

PUBLISHERS STATEMENT

As announced. Dr. Ron Albright's Orphan Survival Handbook
1^ contains over 200 pages of excellent material, much of it original

work, or material not submitted to user group newsletters. Dr.
Albright sifted through mountains of worthy material, selecting the
best, for this continuing work.

However, neither the skill of the writer, nor Dr. Albright's
deft judgement made the final decisions on what went into the book

and what stayed out. The publishers, Disk Only Software, did.
Therefore, some material originallly described as being contained in
this publication is missing. It is merely our ability to deliver a
reasonably readable product using the reproduction technique
available.

With all that said, lets talk about the advantages of the
medium we have chosen to place before you. On the first book. Orphan
Chronicles, Dr. Albright received some comment that material just
submitted to printing had become out of date. The 99er and the
Geneve user is an independent sort, seeking out his information
where he can find it. Then why not produce a book, drilled for use
in a three ring binder? This dictated a slightly more expensive
method than that used to print two thousand bound books. Cheaper per
copy, bound books would be closed and a hindrance to revision until
a mountain of books had been sold. Thus our format.

Next comes an invitation for easily copyable material. Authors
ar& invited to send disks or upload their material to one of the
telecommunications services. Many no longer charge while uploading.
Or forward it to Dr. Ron Albright at the address below. Return of
your disks will be attempted, but not guarenteed. Return postage
would be helpful, of course.

/#^ Thanks to all for your support in this effort. If you are not
^ purchasing this book direct from Disk Only Software, and wish to be

personally notified of future updates, please write the address
below.

Jeff Guide

Jim Horn

Publishers

March 25, 1987

Copyrighted January 1987 as a complete work, including art,
cover design and original work by Disk Only Software (DOS)"and Dr.
Ron Albright. Copyrighted material printed with permission of the
authors concerned. Permission to reproduce individual articles
remains with the authors, and permission to reproduce their work
further is in no way implied by their appearance in this
publication.

First Printing, January, 1987 Fourth Printing, April, 1987
Second Printing, February, 1987
Third Printing, March, 1987

Published By.

Disk Only Software
P.O. Box 244

Lorton, Virginia 22079

1^ or call
- 1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required

Alternate is (301) 369-1339. No Touchtone is required.

Delphi: TELEDATA-CompuServe: 74405,1207-MCI: TDG-TELEX: 6501106897 MCI

The Orphan's Survival Manual

Foreword

As it said in the flyer for this manual, it was both easier and
harder to do than the "Orphan Chronicles" were. Easier because
almost everything in this manual was already written - by you, the
user groups of the TI community. The only hard part (and it was
tough) was selecting what to include. This manual could have been
easily 300 or more pages. The amount of information available is a
tribute to you, the TI users.

I wanted to personally thank those who helped get this manual
put together. All the authors and user groups who helped me
assimilate this mass of information have been of immense assistance.
In particular, Kent Sheets of the Northwest Ohio Users Group, Art
Byers of the Central Westchester 99ers, and Terrie Masters of the LA
99ers Users Group. Quite literally, this manual could not have been
done without the help of these fine folks.

The authors who wrote new material for this manual deserve a
special mention. They did it for the sheer love of the TI community
and the desire to share their wealth of information with vou. Warren
Agee, Jerry Coffey, Scott Darling, Jeff Guide, Howie Rosenberg,
Barry Traver, and Jonathan Zittrain all wrote along their lines of
expertise for this manual. I will always be deeply appreciative.

I want to remind all of you who brought this manual to send in
the registration card to User Network 99. Terrie Masters has areat
plans for this organization and I support her efforts to unite the
user groups and the non-affiliated TI users for the distribution of
information. I hope to be able to work with her in making updates
available for this manual. To get the information to you, she will
need your address. Mail the card in right away.

Dedication? Who could this manual be dedicated to other than
YOU - the TI user. Struggling against the odds. Inventing.
Ingenious. Sharing. Thanks to you, we ar& all alive and well.

Ron Albright, Editor

Our Thanks to ...
Bayou Byte Newsletter
ROM Newsletter—Users Group of Orange County
Manasota Users Group
Topics—LA Were

Call Sounds—Central Westchester 99'ers
Northcoast 99'ers

99'er News—Chicago & Wills County Illinois

North New Jersey 99'ers Group Newsletter
MANNERS News-Mid Atlantic 99'ers, Bill Whitmore, Editor
NH99'er User Group
A9CUG

GEnie, Rockville, Maryland
OH-MI-TI

99'er NEWS

Northwest Ohio 99'er NEWS
HOCUS Newsletter

Central Texas 99/4A User Group
Delaware Valley User Group
Front Ranger, Colorado Springs, Colorado
Western Penn-WPUG

"we CAN do it! ^
Principal Survival Principles For Life in the Orphanage"

by Barry Traver
Genial Computerware

The TI-99/4A is alive and well and living in ... Philadelphia,
Boston, Chicago, Los Angeles, Seattle, Ottowa, Washington, D.C., and
elsewhere! In many respects, more exciting things have happened
recently for the benefit of Tl'ers than took place while Texas
Instruments was still officially supporting the computer.

Life in the orphanage, however, is different in many respects.
Losing a parent sometimes draws the family closer together, and
Tl'ers know the reality of that, but - now that we have to "make it
on our own" - there are important computer "rules of life" to put
into practice so as to continue to exist as a thriving community or
family. It will take a cooperative effort, but "we CAN do it" if we
remember three "principal survival principles": Cottaging,
Archiving, and Networking. (If you remember the phrase, "we CAN do
it", the word CAN provides you with a merfiory key for remembering
these three principles of operation: _C_pttaging, _A_rchiving, and
Networking.) These three will be described one by one, since the
meaning of the terms by themselves may not be immediately evident.

First, we need some background to understand what is meant by
Cottaging. Whatever people may call it, we are in the midst of a
third major cultural revolution. The first major economic /^^)
orientation was the agrarian or agriculture-oriented society. Simply
put, this means that many people worked on their own farms, and those
who didn't usually also had home-oriented or family-oriented
businesses. To put it one way, a person's workbase was his own home
or cottage.

Then came along the Industrial Revolution. What this meant was
that workers often did not work in, at, or near their own homes, but
in large factories or other large business places of operation often
some distance away. In order to earn a living, people had to leave
home and become commuters. A man's home may have been his castle,
but it was no longer his place of work. He no longer worked "for
himself," but for other people, and often a large, multi-million-
dollar company.

If you aren't interested in a personal interpretation of
sociological history, you can skip this paragraph and the next, but
some may find it of interest. As I see it, one of the unfortunate
effects of this revolution was its contribution to the weakening of
the family, since - particularly if he was a commuter - MDad" often
only got to see his family a few hours each night. In addition,
whatever good effects it may have had, the simultaneous re
orientation away from home-based schooling to total classroom
schooling was another sociological change that weakened the coherence
of the family.

J^*5\

Most people probably just accept today as a "given" that the
"normal" way for things to operate is that Dad works away from home
and the kids go to school, but such was not the normal practice for
millennia! It's a comparatively recent development that has only
been in place in our country for a couple hundred years, and -
although some people may experience "future shock" become of the
"new" choices becoming available - there is evidence that both of
those commonplace suppositions are being challenged more and more
first by the increasing appearance of "cottage" industries, and the
second by the growing home schooling movement.

Here we come to the third revolution. We now live in a Computer
Age, whether that is your preferred term for it or not. The computer
revolution is producing "cottage" workers again. There are two
reasons for this. First, even for the person who is working for a
large company, if it is computer work, he can do it at home,
communicating with his company's computer via modem. Second, millions
of dollars of resources are not necessary, just a good product. Thus
"mom-and-pop" outfits can produce (and have produced)
superior merchandise to that released by billion-dollar companies.

The point of application here is that we don't need Texas
Instruments to survive, if we recognize - and support - the resources
available from such "cottage" operations: individuals, families, or
small companies who can provide (and are providing) items for the TI-
99/4A that TI never provided (and perhaps never would have provided,
even if TI had continued to support the TI 99/4A).

Let's look at two examples. (1) TI gave us the Terminal
Emulator II. (Before that they gave us a Terminal Emulator I, which
was even worse!) That was not "cottage" industry: that was what a
mammoth company was able to produce. Well, now we have FAST-TERM
(Paul Charlton), PTERM (Richard Bryant), 4A/TALK (Thomas Frerichs and
Michael Holmes), and MASS TRANSFER (Stuart Olson), just to name a few
terminal emulators that offer much more than TI's TE2 did: 1200 baud
operation, XMODEM transfers, large capture buffers, and much more.
(2) TI gave us a 32K RAM memory card. That was it. But 128K cards
(or better!) have been made available to us by Foundation, Horizon,
Myarc, Mechatronics, CorComp, and others. Do you see why some people
believe that we may actually better off now that we are not dependent
upon Texas Instruments but are looking to "cottage" companies to
support us?

The second principal principle is Archiving. The reference here
is _not_ to my ARCHIVER program - used for packing and unpacking
related groups of files on disk - but just to collecting TI material
in general. Why didn't I call this principle "Collecting" then?
Well, this article is based on a talk I gave for the 1986 Boston TI
Fayuh, which was before my ARCHIVER program made its reputation.
And, besides, Collecting would mess up the "CAN" memory aid, so let's
keep with the term "Archiving" here.

The idea here is that we make sure that we collect, preserve,
and make available what has already been done. Although there may
some benefits in re-doing certain things, often it is wasteful of
time and effort for people to write new programs from scratch where
public domain programs already exist that perform the same functions
(and perhaps more efficiently). (Even worse, people who aren't
programmers may just "go without" because programs that they need
have just gotten lost.)

Two types of items actually need to be archived or collected:
software and information. It especially takes a deliberate effort to
preserve the latter, because often the information appears where
preservation is not automatic: user group newsletters, notes on
local TI BBS's, even informal conversation. Some individuals in the
TI community have done some useful deliberate effort to preserve
the archiving - especially Guy-Stefan Romano of AMNION Helpline - but
a more organized effort is needed here. AMNION and some others have
done commendably, but _all_ of us must to a certain extent become
"archivists" for the sake of the TI community.

Here's a _caveat non_-_emptor_ (excuse my bad Latin!): I am
not supporting the idea of collecting _pirated_ software. We will
have "cottage" industries around to support us only to the extent
that we ourselves support the TI community. You can (and should)
personally archive original copies of copyrighted software for your
own use, but that is one area of your archival library that you
should not share with others. Public domain and Fairware material,
on the other hand, you should both archive and distribute freely
without restrictions. (And be sure to support Fairware authors,
because Fairware software in not "free software" but "try before you
buy" software that should be dealt with in integrity if we are to
survive and thrive as an orphan community.)

The third principle is the principle of Networking, which merely
means working together as an extended family. You should belong to
and support at least one TI-99/4A user group, and that group may be
local or not. (For example, some groups - such as Chicago, Boston,
and Washington, D.C. - have members that live at a distance.) Also,
if you have a modem, you should be actively involved with electronic
databases, whether they be commercial, national databases
(CompuServe, the Source, GEnie, Delphi) or local TI BBS's.

Since we can less and less look to Texas Instruments for

specific help, we need to help one another more and more. This
involves getting involved in specific activities that put us in
touch with one another. In other words, we need to "plug into the
Network." I've often had other users answer questions for me where
Texas Instruments was of little or no assistance. That's to be
expected, because _we_ are the ones who are now using out TI's on a
daily basis.

User group newsletters and software/textfile libraries can be a
great help, but one of the best resources is simply "Question and
Answer." This can be done through user groups or through leaving

/$S!^\

messages on TI bulletin boards. In spite of what some people think,
I'm not professionally trained in computer science; if I know
anything, it's because I've asked lots of questions and listened to
the answers, as well as listening to the conversations of others at
user group meetings and on electronic bulletin boards (including
especially FORUM on CompuServe, where I am currently serving as a
Sysop).

(Incidentally, a more formal way of making contact with what's
going on in the TI world is through subscribing to various TI-
oriented publications, such as MICROpendium, SMART PROGRAMMER, and
TRAVelER (a disk-based periodical), but I hope that you're doing that
already.)

One other place where you can "network" or "make connections"
with other users is in the various TI Faires that are taking place
all across the country. In addition to Chicago, Boston, Los Angeles,
and other places already mentioned in the first paragraph (actually,
Philadelphia had not yet had a full-fledged Faire, but it has
sponsored assembly language seminars by Mack McCormick and J. Peter
Hoddie), other localities have sponsored such special specifically TI-
99/4A events (e.g., Milwaukee and TICOFF in New Jersey). Here is
where you can get to meet and talk in person with the "Who's Who's"
of the TI world.

During the years that Texas Instruments was officially
supporting the TI-99/4A, we had only _pne_ such Faire: the TI-FEST
in San Francisco. Now that we are orphans, however, announcements of
new Faires are a regular occurrence. As an orphan, however, you will
get little benefit from your TI-99/4A unless you put these three
principal principles into practice: the Cottaging (i.e., realizing
that individuals and small companies can put out products equal or
superior to those from TI), Archiving (i.e., collecting in a
systematic way what has already been done for our machine), and
Networking (i.e., working together with other Tl'ers). We CAN
survive _and_ thrive: not merely as "orphans," but - as what we have
become - as _family_!

e-
Editor's Note: Mr. Traver is surely one who practices what he
preaches. He has been an active participant in all three areas that
he recommends to others. Most notably, the "Cottager" aspect. As
owner of Genial Computerware (835 Green Valley Drive, Philadelphia,
PA), he has produced the "TRAVelER Diskazine", first (really)
"magazine-on-disk" for the TI 99/4A. This highly-acclaimed
publication has been phenomenally accepted by the TI users and has
brought such innovative programming techniques as the "Archiver"
utility that Barry mentions above - the first file compressor and
library utility for the 99/4A, among others. The announced
association of J. Peter Hoddie with Genial is sure to bring about
some incredible and innovative hardware and software from this
"Cottage Industry". Barry also has his son, John Calvin, involved in
"cottaging" as John has a business distributing disks of public-
domain software. The Travers are, surely, a "third-wave family".

Orphan's Survival Manual
Table of Contents

Foreword and Dedication

Introduction - Barry Traver

Section 1 - 1-1

-BASIC and Extended BASIC Computer Music 1-2
-Color Bar Graphs 1-3
-Programming Ti ps 1-4

-Adding Hard Copy to Programs (George Stefan) 1-7
-Error Trapping Techniques (Ted Mills) 1-8
-MS/Labels (Martin Smoley) 1-9

Section 2 - Assembly Language 2-1

-TI 99/4A Memory Archi tec ture 2-2
-The Screen Pager Utility (Mike St. Vincent) 2-3
-Call Peek (Danny Michael) 2-5

-Convert Programs to Program Form (Darren Leonard) 2-14

-The Ultimate Save (Tom Freeman) 2-15

Section 3 - c99 3-1

-The C Language and You (Warren Agee) 3-2
-c9 9 Beginner's Tutorial #1 3-4

-c99 Beginner 's Tutorial #2 3-7
-c9 9 Beginner' s Tutorial #3 3-10

-c99 Advanced Tutorial #1 (Warren Agee) 3-13
-c99 Advanced Tutorial #2 (Warren Agee) 3-16
-c99 Advanced Tutorial #3 (Warren Agee) 3-17
-c99 Advanced Tutorial #4 (Warren Agee) 3-19
-c99 Advanced Tutorial #5 (Warren Agee) 3-21
-c99 Advanced Tutorial #6 (Warren Agee) 3-23
-c99 Programmer's Reference Sheet (Herman Geschwind)...3-26

Section 4 - Forth 4-1

-Forth and the TI 99/4A (Howie Rosenberg) 4-2
-Introduction to Forth (Chick De Marti) 4-5

-How to BOOT the Forth System 4-10
-Forth and Extended BASIC Similarities 4-11

-Going Forth (David Aragon) 4-12

-Forth Tutorial #1 (Warren Agee) 4-14
-Forth Tutorial #2 (Warren Agee) 4-19
-Forth Tutorial #3 (Warren Agee) 4-22

~*)

/0S*\

c

Section 5 - Pascal, Pilot
5-1

-What They Don't Tell About P-Systems (Jerry Coffey). 5-2
-You're The Pilot (William Harms) 5_10
-Index of Pilot Commands (William Harms) *.!s-13

Section 6 - Hardware
6-1

-Load Interupt, Hold abd Reset Switches (Brian Kirby)..6-2
-Whistles & Bells are Nice But Lights? (j. Wilforth)...6-5
-Wiring Diagrams and Pinouts for the 99/4A 6-6
-Hi-Resolution Monitor (Steve Wilkinson) \\\\\e^l
-32K Memory Expansion Project (John Wilforth) !.!^6-8
-Hardware Hints (Ken Gladyszewski) 6-9
-Cool it (John Page) !!.!!!!] ^6- 10
-Anchor Automation Modems (Scott Darling) 6-14
-Disk Drive Power Supply !!!!!! !e-1 7
-Cable Box (Jim Edwards) !..!!!!!!!6-18
-Install GROM Chips Inside Console (Patrick Ugorcak) .* !e-1 9
-Adding A Second RAM Chip (Jim McCullock) 6-21
-Disk Drive Modifications (Paul DeMara) ^6-24

Section 7 - Telecommunications

-A Look At CompuServe (Jonathan Zittrain)
-Source

7-1

7-2

7-1 3
-The GEnie System and TI Roundtable (Scott Darling)...7-15
-The Delphi Network (Jeff Guide) 7-17

Section 8 - TI Writer
8-1

-Instructions and Hints (Dick Altman) 8-2
-Miscellaneous - Underlining, etc (Bruce Larson) 8-7
-Extend the Use of TI Writer (Allen Burt) 8-8
-Character Graphics with TI Writer (Rod Cook) 8-9
-TI Writer Formatter Commands (Tom Kennedy) 8-10
-TI Writer Reference Guide (Bob Stephens) 8-11
-Bit-image Graphics-Dot-Matrix Printers (Tom Kennedy).8-12

-Appendices

-TI Product Sources A_1
-TI Users Groups (incomplete listing)A-6
-Reserved for Future Use A-13 through 16
-peeks and Pokes (Scott Darling) « A-17
-Reserved for Future Use A-20 through 25
-Disk Drive Specifications (Louis Guion) A-26
-Tokenized Command Storage (George Stefan) A-27
-Error Code Lis tings A-28
-Disk Map (Earl Hall) A"29
-Format for Disk Directory - A-30

-Fixing Blown Disks (Terry Atkinson) A-34
-Reserved for Future Use A-32 through A-33
-Bibliography of TI-Related' Books (Barry Traver) A-35
-A Description and Commentary on the
-Geneve Computer Commentary (Chris Bobbitt) A-41

C Gives
Extra fewer
When >cu Can Use

A Little Help

Gettina Dcwn tc Basic $

COMPUTER MUSIC

We can write music with a list of 'CALL SOUND' statements, but
that is very cumbersome and uses too much memory. It would bte possible
to write an entire composition using only one 'CALL SOUND' statement
(with the exception of leading in or trailing notes.)

My method uses a main 'CALL SOUND' statement with all of the notes
listed in 'DATA' statements. It will be easier to debug if each 'DATA'
statement is one bar. Quite a few beginning programmers seem to have
dataphobia, but 'DATA' statements are very easy to use. The following
examples play the same five notes for one second each. Since there are
only five notes, each program has five lines. If I added ten more
notes, the first program would have fifteen lines but THE 'DATA'
program would still be only five lines long. This memory savings would
augment to an exponential factor with longer programs.

In the second example, we put the 'CALL SOUND' statement in a 'FOR
NEXT' loop with the number of repetitions equalling the number of
elements (notes) in the 'DATA' statement. Whenever the computer
encounters a 'READ' statement, it goes off looking for some 'DATA' ,to
read. It can be anywhere in the program. In this case, it calls the
data 'N' for note. The note (466) is put in the 'CALL SOUND' statement
and once a piece of 'DATA' is used it is no longer available, so the
second time through the 'FOR NEXT' loop 'N' will be equal to 392, and
so on. We could play the notes over again in both examples by adding a
'GOTO 10' line at the end of the program, however, in the second
program we would first have to add a 'RESTORE' line before we could use
the same 'DATA' a second time around.

The following program will play three notes at once and also
handle different note durations using the 'DATA' statement. Look at
the difference in the 'READ' statement, and notice in line 30 how the
duration is changed by multiplying a single digit with the constant
(500). To change the tempo, use a different constant

10 REM EXAMPLE ONE
20 FOR X=l TO 5
30 READ N

40 CALL SOUND(1000,N,1)
SO NEXT X

60 DATA 466,392,330,262,349
70 RESTORE
80 GOTO 20

10 REM EXAMPLE THREE
20 CALL SOUND<1000,466,1)
30 CALL SOUND(1000,392,1)
40 CALL SOUND(1000,330,1)
50 CALL SOUND(1000,262,1)
60 CALL SOUND(1000,349,1)
70 GOTO 20

10 REM EXAMPLE TWO

20 FOR X«l TO 5

30 READ D,A,B,C
40 CALL S0UND(Dt500,A,1„B,1,C,1)
50 NEXT X

60 DATA 2,330,392,466
70 DATA 1,262,330,392
80 DATA 2,196,262,330
90 DATA 1,165,196,262
100 DATA 4,220,262,349
110 RESTORE

120 GOTO 20

1-2

/^S

r

COLOR BAR GRAPHS

This short program in TI Extended BASIC is very simple to use. You may use from
2 to4 bars on each graph and each bar may bea different color. You are asked the
maximum possible value of each bar. In other words, what is 100% performance?
If the goal this year for the Acme Computer Company is to have each of three re
presentatives produce 10,000 units, then maximum performance for each repre
sentative would be 10,000. Minimum performance, of course, would be zero.

The value of each bar is the relative value of each in regard to the maximum goal.
In the example mentioned, producing 7500 units would give a representative 75%
performance, so his bar would extend %way across the screen. The title of the
graph will appear at the top of the screen, and the title, caption for each bar
appears directly above each bar. The maximum and minimum values appear at the
lower corners of the screen.

If you are doing an audio-visual presentation and need some color bar graphs in a
hurry, this program could be a big help. By photographing the screen of your
monitor with a single-lens reflex camera and slide film, you could use the graphs
in your slide shows. Or, by sending the video signal from yourcomputerto a video
recorder, you could tape the images for incorporation into a video presentation.

100 CALL CLEAR

110 INPUT "HOW MANY

:B :: IF B<2 OR B>4
120 PRINT "TITLE OF
CHAR,MAX)" :: INPUT

T*)>2C« THEN 1"

O

130 PRINT "MAX.POSSIBLE VALUE OF

BARS? (2-4):"

THEN 110

GRAPH:":"<28

T* :: IF LEN(

BARS <100%):" ::

V<0 THEM 130

140 FOR 1=1 TO B

150 PRINT "TITLE

(28 CHAR MAX.)" :

IF LEN<TB*<I)

)>28 THEN 150

INPUT MV M

OF BAR#";I;"s"
: INPUT TB*<I)

160 PRINT " 2-BLACK

REEN":" 4-LT GREEN

" <b-LT FLUE

7-DK RED"

170 PRINT " 8-CYAN

ED":"10-LT RED 11-DK

"12-LT YELLOW

13-DK C-.REEN " : " 14-MAGENTA

RAY"

180 PRINT "ENTER COLOR OF BAR #";
I;":" :: INPUT C(I):s IF CCIX2 O
R C<I)>15 THEN

180

3-MED G

5-DK BLUE":

9-MED R

YELLOW":

15-G

190 PRINT "ENTER VALUE OF BAR #";
I;":" :: INPUT V(I):: IF V(I)<=0
OR V<I)>MV THE
N 190
200 REP(I)=32*(V<I)/MV):: IF REP<
1X1 THEN REP<I)=1
210 NEXT I
220 CALL CLEAR :: CALL SCREEN(16)
230 P*="FFFFFFFFFFFFFFFF" :: CC=9
6
240 FOR 1=1 TO B :: CALL CHARiCC,
P*):: CALL C0L0R(I+8,C(I),I):: CC
=CC+8 :: NEXT

I

250 DISPLAY AT(2,15-LEN<T$)/2) :T«
260 FOR 1=1 TO B :s DISPLAY AT<5«
I,1):TB*(I):: NEXT I
270 CC=96
280 FOR 1=1 TO B s: CALL HCHAR<5»
I+l,l,CC,REP(I))s: CALL HCHAR<5*I
+2,1,CC,REP<I)
):s CC=CC+8 :: NEXT I
290 DISPLAY AT<24,1)s"0" :: DISPL
AY AT(24,28-LEN(STR*(MV)>):MV
300 CALL KEY(O,KEY,STATUS)
310 IF STATUS=0 THEN 300
320 PRINT "ANOTHER GRAPH? (Y/N)"
:: INPUT Y* :: IF Y*="Y" OR Y*="y
" THEN 100

330 STOP

1-3

PROGRAMMING TIPS

The time required to test and debug a program usually exceeds the time
it take to rewrite the program. Several methods are available which
will make this job easier by preventing or trapping errors which occur
while a program is running. No one wants to spend time entering data
and then lose it due to a program error.
One of the easiest ways to reduce errors when writing a program is to
use the Extended BASIC statement ACCEPT instead of the more common INPUT
statement. Using ACCEPT will require us to give up the convenience pf
the included prompt option available with INPUT, but will allow us to
UALIDATE the keyboard input. There are several options available with
UALIDATE. ACCEPT UALIDATE CUALPHA3;AS permits entry of any uppercase
alphabetic character. Substituting DIBIT for UALPHA permits 0 through
3, and using NUMERIC will permit those numbers as well as: . * - and E.

Many programs ask the user a question to be answered by "YES" or "ND".
The program lines could be written:

400 INPUT "DO YOU WANT A HARDCOPY? CY/N3" - A$
410 IF SEECA,1,13-"Y" OR SESSCASl,13-"N" THEN 440
4S0 PRINT "PLEASE RESPOND EITHER CY3ES OR CN30."
430 BOTO 400

440 IF SEBCA,1,13-"N" THEN END

Using another option available with ACCEPT UALIDATE, a string may be
entered with the characters permitted as inputs ACCEPT UALIDATE
C"Y,N,An3-AS permits only three characters to be entered as AS. Adding
the SIZE option with SIZE-1, only one of the permitted characters could
be entered. With these options, the previous example could be written:

400 PRINT "DO YOU WANT A HARDCOPY? CY/N3":A$

410 ACCEPT UALIDATE C"Y/N3 SIZEC13:AS

4S0 IF A$«"N" THEN END

With these lines in our program, pressing any key other than Y or N will
result in a rude honk as will any attempt .to enter a second character.
Both examples will prevent the user from entering a character which the
computer has not been instructed how to handle and will, therefore,
reduce the possibility of an error in your program. Granted, erroneous
entries for the examples given will normally result in a WARNINB at the
time of input; however, errors later in the program may have been
prevented.

What can you do about errors which can occur late in a program? We can
make use of the ON ERROR statement to trap many of these errors allowing
us to recover and continue without losing data which may have already
entered. When an error occurs and the program stops, it can be
restarted only with the RUN command. But, when RUN is entered, the
values of our variables are lost.

1-4

One place where errors often occur is in o program which reads DATA
statements. When an attempt is made to read data past the last item in

/""^ n noTA statement the data error message appears on the screen and the
C prSaram stopl An ON ERROR statement can be used to prevent this type

of error. Consider the following program:

110 READ A :: PRINT A
120 GOTO 110
130 RESTORE
140 DATA 111, 112, 113, 114, 115

Runnina this program will print the numbers in the DATA statement in
line 140 until 115 have been printed. After 115, the last item in the
DATA statement is printed, DATA ERROR in 110 is printed on the screen
and ?he program stops. However, if we add: 100 ON ERROR 130 and change
line 130 to: 130 RESTORE :: RETURN 110, the program will run until
stopped by FCfN 4 or QUIT.

Many other uses for ON ERROR can be found. Even fatal I/O errors can be
trapped. To illustrate, check the following program:

100 ON ERROR 240
110 PRINT *1:"THIS IS A TEST"
200 ON ERROR 280
240 OPEN #1:"PI0" :: RETURN 100
2B0 CLOSE #1

/(«"\ 2S0 END

Ihe first error is created by line 110 which generates on I/O error
since File No. 1 is not open. The error takes program execution to
Line 240 where file No. 1 is opened as "PIO" and execution is resumed
in Line 100. A second error is generated when on attempt is made to
open the some file again. This is handled by Line 200 which Jumps the
program execution to Line 2B0 which closes the file.

A more practical application can be found in the following example using
the CALL ERROR statement:

100 ON ERROR 130
110 OPEN #1:"PI0"
120 GOTO 170

140 IF W-130 THEN PRINT "ARE BOTH P.E.B. AND PRINTER ON?"
150 PRINT "ENTER 'CON' TO CONTINUE." :: BREAK
160 RETURN 100
170 END

Here, the ON ERROR transfers the program to the CALL ERR statement. If
W is 130 - which indicates on I/O error - the message reminding the user
to turn on his P.E.B. and printer is displayed on thB screen and a

^ BREAK in Line .150 permits the necessary corrections to be made. CON
(will continue program execution to Line 100 for a second try.

1-5

When debugging your programs, the ON ERROR can be used to trap any error
as it occurs. A CALL ERR can be used to identify the error and the
program steps can be written to permit the error to be corrected and the
program allowed to continue.

The CALL ERR statement has the capability of returning four values. If
CALL ERR CN,N,D,P3 ON ERROR and PRINT M,N,P are included in your
program, most errors can be identified while the program is being
debugged. For example:

100 ON ERROR 250

110 ! PROBRAM LINES

250 CALL ERR CM,N,0,P3
560 PRINT n,N,P
270 BREAK

2B0 ON ERROR E50

SSO RETURN EXIT

Errors occurring in the program will cause execution to shift to Line
250 due to the ON ERROR 250 in Line 100. Line 250 assigns variables to
MCError Code3, NCError Type3, 0CSBverity3 and PCLine Number3.

Line 250 prints the values assigned to the variables. [Severity is
always S and there is no need to print 0.3 Printing UJ gives the error
code and the code number can be found in the list of error codes in the

Extended BASIC manual. If the value of N, the error type, is "-1", the
error occurred in a statement. P will be the line number of the

statement causing the error.

A BREAK statement was included to provide an opportunity to the
programmer to correct a correctable error, continue, and resume program
execution at the line following the line in which the error occurred.

Once an error has been processed, it is cleared and must be executed
again to handle to subsequent error. This was done in the previous
examples by RETURN followed by the line number of the first ON ERROR
statement. In this example, the RETURN NEXT bypassed the ON ERROR in
Line 100; therefore, ON ERROR 250 is repeated in Line 2B0.

ON ERROR statements are similar to a BOSUB so far as a RETURN being
required. Three options are available for RETURN with ON ERROR: RETURN
alone will resume program execution in the statement which caused the
error; RETURN NEXT causes the program to resume in the line following
the line where error occurred; RETURN CLine Number3 starts execution
with the line number specified.

1-6

SCME EASIC TIMINGS . . .

ADDING HARD COPY TO PROGRAMS by 6eorge F. Stefan

...I Mas asked several questions about converting
programs which had output only to the screen so that
they Mould output to a printer. I also had just done
such a conversion for the group library. The next day,
I received a copy of the newsletter of the Hichita
(Kansas)99er's Users Group Mich] contained a progra
by Paul Yorke of Florida (no credit for original
publisher given) which converted a prograi to use
SPEECH on the TE II. I saw that this prograi could
provide the solution to probleas of this conversion.

Hy first thought was just to change SPEECH to RS
232 but sore people would need to use PIO or different
Baud rates, so I decided to allow input of the desired
output device. Also, I eliminated restrictions on
naaes for the original and new prograas. I added
provisions for either adding the new output device to

screen display or using the output device instead of
screen display.

You should use the RESEQUENCE or RES coaund on
your prograi before running this prograt because sate
lines Mist be inserted between lines of the original
prograi. The inserted lines are ntHbered 5 higher than
the line froi which they are derived. Therefore,
resequencing is not necessary if the gap between lines
is always tore than 5.

If your copy of the original progra* is exactly
the saw as the old copy saved with the MERGE conand,
you aay then speed up final recovery of the prograi
by using 'OLD and OLD PROGRAM NAME', then 'MERGE and
NEN FILE NAME".

This prograi adds ' II: ' to any PRINT statements
in the source prograi. Therefore, DO NOT USE IT on a
prograi which already has opened a file for output and
contains "PRINT I' statements.

188 REM ADOPRINT - SEPT. '85

118 DATA 8,95,159,253,288,1,
49,181,199,999,179,247,8,999
128 DATA 156,253,288,1,49,18
1,999,1*8,253,288,1,49,8,999
,255,255,999
138 REM BY GEORGE F. STEFFAN

, LA 99ER COMPUTER GROUP, P
0 BOX 3547, GARDEN* CA 98247
148 REM BASED ON AN IDEA BY

PAUL YORKE : 1288 STARFISH L

ANE : STUART, FL 23494
158 REM DISK SYSTEM REQUIRED

148 REM 0P$ = '95 OPEN Hi'

IN TOKENIZED STORAGE

178 REM EN8 - '.OUTPUT' IN C
ONDENSED DISK CODE (TOKENS)

188 REM E*€ND OF PROGRAM

198 REM P$='PRINT 111'

288 CALL CLEAR

218 PRINT ' THIS PROGRAM NIL

LCTNVERT ANY NON-NODULE DE

PENDENT PROGRAM TO PRINT

TO A NAMED OUTPUT DEVICE.'

228 PRINT :' IT DOES THIS BY

ADDING AN OPEN STATEMENT A

ND REWRITING'

238 PRINT ' ALL PRINT STATEM

ENTS ADDING OUTPUT REQUIREME

NTS.'

248 PRINT :' PROGRAM MUST HA

VE ONLY ONE STATEMENT PER LI

NE.'

258 PRINT ' THE ORIGINAL PRO

GRAM MUST BE SAVED IN MERGE
FORMAT."

268 PRINT :: INPUT ' PRESS E

NTER TO CONTINUE*:T$

278 PRINT :* YOU MUST RESEQU

ENCE YOUR PROGRAM BEFORE S

AVIN6IT IN MERGE FORMAT.':;

288 60SUB 538 :: 0P*=T$

298 60SUB 538 :: EN*=T$

388G0SUB538 :: P$=T$

318 60SUB 538 ::»=T$

328 60SUB 538 :: Ef=Tf

338 PRINT :: INPUT 'PROGRAM

TO BE CONVERTED? ':IF»

348 PRINT :: INPUT 'NAME OF

MODIFIED PROGRAM? ':0F*
358 IF 0F*=IF$ THEN PRINT 'N

AMES MUST BE DIFFERENT!' ::

GOTO 338

368 PRINT :: LINPUT 'NAME OF

OUTPUT DEVICE? *:0D$

378 PRINT :"A - ADD OUTPUT T

0 0EVICE':;:'C - CHANGE FROM
SCREEN TO OUTPUT DEVICE':

;:'SELECTION>
388 ACCEPT AT(23,12)SIZE(-1)
UALIDATE('AC')BEEP:T$:: S=-

5*(TI*'A')

398 OPEN tl:IF*,DISPLAY ,VAR
IABLE 163,INPUT
488 OPEN t2:0tt,DISPLAY ,VAR
IABLE 163,0UTPUT
418 PRINT t2:0PftCHRt(LEN(OD

*)>WID*t£N» :: P=l

428 IF E0F(1)THEN GOTO 468 E

LSE LINPUT ll:Ts :: IF T$=E$
THEN GOTO 468

438 G0SUB578 :: IF 0156 TH
EN L2=L2+S :: 60SUB 568 :: P
RINT t2:LN$«P$tiSE»(T« ,4,168
)

448 IF 0139 OR C=152 THEN G
OSUB 568 :: GOSUB 518 :: L2=
L2*5 :: GOSUB 568 :: PRINT I
2tlNlkSEG»(T$,3,i61)
458 GOTO 428
468 L2=L2+18 :: 60SUB 568 ::

GOSUB 518
478 PRINT 12:E$:: CLOSE tl

:: CLOSE 12

488 PRINT :;:'T0 GET YOUR PR
06RAN YOU HUSTDO THE FOLLOW
N6:':;:(NEH':;:'MER6E ';IF$:
;{'MERGE ';OFi
498 PRINT :THE CHANGED PROG

RAH MILL THEN BE IN MEMOR

Y AND YOU SHOULD SAVE BEFO

RERUNNIN6 IT.'
588 STOP

518 IF P THEN PRINT I2:IN«<C
* :: M

528 RETURN
338 T«=" ! CLEAR STRING

548 READ C :: IF C<256 THEN
T*=T*CHR*(C):: GOTO 548

558 RETURN
568 lN8=CH»<Ll-<L2>255)>ttH

R8(L2*256i(L2)255)>:: RETURN
578 L1=ASC(T$):: L2=ASC(SEG*

(T$,2,l)):: C=ASC(SE»<T$,3,
1))::RETURN

1-7

ERROR TROPINS TEOtUQUES - By Ted Hills, CALL SOUKDS
newsletter, Central Hestchester 99'ers, May, 1984

(Editorial Remarks by Art Byers, C.H. 99'ers)

Computers generally have built-in error handling
procedures. At aminimum a coaputer will stop when it
encounters an error condition. But first the coaputer
will store certain information, at designated memory
addresses, concerning the type of error encountered and
the line where the error occurred. On ay Apple these
error aessages can only be accessed by PEEXing into
memory through an error handling subroutine written
into the program. Otherwise the program simply stops
when an error occurs. The TI 99/4A, however, not only
routinely describes the error type but the line where
it was encountered aswell. (In addition the 99/4A's
TI BASIC has soae built-in error routines that do not
stop a program but rather issue awarning. One example
is entering an alphabet value into an INPUT statement
that expects a numerical value. Another: Extended
BASIC'S ACCEPT AT statement allows you to UALIDATE the
type of data you want entered and will give you a
WARNING •honk" and refuse to accept any other than the
data specified. See page 48 of the XB manual - Ed.)

MS-DOS computers feature only a slight improvement
in error handling in that the line is actually
displayed after the program stops and places the cursor
over the actual error.

Error handling functions are not only used to trap
errors in newly written, or typed-in, programs, but
also error handling routines have useful programing
applications. The latter were the initial purpose of
this article. However, some general conments might
also be appropriate.

Extended BASIC has two error statements - ON ERROR
and CALL ERR. ON ERROR simply tells the computer what
to do when an error condition is encountered.
Generally, ON ERROR will 60T0 or 6QSIB to a subroutine.

ON ERROR can be used in many ways. The most
common is to Keep programs from crashing when the user
does something wrong such as trying to load a blank or
not initialized data disk, hardware goofs, i.e., you
left the door open on the disk drive, or you misspelled
PIO as PIS.

CALL ERR is best used for debugging a program.
Once the program is error free, the CALL ERR lines can
be deleted. The Syntax of the CALL ERR subprogram
contains four variables describing some aspect of the
error condition. The statement is in the form GALL

ERR(Error Code, error type, severity, line number).
Error type simply distinguishes between program errors
and input/output errors. Frankly, I never have
understood the usefulness of the severity message.
(Neither have I! - Ed.)

So far so good! If the error is in the line where

the error condition was encountered, life becomes
relatively simple. However, the error may originate
somewhere else, such as abad value generated earlier
that does not show up until later. The best procedure,
therefore, is to place an ON ERROR statement near the
beginning of the prograi that OOSUBs or SOTQs an error
trapping routine at the end. The subroutine should
include aCALL ERR subprogram. Once the error codes
and the line are identified then PRINT statements can
be added to the subroutine to print out each of the
variables in the line where the error condition was
encountered. Hatch out, though, for BAD MALKs arising
from an ir^roper use of reserved words. Ionce typed
inapropam, written in TI BASIC, using Extended
BASIC. The TI BASIC version had avariable DI6IT which
is an Extended BASIC reserved word.

The TRACE coraand is a useful supplementary
debugging tool. However, Iprefer, to insert M'M IOE
AT (LINE)' to follow program flow. If you do use
TRACE, especially on a long and involved program, it is
helpful to have ascreen dump in low memory to print
the TRACE flow on to paper. The one by Qualitysoft
works very well. (Westchester also has one in the club
library for free.)

The ON ERROR statement should be a useful
programing tool. I routinely insert ON ERROR
statements in my program that either return to the main
menu if an error occurs or saves whatever data has been
entered so far to disk. It is very exasperating to
lose a lot of data when a program comes to a screeching
halt due to an error. Similarly, ON ERROR can be used
to close a file.

Last Fall I typed in a stock charting program that
could chart a lot of price data that I had
accumulated. Among the inputs for each data point
were the day, month and year. These Ientered in
through READ/DATA statements. To check for typing
accuracy, and to count the weeks, I included a
subroutine which read and printed the data items.
Instead of using an end of data identifier Isimply
used an ON ERROR message to save the data to disk as
soon as I had run out of DATA statements.

Some programers hold forth that a fully debugged
and properly written program should not need error
traps, except to guard against the hardware errors
discussed above. They consider use of ON ERROR as a
propaming tool to be somewhat inelegant, but 1
believe it provides an important measure of safety
which I like.

One final content. It is possible to have many ON
ERROR routines in the same program, as long as each one
is turned on and off at the right time. For example, I
usually insert an a0N ERROR 6OT0 (Menu)1. However, an
a0N ERROR (Save File)8 heads my insert data routine.
After the file is saved then I return to the 'ON ERROR
GOTO (Menu)1 comand.

1-8

/^^^Sk

r

r

100 ! §***» MS/LABELS t*t#* By: Martin A. Stoley «»*« For EPSON Printer ttttt

110 ! *♦»*♦ NorthCoast 99er's US ttttt

120 OPEN t9:*P10* ! OPEN PRINTER (Could be RS232) ttt Extended Basic tit

130 PRINT •9:CHRI(27);,0a;CHR$(27);18,;f
»0§=ST0P skip over perf,'8'SST0P paper end detector

MO CALL CLEAR :: CALL SCREEN(13)

150 PRINT • tt MS/LABELS tt»: :' PRINTS": :' 3-l/2in BY 15/16in':

LABELS': : :

160 PRINT ' Enter Data at Proepts": :" You will have 4 line per": :' label. Li
ne II = 15 Cols.': :' Line #2 = 28 Cols.': :

170 PRINT ' Lines 13 and #4 = 49 Cols.*: : :

180 60SUB 190 :: 60SUB 210 :: 60SUB 220 :: GOSUB 230 :: GOTO 240

190 PRINT :: PRINT

200 INPUT 'ENTER LINE 1 ':A$:: RETURN

210 PRINT :: PRINT • ENTER LINE 12' :

:: RETURN

220 PRINT :: PRINT
A/.AAAA JAAAAAAA JQ

230 PRINT :: PRINT
AAAAAA.AAAAAAAJQ

AAAAAAAAAAAaAAA.

ENTER LINE 13'

•:CI :: RETURN

ENTER LINE «4"

•:D$:: RETURN

240 PRINT :: INPUT 'HON MANY COPYS ':)(

250 CALL CLEAR :: PRINT ' Hold >Q< to Quit Printing'
260 FOR 1=1 TO X ! tttttttt PRINTOUT LOOP ttttmt

270 ! PRINT •9:CHR$(27);'S";!
280 PRINT i9:CHR$(27);"E';»
290 ! PRINT •9:CHR$(27);,H'';!
300 PRINT •9:CHR$v27);"N';CHR$U)}»
310 PRINT t9:Af

320 PRINT *9:CHR$(27);"W';CHR*(0);!
330 ' PPINT I9:CHR*(27);'P';!

340 PRINT 19:' ';B*;CHR$(27);'F' !

350 PRINT I9:CHRS(27);CHR$(15>;' •;«;:;• ';D*;CHR$(18>;CHR*(27);'H';!
CHR$I15>=START C0NDENSEDt-CHR$(18>-ST0Pf"H-^STOP DOUBLE STRK.
360 FOR K=I TO 3 :: PRINT ** :: NE»T K

3/0 CALL KfcM0,K,S):: IF K=81 OR K-I13 THEN 390
380 NEU I

390 CALL CLEAR :: CALL SCREENI6)' tttttttt Beginning of TASK SCREEN tttttttt
400 PRINT " Enter M for More labels': :' N for Ne* labels': :' L to

Change a line": :

410 PRINT " Q tp Quit the prograi': :
420 INPUT " Enter your chioce: ":D0$

430 IF D0J='H" OR DOM'i' THEN CALL CLEAR :: 60T0 240

440 IF DOI^'N' OR D0$="n' THEN 140

450 IF D0l='L" OR DQf='l' THEN 480

460 IF DQ$="Q" OR D0$="q" THEN 520
470 60T0 420

480 CALL CLEAR ' tttttttt Beginning of LINE CHAN6E SCREEN tttttttt
490 INPUT ' Enter line nutber to be changed 1 to 4 ':L :: IF L<1 OR
L>4 THEN 490

500 ON L GOSUB 190,210,220,230
510 GOTO 390

520 PRINT l9:CHR$(27);'*'j! Initialize Printer = Nipe out any leftover coieands
530 CLOSE 19

540 ! ttt MS/LABELS tt#

550 END ^~« •. -

INPUT •AAAAAAAAAAAAAAAAAAAAAAAAAAAA.:BI

INPUT '0A AAAAAAAAOAAAAAAAAATAAAlA.S |.V

AAAAAAAAIAAAAAAAAA^AAAAAAAAA?AAAINPUT '0

START DOUBLE STRIKE OPTIONAL

START EMPHASIZED

Start Elite-suedakes #1=18 characters)

START ENLAR6ED

STOP ENLAR6ED

Stop Elite-size(Needed if 290 is used)

STOP EMPHASIZED

MS/LABELS-DOC

"MS/LABELS' started out to be a stall, sitple
prograi to print 3-1/2 in X 15/M in. labels lor
return addresses and disk labels, but it evolved

into the prograt you see at the left.

THE USED INSTRUCTIONS FOtlON

(1) Load the prograt (Don't run it yet).

(2) Align your labels in the printer then turn
the printer on.

(3) Now RUN the prograi.

(4) Enter the data as protpted by the prograt.
There is one circutflex (A) for each space
on the entry line. Do not use any coaeas.

(5) After you have entered (4) lines the prograt
will ask how tany labels you want. If you
want to see one enter 1. After the label is

printed you till see a screen which till let
you print (M)ore if you like that you see.

(6) If you don't like thet enter L to change a
line and then the line nutber you would like
changed. You can repeat the L for as tany
lines as you need, or you can use H for tore
and print one at any tite until you like the

label you have. At this point you use More,
then type in the quantity you tant and the
printer till start running thet off.

If you change your tind, HOLD >Q< until the

printer stops and you till return to the
task screen.

(7) At the task screen you can also enter an (N)
if you tant a completely Net label or (0)uit
to exit the prograt.

NOTE: If your ribbon is not dark enough you
can edit the prograt and delete the (!)

and the space frot the beginning of line 270
This till give you Double Strike throughout.
Also! Doing the sate thing to line Nos. 290
and 330 till give you 18 characters in line
fl if your printer is capable of Elite Print
(You till have to retetber that you have (3)
characters past the last (A) in line one.)

If you do not like to type, ty prograts
NorthCoast 99er's Library.
Good Luck! Marty

are in the

MS/LABELS

TI99/4A Extended Basic
This label Mas aade by the prograt listed above,
Ln.U=ENLARGEO l2»Std. size ff3tl4*Condensed

"^

1-9

Study Brines Benefits

Saueezina Real Benefits From
Your 99/4A and Geneve Systems

Assembly Lanauase

This block diagram came from TI and may be of general inter.est*
a picture is worth a thousand words!

TI-99/4<A> MEMORY ARCHITECTURE
•from:

Rockey Mountain
99er» "TIC TALK"

CRU FOR BANK SWITCHING

TMS9900
CENTRAL

PROCESSR

CPU MEMORY*

MAPPED PORTS»>

CONSOLE
ROM

SK BYTE

OOOO

FAST

RAM

GS300

256

BYTES

SOOO

MEMORY

EXPAN

PART 1

SK BYTE

2000

SOUND
MEMORY-

MAPPED

PORT

8400

1
DEVICE
SERVICE
ROMS

SK BYTE

4000

READ

MEMORY-

MAPPED

PORT

SSOO

OPT'L
COMMAND

MODULE

ROM/RAM

SK BYTE

6000

WRITE

MEMORY-

MAPPED

PORT

8C00

SEE

BELOW

8000

SPEECH

READ

MEMORY-

MAPPED

PORT

9000

MEMORY EXPANSION
PART 2

24K BYTES

AOOO COOO EOOO

SPEECH

WRITE'
MEMORY-

MAPPED

PORT

9400

GROM

READ

MEMORY-

MAPPED

PORT

9S00

a
GROM

WRITE
MEMORY-

NAPPED

PORT

J

9C00

^

TMS 9919

SOUND CHIP

WT DATA=3400

TMS991SA

RD DATA-8300

RD STAT-8802
WT DATA-8C00
WT ADDR-8C02

TMS5200

SPEECH SYN

GROM CNTRL

RD DATA»9S00

RD ADDR*9802
WT DATA-9C00

WR ADDR«9C02

GROM BANK 0=>

GROM BANK 1=>

GROM BANK 2»>

VDP RAM

16K BYTES

VOCAB ROM

32K BYTES

A

GROM < GRAPHICS READ ONLY MEMORY >
IN COMMAND MODULES OR PERIPHERALS

UP TO 16 BANKS OF UP TO «0K BYTES EACH

J_ ~7_

\

J
J

r'ROM BANK 15«>

CONSOLE fcfROM

(GRAPHICS READ ONLY
.MEMORY)

13K BYTES ACTIVE IN

ALL BANKS *Z
Z.

~r
T_

~r_

J-
•/•

~L- Z 7
0000 2000 4000 6000 3000 AOOO COOO EOOO

Hs^Y LINES INDICATE FEATURES INCLUDED WITH CONSOLE

2-2

THE SCREEN P^GER UTILITY
By Michael St. Vincent

How often have you wanted to look at part of a program as it runs or
set up an initial instruction screen that could be stored and recalled in
an instant? If you are familiar with the almost complete impossibility of
doing this, especially in the Extended BASIC environment and want to get
-free of such limits, here is your answer: an assembly language subroutine
that is short and non-compl€»x.

Simple solutions to problems such as screen storage are often
overloked in favor of staying strictly in one language's environment.
Most people are unfamiliar with the usefulness of having machine language
routines take over chores that are much slower in BASIC- To store a

screen in BASIC, for example, most programmers would use a GCHAR to read
all of the screen and store the result in an array. Besides being slow
and inefficient, a BASIC routine to do such would use large amounts of
memory.

Enter the amazing and fast 9900 machine language routine! The
screen, usually a set of rows and columns to a BASIC programmer; becomes
only a set of memory locations. In this form, moving a copy of the
screen becomes as simple as assigning the assembly equivalent of a few
variables and a .GOSUB. Operation of the subroutines is kept simple by
having the computer do the calculating. The possible applications of
these subprograms are lir. ited only to the programer's imagination.

How the program is usedj
The subroutines, once assembled, are some of the simplest to use.

Loading the programs into memory is accomplished by using a CALL INIT
command followed by a CALL LOAD(MDSK1.PAGER/OBJ") command. The routines
ar& automatically stored in the memory and become invisible until needed.
Four programs are loaded simultaneously for use in Extended BASIC:
PGSAV1, PGSAV2, PGSH01, AND PGSH02. The SAV programs save everything on
the screen at the instant they are called to pages 1 and 2 respectively.
The SHO programs return the previously saved pages to the screen. All
four programs are accessed by-CALL LINK("pgname") where pgname is one of
the program names given above. The amount of time spent by the programs
can only be measured in microseconds. Using OLD, SAVE, MERGE, and NEW
commands have no effect on the screens stored in memory (thus, one could
list a program, save a screen of the list, load a new program, and still
be able to look at the listing of the old program). The only
restrictions on the programs are that they only store the characters,
neither the colors nor any sprites are kept.

How the program works:
The programs in assembly use a simple system of setting up a block

of CPU RAM to store pages. Cnce a screen is to be stored, the registers
0, 1, and 2 are loaded with the address of the screen map in VDP RAM
(000), the address of the CPU RAM block, and the number of bytes to
transfer (768 for the full screen). A simple BLWP (branch and link with
workspace pointer) command links to another utility routine which does
the actual transfer. After the transfer is completed, the program uses
the psuedo-opcode RT to reset the workspace pointer to the BASIC
nterpeter area from where it branched. At that point, the BASIC level

program continues to execute.

2-3

How to assemble and install thas program on your disks:
Using the Editor/Assembler package, type in the source listing which

follows exactly as shown. Spacing is important to insure that the
program will assemble properly. Once the program is typed in (you don't
need to copy the remarks that are preceeded by an asterisk, store the
source code (what you typed) under the filename "PAGER/SOU". Then load
the Assembler. When asked for the source filename, give
••DSK1.PAGER/S0UM, and when asked for the object filename, give
"DSK1.PAGER/OBJ". If you have a printer, give the device name at the
prompt, otherwise, hit <enter>. The options for assembly are "RSL" if
you have given a printer device name, of "RS" if you haven't. The
assembler should do its job within 5 minutes and should print "0000
ERRORS" at the end. If there arts any errors during assembly, refer to
the source listing of this newsletter and compare what you typed.

As listed, the program assembles with no errors.

* THE SCREEN PAGER UTILITY

* SOURCE CODE WRITTEN BY MICHAEL ST. VINCENT
* USED TO STORE UP TO 2 SCREEN-FULLS FOR LATER USE
♦

DEF

*

VMBW EQU >2024 *

VMBR EQU >202C ♦

SCRMAP EQU >0000 *

SCRCNT EQU 763 ♦

PGSAV1,PGSAV2,PGSH01,PGSHQ2 ♦ NAME ROUTINES

PAGEl BSS 768 #

PA6E2
JfL

BSS 768 *

PGSAV1 LI Rl,PAGEl *

JMP GOSAVE *

PGSAV2 LI R1,PAGE2 *

GOSAVE LI R0,SCRMAP *

LI R2,SCRCNT *

BLWP eVMPR ♦

RT *

*

PGSH01 LI Rl,PAGEl «

JMP GOSHOW *

PGSH02 LI RlfPAGE2 *

GOSHOW LI Rfi), SCRMAP ♦

LI R2,SCRCNT *

BLWP QVMBW *

RT *

VDP WRITE ROUTINE

VDP READ ROUTINE
START OF SCREEN MAP ADDRESS
NUMBER OF CHARACTERS IN MAP

STORAGE BUFFER 1

* STORAGE BUFFER 2

ACTIVATE BUFFER 1

GOTO THE SAVE ROUTINE

ACTIVATE BUFFER 2

STARTING POINT TO READ FROM MAP

NUMBER OF BYTES TO MOVE

"GOSUB" TO READ

RETURN TO BASIC

ACTIVATE BUFFER 1

GOTO THE RESTORF ROUTINE

ACTIVATE BUFFER 2

STARTING POINT TO REPLACE MAP

NUMBER OF BYTES TO MOVE

"GOSUB" TO WRITE BACK TO MAP

RETURN TO BASIC

END ♦ TELL ASSEMBLER TO STOP

If you want to use this program in BASIC with the Editor/Assembler module,
change the lines to match this header:

DEF

REF
*

SCRMAP EQU

SCRCNT EQU

PGSAV1,PGSAV2,PGSHO1,PGSH02
VMBR,VMBW

♦ NAME ROUTINES

>0000

768
* START OF SCREEN MAP ADDRESS
♦ NUMBER OF CHARACTERS IN MAP

^Deration of the program is the same as desribed for Extended BASIC.

2-4

z^i^asiv

i(#*S

r

r

CALL REEK
Hello again everyone. There's a lot to cover this time, so let's get right to it.

Last month's A/L Challenge was to write a program to input a line from the'keyboard and
output it to a printer. Since nobody called to ask a question about device I/O, I assume
everybody was able to get all the information they needed from the materials they have.
Everybody DID write a program didn't they??? Just in case, I'll cover a few high points
before presenting my solution to the challenge. Most of the needed information, although
a bit cryptic, can be found in the Editor/Assembler manual. Due to space requirements
(and laziness on my part), I'll not reprint that information here, but will offer a few
comments on it. So... grab the manual and let's look at "File Management".

As I said last month, one of the great things about our computer is the ability for
our programs to interface with most peripherals in the same manner regardless of the type
device. This is due to the use of "smart" peripheral controllers and the "file" concept.
Read pages 291 and 292 in the E/A manual for a description on the "file" concept. Any
device, with the exception of the cassette recorder (see the note on page 262), that can
be accessed with the OPEN, CLOSE, INPUT and/or PRINT statements in basic can be accessed
in assembly language, using a common subroutine provided in the E/A utilities called
DSRLNK. Each peripheral card contains a DSR (Device Service Routine) that handles the I/O
to that device and makes data flow to and from the device appear to us as a "file". The
DSRLNK subroutine takes care of locating the desired device, ie. "PIO" or "DSK", and
interfacing it with our program. Page 262 of the E/A manual contains a description of how
to use DSRLNK.

The key to accessing any device with the DSRLNK utility is the PAB (Peripheral Access
Block). The PAB is a group of data that defines all information necessary to access a
particular file on whatever device we are working with. The PAB has a strict format, and
is always located in VDP RAM. Pages 293 and 294 in the E/A manual cover the format of a
PAB. A PAB is 10 bytes long, plus the length of the file descriptor. A file descriptor
is the device name, file name, and any options needed for a particular device.
"DSKl.MYFILE" and "RS232.BA=2400" are examples of a file descriptor. The E/A manual has a
pretty good description of the PAB, but here are a few good things to remember... The PAB
is a two way street. In addition to its function of passing necessary information to the
device, the device also uses the PAB to pass necessary information back to our program.
For example, byte 1 cf the PAB is used by the device to identify any errors encountered
during the current operation and byte 5 is used by the device to tell us the number of
bytes read during a READ operation. Remember that byte 1 is a bit mapped byte, that is,
more than one piece of information is passed through this one byte. Also, bytes 2-3 and
6-7 are taken as word (16 bit) values. The data buffer address in bytes 2 and 3 always
point to a buffer area in VDP RAM. This is where you put data that will be written to a
file before linking to the device, and it is where data read from a file will be placed by
the device. It is important to remember that you can change the data buffer address
between each link to the device if necessary. For instance, you could use separate read
and write buffers when dealing with relative files. However, you must be careful to place
the data buffer in a VDP RAM location that will not interfere with the operation of the
computer. Addresses between >1000 and >3000 are usually a good choice for PABs and data
buffers in a program running out of the E/A module.

Pages 295 thru 298 of the E/A manual describe the meanings of the I/O opcodes used in
byte 0 of the PAB. Page 299 describes possible error conditions. Although it is good to.
know how error codes are passed back from a device, the DSRLNK routine transfers the error
code to register 0 of the calling workspace, and sets the equal bit in the status register
if an error occurs during access to a device. See page 262 for more information.
Hopefully, these few comments will answer any questions you may have had. If not, feel
free to call. Now... here's my solution to A/L Challenge #2.

'A/L CHALLENGE #2'

DSRLNK,VSBW,VMBW,KSCAN,VDPWD,GRMRA,GRMWA
START

>1000 Location of PAB

2SB . . data buffer

PAB+9 . . name length in PAB
PAB+5 . . data count in PAB

2-5

0001 TITL

0002

0003

REF

DEF

0004. PAB EQU

0005 BUFFER EQU

0006 NAMLEN EQU

0007 COUNT EQU

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

0060

0061

0062

0063

0064

0065

0066

0067

PNTR

KEY

STATUS

GPLWS

MAX

WKSP

OPEN

CLOSE

WRITE

BREAK

ENTER

CURSOR

* Data

PABDAT

EQU

EQU

EQU

EQU

>8356

>8375

>837C

>83E0

name length pointer
Keyscan returns character here

Location of GPL status byte '
GPL registers

Max char count

Use this area for registers

I/O opcode for OPEN
. CLOSE

. WRITE

Keycode for FCTN 4
. ENTER

Char number of cursor

EQU 80

EQU >8300

BYTE 0

BYTE 1

BYTE 3

BYTE 2

BYTE >D

BYTE >1F

for PAB

EVEN

BYTE 0

BYTE >12

DATA BUFFER

BYTE MAX

BYTE 0

DATA 0

BYTE 0

BYTE ENDAT-FILNAM

TEXT *PIO'

EQU *

EVEN

BSS 2

GROM address fisrt

MDVB @GRMRA,@GRMSAV Get MSB
NOP Waste time

MOVB ©GRMRA,©GRMSAV+1 Get LSB

Force even address

I/O opcode
File type description
Data buffer address

Record length
Character count

Record number

Screen offset

Name length
Filename

Mark end of data

Force even address

Save GROM address here

FILNAM

ENDAT

GRMSAV

* Save

START

L00P1

L0DP2

L00P3

DEC ©GRMSAV Adjust

LWPI WKSP Load the workspace pointer
LI R0,PAB RO points to PAB
LI Rl,PABDAT Rl points to data for PAB
LI R2,ENDAT-PABDAT R2 has byte count
BLWP ©VMBW Write the data to VDP
MOVB ©0PEN,R1 OPEN opcode to Rl
BL ©10 Open the file

BL ©CLS

LI RO,BUFFER

CLR R3

MDVB ©CURSOR,Rl
BLWP ©VSBW

BLWP ©KSCAN

Clear the screen

RO points to screen location
Use R3 far character count

Rl has cursor char

Put cursor on screen

Get a keypress
MOVB ©STATUS,©STATUS Check for new keypress
JEQ LOOP

MOVB ©KEY,R1

CB Rl,©BREAK
JEQ ENDIT

CB Rl,©ENTER

JEQ PRINT

Loop if no new key
Key code to Rl
FCTN 4?

Yes, prepare to end
ENTER key pressed?
Yes, write line to device

* Just an ordinary character, put it on screen
BLWP ©VSBW Write to screen
INC R3 Increment counter
INC RO Increment screen pointer

2-6

0068

0069

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

0080

0081

0082

0083

0084

0085

0086

0087

0088

0089

0090

0091

0092

0093

0094

0095

0096

0097

0098

0099

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

0110

0111

0112

0113

0114

0115

0116

0117

0118

0119

0120

0121

0122

0123

0124

0125

0126

0127

CI R3,MAX Reached max line length?
JLE L00P2 No, continue

Maximum line length reached if here

*

PRINT

ENDIT

DEC

DEC

JMP

R3

RO

L00P3

MOV R3,R1
SWPB Rl

LI RO,COUNT
BLWP ©VSBW

MOVB ©WRITE,Rl
BL ©10

JMP L00P1

MOVB ©CLOSE,Rl

BL ©10

Restore GROM address

MOVB @GRMSAV,©GRMWA Write MSB
NOP Waste time

MOVB ©GRMSAV+1,@GRMWA Write LSB

LWPI

B

GPLWS

©>6A

Adjust count

and screen pointer

Get another key

Char count to Rl

and into left byte
Pointer to count byte in PAB
Write the count byte

WRITE opcode to Rl
Output the line
Get another line

CLOSE opcode to

Close the file

Rl

Load GPL registers
Return to E/A module

* CLS Subroutine, clears the screen

* Uses RO, Rl, and R2

CLS CLR RO Beginnig screen location
LI Rl,>2000 Space char in left byte, Rl
BLWP ©VSBW Clear first byte
LI R2,767 Remainder count

CLSLP MOVB R1,©VDPWD Clear next byte
DEC R2 Decrement count

JNE CLSLP Loop til done
RT then return

*

*

t

* Uses RO, Rl, R2, and R3

10

I/O Subroutine

Enter with I/O opcode in Rl (left byte)
Handles errors, ignores CLOSE errors

IORET

*

ERROR

R0,PAB Point to PAB
©VSBW Write the I/O opcode
R0,NAMLEN Point to name length in PAB
R0,©PNTR Required for DSRLNK
©DSRLNK Link to device

8 For file I/O

ERROR Handle any errors

Return if no errors

©CLOSE,Rl Closing the file?
IORET Yes, ignore error

R0,B Move error code to right byte
RO,1 and multiply by 2
R0,R3 Save error code in R3

©CLS Clear the screen

R0,BUFFER+2 Location for error

LI

BLWP

LI

MOV

BLWP

DATA

JEQ

RT

CB

JEQ

SRL

SLA

MOV

BL

LI

MOV

MOVB

©ERRTAB(R3),R1 Message location
*R1+,R2 Byte count to R2

msg

to Rl

2-7

0128 SRL R2,8 Adjust to word value
012<? BLWP (SVMBW Write the message to si

0130 *

0131 LI R0,742 Screen location

0132 LI Rl,PRESS Message pointer
0133 LI R2,21 Byte count

0134 BLWP @VMBW Write to screen

0135 *

0136 ERRLP BLWP HKSCAN Get a key

0137 MOVB ©STATUS, (SSTATUS New key?

0138 JEQ ERRLP Not yet

0139 CB @ENTER,@KEY ENTER?

0140 JNE ERRLP No, try again
0141 BL @CLS Clear the screen

0142 B QENDIT End the program

0143 *

0144 ERRTAB DATA BDNMSG Bad device name

0145 DATA DWPMSG Device write protected
0146 DATA BOAMSG Bad open attribute
0147 DATA ILOMSG Illegal operation

0148 DATA OBSMSG Out of buffer space

0149 DATA EOFMSG End of file

0150 DATA DVCMSG Device error

0151 DATA FILMSG File error

0152 *

0153 BDNMSG BYTE 16

0154 TEXT 'Bad Device Name!'

0155 DWPMSG BYTE 26

0156 TEXT 'Device is write protected!'

0157 BOAMSG BYTE 19

0158 TEXT 'Bad OPEN attribute!'

0159 ILOMSG BYTE 18

0160 TEXT 'Illegal operation!'
0161 OBSMSG BYTE 20

0162 TEXT 'Out o-f Buf^cer Space!'
0163 EOFMSG BYTE

0164 TEXT 'Attempt, to Read Past EOF!'

0165 DVCMSG BYTE 13

0166 TEXT •"Device Error!'

0167 FILMSG BYTE 11

0168 TEXT 'File Error!1 9

0169 PRESS TEXT 'Press <ENTER> to end.'

0170 END

Here's a short description of how the program works..,

Lines 1-3 assign a title to the assembly listing, inform the assembler which pre-defined *
utilities and symbols we'll be using, and defines START as a label to be placed in the
ref/def table when the program is loaded.

Lines 4-13 equate various labels to values to be used in the program. Notice that the
value field for the labels NAMELEN and COUNT contain "well defined expressions". These
labels are referenced from the label PAB. By using expressions such as these you are
able to change the values of several related labels by changing only one line in the
program. See page 49 in the E/A manual for the description of a well defined
expression.

Lines 15-20 place 6 one byte values in the object code that will be used by various
routines in the program.

Line 23 contains an EVEN directive. This directive tells the assembler to make sure the
location pointer is at an even address. Although at this point the location pointer
would be at an even address, that could change if you added another byte value before

2-8

line 22. It's good practice to add an EVEN directive after using one or more BYTE or
TEXT directives in your program. The reason for needing to be sure that we're at an
even address at this point in the program is due to the use of the DATA*directive in
line 26. Remember that the BYTE directive places one byte of data in the program while
DATA places one word or two bytes in the program. When the assembler encounters the
DATA directive in the source code, it will increment the location pointer to an even
address if it should happen to be at an odd location. So... if at line 24 the
location pointer were at an odd address the result would be a one byte 'hole' in the
object code between lines 25 and 26. This would result in a PAB that would not conform
to the strict format that must be followed.

Lines 24-33 contain data that will make up the PAB. Notice that another well defined
expression is used for the name length in line 31. Doing this allows you to change the
filename in line 32 without having to change the filename length byte, as long as you
do not place anything between the end of the filename and the label ENDAT in line 33.
If your printer is connected to the system through a device other than PIO, you'll have
to change the filename. ENDAT is equated to the current location pointer through the
use of the dollar sign. The assembler recognizes the dollar sign to mean the current
value of the location pointer. Actually, ENDAT and GRMSAV have the same value so we
could have used GRMSAV in line 31 and done away with the label ENDAT. However, I think
it's a good idea to keep related sections of code together. If GRMSAV had been used in
place of ENDAT, the name length byte would get screwed up if any code was added before
GRMSAV while writing the program. You'll notice that I've used empty comment lines to
keep the code in modular form.

Line 35 contains another EVEN directive to ensure that the following code begins on an
even address, regardless of the length of the PAB data.

Line 36 reserves 2 bytes in the object code to be used to save the GROM address pointer.
Line 38 is where the program will start to execute. Lines 38-41 save the GROM address.

This must be done because some devices alter the GROM address when accessed. In order

to return to the E/A module the GROM address must be the same when we leave our program
as it was when the program was entered. The code for saving the GROM address came
directly from pages 270 and 271 in the E/A manual.

Line 43 sets the workspace register to >8300.
Lines 44-49 set up the PAB in VDP RAM and open the file. Again, an expression is used in

line 46 to calculate the number of bytes contained in the PAB data.
Lines 51-81 comprise the main program loop. Actually this section is made up of three

nested loops. The inner loop (lines 56-58) scans the keyboard for a new kwypress. The
middle loop (lines 54-69) evaluates the keypress and takes necessary action depending
on what key was pressed. It also places the cursor on the screen. This loop is
executed once for each new keypress. Lines 66-73 keep up with the character count and
make sure the 80 character limit is not exceeded. If the 80th character is entered,
control is passed directly to the inner loop after the character is displayed on the
screen. This prevents the cursor from overwriting the last character. The main, or
outer loop, clears the screen and character counter and sets RO to the starting screen
location. You have probably noticed that I have chosen to use the area of VDP RAM that
represents screen data for the output buffer. Since the data that we're writing to the
printer is already stored on the screen, there's no need to move it to another area of
VDP RAM before sending it to the printer. You can also use the screen data area as an ♦

input buffer when reading data if you need to display the data after reading it. The
main loop also contains the routine used to send data to the printer. Lines 75-81 take
care of this chore by placing the character count in the PAB, indicating a WRITE
operation, and calling the subroutine 10 to actually access the printer^

Lines 83-91 are executed when the break (FCTN 4) key is pressed. This routine closes the
file, restores the GROM address, and returns control to the GPL interpreter after
setting the workspace pointer to the GPL register area. This method of returning from
the program is a modified version of the one on page 442 in the E/A manual. The manual
suggests to clear the GPL status byte and then branch to location >0070. I prefer to
branch to location .>006A since the code there clears the GPL status byte. This saves a

^ little memory usage in your program. Beginning on page 440 of the E/A manual are
descriptions of several ways of returning to the system when your program ends.

Lines 96-103 are a subroutine to clear the screen. This subroutine usesthe E/A provided

2-9

VSBW routine to clear the first byte of screen memory and then accesses the VDP chip
directly to clear the rest of the screen. I used the VSBW routine as an easy way to ^^^
set up the VDP Write Address register. • "*^

Lines 110-169 make up the I/O subroutine. This subroutine assumes that the PAB is already
set up with the exception of the I/O opcode. The I/O opcode must be passed to the
subroutine in the MSB of Rl. The I/O opcode is written to the PAB, the >8356 pointer
is set up to satisfy the requirements of the DSRLNK routine, and then the device is
accessed via DSRLNK. If access is successful, the subroutine returns to the calling
program. If an error occurs, an error message is printed and the program returns to
the E/A module after you press the ENTER key. If an error occurs during a CLOSE
operation, it is ignored. For an error during any other operation, the error code is
transfered to the right byte of RO and then multiplied by 2. The multiplication is
accomplished by shifting the value left by one bit. The resulting value is stored in
R3, the screen is cleared and RO is loaded with the screen address for the error
message. In line 126 the indexed addressing mode is used to load Rl with the address
of the correct error message to be printed. Since each address in the table at ERRTAB
is 2 bytes long it is necessary to multiply the original error code by 2. This was
done in line 122. The address of ERRTAB plus the value in R3 is loaded into Rl. Now
Rl will point to the length byte preceeding the error message. This length is
transfered into the left byte of R2 via workspace register indirect auto-incermenting
addressing, and then R2 is made into a word value with the shift instruction in line
128. The result of all this is that RO has the screen address, Rl points to the
message to print, and R2 contains a byte count of the message. The VMBW routine is
used to print the message on the screen. After the error message is printed, the
"Press <ENTER> to end." message is printed on the last screen line and the program
waits for the enter key to be pressed. After the enter key is detected control passes
to the code at ENDIT where the file is closed and the program returns to the E/A
module. Lines 144-151 are a table of addresses pointing to the error messages. All
the entries in this table could have been entered on one line in the source code, I put
them on separate lines so it would look more like a table. The error messages that ^^\
follow are taken more or less from the error code meanings listed on page 299 of the /
E/A manual.

Line 170 contains the END directive that tells the assembler that it has reached the end
of the source code.

Well, there you have it. Remember that it is not necessary for your version of the
prograrr, to operate in exactly the same manner as mine. If it works, it's OK.

The A/L Challenge for next month sort of expands on what we've learned this month.
Write a program that will allow you to enter letters from the keyboard onto the screen at
any location. In other words, the keyscan routine will have to recognize the arrow keys
in order to move the cursor around on the screen.. You should also try for a blinking
cursor and repeating keys. The keyscan routine should also check for FCTN 3 to clear the
screen, FCTN 4 to end the program and FCTN 6 to save the entire screen to a specified
device. When FCTN 6 is pressed, save a couple of screen lines to a buffer, clear them,
and prompt for an output device. After the output device is specified, restore the prompt
lines and output the entire screen to the device. After the screen is output, return to
the keyboard input routine with the screen still intact. Since this program will allow
you to save a screen to disk, let's also include a routine to recall a screen. Start the
program off with a menu to select 'design a screen' or 'recall a screen'. Your screen
design keyscan routine should return to this menu when FCTN 4 is pressed. The format used
to save the data is up to you. If you have questions, feel free to call 764-7881 after 6
PM. Out of town folks can write Rt. 9, Box 460, Florence, AL 35630. Please include an
SASE for reply.

Until next time....

Danny Michael

/<S«toy

Assembly Routine Restart after QUIT
by Joseph H. Spiegel

There are several Extended BASIC programs now that use assembly language
routines. The loader for these routines is quite slow. For that reason,
it is somewhat annoying if you have to leave Extended BASIC for some
reason, then return and wait for your routines to reload. The worst part
is that, in many cases, the program still resides untouched in expansion
memory. What has happened is that the low memory has had to be
reinitialized and the REF/DEF table cannot be found. The following
program will read a current REF/DEF table and create the proper CALL
LOAD'S to restore it if you must leave Extended Basic. It will also
perform minimal checking to see if the program you want is still intact.

The program is used as follows (assuming you have saved the program on dis*

(1) From Command mode, do a CALL INIT :: CALL LOAD("DSKl.object file")
(2) Type RUN "DSKl.REFRESTORE" (or whatever you saved the program as)
(3) Answer the prompt with the complete filename that you you wish the

merged file to be saved as.
(4) The program will recreate the REF/DEF table in merged form and print

the program names as it goes.
(5) You will be prompted to enter the program name for checking upon

reload. Enter one of the names from the program list. Depending
upon the location of the program in memory, a check of the program
may be included in he merge file. This check consists of a
comparison of four bytes at the start of the chosen program.
If the four bytes are OK, the variable FLAG will be set to 1,
otherwise ti will be 0. If the REFRESTORE program has
overwritten the object file, you will be given the location of
the entry point, and the program will complete the
merge file without the check.

(6) After completion, the merge file may be merged into your
Extended BASIC object loader program

The program is below:

5 Iby J. H. Spiegel 6/85 TI6240
10 PRINT :: INPUT "MERGE OUTPUT FILE NAME? ":OUTFILE$
20 OPEN #l:OUTFILE$,DISPLAY,VARIABLE 163
30 CALL PEEK(8194,A,B,C,D)
40 PRINT #l:CHR$(0)&CHR$(l)&CHR$(157)&CHR$(200)&CHR$(4)&nINIT,,&
CHR$(130)&CHR$(157)&CHR$(200)&CHR$(5)&,ICLEAR,,&CHR$(0)
50 PRINT #1:CHR$(0)&CHR$(2)&CHR$(157)&CHR$(200)&CHR$(4)&
"LOAD"&CHR$(183)&CHR$(200)&CHR$(4)&"8194"&CHR$(179);
60 PRINT #1:CHR$(200)&CHR$(1-(A>9)-(A>99))&STR$(A)&CHR$(179);
70 PRINT #1:CHR$(200)&CHR$(1-(B>9)-(B>99))&STR$(B)&CHR$(179);
80 PRINT #1:CHR$(200)&CHR$(1-(C>9)-(C>99))&STR$(C)&CHR$(179);
90 PRINT #1:CHR$(200)&CHR$(1-(D>9)-(D>99))&STR$(D)&CHR$(182)&CHR$(0)
100 E=256*C+D :: LN=3

110 FOR X=E TO 16382 STEP 8

120 CALL PEEK(X,F,G,H,I,J,K,L,M)
130 PRG$=CHR$(F)&CHR$(G)&CHR$(H)&CHR$(I)&CHR$(J)&CHR$(K):: PRINT PRG$,
140 PRINT #1:CHR$ (0)&CHR$ (LN) &CHR$ (157)&CHR$ (200)&CHR$ (4)&nLOAD".&

2-11

CHR$(183)&CHR$(200)&CHR$(5)&STR$(X)&CHR$(179);
150 PRINT #1:CHR$(200)&CHR$(1-(F>9)-(F>99))&STR$(F)&CHR$(179)
&CHR$(200)&CHR$(1-(G>9)-(G>99))&STR$(G)&CHR$(179);
160 PRINT #1:CHR$(200)&CHR$(1-(H>9)-(H>99))&STR$(H)&CHR$(179)&
CHR$(200)&CHR$(1-(I>9)-(I>99))&STR$(I)&CHR$(179);
170 PRINT #1:CHR$(200)&CHR$(1-(J>9)-(J>99))&STR$(J)&CHR$(179)&
CHR$(200)&CHR$(1-(K>9)-(K>99))&STR$(K)&CHR$(179);
180 PRINT #1:CHR$(200)&CHR$(1-(L>9)-(L>99))&STR$(L)&CHR$(179)&
CHR$(200)&CHR$(1-(M>9)-(M>99))&STR$(M)&CHR$(182)6CHR$(0)
190 LN=LN+1 :: NEXT X
200 INPUT "PROGRAM TO BE CHECKED UPON STARTUP? ":CK$::
CK$=CK$&RPT$(" ",6-LEN(CK$)):: Y=E
210 IP Y>16383 THEN PRINT "THAT PROGRAM NOT FOUND" :: GOTO 200
220 CALL PEEK(Y,F,G,H,I,J,K,L,M):: PRG$=CHR$(F)&CHR$(G)&CHR$(H)&
CHR$(I)&CHR$(J)&CHR$(K):: LOC=256*L+M
230 IF L0O32767 THEN LOC=LOC-65536:: LOC$=STR$ (LOC)
240 IF CK$=PRG$ THEN 250 ELSE Y=Y+8:: GOTO 210
250 CALL PEEK(-31952,S1,S2):: S=256*Sl+S2-65536
260 IF S<LOC THEN PRINT "PROGRAM OVERWRITTEN BY THIS ROUTINE
, CHECK LOCATION";LOC;"BY HAND!" :: GOTO 330

270 CALL PEEK(LOC,F,G,H,I)
280 PRINT #1:CHR$(0)&CHR$(LN)&CHR$(157)&CHR$(200)&CHR$(4)&
"PEEK"&CHR$(183)&CHR$(200)&CHR$(LEN(LOC$))&LOC$&CHR$(179)&
"§1"&CHR$(179)&"@2"; /*^\
290 PRINT #1:CHR$(179)&"@3"&CHR$(179)&"@4"&CHR$(182)&CHR$(0) '
300 PRINT #1:CHR$(0)&CHR$(LN+1)&CHR$(132)&"@1"&CHR$(190)&
CHR$(200)&CHR$(1-(F>9)-(F>99))&STR$(F)&CHR$(187)&"@2"&CHR$(190);
310 PRINT #1:CHR$(200)&CHR$(1-(G>9)-(G>99))&STR$(G)&CHR$(187)&
"@3"&CHR$(190)&CHR$(200)&CHR$(1-(H>9)-(H>99))&STR$(H)&
CHR$(187)&"@4"&CHR$(190);
320 PRINT #1:CHR$(200)&CHR$(1-(I>9)-(I>99))&STR$(I)&
CHR$ (176)&"FLAG"&CHR$(190)&CHR$(200)&CHR$(1)&"1"&CHR$(129)&
"FLAG"&CHR$(190)&CHR$(200)&CHR$(1)&"0"&CHR$(0)
330 PRINT #1:CHR$(255)&CHR$(255)
340 CLOSE #1

As an example, I would like to use the popular TK-WRITER program. As
you go from the EDITOR to FORMATTER or back, the object file reloads.
In most cases, this is not required. I say in most because, I'm not sure
if the loader program will be overwritten if the buffer approaches full.
Using the method mentioned, you can enter:

CALL INIT :: CALL LOAD("DSKl.WRITER")
RUN "DSK1.REFRESTORE"

Answer the prompt for output file with DSKl.LOADMRG. Choosing EDITOR as
the check file,you find that the object file had been overwritten by
the REFRESTORE program. However, the entry point of EDITOR is
stated to be -1514. That's no problem, it just means a little more work.
Now do a OLD DSKl.LOAD (assuming that's what the loader is stored
under. Then do a MERGE DSKl.LOADMRG. If you list the program, you will /^*\
see parts of both routines; don't worry about that for now. Remember
that entry location, lets find out what's there. In immediate mode,
type;

2-12

CALL INIT :: CALL LOAD("DSKl.WRITER")

CALL PEEK(-1514,A,B,C,D):: PRINT A,B,C,D

The values printed will be 2, 224,248, and 142 if you have the same
version I have. You now can create the check lines:

6 CALL PEEK(-1514,@1,@2,@3,@4)
7 IF @1=2 AND @2=224 AND @3=248 AND @4=142 THEN FLAG=1 ELSE FLAG= 0

Modify the rest of the program to do the check, then jump around the
load if the check is OK and you have the new LOAD program below:
NOTE: Portions from original program by Tom Knight

1 CALL INIT :: CALL CLEAR

2 CALL LOAD(8194,36,244,63,232)
3 CALL LOAD(16360,85,84,73,76,73,84,250,212)
4 CALL LOAD(16368,70,79,82,77,65,84,250,132)
5 CALL LOAD(16376,69,68,73,84,79,82,250,22)
6 CALL PEEK(-1514,@1,@2,@3,@4)
7 IF @1=2 AND @2=224 AND @3=248 AND @4=142 THEN FLAG=1 ELSE FLAG=0
100 IF FLAG THEN 110

108 CALL LOAD("DSKl.WRITER")
110 DISPLAY AT(6,2):"PRESS ;": :"1 - TO LOAD EDITOR": :" 2 - TO LOA
D FORMATTER": :" 3 - TO LOAD UTILITY"

120 CALL KEY(0,K,S):: IF S=0 THEN 120 ELSE IF K<49 OR K>51 THEN 120 ELSE
K=K-48

130 ON K GOTO 140,150,160 *r,
140 CALL LINK("EDITOR") <^TJ
150 CALL LINK("FORMAT")
160 CALL LINK("UTILIT")
170 END

Keep ycur Computer in Gccd Shape.. 2-13

DELANARI GALLEY USERS GROUP M*a*v* 1986

HON TO CO**RT ASSEWLY PROGRAMS TO PROGMM FOM FOR FASTER
LOADING AM) LESS DISK SWCE - frittcn by Darren Leonard,
Pittsburgh Users Group, on an idea by Harty Kroll, Jr.

(Reprinted froa Northwest Ohio ??'er News)

H you have ever loaded an Assofcly prograa with
Editor/Asseabler Option 13 you say have noticed that it
takes quite awhile to load. With tow programs this can
take wer 2 •inutes. These types of prograa are in
Display/Fixed 81 format which we are going to change to
PROGMH format to load with Option 15. In addition to
loading 3 to 5 tiaes faster, programs stored in prograi
format, i.e., Itaaory Image, take as little as 1/4 the disk
space of D/F 81 files.

The aethod outlined in this article will work on 9» of
all Asseably D/F 88 prograas. Prior to writing this, I
tried it on 21 prograas, and it worked on 19 of thai. It
will even allow you to save an ASSEMBLY prograa to cassette.
Thus people with an E/A and 32K can run Asseably proywts!

To begin with, read page 421 of the Editor/Asseabler
manual. Try your prograa the way they outline it. If you
get an error, then read on, and Iwill explain in detail how
to get around it.

This section describes the procedure for D/F 88 files
THAT DO NOT AUTOSTART! If your propaa does autostart, read
down a few paragraphs on how to rowe it with DISKO. I Ed.
note - The disk sector editing prograa DISKO is a Fairware
prograa in the DW6 Library.]

1) Plug in your E/A and call up TI-BASIC. Your E/A
aust be plugged in!

2) Type GM1 INIT
GALL LQADCDSKI.FILENMC9)

3) If your prograa has aore than one file, type in all
the reaaining files in order as follows:

GALL L0AD<,DSK1.GAME*1,>
CALL LOADCDSKhMe?)
CMI L0M)(>DSK1.GAHES3>)

Get the idea?

4) Type CALL PEEK(8228,A,B>
PRINT A,B

5) Nt» 2nuabers will appear on the screen, one on the
left and one in the aiddle of the screen. This nwfcer
corresponds to the first free adfress in the memory which is
also the last address of your prograa.

6) Convert this imber to Hex and add A+B to coae up
with a 4-digit hexadeciaal mater. Since your prograa is
normally loaded in ataory froa addresses >A888 - >FFD7 if
you get AM8 for A+B then your prograa has an Absolute
Origin stateaent (A0R6) and you will not be able to convert
it with this aethod. Similarly, if A*B is A788 or smaller,
then the prograa is loaded in an unusual aanner since it
canot fit in the wall area fr<*)A888 - A788. But if you
coae up with A*B « B8B8 or greater, then this aethod will
work m of the tiae.

7) Type "HP and call op the Editor. Now type in the
small Assembly prograa listed here:

DEF SFIRST,SWST,SLOtt
SFIRST EOU >AB88
SLON) EQU>AB88

SLAST EOU M788 (the value of A+B)

END

NOTE!! PUTTKKXWMEROFiVB IN THE PUCE WERE
A788 IS!!!!!

Hit <FCTN ?> twice and save to disk.

8) Load the Asseabler.

For source file enter what you save in step 7.

For object file type DSK1.GWEX4 or what you want.

Hit return for the printer output.

Type •RC* when it proapts for Asseabler directives.

It will then asseable the prograa. You shouldn'1 get
any errors.

9) Now load E/A Option 13.

Enter your filenae DSKJ.MHEXI
D5K1.GAMES2

Then enter the assobled filenaae froa DSKJ.GAHEX4 step
8.

18) Insert
•DSKl.SAME'.

E/A disk 12 into drive one and load file

Hit <ENTER> and type *9*E' for the progra nat«.
Follow the screen input prowpts.

11) Now hit <FCTN ♦> and call up E/A Option «5 and type
DSKJ.YOURFlLEandvoila!

2-14

^

^

/ISP^S

THE ULTIMATE SAVE

by Tom Freeman

You probably have noticed by now that loading eeeory
iaage files, whether in Basic, Extended Basic, or EA 15,
is MUCH faster than loading OIS/FIX 80 files. The reason
is that program, or fleaory isage, files are just that -
being an •isage' of the original program in oeaory they
can be transferred en bloc back to the RAN of the
copputer. Since TI uses VDP RAW for the transfer there
•c ?nfl„ imitation m the *iz* that can be transferred in
;n* ligation, but 48 sectors, or about 12K bytes, is
rtni a lot «ore than one record in a DIS/FIX 80 file
which is only about 48 bytes in a coapressed file or 22
•n w uncompressed one. Each record requires a DSR call
and a ewveaent of the disk drive, so you can see why
these are auch slower.

This is why you flay want to try to convert your LOAD
* RUN type files to RUN PROGRAH FILE type files, that is
EA 15 instead of EA #3. What fallows is a rather long
article that should cover just about all possibilities
for making conversions, tote that you need the whole
file, in other words hidden files on protected disks etc
cannot be converted.' The first thing to do of course is
flake a backup copy on a fresh disk since the file will be
easier to find, and you don't want to aess up your
original do you?

I have to state here and now that ay aethod oakes
use of DISkASSEWLER. I have also outlined ways of
converting if you don't have DISkASSEHBLER, but it is
audi easier if you do have it. 1 don't necessarily like
to toot .w own horn, but that's why Iwrote it - to sake
learning and manipulating easier! I did not write it to
Piratp programs, as soee have alleged - as a aatter of
fact J have yet to see a complete program that could be
disassembled, reassembled elsewhere, and work if it was
originally protected in a sophisticate* tanner.

Enough already!

I refer in the text to the term VDP utilities.

These are the ones that are loaded by CALL INIT (or as
soon as you press 3 LOW) k RUN). They consist of XMLUK,
KSCAN, VSM, VHBW, VSBR, VMBR, WTR, D6RUK, LOADER, and
6PULMC. Other names that aay be REF'd are addresses that
are resolved by the loader, or DEF1s in other prograas
and also resolved, so you don't have to worry about them.

Here goes..•

1) You have thm source code

This one is easy! Just sake sure that there is no
A0R6 in the >20W to >4600 range. Now, unless they are
already there, insert the following?

DEF SFIRST,SLAST,SLOAD
SFIRST

SLOAD B SSTART

START, or whatever you have labelled it, is where
the program actually begins. Also, at the end of the
file, where you see the EM) directive, put the label
SLAST at the beginning of the line. Also take sure that
the auto-start feature is not activated by the presence
of the START label after the EM) directive.

Now reasseable using the R option if necessary, and
>r speed of loading. Next proceed on to step 5)C for

below.

2) No source code

A) With DISkASSETOLER

Run DISkASSEKBLER on the DIS/FIX 80 file you wish to
convert. You will get all the information you need!
whether the file is absolute 'Jt relocatable, compressed
or uncoipressed, the range of addresses used, and the
names of all REFs and DEFs, as well as whether there was
aixed AGR6 and RCR6 code, or out of order code. In the
latter two cases there aay be some difficulty in changing

to Memory isage format. See NOTE 2 below.

Note down the first and last addresses. If the file

is RORG, add >A000 to each. Note whether there are REFs
to the VDP utilities, in which case see NOTE 1 below.
And lastly note whether there is an auto start or not.
In this case, ii the file is coapressed, go on to D)
below. If it is uhcoapressed then load it into the TIM
or EA editor. Scan down to the end where a line begins
with a lxxxx or 2xxxx and delete this line. Then resave

the file (in TIN, use PF, then F DSCx.filename - in EA, 3
SAVE, Hfor DIS/Vtt 80? prookpt). Now go to 3)

2-15

B) Without DISkASSEKBLER

Load the DIS/FIX 80 file into the TIN or EA editor.

You aay get an error eessage "control characters reaoved"
in EA but don't worry about that just yet. Just press
enter then 2 EDIT. If you see lots of blank spaces in EA
or control characters in TIN then the file is coapressed.
Soae of the work you do will have to be done with a
sector editor such as Advanced Diagnostics or DISK+AID
but while you're here scan down to the end of the file
where you see a : at the beginning of a line. This is
the end of the file, and is preceded by any external REFs
and DEFs with readable blocks of 6 characters (spacing
always pads the naae to 6). If you see any names of VDP
utilities you will have to prepare a special file covered
in NOTE 1below. Note whether SFIRST, SLAST, and SLDAD
have been defined here. Exaaine the line above these or
the one above the : if there were none. If it begins
with a 1 or a 2 then this is an auto start file and will
have to be modified. If the file is uncompressed delete
tltn line then resave it (in TIN, use Ff^ then F
DSKy.filename , in PA, 1 W£. M for DIS/VAR 80? prompt).
If the f,'i« i£ conpresseil qu on to 0.

Non go back to the file if it is uncoapressed and
return to the first line. You *i11 see a0 followed by 4
characters Hiich are the ASCII representation of the
iMwher of bytes of relocatable code in Hex. This is
followed by an identifier of 8 characters (it may be
spaces, or padded to 8 with spaces). In columns 14-18
you will see either 9xxxx or A0000. In the first case
the code is absolute origin at address xxxx. In the
second it is relocatable and will load at A000. Note
down the value in either case. If the code is
relocatable you nay add the hex nueber that followed the
0 at the start of the line to >A000 to obtain the last
address used. For absolute code scan down the beginning
of each line. Each should begin with a 9yyyy where yyyy
is the start address of that line. When you get to the
last line of code you have almost the last address. Just
add to it 2 for each group of 5 characters after the
9yyyy until you get to a 7F near the end of the line.
You now have the first and last addresses which will be
used below.

C) Coapressed file -Address Range- No DISkASSEKBLER
On your backup disk find the first sector (it should

be# 34,fr 32 in older HYARC FDC's). Remesber that each
9V>V<r' or record begins on byte 0, 80, or 160 of a
sector. The first line should start (in Hex not ASCII)
0i.*:\x.v and then 16 characters which m the identifier
(they are readable in ASCII, as 8 characters), xxxx
represents the nuaber of bytes of relocatable code. Note

it down. After the identifier you will see 39yyyy if the
code is AORG or 41yyyy if it is R0R6. Write yyyy down if
the code is AQR6, or A000 if it is RORG. If the file is .
R0R6 you aay add the xxxx found at the start of the line
to A000 to get the last address. Otherwise scan down
sector by sector until you get to the last line before
the REFs and DEFs or auto start, in other words the last
line beginning with a 39 in Hex. The next line will
start either with a hex number froa 31 to 36 or with a 3A
(Hex for :). This is the first address of the last line
of code. Now add 2 to the yyyy after the 39 for each
group of 6 characters until you get to the 46 at the end
of the "line." You now have the last AORG address.
Write down the first and last addresses whether A0R6 or
RORG - they will be used below. Note there are a few
strange files that apparently were assemabled witha
different asseabler from the one TI supplied us, and each
line does not begin with an address. In these it will be
alaost iapossible to determine the last address without
DISkASSEHBLER.

D) Coapressed file -auto start- No DISkASSEKBLER
With your sector editor go to the last sector or two

and find the line that begins (in Hex) 31xxxx or 32xxxx.
Change the 31 or 32 to 46 and write it to the disk.

E) Other auto starts

A few sneaky programmers auto start their prograas
not with the above aethod but instead by inserting the
start address into the user interrupt hook at >83C4. If
you have a file that auto starts but can't find the 1 or
2 (in ASCII, 31 or 32 in Hex) this aay be the aethod.
Look at the end of the last line of code for the
following: (coapressed) 39 83 C4 42 xx xx, (uncoapressed)
983C4Bxxxx. If you see it xxxx is the start address.
Replace the 39 with a 46 if the file is coapressed, or
the 983C4 with 8F000 if it is uncoapressed, and th
prograa won't auto start anymore. It may not start at
all, but that doesn't eatter because we don't want it
to! We just want to load it, then convert it.

3) The First Executable Instruction

For the EA 15 loader to work (and all loaders based
on it) the initial code must be an executable
instruction. If you have a file already in eemory ieage
format you can examine the code after the first 6 bytes
and see what I aean. It frequently is a B §>xxxx (0460
xxxx is the actual code) or JWP xxxx (10xx) where xxxx is
the actual start of the prograa. Or it nay be a normal
sequence of code e.g. NOV ll,€>xxxx LWP1 yyyy etc.
indicating the programmer anticipated saving in this
format. If your file does not begin this way there will
have to be some additional preparation.

If your file is auto start and you have determined
it is done by one of the two oethods above then you know
what the start address is. If the file is not auto start
you should know froa the instructions for the prograe
what the naae of the start address is (for RUN after
LOAD, or CALL LINK in EA Basic) and you can look for it
at the end of the file (with a sector editor if the file
is coapressed). You would see something like 5xxxxSTART
(uncoapressed) or 35xxxx5354415154 (compressed, reading
in Hex). These are relocatable start addresses and the
xxxx should be added to A000. Absolute address have a h

2-16

-$3lPfc\

or 36 before the xxxx. If you used DISkASSEMBLER the
star*- address was displayed for you. NOW see whether the
start address is also the first address of the file. If
it is you are in luck and aay proceed on to the next
step. If not you aay still proceed, but when you are
finished see NOTE 3 because further modifications are to
be aade.

4) SFIRST SLAST file

If your file already has SFIRST, SLAST, and SLOAD in
DEFs in it, the programer anticipated using this method
and you may go on to step 5). If only one or two of
these names are used check to make sure that they are the
first, last, and first addresses respectively. If' they
aroy then eliminate the appropriate ones from the file
below. If not use a sector editor to change any letter
in the name (and type 8 over the 7 at the end if the file
is uncompressed).

Now prepare the following special file, using the EA
editor. Lines 2-4 should abut the left margin.

DEF SFIRST,SLAST,SLOAD
SFIRST EQU >xxxx

SLOAD EQU >xxxx
SLAST EQU >yyyy

END

Here xxxx and yyyy are the first and last addresses
determined above. Save the file in DIS/VAR 80 format,
then 90 to the assembler and assemble it using the file
just saved as source file and a different name for object
code. For List File and Options just press enter. You
should rapidly get the 0000 errors message.

5) fhejteassefflbl^
•few tha^ou are all prepared the final job is easy.

Usmg the 3 LOAD fc RUN option of EA load your file
(iTKdified if necessary to eliminate the auto start), the
file nrepar*! in 4) if it was needed, and SAVE from the
R «tilitv disk. When the cursor appears again, press
enter, type in WE for program name, then follow the
screen promts. For purposes of neatness choose a name
hr the output file that ends in a 1, since 33 sector
blocks will be created and each successive one will have
the last character increased by 1.

The newly created file should run in EA 15. It
wn't if there were REFs to the VDP utilities, or if the
actual addresses were inserted in the original source
code. In this case, see NOTE 1 at the end of the
article.

Please note that the file you are converting should
either be all RORG in which case it will load at >A000,
or it should AORG at >A000 or higher. If it AORGs in
the>2000 to >4000 range and above >A000 you should save
the two parts separately (create two files in 4) above)
using a file name ending in 2 for part above >A000.
Furthermore the range >2800 to >2FB0 cannot be used since
this is where SAVE loads, unless that area is really only
a BSS type block. In DISkASSEMBLER this would be
indicated by aseries of AORGs without DATA. If you are
examining the actual DIS/FIX 80 file in the editor or
with a sector editor you would have to see 39xxxx
•c- •;• ?:*o, in it**) or 9xxxx (uncompressed, in ASCII)
carrying you past >2FB0 with no 42's or B's in between

for this to be true. In this case SAVE itsejf would be
saved, and overwritten when the program runs, but that is
OK because it isn't needed anymore. Furthermore the
program can't use the range between >2000 and >2h7b
because the EA loader and utilities reside here. If the

program appears to do that it was meant to be loaded by
some other loader, such as Mini Memory, so something else
will have to be done.

All these problems can be fixed up if you have the
SAVE source code since it can be AORG'd wherever you want
it, and therefore not interfere with the original
program. If you have DISkASSEKBLER this can be done by
following the instructions in the appendix (naturally I
would love it if you would buy a copy!) For those that
don't have it I am placing the source code in the club
library. The disk can be purchased for $5.00 - all
proceeds to the Club, not me! You then place an AORG in
it that gives you >800 bytes outside the range of the
program to be converted and reassemble it. if the file
to be converted is to be in the >2000 range then you oust
use the Mini llemory cartridge to load it, and an R0R6
assembled SAVE can be used.

NOTE 1 The EA Utilities

Normally EA 15 prograas should stand alone since the
utilities are not loaded in first, as they are with 13
type files. There is a way around this however. If the
file had REFs to the VDP utilities you know this will be
necessary. If there weren't such REFs but the-converted
program won't run then perhaps there were uses of the
actual addresses in the program and you can try this
method.

Prepare a short file as in step 4) using >2000 as
xxxx and >2676 as yyyy. Assemble it then proceed to step
5) and use a filename such as UT1L0 as the output file.
Find the file on disk with your sector editor, and change
the first two bytes from 0000 to FFFF. This is a generic
file and may be used with all converted programs that
need it - all you have to do is copy it to the disk
containing the converted program and change the- name to
one the same as the others but with the last character

decreased by 1. I prepared DISK+AID in this aarmerf the
converted files are called DISKAID0, DISKAID1, and
DISKAID2.

If your file contained code between >2676 and >4000
that either didn't interfere with SAVE, or you used a
modified SAVE, then you could save it together with the
VDP utilities. However this is not necessary - you would
just have two shorter files, and waste 1 or 2 sectors.

NOTE 2 High and Low Memory mix

If the file to be converted contains code below
>4000 and above >A000 you need to convert the two parts
separately, using the relocatable SAVE if necessary. If
there is a low mem piece AND the utilities are also
needed then for convenience you may want to save the
entire low mem block together even though some space say
be wasted. You aay also do it in 2 separate pieces if
you wish. In any case change the first 2 bytes of the
file(s) to FFFF. Also remember that if you have 2 files,
the second must have the last character increased by 1
(and again if there is code above >A000).

2-17

MOTE 3 Special File for Executahfa Instruction
H your first file created DID have an executable

instruction at the beginning, AND you needed the special
VDP utilities file, then change the latter to have aname
AFTER the program files, and change its first two bytes
back to 0000. Then you are set. If there wasn't an
executable instruction and you do need the VDP file, then
change bytes 7-10 of the VDP file to 0460xxxx where xxxx
is where your program actually starts. Ycu can do this
rt^^JLP* Hn actually *** ^ INIT loadedat um to >2003 and aren't needed. One last case where
you don thave the first executable instruction but don't
have to mate an extra file is where there was aBSS of at
least 4 bytes at the start of the file (in other words,
successive origins in the DIS/FIX 80 file). Then you can
repUcn bytes 7-10 of your first program file with 0460

If none of these special cases obtain, then you will
have to prepare this special file. It actually is rathe7
easy. Find an unused area of memory, either in low mem

*m. Write the following source code:
•EF 5F1RST,SLAST,SL0AF)

A0R6 >F000 OR IteREVER YOU HAVE DECIDED IT GOES
SLOAD

SFIRST B DXXXX XXXX IS YOUR ACTUAL START ADDteSS
SLAST END

Save this file, then assemble it, load it, then load
SAVE, then press enter, type in SAVE, enter and follow
the screen prompts. Use as your file name one with the
last character one less than your previous first file.
You will create a tiny 2 sector file which EA will find
the start address in. Remeofcer to use a sector editor to
change the first 2 bytes from 0000 to FFFF.

MOTE 4 Multiple Files

If your program actually contained ouitiple files to
load before the CALL LINK or the entry of program name,
the instruction above still apply, but it aay be a little
harder to find the information you need. Til be happy
to help if Ican, but you should be able to do it.
Remember to load ALL of the files before running SAVE.

This article wound up a LOT longer than I intended.
Unfortunately Ihave never been accused of being to
brief. However I was really trying to cover all
possibililites. Ihope it woHcs for you every time!
Enjoy.

Editor's Note: Tom Freeman is a practicing pediatrician in the Los Angeles
area and a regular (prolific) contributor to the excellent "LA Times",
newsletter of the Los Angeles Area 99er Users Group. He is also author of
the terrific "DISkASSEMBLER" software available from MG (1475 W. Cypress
Avenue, San Dimas California; $19.95 + $2 S & H). He is skilled in both
assembly language language and GPL ("Graphics Programming Language") and
continues to produce innovative public domain routines as well as his
commercial efforts - the most notable being his two-column and "quad-column"
print routines.

2-18

^^^s

Seme lielp When You Need It
••€•• Tutcrials

The C Language and You
By Warren Agee

CompuServe ID 70277,2063

The TI-99/4A is getting to be quite an O-L-D computer! But despite its
age, cjuite a bit of software that is commonplace for other machines has
yet to surface for the 99 enthusiast. One of those goodies is a C compiler
- the language which is currently the rage the of newest and brightest
computers in the market today. But the wait is over! In or around
September 1985 a gifted systems programmer from Ontario, Canada, Clint
Pulley, filled a deep whole...a C compiler for the 994A!

But what is C? C is a language that was developed by Dennis Ritchie on the
Unix operating system on the DEC PDP-11. Since then various versions of
the language have popped up on almost all personal computers. In fact, it
is the language of choice for the newest breed of personal computers —
the 68000 machines likethe Amiga and Atari 520ST. C's long list of
strengths includes the fact that it is not tied to any one operating
system and machine, which makes C code rather portable. This doesn't mean
that a program written on a Macintosh will run on an Atari 520ST, but it
does mean that the process of converting such a program over to a new
machine is greatly simplified. C is also relatively small, it can be
learned quickly. It is a relatively "low level" language, which means the
programmer has more direct control over his work and the machine. However,
this facet also has its drawbacks: the programmer has to be more careful
in what he does and has to have a good understanding of how the machine
works.

C is not a language for beginners, mainly because it is a low-level
language. But it *is* much easier to learn and use than Assembly, and
perhaps easier for some than FORTH. The most significant advantage to this
language is that it allows people without the knowledge or expertise (or
sanity??) to program in Assembly can now produce high-quality, fast
software that in many cases rivals assembly.

Perhaps I should correct myself and say we now have a "c" compiler, not a
"C" compiler. What? That's right, a little "c". You see, the compiler
that Clint wrote, called c99, really supports only a subset of the full C
language, often referred to as K&R, which stands for Kernighan and
Ritchie, the creators of the language. This is due to the memory
constraints of the 99/4A. The C language was developed on a mainframe, not
on a 48K home computer. This means that many compromises had to be made in
order to squeeze a functioned C compiler into the 4A. Nonetheless, c99 is
a very capable language that stands by itself just fine.

3-2

f The C language is different from BASIC in that it is compiled, which means
you key-in your programs with a word processor, then run them through the
compiler. This program reads in your source code and generates assembly
language code, which is the finished program, which can be loaded in
separately and run. The mechanics of creating a program with c99 differ
from most compilers on other machines in that the c99 compiler does not
generate the finished program. It's really a two-step process. The
compiler generates assembler source code instead of object code. The
resultant file is then run through the 99/4A assembler,which comes with
the Editor Assembler cartridge. So as you can well imagine, you need the
E/A cartridge in order to program in c99! However, a thorough knowledge of
assembly language is in no way a prerequisite to programming in C. But
one does have to know how to work the assembler, which is not hard at all.

But what is all the fuss over the C language? Who cares if it's compiled?
I care. A lot of people care. So stop asking questions and listen. The
singlemost important advantage of a compiled language (like C) is
>»»SPEED<««. Zooooom...the only thing faster than a c99 program is an
assembly language program. Not even FORTH can beat it. C is also much
easier to learn than assembly. It is easier to read than assembly. Its
easier to go back and modify after time than assembly. So let's all pitch
assembly out the window! No, we must not do that, because there is one
major drawback of c99...it tends to create "bulky" programs. If one were
to write a program that prints mailing labels in both languages and
compare, you would find that it probably took less time to write it in
c99. It probably also compares favorably to assembly in its speed. But
the size of the programs will be dramatically different...assembly is much
much more compact. This is very important to people like us who only have
48K of memory with which to work!

However, in all honesty, its not that bad. I have been able to write
functional, effective programs in c99 that just fit into 48K. You may not
be able to port Lotus 123 or dBASE III, but you can sling some mean code
if you stay on your toes. Fortunately, some very nice people have made
that job easier on us, namely Clint Pulley, Tom Wible, and Richard Roseen,
who have developed "optimizers." These doo-dads compress your program,
allowing them to fit in a smaller space, therefore making more memory
available to you. Clint wrote the original c99 optimizer, and Tom and
Richard continue to enhance it.

Speaking of enhancements, Clint Pulley seems very dedicated to his
project. He is constantly updating and upgrading his compiler to bring it
up to snuff with "the mainstream." Although at the start c99 was more a
novelty than anything else, Clint has raised the power and versatility of
c99 to a level of commercial quality. As of this writing, I know of three
commercial programs soon to be available that sure written in c99, and I
have no doubt that more is on the way.

[Editor's Note: Warren is well-qualified to write about c99. He is one of
the very first to write a commercial program using the language, "Total
Filer" from Asgard Software, P.O. Box 10306, Rockville, MD 20850.]

3-3

c99 Beginner's Tutorial #1
by Ron Albright

CompuServe ID 75166,2473

I have been exploring c99 for the TI of late. Written by Clint Pulley (38
Townsend Avenue, Burlington, Ontario, Canada L7T 1Y6) and available as
Eairware, the language is a full-featured version of "small c". I have found
few limitations with the language (lack of floating-point and math routines are
the major ones), and have been able to do some nice routines with the language.
Briefly, C is a very popular programming language through which, it has been
estimated, 70% of connercial software for other machines is written. So what
makes it different? It is a "compiled" language. That means, once you have
written your program in c99, you run a conpanion program called a ccxipiler. The
compiler takes your C source code and generates assembly source code. The
resultant code can then be run through the TI Assembler to generate object
code, which executes just as fast as if you went through the strenuous (to me,
anyway) task of writing assembly source code to start with. C is much easier to
learn that Assembly language and is efficiently compiled with the c99 compiler.
I have seen some programs written with c99 alone (there are a few on
CompuServe; a siitple text editor and a word-counter for TI Writer files by
Warren Agee, a program similar to the TI Writer formatter, and a graphics demo
by yours truly) and they are iraHstinguishable from pure assembly language,
because the end-product is just that. If there is any interest, I will address
the language more in depth in some more starter-level tutorials. I am no
expert,by any stretch of the imagination, but I am learning and plan to spend a
great deal of time with the language. It is a marvelous prograitming tool and,
hopefully, this siitple file will help you get started. Learning a new language
is never easy, but it is time we all advanced beyond BASIC and started working
in another environment. c99 provides a reasonable alternative. I could never
think in reverse, so I gave up on Forth; I am too dense to learn assembly
language. Pilot is too slow and requires too many disk accesses. Besides C is
used in so many other machines and for so many other applications, it has to be
good. Let's begin by seeing what we have to work with.

First, equipment-wise, you need the following: console, monitor, 32K
memory expansion, at least one disk drive and controller, the Editor/Assembler
package (cartridge or disk version) and, of course, the c99 system disk. A
printer is nice (see below) but is certainly not inperative for prograitming
purposes. Ideally, you would have two drives as this makes the work much
easier, as does having at least double-sided drives (but ain't that always the
case!). If you have double-sided drives, you can save yourself a lot of disk-
swapping by, first, of course, making a backup of the c99 system disk and,
secondly, copying from the Editor/Assembler disk, the files ASSMl, ASSM2 (the
files for assembling source code) and EDIT1 (for the E/A Editor) on to the c99
system disk. But, if you have a single-drive or single-sided system, don't
despair...things will work just fine with what you have.

Once you have gathered your tools, you should get a disk directory
printout of the c99 system disk. Pulley even provides a disk catalog program on
the system disk (called "SD" and running out of E/A 5 on my disk) but it
doesn't print to printer). You will notice that there are a long of files in
all shapes and "colors" (D/V 80, D/F 80, and PROGRAM files) and we will first
go over what is important and what is not. Sane of the files you will be using
a lot, others seldom if at all, at least to start. Here are some of the files

3-4

/d^*N,

r

j0^\

you should have and vrtiat they are for. I will list them in order of importance
and probably frequency of use.

C99C,C99D,C99E

These are the compiler files. They are the heart and soul of the c99
system. There are PROGRAM image files and are run from Editor/Assembler option
5. Unlike some PROGRAM image files, these CANNOT be run from option 3 of the TI
Writer module. In my brief experiment they could not be loaded from XB with the
FUN LOADER from Australia. The first thing I did with these files is rename
them to be UTILl, UTIL2, UTIL3. Then, vrtien you chose the LOAD and RUN option
from E/A (option 5), you only have to hit "Enter" and the files will be
loaded by that name as a default without typing them in.

CSUP

This file is very important. It is a D/F 80 (which always means it runs
from E/A option 3) which must be loaded iitroediately after you load you
completed, assembled program. We will discuss this more later, but suffice it
to say that your c99 program will never run if you don't load this file after
it and with it.

C99MAN1,C99MAN2,C99MAN3

These are the D/V 80 files that contain the documentation Clint
Pulley provides with the c99 system. They are not going to go very far in
teaching you how to program in c99. Like the manual TI provided with the TI
R>rth system, they are siitple a brief tutorial on how the different files work,
and what they do, what the error messages mean, ect. They are quite adequate
for their intended purposes. Pulley tells you i?> front "This manual assumes a
knowledge of standard C or the availability of a suitable reference." That
translates into "If you have never programmed in C, go buy a book!" I will
recommend a couple at the end of this piece. Far enough, Clint! If youhave a
printer, print these files out for future reference. If not, find a friend who
does. You will need a hard-copy of these files.

C99ERRORS

This is a short DA 80 file that contains a listing of the 30 or so
error messages that the compiler will embed in your compiled code when it
encounters one. It will only enbed the error number. You will have to look in
this file to find out what the number means. Print this out also.

C99SPECS

A terribly inportant D/V 80 file. This short file tells you vghat c99
si^pports and, more inportantly, what it does not support, when compared to
standard C. Why is this inportant? I have yet to find a book that addresses
only "snail c", the version of C (more limited than "big C") that c99 is
modeled after. All the texts I am aware of cover the full C language. Sttall c
and c99 do not have all the functions of C. When you look at program listings
out of these texts, you will quickly become frustrated if you try to type
them in verbatiin as they are already. Many program statements in C will

3-5

give you errors in c99. You have to study this file when typing in program
listings out of books to avoid these errors. For example, C supports
"floating-point" arithmetic; small c and c99 do not. There are other examples
covered in this file; print it out. You will need it.

(SF1D0CS

ISiis is the documentation for the graphics routines supported by the
current version (1.32) of c99. Print it out.

ERRFINDl

This is a helpful file provided by Clint. It is a PROGRAM file to be
run out of E/A 5. Run this if you have run the c99 compiler on a source code
file and received the dreaded "!'ERRORS!!" message. What it will do is prompt
you for the conpiled file's name (not the original source file!), read it in
very quickly showing the file on the screen as it reads it. You can stop to
read the file by holding down any key; releasing the key resumes the read.
Then, after it has read the file, it will flash the lines again on the screen
that contain the error message so you can (1) see vtfiere the error occurred and
(2) what the error message was. It is also nifty for reading ANY D/V 80 text
file. It's purpose, though, was to help in debugging.

There are several other files that are, for the most part, files to be
included in your c99 source codes as you use certain functions. We will go into
this in some depth later, but you will use an "#include dskl.filename" in your
source files to copy these files into your source codes. For example, if you
used some graphics caimands in your source file to draw some sprites or such,
you would need to use "#include dskl.grflrefs" in your source code as a line
before you started using the graphics commands. Else, the compiler won't
understand what they mean and give you a multitude of errors. If you use
commands to access disk files, you would have to use "#include dskl.stdio" (for
"standard input and output") before you started opening and reading from disk
files. Notice the use of lower case in these #include statements. The conpiler
can use lower case, unlike the E/A Assembler which only accepts upper-case.
Just keep the list of the other files as they will be used as you start to type
in programs.

How does one enter programs with c99? You can do it two ways. You can
use TI Writer, but always use "PF" to disk rather than "SF" and throw in the "C
DSKx.filename" syntax to clean all the control characters out. Or, preferably,
you can-use the Editor of Editor/Assembler. We won't do a program this time, as
you have enough to do for now.

What about reconroended books? I strongly recommend "C PRIMER PUJS" by
Waite, Prata and Martin (Sam's Publishing, 1984). It is 500 pages and costs
about $22. It is the "Going Forth" (Brodie) for C. It is easy to read, starts
at a beginner's level and is chock full of example programs. Some usable with
out dialect of small c, sane not (at least without some conversions). I went
though two other books on C before I found this tome. It is the best I have
seen. If you know C, the bible (but much too advanced for me) is "THE C
PROGRAMMING LANGUAGE" by Kernighan and Ritchie (Prentice-Hall, 1978). I found a
back issue of Byte magazine also useful. The August, 1983 issue is devoted to C
and contains some very nice articles and tutorials. You can still get a copy of
this from Byte.

3-6

/^\

c99 Beginner's Tutorial #2
by Ron Albright

CompuServe ID 75166,2473

Last time we touched on what c99 is, and what files come on the disk and
what some of the more inportant ones do. This time, we'll actually do some
code. As we progress, we will stress some sort of style in how we enter
programs. I am no expert on style (or c99, for that matter), but since c99 is
so free-form and has no line numbers to follow, it can be very difficult to
read programs if you don't follow some rules. These rules are not universally
agreed \?x>n, but we'll try to develop some sort of easy to read style of our
own. I will make a few assumptions to start. First, I will assume you have a
single-drive system with only single-sided capability. Second, I will assume
that you have a basic understanding of the Editor/Assembler package, i.e. you
know how to use the Editor, and run programs out of either option 3 or option
5. I will, further, assume, that you have assembled at least one source code
file with E/h. If these assunptions are incorrect, let me know and we'll touch
on the Editor/Assembler more next time. Let's get started.

Take a clean disk and copy the following c99 files onto it:

CSUP D/F 80 12 Sectors
PRINTF D/F 80 14 Sectors
OTIL1 PROGRAM 33 Sectors
UTIL2 PROGRAM 33 Sectors
OTIL3 PROGRAM 29 Sectors

Next, from the Editor/Assembler disk, copy these files to the same disk:

ASSM1 PROGRAM 33 Sectors
ASSM2 PROGRAM 20 Sectors
EDIT1 PROGRAM 25 Sectors

If my addition is correct, that gives us 199 sectors on our work disk. Now
we are ready to proceed. Keep our work disk in the drive and insert the
Editor/Assembler cartridge. From the menu, load the Editor and go into the Edit
mode.

Type in this program.

/* c99 The smallest c99 program */

mainO /* a comment */

{
/* we aren't going to do anything! */

}

Congratulations! You have just entered your first, valid c99 program.
Let's look at it. The first line is nothing more than a "REM" statement.

(~* Instead of REM, c99 recognizes anything enclosed within V* */" as a comment
and ignores it vAien conpiling. You can put anything between these comment
delimiters, and it will survive conpiling without error. Use then frequently as

3-7

you program. As we mentioned, c99 programs are difficult to read at best and
REM statements are useful to remind yourself, as well as other reading the
program, what you had in mind. As shown on the next program line, the can also
be used on the same line as conpilable code, so conntent each step of your code
for clarity. A routine called "main" is required somewhere in each and every
c99 program. Typically, it is the first block of code, sets things up, and
calls the other routine(s) to take over. When the compiler sees "mainO" (or
anything with the "()" after it - like "firstO", "setupO" - it labels this as
a function; a subroutine in Extended Basic. A string of functions make up a
program. They are just like you were using "SOB routine" in XB. It is run when
its name ("main", "first", "setup") is "called". The "main" routine is run
whether it is called or not (guess that is trtiy they call it "main").) is
called. More on this later. But, for now, thing of c99 as simply a series of
"calls" to blocks of modular code called functions and a function is labeled
with "nameO".

Each function is enclosed with a pair of braces - it starts with an open
brace ({) and ends with a closed brace (}). This tells the compiler where
this block of code starts and ends. Everything within those braces is part of
that function. In our first program, the only thing in the main function is a
"REM" statement, so it will "do" nothing. But it is compilable. A function may
include a call for another function. Look at this:

mainO ^^

doitO;

}

/* doit doesn't do anything! */

doit()

{
/* see! Nothing here to do! */
}

This time, main calls up the second function, "doit" which, also, doesn't
do anything. But you can see how programs are built. Typically (but not
necessarily) the main function will include all the calls to the functions that
make vp a whole c99 program. Its like having an XB program that is nothing more
than a series of "GOSUB"s (really, a series of "CALL SUB routines). Each
function call doing its task and returning control back to the main, or
controlling program. The good c99 program will break large programs into
smaller ones and write a function for each. If a function can stand alone (has
nothing in it unique to a single program) the programmer eventually develops a
"toolbox" of useful small routines (functions) that can be combined in
different ways to solve problems. That is just one of the beauties of c99.

So, let's oonpile this program. After typing it in, hit FCTN 9 twice, get
the EDITOR menu and elect to save it to disk. Your main work disk should have
plenty of roan, so no disk swapping. After saving to disk 1, hit FCTN 9 again,
and get the main E/A menu. Chose Option 5 to "RUN PROGRAM FILE". The three
conpiler files, which I have renamed UTILl, UTIL2, UTIL3, run out of option 5, "^
not option 3 (which runs D/F80 files). When you are prompted for "Program
Name:", since you have changed the name of your ccxipiler files to UTILl-3, you

3-8

only have to hit enter. The default name for E/A 5 is OTILl and those files
will then be loaded automatically (now you see why I renamed them). You will
then be prompted by the c99 compiler (prompts will vary depending on which
version of c99 you use) for a input file name. Type "DSKl.filename" (filename
being generic for whatever you called the file you typed in and saved to disk).
You will then be prompted for an output file name. Call it "filename/C", just
to remind yourself that is a compiled file. Then, hit enter and you are off and
running. The compiler will flash each function name on the screen as it is
conpiled to show you where you are in the program. You should see only "main"
if you are compiling the first program, and "main", then "doit" if you cure
conpiling the second routine. If an error is encountered, you will be told. But
we'll assume you typed these short routines in without error for now. It
shouldn't take long and you are told to press enter to continue after the
compiler is finished.

Now what? If you catalog your disk now, you should see the initial source
code file you typed in and saved, and now a second file called "filename/C".
Both should be D/V80. You have one more step to do before you can run the
program. What the ccxtpiler produced was assembly language source code. Like all
source code, it has to be assembled. Get to the main E/A menu and choose Option
2, Assemble. When asked to "Load Assembler?", hit "Y", and since we put the E/A
assembler files on disk 1 (ASSML and ASSM2) they should load right in without
swapping disks. You are then prompted for the "Source File Name". Type in
"DSKl.filename/C" (NOT the program you typed in and saved, but the compiler's
output filename). For an "Output File Name", I use "DSKl.filename/O" to let me

#^ know this is object code. Then hit enter for each of the next two assembler
pronpts ("List File Name" and "Options"). The assembler should start right up
and finish with the assembly process. Now, catalog you disk again. You should
see a third file added now - "filename/O". This time, it is not D/V80, but
D/F80. Assembly language OBJECT code. You have produced an assembly language
program. How do you run this "do nothing" program you have written? Go back to
the main E/A menu again. Choose Option 3 from the menu. When asked for "File
Name", type in "DSKl.filename/O". Then hit enter. You get the same prompt again
("File Name:"). This time, type "DSK1.CSUP". This "c99 Support" file MUST be
loaded after you load ANY c99 program. Hit enter. When you get the prompt for
the third filename, just hit enter this time. When asked for the "Program
Name", type in "START". All c99 programs run with the program name start. Your
do nothing, super-duper assembly language program should now "run". You then
immediately get the "hit enter to continue" message and you have finished.

Well, how does it feel to have generated a assembly language program just
lite the "big boys"? Next time, we will do something with a little more
substance. We will create a simple menu, which will demonstrate keyboard input
and the "printf", "puts", and "getchar" functions. But, for now, I just wanted
to go through the mechanics of running the c99 system. Till the next tutorial,
get a C book, read the "manual that comes with c99 itself, send for the new
version 2.0 of the compiler, and if you haven't paid Clint do so.

3-9

c99 Beginner's Tutorial #3
by Ron Albright
Conpuserve ID 75166,2473

When I started to learn BASIC (and later, Extended Basic), I remember how
I did it. I first typed in other programs from magazines and books. Then I
started to do my own programs. And the first type of commands I used were the
graphics commands. I sure didn't jimp in with file handling or string
manipulation! Anyway, I found myself doing the same thing with c99. I typed in
some programs out of a book, then started playing with my own routines with
graphics. Then I tackled a game. I have though all long that is you can learn
the logic involved in a game, you have learned a great deal about the
programming structure of a particular language.

In this tutorial, we will try to accomplish a couple of things. First, a
glimpse at some of the graphics cxxnmands available to c99 in the "grflrf"
library (that comes with all version 1.32 or higher), and, secondly, a look at
how to convert a short BASIC graphics display to c99. It really isn't that
hard.

Listing 1, below, is a short BASIC program from Ed York that has appeared
in several UG newsletters. It is a colorful graphics display. Listing 2 is a
conversion of the program to c99, done by me. They both accomplish the same
thing graphically. I have commented the c99 source code to try and explain step-
by-step what we did. I think as you look at the programs, you will see how
similar both the graphics commands and the logic is between c99 and BASIC. It
is, to me, much closer to BASIC than Forth vras. See if you agree.

Listing 1

100 REM COLOR BONANZA

110 REM WRITTEN BY:

120 REM ED YORK

130 CALL CLEAR

140 FOR A=40 TO 136 STEP 8

150 CALL CHARtA^SSAASSAASSAASSAA")
160 NEXT A

170 FOR S=2 TO 14

180 CALL C0L0R(B,1,1)
190 CALL VCHAR(1,2*B,24+8*B,22)
200 CALL VCHAR(1,2*B+1,24+8*B,22)
210 NEXT B

220 FOR C=2 TO 14

230 CALL SCREEN(IOT(16*RND)+1)
240 FOR D=2 TO 14

250 CALL COL0R(D,D,C)
260 NEXT D

270 CALL KEY(0,E,F)
280 IF F<1 THEN 270

290 NEXT C

300 GOTO 220

3-10

f Listing 2

/* COLOR BONANZA This and the next 2 lines are REM's (line 100) */
/* WRITTEN BY: (110) */
/* ED YORK (120) */

♦include dskl.grflrf /* required to use the graphics coninands */
#include dskl.random;c /* required to use the random number commands */

mainO

{

}

int a,b; /* MOST declare ALL variables used in a routine at start */
grfl(); /* MOST be used as first command for graphics library use */
clearO; /* Same as CALL CLEAR (130) */
randomizeO;/* Same as RANDOMIZE in BASIC */
for(a=40;a<=136;a=a+8) /* Lines 140 and 160 ALL IN ONE STATEMENT! */

chrdef(a,"55aa55aa55aa55aa"); /* CALL CHAR in line 150 */

for(b=2;b<=14;b++) /* Another FOR-NEXT loop -lines 170 and 210 in one */
{ /* Multiple lines in for loops need to be braced */
color(b,l,l); /* Same as CALL COLOR - line 180 */
vchar(l,2*b,24+8*b,22); /* Just a plain old CALL VCHAR! line 190 */
vchar(l,2*b+l,24+8*b,22); /* line 200 */
} /* Closed braces after FOR LOOP */

fun(); /* Gets a little tricky here. Since there was a
"GOTO" statement in line 300, I decided to make
a new routine starting at where the GOTO directs
the BASIC program - line 220. That way, I can call
the second function from itself, in essence,
creating a "GOTO". See below. Anyway, that is why
I started a new function called "FUNO". I call it
from the MainO routine here by just calling the
name of the routine. Its just like I said GOSUB
or, in XB, had created a user-defined SUB FUN and,
here, said CALL SUB FUN. */

fun() /* Start of a new function */
{ /* All functions start with an open brace */

int c,d; /* Declare these variables at the start!!! */
for(c=2;c<=14;c++) /* start of another FOR loop-lines 220,290 in one! */

{ /* multiple lines after a FOR need to be braced! */
screen(rnd(16)+l); /* CALL SCREB* in line 230 */

for(d=l;d<=14;df+) /* Start of a nested FOR LOOP - line 240 */
color(d,d,c); /* CALL COLOR in line 250 */

getcharO; /* Just waits for a key to be pressed - lines 270,280 */
} /* Close that brace for the FOR loop */

fun(); /* See that GOTO 220 in the BASIC program? This is the
same thing - it just keeps calling "funO" which is
nothing more than the program starting at line 220.
so, by separating the lines where the GOTO starts
into a separate routine, we can now call it over and
every time we would be using the GOTO in Basic. */

} /* Close braces for fun() routine */

3-n

Notes:

[1] Conpile the program with the Compiler. You must have version 2.0 of the
Ccxtpiler to use the "FOR" statements. Make sure the DA 80 file "RANDOM;C" and
"GRF1RF" is on disk 1. The assemble the output file. Then, load the assembler
output (which should be a D/F 80 file), then from E/A option 3 still load the
file "CSUP" (another D/F 80 file) and "GRF1" a third D/F 80 file. Then hit
enter and use the program name "START". It should run.

[2] The only complicated move was separating lines 220 through line 300 into
the separate function "funO". This was done because line 300 in the BASIC
program is a GOTO 220. Since there is not GOTO function in c99, we separate out
those lines and use recursion in "funO". Recursion simply means a routine
calls itself over and over, just like a GOTO. I hope you can follow this.

[3] Vfe could have used a function similar to CALL KEY(0,E,F) as in line 270.
But, by using "getcharO" we accomplish the same thing in one line. Getchar
waits for a keypress automatically without testing for "status".

[4] FOR-NEXT loops in c99 are three parts. Just as

240 FOR D=2 TO 14

250 CALL COLOR(D,D,C)
260 NEXT D

accoitplishes three things (set I>2, then CALL COLOR(D,D,C), then increment D by /<^\
one, then loop), the FOR loop in c99 does it all on one line. We say

for(d=l;d<=14;d-H-);

d is set to a, then tested to see if it is less than or equal to 14. The
color(d,d,c) is executed as log as d<=14. As each colorO function is executed,
d is incremented by one by the "d-H-" statement. All things are done with one
statement. Also remember that is there are multiple commands after a FOR
statement in c99, they must be set off between a pair of braces. If a single
statement, as we have here, they can be used without the braces.

[5] If you don't have version 2.0 of the Catpiler and, thus, can't use "FOR"
loops, you can try this: use a "whileO" function. For example, instead of

for(d=l;d<=14;d++)
color(d,d,c);

use this:

cNl; /* Step 1 in a loop: set d=l */
while(d<=14) /* Step 2 : test for d<=14 */

{
color(d,d,c);
d++; /* Step 3 : increment d by 1 */

}

It will accomplish the same thing. This is only needed if you have version 1.32 <^%,
on NOT version 2.0.

3-12

c99 Tutorial 1
by Warren Agee

CompuServe ID 70277,2063

This is my *first* utility word for C. I am NOT an experienced C
prograitroer...I have had 2days experience with C. So, this may not be the best
way to do it, but it DOES work!!

This file contains the C source code for the definition of a new function,
seg(), and a test program to demonstrate its use. seg() corresponds roughly to
SBS$ in BASIC. It will take a chunk of one string and place it in another
string variable. Both strings must be variables. You provide the variable which
contains the string to take apart, the variable Mfoere you want the new string,
and the starting and ending positions of where you want the chunk taken out. If
strl contains "APPLE PIE" and you wanted str2 to contain "APPLE", siitply use:
seg(strl,str2,0,4). Everything starts with zero, not one. So the first
character is 0, the second is one, etc. seg() returns the new chunk in str2.
str2 should be an "empty" variable. This may not make sense yet, but I have
conroented this listing thoroughly.

Run the ccxtpiler on this program, then assemble it, then run it (option 3
of 3/A). Load the assembled program first, then the CSUP file which resides on
the c99 disk. Program name is then START. Not exciting, BUT IT WDRKS!!

/*
/*
/*
/*
/*
/*
/*
/*
/*

C TEST PROGRAM

Warren Agee 10/26/85
written with c99, by
Clint Pulley
38 Townsend Ave.

Burlington, Ontario
Canada L7T 1Y6
Freeware: $20 donation requested */
Test of the seg() function */

V
V
*/
V
V
V
V

#include dskl.conio
int pl,p2,c;
char strl[81],str2[81];

mainO

{
pl=0; p2=4;

/* integers */
/* strings, 81 chars long */

c=putchar(12);
locate(3,l);
puts("Please enter string:\h")l?
o=gets(strl);
seg(strl,str2,pl,p2);
puts("The new string is:\n\n");
puts(str2);

}

/* take a segment of the string */
/* from position 0 to position 4 */
/* clear screen */

/* input string into strl */
/* NEW FUNCTION! */

/* str2 holds the new, segmented string */

3-13

/*
/*
/*
/*
/*
/*
/*
/*

Function to segment a string (SBG$ in BASIC)
seg(strl,str2,charl,char2)
strl=string to take apart
str2=segment of strl that is returned
pi,2 = beggining & ending position of string
positions start at zero!!!
after call segO, the new string is contained
in str2; the original string is not altered.

V
V
V
V
*/
V
V
V

seg(strl,str2,pl,p2)
int pl,p2;
char strl[81],str2[81];

/* start of function */
/* tells the compiler what pl,p2,strl,str2 are */
/* these were DEFINED in the main program, but */
/* you have to DECLARE them again, here. */

/* These are variables internal to the function; */
/* lhey do not relate to anything outside of this */
/* function, ie. they are not global. */

{
int index,lim;
index=0;
lim=p2-pl;

while(index <= lim)

str2[index++J=strl[pl++];

str?r-H-index]=NULL;

Seme Easy Learning
••€•• Tutcrials by Warren Acee

and mere. 3-14

Suppose that we want to pass one or more values to a function. Look at
this:

add(nl,n2)
int nlfn2;

{
int sum;
surtF=nl+n2;
return(sum);

}

The first line tells the compiler to expect 2 values in the parenthesis
when this function is called. We give these two values the names nl and n2.
When one calls this function, two numbers may appear in parentheses [like
add(l,2)] or two variables [like add(a,b)]. The next line is a variable
declaration, vrtiich was described in the first tutorial, but the purpose here is
a little different. The function add() receives two values; now the conpiler
has to know what KIND (class) of values they are. Since we cure passing numbers,
we declare them as integers, also notice that this must come *before* the
opening brace. We then declare another variable, sum, to hold the sum of the
two integers. We perform the addition just as one would do in BASIC. The next
line is very important.

When this function is called, we give it two numbers, and we want back the
sum, right? Since the variable "sum" is local to add(), once we return to the
calling program, the value of sum is lost. "Sum" only exists in add() and
nowhere else. What we have to do is artificially send the value of "sum" back
to the calling program, and we do this with the return statement, as shown
above. Now, when we call add(), we will get back the value of sum, like this:

mainO

{
int c;
c=add(5,2);

}

The expression "add(5,2)n is replaced by the answer, and we assign that
value to c. If we just wrote "add(5,2)" and did not assign it to anything, the
sum would just be discarded.

But why do all this? We could just declare "sum" as an external variable
in mainO. That way "sun" would retain it's value throughout the entire
program. In very large programs, you can run into difficulties if you use only
external variables. Stick to local (automatic) variables whenever possible.

Wtell, there you have itl There is a lot more to cover as far as functions
go. The return statement only returns ONE value, no more. If you need more than
one value back from the function, you have to use pointers. Pointers can be
quite sticky and confusing to beginners, so I will be spending quite seme time
on them in the next few tutoricds. So stay tuned, and experiment! It's the only
way to learn! (Well, reading my tutorials may help a bit!)

3-15

c99 Tutorial 2

"How To Function Properly"
By Warren Agee

CompuServe ID 70277,2063

m my first tutorial, I covered storage classes, something necessary to know
before you even start programming in C. Functions are another basic concept
which most be grasped before writing C programs. Simply put, a function is a
subroutine designed to perform a specified task. In some cases, values are
passed to and from functions, while other functions require no communication.
Numerous functions are part of the standard C library, lite gets() and puts(),
which allows input and output of strings, respectively. Others, like fopenO,
are kept in function libraries and stored on disk. And,of course, you may write
your own functions. Indeed, the process of writing a C program involves writing
user-defined functions, then putting all these functions together into a
runnable program.

So, where do we begin? First of all, naming conventions. Although a function
may have a name of any length, the c99 compiler only recognizes the first six
characters, and they may be only alphabetic. Unlike most other compilers, the
underscore (_) is not allowed. Secondly, what distinguishes a function name
from a variable is the presence of parentheses. Depending on the purpose of the
function, the parentheses may be enpty, like getcharO. If the function
requires values to be passed to it, these are placed inside the parentheses, as
in puts("\nHello there!") . Now that the cosmetics are out of the way, let's
get down to creating a function.

As I mentioned in the last tutorial, to call a function, merely type in its
naite, followed by a semicolon. Tb alert the ccxipiler that you are creating a
function, omit the semicolon.

clr()

{
int c;
putchar(12);

}

Here we define function called clr(). Note the missing semicolon. Also
note that since the parentheses are enpty, we are not going to communicate any
values to the function. Next we have an opening brace, which signals the
beginning of the function body. Note that the brace aligns with the first
letter in the function name above; this is a standard C convention to make
prograns easier to read. Then we indent a few spaces, another convention. We
then define the integer variable "c." Because this statement occurs inside the
function body, it is local to that function (See Tutorial #1 for more info).
The next statement is a standard console i/o function which prints a character
to the screen whose ASCII value is in parentheses. In this case, putchar(12)
sinply clears the screen. We then find a closing brace which ends the function.
Notice that the two braces line up.

3-16

rc99Tutorial 3

"How To Create a Function Library in c99"
By Warren Agee

CompuServe ID 70277,2063

Function libraries are simply collections of tested functions (or
subroutines) which reside in separate files from the main program. This helps
the programmer to avoid reinventing the wheel each time he writes a program.
There are basically two code. The difference is that with source code the
oonpiler has to process the code every single time you compile, while an object-
code library is only compiled once.

Creating a function library using source code is the easiest of the two
methods. Say you create a function strlenO which returns the length of a
string. You could just type in the function's definition each time you need it,
but a sinpler way is to save the source code for the function in a separate
file. If the strlen function is ever needed in a program, merely insert the
following line at the start of your code:

#include "dskn.xxxx"

where n is the drive no. of where the file sits, and xxxx is the name of the
file which contains the source code. The compiler will load in and compile the
source code as if it were typed directly into the main program. The #include
command works just like .IF (include file) of TI WRITER.

Creating a function library using object code is a bit more involved. You
r start out the same as before, with the source code of the function in question

as a separate file. But, as in the case with strlen(), you also need the
following three lines at the beginning of the file:

#asm
DEF STRLEN

#endasm

The actual definition for strlenO would follow these lines. The first
line tells the compiler that the following code is not in C but in assembler.
The second line tells the conputer to make the STRLEN code available to another
program. Even though it is defined in this program, a totally separate program
(main) will also have access to it. Note 1) the leading space before DEF (that
is inportant) and 2) the function name is in capital letters. The third line
tells the oonpiler that the assembler code ends and C code begins again.

The DEF directive can be used to externally define many, many functions at
once; just separate each function name with a comma.

yi!^^\

3-17

Now conpile and assemble your "mini-file" which contains just one
function. You now have a standalone function library consisting of the
strlen() function that can be used in ANY program. But how do you go about
linking it to your main program?

The next thing to do is add three more lines to the start of your main
program:

#asm
REF STRLEN

Looks familiar! But instead of defining an external function, we are
REFferencing one. This tells the conputer that even though the main program will
use the function STRLEN, it most look OUTSIDE the current program for its
definition. Please note that you can REFferenoe more than one function as with
the DEF directive. If you look at the STOIO file on the c99 disk, you'll note
that it contains mostly REF's!

When your program is compiled and assembled, be sure to load in the STOLEN
file that you already compiled before you run your program. Under E/A option 3,
first load your main program, then CSUP, then any other required files, then
your STRLEN file. Now you're all set to go!

The theory behind this is not that hard to grasp: instead of including the
definition of strlenO within the main program, we conpiled it separately as a
standalone module. But without the REFs and DEFs, there would be no
comnunication between the program module and the strlenO module. This
nonentary slip into assembly language allows us the opportunity to open a line
of comnunication between separately conpiled modules.

3-18

c

/0®to\

c99 Source Code - Tutorial
by Warren Agee

CompuServe ID 70277,2063

/* NEW FUNCTIONS: getintO and stoiO */
/* The following is a short demo program */
/* demonstrating the use of getintO to */
/* directly input an integer, and stoiO */
/* which converts a String TO Integer, */
/* similar to atoiO; stoi returns a */
/* status flag, which atoiO does not. */
/* Various version of both functions */
/* exist in the public domain, these */
/* have been adapted for c99 by Warren */
/* Agee. */
/* To run: Compile the entire file, making */
/* sure O0NV;C is in drive one. */
/* When done conpiling & assembling, Load */
/* & Run first the object code of this file */
/* and then the CSUP file. Program name: START */
/* The demo routine may be deleted and */
/* getint & stoi */
/* can be saved as a function library. Dont */
/* delete the #defines...they are needed */
/* in both functions. */

/* getintO demo */

♦include dskl.conv;c
♦define STOP -1
♦define NO 1
♦define YES 0
♦define EOF -1
mainO
{
int num,stat;

char string[81];
puts("This reads in integers until it detects\n");
puts("a CTRL-Z.\n");
while((stat=getint(&num)) !=STOP)

if(stat=YES) {
itodtnum,string,5);
puts(string);
puts(" is the number aooepted.\n");

}
else
puts("That was no integer...try again! !Vi");

puts("We're finished!^");
}

3-19

/* getintO V
/* format: status=getint(&num) */
/* status contains: */
/* -1 : EOF was found V
/* 1 : error (no #s) */
/* 0 : successful input */

getint(ptrint)
int *ptrint;
{
char buffer[81];
int index,ch;
index=0;

while((ch=getchar())='Vi'|ch=' ')
; /* do-nothing */

while(ch!=EOF & ch!='\n' & ch!=' ' & index<81)
{
buffer[index++]=ch;
ch=getchar();
}

buffer[index]=0;
if(ch==EOF)

return(STOP);
else
return(stoi(buffer,ptrint));

/* stoi(string,intptr) - */
/* converts string to integer (intptr) */
/* and returns status report. */

stoi(string,intptr)
char string[];
int *intptr;

{
int sign; sign=l;
int index; index=0;

if(string[index]='-' |string[index]=='+') {

if(string[index-H-]='-')
sign= -1;

else

sign= 1;
}

*intptr=0;
while(string[index]>='0' & string[index]<='9')

intptr=10(*intptr)+string[index++]-'0';
if(string!index]=0)

{
intptr=sign(*intptr);
return(YES);

else ^
return(NO);

}

3-20

z^\

/*
/*
/*
/*
/*

c99 Sourcecode - Tutorial 5
by Warren Agee

CompuServe ID 70277,2063

DRIVER for string routines */
This program expects the conv;c file fran the c99 disk
and the SERING.C file in drive 2.

The SERING.C file should be renamed

the #include directives below.
'string" as per

♦include dsk2.conv;c
♦include dsk2.string
char bigstrina[80],smallstring[80];
char answer[3j;
main()

{
int c,a;
puts("Simple test of match and strlen\n\n");
puts("Remember that all #s start at\n");
puterzeroMViXh");
puts("Enter large (target) string:");
c=gets(bigstring);
puts("Vi\nEnter small (search) string:");
c=gets(smallstring);

a=strlen(bigstring);
itod(a,answer,3);
puts("\nLength of first string is:");
puts(answer);
a=strlen(smallstring);
itod(a,ansv*er,3);
puts("\jiLength of second string is:");
puts(answer);

a=match(smallstring,bigstring);
itod(a,answer,3);
puts("\n\nThe natch occurs at");
pits("character #:");
puts(answer);

}

V
*/
V
V

3-21

c99 Tutorial 6
"Pointers" - Part I
By Warren Agee

CompuServe ID 70277,2063

Of all the aspects of the C language, pointers are the hardest for the
beginner to grasp. However, once mastered, one will find that pointers are what
makes C a powerful language.

Siiqply put, a pointer is an address, or memory location. When one declares
a variable (like int c;), that variable resides somewhere in memory. A pointer
to the variable "c" is the address where "c" lives. This is advantageous if we
want to change a variable that is local to another function. Using pointers
gives us a way to get through the barrier of being local to another function.
Think of it as going through the basement to get the contents of a variable. So
how do we do this?

int c;
int *ptr;

The first line just declares a normal int variable. The second line
declares a *pointer* variable named "ptr." Pointer variables are preceeded with
an asterisk. Now, the first line tells the compiler that we have an integer-
type variable, and it's name is "c." The second line says that, first of all,
we have a pointer variable. Its name is "ptr." In addition, ptr is going to
point to an integer-type variable—that's what the purpose of the int in the
second line. Right now, ptr does not point to anything at all. We have merely
created a variable, and have told the compiler what kind of variable it will
point to. Similarly, char *goose; declares a pointer variable called goose
which will point to a char-type variable. Think of it this way: a pointer
variable's purpose is to "look" at other variables. But you have to tell it
what it is looking at...an integer or a char-type variable.

Now, if we want ptr to point to "c", we do this:

ptr=&c;

Notice that the asterisk is gone. The asterisk has two purposes, one of
which is to DECLARE a pointer variable. The other purpose will come later. The
"&" can be pronounced "the address of." So "&c" means the address of c. This
statement assigns the address of c to ptr. If we now do c=5, what will ptr
contain?? The same thing, ptr holds the location of the variable c. No matter
what c contains, the location of c will not change. Variables cannot move
around in memory. Ptr just contains a number, perhaps 15000, just a memory
location. To tell ptr to look somewhere else, say the variable x, all you need
do is ptr=&x.

Now is the time to make an inportant distinction:

int *ptr; /* ptr is a pointer variable */

ptr=s&c; /* &c is a pointer constant */

3-22

You can change the contents of a pointer variable. You cannot change a
pointer constant—it is a number! Just like you can say x=3 but you cannot say
3=x. This may seem obvious, but this can get confusing later on. Just remember
the difference between a pointer variable and a pointer constant. The first is
a variable, the second is a number. A pointer variable contains a pointer
constant, but you can use constants in other places as well. More on that some
other time!!

Now that we know how to declare a pointer variable and assign it, what do
we dowith it??. Well, look at the following:

0=6;
*ptr=5;

The first line is obvious; it assigns c the value of 5. But what does the
second line do?? Ihe same thing!! Here we are using a technique called
"indirection," or, as I like to call it, going through the basement, ptr
contains the address, or location of c. If you were to print the contents of
ptr, you would have some large number. But once we put the asterisk in front of
it, we are saying "look at ptr's address, and access what is sitting there." In
this case, we are saying, "Ptr, you are looking at a variable. Put the 5
there." You are making two junps at once...the conpiler looks at the address in
ptr, then junps to that address and see what's there. Similarly, if we want to
know the value at c, we can do this:

int d;
*=*ptr;

Get the address out of ptr, hop over, get the value sitting there, and
assignit to d. We are accessing the variable c INDIRECTLY, by using it's
address.

This seems like an awfully silly way to do things!! Why all this hanky-
panky with pointers and go DIRECTLY to the variable in question? Look at this:

int *ptr; /* declares an external pointer to an int */
mainO

{
int answer; /* automatic (local) integer */
ptx=tenswer; /* ptr now points to answer */
add(5,2); /* calls add() */

}
add(nl,n2) /* nl=5, n2=2 */
int nl,n2; /* declares the above as integers */
{
*ptr=nl4n2;

}

Biis itsy-bitsy program combines several things I have covered before.
Take a good look at the pointer used. First of all, we only have one external
variable here: ptr. If we were to move ptr inside mainO, that would mate it
unavailable to add(). So we declare it as external. Then we declare answer to
be an int. Now, using the address operator (&), assign the address of answer to
ptr. Now that we have done this, we can access answer anywhere in the program.

3-23

Then we call the add() function. Once inside, we add the two numbers together,
and, using the indirection operator (*), we tell the compiler, "Here is this
sum. Go to the address contained in ptr, and deposit this sum there." When we
exit this function and go back to main(), where does the sum end up? Why in
answer, of course! Ptr contained the address of "answer." In fact, you can
think of the compiler as a mailman. He looks inside ptr, gets the address, and
delivers sum to the mailbox it found at that address...in this case, that
mailbox is the variable "answer."

Note that in the above example, we used ptr to point to only one variable.
Suppoed we vrant several answers, and we want to keep them in separate
variables? All you need do is change the contents of ptr to point to whatever
variable you want, like this:

ptr=&answerl;
(...) /* calculate answer */

ptr=&answer2;

(...)

ptr=&answer3;

(...etc.)

Just by changing the contents of ptr, you can point to any variable you want.

The above examples are trivial. From the last article, you learned how to
easily return a value back to the calling function using the return()
statement. But returnO only gives back one value. By using pointers, you can
alter as many values as you want. For instance, supposed you vent to swap the
contents of two values. This would be done like this:

mainO

{
int x,y;
x=2;

y=19;

switch(&x,&y);
}

switch(nl,n2)
int *nl,*n2;

{
int tenp;
temp=*nl;
*nlas*n2;
*n2=temp;

}

X and y and local variables. Using normal means, we cannot change the
values of x and y outside of mainO. So, instead of giving add() just the 2
variable on a platter, we give them the addresses. In this way, add() can go

3-24

yjflfiWP^s^

z^^\

r

through the basement and change the contents of x and y. So, in order to
inform switch() that it is getting addresses (or pointer constants), we declare
nl and n2 to be pointer variables. Only pointer variables can contain
addresses, nl and n2 now hold the addresses of x & y. Vfe create a "temp"orary
variable, and we do the switch. Since nl and n2 are pointer variables, to get
at the actual values, we use indirection (*). If we had just nl=n2 instead of
*nl=*n2, all we would be switching are addresses, but not the contents of the
addresses. Just a pointer variable by itself holds an address. But with an
asterisk/ we access the value contained at that address.

The main thing to remember here is that you can pass values to functions
easily. But in order to CHftNGE the value of an outside variable, you must use
pointers.

Wow!! Confusing, isn't it?! I suggest you reread this tutorial many times.
Buy a book on C (a good one) and read all you can about pointers. I've tried to
make things a bit clearer by using "ordinary" language (like "through the
basement"). When fiddling with numbers and pointers, you will run into
difficulty seeing your results because c99 does not have printfO, which allows
the output of numbers. In our case, we must first convert the number into a
string, then print out the string. This is done with the file called C0NV;C on
the release disk. Please refer to the file called OONVT.C in this DL for a

little tutorial on how to use the O0NV;C function to print out numbers. Next
time, I'll cover char arrays and strings, and, eventually, the biggie, string
arrays.

3-25

Comnand/Function

o=getchar();

c99 Programmmer's Reference Sheet
Compiled by Herman Geschwind

Conpuserve ID 73557,3447

Description

Read one character fran the keyboard

Include File

CSUP

c-putchar(c); Write one character to the screen CSUP

c-gets(buff); Read a line from the keyboard CSUP

puts(string); Write a string to the screen CSUP

exit(c); Exit the program CSUP

abort(c); Exit the program CSUP

locate(row,col); Locate the cursor on the screen CSUP

key-poll(c); Check keyboard status CSUP

tscrn(f,b); Change screen color CSUP

unit-fopen(name,mode); Open a file stdio CFIO

c-fclose(unit); Close a file stdio CFIO

c-getc(unit); Read one character from a file stdio CFIO

c-putc(c,unit); Write one character to a file stdio CFIO

c-fgets(buff,col,unit); Read a string from a file stdio CFIO

c-fputs(string,unit); Write a string to a file stdio CFIO

c-fread(buff,len,unit); Read a record fran a file Stdio CFIO

c-fwrite(buff,len,unit);Write a record to a file stdio CFIO

fseek(unit,recno); Set record number stdio CFIO

fdelete(filename); Delete a file stdio CFIO

o-feof(unit); Test for end-of file stdio CFIO

c-ferrc(unit); Get error code stdio CFIO

rewind(unit); Rewind a file stdio CFIO

grflO; Set to graphics 1 mode grflrf GRFl

textO; Set to text mode grflrf GRFl

3-26

/!|pS*S

r

/!06te\

Conmand/bescription Function Include File

screen(c); Set screen color to c grflrf GRFl

color(cs,f,b,); Change colors for char set cs to f/b grflrf GRFl

chrdef(ch,str); Define character patterns grflrf GRFl

chrset(); Load standard character patterns grflrf GRFl

patcpy(a,b); Copy character pattern grflrf GRFl

clearO; Clear the screen grflrf GRFl

hchar(r,c,ch,n); Place character n times horizontally grflrf GRFl

vchar(r,c,ch,n); Place character n times vertically grflrf GRFl

c-gchar(r,c); Return value of character at r c grflrf GRFl

s-joyst(u,&&x,&&y); Read joystick u grflrf GRFl

c-key(u,&&s); Read keyboard u grflrf GRFl

sprite(spn,ch,col,dr,dc)Define sprite grflrf GRFl

spdel(spn); Delete sprite grflrf GRFl

spdalK); Delete all sprites grflrf GRFl

spcolr(spn,col); Set sprite color grflrf GRFl

sppat(spn,ch); Set sprite pattern grflrf GRFl

sploct(spn,dr,dc); Set sprite location grflrf GRFl

spmag(f); Set sprite magnification grflrf GRFl

spmotn(spn,rv,cv); Set sprite velocity grflrf GRFl

Fmct(n); Enable sprite automotion grflrf GRFl

spposn(spn,&&rp,&&cp); Return sprite position grflrf GRFl

dsq-spdist(spnl,spn2); Return distance between sprites grflrf GRFl

dsq-spdrc(spn,dr,dc,); Return dist. betw. sprite and loc. grflrf GRFl

flg-spcnc(spnl,spn2,tol)Sprite coincidence grflrf GRFl

flg-spcrc(spn,dr,dc); Coincidence sprite and location grflrf GRFl

flg-spcall(); Coincidence of all sprites grflrf GRFl

float number[FLOATLEN]; Define float type floati FLOAT

3-27

CommandAtescription Function Include File

c-fpgets(s,f); Prompt for floating point number floati FLOAT

Display floating point number floati FLOATfpput(f,s);

c-itof(i,f); Converts integer to floating point floati FIOAT

i-ftoi(f); Converts floating point to integer floati FLOAT

c-stof(s,f); Converts string to floating point floati FIOAT

c-ftos(f,s,mode,sig,dec)Float array to string array floati FLOAT

c-fexp(fl,op,f2,res); Execute float expression floati FLOAT

c-fexp(f1,n+n,f2,res); Add two numbers floati FLOAT

c-fexp(fl,"-",f2,res); Subtract two numbers floati FLOAT

c-fexp(fl,M*",f2,res); Multiply two numbers floati FLOAT

c-fexp(f1,"/",f2,res); Divide two numbers floati FLOAT

true-fcom(fl,rel,f2) Compare two floating point numbers floati FL3AT

c-fint(fl,f2); Returns greatest integer value floati FLOAT

c-fcopy(fl,f2); Copy one float array to another floati FIOAT

filptr-topen(n,a,s); Open a file(name,access,fsize) tcioi TCIO

eof-tread(b,r,f,&&s); Read a file(buff,rec,fileptr,&&size) tcioi TCIO

eof-twrite(b,r,f,s); Write a file(buff,rec,fileptr,size) tcioi TCIO

eof-tclose(fileptr); Close a file tcioi TCIO

randomize(); Initialize random seed random;c

rndnumO; Generate a 16-bit random number random;c

rnd(n); Generate a random number betw. 0&&n-l random;c

n-atoi(s); Convert string to integer conv;c

s-itod(nbr,str,sz); Convert number to signed decimal conv;c

n-xtoi(hexstr,nbr); Convert hexstring to integer oonv;c

bitmap(fore,back); Change to bitmapped screen mode biti BITSUP

bitclrO; Clears the entire screen biti BITSUP

plot(x,y,c,t,); Turns on single pixel biti BITSUP

3-28

jdi$^l\

jfi^^\

Command/Description Function Include File

Iine(xl,yl,x2,y2,c,t); Draws line between two points biti BITSUP

rect(xl,yl,x2,y2,c,t); Draws a rectangle biti BITSUP

circle(xc,yc,r,c,t); Draws a circle biti BITSUP

bitxt(); Copies ASCII characters into CPU RAM biti BITSUP

bputch(ASCII,r,c,col); Similar to putcharO biti BITSUP

bputs(r,c,col,str); Similar to putsO biti BITSUP

blanks(r,c); Places a blank on the screen biti BITSUP

btblanks(r,c,count); Blanks sequence of locations biti BITSUP

bgetch(r,c,col); Returns keypress of user input biti BITSUP

bgets(buffadr,s,r,c,col)Inserts characters in buffer biti BITSUP

getky(); Scans keyboard similar to pollO biti BITSUP

Notes: The purpose of "c99 Quick Reference" is to provide a handy summary of
c99 command syntax and required parameters, a brief dscription and a reference
to "include" and "object" files required to support a particular coninand. All
references were re-capped fran Clint Pulleyfs release diskette for c99 Version
2.0 except for "biti" and "bitsup" which are based on Jay Holovacs BITRTN and
BITWRT Rel. 2.0. By necessity the description of the command had to be brief
and is intended to be more of a "memory jogger". In all cases the user is
urged to refer to the full documentation for all items .The naming of include
and object files reflect the preference of the conpiler of this quick
reference. You may have your own system and can feel free to use any suitable
editor to make necessary changes.

3-29

yf^^K

43cin» FORTH

/•/^%«y

Stepping PCETH into a new lanauaae
with ycur 99/4A9 and Geneve

by Howie Rosenberg
CompuServe ID 74216,1640

The FORTH language was developed by Charles Moore in 1969. As he stated, he
developed the language as an interface between him and the computers he
programmed. He placed the language in the public domain. The language has been
promoted by the Forth Interest Group(FIG) of San Carlos California. FIG has
available Assembly source code and architecture guides for each major processor
for a nominal fee. These items are in the public domain. Both major versions of
FORTH available for the TI-99/4A were derived from the FIG model.

In 1983 version 1 of Wycove FORTH became available. A short time later the TI
version of FORTH was released to the public domain. There were flaws in both
version. First were(are) a number of bugs which carried over from the FIG
model. Several bugs peculiar to each of the versions also existed. The Wycove
version had one fairly serious flaw in that method of storing data (screens)
was somewhat flawed and the FORTH editor could not be used to full
advantage. Proponents of the Wycove version claim increased speed which while
true is considered not of any significance by most FORTH programmers as
indicated by the fact that the TI version has gained much wider acceptance.
Version 2 of Wycove FORTH while it offers some improvement of the screen
structure, still was not the same as the FIG standard. There is still a debate
in some quarters as to the relative merits of the two versions. I feel these
are somewhat academic. TI IS the standard in our community and will most likely

^^ remain so. Whether it is due to the merits of the two versions or simply
f because the TI version was free is of academic interest.

ON STACKS, RPN, AND OTHER FORTH "HORRORS"

The characteristics of the language which are noticed, commented on, and in
many cases used as an excuse to quickly depart for more traditional languages
are all based on a simple idea one which is a central theme of Charles Moore!s
FORTH. Make it simple for the machine not necessarily for the programmer. This
results in the highest degree of flexibility and speed in a higher level
language. Thus while stacks are used internally in the architecture of all
computers, not only are the stacks accessible in FORTH but must be utilized.
The parameter stack is the only way to transfer data. The FORTH programmer
enters data on the stack prior to executing a word. The resultant data from the
word is outputted to the same parameter stack. In addition the return stack is
readily available for use, indeed must be used in many applications so that the
programmer must keep track of the status of this stack. This idea of putting
numbers on the stack for use of the next word leads to the statement by many
that FORTH uses Reverse Polish notation(RPN). Thus instead of 1+1=2 we have 1 1
+ . 2 in FORTH. It is actually somewhat ironic in the TI world. For a long
time, prior to the TI99-4 computer a long time competition existed between the
two giants in the calculator world, TI and Hewlett Packard. Texas Instruments
calculators all utilized an algebraic system AOS which TI claimed simulated the
way people did arithmetic. On advanced calculators up to 9 levels of
parentheses were allowed and arithmetic expressions were(and still are
evaluated by entering equations left to right, with parentheses used as needed
to indicate deviations from the normal hierarchy(first exponentiation followed
by multiplication/division and finally addition and subtraction). The Hewlett
Packard calculators used RPN and the user had to chew his way out from the

4-2

middle of an expression and understand what he was doing to a much greater
extent than did the TI calculator user. TI calculators were easier to use
without much training or thought. Hewlett Packard calculators ran faster and,
when comparing programmable calculators were considerably more efficient in
terms of programming space. Based on calculator history RPN in a TI machine is
indeed ironic. Another factor which seems to keep some programmers away from
FORTH is the fact that the primary arithmetic system for FORTH is fixed point
rather than floating point. Numbers can be single length(2 Bytes), double
length(4 Bytes) or if needed the programmer can define even larger numbers. The
use of fixed point arithmetic leads to efficient and fast running code.
Sacrificed is ease of use. The programmer must understand any arithmetic
manipulations used in his programs, size the results, decide on accuracy versus
range of answers and the like. In short easy for the machine, a bit more
difficult for the programer. Of course in both TI versions floating point
routines are provided. Actually the floating point routines are links to the
console GPL routines with there inherent Uck of speed. There are cases where
floating point is quite useful. Some FORTH systems have included hardware
floating point which not only does not slow down the language but can run
faster than software fixed point routines. In summary the use of the stack,
RPN, and fixed point arithmetic as used in the FORTH environment is quite
natural, leads to efficiency and speed in a higher level environment and really
is well worth the effort for those who are willing to make the effort to learn
how to deal with them.

WHAT IS FORTH?

FORTH IS A THREADED INTERPRETIVE LANGUAGE. The use of "interpretive" in this ^
instance is somewhat confusing as the run time code is actually compiled code.
FORTH applications consist of "words". New words are defined which call on
previously defined words not unlike the concept of procedures in LOGO. Those
words which are included in the basic FORTH language i.e. the primitives are
called the kernel. The words in the kernal and any new words added in a
particular application comprise the FORTH dictionary. Any new application has
all words from previous applications which are presently in the dictionary
available to it.

FORTH IS AN OPERATING SYSTEM. Moore's basic aim in designing FORTH was to
provide an operating environment which while operating a higher level language
would provide the maximum efficiency and speed at run time. To this end the
FORTH system was designed. The system provides a disk operating system which
was foreign to Tiers and which still causes difficulty to many. A FORTH disk is
divided into screens. Each screen consists of 16 lines of 64 Bytes of source
code, Text, data, or program image. Each screen thus requires 1024 Bytes or 4
sectors. In TI FORTH after the FORTH system is booted, screen #3 is
automatically loaded thus enabling auto start of an application or customizing
the configuration. Five screen buffers are provided. These are used to store
screen information on command. When all five buffers are full, a subsequent
request for screen data results in the screen which was accessed least recently
to be reused. Thus the FORTH disk system is a virtual memory. The utmost in
simplicity and flexibility are provided in the operating system which allows
for easy alteration. Many functions can be altered merely by changing the value
of a user variable.

FORTH IS AN ASSEMBLY LANGUAGE. There is an assembler built into FORTH and words ^

4-3

r^ can be defined directly in assembly language as well as in higher level FORTH.
The end result is similar to that which many of our EXTENDED BASIC programmers
have been doing namely using the higher level language to provide simple non
time critical functions and linking to assembly routines where needed. The
process is somewhat simplified in FORTH as the code routines are direct
replacements for higher level FORTH words. The process of linking is automatic.
There are versions of FORTH not available for the TI-99/4A which have the
ability for direct compilation of runable object code which can be run in the
system without booting FORTH (i.e. establishing the FORTH environment). The
result of such a compiler is Assembly object code. Supposedly all Atari arcade
games which were produced for various machines including the TI-99/4A were
written in FORTH and processed with a target compiler.

FORTH IS EXTENSIBLE. Changes can be rather easily made to any words in the
dictionary. Of course care must be used when changing words 1n the kernel which
are used by other words or the system will most assuredly crash. I can think of
no other language which can be changed with such ease.

THE FORTH ARCHITECTURE

Maximum utilization of the FORTH language requires some understanding of the
architecture of the language. This is more true of FORTH than other languages
in that the elements of the language, stacks, users tables etc. are readily
accessible to the user. For purposes of this note a short description is
sufficient. TI FORTH utilizes memory much like the typical FIG FORTH system.
Lower memory is used for support functions, the disk buffers, and the return
stack. Upper memory contains the dictionary at one end, and the terminal input

^ buffer at the other end followed by the parameter stack. The stack and
v dictionary are thus able to grow toward each other. Applications which require

a large number of stack entries(unusual) can thus be handled by keeping the
dictionary small. In turn by keeping the stack small, large applications can be
handled.

THE STATUS OF TI FORTH IN OUR COMMUNITY

FORTH has been with the TI-99/4A community for 3 years. The FORTH programming
community is not large but with few exceptions once a programmer has taken the
trouble to learn FORTH and has started to use it he stays with it. There have
been few corranercial FORTH programs but those,which are available illustrate the
capabilities of the language quite well. There is also a considerable array of
public domain software for the TI written if FORTH.

Within the FORTH community there has been several major versions of the
language after the FIG version. The latest of these is FORTH 83. While FORTH 83
has features which cannot be utilized in the 99/4A environment because of
memory restrictions, the language is, generally transportable. Of course as
always machine specifics in any language act as a restriction to
transportability. Those Tiers who try their hand at programming other machines
will find that FORTH programming experience on he TI will be entirely
applicable. Those of us who stay with the TI have found a language which has
given us much greater control of your programming environment than available
with other languages.

4-4

In-ti-odutc-tion -to FORTH

(As lectured by Chick De Marti)

- INTRODUCTION -

FORTH is all things to all people. It is extensive (you can do
anything in FORTH). It is -fast (almost as -fast as ASSEMBLY). It is
EASY (to the extent it is user -friendly) and it is complex (it can
challenge the mind of the ASSEMBLY Programer).

While many routines appear to be simular to BASIC or EXTENDED
BASIC. (see PLATE 1) these languages can not be compared to each other.
FORTH, like FORTRAN, COBAL etc. is concidered to be a %HIGH LEVEL'
language. While it uses words that are common in the English language,
it requires less interpretation into machine language than most of the
other languages.

Because of it's structure, FORTH uses no ".. .run-time error check
ing. FORTH's compiled code is compact ...(it's) applications require
less memory than their equivalent ASSEMBLY' programs!" (1)

FORTH is transportable (it has been used on just about every mini-
and microcomputer known to the industry). Charles Moore who invented
FORTH in 1969 said in all computer languages we, the operaters, have to
learn the computer's language. He created FORTH, a language with which
we are able to teach the computer only those words required to complete
an assignment.

IS FORTH A GOOD LANGUAGE?

"...First, FORTH is more than just a language. It can be a stand
alone operating system that provides basic support -for terminal and
disk control.

••Multi-tasking and multi-user FORTH systems are available. FORTH
has been called a psuedo-machine language because the key words used for
moving data -from place to place are simular to the techniques used in
assembly language.

"FORTH is an on-line interpreter. Commands are given to FORTH from
the keyboard in a manner simular to the %immediate mode' of most Basic
interpreters. This is ideal for the development and debugging of the
program. The programer can try out sequences of commands, one at a time.

-After the programer is satisfied that the sequence works properly, he
can make it a permanent part of FORTH by giving it a name. Later, it
can be called (type it's name) to perform by itself or as part of an
other defined word.(1)

FORTH was first used as a computer control for large telescopes.
While it continues to be used by many observatories, it also is being
used to control ROBOT cameers, remote sensors of water depth and as an
aid in navigation of large barges in inland waterways. General Electric
also uses it to diagnose and trouble shoot large electric locomotives
and it has been used in weather prediction programs.

4-5

To program in FORTH, you must know what a STACK is because ^lmost
all FORTH operations involves a STACK in some way. When adding 2+2,
both numbers must be on the STACK and the sum is placed on the top of the
STACK. The same goes for subtraction or multiplication or any operation.
rhe STACK is actually the MEMORY AREA

You will learn to understand the function and operation of the stack
both from outside and within a loop. Also, you will learn to store in
formation and move it at will. With 'hands on' experimenting, you will
become comfortable in FORTH and with your new found confidence, you will
be able to let your own imagination dictate the programs you can write.
The least you should accomplish is to be able to confidently enter and
run the various programs that will appear (and are appearing) on the
Source Boards, in books, magazines and Computer Group Newsletters.

SUGGESTED READING

There are many magazines and books dedicated to the furthering of our
education in FORTH. MICRO (magazine) continues to increase it's articles
on FORTH. Another excellent source of information is FORTH DIMENTIONS.
MILLER GRAPHICS puts out an excellent Newsletter... and for the more am
bitious programers, FIG (FORTH INTEREST GROUP ..PO BOX 1105, San Carlos
Calif. 94070) publishes a bi-monthly newsletter. Membership in FIG is
$15.00. Other suggested reading is:

STARTING FORTH by Leo Brodie
published by Prentis Hall

THE FORTH MANUEL (of your choice)
INVITATION TO FORTH by Katzan

published by Petrocelll Book
FORTH PROGRAMMING by Leo J. Scanlon

published by Howard W. Sams Co.

VARIETIES t3F FORTH

The main standards of FORTH that exist are FIG/FORTH, FORTH 79 and
FORTH S3 (which is an update of FORTH 79). Some spinoffs are WYCOVE
FORTH and TI-FORTH (an extension of FIG-FORTH). All are outgrowths of
the original FORTH Inc. started by Charles Moore.

FORTH is extensible. It's programs are interchangeable with most
othe computers. Included are APPLE, IBM and the VIC family (20 and
and the 64)..as well as TEXAS INSTRUMENT'S 99/4A. The resident words
that one computer may contain can easily be defined in another languag.
An example ... Apple's 'HOME' can be defined : HOME els 0 0 GOTOXY ;

Many of the differences have been documented in both Brodie's START
ING FORTH and Leo ScanIon's PROGRAMMING IN FORTH.

4-6

FORTH'S STRUCTURE

RESIDENT AND OPTIONAL WORDS

•• The ACT of programming in FORTH is the act of defining %WORDS'"
WORDS can be made up of other user defined words..." and-continue until
a single word becomes the application desired. (2) "

Each new WORD is added to the dictionary and can be used in the def
inition of future programs. The format of a WORD is:

: name operation (or data section) }

The colon at the beginning tells the compiler that the following items
are the components of a 'WORD'. The 'NAME' can be of any combonation
of letters and numbers, ie ?NOTE -P13 MOV/B etc. (also see CLASS 2).
The %DATA' can be a CONSTANT, A VARIABLE, LIST OF VARIABLES or TEXT.
The semicolon denotes the end of the WORD definition.

" Since a FORTH word must exist before it can be referenced, a
bottoms up programming decipline is enforced" (2) Thus we must learn
to program "... from the bottom up" (2). Words take their parameters
from the 'STACK' and place the results on the STACK

AREAS WE WILL COVER

Besides %RESIDENT' words you have a choice of 20 optional or 'ELECTIVE
BLOCKS' you may add to the computer's memory. We will work primerily
with <S> -SYNONYMS, <E> -EDITOR, <V> -VDPMODES and <P> -PRINT. ^\

(See Page 5 Chap.l of TI FORTH Manuel for a complete list.)

* NOTE ♦ <S> includes -DUMP -TRACE -COPY

<V> includes -TEXT -GRAPH1 -MULTI -GRAPH2

<P> includes -FILE

<E> includes -64SUPP0RT

STACK MANIPULATION WORDS8

DUP ROT

DROP -DUP

SWAP >R

OVER R

ARITHMATIC OPERATORSs

(R>)

- / * and later MOD AND

/MOD OR

*/MOD

/<^^fev

4-7

REQUIRED EQUIPTMENT

COMSOLE EDITOR/ASSEMBLER MODULE
M0NIT0R RS232 INTERFACE (optional)
MEMORY EXPANSION PRINTER <OP!i°"fnn
DISK DRIVE (For the time being we ™" *• r*J^ "9

to one drive - your drive #1 (actually
Drive 0, but more on this later.)

STARTING UP YOUR SYSTEM:

1 ... Put your "SYSTEMS" disk in the drive.
2 ... Turn on EDITOR/ASSEMBLER Module.

(use OPTION 3 ... LOAD)
3 ... type DSK1.FORTH <ENTER>
4 ... type -EDITOR -SYNONYMS -PRINT

5 ... TO EDIT A SCREENS
(A) type 3 EDIT <ENTER> (this gets you onto screen 3
(B) use ARROW keys to move the cursor
(C) press FCTN 9 to get out of the EDIT mode.

'*> ... Take your SYSTEM disk out of the drive and replace it
with a blank initialized disk (use your DISK MGR for
the time being). This will be your PROGRAM DISK.

7 ... type EMPTY-BUFFERS <ENTER>
8 ... type (any number) EDIT <ENTER>

You will find that you have 90 blank screens on your
program Disk. Here is where you will store your pro
grams and experiments.

CONGRADULATIONS!
You are now in FORTH and have executed 3 commands:

-EDITOR -SYNONYMS -PRINT (all one group)
EMPTY-BUFFERS and

(number) EDIT

REMEMBER:

Only use your ORIGINAL FORTH disk to make a "SYSTEM" (or
working) disk. A back-up copy can easily be made using the
copier found elsewhere in this volume. At this point, let's
try out some new words (commands):

UPDATE, LOAD and SWCH and UNSWCH

4-8

Entering FLUSH recopies the entire disk (like SAVE DSKl.xxx
in BASIC). If you want to copy a particular screen from an
other disk, DO NOT FLUSH it to your disk...instead:

Type UPDATE <ENTER> This assures you that this par
ticular screen is currently

resident in your console.
Put your disk in the drive and:

Type (n)LOAD <ENTER>

Where "n" is the number of the screen you want it copied to.

NOTE;A word of warning ALWAYS EDIT screen(n) before you LOAD
something to it...too many times we write over an important
screen. If your planning on making changes to a certain
screen, make a PRINTed copy of that screen BEFORE you change
it. If your have already loaded the resident block of words
under the title -PRINT (see #4 in apragraph "STARTING UP YOUR
SYSTEM"), then you are ready.

Type SWCH (n) TRIAD CR UNSWCH

NOTE:This is very important... ALWAYS end your SWCH command with
"UNSWCH". "SWCH" switches on your printer. If you do not
include "UNSWCH" (unswitch), the printer will stay on...your
console will become disables, as though it had crashed!

YOU DID IT! YOU DID IT!!

You now have some control of the FORTH environment...you can:

make a copy of an entire disk in FORTH (FLUSH)
You can locate and examine a screen (n EDIT)

You can print a copy of a screen (SWCH n TRIAD UNSWCH)
You can copy a screen to a Prog. Disk (UPDATE n LOAD)

And because you are getting used to the format, the language
you are ready to peruse the volumns of misc. information put
out by various books and newsletters. The following will be
some I have selected as being worthwhile for the beginner.
It does not represent all that is available, but you'll find
it informative, instructive and interesting.

Go FORTH my friends. Chick

4-9

/iSP^s

r

1. Bootins Th. Forth System

.. Ineert th. Editor/Assembler module.
b. Switch on tho P-ook, Monitor and con.olo.
c. Ineert tho SYSTEM DISK. If you have two drivee, uoo el.
d. Press ENTER. Press S. Tho E/A selections appear.
•. Press 3. Tho filo name request appears.
f. Typo, DSK1. FORTH (Press ENTER) ^ —-.-«,.
g. Tho FORTH Mnuo oppo.ro. Typo, -EDITOR (Press ENTER)
h. Typo, -DUMP (Pros* ENTER)
i. Typo, I BLOCK DROP UPDATE (Press ENTER)
j. TypV,' * BLOCK DROP UPDATE CProoo ENTER)
k. typo, S BLOCK D*DP UPDATE (Prooo ENTER)
1. Remove tho SYSTBH DISK and roloeo it with o blank diok which

will-bo form.tt.tt.into o WORKING DISK.

£. Preparing tho WORKING DISK

a. Typo, 0 FORMAT-DISK (Tho 0 io sero) (Prooo ENTER)
b. Typo, FLUSH (Prooo ENTER)

3. Entering a program on a SCREEN

a. Typo, 1 EDIT (Prooo ENTER). If tho SCREEN io not clear, exit
the SCREEN by preeeing FCTN BACK • «-.«--*, ^ i

b. Typo, i CLEAR (Press ENTER). This action cleare tho SCREEN but
does not return you to tho SCREEN.

c. Typo, ED0 (Prooo ENTER). Thio action roturns you to tho
SCREEN in tho EDITOR mode. .

d. The cursor io now on line 0, at the loft margin. Type in the
program listed on page 13 of -STARTING FORTH". On lino 7, typo
the letter F . Do not uoo any punctuation Mrk»:J£>Bn*£OBrjl"
entry io completed, exit tho SCREEN by proooing FCTN BACK .

«. Typo, I LOAD (Press ENTER). This action will load and owoeuto
~the LETTER-F program.

*. Typo, FLUSH (Press ENTER), if you wioh to oavo *^ proorM.
This action writes the program to SCREEN 01 of tho WORKING DISK.

4-10

<♦<* FORTH and X-BASIC SIMULARITIES ♦>*>

BASIC (or Extended)

1. " (to enclose a string)

2. s s (2 blank spaces

3. CALL CLEAR

4. CALL CHAR(42,%1234'

5. CALL CQINC(*1,*2,8,C)

6. CALL COINC(ALL)

7. CALL COLOR(3,2,1)

8. CALL COLOR(#1,12)

9. CALL DELSPRITE(#1)

10. CALL DELSPRITE(ALL)

11. CALL GCHAR(R,C,A)

t2„ CALL HCHAR(3,3,96,28)

13. CALL LOCATE(#2,80,120)

14. CALL MAGNIFY(2)

15. CALL MOTION(#1,X,Y)

16. CALL PEEK(-31880,A)

17. CALL PEEK(-31880,A) n PRINT A

18. CALL POSITION(#l,Y,X>

19. CALL SCREEN(7)

20. CALL SPRITE(#1f63,10,80,120)

21. CALL VCHAR(R,C,CH,COUNT)

22. DISPLAY AT(12,18)iERASE ALL

FORTH

.• (needs an ending ")

CR CR (carriage returns)

CLS (also same on apple)

B123CH

0 18 COINC

COINCALL

0 12 COLOR

11 0 SPRCOL

0 DELSPR

DELALL

C R GCHAR

2 4 28 96 HCHAR

119 79 1 SPRPUT

1 MAGNIFY

Y X 1 MOTION

-31880 0

<-31880 ? or -31880 0 .

0 SPGET

6 SCREEN

119 79 9 65 1 SPRITE

C R COUNT CH VCHAH

i-WE WANT FORTH"

11 17 GOTOXY CLS

Section

Location

RESIDENT

RESIDENT

RESIDENT

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

-GRAPH

BEEP .M WE WANT FORTH M

4-1 1

c

/ussUP**^

GOING FORTH
by David Aragon
512-826-8648

CompuServe ID 75766,336

book^! l~ oou *hat have tried to learn FORTH have been directed to a
verv aood^J£°!le S^1? "Starti"° FORTH.- I must say that it is avery good book for the beginner. Mr. Brodie goes step by step through
uS;js?SdXal?h0f F0R™ i" * Way that eve" * *imol« «?ndyiikeP«inrcS
version o?'F0™r%£^reVer' quitB a **" deferences between hisduT IhL! rffSR™' F0RTH-79, and the TI version. TI was nice enough to
in Jv o? ttltrenCB9 intoTPrint *«• «*. but somehow forgot to put the,
farXL X! scrTOnf: I. therefore, have gone that one step
the c^^r?*!^8 Us*Bd °el°" =ont*i"»» I think, just about all o-
cond^—S L ai1°!?.rOU tQ WOrk though Brodie's book. It can bo
SSSJiS £ %M°? * Sin9le SCreen that vou could load »«-*«" *°v^ mLu !« Brodie's book. I might suggest that you add it to
your menu as was discussed last month.

SCR *

(STARTING FORTH WORDS)
5™« ROT >R ROT >R , 8 2DUP OVER OVER ;
20VER SP3> 6 + 8SM6 + 9; : 2DR0P DROP DROP 5
0> 0 > « : not 0» ; : ?DUP -DUP ;
II ?o"W s 2/ ! SRA ; : 2! >R R ! R> 2+ ! 1
23 >R R 2+ 9 R> 9 ; . NEBATE MINUS 1
I' R> R> R SWAP >R SWAP >R ;
S^D"/J1 «°" DMINUS D+ ; : DNESATE DMINUS ;
™™, 2^* 2°VER °~ SWAP DROP 0< IF ZSW^P ENDIF 2DR0P ;
-lonS?Smt ^«flVfSe2SWAP °" SWAP DR0P 0< IF 2SWAP enoip 23R0P ;-LONSTANT <BUILDS , , DOES> 29 3
2VARIABLE <BUILDS 0. , , DOES> J

SCR #

(STARTING FORTH WORDS)
: D» D- 0» SWAP 0- AND ; : DO- 0. D- :
: D< D- SWAP DROP <K ; : M+ 0 D+ ; : 'S SP9 •
: hV M/ SWAP DROP ; : >IN IN ; • MOVE 2/ MOVE •
8S^eTE ^ ?^ 0VER U< IP DROP DROP DROP DROP 1 ELSE - IFU< ELSE DROP DROP 0 ENDIF ENDIF ;
: TEXT PAD 72 BLANKS PAD HERE -

1- DUP ALLOT MINUS SWAP WORD ALLOT :
s PLUS 32 WORD DROP NUMBER +.-»-. !
!^?t 5S,iU>S«2VER • *^Or «•»> DUP 9 ROT t ♦ ♦ 2+ ,
7l^iT»2DUP * SWAP °° DROP 2«- DUP 2- 9 I 9 - DUP

. I*T?Trn,!!!L./J^AVE THEN 2 •H-00P SWAP.DROP 5: EXIT CC0MPILE3 ;S ; IMMEDIATE

•12

Besides the resident WORDs in FORTH, you can create your own words. The
formatof a FORTH word isi

t (name) (instructions) I

The colon announces th. start of anew WORD. The —icolon signal, it's
end. An exampl.i

t BYE EMPTY-BUFFERS HON I

-BYE" will first clear th. buffers of any fl-oory ^Vf'^^a>'
then th. word "MON" will tak. you bach yo the TI LOBO screen.

Th. following ar. J. VOLK's ««o.t u..d words". Try '•«, you'll like 'em
EOitor

SCR #91
0 (MY MOST USED WORDS br «*• Vols)
1 (LOAD -SYNONYMS FIRST if not already ?L0*D*?> felaI111 %I . MYLOAD -GRAPH -VDPMODES ;(Will load these options)

AT OOTOXY ; (Sa.e as 'Display At»)
top cls o o AT : (Sa.e as Brodie 'a 'PAGb j

2»0?.» it -Y(»RAMDOM >» V™?"™^*
PICK (Leave copy of n1-tb nuober on top of stsos)

7 (n1 — n2)
ft p § CD & + 0 • - \

9 : ROLL (Rotate nth number to top of •*»ck > i* 7»"v£\» LOOP
10 DOP 1 * IP DROP ELSE DUP 1 DO SWAP R> R> ROT >R >H »R LOOP
? ?SoY> R> K HOT ROT >R >R J*" "J'Bmi!!aVoHTIL •(FCTH 412 : TEST BBGIM .- HELLO THERE* 2 SPACES ?TBRMIHAL OHTIL , K

!J "gHoJ IF DOP 0< IF -1 ELSE 1BNDIF ^SJ °B»D" 'H 8CP.en)15 jWORK BLOCK DROP OPDATB ;(My word to update a FORTH screen

SCS VI Word to copy FORTH disks-Single Drive 5/16/84 J. Vol*)
1 (Load Screen #91 and -COPY then BOM)
2 0 VARIABLE COPYSCR 0 DIS*-L0'„„, „.,„-_ «n» 2 11 AT ." INSERT M

7 : C0PY2 2 11 AT ." IHSBRT COPY DISI-ABY KEY "! DH0P »
8 (COPY 5 SCREENS AND PRINT MBSSAQE) fto nMTI, .
9 : GBTIT BBGIH MES1 C0PY1 C0PY2 FLOSB COPYSCR # 89 = OHTIL ,
10 (RONS ABOVE WORDS) _«_„ -,.. * /T/H\ • .
II • MESO TOP 2 11 AT ." INITIALIZE FORTH DISK ? (Y/H) »
2'So TOP 2 11 AT .- INSERT COPY DISK •KEY DROP | .1123 iN. MESO KEY 89 =IF MSG 0FORMAT-DISK DISK-HEAD BNDIF GETIT ,
14 (ROUTINE TO INITIALIZE DISK)
15

4-1 3

/gfP&N,

PREFACE:

Forth Tutorial #1

By Warren Agee
CompuServe ID 70277,2063

With this tutorial (and more to come!), I humbly submit what I have
learned by progranndng in the FORTH language. One reason I decided to put
down into words the knowledge I have acquired is to share my experiences,
frustrations, and triumphs while hacking away with FORTH. But, on a more
personal level, I give these tutorials to the TI world as a token of
appreciation for everything I have gained from knowing such people as Ronald
Albright, Barry Traver, and Howie Rosenberg, just to name a few, as well as
the whole gang on the TI FORUM. These and many others have given unselfishly
to both me and the TI cxxmunity as a whole, and I am proud to be part of a
conrainity that refuses to die. Now, on with the progranndng, FORIHwith!
<ugh!>

STRINGING ALONG IN FORTH

Of all the peculiarities the beginner confronts in FORTH, string
handling is a major obstacle. Nothing is more frustrating than to sit down
and have no idea how to write something like A$="1234"::AfVAL(A$). No
advanced string-handling routines come with the TI FORTH systems disk. So,
it is up to the programmer to invent his cwn. Hopefully, this article will
make it much easier to write a FORTH program that involves any string
manipulation at all.

THE BASICS

Before jumping into the new string words, let's first take a look
at how a string sits in memory. This knowledge is iitperative in order to
fully exploit the power of FORTH. Think of a string as a nutieric array; each
character in the string represents a number, or byte. The string HOME
COMPUTER would look like this:

|h|o|m|e| |c|o|m|p|u|t|e|r|

The first "box" represents the address in memory where this string
starts. Determining the location of this address is what we will discuss
next.

There are many ways to store strings; we could save them in VDP
RAM, or in the disk buffers. In this article, we will investigate storing
strings directly in the dictionary. A string variable is no more than a
numeric variable stretched out. In fact, unlike BASIC, there is only one
type of variable in FORTH. The only thing that differs is the size. First
use the word VARIABLE to create a variable. But when you create it, let's
say 0 VARIABLE TEST, only two bytes are allotted for storage. This is fine
for single numbers; but for strings, we can use ALLOT to specify the length
of the variable. For instance, 0 VARIABLE TEST 8 ALLOT will create a
variable with a length of ten bytes. TMs gives us room for a string with a

4-14

maxiinum length of 10 characters. If the above is executed, the variable
will look like this in memory:

I I

addr of TEST

Once the string is created in the dictionary, there may be garbage in the
variable. Here we can use BLANKS to clean it out: TEST 10 BLANKS. This will
fill ten bytes of memory, starting at TEST, with blanks (ASCII 32).

Now that space has been reserved for the string, there are
basically two ways to store the string. If the contents of the variable is
not going to change, then the word !" can be used. All this word requires is
an address on the stack. So, to store STRINGS in the variable TEST defined
above, the sequence TEXT !" STRINGS" will do the trick. If you wish the user
to input the string, the word EXPECT is available, which is similar to
BASIC'S INPUT statement; it awaits an entry from the keyboard. EXPECT
requires both an address and the maximum length of the string on the stack.
Using TEST 7 EXPECT will achieve the same results as TEST !" STRINGS" .
The variable will new look like this:

1S|T|R|I|N|G1S| | | |

This presents our first problem. Since the contents of TEST is not
expected to change, the length of the string can be assumed to always be 7.
However, if the length will vary, we must keep track of it. EXPECT does not
do this for us. Sure, it requires a length on the stack, but it does not
incorporate this value into the string. Not to worry. This brings us to our
first new word, ACCEPT, **hich replaces EXPECT. The only difference is that
ACCEPT stores the actual length of the string inputted into the byte
preceding the string. This is often called the count byte. If we use ACCEPT
in the exanple above, our string would now look like this:

|7|S|T|R|I|N|G|S| | |

addr of TEST

As you can see, the first letter of the string, the "S", no longer sits
at TEST; the whole string has moved over one byte to make roan for the
count. Now, to print this string is a trivial matter of using TEST COUNT
TYPE. TEST supplies the addr of the ccnplete string. COUNT takes that
address, calculates the address of the actual string (TESTH-1), and finally
supplies the length of the string. Everything is ready for TYPE. To
sumarize what we have done so far, consider the following exanple:

4-15

r
0 VARIABLE COOKIE 18 ALLOT (reserves 20 bytes)
COOKIE 20 BLANKS

COOKIE 20 ACCEPT ^CHOCOLATE CHIP_
COOKIE COUNT TYPE

Note: any words that appear between underscore characters (_) are to be
typed in as a response to the ACCEPT word.

M3VING AROUND

Pp till now, I have discussed performing basic functions on strings
which reside directly in the dictionary. This is not always the ideal
situation. A much better way is to store the string in a temporary spot, do
**hat needs to be done, then move it back into the dictionary. This temporary
spot is called PAD. Typing in PAD just leaves an address on the stack, just as
TEST does. Topically, instead of typing in TEST 10 ACCEPT, you would type PAD
10 ACCEPT. Once any processing is done, the word CMDVE can move the bugger back
to where it belongs. Here arises our second problem. (MOVE moves a specified
quantity of bytes from low memory to high memory. But what if you want to go
the other way around? Well, define a new word, of course!

The new word will be <CM0VE, which is included in some versions of FORTH.
But wait—isn't it rather a hassle having to remember which word to use? Of
course it is! Remember, FORTH is extensible, and we can make it as user-
friendly as we like! The next new word will be CMOVE$, which decides which way
the string is moving, and does the moving for you.

Here is an exanple of using CM3VE$ and PAD:

0 VARIABLE DRESSER 8 ALLOT

DRESSER 10 BLANKS

PAD 10 ACCEPT _SOCKS_
.

. (string processing done here)
.

PAD COUNT (get addr and length)
1+ SWAP 1- SWAP (PAD-1 CNTfl)
DRESSER SWAP (PAD-1 DRESSER CNT+1)
CM3VE$
DRESSER COUNT TYPE

Everything should make sense until you get to the 1+ SWAP 1- SWAP. The
reasoning is a little hard to grasp at first: we want to move SOCKS from PAD to
DRESSER. We also want to maintain that ever-inportant count byte. But Vvhen we
use PAD COUNT, we only have the addr and length of the string itself, not
including the count. So we oonpensate. Add 1 to the count (because we want to
move the count byte adong with the string), then subtract one from the address.
COUNT adds 1 to the address, so we have to correct this to catch the count.
Once these two numbers have been corrected to catch the count byte, shift
things around to get everything ready for CM3VE$. To better illustrate this,
here is a diagram of PAD:

4-16

|5|S|0|C|K|S| I I I I (Contents of PAD)

PAD+1 (This is where you are using PAD COUNT)

PAD (This is where you are using PAD COUNT 1+ SWAP 1- SWAP)

If you can understand the principle of the count byte, and how to keep
the count byte tacked on to the string when moved, then a major obstacle in
writing in FORTH has been removed. Next time, I will discuss string arrays.
Uhtil then, experiment, and Keep On FORTHin' I

StMIARY OF RESIDENT WORDS -

VARIABLE (n—) Create a variable.
ALLOT (n—) Reserves n bytes in the dictionary.
BLANKS (addr n—) Fills n bytes with blanks.
EXPECT (addr n—) Waits for input; stores string at addr.
COUNT (addr—) Returns addr and count of a string.
CMOVE (adrl adr2 n)Moves n bytes from adrl to adr2, from low to

high memory.
PAD (—adr) Temporary storage place for strings.

NEW WORDS

: PICK (nl — n2)

2 * SP@ + @ ;

(Copies nlth number to top of stack)

: LEN (addr — n)

255 0 (string max=255 characters)
DO

DUP I + C@
0= IF (looks for null)
I LEAVE (I=length of string)

ENDIF

LOOP

SWAP DROP ;

(Returns the length of a string at addr.)

4-17

: ACCEPT (addr n —)

OVER 1+ DUP ROT (adr+1)
EXPECT

LEN (length of string)
SWAP CI ; (store count byte at addr)

(Waits for input; stores count at addr and string
starting)

(at adr+1.)

: <CM3VE (adrl adr2 n)

DUP ROT + SWAP ROT

1-DUP ROT +

DO

1-IC§ OVER C! -1

+L0OP

DROP ;

(Moves n bytes frcxn adrl to adr2, from high to low memory.)

: CM)VE$ (adrl adr2 n)

OVER 4 PICK >

IF <(M0VE

ELSE CMOVE

ENDIF ;

(Moves n bytes from adrl to adr2; automatically decides on)
(direction.)

4-18

AN ARRAY OF STRINGS

Forth Tutorial 2

by Warren Agee
CompuServe ID 70277,2063

Last time we met, I covered how to handle the basic string in FORTH. I
also stressed the importance of the count byte and how to move it along with
the string. Now, we have graduated to the realm of string arrays, which is an
entirely new mess with which to work.

Think of a string array as a super-long string. Since the character
(or bytes) of a string sit sequentially in memory, it stands to reason that
the elements in a string array do also. But the physical structure of an
array must be forced by the programmer; maintaining an array is not
automatically done. The structure is vrtiat we will discuss first.

Here is a possible string array:

|3|C|A|T| |3|Dl0|G| 1 | |4|b1i|r|p|5|p|o1o|c|h1

This array has 4 elements: CAT, DOG, BIRD, and POOCH. Fine, right? No way!
This is a mess! Each element in this array has a different length. Element #1
has 5 bytes, #2 has 7, #3 has 5, and #4 has 6. How in the world are you going
to keep track of all this? You cannot! Elements in a string array - must -
have a constant length. A much better way to construct the above array is
like this:

#3|C|A|T| |#3|D|0|G| |#4|B|l|R|D|J5|p|oNcW

Note: from now on, the boundaries between elements will be pound (#) signs.
Now each element is exactly 6 bytes long. Remember, the actual strings in an
array can have variable length, but each element has to have the same -
maxijnum - length. If the string is shorter than the maximum, then blanks
will fill the excess space.

So much for structure and theory. How do we go about achieving this
neat and tidy array? Wfell, start out with good old' VARIABLE. Remember,
arrays (string OR numeric) are just stretched-out variables. Think of a good
name, let's say PETS. Now, decide how many elements this array is going to
contain. Let's say 20. Now decide the maximum length of the elements. Let's
keep it at 6. Remember to allow enough room for the count byte for each
element! This sequence will then create our array:

0 VARIABLE PETS

60 ALLOT (10 elements X 6 bytes each)

That's it! Easy, eh? Actually, you can think of the 60 ALLOT as a DIM
statement in BASIC. It reserves memory for the array. The hard part is
accessing the individual elements. Also notice that I totally ignored the

4-19

c

initial two bytes which VARIABLE automatically reserves; when dealing with
large arrays, the first two bytes are insignificant and may be ignored. This
makes for much better readability when going over your program
listings.

Now refer back to my diagram of the PETS array. The first box of the
array is the address provided by PETS. Since the first element has a count
byte, sinply typing in PETS COUNT TYPE will print out "CAT". But how do you
get at the rest of the array? You have to calculate the address of the
element, using this simple formula:

base addr + (element # * length of each element)

The base addr is FEES. Now, as with most of FORTH, element numbers start at
zero. Let's say you want the first element using this formula. Plug in the
values: base addr=TEST, element #=0, length=6. 6 * 0 = 0, so you are adding 0
to the base addr to find the first element. That makes sense! Similarly, to
get to the second element, the sequence to type in is (TEST 16*+). What
you are actually doing is adding an offset to the base address. Once you
have the address of the element, a sinple COUNT TYPE will print the
contents, providing you stored the count byte! If you want to view all the
elements in PETTS, type in:

: GO 10 0 DO CR PETS I 6 * + COUNT TYPE LOOP ;

Since element #s start at zero, we want to print out elements 0-9. However,
you must always add 1 to the upper limit whenever using DO LOOPs in FORTH.

As you can imagine, if you have a lot of string arrays, you will need to
make these calculations often. To mate it more readable (and more convenient),
we can easily turn that into a definition, as follows:

: PETSO PETS SWAP 6 * + ;

: GO 10 0 DO CR I PETS() COUNT TYPE ;

This is MUCH easier to read than before. As a naming convention, I use the ()
symbol to indicate that PETS is an "indexing" word; all it requires on the
stack is the index, or element #. A word of warning: When you are using DO
LOOPS, the word "I" must used in the same definition as the loop itself. You
cannot put the "I" in the definition of PETS(); it MUST appear in the same
definition as the DO LOOP. This problem is actually a blessing in disguise.
Since we removed the "I" from PETPSO, we are free to use the index word outside
of the loop. In other words, if all I needed was the last element of the array,
I could just type in 9 PETS() COUNT TYPE. No loop is needed!

Ufc> till now, all you have done is sit back with your arms folded and
watch me babble on about accessing an array. Here's your chance to follow along
with me as I show you how to store things in your array. First we will use
ACCEPT and input the strings directly into the dictionary, then we will modify
our routine so we first input into PAD. First of all, we have to modify our
array a bit. In the above exanple, POOCH barely fit into the space allot for it-
-6 characters. If we are to use ACCEPT (which was defined in the previous
tutorial) and input directly into the array, we need to tack on 2 more bytes

4-20

for each element. You see, ACCEPT (and EXPECT) always glue 2 nulls onto the end
of each string. So if you input a string exactly 6 characters long directly
into PETS, ACCEPT will over-write the next element with nulls! With this in
mind, here is the complete routine:

0 VARIABLE PETS

80 ALLOT (10 items * (6+2) bytes each)
PETS 80 BLANKS

: PE3SO PETS SWAP 8 * + ;
: INPOT-IT

10 0 DO I PETSO (addr of each element)
6 ACCEPT (max. len for each string=6)
LOOP ;

: FRIOT-IT

10 0 DO I FETTS() COUNT TYPE
LOOP ;

If you have been following since the first installment in this series, the
mechanics of this loop are self-explanatory.

This is fine, but remember what I said about avoiding inputting directly
into the array? To avoid those darn blanks from creeping in, Input the string
into PAD first, then move than into the array. Here is the new routine:
(remember to F0RGEE PETS first):

0 VARIABLE PETS 60 ALLOT (10 items + 6 bytes)
PETS 60 BLANKS

: PETTSO PETS SWAP 8 * + ;
: INPOT-IT

10 0 DO PAD 6 ACCEPT

PAD COUNT 1+ SWAP 1- SWAP

I PETSO (Get addr of element #1)
SWAP (source addr,dest. addr, cnt)
CM0VE$ LOOP (CM0VE$ was defined in the previous)

(tutorial)
: PRINT-IT

10 0 DO CR I PETS() COUNT TYPE LOOP ;

The PAD COUNT 1+ ... sequence seems confusing, but if you read my last
tutorial, you should remember it. We want to move not only the string, but the
count byte as well. But PAD COUNT returns the address of the string itself,
adong with its length. Subtracting 1 backs up the addr to the count byte;
meanwhile, add 1 to the cnt on the stack so CM0VE$ will move the entire
string+cnt. Also remember that I PETSO just returns the proper address of the
element in the array; a similar sequence in BASIC would be:

100 FOR 1=1 TO 10 :: INPOT PET$(I) :: NEXT I.

Well, I've run out of room for this issue. Next time I will introduce
some string au^ray utility words which will adlow you to do some heavy-duty
string processing! Bye for now!

4-21

Beyond the Basic String

Forth Tutoriad 3
by Warren Agee

CompuServe ID 70277,2063

In the past, we have looked at the basic string, how it sits in memory, and
the basic string array, and how it sits in memory. We've learned how to store a
string, retrieve it, and print it. Where do we go from here? Well, hopefully
you have been playing auround on your own with strings, adong with some of the
new words I presented (like ACCEPT). From now an, things are going get a bit
more advanced, and the knowledge gained (hopefully!) from the first two
tutorials is inportant. In this tutorial, I will be presenting some very useful
and powerful string utilities that I have collected from countless sources;
some of them I have written myself.

Some terminology, first: a BASE STRING is a string to which you vtant to do
some sort of manipulating. A SUBSTRING is a separate string from the base
string. You usually use it as a reference. For exanple, if we were to delete
the word FOX from the sentence THE QUICK BROWN FOX, the sentence would be the
base string, and FOX would be the substring. Also note that the utilities
presented here work only with single strings and NOT string arrays. These words
are INS$, DEL$, and -MATCH. First of all, let's say we reserve memory for a 100-
byte long string called TEST$. We also have another string called SUB$. Here
are the contents of these strings:

|22|n|o|w| |i|s| |t|i|m|e| |f|o|r| |d|i|n|n|e|r|

|3|t|h|e|

(You can use ACCEPT and type in the above if you want to follow along).

Notice that the first string is NOT an array, merely a long string which
happens to be a sentence. The 22 is the count byte. Unfortunately, we seem to
have a word missing! What to do? At the end of this tutoriad is a definition
for INS$, which will insert a "substring" into a "base" string. The stack
arguments correspond as follows:

INSERTS (adrl nl adr2 n2 adr3 —)

adrl —> address of base string
nl —> length of base string
adr2 —> address of substring
n2 —> length of substring
adr3 —> address of insertion point

So, using the above strings, assume that the word "THE" (the word that is
missing) is located at SUB$. (Remember that variable names just supply an
♦address*, which is what we need for INSERT$ to work). Now to insert THE into
the sentence, do the following:

4-22

TEST$ COUNT (adrl nl)
SUB$ COUNT (adr2 n2)
TEST$ 9 + (point of insertion - addr3)
INSERT$

Your.string will now look like this:

|26|n|o|w| |i|s| |t|h|e| |t|i|m|e| |f|o|r| |d|i|n|n|e|r|

Esperiment with INS$ until you become comfortable with it; use the
previously defined ACCEPT to store a long string at one location, and a
substring to insert at another location. Just remember that YOU have to supply
the location, or address, of the insertion point.

-MATCH

Now HERE is an interesting word! -MATCH looks for a matching string and
returns a 1 if no string is found, and a zero (0) if it is found. Additionally,
-MATCH also leave the address of the byte AFTER the match. It requires four
stack arguments: the address of the base string and its length, and the address
substring and its length. -MATCH tries to find an occurrence of the substring
in the base string. This word is useful in conjunction with INS$ above. Here is
one possibility using INS$ and -MATCH. Say you want to insert the word MX after
the word FOR in the above string (TEST$). It might go something like this: /^

: GO

PAD 3 ACCEPT _THE_ (Word to search for)
Note: anything that appears between underscores (_) is
to be typed in as a response to ACCEPT.)

TEST$ COUNT (Addr & cnt of base string)
PAD COUNT (Addr & cnt of substring)
-MATCH (stack: adr3 flag)
IF (l^so match)
DROP ." Not found!"

ELSE (else found; adr3 is left on stack)
CR ." ENTER NEW WORD:"

PAD 10 ACCEPT _MT_ (Word to insert)
TEST$ COUNT (Addr & cnt of base string)
PAD COUNT (Addr & cnt of substring)
5 ROLL (Bring up adr3 which was left by -MATCH; this is the

insertion point)
INSERT$
GR CR TEST$ COUNT TYPE (Displays new string)

ENDIF ;

Please note that ROLL does not exist in the standard TI FORTH dictionary and
must be defined separately. That definition appears at the end of this article.

4-23

r

r

DEL$

Finally, we come to DEL$, which, by no surprise, deletes a substring. It
works adong the same lines as INS$; the stack arguments require the address and
length of the base string and the substring. DEL$ searches the be^e string,
looking for a match with the substring. It accomplishes this by using -MATCH,
explained above. Once it finds a match, it deletes the string. If no match is
found, it clears the stack and exits, no harm done. If you plan to use DEL$ in
a program, you may want to modify it a bit. With -MATCH, you can test to see if
a match is found. Perhaps you want to do the same with DEJL$. You could very
easily leave a 1 on the stack if the string was found and deleted, or leave a
zero if no match was found. Examine the comments for the listing of DEL$ to
demonstrate how to do this.

Well, that's it folks! FORTH is a powerful language, but it lacks in some
areas, especially string handling. But the reed power in FORTH lies in its
extensibility. As demonstrated here, we now have a good number of basic string
utilities which can new become part of our FORTH vocabulauy of words. Does
XBASIC have a built-in INSERT or DELETE function for strings? Sure, you can
simulate it with SEG$, but that is very clumsy and VERY slow. With a little bit
of ingenuity, you can make FORTH run circles auround most languages without
sacrificing eause-of-use. Till next time, have fun!!

DEFINITIONS OF NEW WORDS

: ROLL DUP 1 = IF DROP ELSE DUP 1 DO SWAP R> R> ROT >R >R >R LOOP 1
DO R> R> R> ROT ROT >R >R SWAP LOOP ENDIF ;

(NOTE: the following definitions require the word PICK which was defined in an
earlier auricle in this series.)

: INSERT$ (adrl nl adr2 n2 adr3)
DUP 6 PICK 6 PICK +

1+ OVER -

CVER 5 PICK + SWAP <CM0VE

OVER 5 ROLL + 5 ROLL

1- C! SWAP <CMOVE ;

: -MATCH (adrl nl adr2 n2 — adr3 flag)
SWAP DUP C§ 5 PICK 5 ROLL +

DUP 1 SWAP 6 PICK -1+7 ROLL

DO

3 pick i ce -
IF

0

6 PICK 1

DO

J I + C§ 6 PICK I + C@
= NOT

IF

DROP 1 LEAVE

ENDIF

LOOP

IF ELSE

DROP DROP I 4 PICK + 0
4-24

LEAVE

ENDIF

ENDIF

LOOP

ROT DROP ROT DROP ROT DROP ;

: DEL$ (adrl nl adr2 n2)
4 PICK 4 PICK

4 ROLL 4 PICK -MATCH

IF (NOT FOUND)
DROP DROP DROP DROP (clear stack)
(0) (insert the 0 if you want to leave a flag if not

when not found)
ELSE

DUP 3 PICK -

5 PICK 5 PICK +

3 PICK - 1+ CMOVE

- SWAP 1 - C!

(1) (insert the 1 if you want to leave a flag if match
was found)

ENDIF ;

Disk Only Software
P.O. Box 4170

Rockvflle,Maryland 20850

14*00^4462 At the tone, enter 897335 for ^oitenwre. Touchtone phone is required.14MMM4M462. At ton^^ ^^ ^ No To^%requ,red.
Voice information line (301) 340-7179

4-25

/^^^^iv

SOME REFRESHMENTS

r 4-26

SCA4E NEW SOFTWARE
UCSD Pascal

Lett©

Pilot

Seme New Software

Things They Don't Tell You About The P-System
by Jerry Coffey

I put my first P-system together about a year after I bought my TI99/4A
console for $49.95. In the intervening year I had acquired an expansion
boxf 32K memory, and a "disk memory system". I watched the UCSD
(actually Softech) software prices drop but found the P-code peripheral
card disappearing from the shelves even faster. Finally I gritted my
teeth and bought the disks before I found a card to run them. In
desperation I contacted a TI repair center and talked them into selling
me a card outright. It was then I discovered how primitive my single
drive system really was. I had to have another drive or give up the
whole system as an expensive mistake. In the the years since, I have
bought and sold a lot of other hardware and with each up upgrade I have
learned something new about the P-system — both the quirks of third-
party hardware and the quirks TI designed into the system.

The first thing you need to know that isn't mentioned in the manuals is
the bug in the DFORMAT program — it will not format the second side of
a disk or in double density even when these options are selected and
your hardware supports them. (Though, strangely enough, it will format
SSSD 80 track disks with the new Myarc Eprom.) Thus:

*

* Prepare some formatted disks BEFORE you start working if you plan to
* use double density or double sided drives.
*

You can use any disk manager program and name the disks anything you
like since the P-system does not use the first four sectors of the
disk. These sectors serve only to interface with the TI system. Other
versions of the P-system use this space for "bootstrap" routines to get
the system started — routines that are supplied in ROM by TI.
Differences between the way the P-system and the host TI system handle
disks are best understood by looking at the operating system.

OPERATING SYSTEM

The P-system is not just an implementation of the Pascal language, it is
a complete operating system. It has its own low-level input/output
routines in 9900 machine language. The system has its own keyscan that
supports ALL the ASCII control codes and screen control functions equal
to many "intelligent" terminals — the system can even be set to use an
80 column terminal communicating through a serial port. Parallel and
serial ports are handled just like the TI system. TI even provided an
example program called MODRS232.TEXT that pokes the correct data into
the necessary memory locations. The conventions for handling floppy
disks, on the other hand, are unique. The system does not use the disk
parameters or the bit-map in sector zero, the pointers in sector 1, or
the file header space (file identifier blocks) in sectors 2 and 3, but
it does write data to these sectors in a process known as "zeroing" a
disk. This process fills the bit map with binary "l"'s (to prevent the
TI system from overwriting the invisible P-system files), writes a

5-2

p

single pointer in sector 1, and writes a header for a pseudofile called
"PASCAL" in sector 2. Before we look at other tasks performed by the
ZERO function, we need to understand a few more fundamentals such as
block structure and the P-system disk directory.

Blocks

The P-system recognizes two kinds of I/O devices — character devices
(such as printers, modems, and video display consoles) and block
structured devices (floppy disk, hard disk, or RAM disk devices). A P-
system block consists of 512 bytes — two TI sectors. Thus disk
operations read or write pairs of consecutive sectors. Adisk file is a
set of consecutive blocks (that's right, no fractures allowed) — in
fact an even number of blocks in the case of TEXT files, though other
types may be even or odd. This scheme imposes some inconveniences but
also has some distinct advantages. It reduces the number of operations
involved in disk I/O — no bit map checks or updates and a minimum
number of track seeks in each read or write. This speeds up oisk
operations noticeably.

Some blocks have soecial functions. TEXT files are stored in "pages" of
IK (two blocks) each — that is why TEXT files are an even number of
blocks in length. The actual text is preceded by a "zero page" where
information used by the Editor is stored. CODE files are preceded by a
single block containing data used at run time. DATA files can be used
for anythinc else and have no special format. 3ad blocks on a disk can
be marked 'as a file with the suffix "BAD". After a disk has been usee
*or a while, removal and rewrites of files will create unused pocKets of
space. These can be cleaned up with a housekeeping process called
Krunchinc a disk. This Filer command consolidates the files by reading
and rewriting them to close up unused blocks, but leaves BAD files
undisturbed.

Disk Directory

The P-system uses a very compact directory structure that, consumes only
4 "blocks (8 sectors) on the disk. There is also an option to use an
additional 4 blocks for a backup directory in case the main directory is
damaaed. Each file entry takes only 26 bytes for a file name, starting
block", lencrth in blocks (remember no fractures allowed), a type coae,
and the d'ate of creation (coded into 2 bytes). This compares with 256
bytes per file in the TI system. This data begins in block 2 (sector 4)
immediately following the 26 bytes that contain the Volume name and
parameters (similar to TI sector zero data). A copy of the directory of
an active volume is maintained and updated in RAM during disk operations
and written back to disk when the file is closed. During some
operations — removing a file for example — the system gives you the
option of changing your mind before the directory is updated. As xn
most systems a file is deleted by erasing its directory entry rather
than the file itself.

5-3

ZEROing a Disk

1kr-*nowv*wevT»m-~too^ a formatted disk into a
P-system Volume — what happens when you Zero a disk The Zero function
is in the Filer program, the most-used system program after the Command
processor {the part of SYSTEM.PASCAL that calls other system programs).
The zero function prompts for a volume name and size in blocks. The
size sets the limit on blocks that the system will access, but if it is
larger than the number of physical blocks actually on the disk, the
missing blocks will generate errors when you attempt to read or write to
them. Whatever size you choose the entire bit map will be filled inf so
unused sectors are still not available to the TI system. (More on this
later.) Once these data are entered, the Zero function checks other
drives for the same volume name, fills the bitmap, writes the PASCAL
pseudofile header, then writes the name, size, date, and an end of
directory marker into block 2 (and also into block 6 if the duplicate
directory option is used). From this point on, any previous TI or P-
system directory data on the disk becomes inaccessible and the system
treats the remaining blocks on the disk as if they were empty.

THE SYSTEM FILES

Now that you know a few of the chores necessary to get started, lets
look at what the system does for you. The P-system contains a number of
special programs: SYSTEM. PASCAL, SYSTEM. FILER, SYSTEM. EDITOR,
SYSTEM. COMPILER, SYSTEM. ASSMBLER, SYSTEM . LINKER, SYSTEM. LIBRARY, and
SYSTEM.SYNTAX. All except the last are code files but do not carry the <~*^
".CODE" suffix required for user generated code files. Most of
SYSTEM.PASCAL is supplied by TI in ROM along with data files to set
system parameters, e.g. console or terminal configuration, and define
the the character set. If files named SYSTEM.MISCINFO and SYSTEM.CHARAC
are present on the boot disk, they are automatically read at boot up and
replace the data supplied from ROM. If the short SYSTEM.PASCAL disk
file is present, it is merged with the main program from ROM to provide
a welcome message and textual error messages in lieu of the ROM error
codes.

Boot Sequence

When your TI99 is turned on or reset with the P-code card on, the system
monitor will try to boot the P-system unless it is told not to —
literally — it looks for the word "NO" (ASCII codes 78,79) at integer
address 14586. If these values are not found the routines in the P-code
ROM are loaded and begin execution. (When you Halt the P-system, these
values are replaced at that address.) The program writes system tables
into RAM and then polls the disk drives both to determine which are "on
line" (i.e. have a disk in them) and to locate all the SYSTEM files.
When this is complete, the welcome message is displayed and the program
SYSTEM.STARTUP is executed if available. When this program (or any
other) finishes, control is returned to SYSTEM.PASCAL which displays a
"command line" showing the prompts for the single character system
commands. Some of these commands are in SYSTEM.PASCAL (ROM), but the
more elaborate ones, such as E)dit, F)iler, and Oompile, call other
programs that overwrite SYSTEM.PASCAL in memory. In fact some are so
long that parts of them are paged into memory only when needed using the
P-system fs automatic memory management routines (the system uses

Page 5-4

/a$fc«\

"virtual" memory to overcome RAM limits — it was DESIGNED for small
systems).

Running the system

Now you are ready to write your own Pascal or Assembly Language
•programs. There are also some public domain or commercial programs and
a few exotic ones with murky origins and no guarantees. Some users have
ported versions of a Fortran compiler to the TI, but establishing your
right to use such a program is tricky, since it is copyrighted and has
never been released in a TI99 version. I understand that it was ported
by people who purchased the original for the exclusive purpose of using
it on the TI. There are also one or more versions of PILOT which was
under development by TI when they pulled out of the home computer
market. I've seen one of these which did not look like a finished
system, but did function.

The assembler supplied with the system is a Macro-assembler several cuts
above the version supplied in TI's Editor/Assembler package. My friends
who work in A/L speak highly of it. The SYSTEM.LIBRARY supplied by TI
contains precompiled routines to access graphics, sound, and speech
capabilities of the TI99. The implementation of UCSD Pascal is nearly
complete and supports program chaining and concurrent processes.
Running several programs at once slows down execution and must be
managed by events defined within the programs rather than interrupts,
but it opens up possibilities not available in other high level
languages on the TI99. These features coupled with the ability to run
the system from an 80 column terminal give the TI99 a much more
sophisticated feel. The ultimate limit is memory — the RAM available
on the TI requires programming techniques that use lots of paging code
into memory from disk, thus slowing down execution.

Public Domain Software

In spite of memory limitations, some excellent programs have been
written by users. Perhaps the most sophisticated are those from Andy
Cooper, particularly his terminal emulator and his GPL Disassembler.
There are now several disassemblers for GPL, available or "in the
works", but Andy's was available two years ago! The terminal emulator
is in its second major version with some enhancements that Andy
graciously added to solve some problems I had using my TI as a high
speed terminal for a Pascal Microengine. Dave Ramsey and Mike Lambert
of the Mid-Atlantic Ninety NinERS DG have written many useful programs
including character sets, a memory reader (PEEKIN) and various
utilities. Everyone has some version of the FASTBACK doner — mine is
modified to handle all formats including 80 track — in fact it is
presently the only program I know that will clone an 80 track disk.
Mike King, whom I haven't met, solved the problem of importing DV80 text
into the P-system TEXT format. And if you want a veritable sea of
Pascal code, join USDS the UCSD Pascal user group and you can access the
seven megabyte member library, most of which has never been adapted for
the TI P-system.

Page 5-5

COMMUNICATIONS ^

Communications was one area TI~ and the developers of the P-system left
alone, and for very good reasons. High performance communications
software — terminal emulators for example — usually require native
machine code for critical portions to assure adequate speed. REMTALK
was an early program written in Pascal to establish remote links between
two computers, but it is too slow for day-to-day use and must be running
on both machines (i.e. it only communicates with itself). Nevertheless,
it was and is used to transfer files between different machines running
the P-system.

Andy Cooper changed all this for the TI99/4A with his terminal emulator
TEP. Here was an efficient communications program for the TI P-system,
with machine language modules running from a Pascal host program. But
the best news was its capability for binary transfers using the XMODEM
(checksum) protocol. This made it possible to transfer both CODE and
TEXT format files between Tl99's running the P-system or to bulletin
boards with XMODEM (checksum) capability. Andy wrote TEP to encourage
scattered P-system owners to trade files. For those of us struggling
with the system, it was the same kind of breakthrough as Paul Charlton's
XMODEM program on the TI Forum. It also shared a common frustration of
first-time XMODEM users — how do you download the more sophisticated
program when all you have is the TE2 package supplied by TI? Paul
supplied XMODEM in a form which could be captured as an ASCII file and
run from Extended Basic, but capturing a P-system CODE file (TEP) was /tm^
not so easy. There are utilities in the P-system that make it possible, '^)
but they are a bit tricky for the novice.

When Andy uploaded a P-system TEXT file describing his scheme for
converting the TI controller to 80 track operation, the frustration on
the TI Forum was almost palpable. The description of the file aroused
enormous interest but the only people who could read it were those with
BOTH the P-system and TEP. After listening to complaints and confusion
for several days, I cobbled up a slow, crude XB program called PASTRN to
convert P-TEXT to the standard TI DV80 format. The next day Andy Cooper
came back with an elegant rewrite of the XBasic that provided a 4X
improvement in speed. Working independently, Andy Dessoff wrote an
assembly language routine which he called PSCAN to perform the critical
but slow character handling operations. At the end of that week I
combined PSCAN and the XBasic host program using Todd Kaplan's XBALSAVE
technique so that the XBasic and machine language could be saved in a
single fQe that loads and executes very quickly. And that's how the
TI99 community got its first Pascal text file translator.

This still didn't solve the problem of downloading TEP without TEP. I
took another crack at this one while working with Phil Symerly to get
Pascal downloads onto the new hard-disk for his Washington DC BBS. The
scheme involved a utility I called PAS>TI (inspired by a program written
for the APPLE by my friend Tom Wotecki) that read the hidden files on a
P-system disk and wrote exact DF128 images that were recognized by the
TI system as individual files. Converting downloads back to P-system ^^
format still involved using the RECOVER utility and the Filer's "Make"
command. The process was tedious but the DF128 files could be
transferred with any binary protocol including TE2. We set this up on

<-—__ Page 5-6

J0^\

J0^\.

>lfl|Pp$S?V

the DC board and Bill Byrne picked it up for the Wichita TIBBS using TE2
only. Of course the first files we put on the board were TEP and its
docs.

It would be months before any further help would be available for novice
users, but the TI Forum and some BBS's began to build their libraries of
Pascal programs. The next step depended on a new program and an old one
rediscovered. The new one was a utility (SPLITP) that I wrote to split
up the space on a disk between a P-system volume and normal TI files. I
used it to boot either the P-system or Extended Basic from the same
disk, but it also made it easy to set up valid volumes no larger than
required to hold particular programs. I merged this new one with PASTRN
and PAS>TI into a single XB program called PUTIL. The old program was
the remarkable DCOPY which captures all the information on a disk in a
single IF128 file that can be restored to a perfect done of the
original disk. In September 1986, two DCOPY files created from split
format disks were placed in the TI Forum Data Library. When downloaded
with any Xmodem terminal emulator and restored with DCOPY the embedded P-
volumes could be run immediately. One of the programs on both disks, was
Andy's new 9600 baud version of TEP with full VT52 emulation and other
improvements.

ADVENTURES WITH NEW HARDWARE

The easiest upgrade for the P-system is the addition of a Corcomp double
density disk controller. It complicates life very little, since there
are only two disk formats. You can boot the system from single density
disks and transfer all your files over to the higher capacity format.
There is no problem reading or writing disks without using TI's sector
zero data since the hardware senses single or double density (think
about it — the sector zero byte that indicates double density can only
be read AFTER the hardware switches to double density]) Once the density
is determined the sectors per track is determined.

If you want to use the faster and more flexible Myarc controller, things
get more complicated. The hardware senses density, but the Myarc
controller uses the data in sector zero to determine whether each track
contains 16 or 18 sectors. Without this data the default format is
assumed (16 for the 40 track system and 18 for the 80 track). When I
got my Myarc card I was satisfied to run in 16 sector format, but when I
got the 80 track upgrade I had to find a way to use the available
formats more easily. The answer turned out to be a very simple program
I called CHECK that used the low-level UNITREAD procedure to read sector
zero on all active drives. You don't have to do anything with the data -
- when the controller reads sector zero, it automatically adjusts to the
format data for that drive. My SYSTEM.STARTUP program now goes through
this drill before it sets printer name and serial port. The Corcomp or
Myarc controllers will access four disk drives, but you will find that
the P-system will not recognize the fourth drive. I think the
limitation is hard coded into the UNITREAD/UNITWRITE procedures for low-
level disk I/O.

Page 5-7

By the way, the P-system does not like slow printers — the system times-
out while waiting for a typical daisy-wheel printer to empty the large
buffer set up by the Filer for Transfer operations. If you can't afford

-^a printer ' t>uffer ~xyr -spoocfcer (or -a.faster printer), you can write or
acquire a simple program to send files to the printer line-by-line.

The next piece of hardware I tried to add was a Myarc 512K Ramdisk —
and discovered a few more limitations of TI's P-system implementation.
If you clone a working boot disk to the Ramdisk then set it to emulate
drive #1 (Unit #4), the system will try to boot from it. Most of the
boot routine executes without problem until the system polls the drives -
- the system reads drive #2, then #3, then comes back and reads physical
drive #1. From this point on it can no longer find the Ramdisk. Again
I suspect the "UNITREAD procedure works only for the three physical
drives (something to do with the CRU address). I still have hopes of
running the Ramdisk as a fourth block-structured device. There is room
in the system table for units up to 32, but most of the slots are
empty. When I get some time, I'm going to write a STARTUP program that
pokes the Ramdisk volume name into Unit #10. Though it may be
interesting to try it with the fourth physical drive first. It still
may not work if the limitation is in UNITREAD, but its worth a try. In
fact getting a Ramdisk into the system should speed it up significantly
because of all the virtual memory operations.

The latest expansion was to add 80 track drives. This turned out to be
a real detective story. I approached it in. stages and kept a 40 track
drive as Unit #4 (the boot drive), but those who switched over
completely to 80 track drives had their hands full. The following
message to a frustrated user gives some of the flavor of the search for
answers:

"Ralph,

I think I know what your problem is. As I mentioned on the phone, the ?-
system at boot up senses only single or double density from the boot
disk — other disk parameters are the hardware defaults (in this case
the Eprom and DIP switches). What your system is expecdjig is AN 80
TRACK BOOT DISK! Which you don't have yet because you can't boot the
system to make one — CATCH 22 eh? That's also why your SSSD master
disks won't boot either — the system is looking for files in the space
between tracks.

But don't despair. The trick with my CHECK program will work if you put
it on the first track of a 40 track DOUBLE DENSITY disk. The system can
always find the first 9 sectors of a single density disk or the first 16
sectors of a double density disk. Since the first 4 sectors are
reserved for TI-DOS and the next 8 are used by the P-system directory,
you must use a double density disk to have any space left to put CHECK
on the first track. Rename CHECK as SYSTEM.STARTUP and it will
automatically execute at the end of the boot sequence. Then you can
create a true 80 track boot disk in your other 80 trk drive.

xf«SWrtv

Page 5-8

Don't put any other autoexecute.,files (SYSTEM.PASCAL or SYSTEM.CHARAC)
on your 40 track startup disk — the system can't read them until CHECK
executes. It will try to load SYSTEM.CHARAC but will in fact read bit
patterns from the wrong sectors as the character definitions — makes
for an unpredictable display! There is a slight chance that your drives
will not read from a 40 track disk while in default 80 track mode. If

this happens, send me a message and I'll make an 80 track boot disk for
you.

By the way, the reason I keep a 40 track drive in the first slot is not
because of P-sys quirks but because some copy protected software crashes
on 80 track drives.

Jerry"

[Ralph called a few days later to tell me it worked and marvel at the
complexity of the system. I've put together a "universal" boot disk
that should work with any double density drive/controller configuration -
- it involves duplicating files read before CHECK is executed during the
boot process so that the backup copy will be correctly read if the
"wrong" sector/track value is used. The next time I open up the box
I'll switch an 80 track drive into the first slot and test it. Until

then, happy hacking.]

>M2

"TAKE TIME TO PRETTY UP YOUR PROGRAMS.

"Pretty Programs Bloom Forever" 5-9

YOU ARE THE PILOT. Teaching others using your computer

by Willaim Harms

Programmed Inquiry Learning or Teaching

Although I've just spent a few days learning about PILOT, I can really write a
useful, enjoyable program. This language is EASY. It doesn't have many of the
capabilities of TI BASIC, but it does have others not found in even TI Extended
Basic.

Thomas P. Weithofer sent me the program PILOT 99, and documentation. He
developed this TI99/4A version with help from Texas Instruments, Cin-Day Users
Group, and Xavier University professionals. It's copyrighted 1985 by Thomas
Weithofer and portions of the manual are by permission of Texas Instruments.
It is a public domain package that cost? one only about $10.00 plus 2 SSSD
disks. What a great value! [Ed: Thomas Weithofer passsed away at the age of 20
in early 1986. His gift to the TI community will live on and can be obtained
from UGN by registering this copy of the book with the bound-in registration
card in the back of the book.].

PILOT was largely created by John A. Starkweather, Ph.D. at UCSF starting in
1962. In 1973 national standards were developed for the basic commands (only 8)
and syntax, and now one can get a version of PILOT for most personal
computers. It was developed on a small computer to be able to function
completely on a small computer. Dr. Starkweather wrote a short book, which ^^^
I've found to be the perfect guide. It's called, "A User's Guide to PILOT" and "^
published by Prentice-Hall, Inc. at Englewood Cliffs, New Jersey 07632. I
ordered it at the local B. Dalton Bookseller.

I would evaluate the TI version as one of the best teaching aids available in
the world of software, since it's easy to write programs and offers most all of
the features that make a lesson useful and enjoyable. The only feature I would
like to see added is that of Speech.

PILOT 99 seems to be written in TI-Forth and thus a program can run pretty
fast. It shows the power and versility of TI-Forth. While one is thus limited
to a small program running at one time, one can run programs quickly with each
drawing needed data from files the other programs have created.

To use the version of PILOT 99 that I got, you will need TI's Editor/Assembler
cartridge, expanded memory, a disk system, and a word processor that can create
display/variable-80 (text) files. You would write the program in the word
processor just like the big computers/software use , which is nice in some ways
since with one like Tl-Writer you've got a full screen editor and other useful
commands available. Then you would fire up the Editor/Assembler and use the
Load and Run Option, entering DSKn.PILOT. When it is loaded enter the file
name of the program you created with the word processor. The PILOT 99 software
will run the program until it finds an error in which case you get an error
message at that point. Thomas Weithofer says there is also a version one can
use out of TI Extended Basic.

Page 5_10

f^ PILOT 99 adds many commands beyond the basic PILOT set. You have all the
normal TI Extended Basic Sprite Commands, which provide great enjoyment to a
user and liven the presentation of any subject matter. Thomas has also added
the Joystick commands, TI's character graphics commands with color, real live
Bit Map Graphics ie, Draw Circle, and Mass Storage device commands for files
usage.

The manual is excellent, all 70 pages of it (on disk). Each command is
described and an example given in a program context. However, it says that
data files are Internal Fixed 80 Relative Update, but the file I got when
writing data out to disk was Display Fixed 80. To help me use the manual I
created a kind of Table of Contents and Index.

Bit Map graphics are easy to create and are displayed in the top 2/3rds of the
screen with the bottom 1/3 reserved for full sized text. In the top 2/3rds
graphics area you can also display text, but it will be smaller(64 characters
per line). The"command for Draw Rectangle is: DR: rowl, clml, row2, clm2, ie.
DR:50,50,100,100 will draw a rectangle with the top left at position 50,50 and
the bottom right at 100,100. Then one could use the command "T:Thats a
rectangle, folks!" to produce the message at the bottom of the screen. Better
yet, to describe the language, you could ask the computer operator ie. student
some questions about the rectangle. Here's a really short program to
illustrate.

By the way, PILOT doesn't use line numbers. It's like LOGO, LISP, and some
other advanced languages in this respect. One uses labels and^subprogram like
techniaues to structure the program and direct the flow of action.

R: Remark only - prog, to demo a Q & A.
IG:

DR: 50,50,100,75
TG: 1,5,shape is 50 by 25 units
T: how hiah is that rectangle?
A: #A

M: 50,50 UNITS
TY: That's perfectly correct
TN: Nope, thats not just right
T(#A=25): You were thinking of the WIDTH
T: press any key to proceed

R: is for a REMark
IG: is to Initialize Graphics
TG: puts the text at row,column used
T: is to Type something to the screen.

(TP: is to Type to Printer)
A: is to Accept an Answer
M: is to Match to the following possible strings

each seperated by a comma
TY: is to Type only if the previous Match was True
TN: is to Type only if the previous Match was Not-true
T(#A=25): is to Type only if the expression is True

(here users answer of 25 would be true)

Page 5-11

Instead of the TY: and TN: we could have used a command- JM:*LABEL for Jump-on-
Match to a label. After the *label would come some testing routine that ended
with an E: command to return the program flow to the line following the •/*38%\
JM:*label. '

We could have used the Match or Jump command- MJ: string-to-match,more. If no
match is found to the strings in the statement, the program jumps to the next
M: or MJ: statement.

User subroutines are invoked with a simple- "U:*YOUALL" (U:*title). They are
also ended with the command- E:. Problems can be identified with the PR:
command, then you can jump to them easily. You can put the Y or the N or the
conditional expression ie,(#A=25) after any of the basic commands.

To save that answer to a disk file we would just add a command- Write Answer-
WA: right after the A: in the program above. .Earlier in the program you would
have the command to open the file- OF: DSK2.FILENAME or some other file and
then later would close the file with- CF:.

For math you use the C: (Compute command) with the characters <- instead of the
= sign. For example: C: #F<-88 or C: #E<-#G. The first sets F equal to 88 while
the second sets E equal to the value of G. All the other TI numeric operators
ie. -f are available as are the numeric functions such as TAN for Tangent.

PILOT is for easy interaction between the computer and the user. A simple
example of it is:

T: Enter your name
A: $A

T: Enter an adjective /m\
A: SB •'
T: Enter a type of animal
A: SC

T: Enter a part of an animal
A: SD

T: Enter a color

A: $E

CE: (this means Clear-Home the cursor)
£. * * * *

T: $A had a $B SC,
T: whos $D, was SE as snow
T: Everywhere that $A went, the $C
T: was sure to follow.

There are many other commands in PILOT 99, but most are just like TI Basic or
the Sprites in TI Extended Basic. Most are easy to remember and there are onl;
54 with the 1 or 2 digit code. I've barely scratched the surface in this memo
of the many ways the commands can be combined to produce a very enjoyable
interactive session of learning or data collection. Dr. Starkweather
describes many in his book.

EXPLORE

in Harms Way

/#^Sv

Page 5-1 2

INDEX OF PILOT COMMANDS FOR THE TI-991/A

PREPARED BY BILL HARMS

COMMANDS

REGULAR COMMANDS
A: Accept
AS: Accept one char
C: Compute
CH: Clear Home
CS: Compute String
E: End
J: Jump
JM: Jump on Match
M: Match
MJ: Match or Jump
PR: Problem
R: Remark
T: Type
TH: Type and Hang
TP: Type to Printer
U: User subroutine

CHARACTER GRAPHICS COMMANDS
CC
CP
HC
IT
SN
TC
UC

Character Color
Character Pattern
HChar
Init. Text Mode
Screen color
Text cursor
UChar

SPRITE COMMANDS
GP
SA
SC
SD
SG
SH
SL
SM
SP
ss

Graphic Pattern
Sprites Atouch
Sprite Color
Sprite Delete
Sprites Gone
Sprite Hit
Sprite Location
Sprite Motion
Sprite Pattern
Sprite Size

DESC.

7
7
7
7
7
7
7
7
7
7
B
B
B
B
B
B
B

S
9
9
9
9
9
9
9

10
10
10
10
10
10
10
10
10
10
10

BIT MAP GRAPHICS
DC
DL
DR
GC
IG
PP
TG
UP

Draw Circle 11
Draw Line 11
Draw Rectangle 11
Graphic Color 11
Initialize Graphics 11
Plot Point 11
Type Graphic 11
Unplot Point 11

FILE STATEMENTS
CF
OF
RE
RF
WA
UIR

Close File
Open File
Read
Restore File

12
12
12
12
12

WRite
Write Answer Buffer 12

12

13
13
13
13
13
13
13
13

14

MISCELLANEOUS
BID
EL
FB
JS
LP
S:
WH

Begin While
End Loop
Fire Burton
Joystick
Loop
Sound
While

ERROR MESSAGES

DETAIL

15
16
IB
21
23
27
35
36

$
13
44
59
62
63
64

19
22
32
34
55
60
66

30
4B
49
50
51
c?

53
54
56
57

24
25
25
31
33
42
61
65

20
41
45
46
67
E9

17
26
29
37
3B
47
66

NOTES

Page 5_1

5-1 A

Exploring ycur Hardware Package

LOAD INTERRUPT, HOLD and RESET SWITCHES FOR THE TI 99/4A COMPUTER
by Brian Kirby ^^

CompuServe ID 70346,1703. 'i

First, letfs describe what each of these switches will do for you and the
computer:

LOAD interrupt: The load interrupt, when activated will cause the
computer to suspend its current operations. Then it will look at a
specific memory locations that will tell the computer where to go for the
next set of directions. This switch is useful for several utility type
programs. You can have a debugger or disassembler loaded in the memory
along with the program you plan to check. When your running program cuts
up, you can hit the load interrupt and be put into your debugger
program. Then you can go see what happened to your program in the
computers memory. Another use is screen dump routines. You can have a
utility loaded up in the computer and your program. When you want a copy
of the screen you hit the load interrupt switch and then the screen dump
routine takes over and you end up with a hard copy of what was on the
screen. You can come up with all kinds of utilities for the load
interrupt switch.

In specific a load interrupt causes the 9900 cpu to initiate a interrupt
sequence immediately following the instruction being executed. The
memory location at >FFFC is used to obtain the vector for the Workspace
Pointer and the Program Counter. The old Program Counter (PC), Workspace
Pointer (WP) and the Status Register (ST) are loaded into the new
workspace and the interrupt mask is set to >0000. Then the program /^
execution resumes using the new PC and WP. '

Here is a check, just for grins, that will let you know that the load
interrupt works. If you have a memory editor type program
(SBUG,MEMORY+AID, GRAM KRACKER,etc) go into memory location >FFFC and
change the next four bytes to >83 E0 00 24. The first two bytes are the
Workspace Pointer OFFFC) and the last two bytes are the Program Counter
(>FFFE). If you do a load interrupt using these changes the computer
will do a power up reset routine. Another is to set the WP and PC to
>83C0 and >0900. This is a level one interrupt. When you do it, the
system will lock up, but you will note all your P-Box cards lights will
be on except the memory.

HOLD: The hold does what it implies. It puts the microprocessor on
hold. It's good for stopping the computer dead in its tracks. Works
great for games that do not have a pause function. There is times when
you do not want to use it. The states you do not want to be in are
Input/Output functions. Mainly, like during a disk read or write or
initilization routine. I think you can understand why, but if you don't
know its possible to crash your disk or cause some timing problems during
a file transfer. Let's not worry about that. The real uses for the
hold, is so that other devices may access the computer busses without the
9900 CPU on line.

Specifically, when the hold is active, it is signaling the CPU that an
external device, such as another CPU or a DMA device would like to use '^
the address and data busses to transfer data to and from memory. The
9900 goes into the hold state when it has completed its present memory
cycle. The 9900 then places its address and data buss tranceivers into
an high impedance

Page 6-2

c

state, along with the control lines WE,MEMEM, and DBIN. Then the 9900
will activate another signal called HOLDA. This is a hold
acknowledgment. When the hold is removed the processor will return to
normal.

After installing the hold switch, it is very easy to test. Just turn it
on while listing out a program in basic or XB. Try it during a game.

RESET: Again it resets the computer. It causes the computer to do the
power up routine. This is great when the computer locks up. You hit the
reset switch and your back to the title screen. This saves wear and tear
on your power switch and extends the life of the computers power supply.
There have been many articles on the reset switch and not all reset
switches work properly. Let me explain why. First the basic form of the
reset comes from the cartridge that you plug in the computer. There is a
line that runs from the GROM port or cartridge port back to the clock
chip that supplies timing for the whole computer. When the GROM port
reset line goes low it causes the clock chip to reset and it in turn
passes a reset on to the CPU and the 9918 VDP and the 9901 CRU chips. If
you have a Widget this is what they use to reset the computer when you
put a new cartridge in. But I'm sure you have notice that when you have
locked up a few times and the reset on the Widget didn't do the job, You
had to shut the computer off and on to bring it back up. This was due to
a lockup in the clock chip and it could not pass the reset along.

First the required parts:

One push button switch,normally open type, use a micro type if you plan
to mount it in the console.

Two lever type switches, normally open, again micro types if for the
console.

Three 2.2 uF/16V tatalum capacitors.

About 4 feet of small gauge wire for hook up. Wirewrap wire is great if
you mount the switches inside the console. If you want to not drill
holes in the
console, buy some ribbon cable and a mini box.

Open up the console by remove the screws on the bottom of the console.
Note how the door on the I/O port to the P-Box is installed. Then note
how the power switch is assembled on the power supply. Remove the screws
on the power supply board and set the power supply aside. Remove the
plug from the power supply to the computer board. Note how the plug
connects. Notice the keyboard and how it connects to the computer.
Remove the screws that hold the keyboard and remove the keyboard. The
computer is then removed by taken out the remaining screws that secure
it. Note its position. Then remove the screws that hold on a shield to
the I/O port. Note how that connects. Then remove the remaining screws
that hold the shields on the motherboard. Locate the 9900 chip inside.
Its the biggest chip and it has 64 pins. On the bottom of the board,
where no ICs are mounted, locate the CPU chip. We are interested in pins
4 (LOAD), 6 (RESET) and 64 (HOLD). Solder three wires to these pins and
mark the wires as to what they are. Be very careful not to splash solder
or to short out connections while soldering. Bring these wires out thru
a hole in the shield. If you are going to install switches in the
console, come out thru a lower hole near the power supply. Reassemble
the

Page 6-3

motherboard with its shields and note all the above that was discussed
while taking it apart. If you are going to mount the switches in the
console a good place is beside the power supply so the switches stick out
beside the I/O port. Be sure to mount them so that they do not short to
the power supply and make sure you will have enough room to mount your
speech synthesizer. If you are using stand alone devices, you may want
to mount the switches in the rear of the console. Now that you have
found a location that works, mount the switches and solder one each of
the three wires to each of the switches. Make sure that the reset line
goes to the pushbutton. Solder one of the capacitors to each switch
across the connections. Make sure the positive side of the capacitor is
connected to the line that goes to the computer. On all of the switches
run a jumper to the other side that has no connections. Jumper all of
them together and run one wire back to a ground on the computer. The
shield is a good ground point. Put the computer back together following
the reverse of taken it apart.

If you do not want to drill holes you have several options. First you
can use ribbon cable and run it out of the rear of the computer to your
minibox where you can mount your switches. This way if you decide to
remove the switches you can just unsolder your connections and everything
will be back to normal. You can also mount the load interrupt switch
external to the console, by coming off of the I/O port. You can mount
the switch in the speech synthesizer be connecting one side of the switch
to edge connector finger number 13 (LOAD) and the other side of the
switch to pin 21 or 23 or 25 or 27 (all grounds). But you cannot access
the hold or reset thru the I/O port. They do not make it outside of the
computer. If you want just a load interrupt, Navarone sells a board that
goes between the "firehose" and the console and supplies a load
interrupt. Its about $15.

pin 6, 9900 CPU, RESET

pin 4, 9900 CPU, LOAD

pin 64, 9900 CPU, HOLD -\

o

o /

A

o

-\

o

o

* this is the shield or ground
connection

Page 6-4

r

r

/iJSPtey

6*0M CON/J&C TOtL

RATHER THAU PIAiD A^D
USE THE tM>U5£* l"V£*T££$
0*i THE. CD*/SOt£ 6b**», X
POT AAJOTHeR LOi* Pout&fe
SMCTTK^ Pt**Y-6*:K 0*| A*
ALfcEAiV t&iSTf** CHIf(TC
6LT CMLV +S* AWp ftfe>«

THC* TAICIAJ^ T«fe <f CHif
SEi-eCT SltAMUS *****
CWl*#| Arf*rC£»i«*T*eM
IfJTC «! O^TMC 4 l*IV£*?

iTucA/rAceiriE T1
•l outputs m*** n>. _
1 LtPS $m*# Bcixu;
SE6 *©t*;7-TG~f*o«Ajr
!!** chart RlfrHT.

A

THIS HARNESS Goes «©«
FOIL. 6*CUW*, hais 2,^,^8
A50V6 WTOPCHI*** TO "
THE LEDS BELOu>«

f-JfS T*C Hk£03 (*£*T TO
lr#) **TS*e)T0*£7nEa.

BOTTOM VIEW RCSisto*
OF Ttt£ *< i.eOS 33DA

fc.**TT

It

J2l

U

CMIfVl

* 3* T*>
i /

U50H Pi*

ct""* »'»

. o)i«e u*t
1 pcurr-To*PQ4HT

LE»»

Fill 76* CHIP**
CMtem is ftwr-MCKu r* wsee
WITH OM4.T*•«* T/W*»t co*»&r**
«M*ft **»« »•«. i—U— f* fcl TWfcv 1
TClfc»»(FU>fSj»g)o» AU ISMS*

//MA

r© -?© T€ T«

>JffF >|Wf >#fff >Ff*t

LOCATION THAT SOtTS YOO*
S*£6£$T£p LOCUTION SHOuJ*

Br THt^t^>s. TCTfti. 3tK,

// / ftfOT C4T«V«rPf /ikca i *T1&J ***** *«-l©W£*. ^ei
/y ANO IS HOM PUAKTIOMAL AT <B) LOCATlOA/

7'®_V<£ T ♦ + +
tl

/A
v:

"d
^5olJc^ State SoHuj^rt,

— —- H^-^i —"—

LOCATIONS
<J) LOCATION IS FOtL SOME 6LP«^ «Otf*oi.ES UHfc*£

#jot e*r*o*w aa&a (*tG» **as Aaowe^ lcoki Mrrlfi.

Pwti —-^

WHISTLES AND BELLS ARE NICE BUT LIGHTS?

I've been putting memory in
consoles and speech synthesizers tor
nearly a year now and can account for
about 70 such units out there, some erf
them being in very distant and «far away
places. Well, fflC person (ED fENASIAN)
said he'd like to know when his memory
was -functioning, since with the PEB
unit now removed^-there is no -flashing
LED to indicate that the memory is in
operation. I've come up with and re
fined a pretty "FLASHY" upgrade to the
console or speech, which will display
not only the -fact that the memory is
•firationing, but exactly which 8K
block you are in at that instant.

The drawings to the left of this
text? will, if you take a few moments
to study, explain how to install the
unit inside of ANY console, except the
very few QI consoles that TI produced.
(These consoles are Identified by the
CPU chip being mounted vertically on
the main board, rather than horizontal
ly.)

I have not included, because of
space, drawings for the'speech, but the
same proceedures apply conceptually.

PARTS LIST:

- About 10" ribbon cable,
(at least 5 conductor)

- 1' of single conductor,
26 or 28 guage insulated
wire.

- (1) 74LS04 chip.
- (4) standard size LEDs or
what ever size suits you.

- (1) 330 ohm 1/4 watt
resistor (or approximate).

- Phillips screw driver (#2
tip size), 15 to 25 watt
qromded solderino iron,
thin resin core solder,
wire cutters/strippers,
patience.

After you have gathered the above
items, remove the console board, and
taking the 74LS04 chip in hand, bend
tne pins, 1 thru 6, and 8 thru'13 out
so they are on a flat plane 180 DEB.
in reference to each other. Now snip
the smaller extensions of ALL Dins off.

Set the chip down on the U5t€ chip
as shown in the drawings to the left,
and solder pins 7 and 14 to the cor
responding two pins on the U508 chip.
You may desire to put a drop of super
glue on the tap of the bottom chip, and
hold the new chip (TOP CHIP) on in*the
correct position for awhile. This makes
the two chips a very firm pair.

Now iusl wire as shown in the wire
list on the left and mount your LEDs.

BY 1>E WAY you don't need memory in
your console or speech for this modif
ication to work, it will work for any
32K even if in the PEB!!!!

YOU DO ACCEPT FULL RESPONSIBILITY
IF YOU DESTROY YOUR CONSOLE!!!

HAVE
FUN

JOHN F> WILLFORTH

Page 6-5

O
Q

W
IR

IN
G

D
IA

G
R

A
M

S
/•

,
«?

P
IN

P
O

S
I
T

I
O

N
S

A
ll

pl
ug

an
d

po
rt

nu
m

be
rs

ar
e

as
it

yo
u

w
er

e
lo

ok
in

g
st

ra
ig

ht
in

to
th

em
.

No
w

yo
u

ha
ve

so
m

et
hi

ng
to

u
se

if
a

w
ir

s»
b

re
a

ks
o

r
yo

u
w

a
n

t
a

w
ee

ke
nd

p
ro

je
c
t.

M
A

R
S

H
A

L
L

M
O
D
U
L
A
T
O
R

P
L
U
G

V
I
D
E
O
/
S
O
U
N
D

P
O
R
T

P
O
W
E
R

P
L
U
G

r.
c*

>
s„

u
eS

€^
00

9
*

1
)

R
E
D

2
)

T
R
A
N
S
P
A
R
E
N
T

3
)
w
n
v

W
R
A
P

(
n
o
t
a

g
r
o
u
n
d
)

4
)
B
L
A
C
K

(
g
r
o
u
n
d
)

5
)
W
H
I
T
E

o
r

Y
E
L
L
O
W

T
l

C
O

N
S

O
L

E
P

IN
O

U
T

J

*
#
r
c
H

A
T

A
R

I
/C

O
M

M
O

D
O

R
E

|O
V

S
T

IC
K

•
G
R
O
U
N
D

N
.
C

1
)

+
1
2
V
o
l
t

2
)

V
i
d
e
o
O
u
t

3
)

S
h
i
e
l
d
\

4)
Gr
ou
nd

\
5
)

S
o
u
n
d
O
u
t

o
o

2
N
O
T
T
J
S
E
D

8
v
o
l
t
A
C

1
6

v
o
l
t

A
C

G
R
O
U
N
D

*•
c
A

st
e
rn

CA
SS

ET
TE

/
«*

ca
*i

*~
±

P
L
U
G

2
)

N
e
g
a
t
i
v
e

R
e
m
o
t
e

r
g
i

«
i
—
«
•

1
)

P
o
s
i
t
i
v
e

R
e
m
o
t
e

c
s
i

t
i
p

D
^

H
eq

at
iv

B
Mi
c
1

»n
il

?
•
l
—
f

5)
P
o
s
i
t
i
v
e
M
i
c
.
l
a
n
d
2

t
i
p

)
N
e
g
a
t
i
v
e

R
e
m
o
t
e
C
S
Z

P
o
s
i
t
i
v
e

R
e
m
o
t
e

C
S
3
.

N
e
g
a
t
i
v
e

S
p
e
a
k
e
r

C
S
I

P
o
s
i
t
i
v
e

S
p
e
a
k
e
r

e
$
l

N
O
T

U
S
E
D

T
l

C
M

*
ft

*

S
m
a
l
l

R
e
m
o
t
e

SS
t-
ft
t.

Pl
ug

3/
32
-

P
h
o
n
e

P
l
u
g

1
/
8
"

S
m
a
l
l

R
e
m
o
t
e

P
l
u
g

3
/
3
2
"

P
h
o
n
e

P
l
u
g

1
/
8
"

T
1
-
9
9
/
4
A

L
I
G
H
T
P
E
N

T
h
e

T
I
L

4
0
4

P
h
o
t
o
-
T
r
a
n
s
i
s
t
o
r

i
s

a
t
t
a
c
h
e
d

t
o

o
n
e

e
n
d
o
f

t
h
e
w
i
r
e

a
n
d

i
n
s
e
r
t
e
d

i
n
t
o

a
F
e
l
t
-

T
i
p

o
r

B
a
l
l
P
o
i
n
t
P
e
n
C
a
s
e
.

I
t
s
h
o
u
l
d
b
e
h
e
l
d

i
n
p
l
a
c
e

b
y

S
i
l
i
c
o
n
e

g
l
u
e
.

U
s
e
R
G

1
7
4
/
U

c
o
a
x
i
a
l

c
a
b
l
e

f
o
r
w
i
r
e
.

T
h
e
o
t
h
e
r

p
a
r
t
s
c
a
n

b
e

c
o
n
n
e
c
t
e
d

a
t

t
h
e
9
p
i
n
c
o
n
n
e
c
t
o
r

e
n
d

a
n
d

w
r
a
p
e
d

i
n

t
a
p
e

t
o

h
o
l
d

t
h
e
m
.

O

MX -RESOL-UTXOM

MONITOR

Having

col lection

end also

Revolution

expanded my

Of 99/4A'S tO 2

having an old Hi-
monitor ex an

y-Rsy Hedlcal

I decided to

black and white

the #V» signal, on

Of 32»i « J201

socket that feeds

VHP modulator).

signal contains
necessary sync,

levels to run

monitor.

T.V. system.

connect the

monitor to

the socket

is the 6 pin

the UHF or

The 'Y-

all the

li luminance

a monochrome

Modification completed, I was
confronted with a good
picture that would not
stay synchronised . Rolling
vertically or horizontally
with the slightest change in
PiCtwre content.

On examination of my

modulator X noted that

•v connection does

correspond

diagram.

plug J201
ing table

stable

cct. diagru 5I correct
! connection

1 * *i2v

2*R-Y

3 * Audio

4* Y

5 = B-Y

6 s 6round

! 1 * +12v

! 2* Y

! 3 = R-Y

! 4 * B-Y

S S s Audio

S 6 - Ground

UHF

the

not

with the circuit

Reconnec 11ng the
as per the follow-

produced a good
picture.

J201

Rear view of plug.

Plugs are easily obtainable
from Atkins Carlyle. Plug
type Is 0P6, cost mi. 86.

* This Is true for the PAL

99/4Avs but may not be valid

for the NTSC version.

Remember that you wl11 need

ar. Audio ronntetlon also, If

,<j~ „-*•* jo'»r«c te havp the
dulcet tones, to remind you

that you have just • BAD
VALUE ••#<* again.

StvV* %Ji i k; r,*c;ri

Technical Talk

CALL A COLOR

A COLOUR

or

The Hi-Resolution Sequel

The sequel to the Hi-Res.
Monitor article came some

3-4 months after the

conversion.

Whilst busily working on a
program, I came across one
of those • Software • faults

that

else

T.I.

has

missed

missed.

I* everyone

I was using the CALL COLOR
subprogram. It would just
not work. The picture stayed

Cyan regardless.
You guessed it! Monochrome
Monitor.

Well my face changed colour
even If the picture didn't !

Steve Wiiklnson

W

AUTO FZRE

f^ROJECT

from Channel 99 Hamilton UO

by Oavid Storey

X have been asked by several

people why is It that the auto

fire add on for the Atari does

not work on the TX 99/4A. Well

the 99 does not have any voltage

output at the joystick port. It
•also has to have a physical

contact making and breaking for
the fire button to work.

This prompted me to come up with
this simple circuit. It uses a

555 timer and a relay. Rl and PI
deal with the time constant.

This circuit works well although

It is a bare bones circuit and

could be modified to give more

range of firing speed but, X
will leave that up to you. Here

is the circuit, you will need a

battery. I used a 9 volt as It
Is compact. This circuit as is
will run with voltages from 4

volts to IS volts.

flu to fir* drawing,
b* D.STOREY.

4V-i5Vf *V

Ri»in«« ,
Pl>lM*a lin
Cl—lmfd
R*la*-831C1 Dip

Rt made by 60ADOS

-W* 1
1 1

nc

4 e

sss

s

Xiwfr-

1 3

7

6

2

n
6 t*
R*la*

2 e

To J

Jci
T

~~*

+ L_ 1.

Page 6-7

Opening lp Ycur Hardware

32K MEMORY XF-ftMSIOM F'ROJEGT- -

Here's an article that tells how to go about placing 32K memory expansion inside your
speech synthesizer, stand alone disk controller, etc. I think placing the 32K in the
speech box is a better place than the console.

j/o ro*r nMLSHa)

n

21 Al

ntntN

^4 $ wit r

* LO~«fc» (CSi)

•f Mifr»»(**• Ct5i;

32 KiloByte MEMORY EXPANSION
FOR INSIDE THE SPEECH

SYNTHESIZER (OR ANY

PLACE YOU WANT TO PUT

IT).

by JOHN WILLFORTH
(based on ideas from the
WESTRAILIA, and the

CEDAR VALLEY USERS

GROUPS)

I have written up several articles on the
subject of putting 32K of static RAM inside
of the Tl console. I believe that most of the

information for this came from the WESTERN

AUSTRALIA U.G., and the work leading to the
insertion of the same memory into the Speech
Synthesizer, was done by the CEDAR VALLEY U.G.

Now I have put memory into both the? console
and the Speech Synthesizer. 1 thou*.;!:' i.mjc
there should be no place you couldn't stick it.
So I just finished putting it into the OLDE
Tl STAND ALONE DISK CONTROLLER (part of the
old train). This made a nice quiet, sort of
micro-expansion system (without RS232/PIO).
If you already have a full blown system, or
are just beginning to get int a disk system,
and realize that you either don't have the
funds, or will not need anymore than that just
described, you should read on.

The long connector on the left of the
schematic, represents the large 44-pin conn,
that is inside the speech synth., or any other
plug in peripheral ie: Stand-alone Disk Cont..
The big difference, however, is that ONLY the
speech synthesizer carries pins 1,2,43, and 44
into the unit from the console. Therefore if

you do decide r.o put memory into any other unit
than the speech synthesizer, I would recommend
that you wire across that unit, in other words

you should run a wire from pin 1 on the console connector to pin 1 on the output end
of that- unit, where the 2nd unit from the console might be plugged in, and do the
same for pins 2, 43, and 44. This will enable you to put the very small speech
synthesizer out on the end, instead of between the 2 much larger units (console
and Disk Controller)• There is only one lead that is involved here that is a must,
and that is the pin 1, since I have stayed with using the +5 VDC from the console,
rather than tapping it from the +5 Volt source in the unit where this is installed.

If you have the documentation on the RAM chip, you may be confused by the reverse
order of the address lines. DON'T WORRY, just wire the chip up as I have indicated,
and if you do your part correctly, it will work. I've done nearly 20 of these in
stallations in the console and the speech synthesizer, and in a stand alone disk
controller, and as far as I know, they are all working. If you want the more simple
instructions, on how to install, this same memory into your console, (which is what
I ptefer) just contact me, by sending a stamped , self-addressed envelop, and I
will send the instructions. Have fun! JOHN WILLFORTH RD01 BOX 73A JEANNETTE, PA

15644 , or call after 9:00 PM, (412) 527-6656 page
6-8

H^RTDlAj^FtE: HINTS

HAkE.!!iM.85IVLIl!S!6l:LATiON
By Ken 61«dyszewski

•hen installing a pair of half height floppy disk drives
in the peripheral box, extra connectors for both the
interface and power cables are required for the second drive.
The interface cable can be handled by adding a 34-pin card
edge connector (Radio Shack 276-1564) to the existing ribbon
cable (the cable is just barely long enough), or by moving
all the connectors froa the existing cable and re-installing
on longer cable. (Orientation to colored stripe is
uportant. Improper installation causes wave to improperly
run continuously, but with no apparent daaage.)

«!19&5L5i?LflCE«ENT,TiP
By ken 61adys:ewski

Knen a beige keyboard is installed in a black and silver
censole, great care aust be used to center the keyboard to
elumate binding of the outer keys. Ron ftmadeo has

\

3

Z

discovered that the overlay strip above the nueber keys is
held in a plastic extrusion which is fastened to the coaputer
oith double sticky tape. It can be repositioned higher for
•ore key clearance by filing or sanding the upper corners of
this extrusion and refastening it.

HIIB!Bk-5I§5_!l5IvE_PW»ER_sypPLV
ir Ken iladysiewski

Nhen 1 bought a case and power supply for an externa)
disk drive, I was auzed at how siaole and uncomplicated tnc
power supply was. 1present the circuit and parts list hen
for those wanting to build their own, because they already
have t*st of the parts. These parts are expensive and total
$21 (without a recowended on-off switch and fuse). Setter
and less expensive complete power supplies or these saai
parts can be purchased froa asurplus house by tail. Shee-
•etal enclosures can be obtained similarly. Any power suppl'
with 12 volts K §.5 ABPS tin, and 5 volts DC §1.0 AHPS air.
should power aost any single full height drive.

J.S^

+\z\)

Com

+ 5V -

-f-V2-

Cott

Page 6-9

•COOL IT: Help your steaming Tl 99/4A
run all day long like one
reliable cool cat.

While I have not had a problem with my computer crashino
Decause o-F heat, some Tl owners have -found that their units oo
7!^K o6 P°'nt of *nno>-*nce into a twilight zone of gnashino
teeth. Since I work my computer- daily -for several hours at a"
time doing word processing, I was quite concerned about the
sign.-Meant heat generated inside the TI/99AA. I thouoht o-f
tabUnandnh!no I"9' l^"9 * h°le in the bottom of my computer
around to oc? 9,k* *" underneath< or moving the study -furniture
These ,o?u?nn! e comPuter ir> *™nt of the air conditioner.
leJLt k °n\were e,ther inconvenient or uncomfortable.
idei wis os!Lab?Ut th* air conditi°^ ^ the winter time? ThatIntent °bv>ous y not very practical. It was time to
investigate realistic solutions.

*n tK^-!l\CaUtiOUSly ©rounded myself and a Ph i11 ips screwdr iver
electric! y)eniW^er 'J""* <con^^* Qtt *charge'out o-f stattc
for a ook-see Thf^f ^f^0**0™ cov^ °* ^ hot plate computer
for Jure ? rimnlUSM < *qu*r* b°ard W*S the h.*tfn9 element ^
sToe? Good orie? th tW° mountlno sc'*w* *o peek at the upper '
position^ fS 1" ePe WaS a biQ black heat sjn* obviously

mpt^i8^051"9 *hrou9h the local Radio Shack store, I noticed a

•wioing xne ri s printed circu t board power suddIv a *^,

P^seTLY^T^' and the ^oppinrtisr^low wts'"
It'fown co^ortab?! T* l "T ?°WeP SUpply now C00'* «*••'* •"^ndlaTe^e0^ t5" "^J bOX.;'*h *9*«uln. toggle switch
•for eioht hours blrLif*' i h,S ^n,t has been on continuously
Five mire unTtlwerf^on! ^l^comfortabl* lukewarm to the touch.
Problem^in^ur ^ca^sers'l^ "# ^ ^ "*' WJth°Ut
mater?arinsidrhTr!Jai,;tanCe/ep0rted *ddlno more h«a* *'nkPlllt cdoor fn hI*fctory-stoc,< computer, only to have the
That report soCrred SlT'V"*''d9e P°rt ow*^'*t *nd soften,
with 1oyfl T? mII! t0 Share my most satisfactory solution
theVRulers ZAh'ZI^V*^0 cr^n^ *>* not purchase«nPuterswith the intention of perculating coffee! ^\

Page 6-io

Here is the Radio Shack parts list:

DESCRIPTION PART «

C Ventilated Metal Chassis 270-253 *4 99
PC Board Standoffs 270-1391 II
5-pin DIN Plug 274-006 K49
5-pin DIN Chassis Socket 274-005 «?©
DPDT Toggle Switch 275-607 179
24 gauge stranded wire,

two-conductor rip cord 278-1301 50'/2.79
Sma nylon cable ties 278-1632 30/1.59
Small panhead sheet metal

screws and 4-40 machine
screws, washers, and nuts. -""

Ine^encTf^oldrr^^11 dr,n*' *IU«- »•-»• "«.•

il-^c^u-ii r\°posi^n rCbbeTfe^t as^in^e
"ov7d* roc^hfeora,??irionh%SCS,bS ^ " ^^* ^wi"holes in the powerhLpp!ynboarS?ard •*"***» to ™tch --ting

l^on'one^nd S?.^* Jh*-n#W POWer 0n"°^ swi *"» and pilot
of chlss^^enS f^rC°ear of1,fUT,ChaSSi%b0tt0m- Leave top 1/2"hole for the tooote sw!?ch tot IVSlll* Sli9htly relieve center
operate without b ndf?' * P f?d bottow so the switch will
Job quick 9' * ™" r™nd Chalnsaw *"• does the
Pouter supply boar^hld-bee^ IS™^*"™"*' UBtM ***<' th*
lour^s oofncTf?!71 "^' 0b^^e, tag, and record order of
supply end If the^°T POWer SUpply tomain computer board. Power
*ittin9! Unsold wire! TS" "*y °r m*y ftot h*v' * ">"«> pluT
time. Remote two screws tnTJ^"1 COmpVter board only at this
bend orioinal reS pMot li^f 'iTVL™!*** ?r0m COffiputer- e«ntly
three corner hotes n thl^L tC""'*7d "nter °* bo*rd- Relieve
standoffs? then dri U taltSTE *?" ' b0ard to *CCept th* ny,ontemplate s he?ofC ?1?^ ?* chass,s to. match. A paper
it7 Do nit inJta { th\ pAV'V ??*,r»d n*r'< n°t a force
completed? Take til !?£. ♦ °*rd Until a11 sheet metal work is
Attention to such Seta?* notlnw" "1 T^ *"* Sh*rp 'dc**'possible wounds but i!i?'y protects your fingers from

zip co^:WOslre?9t:nSd^:n^?ested length) of 24 gauge stranded
choice on 5-p?n 0?N P " KJh l" ^^ T'n 4 pjn* °* ^urIdentify the p?ns and til ?k above four conductors to 4 pins,
cover. P and taQ th* w,res before installing the plug

PRICE

Page 6-11

corn. Jn""?! ?" CabU tieS ever 6" or so t° bind the two zipcords together into a neat 4-conductor cable. Make a loop in the
snPU0oeI/?d °V*b)# f°r Strain "]i'<< J»»* '"«• enough io _
thi iSo«. -II P lVC P°St Where pow> r 0Ply was runted. Bind ^the loop wittuanother -nylon.cable li,. How enough length

' h«TaHn,n?K reaCh the 4 unsoldered holes in the marn computer
So^h W,tl?Ksome «lAfiK- Sc-lder the four wires into the main
Z^lZt 'n ^'C COrrect order- Careful examination of the

' hST* fUpJ1y DO*rd and ma,'n board will reveal one of the four
° f° b* a Bround. That may help keep your connections

oolifVlfi w ! !: Keep boards> P^9, socket, andwirino
D^t r iLi nH, +'ed at a11 time£* P,a" ^rain relief loop onPlastic post and secure with original screw and small washer.

aVumfnii1 J1earance no1** *nd mounting screw holes in opposite
pow^r socket^whi^ to/f"»^ DIN **<*'* «d the transformer
M^!f J k ' h,Ch must be removed from the power supply board
c"ar ? unsolHarSl%Knd bUt k«P tOP 1/2" «* the sheTt me^lfri* th. k 2ldered the red, black, and white transformer wires
throuttiSea<d;in?!r^d ?* WireS trough the chassis end from .
the ?hassfl .Mth 1 4n >* a°d clame*d the ends of the socket to
.ash^r^o'nCts-on the'TiUi de?^* °" ^ °Ut*'d- ""* ^
LeCut4^1! 3" plated stranded 24 gauge jumper wires; tin
wh?£ of. dfon h«iend-°^!aCh JumDer into the red, black, and
side iVA ?i «fei 1" the power suPPly bo^d' *rcm the top
on?o "standoffs. '" Ch*",S' b°tt0m *nd °ently P"»* board ^

?umnin£ta11 ?eW toQQle switch and pilot lamp. Solder 'red'
™ "I" to °ne b°ttom terminal of switch. Solder 'black'

termor sa?lrne S"°h i?"* ,ead t0 the °ther bottom switchco" Li M DJ t^i I'" -eadS *raB transformer socket tosocket lead '2?;.; terminals or power switch. Solder white
dt with"mall wJ! nutmPeRouSda??d "^ '?"* ,Md t0**th'r *"dsink Th. !. Route all wiring clear of black heat

Hoi iTohVtperaTes oT anV^c'l in^ '"-^ UP P°Sitl°n' Th<glow which does not gfare at'̂ ot? ' 9'V'n9 * moderately soft

Pl'n n^mbers'onTpfn EX"™ J0!**0* ""'*' a°d *°ld'r to co^ectlookino a^ a mi^i - socket, remembering that you are now
cc^puUr? I ?id ZL'T** °Lthe DIN p,u9 comjng from the
the^toihe socket beforrm0un?°9h X# ChaSS?S h°1<? and soldered4-condurtor ny 1 B, ! mounting the socket, because I had a
has sol^red wresPylu°main^rer+SUPP,y #nd" If y°ur bo*rd
-d then solder^he" KoCl-r ^ "N PlU9 *"*•*

Page 6-12

Out 0ff„LE CHECK F?UR WIRE "nnections throughout your cable"
?*;! 6 power suPP,y conversions, as careful as I tried to-be I
mfstlkerh^'H"' B°th CompUter£ WOPked "rr.ctly after the 'ZLtl t h« b!en corrected. But it is still heart stopping,
^IL** t H'* wor^riQnt the first time. Check your groCnd to
.^und^^+Trst, then verify t+ie-order of the other wires
s7fdereJ;^Hn9 anrthin9 °n- 61ue the original p? c On-Offs ide switch m place with rubber cement for appearance sake
Clater be ,ge Tl 99/4A onl y> . install computer'bottom"oJer!

n^c/f^^0!0 7°DIFICATI0N 0F SHEET META«- CHASSIS TOP. The
a uminu^P 'tV*'*1' *!* th* »,,v" chassis bottom is UERY SOFT

*h« «»1 'l?2*TS2 ll I? *•' i2S'de °* th* "»" •« •«•« *nS. Orl.»to« »h! -_ .ot* ln th* cov,r »dJ««"t to the h.»t »ink ,nd

tcrlw! Chi"'S b°tt0m to "«•'- lnd "«••• «H «h..t «??.!

Page 6-13

Anchor Automation Signalman Series Modems
Interfacing them with the Tl 99/4A

by Scott Darling
GEnie ID TIKSOFT

After reading some messages asking for help using Anchor Signalman
modems. I decided to sit down and write a short tutorial covering them
all. As this is conjecture on my partf please donft hold me to all I
am about to expand upon, as I had to figure out most of this myself.
As some of you know I operate a BBS, CALTEX #8 in Spokane,Wa. The
'provider' of the hardware had a Mark VII modem that he had bought as a
1auto-answer1 modem only to find out that one had to write the software
to activate the modem. That left both of out! So I talked to Anchor
about the situation And was told for $30 more could get a Mark X.
So off went the modem and the check! This was in June of '84 and we had
never seen or heard of the Mark X. But was told it was 'HAYES1
compatible. So this is were the REAL fun began and I found out all the
ins and outs! Well onto the nitty-gritty.

Mark III: This modem needs no explanation as it is a direct connect
ready to go. Just plug it in and fly!

Mark VII: This modem is a auto-answer, auto-dialer 300 baud modem.
The only catch is it is your software driven. Which means you, the
user, write the program to make it operate! This is a major drawback, /
at least it was for me! But when I found out I had to write the
software Gulp forget it! But if you find yourself with one
of these. It is not a problem , it still can be used just like the
Mark III.

>»>> EXCEPT<<<<< Now here is the fun part! A wiring change is necessary
for the hookup to operate the modem.

RS232 MODEM

PIN 1 1

2 3

3 2

6 6

7 7

20 20

The above wiring changes apply ONLY to the Mark VII.

Mark X: The Mark X is also an Auto-Answer and Auto-Dialer EXCEPT for
a small detail This one has the ROM software to do what you want.
Whew! I finally found what I was looking for! At least I thought so.
So I took it out of the box and plugged it in and of course nothing!
Because I knew I needed to make the wiring changes. So I decided to
make up a cable interface so as not to destroy the integrity of the
modem cable. So after about $10 of solder plugs and hoods I was ready
to go. Here is the cable makeup that I used:

Page 6-14

PIN

RS232 MODEM

1 1

2 3

3 2

5 20

7 7

20 5

8 is DCD

Because I use pin 8 of the modem for a Copyrighted BBS, I will Leave
out that connection. Besides it doesn't go to the RS232 port!

This configuration will and does work everyday. So now I had my cable
made up and hooked in and was ready to go. Right? Tried to call,
BBS got a carrier, and played around in it. Logged off and tried
calling back. Hmmmra no carrier tone but the modem connected me anyway.

Well to make a very long and frustating experience short,
I found out the COMMANDS I was sending were not being executed. It was
starting to get on my nerves at this point. So here is what I found
to make the modem software perform the commands. The following
programs are examples:

These are setup for auto-answer for a BBS! I use these formats on mine,
When you turn on the modem, these are the defaults that will power up.

"ATCOFlH0Q0VlS0=lSl=0S2=43S3=13S4=10S5=8;cr"

Well as you can see the defaults take care of a lot of different
(functions for you at the onset. But you'll hardly ever use most of

these. The following are the ones that will be used by most people
using the modem for a BBS or auto-dialer function.

This format is what I use to set up my BBS to auto-answer. Of course
I don't use these exact setting's. I'm using these for an example.

100 OPEN #1:,,RS232,, :: PRINT #1:wATQlS0=2S2=30 ;crn

This tells the modem not to send result codes to the DTE
(caller end<'Ql'). To answer on the second ring ('S0=2'). And the
escape code is CHR$(30). This format is used by my BBS while waiting
for a carrier. Also notice that the command line has no spaces, Mark X
ignores the spaces, so just leave them out. The Hayes REQUIRES those
spaces between commands.

So now your online and running. The next step is when the caller is
done and hangs up. This next line will open a different file. With the
LF off (which I normally use in the BBS anyway)

100 OPEN #2:,,RS232.LFf, :: FOR A=l TO 1000 :: NEXT A :: FOR A=l TO 3
PRINT #2:CHR$(30) :: NEXT A :: FOR A=l TO 1000 :: NEXT A

110 PRINT #l:nATHS0=0;cr" :: RUN

This gives a one second delay before and after the escape command. The

Page 6-15

way I set the escape command evidently gives just enough pause
between characters. Line 110 is the hangup command to the modem and
also tells it NOT to answer till told to do so. The reason I use RUN
is I have turned off pre-scan and my 88 sector program will recycle
in 10 seconds versus the original 30 before.

There is one command that will act like turning the modem off, then on
again.

100 OPEN #1:"RS232" :: PRINT #1:"ATZ;cr" :: CLOSE #1

This is the RESET command. It sets the status of the modem to ALL

the defaults.

The following is a BASIC program that will write a logon file. I haven't
figured out how to write a basic program that will logon and CONNECT.
I think there is a way of doing it. But this one works.

100 OPEN #1:"DSK1.LOGON",DISPLAY,VARIABLE 80
110 PRINT #1:"1ATD"

120 PRINT #1:"IT" OR P FOR PULSE
130 PRINT #1:"13260515" (1 + AREA CODE + NUMBER for long distance)
140 PRINT #1:"1 "
150 CLOSE #1

This will be saved as a file that TEII will load and run from option 2
or 3. I tried calling CIS using the output of this and it worked.

MARK XII: As far as I know all of the information for the Mark XII is
the same as the Mark X. I acquired most of this info from a dealer that
sells the Mark X. But as he put it "well all of the people that buy the
Mark XII's wouldn't call a 300 Baud BBS anyway" so there was very
little animosity between us! But from I can gather everything should
be the same. Except one added command for 1200 baud

To sum up the Anchor commands: the most important part to do is
the ";cr" as the modem will ignore anything sent till it receives
that command. If I have caused more confusion than help let me know,
as I have tried to think out this tutorial. But I could have made a

mistake. This is my first try at writing(rather obvious I suppose).
So here's hoping This clears up any confusion. Also, I wouldn't advise
calling or writing Anchor, as they are really not equipped
to handle the BASIC language to activate the commands. I know from
experience.

Page 6-16

DISK DRIVE POWER SUPPLY

This is a break down on how to construct a power supply for a disk
drive. The list of parts are listed at the bottom, but remember that
this list does not include the sales tax or the board to construct
the power supply. If you need help in constructing this power supply
just give Skip a call at 944-2770 and he will help you out as much as
possible.

DISK DRIVE POWER SUPPLY

0 !## ;

Fl

115

VAC

:name:

SI

= /

= LI

type

D1-D4 3A IN5402
C1-C3 2200UF 35V
C4-C5 100UF 35V
Tl 18.OCT 2.0A
Fl 120 VAC
SI SPST 120 VAC
LI NE-2H120 VAC
RS2 +12 VDC 7812
RS3 +15 VDC 7B15

f^ TOTAL PRICE FOR PARTS

Tl Dl

•>!

!RS2!

;ci :ci

0 + 12V

!C4

D2

-!< —
-0

COMM

:c5 -0

IRS3!

-0 +5V

D3 :

D4

->: —

DISK DRIVE HOOKUP

—\

Zl ! -> +12V

C3 i -> COMM

E3 -> COMM

ii i -> +5V

TECHINCAL NAME !SPART NO.! !PRICE1!QT

"BARREL" DIODE

ELECTROLYTIC CAPACITOR
ELECTROLYTIC CAPACITOR
POWER TRANSFORMER
CIRCUIT BREAKER
ROCKER SWITCH
NEON LIGHT

VOLTAGE REGULATOR IC
VOLTAGE REGULATOR IC

> $25.99

276-1143

272-1020

272-1016

273-1515

270-1310

275-690

272-1102

276-1771

276-1772

* .89

*2.49

* .79

*6.99

$1.49

*1.B9

$.69

*1.59

$1.59

(4

(3

(2

(

(

(

(

(

(

Page 6-17

CABLE BOX

by Jin Edwards

One feature of the T. 1.99 that has never been hard for me to criticize was
the physical size and design of the peripheral cable and connector. It
always seemed to take up an undeserved portion of desk space. With only a
goal in mind and virtually no "hardware saave", I set out to alleviate the
problem. It seemed a simple task to build a compact connector that would
plug in without disturbing the original components. Actually, the most
difficult aspect of the project was rounding up the parts.

That proved to be an education. Card edges and their matching connectors
have several configurations. For est ample* 22/44 means that it has 22
conductors on both sides. Spacings vary as well: .10, .125, .156, etc.
This refers to the distance between the centers of the conductors. This
project requires 44 conductors (22 on a side) with .10 cerftersl Finding a
card edge connector was difficult enough, but finding the male counterpart
was impossible. A section was literally cut out of an abandoned board.

I found most of the parts at Pacific Radio while the card was found in a card
boaru box at All Electronics« Obviously, the exact parts may vary but b&
certain of the number of conductors and spacing. Once everything is
rounded up, simply solder the wires together making sure to match one end
to the other. Optionally, an interupt switch can be added for those screen
dump programs that require one.

#

1

2

3

4

cr
w'

6

7

-—-1 UTILITY BOX

^-~ 2 CARD EDBE CONNECTOR

_____ 3 STRAIN

. 4 BUMPERS

5 TELEPHONE CABLE

'__J3 6 CONNECTOR HOOD

P\7 CARD EDBE

FART MANUFACTURER

UTILITY BOX CALRAD

CARD EDGE CONNECTOR GC ELECTRONICS

STRAIN

1/4" BUMPERS RUSSELL IND.

50 CONDUCTOR TELEPHONE CABLE

CONNECTOR HOOD GC ELECTRONICS

CARD EDGE SCAVANGED FROM PC BOARD

PT.# COST

90->785 *2. 10

41-875 $4.74

.25

REC-207SH *1.7«?

41-1003 $2.4S

sri.50

$12.86

Page 6-18

y^apiK^

/tfj^K.

INSTALLATION OF SROH CHIPS

INSIDE THE Tl CONSOLE

by Patrick Ugorcak
OH-HI-TI

The cartridge groi chips for lost
of the Tl lodules can be installed

inside the console so that it is no

longer necessary to plug the cartridges
into the groi port. The prograis can
be selected by nay of a snitch attached
tr the groi chip. This not only saves
tue in not having to search for a

particular cartridge but it also saves

near and tear on the groi port.
Like all articles of this type I

iust first nam everyone that any

•odification to your console will void
any warranty and also the risk you take

is your own. If you plan on doing this
aodification on your only console I
strongly recouend against it. There
is always a chance, although slii, that

a disaster light occur.

The parts you will need for this
project are:

1) Prograi groi chips either
purchased froi Tl for around 14
each or taken froi a cartridge.
2) Ribbon cable (6 inches long, lb

wires).

3) Thin wire to connect the

switch.

4) Switch (The type of switch used
depends on the application, fore
on this later.}

5) Low wattage solder iron (25
watt or less), solder, solder bulb
to reiove groi chips froi lodule
if used, etc.

This project requires the reioval
of the groi extender, the part the
cartridges plug into, froa the console
and attach 16 wires to it. The other

end of the 16 wires are attached to the

groi chips which are being installed.
A switch is attached between one of the

wires so that the prograi can be turned
on and off.

Nhat liiits the nuiber of prograis
which can be installed is the type of
switch that is used. I have installed

two prograis into a console (E/A and
DNII) using a SPDT type switch and see
no reason why lore cannot be used. One

criterion for the switch is that it

iust have an off position so that the

prograi attached to the groi port can
be turned off when cartridges are used
(extended basic for exaiple). If you
are installing only one prograi then
any SPST switch will work as long as it
is stall enough to lount in the

console. If lore than one prograi is
being added then a switch with an off
position is needed. 1 used a SPDT
on-off-on type switch for ay two
prograi installation. I have seen

liniature rotary switches at hai leets

with as lany as 12 positions. Iiagine
11 prograis available at the flick of a
switch. A lini DIP switch could also

be used but lay not be as convenient to

operate.

6iH!i!e^U09.t!)I.E9l!Hii

1) Reiove the on/off switch piece
on the black and silver consoles.

2) Reiove the 7 screws froi the

bottoi of the console.

3) Lift the bottoi part of the
console froi the top portion.

4) Reiove the 2 screws holding the
power supply to the console and
reiove the power supply.
5) Disconnect the power cable froi
the power supply,

6) Reiove the 3 screws holding the
lotherboard to the console and

lift the lotherboard up slightly
so that the keyboard connector can
be reioved.

7) Disconnect the keyboard and
lift the lotherboard out.

8) Reiove the groi extender froi
the lotherboard.

PEee§riQ9.tbg.Grg§MShiif

The groi chips will be
piggy-backed together to fori a groi
stack. Pin 14 on each prograi groi
chip group is attached to the switch

position so that the different prograis
can be selected. Soie of the prograis
use as lany as S groi chips. For
exaiple Editor/Assembler uses 1,
ftultiplan uses 5 and Disk Manager II
uses 2. In the case where lore than

one chip is used, care iust be taken to

•ake sure that the chips at
piggy-backed in the right order or the
prograi will not function properly.
This is not too difficult because the
chips are nuibered in the proper order
(DHII-CD2234NL and CD2235, for
exaiple). Just lake sure the chips are
stacked in assending order arte
everything will work fine. (See figurr
2 for lore detail.)

To prepare the grot chips ♦«■■

installation do the following:
1) Carefully bend pin 14 on a),
the groi chips with a needlenose
pliers. Refer to figure 1 for
location of pin 14.

2) Piggy-back all of the chips
used liking sure the notches or
the chips face the saie direction
and are arranged in the proper
order as discribed above. If io'r

than one prograi is being
installed keep the groi chip
groups together.

3) Solder all of the pins except
for the pin 14's. Hake sure that
there are no solder bridges
between the pins.

4) Solder the pin 14's for each
prograi group together. Solder t

thin, 6 inches long, to each
prograi group at pin 14. (Set
figure 2 for detail.)

10f$lIiltiW„CfJh|„PrMrM„fc9i_ChiBk

1) Separate the ribbon cable into
two pieces, one with 8 wires and
the other with 7 wires.

2) Attach the ribbon cable to the

reiaining IS pins on the groi
stack. The 8 wire piece is
attached to pins 1-8 and the 7
wire piece to pins 9-13, IS and
16.

3) The wires attached to pin 14
are then connected to the switch.

4) Attach a siall piece of wire
between the center of the switch
and pin 29 of the groi extender.
(Figure 3).

5) The wires froi pins 1-13, 15
and 16 of the groi stack are
attached to the groi extender
positions indicated in Table A.

6) Recheck all of the connections.
7) Nrap the groi stack and wires

Page 6-19

with electrical tape so that it
will not short against the
•otherboard's utal shielding when
installed in the console.

8) Install the switch in the

console close to the groi port
either on top or in the back.

fttttHrtiiM.&.taHlt

Before reasseibling the console,
test the prograis installed. Reconnect
the power supply, keyboard and Mnitor
to the lotherboard. Hake sure the

power supply and keyboard are on a
non-conductive surface before applying
any power to the console. Turn on the

console ana try each of the prograis
installed to lake sure everything is
working properly. Aisc check basic and
the groi port for proper operation. It
lay oe necessary to reset the console

(fctr. -) each tut a different prograi
is selectee, ftakt sure that the groa
stack switch is in the off position
before inserting any cartridges into
the groi port. If everything is
working fine then the console can be
reasseibleti. If a problet occurs
recheck all your work.

Shen reasseibling tne console *ak*
sure that tne *:b&o* cat-it is dm: out

of the way sc tr.it the groa port can oe
reinstalled into the top of the console
aid it does not interfere with the
operation of the console. The groi
stack should be placed to the left sioe
of the console above the lotherboard.
Reassertle the console in the reverse
order used to disassemble it.

After the console is assembled
recheck it again to iae sure
every:ni«g is operating correctly.

!• inert irt u\) questions, about
this project please feel free to ask.
Hy address is: 7167 Uana, Allen Park,
HI 48101.

i(*

*•

i3ci31L32i30i2Ei26i24i^i20ilB116JJ4JJ7JJ.01^^ 6; 4: 2\
155133131ihilZiaiSiZlI!*! 17!15:i3lli! 91 TlT™!!

FI6UK 3

REAR VEIN OF 6ROK EITODER

! 6roa Extender ! 6ro. Stack !

J 3 i 1 !
• r
1 w ! ") '.

1 7 3
• e

! 4

: n ! * <
> w t

: 13 : 6 :

: is : 7 i

: 17 e :

! 1? c ;

! 21 ! ic :

! 23 i 11

i 25 i 12 :

I 27 J 13 !

i 2? 14

i 31 : IS i
! 33 J 16 i

Tabic A

Page 6-20

r
Adding a Second RAM Chip

This section describes how I added a second RAM chip by piggybacking it or
top of the first. However, this makes the chip pile high enough so that the
module cover will not close -over it. Accordingly, I had to remove a small
section of the top module cover (about 1 by 2 cm.) right at the point where it
takes a couple of right angle turns. This is where the module narrows so that
it will fit into the cartridge slot of the console. Since the chips take up
some of this space, this "souped-up" Supercart needs to reside in a widgit or
other cartridge expander (it even works well in a GK). To do the actual cutting
of the module cover, I used an old soldering gun which had a plastic cutting tin
but I suppose anything from drills to hot wires could be used also.

T

two pi

which

the f

determ

via t

high s

wherea

Pin 26

applie

none o

contin

from t

pin o

this s

disabl

funct i

chip

entire

at a J

"seler

enab 1 e

piggyb

connec

dese1e

he Hitac

ns are c

are addr

unct ions

ines whe

he w i re

tate (+

s if it

is the

d or no

f the ch

uous hi

he conso

r data

ystem, i

ed and i

ons can

select

chip pr

a v ..v -: - t <?

ted,r by

a. If

acked 62

ti ng th

ct ed.

HM6

ern

an

f

r t

nne

tag

low

pi
if

s m

vo

Cth

s

his

t i

don

nds

hi

one

ess

o

the

CO

vol

is

CS2

t;

ipT
gh

le

bu

f t

f i

be

pin

et e

i tf -••

the re

u

P-1

to

264LP-

ed wit

d data

the c

he chi

cted t

e) the

C0 vo

n wh i c

this C

emory

ltage

e left

in and

pin i

s at a

e. Th

When

that

St of

1 ook 3

5s, yo

the

15

h p

li

hip

p w

o e

n t

lta

h s

S2

fun

sta

ha

I T

s a

lo

e 1

thi

it

the

1- t

u w

bo

is a

ower

nes .

ill

dge

he c

ge o

eems

pin

ct i o

t e v

nd F

m no

t a

w st

ast

s pi

isn'

grou

sys

h p i

ill

ard ;

28 pin

supp1y

This

Pin 27

be writ

connect

hip's m

r jroun

to act

is at a

ns are

ia the

3 hole

t ent i r

high vo

ate [0

of the

n is su

t there

nded] t

tern to

ns i de o

find pi

this

chip

Cgro

leave

is

ten t

or 3 ;

emory

ded)

as a

low

acces

LED w

conne

ely c

ltage

volta

four

ppl ie

(if

he n i

con ve

f a G

ns 20

is

y o i

64LF

of which one pin is not connected,

und and +3-5V input),and 21 pins of
s 4 pins left over which control
the W_E or Write Enable pin whic^

o or read from and is controllec

if the voltage to this pin is in ~
will be available to be read fro*

then a write to memory is expected.

sensor as to whether power i=
(0 voltage or grounded) state, ther
sable. This is why it is fed <=
hich is connected to the +5V supplv

cts with pin 26). Pin 22 is the 0E

lear as to its meaning. However i-
state, output from the chip iz

ge or grounded) then read and writ:
control pins is pin 20 or CS1 o

d with a high state (+ voltage) the
s "deselected"). When this pin is

t gets the message that it has bee-
rse with and its functions arf

K or Horizon Ramdisk which both use

bent out with individual wires

the way each chip is selected or

boring and inaccurate but it helps tc

o add another RAM chip to the pile. It's

r RAM chip on top of the first; bend in the

ower chipTs pins by molding on a table top.
28. Then solder the pins from the top chip
to make a.ny solder bridges between adjacer.x
ered the two together before I installed it
ins 2, 27, and 28 are connected to the same
s on the lower chip. If you connected all
, you would have both chips doing the exact

ow do we give each chip its individuality?
become useful. A "pullup" resistor is usee
pin 20 of the chip not being used which be

e effect of making that chip "invisible" to

"pullup" resistor and + voltage source,

to a 0 voltage state which would cause the

This would cause the system to read the
neously which would result in garbage and a
rd, there is a resistor (R1) which acts a?.

s probably

ecessary t

back anothe

over the 1

0 , 27, and

are fu1 not

tual1y sold

ignored. P

pondi ng pin

i n para 1lei

h other. H

s (pin 20)

h state) to

raph has th

e of such a

float" down

ips at once

ips si multa

percart boa

The abo

explain the

relatively s

pins to ma

then bend ou

tc the botto

pins. (In m

on the boa

wires as sup
of the pins

same thing -
This is whe

to supply +

we read in t

the system,

these pins w

system to "s

same addres

probable era

graph i

itry n

o piggy
ght fit

1,2,2

being c

e , I a c

n 1 is

corres

chips

of eac

CS1 pin

(a hig
e parag

absenc

nd to "

both ch

both ch

•the Su

ve para

ci rcu

imple t

ke a t i

t pins

m chip

y modul

rd.) Pi

ply the

of both

clones

re the

voltage

he abov

In the

ould te

elect"

s of

sh . I n

Supercart Additions - McCulloch Page 6-21

ribed for use in cartridge

1 (pin 20) and the +5V line
select the chip. How then is
s is the function of the wire

OE pin is made a low state (0
istor supplies voltage less
es it away". To enable us to
witch to connect the OE (pin
while having pullup resistors
selected while the one chip

such a pullup resistor. In the version desc
expanders, this R1 resistor is connected between £S
from the console. This supplies a high state to de
the chip selected to enable it to do its thing? Thi
connecting pins 20 and 22 (the OE pin). When the
voltage) then pin 20 is also made low since the res
readily than the direct connection to pin 22 "tak
use both chips independently then, we could use a s
22) line to either of the RAM chips pin 20
connected to both pins 20 to keep the other chip de
is working.

This is exactly what I did: disconnect any wiring between pins 20 and 22
(to be found on the lower or older chip); next connect 1K resistors (R1 in
Figure 3) between pin 20 and the +5V line for both the top and bottom RAM chips;
next run wires from pins 20 of both the lower and upper chip to the outer
terminals of the SPDT switch; then connect the center terminal of the SPDT
switch to the OE pin with another wire (if you're tired of soldering on chip
pins by now, you could run this wire to edge connector 2 which is the same
line).

I then drilled another 1/4" hole in the front (label) side of the cartridge
(somewhere on the left hand side to keep it away from the chips) to install the
switch in. If the spring and door of the module cover have been moved to the
bottom cover, it makes it easier to insert the modified board back into the
module. Again, wrapping any exposed wires helps to prevent short circuits (in
one of my earlier efforts, smoke rewarded me when I powered up the Supercart!) I
finally used black electrical tape to wrap around the module and cover up the
hole I'd made in the top cover. Voila, a manually switchable extra bank of
useable memory! Now I can choose between 2 different entry menu screens simply
by flipping the switch.

One ot he ? potentially useful feature I've found is this: with my previous
single banked Supercart, ild more often than not scramble the memory if

removed the cartridge or inserted it with the console power on. (In retrospect,
this is because the chip was hardwired to be constantly selected and was subject
to transients and "spinal shock" when connected and disconnected.) Now if I
"deselect" both RAMs by placing the switch in the center position, I can remove
and insert the cartridge even with console power on without losing Supercart
contents. To run, however, one or the other of the RAM chips has to be
selected•

I hope these comments have been useful to any other "technoklutzes" beside
myself out there. If anyone has any corrections or comments to make, I'd be
pleased to get them at: Jim McCulloch, 9505 Drake Avenue,
60203-1107 (CIS ID# 74766,500).

Evanston, IL

1. 0 J JLL v..J) JLuV-J-J FERESTIIMG

Supercart Additions - McCulloch
Page 6-2 2

y^^fev

/SfpS

I()% =16

|%% /-= 2 2

!%% ! o 3 6

|o% j o 4 4

|%% ! c^ 5 L

|%% ! o 6 P

|°/o% ! o 7 -

|o% ! o 8 1

\%% ! o 9 5

|%% ! o 10

I%% ! o 11

\%% ! o 12

|%% ! o 13

|o% ! o 14

|%% !

|%% !

|%% TO EDGE

Ic". C ONNi."

|%%% \

l%%%% \

I%%%%% \

\%%%%%% \

I%%%%%%% \
IO/ O/ O/ O/ O/ O/ 0/ 0/

/o /o /o /o /o /o /o /o

I %%%%%%%/to/to/to/o/to/b/o/to/to/to

I()%0%%%%%%%%%%%%0

SPDT SW

TO UPPER PIN 20-! i !-TO LOWER PIN 20

TO EDGE CONNECTOR 2 (OR PIN 22)

TO +5V SUPPLY (F2)-

TO EDGE CONNECTOR 3

/ R2

/ LED

!(FLAT) (ROUND)

28 = /!

27 =/ o

26 o

25 c

24

23

22

21

20

19

18

17

16

15

%o%%%%%%%%%%% o %%o%%

oF3 %%%%%%%
I

C1

j

o

%o% o

F1

o \

\ \

o —-<\U \ \

L\\P \ \
0\\p \ \===/=\=======/=\=======//\

P W\\E \ +5V //
I E\\R \ GROUND //
N r\\ 0===========\ //
20 \! R1 //

! \ /

o

o

o

o

o

o

o

V

o

o

c

o

o

o

o

o

o

o

o

o

o

o

o

o

•R1-

O !

o

O !

o

O !

o

o !

o/

TO(-)LITHIUM !

CELL \ !

T0(+) \ !
LITHIUM \ !

CELL ! !
i i

i i

__-_i-i

%o%%%%o%%% %o%%%7o%o%%%% o \%\
-/ !%l

o o C2< !%l

o o +\ !%|

--D2I R3--o--!%l
o o /F2 %%\

o o ! %ol

o o ! %%\
o o D1 oRS%%l

o o/ " %%\
=======/ / %%|

%% I

%% I

%% I

%% I

%% !

%% I

%% I

o=%%%%%%%%%%%%%%%%I

%%%%%%%%GR0UND%% i

%%%%%%%%%%%%%%Q%I
%%%%%%%o%%o%%%%%I
%%%o%%%%%%%%%%%%I
%%%%%%%%%%%%%%%%I
%%%%%%%%%%%o%%%%I

" o%%%o%%%%%%%%%{)I
it «.--.-----.--------

o o

o o

o o

o o

o o

o o

o o

o o

•/ /

/

/

/

/

/

=/

HUH \ /

TO OUTER SPDTJSWITCH TERMINAL

TO OUTER SPDT SWITCH TERMINAL \
TO INNER SPDT SW TERMINAL\

! TO RAM CHIP PIN 27 '

\ !
TO

I

\

\

V

tt

tt

It

!

Tt

TT

tt

tt

1

RAM CHIP

PIN 2

" o

T TT TT TT TT TT

T TT TT TT TT TT

T IT T! 1T TT TT

1 V: 15

T TT TT

'. 1 • t;

T TT TT

t tt tt t tt tt

ft tt tt N tt tt

rt tt tt rt tt tt

it tt tt rt tt tt

rt-tt-tt- rt_tt_tt

tt tt tt tt tt tt tt

tt tt tt tt tt tt tt

tt tt tt tt tt tt tt

tt tt tt tt tt tt tt

tt TT II tt

TT TT tt tt

tt tt tt tt

tt tt It II

tl tt tt II II II

11 It tt II II It

. It_ II_ II. II. II„ II«.II,

1111111

12 3 4 5 6 7

II

2 3 4

tt tt

tt tt

tt tt

tt tt

-'» — ♦».

9 1

0

7 8

it

>" ——

1

8

FIGURE 3

(Supercart With Switch Selectable RAM Chips)

Supercart Additions - McCulloch
Page 6-2 3

DISK DRIVE MODIFICATION INFORMATION

bY PAUL DeMARA, CET 10760 ROSEBROOK RD. RICHMOND B.C. V7A 2R7
WRITE= LOW TO WRITE (BAR ABOVE WORD MEANS LOW LOGIC LEVEL) NORMALY SITS
AT +5VOLTS.

2—RESERVED 16-MOTOR ON
4—HEAD LOAD 18-DIRECTION IN

6—SEL 4 20-STEP
8—INDEX 22-WRITE DATA

10-SEL 1 24-WRITE GATE

12-SEL 2 26-TRACK GATE

14-SEL 3 28-WRITER PROTECT

30-READ DATA

32-SIDE SELECT

34-READY

These even numbered pins control all functions to the disk drive. Pin
number 32 is of interest because it can switch the head to side two
electronically on double sided disk drives. Pin 32 is held high logic by the
IC on the disk drive and is pulled to ground by the disk controller card when
it wants to read side two. If you were to bring pin 32 to ground by adding a
switch it would be forced to read side two but the card would not see any
change and therefore you could format side two with a directory completely
seperate from side A of the disk. This is very helpful when backing up disks
or when you want to have two sides with XB loaders on them. You just flip the
switch to read side two. It is also possible to modify the circuit to read
side two by calling up an unused DSK# eg. DSK3. would read the back side of the
disk drive and the controller card would think its reading DSK3. When in fact
it is reading side two of one of the other disks. This would make an excellent
way to back up SS disks without having to have extra disks and would be very
quick as no disk swaping would be neccessary. The side two mod using the
command DSK3. or DSK4. (3rd party disk controller cards) requires a relay to do
the switching and some rewiring of the disk drive is neccessary however the
rewards are worth the effort. The two modifications do not in any way effect
the disk drives normal operation.

Here is a diagram of the disk drive 32 pin plug:

TOP OF DRIVE 00s001111122222333

24p680246802468024
================== <34 PIN EDGE CONNECTOR

00c000111112222233 ALL ODD NUMBER PINS ARE CONNECTED

13e579135791357913 TO GROUND.

To wire the side A side B switch you will need a single pole double throw
switch. You then must locate wire number 32 on the ribbon cable that connects
the disk drive to the controller card. Cut wire number 32. Then take your
switch and take wire 32 from the disk drive and hook it to the center terminal
on the switch. Next take wite 32 from the disk controller card and hook it up
to one of the outside pins on the switch. The left over outside pin on the
switch is then hooked up to wire 33 or any suitable ground on the disk drive.
This switch in one position will make the disk drive operate normally. When
the switch is flipped the disk drive head switches to side two. One other
thing that I found is if you format side two when the disk is formated double
sided on side one you will have to first read side one when getting ready to
initialize a disk and then flip the switch when the software is ready to
format. The reason is the disk manager module will give you an error if you
try to read side 2 before it is reformated. Hope the Modification help all you ^^
Tl users save disk space and save you from hacking up your disks. Anyway if /tf^
you would like more information or a diagram then feel free to give me a shout
during normal hours. Please feel free to copy this info and if you find it
helps a donation would be appreciated as I am working on a few other goodies
for the Tl. Pa8e 6~24

J0^\

/0$^\

j0^®\

Nc Special Dress cr Gesture

Is Required tcTelecemmunicate.

Ccme as vcu are!

GO Tl FORUM

A Look At CompuServe
Copyright 1986 Jonathan Zittrain^

CompuServe ID 76703 f 3022

"CompuServe's : Consumer Information Service, is one of the most comprehensive
and useful networks available today, especially for the TI user.

Overview

CompuServe is part of CompuServe, Inc., in Columbus, OH. Users from
across the country (and lately the world) are able to access CompuServe
through local telephone numbers in many metropolitan areas or
supplementary networks such as GTE Telenet or Tymnet.

Users are billed by the connect- minute, also based on the time of day.
Rates through a standard CompuServe number are $6.25/hour Standard time (6
p.m.-5 a.m.) and $12.75/hour Prime time (8 a.m.-6 p.m.). Weekends and
holidays are considered to be Standard time. These charges are based on
300 baud. 1200 baud and 2400 baud costs $12.75/hour Standard and $15.75
Prime.

A Quick Tour

So much is available on CompuServe that it is difficult to choose a
representative sampling! In fact, CompuServe itself has an interesting
online tour designed especially for new users. Once online, a GO TOUR
will show each of CompuServe's main areas.

CompuServe's main structure is in "pages" of text. GO is used to manuever /-^
from page to page, and on a particular menu one can choose a selection and .'
be moved to its corresponding page. The very "top" menu, known as page
CompuServe -1 or TOP, can be accessed with GO TOP (or even TOP), and looks
like this:

CompuServe TOP

1 Subscriber Assistance

2 Find a Topic
3 Communications/Bulletin Bds.
4 News/Weather/Sports
5 Travel

6 The Electronic MALL/Shopping
7 Money Matters/Markets
8 Entertainment/Games
9 Home/Health/Family

10 Reference/Education
11 Computers/Technology
12 Business/Other Interests

rage 7_2 ^

The exclamation point (!) is used as a prompt. If you see an !, it means
that it's your turn to type something. A prompt in Easyplex, the
electronic mail system (which provides user-to-user "mail" as well as a
link to MCI Mail), the prompt may be "Easyplex!". At first it may seem

|P^ that the system is merely excited about the fact that you are using
' -Easyplex ..and is demonstrating that with the !. It becomes routine soon

enough, though.

FIND is another useful command, and functional almost anywhere. We'll be
using FIND soon as we look at CompuServe's "forums."

For new, let's take a look at a typical group of text pages. The AP
Newswire is a good example:

AP Videotex APV-1

Associated Press News Highlights

1 Latest News- 7 Entertainment

Update Hourly
2 Weather 8 Business News

3 National 9 Wall Street

4 Washington 10 Dow Jones Avg
5 World 11 Feature News

6 Political 12 History

Enter choice or <CR> for Sports !l

AP Videotex AFV-2647

AP 10/25 22:57 EST V0540

Here is the latest news from The Associated Press:

A stunning new book has been released that is rumored to be a boon to TI
lasers across the country. Reporters are scrambling for details on this
conprehensive tone, which is said to succeed Dr. Ron Albright, Jr.'s _The
Orphan Chronicles^.

Stay tuned to this wire for news on this story as it breaks!

<ahem> Well/ that's something like what the AP Newswire would report.
Also available is the National Weather Service's weather reports,
searchable on a given city or state. Aviation reports are surcharged by
very detailed, including high-resolution wsather maps that are in RLE
format (which the TI-99/4A can now support via several third party
programs, one of which is public domain).

As you r^n see, CompuServe is a great way to tap into timely news and
other information. The Washington Post and the St. Louis Post-Dispatch
are also available in online forms.

Page 7-3

Interaction among people from anywhere on Earth is another incredible
benefit that CompuServe can provide. CompuServe was first with a CB
simulator, a program where people can "talk" in real time. Here, for your
viewing pleasure, is a typical slice from a CB.conversation. JZ is yours
truly:

CB II - CB Simulator(sm) vlB(34) Band A
What's your handle! JZ

(channel) users tuned in
(1)23 (2)7 (11)1 (15)1 (17)9
(21)2 (24)2 (26)3 (33)15 (34)2
(35)1 (36)6 (Tlk)32

Select a channel or press
<CR> for more information! 2

filtering open channel...
Key /HELP for assistance

(A2,*Foxy from DC*) hi son
(A2,NIGHTCRAWLER) Hi FOX!!!!!!!
/noecho
(A2,*Foxy from DC*) hi night!
% Echo off

(A2,JZ) Hello there!
(A2,*Foxy from DC*) nice ouv...where are you?
(A2,*Foxy from DC*) hi JZ~ ~
(A2,*WAYWARD SON*) FOXY M OR F?
(A2,*Beach Baby*) hi jz
(A2,Nice Gay) we too, foxy...gaithersburg
(A2,*Foxy from DC*) son....yes indeed
(A2,NIGHTCRAWLER) Sounds interesting and very imoressive,HB
(A2,*WRXWARD SON*) WHERE D FOBST
(A2,JZ) Smile at the camera—
(A2,JZ) this is for a book!
(A2,*3each Baby*) gee thanks, night
(A2,*Foxy from DC*) < smiles
(A2,*Foxy from DC*) son.•.yes I do
(A2,Jc w/H30) Howdies one et al
(A2,Nice Guy) [[smile]
(A2,*Foxy from DC*) hi JC!

AET 2

Job User ID Nod

HVT

Chn

2

Handle

7 7xxxx,xxxx *WKXWARD SON*

20 7xxxx,xxxx LAK 2 190E
33 7xxxx,xxx NYL 2 *LOVERBOY,nyc*
50 7xxxx,xxxx NYY 2 NIGHTCRAWLER

62 7xzxx,xxxx ORL 2 *Beac±i Baby*
88 7xxxx,xxxx BOO 2 Jc w/HBO
94 7xxxx,xxxx DCQ 2 *Fo^ from DC*
96 7xxxx,xxxx DCI 2 Nice Guy

105 76703,3022 PIS 2 JZ

Page 7-4

_ (A2,JZ) I'm "taping" here for the next
f (A2,JZ) ten seconds to show what CB is

(A2,JZ) like to all those uninformed
(A2,JZ) folks still living in the
(A2fJZ) Stone Age!
(A2,*Foxy from DC*) JZ..that should be enough! heheh
(A2,JZ) <grin>
(A2,JZ) Bye!

All CB commands are entered with a slash (/). For example, /EXIT is used
to leave the CB area. There are 36 channels available—I happened to be
on channel 2. /UST stands for "User STatus," and lists the users on a
particular channel. The User IDfs of those involved have been changed to
xfs to protect the innocent! /NOECHO is a nice feature which allows^one's
typing not be "echoed" back—until <enter> is pressed, at which point the
line of text appears as part of the normal CB conversation. As you can
see, that conversation can become fairly tangled!

The multi-player gaming areas of CompuServe take the CB concept one step
further. "MegaWars" is a gams where many users can get together at once,
each user being a starship. Since a demonstration of my lowly scout ship
being decimated by a much larger dreadnaught would be too graphic and
violent for such a G-rated book, I've opted not to include that. The fact
that it would also be rather embarrassing is immaterial, of course! The
TT-99/4A is perfectly capable of of participating in such areas, however,

/^ even when screen protocol is required. Terminal Euulator H is not
V suggested; instead, Paul Charlton's FAST-TERM or C. Richard Bryant's

PTERM99 would be good disk-based terminal emulators to use.

Another more serious application of the multi-user concept is through a
CompuServe forum. A forum is an area based on a particular topic, which
contains a message base, data libraries (where files and programs are
stored for user retrieval) and a conferencing area (a miniature C3
simulator).

Herefs one page of the results of a FIND FORUM ccrarand:

!FIND FORUM

CompuServe

1 ADCIS Fonxn

[ADCIS]
2 AI EXPERT Forum

[AIE-100]
3 AOPA Forum ($)
[AOPA]

4 Amiga Forum
[AMIGAFORUM]

5 Apple User Groups Forum
rl APPUG J

6 Ashton-Tate Forum

[ASHFORUM]
7 Ask Mr. Fed Forum ($)

Page 7-5

[ASKFED]
8 Astronomy Forum

[ASTROPORUM]
9 Atari 16 Bit Forum

[ATARI16]
10 Atari 8 Bit Forum

I ATARI8]

M3RE !

wi'More" is right! There are quite a few forums (fora?) on CompuServe , and
the number increases regularly. Topics range from wine-tasting and health
food to (you guessed it) TI cotputers. In fact, the TI Forum has a very
nice "entrance" in page format that can describe itself very well:

The TI Forum TINEWS

TheTIForum

Find New Friends en1 Introduction

2 Using The TT Fonm
3 Items of Interest: TI-99/4A
4 Items of Interest: TI PRO

5 Enter The TT Forum

6 What's News

7 Index of Topics
8 Feedback/Questions
9 Masthead/Copyright Info

11

The TT Forum TEX-4

Welcome to the TI Forum! The TT

Forum an CompuServe is an area where
diverse people can meet, trade
information and have discussions around

a central topic of Texas Instruments(tra)
brand computers.

As a source for information and

programs for TI computers, the TI Forum
is unmatched! Its data libraries

contain surely the best collection of
quality public domain and F&irware
(we'll talk about "fairware" later!)
programs, and topics range from the most
canplicated and technical data on the
computers to long-winded discussions on
plugging them in and turning them on!
Whether you're a novice or an expert on
losing TI computers, you will find just
the level and amount of information you

M3RE !S

desire.

Page 7-6

TI Forum

.((f^fcSy

r

The TI Forum has two major parts:
The TI Forum itself, and the
accompanying menu pages (recognizable by
.the TEX-xx page number at the header of
each page), which you are reading right
now. In order to get the most out of
the TI Forum, you should first learn how
to use it, and use it efficiently since
time is money while on CompuServe. The
menu area contains both introductory
tutorial-type information on using the
FORUM, and also news and items of
importance for the TT user. Vfe suggest
you first read "Using the TI Forum,"
selection two from the top menu page of
TEX-1. USING TEE TI FORUM explains hew
to become a member (don't panic, it's
free!), how to use the Forum, and how to
use your time online most effectively.
Menu items three and four from the TEX-1

menu ailcw all users zo see the latest

news and information for their

particular model of TT computer
(TI-99/4A and TI Professional,
respectively). Menu choice five lets you
actually enter the TI Forum and see what
it's ail about!

So, if this is your first tire on
or so, check our "Using the TI Forum"
and you can then proceed to the FORUM
itself if you like. Conroents and
questions are always welcome and
appreciated; the TT Forum Coordinators
and members alike are almost always
ready to lend a helping hand!

The TI Forum is not affiliated with

Texas Instruments, Inc., in any way.
If you have any questions or

comments, you can use our
"Feedback/Questions" area, option 8 from
the main TINEWS menu, TEX-I. You will
get a response via Easyplex, usually
within 24 hours.

USING THE TINEWS AREA

The TINEWS area will be updated
constantly to provide the latest news,
help, and information about the TI Forum
and the TI world in general. You can
check the "New in TINEWS" area

occasionally to see information about
the latest features.

Getting tc Seme

Real benefits • •.

Page 7-7

Now is a good time to introduce sane cannands that are very useful in
navigating around the whole Cotpuserve page structure. /^

Keep these on hand, and it's hard to becone lost!

Navigation Command Summary

GO xxx - GO to a certain page number. If you have to break off in the
middle of a section, you can write down the last page number you saw in
the upper right-hand corner and just hit GO xxx, where xxx is that number,
to return. For exanple, GO TEX-200, or just a GO 200 if you are already
in the TEX area will take you to the TI Forum. GO TEX-11 (or GO 11 from
within TEX) will take you to the "Using the TT Forum" section of TTNEWS.

T - Returns you to the TOP page, usually called TOP, but this is a
settable page through OPTIONS. Type^GO OPTIONS for more information.

M - Previous menu. If you are reading an article or buried under a few
menus, this will let you climb out! It takes you to the latest menu you
accessed in TINEWS.

S - This is helpful! It stands for SCROLL and will display a series of
connected pages (like articles) continuously without making you hit
<BtfTER> after each page. Great if you are a fast reader or are trying to
capture a certain section. Just hit S at the prorpt where you are asked
to" hit <ENIER>, or S x, where x is a menu choice you would like to have
scrolled.

N - Proceed to the NEXT menu choice.

P - Proceed to the PREVIOUS menu choice.
E - Go BACK one page. F - Go FORWZiRD one page. SET WID xx - Set your
screen width

to xx. Set to 80 for buffer capture; 40 for regular /4A screen.

The Tour Finale: The Forum Itself

Now, a quick gliirpse inside the TT Forum! Signing up for the TI Forum, as
with most public forums, means only supplying your name. Some forums
accept handles, such as the CB Forum, but the TT Forum prefers full name,
fere's the TT Forum main menu:

The TT Forum (sm)

FUNCTIONS

1 (L) Leave a Message
2 (R) Read Messages
3 (CO) Conference Mode
4 (DL) Data Libraries

5 (B) Bulletins

6 (MD) Member Directory <*"%
7 (OP) User Options
8 (IN) Instructions

Enter choice !

Page 7-8

r

The conference mode, as mentioned before, is really just a miniature CB
for TI users. There is a weekly conference scheduled where the regulars
can get together, as well as special events. Craig Miller, Laura Burns &
John Koloen (of MICROpendium), and Scott Adams are a few of the people
that the forum has been lucky enough to have for an evening in CO.
Transcripts of many CO's have been permanently archived in the TINBtiS
area.

The Member Directory is an area where users can list their own interests
and find other users with similar interests based on a keyword search.

Let's go through the process of leaving a particular message. Many
messages are left to "ALL", which is the public at large, and replies are
then added to create a message "thread." Once the commands are known, it's
very easy and convenient to navigate through the message base, reading
messages and their replies. A CompuServe forum has, in ny opinion, by
far the best message base structure of any network or BBS.

We type "L" to leave a message:

Enter choice !L

To: John Doe 76543,210
Subject: Charges

Biter /EX to exit EDIT

[New message ready]
John -

You must have misread your
booklet! CompuServe standard
charges are S6/nour, not S0.06/hour!
Sorry for the two hundred dollar
bill you ran up before you realized
that/

If there's anything else I can
do to be of assistance, pleez let
me xnow!

... «JZ

/t
A/pleez/S
do to be of assistance, pleez let
/c/pleez/please/$
do to be of assistance, please let
/ex

Page 7.9

LEAVE ACTIONS

1 (S) Store the Message
2 (SU) Store Unformatted
3 (C) Continue Entering Text
4- (A) Abort the Leave Function

Enter choice !SP

SUBTOPIC # REQUIRED

0 General/Haalp!
1 TI News & Views

2 Hardware/Repair
3 Programming
4 BBS Help/Views
5 Tips & Tricks
6 The TT Trader

7 The TT Writer (WP)

8 TT Professional

Enter choice : 0

Message # 94672 Stored

When prorpted for "To:", if the recipient's User ID is known, it should be
appended to xhe name. This will flag the message for that user when the
user next enters the forum with a warning of "You have a message
waiting:". Messages last a few days, then "scroll off" as new messages
are left. The size of forum message bases vary, from 500 to over 2000
message capacities.

The "/t" moved the pointer in the file to the top, the "/1/pleeze/"
located the word "pleeze," and n/c/pleeze/please/" fixed the spelling.
EDIT is not difficult to use, although it's not TT-Writer.

Messages can be stored publicly, or with the "?" appended to the <S>tore
command, privately. <MA>il is also available as a storing option, moving
the message into the Easyplex mail sysrem where it will be more permanent
(avoiding the few-day scroll-off), although only the recipient can then
see the message.

No; let's read the message by scanning for messages addressed to John
Doe. Again we are at the main forum menu:

Biter choice !R

read messages Where Flecks of 99*ers Abound
1 (RF) Forward
2 (RR) Reverse
3 (RT) Threads
4 (RS) Search
5 (RM) Marked
6 (RI) Individual

7 (QS) Quick Scan
Enter choice IRS

Page 7-io

Search Field Menu

(F) From

(S) Subject
(T) To

Search field: T

Search string: Doe
Foran messages: 93952 to 94672
Start at what message number
(N for new to you): 0

#: 94672 (P) SO/General/Haalp!
28-Oct-86 22:23:18

Sb: Charges
Rn: Jonathan Zittrain 76703,3022
To: John Doe 76543,210

John -

You must have misread your booklet!
CompuServe standard charges are
$6/nour, not $0.06/hour! Sorry for the
two hundred dollar bill you ran up
before you realized that.

If there's anything else I can do
to be of assistance, please let me
know!

And there it is! When Mr. Doe retrieves his message, "(X)" will appear
after his name in the "To:" field to show that he has indeed received it.

Ihat applies to all messages with a specific recipient. Remember to enter
the ID correctly, as well, since the system will not correct, for ryoc's

Archived messages of special note are also stored in the TINEWS area in
page format. The Great Track Copier Debate, Which Disk Drive is 3est?,
and Tl-Writer Tips & Tricks are just a few titles of messages and message
threads that have been saved for posterity.

The Data Libraries contain file after file (all submitted by users; the
time it takes to transfer a file to CompuServe is new free of charge—you
don't have to pay to give!) of programs, tutorials, and other gens in a
multitude of TT-99/4A languages. Companies often store press releases in
the DL's as well. TTNEWS has plenty of help with file transfer (this is
probably the most difficult process for the novice telecommunicator to
learn), and a simple ERCtose command usually serves to get one started
looking through the list of available files.

Page 7-11

Conclusions

So, in a nutshell, that's a bird's eye view of CompuServe. I am convinced
that it is the finest, most economical service available. For the TI
orphan, the TI Forum/TINEWS area is an incredible resource. CompuServe
starter kits are available at most computer stores for around $20,
including several free hours of online time to get acquainted. A free
FEEDBACK area is also available for questions once online.

See you on the network!

7-1 2

/B^N

/iKH#<w\

p

A SPECIAL OFFER FROM THE SOURCE*

NO* THAT YOUR PERSONAL COMPUTER CAN TALK TO OTHER COMPUTERS . . .

Talk to The Source!

Now you can join The Source Information Network - A powerful tool to meet both
your personal and business needs. The Source offers a broad array of top '
quality communications, business, personal, and investment services in a network
designed to save you time and money online.

And The Source is the only major online information service that gives you a
step-by-step auided tour (TUTORIAL) of our most popular services - FREE OF
ONLINE CHARGES!

3oin The Source today and we'll waive our standard $49.95 registration fee.
Your membership can be activated by mailing the attached coupon to:

The Source

P.O. Box 1305

McLean, VA 22102

Sign on TODAY by calling 1-800-336-3366 Toll Free. Oust tell tfre Operator . . .

"I'm taking advantage of your Special $49.95 Fee Waived membership offer, my
claim number is 6450307

LJ Yes! Sign me up as a member of The Source today with the
$49.95 registration fee fully waived.

LJ Please send me the SourcePak and Manual at the special
reduced price of $12.95 (plus $3.00 postage and handling)
Regularly $19.95!

Claim Number 6450307

Bill my registration fee and usage to:

Visa [J

MasterCard [] Card number

American Express [J Exp. Date
(must be provided)

Name

Address City State Zip

Telephone(Day) (Evening)

7-13

Mothers maiden name (in case ID or password is lost) "

I authorize STC to charge all costs incurred on my account as ^^
a member x>f The Source (including usage and monthly membership
fee) to the billing service indicated.

Signature Date / /

The Source is a registered servicemark of Source Telecomputing Corporation, a
subsidiary of The Reader's Digest Association, Inc. °1986 Source Telecomputing
Corp.

Online rates as low as 10<f/minute. $10.00 monthly minimum applies towards
usage.

This offer expires 12/31/87.

7-14

yjfiSlfc\

The GEnie System and TI Roundtable
by Scott Darlingf Head Sysop

CSnie ID TIKSOFT

GEnie(tm) (Hie General Electric Network for Information Exchange) is
the newest kid on the block in regards to online information services. In
addition to a Texas Instruments RoundTable(tm), there are several other
manufacturer specific RoundTables available. GEnie also provides
multiplayer game playing scenarios, Computing Today magazine, EAASY Sabre,
the American Airlines reservation system, and more....all at the same lew
base nonprime rate of $5 per hour for 300 or 1200 baud access.

New products soon to appear include more Travel, Shopping, and new
Financial related products. There are many more products planned for the
future.

New, why should YOU JOIN GEnie? I mean, isn't it the same as all the
others? If this were true, this would be the last line I could write!

Far from itI .GEnie is VERY different. The entire structure is

unlike any around. Everything in GEnie can be done from Menus or Pages.
Each page is numbered and you can navigate easily and fairly fast. GEnie
also allows you to go to a specific page and submenu directly from Logon.

YOGR Texas Instruments RoundTable includes a Bulletin Board, Real
Time Conference rooms, as well as a Software/Textfile library.

The Bulletin Board function is rather unique. It is based on Topics
rather than direct messages to a specific individual. This allcws you to
follow a specific item or idea along its way.

Structurally, there are specific sections called Categories set up
for Roundlable Business, Telecommunicating, Software, Hardware, Basic,
Forth, Assembly, F&irware, Gaming, Gram Kracker, TI-FRO, as well as a
Newsletter category. These pretty much cover the gamut of things in the
TI world. Under each of these categories is where each of the Topics are
entered and responded to. Anyone can start a topic, ask questions, and
provide answers.

Most of you are used to your local Bulletin Board systems in terms of
what to expect and how to react to a message base. GEnie's BBS format
differs from your local BBS in certain ways, but as I have done, you too
will understand and really appreciate the format.

The RouncJTable RealTime Conference is available every Sunday evening
for the 4A and the FRO. These are general sessions and are always "free
for alls". Whatever questions you may bring with you will most likely be
answered during the conferences. This is a Great opportunity to meet and
talk with your fellow TI enthusiasts.

Page 7-15

The Software Libraries are growing daily. At the time of this
writing, they have grown to over 500 files. A lot of the software is
Public Domain; the biggest selections are include Fairware and Krackerbox
programs. Just about every Fairware program can be found in the TI
RoundT&ble library, including the latest versions. We also have virtually
every Gram Kracker program that has been written. I don't have the spkoe
to list every program in every library. Suffice to say that there are
quite a few and the list is growing. Also, please note that on GEnie, the
UPLOADS are FREE! Free uploading is available during Non Prime
time(Weekdays between 6 pm and 8 am., all days on Weekends and Holidays).

The file transfer process is also noticeably faster than most other
systems. GEnie utilizes their local network nodes for file transfer which
results in faster operation than that from the mainframe. Consequently,
the numbers just seem to fly by. Nice, especially when you are charged
for connect time.

New the best part about GEnie.. .the'PRICE! There is a one time start
up fee of ?18.00 to join GEnie, which includes a hardcopy user manual as
well as the monthly LiveWire(tm) newsletter. Connect charges are $5.00
per hour for both 300 and 1200 baud during the non prime time hours
specified earlier. 2400 baud is also available in over 65 cities
throughout the U.S. at an hourly surcharge of $10.00. GEnie is also
available during the daytime at a cost of $35.00 per hour for 300 and 1200
baud. The same 2400 baud surcharge also applies during prime time.

Sign up for GEnie is simple and fast. You do not have to order a
starter kit. You sinply sign up online. Just set up your terminal
program for 7 bit, even parity, one stop bit, or 8 bit, one stop bit, no
parity; and either 300 or 1200 baud. Also set your terminal to local
echo(half duplex). To connect, have your modem dial 1-800-638-8369.
After CONNECT, type nHHH" and CARRIAGE RETORN. At the "U#=" prompt, enter
"X3M11999,GENIE", followed by a CARRIAGE RETORN. After you are logged on,
GSiie will ask you several questions pertaining to your particular system.
If you decide to sign up, GSiie will lead you through the electronic
signup process, and will ask you for pertinent information. GEnie accepts
Visa, MasterCard, and CheckFree. Within twD business days following the
succesful completion of the Sign up process, a GEnie representative will
will call you with your new GEnie User ID#. In a few days follcwing this
you will receive your GEnie manual. One last bit of important
information. There is NO monthly TTrirnmnm billing. You only pay for what
you use.

Page 7-16

/^SS^v

f^ The Delphi Network
by Jeff Guide

Delphi Name "TELEDATA"

General Videotex Corporation
3 Blackstone Street

Cambridge, MA 02139

Rates: $7.20/hour, 6:00 PM-7:00 AM, Monday - Friday & all day
Saturday and Sunday. $17.40/hour all other times.

Network: Tymnet and Telenet

Start-up costs: Lifetime membership, $49.95 includes DELPHI
handbook two hours of free non-prime time useage. DELPHI Starter
Kit, S29.95 includes lifetime membership, conmand card and one
hour free non-prime time useage.

DELPHI is a full-service information utility designed for use
by the whole family. DELPHI offers electronic mail,
teleconferencing and bulletin boards in addition to information
services such as weather reports from Accu-weather, news and
sports from the Associated Press, business and financial
information, trivia tests and movie reviews. It also offers
interactive shopping, travel and brokerage services, games and
others entertainment features.

Of special interest to Texas Instruments computer users,
DELPHI offers the Texas Instruments Information Network (TUN).
The TUN offers the latest in happenings in the TI world. We
offer weekly conferences for the TI 99/4A and the TI Professional
computers. Exclusive to the TUN is a member polling area where
you can express your views or start your own poll. The TUN
Shopping Area have the latest products offered in the TI
community. Vendors such as Disk Only Software and ASGARD Software
offer the latest in hardware and Software for the TI 99/4A
computer. Interested in the latest information or public domain
material? We have database libraries to supply your needs.
Interested in communicating with other users? Have questions on
your equipment or know a new technique? Visit our Forum message
area and the world is at your keyboard.

As a special offer to those purchasing this book, you can use
the TIN on DELPHI tonight! Just follow this procedure: Dial your
local Tymnet or Telenet number. When "Please Log In" appears,
enter DELPHI. At "Username" enter J0INTI99. At "Password" enter

TELEDATA. During this special offer, for $10.00 you will receive

Page 7-17

a membership account and one hour of non-prime time useage. For
$29.95 you will receive a Users Manual, Command Card, membership
account and three hours of non-prime time useage.

Join the TUN and experience a new world of telecommunication.

Editor's
deserves
just the
and Dick

facility
also has
but have

Note: I like Delphi; a lot. I think it is a system that
better publicity than General Vidtex has given it. Not
T.I. Information Network (T.I.I.N.) run by Jeff Guide
Ellison (supporting the TI Pro users), but the whole

is a nice place. Mery friendly and easy to navigate. It
a FREE online encyclopedia (the other systems have one,
a surcharge for it), and has the only "gateway" service

to_ the massive and complex DIALOG information service. Those two
things, alone, are worth the price of admission.. But the owners
of Delphi appear to be slowly waking up to reality - the reality
that the commercial telecommunication business is a competitive
one and you have spend some money to compete. The General
Videotex people are starting to do just that. If they do, and the
word gets out to the world that this is a useful network, Delphi
will achieve its rightful choice among the "Big 3" (CompuServe,
Source, GEnie). I recommend this network and you can reach me
there ^for mail or on T.I.I.N. with a messace. Take advantage now
of T.I.I.N.'s generous signup offer - its not offered on any
other area of Delphi. Thanks to Jeff Guide for aetting us this
deal and for pushing General Videotex to cet" Delphi in the
lights.

Find new friends en Delphi
7-18

r

WORE) PROCESSING

>!?PPftS>y

INSTRUCTIONS AND HINTS

FOR TI-WRITER WORD PROCESSOR

by Dick Altaian

H Q60I MASTERED! It just takes perseverance and deteraination and a desire. I have been using it since January 1985
and I don't have it all yet, but I can use it to ay iaaense satisfaction. This caae froa aonths of sitting with the large
aanual in ay lap flipping pages back and forth until I had practically aeagrized the t$Z thing! I was at the point where when
I had a profalea I could say "Oh that is on page 146" or whatever. For instance: this article was done on the TI-WRITER and I
now do ALL of ay correspondence with it also. .

If you received the disk with this article, load it up in TI-WRITER and call it up on the screen so that you can see
which coaaands-and where they were used-to cause the different effects shown in this article. If you received the disk only,
then you aren't reading this unless you have already booted it up. It is suggested that you run off a printed copy then
reboot this back up so that you can see the coaaands in use as you read the article. There are coaaents in the prograe just
below or above the coaaands that don^t show in the printout! This is another 'FREEWARE' itea. There is no price set for it.
Feel free to pass a copy on to whoaever wants it. If it will help only one or two people that are struggling to learn
TI-WRITER Iwill be pleased. If you learn anything froa it, and are inclined to fairness, send a few bucks when you can
afford it to Dick Altaan, 1053 Shrader St., San Francisco, CA 94117. There's no big deal if you don't-only your conscience
will know. At least drop ae a note and let ae know it helped soaeone.

This is gonna be loo:q-ng, but still auch shorter than the 175 page instruction aanual!

FIRST RULE: Read the TI-WRITER Quick Reference card and reread it. Of course this aeans after you read this article. Do
all of the operations shown on the card-at least once-even though you aight think you will never need that particular one.
You will find you have to open up the big aanual probably, to accoaplish soae of the operations. After you have alaost ,_
'aeaorized' the card (literally!) then you will find yourself using it alaost exclusively and very seidoa having to refer to)
the cuabersoae aanual. Personally I think the aanual is poorly written.

You will find 3 'windows'-fros left to right-to obtain the 80 coluans (80 noraal characters) width. Each window is 40
coluans wide. The first one is froa 0 to 40, second one is froa 20 to 60, and the third is froa 40 to 80. The first thing I
do upon booting up TI-WRITER is to set ay liaits to 37 characters wide. If Itake awhole window of 40 characters, it seeas
to crowd ay screen, and Idon't like to window back and forth to read ay work. Ido this by pressing DT" (for TABS), then
press ENTER, then placing an BL" on the second dot, and an BR8 on the 39th dot, then pressing ENTER again. Now I find ay
cursor blinking at ae froa line SOOOl. Here is where Itell the printer what aargins Iwant it to print ay work within. It's
also at this point that 1select condensed type because Ilike it better than the noraal size type, and I can get 132
characters per line if Iwish. It just looks better in ay opinion. Inoraally do this on line 0002 because Iused 0001 to
set up the foraatting (aargins, etc.) coaaands to the printer.

So,on line 0001 Iput in the following 'dot' coaaand* (a dot coaaand is aerely
starting with a period): .LH 20;RH 120;FI;AD (AND END ALL DOT C0MANDS WITH A
'carriage return'). The seaicolons are necessary, and the spaces, just as I
listed it here. I'll do it again: .LM 20;R« 120;FI;AD(c/r). You of course don't
put in the line nuaber 0001. That is already there.

That tells the printer to set the Left Margin at 20, the Right Margin at 120,
then Fill each line, and Adust (justify) the right aargin. The TILL' coaaand
tells the prograa to put in as aany whole words on a line, within your
predeterained aargins, as possible. The 'ADJUST' tells it to add extra blanks
between words to cause the even right aargin as this article has.

Ichanged the aargin settings on the last two paragraphs just to show you that you can enter your 'coaaands' just about
anywhere within your work!

Page 8-2

Just pressing ENTER will noraally autoaatically put in the 'carriage return' syabol, but soaetiaes it doesn't. It depends on
what you were doing last. In that case, use Control and 8 to put in a carriage return.

On line 0002 I put in a 'Control' coaaand thuslv: Control U Shift 0 Control U. Neither a 'dot' at the beginning, nor a
'carriage return' at the end is necessary. This coaaand throws the printer into 'condensed' type. Neither of these two line
nuabers will be printed on paper. They are aerely foraatUng coaaands. Host of the 'Control' coaaands are listed at the
bottoa of this article.

Then if I want to center a title (or date) or soae other heading at the top of ay article, on line 0003 I put in another dot
coaaand like this: .CE (reaeaber a carriage return is required at the end of all dot coaaands). If ay title is say three
lines of type, then Bake that dot coaaand thusly: .CE3(c/r) otherwise it will 'center' only one line. The centering coaaand
at the top of this article was '.CE5' because of the blank line in it. The lines you wish centered have to iaaediately follow
the centering coaaand.

The autoaatic page length is 66 lines. This gives you about six blank lines at the top and bottoa of your page, and only
fifty soae actual lines of type. You can, with a dot coaaand change your page length with this: '.PL ##' as I did in line
0002 of this article. (Not enough rooa in 0001)

Then you start typing your article, letter, whatever. If you wish each paragraph to be indented, it takes another dot coaaand
of: .IN(nuaber). If, as in ay suggested aargin settings of .LH 20;RH 120, you wished to indent each paragraph five spaces,
the coaaand would be: .IN 25 because the counting starts at zero or left edge of the paper. If you include the indent coaaand
with others in line 0001, the seaicolon replaces all but the first dot, thus .LH 20;RH 120;IN_25. You aay put aore than one
dot coaaand on one line, or the Control coaaands, but never both of thea on the saae line.

The fun part of a word processor is the capability of inserting or deleting a word or an entire phrase without having to
retype the entire page or article. Another fun thing is the ability to aove a sentence or an entire paragraph to another
place in your work. This is all done very siaply. Just place your cursor in the last space before where you wish to insert
another word and press the FCTN key and the nuaber 2. This causes everything beyond your cursor to aove down one line, then
type in your new word or sentence and after the space at the end of it press the Control and the 2 (just once) and everything
will juap back up to your cursor' If you are near the beginning of a long paragraph it takes a little longer (a couple or
three seconds) to reforaat the paragraph, than it does if you are near the bottoa of that saae paragraph-DQN'T 6ET INPATIENT
AND HIT THE KEYS A6AIN, JUST WAIT A COUPLE OF SECONDS!

To aove let's say paragraph #10 into the 13 spot is just as easy. First look at paragraph 110 and aake a note (aental??) of
the line nuabers on the first and last line. Function and zero shows the line nuabers or aoves thea off the screen. Suppose

they were 0076 and 0093. Then deteraine what line nuaber you wish it to be after. Let's suppose it was 0023. Then with FCTN
9 go to the 'coaaand' line, type H (for Hove) and hit ENTER. Then type in 0076 0093 0023 and hit ENTER again. Look at those
nuabers and read the instructions on the Quick Reference Card for HOVE.

On aost dot aatrix printers, there are two different coaaands to aake neat printing. They are called 'eaphasized' and
'double strike'. You can't use (on ay printer at least) the emphasized aethod while in condensed size of type. But Ican use
double strike. The difference is basically this. Both coaaands print each letter twice, but in two different ways. One of
thea (eaphasized) aoves the head slightly to the right so that each letter is a little thicker. Double strike just prints the
line twice. I think eaphasized is slightly faster than double strike, but I've never tiaed either of thea. Since I use
condensed printing alaost exclusively, and can't use eaphasized, I don't worry about it. Incidentally, you aay enter these
coaaands throughout your article. You just have to have thea begin at the left aargin of your work. As long as you begin dot
coaaands with a period, and the control coaaands with Control U (and end dot coaaands with a carriage return, and control
coaaands with Control U and/or a capital letter) you'll be O.K. Only this paragraph was using 'double strike', look at the
difference.

An interesting fact about aost printers is that it not only inserts unobtrusive spaces here and there to ADJUST each lire to
the predeterained right aargin, IT PRINTS EVERY OTHER LINE FR0H THE RI6HT TO THE LEFT while doing all "that" FILLING and
ADJUSTIN6. It will also correctly nuaber your pages if you give it the F0 coaaand, which is another dot coaaand.

Page 8-3

I find once in awhile, soae one coaaand (never the saae one twice) seeas to falter. Just redo it. soaetiaes Ithink soae ^^^
coaaand aust be there that is invisible (this is possible!) so when you run into an unexplainable problea, go back to your ^^
foraatting coaaand line(s)-which are usually lines 0001 and. 0002-put the cursor at the end of each of your coaaands then press
FCTN and 1and hold thea for acouple of seconds to delete any possible typing errors that placed soae sort of 'hidden'
coaaand in that line.

Another good coaaand to learn is the '000PS' coaaand. Herely Control and the figure one. This eliainates only your last
change just now typed in, and returns your work to its foraer self (hopefully!).

Another good habit to get yourself into, is 'SAVIN6' your work every few ainutes (or every few pages). Power glitches do
occur froa any power coapany. Either surges, or stuables. Soaetiaes just an electric aotor in your hoae (refrigerator, etc.)
kicking in will cause aaoaentary change in the power supplied to your coaputer (you've seen your lights flicker). If you
save your work every once in awhile, you soaeday will be glad you were in the habit. Especially if you have just put in to
the word processor a20,000 word story. The power glitch could cause you to lose it all! If you have been saving it on a
disk, when that glitch occurs you will have all but asaall part of it saved, When you save soaething to adisk, then coae
back to that saae disk and save soaething else with the saae naae, it replaces the first itea with the second. It does not
becoae two seperate iteas on the disk. Of course, if you are really aworry-wart, you will do the saving on two disks,
alternating back and forth, just in case that glitch coaes while you are in the act of saving your work.

When you wish to reload a file froa a disk back into the word processor, it's EASY] When you first bring up the word processor
in the Editor aode, you are autoaatically in the coaaand line. Just type LF (for Load File) and hit ENTER, then type in
DSKl.Und the naae you gave it) then hit ENTER again and wait a few seconds for the work to be loaded into your coaputer froa
the disk.

If you want a rough draft of your work on paper (I find it easier to proof than on the screen) just reaove your coaaands for
double strike or eaphasizing to conserve your printer ribbon. It will not be so easy to read, unless your ribbon is new, but
it will be done faster, as well as not using up ribbon ink unnecessarily. /***

In the book vou will find two aethods of going to the disk, then to your printer. Printing should be done froa the disk, not
troa the coaputer. Vou will find a coaaand of 'Print File'. That's not the one Iuse! The one 1have becoae accustoaed to
using aay take a few seconds longer, but it is the one I learned first, and I have just stuck with it. It is as follows.
After I have finished typing ay letter or whatever, return to the coaaand line with FCTN 9, there type a Q (for Quit) hit
ENTER, then S(for Save) and ENTER, then DSK1.TERRY or whatever naaeTwant to give the file instead of TERRY, then ENTER, I
usually use a short two or three character naae. I have even been known to use II, or #2, or soaething like that (the file
naae cannot be aore than 10 characters long, and you can't have any spaces in a file naae). Then, after the work goes froa
the coaputer to the disk, you can either print it now or soaetiae next week. The coaaand to go to the printer at this point
is like this: Q (for Quit) ENTER, then E (for Exit) and ENTER again. This takes you back to the aaster aenu. This tiae, you
select 12, or THE FORHATTER. After it coaes up, you have to type in DSK1.(filenaae) and hit ENTER. Then you have to type in
the coaaand telling it to go froa the disk to the printer, instead of to the screen. (With the use of DISK0 or soae such
asseably language repair prograa, you can insert the coaaand to your printer so that it is a default just like all the other
selections on the screen. It is in 'EDITA1' of your TI-WRITER disk.) Without knowing what kind of printer you have, Ican't
give exactly the correct coaaand here, but it will be soaething like this: PI0 or RS232.BAM800.LF, then you will have five
aore choices, aostly for which you will just press ENTER for each of thea. Perhaps you eight wish aore than one copy, so on
the correct one«you would punch in that nuaber. Be sure your printer is turned 'on' before hitting the last ENTER,(the one
that says "PAUSE AT END OF THE PA6E?) because you will be printing iaaediately.

For io\ir purposes (aanuscript writing) you will want it double spaced. That is siaply a dot coaaand of '.LS 2' (LS for Line

Spacing of course!) and if you want it triple spaced, just change the 2 to a 3. Or of course use it for a rough draft or soae

such. I'a aostly just raabling here, to give this particular paragraph soae length, so that you can see double spacing at

work. Ican't seea to think of anything else to say, so Iwill just end it here. /^*^

Page 8-4

/*^!^\

There are aany, aany aore coaaands available, such as aerging either parts of two different files, or aerging a whole file
into the aiddle of another, or putting in headers at the tops of every page, and footers at the bottoa, all autoaatically.
Such things as page nuabers, or requireeents for aanuscripts, etc., but those can be found as you need ea.

The word processor does have a capacity beyond which you have to save your work.to disk, and start with a clean slate. It is
approxiaately 20,000 characters including blanks. I have only run into it when transferring a long story to disk. I was
entering a 10,000 word story, and I got 'HEHORY FULL-SAVE OR PUR6E' flashing at ae at the top or coaaand line after about
4,000 words (I wish it would ring a bell or soaething). At that point 'save' your work and retire that file naae. Perhaps in
this article I aa writing for you I will reach that point again. Right now I aa typing on line nuaber 466. I think it was at
about line 400 plus (but I was using 80 coluan width that tiae for a special project, I think) that the HEHORY FULL thing
happened to ae. You will just have to triaLand^error it for your job! Of course, the length canNQT be judged just by the
line nuabers on the left side of your screen. Think about whether you are using only one window, or two, or the aaxiaua of
three. I aa using just one window while I do this work, as I explained earlier, so that will aake ay capacity coae auch
farther down the line nuabers than if I were using all three windows! 80 characters (or coluans) wide, instead of the 37 I aa
using. If and when the HEHORY FULL bit happens to you, reaeaber that when you save it this tiae to a disk, then for pete's
sake don't save the next tiae to the saae file naae! In other words, ay naae for this file at the aoaent is TI-WRITER. If I
need to aake a new file, it will becoae TI-WRITER2.

The little 25 page booklet froa Dr. Bill Browning is very good, don't ignore it when you are trying to learn the TI-WRITER
word processor. 7541 Jersey Avenue North, Brooklyn Park, HN 55428. Price just $6.50 and worth every penny.

There is also available in 'FREEWARE' circles an excellent disk called flTK-WRITERB which was done by T0H KNIBHT, thus the
'TK\ It replaces the need for a cartridge to have TI-WRITER word processing capabilities. As far as I can tell, it does
exactly the saae things the cartridge does, except for Show Directory-which is inconsequential, and won't go direct froa the
Editor stage to the Foraatting stage. You can probably find it in the saae library you obtained this disk froa.

The coaaand for the underscore is aerely the aapersand (Shift 7) and it can be used anywhere. Note even in the aiddle of the
word 'cannot'. If you want to underline aorejhan_one_word you have to connect thea with what is called a caret. It is above
the 6, or ShiU 6. If you wish, the AHPERSAND can be printed in your work, but not the caret. Herely type in two aapersands
and only one of thea will be printed! & & &

Believe ae, all of this wi.ll becoae easy and second nature to a good typist in a very short tiae! But if you don't use it for
a aonth cr two, you will find yourself going back and back and back to the big book!

Thanks so auch to Dr. Suy Romano for his assistance in writing this article. Plus his enoraous patience with ay duab
questions over the past few aonths while I was learning the TI-WRITER. Also to Hal White and to Larry Rosenberg for their
invaluable assistance. And to Terry & Paul Anderaan for their desire to have word processing capabilities, which forced ae to
finally write this that had been nagging at ae so long.

immm

CONTROL C0HHANDS

^u ^ ^m yU ^ ^. ^r ^ \Jj \L- %lr tb U/ «i/ tb tb yl* ^ \1/ %lr ^ <L< \lr vl/ U/ U/ ^ vL- vL* ^- Oj vly vl/ ^ Uf U/ \L* Us & \L' U/ \L' U>* U/ ^ Us U/ Us U/ U/ Us U>* Us Us Us Us Us Us Us Us Us U/ Ur Us Uf Us Us & ^l' >L" U/ Us ^' 4

ASCII

CODES FUNCTION FORMAT,
O Terminate Tabulation " " CTRlTu, "SHIFT 2," CTRL LJ
7 Sound the buzzer CTRL U, SHIFT S, CTRL U

8 Backspace CTRL U, SHIFT H, CTRL U
9 Horizontal tabulation CTRL U, SHIFT I, CTRL LI

10 Line feed CTRL U, SHIFT J. CTRL U
11 Vertical tabulation CTRL (J, SHIFT K, CTRL LI

Page 8-5

12 Form -feed CTRL U„ SHIFT L, CTRL U

13 Carri age return CTRL U, SHIFT M, CTRL U

====================================:============================:==========

14 Print enlarged characters CTRL U, SHIFT N, CTRL U

15 Pr i n t c ondensed c h ar at:t er s CTRL U, SHIFT 0, CTRL U

17 Select printer- CTRL U, SHIFT Q, CTRL U

18 Turn off condensed printing CTRL U, SHIFT R, CTRL U

======= = ss===== ======================:============================.==========

19 Disable printer CTRL U, SHIFT S, CTRL U

20 Turn off enlarged printing CTRL U, SHIFT T, CTRL LI

27 Escape

27;48 Set line spacing 8 per inch
27;50 Set line spacing 6 per inch

27; 51
97 • =19

Set line spacing n/216 per inch
Turn Italic Character set on

27; 53 Turn Italic Character set. off
27;56 Disable paper-end detector

Select paper-end detector-
Set line spacing(1/72 to 85/72 inch)

Set up 8 vertical tab pos.
Set -form length up to 127 lines

Set. up to 12 horizontal ta\b position!
Turn on emphasi2 ed pr inti ng

Turn off emphasised printing
Turn an double printing

CTRL U, FCTN R, CTRL U

CTRL U, FCTN R, CTRL U, 0
CTRL U, FCTN R, CTRL U, 2

CTRL U, FCTN R, CTRL U, 3,r

CTRL U, FCTN R, CTRL U, 4

CTRL U, FCTN R, CTRL U, 5
CTRL U, FCTN R, CTRL U, 8

CTRL U, FCTN R, CTRL U, 9
CTRL U, FCTN R, CTRL U, A,r

CTRL U, FCTN R, CTRL U, B
CTRL U, FCTN R, CTRL U, C,r

CTRL U, FCTN R, CTRL U, D

CTRL. U, FCTN R, CTRL U, E

CTRL U, FCTN R, CTRL U, F

CTRL U, FCTN R, CTRL U, G

27; 57

27; 65

27; 66
27; 67

27:: 69

27; 69

27; 70

27; 71

97» 79

97. ye-
Turn off double printing CTRL U, FCTN R, CTRL U, H
Turn on normal density graphic printing CTRL U, FCTN R, CTRL U, K

27; 76

27; 77

27; 78
27; 79

27; 80

27;81

Turn on dual density graphic printing CTRL U, FCTN R, CTRL U, L
Turn Elite mode ON CTRL U, FCTN R, CTRL U, M

Set skip-over perforation
Release skip-over perforations

Turn Elite mode OFF

Set a column width

27;82 Select 1 of 8 int'l char.sets

CTRL U, FCTN R, CTRL U, N

CTRL U, FCTN R, CTRL U, 0

CTRL U, FCTN R, CTRL U, P
CTRL U, FCTN R, CTRL U, Q

CTRL U, FCTN R, CTRL U, R

Page 8-6

/s*3lB\

^

^

IIzWBII§B_yNPERLINING

Those of you who use TI-Writer and the ampersand for underlining,
may find even if your printer has full underlining, you still get
"dashed" underlining. I first realized this when I switched from the
TI Impact to the Star Micronies Delta 10.

When I first got the new printer, I messed around with the control
codes and found the printer had full underlining capabilities. I later
used the ampersand in Tl-Writer to do some underlining and got the
dashed underlining. I then realized the underlining characters used by
Tl-Writer's ampersand were defined by Tl-Writer.

The codes used on the Delta 10 (the Bernini uses the same underline
codes) are CHR*(27);CHR*(45);CHR*(1) to turn the underlining feature on
and CHR*(27);CHR*(45);CHRS(0) to turn the underlining feature off. The
command used in Tl-Writer was M.TL 91:27,45,1". This command assigned
the left square bracket,function R (or ASCII 91) the values needed to
turn on true underlining. Another command, ".TL 93:27,45,0", the right
square bracket, function T (or ASCII 93) was assigned those values
needed to turn off underlining.

Of course, these commands must be used in conjunction with TI
Writer's formatter. If your printer has true underlining capabilities
and you have been using TI Writers ampersand command, -vou may wish to
start using the transliterate command to do vour underlining.

The TI Writer

The Easy Way to Communicate

MAYBE YOU DIDN'T THINK OF DOING THIS WITH YOUR TI-WRITER

By Bruce Larson

ONE DISK DRIVE - If you only own one drive, here's a trick to save
wear and tear on you and your equipment. Make a working copy of your
Tl-Writer disk, with only the EDITA1, EDITA2, F0RMA1, and F0RMA2 files.
This will leave you 271 free sectors to temporarily save material
you're working on until you have everything perfected. No more pushing
and pulling disks while you go from editor to formatter, back to
editor, back to formatter...ad infinitum! By the way this article
occupies 14 sectors.

REM STATEMENTS - Want to document a program without adding REM
statements? List your program to -DSK1.NAME" instead of "PIQ" or
"RS232". This creates a Display/Variable 80 file of your program
listing which can be read by Tl/Writer. Now you can add comments,
instructions, etc., that will appear on a printout of this file. A
word of caution! Make sure the Display/Variable 80 file name is
different than your program name or you might find yourself with a
beautifully documented program that won't load!

Page 8-7

EXTEND THE USE Of TI-WRITER

By Allen Burt - England
Froi northwest Ohio 99'er News, Hay, 86

TI-WRITER can be used for auch aore than just producing
letters—a substitute for a typewriter. In the last article
I described how to take use of the CONTROL "II' function in

the Text Editor lode. This function can be used to ertend

the application of the systea and to produce integrated
documents of words and diagrams, for exaaple, it is easy to
show a Histograa (Bar Chart) like Figure 1. This uses the
CHRU24) obtained .by using 'FUNCTION" F AND KEY "A* for the
vertides and the underline character CHR(95),FUNCTION '-"
and KEY "U\

A useful tip when doing this type of exercise is that
if you place the CHR(l24)'s in the appropriate locations and
wish to continue thea downwards froa the point indicated by
the asterisk - just aove the cursor down to the next line

and press CONTROL "C" and key aS - this copies the line
above onto that line. Nhen you draw diagraas like this, it
is better to insert a nuaber of lines in order to have root

to aove around.

If you want to include a siaple graph within your
script, try doing this as shown in figure 2 below. A aore
sophisticated graph can be achieved using the above
techniques. In the exaaple I found the "COPY' coaaand very
useful because having once obtained the required width - I
only had to "copy" down the required nuaber of lines using
(CONTROL & KEY "*). Reaeaber that when you place a special
set of codes at the start of the line, the space they occupy
will not be recognized by the printer. That is,the printed
line will coaaence at the location of the first special
code. This can place the nuabers used in the graph in the
wrong place. You have to enter your special codes at the
point you wish the following characters to print. Thus,
what you see on the screen is not necessarily what you will
get on the printout.

TI-MRITER can be used to draw graphs as Figure 3
illustrates. The horizontal lines are achieved by setting
the printer into an underline aode
(CHR$27;CHR$(45);CHR$(I)). The line spacing is set to 7/72"
(Clffi$(27);"A"CHR$(7) - This approxiaates to 1/10". If a
CARRIAGE RETURN is placed at the point where the line should
finish, the printer will draw a line to that point. The
verticie lines are drawn by using CHRK124) - function "A".
As the printer noraally prints at 10 characters to the inch,
this will produce a grid of roughly 1/10" squares.

There are 2 points to watch using this procedure:
1. If you do not want the underlining to start at the
beginning of the printer line, the underline code aust be
placed at the start of each line and cancelled at the end of
each line before the carriage return. There is another
aeans of achieving this and that is to set the left hand
aargin to the required position (on GEMINI printers this is
CHR$(27);VN"CNRI(N) - n being the coluen to start printing.
THIS CAN ONLY BE BONE USING THE PRINTER CODES, NOT BY
SETTING TI-NRITER'S TABS.

2. The second point is that aany printers do not align the

characters in a bidirectional aode. YOU ARE ADVISED IN THE
TI-WRITER MANUAL THAT fOR TABULATION, IT IS ADVISABLE TO SET
THE PRINTER TO A UNI-DIRECTIONAL PRIMTIN6*H0DE.

figure 4 illustrates how a line will appear on the 4A
screen.

f s: t

i t t

figure I 9
u

41 t 1

t tt

r 3 t t

e t I

»

•

• —

2

i

2

1

t

f

,1

t

»

t

tti

•
i

i
• 0

10!

!-> !

S!
i
i

o:

12 3 4 5 6

US1N6 TI-WRITER TO DRAW A 6RAPH

")0 . .19. VI Inl.inW 79 W W
s

inniiiiiiinnniimnium iii ufful
0A inn n in in it hi iii mm HfU
™ in nm r mimmmm

nil m hihtihti f l | 1 tf
minim in iiiii 11 it h hthh

im i mmmnnmm i

80 m m mmmCinn
l i i i i i i % i I i i i i ij,i I t I l I J. I i i M I t » i I I i i ' i ' i « ' i »

Figure z
OA•* IiIiiiIiI IiIiiiIii*iiit••i•IiiIiiitiJ J I Ji•
7Vi•iiiiIiIiI I I IiI•I I I I IiIiiiI I Iiiiiii•><>iiI I

Actual point where orinting will start

8-8

^

i
'!
2
1

J j
• 1 I

"t 1
kfbj""

' "• ! U
' M.

i

CHARACTER C3RAPH I CO
UIZTH TI-WRITER

by Rod Cook
OH-MI-TI

Graphic characters can be
defined in TI-WRITER and printed
to the printer by using a com
bination of the transliterate

command and the graphics control
codes of the printer.

The transliterate command has

the formati

.TL nichar*,chare, ,char#

where n is the special character
number and chare is the decimal

number to be transmitted to the
printer. For example, in the
following commandi

oaao
where in verticle row 1 none of
the dots are on so they add up
to zero. In verticle row two
the dots at 4,6 and 64 are on so
they add up to 76. In verticle
row three 16 and 2 dots mrm on
so they add up to 16 and so on
with the remaining three
verticle rows.

6o the transliterate command
to print the special character ©
looks like thlsi

.TL 0127,75,6,0,0,76,18,16,12,0

and anytime the special
cnaracter for zero (shift 2 in
the TI-WRITER special character
mode) is encountered in the text
bv the FORMATTER the
transliterated values will be
sent to the printer which will
result in the defined graphics
character being printed.

The 6 by e grid that was
printed above was printed this
way. Four graphics character*
arc needed to build the grid.
They arei

n -p

The respective definitions arei

.TL 65:27,75,6,0,255,128,126,
126,125,126

.TL 66:27,75,6,0,255,0,0,0,0,0

.TL 67x27,75,6,0,126,126,126,
126,126,126

.TL 66:27,75,6,0.255,126,166,
166,166,126

so that anytime ASCII characters
65, 66, 67 or 66 are encountered
in the text, the above graphics
characters will be printed.
ASCII character 65 is an A, 66
is a 8, 67 ib a C and 66 is a D.
So to print the above grid, the
following pattern of characters
would be neededi

126 AAAAAA8

64 ADAAAA8

32 AAAAAA8
16 AADDAAB

6 ADAADAB

4 ADAADAB

2 AADDAAB

1 AAAAAAB

CCCCCC

Note the numbers will be printed
just as they appear because they
hmvQ not been redefined. Once
the graphics have been printed
the A thru D will have to be

•TL Oi46,64,76

anytime the special chartacter
"eM is encountered in the text,
the FORMATTER will transmit the

numbers 46, 64 and 76 which in
this case happen to be a period
followed by a capital T ^nti L.
The value of chart can have any
value between 0 and 255 although
ASCII values only go up to 127.

The transliterate command

will define the graphics for the
character to be printed. One
transliterate command per
cnaracter will be required. Each
command will have essentially two
parts; the control codes to setup
the printer into graphics mode
and the oat*. For the purpose of
illustration, the control codes
discussed will be for an Epson MX
60. The control code for printer
graphics isi

<ESC> -K* Nl N2

wnere <ESC> is the escape
character, number 27 and MK" is
number 75. Nl and N2 are numbers
that mr9 used to specify how many
data numbers follow. This

control code puts the printer
into a graphics mode that prints
460 dots pt 8 inches. An 60
character line is also 6 inches

long, therefore 4B0/80 • 6.
There are 6 dots per character
and it will take six data numbers
to specify the character. The
control code portion of the
transliterate command will look
like thlst

•TL 0:27,75,6,0,••-data-• •

wnern Ni it 6 and N2 is 0 which
tells the printer there will be 6
data numbers tc follow.

The data numbers tell the
printer which of the 6 pins to
fire on the printhead for each of
the six verticle rows of dots
that make up the character. For
example the graphics for the
special character b are coded as
followsI

transliterated back their
regular character if they are to
be used in text. The following
commands will do thlsi

.TL 65:65

•TL 66:66

.TL 67:67

.TL 66:68

There mre some limitations
as a result of working within
the limits of the FORMATTER.
1. It appears the physical

length of the transliterate
command can not be greater than

one line.

2. It also appears that each
character is limited to 6
verticle rows of dots. I have
not been able to print a
character longer than 6 row*
within the FORMATTER.

3. The FORMATTER insists on
putting white space on the toe
and bottom of tne page. Tc
print graphics that are
continuous from line to line, as
is the grid above, reouires a
line spacing less than that of
six lines per inch. To keep the
same white space at the bottom
of the page and on subsequent
pages will require adjusting the
line spacing after the graphics
tc compensate for smaller line
spacing of the graphics.

Page 8_9

TI Writer Formatter Commands

by Tom Kennedy

Text Dimension commands, as the name implies, move or shape the
words in the document (margins, linespacing, right justify, etc.)

PUTS AS MANY WORDS ON A LINE AS WILL FIT.

CANCELS FILL.

ALIGNS THE TEXT TO THE LEFT AND RIGHT MARGINS.

(RT. JUSTIFY)
CANCELS ADJUST.

SETS LEFT MARGIN TO "n".
SETS RIGHT MARGIN TO "n".

CREATES AN AUTO-INDENT FROM LEFT MARGIN.

SETS LINE SPACING TO "n" LINES.

DEFINES NUMBER OF LINES TO A PAGE.

DEFINES FIRST LINE OF NEW PAGE.

.FI «! FILL

.NF : NO FILL

.AD <: ADJUST

.NA t NO ADJUST

.LM n :! LF MARGIN

.RM n ;: RT MARGIN

.IN n :i INDENT

.LS n !: LINE SP

.PL n !: PG LENGTH

.BP : BEGIN PG

Internal Format commands control the spacing of characters on a
line.

,SP n : SPACE

,CE n : CENTER

SIMILAR TO THE TAB FUNCTION.

CENTERS NEXT "n" LINES BETWEEN MARGINS,

Highlighting commands control functions such as underline or bold
and allow you to redefine characters to use them to send CTRL codes to
the printer.

JOINS WORDS TOGETHER WHEN REQUIRED TO PREVENT

SPLITTING IN REFORMATING, UNDERLINE, ETC.
UNDERLINES ALL TEXT FOLLOWING UNTIL NEXT PACE.

(OVERSTRIKE) RETYPES FOLLOWING TEXT FOUR TIMES.
REASSIGNS ONE CHARACTER TO REPRESENT A NUMBER

OF CHARACTER VALUES TO SEND CODES TO THE PRINTER.

LIKE REM IN BASIC—ALLOWS NOTES THAT DONT PRINT.

Page identification commands print notes in the upper or lower
corner of each page, either headers or footers.

A

: REQUIRED

: SPACE

& :: UNDERLINE

§ :i BOLD

TL XX!: TRANS-

: LITERATE

CO t !: COMMENT

.HE t : HEADER

,FO t : FOOTER

.PA : PAGE #

PRINTS TEXT (t) AND PAGE NUMBER AT TOP OF PAGE.
PRINTS TEXT (t) AND PAGE NUMBER AT BOTTOM OF PAGE.
RESETS PAGE NUMBER IN .HE AND .FO

File management commands

.IF f : INCLUDE : MERGES A FILE TO PRINT A DOCUMENT TOO LARGE

: FILE : TO PRINT AS ONE FILE.

Mail Merge option commands are used to supply values to the
variables in a letter that has been set up for the mail merge option

.ML f

n

:MAIL LIST

:VARIABLE

.DP n:t:DISPLAY

: PROMPT

IDENTIFIES VALUE FILE (f) FOR MAIL LIST.
INSERTED IN TEXT AS VARIABLE FOR ASSIGNMENT

FROM VALUE FILE.

PROMPTS YOU USING TEXT "t" TO ASSIGN.
'TO VARIABLE (*n*).

Page 8-10

fl HflHDg DflHDB TI-ffilTER U8ER8 REFEREHCE 0UD3E
SUBMITTED BY BOB STEPHENS

The fallowing handy TI-WRITER commands are reprinted for the
June issue of the 99'er News published by the TI Users Group of
Will County, Romeoville, II. This puts the most used commands on
one oage for handy access at your computer.

EDITOR COMMAND FCTN !CTRL ! EDITOR COMMAND FCTN !CRTL! EDITOR COMMAND !FCTN!CTRL

Back tab ! T !Ins. Blank line 8 ! 0 iQuit ! s 1

1

Beginning/line ! V !Insert character 1 4m ! G !Reformat !2orR

Command/escape 9 ! C ILast paragrapph !6orH!Right arrow ! D ! D

Delete character . 1 ! F !Left arrow ! S ! S iRoll down ! 4 ! A

Del. end of line ! K ILeft margin rel. ! Y !Roll up ! 6 ! B

Delete line o ! N !New paae !9orP!Screen color ! 3

Line #'s<on/aff> 0
1
1 'New paragraph !8orM!Tab ! 7 ! I

Down arrow X : a •'Next paragraph !40rJ!Up arrow ! E ! E

Duplicate line ! 5 •Next window 5 i iWord tab. !7orW

Home cursor ! L !Oops! UorZJWord wrap/fixed ! 0

Load files: LF (enter) DSKl.FILENAME (load entire file)
LF (enter) 3 DSKl.FILENAME (merges filename with data in memory

after line 3)
LF (enter) 3 1 10 DSKl.FILENAME (lines 1 thru 10 of filename are

merged after line 3 in memory)
LF (enter) 1 10 DSKl.FILENAME (loads lines 1 thru 10 of filename)

Save filer: SF (enter) DSKl.FILENAME (save entire file)
SF (enter) 1 10 DSKl.FILENAME (save lines 1 thru 10)

Frirx? Files:PF (enter) PIO (prints control characters and line numbers)
PF (enter) C PIO (prints with no control characters)
PF (enter) L PIO (prints 74 characters with line numbers)
PF (enter) F PIO (prints fixed SO format)
FV (enter) 1 10 PIO (prints lines 1 thru 10)

NOTE: The above assumes PIO. DSKl.FILENAME, and RS232 are also valid!
To cancel the print command press FCTN 4.

Delete file:DF (enter) DSKl.FILENAME

Setting Margins and Tabs: (16 tabs maximum)
L - Left marain R - Riaht marain I - Indent T - Tab

Use ENTER'to execute or COMMAND/ESCAPE to terminate command.

Recover Edit: RE (enter) Y or N

Line move: M (enter) 2 6 10 (moves lines 2 thru 6 after line 10)
M (enter) 2 2 10 (moves line 2 after line 10)

Copy: same as move except use C instead of M.

Find String: FS (enter) /string/ (will look for string in entire file)
FS (enter) 1 15 /string/ (will look for string in lines 2 thru 15)

Delete: D (enter) 10 15 (deletes lines 10 thru 15 in memory)

Page 8-11

Bit-Image Graphics on Dot-Matrix Printers
by Tom Kennedy

I want to show how you can create your own Basic programs to
print Bit-Mapped graphics to Dot Matrix printers. In this case, I use
program examples in TI BASIC, and refer to Epson compatible printers,
although similar commands apply to various printers.

First, what is Bit-Mapped? When you print a file through your
printer, such as a text file, or a Basic program listing, the
computer is sending a stream of numbers (Bytes) that represent a
predefined code for the various letters, numbers, and symbols we can
generate from the keyboard. The printer acts upon built-in
programming to convert these bytes to the 7x9 pattern that we think
of as "A Character".

When the printer is set to Bit-Image mode, the built-in
programming is bypassed, and you must supply the data to fire each of
the pins in the print head (the Bits) to "Map" the graphic you want.
Considering the number of possible pin positions on a line, with 8
vertical pins per position, this sounds like a arduous task, but
there are shortcuts that make it simpler.

In Bit-Image mode, only the top 8 pins of the 9 pin head are
used. To fire the pins, you send a byte, in decimal, equal to the
Binary value of the arrangement of the pins in the head, as
illustrated below:

MSB o M L

o S S
• B B

o == 00101110 == 46
• (Binary) (Dec)
*

•

So in this case, if the number
"46" is sent to the printer, the
appropriate pins will fire.

LSB o

There are two ways to figure the decimal values for the bytes to
send. If you are good with Binary/Decimal conversion, or use a
suitable calculator, just convert the binary number. Otherwise, a
simpler way to look at it is this:

Pin

#'s

o

o

o

o

o

o

o

o

128

64

32

16

8

4

2

1

Find the numbers that coincide with the pins you
want "on", and add them all up. The result is the
decimal value to send.

So now you can create the bytes necessary to print a vertical
array of 8 dots, now what? Eight dots do not a picture make. Start at
the beginning. Draw a picture, preferably on a fine-grid paper.
After you have the picture on graph paper, you break up the graph
into 8 squares per row, and try to "frame" the picture in the least
number of rows, to save effort. Once you have your rows framed off,

Page 8-12

./^9§\

c

/rfH^N^

you can asign the bytes needed to create each 1-bit wide column.
The procedure for printing the data is to begin by sending the

string of bytes necessary to invoke bit-mapped mode, then print the
bytes of data, all as one string. Each separate print statement must
be preceded with the set-up string, so it's usually simpler to print
all data for one line all at once.

So, in the example I'm using, I have set off the field into
8-dot rows, so I begin by going down the row, column by column, and
write down the values for the bytes. The first row gives these data
values: (The (#) is the number of times to repeat the value)

(32)0,(4)3,(6)12,(2)15,(2)0,(2)15,(4)48,(2)15,(6)0

To print the first row, you open the printer file. At this point
you also set the printer to 7/72" line spacing, which is height of
the print head. Next, you send the "set string", which puts the
printer in Bit-Mapped mode, and defines how many values will be sent.
Now you start a loop tat reads in data values and the repetition
number that prints that data. After all data for one line is read,
you signify this with a "Wild Card" data value, which terminates the
loop. Lastly, you send a "CR" and a "LF", which returns the
carriage.

Susequent rows are printed by repeating the above steps, except
for the opening of the printer.

After all rows are sent, you can reset the printer by sending an
ESC("@").

The following is a BASIC program which demonstrates the above
procedure. Although written in TI Extended BASIC, the procedure is
the same in any BASIC.

90 REM WRITTEN IN TI EXTENDED BASIC

100 REM THIS EXAMPLE PRINTS A FROG HEAD, IN BIT MAPPED GRAPHICS
110 REM DATA IS READ IN FORM OF: REPETITION,VALUE
120 REM WHICH PRINTS RPT$(CHR$(VALUE).REPETITION)
130 REM

140 REM by Tom Kennedy December, '85
150 REM (206) 248-2218
160 REM

170 REM *****INIT VARIABLES (OPTIONAL)**********************
180 P$="PIO.CR.LF" :: E$=CHR$(27):: CR$=CHR$(10)&CHR$(13)::
SET$=E$&"K"&CHR$(60)&CHR$(0)

190 REM OPEN PRINTER & SET LINE SPACE TO 7/72"*****************
200 OPEN #1:P$:: PRINT #1:E$&CHR$(49)&CR$
210 REM *********** BEGIN PROGRAM *****************************

220 FOR ROW=l TO 5 :: PRINT #1:SET$
230 REM ***READ DATA, CHECK FOR END-OF-LINE********************
240 READ NMBR,VALUE :: IF NMBR=99 THEN 270
250 REM *******PRINT DATA FOR ONE LINE*************************

260 FOR BYTE=1 TO NMBR :: PRINT #1:CHR$(VALUE):: NEXT BYTE :: GOTO 240
270 PRINT #1:CR$:: NEXT ROW
280 REM ********RESET PRINTER (OPTIONAL)***********************
290 PRINT #1:E$&"@"

Page 8-13

300 REM ***

310 REM DATA VALUES = "REPETITION NUMBER,BYTE VALUE"**************
315 REM ********»99,99" SIGNIFIES END-OF-LINE*********************
320 DATA 32,0,4,3,6,12,2,15,2,0,2,15,4,48,2,15,6,0,99,99
330 DATA 24,0,2,3,2,15,2,63,6,255,2,0,4,63,2,255,2,243,2,192,
4,252,2,255,6,0,99,99
340 DATA 20,0,2,15,2,63,6,255,2,252,4,240,6,48,2,240,2,0,8,192,2,
240,2,60,2,15,99,99
350 DATA 16,0,2,3,6,255,2,192,6,0,2,255,10,12,8,48,2,192,2,
195 2 204 2 240 99 99
360'DATA 6,0,4,15,4,63,10,255,8,0,2,192,12,0,2,3,2,
12,2,48,2,192,6,0,99,99

Everything I've covered so far is on printing graphics, but
there is more to the Bit Image modes. In the above example, I used
the ESC("K") to set the mode, but there are actualy eight modes to
chose from. The modes are numbered 0 to 7, with 0 (ESC("K")) being
the simplest. The following table lists the modes.

MODE DENSITY

SINGLE

LOW SPEED

DOUBLE

HIGH SPEED

DOUBLE

QUADRUPLE

CRT 1

ONE-TO-ONE

(PLOTTER)

CRT II

DUAL

DENSITY

PLOTTER

ALTERNATE

CODE

ESC K

ESC L

ESC Y

ESC Z

NONE

NONE

NONE

NONE

DESCRIPTION

60 DOTS PER INCH

480 DOTS PER LINE

120 DOTS PER INCH

960 DOTS PER LINE

SAME AS MODE 1, BUT
FASTER. CONSECUTIVE DOTS

NOT PRINTED.

240 DOTS PER INCH

1920 DOTS PER LINE

CONSECUTIVE DOTS NOT

PRINTED.

80 DOTS PER INCH

640 DOTS PER LINE

SAME DENSITY AS

EPSON QX-10 COMPUTER

72 DOTS PER INCH

576 DOTS PER LINE

EQUAL DENSITY IN BOTH
HORIZONTAL & VERTICAL.

90 DOTS PER INCH

720 DOTS PER LINE

144 DOTS PER INCH

1152 DOTS PER LINE

TWICE DENSITY OF MODE

HEAD SPEED

(in/sec)

16

16

12

Page 8-14

/••W^lv

/rSSfey

^

/flP^N

/jfiflP^N,

All modes can be activated with the sequence ESC("*"), followed
by the mode number. Modes 0-3 also have the alternate ESCape value
(K,L,Y,&Z). In this tutorial, I will deal with these four, and in
most cases you will only use the first two.

The difference between mode 0 (ESC("K")) and mode 1 (ESC("L"))
is that in mode 0 one dot is printed spaced at the width of the print
head pins. In mode 1, a dot is printed every 1/2 pin width, producing
double density.

Mode 2 (ESC("Y")) is the same as mode 1, except twice as fast.
The speed is attained by not printing consecutive dots in a row. This
feature might be a problem in fine detail, such as lettering, but not
when printing a large graphic, such as a screen dump. Mode 3
(ESC("Z") is the same as mode 1, but a dot is printed every 1/4 pin
width, and consecutive dots are omitted.

The second part of the set-up string, after the mode values, are
the numbers that define how many columns, or dots, will be printed
per row. Remember, this is not the same as how many characters per
inch might be defined when selecting a font in normal print modes.

The numbers, nl & n2, combine together to determine the value.
n2 is equal to the number of times 256 will divide into the desired
value, and nl is the remainder. For example, if you wanted to print
500 dots per row, 500/256=1 with 244 remaining, so the set-up string
to print 500 dots per row in double density is:

CHR$(27)&"L"&CHR$(244)&CHR$(1)
In my program example I print 60 dots in single density. Since

60/256<0, n2=0 and nl is the total number of dots. This is true for
any value under 256.

If the number of dot columns will change in your application,
the best thing is to initialize two variables, to calculate nl and n2
for any width, as shown:

10 X=Z-(INT(Z/256)*256)
20 Y=INT(Z/256)
30 SET$=CHR$(27)&"L"&CHR$(X)&CHR$(Y)

100 Z=500

110 PRINT #1:SET$

200 Z=140

210 PRINT #1:SET$

This may sound like a crazy way to send a number to the printer,
but it's necessary because the data must be sent as Hexidecimal
numbers, two digits per number. The largest two-digit Hex number is
>FF, which equals 255, so everything goes in chunks of 255 or less.

Page 8-15

LOAD INTERRUPTS

8-1 6

The Rest cf the Meal-Appendixes

ydfjfPWlK^

D

n

n

Inscebot, Inc.

P.O. Box 260

Arnold, Maryland 21012

CSI Design Group
P.O. Box 50150
St. Louis, Missouri 63105

DataBipTics
P.O. Box 1194
Palos Verdes Estates, CA. 90274

SST Software

Box 26

Cedarburg, Wisconsin 53012
(414) 771-8415

McCann Software

P.O. Box 34160

Omaha, Nebraska 68134

Mail-Order Distributors

Bits and Chios

23637 EWY 99*
Edmonds, Washincron
(206) 775-7390

Tenex Computer Express
P.O. Box 6578

South Bend, Indiana 46660
(219) 259-7051

Triton Produces, Inc.
P.O. Box 8123

San Francisco, Calif. 94128
1-800-227-6900

Computer Micro Products
2460 Wisconsin Avenue

Downers Grove, Illinois 60515
(312) 960-1950

Ramsoft Enterprises
1501 East Chapman Avenue
Suite 338

Fullerton, California 92631

Heim Industries

P.O. Box 296

Clifton Park, NY 12065

Bright Micro Konhputers
2781 Resor Road

Fairfield, Ohio 45014

Trinity Systems
1022 Grandview

Pittsburg, PA 15237

Great Lakes Software

804 E. Grand River Avenue

Howell, Michigan 48843

Intelprc
5825 Bailiargeon Street

Brossard, Quebec, Canada J4Z 1T1
(514) 656-8798

Hunter Electronics

604 S. Fairview Avenue

Elmhurst, 111. 60126
(312) 832-6558

Soedaiisr In

821 Exc

Hopkins, Minnesota
(612) 938-3161

SIOI

Tex—Com p
P.O. 3ox 33034

Granda Hills, Ca 91344
(818) 366-6631

Pilgrim fs Pride
219 N. York Rd.

Hatboro, PA 19040
(215) 441-4262

Texaments

53 Center Street

Patchogue, N.Y. 11772

WasterCord

Disk Only Software
P.O. Box 244

J Lorton, Virginia 22079

or call

1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required a_n
Alternate is (301) 369-1339. No Touchtone is required.

Delphi: TELEDATA—CompuServe: 74405.1207—MCI: TDG—TELEX: 6501106897 MCI

TI Product Sources

compiled by Ron Albright

What follows is a sort of "who's who" and "where to look" for
various support services for the TI 99/4A Home Computer. The list
will include commercial concerns, and public (often free) sources of
information. It is certainly not comprehensive but, the author has
made every effort to check information such as addresses and phone
numbers, but cautions the reader that these are subject to change.

Hardware

Corcomp, Incorporated
2211-G Winston Road

Anaheim, California 92806
(714) 956-4450

Myarc, Inc.
241 Madisonville Road
Basking Ridge, New Jersey 07920

Miller's Graphics
1475 W. Cypress Avenue
San Dimas, California 91773
(714) 599-1431

Ryte Data
210 Mountain Street

Haliburton, Ontario
Canada K0M ISO

(705) 457-2774

Horizon Computer Limited
P.O. Box 554

Walbridge. Ohio 43465

Software

Tigercub Software
156 Col lingwood Avenue
Columbus, Ohio 43213
(614) 235-3545

Asgard Software
P.O. Box 10306

Rockville, Maryland 20850

Millars Graphics
1475 West Cypress Avenue
San Dimas, California 91773

AEI

P.O. Box 10306

Rockville, Maryland 20850

Captain's Wheel
17295 Chippendale
Farmincrton, MN 5024

(612) 460-6348

Rave 99

23 Florence Road

Bloomfield, CT 06002

Dijit Systems
4345 Horoensia Street

San Diecc, California 92103
(619) 295-3301

Ryte Data
210 Mountain Street
Haliburton, Ontario, Canada

(705) 457-2774

Quality 99 Software
1884 Columbia Road #500
Washington, DC 20009

DataBioTics

P.O. Box 1194

Palos Verdes Estates, Calif. 90274

A-l

Replacement Parts/Surplus:

Arnold Company
P.O. Box 512

Commerce, TX 75428
(214) 395-2922
(Keyboards)

Repairs

Lolir

13933 N. Central #212
Dallas, TX 75243

(214) 234-8056
(Keyboards, Power Supplies,
cassette cables)

Daymon Fikes
Texas Instruments Attn:Repair
2305 N. University
Lubbock, TX 79415
(806) 741-2321

National Organizations (Membership fees recuired)

99/4A National Assistance Group
Box 290812

Fort Lauderdale, Florida 33329
(305) 583-0467

99 Users Group Association
3535 Souzh E. Street

Bakersfield, Calif. 93304
(805) 397-4361

National Non-Prcfit Assistance (Information, Public-Domain Software)

Amnion Helpline
116 Carl Streer

San Francisco, Calif. 94117
(415) 753-5581

National Telecomunication Networks

CompuServe
5000 Arlington Center Blvd.
P.O. Box 20212

Columbus, Ohio 43220
(800) 848-8990

GEnie

401 N. Washington Street
Rockville, Maryland 20850
1-800-636-9636 "

Bulletin Board Software

Commercial

BBS System
1411 N. 36th

Melrose Park, II. 60160

The Source

1616 Anderson Road

McLean, Vircrinia 22102
(800) 336-3330

Delphi
3 Blackstone Street

Cambridae, Mass 02139
1-800-544^4005

A-3

Freeware:

TTBBS(tm)

P.O. Box 383

Kennesaw, Georgia 30144
(404) 425-5254

Techie Bulletin Board

Monty Schmidt
525 Wingra Street
Madison, Wisconsin 53714

Public Domain

TT-CQMM

John Clulow

345 West South Boundary
Perrysburg, Ohio 43551

Publications

Micropendium

P.O. Box 1343

Round Rock, Texas 78680
(512) 255-1512

Computer Shopper
407 S. Washington Avenue
P.O. Box F

Titusville, Florida 32781
(305) 269-3211

R/D Newsletter
210 Mountain Street

Haliburton, Ontario
Canada KQM ISO

Eairware Listing

Scott Darling
W. 5515 Wbodside

Spokane, Washington 99208

Pro-99er B3S

Mark Hoogendoorne
21 Long Street
Burlington, Massachusetts 01803

Smart Programmer
171 Mustang Street
Sulphur, Louisiana 70663

TRAVelER Genial Ccmputerware
835 Green Valley Drive
Philadelphia, Pennsylvania 19128
(?30/year, 6 issues of a "magazine
on disk"; a flippy disk with 720
sectors of programs/utiliries)

[Note: It is strongly suggested by the author to contact by mail the
authors listed below inquiring whether their offerings are still available
before sending disk or payment. Further, include a self-addressed, stanped
envelope to ensure a timely reply. While the author has made every effort
to provide factual and current information in this listing, he cannot
assume any liability for problems encountered as a result of inadvertent
errors.]

MASSCOFY Steve Lawless 2514 Maple Avenue, Wilmington, Delaware 19808
Disk doner

NEATLIST Danny Michaels Route 9, Box 460 Florence, AL.
Prograirming utility

35630

A-4

^

SCREENDUMP Danny Michaels (See Above)
f^ Screen dump printer utility

FAST-TERM Paul Charlton 1110 Tinehurst Court Chalottesville, VA 22901
Terminal Emulator

EASYSPRITE Tom Freeman 515 Alma Real Dr.,Pacific Palisades, CA 90272
Programming utility for graphics

DISASSEMBLER Marty Kroll 218 Kaplan Avenue Pittsburg, P. 15227
Disassembler programming utility

Checkbook and Budget Manager by John Taylor, 2170 Estaline Drive,
Florence, Alabama 35630;Household budgeting and finance management

Games; John Taylor (see above address); collection of commercial quality
games and educational activities for children and adults. $5 or disk and
mailer and return postage.

Director '99' Robert Neal/Ed Bert, P.O. Box 216R, Romeoville, II. 60441
Disk catalog database program

PR3ase William Warren, 2373 Ironton Street, Aurora, Colorado 80010
Database program

Best Songs 1 and 2; Music written by Bill Knecht, 815 Yorkshire, Pasadena,
.•s Texas 77503. $5 for one disk, $8 for-both.

Doors to Eden and First Days in Eden; Steven Cheairs, P.O. Box 27547,
Albuquerque, NM 87125. Two games to be used with the TI Adventure Module.
Author asks a $2 donation at the time the games are ordered; 2 disks or 2
cassettes.

Sprint Utility; Ken Houle, 27721 W. Wakefield Rd., Saugus, CA 91350.
Utility for Aseembly programmers to dump DV80 files to printer or disk.

Printout; Steven Mehr, 633 Hollyburne Lane, Thousand Oaks, CA 91360. XB
utility to printout DV80 files wit printers with many options. $5 plus
disk and mailer.

Pilot 99; by Tom Weithofer (deceased). As a service to the TI community,
Dr. Jim McCulloch (9505 Drake Avenue, Evanston, IL 60203) will send a copy
of this fine programming language to anyone who sends two disks, self-
addressed mailer and sufficient postage.

Fas-Tran; Bill Harms, 6527 Hayes Court, Chino, CA 91710;
checkboo/spreadsheet program with easy linking to Multiplan.

Weather Forecaster; Garry Cox, 3174 Melbourne, Memphis, TN 38127; Graphics
and home weather prediction.

For a complete list of Freeware, send $1 to MICROpendium, P.O. Box 1343,
Round Rock, Texas 78680. The list they have is verified and up-to-date and
now is 10 pages long. Support this valuable source of TI software -
support Freeware.

A-5

User Group List
Courtesy of Art Byers and the
Westchester 99er's User Group

Summit 99ers Users Group
P. 0. Box 3201

Cuyohoga Falls, Ohio 44223

Fox City Users Group
P. 0. Box 2553

Appleton, Wisconsin 54913

Atlanta 99/4A Computer Users
P. 0. Box 19841

Atlanta, Georgia 30325

North New Jersey TI Users Group
16 Judith Ann Drive

Ringwood, New Jersey 07456

Mid Illinois Computer Resource
P. 0. Box 766

Bloomington, Illinois 61701-0766

Boise 99'ers Computer Club
1331 Colorado Avenue

Boise, Idaho 83706

NorthEast Iowa Home Computer User1
1528 Longfellow % Terry Maxfield
Waterloo, Iowa 50703

Central Ohio Ninety-Niners., Inc.
8055 Simfield Road % D. Heim
Dublin, Ohio 43017

Airport Area Computer Club
P. 0. Box 710

Coraopolis, Penn. 15108

The Daytona 99ers
P. 0. Box 15232

Daytona Beach, Florida 32015

Rocky Mountain 99ers
P. 0. Box 12605

Denver, Colorado 80212

Central Iowa 99/4A Users Group
P. 0. Box 3043
Des Moines, Iowa 50316

216-456-0450

414/766/3515

404-233-3096

309/952/9305

208/344/1409

614/868/0632

904/427/8532

303/759/0699

515/266/7788

A-6

yiBP^V

r

ji<$S^\

Users Group of Orange County
17301 Santa Isabel Street

Fountain Valley, Calif.92708

L A 99ers Computer Group
P. 0. Box 3547

Gardenia, California 90247-7247

99/4A Minn & Dakota Home User
509 Reeves Drive

Grand Forks, N. Dakota 58201

Grand Rapids 99er Users Group
1419 Laughlin Dr. N. W.
Grand Rapids, Michigan 49504-2423

Johnson Space Center Users Group
2321 Coryell St. % John Owen
League City, Texas 77573

Net 99er Home Computer Group
P. 0. Box 534

Hurst, Texas 76053

Kankakee TI Users Group
P. 0. Box 1945

Kankakee, Illinois 60901

Mid Atlantic Ninety Nine'ers
P. 0. Box 267

Leesburg, Virginia 22075

Titex TI Users Group
36 Fox Place

Hicksville, New York 11801

Kentuckiana 99/4A Computer Society
P. 0. Box 36246

Louisville, Kentucky 40233-6246

St. Louis 99ers
P. 0. Box 63158

St. Louis, Missouri 63163

Greater Orlando 99ers Users Group
P. 0. Box 1381

Maitland, Florida 32751

Greater Omaha TI-99/4A User's Grou
11215 Crippen Circle
Omaha, Nebraska 68138

213/439/0785

213/439/0785

701/772/6180

616/791/0059

???/337/4110

817/656/1473

703-777-2017

516/796/8359

812/923/3888

314/428/0752

305-293-0769

402/556/0702

A-7

Pomona Valley 99/4A Users'Group
1833 E. Princeton St. % C. Perez
Ontario, California 91764

Miami County Area 99/4A Users Grou
P. 0. Box 1194

Peru, Indiana 46970

Bluegrass 99/4 Computer Society
P. 0. Box 11866

Lexington, Kentucky 40578-1866

T. I. Users Group of Will County
P. 0. Box 216R

Romeoville, Illinois 60441

Great Lakes Computer Group
P. 0. Box 7151

Roseville, Michigan 48305

MSP 99 Users Group
P. 0. Box 12351

St. Paul, Minnesota 55112

The Suncoast Beeper
8421 Westridge Drive
Tampa, Florida 33615

N. W. Suburban 99 Users Group
1211 Freeman Road
Hoffman Estates, 111. 60195

Upper Pinellas 99'er User Group
P. 0. Box 3031

Seminole, Florida 33542

Mid/America 99 Users Group
5936 Hardy
Merriam, Kansasw 66202

Lima Area 99/4A User Group
2225 High Ridge
Lima, Ohio 45805

New Jersey Users Group
49 Pine Grove Ave. % Mel Gary
Somerset New Jersey 08873

W.W. 99'ers of Champaign/Urbana
2020 Rebecca Drive
Champaign, Illinois 61821

714/984-4107

219/563/2213

606/268/0210

815/886/6552

313/623-7926

612/429-5256

813/347-6942

312/980/9234

813/736-1616

201/686/5619

217-344-5281

A-8

>1ll|$Plft\

/ff^N

Tidewater 99/4 Users Group Inc.
P. 0. Box 1935

Newport News, Vir. 23601

Milwaukee Area 99-4 User Group
4122 North Glenway
Wauwatosa, Wisconsin 53222

Cin-Day User's Group
P. 0. Box 519

West Chester, Ohio 45069-0519

K-Town 99/4A Users Group
116 Richards Drive

Oliver Springs, Tenn 37840

Shoals 99'ers

P. 0. Box 2928

Muscle Shoals, Alabama 35662

Long Island 99'er Users Group
P. 0. Box 544

Deer Park, New York 11729

West Penn 99ers

R. R. 1 Box 73A % J. F. Willforth

Jeanette, Pennyslvania 15644

Wiregrass 99'er User's Group
Att.Newsletter 102 Auburn Dr.

Enterprise, Alabama 36330

Jacksonville TI-99/4a Users Group
P. 0. Box 525

Jacksonville, Arkansas 72076

Bavou 99 Users GrouD
P. 0. Box 921

Lake Charles, Louisiana 70602

Brazos Valley 99'ers
P. 0. Box 7053

Waco, Texas 76714

Edmonton Users Group
P. 0. Box 11983

Edmonton, Alberta Cana T5J 3L1

The Ottawa T. I. 99/4 Users Group
P. 0. Box 2144 Station D

Ottawa, Ontario Canada KIP 5W3

804/596-6450

414/264/4735

513/777/0110

205-776-2032

516-587-5462

412-271-6283

501/982/9710

318/477/3687

817/848/4589

403/467/6021

613/837-1719

A-9

Wichita 99er's Users Group
R.R.5 Box 13 % Guy Hulsey
Winfield, Kansas 67156

Lower Michigan 99/4A users Group
P. 0. Box 885

Troy, Michigan 48099

Northwest Ohio 99'er News
5926 Ranbo Lane

Toledo, Ohio 43623

The Central Westchester 99'ers Clu
1261 Williams Dr. % A. Byers
Scrub Oak, New York 10588

Magnetic (TI 99/4A)
57 River Road

Andover, Massachusetts 01810

Amarillo 99/4A User Group
P. 0. Box 8421

Amarillo, Texas 79114-8421

Quad Cities Computer Club
P. 0. Box 1124

Bettendorf, Iowa 52722

Boston Computer Society TI user Group
One Center Plaza % J. P. Hoddie
Boston, Massachusetts 02108

The Windy City 99 Club
640 N. LaSalle R. 280 % M. Mickels
Chicago, Illinois 60610

Corpus Christi 99ers Users Group
5205 Tartan

Corpus Christi, Texas 78403

Decatur 99er Home Computer Users
P. 0. Box 726

Decatur, Illinois 62525
•

San Diego Computer Society T I Sig
P. 0. Box 83821

San Diego, California 92138

Southern California Computer Group
P. 0. Box 21181

El Cajon, California 92021

Eugene 99/4A User Group
P. 0. Box 11313

Eugene, Oregon 97440

316/221/7148

419/666/4945

914/961-5993

806/359-0380

617/353/7369

312/337/5997

512-852-4874

217/877-1631

619-296-9386

619/462/5802

503-747-1768

^

^

A-10

The Forest Lane Users Group
4413 Cornell Drive % J. Gillo
Garland, Texas 75042

Mid-South 99/4A Users Group
P. 0. Box 38522

Germantown, Tennessee 38183-0522

Nutmeg TI-99ers
10 Jolly Road % J. Ryan
Ellington, Connecticut 06029

214-480-1302

901/363/6273

203/875/1647

317/631/7255

214/239-6829

913-371-1092

315/625/4409

402-489-2364

Hoosier Users Group
P. 0. Box 2222

Indianapolis, Indiana 46206-2222

Dallas TI Home Computer Group
1221 Mosswood Place

Irving, Texas 75061

Kansas City TI99/4A Computer U. G.
P. 0. Box 12591

North Kansas City, Mo. 64116

Syracuse T I 99/4A Users Group
144 Hillside Way
Camillus, New York 13031

Lincoln 99 Computer Club
4501 South 50th Street

Lincoln, Nebraska 68516

Puget Sound 99ers
P. 0. Box 6073

Lynnwood, Washington 98032

Madarea 99'ers

437 W. Gorham % Wise. Blue Print
Madison, Wisconsin 53703

Miami 99/4A Users Group
19301 NE 19th Avenue
N. Miami Beach, Florida 33179

Texas Instruments Baltimore Users Group
P. 0. Box 3

Perry Hall, Maryland 21128

Fox Valley Users Group
34W.762 S. James Drive
St. Charles, Illinois 60174

608/648-2883

305-257-2102

312/931/0360

A-ll

Siouxland 99'ers

4604 Bluestem Circle

Sioux Falls, South Dak 57106

The Michiana 99/4A User's Group
911 Dover Drive
South Bend, Indiana 46614

Ninety-Niners of the Vancouver Are
P. 0. Box 508

Vancouver, Washington 98666

Northern NJ Ninty Niner Users Group
P. 0. Box 515

Bedminister,, New Jer. 07921515

The Downeast 99er's

P. 0. Box 542

Westbrook, Maine 04092

Cleveland Area 99/4A Users Group
P. 0. Box 23283

Euclid, Ohio 44123

Cross Roads•99ers Computer Group
P. 0. Box 293

York, Nebraska 68467

Pekin Users Group

559 Chicaao Street

East PeorTa, Illinois 61611

Carnation Citv 99'er* User Group
205 Fernwood Blvd % D. S. Brain
Alliance, Ohio 44601

Greater Dayton 99'ers
P. 0. Box 248

Englewood, Ohio 45322-0248

San Fernando 99ers

P. 0. Box 1844

Canyon Country, Calif 91351

The Fort's User Group
P. 0. Box 11212

Fort Wayne, Indiania 46856-1212

605/338/7050

219/277/1990

206/693/7070

201-234-1488

216-274-2544

215/823/8958

513/835/5918

818-507-6219

219-432-1228

A-12

r

y^W*\,

24K OF DATA STORAGE

Peeks and POKES
Compiled by Scott Darling

GEnie 3D TIKSOPT

If you need to work with quite a bit of data or would like to change
programs, but save the data after you press CALL QUIT then you can set up the
24K of High-Memory in the FEB as a single data file called ,,EXPMEM2", you open
this file just as you would a disk file with one exception - you must PRECEED
th {3PEN statement with a CALL LOAD to the location -24574 as follows:

For INT/VAR files - 24
For DIS/VAR files - 16
For INTT/FIX files - 8
For DIS/FIX files - 0

Heres and example:
If you want to* open up the Expansion Memory for Display,Variable 80 files

this is what you'd do:
100 CAIlf INIT
110 CALL LOAD(-24574,16)
120 OPEN #1:"EXPMEM2",RELATIVE,UPDATE,DISPLAY/VARIABLE 80

Then continue on as you normally would.

If you want to store both data and assembly language routines at the same
time do this:

100 CALL INIT

110 CALL L0AD(-24574,-16)
120 OPEN #l:nEX?MEM2"
130 CALL LOAD (*DSKl.ASSMln)
140 CALL LOAD (nDSK2.ASSM2")
150 CALL LINK ("START")
160 REM CONTINUE REST OF PROGRAM

In the above example the 24 K of high-memory was saved for use as a DATA
file (DIS/VAR 80 format) then the assembly routines were loaded. The ccmputer
wll look for the best place to put the routines and will adjust the pointer
accordingly. After the routines are loaded, a LINK statement starts the first
rutine and off we go.

If that's not enough for you, you can also use the.MINI-MEMORY for 4K more
of*~storage of assembly routines! New that's 16K of program space, 12K of
assembly routine space!

A-17

These are all of the Peeks & Pokes that I have come across for use with X-Basic
and 32K itemory expansion (be sure to do a "CALL INIT"). The P & Q variables
are used for "PEEK" - the numbers are for "POKE" or "LOAD".
**

ADDRESS , VALUE(S) MEANING IN EXTENDED BASIC

8192

8194

8196

-28672

-31572

-31740

-31744

-31748

-31788

-31794

-31804

-31806

-31808

-31860

-31866

-31868

-31873

-31877

-31878

-31879

-31880

-31884

-31888

-31931

P

0

P

0

0 TO 255

160

192

224

225

226

227

232

P

X , Y
P

0

16

32

48

64

80

96

128

P , Q
4

8

P , Q
0

0 , 0
255 , 231
3 TO 30

P

P

P

P

0

63

55

0

2

4

14

15

16

64

128

TO 255

, Q
TO 15

TO 5

255

215

CALL VERSION(X) IF X=100 100= NEWEST VERSION OF X/B CART
USE (PEEKfP) IF P<> 70 OR <>121 THEN DO A CALL INIT
FIRST FREE ADDRESS IN LOW MEMORY
LAST FREE ADDRESS IN LOW MEMORY
P=0 SPEECH NOT ATTACHED P=96 OR P=255 SPEECH IS ATTACHED
VARY KEYBOARD RESPONSE

PUT IN DIFFERENT TO CHANGE BEEPS,WARNINGS, ETC
CONTINUATION OF LAST SOUND (0=IOUD AND 15=SOFT)
CHANGE THE CURSOR FLASHING AND RESPONSE TONE RATES
BLANK OUT THE SCREEN (MUST PUSH A KEY TO ACTIVATE)
NO AUTOMATIC SPRITE MOTION OR SOUND

NORMAL OPERATION

MAGNIFIED SPRITES

DOUBLE SIZE SPRITES

MAGNIFIED & DOUBLE SIZED SPRITES

MULTICOLOR MODE (48 BY 64 SQUARES)
TIMER FOR CALL SOUND (COUNTS FROM 255 TO 0)
RETURN TO THE TITLE SCREEN (USE "PEEK (2,X,Y)")
CHANGE THE CURSOR FLASH RATE (0 TO 255)
NORMAL OPERATION

DISABLE QUIT KEY (FCTN =)
DISABLE SOUND (USE NEG DUR FOR CONTINOUS SOUND)
DISABLE SOUND & QUIT KEY
DISABLE AUTO SPRITE MOTION

DISABLE SPRITES & QUIT KEY

DISABLE SPRITES AND SOUND

DISABLE ALL THREE

DOUBLE RANDOM NUMBERS (0 TO 255) NEED "RANDOMIZE"
GO FROM EX-BASIC TO CONSOLE BASIC (NEED "NEW")
AUTO RUN OF DSKl.LOAD
END OF CPU PROGRAM ADDRESS (P*25640j
NO "RUN" OR "LIST" AFTER "BREAK" IS USED
TURNS OFF THE 32K MEMORY EXPANSION

TURNS ON THE 32K MEMORY EXPANSION
SCREEN COLUMN TO START AT WITH A "PRINT"
P&32 = SPRITE COINCIDENCE P&64 • 5 SPRITES ON A LINE
HIGHEST NUMBER SPRITE IN MOTION (0 STOPS ALL)
TIMER FOR VDP INTERRUPTS EVERY 1/60 OF A SEC (0 TOP 255)
RANDOM NUMBER (0 TO 99) NEED "RANDOMIZE"
CHANGE KEYBOARD MODE (LIKE "CALL KEY(K,...)")
DISABLE ALL DISK DRIVES (USE "NEW" TO FREE MEMORY)
ENABLE ALL DISK DRIVES (USE "NEW" TO FREE DRIVES)
UNPROTECT X-B PROTECTION

SET "ON WARNING NEXT" COMMAND
SET "ON WARNING STOP" COMMAND
SET "UNTRACE" COMMAND
SET "UNTRACE" COMMAND & "NUM" COMMAND
SET "TRACE" COMMAND
SET "ON BREAK NEXT" COMMAND
PROTECT X/B PROGRAM A-18

ySSP**^

-KfHSf^N,

n

-31952

-31962

-31974

-32112

-32114

-32116

-32187

-32188

-32630

-32699

-32700

-32729

-32730

-32961

P PEEK P=55 THEN 32K EXPANSION MEMORY IS OFF <>55 MEANS ON
32 RETURN TO THE TITLE SCREEN
255 RESTART X/B W/DSKl.LOAD
P , Q END OF VDP STACK ADDRESS (P*2564Q)
8 SEARCHES DISK FOR ?

2 RANDOM GARBAGE

13 SCREEN GOES WILD

119 PRODUCE LINES
2 RANDOM CHARACTERS ON SCREEN
4 GO FRCM X/BASIC TO BASIC
0 UNPROTECT XB PROGRAM
2 SET "ON WARNING NEXT" COMMAND
4 SET "ON WARNING STOP" COMMAND
9 SET 0 LINE NUMBER

14 SET "UNTRACE" COMMAND
15 SET "UNTRACE" COMMAND & "NUM" COMMAND
16 SET "TRACE" COMMAND

64 SET "ON BREAK NEXT" COMMAND

128 PROTECT XB PROGRAM

1 CHANGE COLOR AND RECEIVE SYNTAX ERROR

127 CHANGE COLOR AND RECEIVE BREAKPOINT

128 RESET TO TITLE SCREEN

0 UNPROTECT XB PROGRAM

2 SET "ON WARNING NEXT" COMMAND

4 SET "ON WARNING STOP" COMMAND

14 SET "UNTRACE" COMMAND
15 SET "UNTRACE" & "NUM" COMMAND

16 SET "TRACE" COMMAND
64 SET "ON BREAK NEXT"

128 PROTECT XB PROGRAM

0 CLEARS CREEN FOR AN INSTANT

0 RUN "DSKl.LOAD"
32 RESET TO TITLE SCREEN

51 RESET TO TITLE SCREEN

149 SETS "ON BREAK GOTO" LOCKS SYSTEM

The follwoing Loads require E/A or Minimemory:

ADDRESS , VALUE(S) MEANING

784

-24574 9 8

-30945 9 0

-32272 9 0 ,
-32766 9 0

-32768 9 0

-32280 9 0

-32352 9 107

* PASCAL LOADS

14586

USE POKEV(784,P) (WHERE P IS 16 TO 31) CHANGES BACKGROUND
COLOR OF CURSOR
I THINK THIS ALLOWS THE MINI-MEM TO USE THE 24K FOR STORAGE

WHITE EDGES

-30945 , 0) WILL PUT YOU IN TEXT MODE
BIT MAP MODE

GRAPHICS (NORMAL MODE)
MULTI-COLOR MODE

WILL BLANK THE SCREEN, ANY KEY PRESS WILL RESTORE

THIS ALLOWS YOU TO DO A "RUN-TIME WARM START"

TO BASIC

FRCM PASCAL

A-19

TI Console Memory Map
Compiled by Robert Coffee

JConrnunications Register Unit 8K|
+ +

Let's run down the CRU again.
•

>0000-03FE CRU TMS 9901 space, required.
>0404-10FE For test equipment use on production line.
>1100-11FE Disk Controller.

>1200-12FE Modem.

>1300-13FE Primary RS232, serial ports 1 & 2 and parellel port #1.
>1400-14FE Unassigned.
>1500-15FE Secondary RS232, serial ports 3 & 4 and parellel port #2.
>1600-16FE Unassigned
>1700-17FE Hex-bus (tm).

>1800-18FE Thermal printer.
>1900-19FE EPRCM prograirmer, something that TI planned but never came out

with.

>1A00-1AFE Unassigned
>1B00-1BFE Unassigned
>1C00-1CFE Video Controller Card.

>1D00-1DFE IEEE. 448 Controller Card,apparently something else that TI didn't
release.

>1E00-1EFE Unassigned
>1F00-1FEE P-Code~Card.

VDP RAM 16K

>0000-02FF SCREEN IMAGE TABLE (.75K)
This portion of VDP Ram contains the characters that you see on
your screen. Bex 0000 is the character in the top-left corner of
the screen. The ascH values have offset value of >60.

>0300-036F SPRITE ATTRIBOTE TABLE (.IK)
This table holds the information for all 28 sprites.
eg. position(dot row, dot column), character numberf and its color.

>0370-077F PATTERN DESCRIPTOR & SPRITE PATTERN TABLE (IK)

Contains the patterns for characters & sprites,
eg. address for the space is (768+8*32=1024).

>0780-07FF SPRITE MOTION TABLE (.12K)
This holds row and column velocities for all 28 sprites and it used
by the Interrupt routine in console ROM. The routine executes 60
times a second(or 60 Hertz)and since it is interrupt driven it will
use the values i this table to update the Sprite Attribute Table.
Each sprite uses 4 bytes. One for row velocity, one for column
velocity, and 2 for the system to use.

A-20

>0800-08lF COLOR TABLE (.03K)
This portion contains the foreground and backround color
information for each character set. The definition for each color

uses one byte, bytes 0-3 for foreground and 4-7 for backround.
There are 32 bytes in the table. (Sets 1-32). Sets 1-3 arenft used
Set 4(in table) is character set 0, set 5 is 1, etc. up to set
18(for table) 14 for character set. Sets 19-32 aren't used by the
'COLOR1 statement in Extended BASIC.

>0820-35D7 DYNAMIC MEMORY SPACE (11.5K)
This holds your program and other things like PAB(Peripheral Access
Block), strings, symbol table, numeric value table,& the line
number table(for finding the lines of your program thats in the
crunched format) .Your BASIC program is loaded from >35D7(bottom)
and up.Lines appear as they as typed in, not in the order of line
numbers (like 100,110,120).

>35D8-3FFF FILE BUFFERS (2.5K)
CALL FILES(n) will change this starting address but with CALL FILES
(3) it start repectively at >35D8. If the power up routine finds a
disk controller then the computer will automatically reserve this
this space for drive control, file allocation, and data buffering.

| Console (SOI 18K |
+ +

There are 3 GROM chips in our consoles. Each has 8K of space but only 6K is
used. The difference between ROM and GROM is that S*OM automaticallt increments
itself everytime it is accessed.GRCM is also written in S>L (Graphics
Programming Language),which TI wrote themselves. Here are those 3 GROM chips:

GROM 0 >0000-17FF The title screen power up routine, title screen character
set, standard character set(Dpper & Lower casd), cassetre DSR
messages and the trigonometric functions.

GROM 1 >2000-37FF Vector tables for BASIC, the error messages, and part of the
BAISC interpreter.

GROM 2 >4000-57FF Part of the BASIC interpreter,the reserved word list and
their associated token yalues.

GRCM chips 3-6 (24K)are in the Extended BAISC cartridge and contain the
following:

GROM 3 >6000-77FF X/BASIC vector tables, the error statements for X/BASIC and
part of the X/BASIC interpreter.

f^ GROM 4 >8000-97FF Part of the X/BASIC interpreter.

GROM 5 >A000-B7FF Part of the X/BASIC interpreter.

GRCM 6 >C000-D7FF Part of the X/BASIC interpreter, the reserved word list and
their associated token values. . _n

A-21

Video Display Processor RAM for Extended BASIC

VDP , a complete look.
-+

>0000 VDP SCREEN IMAGE TABLE _T 768 bytes

each screen location takes up 1 byte, the character
value at each location is offset bv >60.

LOCATI0N=C0L+32* (ROW-1)

>0300 SPRITE ATTRIBUTE TABLE 112 bytes

Each sprite takes up 4 bytes, (room enough for only 28)
These for bytes consist of vertical postion -1, horizonral
position, character # + >60, clock bit, color.

>036F

>0370 EXTENDED BASIC SYSTEM BLOCK

>0371 Auto Boot (needed flag)
>0372 Line to start execution at

>0376 Saved symbol table "GLOBAL" pointer (used with
subprograms).

>0378 Used for CHRS

>0379 Sound blocks

>0382 Saved program pointer for continue and rext pointer
for break

>0384 Saved buffer level for continue

>0386 Saved expansion memory for continue
>0388 Saved value stack pointer for continue
>038A ON ERROR line pointer
>038C Edit recall start address

>038E Edit recall end address

>0390 Used as temporary storage place
>0392 Saved main symbol table pointer
>0394 Auto load tenp for inside error
>0396 Saved last subprogram pointer for continue
>0398 Saved ON WARNING/SREAK bits for continue
>039A Temp to save subprogram table
>039C Same as above but used in subprograms
>039E Merged tenp for PAB (Peripheral Access Block)pointer
>03A0 Random number generator seed 2
>03A5 Random number generator seed 1
>03AA Input temp for pointer to prompt
>03AC Accept temp pointer
>03AE Try again(used when you input a string instead of a

number)

A-22

>03B0 Pointer to standard string in VALIDATE
>03B2 Length of standard string in VALIDATE
>03B6 Size temp for record length. Also temp in relocating

program

>03B7 Accept "TRY AGAIN" flag
>03B8 Saved pointer in SIZE when "TRY AGAIN"
>03BA Used as tenp storage place
>03BC Old top of memory for relocating program / temp for

INPUT

>03BE New top of memory for relocating program
>03C0 Roll out area for scratch pad RAM when certain

operations are performed
>03DC Floating point sign

>03EF

>03F0 PATTERN DESCRIPTOR TABLE 912 bvres
/ SPRITE DESCRIPTOR TABLE

Each character take up 8 bytes. There are 114 characters
here. Uiey are numbered from 30 to 143.

>077F

>0780 SPRITE MOTION TABLE 128 bytes

Each sprite takes up 4 bytes. Ihese 4 bytes contain the
vertical velocity, horizontal velocity, & the lasr 2 are
for system use.

>C7FF

>0800 COLOR TABLE 32 bytes

Each character set requires only 1 byte. This byte is
broken up into the foreground & backround.

>081F

>0820 CRUNCH BUFFER 160 bytes

©lis area of VDP is used raen the system needs ro crunch
ASCII values into token codes.

>08BE

>08C0 EDIT / RECALL BUFFER 152 bytes

What you type in at the comrand line is stored here.
>0957

>0958 VALUE STACK 16 bytes

Used by these RCM routines : SADD, SSUB, SMUL, SDIV, & SCOMP
>0967

A-23

>0968 11888 bytes

The items in this area move according to the size of the
crunched program & the system always reserves 48 bytes of
area.

The SYMBOL TABLES are generated during the pre-scan peroid
after you type RUN. Ihe strings are placed into memory when
they are assigned.

WITHOUT MEMORY EXPANSION:

-STRINGS

-DYNAMIC SYMBOL TABLE & PASS

-STATIC SYMBOL TABLE

-LINE NUMBER TABLE

-PROGRAM SPACE(crunched program)

WITH MEMORY EXPANSION:

-STRINGS

-DYNAMIC SYMBOL TABLE & PASS

-STATIC SYM30L TABLE

-Numeric values, line number table,
& program space are moved into
High-memory expansion(>A000)

>37D7

>37D8 DISK BUFFER AREA [default 'CALL FILESO)1] 5 byzes

>37D8 Validation code for the disk controller DSR (>AA)
>37D9 Points to TCP of VDP nemory (>3FFF)
>37DB CRU base identification

>37DC Maximum number of OPENed files (>03 default)

File Control Block for 1st file OPENed 518 bytes

>37DD Current Logical record offset
>37DF Sector number location of File Descriptor Record
>37E1 Logical Record Offset(used woth VARIABLE files only)
>37E2 Drive number(using the high order bit)

File Descriptor Record(brought from the disk 256 bytes)
>37E3 File nan**

>37ED Reserved (X3000)
>37EF File status flags(file type & write protection)
>37F0 Max number of records per Allocation Unit(l AD=1 Sector)
>37F1 number of sectors currently allocated (256 byte blocks)
>37F3 End of File offset within the last used sector
>37F4 Logical record length
>37F5 # of FIXED lenght records CR # of sectors for VARIABLE

length
>37F7 Reserved O0000 >0000 >0000 >0000)
>37FF Pointer blocks

>38E3 Data Buffer area(256 bytes)

A-24

^

yi^N

r

r

>39E3 File Control Block for 2nd file OPENed (6 b) s 518 bytes

>39E9 File Desriptor record (256 bytes)
>3AE9 Data Buffer area (256 bytes)

>3BE9 File Control Block for 3rd file OPENed (6 b) 518 bytes

>3DEF

>3BEF File Descriptor record (256 bytes)
>3CEF Data Buffer area (256 bytes)

VDP STACK AREA

>3EEB DISK DRIVE INFO

>3EEB Last drive number accessed
>3EBC Last track access on drive #1
>3EED Last track access on drive #2
>3EEE Last track access on drive #3

>3EEF not used by the 4A , it might have been used
by the 4 (?)

>3DEE

252 bytes

>3EEA

4 bytes

>3EEE

-+

6 bytes

>3EF4

>3EF5 VOLUME INFORMATION BLOCK 256 bytes

An exact copy of sector >0 from the disk last accessed,
>3FF4

>3FF5 FILE NAME COMPARE BUFFER

Contains disk number & 10 character file name from last
access.

U bytes

>3FFF

References:

-Millers Graphics, "TEE SMART PROGRAMMER"
-"MICRCpedium"
-Editor/Assembler's REFERENCE MANOAL
-"TI-99/4A CONSOLE & PERIPHERAL EXPANSION SYSTH4 TECHNICAL DATA"
-'9900 FAMILY SYSTEMS DESIGN1
-"IMS 9918A VIDEO DISPLAY PROCESSOR DATA MANUAL"

A-25

DISK DRIVE SPECIFICATIONS
VERSION i.i SEPTEMBER 12, 1983
by Louis Guion, Startext 77336

: : sside: i :s v:
manufacturer i model number jhi gh.' denss tpis bytes spwr i

•I- •!•

12VSACCES
PWRSTIME

MOTOR
DRIVE COMMENT

AlpsElectr
Canon
CD.C.
C.D.C.
Epson

Hitachi
Matsushita
Matsushita
Microoolis
Mitsubishi

ic!FDD2223
:mDD211
59409
S9428
SSD521

— I

Mitsubishi
MP I
MPI
MPI
MPI

National
Panasonic
Qunetrack
Quaetrack
Qunetrack

SHFD305B
SJA331
IJA3351-2
11113V
!M4831
I

IM4833
SB51
!BS2
S301C-200
J302B-100
•I

SJA331-2
SJA551-2
!142
S142LX
S542

•J-

J1/2
:i/2
SFull
:i/2
:i/2

I
SDSDDS48 S360K i I
!DSDD!48 S360K S I
:dsdd:48 S360K : :
SDSDDS48 I360K S.4AS

•I"
.'1/2
!l/2
!l/2
:fuii
:i/2

i :
SSI *
DSQDl' I i
DSD0S48 S360K S

I I

:i/2
iFuii
5Full
;i/2
11/2

!l/2
!l/2
:i/2
:1/2
:Fuii

•I- •1-

DS(3D!96 !720K S.3A
SSSDI48 ! 90K !
DSDD S I S

dsdd:

dsdd:as
dsdd;48
DSDD!48
DSDD!48

:«8

I

S36CK
1360K
1360K
!360K
I

Remex
Sanyo
Sanyo
Snugart
Shugart

SRFD480
SFDA5200B/PC
:SMS48D
5400L
SSA433

.'2/3
!l/2
!l/2
SFull
!l/2

11/2
il/2
SFull
!l/2
11/2

I J

S36CK i
S360K :
I360K S
! 90K J
!360K S.6A

S720K !
S1.6H ;
1 90K J

DSDD!48
DSDD!48
DSDD! 48
SSSDS48
DSDD148

DSGDS96
!96

SSSDS48
sssd:
DSDD!48

Shugart
Snugart
S i emens
Tanaon
Tanaon

landon
Tandon
Tandon
Tandon
Tandon

TEAC
TEAC
TEAC
TEAC
TEAC

TEAC
TEC
Toshiba
Toshiba
Toshiba

.E.Data

SSA463
1SA475
sfddioo-s
ITK50-1
STK33-2

ITW3-4
STM65-2L
STM100-1
:tm100-2
STM101-4

1FD33A
SFD55B
SFD33BV-06
:fd«5E
SFD33F

JFD35GrV-AT
5FB303
S3401
SND04D
JND040T
•I-

JTD580
•

I
I
I

11/2
!l/2
SFull
SFull

11/2
!l/2
1/2
1/2
1/2

DSSDS96

SSSD!48
DSDD148
DSSO!

SSSDS
DSDD!48
DSDDi48
SSSD196
DS8DS96

:i/2

J1/2
11/2

DSQDl96

;ddi -
2 I

IDSDDJ

!i3«
SDSI

1/2
•I- I-

J

S360K

J720K
J
I180K

I360K
J

I

1

S18CK ! i
S360K S.4AS,
\360K : :
ssook : :
: in : s

11.21 :
: 90C :

J I 1 I I 1
•I-

,4A 6MSEC
Drect
Drect O.K. in PBoxi

.7A

6A

3A

6M5EC

6KSEC

eKSEC

6KSEC

6MSEC
6KSEC
6MSEC
3WSEC
3MSEC

J
•I-

Belt

Belt

Drect

Drect
Belt

Belt

Belt
Belt

Drect
Drect
Drect
Drect

Sold in PScx

Hi Pwr Reqnt

Sold in PScx
O.K. in PScx

For the "AT"
Sold in PSox

O.K. in PBox
No Hd Ld Sol

For the "AT"
9Mer\z

drive?fhJ M?Ca?tl00 4»*"*,nd?d to "•!* TI-99/4A users in identifying disk
Kiir^rJ«ii?*X<2? "m?*tlblee!rith thi»r P»"Pheral Expansion Boxes and with
ve^r^ertl^Sn?***??*; Since all information had been garnered froe
be used Sith clu??^ A..it4.i$**ssum*f !? b* corr»«« but must; none-the-less8« usea witn caution due to transcription and other typographical errors.

so bv^JltLtTnnThf*" iU *ny**^)T *dd £° theinformation presented, please docontacting the author at Startext MC 77336. Tour help is appreciated!
A-26

/f^N

/0^>\

TOKENIZED COMMAND STORAGE by George F. Steffen

Some of you may have heard that there is a method of using a single key to
enter a statement when programming. This is not an advertised feature of the
TI 99/4(A) but results from the way TI Basic stores the program. Each
statement in the procram is stored as a single byte with a value over 127. The
list of values and meanings is given below. HEX is the hexadecimal (base 16)
value and DEC is the decimal value. Most of those values under 199 are
available directly from the keyboard by the use of the Control key along with
another key. When in the immediate mode, if you enter a number, the operating
system assumes that you wish to enter a Basic line. If the line number is
followed by a Basic statement, that statement is converted to its value and
stored. If you enter a valid value, the conversion step is not necessary and
the value is stored directly. However, if you then LIST the line, the meaning
of the statement will be printed. For example, Control end Z equals REM|
Control and U equals RANDOMIZE and Control and j equals PRINT. You can
experiment to find other keys which will equate to statements.

TOXENIZED COMMAND STORAGE

HEX DEC MEANING HEX DEC MEANING HEX DEC MEANING HEX DEC MEANING

80 12S

81 129

82 130

83 131

84 132

83 133

86 134

87 135

88 136

89 137

8A 138

8B 13«»

SC 140

8D 141

8E 142

8F 143

90 144

91 143

92 144

93 147

94 148

93 149

96 ISO

97 131

98 1S2

99 153

9A 154

9B 153

9C 154

9D 157

9E 158

9F 159

Note 1

ELSE

I <

IF

60

GOTO

G0SUB

RETURN

de:f

DIM

END

FOR

LET

BREAK

UNBREAK

TRACE

UNTRACE

INPUT

DATA

RESTORE

RANDOMIZE

NEXT

READ

STOP

DELETE

REM

ON

PRINT

CALL

OPTION

OPEN

AO 160

Al 161

A2 162

A3 163

A4 164

A5 165

A6 166

A7 167

A8 168

A9 169

AA 170

AB 171

AC 172

AD 173
AE 174

AF 175

BO 176

Bl 177

B2 178

B3 179

B4 180

B5 181

B6 182

B7 183

B8 184

B9 185

BA 186

BB 187

BC 188

BD 189

BE 190

BF 191

CLOSE

SUB

DISPLAY

IMAGE *

ACCEPT *

ERROR *

WARNING*

SUBEXITS

SUBEND *

RUN «

LINPUT *

Note 1

Note 1

Note 1

Note 1

Note 1

THEN

TO

STEP

f

I
i

)

(

8c

Note 1

OR *

AND t

XOR •

NOT *

CO

CI

C2

192

193

194

C3 195

C4 196

C5 197

C6 198

C7 199

C8 200

C9 201

CA 202

CB 203

CC 204

CD 205

CE 206

CF 207

DO 208

Dl 209

02 210

D3 211
D4 212

D5 213

04 214

D7 215

08 216

D9 217

DA 218

DB 219

DC 220

DD 221

DE 222

DF 223

*

/

Note 1

Note 2

Note 3

Note 4

EOF

ABS

ATN

COS

EXP

INT

L06
SON

SIN

SGR

TAN

LEN

CHRS

RND

SE6S

POS

VAL

STR»

A6C

PI *

REC

MAX *

EO 224

El 225

E2 226

E3 227

E4 228

E5 229

E6 230

E7 231

EB 232

E9 233

EA 234

EB 235

EC 236

ED 237

EE 238

EF 239

FO 240

Fl 241

F2 242

F3 243

F4 244

F5 245

F6 246

F7 247

F8 248

F9 249

FA 250

FB 251

FC 252

FD 253
FE254

FF 255

MIN *

RPTS *

Note

Note

Note

Note

Note

Note 1

NUMERIC*

DIGIT *

UALPHA

SIZE

ALL

USING

BEEP

ERASE

AT

BASE

Note 1

VARIABLE

RELATIVE

INTERNAL

SEQUENTIAL

OUTPUT

UPDATE

APPEND

FIXED

PERMANENT

TAB

• (Files)

VALIDATE*

Note 1

*

s

*

*

*

*

*

Note 1.

Note 2.

Note 3.

Weaning unknown, not used in Basic or Extended Basic.
Unquoted string.
Quoted string.
Both the above are -followed by one byte giving the string length and
then by the string. There is no closing quotation mark or end marker.
Following two bytes are line number—second plus 236 times the -first.
Recognised by Extended Basic only.

Not© 4.

A-27

ERROR CODE LISTING

EXTENDED BASIC ERROR CODES

10 Numeric overflow
14 Syntax Error
16 Illegal after Sbrtn
19 Name too long
20 Unrecognized Char
24 $/# Mismatch
28 Improperly used name
36 Image error
39 Memory Full
40 Stack Overflow
43 Next without For
44 FOR-NEXT Nesting
47 .Must be in Sbrtn
48 Recursive Sbrtn CALL
49 Missing SUBEND
51 RETURN without GOSUB
54 String Truncated
56 Speech $ too long
57 Bad Subscript
60 Line not found
61 Bad Line *
62 Line too long
67 Can't CONtinue
69 Command Illegal in Prgra
70 Only legal in prgrm
74 Bad Argument
78 No Program Present
79 Bad Value
80 Nil
81 Incorrect Argument List
82 Nil
83 Input Error
84 Data Error
97 Protection Violation
109 File Error
130 1/0 Error
125 Sbrtn not found

EDITOR/ASSEMBLER ERROR CODES
XB ERROR EQUATES

EXECUTION ERRORS

0-7 Standard I/O
08 Memory Full
09 Incorrect Statement
OA Illegal Tag
OB Checksum Error
OC Dup. Definition
OD Unresolved Ref.
OE Incorrect Statement
OF Program not found
10 Incorrect Statement
11 Bad Name
12 Can't Continue
13 Bad Value
14 Number too big
15 String/Number
16 Bad Argument
17 Bad Subscript
18 Name Conflict
19 Can't do that
1A Bad Line Number
IB FOR NEXT Error
1C I/O Error
ID File Error
IE Input Error
IF Data Error
20 Line too long
21 Memory Full
22 Unknown Error Code

LOADER ERROR CODES

0-7 Standard I/O
8 Memory Overflow
9 Not Used
10 Illegal Tag
11 Checksum Error
12 Unresolved Ref.

ERRN0 >0200
ERRSYN X>300
ERRIBS >0400
ERRNQS >0500
ERRNTL >0600
ERRSNM >0700
ERR0BE >0800
ERRMUV >0900
ERRIM >0A00
ERRMEM >0B00
ERRS0 >0C00
ERRNWF >0D00
ERRFNN >0E00
ERRSNS X>F00
ERRRSC >1000
ERRMS >1100
ERRRWG >1200
ERRST >1300
ERRRBS >1400
ERRSSL >1500
ERRLNF >1600
ERRBLN >1700
ERRLTL >1800
ERRCC >1900
ERRCIP >1A00
ERR0LP MBOO
ERRBA >1C00
ERRNPP >1D00
ERRBV >1E00
ERRIAL >1F00
ERRINP >2000
ERRDAT >2100
ERRFE >2200
ERR10 >2400
ERRSNF >2500
ERRPV >2700
ERRINV >2800
WRNNQ >2900
WRNST >2A00
WRNNPP >2B00
URNINP >2C00
WRNIO >2D00

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
36
37
39
40
41
42
43
44
45

Numeric Overflow
Syntax Error
111. after Sbprgm
Unmatched Quotes
Name too long
$/# Mismatch
Option Base Error
Improperly used name
Image Error
Memory Full
Stack Overflow
Next without. For
FOR-NEXT Nesting
Must be in Sbprgrm
Recursive Sbprgrm
Missing SUBEND
RETURN without GOSUB
String Truncated
Bad Subscript
Speech $ too long
Line not found
Bad Line Number
Line too long
Can't Continue
Illegal in Program
Only legal in Program
Bad Argument
No Program Present
Bad Value
Incorrect Argument List
Input Error
Data Error
File Error
I/O Error
Subprogram not found
Protection Violation
Unrecognized character
Numeric Overflow
String Truncated
No Program Present
Input Error
I/O Error

TI BASIC ERROR CODES PERTAINING TO DISK SYSTEM TI WRITER ERROR CODES
FIRST *
OPEN
CLOSE
INPUT
PRINT
RESTORE
OLD
SAVE
DELETE
EOF

SECOND #
Can't find specified Disk Drive
Disk or program is Write Protected
Bad Open Attribute
Illegal Operation
Disk full or too many files opened
Attempt to read past EOF
Device Error
File Error

DISK MANAGER ERROR CODES

FIRST *
OTHER
SEEK/STEP
INPUT
PRINT
NIL
NIL
NIL
NIL
Special Error Code for
Comprehensive Test

SECOND #
Rec not found
Cyclic Redundancy
Lost Data
Write protect
Write fault
No Disk Drive
Invalid input

0 -

6 -

7 -
00 -
02 -
04

Indicates Disk Controller not on;
OR: Diskette not Initialized
No Disk in Drive; OR: Is upside down;
OR: Drive is not turned on
No Disk in Drive
Illegal use of LoadF, PrintF: OR:
No file in Diskette with Filename used
Disk is full

06 - PrintF Command in progress was
interrupted; OR: Disk Door was opened
while Red Light was on

07 - Invalid Filename (I.E. Name too long
or using invalid characters)

15 - Invalid Disk Drive Number, or Device

I/O ERRORS

FIRST *
1: OPEN
2: CLOSE
3: PRINT
4: RESTORE
5: OLD
6: SAVE
7: DELETE

SECOND i
Device not found
Write Protected
Invalid I/O Command
Out of space
EOF
Device Error
File/Data Mismatch

A-28

DISK Mff
by Earl Hall

The foliating is a caaplete and, to the best of ty
knowledge, accurate description of the Disk Directory
foraat and file storage allocation used by the TI-99/4CA)
Earl Hall CoapoServe ID - 72746.3244

SECTOR 0 - Volute Intonation Block

ESS CONTEXTS

0000-0009 Disk naae - up to 10 characters
OOOft-OOOB Total water actors an disk

00148*360, MZDO*720, >0S»*1440)
0O0C >0? (t of sectors/trt)

0001HO0F 'DST 044534B)

0010)S0 = Disk backup protected, >20 - not
protected

0011 I of tracks per side OSM0, >23*35)
0012-0013 I of sides/density (>0101*SS/S3,

>O201*DS/SD, >02C2=8S/DD)
0035-entf Sector allocation bit tap* See note below

NOTE on >003E-end: This is a sector-by-sector bit
sap of sector use; !*sector used, O*sector available*
The first bvte is for sectors 0 through 7, the second for
sectors 5 thrcugn IS, and so on. iithin each byte, the
bits correspond to the sectors frta right to left. For
exaaple, if byte >0C3S contained >CFO0 then the first
byte eouals 1100 1111. This eeans that sectors 0 through
3 are used, sectors 4 and 5 unused and sectors 6 and 7
used. Indorsation for the 2nd side of a 9S/SD disk

starts at byte XX165 and ends at byte XXffl.

SECTOR 1- Directory Link

Each IHut Nurd lists the actor nuaber of the File
Descriotcr Record for an allocated file, in alphabetical
order of the file naaes. The list is tereinated by a
word containing >0000; therefore, the aaxisua nuaher of
files per disk is 127 [(254/21-1J. If the alohabetical
order is corruoted (by asystei crash during naae change,
for instance), the binary search aethod used to locate
files nill be effected and files aay becoae unavailable.

SECTOR >2 TO >21 - File Descriptor ftecorcs

ADDRESS C0HTEHTS

0000-0009 File naae - up to 10 characters

0OOC File type: >01«Prograe(eeeory-ieage)
>00*DIS/FIX M)2=IMT/FII

>80*DIS/VAR >B2*IKT/VAR

File deletion protection invoked by Disk
ilanager 2 will be shewn by >08 added to the
above.

t of (HAXRECSIZE) records/sector

Nueber of sectors allocated to the file.

(Disk (imager 2 will list one tore than
this nuaber, thereby including this sector
in the sector count)

For aeaory-iaage proem files and
variable-length data files, this contains
the nuaber of bytes used in the last disk

sector. This is used to deteraine

end-of-file.

0011 HAXRECSIZE of data file.

0012-0013 File record count, but with the second byte
being the high-orbe- byte of the value.

001C - end Slock Link (see note)

000D

000E-O0OF

0010

Note on file storage: Files are placed on the disk
in first-cnae / first-served aanner. The first file

writtra «ill start at sector >0022, and each subsequent
file will be placed after it. If the first file is
deleted, a newer
occupied.

file will be written in the soacs it

If this space isn't big enough, the file will be
'fractured', and the reaainde* will be placed in the next
available block of sectors. The block link sac keess

tract of this fracturing. Each block link is 3 bytes
lone. The value of the 2nd digit of the second bne
tolioaed by the 2 digits of the first byte is the acdress
of the first sector of this eztait. The value of the 3rd

byte followed by thB 1st digit of the 2nd byte is the
nuaber of additional sectors within this ertent.

Sector 2 thnagh >21 are reserved for File
Descriptor Records and are allocated for file data only
if no other available sectors exist. If acre than 32

files are stored on a disk, additional File than 32 files
are stored on a disk, additional File Oescristor Records
will be allocated as nesied, one sector at a tiee, froe
the general available sector pool.

(reprinted froa the newsletter of the Central Westchester
99'ers.)

A-29

FORMAT FOR DISK DIRECTORY/ALLOCATION OF FILE STORAGE

From: "The paper Peripheral" Central Texas 99/4A Users Group

The following is a complete and, to the best of my knowledge,
accurate description of the disk directory format and file storage
allocation used by the 99/4A computer.

SECTOR 0 CONTAINS THE VOLUME INFORMATION BLOCK

Address Contents

0000-0009 Disk name—up to 10 characters
0004-000B Total number of sectors on disk 00168=360, >0200"720,

>05AD=1440

000C >09 <# of sectors/trk)

000D-000F *DSK* < >44534B)

0010 >50=Disk backup protected, >20=not protected
0011 # of tracks per side <>28=40, >23=35)
0012-0013 # of sides/density <>0101=SS/SD, >0201=DS/DD, >0202=DS/DD>
0038-end Sector allocation bit mao. See note below.

Note on >0038-end: This is a sector—by-sector bit map of sector
use? l=sector used, 0=sector available. The first byte is for sectors
0 through 7, the second for sectors 8 through 15, and so on. Within
each byte., the bits correspond to the sectors from right to left. For
exam|M«?, if" byte >0038 contained >CF00 then the first byte equals 1100
111. This means that sectors 0 through 3 are used, at byte >0091.

SECTOR 1 CONTAINS THE DIRECTOR LINK

Each 16-bit word lists the sector number of the File Describtor
Record for an alocated file, in alphabetical order of the file names.
The list is terminated by a work containing >0000; therefore, the
maximum number of files per disk is 127 CU25/2)-13. If the
alphebetical order is corrupted (by a system crash during name change,
for instance), the binary search method used to locate files will be
effected and -files may become unavailable.

A-30

^jSpfe**^

^^rfPfWPV

DISK ALLOCATION (CONT.)
SECTORS 2 TO 21 CONTAIN THE FILE DESCRIPTOR RECORDS

Contents

File name——up to 10 characters
Filetype: >00=DIS/FIX, >01=Program (memory-image),
>02=INT/FIX,
>80=DIS/VAR, >82=INT/VAR
File deletion protection invoked by Disk Manager 2 will be
shown by >O0 added to the above.
of <MAXRECSIZE> record/sector.

of sectors allocated to this file. (Disk Manager 2 will
list one more than this number, thereby including this
sector in the sector count.)

For memory—image program files and variable—length data
files, this contains the number of bytes used in the last
disk sector. This is used to determine end-of-file.

MAXRECZIZE of data -*ile.

file record count, but with the second byte being the
high-order byte of the value.
Block Link. See note below.

Address

0000—0009

000C

000D

000E-000F

0010

0011

0012-0013

001C-end

Note on file storage: Files are placed on the disk in
first-come/first-served manner,. The first file written will start at

sector 0022, and each subsequent file will be placed after it. If the
first file is deleted, a newer file will be written in the space it
occupid. If this space isn't big enough, the file will De 'fractured*,
and the remainder will be placed in the next available block of
sectors. The block link map keeps track of this fracturing. Each
block link is 3 bytes long. The value of the 2nd digit of the second
byte followed by the 2 digits of the first byte is the address of the
first sector of the extent. The value of the 3rd byte followed by the
first digit of the 2nd byte is the number of additional sectors within
this extent. Sectors 2 through 21 are reserved for File Descriptor
Records and are allocated for file data only if no other available
sectors exist. If more than 32 files are stored on a disk, additional
File Descriptor Records will be allocated as needed, one sector at a
time from the general available sector pool.

A-31

A 32,33 reserved

Fixing Blown Disks
TERRY ATKINSON

If you have had a disk drive for any length of time,
chances are you have encountered such devastating messages
as "disk not initialized* (when you know full Nell it is!),
or "program not found ' (when you know it is supposed to be
there!). Or, perhaps, you have accidentally deleted a
prograi and want to get it back. All of the above can be
reaedied.

FIXING THE DISK BIT HAP (AUO)

AUO, or Sector 0 contains the disk bit sap, and if the
characters "DSK" are altered, you will be unable to catalog
or copy the disk. Indeed, a 'DISK NOT INITIALIZED error
will show up. You can, however, retrieve prograes and files
individually and transfer thee tc another disk. That is, if
you KNEN the naies of ALL the prograas/files on that disk.
Then is a better way which iliainates the possibility tnat
you "forgot1 about a particular prograi.

Boot up your disk fixer and load sector 0 froi a disk.
ANY disk will do. Then write the good sector 0 tc the bad
disk. This restores AUO on the bad disk, but the bit sap is
NOT correct, but tnis does not latter. All you want to do
is to be able tc catalog and copy the disk using DR2. Use
DK2 (not FORTH) to copy the entire disk to a new disk. You
can then initialize the bad disk. That is all there is to
it.

Ruined bit saps say not be discovered until it is too
late. Any new prograes saved to a disk with a ruined bit
•ap say write over older prograes or data. Goodby older
prograi. Therms nothing you can do about it.

Another possibility is that sector 0 has been damages,
perhaps by magnetism or a scratch on the surfacs. In this
case, you'll find out when vou try to read/write sector 0.
You won't be able to. Now you have a problea, but not
insuriountable. The only "fix" for this is tc copy all
lectors froa the bad disk to a good disk, sector-by-sector.
A tedious chore tc be sure, but at least you can get all
your prograes back. It will still be necessary to proceed
as above tc get your progress back, as the bit sap on the
new disk will not be correct. Now, I aa not sure how FORTH
would behave under this circuastar.ee. I know FORTH will
'choke' when it tries to copy a damaged sector, but whether
or not it will continue to copy the "good* sectors and put
then into their proper places on the new disk, is beyond ae.
I wouldn't chance it. Better to be safe than sorry and
stick to tried and proven acthods. Of course, you could
experiment. If it works, let us all know. If soae of you
FORTH addicts out there could shed soae light on the
subject, your coaaents would be lost welcome,

FIXIN6 THE DIRECTORY LINK HAP-(AUl)

SI keeps track (alphabetically) of all the
prograas/files on the disk. Bad si's could produce errors
such that atteapts to catalog the disk will produce a
heading, but no orograas, or aaybe just "soae" prograes will

be listed. To fix this, though, is extremely siaple.
Here's how:

First, look at AUO. Read the bit sap to determine
which sectors between 2 and 33 inclusive (>2->21) are

flagged as used. Hake a list of these sectors in a coluin.
Now, load each of these sectors in turn, and examine the
first 10 bytes of each. Copy the bytes down beside the
relevant used sector. Deteraine the alphabetical order of
these prograes aerely by readiing the nuaerical values. The
lower the nuaber, the closer to the front of the alphabet it
is. Now, produce a list of these sectors arranged
alphabetically. Here's a short examples

Sector used Hex Values in 1st 10 bytes 0) Program Naae
2 4B 20 20 20 20 20 20 20 20 20 K

3 « 20 20 20 20 20 20 20 20 20 I

5 4C 20 20 20 20 20 20 20 20 20 L

6 41 20 20 20 20 20 20 20 20 20 A

A 41 20 20 20 20 20 20 20 20 20 AB

Re-arranging the above alphabetically by sector would
produce: fc,A,3,2,3 **"£**' *r* 9c:n? tc fora the directory
link aap in N0RD.

Next, copy sector 1 froa ANY freshly initialized disk
and write it to the bad disk. This is the easiest way to
"restore" SI to all zero's. Now, use the (A)lter command,
and change the first, and each successive word tc produce
the alphabetical pointers. For exanple: 0006 0O0A 0003 0002
0005 0000. Note the 0000 at the end. The directory link
aap aust be terainated with the value, Now, write this
sector to the bad disk, and you're in business.

RETRIEVIN6 AN ACCIDENTALLY 'DELETED' PR06RAH

tthen you have a program in main memory, and type "new1,
the prograi is not erased. Only the pointers are changed,
but the program is still in meaory. A knowledgeable
prograamer could actually "unnew0 a prograa, although not
without difficulty.

The same applies if you "delete" a program from the
disk. Only pointers are changed, and the prograi is still
on the disk provided you have not performed a "save" since
the deletion. Unlike main aeaory, retrieval of a deleted
program from disk is extremely easy.

Locate the sector containing the deleted file's
directory (between 02->21). You can do this by using the
*F1K) STRIKE' coaaand, or, if your disk fixer does not have
this coaaand, aerely load them in one at a time and look for
your "deleted" program's naae in the first 10 bytes. Change
the prograa name to *ZZIIZ2ZZZT (HEX code, of course).
Now, write that sector back to it's proper spot. Load-in
sector 1 and locate the first word containing 0000 and
replace it with the directory sector I of your deleted
prograa. Ensure the next word is 0000. Now, exit the DF
and load the subject program as per noraal. Exit the
disk-fixer and load the prograa as noraal and save it BACK
to the saae disk under the saae program naae (ZZZZZZZZZZZ).
Nhy? Because this will automatically update the disk bit aap
(AUO). Now use DM2 to change the prograa name back to it's
original name and the task is complete.

A-34

r

A BRIEF ANNOTATED BIBLIOGRAPHY OF BOOKS RELATING TO TEE TI-99/4A
•(from the personal library of Barry A. Traver)

Assembly Language for the TI-99/4A

. *Lottrup, Peter M.L. Beginner's Guide to Assembly Language on the
TI-99/4A. Compute! Books, 1985. Although oriented toward Mini-Memory, this
book is excellent for beginners, with very clear explanations and lots of short
but useful program examples.

*McComic, Ira. Learning TI 99/4A Home Computer Assembly Language
Programming. Prentice-Hall, 1984. A good book for beginners who
have the Editor/Assembler but no previous experience in assembly language.

*Molesworth, Ralph. Introduction to Assembly Language for the TI Home
Computer. Steve Davis Publishing, 1983. Primarily for use with the
Biitor/Assembler, but also can be used with Mini-Msmory. Moves faster and
further than the McComic book.

*Morley, M.S. Fundamentals of TI-99/4A Assembly Language. TAB Books,
1984. A good book for those who have the Mini-Memory Cartridge but not the
Editor/Assembler.

BASIC Programs and Progranrning for the TI-99/4A

Ahl, David H. !&e Texas Instruments Home Computer Idea Book. Creative
Computing Press, 1983. "Includes 50 Ready-to-Run Educational Programs," but
most of them seem to be written in minimal BASIC and make no use of the

special features of the TI-99/4A.

*Carlson, Eaward E. Kids and the TI 99/4A. DATAMDST, 1982. This book
is truly "not just for kids," but one of the *best* introductions to learning
how to program in TI BASIC.

Casciato, Carol Ann, and Don Horsfall. TI-99/4A: 24 BASIC Programs.
Howard W. Sans, 1983. Available with optional program cassette. Games,
finances, hate management, Dersonal records, and utilities are included, all
in TI BASIC.

*Ccqpute! 's TI Collection: Volume One. A worthwhile collection of "over
30 TI-99/4A games, applications, utilities, and tutorials — most never before
published," including a word processor, a data base management system, an
electronic spreadsheet/ several games, helpful programcning tricks, and a super
graphics program called "SuperFont,. ft

Creative Programming for Young Minds...on the TI-99/4A. Creative
Progranming, 1982-1983. Several volumes in series. Hands-on instruction in
TI BASIC (plus some small later reference to TI Extended BASIC). This
series—like Carlsonfs book—is "not just for kids."

*Davis, Steve, ed. Programs for the TT Home Computer. Steve Davis
Publishing, 1983. Four dozen programs that *do* make use of the special
features of the TI-99/4A. Most of the programs only require TI BASIC and
cassette system, though sane make use of TI Extended BASIC, disk system,
memory expansion, or Terminal Emulator 2 and speech synthesizer.

A-35

D'Ignazio, Fred. TI in Wonderland. Hayden Book Company, 1984. "21
programs for learning and fun," intended for youngsters, by the popular author
of Katie and the Computer.

D'Ignazio, Fred. The TI Playground. Hayden Book Company, 1984. "23
programs for learning and fun," intended for young children.

Dusthimer, Dave and Ted Buchholz. The Tool Kit Series: TI-99/4A
Edition. Howard W. Sams, 1984. Brief 5- to 15-line subroutines—dealing with
color, sound and music, graphics, animation, and computation—that can be
combined to form the basis of educational programs and computer games.

Bigel, C.W. Stimulating Simulations for the TT-99/4A. Hayden Book
Coroany, 1984. 11 "simulation game programs" in TI BASIC, 2 in TI Extended
BASIC, adapted from a popular book first published in 1977.

*Flynn, Brian. 33 Programs for the TI-99/4A. Coipute] 3ooks, 1984.
Although this book contains a few games, including a version of "Chomp" called
"Vanilla Cookie," it is primarily concerned with mathematically-oriented
programs, including money management and business programs, curve-fitting
routines, matrix manipulations, statistics, and numerical analysis, all in
Extended BASIC.

*Flynn, Christopher. Extended BASIC Hone Applications on the TI-99/4A.
Compute! Books, 1984. An excellent book containing data file management **>.
utilities, bar graph programs, an electronic card file, an appointment)
calendar, and two electronic spreadsheets. Flynn's programs always allow data
to be saved on either tape or disk.

*Grillo, John P., and others. Data and File Management for the TT-99/4A.
Wn. C. Brown Publishers, 1984. "Includes 48 programs to give the more
advanced user techniques for information management." All programs are in TI
Extended BASIC, and many make use of disk. Topics included: pointers,
sorting, strings, linear and linked lists, sequential access files, direct
access files, trees, and inverted files.

Grillo, John P., and others. Introduction to Graphics for the TI-99/4A.
Wn. C. Brown, 1984. Includes 38 programs in TI Extended BASIC, sore making
use of disk, BDT note this comment by the authors: "In this book, we have
limited our discussion to low-resolution graphics only. We do not discuss the
color, sound, joystick, and lightpen features of this fine machine. We hope
to cover these topics in a subsequent book."

Herold, Raymond J. TI-99/4A Sound and Graphics. A fairly good guide to
sound, graphics, and speech synthesis on the TI-99/4A (including coverage of
TI's text-to-speech diskette). Of the games, "Alphabet Invasion" and "Slot
Machine" are done quite well.

Holtz, Frederick. Using & Programming the TI-99/4A Including
Ready-to-Run Programs. TAB Books, 1983. Although this book is widely
distributed, many chapters are either too elementary or too advanced to be of /)
benefit to the average TI-99/4A owner.

A-36

C^ Inman, Don, and others. Introduction to TI BASIC. Hayden Book Corpany,
1980. A straight-forward textbook on TI BASIC which does not go very far
beyond the two manuals supplied with the TI-99/4A.

Knight, Timothy Orr. TI-99/4A Graphics and Sounds. Howard W. Sams,
1984. Available with optional program cassette. 37 sample (and simple) TI
BASIC programs, originally written for the Commodore 64, most of which are
rather trivial in nature.

Knight, Timothy Orr, and Darren LaBatt. TI-99/4A BASIC Programs.
Howard W. Sams, 1984. Available with optional program cassette. Although
these 30 TI BASIC programs were also originally written for the Cormodore 64,
they are more substantial than those contained in the other book by Knight.

Kreutner, Donald C. TI-99/4A Favorite Programs Explained. Que
Corporation, 1983. 40 practical and entertaining programs in TI BASIC, with
explanations.

*Loreto, Reno A., ed. The TI-99/4A in Bits and Bytes. Reno A. Loreto,
1983. A hodge-podge collection, but one containing within it a number of
worthwhile programs (seme in Extended BASIC) and programming hints.

Peckham, Herbert D. Programming BASIC with the TI Home Cocputer.
McGraw-Hill Book Corpany, 1979. Another straight-forward textbook on TI
BASIC, going a bit further than Inman1s book.

(Reqena, C. BASIC Programs for Small Computers. Coipate! Publications,
1984. Although this book contains "things to do in 4K or less" for other
conputers (notably the Vic-20 and TRS-80), it also contains programs in TI
BASIC for the TI-99/4A.

Regena, C. Programmer's Reference Guide to the TI-99/4A. Cccpute!
Publications, 1983. Not so much a reference guide as an instruction manual on
how to program in TI BASIC, this book contains 48 programs by popular
columnist Cheryl Whitelaw (or "Regena" of 99'er and Compute! fame).

Rugg, Tom, and others. 32 BASIC Programs for the TI-99/4A. dilithium
Press, 1984. Programs include applications, education, games, graphics
display, and nethematics. 30 programs in TI BASIC, 2 in TI Extended BASIC.
(The programs can be ordered on disk or cassette.)

Sanders, William B. The Elementary TI-99/4A. DAIAMDST, 1983. Contains
useful chapters on "Data and Text Files" and "You and Your Printer," topics
usually ignored in similar books.

Sdiechter, Gil M. TI-99/4A: 51 Fun and Educational Programs. Howard
W. Sams, 1983. Available with optional program cassette. All programs are in
TI BASIC, and all are probably 4K or less in size.

Schreiber, Linda M. and Allen R. The Last Word on the TI-99/4A. TAB
^s Books, 1984. "55 practical and entertaining programs, all written in TI
f Extended BASIC," perhaps the best of which are "Battleship" and "Towers Game."

(Programs are available on tape.)

A-37

♦Sternberg, Charles D. TI BASIC Computer Programs for the Home. Hayden
Book Company, 1984. Programs include automobile, conversion, home finances,
kitchen helpmates, list, tutorial, and others, and each program is documented
with description, symbol table, and output saitple. The book is an adaptation
for the TI-99/4A of Sternberg's BASIC Computer Programs for the Home; now if
only someone will do an adaptation of his excellent two volumes on BASIC
Computer Programs for Business!

Turner, Len. 101 Programming Tips & Tricks for the Texas Instruments
TI-99/4A Home Computer. ARCsoft Publications, 1983. An uniirpressive book
carried in many bookstores.

Turner, Len. 36 Texas Instruments TI-99/4A Programs for Home, School &
Office. ARCsoft, 1983. Many other books on this list contain a much better
selection of programs in TI BASIC.

♦Winter, Mary Jean. Catputer Playground on the TI 99/4A. A colorful
collection of TI BASIC computer activities intended for children in grades 2
through 6. Adapted for the TT-99/4A by Marcia Carrozzo.

♦Wyatt, Allen. BASIC Tricks for the TI-99/4A. Howard W. Sams, 1984.
Available with optional program cassette. A good collection of 28 useful
subroutines dealing with selective input, rounding, dollars and cents, report
formatting, time and dates, upper and lower cases, sorting, and menus.

*Zaks, Rodnay. Your First TI 99/4A Program. Like anything done by Zaks,
this book is clearly written and well done. It is, however, ask the title
indicates, a book for those who are just beginning to leam "the basics of
BASIC."

Games in TI BASIC or TI Expended BASIC

Holtz, Frederick. TI-99/4A Game Programs. TAB Books, 1983. 32 "games,
puzzles, and brain teasers" in TI BASIC, with explanations.

♦Ingalls, Robert P. TI Games for Kids. Compute! Publications, 1984. An
excellent collection of 32 educational game programs in TI BASIC for children
ages 2 to 17.

McEvqy, Seth. Creating Arcade Games on the TI-99/4A. Conpute!
Publications, 1984. With the exception of one chapter devoted to TI Extended
BASIC, this book tells "how to" write arcade games in TI BASIC, and includes
eight finished games.

♦Mullish, Henry, and Don Kruger. Zappers: Having Fun Programming and
Playing 23 Games for the TI-99/4A. Simon & Schuster, 1984. Many favorites in
TI BASIC, including "Blackjack," "Hangman," "Hidden Word Search," "Othello"
("Flip-a-Disk"), "Simon," and "Tic TSic TOe."

♦Regena, C. TI Games. Compute! Publications, 1983. About 30 games for
the TI-99/4A, mostly in TI BASIC*) but including 7 in TI Extended BASIC,
including the excellent "Mystery Spell" and "Mosaic Puzzle."

A-38

Renko, Hal, and Sam Edwards. Terrific Games for the TI 99/4A.
Addison-Wesley Publishing Company, 1983. A mixed bag of 30-some unusual game
programs from the Netherlands in TI BASIC and TI Extended BASIC.

♦Singer, Scott L., and Tony E. Bartels. Games TIs Play. DATAMDST, 1983.
32 TI BASIC game programs based on the book Games Apples Play by Mark James
Capella and Michael D. Weinstock. (Programs are available on disk.

♦Ton, Khoa, and Quyen Ton. Entertainment Games in TI BASIC and Extended
BASIC. Howard W. Sams, 1983. Available with optional program cassette. One
of the ♦best^ program collections available; "Frogger"-lookalike "HomeBound"
is excellent. Book also contains a few non-game programs, e.g., "Address
Inventory" and "Auto Sprite Editor."

LOGO Programs and Programming for the TI-99/4A

♦Abelson, Harold. TI LOGO. McGraw-Hill Book Company, 1984. If you have
TI LOGO II, you already have this excellent book, but if vou have TI LOGO (I),
get it!

Bearden, Donna. 1, 2, 3, My Cotputer & Me. Prentice-Hall, 1983.
Though not just for the TT, this "LOGO funbook for kids" contains an appendix
on "editing features for Apple LOGO, MIT LOGO, and TI LOGO."

♦Conlan, Jim, and Don Inman. Sprites, A Turtle, and TI LOGO.
Prentice-Hall, 1984. "A friendly, playful introduction to the TI LOGO
computer language," very well done.

/^ ♦Programming Discovery in TI LOGO. Texas Instruments, 1982. Ihis
V attractive "student guide" was used by Texas Instruments with their Corputer

Advantage -Clubs and is very well designed.

Ross, Peter. Introducing LOGO: For the Apple II Cocputer, Texas
Instruments 99/4A, and Tandy Color Computer. Ross comments that "TI LOGO
differs from Terrain LOGO and Apple LOGO in several important ways.... The
main difference is that TT LOGO has 'sprites1 and 'tiles1 as well as the
turtle." IT LOGO II also has music. Ross's book is useful, but
unspectacular.

Thornburg, David D. Computer Art and Animation: A User's Guide to
TT-99/4A Color LOGO. Addison-Wesley Publishing Company, 1984. Ihis book is
also an introduction to TI LOGO, more general in content than the title might
suggest.

♦Watt, Daniel. Learning with LOGO. McGraw-Hill, 1983. Although
primarily concerned with Terrapin/Krell LOGO and secondarily with TI^LOGO,
this is one of the best and most comprehensive books on LOGO presently
available.

Miscellaneous Books for the TI-99/4A

♦The Best of 99'er: Volume 1. Emerald Valley Publishing, 1983. A very
worthwhile collection of articles on "Starting Out," "Programming Techniques
and Languages," "Inside BASIC and Extended BASIC," "LOGO," "Assembly

f Language," "Cotputer-Assisted Instruction," "Computer Gaining," and
"Applications and Utilities."

A-39

Blackadar, Thomas. The Best of TI 99/4A Cartridges. SYBEX, 1984. As
the title indicates, this book only covers some of the cartridges (but, in my
opinion, not always the bestK Nevertheless, this is one of the few books that
has any significant treatment of cartridges for the TI.

Brewer, Bill. The TI-99/4A User's Guide. Macmillan, 1983. How can you
not.like a book whose cover blurb says this?: "There is only one home computer
priced below $100 that has a microprocessor as powerful as the expensive IBM
PC's. And that home computer has more educational cartridges produced for it
than for any other system. It's the TI 99/4A, the best computer value for its
price on the market today."

♦Casciato, Carol Ann, and Donald J. Horsfall. The TI-99/4A User's Guide.
Howard W. Sams, 1983. An excellent book, carefully done, by two authors who
know the TT-99/4A well.

Garrison, Paul. The Last Whole TT 99/4A Book: Programs and
Possibilities. Wiley Press, 1984. Contrary to the promises on the cover, this
is not "the only book you need," although it does cover a lot of ground (with a
few inaccuracies here and there).

♦Heller, David and Dorothy. Free Software for Your TT-99/4A. Although
the information is not always entirely accurate, this book contains much
information not readily available elsewhere.

Micronova's Home Computer Directory for the TT 99/4(A). Micronova,
1983. A very useful book when it first appeared, although some of the "^N
information is new significantly dated.

The User's Guide to Texas Instruments TT-99/4A Computer, Software, *
Peripherals. Beckman House, 1983. A useful guide "by the editors of Consumer
Guide," this book has appeared in several different formats.

Willis, Jerry, and others. Things to Do with Your TT-99/4A Computer.
New American Library, 1983. Part of a series prepared by dilithium Press, this
book is fairly competent as an outside look, but unimpressive.

Albright, Ron. The Orphan Chronicles. Millers Graphics, 1985. A history
of the TT Home Computer and sources of infomation about it.

♦Especially recommended.

This list (prepared by Barry Traver, 835 Green Valley Drive, Philadelphia,
PA 19128) is not complete, but should prove useful to those who are interested
in knowing more about some of the books that are available for the TI-99/4A.

A-40

J0^m^\

/^^\

/0^^\

A Description and Commentary on the Geneve Computer
Some Implications for us all

by Chris Bobbitt
Presi dent, Asgard•Software

Copyright Chris Bobbitt 1986

At its introduction, the Myarc Geneve computer will be among the most
advanced computers available, and definitely the most advanced "home
computer" in history. It is more powerful than many minicomputers, but
is available at a price that would have been unheard of 3 years ago.

The following is a description of some of the capabilities of this
remarkable device.

MICROPROCESSOR:

The TMS9995 CPU is 5 to 6 times faster than a TKS9900, the processor
found in the TI99/4A. This processor is only slightly slower than the
68000 CPU, yet is much simpler to use, more accurate mathematically, and
contains a smaller instruction set. The advantages of this smaller
instruction set is an article in itself. Suffice it to say that this
technique, called RISC, is getting a lot of attention in programming
circles.

MEMORY:

The standard Geneve Computer comes with 640K of RAM. This is expandable
to 2 Megabytes using special memory expansion devices. A Myarc 5I2K card
can be made to work'with the Geneve with simple modifications. The Myarc
512K card memory may be directly accessed by programs.

GRAPHICS

The Geneve uses the Yamaha 9938 graphics processor. The 9938 processor
was designed by Texas Instruments and Microsoft Incorporated. ihe
computer world will discover this chip and its capabilities much in the
same way that they proudly announced 16 bit computing for microcomputers,
years after TI had introduced the TI99/4A. This graphics processor
supports a variety of different modes for graphics and text.

TEXT

The Geneve supports both 40 AND 80 column modes. The 40 column mode is
similar to that of the 99/4A, so none of your current word processing
software is obsolete. However, text, foreground and background colors
may. be any of 512 colors. 256 patterns are available for redefinition.
One of the 80 column modes is the same, while another supports blinking
text and multi-color text. Some limitations apply, but this permits
prograrraners of the system to use many of the advanced human factors
graphics *techniques just now being developed. The use of color to impart
information, much in the nature of peripheral vision can make word
processing tasks was well as the initial learning process easier. Your
Geneve computer will be able to keep up with this emerging technology for

A-41

some time. Indeed the rich resources of the TI programming community may /^
well result in some breakthroughs in graphics presentation. It is)
reasonably well known that some organizations in the community are
working hard in this area. Since each of these various screens, occupies
very little memory of the 128K of standard video RAM found on the Geneve,
up to 32 screens of text can be stored in memory at once. All of this
information is directly addressable by the programmer. This bodes well
to provide a rich environment for the system and applications programmer
and thus the user.

The Geneve supports every text mode of the 99/4A, as well as many new
modes that use much of the available memory. One of the more interesting
modes supports a resolution of 256 by 216 pixels. Each pixel can be any
of 256 colors. This mode also supports multi-color sprites. Each pixel
row of the sprite can be any of two colors. Another interesting graphics
mode supports 512 by 424 pixels with each pixel any of 16 colors. The on
screen display of a maximum of 16 different colors can be selected from a
pallet of 512 colors. This mode is the same resolution as the Apple
Macintosh computer, yet the system still finds the capabilty to support
sprites, which the Macintosh does not. The 9938 chip has built in
commands for line drawing, block moves and copies at hardware speeds.
Programmers will have a rich, challenging environment for creativity, all
at an affordable price for 99/4a owner and convert alike.

INTERFACES

The Geneve has a number of ports. For video, there is a port for an /^\
analog RGB monitor. The analog RGB monitor is more advanced than the
digital ones used by the TI Professional Computer. Texas Instruments
used the quality of the TI PRO monitor as a major component in its "Dare
to Compare" campaign against the inferior IBM PC display system. An
Amiga monitor displays the power of the Geneve quite well, and is readily
available. However, an additional port permits the use of your existing
TI99/4A video monitor. Therefore, your current equipment is not
obsoleted by the new machine, allowing you the luxury of leisurely
getting the best price for your existing monitor and cutting the best
possible deal for your upgrade. Indeed, some are already at work seeking
to separate early dropouts in the Amiga world from their monitors. The
Geneve also supports the Amiga mouse. Other monitors of the serial RGB
type work, however, so do not pay extra simply because the name on the
front.

Your 99/4A console can be used as a stand alone device with the purchase
of the Geneve. The Geneve comes equipped with an IBM style keyboard.
Other keyboards, costing from $50 to $500 will also work just fine.
Sipce the Geneve replicates the functions of the console, you will only
need the expansion system or one of the inexpensive expansion kits.

A multifunction port permits even more access to the Geneve. While
labeled as being for the Amiga mouse mentioned earlier, also can support
sophisticated applications input from equipment both exotic and common.
A video digitizer, for instance. Pictures taken from a video camera can /^
be fed into the system. A digitizing tablet, which turns the Geneve into)
an elaborate data collection system or a component of a computer aided

A-42

r

yffP^N

design (CAD) sytem is fully supportable, given proper software. Light
pens are of course appropriate input devices as is information from a
video cassette recorder or a video camera. Indeed, with external
converter devices available on the market, you can pipe in television
signals and enjoy crisp resolution and vibrant colors never seen before
from a commercial television set, thus putting your RGB monitor on
overtime.

HARDWARE COMPARISONS

To put this in perspective, compare the Geneve to other computers. The
Geneve comes with 640K of RAM, equivalent to a fully configured IBM PC
XT. This memory is expandable to 2 megabytes, twice the standard memory
of an Atari 1040 ST. The Atari ST, of course, is one of the more popular
"non IBM machines" on the market. The Atari ST is the fastest
microcomputer available in its price range. The Geneve is roughly
equivalent. The makers of the Geneve have gone to the extra expense of
installing special purpose chips to handle, among other things, input
from disks, lightpens, and other devices. In a similar vein, these
special purpose chips handle output to screen, disk and elsewhere. And
what about graphics? Again expensive special purpose redundance pays
off. Therefore, in graphics, input and output, the Geneve runs circles
around the Atari ST. The Geveve deploys eight times as many colors as
the Commodore Amiga. The Amiga is the superior machine in these
respects. The Geneve, unlike the Amiga and the IBM PC AT, supports
graphics with a 'true aspect1 ratio. This is the superior form, and
gives higher resolution through the use of square pixels, the tiny dots
used to give your computer screen, even your television its color and
appearance of depth.

The Geneve rates hiahly as a smoothly uogradeable machine. It obviously
will be compatable "'with the newly developed Myarc disk controller card.
In disk drives supported, the Geneve with the Myarc disk controller card
will defeat the IBM PC AT. Four 20 megabyte hard disks can be supported
with this upgraded configuration, not to mention that the same scheme
will control four (or less) double sided QUAD density floppie drives o"
the conventional 5 1/4 inch size. The drives that use the new plastic
bound three inch disks are supported as well. Knowing the market, the
Geneve makers realised they needed a system that would obsolete
gracefully, as has the 99/4A.

Features of the 99/4A which still challenge the marketplace are
retained. An example is the 99/4A's well known device independant
operating system. Virtually any peripheral can be attached, unlike
almost all other computers including those costing thousands. Device
independence is a feature you (the 99/4A owner) have purchased years ago
and one that should not be discarded in the name of progress. Therefore,
the Geneve is superior to most every micropcomputer in graphics, speed,
memory capacity, and in versatility.

A full blown Geneve system would contain a Geneve computer, a WDS model
hard and floppy disk controller, a TI RS232 card, plus a 3 slot expansion
kit, linked to two full blown 720 kilobyte floppy disk drives and a high
resolution serial RGB monitor. If bought all at the same time, using all

X

A-43

new components, your system would cost less than $1,000. One of the
finest features of such a system is that it can and probably should be
acquired incrementally, particularly if you currently own an expanded
99/4A system. For a machine of this class, this is an incredible price.
The Atari 1040 ST is well known as the first computer that cost less than
One dollar for each one thousand bytes of memory, new. The Geneve may be
the first machine to drive that cost down to fifty cents per thousand.

SOFTWARE

The Geneve will come bundled with a new version of Extended BASIC on disk
which is fully 6 times faster than TI Extended BASIC. Also included will
be a MS-DOS like _operating system. The package is called "DOS like"
because the commands used will be very close to MS-DOS. However, the
internal workings of the system will not resemble nor be compatable with
MS-DOS. This will be a boon for those who have had to struggle through
learning MS-DOS at work or on another machine. In the package also will
be an 80 column version of Tl-Writer with a larger memory.

A number of other products specifically designed for the Geneve will be
available at or near the release of the Geneve. A number of 'C
compilers will be available by all expectations. C is a very popular
language on 32 bit machines and is now beginning to appear in micro
computers in the last few years. Some business software will be readily
available. UCSD Pascal, actually a language within its own operating
system, will also be standard. Software developed on many machines,
including the IBM PC, Apple, and others which use this system will run
without modification on the Geneve.

Geneve software will allow users to set up directories as an aid
multiple files. A software RAMdisk will also be available,

with a notional or in-software emulation of a

this RAMdisk will be in memory, thus will
speed. Print spoolers will be available,

pay $200 for print spoolers, which merely are hardware
software, that fool both the computer and the printer. The

printer is wired to signal the computer to stop sending data while the
printer repositions the print head, or rolls up the platen. Meanwhile
the computer is burning up thousands of cycles waiting for printer to get
ready to receive data again. A spooler is nothing but an ever ready
printer to the computer and a patient computer to the printer. The job
is transmitted to the spooler in a second or two and you are ready to go
again while the printer chunks away.

The new
to manage
where the user can deal

disk. All interaction on

operate at extremely hi ah
People still
systems, now

TI BUSINESS MACHINES-The Geneve is assembly language compatable to the TI
mini computer world, and awaits a member of that coranunity to make that
software run.

There is one silver lining in the "Perils of Pauline" development path of
the Geneve, so fraught with delays. Time to think about the new arrival
has been purchased with the sweat of the developer in a process which
would normally have been extremely secret and quickly sprung on the
unsuspecting community with little warning.

A-44

_ NEW OFFERINGS

r
One new company has been started specificly to develop Geneve software.
A true multi-tasking operating system is among the goals of this firm.
Multi-tasking to a user means that several programs can be run at the
same time. Multitasking is at the heart of such programs such as
Sidekick for the IBM where various panels, or windows are pulled down to
allow notes and other activities to take place.

Yet another goal for this new developer is a macro-assembler. Macro
assemblers are small utility programs that can be strung together to
achieve a variety of. goals. In the mini computer world, programmers
adroit in the macros of their particular machine rarely had to write much
original code to achieve powerful results. This capability will soon
arrive for you with the Geneve.

Soon after shipments of the Geneve begin, BASIC and Pascal compilers will
be made available by this startup firm. A compiler may not be a familiar
concept to all who read this, though it is simple to pick up. When your
99/4A receives the run command, it'wakes up and "interprets" the program
you have told it to run; zvery single time. You probably are aware that
assembly language is faster. The reason for this is that it is closer to
machine language and therefore requires minimal "interpretation." BASIC,
however, along with a host of other languages is not that close to
machine language. Easier to remember and use, but requiring some form of
intervention. The interpreter is often used for BASIC. While it gives

/^n instant feedback, an interpreter is slower than a compiled program which
\ is a machine or assembly language program. You write the program as

usual, then run the program through a compiler. That program compiles a
collection of assembly language or machine code corranands. That
"compilation" is what you then use when you need that program. The
compilation is much faster, almost indistinguishable from a program
written in assembly language. The 99/4A only recently got an example of
a compiled BASIC and a compiled C. If you have yet to experience the
utility of compilers, you will certainly enjoy the Geneve. The increased
memory will, of course, make these compilers superior in performance to
anything currently on the 99/4A.

YET ANOTHER HUGE LIBRARY-Not one but two major resources are in the game
plan for this firm. CP/M is an operating system that has its own cult
following, and is still supported by a major commercial and cottage
industry. Transfer of CP/M (and yes, IBM) disks to the Geneve is in the
works. The firm is called Access Engineering, and is located in the
Washingtn D.C. area.

A HOST OF GENEVE SPECIFIC PROGRAMS are to come. Lou Phillips of Myarc
has estimated that four to five years of effort will be needed to
complete the full sweep of programs needed to truely tax the Geneve
system and the chips associated with it. During that period, if a new
design comes along, the card, not the entire structure can be modified.
Almost irrenediately however, terminal emulators, word processing programs

^^ that support such sophisticated typesetting concepts as proportional
f spacing will begin to arrive.

A-45

%%

Gccdbye 'til we meet •. .••

yiJ^^\

J0^\

/ngSP^N,

miCHDpEndium

GPL Assembler, INTERN
GPL Linker reviewed

on page 38

AN ASYLUM FOR ORPHANS. We're MICROpendium magazine in Round Rock, Texas.
MICROpendium covers only one subject: The TI99/4A. Since February 1984 MICROpendium has
given its readers information on the TI99/4A in an issue each monthl

TOPICS WE'VE COVERED

** Expansion systems
*? Bulletin boards and telecommunicating
• BASIC and XBASIC programming hints
* Getting the most out of Tl-Writer
^ Do it yourself SUPER CARTRIDGE
s Updates on new products
** Getting into hard disk systems
t? Graphics programs for your TI
*s Computing for the disabled
* Freeware for the 99/4A
• School computer literacy programs
t* Forth programming for the TI
• Disk drives and disk drive controllers
^ Reviews of software and hardware each month
*s ...and much, much more

CHECK SUBSCRIPTION TYPE. All prices in U.S. funds. Sorry, no credit card orders. Texas residents odd 87C sales tax.

D U.S. third class mail, $17.
• U.S. first class mail, $20.50
D Canada or Mexico, $20.50
Foreign: • surface mail, $23.50 • airmail, $37.

Please send me 12 issues of MICROpendium as checked above. I enclose a check or money order for $
Send to:

NAME.

ADDRESS

CITY STATE. _ZIP.

Sand your order to MICROpendium, P.O. Box 1343, Round Rock, Texas 78680

MICROpendium is your source for the best information on the TI99/4A home computer and
compatibles. To keep up with news and views on your computer, subscribe now I

THE SMART

PROGRAMMER

The Smart Programmer has long been recognized as the premier
periodical for 99/4A programmers. Since its 1986 merger with Super 99
Monthly (Bytemaster's former newsletter), the publication has taken on a
broader scope, providing invaluable material for power users and unparalleled
tips for the active Individual.

In each issue, full program listings are presented. Bytemaster's
newsletters have Included many breakthrough programs for file manipulations,
including creating Multiplan™ SYLK files from Extended BASIC, dumping an
Extended BASIC screen for printing from the Formatter of Tl-Vriter. creating a
Display Master command file automatically, creating an Extended Basic graphics
mode display from a TI-Artist Instance file, and converting an Assembly LIST
file into an Assembly source file (yielding a single source file when the COPY
directive Is used).

The Smart Programmer features tutorial articles on popular 99/4a
software, including Tl-Writer and MultiplanT".

And. of course, as the publication's name implies. The Smart
Programmer provides the best programming tips available, with coverage of all
of the popular 99/4A languages, written in a straight-forward, easy to
understand manner. Coverage has recently been expanded to include GPL, the
language used in GROM memory and now programmableas GRAM with hardware such as
Millers Graphics' Gram Kracker™. Look for a new beginner's corner,
coming soon!

Your subscription to The Smart Programmer will provide you with 192
pages of quality information, written by professionals, for less than the price
of a typical program!

The Smart Programmer Staff: Richard M. Mitchell (Editor); Craig Miller;
Charles M. Robertson; Mariusz Stanryak; Steven J. Szymklewicz. MD; Barry A.
Traver; D.C. Warren

Subscribe Now!

12 issues:

S18.ee First Class, U.S. and Canada
S15.ee Third Class, U.S. and Protectorates
S2C.ee Surface Mail, Foreign
S32.ee Air Mail, Foreign

Payments accepted by check or money order in tLS. funds, coded for processing
through the U.S. Federal Reserve Banking System. No billings or credit sales.
Dealer inquiries invited. Quantity discounts available.

NAME

ADDRESS

CITY

STATE

ZIP CODE

COUNTRY

Send to:

Bytemaster Computer Services
171 Mustang Street

Sulphur. LA 7e663-6724
U.SJL

«*"»• tracker u • trademark ef Millers Crepfclca.

Multiples U • trvdeaerk ef Mimeeft Ctrp.

	front-cover
	orphan-survival-handbook
	content000
	content001
	content002
	content003
	content003b
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012

	back-cover-inside
	back-cover

