

Getting Started
with the

TEXAS Tl 99/4A

Getting Started
with the

TEXAS Tl 99/4A

Stephen Shaw

Phoenix Publishing Associates

Copyright©Stephen Shaw 1983
All rights reserved

First published in Great Britain by

PHOENIX PUBLISHING ASSOCIATES,
14Vernon Road, Bushey, Herts. WD2 2JL

ISBN 09465 76041

Printed in Great Britain by
Billing & Sons Ltd.
Cover design by

Denis Gibney Graphics
Typesetting by

Prestige Press (UK) Ltd.

CONTENTS

CHAPTER PAGE

INTRODUCTION 1

1 SETTING UP 3

2 Tl BASIC 8

3 HOW TO USE Tl BASIC 38

4 CASSETTE HANDLING 63

5 FILE PROCESSING 69

6 ADVANCED PROGRAMMING 76

7 EXTENDED BASIC 103

8 MODULES 114

9 PERIPHERALS 128

APPENDICES 137

INDEX 144

Introduction

The Texas Instruments Home Computer, TI99/4A,
represents an easy introduction to home computing. The
machine is supplied with a language called Tl BASIC.
This simple implementation of BASIC includes useful
and easily used subprograms to enable you to use the
machine's graphics and sound capabilities.

Tl BASIC is one of the simpler forms of the BASIC
language, and as such you should find it easy to learn.
Commands are typed in normally, you do not have to
search for special keys. Tl BASIC is not a fast language
and you should not expect to write arcade speed games
in this language. For really fast action games you must
either purchase Modules, or the peripherals which are
covered later in this book.

When you are ready to move on to more professional
areas of computing, the TI99/4A is capable of expansion
to an extremely powerful computer, and may even be
used as a terminal for a large 'mainframe' computer.

The TI99/4A console on its own is only a start: it is not
equivalent to a business minicomputer, and if you wish
to use it now for any demanding task you should consult
your dealer, who will advise you what extra devices you
need to buy.

Many of the words used in this book are the Trademarks
of Texas Instruments Incorporated. Their use here does
not imply sponsorship nor endorsement of this book by
Texas Instruments.

Texas Instruments follows a policy of continual product
improvement, and the operating system of the TI99/4A
may be subjectto minor amendment.

Read this book, try a few short programs of your own,
and as time progresses you will learn how to harness the
power of your computer, but remember it will take time
and practice.

1

Setting Up

Howto prepare your console for operation

This information is included in the manual supplied with
your console, but is supplied here, in a slightly different
format, to provide you with a central source of
information.

Unpack the console carefully. The power supply and
television modulator are separate units packed with the
console.

If your dealer has not fitted plugs onto the power supply
cable, you should attach a mains plug fitted with a 3 Amp
fuse.

The power supply may become quite warm, so place it
where high temperatures can cause no damage. Itwill be
out of the way if you place it on the floor, preferably not
on a carpeted surface.

You may find that you will use the console for many
hours at a time, so give careful consideration to its
location : a table or desk with a firm top and room for you
to spread your papers and books. You will need a chair
which allows you to sit comfortably without backache.

If you wear glasses, the tv will not be located at the most

comfortable distance whether you are near or short
sighted. You cannot damage your eyesight using the
computer, but the use of glasses prescribed for the
distance of your tv set when you compute, will alleviate
problems ofeye strain.

The tv modulator connects your tv to the console. Plug
the 'DIN' audio plug into the computer and the coaxial
plug into your tv. You will need to tune your tv to Channel
36, and it is essential that your tv is able to 'fine tune'. If
you have problems, ask your dealer. Some fringing
occurs on some colours: this is normal, but you should
tune your set for the sharpest picture you can which does
not introduce heavy diagonal lines over the entire
picture.

When the console has been connected to the mains and

to your tv, you may switch on and adjust your tv set for
best reception. When properly tuned, the computer
sound output should be heard on your television's loud
speaker. It may be necessary to slightly adjust the tuning.
To produce a sound output, press any key (except
SHIFT,FCTN,CTRL, or ALPHA LOCK) so that the tv display
changes to: PRESS:

1 to Tl BASIC

Instead of pressing 1, press the space bar, and a brief
tone will be produced. If you have difficulty adjusting the
tuning to provide both sound and picture together, your
television may be unsuitable, and you should consult
your dealer.

Your computer is now ready for use. Press Key 1 and you
are ready to key in a program in Tl BASIC.

If you wish to use a Tl Module, push it gently into the slot
at the right hand side of the computer. The tv screen will

flicker and the 'test card' will reappear. Press any key for
the 'menu' to select Tl Basic, or the contents of the
module.

You may need more than one attempt, as module
contacts can become tarnished or grimy. Ifthe computer
ceases to respond, it is a 'lock out', something which
happens with all computers. Do not panic — switch the
console off and try again.

DO NOT touch the printed circuit board contacts in the
module or you may destroy the electronic components
within.

How to key programs into the computer

Your computer is capable of much, but requires a little
help. It can do nothing unless it is first programmed
either by inserting a preprogrammed module, or by
keying in a program, written by yourself, or from a
magazine.

BASIC (the name given to the 'language' most home
computers are programmed in) was once quite
standardised, but with each new computer adding new
commands, and new features, there is now a great
difference in the versions of Basic used in different
computers.

Your TI99/4A uses Tl BASIC,and your computer can only
understand programs which are written in Tl BASIC.

BASIC is very similar to English, using common words to
instruct the computer, but the computer is very precise in
it's requirements for the way those instructions are
keyed in.

Each command word is separated from any other word

or number by a space. Some computers permit you to
leave out spaces, but in order to allow you a wide choice
of variable names, your 99/4A needs to see those
spaces.lf you put in a space where one is not required,
the computer often removes it itself.

Take special care when entering the number 1 or the
letter I, and the number 0 and the letter 0. These can very
often look similar in magazine listings. If you use the
wrong one, the computer will usually be unable to RUN
the program, and halt with an error message, such as
BAD VALUE or STRING-NUMBER MISMATCH.

If the printed program contains DATA lines, check them
thoroughly, as one comma too many or too few can
cause a "program crash" when you try to RUN the
program you have entered.

Learn to use the SHIFT key on the left: if you use the key
on the right of the keyboard the inevitable accident will
occur and instead of entering a + (SHIFTand =) you may
press the FCTN key and the =. This will cause a system
reset and you will lose your program.

Take note of the spaces in the printed program: if one is
printed, you should enter it!

Listings will run if entered carefully, but occasionally a
misprint occurs, or sometimes whole lines will be
omitted.

If you do encounter problems, carefully check each line
you have entered. Information on 'debugging' or
correcting programs can be found in the section of 'How
to use Tl Basic'.

Normally you should key programs in with the ALPHA
LOCK key in the DOWN position, unless the listing clearly

uses lower case letters, in which event release ALPHA
LOCK when entering those letters.

2

Tl BASIC

In this chapter we will look at the language in your
console. There are a number of general books now
available on the BASIC language, and one or two ofthese
may help you if you experience difficulty in handling the
language. Many evening classes in computing are also
available.

For greater assistance we will follow as closely as
possible the order ofthe Texas Instruments Manual.

Do nottry to take in all the information in one reading, but
go back and read it again a few times.

A computer works as a large number of switches, which
are either on or off. Each 'switch' is described as a BIT. In

order to pass information more quickly, the computer
looks at more than one BIT at a time. The TI99/4A uses a

16 bit processor: it is able to look at 16 bits at a time. For
most purposes however, the computer looks at 'words'
composed of 8 bits. These words are called BYTES. A
BYTE is a binary number composed of eight numbers,
which may be 0 or 1. In digital representation the BYTE
has a maximum value of 255 (Binary 11111111).

The computer stores its commands (reserved words) as
one byte, rather than a collection of letters. It can only
identify the command words if you follow the rules
regarding the characters permitted in front of, and

following command words. In general, you may only use
a space, arithmetic operator, or ENTER, but there are
exceptions which you will see in the program listings in
the manual and in the books of Tl programs now
available.

For discussion of the error tracing commands (Trace,
Untrace, Break) seethe section of How to useTI Basic.

LIST

The command LIST is used to list the contents of a
program. Used on its own, it will list the program on the
screen. You may use CLEAR (FCTN & 4) to halt the LIST.
To start again at say line 400, you type in LIST 400- the
hyphen indicating 'to the end', of LIST400-600

LIST can also be used in many other ways. These are
described in the chapter on modules and peripherals.

SAVE

Please refer to the section on cassette handling.

LET is optional, but uses up one byte of memory every
time you use it. It is better to avoid it's use.

LET A=2 is the same as

A=2

END is also optional, but in this case it is good practice to
use it. By adding END to your program, you may be
certain when you list it in the future, that you have the
complete program, and not a 'working copy'.

10

IF...THEN...ELSE

Tl BASIC may appear to be slightly limited in its use of IF.
. . THEN compared to some other computers. Tl do
however a Ilow the ELSE alternative.

The problem arises because Tl insist that you use the
construction only to transfer to another line. You cannot
add commands such as:

IFX=BTHENB=C

to do this you need Extended Basic.

However, Tl BASIC does have 'relational operators'
which will often help you out of this problem. These may
be found described in the section on Advanced

Programming.

FOR TO STEP

Note that in Tl Basic you must always use the variable
name after NEXT . NEXT on its own is in error. In some

early computers you were not allowed to transfer to
another line once a FOR NEXT loop had been
established, but with the TI99/4A you need not worry.
You may leave a FOR NEXT loop before the loop has
been completed.

Sample use:

100FORFREQ=110TO200

110 CALL SOUND(100,FREQ,0)
120 NEXT FREQ

For.. to.. step may also be used to provide delays:

100 FOR DELAY=1 TO 300

110 NEXT DELAY

11

will take a little over a second to complete in Tl Basic.

INPUT

Try to use a separate INPUT for each variable. It is
possible to input more than one variable eg by using
INPUT A,B but this requires the program user to input
two numbers separated by a comma.

The Tl form of input, INPUT "HOW MANY?":N uses a
colon separator (:), most other Basics use a semi colon
(;).

VARIABLES

When you wish to refer to a number, you may use that
number, or a 'label' representing the number. For
instance, if we tell the computer:

A=2

Then whenever the computer comes to'A'(without other
letters, that is, with spaces or brackets on either side), it
will treat it as the number 2.

'A' is a VARIABLE, and can be allocated to any number.
The TI99/4A may have variable names up to fifteen letters
long: you may for instance use:

HIGHSCORE=12000

A variable representing a number is a NUMERIC
VARIABLE and a variable representing a letter, a word, or
a group of words is called a STRING VARIABLE. A string
variable always ends with the dollar sign:

MESSAGE$="YOU WIN"

12

Strings (as they are called) are dealt with later in this
book.

READ... DATA... RESTORE

Tl Basic is slow at reading DATAlines, and if you need to
use a number of READs, it is essential that you do not do
it more often than absolutely necessary. It is a good idea
to fill a variable array, and refer to that. (ARRAYs are dealt
with at some length later in this chapter).

eg FOR 1=1 TO 5
READ A

IFA=1 THEN 200

NEXT I

DATA 2,3,1,0,6

if used often, could be replaced with:

FOR 1=1 to 5

READB(I)
NEXT I

then when a check is required

FOR 1=1 TO5

IFB(I)=1THEN200
NEXT I

DATA 2,3,1,0,6

It is worth mentioning that DATA causes more problems
in debugging a program than any other command. There
must be enough DATA to fill all the READs in the
program, and they must be numbers if a numeric
variable is READ.

Be careful how many commas you use in your DATA
lines: too many or too few can cause many hours

13

searching for errors. The error messages you will receive
may be some distance from a READ line, if you have
loaded an incorrect value into a numeric variable due to

missing out just one comma.

PRINT

Tl Basic has a fairly slow screen scroll, but your
information will appear more quickly if you use the print
separators instead of a number of separate PRINT lines.
You will also save memory.

eg 100 PRINT "PRESS"
110PRINT"2.TOTERMINATE"

130 PRINT

140 PRINT "H FOR HELP"

Will appear more quickly ifyou use:

100 PRINT "PRESS":"1. TO START":"2. TO

TERMINATE"::"H FOR HELP"

Tl Basic allows you to key in a program line up to 4 screen
lines long, so use this facility. Notice that instead of a
single PRINT to scroll one line, an extra colon has been
used in our single line amendment. Each colon causes
the screen to scroll once.

COLOURANDSOUND

The TI99/4A allows you to set the screen, and the
foreground and background colours of the characters, to
any of fifteen colours, plus transparent. The transparent
colour allows the screen colour to show behind a

character.

CALL SCREEN is used to set the screen

colour, and

14

CALL COLOR is used to set the character
colours.

Note that COLOR is spelt the American
way.

To Try:

100 FORN=1to8

110 CALLHCHAR(N,1,24+N*8,32)
120 NEXTN

130 F0RN=1T016

140 CALLSCREEN(N)
150 FORDELAY=1TO300
160 NEXT DELAY

170 CALLCOLOR(N,N,1)
180 NEXTN

190 END

In BASIC, characters are referred to by standard codes
known as ASCII CODES. The ASCII code for the capital
letter A is 65 for instance. These codes may simply be
referred to as CHARACTER CODES.

Tl BASIC allows you to define characters with the ASCII
codes 32 to 159, and for colour purposes these are
divided into sixteen sets. You may define different
colours for each set, but all of the characters in that set
must be the same colour.

Characters are defined using CALL CHAR
(CODE,STRING$), where STRINGS is a string, or string
variable, made up of HEXADECIMAL characters (0 to 9
plusAtoF).

As each character occupies a grid of 8 x 8 dots, it can be
defined by splitting it down the middle to form 16 rows of
4 dots.

15

Each possible combination of ON and OFF dots in a row
of four can be defined in terms of one of the sixteen
hexadecimal characters.

A character with one dot ON in the top right corner is
defined as: "0100000000000000".

The definition is by row, first the left side then the right.
Each row of 4 dots can be considered a row of binary
switches. The right switch is 1, the next 2, the next 4 and
the leftmost switch 8. When a dot is ON, add its value to
the others which are ON in the same row. You will obtain
a unique number,from 0to 15.

From this decimal number you change to a single
hexadecimal digit (hexadecimal numbers have a 'base'
of 16). The number 15for instance is hexadecimal F.

If you wish to place a single character on the screen, use
the CALL HCHAR command, it is slightly fasterthan CALL
VCHAR.

Tl BASIC programs will run faster in EXTENDED BASIC,
but it must be noted that this language has only 145
character sets. Therefore, it you use characters coded
144 to 159 in your Tl BASIC programs, these programs
will not run in Extended Basic.

There are several versions of the Tl console around, and
there have been slight changes in the relative shades of
the colours used. If you purchase a program, and the
colours look odd, it is because it was probably written on
a 99/4, or an NTSC 99/4A but you should be able to
change the colours to something more suitable by
amending the line numbers.

Sound is produced with CALL SOUND
TIME,F1,V1,F2,V2,F3,V3,N,V4) where TIME is in

16

milliseconds, F1,F2 and F3 are FREQUENCY in Hertz
(cycles per second) and V,V2 and V3 are volume (0
loudest, 30 quietest). N is a noise generator which
provides some sound effects.

A CALL SOUND may use only one frequency if you wish:
the second and third frequencies are optional and may
be omitted. The Noise is also optional.

A CALL SOUND will occupy the computer for about 50
milliseconds, and then, even if the sound is still
continuing, it will proceed with the next instruction. If it
comes to another CALL SOUND, the computer will wait
until the first has finished, unless the second CALL
SOUND has a negative time, in which case the first CALL
SOUND will immediately be terminated and the second
CALL SOUND begin.

Tl state that you can only have tones down to 110 Hz on
your computer, but that is not quite the case:

Try:

100 INPUTA

110 IF<37 THEN 100

120 CALHSOUND(2000,200,30,200,30,A*3,30,-4,0)
130 CALLSOUND(500,200,30)
140 GOT0100

It would appear that the console can at least appear to go
well below 110Hz. Try an input of say 50 or 60. If you find
the sound interesting, try changing the -4 to -8.

Keep in mind that the computer takes about 40
milliseconds to process a CALL SOUND command. It is
not possible to use this command to change the TYPE of
sound produced.

17

CALL KEY

Call Key is used to sense the use of a key on the keyboard
and permits data to be entered without scrolling the
screen (the INPUT command causes the screen to scroll).
An ACCEPT AT routine using CALL KEY can be found
later in this book.

Ifyou wish the computer to assume the ALPHA LOCKkey
is down, while a program is running, you can instruct it
using CALL KEY, and avoid having to request the
prog ram user to ensure the key is down.

Use CALL KEY(3,K,S) in your program, and as soon as the
program passes over it (no key has to be pressed) the
computer will consider the alphalock key to be down,
whether it is or is not. You resume normal operation with
CALL KEY(5,K,S). These switching calls can use any
variables you wish, and may be dummy calls or you may
actually use them to obtain a key response.

In the appendix section you will find a list of the key codes
which are available from the keyboard using the CTRL
and FCTN keys. The normal keyboard, with and without
using SHIFT will allow you access to characters 32 to 127
(a few of these codes do require the FCTN key).

IMPORTANT: if you use the split keyboard, CALL KEY(1 .
. and (2 . . the value returned for keys X and M is only
approximately zero, and although it prints on screen as
zero it will not equate with it. Instead of using IF KEY =0
THEN, you are forced to use

IFKEY+1=1THEN...

CALLJOYST

A program illustrating the use of this command is

18

developed in a later section of this book.

Please note that when using the joysticks, the alphalock
key must be in the up position. If alphalock is down, the
computer will not be able to sense when the joystick is
pushed upwards.

Using Call Key(3. . .) does not affect joystick operation,
but you should not use CALL JOYST(3. . .) as this may
prevent correct operation ofthe joystick.

ATN

ATN is a trigonometrical function which you may not
need to use often, but in Tl BASIC it may be used to obtain
an accurate value for the mathematical constant PI:

PI=4*ATN(1)

This and the other trigonometric functions provided
work in radians. You may convert radians to degrees by
using ATN:

DEGREES=RADIANS*180/4*ATN(1), or
more simply
DEGREES=RADIANS*45*ATN(1)

INT

INTEGER is a numeric function you will use quite often. It
removes the fraction from a number, so that 2.3 for
instance becomes 2. It is frequently used with the RND
function, and can also be used to round decimal
numbers.

For example, if B is a decimal number to 13 places, and
you wish to print only thefirsttwo places, you could use:

PRINTINT(B*100)/100

19

If you wanted the last decimal to be 'rounded', the
alternative is

PRINTINT(B*100+.5)/100

RANDOM NUMBERS

Random numbers are useful in any program where you
need to follow an unpredictable path. A program to
display dice would be an example.

The 99/4A generates pseudo random numbers. If you
have a short program:

100 FOR 1=1 T010

110 PRINTRND

120 NEXTRND

Every time you run the program the SAME 'random'
numbers will be printed. This can sometimes be of value
if you wish to be certain of the effect but still have the
appearance of randomness.

You may instruct the computer to start the list of
'random' numbers somewhere else, by adding the line:

90 RANDOMIZE N where N is a
numeric variable.

The value of N

determines where

the random

numbers begin.

Merely adding 90 RANDOMIZE, without 'seeding' the
function with a value, will cause the computer to start at
a truly random number, and if you run the program
several times, different values will be printed each time.

20

RNDtakes a value between 0 and 1, and is usually used in
theformat:NUMBER=INT(RND*MAXIMUM)+1

The variable NUMBER will then take any integer value
from 1 to MAXIMUM, including maximum. The
maximum value of RND is .99999' so INT(RND*100)
gives a maximum of 99. You have to add the odd 1 to
enable you to actually reach the maximum you want.

You may preferto have at the start of your program:

DEF RAN(X)=INT(RND*X)+1

Then when you want a random number up to say 12, you
may enter in your program: NUMBER=RAN(12). You
have created your own random function. Also see DEF.

SQR

SQR is used to obtain the SQuaRe root of a number:

A=SQR(4)

Many computers will not equate SQR(4)=2, or fail on
some other comparison, due to internal rounding of
numbers. Your 99/4A will equate all ten squares up to
100. Try it on a friend's computer. You may not need to
use this very often, but it is an indication of the numeracy
ofthe99/4A.Try:

100 FOR 1=1 T0100

110 A=SQR(1)
120 IFI=A*ATHEN130ELSE140
130 PRINTI;"PASSEDTHETEST

CORRECTLY"

140 PRINT"NEXTVALUEOFI"
150 NEXTI

21

NOTE that 1,2,4,9,16,25,36,49,64,81 and 100 pass the test
OK. The failures are due to internal rounding, which still
exists, but it is not quite so marked on the 99/4A as on
other computers. If your program needs to make a
comparison such as this, use the INTfunction to remove
any (unprinted) fraction.

In the program above for instance, there is some
improvement by using INT(A*A) in line 120.

There is a bigger improvement using

110 A=INT(SQR(D)

which will remove from A any invisible fraction.

STRING EXPRESSIONS

A STRING is a non-numeric value or variable. A letter of
the alphabet or a word or group of words may form a
string.

NB: A NUMBER may also be a string:

2 is a number, "2" is a string.

A number (no quotation marks) must be used for
mathematical operations. A string expression is
therefore identified by quotation marks, or if represented
by a variable, by a dollar sign after the variable name:

MESSAGE$="IWIN"

POS

The POS function is rarely used on other computers, but
enables you to program very concisely on your 99/4a.

22

In the following example, CALL KEY is used to detect
whether keys A B C or D are pressed, and control is
passed accordingly. First, without using POS:

100 CALLKEY(0,K,S)
110 IFK=65THEN200

120 IFK=66THEN250

130 IFK=67THEN300

140 IFK=68THEN350
150 GOTO 400

In this case, the keys have adjacent ASCII codes, and it
would be possible to use:

110 IFS=0THEN 400

120 IF(K<65)+(K>68)then400
130 ON K-64 goto 200,250,300,350

omitting 140 & 150.

However, in many games you may wish to test for keys
which are well spread, such as AKESDXQPP. The POS
function canthen offerthe solution. Still using ABCD:

100 CALLKEY(0,K,S)
110 IFS=0THEN 400

120 ONPOS("ABCD",CHR$(K),1)+1
GOTO 400,200,250,300,350
omit 130-150

Ifthe key pressed is not in the string used in POS,then the
expression has a value of zero, so one is added to enable
us to use ON .. GOTO, and the first transfer occurs if an
unwanted key is pressed. In this case 'only' three lines
have been saved, but if you wish to use more valid keys,
you still only need to use three lines. This can be very
useful in a program.

23

Although you may use a string up to 255 characters long,
the POS function is unreliable for strings longer than 127
characters.

SEG$

SEG$ is used when you wish to print a SEGment of a
string, or remove a part of a string.

Tl BASIC uses only one command to segment strings,
SEG$. Other computers use LEFT$, RIGHTS, and MID$,
but you only really need the one.

It is used for instance in this DISPLAY AT routine taken

from THE TEXAS PROGRAM BOOK.

100 REM

110 REM PRINTATX,Y,M$
120 REM ROUTINE

130 REM

140 FORJ=1TOLEN(P$)
150 IFYO2THEN180

160 Y=3

170 X=X+1

180 IFX<24THN200

190 X=1

200 CH=ASC(SEG$(P$,J,1))
210 CALLHCHAR(X,Y,CH)
220 Y=Y+1

230 NEXTJ

(Set X and Y to the start position of your word, placed in
M$. Then GOSUB this routine, and remember to add
RETURN at the end to go back to the place in your
program you left).

24

VAL

VAL is intended to make a number contained in a string
available as a number, for use in mathematical
operations. It changes "2" into 2, and may be used
N0=VAL("2"). It is the opposite of STR$, used to change
a number into a string:

A$=STR$(2)

The Tl VAL function will change a string such as "2" to
the numeric variable 2.

For instance: A=VAL("123")

This is of great importance when memory space is short,
as a string variable representing "2" uses less memory
than a numeric variable representing 2. This is explained
in the section on Advanced Programming.

Please note that the Tl VAL will only work if the string
contains numbers only. It will not function for numeric
expressions such as "2*3+8" nor if alphabetical letters
are used such as " 12 APPLES".

DEF

DEF is used to DEFineyour own functions. Tl Basic gives
you great freedom in using this function — you are not
restricted for instance to using a definition commencing
FN as on some computers. DEF may also be used to
create string functions.

Below are some examples of DEFsyou may wish to use:

To print a random numberfrom 1 to X.

25

At the beginning ofyour program type:

DEF RAN(X)=INT(RND*X+1)

Then in your program, when you wish to use such a
number, you type (for example)

A=RAN(7)or
A=RAN(LEVEL)

where LEVEL is a numeric variable.

Note that although X is used in the defining statement,
you may use any number or variable when you use the
new function. Although the function has here been called
RAN, you may use any name you wish so long as it is not
a reserved word (seeTI manual for list).

The DEF statement is best used at the beginning of your
program.

DEF PI=4*ATN(1)

Then when you wish to use PI in your program, just use
the variable PI. NB: This has the same effect if you omit
the DEF function. There is no advantage in using DEF
instead of a simple LET.

Further uses of DEF may be found in the Advanced
Programming Section.

ARRAYS

Arrays in Tl Basic may have 1 2 or 3 dimensions.

A one dimensioned array may be thought of as a tower of
building blocks. Each block has written on it a value or

26

message. To find out what the message on block 3 is, we
count upwards to thethird block...

In Tl Basic, normally the 'bottom' block is considered to
be Block 0 (zero).

A tower of blocks may have blocks up to Block Number
10 without having to tell the computer how many blocks
there are, but for a larger array, the computer has to be
advised to reserve memory by using the DIMstatement.

If you want to use an array of 16 values, before you use
any of the values you must have the line DIM NAME(16)
where NAME is the numeric variable for the tower of
blocks.

We can place values in the array elements as follows:

100 DIMNAME06)

110 FORN=0TO16

120 NAME(N)=N*2
130 NEXTN

Now the variable NAME(3) has a value of 6. The variable
is referred to in this way, with the 'level' after the variabl-
name, and in brackets.

Tl Basic differs from some other basics in the way it
handles arrays in some important ways:

You must use a number in the DIM statement. A variable
is not accepted.

Once an array has been DIMensioned, you may not alter
the size of the array.

If an array variable occurs in your program before a DIM
statement, the array is automatically dimensioned as 10.
You cannot then use the DIM statement for that array.

27

Both numeric and string variables may be arrayed.

Tl Basic does NOT permit you to use the same name for
an arrayed variable and a simple variable. You cannot
use both NAME as a variable and NAME(3) say.

Arrays reserve sections of memory, and you should not
use a larger array than is needed. A numeric array will
use 8 bytes for each element, regardless of the value in
the element.

A string array initially occupies 2 bytes per element, but,
as you place strings in the elements, the space for each
element will depend on the string you place in it
(memory used = number of characters plus 1 byte).

If you can use string arrays instead of numeric arrays,
you will usually save a great deal of memory.

A string array can be converted to a number by using the
VAL function: eg A=VAL(SCORE$(2))

IF YOU DO THIS, ensure that you place the character "0"
(zero) in any empty sectors to prevent possible program
crashes.

As stated above, the Tl 99/4A will assume the bottom
sector is called Number Zero. Often you will find that
having the base called Number One is quite adequate. If
you do not use the 'zero' element, it is a waste of memory
to have that element reserved, and Tl allow you to
instruct the computerto use a Base of 1.

The instruction to do this is OPTION BASE 1 (Note: The
number is NOT in brackets!).

You can use the base 1 for all your arrays or none of
them. Once set, you cannot reset the base, and as it is
automatically set by any reference to an array before the

28

computer finds the OPTION BASE statement, it MUST
occur before any such reference.

In Tl Basic therefore, FIRST: Ifyou wish to set the base to
1, use OPTION BASE 1. Then, ifyour array is to have more
than 10 elements, use DIM ARRAYNAME(NUMBER).
Then you may use the array!

You may become more familiar with arrays by studying
printed programs. (NB: Some other computers use the
DIM statement to reserve memory for simple strings.
This does notapply to the TI99/A.).

Two dimensional arrays are similar. It may help if you
consider the first element name as a hotel floor, and the
second as a hotel room. For instance: DIM

NAME(FLOOR,ROOM).

The use of multidimensional arrays should be
undertaken cautiously, and careful consideration should
be given to the use of OPTION BASE 1.

For example, a numeric array having dimensions (20,20)
totals 21 x21, or 441 elements, at 8 bytes each, that is 3.5k
of memory used with just one DIM line! Use OPTION
BASE 1 and the number of elements drops to 20x20=400.
Times 8=3.2k, saving 300 bytes.

SUBROUTINES: GO SUB-RETURN

Whenever you use the same routine several times in a
program (for instance the PRINT AT routine in THE
TEXAS PROGRAM BOOK, reprinted in this chapter under
SEG$), you may use GOTO and ON FLAG GOTO, but it is
easier to use GOSUB to enter the routine, and when you
have finished, RETURN will send you back to the
program line immediately following the GOSUB with
which you entered the subroutine.

29

Note: The computer stores the line number from which
you GOSUB. This memory is only freed when you
RETURN. If you GOSUB, ensure that you RETURN or you
will quickly find a MEMORY FULLmessage appearing.

It IS possible to jump into a subroutine with GOTO
provided you jump out with another GOTO, but that type
of programming can lead to errors if you are not very
careful, and should only be resorted to when you have
absolutely no option. This should be rare.

An ideal example ofthis can be found in a short routine to
find out how much free memory there is after you have
typed a program in. Add on to the end:

10000 A=A+B

10010 GOSUB 10000

Now type in RUN 10000. This little program will now run,
and in due course the MEMORY FULL message will
appear. Now type PRINT A, and press ENTER. The value
of A is approximately equal to the memory space
remaining.

(Your program may still not run even if there is a lot of
space remaining: memory is still required to handle the
values of the variables, the return addresses of GOSUBs
and so on).

You MAY use GOSUB to enter a subroutine at any stage,
you do not have to GOSUB to the beginning of a routine.

Within the limitations of memory, you MAY GOSUB from
a subroutine, but keep an eye on the number of
RETURNS!

The ON . . . GOSUB command is similar to the ON . ..

GOTO command (which see), except that instead of a

30

simple line transfer, the computer remembers where it
has jumped from, and a RETURN will send it back to the
line immediately following the ON... GOSUB.

REMEMBER to watch your RETURNS.

PECULIARITIES

'PAUSES'

When a program is RUNning, from time to time your
computer will appear to stop operating for a very short
period. This pause is especially noticeable when using
the PRINT AT routine to be found later in this book, or
when using Sprites with Extended Basic.

The reason for the pause is called 'garbage collection'.

When you amend a program line by re-entering it, or by
using the Edit mode, there is a pause before the cursor
reappears. This pause becomes more extended in a long
program.

During this pause the computer is deleting the previous
version of the line, moving all the following lines up in
memory and adding the new version of the line to the
bottom of the program memory: in short, doing a great
deal of work.

When a program is running, and variables are defined,
the values of the variables are stored in memory. When a
new value is allocated to a variable, to avoid frequent
delays to your program, the computer retains the old
value in its memory, even though it will use the new
value.

31

As time progresses, the memory will become full of
these old variable values. When memory becomes full,
the computer discards the redundant values : this is
called garbage collection. It is more efficient to only do
this when memory becomes full than every time a
variable is redefined, but a very small pause is caused.

These pauses will be more frequent if your program is a
long one, as there will be less memory to fill up with dead
variable values.

REDUNDANT CHARACTER DEFINITIONS

When you switch the console on, some characters are
undefined. Ifyou define these characters in one program,
the computer will retain that definition even if you use
NEW and load a new program. Only by using BYE or
QUIT will the definition be erased.

Therefore never assume a character is undefined : you
may have already run a program which has defined that
character!

Example:

Type in:
100 CALL CLEAR

110 A*=MFF818181818181FF"

120 B*-"0000FF0000FF0000"

130 CALL HCHAR(12,1,140,128)
140 GDSUB 210

ISO CALL CHAR<140,A*)
160 GOSUB 200

170 CALL VCHAFU 1,12,140,120)
180 CALL CHAR<140,B*>
190 GOSUB 210

200 STOP

210 FOR T=l TO 1000

220 NEXT T

230 RETURN

240 END

32

RUN this program. When it ends, type in:

PRINT CHR$(140) (ENTER)

Notice that the definition is still there.

If you wish, RUN the program again and note the
difference at the beginning, as the character is no longer
undefined.

Now type in:

NEW (ENTER)

and repeat:
PRINT CHR$(140) (ENTER)

The definition is still there. If a new program is loaded,
which uses this character and assumes the character is
undefined, the character will not be printed as a blank but
as the character we have defined with the above short

program.

ThisTI Basic program simulates two puzzles

The screen is used as a memory device, with CALL
GCHAR used to find out what is in a particular position,
and then the information is manipulated and new
characters displayed.

The program can be speeded up by using a 6x 6 array to
hold the information and using that instead of GCHAR.
This program will work: can you make itwork better?

NOTE: Many variables in this program are the letter I, or
a letter Iwith a number following.

Be careful to distinguish between the letter I and the
number 1.

33

180 REM SQUARES S SHAH 1981 4X4 IS BEST

110 RANDOMIZE

120 DEF RAN<X)«=INT(XtRND) + l

130 60SUB 2200

140 60SUB 2100

150 60SUB 1340

160 60SUB 980

170 FOR I"8 TO 6+2«V STEP 2

180 FOR 12=5 TO 2*H+3 STEP 2

190 CALL 6CHAR(I2,I,I4)
200 P0SR-I2

210 POSV-I

220 IF 14-32 THEN 260

230 NEXT 12

240 NEXT I

250 REM

260 IF SCR-0 THEN 300

270 SCR=SCR+1

280 IF SCR-2 THEN 360

290 RETURN

300 CALL KEY(0,A,B)
310 IF A»ASC("P-)THEN 130

320 CALL HCHAR(15,22,63)
330 CALL HCHAR<15,22,32)

340 IF B<1 THEN 260

350 KEY»POS("1234567890QWERP",CHR*<A) ,1)*1

360 IF (H°4)t(KEY>5)THEN 260

370 ON KEY 60T0 260,390,450,520,690,860,890,920,950,2300,2330,
2360,2390,2420,2450,130,130

380 SCR=SCR+1

390 REM A

400 IF P0SR=5 THEN 260

410 CALL 6CHAR(P0SR-2,P0SV,I3)

420 CALL HCHAR(P0SR-2,P0SV,32)
430 CALL HCHAR(P0SR,P0SV,I3>
440 60T0 170

450 REN DOWN

460 IF POSR-15 THEN 260

470 IF <H°4)t<P0SR=il)THEN 260

480 CALL BCHAR(P0SR+2,P0SV,I3)
498 CALL HCHAR(P0SR+2,P0SV,32)

500 CALL HCHAR(POSR,POSV,I3)
510 60T0 170

520 IF H-6 THEN 580

530 IF P0SV=8 THEN 260

540 CALL GCHAR(P0SR,P0SV-2,I3)
550 CALL HCHAR<P0SR,P0SV-2,32>
560 CALL HCHAR(P0SR,P0SV,I3)
570 GOTO 170

580 M**0''

590 15-5

600 FOR 1-8 TO 18

34

610 CALL GCHAR(I5,I,I2)
620 H$°M$&CHR*(I2)

630 NEXT I

640 M*»SE6*(M*,3,9>&SEG$(H$,2,l)!(SE6f <M$,1,1)
650 FOR 1=8 TO 18

660 CALL HCHAR(I5,I,ASC(SEG*(M*,1-7,1)))
670 NEXT I

680 60T0 170

690 IF H=6 THEN 750

700 IF P0SV=14 THEN 260

710 CALL GCHAR(P0SR,P0SV+2,I3)

720 CALL HCHAR(P0SR,P0SV+2,32)
730 CALL HCHAR<P0SR,P0SV.I3)

740 GOTO 170

750 Mf=""

760 15=5

770 FOR 1=8 TO IB

780 CALL GCHAR(15,1,12)

790 M*=M*«(CHRt(I2)

800 NEXT I

810 H$=SE6$(M$,ll,l)!cSEG$<H$,2,l>t<SEG$(M$,l,9)
820 FOR 1=8 TO 18

830 CALL HCHAR(I5,I,ASC(SE6*(H*,I-7,1)))
840 NEXT I

850 GOTO 170

860 15=7

870 Mf»""

880 GOTO 600

890 15=7

900 M*=""

910 GOTO 770

920 15=9

930 M$»""

940 GOTO 600

950 15=9

960 M*="n

970 60T0 770

980 T$="PRESS APPROPRIATE KEY TO"

990 R-17

1000 VR=3

1010 GOSUB 2260

1020 T*="MOVE BLANK SQUARE"

1030 R=1B

1040 VR=3

1050 GOSUB 2260

1060 IF V<5 THEN 1110

1070 T*="OR SLIDE ROWS

1080 R-19

1090 VR-3

1100 GOSUB 2260

1110 T*-nl. UP 2. DOWN"

1120 R-20

1130 VR-3

1140 GOSUB 2260

1150 IF V>5 THEN 1210

1160 T*="3. LEFT 4. RI6HT"

1170 R-21

1180 VR=3

1190 GOSUB 2260

1200 RETURN

1210 T$="3.T0P< 4.TOP) 5.2< 6.2>"

1220 R=21

1230 VR=3

1240 60SUB 2260

1250 T$="7.3< 8.3> 9.4< 0.4>"

1260 R=22

1270 VR=3

1280 60SUB 2260

1290 T$="Q.5< H.5> E.6< R.6>"

1300 R-23

1310 VR=3

1320 60SUB 2260

1330 RETURN

1340 CALL CLEAR

1350 REM DRAW

1360 FOR 1=7 TO 7+2*V STEP 2

1370 FOR 12=4 TO 4+2*H STEP 2

1380 CALL HCHAR(I2,I,98)
1390 NEXT 12

1400 NEXT I

1410 FOR I-B TO 6+2*V STEP 2

1420 FOR 12=4 TO 4+2*H STEP 2

1430 CALL HCHAR(I2,I,96)

1440 NEXT 12

1450 NEXT I

1460 FOR 1=7 TO 7+2*V STEP 2

1470 FOR 12=5 TO 3+2*H STEP 2

1480 CALL HCHAR(I2,I,97)
1490 NEXT 12

1500 NEXT I

1510 IF V<5 THEN 1740

1520 FOR 1=8 TO 18 STEP 2

1530 FOR 12=5 TO 15 STEP 2

1540 CALL HCHAR<I2,1,45+1/2)
1550 NEXT 12

1560 NEXT I

1570 CALL HCHARU1,14,32)

1580 RANDOMIZE

1590 T*=" WAIT-RANDOMISING"

1600 R-17

1610 VR-3

1620 60SUB 2260

1630 FOR Y-l TO 32

1640 SCR-1

1650 KEY«RAN<14)+1

1660 60SUB 170

1670 SCR-1

1680 KEY»RAN<2)+1

35

36

1690 608UB 170

1700 GOTO 1710

1710 NEXT Y

1720 SCR=0

1730 RETURN

1740 REM

1750 13-65

1760 FOR 1=5 TO 11 STEP 2

1770 FOR 12=8 TO 14 STEP 2

1780 CALL HCHAR(1,12,13,1)
1790 I3-I3+1

1800 NEXT 12

1810 NEXT I

1820 CALL HCHARd 1,14,32)
1830 REM

1840 T*=" WAIT-RANDOMIZING"
1850 R-17

1660 VR-3

1870 60SUB 2260

1880 FOR Y=l TO 55

1890 SCR-1

1900 KEY=RAN(4)+1

1910 60SUB 170

1920 NEXT Y

1930 SCR-0

1940 RETURN

1950 PRINT "SQUARES"t:"STEPHEN SHAW 1981":"PRESS '1' OR *2' FOR!
1960 PRINT "1. 6X6 PROBLEM":"2. 4X4 PROBLEM"
1970 PRINT "FOLLOW DIRECTIONS AT BOTTOM OF SCREEN AFTER

DIAGRAM":"HAS BEEN DRAWN"
1980 CALL KEY(0,A,B)
1990 IF A=49 THEN 2050

2000 IF A-50 THEN 2010 ELSE 1980
2010 H-4

2020 V»4

2030 CALL CLEAR

2040 RETURN

2050 H°6

2060 V-6

2070 CALL CLEAR

2080 RETURN

2090 CALL CLEAR

2100 PRINT "SQUARES 1981"::"STEPHEN SHAW STOCKPORT":"THE
OBJECT IS TO RESTORE •

2110 PRINT "THE ORIGINAL PATTERN OF ":"SQUARES,WHICH THE CO
MPUTER":"HAS SCRAMBLED"

2120 PRINT "USIN6 THE COMMANDS AVAILABLE.":"IN BOTH PUZZLES
THE BLANK":"MOVES UP OR DOWN"

2130 PRINT "IN THE 6X6 PUZZLE":"IT CANNOT MOVE > OR < BUT":
"THE WHOLE ROW SLIDES "

2140 PRINT "WATCH AS THE COMPUTER":"SCRAMBLES THE ORIGINAL"
:"PATTERN TO SEE HOW IT":"WORKS!"

2150 PRINT "(BEIN6 RANDOM YOU MAY END":"UP BACK AT THE START!)"
2160 PRINT "PRESS KEY P TO PLAY A6AIN":"NHEN YOU HAVE COMPL

ETED":"YOUR PUZZLE"

2170 INPUT "PRESS ENTER":T*

2180 CALL CLEAR

2190 60T0 1950

2200 CALL CLEAR

2210 CALL CHAR(96,"000000FF")
2220 CALL CHAR(97,"1010101010101010")
2230 CALL CHAR(98,"101010FF10101010")
2240 CALL SCREENU2)

2250 RETURN

2260 FOR 6=1 TO LEN(T$)

2270 CALL HCHAR(R,VR+G,ASC<SEG*<T*,6,1>)>
2280 NEXT G

2298 RETURN

2300 15-11

2310 Mt=""

2320 60T0 600

2330 15-11

2340 M$=""

2350 GOTO 770

2360 15=13

2370 M*»B"

2380 60T0 600

2390 15=13

2400 M$="M

2410 60T0 770

2420 15-15

2430 M*=""

2440 GOTO 600

2450 15=15

2460 M$=""

2470 GOTO 770

2480 END

37

38

3

How to use Tl Basic

PRACTICAL PROGRAM WRITING

Before you switch your console on, to write a program, or
even gather a large pile of paper to work on, sit and think
about your proposed program.

Work out what your program is to do, and try to split it
into small blocks of tasks to be accomplished. Then you
can write the coding for each block, and check itto ensure
you have not made any mistakes, before moving to the
next block.

It is much easier to write a small program that works well
than to write in one sitting a 15k program: it is
improbable that it will work first time, and you will be
faced with a lot of checking I

Some experienced programmers can just sit at their
console and input a new program but, certainly at first,
you should write your proposed program down on
paper. Check the flow of the program before you input it:
can any variable or input reach a value which would
cause the computer problems? If so, is an 'error trap'
required, or does the program need rethinking?

39

The Basic language is in some ways similar to English:
the same task can be accomplished in several ways, but
some ways are more efficient than others. A method
which works well in one program may be inappropirate
in another, therefore it is not possible to give any more
than the most general guidelines.

A digital stopwatch can be an advantage when you are
trying to find the quickest way of doing something.
Usually a single process is too fast to time, but place it in
a loop.

(A loop is a part of the program which is repeated
several times, until a particular condition is met. In the
following FOR ... NEXT loop the condition is met when
the variable I reaches a value of 1000).

FOR 1=1 T01000

CALL HCHAR(3,4,45)
NEXT I

and it is possible to obtain a reasonably accurate time to
compare with other ways of doing the same thing — for
instance, to place a single character at one screen
position you may also use:

CALL VCHAR(3,4,45)

— try substitution in the above loop and see the
difference in execution time.

In general the 99/4A is slow at reading DATA and at
scrolling the screen (PRINT), but there are occasions
when these are the best commands to use.

It is faster for instance to PRINT 24 lines than to use CALL
HCHAR 768 times (the number of characters on the
screen)!

40

Your program idea may need to be amended to meet
with the demands ofthe computer, and you should never
be afraid of completely scrapping your work and starting
again: often new inspiration can lead to a far more
efficient program.

Before developing some useful routines, a word about
editing and debugging: no matter how good a typist you
are, even entering a short program will need the use of
these facilities.

Editing is what you do when you change a program line
—perhaps only one character in the line.

A number of computers use 'screen editing', where you
move the cursor around the screen until it is placed
where you want to make your alteration.

The TI99/4A uses a 'line editor' for programs (some
modules also use a screen editor, eg TI-WRITER).Tousea
line editor, you first select the line number you wish to
amend, place it on the bottom of the screen, and move
the cursor along the LINE until you hit the place to be
amended.

To bring the line you want on screen, key in the line
number, then hold FCTN down and press key E or X. Your
line will appear with the cursor at the beginning of the
line.

Use FCTN and keys S and D to move the cursor over the
line without deleting or altering anything.

If you wish merely to alter the line, typing over it may be
sufficient, but the 99/4A also allows you to delete and
insert characters.

41

To DELETE a character, place the cursor over it (FCTN
plus S or D) and then press FCTN and key 1. This will
delete the character the cursor is on, and everything
following will move one space to the left.

To INSERT text, place the cursor after the last character
you wish to leave untouched, using FCTN and S &D, then
press FCTN and key 2. Now anything you type will force
everything after the insert point one character to the
right, and your inserted text will appear. The cursor
position also moves to the right as you type. You leave
INSERT mode by pressing FCTN and S or D, or by
pressing ENTER.

When your line is correct, press ENTER to enter the new
line into memory, and leave EDIT mode. However, if you
also wish to amend the line before or after the line just
finished, you may move directlyto that by pressing FCTN
andEorX.

The maximum line length in Tl Basic is four screen lines,
but the computer is often capable of taking a longer line,
as the absolute restriction is on the length of the line in
BYTES of memory used, not the number of character on
the screen.

You may use the edit function to insert 'overlong' lines as
follows:

Type in the last part of the required line first. Press
ENTER.

With the line on screen, press FCTN and key 2, then key in
the first part of your line, from the beginning. The part
you first entered is pushed to the right.

Now return the line to the screen using the edit mode:
type inthe line number andthen press FCTN and key X.

42

It is possible to overfill a line this way, and you will
receive an error message if you do. However you will
usually be able to go to an extra half screen line, and in
some cases you may be able to squeeze in two extra
lines!

The advantage of putting as much as possible in a line is
that by using less program lines you save a little
memory. In general, lines with a lot of numbers in will be
difficult to expand in this fashion, but lines with a lot of
text or commands can usually be considerably extended.

When the line is fully entered, press ENTER. The LIST the
line justto make sure it is all right.

You do not have to INSERT at the beginning of the line,
but you may find it easier to do so. Give the computer
time to move all the characters to the right when using
INSERT. Keep your eyes on the screen.

A brief word of warning: inTI BASIC, your program uses
the same area of memory as the values of variables,
separated by a 'marker' in memory. As a program runs,
the free memory is continually filling. Unwanted values
are only purged when the memory is full, resulting in
short pauses in program operation.

If the variable area of memory is almost full when you
stop to edit a program, inserting extra material MAY
result in the permanent loss of the marker which marks
the limit of the actual program. This will cause
irreversible damage to your program and may prevent
the LIST function from operating correctly, or cause a
system lockout when you try to run the program.

Therefore try to avoid running the program and then
editing it! Before you edit, take a copy of the program to
tape — this has the added benefit of apparently clearing

43

the garbage, and not only gives you a security copy but
actually prevents the problem occu ring!

This problem will not be apparent if you use extended
basic plus the 32k ram expansion, as variables then
occupy a different sector of memory.

DEBUGGING

Having entered your program, you type in RUN, and
instead of the program running, you receive an error
message. DEBUGGING is required.

A BUG is quite simply an error in the program, either a
mistype or an error in your use of Basic.

The computer does check the lines you enter, but will
only spot such things as using only a single bracket (or
quotation mark".

When you RUN your program, the computer first goes
through your program and sets aside memory for each
variable and sub program that you have used. During
this 'prescan' further errors may be spotted and an error
message printed on the screen.

Typical errors spotted at this time are incorrect use of
arrays (trying to use DIM after the variable has been
used) or a mismatched number of FORs and NEXTs.

Most errors will only produce an error message as the
computer finds them when your program is actually
running—for instance trying to GOTO a non existent line
number, or trying to RETURN when there is no
outstanding GOSUB.

The error messages generated by the TI99/4A are well

44

described in the manual, and will usually indicate a line
number in which the computer has met something it
cannot cope with.

Unfortunately, the actual error may not be in the line
stated in the error message.

For instance, BAD VALUE IN 100 may refer to:

100 CALL HCHAR(ROW,COL,42)

The program line is correct. The error message has
appeared because one or both of the variables ROW and
COL have a value which is out of range.

(Using CALL HCHAR the ROW and COLUMN values
passed to the sub program must be in the ranges 1 to 24
and 1 to 32 respectively. If you go outside this range the
computer will halt with an error message.)

To see what the values are, when the error message
appears, just type in PRINT ROW;COLthen press ENTER.

The two values on screen will be the current values of

ROW and COL, which have caused the problem.

The job is then to review the program to see how the
variables obtained that value, and see what changes
need to be made.

This ability to check variable values after an error
message is very valuable. Note that once you amend a
program line all variables will be reset to zero.

Frequent causes of problem bugs are DATA statements,
with a comma too many or too few. The ability to check
variable values is useful here:

45

An array is being filled from a DATA statement, eg

FOR 1=1 TO 5

READ A

VAR(I)=A
NEXT I

DATA23,54,8,A,5

An error message will be generated by the above, as 'A'
is not a number. When the error message appears it is
possible to enter:

PRINT l;VAR(l)

This will provide the clues needed to lead to the
erroneous DATA line — which may be several hundred
program lines away!

In such cases you need to have a good idea of what
values should be found in connection with each variable,
and you may need to spend some time working through
the program.

If you cannot fathom why a program is not working as it
should merely by reading the LIST, the TI99/4A also has a
TRACE option.

Key in TRACE and then RUN. The line numbers will be
listed on screen as the program progresses, and you can
watch for an unexpected line transfer as the computer
moves from one line to the next. Using TRACE will
disrupt any screen display. Switch TRACE off by keying
in UNTRACE.

To find out what the variable values are at a particular
point in the program, you can insert PRINT statements in
the program, or instruct the program to BREAK by

46

adding a line in the appropriate place with the
instruction: BREAK.

Then when the program stops you may enter PRINT VAR
etc.

To continue the program enter CON (and press ENTER).
Remember to remove the BREAK line when you no
longer need it.

As your programs become longer, so it becomes more
difficult to spot the errors, but finding and removing
errors is a very good (if time consuming) way of learning
how to use your TI99/4A. With time and experience you
will learn to quickly spot the easy bugs and to tackle the
harder ones in a logical fashion. Read your manual as
often as necessary, especially the section on ERROR
MESSAGES. Often the answer to a difficult bug is there
justwaitingforyouto read it.

SYSTEM LOCKOUTS

A lock out has occurred if your console no longer
responds to the keyboard (especially QUIT) and ceases to
function normally. Unusual sound and graphic effects
may occur.

It is quite normal for all computers (and word processors)
to lock out from time to time. The cause is an error in the

instructions passed to the processor, which it cannot
deal with. There are a number of causes:

A STATIC discharge is a frequent cause of problems.
Although computers no longer need the carefully
controlled environment of the mainframe, they remain
sensitive to static. The problem is most acute in warm dry
weather, or if you wear clothing made of artificial fibres

47

(acrylics are particularly bad). Nylon carpeting can also
be a problem. The TI99/4A can handle static quite well,
but on occasion you may meet the problem.

Use of cotton clothing, a humidifier, and an anti static
spray on the carpet may be called for in especially hostile
environments. A conductive carpet is also sold by some
computer suppliers.

Poor communication with modules or peripherals may
also be a problem: the contacts are essentially self
cleaning, but it may be necessary to disconnect/connect
a few times to make good contact. Contacts are silver
plated and are subject to tarnishing, and may require this
treatment if a module or peripheral is not used for some
time. Tar can be deposited on the contacts if there are
smokers in the room. In extremely severe cases of
pollution, an isopropyl alcohol solvent may be used but
great care is required to prevent damage.

Some modules contain insufficient error traps and
permit you to pass confusing instructions to the
processor. Extended Basic in particular allows a number
of lock out producing errors. If your syntax is correct, this
will not happen.

Loss of the stack/program marker can cause problems in
Tl BASIC. This occurs when you run a program (filling the
stack) and then add to the program. In some cases the
computer will add the stack to the program with
sometimes colourful results, but permanently
destroying the program (if a lock out does not occur).
After running a program, it is wise to save it before
editing: this appears to clear the stack.

When the computer ceases to function, and possibly
makes a piercing sound, do not panic! The only way out
of a lock out is to switch off and (after a few seconds)

48

restart. Even the MOST expensive systems sometimes
lockout.

Just as with English, your ability to use BASIC increases
with use. Examine as many 99/4A programs as you can
andlooktosee

i) WHAT each part ofthe program does
ii) HOW it does it
iii) WHY it does it.

Then try to improve the program!

This simple graphics demonstration program uses
several of the features of Tl BASIC described in the
preceding section. The descriptive text which follows will
help you to followthe program.

To enter this program, select Tl BASIC, then ENTER the
word NUM. This will automatically provide the line
numbers and you will only have to type in the remainder
of the lines.

100 REM DEMO OF COLOUR

110 REM IN Tl BA8IC

120 REM

130 RANDOMIZE

140 PRINT " "::::"0NE MOMENT..."::::::

150 DIM FU08)

160 DEF RAN(A)°INT(A*RND)+1

170 H*="0"

160 FOR CHARR-32 TO 152 STEP 8

190 CALL CHAR(CHARR,Mt>
200 NEXT CHARR

210 FOR SET-1 TO 16

220 CALL C0L0R(SET,16,SET)
230 CALL VCHAR(l,2«SET-l,24+8ETt8,48)
240 NEXT SET

250 FOR SET-1 TO 9

260 CALL HCHAR<22,2#8ET,48+6ET)
270 NEXT SET

260 CALL HCHAR(22,28,48)
290 FOR SET-11 TO 16

300 CALL HCHAR(22,2«SET,3B+SET)
310 NEXT SET

320 FOR 8ET-10 TO 16

330 CALL HCHAR(22,2»SET-1,49)

340 NEXT SET

350 FOR X«l TO 1000

360 NEXT X

370 FOR SET-3 TO 14

360 CALL HCHAR(2tSET-5,l,24+SET*8,32)
398 NEXT SET

480 FOR X-l TO 4000

416 NEXT X

420 INPUT " ENTER TO CONTINUE":A$

430 CALL CLEAR

440 CALL SCREENU2)

458 FOR X-l TO 150

460 R-RAN(24)

470 VR-RAN<32)

480 8ET-RAN(16)

490 CALL HCHAR(R,VR,24+SET#8>
500 NEXT X

510 FOR X-l TO 50

520 R-RAN(24)

530 VR-RAN(32)

540 SET-24+B«RAN(16)

550 NO-RAN(32-VR)

560 CALL HCHAR(R,VR,SET,NO)
570 CALL HCHAR(25-R,33-VR,24+B«RAN(14),N0)
580 CALL VCHAR(1+VR/2,R/1.5+1,SET,3/4*N0)

590 NEXT X

600 FOR COUNT-32 TO 152 STEP 8

610 CALL CHAR(C0UNT,"8BCCEEFF88CCEEFF")

620 CALL CHAR(COUNT+1,"8BC0E0F0FBFCFEFF">
630 CALL CHAR(COUNT+2,"7F3F1F0F070301")
640 CALL CHAR(C0UNT+3,"FF3C181818183CFF")
658 CALL CHAR(COUNT+4,"08C3E7E7E7E7C3")
660 CALL CHAR(COUNT+5,"FFFEFCFBF0E0C080M)
670 CALL CHAR(COUNT+6,"000103070F1F3F7F">
680 CALL CHAR(C0UNT+7,"183C7EFFFF7E3C1B")
690 NEXT COUNT

700 FOR COUNT-1 TO 100

710 CALL HCHAR<RAN(24),RAN(31),RAN<129)+31>
720 NEXT COUNT

730 X-110

740 K«2A(l/50)

750 FOR COUNT-1 TO 100

760 F(COUNT)«X#KACOUNT

770 NEXT COUNT

780 FOR COUNT-1 TO 100

790 CALL SOUND(100,F(RAN<100)),1)
800 CALL C0L0R(RAN(16),RAN(16),RAN(16))
610 IF RAN(10)>3 THEN 830

820 CALL SCREEN(RAN<16))

830 NEXT COUNT

848 FOR Z-l TO 5

850 FOR COUNT-3 TO 30

868 CALL VCHAR(8,COUNT,RAN(129)+31,2)
870 CALL VCHAR(5,COUNT,RAN<129)+31,2)
880 CALL SOUND(-100,F(RAN(100)),1)
890 NEXT COUNT

49

50

900 FOR COUNT-30 TO 3 STEP -1

910 CALL C0L0R(RAN(16),RAN<16),RAN(16M
920 CALL VCHARU2,C0UNT,RAN<127)+32,2)
930 CALL VCHARU5,COUNT,RAN<127>+32,2>
940 CALL SOUND(-110,F<RAN(100)),1)
950 NEXT COUNT

960 NEXT Z

970 FOR Z»l TO 26

960 FOR X-l TO 28

990 M*»CHR*(RAN(127)+32)fcM*
1080 NEXT X

1010 PRINT M*

1020 Ml-""

1030 CALL SOUND<-400,F(RAN(100))(1)
1040 NEXT Z

1050 FOR X-l TO 100

1060 CALL C0L0R(RAN(16),RAN(16),RAN(16))
1070 NEXT X

1060 Ht="1234567809ABCDEF"
1090 X-0

1100 FOR Z-l TO 8

1110 FOR CT2-1 TO 16

1120 P**P*&SE6*(N*,RAN<16>,1)
1130 CALL SOUND(-100,RAN(200)+110,RAN(10))
1140 NEXT CT2

1150 FOR CT-1 TO 8

1160 CALL CHAR(6«CT+24+X,P*>
1170 NEXT CT

1180 X-X+l

1190 Pf»"u

1280 NEXT Z

1220 CALL SCREEN(RAN(16>)
1230 FOR X-l TO 100

1240 CALL HCHAR(RAN(24),RAN(32),RAN<127)+32)
1250 CALL SOUND(-50,F(RAN(100)),RAN(20>)
1260 CALL C0L0R(RAN(16),RAN(16),RAN(16))
1270 NEXT X

1280 CALL SCREEN(RAN<16)>
1290 FOR X-l TO 100

1300 CALL C0L0R(RAN(16),RAN(16),RAN(16))
1310 CALL SOUND(-20,110+20tRAN<40),3>
1320 NEXT X

1330 CALL SCREEN(RAN(16))

1340 M*»""

1350 FOR Z-l TO 26

1360 FOR CT-1 TO 28

1370 M*«CHR*(RAN(127) +32)«iM$
1380 NEXT CT

1390 PRINT Mt

1400 M*«""

1410 CALL SCREEN(RAN(16>>

1420 CALL C0L0R(RAN(16),RAN(16),RAN(16))
1430 NEXT Z

1440 FOR CT2-1 TO 100

1450 CALL C0L0R(RAN(16),RAN(16),RAN(16))
1460 NEXT CT2

1470 CALL SCREEN(RAN(16))

1480 STOP

51

The use of brackets after RAN in line 160:

DEFRAN(X)=....

does NOT indicate that RAN is a variable array. They
inform the computer that when the newly created
function RAN is used in a program, a variable will be
passed to the definition by means of brackets.

e.g. 460R=RAN(24)

The computer replaces RAN(24) with the defined
statement, using the value 24 in place of X.

The use of brackets does not always imply the use of an
array.

COLOUR DEMONSTRATION PROGRAM

This program has been provided to give a practical
demonstration of some of the features of Tl BASIC
described earlier.

The program has been written in small blocks, and each
block will be described separately.

The first section, lines 100 to 420 form the start of the
program. The first block is intended to display the
colours available, and by making them cross over each
other, showthe relative contrasts.

Because some random patterns are created later,
RANDOMIZE has been used to provide different patterns

52

each time the program is run. The array F contains
frequency values for use with CALLSOUND later on. As it
will contain 100 values, DIM is used to instruct the
computer to allocate memory to hold the values.

The DEF function is used to create a new random

function, which will provide integer (eg no fraction)
numbers from 1 to the figure used with the new function
in the program: watch out for the newfunction RAN(X) in
the program.

M$ has been set to "0" (a string with a zero in it) for use in
defining all the characters as blanks (eg spaces) in the
following loop in lines 180 to 200. The string "0" could
have been placed in the definition function in line 190,
instead of the string variable.

NB: Although the TI99/4A distinguishes the number 0
from the letter O on screen by squaring the O, in listings
a slashed 0 usually represents the number.

Each group of eight characters is in a separate character
set, and each set may be a different colour. Lines 210 to
240 change the colour of each set: Tl Basic has 16 sets,
and 16 colours. The foreground colour of every set has
been setto WHITE (code 16).

Line 230 places a number of vertical stripes on the
screen, each a different colour. As the screen is 32
columns wide, the stripes have been set to 2 columns
wide each, and therefore each CALL VCHAR uses 48
characters (2 x the 24 rows).

So that we know which colours are which, they are
labelled by the routine in lines 250 to 340.

Lines 350-360 give a small delay.

53

It is not possible to provide 16 horizontal bands with a
space between each, as the screen only has 24 rows, but
lines 370 to 390 cross the screen with as many rows as
can fit.

In lines 430 to 500, random characters are placed on a
blank screen, and in lines 510 to 590, random stripes and
columns are placed on screen.

Lines 600 to 690 redefine the characters for the purposes
of the following sections of the program. Remember that
the strings used with CALL CHAR can only contain the
numbers 0 to 9 and the letters A to F.

700 to 720 again place random characters on screen.

Lines 730 to 770 fill the Farray with values to be used with
subsequent CALL SOUNDs. Line 730 sets the lowest
possible frequency, and line 740 sets the basis for the
tones: the formula used creates what is known as
'microtonal' music, with very little difference between
adjacent tones.

Then, accompanied with random tones, the character
colours are varied at random in lines 780 to 830.

Lines 840 to 960 provide sound, colour changes, and
small bars of random characters.

Lines 970 to 1040 use the PRINT routine to place random
characters on screen, and the colour is varied in 1050 to
1070.

In lines 1080 to 1200, characters are given a random
definition and in 1220 to 1260, the colours are varied,
random characters placed and tones generated.

1270 to 1310 again varies the colours, and uses a

54

different random tone generation method (line1300).

The remainder of the program again uses PRINT to
provide a random display and the colours are varied.

Note in particular the usefulness of the DEF statement in
this program.

There are many 'loops', and some loops contain other
loops: see for example lines 840to 960. These loops are
'nested', withthe COUNT loop insidethe Zloop.

An ARRAY is used to store frequencies.

The loop counters (eg CHARR, SET and so on) also
function as numeric variables in the loops. Their value
increases by one for each cycle of the loop until the
maximum value (set by the TO X in FOR TO NEXT) has
been reached.

In line 1120,SEG$ is used withthe string variable M$ (set
in 1080) to create a random definition of a character. A
letter is chosen at random from the string variable M$,
and used to create the definition in the variable P$.

Note that P$ is reset to a 'nul' (empty) string after each
character has been defined. Then it is reused with
defferent letters to form a new definition.

Tl BASIC GLOSSARY

A list of all the commands and functions available in Tl
BASIC, with brief descriptions.

ABS(X) Used to obtain an ABSolute value—eg it
ignoresthat + or-sign.

55

APPEND Used to extend files when using the disk
system or mini memory module.

ATN(X) Provides the arctangent: this is a
trigonometrical function. ATN (X)
provides the angle in radians whose
tangent is X.

BREAK Used in a program to temporarily halt
execution. A message is placed on screen.
The program is continued by typing in
CONTINUE

BYE Used to return to the master screen.

Preferable to the use of the QUIT key, as
only BYE will properly close any open files,
and ensure no data is lost.

CALLCHAR(N,STRING$)
Used to define character N by means of a
hexadecimal string STRINGS.

CALL CLEAR Used to clear the screen.

CALLCOLOR(SET, FG,BG)
Used to define the foreground (FG) and
background (BG) colours of each of 16 sets
of characters. Sixteen colours, including
transparent are available.

CALL GCHAR(ROW,COL,CH)
Places in the variable CH the ASCII code of
the character on the screen in ROW,

COLumn.

56

CALL HCHAR(ROW,COL,CH,NO)
Used to display a character CH in ROW,
COLumn. When a number or variable in
the position NO is used, the character is
repeated horizontally NO times.

CALLJOYST(NO,X,Y)
Returns X and Y values for Joystick NO.

CALL KEY (NO,CODE, STATUS)
Interrogates the keyboard. If a key is
depressed the ASCII code is placed in
variable CODE. STATUS indicates if a key
is pressed, and if it is the same key when
two adjacent CALL KEYs detect a key
pressed. NO indicates the key unit, and is
used to split the keyboard and to switch
the codes returned by the Function and
Control keys.

CALLSCREEN(NUMB)
Used to change the colour of the screen.

CALLSOUND(TIME,F1,V1,F2,V2,F3,V3,N,V4)
Used to generate sound. Up to three tones
may be used with an optional noise
channel. TIME is in milliseconds and F1,F2
and F3 are the frequencies in cycles per
second.

CALLVCHAR(ROW,COL,CH,NO)
As CALL HCHAR, but the character CH is
repeated vertically NO times.

CHR$(CODE) Used to make a character CODE available
as a string.

CLOSE Used to close a data file.

57

CONTINUE Used to resume a program when
execution has been halted with the CLEAR
key or a BREAKcommand.

COS(X) Provides the cosine of angle X, where X is
in radians.

DATA Used as a heading on lines containing
valuestobeREAD.

DEF Used to DEFine a function of your own.

DELETE Used with the disk system to DELETE a file.

DIM Used to DIMension an Array.

DISPLAY i. Same effect as PRINT
ii. One of two file storage formats.

DISPLAY uses the same codes and
format as the computer uses for
screen displays.

EDIT One method of entering EDIT mode.

END An optional marker for the end of your
program.

EOF 'End Of File'used with diskfiles.

EXP(NO) The inverse of the natural logarithm
function LOG. Thus X=EXP(LOG(X))

FIXED Used to define data files. The alternative,
not available with cassettes, is VARIABLE.

FOR... TO.. (STEP)
Used to establish loops which execute
until the counter reaches the value

following TO.

58

GOSUB

GOTO

IF...THEN

INPUT

INT(NO)

INTERNAL

Used for a line transfer when the program
is to RETURN to the line following the
GOSUB line after the section transferred to
is completed.

Used to make a simple line transfer.

ELSE

Used to make conditional line transfers,
with an optional alternative transfer if
ELSE is used.

n.

Used to fill a variable from the

keyboard, or other device if a data file
is used.

Used to specify a file is to be used for
INPUT only.

Used to provide the INTeger of a number
NO. eg any fraction is removed.

Used to specify the format of a data file.
INTERNAL specifies the codes used by the
processor internally. The alternative is
DISPLAY.

LEN(STRING$)
Used to provide the LENgth of the string
STRINGS.

LET Optional. LET A=2 and A=2 are both
accepted.

LIST Lists a program on screen or other device.

LOG(NO) Provides the natural logarithm of number
NO.

59

NEW Used to clear the console memory in
preparation for a new program.

NUM/NUMBER

Provides line numbers automatically
when a program is to be keyed in. Starting
number and increment may be defined.
Default is to start at 100 and increase each

line number by 10.

OLD Used to load a program from cassette or
other storage device.

ON... GOSUB

Used for GOSUB transfers when the value

following ON determines which of the line
numbers following GOSUB are to be used.

ON...GOTO Similar to the above, but for simple line
transfers when it is not wished to RETURN

to the line following the transfer.

OPEN Used to OPEN a file to a device. The format

of the file is specified after the OPEN
command.

OPTION BASE

Used to set the minimum value of an array
to zero or one.

OUTPUT Used to specify a data file is to be used for
output only.

POS(STRING$,X$,NO)
Used to obtain the first occurrence in

STRINGS of X$.

PRINT i. Used to display characters on the

60

RND

n.

screen and to scroll the screen

upwards.
Used to send data to an external

storage device when used with files.

Used to obtain a RaNDom number. The

same sequence of numbers is generated
every time a program is RUN.

RANDOMIZE Used to set the initial number used by RND
to be different each time a program is
RUN.

READ Used to place the values in DATA
statements into variables.

REC Used with the disk system to specify a
specific RECord in the file.

RELATIVE Used with the disk system for random
access to data on a file by using RECord
numbers.

REM Used to add REMarks to programs.

RES/RESEQUENCE

Used to resequence a program, that is,
change the line numbers. Default is to start
the program at line 100 and use
increments of 10, but start number and
increment may be specified.

RESTORE Used to reset the DATA pointer, either to
the first data item, or to data on a particular
line.

RETURN Any line transfer by GOSUB must be
terminated with RETURN. The program

RUN

SAVE

61

then transfers to the line following the
GOSUB.

Instructs the computer to RUN the
program in its memory.

Used to SAVE a PROGRAM to a storage
device.

SEQUENTIAL

Used to specify that file data is recorded in
the order it is output. The alternative is
RELATIVE, which is not available with
cassette files.

SGN(NO) Used to obtain the SiGN of the number
NO. Indicates if NO is zero, negative or
positive.

SIN(X) Provides the SINe of the angle X where X is
in radians.

SQR(X) Provides the SQuare Root of the number
X.

STOP Used to STOP program execution. A
STOPped program may only be resumed
byre-RUNningit.

STR$(NO) Used to change a number or numeric
variable into a string. The converse is VAL.

TAB Used when PRINTing to print at from a
specified column.

TAN(X) Provides the TANgent of angle X where X
is in radians.

62

TRACE Causes the computer to list on screen the
number of each line as a program is
executed. Switched offwith UNTRACE.

UNBREAK Used in command mode to remove

BREAK commands which have been

placed in command mode.

U NTRACE Switches TRACE off.

UPDATE Used with disk file processing to enable a
file to be read or written to.

VAL Used to obtain the numeric equivalent to a
string. The string must be composed only
of valid numbers.

VARIABLE Used with disk files to indicate the file is to

be as long as the item to be stored, which
may vary.

63

4

Cassette Handling

USING CASSETTE RECORDERS WITH YOUR TI99/4A

Standard audio recorders provide an inexpensive
method to store your programs and data.

Due to modifications in the design of audio tape
recorders, an increasing number of them can be difficult
to use with computers, and Tl have therefore produced a
Tl Recorder, designed for use with the computer.

You may be able to use other recorders, but before
purchase you should try them with program tapes
recorded by someone else.

For ease of operation, the tape recorder should have a
tape counter, and if you buy one with a tone control you
mayfinditeasiertouse.

The TI99/4A is designed for use with recorders having
3.5mm jack sockets. Recorders with 5 pin DIN sockets
may be unsuitable due to the different input and output
levels of these machines.

Always use a mains power supply for your cassette
player, to ensure the tape runs at the correct speed.

The magnetic particles on your tapes will pass on some

64

of their magnetism to your tape recorder heads : this in
turn will slowly wipe off your program. Regular use of a
tape head cleaner and demagnetiser is strongly
recommended, usually a monthly clean and
demagnetisation are sufficient.

It is better to demagnetise before you notice any
problems. Similarly a build up of oxides will prevent your
recorder from picking up a proper signal, and may cause
itto digest your tape.

Connecting your Recorder

You will usually be using only one tape recorder, and this
is connected using the lead with two 3.5mm jack plugs
and one 2.5mm jack plug. Plug the smaller plug into your
recorder's remote control, the plug with the red wire into
the microphone socket, and the plug with the white wire
into the earpiece socket. The other end of the cable is a
nine pin plug. This is connected to the socket on the rear
of the console : NOT the socket on the left, which is for
the joystick.

When the leads have been connected, press your
cassette PLAY button and check to see if the motor is
running (the computer console must be switched on). If
the motor is silent, you will need to use the polarity
reversal adaptor supplied with the cassette lead. This
should ensure that your recorder now works. If you
experience difficulty, refer to your dealer.

You are now ready to record a program, or to load a
commercial tape.

Loading a cassette tape:

When your console has been connected to your tv and
tape recorder, and switched on, you may load a

65

prerecorded program from tape.

Press a key to obtain the menu selection and then press
key 1 to obtain Tl BASIC READY.

Now make sure the ALPHA LOCK key is DOWN, and key
in:

OLD CSI and press ENTER.

The computer will now give you instructions on what to
do: First rewind thetape and then press ENTER.

This is a good point at which to set your volume and, if
you have them, tone controls. Start with the volume
control at the mid point, and if available, set the tone
control at maximum treble.

Now press cassette PLAY and then press ENTER. The
tape should start running (do you need the polarity
reverser? see above). The first part of the tape is a pilot
tone, which is followed by a fluctuating signal. You may
obtain an error message at this stage, which will indicate
that the volume is not set correctly. NO DATA FOUND
means that the volume is far too high, or far too low (or
the cassette recorder isn't connected).

ERROR IN DATA means the volume is not quite right.
Make a note of the tape counter setting when the tape
stopped, then press R (to Read) and follow the screen
instructions. When the tape is rewound, before you press
PLAY again, make a small change in the volume setting,
then try again.

If you are again unlucky, see if the tape counter is now
reading a higher or lower figure. If it is higher, you need
to move the volume a little more in the same direction. If

lower, move it in the opposite direction —then try again.

66

Tape recorders vary in their success at matching the
requirements of the computer: on some it hardly seems
to matter how you set the volume, but on others the tape
will only load at one setting.

Tapes recorded by someone else will usually need to be
loaded at a higher volume than your own, and may have
a narrower range of acceptable volumes. The reason for
this difficulty is that tape recorders do not all have their
heads at exactly the same level, and with a tape recorded
on another machine, some ofthe signal will not be picked
up on your recorder. So you need a higher volume
setting to make up for this loss.

With a very few recorders, you may find that your tape is
running at a speed which varies from that of the machine
the tape was recorded on, preventing the program
loading. This is a very rare problem but you may come
across it.

When the tape is loaded, the computer will instruct you
to press cassette STOP then press ENTER. You will
receive a DATA OK message and after a short pause a
flashing square will appear : this is the cursor, and
indicates that the computer is ready for your instructions.

You will want to RUN the program, so type in RUN and
press ENTER. The computer will take a few seconds to
sort itself out but in due course the program will be
available for you to play.

When you only have the console, you may only run
programs in Tl Basic. Trying to load or run programs in
any other language (such as Extended Basic) will
produce error messages.

67

Saving programsto tape

When you have keyed in a program you may wish to save
it on tape, for future use. Otherwise you will have to key it
all in again. Use cassette tapes of maximum length C60.
C90 tapes and longer are thinner and liable to stretch
slightly in use, distorting the data the computer needs.
Many large newsagents now sell computer tapes of C10,
C15 or C20 length. A C20 tape will hold three average
length programs on each side.

If you are keying in a long program, it is a good idea to
save your work from time to time, even though it is not
finished, then if some disaster occurs (such as baby
brother unplugging your console) you don't have to start
all over again : you may load your work and carry on
from there.

When you are ready to save a program, type in SAVE CS1
(with the alpha lock key down) and follow the directions
which will appear on the tv screen. When the computer
has finished the recording, you will be asked if you wish
the tape to be checked : if your program is worth
recording, it is worth verifying the recording — always
respond Y (yes) you wish the tape to be checked. Then
follow screen directions.

This part of the procedure is the same as loading a tape,
but the computer will be checking the tape data against
what it has in memory. See the section on loading
programs for further assistance.

The reason you should always check your recording is
that even the best tapes have small section with little or
no oxide coating, causing what are termed 'drop outs'.
Very short duration drop outs will not affect music, but
you will lose some data. Ifyou find that your recording is
unloadable for any reason, the program is still in the

68

computer, and you may use SAVE CS1 again to try a
different tape.

Please remember that tapes are relatively fragile so do
not keep them near to any strong electromagnetic field.
In particular, it is unwise to place a tape near to the
console, the tv modulator, or your tv set, for any length of
time.

As tapes can be damaged so easily, always make two
copies of your program on separate tapes. If one is
damaged you can then make a further backup from the
second tape.

A magnetic tape has a limited life and you should
rerecord onto another tape if a tape begins to become
difficulttoload.

Further notes on use of save:

The keys R C & E are used when an error has been found,
to R(ead) or R(ecord), C(heck), or E(xit). These keys are
also active whenever the current instruction is THEN

PRESS ENTER'. Be careful not to press them unless you
wish to Exit the routine.

When you have finished recording a program, and the
display asks you to 'PRESS CASSETTE STOP THEN
PRESS ENTER', instead of pressing ENTER and moving
on to the verify routine, you may press R to immediately
record the program again, say on anothertape.

Ifyou wish to save a program, and find on looking at the
screen, the message 'PRESS CASSETTE PLAY THEN
PRESS ENTER', you will realise that instead of SAVE CS1,
you have typed OLDCS1, and you are well on your way to
destroying all your hard work. You can escape from this
problem by pressing E. An error message may appear,
but your program should be safe.

69

5

File Processing

PROGRAMS are saved to tape using SAVE CS1, and
loaded back into the computer with OLD CS1 (if you are
using a tape recorder).

The values of the program variables are not saved with
the program, and will initially have a value of zero when
the program is loaded.

If you wish to save a high score, or other data, you must
use file processing operations as described below.

Tape files can take a few minutes to load, but form an
inexpensive introduction for the novice programmer to
the field of data management. Fortunately, Tl have
provided a fairly simple operating system.

Before you can save or load data, you must 'open a file'.
This operation describes to the computer the format of
the data on your tape, and allows you to refer to the tape
by a simple label, called thefile number.

When the computer comes to an OPEN statement, a
section of tape is wound on, with no signal. This is to
clear any leader on the tape. You will find it easier if you
always start your data files at the beginning of the tape,
then you can be sure the computer will find the data
where it expects it to be.

70

A cassette file may be to load data or to save it, and this is
defined in the opening statement. The usual cassette
operation instructions are given when the OPEN
statement is operated on. Please keep this in mind and
ensure that you do not open a file after a complex screen
display has been created!

The OPEN statement is in the form :

OPEN #N: "CS1 "JNTERNAL or
DISPLAY,INPUTor OUTPUT, FIXED NUM

The number N must be a number and not a variable, and
lie between 1 and 255. It is possible to have several files
open at once (eg to CS2, a printer, the speech synthesiser
if using Terminal Emulator 2 module etc), and the file
number is used to instruct the computer which
peripheral it is to use.

The choice between INTERNAL and DISPLAY is one of
coding : in DISPLAY format, the computer data is
recorded to printable ASCI code. DISPLAY format can
sometimes be of advantage in DISK processing when
greater speed is sometimes possible, but for TAPE files, it
uses more tape and also requires more complex
program writing.

Using TAPE files, use the INTERNAL format.

File organisation with tape files is always SEQUENTIAL
and this word is not required in the opening statement.
This means that the second item of data read from the
tape is the second item of data which has been recorded
on the tape. It is not possible to 'skip' to say the 6th item
of data without reading everything in between.

As mentioned, you MUST indicate if the file is for INPUT
or OUTPUT. You use INPUTto read data from a tape, and
OUTPUTto place data onto the tape.

71

You should only have one file open to CS1 at a time,
otherwise the computer will lose track of the data on the
tape.

FIXED means that every time the computer writes data to
the tape, the same amount of tape is used no matter how
long the data. Any unused tape is filled with nuls. If no
number follows the word FIXED, the data field is 64 bytes
long. A number always occupies 9 bytes, and a string one
byte more than the string has characters.

To save data once the file has been opened, you use the
PRINT command, but add the file identification: PRINT
#1:

There is ALWAYS a colon (:)afterthe file number.

To save a single variable value, you would use: PRINT
#1:A

To make the most of the 64 byte field length, you may
save 7 variables at once, each separated in the PRINT
statement by a semi colon:

PRINT#1:A;B;C;D;E;F;G

Strings are saved in a similar way:

PRINT #1:A$;B$

or

PRINT #1:"THIS STRING IS TO BE SAVED"

If the standard field length of 64 bytes is too short, you
may specify one of two alternative field lengths, 128 or
192. You do this by placing these numbers after the word
FIXED (with a space between).

72

When you have finished saving data to the tape,
remember to close the file with CLOSE #1. This will

generate the message "PRESS CASSETTE STOP &
PRESS ENTER", so as before ensure that there is no
screen display to be disrupted.

When the computer is saving data, it does so one field at
a time, and it is essential the computer has control of the
cassette motor. If your remote control does not function,
fit the polarity reverser (provided with the Tl Tape Cable)
between the remote socket on your tape recorder (the
small one: 2.5mm) and the small jack plug on the lead
from the computer. If you have purchased a third party
lead and require the polarity reversing, you should ask
your supplier to do so. It is possible to swop the wires
yourself, but with some systems there may be problems
as the screening may be broken.

To load your saved data, you must reopen the file, this
time specified as an INPUT file. If you used long field
lengths when saving the data, you MUST specify the
same length in the OPEN statement to load the data.
Similarly if a file is saved in INTERNAL format, you MUST
read it in the same format.

If you have placed several values in one field, you must
read them in the same way—if you have used:

PRINT#1:A;B;C;D

then you MUST read four NUMERIC variables, although
the names may differ:

INPUT#1:Z;X;R;T

If a numeric variable has been saved, you must read a
numeric variable. A field containing string data must be
input to a string variable.

73

Your tape files contain the values of the variables printed
to them (or direct numbers or strings). The variable name
is not saved, and the variable is not affected by saving its
value.

Have a look at the file management program in Vince
Apps book of Programs for the 99/4A for an example of
using tape files.

Remember to CLOSE the file when you have finished
with it.

Tape files can occupy large amounts of tape, and if you
are saving a large number of items, you will need at least
aC15orC20tape.

If you graduate on to DISKBASED filing, the 99/4A offers
many more options, to give you greater control and
access. This includes variable length files for better use
of disk space, update mode which allows you to read and
write to a single open file, and relative files which allow
you to read or write to a specific record within the file.
The disk system also allows the use of named files, and of
course greater speed.

You may use the MINI MEMORY MODULE as a file
storage device. It is treated in a similar way to disk files
except that only one file can be saved to the module,
called "MINIMEM". For minimem or disk, if you use
FIXED with no number, the file is padded to 80 bytes
length.

For Minimem operation, your opening line may be as
short as:

OPEN#1:"MINIMEM"

74

Thefileisassumedbythecomputertobe

FIXED 80,SEQUENTIAL,DISPLAY (care!),UPDATE.

Any of these assumptions (or defaults) can be altered by
adding the definition you want to the OPEN statement.
Minimem will retain its data files provided you switch the
console off before inserting and removing the module
and do not use it for anything else. Minimem also
permits the memory expansion to be used for data
storage (see Mini Memory Manual) but this data is lost
when you disconnect the power.

You may find that you need to slightly alter the volume
level on your tape recorder to load data files correctly. It
IS possible to load corrupted data if the volume is slightly
incorrect, and this may result in your program 'crashing'
with an error message such as "BAD VALUE' which is not
immediately caused by an incorrect volume setting.

Some Tl Modules save data to tape in 'program format',
using the normal SAVE CS1 and OLD CS1 routines. The
advantage of this is that the data does not occupy so
much tape, takes less time to load, and it is possible to
use the CHECK option to verify the data is saved
correctly.

Using tape data files using OPEN & PRINT, the only way
to verify your data is to read it back yourself, with an
INPUTfile.

At the time this text was written, it was possible for 99/4a
owners to save and read their own data in this format if

the Personal record Keeping or Statistics modules were
in the module slot.

75

These two modules add several new subprograms when
Tl BASIC is selected, but as this is not advertised it may
be amended in future. Their use is fairly technical, as
memory has to be reserved by the programmer. For
fuller details write to Texas Instruments or the User
Group.

NOTE: EOF, "ENDOF FILE", is not available for tape files.

Typical routines to SAVE and LOAD high scores for a
game:

TO SAVE a high score, which is in a variable called
HISCORE

100 REM DO NOTOVERRECORD YOUR PROGRAM

110 REM ONLY RECORD DATA ON BLANKTAPE

120 OPEN #1:"CS1 "INTERNAL, OUTPUT, FIXED
130 PRINT#1:HISCORE

140 CLOSE #1

TO LOAD this data back into the program:

200 REM TAPE MUST BE IN SAME POSITION
210 REM AS AT START OF ABOVE SAVE ROUTINE

220 OPEN#1:"CS1",INTERNAL,INPUT, FIXED
230 INPUT#1:HISCORE

240 CLOSE #1

76

6

Advanced Programming

Inthe following chapter we will consider, briefly, howthe
computer works, with a view to making better use of its
facilities.

The TI99/4A contains a 16 bit microprocessor, the 9900.
This was one of the first 16 bit processors to be made.
However, apart from a very small section of memory/ the
processor communicates with the rest of the console
using an 8 bit data line. As a useryou do not therefore see
the high speeds theoretically possible with a 16 bit micro.
Nonetheless, the 16 bits are used to make speech
synthesis possible, and can also be used by an
experienced programmer to speed up some chain code
programs.

Most computers place user programs in RAM (random
access memory) which is addressed (eg spoken to) by
the CPU (central processing unit). This RAM is therefore
CPU RAM: it is used by the CPU.

The 99/4A however only has a tiny amount of CPU RAM
(16 bit addressed) and when only the console is used, the
users program does not reside in CPU RAM.

To provide sprite action, Tl have provided a second
processor the VDP (visual display processor) and this
has its own RAM, referred to as VDP RAM. This 16k of
memory cannot be directly addressed by the CPU.

77

The VDP RAM is used for screen display, variables, and
your program which the main processor cannot
directly address. Your program is passed to the CPU two
bytes at a time, which does not form a particularly fast
means of communication, and may be responsible for
some of the slow speed of the 4A.

Because there is no RAM addressable by the CPU, you
cannot enter or run programs in machine code, unless
you add CPU ram in the form of either the 32k expansion
card orthe4k mini memory module.

The CALL PEEK and CALL LOAD of Extended Basic

operate only on CPU ram, and if you only have the
console, you will not be able to find your program in
memory.

Only the mini memory module allows you to PEEK and
POKE the VDP RAM, using CALL PEEKV and CALL
POKEV.

If you have the mini memory or the 32k ram and
extended basic, you may look at how the computer
stores your programs. With Extended Basic and the 32k
ram, you may look for your program from memory
location -25 to -24576. The first line entered of your
program will 'end' at -25, then as each new line is entered
(or edited), regardless of the line number, it is placed on
top. If a line is edited, the old line is removed, all
subsequent lines change position, and the new line goes
to the top.

With Mini Memory, provided you do not have a disk
controller attached, your program starts at VDP address
16383 and works its way towards 1536 (or the bottom of
the stack if earlier). With a disk controller attached, the
program ends at the bottom of the stack and is pushed
towards 16383, which makes it harder to look at the
program (the locations keep changing).

78

With this information, you may not only look at your
program and see how the program is stored, you may
alter the program lines. Using CALL LOAD (or CALL
POKEV) it is possible for one program to write over itself
and create a completely new program.

SAMPLES:

Type in:

100 REM TEX

110 A=B+2

120 C*=D*&,,E"

Now, if you have extended basic and the 32k ram, add:

200 FOR I=-25 TO -64 STEP -1

210 CALL PEEK(I,A)

220 PRINT I;A5CHR$<A)

230 NEXT I

For mini memory owners:

200 FOR 1=16383 TO 16343 STEP -1

210 CALL PEEKV(I,A)

220 PRINT I;A;CHR*(A)

230 NEXT I

Do not edit any of these lines! If you make a mistake start
again!

79

These are the results with Extended Basic

MEM: VALUE: MEAN IIMG:

-25 0 END OF LINE

-26 88 ASCII code -for X

-27 69 ASCII code for E

-28 84 ASCII code -For T

-29 32 ASCII code for SPACE

-30 154 CONTROL code for REM

-31 6 LENGTH OF LINE

-32 0 END OF LINE

-33 50 ASCII for 2

-34 1 "1 digit follows"

-35 200 "Number follows"

-36 193 CONTROL CODE for +

-37 66 ASCII for B

-38 190 CONTROL CODE for =

-39 65 ASCII for B

-40 8 LENGTH OF LINE

-41 0 END OF LINE

-42 69 ASCII for E

-43 1 "1 letter follows"

-44 199 "String follows"

-45 184 CONTROL CODE FOR & (concatenation)

-46 36 ASCII for $

-47 68 ASCII for- D

-48 190 CONTROL CODE for =

-49 36 ASCII for $

-50 67 ASCII for C

-51 10 LENGTH OF LINE

80

A lot can be learned of the machine's operations in this
manner: it is possible to see how the program is stored,
and also possible to learn the control codesforthe BASIC
commands.

NOTE: Although you key in REM, only one byte has been
used.

If you key in GOTO only one byte is used, but GO TO(with
a space in between) uses 2 bytes because two command
words are used.

Note that A$ takes up two bytes but that "E" takes up
three: one to indicate 'string', one to indicate how many
letters, and then one for 'E' itself.

Note that '2' similarly occupies 3 bytes but that 'B' only
uses one byte.

If program memory is scarce, replacing often used
numbers with single letter variables can save a little
memory. You will appreciate that the number '12345' will
occupy 7 bytes but a variable set to this value only
occupies 1 byte!

(NB: Each numeric variable used also occupies stack
space, and will always use 8 bytes of stack space
regardless ofthe number).

Although not shown here, the CALL routines occupy 1
byte forthe word CALL, but for example COLOR takes up
7 bytes, as it is treated as an 'unquoted string' (command
code 200). Because command code 200 is used instead of
199, you cannot CALL A$.(A$ IS A QUOTED STRING).

You may use this procedure to thoroughly investigate
the way your computer stores its programs.

81

The memory locations -52 onwards in this example hold
the LINE INDEX. As program lines do not appear in
memory in line number order, but rather in the order
keyed in, the computer makes use of an index, which IS in
linenumberorder.

Each line used occupies 4 bytes for the index:

-52 226

-53 255

-54 100

-55 0

Locations -54 and -55 give the line number (100) and
locations -52 and -53 give the location of that line, slightly
coded!

The memory location is 255x256 + 226 (which is 65506).

Although the computer can address 64k, it does so by
splitting it into + and - 32k. To convert this large result to
a memory location we can use, we subtract 65535:

Location = 65506 - 65535 = -31, which is where the line
commences.

As each program line takes up a minimum of7 bytes:

lndex=4, Line end=1, Line length=1,
Single command=1.

It makes sense when memory is tight to use as few lines
as possible: this is where you can make appropriate use
ofthe facilities of Extended Basic.

82

Here is a short program to show how you can force a
program to write itself.

EXTENDED BASIC with 32k RAM:

Key in in THIS order!s

100 GOTO 140

110 PRINT "!!!!!!!!!!!!!"

120 END

130 STOP

140 CALL INIT

150 CALL L0AD(-47,156,199,13,84,69,83,84,32,

67,79,77,80,76,69,84,69)

160 GOTO 110

170 END

After you have keyed this in, LIST it, then RUN it and LIST
it again. Note that CALL LOAD has been used to enter
several values into memory at one time: the first value
goes into -47, the second value to -46, the third to -45 and
soon.

Although you can overwrite a program line in this
manner, the new line must be as long (in internal
storage) as the old one, unless you wish to rewrite the
line index.

(Line 110 above contains 13 exclamation marks).

Using the MINI MEMORY, you have access to the VDP
ram, and you can use this facility to change the definition
and colour of the cursor, or even to have a sprite or two
running in Tl BASIC.

83

Cursor Definition:

The cursor definition is held in VDP RAM 1008 to 1015 (eg
8 bytes). You are used to defining characters with sixteen
hexadecimal characters, but your code is translated by
the console to 8 bytes:

Each row of pixels can form a binary number of 8 bits,
with the left most pixel having a value of 128. Thus a solid
block of pixels in one row can be thought of as the binary
number 11111111, which in decimal form is: 128+64+32
+16+8+4+2+1=255

For a block cursor, try:

100 CALL POKEVO 008,255,129,129,129,
129,129,129,255)
110 INPUT A$

The cursor will retain its new definition until the console

is reset by using NEW or by loading a new program.

Cursor colour is defined in VDP RAM 783. The

foreground colour and background colour are contained
in a single byte. To separate them you need to divide the
byte into two nybbles.

First form the two required colours into binary numbers
(binary 0 has a colour value of 1):

WHITE=16=binary15=1111
TRANSPARENT=1 = binary© = 0000

Thus a white cursor on a transparent background would
be:

11110000 in binary, which is decimal 240.

To see if this works, try: CALL POKEV(783,240).

84

Although Tl Basic does not recognise sprites, a small part
of the memory used by sprites is free, and by placing
values there we can place three sprites on screen
(stationary): The sprite definitions must be placed in VDP
RAM 768, and are made up of 4 values. The sprite
definition must terminate with 208.

The first value is the pixel row (up to 192)

The second value is the pixel column (up to 255)

The third value is the character code (NB: ASCII CODE
+96)

The fourth value is the colour code (-1)

Thus

CALL POKEV(768,98,128,161,161,1,208)

OR FOR THREE SPRITES:

CALL POKEV(768,98,128,163,1,20,40,164,1
130,170,165,1,208)

The memory area dealing with sprite velocity is also
clear, temporarily, but is used by BASIC for the value
stack: in normal operation the computer will remove
your velocity data as it moves stack data around.

It IS possible to fool the computer though: the top of the
stack can be pushed down out of the way be redefining
some of the lower case characters (they are usually
derived rather than defined, thus saving memory).

85

First use:

100 A$="F111"
110 FORM96TO120

120 CALLCHAR(I,A$)
130 NEXTI

Now you can move your sprite(s):

Velocity is to be placed in VDP RAM 1920-, and each
sprite requires 4 bytes. Thefirsttwo bytes are for row and
column velocity (max 255) and the other two are for vdp
use.

Having placed velocities in the correct VDP RAM, the
computer must be instructed to move them! This is done
by loading the number of sprites to be moved into CPU
RAM-31878.

After the above memory relocation try:

200 CALL CLEAR

210 CALL POKEV(768,98,128,161,1,208)
220 CALL POKEV(1920,50,50)
230 CALL LOAD(-31878,1)
240 GOTOO240

Being able to use one or two sprites can permit some
advanced graphic work in your Tl Basic programs. Each
sprite can be positioned to within one pixel on the screen,
and can be moved one pixel at a time. (A standard
character is 8x8 pixels).

Graphics Modes

The VDP chip permits the use of 4 graphics modes, but
only three are available with BASIC programs, and only
one if you only have the console.

86

The standard mode is 32x24 characters. This is all that is

available to you if you only have the console.

Some utility programs are available giving pseudo hi
resolution graphics, which work by redefining
characters, but they tend to be a little slow.

TEXT mode allows 40 x 24 characters. It requires a
machine code program to allow you to use it (various
utilities are commercially available).

MULTICOLOUR MODE divides each character into four
blocks, and each block can be any colour.

To see multicolour mode, try the following:

(Requires Mini Memory or Extended Basic + 32k ram):

100 CALL INIT

110 CALL LOAD<-31788,204)

120 CALL KEY(0,A,B)

130 IF B<1 THEN 120

140 CALL HCHAR(1,1,45,200)

150 FOR Z=l TO 57

160 FOR X=l TO 14

170 PRINT CHR$(Z+30>;

180 NEXT X

190 NEXT Z

200 CALL LOAD(-31788,224)

210 CALL KEY(0,A,B)

220 IF B<1 THEN 210

230 END

87

Enter RUN, then press any key to start the action. At
program end, press another key to return to normal. If
necessary switch off to return to normal!

HI RESOLUTION MODE allows pixel plotting, but with
nearly 49000 pixel positions (plus colour information)
there is no room to operate both this mode and the
BASIC operating system. It is only possible in machine
code programs—such as PARSEC.

IF...THEN... ELSE

Tl BASIC may appear to be slightly limited in its use of IF
. . . THEN compared to some other computers. Tl do
however allow the ELSE alternative.

The problem arises because Tl insist that you use the
construction only to transfer to another line. You cannot
add commands such as:

IFX=BTHENB=C

to do this you need Extended Basic.

However, Tl BASIC does have 'relational operators'
which will often help you out of this problem.

The instruction IF X=1 THEN 100 is acted upon by the
computer only if the expression (X=1) is TRUE.

A TRUE expression is treated by the computer as having
a value of -1, while a FALSE expression is treated as
having a value of©.

The IF .. THEN structure does not require an expression
to evaluate to 0 or -1 however, and you may use a
variable on its own to perform a line transfer:

88

IF X<>0 THEN 100 will transfer to line 100 if the variable
X has any value.

IF X THEN 100 will have exactly the same effect but use
less memory.

It is possible in Tl BASIC to build up a set of expressions
in an IF ... THEN line, which will simulate OR and AND,
and, if you are careful, you may go well beyond OR and
AND.

Each expression to be evaluated MUST appear in
brackets.

For example:

IF(A=1)+(B=10)THEN100

If both A= and B=10, then the sum of the two
expressions is -2 (-1 plus -1), and as the result is not zero,
the transfer to line 100 will take place.

If only A=1, but B=5, then the sum will be (-1+0) or -1,
and the transfer will still take place.

If A=3 and B=5, then the sum is (0+0) or 0, and the
transfer to line 100 will not occur.

What we have then is a way of saying

IF A =1 OR B=10THEN 100 (don't type this line in).

Using a different mathematical operation, the multiply or

IF(A=3)*(B=2)THEN100

When A=3 and B=2, the calculation is (-1 * -1) or+1.

89

The result is none zero and the line transfer takes place.

When A=3 and B=1, the calculation is (-1 * 0) or 0

The result is zero so no transfer will occur.

What we now have is a way of saying, in Tl Basic:

IFA=3ANDB=2 THEN 100.

Provided you are careful to always know the possible
results of the various expressions and mathematical
operations, you may build up some very powerful IF ...
THEN commands, which will save you many lines of
tedious programming.

This however is not all you can do with relational
expressions. How about trying to program IF A=5 THEN
B=6 ELSE B=0 in Tl Basic?

B=-6*(A=5) has exactly this result. lf(A=5) then the
calculation is B=-6*-1, or B=6. If A does not equal five,
the calculation is B=-6*0, or B=0.

This is fairly advanced programming, but if you need this
sort of power, it is there for you to use. All you need is to
keep track ofthe possible values ofthe variables you use.

Towhetyourappetite:IF(X=1)+(Y=1)+(Z=1)=-2
THEN 100

This interesting groupof expressions will transfer to line
100 if any two of the three bracketed expressions is true.
What this fairly short line says to the computer is:

IfanytwoofXY&Zareequaltoonethen...

Instead of the = sign, you can use any of the relational

90

operators, = < and >. The same structures can be used
with string variables.

The JOYSTICK program following this section makes use
ofthee relational expressions.

DEF

Here are some more advanced uses of DEF

DEFACS(C)=1.5708-2*ATN(C/(1+SQR(1-C*C)))

All that does is supply you with an ARCCOS function. The
trigonometrical functions which Tl do not provide can all
be made up in a similar manner.

Now in your program when you want to compute the
ARCCOS (the angle IN RADIANS of a right triangle
formed by the hypotenuse H and one of the sides X.
Angle=ACS(X/H)) you use this defined function, eg
ANGLE=ACS(SIDE/HYP)

Ifyou don't like radians, you can amend the defining line,
or add a second, after this one:

DEF DEG=RAD*57.29578

Then when you want to convert a radian result, set the
variable RAD to the radian angle and whenever you use
DEG the computer will use the degree measure
equivalent to the radian angle which RAD issetto.

This represents another use of DEF: No 'argument' is
passed. The defined variable DEG will, whenever used,
take a value which depends on the current value of the
variable RAD.

91

To avoid using INT frequently for the same variable, you
mayusetheDEFfunction:

DEF A=INT(A)

Now whenever the variable A is used, any fraction will be
dropped each time.

The DEF function does not allow you to have more than
one argument to be passed, and must occupy just one
program line. It is possible however to use one defined
function in another, so long as they occur in sequence in
your program.

eg DEF RAN(X =INT(RND*X+1)

DEF SCORE=RAN(LEVEL)+SCORE

A routine to use the joystick, which we wil Idevelop into a
rather complex multi-purpose input routine:

The CALL JOYST format is not ideally written for the
TI99/4A. The row and column variables are reversed
compared to the graphics commands, and the
subprogram seems to assume the screen origin is at
bottom left (it is actually at top left).

The return variables are placed in the command as
follows:

CALL JOYST (NUMBER, COLRETURN,
ROWRETURN)

whereas the graphics commands are in the form:

CALL HCHAR(ROW,COL,CODE)

92

To move a character to the screen left, we need to
decrease the value of the column. If the joystick is moved
to the left, the column return variable is indeed negative,
while movementtothe right gives a positive return.

However, the top ofthe screen is Row 1, so to move down
the screen the row must be increased : move the joystick
down and the row return variable is NEGATIVE. This can

cause confusion very easily! The sign has to be changed
to make this work!

Remember: the alphalock MUST be up for the joystick to
work.

If we wish to amend ROW and COL variables using the
joystick, it is necessary to use:

100 CALLJOYST(1,COLRET,ROWRET)
110 ROW=ROW-ROWRET/4

120 COL=COL+COLRET/4

Notice the different signs used to amend the row and
column variables. We have to divide by four because the
CALL JOYST will only return 4,0, or-4.

To use the above in a program leaves one problem: you
need to know which is joystick number one! This can be
marked, but you can also scan both joysticks:

100 CALL JOYST(1,CR,RR)
110 CALL JOYST(2,CR2,RR2)
120 ROW=ROW-RR/4-RR2/4

130 COL=COL+CR/4+CR2/4

This will take a little longer to process and you will have
to see the effect in your program before you decide to use
it.

93

When using CALL KEY there is a status return we can
check to see if NO key has been pressed. With joysticks
there is no status return, only the return variables. A
status return can however be created.

Instead of the CALL KEY "IF ST=0 THEN" it is possible to
use "IFCR+2*RR=0 THEN"

Why multiply the second return by 2? Check through all
the possible returns from the joystick and you will see
that a simple addition, subtraction or multiplication will
not return a unique answer to equate with "joystick
central".

So far we are amending the variables ROW and COL
without checking to see if they are valid. To use HCHAR
etc they must be from 1to 24 or 32 respectively. Anything
else will produce an error message and halt the program.

It is possible to use lots of lines of coding in Tl Basic:

200 IF R0W<1 THEN 210 ELSE 220
210 ROW=1

220 IF ROW>24THEN 230 ELSE 240

230 ROW=24

and so on.

It is easier however to add to the ROW incremental line a
value check which will reverse the increment if it places
the value outside the limits.

To do this we need to use the relational expressions
discussed under "IFTHEN" in the previous section.

If a relational expression is TRUE it has a value of-1

If a relational expression is FALSE it has a value of0

94

Thus PRINT (2=3) will appear as 0, but
PRINT (2=2) will appear as -1.

Dealing with the ROW first, if the variable ROW starts
with a value of 1, and the joystick is pushed up, we must
reverse the reduction of ROW.

There are two expressions which must be true: if both
ROW=1 and RR=4 then after we have added 1 to ROW

we must deduct it, to leave it setto 1:

ROW=ROW-RR/4+(ROW=1)*(RR=4)

Now it is impossible for ROW to become less than 1.

This has been developed further in the sample program
which you will find printed separately.

Atypical use of the joystick is to move a character around
the screen and this is what the sample program will do.
To give greater flexibility, this program checks both
joysticks, and also checks the keyboard (keys
WERSDZXC).

First the screen is cleared and the row and column

variables are set to initial values. Our character is placed
on screen and the joy sticks and keyboard are scanned.

The next line checks to see if an input has been made: if
neither joystick nor the keyboard has been used, the
program will go back and look at the joysticks/keyboard
again. The plus sign between the relational expressions
serves as an'OR'.

If the status of one keyboard unit is NOT zero, the
program continues.

Now the program is divided into two. Ifthe keyboard has

95

been used, the variable ST will have a non-zero value
which causes the program to branch to the keyboard
section. Otherwise it continues with the joystick section.

The joystick section is a slight development of what has
been discussed above. We are checking for both limits to
the row variable.

The keyboard section uses similar principles, but the
limit checks are a little different: If the ROW variable has

a value of 1, it cannot be decreased as (RW<>1) takes a
value 0 (false) and no change is made.

In the sample program a character is moved around the
screen, but if you wish to leave a line of characters, just
delete the line which places a blank (32) in the old
position.

That was quite a complex program to develop, so check it
over thoroughly. The use of relational expressions can
become quite complex, but they can both speed up
execution time and save memory usage.

ACCEPT AT

The next program is an ACCEPT AT routine in Tl BASIC. A
PRINT AT routine can be found in VINCE APPS book of

TI99/4A programs.

The INPUT command causes the screen to scroll, and in
the middle of a game with a complex screen display that
can be disruptive!

The required routine will allow you to fill a variable string
and place the input onto any desired part of the screen.
The initial screen location is held in the variables R(row)
andVR(column).

96

The required input is to be placed in a string variable IN$.
To ensure the variable is 'empty' it is cleared at the start
ofthe routine.

The string is filled by means of a series of CALL KEYs,
terminated with the ENTER key (which gives a code of
13).

For user confidence the cursor (character 30) is flashed at
the position the input will appear at. This comes
immediately after the call key. If required a CALL SOUND
could be inserted just before the CALL KEYto provide the
usual'input'tone.

If no key is pressed, the cursor will just flash.

When a key is pressed, a check is made to see if it is the
ENTER key, to terminate input (Key code 13). If ENTER
has not been pressed, you can check to ensure the key
falls within a required range.

In the sample given, only the number keys 0 to 9 are
accepted as inputs (ASCI codes 48 to 57). Ifthe choice of
keys is not so neatly in sequence, you may use:

IFPOS("ESDX",CHR$(S),1)<1 THEN 110

Ifthe key pressed is not E,S, Dor X in this sample, the key
is not accepted and the program returns to the CALL KEY.

Ifthe key IS accepted, the letter is placed on the screen in
the appropriate location, and the value of the column is
increased by one.

A check is then made to see if the input has gone past the
end of the screen : if no check was made, a BAD VALUE
would be possible.

97

In this example, if the column exceeds a value of 33, it is
reset to 32 and an automatic ENTER is inserted to

terminte the input. You may prefer to substitute GOTO
110 instead of ending the input: this alternative places
the cursor back on the last position (eg at screen right).

If the key is accepted, the character the key represents is
added to the input string and the program returns tothe
CALL KEY.

Once ENTER has been pressed, a check is made to see if
aninput HAS been made (a nul input string could cause
your program to crash). If no entry has been made the
program returns to the CALL KEY.

If all is well, you are allowed to RETURN to the place in
your program you left with a GOSUB. The input now lies
in variable string IN$ for you to manipulate as you wish.
As the example program has limited the input to digits, a
numeric variable can be set by using N=VAL(IN$) in your
program.

Additional programs may be found elsewhere in this
book. Try to see how they work — can you improve
them!

A quick routine for right justification (useful when using
columns of numbers) — the variable to be printed is in
the string variable A$ (use STR$(4) etc to convert
numbers to strings) and the right column in variable RC:

X=RC-LEN(A$)
FOR C=1TOX

A$=" "&A$ (this adds one space in front of
A$)
NEXT C

PRINT A$

98

SIMPLE TIPS

A=BA2 takes longer to process than A=B*B.

A=20000 uses more program memory than A=2E4

Data Compression

When memory is limited, any technique which allows
you to fit a quart into a pint pot is useful.

A number of data compression techniques have been
evolved, some of them quite complex, but we shall deal
with the subject only briefly here.

First remember that the TI99/4A stores:

NUMBERS in the number of digits in the number plus 2
bytes.

STRINGS in the number of characters in the string plus
two.

NUMERIC VARIABLES in the number of characters in the

variable name, plus 8 bytes of the stack.

STRING VARIABLES in the number of characters in the

variable name including the dollar sign, plus stack
memory the size of the string plus one.

To store a screen row, column and character value in
three numbers takes 12 bytes, in three numeric variables
of one letter each, 3 bytes plus stack space of 24 bytes.

Using numeric variables, the stack space is only
occupied once for each variable, so if the numbers are
used frequently, use of variables may save memory.

99

Where a large number of such data is to be stored,
memory may be saved by compacting each set into a
single number:

say Row 12, Column 23, Character 32
can become a single number 122332.

To break the number up if it is in variable A, we can use:

ROW=VAL(SEG$(STR$(A),1,2))
COL=VAL(SEG$(STR$(A),3,2))
CH=VAL(SEG$(STR$(A),5,2))

Instead of using a number, it is also possible to place the
data straight into a string, say A$, where A$=STR$(A).

Using a string has an advantage in that it may be up to
255 bytes long, and one string can thus contain a great
deal of information.

In an adventure program for instance, 255 bytes can
easily contain screen information, pointers to standard
text, strength and agility counters and so on.

The only drawback is that the greater the degree of
compaction, the sloweryour program will run.

However if your program is impossible without
compaction, it is well worth looking at ways in which data
can be placed into the computer using as little memory
as possible.

An understanding of how the computer uses its memory
is vital for this to be effective.

100

Quick sort

Sorting data is a frequent task for many programs, and it
seems reasonable to use the fastest sorting method
available.

This sorting routine is very fast.

The variables used are:

A,B,C,D,E,F()
A$(),B$

To use the sort, your program must contain the
initialisation lines at the beginning. You should not use
the above variables in the main program, but if necessary
you can change the variable names in this routine to
avoid conflict.

The initialisation is here for 200 items. If you wish to sort
a different number of items, set C to the number of items
to be sorted (line 130) and DIMensionA$ in line 100 to the
number of items plus one. Then in line 150 set A$
(Numberofitemsplusone)to:(FCTNandA).

Your program may enter the routine with GOTO (EXIT
with GOTO) or with GOSUB (EXITwith RETURN).

The items to be sorted are to be placed in the array A$(),
and when the routine is finished, the items will still be in
the array, but in ascending order, depending on the ASCII
codes of their letters:

eg AAafter A, Bafter AZZZ and soon. A$(0) is
NOT used for the items to be sorted, it is a
flag.

This routine will sort up to 1000 items.

After that, you will need to DIMension the
S array — to S(11) for 2000 items, S(12) for
4000 items and so on.

Initialisation:

100 DIM A*<201)

110 A=l

120 B=l

130 C=200

140 A*(0)=" "

150 A$(201)="!"

•C program }

2000 IF C-B<10 THEN 2320

2010 D=B

2020 E=C

2030 B*=A*(B)

2040 IF B$>=A$(E)THEN 2070

2050 E=E-1

2060 GOTO 2040

2070 IF E>D THEN 2100

2080 A*(D)=B$

2090 GOTO 2190

2100 A*(D)=A$(E)

2110 D=D+1

2120 IF A$<DKB$ THEN 2110

2130 IF E>D THEN 2170

2140 A*(E)=B$

2150 D=E

2160 GOTO 2190

2170 A$(E)=A$(D)

21B0 GOTO 2050

2190 IF C-D<D-B THEN 2260

2200 F(A)=C

2210 A=A+1

2220 F(A)=D+1

2230 A=A+1

2240 C=D-1

2250 GOTO 2000

101

C
M

O

I

oii
—

•
-
^

+

<
E

<
X

-
'

II

(
9

8
8

C
D

O
1

S
^

8r
o

C
N

U
J

4A
-

o
Z

C
Q

—
'

U
J

II
4

*
8

n
s
/-

«
x

C
9

i
—

*
II

s
u

j
o

-~
-

O
Q

C
V

|
O

—
«

—
—

*
||-

~
«

-
r
-
<

<
^

A
«

)
tH

«
f

+
«

-«
—

+
+

o
+

u
j

<
r

i
<

x
o

i
<

C
<

3T
Q

H
-

C
D

U
J

II
U

J
^
"
Q

—
II

II
O

II
II

U
-

4
*

It
U

_
-V

t
It

u
.
<

i
c
a

(
!
)
u

j
U

J
M

i
i
i
Q

M
<

C
Q

I
X

S
ffi

S
X

N
II

W
H

I
O

.—
I">

+
11

~
*

<
r

—
•

0
0

0
0

c
1

-
*

1
H

-
»

"
f—

<
C

U
-

<
X

O
«

O
I
t

II
II

II
C

D
<

I
C

D
m

<
t

m
<

E

8s8
—

•
»

C
N

Z
<

r
o

r
«

—
0

0
L

i
1

-
h

-
lt

O
U

J
C

J
0

o
r

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
.
8

8
8

<
N

0
3

0
•
o

r^»
•
f
l
r
-
o

)
U

"
S

'
,
i
N

r
;

^
3

-
u

j
-
o

r
*

»
u

j
e
r

q
i

w
i
n

n
t

m
-
*

»
r
*

^
u

u
a

*

N
N

t
M

W
M

M
r
O

M
M

W
W

t
O

M
I
O

t
t
t
t
'
t
l
-
'
r
i
-
t
t

C
M

C
N

C
M

C
N

C
s
|C

M
C

s
J
C

N
C

s
lC

N
r
^
ir

v
lC

^
C

V
ir

v
lC

V
lC

V
I
C

V
iC

S
I
C

v
lC

S
C

s
|C

N
4

C
V

I

103

7

Extended Basic

The Extended Basic module is not inexpensive, and
information on what it can do is not widely available.
Therefore this section has been included to help you to
decide if you need the module, and to give some short
hints on its use.

Extended Basic exists in two distinct versions, Vn 100
and Vn 110. Only a very small handful of the earlier VN
100 have been sold in the UK, and this book refers to VN
110. A principal difference is speed: 110 is much faster.
There have also been changes in the operating systems
which sometimes cause incompatability between the
two versions (with special reference to the sprite routines
and user sub programs.

EXTENDED BASIC is a VERY much larger language than
Tl Basic. The increase in operation speed is not shown by
magazine 'bench tests' which use very short specific
programs. In a typical program you will find the program
runs in about 30% less time. Line transfers and screen

handling are particularly fasterthan in Tl Basic.

In itself, this is a great attraction, but Extended Basic also
adds very many new commands and functions, enabling
better use to be made of limited memory, and also
permitting friendlier programs to be written.

104

Many Tl BASIC programs can be loaded in Extended
Basic, and will then run faster.

Exceptions are:

Tl Basic programs over 12k cannot be loaded due to lack
of memory.

Some Tl Basic programs will load but cannot RUN due to
lack of memory.

Tl Basic has two extra character sets: if these are used,
they will produce a BAD VALUE error in Extended Basic.
Extended Basic uses the memory saved by dropping
these sets (15 & 16) to produce the Sprites.

What is different about Extended Basic? The following is
only a short list:

ACCEPT AT and DISPLAY AT permit you to 'display' text
anywhere on the screen, or to 'accept' text anywhere.
There are numerous variations to these commands:

Optional 'beep', the ability to input data already on the
screen or type over it, validation of input, and, for the
display of data, the ability to 'image' numbers. This
allows simple justification of numbers.

Typical use: ACCEPT AT(6,12)BEEP VALIDATEC'YN")
SIZE(-1):A$

Ifthere is a "Y" at row 6, column 12, just pressing ENTER
will place Y into A$. Press any key but Yor N and the input
will not be accepted, the computer returns to the line
itself, and waits for a valid input.

CALL: In addition to the subprograms provided (eg
COLOR, SOUND and so on) you may write your own sub

105

programs, which you activate with CALL — for example
CALLMYSUBPROG.

As with the Tl subprograms, you may pass values or
variables to your subprogram, and variables used in the
subprogram are separate to variables in your main
program. This is potentially a powerful programming
capability.

Unfortunately the usual system error traps work badly
with user written sub programs, and if an error message
is generated it will usually be the wrong message for the
error the computer has discovered. You must be careful
how you write your subprogram!

A number of the built in CALLs have been extended, to
allow you to define 4 characters at once, or amend all the
colors at once — eg CALL COLOR0,2,2,2,3,3,8,15,16) and
soon.

This not only saves memory but also processes more
quickly.

SPRITES you have probably heard of: they are smoothly
moving graphics characters, which move under the
control of the Video Display Processor, while your
program carries on with otherthings.

Tl allows you 28 sprites, each of one to four characters.
They may also be double size (eg a 4 character sprite
occupying the screen area of 16 characters).

There are subprograms built in to determine if sprites are
in a particular position or overlapping, and you may
quickly reposition them, change velocity, change colour
or change the character of a sprite.

106

There are two restrictions which mean you need
programming skill to use them to full effect:

The processor can only handle 4 sprites at a time in line.
Each row of pixels is restricted to 4 sprites — any extra
are made invisible. (A PIXELis one dot in a character grid.
ATI99/4A character is made up of dots in an 8 x 8 grid).

The CALL COINC coincidence checker only checks at the
instant that command is used: you need to use it fairly
often if a coincidence is not to be missed.

Nevertheless, in the hands of skilled (and patient)
programmers, sprites can produce some VERY clever
programs (in a form ofthe BASIClanguage too).

IF... THEN... ELSE has been greatly improved. You are
no longer limited to line transfers, but may use:

IFA=4ANDB=6THENR=10 ELSE PRINT "OOPS"

Using IF.. THEN .. ELSE with commands enables you to
use the memory available in a much better way.

LET

You do not actually use LET with the 99/4A, but is has to
be listed somewhere...

In Extended Basic, instead of using: A=0 B=0 and so on,
you may assign one value to several variables in a neat
and memory saving manner:

A,B,C,D,E,F,G=0 will reset all those variables to zero!

LINPUT: Ordinary INPUT removes leading spaces and
causes problems if you wish to input a string with a
comma in it.

LINPUT avoids these problems. Itstandsfor LINE INPUT.

107

LIST . . . when you LIST you may make the computer
PAUSE in the list by pressing any key, then press another
key to make the LIST continue.

ON BREAK NEXT disables the CLEAR key except when
the computer has halted for an INPUT or ACCEPT AT. By
avoiding these input commands you can make your
program unbreakable.

ON ERROR is a VERYuseful command. Normally an error
causes your program to break, but you may use this
command to transfer program execution to an error
routine of your own. Your error routine may end by
instructing the computer to try the problem line again, to
go on to the next line, or to go to any other line in the
program. You may also print your own error messages,
such as 'PRINTER NOT CONNECTED". This command

can be used to make your programs totally user friendly.
NB: Do not insert until your program is completely
debugged!

ON WARNING is similar but with fewer options: you may
halt the program or continue.

PROGRAM LINES: May now contain more than one
command, and can be entered up to 5 screen lines long
(but limited to 128 bytes long internally).

You may use IN COMMAND MODE for instance:

FOR A=110 to 220:: CALL SOUND (200,A,0):: NEXT A

The double colon is a statement separator. InTI Basic you
could enter PRINTA: :B::C.

In Extended Basic you must leave a space between the
colons:

PRINTA: :B: :C

108

(A program in Tl Basic is converted automatically by the
machine to the new format, but you must take care when
typing in a program. Due to an omission in the error
handling system, typing too many colons together in
Extended Basic can cause the processor to 'lock out')

When this is linked to the new capabilities of the IF ...
THEN command, it is possible to put together some very
powerful program lines:

IF A=B THEN C=5 : : PRINT A : : ELSE IF A=8 AND B=C

THEN GOTO 3400 ELSE CALL SOUND (100,110,0) : :
GOTO 200

As the lines become longer and more complex, you do
need to take greater care, but the language gives you a
very powerful tool.

In addition to using REM after double colons, you may
use a'tail remark', which is a'!'as follows:

SCORE=0 ! RESET SCORE

RUN It is possible to RUN one program from another:

RUN "CSI"orRUN "DSK1.PROGTWO"

SAVE Programs may be saved in PROTECTED format,
which prevents listing, editing or saving, and may be
saved to DISK ONLY in Merge format, which allows
program segments to be spliced together.

SPEECH From the speech editor module comes CALL
SAY and CALL SPGET, which enable your Extended
Basic program to use the speech synthesiser. Although
Tl provide a vocabulary list with the Extended Basic
module, full instructions are not provided.

109

CALL SAY allows you to SAY a word from the
vocabulary. Words NOT in the list will be spelt. Some
'words' are really phrases, but if you use CALL
SAYC'READY TO START"), the computer will SPELL the
words! This is because the space is treated as a word
separator. For the computer to recognise that these three
words are one unit in the vocabulary, you need to
enclose them in hash marks: CALL SAY("#READY TO
START#")

The standard punctuation marks are also word
separators and provide differing degrees of pause
between words.

In order of length of pause, the separators are:

+ (space)-,;:.

The + is zero pause and the full stop is a one second
pause. The separators may be repeated to build up any
pause, eg:

CALL SAY("I—KNOW") or CALL SAYC'I-
„KNOW")

CALL SPGET is used to fill a string variable with the data
use by the speech synthesiser. This can increase the
speed of execution if you fill some string variables at the
start of your program, and then use them when you wish
to speak. It takes a little while to fill the variables, as each
string is 255 characters long (many of them are nul or
zero value).

eg CALL SPGET("WORKING",WK$)
then

CALL SAY(,WK$) will say the word.

Note the comma in front of WK$. If two strings are used,

110

in addition to the leading comma, they must be
separated byTWO commas: CALL SAY (,A$„B$)

In addition, you may use SEG$ to curtail the string you
have returned. You can then separate the initial sounds
of each word, and use these to create your own
vocabulary. You are NOT limited to the preprogrammed
list: you just have to work a little to expand it.

For example, having loaded WK$ as above, try:

WK$=SEG$(WK$,1,60)
CALL SAY(,WK$)

Notice any change? Try using different lengths in the
SEG$ command. This is an area for experimentation.

SIZE returns the amount of free memory.

EXTENDED BASIC uses some of the system RAM, and
you do not have quite as much memory available for
your programs. In addition, the cassette loader cannot
handle programs over 12k.

The good news is that with Extended Basic you may
access the memory expansion unit, which permits you to
load (from DISK) a program up to 24k, and still have some
14kavailableforvariablesandsoon.

The new function key REDO will repeat your last entry,
and if the last entry was a program line (either just
entered, or recalled using FCTN X) the line reappears on
the screen with the cursor at the beginning of the line
NUMBER, allowing you to change the line number if you
wish. This function is useful if your program contains a
lot of lines either the same orwith only small differences.

Lockouts have been found to occur in the present

111

Extended Basic by using CALL PEEK at one particular
section of memory (the addresses vary from console to
console), and by using a number of print separators
without spaces:

PRINT ::::::: (Correct in Tl BASIC, but
Extended Basic requires a space between
each colon).

An added attraction of the module is that it permits you to
load and run Assembly language programs, pr\£pided
you have the extra peripherals required.

In summary, EXTENDED BASIC requires a little more
care in use but gives you considerably more
programming power.

The following program has been included to show how
SPRITES are used in EXTENDED BASIC. The program
was developed in a highly experimental manner, as
various routines and values were tried. To obtain the best

from SPRITES it is usually necessary to work in this
manner.

100 REN SPEEDRACE

110 REM A SAMPLE PROBRAM IN

128 REM Tl EXTENDED BASIC

130 REM USING SPRITES

148 REM

150 REN aaaaaaaanaaaamauaaa

160 REN

170 CALL CLEAR

188 PRINT "SPEEDRACE":"COPYRIGHT 1981":"BY STEPHEN SHAW"
190 PRINT "USE S H TO HOVE ":"LEFT & RIGHT0:" °:°USE KEYS 1,

2,3,&4 TO0!"SELECT GEAR"
200 PRINT "DISTANCE !c TINE ARE "l"DISPLAYED. °:"DISTANCE

SUFFERS IF YOU":"CRASH"

210 PRINT "PRESS ANY KEY TO CONTINUE"
220 CALL KEY(3,V,M)
230 IF M<1 THEN 220

240 CALL SCREEN(2)

250 FOR X>1 TO 100 Jl NEXT X

260 CALL CLEAR

112

270 CALL MAGNIFY(3)

280 H=l

290 X*=RPT*C,09,40)
300 CALL CHAR(100,"96FEBA3838BAFEBA"&X*>
310 CALL CHARd08,"5A5A5A5A5A5A5A5A5A5A"&X*)
320 CALL CHARd04,°FFllllFF0000FFllFF"8tX«)
330 CALL 8CREEN(4)

340 CALL SPRITE(«6,108,i;
350 CALL SPRITE(«7,104,i;
360 CALL 8PRITE<#8,184,11
370 CALL 8PRITE(«9,108,i;
380 CALL SPRITE(#10,104,:
390 CALL 8PRITE(*11,104,:
400 CALL SPRITE(I12,104,
410 CALL SPRITE(»13,104,:
420 CALL SPRITE(ttl4,104,:
430 CALL SPRITE<#15,104,
440 CALL SPRITE<#16,104,
450 CALL 8PRITE(#17,108,
460 CALL 8PRITE(ftl8,104,:
470 CALL 8PRITE(»19,104,
480 CALL 8PRITE(#20,104,:
490 CALL SPRITE(«21,104,:
500 CALL SPRITE(#22,104,:
510 CALL C0L0R(8,3,4)
520 CALL SPRITE(«23,108,
530 CALL VCHARd,8,140,216)
540 CALL C0L0R(14,12,12)
550 CALL VCHARd,7,95,24)n CALL VCHARd ,17,95,24) I: CALL

CHAR(95,"5555555555555555")
560 FOR CT»1 TO 4

570 CALL SPRITE(#CT,100,CT+6,CT*47-45,93-CT«8,0,0)
580 NEXT CT

590 CALL SPRITE<#5,100,16,160,74,0,0)
600 REN #t

610 REM ***

620 CALL 8OUND(-1800,-2,30-7*8PEED)
630 CALL COINC(ALL,D)tt IF D<0 THEN GOSUB 780
640 CALL KEY(0,A,B):i IF A°ASC("S")THEN CALL MOTION(#5,0,-10)
650 IF A«A8C<"D")THEN CALL NOTION(#5,0,10)
660 IF A<30 THEN CALL MOTION(#5,0,0)
670 CALL COINC(ALL,D)>: IF D<0 THEN BOSUB 780
680 IF A>48 AND A<53 THEN 8PEED°<A-48)/3

690 CALL COINC(ALL,D)n IF D<0 THEN GOTO 760
700 T»T+1 :: S=S+6*SPEED :: DISPLAY AT(10,18)SIZE(10):STR$

(S)&" "!<STR*(T)

710 CALL COINC(ALL,D)n IF D<0 THEN 60T0 760
720 IF T/5"INT<T/5)THEN M=-H

730 CALL HOTION(#1,SPEED*40,H«5,#2,SPEED«40,H*5,«3,
8PEED*40,H»5,*4, SPEED*40,M#5)

740 CALL COINC(ALL,D)M IF D<0 THEN GOSUB 780
750 GOTO 620

13,B0,9,90,0)
13,75,25,90,0)
13,70,38,90,0)
13,65,9,90,0)
13,60,25,90,0)
13,55,38,90,0)
13,50,9,90,0)
13,45,25,90,0)
13,40,38,90,0)
13,85,139,90,0)
13,80,150,90,0)
13,75,170,90,0)
13,70,139,90,0)
13,65,150,90,0)
13,60,170,90,0)
13,55,139,90,0)
13,50,150,90,0)

13,45,170,90,0)

760 60SUB 780

770 60T0 620

780 CALL SOUND(-900,-6,0>
790 CALL MOTION<#1,0,0,#2,0,0,#3,0,0,#4,0,0,#5,0,0)
800 SPEED=l/3

810 S«S-50

820 IF S<0 THEN S=0

830 CRASH=CRASH+i

840 IF CRASH-15 OR T>200 THEN GOTO 920
650 H»+l

860 T»T-(5«(T/5-INT(T/5)))

870 FOR CT=1 TO 4

880 CALL 8PRITE(«CT,100,CT+6,CT«47-45,93-CT«8,0,0)
890 NEXT CT

900 SPEED»0

910 RETURN

920 CALL CLEAR

930 PRINT "YOU HAVE TRAVELLED "i"A DISTANCE OF "jS
940 PRINT "AND HAD "jCRASHj" CRASHES!"
950 IF S>500 THEN PRINT "YOU ARE NOT A BAD DRIVER"
960 IF S<100 THEN PRINT "YOU SHOULD NOT BE ON THE":"ROAD"

970 PRINT "TO TRY A6AIN,ENTER 'RUN'"
980 END

113

114

8

Modules

Tl produce a number of powerful and useful modules in
addition to the range of games you may be familiar with.
This section is intended to help you obtain good value
from the modules.

Some of the games modules contain a TEST MODE,
which was inserted by the programmer to permit
program debugging. The programs concerned are in
machine code.

Titles spotted so far are: Tl Invaders, Munch Man, Alpiner
and Chisholm Trail.

This is not an advertised function and may be removed.
But it is worth trying with any game module you have.

Insert the module and select the game.

When the first game title page appears, quickly hold
down SHIFT and press 8,3, and 8.

A new screen should appear with various prompts. Enter
responses as quickly as you can. The prompts allow you
to enter the game at any level, and in the case of Tl
Invaders for instance, to select a slow speed.

115

PERSONAL RECORD KEEPING

The Personal Record Keeping module enables you to
store up to about 10k of data, and provides various
handling and output facilities to help you manipulate
your records.

A printer is useful but not essential. If you have a printer,
greater flexibility of display, as well as additional
functions, are provided with the Personal Report
Generator module, which requires data prepared with
the Personal Record Keeping module.

The PRK sorting routines are slow. Data is saved in
memory image ('program') format, and thus uses less
tape (or disk) space, is faster to save and load, and the
verify option is available for tape files.

You will not be able to catalogue a collection of six
thousand records, but small collections can be
catalogued with the module. The number of items
depends on how many characters you wish to use to
describe each item.

It is possible to use the PRK module as a simple diary
system, or a very simple spreadsheet, as it is possible to
perform mathematical operations on the data you place
in your module.

The Personal Record Keeping and the Statistics modules
both extend the range of commands available in Tl
BASIC. Again this is not advertised, and may be
amended.

With either module inserted, select Tl BASIC. You may
now usethefollowing commands:

116

DISPLAY AT

CALLD(R,C,L,V)
Where R and C are the row and column the word is to

start at.

L is the length of screen to be blanked from position R, C
and also sets the maximum length ofthe display.

V is a value or string or variable to be displayed.

If V is longer than L,the display will be curtailed. R,C and
L may be numbers or numeric variables.

Try:

CALLD(10,4,5,1/3)

ACCEPTAT

CALLA(R,C,L,F,A,MN,MX)
R,C and L are as with CALL D, but in CALL A, L sets the
maximum length ofthe input.

F MUST be a NUMERIC VARIABLE. It takes a value of 1 if
ENTER is pressed, and other values if some control keys
are used eg BEGIN-.6 RED0:4 AID:3 BACK:7 CLEAR:2

A is the numeric or string VARIABLEto be filled with the
input.

MN and MX are optional when using a numeric variable,
and set the minimum and maximum acceptable values:
any input outside these values is rejected.

NB: The CLEAR key is used to clear the input field. It WILL
NOT break into the program! Use CALLA with a little care
if you think you may need to BREAK the program!

117

Other commands are also added to Tl Basic with these

two modules, eg CALLP (partitions memory), CALL Land
CALL S which save and load data in program format to
the partitioned area, and CALL G which handles the data
in the partitioned section and CALL H which defines the
format ofthe data.

A booklet on these commands has been published by Tl,
and you may be able to purchase a copy from the main
UK User group. Sample programs may be found in
TIDINGS' Vol 2, No 4, from the main user group.

These extra commands are the only way in which a user
can save data in PROGRAM format — used by most Tl
Modules. Program format permits tape verification, and
uses a lot less space on your tape or disk.

TI-WRITER

TI-WRITER is Tl's word processing module. It comes in
the form of a module, a disk, and a large manual. The 32k
memory expansion is required in addition to the disk
drive and a disk controller, plus the Expansion Box,
RS232 card and a printer.

Tl-Writer is a very powerful word processor and can carry
out most of the tasks a purpose built word processor is
capable of.

A word processor is a great deal more than an electric
typewriter. Numerous editing facilities are provided to
enable the text to be manipulated.

Typical facilities (found on Tl-Writer) are:

Full screen editing —

The cursor can be moved in a number of ways, using

118

preset tabs, word tab, block movement (24 lines at a
time) and the usual cursor control keys.

Text can be deleted or inserted.

Movement of paragraphs to different places in the text.

Ability to merge files, and save parts of files.

Ability to change one word in the text to another,
wherever it may occur (for instance, replacing 99/4a with
99/4A).

Mailing list option: now you can write personalised
circular letters (the sort which begins: Dear Mr Smith,
You have been selected from the people in Acacia
Avenue)

The module is compatible with programs which have
been LISTed to disk (eg LIST "DSK1.PROGNAME")
which allows programs to be inserted into text, and also
manipulated with the various editing options allowed.

Tl Writer can also be used to create or edit any disk file
using 'DISPLAY VARIABLE 80' format, such as the Editor/
Assembler uses for machine code. You may use the Tl
Writer to edit data created and used in your own
programs.

The screen is changed to 40 columns, but the Tl Writer
page is 80 columns long. These 80 columns are displayed
in three windows, covering columns 1 to 40,20 to 60 and
40 to 80.

Although the page is 80 columns wide, by using the
commands provided with the TEXT FORMATTER (one of
the Tl Writer programs), it is possible to print up to the
maximum length your printer will allow.

119

The module allows the use of any printer connected to
the RS232 Card, using either the serial or parallel
interfaces (see next chapter).

The command codes used by your printer can be
inserted into your text, to allow you to switch say from
normal print to italic print.

Centering of text is possible using Tl Writer, as is 'right
justification', where all lines finish in the same column at
the right (the normal style of a book). Tl-Writer does this
by inserting extra spaces between words. The result is
quite effective.

If you have the peripherals and you write fairly often, a
word processor may be of use to you. This module is
effective, and considering the large number of different
commands a word processor must be able to handle, it is
fairly easy to use.

MINI MEMORY MODULE

The mini memory module carries out a number of
functions, but only one at a time:

You may use it for ONE of:

FILE HANDLING:

The module itself can be used in a Tl Basic program as
though it was a single disk file called "MINIMEM", and all
the file handling commands available with disk drives
will work with the module. It has a battery backup, and
the information you store in the module will therefore
remain after you switch your console off.

The module permits you to use the 32k Expansion
Memory as a second 'solid state disk drive' called
"EXPMEM2", which may store up to 24k of data. This
data is lost when the 32k expansion is switched off.

120

Using either the module or the 32k expansion as data
files, the information is retrieved even more quickly than
with a disk drive. The computer does not have to waste
time in moving a disk drive head overthe disk.

It is possible to store data in the module or expansion
memory with one program, and then to access the data
with a second program, provided you do not reset the
system by using QUIT or removing the module or power
supply. This may help you to run a long adventure
program for instance, by first placing the text into the
memory and then loading your control program.

PROGRAM STORAGE:

A small program (up to 4k) may be stored in the module
using SAVE MINIMEM and recovered using OLD
MINIMEM. The program is loaded almost instantly.

ASSEMBLY LANGUAGE ACCESS:

With the module a cassette is supplied with a 'line by line
assembler' which provides a primitive and difficult to use
method of writing your own machine code programs.

You will need to purchase the Editor/Assembler manual
for information on the 99/4A Assembly language, and
should be aware that the manual is not written for the

novice.

The LBLA itself occupies the module, and the maximum
machine code program you may write with it is therefore
a bout 750 bytes.

A few machine code games are now appearing on
cassette which can be loaded into the module.

The mini memory provides a low cost entry into the field
of machine code programming, but at present no book
suitable for the novice is available.

121

Machine code is a 'low level' language, which is not as
easy to use as BASIC. Because the computer does not
have to translate the commands, a machine code
program may be as much as 1600 times faster than a Tl
Basic program.

EXTENSIONS TO BASIC:

The mini memory adds some commands for use in your
Tl Basic programs, allowing you to PEEK and POKE both
CPU and VDP memory, and to obtain the hexadecimal
string defining any character:

PEEK and POKE are used in many computers to look at
and change the contents of one single memory location
in the computer. The 99/4A console has 16k of user
memory (RAM) known as VDP RAM, which is not directly
addressable by the CPU (Central Processing Unit). The
Mini Memory is the ONLY module available which allows
you access to the VDP ram.

CALL PEEKV and CALL POKEV are used, and samples
may be seen in preceeding chapter on advanced
programming. They may be used to look at your
PROGRAM, orto manipulate the SCREEN DISPLAY.

CALL LOAD and CALL PEEK are used to access the CPU

RAM, which comprises of the 4k mini memory, the 32k
expansion memory, and the 255 bytes of CPU ram in the
console. CALL PEEK can also be used to examine the
contents of CPU ROM (READ ONLY MEMORY).

CALL CHARPAT is used to obtain the defining string for a
character, which you may then manipulate with SEG$

CALL HCHAR(1,1,94,760)
CALL CHARPAT(94,A$)
A$=SEG$(A$,1,14)&"FF"

122

CALL LINK permits a Tl BASICprogram to use a machine
code utility or program stored in the Mini Memory with
CALL LOAD.

CARE The mini memory contains a battery with a state
life of two years, and will retain any data you load into it,
even after the console is switched off and the module

removed.

However, data is destroyed if you:

Insert or remove the module when the console is

switched on.

Use CALL INITorthe INITIALISEoption.

Use the moduleforsomething else.

Data in the module is also subject to corruption by static
electricity, and you should not rely on it as a sole copy of
your program or data. Always keeep a tape backup.

If you use the module as a data file, the contents can be
saved to tape: thus you may store adventure text into the
module with a BASIC program, and then copy the data
onto tape easily using the 'S' option from the 'Easybug'
selection from the main menu. Data is reloaded with 'L'

option.

EDITOR ASSEMBLER:

The editor assembler package comprises a module, two
disks and a large manual. One disk contains the 'source
code' for one of Tl's module games, to help you to
understand the language.

Although large, the manual is not suitable for novices,
and some information is difficulttofind.

123

The 32k expansion memory, disk drive, disk controller
and peripheral expansion box are REQUIRED for this
package.

The EDITOR allows you to enter source code, and uses a
good screen editor. When you are satisfied, the
ASSEMBLER will turn your source code into MACHINE
CODE in one of three formats chosen by you: Standard,
required if you wish to run the program with the
Extended Basic module. Condensed, which uses less
disk space. Program format: which uses even less space
but cannot be loaded by a BASIC program. The Editor
Assembler and Mini Memory have special commands.

Programs you write in assembly language may run with
the extended basic, mini memory or editor assembler
modules, but you may need to use different coding for
each:

As example, Extended Basic uses different internal
memory mapping, and therefore you have to use
different memory locations for example to print to the
screen.

With Editor Assembler, you may run the disk versions of
Tl's games modules. Although providing much greater
speed, assembly language is not for everyone.

The following is a PART of the source code of a program
to DISPLAY AT:

DS MOVR11,R10
CLRR0

LIR1,1
BL@GN
BL@LC
DATA1

DATA 23

124

MOV@FC,R$
DECR4

SLAR4,5

. . . which is adequate to demonstrate the difference to
BASIC.

TERMINAL EMULATOR 2

The Terminal Emulator 2 module is designed for
telecommunications, but as no suitable modem is
presently available to connect your 99/4a to the Post
Office network, you will not be able to use that facility.

Some major users of the computer use the TE2 module
to link their 99/4A to'main frame'computers, using the Tl
computer as an 'intelligent terminal', which has its own
programs and passes data to and from the larger
computer.

Of interest to domestic purchasers however, is the much
improved speech facilities of the TE2 module. With a
speech synthesiser connected, your program in Tl Basic
can say anything that you wish it to. You also have
control over pitch and emphasis.

The method used is to open a file:

OPEN #1 :"SPEECH",OUTPUT

and then when you wish your program to say something,
you PRINT to thisfile:

PRINT #1:"l CAN SAY ANYTHING YOU WANTMETO'

Speech is much faster with TE2, and because there are no
limitations on the string printed to the file, you may
adjust pronunciation by changing your spelling.

125

Would you like your computer to read your program to
you? This can be of help when checking a listing to your
program, looking for a missing linefor instance.

Use:

LIST "SPEECH"

LOGO

LOGO is a language module, and requires the 32k
memory expansion. Disk drive and controller are
advisable.

LOGO is a 'build it yourself language, in which you build
up your own commands from a small set of 'primitives'.
It is not therefore a program to exchange programs in,
but a language to learn with, and is extensively used in a
few primary and junior schools.

A redrafted version of LOGO to be known as LOGO 2 has

been announced from Tl, with greater user memory and
added features, but at the time of writing was not
available.

LOGO is of great interest to schools, and you may find it
useful if you have young children, or an interest in
creating your own language, or learning to express
yourself in a clear and logical manner.

The following is an extract from a Tl LOGO procedure,
and informs the computer how to carry out the
command:BLINK:

TO BLINK

TELL :ALL

SC:RED

TELL TILE 32

126

MULTIPLAN

SC[415]
WAIT 40

TELL :ALL

SC :WHITE

TELL TILE 32

SC[154]
WAIT 40

BLINK

END

Multi Plan is a 'spread sheet' program module, and
requires the 32k memory expansion and a disk system. A
printer (with RS232 card) are advised but optional.

The program was written by Microsoft (whose versions
of BASIC are widely used in American computers), and is
similar to a popular program called VISICALC (not
available for the 99/4a). The idea of a spread sheet is to
set up data in rows and columns and tell the computer of
the relationships between certain figures. You may then
investigate 'what if . . .' situations by changing certain
data, and allowing the computer to change the
remainder in accordance with the relationships between
the data.

The use of spread sheets is complex, but in making
business decisions helpful information can be quickly
calculated and obtained.

Other Languages

The following are announced by Tl. In addition
independent sources may be able to supply other
implementations ofthese languages:

127

FORTH is announced on DISK requiring Editor
Assembler module and 32k memory, plus disk system.
Not yet released.

PILOT is announced on disk for P Code card and 32k

memory expansion. Not yet released.

PASCAL is available on three disks, requiring the P Code
card and 32k memory expansion.

128

9

Peripherals

Systems:

The original expansion system comprised separate
peripherals, each with their own power supply, which
plugged into the right hand side of the computer and
each other.

As the number of peripherals increased, this resulted in a
number of electric supply cables, and the need for a very
long desk.

Hence Tl produced the PERIPHERAL EXPANSION BOX,
which plugsinto the right hand side of the console by
means of a cable. It has its own power supply, but this is
used for all the peripherals placed in it.

The Tl BOX (as we shall call it) is supplied with a single
interface 'card' which merely allows it to be connected to
the99/4a.

The 'cards' used in the Box are far more than the usual
printed circuit board usually associated with expansion
systems: each card is inside a strong metal sub chassis.
The box itself is also very strong (and heavy) metal.

The box has space for a single disk drive, although it may
be possible to use two low power 'half size' drives

129

mounted side by side. Tl do not provide half size drives
and you will need to have a well informed and helpful
dealer if you wish to fit them.

The standard Tl Disk Drive is a single sided single density
drive which uses soft sectored disks with 40 tracks. Each
disk can store about 90k of information, and each disk
can contain up to 127 named files.

To operate the disk drive you need the DISK
CONTROLLER card, which is supplied wilth a DISK
MANAGER module. The controller card can operate up
to three disk drives: the second and third must have their
own power supply and case, and are used outside the
Box.

The Disk Manager allows you to test your disk, initialise
them, change file and disk names, and provide a
catalogue of disk contents. You can use double density
disks, but the computer will only use them as single
density.

It is possible to modify the controller so that a double
sided disk drive can be used, with the seond side treated
as DISK 2.

A Disk Manager 2 module and double sided drive have
also been announced from Tl, but are not available at the
time of writing.

A disk system allows you to load and save programs or
data much faster than from cassette. Also, because a disk
does not have to be read in the same order as it was
saved, random access files are possible, for faster and
more powerful data handling.

A program may be LISTed to disk as well as SAVEd to
disk. A LISTed program is placed on disk in DISPLAY

130

VARIABLE 80 format, and may be used with the Tl
WRITER module.

Extended Basic permits a program to be saved in MERGE
format, to allow programs to be merged into each other,
and also allows you to manipulate the program : you
may create utilities which remove REM lines, or shorten
variable names for instance.

Also with Extended Basic, a disk system will allow you to
load a program which exceeds the 12k allowed under the
cassette loading system.

MEMORY EXPANSION

The 32k MEMORY EXPANSION CARD adds 32k of CPU

RAM to your system. It is NOT usable unless a suitable
module is used.

Extended Basic programs may be up to 24k when the 32k
expansion is fitted, but the tape loader can only load
programs up to 12k.

However, with extended Basic, when the 32k is fitted, in
addition to the 24k for your program, you have about 13k
for storing variables. Thus you may load a 12k tape
program and not have to worry about the memory used
for variables (for example, large arrays of data).

Also with Extended Basic, 8k is available to load machine
code into, such as is needed in some of the Tl module
games (loaded from disk) or the utility programs which
are becoming available.

The memory expansion is available to the Editor
Assembler and the mini Memory modules for loading
longer machine code programsfrom disk.

131

The Mini Memory can use the memory expansion as a
data file.

SomeTI Modules (such as Editor Assembler) require that
the 32k be connected.

NB: The Personal Record Keeping module CANNOT use
the 32k memory.

In extended basic a very small increase in speed is
produced by using the 32k memory.

PRINTERS

The RS232 card is required to connect the computer to a
printer. A number of independent suppliers are
producing programs and hardware to permit printers to
be connected without the box and RS232 card, but you
should look closely at what their products can do, and try
to see them working with your printer.

The Tl RS232 card provides a potential three interfaces,
two serial and one parallel.

A SERIAL connection is one in which the signal is sent
one bit at a time. As a single letter is defined in one BYTE
(8 bits) a serial interface has to break that down and send
the bits one at a time.

The standard serial interface is known as RS232, and
implies a standard connector and standard pin
connections in that connector. However, there are
variations in usage.

The Tl RS232 interface permits you to set certain options
in your Basic program, allowing a range of printers to be
used. However, some printers have serial interfaces
which operate at different signal levels, and you should

132

always try to see a printer working with the 99/4A before
you buy.

There are a number of options available with the Tl
RS232 card, and you may need to check with your dealer
the correct options to use with your printer.

The following are the options available with the RS232
interface:

BAUD RATE (eg speed) : 110,300,600,120
0,2400,4800, or 9600
DATA BITS: 7 or 8

PARITY: Odd, Even or None
TWO STOP BITS: used or not

NULLS: used or not
CHECKPARITY: performed or not
ECHO:onoroff

CRLF:onoroff

LF: on or off.

These options should allow you to interface to almost
any serial printer. The RS232 interface is bidirectional
and can be used (if you have a P.O. approved modem) to
link consoles by telephone for the exchange of programs
or data. It is possible for data to be passed in both
directions simultaneously using the RS232 interface.

For many printers, an RS232 interface is an option
available at extra cost : the standard interface is
PARALLEL. A parallel interface sends one byte at a time,
and operates only in one direction. The Tl RS232 card
can send data at about 28000 Baud when using the
parallel signal output, but the limitation will be the
receiving device.

There are fewer options needed on the parallel interface,
as a new signal is only sent when the printer tells the

133

computer it is ready for it by means of a 'handshaking'
signal. It is possible to turn on or off the echo, automatic
carriage return and automatic line feed features. Your
choice will depend on the needs ofyour printer.

A few printers have a buffer memory, or one may be
added: this allows the computer to send its data to the
buffer and allows your program to continue while the
printer takes data from the buffer and prints out your text.

NB: Although Centronics compatible, the Tl parallel
output uses a slightly different pin out, and your dealer
will have to make a special cable for you. Ensure the
printer you buy will work with your computer, before
buying.

You DO NOT have to purchase the Tl Printer. Most
printers will work with the RS232 card.

SPEECH SYNTHESISER

The speech synthesiser has already been touched on in
the discussions of Extended Basic and the Terminal
EmulatorTwo modules.

The Speech Synthesiser requires a module to function.
Some of the newer games modules (such as Parsec and
Alpiner) use it, and you may use it in your own programs:

InTI BASIC: with Terminal Emulator 2 or Speech Editor

In Extended Basic: with the Extended Basic module.

Both Extended Basic and Speech Editor have limited
vocabularies, but it is possible to extend them slightly by
adding words together or curtailing them.

Terminal Emulator 2 gives the fastest and most realistic
speech and permits pitch and emphasis to be changed.

134

A number of small companies are showing an interest in
producing peripherals for the TI99/4A. These may be
cheaper than the Tl equivalent, but you must ensure that
they satisfy your requirements before you buy, as they
may not have all oftheTI features.

You should always try to see any third party peripheral
working with the computer before you buy.

NEW PERIPHERALS

Tl have announced a new range of small low cost
peripherals for their portable computer the CC-40.

An adaptor is due to be available for these to be used with
theTI99/4A.

The peripherals announced are:

RS232 interface with serial and parallel ports.

WAFERTAPE drive: this uses special wafers containing
endless tape loops. Faster than cassettes but not as fast
as disks. May not support the same file handling
commands as a disk drive.

FOUR COLOUR PRINTER: A very small printer which
uses small pens to print with.

As so many modules and applications require an
expansion memory, you may need to buythe larger box
system (or a third party memory).

Many printers now permit you to "download" a screen
display, using '8 pin bit image mode'. Most of the EPSON
range of printers permit this for instance. Programs to
USE these facilities are rare however, and one is
therefore given below. This is in Tl BASIC, but requires

135

the MINI MEMORY MODULE to function. The program
will also run in EXTENDED BASIC.

Because the printer defines its characters vertically, but
the computer defines its characters horizontally, this
program will produce a picture of the screen on its edge :
it is easier to do this than to rotate the image.

If the screen contains only text there is no advantage to
using this program: Use GCHAR to obtain the characters
and PRINT them one row at a time.

This program will print the characters as they appear on
screen:

i. IN BLACK ONLY. ON pixels are printed, off pixels are
not.

ii. Sprites are not copied.

100 OPEN #1:"PIO.CRLF"

110 REM OR EQUIVALENT RS232 FILE NAME

120 PRINT #1:CHR$(27)}"A"5CHR$(8)
130 FOR CA=1 TO 32

140 PRINT #1:CHR(27)"K"CHR(192);CHR$<0)
150 FOR CB=24 TO 1 STEP -1

160 CALL 6CHAR(CB,CA,CCHAR)
170 IF CCHAR<33 THEN 300

180 CALL CHARPAT(CCHAR,DEF$)
190 IF DEF*="0000000000000000" THEN 300

200 FOR CSEG=16 TO 2 STEP -2

210 CHEX=ASC(SE6$(DEF$,CSEG,1))

220 GOSUB 430

230 CPRINTDEF=CHEX

240 CHEX=ASC(SE6$(DEF$,CSE6-1,D)
250 GOSUB 430

260 CPRINTDEF=CPRINTDEF+CHEX*16

270 PRINT #1:CHR$(CPRINTDEF);

280 NEXT CSEG

290 SOTO 340

300 FOR []=1 TO 7

136

310 PRINT #lsCHR$(0);
320 NEXT C3

330 PRINT #1:CHR*<0>

340 NEXT CB

350 PRINT #1:CHR$(13);CHR$(10
360 NEXT [A

370 PRINT #l:CHR$(27);"e"
380 PRINT #1:CHR$<7)

390 CLOSE #1

400 REM NOW 60 WHERE YOU WISH

410 REM USING RETURN OR GO TO AS APPROPRIATE

420 STOP

430 CHEX=CHEX-48+(CHEX>64)*7

440 RETURN

450 END

To permit the routine to be added to any program, the
square bracket has been used in front of each variable: [.

The [is accepted as a valid character in variable names.

ESC K {CHR$(27);"K"} is used in the Epson printer, and
some others, to select: 'Normal density 8 pin bit image
mode'.

GLOSSARY

ARRAY.

ASCII.

BASIC.

BAUD.

BINARY.

BUG

BYTE

137

Appendices

A collection of variables referenced by a
subscripted number.

'American Standard Code for Information

Interchange' — standard code numbers
for the characters used by the computer.

'Beginers All-purpose Symbolic
Instruction Code'. An easy to use and
widely used type of programming
language.

'bits per second' — refers to the speed at
which data is transferred to and from the

computer.

Our normal numbering system is DIGITAL,
and uses numbers 0 to 9. A BINARY

system uses only numbers 0 and 1, or OFF
and ON. The computer works internally
with signals which are OFF or ON.

An error in a program, which causes
incorrect or unwanted operation.

A group of 8 binary numbers (called BITS)
used in computing to represent a character
or command. Also used as a means of
measuring a computer^ memory capacity.

138

CONSTANT Used to describe a number or STRING, as
distinct from a VARIABLE.

CURSOR

DISK

FILE

A flashing character used by the computer
to indicate that it is waiting for an input.

A mass storage device used to store
programs and data files.

A collection of data records.

HEXADECIMAL

A numbering system with base 16. Instead
of using number 0 to 9, it uses numbers 0
to 15, but letters A to F are used instead of
10to15.

LOOP A program line, or lines, which are
performed a specified number of times.

PROGRAM A series of commands which tell the

computer whatto do.

RAM 'Random Access Memory'. Temporary
storage in the computer, used for your
programs. The contents are not retained
when the console is switched off.

RECORD A collection of data elements. A group of
records form a FILE.

RESERVED WORD

A word used by the computer as a
command or function, such words cannot

be used as variable names.

ROM Read Only Memory. Permanent memory
which retains it's contents when the

139

console is switched off. Contains the

operating system of the computer.

RUN An instruction to the computer to execute
a program in its memory.

SCROLL Movement of the screen display by one
line upwards.

SOFTWARE A name given to computer PROGRAMS.

STRING A series of letters, numbers or symbols,
treated as a single unit. A single number
may be treated as a number OR as a string
but cannot be both at once. 2 is a number.
"2" is a string.

VARIABLE A name or label which has a value which

may be altered during a program.

KEY CODES

It is sometimes useful to enter ASCII codes from the

keyboard outside the usual range — for instance when
PRINTing a line of defined characters.

By switching the computerto PASCAL mode, using CALL
KEY(4,A,B), the range of codes available is increased.

Although the usual function codes (eg cursor control) are
deactivated in Pascal mode, upper and lower case
characters are not affected.

The following table gives the codes available in PASCAL
mode. The keys to be pressed are indicated thus:

W
W
W
N
W
W
W
W
W
N

•0
C

O

o
n

o
o

oo
n

••
•

n
o

n
n

IM
-<

X
3E

•O
O

"O
-0

*
«

M
"

T
J

t
o

1
1

T
l

T
|

x
>

C
O

T
)

c
o

H
t
M

3
0

1
N
J

t
-
t

o
n

n
n

o
n

n
n

<
C

H
O

)
3

0
E

|
-
D

O

M
M

f
8

«
W

H

n
n

n
n

n
n

o
n

n
n

n
n

n
n

n
7
^

z
3

r
x

L
i

X
G
l

-
n

m
o

n
w

x
>

< C
O

(A
N

>
>

>
II

C
/)

X Q
)

D Q
.

> «
•* O (Q C
D

«•
+

3
-

C
D

II
n

^

Q
)

Q
)

5

o
.
a

<
>

>
••

+
p

*

o
o

C
O

(Q
C

D
C

D

i
t

z
r

C
D

C
D

CODE: KEYS:

96 FC

97-122 a-:

123 FF

124 FA

125 F6

126 FW

127 FV

128 na

129 F7

130 na

131 Fl

132 F2

133 na

134 F8

135 F3

136 FS

137 FD

138 FX

139 FE

140 F6

141 na

142 F5

143 F9

144-176 na

177 Cl

178 C2

179 C3

180 C4

181 C5

182 C6

183 C7

184 F,

185 F.

186 F/

187 C/

188 F0

189 F|

190 FB

191 FH

192 FJ

193 FK

194 FL

195 FM

196 FN

197 na

198 FY

199- na

141

To use:

ENTER PASCAL MODE WITH CALL

KEY(4...

AFTER THAT USE THE KEYS INDICATED AND THAT

CHARACTER WILL BE PRINTED: IT MAY NOT BE VISIBLE

IF YOU HAVE NOT DEFINED IT.

142

In the section on advanced programming the use of
single byte control codes is explained. The following are
the meaning of the various codes. NB: They are not all
available in Tl Basic or Extended Basic.

CODE; MEANING:

129 ELSE 159 OPEN

130 :: <Ex Bas Separator) 160 CLOSE

131 ! <Ex Bas tail rem) 161 SUB

132 IF 162 DISPLAY

133 GO 163 IMAGE

134 GOTO 164 IMAGE

135 GOSUB 165 ERROR

136 GOSUB 166 WARNING

167 SUBEXIT

137 DEF 168 SUBEND

138 DIM 169 RUN

139 END 170 LINPUT

140 FOR 171-175 Not known

141 LET 176 THEN

142 BREAK 177 TO

143 UNBREAK 178 STEP

144 TRACE 179
»

145 UNTRACE 180 i

146 INPUT 181 :

147 DATA 182)

148 RESTORE 183 (

149 RANDOMIZE 184 &

150 NEXT 185 Not known

151 READ 186 OR

152 STOP 187 AND

153 DELETE 188 XOR

154 REM 189 NOT

155 ON 190 =

156 PRINT 191 <

157 CALL 192 >

158 OPTION 193 +

CODE: MEANING:

194
- 222 REC

195 ♦ 223 MAX

196 / 224 MIN

197 - 225 RPT*

198 unknown 226-•231 Not known

199 'string •foil ows' 232 NUMERIC

200 'number •foil ows' 233 DIGIT

ALSO used with CALLs., 234 UALPHA

201 LINE NUMBER FOLLOWS 235 SIZE

202 EOF 236 ALL

203 ABS 237 USING

204 ATN 238 BEEP

205 COS 239 ERASE

206 EXP 240 AT

207 INT 241 BASE

208 LOG 242 Not known

209 SGN 243 VARIABLE

210 SIN 244 RELATIVE

211 SQR 245 INTERNAL

212 TAN 246 SEQUENTIAL

213 LEN 247 OUTPUT

214 CHR* 248 UPDATE

215 RND 249 APPEND

216 SEG$ 250 FIXED

217 POS 251 PERMANENT

218 VAL 252 TAB

219 STR* 253 # (-for -files)

220 ASC
254 VALIDATE

221 PI

143

144

Index

Page Nos.

OandO 6,52
4 Colour Printer 134

40 Column Screen 86

Accept At 95,104,116
Acrylics 47
Alpha Lock 4,6
And 88

Arrays 25,137
ASCII 14,137
ATN 18,55

Backup Tapes 67
Basic 45,137
Binary 83,137
Bits 8

Box 8

Bye 55
Bytes 8,137

CALLGCHAR 32

CALLHCHAR 15,39
CALLJOYST 17,91
CALL KEY 17,22,93,96
CALL LOAD 77

CALLPEEK 77

CALLPOKEV 83,85

CALLSAY 109

CALLSPGET 109

CALLVCHAR 15,39

145

Care When Editing 40
Cassette Files 63

Cassette Length 67
Characters: User 14

Close 72,73
Codes: Control 121

Colour 13,51
Control Codes 121

Corrupt Data 68
Crashes 42

Cursor 83,138

Data 12

Data Compression 96
Data Files 69

Data: Corruption 68
Debugging 40,43
DEF 24,54,90
Degrees/Radians 18
Delete 41

Demagnetisation 64
DIM 26

Disk Drive 118,138
DiskFiles 73,118,138
Display At 23,104,116
Display Format 70

Editing 40
Editor/Assembler 127

End 9

ErrorlnData 65

Errors 43

Expander 130
Expansion Box 128,129
Expansion Memory 130
Extended Basic 103,110
Eyesight 3

146

Files 69

FOR...TO 10

Forth 127

Free Memory 27

Garbage 30
Glossary 54,55,56,57,58,59,60,61,62
GOSUB 29

GOTO 29,80
Graphic Modes 85
Graphics Demo 48

HCHARvsVCHAR 15,39
Hexadecimal 14,138
Hi Res Graphics 83

IF...THEN 10,87
Input 11
Insert : 42
INT 18

Integers 91
Internal Format 58

Joysticks 18,90
Joystick Program 91

Key Codes 139

LEN 58

Length of Lines 38
LET 9,106
Line Index 81

147

Line Length 81
LIST 9,42,107
Loading Tapes 64
Location of Console 3

Lockouts 46

Logo & Logo 2 125
Loops 39,54

Machine Code 120

Memory Expansion 130
Memory Free 80
Memory Use 80
Mini Memory Module 73,77,119
Multi Plan Module 126

Nested Loops 54
No Data Found 65

NUM 48

Numbers 98

Nylon 47

O and 0 6,52
OldCSI 65

On Error 107

ON... GOSUB 29

ON... GOTO 29

Opening Files 69
Option Base 27
Or 88

Overlay Program 77

Pascal 127

Peripheral Box 129
Personal Record Keeping 115

148

Pilot 127

POS 21

Power Supply 4
PRINT 13

Print At 71

Printers 131

Printing the Screen 117
Program Format 74
Program Lines 107
Program Storage 120
Program Writer 82
Program Writing 38

Quicksort Routine 100

Radians/Degrees 18,90
Random Numbers 19

Randomize 19

Read 12

Recording Tapes 64
Remote Control OfTapes 67
Resequence 60
Reserved Words 138

Restore 12

RETURN 28,60
Right Justification 97
RND 19

RS232Card 131

Run/Edit Crash 30

SAVE 67,68,108
Saving Data 67
Saving Memory 77
Screen Dump 132
Screen Width 86

149

Scroll 39,139
SEG$ 23
Shift 4,6
Size 110

Sorting Routine 100
Sound 15,16
Spaces 6
Speech 108,133
Speed 1,12,98
Split Keyboard 15
Sprite Program 111
Sprites 76,84,105
SQR 20

Square Roots 20
Static 47

Statistics Module 75

Strings 21,27,98,139
Subroutines 28

Tape Backups 68
Tape Length 67
Tape Loading 65
Tape Verify 67
Tape Volume 65
Tapes: 3rd Party 66
TerminalEmulator2 124

Text Mode 86

TlBasicSprite 84,85
Tl Writer Module 117

Trace 45

TVTuning 4

Untrace 45

User Character Definition 15

150

VAL , 24

Variables 11,98,139
Verify Tapes 67

Wafertape 134

151

If you are interested in cassette based software written
by the author of this book please send a S.A.E. for prices
and details to

Stephen Shaw
10AlstoneRoad

Stockport
Cheshire

152

rtlW

VINCE

APPS

35 PROGRAMS FOR GAMES HOME

fir BUSINESS USE WITH THE Tl 99/4A

153

PROGRAM
Vince Apps

35 programs for games, home and business
use with the
Tl 99/4A £5.95
Written for the home user these games are
both fun and educational.
Now you can enter a 3D maze, run a horse
race, and even help a Penguin to save it's
eggs. Youcan test your skills with anagrams,
do metric conversions and run your own
filing system and home accounts.
Available through bookshops everywhere or
cheque or p.o. Ordorsto

PHOENIX PUBLISHING ASSOC

14 VERNON ROAD BUSHEY

HERTS WD2 2JL

£5.95 plus 55pp&p

	front-cover
	content01
	content02
	content03
	content04
	content05
	back-cover

