

The

BASIC
m^ t

The
BASIC

A Cross-Referenced Guide
to the BASIC Language

Harry L. Helms
Technical Writer and Consultant

McGraw-Hill Book Company
New York St Louis San Francisco Auckland

Bogotd Hamburg Johannesburg London Madrid
Mexico Montreal New Delhi Panama Paris

Sao Paulo Singapore Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data

Helms, Harry L.
The BASIC book.

Includes index.

1. Basic (Computer program language) I. Title.
QA76.73.B3H447 1983 001.64'24 82-13976
ISBN 0-07-027959-4

Copyright © 1983 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Exceptas permitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

4567890 FGRFGR 89876543

ISBN 0-D7-DE7elSe1-H

The editors for this book were Stephen Guty and Charles P.
Ray; the designer was Elliot Epstein, and the production
supervisor was Paul Malchow. It was set in Melior by Achom
Graphic Services.

Printed and bound by Fairfield Graphics.

Contents

Key Word Ready Reference vii

Preface xvii

1 Converting from One BASIC Implementation into
Another 1

2 Syntax andProgramming Practices 5
3 System Commands 7
4 Variables andArrays 13
5 Arithmetic, Relational, andLogical Operators 17
6 Control andTransfer Statements 21
7 Input and Output Statements 25
8 Subroutines 31

9 String Functions 33
10 Numeric Functions and Statements 37

11 Assembly Language Routines andStatements 41
12 Graphics Statements 43

Glossary 47

Index 49

Key Word
Ready Reference

Key words

u
4>

•O

E
a
c

0,

5
t̂o

•8-Si
"S."S.
a. a

©
CO

e

2
o

o

S

v.

a

81 IS
a

to-:

a 4>
cc-i

C/i «

•5.8

1.
WS (A

ABS 37

ADR 33 •

AND 18 • • • • •

APPEND 30 •

ASC 33

ATN 37

AUDIO 7 •

AUTO 7 • • •

BEEP 28 •

BLOAD 7 •

BREAK 7 •

BSAVE 7 •

BYE 7 • •

CALL 41 • •

CALL CHAR 43 •

vii

J
*

s
i
.

SO n

5= o

a
o

.

*
s
o

a
s
o

a

.r
a

o
.

*
*

<

2
5

3
o a

^
o re

3 s
o

o
o

C
D

a

o o z H Z C m

O O z -
1

O o r
-

O 3
J

o r
-

(
0

O 1
-

3
J

O o (
0 m

O r
-

O O

O r
-

O > a

O I
-

o > a 3

O r
-

O > a

O r
-

m > 3
J

O 3
J

O r
-

m

O Z H

o X 3
J

O D C
O

O > 1
-

_
k

e
n

O > r
-

< O > 3
1

O > r
-

0
)

o c z o

> r
-

o 3
J

m m z

O > r
-

m •<

o > r
-

c O -< a> H

O > r
-

X o X > 3
0

O > O o r
-

O 3
3

> o r
-

m > 3D

1 i

0
0

o
o

*
>

C
O

4
*

C
O

o
o

t
o

C
O

o
o

o
o

0
0

v
j

bo
4

*
C

O
C

O
V

I
C

O
C

O
C

O
V

I
V

|
4

*
C

O
t
o

o
o

C
O

C
O

C
O

C
O

o
4

*
C

O
4

^
C

O
V

J
P

ag
e

n
u

m
b

er

•
•

•
•

•
•

A
p

p
le

II
A

p
p

le
so

ft

•
•

•
•

A
ta

r
i

4
0

0
1

8
0

0

•
•

C
o

m
m

o
d

o
re

P
E

T

•
•

•
IB

M
A

d
v
a

n
c
e
d

P
er

so
n

a
l

C
o

m
p

u
te

r

•
•

•
•

•
•

R
a

d
io

S
h

a
c
k

L
e
v
e
l

II

•
•

•
•

•
•

•
R

a
d

io
S

h
a

c
k

E
x

te
n

d
e
d

C
o

lo
r

•
•

•
,

T
e
x

a
s

I
n

s
tr

u
m

e
n

ts
9

9
1

4

Key Word Heady Reference ix

Key Word Ready Reference (cont.)

Key words

u
9}

•o

E
a
c

4>

a0
a.

"§•§•Q.Q.

©
CO

a

s
•8

o

E

a

9a!

u
a

C/3£;

a v

°£
CO «J

a x

a

COS 37

CSAVE 8 • • •

CSAVEM 8 •

CSNG 37 • •

CVD 33 •

CVI 33 •

CVS 33 •

DATA 28

DEF 37 •

DEFDBL 15 • •

DEF FN 38 • • • •

DEFINT 16 • •

DEFSNG 16 • •

DEFSTR 16 • •

DEFUSR 42 • •

DEL 8 • •

DELETE 8 • • •

DIM 15

DISPLAY 27 •

DLOADM 8 •

DRAW 44 • •

DRAWTO 44 •

DSP 29 •

EDIT 9 • • •

x Key Word Ready Reference

Key Word Ready Reference (cont.)

Key words

$3

i
c.

9)

1

=3^
•SJ«8
a. a.
Q.Q.

©
©
09

©
o

B

1
O

&

Sea
Oo,

1
3

•oQ.

° § IS
a

a 9>

-1

•S3
a x

OStaJ

1.
e °>

«3o)

Is
£6

ELSE 22 •

END 21

EQV 18

ERASE 16

ERL 38

ERR 38

ERROR 22

EXEC 42 •

EXP 38

FILES 9

FIX 38

FOR ... TO 22

FRE 34,38 •

GET 34,44 • •

GOSUB 21

GOTO 21

GR 44 •

GRAPHICS 44 •

HCOLOR 44 •

HEX$ 38 • •

HIMEN 9 •

HLIN ... AT 44 •

HOME 9 •

HPLOT 44 •

•
o

3
J

Z H

o s m z

O Q
o >

55 H

(
0 H

Z m z •o c H

Z m

r
n

H
m z

m <
0

5 F r
-

c O -< C
O

H

Z H
Z <

/>
H 3D

Z •
u

c H

Z T
O C H

Z m -<

Z
Z

s T
O

H X m z

•n O O H O

•
n

O O C
O

c C
D

1 o 8-

tS
J

C
O

C
O

C
O

0
0

C
O

c
o

c
o

C
O

o
4

k
4

*
•-

»

4
^

C
O

4
^

C
O

4
k

c
o

C
O

o
C

O
0

0
C

O
4

k
t
o

0
0

C
S3

0
0

C
O

4
k

C
O

o
C

O

o

i—
i

0
0

C
O

tN
3

C
O

P
ag

e
n

u
m

b
er

•
•

•
•

•
•

A
p

p
le

II
A

p
p

le
so

ft

•
A

ta
r
i

4
0

0
1

8
0

0

•
•

•
•

C
o

m
m

o
d

o
re

P
E

T

•
IB

M
A

d
v
a

n
c
e
d

P
er

so
n

a
l

C
o

m
p

u
te

r

R
a

d
io

S
h

a
c
k

L
e
v
e
l

II

•
•

R
a

d
io

S
h

a
c
k

E
x

te
n

d
e
d

C
o

lo
r

T
e
x

a
s

In
st

ru
m

e
n

ts
9

9
/4

I ! S3 a Q SO a (6

o a
.

o z o o H o

o z o o C
O

C O
D

D
O

o
z

H
m

O
3

0 3D

O
O

o
z

3
g 3

0
O 3D

O
O

O
Z s "s

?

o r
-

o

o o H

Z C s

Z C r
-

r
-

Z O H 3
0

> O m

Z o
Z m 3

Z > 3 m > C
O

s O H O 3
0

s C
O

3
s o

3 o

3 m 3
0

O m

3 m 3

p
"

•o 3
0

Z H C C
O

z o

1 i 1

t
o

C
O

t
o

4
k

t
o

C
O

N
O

C
O

t
o

C
O

o
C

O
o

o
C

O
c
o

0
0

c
o

0
0

C
O

C
O

C
D

C
O

o
o

C
O

0
0

C
O

0
0

C
O

4
k

C
O

C
O

0
0

t
o

C
O

P
a

g
e

n
u

m
b

er

•
•

•
•

A
p

p
le

II
A

p
p

le
so

ft

•
A

ta
r
i

4
0

0
1

8
0

0

•
•

C
o

m
m

o
d

o
re

P
E

T

•
•

•
•

•
•

•
•

•
•

•
IB

M
A

d
v
a

n
c
e
d

P
er

so
n

a
l

C
o

m
p

u
te

r

•
•

•
•

R
a

d
io

S
h

a
c
k

L
e
v
e
l

II

•
•

•
•

R
a

d
io

S
h

a
c
k

E
x

te
n

d
e
d

C
o

lo
r

•
•

T
e
x

a
s

In
st

ru
m

e
n

ts
9

9
1

4

zn a a
.

Key Word Ready Reference xiii

Key WordReady Reference (cont.)

Key words

u
4)

E
a
c

0)

o.

aa

00

©
©

°C
e

g
•§

o

E
Eh

OQ.

a

si
u
a

•c

-e S
a «
tt-J.

<T3
CO «J

•ss
a x

a

•3 OS
in </>

a "S

ON KEYfnJ
GOSUB 24

ON PEN
GOSUB 24

ON STRIG(n)
GOSUB 24

OPEN 29 • •

OPEN COM ...
AS 29

OPTION BASE 16 •

OR 18 • • • •

OUT 29 •

PADDLE 30 •

PAINT 44 • •

PCLEAR 44 •

PCLS 45 •

PCOPY 45 •

PDL 30 •

PEEK 41

PLAY 29 • •

PLOT 45 • •

PMODE 45 •

POINT 45 • •

POKE 41

POP 42 • •

3D Z O

3
1

O X H

3D 3 C 3D Z

3D m C
O

H o 3
0

m

3D m C
O

m H

3D m C
O

m o c m z o m

3D m z c 3

3D m 3

3D m o > r
-

r
-

3D m > o

3D > Z O o 3 N r
n

3
0

> Z o o 3

c H

T
O H 3D O

T
O C
O

m H

•
o

3D Z H

•o 3D Z ®

T
O 3D Z H C C
O

z o

T
O 3D Z H

T
O 3D m C
O

m H

T
O 3D

T
O

T
O o z H

T
O o C
O

H o z

T
O o C
O

i 1

C
O

C
O

C
O

4
k

t
o

t
o

0
0

o 4
k

e
n

o
o

e
n

t
o

o
o

t
o

0
0

C
O

C
O

C
O

C
D

4
k

c
n

C
O

o
4

k
c
n

t
o

V
I

t
o

c
o

t
o

c
n

t
o

c
n

4
k

c
n

t
o

C
O

C
O

C
D

t
o

C
O

C
O

4
k

C
O

0
0

P
ag

e
n

u
m

b
er

•
•

•
•

•
A

p
p

le
II

A
p

p
le

so
ft

•
•

A
ta

r
i

4
0

0
1

8
0

0

•
•

•
C

o
m

m
o

d
o

re
P

E
T

•
•

•
•

•
•

•
•

•
IB

M
A

d
v
a

n
c
e
d

P
er

so
n

a
l

C
o

m
p

u
te

r

•
•

•
•

•
•

R
a

d
io

S
h

a
c
k

L
e
v
e
l

11

•
•

•
•

•
•

•
•

•
•

R
a

d
io

S
h

a
c
k

E
x

te
n

d
e
d

C
o

lo
r

•
•

•
•

T
e
x

a
s

In
st

ru
m

e
n

ts
9

9
1

4

so ft Q So I

< o D
_

SO ft 3 a

2 m

C
O

•< C
O

H m 3

C
O

«< C
O

C
O

> T
O

C
O

H 3D Z o

C
O

H 3
0

C
O

H 3
0

O

C
O

H o 3
0

m

C
O

H o T
O

C
O

H o

C
O

H m T
O

C
O

o 3D

C
O

T
O m m o

C
O

T
O o

C
O

o c z o

C
O

T
O

•
n

C
O

z

C
O

O z

C
O

m H O O r
-

O 3
0

C
O

m
C

O
m o

C
O

o 3D m m z

C
O > < m

3D C z
1 o

t
o

V
|

o
o

C
O

c
n

C
O

c
n

C
O

O
t
o

C
O

t
o

C
O

o
t
o

t
o

C
O

C
O

t
o

C
O

C
O

C
O

t
o

C
O

o
C

O

C
O

C
O

C
D

4
k

c
n

4
k

c
n

C
O

4
k

4
k

c
n

o
o

P
ag

e
n

u
m

be
r

•
•

•
•

•
•

A
p

p
le

II
A

p
p

le
so

ft

•
•

•
•

A
ta

r
i

4
0

0
1

8
0

0

•
•

•
•

C
o

m
m

o
d

o
re

P
E

T

•
•

•
•

•
•

•
•

•
•

IB
M

A
d

v
a

n
c
e
d

P
er

so
n

a
l

C
o

m
p

u
te

r

•
•

•
•

R
a

d
io

S
h

a
c
k

L
e
v
e
l

II

•
•

•
•

•
•

R
a

d
io

S
h

a
c
k

E
x

te
n

d
e
d

C
o

lo
r

#
*

•
•

•
T

e
x

a
s

In
st

ru
m

e
n

ts
9

9
1

4

f Q
.

I I a. s
o

ft Q 3
-

SO ft

X o 3D

3 3
0

H m

3 o H X

m
x

O
m

3 >
5 > C

D

< r
-

Z 5

< m 3
0

T
l

•<

< > 3
0

T
O H 3D

< > r
-

C C
O

3
0

C T
O O 5 m

c
l

z H 3
0

> O m

c z C
D

3D m >

H 3D O z

H 3
0

O •n •n

H 3D > O m

H 3 m

H 3 m 3D

H
H m 3

> Z
1 o 3-

o
o

t
o

V
]

t
o

V
J

t
o 4
k

t
o

4
k

O
J

4
k

C
O

C
O

c
n

c
o

c
n

4
k

t
o

t
o c
o

•-
»

l
-
»

l-
>

o
o

C
O

C
O

C
O

c
o

C
O

C
D

4
k

C
O

C
O

C
D

P
ag

e
n

u
m

be
r

•
•

•
•

•
•

•
A

p
p

le
II

A
p

p
le

so
ft

A
ta

ri
4

0
0

1
8

0
0

•
•

•
•

•
C

o
m

m
o

d
o

re
P

E
T

•
•

•
•

•
•

•
•

•
•

•
IB

M
A

d
v
a

n
c
e
d

P
er

so
n

a
l

C
o

m
p

u
te

r

•
•

•
•

•
R

a
d

io
S

h
a

ck
L

e
v
e
l

II

•
•

•
•

•
•

R
a

d
io

S
h

a
c
k

E
x

te
n

d
e
d

C
o

lo
r

•
•

•
•

•
T

e
x

a
s

In
st

ru
m

e
n

ts
9

9
1

4

o 3
3

n Q

Preface

If Beginner's All-purpose Symbolic Instruction Code (BA
SIC) is not currently the most widely used computer lan
guage in the world, it is well on its way to becoming so.
BASIC has many limitations compared to most other lan
guages. However, it is easy to learn and use. Its simplicity
made it a "natural" for use with the rapidly growing num
ber of microcomputer systems.

Unfortunately, BASIC'S popularity has come at the ex
pense of uniformity. Many microcomputer manufacturers
incorporate unique features in their implementations of
BASIC. Technological changes have made possible cer
tain features (such as graphics statements) not envisioned
when John Kemeny and Thomas Kurtz developed BASIC
in 1964 at Dartmouth College. The result is that one can be
a proficient programmer in one dialect of BASIC yet have
problems using a system with a different implementation
of BASIC. This book addresses that problem. It covers the
following implementations of BASIC:

• Apple II Applesoft

• Atari 400/800

• Commodore PET

xvii

xviii Pre/ace

• International Business Machines (IBM) Advanced Per
sonal Computer

• Radio Shack Level II

• Radio Shack Extended Color

• Texas Instruments 99/4

This selection was based upon how widely an implemen
tation is currently used (as in the case of Radio Shack
Level II or Apple II Applesoft) or its potential for wide use
(IBM Advanced, Radio Shack Extended Color, etc.).

This book includes the most commonly used features
of each implementation of BASIC. However, it does not
cover certain features of each implementation (such as
disk operating system commands) which are unique to
one microcomputer system. This book also assumes a
familiarity with at least one of the implementations of
BASIC covered.

I hope you will find this book useful both as a quick
reference for the implementation of BASIC you normally
use as well as those situations where you must work with
an unfamiliar implementation or convert a program writ
ten in one version of BASIC into another.

Harry L. Helms

Converting from One BASIC
Implementation into Another

A glance through this book will reveal many differences
between the implementations of BASIC used by Apple,
Atari, Commodore PET, IBM, Radio Shack, and Texas In
struments. Despite this, it will often be possible to "trans
late" a program written in one implementation of BASIC
into another. Programs dealing with mathematical com
putations or data storage and manipulation will usually
beeasiest to convert; programs involving graphics, assem
bly language subroutines, or external file handling will
present considerable (and sometimes insurmountable)
conversion problems. Here is a systematic approach to
converting different implementations:

• Scan the program you wish to convert for assembly lan
guage statements such as PEEK, POKE, CALL, POP,
USR, etc.Suchassembly language routines will be diffi
cult, if not impossible, to convert. You will need mem
ory maps of both microcomputers and should be able to
use such maps. You will also need to know the instruc
tion sets for the microprocessors involved and under-

2 Convertingfrom One BASICImplementation into Another

stand assembly language programming. If a program
uses assembly language routines extensively, you will
likely find it easier to write an entirely new program
rather than convert the existing one.

Examine the program for the following statements and
functions, which have different meanings in various im
plementations. Refer to this book for the exact meaning
in each implementation:

COLOR

DRAW

ERROR

GET

IF... THEN

PEEK

POINT

PRINT USING

PUT

SCREEN

As you go through the program, write down all variable
names and what they represent.

Break the program you wish to convert into functional
blocks, such as input, computation, output, etc. A flow
chart or written description of each block may be useful
when working with longer programs.

Graphics statements seldom translate into other im
plementations precisely. However, the effects of many
graphics statements can be approximated on other sys
tems by using graphics statements particular to that
system. However, if a program uses elaborate graphics
(such as those available on Apple, Atari, or Radio Shack
Extended Color), it may be virtually impossible to repro-

Converting from One BASIC Implementation into Another 3

duce or approximate them on systems using Commo
dore PET or Radio Shack Level II BASIC.

A line-for-line conversion is usually inefficient and
clumsy. It is better to convert each functional block us
ing the special features and capabilities of the BASIC
implementation you are converting to.

Syntax and Programming
Practices

The following rules of syntax and programming practices
apply to all implementations of BASIC covered in this
book:

• Each line in a BASIC program must have a line number.
Programexecution begins with the lowest line number.

• Standard programming practice calls for using line
numbers from 0 to 9999, increasing in increments of 10.
Usingincrementsof 10allowsinserting additional state
ments later if needed.

• Standard programming practice calls for using line
numbers 0 to 999 for themain body of the program and
line numbers over 1000 for subroutines.

• Explanatory remarks maybe placed in a program using
REM statements. REM statements donotaffect program
operation in any manner, although they still occupy
space in memory. REM statements should be added as
needed for clarityif the program listingis to be reviewed
byothers. They are useful for documentation in program
development as well.

6 Syntax and Programming Practices

• More than one statement may be placed on a program
line if the statements are separated by colons (:). (This
feature is not available in Texas Instruments 99/4
BASIC.)

• Programs do not have to conclude with an END state
ment, although this is common programming practice.

• The main body of a program should be separated from
subroutines with an END statement to prevent all sub
routines from being executed following the conclusion
of the main program.

System Commands

AUDIO Connects or disconnects cassette output to a
television speaker (Radio Shack Extended Color only).

AUTO Automatically numbers program lines as they are
entered from the keyboard (Atari, IBM Advanced, and
Radio Shack Level II only).

BLOAD Loads binary data or machine language pro
grams into memory (IBM Advanced only).

BREAK Sets up a breakpoint to halt program execution
at a specified line number (Texas Instruments 99/4
only).

BSAVE Saves binary data onto a diskette (IBM Ad
vanced only).

BYE Goes to calculator mode of operation from BASIC
(Atari and Texas Instruments 99/4 only).

CALL-151 Puts system into monitor mode for machine
language program execution (Apple II only).

CALL CLEAR Clears the video monitor screen (Texas
Instruments 99/4 only).

CLEAR Sets all numeric variables to 0 and all string
variables to null (Apple II and Atari only).

8 System Commands

Sets aside a specified number of bytes of memory ior
string storage; also sets numeric variables to 0 and
string variables to null (Radio Shack Level II and Ex
tended Color only).

Clears all program variables and optionally sets
memory area (IBM Advanced only).

CLOAD Loads a BASIC program from a cassette tape
(Atari, Radio Shack Level II and Extended Color only).

CLOADM Loads a machine language program from cas
sette tape (Radio Shack Extended Color only).

CLOAD? Compares a program in memory to one on cas
sette tape. If there are differences, BAD will be dis
played on the video terminal (Radio Shack Level II
only).

CLR Same function as CLEAR (Apple II and Commo
dore PET only).

CONT Continues execution of a program after it has
been halted (not available on Texas Instruments 99/4).

CONTINUE Same function as CONT (Texas Instruments
99/4 only).

CSAVE Saves a program in memory onto a cassette tape
(Atari, Radio Shack Level II and Extended Color only).

CSAVEM Writes out a machine language file (Radio
Shack Extended Color only).

DEL Deletes indicated program lines from a program.
The form is

DEL program line(s)

(Available in Apple II and Radio Shack Extended Color
only.)

DELETE Same function as DEL (IBM Advanced and
Radio Shack Level II only).

Deletes programs or data files from filing system
(Texas Instruments 99/4 only).

DLOADM Loads machine language programs at baud

System Commands 9

rate specified; 0 for 300 bits per second (baud) or 1 for
1200 baud (Radio Shack Extended Color only).

EDIT Allows editing of line number specified (IBM Ad
vanced, Radio Shack Level II and Extended Color only).

FILES Lists files in diskette directory that match file
name specified (IBM Advanced only).

HIMEN Sets addresses of highest memory address avail
able during program execution (Apple II only).

HOME Moves cursor to top left of video display (Apple
II only).

KILL Erases a diskette file (IBM Advanced only).

LIST Displays a list of all program lines specified. If no
lines are specified, the entire program is displayed. The
form is

LIST first line number - last line number

LOAD Same function as CLOAD (Apple II, Commodore
PET, and IBM Advanced only).

LOMEN Sets lowest address available in a program
(Apple II only).

MERGE Merges saved program with one in memory
(IBM Advanced only).

MOTOR Turns cassette recorder on or off (Radio Shack
Extended Color only).

NAME ... AS Renames a diskette file. The form is

NAME old diskette name AS new diskette name

(Available in IBM Advanced only.)
NEW Deletes entire program from memory and clears all

variables.

NOTRACE Turns off TRACE mode feature (Apple II
only).

NUM Similar to AUTO, but begins line numbering at 100
and advances in increments of 10 (Texas Instruments
99/4 only).

10 System Commands

OLD Similar function to CLOAD (Texas Instruments
99/4 only).

RENUM Renumbers program lines in specified incre
ments. The form is

RENUM new, start, inc

where new is the first new line number, start is the line
number in the original program where renumbering is
to start, and inc is the increment by which the re
numbering increases. If inc is omitted, line numbers
increase by 10 (IBM Advanced and Radio Shack Ex
tended Color only).

RESEQUENCE Renumbers program lines in a specified
increment beginning at indicated line number. The
form is

RESEQUENCE beginning line, increment

(Available in Texas Instruments 99/4 only.)

RESET Reinitializes all diskette information (IBM Ad
vanced only).

RUN Begins program execution. If a line number fol
lows, program execution begins at that line.

SAVE Same function as CSAVE (Apple II, Commodore
PET, IBMAdvanced, and Texas Instruments 99/4 only).

SKIPF Skips to next program on a cassette tape or to end
of specified program (Radio Shack Extended Color
only).

SYS Same function as CALL-151 (Commodore PET
only).

SYSTEM Same function as CALL-151 (IBM Advanced
and Radio Shack Level II only).

TRACE Indicates which line number in a program is
being executed (Apple II and Texas Instruments 99/4
only).

TROFF Same function as NOTRACE (IBM Advanced,
Radio Shack Level II and Extended Color only).

System Commands 11

TRON Same function as TRACE (IBM Advanced, Radio
Shack Level II and Extended Color only).

UNBREAK Ends breakpoint established by BREAK
(Texas Instruments 99/4 only).

UNTRACE Same function as NOTRACE (Texas Instru
ments 99/4 only).

VERIFY Same function as CLOAD? (Commodore PET
only).

Variables and Arrays

GENERAL RULES FOR VARIABLES

• All variable names must begin with a letter of the al
phabet (A to Z).

• Another letter or a digit (0 to 9) may follow the letter.

• Variable names may contain up to 255 letters or digits;
however, only the first two letters or digits will be
"significant" in distinguishing between variable names.
Exceptions: Variable names are significant to the first 15
letters or digits in Texas Instruments 99/4 BASIC; vari
able names are significant to the first 40 letters or digits
in IBM Advanced BASIC.

TYPES OF VARIABLES

Different types of variables may be declared by adding the
appropriate character following each variable name.

13

14 Variables and Arrays

Character Type Definition

$ String Variable containing up to
255 characters

% Integer Variable storing a whole
number from -32767 to
32767

! or E Single precision Variable storing value
using 6 significant figures

Double precision Variable storing value
using 16 significant figures

D Double precision Used for constants or for
with scientific output for very large or
notation very small numbers

Variables without declaration characters are assumed to

be single precision.

ASSIGNMENT OF VALUES

Values may be assigned to variable names using the LET
statement:

LETX = 10

However, values may be assigned to variables without
LET:

X = 10

Values may be assigned to variables as the results of oper
ations:

X = A/B

ARRAYS

Arrays are items of data arranged and stored using a single
variable name. The individual parts of an array are known

Variables and Arrays 15

as elements. Elements may be numbers or strings. Each
element is identified by the array name followed by an
integer (known as a subscript). Array names follow the
same rules as variable names.

The number of elements in an array is set by the DIM
statement. The statement

array name

DIM A(5)

^limit ofarray (or dimension)

would set up a one-dimensional array containing the ele
ments A(0), A(1), A(2), A(3), A(4), and A(5). The 0 sub
scripted variable name is usually not used but is available.

Arrays may have more than one dimension. The state
ment

^^first dimension

DIM A(2,3)

^second dimension

sets up a two-dimensional array with elements such as
A(0, 0), A(1,1), A(1, 2), A(2,1), etc.

The dimensions of an array may be either numbers or
expressions. DIM statements may be placed anywhere in a
BASIC program.

SPECIAL VARIABLE STATEMENTS

DEFDBL Causes variables beginning with any letter in a
specified range to be stored and treated as double preci
sion variables. The form is

DEFDBL letters

(Available in IBM Advanced and Radl. Shack Level II
only.)

16 Variables and Arrays

DEFINT Similar to DEFDBL, but causes variables begin
ning with any letter in a specified range to be stored
and treated as integer variables (IBM Advanced and
Radio Shack Level II only).

DEFSNG Similar to DEFDBL, but causes variables be
ginning with any letter in a specified range to be stored
and treated as single precision variables (IBM Ad
vanced and Radio Shack Level II only).

DEFSTR Similar to DEFDBL,but causes variables begin
ning with any letter in a specified range to be stored
and treated as string variables (IBM Advanced and
Radio Shack Level II only).

ERASE Eliminates arrays of variables from a program
(IBM Advanced only).

OPTION BASE Sets the lowest subscript limit of an
array (IBM Advanced and Texas Instruments 99/4
only).

SWAP Exchanges values of two variables. The form is
SWAP first variable, second variable

(Available in IBM Advanced only.)

Arithmetic, Relational, and
Logical Operators

ARITHMETIC OPERATORS

+ Addition

— Subtraction

* Multiplication

/ Division

\ Integer division (IBM Advanced only)

A or t Exponentiation

MOD Gives integer remainder of integer division
(Apple and IBM Advanced only)

RELATIONAL OPERATORS

< Less than

> Greater than

= Equal to

<> Not equal to

17

18 Arithmetic. Relational, and logical Operators

<= Less than or equal to

> = Greater than or equal to

(Not all relational operators are available in Atari or Texas
Instruments 99/4.)

LOGICAL OPERATORS

AND Expression is true if both parts are true; other
wise expression is false

OR Expression is true if either part is true; otherwise
expression is false

NOT Makes an expression not true

XOR Expression is false if both parts are false or if
both parts are true; expression is true if one part
is true and other part is false (IBM
Advanced only)

IMP Expression is false if first part is true and
second part is false; otherwise expression is true
(IBM Advanced only)

EQV Expression is true if both parts are true or both
parts are false; otherwise expression is false
(IBM Advanced only)

NEGATION

An expression may be made negative by placing the sym
bol - before it.

ORDER OF OPERATIONS

Arithmetic, relational, and logical operations are per
formed in the following order of precedence:

Arithmetic, Relational, and Logical Operators 19

1. Exponentiation

2. Negation

3. Multiplication and division from left to right

4. Addition and subtraction from left to right

5. Relational operators from left to right

6. NOT

7. AND

8. OR

9. XOR

10. IMP

11. EQV

The order of operations may be altered by placing ex
pressions and operations in parentheses. When paren
theses are nested, operations in the innermost set of
parentheses are performed first. Evaluation is performed
on the next level of parentheses outward, etc.

Control and Transfer
Statements

UNCONDITIONAL CONTROL STATEMENTS

END Terminates execution of a program.

RETURN Ends a subroutine and returns control to the
statement immediately following the last executed
GOSUB statement.

STOP Interrupts execution of a program.

WAIT Suspends program execution until conditions
specified following WAIT are met (Apple II, Commo
dore PET, and IBM Advanced only).

UNCONDITIONAL TRANSFER STATEMENTS

GOSUB Transfers program control to subroutine begin
ning at line number indicated by expression following
GOSUB.

GOTO Transfers program control to line number indi
cated by expression following GOTO.

21

22 Control and Transfer Statements

CONDITIONAL TRANSFER STATEMENTS

ELSE Used in conjunction with the IF statement to
specify an alternative action when the IF test is false:

IF test alternative action

IF A = BPRINT "A = B" ELSE PRINT "^ DOES
NOT EQUAL B"

(Available only in IBM Advanced, Radio Shack Level II
and Extended Color only.)

ERROR Used in conjunction with IF... THEN to cause
printing of an error message when a specified condition
is found (Radio Shack Level II only).

Simulates the occurrence of an error or allows defi
nition of error codes (IBM Advanced only).

FOR ... TO Sets up a loop of statements to be repeated
for a specified number of times. The FOR ... TO loop is
terminated by NEXT:

10 FORI = 1 TO 10
20 PRINT I;
30 NEXT

I is known as the index variable. Each time the loop
is executed, 1 is added to the value of the index vari
able. When the value of the index variable exceeds the
upper limit of its range (10 in the example above),
execution of the loop ends and program execution
continues normally.

STEP may be used to specify the increment by
which I increases. In the program line

10 FORI = 1 TO50 STEP5

J will increase from 1 to 50 in jumps of 5 and the loop
will terminate when the value of / exceeds 50. If STEP
is omitted, /will increase in increments of 1. The incre
ment, starting value, and ending value of/may be nega
tive numbers.

Control and Trans/er Statements 23

IF... GOSUB Tests the expression following IF to see if
it is true or false. If the expression is true, the sub
routine beginning at the line number following GOSUB
is executed. If the expression is false, the next line in
the program is executed. (Not available in Atari, IBM
Advanced, or Texas Instruments 99/4.)

IF... GOTO Tests the expression following IF to see if it
is true or false. If the expression is true, program con
trol is transferred to the line number following GOTO.
If the expression is false, the next line in the program is
executed. (Not available in Atari or Texas Instruments
99/4.)

IF... THEN Tests the expression following IF to see if it
is true or false. If the expression is true, the statement
following THEN is executed. If the expression is false,
the next line in the program is then executed. An alter
native action to the one following THEN may be
specified by using ELSE:

IF A = B THEN PRINT "A = B" ELSE STOP

(Texas Instruments 99/4 allows only line numbers fol
lowing THEN and ELSE.)

ON COMfn) GOSUB Branches to subroutine beginning
at line number following GOSUB when information
enters the communications buffer through the com
munications adapter (1 or 2) indicated by n (available
in IBM Advanced only).

ON ERROR ... GOTO Transfers program control to line
number following GOTO when error is found during
program execution. The ON ERROR ... GOTO state
ment must be executed before an error occurs to have
effect (available in IBM Advanced and Radio Shack
Level II only).

ONERR ... GOTO Same function as ON ERROR ...
GOTO (Apple II only).

ON ... GOTO Transfers program control to a line num-

24 Control and Transfer Statements

ber depending upon an integer obtained by evaluating
the expression following ON:

100 ON IGOTO 300j400^500
whenI "l 2^ Z

I is an expression evaluating to an integer. If the
value of / is greater than the number of elements fol
lowing GOTO, the next line in the programis executed.

ON ... GOSUB Similar to ON ... GOTO, but transfers
control to subroutines instead of line numbers.

ON KEY(n) GOSUB Enables trap routine for a key
specified by n, where n is an expression between 1 and
14 (IBM Advanced only).

ON PEN GOSUB Transfers control to subroutine begin
ning at line number following GOSUB when light pen
is activated (IBM Advanced only).

ON STRIG(n) GOSUB Enables trap routine when one of
the joysticks is pressed. If n = 0 the first joystick con
trols; if n = 2 the second joystick controls (IBM
Advanced only).

WHILE ... WEND Sets up a loop of statements which is
executed as long as a given condition is true. The usual
form is

WHILE expression
Loop of statements
WEND

The expression is true as long as it is not equal to zero.
After each loop execution, the expression following
WHILE is checked. If the expression is not true, pro
gram execution resumes at the first statement following
WEND (IBM Advanced only)

Input and Output Statements

OUTPUT STATEMENTS

PRINT Outputs string variables, numbers, variables, or
material enclosed in quotes:

100 X = 10

200 PRINT X

10

100 A$ = "OUTPUT"
200 PRINT A$

OUTPUT

100 PRINT "OUTPUT"

OUTPUT

More than one item can follow a PRINT statement. If
the items are separated by commas, each item is
printed in a separate printing zone on the microcom
puter system's video display:

100 PRINT "OUTPUT", "OUTPUT"
OUTPUT OUTPUT

If the items are separated by semicolons, no space is
inserted between items on the display:

100 PRINT "OUTPUT"; "OUTPUT"
OUTPUTOUTPUT

25

26 Input and Output Statements

PRINT can also be used to perform calculations:
100 PRINTS = 2

7

PRINT @ Specifies the exact position where printing is
to begin. The usual form is

PRINT© n,output

where n is an integer from 0 to 1023 and output is the
data to be printed (Radio Shack Level II and Extended
Color only).

POSITION Similar function to PRINT @ (Atari only).

PRINT USING Prints string and numeric values accord
ing to format specified. The form is

PRINT USING format specifier: value

PRINT USING uses the following symbols in format
specifiers:

Specifies position of a digit

Specifies the decimal point in a
value

i Specifies that a comma is to be in
serted after every third digit

** Specifies that all unused spaces to
the left of the decimal will be filled
with asterisks

$$ Specifies a dollar sign will occupy
the first position preceding the num
ber

**$ Specifies a dollar sign in the first po
sition preceding the number and all
unused spaces to the left will be
filled with asterisks

Input and Output Statements 27

AAAA or fttt Specifies that the value is to be
printed in exponential form

+ Specifies a + for positive numbers
and a - for negative numbers when
placed at the beginning of the format
specifier

/n/ Specifies that n plus 2 additional
characters from a string are to be
printed (IBM Advanced only)

%n% Specifies a string field of more than
one character; the length of the field
will be the number of spaces equal
to n plus 2 (Radio Shack Level II and
Extended Color only)

I Specifies that the first string charac
ter of the current value will be re
turned

(PRINT USING statement is available in IBM Ad
vanced, Radio Shack Level II and Extended Color only.)

TAB Used with PRINT to specify printing begins in a
specified column position. The form is

PRINT TAB (exp)

where exp is an integer or expression that evaluates to
an integer (not available in Atari).

PRINT # Prints the values of specified data onto a file or
cassette tape (not available in Atari).

DISPLAY Similar in function to PRINT (Texas Instru
ments 99/4 only).

WRITE Similar to PRINT, but commas are inserted be
tween items as they are output (IBM Advanced only).

WIDTH Sets output line width in number of characters
(IBM Advanced only).

28 Input and Output Statements

INPUT STATEMENTS

INPUT Halts program execution and waits for input
from the keyboard. A prompting message may be added
in quotes; it will appear on the display. The form is

INPUT "prompt"; variables

INPUT# Inputs data from a cassette and assigns it to
variables (not available in Apple II or Atari).

RECALL Similar function to INPUT# (Apple II only).

READ Reads values accompanying a DATA statement
and assigns them to specified variables. The form is

READ list of variables

DATA Shows data in a list in a program. It can be
accessed by a READ statement. The form is

DATA list of items

READ and DATA statements are used together in the
following manner:

100 READ SUM
t

This is the first
value read for
SUM

This is the third
value read for
SUM

200 DATA 10,20

300 DATA 30,40
A 4-

This is the
second value
read for SUM

This is the fourth
(and last) value
read for SUM

RESTORE Causes the next READ statement to begin in
putting data beginning with the first data item in the
first DATA input.

SPECIALIZED OUTPUT STATEMENTS

BEEP Produces a "beep" sound from the speaker (IBM
Advanced only).

CALL SOUND Selects sound output from the system
(Texas Instruments 99/4 only).

Input and Output Statements 29

CLOSE Closes peripheral data file (Commodore PET,
IBM Advanced, Radio Shack Extended Color, and
Texas Instruments 99/4 only).

DSP Displays line number where value of variable is
changed (Apple II only).

LLIST Lists program or specified line on a printing
peripheral (IBM Advanced, Radio Shack Level II and
Extended Color only).

LPRINT Similar to PRINT, but sends output to a print
ing peripheral (Atari, IBMAdvanced, and Radio Shack
Level II only).

LPRINT USING Similar to PRINT USING, but with a
printing peripheral (IBM Advanced only).

OPEN Opens a peripheral to inputor output a data file
(Commodore PET, IBM Advanced, and Texas Instru
ments 99/4 only).

OPEN COM ... AS Opens data file for communications
(IBM Advanced only).

OUT Sends specified value to a designated port (IBM
Advanced and Radio Shack Level IIonly).

PLAY Plays music of a specified note, octave, volume
and length (IBM Advanced and Radio Shack Extended
Color only).

PR# Similarto OUT (Apple II only).
SOUND Produces specified tone for selected duration

(Atari, IBM Advanced, and Radio Shack Extended
Color only).

SPEED Selects speed at which characters are sent to an
output device (Apple II only).

STORE Sends contents ofa numeric array tg a cassette
(Apple II only).

UPDATE Reads and writes an opened file stored on a
cassette (Texas Instruments 99/4 only).

30 Input and Output Statements

SPECIALIZED INPUT STATEMENTS

APPEND Allows additional data to be added to the end
of a data file (Texas Instruments 99/4 only).

CALL JOYSTK Checks for and accepts input from a joy
stick (Texas Instruments 99/4 only).

IN Goes to input port and receives value there (Radio
Shack Level II only).

IN# Similar function to IN (Apple II only).

JOYSTK Returns the horizontal or vertical coordinate of
a joystick (Radio Shack Extended Color only).

LINE INPUT Inputs line from keyboard to a string vari
able (IBM Advanced and Radio Shack Extended Color
only).

PADDLE Accepts value from a control paddle (Atari
only).

PDL Similar function to PADDLE (Apple II only).

PTRIG Returns a 0 if the game paddle button is pre
sented or a 1 if it is not pressed (Atari only).

STICK Similar function to JOYSTK (IBM Advanced
only).

STRIG Similar function to PTRIG, but is used with joy
sticks (Atari and IBM Advanced only).

Subroutines

A subroutine is a grouped sequence of statements accom
plishing a certain action. A subroutine may be used as
often as needed in a program.

THE GOSUB STATEMENT

Program control shifts to a subroutine through a GOSUB
statement or a variant of GOSUB. When the subroutine is
executed, program control shifts back (througha RETURN
statement) to the main program at the first statement fol
lowing GOSUB:

31

32 Subroutines

100

110

Program
control is
transferred to
subroutine
here

900

999

-•1000

1010

GOSUB 1000

IF X = Y THEN GOTO 200 •<•

RETURN sends
control back to
first statement
following
GOSUB

PRINT "THE SUBROUTINE
HAS BEEN EXECUTED"

END

PRINT "THE SUBROUTINE IS
NOW BEING EXECUTED"

RETURN

THE SUBROUTINE IS NOW

BEING EXECUTED

THE SUBROUTINE HAS BEEN

EXECUTED

Subroutines are placed at the end of the main program.
Good programming practice calls for using 0 through 999
for line numbers in the main program and 1000 through
9999 for line numbers in subroutines.

END should be added as the last statement in the main

program when subroutines are used. This prevents pro
gram control from flowing directly to subroutines when
execution of the main program is finished.

String Functions

The general form of a string function is

string function (string variable or argument)

ADR Returns the address where the name, value, and
pointer of the variable are located in memory (Atari
only).

ASC Returns the American Standard Code for Informa
tion Interchange (ASCII) value of the first character of a
string.

CALL KEY Checks keyboard and returns key being
pressed or null string if no key is pressed (Texas Instru
ments 99/4 only).

CHR$ Returns a one-character string whose character
has an ASCII graphics or control code specified by a
number or expression evaluating to 0 through 255.

CVD Converts an 8-byte string to a double precision
number (IBM Advanced only).

CVI Converts a 2-byte string to an integer (IBM Ad
vanced only).

CVS Converts a 4-byte string to a single precision num
ber (IBM Advanced only).

33

34 String Functions

FRE Returns amount of free memory available for string
variable storage (Atari, Commodore PET, IBM Ad
vanced, and Radio Shack Level II only).

GET Same function as CALL KEY (Apple II and Com
modore PET only).

Reads a record from a random file into a random
buffer (IBM Advanced only).

INKEY$ Same function as CALL KEY (IBM Advanced,
Radio Shack Level II and Extended Color only).

INSTR Searches a designated string beginning at an in
dicated position for another designated string and re
turns position at which target string is found (IBM
Advanced and Radio Shack Extended Color only).

LEFT$ Returns specified number of characters, n, from a
string starting at the left. The form is

LEFT$ (string, n)

(Not available in Atari or Texas Instruments 99/4.)

LEN Returns the length of a specified string or 0 if the
string is null.

MID$ Returns specified number of characters, n, from a
string starting at position p. The form is

MID$ (string position, n, p)

(Not available in Atari or Texas Instruments 99/4.)

POS Returns a substring from a string beginning at posi
tion n in the string. The form is

POS (string, substring, n)

(Available in IBM Advanced, Radio Shack Level II and
Extended Color, and Texas Instruments 99/4.)

RIGHT$ Similar to LEFTS, but returns specified number
of characters from a string starting at the right (not
available in Atari or Texas Instruments 99/4).

SEG$ Returns a specified number of characters, n, from
a string beginning at position p, where p is a number
representing a character numbered from left to right in
the string. The form is

String Functions 35

SEG$ (string p, n)

(Available in Texas Instruments 99/4 only.)
STR$ Converts a numeric expression into a string.
STRINGS Returns a string of length n composed of a

character c. The form is

STRINGS (n,c)

(Available in IBM Advanced, Radio Shack Level II and
Extended Color only.)

VAL Converts a string to a number.

VARPTR Same function as ADR (IBM Advanced, Radio
Shack Level II and Extended Color only).

Numeric Functions and
Statements

The general form of a numeric function is
numeric function (number or expression)

ABS Returns the absolute value of an expression.
ATN Returns the arc tangent of an expression.

CDBL Returns a double-precision representation of the
number or expression (IBMAdvanced and Radio Shack
Level II only).

CINT Returns the largest integer not greater than the
number or expression (IBMAdvanced and Radio Shack
Level II only).

CLOG Returns the common logarithm of an expression
(Apple II and Atari only).

COS Returns the cosine of an expression.

CSNG Returns a single-precision representation of a
number or expression (IBMAdvanced and Radio Shack
Level II only).

DEF Allows defining of new numeric functions (Texas
Instruments 99/4 only\

37

38 Numeric Functions and Statements

DEF FN Same function as DEF (Apple II, Commodore
PET, IBM Advanced, and Radio Shack Extended Color
only).

ERL Returns the line number where an error has
occurred (IBM Advanced and Radio Shack Level II
only).

ERR Returns a value related to the code of an error (IBM
Advanced and Radio Shack Level II only).

EXP Returns the value of the natural number e raised to
the power specified by a following expression.

FIX Returns a truncated representation of an argument
(IBM Advanced and Radio Shack Level II only).

FRE Gives the total number of unused bytes in memory.
If followed by a string variable, gives amount of unused
string space (Atari, Commodore PET, IBM Advanced,
and Radio Shack Level II only).

HEX$ Returns the hexadecimal value of a number (IBM
Advanced and Radio Shack Extended Color only).

INT Returns the integer portion of an expression that is
less than or equal to the expression.

LOG Returns the natural logarithm of an argument.

MEM Returns the amount of free memory available
(Radio Shack Level II and Extended Color only).

MKD$ Converts a double-precision number to an 8-byte
string (IBM Advanced only).

MKI$ Converts an integer to a 2-byte string (IBM
Advanced only).

MKS$ Converts a single-precision number to a 4-byte
string (IBM Advanced only).

NULL Prints the number of spaces specified (Atari only).
OCT$ Returns the octal value of a number (IBM Ad

vanced only).

POS Returns a number from 0 to 63 indicating the
cursor position on the video terminal (Apple II, Com-

Numeric Functions and Statements 39

modore PET, IBM Advanced, Radio Shack Level II and
Extended Color only).

PPOINT Returns color code of a specified graphics cell
(Radio Shack Extended Color only).

RANDOM Reseeds the random number generator (Com
modore PET and Radio Shack Level II only).

RANDOMIZE Same function as RANDOM (IBM Ad
vanced and Texas Instruments 99/4 only).

RND Generates a pseudorandom number (not available
in Radio Shack Extended Color).

SGN Returns a -1 if an expression is negative, a 0 if it is
0, and a 1 if it is positive.

SIN Returns the sine value of an expression in radians.
SPC Returns the number of skips specified (Commodore

PET and IBM Advanced only).

SQR Returns the square root of an expression (not avail
able on Atari).

TAN Returns the tangent of an expression (not available
on Atari).

Tl Sets real-time clock to specified value (Commodore
PET only).

TIMER Returns contents of or allows setting of timer
(Radio Shack Extended Color only).

TIMES Sets or displays current time (IBM Advanced
only).

Assembly Language Routines
and Statements

DIRECT MEMORY ACCESS STATEMENTS

PEEK Returns the value stored at the address specified
(Atari restricts use to video locations only; not avail
able in Texas Instruments 99/4).

GO GCHAR Same function as PEEK (Texas Instruments
99/4 only).

POKE Places a specified value at a designated memory
location. The form is

POKE addr.val

where addr is the memory address and val is the value
(not available in Texas Instruments 99/4).

ASSEMBLY LANGUAGE SUBROUTINES

CALL Causes program control to shift from the main
program to the assembly language subroutine located at
the specified memory address. The form is

CALL memory address

41

42 Assembly Language Routines and Statements

Instructions to return to the main program are con
tained within the assembly language subroutine (Apple
II and IBM Advanced only).

DEFUSR Defines the starting address of a machine lan
guage subroutine (IBM Advanced and Radio Shack
Extended Color only).

EXEC Transfers control to assembly language programs
located at specified address (Radio Shack Extended
Color only).

POP Removes the most recent addition from the mem
ory register stack (Apple II and Atari only).

USR Similar function to CALL (not available in Atari or
Texas Instruments 99/4).

Graphics Statements

CALL CHAR Defines a new character for the video dis
play (Texas Instruments 99/4 only).

CALL CLEAR Erases video display but does not affect
program in memory (Texas Instruments 99/4 only).

CALL COLOR Defines the background color used by in
dividual characters (Texas Instruments 99/4 only).

CALL HCAR Draws a horizontal line at a specified line
number (Texas Instruments 99/4 only).

CALL SCREEN Defines background color of the video
display (Texas Instruments 99/4 only).

CALL VCHAR Draws a vertical line at a specified
column (Texas Instruments 99/4 only).

CIRCLE Draws a circle on the video display (IBM
Advanced and Radio Shack Extended Color only).

CLS Same function as CALL CLEAR (Apple II, IBM Ad
vanced, Radio Shack Level II and Extended Color only).

COLOR Sets the color of the point for the next plot
(Apple II only).

Defines the background color used for individual
characters (Atari only).

43

44 Graphics Statements

Sets foreground and background colors (Radio Shack
Extended Color only).

Sets the foreground, background, and border colors
(IBM Advanced only).

DRAW Draws a line beginning at a specified starting
point for a specified length and of an indicated color
(Radio Shack Extended Color only).

Draws an object as specified by characters in the
string following DRAW (IBM Advanced only).

DRAWTO Draws a line from the last plotted point to
new position specified (Atari only).

GET Reads graphics contents of a rectangle into memory
(Radio Shack Extended Color only).

In text mode, reads record from random file into ran
dom buffer; in graphics mode, reads points from an
area of the screen (IBM Advanced only).

GR Turns on low-resolution graphics (Apple II only).

GRAPHICS Similar function to CALL HCAR (Atari
only).

HCOLOR Selects the background color of the video dis
play screen (Apple II only).

HLIN ... AT Similar function to CALL HCHAR (Apple
II only).

HPLOT Similar function to DRAWTO (Apple II only).

LINE Draws a line from one specified point to another
(IBM Advanced and Radio Shack Extended Color
only).

PAINT "Paints" video display starting at a specified
point and continuing until a designated point is
reached (IBM Advanced and Radio Shack Extended
Color only).

PCLEAR Reserves specified amount of graphics mem
ory (Radio Shack Extended Color only).

Graphics Statements 45

PCLS Clears video display using specified background
color (Radio Shack Extended Color only).

PCOPY Copies graphics from source page to destination
page (Radio Shack Extended Color only).

PLOT Turns on specified graphics block (Apple II and
Atari only).

PMODE Selects graphics resolution and first memory
page (Radio Shack Extended Color only).

POINT Checks specified video location and returns a 1 if
it is on, a 0 if off (Radio Shack Level II only).

Returns color of specified point on the screen (IBM
Advanced only).

PRESET Resets a point to specified background color
(IBM Advanced and Radio Shack Extended Color
only).

PSET Sets a specified point to a designated color (IBM
Advanced and Radio Shack Extended Color only).

PUT Stores graphics from source onto start/end rectan
gle (Radio Shack Extended Color only).

In text mode, writes record from a random buffer to a
random file. In graphics mode, writes colors onto
specified area of screen (IBM Advanced only).

RESET Resets a graphics point (Radio Shack Level II
and Extended Color only).

SCREEN Selects graphics or text screen and color
(Radio Shack Extended Color only).

Returns the ASCII code for the character on the
screen at a specified line and column (IBM Advanced
only).

SET Similar function to PLOT (Radio Shack Level II and
Extended Color only).

SETCOLOR Similar function to CALL SCREEN (Atari
only).

46 Graphics Statements

TEXT Switches from graphics to text mode (Apple II
only).

VLIN ... AT Similar function to CALL VCHAR (Apple
II only).

VTAB Moves cursor down a specified number of lines
(Apple II only).

Glossary

Address a label identifying the location in memory
where information is stored.

ASCII acronym for American Standard Code for Infor
mation Interchange, a code used for data interchange
between different computers.

Assembly Language a language using short phrases to
produce machine language instructions.

Baud the rate of speed at which binary data is trans
ferred, in bits per second.

Bit contraction of "binary digit," a unit of information
equal to a single binary decision (0 or 1, true or false,
etc.).

Bus circuit used as a path for data or power trans
mission.

Byte a unit of 8 bits.

Command an instruction directing a microcomputer to
perform a specified action.

Compiler a system that converts a high-level language
such as BASIC into assembly or machine language.

Execute to perform an instruction.

Floppy a flexible magnetic storage diskette.

Hardware the physical components of a computer
system.

47

48 Glossary

Instruction a statement containing information causing
a microcomputer to perform a specified action, opera
tion, or function.

Joystick a controller used to control video graphics.

Machine Language a language used directly by a micro
processor.

Memory part of a microcomputer where information is
stored.

Microprocessor the microcomputer's central computa
tional and control unit.

Modem an electronic device designed to connect com
puters and terminals over telephone circuits; a
modulator-demodulator.

Paddle a graphics controller similar to a joystick.

Peripheral an adjunct device used with a microcom
puter system, such as a printer, video terminal, etc.

Port an opening or connection for access to a microcom
puter system.

Precision the exactness to which a quantity is defined or
represented.

Program a set of instructions arranged in proper se
quence for directing a microcomputer's operation.

Software programs, documents, procedures, and lan
guages used with microcomputer systems.

Terminal a device in a microcomputer system where
data can be stored or retrieved from the system.

Index

Conditional transfer statements,
22-24

Conversion of different

implementations:
assembly language subroutines,

1

graphics statements, 2
line-for-line conversions, 3

Direct memory access statements,
41

Line numbers, 5

Operators:
arithmetic, 17
logical, 18
negation, 18
relational, 17-18

Order of operations, 19

REM statements, 5

Statements, more than one on a

single line, 6

Unconditional control statements,
21

Unconditional transfer statements,
21

Variables:

arrays, 14-15
assignment of values, 14
general rules for, 13
special statements, 15-16
types, 13-14

49

About the Author

HARRY HELMS is a technical writer and consultant. For

merly a technical writer for Radio Shack and Texas Instru
ments, he is the author of over 100 articles on various
technical subjects for such magazines as Popular Elec
tronics, Science and Electronics, Elementary Electronics,
and Modern Electronics. He is the author of eight other
books, and served as editor-in-chief of the forthcoming
McGraw-Hill Computer Handbook. A graduate of the Uni
versity of North Carolina, he lives in New York City.

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

	front-cover
	content01
	content02
	content03
	back-cover

