

L

L

L

L

L

tew)

L

J

J

pp^^l

llggj^jjj

miggmg^

Having Fun
Programming and

Playing 23 Games for TI-99/4A

HENRY MULLISH
and

DOV KRUGER

A
COMPUTER BOOK DIVISION

SIMON & SCHUSTER, INC.
NEW YORK

Copyright © 1984 by Henry Mullish and Dov Kruger
All rights reserved

including the right of reproduction
in whole or in part in any form

Published by the Computer Book Division/
Simon & Schuster, Inc.

Simon & Schuster Building
Rockefeller Center

1230 Avenue of the Americas

New York, New York 10020

SIMON AND SCHUSTER and colophon are registered trademarks of
Simon & Schuster, Inc.

Designed by Irving Perkins Associates
Manufactured in the United States of America

13579 10 8642

Library of Congress Cataloging in Publication Data
Mullish, Henry.

Zappers: having fun programming and playing 23 games
forTI-99/4A.

1. Computer games. 2. TI 99/4A (Computer)—Program
ming. 3. Basic (Computer program language) I. Kruger,

Dov. II. Title.

GV1469.2.M85 1984 794.8 84-1219

ISBN 0-671-49862-1

Unas

l^^mjmart

CONTENTS

INTRODUCTION
The History and Development of the TI-99/4A
Setting Up 9
Getting Ready for Action 10
How to Type in Programs 13
Editing a Program 14

PROGRAM 1. "GUESS MY NUMBER"

2. "TYPING TEST"

3. "ARITHMETIC QUIZ"

4. "SCRAMBLER"

5. "HANGMAN"

6. "SOUND/SIGHT SIMON"

7. "BLACKJACK"

8. "ROULETTE"

9. "CONCENTRATION"

10. "HIDDEN WORD SEARCH"

11. "CHANGING PATTERNS"

12. "ORGAN"

13. "MINDSTORMING"

14. "TICTACTOE"

18

23

30

36

47

54

61

73

84

94

102

108

113

121

CONTENTS

15. "QUBIC" 133

16. "FLIP-A-DISK" 144

17. "MAGIC SQUARES" 158

18. "CALENDAR" 163

19. "PHONE TRANSLATOR" 169

20. "MORSE CODE" 174

21. "LANDER" 179

22. "ROBOT ATTACK" 189

23. "SNAZZLE" 197

^pgpj^:::.j

tsjgjMffei

IgOTg

INTRODUCTION

According to various surveys aimed at owners of home or
personal computers, the major use to which these incredi
ble machines are being put is that of game playing. This is
not surprising, since game playing on a home computer is
both convenient and inexpensive. In contrast to arcade
video games, playing games on a home computer has var
ious advantages. For one thing, the whole family can par
ticipate in the action. For another, the home computer user
can modify his games to suit his whims, while the arcade
player is a hostage to the machine—although he or she can
battle with the preset program of the machine, there is no
way that the game can be changed in even the slightest
degree.

Each of the games illustrated in this book has been writ
ten in the most popular of all home computer languages—
BASIC, a language which is increasingly being taught in
elementary schools as well as most institutions of higher
learning across the nation. Readers of this book may very
well already have some knowledge of the BASIC language.
Such readers might be tempted, and indeed are encour
aged, to amend the programs wherever they deem it desir
able. However, for those who do not possess the necessary
programming skills, a list of proposed modifications is pre
sented at the end of each program description. In this way,
the games can be continually updated to retain their fresh
ness. In order to cater to as wide an audience as possible,
various levels of difficulty are suggested, thereby enabling

8 ZAPPERS j
each member of the family to participate in one way or
another.

Among the numerous benefits that accrue to the game \
player are a heightening of intellectual skills and a strength
ening of the powers of coordination. Not only are games of
space-age excitement included, such as "Robot Attack," ,.f J
"Lander," and "Snazzle," but also games of a pragmatic
nature, such as "Calendar," which permits the user to have ,
the computer display a full-month calendar for any month ^J
of any year of his or her choice. The "Morse Code" pro
gram will assist a beginner in learning the Morse code
quickly and in an unusually pleasant environment. Many of
the other programs are TI-99/4A versions of popular clas
sical games, such as "Hangman," "Blackjack," "Rou
lette," "Tic Tac Toe," and "Flip-a-Disk," among others.

THE HISTORY AND DEVELOPMENT OF THE TI-99/4A

In July of 1978, Texas Instruments released a brand-new
product—indeed, a whole line of products, including a
computer and a monitor (a specially designed, high-resolu
tion TV-type display device used specifically with comput
ers) together with expansion interfaces that allowed the
machine to grow substantially with the user's needs. De
spite all its considerable capabilities, the machine (called in
those days the TI-99/4) was not particularly successful in
the marketplace, not only because few programs were
available for it but also because its price was too high. In
1980, TI responded to the situation by upgrading the key- ^J
board (which was difficult for many people to use effec
tively), renamed the computer the TI-99/4A, and then hired
Bill Cosby, the noted American comedian, to star in its , J
commercials. At the same time, Texas Instruments drasti
cally cut the price of the computer to make it competitive ,
with comparable computers in the marketplace. }amJ

As a result of these steps, sales of the 99/4A exploded to
the extent that, by mid-1983, over a million models were
shipped. In fact, by the end of that year, 150,000 a month
were being sold. This is largely due to the fact that the price

PffiSMB

L

INTRODUCTION

of the TI-99/4A today is under $100.00—making it one of
the most powerful and flexible computers available in this

[price range. It comes complete with a full-stroke keyboard
^"B (far easier to type on than the cheaper membrane keyboard)

and a wide variety of "ports" (the computer's windows to
[theoutside world) allowing for powerful expansion capabil

ities. Even without these added features the TI-99/4A rep
resents the state of the art in microcomputers, providing

I. the user with computational punch, which was previously
available only to large corporations, academic institutions,
and governmental agencies.

The standard 99/4A can display output in 24 rows of 32
columns each. Visual effects are enhanced by the 16-color
capability which is an integral part of the version of BASIC
that comes with the machine, allowing for easy use of this
most desirable feature with only simple programming. It
has two cassette ports to allow it more flexibility when
permanently storing programs and data. In addition to all
these features, a port is dedicated for communication with
two joysticks to allow for the creation of interactive, fast-
action game playing. A connection to an expansion box is
built in to allow for communication with peripherals such
as printers, modems, and many others. The version of
BASIC the 99/4A uses has been augmented to make control
of these devices simple.

Aside from controlling the various accessory equipment,
the version of BASIC supported by the TI-99/4A is superior
to that found on many other machines. Writing and editing

| programs is fast and simple. With the advanced BASIC
module, even more capabilities are gained. In this book,
however, we shall assume that the reader has only the Ti

ll 99/4A with 16K (16,000 characters orbytes) ofmemory and
a cassette recorder together with a connecting cable.

SETTING UP

In order to be able to properly enjoy your computer, it has
to be set up correctly to insure maximum ease of operation
with a minimum of problems. If treated with care, the

10 ZAPPERS

TI-99/4A should last a very long time and will provide an
unlimited source of enjoyment and learning.

The first consideration is the location of the machine. J
Since the circuitry of the computer generates an apprecia
ble amount of heat, blocking the cooling vents may perma
nently damage it, requiring expensive repairs. Therefore, ^^J
the computer should always be placed on a flat, nonmetallic
surface with unimpeded ventilation. It should be placed in
an open location—it shouldn't be enclosed in any way. . .
Because the machine gets warm enough on its own, it is a
good idea to locate it away from direct sunlight. Since the
computer is itself an electronic device, placing it too close
to another electronic device such as a television set runs
the risk of mutual interference between the two machines.
Therefore, it is suggested that the computer not be placed
on top of a television set.

Human comfort is another factor to consider. If you are
going to look at a screen for an extended period of time,
the screen should be free of any reflected glare and away
from direct bright lights. But it is suggested that there still
be some light in the room beyond that provided by the
television set.

GETTING READY FOR ACTION

Once a convenient site for the computer has been selected,
there are a few simple cable connections that have to be
made. The first is the connection to the television set or the
video monitor to display the output produced by the com- I
puter. For most people the TV set is the only option avail
able because they don't have a monitor. If a TV set is used,
it must be connected to the computer with the TI Video , j
Modulator, which is included with the purchase of the com
puter. Check the User's Reference Guide for the proper
way to make the connection. The round end of the cable ^J
should be plugged in the socket on the back left of the
computer. The end of the cable that carries the video mod- ,
ulator should be attached to the VHF terminals ofthe tele- ^J
vision set. On the flat top surface of the modulator is a

teas&l

UifflW

L

L

IWjsngng

INTRODUCTION 11

switch labeled "TV and Antenna." When you wish to use
the computer, this switch should be set to "TV." On the
side of the video modulator from which the cable exits is a
smaller switch that switches between channels 3 and 4. It
should be set to the channel that does not reach your area;
if it is set incorrectly, the computer is forced to compete
with the local TV station, making the picture less clear.

Of course, in order to function, the computer must be
supplied with a source of electricity. The power cable
should be plugged into the back of the computer. Before
plugging in the cable to the wall, be sure that the computer
is switched off. There is a sliding ON/OFF switch on the
front right of the computer. By making sure that this switch
is in the OFF position, possible damage is prevented from
the surge of current that occurs when the computer is first
plugged in.

Now, with the other end plugged into the nearest conve
nient wall socket, switch the computer and television set
on. So long as the television is set to channel 3 or 4 (which
ever one is appropriate for your locality) you should see a
most attractive and colorful picture on your screen. This is
what Texas Instruments calls the "master computer title
screen." If, for some reason, this does not appear on the
screen, first look to see whether the red light that is located
immediately to the left of the ON/OFF switch is on. If it is
not, the probable explanation is that the wall socket from
which you are attempting to draw power is dead. It is pos
sible that it is under the control of a wall switch. Such wall
sockets should be avoided (if at all possible) because the
computer might be unintentionally switched off in the mid
dle of a heavy session at the machine. This could result in
the infuriating situation of wasting all your hard work and
having to key in your program again from scratch. In the
unlikely event that the red light is on but the proper display
does not appear, switch off the computer immediately and
review the steps that have been outlined so far. If you
cannot detect anything wrong in your setup, you are ad
vised to seek professional assistance.

While we now explain how to connect a tape cassette

12 ZAPPERS

recorder, you should temporarily switch off the TV and ****
computer. In general, it is a good habit to switch off every
peripheral and the computer itself when plugging in an ad- I
ditional device. ****

Now that the computer and TV are switched off, the time
has come to try and connect the tape cassette recorder to I
the computer. A cassette recorder is essential for saving
programs once they have been typed into the computer.
Sometimes a program will be quite long and it will take a ^J
considerable amount of time to enter it into the computer.
Once the power is switched off, all the contents of memory
are irretrievably lost. This means that, if the same program
is to be run again, it must be retyped from the beginning.
Since it would be very tedious and time consuming to have
to retype large programs over and over again, computers
such as the 99/4A are designed so that you can store pro
grams in certain peripherals made for this purpose. Cas
sette tapes are the least expensive and most popular way of
permanently storing programs and data. In this book we
assume that the reader has a cassette recorder. A disk drive
is also available for the 99/4A but although it is far more
efficient and faster than a cassette recorder, it is consider
ably more expensive, and most people do not own one.

When connecting a cassette recorder to the TI-99/4A,
you must bear in mind that not all recorders are identical
and many are incompatible with the computer. In order to
communicate with the computer, the recorder must have at
least two jacks—MICrophone and EXTernal speaker or
EARphone jack. These are the connections through which J
the computer communicates directly with the tape re- ^
corder, and without these nothing can be saved. Addi
tionally, it is beneficial to have a REMote jack, because it J
gives the computer more direct control over the recording *•"
and playback processes.

First it should be said that the cable that is required to ^J
connect a cassette recorder to the computer is not included
in the purchase of the computer and so must be purchased
separately, from a computer dealer who carries the TI line j

idmnmg

INTRODUCTION 13

of equipment. The double cassette cable (which permits not
just one but two tape recorders to be connected to the
computer) currently sells for approximately $15. It is not
necessary to get the double cable, but the additional cost
over the single cable unit is only about $5, and the extra
capability may well be useful sometime in the future.

Now take the cable (single or double) and plug it into the
back right of the computer, adjacent to the power cable
socket. On the other end of the cable there are three plugs
leading from red, white, and black wires. (If you have the
double cable, use the end labeled "1.") The red wire should
be connected to the MICrophone socket and the white wire
is connected to the EARphone or EXTernal speaker
socket. If the recorder has a REMote socket, plug the black
wire into it. It is not necessary to use this wire, however,
and many cassette recorders will not work properly with it.

When all the above steps have been taken, the TI-99/4A
is ready for action. Without further ado, you can turn it on,
get into BASIC by pressing any key and then the 1 key,
and type in one of the programs included in this book.

HOW TO TYPE IN PROGRAMS

The computer programs included in this book have been
designed specifically for the TI-99/4A. As a result, they
take the best possible advantage of its considerable music
and graphics capabilities, as well as its particular version of
BASIC. Because the programs were made with the TI dis
play in mind, the output produced by the programs fits
perfectly into the available screen, twenty-eight characters
on a line. In order to avoid a line break in the middle of a
word, extra spaces are sometimes added before a word to
"push" it onto the next line. Multiple or awkward spacing
is indicated by a triangle (A), which corresponds to one
stroke on the SPACE BAR. Likewise, words that are run
together with no space between them should be typed as is
—the line break will fall exactly between them. There is a
single space before the closing quotation mark in most

14 ZAPPERS

INPUT statements and in many PRINT statements; again,
type the line exactly as it appears. The spacing within
quotes is for formating only; the program will run with- J

Keep in mind that BASIC (like any other computer lan
guage) is totally unforgiving as far as the details of its in- I
structions are concerned. One mistyped character and the
program will not work properly. Because of this, it is a
good idea to remember that any program you type in will _J'
probably not work perfectly the first time. Don't make the
mistake of blaming the computer. If, after a long, fruitless
search for an error you are still unable to find it, don't stalk
off in utter disgust. Take a rest, but not before you have
saved the program. The odds are that the error will be
easily recognized later on, when you return to it with a
fresh mind.

The actual mechanics of typing in programs on the TI are
quite simple. All the special characters, such as ?,_,[,],
and ", are obtained by holding down the special key labeled
FCTN and pressing the appropriate key. The two arrows
(on the keys labeled S and D) allow the programmer to go
back and forth within a line to correct mistyped characters,
should this be necessary—and there is no question that it
will become necessary. After each line is correctly typed,
it is sent to the computer by pressing the ENTER key. The
flashing box called the "cursor" disappears from the screen
for a short time, during which you cannot type. When it
returns, the line will have been placed in memory and you
may then type the next line. 1

EDITING A PROGRAM

It is somewhat comforting to note that it is impossible to
do any physical damage to the computer by making errors
in typing in a program. Indeed, the system provides an easy
way to correct any such errors. The act of correcting mis
typed lines within a program is called "editing."

The simplest method of editing is by replacing the entire

L.

L

WaamB

L

linm|

INTRODUCTION 15

line in question. This may be done by simply typing the
number of the line you want to correct and then retyping
the line. Since each program line is stored in the order of
its line number, the old line is automatically replaced.

This method is not well-suited to the most common mis
take—mistyping just one character. In such a case, it is not
necessary to retype the whole line; it is much faster and far
less tedious to merely correct the one character involved.
This may be done by means of the EDIT command. If, for
example, line 155 was typed

155 PRIMT "HI THERE"

(where the BASIC command PRINT is misspelled), all you
need do is to type

EDIT 155

and, magically, line 155 appears on the screen ready to be
corrected. Using the left and right arrow keys, move the
blinking cursor to the site of the error and type the correc
tion. Once this is accomplished, hit the ENTER key and the
amended line replaces the old (incorrect) one.

There is yet another way of editing a line. It involves
typing the line number followed by the up or down arrow
(obtained by holding down the FCTN key and pressing the
key marked E or X). This will cause the line to be displayed
as with the EDIT command, and you may proceed to edit
the line as before.

Oftentimes you will want to insert (add) a character in
the middle of a line. This is done by moving the cursor to
the appropriate position in the line and pressing the INSert
key. This involves holding down the special key FCTN and
pressing the key marked 2. After this, any characters typed
are inserted. (They do not write over the rest of the line but
"push" it over to the right.) In a similar way, characters
may be deleted (erased) by moving the cursor to the desired
character with the arrow keys, holding down FCTN, and
pressing the key marked 1 (this is the DELete function). TI

16 ZAPPERS

provides a plastic strip that, when placed above thetoprow '*•••'
of the keyboard, indicates clearly the action of each of the
editing keys. J

Occasionally, you might want to abandon typing a line if ^^
there are too many typos. There are two ways of doing this
—both are equally acceptable. One way is to use the j
ERASE key (hold down the FCTN key and press the key ^
marked 3). The other way is to use the CLEAR key (FCTN-
4) which does not erase the line from the screen, but never- I
theless ignores the line.

Once you have typed in a program and would like to
check it for accuracy, it may be displayed on the screen by
typing the LIST command. This "lists" each instruction of
the program in ascending order of line number—regardless
of the order in which they were actually typed in. That is
to say, if you type in the lines

100 PRINT "HELLO"

120 PRINT "GOODBYE"

110 PRINT "HOW ARE YOU?"

the program will list in the order of their line number:

100 PRINT "HELLO"

110 PRINT "HOW ARE YOU?"

120 PRINT "GOODBYE"

It is still a good idea to type in the lines in number order,
not only because it is so easy to forget skipped lines, but
also because TI BASIC has a special facility to help you j
when typing in programs. As you may already know, each te*5£^
BASIC instruction must be preceded by a line number.
Typing in these line numbers, of course, takes time just like j
everything else. However, by typing the command NUM
(for automatic line NUMbering) the computer will automat
ically supply aline number beginning with 100 and going up ^1
in steps of 10. For this reason, each of the programs listed
in this book begins with line 100 and increases in steps of
10. The way to stop the computer from printing out the line L\

\smmmfis^

ffmrnHi*

feggTlP

^^|^^B^

INTRODUCTION 17

numbers is to press ENTER without typing anything else,
or you can hit FCTN-4. If you wish to resume automatic
line numbering in the middle of a program, say with line
280, then type

NUM 280

and the line numbers will continue with line 280 and on in
steps of 10.

Once a program has been typed into the computer it must
be executed in order for it to produce any results. This is
done by means of the RUN command. Assuming (some
what optimistically) that the program worked the way it
was designed to, you might wish to save it permanently on
cassette tape so that you could recall it any time later. This
is done by typing the command

SAVE CS1

and following the detailed instructions that automatically
appear on the screen. Later on, you might want to load in
the program to run it again. This is done by typing in the
command

LOAD CS1

and again following the instructions on the screen.
Using the above as a guide, why don't you try your hand

at typing in the first program? The game that the program
simulates is probably familiar to you. It is a TI-99/4A ver
sion of a number-guessing game. Since this is one of the
smaller of the programs, it is recommended that you begin
with this one and wait until you have gained a little experi
ence before you attempt some of the more exotic programs
that appear later in the book. Good luck!

PROGRAM

i
"GUESS MY NUMBER"

THE GAME

The game "Guess My Number" permits the user to specify
a range of numbers from which the computer picks a num
ber out of its hat, so to speak. The wider the range selected,
the greater the number of guesses that will be necessary
before the "hidden" number is arrived at. With each guess,
the computer responds with one of three answers: TOO
SMALL, TOO LARGE, or CORRECT, YOU WIN! The
number of guesses allotted is determined mathematically
by the computer and is based on the range that the user
selects. If the correct answer has not been selected in the
allotted number of guesses, the computer prints out
SORRY, YOU LOSE. THE ANSWER WAS . . ., fol
lowed by the random number that the computer selected.

100 CALL CLEAR

110 PRINT "THIS GAME IS GUESS MY NUMBER"

120 PRINT "YOU SPECIFY THE RANGE OF"

130 PRINT "NUMBERS AND I'LL PICK

AAAAAARAND0M ONE AND ASK YOU T0AAAGUESS
WHAT IT IS."

1M0 PRINT

18

tepsajll

^iuui£Ttltd~'~.:.i

L
"GUESS MY NUMBER" 19

150 PRINT

lb0 PRINT "ENTER THE RANGE"

170 INPUT "FROM —>":L0W

1A0 INPUT "TO —>":HI

110 RANGE=HI-L0lil+1

200 RANDOMIZE

210 X=INT(RND*RANGE)+LOU

220 P2=INT(L0G(RANGE)/L0G(2))+1
230 PRINT ::"Y0U HAVE"iP2i"GUESSES"::

2MB FOR 1=1 TO P2

250 PRINT ::

2L0 INPUT "PLEASE ENTER YOUR GUESS: ":GUESS

270 IF GUESS=X THEN 3L.0

2A0 IF GUESS<X THEN 3^0 ELSE 410

2^0 NEXT I

300 PRINT ::"S0RRYi YOU LOSE-"

310 PRINT "THE ANSWER UAS "iX

320 PRINT ::"D0 YOU WANT TO PLAY AGAIN?"

330 INPUT "(Y-YES-, N-NO): ":MORE$

340 IF SEG$(MORE$-.l-.l)="Y" THEN 100

350 END

3L0 PRINT ""CORRECT! YOU WIN."

370 PRINT "YOU GUESSED IT IN "Ui" TRIES"

3A0 GOTO 320

3^0 PRINT ::"TOO SMALL"

400 GOTO 2C10

410 PRINT ::"TOO LARGE"

420 GOTO 210

PROGRAM LINE ANALYSIS

line(s) action(s)

100 clears screen

110-150 displays introduction to the game
160 prompts the user
170-180 requests the user to enter the lower and upper

limits of the range

iThis symbol represents a stroke on the SPACE BAR.

20 ZAPPERS

190 computes the range
200 reseeds the random generator
210 sets the variable X to a random integer in the

specified range
220-230 sets the variable P2 to the number of guesses al

lowed and prints it out
240-290 within this loop each guess is accepted and is

tested against the computer's selection, provid
ing branching to the different parts of the pro
gram depending on the outcome

300-310 provides for a failing response
320-330 requests another round
340 tests the user's response that was stored in

MORES
350 stops execution of the program if the response is

negative
360-380 provides the response for a successful round
390-400 user's guess is too small
410-420 user's response is too large

PROGRAM DESCRIPTION

After the screen has been cleared (this is the role of the
CALL CLEAR instruction) the user is asked to enter the
low and high ends of the range. These values are stored in
the variables LOW and HI. The range (stored in RANGE)
is computed by subtracting LOW from HI. The amount
"1" is added to this result, since the range is inclusive. For
example, if the range is from 2 to 5, there are four possible
responses—2, 3, 4, and 5. Therefore, we subtract the low
from the high (5-2 = 3) and add 1 to get the number of
integers (positive whole numbers) within the range.

The RANDOMIZE instruction in line 200 ensures that
each time the program is run, the random number gener
ated is unpredictable. If the statement is removed from the
program (you might want to try this and see for yourself)
the same random numbers are generated for the same val
ues of the range each time the program is started. In other
words, if you run the program many times and ask for a

tmmMi«eJ

y^g^BQ

l^j^j^mQj

"GUESS MY NUMBER" 21

range of from 1 to 100, you will get the same random num
ber generated each time—not a very good practice in a
guessing game. This happens only when the program is run
from scratch, however—not when you go around again
within the program.

In line 210, the variable X is set to a random number
within the range that is currently stored in RANGE. This is
accomplished by means of the RND function which, when
invoked, returns a value between 0 and 1 (not including 1).
When that number is multiplied by RANGE its integer
value is taken by means of the function called INT. The
value of LOW is then added and the result is stored in X.
Here is a brief explanation of the logic involved. Suppose
the range selected is 1 to 100 and the random number se
lected by the computer (using the RND function) happens
to be 0.23984563. Multiplying this number by the range 100
and taking the integer portion gives us the value 23. To this
result is added the value of LOW (which is 1). Thus, we
arrive at the random number 24, which is subsequently
stored in X. This is the number that the user has to guess.

Because the wider the range, the greater the number of
guesses that should be allowed, a little mathematics is used
to arrive at a fair estimate. The variable P2 simply contains
the number of times that the range can be split into two
parts. If you are mathematically inclined, you might recog
nize that this is nothing more than the logarithm of RANGE
to the base 2, with 1 added to the result. The user is then
advised of what this calculated value is.

Within the FOR . . . NEXT loop, the user's guess is
compared with X and an appropriate response is displayed.
Once the game has ended the user is asked if he or she
wants to play again. The response of Y (or any word begin
ning with Y) sends control back to line 100, which again
clears the screen and restarts the game. Whatever the re
sponse is, it is stored in the string variable MORES. The
instruction

340 IF SEG$(MORE$,l,l) = "Y" THEN 100

compares the SEGment of the string MORES, starting with

22 ZAPPERS

its 1st character and continuing for a length of 1 character.
If this segment is equal to the letter Y, control is transferred
immediately to line 100. If, on the other hand, the segment
is anything other than Y, control falls down to the next
statement and the program ends.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. You might want to change the number of guesses al
lowed to make the game either easier or more difficult.
This may be done by changing the value of P2 as it is
assigned in line 220.

2. Provide a check to insure that no guess is allowed which
is outside of the range, since it would obviously be a
mistake.

3. Provide a check to insure that once the range is nar
rowed down, any guess outside of this limited range is
not accepted.

PROGRAM

2
"TYPING TEST'

PURPOSE

The following program has been devised to familiarize you
with the keyboard of the TI-99/4A and to improve both
your reflexes and typing skills at the same time. This is a
timed-response quiz, which means that if you don't type
the correct key within a certain period of time (a time inter
val which gets smaller with every level) you are scored as
having missed the key. The game starts off so slowly that
you may easily be led to believe that the quiz is a breeze.
But as the levels progress, you'll realize that nothing could
be further from the truth, and even the most skilled typists
will have a very hard time keeping up, especially at level 10
(the most difficult).

100 REM TYPING TEST

110 CALL CLEAR

1E0 FOR 1=1 TO 10

130 J=4000

140 CALL SOUNIH50-.J-.0)

150 J=J*.7S

lb0 IF J 1000 THEN 140

170 CALL SCREEN(I + 4)

23

24 ZAPPERS

lfl0 PRINT "ALL HANDS TO TYPING STATIONS":::

110 NEXT I

E00 FOR L = l TO 10

210 CALL CLEAR

BS0 PRINT ::"LEVEL"iL::

S30 CALL SOUND(ES0,SbE12i330iE.3^E-,2) J
E40 CALL SOUND(500-.Et>E-.0,330-.0,31E,0)

E50 CALL SOUND(S00-.EbS-,E-,341-1E-1440-,S)

Eb0 CALL SOUND(S00-.SbEiE-i330-.E-.3TE-.E)

E70 CALL SOUND(S00-,E47-12-i34c1-1E-.31E-.E)

Efl0 CALL SOUND(A00iEfc.£i£-.330iEi3TE-,E)

E10 TL =-(400/L)*(L<b)-(1000/(L*L))*(L>5)

300 RIGHT=0

310 FOR (2 = 1 TO 10

3E0 FOR T = l TO E00

330 NEXT T

340 RANDOMIZE

350 CHAR$ =CHR$(INT(RND*Sb)+b5)

3b0 PRINT :::

370 PRINT "TRY #"i(2

3A0 PRINT CHAR*

310 FOR T=l TO TL

400 CALL KEY(3iA-,X)

410 IF X THEN 410

4E0 NEXT T

430 PRINT "SORRY-. YOU EXCEEDED THE

TIMELIMIT"

440 NEXT 0

450 PRINT ::"YOUR SCORE IS:"iRIGHT*10i"*":: ^
4fe>0 INPUT "DO YOU WANT ANOTHER <2UIZAAAA(Y/

N) ":<3UERY*

470 IF SEG$«3UERY$-il-,l)="N" THEN 510 ^J
4fl0 IF SEG$«3UERY$-,1-,1)="Y" THEN 550 ELSE

4b0 ,

410 IF CHR$(A)<>CHAR* THEN b00 taJ

Type words that are run together just as they appear here and in other
listings; don't add a space.

'fflUfflUMlfW

lfflltifllTY,"i

1

k^fpafei

|^jU^I»j

l^jgrog^g

tojfafrjl^^ui

"TYPING TEST" 25

500 RIGHT=RIGHT+1

510 PRINT "CORRECT!"

520 CALL SOUND(E00-.440i0-.EE0-.0)

530 CALL SOUND(E00-.flfl0-.0-.110-.0)

540 GOTO 440

550 IF RIGHT<7 THEN E10

5h0 NEXT L

570 CALL CLEAR

5fi0 PRINT "CONGRATULATIONS- YOU ARE NOWA

GRANDMASTER OF TYPING-":::::::::::

510 END

L00 PRINT "WRONG"

L.10 CALL SOUND(700-,-fc,-,0)

tE0 FOR S=l TO 5

b30 CALL SCREEN(S)

b40 CALL SCREEN(l)

bS0 CALL SCREEN(4)

bb0 NEXT S

b70 GOTO 440

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark statement

110-190 prints the heading by using the sound and color
features

200-560 the main loop, in which typing quizzes are gen
erated and the level of difficulty is increased from
1 to 10.

210-280 prepares the screen for each level and plays the
introductory music

290 sets the time limit for the particular level
300 sets to 0 the number of questions answered cor

rectly
310-440 this loop generates a ten-question quiz
320-330 this loop creates a small time delay for audio

visual effect

26 ZAPPERS

340 reseeds the random number generator
350 sets the variable CHARS to a random letter A-Z -,
360-380 prints three blank lines and the question number, ^^J

followed by the character to be typed
390-420 this loop is executed until the time limit expires <
400-410 scans the keyboard for a typed character and, if mm

found, transfers control to the routine which tests
whether it is correct or not I

430 displays the *'time-limit exceeded" message, if upd
required

450 prints final score for each level
460-480 tests if the player wants another quiz
490 routine to check if the typed character is equal to

the computer's random one
500-540 if typed character is correct, adds 1 to score,

prints CORRECT!, generates winning sound, and
returns to the main routine

550 if score < 70% then the same level is taken over
again

560 continues in the main loop and goes on to the
next level

570-590 winning message is displayed and the program
ends

600-670 prints WRONG and generates losing sound and
some video effects before returning to the main
routine

PROGRAM DESCRIPTION]

After the screen has been cleared, the variable J is initial
ized to 4000 within a loop extending from line 120 to 190. {
This value of J is used to generate a tone whose frequency i**J
starts out at 4000 Hz. The sound is emitted by means of the
statement in 140

CALL SOUND(50,J,0)

which specifies that the sound should last for fifty units of
time (50/1000ths of a second) at a frequency of J Hz, at the

la^ttjWtM

Iftg^a'i

"TYPING TEST" 27

loudest volume (0; the softest volume is 30). J is then re
duced to three fourths of its value, and as long as it is
greater than 1000, control is sent back to line 140, which
causes a note of that frequency to be emitted. As soon as
the value of J is no longer greater than 1000, the color of
the screen is set by means of the CALL SCREEN state
ment. A message is then displayed in line 180 and the whole
process is repeated ten times.

In lines 230 to 280 each CALL SOUND statement is used

to produce not one, but three voices. The first number in
each statement is common to each tone and is the length of
the tone in milliseconds. However, when written in this
fashion, the length applies to each of the separate tones
generated in the statement, so the remaining numbers are
tones followed by their respective volumes. TL, which
stands for time limit, stores the value calculated by the
expression. This is arranged so that, as the level increases,
the time limit is correspondingly shortened, with the net
effect that the game becomes increasingly difficult.

The variable RIGHT, which keeps a count of the cor
rectly answered questions, is initialized to 0 before the loop
in which the index Q (for question) is entered. To allow the
user some time to prepare before each question, an empty
loop is repeatedly executed (200 times) thus providing a
convenient time delay. After the RANDOMIZE statement,
the variable CHAR$ is set to a random letter from A to Z.
This is accomplished by generating a random number from
65 to 90 (which is the computer's internal representation of
the letters of the alphabet) and converting these numeric
equivalents (called ASCII codes) to their respective char
acters by means of the CHR$ function.

After printing out the number of the try, the computer-
selected character is displayed. Then the timed response
loop (the FOR . . . NEXT loop extending from 390 to 420)
is entered. The keyboard is then scanned by means of the
CALL KEY statement, which checks to see if a character
has been typed, but continues execution of the program
whether or not this is true. The first number in the CALL

28 ZAPPERS

KEY statement represents the keyboard mode. Depending
on the application, the keyboard may be considered as a
single unit or two adjacent "mini-keyboards." Mode 3 is
the former, the standard keyboard arrangement. As soon
as any character is typed, its ASCII code is stored into the
variable A and the variable X—the status variable—is set
to 1, indicating that a key was pressed. If not, the variable
A contains the value - 1 and the variable X the value 0. A

test is then made to see whether X is 0 or not. If it is not,
that is a sure sign that something—we have no idea what—
has been typed in, and control is sent to line 490. If nothing
has been typed and the time limit is exceeded, a message
to this effect is printed and the quiz proceeds to the next
question. If some character was typed in, it is tested against
CHAR$ in line 490. If they do not agree, control is sent to
line 600, which prints out the message WRONG and rocks
the screen with a dazzling display of color and a mini explo
sion before going to the next question. If they agree, 1 is
added to the variable RIGHT, the message CORRECT! is
printed out, and a victory roll is sounded before continuing
with the next question.

At the end of ten questions the percentage score of the
player is displayed in line 450. The player is then asked if
another round is desired. The response is stored in
QUERY$ and the first character is tested in line 470 against
the letter N. If a match is found, the program is immedi
ately terminated. If the first letter of the response stored in
QUERY$ is equal to Y (meaning that another round is re
quested) control is sent to line 550. If this is not the case,
then it is clear that the response did not start with either an
N or Y. Thus an error was committed and so the ELSE

clause in line 480 sends control to line 460, the INPUT
statement. The user is again asked to respond and the same
checking procedure occurs. In line 550, the number of cor- i
rect questions scored in the quiz is compared to 7 (the ^J
lowest passing score). If it is less than 7, the player must
retake the quiz at the same level, having failed in his first "j
attempt. Otherwise, control drops to the NEXT L state-)a&^

towaiyssjJ

IjflgjpttJ

ypfgftf'i'J

tummmmisJ

'TYPING TEST" 29

ment in line 560 and the level is advanced by 1. At the end
often levels, a winning message is printed out and the game
ends.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The time limit may be modified to allow for easier or
i harder levels of play, although the game is already very
Lqv difficult indeed at the top levels.

2. The program could be redesigned to allow for a string of
random characters which would have to be typed within
a certain period of time. This would make for a consid
erably more challenging test. Of course, in view of the
fact that more time is required to type in a greater num
ber of letters, the time limit would have to be increased.

3. The number of questions in a quiz can be increased or
decreased at will by changing the final value of Q in the
loop at line 310. Should you decide to do this, the cal
culation of the percent of correctly answered questions
as scored in line 450 must be amended.

4. The passing grade may be changed by using a different
constant in line 550. For example, in order to make the
passing grade 50 percent line 550 may be changed to

IF RIGHT < 5 THEN 210

||ato^™j

mj^i^iij^^

PROGRAM

3
'ARITHMETIC QUIZ

J J

PURPOSE

You can relax a little on this quiz because the questions are
not timed at all. It is a test of your arithmetic ability, one in
which your skills of addition, subtraction, multiplication,
and division are challenged. The quiz is devised so that all
the correct answers are integers. Don't be fooled into
thinking that for this reason there is no real challenge, how
ever. It still isn't that easy to score well—unless, of course,
you cheat by using pencil and paper or a calculator.

100 CALL CLEAR

110 PRINT "UUIZ ALERT! REV UP

YOURAAAAABRAIN!"::::::::::
1E0 FOR 1=1 TO t>

130 FOR J=S TO 10 STEP B

1MB CALL SOUND(50-.-if-.0-.(33M0-J*110)-.0

(lbE0-J*110)i2-.J*110-.0)

1S0 CALL SCREEN(J)

1L.0 NEXT J

170 NEXT I

1&0 CALL SCREEN(13)

110 CALL CLEAR

^^jPjgpgj

1

J

vfoffnrw

r "

200

^^rangm

E10

220

230

lifwm^jpH

240

250

2L.0

I^H^y,.

270

250

210

300

310

320

330

3M0

350

3b0

370

3fl0

310

M00

M10

M20

M30

MM0

M50

L
ML0

M70

M80

mafgggff

H10

500

510

yHJjjjgggmjQ

520

530

5M0

1/imMjUmgpl

550

Sb0

"ARITHMETIC QUIZ" 31

RANDOMIZE

PRINT "THIS IS A TEST"

PRINT "OF YOUR ARITHMETIC ABILITY"

PRINT

PRINT "1 ... ADDITION"

PRINT "2 ... SUBTRACTION"

PRINT "3 ... MULTIPLICATION"

PRINT "M ... DIVISION"

PRINT

RIGHT=0

INPUT "WHICH ONE? ":CH0ICE

IF (CH0ICE<1)+(CH0ICE»4)+(CH0ICE<>

INT(CH0ICE))THEN 300

CALL CLEAR

FOR (3=1 TO 10

PRINT :"<JUESTI0N #"iSTR$(fl): :

ON CHOICE GOSUB M30-, M10-.550-.bl0

NEXT a

PRINT ::"Y0UR SCORE IS"^RIGHT*10n"X"::

INPUT "ANOTHER flUIZf ":<2UERY$

IF SEG$((3UERY$-,1-,1)="Y" THEN 160

IF SEG$d2UERY$-,l-Il)<>"N" THEN 360

CALL CLEAR

END

REM ADDITION ROUTINE

A=INT(RND*100)+1

B=INT(RND*100)+1

ANSIilER=A + B

PRINT Ai"+"iB^"="i

GOTO b70

REM SUBTRACTION ROUTINE

A=INT(RND*100)+1

B=INT(RND*100)+1

ANSIilER=A-B

PRINT Ai"-"iBi"="^

GOTO b70

REM MULTIPLICATION ROUTINE

A =INT(RND*25)+1

i

32 ZAPPERS 1

570 B=INT(RND*2S)+1
tetfpftl

560 ANSUER=A*B

510 PRINT Ai"*"iBi"="i 1

b00 GOTO t.70
f^yfefeJ

bl0 REM DIVISION ROUTINE

1,20 A=INT(RND*2S)+1
toaptiii

b30 B=INT(RND*25)+1

bM0 ANSUER=A ^1

bS0 A=A*B y^psij

bb0 PRINT Ai"/"iBi"="^

b70 REM GET THE RESPONSE

bfl0 INPUT RESPONSE

b10 IF RESPONSE=ANSUER THEN 730

700 CALL SOUND(M00ill0i0il20 -.0-.130101-M-.0)

710 PRINT :"SORRY-. THE CORRECT

ANSIiIERa^UAS"i ANSWER: :
720 RETURN

730 FOR 1=1 TO 5

7>40 CALL SOUND(50ill0*IiIi220*I-.I-.MM0*I-.1)

750 NEXT I

7b0 PRINT :"THAT'S CORRECT!'r • •

770 RIGHT=RIGHT+1

760 RETURN

PROGRAM LINE ANALYSIS

line(s) action(s)

100-190 clears screen and sets up display with audio
visual effects

200 reseeds the random number generator
210-280 prints the menu of options
290 sets the number of correct answers to 0 ^1
300-310 inputs a choice and rejects invalid responses
320 clears screen

330-360 main loop of the ten-question quiz ^J
340 prints the current question number
350 depending on which subject was chosen, control -,

is sent to the appropriate subroutine ^^J

iiteaQgg

t^^&p;

"ARITHMETIC QUIZ" 33

370 prints out percent score of correct answers
380-400 asks the user if another round is desired. If so,

control is sent to line 180. If the response is nei
ther Y nor N, control is returned to the INPUT
statement

410-420 screen is cleared and the program ends
430-480 addition subroutine; generates two random num

bers A and B each between 1 and 100 and places
A + B in ANSWER

490-540 subtraction subroutine; generates two random
numbers A and B each between 1 and 100 and

places A - B in ANSWER
550-600 multiplication subroutine; generates two random

numbers between 1 and 25 and places their prod
uct in ANSWER

610-660 division subroutine; generates two random num
bers between 1 and 25, and manipulates them to
provide for integer quotients

670-780 main subroutine that requests the user's re
sponse, which is checked against the computer's
calculated result

700-720 negative response—the answer given was wrong;
prints appropriate message and emits losing
sound

730-780 positive response—the answer given was right;
prints appropriate message, emits winning sound
and adds 1 to RIGHT

PROGRAM DESCRIPTION

After the screen is cleared and a welcoming display in
sound and sight is created, the screen is first set to light
green and is then cleared. A menu is then displayed, indi
cating the four choices of arithmetic operations that are
available. According to the menu, 1 represents addition, 2
subtraction, 3 multiplication, and 4 division. The player is
then prompted to select a number from 1to 4, which is then
validated; that is to say, it is tested to ensure that it is

\fimm^d

34 ZAPPERS

neither less than 1, greater than 4, nor a noninteger. If any ^m0M^
of these conditions are violated, control is sent back to line
300, where the user is asked to make another response. If]
all is well, the screen is cleared and the ten-question quiz
begins.

Line 340 prints the literal QUESTION # followed by the ^J
value of Q, which ranges from 1 to 10. Instead of simply
printing out the value of Q, we have adopted the strategy -,
of using its string equivalent, which is achieved by using ^J
the STR$ function. The reason for resorting to this tech
nique is that normally when numbers are printed, they are
surrounded on each side by a space. Changing the repre
sentation of the number to its string equivalent eliminates
the extra space and thus improves the appearance of the
output. Maybe you would like to check this out for yourself
on the computer. If so, just change line 340 to read

340 PRINT :"QUESTION #";Q

and you will find that the number in Q is printed alongside
the literal with an unwanted space separating it from the
number sign.

Depending on the selected arithmetic operation, the
value of CHOICE will be 1, 2, 3, or 4. Control must be sent
to one of the four different subroutines depending on this
value. There is a particularly convenient instruction to di
rect such a flow of control. The command that accom
plishes this task is called ON GOSUB. Line 350 reads as
follows: j

350 ON CHOICE GOSUB 430, 490, 550, 610

If the value of CHOICE is equal to 1a branch is made to ^J
the subroutine located at line 430. If it is equal to 2, control
is sent to the subroutine at 490, and so on. Assuming that .
the value ofCHOICE is equal to 1, control is sent to the ^J
subroutine beginning at 430, the addition subroutine. Two
random numbers, A and B, are generated and the variable i
ANSWER is set to their sum. The numbers A and B are ^d
first printed out and then control is sent to 670, where the

j

"ARITHMETIC QUIZ" 35

user types in an answer. If the user's response agrees with
the computer's calculated result, control is sent to line 730
where a complimentary sound is emitted and a cheerful
message is displayed. At the same time the value of RIGHT
is incremented by 1 and the subroutine returns control to
the main loop for the next question.

The other options behave in a similar manner, except for
division. Since division can result in fractional answers
even where only integers are involved, it is important to
make sure that the numbers divide evenly. This is done by
"reverse engineering" the problem. In other words, we
take A and B (which are whole numbers) and multiply
them, getting a product that must, of course, be divisible
by both A and B. The problem may then be presented as
that product divided by either one of the two numbers. This
operation will always yield the other number—thus ensur
ing an integer result.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. It is easy to change the difficulty of the problems by
restricting the random numbers to smaller or larger val
ues in each of the four subroutines. For younger chil
dren, single-digit numbers are more advisable, while for
those at the stage of learning the multiplication tables,
setting the maximum value for a number at 12 is proba
bly a good idea.

2. Subtraction can produce negative results. If this is not
desired, it is recommended that a test be added to the
subtraction routine to ensure that the value of A is al
ways greater than B.

3. Should you wish to change the number of questions in
the quiz, this may be done quite easily by changing the
value of the upper limit of Q in line 330. Should you do
this, however, you will have to give some attention to
line 370, where the percentage of correct scores is cal
culated and printed out.

4. You might wish to add other operations, such as expo
nentiation, to add variety to the quiz.

((

tifffigy»j

PROGRAM

SCRAMBLER"

PURPOSE

Scrambler is a game for testing your pattern-perception and
vocabulary skills. The game consists of a timed quiz in
which you are asked to recognize a series of random words,
presented one at a time, which have been randomly jum
bled. It is not enough to figure out each original word,
however, You must also type it, correctly spelled, within
the time interval allotted. At the higher levels, this may not
be so easy—particularly if you increase the word list stored
in the DATA statements.

100 REM SCRAMBLER

110 CALL CLEAR 1
1SB PRINT "UELCOME TO ..."::::::::: ^
130 FOR J= l TO 3

1M0 FOR 1=1 TO 10 I
150 CALL KEY(3-.KEY-,STATUS)
1L.0 IF STATUS THEN S30 ,

170 CALL SOUND(S01110*I10) ..J
1A0 CALL SCREEN(INT(RND*lb)+l)
110 CALL HCHAR(B3-.13-,ASC(SEG$ i

("SCRAnBLERA"-,Iil))i5) J
36

Ijft^iffiSit

frtiinTifT

"SCRAMBLER" 37

200 PRINT TAB(13)iSEG*(nSCRAI1BLERA"-.I-.l)
210 NEXT I

j, 220 NEXT J
230 PRINT ::::::::::

240 CALL SCREEN(13)

L, 250 Dill UORD$(100)
21,0 N=10

/- - 270 FOR 1=1 TO N

Lmm 2A0 READ blORD$(I)
210 NEXT I

300 Din SCRAMBLER(15)iVICT0RY(S)

310 FOR 1=1 TO 5

320 READ VICTORY(I)

330 NEXT I

3M0 INPUT "ENTER THE STARTING

LEVELAAAA(1-1) ": LEVEL
350 IF (LEVEL<1)+(LEVEL>1)+

(LEVEL<>INT(LEVEL))THEN 340

3L.0 FOR L=LEVEL TO 1

370 LF=(20-2*LEVEL)*2S

3fi0 CALL CLEAR

310 PRINT "LEVEL:"iL::

400 RIGHT=0

410 FOR (2=1 TO 10

420 RANDOMIZE

430 SCRAMBLEM""

440 ANSWER^""

450 R=INT(RND*N)+1

L 4L.0 TEriP$=li)ORD$(R)
470 LNG=LEN(TEMP$)

,— 4A0 FOR 1=1 TO LNG

L 410 CALL SOUND(100-,110*1.3AI,0)
500 SCRAnBLER(I)=ASC(SEG$(TEnP$-,Inl))

510 NEXT I

520 FOR 1=1 TO LNG

530 CALL SOUND(100-.(LNG-I+l)*110-.0)

r— 540 R=INT(RND*LNG)+1

L^ 550 TEnP=SCRAI1BLER(I)

38 ZAPPERS

5b0 SCRAMBLER(I)=SCRAMBLER(R)
570 SCRAMBLER(R)=TEMP
Sfl0 NEXT I

l^pfei
510 FOR 1=1 TO LNG

b00 SCRAMBLE$=SCRAMBLE$&CHR$(SCRAMBLER(I))
bl0 NEXT I

tytfj^j
t20 TL=LF*2*L0G(LNG)
L30 PRINT SCRAMBLE*:

tettflff'tr
b40 FOR T=l TO TL

b50 CALL KEY(3-.AiX)
bb0 IF X=l THEN 700

1.70 NEXT T

LA0 PRINT :"SORRY-, YOU EXCEEDED

THEAAAAATIME LIMIT. THE ANSWER
UAS: "iTEMP*::

b10 GOTO 7b0

700 T$=CHR$(A)

710 PRINT T$i

720 ANSiilER$=ANSIilER$&T$

730 IF LEN(ANSUER$)<LNG THEN b70
740 IF ANSUER$=TEMP$ THEN A30

750 PRINT ::"SORRY-, THAT IS

INCORRECT.AAATHE RIGHT ANSWER
IS:":TEMP$::

7L.0 NEXT Q

770 INPUT "WOULD YOU LIKE TO TRY

AGAIN?":<3UERY$

7A0 IF SEG$«2UERY$-,1-.1)="N" THEN A20
710 IF RIGHT<7 THEN 140 ELSE 1b0

iiiylf^ij
600 NEXT L

A10 PRINT "YOU ARE A GRANDMASTER
~\

OFAAAASCRAMBLING. CONGRATULATIONS." J
A20 END

A30 FOR 1=1 TO 5
-~l

A40 CALL SOUND(100iVICTORY(I)i0) L^m^m

A50 NEXT I

At>0 PRINT ::"THAT'S RIGHT! GOOD SHOW!":: "1

A70 RIGHT=RIGHT+1 kntf&U-

"SCRAMBLER"

AA0 FOR T=l TO 300

liggg^p

A10 NEXT T

100 GOTO 7b0

110 DATA "COMPUTER"-."PHLEGM"-."NAIVE"i

Ij^HUIimmmM

"EXISTENTIAL"-."PARTIAL"-.

"REITERATE"-."INTEGRAL"-."COEXIST"-.

"FOREIGN"

Ijsmm&^ff

120 DATA "DEMEANOR"

130 DATA 444-.b04-.b70-.704-.772

140 PRINT "SORRY-. YOU SEEM TO HAVE HAD A

ROUGH TIME ON THIS LEVEL-"::

150 GOTO 410

1b0 FOR 1=1 TO 5

170 CALL SOUND(50-.VICTORY(I)-.0)

1A0 NEXT I

110 PRINT ::

1000 ON INT(RND*3)+1 GOSUB 1050-.1070-.1010

1010 PRINT "YOU SCORED"iRIGHT*10i"X"

1020 FOR T=l TO 400

1030 NEXT T

1040 GOTO A00

1050 PRINT "THAT'S GREAT!"

10b0 RETURN

1070 PRINT "GOOD JOB. PROCEED TO

THEaa^NEXT LEVEL"
10A0 RETURN

1010 PRINT "MAGNIFICENT WORK!"

. - 1100 RETURN

jteggMj^L

39

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark
110-240 clears screen and prints greeting
250-260 reserves room for 100 words, of which 10 are

used

270-290 reads the 10 words from DATA statements

40 ZAPPERS I

300 reserves room for the scrambled word and the
victory notes

310-330 reads in the five-note victory theme ^J
340-350 requests the starting level and checks for its

validity
360-800 the main loop I
370 sets the time limit for each level, which de

creases as the level increases ->

380-390 clears the screen and prints the current level ^J
400 sets the number of correct answers to 0
410-760 the loop containing the ten-question quiz
420 restarts the random sequence each time around

the loop for greater unpredictability
430-440 sets the user's answer and the computer's

scrambled output to the null string
450-470 picks a random word from the list, stores it in

TEMP$, and calculates the number of letters
in the word

480-510 copies the computer's chosen word to an array
520-580 scrambles the array randomly
590-610 copies the scrambled array back to the com

puter's output string
620 calculates the time limit
630 prints out the scrambled word
640-670 scans keyboard for the duration of the time

limit

680-690 prints a message if the time limit is exceeded,
provides the answer, and goes on to the next
question ^1

700-740 prints the letter typed each time and returns
for more input until the required number of
characters have been typed ,

750 if answer is incorrect, prints appropriate mes
sage and provides the correct one

770-780 asks whether user wants another round and if m^
not, terminates program

790 if another round is requested and score is less i
than passing, repeats the current level; other- i«J
wise makes victory sound and advances a level

IligjjBp

"SCRAMBLER" 41

810-820 congratulates the player on winning the game
and terminates the program

830-850 routine to sound the victory theme
860-900 routine to advise user of correct answer and

increment the count of correct answers; pro
vides a short delay and returns to the main
routine

910-920 contains the data
930 data for the victory sound
940-950 apologetic message to inform the player of fail

ure and returns to the main routine
960-980 another victory roll
990-1040 prints out the final score, provides a short

delay, and advances to the next level
1050-1100 the three congratulatory messages, one of

which is selected randomly

PROGRAM DESCRIPTION

After the screen is cleared, the usual welcoming message is
displayed. It may be interrupted at any time, however, by
pressing any key, which triggers the IF . . . THEN state
ment in line 160, sending control out of the loop to line 230.
Within the loop, different notes are generated by the state
ment in line 170 while the color of the screen background
is changed randomly and SCRAMBLER is printed verti
cally down the screen. The way this is accomplished is by
means of the HCHAR statement, which permits a character
to be placed anywhere on the screen. For example, the
statement

CALL HCHAR (23,13,65)

places the character A (ASCII 65) at row 23, column 13.
This instruction is also capable of accepting a repetition
factor. For example, the instruction

CALL HCHAR (23,13,65,5)

%M^fe1

42 ZAPPERS

places five successive A's, starting at row 23, column 13, ***
moving to the right. In the program, we examine slices of
the string "SCRAMBLER " (notice the space follow- I
ing the letter /?), using the SEG$ function. In order to ob- ^
tain the ASCII value of the character so as to use it in a
CALL HCHAR statement, we take advantage of yet an-]
other function, known as ASC, which converts any char- ^^^
acter into its ASCII code. Therefore, the instruction

190 CALL HCHAR mJ
(23,13,ASC(SEG$C4SCRAMBLERA",I,1)),5)

has the effect of producing a series of horizontal lines
composed of five identical characters of the string
"SCRAMBLER ", starting with the first and ending up
with the space. The space therefore separates the words as
they scroll up the screen. It is interesting to remove line
200 and see what happens. Without the PRINT statement,
the screen does not scroll and so the letters come out one
on top of another. You will notice that the PRINT instruc
tion contains the clause TAB(13). This behaves like the tab
function on a typewriter. It begins printingat the thirteenth
column from the left of the screen.

Once the display has been scrolled out of the way to the
top of the screen (in line 230) the screen is set to light green
(color 13) and the main section of the game begins. Within
the FOR . . . NEXT loop in lines 270-290, the ten words
contained by the DATA statements beginning in line 910
are read and stored in the arrayWORDS. Next, the victory
tune is read in at lines 310-330. The data for this is located j
at line 930. The player is then prompted to enter the starting ***
level of his or her choice. The permitted range is 1 to 9,
with 1 being the easiest and 9 the most difficult. To avoid 1
possible problems, the value inputted in LEVEL is vali- ^
dated to ensure that it is not less than 1, not greater than 9,
and that it is an integer. Should any of these conditions be j
violated, control is sent back to the input statement in line
340, permitting the user to enter another value.

The level factor, stored in the variable LF, is part of the J

Wmjw.,...i

"SCRAMBLER" 43

mechanism by which the time limit is computed. The level
factor starts out as 18 times 25 and goes down to 2 times
25. The time limit is calculated in line 620 by multiplying
LF by twice the natural log of the length of the word. This
simply means that the longer the scrambled word, the more
time that is given for deciphering it.

In order to randomly select a word (lines 450-470), a
random number between 1 and 10 is generated and stored
in R. TEMP$ is then set to WORD$(R) and is substituted
for it afterwards. The length of the selected word is then
determined by means of the LEN function, which behaves
in the following manner:

PRINT LENrCOMPUTER")

returns the value "8," since there are eight characters in
the string COMPUTER.

Armed with the variable LNG, which now contains the
length of the word, a loop is entered in which successive
one-letter slices of the word are copied into the numeric
array SCRAMBLER using the ASCII equivalent of each
character. Just to add a little more variety to this, a differ
ent sound is emitted each time around the loop. Once the
array contains the ASCII representation of the word, we
can set about scrambling it with ease. We simply proceed
through the length of the word, switching each element
with a randomly selected one. In this way, the whole word
is scrambled—at least in its numeric form. Now the nu
meric representations have to be converted back to their
character representations. This is done in the FOR . . .
NEXT loop extending from 590 through 610, where two
new features present themselves. First is the ampersand
sign (&). This is the string equivalent of addition, which
simply combines (concatenates) the two strings end to end.
For example:

PRINT "HOT,,&"DOG"

displays HOTDOG as one character string. Similarly, a

44 ZAPPERS

string variable may be set equal to the "sum" of two strings mmk
as in the following example:

TOGETHER$ = "PARTI "&"PART2" md

which assigns the string "PARTI PART2" to the variable -}
TOGETHERS. The second new feature is the CHR$ fimc- «J
tion, which is simply the reverse of the ASCII function—
that is to say, given the ASCII code of a character, it re- i
turns the character form. For example m^

PRINT CHR$(65)

displays the letter A on the screen.
The effect then of the FOR . . . NEXT loop that goes

from 1 to LNG (the length of the selected word) is to set
the variable SCRAMBLES to the scrambled version of
TEMPS. It is for this reason that SCRAMBLES was first
set to the null string—the character equivalent of 0. If this
were not done, SCRAMBLES would keep getting larger as
more and more characters are added to it. It would there

fore only be correct the first time the program is run. On
each subsequent occasion, the string would get larger and
larger and would never be equal to the scrambled version
of the newly selected word.

After the scrambled word is printed out in line 630, the
timed loop begins. If a key has not been pressed within the
calculated time limit, a message to that effect is printed out,
the correct answer is displayed, and the program proceeds
to the next question. If, on the other hand, a response is j
registered, control is sent to line 700, where the character ^^
version of the pressed key is stored in T$. After it is
printed, it is concatenated to ANSWERS (which is set to j
the null string in line 440 for the same reason as above). ^^
When the length of ANSWERS reaches that of the jumbled
word, a test is made for equality. If they match, control is t J
sent to line 830 where a victory sound is emitted, an ap
proving message is displayed, and the count of correct re
sponses is incremented by 1. After a small time delay, the
computer goes on to pose the next question.

I^jgffljggj

c

"SCRAMBLER" 45

In line 1000 we have an example of the ON condition
used with subroutines. Its purpose is to congratulate the

jj user using different messages. We have selected three such
^ messages and each time a score is given, one ofthese mes

sages is randomly selected to be displayed, thereby giving
I the game a more human quality. The statement works in

the following way:

ON VAR GOSUB 100, 200, 300

If the value stored in the variable VAR is equal to 1, control
is sent to the first subroutine mentioned (the one beginning
in line 100). If VAR is equal to 2, control is sent to the
second subroutine (line 200) while if it is equal to 3 a branch
is made to the third subroutine, the one beginning in line
300.

This technique is used in line 1000, where a random in
teger between 1 and 3 is generated. If it is equal to 1, con
trol is sent to the subroutine in line 1050; if it's 2, control
goes to line 1070, and if it's equal to 3, control branches to
line 1090.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The words themselves can be changed any time it is felt
necessary. This might be a good idea if the players have
become familiar with the words to be scrambled. Also,
you might want to make the words easier or more diffi
cult, depending on the players.

I 2. The number of words can be altered by changing the
*** constant for N in line 260, where it is currently set to 10.

The DIMension statement allows for up to 100 words.
|. However, should the number of words be increased, be
^ sure to add the words to the DATA statements in lines
- - 910-920. Also, the calculation of the percentage will
I, have to be amended in line 1010.

3. The game can be made more competitive by changing
- - the program so that one player types in the word to be

[^ scrambled. The computer then scrambles that word and
the other player is left to unscramble it. This, of course,

46 ZAPPERS

would mean that the READ statement in line 280 would
have to be changed to an INPUT statement.

4. The time limit can be increased ordecreased by suitably j
amending line 620. ***

5. Another score can be kept to record the time taken to
unscramble a word. In this way, a player who can un-]
scramble words faster than the opponent gets credit for te**^
it.

j

Ijjftyf'l

PROGRAM

"HANGMAN"

iSf^tf^^l

PURPOSE

Like "Scramble," "Hangman" also has the computer se
lect a word at random from a given list. However, here the
computer displays a dash (or rather an underscore charac
ter) for each of the letters of the word selected. The human
player has to guess the letters which compose the word.
When a correct letter is guessed, the computer places it in
the correct place in the word, eliminating the dash. How
ever, each time an incorrect letter is typed, another letter
from the word "Hangman" is displayed near the top of the
screen. Once the word "Hangman" is spelled out in full
the game is over and the player has lost.

100 REM HANGMAN

110 CALL CLEAR

150 RANDOMIZE

130 OPTION BASE 1

m0 DIM UORDS$(100)-.TEMP(S0)-.FLAG(Eb)

150 N=10

lb0 FOR 1=1 TO N

170 READ li)0RDS$(I)

lfi0 NEXT I

47

48 ZAPPERS

110 FOR 1=1 TO 50

500 TEMP(I)=15

510 NEXT I

550 PRINT "THIS IS HANGMAN! HERE ISaa^YOUR
IiIORD: "i

530 TEMP$=lilORDS$(INT(RND*N)+l)

5M0 L = LEN(TEMP$)

550 FOR 1=1 TO L

5t0 PRINT CHR$(TEMP(I))i

570 NEXT I

560 PRINT: :"["iSEG*("HANGMAN"il-.

DEATH),"]": :"LETTERS USED:"iUSED$: :

510 INPUT "ENTER YOUR LETTER: ":LETTER$

300 IF (LETTER$<"A")+(LETTER$>"Z")+

(LEN(LETTER$)<>1)THEN 510

310 IF FLAG(ASC(LETTER$)-bM)THEN 510

350 FLAG(ASC(LETTER$)-bi|=-l

330 USED$=USED$&LETTER$

340 F=0

350 FOR I = 1 TO L

3b0 IF LETTER$=SEG$(TEMP$iI-,l)THEN 310

370 NEXT I

3A0 IF F=0 THEN 450 ELSE 550

310 F=-l

400 REM

•410 TEMP(I)=ASC(LETTER$)

450 RIGHT=RIGHT+1

430 IF RIGHT=L THEN 550

440 GOTO 370 j
450 DEATH=DEATH+1 ***

4b0 IF DEATH<7 THEN 580

470 PRINT ::"SORRY CHUMP! YOU LOSE"

4fl0 PRINT ::"THE IiIORD UAS: "iTEMP*

m0 END

500 DATA "KEYBOARD"-."COMPUTER"-,"GAME"i

"VERIFICATION"-."EDUCATE"-,

"INDUSTRIALIZE"-."RECREATIONAL"-.

"INTERVIEW" , J

tespiM

I

I'H^VrtH&ffiflJ

toiyiffi#if

"HANGMAN" 49

510 DATA nZONESninPRODUCTnnnflUOTIENTn

5E0 PRINT ::nYOU UINJ CONGRATULATIONS!"

S30 PRINT ::nTHE IiIORD IS:n'iTEMP$

L^ PROGRAM LINE ANALYSIS

"tfd"ttl*HlM*lr

\jjjkjUrajjL,

line(s) action(s)

100 REMark
110-120 clears screen and reseeds the random number

generator
130 suppresses the Oth elements of arrays
140 reserves space for the arrays
150 sets the number of words in data to 10
160-180 reads the words from DATA statements
190-210 sets the array TEMP to the symbol _
220 prints a prompt
230-240 picks a random word and determines its length
250-270 prints the character equivalents of the array

TEMP

280 prints out the incorrect answer status and the let
ters used so far

290-300 prompts the user to enter letter, which is then
validated

310 checks if letter has already been used; if so it is
ignored and the prompt reappears

320 marks the letter as having been used
330 adds the letter to USED$ which is printed before

each turn

340 sets the flag F to false, representing the fact that
the letter has not yet been found

350-370 searches for all occurrences of the letter in the
word; if present, the flag F is set to true and the
position of the letter is changed from an underbar
to the letter itself

380 if the player's letter is not present in the selected
word, increments the death count and checks to
see if the player is dead

50 ZAPPERS

390-440 routine to set the flag for "letter found" and to
change the position from an underbar to the letter
itself; returns to the main routine j

450-490 routine to increment death count, which checks '^M
to see if the player is still alive (before the seven
chances expire); if alive, continue the game; if)
not, user is informed of what the word was, and **"*
the game ends

500-510 DATA statements containing the list of selected]

520-530 congratulatory message informing the player of
victory

PROGRAM DESCRIPTION

After the screen has been cleared, the random number gen
erator is reseeded. To conserve a little memory space, OP
TION BASE 1 is selected, which means that no space is
reserved for the 0th elements of the DIMensioned arrays.

Since the program includes ten words that are to be
guessed by the player, N is set equal to 10 in line 150. In
the FOR . . . NEXT loop in lines 160-180, the ten words
are read from the DATA statements and are stored in the
array WORDS. The array TEMP is DIMensioned at 20, and
is filled (by the FOR . . . NEXT loop in lines 190-210) with
the ASCII value 95, which represents the underscore char
acter (_). This restricts the maximum length of each of the
words to twenty characters, which is probably more than
enough for most situations. 1

A random word is selected and is stored in TEMP$ in *d
line 230. The number of characters in this word (its
LENgth) is stored in the variable L. In the FOR ... j
NEXT loop in lines 250-270, a number of underscores ^
equal to the number of letters in the randomly selected
word are displayed. Line 280 displays the square brackets j
between which the letters ofthe word "hangman" will sue- ^
cessively be added each time a wrong letter is guessed.
Initially, no letters will be displayed. Line 280 also displays]

Hjifffffr

i^^^aaaaaj

g^b^)

|j|>a^B^K/

"HANGMAN" 51

the letters guessed by the player. The variable DEATH,
which until now has not been defined, is automatically
taken to be 0 by the system. Later on we will use DEATH
as a counter. This applies equally to USED$, which is ini
tially set to the null string.

I In line 290, the player is invited to guess a letter. What-
^^ ever key is typed, that value is stored in LETTERS. How-

ever, since there is nothing to stop a user from entering a
I character other than a letter of the alphabet, or even more

than one letter, a test is made in line 300 to insure that this
has not happened. If an error is indeed made, control is
simply returned to line 290.

FLAG is a twenty-six-element array, one element for
each letter of the alphabet. Initially each element has the
value "0" (by default), indicating that the corresponding
letter has not yet been chosen by the player. (By "corre
sponding," we mean that the first element represents the
letter A, the second represents B, etc.) Any value other
than 0 would indicate that the corresponding letter had al
ready been selected by the player. The inner part of the IF
test in line 310 is ASC(LETTER$)-64. This uses the cho
sen letter's ASCII equivalent value, which is reduced such
that if the letter is A (ASCII code 65), we get the value "1"
after subtracting 64 from it. Similarly, if the letter is B, we
get 2, and so forth. In other words, we reduce whatever
letter is typed in to its positional value in the alphabet. This
result is used to select the element of FLAG corresponding
to the chosen letter.

The IF test in line 310 takes a form we have not as yet
encountered:

IF VAR THEN 100

Simply stated, if the variable VAR has the value 0 (the
computer's way of storing the value "false"), then the test
fails and the THEN clause is ignored. Anything other than
0 is regarded as "true," and control would here be passed
to line 100. Line 310 in "Hangman," in effect, tests the
value of the selected element of the array FLAG. If it is

tffi»a0ei

52 ZAPPERS

equal to 0, the test fails, which means the letter has not ••*•
previously been chosen and everything is in order. If, how
ever, the value is not 0, the letter has already been selected]
by the player, and so control goes back to line 290, where ^
the opportunity is again given to type in a letter. If this is
the first time the letter has been chosen, control automati- ^J
cally falls down to line 320 where the value " - 1" is stored
in the element of FLAG tested in line 310. As mentioned
above, this will indicate in the future that the letter has vl
already been chosen. In line 330 that letter is now concaten
ated to the string variable USED$.

In line 340, the flag F is set to zero, representing the fact
that the letter chosen by'the player is not yet matched. The
loop in lines 350-370 scans the word for all occurrences of
the chosen letter, setting the flag F to - 1 if any are found.
At the end of the loop, a test is made to ascertain whether
F is still 0. If it is, no occurrences of the letter were found
and the player gains one more letter, thus getting one step
closer to death. If any letters were found, control passes
directly to the loop beginning in line 250, where the known
elements of the word are printed out, underbars substitut
ing for letters as yet unidentified. The program then pro
ceeds to ask for another letter. Each time an occurrence of
the selection is found, 1 is added to the variable RIGHT in
line 420. A test is then made to determine if RIGHT is equal
to the length of the word (L). In other words, the test
checks if all the letters have been matched. If so, the game
is over and a congratulatory message is printed out. If not,
control passes from the routine back to the loop and the j
scan for all occurrences ofthe chosen letter goes on.)mm^

If the player chooses a letter that is not found in the
word, control is transferred to the routine in line 450, which ,^1
increments the DEATH count. Once this reaches 7, the ^^^
player is informed that the game is lost and the program
ends after the hidden word is revealed. j

Finally, lines 500-510 are the DATA statements, con
taining the hidden words, which can always be changed at
will. J

"HANGMAN" 53

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The value of N (in line 150) may be changed to any
number up to a maximum of 100 as long as that number
of words is included in the DATA statements in lines

500-510.

2. A fresh list of words can be used as soon as the current

words prove to be too easy due to familiarity.
3. Rather than terminating after one round, the program

can easily be amended to select another word. Should
this be desired, the values of RIGHT, DEATH, FLAG,
and USED$ must be reset to their original default values
(0 for the numeric variables, and the null string for
USED$).

4. The game can be amended so that two players can com
pete against each other. By changing the READ state
ment to an INPUT statement and eliminating the DATA
statements, it will be possible for one player to enter
each word (out of view of the opponent, of course) and
for the other player to guess the word(s).

5- Although it is traditional to use the seven-letter word
"hangman," there is really no reason not to select any
other word to increase variety and difficulty. For exam
ple, if a shorter word, like "bingo," were used, the game
would become more difficult, because the number of
wrong guesses permitted would be reduced. On the
other hand, selecting a longer word, such as "execu
tioner," in place of "hangman" makes the game easier
because it would take 11 errors to lose. Take note that

in line 460, the number "7" must be replaced with the
number of letters in the chosen replacement for "hang
man."

PROGRAM

E
"SOUND/SIGHT SIMON

J J

PURPOSE

This game is based on an electronic game that became
available several years ago. In the game, the player must
repeat a random tone pattern of ever-increasing length and
speed. Naturally, as the number of tones in the pattern
increases, and the pace quickens, the game soon becomes
rather difficult, to say the least.

The program which follows is an attempt to simulate the
operation of the game of "Simon." In fact, a case could be
made for the claim that this TI-99/4A version is an improve
ment, because it provides the user with not four but no
fewer than nine increasing levels of difficulty. In addition,
this computerized version of "Simon" provides nine tones
rather than just four. As each tone is emitted, a digit cor
responding to that tone is displayed in the center of the
screen so that even if you are hard of hearing or have poor
eyesight, you still have a fighting chance to succeed.

The game works like this: The computer emits a random
tone, at the same time displaying a corresponding digit J
(1-9). The player must "echo" back this tone by striking
the correct numeric key on the keyboard. For example, if ^
tone number 7 is emitted (a "7" is also displayed in the ^

54

tittflfHf'l

tkteagMUjt

mrn^^i

plj|jj||^ |

"SOUND/SIGHT SIMON" 55

center of the screen), number 7 on the keyboard must be
pressed. The computer then repeats the first tone followed
immediately by another random tone. The player must now
echo the two-tone sequence in correct order. This process
continues, with the computer adding a new random tone in
each successive round. The length of the sequence is lim
ited by the level of difficulty selected by the player, and the
player wins if he or she is able to repeat the final sequence
without mishap.

100 REM SOUND/SIGHT SIMON

110 CALL CLEAR

120 RANDOMIZE

130 PRINT "PREPARE YOURSELF FOR

ma

n •••>•

PRINT "ASSSSAIIIIAI1AAAI1AA00AANAAAN"
150 PRINT nSAAAAAAIIAAMI1AMMA0AA0ANNAAN"
itia PRINT "ASSSAAAIIAAMAI1AI1A0AA0ANANAN"
170 PRINT "AAAASAAIIAAI1AAAI1A0AA0ANAANN"
lfi0 PRINT "SSSSAAIIIIAI1AAAI1AA00AANAAAN"

MB DIM SE(2(2 3)-, NO TEC!)

200 FOR 1=1 TO T

210 READ NOTE(I)

220 NEXT I

230 DATA MMb-,50a,Sb0-,STfl-,bbM,7MM-,fl3a-1

aiBiiii

2M0 PRINT "TYPE THE DIFFICULTY LEVEL"

250 INPUT "(1 IS L0W-.T IS HIGH) ":LEVEL

21,0 IF (LEVEL < 1) + (LEVEL > 1) THEN 250

270 FOR L=LEVEL TO 1

2fl0 CALL CLEAR .

210 PRINT "YOU ARE NOU ON LEVEL"iL

300 TIME=100*(10-L)

310 I1AX_N0TES=L*2+S

320 FOR 1=1 TO HAX_N0TES

330 SE(2(I)=INT(RND*tl)+l

3M0 FOR J=l TO I

56 ZAPPERS -,

350 CALL SOUND(TIME-.NOTE(SE(2(J))i0) **»•'
31,0 CALL HCHAR(12-.15-.4fl+SE<2(J))

370 FOR T=l TO TIME/3.7

3S0 NEXT T

310 NEXT J

M00 CALL HCHARd2-.15-.32) j
M10 FOR J=l TO I

M20 CALL KEY(3,AiX)

>430 IF X=0 THEN 420 v
14110 A = A->4fl

H50 CALL SOUND(TIME-.NOTE(A)-.0)

Mb0 CALL HCHAR(12-.1S-.A+Mfl)

470 IF A<>SE<2(J) THEN 5fl0

MA0 FOR T=l TO TIME/3-7

^c10 NEXT T

500 NEXT J

510 CALL HCHARd2-.15-.32)

520 FOR T=l TO TIME/2

530 NEXT T

540 NEXT I

550 NEXT L

5b0 PRINT "YOU WIN"

570 END

5fl0 CALL SOUND(1000-.110-.0)

510 PRINT "SORRY-, YOU LOSE-"

PROGRAM LINE ANALYSIS

line(s) action(s) <"*^
100 REMark statement

110 clears screen

120 reseeds random number generator
130-180 presents title of game on the screen
190 reserves storage for the two arrays I
200-220 reads in the nine notes from data
230 data for musical notes 1
240-260 prompts user to input level of difficulty and vali- tm0Ji

dates response

"SOUND/SIGHT SIMON" 57

270-550 main loop to repeatedly increase the level of dif
ficulty

280-290 clears screen and prints the current level number
300 sets the amount of time that each note will play

and each number will appear on the screen
310 sets the number of tones that must be sounded

out before the level has been successfully com
pleted

320-540 loop in which the string of notes keeps getting
longer and longer up to the limit set in line 310

330 sets the latest note in the series to a random tone
340-390 loop that plays the entire sequence of notes up to

the latest

350 plays the note
360 displays the corresponding number on the screen
370-380 creates a small time delay between each note
400 erases the last number from the screen
410-500 requests the same sequence to be duplicated by

the player
420-430 scans keyboard until a character is typed
440 subtracts 48 from the ASCII value of the charac

ter typed in
450 plays the note whose number was typed
460 displays the number typed in at the center of the

screen

470 if the player makes a mistake, emits losing sound
and ends the game

480-490 short time delay
510 erases the last number typed from the display
520-530 another small time delay
580-590 routine to emit losing sound, print an appropriate

message, and end the game

PROGRAM DESCRIPTION

After the screen is cleared and the introduction is dis
played, the nine notes are read in, in numeric form, from
the DATA statement in line 230 into the array NOTE. The
player is then asked to type in the required initial level of

58 ZAPPERS

difficulty, a number from 1 to 9, where 1 is the easiest level
and 9 is the most difficult. The response is stored in the ,
variable LEVEL. In line 260, this value is tested to be sure J
that it is not less than 1 or greater than 9. If it is, control is
sent directly back to line 250, where the player is invited to
enter another value.

The FOR . . . NEXT loop extending from line 270
through 550 generates successive sequences of notes. The
number of sequences generated depends on the level of
difficulty selected. An initial sequence will be produced
and, if the player successfully repeats the sequence, the
level of difficulty is increased one notch and a new se
quence is generated. Since 9 is the highest possible level, if
the player has chosen level 9 only one sequence will be
produced. It may be safely assumed, however, that unless
the player is a real pro, he or she will probably not even
make it through this level-9 sequence!

The computer always notifies you of the level at which
you are playing by displaying this information on the
screen. A variable TIME is computed, based on the value
of LEVEL, which is used to control the speed at which the
sequence is played and displayed (the higher the level of
difficulty, the lower the value of TIME and therefore the
faster the speed.) MAX_NOTES represents the maximum
number of notes in the current sequence, and is calculated
based on the value of L, the current level of difficulty.

The FOR . . . NEXT loop beginning with line 320 and
extending to line 540 generates one complete sequence of -,
notes. Since the index, I, assumes the successive values ^J
1,2, etc., up to MAX_NOTES, the variable I indicates how
many notes of the sequence are being played in the current ,
round. The effect of line 330 isto randomly choose one new ^^
note and add it to the sequence. This is done by randomly
selecting a number from 1 to 9 and storing that number in i
the next available location of the array SEQ. Thus, the t*nJ
contents of the array SEQ reflect the notes in the sequence
that have been played so far.

The next FOR . . . NEXT loop (340-390) plays the se-

fgyw

lt/'a)^iiM

L

l^me

yj&jgnnm

L

L

"SOUND/SIGHT SIMON" 59

quence of notes generated so far, and simultaneously dis
plays each corresponding digit in the center of the screen.
It utilizes sophisticated versions of the CALL SOUND and
CALL HCHAR commands. In line 350, the computed
value of TIME controls the duration of the emitted tone.
The second parameter of this command requires some dis
cussion. SEQ(J) contains the digit corresponding to the
tone currently being emitted. However, the computer can
not use this number to generate the proper tone. Instead,
this number is used as the index to the array NOTE, whose
elements contain numeric values which the computer inter
prets as the frequencies of the required tones. The third
parameter of the CALL HCHAR command, in line 360,
could also use some explanation. We have already seen
that the third parameter of CALL HCHAR must be an
ASCII valuer Since the ASCII value of the character "1",
for example, is 49, the value 48 is added to the value of
SEQ(J) to produce the required ASCII value.

The "empty" FOR . . . NEXT loop in lines 370-380 is
used to produce a short delay between notes. Note that the
length of the delay is based on the value of TIME, but the
actual value of TIME is not used. Instead, it is "scaled
down" by dividing it by 3.7. It has been determined that
this will produce a suitable delay time. Line 400 has the
effect of blanking the last character of the sequence dis
played on the screen (the ASCII value 32 is the space char
acter).

We have arrived at that point in the program where we
are ready to discuss the player's response. This is encom
passed in the FOR . . . NEXT loop extending from line 410
to line 500. Each time through this loop, the player is ex
pected to enter the next required note. Lines 420-430 in
effect wait for the player to strike a key. The moment this
is done, 48 is subtracted from the ASCII value of the char
acter entered in order to convert it to its corresponding digit
(1-9). This value is required in the CALL SOUND and
CALL HCHAR commands that reside in lines 450 and 460
and serve to play and display the selected note. Line 470

60 ZAPPERS

tests to see whether the value entered by the player is in
fact correct. If it is correct, the IF test fails and control falls
down to the next "empty" FOR . . . NEXT loop, provid
ing a short delay between notes. If they do not agree, how
ever, control branches to line 580, which sounds a
raspberry and displays an appropriate message, ending the
game. Line 510 (which is identical to line 400) blanks out
from the screen the last digit entered by the player. Then
the empty FOR . . . NEXT loop in lines 520-530 provides
a short delay before the computer plays and displays the
next sequence.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The number of levels of difficulty may be changed, de
pending upon the ability of the players. If the number of
levels is modified, appropriate changes must be made
throughout the program.

2. A limit could be implemented on the time allowed the
player to enter a note. This could be accomplished by
putting lines 420 and 430 within a FOR . . . NEXT loop
similar to that at lines 370-380 (line 430 would also have
to be modified to allow for exiting the loop in the event
that a key is pressed before the time limit has expired).

j

j

((

PROGRAM

1
BLACKJACK"

PURPOSE

"Blackjack," sometimes known by its other name,
"Twenty-one," is not only a popular game in households
across the nation, but is also one of the most popular games
found in casinos around the world. The reason for this pop
ularity is probably the fact that its rules are rather simple.
Although there are many versions of the game in existence,
the version we have designed for the TI-99/4A contains all
the essentials, but includes certain restrictions in order to
keep the program within manageable proportions. This
game permits up to three players plus a dealer (the role
played by the computer).

The object of the game of "Blackjack" is to acquire a
hand that totals 21 or comes as close as possible to 21
without exceeding this limit. (Going over 21 is generally
referred to as "busting.") The hand with the highest total
not exceeding 21 is considered the winner. Each player is
dealt two cards initially. At his or her turn, each player has
two options: to receive a card (to be "hit") or to stay with
the present hand (to "stand"). The player may ask to be
hit as often as desired (or until he busts), but once he
stands, his turn is over and the next player takes over. The

61

62 ZAPPERS

dealer goes last, and is special in several senses. First, the
second card dealt to the dealer remains face down (hidden)
until the end of the game. Second, if the dealer busts, J
all other players who have not themselves busted become |M™J
winners.

In "Blackjack," the suits (hearts, clubs, diamonds,
spades) have no effect upon the game, and therefore are
not displayed. Nevertheless, the game is played with fifty-
two cards. All picture cards (jack, queen, king) are re
garded as having a value of 10, while the ace can assume
the value 1 or 11, at the option of the player.

100 REM BLACKJACK

110 CALL CLEAR

120 PRINT "WELCOME TO":::::::"THE

CYBERNETIC CASINO!"

130 OPTION BASE 1

1MB CALL CHAR(12fl-."FFfll61fllfilfllfllFF")

150 Dill DECK(52), HAND(4,7)-. X(3), Y(3),

VALUES$(13), SUM(4)

1L0 FOR 1=1 TO 13

170 READ VALUESS(I)

1S0 NEXT I

110 DATA "A", "2", "3"-. "4", "5", "t",

"7"-, "fl", "1"i "T"-. "J"i "(2"-. "K"

E00 CALL CLEAR

210 FOR 1=1 TO 3

220 READ X(I)iY(I)

230 NEXT I 1
240 DATA 4,2,20,2,4,6 *~"1
250 PRINT "HOU MANY PLAYERSf(l-3):"i

2b0 CALL KEY(3,KEY,STATUS) 1
270 IF STATUS=0 THEN 21,0

2fi0 IF (KEY<41)+(KEY>S1)THEN 2b0

210 NUI1_PLAYERS=KEY-47 ^J
300 PRINT NUI1_PLAYERS-1

310 FOR 1-1 TO NUI1_PLAYERS-1

320 CALL HCHAR(Y(I)-.X(I)-1-.ASC("[")) .^J

Lffisffiffi^flPffiJ

j^ayu^M^I

"BLACKJACK" 63

330 CALL HCHAR(Y(I),X(I),4a+I)

340 CALL HCHAR(Y(I),X(I)+1,ASC("]"))

350 NEXT I

31,0 FOR 1=1 TO t.

370 CALL HCHAR(fl,lfl+I,ASC(SEG$

("DEALER", I-.1)))

3fi0 NEXT I

310 FOR 1=1 TO 52

400 RANDOMIZE

410 DECK(I)=I-INT(I/13)*13+1

420 R=INT(RND*I)+1

430 TEMP=DECK(R)

440 DECK(R)=DECK(I)

450 DECK(I)=TEMP

4b0 NEXT I

470 FOR 1=1 TO 2

4A0 FOR J=l TO NUM-PLAYERS

410 CARD_C0UNT=CARD_C0UNT+1

500 HAND(J,I)=DECK(CARD_COUNT)

510 SUM(J)=SUM(J)-HAND(J,I)*(HAND(J,I)

<11)-10*(HAND(J,I)>10)

520 IF J=NUM_PLAYERS THEN 550

530 T = ASC(VALUES$(HAND(J,I))

540 CALL HCHAR(Y(J)+2,X(J)+I+I-3,T)

550 NEXT J

5b0 NEXT I

570 CALL HCHAR(10,11,ASC(VALUES$(HAND

(NUM-PLAYERS,1))))

560 CALL HCHAR(10,21,12fl)

510 FOR I = 1 TO NUM-PLAYERS - 1

L.00 C=2

t!0 FOR J = 1 TO fl

1,20 CALL HCHAR(14,J +3,ASC(SEG$("PLAYERA
#" ,J, 1)))

1,30 NEXT J

1,40 CALL HCHAR(14,12,I+4fl)

b50 CALL KEY(3,KEY,STATUS)

bb0 IF STATUS=0 THEN 1,50

64 ZAPPERS

b70 KEY$=CHR$(KEY)

b&0 IF KEY$="H" THEN 180

b10 IF KEY$o"S" THEN bS0

700 FOR J=l TO b

710 CALL HCHAR(14,13+J,ASC(SEG$

("STANDS",J,1))) I
720 NEXT J

730 FOR T=l TO 500

740 NEXT T I
750 CALL HCHAR(14,1,32,20)

7b0 FOR J=l TO 7

770 IF HAND(I,J)=0 THEN S10

760 IF (HAND(I,J)<>1)+(SUM(I)>11)THEN 600

710 SUM(I)=SUM(I)+10

fl00 NEXT J

610 NEXT I

620 C=2

630 CALL HCHAR(10,21,ASC(VALUES$(HAND

(NUM_PLAYERS,C))))

640 IF SUM(NUM_PLAYERS)>lb THEN 1060

650 IF SUM(NUM_PLAYERS)>11 THEN 100

6b0 FOR I = 1 TO C

870 IF (HAND(NUn_PLAYERS,I)<>l)+

(SUM(NUM_PLAYERS)+10<18)THEN 810

660 SUM(NUM_PLAYERS)=SUM(NUM_PLAYERS)+10

610 NEXT I

100 C=C+1

110 CARD_COUNT=CARD_COUNT+l

120 HAND(NUM_PLAYERS,C)=DECK(CARD_COUNT)

130 CALL HCHAR(10,17+C+C,ASC(VALUES$(HAND

(NUM-PLAYERS, C))))
140 SUM(NUM_PLAYERS)=SUM(NUM_PLAYERS)-]

(HAND(NUM_PLAYERS,CX1D* ""J
HAND(NUM_PLAYERS,C)-1D*
(HAND(NUM_PLAYERS,C)>10) I

liltil

150 IF SUM(NUM_PLAYERS)>21 THEN 111,0

1b0 GOTO 640

170 STOP J

I^jj^mm

"BLACKJACK"

L 160 C=C+1

110 CARD_C0UNT=CARD_C0UNT+1

^g^gjjj

1000 HAND(I,C)=DECK(CARD_COUNT)

1010 CALL HCHAR(Y(I)+2,X(I)+C+C-

3,ASC(VALUES$(HAND(I,C))))

^gBBBB

1020 SUM(I)=SUM(I)-HAND(I,C)*(HAND(I,C)

<11)-10*(HAND(I,C)>10)

1030 IF SUM(I)>21 THEN 1040 ELSE b50

iiMm

1040 FOR J=l TO 12

1050 CALL HCHAR(Y(I)+2,X(I)+J-3,

ASC(SEG$("AYOU BUSTa^"^,!)))
10b0 NEXT J

1070 GOTO 610

1060 FOR 1=1 TO NUM_PLAYERS-1

1010 IF SUM(I)>21 THEN 1140

1100 IF SUM(I)<=SUM(NUM_PLAYERS)THEN 1160

1110 FOR J=l TO a

1120 CALL HCHAR(Y(I)+2,X(I)+J-2,

ASC(SEG$("AYOU blIN",J,l)))
1130 NEXT J

1140 NEXT I

1150 END

Ub0 SUM(NUM_PLAYERS)=0

1170 GOTO 1080

1160 FOR J=l TO 8

1110 CALL HCHAR(Y(I)+2,X(I)+J-2,

ASC(SEG$("YOU LOSE",J,1)))

1200 NEXT J

1210 GOTO 1140

L

65

L

L

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark statement

110-120 clears screen and displays welcoming message
130 all arrays begin with element 1
140 designs special character for face-down card

66 ZAPPERS

150 reserves space for the arrays, the matrix, and [tsMJ
the character string array

160-190 reads in the character representation of the 13 ,
kinds of cards, storing these values in the ^J
string array VALUES$

200 clears screen again
210-240 reads in the values of arrays X and Y, used to

locate the fields on the screen associated with

each player
250 a prompt is displayed asking how many players

are in the game
260-270 scans keyboard until a key is pressed
280 tests to see if it is equal to 1, 2, or 3
290 converts ASCII value of pressed key to its nu

meric value (1, 2, or 3) plus 1 (for dealer)
300 prints the original number of players typed in
310-350 for each player, prints the player number in

square brackets in its own location of the
screen

360-380 prints DEALER in the dealer's location
390-460 generates the 52 cards of the deck and shuffles

them, storing the shuffled deck in the array
DECK

470-560 deals the first two cards to each player (includ
ing dealer)

490-500 deals a card from array DECK into matrix
HAND

510 computes the current value of the hand, plac
ing the result inarray SUM I

520-540 for all players but the dealer, puts the ASCII t^J
value of the card's symbol into T and uses it to
print the symbol in the player's location i

570-580 in the dealer's location, prints the dealer's first mma
card followed by the special face-down card
character

590-810 caters to each player, except dealer, individ
ually

600 sets variable C to 2, the number of cards in
each player's hand

L

|^jjynmy|yi||

Lmiuilllllll

"BLACKJACK" 67

610-640 displays the number of the player whose turn
it is, in the middle of the screen

650-670 waits for a key to be pressed and stores the
selected character in string KEY$

680-690 tests whether player wants to be hit (character
H) or wishes to stand (character S)

700-720 displays STANDS
730-740 empty delay loop
750 blanks out whatever was printed in the middle

of the screen

760-800 decides whether each ace has the value 1 or 11
820 C is reset to 2 for dealer
830 dealer's second card is revealed
840 if the dealer's total is greater than 16, he stands
850 if the dealer's total is greater than 11, he is hit

with another card (see below)
860-890 the dealer's aces are regarded as having the

value "11," so long as this leads to a total
equal to or greater than 18

900 C is incremented by 1 to indicate that a card is
being added to dealer's hand

910 CARD-COUNT is incremented by 1 to point
to the next card to be drawn from array DECK

920 the next card from DECK is put into the
dealer's hand (in matrix HAND)

930 displays the selected card in dealer's location
940 increments dealer's total by the value of the

card just dealt
950 determines if dealer has busted
960 goes back to see if dealer needs another card
970 no real purpose, since this is never reached
980 this section of the program is branched to when

a player asks to be hit in line 680; the value of
C is incremented to show that another card will
be added to player's hand

990 CARD-COUNT is incremented to point to the
next card to be drawn from array DECK

1000 places the next card from array DECK into the
player's hand in matrix HAND

68 ZAPPERS

1010 displays this card in the player's location
1020 adds the value of this card to the player's total
1030 tests to see if the player has busted
1040-1070 reached if the player has busted; the loop

prints out an appropriate message, and control
is returned back into the loop at line 810 to
terminate this player's turn

1080-1140 if player has won, prints a congratulatory mes
sage, otherwise branches to line 1180 I

1150 terminates program ^
1160-1170 branched to if the dealer has busted; sets

dealer's total to 0 (so every player is a winner)
and branches up to line 1080

1180-1210 branched to if a player has lost; a message to
this effect is displayed, and control is returned
to the loop at line 1140

PROGRAM DESCRIPTION

Once the screen has been cleared and the welcoming mes
sage has been displayed, we reach a statement which we
have not as yet encountered. It is the CALL CHAR state
ment, which permits the programmer to create any charac
ter of his own choice and assign it an ASCII value. Since
the number "128" is not assigned to any particular charac
ter, this number has been assigned to the character repre
sented by the peculiar-looking string of characters enclosed
between quotes in line 140. This string is the hexadecimal
representation of a string of binary digits which form a I
square the size of one character. (For a detailed description •»
of how a shape is formed, please refer to the reference
manual that comes with your computer.) For our purposes, I
this square character represents a playing card facing *••*
down.

In line 150, space is set aside for the deck of fifty-two I
cards (DECK), up to four hands of ten cards each (matrix ^
HAND, dimensioned (4,10)), the positions of three loca
tions on the screen (X and Y), the character representa- I

^gjg^ggg

"BLACKJACK" 69
r

«— tions of the thirteen different types of cards in a deck
(VALUES$), and the total card values of each of four
hands (SUM). If you are unfamiliar with the concept of a
matrix, it is simply a representation of data using rows and
columns, where the row is always mentioned first. Thus, in
matrix HAND, the row represents the player number and
the column represents the card's sequence number.

The data in line 190 consists of character representations
for each of the thirteen types of card. Notice that the ace is
represented by "A", 10 by "T", jack by "J", queen by
"Q", and king by "K". These elements are read into the
string array VALUES$ by means of the FOR . . . NEXT
loop extending from line 160 to 180. After the screen has
been cleared of the welcoming message, the FOR . . .
NEXT loop beginning at line 210 reads in the two arrays
"X" and "Y." These numbers represent positions on the
screen which are used subsequently in the program to dis
play the cards assigned to each player.

In line 250, the user is asked how many players are par
ticipating. Since a maximum of three is allowed (besides
the dealer, played by the computer), whatever value is
keyed in is tested to be sure that it is either 1, 2, or 3. If it
is not, control is returned to line 260 for a correct response.
As soon as a valid response is accepted, whichever key
was pressed is translated into its numeric value plus 1, by
subtracting 47 from its ASCII value. The reason for adding
1 to the ASCII value is to allow for the dealer. This value
is stored in NUM-PLAYERS. The number of players ex-

L eluding the dealer is printed in line 300.
Within the loop 310-350, the players' areas are set up. In

each location, the player's number (1-3) is printed in
[square brackets. To locate each area, we use CALL
LnB0 HCHAR with values from the arrays X and Y. These arrays

get their names from the cartesian coordinate system,
[where X, the horizontal coordinate, is specified before Y,

the vertical coordinate. However, since CALL HCHAR
specifies coordinates in the opposite order, array Y is spec-

[ified before array X. The label DEALER is printed in the

\ffj HI |||

Jjipjgmi

70 ZAPPERS

dealer's area of the screen by the loop extending from line
360 to line 380.

A deck of fifty-two cards is generated and shuffled in the
loop extending from line 390 to 460. The manner is which
this is done is somewhat subtle, so you might have to read
this section ofthe description several times before it is fully]
understood. First ofall, the loop index I goes from 1to 52. tm^
However, we want a sequence consisting of the numbers 1
through 13 repeated four times. This isaccomplished in line J
410, where in effect the remainder of the division of I by 13 ta"J
is generated, gets 1 added to it so that it does not include 0,
and is stored as the next element of array DECK. Next, a
random number, R, is generated such that it is the index of
an element of DECK which has already been assigned a
value. Then, in lines 430-450, the element of DECK in
dexed by R is exchanged with the most recently generated
element of DECK (indexed by I). The net result of all these
operations (believe it or not!) is that into the array DECK
is stored a shuffled deck.

The nest of FOR . . . NEXT loops extending from line
470 to line 560 deals the first two cards to each player,
includingthe dealer. The variableCARD-COUNT, initially
0 by default, is used as an index to array DECK, pointing
to the next card to be dealt (it is incremented by 1 before
each card is dealt). Line 500 copies the next card into ma
trix HAND, where loop indexes J and I indicate the appro
priate player and card-sequence position, respectively.
Next, by a method known as Boolean logic (which we shall
not describe here), the cumulative sum of each player's
hand is calculated and stored in the array SUM. The next
few lines of the program assign to variable T the ASCII
equivalent of the character representation of the card just j
dealt and use this value to display the card's symbol in the 6—•
appropriate player's area of the screen. Lines 570-580 print
the dealer's hand in the dealer's location, but instead of the I
second card, the program displays the face-down-
card character created in line 140 and assigned the ASCII
value 128.

"BLACKJACK" 71

L» The FOR . . . NEXT loop starting in line 590 forms the
meat and potatoes, so to speak, of this program. In this

L section, the user is given the option of being hit or of stand
ing, regardless of his score, so long as he has not busted. If
the user responds by pressing the H key (meaninghe wants
to be hit with another card), control is passed to line 980.
Even though this may appear to violate one of the golden
rules of BASIC programming, namelythat one cannot jump

Lout of the range of a FOR . . . NEXT loop and then jump
back in again, the TI-99/4A allows one to do this, making it
possible to have less cluttered loops. If the player opts to
stand (by pressing the S key), control falls through to the
next loop, which merely prints out the word STANDS in
the middle of the screen, right after the message PLAYER
and the number of the player whose turn it is (printed
previously). After a shortdelay loop, the line in the middle
of the screen is blanked out.

In the next loop, beginning in line 760, each card of the
player's hand is inspected. For each ace present, the pro
gram decides whether to assign it the value 1 or 11. This
determination is based on the premise that the score should
be as high as possible without busting.

Lines 820 through 9/0 represent the dealer's turn, taken
after all the other players have finished their turns—they
have either decided to stand or have busted. Line 830 re
places the face-down-card symbol with the dealer's second
card.

Lines 980-1070 encompass the section of the program to
L which control passes from line 680—if the player has cho

sen to be hit. This section deals the player a card. If the
player does not bust, control returns to line 650, where the
player is again asked to enter H or S. If the player busts, a
message to this effect is displayed in the player's area and
control is returned to line 810, where the loop continues
and another player's turn begins.

Line 1080 is reached after the dealer's turn ends. For
each player who has not yet busted, the player's score is
compared to that of the dealer; if the player's score is

IHmhhb

72 ZAPPERS

higher, the message YOU WIN is displayed in the player's
area. Otherwise, control passes to line 1180, where the
message YOU LOSE is displayed.

Lines 1160-1170 are branched to after the dealer busts.
The dealer's sum is set to 0, with the result that every
player who has not busted wins against the dealer.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The structure of the game may be modified to allow for
a full game to be played—in other words the game
should play out many hands and shuffle the deck when
it runs out of cards.

2. A method of scoring or bettingmay be implemented, so
that a balance is carried from one hand to the next.

3. If a player has a preference for a different version of
"Blackjack," this program may be amended to approx
imate that version as closely as possible.

4. Perhaps some sound effects would help to heighten the
player's interest in the game.

5. The game may be modified to allow for more than one
deck—a sophisticated way to stop card counting and
other professional gambling tricks from running the ca
sino broke.

nfirwi—'""

L

L

PROGRAM

8
"ROULETTE

J J

PURPOSE

The game presented here is a computer version of roulette,
a popular gambling game. In the game, a ball is rolled onto
a spinning disk divided into little compartments. When the
spinning finally stops, the ball rests in one of them. All the
compartments are of various colors and are marked with
numbers. There are seventy-four in all—the numbers 1-36
in black and red and 0 and 00 in green. The player may bet
that the ball will land on any number, on an odd or even
number, or on the colors red, black, or green. The odds
that are obtained by each are shown below:

Bet Odds

any # 36:1

red 2:1

black 2:1

green 18:1

odd 2:1

even 2:1

The object of the game is to make as much money as
possible. In ourcomputer world, there are no limits to how

73

74 ZAPPERS

much you can make, but the casino has seen fit to impose
a table limit of $5.00 minimum and $500.00 maximum, so
that you can't win as fast as you might like. I

100 REM ROULETTE

110 CALL CLEAR

120 DIM C0L0R$(3)

130 C0L0R$(1)="RED" ^
140 C0L0R$(2)="BLACK"

1S0 C0L0R$(3)="GREEN"
lb0 MATCH$="RBG0E<3"

170 PRINT "WELCOME TO THE CASINO!":::"HERE
IS THE ROULETTE TABLE"::

160 INPUT "WHAT IS YOUR NAME? ":NAME*
110 PRINT ::"WOULD YOU CARE FOR

S0I1EAAAAACREDIT-, "^NAMESi
200 INPUT L0AN$

210 IF SEG$(L0AN$-.1-.1)="Y" THEN 250
220 IF SEG$(L0AN$-,lil)o"N" THEN 200
230 PRINT "IF YOU DON'T WANT TO PLAYi^GET

OUT YOU BUM-"

240 END

2S0 PRINT ::"lilELL-, "iNAMESi

2b0 IF DEBT>4Tn THEN fi70

270 INPUT "HOId MUCH WOULD YOU LIKE
T0AAB0RR0lilf ":L0AN

2fl0 IF DEBT+LOAN<=5000 THEN 310

210 PRINT "SORRY-, THAT EXCEEDS 1
YOURAAAACREDIT LIMIT." ^

300 GOTO 270

310 DEBT=DEBT+LOAN j
320 CASH=LOAN+CASH

330 PRINT ::"0-K- ";NAME$:"TAKE A SEAT"::

340 PRINT "YOU HAVE $"=iCASH:: ^J
350 INPUT "UHAT ARE YOU BETTING 0N?AAAA(RED-,

BLACK-, GREEN-, 0DD-,AAAAEVENi
l-3b-. 0, 00 OR (2UIT): ":BET$

HnggBSBP

^fflSBB?

L|umjjj

"ROULETTE" 75

3b0 RANDOMIZE

370 IF SEG$(BET$-.l-.l) = "fl" THEN 770
3&0 IF POS(MATCH$-,SEG$(BET$-.l-.l)-.l) THEN 410
310 IF (ASC(BET$)<4fl)+(ASC(BET*)>57)THEN 350
400 IF (VAL(BET$)<0)+(VAL(BET$)>3b)THEN 350
410 INPUT "HOW MUCH ARE YOU BETTINGAAAA(MIN

= $5-. MAX = $500) : ":BET

420 IF BET=0 THEN 340

430 IF (BET<S)+(BET>500)THEN 410

440 IF BET>CASH THEN 110

450 IF BET=INT(BET)THEN 4fl0

4b0 PRINT "WE DON'T DEAL IN
SMALLaaaaaaCHANGE HERE."

470 GOTO 410

460 CASH=CASH-BET

410 R=INT(RND*74)+1

500 R1=R

510 C0L0R=l-(R>3b)

520 R=R-INT(R/3b)*3b+l

530 0DD=INT(R/2)<>R/2

540 EVEN=(ODD=0)

550 SPIN*=STR$(R)

5b0 IF RK73 THEN 1.10

570 C0L0R=3

5fl0 SPIN$="0"

510 IF RK74 THEN b!0

b00 SPIN$="00"
bl0 PRINT ::SPIN$;"A"iC0L0R$(C0L0R)::
b20 IF (BET$=SPIN$)+(BET$="0")*ODD+

(BET$="E")*EVEN THEN bb0
b30 IF SEG$(BET$il-.l)=SEG$(C0L0R$(C0L0R)-.

1-.1) THEN bb0
b40 PRINT "YOU LOSE SUCKER!"::

b50 GOTO 340

bb0 PRINT "YOU WIN!!!"

b70 FOR 1=1 TO 10

b&0 CALL SOUND(100-.I*110-.0)

b10 NEXT I

76 ZAPPERS

700 IF (ASC(BET$)>47)*(ASC(BET$)<5A)THEN 750
710 CASH=CASH+BET*2

720 IF SEG$(BET$ilil)o"G" THEN 340
730 CASH=CASH+BET*lb
740 GOTO 340

750 CASH=CASH+BET*3b
7b0 GOTO 340

770 CASH=CASH-DEBT

7A0 ON SGN(CASH)+2 GOTO 710-.fl30-.fl40
710 PRINT "YOU WILL REPAY YOUR DEBT OF $"i

ABS(CASH)

500 PRINT "AT 20* INTEREST — PER WEEK-"
610 PRINT "IF YOU DON'T LIKE THE TERMS

SPEAK TO MY RIGHT HAND MANaa" GUIDO
THE BLADE."::

fi20 PRINT "PLEASANT DREAMS..."
fl30 END

fl40 PRINT "CONGRATULATIONS! YOU'RE ONE OF THE
ONLY PEOPLE TO HAVEaa^OME OUT SOLVENT."

A50 PRINT "YOU CAME AWAY WITH S^CASH
flb0 END

670 PRINT "YOU HAVE REACHED YOUR
CREDITLIMIT. NOW GET OUT."

AA0 GOTO 770

imMi^j

"ROULETTE" 77

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark
110 clears screen
120-150 reserves space for COLOR$, which contains the

names of the colors
160 sets the variable MATCH$ to contain the various

options
170-180 prints welcoming message and requests the play

er's name

190-200 asks if the player wants a loan
210 if yes, requests the amount
220 if not no, an inappropriate response has been

typed in, goes back and asks again
230-240 if the player does not want a loan, shows him or

her the door
250-260 prints player's name and if credit is overex

tended, goes to threat routine
270 asks the desired amount
280 if the amount asked when added to the current

debt is still under the player's credit limit, adds it
to the debt and gives the player the cash that was
asked for

290-300 if player is overextended, gives a message and
asks for a lower loan

310 adds the new loan to the total debt
320 gives the player the cash that was borrowed
330-350 asks player for the desired bet
360 reseeds the random number generator
370 if player is quitting, goes to quit routine
380 if the bet typed is one of the allowable letter

choices, asks for the amount of the bet
390 if the bet was not an allowable letter choice and

is not a number, requests another bet
400 if the number is not in the valid range, requests

ariother bet
410-420 requests the amount of the bet; if the amount is

78 ZAPPERS

0, goes back to ask for another bet
430 if the bet is outside the table limits, goes back and

requests another
440 if bet is greater than cash on hand, asks for more

credit

450-470 only accepts bets in whole dollars 1
480 deducts bet from cash on hand tea"*i^
490-500 selects a random number from 1-74 to simulate

spinning ofthe wheel ^J
510 determines if color is red or black
520-540 determines the actual number from the random

number computed and also if the number is odd
or even (0 is considered odd)

550 places the number generated in SPIN$
560-600 sets SPIN$ and COLOR for the special cases 0

and 00

610 displays the results of the spin
620-630 if the bet and the result match, goes to winning

routine

640-650 if not, prints losing message and goes back for
another bet

660-690 displays winning message with sound effects
700 if the successful bet was a number, pays at odds

of 36:1

710 otherwise pays at 2:1
720 if the bet is not green, goes back for another bet
730-740 if the bet was green, pays off at 18:1 (2:1 was paid

off in line 710 and the 16:1 is additional)
750-760 routine to pay atodds of36:1]
770-860 routine to calculate financial condition upon quit- te™

ting
770 subtracts the debt incurred from cash on hand]
780 decides if player is in debt (goes to 790), even

(goes to 830), or ahead (goes to 840)
790-830 routine to print out threat message (player is in I

debt) ^
840-860 routine to congratulate player on having any

money j

"ROULETTE" 79

870-880 routine to inform player that the credit limit has
been exceeded; goes to threat message after
wards

L. PROGRAM DESCRIPTION

Iggg^

^Im^us

After clearing the screen in line 110, space is set aside for
the three color names in line 120 and the array is filled with
the names. This is done so that a color number (simpler for
the computer to manipulate) can be generated and used to
subscript COLOR$ to get the color name only when print
ing it out. In line 160, the variable MATCH$ is set to the
possible non-numeric options that exist for a bet. For ex
ample, a bet of red is given by R, a bet of even by E and so
on.

A message is then printed out inviting the player to make
a bet. The player has the option of betting on red, black,
green, odd, even, a whole number from 1 to 36, 0 or 00, or
quitting. The non-numeric options (such as RED, GREEN,
etc.) may be specified by the first letter or the whole word.
After reseeding the random number generator and testing
for a "bet" of Q (signifying the player's desire to quit), the
program goes on to line 380 where we encounter an expres
sion that we have not yet discussed. The POS function
searches for an occurrence of one string within another and
returns the position of the smaller string or 0 if it does not
occur. For example

PRINT POSCBINGO",t4IN",l)

L tests for any occurrence of IN within BINGO. The third
value specified indicates the point at which the search
should begin. In the above example, the value printed

L would be 2, since the second character of the string BINGO
is the start of the substring IN. Contrast this with the fol
lowing example:

PRINT POS("BINGO","IN",3)

80 ZAPPERS 1

This time, the "search string" ("IN") is not found because
the search starts too far to the right (at the third position). ^
As a result the value printed is 0, indicating that the sub- , - 1
string was not found. As a final example

PRINT POS("TEST STRING","FIRE",1) 1
tiiifrilffT

displays the value Q because the string FIRE is not found
as a substring of TEST STRING.

In the program, this function is used to advantage in line
380, where we test to see whether the single-letter option
as expressed by

SEG$(BET$,1,1)

is found in the option list contained in MATCH$. If POS
returns a nonzero value, a valid option has been typed and
control is sent to line 410. Otherwise, control drops to line
390, which determines whether a number was typed in.
This is done by comparing the ASCII value of the first
character in BET$ with 48 (the ASCII value of 0) and 57
(the ASCII value of 9). If the option turns out to be an
illegal letter or number, control is sent back to line 350 and
a new bet is requested. Otherwise, the program goes on to
request the amount of the bet.

After placing the amount of the player's bet into the var
iable BET (line 410), a special test is made to see if the
amount of BET is equal to 0. If BET is indeed 0, control is
sent back to line 340 to allow the player to correct any
mistakes made in the bet. Line 430 insures that the bet is
within the table limits set by the casino. If the bet is not
within those ranges, control is sent back to line 410, where
the player is again asked for the amount of the bet. In line
440, a test is made to determine if the player's bet exceeds
the amount of cash on hand. If it does, control is sent to
the routine that allows the player to request further credit.

In line 450, a test is made to pass only whole-dollar bets.
This is done by taking advantage of the INT function,
which returns the largest integer that is less than or equal
to the argument. For example

'mwrft**

L-aj^ffljmm

l^^gggHj^

"ROULETTE" 81

PRINT INT(4.2)

L displays the value 4, while the statement

PRINT INT(5)

L- displays the value 5. It is easy to see that the statement
450 IF BET = INT(BET)THEN 480

will transfer control to line 480 only if the truncated value
of BET is equal to BET itself. In other words, X must have
no fractional portion—which is another way of saying that
it is a whole number. If BET is not an integer, an appropri
ate message is displayed and control is sent to line 410,
where a new amount is requested.

After taking the money for the bet in line 480, the roulette
wheel is spun by selecting a random number between 1and
74. Line 500 stores a duplicate copy of the value in the
variable Rl, since the variable R is later changed for other
purposes.

In line 510, the value of COLOR is set to either 1 or 2
(representing red or black respectively). This works be
cause the expression (R>36) actually returns a numeric
value—0 if false (if R is less than or equal to 36) and -1 if
true (R is greater than 36). If the expression is false,
COLOR is set to 1. If it is true, COLOR is set to 1 - (-1),
which is 2.

Line 520 takes the remainder of R / 36 and adds 1, yield
ing the desired numbers (1-36) from the randomly gener
ated number R. For the time being we ignore the possibility
of the number being greater than 72, which will be handled
in line 560.

Following the setting of the number, the flags ODD and
EVEN are set. Again taking advantage of the fact that true
is considered -1, and false 0, the numeric variable ODD is
set to true if R / 2 is not a whole number. The reverse case,
EVEN, could have been determined by the statement

tiji&afflgjgll

540 EVEN = INT(R / 2) = R / 2

y&g&g^i^l

82 ZAPPERS j
but instead we took advantage of the fact that if a number
is odd, it cannot be even. We therefore took the reverse of ,
ODD. If, in line 540, ODD is equal to 0, EVEN takes on J
the value - 1 (true). If, on the other hand, ODDis equal to
- 1, EVEN takes on the value 0 (false). After we set SPINS
to the number stored in R, line 560 checks to see if Rl (the
original random number) is greater than or equal to 73. If it
is, the number is either 0 or 00 and this special case is i
handled in lines 570-600. <mJ

Lines 610 to 630 print out the spin of the wheel and
determine if a match is found with BET$. If it is, control is
sent to the routine in line 660, which will be described in a
few moments. If no match is found, control drops to line
640, where a losing message is printed before going back to
line 340 for another bet.

The winning routine starts at line 660 and extends to 760.
First, the winning message is displayed with some accom
panying sound effects. Then, a test is made as to whether
the first character of BET$ is a number. If it is, a number
was correctly matched and control is sent to line 750, which
pays off at 36:1. If not, a payoff of 2:1 is made. However,
if green is matched, the payoff should be 18:1. Therefore, a
test is made in line 720 to see if the bet was green. If not,
control goes to line 340, where another bet is requested. If
the bet was green, another 16:1 payoff is made, for a total
(including the 2:1 payoff) of 18:1.

Line 770 is the start of the routine that is accessed when
the player decides (or is forced) to quit. At that point the
amount of debt is subtracted from cash on hand. In line ^J
780, the three possibilities for cash on hand are tested for
using the function SGN, which returns - 1 if its argument -i
is negative, 0 ifits argument is 0, and 1ifit is positive. For mmJ
example, the statement

PRINT SGN(-5);SGN(0);SGN(4) J
displays the values

-1 0 1. \MMfi><tl

J

p'ffjTBUT

j^ggg

"ROULETTE" 83

In 780, the expression

SGN(CASH) + 2

returns the values 1-3, depending on the value of CASH.
A value of 1, indicating that CASH is negative, signifies
that the player is in debt and control is transferred to line
790, where a threatening message is printed, and the pro
gram ends in line 830. (The value of the debt is actually a
negative number, but is converted to a positive number by
the ABS function, which returns the positive distance from
0 on the number line. In other words, ABS(- 4) and ABS(4)
both return 4.) If the amount of cash left is 0 (the same as
that with which the player entered the casino), control is
sent directly from line 780to 830, and the program ends. If
a positive value of cash is left, the lucky player has come
out ahead and an appropriate message is printed in lines
840-860 before the program ends. Finally, lines 870-880 (to
which control is passed from line 260 if the credit limit is
exceeded) display a message to the effect that the credit
limit has been exceeded and then transfers control to line
770, which prints the threatening message.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. Instead of printing the number followed by its color, the
number may be printed in the color itself—in other
words, draw a green 0, a red 5, etc., using the COLOR
statement.

2. The programonlygenerally approximates a true roulette
wheel in terms of odds. It might be desired to set the
values to the true casino odds. We have found that this
wheel is more fun, however, since it is extremely posi
tive. (It pays quite generously.)

3. The game would be much more exciting if an actual
"wheel" were drawn on the screen. This may prove to
be a challenging modification.

4. More sound effects can be added to the game, particu
larly for when the wheel is spinning.

PROGRAM

9
"CONCENTRATION

J J

THE GAME

This program is a computer version of the very popular
card game bearingthe same name. In the game, two players
are pitted against each other. The fifty-two cards of the
deck are laid out face down in four rows of thirteen cards
each. The rows are numbered 1 through 4, while the col
umns are labeled A through M. In this grid system, any one
of the fifty-two cards may be selected by first specifying its
row and then its column. Each player goes in turn and
names two cards by specifying the column and row of each
with a letter and number. If the two cards match (suits are
ignored in this game), they are removed from play and one
point is awarded the player, who gets to go again. If the j
cards do not match, the other player goes. The game con
tinues until all the cards are off the board, at which time
the player with the highest score wins. ^J

100 REM CONCENTRATION 1
110 CALL CLEAR ^J
120 PRINT "WELCOME TO THE GAME OF n

" " i
130 1=1 myJ

84

"CONCENTRATION" 85

1M0 FOR N=l TO 13

1S0 1=1+1/4

t. Ib0 PRINT TAB(N+b)iSEG$("CONCENTRATION"-.
N-.1)

170 CALL SOUND(100iI*110i0-iI*550-.0i

1*880-. 0)

180 NEXT N

r 110 CALL SCREEN(IB)

L* 500 call cHAR(isa-.n00FEaiaiaiaiaiFE")
510 OPTION BASE 1

550 DIM C(13-.H)nDECK(S5)-.SC0RE(5)

530 FOR 1=1 TO 55

540 RANDOMIZE

550 R=INT(RND*I)+1

Et.0 DECK(I)=DECK(R)

570 DECK(R)=I-INT(I/13)*13+1

580 NEXT I

510 CALL CLEAR

300 FOR 1=1 TO 13

310 FOR J=l TO 4

350 C(IiJ)=DECK(J*13-13+I)

330 CALL HCHAR(J +J+3-.I+I+S-.lS8)

340 NEXT J

350 NEXT I

3L0 FOR 1=1 TO 13

370 CALL HCHAR(3-,I+I+5-.I+bM)

3A0 NEXT I

310 FOR 1 =1 TO 4

L. 400 CALL HCHAR(I+I+3.S,I+48)
ma next 1

, 450 PLAYER=1

L». 430 M$="PLAYER #"
440 CALL HCHAR(14iS-.3S-.S50)

450 R0lil=m

4L.0 C0L=5

470 GOSUB 110

430 CALL HCHAR0.4-.11-.PLAYER+48)

410 M$="ENTER FIRST SELECTION: "

.J

86 ZAPPERS
iffit^aJ

500 ROW = It.

510 GOSUB 110
i

550 GOSUB 100]
tjaiiM'iliiiiJ

530 X1=X

540 Y1=Y

J550 IF C(X1-,Y1)<>0 THEN 510

5t>0 CALL HCHAR(R0bl-,55-.35-,S)
570 GOSUB 1030

J580 GOTO 410

510 CALL HCHAR(Yl+Yl+3-.Xl+Xl+S-.

C(Xl-,Yl)+b4)

b00 I1$="ANDAASEC0ND SELECTION:"
bl0 ROW = 17

b50 GOSUB 110

b30 GOSUB 100

1.40 X5=X

b50 Y5=Y

bb0 IF (X5=X1)*(Y5=Y1)THEN b30

b?0 IF C(X5iY5)<>0 THEN 710

b80 CALL HCHAR(R0li)-,S5-.3S-.5)

b10 GOSUB 1030

700 GOTO b00

710 CALL HCHAR(Y5+Y5+3-.X5+X5+5i

C(X5-,YS)+b4)

750 FOR T=l TO 500

730 NEXT T

740 IF C(X1-.Y1)<>C(XS-,YS)THEN 8b0
750 CALL HCHARd5-.l-.35-.500)

J7b0 SCORE(PLAYER)=SCORE(PLAYER)+l
770 IF SC0RE(l)+SC0RE(5)=5b THEN 1100
780 C(XliYl)=0]j

710 C(XS-.Y5)=0 U&iMMd

800 FOR S=l TO 10

810 CALL SOUND(100-.S*110-,0) 1

850 NEXT S ija^stitd

830 CALL HCHAR(Yl+Yl+3iXl+Xl+5-.35)
840 CALL HCHAR(Y5+Y5+3-,X5+X5+5-.35)]
850 GOTO 410 litMti(tf*:T

J

mammal

p™^mp

j^M

"CONCENTRATION"

8b0 PLAYER = 3 - PLAYER

a?0 CALL HCHAR(Yl+Yl+3-.Xl+Xl+S-.158)

880 CALL HCHAR(Y5+Y5+3-.X5+X5+5il58)

810 GOTO 430

100 CALL KEY(3-.KEY-,STATUS)
110 IF (STATUS<>l)+(KEY<b5)+(KEY>78)THEN

100

150 CALL HCHAR(ROtrf-.SS-.KEY)

130 X=KEY-b4

140 CALL KEY(3-.KEY-,STATUS)
150 IF (STATUS<>1)+(KEY<41)+(KEY>55)THEN

140

1b0 CALL HCHAR(R0bl-.57-.KEY)

170 Y=KEY-48

180 RETURN

110 FOR 1=1 TO LEN(M$)

1000 CALL HCHAR(ROIihCOL+I-.

ASC(S EG01-. I -.!)))

1010 NEXT I

1050 RETURN

1030 I1$="S0RRY-, THAT CARD IS TAKEN"

1040 ROkl = 18

1050 GOSUB 110

10b0 FOR T=l TO 500

1070 NEXT T

1080 CALL HCHARd8-.l-.32-.30)

1010 RETURN

1100 CALL CLEAR

1110 PRINT "THE FINAL SCORE IS:":::

1150 PRINT "PLAYER #1 -->"iSC0RE(l)
1130 PRINT ::"PLAYER #5 ~>"iSC0RE(5)

1140 blINNER=l

1150 IF SC0RE(1)>SC0RE(2)THEN 1170

llb0 ti)INNER=5

1170 PRINT ::"PLAYER #"iSTR$(WINNER)i

"AlilINS."
1180 END

87

88 ZAPPERS

PROGRAM LINE ANALYSIS

\immgl0

line(s) action(s) ^j
100 REMark

110-180 displays starting message with accompanying
sound effects k***J

190 sets the background color of the screen
200 creates the box character simulating the back of]

the cards >m&^i
210 sets the lowest subscript of all arrays used in the

program to 1
220 sets aside space for the arrays
230-280 shuffles the deck
290 clears the screen

300-350 copies the shuffled one-dimensional array DECK
into the two-dimensional array C

360-380 draws the column coordinates (A through M)
390-410 draws the row coordinates (1 through 4)
420 starts with player 1
430 sets the string that will be printed in a moment
440 clears the area of the screen where the messages

are printed
450-470 sets row and column where message in M$ is to

be printed and goes to printing routine
480 prints the current player number (1 or 2)
490 sets a new message to be printed
500-510 sets the row and goes to the subroutine where the

message in M$ is printed i
520 calls the subroutine that extracts the values of the mmd

row and column from the player's typed letter
and number

530-540 saves the row and column values
550 tests whether the card has not been removed
560-580 if it has, erases the row and column that were]

typed, calls the subroutine at line 1030 that prints ^
an appropriate message, and goes back to ask for
more coordinates ""j

590 displays the card in the selected position ^

tut^MirtiiiH

[mtgj^ggj

mjtfj^^^^i

"CONCENTRATION" 89

600-620 sets M$ to a message, sets row, and calls the
subroutine to print

630 calls subroutine to input second row-and-column
pair

640-650 copies the second row-column pair
660 checks if the same card is specified twice; if so,

goes back and gets another second card
670 checks if the card has already been removed; if

not, skips over error trap to line 710
680-700 wipes the coordinates typed, prints the message

saying that the card is already chosen and goes
back for another second card

710 turns over the second card

720-730 delay loop
740 if the two cards do not match, goes to 860
750 erases all printed messages at the bottom of the

screen

760 gives a point to the player that found the match
770 if all matches have been found, goes to 1100 to

end game
780-790 removes both cards that have been matched from

array C
800-820 plays victory music
830-840 removes both cards from the screen

850 goes back to give the same player another turn
860 if player did not make match, switches to other

player
870-880 turns cards face down again
890 goes back to get input from the next player
900-980 subroutine which gets a column and a row
900-910 waits until a letter between A and M is pressed
920-930 prints the letter in the current row at column 25

and converts it into a row number, which is
placed in variable X

940-950 waits until a number between 1 and 4 is pressed
960-970 prints the digit in the current row at column 27

and converts it from a character to an integer,
putting the result in variable Y

90 ZAPPERS

980 RETURN to the main routine
990-1020 subroutine to print the string in M$ at the

location on the screen specified by ROW
and COL

1030-1090 subroutine that notifies player that a card
which has been chosen is no longer present ^i

1030-1050 sets M$ to the desired message, sets row and
calls the subroutine to print

1060-1070 delay loop ^J
1080-1090 erases the message and returns to the main

routine

1100-1180 prints final score, determines who the win
ner is, and ends the game

PROGRAM DESCRIPTION

When the program is first RUN, the screen clears and the
standard welcoming message and sound effects are gener
ated. Next, the screen is set to light yellow and ASCII
number 128 is defined to be the shape of a card (face down).
OPTION BASE is set to 1 and three arrays are set up.
DECK will contain the shuffled deck and will then be
copied into C, which represents the playing surface. The
array SCORE contains the scores of the two players. In
lines 230-280 the deck is shuffled and, after the screen is
cleared, it is copied into the array C and printed out at the
same time in lines 300-350. The variables I and J are very
convenient for subscripting C but it is also necessary to ^
have a subscript for DECK. In line 320, a standard method ^.J
is used to convert the values I and J to a single value, which
is different for all possible combinations of I and J. Once <
copied, line 330 draws a card symbol in the location on the **mb
screen corresponding to the position in C that was just
filled. The reason for the seemingly complex expressions i

J + J + 3

and 1

I + I + 2

1

1

J

IJaE^jgal

"CONCENTRATION" 91

is that the rows and columns are double spaced. We could
have written the expressions as

J * 2 + 3

and

1*2 + 2

but the computer performs addition faster than multiplica
tion so that a little speed is gained by the first form. The
reason for adding the 2 to the column position of each card
is that the leftmost two columns do not appear on most
television sets. As a result, the output must be pushed over
a few spaces so that it is centered on the screen. In addi
tion, the left side of the screen must contain the row num
bers (see below). The row position is increased by 3 for
aesthetic reasons and because the column letters have to fit
above the cards.

Lines 360-380 display the column letters A through M
across the top of the screen. Similarly, lines 390-410 dis
play the row numbers along the left side of the screen. We
then make the variable PLAYER equal 1, signifying the
first player's turn. The bottom half of the screen is cleared
starting at row 14, and the message

PLAYER #

is printed in row 14 using the special printing subroutine in
line 990. The player's number is then printed and a message
is printed requesting the first selection, again using the sub
routine at line 990. The subroutine at line 900 is then called
to wait for the player to type a valid letter A to M, followed
by a number 1 to 4. The letter is converted to a number and
placed in variable X. The number entered is placed in the
variable Y. Since the subroutine is called twice, the first
values of X and Y would be lost if they were not copied
into the storage variables XI and Yl. Next, the location in
C specified by XI and Yl is tested to determine if there is
still a card in that position. If there is (indicated by the fact
that C(X1,Y1) is not equal to 0) control is passed to line

92 ZAPPERS n

590. Otherwise the selection typed is cleared from the ^^
screen, the subroutine at 1030 is called to print a warning,
and control returns to 490 to ask for the first selection I
again.

As we have said, if the first position specified contained
a card, control is passed to line 590, which turns the card ^\
face up (displays the card value as a letter A to M). A
prompt requesting the position of the second card is then
printed and an almost identical process to that just de- t\
scribed is performed on it. The only exception is line 660,
which checks whether the two positions are the same. If
they are, control goes back to line 630, which waits for the
second selection to be inputted again.

Lines 720-730 comprise a delay loop to allow the players
time to realize what is going on. Immediately following in
line 740, a test is made to see whether the cards match. If
they do not, control is passed to line 860. If they do, control
drops to line 750, where the lower part of the screen is
cleared and 1 is added to the score of the player that
matched the cards. If the scores of the two players com
bined equals 26, all the cards have been removed and the
game is over. Control is passed to line 1100 for the final
goodbye. Otherwise, the two cards are erased from the
matrix so that they cannot be picked again and a victory
roll is played. The two cards are then erased from the
screen and control is sent back to line 490 so that the same

player gets another chance.
Line 860 is reached only if the two cards chosen do not

match. The statement on this line switches between play-]
ers. If the value of PLAYER is 1, the result is 3 - 1, or 2. ***
If, on the other hand, the value of PLAYER is 2, the result
is 3- 2, or 1. Following the switching of players, the cards ^1
are "flipped over" again by the statements in lines 870-
880. Control is then passed back to line 430, which prints
out the new player number and goes on with the game.

Lines 900-980 contain the subroutine to enter a letter and

number coordinate. The values are returned in the vari- 1
ables X and Y. Lines 900-930 wait for a valid letter, print ^J

^mg^i^j

ligjgm^

"CONCENTRATION" 93

it in the twenty-fifth column of the row specified by ROW,
and convert it to a number from 1 to 13, placing it in the
variable X. A similar procedure is followed for the row
number, which is printed and converted to a number be
tween 1 and 4 that is placed in Y. Lines 990-1020 encapsu
late a short subroutine to print the message stored in the
string variable M$ at the position specified by ROW and
COL.

Lines 1030-1090 print a message saying that the card that
has been chosen has already been removed from the
screen. They use a delay loop to leave the message on the
screen for a moment and then erase it and return to the

main routine. Finally, lines 1100-1180 are reached at the
end of the game, where the screen is cleared, each player's
score is printed out, and the winner is determined.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. Instead of typing in the row and column numbers, make
a system to move around a blinking cursor which can be
used to select a card at the push of the enter key. If
joysticks are available, they may be used to control the
motion of the cursor, and the button can select the de
sired card.

2. Turn the game into a one-player game by making the
computer your opponent. Warning: This is not as easy
as it sounds. The computer, having a perfect memory,
will almost never lose. However, the situation can be
altered by introducing a random factor to determine
whether it can remember the value of a given card. Its
percentage of recall could even be adjusted to different
levels based on how well its opponent plays.

3. We have used the letters A through M to represent the
cards for convenience only. You might like to change
the representation to the normal ace, 3, jack, etc. (See
"Blackjack" for ideas on how to represent these cards.)

THE GAME

PROGRAM

IO
HIDDEN WORD

SEARCH"

1

1

This program generates a hidden-word puzzle. The words
are selected from a series of DATA statements. Once se

lected, they are displayed on the screen. The object of the
game is for the player to find these words on the screen.
However, this is not as easy as it may appear, since the
words may be displayed in any one of eight directions—left
to right, right to left, vertically in either direction, or diag
onally in all possible directions. None of the words on the
screen overlap, so there is no sharing of letters. Moreover,
to make the task of recognizing the words even more diffi
cult, all the empty spaces on the grid are filled with random
letters of the alphabet. Up to thirty-five to sixty words can j
be placed in one puzzle, depending on the length of the te™
words. Using the words shown in the listing, the maximum
is about thirty-nine. 1

100 REM HIDDEN ItlORD SEARCH

110 CALL CLEAR 1
120 PRINT "THIS IS THE HIDDEN

UORDAAAAASEARCH GAME ...":::: ::
130 RAND0I1IZE I

94

^jjjjyedjgn^j

L_

{fagg^pj

Ijimijj^mm

WUw)

"HIDDEN WORD SEARCH" 95

m0 OPTION BASE 1

150 LC=2

1L.0 RC=31

170 Dill UORDS$(100)-,SCRAMBLE(32-,2M)

160 N=3e1

110 FOR 1=1 TO N

200 READ U0RDS$(I)

210 R=INT(RND*I)+1

220 TEMP$=UORDS$(R)

230 U0RDS$(R)=W0RDS$(I)

2^0 WORDS$(I)=TEMP$

250 NEXT I

2t0 DATA "INTRIGUE"-, "PLAGUE"-. "TERROR"-,

"DARKNESS"-, "(2UEUE"-, "EXIT"-, "VARNISH"-,

"CLONE"-, "SANDWICH"-, "SAUCER"-,

"AIRPLANE"

270 DATA "CUP"-, "VANQUISHED"-, "DEMOLISH"-,

"ATTACK"-, "LOVE"-, "WARMTH"-, "COMPUTER"-,

"OCEAN"-, "RAZOR"-, "GENIUS"-, "SEUER"

2A0 DATA "FRENZY"-, "CONNOTE"-, "DEVIOUS"-,

"REALITY"-, "SPACECRAFT"-, "MISSION"-,

"ALTER"-, "RADIOACTIVE"! "PROGRAM"-,

"DELIMIT"

210 DATA "ASSUAGE"-, "SAUSAGE"-, "MISSILE"-,

"REMIT"-, "CONTRACT"-, "RETREAD"-,

"INVOKE"-, "COMMAND"

300 PRINT "HOIil MANY WORDS SHOULD

IAAAAASCRAMBLE? ("iN;" MAXIMUM):"^
310 INPUT "":NWORDS

320 IF (NWORDS<l)+(NWORDS>N)+(NWORDS<>
INT(NWORDS))THEN 300

330 PRINT ::::::"PLEASE HAVE PATIENCE-, I
AMAAUORKING ON IT-"::::::

3M0 PRINT "THINKINGA-"^
350 FOR W=l TO NWORDS

3t>0 C=0

370 CALL SOUND(25-,(NUORDS-W+l)*220i0)

3fl0 TEMP$=WORDS$(U)

96 ZAPPERS

310 L=LEN(TEMP$)

M00 DX=INT(RND*3)-1

m0 DY=INT(RND*3)-1

120 IF (DX=0)*(DY=0)THEN M00

>430 RX=INT(RND*3D)+1

>m0 ry=int(Rnd*2^+i]
h rn PRTNT " "" ^^fcii

ML0 C=C+1

H70 IF O500 THEN fl20]
i4fl0 IF C - INT(C/S0)*50 = 0 THEN M00 "**
H10 EX=RX+L*DX

500 EY=RY+L*DY

510 IF (EX<LC)+(EX>RC)+(EY<1)+(EY>2^THEN M30

520 FOR 1=1 TO L

530 IF SCRAMBLE(RX+I*DX-,RY+I*DY)<>0 THEN M30

5140 NEXT I

550 FOR 1=1 TO L

51.0 SCRAMBLE(RX+I*DX-,RY+I*DY)=

ASC(SEG$(TEMP$-,I-,1))

570 NEXT I

560 NEXT W

5^0 CALL CLEAR

fc.00 FOR I=LC TO RC

b!0 FOR J=l TO 2M

b20 IF SCRAMBLER J)<>0 THEN bS0

b30 CALL HCHAR(J-,I-,INT(RND*2b)+bS)

bM0 GOTO bb0

bS0 CALL HCHAR(J-,I-,SCRAMBLE(I-,J))

bb0 NEXT J }
b70 NEXT I mJ
bfl0 CALL KEYO-.CHAR-.STATUS)

b10 IF STATUSol THEN bfl0

700 IF CHAR = ASC("X") THEN A00

710 IF CHAR<>ASC("H")THEN bfl0

720 FOR I=LC TO RC

730 FOR J=l TO 2M

7M0 IF SCRAMBLE(I-,J)<>0 THEN 7b0

CALL HCHAR(J-,IiM2)]750

J

IfciSBgj&l

"HIDDEN WORD SEARCH" 97

7b0 NEXT J

770 NEXT I

7A0 CALL KEY(3-,CHAR-.STATUS)

7^0 IF STATUS=0 THEN 7fl0

fi00 CALL CLEAR

A10 END

fl20 PRINT ::::::::nSORRYi BUT THE BOARD IS

TOO CROWDED. TRY AGAIN"::

A30 FOR I=LC TO RC

fiM0 FOR J=l TO SM

fi50 SCRAI1BLE(I-,J)=0

flb0 NEXT J

A70 NEXT I

fiA0 GOTO 300

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark
110-120 clears the screen and prints welcoming message
130 reseeds random number generator
140 sets the lowest subscript of all arrays used in the

program to 1
150-160 sets the leftmost and rightmost columns used

based on the capacity of the TV
170 sets aside storage for the arrays
180 sets the variable N to the number of words stored

in data statements

190-250 reads in and randomly shuffles the words
260-290 DATA statements containing words
300-310 prompts user and inputs the number of words to

place in the puzzle
320 checks if the number of words is in the valid

range and an integer; if invalid goes back and asks
for a new number

330-340 machine excuses itself for taking so long
350-580 main loop to place all words within the matrix

1

98 ZAPPERS

360 sets the count of placement tries equal to 0 >mmB^
370 makes a tone at the start of each new word
380-390 sets TEMPS to the current word and L to its j

400-420 sets X and Y direction increments; if both are 0,
tries again fcl

430-440 sets the random position for the beginning of the
word

450 prints adot every time aposition is tried ^J
460 increments the try number
470 if 500 tries have been made, calls it quits
480 if 50 tries have been made, tries another direction
490-500 determines the position of the end of the word
510 if either position is out of the valid range, goes

back and tries another position
520-540 loop determines if any position overlaps with an

already existing word; if so, goes back and tries
another starting position

550-570 places the word in the matrix
580 tries placing the next word
590 clears the screen
600-670 prints the words on the screen, filling in with ran

dom letters

620 checks if current position is occupied; if so, skips
to 650

630-640 prints a random letter and goes on to the next
position on the screen

650 prints the letter occupying the current position of
the matrix 1

660-670 moves on to the next position
680-690 waits until a key is pressed
700 if the key is an X control, passes to the routine , I

that clears the screen and ends the program
710 if the character is not H, waits for another char-

720-770 if H was pressed, reveals the words
740-750 changes camouflage letters to asterisks
780-790 waits until a key is pressed

fajjftflfcji

faasjE^MM

tei^^pn

"HIDDEN WORD SEARCH" 99

800-810 routine clears screen and ends
820-880 control is sent here when the program is unable

to fit all the words in the matrix
830-870 zeroes out the matrix in preparation for a new try
880 goes back to ask again for the number of desired

words

PROGRAM DESCRIPTION

Immediately following the normal setup procedure, the two
variables LC and RC are set to 2 and 31, respectively, in
lines 150-160. They represent the leftmost and rightmost
columns visible on the television screen. Depending on the
quality of the particular television, these values may have
to be adjusted. Line 170 sets aside storage for the words to
be placed in the puzzle and the matrix containing the puz
zle. The value of N, set in line 180, reflects the number of
words stored in data. If words are added or deleted the
value of N should be updated. Note that there is a limit to
how many words can be placed in the puzzle.

Lines 190-250 read in and randomly reorder the array
WORDS$. The DATA statements follow immediately af
terwards. The user is then asked how many words should
be placed in the puzzle. The maximum allowed is the num
ber of words stored in data, but as we mentioned, the puz
zle is all too finite. With words of the same length as the
ones shown, the maximum possible number of words is
approximately forty. The next lines ensure that the number
is valid. If it is not, the program goes back and asks again.
If it is, the program begins to place the words in the matrix.

The loop extending from 350-580 places all the words in
the matrix. With each new word, the count C is designed
to keep track of how many times the program tries unsuc
cessfully to fit in a word. If this number reaches 500, the
programgives up and ends. A tone is played for every word
when the program begins to attempt to fit it in. TEMP$ is
set to the current word and L is set to its length, after which
the real work of placing the word begins. First, a random

100 ZAPPERS

direction is chosen. This is done by generating two values
DX and DY—one for the horizontal direction and one for
the vertical. The value -1 means to the left or up, depend
ing on its use (in DX or DY). The value 1 means to the right
or down (again, depending on its use). The value 0 means
no change of column or row. Thus with the combination of
DX and DY, all eight directions are randomly generated.

(-1.-1)
(0,-1)

(1,-1)

(-1,0)-*- (1,0)

(-1,1)
(0,1)

(1,1)

The unacceptable case is when both DX and DY are 0. If
this occurs, control is sent back to line 400 where DX and
DY are chosen again. Next, RX and RY are randomly gen
erated to be the tentative position of the beginning of the
word. Then, a dot is printed and C is incremented to show
that the computer is trying to place a word. If 500 tries have
been made on a single word, the cause is given up for lost,
and control is transferred to line 820. If not, control drops
and a second test is made—this time as to whether 50 tries
have been made. If they have, control is sent back and the
direction and starting point of the word are recomputed.
Another 50 tries can be made before the direction is again
changed.

The variables EX and EY are set to the positions corre
sponding to the end position of the word. They are then
compared to the screen boundaries. If the word goes over
the boundaries, the program goes back and tries again for a
new starting position. Similarly, the next three lines test to
see if any letter within the word would be within a space
already occupied. If so, we also go back to a new starting
position. If the above tests are all passed successfully, the

^jMawt^J

Ua^aii

IWaswg^f-i-

"HIDDEN WORD SEARCH" 101

ASCII values of the letters in the word are placed in the
puzzle and the program proceeds to the next one. After all
words have been placed, the matrix is printed out. Any
space that is unoccupied by a letter is printed as a random
letter to camouflage the words in the matrix. The program
now waits for the player to hit a key on the keyboard. If an
X is pressed, control passes to line 800, which clears the
screen and ends the program. If H is pressed, the words are
revealed by changing all the camouflage letters to asterisks
(this is accomplished in lines 720-770). In line 780, the com
puter waits for the player to press any key before clearing
the screen and ending the program. The next few lines are
a routine that is reached only if the program cannot fit all
the words into the matrix. A message is printed, the matrix
SCRAMBLE is zeroed, and control goes back to line 300
to ask for a new word count.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. Make it possible for words to overlap (share letters in
common). Warning: this is not as easy as it may appear.

2. Just like the game "Scramble," this game can be turned
into a two-player game by keeping score and by allowing
each player to type in the words that the other player
must find.

3. The length and the number of words may, of course, be
modified to adjust the difficulty level.

4. The character set may be duplicated using the CALL
CHAR statement. Twenty-six ASCII codes would be
defined as the duplicate capital letters and used only as
the camouflage letters. Then, when H is pressed, instead
of having to redraw the whole screen, the twenty-six
ASCII codes could be quickly redefined as asterisks.
The screen would be immediately updated. (For an ex
ample of this technique used in a different way, see
"Changing Patterns" below.)

PROGRAM

"CHANGING PATTERNS"

PURPOSE

This program is meant entirely as a feast for the eyes. It
makes use of the TI-99/4A's graphics capabilities to display
an endless series of quilt-like patterns on the screen. Like
a kaleidoscope, each pattern is different. No input is re
quired; you just sit back and watch.

100 REM CHANGING PATTERNS

110 CALL CLEAR

120 PRINT "CHANGING PATTERN

GENERATOR"::::::

130 PRINT "SETTING UP PATTERN -- PLEASEBE
PATIENT ..."::::::::

140 Din A$(12)-.B$(12)

150 T$="AHAHAHAHAHAHAHAHAHAHAHAHAHA"

lt0 HEX$="Q1234Sb7A1ABCDEF"

170 FOR 1=1 TO 12

lfl0 RANDOMIZE

110 FOR J=l TO It. ^j
200 A$(I)=A$(I)&SEG$(HEX$iINT(RND*lb)+l-il)
210 B$(I)=B$(I)&SEG$(HEX$-.INT(RND*lt.)+l-.l)

230 PRINT T$

102

t^ygri

f^j&^sj&&i|

lti»iIimpI

"CHANGING PATTERNS" 103

240 PRINT SEG$(T$i2-.2fl)'1"H"

250 NEXT I

2t0 FOR 1=1 TO 12

270 X=INT(RND*lb)+l

2fl0 Y=INT(RND*lb)+l

210 CALL C0L0R(5iXil)

300 CALL COLOR(b-.Yil)

310 CALL SCREEN(INT(RND*lb)+l)

320 CALL CHAR(bS-.A$(D)

330 CALL CHAR(72-.B$(D)

340 FOR T=l TO 500

350 NEXT T

3b0 NEXT I

370 GOTO 2L.0

PROGRAM LINE ANALYSIS

LINE(S) ACTION(S)

100 REMark
110 clears screen
120-130 introductory message, tells user to wait as screen

is set up
140 sets aside space for character-definition strings
150 T$ is assigned pattern for line of screen
160 HEX$ is assigned hexadecimal digits
170-250 sets up screen and designs random characters
180 reseeds random number generator

^ 190-220 for one element of A$ and one element of B$
(indexed by I), randomly selects and concaten-

- ates 16hexadecimal digits from HEX$
1 230-240 prints two lines on the screen: one starting and

ending with A, the other starting andending with
H

Lm 250 generates next 11 characters and lines
260-360 generates 12 patternson the screen

r 270-280 chooses two random numbers, 1-16
U^ 290-300 colors A and Has specified by the two random

numbers

104 ZAPPERS i

310 colors the screen (background) according to a
random number from 1 to 16

320-330 redefines the ASCII numbers for A and H as J
characters specified by the ASCII strings in A$
and B$

340-350 delay loop j
360 next pattern
370 goes back to do another 12 patterns 1

PROGRAM DESCRIPTION

This program sets up a pattern on the screen of alternating
characters by printing rows of A's and H's such that every
A has an H on either side of it, above it, and below it;
likewise, every H has an A on either side, above, and
below. (The only exception to this rule is at the edges of
the screen.) The next step is to replace these characters
with randomly generated ones. By this we mean that the
replacement characters are not "normal" characters—let
ters, numbers, punctuation—but random dot patterns that
can be created using the CALL CHAR command. As soon
as the ASCII numbers for A and H are redefined with the
CALL CHAR command, the A's and H's on the screen
immediately change to the replacement "characters" that
have just been assigned to their ASCII numbers.

After the screen has been cleared, an introductory mes
sage is printed and A$ and B$ are DIMensioned. A$ holds
twelve strings of sixteen characters each. Each string will ^J
hold a series of hexadecimal digits used as patterns in the
CALL CHAR command that redefines the ASCII number
for A. B$ similarly holds twelve strings used to assign new ^J
characters to the ASCII number for H (perhaps this string
array should have been called H$). T$ is assigned a string
which is printed as aline on the screen. HEX$ is assigned ^J
a string containing all the hexadecimal digits.

In the FOR . . . NEXT loop from line 170 to line 250, A$ i
and B$ are filled with the patterns for random characters, mj

fef«^apiiu

JHygg^t

"CHANGING PATTERNS" 105

and in the same loop the screen is filled with A's and H's.
After the random number generator is reseeded, a loop is
entered (lines 190-220) which fills stringarrays A$ and B$.
For the current element of A$ and the current element of
B$ (the value of I indicates which element), the loop goes
around sixteen times, each time concatenating another hex
adecimal digit to the element of A$ and a hexadecimal digit
to the element of B$. These digits are produced by applying
the SEG$ function to the string HEX$, using the RND
function to determine which character in HEX$ is to be
selected.

The contents of T$ are printed (in line 230) as one row of
the screen. However, it cannot be used on every row, be
cause then every column would contain the same letter all
the way down, while what we want is alternating letters.
Therefore, in line 240, what is printed as the next row is T$
with its first character (an A) chopped off, followed by an
H in the last position of the row. Instead of "AHAHAH
. . . HAHA", this row is "HAHAHA . . . AHAH".
Every odd row on the screen contains the contents of T$,
every even row contains the alternate form as printed by
line 240 of the program.

The main body of the program begins in line 260. It is
comprised mostly of a FOR . . . NEXT loop extending to
line 360. Each time through the loop, two random numbers
X and Y are chosen, between 1 and 16. These numbers are
used to define the colors of characters on the screen. The
CALL COLOR command takes some explanation. The
printable characters (ASCII numbers 32-127) must be
thought of as divided into twelve groups of eight characters
each. The space character through the apostrophe (ASCII
numbers 32-39) belong to group 1, the open parenthesis
through the slash (ASCII numbers 40-47) belong to group
2, 0 through 7 (ASCII numbers 48-55) belong to group 3,
etc. You cannot change the color of one character on the
screen; you can only change the color of a group, which
means that all characters in that group that appear on the
screen are changed to the specified color. Since A belongs

106 ZAPPERS .,

to group 5, while H belongs to group 6, their colors can be *•**
changed independently. Take line 290 as an example:

What this means is that all characters on the screen belong
ing to group 5 are changed to the color specified by the I
value in X (a number in the range 1-16). This number has
the same meaning as the value specified in the CALL
SCREEN command. The third argument, 1, means that the ^
background color of the character is transparent—that is to
say, it lets the screen color, as specified by the CALL
SCREEN command, show through. (Note that X can also
have the value 1. This means the character is "transpar
ent"; it looks like a blank space. This is perfectly accept
able for the program, because the chances of both X and Y
being 1 at the same time, resulting in a blank screen, are
very small.)

After H is assigned a color, also using the CALL
COLOR command, the screen itself, which is the back
ground of the pattern, is colored using the CALL SCREEN
command. Now, the ASCII numbers normally assigned to
A and H are reassigned to characters specified by the ran
dom strings of hexadecimal digits in A$ and B$. The index
I of the FOR . . . NEXT loop is used to select which string
elements of A$ and B$ are to be used. As soon as the
CALL CHAR commands are executed, the characters on
the screen change to the newly defined characters. Note
that if the CALL CHAR command is used to assign a new
character to an ASCII number, the new character belongs]
to the group specified by the ASCII number. Even when ^
ASCII numbers 65 and 72, normally assigned to A and H
respectively, are reassigned to new "characters" (actually
random dot patterns), the CALL COLOR commands still
work.

Lines 340-350 form an empty FOR . . . NEXT delay J
loop to keep the current pattern on the screen for a while.
Then line 360 continues the FOR . . . NEXT loop starting
in line 260, to generate anew pattern. Since A$ and B$ ^J

mmiQpi

c

"CHANGING PATTERNS" 107

each only have twelve elements, this loop only goes around
twelve times. Then control falls to line 370, which immedi
ately sends control back to line 260to start the loop all over
again, repeating the same sequence of twelve "charac
ters," but this time in different, randomly selected colors.
The program is an infinite loop, creatingnew patterns until
FCTN 4 (CLEAR key) is depressed, or the computer is shut
off.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The program could be amended to continually generate
random character patterns, not just repeat the same
twelve. This would not necessarily slow the display
down, because the delay loop (lines 340-350) could be
shortened accordingly.

2. Instead of only two alternating character patterns on the
screen, three or more could be used to add greater vari
ety.

3. For those who do not like stopping programs with the
FCTN 4 key, a provision could be added to the program
to stop after a certain number of patterns. The user
could also be asked how many patterns he or she would
like.

4. There are many possible variations on this program.
One is to have moving patterns which also change col
ors. And of course there is always the addition of sound,
either randomly produced tones, "chords" selected
from a predefined list, or tones selected under certain
musical restrictions that may create more enjoyable mel
odies.

I i

PROGRAM

12
ORGAN"

PURPOSE

This program gives you the opportunity to express yourself
musically by simulating a two-octave piano or organ key
board. The key labeled C on the TI-99/4A keyboard substi
tutes for middle C. Every other note in its octave is in the
same relative position as may be found on a piano, as
shown in the following diagram:

The note C in the second octave is obtained by pressing the
W key. Again, every note in this octave is situated in the
same position relative to W as the corresponding keys in

108

itpaptff

J

J

"ORGAN" 109

the first octave. The highest note allowed for by this pro
gram, A, is obtained by pressing the I key.

Notes are played one at a time in this version, but it is
possible to modify this basic tool to include multiple voices,
volume control, more octaves—it is only limited by your
imagination and skill as a programmer.

100 REM ORGAN

110 CALL CLEAR

120 Dill NOTE(40)iCODE(126)

130 N=25

1MB DUR=100

150 VOL=0

lt.0 FOR 1=1 TO N

170 READ NOTE(I)

1A0 NEXT I

110 FOR I=bS TO bS+N

200 READ CODE(I)

E10 NEXT I

220 CODE(50)=14

230 C0DE(52)=17

240 C0DE(53)=11

250 C0DE(5S)=22

2b0 C0DE(Sb)=24

270 CALL KEY(3iKEYiSTATUS)

2fl0 IF STATUS=0 THEN 270

2=10 IF CODE(KEY)=0 THEN 270

300 X=N0TE(C0DE(KEY))

310 IF X=0 THEN 270

320 CALL SOUND(DURiXiVOL)

330 GOTO 270

340 DATA 220-i23L.-.250-.2bb-.275-.2c]3-.311-.32a-.

34fc.i3L,5i314i417

350 DATA 440i472i500i52fli5t.0iSelbib22ife.5feii

b12-.730-.7flfl-.fl32

3b0 DATA fill

370 DATA 0ifli4i0ilbi5i7i0i25il0il2i0illi

1i0i0il3ilfli2i20i23ibil5i3i21il

110 ZAPPERS

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark

110 clears the screen

120 sets aside space for the frequencies and a map of
the keys required to turn them on

130-150 sets the number of notes to 25, the duration of a
note to 100, and the volume to the maximum

160-180 reads in the 25 notes
190-210 reads in the value of the notes for each letter of

the alphabet
220-260 sets the map of the keys on the top row (a special

case)
270-280 waits for a key to be pressed
290 if no note is stored in the array CODE under that

position, go back until a correct key is pressed
300 sets the variable X to the note in question
310 if the note is not one of the ones present, goes

back and waits for another character
320 plays the note
330 goes back and waits for a key to be pressed
340 octave #1 data
350 octave #2 data
360 A above middle C data
370 character-mapping data

PROGRAM DESCRIPTION

After clearing the screen in line 110, room is set aside for
the variables NOTE and CODE. These arrays are the back
bone ofthe program; indeed, they are the tools that enable 1
it to be so short. We shall be discussing them in a moment.
In line 130, the number of notes is set to 25. This general
technique, which we have used in many previous pro- ^J
grams, allows for easy modification. Instead of using the
number "25" everywhere in the program, we set N equal -,
to it and then use Nin its place. In this manner only one ^J

TlltoC i

"ORGAN" 111

change need be made to replace the 25 everywhere. In this
particular program, the variable N is used only once, but
this is somewhat atypical. In most programs (as can be
verified by looking back at some of the longer ones) specific
constants are used many times.

After the frequencies of the notes which are stored in the
array NOTE are read in, the map pointing to those notes is
read from DATA statements into the array CODE. Then
five special cases of CODE are defined. This is done be
cause there is a jump in the ASCII code numbers between
the digits and the letters. This gap would have had to be
filled with zeros if the index of the loop were to have been
incremented continuously in the ordinary way. Since this
strategy results in a waste of time, we decided to take the
route of trading memory for time and specifically set all the
required number keys to their correct values in the map.

The map stored in the array CODE simply points to spe
cific notes stored in the array NOTE. Each time a particular
note is required, the note number is "looked up" in the
table CODE. If the value for CODE at that position is zero,
no corresponding note exists for the key that is pressed. If
the value is any other number, it is a subscript of NOTE.
Accessing the correct position in NOTE yields the value
corresponding to the desired frequency. It is this value that
is used in the CALL SOUND statement which emits the
actual tone.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. It is possible to fit up to four octaves on the TI keyboard
if you are willing to sacrifice the similarity to the piano
keyboard layout.

2. A modification can be made to allow for more than one
simultaneous voice. One easy change is to have the
computer play two notes—the one you press and the
one whose frequency is exactly in the ratio 1.25:1 (the
numeric equivalent of what musicians call a "third").

112 ZAPPERS

This produces a pleasant-sounding chord each time a
key is pressed.

3. The program can be altered toallow the player tochange]
the length of the notes, the volume, and any other pa- "^
rameters.

4. The program would be vastly improved if it could save j
the music as played and then play it back later. Perhaps
the music could even be saved permanently in data files
on cassette tape. ^J

5. While rather difficult, a very interesting modification
would be to arrange for the computer to automatically
produce an acceptable harmony to any inputted melody.

j

MMragpgi

I (

PROGRAM

13
MINDSTORMING'

PURPOSE

The next program is a sophisticated TI-99/4A variation on
the popular logic game called "Mastermind." In our ver
sion, a numeric code is used in place of colors. For the
benefit of those who have not yet encountered this game,
let it be said that it demands a high degree of logical deduc
tion—more so than you might believe.

The game is played as follows: One player (in this case,
the computer) randomly picks out a code number consist
ing of a series of digits whose length is requested at the
outset. The object of the game is for the other player (in
other words, you) to match the code, digit for digit.

The game proceeds in turns. With each turn, the player
makes a guess as to the code and is given some helpful
information about the guess. First, the player is told the
number of digits that are correctly matched and that are in
the correct position. Then, the player is told how many
digits are correct—but that are in the wrong position. This
information is displayed under the abbreviated titles:

RD/RP (right digit, right position)

and

RD/WP (right digit, wrong position)

113

114 ZAPPERS

Based on this information, a good player can arrive at the
correct answer in a surprisingly short number of moves.
The following game illustrates some of the strategies used I
and also how to play. ta*J

Sample Game: I
OF POSITIONS (3-10): ?3 ""*
OF DIGITS (3-10): ?4
(The digits 1, 2, 3, and 4 are allowed—assume the

w BII|l|8W

computer's randomized code is 241.)
TRY # CODE RD/RP RD/WP

1 112 0 2

2 221 2 0

3 421 1 2
4 241 (the winning move)

If the above looks easy, try playing with ten positions and
ten digits (the 0 key is the tenth)

100 CALL CLEAR

110 PRINT "YOU ARE ABOUT TO TEST
YOUR^POWERS OF ...":::::::::

150 FOR 1=1 TO 50

130 PRINT TAB(I-INT(I/BM)*BM+3)i
nniNDSTORMING"i

1M0 NEXT I

1S0 PRINT :::::::::
kiipfellb0 Dill A(50)-,COPY(S0)iB(50)

170 INPUT n#AA0F POSITIONS (3-10): ":N
1A0 IF N<>INT(N)THEN 170

toy»l
110 IF N>E THEN B20

200 PRINT :"THAT'S NO CHALLENGE! PICK A
LARGER NUMBER."::

[^pgll
210 GOTO 170

EE0 IF N<11 THEN Sb0

E30 PRINT :"THAT WILL BE
t^|y^i!i

J

llmmmuiMI

y^jjj^ijw^

"MINDSTORMING" 115

RATHERaaaaaaaaaDIFFICULT- TRY

AGAIN-"::

I EM0 GOTO 170
250 PRINT ::

2b0 INPUT "HOU MANY DIGITS (3-10): ":C

1 270 IF C<>INT(C)THEN 2L.0

2fl0 IF C>2 THEN 310

210 PRINT :"Y0U NEED MORE DIGITS

THAN"iC:"DON'T YOU WANT A FUN GAME?"::

300 GOTO 2b0

310 IF C<11 THEN 3110

320 PRINT :"Y0U CAN KEEP TRACK OF

THATa^MANY DIGITSf WHAT A MIND!AAATRY
AGAIN — I CAN'T HANDLE THAT MANY"::

330 GOTO 2t0

340 PRINT ::"SHALL I ALLOW REPEATING OF"

350 INPUT "DIGITSf (Y/N): ":REP$

3b0 IF SEG$(REP$-.l-.!)="Y" THEN 310

370 IF SEG$(REP$-.lil)<>"N" THEN 340

3fi0 R=-l

310 IF (C<N)*R THEN 170

400 FOR I = 1 TO N

410 RANDOMIZE

M20 A(I) = INT(RND*C) + 1

430 FOR J = 1 TO 1-1

440 IF (A(J)=A(I))*R THEN 410

450 NEXT J

41,0 COPY(I)=A(I)

[470 NEXT I
Mfl0 NC=1000

410 PRINT ::"TRY #aaCODEAAAAaAri>/rp rd/
ypn.n ^ AAAAAA A "

500 FOR 1=1 TO NC

510 PRINT STR$(I)iTAB(3)i"~> "i

520 FOR L=l TO N

530 A(L)=COPY(L)

540 NEXT L

550 FOR J=l TO N

116 ZAPPERS

5t0 CALL KEYO-.KEY-.STATUS)
UttfjiHM'J

570 IF STATUS<1 THEN 5bB

5fl0 IF KEY <> 4fl THEN 1,00
lamfasij

510 KEY = sa

1,00 IF (KEY < 41 + KEY > 48+C) THEN 5L.0
L10 PRINT CHR$(KEY)} 1
L.20 B(J) = KEY - 45

1,30 NEXT J

lisMSfed
1,40 REM NOW FIGURE OUT THE SUMMARY

bS0 lilH = 0

bt.0 BL = 0

t.70 FOR J=l TO N

bfl0 IF A(J)*(A(J)=B(J))THEN A30

b10 NEXT J

700 FOR J=l TO N

710 FOR K=l TO N

720 IF A(J)*(A(J)=B(K))THEN flfl0

730 NEXT K

740 NEXT J

750 PRINT TAB(20)iSTR$(BL)iTAB(2b);
STR$(UH)

7L.0 NEXT I

770 PRINT "GEEi YOU'RE BAD!"

7fl0 PRINT "WHY DON'T YOU TRY SOME"

710 PRINT "OTHER GAMEf"

S00 END

fl!0 PRINT "MORE DIGITS -- MORE FUN"

fi20 GOTO 21,0

330 BL=BL+1
jm»»M»jjy-»|

fl40 IF BL=N THEN 120

650 A(J)=0

flb0 B(J)=0
l-f^"''1-!

fi70 GOTO b10

flfl0 b)H=WH + l

610 A(J)=0 hmfmsbii
100 B(K)=0

110 GOTO 730

\0imfi,tim120 PRINT : ^CONGRATULATIONS! YOU WIN!"::
130 PRINT "YOUR RATING IS:"

L.

L
140

L
150

1b0

170

Itamg
150

110

L. 1000

1010

1020

"MINDSTORMING" 117

RATING = (N + C/2)/I*3

IF RATING<=1 THEN 1010

IF RATING>=3 THEN 110

PRINT "NOT BAD."::"KEEP WORKING AT IT

THOUGH."

END

PRINT "FANTASTIC!"

AAAAAN0BEL PRIZE"
END

PRINT "TERRIBLE":

GOTO 770

:"Y0U DESERVE

L

PROGRAM LINE ANALYSIS

line(s) action(s)

100-150 sets up the screen
160 sets aside array storage
170-240 accepts number of positions and ensures that it

is in the valid range
200-210 if position is too small, says so and asks again
220-240 tests that the number of positions requested

does not exceed 10. If so, an appropriate mes
sage is printed and another number requested

260-330 accepts number of digits (colors) and validates
it

340-370 asks player if repeating digits are allowed and
accepts only responses beginning in Y or N

380 sets the repeating-not-allowed flag
390 if repeating is not allowed and there are more

positions than digits, goes back and gets new
values for position and digits

400-470 sets the random code and copies it into COPY
480 sets the maximum number of chances permit

ted to an outrageously large number
490 displays heading
500-760 main loop to request code and print summary

information

510 prints the current try number

118 ZAPPERS ,

520-540 copies the untouched copy of the code in *"^
COPY back into the array A

550-640 scans the keyboard for each digit; validates |
and then displays it

650-660 initially sets number of digits correct but in
wrong place and number of digits correct and j
m right place to 0

670-690 checks all positions for correct digits; if found,
transfers control to 830 ^J

700-740 checks all digits in incorrect positions; if
found, transfers control to 880

750 displays the computed information
770-800 insults bad players and ends
810-820 encourages the player to select more digits
830-870 adds 1 to count of correct in right place and

checks if it is equal to the number of positions;
if so, goes to winning routine in line 920; oth
erwise returns to keep checking

880-910 adds one to count of correct in wrong place
and returns to keep checking

920-1020 prints congratulatory message and rating and
terminates the program

PROGRAM DESCRIPTION

After the introductory screen antics, the player is asked to
enter the number of positions and digits desired. The last
question asked before the game begins is whether the digits
are to repeat or not. If the answer is "no" and there are I
not enough digits to satisfy the need, line 390 transfers
control back to the questions again and the player is given
another chance to respond. If the player decides that the ^1
digits may repeat, the number of positions is immaterial
because any extra positions can always be filled with re
peated digits.

Immediately following the code-generating procedure,
which places the code into the array A, is the main loop, in - .
which the game is simulated. The computer sets the num- ^J

pampfw

"MINDSTORMING" 119

ber of chances given to the player to 1,000. If the player
has not succeeded by the one thousandth try, the computer
halts the game with a mildly reproving message. Within the
loop extending from line 500 to 760, the computer waits for
the player's move, tests to see if the match is made cor
rectly and, if not, displays a summary of the results.

The loop in lines 550-630 reads in the player's typed
digits and validates them to make sure that only numbers
between 1 and 10 (with 0 standing for 10) are typed in, one
at a time. It then stores them in the array B. A check is
then made in the loop extending from line 670 to 690 for an
exact match of the computer's digit and the player's. If a
match is found, control is transferred to line 830, where a
counter is incremented and a check made to see if all the
digits have been supplied. If this is the case, a congratula
tory message is printed and a rating computed. If not, the
computer checks for all correct digits in the wrong place (in
lines 700-740). Whatever the result, the answers are tabu
lated by the PRINT instruction in line 750.

When the player has matched all the digits and won, the
rating is computed on the basis of how long it took. Ob
viously, the more complex the code, the longer it will take
to match all the digits, so the computer calculates the rating
on a sliding scale. It simply allows the player a number of
moves equal to the sum of the number of positions and half
the number of permissible digits. That is, if there, for ex
ample, are six positions and four digits permitted, the max
imum allowable number of moves to arrive at the solution

with the top rating is 6 4- (4 / 2), or 8. The result of this
calculation is multiplied by 3 to arrive at the player's rating.
If this proves to be less than or equal to 1, meaning that
more than three times the number of moves were made

as compared to the top rating (in the above case, twenty-
four or more), the lowest rating is assigned. If it is greater
than or equal to 3, a laudatory message is displayed
and the program is terminated. A score anywhere be
tween the above-mentioned values triggers the intermedi
ate rating.

120 ZAPPERS

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The program can be modified to incorporate color and
possibly sound into the game.

2. An interesting twist on the game might be to have atime t j
limit on each turn. This would prevent cool, collected
thinking for long periods of time before each move.

3. You might want to amend the validation statements be- „u J
tween lines 180 and 310 to allow for different ranges
(more positions, etc.) However, the maximum of ten
positions was chosen because of the limitation of the
screen size—to say nothing of the human difficulty of
coping with such a large value.

4. The game can be turned into a competitive two-player
game, in which each gives a code for the other to solve.

l"fM0F:i

||^gMIP'»Ulfll

IfafjaMBUBI

PROGRAM

14
TICTACTOE"

< <

PURPOSE

Most of us became familiar with the game of "Tic Tac Toe"
in early childhood. In fact, this game has been around for
hundreds of years. In view of its popularity, it is no wonder
that so many have attempted to write programs to simulate
this game on various computers. In "Tic Tac Toe," two
sets of parallel lines are drawn at right angles, resulting in
nine areas into each of which an "X" or an "O" is entered.
Two competing players take turns entering their respective
symbols. As soon as one of the players has succeeded in
completing a horizontal, vertical, or diagonal line of his
symbol, he is considered the winner. Even though the game
appears to be rather simple, a good player exercises consid
erable strategy when playing. It is clear, for example, that
given a choice, a player should always opt to go first. The
reason for this is that since there are only nine boxes avail
able, if he goes first he can make five moves against the
opponent's four. Not only that, but having the first move
permits him to immediately take the center box, which is
common to both diagonals, the center horizontal, and the
center vertical lines. At the same time, good strategy de
mands that you always block your opponent's attempt to

121

122 ZAPPERS I

achieve a line of three adjacent (identical) symbols while
trying to get a line of three yourself. ,

The version of the game which we have written for the ,.^J
TI-99/4A permits the player to pit his skills against those of
the computer. The human player may choose the symbol]
"X" or "O" and is even permitted the opportunity to se- <*^J
lect whether he or the computer goes first.

100 REM TIC TAC TOE ('•fr'ipifgij

110 CALL CLEAR

120 PRINT "WELCOME TO ..."::::::::

130 CALL SOUND(2000-.220i0)

140 CALL SOUND(2000i32fi-.0)

150 CALL SOUND(2000-.440i0)

lt.0 CALL SOUND(400-.51,07 0-. 417-.0->b12->0)

170 CALL SOUND(1000-.Sb0-i0-,417-.0ib5b-.0)
1A0 PRINT TAB(23)i"T0E":::

110 PRINT TAB(13)inTAC:::

200 PRINT TAB(3)i"TIC":::::

210 OPTION BASE 1

220 Dill B0ARD(3-,3)-iPTS(fl-,3-,2)-.PRI0(3-.3)-i

CASE(M)

230 CASE(l)=b

2MB CASE(2)=1

250 CASE(3)=S

2t.0 CASE(4)=2

270 FOR 1=1 TO 3

2&0 FOR J=l TO 3

210 BOARD(I-.J)=0 Wiffi«y»>l

300 READ PRIOdnd)

310 NEXT J

r^a^^^'J320 NEXT I

330 DATA Sil-.S-.l-.3-.l-.S-.l-i2

340 FOR J=l TO a

^ffltf^ff^^350 FOR 1=1 TO 3

3b0 READ PTS(J-,I-,l)-.PTS(J-,I-.2)

370 NEXT I
i-^^psgj360 NEXT J

ti^aiji||̂ jj

j^gmgggi

p.

liitggfr,..^

"TIC TAC TOE" 123

310 DATA 1-.1-.2-.1i3-.1i1-.2i2-.2-.3-.2-.1i3-.2-.3-.

400 DATA 3i3ililili2ili3i2ili2i2i2i3i3ili

[410 DATA 3i2i3i3ilili2i2i3i3i3ili2i2ili3
^* 420 INPUT "WANT X'S OR O'S? ":<JUERY$

430 D$="X-0"

440 IF SEG$«2UERY$ilil)="X" THEN 470

450 IF SEG$«2UERY$ilil)<>"0" THEN 420

f 4b0 D$="0-X"
L^. 470 INPUT "SHALL I GO FIRST (Y/N)f ":<JUERY$

4fl0 C0UNT=-1

410 IF <2UERY$="Y" THEN L.40

500 IF <JUERY$="N" THEN 530

510 PRINT :"TYPE Y OR Ni NOT "i<3UERY$i"!"

520 GOTO 470

530 GOSUB 1120

540 PRINT ::"ENTER YOUR HOVE: "i

550 CALL KEY(3iKEYiSTATUS)

5t0 IF STATUS-0 THEN 550

570 IF (KEY<41)+(KEY>S7)THEN 550
SA0 I10VE=KEY-4A

510 X=INT((l10VE-l)/3)+l

t,00 Y=M0VE-X*3+3

bl0 IF BOARD(XiY)<>0 THEN 550

b20 PRINT CHR$(KEY)

t30 BOARD(XiY)=l

L40 FOR T=l TO 4

t.50 FOR 1=1 TO fl

Lb0 sun=0

! fc.70 FOR J=l TO 3
^ bA0 SUI1=SUn+B0ARD(PTS(IiJil)iPTS(IiJi2))

b10 NEXT d

{^ 700 X=-(CASE(T)=SUM+3)*CASE(T)
710 IF X=t THEN 1270

r 720 IF X=l THEN 100
L^ 730 IF X=2 THEN 150

740 IF X<>5 THEN 770

750 GOSUB 10L0

7b0 GOTO 530

124 ZAPPERS

770 NEXT I

780 NEXT T

710 FOR 1=1 TO 3

800 FOR J=l TO 3

B10 IF BOARD(IiJ)<>0 THEN 8b0

820 IF PRIO(IiJ)<=l1AX THEN 8b0

830 MAX=PRIO(IiJ)

840 X=I

850 X=J

8b0 NEXT J

870 NEXT I

880 BOARD(XiY)=-l

810 GOTO 530

100 GOSUB 10b0

110 GOSUB 1120

120 PRINT ::"I UIN!!!"::::

130 PRINT "BETTER LUCK NEXT TIME-"

140 END

150 MAX=0

1b0 FOR J=l TO 3

170 IF B0ARD(PTS(IiJil)iPTS(IiJi2)) <> 0 THEN

1020

180 IF PRI0(PTS(IiJil)iPTS(IiJi2)) <=MAX THEN

1020

110 X=PTS(IiJil)

1000 Y=PTS(IiJi2)

1010 HAX=PRI0(PTS(IiJil)iPTS(Iidi2))

1020 NEXT J

1030 IF HAX=0 THEN 770

1040 BOARD(XiY)=-l

1050 GOTO 530

10L0 FOR J=l TO 3

1070 IF BOARD(PTS(IiJil)iPTS(IiJi2))=0 THEN

1100

1080 NEXT J

1010 STOP

1100 B0ARD(PTS(IiJil)iPTS(IiJi2))=-l

1110 RETURN

J

J

«J

aiitiiW~¥'iiffa*'

j|wi»|ff--.gf

"TIC TAC TOE"

1120 REM DISPLAY THE BOARD

1130 C0UNT=C0UNT+1

1140 IF C0UNT=5 THEN 1210

1150 PRINT ::

llb0 FOR 1=1 TO 3

1170 FOR J=l TO 3

1180 K=I*3-3+J

1110 IF BOARD(IiJ)=0 THEN 1220

1200 PRINT "A"=iSEG$(D$i2-B0ARD(IiJ)il)i
1210 GOTO 1230

1220 PRINT K=i

1230 NEXT J

1240 PRINT

1250 NEXT I

12b0 RETURN

1270 PRINT :::"YOU WIN!!"

1280 END

1210 PRINT ::"THE GAME IS A TIE."

PROGRAM LINE ANALYSIS

125

line(s)

100

110

120-200

210

220

230-260

270-320

330

340-380

390-410

action(s)

REMark

clears screen

prints welcoming message and plays a tune
sets lower bound of subscripts to 1
sets aside space for array and matrices
assigns a value to each element of the array
CASE

initializes matrix BOARD to zero and reads in

the nine elements for the matrix PRIO

DATA statement containing the 9 elements for
the matrix PRIO

reads in the elements for matrix PTS

DATA statements containing the elements for
the matrix PTS

126 ZAPPERS

420 prompts the user for symbol of choice; the re
sponse (X or O) is stored in QUERY$

430-460 assigns a string value to D$ according to the
player's choice. Any symbol other than "X"
or "O" sends control back to line 420

470 player is prompted for choice as to whether he
or she wants to go first; the response of Y or N
is stored in QUERY$

480 COUNT is initialized to -1 J
490-520 if QUERY$ is not equal to either Y or N, con

trol is sent back to line 470 for another try. A
response of Y sends control to line 640, while
a response of N branches to line 530

530 calls subroutine that displays board
540-580 waits for player to enter a number from 1 to 9,

representing the desired box; the ASCII value
of the response is stored in KEY, which is then
converted to its corresponding number and
stored in MOVE

590-600 converts the number in MOVE to its row-col
umn coordinates in the matrix, the row number
being assigned to X and the column number to
Y

610 goes back to line 550 if the chosen space has
already been selected

620 prints the chosen digit
630 puts the value 1 into the selected element of

the matrix BOARD to indicate that the human

playerchose this space 1
640-780 loop checks through all rows, columns, and di- ^^

agonals for four discrete "cases" or patterns
ofX's and/or O's that require special strategies \
on the part of the computer

660-690 using the data in matrix PTS to get correct co
ordinates, sums the l's and - l's in a row, col-
umn, or diagonal

700-740 tests for the four cases mentioned above, ,
branching according to the result: case 1trans- ^

i^g&^ij

r x

|||tojbg^il

.^|jgmpg/

"TIC TAC TOE" 127

fers control to line 1270; case 2 sends the pro
gram to line 900; case 3 causes the program to
fall through to line 750; case 4 transfers control
to line 950. If none of the cases apply, control
passes to line 770.

750-760 case 3; the subroutine at line 1060 is invoked,
and upon return, control goes back to line 530
where the player is prompted for another move

770-780 looks at the next row or column or diagonal
790-870 none of the four cases was detected anywhere,

so this loop selects the box which will provide
the greatest advantage

810 if this box was already chosen, goes on to the
next one

820 checks the priority of the current box; if it is
not greater than the highest priority found so
far, goes on to the next box

830 this is the highest-priority box found so far, so
its priority is saved in MAX

840-850 saves the box's row and column in X and Y

860-870 checks the next box

880 puts the value -1 in the matrix element se
lected by the FOR . . . NEXT loop in lines
790-870, indicating that the computer has cho
sen it

890 goes back to ask the player for another move
900-940 case 2; calls the routine at line 1060, displays

the board by calling the routine at line 1120,
declares that the computer has won, and ends
the game

950 case 4; MAX is initialized to 0
960-1020 checks through the entire row, column or di

agonal (specified by I) to find the highest-prior
ity vacant box

970 if the box is not vacant, goes on to the next
box

980 if the box's priority is not the highest found so
far, goes on to the next box

128 ZAPPERS

990-1000 stores the box's row and column in X and Y
1010 stores the box's priority in MAX
1020 checks the next box

1030 if no vacant box was found, this is not a valid
instance of case 4, and so control returns to
line 770 to try another row, column, or diago
nal

1040 if a vacant box was found, puts the value -1
in that location of matrix BOARD to indicate

that the computer has chosen it
1050 returns to line 530 to input another move from

the player
1060-1110 this subroutine searches for a vacant box in the

current row, column or diagonal (as indicated
by the index I) and marks it as chosen by the
computer

1060-1080 searches through the three boxes and branches
to line 1100 when an empty box is found

1090 the program dies if no empty box is found;
however, this will never happen; this line is
mainly an indicator to show that control never
passes to line 1100by the loop ending normally

1100 places the value -1 in the box found to show
the computer has chosen it

1110 returns to the main routine

1120-1260 routine to print the playing board
1120 REMark

1130 increments COUNT

1140 when COUNT reaches 5, all moves have been
made and control passes to line 1290 to indi
cate a tie

1150 skips two lines
1160-1250 prints the contents of the nine boxes
1180 calculates the box's number (1-9)
1200 if the box is occupied, uses D$ to print an "X"

or an "O," depending on who chose the box
and the symbol

1220 the box is vacant, so its number is printed

j

"TIC TAC TOE" 129

W" 1260 returns to main routine
1270-1280 case 1; tells the player he has won, and ends

r the game
^^ 1290 the game is declared to be a tie, and is ended

u

r

PROGRAM DESCRIPTION

The heading and welcoming theme are produced by the
code in lines 110-200. Line 210 sets the lowest possible
subscript to 1, thereby saving a little space. Line 220 then
sets aside storage for the matrix BOARD which keeps track
of all the moves; PTS contains the eight distinct paths by
which it is possible to win (three vertical, three horizontal,
and two diagonal). The array PRIO contains the values
assigned to each position on the board; given two equally
good moves, the computer will choose the most strategic
one, always taking the center first, followed by the corners,
and finally the other positions.

The array CASE is used to set the hierarchy of pattern
detection strategies. First, all eight winning paths are
checked to determine whether the player has already won.
If so, the game is terminated. If not, a scan is made to see
whether the computer has two in a row, with the third
position empty. If so, it places its piece and wins the game.
If both of these checks fail, the computer goes on to exam
ine whether any lines contain two of the player's pieces in
a row, with the third position empty. If so, it moves to
block the opponent. If not, it goes on to make its final test;
this consists of checking for any paths with one of the com
puter's pieces present and the remaining two empty. This
being the case, the computer moves to fill the empty space
with the higher priority. If none of these tests prove to be
positive, the computer moves to the space with highest
available priority, as defined in the array PRIO.

The mechanics of the above strategies are implemented
in a few rather simple steps. First, the values of CASE(l),
CASE(2), CASE(3), and CASE(4) are set in lines 230-260.
The reasons for the specific values stored in these elements

130 ZAPPERS

will be explained in a few moments. Next the values of the
array PRIO are read in. They relate to the board in the
following way:

PRIO

2 1 2

1 3 1

2 1 2

The higher the priority number, the more the computer will
tend towards that location. This is the reason why the com
puter is directed towards the center of the board. You will
notice that the center has the unique priority of 3, the high
est priority on the board.

Lines 340-380 load in the values of PTS. There are eight
paths, each consisting of three points (each point having its
own horizontal and vertical component). After asking some
preliminary questions in lines 420-520, the subroutine that
displays the board is invoked. In lines 540-600 the player
enters a move by typing the appropriate number from 1 to
9, in accordance with the following scheme:

1 2 3

4 5 6

7 8 9

Lines 590-600 convert the number entered by the player
into horizontal and vertical components. Line 610 checks if
the specified position has already been taken. If so, control
returns to line 550, which asks for another number. If the
test is successful, control drops to line 620, which prints
out the number. Line 630 then sets the matrix BOARD at

that position to 1, indicating (for future reference) that it is
taken by the player. By contrast, the value of -1 is used
to represent a place taken by the computer.

Lines 640-780 take advantage ofthe fact that paths filled j
with different combinations of these two values, 1and -1, ^^
have different sums. If, for example, the sum of a line totals
3, the player has obviously won, because the only way that J

Jt*it^tt|s

If'LrjIJIIIlllj

Mtat|jMj|

I

"TIC TAC TOE" 131

a line can total 3 is for all three of its positions to contain a
1. In other words, the player has achieved three in a row.
Similarly, the only way to arrive at a sum of -2 is if the
computer has two in a row, with the third position vacant.
The computer's obvious move then is to fill the vacant
space with —1, thereby winning the game. The other pos
sibilities are slightly more complex but, in essence, are
treated in a similar fashion.

The computer decides which routine to jump to in lines
700-740. It is here that the four discrete steps in its strategy
are executed, since T ranges from 1 to 4. Lines 790-880 are
the lines of code which determine what to do as a "last

resort" move. Line 890 transfers control back to line 530,
which transfers control to the subroutine that displays the
board and asks the player for his next move. Lines 900-940
contain the routine to which control is transferred if the

computer has won the game. The selection of the optimum
move is made by the code in lines 960-1050. After the
selection is made, line 1050 sends control back to line 530,
again displaying the board. Lines 1060-1100 cause the com
puter to block any line that has two of the opponent's
pieces in a row. The subroutine in lines 1120-1260 adds 1
to the count of moves taken. If this count reaches 5 with

neither player having won, control is passed to line 1290,
where the game is declared a tie and the game is termi
nated. Finally, lines 1270-1280 encompass the routine that
handles a win by the human player. We should point out
that this routine is never reached because the computer
plays flawlessly and can never be beaten, only tied.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The display shown on the screen can be modified by
[^ arranging for each move to update the board already on

the screen, instead of printing a new display, as is done
r in this program. While this is probably more tedious to
I program, it will be faster and more attractive to watch.

mmm^j^

132 ZAPPERS

2. The program can be enhanced by including options
whereby the computer can play itself and humans can
play humans.

3. Perhaps a strategy could be adopted to permit the player ^^
to withdraw an unintended move.

L^ggt^wi

]|j|M[^B

l!$tailresg&

PROGRAM

15
"QUBIC"

PURPOSE

If you were impressed with the performance of "Tic-Tac-
Toe," you will probably be flabbergasted at this game. Al
though it is simply a more sophisticated version of "Tic-
Tac-Toe," a whole new dimension is added—for a total of
three. Yes, "Qubic" is the game of three-dimensional
"Tic-Tac-Toe." The board is a 4 x 4 x 4 cube and instead
of requiring three in a row to win, four in a row are needed
—any straight line of a length of 4 will do. Since the com
puter cannot display three-dimensional objects, we split the
board into the four levels and show each one side-by-side
on the screen. Picture the leftmost level as being the one at
the bottom and the rightmost at the top. Each level is given
a number from 1 to 4. Within each level, a row and a col
umn must be specified by a number (also between 1 and 4).
The line which must be typed is therefore of the form
LEVEL, ROW, COLUMN.

There are more ways to get four in a row than the ways
to get three in "Tic-Tac-Toe." The easiest way to point out
these differences is to use the coordinate system we have
just defined, so that

133

134 ZAPPERS

1, 1, 1
2, 2, 2

3' 3' 3 " J

is a winning series of 4 in a row and, similarly, so is

1, 1, 1
2, 1, 2
3, 1, 3
4, 1, 4

and

1, 1, 1
2, 1, 1
3, 1, 1
4, 1, 1.

If the necessary powers of visualization seem to escape
you, try running the program—it is much easier to see how
it works by playing and getting a feel for it than by reading
about it.

100 REM (3UBIC

110 CALL CLEAR

120 Z1=0

130 PRINT TAB(S)i"THIS IS THE GAME

0F"::TAB(fl)i" — (JUBIC — "::TAB(7)i

"3-D TIC-TAC-TOE"::::::::

1HB INPUT "DO YOU WANT INSTRUCTIONSf^^Y J
OR N): ":<2UERY$ ^

150 IF SEG$«2UERY$-,1-,1)="Y" THEN 2110

lb0 IF SEG$(flUERY$-,lil)="N" THEN 110 I
170 PRINT "PLEASE TYPE Y OR

N1AAAAAAAAAN0T "^flUERY*
160 GOTO 130 J
110 DIM X(b4)-.L(7b)-,f1(?b-,i4)iY(lb)

200 DEF FNL(I)=X(M(I-.l))+X(l1(I-.2)) -^
+x<n(i,3))+x<ri(i-,M)) J

"QUBIC" 135

210 DEF FNM(M)=l1+110+b*INT((f1-l)/

4)+b0*INT((l1-l)/lb)

FOR 11=1 TO lb

READ Y(II)

NEXT II

FOR 11=1 TO 7b

FOR JJ=1 TO 4

READ IKII-.JJ)

NEXT JJ

NEXT II

INPUT "DO YOU WANT TO MOVE FIRSTAAA(Y/
N) ":<2UERY$

CALL CLEAR

IF SEG$«aUERY$il-.l)="Y" THEN 3b0

IF SEG$«3UERY$-.1-,1)="N" THEN 450

PRINT "PLEASE TYPE Y OR

N-»aaaaaaaaaNOT "QUERY'S
GOTO 300

GOSUB 11b0

INPUT "ENTER YOUR MOVE ":KliK2-.K3

GOSUB 1120

IF (KK1)+(K2<1)+(K3<1)+(K1>4)+(K2>4)

+(K3>4)+(KK>INT(K1))+(K2<>INT(K2))

+(K3<>INT(K3))THEN 370

MI1=lb*Kl+4*K2+K3-20

IF X(I1I1)=0 THEN 440

PRINT "THAT SflUARE IS

TAKEN.AAAAAAAPLE:ASE TRY AGAIN"
GOTO 370

X(firi)=l

GOSUB 12b0

T=0

S = 0

FOR 1=1 TO 7b

IF L(I)<>4 THEN Sb0

PRINT "CONGRATULATIONS!"

PRINT FNtlflKInD^FNIiaKI^))}

FNH(n(i-.3))iFNri(n(i-.4))

L 220
irfiMr-7

230

240

feujB^JV-
250

2b0

-lfa^y»rt

270

260

210

300

310

320

330

340

350

3b0

370

3A0

310

400

410

420

||s™g^
430

440

wswamg^*

450

4b0

470

L_
460

410

500

510

K"-JP

136 ZAPPERS

520 PRINT

530 PRINT "FINAL POSITION"

540 GOSUB 11b0
fc^a&iya&asl

550 GOTO llb0

5b0 IF L(I)<>15 THEN 560

570 S=I J
560 IF L(I)<>3 THEN b00
510 T = I

b00 NEXT I
\&gggjs&^jj

bl0 IF S=0 THEN 700

b20 I=S

b30 FOR J=l TO 4

b40 MM=M(IiJ)

b50 IF X(MM)>0 THEN b10

bb0 X(MM)=5

b70 PRINT "MACHINE MOVES TO "iFNM(MM)::
b60 GOTO 520

b10 NEXT J

700 IF T=0 THEN 1010

710 I=T

720 FOR J=l TO 4

730 MM=M(I-.J)

740 IF X(MM)>0 THEN 780

750 X(MM)=S

7b0 PRINT "NICE TRY — I WILL MOVE

TO "iFNM(MM)

770 GOTO 3b0

760 NEXT J

710 FOR 1=1 TO 7b
iLj^ayJI600 LL=FNL(I)

610 IF INT(LL)<>2 THEN 870

620 IF LL>2 THEN 1700
VjUiaaaiflyJ

630 FOR J=l TO 4

840 IF X(M(IiJ))>0 THEN 6b0

850 X(M(I-,J))=.125
•Jamwmffid

6b0 NEXT J

670 NEXT I

680 GOSUB 12b0 ' 1

iim^ffffm

Mfy^^

r

J$|&gffi^^gi

"QUBIC"

810 FOR 1=1 TO 7b

100 IF (L(I)=.S)+(L(I)=.375)THEN 1800

110 NEXT I

120 GOTO 1380

130 FOR Z=l TO lb

140 IF X(Y(Z))=0 THEN 170

150 NEXT Z

1b0 GOTO 1300

170 MM=Y(Z)

180 X(MM)=5

110 PRINT "I WILL MOVE TO "^FNM(MM)::

1000 GOTO 3b0

1010 FOR 1=1 TO 7b

1020 LL=FNL(I)

1030 IF INT(LL)<>10 THEN 1010

1040 IF LL>10 THEN 1700

1050 FOR J=l TO 4

10b0 IF X(M(I-.J))>0 THEN 1080

1070 X(M(IiJ))=.12S

1080 NEXT J

1010 NEXT I

1100 GOSUB 12b0

1110 FOR 1=1 TO 7b

1120 IF (L(I)=.5)+(L(I)=5.375)THEN 1800

1130 NEXT I

1140 GOSUB 1120

1150 GOTO 710

llb0 Z1=Z1+1

1170 IF Z1=2 THEN 2010

1160 INPUT "ANOTHER GAME? ":<JUERY$
1110 IF SEG$((2UERY$-.l-.!)="Y" THEN 300

1200 IF SEG$«2UERY$-.lil)="N" THEN 1230

1210 PRINT "PLEASE TYPE Y OR

N-,aaaaaaaaNOT "i<2UERY$

1220 GOTO 1160

1230 END

1240 REM

1250 REM

137

138 ZAPPERS

12b0 FOR S=l TO 7b

1270 L(S)=FNL(S)

1280 NEXT S I
1210 RETURN

1300 FOR MM=1 TO b4

1310 IF X(MM)>0 THEN 1350 J
1320 X(MM)=5

1330 PRINT "I LIKE"iFNM(MM)

1340 GOTO 3b0

1350 NEXT MM

13b0 PRINT "THE GAME IS A DRAW."

1370 GOTO llb0

1360 FOR K=l TO 72 STEP 4

1310 P=INT(L(K))+INT(L(K+1))

+INT(L(K +2))+INT(L(K+3))

1400 IF (P=4)+(P=1)THEN 1440

1410 NEXT K

1420 GOSUB 1120

1430 GOTO 130

1440 S=-125

1450 FOR I=K TO K+3

14b0 GOTO 1610

1470 NEXT I

1460 S=0

1410 GOTO 1450

1500 DATA l-.41-.S2-.4-.13-.bl-.b4-.lb-.22-.31-.23-.
38-,2b-.42-.27-.43

1510 DATA Ii2i3i4i5ibi7i8i1il0illil2il3i
14-.15-.lbil7-.16-.11-.20

1520 DATA 21-.22-.23-.24-.25-,2b-.27-.28-,21-.30-.

31-, 32-, 33-. 34-. 35-. 3b-, 37-, 36

1530 DATA 31i40i41i42i43i44i45i4bi47i48i41i
50-.51-.52-.53-.54-.55-.5b

1540 DATA 57i58iS1ib0iblib2ib3ib4

1550 DATA l-.17-.33-.41i2-.18-.34-.50-.3-.11-.35-.51-,
4i20i3bi52

15b0 DATA Si21i37iS3ibi22i36iS4i7i23i31iSSi
6i24i40i5b

J

llSWSB

"QUBIC" 139

1570 DATA 1i25i41i57il0i2bi42i56i

Ili27i43i51il2i28i44ib0

| 1560 DATA 13i21i45iblil4i30i4bib2il5i31i47i
*— b3ilbi32i48ib4

1510 DATA 1i5i1i13i17i21i25i21i33i37i

[41i45i41i53iS7ibl
lb00 DATA 2ibil0il4il8i22i2bi30i34i38i42i

4bi50i54iS8ib2

I _ lbl0 DATA 3i7illilSil1i23iB7i31i35i31i
43i47i51iSSi51ib3

lb20 DATA 4i8il2ilbi20i24i28i32i3bi40i44i

48i52i5bib0ib4

lb30 DATA Iibillilbil7i22i27i32i33i38i43i
4ai41iS4i51ib4

lb40 DATA 13il0i7i4i21i2bi23i20i45i42i31i

3bibli58i55i52

lb50 DATA Ii21i41ibli2i22i42ib2i3i23i43i

b3i4i24i44ib4

lbb0 DATA 41i37i25il3i50i38i2bil4iSli31i

27il5i52i40i28ilb

lb70 DATA lil8i35i52i5i2Bi31i5bi1i2bi43i

b0i!3i30i47ib4

lb80 DATA 41i34i11i4i53i38i23i8i57i42i
27il2ibli4bi31ilb

lb10 DATA l-,22-,43-.b4-,lb-.27-.38-.41i4-.23-,

42ilb-.13-.2b-.31i52

1700 FOR J=l TO 4
1710 IF X(M(I-.J))<>.125 THEN 1710

1720 X(M(I-.J))=5

1730 IF LL<5 THEN 17b0

1740 PRINT "LET'S SEE YOU GET OUT

1 OFAAAATHIS! I MOVE TO"i
1750 GOTO 1770

17b0 PRINT "YOU FOX! JUST IN THE NICKAAAOF
[. _ TIME I MOVE TO"i

1770 PRINT FNIKM(I-.J))

f 17fl0 GOTO 3b0
l^r» 17T0 NEXT J

jii&ggjjgnjj}

140 ZAPPERS

1800 S=-125

1810 IF I-INT(I/4)*4>1 THEN 1840

1820 A=l ']
1830 GOTO 1850 taiP*!
1840 A=2

1850 FOR J=A TO 5-A STEP 5-2*A ~_J
18b0 IF X(M(I-,J))=S THEN 1810 ^
1870 NEXT J

I860 GOTO 1470 1
1810 X(M(I-.J))=S

1100 PRINT "I TAKE"i

1110 GOTO 1770

1120 FOR 1=1 TO b4

1130 X(I)=INT(X(I))

1140 NEXT I

1150 RETURN

11b0 A$="O.X"

1170 FOR 11=1 TO 13 STEP 4

1180 FOR J1=I1 TO 11+46 STEP lb

1110 FOR K1=J1 TO Jl+3

2000 LL= ABS(X(Kl)-2)

2010 PRINT SEG*(A$-,LL-,l)i

2020 NEXT Kl

2030 PRINT "A"i
2040 NEXT Jl

2050 PRINT

20b0 NEXT II

2070 PRINT

2060 RETURN

2010 STOP

2100 END

2110 REM INSTRUCTIONS

2120 PRINT ::"(3UBIC IS A THREE

DIMENSIONALVERSION OF TIC-TAC-TOE- THE

OBJECT OF THE GAME IS TO GET"^ ^_J
2130 PRINT "FOUR IN A ROtil• COORDINATES":

"ARE SPECIFIED AS LEVEL-. ROU AND

COLUMN WHERE EACH IS AAANUMBER J
FROM l"i

L*2&0$1

{<£^^^&gg||

WpBBBQ

"QUBIC" - 141

E140 PRINT"TO M- PICTURE":"THE LEVELS AS
BEING STACKED ON TOP OF EACH OTHER

WITHAAATHE LEFTMOST AT THE BOTTOM-"
E1S0 goto nia

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark
110 clears the screen
120 sets Z9 to 0
130 introductory message
140-180 requests Y/N answer from user as to whether

or not instructions are desired; if neither Y nor
N is typed, asks again

190 sets aside storage for the arrays
200-210 defines the functions FNL and FNM
220-290 reads in data for program logic
300-350 asks the user whether or not to go first; accepts

Y/N only
360 calls subroutine that prints the board
370-430 prompts user for the move, validates the num

bers to ensure that they are within the range;
computes position within the one-dimensional-
board array X and checks to see that it is not
taken. If it is, goes back and asks again

440 assuming all is well, sets the position in X to
"occupied by human" (value 1)
calls the routine to sum all the winning paths
sets T and S to 0
checks sum of all paths. If equal to 4, prints
winning message and asks for another game. If
equal to 15, computer places the winning move
and asks for another game. If equal to 3, com
puter moves to block player

610-690 computer's winning routine
700-780 computer's blocking routine
790-960 secondary loop to create two-way traps

450

460--470

480--600

142 ZAPPERS

970-1000 computer moves; position filled with 5
1010-1150 more two-way checking
1160-1170 error-handling routine
1180-1230 asks if another game is desired and accepts

only Y/N
1240-1250 REMarks

1260-1290 routine to sum the paths
1300-1370 last-resort search for empty space to move; if

none found, calls a draw and control transfers
to line 1160

1380-1490 routine to assist in two-way computation
1500-1690 DATA statements containing the 76 possible

winning paths
1700-1790 printout of two-way moves
1800-1950 routines for computing two ways
1960-2100 subroutine to print the board
1960 sets the variable A$ to the characters that

make up the board
2110-2150 routine to display the instructions

PROGRAM DESCRIPTION

A detailed description of this program would simply be too
long and complex to warrant its inclusion in the book. In
its treatment of two-way traps particularly, it employs
rather more sophisticated techniques than were found in
the "Tic-Tac-Toe" program already described. There is,
however, a particular feature which we have not yet en
countered in any of the programs described so far.

The DEF FN statement enables a programmer to define
a function that behaves much like a built-in function such
as SIN or ABS. In line 200, for example, the function FNL
is defined to sum up any specified path. That is to say, the
statement

PRINT FNL(5)

prints out the sum of the fifth path. By going in a loop from
1 to 76, all seventy-six of the paths may be summed. In-

(fajM^gg

[

{featMWMBl

"QUBIC" 143

deed, this is done in several places throughout the program,
which is why the function is used (to save the space that
would be needed if it were typed each time).

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The program can be modified to play against itself. Who
knows? It might lose that match for a change!

2. It would be very helpful to have a graphic illustration of
the computer's attack scheme for teaching strategy. To
ward this end the program may be modified to go into a
"teach" mode and show what moves it is considering at
any given time. Additionally, it could "suggest" what it
considers to be the best possible move (this is actually
more a modification of item 1 above, since the program
would really be playing itself.)

PROGRAM

le
"FLIP-A-DISK"

PURPOSE

The game that we are about to describe is yet another mind-
bending test of your strategic abilities. Originally called
"Reversi," the game was very popular in the Victorian era
in England and is sold today under the trademark
"Othello," with some minor changes in the rules. The ver
sion represented by this program plays human versus com
puter and obeys most of the rules found in both of the
above versions. The exception is the case in which all of
one player's pieces have been eliminated. For simplicity,
"Flip-a-Disk" simply terminates the game and announces
that the player whose pieces remain on the board wins. A
similar rule applies when both players must forfeit their
moves. In that case the game is halted and the player with
the most pieces wins.

For those who do not know the rules of "Reversi," they
are as follows: The starting position is as shown on the
screen before the first move. That is, there are two white
and two black pieces in the middle of the board in a check
ered pattern. The idea of the game is to flank the oppo
nent's pieces—that is, to place a piece on a square such
that some of the opponent's pieces are sandwiched in be-

144

j^fcpaBB

L

"FLIP-A-DISK" 145

tween the newly moved piece and one which was already
on the board. All the flanked pieces are then "flipped" to
the color of the flanking pieces. For example, if there is

O X X X

"O" moves to the location indicated

O X X X O

and flips the intervening pieces so that the board now be
comes

OOOOO

"capturing" three of the opponent's pieces. The capturing
may occur in any direction—horizontal, vertical, or diago
nal. It may even occur in all eight directions in one turn—
if you're extremely lucky. The rules may sound extremely
simple—at first glance almost as easy as Tic-Tac-Toe. And
only in two dimensions. Yet, nonetheless, this game is just
about as difficult to master as chess. If you think that the
game is not so tough, this program will—unless you are
extraordinarily good—teach you some humility! If you feel
the need to quit, this can be done by typing Q (for quit) as
the column value. If you do, the computer will ask if you
wish to play another game.

If you are smart—as we are sure you are—this game may
take you as little as five minutes to learn. To master it
though, you might have to spend the rest of your life at it.
In any event, good luck.

100 REM FLIP-A-DISK

110 CALL SCREEN(13)

1S0 CALL CLEAR

130 RESTORE

1M0 T$=n003C7E7E7E7E3C00n

150 CALL CHAR(12fi-,T$)

lt,0 CALL CHAR(13b-.T$)

170 CALL CHAR(137-.n0000001AlA000000n)

146 ZAPPERS

IflB CALL C0L0R(13ilbil)
na PRINT "AAASETTING UP — PLEASEAAAAAAA

AAAAAABE PATIENT":::::::::
EBB DIM A(10-. 10)-,B(10-. 10)-,C(10-, 10)-, 14(A)•,

J4(A)-.CASE(b4)
510 FOR X=l TO 10

220 FOR Y=l TO 10

230 A(X-,Y)=0

240 B(X-.Y)=0

250 NEXT Y

2t0 NEXT X

270 FOR X=l TO 5

2&0 FOR Y=l TO 5

210 READ C(X-,Y)

3B0 C(11-X-,11-Y)=C(X-,Y)
310 C(X-,11-Y)=C(X-,Y)
320 C(11-X-.Y)=C(X-.Y)
330 NEXT Y

340 NEXT X

350 DATA 0-i0-i0-.0-i0-,0-,1-,b-i7-.5-.0-iti-.-a-.-4-i
-3-i0-.7-i-4-.4-,0-,0-,5-.-3i0-.0

31,0 FOR X=l TO b4

370 CASE(X)=1

3A0 NEXT X

310 FOR X=2 TO 7

400 CASE(X)=2

410 CASE(X+5fc>)=2

420 CASE(fi*X-7)=3

430 CASE(A*X)=3

440 NEXT X

450 BL=-1

4b0 Cl=2

470 Hl=2

4A0 Nl=4

410 Z=0

500 li)H=l

510 D$=CHR$(12A)&CHR$(13?)&CHR$(13b)
520 FOR X=l TO A

V^wwp^ffii

^w^j^m^

l&gp—If

r

JUiw^i

L

fag^M|j

"FLIP-A-DISK" 147

53B READ I4(X)-.J4(X)

54B NEXT X

550 DATA 0-i1i-1-i1-i-1i0-i-1-i-1t0i-1-i1i

~1 -ili0ilil

51,0 A(5-.5)=lilH

570 A(b-.b)=WH

5A0 A(5ib)=BL

510 A(b-.5)=BL

1,00 FOR 1=4 TO 7

bl0 FOR J=4 TO 7

t>20 B(IiJ)=l

b30 NEXT J

1,40 NEXT I

1,50 B(5iS)=2

bb0 B(S-.t,)=2

1,70 B(b-.5)=2

bfi0 B(b-.t,)=2

b10 INPUT "DO YOU WANT BLACK OR WHITE^B
OR 111): ":<2UERY$

700 COMP=l

710 HUf1AN=-l

720 IF <aUERY$="liT THEN 770

730 IF <2UERY$o"B" THEN b10

740 COPIP=-l

750 HUMAN=1

71,0 GOSUB 21BB

770 INPUT "DO YOU WANT TO 60 FIRSTfAAAA(Y
OR N) ":<2UERY$

7A0 IF SEG$((2UERY$-,lil)="N" THEN A2B

710 IF SE6$(flUERY$-.lrl)<>nY" THEN 770

ABB PRINT :

A1B 60T0 1270

A2B Bl=-10

A3B 13=0

A40 J3=0

A5B T1=C0HP

Ab0 T2=HUI1AN

A70 1=2

148 ZAPPERS

AA0 FOR J=2 TO 1

A10 IF B(I-,J)ol THEN 1010

100 U = -l

110 GOSUB 1A50

120 IF S1=0 THEN 1010

130 C1=C(I-iJ)+.l*Sl

140 IF CKB1 THEN 1B1B

150 IF C1>B1 THEN 1AB

11.0 R=INT(RND*1B)

170 IF R<5 THEN 1010

1A0 B1=C1

110 13=1

1000 J3=J

1010 NEXT J

1020 1=1+1

1030 IF K1B THEN AAB

1040 IF B1>-1B THEN 1B1B

1050 PRINT "I HAVE TO FORFEIT MY MOVE"

101,0 IF Z=l THEN 1710

1070 Z = l

10A0 GOTO 127B

1010 Z=B

1100 PRINT "aaaa1 "ME t<> ["iSTR$(13-
l)i"-.A"iCHR$(t,3+J3)i"]"

1110 1 = 13

1120 J= J3

1130 U=l

1140 B(I-.J)=2

1150 GOSUB 1A5B

111,0 GOSUB 2210

1170 C1=C1+S1+1

11A0 H1=H1-S1

1110 N1=N1+1

1200 PRINT :"THAT GIVES ME"iSli"PIECE"i

1210 IF S1<=1 THEN 1240

1220 PRINT nS":

1230 PRINT

1240 GOSUB 2100

1

"FLIP-A-DISK"

1250 IF H1=0 THEN 1710

12t.0 IF Nl=b4 THEN 1710

I 1270 T1=HUMAN
jjfaiij^sj

12A0 T2=C0I1P

1210 PRINT "PLEASE ENTER YOUR

fagum^
M0VEAAAAAA[R0U-. COLUMN]: [•»;

1300 CALL KEYQiKEYiSTATUS)

1310 IF STATUS = 0 THEN 1300

•fa|jto|yiiil
1320 IF (KEY<4A)+(KEY>5fc.)THEN 130B

1330 PRINT CHR$(KEY)i"-.A"i
1340 I=KEY-4A

1350 CALL KEY(3iKEY-.STATUS)

131.0 IF STATUS=B THEN 135B

137B IF KEY=ASC("<J")THEN 1710

13AB IF (KEY<b5)+(KEY>?3)THEN 1350

131B PRINT CHR*(KEY)."]"

14B0 IF K>B THEN 14fc>0

1410 INPUT "ARE YOU FORFEITING

Y0URAAAAATURN? ":flUERY$
1420 IF SEG$«2UERY$ilil)<>"Y" THEN 121B

1430 IF Z=l THEN 1710

144B Z=l

1450 GOTO A20

14b0 J=KEY-b3

1470 1=1+1

14A0 IF A(I-.J)=0 THEN 1510

1410 PRINT ::"S0RRYi THAT SflUARE

ISAAAAAAAOCCUPIEDi TRY AGAIN-"::

iipe
1500 GOTO 1210

1510 U=-l

1520 GOSUB 1A50

pjwgpyfl
1530 IF S1>0 THEN 15b0

1540 PRINT ::"S0RRYi THAT DOES NOT FLANK

AR0U-. TRY AGAIN"::
r

1550 GOTO 1210

15b0 Z = 0

r* 1570 PRINT ::"THAT GIVES YOU"iSH"PIECE"

Wi/imm&m/l
15A0 IF SI <= 1 THEN lb00

149

150 ZAPPERS

1510 PRINT "S":

11,00 U=l

11,10 60SUB 2210 1
11,20 60SUB 22A0 ***
lb30 B(I-.J)=2

lb40 GOSUB 1A50

lb50 H1=H1+S1+1

lbb0 C1=C1-S1

11,70 N1=N1+1

IbflB GOSUB 2100

lb10 IF (Cl=0)+(Nl=b4)THEN 1710

1700 GOTO A20

1710 PRINT "YOU HAVE"iHli"PIECES-> AND":"I

HAVE"iCli"PIECES"

1720 IF H1=C1 THEN 17A0

1730 IF H1>C1 THEN 1A00

1740 PRINT "SORRY OLD CHAP! I'M AFRAID^I
lilON THAT ONE"

1750 IF C1-HK20 THEN 1A10

17b0 PRINT "UHY DON'T YOU TAKE

UPaaaaaaaTENNIS OR SOMETHING?"
1770 GOTO 1A10

17A0 PRINT ::"IT'S A TIE-. BY GOLLY! WELL-.

WE BOTH KNOU WE'RE THE BEST"

1710 GOTO 1A10

1A00 PRINT "YOU UON-. YOU SON OF A GUN!"

:"I DON'T WANT TO PLAY UITHAAAYOU
ANYMORE!"::

1A10 INPUT "ALL RIGHT-. WOULD YOU LIKE

TOPLAY ANOTHER GAME?": (2UERY*

1A20 IF SE6$«aUERY$-.l-,l)="Y" THEN 120

1A30 IF SE6$«JUERY$-,l-.l) <> "N" THEN 1A10

1A40 END

1A50 S1=0

lAt.0 FOR K=l TO A

1A70 15=I4(K)

1AA0 J5=J4(K)

1A10 Ib=I+I5

J

n^grif

f
"FLIP-A-DISK"

faljfm^g

1100 Jb=J+J5

1110 S3=0

LtBBSl
1120 IF A(Ib-.Jb)<>T2 THEN 20A0

J UHJPII'U

1130 S3=S3+1

t
1140 Ib=Ib+I5

Lg|^Wjg 1150 Jb=Jb+J5

llbB IF A(Ib-.Jb)=Tl THEN 1110

T^gg^m

1170 IF A(Ib-.Jb)=B THEN 20A0

11A0 GOTO 1130

1110 S1=S1+S3

2000 IF U<>1 THEN 2BAB

2010 Ib=I

2020 Jb=J

2B3B FOR K1=B TO S3

2B4B A(Ib-,Jb)=Tl

2B50 Ib=Ib+I5

201,0 Jb=Jb+J5

2070 NEXT Kl

20A0 NEXT K

2010 RETURN

2100 REM PRINT THE BOARD

2110 PRINT ::"AAaAAaBaCaDaEaFaGaH
2120 FOR 1=2 TO 1

2130 PRINT I-li

2140 FOR J=2 TO 1

2150 PRINT "A"iSEG$(D$-,A(I-,J)+2-.l)i
21bB NEXT J

2170 PRINT

%m&
21A0 NEXT I

2110 PRINT ::

r 2200 RETURN

BiiffiyfW
2210 FOR K=l TO A

2220 IS=I4(K)

||Mmm

2230 J5=J4(K)

2240 IF B(I+I5-.J +J5)>B THEN 22bB

2250 B(I+I5-.J+ J5)=1

r 22bB NEXT K

vfamMPtg 2270 RETURN

UWM

151

152 ZAPPERS

22A0 SUBS=A*(I-2)+J-l

2210 ON CASE(SUBS)GOTO 2300 i2470 -.2310

2300 RETURN

2310 IF 1=3 THEN 2400

2320 IF (A(I-2-.J)=HUMAN)+(A(I+l-,J)==C0MP)

THEN 2370

2330 C(I-liJ)=-4

2340 IF I<>4 THEN 23A0

2350 C(I-1-.J)=-A

23b0 GOTO 23AB

2370 C(I-liJ)=A

23A0 IF I<>8 THEN 24BB

2310 RETURN

2400 IF (A(I+2-,J)=HUMAN)+(A(I-

THEN 245B

•liJ)«=C0MP)

2410 C(I+l-.J)=-4

2420 IF I<>7 THEN 244B

2430 C(I+1-,J)=-A

2440 RETURN

2450 C(I+liJ)=A

24b0 RETURN

2470 IF J=3 THEN 25bB

24A0 IF (A(I-.J-2)=HUMAN)+(A(Ii

THEN 2530

,J+1)==C0MP)

2410 C(I-.J-l)=-4

2500 IF J<>4 THEN 2540

2510 C(I-,J-1)=-A

2520 GOTO 254B

2530 C(I-,J-1)=A

2540 IF J<>A THEN 25b0

2550 RETURN

25b0 IF (A(I-,J+2)=HUMAN)+(A(Ii

THEN 2bl0

,J-1)= COMP)

2570 C(I-.J +l)=-4

25A0 IF I<>7 THEN 2b00

2510 C(I-.J + 1)=-A

2b00 RETURN

2bl0 C(IiJ + l)=A

2b20 RETURN

J

J

J

ppayp

"FLIP-A-DISK" 153

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark

110-190 prints welcoming message with color—no
sound, this is serious business

200 reserves room for the arrays
210-260 zeros matrices A and B

270-340 reads in values for lA of the matrix C and mir

rors them to fill the other 3A

350 data for matrix C

360-380 sets all elements of array CASE to 1
390-440 sets the special cases in array CASE
450-510 initializes variables

520-540 reads in values for arrays 14 and J4
550 data for arrays 14 and J4
560-590 sets the initial position
600-680 sets up initial weighting for the board, taking

the initial four pieces into account
690-750 gives player the choice of color and sets COMP

and HUMAN accordingly
760 calls routine at 2100 to print the board
770-810 gives player the choice of moving first or last;

if the player wishes to go first, control passes
to line 1270; otherwise the program goes on to
line 820

820-870 initializes variables for calculating the com
puter's move

880-1030 searches for legal moves
1040 if one was found, control transfers to line 1090,

where a move is made

1050-1080 otherwise, program indicates that it forfeits;
sets a flag and lets the player take another turn;
if player has already forfeited the last move,
control passes instead to line 1710, where the
game is ended

1090 if a move is made, turns off the forfeit flag
1100 prints the computer's move
1110-1150 flips the pieces

154 ZAPPERS

1160 calls routine in 2210 to change board status ***
1170 adds the number of pieces captured plus the

one put down to computer's score 1
1180 subtracts the number of pieces captured from ^*^

human's score

1190 adds one to number of turns (number of pieces j
on the board)

1200-1230 prints the number of pieces collected from op
ponent

1240 calls the routine that prints the board
1250-1260 if the human player loses all pieces or if the

board is filled, goes to line 1710 to end the
game

1270-1280 sets variables for human's move

1290-1390 inputs player's moves and displays it; if Q is
typed as a column, control passes to 1710 to
end the game

1400-1450 if the player entered a zero as the row number
(indicating forfeit) computer double checks by
asking if the player is forfeiting; if the answer
is yes, the forfeit flag is set and the computer's
turn is begun; if the computer has already for
feited last turn, control passes to 1710 to end
the game

1460-1470 I and J are set to the correct board position
1480-1500 if position on the board is already taken, prints

a suitable message and goes back to ask again
1510-1550 tests to see if the move flanks a row; if not,

goes back and asks again j
1560 turns off the forfeit flag *•"*
1570-1590 prints the number of pieces given up by com

puter J
1600-1640 calls routine to change board status, changes

the computer's strategy matrix, and flips the
disks I

1650-1670 adds new disks to human score; subtracts cap
tured disks from computer's score; and incre
ments the move counter

j

gffil^-yjgt

jp^K^t

1680

1690-1700

fat^ffn^
1710-1800

MMbBBQ

1810-1840

1850-2090

2100-2200

2210-2270

2280-2620

"FLIP-A-DISK" 155

calls routine to display the board
if computer has lost all its pieces or the board
is filled, control drops to line 1710 to end the
game; otherwise, control is sent back to 820
for computer's response
game is finished, with program printing out
number of pieces of each player and a message
which varies according to the way the game
turned out

asks if player wishes to play again; if so, con
trol is sent back to line 120; otherwise, pro
gram ends
checks whether move indicated by I and J is a
flanking move and if so flips the pieces if U is
set to 1

displays the board on the screen
routine to modify the allowable-moves matrix
routine to modify the move-weighting matrix,
based on last move made

PROGRAM DESCRIPTION

As can be seen from the length and complexity of the pro
gram, "Flip-a-Disk" is no lightweight. To describe the
workings of the program in detail, as with "Qubic," would
require extensive discussion of strategy. To discuss the
strategies behind "Othello" alone could fill a book by itself
and would be inappropriate in a book such as this. There
fore, we omit the detailed description of this program, al
though we would like to point out that the line-by-line
analysis given above is quite detailed in its own right.

There are a few points within the program that warrant
discussion, however. The RESTORE statement in line 130
is the first point that should be explained. The statement
has the effect of returning the data-reading cursor back to
the beginning of the DATA statements, so that the DATA
elements may be read again. The second technique is that
used in lines 270-340. In these lines, the array C is set

156 ZAPPERS

based on only one quarter of the data that it would normally
require. This is made possible by reading in a quarter of the
matrix and, since it is symmetrical, copying the one corner
into the three others.

When this program is run you will notice that it takes
considerable time before anything happens. The reason for
this is that BASIC needs time to prepare the program for
execution—the longer the program the more time it will
take. Moreover, in view of the fact that so much data is
involved in the program, a lot of computer time is spent in
reading it in.

The last item to be discussed is the manner in which all

moves are entered. As with "Qubic," a move is made on a
definite coordinate system. First, a digit from 1 to 8, speci
fying the row, is typed in, followed by a letter from A to H,
indicating the column. To enhance the image on the screen,
each coordinate is automatically enclosed in square brack
ets and a separating comma is also automatically inserted.
Of course, pressing the ENTER key is unnecessary because
we took advantage of the CALL KEY statement once
again. Each time a move is made, the board is replenished,
showing all disks in their new positions. In addition, a mes
sage is displayed informing the player of the number of
pieces taken by that move. At the end of the game, the final
count of pieces on both sides is displayed.

The CALL CHAR statements followed by the CALL
COLOR statement in lines 150-180 allow the computer to
draw the black-and-white disks instead of X and O. Line

510, which sets D$ to these characters, is used in place of
the statement

D$ = "X.O"

for the same reason.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. The game can, as with all the other strategy games, be
turned into a two- or no-player game. That is to say, the

j

paaygw

'IllP^a'

"FLIP-A-DISK" 157

computer can either let two humans battle it out and
merely keep track, or it can play itself.
The program can be modified to display the board in the
same place on the screen each time using HCHAR and
only drawing what must be changed. This would look
better, but it is also more tedious to program because
every PRINT statement must be converted into a series
of statements. (For the best solution to this problem, see
the "Blackjack" or "Concentration" programs.)

PROGRAM

17
"MAGIC SQUARES'

PURPOSE

In case you are unfamiliar with the concept of a "magic
square," it is nothing more than an N x N array of all the
integers from 1 to N times N (without repetitions), such
that each row, column, and diagonal adds up to the same
number, which happens to be equal to (N * N * N + N) /
2. For any value of N, there are various transpositions of
the magic square which also yield this result. Magic squares
have been a source of delight for many hundreds of years,
but it was not until recent years that attempts were made
to generate magic squares using microcomputers.

Algorithms have been developed for magic squares when
N is odd, and different algorithms for when N is even. The
program we shall present works only if N is odd. Although
we have restricted the maximum value of N to 9, the
algorithm works for values larger than 9. However, for
values greater than 9, the output does not fit neatly on the
screen.

100 REM MAGIC SflUARES

110 CALL CLEAR

120 PRINT "THIS PROGRAM GENERATES

158

V^lffipp

Wam|ga

Uj^MjIlpi

J

WQBBB

r

"MAGIC SQUARES" 159

riAGICSflUARES (NxN WHERE N IS

ODD)":::::::

130 DIM 11(1-.1)

1M0 INPUT "ENTER AN ODD VALUE FOR N:":N

150 IF (N/E=INT(N/E))+(N<3)+(N>C1)THEN 1M0

lb0 X = 1

170 Y = INT(N/E)+1

1&0 FOR C = 1 TO N*N

n0 I1(X-iY)=C

200 X0=X

E10 Y0=Y

250 X = X-l

B30 IF X > 0 THEN E50

EM0 X = N

E50 Y = Y + 1

Eb0 IF Y <= N THEN Efl0

S70 Y = 1

E60 IF M(XiY) = 0 THEN 310

E10 X = XO + 1

300 Y = YO

310 NEXT C

3E0 CALL CLEAR

330 FOR I = 1 TO N

340 FOR J = 1 TO N

350 PRINT TAB(J*4-3)i M(I-,J)i

31.0 NEXT J

370 PRINT ::

3A0 NEXT I

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark

110 clears screen

120 displays heading
130 sets aside room for matrix M

140-150 prompts player to input value of N, which is then
tested for validity

160 ZAPPERS

160-170 assigns initial row to X, initial column to Y
180-320 generates the magic square
190 puts the next consecutive integer into the element

of M indexed by X and Y
200-210 saves the old values of X and Y in XO and YO

220 moves up one row
230-240 if top of matrix is reached, continues from the

bottom row (resets X to N)
250 moves right one column
260-270 if the right side of the matrix is reached, contin

ues from the left side (resets Y to 1)
280 if the element of the matrix indexed by X and Y

is vacant, control branches to line 310
290-300 if the element has already been assigned a num

ber, reassigns values to X and Y so as to point to
the element just below the last element filled (that
element will always be empty, except when the
matrix is filled)

320 clears screen

330-380 displays the completed magic square

PROGRAM DESCRIPTION

After the screen has been cleared and a suitable title is

displayed, the user is asked to enter an odd value for N.
Whatever value is entered is tested in line 150 to be sure it

is an integer not less than 3 nor greater than 9. It is also
tested for "oddness" by dividing it by 2 and checking
whether the result is a whole number. If any of these tests
fail, control is simply returned to line 140, where the player
is given another opportunity to input a suitable number.

It is at line 160 that the algorithm for generating the magic
square commences. It is based on a model in which the
bottom of the matrix is considered to be joined to the top,
and the left side joined to the right side, in a sort of spheri
cal fashion. For example, if we were taking a "tour" of a 3
x 3 matrix, visiting the first column, then the second col
umn, and then the third, our next step to the right would

rg

J^mm^J

K|ju^^

Ij^ggg^

"MAGIC SQUARES" 161

bring us back to the first column. If we were on the bottom
row, a step down would bring us back to the top. (My,
wouldn't Columbus be proud?) This matrix is filled by
starting in the middle column of the first (top) row of the
matrix and moving diagonally up and to the right, filling the
elements with consecutive numbers starting with 1 and end
ing with the value of N * N. When an element is encoun
tered which has previously been "visited" and assigned a
value, the computer goes instead to the space directly
below the last-filled space and fills that space instead.

Lines 160 and 170 set X and Y to point to the starting
row and column, respectively. The formula in line 170 is
used to find the middle column. The program then enters a
FOR . . . NEXT loop (extending from line 180through line
310) that generates the consecutive numbers 1 through N *
N. Each time through the loop an element of the matrix is
assigned a value. (The completion of the FOR . . . NEXT
loop indicates that the entire matrix is filled.) The first thing
done within the loop is to place the next consecutive num
ber in the matrix location specified by the values of X and
Y. Then it is necessary to find the next location to be filled
next time around the loop. The old values of X and Y are
saved in XO and YO, in case the position diagonally up and
to the right is already occupied and the program will have
to use the alternate position (directly below the old posi
tion).

The value of X is then decremented by 1 in line 220 to
facilitate moving up a row. If this moves X past the top row
(X becomes 0), X is set to N so it now points to the bottom
row. Y is incremented to point to the next column to the
right, and if it goes past the Nth column, Y is set to 1 to
indicate the first (leftmost) column. If the new element now
indexed by X and Y is empty, control passes to the NEXT
C statement in line 310 which continues the loop. Other
wise, X and Y are reset (using the values of XO and YO) to
point to the position right below the last element filled, and
the loop continues on its merry way.

Finally, once all the consecutive numbers have been

162 ZAPPERS

stored in their appropriate locations to yield the magic
square, the screen is cleared and the magic square is
printed out for the benefit of your visual and intellectual j
enjoyment. The reason for using the seemingly complex
argument for the TAB function in line 350 is that both one-
digit and two-digit numbers are being displayed, and the .J
TAB makes sure that they are all aligned. Since only one
number is printed per PRINT command, rather than a line,
it is necessary tocalculate the column number to which the ,)
computer must TAB before printing each value, based
upon the value's position in the magic square.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. A resourceful programmer may be tempted to search out
algorithms that produce magic squares when N is an
even number.

2. Even magic squares with dimensions larger than 9 may
be generated and displayed neatly. However, more com
plicated graphic techniques would have to be used. Of
course, lines 130 and 150 would have to be amended
accordingly.

3. The program may easily be amended to allow the user
to request more than one magic square per RUN.

^jjffit&M

faasspffiffl

Bmbtt*'

PROGRAM

t (

CALENDAR'

PURPOSE

This program, in effect, provides you with a perpetual cal
endar. If you are like the majority of people, you probably
do not know the day of the week on which you were born.
If you're at all curious, this program is made for you. What
the program does is to permit a user to type in any year of
his choosing (after 1582, when the current calendar was
stabilized). Then the computer asks for any month within
that year. As soon as the month is typed in and the ENTER
key pressed, a calendar appears miraculously before your
very eyes for the entire month specified, from which you
can easily see on which day of the week any of the dates

f fall. The year and month of your choice do not have to be
^"^ in the past, either. They may just as well be in the present,

or any time in the future.
[The program takes into account leap years as well. For

example, the year 1984 is a leap year, because when di
vided by 4 it leaves a remainder of 0. But this is not the

[. whole story. Century years (years whose last two digits are
00) have to be treated specially. If the year in question is a

r century year, it must be evenly divisible by 400 in order to
[«, .. bea leap year. That is to say that the years 1700, 1800, and

b^m^MUB

163

164 ZAPPERS

1900, although evenly divisible by 4, are not leap years,
since they are not evenly divisible by 400. The year 2000,
however, being divisible by 400 without leaving a remain-]
der, is a leap year. As you will recall, any year which is a
leap year has one day added to the month of February,
giving 29 days rather than 28. j

100 REM CALENDAR

110 CALL CLEAR J
120 Dill DPM(12)

130 FOR 1=1 TO 12

140 READ DP(1(I)

150 NEXT I

lt0 DATA 31-.2A-. 31-.30-.31-.30-.31-.31-, 30-.31-.
30-.31

170 PRINT "THIS PROGRAM GENERATES

Aaa^CALENDAR OF ANY MONTH 0FAAAAY0UR
CHOICE-"::::::::

1A0 INPUT "WHAT YEAR (AFTER ISflS): ":YEAR

110 IF (YEAR<15aS)+(YEAR<>INT(YEAR))THEN
1A0

200 INPUT "UHAT MONTH (1-12): ":M0NTH
210 IF (M0NTH<1)+(M0NTH>12)+

(M0NTH<>INT(M0NTH))THEN 200
220 DPM(2)=2")

230 IF (YEAR/400=INT(YEAR/400))+(YEAR/4
=INT(YEAR/4))*(YEAR/100<>INT(YEAR/100))
THEN 250

240 DPM(2) = 2fl I
250 JDAY = 0 *•*•
21.0 FOR 1=1 TO M0NTH-1

270 JDAY=JDAY+DPM(I) J
2fl0 NEXT I ***
2^0 PRINT :::"SUAMAAATUAAlilAAATHAAFAAASA":

300 FOR JULDAY=JDAY TO JDAY+DPM(M0NTH)-1
310 TEMP=YEAR+JULDAY+INT((YEAR-l)/400) ,

-INT((YEAR-l)/100)+INT((YEAR-l)/4) ^J
320 P0SITI0N=TEMP-INT(TEMP/7)*7

J

J

|j^gj^j

l^g^ggg

P^^Bf—

"CALENDAR" 165

330 WEEKDAY = POSITION-7*(kJEEKDAY =0)
3M0 PRINT TAB(POSITION*M)^STR$(JULDAY-

JDAY+l)i

350 IF WEEKDAY <> 7 THEN 370

3b0 PRINT

370 NEXT JULDAY

360 PRINT :::

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark
110 clears screen
120 reserves space for the 12 months of the year
130-150 reads in the number of days in the months Janu

ary through December, giving February 29 in
case it is a leap year

160 DATA for array DPM (days per month)
170 displays title
180-190 requests that user type in year, which is then val

idated (must be after 1582 and an integer). If the
year is invalid, control is sent back to line 180,
where another opportunity is given

200-210 the number of the month is requested and
checked for validity; once again, control returns
to the INPUT statement if the month is invalid

220 checks to see whether year is a leap year. If it is,
control skips to line 240
if not a leap year, the number of days in February
is changed to 28
the Julian day (to be explained below) is set to 1
the number of days in the year up to the month
specified in MONTH is calculated and put in
JDAY

prints heading for calendar
main loop of program; each time through the
loop, the corresponding day of the month is cal
culated and printed

fjfgjBBirT'
230

lllgaggg)
240

250-270

|H|jjBagg|

280

290-350

l^^JJAUUiUJi

166 ZAPPERS

300-310 the day of the week on which the current date *•""
falls is calculated, with Sunday = 1, Monday =
2,etc., up to Friday = 6,Saturday = 0(for math- J
ematical reasons) te™

340 the day of the month is printed in its correct po
sition J

350-360 ifthe day just printed did not fall on a Saturday, tes**^
control branches to line 370 to continue the loop;
otherwise anull PRINT command is used to ad- ^
vance to the next line on the screen, where a new
week is begun

370 goes on to the next day of the month
380 prints a few blank lines for aesthetic purposes

PROGRAM DESCRIPTION

After the screen is cleared, the number of days in the
months January through December are read into the array
DPM. A program title is then displayed and the user is
asked to type in the year of interest. The year must be later
than 1582, because it was in that year that the current Gre
gorian calendar was put into effect. Therefore, the year is
tested to be sure it is not 1582 or earlier. In addition, the
year is checked to be sure it is an integer (whole number).
All being well, the user is then asked to type in the month
of his choice, as a number from 1 to 12. This number is also
validated, and if it is found wanting, control is returned to
line 200, where another opportunity is given.

It is in line 220 that the year is tested to determine J
whether it is a leap year or not. This is done through the ***
divisibility tests described in the "Purpose" section above.
If the year is a leap year, the program skips over line 230, ^J
which sets the number of days in February to 28. As you
may recall, the number of days in February was initially
read in as 29, which is correct for a leap year only. J

The formula upon which this program rests depends
upon what is known as the "Julian day." If you imagine
the days of the year to be successively numbered from 1to ^^J
365 (for a non-leap year) or 1 through 366 (for a leap year),

"CALENDAR" 167

the corresponding number for a particular day is its Julian
day. Therefore, January 1 of any year is Julian day 1, while
December 31 is Julian day 365 in the case of a non-leap
year, or 366 if it is a leap year. The variable JDAY is set to
the Julian day corresponding to the first day of the month
selected by the user. JDAY is initialized to 1, and then the
number of days in each month prior to the selected month
is added to JDAY.

The next thing the program does is to print a heading
indicating the days of the week "SU" through "SA",
which is underlined. Some blank lines are then skipped for
aesthetic purposes. Within the FOR . . . NEXT loop be
ginning in line 300 and extending to line 370, the index
JULDAY always has a value which is the Julian day equiv
alent of the day currently being printed. (Do not confuse
this with JDAY, which remains set to the first day of the
month.) The value in JULDAY is used to calculate the day
of the week on which the current day falls, in the compli
cated-looking formula in lines 310-320. This adds together
the value of the year, the Julian day, and various other
quantities which clearly relate to the calculation of leap
years. This sum is then in effect divided by 7, with the
remainder, an integer 0 through 6, being saved in the vari
able POSITION (line 320). This remainder corresponds to
the day of the week. The current day of the month is then
printed on the current line, with the value in the variable
POSITION used to determine in which column to print the
number. Line 350 tests to see whether the day just printed
is a Saturday (if POSITION has the value 0). If it is, a
PRINT statement is executed. This offsets the effect of the
semicolon at the end of the PRINT statement in line 340,
permitting the next day to be printed on a new line.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. It may be desirable to have the computer ask the user if
another calendar is required after one has been dis
played.

2. Once the techniques of this program have been mas-

168 ZAPPERS

tered, it will then become possible to amend it so that,
given any year, the entire year may be displayed month
by month.

3. You might want to type in any given date and have the
computer tell you simply on which day of the week it
falls.

lliiilii^BiHI

PROGRAM

19
"PHONE TRANSLATOR

J J

PURPOSE

Throughout the United States and Great Britain (and pos
sibly other countries too) there is a tendency to assign new
telephone numbers using only digits rather than a combi
nation of letters and digits. The purpose of this change is to
make all telephone numbers uniform.

Contrary to what the public relations personnel of the
various telephone companies might say, telephone num
bers are not usually that simple to remember. However, if
we take advantage of the fact that, on the typical American
phone dial, there are three letters of the alphabet associated
with each of the digits 2-9, a mnemonic can often be con
structed out of these digits.

For example, it is much simpler to dial "BARBARA"
than it is to remember its equivalent number, 227-2272.
With this in mind, the following program has been written
which enables a person to type in any seven-character tele
phone number, be it composed only of digits or of a com
bination of digits and letters. Since the digits 0 and 1 on the
dial do not have alphabetic letters associated with them,
they are left intact if they are part of a telephone number.
The program requires only that the user input seven char-

169

170 ZAPPERS

acters, be they letters or numbers; however, no hyphens """•"
are permitted. If hyphens (or for that matter, any other
character not found on the phone dial) are typed, they are I
simply ignored. (This includes the letters Qand Z, both of >mmi
which are not found on the standard American dial.)

The output to this program is quite voluminous, since]
there are three-raised-to-the-seventh-power combinations
that can be constructed from a seven-digit telephone num
ber. In order to print these 2,187 combinations, it is ar- (]
ranged so that they print in two columns—giving the
viewer ample opportunity to scan the list as it is displayed
to search for a suitable mnemonic.

100 REM PHONE TRANSLATOR

110 CALL CLEAR

111 PRINT "RING ... RING ... RING"::::::::

112 PRINT "TYPE IN THE TELEPHONE #AAAAA(N0
DASHES PLEASE) "i

120 CHAR$="000111ABCDEFGHIJKLI1NOPRSTUVIilXY"

130 FOR I = 1 TO 7

1M0 CALL KEYOnKEYiSTATUS)

150 IF STATUS<1 THEN 1M0

lt>0 IF (KEY<Mfl)+(KEY>57)*(KEY<fc,5)+(KEY>fll1)
THEN 1M0

170 IF KEY=ASC("<3")THEN H40

1&0 PRINT CHR$(KEY);

110 IF KEY<5fl THEN 210

200 KEY=INT((POS(CHAR$-,CHR$(KEY),l)-l)/3)+i4T
210 NUMB(I)=KEY-Mfl)*3 1
220 NEXT I hm"1^
230 CALL CLEAR

2H0 FOR A=l TO 3

250 FOR B=l TO 3

2t0 FOR C=l TO 3

270 FOR D=l TO 3

2fi0 FOR E=l TO 3

210 FOR F=l TO 3

300 FOR G=l TO 3

la&MjfSI

{gjj^jjjaM

%Ujl111 iiu

"PHONE TRANSLATOR"

SEG$(CHAR$

SEG$(CHAR$

SEG$(CHAR$

SEG$(CHAR$

SEG$(CHAR$

SEG$(CHAR$

SEG$(CHAR$

310 PRINT

320 PRINT

330 PRINT

3M0 PRINT

350 PRINT

3b0 PRINT

370 PRINT

3A0 NEXT G

310 NEXT F

M00 NEXT E

ma NEXT D

M20 NEXT C

M30 NEXT B

MM0 NEXT A

-,NUMB(1)+Anl)n

,NUnB(E)+B1l)--,

-,NUI1B(3)+C-.l)i

iNUI1B(^+D-.l)n

-.NUMB(S)+E-.1)7

-iNUMB(b)+F-.l)i

-,NUMB(7)+G-,1)-.

171

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark

110-112 clears screen and announces title of program
120 sets the variable CHAR$ equal to the character

equivalents of the numbers on the dial
130-220 enters the phone number, accepting only legal

characters (all others are ignored)
230 clears the screen of the title and prepares for the

output
240-440 a nest of loops in which all the permutations of

the phone number are printed
310-370 prints the character equivalents of positions 1-7

of the phone number

PROGRAM DESCRIPTION

After the screen has been cleared and the welcoming mes
sage displayed, the string variable CHAR$ is defined. It
consists of all the characters permitted in the American
dialing system. Each group of three characters in sequence

172 ZAPPERS ,

is associated with each digit on the dial. For example, since ta-^
zero has no equivalent on the dial, the first three digits are
000. The digit 2 does, however, so its equivalent is ABC. I

Within the FOR . . . NEXT loop extending from line 130 ^
to 220 the keyboard is continuously scanned for the entry
of the seven characters of the telephone number to be con-]
verted. Lines 140-150 wait until a character (any character
at all) has been typed. Line 160 then screens out all char
acters outside the range of the digits 0-9 and the letters A- ^J
Y. Then in line 170, the one anomaly—the letter Q is tested
for. If it has been typed, control is sent back to line 140 to
read another character, because it, too, is not found on the
phone dial.

Once the character has been validated, it is displayed on
the screen. If the character is a number, the test in line 190
skips the statement in 200, which converts a letter to its
equivalent digit. This is accomplished by taking advantage
of the POS function, which, if you will remember, searches
for the occurrence of one string within another and returns
the position found. Here, we search for the occurrence of
the character typed within the list of all the alphabetic char
acters possible. Since we have screened out all illegal val
ues, there is no possibility of a value of 0 being returned,
since the character will always be found at some position.
One is then subtracted from the result and it is divided by
3. When the integer portion of this quantity is taken, we are
left with a number from 2 to 9, which is the equivalent of
the letter typed in. Then, the number is converted so that
it points to the first of its representations within the string I

Within the nest of seven loops, each of the three equiva
lent letters of the alphabet corresponding to each of the ^J
digits is printed out in the various combinations that exist.
For example, assuming a telephone number begins with the
digit 2, NUMB(l) is set to 7—the starting position of the , ,: J
group of three letters that are equivalent to 2. Since the
index A ranges from 1 to 3, the three letters are accessed in
turn.

Ifoiftjg.—M

iH|pim

"PHONE TRANSLATOR" 173

Notice that each of the lines 310-360 terminates with a

semicolon, while line 370—which looks the same in most
respects—terminates with a comma. The net effect of this
arrangement is to print the combinations in two columns
for ease of reading. The letters are printed side by side
because of the semicolons, and the final comma produces
the two-column format.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. Lines 200 and 210 have been written with an eye to allow
for the possibility of moving line 180 to 205. This modi
fies the program (should it be desired) to print out the
digit equivalent of what was typed—regardless of what
character it was. In other words, the program, when
modified as suggested, will display the number "2" even
when an A is typed.

2. With some careful thinking and planning, it is possible
to amend the program so that it allows for the inclusion
of a telephone area code, which may, or may not (at the
programmer's discretion), be included in the final mne
monic.

3. If the display proves to move too fast for the viewer, a
time delay (an empty FOR . . . NEXT loop, for exam
ple) can easily be inserted into the program to allow for
an interval of time to pass between each displayed line.

PROGRAM

20
"MORSE CODE"

PURPOSE

As you may know, in order to qualify for a ham radio
license it is necessary to know Morse code. Depending on
the level of the license, various degrees of expertise in the
code are expected. With this program it is possible to
sharpen your skills at learning Morse. All you have to do is
to type in your English message and it is displayed on the
screen and in sound as Morse.

100 REM MORSE CODE

110 CALL CLEAR

120 PRINT "THIS IS A MORSE

CODEAAAAAAAATRANSLATOR-"::::::::: I
130 CALL CHAR(Mb-."0000001fllfl000000n)

ma TL = SB

150 TONE = 5000

lb0 Din C0DE$(2b)

170 FOR 1=1 TO 2b

150 READ C0DE$(I)

110 NEXT I

E00 INPUT "ENTER YOUR MESSAGE 1

INaaaaaaaENGLISH:":MESSAGE$ l*J

174

HHfflff881"

I^^^BB

Ttiwf

"MORSE CODE" 175

210 PRINT ::

220 FOR 1 = 1 TO LEN(I1ESSAGE$)

230 X=ASC(SEG$(l"IESSAGE$iI-,l))-fe,M

2M0 LETTER_CODE$="AAA"
250 IF (X(l)+(X>2b)THEN 270

21,0 LETTER_CODE$=CODE$(X)

270 FOR J=l TO LEN(LETTER_CODE$)

2fl0 TEI1P$=SEG$(LETTER_C0DE$-.J-.l)

210 PRINT TEMPSt

300 IF TEf1P$-"A" THEN 310
310 IF TEMP$=".n THEN M20 ELSE ^0

320 FOR T=l TO TL*-5

330 NEXT T

3M0 NEXT J

350 PRINT "An\
3b0 NEXT I

370 PRINT ::

360 END

310 FOR T=l TO 25

M00 NEXT T

M10 GOTO 320

>420 CALL SOUND(TL-,TONE-,0)

M30 GOTO 320

^^0 call sound(tl*3-,tone-,0)

MS0 GOTO 320

>4b0 DATA ".-"-,"-. .."•,"-.-."-,"-. ."-,'
n _ n n__ on n n n n ___f

fi _ n n n o_ n n___n n n t• •• t t • t — — — ., . . 1

170 DATA ".-."•,"..."•,"-"•,"..-"-,". ..

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark

110-120 clears the screen and displays the welcoming
message

176 ZAPPERS

130 sets the "." character to be a dot in the center of

the line instead of the bottom

140 sets the tone length to 50 ms
150 sets the frequency to 2000 Hz
160 sets aside room for the 26 letters of the alphabet
170-190 reads the code for each of the letters I
200 enters the user s message
210 skips two lines
220-360 main loop, in which the code isgenerated ,1
230 picks out each character in the message and

places a corresponding number from 1 to 26 in
the variable X

240 sets the letter code to spaces; if letter code is not
subsequently set it defaults to spaces to produce
breaks between words

250 if X is outside the valid range, LETTER_CODE$
remains at its default value

260 otherwise, LETTER_CODE$ is set to the code
of the letter that was typed

270-340 loop to print the contents of letter code and sound
the appropriate tones

280 pulls one character out of LETTER_CODE$ and
places it in TEMP$

290 prints the dash or dot
300 if the character is a space, prints it and waits for

a specified interval
310 transfers control to the routines to sound dot or

dash

320-330 delay loop separates every dash and dot i
350 separates the dashes and dots by a space
370-380 prints a space and terminates the program
390-410 routine to produce a short delay and go on with I

the program
420-430 routine to sound out a dot

440-450 routine to sound out a dash I
460-470 data containing the letters of the alphabet repre

sented in Morse code

l&ttfefe»yM

(MfHiH

"MORSE CODE" 177

PROGRAM DESCRIPTION

The program begins with the usual starting lines, which
extend from 100 to 120. Line 130 redefines the period char
acter (number 46) to be a centered dot so that it is in line
with the dash (represented by the minus sign). Then, lines
140 and 150 set the time for each dot in milliseconds and
the tone frequency, which is to be played each time a dot
or dash is sounded. Lines 160-190 reserve room for the
Morse codes corresponding to the twenty-six letters of the
alphabet and read them into CODES.

The user is prompted to enter a message in line 200, and
this is stored in MESSAGES. For each letter of the mes
sage a corresponding number between 1 and 26 is stored in
the variable X. The variable LETTER_CODE$ is then set
to spaces. If this is left unchanged, meaning that a valid
character was not read in, it is interpreted as a break in
between two words and thus creates a delay. If, however,
a character is found, the value is set to the appropriate
combination of dots and dashes and a much smaller delay
is generated in lines 320-330.

Lines 370-380 print two blank lines and terminate the
program once the entire message has been displayed in
Morse code. Following them are the various routines used
in the program. The first resides in lines 390-410. It pro
duces a delay after a word which is larger than the one in
320-330. A second routine is located in lines 420-430,
which sounds out a dot tone, followed by lines 440-450,
which sound out a dash. The end of the program consists
of DATA statements that contain the Morse code equiva
lents of the alphabet.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. It is possible to turn this Morse code program into a quiz
by storing phrases in data and randomly pulling them

178 ZAPPERS

out. The player would then be responsible for typing in
the English equivalent of the emitted Morse code.

2. A more sophisticated idea is to create a timed quiz in
which the Morse code is displayed at a certain rate and
must be echoed back at the same rate. The original is
then compared with what is typed in by the user and the
results scored according to the time it took and the ac
curacy.

3. Two easy modifications are to change the length of time
that a dot and dash sound for and to change the fre
quency at which they are played. The first is accom
plished by changing the value of TL in line 140, while
the second requires a similar change in line 150. The
relative spacing between letters is changed by modifying
the end value of the delay loop in line 320.

4. If you own a joystick, it may be possible to go the other
way—that is, to devise a quiz that expects you to type
in the Morse code equivalent. This cannot be done eas
ily on a keyboard, however, due to the timing difficulties
intrinsic to it.

j

Lu^MygjfrS

Itomp«mfl

yytntgl

a

PROGRAM

21
LANDER'

PURPOSE

This game simulates the landing of an Earth-Moon shuttle.
The automatic controls have broken down, forcing you, the
commander, to take charge. Each second, you must specify
the amount of fuel to burn. If you don't burn any, you
accelerate. If you burn more fuel than a certain amount
(different in every gravity well) you accelerate in the op
posite direction. The idea behind the game is to gauge how
much fuel to burn to effect as smooth a landing as possible.
This is measured by your velocity as you land. A perfect
landing is one in which velocity is less than one foot per
second. At five feet per second or less, the landing is
counted as rough but survivable. A landing of greater than
five feet per second is considered fatal. If you do crash, the
screen flashes violently and emits the sound of an explo
sion.

The danger to be wary of is of burning too much fuel.
This is very real, since you have not been given much to
start with. If you run out of fuel, the game goes on, but you
are no longer consulted about how much fuel to burn since
you have none. A falling sound is generated and the status

179

180 ZAPPERS

of the ship continues to print out until the inevitable crash,
which ends the game.

It is recommended that you try landing on the moon first,
since it is easier to land there because the gravity is weaker
than Earth's. Happy landings! ^

100 REM LANDER

110 CALL CLEAR

120 PRINT "WELCOME TO THE GAME . J
OF ...":::::::::

130 PRINT "MOON L":::::::

m0 FOR 1=17 TO S3

150 CALL HCHAR(I-.fl-,3E)

11,0 CALL HCHAR(I+l-.fl-.7b)

170 NEXT I

1S0 PRINT TAB(b)i"LANDER"::::::

1=10 INPUT "PLEASE ENTER YOUR NAME: ":NAME$

200 INPUT "INSTRUCTIONS? (Y/N) ":<JUERY$

210 IF SEG$«aUERY$-,l-,l)="Y" THEN lb70

220 PRINT

230 PRINT "GOOD LUCK AND

HAPPYAAAAAAAAALANDINGS"
2M0 PRINT

250 X0=0

2b0 V0=0

270 INPUT "LOCATION: MOON OR EARTH?":L0C$

2fl0 L0C$=SEG$(L0C$-.1-,1)

2=10 K=0

300 IF L0C$="M" THEN 350 j
310 K=l

320 IF L0C$="E" THEN 350

330 PRINT "SORRY-, NO SUCH LOCATION"

3M0 GOTO 270

350 G=5+27*K

3b0 M=30+b0*K

370 IF X0>0 THEN M00

360 X0=S00+1500*K -,

Zilv a ~ A lu ^jitr-^

Imtmms-i

li^mmja

t^^^Higit

"LANDER" 181

M00 V0=-S0-100*K

M10 V=V0

LMS0 X=500+1500*K

M30 V=-50-100*K

mt0 X0=X

M50 V0=V

Mb0 F=INT(S<2R(M*(V*V+G*G*X)/(M-

r G))*.13+.S)*10

l^^^g^ " I Ifl r l\ X IM I

M60 PRINT "INIT HEIGHT:AA"^Xi"FEET"
IH0 PRINT "INIT VELOCITY:"Wt"FT/SEC"

500 PRINT "FUEL SUPPLY:AA"iFi"UNITS"
510 PRINT "MAXIMUM BURN:A"iM^"UN/SEC"
520 PRINT

530 PRINT "THE AMOUNT OF BURN TO

CANCELGRAVITY IS"iG:"UNITS PER SECOND"

5M0 PRINT

550 PRINT "HIT ANY KEY WHEN

READY-,AAAAACOMMANDER "iNAME*
Sb0 CALL KEYO-.AA-.XX)

570 IF XX=0 THEN 5L0

5fl0 PRINT

510 FOR T=l TO 32000

b00 GOSUB 1520

t.10 INPUT "THRUST? ":B

bZ0 B1=ABS(B)

L.30 IF BK=n THEN bb0

L.M0 PRINT "YOUR ENGINE CANNOT

[SUSTAINAATHIS THRUST"
1.50 GOTO b00

Ltb0 Tfl=2

hfi0 IF B1=0 THEN 700

b10 T1=F/B1

700 A=B-G

710 R=V*V-2*A*X

r 750 IF R<0 THEN 750

L« 730 IF A=0 THEN 7b0

182 ZAPPERS

7M0 T6=-(V+Sl2R(R))/A

750 GOTO 7fl0

7b0 IF V>=0 THEN 7fl0

770 T6=-X/V

780 IF (T8>0)*(T6<=1)+(TK=1)THEN 870

710 X=X+V+A/2

600 V=V + A

A10 F=F-B1

&20 IF X<=.0001 THEN 850

330 NEXT T

SM0 STOP

flS0 T=T+1

fib0 GOTO 1120

670 IF (TA>0)*(TA<=1)THEN 1010

flfl0 PRINT T+T1i"OUT OF FUEL"

610 SND=5000

100 B1=0

110 F=B1

120 X=X+V*T1+A*T1*T1/2

130 V=V+A*T1

1M0 A=-G

150 T6=(V+S<2R(V*V-2*A*X))/G

1L0 IF Tfi<l-T1 THEN 11.00

170 X=X+V*(l-T1)+A*(l-T1)A2/2
160 V=V+A*(1-T1)

110 T=T+1

1000 CALL SOUND(S0-.SNDi0)

1010 SND=SND*-17

1020 GOSUB 1520

1030 T6=(V+S<2R(V*V-2*A*X))/G

10M0 IF T8<=1 THEN 1010

1050 X=X+V+A/2

10L0 V=V+A

1070 GOTO 110

10fl0 T=T+T1

1010 F=F-Bl*Tfl

1100 T=T+T6

1110 V=V+A*Tfl

J

J

J

J

J

tteayapi

^.aa^gpffi^J

"LANDER" 183

1120 PRINT "THE TIME ELAPSED IS"iTi

"SECONDS"

1130 PRINT

1140 PRINT "THE VELOCITY ON LANDING

WAS"tVt"FEET PER SECOND"

1150 PRINT

llb0 PRINT "FUEL LEFT UAS"iF

1170 PRINT

1160 IF V<-1 THEN 12b0

1110 ON INT(RND*2)+1 GOTO 1200-.1230

1200 PRINT "CONGRATULATIONS-.

COMMANDERA"iNAME$
1210 PRINT "PERFECT LANDING"

1220 GOTO lb00

1230 PRINT "JOB UELL DONE."

12M0 PRINT "THE ADMIRAL lilAS IMPRESSED"

1250 GOTO 1L>00

12b0 IF V<-5 THEN 13b0

1270 ON INT(RND*4)+1 GOTO 1280-.1300-.13201

1340

1280 PRINT "A BIT ROUGH BUT YOU'RE STILLIN

ONE PIECE"

1210 GOTO lfc.00

1300 PRINT "I'VE SEEN BETTER-. BUT

I'VE^SEEN A LOT WORSE"
1310 GOTO lb00

1320 PRINT "ANY HARDER AND YOU

UOULDAAAAHAVE BOUNCED!"
1330 GOTO lfc.00

1340 PRINT "HOPE YOUR SHOCKS ARE O-K."

1350 GOTO lb00

13b0 FOR C=l TO lb

1370 CALL SCREEN(C)

1380 NEXT C

1310 CALL SOUND(200-.-5-,0)

1400 CALL SOUND(200-.-b-.0)

mi0 CALL SOUND(200-.-5-.0)

1420 CALL SCREEN(13)

184 ZAPPERS

1430 ON INT(RND*4)+1 GOTO 1440il4b0il480i

1500

1440 PRINT "YOU JUST MADE A HUGE CRATER" I
1450 GOTO lb00

14b0 PRINT "YOUR NEXT OF KIN WILL

BEAAAANOTIFIED" I
1470 GOTO lb00

1480 PRINT "DID YOU PAY YOUR INSURANCE?" ,

1410 GOTO lb00 ^J
1500 PRINT "WE WILL ALWAYS REMEMBER

YOU-SUCH A BIG DISGRACE TO

THEAAFORCE!"
1510 GOTO lb00

1520 REM DISPLAY STATUS

1530 CALL CLEAR

1540 PRINT "TIMEAAA="iT
1550 PRINT "HEIGHTA="'iX
15b0 PRINT "VEL.AAA="iV
1570 PRINT "FUELAAA="iF
1580 PRINT

1510 RETURN

lb00 PRINT

lbl0 FOR T=l TO 1000

lb20 NEXT T

lb30 CALL CLEAR

lb40 INPUT "WOULD YOU LIKE TO PLAY AGAIN(Y/
N) ":MORE$

lbS0 IF SEG$(MORE$ilil)="Y" THEN 100
lbb0 END

lb70 PRINT ::"YOU ARE THE COMMANDER OF

A^SMALL LANDER. THE COMPUTER^NOT A
TIi OF COURSE) HAS" J

lb80 PRINT "BROKEN DOWN AND YOU

MUSTAAAALANI> MANUALLY. CAN YOU -.
DOAAAIT? EACH SECOND YOU MUST" ^J

lb10 PRINT "SPECIFY THE AMOUNT OF FUEL^TO
BURN- THE OBJECT IS TOAAALAND AT THE
LOWEST SPEED" teefmmmisi

IjHHgy^

"LANDER" 185

1700 PRINT "POSSIBLE-"::"GET READY FOR YOUR
MISSIONi COMMANDER "^NAME$::

1710 GOTO 220

[PROGRAM LINE ANALYSIS

Hwumffl*
100

110-180

190

200-210

220-240

250-260

270-340

350

360

370-460

470-540

550-570

580

590-830

liyiampyi
600

610

^^^g»l

620

630

vfflmvi^mMi
640-650

660-800

810

action(s)

REMark
clears screen and displays the animated head
ing
requests player's name
asks if instructions are required; if yes, trans
fers control to line 1670
prints blank lines and a message
initializes variables for flight
asks for target, setting K to*0 for moon, 1 for
Earth; if neither, asks again
sets the gravity factor
sets the maximum thrust possible
sets initial flight variables
displays the initial conditions of the landing
prints a message explaining that the computer
will wait until a key is pressed; waits until one
is
prints a blank line
main loop, which keeps track of position and
speed as time goes on
calls routine to print the status
requests the thrust to be used this second
ignores the sign if included
if amount of fuel to burn does not exceed the
maximum possible, skips over the error rou
tine
error routine for excessive thrust request
calculates changes in acceleration and velocity
subtracts the amount of fuel used from the
total fuel supply

186 ZAPPERS

820 if you are within a very close distance of the ****
target, you have landed; transfers control to
line 850 1

850-860 adds 1 to count of seconds and transfers con- m^
trol to line 1120

870-1110 tests to see if any fuel remains; if not, prints]
OUT OF FUEL and keeps playing until the ^
crash

1120-1170 prints the final status 1
tilBfflBlii't

1180-1510 prints the rating of the player with a random
message based on how fast the player landed

1520-1590 subroutine to clear the screen and print the sta
tus

1600-1660 prints a blank line, creates a small time delay,
and asks user if another game is desired

1670-1710 routine to print instructions and continue with
the game

PROGRAM DESCRIPTION

Of necessity, this program contains many technical details.
To a large extent, the equations contained in the program
are physically accurate and are thus only meaningful to
someone with a solid background in the branch of physics
known as mechanics. It would therefore be inappropriate
to enter into the details here. Suffice it to say that the equa
tions are correct, although the units are somewhat simpli
fied. 1

There are a few points that warrant discussion, however.
The first is the manner in which the somewhat exotic head
ing is displayed. To clarify exactly what does happen, first 1
run the program. The screen clears, and the phrase: WEL
COME TO THE GAME OF . . . appears, followed by
many blank lines. Afterwards the phrase: MOON L is dis- ,]
played, again followed by several blank lines. Within the
FOR . . . NEXT loop contained by lines 140-170, the L
character is successively erased (by printing a space char- ^J

l^^^jfe&atf

fteaffiEyp

i^winn

"LANDER" 187

acter in its place) and redrawn in the position immediately
below the old one. This creates an interesting illusion of
motion in which the L (the first letter of the word "land
ing") seems to fall vertically to the bottom of the screen.
When it "hits" the lower edge, the word LANDER appears
in its place. The screen then scrolls upwards and the game
begins with a request for the player's name. Following that,
the player is asked if instructions are required. If they are,
they are printed out. Otherwise, an encouraging message is
displayed and, after some constants are set, the site of the
target is requested. After this final question has been an
swered to the computer's satisfaction (M for Moon, E for
Earth), the flight starts.

First, the initial parameters of the flight are displayed in
lines 470-540. Then, in line 550, the player is asked by
name to hit any key to begin the flight. Lines 560-570 have
the effect of scanning the keyboard until a key is pressed.
Control then drops into the main loop for the main action
of the game. In line 600, control is sent to the subroutine
beginning in line 1520, which displays the current status of
the landing vehicle. Then a value for the thrust is re
quested. This is tested against the maximum permissible
level. If it is too great, it is ignored and control is sent back
for another attempt. Otherwise, a series of calculations is
begun that compute the change in position, velocity, accel
eration, and fuel. If the fuel runs out, control drops to line
880 and goes on to crash land as you look on in horror.

Lines 1120-1510 contain the section of code that com
putes the player's rating. The general class of pilot is deter
mined by the performance, but within the class, a random
number determines which of a series of such messages is
printed out.

The subroutine in lines 1520-1590 displays the current
status for each second of flight. It is called from both the
main loop and the auxiliary one which takes charge when
the lander runs out of fuel. Lines 1600-1660 ask if the
player would like another game. If so, control is sent back
to line 100, where the game recommences.

I

188 ZAPPERS

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. A great deal of excitement may be added to "Lander" ""*
if it is turned into a real-time game. That is to say, the
program should go on whether you type in values for]
thrust or not. If not, it should take the value as either0 *^
or the last value typed in, at your discretion.

2. The controls can be modified to use joysticks to allow j
for a more realistic feel. ^^

3. The gravity values of additional planets may be added
for more variety and more difficult game levels.

4. The relationship of the maximum thrust possible to the
gravity can be changed to allow for greater complexity
of play.

5. The scoring can be changed to reflect the number of
times the thrust was used (meaning that few adjustments
of the flight path were necessary).

6. The scoring can also be changed to reflect the amount of
fuel used.

7. Finally, the score can be based on the gentleness with
which the velocity is modified (that is, the pilot thought
ahead and carefully controlled the landing so that no
violent last-minute corrections were necessary).

\

SttiMj|k^.

HU^^g^

PROGRAM

'ROBOT ATTACK"

PURPOSE

In this arcade-style game, ferocious attack robots converge
on you—the hapless player, who appears as a red-colored
human on the screen. The robots outnumber you by ten to
one and if they touch you, you are dead. You have no
weapons with which to defend yourself and so your only
alternative is to take advantage of the robots' one weak
point—they are extremely stupid and thus move straight
towards you no matter where you are. Since they are de
stroyed if they run into each other or into one of the elec
trified blockades (shown as blue boxes on the screen) they
themselves are destroyed. The trick is to keep dodging the
robots and position yourself so as to cause them to collide
either with themselves or with the obstacles. Either way
they die, although the visual effects are different for each
case. Remember not to let them get too close, though, be
cause they are attracted to you as though you were a mag
net and thus follow you no matter where you move.

The player moves the human around the screen by means
of the eight keys located in a circle around the D key. They
are: W, E, R, S, F, X, C, and V. Pretend that the human is
standing on the D key. In order to move in any direction,

189

190 ZAPPERS

press the key in the corresponding direction. You may take
your time about placing your fingers on the required keys
because no action is possible until all the ten robots are
distributed on the screen.

100 REM ROBOT ATTACK

110 CALL CLEAR

120 PRINT "PREPARE YOURSELF FOR

••• J
130 PRINT "A ROBOT ATTACK"

110 NB=10

150 NR=10

lb0 OPTION BASE 1

170 DIM ROBOT(100i2)iDXT(2b)iDYT(2b)i

LIVE(100)iCLR(2)

180 CLR(1)=2

na CLR(S)=ib

200 FOR 1=1 TO fl

210 READ INDEXiDXT(INDEX)iDYT(INDEX)
220 NEXT I

230 DATA 3i0iliSi0i-li24i-lili22ililibili

0-.lflil-.-l-.23-.-l-.-l-.n-.-li0

240 CALL CHAR(12Ai"lflq]flFF3D3C3CE404")
250 CALL C0L0R(13i7il)

2t0 CALL CHAR(13bi"FFFFFFFFFFFFFFFF")
270 CALL COLORdMiSil)

2fl0 CALL CHAR(144i"FFA5A5BDBDA5A5FF")
210 CALL C0L0R(15il2il)

300 CALL CHAR(152i"003C3C3C3C3C3C00")
310 CALL CLEAR

320 DEAD=0

330 X=INT(RND*2fl)+3

340 Y=INT(RND*24)+1

350 CALL HCHAR(YiXil2fl)

3b0 FOR 1=1 TO NB

370 Xl=INT(RND*2fl)+3

3fl0 Y1=INT(RND*24)+1

310 CALL GCHAR(YliXliSTATUS) 1

J

J

J

'%JOTW*

It^>t^jJ

"ROBOT ATTACK" 191

400 IF STATUS<>32 THEN 370

410 CALL HCHAR(YliXlil3b)

420 NEXT I

430 FOR 1=1 TO NR

440 LIVE(I)=1

I 450 Xl=INT(RND*2fl)+3
4b0 Y1=INT(RND*24)+1

470 FOR DX=-1 TO 1

[4A0 IF (X1+DX>32)+(X1+DX<1)THEN 540
410 FOR DY=-1 TO 1

500 IF (Y1+DY>24)+(Y1+DY<1)THEN 530
510 CALL GCHAR(Yl+DYiXl+DXiSTATUS)

520 IF STATUS<>32 THEN 450.

530 NEXT DY

540 NEXT DX

550 CALL HCHAR(YliXlil52)

5b0 ROBOT(Iil)=Xl

570 R0B0T(Ii2)=Yl

! 5fl0 NEXT I

510 FOR R =l TO NR

b00 CALL SOUND(40il7t.0i0iH,00i0ifla0i0i

-4i0)

1,10 CALL C0L0R(lLiCLR(R-INT(R/2)*2+l)il)

L.20 IF LIVE(R)=0 THEN fl00
b30 CALL KEY(3iKEYiSTATUS)

b40 IF STATUS THEN 820

bS0 XO=ROBOT(Ril)

bb0 Y0=R0B0T(Ri2)

!" b70 CALL GCHAR(YOiXOiSTATUS)
^m fe.80 IF STATUS=152 THEN 710

b10 LIVE(R)=0
1 b15 CALL HCAR(R0B0T(Ri2)iR0B0T(Ril)il44)

700 GOTO 800

710 DX=SGN(X-XO)

L 720 DY=SGN(Y-YO)
730 CALL HCHAR(Y0iX0i32)

740 ROBOT(Ril)=XO+DX

L. 750 R0B0T(Ri2)=Y0+DY

192 ZAPPERS

7b0 CALL GCHAR(R0B0T(Ri2)iR0B0T(Ril)i *—«

STATUS)

770 IF STATUS=128 THEN 1070

780 IF STATUS<>32 THEN 180

710 CALL HCHAR(R0B0T(Ri2)iR0B0T(Ril)ilS2)

800 NEXT R

810 GOTO 510

820 IF (KEY<b5)+(KEY>10)THEN 710

830 KEY=KEY-b4 1
840 IF (DXT(KEY)=O)*(DYT(KEY)=0)THEN 710

850 CALL HCHAR(YiXi32)

8b0 XO=X

870 YO=Y

880 X=X+DXT(KEY)

810 Y=Y+DYT(KEY)

100 IF (X>32)+(X<1)+(Y>24)+(Y<1)THEN 140

110 CALL GCHAR(YiXiSTATUS)

120 IF STATUS=152 THEN 1070

130 IF STATUS=32 THEN 1b0

140 Y=YO

150 X=XO

1b0 CALL HCHAR(YiXil28)

170 GOTO b50

180 DEAD=DEAD+1

110 CALL SOUND(1000ill0i0)

1000 IF DEAD=NR THEN 1100

1010 IF STATUS<>152 THEN 1050

1020 DEAD=DEAD+1

1030 IF DEAD=NR THEN 1100]
1040 CALL HCHAR(R0B0T(Ri2)iR0B0T(Ril)il44) "*
1050 LIVE(R)=0

10b0 GOTO 800]
1070 CALL CLEAR "^
1080 PRINT "THE HUMAN IS DEAD- LONG LIVETHE

TI-11/4A." 1
1010 GOTO 1120

1100 CALL CLEAR 1
1110 PRINT "YOU HAVE WON FOR THE ^J

PRESENTAAAAA-- YOU VILE HUMAN."

tjJMffQ

ilgj^BEJ

\^mu*i0

l^j|gflpH

n^j^mr*

tiggggjljj

"ROBOT ATTACK" 193

11B0 PRINT :::::"CARE TO TRY AGAIN?^

1130 CALL KEY(3-,KEY,STATUS)

11M0 IF STATUS=0 THEN 1130

1150 IF KEY=AT THEN 310

llb0 IF KEY<>7fl THEN 1130

1170 END

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark
110-130 clears screen and displays the title
140-150 sets the number of blockades and robots
160 sets the lowest subscript to 1
170 reserves room for the arrays
180-190 sets the colors that the flashing robots emit
200-220 reads in the character codes that define the mo

tion of the player
230 data for motion definition
240-300 sets the character representation for the

player, the blockades, and dead and live robots
310 clears screen

320 initializes the count of the dead to 0
330-340 sets the coordinates of the player on the screen

randomly
350 draws the player at the initial random position
360-420 loop to randomly pick the positions of and

draw the blockades; checks before drawing if
the space is occupied; if so, computes another
position

430-580 loop to randomly pick the locations of the ro
bots, check if the position is empty, and, if so,
draw the robot

590-800 main loop, which plays the game
600-610 emits a beep and.flashes the color of the robots
620 if the robot is dead, skips its turn
630-640 if a character is typed, control is transferred to

line 820

194 ZAPPERS

650-660 defines the old coordinates of the robot teg"
670-680 checks if the space on which the robot cur

rently rests is occupied by something; if not, I
control is transferred to line 710 ^

690-700 kills the robot, erases it from the screen and
transfers control to line 800

710-720 sets the direction in which the robot moves

730 erases current position of robot
740-750 modifies coordinates of robot ^1
760-770 checks if the robot has hit something; if it is

the human, control transfers to the robot-win
routine in line 1070

780 if the robot collides with anything but the
human, it dies; control is transferred to line 980

790 if the robot has not collided with anything,
draws it in its new position

810 goes back and cycles through the robots again
820-970 player's command routine
980-1060 robot-death routine

1070-1090 routine for robot win

1100-1110 routine for human win

1120-1170 asks if user wishes to play again; if so, goes
back; otherwise program ends

PROGRAM DESCRIPTION

The two BASIC features that require explanation in this
program are the SGN function and the CALL GCHAR
statement. The SGN function, as you will recall, returns 1
the value - 1ifthe argument is negative, 0 ifthe argument ^
is 0, and +1 if it is positive. It is used to advantage in this
program, where it facilitates the programming of the horn-]
ing qualities of the robots. We simply subtract the coordi-
nates of the robot's position from those of the human's in
lines 710 and 720. If the answer is positive, the robot must _]
move in a positive direction. Similarly, if the difference is
negative, the motion of the robot is in the opposite direc-

The CALL GCHAR statement is vital to the operation of

Mai8%iffiiS&^

"ROBOT ATTACK" 195

'kam this program. It permits the programmer to find out what
character is on the screen at a specified position. For ex-

I ~" ample, the program

100 CALL HCHAR(5,8,65,20)
L 110 CALL GCH\R(5,8,STATUS)

120 PRINT STATUS

L^ produces the value 65 because the ASCII code ofthe char
acter in row 5, column 8 is a capital A, having been placed
there by the HCHAR statement in line 100. The command
is used frequently in this program because it is much faster
to check the position on the screen to which a piece (either
robot or human) is about to move rather than to keep track
of every piece and search for any conflicts. We simply
check each time to make sure that the space to which a
robot is about to move is blank. If not, it compares the
value to the code of the character representing the human.
(If it has landed on the human, the game is over.) If this
test fails, the robot has either collided with another or with
a blockade, in either of which cases it dies.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. We have left the program without a RANDOMIZE
statement to enable you to test that it is correctly typed
in. Once you are convinced that the program is working

[as it is supposed to, you can put one in. Then again, you
^ might wish to have the same starting setup every time.

If so, use the program as is.
j 2. The robots can be made to move faster by modifying
^^ lines 710-720. Multiplying the value ofthe expressions

by 2 will make them move twice as fast and allow them
to leapfrog barriers, unless you get them to position
themselves so that they land exactly right.

3. A more sophisticated modification than the one above is
to have the robots home in quickly, but, once within a
certain radius, change to the normal speed.

196 ZAPPERS

4. You can change the number of blockades and/or robots
by modifying lines 140and 150. By decreasing the num
ber of blockades or increasing the number of robots the 1
game is made more difficult and vice versa. You might ^
even want to leave it up to the player and put in state
ments that allow the player to type in these values. 1

5. You might want to add in a "hyperspace" button to ^^^
allow the player to disappear and appear at a random
place on the board. This can help the player in a tight
spot from which escape is otherwise impossible. Of
course, there are certain dangers to hyperspace: Since
the player reappears at a random spot, what is to pre
vent him from rematerializing on a robot (instant death)?
You can check for this case or leave it in at your own
discretion.

ISiaj|fflj|«ii

PROGRAM

"SNAZZLE"

PURPOSE

"Snazzle" is another fast-action graphics game. This time,
you are playing the role of a snake. You start off small (five
blocks long) but every time you eat a piece of food, you get
longer. Your object is to eat all the pieces of food that
appear on the screen while not running into the blue elec
trified wall—or yourself. If you do hit either of the above-
mentioned barriers, you die. You avoid your horrible fate
by deftly changing the direction of the snake's motion using
the E, S, D, and X keys to represent up, left, right, and
down, respectively. If you survive long enough to eat ten
pieces of food, you then move on to the second level,
where you have more barriers to run into, making your task
even harder. This may sound like a raw deal but, after all
—it's a snake's life!

100 REM SNAZZLE

110 RANDOMIZE

120 Din S(100-.2)-.TABLE(2b)

130 TABLE(S)=1

ma TABLE(4)=2

150 TABLE(24)=3

197

198 ZAPPERS

lt.0 TABLE(n)=4

170 FOR LEVEL = 1 TO 3

1A0 CALL CLEAR

110 PRINT "a^YOU ARE NOW
ENTERING"::::::::::

200 PRINT "LAAAAEEEEAVAfVAAEEEEAL"
210 PRINT "LAAAAEAAAAVAAVAAEAAAAL"
220 PRINT "La^aaEEE^V^V^EEE^L"
230 PRINT "LAAAAZAAAAA\/\/AAAZAAAAL"
240 PRINT "LLLL EEEEAAVVAAAEEEEALLLL'
250 PRINT :::TAB(ll)i"#A"iLEVEL
2b0 FOR T=l TO 1000

270 NEXT T

260 CALL CLEAR

2=10 SCORE=0

300 FOR 1=1 TO L

310 S(I-.1)=0

320 S(I-.2)=0

330 NEXT I

340 ON LEVEL GOSUB 1150-.llt0-.1200

350 X=INT(RND*26)+2

3t>0 Y =INT(RND*22)+2

370 CALL GCHAR(Y-,X-,T)

3A0 IF T<>32 THEN 350

310 D=INT(RND*4)+1

400 RC=31

410 CALL CHAR(12fi-,"FFFFFFFFFFFFFFFF")

420 CALL C0L0R(13i5-,l)

430 CALL CHAR(13b-,"FFFFFFFFFFFFFFFF")

440 CALL CHAR(144-."00FF7E4C4C7EFF00")

450 CALL C0L0R(14-,7-,l)

4fc,0 CALL HCHARd-.li 126-.RC)

470 CALL HCHAR(24-,1-,126-.RC)

460 CALL VCHARd-.l-.126-.24)

410 CALL VCHARd-.RCil26-.24)

500 L = 4

510 GOSUB 1010

520 REM

J

J

J

J

|kt&afJEBMMUUfl|

"SNAZZLE" 199

530 FOR 1=0 TO L

540 IF S(I-.2)=0 THEN 5b0

550 CALL HCHAR(S(I-.2)-.S(I-.l)-.32)

5b0 S(I-,1)=X

570 S(I-,2)=Y

I 560 CALL GCHAR(Y-,X-,T)
510 IF T<>32 THEN 710

b00 CALL HCHAR(Y-,X-.13b)

[_ bl0 CALL KEY(3,KEY,STATUS)
b20 IF STATUS THEN 740

b30 ON D GOSUB bb0-.b60-.700,720

b40 NEXT I

b50 GOTO 530

bb0 Y=Y-1

b70 RETURN

b60 X=X + 1

b10 RETURN

700 Y=Y+1

710 RETURN

720 X=X-1

730 RETURN

740 IF (KEY<bS)+(KEY>10)THEN b30

750 KEY=KEY-b4

7b0 IF TABLE(KEY)=0 THEN b30

770 D=TABLE(KEY)

760 GOTO b30

710 REM

600 IF (T=126)+(T=13b)THEN 1010

| 610 CALL SOUNDC50-.1700-.0)
^ 620 CALL SOUND(S01612,0)

630 L=L+3

I 640 SCORE=SCORE+l
650 IF SCORE=10 THEN 120

5b0 SCORE$=STR*(SCORE)

L^, 670 FOR J=l TO LEN(SCORE$)
660 CALL HCHAR(1-.J +10-.ASC(SEG$(SCORE$-.

,-• J-.D))

200 ZAPPERS

100 GOSUB 1010 mmm

110 GOTO b00

120 FOR 1=1 TO lb j
130 CALL SCREENd) *~*
140 CALL SOUND(S0-.I*110-.0)

150 NEXT I j
1b0 NEXT LEVEL

170 CALL CLEAR

160 PRINT "CONGRATULATIONS!" I
110 PRINT " YOU HAVE WON"::::::

1000 END

1010 FOR 1=4 TO 1 STEP -.25

1020 CALL SOUND(50-.I*110-.0)

1030 CALL SCREEN(IS)

1040 CALL SCREEN(2)

1050 NEXT I

10b0 FOR T=l TO 1000

1070 NEXT T

1060 END

1010 RX=INT(RND*(RC-2))+2

1100 RY =INT(RND*22)+2

1110 CALL GCHAR(RY-.RX-,T)

1120 IF T<>32 THEN 1010

1130 CALL HCHAR(RY-,RX-,144)

1140 REM

1150 RETURN

llb0 CALL HCHAR(4-.4il26-.22)

1170 CALL HCHAR(12-,12-.126-,b)

1160 CALL HCHAR(20-.4-.126-,22) I
1110 RETURN ^
1200 FOR 1=5 TO 25 STEP 5

1210 CALL VCHAR(7-.Iil26-.17) 1
1220 NEXT I

1230 CALL HCHAR(4-.12-.126-.2b)

1240 RETURN ,i

laaytii

"SNAZZLE" 201

PROGRAM LINE ANALYSIS

line(s) action(s)

100 REMark

110 reseeds the random number generator
120 sets aside storage for arrays
130-160 sets the letters E, S, D, and X to be direction

commands

170-960 main loop in which levels progress
180-250 clears screen and prints the current level in

block letters

260-270 delay loop to make the level visible for a few
seconds

280 clears screen to prepare for the new level
290 sets score at this level to 0

300-330 initializes snake

340 calls the routines that set up the barriers
350-360 sets random location for snake

370-380 if something is already there, tries again
390 sets the direction randomly to start
400 sets the value of the rightmost column to 31
410-450 sets the shape of the snake, the wall, and the

food, together with their colors
460-490 draws the initial positions on the board
500 sets the initial length of the snake
510 calls routine to draw the food

520 REMark

530-650 snake-motion loop
540 tests for special case when snake begins mov

ing
550 blanks out the old tail

560-570 sets new head

580-590 checks if position of new head is not blank; if
so, control is transferred to line 790

600 otherwise, draws the head
610-620 if player types a key, control is transferred to

line 740

202 ZAPPERS

630 calls routines to compute the new position of
the head, depending on what direction is cur
rent

660-730 movement subroutines

740-780 keyboard input routine
790-910 routine to determine what snake has hit and ^J

take appropriate action
790 REMark .

800 if the snake runs into itself or the wall, death ^ri
follows and control is transferred to line 1010

810-820 plays "eating music"
830 adds to the length of the snake
840 adds 1 to the score

850 if the score is 10, goes to the next level
860-890 otherwise, prints the new score
900 puts a new piece of food on the screen
910 transfers control to line 600 to continue moving

the snake

920-960 advances a level
970-1000 after all levels are won, prints the winning mes

sage

1010-1080 routine to handle snake's death
1090-1140 routine to place a piece of food on the screen
1150-1240 subroutines to place the blockades on the

screen at each level

(Mpviiifi

PROGRAM DESCRIPTION

Immediately after the program begins, the random number] |
generator is reseeded and space is set aside for the arrays.
Then the table corresponding to the direction of motion of
each key is set. You will notice that the program never J
initializes most of the elements of the array, which are con
sequently set to 0. This is because only four keys are 1
needed to control the directions in which the snake moves. .^
Whenever a key is typed, its ASCII code (minus 64) is used
to subscript the array TABLE and thus determine what i
effect it has. If the value in TABLE is 0, the computer ^^J

|iiSiisy..aa

fetem^^,.-!

fami^^y!

MMMB1

"SNAZZLE" 203

continues moving the snake in the same direction that it
was already moving, since a zero represents an unused key.
After setting TABLE in lines 130-160, the program jumps
right into the main loop. Starting at level 1, the level is
printed in block letters with a time delay after it is printed,
to allow the player time to see it. The screen is then cleared
by line 280 and the score for the level is set to 0. The
computer then zeros the snake's "links" (picture the com
puter snake as a chain with many links, each of which has
an X and Y coordinate).

At this point the background for the level is drawn de
pending on what level is currently being played. The sub
routines in lines 1150, 1160, and 1200 each draw the
background for one level. Following this, the horizontal
and vertical position of the snake are determined. Line 370
checks to ensure that the snake does not start on a barrier.
If it does, line 380 sends control back to try a new starting
position. Line 390 sets the direction to a number between 1
and 4, representing up, right, down, and left respectively.

Since most televisions are incapable of displaying the
thirty-second column of the screen, the variable RC (rep
resenting rightmost column) is set to 31. If necessary, it can
be set even farther to the left. Lines 410-490 set the special
characters needed for the game and draw them in their
initial positions on the screen. Then the length of the snake
(stored in the variable L) is set to 5, its starting value. Line
510 calls the subroutine in line 1090, which places the food
on the screen at a random point. The loop from line 530 to
line 650 controls the motion of the snake, depending upon
which key is pressed. If no key is pressed the snake contin
ues along the path it is already on. If one of the four special
keys (E, S, D, or X) is pressed, control is sent to line 740
where, after validating the key, D (containing the snake's
current direction) is set according to the key that was
pressed. Whether a direction was set or not, the snake
continues to move. If none was set, the direction remains
the same. Based on the direction, control is then trans
ferred to one of the subroutines beginning in lines 660, 680,

204 ZAPPERS

700, and 720. These subroutines change the horizontal or
vertical position as stored in the variables X and Y, depend
ing on the direction. (l

As the snake crosses the screen it may hit an obstacle or
a piece of food. The routine in lines 790-910 determines,
once it is known that the snake has hit something, which of ^J
the two it has hit. If it dies, control is sent to line 1010. If it
has merely eaten some food, control drops, some notes are
played, its length is increased (making the play harder), and ^
the score is incremented and displayed on the screen.

If a complete level is won (ten pieces of food are success
fully engulfed) control is sent to the routine in line 920. This
plays victory notes, shakes the screen with brilliant flashes
of color, and ends the game with a congratulatory message.

For those who are not so fortunate, the routine between
lines 1010 and 1080 handles the death notes and delay loop
to afford the player time to see what happened before the
screen colors turn to black on blue again.

The subroutine in lines 1090-1150 places a piece of food
on the screen in a random position. This is performed every
time a piece is eaten so that there is always exactly one
piece on the screen at any time.

Lines 1150-1240 are the setup subroutines that draw the
background for each of the levels. They are called from line
340 of the main routine.

POSSIBLE MODIFICATIONS AND ENHANCEMENTS

1. It is easy to add more levels. Simply make asubroutine ,]
at the end to draw a pattern of blocks, copying the model
of the subroutine in lines 1200-1240. Then, change the
ON GOSUB statement in line 340 to include your sub- ^J
routine and change the FOR statement in line 170 to
reflect the new number of levels. -,

2. By modifying line 830, the amount of length that the ^
snake gains by eating a piece of food may be changed.
The faster the snake grows, the more difficult the game --,
becomes because it is so easy for the snake to hit itself. ,^J

fagmyra

"SNAZZLE" 205

One particularly worthwhile modification is

830 L = L + INT(RND * 10) + 1

which increases the size of the snake by a random num
ber of links that may be as little as one or as much as
ten.

3. You might want to implement a limit on the number of
moves of the snake before it must eat the food. If the

player doesn't make it in time, have the program put
more food on the screen. That is an adequate penalty
because it will make the snake much longer (and that
much harder to control).

4. You might wish to have some moving objects that kill
the snake if they hit its head. They could move either
randomly or according to some pattern of your own
choosing.

5- You might want to give the player several "lives" in
order to prolong the game.

6- In order to make the game even more challenging, you
might try to restrict the method of control from the four
direction keys to right/left turn keys. In other words,
modify them so that the player can make only either a
right turn or a left turn—from the snake's point of view.
This will tend to disorient the player more.

^ About the Authors

Iglg^M^l

Henry Mullish is Senior Research Scientist and Lecturer

in Computer Science at the Courant Institute of Mathemat
ical Sciences of New York University. He is the author of
over a dozen books on computer programming.

Dov Kruger went to high school in New York City and
attended his first computer course, sponsored by NYU, at
the age of 11. At the age of 16 he entered Stevens Institute
of Technology where he is now a freshman in the electrical
engineering/computer science department. He has previ
ously co-authored Applesoft BASIC: From the Ground Up
with Henry Mullish.

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011

	back-cover

