

ASSEMBLY LANGUAGE

OH NO! What is this article doing
in POMONA VALLEY 99ER NEWSLETTER?
Wei1, I am a new member to your
Club- My name is Bob Webb and I
work on electronically controlled
machines -For Bell and Howell.
My Wife Julie and Son, two year
old Michael, are allowing me this
time to enjoy my favorite hobby.
This brings me to Assembly Lang
uage. My hobby has been, -for many
years, to try and unravel the
ins and outs of this obscure

part of our 99/4A's.
This language took me 3 solid
years to learn. I jumped in to
Basic and Extended Basic pretty
quick with no real pain.
Since these languages posed no
real problem I bought the Mini-
Memory module and proceded to^
study Assembly Language.

OUCH!

That brick wall was hard!

What in the HECK were they
to say in that manual?
The module remained in a box for

about a year after that.
Simple English was not a high
priority to those Manual Writers.
So, I decided to move on and
continued to write in extended

basic with all of my friends.
But, I could not help wondering
what else was in that Silver and

Black Console. I gave it another
try. The Secrets in the IC Chips
were too intriguing to ignore.
My Mini-Memory module was dusty
but it worked the first time I

plugged it in. The LINES program
was more bizzare looking to me
now due to my experience in
writing Basic programs. How does
that program work? I could not
coneieve of a way to emulate the
same thing in Basic. It was doing
amazing things!

After buying every Book I could
find on Assembly Language for the
99/4A and studying them, the Fog
began to lift.
Three years later I am still in
the dark as to many details
regarding the CRU and Peripherals.
But, You cant confuse me on what
else is inside our Silver and

Black Consoles.

i

<g) WEBB 1991

With my help I know I can save
you years of frustration by
presenting a simple sort of Road
Map of our computers innards.
I dident have this kind of help.
My intention is not to teach the
Language to you. I think it is
more important to first explain
what the language is and how it
controls your machines hardware
(Keyboard, Memory, T.V., Etc.).

THIS WILL BE LESSON NUMBER ONE.

Inside your console there are
many chips. It looks confusing
and near impossible to sort out
what chip does what.

Dont think about it like that.
Your 9900 microprocessor looks
at all of those chips from the
inside and all it sees is a

single, One Lane Country Road.
No one else drives on this road
but him. Without the threat of a
collision he drives at about the

speed of light. ""-—-
He wears a watch and only goes
down the road to another address
at certain intervals. This clock
controls the timing of his ^
movements. There are a few other

devices that are located on this

road at specific addresses.
Those devices will be explained
later.

This paved country road has a
Mail Box at nearly every address.
Each Mail Box can hold one BYTE
of information. No more, No less.
As you may know Computers operate
with a language called Machine
Code. We Speak English, our TI
Speaks in Machine Language.
The Alphabet of Machine Language
is only 2 characters long.
ZERO 0, and ONE 1.
This Alphabet is known as the
BINARY numbering system.
BI meaning two. Each of the Boxes
contains a Post Card. It will hold

a BYTE of data. This means it has 8

Squares drawn on it. Each square
will hold one ZERO 0 or one ONE 1.
When you turn on your computer all
of the Post Cards in all of the
Mail Boxes have ZERO'S drawn in

all of the Digit Places or squares.

V

ASSEMBLY LANGUAGE

The Mail Boxes are all on one

side of the road. The other side
of the road is nothing but a
lush green field. We will only
need to concentrate on the side
with the Mail Boxes. These Boxes
are real. They do exsist and are
known as parts of RAM chips.
We all know our program will
evaporate when the computer is
turned off. On the Post Cards,
the ONES and ZEROS are like 8

light bulbs, either on or off,
with one bulb in each of the

digit positions. If you turn off
the power, all the bulbs go out
in the Post Cards, in all Boxes.
The information that those bulbs

represented is lost forever
because they were not saved in
some way. We save our collection
of ONES and ZEROS with our Disk

Drives and Cassette recorders.

RAM stands for Random Access

Memory. The 9900 Microprocessor
can randomly read or write to
those locations.

Y

RON /—
IEinifn

The 9900 Microprocessor is a
great piece of engineering but
it is very dumb all by itself.
It needs to follow a list of

instructions to do any task.
Even when you first power the
Console up it needs to have
some program to follow or it
will just sit there waiting for
its first instruction.

Where is its first instruction
located? We know that there is
only one road. We know that there
are mail boxes along the way.
But how many Addresses are there
and where do they begin?

2.

(C) WEBB 1991

They begin, quite naturally, at
Zero. The First Address on the

road is Zero, the Second is One
the Third is Two and so on.

When your Console is first
turned on the 9900 Microprocessor
looks for the data at address

Two on that country road.
It knows to look at Address Two

and use the Binary number there
as its first address to look for

its program. Much like a GOTO
statement in Basic. TI did this

first because changes are made
durring production when mistakes
are found in earlier Consoles.

Later Verions of this program
might jump to another address in
memory. This is called a VECTOR
TABLE. But wait, the Mail Boxes
contents are zeroed out each time

power is removed. That is right.
So, that is why ROM is needed.
At Address Two, the Mail Box is
replaced by a sign. The sign is
painted with permanent ink. In
our Consoles Addresses Zero

through 8,191 have signs placed
where the Mail Boxes normaly
reside. Texas Instruments placed
those signs there. This is the
so called BOOT STRAP program.
The 9900 Microprocessor must pull
its boots on before it can walk.

The 8,192 signs along the road
do things like clear the screen
and place the familiar color bar
picture up. Part of Basic resides
there as well(more on Basic later).

ROM stands for Read Only Memory.
Texas Instruments made about

seven versions of this ROM.

The One Lane Country Road has
Addresses starting from Zero going
all the way up to 65,535!(With 32K)
8 X 65,536 = 524,288
If each Mail Box holds 8 digits,
and there are 65,536 Mail Boxes,
that means there are over a half

a million ZEROS and ONES inside

our Consoles!

What else is along this road?
What is GROM and GRAM?

What do they mean when they say we
have 16K of RAM for our programs?
Answers to these and many other
questions in later lessons. BYE!

ASSEMBLY LANGUAGE (£) WEBB 1991 =:-)

Hello again. Last months lesson
was real simple. This time I'll
dig a little deeper. Now, we all
know that our 9900 Microprocessor
does not actually travel down an
Old Country Road. But, for our
discussion I think it will make
other points clear if we continue
to use this analogy.
If you have any questions, or
want to enlighten me on any
points, please write. If you
include a self addressed, stamped
envelope I will try to write back
in a prompt manner.
Write to: BOB WEBB

P.O. BOX 3023

ARCADIA, CA. 91007

LESSON NUMBER TWO

As you will recall, our 9900 CPU
has a clear and simple view of
the insides of our Consoles.

He looks at all of the Integrated
Chips of our computers from the
inside and see's only a Long One
Lane Country Road.
The addresses, on only one side
of the road, range from Zero to
65,535 (when we have our 32k
memory instal1ed)•
The first 8,192 addresses have
signs placed along side the road.
These signs have 8 bits of data
painted on them with permanent
ink. This first 8k block of

memory is known as ROM (read only
memory). ALL PROGRAMS and DATA
inside the computer are in

Machine Code. The program stored
in this ROM area is in Machine

Code, zeros and ones.
ROM, represented by signs at each
of the first 8,192 addresses was
written by Texas Instruments in
Assembly Language.
The BASIC Language built into our
consoles is stored in Machine Code

But, it was written by TI in a
Language called GPL, or GRAPHICS
PROGRAMMING LANGUAGE. In order for

us to be able to run this BASIC

Language program we must have a
built in GPL INTERPRETER program.
The actual BASIC Language program
is stored in special IC Chips,
isolated from our CPU, called 6R0M.
The first program that is executed
in any computer is known as the
BOOT STRAP program. Our computers
BOOT STRAP program is located in
this first 8k of ROM.

This Machine Code program was
written in Assembly Language.
It is a GPL INTERPRETER program
that reads programs written in
GPL. All GPL programs must be
stored in those special IC Chips
called GROM Chips. In order for
our 9900 CPU's to be able to read

those GPL programs it must have a
way to communicate with the GROM
Chips. Texas Instruments built a
huge Texas size Ranch along that
Little Old Country Road. On that
big Ranch they placed 3 GROM's.
This Ranch is so big that there
are 4 MAIL BOXES. The Owner of

the Ranch is named TEX.

ASSEMBLY LANGUAGE <C> WEBB 1991

Old TEX named it GROM RANCH.
The console BASIC is written in
GPL and is stored in GROM Chips
number 1 and 2. GROM Chip number
0 has the real BOOT STRAP program
that has all of the initializing
routines, start up TI COLOR BAR
screen and MODULE SELECTION LIST
screen. GROM RANCH can be thought
of as a second road with its own
address space. This road starts
at GROM Address zero and goes
to GROM Address 24,575 in the
first three GROM Chips.
The Module Port in our Consoles
is officially called a GROM Port.
That is because Texas Instruments
Modules can contain one or more
GROM chips as well. This extends
the GROM address space.
So we can see that GROM RANCH
can be modified simply by putting
a Module in the Port. A module
can have up to 5 more GROM Chips
inside. The Editor Assembler
Module has only one GROM Chip.
But the EXTENDED BASIC Module has
5 more GROM's.

Why did Texas Instruments invent
GPL and GROM's? (GROM RANCH).
An Assembly Language Operating
System or BOOT STRAP program
would have been simpler and
cheaper to produce. GREED !!
This was done so that they could
charge other companies for the
right to use the GPL Language for
their own Game Modules. This idea
backfired. This type of system is
called Closed Architecture.
Other computers had an Open type

H

Architecture and thrived. APPLE
Computers had an Open System as
well as IBM. This one element of
our computer along with some other
odd marketing ideas killed any
chance for our computer family to
grow. Software Companies did not
want to pay the high royalty, or
licensing fee's. So, they did not
write many programs for our
machines. Or, if they did write
programs they were written in
Assembly Language and bypassed the
GPL interpreter. This made TI very
angry. So, they Closed the
Architecture even more. They came
out with the Version 2.2 Console.
If your Game Module did not have
the special GROM Chips it would
not run. MEAN OLD MR. TEX!
Their own need to control every
aspect of the 99/4A finally wiped
out their chances at success.

EXCESS

PROFITS

BREEDS

RUINOUS

COMPETITION.

Well, that's enough about that.
Let's study GROM Chips a bit
(Pun Intended).

GROM Chips are like ROM. They are
permanent Read Only Memory Chips.
In fact, GPL Language is almost
identical to Assembly Language.
It differs in one main aspect.
The GROM Chips AUTO INCREMENT
themselves as they are read.
As the CPU fetches data out of
GROM RANCHes Mail Boxes it does
not need to tell the GROM what
GROM Address space to read next.
The GROM automatically fetches the
data from its own next address.
The GPL interpreter program causes
the CPU to read the binary data in
the GROM's, READ, MAIL BOX. The
GPL interpreter reads the GROM
program from the Mail Box at GROM
RANCH and only stops when the GROM
program code includes some type of
jump, or goto type statement.

#

ASSEMBLY LANGUAGE

Normal ROM Chips do not Auto
Increment. You must tell the CPU

what address you would like to
access almost every time you
give it an instruction.
This wastes time if you are only
going to read the data in the
chip. The CPU must make that
many more trips up and down the
road collecting the next address
to go to. So, GROM's are quick.
GRAM Chips are like RAM Chips.
They Auto Increment just like
GROM. I understand that TI never

used any GRAM Chips in the
Console or Modules of the 99/4A.

We Programmers can do some fun
things with the GROM Chips. The
COLOR BAR TITLE SCREEN uses its

own large style Character Set.
With some programming savy we can
use that Character Set in our own

Assembly Language programs. We
write a Post Card or two to TEX

at GROM RANCH and ask him to send

out that Character Set through
the GROM READ DATA MAIL BOX.

Or if we want to use other parts
of the BOOT STRAP program all we
have to do is get a copy of the
German Book called "TI 99/4A

INTERN", by Heiner Martin. It is
a copy of the Assembly Language
GPL Interpreter program in ROM.
It also includes the GPL programs
in the first 3 GROM Chips in our
Consoles. When I bought it I did
not know what it was. I buy TI
books on impulse. But later, when
I began to understand more about
Assembly Language it gave me deep
insight into our machines ROM and
GROM Operating System.
(C) 1985 by Verlag fur Technik
und Handwerk Gmbh,
D-7570 Baden-Baden,
Postfach 11 28, West Germany
(ISBN 3-88180-009-3)

Printing: F.W. Wesel, Baden-Baden
This is not light reading. It is
a lot of raw code and a little

commentary. But if you are a nut
like me and want to know what is

(g) WEBB 1991

in our Consoles than this is for

you. We can not alter anything in
GROM. Remember it is just like ROM
We can only read it. But there are
great subroutines built into GROM
that we can use.

We communicate with GROM RANCH in
BINARY CODE written on POST CARDS.

Each Post Card holds combinations

of Zero's and One's representing
Data or Instructions for TEX.
8 bits, or rather a Byte, of data
fits on one Post Card. The CPU is

like a lightening quick Mail Man.
He delivers Post Cards encoded

with data to and from GROM RANCH.

The CPU and TEX do not talk to

one another directly. They only
use the Post.

Here is a description of GROM
RANCHes 4 Mail Boxes.

CPU GROM

ADDRESS FUNCTIONS ASSOCIATED

WHERE WITH THE MAIL BOX

MAIL AT THAT LOCATION.

BOX IS TEX IS ON THE OTHER

LOCATED. SIDE OF THE FENCE.

38,912 = GROM/GRAM READ ADDRESS

38,914 = GROM/GRAM READ DATA

39,936 = GROM/GRAM WRITE DATA

39,938 = GROM/GRAM WRITE ADDRESS

If you write to GROM nothing
will be written. Only GRAM can
be written to. So, the Write
Data and Write Address Mail Box

would be used only if you found
a way to install GRAM in the
Console or the GROM Port.

Now, if the Editor Assembler,
Extended Basic, or Mini Memory
Module is installed in the GROM

Port this is our first chance

to access the 9900 CPU's Address

space directly. Most of the time
our computers are speaking GPL.
Now it's our turn to speak!

ASSEMBLY LANGUAGE (g> WEBB 1991

The 9900 CPU only understands
Machine Code. The position of the
ZERO or ONE in an eight Bit Byte
represents a given amount. Just
like our Decimal System does. In
the Decimal numbering system 11
means eleven, in Binary 11 means
three! Why is that? The first
digit, or Bit, in the first
position, on the right,
represents one in both the
Decimal and the Binary system.
The second digit in Decimal
represents one group of ten ones.
The second digit in Binary
represents one group of two ones.
So if a number one is in the

second position, in Binary, it
represents two. If a zero is in
the second position it means no
group of two, or zero(of course).
In the Binary System each
position to the left is double
the amount just before it. So,
this number in Binary means 11:

I32,768) $ J .tJT25]

000000000000101 l

8 4 2 1

reading 16 Bits, or a WORD, of data
at a time. This is where the term

16 Bit Microprocessor comes from.
The CPU can read a Byte of data or
a Word of data upon command. Most of
the time we will talk about a Word

of data because more work gets done
in a shorter period of time. If our
CPU was only capable of reading a
Byte at a time it would be called an
8 Bit Microprocessor (another name
might be Commodore VIC-20). Wait a
minute Bob! You said each address

only holds a Byte of data! Yes. If
you tell the CPU to grab a Word of
data from address 2, it studiously
goes to address 2 and picks up its
first Byte. We will call this Byte
the MOST SIGNIFICANT BYTE, or MSB.
Then he moves automatically to
address 3 and grabs the next Byte.
We will call this one the LEAST

SIGNIFICANT BYTE, or LSB. When the
CPU reads ROM or RAM the contents

at those addresses are not harmed

or altered. The CPU mearly reads the
data and stores it elsewhere.

The CPU always thinks of this Word
of data as having the MSB on

the left and the LSB on the

right, unless you tell it
otherwise. So, our Word of

data looks like this:

Address 2 and 3

Bi nary Dec

8 Bits

16 Bits

<—One Bit

(1 Bit)

One Nybble
(4 Bits)

One Byte
(8 Bits)

One Word

(16 Bits)

0000000000100100 = 36

MSB LSB

00000000 00100100

Address2 Address3

8 + 2 + 1 = 11

Now you are asking why did he
draw 16 Digits? He told me last
time that the Post Cards in the

Mail Boxes, and Painted Signs,
only held 8 digits, or Bits.
Yes! Each address along the road
is capable of holding only one
Byte, meaning 8 Bits. The reason
I drew 16 Bits of data is because

the 9900 CPU is capable of

In fact all of memory is
used by the CPU this way. It

Thinks and acts in terms of

Words. I think we now understand why
our memory stops at the 65,536th
memory address. The CPU can only
look at 16 bits at a time. If every
one of those 16 Bits were one, or on
that would represent the number
65,536. 65,536? Yes! Remember the
first address is zero. So, there are
exactly 65,536 addresses!

ASSEMBLY LANGUAGE <g> WEBB 1991

Boy, Oh Boy! What does all of
this mean? It means Machine code

is a pain in the posterior for
mere mortals like you and me. I
think it would be wise to buy a
$20. Scientific Calculator if you
want to experiment at all. I use
the Texas Instruments TI-35 PLUS.

It converts Decimal to Binary and
back. It also converts Decimal to

Hexadecimal. This is a Base 16

Numbering System, just like
Decimal and Binary. The reason I
bring this up is because most
Assembly Language requires that
you write your programs in this
format. It is not hard to learn.

And in a short while you will
begin to think in Hexadecimal
just like a real nerd!
Hexadecimal is like Decimal but

instead of counting from one to
ten you count from zero to
fifteen. For a total of 16.

0123456789ABCDEF

vecL n 13 15

1 2 3 4 5 6 7 8 9 10 12 14 16

If you write numbers in Hex how
do you know its Hex and not Dec?
You put a greater than symbol in
front of it like this:

>0024

If you write in Binary you will
usually put a lower case b behind
it like this:

0000000000100100 b

If you write numbers in Decimal
you will write it like you have
since the first grade:

36

The sharper people out there will
have already noticed that all
three of the numbers above are

the equivalent to Decimal 36.

7

Decimal 36, or Hexadecimal >0024
happens to be the number at address
2 and 3 in most of our Consoles, if
not all of them.

This is the beginning address of the
GPL Language program in ROM. Our
CPU's use this address like a GOTO

statement in BASIC. When we first

apply power to our consoles the CPU
performs a LEVEL ZERO INTERUPT which
is a RESET. Then it reads the data

at address 2 and 3, to collect a
full Word, and JUMP'S, or GO's TO,
Address >0024. This is all well and

good but why does it start at the
third address in memory and not 0?
It does. I was saving this until
I thought you could follow along.

> Address ZERO and

ONE contain the Hex number >83E0, in
all Consoles. This number is also an

address. Beginning at this address,
>83E0, is another block of memory
that the CPU sets aside as a Scratch

Pad, or Workspace. It needs an area
to store numbers and addresses while

it performs calculations and
operations on them. The Block of
memory is 16 Words long. I will be
going into detail on this little
workspace later. Just know that for
now there is a 16 Word Workspace
set aside by the CPU in an area of
the fastest RAM in our Consoles.

This RAM has a 16 Bit data path. All
of the other blocks of RAM are in

our 32k cards in the Peripheral
Expansion Box and are sent down the
P E Boxes Firehose connector in an

8 Bit data path. There is no way to
change this. It is hard wired this
way. Our computers can perform MATH
quickly in the 16 Bit data path
Work Space. ___ ^SS^

Thats all for now. Next Month I will

get to the really fun stuff! VIDEO
DISPLAY PROCESSOR RAM!!!! BYE!

ASSEMBLY LANGUAGE (g) WEBB 91 =: ')

Howdy doo! This will be the last
formal lesson on memory mapping.
Next month we will use all that

we have learned about the insides

of our computer and examine the
9900 CPU!

If you have any questions, or want
to enlighten me on any points,
please write. If you include a self
addressed, stamped envelope I will
try to write back in a prompt
manner. Write to:

BOB WEBB

P.O. BOX 3023

ARCADIA, CA. 91007

/Mm

LESSON M B E R THREE

How can we look at the data stored

in the Hail Boxes and on the signs?
We could write an assembly program
that does that. But we do not know

how to write one. So, we must use a
language that we know.
Extended Basic has two commands,
CALL PEEK and CALL LOAD that can

access the data along the Old
Country Road. CALL PEEK allows us
to look at all of the data from

address >0000 to >FFFF. These are

the hexadecimal numbers that

represent address 0 to address
65, 535 in decimal form. Remember
that the greater than symbol ">"
means that the number is in HEX

format. CALL LOAD allows us to

write data to those Hail Boxes

along the old country road. We can
only access the data on the private
road on GROM RANCH if we

communicate with TEX through his
four Hail Boxes. If you want to
experiment with CALL PEEK or CALL
LOAD remember that you can do no
harm to the chips inside your
console.

a

You can do real damage to disks
that are left in a drive if you
accidentally write to them.
You may want to remove any from
from the drives when you begin
experimenting. After the disks
are removed you can play around
inside your computer all day.
The easiest and safest thing to
do first is to read the data

that is there. To do this you
use the CALL PEEK command.

The most important thing to
remember is that to access any
address larger than 32,767 you
must subtract 65,536 from it.
Lets say that I want to read
the data stored in ROM at

address ZERO, I would write

this line into my Extended
Basic Program:
100 CALL PEEK(0000, X)
110 PRINT X

Lets say that I want to place a
value of 60 in address 41,215.

This address is larger than
32,767 so we do this:

41215 - 65536 = -24321

Our program would then look
like this:

100 CALL LOAD(-24321, 60).

Armed with this information and

our Memory Map we can find out
what area of memory we are
changing when we use all of
those useful call loads.

This is a good time^o talk
about the GROM port. The GROM
port also has a direct link to
our country road.
From Address >6000 to Address

>7FFF is an area set aside for

assembly language programs.
Modules from Companies other
than Texas Instruments use this

area for their programs.

ASSEMBLY LANGUAGE <£) WEBB 91 =:')

Some modules have no GROM chips
in them. I wrote about that last

month. This is the area set aside

for those programs. The older
consoles will run a program in a
module that is strictly assembly.
The Version 2.2 Consoles will only
run a program in this area if the
module also has a GROM chip as
well as the program ROM chip.
When no module is in the GROM port
this area is all zero's. No chip
is there, so you can not read or
write to anything in this space.
Most of the time a module has only
ROM. However, the MINIMEMORY
module has RAM and ROM. With this

module in the port you can write
assembly language programs that
reside between address >7000 and

>7FFF. This 7k byte RAM area is
called MEDIUM MEMORY. Why is that
you ask? Well, because there are

other RAM area's when you have
your 32k card installed. These 2
RAM area's are called HIGH MEMORY

and LOW MEMORY. Most Assembly
programs are written for the HIGH
MEMORY area and the EDITOR

ASSEMBLER MODULE. The HIGH MEMORY

area is between address's >A000

and >FFFF. You can write assembly
programs for the MINIMEMORY module
that reside in this HIGH MEMORY

area. The LOW MEMORY RAM area is

used for programs and something
called the REFXDEF TABLE. This is

where an assembly language program
is named and an entry point for
the program is stored.
All assembly programs must have an
Entry Point stored in a directory
so that the CPU can find it and

then start executing the first
commands. The MINIMEMORY module

has its own REFXDEF TABLE located

at the bottom of the RAM area.

With the Line By Line Editor
installed you will find 3 entries
in the last few bytes of.RAM.
You will find the ASCII equivalent
of the words LINES, OLD and NEW.

Between these program Entry
Point names will be a WORD of

data. This WORD is the Entry
Point Address to the program
listed in the TABLE.

When you write an assembly
language program for the
MINIMEMORY module you must
install the Name and Entry
Point to your program.

The MINIMEMORY manual is not

clear on this point and I hope
this will help you.
Speaking of help, 2 books have
helped me the most. The first
is called:
Fundamentals of TI-99/4A

Assembly Language
by, M.S. Morley
published by TAB books inc.

The second is called:

Introduction to Assembly
Language for the TI Home
Computer
by, Ralph Molesworth
published by Steve Davis
publishing.
These two books helped me a
great deal. They both offer a
good set of lessons but they
both lack a little something.
Together they form a good
beginning.
The EDITOR ASSEMBLER manual is

mandatory if you want to get
serious about the subject.
I actually like reading the
manual now that I understand

what everything is.
With the small amount that you
have learned here you too can
probably enjoy it as well.

9

ASSEMBLY LANGUAGE

The sound chip write address is
>8400. The Memory Map on the
other page shows that the sound
chip write address goes from
address >8400 to address >87FF.

Only >8400 is actually used.
The rest of the area is not used.

It has not been Decoded. Texas

Instruments, for reasons only it
knows, wasted the rest of this
space. Other areas in memory are
the same way. The Speech Module
Read Write addresses are also

not decoded fully. 768 BYTES are
wasted between address >8000 to

>82FF. This area contains 3

identical copies of the SCRATCH
PAD RAM that is used by the CPU
as its personal workspace.
Nothing can be done with it.
Programs can not be written here.
Pages 404 through 406 in the
Editor Assembler Manual describes

the Scratch Pad area.

The last and most interesting
part of our Computers, as far as
I am concerned, is the area along
the old country road called the
VIDEO DISPLAY PROCESSOR. It is

very similar to the GROM RANCH.
But we write to this area all of

the time. The VDP RAM area is

located along the road and is
accessed just like the GROM area.
There are 4 Mail Boxes identical

to GROM RANCHES.

10

<C) WEBB 91 =: ')

CPU VDP RAM

ADDRESS FUNCTIONS ASSOCIATED

WHERE WITH THE MAIL BOX

MAIL AT THAT LOCATION.

BOX IS

LOCATED.

>8C02 VDP READ/WRITE ADDR.

>8C00 VDP WRITE DATA ADDR.

>8802 VDP STATUS (MSB)

>8800 VDP READ DATA ADDR.

The VDP RAM area is like

another road going off at a
90 degree angle from our
country road. Once again we
have to communicate with the

RAM area through these Mail
Boxes. The STATUS Mail Box is

new to us. But its name gives
us a clue to its function.

The VDP is actually another
CPU. Its use is dedicated to

creating and presenting images
to the Television or Monitor

Screen. The VDP RAM road starts

at address >0000 and goes to
address >3FFF. The addresses

from >0000 to >02FF is the

actual image on the screen. If
you change a byte in here you
will automatically change a
spot on the screen. The rest of
the area is for your character
shapes, Basic program, color of
the characters, and other CPU

and disk drive housekeeping.
Study the Memory Map and next
month we will look at the CPU

BRAIN!

ASSEMBLY LANGUAGE (g) WEBB 91 MEMORY MAP

CONSOLE. PE BOX.

Address Description & PORT

>0000 CONSOLE ROM

>1FFF

>2000 LOW MEMORY RAM 1/2 OF 32K CARD

>3FFF 8K BYTES

>4000 PERIPHERAL EXPANSION ROM AREA.

>5FFF

>6000 MODULE PORT ROM/RAM AREA

>7FFF

>8000 3 COPIES OF SCRATCH PAD RAM

>82FF

>8300-

(wasted space)

>8300 •s SCRATCH PAD RAM AREA

>83FF >Q3FF*ro

>6400 >8400 SOUND CHIP WRITE ADDRESS

>87FF

>8800 >8800 VDP READ DATA ADDRESS

>8802 >8802 VDP STATUS (MSB)

>8BFF

>8C00 >8C00 VDP WRITE DATA ADDRESS

>8C02 >8C02 VDP READ/WRITE ADDRESS

>8FFF

>9000 >9000 SPEECH MODULE READ ADDRESS

>93FF

>9400 >9400 SPEECH MODULE WRITE ADDRESS

>97FF

>9800 >9800 GROM/GRAM READ DATA ADDRESS

>9802 >9802 GROM/GRAM READ ADDRESS ADDRESS

>9BFF

>9C00 >9C00 GROM/GRAM WRITE DATA ADDRESS

>9C02 >9C02 GROM/GRAM WRITE ADDRESS ADDRESS

>9FFF

>AOOO

>FFFF

HIGH MEMORY RAM 1/2 OF 32K CARD

24K BYTES

ASSEMBLY LANGUAGE <C> WEBB 1991

Hello. This lesson is about the

most important part o-f our
machines. The master CPU. I hope
you have retained a little bit o-f
the Memory Map in your mind. This
1esson will recal 1 some o-f that

material, i-f you have any
questions, or want to enlighten
me on any points, please write.
If you include a self addressed,
stamped envelope I will try to
write back in a prompt manner,
write to:

BOB WEBB

P.O. BOX 3023

ARCADIA, CA. 91007

LESSON NUMBER FOUR

The sleek, ELECTRON MAIL VAN,
depicted above is the vehicle
that our Hero, 9900 MAN, drives,
you will note that it is not
unlike Mail Vans found all over

the United States. It has the

open slide door so that 9900 MAN
can reach into the Mail Boxes

with little effort. However this

beauty travels at near the speed
of light. Our Country Road is
private. So, he is the only one
that tears along this route.
He loves his vehicle and always
keeps a full tank of electrons.

He comes -from a proud family of
Microprocessors and takes great pride
in that heritage. He has younger
Cousins now that have much faster

Clock speeds and larger Data Busses
but none the less holds his head high.
He has proven his worth to about 3
Million consumers. 9900 MAN has a

Rigid set of rules he lives by. The
first rule is that he must follow his
Master Clock at all times. Everyone
in this world of his must do the same.

On the Instrument Panel in the VAN

is a Master Clock Pulse Indicator.

Every time the Master Clock Ticks
that Indicator Light flashes and 9900
MAN tromps on the throttle to reach
his next destination address.

Besides the Master Clock Indicator

he has 3 other Major Readouts.
These readouts in reality are known
as the 3 Hardware Registers. 9900 MAN
pays strict attention to these 3
Readouts.

Here are the names of the readouts:
1. PROGRAM COUNTER REGISTER

2. WORKSPACE POINTER REGISTER
3. STATUS REGISTER

Each Readout is 16 Bits long, or 2
Bytes, or a Word. We all know that
9900 MAN reads only BINARY but we
will think of them as being in
HEXADECIMAL. Lets recall some of the
information in our past lessons on
the Memory Map.

13-

ASSEMBLY LANGUAGE (g) WEBB 1991

On the Instrument Panel each of

the readouts has a keypad next to
it so that 9900 MAN can enter the

new number. There are two clip
boards that hold 2 Post Cards.

This is so that 9900 MAN can

write new Post Cards. You see, he
writes most of the Post Cards

himself. He then puts them in
their proper Mail Box.

In lesson number two we found out

that when you first power up the
Console the CPU (also named 9900

MAN), performs a LEVEL ZERO
INTERUPT which is a RESET. The

term SET means to make data at an

address a 1. The term RESET means

to make data at an address a 0.

So, this LEVEL ZERO INTERUPT
forces 9900 MAN to race along
ALL RAM Mail Boxes and place
Post Cards with all ZERO'S on

them inside. After all RAM memory
is RESET 9900 MAN always looks
for his first instructions at

address >0000, >0001, >0002, and
>0003. The first two addresses

contain the Most Significant Byte
and the Least Significant Byte.
9900 MAN is a 16 Bit CPU so he

always takes a full WORD of data
each time he performs a fetch.

The first WORD of data at addresses

>0000 and >0001 is, >83E0.
9900 MAN knows that the first word

of data he collects is an address.

This address is the first address of

his Scratch Pad area. He always needs
to have a place in memory set aside
so that he can make notes for himself

and perform math. This area is known
as the WORKSPACE REGISTER AREA. It is

16 WORD'S in length which means it
starts at address >83E0 and continues

to >83FF. This is how it would look:

>83E0 MSB 1ST WORD. REGISTER >0

>83E1 LSB

>83E2 MSB 2ND WORD. REGISTER >1

>83E3 LSB

>83E4 MSB 3RD WORD. REGISTER >2

>83E5 LSB

>83E6 MSB 4TH WORD. REGISTER >3

>83E7 LSB

REGISTER>83E8 MSB 5TH WORD. >4

>83E9 LSB

>83EA MSB 6TH WORD. REGISTER >5

>83EB LSB

REGISTER>83EC MSB 7TH WORD. >6

>83ED LSB

>83EE MSB 8TH WORD. REGISTER >7

>83EF LSB

>83F0 MSB 9TH WORD. REGISTER >8

>83F1 LSB

>83F2 MSB 10TH1 WORD. REGISTER >9

>83F3 LSB

>83F4 MSB 11TH1 WORD. REGISTER >A

>83F5 LSB

>83F6 MSB 12TH1 WORD. REGISTER >B

>83F7 LSB

>83F8 MSB 13TH1 WORD. REGISTER >C

>83F9 LSB

>83FA MSB 14TH1 WORD. REGISTER >D

>83FB LSB

>83FC MSB 15TH1 WORD. REGISTER >E

>83FD LSB

>83FE MSB 16TH1 WORD. REGISTER >F

>83FF LSB

Bob, why did you say REGISTER after
each WORD of data? This is a way of
naming each WORD of data stored here.
When you write an Assembly Language
program, you will want to tell the CPU
to add REGISTER 0 to REGISTER 1.

SSEMBLY LANGUAGE <£> WEBB 1991

This WORKSPACE REGISTER AREA is
where you will spend a lot of
time. All programs use this area.
All Math and Logic functions are
done here. So, after the reset is
performed 9900 MAN picks up >83E0
at the first 2 addresses and puts
that number into his Instrument
panel WORKSPACE POINTER readout.
You can see in the illustration
that >83E0 is now always on
display in the WP readout.
This is to remind 9900 MAN where

his WORKSPACE is. He can now zip
right there without any trouble.
The next built in function is for

him to fetch the next 2 bytes of
data from addresses >0002 and

>0003. That number in most

Consoles is, >0024. 9900 MAN
knows this to be the address of

his first instruction.

That instruction at >0024 and

>0025 (one WORD), is the so
called ENTRY POINT in the ROM

BOOTSTRAP program. He fetches the
number >0024 from address >0002

and >0003 and enters it into his

PROGRAM COUNTER readout. Once

this number is entered 9900 MAN
sits and waits for his first
CLOCK PULSE. When the lamp
flashes he tromps on the gas
pedal (ELECTRON PEDAL?) and runs
down the old country road to
the address indicated in the PC.
He reads the first number painted
on the permanent sign and to him
it is an instruction.

9900 MAN understands many
instructions, these are listed in
the Editor Assembler Manual.
The instruction is a number of
course. 9900 MAN reads the number
and knows what it means.
As an example lets say that the
number tells 9900 MAN to LOAD
IMMEDIATE the Hexadecimal number
>0017 into WORKSPACE REGISTER >3.
9900 MAN writes the number >0017
down onto 2 Post Cards.

He then sits and waits for the Clock

Pulse Lamp to flash. When it does he
blasts down to addresses >83E6 and

>83E7 and places those 2 Post Cards
inside them. The MSB Post Card going
to the Mail Box at >83E6 and the LSB

going into >83E7. When he has finished
this task he looks down at the PROGRAM

COUNTER Indicator.

The PC has automatically incremented
itself by 4 addresses. He Turns the
ELECTRON MAIL VAN around and faces

the other way down the Old Country
Road. Once again he sits and waits for
the Clock Pulse Lamp to flash. ZAP it
goes and he is on his way to address
>0028. He has just completed his first
use of the WORKSPACE AREA. The number
>0017 is now stored in REGISTER >3.

You should now be asking me why the PC
was incremented by 4 addresses.
The Instruction was 1 WORD in length.
That accounts for the first 2

addresses. The second 2 addresses was

the number >0017. It must be stored

next to the instruction. When you
write an Assembly Language Program you
use the Editor program. This is merely
a stripped down version of TI-WRITER.
You write this program as a kind of
"Letter of Instructions". When you are
satisfied that there are no errors in

your "Letter" you save it to DISK.
Then you start the Assembler Program
and it asks for the name of your
"Letter", or SOURCE PROGRAM on the
DISK. Once you give it the name it
starts up the DISK DRIVE and reads
your SOURCE PROGRAM. The Assembler
takes each line of your program and
converts it into MACHINE CODE. That
MACHINE CODE is then saved to DISK.
The MACHINE CODE file is saved under
a name you give it. This file is known
as the OBJECT FILE. This is the raw
BINARY program that 9900 MAN can read.
Here is the ASSEMBLY LANGUAGE line:

LI R3,>17
LI=LOAD IMMEDIATE into REGISTER >3 the
Hexadecimal number >0017.
The Assembler adds the >00 MSB.

14

ASSEMBLY LANGUAGE (C) WEBB 1991

Here we sit. 9900 MAN has stopped
at the permanent sign at address
>0028. Lets continue our Example
and say address >0028, >0029,
>002A and >002B contain the

equivalent of: LI R4,>04
This is the same instruction as

before. Only this time we are
going to LOAD IMMEDIATE >0004
into REGISTER >4. 9900 MAN writes

the number onto 2 Post Cards.

Once again, the MSB on the left
and the LSB on the right Card,
after completing the task the
Clock Pulse Lamp flashes and 9900
MAN flattens the gas pedal. He
must have great neck and stomach
muscles. The acceleration forces

time after time must take a toll

on him. He screetches to a halt

at WORKSPACE REGISTER >4.

(Addresses >83E6 and >83E7).

Quickly placing the 2 Post Cards
into the Mail Boxes he looks
down at the PC Indicator. It has
been incremented by 4 again. The
new address is >002C. The Lamp
flashes and he charges to the
address indicated in the PC.

The instruction he finds on the

next set of signs might be the
ADD function. Lets say it goes
like this:

A R4,R3

The letter "A" means ADD. So, the
instruction is telling 9900 MAN to
the contents of REGISTER >3 to the

contents of REGISTER >4. In this

operation the number >0017 will be
added to the number >0004 located in

REGISTER >4. The number >0004 will be

replaced with the SUM of the 2
numbers. >0004 will be lost forever

unless we save it in another REGISTER

or RAM memory space. In this case we
dont care if we lose the number and we

allow the SUM to replace it.
The number >0017 in REGISTER >3 will

be untouched. 9900 MAN merely reads
the number there and makes a note of

it on his Post Cards. The SUM would be

>001B. The result of this operation
would leave the Number >0017 in R3 and

>001B in R4.

^^3R, *r*

ADD

In this Lesson you've learned a great
deal about the 9900 CPU.

In next months lesson we will continue

discussing the CPU and delve into the
format of ASSEMBLY LANGUAGE.

I hope you have gotten something from
these lessons.

Respectfully yours,
BOB WEBB.

15

ASSEMBLY LANGUAGE (C) WEBB 1991

Howdy doo. I hope you have gotten
something out of these lessons.
I have been able to reinforce

my understanding of these
subjects by having to write about
them. Once again, if you have any
questions, or want to enlighten
me on any points, please write.
If you include a self addressed,
stamped envelope I will try to
write back in a prompt manner.
Write to:

BOB WEBB

P.O. BOX 3023

ARCADIA, CA. 91007

If we were in France and we

gave a little French child $100
to do some errands for us, we
should write that list of

instructions in French. This

would ensure the best results.

That child has grown up speaking
and reading French. If we write
that list of instructions with a

poor understanding of French
the results could be very bad.
That child might read the list
and just sit on the steps of the
hotel trying to understand them.
The same thing happens to our
computer when we give it a list
of bad instructions. It might
just lock up or produce bad
results.

16

One way to produce good results is to
learn the Computers Language. The best
language to learn would be Machine
Code. When you learn Assembly Language
you naturally begin to understand
Machine Code. However Machine code is
cold and impersonal (All zero's and
ones or Hexadecimal). It lacks the

human touch. Assembly Language is a
sort of Interpreter between our two
worlds. We can write things like
JMP SCREEN or TEXT 'HELLO' and the
assembler program will interpret that
into Machine Code. We dont have to
look up Hex codes for the letters in
HE^OJ^ or the memory address where the
label, SCREEN is located.

At this time I would like to describe

The Editor/Assembler. You write your
list of instructions in the Format or

rather the language our Microprocessor
understands. The better we understand

this language the easier it becomes to
sit down and write code.

I think it is only fair to warn you
that with Assembly you cant just sit
down and key in code. If a program is
very small it still requires some
planning. A simple thing like putting
a letter on the screen gets to be
quite a job. Your Assembly Language
programs will always seem very large.
However the end result, The Machine
Code Instructions in RAM, will take up
very little space. With this space
savings you also get SPEED. This is
why we want to tackle this Language.

ASSEMBLY LANGUAGE (C) WEBB 1991

Last month I showed you the LI
instruction.

LI R3,>17 This means to Load
Immediate into REGISTER >3 the

Hexadecimal number >0017.

Since our computers operate on
even Memory Addresses the
assembler adds the MSB >00 to the
>17. It then becomes >0017 when

it is entered into memory.
You will recall that the REGISTER

is located in an area of memory
we call the WORKSPACE REGISTER

AREA. The WORKSPACE REGISTERS

for the BOOTSTRAP programs in ROM
and the GROM programs are located
in an area known as SCRATCH PAD

RAM. This RAM area is on a 16 bit

data path and is the quickest
RAM in our computer. It is too
small to put a program there but
we can use the area for our

programs WORKSPACE REGISTER. Yes
thats right, we must make our own
WORKSPACE REGISTER AREA for our

program. The instruction to do
this is LWPI. Load Workspace
Pointer Immediate.

This instruction is usually the
first instruction in a program.
It looks like this:

LWPI >F000

This instruction makes a 16 WORD

area of CPU Memory into a
WORKSPACE REGISTER AREA.

You may put any RAM address you
like after the instruction.

This example starts the WORKSPACE
AREA at address >F000.

This makes REGISTER >0 MSB at

address >F000 and its LSB at

>F001. REGISTER >2 MSB is at

>F002 and LSB at >F003. And so

on. Remember that LOW and HIGH

MEMORY are inside the Peripheral
Expansion Box's 32K Card. This
means that the data path to the
9900 CPU is only 8 bits wide down
the black FIREHOSE CONNECTOR from

the PE box. Our WORKSPACE

REGISTER AREA is twice as slow

here than if it were in the

SCRATCH PAD RAM area >8300 to

>83FF. This is not great news. We want
SPEED after all. And if we are forced

to do our math calculations in the

slower RAM area we are not true 9900

Assembly Language programmers! Well
all is not lost. It turns out we can

use this area for our WORKSPACE

REGISTERS if we are very careful and
follow the guidelines spelled out in
the Editor Assembler Manual on pages
404 to 406. One of the problems occurs
when your program is executed, or
started, from a BASIC program by CALL
LOAD and CALL LINK, and your program
returns control to BASIC, only >8300
to >8317 can be used by your program.
Further, if you pass parameters, or
variables, with the CALL LINK
instruction then only >8300 to >830F
is available to you. Now, you can use
all of >8300 to >8349 if you decide
to use BASIC to load and transfer to

your Assembly Language Program and
stay there. You only need >8300 to
>831F for your WORKSPACE REGISTER
AREA. So if you are careful you can
use this area. Dont be afraid to use

regular RAM for your REGISTERS. Only
a programmer looking for optimum SPEED
would need to use this area. We only
need lightening SPEED for our program.
So regular RAM is just fine.
If you remember last months
description of the 9900 MAIL VANS
Instrument Panel you will recall the
three Digital Readouts.
1. The WORKSPACE POINTER REGISTER.

2. The PROGRAM COUNTER REGISTER.

3. The STATUS REGISTER.

With the LWPI instruction we have

entered a new number into the

WORKSPACE POINTER REGISTER.

9900 MAN now goes to the new area in
memory for the computations with
Registers. Any data left in the old
WORKSPACE REGISTERS is left alone and

remains untouched until you decide to
jump back in there. All of my programs
start with LWPI. If you are looking at
Machine Code in RAM Memory the LWPI
instruction is >02E0. It is rare in

most programs I have looked at.

17

ASSEMBLY LANGUAGE (£) WEBB 1991

When you look at Machine Code in
memory and run across >02E0 you
can be sure it is an ENTRY POINT

into the program. An ENTRY POINT
is the first instruction to be

read and acted upon by 9900 man.
All programs have an ENTRY POINT
and many of them use >02E0 as
a first instruction.

Now you know a MACHINE CODE
instruction.

O.K.. You can now put an
instruction in a program that
9900 MAN will use to change his
WP number in the MAIL VAN.

see-P

When we decide to write a program
we can start with the Mini Memory
Module or the Editor Assembler

Module. Small experiments are
best done in the Mini Memory
Module. It is easy to use the
Line by Line Assembler. However
there is no record of your source
code. You can not call back the

Source code and trouble shoot it

because the Line by Line
Assembler, true to its name, only
assembles source code one line at

a time. After you type in LWPI
>8320 and press ENTER that line
is instantly turned into Machine
Code and placed in Memory. To
examine that instruction later

12

you must first locate the memory
space the instruction resides in
and then you must decifer what the
Machine Code means. Not a task for

a beginner. So a good choice to
start with is the Editor Assembler

Module. Plug it in and select it
from the Module Menu. You will then
be facing the Modules Main Menu.
At this time we are only interested
in the Editor selection. Find the

Editor Assembler Disk with EDIT1

on it and load it into Disk Drive

one. Select Editor on the Main Menu

then LOAD on the next. EDIT1 will

load automatically. After it is
loaded "FILE NAME?" will show up
with a flashing cursor. If you have
a SOURCE PROGRAM on disk now is the

time to load it. However, we dont
have such a file so just press
the FUNCTION 9 combination. That

prompt will disappear and you will
be faced with 5 options, LOAD, EDIT
SAVE, PRINT, and PURGE. Select EDIT.
You will be faced with

♦EOF (VERSION 1.2) or other version

number.

Press FUNCTION S (Left Arrow).

You should now see numbers on the

left side of the screen. Press ENTER

several times. You may have guessed
by now that you are in the EDITOR.
You can write letters with this

EDITOR. In fact this is a great word
processor. It is dedicated to
writing SOURCE CODE but it is equaly
good at writing to your Mom.
Press FUNCTION 9 again and you will
be in the command line. Be sure that

ALPHA LOCK is on. you can now select
E(DIT,F(IND,R(EPLACE,M(OVE,I(NSERT,
C(OPY,S(HOW,D(ELETE,A(DJUST,T(AB,
and H(OME?.

Lets say that we have now finished
writing our SOURCE PROGRAM with all
of those helpful comments next to
the instructions. We now want to

Save it. Press FUNCTION 9 twice, you
will be back at the 5 selection

Menu. Select SAVE. Lets call our

SOURCE FILE, DSK1.SOURCE. This will
help us identify it later.

ASSEMBLY LANGUAGE <g> WEBB 1991

Wow. We have our Letter type file
named SOURCE. This is our record.

We can load it back into the

editor and change it any time,
with this SOURCE file we are

ready to run it through the all
important ASSEMBLER program.
Press FUNCTION 9 again and you
should be back at the Main Menu.

Put the Editor Assembler Disk

back in the drive.

Select Assembler. The Screen will

show * ASSEMBLER *. And prompt
with LOAD ASSEMBLER?. With the

Alpha Lock key on, press "Y" and
the Assembler Program will load.
It will then ask for the SOURCE

FILE NAME?. Our file is named

DSK1.SOURCE, press ENTER and the
Disk Drive will come on for a

moment. It will look for that

name on the disk. Be sure you
have inserted that disk in before

pressing ENTER. Then it will ask
you OBJECT FILE NAME?. This is
the name your program will have.
Lets say that it is DSK1.OBJECT.
Type that in and press enter.
Then it will ask LIST FILE NAME?.

If you want to print the SOURCE
file on you printer put in PIO
or whatever your printer name is.
If you do not want a listing just
press enter and it will move to
the next selection. OPTION.

If you have any special requests
for the listing of the file you
may enter R,L,S and or C. Any
combination will do. If you do
not want any options just press
ENTER. Look at page 33 and 34 of
the EDITOR ASSEMBLER MANUAL for

OPTIONS and this procedure.
BOOOOOM. The Disk Drive Takes

off and suddenly the screen goes
blank and prints out ASSEMBLER
EXECUTING. Then it is all over.

0000 ERRORS shows up on the
screen, hopefully, and PRESS
ENTER TO CONTINUE shows up.
If there are ERRORS it will show

you the number and tel1 you what
line number they are on.

H

We now have an OBJECT FILE named

OBJECT and we can run it with the

start name we specified in the
SOURCE FILE PROGRAM. More on that

later. For now we are just happy
to know how to operate the
Assembler. If you want to practice
typing in a program page 342 to 344
in the Editor Assembler Manual is

a great beginner program.
Next Month I will talk about that

program and what all of that means.

If you do not type in that program
dont worry. It will be explained in
next months lesson. It will give you
a sense of accomplishment though if
you try and succeed. It is a nice
simple example of using the monitor
and moving things about. See you next
month.

ASSEMBLY LANGUAGE © WEBB 1992
K *l l<

| 7* Hl^ttr^A^rtc'S

I

Hello again. This will be the
last of my beginners series of
lessons. I am studying BIT-MAP
mode right now and hope to show
how it works soon. BIT—MAP mode

is something you have seen in
graphic drawing programs. Each
pixel on the screen can be turned
on or off, and each row of eight
pixels can have two colors. This
is not as good as a different
color for every pixel but it can
be used in stunning ways. More on
that later. If you have any
questions, or want to enlighten
me on any points, please write.
Also, if you would like the full
set of 6 lessons please include
*7.00 with your request to cover
postage and copying. The Post
Office charges S.95 just for
Postage! Jeepers! Send your
request for the series to:

BOB WEBB

P.O. BOX 3023

ARCADIA, CA. 91007

123456 1234 123456789012345-to-8901

S1
I

LESSON NUMBER SIX

Well, we want to write our first
letter of instructions to 9900

MAN. We will use the EDITOR

program and EDZTOR/ASSEMBLER
MODULE to do so. 9900 MAN relys
upon the ASSEMBLER program to
translate our ENGLISH LANGUAGE

(ASCII DV/80 FILE) LETTER OF

INSTRUCTIONS into BINARY MACHINE

CODE INSTRUCTIONS. Like BASIC and

EXTENDED BASIC the way you write
the instructions requires a
certain format.

The ASSEMBLY LANGUAGE FORMAT is

simple. There are 4 vertical
columns of information used.

Only the center 2 are needed.
The other 2 are optional.
Here is a sample program lifted
from the EDITOR/ASSEMBLER manual.

Pages 342 to 344.

0000

0001

DEF

REF

0002 BBLE DATA

0003 COLOR DATA

0004 BBL BYTE

0005 SPACE BYTE

0006 LOC DATA

0007 DATA

0008 MYREG BSS

0009 BUBBLE LWPI MYREG

0010

0011

0012

0013

WIT

0015

0016

0017

0018

0019 L00P1

0020

0021

0022

0023

0024

0025

0026 L00P2

0027

0028

0029

0030

0050

LI

LI

LI

BLWP

n—
LI

LI

BLWP

END

2.0

BUBBLE

VMBW.VMBR.VSBW

>3C7E,>CFDF,>FFFF,
>F333

>A0

>A8

>7E3C

>A0

>A8

>01DA, >020D, >0271, >02A5
>02D6, >02E1, >0000
>20

R0,>394
Rl,COLOR
R2,2
6VMBW

R0,>D00
R1,BBLE
R2,8
QVMBW

R0

©SPACE,Rl
@VSBW

R0

R0,>300
L00P1

@BBL,R1
R2,L0C
*R2+,R0
R0,R0
SCROLL

@VSBW

L00P2

>20

>20

R0

R1,VDPBF1
R2, >20
SVMBR

R0,>20
Rl,VDPBF2
R2,>20
@VMBR

R0,>20
SVMBW

R0, >40
R0, >300
L00P3

R0,>2E0
R1,>VDPBF1
@VMBW

SCROLL

*
i

ASSEMBLY LANGUAGE (g) WEBB 1992

I have only shown 3 vertical
columns o-f data and one column o-f

line numbers. The line numbers

are there so I can refer to them.

Also to show what it would look

like on your computer screen.
The -fourth column o-f in-formation

would be on the far right o-f the
other three. This column is for

comments. Much like a REM

statement in BASIC.

I have chosen this program from
the EDITOR/ASSEMBLER manual
because it is simple and gives
a great deal of satisfaction when
running. I could have written my
own program for this lesson. But
each of you probably have the
manual and this introduction will

show you how it is laid out.
I have changed the program from
the book in only two ways. I have
-deleted the comments and split
the DATA statement at line number

0006. This was done to make it

fit on the first page. You will
note that when I did this I was

not following the manuals strict
layout with comments following
the asterisks. And, that because
this was done, the line numbers
would not be the same as the

manuals. Line numbers are only
used to debug programs. They are
not reffered to" in any way in any
assembly program. When you get
around to assembling your program
if there are any errors the
screen will show you what line
number is a problem.
-The assembler will give you an
idea of what the problem is by
saying something like SYNTAX
ERROR 0003. (0003 being the line
number)• But in no way do you
refer to a line number in the

program itself. This brings me
to our first column. Instead of

using line numbers for a GOTO
type of instruction, ASSEMBLY
uses a LABEL. A LABEL is a point
to start at or to go to.
In assembly JMP is used instead

XI

of GOTO. In our example there is an
instruction at line number 0030 that

says JMP L00P2. At line number 0026
in the first column is L00P2. If we

were to write this JMP instruction in

BASIC and used the line numbers it

would be GOTO 26. So JMP is just like
GOTO in BASIC but instead of line

numbers we use LABELS.

With this example we have introduced
the functions of column 2 and 3.

The JMP instruction is in the OPCODE

column. OPCODE is a fancy name for
instruction. This column is the work

horse of assembly. All instructions
reside in this column. No data or

labels are ever put here.
You will also note that there is a

space between the LABEL column and the
OPCODE column. This space is needed
to tell the assembler that the label

is finished and the opcode is next.
The assembler expects up to six
characters in the LABEL column,
followed by at least one space, and
up to four characters in the OPCODE
column. You can have more than one

space between columns. The third
column is the OPERAND column. This is

where you tell the assembler what you
want added, moved, changed or read.
The instruction is JMP and the OPERAND

ASSEMBLY LANGUAGE © WEBB 1992

is L00P2. The manual calls these
columns, in order, LABEL FIELD,
OPERATION FIELD, OPERAND FIELD,
and COMMENT FIELD.

The Source Statement Format
part of the manual goes from page
46 to 48. Now that you have a
Global view of the layout we can
discuss some of the details
needed to make your program work.
The ASSEMBLER program needs to
know the name of your program.
It always needs to see a DEF
statement at the top of your list
of instructions. The ASSEMBLER
takes the name in the OPERAND
FIELD and places it in LOW MEMORY
in an area called the REF/DEF
table. This is a VECTOR table.

An area in memory 9900 MAN knows
to go to to find the starting
point of your program. It is very
important to note line number
0009. The LABEL at 0009 is
BUBBLE. Also please note on line
number 0000 the Instruction DEF
BUBBLE. The ASSEMBLER reads DEF
BUBBLE and places the name in
the REF/DEF VECTOR TABLE in LOW
MEMORY and then looks for that
label in the LABEL column. It
then knows that line number 0009
is the ENTRY POINT into the
program. Or, rather, the first
instruction to.be executed.
If you will recall from one of
the earlier lessons the

instruction LWPI. This means to
LOAD WORKSPACE POINTER IMMEDIATE.
9900 MAN will take the address

following this instruction and
place it in his WP digital
readout on the Dash Panel in his

9900 MAIL VAN.
After the needed DEF instruction
to the ASSEMBLER comes the REF
Instruction. In Assembly it is
mandatory that you tell the
computer that you are going to
use one of its, built in,
SUBROUTINES in advance of using
it. The ASSEMBLER does not like

surprises.

An analogy to EXTENDED BASIC would
be, you must tell the computer in
the first lines of instructions the

Commands you are going to use.
You would be forced to say, in this
program I am going to use the PRINT
statement and the DISPLAY AT
statement. If you do not put that in
the first line an error will be

generated and you will not be able to
use them. This is how you must treat
the built in subroutines in Assembly.
What kind of subroutines are there?
In our program the VMBW, VMBR and VSBW
subroutines are used. So they must be
declared in the first instructions.

Once again this REF OPCODE is only for
use by the ASSEMBLER program. It reads
REF VMBW. And knows that anywhere that
term VMBW shows up in our text it is
to equate that term with the ENTRY
POINT into the subroutine program.
This subroutine is an assembly
language program burned into a GROM
chip inside the EDITOR/ASSEMBLER
module. The VMBW program, or
subroutine, is declared to the
ASSEMBLER and it then links your
program to the VMBW program. When you
use the BLWP or "BULLWHIP" command
you are actually leaving your program
for a while and running this small
subroutine and then branching back
to where you left off. Just like the
GOSUB command in BASIC. There are
many BRANCH routines in Assembly.
BLWP stands for BRANCH AND LINK
WORKSPACE POINTER IMMEDIATE. This is
used if you are branching out from
your program, accessing the Mail Boxes
at TEX'S GROM RANCH,, or sending or
receiving Mail to the VDP RAM area.
You dont have to declare BLWP
because that is an OPCODE. But you
must declare the subroutines built in
to ROM or GROM. These subroutines make
communicating with TEX at GROM RANCH
or sending data to the screen in VDP
an easy task instead of a long drawn
out process. VMBW stands for
VIDEO DISPLAY PROCESSOR RAM MULTIPLE
BYTE WRITE. What a mouthfull!

AX

ASSEMBLY LANGUAGE © WEBB 1992

All that means is that it helps
you write multiple bytes of data
anywhere in VDP RAM. Here is how
it works.

Lets say you want to write two
bytes of data to an area in VDP
RAM. It is not important what
this area is used for. Just know

that it has something to do with
putting an image on the screen of
your monitor.
We can use the example starting
at line number 0009 or, to speak
like an Assembly Programmer,
at the LABEL "BUBBLE".

After we set up our Workspace
Register Scratch Pad area with
the LWPI instruction we can see

the first line of information

needed for the VMBW program.
LI R0,>394 (>394=VDP ADDRESS)
LOAD IMMEDIATE >394 into REGISTER

ZERO. Register Zero is 9900 MAN's
Scratch Pad Ram space. It is a
place he holds information
while he manipulates it.
We dont know where that WORKSPACE

AREA is. Because earlier we

told the assembler to place it
anywhere it likes with the
command at*line number 0008,
MYREG BSS >20.

BSS is used to tell the assembler

to set asi de an area of memory
X number of bytes and give that
area a name. In this case the

name is MYREG. Standing for
MY REGISTER. You could name it

anything you like. Pick a name
that you will help you remember
it. The BSS Instruction set aside

>20 bytes of memory for the
SCRATCH PAD RAM. You could make

it an exact address if you like.
LI Rl,COLOR
LOAD IMMEDIATE >F333 into

Register 1. Earlier the LABEL
COLOR was was given to the
number >F333. Now anytime you
use the name COLOR anywhere in
the program the ASSEMBLER knows
that you mean >F333. In this
case it means we make the color

23

of the objects, that will be defined
later on in the program, with a
foreground color of >F(HEX for WHITE).
And a background color of >3 (HEX for
LIGHT GREEN). Then foreground >3 and
background >3.
LI R2,2
LOAD IMMEDIATE into Register 2 the
DECIMAL NUMBER 2. Since there is no

greater than symbol ahead of the
number it knows that the number is

in DECIMAL.

BLWP @VMBW
"BULLWHIP" to the VMBW subprogram.
9900 man then branches to the

subprogram and begins to execute those
instructions. The BULLWHIP command

does what is called a CONTEXT SWITCH.

When it branches to the subprogram it
branches to another set of WORKSPACE

REGISTERS. These registers are
dedicated to the subprograms in ROM
and GROM exclusively. You better not
use these other SCRATCH PAD RAM area's

for your programs or you will crash.
This context switch takes place so
that your registers will be left alone
while the subprogram is running. It
uses its own space and not yours. No
other computer in the world does this
that I know of. This is one of the

great features of our machines.
The subprogram runs and takes the data
you put in your own Registers 0,1 &2.
It then does all of the work loading
those 2 bytes of data into VDP RAM.
Change the number from 2 to 500 and
you can see the power of this little
subroutine. The subroutine branches

back into the program where it left
off (line number 0014). And continues

to the next Instruction.

The last but not least OPCODE is the

END command. If you type the LABEL
BUBBLE in the OPERAND column the
program will start automatically.
You wont have to type the word BUBBLE
to start the program. Thats it!
Now you know it all. HA HA. Study your
manual and Good Luck! Thanks for your
letters of support and may GOD BLESS
US ALL! BYE FOR NOW! YtffXjP^)

KEYBOARD READER

This small program is one of my
most used programs. I can never
remember the number associated

with a key press or ASCII symbol.
So, I threw this thing together.
Let me caution you before I
continue. Do not run this program
until you have saved it. Once you
start it, the only way to stop it
is to turn your computer off.
Function Quit and Function 4 are
disabled so you can't break back
in or kill it. This was done so
that all combinations of key
presses could be viewed. If you
dont want these features delete

line numbers 160 to 190. You must
delete line 170 if you dont
have memory expansion hooked up
or a syntax error is generated.

100

110

120

130

140

150

160 ! CALL LOAD disables quit
170 CALL INIT :: CALL LOAD(-31806,16)
180 ! ON BREAK NEXT disables ftcn 4
190 ON BREAK NEXT
200 !

210 CALL CLEAR

220 BLANK=0

230 DISPLAY AT(5,5):"KEY TEST PROGRAM"
240 DISPLAY AT(7,5):"Press Any Key."
250 DISPLAY AT(9,5):MIt*s Number will"
260 DISPLAY AT<10,5>:nb» displayed."
270 !

280 ! MAIN LOOP
290 »

300 CALL KEY(0,K,S)
310 BLANK=BLANK+1
320 IF BLANK>1000 THEN 410
330 IF S=0 THEN 300
340 DISPLAY AT(12,4):K
350 DISPLAY AT<12,10):CHR*(K)
360 BLANK-0
370 SOTO 300
380 !

390 ! BLANK SCREEN
400 !

410 CALL CLEAR

420 CALL KEY(0,K,S)
430 IF S=0 THEN 420
440 GOTO 210

KEY TO NUMBER PROGRAM
extended basic & 32k
by Bob Webb, 6-1991
Caution: you will have to
turn off computer to end.

<g>W£"B£ v1l

Once this program is running,
press any key.

It's number will be displayed.
If an ASCII symbol is associated
with that particular key press it
will be displayed just to the
right of the number.

This program does not break any
new ground. However you might
find a part of it to be of use.
I have added one of my favorite
little details to it.
If no key is pressed for a given
amount of time it jumps to a
screen saver type of subprogram.

The BLANK variable is a counter.
This clock ticks away and if a
key is pressed it is reset to
zero and begins again.
If no key is pressed it jumps
down to line 400 and stays there
until a key is pressed.

This second program can be added
to your own program. It has the
same kind of screen saver loop in
it as the first, after the GOSUB
statement you can test for which
key was pressed (IF K»13 THEN X).
Happy Computing, and long live
our 99/4a!

100 ! KEY LOOP - extended basic
110 ! by Bob Webb, 6-1991
120 CALL CLEAR :: DISPLAY AT(10,7):"TEST"
130 GOSUB 180

140 CALL CLEAR :: DISPLAY AT(10,7):"ENTER"
150 ! 13 IS THE ENTER KEY
160 GOSUB 180 :: IF K»13 THEN 140
170 GOTO 120
180 ! PRESS ANY KEY LOOP
190 FOR BLANK=1 TO 200
200 CALL KEY(0,K,S):: CALL HCHAR(24,16,32)
210 IF S=l THEN 250 :: CALL HCHAR(24,16,107)
220 NEXT BLANK :: CALL CLEAR
230 CALL KEY(0,K,S):: IF S»0 THEN 230
240 GOTO 190
250 RETURN

X\

*

*

*

*

*

*

*

*

This program run's right.
It had a bug in the scroll
routine. The Editor/Assembler

Manual is wrong. I fixed the

bug. It was in the SCROLL loop.
This program is on pages 342
to 344. The bug is on the 2nd
line on page 344. The Manual
adds when it should subtract.

Assemble with the R option.

DATA

BUBBLE

VMBW,VMBR,VSBW

>3C7E,>CFDF,>FFFF,>7E3C
>F333

>A0

>A8

>01DA,>020D,>0271,>02A5
>02D6,>02E1,>0000
>20

>20^)

h'/>c[£- I

* Set up
* BUBBLE

*

BUBBLE

colors

is the entry point into the program, 5t?<sf !

MYREB

R0,>394
Rl,COLOR
R292
QVMBW

Set up character definition

L00P1

R0,>D00
R1,BBLE
R2,8
QVMBW

screen

R0

©SPACE,Rl
QVSBW

R0

R0,>300
L00P1

Place bubbles on the screen

L00P2

@BBL,R1
R2,L0C
*R2+,R0
R0,R0
SCROLL

HVSBW

L00P2

color table 20 and 21

load colors >F3 and >33 (white & green)
2 bytes to load
move to VDP RAM

character >A0 location

definition of bubble character

8 bytes to move

start at VDP RAM >0000

move space character
move one space at a time(char
points to next location on screen
end of screen >20 = 768th char pos)
jump if not equal to loopl

(first char pos)

position)

load character code for bubble

load pointer to address for bubble
load real address

check if finished loading
finished, start scrolling the screen
write bubble on the screen

* Scroll

VDPBF1 BSS

VDPBF2 BSS

*

Fixed SCROLL routine.

screen

>20

>20

Pages 342 to 344 in the
Edi tor/Assembler Manual.

At the top of the program I
added this....

C LINE DATA >20~^)

And in the SCROLL routine I

added this....

@LINE,R0

The Editor/Assembler Manual

shows an AI (ADD IMEDIATE)

instruction when they should
have subtracted. (Top of page
344).

SCROLL

loop;

CLR R0

LI R1,VDPBF1
LI R2,>20

BLWP QVMBR

LI R0,>20
LI R1,VDPBF2
LI R2,>20
BLWP QVMBR

@LINE,R0j)Cs
BLWP SVMBW

AI R0,>40
CI R0,>300
JL L00P3

LI R0,>2E0
LI R1,VDPBF1
BLWP OVMBW

JMP SCROLL

end Rubble

r~ro fi. u to <•; r/rH-r,

TYfZ^vSSLi
TO >TAtf£T i r,

/44£
n

D

VDP address >0000 = first char position
CPU buffer address

number of bytes to move
move >20 from WP RAM (32 chars=l line)

VDP address >20

CPU buffer address

number of bytes to move
copy the line

move to lower VDP memory/ycsm-Acr >^g*
write back to the lower lI7Te\rfo.vt r#T
read next line

check if end of screen (char pos 768)
if not, copy more

write the last line

CPU buffer where the first line is

move CPU to VDP

keep scrolling

p* Kt>T LUAiPr Y"£- P£<2 4#-A-oi

	front-cover
	Binder1
	content001
	content002
	content003
	content004

	back-cover

