are flipped (ex >12 = >2001>

from — CENTRAL IOWA 29/4A U.G.

R TEIEE ISR S S22 R 2 S R Y R R R R R P R R R E eSS SIS R Y
* A SHORT PROGRAM *

I 3 3 I 3 I I W I I I I I I I I I I I I I I I I T I I I I I I I IE I I 96 I It I I I I I I 9 It I 9 %
Time to do a little assembly lancuage programming. Listed below
is the sort routine that I gave in the August issue.

Memory Label Op—Code Operand(s) Comment (equivilant in basic)

7DoC CLR RO This area sets up the program
7DOE LI R1, >2 to receive the parameters that
7D12 BLWP 8NR are passed from the Basic line
7D16 BLWP eFP that calls the assembler sort
7D1A DATA FI "routine. It’s called by -
7D1C MOV @FA, R2

7D20 DEC R1 . CALL LINK("SORT",A(),B)

7D22 MoV R2,R3 1000 C=INT(B*.793)

7D24 SLA R3, >2

7D26 S R2,R3

7D28 SRL R3, >2

7D2A L1 MOV R1,R4 1001 FOR D=1 TO B-C

7D2 MOV R2,RS

7D2E _ S R3, RS

7D30 L2 MOV R4,R6 1002 E=D

7D32 L3 MOV R&6, RO 1003 IF A(E)<=A(C+E) THEN 1009
7D34 BLWP @NR

7D38 LI R7,FA

7D3C LI R8, AR

7D40 MOV *#7+, %8+

7D42 MoV #7 4+, #8+

7D44 MOV *#7+, #8+

7D46 MOV *7,#8

7Dh48 A R3, RO

7D4A BLWP @NR

7D4E BLWP eFP

7D32 DATA FC

7D354 MOVB @sT, RO ¢ e

7DS8 ANDI RO, >4000 :

7DS5C JEQ Le

7DSE Mav R&, RO 1005 A(E)=A(C+E)

7D&60 BLWP aNA

7D64 LI R7, AR 1004 F=A(E)

7D68 LI R8,FA

7D6C MQw *7+, %8+

7D6E MUy 27+, %8+

7D70 MOV *7+, %8+

7D72 MOV *7,%8

7D74 A R3, RO 1006 A(C+E)=F

7D76 BLWP eNA

7D7A S R3,Ré6 1007 E=E-C

<Page 8>

A AL 4R R S R R 2 eSS 222 S R TR L R R R R N R Y s e XTI YT YT

»* A SHORT PROGRAM - cont. T
********-I-‘I'*******-l-*****i*!-ii**i-*********Q***i*ii****Q**********i**

Memory Label Op-Code Operand(s) Comment (equivilant in basic)

i+ & & & F | =EEEmE== t 2 %% % 2 &+ + * & + & % -2 &+ 2 F £ & &+ & F &+ ¥ F X F 5+ 5 ¥
7D7C JGT L3 1008 IF E>0O THEN 1003

7D7E Le INC R4 1009 NEXT D

7D80 . DEC RS

7D82 JGT L2

7D84 SRL R3, >1 1010 C=INT(C/2)

7D86 ° JGT L1 1011 IF C THEN 1001

7D88 _ Mavs R3,@S8ST 1012 RETURN

7D8C B #*R11

7D8E NR EQU 26044 Note - this area defines all
708E NA EQU >6040 - of the labels that are used
7D8E FP EQU >601C in the program (note that the
7D8E FI. EQU >1200 first five would need differ-
7DBE FC EQU >0A00 - ant addresses if you were to
7D8E FA EQU >834A use the Editor Assembler or
7D8E AR . EQU >833C Extended Basic modules to run
7D8E ST EQU >837C this program).

7DBE) AORG >7FEB Naote = this area defines where
7FES8 TEXT *SORT ’ the sorting praogram is located
7FEE DATA >7DaQC in the Mini Memory module.
7FFO END Change for EA or EB modules.

Here is how the workspace registers are used for the program -

RO = subscript & work area RS = B-C

R1 = paramenter & constant 1 R6 = E

R2 = B R7 = jndirect from address
R3 = C R8 = indirect to address
R4 = D R11 = GPL return address

The program is meant to be run in the Mini Memory module. It may
be assembled at any address after >7DOC (be sure and change the
ref/def table). I1f you want to use it with the Editor Assembler
or Extended Basic modules, you will need the 32K expansion (the
program will go in the 8K region) and the addresses for five of
the subprograms (look in the Editor Assembler manual for these).

The advantages of the assembly program are two fold. First is the
increase in speed it offers over basiz (4.2 vs 22.8 sec/100 #) and
this can be speeded up 15 times by ugs.ng the 32K expansion, since

you can directly access the array in the 24K region and don’t have
to make time calling accesses to the VDP RAM.

The second advantage is in the amount of space each program takes.
The basic version eats up 179 bytes while the assembly version
needs only 130 bytes. The basic variables use 75 bytes and the
assembly a mere 18. Overall count - basic @ 254 bytes and the

assembly 8 148 bytes (only S8% of the basic)!

<Page 9>

* AN INPUT ROUTINE IN ASSEMBLY LANGUAGE by JIM RICE

To be able to use the assembly routine I’°ve listed in this article, you

must have the conscle, the Editor/Assembler cartridge. a disk drive. and the
memory expansion card or peripheral. '

Type the procram I°ve listed at the end of this tutorial through the

editor. Save the file as "DSEKE1l.INFUTS", then assemble it. The object code file
is "DSK1.INPUT". Whern you assemble it, "R" is the only option you need to use.
This INFUT routine is extremely useful as a subprogram. I have left the
listing as simple as possible to make it easily adaptable to any type n{d
application. The routine I've listed here places a nonflashing curcsor :in’ the
upper left hand corner of the screen. It waits for you to type something. After
you do. press enter. It will read what you typed in off of the screen, save it
into the CPU RAM scratchpad, and print it back up on the screen in a different
location. This saves what you typed in at CFPU RAM address(x>8300), the starting a
address of the CPU RAM scratchpad, for easy access for the remainder of the
program. This is handy for when you want variables in your assembly programs or
for writing to files through the DSR(device service routines)such as disk files,
a printer, or a modem. o
HERE IS THE LISTING:

REF KSCAN, VSEW,VMEW,VMBR x References to the-different memory

X resident routines used

DEF RUN % Program name defined

CHAR DATA >007C, >7C7C, >7C7C, >7C7C % Cursor character data.

CURSOR BYTE >AQ0 x ASCII code for cursor.

SFPACE BYTE A8 x ASCII code for space character.

RUN

LI RO, >D0OO %

LI R1,CHAR XxX%X Loads the cursor character data into the cursor

LI R2.8 xxxx ASCII code.

BELWP JVMBW X

CLR RO

i = R1

LI R2,-0DQ0O x Loads register (RZ) with ASCII code for "enter" kev.

LI RT, 2000 x Loads RI with byte used to check if key has been preccsed

I RS, >0800 X Loads RS with ASCII code for backspace(fctn—-s) character.

CLR Ré&

MOVB RO,9:8374 X clears 2>8374(tells computer to scan whole keyboard.)

LI RO,1 ¥ loads RO with 1(tells computer cursor to go in upper left)
More. (A=Abort, any other key to cont.)

J1 LI R1,CURSOR xxxx Prints cursor to screen at location i1ndicated by R1
ELWF 9VSEW X s

CLR R1 - -

BLWP 9KSCAN x Scans keyboard

MOVB 2:837C.Ré6 ¥ Loads byte that shows whether a key was pressed i1nto Ré

COC RI.R6 X Checks if key was pressed.

JNE J1 X If not, goes to J1

MOVE 2:8375.,R1 %X Loads key pressed into R1 from address key code stored
CE R1,RZ2 ¥ Checks if key pressed is "enter"

JE@ JZ ¥ If so., go to JZ

CB R1,RS X Checks if key pressed is backspace(fctn-s)
JNE J2 x If Pot, go to JZ2

MOVE ?SFACE.R1 % load space ASCII code to K1

BLWF QVSEW ¥ Fut space where cursor was

DEC RO ¥ Move cursor back 1 space

JMF J1 X Go to Jli

Jz2 BLWF QVSEW ¥ Write key detected to the screen.
INC RO ¥ Move cursor forward 1 space

JMF J1 ¥ Go to Ji

Jz MOVE 9SFACE.R1 % Load R1 with ASCII code for space

ELWF 9PVSEW X Write space to screen where cursor was

<Paaoe 10>

CLR RO

CLR R1

CLR RZ2

LI RO,1

LI R1, >8B300
LI RZ.80
BLWF DVMER
CLR RO

CLR R1

CLR RZ

LI RO,313 % Load RO with S13(new address on screen to print variable to.)

LI R1,*B300 x Load R1 with address of data to be read (CFU SCRATCHFAD.)

LI RZ,80 x Move B0 bytes from CFU scratchpad to new screen location

BLWF 2VMEBW x Write variable inputed back to new screen location.

LIMI 2 x Enable quit key

JUMP JMP JUMP ¥ Wait for quit key to be pressed.

END

The actual storing of the variable in CPU RAM stops after the ELWF 3VMBR
statement. After that, the program is just reading the variable that was typed
in back to the workspace registers and printing it back on to the screen at
screen location S13. You can change where it is reprinted on the screen by
changing the S13 to another number. The number must be between © and 768. You
can compute the number by multiplying the row you want times 32 and addinG the
column to the product.

You don"t have to save your variable to the CPU RAM scratchpad. You could
theoretically save it to any CFU memory location. If you don’t use the CFU
scratchpad, I ~ecommend the memory expansion high RAM(XAQ0OO->FFEQ). To change
location the variable is stored at, change the two times >8300 is used in the
program to the new address you want to use. Also, you can save memory by making
your variable buffers smaller. Mine, in this case is 80 bytes. That means that
80 characters of what is typed in are saved in the CPU RAM scratchpad. You can
make your buffer larger or smaller to fit your needs by changing the two 80°s
located just before the BLWP dVMBR and the last BLWF aVMBW to however many bytes
you want stored in your buffer.

To run the routine, the file name is"DSK1.INFUT" and the program name is

"RUN" HAFPY COMPUTING'!'!'!

Jim Rige

End of file

Load RO with starting address of variable inputed.

Load R1 with CFU RAM SCRATCHFAD startin address

Move B0 bytes of characters typed on to screen

Read variable input from screen % write it to CFU(:BI00)

I K M

11-69/415) NEMORY ARCHITECTURE

DESCRETE DEViCE PDDRESS usass

TNSS9184 SCEEEN ee¢ READ DATA
‘)62 READ STAILS

THS2900 CPU 30000 CONSOLE R3 (8 BYTE) R s WENE A

Y2000 NEMOEY EXFANSIGN (3K EYTE) oy WRITE AUDRESS

090 DEVICE SERVICE RONS (BK SYTE)

36000 COMNAND MSIULE ROW/EAX (€€ BYTE) - anie "EEH O

)8000 MAPPED POSTS (SEE BELOW) TSEZ0 SPEECH T0e) NAITE DATA

000 HEMIRY EXPANSION (24K EYTE) :

RAFEED PRI CRON CONTROL 8520 GROM READ ZATé
FAST RAl Y000 25¢ BYTES . ey GRDN FERD ALORESS
| | 19290 GRCM WRITE DATA

THSIIND SCIN S3460 WRITE LATA T DN WITE fTESS

As you can cee froa the chove seacry table, the acount of wsable sescry in the BASIC's is lisited te the EX tbleck at
Y2000 and the DA block at sA00d, for 100 totel R&%. The rect of the sesory (32K) ic considered to be syctes overte:t.
Thiz e2eans that this i: the needod 2zaunt ¢f aerary to uirry on the reguired functions of the cceputer. The addrecses
3iven abeve are kncen ¢ baze addressez. chese are the teginnirg of a block or cecment of eeaorv ehich contains 3 eroup
ot functicns, such as the EK block Sstessn (5820 eng (02

reszing i usad to c:leulate and nctate

In azseedly lancuage progrezalng, a a:zthed calied base plus dicplacezent addre
o the aenunt of ctfcet, er dicsleceaent, nesded te

intizeng) cldreszes, Givea 2 bneen Szsz zZdrecs, vou peed only siguro
rruve et the Czzired eddress.
<Page 11>

from:
NORTHWEST OHIO
User ‘s Group

USING SPRITES IN
ASSEMBL.Y LANGUAGE

by Dale Wilson

The fcllowing is a sprite ex-
avple for the Mini Memory Moo~
ule. i1t mey be necessary to
make a few minor changes for it
to run in the Editor Assembler.
Te maka swprites §n assembly
language is not too hard but (it
does require some assembly lan-
guage skill. All you have to do
is locad the desired color [in
this case for the space charac-
ter, 321, loed {in the cesired
-‘cheracter pattern, and lnad (n a
sprite attribute list.

The sprite attribute list con-
tainas the dot-row and dot-column
position on the screen and also
the cheracter numter of the de-
gired pattern.

14 you want the sprite to have
motion, then ycu also have to
set up the motion table. The
sotion table contains the row
and column velocities and two
more bytes used by the interrupt
routine. The velocities range
from >00 (still) to >7F being
the reatest positive velocit
to 80 bein the fastes
negative volac?t to >FF being
the slowest negative velocity.
In addition, you must specify
the numcer of sprites that can
be in motion in CPU PAD location
>837A.

IXi cu ares not sure
sonething In the program, try
changing some of the numbers {n
th? data statements end see what:
hercens, It is probadbly the
tbent way to learn.

about

7000

7D00
7002
7D04
7D0é&
7D08
7D0A
7DoC
7D0E
7D10
7012

D14
7D1é
7018
7D1A
7D1C
7D1E
7D20
7D22
7D24
7D26
7028
7D2A
7p2C
7D2E
7D30
7D32
7D34
7036
7D38
7D3A
7D3C
7D3E
7D40
7D42
7D44
7D4s
7D48
7D4A
704C
7D4E
7030
7D32
7034
7034
7pz8
7DSA
70SC
7D3E

7FF8
7FF8
7FFE
701E
701E

FFOO
7001
80046
Dooo
0S50S
0000
FF99
99FF
1824
42C3

0200
0384
DO&O
7D00
0420
6024
0200
0400
0201
7D0C
0202
0008
0420
6028
0200
0300
0201

7D02 -

0202
0005
0420
6028
0201
0001
oAB1
peot
837A
0200
o780
0201
7008
0202
0004
0420
6028
0300
0002
10FD

33
7014

7FF8

L]
3

COLOR CHAR SET S
BPRITE ATTRIBUTES

BPRITE MOTION DATA

DATA >FF99, >99FF, >1824, >42C3 BPRITE PATTERN DATA

POINT TO VDP COLOR TAGLE/SET S
BET COLOR DATA IN MSB R1

MOVE 3CR TO VDP >0384

VDP ADDR OF BPRITS PATTERN TABLE
CPU ADDR OF PATTERN DESCRIPTOR

@ BYTEB TO MOVE

MOVE PT DATA TO VDP RAM

8FRITE ATTRIBUTE ADDR IN VDP RAM
SPRITE ATTRIBUTES TO BE WRITTEN
NO. OF BYTES TO WRITE

WRITE THE BYTES

1 SPRITE

PUT 1 IN MSB
NO.

BPRITES WHICH CAN BE IN MOTION
BPRITE MOTION TABLE VDP ADDRESS
SPRITE MOTION DATA TO BE WRITTEN
NQ. OF BYTEB TO WRITE

PUT MOTION DATA IN VDP RAM

ENABLE INTERRUPTS TO MOVE BPRITES

ADRB >7DOO
ssssssss3es4232282028R2LRSE
: ABSEMBLY SPRITE GRAPHICS 8
1§ By Dale Hilmon
:lltttltltlllttltltttlt!llll
: SET UP DATA FOR GRAPHICS
;R DATA >FF00
8D DATA >7001, >8004, >D00O
s8 DATA 30505, >0000
PT
s
8 B8TART MAIN PROGRAM SEGMENT
;u LY RO,>03e¢

MOVB 9CR,R1

BLWP 2>4024

LI RO, >0400

LI RL,PT

L1 R2,8

BLWP 256028

Ll RO, >0300

L R1,8D

LI R2,3

BLWP 2>4028

L! Ri,1

SLA R1,8

MOVB R1,2>837A

LI RO, >07BO

L1 ‘Ri,ss

L 52.4

BLWP 9>6028°
LP LIME 2

JMP LP

L]

8 PLACEMENT
[3 .
AORG
TEXT
DATA
AORG
DATA
END

WAIT FOR FCTN QUIT

OF PGM NAME IN DEF TABLE

>7FF8
*SPRITE’
GO*
>701E
>7FFB

PROGRAM NAME
8TART AT

"Go* .

8TART DEF TABLE AT _7FF8

71 Hose Cosputer Lanquiges

Using a programaing language is nothing sore than coseunicating in a way that beth you and vour cosputer can understand. There are
several different languages that you can use with the 4A. I']1 highlight a different lanquage every aenth and talk about its advantages
and disadvantages., Last sonth, I discussed sachine language. This sonth, we’ll look at a higher lanquage: TMS7900 Assesbly.

TRS9900 Asseadly Language
{
As I discussed last sonth, sachine lanquage is extresely difficult to use. This cifficulty led to the use of a language shich lets the .
prograsser use anesonic (assisting or intended to assist sesory) code. This lanjuage assigns coabinaticns of letters to represent
operations previously only expressed by using binary (0 and |) numbers. This (sosewhat) easier lanquage is called assesbly language
because the snesonic cossands sust be translated (or assesbled) back to their binary equivalants in order for the cosputer to carry thes
out. The following is a listing of a assesbly lanquage progras that plays six chises over and aver.

REF VMBN
DEF CHINE
BUFFER EQU 11000
01 BYTE Y01
33
CHINE
LI RO, BUFFER
LI RI,COATA
Ll R2,118
BLWS {VMBN

LM 0
LI R10,BUFFER
ROV R10, $)83CC
508 :HO1, $)83FD
%OVB 1HO1,!)83CE
LINL 2

L00P2
ROVB !)83CE, ! Y83CE
JER LOOP
N LO00P2

COATA BYTE Y05, 9F,)BF, DOF,)FF, 33, 1
BYTE 309,98, 501, Y84, %02, XCS, 501, 90, 386, 503, 4
BYTE)03,)91,)87,304,5
BYTE 03,92,)88,)05, 4
BYTE)05,)A7,508,393,780,006,5 . -..
BYTE 03,594, 581,07,4
BYTE %03, 395,)82, 08,7
BYTF)05, 5CA, 202,)96, 983,)00, 6
BYTE 303,97,)B4, 01,5
BYTE)03,)98,)BS,)02, 4
BYTE %05,)85,)03, 590, 384,)03, 5
BYTE 03,91,)87, 504, 4
BYTE 303,92,)88, 05,7
SYTE)05, 544, 02, 593, 580, Y06, 4
BYTE 303,94,)81, 08, 4
BYTE 03,)95, B2, Y08, ¢
BYTE)08, XCS,)01,)96, 983, 500, 5
BYTE 03,597,)B4,)01,4
BYTE 03, 598,)8,)02, 7 ' S
BYTE)03, 9F,)BF,)OF, 0
3,0

Bssendly Lavgaage Progran Listing

Costral Teras %9/4A Dser’s Growp February 1984
' {Page 13>

Coatral Tezas 79/4A User’s Growp February 1994

As you can see, this is a lot of proqranlinq_just to get your cosputer to chise for you,
hssesdly language allows you strict control over all functions of your cosputer—you are telling the cosputer exactly what to do.

Assesbly language is also useful when tight control aust be saintained over the use of sesory. Assestly code doesn’t take up 3 lot of
sesory. You can have an extresely cosplex progras in the built-in sesory of your cosputer.

The real disadvantage of assesbly lanquage—and it is not trivial=—is that you need skill and a lot of tise to pragras in it
proficiently.

However, assesbly lanquage is ideal for short, frequently executed progrza segments. After you write and assesble your code, it can be
called fros Extended BASIC.

On the 4A there are three pieces of *hardware® that allow assesbly language prograssing: the Editor/Assestler sodule, the Mini Mesory
sodule, or the p-Systes card (or standalene).

Nest sonth, 1’11 cover the sost coasca and siaple prograssing languige on the 4A: TI BASIC.

Lev Rathens
Dec 83 - Jan &4 A9CUG CALL NEWSLETTER Page 7
the Minmi Memeory Mogule, eor the Ebociltlr/
ASSEMELY LANCUAGE Assembler Mo<ule 1into the conzole &and
FRCH EXTENDED BASIC select "TI EASIC ana 2nter this
A program.
We have an Acssembl Language group uno =
and runming, and { hope that this groug 10? EER,T;6VEE{£§4 LE4T}
will be able to develoo i1nformation and 1&& NE&? POKEV (784, i
proarans %hat will benefit alé of ous e !
mempers. n the meant.me fcr those of ; : . . : SRE
you who l:ike to pregram. nere are some gz%s _gﬁll lca?ﬁ:Tg COIS; tahie IRtR f?f
notes on memory and "FEEK" and “"LORD" AU e AL ’3”‘=h s
addresses that can be usec fraom either ggciagouQSEE;~E;FCS;né;ecgqgﬁe\ggéra;;ft
-3 1 "My - ®, i < i d ne 3 fu / Y B
. ?aszc B AR -AEnEry rapidly. Ee prepared to put 3 delav
First a little about the TI 99/4A loop between lines 110 and 129 :g yan
memcry. In the console are twc memcr:ies want to see the czciors £”4-€5 Cthn
cne is the *CFU", or Central Frocescing alur. Now youw can start te ses &
Unit, the other is the "VDF", or Vicec speed of the 7900 chip.

Display Frocessor. The VDP contains i
the screen-i1mage table (containing the
actual display on tne screen), 2)the
sattern generator table (containing the
pattern c¥ each character!®, I the
character color *able (containing the
fareground and backcoround color of each

Here’s another program. This orogram i
thanks to THE CENTRAL I0WA 99,247 UCER
GROUF newsletter "4A FORUM",

uw

character zet), 4fthe Sprite attritute For those of vyou who have the Mini
lict (containing all Sprite values!, &) Memory or Editor Assembler certridge.
12k of +ree memorv (RAM for basic here 1s a little program that allows you
i .- s LI = to see the screen in Normal Mode, Clear
prc%ramm.nf.. Mode fever¥thxng 1s %here hut is
r -7 m. . une invisible), Tert HMcde. (40 characters
ézﬁ xsézegcz/éfieggTsazggsesigbl;hgy {E; across), Multiceclor Mode (szach character

CFU. they are memory mapoec imcre on 15 made up cf ~our :ICCLS" ARE Bit cMap
Fie 1n & later article). For this Mgde {(you need the 4/a to see each
reason vcou cannot use Call Feei to lock pixel).

intc VDF FAM, However fcr those of yeou .-

who have “™ini-Memorv". vyou can “"CALL

PECIV" anc “CALL FOKEV" to get 1ntc *the

VDF EAM. Tc chow you whzt this zZan o do.

trv this little orcorem. Slue either ({ Cont. Page

e
w

<Page 14>

No na2ed to kncw assambler *o

these. After vou run the progranm,
N.C.T,M,8 (the <creen may 1ot
reagable, but the keys still work).

D) SRINT "FRESS & KEY ===» N,C,7.M,B ":
CALL KEY(S,%.3: '
IF v<Y73 THEN 140

CALL FOEKEWV(=T27£8,0)

IF K387 THEN 150

CALL FOKEV(=322S2.0)

IF K«<>34 THEN {30

CALL ROKEV(=-32272.0,"",=2094S,0:
IF K{X77 THEM 200 '
CaLL FOKEV(-32289,0)

[F M85 THEN 220

CALL F‘O:':::EV (‘u‘ / 56 Qi

GOTO 10

L)

B30I 3o 0= bt b= 0 =% s 0= pt p =
13— 0@MNO- (N L4t)— O
OO OCCTC O

NOW --- back to the CPU, czontained in
this memorv are 2 - 4Kk ROM (Read OInl

Memary) chips %that corntain the basl!c
interpreter, cperating system, and 4=
Device Service Rcutines (which cannec<
up the F-Ezu angc 1t's cards!. the Vige:z
Disolay Ffracessor, the Sound Generatcr.
the Speech 3Synthesizer and the CFU FRA™
Scratch Fad {a 254 byte RAM memerv
sector used by tha CPU fcr almzst
instantanecus e'aticns. Adding a IV
Memary E'panzxcn Card give ol 83,338
tvtes cof CFY memory. To luch at (FEZK)
these memory address vou must use ei1hhe-
the Mini Ma2mory, the Editor/Assembler,

ar the Extended Bacsic Maodule. =
€:-Basic vou amust "CALL INIT then “CALL
PEEK (###%4, ##) ",

Address 0 tc I2747 are positive numbefs
the same as *he address (0 = (, I2747 =
22767). The addrass frcm IZ768 ta 55’.

ara accessed by subtracting 63375 from
the address number, resulting 1in a
neaat*ve address number (22762 - &S353¢é =
2768, 45010 - 4SET6 = -20S2E, L8553 -

65536 = -1). o

The +arm is "CALL PEEK(ADDRESS.RETURN
VARIABLE) '

Here are some locations to “PEEK" at,
and what they dc

(-31380,A) FRANDOM MNUMBER SEMFATOR ("A"
returns a random number be*ween O and
29, You must use RANDOMIZE, first in a
ro?ram to get a true random number.
(-31{879,.T) VIDED DISPLAY FROCESSGR
INTERFUPT TIMER ("T" returns a value
that 1s sequentially generated avery
sixteenth of a zecond, from O thru 2S5
-713878,8) HIGHEST MUMBERED SFRITE IN
MOTICN. In version 100 XBASIC, th:s
value 1s always 29. Program execution
using this version can bte speeded up ov
disablina the Sprites above the zres
being used. A “CALL LLOAD!(-I1878.A)" ‘tc
FOKE the number of the highest numbered

movin sorite inta this locat. an
disablas all Sprites above 'A’. For
verzicn 116G thi1s value ls upjatsd

everytime a Sprite 1s put inta motion.

(=3:Z26.5

11Q ("CAL

rite mc !

t=T1877,C ! 3 =
there was a Sporite Coincicenis, o s
thie :nshtazc of the “"CALL et anll
Give you fast2r resgcoza T3 o IoruiE
Zoninciderce2 and more realistic sxcticn
cn the zcreen:

(=31298,.43,. 2 DOUELEZ SAMDCM ES
GENEREATORE ("A and 2" will =32n a
different random nunber with Ja =m
O tp 25S. A RANDOMIIZ statemsn ne
avecuted first. This <can =2 2
J1ve a random Sprit2 motie =1
the alfowable ~ange o+ -1238 =g 1

vou use thz follaowing:

CALL FEEK ;-21808,3,8)

CALL MOTIGN(#I.A4123 B-128)
(-;1506.16) DISARLE THE SUIT &7 (“FITN"
AND "="}), At last, at last. at

before ztarting %o grogram usz2 the
tollawing ‘
CALL INIT :: CALL LD%Dt-.IBJ: L5)
and nc mors QUIT keay mistaka:z

e
D

-31826,32) SOUMD GENERATCF STCF
DISABLED ("CALL LOAD" th:is snmz & "CALL
SOUND" statement will not turn ¥+, 2also
your censole wil!l laock ug or the next
sound or noise Jenaratsd.

(=31806,3) Turnz all bits 2fF inc

tha QUIT &EY, the Zsund Ssn2rator.
the Sor'*u mc*. back to neraal.
(=28672.8) If & returns a 75 then. zha
spech synthesizer 13 attacnec. It 32
returns a 0 nc <pe2ch synth@siz2ar 1S
attached. Saves having o azr.
(-71888.57,255) Digablas tha sizh grives
(load your program first) This "CAlL
LOAD" will gain wvou the memery oe1ng

used by the disk drives (its like bLeing
able to CALL FILES(D)),

{-31982,55,21%) To get the i3k 2-i.2%
back (scmetimes 1t deoesn’t work, as 3
last resort type "BYE"!.

-71931, 0 If you have savagd i 27I2gram
in XBasic w1th the pratect coiicn and
yeu canng list cr =save it agaln, dse
thzs ta unnr ~tact the arogrzr.

-71971,129) "C ALL LCAD" “th:iz and vou
w'll nrotect 1t agzain. ("CaLL

DCEr(--iqfl,P) will tell waou 1 f 3
program 1S gprotected.

If you find this <type af .nrormation
useful and can use tt, [7d suggest .ou
sbtain a subscripticon to the

SMART FEDGEAhHER Sy
MILLERS GRAFHICS
1475 W. CYFRESS AYE.
SaN DIMAS., CA. 91777

I+ costs 12.30 cer vear. “e has

romx ed memorw maps. m=2mary dumcs. and

sther verv :n‘e*=5f1na and zseful zata,
*he data on disabcling the Funczian duil
-3 ff‘..m h;’n.

My tﬂan‘s -5 MIKE af *the ZREVAFD USZRS
GROUF (BUG), aof Falm ay, Flerida rer
several :f"he memary locat:c<nz 1323 10
this article. _

’ Mzrzhall

{Page 15>

DEF M

1

2 This program will check the
8 sprite that is defined with the
¥ SPRNUM equate and test to see if
2 a list of characters are on the
t same spot the sprite is on.
%2 Call with CALL Mi(A)
2 A=0 if no match A=1 if match
% code written by Jon Burt 8/12/84
GPLWS EGQU >83EO0
VSBR EQU >2028
NUMASG EQU >2008
STATUS EGU >837C
SAL EQU >300
FAC EQU >834A
1333338238228 328332323328232332¢838323¢
SPRNUM EQU 1 THESE
CHAR1 EQU 65 CAN
CHAR2Z EQU 66 BE
CHAR3I E@QU &7 CHANGED
CHAR4 EQU 648
138833833322 03332322233333382¢¢%
EVEN
OFFSET DATA >60
ZERO DATA >0000, >0000, >0000, >0000
ONE DATA >4001, >0000, >0000, >0000
SAV11 BSS 2
MYWS BSS >20
X BSS 1
Y BSS 1
M1 MOV R11,@8S5AV11 HOUSEKEEPING
LWPI RMYWS
LI RO, SPRNUM (POINT TO
RIGHT PLACE
DEC RO IN SAL)
SLA RO,2 "mult BY 4
Al RO, SAL
CLR R1
BLWP 8VSBR
SWPB R1
MmOV Ri1i,R8
Al R1,RS
ANDI R1, >O00FF
SRL R1,3
SWPB R1
MOVB R1i,@Y
(5 ¢ RO, SPRNUM (POINT TO
RIGHT PLACE
DEC RO IN SAL)
sLA RO,2 mult by 4
INC RO

{Page 16>

LOarPO

ONEJP

LOOP1

CONT

CLR R1

BLWP 2VSBR

SWPB R1i (RUNNER
MOV R1,R9 CODE)

Al R1,4

SRL R1,3

SWPB R1 i

MOVB Ri,@X

CLR R10 (RUNNER
MOVB @Y,R10 CoDE)
SWPB R10

SLA R10,3

CLR R4

MOVB @X,R4

SWPB R4

A R4,R10

CLR R1 (6ET THE
MOV R10,RO CHARACTER
BLWP @VSBR AT THAT
SWPB R1 sSPOT)

S @0FFSET,R1

CI R1,CHARL (TEST

JEQ@ ONEJP CHARACTER
CI R1,CHAR2 AGAINST
JE& ONEJSP SELECTED
CIl R1,CHAR3 ONES)

JEQ@ ONEJP

CI R1,CHARS

JEQ ONEJP

add more compares here

LI R4,4 (LOAD ©
LI R3, ZERO CHOICE IN
L1 R2,FAC FF FORMAT)
MOV ER3I+, IR2+

DEC R4

JNE LOOPO

JMP CONT

LI R4, 4 (LOAD 1
LI R3, ONE CHOICE 1IN
LI R2,FAC FP FORMAT)
MOV 3R3+, SR2+

DEC R4

JNE LOOP1

CLR RO (SEND BACK
LI R1,: THE INFO TO
BLWP @NUMASG EX BASIOC)
LWPI GPLKS (ENDING
=m0V BSAVLILLR11 HOUSE-
CLR E@STATUS KEEPING’
RT

END

Dump

Listing 1

L m - = -
" - w a0 - < © < o « w =
z [z 00 . ® W [N S S
o] (V) E—- xz 1 3 - v o [- B Vo
P X "3 - U0 el | 3 - ~ [e]] [o] o] - Lo S
x - - - L4 - U [e] " (o] (8] - o L wean
- P~ e - - o < - X) o W x > L] - < - -
(9} w < Wn wa - =< - w o oan O ~ ® wWwu W - - - - <
= < x X W = e O X wn - = L] = © - <X O b a < -)
a a -~ < X= - <w <) [" [¢] - - O o A Xov
a [=]] - < - = -z = - o] = = - (o) z0 = - b [=] = (=) - = < v =
< < o] rTa = Ll [L - o (3] (-] - -0 m - O a =i & D (od x =W -
[[o [} «© - [X] [X] 0 - o] - [= B b > o -
X X > a w o . < W E m—- 4+ - K A mm ~ ®m = —wm a < w o
0 0 = » Oz (3] Ouxov WM OOw w %= O O« “ Drwn - - c O
= = —-. - < b~ W W Vv < e - = We aDEZr CE S R 2 [O == -
O v «< o EY a 0 ELwL>O o ma ® F= T e =M e . W [e] w e (e}
o + wOo o O—twxz O o - X rerm ez DZE W = Ow = w wE
b LR a = WD Aax " O - [] ~©< bt Q- O—==02x »—Qax a a =
o o = o s - e X 5 0O = Weunkum =z - - o] - - o -
- < O - O ww QU ~ WO N >0 VWO ZTew O a0 O [¢) O [¢)
m & U L - Z QA><r | L I o aQ Rk Qe Kb it~ D = LV = =
w v oW - ® . W 0O +~ M WO - =< <m0 O 2> DO>- =D [- “ - -
= - - -~ -3 -2 Ve <rx Z meEon a v Ome—= © M=t WO WK (2] - [T - 3 -
[J = X NOZT 2 < A e P N—- x = TE X T &xZ O x -
- » O - - [= -~ —~m - I == = [- VwE-E - ~0~ = - - - -
W o w v « Ow = P BPN-ZTOw W ® Do Pneowma ~ADu0RDDLUONODH-ONO =] 2 Ow >
(L) 2 aa [y a am—-aa o ® v e AEEKEE KA-—Z>taxa~Qaune~U [y e an a
- -
w " < L3
"wooe w o w " ~ - - w oW
- . o o n onve we o) - " © we o own oawe o
~ o~ o WOMN® YROOTOOVWO © M ® LV ® @ o - -~ - ®oovo WomM® or~roOovo
oo o a NQOOM B AQMNAT MW ~on o N "mee o L) = [¢] Ao MW NO®Mm B AQ®& W
o ® "rQvwor A0 AYrooreern oA w0 [J - e Z o~N ™~ -~ - . o "roOove O AOG APreorO
QO rorv Aamnmo A NG ccTANGO AN AWMETO QO - N VW | MNrSe—~0Vr v z W e~ v - & - ANV AWEWYW AW s AN AQ
~AVMAVNA -+ - A . -A O® - A - A - - -A A @O | B N . - e e . h” ' - M - c A - - A e -/ O® - A - -
A futyt .-».'12.;55,:.'11.13.13.123‘?.118”@1114112:5.53.70—771.5577361“35[.19.1235‘:.11.1._.1
UOemmmm, . o o [Y L o o o o [- @ m = @ o a o < a~
era>aQ F 3 >Ee~ » 3 B BogEere VUWEpBZa < » B & Exacpro - P U >0 2z T > > x
ocwcwEl..ll!OLAlOllLl...L...llLOlAltNLOlRILlOIILILl..LLow - BOXxx U0 LU~ —dei el e Dl o€ = O = == ot = =
lHSHSDLLLI[H'DlllLlLllLlllKlDlDlCH'SlSllLlllCLCCCHA,F...ASS"IS'SIIS]vc.!lll’l"lbl"lllll

Le
L3
L2

11

Volume 1

99 er

,
&

The Kcst o

~
7

{Page 17

-
X

Oump continued

Listing 1

£
=
(o] - a
= - ~w = = x < (8]
[[[Ny o -] -~ F 3 -—
o - = ["N1] o O x] = (L]
E v - wx = wxz < - o« =
NN o - -~ b3 N <Wx (L] - zw w -
LR 4 L < - [- 5™ - - - W o - QL (8] g et
w ~ x < - o vx - o L] - x =< - —_
WO Er+ QU a - <n EXwx - o - [T i S i
P X - < X = G- =X - - - a [=] s e
= <o w>» ax = -=<U < x < = < < o — @ .
x - o e = <z o3 - R X "~ - . [= e
< e VE W Q Ve A < - -wn< w = B S
—wp " w ©< ~ - O W o » VZrmwe - - —m
< Qe W U= ovLa =% OUwn - IR Y ¥ ¥ w > [
Q= ~k €U W X X*] -0 (=) “wWw—- Boouv v R .. S ——
> D [N8 o x> D wx > X} - <Imm - A - - -
oOwo W W e -0 xE Oww > o mUAOD ‘FOM =t VN (. P
-n = B~ = a] a = - w we—~oX & U M 3 o
= 0 = A = O ww w0 «» < O m OeTW=< <=<u e O OB s
o L O Wwwere O -0 © wor X FEOKEO ~AXE LW —_ W W €Y e
.- - mED = - W O - OwO® i o= SN, X ol S
O = E < & w - M@ - M - = i WAL <a D e O
Qrx > - 00 = Vex= “ Oz » o < > = rOmMOnM X N8 i
za = = w al E 3% =w o < - e D<o f— W e S0 O Wi
——x = —-Zn - |1wn - -— E r-m a2 w - rUuLMnemO> L QA T o Jwa T
Do0w w OOWOOW b BOw 00 BOw W I Ow N T T L E i v=<zxF
a0 a aQrExZ> o ana auv aan a « a ECX<Iuan<cQUW®NL D WD
(4] A a ——er=:n 68
~ - - e ST TR
[® O o ® C &6 o=
~ o o & o o Q <xE<—O Nbda
< o enA " < [P Q MWm=<X>u vx
o ° ow - v VY - a “ « nfv PO
w vwe e w on ®® = a o - A - A A » LOUEXM<C <
© " e eceove @WN® *~ o®em® A AU LI,] - - iy s s, S
Non @ ~ @& aAarrew NOMm @A aQrrnaemn @ ® OHre Wi N <= . AP anmo
®re wn ® - rPOrE @rA® AU TOBA® w - -mn v &8 o9 -~ R kstaked - a
weo o N N M OAABAUNBEO - - AAO RO - NrECer®@ - N eo® w om o .G € =G o€ b e X
A A e@® | *EX® - A - A A ®O® - A ‘A @B |V ADS | T o® = ovr e N QOO —— 0w
NEY B EF RN r e rNEY N rrNer O YN rreadIOTUrrwe®@O AA - A NG A o
ELLEEELECEER
a o« a a o< a &< m oo €L o g .m O T M TN WS
E>Fe VWU +»O0OW z BrEe= pa FoEr QWw>a> VW vk~ M kA % T eeese.
—H OO~ HER~UUNE ==l == =d0d =0 X~~~ d 0= WEOEO®M~UE VNLE b <X .5 =
“myYeaaoa-m~U=U—~cdaduuaallieaguli—~——Duda e —~XnIvaQ—~aannn >~ [N W-N") -
- 2EO0OMA s er
- ~OXae oLWOW

Volume 1

The Best of 99'er

<{Page 18>

This program fills the screen

with the alphabet one letter at a time, and then repeats. There is no pravision for
returning to basic, so ycu wiil have to reset the computer to get the program to stop.
One note.... when a program is executed in this manner, you cannot return to basic with
B *R1l, or a RT command since the contents of register 11 have been changed.
way left (and I think the best way) is to branch to location >0070.
the next basic statement to be executed.

a
The anly
This will return to

0001 GPLWS EGU >B3EQ GPL REGISTERS

0002 VSBW EQU >202¢ VIDED WRITE

0003 START LI Ki,161 CHAR CODE FOR A

0004 A - CLR RO FIRST SCREEN POSITION

000S SWFB R1 CHAR TO LEFT BYTE

0006 B BLWP RVSBW WRITE TO SCREEN

0007 INC RO NEXT SCREEN PQS

0008 CI RO,769 LAST ONE?

0009 JNE B - NO, LOOP

0010 SWPB R1 CHAR CODE TO RIGHT BYTE

0011 INC R1 NEXT LETTER

0012 ClI Ri1,187 PAST 2?

0013 JNE A NO, LOOP

0014 JMP START YES, START QVER .
0013 AORG GPLWS+22 POINT TO RETURN ADDRESS REGISTER
0016 DATA START OUR STARTING ADDRESS

€17 END END OF PROGRAM

After you assemple the program (use only the R option), load it under Extended Basic. It
should begin to execute as soon as it loads.

As I mentioned before, most of my assembly programs interface with Extended Fasic.
Last year [needed a program that would allow me to examine and change memory locations
while an Extended Easic program was running. The following i1s an Extended Basic program
that allows you to do just that. In addition it has both a hex to decimal and a decimal
to hex conversion routine. Here is a list of allowed commands.

= Alter memory. Allows you to change the contents of the memory location you specify.
Decimal to Hex conversion.

Hex to Decimal conversion.

Memory Dump. Gives the contents of consecutive memory locations in both hex and
ascii. Optionally outputs to a printer.

AID (FCTN 7) - Prints a list of allowed commands,

ITOD
i

100 HEX$="0123456789ABCDEF" :: A1(1)=4096 :: Al1(2)=256 :: AL(3)=16 :: A1(4)=1
110 CALL PEEK(B198,A) :: IF A<>170 THEN CALL INIT

120 OFEN #1:"PI0O" :: CALL CLEAR :: CALL CHAR(48,"00ZA444E54644438") :: GOTO 360
130 CALL CLEAR :: PRINT "STARTING ADDRESS(HEX) ? ":"PRESS ENTER TO ABORT.":

140 ACCEPT AT(23,25)BEEP VALIDATE (HEXS) SIZE(4):H$:: IF H$="* THEN 360

150 PRINT "OUTFUT TO PRINTER (Y OR N) 7": :: CALL SCUND(1S0,1400,2)

160 CALL KEY(3.K.S) :: IF S=0 THEN 160 ELSE IF K<:89 AND K<>78 THEN 1&0

170 IF K=89 THEN PR=1 ELSE PR=0

180 GOSUB 690 :% ARD=DEC

190 CALL CLEAR

200 PRINT "PRESS ANY KEY TO PAUSE.":"PRESS ““BEGIN“* TO ABORT.": :
210 DEC=ADR :: GOSUB 740 :: IF ADR>32767 THEN ADR=ADR-6553

220 CALL HCHAR(24,2,62) :: PRINT H$:" ="; :: IF PR=1 AND PR1=0 THEN PRINTI$=">"tH$%" =~
230 FOR C1=0 TO S

240 CALL PEEK(ADR+C1,A2(C1))

250 DEC=A2(C1) :: GOSUB 740 |

260 IF C1/2=INT(C1/2) THEN PRINT " ": :: IF PR=1 THEN PRINT1$=PRINT{$%" "

270 PRINT SEGS$(H$.3.2): :: IF PR=1 THEN PRINT1$=PRINT1$%SEGS (H$,3,2)

<Page 19>

2280 NEXT C1 :: PRINT " =:

290 FOR C1=0 TO S :: IF A2(C1)<32 OR A2(C12>126 THEN PRINT *,*;
PRINTZ2$=PRINT2$&"."

300 IF A2(C1)<32 OR A2(C1)>126 THEN 320 .

310 PRINT CHR$(A2(C1)); :: IF PR=1 THEN PRINT2$=PRINT2$&CHRS (A2(C1))

320 NEXT C1 :: PRINT :: IF PR=0 THEN 340

330 IF PR1=0 THEN PR1=1 :: GOTO 340 ELSE PRINT #1:PRINT1S;" “;PRINT2$ 1:
PRINT1S,PRINT28="" :: PR1=0

340 CALL KEY(0.K,S) :: IF S=0 THEN ADR=ADR+6 :: GOTO 210 ELSE IF K=14 THEN 340 '
350 CALL KEY(O,K,S) :: IF S<{=0 THEN 350 ELSE IF K=14 THEN 360 ELSE ADR=ADR+6 :: GOTO 210
360 PRINT : :"COMMAND ? “ :: CALL SOUND(1S0,1400,2) ‘

370 CALL KEY(0.K.S) :: IF S=0 THEN 370

380 IF K=81 THEN CALL CLEAR :: END

390 IF K=72 THEN 460

400 IF K=68 THEN 520

410 IF K=77 THEN 130

420 1F K=65 THEN SBO

430 IF K<>1 THEN 370

440 CALL CLEAR :: PRINT "Q=QUIT":"H=HEX TO DECIMAL CONVERSION®:*D=DECMIAL TO HEX
CONVERSION®: "M=INSPECT MEMORY":*“A=ALTER MEMORY" :: GOTO 360

450 GOTO 370

460 CALL CLEAR

470 PRINT “ENTER HEX NUMBER (0 TO FFFF)":"PRESS ENTER TO ABORT.":"? *;

480 ACCEPT AT(24,3)BEEF VALIDATE(HEXS) SIZE(4):H$:: IF Hs=“" THEN 340

490 GOSUR 690 :: PRINT

S00 PRINT “>";H$;“ =";DEC; :: IF DEC>3I2767 THEN PRINT * OR “;DEC-65536: :ELSE PRINT : :
510 GOTO 470)

S20 CALL CLEAR .

530 PRINT "ENTER DECIMAL NUMBER":*(-22767 TO 6S535)":"ENTER O TO ABORT":"? “;

530 ACCEFT AT(24,3)BEEP VALIDATE (NUMERIC) SIZE(é):DEC

S50 IF DEC=0 THEN 340

60 IF DECX-32767 OR DEC>&SS3S THEN PRINT : :“ERROR !'“: : :: GOTO 53

:: IF PR={ THEN

S70 T1=DEC :: GOSUB 740 :: PRINT : :Ti;"= >“;H$: : :: GOTO S30

S80 CALL CLEAR

590 PRINT “ENTER MEMORY ADDRESS (HEX)":“PRESS ENTER TO ABORT":"?";

600 ACCEFT AT(24,3)BEEP VALIDATE(HEX$) SIZE(4) :H$:: IF H$="*" THEN 360 :: H13=H%
610 GISUB 690 :: IF DEC>32767 THEN DEC=DEC-465536 :: A4=DEC ELSE A4=DEC
620 CALL PEEK(DEC,A3)

630 DEC=A3 :: GOSUE 740

640 PRINT : :"MEMORY ADDRESS >":Hi$:;* = >";SEG$(HS,3,2)

6S0 PRINT : :"ENTER NEW VALUE (0 TO FF).":"PRESS ENTER TO AEORT.“:"?"; :: ACCEPT
AT (24,.3)BEEP VALIDATE(HEXS) SIZE(2):H$:: IF. H$="" THEN 470

660 GOSUE 690 :: CALL LOAD("",A4,DEC)

670 PRINT : : :: GOTO 90

680 END

690 REM xx HEX TO DEC CCNV xx ENTER H$=HEX# EXIT DEC=DEC#

700 Ci=4-LEN(HS$) :: DEC=0

710 FOR C=1 TO LEN(HS$) -

720 A=FOS(HEX$,SEG$(H$,C.1),1)-1 :: DEC=DEC+A%Al1 (C+C1)

730 NEXT C :: RETURN

740 REM xx DEC TO HEX CONV xx ENTER DEC=DEC# EXIT He=HEX#

750 He="" :: IF DECKO THEN DEC=DEC+65536

760 FOR C=1 TO 4

770 A=INT(DEC/A1(C)) :: DEC=DEC-ARfA1 (L}

7E0 H$=H3%SEGS (HEXS,A+1,1)

790 NEXT C :: RETUEN

This program resuires Extended Rasic to run. and requires the IZ2K memory expansion
option to use the alter memory function. If your printer uses other than the FIO peort,
CHANGE LINE [20 CPEN STATLMEAD |

<Page 20> :

