T199/4A
Geneve

g—

Doctor |
PRon Albright®s

ORPHAN
SULRVIVAL
HANDBOOK

Containing:

Helpful Recipes, Assertions, Advice and other NOSTRUMS
For owners and other custodians of the . ..

TI1 99/4A & Geneve

FUBLISHERS STATEMENT

As announced., Dr. Ron Albright’s Orphan Survival Handbook
ﬁ”“ contains over 200 pages of excellent material, much of it ariginal
v work, or material not submitted to user group newsletters. Dr.
Albright sifted through mountains of worthy material, selecting the
best, for this continuing work.
o However, neither the skill of the writer, nor Dr. Albright’®s
deft judgement made the final decisions on what went into the book
and what stayed out. The publishers, Disk Only Software, did.
Therefore, some material originallly described as being contained in
this publication is missing. It is merely our ability to deliver a
reasonably readable product using the reproduction technique
available.

With all that said, lets talk about the advantages of the
medium we have chosen to place before you. On the first book, Orphan
Chronicles, Dr. Albright received some comment that material just
submitted to printing had become out of date. The 99er and the
Geneve user is an independent sort, seeking out his information
where he can find it. Then why not produce a book, drilled for use
in a three ring binder? This dictated a slightly more expensive
method than that used to print two thousand bound books. Cheaper per
copy, bound books would be closed and a hindrance to revision until
& mountain of books had been sold. Thus our format.

Next comes an invitation for easily copyable material. Authors
are invited to send disks or upload their material to one af the
telecommunications services. Many no longer charge while uploading.
Or forward it to Dr. Ron Albright at the address below. Return of
your disks will be attempted, but not guarenteed. Return postage
would be helpful, of course.

@Wﬁ , Thanks to all for your support in this effort. If you are not
' purchasing this book direct from Disk Only Software, and wish to be

personally notified of future updates, please write the address
belaow.

Jeff Buide
Jim Horn
Fublishers
March 25, 1987

Copyrighted January 1987 as a complete work, including art,
cover design and original work by Disk Only Software (DOS) and Dr.
Ron Albright. Copyrighted material printed with permission of the
authors concerned. Fermission to reproduce individual articles
remains with the authors, and permission to reproduce their work

further is in no way implied by their appearance in this
publication.

First Printing, January, 1987 Pourth Printing, April, 1987
Second Printing, February, 1987

Third Printing, March, 1987

Published By:

Disk Only Software
P.O. Box 244
Lorton, Virginia 22079
(W“ or call
1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required
Alternate is (301) 369-1339. No Touchtone is required.

Delphi: TELEDATA —CompuServe: 74406,1207—MCI: TDG—TELEX: 6501106897 MCI

The Orphan®s Survival Manual
Foreword

As it said in the flyer for this manual, it was both easier and
harder to do than the "Orphan Chronicles" were. Easier because
almost everything in this manual was already written - by you, the
user groups of the Tl community. The only hard part (and it was
tough) was selecting what to include. This manual could have been

easily 300 or more pages. The amount of information available is a
tribute to you, the Tl users.

I wanted to personally thank those who helped get this manual
put together. All the authors and user groups who helped me
assimilate this mass of information have been of immense assistance.
In particular, Kent Sheets of the Northwest Ohio Users Group. Art
Byers of the Central Westchester ?%ers, and Terrie Masters of the LA
P9ers Users Group. BQuite literally, this manual could not have been
done without the help of these fine folks.

The authors who wrote new material for this manual deserve a
special mention. They did it for the sheer love of the TI community
and the desire to share their wealth of information with you. Warren
Agee, Jerry Coffey, Scott Darling, Jeff Guide, Howie Rosenberg,
Barry Traver, and Jonathan Zittrain all wrote along their lines of
expertise for this manual. I will always be deeply appreciative.

I want to remind all of you who brought thie manual to send in
the registration card to User Network 9%9. Terrie Masters has great
plans for this organization and I support her efforts to unite the
user groups and the non-affiliated TI users for the distribution of
information. I hope to be able to work with her in making updates

available for this manual. To get the information to you, she will
need your address. Mail the card in right away.

Dedication? Who could this manual be dedicated to other than

YOU - the TI user. Struggling against the odds. Inventing.
Ingenious. Sharing. Thanks to you, we are all alive and well.

Ron Albright, Editor

N

.'......O..‘.I..‘...........O..........................0................‘

Our Thanks to . . .

Bayou Byte Newsletter

ROM Newsletter—Users Group of Orange County
Manasota Users Group

Topics—LA 99%ers

Call Sounds—Central Westchester 99’ers
Northcoast 99’ers

99’er News—Chicago & Wills County Illinois

North New Jersey 99’ers Group Newsletter

MANNERS News—Mid Atlantic 99’ers, Bill Whitmore, Editor
NH99’er User Group

AICUG

GEnie, Rockville, Maryland

OH-MI-TI

99’er NEWS

Northwest Ohio 99’er NEWS

HOCUS Newsletter

Central Texas 99/4A User Group

Delaware Valley User Group
Front Ranger, Colorado Springs, Colorado
Western Penn-WPUG

‘b..0........?.........‘...................
‘..O.....0...................O....................O...........‘...........................‘............

"we CAN do it!
Principal Survival Principles For Life in the Orphanage"

by Barry Traver
Genial Computerware

The TI-99/4A is alive and well and living in ... Philadelphia,
Boston, Chicago, Los Angeles, Seattle, Ottowa, Washington, D.C., and
elsewhere! In many respects, more exciting things have happened
recently for the benefit of TI'ers than took place while Texas
Instruments was still officially supporting the computer.

Life in the orphanage, however, is different in many respects.
Losing a parent sometimes draws the family closer together, and
TI'ers know the reality of that, but - now that we have to "make it
on our own" - there are important computer "rules of life" to put
into practice so as to continue to exist as a thriving community or
family. It will take a cooperative effort, but "we CAN do it" if we
remember three ‘“principal survival principles": Cottaging,
Archiving, and Networking. (If you remember the phrase, "we CAN do
it", the word CAN provides you with a memory key for remembering
these three principles of operation: _C ottaging, _A rchiving, and
_N etworking.) These three will be described one by one, since the
meaning of the terms by themselves may not be immediately evident.

First, we need some background to understand what is meant by
Cottaging. Whatever people may call it, we are in the midst of a
third major cultural revolution. The first major economic
orientation was the agrarian or agriculture-ori iety. Simpl
put, this means that gany people gorked on thﬁ%ﬁ"gﬁﬁ %gg;g,yand thgsg
who didn't usually also had home-oriented or family-oriented
businesses. To put it one way, a person's workbase was his own home
or cottage.

Then came along the Industrial Revolution. What this meant was
that workers often did not work in, at, or near their own homes, but
in large factories or other large business places of operation often
some distance away. In order to earn a living, people had to leave
home and become commuters. A man's home may have been his castle,
but it was no Tlonger his place of work. He no longer worked "for
himself," but for other people, and often a large, multi-million-
dollar company.

If you aren't interested in a personal interpretation of
sociological history, you can skip this paragraph and the next, but
some may find it of interest. As I see it, one of the unfortunate
effects of this revolution was its contribution to the weakening of
the family, since - particularly if he was a commuter - "Dad" often
only got to see his family a few hours each night. In addition,
whatevéer good effects it may have had, the simultaneous re-
orientation away from home-based schooling to total classroom
schooling was another sociological change that weakened the coherence
of the family.

W' ° = 8

Most people probably just accept today as a "given" that the
"normal" way for things to operate is that Dad works away from home
and the kids go to school, but such was not the normal practice for
millennia! It's a comparatively recent development that has only
been in place in our country for a couple hundred years, and -
although some people may experience "future shock" become of the
"rew" choices becoming available - there is evidence that both of
those commonplace suppositions are being challenged more and more
first by the increasing appearance of "cottage" industries, and the
second by the growing home schooling movement.

Here we come to the third revolution. We now live in a Computer
Age, whether that is your preferred term for it or not. The computer
revolution is producing "cottage" workers again. There are two
reasons for this. First, even for the person who is working for a
large company, if it is computer work, he can do it at home,
communicating with his company's computer via modem. Second, millions
of dollars of resources are not necessary, just a good product. Thus
“mom-and-pop" outfits can produce (and have produced)
superior merchandise to that released by billion-dollar companies.

The point of application here is that we don't need Texas
Instruments to survive, if we recognize - and support - the resources
available from such "cottage" operations: individuals, families, or
small companies who can provide (and are providing) items for the TI-
99/4A that TI never provided (and perhaps never would have provided,
even if TI had continued to support the TI 99/4A).

Let's 1look at two examples. (1) TI gave us the Terminal
Emulator II. (Before that they gave us a Terminal Emulator I, which
was even worse!) That was not "cottage" industry: that was what a
mammoth company was able to produce. Well, now we have FAST-TERM
(Paul Charlton), PTERM (Richard Bryant), 4A/TALK (Thomas Frerichs and
Michael Holmes), and MASS TRANSFER (Stuart Olson), just to name a few
terminal emulators that offer much more than TI's TE2 did: 1200 baud
operation, XMODEM transfers, large capture buffers, and much more.
(2) TI gave us a 32K RAM memory card. That was it. But 128K cards
(or better!) have been made available to us by Foundation, Horizon,
Myarc, Mechatronics, CorComp, and others. Do you see why some people
believe that we may actually better off now that we are not dependent
upon Texas Instruments but are looking to "cottage" companies to
support us?

The second principal principle is Archiving. The reference here
is _not_ to my ARCHIVER program - used for packing and unpacking
related groups of files on disk - but just to collecting TI material
in general. Why didn't I call this principle "Collecting" then?
Well, this article 1is based on a talk I gave for the 1986 Boston TI
Fayuh, which was before my ARCHIVER program made its reputation.
And, besides, Collecting would mess up the "CAN" memory aid, so let's
keep with the term "Archiving" here.

The idea here 1is that we make sure that we collect, preserve,
and make available what has already been done. Although there may
some benefits in re-doing certain things, often it is wasteful of
time and effort for people to write new programs from scratch where
public domain programs already exist that perform the same functions
(and perhaps more efficiently). (Even worse, people who aren't
programmers may Jjust "go without" because programs that they need
have just gotten lost.)

Two types of items actually need to be archived or collected:
software and information. It especially takes a deliberate effort to
preserve the latter, because often the information appears where
preservation is not automatic: user group newsletters, notes on
local TI BBS's, even informal conversation. Some individuals in the
TI community have done some useful deliberate effort to preserve
the archiving - especially Guy-Stefan Romano of AMNION Helpline - but
a more organized effort is needed here. AMNION and some others have
done commendably, but _all_ of us must to a certain extent become
"archivists" for the sake of the TI community.

Here's a _caveat_ _non_- emptor_ (excuse my bad Latin!): I am
not supporting the idea of collecting _pirated software. We will
have "cottage" industries around to support us only to the extent
that we ourselves support the TI community. You can (and should)
personally archive original copies of copyrighted software for your
own use, but that 1is one area of your archival library that you
should not share with others. Public domain and Fairware material,
on the other hand, you should both archive and distribute freely
without restrictions. (And be sure to support Fairware authors,
because Fairware software in not “"free software" but "try before you
buy" software that should be dealt with in integrity if we are to
survive and thrive as an orphan community.)

The third principle is the principle of Networking, which merely
means working together as an extended family. You should belong to
and support at least one TI-99/4A user group, and that group may be
local or not. (For example, some groups - such as Chicago, Boston,
and Washington, D.C. - have members that live at a distance.) Also,
if you have a modem, you should be actively involved with electronic
databases, whether = they be commercial, national databases
(CompuServe, the Source, GEnie, Delphi) or local TI BBS's.

Since we can less and 1less look to Texas Instruments for
specific help, we need to help one another more and more. This
involves getting involved in specific activities that put us in
touch with one another. In other words, we need to "plug into the
Network." I've often had other users answer questions for me where
Texas Instruments was of 1little or no assistance. That's to be
expected, because _we_ are the ones who are now using out TI's on a
daily basis.

User group newsletters and software/textfile libraries can be a

Rreat help, but one of the best resources is simply "Question and
nswer." This can be done through user groups or through leaving

messages on TI bulletin boards. In spite of what some people think,
I'm not professionally trained in computer science; if I know
anything, 1it's because I've asked lots of questions and listened to
the answers, as well as listening to the conversations of others at
user group meetings and on electronic bulletin boards (including
especially FORUM on CompuServe, where I am currently serving as a

Sysop).

(Incidentally, a more formal way of making contact with what's
going on in the TI world is through subscribing to various TI-
oriented publications, such as MICROpendium, SMART PROGRAMMER, and
TRAVelER) (a disk-based periodical), but I hope that you're doing that
already.

One other place where you can "network" or "make connections"
with other users 1is 1in the various Tl Faires that are taking place
all across the country. In addition to Chicago, Boston, Los Angeles,
and other places already mentioned in the first paragraph (actually,
- Philadelphia had not yet had a full-fledged Faire, but it has
sponsored assembly language seminars by Mack McCormick and J. Peter
Hoddie), other localities have sponsored such special specifically TI-
99/4A events (e.g., Milwaukee and TICOFF in New Jersey). Here is
where you can get to meet and talk in person with the "Who's Who's"
of the TI world.

During the years that Texas Instruments was officially
supporting the TI-99/4A, we had only _one_ such Faire: the TI-FEST
in Sgn‘Francisco. No¥ that we are orphans, however, announcements of
new Faires are a regular occurrence. As an orpha i
get Tittle benefit. from your T1-99/3A unloeadoiobSte e 2 three
principal principles into practice: the Cottaging (i.e., realizing
that individuals and small companies can put out products equal or
superior to those from TI), Archiving (i.e., collecting in a
systematic way what has already been done for our machine), and
Networking (i.e., working together with other TI'ers). We CAN
survive _and_ thrive: not merely as "orphans," but - as what we have

become - as _family !

Editor's Note: -Mr. Traver 1is surely one who practices what he
preaches. He has been an active participant in all three areas that
he recommends to others. Most notably, the "Cottager" aspect. As
owner of Genial Computerware (835 Green Valley Drive, Philadelphia,
PA), he has produced the "TRAVelER Diskazine", first (really)
“magazine-on-disk" for the TI 99/4A. This highly-acclaimed
publication has been phenomenally accepted by the TI users and has
brought such innovative programming techniques as the "Archiver"
utility that Barry mentions above - the first file compressor and
library utility for the 99/4A, among others. The announced
association of J. Peter Hoddie with Genial is sure to bring about
some incredible and innovative hardware and software from this
“"Cottage Industry". Barry also has his son, John Calvin, involved in
“"cottaging”" as John has a business distributing disks of public-
domain software. The Travers are, surely, a "third-wave family".

r
!
!

Foreword and Dedication

-Introduction -

Section 1 -

Or rhan's Survival Manual
Table of Contents

Barry Traver

-BASIC and Extended BASIC Computer MusSiC.......
-Coloxr Bar GraphsS...cau.ce.neecenncccooncocancananes
-Programming TipS....ccececeacccccacccacanacans
-Adding Hard Copy to Programs (George Stefan)..
-Error Trapping Techniques (Ted Mills)...eco...
-MS/Labels (Martin Smoley).....ccececnecaacancen

Section 2 - Assembly Language

-TI 99/4A Memory ArchitectuUre......oeeceeanacns.
-The Screen Pager Utility (Mike St. Vincent)...

-Call Peek (Danny Michael)......cccoeeucennnnan

e a o @

-Convert Programs to Program Form (Darren Leonard)
~-The Ultimate Save (Tom Freeman)........

Section 3 - ¢99

-The C Languag

-c99 Beginner!'
-c99 Beginner'
-c99 Advanced
-c99 Advanced
-c99 Advanced
-c99 Aadvanced
-c99 Advanced
-c99 Advanced

-c99 Programmer's Reference Sheet

e and You (Warren Agee)...
8§ Tutorial #1..ccccceccenes
s Tutorial #2.......000044
s Tutorial #3......00000..

Tutorial
Tutorial
Tutorial
Tutorial
Tutorial
Tutorial

Section 4 - Forth

#1
#2
#3
#4
#5
#6

(wWwarren
(Warren
(Warren
(Warren
(Warren
(Warren

Agee).
Agee) .
Agee) .
Agee).
Agee).
Agee) .

(Herman

-Forth and the TI 99/4A (Howie Rosenberg)
-Introduction to Forth (Chick De Marti)..
-How to BOOT the Forth System...........
~Forth and Extended BASIC Similarities..
-Going Forth (David Aragon)......c..cca..

-Forth Tutorial #1

(Warren Agee)........

-Forth Tutorial #2 (Warren Agee)........
-Forth Tutorial #3 (Warren Agee)........

|
[]
|
[]
|
]
|
]
|
]
|
]
|
L]
|
e
|
[]
|
[]
|
[]
|
[]
|
|]
! -c99 Beginner!
|
.
|
[]
|
[]
|
[]
|
L]
|
L]
|
[]
|
a
|
L
|
L]
|
[]
|
a
{

.

.

a a0 n e

Geschwind)

eral=2
ee-1=3
es-1=4
«eal=7
-..1-8
-.e1=9

e-.2=2
cea2=3
e.a2=5
-.2-14
-.2-15

ee.3-2
.-.3-4
es.3-7
--3-10
--3-13
-.3=-16
«e3-17
-+3-19
.-3-21

-.3-26

4-1

caa-4-2
«-.4-5
..4-10
-.4-11
-.4-12
--4-14
-.4-19
-.4-22

-—._-—-—-—.—-—--.-.—-—-----—-—._-_._-—-—.&

‘-—-—-—-_-—-—-I—-—-_I-—-_-_-_.—-.—-—-—.—-—-—-—-—-_-—--—-

fﬂ§

-Disk Drive
-Cable Box

-Adding A S
-Disk Drive

Section 7 -

-A Look At

Section 8 -

-Character
-TI Writer
-TI Writer
-Bi t-Image

f
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
;
!
!
!
!
!
!

Section 6 -

Section 5 - pPascal, Pilot

Hardware

POWeYr SUPPlYy. oo eenecennncnes
(Jim EAwards) . ceeoneeeennennn..

econd RAM Chip (Jim McCullock).
Modifications (Paul DeMara)...

Telecommunica tions

Compuserve (Jonathan Zittrain).

TI Writer

a o o o o

-

-Source...

-Instructions and Hints (Dick Altman)...........
-Miscellaneous - Underlining, etc (Bruce Larson)
-Extend the Use of TI Writer (Allen Burt).......
Graphics with TI Writer (Rod Cook)...
Formatter Commands (Tom Kennedy).....

- o o

-The GEnie System and TI Roundtable (Scott Darling)
-The Delphi Network (Jeff Guide)..eoeenenennana.

-

-

-Install GROM Chips Inside Console (Patrick Ugorcak)

-

5-1

-What They Don't Tell About P-Systems (Jerry Coffey)...5-2
-You're The Pilot (William Harms) iiiiiininnnna..5=-10
-Index of Pilot Commands (William Harms)..............5-13

6-1

-Load Interupt, Hold abd Reset Switches (Brian Kirby)..6-2
-Whis tles & Bells are Nice But Lights? (J. Wilforth)...6-5
-Wiring Diagrams and Pinouts for the 99/4A.... .. c.n.c...6-6
-Hi-Resolution Monitor (Steve Wilkinson).....
-32K Memory Expansion Project (John Wilforth)
-Hardware Hints (Ken Gladyszewski)........
-Cool It (John Page)...ccournnunnnncnnnn.
N -Anchor Automation Modems (Scott Darling).

-ea6=-7
-..-6-8
--.6-9
«.6-10
-.6-14
ce6-17
-..6-18
--.6-19
-.6=-21
-.6-24

ca.8=-2
«..8=-7
...8-8
«..8=-9
.-8-10

Reference Guide (Bob Stephens).............8-=11
Graphics-Dot-Matrix Printers (Tom Kennedy) .8-12

‘-—.—.—.-—-—-—-—--—-—-—-—-—._.—--—-—-—.—-—.—I—I—-'

A

r.—.—-—.—-—-—-—;—._.—-

-Appendices

=TT Product SOUXrCeS..-.ccceecccasccsccccnncas ceeccanccanca A-1
-TI Users Groups (incomplete listing)......c-ccccenan.. A-6
-Reserved for Future Use A-13 through 16

-Peeks and Pokes (Scott Darling)....... ceesceacsannacan A=-17
-Reserved for Future Use A-20 through 25

-pisk Drive Specifications (Louis Guion)............... A-26
-Tokenized Command Storage (George Stefan)............. A-27
-Error Code Listings....-.cccaccaaane cacaaaca esccramsncase A-28
-pisk Map (Earl Hall)..aoaauooaceans cassnseacnanaanena ...A=-29
-Format for Disk Directory.........-.... seceasmacaasannn A-30
-Fixing Blown Disks (Terry Atkinson)..... cesenmean ceeean A-34
-Reserved for Future Use A-32 through A-33

-Bibliography of TI-Related Books (Barry Traver)....... A-35
-A Description and Commentary on the

-Geneve Computer Commentary (Chris Bobbitt)............ A-41

C Gives
Extra Dower

When You Can Use
A Little Help

s & G S LN W I W NN W IS B GEAD G B SO © SIS O GEEN

€Cetting Down to Basics . . .

COMPUTER MUSIC

We can write music with a list of °CALL SOUND’ statements, but
that is very cumbersome and uses too much memory. It would bk possible
to write an entire composition using only one ’CALL SOUND’> gtatement
(with the exception of leading in or trailing notes.)

My method uses a main CALL SOUND> statement with all of the notes
listed in *DATA’ statements. It will be easier to debug if each ’DATA’
statement is one bar. Quite a few beginning programmers seem to have
dataphabia, hut ’DATA’ statements are very easy to use. The following
examples play the same five notes for one second each. Since there are
only five notes, each program has five lines. - If I added ten more
notes, the first program would have fifteen lines but THE ’DATA’
program would still be only five lines long. This memory savings would
augment to an exponential factor with longer programs.

In the second example, we put the "CALL SOUND’ statement in a *FOR
NEXT* loop with the number of repetitions equalling the number of
elements (notes) in the ’DATA’ statement. whenever the computer
encounters a *READ’ statement, it goes off looking for some *DATA’ to
read. It can be anywhere in the program. In this case, it calls the
data °N’ for note. The note (466) is put in the °CALL SOUND’ statemert
and once a piece of DATA’ is used it is no longer available, so the
second time through the *FOR NEXT’ loop ’N” will be equal to 392, and
S0 on. We could play the notes over again in both examples by adding a
*60TO 10’ line at the end of the program, however, in the second
program we would first have to add a "RESTORE’ line before we could use
the same *DATA’ a second time around.

The following program will play three notes at once and also
handle different note durations using the ’DATA’ statement. Look at
the difference in the *READ’ statement, and notice in line 30 how the
duration is changed by multiplying a single digit with the constant
(500). To change the tempo, use a different constant

10 REM EXAMPLE ONE

20 FOR X=1 TO S 10 REM EXAMPLE TWO
30 READ N , 20 FOR X=1 TO S
40 CALL SOUND (1000 30 READ D,A,B,C
50 NEXT X 1000, N, 1) 40 ca&# 3ounntntsoo,n,1ga,1,c,1>
60 DATA 466,392,330,2 9 SO NE
70 RESTORE | o7 oot 262,34 60 DATA 2,330,392, 466
80 GOTO 20 70 DATA 1,262,330,392
80 DATA 2,196,262,330
10 REM EXAMPLE THREE 90 DATA 1,165,196,262
20 CALL SOUND(1000,466,1) 100 DATA 4,220,262,349
30 CALL SOUND(1000,392,1) 110 RESTORE
40 CALL SOUND(1000,330,1) 120 6070 20

SO CALL SOUND(1000,262,1)
60 CALL SOUND(1000,349,1)
70 GOTO 20

COLOR BAR GRAPHS

This short program in TI Extended BASIC is very simple to use. You may use from
2 to 4 bars on each graph and each bar may be a different color. You are asked the
maximum possible value of each bar. In other words, what is 100% performance?
If the goal this year for the Acme Computer Company is to have each of three re-
presentatives produce 10,000 units, then maximum performance for each repre-
sentative would be 10,000. Minimum performance, of course, would be zero.

The value of each bar is the relative value of each in regard to the maximum goal.
In the example mentioned, producing 7500 units would give a representative 75%

pertormance, so his bar would extend % way across the screen. The title of the
graph will appear at the top of the screen, and the title. caption for each bar
appears directly above each bar. The maximum and minimum values appear at the

lower corners of the screen.

If you are doing an audio-visual presentation and need some color bar graphs in a
hurry, this program could be a big help. By photographing the screen of your
monitor with a single-lens reflex camera and slide film, you could use the graphs
in your slide shows. Or, by sending the video signal from your cornputer to a video
recorder, you could tape the images for incorporation into a video presentation.

100 CALL CLZEAR

110 INPUT "HOW MANY BARS? (2-4):"

:B :: IF B<2 OR B>4 THEN 110

120 PRINT “"TITLE OF GRAPH:":" (28

CHAR.MAX) " :: INPUT T$:: IF LEN(

T$) 229 THEN 17

0

130 PRINT “"MAX.POSSIBLE VALUE OF

BARS (100%):" :: INPUT MV :=: IF M

V<O THE™M 130

140 FOR I=1 TO B

150 PRINT "TITLE OF BAR#";I;":":"
(28 CHAR MAX.)" :: INPUT TB$(I)::
IF LEN(TB$(I)

) >28 THEN 130

160 PRINT " 2-BLACK 3-MED 6
REEN":" 4-LT GREEN S-DK BLUE":
* 6-LT ELUE

7-DK RED"
170 PRINT " 8-CYAN 9-MED R

ED":"10-LT RED
"12-LT7 YELLOW
13-DK GREEN":"14-MAGENTA 15-6
RAY" _
180 PRINT "ENTER COLOR OF BAR #";
Ig”:s" :: INPUT C(Id:: IF C(ID<2 O
R C(I)>1S THEN
180

11-DK YELLOW":

190 PRINT "ENTER VALUE OF BAR #";
Ig":" :: INPUT V(I):: IF V(I)<=0
OR V(I)>MV THE

N 190

200 REP(I)=32%(V(I)/MV):: IF REP(
I)<1 THEN REP(I)=1

210 NEXT I

220 CALL CLEAR :: CALL SCREEN(16)
230 P$="FFFFFFFFFFFFFFFF" :: CC=9
6

240 FOR I=1 TO B :: CALL CHAR(CC,
P$):: CALL COLOR(I+8,C(I),I):: CC
=CC+8 :: NEXT

I .

250 DISPLAY AT(2,15-LEN(T$)/2):T$
260 FOR I=1 TO B :: DISPLAY AT(SX
1,1):TB$(I)z: NEXT I

270 CC=96

280 FOR I=1 TO B :: CALL HCHAR (53
1+1,1,CC,REP(I)):3: CALL HCHAR (5121
+2,1,CC,REP(I)

Y:: CC=CC+8 :: NEXT I

290 DISPLAY AT(24,1):"0" :: DISPL
AY AT (24,28-LEN(STR$(MV))):MV
300 CALL KEY(O,KEY,STATUS)

310 IF STATUS=0 THEN 300

Z20 PRINT "ANOTHER GRAPH? (Y/N)"
:: INPUT Y$:: IF Y&="Y" OR Y$="y
» THEN 100

330 STOP

MMIN

The time required to test and debug o program usually exceeds the time
it toke to reuwrite the program. Several methods are available which
will moke this job easier by preventing or tropping errors which occur
while @ program is running. No one wants to spend time entering data
and then lose it due to o program error.

One of the eaosiest woys to reduce errors when writing a program is to
use the Extended BASIC staotement ACCEPT instead of the more common INPUT
statement. Using ACCEPT will require us to give up the convenience opf
the included prompt option ovailable with INPUT, but will allow us to
VALIDATE the keyboard input. There ore severol options available with
VALIDATE. ACCEPT VALIDATE (UALPHA);AS permits entry of ony uppercase
olphabetic charocter. Substituting DIGIT for UALPHA permits 0O through
S, ond using NUMERIC will permit those numbers os well os: . <+ -~ ond E.

Maony programs aosk the user o guestion to be answered by "YES” or "ND”.
The progrom lines could be written:

400 INPUT ”"DO YDU WANT A HARDCOPY? [Y/N)” = AS

410 IF SEGS(AS$,1,1)="Y” OR SEG$(A$1,1)="N" THEN 440
420 PRINT "PLEASE RESPOND EITHER (YJES OR (NJO.”
430 GOTO 400 '

440 IF SEGSC(A%,1,1)="N" THEN END

Using another option ovoiloble with ACCEPT VALIDATE, a string may be
entered with the choraocters permitted as inputs ACCEPT VALIDATE
{”Y,N,A”)=A% permits only three charocters to be entered os AS. Adding
the SI12E option with SIZE=1, only one of the permitted charocters could
be entered. With these options, the previous example could be written:

400 PRINT DO YDU WANT A HARDCOPY? [Y/N1”:AS
410 ACCEPT VALIDATE ("Y/N) SIZE[1):AS$
420 IF A$="N" THEN END

With these lines in our program, pressing any key other than Y or N will
result in o rude honk as will any ottempt to enter o second character.
Both exomples will prevent the user from entering o character which the
computer has not been instructed how to hondle and will, therefore,
reduce the possibility of on error in your progrom. Graonted, erroneous
entries for the exaomples given will normally result in a WARNING ot the
time of input; however, errors loter in the program may haove been
prevented.

What con you do aobout errors which con occur lote in @ program? We can
moke use of the DN ERROR statement to trop many of these errors ollowing
us to recover and continue without losing doto which may have olreocdy
entered. When on error occurs and the program stops, it caon be
restarted only with the RUN command. But, when RUN is entered, the
values of our variables aore lost.

One ploce where errors often occur is in o program which reads DAIA
statements. When an attempt is mode to read data past the last item in
o DATA stotement, the doto error message agppears on the screen and the
progrom stops. An ON ERROR stotement con be used to prevent this type
of error. Consider the following progrom:

110 READ A :: PRINT A

120 GOTO 110

130 RESTORE

140 DATA 111, 112, 113, 114, 115

Running this progfaom will print the numbers in the DATA statement in
line 140 until 115 have been printed. After 115, the lost item in the
DATA stotement is printed, DATA ERROR in 110 is printed on the screen
ond the program stops. Houwever, if we odd: 100 ON ERROR 130 aond change
lime 130 to: 130 RESTORE :: RETURN 110, the progrom will run until
stopped by FCIN 4 or QUIT. ‘

Mony other uses for ON ERROR con be found. Even faotol 1/0 errors caon be
traopped. To illustrote, check the following program:

100 DN ERROR 240
110 PRINT #1:"THIS IS A TEST”
200 ON ERROR 280

240 OPEN #1:"PID” :: RETURN 100
280 CLOSE #1
280 END

ine first error is creoted by line 110 which generotes on 1/0 error

since File No. 1 is not open. The error tokes program execution to
Line 240 where file No. 1 is opened os »PID” and execution is resumed
in Line 100. A second error is generated when on ottempt is mode to

open the some file ogoin. This is handled by Line 200 which Jjumps the
program execution to Line 280 which closes the file.

A more procticol application can be found in the following exomple using
the CALL ERROR stotement: ’

100 DN ERROR 130

110 OPEN #1:"PID”

120 GOTO 170

130 CALL ERRIWI

140 IF W=130 THEN PRINT "ARE BOTH P.E.B. AND PRINTER ON7”

150 PRINT "ENTER 'CON’ TO CONTINUE.” :: BREAK
160 RETURN 100
170 END

Here, the ON ERROR transfers the program to the CALL ERR stotement. If
W is 130 - which indicates on 1/0 error - the messoge reminding the user
to turn on his P.E.B. ond printer is displayed on the screen and o
BREAK in Line. 150 permits the necessary corrections to be mode. CON
will continue progrom execution to Line 100 for o second try.

1-5

When debugging your programs, the ON ERROR caon be used to trap ony error
as it occurs. A CALL ERR con be used to identify the error and the
prograom steps can be written to permit the error to be corrected ond the
program allowed to continue.

The CALL ERR stotement has the copobility of returning four vaolues. If
CALL ERR CN,N,0,P) ON ERROR and PRINT M,N,P are included in your
program, most errors caon be identified while the program is being
debugged. For example:

100 ON ERRDR 250
110 ! PROGRAM LINES

250 CALL ERR (M,N,O0,P]
260 PRINT M,N,P

270 BREAK

280 ON ERROR 250

280 RETURN EXIT

Errors occurring in the program will couse execution to shift to Line
250 due to the DN ERROR 250 in Line 100. Line 250 assigns variaobles to
M(Error Codel, N(Error Typel), O[Severity) aond P(Line Number].

Line 260 prints the volues assigned to the wvariaobles. (Severity is
always 8 and there is no need to print 0.) Printing W gives the error
code and the code number can be found in the list of error codes in the
Extended BASIC maonuaol. If the value of N, the error type, is "-1", the

error occurred in o staotement. P will be the 1line number of the
stotement caousing the error.

A BREAK stotement waos included to provide an opportunity to the
programmer to correct o correctable error, continue, and resume program
execution at the line following the line in which the error occurred.

Once an error hos been processed, it is cleared and must be executed
agoin to handle to subsequent error. This waos done in the previous
examples by RETURN followed by the line number of the first ON ERROR
statement. 1In this example, the RETURN NEXT bypaossed the ON ERROR in
Line 100; therefore, ON ERROR 250 is repeated in Line 280.

ON ERROR stotements ore similar to o GOSUB so for as o RETURN being
required. Three options are available for RETURN with ON ERROR: RETURN
olone will resume. program exscution in the staotement which coused the
error; RETURN NEXT causes the program to resume in the 1line following

the 1line uwhere error occurred; RETURN (Line Number) starts execution
with the line number specified.

~

SOME BASICTHINGS ...

ADDING HARD COPY TO PROGRAMS by George F. Steffan

«oo] was asked several questions about converting
programs which had output only to the screen so that
they would output to a printer. I also had just done
such a conversion for the group library. The next day,
I received a copy of the newsletter of the MWichita
(Kansas)99er’s Users Group [which] contained a program
by Paul Yorke of Florida (no credit for original
publisher given) which converted a program to use
SPEECH on the TE II. I saw that this program could
provide the solution to problems of this conversion.

My first thought was just to change SPEECH to RS
232 but some people would need to use P10 or different
Baud rates, so I decided to allow input of the desired
output device. Also, I eliminated restrictions on
names for the original and new programs. | added
provisions for either adding the new output device to

screen display or using the output device instead of
screen display. '

You should use the RESEQUENCE or RES comsand on
your program before running this program because same
lines must be inserted between lines of the original
program, The inserted lines are numbered 5 higher than
the line from which they are derived. Therefore,
resequencing is not necessary if the gap between lines
is always more than S.

If your copy of the original program is exactly
the same as the old copy saved with the MERGE command,
you may then speed up final recovery of the program
by using *0LD and OLD PROGRAM NAME®, then °MERGE and
NEM FILE NAE".

This program adds * 41: * to any PRINT statements
in the source program. Therefore, DO NOT USE IT on a
program which already has opened 3 file for output and
contains "PRINT 8° statements.

188 REM ADDPRINT - SEPT. ‘85
118 DATA 8,95, 159,253,280, 1,
49,181, 199,999, 179,247,8,999
128 DATA 156,253,208, 1,49, 18
1,999, 168,253,208, 1,49,8,999
255,255,999
138 REM BY GEORGE F. STEFFAN
, LA 99ER COMPUTER GROUP, P
0 BOX 3547, GARDENA CA 99247
14 REM BASED (N AN IDEA BY
PAUL YORKE : 1288 STARFISH L
ANE : STUNRT, FL 23494
15 REM DISK SYSTEM REGUIRED
168 REH OP$ = *95 OPEN #1:°
IN TOKENIZED STORAGE
170 REM EN$ = * ,0UTPUT* IN C
ONDENSED DISK CODE (TOKENS)
189 REM ES=END OF PROGRAM
199 REM PS="PRINT 41:*
200 CALL CLEAR
218 PRINT * THIS PROGRAM WIL
L CONWERT ANY NON-MODULE DE
PENDENT PROGRAM TO PRINT
T0 A NAED OUTPUT DEVICE.*
228 PRINT :* IT DOES THIS BY
ADDING AN OPEN STATEMENT A
ND RORITING'
239 PRINT * ALL PRINT STATEM
ENTS ADDING OUTPUT REQUIRENE
NTS.*
240 PRINT :* PROGRAM MUST HA
VE OMLY ONE STATEMENT PER LI
m"
250 PRINT * THE ORIGINAL PRO
GRAM MUST BE SAVED IN MERGE
FORMAT.*

268 PRINT :: INPUT * PRESS E
NTER TO CONTINUE®:T$
278 PRINT :* YOU MUST RESEQU
ENCE YOR PROGRAM BEFORE §
AVING IT IN MERGE FORMAT.®:;
289 60SUB 538 :: OP$=T$
B=T$

8 Pe=T¢
310 6OSUB 538 :: Ce=T$
328 60SUB Es=T$
338 PRINT :: INPUT °PROGRAM
TO BE CONVERTED? ":IF$
340 PRINT :: INPUT "NAME OF
MODIFIED PROGRAM? *:0F$
358 IF OF$=IF$ THEN PRINT °N
AMES MUST BE DIFFERENT!® ::
6070 330

e oo es ae oo

348 PRINT :: LINPUT "NAE OF

QUTPUT DEVICE? *:008
378 PRINT :*A - ADD OUTPUT T
0 DEVICE" :;:°C - CHANGE FROM
SCREEN T0 OUTPUT DEVICE":
§¢*SELECTION®

389 ACCEPT AT(23,12)SIZE(-1)

_ VALIDATE("AC®)BEEP:T$:: S=-

HK(Te="A")

398 OPEN 41:1F$,DISPLAY ,UAR
IABLE 143, INPUT

480 OPEN #2:0F$,DISPLAY ,WAR
IABLE 163,0UTPUT

418 PRINT $2:0P$LCHRS (LEN(OD

$))40DSUENS ¢ P=1

428 IF EOF(1) THEN 60TO 448 E
LSE LINPUT #1:T$:: IF T$=E$
THEN 60T0 448

438 GOSUB 578 :: IF =14 TH
EN L2=02+4S :: 60SUB 548 :: P
RINT #2:LNSAPSASEGS (TS, 4,148

)

448 IF C=139 OR C=152 THEN 6
OSUB S48 :: 518 :: L2=
L245 :: 6OSUB 548 :: PRINT 4
23LNSASEGS(T$,3, 161)

460 L2=12+18 :: 60SUB 548 ::
60518 518

478 PRINT #2:E$:: CLOSE #1
s CLOSE 42

488 PRINT :3:"T0 GET YOUR PR
OGRAM YOU MUSTDO THE FOLLOW!

NG:®25:"NEW" 352 "MERGE °;IFS:
32 *MERGE *;0F$

498 PRINT :"THE CHANGED PROG
RAM WILL THEN BE IN MEMOR

Y AD YOU SHOWLD SAVE BEFO

RE RUNNING IT.°

588 STOP

510 IF P THEN PRINT 42:LNSAC

s: P8

528 RETURN

539 Te="" ! CLEAR STRING

540 READ C :: IF C(254 THEN

To=TSLHRS(C) :: 60TO S48

58 RETURN

548 LN$=CHRS$(L 1-(LD255))&CH

R$(L2+4256X(L2>255)) ;¢ RETURN

578 L1=ASC(T$) :: L2=ASC(SEGS
(T$,2,1)) :: C=ASC(SEES$(TS$,3,
1)) s sRETURN

ERROR TRAPPING TECHNIQUES - By Ted Mills, CALL SOUNDS
Neusletter, Central Westchester 99‘ers, May, 1986

(Editorial Remarks by Art Byers, C.H. 99’ers)

Computers generally have built-in error handling
procedures. At a minioum a computer will stop when it
encounters an error condition. But first the computer
will store "certain information, at designated memory
addresses, concerning the type of error encountered and
the line where the error occurred. On my Apple these
error messages can only be accessed by PEEKing into
menory through an error handling subroutine written
into the program. Otherwise the program simply stops
when an error occurs. The TI 99/4A, however, not only
routinely describes the error type but the line where
it was encountered as well, (In addition the 79/4A‘s
TI BASIC has some built-in error routines that do- not
stop a prograa but rather issue a warning. One example
is entering an alphabet value into an INPUT statement
that expects a numerical value. Another:s Extended
BASIC’s ACCEPT AT statement allows you to VALIDATE the
type of data you want entered and will give you a
WARNING *honk® and refuse to accept any other than the
data specified. See page 48 of the XB manval - Ed.)

MS-DOS computers feature only a slight improvement
in error handling in that the line is actually
displayed after the program stops and places the cursor
over the actual error.

Errer handling functions are not only used to trap
errors in newly written, or typed-in, programs, but
also error handling routines have useful programming
applications. The latter were the initial purpose of
this article. However, some general coments might
also be appropriate.

Extended BASIC has two error statements - ON ERROR
and CALL ERR. ON ERROR simply tells the computer what
to do when an error condition is encountered.
Generally, ON ERROR will 60TO or 60SUB to a subroutine.

ON ERROR can be used in many ways. The most
coamon is to keep programs from crashing when the user
does something wrong such as trying to load a blank o
not initialized data disk, hardware goofs, i.e., you
left the door open on the disk drive, or you misspelled
PI0 as PI6,

CALL ERR is best used for debugging a program.
Once the program is error free, the CALL ERR lines can
be deleted. The Syntax of the CALL ERR subprogram
contains four variables describing same aspect of the
error condition. The statement is in the form CALL
ERR(Error Code, error type, severity, line number).
Error type simply distinguishes between program errers
and input/output errors. Frankly, 1 never have
understood the usefulness of the severity message.
(Neither have I! - Ed.)

So far so0 good! If the error is in the line where

the error condition was encountered, life becomes
relatively sinple. However, the error may originate
smewhere else, such as a bad value generated earlier
that does not show up until later. The best procedure,
therefore, is to place an ON ERROR statesent near the
beginning of the program that GOSUBs or 60TOs an error
trapping routine at the end. The subroutine should
include a CALL ERR subprogram. Once the error codes
and the line are identified then PRINT statements can
be added to the subroutine to print out each of the
variables in the line where the error condition was
encountered. Watch out, though, for BAD VALUEs arising
from an improper use of reserved words, 1 once typed
in a program, written in TI BASIC, using Extended
BASIC. The TI BASIC version had a variable DIGIT which
is an Extended BASIC reserved word.

The TRACE command is a useful supplementary
debugging tool. However, I prefer to insert *I'M HERE
AT (LIND)® to follow program flow. 1f you do use
TRACE, especially cn a long and involved prograa, it is
helpful to have a screen dump in low memory to print
the TRACE flow on to paper. The one by Qualitysoft
works very well, (Westchester also has one in the club
library for free.)

The ON ERROR statement should be 3 wuseful
programming tool. I routinely insert N ERRCR
statements in my program that either return to the main
menu if an error occurs or saves whatever data has been
entered so far to disk, It is very exasperating to
lose a lot of data when a prograa comes to a screeching
halt due to an error. Similarly, ON ERROR can be used
to close a file,

Last Fall I typed in a stock charting program that
could chart a lot of price data that I had
acccwulated. Among the inputs for each data point
were the day, month and year. These I entered in
through READ/DATA statements. To check for typing
accuracy, and to count the weeks, [included a
subroutine which read and printed the data items.
Instead of using an end of data identifier I simply
used an ON ERROR message to save the data to disk as
soon as [had run out of DATA statements.

Scme programmers hold forth that a fully debugged
and properly written program should not need error
traps, except to gquard against the hardware errors
discussed above. They consider use of (N ERROR as a
programming tool to be somewhat inelegant, but |
believe it provides an important measure of safety
which I like.

One final comment. It is possible to have many ON
ERROR routines in the same program, 3s long as each one
is turned on and off at the right time. For example, I
usually insert an *ON ERROR GOTO (Menu)®. However, an
N ERROR (Save File)® heads my insert data routine.
After the file is saved then I return to the "GN ERROR
60T0 (Menu)® cammand.

1-8

100 ! #sess NS/LABELS #ee#s By: Martin A. Smoley ##### For EPSON Printer #atie
110! #+42t NorthCoast 9%er’s UG #eest
120 OPEN #9:°P10°® ' OPEN PRINTER (Could be RS232)

130 PRINT #9:CHR$(27);°0°;CHR$(27);°8%;!

*0°=ST0P skip over perf,*8°=STOP paper end detector

140 CALL CLEAR :: CALL SCREEN(13)
150 PRINT * &% NS/LABELS ##°: :°

H LABELS": : :

160 PRINT * Enter Data at Prospts'®: :" You will have 4 line per®: :° label.
ne #] = 15 Cols.®: :° Line #2 = 28 Cols.":
170 PRINT * Lines 83 and 44 = 49 Cols.”: : :

180 60SUB 190 :: 6OSUB 210 :: 6OSUB 220 :: 60SUB 230 :: 60TO 240

190 Pnl"] :: PR!NI L] AAANAASAAAAAAAAR
200 INPUT “ENTER LINE 1 ":A$:: RETURN
210 PRINT :: PRINT * "ENTER LINE 82° :: INPUT °ASAAAAAARAAAAAALAAAAAAAAAAAASBE
:: RETURN |
220 PRINT-:: PRINT *

AAAAAA‘AAAAAAA‘?

#i¢ Extended Basic e8¢

PRINTS®: :* 3-1/2in BY 15/1bin°®:

Li

ENTER lINE ’Sl == INPUI loAAAAA.ﬁA.\1.\AAAAAAA-\2AAAAAAAAA3.\AA
*sC$:: RETURN

230 PRINT :: PRINT ° ENTER LINE 84" i INPUT PQANAAASAAJAARANAAAADAAAAAAAAATAAA

AAAAAA‘AAAA&AA‘? I=D, :: RETURN

240 PRINT :: INPUT "HON MANY COPYS *:X

250 CALL CLEAR :: PRINT * Hold B¢ to Quit Printing®: : : : : :

266G FOR 1=1 TO X ' sxsssess PRINTOUT LOOP #essene

270 ! PRINT 99:CHR$(27);°6°;! START DOUBLE STRIKE OPTIONAL

280 PRINT 89:CHR$(27);E";" START EMPHASIZED

290 ' PRINT #9:CHR$(27);°N";! Start Elite-cizelmakes 31=18 characters)
300 PRINT #9:CHR${27);"W";CHR#(1);' START ENLARGED

JI0 PRINT #9:A$

320 PRINT #9:CHR$(27);°N*;CHR$(0) 3
130 * PPINT #9:CHR$(27);°P*! Stop Elite-size(Needed if 290 is used)
340 PRINT #9:° *;B$;CHR$(27);"F" ! STOP EMPHASIZED

359 PRINT $9:CHR$(27);CHR$(15);° *;C8;:5° ";DS;CHRS (18) ;CHRE(27);"H";!

CHR$ {15)=START CONDENSED+CHR$ (18)=STOP,*H"=STOP DOUKLE STRK.

360 FOR ¥=1 TD 3 :: PRINT #9 :: NEYT K

100 CALL KEv10,K,S)5: IF k=81 OR K=113 THEN 390

380 NEXT |

390 CALL CLEAR :: CALL SCREEN(&)' shet¥eed Beginning of TASK SCREEN esresdes
400 PRINT * Enter M for More labels®: :*° N for New labels®: :° L to
Change 3 line®: :

410 FRINT * @ to Quit the program®: :

420 INPUT " Enter your chioce: °:DO§

430 IF D03="N" OR DO$="n" THEN CALL CLEAR :: GOTD 240

440 IF DO$="N* OR DO$="n" THEN 140

450 IF DOs=°L" OR DOs$="1" THEN 480

450 IF D0$="0" OR DO$="q" THEN 520

470 6070 420
480 CALL CLEAR '
490 INPUT * Enter line number to be
L:4 THEN 499

500 ON L 6OSUB 190,210,220,230

510 60TO 390

520 PRINT 99:CHR$(27);°8";" Initialize Printer = Wipe out any leftover comsands
530 CLDSE #9

540 ' we¢ MS/LABELS ###
330 END

STOP ENLARGED

changed 1 to 4 ":L :: IF L<1 OR

ssesseer Beginning of LINE CHANGE SCREEN s#essass

"NS/LABELS® started out to be a saall,

NS/LABELS-DOC
sisple

progras to print 3-1/2 in X 15/46 in. labels for
return addresses and disk labels, but it evolved
into the progras you see at the left.

" THE USER INSTRUCTIONS FOLLOM

(1) Load the progras (Don't run it yet).

(2) Align your labels in the printer then turn

3

“

(5

(b

(7

NOTE:

)

)

)

-~

-~

the printer on.
Now RUN the progras.

Enter the data as prospted by the prograa.
There is one circustlex (%) for each space
on the entry line. Do not use any cosmas.

After you have entered (4) lines the progras
will ask how sany labels you want. If you
want to see one enter 1. After the label is
printed you will see a screen which will let
you print (More if you like what you see.

It you don't like thes enter L to change a
line and then the line nusber you would like
changed. You can repeat the L for as sany
lines as you need, or you can use M for sore
and print one at any tise until you like the
label you have. At this point you use More,
then type in the quantity you want and the
printer will start running thes off.

I you change your mind, HOLD Y@(until the
printer stops and you will return to the
task screen.

At the task screen you can also enter an (N)
if you want a cospletely New label or (Quit
to exit the progras.

I¢ your ribbon is not dark enough you
can edit the progras and delete the ¢!}
and the space from the beginning of line 270
This will give you Double Strike throughout.
Also! Doing the same thing to line Nos. 290
and 330 will give you 18 characters in line
#1 if your printer is capable of Elite Print
(You will have to resesber that you have (3)
characters past the last (%) in line one.)

If you do not like to type, ay programs
are in the NorthCoast 99er's Library.
Good Luck' Marty

— MS/LABELS —— \1

TI?9/4A

Extended Basic

This label was aade by the prograe listed above,

Ln,A1=ENLARGED #2=5td. size #3&d4sCondensed

Study Brings Benefits . . .

N \! w:'
m { .

Saueezing Real Benefits From
Your 99/4 A and Geneve Systems . ..
Assembly Language

Aﬂ%

This block diagram came from TI and may be of general interest-
a picture is worth a thousand words!

. from: _
Rockey Mountain

TI-99/4(A) MEMORY ARCHITECTURE
. 99ers “TIC TALK"

CRU FOR BANK SWITCHING

—7

TNS9900 . CONSOLE|MEMORY |DEVICE |OPT‘L d !
CENTRAL ROM EXPAN |SERVICE|COMMAND| SEE MEMORY EXPANSION
FROCES’R PART 1 |ROMS MODULE PART 2
RUM/RAM] BELOW
‘ 8K BYTE|SK BYTE|SK BYTE|8K BYTE 24K BYTES
CPU MEMORY > . - 2
0000 2000 4000 6000 / 8000 ?O €000 EOO0O
FAST SOUND vbP VDP SPEECH |SPEECH {GROM GROM
]AM MEMORY=|READ WRITE |READ WRITE READ WRITE
MAPFED FORTS=> | @S300 MAPPED |MEMORY-|MEMORY -{ MEMORY= | MEMORY=|MEMURY= | MEMORY-
256 PORT MAPPED |MAPPED |MAPPED [MAPFED |MAPPED |MAPPED
BYTES PORT PORT PORT PORT PORT PORT
: }
€000 €400 8800 8C00 9000 €400 800 9Co0
TH3 F919 TMS99132A TMSS200 GROM CNTRL

SOUND CHIP
WT DATA=2400

RD DATA=E800
RD STAT=8S02
WT DATA=&CO0
WT ADDR=8CO2

SPEECH SYN

VDP
16K

RAM
BYTES

32K

VOCAB ROM

BYTES

RD DATA=9S800
RD ADOR=9S02
WT DATA=PCOO
WR ADDR=?C02

/

/

\

GROM BANK 0=> : ! ' : : : !
GROM EANK 1=> CONSOLE GROM GROM (GBRAPHICS READ GMLY MNEMORY)
GROM EANK 2=> (GRAFHICS READ ONLY | IN COMMAND MODULES OR FERIPHERALS

. MEMORY) .

. UP TO 146 BANKS OF UP TO 40K BYTES EACH

. 13K BYTES ACTIVE IN : 2 . .

. ALL BANKS L L L L
a .. / L <. y4 /
‘ROM BANE, 1S5=> — : yA Z L yA /

o000 2000 4600 6000 3000 AQVO CoGU E000

HZ

A ~
VY LINEZ INDICATE FEATURES INCLUDED WITH CONSOLE

THE SCREEN PAGER UTILITY
By Michael St. Vincent

How often have you wanted to look at part of a program as it runs or
set up an initial instruction screen that could be stored and recalled in
an instant? If you are familiar with the almost complete impossibility of
doing this, especially in the Extended BASIC environment and want to get
free of such limits, here is your answer: an assembly language subroutine
that is short and non—-cocaplex.

Simpie solutions to problems such as screen storage are often
overloked in favor of staying strictly in one language’s environment.
Most people are unfamiliar with the usefulness of having machine language
routines take over chores that are much slower in BASIC. To store a
screen in BASIC, for example, most programmers would use a GCHAR to read
all of the screen and store the result in an array. Besides being slow
and inefficient, a BASIC routine to do such would use large amounts of
memory.

Enter the amazing and fast 9900 machine 1language routine! The
screen, usually a set of rows and columns to a BASIC programmer, becomes
only a set of memory locations. In this form, moving a copy of the
screen becomes as simple as assigning the assembly equivalent of a few
variables and a .60SUB. Operation of the subroutines is kept simple by
having the computer do the calculating. The possibl=z applications of
these subprograms are lirnited only to the programer’s imagination.

How the prrgram is used;

The subroutines, once assembled, are some of the simplest to use.
toading the programs into memory is accomplished by using a CALL INIT
command followed by a CALL LOAD("DSK1.PAGER/0OBJ") command. The routines
are automatically stored in the memory and become invisible until needed.
Four prcocgrams are loaded simultaneously for use in Extended BASIC:
PGSAV1, PGSAV2, PGSHO1, AND PGSHO2. The SAV programs save everything on
the screen at the instant they are called to pages 1 and 2 respectively.
The SHO programs return the previously saved pages to the screen. All
four programs are accessed by.CALL LINK("pgname") where pgname is one of
the program names given above. The amount of time speni by the programs
can only be measured in microseconds. Using OLD, SAVE, MERGE, and NEW
commands have no effect on the screens stored in memory (thus, one could
list a program, save a screen of the list, load a new program, and still
be able to 1look at the 1listing of the old program). The only
restrictions on the programs are that they only store the characters,
neither the colors nor any sprites are kept.

How the program works:

The programs in assembly use a simple system of setting up a block
of CPU RAM to store pages. Cnce a screen is to be stored, the registers
0, 1, and 2 are loaded with the address of the screen map in VDP RAM
(000), the address of the CPU RAM block, and the number of bytes to
transfer (768 for the full screen). A simple BLWP (branch and link with
workspace pointer) command links to another utility routine which does
the actual transfer. After the transfer is completed, the program uses
the psuedo-opcode RT to reset the workspace pointer to the BASIC
nterpeter area from where it branched. At that point, the BASIC level
program continues to execute.

How to assemble and install this program on your disks:)

Using the Editor/Assembler package, type in the source lis%ing which
follows exactly as shown. Spacing is important <to insurz that the
program will assemble properly. Once the program is typed in (you don’t
need to copy the remarks that are preceeded by an asterisk, store the
source code (what you typed) under the filename “PAGER/SOU". Then 19ad
the Assembler. When asked for the source filename, give
"DSK1.PAGER/SOU", and when asked for the object filename, give
"DSK1.PAGER/OBJ". If you have a printer, give the device name at t?e
praompt, otherwise, hit <enter>. The options for assembly are "RSL" if
you have gqgiven a printer device name, of "RS" if you haven’t. The
assembler should do its job within S5 minutes and should print "0000
ERRORS" at the end. 1I1f there are any errors during assembly, refer to
the source listing of this newsletter and compare what you typed._

As listed, the program assembles with no errors.

* THE SCREEN PAGER UTILITY
SOURCE CODE WRITTEN BY MICHAEL ST. VINCENT
* USED TO STORE UP TO 2 SCREEN-FULLS FOR LATER USE
*
DEF PGSAV1,PGSAV2,PGSHO1,PGSHO2 # NAME ROUTINES
*
VMBW EQU >2024 # VDP WRITE ROUTINE
VMBR EQU >202C # VDP READ ROUTINE
SCRMAP EQU >0000 *+ START OF SCREEN MAP ADDRESS
SCRCNT EQU 763 # NUMBER OF CHARACTERS IN MAP

+*

PAGEL BSS 768 # STORAGE BUFFER 1

PAGE2 BSS 768

*

STORAGE BUFFER 2

*

PGSAV1 LI R1,PAGE1 #* ACTIVATE BUFFER 1
JMP GOSAVE # BOTO THE SAVE ROUTINE
PGSAV2 LI R1,PAGE2 # ACTIVATE BUFFER 2
GOSAVE L1 R@, SCRMAP # STARTING POINT TO READ FROM MAP
LI R2,3CRCNT * NUMBER OF BYTES TO MOVE
BLWP @VMPR *+ "GOSUB" TO READ
RT »*

*

RETURN TO BASIC

PGSHO1 LI R1,PAGE1 # ACTIVATE BUFFER 1
JMP GOSHOW # GOTO THE RESTORE ROUTINE
PESHO2 LI R1,PAGE2 # ACTIVATE BUFFER 2
GOSHOW LI R@,SCRMAP # STARTING POINT TO REPLACE MAP
LI R2,SCRCNT # NUMBER OF BYTES TO MOVE
BLWP @aVMBW # "GOSUB" TO WRITE BACK TO MAP
RT # RETURN TO BASIC
»
END # TELL ASSEMBLER TO STOP
RIS R R S S N I R S S I I I S R M R S Y S S SR S E S S T

I1f you want to use this program in BASIC with the Editor/Assembler module,
change the lines to match this header:

*

DEF PGSAv1,PGSAV2,PGSHO1,PGSHD2 # NAME ROUTINES
REF VMBP,VMBW

SCRMAP EQU >Q000 # START OF SCREEN MAP ADDRESS
SCRENT EQU 768 ' # NUMBER OF CHARACTERS IN MAP

*

peration of the program is the same as desribed for Extended BASIC.

CALL PEEK

Hello again everyone. There's a lot to cover this time, sc let’s get right to it.
Last month’s A/L Challenge was to write a program to input a line from the'keyboard and
output it to a printer. Since nobody called to ask a guestion about device I/0, I assume
everybady was able to get all the information they needed from the materials they have.
Everybody DID write a program didn’t they??? Just in case, 1711 cover a few high points
before presenting my solution to the challenge. Most of the needed information, although
a bit cryptic, can be found in the Editor/Assembler manual. Due to space requirements
(and laziness on my part), I°11 not reprint that information here, but will offer a few
comments on it. So... grab the manual and let’s look at “"File Management".

As I said last month, one of the great things about our computer is the ability for
our programs to interface with most peripherals in the same manner regardless of the type
device. This is due to the use of “"smart" peripheral controllers and the "file" concept.
Read pages 291 and 292 in the E/A manual for a description on the “file" concept. Any
device, with the exception of the cassette recorder (see the note on page 262), that can
be accessed with the OPEN, CLOSE, INPUT and/or PRINT statements in basic can be accessed
in assembly language, using a common subroutine provided in the E/A utilities called
DSRLNK. Each peripheral card contains a DSR (Device Service Routine) that handles the I/0
to that device and makes data flow to and from the device appear to us as a "file". The
DSRLNK subroutine takes care of locating the desired device, ie. "PIO" or "DSK", and
interfacing it with our program. FPage 262 of the E/A manual contains & description of how
to use DSRLNE.

The key to accessing any device with the DSRLNK utility is the PAB (Peripheral Access
EBlock). The PAB is a group of data that definmes all information rnecessary to access a
particular file on whatever device we are working with. The PAE has a strict format, and
is always located in VDF RAM. Pages 293 and 294 in the E/A manual cover the format of a
FAE. A PAR is 10 bytes long, plus the length of the file descriptor. A file descriptor
i the device name, file name, and any cptions needed for a particular device.
"DEK1.MYFILE" and "RS2I2.BA=2400" are examples of a file descriptor. The E/A manual has a
pretty good description of the FAR, but here are a few good things to remember... The PAR
is a two way street. In addition to its function of passing necessary information to the
device, the device also uses the PAE to pass necessary information back to our program.
Fo: =:ampls, byte | cof the FAER is used by the device to identify any errors encountered
during the current operation and byte S is used by the device to tell us the number of
bytes read during = READ operation. Remember that byte ! is a bit mapped byte, that is,
more than one piece of information is passed through this one byte. Also, bytes 2-3 and
6-7 are taken as word (1& bit) values. The data buffer address in bytes 2 and T always
point to a buffer area in VDF RAM. This is where you put data that will be written to a
file before linking to the device, and it is where data read from a file will be placed by
the device. It is important to remember that you can change the data buffer address
between each link to the device if necessary. For instance, you could use separate read
and write buffers when dealing with relative files. However, you must be careful to place
the data buffer in a VDF RAM location that will not interfere with the operation of the
computer. Addresses between >1000 and »3000 are usually a good choice for FABEs and data
buffers in a program running out of the E/A module.

Fages 295 thru 298 of the E/A manual describe the meanings of the I/0 opcodes used in
byte 0 of the PAR. Page 299 describes possible error conditioms. Although it is good to.
know how error codes are passed back from a device, the DSRLNK routine transfers the error
code to register O of the calling workspace, and sets the equal bit in the status reaister
if an error cccurs during access to a device. See page 262 for more information.
Hopefully, these few comments will answer any gquestions you may have had. If not, fesl
free to call. Now... here’s my solution to A/L Challenge #2. '

0001 TITL *A/L CHALLENGE #2?

0002 REF DSRLMK,VSEW, VMEW, KSCAN, VDPWD, GRMFA, GRMWA
0003 DEF START

0004 . FAE EQU #1000 Locatiocn of FAB

0005 BUFFER EQU 288 . . data buffer

0006 NAMLEN EQU FAE+9 . . name length in FAE
0007 COUNT EQU PAE+S . . data count in PAE

0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0054
0057
0058
0059
0050
0061
0062
0063
0064
0065
0066
0067

PNTR
KEY
STATUS
GFLWS
MAX
WHSP

X

OFEN
CLOSE
WRITE
BREAK
ENTER
CURSOR
b §

% Data

PABDAT

FILNAM
ENDAT
X
GRMSAV

¥ Save
START

X

LOOP1

LOOFP2

LOOPZ

X Just

EQU »BISé . . name length pcinter
EGU >837% Keyscan returns character here
EQU >8F7C Location of GFL status byte °
EQU >83EOQ . . GFL registers
EQU 80 Max char count

EQU »B3I00 Use this area for registers
BYTE © I1/0 opcode for OFEN

BYTE 1 . . . CLOSE

BYTE 3 . . . WRITE

BYTE 2 Keycode for FCTN 4

BYTE »D . . ENTER

BYTE >1{F Char number of cursor

for PAE

EVEN Force even address

BYTE O 1/0 opcode

EYTE >12 File type description

DATA BUFFER Data buffer address

BYTE MAX Record length

BYTE ¢ Character count

DATA O Record rumber

BYTE 0O Screen offset

BYTE ENDAT-FILNAM Name lergth

TEXT *FIO® Filename

EQU < Mark end of data

EVEN Force even address

REs 2 Save GROM address here

GROM address fisrt

MDVYE E@GRMRA,BGRMSAV Get MSE

NOF Waste time

MOYE @EGRMRA, @GRMSAV+] Get LSE

DEC ®EGRMSAV Adiust

LWFI WKSP Load the workspace pointer
LI RO, FAE RO points to FAE

LI R1,PAEBDAT Rl points to data for FAB
LI R2,ENDAT-FAEDAT RZ has byte count

BLWFP @VMEW Write the data to VDP
MOVE ROFEN,R1 OFEN opcode to R1

BL R2ID Open the file

BL @CLsS Clear the screen

LI RQ, BUFFER RO points to screen location
CLRE RZ Use R for character count
MOVE @CURSOFR,R1 Rl has cursor char

BLWF @VSEW Fut cursor on screen

BLWP ®@KSCAN Get a keypress

MOVE @STATUS, @STATUS Check for new keypress
JEQ@ LOOFZ Loop if no new key

MOVE @KEY,R1 Key code to K1

CB R1,EEBREAK FCTN 47

JE& ENDIT Yes, prepare to end

CE R1,BENTER ENTER key pressed?

JEQ PRINT Yes, write lirne to device
an ordinary character, put it on screen

BLWF @VSEW Write to screen

INC RZ Increment counter

INC RO Increment screen pointer

0068 €I R3,MAX Reached max line length?

0069 JLE LOOFZ2 No, continue

0070 x Maximum line length reached if here

0071 DEC RZ Adjust count

0072 DEC RO and screen pointer

0073 JMF LOOFZ Get another key

0074 % :

0075 PRINT MOV R3I,R1 Char count to Ri

0076 SWFE R1 and into left byte

0077 LI RO, COUNT Fointer to count byte in PAE
0078 BLWF @BVEEW Write the count byte
0079 MOVE GWRITE,R1 WRITE opcode to Rl

0080 BL @I0 Output the line

0081 JMF LDOF1 Get another line

0082 %

0083 ENDIT MOVE @CLOSE,R1 CLOSE opcode to Ri

0084 BL RIO Close the file

0085 % Restore GROM address

0086 MOVE @GRMSAV,BGRMWA Write MSE

0087 NOF Waste time

0088 MOVE @GRMSAV+1,@GRMWA Write LSEH

0089 x

0090 LWFI GFLWS Load GFL registers

0091 B @r6A Return to E/A module
0092 x

0093 % CLS Subroutine, clears the screen

0094 x Uses RO, R1, and R2

0095 «x

0096 CLS CLR RO Beginnig screen location
0097 LI R1, 2000 Space char in left byte. Rl
0098 BLWF EBVSEW Clear first byte

0099 LI R2,767 Remainder count

0100 CLSLF MOVE Ri,EVDFWD Clear next byte

0101 DEC R2 Decrement count

0102 JNE CLSLF Loop til done

0103 RT then return

0104 x

0105 x 1/0 Subroutine

01046 x Enter with 1/0 opcode in R1 (left-byte)

0107 % Handles errors, ignores CLOSE errors

Q108 x Uses R0, Ri, RZ, and R3

0109 x

0110 10 LI - RO,FAB Foint to PAB

0111 ELWF @VSEW Write the 1I/0 opcode
0112 LI RO,NAMLEN Foint to name length in FAR
0113 MOV RO,@FNTR Required for DSRLNK
0114 . BLWFP @DSRLNK Link to device

0115 DATA 8 For file 1/0

0116 JEQ ERROR Handle any errors

0117 IDRET RT Return if no errors
0118 ¥

0119 ERROR CE ®@CLDOSE,R! Closing the file?

Q120 JERQ IORET Yes, ignore error

0121 SRL RO,8 Move error code to right byte
0122 SLA RO, and multiply by 2

0123 MOV RO,RZ Save error code in R3
0124 . BL BCLS Clear the screen

0125 LI RO,BUFFER+Z Location for error msg
0126 MOV @ERRTAEB(RI),R1 Message location to Rl

0127 MOVE ¥R1+,R2 Byte count to R2

0128 SRL RZ,8B Adjust to word value

0129 BLWFP @VMBW Write the message to screen
0130 x

0131 LI RO, 742 Screen location
0132 LI Ri,FRESS Message pointer
0133 LI R2,21 Byte count

0134 ELWF BVMBW Write to screen
0135 x

0136 ERRLF EBLWF @KSCAN Get a key

0137 MOVE @STATUS,E@STATUS New key?

0138 JEG ERRLF Not yet

0139 CBR @ENTER,@KEY ENTER?

0140 JNE ERRLP No, try again
0141 BL @CLS Clear the screen
0142 B BENDIT End the program
0143 x

0144 ERRTAB DATA EBDNMSG Bad device name
Q145 DATA DWFMSG Device write protected
0146 DATA BOAMSG Bad open attribute
0147 DATA ILDMSG " Il1legal operation
0148 DATA OBSMSG Out of buffer space
0149 DATA EDFMSG End of file

0150 DATA DVCMSG Device error

0151 DATA FILMSG File error

0152 x

0153 EDNMSG BYTE 16

0154 TEXT "Bad Device Name!’

0155 DWFMSG BYTE 26

Q156 TEXT ’Device is write protected!?
Q157 BOAMSG ERYTE 19

0158 TEXT "Bad OFEN attribute!®’

0159 ILOMSG EYTE 18

0160 TEXT "Illegal operation!’

0161 DOEBSMZG BYTE 20

0162 TEXT °Dut of Buffer Space!’

0163 EOFMSG EBYTE 25

0164 TEXT "Attempt to Read Fast EOF!°®
0165 DYCMSG BYTE 13

0166 TEXT *Device Error!®

0167 FILMSG BYTE i1t

0168 TEXT °*File Error!’

0169 PRESS TEXT ’Press <ENTER> to end.®

0170 END

Here’s a short description of how the program works...

Lines 1-3 assign a title to the assembly listing, inform the assembler which pre-defined -
utilities and symbols we"ll be using, and defines START as a label tc be placed in the
ref/def table when the program is loaded.

Lines 4-13 equate various labels to values to be used in the program. Notice that the
value field for the labels NAMELEN and COUNT contain "well defined expressions". These
labels are referenced from the label PAE. By using expressions such as these you are
able to change the values of several related labels by changing ornly one line in the
program. See page 49 in the E/A manual for the descripticn of a well defined
expression.

Lines 15-20 place 6 one byte values in the object code that will be used by various
routines in the program.

Line 23 contains an EVEN directive. This directive tells the sssembler to make sure the
location pointer is at an even address. Although at this point the location pointer
would be at an even address, that could change if you added another byte value before

2-8

@M“

line 22. 1It’s good practice to add an EVEN directive after using one or more BYTE or
TEXT directives in your program. The reason for needing tc be sure that we're at an
even address at this pocint in the program is due toc the use of the DATA directive in
line 26. Remember that the BYTE directive places one byte of data in the program while
DATA places one word or twc bytes in the program. When the assembler encounters the
DATA directive in the source code, it will increment the location pointer to an even
address if it should happen to be-at an odd location. So... if at line 24 the
location pointer were at an odd address the result would be a one byte “hole’ in the
obiect code between lines 25 and 26. This would result in a PAB that would not conform
to the strict format that must be followed.

Lines 24-33 contain data that will make up the PAB. Notice that another well defined
expression is used for the name length in line 31. Doing this allows you to change the
filename in line I2 without having to change the filename length byte, as long as you
do not place anything between the end of the filename and the label ENDAT in line 33.
I your printer is connected to the system through a device other than FID, you’ll have
to change the filename. ENDAT is equated to the current location pointer through the
use of the dollar sign. The assembler recognizes the dollar sign to mean the current
value of the location pointer. Actually, ENDAT and GRMSAV have the same value so we
could have used GRMSAV in line 3! and done away with the label ENDAT. However, 1 think
it’s a good idea to keep related sections of code together. If GRMSAV had been used in
place of ENDAT, the name length byte would get screwed up if any code was added before
GRMSAV while writing the program. You'll notice that I’ve used empty comment lines to
keep the code in modular form.

Line 35 contains another EVEN directive to ensure that the following code begins on an
even address, regardless of the length of the FAE data.

Line 36 reserves 2 bytes in the object code to be used to save the GROM address pointer.

Line 38 is where the program will start to execute. Lines 38-41 save the GROM address.
This must be done because some devicesz alter the GROM address when accessed. In order
to return to the E/A module the GROM address must be the same when we leave our program
as it was when the program was entered. The code for saving the GROM address came
directly from pages 270 and 271 in the E/A manual.

Line 43 sets the workspcace register ta »8300.

Lines 44-49 set up the FAE in VYDF RAM and open the file. Again, an expression is used in
line 46 to calculate the rumber of bytes contained in the FAE data.

Lines 51-81 comprise the main program loop. Actually this section is made up of three
nested loops. The inner loop (lines S56-58) scans the keyboard for a new kwypress. The
middle loop (lines €4-469) evaluates the keypress and takes necessary action depending
on what key was pressed. It also places the cursor on the screen. This loop is
executed once for each new keypress. Lines 66-727 keep up with the character count and
make sure the 80 character limit is not exceeded. If the BOth character is entered,
control is passed directly to the inner loop after the character is displayed on the
screen. This prevents the cursor from overwriting the last character. The main, or
outer loop, clears the screen and character counter and sets RO to the starting screen
location. You have probably noticed that I have chosen tc use the area of VDF RAM that
represents screen data for the output buffer. Since the data that we're writing to the
printer is already stored on the screen, there’s no need toc move it to another area of
VDF RAM before sending it to the printer. You can also use the screen data area as an -
input buffer when reading data if you need to display the data after reading it. The
main loop also contains the routine usad to send data to the printer. Lines 75-81 take
care of this chore by placing the character count in the FAE, indicating a WRITE
operation, and calling the subroutine I0 to actually access the arinter.

Lines 83-91 are executed when the break (FCTN 4) key is pressed. This routine closes the
file, restores the GROM address, and returns control to the GPL interpreter after
setting the workspace pointer to the GFL register area. This method of returning from
the program is & modified version of the one on page 442 in the E/A manual. The manual
suggests to clear the GFL status byte and then branch to location »0070. I prefer to
branch to location >00&6A since the code there clears the GFL status byte. This saves a
little memory usage in your program. Beginning on page 440 of the E/A manual are
descriptions of several ways of returning to the system wher your prcgram ends.

Lines 96~103 are a subroutine to clear the screen. This subroutire uses the E/A provided

2-9

VSBW routine to clear the first byte of screen memory and then accesses the VDF chip
directly to clear the rest of the screen. I used the VSEW routine as an easy way to
set up the VDF Write Address register. :

Lines 110-169 make up the 1/0 subroutine. This subroutine assumes that the PAB is already
set up with the exception of the I/0 opcode. The 1/0 opcode must be passed to the
subroutine in the MSE of Rl1. The 1/0 opcode is written to the PAB, the 8356 pointer
is set up to satisfy the requirements of the DSRLNK routine, and then the device is
accessed via DSRLNK. If access is successful, the subroutine returns to the calling
program. If an error occurs, an error message is printed and the program returns to
the E/A module after you press the ENTER key. 1If an error occurs during a CLOSE
operation, it is ignored. For an error during any other operation, the error code is
transfered to the right byte of RO and then multiplied by 2. The multiplication is
accomplished by shifting the value left by one bit. The resulting value is stored in
R3, the screen is cleared and RO is loaded with the screen address for the error
message. In line 126 the indexed addressing mode is used to load Rl with the address
of the correct error message to be printed. Since each address in the table at ERRTAE
is 2 bytes long it is necessary teo multiply the original error code by 2. This was
done in line 122. The address of ERRTAB plus the value in R3 is loaded into R1. Now
R1 will point to the length byte preceeding the errcr message. This length is
transfered into the left byte of R2 via workspace register indirect auto-incermenting
addressing, and then R2 is made into a word value with the shift instruction in line
128. The result of all this is that RO has the screen address. Rl points to the
message to print, and R2 contains a byte count of the message. The VMBW routine is
used to print the message on the screen. After the error message is printed, the
"Press <ENTER:» to end." message is printed on the last screen line and the program
waits for the enter key to be pressed. After the enter key is detected control passes
to the code at ENDIT where the file is closed and the program returns to the E/A
module. Lines 144-151 are a table of addresses pointing to the error messages. All
the entries in this table could have been entered on one line in the source code, I put
them on separate lines so it would lock more like a table. The error messages that
follow are taken more or less from the error code meanings listed on page 299 of the
E/A manual.

Line 170 contains the END directive that tells the acssembler that it has reached the end
of the source code.

Well, there you have it. Remember that it is nct necessary for your versicrn of the
progranm to operate in exactly the same manner as mine. If it works, it’s OK.

The A/L Challenge for next month sort of expands on what we’ve learned this month.
Write a program that will allow you to enter letters from the keyboard onto the screen at
any location. In other words, the keyscan routine will have to recognize the arrow keys
in order to move the cursor around on the screen.. You should also try for a blinking
cursor and repeating keys. The keyscan routine should also check for FCTN 3 to clear the
screen, FCTN 4 to end the program and FCTN & to save the entire screen to a specified
device. When FCTN & is pressed, save a couple cof screen lines to a buffer, clear them,
and prompt for an output device. After the output device ic specified, restore the prompt
lines and output the entire screen to the device. Af+tesr the screen is output, return to
the keyboard input routine with the screen still intact. Since this program will allow
you to save a screen to disk, let®s also include & routine to recall a screen. Start the
program off with a menu to select *design a screen’ or ’recall a screen®. Your screen
design keyscan routine should return to this menu when FCTN 4 is pressed. The format used
to save the data is up to you. If you have questions, feel free to call 764-7881 after &

FM. Out of town folks can write Rt. 9, Box 460, Florence, AL 35630. Pleas2 include an
SASE for reply.

Until next time....
Danny Hichael

Assembly Routine Restart after QUIT
by Joseph H. Spiegel

There are several Extended BASIC programs now that use assembly language
routines. The loader for these routines is quite slow. For that reason,
it is somewhat annoying if you have to leave Extended BASIC for some
reason, then return and wait for your routines to reload. The worst part
is that, in many cases, the program still resides untouched in expansion
memory. What has happened is that the low memory has had to be
reinitialized and the REF/DEF table cannot be found. The following
program will read a current REF/DEF table and create the proper CALL
LOAD's to restore it if you must leave Extended Basic. It will also
perform minimal checking to see if the program you want is still intact.

The program is used as follows (assuming you have saved the program on disk

(1) From Command mode, do a CALL INIT :: CALL LOAD("DSKl.object file")

(2) Type RUN "DSK1.REFRESTORE" (or whatever you saved the program as)

(3) Answer the prompt with the complete filename that you you wish the
merged file to be saved as.

(4) The program will recreate the REF/DEF table in merged form and print
the program names as it goes.

(5) You will be prompted to enter the program name for checking upon
reload. Enter one of the names from the program list. Depending
upon the location of the program in memory, a check of the program
may be included in he merge file. This check consists of a
comparison of four bytes at the start of the chosen program.

If the four bytes are OK, the variable FLAG will be set to 1,
otherwise ti will be 0. If the REFRESTORE program has
overwritten the object file, you will be given the location of
the entry point, and the program will complete the

merge file without the check.

(6) After completion, the merge file may be merged into your
Extended BASIC object loader program

The program is below:

5 lby J. H. Spiegel 6/85 TI6240

10 PRINT :: INPUT "MERGE OUTPUT FILE NAME? ":OUTFILES$

20 OPEN #1:OUTFILES,DISPLAY,VARIABLE 163

30 CALL PEEK(8194,A,B,C,D)

40 PRINT #1:CHR$(0)&CHRS$(1)&CHRS$(157)&CHRS (200)&CHRS(4)&"INIT"&

CHR$ (130)&CHR$(157)&CHRS$ (200) &CHRS$ (5) &"CLEAR"&CHRS$ (0)

50 PRINT #1:CHRS$(0)&CHR$(2)&CHRS$(157)&CHRS(200)&CHRS (4)&

"LOAD"&CHR$ (183)&CHRS$ (200) &CHRS$(4)&"8194"&CHRS$(179);

60 PRINT #1:CHRS$(200)&CHRS$(1-(A>9)-(A>99))&STRS$S(A)&CHRS$(179);

70 PRINT #1:CHRS$(200)&CHRS$(1-(B>9)~(B>99))&STRS$(B)&CHRS$(179);

80 PRINT #1:CHR$(200)&CHRS$(1-(C>9)-(C>99))&STR$(C)&CHRS$(179);

90 PRINT #1:CHR$(200)&CHRS$(1-(D>9)-(D>99))&STR$(D)&CHRS(182)&CHRS(0)
100 E=256*C+D :: LN=3

110 FOR X=E TO 16382 STEP 8

120 CALL PEEK(X,F,G,H,I,J,K,L,M)

130 PRG$=CHR$(F)&CHRS (G)&CHR$ (H)&CHRS$ (I)&CHRS(J)&CHRS(K):: PRINT PRGS,
140 PRINT #1:CHRS$(0)&CHRS (LN)&CHRS$(157)&CHRS$(200)&CHRS$(4)&"LOAD"&

2-11

CHR$(183)&CHRS$(200)&CHRS(5)&STRS (X)&CHRS$(179);
150 PRINT $#1:CHR$(200)&CHRS(1-(F>9)-(F>99))&STRS$(F)&CHRS(179)
&CHRS (200) &CHRS$ (1-(G>9)-(G>99)) &STRS$(G)&CHRS$(179);
160 PRINT .#1:CHRS$(200)&CHRS(1-(H>9)-(H>99))&STRS$(H)&CHRS(179)&
CHR$ (200)&CHRS (1-(I>9)-(I>99))&STRS(I)&CHRS$(179);
170 PRINT #1:CHR$(200)&CHRS (1-(J>9)-(J>99))&STRS$(J)&CHRS(179)&
CHR$ (200)&CHR$ (1-(K>9)-(K>99))&STRS$ (K)&CHRS$(179);
180 PRINT #1:CHR$(200)&CHR$(1-(L>9)-(L>99))&STRS$(L)&CHRS(179)&
CHRS (200) &CHRS$ (1-(M>9)-(M>99)) &STRS (M) &CHR$ (182) &CHR$(0)
190 LN=LN+1 :: NEXT X
200 INPUT "PROGRAM TO BE CHECKED UPON STARTUP? ":CK$::
CK$=CK$&RPTS(" ",6-LEN(CK$)):: Y=E
210 IF Y>16383 THEN PRINT "THAT PROGRAM NOT FOUND" :: GOTO 200
220 CALL PEEK(Y,F,G,H,I,J,K,L,M):: PRG$=CHRS (F)&CHRS$ (G)&CHRS (H)&
CHRS$ (I)&CHRS$(J)&CHRS$(K):: LOC=256*L+M
230 IF LOC>»32767 THEN LOC=LOC-65536:: LOC$=STRS$ (LOC)
240 IF CKS$=PRG$ THEN 250 ELSE Y=Y+8:: GOTO 210
250 CALL PEEK(-31952,S1,S2):: S=256*S1+S2-65536
260 IF S<LOC THEN PRINT "PROGRAM OVERWRITTEN BY THIS ROUTINE

, CHECK LOCATION";LOC;"BY HAND!" :: GOTO 330
270 CALL PEEK(LOC,F,G,H,I)
280 PRINT #1:CHR$(0)&CHRS (LN)&CHRS$(157)&CHRS (200)&CHRS (4)&
"PEEK" &CHRS$ (183) &CHRS$ (200) &CHRS$ (LEN(LOCS$)) «LOCS&CHRS$ (179) &
"@1l"&CHRS$(179)&"@2";
290 PRINT #1:CHR$(179)&"@3"&CHRS$(179)&"@4"&CHR$(182)&CHRS(0)
300 PRINT #1:CHRS$(0)&CHRS (LN+1)&CHR$(132)&"@1"&CHRS$(190)&
CHRS$ (200) &CHRS$ (1-(F>9)-(F>99))&STRS(F)&CHRS$(187)&"@2"&CHRS(190) ;
310 PRINT #1:CHR$(200)&CHRS$(1-(G>9)-(G>99))&STRS$(G)&CHRS(187)&
"@3"§CHRS$(190) &CHRS$ (200) &CHRS (1-(H>9)-(H>99))&STRS(H) &
CHR$(187)&"@4"&CHR$(190);
320 PRINT #1:CHR$(200)&CHRS$(1-(I>9)-(I>99))&STRS(I)&
CHR$(176)&"FLAG"&CHRS$(190) &CHRS$ (200)&CHRS$(1)&"1"&CHRS$ (129)&
"FLAG"&CHR$(190)&CHR$(200) &CHRS$(1)&"0"&CHRS(0)
330 PRINT #1:CHR$(255)&CHR$(255)
340 CLOSE #1

As an example, I would like to use the popular TK-WRITER program. As
you go from the EDITOR to FORMATTER or back, the object file reloads.

In most cases, this is not required. I say in most because, I'm not sure
if the loader program will be overwritten if the buffer approaches full.
Using the method mentioned, you can enter:

CALL INIT :: CALL LOAD("DSK1.WRITER")
RUN "DSK1l.REFRESTORE"

Answer the prompt for output file with DSK1l.LOADMRG. Choosing EDITOR as
the check file,you find that the object file had been overwritten by
the REFRESTORE program. However, the entry point of EDITOR is

stated to be -1514. That's no problem, it just means a little more work.
Now do a OLD DSK1.LOAD (assuming that's what the loader is stored

under. Then do a MERGE DSK1.LOADMRG. If you list the program, you will
see parts of both routines; don't worry about that for now. Remember
that entry location, lets find out what's there. 1In immediate mode,

type:
2-12

CALL INIT :: CALL LOAD("DSK1.WRITER")
CALL PEEK(-1514,A,B,C,D):: PRINT A,B,C,D

The values printed will be 2, 224,248, and 142 if you have the same
version I have. You now can create the check lines:

6 CALL PEEK(-1514,@1,@2,@3,@4)
7 IF @1=2 AND @2=224 AND @3=248 AND @4=142 THEN FLAG=1 ELSE FLAG= 0

Modify the rest of the program to do the check, then jump around the
load if the check is OK and you have the new LOAD program below:
NOTE: Portions from original program by Tom Knight

CALL INIT :: CALL CLEAR

CALL LOAD(8194,36,244,63,232)

CALL LOAD(16360,85,84,73,76,73,84,250,212)

CALL LOAD(16368,70,79,82,77,65,84,250,132)

CALL LOAD(16376,69,68,73,84,79,82,250,22)

CALL PEEK(-1514,@€1,@2,@3,@4)

IF @1=2 AND @2=224 AND @3=248 AND @4=142 THEN FLAG=1 ELSE FLAG=0
100 IF FLAG THEN 110

108 CALL LOAD("DSK1.WRITER")

NSoundw -

110 DISPLAY AT(6,2):"PRESS ;": :"1 - TO LOAD EDITOR": :" 2 - TO LOA

7 D FORMATTER": :" 3 - TO LOAD UTILITY"

WWM 120 CALL KEY(0,K,S):: IF S=0 THEN 120 ELSE IF K<49 OR K>51 THEN 120 ELSE
K=K-48

130 ON K GOTO 140,150,160
140 CALL LINK("EDITOR")
150 CALL LINK("FORMAT")
160 CALL LINK("UTILIT")
170 END

Keep Your Computer in Good Shape . . . 2-13

PELAWASRE VUALLEY USERS GROUP: MaY.,

HOX TO CONVERT ASSEMBLY PROGRAMS TO PROGRAM FORM FOR FASTER
LOADING AND LESS DISK SPACE - Written by Darren Leonard,
Pittsburgh Users Group, on an idea by Marty Kroll, Jr.

(Reprinted from Northwest Ohio 99/er News)

If yu have ever loaded an Assembly program with
Editor/Assembler Option 83 you may have noticed that it
takes quite a while to load. Nith same programs this can
take over 2 wminutes. These types of prograa are in
Display/Fixed 88 forsat which we are going to change to
PROGRAH format to load with Option 45. In addition to
loading 3 to § times faster, programs stored in prograa
format, i.e., Memory Image, take as little as 174 the disk
space of D/F 8 files.

The method outlined in this article will work on 95/ of
all Assembly D/F 88 programs. Prior to writing this, I
tried it on 20 programs, and it worked on 19 of them, It
will even allow you to save an ASSDMBLY program to cassette.
Thus people with an E/A and 32X can run Assembly programs'

To begin with, read page 420 of the Editor/Assembler
sanual. Try your program the way they outline it. If you
get an error, then read on, and I will explain in detail how
to get around it.

This section describes the procedure for D/F 88 files
THAT DO NOT AUTOSTART! I your program does autostart, read
don 2 few paragraphs on how to remove it with DISKO. [.Ed.
note - The disk sector editing program DISKD is a Fairware
program in the DWUG Library.]

9 Plug in your E/A and call up TI-BASIC. Your E/A

st be plugged in!

D Type CALL INIT
CALL LOAD("DSK1.FILENNE®)

3 1 your program has more than one file, type in all
the remaining files in order as follows:
CALL LOAD(*DSK1,.GAMEX1®)
CALL LOAD(®DSK1.GAMEX2")
CALL LOAD(*DSK{,GAMEX3®)
Get the idea?

4) Type CALL PEEK(8228,A4,B)
PRINT A,B

) WNow 2 nusbers will appear on the screen, one on the
ieft and one in the middle of the screen. This number
corresponds to the first free address in the memory which is
also the last address of your prograa.

6) Convert this number to Hex and add A+B to came up
with a d4-digit hexadecimal number. Since your program is
norsally loaded in memory from addresses 988 - IFFD? if
you get ANIE for A+B then your program has an Absolute
Origin statement (AORG) and you will not be able to convert
it with this method. Similarly, if AB is A788 or maller,
then the program is loaded in an wunusual manner since it
canot €it in the mall area from JA000 - A788, But if you
came up with AYB = BIOS or greater, then this method will
work 97/ of the time.

7 Type "BYE® and call up the Editor. Now type in the
sl Assembly program listed here:

DEF SFIRST,SLAST,SLOAD

SFIRST EQU JA008
SLOAD EQU JA06

SLAST EQU YA788 (the value of A+B)
(3]

NOTE!! PUT THE HEX NUMBER OF A+B IN THE PLACE WHERE

Hit C(FCTN 9> twice and save to disk.

8) Load the Assembler.
For source file enter what you save in step 7,
For object file type DSK1.GAMEX4 or what you mant.
Hit return for the printer output.
Type °RC* when it prompts for Assembler directives.

It will then assemble the progras. You shouldn’t get
any errors.

9) Now load E/A Option 43,

Enter your filename DSKI.GAMEX!
DSK1.GAMEX2

Then enter the assembled filename from DSK].GAMEX4 step
8.

18) Insert E/A disk 82 into drive one and lead file
"DSK1.SAVE".

Hit CENTER) and type °SAWE' for the program name.
Foliow the screen input prompts.

11) Now hit CFCTN +) and call up E/A Option 45 and type
DSK1.YOURFILE and voila!

2-14

198 sS

THE ULTIMATE SAVE

by Tom Freeman

You probably have noticed by now that loading eesory
image files, whether in Basic, Extended Pasic, or EA #5,
is MICH faster than loading DIS/FIX 84 files. The reason
is that program, or semory isage, files are just that -
being an “image’ of the original progras in nesory they
can be transferred en bloc back to the RAM of the
corputer, Since T1 uces VOP RAM for the transfer there
te znmn limitation in the size that can be transferred in
i cprration, but 8 sectors, or about 12X bytes, is
stitl a lot amore than one record in a DIS/FIX 89 file
which is only about 48 bytes in a cospressed file or 22
‘" n uncospressed one. Each record requires 3 DSR call
and 3 savement of the disk drive, so you can see why
thece are ruch slower.

This is why you may want to try to convert your LOAD
Y RN type files to RUN FROGRAM FILE type files, *hat is
EA %5 instead of EA #3. What follows is a rather long
article that chould cover just about all possibilities
for saking conversions. Mote that you need the whole
file, in other words hidden files on protected disks etc
cannot be converted. The first thing to do of course is
Aake a backup copy on a fresh disk since the file will be
easier to find, and you don't want to sess up your
original do you?

I have to state here and now that ay sethod makes
use of DISKASSEMBLER. 1 have also outlined ways of
converting if you don't have DISKASSEMBLER, but it is
auch easier if you do have it. 1 don't necessarily like
to tout ay own horn, but that's why I wrote it - to sake
learning and sanipulating easier! I did not write it to
pirate programs, as soee have alleged - as a matter of
fact T have yet to see a complete program that could be
disaszesbled, reassembled elsewhere, and work if it was
ariginally protected in a sophistica’oa sanner.

tnough already!’

I refer in the text to the term VDP utilities.
These are the ones that are loaded by CALL INIT for as
soon as you press 3 LOAD & RUN). They congist of MMLLNK,
KSCAN, VSBW, \MBW, VSBR, VMBR, \MTR, DSRLNK, LOADER, and
6PLLNK. Other nases that say be REF'd are addresses that
are resolved by the loader, or DEF's in other prograss
and also resolved, so you don't have to worry about thes.

1) You have the source code
This one is easy! Just sake sure that there is mo

AORG in the Y2080 to)>4808 range. Now, unless they are
already there, insert the followinge
DEF SFIRST,SLAST,SLOAD

SFIRST
SLOAD B @START

START, or whatever you have labelled it, is where
the progras actually begins. Also, at the end of the
file, where you see the END directive, put the label
SLAST at the beginning of the line. Also make sure that
the auto-start feature is not activated by the presence
of the START label after the END directive.

Now reassesble using the R option if necessary, and
C for speed of loading. Next proceed on to step S)
below.

2) No source code

A) With DISKASSEMBLER

Run DISKASSEMBLER on the DIS/FIX 88 file you wish to
convert. You will get all the information you need:
whether the file is absolute & relocatable, compressed
or uncompressed, the range of addresses used, and the
nases of all REFs and DEFs, as well as whether there was
mixed ACRE and RORG code, or out of order code. In the
latter two cases there say be sose difficulty in changing

to zemory image format. See NOTE 2 below.

Note down the first and last addresses. [f the file
is RORG, add >A¢09 to each. Note whether there are REFs
to the YDP utilities, in which case see NOTE 1 below.
And lastly note whether there is an auto start or not.
In this case, if the file is comspressed, go on to D)
below. If it is uncospressed then load it into the TIW
or EA editor. Scan down to the end where a line begins
with a Ixxxx or 2¢xxx and delete this line. Then resave
the file (in TIW, use PF, then F DSKx.filenase - in EA, 3
SAVE, N for DIS/VAR 867 prompt). Now go to J)

B) Nithout DISKASSEMBLER

Load the DIS/FIX 89 file into the TIN or EA editor.
You may get an error sessage "control characters resoved"
in EA but don't worry about that just yet. Just press
enter then 2 EDIT. If you see lots of blank spaces in EA
or control characters in TIN then the file is cospressed.
Soze of the work you do will have to be done with a
sector editor such as Advanced Diagnostics or DISK+AID
but while you're here scan down to the end of the file
where you see a : at the beginning of a line. This is
the end of the file, and is preceded by any external REFs
and DEFs with readable blocks of & characters (spacing
always pads the name to 4). If you gee any nases of VIP
utilities you will have to prepare a special file covered
in NOTE 1 below. Note whether SFIRST, SLAST, and SLOAD
have been defined here. Examine the line above these or
the one ahove the : if there were none. If it begins
with a 1 or a 2 then this is an auto start file and will
have tn be modified. [f the file is uncompressed delete
the line then resave it (in TIN, use PF, then F
DEV:. filename , in FA, 3 SAVE, N for DIS/VAR 897 prompt).
1€ the fi1€ ig comunssell qu on to C).

Now go back to the file if it is uncospressed and
return to the first line. You will see a & followed by 4
characters shich are the ASCI] representation of the
muher of bytes of relocatable ctode in Hex. This is
followed by an identifier of B8 characters (it may be
spaces, or padded to B with spaces). In columens 14-18
you #ill see either 9xxxx or A8088. In the first case
the code is absolute origin at address xxxx. In the
second it is relocatable and will load at A68. Note
down the value in either case. 14 the code is
relocatable you may add the hex number that followed the
at the start of the line to >A988 to obtain the last
address used. For absolute code scan down the beginning
of each line. Each should begin with a 9yyyy where yyyy
is the start address of that line. When you get to the
last line of code you have almost the last address. Just
add to it 2 for each group of S characters after the
9yyyy until you get to a 7F near the end of the line.
You now have the first and last addresses which will be
used below.

0 ressed file -Address R No DISKASSEMBLER

On your backup disk find the first sector (it should

be 34, or 32 in older MYARC FOC's). Remesber that each

“fiwe” on record begins on byte §, B89, or 168 of a
sector. The first line should start (in Hex not ASCID)

d1:iy and then 14 characters which are the identifier

(they are readable in ASCII, as B characters). xxxx

represents the nusber of bytes of relocatable code. Note

to A998 to get the last address.

it domn. After the identifier you will see J9yyyy if the
code is ADRG or 4lyyyy if it is RORE. HWrite yyyy down if

the code is AORG, or AB8# if it is RORE. If the file is.
RORG you aay add the xxxx found at the start of the line

Otherwise scan dowm

sector by sector until you get to the last line before

the REFs and DEFs or auto start, in other words the last

line beginning with a 39 in Hex. The next line will

start either with a hex nusber from 31 to 36 or with a JA

{Hex for :). This is the first address of the last line

of code. Now add 2 to the yyyy after the 39 for each

group of & characters until you get to the 46 at the end

of the ®line.® You now have the last ADRG address.

Write down the first and last addresses whether AORE or

RORG - they will be used below. Mote there are a .fen

strange files that apparently were assesabled witha-
different asseabler from the one TI supplied us, and each

line does not begin with an address. In these it will be

alaost ispossible to determine the last address without

DISkASSEMBLER.

D) Cospressed file -auto start- No DISKASSEWBLER
With your sector editor go to the last sector or two

and find the line that begins (in Hex) 3laxxx or 3Z2xxxx.
Change the 31 or 32 to 46 and write it to the disk.

E) Other auto starts

A few sneaky prograsmers auto start their programs
not with the ahove sethod but instead by inserting the
start address into the user interrupt hook at >83CH. If
you have a file that auto starts but can't find the | or
2 (in ASCII, 31 or 32 in Hex) this eay be the sethod.
Look at the end of the last line of code for the
following: (compressed) 39 83 CA 42 xx xx, (uncompressed)
983CABxxxx. If you see it xxxx is the start address.
Replace the J9 with a 46 if the file is compressed, or
the 983C4 with BFO80 if it is uncospressed, and th
progras won't auto start anysore. It may not start at
all, but that doesn't eatter because we don't want it
ta! Me just want to load it, then convert it.

3)_The First Executable Instruction

For the EA 35 loader to work (and all loaders based
on it) the initial code aust be an exe:ut_:able
instruction. I you have a file already in semsory image
format you can examine the code after the first & bytes
and see what I sean. It frequently is a B @ xxxx (8440
xxxx is the actual code) or M xxxx (16xx) where xxxx is
the actual start of the program. Or it may be a norsal
sequence of code e.g. MOV 11,@xxxx LKPL yyyy etc.
indicating the prograsmer anticipated saving in tf.us
format. 1f your file does not begin this way there will
have to be sose additional preparation.

1f your file is auto start and you have detersmined
it is done by one of the two aethods above then you know
what the start address is. If the file is not auto start
you should know from the instructions for the prograe
what the npase of the start address is (for RUN aftgr
LOAD, or CALL LINX in EA Basic) and you can look for it
at the end of the file (with a sector editor if the file
is compressed). You would see something like SxxxxSTART
(uncompressed) or 3Sxxxx5358415154 (compressed, reading
in Hex). These are relocatable start addresses and the
xxxx should be added to AG86. Absolute address have a A

2-16

or 3& before the wxxx. I[f you used DISKASSEMBLER the
start address was displayed for you. NOW see whether the
start address is also the first address of the file. If
it is you are in luck and may proceed on to the next
step. If not you may still procesd, but when you are
finiched see NOTE 3 because further modifications are to
be made.

4) SFIRST SLAST file

f your file already has SFIRST, SLAST, and SLOAD in
DEFs in it, the programer anticipated using this method
and you may go on to step 5). If only one or two of
these names are used check to make sure that they are the
first, last, and first addresses respectively. If they
are, then eliminate the appropriate ones froa the file
belew. [f not use a sector editor to change any letter
in the nase (and type 8 over the 7 at the end if the file
is uncompressed).

Now prepare the following special file, using the EA
editor. Lines 2-4 should abut the left sargin.
DEF SFIRST,SLAST,SLOAD
SFIRST EQU Dxxxx
SLOAD EQU Dxxxx
G457 EQU Dyyyy
END
Here axxx and yyyy are the first and last addresses
deternined abave. Save the file in DIS/VAR 89 forsat,
then 3o to the assembler and assesble it using the file
just saved as source file and a different nase for object
code. For List File and Options just press enter. You
should rapidly get the 8683 errors sessage.

3) the Reassembly

Now that you are all prepared the final job is easy.
Ustig the 3 LOAD % RUN option of EA load your file
(redified if necessary to eliminate the auto start), the
file oreparsd in 4) if it was needed, and SAVE froa the
B4 ~t1ility disk. When the cursor appears again, press
entar, type in SAVE for progras nase, then follow the
screen prospts. For purposes of neatness choose a nase
for the output file that ends in a 1, since 33 sector
blecks will be created and each successive one will have
the last character increased by 1.

The newly created file should run in EA #5. It
von't if there were REFs to the VDP utilities, or if the
actual addresses were inserted in the original source
code. In this case, see MOTE 1 at the end of the
article, :

Please note that the file you are converting should
either be all RORG in which case it will load at 70308,
or it should AORG at >AG€P or higher. I it AORGs in
they2008 to »4009 range and above MAP88 you should save
the two parts separately (create two files in 4) above)
using a file nase ending in 2 for part above)ASGD.
Furthermore the range >2889 to >2FBS cannot be used since
this is vhere SAVE loads, unless that area is really only
a BSS type block. In DISKASSEMBLER this would be
indicated by a ceries of AORGs without DATA. I+ you are
examining the actual DIS/FIX 89 file in the editor or
with = sector editor you would have to see 39xxxx
ierr vrieny in Mer) or 9xxxx (uncospressed, in ASCII)
carrying you past »ZFB® with no 42's or B's in between

for this to be true. In this case SAVE itse}f would be
saved, and overwritten when the prograe runs, but that is
0K because it isn't needed anymore. Furthersore the
progras can't use the range between)2008 and)2676
because the EA loader ard utilities reside here. If the
program appears to do that it was seant to be loaded by
soee other loader, such as Nini Mesory, so sosething else
will have to be done.

All these probless can be fixed up if you have the
SAVE source code gince it can be AORG'd wherever you want
it, and therefore not interfere with the original
prograa. If you have DISKASSEMBLER this can be done by
following the instructions in the appendix (naturally |
would love it if you would buy a copy!) For those that
don't have it I as placing the source code in the club
library. The disk .can be purchased for $5.84 - all
proceeds to the Club, not se! You then place an AORE in
it that gives you Y898 bytes outside the range of the
progras to be converted and reassesble it. If the file
to be converted is to be in the)2009 range then you aust
use the Mini Memory cartridge to load it, and an RORE
assesbled SAVE can be used.

MOTE | The EA Utilities

Norsally EA #3 prograas should stand alone since the
utilities are not loaded in first, as they are with #3 -
type files. There is a way around this however., [f the
file had REFs to the VOP utilities you know this will be
necessary. If there weren't such REFs but the: converted
progras won't run then perhaps there were uses of the:
actual addresses in the progras and you can try this
method.

Prepare a short file as in step 4) using)>2900 as
«xxx and »2676 as yyyy. MAssemble it them procesd to step
3) and use a filename such as UTIL® as the output file.
Find the file on disk with your sector editor, and change
the first two bytes from 2909 to FFFF, This is a generic
file and may be used with all converted prograes that
need it - all you have to do is copy it to the disk
containing the converted prograsm and change the name to
one the same as the others but with the last character
decreased by 1. I prepared DISK+AID in this asannerj the
converted files are called DISKAIDd, DISKAIDI, and
DISKAID2.

If your file contained code between Y2476 and >4086
that either didn't interfere with SAVE, or you used a
sodified SAVE, then you could save it together with the
VOP utilities. However this is not necessary - you would
just have two shorter files, and waste 1 or 2 sectors.

NOTE 2 High and Low Memory mix
If the file to be converted contains code below

34690 and above >A899 you need to convert the iwo parts
separately, using the relocatable SAVE if necessary. I[f
there is a low cea piece AND the utilities are also
needed then for convenience you say want to save the
entire low sea block together even though some space say
be wasted. VYou may also do it in 2 separate pieces if
you wish. In any case change the first 2 bytes of the
file(s) to FFFF. Also reaesber that if you have 2 files,
the second aust have the last character increased by 1

(and again if there is code above A044).

HOTE 3 Special File for Executable Instruction

I your first file created DID have an executable
instruction at the beginning, AND you needed the special
VP utilities file, then change the latter to have a nase
WFTER the program files, and change its first two bytes
back to 8809, Then you are set. If there waen't an
executable instruction and you do need the YDP file, then
change bytes 7-19 of the VIP file to B46@xxxx where xxxx
1s vhere your prograa actually starts. You can do this
hecauze those 4 bytes were actually what CALL INIT loaded
at 22093 to 20X and aren’t needed. One last case where
you don‘t have the first executable instruction but don't
have to aake an extra file is where there was a BSS of at
least 4 bytes at the start of the file (in other words,
successive arigins in the DIS/FIX 89 file). Then you can
replacn bytes 7-16 of your first program file with 9449

AXANS

If none of these special cases obtain, then you will
have to prepare this special file. It actually is rather
2asy. Find an unused ares of memory, either in low nes
betuzen)2FBS and >4086, or high in the high ses, above
“F369. HWrite the tollowing source code:

EF SFIRST,SLAST,S1.0AD

AORE >F8g8 (R WHEREVER YOU HAVE DECIDED IT BCES

SLOAD
SFIRST B @XXXX XXXX IS YOUR ACTUAL START ADDRESS
SLAST BND

Save this file, then assemble it, load it, then load
SAVE, then press enter, type in SAVE, enter and follow
the screen proapts. Use as your file name one with the
last character one less than your previous first file.
You will create a tiny 2 sector file which EA will #ind
the start address in. Resesber to use a sector editor to
change the first 2 bytes from 9990 to FFFF.

NOTE 4 Multiple Files
If your prograa actually contained nuitiple files to

load before the CALL LINK or the entry of progras nase,
the instruction above still apply, but it may be a little
harder to find the inforsation you need. 1'l] be happy
to help if I can, but you should be able to do it.
Resesber to load ALL of the files before running SAVE.

This article wound up a LOT longer than I intended.
Unfortunately I have never been accused of being to
brief. However I was really trying to cover all
possibililites. I hope it works for you every time!
Enjoy.

Editor's Note: Tom Freeman is a practicing pediatrician in 5he Los Aﬂgeles
area and a regular (prolific) contributor to the excelle?t LA Times',)
newsletter of the Los Angeles Area 99er Users Group. He is also author o

the terrific "DISKASSEMBLER" software available from MG (1475 W.'Cypreﬁs
Avenue, San Dimas California; $19.95 + $2 S & H), He is skilled :Ln"I)Jotnd
assembly language language and GPL ("Graphics Programming Languagehi a
continues to produce innovative public domain routines as well 35 s L™
commercial efforts - the most notable being his two-column and "quad-column

print routines.

.
Y

Some Help When You Need It
“*C*° Tutorials

The C Language and You
By Warren Agee
Compuserve ID 70277,2063

The TI-99/4A is getting to be quite an O-L-D computer! But despite its
age, duite a bit of software that is commonplace for other machines has
yet to surface for the 99 enthusiast. One of those goodies is a C compiler

- the language which is currently the rage the of newest and brightest
computers in the market today. But the wait is over! In or around
September 1985 a gifted systems programmer from Ontario, Canada, Clint
Pulley, filled a deep whole...a C compiler for the 994A!

But what is C? C is a language that was developed by Dennis Ritchie on the
Unix operating system on the DEC PDP-1ll. Since then various versions of
the language have popped up on almost all personal computers. In fact, it
is the 1language of choice for the newest breed of personal computers --
the 68000 machines likethe Amiga and Atari 520ST. C's long list of
strengths includes the fact that it is not tied to any one operating
system and machine, which makes C code rather portable. This doesn't mean
that a program written on a Macintosh will run on an Atari 520ST, but it
does mean that the process of converting such a program over to a new
machine is greatly simplified. C is also relatively small, it can be
learned quickly. It is a relatively "low level" language, which means the
programmer has more direct control over his work and the machine. However,
this facet also has its drawbacks: the programmer has to be more careful
in what he does and has to have a good understanding of how the machine
works.

C is not a language for beginners, mainly because it is a low-level
language. But it *is* much easier to learn and use than Assembly, and
perhaps easier for some than FORTH. The most significant advantage to this
language is that it allows people without the knowledge or expertise (or
sanity??) to program in Assembly can now produce high-quality, fast
software that in many cases rivals assembly.

Perhaps I should correct myself and say we now have a "c" compiler, not a
nc compiler. What? That's right, a little "c". You see, the compiler
that Clint wrote, called c99, really supports only a subset of the full C
language, often referred to as K&R, which stands for Kernighan and
Ritchie, the creators of the language. This is due to the memory
constraints of the 99/4A. The C language was developed on a mainframe, not
on a 48K home computer. This means that many compromises had to be made in
order to squeeze a functional C compiler into the 4A. Nonetheless, c99 is

a very capable language that stands by itself just fine.

The C language is different from BASIC in that it is compiled, which means
you key-in your programs with a word processor, then run them through the
compiler. This program reads in your source code and generates assembly
language code, which is the finished program, which can be loaded in
separately and run. The mechanics of creating a program with c99 differ
from most compilers on other machines in that the c99 compiler does not
generate the finished program. It's really a two-step process. The
compiler generates assembler source code instead of object code. The
resultant file is then run through the 99/4A assembler,which comes with
the Editor Assembler cartridge. So as you can well imagine, you need the
E/A cartridge in order to program in c99! However, a thorough knowledge of
assembly language is in no way a prerequisite to programming in C. But
one does have to know how to work the assembler, which is not hard at all.

But what is all the fuss over the C language? Who cares if it's compiled?

I care. A lot of people care. So stop asking questions and listen. The
singlemost important advantage of a compiled language (like C) is
>>>>>SPEED<L<K<K. Zooooom...the only thing faster than a c99 program is an
assembly language program. Not even FORTH can beat it. C is also much
easier to learn than assembly. It is easier to read than assembly. Its
easier to go back and modify after time than assembly. So let's all pitch
assembly out the window! No, we must not do that, because there is one
major drawback of c99...it tends to create "bulky" programs. If one were
to write a program that prints mailing labels in both languages and
compare, you would find that it probably took less time to write it in
c99. It probably also compares favorably to assembly in its speed. But
the size of the programs will be dramatically different...assembly is much
much more compact. This is very important to people like us who only have
48K of memory with which to work!

However, in all honesty, its not that bad. I have been able to write
functional, effective programs in c99 that just fit into 48K. You may not

be able to port Lotus 123 or dBASE III, but you can sling some mean code
if you stay on your toes. Fortunately, some very nice people have made
that job easier on us, namely Clint Pulley, Tom Wible, and Richard Roseen,
who have developed "optimizers." These doo-dads compress your program,
allowing them to €fit in a smaller space, therefore making more memory
available to you. Clint wrote the original c99 optimizer, and Tom and
Richard continue to enhance it. :

Speaking of enhancements, Clint Pulley seems very dedicated to his
project. He is constantly updating and upgrading his compiler to bring it
up to snuff with "the mainstream."” Although at the start c99 was more a
novelty than anything else, Clint has raised the power and versatility of
c99 to a level of commercial quality. As of this writing, I know of three
commercial programs soon to be available that are written in ¢99, and I
have no doubt that more is on the way.

[Editor's Note: Warren is well-qualified to write about c99. He is one of
the very first to write a commercial program using the language, "Total
Filer" from Asgard Software, P.O. Box 10306, Rockville, MD 20850.]

c99 Beginner's Tutorial #1
by Ron Albright
Compuserve ID 75166,2473

I have been exploring c99 for the TI of late. Written by Clint Pulley (38
Townsend Avenue, Burlington, Ontario, Canada L7T 1Y6) and available as
Fairware, the language is a full-featured version of "small c". I have found
few limitations with the language (lack of floating-point and math routines are
the major ones), and have been able to do some nice routines with the language.
Briefly, C is a very popular programming language through which, it has been
estimated, 70% of commercial software for other machines is written. So what
makes it different? It is a "compiled" language. That means, once you have
written your program in ¢99, you run a companion program called a compiler. The
compiler takes your C source code and generates assembly source code. The
resultant code can then be run through the TI Assembler to generate object
code, which executes just as fast as if you went through the strenuous (to me,
anyway) task of writing assembly source code to start with. C is much easier to
learn that Assembly language and is efficiently compiled with the c99 compiler.
I have seen some programs written with c99 alone (there are a few on
Compuserve; a simple text editor and a word-counter for TI Writer files by
Warren Agee, a program similar to the TI Writer formatter, and a graphics demo
by yours truly) and they are indistinguishable from pure assembly language,
because the end-product is just that. If there is any interest, I will address
the language more in depth in some more starter-level tutorials. I am no
expert,by any stretch of the imagination, but I am learning and plan to spend a
great deal of time with the language. It is a marvelous programming tool and,
hopefully, this simple file will help you get started. Learning a new lan e
isp:everyéasy, butm?t is time we allpagvanged beyond BASIC and gtarted wori?ig
in another environment. c99 provides a reasonable alternative. I could never
think in reverse, so I gave up on Forth; I am too dense to learn assembly
language. Pilot is too slow and requires too many disk accesses. Besides C is
used in so many other machines and for so many other applications, it has to be
good. Let's begin by seeing what we have to work with.

First, equipment-wise, you need the following: console, monitor, 32K
memory expansion, at least one disk drive and controller, the Editor/Assembler
package (cartridge or disk version) and, of course, the c99 system disk. A
printer is nice (see below) but is certainly not imperative for programming
purposes. Ideally, you would have two drives as this makes the work much
easier, as does having at least double-sided drives (but ain't that always the
case!). If you have double-sided drives, you can save yourself a lot of disk-
swapping by, first, of course, making a backup of the c99 system disk and,
secondly, copying from the Editor/Assembler disk, the files ASSMl, ASSM2 (the
files for assembling source code) and EDIT1 (for the E/A Editor) on to the c99
system disk. But, if you have a single-drive or single-sided system, don't
despair...things will work just fine with what you have.

Once you have gathered your tools, you should get a disk directory
printout of the c99 system disk. Pulley even provides a disk catalog program on
the system disk (called "SD" and running out of E/A 5 on my disk) but it
doesn't print to printer). You will notice that there are a long of files in
all shapes and "colors" (D/V 80, D/F 80, and PROGRAM files) and we will first
go over what is important and what is not. Some of the files you will be using
a lot, others seldom if at all, at least to start. Here are some of the files
3-4

you should have and what they are for. I will list them in order of importance
and probably frequency of use.

€99¢C,C99D,CI%E

These are the compiler files. They are the heart and soul of the c99
system. There are PROGRAM image files and are run from Editor/Assembler option
5. Unlike some PROGRAM image files, these CANNOT be run from option 3 of the TI
Writer module. In my brief experiment they could not be loaded from XB with the
FUN LOADER from Australia. The first thing I did with these files is rename
them to be UTILl, UTIL2, UTIL3. Then, when you chose the LOAD and RUN option
from E/A (option 5), you only have to hit "Enter" and the files will be
loaded by that name as a default without typing them in.

Csup

This file is very important. It is a D/F 80 (which always means it runs
from E/A option 3) which must be loaded immediately after you load you
completed, assembled program. We will discuss this more later, but suffice it
to say that your c99 program will never run if you don't load this file after
it and with it.

C99MAN1 ,CIIMAN2 ,CIIMAN3

These are the D/V 80 files that contain the documentation Clint
Pulley provides with the c99 system. They are not going to go very far in
teaching you how to program in c99. Like the manual TI provided with the TI
Forth system, they are simple a brief tutorial on how the different files work,
and what they do, what the error messages mean, ect. They are quite adequate
for their intended purposes. Pulley tells you up front "This manual assumes a
knowledge of standard C or the availability of a suitable reference." That
translates into "If you have never programmed in C, go buy a book!" I will
recommend a couple at the end of this piece. Far enough, Clint! If you have a
printer, print these files out for future reference. If not, find a friend who
does. You will need a hard-copy of these files.

C99ERRORS

This is a short D/V 80 file that contains a listing of the 30 or so
error messages that the compiler will embed in your compiled code when it
encounters one. It will only embed the error number. You will have to look in
this file to find out what the number means. Print this out also.

C99SPECS

A terribly important D/V 80 file. This short file tells you what c99
supports and, more importantly, what it does not support, when compared to
standard C. Why is this important? I have yet to find a book that addresses
only "small c", the version of C (more limited than "big C") that c99 is
modeled after. All the texts I am aware of cover the full C language. Small c
and c99 do not have all the functions of C. When you look at program listings
out of these texts, you will quickly become frustrated if you try to type
them in verbatim as they are already. Many program statements in C will

give you errors in c99. You have to study this file when typing in program
listings out of books to avoid these errors. For example, C supports
"floating-point" arithmetic; small c and c99 do not. There are other examples
covered in this file; print it out. You will need it.

GRF1DOCS

This is the documentation for the graphics routines supported by the
current version (1.32) of c99. Print it out.

ERRFIND1

This is a helpful file provided by Clint. It is a PROGRAM file to be
run out of E/A 5. Run this if you have run the c99 campiler on a source code
file and received the dreaded "!!ERRORS!!" message. What it will do is prompt
you for the compiled file's name (not the original source file!), read it in
very quickly showing the file on the screen as it reads it. You can stop to
read the file by holding down any key; releasing the key resumes the read.
Then, after it has read the file, it will flash the lines again on the screen
that contain the error message so you can (1) see where the error occurred and
(2) what the error message was. It is also nifty for reading ANY D/V 80 text
file. It's purpose, though, was to help in debugging.

There are several other files that are, for the most part, files to be
included in your c99 source codes as you use certain functions. We will go into
this in some depth later, but you will use an "#include dskl.filename" in your
source files to copy these files into your source codes. For example, if you
used some graphics commands in your source file to draw some sprites or such,
you would need to use "#include dskl.grflrefs" in your source code as a line
before you started using the graphics commands. Else, the compiler won't
understand what they mean and give you a multitude of errors. If you use
commands to access disk files, you would have to use "#include dskl.stdio" (for
"standard input and output") before you started opening and reading from disk
files. Notice the use of lower case in these #include statements. The compiler
can use lower case, unlike the E/A Assembler which only accepts upper-case.
Just keep the list of the other files as they will be used as you start to type
in programs.

How does one enter programs with c99? You can do it two ways. You can
use TI Writer, but always use "PF" to disk rather than "SF" and throw in the "C
DSKx.filename" syntax to clean all the control characters out. Or, preferably,
you can-use the Editor of Editor/Assembler. We won't do a program this time, as
you have enough to do for now.

What about recommended books? I strongly recommend "C PRIMER PLUS" by
Waite, Prata and Martin (Sam's Publishing, 1984). It is 500 pages and costs
about $22. It is the "Going Forth" (Brodie) for C. It is easy to read, starts
at a beginner's level and is chock full of example programs. Some usable with
out dialect of small c, same not (at least without some conversions). I went
though two other books on C before I found this tome. It is the best I have
seen. If you know C, the bible (but much too advanced for me) is "THE C
PROGRAMMING LANGUAGE" by Kernighan and Ritchie (Prentice-Hall, 1978). I found a
back issue of Byte magazine also useful. The August, 1983 issue is devoted to C
and contains some very nice articles and tutorials. You can still get a copy of
this from Byte.

3-6

c99 Beginner's Tutorial #2
by Ron Albright
Compuserve ID 75166,2473

-Last time we touched on what c99 is, and what files come on the disk and
what some of the more important ones do. This time, we'll actually do some
code. As we progress, we will stress some sort of style in how we enter
programs. I am no expert on style (or c99, for that matter), but since c99 is
so free-form and has no line numbers to follow, it can be very difficult to
read programs if you don't follow some rules. These rules are not universally
agreed upon, but we'll try to develop same sort of easy to read style of our
own. I will make a few assumptions to start. First, I will assume you have a
single-drive system with only single-sided capability. Second, I will assume
that you have a basic understanding of the Editor/Assembler package, i.e. you
¥now how to use the Editor, and run programs out of either option 3 or option
5. I will, further, assume, that you have assembled at least one source code
file with E/A. If these assumptions are incorrect, let me know and we'll touch
on the BEditor/Assembler more next time. Let's get started.

Take a clean disk and copy the following c99 files onto it:

CSUP D/F 80 12 Sectors
PRINTF D/F 80 14 Sectors
UTIL1 PROGRAM 33 Sectors
UTIL2 PROGRAM 33 Sectors
UTIL3 PROGRAM 29 Sectors

Next, from the Editor/Assembler disk, copy these files to the same disk:

ASSM1 PROGRAM 33 Sectors
ASSM2 PROGRAM 20 Sectors
EDIT1 PROGRAM 25 Sectors

If my addition is correct, that gives us 199 sectors on our work disk. Now
we are ready to proceed. Keep our work disk in the drive and insert the
Bditor/Assembler cartridge. From the menu, load the Editor and go into the Edit
mode.

Type in this program.
/* c99 The smallest c99 program */
main() /* a comment */

{
/* we aren't going to do anything! */

Congratulations! You have just entered your first, valid c99 program.
Let's look at it. The first line is nothing more than a "REM" statement.
Instead of REM, c99 recognizes anything enclosed within "/* */" as a comment
and ignores it when compiling. You can put anything between these comment
delimiters, and it will survive compiling without error. Use them frequently as

you program. As we mentioned, c99 programs are difficult to read at best and
REM statements are useful to remind yourself, as well as other reading the
program, what you had in mind. As shown on the next program line, the can also
be used on the same line as compilable code, so comment each step of your code
for clarity. A routine called "main" is required somewhere in each and every
c99 program. Typically, it is the first block of code, sets things up, and
calls the other routine(s) to take over. When the compiler sees "main()" (or
anything with the "()" after it - like "first()", "setup()" - it labels this as
a function; a subroutine in Extended Basic. A string of functions make up a
program. They are just like you were using "SUB routine" in XB. It is run when
its name ("main", "first", "setup") is "called". The "main" routine is run
whether it is called or not (guess that is why they call it "main").) is
called. More on this later. But, for now, thing of c99 as simply a series of
"calls" to blocks of modular code called functions and a function is labeled
with "name()".

Each function is enclosed with a pair of braces - it starts with an open
brace ({) and ends with a closed brace (}). This tells the compiler where
this block of code starts and ends. Everything within those braces is part of
that function. In our first program, the only thing in the main function is a
"REM" statement, so it will "do" nothing. But it is compilable. A function may
include a call for another function. Look at this:

main()

doit();
}

/* doit doesn't do anything! */

doit()

{

/* see! Nothing here to do! */
}

This time, main calls up the second function, "doit" which, also, doesn't
do anything. But you can see how programs are built. Typically (but not
necessarily) the main function will include all the calls to the functions that
make up a whole c99 program. Its like having an XB program that is nothing more
than a series of "GOSUB"s (really, a series of "CALL SUB routines). Each
function call doing its task and returning control back to the main, or
controlling program. The good c99 program will break large programs into
smaller ones and write a function for each. If a function can stand alone (has
nothing in it unique to a single program) the programmer eventually develops a
"toolbox" of useful small routines (functions) that can be combined in
different ways to solve problems. That is just one of the beauties of c99.

So, let's compile this program. After typing it in, hit FCIN 9 twice, get
the EDITOR menu and elect to save it to disk. Your main work disk should have
plenty of room, so no disk swapping. After saving to disk 1, hit FCIN 9 again,
and get the main E/A menu. Chose Option 5 to "RUN PROGRAM FILE". The three
compiler files, which I have renamed UTIL1l, UTIL2, UTIL3, run out of option 5,
not option 3 (which runs D/F80 files). When you are prompted for "Program
Name:", since you have changed the name of your compiler files to UTIL1-3, you

3-8

only have to hit enter. The default name for E/A 5 is UTILl and those files
will then be loaded automatically (now you see why I renamed them). You will
then be prompted by the c99 compiler (prompts will vary depending on which
version of c99 you use) for a input file name. Type "DSKl.filename" (filename
being generic for whatever you called the file you typed in and saved to disk).
You will then be prompted for an output file name. Call it "filename/C", just
to remind yourself that is a compiled file. Then, hit enter and you are off and
running. The compiler will flash each function name on the screen as it is
compiled to show you where you are in the program. You should see only "main"
if you are compiling the first program, and "main", then "doit" if you are
compiling the second routine. If an error is encountered, you will be told. But
we'll assume you typed these short routines in without error for now. It
shouldn't take long and you are told to press enter to continue after the
compiler is finished.

Now what? If you catalog your disk now, you should see the initial source
code file you typed in and saved, and now a second file called "filename/C".
Both should be D/V80. You have one more step to do before you can run the
program. What the compiler produced was assembly language source code. Like all
source code, it has to be assembled. Get to the main E/A menu and choose Option
2, Assemble. When asked to "Load Assembler?", hit "Y", and since we put the E/A
assembler files on disk 1 (ASSMl and ASSM2) they should load right in without
swapping disks. You are then prompted for the "Source File Name". Type in
"DSK1l.filename/C" (NOT the program you typed in and saved, but the compiler's
output filename). For an "Output File Name", I use "DSKl.filename/O" to let me
know this is object code. Then hit enter for each of the next two assembler
prompts ("List File Name" and "Options"). The assembler should start right up
and finish with the assembly process. Now, catalog you disk again. You should
see a third file added now - "filename/O". This time, it is not D/V80, but
D/F80. Assembly language OBJECT code. You have produced an assembly language
program. How do you run this "do nothing" program you have written? Go back to
the main E/A menu again. Choose Option 3 fram the menu. When asked for "File
Name", type in "DSKl.filename/O". Then hit enter. You get the same prompt again
("File Name:"). This time, type "DSK1.CSUP". This "c99 Support" file MUST be
loaded after you load ANY c99 program. Hit enter. When you get the prompt for
the third filename, just hit enter this time. When asked for the "Program
Name", type in "START". All c99 programs run with the program name start. Your
do nothing, super-duper assembly language program should now "run". You then
immediately get the "hit enter to continue" message and you have finished.

Well, how does it feel to have generated a assembly language program just
like the "big boys"? Next time, we will do something with a little more
substance. We will create a simple menu, which will demonstrate keyboard input
and the "printf", "puts”, and "getchar" functions. But, for now, I just wanted
to go through the mechanics of running the c99 system. Till the next tutorial,
get a C book, read the "manual that comes with c99 itself, send for the new
version 2.0 of the compiler, and if you haven't paid Clint do so.

c99 Beginner's Tutorial #3
by Ron Albright
Compuserve ID 75166,2473

-When I started to learn BASIC (and later, Extended Basic), I remember how
I did it. I first typed in other programs from magazines and books. Then I
started to do my own programs. And the first type of commands I used were the
graphics commands. I sure didn't jump in with file handling or string
manipulation! Anyway, I found myself doing the same thing with ¢99. I typed in
some programs out of a book, then started playing with my own routines with
graphics. Then I tackled a game. I have though all long that is you can learn
the logic involved in a game, you have learned a great deal about the

programming structure of a particular language.

In this tutorial, we will try to accomplish a couple of things. First, a
glimpse at some of the graphics commands available to c99 in the "grflrf"
library (that comes with all version 1.32 or higher), and, secondly, a look at
how to convert a short BASIC graphics display to c¢99. It really isn't that
hard.

Listing 1, below, is a short BASIC program from Ed York that has appeared
in several UG newsletters. It is a colorful graphics display. Listing 2 is a
conversion of the program to c99, done by me. They both accomplish the same
thing graphically. I have commented the c99 source code to try and explain step-
by-step what we did. I think as you look at the programs, you will see how
similar both the graphics commands and the logic is between c99 and BASIC. It
is, to me, much closer to BASIC than Forth was. See if you agree.

Listing 1

100 REM COLOR BONANZA

110 REM WRITTEN BY:

120 REM ED YORK

130 CALL CLEAR

140 FOR A=40 TO 136 STEP 8

150 CALL CHAR(A,"S55AA55AA55AA55AA")
160 NEXT A :
170 FOR B=2 TO 14

180 CALL COLOR(B,1,1)

190 CALL VCHAR(1,2*B,24+8*B,22)
200 CALL VCHAR(1,2*B+l,24+8*B,22)
210 NEXT B

220 FOR C=2 TO 14

230 CALL SCREEN(INT(16*RND)+1)
240 FOR D=2 TO 14

250 CALL OOLOR(D,D,C)

260 NEXT D

270 CALL KEY(0,E,F)

280 IF F<1 THEN 270

290 NEXT C

300 GOTO 220

Listing 2

/* COLOR BONANZA This and the next 2 lines are REM's (line 100) */
/* WRITTEN BY: (110) */
/* ED YORK (120) */

#include dskl.grflrf /* required to use the graphics commands */
#include dskl.random;c /* required to use the random number commands */

xiain()
int a,b; /* MUST declare ALL variables used in a routine at start */
grfl(); /* MUST be used as first command for graphics library use */
clear(); /* Same as CALL CLEAR (130) */
randomize();/* Same as RANDOMIZE in BASIC */
for(a=40;a<=136;a=a+8) /* Lines 140 and 160 ALL IN ONE STATEMENT! */
chrdef(a, "55aa55aa55aa55aa"); /* CALL CHAR in line 150 */

for(b=2;b<=14;b++) /* Another FOR-NEXT loop -lines 170 and 210 in one */
{ /* Multiple lines in for loops need to be braced */
ocolor(b,1,1); /* Same as CALL COLOR - line 180 */
vchar (1,2*b,24+8%b,22); /* Just a plain old CALL VCHAR! line 190 */
vchar(1,2*b+1,24+8*b,22); /* line 200 */
/* Closed braces after FOR LOOP */
fun(); /* Gets a little tricky here. Since there was a
"GOTO" statement in line 300, I decided to make
a new routine starting at where the GOTO directs
the BASIC program - line 220. That way, I can call
the second function from itself, in essence,
creating a "GOTO". See below. Anyway, that is why
I started a new function called "FUN()". I call it
from the Main() routine here by just calling the
name of the routine. Its just like I said GOSUB
or, in XB, had created a user-defined SUB FUN and,
here, said CALL SUB FUN. */

fun() /* Start of a new function */
{ /* All functions start with an open brace */
int c,d; /* Declare these variables at the start!!! *
for(c=2;c<=l4;c++) /* start of another FOR loop-lines 220,290 in one! */
/* multiple lines after a FOR need to be braced! */
screen(rnd(16)+1); /* CALL SCREEN in line 230 */
for(@=1;d<=14;3+) /* Start of a nested FOR LOOP - line 240 */
color(d,d,c); /* CALL OOLOR in line 250 */
getchar(); /* Just waits for a key to be pressed - lines 270,280 */
} /* Close that brace for the FOR loop */
fun(); /* See that GOTO 220 in the BASIC program? This is the
same thing - it just keeps calling "fun()" which is
nothing more than the program starting at line 220.
so, by separating the lines where the GOTO starts
into a separate routine, we can now call it over and
every time we would be using the GOTO in Basic. */

} /* Close braces for fun() routine */

Notes:

[1] Compile the program with the Compiler. You must have version 2.0 of the
Campiler to use the "FOR" statements. Make sure the D/V 80 file "RANDOM;C" and
"GRFIRF" is on disk 1. The assemble the output file. Then, load the assembler
output (which should be a D/F 80 file), then from E/A option 3 still load the
file "CSUP" (another D/F 80 file) and "GRF1" a third D/F 80 file. Then hit
enter and use the program name “START". It should run.

[2] The only complicated move was separating lines 220 through line 300 into
the separate function "fun()". This was done because line 300 in the BASIC
program is a GOTO 220. Since there is not GOTO function in c99, we separate out
those lines and use recursion in "fun()". Recursion simply means a routine
calls itself over and over, just like a GOTO. I hope you can follow this.

[3] We could have used a function similar to CALL KEY(0,E,F) as in line 270.
But, by using "getchar()" we accomplish the same thing in one line. Getchar
waits for a keypress automatically without testing for "status".

[4] FOR-NEXT loops in c99 are three parts. Just as

240 FOR D=2 TO 14
250 CALL COLOR(D,D,C)
260 NEXT D

accomplishes three things (set D=2, then CALL COLOR(D,D,C), then increment D by
one, then loop), the FOR loop in ¢99 does it all on one line. We say

for(d=1;d<=14;d++);

d is set to a, then tested to see if it is less than or equal to 14. The
color(d,d,c) is executed as log as d<=14. As each color() function is executed,
d is incremented by one by the "d++" statement. All things are done with one
statement. Also remember that is there are multiple commands after a FOR
statement in c99, they must be set off between a pair of braces. If a single
statement, as we have here, they can be used without the braces.

[5] If you don't have version 2.0 of the Compiler and, thus, can't use "FOR"
loops, you can try this: use a "while()" function. For example, instead of

for(d=1;d<=14;d++)

color(d,d,c);
use this:
é&1; /* Step 1 in a loop: set d=1 */

while(d<=14) /* Step 2 : test for d<=14 */
{
color(d,d,c);
d+; /* Step 3 : increment d by 1 */

It will accomplish the same thing. This is only needed if you have version 1.32
on NOT version 2.0.

c99 Tutorial 1
by Warren Agee
Compuserve ID 70277,2063

This is my *first* utility word for C. I am NOT an experienced C
programmer...I have had 2 days experience with C. So, this may not be the best
way to do it, but it DOES work!!

This file contains the C source code for the definition of a new function,
seg(), and a test program to demonstrate its use. seg() corresponds roughly to
SEGS in BASIC. It will take a chunk of one string and place it in another
string variable. Both strings must be variables. You provide the variable which
contains the string to take apart, the variable where you want the new string,
and the starting and ending positions of where you want the chunk taken out. If
strl contains "APPLE PIE" and you wanted str2 to contain "APPLE", simply use:
seg(strl,str2,0,4). Everything starts with zero, not one. So the first
character is 0, the second is one, etc. seg() returns the new chunk in str2.
str2 should be an "empty" variable. This may not make sense yet, but I have
commented this listing thoroughly.

Run the compiler on this program, then assemble it, then run it (option 3
of E/A). Load the assembled program first, then the CSUP file which resides on
the c99 disk. Program name is then START. Not exciting, BUT IT WORKS!!

/* C TEST PROGRAM */
/* Warren Agee 10/26/85 */
/* written with c99, by */
/* Clint Pulley *x/
/* 38 Townsend Ave. */
/* Burlington, Ontario */
/* Canada L7T 1Y6 */

/* Freeware: $20 donation requested */
/* Test of the seg() function */

#include dskl.conio
int pl,p2,c; /* integers */
char strl[81],str2[81]; /* strings, 8l chars long */

1;ain()
pl=0; p2=4; /* take a segment of the string */
/* from position 0 to position 4 */
(12); /* clear screen */
locate(3,1);
puts("Please enter string:\n");
o=gets(strl); /* input string into strl */
seg(strl,str2,pl,p2); /* NBEW FUNCTION! */
pats("The new string is:\n\n");
puts(str2); /* str2 holds the new, segmented string */

/* Function to segment a string (SEG$ in BASIC) */

/* seg(strl,str2,charl,char2) */
/* strl=string to take apart */
/* str2=segment of strl that is returned */
/* pl,2" = beggining & ending position of string */
/* positions start at zero!!! */

/* after call seg(), the new string is contained */
/* in str2; the original string is not altered. */

seg(strl,str2,pl,p2) /* start of function */

int pl,p2; /* tells the compiler what pl,p2,strl,str2 are */

char strl[8l1],str2[81]; /* these were DEFINED in the main program, but */

{ /* you have to DECLARE them again, here. */
int index,lim; /* These are variables internal to the function; */
index=0; /* They do not relate to anything outside of this */
linep2-pl; /* function. ie. they are not global. */

while(index <= lim)

{
}strz[i.ndex++ J=strl[pl++];

str2T ++index]=NULL;

IR

Some Easy Learning
““C** Tutorials by Warren Agee
and more. 3-14

Suppose that we want to pass one or more values to a function. Look at
this:

add(nl,n2)

int nl,n2;

{
int sum;
sum=nl+n2;
return(sum) ;

}

The first line tells the compiler to expect 2 values in the parenthesis
when this function is called. We give these two values the names nl and n2.
when one calls this function, two numbers may appear in parentheses [like
add(1,2)] or two variables [like add(a,b)]. The next line is a variable
declaration, which was described in the first tutorial, but the purpose here is
a little different. The function add() receives two values; now the compiler
has to know what KIND (class) of values they are. Since we are passing numbers,
we declare them as integers. also notice ‘that this must come *before* the
opening brace. We then declare another variable, sum, to hold the sum of the
two integers. We perform the addition just as one would do in BASIC. The next
line is very important.

when this function is called, we give it two numbers, and we want back the
sum, right? Since the variable "sum" is local to add(), once we return to the
calling program, the value of sum is lost. "Sum" only exists in add() and
nowhere else. What we have to do is artificially send the value of "sum" back
to the calling program, and we do this with the return statement, as shown
above. Now, when we call add(), we will get back the value of sum, like this:

x;m‘.n()
int c;
c=add(5,2);
}

The expression "add(5,2)" is replaced by the answer, and we assign that
value to c. If we just wrote "add(5,2)" and did not assign it to anything, the
sum would just be discarded.

But why do all this? We could just declare "sum" as an external variable
in main(). That way "sum" would retain it's value throughout the entire
program. In very large programs, you can run into difficulties if you use only
external variables. Stick to local (automatic) variables whenever possible.

Well, there you have it! There is a lot more to cover as far as functions
go. The return statement only returns ONE value, no more. If you need more than
one value back fram the function, you have to use pointers. Pointers can be
quite sticky and confusing to beginners, so I will be spending quite some time
on them in the next few tutorials. So stay tuned, and experiment! It's the only
way to learn! (Well, reading my tutorials may help a bit!)

c99 Tutorial 2
“"How To Function Properly"
By Warren Agee
Compuserve ID 70277,2063

In my first tutorial, I covered storage classes, something necessary to know
before you even start programming in C. Functions are another basic concept
which must be grasped before writing C programs. Simply put, a function is a
subroutine designed to perform a specified task. In same cases, values are
passed to and from functions, while other functions require no communication.
Numerous functions are part of the standard C library, like gets() and puts(),
which allows input and output of strings, respectively. Others, like fopen(),
are kept in function libraries and stored on disk. And,of course, you may write
your own functions. Indeed, the process of writing a C program involves writing
user-defined functions, then putting all these functions together into a
runnable program.

So, where do we begin? First of all, naming conventions. Although a function
may have a name of any length, the c99 compiler only recognizes the first six
characters, and they may be only alphabetic. Unlike most other compilers, the
underscore (_) is not allowed. Secondly, what distinguishes a function name
from a variable is the presence of parentheses. Depending on the purpose of the
function, the parentheses may be empty, like getchar(). If the function
requires values to be passed to it, these are placed inside the parentheses, as
in puts("\nHello there!") . Now that the cosmetics are out of the way, let's
get down to creating a function.

As I mentioned in the last tutorial, to call a function, merely type in its
name, followed by a semicolon. To alert the campiler that you are creating a
function, omit the semicolon.

{clr()
int c;
patchar(12);

Here we define function called clr(). Note the missing semicolon. Also
note that since the parentheses are empty, we are not going to commnicate any
values to the function. Next we have an opening brace, which signals the
beginning of the function body. Note that the brace aligns with the first
letter in the function name above; this is a standard C convention to make
programs easier to read. Then we indent a few spaces, another convention. We
then define the integer variable "c." Because this statement occurs inside the
function body, it is local to that function (See Tutorial #1 for more info).
The next statement is a standard console i/o function which prints a character
to the screen whose ASCII value is in parentheses. In this case, putchar(12)
simply clears the screen. We then find a closing brace which ends the function.
Notice that the two braces line up.

c99 Tutorial 3
"How To Create a Function Library in c99"
By Warren Agee
Compuserve ID 70277,2063

Function libraries are simply collections of tested functions (or
subroutines) which reside in separate files from the main program. This helps
the programmer to avoid reinventing the wheel each time he writes a program.
There are basically two code. The difference is that with source code the
compiler has to process the code every single time you compile, while an object-
code library is only compiled once.

Creating a function library using source code is the easiest of the two
methods. Say you create a function strlen() which returns the length of a
string. You could just type in the function's definition each time you need it,
but a simpler way is to save the source code for the function in a separate
file. If the strlen function is ever needed in a program, merely insert the
following line at the start of your code:

#include "dskn.xooxx"

where n is the drive no. of where the file sits, and xxxx is the name of the
file which contains the source code. The compiler will load in and compile the
source code as if it were typed directly into the main program. The #include
command works just like .IF (include file) of TI WRITER.

Creating a function library using object code is a bit more involved. You
start out the same as before, with the source code of the function in question
as a separate file. But, as in the case with strlen(), you also need the
following three lines at the beginning of the file:

#asm
DEF STRLEN
#endasm

The actual definition for strlen() would follow these lines. The first
line tells the compiler that the following code is not in C but in assembler.
The second line tells the computer to make the STRLEN code available to another
program. Even though it is defined in this program, a totally separate program
(main) will also have access to it. Note 1) the leading space before DEF (that
is important) and 2) the function name is in capital letters. The third line
tells the compiler that the assembler code ends and C code begins again.

The DEF directive can be used to externally define many, many functions at
once; just separate each function name with a comma.

Now compile and assemble your "mini-file" which contains just one
function. You now have a standalone function library consisting of the
strlen() function that can be used in ANY program. But how do you go about
linking it to your main program?

The next thing to do is add three more lines to the start of your main
program:

#asm
"REF STRLEN
#endasm

Looks familiar! But instead of defining an external function, we are
REFerencing one. This tells the computer that even though the main program will
use the function STRLEN, it must look OUTSIDE the current program for its
definition. Please note that you can REFerence more than one function as with
the DEF directive. If you look at the STDIO file on the c99 disk, you'll note
that it contains mostly REF's!

When your program is compiled and assembled, be sure to load in the STRLEN
file that you already compiled before you run your program. Under E/A option 3,
first load your main program, then CSUP, then any other required files, then
your STRLEN file. Now you're all set to go!

The theory behind this is not that hard to grasp: instead of including the
definition of strlen() within the main program, we compiled it separately as a
standalone module. But without the REFs and DEFs, there would be no
communication between the program module and the strlen() module. This
momentary slip into assembly language allows us the opportunity to open a line
of commmnication between separately compiled modules.

c99 Source Code - Tutorial 4

by Warren Agee
Compuserve ID 70277,2063

/* NEW FUNCTIONS: getint() and stoi() */
/* The following is a short demo program */
/* demonstrating the use of getint() to */
/* directly input an integer, and stoi() */
/* which converts a String TO Integer, */
/* similar to atoi(); stoi returns a */
/* status flag, which atoi() does not. */
/* Various version of both functions */
/* exist in the public domain, these */
/* have been adapted for c99 by Warren */

/* Bgee. */
/* To run: Compile the entire file, making */
/* sure OONV;C is in drive one. */

/* When done compiling & assembling, Load */

/* & Run first the object code of this file */
/* and then the CSUP file. Program name: START */
/* The demo routine may be deleted and *x/
/* getint & stoi */

/* can be saved as a function library. Dont */
/* delete the #defines...they are needed */

/* in both functions. */

/* getint() demo */

#include dskl.conv;c
$define STOP -1
#define NO 1
#define YES 0
#define EOF -1
r?ain()
int num,stat;
char string[8l];
puts("This reads in integers until it detects\n");
puts("a CIRL-Z.\n");
while((stat=getint (&num)) !=STOP)
if (stat==YES) {
itod(num,string,5);
puts(string);
} puts(" is the number accepted.\n");
else .
puts("That was no integer...try again!!\n");
puts("We're finished!\n");

/* getint() */
/* format: status=getint(&num) */
/* status contains: */
/* -1 : BEOF was found */
/* 1 : error (no #s) */
/* 0 : successful input */

getint (ptrint)
int *ptrint;

char buffer([8l];
int index,ch;
index=0;

while((chﬂetchar())='\n'|ch=' ')
; /* do-nothing */
while(ch!=EOF & ch!='\n' & ch!=' ' & indéx<8l)

{
buffer[index++]=ch;
?hwetchar()

buffer[index]=0;
if (ch==EOF)
return(STOP) ;
else
} return(stoi(buffer,ptrint));

/* stoi(string,intptr) - */
/* converts string to integer (intptr) */
/* and returns status report. */

stoi(string,intptr)
char string[];
int *intptr;
{
int sign; sign=l;
int index; index=0;

if (string[index]="-'|string[index]="+") {

if (string[index++]="~")
sigre= -1;

else
sigr= 1;

}
*intptr=0;
while(string[index]>='0' & string[index]<='9')
intptr=10 (*intptr)+string[index++]-'0"';
ifgstring[index]=0)
intptr=sign(*intptr);
ret}:urn(YES);
else
return(NO);

¢c99 Sourcecode ~ Tutorial 5
by Warren Agee
Compuserve ID 70277,2063

/* DRIVER for string routines */
" /* This program expects the conv;c file from the c99 disk */

/* and the STRING.C file in drive 2.

/* The STRING.C file should be renamed "string" as per

/* the #include directives below.

#include dsk2.conv;c

#include dsk2.string

char bigstring[80],smallstring[80];
char answeri-g?;

main()

{

int c,a;

puts("Simple test of match and strlen\n\n");
puts("Remember that all #s start at\n");

puts("Zero! !\n\n");
puts("Enter large (target) string:");
c=gets(bigstring);

puts(™\n\nEnter small (search) string:");

c=gets(smallstring);

a=strlen(bigstring);

itod(a,answer,3);

puts("\nLength of first string is:");
puts(answer) ;

a=strlen(smallstring);
itod(a,answer,3);

puts("\nLength of second string is:");
puts(answer) ;

a=match(smallstring,bigstring);
itod(a,answer,3);

puts("\n\nThe match occurs at");
puts("character #:");
puts(answer) ;

*/
*/
*/

c99 Tutorial 6
"Pointers" -~ Part I
By Warren Agee
Compuserve ID 70277,2063

, Of all the aspects of the C language, pointers are the hardest for the
beginner to grasp. However, once mastered, one will find that pointers are what
makes C a powerful language.

Simply put, a pointer is an address, or memory location. When one declares
a variable (like int c;), that variable resides somewhere in memory. A pointer
to the variable "c" is the address where "c" lives. This is advantageous if we
want to change a variable that is local to another function. Using pointers
gives us a way to get through the barrier of being local to another function.
Think of it as going through the basement to get the contents of a variable. So
how do we do this?

int c;
int *ptr;

The first line just declares a normal int variable. The second line
declares a *pointer* variable named "ptr." Pointer variables are preceeded with
an asterisk. Now, the first line tells the compiler that we have an integer-
type variable, and it's name is "c." The second line says that, first of all,
we have a pointer variable. Its name is "ptr." In addition, ptr is gomg to
point to an integer-type variable—that's what the purpose of the int in the
second line. Right now, ptr does not point to anything at all. We have merely
created a variable, and have told the compiler what kind of variable it will
point to. Similarly, char *goose; declares a pointer variable called goose
which will point to a char-type variable. Think of it this way: a pointer
variable's purpose is to "look" at other variables. But you have to tell it
what it is looking at...an integer or a char-type variable.

Now, if we want ptr to poin; to "c", we do this:

ptr=&c;

Notice that the asterisk is gone. The asterisk has two purposes, one of
which is to DECLARE a pointer variable. The other purpose will come later. The
"&" can be pronounced "the address of." So "&c" means the address of c. This
statement assigns the address of c to ptr. If we now do c=5, what will ptr
contain?? The same thing. ptr holds the location of the variable c. No matter
what c contains, the location of c will not change. Variables cannot move
around in memory. Ptr just contains a number, perhaps 15000, just a memory
location. To tell ptr to loock somewhere else, say the variable x, all you need
do is ptr=&x.

Now is the time to make an important distinction:
int *ptr; /* ptr is a pointer variable */
ptr=&c; /* & is a pointer constant */

You can change the contents of a pointer variable. You cannot change a
pointer constant—it is a number! Just like you can say x=3 but you cannot say
3=x. This may seem obvious, but this can get confusing later on. Just remember
the difference between a pointer variable and a pointer constant. The first is
a variable, the second is a number. A pointer variable contains a pointer
constant, but you can use constants in other places as well. More on that some
other time!!

Now that we know how to declare a pointer variable and assign it, what do
we dowith it??. Well, look at the following:

c=5;
*ptr=5;

The first line is obvious; it assigns c the value of 5. But what does the
second line do?? The same thing!! Here we are using a technique called
"indirection," or, as I like to call it, going through the basement. ptr
contains the address, or location of c. If you were to print the contents of
ptr, you would have some large number. But once we put the asterisk in front of
it, we are saying "look at ptr's address, and access what is sitting there." In
this case, we are saying, "Ptr, you are looking at a variable. Put the 5
there." You are making two jumps at once...the compiler looks at the address in
ptr, then jumps to that address and see what's there. Similarly, if we want to
know the value at c, we can do this:

int 4;
G=*ptr;

Get the address out of ptr, hop over, get the value sitting there, and
assignit to 4. We are accessing the variable c INDIRECTLY, by using it's
address.

This seems like an awfully silly way to do things!! Why all this hanky-
panky with pointers and go DIRECTLY to the variable in question? Look at this:

int *ptr; /* declares an external pointer to an int */
x?ain()

int answer; /* automatic (local) integer */

ptr=sanswer; /* ptr now points to answer */
add(5,2); /* calls add() */

}
add(nl,n2) /* n1=5, n2=2 */
int nl,n2; /* declares the above as integers */
{
\ *ptr=nl+n2;

This itsy-bitsy program combines several things I have covered before.
Take a good look at the pointer used. First of all, we only have one external
variable here: ptr. If we were to move ptr inside main(), that would make it
unavailable to add(). So we declare it as external. Then we declare answer to
be an int. Now, using the address operator (&), assign the address of answer to
ptr. Now that we have done this, we can access answer anywhere in the program.

Then we call the add() function. Once inside, we add the two numbers together,
and, using the indirection operator (*), we tell the compiler, "Here is this
sum. Go to the address contained in ptr, and deposit this sum there." When we
exit this function and go back to main(), where does the sum end up? Why in
answer, of course! Ptr contained the address of "answer." In fact, you can
think of the compiler as a mailman. He looks inside ptr, gets the address, and
delivers sum to the mailbox it found at that address...in this case, that
mailbox is the variable "answer."

Note that in the above example, we used ptr to point to only one variable.
we want several answers, and we want to keep them in separate
variables? All you need do is change the contents of ptr to point to whatever
variable you want, like this:

ptr=&answerl;
(eeo) /* calculate answer */

ptr=&answer?;
(o0)
ptr=&answer3;
(LY oetc-)
Just by changing the contents of ptr, you can point to any variable you want.
The above examples are trivial. From the last article, you learned how to
easily return a value back to the calling function using the return()
statement. But return() only gives back one value. By using pointers, you can
alter as many values as you want. For instance, supposed you want to swap the
contents of two values. This would be done like this:
r?ain()

int x,y;

x=2;

y=19;

} switch(&x,&y);

switch(nl,n2)
int *nl,*n2;

{
int temp;
temp=*nl;
ml=*n2;

’
*n2=temp;

X and y and local variables. Using normal means, we cannot change the
values of x and y outside of main(). So, instead of giving add() just the 2
variable on a platter, we give them the addresses. In this way, add() can go

3-24

through the basement and change the contents of x and y. So, in order to
inform switch() that it is getting addresses (or pointer constants), we declare
nl and n2 to be pointer variables. Only pointer variables can contain
addresses. nl and n2 now hold the addresses of x & y. We create a "temp"orary
variable, and we do the switch. Since nl and n2 are pointer variables, to get
at the actual values, we use indirection (*). If we had just nl-n2 instead of
*nl=*n2, all we would be switching are addresses, but not the contents of the
addresses. Just a pointer variable by itself holds an address. But with an
asterisk, we access the value contained at that address.

The main thing to remember here is that you can pass values to functions
easily. But in order to CHANGE the value of an outside variable, you must use
pointers.

Wow!! Confusing, isn't it?! I suggest you reread this tutorial many times.
Buy a book on C (a good one) and read all you can about pointers. I've tried to
make things a bit clearer by using "ordinary" language (like "through the
basement"). When fiddling with numbers and pointers, you will run into
difficulty seeing your results because c99 does not have printf(), which allows
the output of numbers. In our case, we must first convert the number into a
string, then print out the string. This is done with the file called CONV;C on
the release disk. Please refer to the file called CONVT.C in this DL for a
little tutorial on how to use the OONV;C function to print out numbers. Next
time, I'll cover char arrays and strings, and, eventually, the biggie, string
arrays.

c99 Programmmer's Reference Sheet
Compiled by Herman Geschwind
Compuserve ID 73557,3447

Command/Function Description Include File
c=getchar(); Read one character from the keyboard CSUP
c-putchar(c); Write one character to the screen CSUP
c—gets(buff); Read a line from the keyboard CSuP
puts(string); Write a string to the screen CSuP
exit(c); Exit the program CSUP
abort(c); Exit the program Csup
locate(row,col); Locate the cursor on the screen Csup
key-poll(c); Check keyboard status CSUP
tscrn(f,b); Change screen color CSUP
unit-fopen(name,mode); Open a file stdio CFIO
c-fclose(unit); Close a file stdio CFIO
c—getc(unit); Read one character from a file stdio CFIO
c-putc(c,unit); Write one character to a file stdio CFIO
c-fgets(buff,col,unit); Read a string from a file stdio CFIO
c-fputs(string,unit); Write a string to a file stdio CFIO
c-fread(buff,len,unit); Read a record from a file Stdio CFIO
c-fwrite(buff,len,unit);Write a record to a file stdio CFIO
fseek(unit,recno); Set record number stdio CFIO
fdelete(filename); Delete a file stdio CFIO
c-feof (unit); Test for end-of file stdio CFIO
c-ferrc(unit); Get error code stdio CFIO
rewind(unit); Rewind a file stdio CFIO
grfl(); Set to graphics 1 mode grflrf GRFl
text(); Set to text mode grflrf GRF1l

Command/Description Function

Include File

screen(c); Set screen color to ¢ grflrf GRF1l
color(cs,f,b,); Change colors for char set cs to f£/b grflrf GRFl
chrdef (ch,str); Define character patterns grflrf GRF1
chrset(); Load standard character patterns grflrf GRF1l
patcpy(&,b); Copy character pattern grflrf GRF1l
clear(); Clear the screen grflrf GRF1l
hchar(r,c,ch,n); Place character n times horizontally grflrf GRFl
vchar(r,c,ch,n); Place character n times vertically grflrf GRFl
c—gchar(r,c); Return value of character at r ¢ grflrf GRFl
s-joyst(u,&&x,&&y); Read joystick u grflrf GRF1l
c-key(u,&&s); Read keyboard u grflrf GRF1l
sprite(spn,ch,col,dr,dc)Define sprite grflrf GRFl
spdel(spn); Delete sprite grflrf GRF1l
spdall(); Delete all sprites grflrf GRF1l
spcolr(spn,col); Set sprite color grflrf GRF1
sppat(spn,ch); Set sprite pattern grflrf GRF1l
sploct(spn,dr,dc); Set sprite location grflrf GRF1l
spmag(£f); Set sprite magnification grflrf GRFl
spmotn(spn,xrv,cv); Set sprite velocity grflrf GRF1l
pmct(n); Enable sprite automotion grflrf GRF1l
spposn(spn, &&rp,&&cp); Return sprite position grflrf GRFl
dsg-spdist(spnl,spn2); Return distance between sprites grflrf GRF1
dsg-spdrc(spn,dr,dc,); Return dist. betw. sprite and loc. grflrf GRFl
flg-spcne(spnl,spn2,tol)Sprite coincidence grflrf GRF1l
flg-spcre(spn,dr,dc); Coincidence sprite and location grflrf GRFl
flg-spcall(); Coincidence of all sprites grflrf GRFl
float number[FLOATLEN]; Define float type floati FLOAT

Command/Description Function Include File
c-fpgets(s,£f); Prompt for floating 'point number floati FLOAT
fpput(£,s); Display floating point number floati FLOAT
c-itof(i,f); Converts integer to floating point floati FLOAT
i-ftoi(f); Converts floating point to integer floati FLOAT
c-stof(s,f); Converts string to floating point floati FLOAT
c-ftos(f,s,mode,sig,dec)Float array to string array floati FLOAT
c-fexp(fl,op,f2,res); Execute float expression floati FLOAT
c-fexp(fl,"+",£2,res); Add two numbers floati FLOAT
c-fexp(fl,"-",£2,res); Subtract two numbers floati FLOAT
c-fexp(fl,"*",f2,res); Multiply two numbers floati FLOAT
c-fexp(£fl,"/",f2,res); Divide two numbers floati FLOAT
true-fcom(fl,rel,f2) Compare two floating point numbers floati FLOAT
c-fint(fl,£2); Returns greatest integer value floati FLOAT
c-fcopy(£1,£2); Copy one float array to another floati FLOAT
filptr-topen(n,a,s); Open a file(name,access,fsize) tcioi TCIO
eof-tread(b,r,f,&&s); Read a file(buff,rec,fileptr,&&size) tcioi TCIO
eof-twrite(b,r,f,s); Write a file(buff,rec,fileptr,size) tcioi TCIO
eof-tclose(fileptr); Close a file tcioi TCIO
randomize() ; Initialize random seed random;c
rndnum() ; Generate a 16-bit random number randam;cC
rnd(n); Generate a random number betw. 0&&n-1 random;c
n-atoi(s); Convert string to integer conv;c
s-itod(nbr,str,sz); Convert number to signed decimal conv;c
n-xtoi(hexstr,nbr); Convert hexstring to integer conv;c
bitmap(£fore,back) ; Change to bitmapped screen mode biti BITSUP
bitclr(); Clears the entire screen biti BITSUP
plot(x,y,c,t,); Turns on single pixel biti BITSUP

Command/Description Function Include File

.line(xl,yl,x2,y2,c,t); Draws line between two points biti BITSUP
rect(xl,yl,x2,y2,c,t); Draws a rectangle biti BITSUP
circle(xc,yc,r,c,t); Draws a circle biti BITSUP
bitxt(); Copies ASCII characters into CPU RAM biti BITSUP
bputch(ASCII,r,c,col); Similar to putchar() biti BITSUP
bputs(r,c,col,str); Similar to puts() " biti BITSUP
blanks(r,c); Places a blank on the screen biti BITSUP
btblanks(r,c,count) ; Blanks sequence of locations biti BITSUP
bgetch(r,c,col); Returns keypress of user input biti BITSUP
bgets(buffadr,s,r,c,col)Inserts characters in buffer biti BITSUP
getky(); Scans keyboard similar to poll() biti BITSUP

Notes: The purpose of "c99 Quick Reference" is to provide a handy summary of
c99 command syntax and required parameters, a brief dscription and a reference
to "include" and "object" files required to support a particular command. All
references were re-capped from Clint Pulley's release diskette for c99 Version
2.0 except for "biti" and "bitsup" which are based on Jay Holovacs BITRTN and
BITWRT Rel. 2.0. By necessity the description of the command had to be brief
and is intended to be more of a "memory jogger". In all cases the user is
urged to refer to the full documentation for all items .The naming of include
and object files reflect the preference of the compiler of this quick
reference. You may have your own system and can feel free to use any suitable
editor to make necessary changes.

Coing FORTH

Stepping FOLTH into a new language
with your 99/4 A, and Geneve

by Howie Rosenberg
Compuserve ID 74216,1640

The FORTH language was developed by Charles Moore in 1969. As he stated, he
developed the language as an interface between him and the computers he
programmed. He placed the language in the public domain. The language has been
promoted by the Forth Interest Group(FIG) of San Carlos California. FIG has
available Assembly source code and architecture guides for each major processor
for a nominal fee. These items are in the public domain. Both major versions of
FORTH available for the TI-99/4A were derived from the FIG model.

In 1983 version 1 of Wycove FORTH became available. A short time later the TI
version of FORTH was released to the public domain. There were flaws in both
version. First were(are) a number of bugs which carried over from the FIG
model. Several bugs peculiar to each of the versions also existed. The Wycove
version had one fairly serious flaw in that method of storing data (screens)
was somewhat flawed and the FORTH editor could not be used to full

advantage. Proponents of the Wycove version claim increased speed which while
true is considered not of any significance by most FORTH programmers as
indicated by the fact that the TI version has gained much wider acceptance.
Version 2 of Wycove FORTH while it offers some improvement of the screen
structure, still was not the same as the FIG standard. There is still a debate
in some quarters as to the relative merits of the two versions. I feel these
are somewhat academic. TI IS the standard in our community and will most likely
remain so. Whether it is due to the merits of the two versions or simply
because the Tl version was free is of academic interest.

ON STACKS, RPN, AND OTHER FORTH "HORRORS"

The characteristics of the language which are noticed, commented on, and in
many cases used as an excuse to quickly depart for more traditional languages
are all based on a simple idea one which is a central theme of Charles Moore's
FORTH. Make it simple for the machine not necessarily for the programmer. This
results in the highest degree of flexibility and speed in a higher level
language. Thus while stacks are used internally in the architecture of all
computers, not only are the stacks accessible in FORTH but must be utilized.
The parameter stack is the only way to transfer data. The FORTH programmer
enters data on the stack prior to executing a word. The resultant data from the
word is outputted to the same parameter stack. In addition the return stack is
readily available for use, indeed must be used in many applications so that the
programmer must keep track of the status of this stack. This idea of putting
numbers on the stack for use of the next word leads to the statement by many
that FORTH uses Reverse Polish notation(RPN). Thus instead of 1+1=2 we have 1 1
+ . 2 in FORTH. It is actually somewhat ironic in the TI world. For a long
time, prior to the TI99-4 computer a long time competition existed between the
two giants in the calculator world, TI and Hewlett Packard. Texas Instruments
calculators all utilized an algebraic system AOS which TI claimed simulated the
way people did arithmetic. On advanced calculators up to 9 levels of
parentheses were allowed and arithmetic expressions were(and still are
evaluated by entering equations left to right, with parentheses used as needed
to indicate deviations from the normal hierarchy(first exponentiation followed
by multiplication/division and finally addition and subtraction). The Hewlett
Packard calculators used RPN and the user had to chew his way out from the

middle of an expression and understand what he was doing to a much greater
extent than did the TI calculator user. TI calculators were easier to use
without much training or thought. Hewlett Packard calculators ran faster and,
when comparing programmable calculators were considerably more efficient in
terms of programming space. Based on calculator history RPN in a TI machine is
indeed ironic. Another factor which seems to keep some programmers away from
FORTH is- the fact that the primary arithmetic system for FORTH is fixed point
rather than floating point. Numbers can be single length(2 Bytes), double
length(4 Bytes) or if needed the programmer can define even larger numbers. The
use of fixed point arithmetic leads to efficient and fast running code.
Sacrificed is ease of use. The programmer must understand any arithmetic
manipulations used in his programs, size the results, decide on accuracy versus
range of answers and the like. In short easy for the machine, a bit more
difficult for the programer. Of course in both TI versions floating point
routines are provided. Actually the floating point routines are links to the
console GPL routines with there inherent lack of speed. There are cases where
floating point is quite useful. Some FORTH systems have included hardware
floating point which not only does not slow down the language but can run
faster than software fixed point routines. In summary the use of the stack,
RPN, and fixed point arithmetic as used in the FORTH environment is quite
natural, leads to efficiency and speed in a higher level environment and really
is well worth the effort for those who are willing to make the effort to learn
how to deal with them. '

WHAT IS FORTH?

FORTH IS A THREADED INTERPRETIVE LANGUAGE. The use of "interpretive" in this
instance is somewhat confusing as the run time code is actually compiled code.
FORTH applications consist of "words". New words are defined which call on
previously defined words not unlike the concept of procedures in LOGO. Those
words which are included in the basic FORTH language i.e. the primitives are
called the kernel. The words in the kernal and any new words added in a
particular application comprise the FORTH dictionary. Any new application has
all words from previous applications which are presently in the dictionary
available to it. .

FORTH IS AN OPERATING SYSTEM. Moore's basic aim in designing FORTH was to
provide an operating environment which while operating a higher level language
would provide the maximum efficiency and speed at run time. To this end the
FORTH system was designed. The system provides a disk operating system which
was foreign to Tlers and which still causes difficulty to many. A FORTH disk is
divided into screens. Each screen consists of 16 lines of 64 Bytes of source
code, Text, data, or program image. Each screen thus requires 1024 Bytes or 4
sectors. In TI FORTH after the FORTH system is booted, screen #3 is
automatically loaded thus enabling auto start of an application or customizing
the configuration. Five screen buffers are provided. These are used to store
screen information on command. When all five buffers are full, a subsequent
request for screen data results in the screen which was accessed least recently
to be reused. Thus the FORTH disk system is a virtual memory. The utmost in
simplicity and flexibility are provided in the operating system which allows
for easy alteration. Many functions can be altered merely by changing the value
of a user variable.

FORTH IS AN ASSEMBLY LANGUAGE. There is an assembler built into FORTH and words

can be defined directly in assembly language as well as in higher level FORTH.
The end result is similar to that which many of our EXTENDED BASIC programmers
have been doing namely using the higher level language to provide simple non

_ time critical functions and linking to assembly routines where needed. The
process is somewhat simplified in FORTH as the code routines are direct
replacements for higher level FORTH words. The process of linking is automatic.
There are versions of FORTH not available for the TI-99/4A which have the
ability for direct compilation of runable object code which can be run in the
system without booting FORTH (i.e. establishing the FORTH environment). The
result of such a compiler is Assembly object code. Supposedly all Atari arcade
games which were produced for various machines including the TI-99/4A were
written in FORTH and processed with a target compiler.

FORTH IS EXTENSIBLE. Changes can be rather easily made to any words in the
dictionary. Of course care must be used when changing words in the kernel which
are used by other words or the system will most assuredly crash. I can think of
no other language which can be changed with such ease.

THE FORTH ARCHITECTURE

Maximum utilization of the FORTH language requires some understanding of the
architecture of the language. This is more true of FORTH than other languages
in that the elements of the language, stacks, users tables etc. are readily
accessible to the user. For purposes of this note a short description is
sufficient. TI FORTH utilizes memory much like the typical FIG FORTH system.
Lower memory is used for support functions, the disk buffers, and the return
stack. Upper memory contains the dictionary at one end, and the terminal input
buffer at the other end followed by the parameter stack. The stack and
dictionary are thus able to grow toward each other. Applications which require
a large number of stack entries(unusual) can thus be handled by keeping the
dictionary small. In turn by keeping the stack small, large applications can be
handled.

THE STATUS OF TI FORTH IN OUR COMMUNITY

FORTH has been with the TI-99/4A community for 3 years. The FORTH programming
community is not large but with few exceptions once a programmer has taken the
trouble to learn FORTH and has started to use it he stays with it. There have
been few commercial FORTH programs but those,which are available illustrate the
capabilities of the language quite well. There is also a considerable array of
public domain software for the TI written if FORTH.

Within the FORTH community there has been several major versions of the
language after the FIG version. The latest of these is FORTH 83. While FORTH 83
has features which cannot be utilized in the 99/4A environment because of
memory restrictions, the language is, generally transportable. Of course as
always machine specifics in any language act as a restriction to
transportability. Those Tlers who try their hand at programming other machines
will find that FORTH programming experience on he TI will be entirely
applicable. Those of us who stay with the TI have found a language which has
given us much greater control of your programming environment than available
with other languages.

B g = D S

Imntroductiomn to FORTH

(As lectured by Chick De Marti)
- INTRODUCTION -

FORTH is all things to all people. It is extensive (you can do
anything in FORTH). It is fast (almost as fast as ASSEMBLY). It is
EASY (to the extent it is user friendly) and it is complex (it can
challenge the mind of the ASSEMBLY Programer).

While many routines appear to be simular to BASIC or EXTENDED
BASIC, (see PLATE 1) these languages can not be compared to each other.
FORTH, like FORTRAN, COBAL etc. is concidered to be a 'HIGH LEVEL’
language. While it uses words that are common in the English language,

it requires less interpretation into machine language than most of the
other lanquages.

Because of it‘'s structure, FORTH uses no "...run-time error check-
ing. FORTH’'s compiled code is compact ...(it‘s) applications require
less memory than their equivalent ASSEMBLY' programs!"” (1)

FORTH is transportable (it has been used on just about every mini-
and microcomputer known to the industry). Charles Moore who invented
FORTH in 1969 said in all computer languages we, the operaters, have to
learn the computer’'s language. He created FORTH, a language with which

we are able to teach the computer only those words required to complete
an assignment.

IS FORTH A GOOD LANGUAGE?

"...First, FORTH is more than just a language. It can be a stand-
alone operating system that provides basic support for terminal and
disk control.

"Multi-tasking and multi-user FORTH systems are available. * FORTH
has been called a psuedo-machine language because the key words used for
moving data from place to place are simular to the techniques used in
assembly language. ‘

“FORTH is an on-line interpreter. Commands are given to FORTH from
the keyboard in a manner simular to the 'immediate mode’ of most Basic
interpreters. This is ideal for the development and debugging of tpe
program. The programer can try out sequences of commands, one at a time.
After the programer is satisfied that the sequence works properly, pe
can make it a permanent part of FORTH by giving it a name. Later, it
can ba called (type it‘s name) to perform by itself or as part of an-
other defined word. (1) :

FORTH was first used as a computer control for large telescopes.
While it continues to be used by many observatories, it also is being
used to control ROBOT cameers, remote sensors of water depth and as an
aid in navigation of large barges in inland waterways. General Electric
also uses it to diagnose and trouble shoot large electric iocomotives
and it has been used in weather prediction programs.

To grogram in FORTH, vyou must know what a STACK is because almost
all FORTH operations involves a S5TACK in some way. When adding 2 + 2,

both numbers must be on the STACK and the sum is placed on the top of the
STACK. The same goes for subtraction or multiplication or any operation.
“he STACK is actually the MEMORY AREA

You will learn to understand the function and operation of the stack
both from outside and within a loop. Also, you will learn to store in-
formation and move it at will. With ‘hands on’° experimenting, you will
become comfortable in FORTH and with your new found confidence, you will
be able to let your own imagination dictate the programs you can write.
The least you should accomplish is to be able to confidently enter and
run the various programs that will appear (and are appearing) on the
Source Boards, in books, magazines and Computer Group Newsletters.

SUGGESTED READING

There are many magazines and books dedicated to the furthering of our
education in FORTH. MICRO (magazine) continues to increase it’'s articles
on FORTH. Another excellent source of information. is FORTH DIMENTIONS.
MILLER GRAPHICS puts out an excellent Newsletter...and for the more am-
bitious programers, FIG (FORTH INTEREST GROUP ..PO BOX 11@5, San Carlos
Calif. 94870) publishes a bi—-monthly newsletter. Membership in FIG is
$15.00. Other suggested reading is:

STARTING FORTH by Leo Brodie
published by Prentis Hall

THE FORTH MANUEL (of your choice)

INVITATION TO FORTH by Katzan
published by Petrocelll Book -

FORTH PROGRAMMING by Leo J. Scanlon
published by Howard W. Sams Co.

VARIETIES OF FORTH

The main standards of FORTH that exist are FIG/FORTH, FORTH 79 and
FORTH 83 (which is an update of FORTH 79). Some spinoffs are WYCOVE
FORTH and TI-FORTH (an extension of FIG-FORTH). All are outgrowths of
the original FORTH Inc. started by Charles Moore.

FDORTH is extensible. It’'s programs are interchangeable with most
othe computers. Jrncluded are APPLE, IBM and the VIC family (20 and
and the 64)..as well as TEXAS INSTRUMENT 'S 99/4A. The resident words
that one computer may contain can easily be defined in another 1languag.
An example ... Apple‘s 'HOME’ can be defined : HOME cls @ @ GOTOXY 3

Many of the differences have been documented in both Brodie’s START-
ING FDRTH and Leo Scanlon’'s PROGRAMMING IN FORTH.

FORTH'S STRUCTURE

RESIDENT AND OPTIONAL WORDS

“ The ACT of programming in FORTH is the act of defining "WORDS""
WORDS can be made up of other user defined words..." and continue until
a single word becomes the application desired. (2)"

Each new WORD is added to the dictionary and can be used in the def-
inition of future programs. The format of a WORD is:

: name operation (or data section) 3

The colon at the beginning tells the compiler that the following items
are the components of a 'WORD'. The *NAME’ can be of any combonation
of letters and numbers, ie ?NOTE -P13 MOV/B etc. (also see CLASS 2).
The °“DATA’ can be a CONSTANT, A VARIABLE, LIST OF VARIABLES or TEXT.
The semicolon denotes the end of the WORD definition.

" Since a FORTH word must exist before it can be referenced, a
bottoms up programming decipline is enforced” (2) Thus we must learn
to program "... from the bottom up" (2). Words take their parameters
from the 'STACK’ and place the rasults on the STACK

AREAS WE WILL COVER

Besides 'RESIDENT’ words you have a choice of 20 optional or ‘ELECTIVE
BLOCKS® you may add -to the computer ‘s memory. We will work primerily
with <S> -SYNONYMS, <E> -EDITOR, <V> -VDPMODES and <P> -PRINT.

(See Page S Chap.l of Tl FORTH Manuel for a complete list.)

* NOTE # <S> includes -DUMP -TRACE -COPY
<V> includes -TEXT -GRAPH1 -MULTI -GRAPH2
<P> includes -FILE
<E> includes -464SUPPORT

STACK MANIPULATION WORDS:

DUP ROT

DROP -DUP

SWAP >R (R>)
OVER R

ARITHMATIC OPERATORS:

+ = / % and later MOD AND
/MOD OR
#/M0OD

RERQUIRED EQUIPTMENT

COMSOLE EDITOR/ASSEMBLER MODULE

MONITOR RS232 INTERFACE (optional)
MEMORY EXPANSION PRINTER (optional)

DISK DRIVE (For the time being we will be referring
to one drive — your drive #1 (actually

Drive @, but more on this later.)

STARTING UP YOUR SYSTEM:

1 ... Put your "SYSTEMS" disk in the drive.
2 ... Turn on EDITOR/ASSEMBLER Module.

(use OPTION 3 ... LOAD)
3 ... type DSK1.FORTH <ENTER>
4 ... type -EDITOR -SYNONYMS <PRINT

S ... TO EDIT A SCREEN:
(A) type 3 EDIT <ENTER> (this gets you onto screen 3)
({B) use ARROW keys to move the cursor
(C) press FCTN 9 to get out of the EDIT mode.

r¢) ... Take your SYSTEM disk out of the drive and replace it
with a blank initialized disk (use your DISK MGR for
the time being). This will be your PROGRAM DISK.
7 ... type EMPTY-BUFFERS <ENTER>
8 ... type (any number) EDIT <ENTER>
You will find that you have 9@ blank screens on your
program Disk. Here is where you will store your pro-
grams and experiments.

CONGRADULATIONS!

You are now in FORTH and have executed 3 commands:
-EDITOR -SYNONYMS -PRINT (all one group)
EMPTY-BUFFERS and '

(number) EDIT

REMEMBER:

Only use your ORIGINAL FORTH disk to make a "SYSTEM" (or
working) disk. A back-up copy can easily be made using the
copier found elsewhere in this volume. At this point, let’s
try out some new words (commands):

UFDATE, LOAD and SWCH and UNSWCH

Entering FLUSH recopies the entire disk (like SAVE DSK1.wxx
in BASIC). I+ you want to copy a particular screen from an—
other disk, DO NOT FLUSH it to your disk...instead:

Type UPDATE <ENTER>» This assures you that this par-
ticular screen is currently
resident in your console.

Put your disk in the drive and:

Type (n)LOAD <ENTER>
Where "“n“ is the number of the screen you want it copied to.

NOTE: & ward of warning...ALWAYS EDIT screen(n) before you LOAD
something to it...too many times we write over an important
screen. If your planning on making changes to a certain
screen, make a FRINTed copy of that screen BEFORE you change
it. If your have already loaded the resident block of words
under the title —-PRINT (see #4 in apragraph "STARTING UP YOUR
SYSTEM"), then you are ready.

Type SWCH (n) TRIAD CR UNSWCH

NOTE: This is very important... ALWAYS end your SWCH command with
"UNSWCH". “SWCH" gswitches on your printer. If you do not
include “UNSWCH" (unswitch), the printer will stay on...your
console will become disables, as though it had crashed!

/OU DID IT! VYOU DID IT!'!
You now have some control of the FORTH environment...you can:

make a copy of an entire disk in FORTH (FLUSH)

You can locate and examine a screen (n EDIT)

You can print a copy of a screen (SWCH n TRIAD UNSWCH)
You can copy a screen to a Prog. Disk (UPDATE n LOAD)

And because you are getting used to the format, the language
you are ready to peruse the volumns of misc. information put
out by various books and newsletters. The following will be
some I have selected as being worthwhile for the beginner.
It dees not represent all that is available, but you'll find
it informative, instructive and interesting.

Go FORTH my friends. Chick

1. Bootinn The Forth System

a.
b.
c.
d.
..
f.
Q.
.
i.
Je
k.
1.

Insert the Editor/Assembler module..

Switch on the P-box, monitor and console.

Insert the SYSTEM DIBK. If you have two drives, use L 3 1
Press ENTER. Press 2. The E/R seslections appear.

Press 3. The file name request appears.

Type, DSK1.FORTH (Press ENTER) : L
The FORTH menue appears. Typs, <=EDITOR (Press ENTER)
Typs, =DUMP (Press ENTER)

;}E!; 1 BLOCK DROP UPDATE (Press ENTER)

Type,, 4 BLOCK DROP UPDATE (Press ENTER)

‘Types, S BLOCK DROP UPDATE (Press ENTER)

Remove the SYSTEM DISK and relace it with & blank disk which
.uﬁll;b- formatted. into a WORKING DISK. =

2. Preparing the WORKING DISK

gﬁh

Type, © FORMAT-DISK (The @ is zero) (Press ENTER)
Type, FLUSH (Press ENTER) :

3. Entering a program on a S8CREEN

b.
e

Ve
-

.

Type, 1 EDIT (Press ENTER). If the SCREEN is not clear, exit
the SCREEN by pressing FCTN BACK . .
Type, 1 CLERR (Press ENTER). This action clears the SCREEN but
does not return you to the SCREEN. -
Type, EDO® (Press ENTER). This action returns you to the
SCREEN in the EDITOR mode. .

The cursor is now on line @, at the left margin. Type in the
program listed on page 13 of "STARTING FORTH". On line 7, type
the letter F . Do not use any punctuation marks. When program
entry is completad, exit the SCREEN by. pressing FCTN BRCK .
Type, 1 LOAD (Press ENTER). This action will load and exacute
the LETTER-F propgram. '

Type, FLUSH (Press ENTER), if you wish to save the program.
This action writes the program to SCREEN #1 of the WORKING DISK.

<a{#% FORTH and X-BASIC SIMULARITIES #>%>

' Section
BASIC (or Extended) . FORTH Location

1. " (to enclose a string) <" (nesds an ending ") RESIDENT

2. : 31 (2 blank spaces _CR CR (éarriaq. returns) RESIDENT
3. CALL CLEAR - CLS (also same cn apple) RESIDENT
4. CALL CHAR(42,°'1233° 2123CH - -6RAPH
S. CALL COINC(#1,#2,8,C) ® 1 8 COINC -GRAPH
6. CALL COINC(ALL) COINCALL -GRAPH
7. CALL COLOR(3,2,1) @ 1 2 COLOR -BRAPH
8. CALL COLOR(#1,12) 11 @ SPRCOL -GRAPH
9. CALL DELSPRITE(#1) @ DELSPR . =BRAPH
1@. CALL DELSPRITE(ALL) DELALL —GRAPH
11. CALL GCHAR(R,C,A) € R GCHAR -GRAPH
12. CALL HCHAR<5,3;96.29> 2 4 28 96 HCHAR -GRAPH
13. CALL LOCATE(#2,80,120) 119 79 1 SPRPUT ‘ —6RAPH
14. CALL MAGNIFY(2) 1 MAGNIFY -6RAPH
1S. CALL MOTION(#1,X,Y) Y X 1 MOTION -GRAPH
16. CALL PEEK(-31888,A) -31g00 @ -GRAPH
17. CALL PEEK(-3188@,A):: PRINT A ~318808 ? or -31880 Q@ . -GRAPH
18. CALL POSITION(#1,Y,X) @ SPGET =GRAPH
19. CALL SCREEN(7) & SCREEN =BRAPH
20. CALL SPRITE(#1,45,10,80,128) 119 79 9 65 1 SPRITE -BRAPH
21. CALL VCHAR(R,C,CH,COUNT) C R COUNT CH Ve HAR =BRAPH

22. DISPLAY AT(12,18):ERASE ALL BEEP:"WE WANT FORTH®
11 17 GOTOXY CLS BEEP .* WE WANT FORTH *

GOING FORTH

by David Aragon
512-826-8648
CompuServe ID 75766, 336

Most of you that have tried to learn FORTH have been directed to a
book by Leo Brodie called "Starting FORTH." I must say that it is a
very good book for the beginner. Mr. Brodie goes step by step through
the essentials of FORTH in a way that even a simple mind like mine can
understand. There are, however, quite a few differences between his
version of FORTH, FORTH-79, and the TI version. TI was nice enough to
Put these differences into print for us, but somehow forgot to put thes
in any of their screens. I, therefore, have gone that one step
farther. The screens listed below contains, I think, just about all o
the changes to allow you to work through Brodie’s book. It can be
condenced so as to fit on a single screen that you could load prior to
working with Mr. Brodie’s book. I might suggest that you add it teo
your menu as was discussed last month.

SCR # .
STARTINGE FORTH WORDS)
2SWAP ROT >R ROT >R ; 3

20VER SP? & + 9 SP? & + 3 3 ¢ 2DROP DROP DROP ;
0> 0 >3 : NOT :

22 DUP + 3 = 2/

.23 >R R 2+ 3 R
I R> R> R SwAP .
U/MOD U/ ;3 : D- DMINUS D+ 3 ¢ DNEGATE DMINUS ;

DMAX 20VER 20VER D~ SWAP DROP 0< IF 2SWAP ENDIF 2DROP ;

DMIN 20VER 20VER 2SWAP D- SWAP DROP O< IF 2SWAP ENDIF 2DROP 3
~LONSTANT <BUILDS , , DOES> 29 ;

2VARIABLE <BUILDS 0. , , DOES)> j

—>

8¢ o« 0 08 00 0D 80 00 0 W0 0

STARTING FORTH WORDS)
D= D- 0= SWAP O= AND 5§

D< D- SWAP DROP OC 5 : M+ O D+ $ ¢ °S SP? ;
M/ M/ SWAP DROP ; : >IN IN 35 * MOVE 2

DU< ROT SWAP OVER OVER U< IF DROP D
U< ELSE DROP DROP O ENDIF ENDIF 3
TEXT PAD 72 BLANKS PAD HERE -

1- DUP ALLOT MINUS SWAP WORD ALLOT
PLUS 32 WORD DROP NUMBER + ."* ==
ARRAY <BUILDS OVER , % ALLOT DOES
=TEXT 2DUP + SWAP DO DROP 2+ DUP 2- I19 -
IF DUP ABS / LEAVE THEN 2 +LOOP SWAP .DROP ;
EXIT C[COMPILE] ;S s IMMEDIATE

gv'm
0.
g
.
*
¥

Besides the resident WORDs in FORTH, you can create your own words. The
formatof a FORTH word iss

: (name) (instructions)]

The colon announces the start of a new WORD. The semicolon signals it’'s
and. An example:

s BYE EMPTY-BUFFERS MON

Y"BYE" will first clear the buffers of any memory (EMPTY-BUFFERS) ,
then the word "MON" will take you bach yo the TI LOBO screan.

The following are J. VOLK’s "most used words". Try ‘em, you'll like ‘em
‘ EDitor

[7:3
(2]
L

#91
MY MOST USED WORDS by J. Volk)
LOAD -SYNONYMS FIRST if not already BLOADed)
MYLOAD -GRAPH -VDPMODES ; (Will load these options)
AT GOTOXY ; (Same as 'Display At') . .
TOP CLS O 0 AT ; (Same as Brodie 's 'PAGEB')
RANDOM RND 1+ . ; (n RANDOM >>> gives random number)
PICE (Leave copy of nil-th numsber on top of stack)
(ot === n2)
2 ® SPe + @ ;
ROLL (Rotate nth number to top of stack) (B === n)
DUP 1 = IF DROP ELSE DUP 1 DO SWAP R> R> ROT >R >R >R LOOP
1 DO R> R> R> ROT ROT >R SR SWAP LOOP THEN 3}
: TEST BEGIN ." HELLO THERE® 2 SPACBS ?TERMINAL UNTIL ; (FCTN &
TO END)
: SGN DUP IF DUP 0< IF =1 ELSE 1 ENDIF ELSE 0 ENDIPF ;
: WORK BLOCK DROP UPDATE ; (My word to update a FORTH screen)

o0 Se se oe 08 NN

- .
cwE_IoOVI&EWwN =0

P
NEWN =

(7]
Q
E

#92

(A Word to copy FORTH disks-Single Drive 5/16/84% J. Volk)

(Load Screen #91 and -COPY then RUN)

0 VARIABLE COPYSCR 0 DISK_LO !

: MES1 COPYSCR € 88 > IF CLS ABORT ENDIF TOP 2 11 AT ." INSERT M
ASTER DISK » KEY DROP ; (PRINT MESSAGE AND KEY PRESS)
: COPY1 5 0 DO COPYSCR @ WORK 2 20 AT ." SCR ¢ " COPYSCR ? 1 COP
YSCR +! LOOP ; (DO THE WORK AND LET US KNOW-GET NEXT SCREEN)
COPY2 2 11 AT .® INSERT COPY DISK-ARY KEY * KEY DROP ;
COPY 5 SCREENS AND PRINT MESSAGE)

GETIT BEGIN MES1 COPY1 COPY2 FLUSH COPYSCR @ 89 = UNTIL ;
RUNS- ABOVE WORDS) ‘

MESO TOP 2 11 AT ."™ INITIALIZE FORTH DISK ? (Y/N) *

MSG TOP 2 11 AT .™ INSERT COPY DISK " KEY DROP ;

RUN MESO KEY 89 = IF MSG O FORMAT-DISK DISK~-HEAD ENDIF GETIT ;
14 (ROUTINE TO INITIALIZE DISK)

-

VE-IONEWN =0

-
o
on o8 00 N a0 I 00

Forth Tutorial #1
By Warren Agee
Compuserve ID 70277,2063

PREFACE:

With this tutorial (and more to came!), I humbly submit what I have
learned by programming in the FORTH language. One reason I decided to put
down into words the knowledge I have acquired is to share my experiences,
frustrations, and triumphs while hacking away with FORTH. But, on a more
personal level, I give these tutorials to the TI world as a token of
appreciation for everything I have gained from knowing such people as Ronald
Albright, Barry Traver, and Howie Rosenberg, just to name a few, as well as
the whole gang on the TI FORUM. These and many others have given unselfishly
to both me and the TI community as a whole, and I am proud to be part of a
community that refuses to die. Now, on with the programming, FORTHwith!
<ugh!>

STRINGING ALONG IN FORTH

Of all the peculiarities the beginner confronts in FORTH, string
handling is a major obstacle. Nothing is more frustrating than to sit down
and have no idea how to write something like A$="1234"::A=VAL(AS). No
advanced string-handling routines come with the TI FORTH systems disk. So,
it is up to the programmer to invent his own. Hopefully, this article will
make it much easier to write a FORTH program that involves any string
manipulation at all.

THE BASICS

Before jumping into the new string words, let's first take a look
at how a string sits in memory. This knowledge is imperative in order to
fully exploit the power of FORTH. Think of a string as a numeric array; each
character in the string represents a number, or byte. The string HOME
OOMPUTER would look like this:

|lajolM|E| |cloM|p|u|T(E|R|

The first "box" represents the address in memory where this string
starts. Determining the location of this address is what we will discuss
next.

There are many ways to store strings; we could save them in VDP
RAM, or in the disk buffers. In this article, we will investigate storing
strings directly in the dictionary. A string variable is no more than a
mmeric variable stretched out. In fact, unlike BASIC, there is only one
type of variable in FORTH. The only thing that differs is the size. First
use the word VARIABLE to create a variable. But when you create it, let's
say 0 VARIABLE TEST, only two bytes are allotted for storage. This is fine
for single numbers; but for strings, we can use ALLOT to specify the length
of the variable. For instance, 0 VARIABLE TEST 8 ALLOT will create a
variable with a length of ten bytes. This gives us room for a string with a

4-14

maximum length of 10 characters. If the above is executed, the variable
will look like this in memory:

PR Errrd

addr of TEST

Once the string is created in the dictionary, there may be garbage in the
variable. Here we can use BLANKS to clean it out: TEST 10 BLANKS. This will
fill ten bytes of memory, starting at TEST, with blanks (ASCII 32).

Now that space has been reserved for the string, there are
basically two ways to store the string. If the contents of the variable is
not going to change, then the word !" can be used. All this word requires is
an address on the stack. So, to store STRINGS in the variable TEST defined
above, the sequence TEXT !" STRINGS" will do the trick. If you wish the user
to input the string, the word EXPECT is available, which is similar to
BASIC's INPUT statement; it awaits an entry from the keyboard. EXPECT
requires both an address and the maximmm length of the string on the stack.
Using TEST 7 EXPECT will achieve the same results as TEST !" STRINGS" .
The variable will now look like this:

IslTr|z|N|GlS] | | |

This presents our first problem. Since the contents of TEST is not
expected to change, the length of the string can be assumed to always be 7.
However, if the length will vary, we must keep track of it. EXPECT does not
do this for us. Sure, it requires a length on the stack, but it does not
incorporate this value into the string. Not to worry. This brings us to our
first new word, ACCEPT, which replaces EXPECT. The only difference is that
ACCEPT stores the actual length of the string inputted into the byte
preceding the string. This is often called the count byte. If we use ACCEPT
in the example above, our string would now look like this:

|7|s|T|R|z|N|G]|S| | |

addr of TEST

As you can see, the first letter of the string, the "S", no longer sits
at TEST; the whole string has moved over one byte to make room for the
count. Now, to print this string is a trivial matter of using TEST COUNT
TYPE. TEST supplies the addr of the complete string. COUNT takes that
address, calculates the address of the actual string (TEST+1), and finally
supplies the length of the string. Everything is ready for TYPE. To
summarize what we have done so far, consider the following example:

0 VARIABLE COOKIE 18 ALLOT (reserves 20 bytes)
COOKIE 20 BLANKS

COOKIE 20 ACCEPT _CHOCOLATE CHIP_

COOKIE COUNT TYPE

Note: any words that appear between underscore characters (_) are to be
typed in as a response to the ACCEPT word.

MOVING AROUND

Up till now, I have discussed performing basic functions on strings
which reside directly in the dictionary. This is not always the ideal
situation. A much better way is to store the string in a temporary spot, do
what needs to be done, then move it back into the dictionary. This temporary
spot is called PAD. Typing in PAD just leaves an address on the stack, just as
TEST does. Typically, instead of typing in TEST 10 ACCEPT, you would type PAD
10 ACCEPT. Once any processing is done, the word OMOVE can move the bugger back
to where it belongs. Here arises our second problem. COMOVE moves a specified
quantity of bytes from low memory to high memory. But what if you want to go
the other way around? Well, define a new word, of course!

The new word will be <OMOVE, which is included in some versions of FORTH.
But wait—isn't it rather a hassle having to remember which word to use? Of
course it is! Remember, FORTH is extensible, and we can make it as user-
friendly as we like! The next new word will be CMOVE$, which decides which way
the string is moving, and does the moving for you.

Here is an example of using OMOVE$ and PAD:
0 VARIABLE DRESSER 8 ALLOT

DRESSER 10 BLANKS

PAD 10 ACCEPT _SOCKS

. (string processing done here)

PAD COUNT (get addr and length)
1+ SWAP 1- SWAP (PAD-1 CNT+1)
DRESSER SWAP (PAD-1 DRESSER CNT+1)
QOVES

DRESSER COUNT TYPE

Everything should make sense until you get to the 1+ SWAP 1- SWAP. The
reasoning is a little hard to grasp at first: we want to move SOCKS fram PAD to
DRESSER. We also want to maintain that ever-important count byte. But when we
use PAD COUNT, we only have the addr and length of the string itself, not
including the count. So we compensate. Add 1 to the count (because we want to
move the count byte along with the string), then subtract one from the address.
OOUNT adds 1 to the address, so we have to correct this to catch the count.
Once these two numbers have been corrected to catch the count byte, shift
things around to get everything ready for OMOVES. To better illustrate this,
here is a diagram of PAD:

4-1¢

Is|slo|c|kls] | | | | (Contents of PAD)

PAD+1 (This is where you are using PAD COUNT)
PAD (This is where you are using PAD COUNT 1+ SWAP 1- SWAP)

If you can understand the principle of the count byte, and how to keep
the count byte tacked on to the string when moved, then a major obstacle in
writing in FORTH has been removed. Next time, I will discuss string arrays.
Until then, experiment, and Keep On FORTHin'!

SUMMARY OF RESIDENT WORDS -

VARIABLE (n—) Create a variable.

ALIOT (n—) Reserves n bytes in the dictionary.

BLANKS (addr n—-) Fills n bytes with blanks.

EXPECT (addr n—-) Waits for input; stores string at addr.

COUNT (addr—) Returns addr and count of a string.

QYOVE (adrl adr2 n)Moves n bytes from adrl to adr2, from low to
high memory.

PAD (—adr) Temporary storage place for strings.

NEW WORDS

¢t PICK (nl -- n2)
2 *sSpe +@;

(Copies nlth number to top of stack)

ke kkkkk
: IEN (addr — n)

255 0 (string max=255 characters)
DO
DUP I + C@
0= IF (looks for null)
I LEAVE (I=length of string)
ENDIF
LOOP
SWAP DROP ;

(Returns the length of a string at addr.)

¢ ACCEPT (addr n —)
OVER 1+ DUP ROT (adr+l)

EXPECT
LEN (length of string)
SWAP C! ; (store count byte at addr)
(Waits for input; stores count at addr and string
starting)
(at adr+l.)

dedkedededkk

: <KMOVE (adrl adr2 n)

DUP ROT + SWAP ROT
1-DUP ROT +

DO

1- I Cd OVER C! -1
+LOOP

DROP ;

(Moves n bytes from adrl to adr2, from high to low memory.)
dedede k& K

: OMOVES (adrl adr2 n)

OVER 4 PICK >
IF <OMOVE
ELSE QMOVE
ENDIF ;

(Moves n bytes from adrl to adr2; automatically decides on)
(direction.)

4-1g

Forth Tutorial 2
by Warren Agee
Compuserve ID 70277,2063

AN ARRAY OF STRINGS

Last time we met, I covered how to handle the basic string in FORTH. I
also stressed the importance of the count byte and how to move it along with
the string. Now, we have graduated to the realm of string arrays, which is an
entirely new mess with which to work.

Think of a string array as a super-long string. Since the character
(or bytes) of a string sit sequentially in memory, it stands to reason that
the elements in a string array do also. But the physical structure of an
array must be forced by the programmer; maintaining an array is not
automatically done. The structure is what we will discuss first.

Here is a possible string array:

13lc|al| [3[plole] | | |4|B|z|R|D|5|P|OfO[C]|H]

This array has 4 elements: CAT, DOG, BIRD, and POOCH. Fine, right? No way!
This is a mess! Each element in this array has a different length. Element #1
has 5 bytes, #2 has 7, #3 has 5, and #4 has 6. How in the world are you going
to keep track of all this? You cannot! Elements in a string array - must -
have a constant length. A much better way to construct the above array is
like this:

#3|c|a|T| | #3|p|ojc| | #4|B|I|R|D| #5|P|O|O|C]|H]

Note: from now on, the boundaries between elements will be pound (#) signs.
Now each element is exactly 6 bytes long. Remember, the actual strings in an
array can have variable length, but each element has to have the same -
maximum - length. If the string is shorter than the maximum, then blanks
will f£ill the excess space.

So much for structure and theory. How do we go about achieving this
neat and tidy array? Well, start out with good old' VARIABLE. Remember,
arrays (string OR numeric) are just stretched-out variables. Think of a good
name, let's say PETS. Now, decide how many elements this array is going to
contain. Let's say 20. Now decide the maximum length of the elements. Let's
keep it at 6. Remember to allow enough room for the count byte for each
element! This sequence will then create our array:

0 VARIABLE PETS
60 ALLOT (10 elements X 6 bytes each)

That's it! Easy, eh? Actually, you can think of the 60 ALLOT as a DIM
statement in BASIC. It reserves memory for the array. The hard part is
accessing the individual elements. Also notice that I totally ignored the

initial two bytes which VARIABLE automatically reserves; when dealing with
large arrays, the first two bytes are insignificant and may be ignored. This
makes for much better readability when going over your program

listings.

Now refer back to my diagram of the PETS array. The first box of the
array is the address provided by PETS. Since the first element has a count
byte, simply typing in PETS COUNT TYPE will print out "CAT". But how do you
get at the rest of the array? You have to calculate the address of the
element, using this simple formula:

base addr + (element # * length of each element)

The base addr is PETS. Now, as with most of FORTH, element numbers start at
zero. Let's say you want the first element using this formula. Plug in the
values: base addr=TEST, element #=0, length=6. 6 * 0 = 0, so you are adding 0
to the base addr to find the first element. That makes sense! Similarly, to
get to the second element, the sequence to type in is (TEST 1 6 * +). What
you are actually doing is adding an offset to the base address. Once you
have the address of the element, a simple COUNT TYPE will print the
contents, providing you stored the count byte! If you want to view all the
elements in PETS, type in:

: GO 10 0 DO CR PETS I 6 * + COUNT TYPE LOOP ;

Since element #s start at zero, we want to print out elements 0-9. However,
you must always add 1 to the upper limit whenever using DO LOOPs in FORTH.

As you can imagine, if you have a lot of string arrays, you will need to
make these calculations often. To make it more readable (and more convenient),
we can easily turn that into a definition, as follows:

: PETS() PETS SWAP 6 * + ;
: GO 10 0 DO CR I PETS() COUNT TYPE ;

This is MUCH easier to read than before. As a naming convention, I use the ()
symbol to indicate that PETS is an "indexing" word; all it requires on the
stack is the index, or element #. A word of warning: When you are using DO
LOOPS, the word "I" must used in the same definition as the loop itself. You
cannot put the "I" in the definition of PETS(); it MUST appear in the same
definition as the DO LOOP. This problem is actually a blessing in disguise.
Since we removed the "I" from PETS(), we are free to use the index word outside
of the loop. In other words, if all I needed was the last element of the array,
I could just type in 9 PETS() COUNT TYPE. No loop is needed!

Up till now, all you have done is sit back with your arms folded and
watch me babble on about accessing an array. Here's your chance to follow along
with me as I show you how to store things in your array. First we will use
ACCEPT and input the strings directly into the dictionary, then we will modify
our routine so we first input into PAD. First of all, we have to modify our
array a bit. In the above example, POOCH barely fit into the space allot for it-
—6 characters. If we are to use ACCEPT (which was defined in the previous
tutorial) and input directly into the array, we need to tack on 2 more bytes

for each element. You see, ACCEPT (and EXPECT) always glue 2 nulls onto the end
of each string. So if you input a string exactly 6 characters long directly
into PETS, ACCEPT will over-write the next element with nulls! With this in
mind, here is the complete routine:

0 VARIABLE PETS
80 ALLOT (10 items * (6+2) bytes each)
PETS 80 BLANKS
PETS() PETS SWAP 8 * + ;
INPUT-IT
10 0 DO I PETS() (addr of each element)
6 ACCEPT (max. len for each string=6)
LOOP ;
s PRINT-
10 0 DO I PETS() COUNT TYPE
LOCP ;

If you have been following since the first installment in this series, the
mechanics of this loop are self-explanatory.

This is fine, but remember what I said about avoiding inputting directly
into the array? To avoid those darn blanks from creeping in, Input the string
into PAD first, then move them into the array. Here is the new routine:
(remember to FORGET PETS first):

0 VARIABLE PETS 60 ALLOT (10 items + 6 bytes)
PETS 60 BLANKS

PETS() PETS SWAP 8 * + ;

INPUT-IT

10 0 DO PAD 6 ACCEPT

PAD COUNT 1+ SWAP 1- SWAP

oo oo

I PETS() (Get addr of element #I)
SWAP (source addr,dest. addr, cnt)
MOVES LOOP (CMOVES$ was defined in the previous)
(tutorial)
: PRINT-IT

10 0 DO CR I PETS() COUNT TYPE LOOP ;

The PAD COUNT 1+ ... sequence seems confusing, but if you read my last
tutorial, you should remember it. We want to move not only the string, but the
count byte as well. But PAD COUNT returns the address of the string itself,
along with its length. Subtracting 1 backs up the addr to the count byte;
meanwhile, add 1 to the cnt on the stack so OMOVE$ will move the entire
string+cnt. Also remember that I PETS() just returns the proper address of the
element in the array; a similar sequence in BASIC would be:

100 FOR I=1 TO 10 :: INPUT PETS(I) :: NEXT I.
Well, I've run out of room for this issue. Next time I will introduce

some string array utility words which will allow you to do some heavy-duty
string processing! Bye for now!

Forth Tutorial 3
by Warren Agee
Compuserve ID 70277,2063

Beyond the Basic String

In the past, we have looked at the basic string, how it sits in memory, and
the basic string array, and how it sits in memory. We've learned how to store a
string, retrieve it, and print it. Where do we go from here? Well, hopefully
you have been playing around on your own with strings, along with some of the
new words I presented (like ACCEPT). From now on, things are going get a bit
more advanced, and the knowledge gained (hopefully!) fram the first two
tutorials is important. In this tutorial, I will be presenting some very useful
and powerful string utilities that I have collected from countless sources;
same of them I have written myself.

Some terminology, first: a BASE STRING is a string to which you want to do
some sort of manipulating. A SUBSTRING is a separate string fram the base
string. You usually use it as a reference. For example, if we were to delete
the word FOX fram the sentence THE QUICK BROWN FOX, the sentence would be the
base string, and FOX would be the substring. Also note that the utilities
presented here work only with single strings and NOT string arrays. These words
are INS$, DEL$, and -MATCH. First of all, let's say we reserve memory for a 100-
byte long string called TEST$. We also have another string called SUB$. Here
are the contents of these strings:

|22|njolw| |z|s| |T|z|M[E] |F|O|R| [D|I|N|N|EIR]|

13||=|E|

(You can use ACCEPT and type in the above if you want to follow along).

Notice that the first string is NOT an array, merely a long string which
happens to be a sentence. The 22 is the count byte. Unfortunately, we seem to
have a word missing! What to do? At the end of this tutorial is a definition
for INS$, which will insert a "substring" into a "base" string. The stack
arguments correspond as follows:

INSERT$ (adrl nl adr2 n2 adr3 —)

adrl —> address of base string

nl —> length of base string
adr2 —> address of substring

n2 —> length of substring

adr3 —> address of insertion point

So, using the above strings, assume that the word "THE" (the word that is
missing) is located at SUB$. (Remember that variable names just supply an
address, which is what we need for INSERT$ to work). Now to insert THE into
the sentence, do the following:

TEST$ COUNT (adrl nl)

SUB$ COUNT (adr2 n2)

TEST$ 9 + (point of insertion - addr3)
INSERTS

Your . string will now look like this:

|26|njojw| |z|s| |r|a|E| |T|z|M|E| |FlO|R| |D|Z|N|N|E|R|

Experiment with INS$ until you become comfortable with it; use the
previously defined ACCEPT to store a long string at one location, and a
substring to insert at another location. Just remember that YOU have to supply
the location, or address, of the insertion point.

~-MATCH

Now HERE is an interesting word! -MATCH looks for a matching string and
returns a 1 if no string is found, and a zero (0) if it is found. Additionally,
-MATCH also leave the address of the byte AFTER the match. It requires four
stack arguments: the address of the base string and its length, and the address
substring and its length. -MATCH tries to find an occurrence of the substring
in the base string. This word is useful in conjunction with INS$ above. Here is
one possibility using INS$ and -MATCH. Say you want to insert the word MY after
the word FOR in the above string (TEST$). It might go something like this:

¢ &

PAD 3 ACCEPT _THE (Word to search for)
Note: anything that appears between underscores (_) is
to be typed in as a response to ACCEPT.)

TEST$ COUNT (Addr & cnt of base string)
PAD COUNT (addr & cont of substring)
-MATCH (stack: — adr3 flag)
IF (1=no match)
DROP ." Not found!"
ELSE (else found; adr3 is left on stack)

CR ." ENTER NEW WORD:"
PAD 10 ACCEPT MY (Word to insert)
TEST$ COUNT (Addr & cnt of base string)

PAD COUNT (Addr & cnt of substring)
5 ROLL (Bring up adr3 which was left by -MATCH; this is the
insertion point)
INSERTS
CR CR TEST$ COUNT TYPE (Displays new string)
ENDIF ;

Please note that ROLL does not exist in the standard TI FORTH dictionary and
must be defined separately. That definition appears at the end of this article.

DELS

Finally, we come to DEL$, which, by no surprise, deletes a substring. It
works along the same lines as INS$; the stack arguments require the address and
length of the base string and the substring. DEL$ searches the base string,
looking for a match with the substring. It accomplishes this by using -MATCH,
explained above. Once it finds a match, it deletes the string. If no match is
found, it clears the stack and exits, no harm done. If you plan to use DEL$ in
a program, you may want to modify it a bit. With -MATCH, you can test to see if
a match is found. Perhaps you want to do the same with DEL$. You could very
easily leave a 1 on the stack if the string was found and deleted, or leave a
zero if no match was found. Examine the comments for the listing of DELS$ to
demonstrate how to do this.

Well, that's it folks! FORTH is a powerful language, but it lacks in some
areas, especially string handling. But the real power in FORTH lies in its
extensibility. As demonstrated here, we now have a good number of basic string
utilities which can now become part of our FORTH vocabulary of words. Does
XBASIC have a built-in INSERT or DELETE function for strings? Sure, you can
similate it with SEG$, but that is very clumsy and VERY slow. With a little bit
of ingenuity, you can make FORTH run circles around most languages without
sacrificing ease-of-use. Till next time, have fun!!

DEFINITIONS OF NEW WORDS

¢ ROLL DUP 1 = IF DROP ELSE DUP 1 DO SWAP R> R> ROT >R >R >R LOOP 1
DO R> R> R> ROT ROT >R >R SWAP LOOP ENDIF ;

(NOTE: the following definitions require the word PICK which was defined in an
earlier article in this series.)

¢ INSERTS (adrl nl adr2 n2 adr3 —)
DUP 6 PICK 6 PICK +
1+ OVER -
OVER 5 PICK + SWAP <OMOVE
OVER 5 ROLL + 5 ROLL
1- C! SWAP <OMOVE ;

: -MATCH (adrl nl adr2 n2 — adr3 flag)
SWAP DUP C@ 5 PICK 5 ROLL +
DUP 1 SWAP 6 PICK - 1+ 7 ROLL
DO

3PICKICE =

IF

0

6 PICK 1

DO
JI+Ce6PICKI+Ce
= NOT
IF
DROP 1 LEAVE
ENDIF

LOOP

IF ELSE

DROP DROP I 4 PICK + 0

LEAVE
ENDIF
ENDIF
LOOP '
- ROT DROP ROT DROP ROT DROP ;

: DELS (adrl nl adr2 n2)
4 PICK 4 PICK

4 ROLL 4 PICK -MATCH

IF (NOT FOUND)
DROP DROP DROP DROP (clear stack)
(0) (insert the 0 if you want to leave a flag if not
when not found)
ELSE
DUP 3 PICK -

5 PICK 5 PICK +
3 PICK - 1+ CQMOVE

- SWAP 1 - C!
(1) (insert the 1 if you want to leave a flag if match
was found)
ENDIF ;
Disk Only Software
P.O. Box 4170

Rockville, Maryland 20850
or call))
1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required.

t 301) 369-1339 No Touchtone is required.
Altema %:ie information line (301) 340-7179

SOME REFRESHMENTS

26

SOME NEW SOFTWALE

UCSD Pascal
Logo
Pilot

some New Software

Things They Don't Tell You About The P-System
by Jerry Coffey /‘W)

I put my first P-system together about a year after I bought my TIS9/4A
console for $49.95. 1In the intervening year I had acquired an expansion
box, 32K memory, and a "disk memory system". I watched the UCSD
(actually Softech) software prices drop but found the P-code peripheral
card disappearing from the shelves even faster. Finally I gritted my
teeth and bought the disks before I found a card to run them. 1In
desperation I contacted a TI repair center and talked them into selling
me a card outright. It was then I discovered how primitive my single
drive system really was. I had to have another drive or give up the
whole system as an expensive mistake. In the the years since, I have
bought and sold a lot of other hardware and with each up upgrade I have
learned something new about the P-system — both the gquirks of third-
party hardware and the quirks TI designed into the system.

The first thing you neeé to know that isn't men—ioned in the manuals is
the bug in the DFORMAT program — it will not format the second side of
a disk or in double density even when these options are seiected and
your hardware suppor:ts them. (Though, strangely enouch, it will format
SSSD 80 track déisks with the new Myarc Eprom.) Thus:

Prepare some Zformatted disks BEFORE you start working if you plan o
use double density or double sided drives.

* o * *

You can use any disk manager program ané name the disks anything vou
like since the P-system dJdoes no: use the Zirst four sectors of the

disk. These sectors serve only *to interface with the TI system. Other
versions of the P-system use this space for "bootstrap" routines to get

the system started — routines that are supplied in ROM by TI.
Differences between the way the F-svstem and the host TI system handie
disks are best understood by looking at the operating system.

OPERATING SYSTEM

The P-system is not just an implementation of the Pascal language, it is

a complete operating system. It has its own low-level inpu:t/ou-put

routines in 9900 machine language. The system has its own keyscan that
supports ALL the ASCII control codes and screen control functHions equal

to many "intelligent" terminals — the system can even be set to use an

80 column terminal communicating through a serial port. Parallel and

serial ports are handled 3just like the TI system. TI even provided an

example program called MODRS232.TEXT that pokes the correct data into

the necessary memory locations. The conventions for handling floppy

disks, on the other hand, are unigque. The system does not use the disk
parameters or the bit-map in sector zero, the pointers in sector 1, or

the file header space (file identifier blocks) in sectors 2 and 3, but

it does write data to these sectors in a process known as "zeroing" a

disk. This process £ills the bit map with binary "1"'s (to prevent the AM,
TI system from overwriting the invisible P-system files), writes a _

2

single pointer in sector 1, and writes a header for a pseudofile called
"pASCAL" in sector 2. Before we look at other tasks performed by the
ZERO function, we need to understand a few more fundamentals such as
block structure and the P-system disk directory.

Blocks

The P-system recognizes two kinds of I/0 devices — character devices
(such as printers, modems, and video display consoles) and block
structured devices (floppy disk, hard disk, or RAM disk devices). A P-
system block consists of 512 bytes — two TI sectors. Thus disk
operations read or write pairs of consecutive sectors. A disk file is a

set of consecutive blocks (that's right, no fractures allowed) — in
fact an even number of blocks in the case of TEXT files, though other
types may be even or odd. This scheme imposes some inconveniences but
also has some distinct advantages. It reduces the number of operations
involved in disk I/O — no bit map checks or updaces ané a minimum
number of +rack seeks in each read or write. This speeds up disk
operations noticeably.

Some blocks have special functions. TEXT fles are storeé in "pages" of
1X (~wo blocks) each — +that is why TEXT Ziles are an even number of
blocks in length. The actual text is preceded by a "zero page" where
information used by the Editor is stored. CODE fles are precededé by a
single block containing data used at run +ime. DATA files can be used
for anything else and have no special formaz. Bad blocks on a disk can
be marked as a file with the suffix "BAD". Afrer a disk has been used
for =z while, removal and rewrites of files will create unused pockezs oI
space. These can be cleaned up with a housekeeping process called
Krunching a disk. This Filer command consolidates the Zles by reading
and rewridsing them o close up unused blocks, but leaves BAD files
undisturbed.

Disk Directory

The D-system uses a very compact directory scructure that consumes only
4 blocks (8 sectors) on the disk. There is also an option to use an
adéidional & blocks for a backup directory in case the main directory is
damaged. Each file entry takes only 26 bytes for a fie name, stardng
block, length in blocks (remember no fractures allowed), a type code,
znd the da*e of creation (coded into 2 bytes). This compares with 256
bytes per file in the TI system. This data begins in block 2 (sector 4)
immediately following the 26 bytes that contain the Volume name and
parameters (similar to TI sector zero data). A copy of the directory oI
an active volume is maintained and updated in RAM during disk operations
and written back to disk when the £ile is cdlosed. During some
operations — removing a file for example — the system gives you the
option of changing your mind before the directory is updated. As in
most systems a file is deleted by erasing its directory entry rather
than the file itself.

ZEROing a Disk

- *Sp- ~mow > *we "can-look -at ‘the-first step..in:turning a formatted .disk into a —
P-system Volume — what happens when you Zero a disk The Zero function
is in the Filer program, the most-used system program after the Command
processor {the part of SYSTEM.PASCAL that calls other system programs).
The zero function' prompts for a volume name and size in blocks. The
size sets the limit on blocks that the system will access, but if it is
larger than the number of physical blocks actually on the disk, the
missing blocks will generate errors when you attempt to read or write to
them. Whatever size you choose the entire bit map will be filled in, so
unused sectors are still not available to the TI system. (More on this
later.) ‘Once these data are ‘entered, thé Zero function checks other
drives for the same volume name, fills the bitmap, writes the PASCAL
pseudofile header, then writes the name, size, date, and an end of
directory marker into block 2 (and also into block 6 if the duplicate
directory option is used). From this point on, any previous TI or P-
system directory data on the disk becomes inaccessible and the system
treats the remaining blocks on the disk as if they were empty.

THE SYSTEM FILES

Now that you know a few of the chores necessary to get started, lets

look at what the system does for you. The P-system contains a number of
special programs: SYSTEM.PASCAL, SYSTEM.FILER, SYSTEM.EDITOR,
SYSTEM.COMPILER, SYSTEM.ASSMBLER, SYSTEM.LINKER, SYSTEM.LIBRARY, and
SYSTEM.SYNTAX. 2All except the last are code files but do not carry the =
" CODE" suffix required for user generated code files. Most of
SYSTEM.PASCAL is supplied by TI in ROM along with data files to set
system parameters, e.g. console or terminal configuration, and define

the the character set. If files named SYSTEM.MISCINFO and SYSTEM.CHARAC

are present on the boot disk, they are automatically read at boot up and
replace the data supplied from ROM. If the short SYSTEM.PASCAL disk

file is present, it is merged with the main program from ROM to provide

a welcome message and textual error messages in lieu of the ROM error
codes.

Boot Sequence

When your TI9 is turned on or reset with the P-code card on, the system

monitor will try to boot the P-system unless it is told not to —

literally — it looks for the word "NO" (ASCII codes 78,79) at integer

address 14586. If these values are not found the routines in the P-code

ROM are loaded and begin execution. (When you Halt the P-system, these

values are replaced at that address.) The program writes system tables

into RAM and then polls the disk drives both to determine which are "on-

line" (i.e. have a disk in them) and to locate all the SYSTEM files.

When this is complete, the welcome message is displayed and the program
SYSTEM.STARTUP is executed if available. When this program (or any

other) finishes, control is returned to SYSTEM.PASCAL which displays a

"command 1line" showing the prompts for the single character system

commands. Some of these commands are in SYSTEM.PASCAL (ROM), but the .
more elaborate ones, such as E)dit, F)iler, and C)ompile, call other m\
programs that overwrite SYSTEM.PASCAL in memory. In fact some are so

long that parts of them are paged into memory only when needed using the
P-system's automatic memory management routines (the system uses

Page 5-4

"virtual"” memory to overcome RAM limits — it was DESIGNED for small
systems).

Running the system —

~ Now you are ready to write your own Pascal or Assembly Language
“-programs. - There are also some public domain or commercial programs and
a ‘few exotic ones with murky origins and no guarantees. Some users have
ported versions of a Fortran compiler to the TI, but establishing your
right to use such a program is tricky, since it is copyrighted and has
never been released in a TI99 version. I understand that it was ported
by people who purchased the original for the exclusive purpose of using
it on the TI. There are also one or more versions of PILOT which was
under development by TI when they pulled out of the home computer
market. I've seen one of these which did not look like a finished
system, but did functon.

The assembler supplied with the system is a Macro-assembler several cuts
above the version supplied in TI's Editor/Assembler package. My friends
who work in A/L speak highly of it. The SYSTEM.LIBRARY supplied by TI
contains precompiled routinés to access graphics, sound, and speech
capabilities of the TI%99. The implementation of UCSD Pascal is nearly
complete and supports program chaining and concurrent processes.
Running several programs at once slows down execution and must be
managed by events defined within the programs rather than interrupts,
but it opens up possibilities not available in other high level
languages on the TI%. These features coupled with the ability to run
the system from an 80 column terminal give the TI99 a much more
sophisticated feel. The ultimate limit is memory — the RAM available
on the TI requires programming technigues that use lots of paging code
into memory from disk, thus slowing down execution.

Public Domain Software

In spite of memory limitations, some excellent programs have been
written by users. Perhaps the most sophisticated are those from Andy
Cooper, partcularly his terminal emulator and his GPL Disassembler.
There are now several disassemblers for GPL, available or "in the
works", but Andy's was available two years ago! The terminal emulator
is in its second major version with some enhancements that Andy
graciously added to solve some problems I had using my TI as a high
speed terminal for a Pascal Microengine. Dave Ramsey and Mike Lambert
of the Mid-Atlantic Ninety NinERS UG have written many useful programs
including character sets, a memory reader (PEEKIN) and various
utilities. Everyone has some version of the FASTBACK cloner — mine is
modified to handle all formats including 80 track — in fact it is
presently the only program I know that will clone an 80 track disk.
Mike King, whom I haven't met, solved the problem of importing DV80 text
into the P—system TEXT format. And if you want a veritable sea of
Pascal code, Join USUS the UCSD Pascal user group and you can access the
seven megabyte member library, most of which has never been adapted for
the TI P-system.

Page 5-5

COMMUNICATIONS /aa@\

-Communications was one area TI-and-the“developers of the P-system left
alone, and for very good reasons. High performance communications
-software — . terminal emulators for example — usually require native
machine code for critical portions to assure adequate speed. REMTALK
was an early program written in Pascal to establish remote links between
two computers, but it is too slow for day-to-day use and must be running
on both machines (i.e. it only communicates with itself). Nevertheless,
it was and is used to transfer files between different machines running
the P-system.

Andy Cooper changed all this for the TI99/4A with his terminal emulator
TEP. Here was an efficient communications program for the TI P-system,
with machine language modules running from a Pascal host program. But
the best news was its capability for binary transfers using the XMODEM
(checksum) protocol. This made it possible to transfer both CODE and
TEXT format files between TI%99's running the P-system or to bulletin
boards with XMODEM (checksum) capability. Andy wrote TEP to encourage
scattered P-system owners to trade files. For those of us struggling
with the system, it was the same kind of breakthrough as Paul Charlton's
XMODEM program on the TI Forum. It also shared a common frustration of
first-time XMODEM users — how do you download the more sophisticated
rogram when all you have is the TE2 package supplied by TI? Paul
supplied XMODEM in a form which could be captured as an ASCII file and
run from Extended Basic, but capturing a P-system CODE file (TEP) was
not so easy. There are utilities in the P-system that make it possible,
but they are a bit tricky for the novice.

When Andy uploaded a P-system TEXT file describing his scheme for
converting the TI controller to 80 track operation, the frustration on

the TI Forum was almost palpable. The description of the file aroused
enormous interest but the only people who could read it were those with
BOTH the P-system and TEP. After listening to complaints and confusion
for several days, I cobbled up a slow, crude XB program called PASTRN to
convert P-TEXT to the standard TI DV80 format. The next day Andy Cooper
came back with an elegant rewrite of the XBasic that provided a 4X
improvement in speed. Working independently, Andy Dessoff wrote an
assembly language routine which he called PSCAN to perform the critical
but slow character handling operations. At the end of that week I
combined PSCAN and the XBasic host program using Todd Kaplan's XBALSAVE
technique so that the XBasic and machine language could be saved in a
single file that loads and executes very quickly. And that's how the
TI99 community got its first Pascal text file translator.

This still didn't solve the problem of downloading TEP without TEP. I
took another crack at this one while working with Phil Symerly to get
Pascal downloads onto the new hard-disk for his Washington DC BBS. The
scheme involved a utility I called PAS>TI (inspired by a program written
for the APPLE by my friend Tom Wotecki) that read the hidden files on a
P-system disk and wrote exact DF128 images that were recognized by the
TI system as individual files. Converting downloads back to P-system
format still involved using the RECOVER utility and the Filer's "Make"
command. The process was tedious but the DF128 files could be
transferred with any binary protocol including TE2. We set this up on

-

-—_ : Page 5-6

the DC board and Bill Byrne picked it up for the Wichita TIBBS using TE2
only. Of course the first files we put on the board were TEP and its
docs.

It would be months before any further help would be available for novice
users, but the TI Forum and some BBS's began to build their libraries of
Pascal programs. -The next step depended on a new program and an old one
‘rediscovered. The new one was a utility (SPLITP) that I wrote to split
up the space on a disk between a P-system volume and normal TI files. I
used it to boot either the P-system or Extended Basic from the same
disk, but it also made it easy to set up valid volumes no larger than
required to hold particular programs. I merged this new one with PASTRN
and PAS>TI into a single XB program called PUTIL. The old program was
the remarkable DCOPY which captures all the information on a disk in a
single TIF128 file that can be restored to a perfect clone of the
original disk. In September 1986, two DCOPY files created from split
format disks were placed in the TI Forum Data Library. When downloaded
with any Xmodem terminal emulator and restored with DCOPY the embedded P-
volumes could be run immediately. One of the programs on both disks. was
Andy's new 9600 baud version of TEP with full VT52 emulation and other
improvements.

ADVENTURES WITH NEW HARDWARE

The easiest upgrade for the P-system is the addition of a Corcomp double
density disk contraller. It complicates life very litfle, since there

are only two disk formats. You can boot the system from single density
disks and transfer all your files over to the higher capacity format.
There is no problem reading or writing disks without using TI's sector
zero data since the hardware senses single or double density (think
about it — the sector zero byte that indicates double density can only
be read AFTER the hardware switches to double density!) Once the density
is determined the sectors per track is determined.

If you want to use the faster and more flexible Myarc controller, things
get more complicated. The hardware senses density, but the Myarc
controller uses the data in sector zero to determine whether each track
contains 16 or 18 sectors. Without this data the default format is
assumed (16 for the 40 track system and 18 for the 80 track). When I
got my Myarc card I was satisfied to run in 16 sector format, but when I
got the 80 track upgrade I had to find a way to use the available
formats more easily. The answer turned out to be a very simple program
I called CHECK that used the low-level UNITREAD procedure to read sector
zero on all active drives. You don't have to do anything with the data -
- when the controller reads sector zero, it automatically adjusts to the
format data for that drive. My SYSTEM.STARTUP program now goes through
this drill before it sets printer name and serial port. The Corcomp or
Myarc controllers will access four disk drives, but you will find that
the P-system will not recognize the fourth drive. I think the
limitation is hard coded into the UNITREAD/UNITWRITE procedures for low-
level disk I/0.

Page 5-7

By the way, the P-system does not like slow printers — the system times-
out while waiting for a typical daisy-wheel printer to empty the large
buffer set up by the Filer for Transfer operations. If you can't afford
- "pnnter ‘buffer —or ~spooter - (or .a.faster printer), you can write or
acquire a simple program to send files to the printer line-by-line.

The next piece of hardware I tried to add was a Myarc 512K Ramdisk —
and discovered a few more limitations of TI's P-system implementation.
If you clone a working boot disk to the Ramdisk then set it to emulate
drive #1 (Unit #4), the system will try to boot from it. Most of the
boot routine executes without problem until the system polls the drives -

- the system reads drive #2, then #3, then comes back and reads physical
drive #1. From this point on it can no longer find the Ramdisk. Again
I suspect the 'UNITREAD procedure works only for the three physical
drives (something to do with the CRU address). I still have hopes of
running the Ramdisk as a fourth block-structured device. There is room
in the system +table for units up to 32, but most cf the slots are
empty. When I get some Hime, I'm going to write & STARTUP program that
pokes the Ramdisk volume name into Unit #$£10. Though it may be
interesting to try it with the fourth physical drive first. It s=il

may not work if the limitation is in UNITREAD, but its worth a ‘:::y. In
fact get-ing a Ramdisk into the system should speed it up sicnificantly
because of 21l the virtual memory operations.

The latest expansion was to add 80 track drives. This turned out to be
a real detecdve story. I approachec it in stages and kept a 40 track
drive as Unit $£4 (the boot drive), but those who switched over
completelv to 80 track d&rives had their hands full. The following

message to a frustrated user gives some of the Iflavor of the search for

answers:

"Ralph,

I think I know what vour problem is. As I mentoned on the phone, the P-
system at boot up senses only single or double density Zrom the boot
disk — other disk parametsrs are the hardware defaults (in this case
the Eprom and DIP switches). What your system is expeccing is AN 80
TRACK BOOT DISK! Which you don't have yet because vou can't boot the
system to make one — CATCH 22 eh? That's also why your SSSD master
disks won't boot either — the system is looking for files in the space
between tracks.

But don't despair. The trick with my CHECK program will work if you put
it on the first track of a 40 track DOUBLE DENSITY disk. The system can
always £find the first 9 sectors of a single density disk or the first 16
sectors of a double density disk. Since the first 4 sectors are
reserved for TI-DOS and the next 8 are used by the P-system directory,
you must use a double density disk to have any space left to put CHECK
on the £first +track. Rename CHECK as SYSTEM.STARTUP and it will
automatically execute at the end of the boot sequence. Then you can
create a true 80 track boot disk in your other 80 trk drive.

Page

. Don't 'put any other autoexecute files (SYSTEM.PASCAL or SYSTEM.CHARAC)

on your 40 track startup disk — the system can't read them until CHECK
executes. It will try to load SYSTEM.CHARAC but will in fact read bit
patterns from the wrong sectors as the character definitions — makes
for an unpredictable display! There is a slight chance that your drives
will not read from a 40 track disk while in default 80 track mode. If
this happens, send me a message and I'll make an 80 track boot disk for
you.

By the way, the reason I keep a 40 track drive in the first slot is not
because of P-sys quirks but because some copy protected software crashes
on 80 track drives. ‘

Jerry"

[Ralph called a few days later to tell me it worked ané marvel at the
complexity of the svstem. 1I've put together a "universal" boot disk
that should work with any double density drive/controcliler configuradion -
- it involves duplicating files read before CHECK is executed during the
boot process so that +the backup copv will be correctly read if the
"wrong" sector/track value is used. The next time I open up the box
I'll switch an 80 +rack drive into the frst slot and test it. Until
then, happy hacking.]

“TAKE TIME TO PRETTY UP YOUR PROGRAMS.

“Pretty Programs Bloom Forever” 5-9

YOU ARE THE PILOT. Teaching others using your computer

by Willaim Harms
Programmed Inquiry Learning or Teaching

Although I've just spent a few days learning about PILOT, I can really write a
useful, enjoyable program. This language is EASY. It doesn't have many of the
capabilities of TI BASIC, but it does have others not found in even TI Extended
Basic.

Thomas P. Weithofer sent me the program PILOT 99, and documentation. He
developed this TI99/4A version with help from Texas Instruments, Cin-Day Users
Group, and Xavier University professionals. It's copyrighted 1985 by Thomas
Weithofer and portions of the manual are by permission of Texas Instruments.

It is a public domain package that costs one only about $10.00 plus 2 SSSD
disks. What a great value! [Ed: Thomas Weithofer passsed away at the age of 20
in early 1986. His gift to the TI community will live on and can be obtained
from UGN by registering this copy of the book with the bound-in registration
card in the back of the book.].

PILOT was largely created by John A. Starkweather, Ph.D. at UCSF starting in
1962. In 1973 national standards were developed for the basic commands (only 8)
and syntax, and now one can get a version of PILOT for most personal

computers. It was developed on a small computer to be able to function
completely on a small computer. Dr. Starkweather wrote a short book, which
I've found to be the perfect guide. 1It's called, "A User's Guide to PILOT" and
published by Prentice-Hall, Inc. at Englewood Cliffs, New Jersey 07632. I
ordered it at the local B. Dalton Bookseller.

I would evaluate the TI version as one of the best teaching aids available in
the world of software, since it's easy to write programs and offers most all of
the features that make a lesson useful and enjoyable. The only feature I would
like to see added is that of Speech.

PILOT 99 seems to be written in TI-Forth and thus a program can run pretty
fast. It shows the power and versility of TI-Forth. While one is thus limited
to a small program running at one time, one can run programs quickly with each
drawing needed data from files the other programs have created.

To use the version of PILOT 99 that I got, you will need TI's Editor/Assembler
cartridge, expanded memory, a disk system, and a word processor that can create
display/variable-80 (text) files. You would write the program in the word
processor just like the big computers/software use , which is nice in some ways
since with one like TI-Writer you've got a full screen editor and other useful
commands available. Then you would fire up the Editor/Assembler and use the
Load and Run Option, entering DSKn.PILOT. When it is loaded enter the file
name of the program you created with the word processor. The PILOT 99 software
will run the program until it finds an error in which case you get an error
message at that point. Thomas Weithofer says there is also a version one can
use out of TI Extended Basic.

Page s5-10

PILOT 99 adds many commands beyond the basic PILOT set. You have all the
normal TI Extended Basic Sprite Commands, which provide great enjoyment to a
user and liven the presentation of any subject matter. Thomas has also added
the Joystick commands, TI's character graphics commands with color, real live
Bit Map Graphics ie, Draw Circle, and Mass Storage device commands for files
usage.

The manual is excellent, all 70 pages of it (on disk). Each command is
described and an example given in a program context. However, it says that
data files are Internal Fixed 80 Relative Update, but the file I got when
writing data out to disk was Display Fixed 80. To help me use the manual I
created a kind of Table of Contents and Index.

Bit Map graphics are easy to create and are displaved in the top 2/3rds of the
screen with the bottom 1/3 reserved for full sized text. 1In the top 2/3rds
graphics area you can also display text, but it will be smaller(64 characters
per line). The commané for Draw Rectangle is: DR: rowl, clml, row2, clm2, ie.
DR:50,50,100,100 will draw a rectangle with the top left at position 50,50 anc
the bottom right at 100,100. Then one could use the command "T:Thats a
rectangle, folks!" to produce the message at the bottom of the screen. Be
yet, to describe the language, you could ask the computer cperatcr ie. stu
some gquestions about the rectangle. Here's a really short program to
illustrate.

By the way, PILOT doesn't use line numbers. It's like LOGO, LISP, and some
other advanced languages in this respect. One uses labels and subProgram like
technigues to structure the program and direct the flow of action.

R: Remark only - prog. <o demo a Q2 & A.

I1G:
DR: 50,50,100,75
TG: 1,5,shape is 50 by 25 units

T: how high is that rectangle?

A: #A

M: 50,50 UNITS

TY: That's perfectly correc:

TN: Nope, +hats nct just right

T($A=25): You were thinking of the WIDTE
T: press any key to proceed

is for a REMark
is to Initialize Graphics
puts the text at row,column used
is to Type something to the screen.
(TP: is to Type to Printer)

HIHwY
w Q) Q)

A: is to Accept an Answer
M: is to Match to the following possible strings
each seperated by a comma
TY: is to Type only if the previous Match was True
TN: is to Type only if the previous Match was Not-true
T($#A=25): is to Type only if the expression is True

(here users answer of 25 would be true)

Page 5-11

Instead of the TY: and TN: we could have used a command- JM:*LABEL for Jump-on--
Match to a label. After the *label would come some testing routine that ended
with an E: command to return the program flow to the line following the ﬁq%
JM:*label. J

We could have used the Match or Jump command- MJ: string-to-match,more. If no
match is found to the strings in the statement, the program jumps to the next
M: or MJ: statement.

User subroutines are invoked with a simple- "U:*YOUALL" (U:*title). They are
also ended with the command- E:. Problems can be identified with the PR:
command, then you can jump to them easily. You can put the Y or the N or the
conditional expression ie,(#A=25) after any of the basic commands.

To save that answer to a disk file we would just add a command- Write Answer-
WA: right after the A: in the program above. . Earlier in the program you would
have the command to open the file- OF: DSK2.FILENAME or some other file and
then later would close the file with- CF:.

For math you use the C: (Compute command) with the characters <- instead oI the
= sign. For example: C: #F<-B8 or C: #E<-#G. The first sets F equal to 88 while
the second sets E equal to the value cf G. All the other TI numeric operators
ie. + are available as are the numeric functions such as TaAN for Tangent.

PILOT is for easy interaction between the computer and the user. A simple
example of it is:

Enter your name

sa

Enter an adjective :
s : ™
Enter a type of animal

sC

Enter a part of an animal

$D

Enter a color

SE

: (this means Clear-Home the cursor)

* % % %

S2 had a $B SC,

whos $D, was SE as snow

Everywhere that $A went, the S$C

was sure to follow.

00 o0 00 o0 oo rn 80 06 00 ee 08 o0 00 a8 00 o0

S A3 OQPrP3rAapPa3prlpd

There are many other commands in PILOT 99, but most are Jjust like TI Basic or
the Sprites in TI Extended Basic. Most are easy to remember and there are onl:
54 with the 1 or 2 digit code. 1I've barely scratched the surface in this memoc
of the many ways the commands can be combined to produce a very enjoyable
interactive session of learning or data collection. Dr. tarkweather
describes many in his book.

--- EXPLORE - - -
in Harms Way

Page 5-12

INDEX OF PILOT COMMANDS FOR THE TI1-884/A
PREPARED BY BILL HARMS

---COMMANDS-——- DESC. DETAIL NOTES
REGULAR COMMANDS 7
A: Accept 7 15
RS: Accept one char 7 16
C: Compute 7 is
CH: Clear Home 7 2l
CS: Compute String 7 23
E: End 7 27
J: Jump 7 35
JM: Jump on Match 7 36
M: Match 7 3%
MNJ: Match or Jump 8 4
PR: Problem B 43
R: Remark 8 r i
T: Type B8 S9
TH: Type and Hang B B2
TP: Type to Printer 8 63
u: User subroutine 8 B4
CHARACTER GRAPHICS COMMANDS S
CC: Character Color S) 18
CP: Character Pattern 3] cc
HC: HChar S 32
IT: Init. Text Mode 8 34
SN: Screen color S S5
TC: Text cursor S B0
UC: UJUChar 8 66
SPRITE COMMANDS 10
A GP: raphic Pattern 10 30
SA: Sprites Atouch 10 48
SC: Sprite Color 10 43
SD: Sprite Delete 10 S0
SG: Sprites Gone 10 S1
SH: Sprite Hit 10 sz
SL: Sprite lLocation 10 53
SM: Sprite Motion 10 Sy
SP: Sprite Pattern 10 S8
8S: Sprite Size 10 57
BIT MAP GRAPHICS
DC: Draw Circle 11 24
BL: Draw Line 11 25
DR: Draw Rectangle 11 b
BC: Graphic Color 11 31
IG: Initialize Braphics 11 33
PP: Plot Point 11 e
I6: Type Graphic 11 B1
UP: Unplot Point 11 BS
FILE STATEMENTS 12
CF: Close File ie 20
OF: DOpen File ie ‘t1
RE: Read 12 45
RF: Restore File ie 4B
WA: UWrite Answer Buffer 12 67
WR: WRite ie ES
MISCELLANEQUS 13
BW: Begin While 13 17
EL: End Loo 13 c8
FB Fire Button 13 23
JS: Joystick 13 37
gP: gocpd ig ag
: oun
WH: while 13 68

ERROR MESSAGES

[
S

Page 5-13

5-14

Exploring Your Hardware Package

LOAD INTERRUPT, HOLD and RESET SWITCHES FOR THE TI 99/4A COMPUTER
by Brian Kirby
Compuserve ID 70346,1703.

First, let's describe what each of these switches will do for you and the
computer:

LOAD interrupt: The load interrupt, when activated will cause the
computer to suspend its current operations. Then it will look at a
specific memory locations that will tell the computer where to go for the
next set of directions. This switch is useful for several utility type
programs. You can have a debugger or disassembler loaded in the memory
along with the program you plan to check. When your running program cuts
up, you can hit the load interrupt and be put into your debugger

program. Then you can go see what happened to your program in the
computers memory. Another use is screen dump routines. You can have a
utility loaded up in the computer and your program. When you want a copy
of the screen you hit the load interrupt switch and then the screen dump
routine takes over and you end up with a hard copy of what was on the
screen. You can come up with all kinds of utilities for the load
interrupt switch.

In specific a load interrupt causes the 9900 cpu to initiate a interrupt
sequence immediately following the instruction being executed. The
memory location at >FFFC is used to obtain the vector for the Workspace
Pointer and the Program Counter. The old Program Counter (PC), Workspace
Pointer (WP) and the Status Register (ST) are loaded into the new
workspace and the interrupt mask is set to >0000. Then the program
execution resumes using the new PC and WP.

Here is a check, just for grins, that will let you know that the load
interrupt works. If you have a memory editor type program
(SBUG,MEMORY+AID, GRAM KRACKER,etc) go into memory location >FFFC and
change the next four bytes to >83 E0 00 24. The first two bytes are the
Workspace Pointer (>FFFC) and the last two bytes are the Program Counter
(>FFFE). If you do a load interrupt using these changes the computer
will do a power up reset routine. Another is to set the WP and PC to
>83C0 and >0900. This is a level one interrupt. When you do it, the
system will lock up, but you will note all your P-Box cards lights will
be on except the memory.

HOLD: The hold does what it implies. It puts the microprocessor on
hold. It's good for stopping the computer dead in its tracks. Works
great for games that do not have a pause function. There is times when
you do not want to use it. The states you do not want to be in are
Input/Output functions. Mainly, like during a disk read or write or
initilization routine. I think you can understand why, but if you don't
know its possible to crash your disk or cause some timing problems during
a file transfer. Let's not worry about that. The real uses for the
hold, is so that other devices may access the computer busses without the
9900 CPU on line.

Specifically, when the hold is active, it is signaling the CPU that an
external device, such as another CPU or a DMA device would like to use
the address and data busses to transfer data to and from memory. The
9900 goes into the hold state when it has completed its present memory
cycle. The 9900 then places its address and data buss tranceivers into
an high impedance

Page 6-2

state, along with the control lines WE,MEMEM, and DBIN. Then the 9900
will activate another signal called HOLDA. This is a hold
acknowledgment. When the hold is removed the processor will return to
normal.

After installing the hold switch, it is very easy to test. Just turn it
on while listing out a program in basic or XB. Try it during a game.

RESET: .Again it resets the computer. It causes the computer to do the
power up routine. This is great when the computer locks up. You hit the
reset switch and your back to the title screen. This saves wear and tear
on your power switch and extends the life of the computers power supply.
There have been many articles on the reset switch and not all reset
switches work properly. Let me explain why. First the basic form of the
reset comes from the cartridge that you plug in the computer. There is a
line that runs from the GROM port or cartridge port back to the clock
chip that supplies timing for the whole computer. When the GROM port
reset line goes low it causes the clock chip to reset and it in turn
passes a reset on to the CPU and the 9918 VDP and the 9901 CRU chips. If
you have a Widget this is what they use to reset the computer when you
put a new cartridge in. But I'm sure you have notice that when you have
locked up a few times and the reset on the Widget didn't do the job, You
had to shut the computer off and on to bring it back up. This was due to
a lockup in the clock chip and it could not pass the reset along.

First the required parts:

One push butt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>