9000000000000 0000000 T

lilustrated by Cris Hammond :

US/523-42247-4 * A PINNACLE BOOK * $2.95
CAN/523-43239-9 = $3.50

Sooooooeooe

CECE e aeeeeeeeeenc

D 3 A .

 Fun to Prograni Your
Ti- 99 Series

' By Howard Budin

illustrated by Cris Hammond

Pinnacle Books @ New York

ATTENTION: SCHOOLS AND CORPORATIONS

PINNACLE Books are available at quantity discounts
with bulk purchases for educational, business or special
promotional use. For further details, please write to
SPECIAL SALES MANAGER, Pinnacle Books, Inc., 1430
Broadway, New York, NY 10018.

SPEED WALKER Fun To Program™ Your TI99 Series
Copyright © 1984 United Feature Syndicate, Inc.

All rights reserved, including the right to reproduce this
book or portions thereof in any form.

An original Pinnacle Books edition, published for the first
time anywhere.

First printing/September 1984) -

ISBN: 0-523-42247-4
"CAN. ISBN: 0-523-43239-9

Printed in the United States of America
PINNACLE BOOKS, INC.

1430 Broadway
New York, NY 10018

987654321

g»gyg;g.é‘é;é»gzé‘,éé!é%'f%\é=é:§v€é e e e,

COEE e EEeeeeeeeeecenen

%

FUr

Contents

| Introduction]
1 What's Your Fortune? 1
2 A Secrét Code 12
3 An Initial Race 27
4 Burst the Ballooni | 44
5 Scrambled Sfatesj 63

6 Glossar'y‘and Index 33

mww DD wwww 2232 2:3:2:22D DD9:D:3) ww i d D PRCRS

i '
' i
.

[

€ €0 € el uday

, <

Introduction

Welcome to Fun To Program with Speed Walk-
er! This book has been designed for anyone who
already knows some BASIC and is ready to use it

“to create interesting programs. We assume that

you have learned these BASIC commands: -

REM FOR/NEXT END
PRINT IF/THEN
INPUT 6GOTO

Being a programmer is like being detective-
you must constantly uncover mysteries in programs.
Programmers spend half their lives searching for

clues that tell them what went wrong in their

programs. To make it easier for you to read, to
modify, and to debug your programs, in this book
we use structured programming. This means that
we plan the main parts of the program first and
then refine the details. We use plenty of REM
statements o document the meaning of the varia-
bles we use and what. the parts of the program
do. And we indent parts of the program fo show
how they relate o each other. ~

b

In the vein of being detectives, we are going to
learn techniques that are involved with mysteries:
telling fortunes, coding and decoding secret
messages, and moving objects around the screen.
Each chapter adds new concepts and commands
and leads to a new game using combinations of
these techniques. Every new idea is explained
thoroughly, with examples for you to type in and
experiment with. By the last chapter we will have
built up a much more complex game than the one
we start with, but by that fime you will be familiar
with all the parts that make up the program. '

At the end of each chapter we present ideas for
variations that you could make in the program. In
a sense, programs are never finished-you can
always add one more improvement. And that's
the beauty of programming: you can take your
own original ideas and implement them to the best
of your ability. So, although we present programs
in these chapters for you to enter and run, the
programs are really open-ended. We want you to
modify and improve them, add new elements, and
make up your own games. Above all, we want
you to have fun!

COOOOCCOCeOCCeCeeeeeCeceeaceaece

|

[*

CLLLE g

€

ép

CECEEe e

What’s Your
Fortune?

Imagine yourself opening a fortune cookie. Did
you ever wonder how that particular fortune got
into your cookie? Did somebody want you to

have that one? Probably not. Someone must have

sat down and made up a lot of fortunes, and

someone must have put them all into the cookies,

but they did this in a “random’ way. In other
words, you could have gotten any fortune that
had been written.

Computers can do many things, and one of
them is telling fortunes. They don’t work by magic,
though. As you already know, someone has to

\ [/ LeT A LTTLE O\
\ { compurer inTo)
~_YOR LIFE. /'

program them-tell them exactly what steps to
follow. We are going to write a fortune-telling
program, and we'll follow the same steps as we
would in making fortunes for cookies:

1. Make up a lot of fortunes and store them.
2. Pick a fortune at random.
3. Show the fortune.

In this book we are going to structure programs
so that they are easy to read and to change. We
will do this by dividing the program into steps
such as the three above, called subroutines. The
main body of the program tells the computer
where to find each subroutine. The main body
reads as if it were a table of contents to the
program:.

We also use a lot of REMarks to tell us what

everything in the program does: what variables
we are using, what each subroutine does. Here is
how the main body of the fortune-telling program
looks:

10 REM ----WHAT'S YOUR FORTUNE?~~—-

20 REMF$ (4) : ARRAY OF 4 FORTUNES

30 REMJ : COUNTER

40 REMN : RANDOM NUMBER

50 REM
100 GOSUB 1000
200 GOSUB 2000
300 GOSUB 3000
4ao END

oo e cececocceeaaceecoaa e

{féxefsééééééééé"ééeészééfé*éeeéé“éé‘si%if

The first REMark is the name of the program.
The next three lines name all the variables we will
use in the program. Lines 100, 200, and 300 show
where the three subroutines we will use are locat-
ed. GOSUB 1000 tells the computer to go to line
1000, execute all the instructions there until it
comes to the command RETURN, at which point it
should come back to where it left off.

STORING THE FORTUNES IN
- AN ARRAY

TM LOOKING FOR)

Now let's begin writing the subroutines. The
subroutine at line 1000 will store as many fortunes
as we want in DATA statements. Here is the begin-
ning of the subroutine:

1000 REM ----STORE THE FORTUNES~=~——~~
1010 DATA *"YOUWILL BE RICH"*

1020 ‘DATA * 'YOU ARE VERY FUNNY"* '
1030 DATA * *YOU LOVE COMPUTERS' "
1040 DATA * *YOU WILL GO ON A LONG TRIP'*

Feel free to use your own fortunes—just make
sure you begin each line with DATA and put
quotes around the data you write. DATA state-
menis can come anywhere in a program. When
the computer finds a READ statement it automati-
cally looks for DATA to read. It starts looking at
the -beginning of the program and keeps looking
until it finds some. The next time it gets a READ
command it continues from the last piece of data.
We are using four pieces of data, so we need
four READ commands:

1050 DIMF&(Y)
1060 FORJ=1TOY
1070 READ F% (dJ)
1080 NEXTJ
1050 RETURN

Line 1050 notifies the computer that F$ is not a
single variable but will have four elements, or
cells. The group of four fortunes is called an array

-several pieces of data sharing the same variable

name.

The loop in lines 1060 to 1080 instructs the
computer to READ four pieces of DATA and store
them in F$: the first string -(or fortune) is called
F$(1), the second is called F$(2), and so on.

4

COCOOEOCOECECCCCOEECLECECCOCE GO

W €€ € € € €€ €L €8 €€ €8 €€ e € ix

A

Line 1090 makes the computer return to the -
main program and continue from where it left off.
It will now execute line 200, which tells it to go to
the subroutine at line 2000 and pick a fortune:”

CHOOSING A FORTUNE
AT RANDOM

ﬂ&’f YOU INTERESTED-)
INA 64K BYTE 5
1 UNIT WITH A
DUAL DISC
DRIVE ?

Now that we have four fortunes stored as
F$(1), F$(2), F$(3), and F$(4), we need to pick
one of them at random. The Tl has a built-in func-
tion that can choose a different number each time
you use it. If we can get it to pick the number 1, 2,
3, or 4, we can use that number to select one of .
the four cells of F$. We will use the random func-
tion so much in this book that we had better spend
some time understanding how it works.

5

Let's work on a little test program. If you are
typing in the FORTUNES program, save it and
type NEW. Then type in the following:

10 FORX=1T010
c0 PRINT RND
30 NEXT X

That's the whole program. Run it a few times
and study the numbers you get. They should all be
decimals between 0 and 1. However, you should
get the same random numbers each time. To get
different numbers, we need a new TlI command,
RANDOMIZE. Insert this line in your program:

5 RANDOMIZE

and run the program a few more times. Now the
numbers should all be different. Every time we use
the RND function we will use RANDOMIZE at the
" beginning of the program. Notice that the num-
bers you are gefting are all decimals between 0
and 1. We need bigger numbers, so make this
change:

20 PRINT Y4 * RND

Run this version a few times. Now all the num-
bers should be between 0 and 3.999.... They
won't quite get up to 4.

6

COCQOCCCCeCCECOCCECECCEEE e

TEEEREES

L

(L eeaeaeaiaeade

g

i,

For our fortunes we need the integers 1, 2, 3,
or 4-we don't want the decimal part of the
number. BASIC has an integer function that chops
off the decimal part. Change line 20 again:

20 PRINT INT (Y4 % RND)

and run it. Now the computer picks decimal num-
bers at random, ' multiplies them by four, and
chops off the decimal. But there is still one thing
wrong-notice that the range of the numbers is
from O to 3. We want a range from 1 to 4, so one
more change is necessary:

20 PRINT INT (4 %RND) +1

This version should give us the numbers we
want. Using this formula, we can write the whole
subroutine in three lines:

2000 REM -——-PICK A RANDOM NUMBER-——--
.2010 RANDOMIZE

2020 N = INT (4 %RND) +1

2030 RETURN

We. are getting a random number from 1 to 4
and storing it as N. All we have to do now is to
show fortune number N.

DISPLAYING THE FORTUNE

THEY S0LD ME
THI5 FORTUNE
TELLING GAME,

BUT I CAN'T

FIND THE 5LOT
FOR MY QUARTER.

You should have no trouble in seeing how this
subroutine works:

3000 REM ----DISPLAY THE FORTUNE-----
3010 CALL CLEAR

- 3020 PRINT ' "HERE'S YOUR FORTUNE: **
3030 PRINT :
3040 PRINT Fs (N)
3050 RETURN

CALL CLEAR erases the screen and line 3040
prints fortune N. What is fortune N? If N equals 1
then the computer will display F$(1),"YOU WILL BE
RICH". If N is 3, then F$(3) will be shown, “YOU
LOVE COMPUTERS".

e O aaeacaeaacac @,

@it ieie@aeddd

PUTTING THE
PROGRAM TOGETHER

[7 ueohT:15]
y)Z)qudRWNE : STAY

| | awAYy FRoM |
i | MARRIED COMPUTER |
|\ saLeswomen

All the subroutines are written and the program
is ready to go. Even though you can see the whole
program by looking at various places in this chap-
ter, it's a good idea to see it all in one place:

10 REM-—--WHAT'S YOUR FORTUNE?=————
20 REMF%$(4) : ARRAY OF 4 FORTUNES
30 REMJ : COUNTER
40 REMN : RANDOM NUMBER
50 REM
100 GOSUB 1000
200 GOSUB 2000
300 GOSUB 3000
40D END _
1000 REM-----STORE THE FORTUNES-——-—-
1010 DATA *'YOUWILL BERICH'®
1020 DATA ' 'YOU ARE VERY FUNNY'*
1030 DATA ' *YOU LOVE COMPUTERS'*

104D DATA *'YOU WILL GO ON A LONG TRIP' *
1050 DINF$ (4)

1060 FOR J=1TO Y4

1070 READFs(J)

1080 NEXT J

1090 RETURN

2000 REM ----PICK A RANDOM NUMBER--—-
2010 RANDOMIZE

2020 N= INT (4 XRND) +1

2030 RETURN

3000 REM -----DISPLAY THE FORTUNE--—-
3010 CALL CLEAR

3020 -PRINT * "HERE 'S YOUR FORTUNE: * *
3030 PRINT

3040 PRINT Fs (N)

3050 RETURN

VARIATIONS

There are always many things you can do to
improve a program and to make it more elabo-

10

COECEECCEEECOECEECCEEEeEaeeaecede

€ €L @@ Eeaeeeeeiaiieeaeede

rate. At the end of each chapter we will suggest a
few variations you can try and give you hints on
how to get started. Here are variations for our
fortune cookie program.

1. Four fortunes may not seem like enough of
variety to you. You can make up and store as
many as you wish. You will, however, have to
change several parts of the program:

a. Add more DATA lines in the first subroutine.

b. Change the number in lines 1050 and 1060.

c. Also change the 4 in the random function
(line 2020).

2. Display two (or more) fortunes: Suppose two
people want to see their fortunes at the same time.
You would need to pick two fortunes - let's call
them N1 and N2:

2020 N1= INT (4 *RND) +1
2025 N2=INT (4 %XRND) +1

In the last subroutine, you would display both
N1 and N2. In this way you could store and print
any number of fortunes.

11

A Secret Code

Have you ever used a secret code to communi-
cate with a friend? All codes have rules to
follow—if you know the rules, you can decode a
message with no trouble. Computers can code
and decode very easily, as long as you program
in the rules. In this chapter we will write a game
program for two people to play. The first will type
in a message. The Tl will take the message,
change it into a code, and then show it to the
second player, who will try to decode it.

There are many, many different codes we could
use. Here we'll use a reverse code: the computer
will take the message and display it backwards.
The second player will have to read from right to
left to figure it out:

?SIHT DAER UOY NAC

If you can, you'll be able to decode everything
in this game. Here is the main body of the
program:

- 12

e cccecccacce e

€4

CEEEEEEEEiEEaEEeedeeaeeeeaat

[

f

10 REM ——=———SECRET CODE=mmmmmmmmmmm
20 REMMS : THE MESSAGE
30 REMLS : A LETTER IN THE MESSAGE
4D REMCS : THE CODE
50 REMAS : ANSWER
kD REMJ : COUNTER
70 REM
100 GOSUB 1000
200 GOSUB 2000
300 6OSUB30OD - .
4OD END

The main body shows us that there are five
variable names we will use, and three sections of
the program.

GETTING THE MESSAGE

/" HeY LOOK! SOMEONE SENT
YOU A DISC FOR YOUR
| COMPUTER... DO YoU
\ KNOWA "KILLER | T2
NK/LOBYTE'? =2

In the subroutine at line 1000, we ask the sec-
ond player not to watch while the first player
' 13

types in the message. The message will be stored
as M$:

1000 REM --——--GET THE MESSAGE---—-—-
1010 CALL CLEAR

1020 PRINT ' "ASK YOUR FRIEND NOT TO WATCH®*
1030 PRINT ° *WHILE YOU TYPE YOUR MESSAGE. *'
1040 PRINT

1050 PRINT °°TYPE THE MESSAGE.""'

10LD PRINT ' *THEN PRESS RETURN: **

1070 INPUT Ms

1080 RETURN

REVERSING THE MESSAGE

/T SENT KILOBYTE ﬂ .
| e IR -

Now the program has a string of characters
called M$ ~ any group of letters or numbers or
other keyboard characters such as dollar signs or
parentheses could be in the string. We need to
14 '

CCCEOCECCCECCECeEEC COCEOCeaCn

V

€ € € € ¢

-

[*éé‘%éEéééééééééééééééééé‘ééééééé%éé

reverse all the characters in M$ and store them in
a new variable we will call C$ (for code). The
procedure will be as follows:

1. Take the last character of M$ and make it
the first character of C$.

2. Make the second-to-last character of M$ the
second character of C$.

3. Make the third-to-last character of M$ the
third character of CS$.

4, Follow this procedure until we get to the last
character of M$, which will become the
first character of C$.

Suppose the message is just the word “'"HELLO"'.
The last character of M$ would be “O”, so “O""
will be the first character of C$. Then, L will be the

second character of C$. When we finish the

coding, C$ should be
L] 'OLLEHQ 1]

The TI has a special built-in function that can
pick out any character you wish from inside
string of characters. Let's expenmem fo see how it
works. First type

M$ = * 'HORSE"*
. Then ask the Tl to
PRINT SEG% (M%.441)

(and press return, of course.)
15

The Ti should respond with the letter S, because
S is character number 4 in M$. Now i'ry this
command:

PRINT SEG% (M$+3+2)

The Tl will show you two characters in M$,
starting at character number 3. You should see the
letters RS when you press return. To use the SEG$
function you need three pieces of information
inside the parentheses:

(nome of string, starting character, how many
characters)

In place of the numbers you may use varlable
names. For example, tell the Tl that

J=25
and then tell it to

PRINT SEG% (M&i+J41)

In other words, you want to see 1 character of
MS$, starting at character number J, or 5. You
should see the letter E. What if J is 4? Then
SEG$(M$,J,1) is the letter S. By changing the val-
ve of J we could look at all the characters in M$.

But how do we know how many characters
there are in M$?

Another Tl function tells us this fact. Try this:

16

e c€ é"é"‘({f': €€ c.0C€ € ¢ e ecc. é’éé)

e EEE e EEEaEedEaaaeaaaaeeeeeaaadae

PRINT LEN (M%)

LEN stands for the length of any string you put
inside the parentheses. Llet's change M$ as
follows:

Mé = ' "HI THERE ! **
PRINT LEN (M%)

If you type in these commands, after the second
time you press return you will see that the length
of M$ is 9. The space and the exclamation point
count because they are both part of the string of
characters.

Before we write out the subrouhne, let's use
these new functions in a short test program, just as
we did in the first chapter for the random func-
tion. The best way to understand any new comput-
er concept is to use it in the simplest program you
can lmagme

~— 1,/ SEEPS,TI
: %w Ev'uoy

17

I

If you are already fypﬁng in our program, save
it, type NEW, and type in the following fest:

10 M$ = ' "HELP'
20 FORJ =1T0H4

30 PRINT SEG# (M$da1)
40 NEXT J

Run this program--the output should be the four
letters in HELP displayed one to a line on the
screen. The first time through the loop J equaled 1
so the first letter of M$ was printed. The second
time the second letter was printed, and so on.
Now make this change:

10 FORJ =4 TO L STEP -1

Run the program again. This time the letters are
displayed in.reverse order. The first time through
the loop J equaled 4 so the fourth lefter was
displayed. J decreased by 1 every time through
the loop, so the second time J equaled 3 and the
third letter was displayed. Now make one more
change:

10 FORJ = LEN(M$) TO 1 STEP -1

The program should run exactly the same. The
compufer simply substituted the number 4 for
LEN(MS$) because there are four characters in M$.
18

€ €. € € ¢ @?*%‘@ré‘,é'@é)%'é{;

¢

€ €

COECEOECOHEE COCC

et

&

.

Because the computer can do this, we do not have
to know how many characters there are in M$ in
advance.

~ Now we're ready for the coding subroutine:

2000 REM -----REVERSE THE MESSAGE-—---
2010 FORJ = LEN(M$) TOL STEP -1
EUEU L% = SEGS (M%+Ja1)
- 2030 C=(H8LS
204D NEXT J
2050 RETURN

The routine has only a few steps. The
FOR/INEXT loop tells the computer to count down
starting from the last character until it gets to the
first character of M$. If M$ is the word “CAT”
the loop will be executed three times. The first time
J will equal 3, the second time J will be 2, and the
third time J will be 1. 4

L$ stands for one letter in M$. If M$ is “CAT",
the first time through the loop L$ will be “'T”, the
second time L$ will be “A”, and the last time L$
will be “'C". .

Line 2030 takes each L$ and adds it on to the
‘end of C$ (the code). Before we start there is
nothing in C$, so the first L$ becomes C$ by itself.
After the first fime through the loop, C$ will be
“”'. After the second time, L$ will be “A” and
gets added to the end of C$--C$ will now be
“TA”'. After the last time through, “'C" will get

19

added and make C$ “TAC"”. The original mes-
sage is now reversed.

QUIZZING THE
SECOND PLAYER

[BOY, S0MEONE Y _
| SURE CAN'T ”
| SPELL -
\ VERY >

WElL!) p

\\/NCODE, }
\, SPEED. /

Now that we have the original message (M$)
and the coded version (C$) the rest is easy. We
clear the screen and ask the second player to look
~at C$ and type in the original message. We'll call
the second player’s answer A$. If A$ matches M$
then the player is correct.

3000 REM QUIZ

3010 CALL CLEAR

3020 PRINT ' 'ASK YOUR FRIEND TO TRY'*
3030 PRINT ' *TO DECODE THIS MESSAGE:'* -
3040 PRINT

3050 PRINT C%

20

COCOEECEECEEEEaECeOaade

¢

€« €

O e e

L0 Eeaaeeaeaaeqedde

30L0 PRINT

3070 PRINT ' " TYPE YOUR ANSWER HERE: **
3080 INPUT A%

3090 IF A% = M$ THEN 3130

3100 PRINT * *SORRY THE MESSAGE UAS: **
3110 PRINTMe

3120 GOTO 3140

3130 PRINT ''THAT'SIT!"’

3140 RETURN

THE WHOLE PROGRAM

7T THINK YOU NEED'\
\ 4 computeR |
ONSULTANT. A

Once again, we will print the whole program in
one piece so you can see all the parts of it at
once.

10 REM ~——mmmm SECRET CODE=——mmmmmmmm
20 REMMS : THE MESSAGE
30 REML$: ALETTER IN THE MESSAGE
4D REM C# : THE CODE
21

50 REMAS$: ANSWER
kO REMJ : COUNTER
70 RER

100 GOSUB 1000
200 GOSUB 2000
300 GOSUB 3000
40D END

1000 REM =----GET THE MESSAGE-------

1010 CALL CLEAR ,

1020 PRINT ' *ASK YOUR FRIEND NOT TO WATCH" *

1030 PRINT * *WHILE YOU TYPE YOUR MESSAGE. **

1040 PRINT

1050 PRINT ' * TYPE THE MESSAGE-" '

1060 PRINT ' *'THEN PRESS RETURN: **

1070 INPUT M$

1080 RETURN

2000 REM -----REVERSE THE MESSAGE-------

2010 FORJ = LEN(M$) TO 1 STEP -1

B0E0 L$ = SEGS (Fi$ada1)

2030 C$=Csals

2040 NEXT J

2050 RETURN

3000 REM QUIZ

3010 CALL CLEAR

3020 PRINT ' * ASK YOUR FRIEND TO TRY'®

3030 PRINT **TO DECODE THIS MESSAGE: **

3040 PRINT

3050 PRINT C&

3060 PRINT

3070 PRINT * ' TYPE YOUR ANSWER HERE: **

3080 INPUT A$

3090 IF A% = ¢ THEN 3130

3100 PRINT ' * SORRY~ THE MESSAGE WAS: ' -

CCCCCEOEECEEEEEEECECEaEEaEqeeOacee

€/

e EEEEEEaEeeeeeeeareeaeeaadadce

I

3110 PRINT M%

3120 - 6OTO 3140

3130 PRINT °°THAT'SIT?!'®
3140 RETURN

- VARIATIONS

/ THE COMPUTER
[consuLTANT FROM
| 7HE EvPLOYMENT
\ AGENCY IS -
NHERE. /

1. As it stands, our program always uses the
same code. If someone plays a number of times,
he or she will probably catch on to the code and
the game will stop being fun. Let's work on a
subroutine that uses a different code.

There are probably thousands of different
codes we could make up. Our fist code simply
reversed the message. Another code might insert a
" letter afier every letter of the message. In this case
the code for HELLO could be HXEXLXLXOX. One
easy change in the coding subroutine will take
care of this: : ,

23

2000 REM --——--CODE IT-—-——~————-
2010 FORJ = 1 TO LEN (Ms)

2020 L% = SEG% (M$.da1)

2030 s=(salse"''X"’

2040 NEXT J

2050 RETURN

There are really two changes. In line 3010 we

count forward instead of backward because we -

don’t want to reverse the characters of the mes-
sage this time. In line 3030 we add a letter of the
message and also an X to the code each time
through the loop.

Of course you could use any letter in place of
the X. But isn't this code too easy to read also?
What if we picked a letters at random and insert-
ed them into the code each time through the
loop?

To program this, you have to learn about two
more BASIC functions. Every character used by
the computer has a code number. The code is
called the ASCIl code and most computers use it.
The ASCII number for a capital A is 65. B is 66, C
is 67, and so on until Z, which has the code num-
ber 90. You can prove this for yourself. Type:

PRINTASC(''A*") or PRINTASC(''T'")

or whichever character you want. >
The ASC function takes a letter and changes it

into a number. We want to do just the opposite --

when we use the RND function we get a random

24

é'%%’éééé‘éééé%ééé%%éé%éé%%%é%%ééé%%-;

e EEEE@EEEEeEeEeq et

number. We need to changeAihe nﬁmber into a
letter. The BASIC function CHR$ does just 'rhls

Type:
PRINT CHRS (L5)

and the computer returns the letter A, because A
is character number 65 in the ASCII list. The CHR$

- function is the opposite of the ASC function.

Now let’s change our CODE IT subroutine so
that each time through the loop we get a random
integer from 1 to 26 (because there are 26 letters
in the alphabet) and use that integer in the CHR$
function to get a letter. In this way we get random
letters that we can add to 'rhe code instead of

" adding an X every time:

2000 REM CODE IT
2010 FORJ = 1 TOLEN (M%)

2020 LS = SEGS (M$+dA1)
20300 R =INT(2b*RND) +k5
240 =(saLls& CHRS(R)
2050 NEXT J

200 RETURN

In line 2030 notice that we add 65 to the ran-
dom number. We want the number to be between
65 and 90 because these are the ASCII codes for
A and Z. We don’t want any random numbers

. between 1 and 64.

_Also notice that line 2040 adds three strings
together each time through the loop: what was in
25

‘the code already (C$), the next letter of the mes-
sage (L$), and the letter picked at random
(CHR$(R)). ‘
2. Another change would be to give the player
more than one chance to get the message correct.
Here’s how you could go about it. The beginning
of the QUIZ subroutine, from line 2000 to line

2070, would remain the same; you would display .

the coded message and ask for the answer. Next
you would set up a FOR/NEXT loop that goes
around however many times you wish. Inside the
loop you would get the answer and evaluate
whether it is right or wrong. If it is wrong you

would give the appropriate message and go

through the loop again. We leave it to you to
develop the code completely.

C € €€ ECEEEEECCEOEEECECECECeeeeaeCeaceceecce

€6 € €€ €

" We have used several important techniques in
“ writing games: different ways to make codes, to
w« store and display messages, and to use the ran-
« dom function. These are found over and over
« again in games. But so far we have ignored a
« game technique that the computer does especially

well: animation.

Many computer games use some kind ‘of ani-
mation (moving objects around the screen). Pro-

AT ! T MICRo M/NM/E}(PLUG IN me"\\ |

WHAT CAN I DO FOR COMPUTER, MY
You ? " BAcK s
/f"’ R AILLING

e W g HE!

€ € € € € € € € € € € € €

|
|
|
|
‘

grammers spend years studying the most
advanced new animation techniques. In this book
we will introduce you to character animation-that
is, using any of the characters on the keyboard
and making it seem to move.

We will start with a race between two initials,
On the left side of the screen we'll place the first
initials of the two players. When someone presses
ENTER to start the race, the initials will take off, at
different speeds. When one of them reaches the
finish line, the program will anounce who won.
Each time you run this program, a random speed
will be picked for each initial, so that each could
win each fime.

The four main parts of the program, as well as
the variables we will use, are shown in the main

body:

10 REM-----INITIAL RACE--—---—---
20 REM A% : THE FIRST INITIAL

25 REMB% : THE SECOND INITIAL

30 REMA : ASCIT CODE FOR A%

35 REMB = ASCII CODE FOR B%

40 REM SA : SPEED FOR FIRST INITIAL
45 REMSB : SPEED FOR SECOND INITIAL -
50 REM CA = COLUMN OF FIRST INITIAL
55 REM (B ¢ COLUMN OF SECOND INITIAL
b0 REMUWs : THE WINNER

b5 REMRS : A RESPONSE

70 REMX : A COUNTER

?5 REMMs ¢ A TEXT MESSAGE

28

COE6 et eeeceaeecececc

T EEEE @i aeEaeeeeeaeade

[
|
|
|

80 REML% : ALETTER INMe

85 REMC: ASCTI CODEFORLS

90 REM

95 RANDOMIZE
100 6OSUB 1000
200 GOSUB 2000
300 GOSUB 3000
400 GOSUB 4000

. 500 END

Subroutine 1000 gets two initials called A$ and
B$ for the race. Subroutine 2000 selects speeds
for the two initials at random. Up to this point all
the commands should be familiar to you. Starting
at subroutine 3000 (the race) and continuing
through the rest of this book, however, we will
handle all input and output in a different way.

Up till now, when we wanted to put a message
on the screen we used the command PRINT, and
when we wanted the user to respond we used the
command INPUT. You may have noficed that each
of these commands made the whole screen scroll
vpward-that is, everything moved up a line. For
the rest of this book we want to set up the screen
and not have it scroll upward. We also want to be
able to place text and get input at any location of
the screen. For these purposes we need new func-
tions and commands. Subroutine 4000 of this
chapter introduces the CALL HCHAR subprogram
for putting output wherever we want it-it
announces the winner of the race.

29.

GETTING THE INITIALS

TO LOOK AT

/TOBREAK THISCODE,\ (
WE HAVETO LOOK AT] O

THE NV —__

ROGRAM.((3 4 ¢
B\ 2 Spm |

" Everything in the first subroutine should be
familiar:

1000 REM--GET INITIALS---

1010 CALL CLEAR

1020 PRINT ' °TYPE THE FIRST INITIAL®®
1030 PRINT ''OF PLAYER #1:'°

1040 INPUT A%

1050 PRINT

10&0 PRINT *"AND THE FIRST INITIAL®'
1070 PRINT *"OF PLAYER #2:"*

1080 INPUT B% '

1090 PRINT

1100 PRINT ' °PRESS ENTER TO RACE"'
1110 INPUT R¢ o
1120 RETURN

We clear the screen with CALL CLEAR, get the
first initial and call it A$, get the second initial and
30 :

¢cCecoccccoccccecccccace e é'%‘vé € aeec

I

T €€ € e aaaieaiiaaaaadt

call it B$, and then wait until the player presses -
ENTER fto start the race. ,

ANIMATING

THERE'S ONE MORE MESSAGE :
"UMLESS YoU MEET ME BY
PIER 1...

Before we get to the race itself, let's investigate
what animation on a Tl is all about. As we did
before in learning a new concept, we will write a
small test program. If you are currently typing the

_program from this chapter, make sure you save it
_(and type NEW) before entering this one.

The kind of animation we will be doing is called
“character graphics.” This means that we make
people believe that something is moving across the
screen by printing a character from the keyboard
on the screen, erasing it, and prinfing it a little
distance away. By repeating these steps over and
over, it appears that the character is moving.
These are the steps we will always follow in
animating:

' 31

1. Display a character on the screen.
2. Repeat some number of times:
a. Erase the character.
b. Display the character a little distance
away.

The Tl screen is divided into 32 rows from left
“to right and 24 columns from top to bottom. See
your User's Reference Guide for a screen map
that shows the rows and columns. To place a char-
acter at a certain screen location we use the CALL
HCHAR subprogram. It is a subprogram because
it is stored inside the Tl as a little program thot lets
you place characters on the screen. To use CALL
HCHAR you must know three things: the row num-
ber you want, the column number, and the charac-
ter code. Remember the ASCIi codes that we used
in Chapter 3—-character 65 is A, 66 is B, and so
on.
- Here is the command for putting the letter C
(character code 67) on the 5th row and the 20th
column of the screen: ~ ~

32

CCEEECEOOEEEOeECEeeEEeereeeeaeeaaae

yé'e‘e‘uetéééé%%eueéeééue"eeﬁfeuw'e

Fe

CALL HCHAR (5+20-+b7)

If you know these three pieces of information
that's all there is to it. By the way, there.is also an
option for repeating the same character as many
times as you want horizontally (HCHAR stands for
horizontal characters)-simply add a comma and
the number of repititions inside the parentheses.
Similarly, there is a VCHAR subprogram for dis-
playing and repeating characters vertically on the

~screen. In this book, however, we do not repeat

the same character, so the only command we need
is CALL HCHAR with three numbers in the
parentheses, as shown above.

‘Let's use CALL HCHAR to animate the letter Z
across the screen. It will move across row 10, from
column 5 to column 25.

10 CALL CLEAR
20 CALL HCHAR (10.5+90)
30 FORC=5TO0 24
40 CALL HCHAR (10.C~32)
50 CALL HCHAR (10.C+1-90)
&0 FORP=1TOS5D
70 NEXTP
80 NEXT C
90 FORP =1 T0 2000
100 NEXTP

First we clear the screen (line 10) and put a Z
on row 10, column 5 (line 20). The loop in lines 30
to 80 erases the Z (character 32 is a space) and

33

draws it one column over (C+1), from column 5
to column 24. The last time through the loop C will
be 24, so the Z will be drawn at C+1, or column
25. The pause loop in lines 60 and 70 slows down

the speed of the Z a litile. The pause at the end of

the program (lines 90 and 100) simply waits a
while-before ending the program and scrolling up
the screen. :

Test this program out and try modifying it.
Change the row number, the column numbers, the
character code, or the length of the pauses. All of
our animation will be similar to this. One differ-
ence in the race in this chapter, however, is that
we don’t necessarily want to move one step ot a
fime across the columns. Therefore we will pick
random speeds for the two initials and calculate
the new column position before we move each
initial.

SELECTING THE SPEEDS

Y. ITLL SHUT DOWN EVERY >
COMPUTER IN
TOWNT" 5

S

R
[
9

=

L} 2

34

(€0 e aacc e ao

@ @ @ Eea e eeqoiannd

J

Each initial will get a speed of either 1 or 2.
This means that before each move we will add
either a 1 or a 2 to the column number of that
initial and use the result as the new column
number. ' : ‘

2000 REM--RANDOM SPEEDS--
2010 SA = INT(2*RND) +1
2020 SB = INT(2%RND) +1
2030 RETURN

SA and SB stand for the speeds of initials A
and B. Both SA and SB could be either 1 or 2
each time the program runs. If SA is 1, initial A
will move 1 step at a fime across the screen. If SB
is 2, initial B will move 2 steps at a fime and it will
win the race. '

THE RACE

DO I HAVE T0 60 IN
~/A\ PERSON, OR CAN
) I JUST SEND
T MY BANK

7 B\ CARD?

35

Storing the speeds of the two initials is not quite
enough. We also need to know their column posi-
tions at each move. Suppose we decide that
whichever initial crosses column 28 first will be the
winner. We will start both of them at column 3,
but we will not know how far each goes on each

move. The two variable CA and CB, standing for

initial A’s column and initial B’s column, will tell us
their current position.

Speaking of the winner, when the race is over it
would be nice to announce who the winner is. For
this, we need another variable, W$, in which to
store the initial that crosses the finish line first.

Two last variables (called simply A and B) will
store the character codes of the initials. Remember
that to use CALL HCHAR we need the character
number, not the character itself. Also remember
from Chapter 3 that we can find out the code
numbers by using the ASC function. ASC(A$) will
be the character code for the first initial and
ASC(B$) the code for the second.

Now we're ready for the race subroutine. Let's
examine it in chunks.

3000 REM -----THE RACE-—————-
3010 CALL CLEAR

3020 A = ASC(A%)

3030 B = ASC(B%)

3040 CA=3

3050 (B=13

3060 CALL HCHAR (4.CA+A)

3070 CALL HCHAR (b+(B+B)

36

e aecaacac € € € €€ € ¢ ¢

e e @i aeeaegeiedn

- We clear the screen, use the ASC function to
store the code numbers A and B, set CA and CB to
3 because we want them to start on column 3, and
finally we use CALL HCHAR to put initial A on row
4 and initial B on row 6, both on column 3.

3080 FORX = 1 T¢ 1000
3090 NEXT X

A little pause before we ac?ually start the race
lets the player adjust to seeing the intials before
they take off.

- 3100 CALL HCHAR (4+CA+32)

3110 CA=CA+SA
3120 CALL HCHAR (4+CA+A)
3130 IF CA< 28 THEN 3160

3140 WS =A$
3150 GOTO 3250

37

This section moves initial A. Line 3100 puts a
space at its current position. Line 3110 calculates
what its new column position should be--either 1
or 2 is added to CA. Line 3120 draws the initial at
its new column position. Line 3130 checks the
column position. If it is less that 28 (the finish) the
program skips to line 3160 and moves initial B. If
it is not less than 28, that means initial A has won,
" s0 we store A$ in W$ and skip to the end of the
subroutine.

3160 CALL HCHAR (b+CBA32)
3170 (B=(B+3SB

3180 CALL HCHAR (b+(B+B)
3190 IF (B <28 THEN 3220
3200 Ws=1Bs

3210 GOTO 3250

This section moves initial B in exactly the same
way we just moved initial A: we erase the initial
where it is, calculate a new position and draw it
there, then check whether it has won the race.

3220 FORX =1T0 10
3230 NEXT X

3240 6OTO 3100
3250 RETURN

If the initial has not yet won (if its column posi-
‘tion is less than 28) the program moves to line
3220. Here we pause briefly and go back to line

38

(€ eeeece e eceaeaaecce

g

* 3100 to move the initials again. If either initial has
“ won, line 3250 returns from the subroutine.

THE WINNER

KILLER ! HERE T
L AN, IV 50/\/’

€ € € € € € € € € € € €«

w Only one piece of business remains: telling who
« Won. We could simply say:

- 400D PRINT **THE WINNER IS '°suws

This would work, but the PRINT command
would make the whole screen scroll up a line,
including the initials. Here we'll learn a way to
* avoid that and let you put a message on any part
“ of the screen you want. To do this we will go
“« through several steps:

€ € € ¢

- 1. Store the message as a variable (M$).
2. Investigate M$ character by character:

39

T« €

a. Use the SEG$ function to get one
character at a time.

b. Use the ASC function to get the code
number for the character.

¢. Use CALL HCHAR to draw each charac-
ter next to the last.

€ CGEeeec

This may sound like a complicated way to puta
message on the screen, but once you get used to
it, it becomes routine. It has the advantage of @
letting you put text on different parts of the screen
without disturbing the screen, and it is fairly short: ¢

. @
4DOO REM ~-~THE WINNER----—-- -
4D10 M$ = * "THE WINNER IS'* “
4D20 FORX = 1 TO LEN (M$) .
YD30 L% = SEG$ (M$-X 1)
YOUD € = ASC(L$) | v
4DSO CALL HCHAR (18+X+C) w
4OLD NEXT X ~ -

@

First we want to print THE WINNER IS, so wew .
store this string as M$. The loop in lines 4020 to &
4060 needs to go around as many fimes as there
are characters in M$. The LEN function, remem-'%;
ber, gives us this number. Line 4030 picks out each
character from M$ (one at a time) and calls it L$. -
Line 4040 gets the code number for L$ and calls it
C. Line 4050 draws each character on row 18 of %’
the screen. The first character will be drawn in'¢
column 1, because X is 1 the first time though. The «
second character will be in column 2, and so on. f «
40 _ o

@

{'féfesefééeeteeeeeeeeééé“ééeéuws‘

we had wanted to begin at column 5, in line 4050
we would have to CALL HCHAR(18,X-+4,C),
since the first fime though X+ 4 would equal 5.

40?70 CALL HCHAR (18+15-ASC (%))
4080 FORX =1 TO 2000

4090 NEXT X

4100 RETURN

Finally we print W$ at column 15 of row 18
and pause briefly. Nofice that we can use the
ASC function inside of CALL HCHAR to get the

correct character code number.

VARIATIONS

GEE, KILLER, > (INsDE THE)
[Youve (& | WAREHOUSE.
| cHaweeD ¥

IN THE
LAST

Because of the length of the animation and dis-
play subroutines, from here on we are not printing
the whole program at the end of the chapter. You

41

can put it together- easily yourself, however, by
looking through the chapter. Remember, of
course, that the test animation program we wrote
is not part of the Initial Race program.

Once you know how it's done, animation gets
easier and easier. All you need is prachce Here
are several suggestions for improving this game;
you can probably think of many more:

1) SCREEN FORMAT: Use CALL HCHAR to
make the screen look fancier before the race
starts. Put o fitle for the race at the top of the
screen, using subroutine 4000 for a model. Put a
border around the racetrack. The command

© CALL HCHAR (2+12ASC (* "= %) »3D)

will put 30 dashes across row 2 of the screen,

starting at column 1.
2) MORE SPEEDS: We used speeds of only 1 or
2. You may want more variation. You should

42

€ € € e ¢ %'r%*é“ééé-élé'éé%‘éé € %éé%éé%é%

e e e i@ Eaeeaierdaaaaat

know by now how to use the random function to
change the range of the numbers you get. Be
careful of one thing, however. If you set the speed
very high, the initial will look like it is jumping
across the screen, and the screen has only 32 col-
UMNS GCross. -

3) MORE RACERS: Get three initials instead of
two. Set three random speeds. Set all three initials
on their marks. And move all three of them. You
could even add a fourth or a fifth.

43

Burst
the Balloon

The initial race was a fairly simple game — the
whole game was the race. Animation can be used
as a part of more complex games, though. Imag-
ine this screen: on the right is a “"balloon”” and on
the left is a person’s initial. On the lower half of
the screen the player gets arithmetic problems
which he or she tries to solve. When an answer is

correct, the player’s initial moves across the screen’

and “'bursts” the balloon, which turns out to have
a message inside it.

This game combines many elements we have
used before: animation, random numbers, using

MANNY HAS WRITTEN A PROGRAMTY
T0 CONNECT MY COMPUTER TO /2
ALL THE OTHERS IN TOWN. &
AND TAKE CONTROL o T

OF THEM !

44

CECCCEEOECEUECUECCECOLEECCEEE e

G

-

- DATA statements, giving the player several tries.
~ Good games are created by combining many dif-
 ferent elements, but none of the elements has to
“ be complicated by itself.

* One more Tl programming concept needs to be
« introduced. As we mentioned in the last chapter,
‘= from now on we must handle input and output
« differently if we want to preserve our screen
« setup. We have already looked ot CALL HCHAR
« 1o produce output. In this game we also need
. player input. The CALL KEY subprogram gets a
 character number when a key on the keyboard is

" pressed and fransfers it to the program.

<. With both CALL HCHAR and CALL KEY we
“ heed to switch back and forth from character
< names to character codes, and also from codes to
« names. This increases the number of variables we
« must use. Sometimes we need numbers like X and
« Y (the random arithmetic numbers in this game),
« but we also need to make them into strings (X$
« and Y$) so that they can be part of a string for
 CALL HCHAR to output.

5 REM —---BURST THE BALLOON-----
10 REMI$: THE INITIAL
15 REMR ¢ ROWNUMBER:
20 REMC & COLUMN NUMBER
25 REMM$: TEXT MESSAGE
30 REMLS : LETTER IN TEXT
35 REM A : ASCIT CODE NUMBER
40 REMJ : A COUNTER
45 REMK : KEY NUMBER |
45

e

|
|

50 REMS : STATUS OF KEYBOARD
55 REMR$: RESPONSE
- B0 REMX : RANDOM NUMBER
b5 REMY : RANDOM NUMBER
70 REM X% : STRING OF X
75 REM Y% : STRING OF Y
40 REMV : VALUE OF RESPONSE

a5 REM
90 RANDOMIZE
100 GOSUB 1000
200 GOSUB 2000
300 GOSUB 3000
400 END

SETTING UP THE SCREEN

/ YOU ARE THE ONLY ONE
WHD COULD HAVE
STOPPED ‘

YOU'VE €0T

This subroutine has several little parts. First, we
put a title for the game across the top of the
screen. Second, we. draw the balloon. Third, we
get the initial and put it to the left of the balloon.

46

C€ € € € e aaeccececeeceeaeccaecc

f’éeeeeéééeeéééeuueewHéueuéeé

Last, we explain the game Let's look at each part
individually.

1000 REM SET UP

1010 CALL CLEAR

1020 Me = ' "BURST THE BALLOON'
030 R=2

M0 C=7

1050 GOSUB 1500

Every time we have text to put on the screen we
will handle it the same way we handled the mes-
sage THE WINNER IS in Chapter 4, using CALL
HCHAR. In this chapter we have many messages
to output, so we will make the code to draw them
a separate subroutine, located at line 1500. This
subroutine needs three pieces of information: the
row number (R), the column number (C), and the

text message (M$). We'll look at subroutine 1500

at the end of this section. For now, it's enough to
know that the text BURST THE BALLOON will be
put on row 2, staring at column 7.

1060 DATA 4+25+4+2h451235+24+5+275.28
1070 DATA b122+b+8%+7+2217229+8+218.30
1080 DATA 9.21.9-30.10.22410+29+11+22+11~29
1090 DATA 12+23.12+24+12+27+12+28413+25-132h
1100 FORJ =1 TOcY

1110 READR.C

1120 CALL HCHAR (R+C4ASC(''0' "))

1130 NEXTJ

47

This part draws the balloon. The balloon is

made up of 24 letter O's. The first one goes on.

row 4, column 25. The second is on row 4, column
26. Instead of using 24 CALL HCHAR commands
to draw the balloon, we READ from lines of
DATA. The first two data numbers are the first
row and column number. The loop in lines 1100 to
1130 reads in two pieces of data at a time, calls
them R and C, and uses them in the CALL HCHAR
command. Thus-24 O’s are drown where we want
them.

1140 M$ = " "TYPE YOUR FIRST INITIAL: "
1150 R=1b

160 C=1

1170 GOSUB 1500

" Here we put the message TYPE YOUR FIRST
INITIAL: on row 16, column 1, usmg subroutine
1500

€€ €EEECEEEEEEEqCEECECCCCEECCEEECCEeEc

!

€ €

¢

%%éé%é’fééééféééé‘ééé\éé‘éé€€’€€'

£ €€

At this point we need the player to give us
input. As explained before, if we use the INPUT
command the screen will scroll up and the input
will be at the bottom of the screen. The Tl has
another subprogram called CALL KEY that trans-
fers input from a key of the keyboard to the
program. Here is the form of the command:

CALL KEY (mode-skey numberstatus)

There are several keyboard modes, in which the
keys can have different code numbers. For our
purposes, we will always use mode 5, the BASIC
mode. You know that every key (every character)
has its own code number. The CALL KEY com-
mand checks the keyboard to see if a key has
been pressed. If it has, the ASCIl code number for
that key is transferred into the program and given
the name of the variable you put inside the
parentheses. We will always use the variable
name K to stand for the key number. The final
variable inside the parentheses (which we call $
for status) stores either the number O if a key has
not been pressed or a 1 if it has. This is called the
status of the keyboard. Here's how we use CALL
KEY at this point:

1180 CALL KEY (5-4K.3)
1190 IF S = 0 THEN 1180
1200 CALL HCHAR (9454K)
1210 I = CHR% (K)

49

N

We need to know the status of the keyboard
‘because CALL KEY does not sit and wait for some-
one to press a key. It simply checks the keyboard
at the instant the program comes to the CALL KEY
command. Therefore line 1190 checks to see if a
key has been pressed. If no key has been pressed
we go back to CALL KEY repeatedly until a key
has been pressed. Then line 1200 uses the key num-
ber (K) for the CALL HCHAR command to draw the
intital on row 9, comumn 5. We need to store the
initial for later in the program. K, remember, is a
code number. The CHR$ function gives us the char-
acter name, or string, which we store as 1$.

1220 M& = ' *ANSWER 1 QUESTION CORRECTLY.'"*
1230 R=148

1240 C=1

1250 GOSUB 1500

12k0 M$ = ' 'AND YOUR INITIAL WILL''
XD R=19

1280 GOSUB 1500

1290 M#$ = ' "BURST THE BALLOON. '’
1300 R==20

1310 GOSUB 1500

1320 RETURN

We have three more lines of text to put on the
screen. We assign each of them to M$, give them
column and row numbers, and call subroutine
1500. Notice that after line 1240 assigns the num-
ber 1 to C, we don't have to worry about C

50

tecececccccccccccccccccccccaoceecaa

e EEEaEEEEeEaeeeeeeeeeeeeec

again, because we want each message to start at
column 1. We do have to change the row number
for each message, though.

Now for the subroutine that puts the text on the
screen.

1500 REM ----TEXT ON SCREEN---—-
1510 FORJ =1 TOLEN (Fi%)

1520 L% = SEG% (M$+da1)

1530 A =ASC(Ls)

1540 CALL HCHAR (R+C+dA)
1550 NEXT J

1560 RETURN

This routine does just what we did in the last

~ subroutine of the Initial Race. It takes M$, exam-

ines it character by character with the SEG$ func-
tion, translates the character to its code number
using the ASC function, and use CALL HCHAR to
draw each character on the screen at successive

column positions.

Let's trace how this routine works. Suppose that
M$ is BURST THE BALLOON. -This string has 17
characters (counting spaces), so LEN(M$) is 17.
The first time through the loop L$ is B, the first
character of M$. A is the ASCIl code for B (66).
Therefore the CALL HCHAR subroutine puts the
letter B on row R, column C+ 1. The next charac-
ter will be put on row R, column C+2, and so
forth.

51

ASKING THE QUESTION

7/ PIANNY WILL ENTERTAINY 7/ you
."' YOU WHILE T TAKE VIDEO &I’;EES,
WALKER ?
“ ; \ \ - b

A .

In this section we pose arithmetic problems until
the player gets one right. To pose the problem, we
pick two random numbers called X and Y, ask
how much is X plus Y, get the input, and evaluate
whether the input is correct. Here is the code:

2000 REM---QUESTION(S)--—-

2010 X = INT(S0*RND) +1

2020 Y = INT(SD%RND) +1

2030 GOSUB 2500

2031 REM (2500 ERASES THE BOTTOM OF THE
SCREEN) '

2040 X% = STR% (X)

2050 Y& = STR$(Y)

20kl M$ = ""HOWMUCHIS *'eX$a "' +'" & Y$&
"?'l

20?0 R=1b

2080 C=1

2090 GOSUB 1500

- 52

€ e et

'3

M ECEEEEE e eEaeaerceereeeadae

2100 R=17
2lld ¢=3
2120 GOSUB 2700

212l REM (2700 GETS INPUT)
2130 V = VAL (R$)

2140 IF V<> X+Y THEN 2010
2150 RETURN

Lines 2010 and 2020 get two random numbers
between 1 and 50. You could substitute any, num-
ber you want for the 50. The subroutine located at
line 2500 clears the bottom of the screen so that
we can put new fext on it. We'll look at it after

- this section.

Next we want to put a text message on the
screen. The message is composed of five parts:

1) the words HOW MUCH IS
2) the first number (X)

3) a plus sign (+) -

4) the second number (Y)

5) a question mark (?)

Iif X and Y were 34 and 12, then the message
should like like this: HOW MUCH IS 34 + 12?

Each of these five parts of the text must be a
string. Since X and Y are numbers, not strings, we
have to make strings out of them with the STR$
function. STR$ examines what follows it in the
parentheses. If this is a number, the STR$ function
makes it into a string. Thus, X$ is the siring made

- 53

out of X, and Y$ is the string made out of Y. X
ond X$ will look identical when put on the screen,
but they are stored differently, they have different
code numbers, and you can use X$ as part of
another siring. Line 2060 puts five strings together
to make up M$, which is then output on the screen
by subroutine 1500.

Next we must get the player’s input. We set the'

row to 17 and the column to 3 and call another
subroutine at line 2700 which uses the CALL KEY
command over and over again to get characters
and output them on the screen with CALL HCHAR.
This subroutine (which will be explained after this
section) gets input one character at a time and
puts the characters together into ‘a string called
- R$. We need to evaluate whether the input is
correct, but we cannot compare a string fo ©
number. So we need another function which is the
opposite of the STR$ function. The VAL function
takes ‘a string and changes it into a number, so
that in line 2130 V becomes the number that rep-
resents R$. One thing to be careful of: the input
must be all numbers. If the player presses a key
which is not a number, that character will get info
R$ and the VAL function will not work—-a number
must be the input to VAL in the parentheses.

Line 2140 compares V to X+Y. If they are
equal, the answer is correct and we return from
the subroutine. If they are not equal, the program
branches back to the beginning of the subroutine
and picks two more random numbers.

54

€€ € OGO GEGE |

€

€.

CEEECEOOGEECCCE

(17’5 AmosT)

;-ii(é’éé%é%iéé@éé@%é%%%@%%éé%éééé%@,

CLEARING THE SCREEN

[corte on! ONE\
\ HORE INITIAL

JLi

This subroutine uses the CALL HCHAR subpro-
gram o output spaices (character number 32) at all
the column numbers on rows 16 to 20. We need to
erase all these five rows because in the SET UP
subroutine we put text from rows 16 to 20.

2500 REM ---ERASE 1b TO 20---
2510 FORR=1kT0 20

2520 FORC=1T032

2530 CALL HCHAR (RC~32)
2540 NEXTC

2550 NEXTR

2560 RETURN

Each time we come to line 2530 R and C are
different. Therefore character 32 (the space) will
be drawn at 5 times 32 different screen locations

(5 rows times 32 characters per row).
- 55

GETTING INPUT
WITH CALL KEY

WE'VE PLAYED 7.246
[6AMES 50 FAR, AND

We have already used this subprogram to get
the initial. That was only one character of input,
but now we need more than one character.
Rather, we do not know how many characters
there will be--that is up to the player. Therefore,
we need a subroutine that repeats until the player
presses the ENTER key (ENTER is code number
13). After each key is pressed, two things will
happen: that character will be drawn on the

screen, and it will be added to R$ so that later we

will know what the whole input was.

&700 REM---GET INPUT----
20 Re=""""

2720 CALL KEY (54K+S)
2730 IF S = 0 THEN 2720
2740 IF K = 13 THEN 2810
2750 CALL HCHAR (R+C4K)

56

O e el OO OOe e

€ € €€

0

€

€€ €€ € €€ EEEEEEEECECeeeeec

2760 R$ = R% & CHR% (K)
2?7 C=(+1

2780 FORJ =1T0 30
2790 NEXTJ

2400 GOTO 2720

2810 RETURN

Line 2710 initializes, or sets, R$ to an empty
string—there are no spaces between the quotation
marks-since we don’t want any text stored in R$
each time we get new input. If there was text in
R$, line 2710 will get rid of it. Line 2720 and
2730-get input of one key (as shown earlier in this
chapter). After a key has been pressed, line 2740
evaluates whether the code number for the key is
13. If it is, that means that ENTER has been
pressed, so we exit from the subroutine: '

If K does not equal 13, then line 2750 draws
that character on the screen. Remember that R
was set to 17 and C was set to 3 before this
subroutine was called. Therefore the first charac-
ter of input will be drawn . at row 17, column 3,
Line 2770 adds 1 to C so that the next character
will be drawn one column over. .

Line 2760 adds the input to R$. Since all we
know about the input is its code number (K), we
use the CHR$ function to get a character to add
to R$.

Before we go back to the CALL KEY statement
to get the next character of input, we add a little
pause (lines 2780 and 2790); we make the Ti

57

count to 30. We need to do this because comput-
ers work so quickly. With no pause, if the player
holds down a key for even a second, the computer
will be back to line 2720 before that second is up
and it will think the same key is the next piece of
input. To avoid having keys repeated if held
down, we make the computer wait a little bit
before checking the keyboard again. The draw-
back with doing this is that if the player presses
keys too quickly, they will not register. You can
adjust the length of the pause to suit you.

BURSTING THE BALLOON

DON'T YOU
o THINK WE
SHOULD BE

WORRIED
ABOUT
SPEED?

[NOW THAT I'VE CONNECTED
THIS MODEM, WE CAN

\ CALL UP OTHER

N COMPUTERS.

The QUESTION(S) subroutine asks random
arithmetic problems until the user gets one correct.
Each time it clears the screen, asks a new question,
gets new input, and evaluates it. When the input is

58

DCECOECECCCCCOCEECECECOOO6ECCCCC

géééiéééééé%éé%ééééééé@é%éééﬂéééééé-'

correct, the program proceeds o the subroutine
located at line 3000.

The BURST subroutine must do three jobs: 1)
animate the initial over to the balloon; 2)make the
balloon disappear; and 3)print the message
RIGHT! “inside” the balloon. We'll look at these
three tasks separately.

3000 REM -----BURST------

3010 FORC = 57020

3020 CALL HCHAR (9+C-32) -

3030 CALL HCHAR (92C+1.ASC (I$))

- 3040 FORJ =1T010

3050 NEXTJ
3060 NEXT C

The initial (I$) begins at column 5. We want to
move it over to the balloon, to column 21. The
loop in lines 3010 to 3060 increases C from 5 to
20. Each time through it draws a space at column
C and draws the initial at column C+1. ASC(1$)
is the code number of the initial, and remember
that CALL HCHAR needs this code. The last time
through the loop C will be 20, so a space will be
drawn at column 20 and the initial will be drawn
at column 21. This loop looks like our sample ani-
mation program in the last chapter. Here we know -
exactly where we want to start and end, and we
want the initial fo move one column each time.
Notice that we include a slight pause to slow
down the animation.

59

3070 RESTORE

3080 FORJ =1 TO 24

3090 READ R-C

3100 CALL HCHAR (R.Ca38)
3110 NEXTJ

We have all the row and column numbers of
the balloon stored in data statements-we used
them to draw the balloon. The command
RESTORE sets the data pointer back to the begin-
ning of the data. In this way we can use all the
same data over again. This loop does just what
the loop in the SET UP subroutine did to draw the
balloon. It READ:s in all the row and column data
and uses these numbers to draw spaces (charac-
ters 32), thus erasing the balloon.

3120 M = "*RIGHT!''
3130 R=19

30 C=23

3150 GOSUB 1500

This little section should be familiar by now. We
set M$, R, and C and pass them along to the TEXT
ON SCREEN subroutine. The word RIGHT! gets
drawn at column 23 of row 9, looking like it was
inside of the balloon.

3160 FOR J = 1 TO 2000
3170 NEXT J

60

€€ €€ CECEEEECEEECCECECCEeeEerneaeeecece

4
&

€ €€ EEeEEet e

=

We insert a pause so that the player gets a
final look at the screen before the program si‘ops
running.

VARIATIONS

3, (ARE Y0U "\
&) FEELIN _‘ 0/<?
N \,

Once again, you can put the program together
by looking through the chapter. This game has
introduced several new concepts and BASIC
words: the VAL and STR$ functions, CALL KEY to
get input, erasing parts of the screen, and
RESTORE to reset the data list. Here are two
suggestions for improving the program:

1) The GET INPUT subroutine- works correctly
as it stands. However, it can be improved. We
already mentioned the length of the pause before
each new CALL KEY statement. Another problem
involves mistakes: What if the player makes a
mistake? The subroutine does nothing about this.

61

You can define any key you want as a delete key.
Let's say that you want the D key to delete the last
character that the player typed. If so, you should
probably put a message somewhere on the screen
so that the player will know this.

When a key is pressed, the program evaluates
whether it was the ENTER key. If it was, the
subroutine ends. If the key was not ENTER, you
can make the program evaluate if the key was D:

2745 JFK=ASC(''D'") THEN (1line number)

If the key is a D, the program will go to a line
number of your choice. There it should subtract 1
from C and draw a space at column C, then go

back to the CALL KEY command. With these hints

we leave the execution to you.

2) Subroutine 2500 erases rows 16 to 20. It
erases all these rows because in the SET UP sec-
tion we put text on all of them. However, from the
time we begin asking questions, we really only use
rows 16 and 17, and the program seems slow
because subroutine 2500 erases the other three
rows even if nothing is on them. You could write
another subroutine which erases only rows 16 and
17, and direct the program to it when you want
only those lines erased.

62

CLEEEEEEEECOCEEEEEEEEEEEEEEeeeaec

e EEEaEEEaEaEeieneeeaqaaed

by then, the game will end.

y Scrambled
States

All of the techniques we have learned, plus
some new ones, will be combined here to create a
longer game program than our others. In this
game it will take three moves to get from the start
fo the finish line. To move, the player will be pre-
sented with the name of one of the states of our
nation, but the name will be scrambled and the
player will have to figure out which state it is. We
will give the player six attempts to make the three
moves. If he or she cannot make it to the finish line

& YOUDON'T LOOK 50 \
@ 600D, I'D BETTER
<L |
ELECTRICIAN. 4

63

The variable names and subroutine list look like
’rhis: '

4 REM -——-———- SCRAMBLED STATES-————---
8 REMR : ROW NUMBER

12 REMC : COLUMN NUMBER

1b REMM$: TEXT MESSAGE

20 REML% : LETTER IN TEXT

24 REMA : ASCIT CODE NUMBER

28 REMI : A COUNTER

32 REMJ : A COUNTER

36 REMK : KEY NUMBER

40 REMS : STATUS OF KEYBOARD

44 REM I : THE INITIAL

48 REMT$(4) : ARRAY OF 4 TEXTS

52 REMS#(10) : ARRAY OF 10 STATES

Sk REMU% (20) : ARRAY OF USED LETTERS

kD REM A% : ANSUWER

b4 REMNS : NAME OF STATE

kL8 REMT : TURN NUMBER

72 REMP : POSITION OF INITIAL

7k REMM : MOVE

80 REM 0% : GAME OVER?

a4 REML : LENGTH OF N%

a8 REM X : RANDOM NUMBER

92 REM

9 RANDOMIZE
100 GOSUB 1000
200 GOSUB 2000
300 cOSUB 3000
400 END

64

€ €. €€ ¢ ¢ eaceaceaaacc

£
™

i,

CEEECEEEEEEEaaEaEEaeeeieeieeaed

We introduce no new BASIC concepts or com-
mands in this game, but we use the ones we know
in more complex ways. You can tell by the long list
of variable names that we need to store many

- different pieces of data. We also use several

subroutines—-the main body of the program calls
only three of them, but these subroutines call
others. Since we use eight subroutines altogether,
it might be a good idea to list them here for
reference:

1000 Set up the screen
1500 Put text on theé screen
2000 Load array of states
2300 EraserowslStocl
oD Get input

3000 Thegame

3500 Scramble astate

3800 HMove theinitial

Some of these will be familiar; we have already
used subroutines to get input, erase part of the
screen, put text on the screen, move an initial, and
load an array of text. These little subroutines are
useful tools—-they become a kind of library for the
programmer to use over and over again. The only
really different routines in this program are the
GAME and the SCRAMBLE subroutines.

65

SETTING UP THE SCREEN

[\ WUHBER 1 CAN A
—JU REMEMBER Y
ISTHE
LoFFIcE. p

(D

To prepare the player for the game, we set up
the screen to show that the initial must move
through three stations to get to the finish. Once
again, we leave it 1o you to make the “'board”
look more elaborate. You can easily add decora-
tions. In this subroutine, we represent the stations
with plus signs, get the initial and place it at the
start, and explain how the game works.

1000 REM--SET UP THE SCREEN----
1010 CALL CLEAR

1020 M$ = °'START''

030 R=4

o480 C=3

1050 GOSUB 1500

1060 CALL HCHAR (5+5-ASC(''+''))
1070 CALL HCHAR (5+13.ASC(*'+'"))
1080 CALL HCHAR (5+21+ASC('°+""))
1090 CALL HCHAR (5+29.ASC("'+'"))

66

A

z
EN

LEEEEEEEeCeEEe e eeeaeeeet ¢ eecc

Jé"ée%é'—%%é%ééééé@;@_éééééééée%e%ééééé‘

|

1100 M$ = "'FINISH'®

S1I0R=4

1120 ¢ =25
1130 GOSUB 1500

The subroutine at line 1500 puts text on the
screen. |t is identical to subroutine 1500 of Chap-
ter 5. It uses the variables M$, R, and C for the
message, row, and beginning column number.
Here we put the words START and FINISH on row
4 and four plus s;gns on row 5. They should look ~
like this:

START FINISH
+ + + +

Next we ask the pla);er for his or her initial and
use CALL KEY to get input. We use CALL HCHAR

" to draw the initial where the first plus sign was.

1140 M$ = ' *TYPE YOUR FIRST INITIAL:'*
1150 R=15

110 C=1

1170 GOSUB 1500 :

1180 CALL KEY (5+K~S)

1190 IF S = 0 THEN 1140

1200 I# = CHR$(K)

1210 CALL HCHAR (5+54K)

CALL KEY gets inpuf of a code number which
represents the key pressed. We assign CHR$(K) to

67

the variable I$ so that later we will know what the
" initial is when we want to move it. Line 1210
draws character K on row 5, column 5.

Now we need four lines of text to explain the
game. Every time we have put a single line of text
on the screen so far we have needed four pro-
gram lines: .one to assign the text to M$, one to
assign a row, one to assign a column number, and
one to GOSUB 1500. Lines 1140 to 1170 above

do jjust this. In this way, to put four texts on the

screen would take 16 program lines. Here is a
shorter way, using an array of texts:

1220 T$ (1) = '"YOUHAVE b TRIES TO WIN. **
1230 T$(2) = " "TOMOVE~ UNSCRAMBLE A STATE'*
1240 T$(3) = '"OF THE UNITED STATES. **

1250 T$(4) = ° "PRESS ENTER TO BEGIN: **

120 C=1

1270 FORI=1TOY
1280 M =Ts(D)

[aX X 3XE é'%*@é'%?éii‘:é")é»é‘éﬂ%ﬂ@éi%ré‘@’éféi%:%@?é‘f%'é{é%vé?é

i

@@ eaaaedeeeaadaddad

i
|
1
|
!

¢« €

i

1290 R=I+lh
1300 GOSUB 1500
1310 NEXT I

Using this technique you could handle as many
lines-of text as you want. First assign them to cells
of an array-here we have 4 cells of T$. Line 1260
assigns 1 to C. Since we want all the lines to start.
at column 1, we don’t have to assign C again. The
loop in lines 1270 to 1310 repeats 4 times--once
for each text. Line 1280 assigns each text of the
array fo M$. Line 1290 makes sure that R is first
17, then 18, then 19, then 20 the last time

‘through. Now that we have M$, R, and C

assigned we call subroutine 1500 to put M$ on
the screen. Notice that we need a new counter (1)
because subroutine 1500 uses J for a counter and
we want to avoid mixing up the variable names.

1320 CALLKEY (5:K+S) -
1330 IF S = OTHEN1320
1340 RETURN

Our last line of text asked the player to press .
enter to begin. Lines 1320 and 1330 get one key
of input. We don't really care what key it is—-as
soon as the player presses any key the program -
will move on. The program now moves to STOR-
ING THE STATES, but first let's look at input and
output : ’

- 69

- INPUT AND OUTPUT

(LET ME THINK 0F) oo —
O A SMART p—— @ -
MESSAQE . ¢ y ,,.-,‘.,_,.Ai‘_._rl._\
\TOTYPE. }

These two subroutines are the same ones we
used in the last game. We reproduce them here
~ for your convenience.

1500 REM --PUT TEXT ON SCREEN---
1510 FORJ = 1 TOLEN (M$)

1520 LS = SEG% (M$dq1)

1530 A= ASC(L%)

L1540 - CALL HCHAR (R+C+JaA)
1550 NEXT J

1560 RETURN

2700 REM ———-— GET INPUT--——-—-
270 Ab ="

2720 CALL KEY (5+K+S)

2730 IF S = O THEN 2720

2740 IF K = 13 THEN 2810

2750 CALL HCHAR (R+C+K)

70

CEECOEECOEUOECLECEEECOEEEOTOGCEEL

éééé%ééé‘é%éfﬁé%éééég‘

q

e

2760 A% = A$ 2 CHR$ (K)
20 C=C+1.

2780 FORJ=1T030
2790 NEXT J :

2800 60TO 2720
2810 RETURN

We use the input routine in this game to get
answers to our questions, so we are calling the
input. string A$ here. In the Variations section of
the last chapter we suggested that you figure out

~how to let the player delete mistakes. In this game

it is even more mporicmt to be able to delete,

since the player must type in longer strings. Here is

one way to do it-add these lines to the above
subrouhne

2745 IFK = ASC(''*°") THEN 2775
2772 GOTO 2780

2?75 C(=(C-1

277b CALL HCHAR (R+C~32)

. We are using an asterisk (*) for the delete key.

‘Whatever key you decide to use, you must notify

the player what to press fo delete. This means that
you will have to insert @ message and place it
somewhere on the screen. line 2775 subtracts 1

- from C to move one step backward, and line

2776 draws a space at that column, thus erasing
the last letter.

71

STORING THE STATES

v gry
/" ok, sE's)
\ weaoy ror 4) HEsSAge |

This subroutine is similar to the one in Chapter 1
in which we stored several fortunes into an array.
Here we have ten state names in DATA state-
ments. Notice that you can put more than one
piece of string data on a DATA line, as long as

you separate the strings with commas. We READ

the ten states info an array we call $$ (S for
state), and before we use the array we DIMension
it-that is, we tell the computer to reserve ten spac-
es in its memory for our array.

2000 REM-———- -LOAD STATES INTO ARRAY--—--—-
2010 DATA * "OHIO® '+ ' "KANSAS' '+ :
' "NEW.YORK® '+ " "CALIFORNIA'*
2020 DATA' 'GEORGIA' *+" "NORTH DAKOTA" * 4
""NEVADA'* S
2030 DATA ' "OREGON''+' *FLORIDA' "+
- 'NEWMEXTCO'!

72

‘E"éééiéé-%{%ré;é*é‘.é!@é‘téré'é'é'vé,;%f%’é'é €CEECECEEECEC

,é'é'éé'%éééé%‘éééféééé-%%%‘%Eé%éé"ié'?é%'é

2040 DIMS% (1)

2050 FORJ =1TO0 10

20k0 READ S%(J)
- 2070 NEXT J

2080 RETURN

The loop in lines 2050 to 2070 READs ten piec-
es of data (the names of the states) and stores
them in the array. The name OHIO is then stored
- as $$(1), NEW YORK is $$(3), and NEW MEXICO
is S$(10) Later on in the program we will use the
array in the same way that we used the forfunes
array. We'll pick a number at random and use
that number to select a cell of the array. Then
we'll take the name of the state that is s'fored in
that cell cmd scramble it.

THE GAME

(1D BETTER TURN IT)
OFF BEFORE I 4

73

We are giving the player 6 turns to get to the
finish line. Each turn consists of trying to unscram-
ble the name of a state. If the answer is correct,
the initial will move to the next plus sign. This
means that we have to keep track of several
things:

1. Where the initial is
2. If the initial has gotten to the finish line
3. How many turns the player has had

The GAME subroutine is fairly complex. It
reads like a miniature program and uses several
subroutines within it. Before we look at the BASIC,
let's outline the steps we'll have to take in ordinary
English:

Check to see if the player has won OR run out

of turns.

If either of these conditions is true, then we glve
the appropriate messoge

If neither is true we:

1. Clear the bottom portion of the screen
2. Pick a state name ot random
3. Scramble the letters in it
~ 4. Ask the player to unscramble it
5. Evaluate whether the answer is correct.

a. lf it IS correct, then we move the initial
one step and check whether the player
has now won.

74

CEECEEOCECCOCCOOCCLCEECECE é%?éééééé

€

TN

ééééé%éééééééé@ﬁé

b. If it is NOT correct then we tell the player
the answer.

c. In EITHER case we add 'I to the number
‘of turns and go back to the first step
(Check to see if the player has won...)

Lines 3050 to 3340 perform these steps in
BASIC. Lines 3010 to 3040 initialize four varia-
bles we need to use. U$(20) is an array we need
in the SCRAMBLE section. T stands for turn
number, and we set it to 1. P is the position
(column) number of the initial, which starts at 5.
O$ tells us if the game is over because fhe player
won--we set it initially fo “"NO"’. '

3000 REM --------THE GAME-~—----
3010 DPIMUS (20)

3020 T=1

3030 P=5

3040 03 =""NO""

3050 IF T> b THEN 32D

\ / DON'T WORRY, WELL\
) \reLL 1T A FEW doKES!)

75

3055 IF 0% = '"YES'' THEN 32t0
30e0 GOSUB 2300
3070 GOSUB 3500
3080 R=18
0 C=1

- 3100 M= °°TYPE YOUR ANSWER: '*
3110 GOSUB 1500

30 R=19
3130 C=3

3140 GOSUB 2700
3150 R=21
30 C=1

‘3170 IF A% = N$ THEN 3210
3180 M$=''SORRY IT'S''8Né
3190 - GOSUB 1500
3200 GOTO 3240
3210 M$=''RIGHT!'"
3820 GOSUB 1500
3230 GOSUB 3800
320 T=T+1
- 3250 GOTO 2300

Lines 3050 and 3055 check for two conditions:
if the turns are up or the player has won, the
program skips past the above section, to line
3260. If the game is not over, we clear the screen
(subroutine 2300), scramble the state and ask the
question (3500), get the answer (2700) and evalu-
ate it. If A$ (the answer) equals N$ (the name of
the-state) then the player is right and we output
RIGHTL If wrong, we say SORRY, IT’S (the correct
name), Sooner or later the player will either win or
76

§ € CCCOOECCCCCCOCEOOOCEEEECOEGE O G

CFUCEEEEEEE e eeed,

3300
3310
3320
3330
3340

|
!

run out of turns, and then the subroutine will be
finished:

3260 GOSUB 2300

. 38 R=15

3D C=1

3290 IF 0% = °"YES'' THEN 3330

Me=""SORRY+ YOUR TURNS ARE UP. '’
GOSUB 1500

60TO 3350

Mg =" *CONGRATULATIONS~ YOU WON? ' *
GOSUB 1500

3350 RETURN

We clear the screen, decide if the player has
“won or lost, and output the appropriate message.

CLEARING THE BOTTOM
OF THE SCREEN

This subroutine is virtually identical to the one in
Chapter 5 which cleared the bottom of the screen.
Here we need rows 15 to 21 erased:

2300 REM ---—ERASE 15 T0 21--—--
2310 FORR=15T02)

2320 FORC=1To32

2330 CALL HCHAR (RCa32)
2340 NEXTC

2350 NEXTR

2360 RETURN

SCRAMBLING THE STATE

ﬁa) YOURE A
HERO! YOU'VE

_/ NoTHing T\
A 17w you

We have on array of 10 states stored as
S$$(10). Whenever it comes fime to ask a question,
we want to pick one of the states and scramble
the letters in it.

78

GECELLOELEEOCEECECECEE Eeaeeecs.

B,

\‘-é‘ééiééiééééééiéigé%éé%ii@ééié@ééé,‘

The first thing we need to know is the number
of lefters in the state (which we call N$). Then LEN
(or length) function, remember, tells us how many -
characters are in a string. So LEN(NS$) represents
the number of characters in the state’s name. We-
say characters and not just letters in the state

.. because sometimes there are spaces calso, as in

NEW MEXICO.

We call the number of characters in the state L.
To scramble them up, we go through o series of
steps:

1. Pick a random integer (called X)
- between 1 and L.

2. Display character X on the screen.

3. Pick another random integer R
between 1 and L.

4. Display character X next to the char-
acter already on the screen.

Repeat the above steps L times altogether, so
there will be L characters displayed on the screen.

There is only one thing wrong with this plan.
You know by now that if you tell the computer to
pick a random integer between 1 and 7, and do it
7 times in a row, it might pick the same number
each time. If your state was FLORIDA (which has

_ 7 letters), and the computer picked the number 4

over and over again, you would get

RRRRRRR
displayed- as the scrambled version of FLORIDA
That wouldn’t be good.
79

Therefore, we need a way to tell the computer:
keep picking random numbers between 1 and 7,
but don’t pick the same number twice. In other
words, we have to keep track of which numbers
were already used. The best way to do this is to
create a new array, which we call U$ (for Used).
Before we begin scrambling, we put the word
“"NO” in each cell of U$ to mean that we have
not yet used that cell number. As each cell gets
used (because the computer picked that number)
we change what's stored in it to “YES"”. (We
DiMensioned this array at the beglnnmg of the
GAME section.) Let's change our series of steps to
show this addition:

1. Pick a number at random between 1 and L.
2. Check if that number has been used yet.
2a. If it has been used, go back to step 1.
2b. If it has not been used, then:
Put “'YES" in that cell of U$, and
- Display that character.

7~ YOUR OFFICE 15 \
[ON-LINE, AND |

| | =l wHEREWILT]
twmmm,'

80

GREAT! BUT N\

e cac €GO

CEEEEEEEEEEEEaEEEaEeaeeegaeened

Repeat these steps L fimes.
Here is the BASIC code:

3500 REM ---SCRAMBLE A STATE-----

- 3510 X = INT(10%RND) +1

3520 N& = S$ 00
3530 L = LEN (N$)

.3540 FORJ=1TOL

3550 USCJ) = "'NO'"
3560 NEXT J

3570 R =15

3580 C=1

3590 M$ = * "WHAT STATE IS THIS?" "
3600 GOSUB 1500

3L10 M=

3620 FORJ =1 TOL

330 X =INT(LXRND) +1

340 IFUS(X) = ''YES'' THEN 3630
3650 U$(X) = "°YES'' |
36k M$ = M6 & SEGH (N$-X-1)

70 NEXTY

3680 R = 1k

3690 € = 3

3700 GOSUB 1500

3710 RETURN

X is a random integer between 1 and 10. Why
10? Because we have 10 states. If X is 1 then

§$(X) is OHIO, the first state in the DATA list. To

make our code easier to read, we store S$(X) as
N$. If N$ is OHIO, then L is 4, the number of
charactersin OHIO.

81

The loop in lines 3540 to 3560 initializes the U$
array. It puts the word “NO" in 4 cells of US$. In
other words, U$(1), U$(2), U$(3), and U$(4) will
all contain the word “"NO"’ to start with. There are
4 letters in OHIO: all of them have NOT been
used yet.

After we ask WHAT STATE IS THIS? we get to
the part of the subroutine that actually scrambles
the letters and displays them. We go through the
FOR/NEXT. Ioop in lines 3620 to 3670 L times. In
our example, using OHIO, L equals 4 - 4 Jetters in
OHIO.

Each time 'through we pick a random number
between 1 and 4 (that is, L). Then we check: if that
cell of U$ contains “YES” because it's been used
already we go back and pick another number.

* The computer will keep picking until it finds a ran-

dom number corresponding to a cell of U$ which
contains the word “INO". At that point it will skip
line 3640 and proceed to do two things. First, put
“YES" in that cell number so that the computer
can’t display the same letter again. Then, add that
character to M$, so that when we finsh the loop
" M$ will be the scrambled state.

After the loop is finshed, we output M$ (the
scrambled state) on row 16, column 3 of the
screen.

It would be a good idea at this point for you to
go over the code a few times and see how it does
what our steps above it do. Convince yourself that
every time the program goes to this subroutine it

82

LECEEEEECEEEEEEEEOC e ¢

R]

ft%(éééé€€'€€€€‘é'€'€r€.€€€€€'€iéi‘éééé'i(é@;

picks a new state, calls it N$ and calls its |eng‘?h L
then goes around L times picking different random
numbers each time and displaying the character
of N$ corresponding to that number. -

This subroutine does only this job. Refer back to
the main GAME subroutine. Right before QUES-
TION we cleared the bottom of the screen. Right
after it we get the answer from the player and

- evaluate it. If the answer is correct we have o

take care of one more piece of business.

MOVING THE INITIAL

LT REPROGRAMMED

HIM TO BE
= YOUR |
 ASSISTANT.

w;mrs HE pae

Each right answer moves the initial one more
station toward the finish. We put plus signs to

- mark the steps, and we placed them 8 columns

apart, at columns 5, 13, 21, and 29 (the finish).
Also, remember, at the beginning of the GAME

83

/’

subrouﬂne we inifialized P to 5 fo keep track of
where we put the initial to begin.

To move the initial we'll go through the same
basic steps that we used in the last two games:

1. Erase the initial where it is now.

2. Draw it one column further over.

We repeat these steps 8 times to move the ini-
tial 8 columns. Then we do two more necessary
things. We add 8 to P so that we know where the
initial ends up after.it's moved, and we check to
see if P now equals 29. If it does, this means that

 the player has won, and we put the word “YES” -

into O$.

3800 REM --MOVE THE INITIAL-—-
3810 FORM =P TO P+7
3820 CALL HCHAR (5-M.32) .
3830 CALL HCAHR (5.M+1.ASC(I%))
3840 FORJ=1TO01lD
- 3880 NEXTJ
3860 NEXTM
BDP=P+8
3880 IF P =29 THEN 3900
3890 G6O0TO 3910
3900 0% ="°°YES"'
3910 RETURN

The onimation here is just the same as that in

the last chapter. We draw a space where the inti-
fial is and then draw the intial one column further
over, until the ititial has moved 8 columns.

84

RECEEEEEECLEEEEEEEeO e

AN

:.e"‘%vé‘éééié%%éééé"%éééf%%ééééé‘éééé‘é%ééx

O$ had been set to “NO" at the beginning of
the game. Whenever P = 29 it will be set to

-~ “YES”. Back in the GAME section, line 3055 will

now be true, and- the program will skip over the
loop. When it gets to line 3290, since O$ does
equal “YES” it will congratulate the player and
end.

FUN AND GAMES

/YOUVE 0T 7O\ { HEY, T BROVGHT THIS\
[Learn To ust) \ ereat same From)

“KILLER'S™ |
- WARE- |

.

Throughout this book we have covered many
aspects of programming. We have used new con-
cepis like the random function and animation. We
have explained new commands, functions, and
subprograms. Of equal importance, we have tried
fo introduce good programming practices of
siructured programming.

In the first four chapters we suggested several
possible variations. At this point the variations are
all up to you. Almost any of those suggested for

85

the other games you could also use for the game
in this chapter. More important, though, is for you

to think up your own variations. Pick any part of -

any program and you can probably think of ways
to improve it, to make the screen format look
better or to make the game more fun. Create your
own coding routines. Think up more complicated
uses for the random function. Do fancier animat-
ing. Invent totally new games.

We have covered many of the buili-in Texas
Instrument’s functions and subprograms. There are
several more, however, thot you might use to
enhance - your- programs. The CALL SOUND
subprogram, for instance, can add music to
programs, and CALL COLOR can color any char-
acter on the screen, or change the entire screen
background. Another subprogram, CALL CHAR,
lets you define your own characters to look any
way you want. This is a useful graphic feature—
you can use it to make your own shapes for
animation.

WE'VE PLAYED T 246
GAMES 50 FAR, AND
I'VE WON

86

LEEEEEGEEEE e eeeac

e e uEeedeaeaaaads

S e e ———— e e —————

Programming is a combination of using what
you dlready know and using your imagination.
We have tried here to supply you with some useful
concepts and techniques for programming games.
However, there is always much more to learn for
any programmer, no matter how experienced. If
you want to get better at programming, you will
keep reading and studying to learn more about
this skill. You already know enough, though, to
create imaginative games. Hopefully you will go
on learning as you program. The most important
thing you can do is to have fun programming!

87

Index

index to chapter references for new concepts and _
terms used in this book. Reserved words in BASIC are
capitalized. B

NAME MEANING AND USES CHAPTER

ARRAY

animation

ASC function

CALL HCHAR

CALL KEY

CHRS$ function

88

a fype of variable with which more
than one piece of data is stored
using the same name.

making it appear that something is
moving on the screen by quickly
printing and erasing it at successive
screen locations.

returns the ASCIl code number for
a given character. Example:
ASC("A") returns the number 65.

subprogram displays a given char-
acter at a specified screen location.

subprogram gets input from the
keyboard, one character at a time.

returns the character for a given

- ASCII code number. Example:

CHR$(65) returns an “A”.

1.5

3-5

CCCCCOCQECCCCOECECCLUOLLCOCOCEE

V)
7

(EEEEEEEEEUEEEE e aaed

DiM a command which sets aside a given
- " number of cells for an array.
Example: the command DIM M$(15)
will set aside 15 cells in memory for
the array M$. 1,5

GOsUB (see subroutines) -

initializing placing a starting (or initial) value in
' a variable. , 1-5
INT function rounds any number down to the
‘ next lowest integer. Used with the
RND function. - 1-5

LEN function returns the numbers of characters in
a given string.
Example: LEN("HELLO")
will return a 5. ' 2

random The RND function, used with the
RANDOMIZE command, chooses
decimal numbers at random, as
explained in Chapter 1. 1-5

READ/DATA The command READ looks for data
stored in DATA statements, as
explained in Chapter 1. Used with:
string data (messages, fortunes): 1,5
number data for screen positions: 4

RESTORE sets the data pointer at the begin-
- ning of the DATA in the program 4

RETURN (see subroutines)
. 89

$EG3 function

STR$ function

subroutines

VAL function

90

refurns a specified string

from within a given string. Example:
SEG$("HAPPY"' ,4,2) returns 2 char-
acters from HAPPY, starting at the

4th character, or PY. ' 2
makes a string from a spec-
ified numerical variable 4.

- program sections or blocks as called

by the GOSUB command.
Subroutines must end with the
RETURN command. 1-5

- makes a numerical variable

from a specified string, if the string
is composed of numerals. 5

CCECECOEHECCEEECOEOOECECOCLCHEECECEC

v € 4
}.

é \
T

YOU, SPEED WALKER,
AND YOUR TI-99 Series
CAN DO SOME PRETTY

AMAZING THINGS!

|| || || il

ISBN D-523-42247-4

900000000000V PPOOOPOOSOOOOOY

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005

	back-cover

