

Funto ProgmmYoMf
Ti-99 Series ;

ByHoward Bum

Illustrated by Cris Hammond

6Pinnacle Books ^ New York

ATTENTION: SCHOOLS AND CORPORATIONS

PINNACLE Books are available at quantity discounts
with bulk purchases for educational, business or special
promotional use. For further details, please write to
SPECIAL SALES MANAGER, Pinnacle Books, Inc., 1430
Broadway, New York, NY 10018.

SPEED WALKER Fun To Program™Your TI-99Series

Copyright © 1984 United Feature Syndicate, Inc.

All rights reserved, including the right to reproducethis
book or portions thereof in any form.

An original Pinnacle Books edition, published for the first
time anywhere.

First printing/September 1984

ISBN: 0-523-42247-4

CAN. ISBN: 0-523-43239-9

Printed in the United States of America

PINNACLE BOOKS, INC.
1430 Broadway
New York, NY 10018

98 7 6543 2 1

Contents

Introduction I

1 What's Your Fortune? 1

2 ASecret Code 12

3 An Initial Race 27

4- Burst the Balloon 44

D Scrambled States S3

O Glossary and Index 88

Welcome to Fun To Program with Speed Walk
er! This book has been designed for anyone who
already knows some BASIC and is ready to use it
to create interesting programs. We assume that
you have learned these BASIC commands:

REM FOR/NEXT END
PRINT IF/THEN

INPUT GOTO

Being a programmer is like being a detective-
you must constantly uncover mysteries in programs.
Programmers spend half their lives searching for
clues that tell them what went wrong in their
programs. To make it easier for you to read, to
modify, and to debug your programs, in this book
we use structured programming. This means that
we plan the main parts of the program first and
then refine the details. We use plenty of REM
statements to document the meaning of the varia
bles we use and what the parts of the program
do. And we indent parts of the program to show
how they relate to each other.

In the vein of being detectives, we are going to
learn techniques that are involved with mysteries:
telling fortunes, coding and decoding secret
messages, and moving objects around the screen.
Each chapter adds new concepts and commands
and leads to a new game using combinations of
these techniques. Every new idea is explained
thoroughly, with examples for you to type in and
experiment with. By the last chapter we will have
built up a much more complex game than the one
we start with, but by that time you will be familiar
with all the parts that make up the program.

At the end of each chapter we present ideas for
variations that you could make in the program. In
a sense, programs are never finished-you can
always add one more improvement. And that's
the beauty of programming: you can take your
own original ideas and implementthem to the best
of your ability. So, although we present programs
in these chapters for you to enter and run, the
programs are really open-ended. We want you to
modify and improve them, add new elements, and
make up your own games. Above all, we want
you to have fun!

II

Imagine yourself opening a fortune cookie. Did
you ever wonder how that particular fortune got
into your cookie? Did somebody want you to
have that one? Probably not. Someone must have
sat down and made up a lot of fortunes, and
someone must have put them all into the cookies,
but they did this in a "random" way. In other
words, you could have gotten any fortune that
had been written.

Computers can do many things, and one of
them is telling fortunes. They don't work by magic,
though. As you already know, someone has to

program them-tell them exactly what steps to
follow. We are going to write a fortune-telling
program, and well follow the same steps as we
would in making fortunes for cookies:

1. Make up a lot of fortunes and store them.
2. Pick a fortune at random.

3. Show the fortune.

In this book we are going to structure programs
so that they are easy to read and to change. We
will do this by dividing the program into steps
such as the three above, called subroutines. The
main body of the program tells the computer
where to find each subroutine. The main body
reads as if it were a table of contents to the

program.

We also use a lot of REMarks to tell us what
everything in the program does: what variables
we are using, what each subroutine does. Here is
how the main body of the fortune-telling program
looks:

10 REM WHAT • S YOUR FORTUNE?

20 REMF*(iO : ARRAY OF HFORTUNES

30 REM J: COUNTER

*40 REMNs RANDOM NUMBER

50 REM

100 G0SUB10Q0

200 G0SUB2000

300 G0SUB3DQQ

4DD END

2

The first REMork is the name of the program.
The next three lines name all the variables we will
use in the program. Lines 100, 200, and 300 show
where the three subroutines we will use are locat
ed. GOSUB 1000 tells the computer to go to line
1000, execute all the instructions there until it
comes to the command RETURN, at which point it
should come back to where it left off.

STORING THE FORTUNES

I'M LOOKING FOR
wI alittle S&

[COMPt/TER.

** Now let's begin writing the subroutines. The
^ subroutine at line 1000 will store as many fortunes
*" as we want in DATA statements. Here is the begin-
** ning of the subroutine:

^ 1000 REM STORETHE F0RTUNES-
_ 1010 DATA f fYOU WILL BE RICH0 f

1020 DATA f fYOU ARE VERY FUNNY' •

1030 DATA f 9Y0U LOVE COMPUTERS'f

10M0 DATA f ?YOU UILL GO ONA LONG TRIP1 f

Feel free to use your own fortunes-just make
sure you begin each line with DATA and put
quotes around the data you write. DATA state
ments can come anywhere in a program. When
the computer finds a READ statement it automati
cally looks for DATA to read. It starts looking at
the beginning of the program and keeps looking
until it finds some. The next time it gets a READ
command it continues from the last piece of data.
We are using four pieces of data, so we need
four READ commands:

10S0 DIMF*(*0

IDtO F0RJ=1T0M

1070 READF$(J)

1080 NEXT J

10T0 RETURN

Line 1050 notifies the computer that F$ is not a
single variable but will have four elements, or
cells. The group of four fortunes is called an array
-several pieces of data sharing the same variable
name.

The loop in lines 1060 to 1080 instructs the
computer to READ four pieces of DATA and store
them in F$: the first string (or fortune) is called
F$(1), the second iscalled F$(2), and so on.

Line 1090 makes the computer return to the
main program and continue from where it left off.
It will now execute line 200, which tells it to go to
the subroutine at line 2000 and pick a fortune;"'

CHOOSING A FORTUNE

AT RANDOM

Now that we have four fortunes stored as

F$(1), F$(2), F$(3), and F$(4), we need to pick
one of them at random. The Tl has a built-in func
tion that can choose a different number each time
you use it. If we can get it to pick the number 1, 2,
3, or 4, we can use that number to select one of
the four cells of F$. We will use the random func
tion so much in this book that we had better spend
some time understanding how it works.

5

Let's work on a little test program. If you are
typing in the FORTUNES program, save it and
type NEW. Then type in the following:

10 F0RX=1T010

BO PRINT RND

3D NEXTX

That's the whole program. Run it a few times
and study the numbers you get. They should all be
decimals between 0 and 1. However, you should
get the same random numbers each time. To get
different numbers, we need a new Tl command,
RANDOMIZE. Insert this line in your program:

S RANDOMIZE

and run the program a few more times. Now the
numbers should all be different. Every time we use
the RND function we will use RANDOMIZE at the
beginning of the program. Notice that the num
bers you are getting are all decimals between 0
and 1. We need bigger numbers, so make this
change:

SO PRBIT4*RND

Run this version a few times. Now all the num
bers should be between 0 and 3.999.... They
won't quite get up to 4.

6

• 30

For our fortunes we need the integers 1, 2, 3,
or 4~we don't want the decimal part of the
number. BASIC has an integer function that chops
off the decimal part. Change line 20 again:

BO PRINT INT (H* RND)

and run it. Now the computer picks decimal num
bers at random, multiplies them by four, and
chops off the decimal. But there is still one thing
wrong-notice that the range of the numbers is
from 0 to 3. We want a range from 1 to 4, so one
more change is necessary:

SO PRINT INT (H* RND) +1

This version should give us the numbers we
want. Using this formula, we can write the whole
subroutine in three lines:

5000 REM PICK A RANDOM NUMBER-

3010 RANDOMIZE

3030 N = INT(M*RND) +1

3030 RETURN

We are getting a random number from 1 to 4
and storing it as N. All we have to do now is to
show fortune number N.

DBSPLAYBNG THE FORTUNE

THEY SOLD ne
MS FORTUNE
warn game,
BUTI CANT
FIND THE SLOT
FOR MY QUARTER

You should have no trouble in seeing how this
subroutine works:

3000 REM DISPLAY THE FORTUNE

3010 CALL CLEAR

30H0 PRINT ''HERE'S YOUR FORTUNE:''

3D30 PRINT

3040 PRINTF$(N)

3050 RETURN

CALL CLEAR erases the screen and line 3040
prints fortune N. What is fortune N? If N equals 1
then the computer will display F$(l),"YOU WILL BE
RICH". If N is 3, then F$(3) will be shown, "YOU
LOVE COMPUTERS".

8

PUTTING THE
PROGRAM TOGETHER

All the subroutines are written and the program
is ready to go. Even though you can see the whole
program by looking at various places in this chap
ter, it's a good idea to see if all in one place:

10 REM WHAT' S YOUR FORTUNEf—
20 REM F* (4) : ARRAY OF 4 FORTUNES
30 REM J: COUNTER
HO REM N: RANDOM NUMBER
SO REM

100 G0SUB1000

200 G0SUB2000

300 G0SUB3000

MOO END
1000 REM STORE THE FORTUNES—-
1010 DATA ''YOU WILL BERICH' *
1020 DATA ''YOU ARE VERY FUNNY''
1030 DATA ''YOU LOVE COMPUTERS''

1040 DATA "YOU WILL GO ON A LONG TRIP''

1050 DIMF$(4>

MM) F0RJ=1T0 4

1070 READF$(J)

lOflO NEXT J

lOTO RETURN

2000 REM PICK A RANDOM NUMBER

2010 RANDOMIZE

2020 N=INT(4*RND>+1

2030 RETURN

3000 REM DISPLAY THE FORTUNE

3010 CALL CLEAR

3020 PRINT "HERE'S YOUR FORTUNE: "
3030 PRINT

3040 PRINTFSCN)

3050 RETURN

There are always many things you can do to
improve a program and to make it more elabo-

10

rate. At the end of each chapter we will suggest a
few variations you can try and give you hints on
how to get started. Here are variations for our
fortune cookie program.

1. Four fortunes may not seem like enough of a
variety to you. You can make up and store as
many as you wish. You will, however, have to
change several parts of the program:

a. Add more DATA lines in the first subroutine.

b. Change the number in lines 1050 and 1060.
c. Also change the 4 in the random function

(line 2020).

2. Display two (or more) fortunes: Suppose two
people want to see their fortunes at the same time.
You would need to pick two fortunes - let's call
them N1 and N2:

SDH) N1=INT(«4*RND>+1

2DSS N2=INT(i**RNI>)+l

In the last subroutine, you would display both
N1 and N2. In this way you could store and print
any number of fortunes.

11

Have you ever used a secret code to communi
cate with a friend? All codes have rules to

follow—if you know the rules, you can decode a
message with no trouble. Computers can code
and decode very easily, as long as you program
in the rules. In this chapter we will write a game
program fo? two people to play. The first will type
in a message. The Tl will take the message,
change it into a code, and then show it to the
second player, who will try to decode it.

There are many, many different codes we could
use. Here we'll use a reverse code: the computer
will take the message and display it backwards.
The second player will have to read from right to
left to figure it out:

?SIHT DAER UOY NAC

If you can, you'll be able to decode everything
in this game. Here is the main body of the
program:

12

10 REM —

20 REM MS

30 REML*

40 REMC*

SO REM AS

tO REM J:

70 REM —

SECRET CODE —

: THE MESSAGE

: A LETTER IN THE MESSAGE

: THE CODE

: ANSWER

COUNTER

"" 100 60SUB1000
^ 200 GOSUB2000
^ 300 G0SUB3O00

^ 400 END

^ The main body shows us that there are five
^ variable names we will use, and three sections of

the program.

GETTING THE MESSAGE

HEY LOOK! SOMEONE SEMT^
YOU ADISC FOR YOUR ^/

COMPUTER... DO YOU
KNOWA "KILLER J
KILOBYTE"?

w In the subroutine at line 1000, we ask the sec
ond player not to watch while the first player

~ 13

types in the message. The message will be stored
asM$i

1000 REM GET THE MESSAGE

1010 CALL CLEAR

1020 PRINT *'ASK YOUR FRIEND NOT TO WATCH*'

1030 PRINT ''WHILE YOU TYPE YOUR MESSAGE.''

1040 PRINT

1050 PRINT ''TYPE THE MESSAGE,»'

lObO PRINT ''THEN PRESS RETURN:''

1070 INPUTm

1060 RETURN

REVERSING THE MESSAGE

{ISEHT KILOBYTE
UP THE RIMER
TWO YEARS

(IGUESS
'E'SWCK
DOWN
G RIVER

NOW.

Now the program has a string of characters
called M$ - any group of letters or numbers or
other keyboard characters such as dollar signs or
parentheses could be in the string. We need to

-t^0

\Jjj^

reverse all the characters in AA$ and store them in
a new variable we will call C$ (for code). The
procedure will be as follows:

1. Take the last character of M$ and make it
the first character of C$.

2. Make the second-to-last character of AA$ the
second character of C$.

3. Make the third-to-last character of M$ the
third character of C$.

4. Follow this procedure until we get to the last
character of M$, which will become the
first character of C$.

Suppose the message is just the word "HELLO".
The last character of M$ would be "O", so "O"
will be the first character of C$. Then, Lwill be the
second character of C$. When we finish the
coding, C$ should be

ff0LLEH9f.

The Tl has a special built-in function that can
pick out any character you wish from inside a
string of characters. Let's experiment to see how it
works. First type

m= "HORSE"

Then ask the Tl to

^ PRINT SEfi*((1$^-.l)

w (and press return, of course.)

The Tl should respond with the letter S, because q
S is character number 4 in M$. Now try this
command:

PRINT SEG*(M$-.3i2) *f

The Tl will show you two characters in M$, ^
starting at character number 3. You should see the w
letters RS when you press return. To use the SEG$ **>
function you need three pieces of information W
inside the parentheses: w

(name of string, starting character, how many w
characters) ^
In place of the numbers you may use variable ^
names. For example, tell the Tl that Q

J = s

and then tell it to

PRINTSEG*(n*-.J,l)

In other words, you want to see 1 character of
M$, starting at character number J, or 5. You ^
should see the letter E. What if J is 4? Then ^
SEG$(M$,J,1) is the letter S. By changing the val- w
ue of J we could look at all the characters in M$. ^

But how do we know how many characters i
there are in M$? w

Another Tl function tells us this fact. Trythis: ^
16 w

PRINT LENCftt)

LEN stands for the length of any string you put
inside the parentheses. Let's change M$ as
follows:

M$= "HI THERE!"

PRINT LEN (M$)

If you type in these commands, after the second
time you press return you will see that the length
of M$ is 9. The space and the exclamation point
count because they are both part of the string of
characters.

Before we write out the subroutine, let's use
these new functions in a short test program, just as
we did in the first chapter for the random func
tion. The best way to understand any new comput
er concept is to use it in the simplest program you
can imagine.

17

If you are already typing in our program, save
it, type NEW, and type in the following test:

10 m= "HELP"

20 F0RJ=1T04

3D PRINTSEG*(f1*,J-«l)

40 NEXT J

Run this program-the output should be the four
letters in HELP displayed one to a line on the
screen. The first time through the loop J equaled 1
so the first letter of M$ was printed. The second
time the second letter was printed, and so on.
Now make this change:

ID F0RJ = 4T01STEP-1

Run the program again. This time the letters are
displayed in reverse order. The first time through
the loop J equaled 4 so the fourth letter was
displayed. J decreased by 1 every time through
the loop, so the second time J equaled 3 and the
third letter was displayed. Now make one more
change:

10 FOR J = LEN (PI*) TO 1 STEP -1

The program should run exactly the same. The
computer simply substituted the number 4 for
LEN(M$) because there are four characters in M$.
18

%&

Because the computer can do this, we do not have
to know how many characters there are in M$ in
advance.

Now we're ready for the coding subroutine:

2000 REM REVERSE THE MESSAGE—•—
2010 FOR J = LEN (PI*) TO 1 STEP -1

2020 L* = SEG* (PI*-. J-.1)

203D C* = C*&L*

20H0NEXTJ

2050 RETURN

The routine has only a few steps. The
FOR/NEXT loop tells the computer to count down
starting from the last character until it gets to the
first character of M$. If M$ is the word "CAT"
the loop will be executed threetimes. The first time
J will equal 3, the second time J will be 2, and the
third time J will be 1.

L$ stands for one letter in M$. If M$ is "CAT",
the first time through the loop L$ will be "T", the
second time L$ will be "A", and the last time L$
will be "C".

Line 2030 takes each L$ and adds it on to the
end of C$ (the code). Before we start there is
nothing in C$, so the first L$ becomes C$ by itself.
After the first time through the loop, C$ will be
"T". After the second time, L$ will be "A" and
gets added to the end of C$--C$ will now be
"TA". After the last time through, UC" will get

19

added and make C$ "TAC
sage is now reversed.

SECOND PLAYER

The original mes-

Now that we have the original message (M$)
and the coded version (C$) the rest is easy. We
clear the screen and ask the second player to look
at C$ and type in the original message. We'll call
the second player's answer A$. If A$ matches M$
then the player is correct.

3000 REPI OUIZ

3010 CALL CLEAR

3020 PRINT ' 'ASK YOUR FRIEND TO TRY''

3030 PRINT ' 'TO DECODE THIS MESSAGE:''
30M0 PRINT

3050 PRINT C*

20

KM/

\^/

Mm/

Sfex

Sign/

's&

'HP'

30b0 PRINT

3070 PRINT ''TYPEYOUR ANSWERHERE:''

3060 INPUT A*

30TO IF A* = M$ THEN 3130
3100 PRINT ''SORRY-. THE MESSAGEWAS: •'

3110 PRINT PI*

3120 60T03mO
3130 PRINT "THAT'SIT!"

31M0 RETURN

THE WHOLE PROGRAM

Once again, we will printthe whole program in
one piece so you can see all the parts of it at
once.

10 REM —SECRET CODE

20 REM M$: THE MESSAGE

30 REM L* : A LETTER IN THE MESSAGE
MO REM«: THE CODE

21

SO REMA$: ANSWER w
bO REM J: COUNTER ^

70 REM — w

100 G0SUB1000 w
200 G0SUB20D0

300 G0SUB30Q0

400 END w
1000 REM- GET THE MESSAGE w

1010 CALL CLEAR <•/

1020 PRINT ''ASK YOUR FRIEND NOT TOWATCH'' w
1030 PRINT ''WHILE YOU TYPE YOUR MESSAGE. •'

1040 PRINT

1050 PRINT ''TYPE THE MESSAGE-.'' w
lObO PRINT ''THEN PRESS RETURN:'' w

1070 INPUT M* **

lOflO RETURN ^
2000 REM REVERSE THE MESSAGE-

2010 FOR J - LEN (M$) TO 1 STEP -1

2020 L* = SEG*(M$-.J-.l) w
2030 C$ = C$aL* *"

2040 NEXT J w

20S0 RETURN w
3000 REM (2UH

3010 CALL CLEAR

3020 PRINT''ASKYOURFRIEND TOTRY" w
3030 PRINT ''TO DECODE THIS MESSAGE: •' ^

3040 PRINT w

3050 PRINT C$

30b0 PRINT .

3070 PRINT '*TYPE YOUR ANSWER HERE:''

3030 INPUTA* w
SOTO IF A$ = M$ THEN 3130 ^

3100 PRINT ''SORRY-. THE MESSAGE WAS: " <*•

22

3110 PRINT Pi*

31ED 60T0 3mO

3130 PRINT "THAT'SIT!,f

3m0 RETURN

VARIATIONS

1. As it stands, our program always uses the
same code. If someone plays a number of times,
he or she will probably catch on to the code and
the game will stop being fun. Let's work on a
subroutine that uses a different code.

There are probably thousands of different
codes we could make up. Our fist code simply
reversed the message. Another code might insert a
letter after every letter of the message. In this case
the code for HELLO could be HXEXLXLXOX. One

easy change in the coding subroutine will take
care of this:

23

SDDD REM -CODE IT

ED1D FORJ = lTOLEN(i1$)

2020 L* = SEG*(n*nJ,l)

SD30 C* = «&L*&,*X?f

SDHD NEXT J

2050 RETURN

There are really two changes. In line 3010 we
count forward instead of backward because we
don't want to reverse the characters of the mes
sage this time. In line 3030 we add a letter of the
message and also an X to the code each time
through the loop.

Of course you could use any letter in place of
the X. But isn't this code too easy to read also?
What if we picked a letters at random and insert
ed them into the code each time through the
loop?

To program this, you have to learn about two
more BASIC functions. Every character used by
the computer has a code number. The code is
called the ASCII code and most computers use it.
The ASCII number for a capital A is 65. B is 66, C
is 67, and so on until Z, which has the code num
ber 90. You can provethis for yourself. Type:

PRINTASC("A'f) or PRINT ASC(-,fT,r)

or whichever character you want.
The ASC function takes a letter and changes it

into a number. We want to do just the opposite -
when we use the RND function we get a random
24

number. We need to change the number into a
letter. The BASIC function CHR$ does just this.
Type:

~ PRINT CHRSCkS)

w and the computer returns the letter A, because A
^ ischaracter number 65 in the ASCII list. The CHR$

function is the opposite of the ASC function.
Now let's change our CODE IT subroutine so

w that each time through the loop we get a random
--*" integer from 1 to 26 (because there are 26 letters

in the alphabet) and use that integer in the CHR$
function to get a letter. In this way we get random
letters that we can add to the code instead of
adding an X every time:

2000 REM CODE IT

2010 F0RJ = 1T0LEN(I1*)

2020 L* = SEG*(M$-,Jnl)

2030 R = INT(2b*RND) +bS

20M0 C* = «&L*&CHR$(R)

2050 NEXT J

20b0 RETURN

In line 2030 notice that we add 65 to the ran

dom number. We want the number to be between

65 and 90 because these are the ASCII codes for

A and Z. We don't want any random numbers
between 1 and 64.

Also notice that line 2040 adds three strings
together each time through the loop: what was in

25

the codef already (C$), the next letter of the mes
sage (L$), and the letter picked at random
(CHR$(R)).

2. Another change would be to give the player
more than one chance to get the message correct.
Here's how you could go about it. The beginning
of the QUIZ subroutine, from line 2000 to line
2070, would remain the same; you would display
the coded message and ask for the answer. Next
you would set up a FOR/NEXT loop that goes
around however many times you wish. Inside the
loop you would get the answer and evaluate
whether it is right or wrong. If it is wrong you
would give the appropriate message and go
through the loop again. We leave it to you to
develop the code completely.

26

2Q0

X4gt

We have used several important techniques in
writing games: different ways to make codes, to
store and display messages, and to use the ran
dom function. These are found over and over
again in games. But so far we have ignored a
game technique that the computer does especially
well: animation.

Many computer games use some kind of ani
mation (moving objects around the screen). Pro-

grammers spend years studying the most ^
advanced new animation techniques. In this book ^
we will introduce you to character animation-that ^
is, using any of the characters on the keyboard
and making it seem to move.

We will start with a race between two initials, T
On the left side of the screen we'll place the first ^
initials of the two players. When someone presses ^
ENTER to start the race, the initials will take off, at *&»
different speeds. When one of them reaches the %>
finish line, the program will anounce who won. ^
Each time you run this program, a random speed ^
will be picked for each initial, so that each could w
win each time.

The four main parts of the program, as well as -.
the variables we will use, are shown in the main **
body: *f

ID REM INITIAL RACE

50 REM A$: THE FIRST INITIAL

SS REM B* : THE SECOND INITIAL

3D REM A : ASCII CODE FOR A*

35 REM B : ASCII CODE FOR B$

MO REM SA s SPEED FOR FIRST INITIAL

MS REM SB : SPEED FOR SECOND INITIAL

SO REM CA :. COLUMNOF FIRST INITIAL

55 REM CB s COLUMNOF SECOND INITIAL

bO REM U*: THE WINNER

bS REM R*: A RESPONSE

70 REMX: A COUNTER

75 REMM$: A TEXT MESSAGE

28

flO REItL*: A LETTERING

AS REMC s ASCII CODE FOR L*

=10 REM

"IS RANDOMIZE

100 60SUB1QQ0

200 G0SUB2Q00

BOO 60SUB3QQ0
100 G0SUB4DDD

500 END

Subroutine 1000 gets two initials called A$ and
B$ for the race. Subroutine 2000 selects speeds
for the two initials at random. Up to this point all
the commands should be familiar to you. Starting
at subroutine 3000 (the race) and continuing
through the rest of this book, however/ we will
handle all input and output in a different way.

Up till now, when we wanted to put a message
on the screen we used the command PRINT, and
when we wanted the user to respond we used the
command INPUT. You may have noticed that each
of these commands made the whole screen scroll
upward-that is, everything moved up a line. For
the rest of this book we want to set up the screen
and not have it scroll upward. We also want to be
able to place text and get input at any location of
the screen. For these purposes we need new func
tions and commands. Subroutine 4000 of this
chapter introduces the CALL HCHAR subprogram
for putting output wherever we want it-it
announces the winner of the race.

29

GETTING THE INITIALS

TO BREAK WIS CODE,
k/6HAVE TO LOOK AT

THE
7R06Mt

(tolook

}NEEDED\
YOU?L

AT

Everything in the first subroutine should be
familiar:

1000 REM—GET INITIALS—

1010 CALL CLEAR

10S0 PRINT ''TYPE THE FIRST INITIAL''

1030 PRINT ''OF PLAYER#1;"

lOtO INPUT A$

1050 PRINT

lOtO PRINT ''AND THE FIRST INITIAL''

1070 PRINT ''OFPLAYER #2:''

lOflO INPUT B$

10T0 PRINT

110D PRINT ' 'PRESS ENTER TO RACE''

HID INPUT R*

1150 RETURN

We clear the screen with CALL CLEAR, get the
first initial and call it A$, get the second initial and
30

(^

•a0

apt

($0

call it B$, and then wait until the player presses
ENTER to start the race.

ANIMATING

rTHERE'5 ONE MORE MESSAGE-
VA/CESS YOU MEET ME BY

MR J... n

Before we get to the race itself, let's investigate
what animation on a Tl is all about. As we did
before in learning a new concept, we will write a
small test program. If you are currently typing the
program from this chapter, make sure you save it
(and type NEW) beforeentering this one.

The kind of animation we will be doing is called
Character graphics." This means that we make
people believe that something is moving across the
screen by printing a character from the keyboard
on the screen, erasing it, and printing it a little
distance away. By repeating these steps over and
over, it appears that the character is moving.
These are the steps we will always follow in
animating:

31

1. Display a character on the screen.
2. Repeat some number of times:
a. Erase the character.
b. Display the character a little distance

away.

The Tl screen is divided into 32 rows from left
to right and 24 columns from top to bottom. See
your User's Reference Guide for a screen map
that shows the rows and columns. To place a char
acter at a certain screen location we use the CALL

HCHAR subprogram. It is a subprogram because
it is stored inside the Tl as a little program that lets
you place characters on the screen. To use CALL
HCHAR you must know three things: the row num
ber you want, the columnnumber, and the charac
ter code. Remember the ASCII codes that we used
in Chapter 3-character 65 is A, 66 is B, and so
on.

Here is the command for putting the letter C
(character code 67) on the 5th row and the 20th
column of the screen:

CALL HCHAR(S-.S0-.t7)

If you know these three pieces of information
that's all there is to it. By the way, there is also an
option for repeating the same character as many
times as you want horizontally (HCHAR stands for
horizontal characters)-simply add a comma and
the number of repititions inside the parentheses.
Similarly, there is a VCHAR subprogram for dis
playing and repeating characters vertically on the
screen. In this book, however, we do not repeat
the same character, so the only command we need
is CALL HCHAR with three numbers in the

parentheses, as shown above.
Lefs use CALL HCHAR to animate the letter Z

across the screen. It will move across row 10, from
column 5 to column 25.

10 CALL CLEAR

SO CALL HCHAR(ID-iSiTD)

3D F0RC = ST0a*4

HQ CALL HCHAR(10-.C-.32)

SD CALL HCHAR(ID-.C+l^O)

bO F0RP=1T050

70 NEXTP

flO NEXTC

10 F0RP = 1T02QQ0

100 NEXTP

First we clear the screen (line 10) and put a Z
on row 10, column 5 (line 20). The loop in lines 30
to 80 erases the Z (character 32 is a space) and

33

draws it one column over (C+l), from column 5
to column 24. The last time through the loop C will
be 24, so the Z will be drawn at C+1, or column
25. The pause loop in lines 60 and 70 slows down
the speed of the Z a little. The pause at the end of
the program (lines 90 and 100) simply waits a
white before ending the program and scrolling up
the screen.

Test this program out and try modifying it.
Change the row number, the column numbers, the
character code, or the length of the pauses. All of
our animation will be similar to this. One differ
ence in the race in this chapter, however, is that
we don't necessarily want to move one step at a
time across the columns. Therefore we will pick
random speeds for the two initials and calculate
the new column position before we move each
initial.

SELECTING THE SPEEDS

+ Each initial will get a speed of either 1 or 2.
^ This means that before each move we will add

either a 1 or a 2 to the column number of that
*" initial and use the result as the new column

number.

'"*' 2000 REN—RANDOM SPEEDS--
" 2010 SA = INT (2 * RND) +1
*, 2020 SB - INT(2*RND) +1
^ 2030 RETURN

SA and SB stand for the speeds of initials A
and B. Both SA and SB could be eitfier 1 or 2
each time the program runs. If SA is 1, initial A
will move 1 step at a time across the screen. If SB
is 2, initial Bwill move 2 steps at a time and itwill
win the race.

*&/

THE RACE

DOimETOGOtN
PERSON, ORCAN
IJUSTSEND
MY BANK

CARD?

35

Storing the speeds of the two initials is not quite
enough. We also need to know their column posi
tions at each move. Suppose we decide that
whichever initial crosses column 28 first will be the
winner. We will start both of them at column 3,
but we will not know how far each goes on each
move. The two variable CA and CB, standing for
initial A's column and initial B's column, will tell us
their current position.

Speaking of the winner, when the race is over it
would be nice to announce who the winner is. For

this, we need another variable, W$, in which to
store the initial that crosses the finish line first.

Two last variables (called simply A and B) will
store the character codes of the initials. Remember
that to use CALL HCHAR we need the character

number, not the character itself. Also remember
from Chapter 3 that we can find out the code
numbers by using the ASC function. ASC(A$) will
be the character code for the first initial and
ASC(B$)the code for the second.

Now we're ready for the race subroutine. Let's
examine it in chunks.

3000 REM THE RACE

3010 CALL CLEAR

3020 A = ASC (AS)

3030 B = ASC(B$)

30H0 CA = 3

30S0 CB = 3

30b0 CALL HCHAR (i*-.CA,A)

3070 CALL HCHAR(b-.CB,B)

36

We clear the screen, use the ASC function to
store the code numbers A and B, set CA and CB to
3 because we want them to start on column 3, and
finally we use CALL HCHAR to put initial A on row
4 and initial B on row 6, both on column 3.

3080 FOR X = l TO 1000

3OT0 NEXTX

A little pause before we actually start the race
lets the player adjust to seeing the intials before
they take off.

3100 CALL HCHARC4-.CA-.32)

3110CA = CA + SA

3120 CALL HCHAR (4-.CA-,A)

3130 IF CA<2fl THEN 31b0

3140 k£ = A*

3150 GOTO3250

37

This section moves initial A. Line 3100 puts a
space at its current position. Line 3110 calculates
what its new column position should be-either 1
or 2 is added to CA. Line 3120 draws the initial at
its new column position. Line 3130 checks the
column position. If it is less that 28 (the finish) the
program skips to line 3160 and moves initial B. If
it is not less than 28, that means initial A has won,
so we store A$ in W$ and skip to the end of the
subroutine.

31b0 CALL HCHAR (b-.CB-.32)

3170 CB = CB + SB

31AQ CALL HCHAR (b,CB,B)

3n0 IF CB< 26 THEN 3220

3200 U* = B$

3210 GOTO 3250

This section moves initial B in exactly the same
way we just moved initial A: we erase the initial
where it is, calculate a new position and draw it
there, then check whether it has won the race.

3220 F0RX = 1T010

3230 NEXT X

32H0 GOTO 3100

32S0 RETURN

If the initial has not yet won (if its column posi
tion is less than 28) the program moves to line
3220. Here we pause briefly and go back to line

38

3100 to move the initials again. If either initial has
won, line 3250 returns from the subroutine.

w Only one piece of business remains: telling who
^ won. We could simply say:

. 4000 PRINT ' 'THE WINNER IS '' %U*

This would work, but the PRINT command
would make the whole screen scroll up a line,
including the initials. Here we'll learn a way to

^ avoid that and let you puta message on any part
** of the screen you want. To do this we will go
w through several steps:

1. Store the message as a variable (AA$).
**"' 2. Investigate M$ character by character:

39

lis/

a. Use the SEG$ function to get one ^
character at a time.

b. Use the ASC function to get the code
number for the character. I

c. Use CALL HCHAR to draw each charac- ^
ter next to the last. w

This may sound like a complicated way to put a
message on the screen, but once you get used to
it, it becomes routine. It has the advantage of ^
letting you put text on different parts of the screenw
without disturbing the screen, and it is fairly short: ^

4000 REM—THE WINNER *

4010 f1$= "THE WINNER IS" ^
40SD F0RX = lT0LEN(r1$)

4030 L* = SEG$(r1$iX-.l) *
4040 C = ASCCL$> **
40S0 CALL HCHAR (IfliXiC) ^

40L0 NEXTX - w

First we want to print THE WINNER IS, so wew
store this string as M$. The loop in lines 4020 to ^
4060 needs to go around as many times as thereQ
are characters in AA$. The LEN function, remem-^
ber, gives us this number. Line 4030 picks out each
character from M$ (one at a time) and calls it L$.
Line 4040 gets the code number for L$ and calls it ^
C. Line 4050 draws each character on row 18 of ^
the screen. The first character will be drawn inw
column 1, because X is 1 the first time though. The^
second character will be in column 2, and so on. If w
40 w

** we had wanted to begin at column 5, in line 4050
* we would have 1© CALL HCHAR(18,X+4,C),
-y sincethe first time though X+4 would equal 5.

» 1070 CALL HCHAR (1S-.1S-.ASC (W$))

* MQfiO F0RX = 1T0E0D0
w HOTO NEXTX

4100 RETURN

Finally we print W$ at column 15 of row 18
^ and pause briefly. Notice that we can use the
'~ ASC function inside of CALL HCHAR to get the
w correct character code number.

VARIATIONS

Because of the length of the animation and dis
play subroutines, from here on we are not printing
the whole program at the end of the chapter. You

can put it together easily yourself, however, by
looking through the chapter. Remember, of
course, that the test animation program we wrote ^
is not part of the Initial Race program. ^

Once you know how it's done, animation gets w
easier and easier. All you need is practice. Here w
are several suggestions for improving this game; w
you can probably thinkof many more: ^

1) SCREEN FORMAT: Use CALL HCHAR to ^
make the screen look fancier before the race ^
starts. Put a title for the race at the top of the
screen, using subroutine 4000 for a model. Put a
border around the racetrack. The command w

CALLHCHAR<a-.l-.ASC("-")-.30) w

will put 30 dashes across row 2 of the screen, w
starting at column 1. ^

2) MORE SPEEDS: We used speeds of only 1 or ^
2. You may want more variation. You should w

know by now how to use the random function to
change the range of the numbers you get. Be
careful of one thing, however. If you set the speed
very high, the Initial will look like it is jumping
across the screen, and the screen has only 32 col
umns across.

3) MORE RACERS: Get three initials instead of
two. Set three random speeds. Set ail three initials
on their marks. And move all three of them. You
could even add a fourth or a fifth.

--mas'

43

f^tf

The initial race was a fairly simple game - the
whole game was the race. Animation can be used
as a part of more complex games, though. Imag
ine this screen: on the right is a "balloon" and on
the left is a person's initial. On the lower half of
the screen the player gets arithmetic problems
which he or she tries to solve. When an answer is
correct, the player's initial moves across the screen
and "bursts" the balloon, which turns out to have
a message inside it.

This game combines many elements we have
used before: animation, random numbers, using

MANNY HAS WRITTEN A PRO&RAl
TO CONNECT MS COMPUTER TO
ALL WEOTHERS INTOWN...
AND TAKE CONTROL
OF THEM /

44

(3/0 DEAL,
KILLER!

DATA statements, giving the player several tries.
Good games are created by combining many dif-

** ferent elements, but none of the elements has to
** be complicated by itself.
*" One more Tl programming concept needs to be
** introduced. As we mentioned in the last chapter,
** from now on we must handle input and output
* differently if we want to preserve our screen
* setup. We have already looked at CALL HCHAR
^to produce output. In this game we also need
^ player input. The CALL KEY subprogram gets a

character number when a key on the keyboard is
pressed and transfers it to the program.

With both CALL HCHAR and CALL KEY we
need to switch back and forth from character
names to character codes, and also from codes to
names. This increases the number of variables we
must use. Sometimes we need numbers like X and
Y (the random arithmetic numbers in this game),
but we also need to make them into strings (X$
and Y$) so that they can be part of a string for
CALL HCHAR to output.

^ S REIT BURST THE BALLOON -
^ 10 REMI*s THE INITIAL

^ IS REM RsROIil NUMBER
^ 20 REM C: COLUMN NUMBER

BS REM M$s TEXT MESSAGE
* 30 REM L*s LETTER IN TEXT
^ 35 REM A : ASCII COM! NUMBER
^ HO REMJ: A COUNTER

HS REMK: KEY NUMBER

45

\^0

-a§/

SO REUS:

55 REMR*:

STATUS OF KEYBOARD

RESPONSE

Ua REM Xs RANDOM NUMBER

!=S REM Y: RANDOM NUMBER

STRING OF X

STRING OF Y

80 REM V: VALUE OF RESPONSE

65 REM

•TO RANDOMIZE

100 G0SUB1000

200 GOSUBEOOO

BOO G0SUB30QD

400 END

70 REMXS:

75 REMY$:

/YOU ARE VIE OMLV ONE
I MO COULD UME

STOPPED

setting up the screen

(wve&ot\^
\A POINT Jw
5l THERE.

MS/

^

This subroutine has several little parts. First, we ^
put a title for the game across the top of the ^
screen. Second, we draw the balloon. Third, we
get the initial and put it to the left of the balloon.

46

Vfe>/

%jg/

\ay

%/

^ Last, we explain the game. Let's look at each part
^ Individually.

'" 1000 REM SETUP-—
* 1010 CALLCLEAR

1050 M* = ''BURST THE BALLOON''

1030 R = S

10H0 C - 7

1050 G0SUB1500

Every time we have text to put on the screen we
will handle it the same way we handled the mes
sage THE WINNER IS in Chapter 4, using CALL
HCHAR. In this chapter we have many messages
to output, so we will make the code to draw them
a separate subroutine, located at line 1500. This
subroutine needs three pieces of information: the
row number (R), the column number (C), and the
text message (M$). We'll look at subroutine 1500
at the end of this section. For now, it's enough to
know that the text BURST THE BALLOON will be

put on row 2, staring at column 7.

10L0 DATA >f•.25-.tKSb-.5-.S3-.5-.St-.5-.57-.5-.Sa
1070 DATA biSSibiS^iSS^iS^ifliSlifliSO
lOBO DATA t!iSli^i3Oil0i3Sil0i3,?illiSSilli3ei

lCTO DATA 15-.S3-.lS-.SM-.lS-.S7il5-.S6-.13iS5-.13-.5l)

1100 F0RJ = 1T054

1110 READRiC

1150 CALL HCHAR(RiCiASC ("0"))

1130 NEXTJ

47

This part draws the balloon. The balloon is
made up of 24 letter O's. The first one goes on
row 4, column 25. The second is on row 4, column
26. Instead of using 24 CALL HCHAR commands
to draw the balloon, we READ from lines of
DATA. The first two data numbers are the first

row and column number. The loop in lines 1100 to
1130 reads in two pieces of data at a time, calls
them R and C, and uses them in the CALL HCHAR
command. Thus 24 O's are drawn where we want

them.

ima n$ = fftype your first initials

USD R = lb

llbD C = l

117D G0SUB150D

Here we put the message TYPE YOUR FIRST
INITIAL on row 16, column 1, using subroutine
1500.

48

At this point we need the player to give us
input. As explained before, if we use the INPUT
command the screen will scroll up and the input
will be at the bottom of the screen. The Tl has
another subprogram called CALL KEY that trans
fers input from a key of the keyboard to the
program. Here isthe form of the command:

CALLKEY (mode-ikey numbernstatus)

There are several keyboard modes, in which the
keys can have different code numbers. For our
purposes, we will always use mode 5, the BASIC
mode. You know that every key (every character)
has its own code number. The CALL KEY com
mand checks the keyboard to see if a key has
been pressed. If it has, the ASCII code number for
that key is transferred into the program and given
the name of the variable you put inside the
parentheses. We will always use the variable
name K to stand for the key number. The final
variable inside the parentheses (which we call S
for status) stores either the number 0 if a key has
not been pressed or a 1 if it has. This is called the
status of the keyboard. Here's how we use CALL
KEY at this point:

HBO CALL KEY (S-.K-.S)

IMO IFS = QTHENllflD

3,200 CALL HCHAR (^5-iK)

1ELQ I* = CHR$(K)

49

We need to know the status of the keyboard
because CALL KEY does not sit and wait for some
one to press a key. It simply checks the keyboard
at the instant the program comes to the CALL KEY
command. Therefore line 1190 checks to see if a
key has been pressed. If no key has been pressed
we go back to CALL KEY repeatedly until a key
has been pressed. Then line 1200uses the key num
ber (K) for the CALL HCHAR command to draw the
intital on row 9, comumn 5. We need to store the
initial for later in the program. K, remember, is a
code number. The CHR$ function gives us the char
acter name, or string, which we store as 1$.

1220 f» = f 'ANSWER 1 QUESTION CORRECTLY-.f f
1230 R = IS

12M0 C = 1

1250 60SUB1SQ0

12b0 m = '•AND YOUR INITIAL WILL' •

1270 R = M

12S0 60SUB1S00

12T0 PI* = •'BURST THE BALLOON.f f

1300 R = 20

1310 G0SUB1500

1320 RETURN

We have three more lines of text to put on the
screen. We assign each of them to M$, give them
column and row numbers, and call subroutine
1500. Notice that after line 1240 assigns the num
ber 1 to C, we don't have to worry about C
50

again, because we want each message to start at
column 1. We do have to change the row number
for each message, though.

Now for the subroutine that puts,the text on the
screen.

1500 REM TEXT ON SCREEN—

1510 F0RJ = 1T0LEN(I1$)

1520 L$ = SEG$CI1*,J-.1>

1530 A = ASC(L*)

15M0 CALL HCHAR (R-.C+J -,A)

1550 NEXT J

15b0 RETURN

This routine does just what we did in the last
subroutine of the Initial Race. It takes M$, exam
ines it character by character with the SEG$ func
tion, translates the character to its code number
using the ASC function, and use CALL HCHAR to
draw each character on the screen at successive
column positions.

Lefs trace how this routine works. Suppose that
M$ is BURST THE BALLOON. This string has 17
characters (counting spaces), so LEN(M$) is 17.
The first time through the loop L$ is B, the first
character of M$. A is the ASCII code for B (66).
Therefore the CALL HCHAR subroutine puts the
letter B on row R, column C+l. The next charac
ter will be put on row R, column C+2, and so
forth.

51

ASKING THE QUESTION

/MANNY WILL ENTERTAIN
I YOU WHILE I TAKE
I OVER THE
1 CITY.

YOU LIKE
VIDEOGAMES,

WALKER*

In this section we pose arithmetic problems until
the player gets one right. To pose the problem, we
pick two random numbers called X and Y, ask
how much is X plus Y, get the input, and evaluate
whether the input is correct. Here is the code:

2000 REM—QUESTION(S)

2010 X = INT(S0*RN1»+1

2020 Y = INT(S0*RNI>> +1

2030 G0SUB 2500

2031 REM (2500 ERASES THE BOTTOM OF THE

SCREEN)

2040 X$ = STR$(X)

2050 Y* = STR$(Y>

20LQ M$="H0lilMUCHIS"aX*a" + "aY$l
f9^1 9

2070 R - lb

20fi0 C = l

20T0 G0SUB15D0

52

2100 R = 17

2110 C = 3

21B0 G0SUB27Q0

2121 REPI (2700 GETS INPUT)

2130 V = VAL(R*>

21H0 IF VOX+Y THEN 2010

215D RETURN

Lines 2010 and 2020 get two random numbers
between 1 and 50. You could substitute any num
ber you want for the 50. The subroutine located at
line 2500 clears the bottom of the screen so that

we can put new text on it. We'll look at it after
this section.

Next we want to put a text message on the
screen. The message is composed of five parts:

1) the words HOW MUCH IS
2) the first number (X)
3) a plus sign (+)
4) the second number (Y)
5) a question mark{?)

If X and Y were 34 and 12, then the message
should like like this: HOW MUCH IS 34 + 12?

Each of these five parts of the text must be a
string. Since X and Y are numbers, not strings, we
have to make strings out of them with the STR$
function. STR$ examines what follows it in the
parentheses. If this is a number, the STR$ function
makes it into a string. Thus, X$ is the string made

53

out of X, and Y$ is the string made out of Y. X
and X$ will look identical when put on the screen,
but they are stored differently, they have different
code numbers, and you can use X$ as part of
another string. Line 2060 puts five strings together
to make up M$, which is then output on the screen
by subroutine 1500.

Next we must get the player's input. We set the
row to 17 and the column to 3 and call another

subroutine at line 2700 which uses the CALL KEY
command over and over again to get characters
and output them on the screen with CALL HCHAR.
This subroutine (which will be explained after this
section) gets input one character at a time and
puts the characters together into a string called
R$. We need to evaluate whether the input is
correct, but we cannot compare a string to a
number. So we need another function which is the
opposite of the STR$ function. The VAL function
takes a string and changes it into a number, so
that in line 2130 V becomes the number that rep
resents R$. One thing to be careful of: the input
must be all numbers. If the player presses a key
which is not a number, that character will get into
R$ and the VAL function will not work-a number
must be the input to VAL in the parentheses.

Line 2140 compares V to X+Y. If they are
equal, the answer is correct and we return from
the subroutine. If they are not equal, the program
branches back to the beginning of the subroutine
and picks two more random numbers.

54

CLEARING THE SCREEN

This subroutine uses the CALL HCHAR subpro
gram to output spaces (character number 32) at all
the column numberson rows 16 to 20. We need to
erase all these five rows because in the SET UP
subroutine we puttext from rows 16to 20.

2SD0 REM —ERASE It TO2D—
2510 F0RR = lbT020
2520 F0RC = 1T032
2530 CALL HCHAR (R-.Ci32)
2SH0 NEXTC
2550 NEXTR
2SbQ RETURN

Each time we come to line 2530 R and C are
different. Therefore character 32 (the space) will
be drawn at 5 times 32 different screen locations
(5 rows times 32 characters per row).

, 55

GETTING INPUT

WITH CALL KEY

We have already used this subprogram to get
the initial. That was only one character of input,
but now we need more than one character.
Rather, we do not know how many characters
there wiJI be-that is up to the player. Therefore,
we need a subroutine that repeats until the player
presses the ENTER key (ENTER is code number
13). After each key is pressed, two things will
happen: that character will be drawn on the
screen, and it will be added to R$ so that later we
will know what the whole inputwas.

B7D0 REfl GET INPUT

S71D R$ = f ?••

E7ED CALL KEY (5-.K-.S)

273D IFS = DTHEN272D

B7MD IF K = 13 THEN SAID

27SD CALL HCHAR (R-,C-,K)

56

STfcD R* = R$aCHR*(K)

5770 C = C + 1
S7fl0 FOR J = 1 TO 30

27T0 NEXT J

2fiQ0 G0T027E0

2filQ RETURN

Line 2710 initializes, or sets, R$ to an empty
string-there are no spaces between the quotation
marks-since we don't want any text stored in R$
each time we get new input. If there was text in
R$, line 2710 will get rid of it. Line 2720 and
2730 get input of one key (as shown earlier in this
chapter). After a key has been pressed, line 2740
evaluates whether the code number for the key is
13. If it is, that means that ENTER has been
pressed, so we exit from the subroutine;

If K does not equal 13, then line 2750 draws
that character on the screen. Remember that R
was set to 17 and C was set to 3 before this
subroutine was called. Therefore the first charac
ter of input will be drawn,at row 17, column 3,
Line 2770 adds 1 to C so that the next character
will be drawn one column over.

Line 2760 adds the input to R$. Since all we
know about the input is its code number (K), we
use the CHR$ function to get a character to add
to R$.

Before we go back to the CALL KEY statement
to get the next character of input, we add a little
pause (lines 2780 and 2790); we make the Tl

57

count to 30. We need to do this because comput
ers work so quickly. With no pause, if the player
holds down a key for even a second, the computer
will be back to line 2720 before that second is up
and it will think the same key is the next piece of
input. To avoid having keys repeated if held
down, we make the computer wait a little bit
before checking the keyboard again. The draw
back with doing this is that if the player presses
keys too quickly, they will not register. You can
adjust the length of the pause to suit you.

BURSTING THE BALLOON

The QUESTION(S) subroutine asks random
arithmetic problems until the user gets one correct.
Each time it clears the screen, asks a new question,
gets new input, and evaluates it. When the input is

58

correct, the program proceeds o the subroutine
located at line 3000.

The BURST subroutine must do three jobs: 1)
animate the initial over to the balloon; 2)moke the
balloon disappear; and 3)print the message
RIGHT! "inside" the balloon. We'll look at these
three tasks separately.

3000 REM BURST

3010 F0RC = ST020

3020 CALL HCHAR C^iCi32)
3030 CALL HCHAR(1-.C+1-. ASC (I*))

30M0 F0RJ = 1T010

30S0 NEXT J

30t0 NEXTC

The initial (1$) begins at column 5. We want to
move it over to the balloon, to column 21. The
loop in lines 3010 to 3060 increases C from 5 to
20. Each time through it draws a space at column
C and draws the initial at column C+l. ASC(I$)
is the code number of the initial, and remember
that CALL HCHAR needs this code. The last time
through the loop C will be 20, so a space will be
drawn at column 20 and the initial will be drawn
at column 21. This loop looks like our sample ani
mation program inthe lastchapter. Here we know
exactly where we want to start and end, and we
want the initial to move one column each time.
Notice that we include a slight pause to slow
down the animation.

59

3070 RESTORE

3060 FOR J = 1 TO 24

30T0 REABR.C

3100 CALL HCHAR (R-.C-.32)

3110 NEXT J

We have all the row and column numbers of
the balloon stored in data statements-we used
them to draw the balloon. The command
RESTORE sets the data pointer back to the begin
ning of the data. In this way we can use all the
same data over again. This loop does just what
the loop in the SET UP subroutine did to draw the
balloon. It READs in all the row and column data
and uses these numbers to draw spaces (charac
ters 32), thus erasing the balloon.

3120 m= "RIGHT! "

3130 R = 1

3140 C-23

3150 G0SUB1S00

This little section should be familiar by now. We
set M$, R, and C and pass them along to the TEXT
ON SCREEN subroutine. The word RIGHT! gets
drawn at column 23 of row 9, looking like it was
inside of the balloon.

31U3 F0RJ = 1T0 20D0
3170 NEXT J

60

We insert a pause so that the player gets a
final look at the screen before the program stops
running.

VARIATIONS

Once again, you can put the program together
by looking through the chapter. This game has
introduced several new concepts and BASIC
words: the VAL and STR$ functions, CALL KEY to
get input erasing parts of the screen, and
RESTORE to reset the data list. Here are two
suggestions for improving the program:

1) The GET INPUT subroutine works correctly
as it stands. However, it can be improved. We
already mentioned the length of the pause before
each new CALL KEY statement. Another problem
involves mistakes: What if the player makes a
mistake? The subroutine does nothing about this.

61

You can define any key you want as a delete key.
Let's say that you want the D key to delete the last
character that the player typed. If so, you should
probably put a message somewhere on the screen
so that the player will know this.

When a key is pressed, the program evaluates
whether it was the ENTER key. If it was, the
subroutine ends. If the key was not ENTER, you
can make the program evaluate if the key was D:

27H5 IFK-ASCCD") THEN (linenumber)

If the key is a D, the program will go to a line
number of your choice. There it should subtract 1
from C and draw a space at column C, then go
back to the CALL KEY command. With these hints
we leave the execution to you.

2) Subroutine 2500 erases rows 16 to 20. It
©rases aH these rows because in the SET UP sec
tion we put text on all of them. However, from the
time we begin asking questions, we really only use
rows 16 and 17, and the program seems slow
because subroutine 2500 erases the other three
rows even if nothing is on them. You could write
another subroutine which erases only rows 16 and
17, and direct the program to it when you want
only those lines erased.

62

All of the techniques we have learned, plus
some new ones, will be combined here to create a
longer game program than our others. In this
game it will take three moves to get from the start
to the finish line. To move, the player will be pre
sented with the name of one of the states of our
nation, but the name will be scrambled and the
player will have to figure out which state it is. We
will give the player six attempts to make the three
moves. If he or she cannot make it to the finish line

by then, the game will end.

63

The variable names and subroutine list look like

this:

4 REfl SCRAMBLED STATES

fi REM RsROU NUMBER

12 REM C: COLUMN NUMBER

lb REM M*: TEXT MESSAGE

2D REM L*: LETTER IN TEXT

24 REM A : ASCII CODE NUMBER

2fi REM I: A COUNTER

32 REM J: A COUNTER

3b REM K: KEY NUMBER

4D REMS: STATUS OF KEYBOARD

44 REM I*: THE INITIAL

48 REMT*(4) : ARRAY OF 4 TEXTS

52 REM S*(ID) : ARRAY OF ID STATES

St REM US (2D) : ARRAY OF USED LETTERS

tD REM A*: ANSWER

b4 REM N$: NAME OF STATE

ba REM T: TURN NUMBER

72 REM P : POSITION OF INITIAL

7bREMM:M0VE

80 REM 0$: GAME OVER?

84 REM Ls LENGTH OF m

aa REM X: RANDOM NUMBER

12 REM

% RANDOMIZE

10D G0SUB1OOO

200 G0SUB2000

300 G0SUB3000

400 END

64

We introduce no new BASIC concepts or com
mands in this game, but we use the ones we know
in more complex ways. You can tell by the long list
of variable names that we need to store many
different pieces of data. We also use several
subroutines-*the main body of the program calls
only three of them, but these subroutines call
others. Since we use eight subroutines altogether,
it might be a good idea to list them here for
reference:

1000 Setupthescreen

1S00 Put text on the screen

2000 Load array ofstates
2300 Erase rows IS to 21

2700 Getinput

3000 Thegame

3S00 Scramble a state

3800 Move the initial

Some of these will be familiar; we have already
used subroutines to get input, erase part of the
screen, put text on the screen, move an initial, and
load an array of text. These little subroutines are
useful tools-they become a kind of library for the
programmer to use over and over again. The only
really different routines in this program are the
GAME and the SCRAMBLE subroutines.

65

SETTING UP THE SCREEN

To prepare the player for the game, we set up
the screen to show that the initial must move

through three stations to get to the finish. Once
again, we leave it to you to make the "board"
look more elaborate. You can easily add decora
tions. In this subroutine, we represent the stations
with plus signs, get the initial and place it at the
start, and explain how the game works.

1000 REM—SET UP THE SCREEN

1010 CALL CLEAR

1020 m = "START"

1030 R-«l

10M0 C = 3

1050 60SUB1500

10b0 CALL HCHAR (5-.5-.ASC C"+"))
1070 CALL HCHAR (S-.13-.ASC ("+"))

1060 CALL HCHAR (S-.21-.ASC ("+"))

10T0 CALL HCHAR(S-.S-.ASC ("+"))

66

1100 M$= "FINISH"

•'"" - 1110 R - M
* 1120 C = 2S

w 1130 GOSUB1500

* The subroutine at line 1500 puts text on the
^ screen. It is identical to subroutine 1500 of Chap-
^ ter 5. It uses the variables M$, R, and C for the
^ message, row, and beginning column number.

Here we put the words START and FINISH on row
4 and four plus signs on row 5. They should look
like this:

*, START FINISH

<& + + + «f

-^ Next we ask the player for his or her initial and
<*• use CALL KEY to get input. We use CALL HCHAR
«* to draw the initial where the first plus sign was.

1140 m = " TYPE YOUR FIRST INITIAL:''

USD R = IS

w llbO C = 1
* 1170 G0SUB1SDO
^ llflO CALL KEY (S-.K-.S)

„, luVD IFS = 0THENlia0
1200 » = CHRSCK)

'•ap'

1210 CALL HCHAR(S-.S-.K)

CALL KEY gets input of a code number which
^ represents the key pressed. We assign CHR$(K) to

67

the variable 1$ so that later we will know what the
initial is when we want to move it. Line 1210
draws character K on row 5, column 5.

Now we need four lines of text to explain the
game. Every time we have put a single line of text
on the screen so far we have needed four pro
gram lines: one to assign the text to M$, one to
assign a row, one to assign a column number, and
one to GOSUB 1500. Lines 1140 to 1170 above
do just this. In this way, to put four texts on the
screen would take 16 program lines. Here is a
shorter way, using an array of texts:

IES0 T* (1) = • •YOU HAVE t TRIES TO UIN.f f

1B3D T* (2) = "TO HOVE-i UNSCRAMBLE A STATE'f

12HD T* (3) = f •OF THE UNITED STATES.? •

125D T$(H) = "PRESS ENTER TO BEGIN:tf
letD C = 1

1S7D FORI = 1 TO H

ISflD M$ = T*(I)

68

1210 R = I + lb

" 1300 G0SUB1500
* 1310 NEXTI

^ Using this technique you could handle as many
^ lines of text as you want. First assign them to cells
**• of an array-here we have 4 cells of T$. Line 1260

assigns 1 to C. Since we want all the lines to start
at column 1, we don't have to assign C again. The
loop in lines 1270 to 1310 repeats 4 times-once
for each text. Line 1280 assigns each text of the
array to M$. Line 1290 makes sure that R is first
17, then 18, then 19, then 20 the last time
through. Now that we have M$, R, and C
assigned we call subroutine 1500 to put M$ on
the screen. Notice thdt we need a new counter (I)
because subroutine 1500 uses J for a counter and
we want to avoid mixing up the variable names.

40

13S0 CALL KEY (S-.K-.S)

133D IFS = QTHEN132Q

13M0 RETURN

Our last line of text asked the player to press
enter to begin. Lines 1320 and 1330 get one key
of input. We don't really care what key it is-as
soon as the player presses any key the program
will move on. The program now moves to STOR
ING THE STATES, but first let's look at input and
output

69

INPUT AND OUTPUT

These two subroutines are the same ones we
used in the last game. We reproduce them here
for your convenience.

1500 REM —PUT TEXT ONSCREEN-
1510 F0RJ = lT0LEN(f1$>
1520 L$ = SEG$<M$-,J-,1)

1530 A = ASC(L*)

15M0 CALL HCHAR(R-.C+J -.A)
1550 NEXT J

15fc0 RETURN

27D0 REM GET INPUT—
2710 AS - ''"

2720 CALL KEY (5-.K-.S)

2730 IFS = 0THEN2720

2710 IF K = 13 THEN2810
2750 CALL HCHAR(R,dK)

70

27b0 A$ = A*&CHR*(K)

2770 C = C + 1

2780 F0RJ-1T0 3D

27TD NEXTJ

2SD0 60T0272D

2S1Q RETURN

We use the input routine in this game to get
answers to our questions, so we are calling the
input string A$ here. In the Variations section of
the last chapter we suggested that you figure out
how to let the player delete mistakes. In this game
it is even more important to be able to delete,
since the player must type in longer strings. Here is
one way to do it-add these lines to the above
subroutine:

27HS IF K - ASC <• •*••) THEN 2775
2772 GOTO27A0

2775C = C-1
277b CALL HCHAR (R-.C-.32)

We are using an asterisk (*) for the delete key.
Whatever key you decide to use, you must notify
the player what to press to delete. This means that
you will have to insert a message and place it
somewhere on the screen, line 2775 subtracts 1
from C to move one step backward, and line
2776 draws a space at that column, thus erasing
the last letter.

71

STORING THE STATES

This subroutine is similar to the one in Chapter 1
in which we stored several fortunes into an array.
Here we have ten state names in DATA state
ments. Notice that you can put more than one
piece of string data on a DATA line, as long as
you .separate the strings with commas. We READ
the ten states into an array we call S$ (S for
state), and before we use the array we DIAAension
it-that is, we tell the computer to reserve ten spac
es in its memory for our array.

20QQ REM -LOAD STATES INTO ARRAY—
2010 DATA ' 'OHIO"«."KANSAS' •,

' ' NEW YORK9 ' if fCALIFORNIA1'
2020 DATA f 'GEORGIA' • «.' 'NORTHDAKOTA" «,

"NEVADA"

2030 DATA ' 'OREGON'' -,' 'FLORIDA" -,
"NEW MEXICO"

72

:^0

2040 DIMS*(10)

2050 F0RJ-1T010
20b0 READS*CJ)

2070 N£XT,h

20fiQ RETURN

The loop in lines 2050 to 2070 READs ten piec
es of data (the names of the states) and stores
them in the array. The name OHIO is then stored
as S$(l), NEW YORK is S$(3), and NEW MEXICO
is S$(10). Later on in the program we will use the
array in the same way that we used the fortunes
array. We'll pick a number at random and use
that number to select a cell of the array. Then
well take the name of the state that is stored in
that cell and scramble it.

THE GAME

73

We are giving the player 6 turns to get to the
finish line. Each turn consists of trying to unscram
ble the name of a state. If the answer is correct,
the initial will move to the next plus sign, this
means that we have to keep track of several
things:

1. Where the initial is

2. If the initial has gotten to the finish line
3. How many turnsthe player has had

The GAME subroutine is fairly complex. It
reads like a miniature program and uses several
subroutines within it. Beforewe look at the BASIC/
let's outline the steps we'll have to take in ordinary
English:

Checkto see if the player has won OR run out
of turns.

If either of these conditions is true, then we give
the appropriate message.

If neither is true we:

74

Clearthe bottom portion of the screen
Pick a state name at random
Scramble the letters in it

Ask the player to unscramble it
Evaluate whether the answer is correct.

a. If it IS correct, then we move the initial
one step and check whetherthe player
has now won.

b. If it is NOT correct then we tell the player
the answer.

c. In EITHER case we add 1 to the number

of turns and go back to the first step
(Check to see if the player has won...)

Lines 3050 to 3340 perform these steps in
BASIC. Lines 3010 to 3040 initialize four varia

bles we need to use. U$(20) is an array we need
in the SCRAMBLE section. T stands for turn

number, and we set it to 1. P is the position
(column) number of the initial, which starts at 5.
0$ tells us if the game is over because the player
won-we set it initially to "NO".

3000 REM THEGAI1E-

3010 DII1U$(20>

3020 T = 1

3030 P = 5

30H0 0*= "NO"

3050 IFT>bTHEN3HL0

75

3055 IF0$ = •'YES'' THEN 32b0

30b0 60SUB2300

3070 G0SUB3500

30flD R = lfl

30T0 C = l

3100 PI* = ''TYPE YOUR ANSWER.'''

3110 G0SUB1500

3120 R-W

3130 C = 3

3140 G0SUB2700

3150 R = 21

31bD C-l

3170 IF A* = N* THEN 3210
3180 f1$= "SORRY-. IT'S" & N*

3110 G0SUB1500

3200 GOTO 3240

3210 H*="RIGHT!"

3220 G0SUB15Q0

3230 G0SUB3fi00

3240 T = T + 1

3250 GOTO 2300

Lines 3050 and 3055 check for two conditions:
if the turns are up or the player has won, the
program skips past the above section, to line
3260. If the game is not over, we clear the screen
(subroutine 2300), scramble the state and ask the
question (3500), get the answer (2700) and evalu
ate it. If A$ (the answer) equals N$ (the name of
thestate) then the player is right and we output
RIGHT!. If wrong, we saySORRY, IT'S (the correct
name), Sooner or later the player will either win or
76

'^0 run out of turns, and then the subroutine will be
finished:

32b0 GOSUB2300

3270 R -15

32fl0 C - 1

32=10 IF 0* = ''YES'' THEN3330

3300 11*= " SORRY-. YOUR TURNS ARE UP. "

3310 G0SUB1500

3320 GOTO 3350

3330 m=" CONGRATULATIONS-. YOU WON!''

3340 G0SUB1500

3350 RETURN

We clear the screen, decide if the player has
won or lost, and output the appropriate message.

CLEARING THE BOTTOM

OF THE SCREEN

77

This subroutine is virtually identicalto the one in
Chapter 5 which cleared the bottom of the screen.
Here we need rows 15 to 21 erased:

2300 REM ERASE IS TO 21-

2310 FORR = 1ST021

2320 F0RC = 1T032

2330 CALL HCHAR(R-.C-.32)

2340 NEXTC

2350 NEXTR

23b0 RETURN

THE STATE

We have an array of 10 states stored as
S$(10). Whenever it comes time to,ask a question,
we want to pick one of the states and scramble
the letters in it.

78

•s$0

- :-iS0

i$0

The first thing we need to know is the number
of letters in the state (which we call N$). Then LEN
(or length) function, remember, tells us how many
characters are in a string. So LEN(N$) represents
the number of characters in the state's name. We

** say characters and not just letters in the state
because sometimes there are spaces also, as in
NEW MEXICO.

We call the number of characters in the state L.
To scramble them up, we go through a series of
steps:

•• 1. Pick a random integer(called X)
between 1 and L

2. Display character X on the screen.
3. Pick another random integer R

between 1 and L

4. Display character X next to the char
acter already on the screen.

Repeat the above steps I times altogether, so
there will be1 characters displayed on the screen.

There is only one thing wrong with this plan.
You know by now that if you tell the computer to
pick a random integer between 1 and 7, and do it
7 times in a row, it might pick the same number
each time. If your state was FLORIDA (which has
7 letters), and the computer picked the number 4
over and over again, you would get

RRRRRRR

displayed as the scrambled version of FLORIDA.
That wouldn't be good.

79

Therefore, we need a way to tell the computer:
keep picking random numbers between 1 and 7,
but don't pick the same number twice. In other
words, we have to keep track of which numbers
were already used. The best way to do this is to
create a new array, which we call U$ (for Used).
Before we begin scrambling, we put the word
"NO" in each cell of U$ to mean that we have
not yet used that cell number. As each cell gets
used (because the computer picked that number)
we change what's stored in it to "YES". (We
DIMensioned this array at the beginning of the
GAME section.) Let's change our series of steps to
show this addition:

1. Pick a number at random between 1 and L.

2. Check if that number has been used yet.
2a. If it has been used, go back to step 1.
2b. If it has not been used, then:

Put "YES" in that cell of U$, and
Display that character.

YOUR OFFICE IS
ON-LINE, AND

80

Repeat these steps Ltimes.
Here is the BASIC code:

3500 REM —SCRAMBLE A STATE
3510 X = INT(10*RN]» +1
3520N$ = S*(X)

3530 L = LEftKNt)
3540 FOR J = 1 TO L

3550 U$(JJ = "NO"

3SbO NEXT J
3570 R = 15

3SB0 C = 1

35=10 11$ = ''WHAT STATEIS THIS?''
3b00 G0SUB1500

3bl0r»=""
3bSD F0RJ=1T0L
3b30 X = INT(L*RNJ» +1
3b40 IFU$(X) = " YES" THEN3b30
3b50 U*(X) = "YES"
3bb0 M$ = f1$aSE6$(N$-.X-.l)

3b70 NEXTJ

3bfi0 R - lb

3beIO< = 3

3700 60SUB15D0

3710 RETURN

X is a random integer between 1 and 10. Why
10? Because we have 10 states. If X is 1 then
S$(X) is OHIO, the first state in the DATA list. To
make our code easier to read, we store S$(X) as
N$. If N$ is OHIO, then L is 4, the number of
characters in OH IO.

81

The loop in lines 3540 to 3560 initializes the U$
array. It puts the word "NO" in 4 cells of U$. In
other words, U$(l), U$(2), U$(3), and U$(4) will
all contain the word "NO" to start with. There are
4 letters in OHIO: all of them have NOT been
used yet.

After we ask WHAT STATE IS THIS? we get to
the part of the subroutine that actually scrambles
the letters and displays them. We go through the
FOR/NEXT loop in lines 3620 to 3670 Ltimes. In
our example, using OHIO, I equals4-4 letters in
OHIO.

Each time through we pick a random number
between 1 and 4 (that is, L). Then we check: if that
cell of U$ contains "YES" because it's been used
already we go back and pick another number.
The computer will keep picking until it finds a ran
dom number corresponding to a cell of U$ which
contains the word "NO". At that point it will skip
line 3640 and proceed to do two things. First, put
"YES" in that cell number so that the computer
can't display the same letter again. Then, add that
character to AA$, so that when we finsh the loop
M$ will be the scrambled state.

After the loop is finshed, we output AA$ (the
scrambled state) on row 16, column 3 of the
screen.

It would be a good idea at this point for you to
go over the code a few times and see how it does
what our steps above it do. Convince yourself that
every time the program goes to this subroutine it

82

picks a new state, calls it N$ and calls its length L,
then goes around Ltimes picking different random
numbers each time and displaying the character
of N$ corresponding to that number.

This subroutine does only this job. Refer back to
the main GAME subroutine. Right before QUES
TION we cleared the bottom of the screen. Right
after it we get the answer from the player and
evaluate it If the answer is correct we have to

take care of one more piece of business.

MOVING THE INITIAL

Each right answer moves the initial one more
station toward the finish. We put plus signs to
mark the steps, and we placed them 8 columns
apart, at columns 5, 13, 21, and 29 (the finish).
Also, remember, at the beginning of the GAME

83

subroutine we initialized P to 5 to keep track of
where we put the initial to begin.

To move the initial we'll go through the same
basic steps that we used in the last two games:

1. Erase the initial where it is now.
2. Draw it one column further over.

We repeat these steps 8 times to move the ini
tial 8 columns. Then we do two more necessary
things. We add 8 to P so that we know where the
initial ends up after it's moved, and we check to
see if P now equals 29. If it does, this means that
the player has won, and we put the word "YES"
intoO$.

3B00 REM —MOVE THEINITIAL™
3filD F0RM = PT0P+7

3fl2Q CALLHCHAR(5-,M-«32)
3fl30 CALL HCAHR (SiM+1-,ASC (I*))
3£W0 F0RJ=1T010

3650 NEXT J

SfibO NEXTM

3a?DP = P + fi

3860 IF P = 21 THEN 3*100
35*10 GOTO 3=110

3100 0$="YES,f

3*110 RETURN

The animation here is just the same as that in
the last chapter. We draw a space where thejnti-
tial is and then draw the intial one column further
over, until the ititial has moved 8 columns.

84

0$ had been set to "NO" at the beginning of
the game. Whenever P = 29 it will be set to
"YES". Back in the GAME section, line 3055 will
now be true, and the program will skip over the
loop. When it gets to line 3290, since 0$ does
equal "YES" it will congratulate the player and
end.

FUN AND GAMES

Throughout this book we have covered many
aspects of programming. We have used new con
cepts like the random function and animation. We
have explained new commands, functions, and
subprograms. Of equal importance, we have tried
to introduce good programming practices of
structured programming.

In the first four chapters we suggested several
possiblevariations. At this point the variations are
all up to you. Almost any of those suggested for

85

the other games you could also use for the game
in this chapter. More important, though, is for you
to think up your own variations. Pick any part of
any program and you can probably think of ways
to improve it, to make the screen format look
better or to make the game more fun. Create your
own coding routines. Think up more complicated
uses for the random function. Do fancier animat
ing. Invent totally new games.

We have covered many of the built-in Texas
Instrument's functions and subprograms. There are
several more, however, that you might use to
enhance you*- programs. The CALL SOUND
subprogram, for instance, can add music to
programs, and CALL COLOR can color any char
acter on the screen, or change the entire screen
background. Another subprogram, CALL CHAR,
lets you define your own characters to look any
way you want. This is a useful graphic feature-
you can use it to make your own shapes for
animation.

/WE'VE PLAYED 7,246>
{ GAMES $0 FAR, AND

I'VE WON
1 7,Z44

86

JUST
LUCKY!

3>1

Programming is a combination of using what
you already know and using your imagination.
We have tried here to supply you with some useful
concepts and techniques for programming games.
However, there is always much more to learn for
any programmer, no matter how experienced. If
you want to get better at programming, you will
keep reading and studying to learn more about
this skill. You already know enough, though, to
create imaginative games. Hopefully you will go
on learning as you program. The most important
thing you can do is to have fun programming!

87

Index to chapter references for new concepts and
terms used in this hook. Reserved words in BASIC are
capitalized.

NAME

ARRAY

animation

MEANING AND USES CHAPTER

a type of variable with which more
than one piece of data is stored
using the same name. 1,5

making it appear that something is
moving on the screen by quickly
printingand erasing it at successive
screen locations. 3-5

ASC function returns the ASCII code number for
a givencharacter. Example:
ASCfA") returns the number 65. 2

CALL HCHAR subprogram displays a given char
acter at a specified screen location. 3-5

CALL KEY subprogram gets input from the
keyboard, one characterat a time. 4,5

CHR$ function returns the character for a given
ASCII code number. Example:
CHR$(65) returns an "A". 2

.-w DIM

GOSUB

initializing

INT function

LEN function

random

READ/DATA

RESTORE

RETURN

a command which sets aside a given
number of cells for an array.
Example: the command DIM M$(15)
will set aside 15 cells in memory for
the array M$. 1,5

(see subroutines)

placing a starting (or initial) value in
a variable. 1-5

roundsany number down to the
next lowest integer. Used with the
RND function. 1-5

returns the numbers of characters in
a given string.
Example: LEN("HELLO")
will return a 5. 2

The RND function, used with the
RANDOMIZE command, chooses
decimal numbers at random, as
explained in Chapter 1. 1-5

The command READ looks for data

stored in DATA statements, as
explainedin Chapter 1. Used with:
string data (messages, fortunes): 1,5
number data for screen positions: 4

setsthe data pointerat the begin
ning of the DATA in the program 4

(see subroutines)
89

§EG$ function returns a specified string
from within a given string. Example:
SEG$("HAPPY",4,2) returns 2 char
acters from HAPPY, starting at the
4th character, or PY. 2

§TR$ function makes a string from a spec
ified numerical variable 4

program sections or blocks as called
by the GOSUB command.
Subroutines must end with the

RETURN command. 1-5

VAL function makes a numerical variable

from a specified string, if the string
is composed of numerals. 5

90

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005

	back-cover

