

Learning
TI 99/4A
Home Computer
Assembly Language
Programming

Ira McComic

Wordware Publishing, Inc. Plano, Texas 75074

Library of Congress Cataloging in Publication Data

McComic, Ira, 1945-
Learning TI 99/4A home computer assembly language
programming.

Includes index.

1. TI 99/4A (Computer)--Programming. 2. Assembler
Language (Computer program language) I. Title,
QA76.8,T133M33 1984 001.64'24 83-23386
ISBN 0~915381~56~7

Design — Russell A. Stultz

Typesetting — Dianne Stultz

Page makeup — Mary Margaret Gibson

Manufacturing coordination and Marketing — Marlene Jowell

Copyright 1984 by Wordware Publishing, Inc.

4217 Country Club Drive
Plano, Texas 75074

All Rights Reserved

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.
Printed in the United States of America.

ISBN 0-915381-5k-7

10 9 8 7 6 5 4 3 2 1

Trademarks Used in this Book

TI is a registered trademark of Texas Instruments Incorporated.
UCSD Pascal is a trademark of the Regents of the University of California.

Dedication

To Gretchen, Jennifer, Matt, and Andy

iii

Chapter

1.1
1.2
1.3
14
1.5

Chapter

2.1
2.2
2.3
2.4
2.5

Chapter

3.1
3.2
3.3
34
3.5
3.6

Chapter

4.1
4.2

Chapter

5.1
5.2
53
5.4

Contents

Introduction

Purpose of the Book

Objectives

Prerequisites

Overview of the Book

Hardware and Software Requirements

What is Assembly Language?

Levels of Languages

Examples of Different Levels of Languages

Methods of Language Translation

Procedures for Developing an Assembly Language Programs
Main Ideas

The Structure of Data

Relationship of Data to a Program
Bit Quantities

Number Conversions

Data Representation

Constants and Variables

Main Ideas

The Structure of the TI Home Computer

The Parts of a Computer System
Main Ideas

Anatomy of Assembly Language Statements

Statement Fields

Program Example
Statement Syntax
Main Ideas

BN N

QONoo

11
12
13
25
30
31

33
39

41
42
45
49

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Chapter 7
71
7.2
7.3
7.4
7.5

Chapter 8

8.1
8.2
8.3
84

Chapter 9

9.1
9.2
9.3

Chapter 10

10.1
10.2
10.3

Chapter 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7

vi

Instruction Set Overview

Functional Categories

Data Movement Instructions
Compare Instructions

Jump Instructions

Arithmetic Instructions

Logical Instructions

Branch and Subroutine Instructions
CRU and External Instructions

Addressing Formats: General
Addressing Formats Overview
General Addressing Modes
Word and Byte Addressing
A Look at Another Instruction (Add Words)
Summary

Addressing Formats: Immediate and PC-Relative

Immediate Addressing
PC-Relative Addressing
Building a Program Example 88
Summary

Introduction to the Editor and Assembler

The Editor
The Assembler
Summary

Introduction to the Loader and Debugger

Using the Loader
Using the Debugger
Summary

Data Movement Instructions

The Move Instructions (MOV and MOVB)

The Swap Bytes Instruction (SWPB)

The Load Immediate Instruction (LI)

The Load Internal Registers Instructions (LWPI and LIMI)
The Store Internal Registers Instructions (STWP and STST)
The Shift Instructions (SRL, SRA, SRC, and SLA)

Program Example

51
52
53
54
55
56
57
58

59
60
72
74
75

77
81

89

92
94
101

103
105
115

118
120
121
122
124
125
133

Chapter 12 Compare Instructions

12.1
12.2
12.3
12.4

The Compare Values Instructions (C, CB, and CI)
Using the Jump if Low or Equal Instruction (JLE)
The Compare Bits Instructions (COC and CZC)
Program Example

Chapter 13 The Jump Instructions

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

The Equal Testing Instructions (JEQ and JNE)

The Carry Testing Instructions (JOC and JNC)

The Jump if No Overflow Instruction (JNO)

The Jump if Odd Parity Instruction (JOP)

The Logical Evaluation Instructions (JH, JHE, JLE, JL)155
The Arithmetic Evaluation Instructions (JGT and JLT)
The Jump Unconditionally Instruction (JMP)

Program Example

Chapter 14 The Arithmetic Instructions

14.1
14.2
14.3

14.4
14.5
14.6
14.7

The Add Instructions (Al A, and AB)

The Subtract Instructions (S and SB)

The Increment and Decrement Instructions (INC, INCT, DEC, and
DECT)

The Negate Instruction (NEG)

The Absolute Value Instruction (ABS)

The Multiply and Divide Instructions (MPY and DIV)

Program Example

Chapter 15 The Logical Instructions

15.1
15.2
15.3
15.4
15.5
15.6

The AND Operation Instructions (ANDI, SZC, and SZCB)
The OR Operation Instructions (ORI, SOC, and SOCB)
The Exclusive Or Instruction (XOR)

The Invert Instruction (INV)

The Initialize to Constant Instructions (CLR and SETO)
Program Example

Chapter 16 Branch and Subroutine Instructions

16.1
16.2
16.3
16.4
16.5

Subroutines

Non-Context Switching Subroutine Calls
Context Switching Subroutine Calls
Context Switching and Interrupts
Program Example

139
142
142
146

152
153
154
154

156
157
158

164
168
169

171
171
172
175

180
183
186
188
188
189

193
195
198
202
202

vii

Chapter 17 CRU and External Instructions

17.1
17.2
17.3
17.4
17.5

The Communication Register Unit (CRU)
The CRU Single-Bit Instructions (SBO, SBZ, TB)
The CRU Multi-Bit Instructions (LDCR and STCR)

The External Instructions (IDLE, RSET, LREX, CKON, and CKOF)

Program Example

Chapter 18 Other Assembly Language Concepts

18.1
18.2
18.3
18.4
18.5

Expressions

Relocation

Assembler Directives
Assembler Errors

Comparison of Utility Packages

Chapter 19 Machine Code Formats

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9

Relationship of Machine Code to Assembly Language
Determining the Number of Words of Machine Code
Machine Code Fields

The R Field

The C Field

The IOP Field

General Addressing Mode Fields

The Displacement Field

The PC Word Displacement Field

Chapter 20 Summary

Appendix A Instruction Summaries

Appendix B Number Tables

Appendix C ASCII Character Table

Index

viii

209
210
214
217
218

221
222
223
232
233

237
238
238
240
240
241
242
247
248

253

255

326

327

331

CHAPTER 1
INTRODUCTION

This book introduces assembly language programming with the TI Home Computer.

1.1 Purpose of the Book

Texas Instruments offers a variety of hardware (equipment) and software to use for
running and developing assembly language programs. The software includes the
Editor/Assembler package, the line-by-line assembler and the debugger which come
with the Mini Memory Module, and the software available with the UCSD p-System.

The specific operation and unique features of these products are described in the
documentation that accompanies each one. A lot of this documentation assumes that you
have previous assembly language experience and already know the assembly language
of the TI Home Computer. If you don't have that kind of experience or knowledge, this
book is for you. This book doesn’t replace the existing documentation but, rather,
supplements it.

The purpose of this book is to help you learn the basic concepts of assembly language
programming using the Texas Instruments Home Computer. It's designed to help you
learn the TI Home Computer’s assembly language instruction set and the structure of
assembly language programs. With this knowledge, you can

e understand existing programs

e customize programs

e create your own assembly language programs
With an understanding of assembly language, you begin to know the detailed architecture

of the TI Home Computer and can apply your understanding to directly control the
computer’s programmable components.

Chapter 1
1.2 Objectives

The six broad objectives of this book are:
1. To introduce you to assembly language programming concepts

2. Tohelp you learn the assembly language instruction set that belongs to the TI Home
Computer

3. To assist you in understanding programs written in assembly language for the TI
Home Computer.

4. To introduce the basic functions and uses of the assembly language development
tools that are available from Texas Instruments.

5. To guide you in beginning to write programs in assembly language for the TI Home
Computer.

6. To provide a foundation to help you understand how to use the advanced features
of the TI Home Computer such as graphics, sound, and speech.

1.3 Prerequisites

The material introduced in this book makes two assumptions. First, you already have
programming experience with some language (most likely with BASIC) but you haven't
programmed in assembly language. If you have assembly language programming
experience, that's helpful, but it's not necessary.

Secondly, you want to learn assembly language programming. This assumption is an
important prerequisite. Like other challenging subjects, learning assembly language can
be fun or it can be a chore, depending upon your approach. Hopefully, you'll enjoy the
learning experience.

1.4 Overview of the Book

The book begins by introducing fundamental assembly language concepts and describing
some of the unique features of the TI Home Computer. Chapter 2 compares assembly
language to other languages and discusses the advantages and disadvantages of assembly
language. Chapter 3 discusses the relationship of data to a program, describes different
ways of representing data, and illustrates methods of converting numbers from one
number system to another. Chapter 4 introduces the structure of the TI Home Computer

2

Introduction

and describes the major parts of the computer. Chapter 5 analyzes the structure of
assembly language statements and their syntax.

After exploring basic concepts, the TI Home Computer’s assembly language instructions
and addressing modes are introduced. Chapter 6 provides an overview of the entire
instruction set and describes the seven functional categories of instructions. Chapter 7
describes the five addressing modes classified as general addressing modes and Chapter
8 describes the Immedate and PC-relative addressing modes. An example program is
constructed in these two chapters to illustrate the addressing modes.

Chapters 9 and 10 describe the utility programs typically used to develop assembly
language programs. These chapters specifically describe how to use the utility programs
included with TI's Editor/Assembler package. Chapter 9 describes how to use the Editor
and Assembler. Chapter 10 describes how to use the Loader and Debugger. The example
program constructed in Chapters 8 and 9 is used to illustrate the use of the utility programs.

Beginning with Chapter 11, each of the TI Home Computer’s instructions is described
in detail with examples of how to use them in programs. Chapter 11 describes the Data
Movement group of instructions. Chapter 12 describes the Compare group of instructions.
The Jump group of instructions is described in Chapter 13 and the Arithmetic group of
instructions in Chapter 14. The Logical instructions are described in Chapter 15 and
Chapter 16 describes the Branch and Subroutine group of instructions. Chapter 17
describes the CRU and External instructions. An example program at the end of each
of these chapters is provided to illustrate selected instructions from each group. The
program examples are designed to be simple enough to let you focus on how the
individual instructions work. Furthermore, the programs are purposely short so that you
can type them quickly if you wish to develop the programs and experiment with them
on your own system. Chapter 18 deals with other assembly langugae concepts, including
operand expressions, relocation of programs and data, common assembler directives, and
assembly errors. Chapter 19 describes the TI Home Computer’s machine language
structure in detail. Chapter 20 is a summary of the book.

Three appendices contain useful information. Appendix A is a collection of instruction
summaries. Each instruction summary provides detailed information about a specific
instruction and is designed for quick reference. The instruction summaries are listed in
alphabetical order according to the instructions’ mnemonic operation codes. At the
beginning of Appendix A is a one-page summary of the instruction operation codes and
the kind of operand addressing modes used with each instruction. Appendix B contains
two number tables. The first table lists the digits of the hexadecimal number system and
the binary and decimal values corresponding to those digits. The second table is useful
for converting hexadecimal numbers to decimal. Appendix C is a list of the ASCII

3

Chapter 1

characters and their character codes. The codes are given in binary, hexadecimal, and
decimal.

Although assembly language programming is a technial subject, I've tried to make it as
non-technical as possible while still providing enough detailed information to be useful.

Some of the material may seem repetitious. That's the way it’s supposed to be. Sometimes
a subject is introduced in general terms and later discussed in more detail. Initially, you
may not completely understand a topic, but after exploring the examples, you can return
to the subject and understand it more fully.

The computer world is filled with specialized terminology sometimes called
“buzzwords”. Buzzwords are expressions used by people who are knowledgeable about
computers. They're concise, colorful, and fun to use. Buzzwords, however, have limited
value if you don't understand what they mean. Buzzwords have been eliminated
wherever possible and when they are used, they're introduced with definitions.

Learning assembly languge programming can be compared to a football game. The game
plan followed by this book is to use a mixed bag of plays to reach our goal. Sometimes
basic rushing is employed to go straight for a subject. Sometimes an end run is used to
approach a subject in a round-about way. Sometimes, a pass is used to make a leap from
one concept to another. We'll use whatever works to reach our goal.

1.5 Hardware and Software Requirements

Although unnecessary, it is helpful to have access to a TI Home Computer and software
with which to develop and run the example programs in the book. Although the book
discusses the basic operation of the Editor/Assembler package specifically, the generic
concepts and the instruction set applies to any TI assembly language development system.

Chapter 2
WHAT IS ASSEMBLY LANGUAGE?

One of the first questions you might ask is, why are computer languages required at all?
The answer is: there has to be some way of telling a computer what to do. If you can't
tell it what to do, a computer is nothing more than a very expensive paperweight.
Directions are given to a computer in the form of a program. A program contains step-
by-step instructions which tell the computer what to do and in what order. These
instructions are written in a computer language. A computer language is simply a way
of giving understandable directions to the computer.

2.1 Levels of Language
There are three levels of computer languages. They are:

e High-level language

e Assembly language

¢ machine language
The term “level” refers to how close the language is to the way people communicate.
A high-level language is the closest to direct human comprehension. Some high-level
languages are BASIC, FORTRAN, and Pascal.
The lowest level language is machine language. This is the language level that the
computer actually understands directly. Machine language (or machine code) is the
collection of 0 and 1 bits that instruct the computer in what to do. You can write programs
directly in machine language. In fact, up to the early 50’s, machine language instruction

was about the only way a computer could be programmed. Writing programs in machine
language, however, is a tedious and error-prone process.

There are several reasons for writing a program in a high level-language. A high-level
language is more like the written languages with which you are already familiar. You

5

Chapter 2

can write a program with a fewer number of instructions than if you write an equivalent
program in machine language. In addition, a high-level language program often can run
on different computers with little or no modification. A program written in machine
language runs only on a specific computer or a close member of that computer family.

A high-level does have some disadvantages, though, when compared to machine
language. A translation program is required to translate the instructions of a high-level
language program into the machine code that the computer understands directly. The
machine code that a translation program produces requires more memory and more time
to run than a similar program written directly in machine language. Writing in machine
language gives you a more precise mastery of control over the computer.

There are some situations where you might want to write a program in machine language.
If you want to use the least amount of memory to hold a program or if you want a program
to run as fast as possible, you might use machine language. Perhaps you may want to do
something you can’t do with a high-level language. For example, if you want to control
a special device attached to the computer, you may not have the right instructions in the
high-level language to control the device. Or, you might write a program in machine
language if you didn’t want the program to be transportable. This feature allows you some
protection by making the program less likely to be copied. You might even choose to write
a program in machine language just to learn how to do it.

Thus far, two levels of languages — high-level language and machine language — have
been introduced. If you're interested in some new possibilities of using machine language,
but concerned about how to write in machine language, here’s some good news for you.

An intermediate level of language called assembly language provides you with the
efficiency of machine language and removes most of the drudgery of writing machine
code. Assembly language is an intermediate language level that is between high-level

languages and machine language. It expresses machine language in a human-
understandable form.

2.2 Examples of Different Levels of Languages

To illustrate the difference between assembly language and machine language and its
relationship to a high-level language, look at these examples.

Suppose you want to copy a number. In BASIC, you can write an instruction like this.

B=A

What is Assembly Language?
The BASIC statement copies the value called A to the variable called B.

Using TI Home Computer machine language, one instruction that you might use to copy
a number is a binary code of 1100000001000000.

In assembly language, the same operation is written
MOV RO,R1

Although this assembly language instruction is not as easy to understand as the BASIC
statement B = A, but it’s sure better than 1100000001000000.

Another comparison of BASIC vs. assembly language follows. Suppose you want to add
two numbers together and store the sum. You can write this BASIC statement:

C=A+8

This instruction provides for adding the two numbers called A and B and storing the sum
in a variable called C.

In assembly language, a similar operation is written:
MOV @A,RO
A ©B,RO
MOV RO,@C

In machine language, the same operation is a series of 16-bit binary codes that are
expressed as follows:

1100000000100000
0000111100001111 This code depends upon the location of A.
1010000000100000
1111000011110000 This code depends upon the location of B.

1100100000000000
1111111100000000 This code depends upon the location of C.

BASIC requires only one statement to add numbers and save the sum. Assembly language
requires more instructions. The machine code that results takes up less memory, though,
than the machine code that results from translating the BASIC statement.

2.3 Methods of Language Translation

When a program is written in a high-level language or in assembly language, a translation
program is needed to convert that program into machine language. For a high-level

7

Chapter 2

language, the translation program is called either an interpreter or a compiler. For an
assembly language program, the translation program is called an assembler.

Here are a few “buzzwords” associated with the assembly process. They are:

® source program
¢ object program

e listing

A “source” program is the collection of assembly language statements which is translated
by the assembler. The machine language program that results is called an “object”
program. The assembler usually also produces a “listing.” A listing is a printed document
that shows:

o the assembly language statements that were given to the assembler
e the resulting machine code into which they were translated

the locations in memory for the machine code

e other information such as a list of symbols used in the program

The listing also contains error messages if the assembler can’t understand the assembly
language statements, or if for some other reason, it can’t produce the correct machine
code. You can visualize the assembly process this way.

Source
Program

Y

Assembler

'

Object
Program

What is Assembly Language?
2.4 Procedures for Developing an Assembly Language Program

The steps for developing an assembly language program aren't that much different from
the steps used to develop a high-level language program. The steps are as follows:

Define the program.:

Compose the source program.

Assemble the source program into an object program.
Load the (object) program into memory.

Run the program.

Test the program.

Modify the program.

Document the program.

PNDA @

First, define what you want the program to do and how you want it to do its job.

When writing a program in BASIC, you can type in the statements of a program, compose
the statements in the right order, and run the program. The BASIC interpreter translates
and performs the instructions at one time.

When developing a program in assembly language, you perform these separate steps:

e compose the statements in the source program
e have the source program assembled into an object program
¢ run the object program

With assembly language, you write the statements of your program and compose them
into a source program. Usually, there is an Editor to help in composing the source
program. An Editor is a program that lets you type in statements, collect them, and arrange
them in the right order. After creating the source program, you use an Assembler to
translate the source program into an object program and to preduce a listing. Next, you
load the object program into memory using a Loader. A loader is a program that reads
an object program and stores the object code in memory. Then you run the program.

When you run your program, a Debugger is sometimes available to help you test your
program and remove “bugs”, or mistakes in the logic of a program. Often, as a result of
testing a program, you modify it to fix bugs or change features.

Documentation is an important part of developing any program. By describing a program
clearly and completely, you can more easily debug and modify it when necessary. Good
documentation helps others understand your program, or, more importantly, helps you
understand your program after being away from it.

Chapter 2
This description provides an overview of the steps that are used to develop an assembly

language program. Other chapters describe these steps in more detail.

2.5 Main Ideas

Computer languages are used to give directions to a computer. There are three levels:
high-level language, assembly language, and machine language.

A high-level language is more oriented to human language than machine language. A
high-level language is less efficient in terms of the required memory storage and the time
required to run the program.

Assembly language is used to express machine language by using characters that people
understand.

An assembler is a program that translates the assembler language statements of a source

program into the machine code of an object program. The assembler usually produces
a printed document called a listing that shows the result of the assembly process.

10

Chapter 3
THE STRUCTURE OF DATA

An assembly language program, like a high-level language program, consists of a
collection of statements. The main purpose of these statements is to give an instruction
to the computer or to define data. This chapter examines the structure of data and its
relationship to a program.

3.1 Relationship of Data to a Program

Consider the following BASIC language program.

100 DATA 3,-8
110 READ A,B
120 C = A + B

Statement 100 defines two data items: a value of 3 and a value of —8. Statement 110
assigns the name A to the value 3 and the name B to the value —8. Statement 120 directs
the computer to add the value called A and the value called B and call the sum C.

Consider a similar assembly language program for the TI Home Computer.

A £ DATA 3
B

DATA =8

C BSS 2
MOV @A,RO
MOV @B,R1
A RO,R1
MOV R1,eC

The first three statements define data. The last four statements are instructions that
specify an action for the computer to perform.

The first statement assigns the name A to the value 3. The second statement assigns the
name B to the value —8. The third statement assigns the name C to a storage location.
The BSS is an abbreviation for “Block Starting with Symbol”. It reserves a block of
memory and assigns a name to the beginning of that block. The 2 in the statement specifies

th!

Chapter 3

the number of bytes of memory to reserve. Memory is measured in bytes. A byte isa group
of 8 bits.

The fourth statement is an instruction that moves, or copies, the number called A to a
register numbered zero. A register is a special storage location that can be accessed faster
than other storage locations. The fifth statement is an instruction that moves the number
called B to a register numbered one.

The sixth statement is an instruction that adds the number in Register 0 to the number
in Register 1 and replaces the number in Register 1 with the sum. The seventh statement
is an instruction that moves the number in Register 1 (the sum) to the storage location
called C.

The point is, an assembly language program, like a high-level language program, includes
statements that define data and statements that direct the computer to perform some
action. One step that you must take in assembly language programming is to allocate
memory for data and define the structure of that data.

3.2 Bit Quantities

To the computer, all data is simply a collection of one and zero bits. With assembly
language, you can directly manipulate individual bits.

The most basic unit of data that a computer can access is a bit. A bit is a single binary
digit: a zero or a one. A single bit is usually too small a unit of data to be very useful by
itself. More commonly, bits are grouped together to form larger numbers.

Just like a group of 12 doughnuts is called a dozen, names are also given to groups of
bits. A group of 8 bits is called a “byte.” A group of 4 bits is called a “nibble.” Sometimes,
it’s convenient to refer to a pair of bits by a name. Let’s call a two-bit quantity a “niblet”
(a petite nibble).

Another name given to a quantity of bits is “word.” It's a term given to the maximum
number of bits that a computer can handle at one time. The number of bits in a word
depends upon the computer. Different computers have different word sizes. If someone
asks you how many bits are in a word, you must first know what computer that person
is talking about.

Note

The word size of the TI Home Computer is 16 bits.

12

The Structure of Data
Sometimes, the expression “double word” is used. Just as you might expect, a double word
contains twice as many bits as a word. The number of bits in a double word depends
upon the number of bits in a word which, in turn, depends upon the computer.

Here's a summary list of these bit quantities.

Bit A single binary digit (0 or 1)

Niblet Two bits

Nibble Four bits

Byte Eight bits

Word The number of bits in a word varies with the computer. For
the TI Home Computer, it’s 16 bits.

Double Word The number of bits in a double word depends upon the
word size of the computer and equals two times the word
size.

3.3 Number Conversions

When writing programs in assembly language, you often deal with word and byte
quantities and, sometimes, even smaller quantities of bits. Bits, of course, represent binary
numbers. You need to be familiar with the binary number system; because you need to
be able to convert a binary number into a decimal value and a decimal value into a binary
value.

When reading or writing assembly language programs for the TI Home Computer, you
also need to be familiar with the hexadecimal number system. The hexadecimal, or “*hex”,
number system expresses binary values more concisely. For example, rather than writing
out a 16-bit number like 1010011110011100, it's more concise to simply write the
hexadecimal equivalent value, A79C.

Most of the time, binary numbers are expressed as hex numbers. If you can convert binary
numbers to hex equivalents and hex numbers to binary equivalents, it is helpful.
Additionally, knowing how to convert hex numbers into decimal equivalents and decimal
numbers into hex equivalents is helpful as well.

In summary, knowing how to perform six kinds of number conversions is helpful when
learning to program using assembly language. These conversions are:

1. a binary number number to a decimal equivalent

2. a hexadecimal number to a decimal equivalent

13

Chapter 3
3. a binary number to a hexadecimal equivalent
4. a hexadecimal number to a binary equivalent
5. a decimal number to a binary equivalent
6. a decimal number to a hexadecimal equivalent

Let's explore some techniques for performing these number conversions. These are not
the only ways to convert numbers, but they’ll get you started.

Binary, decimal, and hexadecimal number systems use positional notation. With
positional notation, the value of an individual digit in a number depends upon its position
in the number.

3
For example, in comparing the decimal number 735 and the number 357, the §digits have
different positions and have different values in the two numbers. In the number 735, the
5 digit has a value of 5; in the number 357, the 5 digit has a value of 50. The position of
the 5 in these decimal numbers determines its value.

With positional notation, the position of each digit determines its value. To be more
specific, the position of a digit determines the power of the radix by which the digit is
multiplied. The radix, or the base, of a number system is the number of digits that can
be used to express values. For example, the decimal number system has a radix of ten;
there are ten digits, 0 through 9, that can be used to express values. The binary number
system has a radix of two since there are only two digits, 0 and 1, that can be used to
express values.

The value of an individual digit in a number can be determined by this procedure.

e Start at the position of that digit and count the number of other digits to the right
of it.

e Use this count as an exponent for the radix of the number.
e Multiply the digit times the radix raised to that exponent.
For example, to determine the value of the digit 3 in the decimal number 6357:
e Start at the position of the 3 digit and count the number of digits to the right of it.

There are 2 digits to the right of the 3.

14

The Structure of Data

1 2

LI LY XY 191

6 3 5 7

e Use this count (2) as an exponent for the radix of the number. A decimal number
has a radix of 10. The number 10 raised to the 2nd power is 100.

2 = 10X10 =100 10
e Multiply the digit (3) times 100.

3 X 100 = 300

The value of the digit 3 in 6357 is 300.

Using the same procedure with 6357, you can determine that the value of the 6 digit is

6 10°, or 6000; the value of the 5 digit is 5 10, or 50; and the value of the 7 digit is 7 10°,
or7.

Note
Any number with a zero exponent equals one. For example,
0=1 10
0=1 53
0=1 18927

The value of a complete number can be calculated by adding the values of the individual
digits. For example, the value of the number 6357 is 6000 + 300 + 50 + 7, or 6357.

Knowing how to perform these calculations with decimal numbers helps you calculate
the value of numbers that use other number systems.

3.3.1 Converting a Binary Number to a Decimal Equivalent

The binary number system is the one used by digital computers. The two digits in the
binary number system (0 and 1) are used to represent the on/off or true/ false states of
binary data in a computer.

15

Chapter 3

‘The binary number system is the “natural” number system for a computer. The natural
number system for people is decimal. When confronted with a binary number, you may
want to convert it to decimal so you can think about it more easily.

The binary number system uses positional notation just like the decimal number system.
You can take advantage of this common element to convert a binary number to an
equivalent decimal value. You can use the same technique to evaluate a binary number
as you use to evaluate a decimal number.

For example, suppose you want to convert the binary number 10101 into a decimal
equivalent. First, determine the value of each digit in the number. Specifically, you only
need to determine the value of each 1 digit since the value of each 0 digit is zero.

In the binary number 10101, the leftmost 1 digit has 4 digits to the right of it.

1 2 3 4

torvensrnened

1 0101

Use this count (4) as an exponent for the radix of the number. The radix of a binary
number is 2. The number 2 raised to the 4th power is 16.

4 = 2X2X2X2 =16 2
Therefore, the value of the leftmost 1 bit is decimal 16.

The value of the middle 1 bit is 4 and the value of the rightmost 1 bit is 1. The value of
the entire binary number is 16 + 4 + 1, or decimal 21.

3.3.2 Converting a Hexadecimal Number to a Decimal Equivalent

The hexadecimal number system is a radix-16 number system. There are 16 unique digits
in the hexadecimal number system. The 16 hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7,
8,9, A, B, C, D, E, and F. In the hexadecimal number system, the digits 0 through 9 have
the same value as the digits 0 through 9 in the decimal number system. The digits A
through F represent the decimal values 10 through 15.

The following table illustrates the relationship between a hexadecimal digit and its
corresponding binary and decimal equivalent value.

16

The Structure of Data

HEXADECIMAL-BINARY-DECIMAL EQUIVALENCY (HBDE) TABLE

Hexadecimal Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Let's refer to this table as the HBDE Table. You can use the HBDE table to determine
the equivalent values in the three number systems. For example, to determine the

17

Chapter 3

equivalent decimal value for the hexadecimal digit B, first locate the B in the
Hexadecimal column. Then follow across on the same row under the Decimal column
and find the equivalent decimal value (11).

The hexadecimal number system is useful because it's a more concise way of expressing
binary values. For example, it takes four digits to express the decimal value 10 in binary
(1010), but it takes only a single digit (A) to express the same value in the hexadecimal
number system.

Just like the binary and decimal number systems, the hexadecimal number system
employs positional notation. This commonallty helps you convert a hexadecimal number
to an equivalent decimal value.

Suppose you want to convert the number hexadecimal 3AD4 to an equivalent decimal
value. You can use the same basic procedure you use to convert a binary number to
decimal. Start with the leftmost digit and count the number of digits to right of it. There
are 3 digits to the right of the leftmost dlglt

1 2 3
EL LT Y ¥ ¥ >

3 AD 4

Use this count (3) as an exponent for the radix of the number. The radix of a hexadecimal
number is 16. Sixteen raised to the 3rd power is 4096.

3 =16 X 16 X 16 = 4096 16
Multiply the digit 3 times 4096.

3 X 4096 = 12288

Thus, the value of the 3 digit is 12288.
In the same way, evaluate the value of the hex digit A in 3AD4. Use the HBDE Table
to find the decimal value for the digit hex A. Its decimal value is 10. Then multiply the
decimal value of the digit times 256 (which is 16?) to determine the value of the digit in
the hex number. The value of the A digit in hex 3AD4 is 2560.

10 X 256 = 2560

Using the same technique, you find the value of the D digit in the hex number is 208
and the value of the 4 digit is 4.

18

The Structure of Data

Therefore, the decimal value of the entire hexadecimal number is 12288 + 2560 + 208
+ 4 = 15060.

3.3.3 Converting a Binary Number to a Hexadecimal Equivalent

Hexadecimal numbers are more concise than binary numbers. For example, the 4-bit
binary number 1100 can be expressed with the single hexadecimal digit C. The concisness
of the hexadecimal number system when compared to the binary number system becomes
more important as the number of bits in the binary value increase. For example, to express
the binary value 1000010011011001 requires 16 bits. The same value can be expressed
in hexadecimal with only 4 digits — 84D9.

To convert a binary number to a hexadecimal equivalent, follow these procedures. First,
start with the rightmost bit in the number and move toward the left, dividing the bits in
the binary number into groups of four. You can add leading zeros to the leftmost group
of bits to make the number of bits in that group exactly four.

After dividing the binary number into nibble-sized groups of bits, simply write down the
hexadecimal digit that is equivalent to the binary value of each nibble. You can use the
HBDE Table for this, or use your memory.

Follow this example to convert the 10-bit binary number 1010100011 into an equivalent
hexadecimal number. Start at the right, and moving left-to-right, divide the bits into
groups of four.

10 1010 0011

You can add leading zeros to force the binary number to have an even multiple of four
bits.

0010 1010 0011

Then, using the HBDE Table or your memory, jot down the hex digit that is equal to each
nibble.

0010 1010 0011
2 A 3

And that’s all there is to it.

+ Use the same procedure and confirm that a binary value of 1001110101101111 is equal
to a hexadecimal 9D6F.

19

Chapter 3
3.3.4 Converting a Hexadecimal Number to a Binary Equivalent

Sometimes you may encounter a hexadecimal value (say, from using a debugger to inspect
the contents of a memory location) and want to convert the hex value to a binary
equivalent. You can perform a hexadecimal-to-binary conversion as follows. Use the
HBDE Table or your memory to find the binary nibble that is equivalent to each
hexadecimal digit and write down the binary equivalent for each hex digit. You can begin
atthe left or right hexadecimal digit. Group these nibbles together and you have the binary
equivalent.

For example, to convert the hexadecimal number 96C7 to an equivalent binary number,
start with the leftmost digit and write down the 4-bit binary equivalent for each hex digit.

9 6 ¢ 7
1001 0110 1100 0111

Hexadecimal 96C7 equals a binary 1001011011000111.

When converting a hexadecimal number into a binary equivalent, it's conventional,
though not required, to add enough leading zeros to end up with even multiples of four
bits; that is, complete nibbles.

For example, the number hexadecimal 27E6 can be expressed as the 14-bit binary number
10011111100110 (expressed in three-and-a-half nibbles), but it’s conventional to add
enough leading zeros to end up with whole nibbles. Hexadecimal 27E6 equals binary
0010 0111 1110 0110 (four complete nibbles).

3.3.5 Converting a Decimal Number to a Binary Equivalent

When you want to convert a decimal number to a binary equivalent, you can use the
following procedure. To illustrate the procedure, let's convert the decimal number 22 into
an equivalent binary value.

Start by making a table like this.

] Radix | Decimal
+ rronas + »=»=+ Remainder l
2 22 turnreesemend

20

The Structure of Data

The 2 in the Radix column of the table is the radix of the number system into which the
decimal number is being converted. We are converting a decimal number into a binary
(radix-2) system. The 22 in the Decimal column is the decimal number to be converted.
The column titled Remainder is used to record the remainders from a series of divisions.

Proceed this way. Divide the number in the Radix column, 2, into the number in the
Decimal column, 22. Record the quotient under the number in the Decimal column and
record the remainder in the same row as the quotient but in the Remainder column.

| Radix | Decimal
tmecermcannninn + Remainder |
2 22 4ememeemceend
11 0

Two goes into 22 eleven times with a remainder of 0. The first remainder is the rightmost
digit of the converted result.

Continue the process by making the quotient of the first division, 11, a dividend for a
subsequent division. Divide the new dividend by 2 and, again, record the quotient and
the remainder from this second division.

| Radix | Decima
¥eeremeseseoteseosssosent Remainder |
2 7 B —
2 11 0
5 1

Two goes into 11 five times with a remainder of 1. The second remainder,1, is the next
digit to the left in the converted result.

Use this second quotient as the new dividend for a subsequent division by 2 and continue
the procedure, recording quotients and remainders as you perform the divisions.

When a division produces a quotient of zero, stop. At that point, the last remainder is
the leftmost digit of the converted result.

21

Chapter 3

| Radix Decimal
tooon + -+ Remainder |
2 22 temrnennnsend
2 11 0 PerrreresrerRewwd
2 5 : 1 eersrmesnsnend
2 2 1 R ——
2 1 0 P
0 1 ronni
l v v vy
1 0110

Notice that the remainders are written down from right-to-left where the first remainder
is the rightmost digit of the converted result.

Thus, a decimal 22 equals a binary 10110.

You can use three leading zeros, if you like, to express the byte value of 00010110.

3.3.6 Converting a Decimal Number into a Hexadecimal Equivalent

Converting a decimal number into an equivalent hexadecimal value follows the same
basic process as converting a decimal number into a binary number. The major difference
is that you divide the decimal number by 16, rather than by 2. You use 16 because you
are converting the decimal number into a radix-16 number.

To convert the decimal number 27823 into a hexadecimal number, use the following
procedure. Begin by making a table similar to the one used for a decimal-to-binary
conversion.

Radix Decimal
trsosrrrersrtrnssnwenerend Rema" nder
16 27823 toemeonorrernd

22

The Structure of Data

Notice that the number in the Radix column is 16, rather than 2, because you're converting
to a radix-16 number. The decimal number to be converted is in the Decimal column
and the Remainder column is used to record the remainders resulting from a series of
divisions.

Proceed as in a decimal-to-binary conversion. Divide the number in the Radix column
into the number in the Decimal column. Record the quotient under the number in the
Decimal column. Record the remainder in the same row as the quotient but in the
Remainder column.

| Radix | Decimal
trresssnsanstecennens==at Remainder
16 27823 +wmeesesenset
1738 15

Sixteen divided into 27823 produces a quotient of 1738 with a remainder of 15. The first
remainder represents the rightmost digit of the converted result. Since 15 is the decimal
value of the remainder, write down the equivalent hexadecimal digit for the remainder.

| Radix | Decimal
#eeceseonmmetseoesaassest Remainder | Remainder
16 27823 +wmeseersmest (Hex)
1738 15 = F

Continue the procedure by taking 1738 as the dividend for a subsequent division by 16.
Record the quotient and remainder from the second division.

| Radix | Dpecimal
treressrennstemeeen=ew==+ Remainder | Remainder
16 27823 tewemererscest (Hex)
16 1738 15 = F
108 10

23

Chapter 3

The second remainder of 10 represents the decimal value of the next digit to the left in
the converted result. Express this decimal value as an equivalent hex digit.

| Radix i Decimal

tesvesenssnstsesernenrnst Remainder | Remainder
16 27823 +womsewsecent (Hex)
16 1738 15 = F
108 10 = A

Use this new quotient as a dividend for a subsequent division by 16 and continue the
procedure, recording the quotients in the Decimal column and remainders in first decimal
and then hexadecimal form as you perform the divisions.

Stop when a division produces a quotient of zero. At that point, the last remainder
represents the leftmost digit of the converted result.

| Radix | Decimal
4r-eemereessetmnnsenracent Remainder | Remainder
16 27823 +wmessveseret (Hex)
16 1738 15 8 F eeereerent
16 108 10 T A emcesset
16 6 12 & (weeeset
0 6 B § eemt
\II vvy

Notice that the hexadecimal digit remainders are written down from right-to- left just
like the remainders for a decimal-to-binary conversion.

Therefore, decimal 27823 equals hexadecimal 6CAF.

3.3.7 Number Conversion Shortcuts

As you perform more number conversions, you discover shortcuts that make the process
faster.

You can use the Debugger with the Editor/Assembler Package to convert hexadecimal
numbers to decimal and decimal numbers to hexadecimal.

24

The Structure of Data

An even easier way to perform these conversions is to use the Texas Instruments
calculator that performs the conversions by simply pressing a few keys. The calculator
is called the TI Programmer.

3.4 Data Representation

To the computer, all data is simply a collection of one and zero bits. But these bits can
represent different things. The data in a program can represent numeric values,
characters, or special codes. For example, in the BASIC statement

PRINT A;"B"

The A represents a numeric value and “B” is a character.

The same is true with assembly language; data can represent numeric values, characters,
or special codes. For example, in the following assembly language statements, A
represents a numeric value and B represents the character “B.”

A DATA 3
B TEXT 'B'

Sometimes data may represent a special code unique to a program. In a payroll program,
for example, the number 33 may mean “overtime.”

The information represented by a data quantity depends upon the interpretation of that
data quantity. For example, consider the binary byte value 01000001. It might represent
a numerical value, a character, or it could be a code meaning a size 8 green Stetson with
a polka dot hatband.

3.4.1 Data Representing Numbers

If a data value does represent a number, the number may be an unsigned value or a signed
value. For example, if the 16-bit quantity 1111 1111 1111 1011 represents a number and
you want to know the decimal value of the number, you can’t proceed until you know
whether this quantity represents an unsigned or a signed value. Its unsigned (or absolute)
value is decimal 65531, but its signed value is —5.

If a binary number represents a signed value, the value is represented in two’s
complement notation. Two's complement notation is the most common way for computers

25

Chapter 3

to represent signed numbers. With two’s complement notation, positive numbers are
expressed as their absolute value, but negative numbers are expressed as the two's
complement of their absolute value. :

The two’s complement of a binary number is the result of taking the one’s complement
and adding one. The one’s complement is the result of inverting (changing the state of)
the bits.

As an example, let’s form the two’s complement of the 16-bit binary number 0000 0000
0000 0110 (the absolute value is decimal 6).

First, form the one’s complement by inverting the bits.

1111 1111 1111 1001

Then, form the two’s complement by adding one to the one’s complement.

1111 1111 1111 1001 the one's complement
+ 0000 0000 0000 0001 plus one
1111 1111 1111 1010 equals the two's complement

Taking the two's complement of a number results in a number of equal absolute value,
but of opposite sign.

For example, if a binary 6000 0000 0000 0110 is a positive 6, then the two’s complement,
1111 1111 1111 1010 represents a negative 6.

There are some rules to observe with two's complement notation. Remember that these
rules apply only to signed numbers. If the number doesn’t represent a signed number,
you don’t even have to think about the rules. But if the number does represent a signed
number, here are the rules.

The sign of the number is indicated by the leftmost bit, called the “sign bit.” A positive
number has a zero sign bit and a negative number has a sign bit of one.

Sign Bit
0 = Positive
1 = Negative

A positive number with a sign bit of zero represents the absolute value of the number
directly. For example, the 16-bit number 6000 0000 0000 1001 has a sign bit of zero and
an absolute value of decimal 9. A binary 0000 0000 0000 1001 equals +9.

26

The Structure of Data

With a negative number that has a sign bit of one, you must take the two's complement
of the number to determine its absolute value. For example, the 16-bit number 1111 1111
1111 0111 has a sign bit of one. It's a negative number, so you must take the two's
complement of the number to find out its absolute value.

1111 1111 1111 0111 the number
0000 0000 0000 1000 the one's complement
+ 0000 0000 0000 0001 plus one
0000 0000 0000 1001 equals the two's complement (decimal 9)

A binary 1111 1111 1111 0111 equals —9.

A quicker way to take the two's complement of a binary number is to start with the
rightmost digit and move to the left, writing down the 0 bits until you come to the first
1 bit. Write down the 1 bit and then invert the rest of the bits to its left. Inverting a bit
means to change a zero to one and a one to zero.

Look at this example of how to take the two’s complement of a binary 0111 0000 1010
0000.

Moving lefteto-right, (1)

(roororrrernePrrenees

0111 0000 1010 0000

l I

+-=-’V ennwed +.-v od
(4) invert jot down (2)
these bits | these zero bits

jot down this one bit <e===+ (3)

The two's complement of 0111 0000 1010 0000 is
1000 1111 0110 0000.

With the TI Home Computer, most binary values are expressed as hex equivalents. When
you have a hex number that represents a signed number, you can tell the sign of the
number by the leftmost hex digit. If the hex digit is 0 through 7, the number is positive.
If the hex digit is 8 through F, the number is negative.

For example, if the value hexadecimal C3D2 represents a 16-bit signed number, the
number is negative since the leftmost hex digit is greater than 7.

If the value hexadecimal B8A represents a 16-bit signed number, the number is positive
since the leftmost hex digit is smaller than 8. Remember that it takes four hex digits to

27

Chapter 3

express a full 16-bit value. Therefore, a leading zero must be attached to B8A for it to
represent a 16-bit value, thus B8A equals 0B8A.

Since binary numbers are often expressed in hexadecimal, it is usually more convenient
to work directly with the hex digits when taking the two’s complement of a number. Here's
how to take the two’s complement of a number expressed in hexadecimal.

1. Beginning with the rightmost digit and moving to the left, write down any zeros until
you come to the first nonzero digit.

2. Subtract the decimal value of this first nonzero digit from 16.
3. Subtract the decimal value of the remaining digits to the left from 15.
4. Record the differences as hex digits.

Here's an example of how to take the two’s complement a number expressed as
hexadecimal 70A0.

¢meresesess=s= Moving left-to-right (1)
15 15 16
=7 =0 =A 0

8 F 6 0
+== Write down this zero (2)
+me==e= Sybtract the first nonzero digit from 16 (3)
+===teeerereses Subtract remaining digits from 15 (4)

The two’s complement (expressed in hex] is 8F60.

When the TI Home Computer is executing instructions that use binary numbers, it
handles the numbers in the same whether they represent unsigned or signed values. It's
up to the logic of the program to define whether the numbers are signed or not.

Likewise, the computer treats the binary values as integers. It's up to the logic of the
program to define data as non-integer numbers.

The unsigned value of a number is called its “logical” value; the signed value is called

its “arithmetic” value. For example, the number hexadecimal FFED has a logical value
of decimal 65,517 and an arithmetic value of decimal —19.

28

The Structure of Data
3.4.2 Data Representing Characters

If a data item represents a character, very likely that character is expressed in ASCII code.
ASCII, an abbreviation for American Standard Code for Information Interchange, is the
most commonly used code among microcomputers for representing character data.

Each of the 128 characters in the ASCII character set is assigned a unique seven-bit code.
The characters and their codes are listed in the ASCII Character Table in Appendix C.

Turn to the ASCII Character Table in Appendix C and you'll find the letter “A” (capital
A) has a seven-bit ASCII character code of binary 1000001. If you place a leading zero
with the seven-bit code, it becomes the binary byte value 01000001, or a hexadecimal
41. The binary value 01000001, as an ASCII character, represents a capital A.

Most of the time, an ASCII character is expressed as a byte value (8 bits) where the most
significant (left-most) bit is called the parity bit. The parity bit is sometimes used for error
checking purposes when characters are transmitted between data processing devices over
communication lines.

Note

When ASCII characters are discussed in this book, you can assume they're
8-bit character codes where the parity bit is zero.

While looking at the ASCII character table, notice that the 128 characters include both
printable and non-printable characters. For example, the character capital B (binary code
of 01000010 or hexadecimal 42) is a printable character. However, the character ETX (End
of TeXt) is a non- printable character. The ETX character (binary code 00000011 or
hexadecimal 03) is a character sometimes used to indicate the end of the text portion
of a message that is transmitted over communication lines.

Two non-printable characters that are used often are the carriage return (CR) and line
feed (LF) characters. When CR is sent to a terminal such as a printer or a video display,
the CR character usually causes the carriage or the cursor to return to the left margin.
When LF is sent to a terminal, the LF character usually causes the carriage or cursor to
move down to the next line.

Notice that the ASCII character codes for the digits 0 through 9 have sequential values.
The character code for “0” is a binary byte value of 00110000 (hex 30), the character code
for “1” is a binary value of 00110001 (hex 31), the character code for “2’ is a binary byte
value of 00110010 (hex 32), and so forth.

29

Chapter 3
The ASCII character codes for the upper-case (capital) letters have sequential values also.
The character code for “A” is a binary byte value of 01000001 (hex 41), the character code

for “B” is a binary byte value of 01000010 (hex 42), the character code for “C” is a binary
byte value of 01000011 (hex 43), and so forth.

Likewise, the ASCII character codes for lower-case letters have sequential values.

3.5 Constants and Variables

In a program, the data can be either a constant or a variable. For example, in the BASIC
statement

A=3

the 3 is a constant and the A is a variable. The value of 3 is constant; it's always 3. The
value of A, however, is variable; its value can change. You can reassign the value of A
to 4 as follows.

A=4

In the same way, data in an assembly language program can be a constant or a variable.
For example, in the assembly language statement

A DATA 3
the 3 is a constant and the A is a variable. Specifically, A is the name of a location that

contains the value of 3. You can reassign the value of A by putting a different value into
that location. One method to reassign the value of A is to use this instruction.

MOV RO,GA

The instruction replaces the value in location A with a copy of the value in Register 0.
If Register 0 has a 4 in it, then the variable A has the value 4.

Character data in a program can also be either constant or variable. For example, in the
BASIC statement

A$ = “FUDGE"®

the characters FUDGE are constants and the A$ is a variable.

30

The Structure of Data

Likewise, characters in an assembly language program can be constant or variable. For
example, the assembly language statement

A TEXT °*FUDGE'’

assigns the characters FUDGE to the variable A. Specifically, A is the name of the
beginning of a series of consecutive memory bytes whose contents are the ASCII
character codes for the characters F, U, D, G, and E.

3.6 Main Ideas

This chapter discusses the role of data in a program. All data is represented as binary
digits. For convenience, bits are commonly grouped into larger quantities: niblets, nibbles,
bytes, words, and double words.

The word size of the TI Home Computer is 16 bits.

Values can be expressed in different number systems. You need to be able to convert
values between the binary, hexadecimal, and decimal number systems.

Like high-level languages, data in an assembly language program can represent numbers,

characters, or special codes. Character data is usually expressed in ASCII character code
as an 8-bit (byte) value with a zero parity bit. Data in a program can be constant or variable.

31

Chapter 4
THE STRUCTURE OF THE TI HOME COMPUTER

Assembly language is a civilized form of machine language. Using assembly language
provides you with precise control of a computer. A specific assembly language reflects
the architecture of a specific computer. The assembly language of the TI Home Computer
fits the architecture of that computer.

This chapter describes the basic structure of the TI Home Computer and introduces the
specific computer parts of importance.

4.1 The Parts of a Computer System

A computer system has three main parts:

1. an input/output section

2. a memory

3. a central processing unit

Although these parts are not always clearly distinguishable, they must all be present in
a complete system.

4.1.1 The I/O Section

The input/output section includes devices for sending and retrieving information in and

out of the computer system. Some examples of input/output devices are the keyboard,
a video display, and a disk drive to name some common devices.

4.1.2 Memory

Every computer system has memory. The computer uses memory to store programs and
other data. The computer memory within the computer is of two major types: read-only
memory, or ROM, and read/write memory,or RAM.

33

Chapter 4

ROM contains programs and data that cannot be changed. The computer can read the
information in ROM but cannot write data into this kind of memory. (There are two kinds
of ROM in the TI Home Computer, ROM and GROM, but the distinction is not that
important at this point.)

The computer can read from and write to RAM memory. RAM holds programs and data
that have been loaded from I/0 devices. RAM stores data produced by a program. The
TI Home Computer has two kinds of RAM: VDP RAM and CPU RAM. VDP RAM stores
information that is displayed on the video screen, and it also stores BASIC language
programs. CPU RAM is the read/write memory that the central processor unit (CPU)
accesses directly. When an assembly language program'’s object code is loaded into
memory, it must be loaded into CPU RAM.

The TI Home Computer console has over 16 thousand bytes of VDP RAM but only 256
bytes of CPU RAM. Additional CPU RAM is needed for assembly language programs.
The TI Memory Expansion Card and the Mini Memory Module contain CPU RAM
which can be used with assembly language programs.

A byte is the smallest addressable unit in memory. With the TI Home Computer, each
byte of memory has an address. Many of the instructions in the TI .Home Computer’s
instruction set access an individual byte. Most of the instructions, though, access a whole
word of memory at a time.

A 16-bit word consists of two 8-bit bytes. A word looks like this.

Bit Position: 01 2 3 45 6 7 8 9 1011 12 13 14 15
Cmmmmaan MSB > < LSB ~m===-- >
(Left Byte) (Right Byte)

The left byte in a word is named the MSB or Most Significant Byte and the right byte
is named the LSB or Least Significant Byte. Notice how the bits are numbered in a word.
The leftmost bit is numbered 0 and the rightmost bit is numbered 15.

A memory word contains two bytes. Each byte has its own address; each word has an
address. The address of a word and the address of the left byte are the same.

34

The Structure of the TI Home Computer

Here's a chart that illustrates the addresses of the first few words in memory.

Left Byte
Address

0

2

124

126

Word
Address

trorverrersrerrerrsesred

| Word Address 0 |

$overrrerrsrsresnrssoennd

| Word Address 2 |

torrrerrerrrrereeresed

| Word Address 4 |

torereervessseerrereed

| Word Address 6 |

tereerersrrrrsmrerewed
. . .
. . .

teresserrrrevererssend

| Word Address 124 |

trrerrersersrneesesened

| Wword Address 126 |

FEr e IS r T e Y S T 2T LT L

Right Byte
Address

1

3

125

127

The first word contains two bytes. The left byte’s address is 0 and the right byte’s address
is 1. The first word's memory address is 0, the same address as the left byte.

The second word's memory address is 2. The second word in memory contains two bytes:
a left byte with an address of 2 and a right byte with an address of 3.

Word addresses are numbered by twos (0, 2, 4, 6, etc.) and a word address is always an
even number. The left byte of a word is an even number and the right byte of a word
is an odd number.

4.1.3 The Central Processing Unit

The central processing unit (CPU) controls a computer system.

All computers perform basically the same operations, but each computer does them
differently. The TI Home Computer’s CPU utilizes a 9900 family microprocessor chip

35

Chapter 4

that unique characteristics. Since assembly language allows you to control the CPU
directly, it's helpful to know the characteristics of its operation. You don’t need to know
enough to be a computer designer, but enough to understand what you can control in
assembly language.

The TI Home Computer’s CPU is a 16-bit microprocessor. This means that it can handle
16 bits of data at one time and has word size of 16 bits. It can also operate with byte-sized
quantities.

There are three internal registers in the CPU:
e the Program Counter
e the Workspace Pointer
e the Status Register

The Program Counter (PC) is a special register that contains the address of the next
instruction to be performed. Before running a program, the Program Counter is loaded
with the address of the first machine code instruction. As each instruction is performed,
the CPU automatically adjusts the address in the Program Counter to the next address
following the current instruction’s machine code. As shown in the following illustration,
the Program Counter points to the next instruction to be performed by the CPU.

Instructions

tovespesenerrerrserenseesnd
LTI T YL Y Ty

Program Counter ereses - oo

(Pc) / (XA EL T T DY Y Ty

> (AL L LT T LT
dd A L LD T Y 11T T 7]
.
L]

+ sepeeewd

The second internal register is the Workspace Pointer (WP). The Workspace Pointer, like
the Program Counter, is simply a register that contains an address. The Workspace Pointer
contains the address of a program’s workspace. A workspace is a special area of memory
whose contents a program can access faster than the rest of memory. A workspace consists
of 16 words of memory. Each of the 16 words is called a “working register” or, more often,
is referred to as simply a “register”. The first word in a workspace is numbered 0 and
is named Register 0. The second word is numbered 1 and is named Register 1. The third

36

The Structure of the TI Home Computer

word is Register 2 and so forth. The sixteenth word is Register 15. The names and order
the the registers in a workspace are shown below.

Workspace
terererrerrenaesssrrnrreawet
+==> | Register 0 l
+..--’-"°"..'-.-’-’.--’-.+
| Register 1 |
trresernerrenrrenconeswerend
Workspace Pointer ===+ | Register 2 |

(HP) YT I T T PP L L Y S

({PrersrerreererrsereRoRere st

| Register 15 |

I I I TIPS PR P E T T E 2 L L)

Every program requires a workspace and the CPU has to know the location of the
workspace. The CPU uses the address in the Workspace Pointer for the workspace
location. Specifically, the address in the Workspace Pointer tells the CPU the location
of the first word of the workspace (Register 0) and the CPU knows that Registers 1 through
15 are located in the next 15 words of memory.

Most computers have working registers within the CPU itself. One of the most unique
features of the TI Home Computer is that working registers are located in RAM.

For the most part, it's advantageous to have a program use the registers in the workspace
to hold the data used by instructions as much as possible. The CPU can access the data
in registers faster than data in other areas of memory. The memory outside a workspace
is called “general” memory. In addition, using the registers to hold data reduces the
amount of memory required to define an instruction’s machine code.

The third internal register is the Status Register. The Status Register (SR) holds the
individual status bits that are affected by the performance of instructions. Most
instructions affect one or more status bits. The status bits are a record of the results of
the last instruction.

For example, one of the status bits is the Equal (EQ) status bit. When the CPU performs
an add operation, it automatically compares the sum to zero. If the sum is equal to zero,
the CPU sets the Equal status bit to one. If the sum is not equal to zero, the CPU clears
the Equal status bit to zero.

37

Chapter 4

The state of the status bits can be tested by the “conditional jump” instructions to allow
a program to make decisions about what to do next, based upon status conditions resulting
from previous instructions.

As a brief example, in BASIC, these statements

C=A+8B
IF C = 0 THEN 650

add the variable A to the variable B, assigns the sum to variable C, and performs a transfer
of program control to statement 650 if the variable C equals zero.

In assembly language, these statements

A RO,R1
JEQ NULL

add a number in Register 0 to a number in Register 1, store the sum in Register 1, and
perform a transfer of program control to an instruction labeled NULL if the sum equals
zero.

When the CPU performs the first instruction (an add operation), it automatically compares
the sum to zero and either sets or clears the Equal status bit. The second instruction, Jump
if Equal, tests the state of the Equal status bit and performs-a transfer of control if the
Equal status bit is set to one.

The Status Register, like the Program Counter and the Workspace Pointer, is a 16-bit
register. Not all of the bits in the Status Register are used, however.

The Status Register looks like this.

01 2 3 45 6 7 8 9101112131415

L>

e

A>

EQ

Cy

ov

oP

X

IojI1{I2

13’

38

The Structure of the TI Home Computer

This list names the status bits in the Status Register, their abbreviations and their bit
positions.

Name Abbreviation Bit Position
Logical Greater Than L> 0
Arithmetic Greater Than A> 1
Equal EQ 2
Carry Cy 3
Overflow ov 4

Odd Parity OP 5
Extended Operation X 6

Not Used - 7-11
Interrupt Mask I0-13 12-15

The ways these status bits are affected by the instructions are explained in the chapters
that describe the detailed operation of the instructions and in the instruction summaries
in Appendix A.

One of the CPU's input/output ports is the Communication Register Unit (CRU). The
CRU is one way that the CPU controls the operation of devices attached to the computer.
You can use assembly language instructions to directly control the CRU.

There are some other components inside the computer console that assist the CPU. The
TI Home Computer has a video display processor (VDP) to handle the detailed work of
displaying information on the video screen, a special component, named a sound
generator, to handle producing sound, and other special components for various other
functions. All of these components are accessed by instructions to the computer’s CPU.

This book provides information for using the instructions that control the CPU.

4.2 Main ldeas

This chapter introduces and describes the basic structure of the TI Home Computer.
Other chapters provide more insight into the computer’s architecture.

A complete computer system has three parts:

39

Chapter 4

e an I/O section
e a memory
¢ a central processing unit (CPU)

There are two main kinds of memory: ROM (or read-only memory) and RAM (read-and-
write memory). The TI Home Computer has two kinds of RAM: VDP RAM and CPU
RAM. When machine code is loaded into RAM, it must be loaded into CPU RAM before
it can be performed.

A byte is the smallest addressable unit in memory. Each byte has an address. There are
two bytes in each of the TI Home Computer’s 16-bit words. The most significant byte
in each word has an even address; the least significant byte has an odd address.

The CPU performs instructions. The CPU has three registers of special interest. The
Program Counter (PC) remembers the address of the next machine code instruction to .
be performed. The Workspace Pointer (WP) contains the address of a program’s
workspace. The Status Register (SR) contains individual status bits that record results from
the performance of instructions.

The CRU is a part of the CPU. The CRU is one way that the CPU controls the operation
of devices attached to the computer.

40

Chapter 5

ANATOMY OF ASSEMBLY
LANGUAGE STATEMENTS

Most program statements specify an action for the computer to perform or define data.
There are some statements that simply make comments and others that give directions
to the assembler. This chapter describes how assembly language statements are
structured and dissects the statements in a short program.
5.1 Statement Fields
An assembly language statement can contain up to four fields, or groups of information:
e label
e instruction operation code or an assembler directive
e operand(s)
e comment
In a statement, the fields appear in this order:

Label Op-Code or Directive Operand Comments

Alabel appears first in a statement, followed by the operation code or assembler directive,
followed next by the operand(s), and, finally, the comment.

Although an assembly language statement can contain four fields of information, not all
statements use all four fields.

5.1.1 Label Field

The first field is a label. A label names the statement. A label is required only when you
want to refer to the statement from another statement.

41

Chapter 5
5.1.2 Instruction Operation Code or Assembler Directive Field

The second field contains either an instruction operation code or an assembler directive.
An instruction operation code identifies an operation for the computer to perform. An
assembler directive directs the assembler to do something when the program is
assembled. Almost every statement has either an instruction operation code or assembler
directive.

5.1.3 Operand Field

The third field is the operand field. The operand field identifies the data for an instruction
operation or it gives additional information for an assembler directive. Most statements
require one or more operands.

5.1.4 Comment Field

The last field is the comment field. The comment field is used to document the statement.
It contains information for someone reading the source program. It helps that person
understand the program. The comment field is optional but highly recommended.

5.2 Program Example

Let's examine the statements in a program which simply add two numbers together and
save the sum.

In a BASIC program you might use these statements.

100 X =2
110 Y =3
120 Z =X +Y

In TI Home Computer assembly language, a similar program that does the same thing
looks as follows:

START MOV @€X,RO PUT X VALUE IN REGISTER 0
MOV @Y,R1 PUT Y VALUE IN REGISTER 1
A RO,R1 ADD X AND Y
MOV R1,0Z SAVE SUM IN Z
BLWP @0 EXIT PROGRAM

42

Anatomy of Assembly Language Statements

X DATA 2 X EQUALS 2

Y DATA 3 Y EQUALS 3

z DATA 0 Z EQUALS SUM OF X + Y
END

Let's analyze the assembly language program one statement at a time.

First, locate the statement that adds the X and Y values. (The comments to the right of
the statements can help you find it.) The third statement adds the two numbers. Look
at the statement in more detail. The statement is

A RO,R1 ADD X AND Y

The statement has no label. The A is an instruction operation code (often called “op-
code”). The A is an operation code for the “Add Words"” operation. In assembly language
terminology, the A is called a “mnemonic” operation code. The word, mnemonic, is from
a Greek word meaning memory aid. A mnemonic helps you remember that A means Add
Words.

In the operand field of the Add Words instruction, there are two operands. The first
operand is RO; the second is R1. Notice that the two operands are separated by a comma.
The operands specify what data to use for the Add Words operation. The operands don’t
specify the data directly, but, rather, the location of the data.

The purpose of the Add Words instruction is to add two numbers together. The operand
field identifies the location of the two numbers. The first number is located in R0 {Register
0). The second number is located in R1 (Register 1). The Add Words instruction adds the
two numbers together and puts the sum into the second operand.

The Add Words instruction has a comment field. The comment is ADD X AND Y. It tells
you what the instruction does.

When this Add Words instruction is performed, it adds the two numbers in Register 0
and Register 1 and places the sum into Register 1. The value contained in Register 1 before
the instruction was performed is replaced by the sum. What happens to the number in
Register 0? Nothing. It’s still in Register 0.

Before performing the Add Words instruction, the two numbers must be in R0 and R1.
The two instructions listed before the Add Words instruction put the two numbers into
the registers. The first instruction in the program is a Move Word instruction. The
statement is

43

Chapter 5

START MOV @X,RO PUT X VALUE IN REGISTER 0

START is the label. It's the name given to this statement. The mnemonic operation code
is MOV which stands for “Move Word.” There are two operands in the operand field.
The first operand (@X) identifies the location of the data. The second operand (RO0)
identifies the location to move the data. The data is moved, actually, it's copied, from
one location to another. The first operand (@X) identifies the location of the data to be
moved. The at sign (@) means that the location is a general memory location rather than
a register or some device attached to the computer. The specific location in memory where
the data is located is called X. The second operand (R0) identifies where the data is copied.
It's copied into Register 0.

The comment field (PUT X VALUE IN REGISTER 0) tells you what the instruction does.

The second statement in the program is also a Move Word instruction. It causes the data
in general memory location Y to be moved where? I hope you said Register 1 (or R1).

The purpose of the two Move Word instructions is to put the two numbers into R0 and
R1 so the Add Words instruction can add them.

At this point, you might want to know the reason for putting numbers in registers before
adding them. As a matter of fact, you don't have to. You can add the two numbers directly
in memory. The purpose for discussing this program is that it helps you understand the
difference between addressing data in registers and data in “general” memory.

After the Add Words instruction is performed, the sum is in R1. The instruction
immediately after the Add Words instruction is another Move Word instruction which
moves the contents of R1 (R1 has the sum) into the contents of memory location Z.

The instruction following this Move Word instruction has a mnemonic operation code
of BLWP. The “op-code” stands for Branch and Load Workspace Pointer. It's an
instruction that allows you to exit the program. If you write a program in BASIC, you
can put an END statement to exit a program. In the same way, the Branch and Load
Workspace Pointer instruction is one way to exit an assembly language program. The
operand with the BLWP instruction identifies where the exit is. The comment with the
BLWP instruction tells you what the instruction does.

Following the Branch and Load Workspace Pointer instruction, the last four statements
each contain an assembler directive. A directive does not cause the computer to perform
some action when the program runs. A directive gives directions to the assembler when
the source program is assembled into an object program.

44

Anatomy of Assembly Language Statements

DATA is an assembler directive rather than an instruction operation code. The DATA
directive directs the assembler to reserve a word of memory. Each DATA directive in
this program has a label. The labels tell the assembler what to name the words of memory.
The operand with each directive tells the assembler what number to put in the word of
memory. The comments tell you what the statements do.

The first DATA directive tells the assembler to reserve a word of memory, name that
memory location X, and put a 2 in the location. The second DATA directive tells the
assembler to reserve a word of memory, name the memory location Y, and put a 3 in
the location. The third DATA directive tells the assembler to reserve a word of memory,
and name it Z. What number is the assembler to place in the location called Z? Right,
a zero.

It's not really important what number is placed in location Z. The DATA statement is
a way to make sure a memory location named Z is reserved. When the program runs,
it stores the sum in place of the number originally in Z.

One of the program characteristics to note is that it allocates space for all the data values
the program uses or produces. In BASIC, you can simply write

C=A+8B

and the BASIC interpreter will find some place for the variable C automatically. In
assembly language, however, you must reserve data space explicitly.

The last statement (which has no label) contains the assembler directive END. The END
directive tells the assembler that this statement ends the program.

In BASIC, the END statement tells the BASIC interpreter to stop running a program, but
in assembly language, an END directive simply marks the physical end of the program.
The last statement in every assembly language program should have an END directive.
The important thing to notice is that END is a directive to the assembler and not an

instruction to be performed by the computer. It simply tells the assembler to stop
translating and is not an instruction.

5.3 Statement Syntax

Contrary to what my Auntie Blossom thinks, syntax is not a government levy on immoral
deeds. Rather, syntax is a term for the orderly arrangement of the fields in a statement.

45

Chapter §

The English language has rules of syntax that govern sentence construction. For example,
the first letter of the first word in a sentence is capitalized; words are separated by spaces;
items in a list are separated by commas; and sentences are terminated by a period,
question mark, or exclamation mark. Likewise, assembly language statements also follow
rules.

There are rules of syntax for writing assembly language programs with the Editor/Assem-
bler package. Other assemblers may have slightly different rules.

Rules for Iabels
e A label, if one is used, must come first in a statement.
e A label must have at least one character and no more than six characters.

e The first character of a label must be the first character on the line (even ahead of
any space).

e The first character of a label must be a letter (A through Z).
e Any following characters in a label can be letters or numbers (1 through 9).

e A statement can have only a label. In this case, the label is associated with the
following statement.

e When a label is used in a statement with an operation code or assembler directive,
there must be at least one space between the last character of the label and the first
character of the operation code or directive. If a label is not used in a statement with

an operation code or directive, there must be at least one space before the first letter
of the operation code or directive.

Operation code/assembler directive rules
e An operation code or assembler directive is the second field in a statement.

e About the only thing you need to remember about them is to spell them correctly.
For example, the operation code for Move Word is MOV, not MOVE.

Operand field rules
e The third field of a statement is the operand field.

46

Anatomy of Assembly Language Statements

e There are a few operation codes and directives which don’t require any operands,
but most do.

e There must be at least one space between the last character of the operation code
or directive and the first character of the operand field.

o Ifthere’s more than one operand, the individual operands are separated by a comma.

e There can be no spaces between the first character and the last character of the
operand field unless the spaces appear between a pair of apostrophes.

Comment field rules

e The last field in a statement is the comment field.

e There must be at least one space between the last character of the operand field
and the first character of the comment field.

e The comment field can contain any printable characters, including spaces, and can
extend to the end of the line.

The fields in a statement must be separated from each other by at least one space.
Although only one space isrequired, it is common practice to align the fields of a statement
in columns. This makes the source statement easier to read. For example, the following
program is syntactically correct, but difficult to read.

MOV @X,R0 PUT X VALUE IN REGISTER 0
MOV @Y,R1 PUT Y VALUE IN REGISTER 1
A RO,R1 ADD X AND Y
MOV R1,8Z SAVE SUM IN 1
BLWP @0 EXIT PROGRAM
X DATA 2 X EQUALS 2
Y DATA 3 Y EQUALS 3
Z DATA 0 Z EQUALS SUM OF X + Y

By arranging the statements so that each field is aligned in a column with the same field
in the other statements, the program is easier to read.

47

Chapter 5

MOV @x,RO
MOV @Y,R1
A RO,R1
MoV R1,6Z
BLWP @0

X DATA 2

DATA 3

z DATA ©

-<

Exception to rules

PUT X VALUE IN REGISTER 0
PUT Y VALUE IN REGISTER 1
ADD X AND Y

SAVE SUM IN Z

EXIT PROGRAM

X EQUALS 2

Y EQUALS 3

Z EQUALS SUM OF X + Y

Finally, nearly all rules have exceptions. There is a special kind of statement in assembly
language which is largely free from the constraints of syntax. This free spirit is the
comment statement. With a comment statement, you can use a whole line to make
comments about the program, call attention to the brilliance of your clever design, or chat
about your cat’s new kittens. To designate a comment line, place an asterisk (*) as the
first character in the statement. After the asterisk, you can put any characters you want.

For example, we can add some comment statements to the program as follows.

*

*

*

*

*
Moy ex,Ro
MOV GY,R1
A RO,R1
MOV R1,0Z
BLWP @0

X DATA 2

Y DATA 3

z DATA 0

THIS PROGRAM ADDS TWO NUMBERS TOGETHER.

THE FIRST NUMBER IS STORED IN MEMORY LOCATION X AND
THE SECOND NUMBER IS STORED IN MEMORY LOCATION Y.
THE SUM IS STORED IN MEMORY LOCATION Z.

PUT X VALUE IN REGISTER 0
PUT Y VALUE IN REGISTER 1
ADD X AND Y

SAVE SUM IN Z

EXIT PROGRAM

X EQUALS 2

Y EQUALS 3

Z EQUALS SUM OF X + Y

In assembly language, a comment statement is like a REMark statement in BASIC.

Any numeric constants in a statement are treated as decimal values by the assembler
unless you indicate otherwise. For example, in the statement

DATA 11

48

Anatomy of Assembly Language Statements
the constant 11 is assumed to be decimal eleven.

If you want to specify a hexadecimal number, you can do so by putting a greater-than
symbol (>) in front of the number. For example, in the statement

DATA >11
the constant >11 is hexadecimal 11 which is equal to decimal 17.
After working with this first program, you may have some more questions such as:
e How do you know exactly what those mnemonic op-codes stand for?
e How do you know exactly what those instructions do?

e How do you know that DATA is an assembler directive and not an instruction
operation code?

e Is this the only sequence of instructions you can write to add two words together?
e Why does the program reserve a word of memory for the numbers instead of a byte?

Don’t despair. The answers to all these questions are found in the following chapters.

5.4 Main ldeas

When writing assembly language statements, you must follow certain syntax rules which
govern the way you write statements.

An assembly language statement can contain up to four fields:
e a label
e an instruction operation code or an assembler directive
e one or more operands
e comments

Alabel is required when you want to refer to the statement from another statement. When
a label is used, it must come first in the statement.

49

Chapter 5

Most statements require either an instruction operation code or an assembler directive.
An instruction operation code specifies an action for the computer to perform. An
assembler directive gives directions to the assembler when the source program is
assembled into machine code.

Operands identify the data to be used for an instruction operation or give additional
information to be used with an assembler directive.

Comments describe the purpose of the statement.

Each of the four fields must be separated by at least one space. It is common practice,
however, to align each of the fields in columns.

A comment statement has an asterisk as the first character. A comment statement in
assembly language is like a REMARK statement in BASIC.

The last statement in an assembly language program should contain an END directive.

The END directive tells the assembler to stop translating. The END directive does not
result in any machine code which is performed by the computer.

50

Chapter 6
INSTRUCTION SET OVERVIEW

This chapter provides an overview of the TI Home Computer assembly language
instruction set. It introduces all the operation codes in the instruction set, classifies the
instructions according to the operation they perform, and briefly describes what each
instruction does.

The first field in a statement is a label. The second field is either an instruction operation
code or an assembler directive.

The purpose of an instruction operation code is to define an operation for the computer

to perform. These defined operations make up the computer’s instruction set. The TI
Home Computer has 69 operation codes in its instruction set.

6.1 Functional Categories

There are several ways to classify the instructions. To begin, let’s classify the instructions
by functional categories based upon what kind of function they perform.

The instructions can be classified into seven functional categories.
1. Data Movement
2. Compare
3. Jump
4. Arithmetic
5. Logical
6. Branch and Subroutine

7. CRU and External

51

Chapter 6

Let’s look at the specific instructions that belong in each functional category.

6.2 Data Movement Instructions

The data movement instructions are those which move data. The main job of a data
movement instruction is to move data or rearrange data.

The 12 data movement instructions are listed below.

Mnemonic

Op-code
MOV
MOVB
SWPB

LI

LWPI
LIMI
STWP
STST

SRL

SRA
SRC
SLA

Instruction Name

Move Word

Move Byte

Swap Bytes

Load Immediate

Load Workspace Pointer Immediate
Load Interrupt Mask Immediate
Store Workspace Pointer

Store Status

Shift Right Logical

Shift Right Arithmetic

Shift Right Circular

Shift Left Arithmetic

The most often-used instruction in the entire instruction set is the Move Word instruction
(MOV). It moves (copies) a word (16 bits) from one location to another. Its little brother,
the Move Byte instruction (MOVB), moves a byte (8 bits) from one location to another.

With the TI Home Computer, a word has 16 bits. Since there are 8 bits in a byte, there
are two bytes in a word: a left byte and a right byte. You can visualize a word like this.

52

A word
----------- 16 Bits e=zozoczcrsecores>
T Rt e |
reeees Comcee B bits weeee

Instruction Set Overview

The Swap Bytes instruction (SWPB) simply exchanges the two bytes in a word. Why would
you want to do that, you ask? You'll see some uses for it when you learn more about
addressing formats.

The Load Immediate instruction (LI) puts a constant into a register; the constant appears
directly in the operand field of the instruction.

The Load Workspace Pointer Immediate instruction (LWPI) puts an address into the
Workspace Pointer. The Workspace Pointer is the special CPU register that tells the
computer the locations of the working registers. The Load Interrupt Mask Immediate
instruction (LIMI) puts a number into the computer’s interrupt mask. LIMI helps control
peripheral devices attached to the computer.

The Store Workspace Pointer instruction (SWPI) copies the contents of the Workspace
Pointer into a working register. The SWPI is used to remember the contents of the
Workspace Pointer. The Store Status instruction (STST) copies the contents of the Status

Register into a working register. It's sometimes used to remember the condition codes
before performing another operation.

There are four shift instructions:
o Shift Right Logical (SRL)
e Shift Right Arithmetic (SRA)
e Shift Right Circular (SRC)
o Shift Left Arithmetic (SLA)

The shift instructions move bits within a register to different positions. You can review
some examples of how shift instructions are used in Chapter 11.

6.3 Compare Instructions

The Compare instructions compare values and -determine their relationships. The 5
instructions in this group are listed below.

53

Chapter 6

Mnemonic Instruction Name
Op-code
C Compare Words
CB Compare Bytes
CI Compare Immediate
COC Compare Ones Corresponding
CZC Compare Zeros Corresponding

The Compare Words instruction (C) compares two 16-bit values. The Compare Bytes
instruction (CB) compares two 8-bit values. The Compare Immediate instruction (CI)
compares two 16-bit values; one is in a register and the other is a constant that appears
directly in the operand field of the instruction.

The Compare Ones Corresponding instruction (COC) analyzes specific bits in a word and
determines whether they are all ones. The Compare Zeros Corresponding instruction
(CZC) analyzes specific bits in a word and determines whether they are all zeros.

6.4 Jump Instructions

The jump instructions are very important because they allow you to make decisions in
a program. The 13 jump instructions are listed below.

Mnemonic Instruction Name
Op-code ;
JEQ Jump if Equal
JNE Jump if Not Equal
JOC Jump On Carry
JNC Jump if No Carry
JNO Jump if No Overflow
JOP Jump if Odd Parity
JH Jump if High
JHE Jump if High or Equal
JLE Jump if Low or Equal
JL Jump if Low
JGT Jump if Greater Than
JLT Jump if Less Than
JMP Jump Unconditionally

The first twelve jump instructions are conditional ones. They may, or may not, cause a
jump (go to an instruction) based upon certain conditions. The conditional jump
instructions let you make decisions about what to do next in a program.

54

Instruction Set Overview

The thirteenth jump instruction, the JMP instruction, is an unconditional one. It causes
a jump to a specific instruction unconditionally.

The jump instructions are limited to relatively short-range transfers of control; that is,
they can only jump to instructions that are relatively close to them. Each of the jump
instructions is discussed in detail in a later chapter.

6.5 Arithmetic Instructions

The Arithmetic instructions are those which perform arithmetic operations. The 13
Arithmetic instructions are listed below.

Mnemonic Instruction Name
Op-code
Al Add Immediate
A Add Words
AB Add Bytes
S Subtract Words
SB Subtract Bytes
INC Increment
INCT Increment by Two
DEC Decrement
DECT Decrement by Two
NEG Negate
ABS Absolute Value
MPY Multiply
DIV Divide

The Add Immediate instruction, Al, adds a 16-bit constant to the contents of a register
and replaces the original contents of the register with the sum.

The Add Words instruction,A, adds two 16-bit numbers and produces a 16-bit sum. The
Add Bytes instruction, AB, adds two 8-bit numbers and produces an 8-bit sum.

The Subtract Words instruction, S, subtracts a 16-bit number from another and produces
a 16-bit difference. The Subtract Bytes instruction, SB, subtracts an 8-bit number from
another and produces an 8-bit difference.

There are four instructions that increase or decrease an operand by a fixed amount. The

Increment instruction, INC, increases an operand by one and the Increment by Two
instruction, INCT, increases an operand by two. The Decrement instruction, DEC,

55

Chapter 6

decreases an operand by one and the Decrement by Two instruction, DECT, deceases
an operand by two.

Perhaps you are wondering why there are instructions that increase or decrease an
operand by fixed amounts of one or two and not amounts like three, ten, or thirteen-and-
a-half. The answer is that these amounts are useful for address manipulations. For
example, if you increment an address value by one, you point to the next byte address.
If you decrement an address value by one, you point to the previous byte address. If you
increment an address value by two, you point to the next word address. If you decrement
an address value by two, you point to the previous word address.

The Negate instruction, NEG, negates a value by forming the two’s complement) of the
value. The Absolute Value instruction (ABS) forms the absolute value of a number.

The Multiply instruction, MPY, multiplies two 16-bit numbers together and results in a
32-bit product. The Divide instruction (DIV) divides a 16-bit divisor into a 32-bit dividend
and produces a 16-bit quotient and 16-bit remainder. The Multiply and Divide
instructions are both unsigned operations; that is, the numbers are treated as absolute
values by the computer.

6.6 Logical Instructions
The logical instructions are those which perform the AND, OR, exclusive OR, and NOT

logic operations or they perform functions related to logic operations. The ten instructions
in this group are listed below.

Mnemonic Instruction Name

Op-code
ANDI And Immediate
SZC Set Zeros Corresponding
SZCB Set Zeros Corresponding Byte
ORI Or Immediate
SOC Set Ones Corresponding
SOCB Set Ones Corresponding Byte
XOR Exclusive Or
INV Invert
CLR Clear
SETO Set to One

The AND Immediate instruction, ANDI, performs a logical AND operation between the
contents of a register and a constant value. The Set Zeros Corresponding instruction, SZC,

56

Instruction Set Overview

performs an operation similar to a logical AND operation between two 16-bit quantities.
The Set Zeros Corresponding Byte, SZCB, instruction performs an operation similar to
a logical AND operation between two 8-bit quantities.

The OR Immediate instruction, ORI, performs a logical OR operation between the
contents of a register and a constant value. The Set Ones Corresponding instruction, SOC,
performs a logical OR operation between two 16-bit quantities. The Set Ones
Corresponding Byte instruction, SOCB, performs a logical OR operation between two 8-
bit quantities.

The Exclusive Or instruction, XOR, performs an exclusive OR logical operation between
two 16-bit quantities.

The Invert instruction, INV, inverts the bits in an operand. When an INV instruction is
used, all the one bits are changed to zero bits and all the zero bits are changed to one
bits. This procedure produces the one’s complement of a number.)

The Clear instruction, CLR, provides a simple way of setting the contents of an operand
to zero. The Set to One instruction (SETO) sets the contents of an operand to binary ones.

6.7 Branch and Subroutine Instructions

The group of instructions called Branch and Subroutine instructions call subroutines,
return from subroutines, or perform long-range transfers of control. The six instructions
in this group are listed below.

Mnemonic Instruction Name
Op-code
BL Branch and Link
B Branch
X Execute
XOP Extended Operation
BLWP Branch and Load Workspace Pointer
RTWP Return with Workspace Pointer

The Branch and Link instruction, BL is a subroutine-calling instruction. The Branch
instruction, B is used to return from a subroutine that is called with a Branch and Link
instruction. The Branch instruction also performs a long-range unconditional transfer of
control whenever it's needed.

The Execute instruction, X, performs a one-instruction subroutine. You can use it to

57

Chapter 6

perform (execute) an instruction at another location. After that instruction is performed,
control returns to the instruction immediately following the Execute instruction.

Both the Extended Operation instruction, XOP, and the Branch and Load Workspace
Pointer instruction, BLWP, are instructions for calling a subroutine when the calling
program and the subroutine each have their own set of working registers. These two
instructions perform what is called a “context switch”. The Return with Workspace
Pointer instruction (RTWP) is used to return from a subroutine which is called by a context
switch. :

6.8 CRU and External Instructions

Finally, there’s a group called CRU and External instructions. The 10 instructions in this
group are listed below.

Mnemonic Instruction Name
Op-code
SBO Set Bit to One
SBZ Set Bit to Zero
TB Test Bit
LDCR Load Communication Register Unit
STCR Store Communication Register Unit
IDLE Idle
RSET Reset
LREX Load or Restart Execution
CKON Clock On
CKOF Clock Off

The first five instructions are the CRU instructions. They're I/O instructions that transfer
data between the CPU and peripheral devices.

The last five instructions are the External instructions. They can be used to control
peripheral devices or perform other functions unique to a particular application.

These instructions comprise the TI Home Computer assembly language instruction set.
Each instruction’s operation is described in detail in following chapters.

58

Chapter 7
ADDRESSING FORMATS: GENERAL

Addressing formats, or addressing modes, is a term that refers to the different ways that
the computer addresses data. The operand field in an instruction specifies the data, or
the device, used in an operation. Usually, an operand specifies the address of data rather
than the actual data. There are different ways to specify the address of a data item. This
chapter introduces the TI Home Computer assembly language addressing formats and
describes those formats classified as general addressing modes.

7.1 Addressing Formats Overview

There are eight addressing formats used by the TI Home Computer. They're listed below.

Aol A

Register Direct

Register Indirect " General
Register Indirect Autoincrement Addressing
Memory (Direct)/**Symbolic” Modes

Memory (Indexed)/“Indexed”

Immediate

PC-Relative

CRU
Single-bit
Multi-bit

The first five are general addressing modes. You need to remember which ones are
general addressing modes.

59

Chapter 7

The sixth is immediate addressing. The seventh is PC-relative addressing. PC stands for
Program Counter.

The eighth addressing mode is CRU addressing. This mode is used for CRU instructions.
The CRU is an input/output (I/0) channel or “port.” There are two variations of CRU
addressing: single-bit and multi-bit.

This chapter describes the five general addressing modes.

7.2 General Addressing Modes
The five general addressing modes are:

e Register Direct

® Register Indirect

¢ Register Indirect Autoincrement

® Memory (Direct), often referred to as “Symbolic” addressing

® Memory (Indexed), often referred to as “Indexed” addressing
To learn how each of the general addressing modes operates you can follow several
examples of each addressing mode used with the Move Word instruction. The Move
Word instruction is the one most frequently used in programs. Before exploring the
addressing modes, however, review the Move Word instruction.
Each instruction is described in a summary found in Appendix A. The instruction
summaries are arranged alphabetically according to the mnemonic operation codes. Turn

to the Move Word instruction summary. The mnemonic operation code is MOV.

An instruction summary describes a specific instruction. Each summary follows the same
format.

The first line contains the name of the instruction on the left and the instruction’s
mnemonic operation code on the right. The name of this instruction is Move Word and
its mnemonic operation code is MOV.

The second line provides the mnemonic operation code, the number of operandsrequired
for the instruction, and the kind of addressing formats the operands can have. An

60

Addressing Formats: General

instruction requires none, one, or two operands. If no operands are required, nothing
appears on the second line with the mnemonic operation code. If two operands are
required, a comma separates them. Otherwise, the instruction requires one operand.

The following codes are used for the operands.

S

10P

Target

Displacement

indicates a general source operand. It means the operand can
use any of the five general addressing modes. If two operands
are required, it is the first one. It's called a source operand
because it's the operand that is the source, or supplies, the data
for an operation.

indicates a general destination operand. The operand can use
any of the five general addressing modes. If two operands are
required by the instruction, it is the second one. The term
destination operand is used to indicate it's the destination that
receives the result of an operation.

means that the operand must be one of the sixteen working
registers. (The operand can use only register direct addressing.)

indicates a count value and must be a number from 0 through
15.

indicates an immediate operand. The operand uses only
immediate addressing. The operand is treated as a data item
rather than the address of a data item. Immediate operands are
16-bit values.

indicates the operand specifies the target for a jump instruction.
This code appears only in a jump instruction summary.

indicates a displacement for a CRU single-bit instruction. The
value of the displacement must be from —128 through +127.

Notice that the MOV instruction requires two operands, an S and a D. Both operands
can use any of the five general addressing modes.

The third item of information in an instruction summary is titled “Result”. The result is
a summarized description of the instruction’s operation. A pair of parentheses can be
read as “the content of.” For example, (S) means “the content of the 8 operand.” For the

61

Chapter 7

MOV instruction, the content of the source operand replaces the content of the destination
operand.

The fourth item in the instruction summary is titled “Operation.” It is a narrative
description of the instruction’s operation. The MOV instruction copies a word from the
source operand address to the destination operand address.

The fifth item, titled “Status Bits Affected,” includes a graphic description of the status
bits affected by the instruction’s operation. The specific status bits affected by the
instruction are shown within the Status Register box.Only those status bits that are
affected appear within the Status Register box. Status bits not affected by the instruction
are not shown. The MOV instruction affects only the Logical Greater Than (L>),
Arithmetic Greater Than (A>), and Equal (EQ) status bits.

Below the Status Register box is a description of how the status bits are affected by the
instruction. (In the case of the conditional jump instructions, there's a description of the
status bits analyzed by the jump instruction.) With the MOV instruction, the three status
bits are affected based upon comparing the word operand to zero.

The sixth item, “Notes,” is a collection of notes, examples, and suggested uses for the
instruction.

The seventh item, “Machine Code,” describes the instruction’s machine code.

The line labeled “Hex” contains the hex digits that correspond to the first word of the
binary machine code. Only those hex digits are given for which the corresponding
machine code nibble is completely defined. A hex digit is not shown for any nibble which
contains bits that are not completely defined; that is, the bits vary depending upon the
operand(s). Hex digits are shown only for the first word because any other words of
machine code always vary depending upon the operand(s). In the case of a MOV
instruction, only the first nibble of machine code is completely defined. The nibble
contains a binary value of 1100 (a hex C).

The line labeled “Binary” contains the state of the specific bits in the machine code that
are fixed and do not change for the instruction. Any group of bits which do vary depending
upon the operand(s) contains a code in that field. These codes and their meanings are
described in Chapter 19 which describes the structure of machine code.

With this overview of the format of an instruction summary and a closer look at the MOV
instruction, let’s explore how the general addressing modes work.

62

Addressing Formats: General

The Move Word instruction is a good choice for illustrating the general addressing modes.
Not only is it the most commonly used instruction, but it's also the kind of instruction
that has two operands, both of which can use any of the five general addressing modes.
This is the most flexible kind of instruction in the instruction set.

7.2.1 Register Direct Addressing

The first of the five general addressing modes is register direct addressing. Register direct
addressing is used when the data is located directly in one of the sixteen working registers
in a workspace. A workspace is a special area of memory that can be accessed faster than
any other area of memory. A workspace consists of 16 words of memory. The first word
is called Register 0, or R0. The second word is called Register 1. The third word is called
Register 2, or R2 and so forth. The sixteenth word (the last word) in a register set is called
Register 15, or R15.

Consider this instruction.

Mov R10,R1

Both the first operand and the second operand are using register direct addressing. The
instruction copies the content of Register 10 to Register 1. After the instruction is
performed, the content of Register 1 is the same as the content of Register 10.

Unchanged Changed
After After

terrrsnsmwereed terrereneerwed

RIO | 1234 |------>| 1234 | R1

tosssremmeeed toswesrenssnod

The first operand, named a “source” operand, supplies the data for the operation. The
second operand, named a “destination” operand, receives the result of the operation. In
this example, Register 10 is the source operand; Register 1 is the destination operand.

By convention, an R precedes a register number. This convention helps the reader of
the program to understand that the number in the operand field is a register number.

To specify that you want an operand to use Register direct addressing, write an R and
then the register number.

When the assembler, which translates an assembly language instruction into machine
code, encounters an operand that can use any of the five general addressing modes, the

63

Chapter 7

assembler assumes register direct addressing is being used unless instructed otherwise.
For example, if the assembler encounters an instruction like

Mov 10,1

the assembler assumes that 10 is a register number for the source operand, and 1 is a
register number for the destination operand.

Look at another example. Assume that before the following instruction is performed,
Register 10 contains the number hexadecimal A062 and that Register 3 contains the
number hexadecimal B37E.

MOV R10,R3

After the instruction is performed, Register 10 still contains a hexadecimal A062 and
Register 3 contains hexadecimal A062 also.

Memory

MOV R10,R3 Before After
+-o.--p-ns.n+--noo:aavon+
torrrsnas o = +

RO

+D¢D-,9u¢on-+-"’---”--1-
+-p--n--n-¢n+--a-s-pcs.:+

E LT T3S R3 > » » » AO 6 2
+-¢¢----’n¢-+-.n--’poo--+
tormen - ‘o +

t==== R10 AO0G6 2 AD6 2

+De-’-n’-s-’+-n=onp’pn¢-+
:
H

+ow,.-¢9”--+.¢:’v-¢nuap+

Suppose there’s a number in Register 11 that you want to copy into Register 0. Could you
write an instruction to do that? The instruction looks like this.

MoV R11,R0

64

Addressing Formats: General

Notice that R11 appears as the source operand and supplies the data for the operation
and RO appears as the destination operand and receives the results of the operation. You
can write the operands without using an R before the register numbers and the assembler
would still understand the instruction, but another person reading the program would
appreciate the R prefix.

7.2.2 Register Indirect Addressing

The second of the five general addressing modes is register indirect addressing. Register
indirect addressing is used when the address of the data, rather than the data itself, is
located in a register. The register contains a forwarding address for the data.

Register indirect addressing mode is specified by writing an asterisk followed by a register
number (with its R prefix). In the following instruction,

MOV R10,*R3

the source operand uses the register direct addressing mode and the destination operand
is uses the register indirect addressing mode. The instruction copies the content of
Register 10 to the location whose address is in Register 3. For example, assume that
Register 10 contains the number hexadecimal A062 and register 3 contains a hexadecimal
B37E before the instruction is performed. After the instruction is performed, memory
location hexadecimal B37E contains the number hexadecimal A062, which is a copy of
what is in Register 10.

65

Chapter 7

Memory
MOV R10,*R3 Before After
+-v-:-no.-no+-’-’¢-.-s-u+
trroesrscerninvarreseswed
RO
tororessesrntescesenwonnd
teooroa oo ====+ Memory Pointer
R3 l B 3 7 E B 37E I PrIREEEIeRp
+-n-n---s--a+-vy-us.--¢o+
Data Moved $oovorsesnrotorsrersneeed
trocesesws R1() A0S 2 AO0G6 2
teromrsermrorstersenmesnend
troonnrerrsntrresnmrenwd
trrrrenmad 837E > » = » A 06 2 [E T T Ty

trorarerrorsntrarssewrezed

torrmassansstsrsrwsosemed

Suppose there is a number in memory location hexadecimal B7E2 that you want to copy
into Register 1. And suppose as luck (or planning) would have it, there is a hexadecimal
B7E2 in Register 11. What instruction could you write to copy that number into Register
1? You could write the instruction

MOV *R11,R1

After the instruction is performed, Register 1 has a copy of what is in memory location
hexadecimal B7E2 and Register 11 still has the hexadecimal B7E2 in it.

7.2.3 Register Indirect Autoincrement Addressing

The third of the five general addressing modes is register indirect autoincrement
addressing. It works almost exactly like register indirect addressing. With register indirect

66

Addressing Formats: General

autoincrement addressing mode, a register contains the address of the data, but after the
data is accessed, the content of the register is automatically incremented.

Register indirect autoincrement addressing mode is specified by writing an asterisk
followed by a register number (with its R prefix) and followed by a plus (+) sign.

In the following instruction

MOV R10,*R3+

the source operand is using register direct addressing and the destination operand is using
register indirect autoincrement addressing mode.

Assume that before the instruction is performed, Register 10 contains the number
hexadecimal A062 and that Register 3 contains a hexadecimal B37E.

When the instruction is peformed, the number hexadecimal A062 in Register 10 is copied
into memory location hexadecimal B37E and the content of Register 3 is automatically
incremented by two (to hexadecimal B380).

Memory

MOV R10,*R3+ Before After

+n-99v¢:¢¢:n+””¢-99’59+

+'v”-”-’u’+’-9999-9-w9+

R | | I
jorersrrsrsstmosemnasead
+’s’9999’¢’.+9-9--o”-’9; Memory Pointer

R3 B37E ‘ B382O0 semraesesrased
FETTTIY T TP R R L Y L L g

Data Moved ;’---np’-o;:;na’oopsayaad»

+»22=2ses> R10 A062 | AO62 |
trerssmrensntrorewiseemnd
trmmrnamssrstwesenerswent

troveseeed B37E l » » ®» » ‘ A 0 6 2 I {mormrmensmmwd

ES Y TP FYT PR RS L LTS 3

jemrensnsnestrrensncmnwsd

67

Chapter 7

Notice that the address in the register is automatically incremented after the data at that
address is accessed.

The content of the indirect register are incremented by two because the Move Word
instruction peforms a word operation. If the instruction using register indirect
autoincrement addressing mode performs a byte operation (as does a Move Byte
instruction, for example), the content of the indirect register is incremented by one.

Autoincrementing by two allows a word-operation instruction to access a word and
automatically adjusts the address in the indirect register to the next word in memory.
Autoincrementing by one allows a byte-operation instruction to access a byte and
automatically adjusts the address in the indirect register to the next byte in memory.

Using register indirect autoincrement addressing mode is helpful when accessing several
sequential data items in a list. You can point to the first item in the list by putting the
address of that item into a register. Then, by using register indirect autoincrement
addressing mode, you can access the item and have the address in the indirect register
automatically adjusted so that it points to the next sequential data item. Each time you
access an item, the address in the indirect register is automatically adjusted to point to
the next item.

The TI Home Computer has a register indirect autoincrement addressing mode but it does
not have an autodecrement addressing mode.

Suppose there are several data items in consecutive words of memory beginning at
location hexadecimal A0A4 and you want to copy the first word to Register 7 and
automatically be ready to access the second word. And suppose that hexadecimal A0A4
happens to be in Register 10. What instruction could you write to do this? The instruction
would look like this.

MOV *R10+,R7
It copies the contents of memory location hexadecimal A0A4 into Register 7 and

automatically adjusts the address in Register 10 to hexadecimal A0AS, the address of the
second word.

7.2.4 Symbolic Addressing
The fourth general addressing modes is direct memory addressing, or as it is more often

called, “symbolic” addressing. Symbolic addressing is used to address directly a data item
in general memory by putting its address directly in the operand field.

68

Addressing Formats: General

If the data item is in a register, you can use register direct addressing. But if it'’s not in
a register, you can address it directly using symbolic addressing.

Symbolic addressing is specified by writing the address of the memory location preceded
by an “at” sign (@).

In the following instruction
MOV @>B37E,R10

the source operand uses symbolic addressing and the destination operand is uses register
direct addressing. Suppose that memory location hexadecimal B37E contains the number
hexadecimal A062 before the instruction is performed. After the instruction is performed,
Register 10 contains the number hexadecimal A062 also.

Memory
MOV @>B37E,R10 Before After
4rovrrrrrnsenivererrnarend
Frrrrrr e P TAT ELLES LL L
RO | |
trooorosnrasbrrreesrmaned
Data Moved tnoererraresrtsrecswerommd
dmoasamsad R10 l > = > o AO0G62 I
+- + +
$mmmmmmnan B37E | A062 A062 |

o f—

4 oo e

4 oo os
L

This addressing mode is called symbolic addressing because, most of the time, the
operand uses a symbolic address rather than a numeric address. For example, if location
hexadecimal B37E were assigned the name DOG, the same instruction could be written
as

MoV @DO&,R10

69

Chapter 7

Suppose there’s a word of data at a memory location named CAT and you want to copy
it to Register 15. What instruction could you write?

This instruction would do the job:
MOV @CAT,R15

What if you want to copy the data item in Register 0 to a memory location named GERBIL.
What instruction could you write to do it?

The instruction below serves the purpose.

MOV RO,@GERBIL

7.2.5 Indexed Addressing

The fifth of the five general addressing modes is commonly called indexed addressing.
Indexed addressing is used when you want to specify a data item with a combination
of symbolic addressing and an address in a register.

Indexed addressing mode is specified by writing a memory location preceded by an “at”
sign, @, that is followed by a register number in parenthesis. The register within the
parenthesis is called the index register.

The following instruction uses indexed addressing for the source operand and register
direct addressing for the destination operand. The index register is Register 3.

MOV @PICKLE(R3),R10

Since Register 10 is the destination operand, a word of data is moved into Register 10.
The location of the data item moved into Register 10 is determined by adding the content
of the index register to the address value of the memory location in the source operand.
The sum is the address of the data item.

Suppose that Register 3 contains the number 4 and that the address value of PICKLE
is hexadecimal B37E. The effective address of the source operand is hexadecimal B37E
plus 4, or hexadecimal B382. The contents of memory location hexadecimal B382
(PICKLE+4) is copied into Register 10.

70

Addressing Formats: General
Memory

MOV @PICKLE(R3),R10 Before After

+
]

s os 4
e 4

+
+ o

0 o 4 ee e

RO

: :

R3 | o004 0004
Data Moved ; + ;

+====> R10 | ---- AO0OG62
- N— .
PICKLE | | |
PICKLE+2 | | l
+ + =+
$mmmam PICKLE+s | A062 | AO62 |

4+ e
4
4 ee oo

If Register 10 contains hexadecimal B37E, the following instruction accomplishes the
same thing.

MOV @4(R10),R9

Indexed addressing is useful for accessing specific data items from a set of data. For
example, assume that memory location LIMITS is the first word of a table of several
contiguous words of data. Then this instruction can be used to access a partiacular word
in the table and copy that word into Register 5:

7

Chapter 7
MOV GLIMITS(R2),R5

The particular word accessed is determined by the number in Register 2. If Register 2
contains 0, the first word is accessed. If Register 2 contains 2, the second item is accessed.
If Register 2 contains 4, the third item is accessed; and so forth.

To understand indexed addressing better, study the following two instructions. Both
accomplish the same objective.

MoV @0 (R6),R0O
MOV *R6,RO

Both instructions copy a word into Register 0. The address of the word of data that’s copied
is determined by the address in Register 6. In the first instruction, Register 6 is an index
register. In the second instruction, Register 6 is an indirect register.

With indexed addressing, except for register 0, any of the registers can be used as an index
register. Register 0 can’t be used as an index register due to the structure of the machine
code.

7.3 Word and Byte Addressing

The Move Word instruction performs a word operation. It uses a 16-bit value for its
operation. Some instructions perform byte operations and use 8-bit values.

An example of an instruction that performs a byte operation is the Move Byte (MOVB)
instruction. It operates almost exactly like the MOV instruction except that it copies an
8-bit value from one location to another.

The MOVB instruction requires two operands. Like the MOV instruction, both operands
can use any of the five general addressing modes. In the case of the MOVB instruction,
however, the operands are byte addresses rather than word addresses.

For example, this instruction moves a byte from byte address decimal 100 to byte address
hexadecimal A084:

MOVB ©100,6>A084

Assume that word address decimal 100 contains a hexadecimal 9E63 and word address
hexadecimal A084 contains a hexadecimal C072 before the instruction is performed. The

72

Addressing Formats: General

instruction moves the content of byte address decimal 100, the byte value hex 9E, to byte
address hexadecimal A084.

After the instruction is performed, byte address hexadecimal A084 has a byte value of
hex 9E also.

Word Address Before After
(100) = >9E63 >9E63
(>A084) = >C072 >9E72

Whenever a byte operation is performed with an operand using register direct addressing,
the left byte of the register is always used. For example, before the following instruction
is performed, assume that Register 4 contains a hexadecimal D19F and memory word
hexadecimal A084 contains a hexadecimal C072.

MOVB R4,@>A084

After the instruction is performed, byte address hexadecimal A084 has a copy of the value
in the left byte of Register 4.

Before After
(rR4) = >D19F >D19F
(A084) = >C072 >D172

Recall that the left byte of a word has an even-numbered address and the right byte of
a word has an odd-numbered address.

Let’s look at this instruction:

MOVB *R7,RI11

Suppose that before the instruction is performed, Register 7 contains a hexadecimal A085,
Register 11 contains a hexadecimal D19F, and memory word hexadecimal A084 contains
a hexadecimal C072.

After the instruction is performed, Register 7 still contains a hexadecimal A085, Register
11 contains a hexadecimal 729F, and memory word hexadecimal A084 still contains a
hexadecimal C072.

73

Chapter 7

Before After

(R7) = >A085 >A085
(R11) = >D19F >729F
(A084) = >C072 >C072

It's possible that sometimes the computer can be directed by an instruction to perform
a word operation with an odd-numbered address. For example, suppose that Register
7 contains a hexadecimal A085, Register 11 contains a hexadecimal D19F, and memory
word hexadecimal A084 contains a hexadecimal C072 before the following instruction
is performed.

MOV *R7,R11

The instruction asks for the performance of a word operation, Move Word, with the odd-
numbered address, hexadecimal A085. In this situation, the computer rounds the odd-
numbered address down to the next lower even number to establish word alignment for
the operation. In this example, the computer rounds the odd-numbered address
hexadecimal A085 down to A084 and performs the operation with the contents of word
address hexadecimal A084.

Before After
(R7) = >A085 >A085
(R11) = >D19F >C072
(A084) = >C072 >C072

You probably wouldn't intentionally use an odd-numbered address for a word operation,
but if you do, the computer rounds the odd-numbered address down to the next lower
even address.

7.4 A Look at Another Instruction (Add Words)

Several examples have illustrated the five general addressing modes using the Move
Word instruction. The Move Word instruction is one that uses two operands, both of
‘which let you use any of the general addressing modes.

A similar instruction is the Add Words instruction. Look at the Add Words, mnemonic
op-code A, in Appendix A. Notice that both the first and second operand can use any
of the general addressing modes. (The operands have S and D codes.) The Add Words
instruction adds the content of the first operand to the content of the second operand,
placing the results in the second operand.

74

Addressing Formats: General

For example, suppose that Register 14 contains the number 23 and that Register 3 contains
the number 54, then the instruction

A R14,R3

adds 23 to 54 and places the sum, 77, in Register 3. The contents of Register 14 is still
23.

As another example, the instruction

A *R2,@GENIE

adds the number whose address is in Register 2 to the contents of the memory location
called GENIE. The sum is placed in memory location GENIE.

An example program in the next chapter uses the Add Words instruction.

7.5 Summary

This chapter introduces the general addressing modes. The five general addressing
modes and the assembly language syntax for specifying each addressing mode is listed
below.

General Addressing Mode Assembly Language Syntax
1. Register Direct Rx
2. Register Indirect *Rx
3. Register Indirect Autoincrement *Rx+
4. Memory (Direct)/*‘Symbolic” @location
5. Memory (Indexed)/“Indexed” @location(Ry)

x is any number 0 through 15
y is any number 1 through 15
location is a numeric or symbolic address

75

Chapter 8

ADDRESSING FORMATS:
IMMEDIATE AND PC-RELATIVE

The previous chapter identifies the TI Home Computer’s eight addressing modes and
describes the operation of the first five addressing modes (the ones which together are
classified as general addressing modes). ’

This chapter describes two more addressing formats: immediate and PC-relative. The
eighth addressing mode, CRU addressing, is described in another chapter.

This chapter illustrates the immediate and PC-relative addressing formats and how to
structure a program loop in assembly language.

8.1 Immediate Addressing

The sixth addressing mode is immediate addressing. Immediate addressing is not a
general addressing mode. With a general addressing mode, the operand specifies the
address of a data item rather than the data item itself. With immediate addressing, the
data item itself appears directly, or “immediately,” in the operand field.

8.1.1 The Load Immediate Instruction

As an example of an instruction that uses immediate addressing, look in Appendix A at
the instruction summary for the Load Immediate instruction. The mnemonic op-code is
LI

Notice that the instruction requires two operands in the operand field. The first is an R-
type operand. The R means that the first operand must be a register; that is, only register
direct addressing can be used for that operand. The second operand is an IOP-type
operand. IOP means that the operand is an immediate operand. The instruction uses the
second operand as a data value rather than the address of a data value.

Consider the following Load Immediate instruction.

77

Chapter 8
LI R7,26

The first operand is R7. The second operand is 26. The first operand uses register direct
addressing, which is the only addressing mode that can be used for the first operand.
The second operand uses immediate addressing, which is the only addressing mode that
can be used for the second operand. The second operand is said to be an immediate
operand.

Register 7 Immed iate Operand

| | ¢===mmmmanmn 26

The instruction copies the immediate operand to into the register. The Load Immediate
instruction is useful when you want to put a specific data value in a register.

8.1.1.1 Comparison of LI instruction with MOV Instruction

You can also use a Move Word instruction to put a data value into a register. For example,
you can use a Move Word instruction like

MOV R2,R7

to put a 26 into R7. Of course, Register 2 must have a 26 in it first. It would be simpler
just to use a Load Immediate instruction to put the 26 directly into Register 7.

You could also use a Move Word instruction like this

MOV @LAMP,R7
to copy a 26 into R7 (assuming, that memory location LAMP contains a 26). This Move
Word instruction requires two words of memory for its machine code and another word

of memory, called LAMP, is needed to hold the 26. The Move Word instruction, therefore,
requires three words of memory; wheras the instruction

LI R7,26

requires only two words of memory for its machine code. The advantage of the Load
Immediate instruction is that is saves memory.

The Move Word instruction, however, has the advantage .of allowing you to use a wide

78

Addressing Formats: Immediate and PC-Relative
variety of addressing modes. Remember the Load Immediate instruction only lets you
use register direct addressing for the first operand and only immediate addressing for
the second operand. The Move Word instruction lets you use your choice of any of the
five general addressing modes for both operands. For example, if you want to copy a word

stored in a general memory location to another general memory location, you can do it
with a Move Word instruction. You can’t do it, though, with a Load Immediate instruction.

Suppose you want to copy a number in general memory location PENCIL to memory
location PAPER. The single instruction

MOV @PENCIL,@PAPER
works fine, but you couldn’t use a single Load Immediate instruction.
If you were to write an instruction like

LI @PAPER,@PENCIL

the assembler would not translate it because the first operand is required to be a register
and the second operand must be a data item, not the address of a data item.

Both the Load Immediate and the Move Word instruction have advantages in some
situations. You can choose the best instruction for a particular situation.

8.1.1.2 Using the LI Instruction in a Loop

You can use the Load Immediate instruction to put a constant into a register. You may
want to use this instruction at the beginning of a loop. A loop performs a series of
instructions repeatedly. Usually, the loop repeats a fixed number of times or until some
condition is true.

Suppose you want to repeat a series of instructions four times. In BASIC, you can build
a FOR-NEXT loop like this.

900 FOR Z =1 T0 4

910 ~--==-~
33 S
X .
9XX —=mm=m=
9XX NEXT 1

79

Chapter 8

Assembly language, does not have FOR and NEXT instructions. You must control the
loop explicitly by adjusting the loop count and analyzing the resulting loop count. You
must build a loop which is more like this.

900 Z = 4

910 ~~==n~=-

9XX .

9XX .

KX —=mmm=-

9XX Z =7 -1

9XX IF Z <> 0 THEN 910

To build this kind of loop in assembly language, put the loop count (4) into a register,
perform the series of instructions, subtract one from the loop count in the register; if the
loop count is not zero, perform the loop again. When the loop count becomes zero, the
program falls out of the loop and goes on to the next instruction after the loop. Here's
a general structure of the loop:

<Set loop count 1in a register>

4rommmmaa > e e e e e et e e ne~ o~
<Perform the instructions in the loop>
<Subtract one from the 1loop count>
e <If Tloop count not equal to zero>

The Load Immediate instruction is useful for setting up the loop count in the register.

You can use any one of the sixteen registers to hold the loop count. If you use Register
8, the loop looks like this.

LI R8,4 SET LOOP COUNT IN R8

rmmm— > St e e e e s et e s e eaee~a
<Perform the instructions in the loop>
<Subtract one from the 1loop count>

tmmmmanan <If 1loop count not equal to zero>

80

Addressing Formats: Immediate and PC-Relative
8.1.2 The Add Immediate Instruction

While exploring the subject of immediate addressing, let's look at another example of
an instruction that uses immediate addressing. Locate the instruction summary for the
Add Immediate instruction in Appendix A. (The mnemonic op-code is AI}.

Like the Load Immediate instruction, the Add Immediate instruction requires two
operands. The first operand must be a register; the second operand must be an immediate
value.

The Add Immediate instruction adds the immediate operand to the contents of the register
and leaves the sum in the register. Notice from the instruction summary that several status
bits are affected by the Add Immediate instruction. The instruction automatically
compares the sum to zero and either sets or clears the Arithmetic Greater Than, Logical
Greater Than, and Equal status bits. For example, if the sum equals zero, the Equal status
bit is set to one. If the sum does not equal zero, the Equal status bit is cleared to zero.

You can use the Add Immediate instruction in the above loop. You can use it to subtract

one from the content of the loop counter register. You can subtract by adding a negative
number. For example, an instruction like

Al R8,-1
subtracts one from the contents of Register 8.
With an Add Immediate instruction, the loop looks like this.

LI R8,4 SET LOOP COUNT IN R8

Frmm—— P L T R R B I i T
<Perform the instructions in the loop>
Al R8,-1 SUBTRACT ONE FROM LOOP COUNT IN R8
Fommmmane <If 1loop count not equal to zero>

8.2 PC-Relative Addressing

The seventh addressing mode is PC-relative or Program Counter- relative addressing.
The only instructions that use PC-relative addressing are the jump instructions. PC-

81

Chapter 8

relative addressing is the only addressing mode the jump instructions can use. Let’s
review jump instructions and see how they use PC-relative addressing.

If you recall, there are thirteen jump instructions. Twelve are conditional jump
instructions. They may, or may not, cause a transfer of program control depending upon
whether certain conditions are true or untrue. Each conditional jump instruction is
designed to analyze a particular condition. If that condition is true, the jump instruction
causes a jump to a target instruction. If the condition is not true, the program goes on
to the next sequential instruction.

A conditional jump instruction determines whether a condition is true or not by analyzing
one or more status bits. For example, one conditional jump instruction is the Jump if Equal
instruction (JEQ). It determines whether or not to jump by analyzing the Equal status bit.
If the status bit is true, or a one, the Jump if Equal instruction causes a jump; if the status
bit is not true, or a zero, it doesn’t jump and program control continues to the next
sequential instruction.

Another conditional jump instruction that analyzes the Equal status bit is the Jump if Not
Equal instruction (JNE). If the Equal status bit is not true (zero), the Jump if Not Equal
instruction causes a jump. If the Equal status bit is true (one), the Jump if Not Equal
instruction does not jump. You can see that the JEQ instruction and the JNE instruction
analyze the same status bit but check for different conditions. .

One unconditional jump instruction exists among the thirteen jump instructions. This
instruction is called Jump Unconditionally and its mnemonic op-code is JMP. The JMP
instruction doesn’t analyze any status bits. It simply causes a jump no matter what.

8.2.1 Jump Instruction Targets

Every jump instruction requires an operand. The purpose of the operand is to specify
the next instruction to be performed next if there is a jump. The instruction that receives
control from a jump instruction is called the target of the jump.

The operand of a jump instruction uses PC-relative addressing. The target of the jump
is specified as relative to the Program Counter. The Program Counter, or PC, is a special
counter in the computer that keeps track of the address of the next instruction to be
performed. Although it’s called a counter, the PC is simply a special register that holds
the address of the next instruction to be performed.

Whenever an instruction is performed, the computer automatically adjusts the address
in the Program Counter to the address following the instruction. When a jump instruction

82

Addressing Formats: Immediate and PC-Relative

is performed that results in a jump, the value of the jump instruction’s operand is added
to the contents of the Program Counter. When the computer finishes the jump instruction
and is ready to perform the next instruction, it goes to the adjusted address in the Program
Counter to get the next instruction; it jumps.

The jump instruction’s operand specifies how much to add to the contents of the Program
Counter to reach the target of the jump; therefore, the operand of a jump instruction is
a “PC-relative” address.

Another way to think about the target of a jump instruction is to think about its relative
distance from the location of the jump instruction. After all, when a jump instruction is
performed, the address in the Program Counter is always the next word after the address
of the jump instruction itself.

8.2.1.1 Distance to the Target

The target for a jump instruction must be relatively close to the location of the jump
instruction itself. Without a lengthy explanation here, the jump range of a jump
instruction is limited to plus 256 bytes and minus 254 bytes from the location of the
instruction.

8.2.1.2 Methods for Specifying a Target

When writing programs in assembly language, there are three ways you can specify the
target of a jump instruction.

1. The best way for many situations is to use the name (label) attached to the target
instruction. For example, if you want your program to jump when the Equal Status
bit is true, you can write an instruction like this:

JEQ MICKEY

MICKEY is a label attached to the target instruction. In this example, the target
instruction must be labeled MICKEY or the assembler cannot translate the
instruction into the right machine code.

2. You can specify a numeric address. After all, a label is simply a name assigned to
the numeric location of a statement so you can use the numeric address itself. For
example, you can write an instruction like this:

JEQ 42826

83

Chapter 8

42826 is the address of the target instruction.

3. You can specify how far to jump (rather than where to jump). Here's an example.
JEQ $+36
This instruction causes a jump if the the Equal status bit is true to a location that
is a distance of plus 36 bytes from the location of the JEQ instruction. The $ symbol
means the location of the statement in which it appears. If this JEQ instruction is
located at address 42000, then the target is located at address 42036.
As another example, the instruction
JEQ $-100
specifies a target that is a distance of minus 100 bytes from the location of the JEQ
instruction. If this JEQ instruction is located at address 53982, its target is at address

53882.

These are the three ways to specify the target of a jump instruction:

e use a label

¢ use a numeric address

® use a dollar sign and a relative distance from the location of the jump instruction.
Using a label is usually the best way. Regardless of which method you use, the target

of the jump instruction must be within range. That range is not more than —254 to + 256
bytes from the location of the jump instruction.

Range of a Jump Instruction

+--==> ~ 254 Bytes
4+~~== Jump Instruction

+====> 4+ 256 Bytes

84

Addressing Formats: Immediate and PC-Relative
8.2.2 Using a Jump Instruction in a Loop
You can use a conditional jump instruction in the example loop.

As discussed previously, you can use the Add Immediate instruction to subtract one from
the loop counter register each time the loop is performed. The Add Immediate instruction
automatically compares the result remaining in the register with zero and affects several
status bits, including the Equal status bit. If the result in the loop counter register equals
zero, the Equal status bit is set to one. If the result does not equal zero, the Equal status
bit is cleared to zero.

After the Add Immediate instruction is performed, you can have the program check if
the result of subtracting one from the loop counter produced a zero or not. If the result
is not zero, you want the program to jump back and perform the series of instructions
in the loop again. If the result is zero, you know that the loop has been performed enough
times and you can allow the program to precede to the next instruction after the loop.

You can use a conditional jump instruction after the Add Immediate instruction to check
if the Equal status bit was set or not. There are two jump instructions that check the state
of the Equal status bit: Jump if Equal (JEQ) and Jump if Not Equal (JNE). You want the
program to jump back to the beginning of the loop if the result in the loop counter is not
equal to zero, so use the JNE instruction.

The JNE instruction, like all jump instructions, must specify a target in the operand field.
The target of the JNE instruction is the first instruction within the loop. Choose a name
for that instruction, say LOOP, and attach the name as a label to the instruction. Then
use that name as the target for the JNE instruction. The program segment now looks like
this.

LI R8,4 SET LOOP COUNT IN R8
LOOP ===~ =======2==°=22~=-~-

- . wm m wm e w e e e e ow e o m om wm oe -

Al R8,-1 SUBTRACT ONE FROM LOOP COUNT IN R8
JNE LOOP IF COUNT NOT ZERO, 60 TO LOOP START

Chapter 8
8.3 Building a Program Example

This shell allows for a loop to perform four times. By putting a different number into
Register 8, you determine the number of times the loop is performed. For example, if
you put 100 into Register 8, the loop is performed 100 times.

This loop can be modified slightly to do something specific. Let's have the program square
a number. To square a number, you multiply the number times itself.

Multiplication is simply repetitive addition. For example, if you want to find out how
much 8 times 3 is, you can get the answer by adding 8 three times or by adding 3 eight
times.

To square a number, you multiply the number times itself. You can achieve the same
result by repeatedly adding the number until you've added it a number of times equal
to the number itself. For example, you can square the number 4 by adding it four times.

4+4+44+4 =16

To modify the loop to square a number, start by using a Load Immediate instruction to
put the number you want to square in a register, say Register 7. Let’s choose the number
5 and square it.

LI R7,5 PUT NUMBER TO BE SQUARED IN R7
LI R8,4 SET LOOP COUNT IN R8

I I I e T e T T T e,

AI R8,~1 SUBTRACT ONE FROM LOOP COUNT IN R8
JNE LOOP IF COUNT NOT ZERO, GO TO LOOP START

Use a Move Word instruction instead of the second Load Immediate instruction to copy
the number into the loop counter register (Register 8).

LI R7,5 PUT NUMBER TO BE SQUARED IN R7
MOV R7,R8 COPY NUMBER INTO R8 FOR LOOP COUNT

88

Qkxes od* (_)'F Ov(&l\

Addressing Formats: Immediate and PC-Relative

<Perform the instructions in the loop>

- s m m m m e e oem moam mom o om e sm o m

Al R8,-1 SUBTRACT ONE FROM LOOP COUNT IN R8
JNE LOOP IF COUNT NOT ZERO, G0 TO LOOP START

Next, use the Load Immediate instruction again to set a register, say Register 9, to zero.
This register accumulates the results of the repetitive addition.

LI R7,5 PUT NUMBER TO BE SQUARED IN R7
MOV R7,R8 COPY NUMBER INTO R8 FOR LOOP COUNT
LI R9,0 INITIALIZE CUMULATIVE SUM TO ZERO
LOOP =-=-==-===“=~=2~~=-==~=~-

Al R8,~1 SUBTRACT ONE FROM LOOP COUNT IN R8
JNE LOOP IF COUNT NOT ZERO, GO TO LOOP START

After all these initialization procedures, constructing the body of the loop is straight
forward. Add the number in Register 7 to the number in Register 9.

LI R7,5 PUT NUMBER TO BE SQUARED IN R7

MoV R7,R8 COPY NUMBER INTO R8 FOR LOOP COUNT

LI R9,0 INITIALIZE CUMULATIVE SUM TO ZERO
Loop A R7,R9 ADD NUMBER TO CUMULATIVE SUM

Al R8,-1 SUBTRACT ONE FROM LOOP COUNT IN R8

JNE LOOP IF COUNT NOT ZERO, GO TO LOOP START

The program repeatedly adds the 5 in Register 7 to the contents of Register 9 and subtracts
one from the loop count in Register 8 until the loop count is zero.

The program is almost complete. It now adds five to the number in Register 9 until the
loop count in Register 8 is zero. Then the program comes to the end of the loop and goes
to the JNE instruction. The problem is: there isn’t an instruction following the Jump if
Not Equal instruction.

Ending an assembly language program is different from ending a BASIC program. When

85
31

Chapter 8

a BASIC program is finished and the last instruction is performed, the BASIC interpreter
waits for the next instruction. The BASIC interpreter is a program that interprets and
performs the instructions in a program. When the program runs out of instructions, the
BASIC interpreter is still controlling the computer.

In assembly language program, however, the program controls the computer directly.
Once you have used your program to have the computer do what you want, you must
include an instruction to have your program give control to another program. If you fail
to include such an instruction, the computer’s response is unpredictable.

At this point, let’s introduce an instruction that will keep the computer under control.
Right after the JNE instruction, let’s place a “Go-Home" instruction.

LI R7,5 PUT NUMBER TO BE SQUARED IN R7

MOV R7,R8 COPY NUMBER INTO R8 FOR LOOP COUNT

LI R9,0 INITIALIZE CUMULATIVE SUM TO ZERO
LOOP A R7,R9 ADD NUMBER TO CUMULATIVE SUM

Al R8,-1 SUBTRACT ONE FROM LOOP COUNT IN RS

JNE LOOP IF COUNT NOT ZERO, GO TO LOOP START

BLWP @0 OTHERWISE, GO HOME

The Go-Home instruction has been added to the program. Later, a discussion of exactly
how the BLWP instruction operates is given. For right now, understanding what it does
in this program is sufficient. It causes the computer to display the title screen, as if you
had just turned the computer on.

One more statement is needed. If you recall, every program ends with an END statement,
a statement containing an END directive. The END directive marks the end of the
program and instructs the assembler to stop assembling.

LI R7,5 PUT NUMBER TO BE SQUARED IN R7

MOV R7,R8 COPY NUMBER INTO R8 FOR LOOP COUNT

LI R9,0 INITIALIZE CUMULATIVE SUM TO ZERO
Loop A R7,R9 ADD NUMBER TO CUMULATIVE SUM

Al R8,-1 SUBTRACT ONE FROM LOOP COUNT IN R8

JNE LOOP IF COUNT NOT ZERO, GO TO LOOP START

BLWP G0 OTHERWISE, GO HOME

END

Now you have an assembly language program that does something useful. When the
program is finished, it relinquishes control of the computer in an orderly fashion.

Once the program construction is complete you've reached a major milestone, but you're

86

Addressing Formats: Inmediate and PC-Relative
not through yet. Next, you run the program.

In the next chapter, you can use this program to learn more about the Editor, the
Assembler, the Loader, and the Debugger utility programs which come with the
Editor/Assembler package. (A utility program helps you develop your application

program.)

8.4 Summary

This chapter introduces the immediate and PC-relative addressing modes. The Load
Immediate and Add Immediate instructions are two instructions that use immediate
addressing. The jump instructions use PC-relative addressing.

In this chapter, the program loop that squares a number illustrates the use of instructions
that employ immediate and PC-relative addressing. In the following chapters, the
program loop is used to help you learn to use the utility programs to develop assembly
language programs.

89

Chapter 9

INTRODUCTION TO
THE EDITOR AND ASSEMBLER

Chapters 9 and 10 explain the role of utility programs in the development of assembly
language programs. A utility program is one that is designed to aid in the development
of another program. Utility programs for assembly language include editors, assemblers,
loaders, and debuggers.

e An editor helps you compose a source program.

e An assembler translates a source program into an object program.

e A loader loads the machine code of an object program into memory.
o A debugger helps you test a program and detect bugs.

There are several utility packages available to help you develop assembly language
programs. For example, Texas Instruments offers an Editor/Assembler package which
includes an editor, assembler, loader, and debugger. The Mini Memory Module that
includes a line-by-line assembler and a debugger and the UCSD p-System with an
assembler and loader are both available.

This book describes the use of the TI Editor/Assembler package as an example of the
role of utilities in developing a program and as an example of what the utilities do. If
you don’t have the Editor/Assembler package, you can use these examples as guidelines
and adapt the concepts to the utility programs that you use.

Chapters 9 and 10 use the program from Chapter 8 (the program that squares a number)
to illustrate the use of the utility programs with the Editor/ Assembler package. Chapter
9 introduces the Editor and Assembler utility programs. Chapter 10 introduces the Loader
and Debugger.

If you have the Editor/Assembler package, you can use the guidelines that are presented

to help you edit, assemble, load, and run the program you developed in the previous
chapter.

91

Chapter 9

NOTE
The descriptions of the operation of the utility programs are simplified
descriptions. The Editor/Assembler manual contains cautionary notes,
hints, troubleshooting suggestions, and more precise details about the.
utility programs.

If you have the Editor/Assembler manual, read Sections 1 and 2 of the
manual before continuing.

9.1 The Editor

The Editor is a utility program that helps you create a source program. You can use the
Editor to type your program and compose the statements like you want them to appear
before passing the source program to the Assembler.

9.1.1 Bringing Up the Editor/Assembler Package

The steps for getting the Editor/Assembler package up and running are:

Make sure the computer and its associated equipment are connected
correctly and plugged into power outlets.

Turn on all the peripheral devices such as the Peripheral Expansion
System, the disk drives, printer, etc.

Turn on the computer. The title screen is displayed.

Insert the Editor/Assembler command module into the slot on the console.
The screen goes blank momentarily and then the title screen reappears.

Press any one of the keys to have the master selection screen appear on
the display.

Press the number that selects the Editor/Assembler package. The number
varies based upon whether you have the model 99/4 or 99/4A. After
pressing the right number, the Editor/Assembler selection screen is
displayed.

92

Introduction to the Editor and Assembler
9.1.2 Using the Editor to Compose the Source Program
Here's the procedure for calling up the Editor and using it to compose the source program.

Bring up the Editor/Assembler package and get the Editor/Assembler
selection screen displayed.

Insert the diskette labeled Part A into Disk Drive 1.
Press the 1 key to select the Editor. After pressing 1, the Editor’s selection
screen appears on the display. The Editor selection screen lets you choose
the following functions.

e Load an existing source program from disk into memory

e Edit a source program in memory

e Save a source program from memory to disk

e Print a source program

e Delete (purge) a source program in memory.

Press the 2 key to edit the source program. After pressing the 2 key, the
Editor displays the message

ONE MOMENT PLEASE...

and the Editor utility program is loaded from disk into memory. Then the
Editor clears the screen and you can begin typing in the source statements.
The Editor displays the message

*EOF (VERSION X.Y)

where X.Y is the version number of the Editor, to mark the end of the
program being edited.

Use the Editor to type the program statements and arrange the fields as

you want them. Remember the syntactical rules for the statements. Use
a <tab>, function, 7 to align the fields of the statements.

93

Chapter 9

After you've typed the statements, return to the Editor selection screen
by pressing the <escape> key, function 9, twice.

To save the program on a diskette, press the 3 key. The Editor displays
the prompt

VARIABLE 80 FORMAT (Y/N)?

Press Y to choose the variable 80 format. This tells the Editor to use the
least amount of disk space possible for storing the program. The Editor
responds by displaying the prompt

FILE NAME?

Place a diskette that has been initialized by the Disk Manager into a disk
drive and type in

DSKn. XXXXXXXX

where n is the number of the disk drive where you put the diskette to save
the source program and XXXXXXXX is the name you choose for the source
program file. For example, if you put a disk into Disk Drive 1, you might

type in
DSK1.SQRSRC
You can use “SRC” as the last 3 letters of a Source file name to remind

you that it is an assembly language source file. Remember to press the
<enter> key after typing in a file name.

The Editor saves the source program on disk and returns to the Editor
selection screen.

Press the <escape> key to return to the Editor/Assembler selection
screen.

9.2 The Assembler

Here are the steps for assembling the program.

- 94

Introduction to the Editor and Assembler

Get the Editor/Assembler selection screen displayed.

Insert the Part A diskette from the Editor/Assembler package in Disk
Drive 1.

Press the 2 key to select the Assembler. After pressing 2, the prompt

LOAD ASSEMBLER (Y/N)

is displayed. (If the Assembler is already in memory, you don't get the
prompt.)

When you press Y, the message

ONE MOMENT PLEASE...
is displayed and the Assembler is loaded from disk into memory.
After the Assembler is loaded, the prompt

SOURCE FILE NAME?
is displayed.
Make sure the diskette with the source file is in a disk drive and then type
the file name of the source program as follows. (If you have only one disk

drive, you must remove the Part A diskette from the drive and place the
diskette with the source file in that drive.)

DSKn . XXXXXXXX

The n is the number of the disk drive that contains the source program
diskette in it and XXXXXXXX is the name of the source program file. After
typing in the source file name and pressing the <enter> key, the prompt

OBJECT FILE NAME?

is displayed. The Assembler is asking for a name to assign to the object
program that is stored on disk as a result of assembling the source program.

95

Chapter 9

96

Type in
DSKn.YYYYYYYY

where n is the disk drive number that contains the diskette to receive the
object program and YYYYYYYY represents the name you choose for the
object program file. For example, if the program disk is in Disk Drive 1,
you might type DSK1.8QUARE. After typing in the object file name and
pressing the <enter> key, the prompt

LIST FILE NAME?

is displayed. The Assembler is asking you to name the location for the
listing.

If you have a printer, type in one of the following.
1. If you have a serial printer attached to the RS232 Interface unit,
type in RS232.BA=n where n is the baud rate (speed in bits per
second) of your printer. For example, it you have a 300 baud printer,

type RS232.BA=300. If you have a 1200 baud printer, type
RS232.BA=1200, etc.

2. Ifyouhave a parallel printer attached to the RS232 Interface unit,
type in PIO. to select the printer.

3. If you have a thermal printer, type in TP to select the thermal
printer.

If you don’t have a printer, you can type

DSKn.271721172
where n represents the number of the disk drive that is to receive the
listing and ZZZZZZZZ is the name you choose for the listing file. For
example, if the program disk is in Disk Drive 1, you might type in
DSK1.8QRLIST. After typing in the list file name, the prompt

OPTIONS?

is displayed.

Introduction to the Editor and Assembler

Each option has a character code. The option character codes and their
meanings are as follows:

Code Meaning

R Instructs the Assembler to expect an R prefix with register
numbers in the source program statements such as R8 for
Register 8. If you do not use the R option and you put R’s in front
of the register numbers, the Assembler flags those statement as
being wrong.

L Instructs the Assembler to produce a listing when it assembles.
Even though you type in a file name in response to the LIST
FILE NAME? prompt, you still must use the L option to actually
get a listing.

S Instructs the Assembler to produce a symbol table with the
listing. A symbol table is a list of all the names in your program
and the address or value assigned with each name. A symbol
table is especially useful when you have a long program and a
listing of several pages. It helps you find the statement where
a symbol is defined.

C Instructs the Assembler to store the object program on disk in
a compressed format. This option saves disk space.

In response to the OPTIONS? prompt, type in RLSC to choose all the
options. Type in all four letters as they appear without spaces. The letters
can be in any order. Then press <enter>.

After typing in the options, the message

ASSEMBLER EXECUTING

is displayed at the bottom of the screen. The Assembler assembles the
source program on disk and builds an object program on disk. It also
produces a listing. You can hear the assembler turning on the disk and,
if a printer is connected, the listing is printed. If the assembler encounters
any statements it does not understand or finds something it cannot
assemble, it displays an error message on the screen. The error message
also appears on the listing.

97

Chapter 9

If there are any errors in the assembly, use the Editor to load the source program from

When the assembler is finished, the total number of errors is displayed
and the message

PRESS ENTER TO CONTINUE
is displayed.

Press the <enter> key and the Editor/Assembler selection screen is
displayed again.

disk into memory and correct any statements that are syntactically incorrect.

Once you get an error-free assembly, take a moment to look at the listing preduced by
the Assembler. If you have a printed listing, remove it from the printer and place it before
you. If you directed the listing to a disk file, get the listing displayed on the screen. Here's

the way you get a listing displayed on the screen.

98

Get the Editor/Assembler selection screen displayed.

Press the 1 key to choose the Editor. After pressing 1, the Editor selection
screen appears on the display.

Insert the Part A diskette is in Disk Drive 1 and press the 1 key to choose
the Load option. After pressing 1, the message

ONE MOMENT PLEASE . . .
is displayed as the Editor is loaded from diskette into memory and then
the prompt

FILE NAME?

is displayed.

Make sure the diskette with the list file is in a disk drive. Then type in
the file name of the list file as follows:

DSKn . XXXXXXXX

The n is the number of the disk drive that contains the list file and
XXXXXXXX represents the name of the list file. After typing in the file

Introduction to the Editor and Assembler

name and pressing <enter>, the list file is loaded into the edit buffer.
You can examine it using the Editor. If you should get the message

CONTROL CHARACTERS REMOVED
PRESS ENTER TO CONTINUE

press <enter>. The Editor is simply telling you it has removed some
control characters that are needed if the file is sent to a printer. These
control characters are still present in the file on the diskette.

The Editor selection screen is displayed.

Press the 2 key to choose the Edit option. The list file is displayed on the
screen.

Study the listing and make sure you know what it's telling you. Here is a copy of a printed
listing.
IDENTIFIES ASSEMBLER THAT PRODUCED LISTING

PAGE NUMBER
49/4 nssenm,m}

ey —y Gy T
VERSION 1.7 PAGE OG01

0021 2009 Br07 LI R7.5 PUT NUMBER TO BE SOUARED IN R7
eaez @005

200> 804 CD7 MOV R7.RE COPY NUMRER INTO RE FOR LOOP COUNT

220T C0OE 0209 LI R9, 0 INITIALIZE CUMULATIVE SuUM TO 2ERO
o00E 0080

0004 OBBA AZ47 LOOP A R7.R9 ADD NUMEBER TO CUMULATIVE SUM

Q20S 00BC 0228 Al RE, -1 SUBTRACT ONE FORM LOOP COUNT IN RE
@@BE FFFF

QC2E 0010 1EFC JNE LOOP IF COUNT NOT ZERD, GO TO LOOP START

0007 @012 BLZD BLWP 30 ELSE GO HOME
2014 @200

2008 v~ END

——— .

MACHINE CODE

SOURCE PROGRAM STATEMENTS
MEMORY LOCATIONS WHERE
MACHINE CODE IS LOADED
(RELATIVE)

LINE NUMBERS

9974 ASSEMBLER
VERSION 1.2

) PRGE @802

* LODP BOBA RO 2020 R1 2091 R10 28R
R11 QOOR R12 220C R13 220D R14 @BoE
R1S 2o0F R2 2002 R3 2003 R4 2004
RS 200S RE 2o0E R7 0007 R8 eces
RS 0009

2222 ERRORS

99

Chapter 9

100

The listing consists of two pages. The first page shows the source program
statements, the machine code into which they are assembled, and other
information. The second page is a symbol table. It's a list of all the symbols
in the source program.

On the first page, the left-most column contains the line numbers for the
source statements. The line numbers are in decimal. The second column
shows the relative memory locations where the machine code will be
loaded. The actual locations for the machine code is determined by the
Loader when the object program is loaded. These relative locations are
in hexadecimal. The third column lists the machine code values of the
assembled source statements. The numbers are in hexadecimal. The
source statements are listed to the right of the third column.

Some source statements produce more than one word of machine code.
For example, statement number 1 (the LI R7,5 statement) produced two
words of machine code. The first machine code word occupies relative
word address 0000. The second machine code word occupies relative
word address 0002. The first machine code word is hexadecimal 0207; the
second machine code word is hexadecimal 0005.

Statement number 2 (the MOV instruction) requires only one word of
machine code. The machine code word is hexadecimal C207 and occupies
relative word address 0004.

Notice the END directive, statement number 8, doesn’t produce any
machine code words and doesn’t require any memory words for machine
code.

The second page is a symbol table. Each of the symbols used in the
program is listed in alphabetical order from left-to-right on each line.
Beside each symbol is a hexadecimal number which is the value of that
symbol.

For example, the symbol LOOP is a label in the program and its value
is hexadecimal 000A. The number is the relative word address of the
instruction’s machine code. The symbol LOOP has a relative address code
of hexadecimal 000A.

The other symbols in the table are automatically assigned values by the
assembler when you choose the R assembler option. The R option tells

Introduction to the Editor and Assembler

the assembler to associate the symbol R0 with the value 0; the symbol R1,
with the value 1; and so forth.

The last line of the listing tells you how many errors were found when
the program was assembled. You want this number to be zero.

At this point, you have a listing, a source program, and an object program. The next step
is to load and run the object program.
9.3 Summary

This chapter summarizes the use of the Editor and Assembler utility programs to edit and
assemble the program from the previous chapter. :

The Editor helps you compose or change a source program. The Assembler translates
the source program into an object program for the computer to run. The Assembler also
creates a listing to show the results of the assembly process.

The following chapter summarizes the use of the Loader and Debugger utility programs.

101

Chapter 10

INTRODUCTION TO
THE LOADER AND DEBUGGER

Chapter 9 uses a program example to illustrate the use of the Editor and Assembler utility
programs in the Editor/Assembler package. This chapter uses the object program
produced by the Assembler to illustrate the use of the Loader and Debugger included
with the Editor/Assembler package.

10.1 Using the Loader

Here are the steps for using the Loader to load the object program.

Get the Editor/Assembler selection screen.

Press the 3 key to select the LOAD AND RUN choice. After pressing the
3 key, the prompt

FILE NAME?
is displayed.

Make sure you've got the diskette containing the object program in a disk
drive, then type

DSKn.Z11711711

The n is the number of the disk drive in which the diskette with the object
program is inserted. ZZZZZZZZ is the name of the object program. Always
press the <enter> key after typing in a file name. The Loader loads the
object program into memory and the prompt

FILE NAME?

is displayed again. The Loader is asking for the name of another object
program to load. You can load more than one program into memory.

103

Chapter 10

Another program that you can load with this program is the Debugger
program. The Debugger program is used to control your application
program, for checking the results, and even helping you detect and remove
bugs from your program should you have any. The Debugger is a helpful
companion for your program.

The Debugger is on the Part A diskette that is included with the
Editor/Assembler package. Place that diskette into a disk drive and
respond to the FILE NAME? prompt by typing

DSKn .DEBUG
The n is the number of the disk drive where the Part A diskette is installed.
DEBUG is the name of the DEBUG object program. The Loader loads the
DEBUG program into memory along with the application program and
the prompt

FILE NAME?

is displayed again. Since there are not any more programs to load, simply
press the <enter> key.

The following prompt is displayed:

PROGRAM NAME?
The Loader is asking for the name of the program to run. You can run the
program directly; but, if you do, it takes over the computer, does its job,
and returns to the title screen. You will not see the results. Instead, run
the Debugger, and then have the Debugger run the program when you're
ready. You can also use the Debugger to help you check the results.
In response to the PROGRAM NAME? pompt, type

DEBUG

and press the <enter> key. The Debugger starts running.

104

Introduction to the Loader and Debugger
10.2 Using the Debugger
When the Degugger starts running, it displays the identification message

% 99/4 DEBUGGER *

and then displays a dot on the screen (the Debugger is a program of few words). The dot
is the Debugger’s way of asking for what you want to do. You respond to the Debugger
by typing in a single-character code followed by some other information. The information
is based upon what you want the Debugger to do.

There are over 20 commands for the Debugger. Although you are not going to use all of
them at this point, you can learn to use the ones required to run this first program.

First, use the Debugger to look at the object code that was loaded into memory by the
Loader. Unless the program specifies otherwise, the Loader loads the first program into
memory beginning at address hexadecimal A000. Let's use a Debugger command to
examine the memory location and see if the object code is really there.

10.2.1 The Memory Inspect/Change Command (M)

To examine the contents of memory with the Debugger, follow this procedure. In response
to the dot prompt, type M (for Memory Inspect/Change). Don’t press the <enter> key.

Following the M, type the address for the contents you want to examine. Type in A000.
The Debugger understands this number is hexadecimal. In fact, the Debugger assumes
all numbers are hexadecimal.

After typing in A000, press the <enter> key. All Debugger commands are terminated
by the <enter> key.

The Debugger responds by displaying

A000=0207

This tells you that the contents of memory address hexadecimal A000 is hexadecimal 0207.

Recall from looking at the listing, or look at the listing now if you had it printed,) that
the first assembly language instruction (The LI R7,5 instruction) results in two words of
machine code. The first word of machine code is hexadecimal 0207. So, it appears that
the first word of machine code was loaded at address hexadecimal A000.

105

Chapter 10

According to the listing, the second word of machine code is 0005. This means that the
next word of memory (address A002) should have a 0005 in it. Does it? Let's find out.

After displaying the content of memory location hexadecimal A000, the Debugger waits
to give you a chance to change the content of that memory location. If you don’t want

to change the content, but you want to inspect the next location, simply press the space
bar.

The Debugger responds to the space by displaying on the next line
A002=0005

This shows that the contents of the next word (whose address is A002) is 0005.

Look at the next several memory locations to see what they contain. Keep pressing the
space bar until the address A014 appears. The display should look like this.

A000 = 0207
A002 = 0005
A004 = C207
A006 = 0209
A008 = 0000
AGOA = A247
A0OC = 0228
AQOE = FFFF
AD10 = 16FC
A012 = 0420
A014 = 0000

These are the addresses and machine code values for the object program. Confirm from
the listing that the machine code values and their relative locations are correct.

Address A014 is the last location into which your program’s machine code was loaded.
If you press the space bar too many times and pass address A014, that’s okay. You're just
looking at the machine code for the Debugger program.

When you're finished examining memory locations, press the <enter> key to terminate

the Memory Inspect/Change command and the Debugger gives you another dot prompt
for another command.

106

Introduction to the Loader and Debugger

10.2.2 The (Internal) Registers Command (R)

Another Debugger command you can use is the R command. It lets you inspect and,
optionally, change the contents of the Workspace Pointer, Program Counter, and Status
Register.

To use the command, type in R. Don't press the <enter> key.
The Debugger responds by displaying

W=XXXX {where XXXX 1s some four-digit hexadecimal
number)

The Debugger is showing you the contents of the Workspace Pointer (WP). The Workspace
Pointer tells the computer what area of memory to use for a program’s workspace. For
now, type in 2000. Don't press <enter>. You're telling the Debugger to let your program
use the area of memory beginning at hexadecimal 2000 for its workspace.

Press the space bar. The Debugger displays on the next line

P=YYYY (where YYYY is some four~-digit hexadecimal
number)

The Debugger is showing you the contents of the Program Counter (PC). You may
remember that the Program Counter is the computer register that tells the computer the
address of the next instruction to be performed in a program. The address of the first
instruction is A000.

Type A000 followed by a space. The Debugger puts A000 into the Program Counter and
on the next line displays

S=1111 (where ZZ1Z is some four-digit hexadecimal
number)

The Debugger is showing you the content of the Status Register (SR). The Status Register
is the computer register in which the computer stores status conditions resulting from the
performance of instructions. The Status Register contains the status bits that the
conditional jump instructions use to make decisions.

Before running a program, it’s a good idea to set the Status Register to zero. Simply type
a 0 followed by the <enter> key. The Debugger puts a zero into the Status Register and
displays a dot prompt again.

107

Chapter 10

Note

The R command does not directly put values into the CPU’s Workspace
Pointer, Program Counter, or Status Register. The R command saves these
values in memory; these values are placed in the CPU'’s internal registers
when you tell the Debugger to run a program.

10.2.3 The Breakpoint Command (B)
You can use a Breakpoint command to control how much of the program to run.

The B command lets you set a breakpoint. A breakpoint is a roadblock in a program. When
the program comes to a breakpoint, it stops and gives control to the Debugger.

Without a breakpoint, if you tell the Debugger to run the program, the program starts at
the first instruction and keeps performing instructions until it performs the BLWP @0
instruction. When it performs that Go-Home instruction, the computer returns to the title
screen just as when you first turn on the computer.

Before you allow the computer to go home, use a breakpoint to stop the program so you
can check the results produced by the program

Set a roadblock (a breakpoint) at the Go-Home instruction. You can allow the program
to run until it comes to the Go-Home instruction and then have the Debugger stop the
program before it goes any further. Here’s how you do that.

In response to the dot prompt, simply type a B.

Now tell the Debugger where to set the breakpoint. Set the breakpoint at the BLWP
instruction. The beginning address of the BLWP instruction is A012. You can confirm
this from the listing. Following the B, type A012 and press the <enter> key. These steps
set a “trap” at the BLWP instruction. A trap is the location of a breakpoint.

You may get the message, “BKPT USES 2 WORDS.” That’s fine, just keep going.

You have used the Debugger to check the machine code in memory and verify that it's
what you expected. You have used the R command to inspect the content of the
Workspace Register, to set the content of the Program Counter to the starting address of
the program, and to zero out the content of the Status Register. And you've used the
Breakpoint command to set a trap for the program so the Debugger can stop the program
before it goes to the title screen.

108

Introduction to the Loader and Debugger
10.2.4 The Execute Command (E)

To actually run the program, here's all you do. In response to the dot prompt, simply type
in E (for Execute) and press the <enter> key.

The Debugger starts running the program at the address you set in the Program Counter
and allows the program to run until it comes to the breakpoint. When the program reaches
the breakpoint, the Debugger takes over and displays

8 2000 A012 3000

The B means the Debugger has hit a breakpoint. The first number is the address of the
program’s workspace. The second number is the address in the Program Counter when
the breakpoint was encountered (it's the address of the breakpoint). The third number
is the contents of the Status Register.

Now, you can use the Debugger to check the results.

If everything went according to plan, the program should have squared the number 5
and left the square in Register 9.

10.2.5 The Working Register Inspect/Change Command (W)

You can use the W command to inspect and, optionally, change the contents of working
registers. Here are the steps to follow.

In response to the Debugger’s dot prompt, type in the letter W. (Don't press the <enter>
key yet.)

The W command tells the Debugger you want to inspect the content of a register but the
Debugger needs to know which one. After the W, type the number of the register you
want to inspect. Type 9 (not R9, the Debugger doesn’t understand R prefixes). After typing
9, press the <enter> key.

The Debugger responds by displaying
R9=0019

This message tells you that the content of Register 9 is 0019. Register 9 has the square
of 5 in it. Remember, the Debugger only speaks hexadecimal. Register 9 holds a
hexadecimal 19, which is a decimal 25.

109

Chapter 10

After examining Register 9, press <<enter> to get a dot prompt from the Debugger.

10.2.6 The Hex-to-Decimal Conversion Command (>)

Often when using the Debugger, you need to convert a hexadecimal number to a decimal
equivalent. The Debugger provides a convenient way to do those conversions. Here’s
how.

First, make sure you have a dot prompt from the Debugger. In response to the dot prompt,
type a greater-than sign (>). This is a command to the Debugger to convert a hex number
to a decimal number. Then, type the hex number, say 19, and press the <enter> key.
The Debugger responds by displaying

>.19
=25
This shows that hex 19 equals decimal 25.

There are some other Debugger commands which are especially useful.

10.2.7 The Set Bias Commands (X, Y, and Z)

By looking at a listing, you can see the machine code that was produced from the assembly
language statements. You also can see the relative locations in which the machine code
values are placed in memory when the object program is loaded. Normally, when the
first object program is loaded into memory, it's loaded beginning at address hexadecimal
A000. When a program is loaded into memory, it's sometimes a brain twister to transform
a relative address from the listing into the physical address where the program was
actually loaded.

Again, the Debugger can help. One feature of the Debugger is setting a bias. Here's the
way it works.

‘Suppose you have the program in memory beginning at address hexadecimal A000 and
you want to look at the machine code for the instruction

JNE LOOP

From the listing, you discover that the instruction’s machine code is a hexadecimal 10
distance from the beginning of the program. You could do a mental calculation and add

110

Introduction to the Loader and Debugger

a hex 10 to the beginning of the program (hex A000) and come up with the physical location
hex A010 (hex A000 + hex 0010). An easier way, however, is to use a bias.

To set a bias, follow this procedure. In response to the dot prompt, type in an X. The
Debugger displays

X 2111 (where 2717 is some four-digit hexadecimal
number).

To set an X bias at A000, type in A000 and press the <enter> key. You've just set a bias
of A000. Now, whenever you use any Debugger command that requires an address (like
the Memory Inspect/Change command) you can use X as part of the address calculation.
For example, if you want to examine the contents of the memory address that is a relative
hgac 10 from the starting point of the program (hex A000) you can type in X as part of the
address.

For example, in response to the dot prompt, type in M, then type in 10X, and press the

<enter> key.

The Debugger responds by displaying

A010=16FC

It automatically added hex 10 (the displacement) to hex A000 (the bias).
Press <enter> to get a dot prompt from the Debugger.

The Debugger lets you establish up to three bias. The biases are called X, Y, and Z.

10.2.8 More Experiments with the Program

If you run the square program again just the way it is, it would repeat the results from
the first time you ran it. It would square the number 5. If you want the program to do
something different (like square a different number), you must have it do something
different.

Suppose you want the program to square the number 6. You must change the program
so that it starts with a 6 in Register 7. One way to do that is to change the first statement
in the program from

111

Chapter 10
LI R7,5

to

LI R7,6

This change requires changing the source program, reassembling, and reloading. This
approach is a time-consuming process. You can change the machine code directly in
memory. This approach takes more knowledge of the machine code than explored to this
point.

Use the Debugger to put a 6 into Register 7 before running the program again and have
the Debugger start running the program at the second instruction, rather than the first.

Here's how you can do that. Use the W command to change the contents of Register 7.
You can do it this way.

Get a dot prompt from the Debugger. Then, type in W 7 and press the <enter> key. The
Debugger responds by displaying

R7=0005

This tells you that the current content of Register 7 is 5. The program put a 5 in Register
7 when it ran the first time. The Debugger gives you a chance to change the content of
Register 7 if you want to. Change the content of Register 7 to 6 by simply typing in 6
followed by the <enter> key.

If you were to run the program again, it would start off with a 6 in Register 7. But there’s
a problem. If you start running the program at the first instruction, then the first thing
the program does is put a 5 into Register 7 and you'll end up with the square of 5 again.

But, if start running the program at the second instruction, the program uses the 6 in
Register 7 and squares it.

How can you start running the program at the second instruction? Use the R command
to set the Program Counter to the address of the second instruction. Do it this way.

Get a dot prompt and then type the letter R.
The Debugger responds by displaying
W=2000

112

Introduction to the Loader and Debugger

Hexadecimal 2000 is the address in memory for the workspace that the program is using
for the registers. Since you don’t want to change that address, simply press the space bar.

The Debugger responds by displaying

P=A012
Hexadecimal A012 is the address where the program stopped the last time you ran it.
To change this number to the address of the second instruction, you can type either A004
or you can type 4X if you set the X bias to A000. Press the space key after the entry.
The Debugger responds by displaying

S=7111 (Zz1z 1s some four-digit hexadecimal number)

Zero out the Status Register by typing a 0 and press the <enter> key. After pressing the
<enter> key, the Debugger gives you a dot prompt.

Now you're ready to run the program again, but this time the program starts running at
the second instruction (at address hex A004) and with a 6 in Register 7.

Before running the program, set a breakpoint by typing in B A012 (or you can type B 12X,
if you set the X bias to A000) and press the <enter> key.

After setting the breakpoint, run the program by typing in E and press the <enter> key.
The program runs until it reaches the breakpoint, then the Debugger takes over. The
Debugger reacts by displaying the three addresses, including the address of the
breakpoint (A012), and a dot prompt. 4 ‘

Check the results of the program by inspecting the contents of Register 9. Use the W
command to see what's in the register. There should be a hexadecimal 0024 in Register

9. Use the hexadecimal-to-decimal conversion command (>) to confirm that a
hexadecimal 24 is equal to a decimal 36 (the square of 6).

10.2.9 The Decimal-to-Hex Conversion Command (.)

There's another Debugger command you can use to convert a decimal number to a
hexadecimal equivalent.

Suppose you want to convert a decimal number like 100 to a hexadecimal equivalent.

113

Chapter 10

Here’s how you can use the Debugger to do that conversion for you.

In response to the dot prompt, type a decimal point and type the decimal number you
want to convert.

Type in .100 and press the space bar or the <enter> key. The Debugger shows you the
hexadecimal equivalent value. The Debugger shows you that a decimal 100 is equal to
a hex 64.

10.2.10 The Hexadecimal Arithmetic Command (H)

Another useful Debugger command is the hexadecimal arithmetic command. It lets you
type in two hex numbers and it shows:

e the sum of the two numbers

e the difference of the first number minus the second

e the product of multiplying the two numbers

¢ the quotient and remainder resulting from dividing the first number by the second
The results are given in hexadecimal.
Try this. In response to the dot prompt, type in the letter H. The H is the command to
perform hexadecimal arithmetic. Then type two hex numbers separated by a space, or
a comma, and followed by pressing the <enter> key. For example, type

H 20,6

and press the <enter> key.

The Debugger responds by displaying

H1=0020 H2=0006 H1+H2=0026
H1-H2=001A H1*H2 = 0000 00CO
H1/H2=0005 R 0002

The Debugger shows you that it's naming the first number (hex 20) H1 and the second
number (6) H2.

114

Introduction to the Loader and Debugger
e H1 plus H2 (or hex 20 plus 6) is hex 26
e H1 minus H2 (or hex 20 minus 6) is hex 1A

e H1 times H2 (or hex 20 times 6) is hex C0. Notice that the product is given as an
8-digit hex number

e H1 divided by H2 (or hex 20 divided by 6) results in a quotient of 5 and a remainder
of 2. (Hex 20 is a decimal 32 and 32 divided by 6 is 5, with a remainder of 2.)
10.2.11 The Quit Command (Q)
The Q command lets you leave the Debugger.
It works like this. In response to the Debugger dot prompt, simply type in Q and press
the <enter> key. The Debugger runs the program beginning at the address in the
Program Counter. But if the Program Counter contains zero, the Debugger returns to the

Editor/Assembler selection screen.

At this point, you can let the program run without a breakpoint. Use the R command to
set the Program Counter to A000 and the Status Register to zero.

Then type Q and press the <enter> key. The program runs and the master title screen
appears after the BLWP instruction is performed.

10.3 Summary
Chapters 9 and 10 describe:
¢ how to use the Editor to create or change a source program
e how to use the Assembler to assemble a program
e how to read a listing
¢ how to load an object program into memory along with the Debugger
e how to use several Debugger commands

115

Chapter 10

In the following chapters, the rest of the instructions are examined in detail. Also, you
can learn more about assembler directives, the Loader, the Debugger, and more of the
techniques of assembly language programming.

The next chapter examines the Data Manipulation instructions.

116

Chapter 11
DATA MOVEMENT INSTRUCTIONS

This chapter introduces the Data Movement group of instructions. The main job of these
instructions is to move data or to rearrange data. There are 12 Data Movement
instructions. The instructions are listed below with their names, operation codes, and a
description of the kinds of addressing modes you can use with the instructions.

In the following list, G means that an operand is a general addressing mode operand (one
that can use any of the five general addressing modes). An R means that an operand must
be a working register and can use only the register direct addressing mode). An IOP means
that an operand must use immediate addressing. IOP is a data value, rather than the
address of a data value. A C means that the operand is a count value and it must be a
number from 0 through 15.

Operation Addressing

Name Code Mode
Move Word MOV GG
Move Byte MOVB GG
Swap Bytes SWPB G
Load Immediate LI R,IOP
Load Workspace Pointer Immediate LWPI IOP
Load Interrupt Mask Immediate LIMI 10P
Store Workspace Pointer STWP R
Store Status STST R
Shift Right Logical SRL R,C
Shift Right Arithmetic SRA R,C
Shift Right Circular SRC R,C
Shift Left Arithmetic SLA R,C

11.1 The Move Instructions (MOV and MOVB)

The Move Word (MOV) and Move Byte (MOVB] instructions copy a data item from one
location to another. The MOV instruction moves a word (16 bits) and the MOVB
instruction moves a byte (8 bits).

117

Chapter 11

11.1.1 The Move Word Instruction (MOV)

The Move Word instruction was introduced in Chapter 7. It moves, or copies, a word
(16 bits) from one location to another. It requires two operands; both operands can use
any of the five general addressing modes. The first operand is called the source operand;
the second is called the destination operand. The source operand specifies the location
of the word that is moved; the destination operand specifies where the copy is placed.
Since the source operand appears to the left of the destination operand in the operand
field, you can visualize a left-to-right movement between the operands from the location
specified by the source operand into the location specified by the destination operand.

MOV Source Operand,Destination Operand

The data word that is moved is automatically compared to zero and its relationship to
zero affects the Logical Greater Than (L>), Arithmetic Greater Than (A>), and the Equal
(EQ) status bits,

As an example, suppose memory location hexadecimal A102 contains the value
hexadecimal 9ABC, and suppose memory location B87E contains hexadecimal 5D6F.
Further suppose Register 10 contains a hexadecimal A102 and Register 3 contains a
hexadecimal B800 before the following instruction is performed.

MOV *R10,@>7E(R3)

After the instruction is performed, memory location hex B87E contains a hex 9ABC. The
contents of memory location A102 is still 9ABC and the contents of Registers 3 and 10
are unchanged.

Location Before After
(R3) = >B800 >B800
(R10) = >A102 >A102
(>A012) = >9ABC >9ABC
(>B87E) = >5D6F >9ABC

The data word is moved; hex 9ABC is compared to zero and affects the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits as follows.

Logical Greater Than (L>) Status Bit = 1

Arithmetic Greater Than (A>) Status Bit = 0

118

Data Movement Instructions
Equal (EQ]) Status Bit = 0

Imagine that the computer responds to these questions in deciding whether to set or clear
these status bits.

The computer asks if hex 9ABC is logically greater than zero; that is, if 9ABC is thought
of as a logical value (an absolute or unsigned number, is it bigger than zero. It is, so the
computer sets the Logical Greater Than status bit true (a one).

The computer asks if hex 9ABC is arithmetically greater than zero; that is, if 9ABC is
thought of as an arithmetic value (a signed number), is it larger than zero. It isn't, so the
computer clears the Arithmetic Greater Than status bit to zero (meaning that the condition
is not true).

If you think about hex 9ABC as a signed number using two’s complement notation, what
is the sign of the number? It's negative because the sign bit is one. In binary, hex 9ABC
is1001101010111100. You can determine if a hex number that represents a signed number
is positive or negative by looking at the left-most digit. If the most-significant digit is 7
or less, the number is positive; and if it is 8 or greater, the number is negative.

The computer asks if hex 9ABC equals zero. It doesn't, so the computer clears the Equal
status bit.

11.1.2 The Move Byte Instruction (MOVB)

The Move Byte instruction (MOVB) is the little brother of the Move Word instruction.
It does the light duty work. It moves an 8-bit chunk of data.

The MOVB instruction requires two operands that can use any of the five general
addressing modes. The first operand, called the source operand, specifies where the byte
is to be copied; and the second operand, called the destination operand, specifies where
the data is copied.

Both the source and destination operands are byte addresses. As an example, suppose
memory word A012 contains a hex 9ABC, memory word B87E contains 5D6F, Register

10 contains hex A103 and Register 3 contains hex B800 before the following instruction
is performed.

MOVB *R10,8>7E(R3)

119

Chapter 11

After the instruction is performed, memory word hex B87E contains hex BC6F. The
instruction moves the contents of byte address hex A103, hex BC, to byte address hex
B87E, the left byte of word address hex B87E.

Location Before After
(R3) = >B800 >B800
(R10) = >A103 >A103
(>A012) = >9ABC >9ABC
(>B87E) = >5D6F >BC6F

Just like the Move Word instruction, the Move Byte instruction has the computer compare
the moved value to zero and affects the Logical Greater Than, Arithmetic Greater Than,
and Equal status bits.

In this example, the byte value, hex BC, is compared to zero, causing the Logical Greater
Than status bit to be set, the Arithmetic Greater Than status bit to be cleared, and the
Equal status bit to be cleared.

Because the Move Byte instruction performs a byte operation, which means it uses an
8-bit value, the Odd Parity (OP) status bit is also affected based on the number of one
bits in byte. The byte value hex BC is a binary 10111100. There are 5 one bits, an odd
number, in the byte, so the Odd Parity status bit is set one (true).

The Odd Parity status bit is affected only by byte operations, and not word operations.
It is affected by the number of one bits in a byte. If there is an odd number of one bits
(1, 8, 5, or 7), the Odd Parity status bit is set. If there is an even number of one bits (2,
4, 6, or 8), the Odd Parity status bit is cleared.

You might wonder exactly what use is the Odd Parity status bit? Often, byte values
represent ASCII character codes. For some communication applications, parity, the
number of one bits, is used to detect possible errors in the transmission of the character
codes. After a byte operation, the Odd Parity status bit tells you if the byte had even or
odd parity.

11.2 The Swap Bytes Instruction (SWPB)

The Swap Bytes instruction requires only one operand and can use any of the five general
addressing modes. The instruction simply exchanges the two bytes in a word, exchanging
the left byte with the right byte. No status bits are affected by the instruction.

Although the operand can specify a general memory location, the SWPB instruction is
used most often to exchange the two bytes in a register. SWPB is used to put the right

120

Data Movement Instructions

byte of a register into the left-byte position, so the byte can be accessed by a byte-operation
instruction using register direct addressing mode.

For example, suppose you want to copy the right byte of Register 6 to memory location
MEOW. You can use the instruction

MOVB R6,EMEOW

to move a byte in Register 6 to memory location MEOW, but it's the left byte of Register
6 that is moved. (Any time the computer performs a byte operation using register direct
addressing, it can only access the left byte of the register.) If you want to move the right
byte of Register 6 to memory location MEOW, you can use a Swap Byte instruction to
exchange the bytes first, as follows.

SWPB R6

11.3 The Load Immediate Instruction (LI)

The Load Immediate instruction (LI) is probably an old friend by now. It was used in
the program example that was presented in a previous chapter.

The LI instruction has two operands. The first is an R-type operand. This means that the
first operand must be a register. It can only use register direct addressing. The second
operand is an IOP-type operand. This means that it's an immediate operand and uses
the immediate addressing mode.

The LI instruction places the immediate operand into the register. It's useful for
initializing the contents of a register to a constant. In the previous program example,
you've seen how to use it for establishing a loop count in a register, for example.

An immediate operand is always a 16-bit value. There are no 8-bit immediate operands.

The Load Immediate instruction copies the immediate operand into the register. Just as
with the Move Word instruction, the computer automatically compares the value of the
word to zero and affects the Logical Greater Than, Arithmetic Greater Than, and Equal
status bits in the same way.

The Load Immediate instruction is used to set an address value in a register. Suppose
you want to access several sequential data itemsin a list. Register indirect autoincrement
addressing mode is designed especially for that. To use that addressing mode, you need
to have an address in a register. The Load Immediate instruction can help. Suppose the

121

Chapter 11

data items are located in memory beginning at address hex CA62. You can use the LI
instruction to put the first data item’s address in a register, such as Register 8.

LI R8,>CA62

Then the instruction

MOV *R8+,R0

moves the first word to R0 and automatically points R8 to the second word so that you
are ready to access it with another instruction.

In the previous example, suppose memory location hex CA62 is labeled LIST, then the
instruction

LI RS8,LIST

puts a hex CA62 in R8. Remember, with a Load Immediate instruction, the second
operand is an immediate operand; it's treated as the data value itself, not the address
of data.

An instruction like
MOV GLIST,R8
moves the contents of address LIST into R8, but

LI R8,LIST

moves the address value of LIST into RS.

11.4 The Load Internal Registers Instructions (LWPI and LIMI)

Two instructions load values into two of the computer’s special internal registers. The
Load Workspace Pointer Immediate (LWPI) instruction loads a value into the Workspace
Pointer, and the Load Interrupt Mask Immediate (LIMI) instruction loads a value into
the interrupt mask portion of the Status Register (LIMI).

122

Data Movement Instruments

11.4.1 The Load Workspace Pointer Inmediate Instruction (LWPI)

The Load Workspace Pointer Immediate Instruction (LWPI) is designed specifically to
put an address value into the Workspace Pointer. You may remember that the Workspace
Pointer is a special computer register that holds the address that tells the computer the
location of the program’s register set in memory.

The LWPI instruction has only one operand, an immediate operand. A copy of the
immediate operand is placed in the Workspace Pointer. Sometimes you may want to
define explicitly the location of a program’s register set. The LWPI instruction lets you
do that.

As an example, suppose you want to use the area of memory beginning at hex DE80 for
a register set. The instruction

LWPI >DE80
sets the Workspace Pointer to hex DE80.

Just as with any instruction using immediate addressing, the immediate operand can be
given a name. For example, if memory location hex DE80 is named WRKSPC, then the
instruction

LWPI WRKSPC

puts a hex DE80 into the Workspace pointer.

11.4.2 The Load Interrupt Mask Immediate Instruction (LIMI)

The Load Interrupt Mask Immediate instruction (LIMI) sets a value into the interrupt
mask. The interrupt mask is the low-order (rightmost) four bits of the Status Register. The
interrupt mask is used by the computer to help control peripheral devices.

Like the LWPI instruction, the LIMI instruction has one operand, an immediate operand.
Recall that all immediate operands are 16-bit values. The interrupt mask, however, is
only 4-bits big. With the Load Interrupt Mask Immediate instruction, only the low-order
nibble (4 bits) of the immediate operand is placed into the interrupt mask.

For example, the instruction

LIMI 4

123

Chapter 11 X
causes a 4 to be placed into the interrupt mask.
The instruction

LIMI >1234

also causes a 4 to be placed into the interrupt mask. .

11.5 The Store Internal Registers Instructions (STWP and STST)

Two instructions copy values from two of the computer’s special internal registers into
a program'’s working registers. One instruction, Store Workspace Pointer (STWP), copies
the value in the Workspace Pointer into a working register. The other instruction, Store
Status (STST), copies the value in the Status Register into a working register.

These two instructions are not used often in most programs.

11.5.1 The Store Workspace Pointer Instruction (STWP)

The Store Workspace Pointer instruction (STWP) puts the address of the program’s
working registers (which is in the Workspace Pointer) into one of the working registers.
It's a way of remembering the address of the working registers.

Here’s an example of how it works. Suppose these two instructions were in a program.

LWPI >C2E0
STWHP R9

The STWP instruction stores a hex C2E0 into Register 9.

11.5.2 The Store Status Instruction .(STST) .

The Store Status instruction (STST) copies the 16-bit value in the Status Register into a
working register. It's a way of remembering what's in the status register.

As an example, the instruction
STST R15

copies the current contents of the Status Register into Register 15.

124

Data Movement Instructions
11.6 The Shift Instructions (SRL, SRA, SRC, and SLA)

There are four instructions which rearrange bits in a register. These are the shift
instructions. They are most often used in applications where individual bits represent
one-bit information items.

A shift instructions requires two operands. The first is an R-type operand and can use
only register direct addressing. The second is a C-type operand and is a number in the
range of 0 through 15.

The first operand identifies the register that contains the bits to be shifted. The second
operand specifies how many bit positions to shift. A word must be in a register before
you can shift it. You can't directly shift the contents of a general memory location.

The four shift instructions are alike in many ways. They each require that a value be
in a register before it can be shifted. The second operand identifies how much to shift.
The second operand can be 0 or a non-zero number of 1 through 15. If the second operand
is a non-zero number, the contents of the register are shifted that number of positions.
If the operand is 0, the contents of the register are shifted the number of positions equal
to the number in the rightmost nibble of Register 0. When the operand is 0 and the
rightmost nibble of Register 0 contains a non-zero number, that number in Register 0 is
the number of bits shifted. When the operand is 0 and the rightmost nibble of Register
0 is also 0, the bits are shifted 16 positions.

Also, after the shift operation is performed, the computer compares the result in the
register to zero and affects the Logical Greater Than, Arithmetic Greater Than, and Equal
status bits accordingly. Each of the instructions also affects the Carry status bit. The state
of the last bit shifted out of the register is recorded in the Carry status bit. If the last bit
shifted out is a one, the Carry status bit is set; if the last bit shifted out is a zero, the Carry
status bit is cleared. You might say that the last bit shifted out leaves its footprint in the
Carry status bit.

Those are the ways the instructions are alike. Now look at the ways in which they're
different.

11.6.1 The Shift Right Logical Instruction (SRL)

The Shift Right Logical instruction (SRL) shifts the bits in a register to the right the number

of positions determined by the second operand. The bits shifted out of the right end of
the register are gone. (They are said to fall into the “bit bucket”, the fictitious final resting

125

Chapter 11

1

place for departed bits.) As the bits are shifted to the right, zero bits fill the vacated bit
positions on the left. The state of the last bit shifted out of the right end of the register
is recorded in the Carry status bit. After the shift, the 16-bit result in the register is
compared to zero and that comparison affects the Logical Greater Than, Arithmetic
Greater Than, and Equal status bits accordingly.

Bits Move This Way

tompmnga/ [fmegny

0= | | L |]]

$omdmmtn | [mfmmpeny
Take an example. Suppose register 2 contains a hex C873 or a binary 1100100001110011.

The instruction
SRL R2,4

shifts the contents of Register 2 four bit positions to the right and zero bits fill the vacated
bit positions on the left. '

After the instruction is performed, Register 2 contains a hex 0C87 or a binary
0000110010000111. The Carry status bit is not set, because the last bit shifted out was a
zero bit. The Logical Greater Than status bit is one, the Arithmetic Greater Than status
bit is one, and the Equal status bit is zero as a result of comparing the result (hex 0C87)
to zero.

(R2) Before
0 1 2 345 6 7 8 91011121314 15

+ 4
T +

+

e T ==+ e e Lt SEE R
1 1 1] of o 1 oJ 0 o] o! 1! 1! 1] oJ o! 1! 1]

: "
- b +* *

V (R2) After v
0 1 2 3 4 5 6 7 8 9101112 13 14 15

i e e e Bt Tt L e R S Y
0-==> | o] ofofo|1]1]o]o|1]o]o|ofo]1]1]1
R e e e e a T T A WG Y

The instruction is called Shift Right Logical because it treats the contents of the register
as a logical, or unsigned, value. Shifting a number to the right is a simple way of
performing a division by a power of two. For example, if Register 2 contains a hex 8004

126

Data Movement Instructions

(a binary 1000 0000 0000 0100) and you shift the contents one position to the right, the
contents become a binary 0100 6000 0000 0010 (a hex 4002).

The number is divided by two. Shift the number right again and it's divided by two again.
It becomes a binary 0010 0000 0000 0001 or hex 2001.

This works as long as you're thinking about the number as an unsigned value (which
means that you don’t care what happens to the sign bit because the number has no sign).

Notice that with the SRL instruction, zero bits always fill the vacated bit positions on the
left.

11.6.2 The Shift Right Arithmetic Instruction (SRA)

The Shift Right Arithmetic instruction (SRA) works almost exactly like the Shift Right
Logical instruction. The only difference is what happens to the vacated bit positions. With
the SRA instruction, the vacated bit positions are filled with bits equal to the state of the
original sign bit (the leftmost bit).

Bits Move This Way
?>
dmmpmmt=] [=tm=t==t
s || e |]
O ot o A AL Lol S
Sign Bit|

Consider an example like the one from the previous section. Suppose register 2 contains
a hex C873 or a binary 1100100001110011.

The instruction

SRA R2,4

causes the contents of Register 2 to be shifted four bit positions to the right and one bits
fill the vacated bit positions on the left since the sign bit is a one.

After the instruction is performed, Register 2 contains a hex FC87 or a binary
1111110010000111. The Carry status bit is not set, because the last bit shifted out was a
zero bit. The Logical Greater Than status bit is one, the Arithmetic Greater Than status
bit is zero, and the Equal status bit is zero as a result of comparing the result (hex FC87)
to zero.

127

Chapter 11

(R2) Before
0 1 2 3 45 6 7 8 910111213 14 15

+ :
ha -* +

li 0

V (R2) After v
0 1 2 3 45 6 7 8 9101112 13 14 15

I e e et il et e EE Sy

ALl olol ol ol ol of 1]] 1)

+ + + b

"
+ hd

| 1] 1

e

The instruction is called Shift Right Arithmetic because it treats the value in the register
as a signed number. Shifting a number to the right is a simple way of dividing the number
by a power of two. If you're thinking about the number as a signed number, however,
you need to maintain the sign.

Suppose that Register 2 contains a hex FFFA (a binary 1111 1111 1111 1010). If you're
thinking about the number as a signed number, it's a minus 6. It's a minus number because
the sign bit is a one. The absolute value, 6, is found by taking the two's complement of
the number.

What do you get if you divide —6 by two? You get —3. If you shift the contents of Register
2 one bit position to the right, you get a binary 1111 1111 1111 1101 (or a —3). You get
the correct signed number as long as you maintain the sign bit.

Notice that with the SRA instruction, the state of the original sign bit fills the vacated
bit positions on the left.

11.6.3 The Shift Right Circular Instruction (SRC)

The Shift Right Circular instruction (SRC) rotates the contents of a register. This
instruction works just about like the SRL and SRA instructions where bits are shifted
right in a register. The difference is what happens to the bits shoved out of the right end.
With the SRC instruction, when a bit is shifted out of the right end of a register, rather
than landing in the bit bucket, it walks around and hops right back into the register on
the left side. Effectively, the bits are simply rotated to the right in the register.

128

Data Movement Instructions

~

Bits Move This Way

- >

B =] [=~4~=t==+
o I L O I

et AL Sl St

fm—

+

Suppose Register 2 contains a hex C873 (a binary 1100 1000 0111 0011). The instruction

SRC R2,4

shifts the bits four positions to the right and the bits displaced on the right fill the vacated
bit position on the left. The result in Register 2 is a binary 0011 1100 1000 0111 (or hex

3C87).
(R2) Before
01 2 3 45 6 7 8 9101112131415

11!1!010|1|olo|o!o|1|1|1!o|o!1|1!
| « e e e e e .
T + e DL +
| |
V (R2) After v

01 2 3 45 6 7 8 9101112131415

3 + " + 3 + + 4+ + + 3 3 3 4 M + :
* +* + * T T * * + +* * * + * b + -+

+= | o] o] 1| 1| 1] 1] o] o] 1] o] o] o] of 1| 1| 1] ===+

e +
r * * b * h * ha *

" +
+ +

The Carry status bit is zero because the last bit shifted out is a zero. With the SRC
instruction, the Carry status bit is always left equal to the state of the leftmost bit in the
register.

The Logical Greater Than status bit and the Arithmetic Greater Than status bit are one;
the Equal status bit is zero as a result of comparing the result in Register 2 to zero.

11.6.4 The Shift Left Arithmetic Instruction (SLA)

The Shift Left Arithmetic instruction (SLA) is the only shift instruction that directly shifts
the contents of a register to the left. The bits shifted out of the left end of the register fall
into the bit bucket and zero bits fill the vacated bit positions on the right.

129

Chapter 11

Bits Move This Way
<
St --I-/ [~tmmpanit

| | e | | fem0

tmmpongmngaf [~fmagmmy

The instruction is called Shift Left Arithmetic because it treats the value in the register
as a signed number. It pays attention to the sign bit. The SLA instruction is the only shift
instruction that affects the Overflow status bit. It sets the Overflow status bit to one should
the sign bit change any time during the shift operation; otherwise, the instruction clears
the Overflow status bit.

For example, suppose Register 2 contains a hex C873 (a binary 1100 1000 0111 0011). The
following instruction shifts the contents of Register 2 four positions to the left and fills
the vacated bit positions on the right with zero bits.

SLA R2,4

The result in Register 2 is a binary 1000 0111 0011 0000 (or hex 8730).

(R2) Before
0 1 2 3 4 5 6 7 8 910111213 14 15

n 4 + Y 3 +
b + b b b *

Jrixlel o]l of o of of 1] 1] 1] o] of 1] 1|
4o amm— + Hmmmmmmm———— +
l (R2) After v

01 2 3 45 6 7 8 9101112131415

$

3 n n
T b * *

—_

0

1 o| 0] 0f o| 1 1)1 0| 1] 1| o] 0| o| 0] <=0

+* - *

+—_—
+—

<4

The Overflow status bit becomes a one because the sign bit changed during the shift
operation. Even though the sign bit is the same after the shift as it was before the shift,
the sign bit did change during the shift operation (at least one zero bit passed through
the sign bit).

Shifting a number to the left is a simple way of multiplying by a power of two. If you're
thinking of the number as a signed number, that's true as long as you preserve the sign
(don’t change the sign bit).

130

Data Movement Instructions

The computer doesn't know how you're thinking about the number, as a signed number
or as an unsigned number. But, in case you are thinking about it as a signed number,
the computer tells you if the sign bit changes by setting the Overflow status bit.

As an example, suppose Register 2 contains a hex 4002 (a binary 0100 0000 0000 0010).
The instruction

SLA R2,1

shifts the contents of Register 2 one bit position to the left, leaving in Register 2 a binary
1000 0000 0000 0100 (or hex 8004).

(R2) Before
0 1 2 3 45 6 7 8 91011 12131415
el il et T N e s faras. at SEE S
| o] 1] o] o] o] o] o] of of of o] of o] o] 1] of
S e Bl o s

'-- =4
) (R2) After v
0

1 2 3 45 6 7 8 9101112131415

0] o 0| 1| 0] of <=-- 0

d—_—

If you think of hex 4002 as an unsigned number, then hex 8004 is, indeed, two times hex
4002. But, if you think of hex 4002 as a signed number, then hex 8004 is not two times
hex 4002. Why? Because the sign bit is different; it changed. If you think of hex 4002 as
a signed number, it's a positive number (the sign bit is a zero), but the sign of hex 8004
is negative (the sign bit is a one).

11.6.5 Using Register 0 for a Shift Count

The purpose of the second operand with a shift instruction is to tell the computer how
many bit positions to shift. That number must be in the range of 0 through 15. A non-zero
number (1 through 15) tells the computer directly how many bits to shift, but an operand
of 0 tells the computer that it's to look in Register 0 for the shift count. Specifically, the
computer looks in the rightmost nibble of Register 0 for the shift count.

Consider these three instructions.

131

Chapter 11

LI RO,>D573
LI R11,>1234
SLA RI11,0

The SLA instruction shifts the bits in Register 11 to the left three positions. The second
operand is 0, which directs the processor to find the shift count in Register 0. Since the
rightmost nibble of Register 0 is 3, the contents of Register 11 are shifted 3 positions to
the left, so that a hex 91A0 remains in the register.

(R11) Before
01 2 3 45 6 7 8 9101112131415

&+ +

+ n 4
b b h b -

e —
o

- —_
o

- —_
(=]

+ —
[y
+—
o
* —
o
+—
—
+—_—
o
4+ — 4
o
+—
[~
+—

1] 1] 0] 1] o] o
S Bt ot ST

v (R11) After v
0 1 2 3 456 7 8 9101112131415

+ Iy " 3 + I + 3 3 3 + $ 3 4
r -+ b + r - + * * b =+ *

1| 0f o| 1| 0] 0] o| 1| 1| o] 1| o] 0| o] o| o| <=== 0

3 3
* b * +* +* + r b d b * +*

—_

Consider these instructions.

LI RO,0
LI R1l1,>1234
SLA R11,0

The SLA instruction shifts the bits in Register 11 to the left 16 positions, because the second
operand is 0 and the rightmost nibble of Register 0 is 0. The SLA instruction shifts the
bits 16 positions and fills the vacated bit positions on the right with zeros. Upon
completion of the SLA instruction, Register 11 contains zero.

11.6.6 Testing the Carry Status Bit
With the shift instructions, the Carry status bit is set to the state of the last bit shifted out
of the register. There are two instructions that let you check the state of the Carry status

bit: Jump On Carry (JOC) and Jump if No Carry (JNC). The JOC causes a jump if the Carry
status bit is one; the JNC causes a jump if the Carry status bit is zero.

132

11.7 Program Example

Data Movement Instructions

The following is a printed listing from the assembly of a source program that uses several
of the data movement instructions.

93/4 ASSEMBLER

VERSION
2001
'] 11 g

2ol
oBds
2005
2026
27
o208
2209
o010
eo11
ovi2
2013
@014
0015
Q016

o017
2018

2219
2020
20z1

1.2

2000
220z
o004
222e
2008
2o0A
2eac
0BRE
o010
8212
8014
2016
o018
BD1A
eeic
Q01E
0920
2022z
enz4
0026
on28
202R
802C
OD2E
2030
2032
2034
@336
2046

OzED
@OLE"
0200
1820
0201
o03E’
0202
2010
2203
eeeo
0204
200€E
D170
BR1S
1702
0223
2021
8224
FFFF
1EF9
@5C3
DCa3
0222
FFFF
16EF
0420
2000

99/4 ASSEMBLER

VERSION 1.2
* BITIS® 0022
R1 2201
R13 228D
R3 2es
R7 2007
' Q046

2222 ERRORS

1DT
LWPI

L1
LI
LI
NXTBYT LI
L1

MOVR
SHIFT SLA

JNC

Al

BITISO AI

JNE
SWPB
MovB
2}

JNE
BLWP

COUNTS BSS
Ws BSS
END

* COUNTS
R1O
R14
R4
R8

PAGE 2201
* BITCNTR’
ws INITIALIZE WORKSPACE POINTER
R@.) 1020 POINT R2 TO BITS
R1,COUNTS PODINT R1 TO COUNTS STORAGE
R2: 16 SET LODP COUNTER (BYTES TO EXAMINE)
RZ. D INIT BIT COUNT TO ZERD
R4, 8 SET LOOP COUNTER (BITS TO EXRMINE)
#R@+, RS COPY A BYTE INTD RS
RS, 1 SHIFT OUT A BIT
BITISO IF BIT IS ZERO. JUMP
R3. 1 ELSE ADD TO BIT COUNT
R&, -1 DECREMENT BIT LOOP COUNT
SHIFT IF NOT ZERD, GO EXAMINE NEXT BIT
RT ELSE PUT BIT COUNT IN R3 LEFT BYT
R3, ¥R1+ AND STORE IT
R2, -1 DECREMENT BYTE LOOP COUNTER
NXTBYT IF NOT ZERO. GD GET NEXT BYTE
a0 ELSE GO HOME
16 BIT COUNTS STORED HERE
32 WORKSPACE
PAGE @202
9236 ' NXTBYT 2010 RO 2020
200A R11 ezeB R12 oeeC
280E R1S eaoF R2 eeo2
2804 RS eeos RE 2086
oees R 8229 ' SHIFT @D1A

The program counts the number of one bits in each of 16 successive bytes of memory
and stores each count in 16 other successive bytes of memory.

133

Chapter 11

Bits Counts
L] dmmmm——— +

1st Byte | |2nd Byte 1st Count| : |2nd count
+ + +

T - o o

3rd Byte | : |[4th Byte 3rd Count| : |ath count
+ +

15th Byte| : |16th Byte 15th Count| : |16th Count
+ +

In general, this is how the program works. The program copies a byte of memory into
a register and then shifts each bit of the byte out of the register one bit at a time. As each
bit is shifted out, the program analyzes the Carry status bit. If the Carry status bit is one,
this means the bit shifted out is a one bit and the program adds one to a count of the
number of bits. If the Carry status bit is zero after the shift, the shifted bit is a zero, so
the program does not add to the count of the number of one bits.

Each of the eight bits in a byte are analyzed and the accumulated count is stored into
a byte of memory. The program then accesses the second byte of memory, analyzes each
bit, counts the number of one bits, stores the count, and accesses the next byte of memory.
The program continues this repetitive process until the bits in all sixteen bytes have been
counted and the counts stored in memory.

Review the listing. All of the instructions were introduced in previous chapters.

The program contains four assembler directives: an IDT in the first statement, an END
in the last statement, and two BSS directives just before the END directive.

The IDT and END directives are like bookends for a source program. The IDT directive
identifies the name of the program and is optional. The END directive is required. It tells
the assembler to stop assembling.

The IDT directive is optional, but if it is used, it must come before any instruction or any
other directive that defines data within the program. The IDT directive simply names
the program.

The operand field of an IDT directive is the name assigned to the program. The name

must be enclosed in single quote marks (apostrophes) and is limited to a maximum of
eight characters.

134

Data Movement Instructions

The last statement of every source program should have an END directive. If it doesn't,
the assembler either doesn’t stop assembling when it should, or it gives you an error
message. Notice that END is a directive to the assembler and is not an instruction to the
computer. END simply tells the assembler when to stop translating, but it results in no
machine code instructions.

The END directive can have an operand. The operand, if used, is the name of a statement
in the program. The operand identifies the entry point of the program (the name of the
instruction to perform first). If you use an operand with the END directive, the program
begins running at that entry point as soon as the object program is loaded.

There are two BSS directives in the program. The BSS (Block Starting with Symbol)
directive tells the assembler to set aside a block of memory. The label is the name assigned
to the beginning of the block. The operand tells the assembler how much memory, in
bytes, to set aside.

In this program, the first BSS directive (statement 19) reserves 16 bytes of memory and
the first location in the block is named COUNTS. The second BSS directive (statement
20) reserves 32 bytes (16 words) of memory and the first location in the block is named
WS (as in WorkSpace). This 16-word block is the area of memory that the program uses
for its workspace.

Examine the instructions. The first instruction (statement 2) is Load Workspace Pointer
Immediate (LWPI). It explicitly puts into the Workspace Pointer the address of the block
of memory to be used for the program’s working registers. Notice WS is the operand and
WS is the label attached to a 32-byte block of memory at the end of the program. WS
has an address value and that address value is the immediate operand which is loaded
into the Workspace Pointer. The relative address value of WS is hexadecimal 46.

The next three instructions (statements 3, 4, and 5) are Load Immediate instructions which
perform initialization prior to examining the bits in all the bytes. The first of these three
instructions puts into Register 0 the beginning address of the bytes to be examined. This
address is hex 1000. (This is an arbitrary choice and points to a location in the computer’s
fixed-contents memory, or ROM). The second Load Immediate instruction puts into
Register 1 the beginning address of the memory locations where the bit counts are stored.
The immediate operand is COUNTS. This the name of the area of memory reserved by
the first BSS directive. The third Load Immediate instruction puts a 16 into Register 2.
The number 16 is a loop count equal to the number of bytes to examine.

There are two more Load Immediate instructions (statements 6 and 7) after the first three.
The first one initializes Register 3 to zero. As the one bits in each byte are counted, the

135

Chapter 11

count is accumulated in Register 3. Register 3 must start off with a zero in it or the count
will be wrong. The second of these two Load Immediate instructions puts an 8 into
Register 4. The 8 is a loop count equal to the number of bits to examine in each byte.

Notice the structure of the program. There is a loop within a loop. The outer loop is
performed 16 times or once for each byte and the inner loop is performed 8 times or once
for each bit in a byte. The outer loop begins at the instruction labeled NXTBYT; the inner
loop begins at the instruction labeled SHIFT.

After the LI instructions, there is a Move Byte instruction (statement 8). It accesses the
byte pointed to by the address in Register 0 and copies the byte into Register 5. Since
this is a byte operation using register direct addressing for the destination operand, the
byte is moved into the left byte of Register 5. Notice the MOVB instruction uses register
indirect autoincrement addressing mode for the source operand. Once the byte is
accessed, the address in Register 0 is automatically incremented by one since MOVB
performs a byte operation. After the MOVB instruction is performed, Register 0 points
to the next sequential byte in memory.

The SLA instruction, labeled SHIFT, begins the inner loop. The instruction shifts the
contents of Register 5 one bit position to the left. The left half of Register 5 has a copy
of the byte taken from memory. Remember what happens to the last bit shifted out of
a register? Its state (1 or 0) is recorded in the Carry status bit. After the SLA instruction
is performed, the Carry status bit tells you whether the bit is a one or zero.

A Jump if No Carry, NG, instruction is next (statement 10). If the Carry status bit is zero,
the Jump if No Carry instruction jumps. If the Carry status bit is one, it doesn’t jump.
If the JNC instruction does jump, it goes to the instruction labeled BITISO (as in “Bit Is
0"). It jumps when the status bit is zero and skips the next instruction (which means the
bit is not counted).

Statement 11, the Al instruction, adds one to the contents of Register 3. The Al instruction
adds one to the accumulated count of one bits in Register 3 if the last bit shifted out of
the register is a one.

The following Al instruction, labeled BITISO0, subtracts one from the inner loop counter
(the one used to count the number of bits to examine in each byte). The Al instruction
was used in the program example in the previous chapters.

Recall that the sum of an Al instruction is compared to zero and the Equal status bit is
affected by that comparison.

136

Data Movement Instructions

Following the second Al instruction is the Jump if Not Equal instruction (statement 13).
It analyzes the Equal status bit and jumps to the instruction labeled SHIFT if the Equal
status bit is not set. The [NE instruction closes the inner loop and causes a jump back
to the beginning of the inner loop until the count in Register 4 goes to zero. When the
inner loop is performed 8 times, the program falls out of the loop to the SWPB instruction.

The Swap Bytes instruction, statement 14, is performed when all eight bits in a byte have
been examined. At this step in the program, there is a count of the number of one bits
in Register 3. The count is a 16-bit number but since that count is never larger than 8,
the count is contained in the least significant (rightmost) byte of Register 3. The count
needs to be stored in a byte of memory. In order to move a single byte of data in a register,
the data needs to be in the left byte of the register. The SWPB instruction swaps the two
bytes in Register 3 so that the right byte is placed in the left-byte position. The count is
now ready to be moved.

The Move Byte instruction, statement 15, moves the count from the left byte of Register
3 into the byte of memory pointed to by the address in Register 1. Notice that the
destination operand is using register indirect autoincrement addressing mode. As soon
asa count is placed in memory, the address in Register 1 is automatically adjusted to point
to the next byte.

The Add Immediate instruction, statement 16, decrements the outer loop counter (in
Register 2).

Another JNE instruction, statement 17, follows and closes the outer loop by causing a jump
to NXTBYT if the loop count is not yet zero.

The last instruction is the “Go-home” instruction (BLWP). The instruction was used in
the program example in the previous chapters.

That'’s the program. If you have the equipment and the utility programs, you can edit,
assemble, load, and run it.

Before running the program, set a breakpoint at the BLWP instruction. Use the Debugger
to examine the 16 bytes of memory beginning at hex 1000 and to examine the counts stored
in the 16 bytes of memory beginning at COUNTS.

This program illustrates how to use some of the data movement instructions. The next
chapter introduces the Compare instructions.

137

Chapter 12
COMPARE INSTRUCTIONS

This chapter introduces the group of Compare instructions. The main job of these
instructions is to compare values and establish the relationships of the values, or to
analyze specific bits in data. There are 5 instructions in this group. The instructions are
listed below with their names, operation codes, and a description of the kinds of
addressing modes you can use with the instructions.

In the following list, G indicates a general addressing mode operand (one that can use
any of the five general addressing modes). R indicates a working register, which means
the operand can use only register direct addressing mode. IOP indicates that an operand
must use immediate addressing and it is a data value, rather than the address of a data
value.

Operation Addressing
Name

Code Mode
Compare Words C G.G
Compare Bytes CB GG
Compare Immediate CI R,IOP
Compare Ones Corresponding COC G.R
Compare Zeros Corresponding CZC G,R

12.1 The Compare Values Instructions (C, CB, and Cl)

The first three instructions, Compare Words, Compare Bytes, and Compare Immediate,
compare two values and establish the relationships between the values by affecting status
bits. With all three instructions, the data values are not changed. The two values are
simply compared and that comparison affects the Logical Greater Than, Arithmetic
Greater Than, and Equal status bits.

139

Chapter 12

12.1.1 The Compare Words Instruction (C)

The Compare Words instruction (C) compares two words together. The instruction
requires two operands. Both operands can use any of the five general addressing modes.
The word addressed by the first operand is compared to the word addressed by the second
operand and the comparison affects the status bits.

As an example, assume that memory location BEAGLE contains a —100 (hex FF9C) and
Register 14 contains a 13 (hex 000D). The instruction

C OBEAGLE,R14

compares —100 to 13 and establishes their relationships by affecting the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits.

The Logical Greater Than status bit is set to a one since the absolute value of —100 is
larger than the absolute value of 13. The Arithmetic Greater Than status bit is cleared
to a zero because —100 is not arithmetically greater than 13, in fact, its signed value is
smaller than 13. And the Equal status bit is cleared to zero since the two values are not
equal.

After the instruction is performed, memory location BEAGLE still contains a hex FF9C -
and Register 14 still contains a hex 000D.

12.1.2 The Compare Bytes Instruction (CB)

The Compare Bytes instruction (CB) works just like the Compare Words instruction except
it compares two bytes, rather than words. Another difference is that the CB instruction
affects the Odd Parity status bit and the C instruction does not. The Odd Parity status
bit is affected based upon the number of bits in the first operand.

Assume that the memory word with address hex D36C contains a hex 6A8F, Register 10
contains a hex D360, and Register 4 contains a hex F20B. The following instruction
compares the byte value hex 8F to the byte value hex F2. The contents of byte address
hex D36D is hex 8F and the left byte of Register 4 is hex F2.

CB @13(R10),R4

The comparison causes the Logical Greater Than status bit to be cleared to zero. The
Arithmetic Greater Than status bit to be cleared to zero (since hex 8F or —113 is
arithmetically smaller than hex F2 or —14). And the Equal status bit is cleared to zero.

140

Compare Instructions

The Odd Parity status bit is set to one since a binary 1000 1111 (hex 8F) contains an odd
number of one bits.

12.1.3 The Compare Immediate Instruction (Cl)

The Compare Immediate instruction (CI), like the Compare Words instruction, compares
two words. And like the Compare Words instruction, the Compare Immediate instruction
requires two operands. However, with the Compare Immediate instruction, the first
operand is limited to register direct addressing and the second operand is limited to
immediate addressing.

The Compare Immediate instruction compares the contents of a register to an immediate
operand. It's often used to compare a variable address value in a register being used as
an index register or indirect register with a specific anticipated address value. For
example, suppose a list of data is being accessed in a loop and the data is accessed using
Register 6 as an indirect register for register indirect autoincrement addressing mode.
Rather than using a loop count to determine when all the data has been accessed, the
program can, instead, use a CI instruction to await the appearance of the address at the
end of the table. Let's say the last data word is at address hex FC20. The instruction

- CI R6,>FC20
can be used to determine when the last item is accessed.
The contents of Register 6 is autoincremented to hex FC22 when the last word in the table
is accessed. The contents of Register 6 becomes logically greater than hex FC20 after the

last word is accessed.

You can visualize the loop like this.

MOV *R6+,RO ACCESS A LIST ITEM

- o - o o o -

CI R6,>FC20 END OF LIST?

141

Chapter 12

12.2 Using the Jump if Low or Equal Instruction (JLE)

After the Compare Immediate instruction, you can use a Jump if Low or Equal (JLE)
instruction to close the loop.

- n e v o e v -

LOOP MOV *R6+,R0 ACCESS A LIST ITEM
CI R6,>FC20 END OF LIST?
JLE LOOP JUMP IF NOT END?

The JLE instruction causes a jump if the Logical Greater Than status bit is zero or the
Equal status bits is a one. In this example, it causes a jump to LOOP as long as the content
of Register 6 is logically less than or equal to hex FC20. When the content of Register
6 becomes logically greater than >FC20, which occurs after the last data word in the
list is accessed, it lets the program fall out of the loop to the instruction following the JLE.

12.3 The Compare Bits Instructions (COC and CZC)

The Compare Ones Corresponding (COC) and Compare Zeros Corresponding (CZC)
instructions analyze individual bits in a word.

12.3.1 The Compare Ones Corresponding Instruction (COC)

The Compare Ones Corresponding instruction (COC) analyzes specific bits in a word to
determine if those selected bits are all ones. If they are, it sets the Equal status bit to one.
If they're not, it clears the Equal status bit to zero. The only thing affected by the COC
instruction is the Equal status bit. No other status bits are affected, and the contents of
neither operand are changed.

The instruction requires two operands. The first operand can use any of the five general
addressing modes, but the second operand can use only register direct addressing.

The first operand is the address of a “bit mask.” The bit mask is a word used to select

bit positions in another word. The position of the one bits in the bit mask select bits in
the same positions in another word.

142

Compare Instructions

Here’s an example. Suppose memory location FONZOE contains a hex A6F0, and
Register 7 contains a hex 953D.

The instruction

COC @FONZOE,R7

compares (analyzes) the bits in Register 7 selected by the bit mask to see if they are all
ones.

The bit mask is a hex A6F0, or a binary 1010 0110 1111 0000. It looks like this.

< -~ Bit Mask (in memory location FONZOE) -- >

Positions - o |1 |2 |3 {4 |5 |6 (7 |8 [9 [10]|11|12]13]|14]15
Bits - [1] of 1] 0] 0] 2| 1j0]1]2y1]1]0[0fj0Of0
Geme A =m> Cmm f == &= F == K==) ==

Bit positions 0, 2, 5, 6, 8, 9, 10, and 11 are one bits.

Register 7 contains a hex 953D, or binary 1001 0101 0011 1101. It looks like this.

i Contents of Register 7 -------- >

positions ~ |0 |1 |2 [3 |4 |5 |6 |7 |8 |9 |10)11|12|13|14]15
sits - | 1] of of 1] o 1] o] 1 ‘;l‘; RRRREE
-:-- Q ~=> K== § w=)> Q== J ==> &=~ D =

You can imagine the computer performs the instruction this way. The bit mask is a
checklist. Everywhere there is a one bit in the bit mask, the computer checks the
corresponding bit position in the second operand (Register 7) to see if the bit is a one or
not. If the bit is a one, the computer makes a check on the checklist. If all the selected
bits are one bits, the computer sets the Equal status bit to one, indicating that all the bits
are ones. If any or all of the selected bits are not a one bit, the computer clears the Equal
flag to zero, indicating they are not all equal to ones.

In this example, the computer checks bits positions 0, 2, 5, 6, 8, 9, 10, and 11 in Register
7. That's where the bit mask says to look. The computer finds that the bits in positions

143

Chapter 12

0,5, 10, and 11 are one bits. But the bits in positions 2, 6, 8, and 9 are not one bits; therefore,
the computer clears the Equal status bit.

Suppose that Register 7 contains hex B7F9 (a binary 1011 0111 1111 1001). It looks like
this.

< memmmmena Contents of Register 7 ~=====ee >

0

1

1

0

2

1

4

0

5

1

Positions - 3

1

6

1

7

1

8

1

9

1

10

1

11

1

12

1

13

0

14

0

15

Bits ~ 1

== B ==> <em 7 w=> e F amy Ge= § am)

In this case, the computer sets the Equal status bit to one because each of the selected
bit positions in Register 7 contains a one.

12.3.2 The Compare Zeros Corresponding Instruction (CZC)

The Compare Zeros Corresponding instruction (CZC) analyzes specific bits in a word to
determine if those selected bits are all zeros. If they are, it sets the Equal status bit to
one. If they are not, it clears the Equal status bit to zero. The only thing affected by the
CZC instruction is the Equal status bit. No other status bits are affected, and the contents
of neither operand are changed.

The instruction requires two operands. The first aperand can use any of the five general
addressing modes, but the second operand can use only register direct addressing.

The first operand is the address of a “bit mask.” The bit mask is a word used to select
bit positions in another word. The position of the one bits in the bit mask select bits in
the same positions in another word.

Take an example. Suppose memory location FONZOE contains a hex A6F0 and Register
7 contains a hex 953D.

The instruction

CIZC @FONZOE,R7

144

Compare Instructions

compares (analyzes) the bits in Register 7 selected by the bit mask to see if they're all
Zeros.

The bit mask is a hex A6F0 (a binary 1010 0110 1111 0000). It looks like this.

< -~ Bit Mask (in memory location FONZOE) -~ >

Positions - |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11]12]13|14]|15
Bits - | 1] o) 1{ o] of 1] 1{ o] 1] 1j 1] 1}j0]0|O0]O
Cem A ==> &mm f ==> K== F ==> K== (==

Bit positions 0, 2, 5, 6, 8, 9, 10, and 11 are one bits.

Register 7 contains a hex 953D or a binary 1001 0101 0011 1101. It looks like this.

€ mmmmmmea— Contents of Register 7 ~=~=~-~- 2

Positions - |0 |1 |2 |3 [4 |5 |6 [7 |8 |9 [10)11|12|13]14[15
sits - [1] o of 1] o] 1] o] 1| of o 1| 1| 1] 1] o[2

Cem § ~=d> o= B == Km= J =a> K== D~

You can imagine the computer performs the instruction this way. The bit mask is a
checklist. Everywhere a one bit occurs in the bit mask, the computer checks the
corresponding bit position in the second operand (Register 7) to see if the bit is a zero.
If the bit is a zero, the computer makes a check on the checklist. If all the selected bits
are zero bits, the computer sets the Equal status bit to one, indicating that all the bits there
are zeros. If any or all of the selected bits are not a zero bit, the computer clears the Equal
flag to zero, indicating they are not all zeros.

In this example, the computer checks bits positions 0, 2, 5, 6, 8, 9, 10, and 11 in Register
7 where the bit mask says to look. The computer finds that the bits in positions 2, 6, 8,
and 9 are zero bits. But the bits in positions 0, 5, 10, and 11 are not; therefore, the computer
clears the Equal status bit.

145

Chapter 12

Suppose that Register 7 contains hex 410D or a binary 0100 0001 0000 1101. It looks like

this.

Positions -

Bits ~

{ mmommccns

Contents of Register 7

————————)

0|12 |3 |4|51]6]7 |8 |9 [10]11]12]13[14(15

oj 11 0f{0j0j0j0]1j0j0f0f0]1]1|0]1

e

4 —md Lmem

1 ~=> <=

0 -nd (o~ D -—

In this case, the computer sets the Equal status bit to one because each of the selected
bit positions in Register 7 contains a one.

12.4 Program Example

Here’s the listing of a program that uses two of the Compare instructions.

9974 RSSEMOLER
VERSION 1,2

2201
ovor

eae
B4
o205
QVGE
0207
[u]nl"15]

0009
0010

o011
0012

o013

014
8215

2216

o017
2018
0013

146

270"
21720
aong
GCBoE
snee
[l 2]
onec
BBOE
o010
2012
2214
ROIE
o018
221A
ooi1C
P21E
o0z0
eaz2
2024
20z6
2828
BOzA
eoz2C
002E
2020
2032
2034
2e3e
ooz8
2038

203C

DZED
enzc’
2200
gozC’
Ccosn
ecLe
1205
CoAl
FFFE
cesa
FFFE
CsaD2
281
28zA’
12FE
0220
2202
az2co
BoZA’
1EFO
o620
2000
220X
2o0oe
2002
2801
2207
02
@B0AR
oS
BOZA’

PASS
CUMPAR

INORDR

FILE

FILEND
ws

IDT
LWPI

L1
mov

JLE
MOV

MoV

MOV
C1

JLE
Al

CI

JNE
BLWP

DATA

EQU
BSS
END

' SORT’

WS

RO, FILE

RO. R1

*R0O, *R1+
INORDR
a-21(R1),R2
*#R@, 3-2(R1)

RZ, #RO
R1,FILEND

COMPAR
RO, 2

RO, FILEND

PASS
a0

PAGE Q@01
PROGRAM TO SORT IN DESCENDING ORDER
INITIRLIZE WORKSPACE POINTER

POINT RO TO BEGINNING OF FILE

POINT R1 TO WHERE RO POINTS

COMPARE TWO WORDS

JUMP IF IN ORDER

SAVE SMALLER NUMBER IN RZ

PUT BIGGER NUMBER WHERE SMALLER WAS

PUT SMALLER NUMBER WHERE IT BELONGS
FINISHED THIS PARSS?

IF NOT,
IF SO,

Jump
MOVE R® DOWN A WORD

FINISHED ALL PASSES?

IF NOT,
IF 80D,

JUMP
GD HOME

SE221,72,104 8

$-2
32

FILEND=LOC.
WORKSPACE

OF LAST ITEM

Compare Instructions

99/4 ASSEMBLER
VERSION 1.2 PRAGE 0802

' COMPAR BBRAR ' FILE 2a2C ' FILEND 23R ' INORDR @018
* PRSS 2008 RO 202 R1 ool R1© BB2ZA
R11 200B R12 22eC R13 200D R14 @BRE
R135 BROF R2 2202 R3 2223 R4 00084
RS 2825 RB 2886 R7 27 R8 eaes

R9 2809 ' WS 2a3C
2080 ERRORS

This program sorts numbers into ascending order; that is, it puts the smallest number first,
the next larger number next, and the largest number is put last.

The program demonstrates the use of two compare instructions and includes a new
assembler directive.

In general, the program works like this. It starts with a file of unsorted data words in
memory and sorts the words in ascending order, leaving the sorted words in the same
memory locations.

The program uses a technique called a replacement sort. It starts at the beginning of the
file and makes several passes through the file. On the first pass, the program compares
pairs of words and exchanges their positions, if necessary, so that at the end of the first
pass, the smallest number in the file is in the first location.

For the second pass, the program begins with the second data word (the smallest is already
in the first location) and compares pairs of words, exchanging their positions if necessary,
so that at the end of the second pass, the next highest number (or a number equal to the
smallest number) is in the second position.

For the third pass, the program begins with the third data word, compares the remaining
words in the file, and leaves the next highest number in the third position.

On each pass, the program begins further in the file and leaves the next highest number
in its proper position. The program continues making passes on the data until, on the last
pass, the program ends up with the largest number in the last position.

Take a look at the listing. Notice there is a C instruction, statement 5, and two CI
instructions, statements 10 and 13, in the program. There are also a couple of JLE
instructions, statements 6 and 11. The Jump if Low or Equal instruction was introduced
in this chapter. The rest of the instructions you have seen before.

The program also has a few directives like the bookends, IDT and END. Just above the

END directive is a BSS directive that is labeled WS. This directive reserves 32 bytes (16
words) for the program’s working registers.

147

Chapter 12

Look at the DATA directive that is labeled FILE. The DATA directive tells the assembler
to set aside some memory words for the program to use and to put a specific value into
the words. The operands identify how many words to set aside and the values to put in
those words.

Since there are 8 operands with this DATA directive, the assembler sets aside 8 words
of memory. The assembler places 3 in the first word, 6 in the second word, 2 in the third
word, and so forth. The first word is labeled FILE. These 8 words are the data file that
the program sorts, and the file begins with the first data word (labeled FILE).

Look at the EQU directive. The EQU directive equates a name to a value. The label tells
the assembler what to call the value and the operand identifies the value.

In this program, the EQU directive assigns the name FILEND to the value of $—2. A dollar
sign symbol is recognized by the assembler as the location of the statement in which it
appears. The location of this EQU statement is at the end of the data file which is at the
word immediately after the last data word. Therefore, the value of $—2 is the location
of the last data word. The assembler is told to call the location of the last data word
FILEND.

The EQU directive does not reserve any memory locations. it simply tells the assembler
what to call a location.

Let’s look at the instructions. The entry point of the program is the LWPI instruction in
statement 2.

The next instruction is a Load Immediate (statement 3). This instruction puts the address
value for FILE in Register 0. FILE is the name assigned to the beginning data word in
the file. File has a relative address value of hexadecimal 2C.

The instruction labeled PASS copies the contents of Register 0, the address of where to
start the current pass, into Register 1. At the beginning of a pass, Register 0 and Register
1 point to the same word.

The next instruction, labeled COMPAR, compares the word pointed to by Register 0 to
the word pointed to by Register 1. Notice the second operand uses register indirect
autoincrement addressing mode. After making a comparison, Register 1 points to the next
word.

Following the Compare Words instruction is a JLE instruction: in statement 6. The JLE

instruction causes a jump to the instruction labeled INORDR if the word pointed to
Register 0 is less than or equal to the word pointed to by Register 1 when the Compare

148

Compare Instructions

instruction was performed. The JLE jumps if the two numbers were already in order;
that is, the smaller word is already ahead of the larger word or the two numbers are the
same. It does not jump if the two numbers are not in order. If the number pointed to by
Register 0 is larger than the one pointed to by Register 1, an exchange needs to be made.

Statements 7, 8, and 9) are MOV instructions that exchange the position of two numbers.
The first MOV instruction copies the smaller number into R2. The second MOV
instruction moves the larger number into the space that was occupied by the smaller
number. The third MOV instruction copies the smaller number into the place where the
larger number was.

The first two MOV instructions use indexed addressing. The operand @ —2(R1) uses
Register 1 as an index register. When these instructions are performed, Register 1 points
to the location following the second value compared. The contents of Register 1 was
autoincremented when the second value was accessed (statement 5). So, to refer back
to that value, a minus 2 needs to be added to the address in Register 1.

After comparing two values and making an exchange if necessary, the instruction labeled
INORDR is performed. INORDR is a Compare Immediate instruction that compares the
address value in Register 1 to the immediate operand FILEND. Remember that FILEND
is the name of the location of the last data word.

After this CI instruction, the JLE instruction (statement 11) jumps if the address value
in Register 1 is less than or equal to FILEND. As long as it is, the pass is not complete,
there are more words to compare, and the JLE jumps to COMPAR. The address value
in Register 1 becomes bigger than FILEND when the last word in the file is accessed.
At that time, the contents of Register 1 is autoincremented to an address value larger than
FILEND and the JLE instruction allows the program to fall out of the loop to the Add
Immediate instruction at statement 12. ‘

The Al instruction adds 2 to the address value in Register 0 in preparation for the next
pass. But before performing another pass, the program determines if another pass is
necessary.

The next instruction, statement 13, is a CI instruction which compares the address value
in Register 0 with FILEND. If the address value is not yet equal to FILEND, there are
more passes to complete and the JNE instruction (statement 14) causes a jump to PASS.

When the address value in Register 0 is equal to FILEND (when Register 0 has been

bumped to point to the last data item), the JNE instruction allows the program to fall out
of the outer loop and go on to the next instruction.

149

Chapter 12
The last instruction (statement 15) is the Go-home instruction.

You can use the assembler to assemble the program and then use the Loader to load the
resulting object program. Load the Debugger along with the program and use the
Debugger to control the program.

Set a breakpoint at the BLWP instruction and run the program. Use the Debugger to
examine the 8 words of memory beginning at FILE to confirm that the numbers were
sorted correctly.

Then use the Debugger’s Memory Inspect/Change command to change the contents of
the file. Run the program again and check the results. It should sort as well the second
time as it did the first.

This an example of how you can use the compare instructions. The next chapter discusses
the jump instructions.

150

Chapter 13
THE JUMP INSTRUCTIONS

This chapter introduces the jump instructions. The main purpose of the Jump instructions
is to make decisions in a program. These decisions are based upon an evaluation of the
status bits that are affected by the performance of previous instructions. It's important
to notice that the Jump instructions do not affect the status bits; they simply examine them.
After a jump instruction is performed, the status bits are in the same state as they were
before the instruction was performed.

Some of these instructions have been introduced already, such as the JNE, [NC, and JLE
instructions.

Below is a list of all of the 13 Jump instructions, their names, their mnemonic operation
codes, and the conditions that cause them to jump.

Operation Jump
Name Code Conditions
Jump if Equal JEQ EQ =1
Jump if Not Equal JNE EQ=0
Jump On Carry JOC CY =1
Jump if No Carry JNC CY=0
Jump if No Overflow JNO OV =20
Jump if Odd Parity JOP OP =1
Jump if High JH L>=1
Jump if High or Equal JHE L> =10rEQ =1
Jump if Low or Equal JLE L>=00rEQ=0
Jump if Low JL L>=0and EQ =0
Jump if Greater Than JGT A> =1
Jump if Less Than JLT A> =0and EQ =0

Jump Unconditionally JMP Always

151

Chapter 13

There are 12 conditional jump instructions which may or not cause a jump, based upon
the condition of the status bits. The thirteenth jump instruction is unconditional and jumps
under any conditions.

All jump instructions use PC-relative addressing and have a limited transfer-of-control
range. A jump instruction can jump only as far as 254 bytes behind its location and only
up to 256 bytes ahead of its location.

A jump instruction requires one operand. The operand designates the target of the jump.
The target can be specified in three ways.

One way and, usually, the best way, is to use a name as a target. The operand is the name
(label) attached to the target instruction. For example,

JMP CREEPY

where CREEPY is the name of the target instruction.

A second way is to use a numeric address for a target. For example,
JGT 56984

where 56984 is the physical address for the target.

A third way is to use a dollar sign reference to specify how far to jump based upon the
location of the instruction. For example,

JOP $+4

where $ means the location of the jump instruction and +4 is the distance (displacement)
in bytes of the target from this location.

No matter which of the three ways you choose to specify the target of a jump, it must
be within range.

Let’s look now at the jump instructions and some examples of how to use them.

13.1 The Equal Testing Instructions (JEQ and JNE)

Both the Jump if Equal (JEQ) and Jump if Not Equal (JNE) instructions only examine the
Equal status bit. The JEQ jumps if it’s one; the JNE jumps if it’s zero.

162

The Jump Instructions

Most instructions affect the Equal status bit. For example, when the arithmetic instruction
Al is performed, the result is compared to zero. When the data movement instruction
MOV is performed, the data value is compared to zero. When the compare instruction
CB is performed, a byte value is compared to another byte value. All of these instructions
affect the Equal status bit. You've also seen that the COC and CZC instructions affect
only the Equal status bit.

13.1.1 The Jump if Equal Instruction (JEQ)

The Jump if Equal instruction (JEQ) causes a jump if the Equal status bit is one.

As an example, the following JEQ instruction causes a jump if two byte values are the
same.

CB @DAISY,*R9
JEQ SAME

13.1.2 The Jump if Not Equal Instruction (JNE)
The Jump if Not Equal instruction (JNE) causes a jump if the Equal status bit is zero.

As an example, the following JNE instruction causes a jump if the result of the Al
instruction is not zero.

AI R8,-1
JNE LOOP

13.2 The Carry Testing Instructions (JOC and JNC)

The Jump on Carry (JOC) and Jump if No Carry (JNC} instructions examine only the Carry
status bit. The JOC instruction jumps if it's one. The JNC instruction jumps if it's zero.

Several instructions affect the Carry status bit. An arithmetic instruction like Al affects
the Carry status bit as a result of the add operation. The shift instructions record the state
of the last bit shifted out of a register in the Carry status bit.

13.2.1 The Jump On Carry Instruction (JOC)

The Jump On Carry instruction (JOC) jumps if the Carry status bit is one. As an example,
the following JOC instruction jumps if the sign bit of the number in Register 5 is one.

163

Chapter 13

SLA RS5,1
JOC ONEBIT

13.2.2 The Jump if No Carry Instruction (JNC)

The Jump if No Carry instruction (JNC) jumps if the Carry status bit is zero. As an example,
the following JNC instruction jumps if the number in Register 3 is an even number (the
rightmost bit is zero).

SRC R3,1
JNC EVEN

13.3 The Jump if No Overflow Instruction (JNO)

The Jump if No Overflow instruction (JNO) jumps if the Overflow status bit is zero. It's _
the only jump instruction that evaluates the Overflow status bit.

The Overflow status bit is affected by many of the arithmetic instructions. It's also affected
by the SLA instruction. As an example, suppose Register 12 contains a hex F96E before
these two instructions are performed.

-’

SLA R12,4
JNO 0K

The JNO jumps because the sign bit does not change during the shift.
13.4 The Jump if Odd parity Instruction (JOP)

The Jump if Odd Parity instruction (JOP) jumps if the Odd Parity status bit is one. This
jump instruction is the only one that evaluates the Odd Parity status bit.

The Odd Parity status bit is affected by byte operations. It's set to one if there’s an odd
number of one bits in the byte result. It's cleared to zero if there’s an even number of
one bits.

Suppose the memory word at address hex D3A2 contains a hex DAC6 and Register 6
contains a hex D3A3 before the following instructions are performed.

MOVB *R6,@DEALER
JOP 0DD

The JOP does not jump because the byte value moved (hex C6) has an even number of
one bits.

154

The Jump Instructions
13.5 The Logical Evaluation Instructions (JH, JHE, JLE, and JL)

There are four jump instructions that let you make decisions based upon a logical
evaluation of values. They evaluate either the Logical Greater Than status bit alone, or
the Logical Greater Than and Equal status bits together.

Most instructions affect the Logical Greater Than status bit. For example, when the
arithmetic instruction Al is performed, the result is compared to zero. When the data
movement instruction MOV is performed, the data value is compared to zero. When the
compare instruction CB is performed, one byte value is compared to another byte value.
All of these instructions affect the Logical Greater Than status bit.

The status bit is affected based upon a “logical” evaluation of data; that is, based on the
absolute, or unsigned, value.

13.5.1 The Jump if High Instruction (JH)

The Jump if High instruction (JH) evaluates only the Logical Greater Than status bit and
jumps if it's one. ’

Suppose the fourth word in a file beginning at KNOTS contains a hex 2FB9, Register
9 contains 6, and Register 7 contains a hex 8C3C before the following instructions are
performed.

¢ @KNOTS (R9) ,R7
Ji BIGGER

The JH instruction does not jump because the absolute value of hex 2FB9 is smaller than
8C3C.
13.5.2 The Jump if High or Equal Instruction (JHE)

The Jump if High or Equal instruction evaluates both the Logical Greater Than and Equal
status bits. It jumps if either the Logical Greater Than or Equal status bit is one.

In the following example, the JHE instruction jumps since the result left is Register 7 is
equal to zero.

LI R0,0

SRL R7,0
JHE BILKO

155

Chapter 13
13.5.3 The Jump if Low or Equal Instruction (JLE)

The Jump if Low or Equal instruction (JLE) evaluates both the Logical Greater Than and
Equal status bits. It jumps if the Logical Greater Than status bit is zero or if the Equal
status bit is one.

As an example, suppose that memory word hex AF9C contains a hex 2FB9, Register 12
contains a hex AF9D, and Register 1 contains a hex B93C before the following instructions
are performed.

cs *R12,R1
JLE MARGIN

The JLE instruction jumps because the byte value hex B9, the content of byte address
hex AF9D, is equal to the left byte of Register 1.

13.5.4 The Jump if Low Instruction (JL)

The Jump if Low instruction (JL) evaluates both the Logical Greater Than and Equal status
bits. It jumps only if both status bits are zero.

As an example, suppose that Register 10 contains a hex AE78 before the following
instructions are performed.

€1 R10,>AE78
JL TOOLOW

The JL instruction does not jump because the hex AE78 in Register 10 is not smaller than
the immediate value; it’s equal to it. '

13.6 The Arithmetic Evaluation Instructions (JGT and JLT)

There are two jump instructions that allow you to make decisions based upon an
arithmetic evaluation of values. They evaluate either the Arithmetic Greater Than status
bit alone or the Arithmetic Greater Than and Equal status bits together.

Most instructions affect the Arithmetic Greater Than status bit. For example, when the
arithmetic instruction Al is performed, the result is compared to zero. When the data
movement instruction MOV is performed, the data value is compared to zero. When the
compare instruction CB is performed, a byte value is compared to another. All these
instructions affect the Arithmetic Greater Than status bit.

156

The Jump Instructions

The status bit is affected by an arithmetic evaluation of data; that is, based upon the signed
value of the data.

13.6.1 The Jump if Greater Than Instruction (JGT)

The Jump if Greater Than instruction (JGT) evaluates only the Arithmetic Greater Than
status bit, and jumps if it's one.

Suppose the fourth word in a file beginning at KNOTS contains a hex 2FB9, Register
9 contains 6, and Register 7 contains a hex 8C3C before the following instructions are
performed.

c @KNOTS (R9) ,R7
JGT GRATER

The |GT instruction jumps because the signed value of hex 2FB9 (a positive number) is
greater than 8C3C (a negative number).

13.6.2 The Jump if Less Than Instruction (JLT)

The Jump if Less Than instruction (JLT) evaluates both the Arithmetic Greater Than and
Equal status bits. The JLT instruction jumps if both status bits are zero.

As an example, suppose the memory word with address hex BD74 contains a hex 2C8E,
Register 10 contains a hex BD75, and Register 3 contains a hex FE94 before the following
instructions are performed.

CB *R10,R3
JLT LESSER

The JLT jumps because the contents of byte address hex BD75, or hex 8E, is arithmetically
less than the left byte of Register 3, or hex FE. The signed value of hex 8E is —114; the
signed value of hex FE is —2.

13.7 The Jump Unconditionally Instruction (JMP)

The Jump Unconditionally instruction (J]MP) does not evaluate status bits. It jumps under
any condition.

157

Chapter 13

You can use the JMP instruction to transfer control to another instruction as long as that
instruction is within range. You can use the JMP instruction so that, effectively, it is a
conditional jump instruction. For example, in the following program segment, the J]MP
instruction is, effectively, a jump on even parity instruction. Suppose Register 3 contains
a hex 2D8C before these instructions are performed.

MOvB R3,R8
JOP $+4
JMP EVEN

The JOP does not jump because the parity of hex 2D is even. It allows the program to
go on to the JMP instruction that does jump. Effectively, the JMP instruction is a jump
on even parity. The JOP instruction’s operand ($+4) causes the JOP instruction to simply
skip over the JMP instruction if the Odd Parity status bit is one.

13.8 Program Example
Here's the listing of a program that uses several jump instructions.

30/4 RGSEMELER

VERSION 1.2 PRGE 0201
(173 IDT ' PARITYCK' COMPARE PARITY OF TWD BYTES
2OV 2OVD OZEQ LWPI WS INITIALIZE WORKSPRCE

era2 20z4’
c007 2004 000 LI R@, FILE POINT TO FIRST WORD IN FILE
200t 00S4’
0004 OMRE Qz0! LOOP LI R1, -1 INIT SAME/DIFFERENCE FLAG TO SAME
QOOR FFFF
0005 oBAC CoSe MOV *R@, RZ COPY TWD BYTES INTO R2
BVOE OORE DBE2 MOVB R2, Rz LEFT BYTE ODD PARITY?
2007 @210 i1CO2 JOP ODD1 IF 80, JUMP
0002 2012 0221 ARI Ris1 ELSE BUMP FLAG
2014 BOO1
2003 OD1E QOECZ2 0ODD1 SWPB R2 EXCHANGE BYTES
2010 0B18 DOEZ MOVB RZ, R2 OTHER BYTE ODD PARITY?
8211 001A 1CO2 JOP 0ODDZ IF S0, JumpP
2012 801C @221 Al R1,1 ELSE BUMP FLAG
0Q1E 0001 ’
0013 0020 Co41 ODD2 MOV R1,R1 SAME OR DIFFERENT PARITIES?
2014 8222 1601 JNE SRME IF SRME PARITY, JUMP
0015 @224 C402 MOV R2, RO ELSE REVERSE BYTES IN MEMORY
OD1E @D26 0220 SRAME RI RO, 2 POINT RD® TO NEXT WORD
2228 a2
8217 DB2A 0280 CI R@, FILEND END OF FILE?
002C @’e2’
001E BB2E 126C JLE LOOP IF NOT, GD EXRMINE NEXT BYTES
2019 2030 B420 BLWP a@ ELSE GD HOME
2032 2220
0020 0’34 Ws BSS 32 WORKSPRCE
2021 0S4 FILE BSS 16 FILE OF WORDS
2022 2862° FILEND EQU -2 NRME OF END OF FILE
8223 END

158

The Jump Instructions

99/4 ASSEMBLER

VERSION 1.2 PAGE 2202
* FILE eoss * FILEND @@E2 * LOOP eoes * ODD1 2016

* ODD2 2020 RO oeon R1 2001 R10 oaeA
R11 2008 R12 eoec R13 200D R14 @02E

R1S @00F R2 2ae2 R3 eon3 R4 2004

RS 0005 RS 2006 R7 oer7 RE ooes

R9 2809 ' SAME 2026 ' WS 2034
8002 ERRORS

The program analyzes the two bytes in each word of a file. If the two bytes have the same
parity, either both even or both odd, the program does nothing to the word. However,
if the parity of the two bytes is different, the program exchanges the position of the two
bytes in the word.

The program uses a “flag” that helps to determine if two bytes have the same or different
parity. A flag is a special code defined by a program and indicates whether a condition
is true or not. Like most flags, this one indicates two conditions.

1. A zero value means the parity of the two bytes is different.

2. A non-zero value means the parity of the two bytes is the same. A —1 means both
bytes have odd parity and a +1 means both bytes have even parity.

Look at the listing. Notice there is a mixture of word and byte operations. There are
instructions from the data movement group, the compare group, and the jump group.

There are several assembler directives in the program, all of which have been introduced.
Notice the BSS directive, labeled FILE, defines a 16-byte, or 8-word, block of memory.
This block contains the data analyzed by the program. Notice also that the EQU directive
defines the address of the last word in the file as FILEND.

Now, look at the instructions. Statement 2, the entry point of the program, is the LWPI
instruction that sets up the workspace.

Statement 3 is a Load Immediate instruction that points Register 0 to the first word in
the file.

In statement 4, the LI instruction initializes the flag to —1. The program starts a loop
assuming that both bytes in the word have odd parity.

In statement 5, the MOV instruction copies a word from the file into Register 2.

The MOVB instruction, statement 6, moves a byte in Register 2 back into Register 2. The
instruction actually moves the left byte of Register 2 back into the left byte position. After

159

Chapter 13

the instruction is performed, the contents of Register 2 is exactly the same as before the
instruction was performed. Seems useless, doesn'’t it? Something has changed, however.
As a result of moving the byte, the computer got a chance to analyze the byte and affect
the status bits. One of the status bits affected is the Odd Parity status bit.

After the MOVB instruction, the JOP instruction, statement 7, jumps to ODD1 if the parity
of the left byte of the word is odd. It skips the Al instruction, statement 8, if the parity
is odd. If the parity is even, the Al instruction is performed which adds one to the contents
of Register 1 and the contents of Register 1 becomes zero.

The SWPB instruction, labeled ODD1, exchanges the two bytes in Register 2. The former
right byte is now in the left byte position and vice versa.

The MOVB instruction at statement 10 has the computer affect the status bits, including
the Odd Parity status bit.

If the other byte has odd parity, the JOP instruction at statement 11 skips the Al instruction
at statement 12 and jumps to ODD2. If the other byte has even parity, the Al instruction
at statement 12 adds one to the contents of Register 1.

When the instruction labeled ODD2 is reached, Register 1 contains either zero or a non-
zero value. If the parity of the two bytes is different, it contains zero. If the parity of the
two bytes is the same, it contains a non-zero value; either a —1 if the parity of both bytes
is odd, or a +1 if the parity of both bytes is even.

At this point, also, Register 2 contains the two bytes in reverse order from how they were
in the file.

The MOV instruction at ODD2 copies the flag from Register 1 back into Register 1 so
that the status bits are affected.

After the MOV instruction, the JNE instruction at statement 14 jumps to SAME if the
flag is non-zero; otherwise, the MOV instruction at statement 15 moves the swapped bytes
in Register 2 back into the memory word they came from. The Al instruction labeled
SAME moves the pointer in Register 0 to the next word in the file.

The Compare Immediate instruction at statement 17 compares the address value in
Register 0 with the address of the last word in the file. If the last word in the file has
not been analyzed, the JLE instruction at statement 18 jumps to LOOP to close the loop.
When the last word has been analyzed, the JLE instruction allows the program to fall
down to the Go-Home instruction.

160

The Jump Instructions

When you are ready to try this program, you can use the Assembler to assemble the
program and the Loader to load the resulting object program. Load the Debugger along
with the program and use the Debugger to control the program.

Before running the program, use the Debugger to inspect and change the contents of the
file to data values of your choosing. Mix it up a bit. Choose words that have bytes of
different parity and the same parity.

Set a breakpoint at the BLWP instruction and run the program. Use the Debugger to
examine the file and confirm the program worked correctly.

This chapter illustrates the use of several jump instructions. The next chapter introduces
the Arithmetic instructions.

161

Chapter 14
THE ARITHMETIC INSTRUCTIONS

This chapter introduces the Arithmetic group of instructions. These are the instructions
that perform arithmetic operations on data. There are 13 instructions in this group. The
instructions are listed below with their names, operation codes, and a description of the
kinds of addressing modes you can use with the instructions.

In the following list, G means that an operand is a general addressing mode operand and

can use any of the five general addressing modes. An R means that an operand must be

a working register which means it can use only register direct addressing mode. IOP

means that an operand must use immediate addressing; the operand is a data value, rather
than the address of a data value.

Operation Addressing

Name

Code Mode
Add Immediate Al R,IOP
Add Words A GG
Add Bytes AB GG
Subtract Words S G,G
Subtract Bytes SB GG
Increment INC G
Increment by Two INCT G
Decrement DEC G
Decrement by Two DECT G
Negate NEG G
Absolute Value ABS G
Multiply MPY G.R
Divide DIV G,R

-

163

Chapter 14
14.1 The Add Instructions (Al, A, and AB)

The add instructions add two numbers together and produce a sum. The addition
operation affects the Carry and Overflow status bits. The sum of the addition is compared
to zero and this comparison affects the Logical Greater Than, Arithmetic Greater Than,
and Equal status bits.

14.1.1 The Add immediate Instruction (Al)

The Add Immediate instruction (Al) is probably familiar. The AI instruction was
introduced in Chapter 8. Perhaps, you recall how it works. It requires two operands. The
first operand is a register; the second operand is an immediate value. The immediate
value is added to the contents of the register and the sum replaces the contents of the
register. Both addends are 16-bit numbers.

Also the sum is automatically compared to zero. Based upon this comparison, the Logical
Greater Than, Arithmetic Greater Than, and Equal status bits are affected.

The Carry and Overflow status bits are affected by addition. The Carry status bit is
affected based upon a logical (or unsigned) evaluation of the result and the Overflow
status bit is affected based upon a signed evaluation of the results. These status bits tell
you whether the answer is right or wrong.

Let's review what you have already learned about numbers. If you're given a number,
like hex 89AB, and asked how much that number is in decimal, you really can’t say until
you have some more information. You need to know whether the number is signed or
unsigned. If the number is unsigned, or a “logical” number, its absolute value is decimal
35243. But if the number is signed, or an “arithmetic” number, it represents —30293. If
hex 89AB represents a signed number, the number is negative since the sign bit is one.
And the absolute value of the number is hex 7655 (hex 7655 is the two’s complement of
hex 89AB.

When an instruction is given to the computer that includes performing an addition, the
computer doesn’t whether the numbers are signed or unsigned. The computer simply
adds the numbers and provides enough information in the status bits for you to interpret
the results.

You can interpret the Logical Greater Than, Arithmetic Greater Than, and Equal status

bits to determine the relationship of the result to zero. You can also interpret the Carry
and Overflow status bits to determine if the answer is right or wrong.

164

The Arithmetic Instructions

Following an add operation, the Carry status bit tells you whether the answer is right
or wrong based upon a logical evaluation of the answer. The Overflow status bit tells
you whether the answer is right or wrong based upon an arithmetic evaluation of the
the answer.

Take an example. Suppose Register 7 has the number hex 6ACS5 in it. The instruction
Al R7,>3438

adds hex 6AC5 and hex 3438. The sum is hex 9EFD no matter how you interpret the
numbers. But whether that sum is right or wrong does depend upon how you interpret
the numbers.

If you interpret the two numbers as unsigned numbers, the answer is right. But if you
interpret the numbers as signed numbers, the answer is wrong. Hex 6ACS is a positive
number and hex 3438 is also positive, but the sum, hex 9EFD is negative. Adding two
positive numbers should not produce a negative sum.

The carry status bit is affected by the computer based upon a signed evaluation of
the sum. If the Carry status bit is zero, the unsigned sum is correct, but if the Carry status
bit is one, the unsigned sum is wrong.

The Overflow status bit is affected by the computer based upon a signed evaluation of
the sum. If the Overflow status bit is zero, the signed sum is correct, but if the Overflow
status bit is one, the signed sum is wrong.

Take another example. Suppose Register 7 still has a hex 6ACS in it. The instruction

Al R7,>B827

produces a sum of hex 22EC.

The Carry status bit is set to one. The real sum of hex 6AC5 and hex B827 is hex 122EC.
It requires 17 bits to express the real sum but the computer only has 16 bits. For this reason,
the Carry status bit is set to one which tells you the unsigned sum is wrong.

The Overflow status bit is zero. The signed result is correct. If you interpret hex 6 AC5
as a signed number, it'’s positive. If you interpret hex B827 as a signed number, it's
negative. The instruction is adds a pesitive number to a negative number, and the sum,
hex 22EC, is a smaller positive number.

165

Chapter 14

Here are the rules for determining if the overflow state occurs and the Overflow status
bit is set to one. Think of the numbers as signed numbers. If the two numbers have
opposite signs (one positive, the other negative), the overflow state can’t occur, so the
Overflow bit is not set. However, if the two numbers have the same sign (both positive
or both negative), the overflow state is possible and actually occurs if the sign of the result
is opposite that of the two addends.

Take a third example. Suppose Register 7 still has a hex 6AC5 in it. The instruction
Al R7,>14D6

produces a sum of hex 7F9B in Register 7. No matter how you interpret the numbers,
the sum is correct. The unsigned sum is correct because it can be expressed in 16 bits.
The signed sum is correct because the two numbers are positive and the result is also
positive. (The overflow state is possible but it does not occur.)

You can have a situation where the sum is wrong no matter how you think about it.
Suppose Register 7 has a hex 82D8 in it. The instruction

AI R7,>A72C

produces a 16-bit sum of hex 2A04. The sum is wrong no matter how you interpret the
numbers. The real unsigned sum is hex 12A04 which requires 17 bits to express; therefore,
the 16-bit sum hex 2A04 is the wrong unsigned sum and the Carry status bit is set to one.
Interpreting the two addends as signed numbers, hex 82D8 is negative and hex A72C
is also negative. The sum, hex 2A04, is positive. The instruction added two numbers of
the same sign and produced a sum of different sign; therefore, the signed sum is also
wrong and the Overflow status bit is set to one.

The Carry and Overflow status bits are affected by most of the arithmetic instructions.

14.1.2 The Add Words Instruction (A)

The Add Words instruction (A) adds two 16-bit numbers together. It requires two
operands, both of which can use any of the five general addressing modes. The number
specified by the first operand address is added to the number specified by the second
operand address and the sum replaces the contents of the second operand address. The
addition affects the Carry and Overflow status bits. The sum is compared to zero and
that comparison affects the Logical Greater Than, Arithmetic Greater Than, and Equal
status bits.

166

The Arithmetic Instructions

As an example, suppose memory word ZEBRA contains a hex 1234, memory word hex
B74E contains a hex 8AEE, and Register 9 has a zero in it before this instruction is
performed.

A @IEBRA,®>B74E(R9)

The instruction adds hex 1234 and hex 8AEE, producing a sum of hex 9D22. The Logical
Greater Than status bit is one, the Arithmetic Greater Than status bit is zero, and the
Equal status bit is zero. The Carry status bit is zero and the Overflow status bit is zero.

Following this instruction, would a JNO instruction cause a jump? It would jump since
the Overflow status bit is not set. Would a JOC instruction cause a jump? It wouldn't jump
since the Carry status bit is not set. Would a JHE instruction cause a jump. It would jump
because the Logical Greater Than status bit is set.

14.1.3 The Add Bytes Instruction (AB)

The Add Bytes instruction (AB) is like the Add Words instruction except that it adds two
bytes and it affects the Odd Party status bit.

As an example, suppose memory word ZEBRA contains a hex 1234, memory word hex
B74E contains a hex 8AEE, and Register 9 has a one in it before this instruction is
performed.

A @ZEBRA,@>B74E (R9)

The instruction adds hex 12 and hex EE, producing a sum of zero. The sum replaces the
contents of byte address hex B74F so that word address hex B74E contains hex 8A00.

The Logical Greater Than status bit is zero, the Arithmetic Greater Than status bit is zero,
and the Equal status bit is one. The Carry status bit is one and the Overflow status bit
is zero.

Following this instruction, would a JNO instruction cause a jump? Yes, it would jump
since the Overflow status bit is not set. Would a JOC instruction cause a jump? Yes, it
would jump since the Carry status bit is set. Would a JHE instruction cause a jump. Yes,
it would jump because the Equal status bit is set.

167

Chapter 14
14.2 The Subtract Instructions (S and SB)

The subtract instructions subtract one number from another to get a difference. The
subtraction operation affects the Carry and Overflow status bits. The result is compared
to zero and this comparison affects the Logical Greater Than, Arithmetic Greater Than,
and Equal status bits.

14.2.1 The Subtract Words Instruction (S)

. The Subtract Words instruction (S) requires two operands, both of which can use any
of the five general addressing modes. The first operand specifies the address of the
number to subtract; the second operand is the address from which the number is
subtracted.

As an example, suppose memory word ZEBRA contains a hex 1234, memory word hex
B74E contains a hex 8AEE, and Register 9 has a zero in it before this instruction is
performed.

S @LEBRA,@>B74E (R9)

The instruction subtracts hex 1234 from hex 8AEE, producing a difference of hex 78BA.
The Logical Greater Than status bit is one, the Arithmetic Greater Than status bit is one,
and the Equal status bit is zero. The Carry status bit is one and the Overflow status bit
is one.

The computer performs the subtraction operation by adding the two’s complement of the
first operand (hex EDCC) to hex 8AEE.

14.2.2. The Subtract Bytes Instruction (SB)

The Subtract Bytes instruction (SB) works like the Add Words instruction except that it

subtracts a byte value from another byte value. In addition, it affects the Odd Parity status
bit.

As an example, suppose memory word ZEBRA contains a hex 1234, memory word hex
B74E contains a hex 8AEE, and Register 9 contains a one before this instruction is
performed.

SB @ZEBRA,®>B74E(R9)

168

The Arithmetic Instructions

The instruction subtracts hex 12 from hex EE, resulting in a difference of hex DC. The
Logical Greater Than status bit is one, the Arithmetic Greater Than status bit is zero, and
the Equal status bit is zero. The Carry status bit is one and the Overflow status bit is zero.

14.3 The Increment and Decrement Instructions (INC, INCT, DEC, and DECT)

The increment and decrement instructions are arithmetic instructions that use fixed
numbers for one of their operators. Each instruction requires only one operand that can
use any of the five general addressing modes.

These four instructions are useful for addressing manipulations. For example, if you are
using a register for indirect addressing or indexed addressing, you can adjust the address
value in the register to adjacent addresses using these instructions. Incrementing the
contents by one (INC) points the register to the next sequential byte address.
Decrementing the contents by one (DEC) points to the previous byte address.
Incrementing the contents by two (INCT) points the register to the next sequential word
address. Decrementing the contents by two (DECT) points to the previous word address.

The DEC instruction is also especially useful for loop control operations. Very often a
program subtracts one from a loop counter each time the loop is performed. The DEC
instruction is ideal for this. The programs you've seen up to this point have used the Add
Immediate instruction for this operation. Now that it's been introduced, the DEC
instruction is a better choice.

Likewise, the INC instruction can be used for loop control. You can use a negative value

for the initial loop count and increment the contents toward zero with each iteration of
the loop.

14.3.1 The Increment Instruction (INC)

The Increment instruction (INC) adds one to a number. It has only one operand that can
use any of the five general addressing modes.

It is an arithmetic operation and affects the Carry and Overflow status bits. The result
of the incrementing is compared to zero and that comparison affects the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits.

As an example, the following instruction adds one to the contents of memory location
60000.

169

Chapter 14

INC 60000

14.3.2 The Increment by Two Instruction (INCT)

The Increment by Two instruction (INCT) adds two to a number. It has one operand that
can use any of the five general addressing modes.

The instruction performs an arithmetic operation and affects the Carry and Overflow
status bits. The result of the incrementing is compared to zero and that comparison affects
the Logical Greater Than, Arithmetic Greater Than, and Equal status bits.

As an example, the following instruction adds two to the contents of the memory location
pointed to by Register 6.

INCT *R6

14.3.3 The Decrement Instruction (DEC)

The Decrement instruction (DEC) subtracts one from a number. The single operand can
use any of the five general addressing modes.

It is an arithmetic operation and affects the Carry and Overflow status bits. The result
of the decrementing is compared to zero and that comparison affects the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits.

As an example, the following instruction subtracts one from the contents of Register 8.

DEC R8

14.3.4 The Decrement by Two Instruction (DECT)

The Decrement by Two instruction (DECT) subtracts two from a number. Its lone operand
can use any of the five general addressing modes.

It is an arithmetic operation and affects the Carry and Overflow status bits. The result
of the incrementing is compared to zero and that comparison affects the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits.

As an example, the following instruction subtracts two from the contents of Register 14.

170

The Arithmetic Instructions

DECT R14

14.4 The Negate Instruction (NEG)

The Negate instruction (NEG) negates a number by forming the two’s complement of the
number. It has one operand that can use any of the five general addressing modes.

As an example, suppose memory location LIZARD contains a 3 (hex 0003) before the
following instruction is performed.
NEG GLIZARD

The instruction leaves a hex FFFD (a —3) in LIZARD.

The result of the negation operation is compared to zero and that comparison affects the
Logical Greater Than, Arithmetic Greater Than, and Equal status bits.

The computer performs this instruction by forming the two’s complement of the original
value. The two’s complement is formed by, first, taking the one’s complement and then
adding one. The addition of one to the one’s complement affects the Carry and Overflow
status bits.

In case you play assembly language trivia, the Carry status bit is set to one only when
the original value is zero. Any other value causes the Carry status bit to be cleared to
zero.

Whenever you negate a number, you end up with a number of equal absolute value, but
of opposite sign. For example, if Register 11 has a hex FFFF (a —1) in it, the instruction

NEG Rl1
leaves a hex 0001 (a +1) in Register 11.
There is an exception, however. If the original value happens to be hex 8000 which is
the smallest, or most negative, number possible in 16 bits, the computer can’t produce
a positive equivalent. If this happens, the Overflow status bit is set to one. Any other value

clears the Overflow status bit.

14.5 The Absolute Value Instruction (ABS)

The Absolute Value instruction (ABS) doesjust what its name implies. It takes the absolute
value of a number. It has one operand that lets you use any of the five general addressing
modes.

171

Chapter 14

Effectively, the instruction works this way. If the number specified by the operand is a
positive value, the number is left unchanged. If the number is a negative value, the two’s
complement of the number is formed.

The Carry and Overflow status bits are affected when the two’s complement of a number
is formed. The Logical Greater Than, Arithmetic Greater Than, and Equal status bits are
affected also, but they are affected based upon a comparison of the original number to
zZero.

For example, suppose memory location BORNEO contains a hex FB39 (a negative
number). The instruction

ABS @BORNEOD

leaves a hex 04C7 (the positive counterpart to hex FB39) in BORNEO. The Logical Greater
Than status bit is one. The Arithmetic Greater Than status bit is zero because FB39 is
not arithmetically greater than zero. And the Equal status bit is zero.

As with the NEG instruction, the Overflow status bit is set to one only when the original
value is hex 8000. In this case, hex 8000 remains in the location.

14.6 The Multiply and Divide Instructions (MPY and DIV)

The arithmetic instructions include a single instruction multiply and a single instruction
divide. Some computers don't have multiply and divide operations in their instruction
set. You have to write a program of several instructions to perform multiplication and
division.

The Multiply and Divide instructions treat the numbers as unsigned numbers. If you're
thinking of the numbers as signed numbers, you have to keep track of the signs.
14.6.1 The Multiply Instruction (MPY)

The Multiply instruction (MPY) multiplies two 16-bit numbers and produces a 32-bit
product. The instruction requires two operands. The first operand can use any of the five
general addressing modes. The second operand uses only register direct addressing mode

and the second number must be in a register.

The number addressed by the first operand is multiplied by the number in the register
and the 32-bit product goes into the second operand. The product goes into the register.

172

The Arithmetic Instructions

This brings us to a question. How do you get a 32-bit product into a 16-bit register? The
answer is, you don't. That 's like trying to squeeze a number 14 foot into a size 7 shoe.
Here's how the computer handles this situation. The computer puts the most significant
16 bits of the product into the register and the least significant 16 bits spill into the next
register. For example, if the second operand is Register 8, the 32-product goes into
Registers 8 and 9.

Look at the following example. Suppose memory location HOGG contains a 3, Register
5 contains 4, and Register 6 contains 5 before the following instruction is performed.

MPY @HOGG,R5

The computer multiplies 3 (hex 0003) times 4 (hex 0004), producing a 32-bit product of
12 (hex 0000 000C). The most significant 16 bits of the product (hex 0000) goes into Register
5 and the least significant 16 bits (hex 000C) goes into Register 6.

Before After
(HOGE) = >0003 >0003
(R5) = >0004 >0000
(R6) = >0005 >000C

No status bits are affected by the MPY instruction.

You need to be aware that whatever is in the register following the one specified as the
second operand is overlayed as a result of the multiplication.

You can use any register for the second operand. If you use Register 15, the product is
placed in Register 15 and in the general memory location following Register 15. If you
use Register 15 as the second operand for a MPY instruction, make sure the word of
memory following the workspace can be written over.

14.6.2 The Divide Instruction (DIV)

The Divide instruction (DIV) divides a 16-bit divisor into a 32-bit dividend. It produces
a 16-bit quotient and a 16-bit remainder. The instruction requires two operands. The first
operand can use any of the five general addressing modes. The second operand uses only
register direct addressing mode.

With the Divide instruction, the second operand is the first register of an implied register
pair. The 32-bit dividend is in the register pair. The first 16 bits of the dividend (the most

173

Chapter 14

significant word) are in the first register and the second word (least significant 16 bits
of the dividend) are in the second register of the pair.

Qrmmmne 32-bit Divided-~---- >
| MSHW LSW
Rn Rn+l

The number addressed by the first operand is divided into the 32-bit number in the
register pair. The resulting 16-bit quotient goes into the first register of the pair and the
16-bit remainder goes into the second register of the pair.

<=~16 bits==~> <===16 bits~~~>

+

Quotient Remainder |

+

o—_—

Rn Rn+l

Look at an example. Suppose memory location HOGG contains a 3, Register 5 contains
0, and Register 6 contains (hex E) 14 before the following instruction is performed.

DIV Q@HOGG,R5

The computer divides 3 (hex 0003) into 14 (a 32-bit hex 0000 000E in Register 5 and 6.
It produces a 16-bit quotient of 4 which goes into Register 5 and a 16-bit remainder of
2 which goes into Register 6. When finished, the instruction leaves a hex 0004 in Register
5 and a hex 0002 in Register 6.

Before After
(H0GG) = >0003 >0003
(R5) = >0000 >0004
(R6) = >000F >0002

The DIV instruction affects one status bit — the Overflow status bit.

Prior to performing the divide operation, the computer compares the 16-bit divisor with
the first word of the dividend which is the contents of the register in the second operand.
If the divisor is smaller than the first word of the dividend, the computer sets the Overflow
status bit to one and doesn’t perform the division. If the divisor is smaller than the first
word of the dividend, the quotient will exceed 16 bits and, under those conditions, the
computer sets the Overflow status bit and doesn’t divide.

174

The Arithmetic Instructions

As an example, suppose memory location R2D3 contains a hex 0003, Register 10 contains
a hex 0005, and Register 11 contains a hex 0000. The instruction

DIV @R2D3,R10

causes the Overflow status bit to be set. The contents of memory location R2D3, Register
10, and Register 11 are unchanged.

This comparison of the divisor to the most significant word of the dividend prior to
performing the division prevents the computer from attempting to divide by 0 (one of
those irrational acts which produces a result approaching infinity and threatens the
stability of the cosmos).

14.7 Program Example

The following program performs a signed multiplication of two 16-bit numbers and
produces a 32-bit signed result. The program expects the two numbers to be already in
Register 0 and Register 1 when it starts running. It leaves the 32-bit signed product in
Registers 0 and 1.

The program uses the Multiply instruction (MPY). Since the Multiply instruction only
multiplies unsigned (absolute) values, the program must determine the sign of the
numbers and the sign of the product.

If you multiply two numbers together, the result is positive when both numbers are either
positive or negative. The result is negative if the numbers have opposite signs.

The program checks the sign of both numbers. If they are both positive, the number is
already expressed as an absolute value and the numbers can be multiplied directly. The
absolute value of the product expresses the positive result.

If the two numbers are both negative, the program forms the absolute values of them and
multiplies the absolute values. The absolute value of the product expresses the positive
result.

If the numbers have opposite signs, the program forms the absolute value of both numbers
and multiplies them. The result is the absolute value of the negative product. The program
then must express the 32-bit absolute product as a 32-bit signed number. The two’s
complement of a 32-bit number is formed by taking the two’s complement of the least
significant word and the one’s complement of the most significant word. For example,

175

Chapter 14

the 32-bit two's compleme;lt of hex 0000 000C (an absolute value of 12) is hex FFFF FFF4
(a —12).

There’s one exception however. If the least significant word of the 32-bit product is zero,
then the two's complement of the most significant word is formed rather than the one’s
complement. For example, the 32-bit two’s complement of hex 0001 0000 (an absolute
value of 65,536) is hex FFFF 0000 (a —65,536).

The program uses several instructions introduced in this chapter, including the ABS,
MPY, NEG, and DEC instructions. The program takes advantage of the fact that the ABS
instruction affects the Arithmetic Greater Than status bit, as well as the other status bits,
based upon a comparison of the original value to zero.

Look at the listing of the program.

93874 ASSEMBLER

VERSION 1.2 PAGE 20201
2001 IDT *SIGNMULT® SIGNED MULTIPLY
202> 0Z20 B2EQ LWPI WS INITIRLIZE WORKSPACE
2002 @022’
020 G004 ©748 ABS RO FORCE X TO POSITIVE
0204 OBRE 1104 JLT NEGX IF X NEGATIVE, JUMP
2205 0ORE 0741 AES R1 ELSE FORCE Y POSITIVE
OC2E GORA 1104 JLT NEGY IF ¥ NEGATIVE, JUMP
@@27 @ODC 3IEO1 MPYPOS MPY R1,RO MULTIPLY X AND Y (SAME SIGNS)
0202 GOQE 1007 JMP EXIT GD TO EXIT
0003 Q10 @741 NEGX ABS R FORCE Y POSITIVE
oC12 @012 11FC JLT MPYPOS GO MULTIPLY (SAME SIGNS)
@011 @014 IEO1 NEGY MPY RI1,RQ MULTIPLY X AND Y (DIFFERENT SIGNS)
0212 BOIE BSOD NEG RO TRKE TWO'S COMPLEMENT OF MSW
2213 BO1E BSG1 NEG R1 TRKE TWD'S COMPLEMENT OF LSW
0214 B@1A 1ZI01 JE@ EXIT IF LSW ZERO, JUMP
0015 001C 250D DEC RO ELSE FORM ONE'S COMPLEMENT OF MSW
@01E BOIE 0420 EXIT BLWP 20 GO HOME
0020 0200
o017 0022 ws BSS 32 WORKSPACE
o218 END

99/4 RASSEMBLER
VERSION 1.2 PRGE 0802

' EXIT Q01E ' MPYPOS e@@ec ' NEGX 2210 ' NEGY 8014
RO 220 R1 21 R1@ 28R R11 Q0o
R12 02ac R13 200D R14 B0BE R1S @oBF
R2 2002 R3 2003 R4 (14113 RS 2205
RE ooes R7 e2a7 R8 oBes R9 2009

' WS 0022

80828 ERRORS

Following the LWPI instruction (statement 2), the ABS instruction (statement 3) takes the
absolute value of the number in Register 0 which is called the X value. The absolute value
is left in Register 0 and the first three status bits, including the Arithmetic Greater Than
and Equal status bits, are affected based upon a comparison of the original value to zero.

176

The Arithmetic Instructions

If the original X value was negative, the JLT instruction at statement 4 jumps to NEGX.
Otherwise, the program goes on to the next instruction. The ABS instruction (statement
5) forms the absolute value of Y if X was positive.

If the Y value was negative, the JLT instruction at statement 6 jumps. Otherwise, the
program goes on to the MPY instruction labeled MPYPOS. This multiply instruction is
performed only if both numbers have the same sign. It multiplies the absolute values in
Register 0 and Register 1 and leaves the absolute value of the 32-bit product in Registers
0 and 1. Since this MPY instruction is performed only if the two numbers have the same
sign, the absolute value of the product expresses the positive product directly. Therefore,
the program performs a JMP instruction (statement 8) to the Go-home instruction labeled
EXIT.

If the X value is negative, the ABS instruction labeled NEGX receives control. It forms
the absolute value of Y and leaves the absolute value in Register 1.

The JLT instruction (statement 10) jumps to the Multiply instruction labeled MPYPOS
is Y is negative. This jump is taken only when X is negative and Y is negative. When
the jump is taken, Register 0 has the absolute value of X and Register 1 has the absolute
value of Y.

If the JLT instruction (statement 10) does not jump, program control passes to the MPY
instruction at statement 11. This multiply instruction is performed only if the X and Y
values have opposite signs. When it's performed, the absolute value of X is in Register
0 and the absolute value of Y is in Register 1. After it is performed, the absolute value
of the 32- bit product is in Registers 0 and 1; the program must take the two’s complement
of this 32-bit number.

The NEG instruction at statement 12 forms the two's complement of the most significant
word of the product. The next NEG instruction at statement 13 forms the two’s
complement of the least significant word of the product. The result is compared to zero
and affects several status bits, including the Equal status bit. The Equal status bit is set
to one if the result is zero and the result is zero only if the original value was zero.

Next, the JEQ instruction at statement 14 jumps to EXIT if the least significant word of
the product is zero. Otherwise, program control passes to the next instruction (statement
15).

The DEC instruction (statement 15) is performed when the least significant word of the
product is non-zero. In that case, the two’s complement of the most significant word of
the product in Register 0 is reduced to the one’s complement by subtracting one from
the contents of Register 0.

177

Chapter 14

The program terminates at the Go-home instruction labeled EXIT.

Use the assembler to assemble the program and then use the Loader to load the resulting
object program. Load the Debugger with the program and use the Debugger to control
the program.

Before running the program, use the Debugger to place numbers in the program’s
Registers 0 and 1.

Set a breakpoint at the BLWP instruction and run the program.
After running the program, use the Debugger to look at the same registers for the results.

Run the program several times with different numbers in R0 and R1. Use two positive
numbers, two negative numbers and two numbers of different signs.

This chapter illustrates the use of the Arithmetic instructions. The next chapter introduces
the Logical instructions.

178

Chapter 15
THE LOGICAL INSTRUCTIONS

This chapter introduces the group of logical instructions. The main job of these
instructions is to perform the logical operations of AND, OR, Exclusive OR, or related
operations on data. There are 10 logical instructions. They are listed below with their
names, operation codes, and a description of the kinds of addressing modes you can use
with the instructions.

In the following list, G means that an operand is a general addressing mode operand and
can use any of the five general addressing modes. An R means that an operand must be
a working register and it can use only register direct addressing mode. An IOP means
that an operand must use immediate addressing and the operand is a data value, rather
than the address of a data value.

Operation Addressing

Name Code Mode
And Immediate ANDI R,IOP
Set Zeros Corresponding SZC G,G
Set Zeros Corresponding Byte SZCB G.G
Or Immediate ORI R,IOP
Set Ones Corresponding SOC GG
Set Ones Corresponding Byte SOCB G,G
Exclusive Or XOR G,R
Invert INV G
Clear CLR G

Set to One SETO G

Most of the instructions in this group work with individual bits in a data quantity and
define the state of the selected bits.

The first three of these instructions (ANDI, SZC, and SZCB) perform a logical AND
operation, or something closely related to the AND operation, on data.

179

Chapter 15

The next three instructions, ORI, SOC, and SOCB, perform a logical OR operation on
data. The XOR instruction performs an exclusive OR operation on data.

The INV instruction performs a logical NOT operation on the bits in a word. The last
two instructions (CLR and SETO) set the content of a word to predefined values.

15.1 The AND Operation Instructions (ANDI, SZC, and SCZB)

There are three instructions that perform a logical AND operation or something closely
related to the AND operation.

The AND operation selects the state of a bit based upon the state of two other bits. In
the following truth table for the AND operation, X is the state of one bit and Y is the state
of the other bit. Notice that the result is a one only if both X and Y are ones.

AND
Truth Table

X bit | Y bit | Result

- - 0O O
-0 = O
- 0O O o

The AND operation is useful for selectively turning off bits in a data quantity. As an
example, consider an AND operation between two byte values. One byte is called X and
the other is called Y. The AND operation is performed on each of the eight pairs of X
and Y bits and produces an 8-bit result called R.

X = 00111010
Y = 01011100

R = 00011000

Notice that for each X bit that is zero, the corresponding R bit is zero. For each X bit that
is one, the corresponding R bit is the same state as the Y bit.

Call the 8-bit X value a “bit mask”. Everywhere there is a zero in the bit mask, the
corresponding bit in the R byte is zero; everywhere there’s a one in the bit mask, the
corresponding bit in the R byte is the same as the Y bit. Effectively, the bit mask is forcing
zeros at selected locations of the Y value and leaving unselected locations unchanged.

180

The AND Operation Instructions (ANDI, SZC, and SZCB]

The AND operation is useful for turning off, or setting to zero, selected bits in a data
quantity.

15.1.1 The And Immediate Instruction (ANDI)

The And Immediate instruction (ANDI) performs a logical AND operation on two word
values. The instruction requires two operands, the first uses only register direct
addressing and the second is an immediate operand.

The instruction performs a logical AND operation between the contents of the register
and the immediate operand. The result replaces the content of the register.

The result is compared to zero and that comparison affects the Logical Greater Than,
Arithmetic Greater Than, and Equal status bits.

As an example, suppose Register 6 contains a hex 5C69 before the following instruction
is performed

ANDI R6,>3A0F
The instruction performs an AND operation between a bit in the register and a

corresponding bit in the immediate operand. The AND result of that pair of bits replaces
the bit in the register. As a result of this instruction, a hex 1809 is left in Register 6.

10?P = 0011 1010 0000 1111 = >3A0F
(R6) Before = 0101 1100 0110 1001 = >5C69
(R6) After = 0001 1000 0000 1001 = >1809

The hex 1809 is compared to zero, causing the Logical Greater Than status bit to be one,
the Arithmetic Greater Than status bit to be one, and the Equal status bit to be zero.
15.1.2 The Set Zeros Corresponding Instruction (SZC)

The Set Zeros Corresponding Instruction (SZC) performs an operation similar to a logical
AND operation on two word values. The instruction requires two operands, both of which

can use any of the five general addressing modes.

The instruction performs a logical AND operation between the complement of the first
value and the uncomplemented second value. The result replaces the contents of the

181

Chapter 15

second operand. The result is compared to zero and that comparison affects the Logical
Greater Than, Arithmetic Greater Than, and Equal status bits.

As an example, suppose Register 6 contains a hex 3A0F and memory word TWEETE
contains a hex 5C69 before the following instruction is performed.

SIC R6,@TWEETE
The instruction performs an AND operation between the complement of a bit in Register

6 and the corresponding bit in TWEETE. The AND result of that pair of bits replaces
the bit in the TWEETE. As a result of this instruction, a hex 4460 is left in TWEETE.

(R6) = 0011 1010 0000 1111 = >3A0F

-

Complement of (R6) = 1100 0101 1111 0000 = >C5F0
(TWEETE) Before = 0101 1100 0110 1001 = >5C69

(TWEETE) After = 0100 0100 0110 0000 = >4460

The hex 4460 is compared to zero, causing the Logical Greater Than status bit to be one,
the Arithmetic Greater Than status bit to be one, and the Equal status bit to be zero.

The instruction is called Set Zeros Corresponding because the one bits in the first operand
(the bit mask) set zeros in the corresponding bits of the second operand. Zero bits in the
first operand leave the corresponding bits in the second operand unchanged.

15.1.3 The Set Zeros Corresponding Byte Instruction (SZCB)

The Set Zeros Corresponding Byte instruction (SZCB) works just like the Set Zeros
Corresponding (SZC) instruction except it uses two byte values, rather than word values.
It additionally affects the Odd Parity status bit. The instruction requires two operands,
both of which can use any of the five general addressing modes.

As an example, suppose Register 6 contains a hex 3A0F and memory word TWEETE
contains a hex 5C69 before the following instruction is performed.

SZCB R6,OTWEETE

The instruction performs an AND operation between the complement of a bit in the left
byte of Register 6 and the corresponding bit in byte address TWEETE. The result of that

182

The AND Operation Instructions (ANDI, SZC, and SZCB]

pair of bits replaces the bit in TWEETE. As a result of this instruction, a hex 44 is left
in byte address TWEETE. (A hex 4469 is left in word address TWEETE).

(R6) = 0011 1010 0000 1111 = >3AQF
Compliment of (R6) = 1100 0101 1111 0000 = >C5F0
(TWEETE) Before = 0101 1100 0110 1001 = >5C69
(TWEETE) After = 0100 0100 0110 1001 = >4469

e) At
NOT AFFECTED

The byte result, hex 44, is compared to zero, causing the Logical Greater Than status bit
to be one, the Arithmetic Greater Than status bit to be one, and the Equal status bit to
be zero. The Odd Parity status bit is a zero.

15.2 The OR Operation Instructions (ORI, SOC, and SOCB)

There are three instructions which perform a logical OR operation.

‘The OR operation selects the state of a bit based upon the state of two other bits. In the
following truth table for the OR operation, X is the state of one bit and Y is the state of

the other bit. Notice that the result is a one if either X or Y is one.

OR
Truth Table

X bit | Y bit | Result

—-O0 O
—-_o - o
— O

The OR operation is useful for selectively turning on bits in a data quantity. As an
example, consider an OR operation between two byte values. One byte is called X and
the other is called Y. The OR operation is performed on each of the eight pairs of X and
Y bits and produces an 8-bit result called R.

X = 00111010
Y = 01011100

R = 01111110

183

Chapter 15

Notice that for each X bit that is one, the corresponding R bit is one. For each X bit that
is zero, the corresponding R bit is the same state as the Y bit.

Call the 8-bit X value a bit mask. Everywhere there is a one in the bit mask, the
corresponding bit in the R byte is one; everywhere there’s a zero in the bit mask, the
corresponding bit in the R byte is the same as the Y bit. Effectively, the bit mask is forcing
ones at selected locations of the Y value and leaving unselected locations unchanged.

The OR operation is useful for turning on (setting to one) selected bits in a data quantity.

15.2.1 The Or Immediate Instruction (ORI)

The Or Immediate instruction (ORI) performs a logical OR operation on two word values.
The instruction requires two operands, the first uses only register direct addressing and
the second is an immediate operand.

The instruction performs a logical OR operation between the contents of the register and
the immediate operand. The result replaces the contents of the register. The result is
compared to zero and that comparison affects the Logical Greater Than, Arithmetic
Greater Than, and Equal status bits.

As an example, suppose Register 6 contains a hex 5C69 before the following instruction
is performed

ANDI R6,>3A0F
The instruction performs an OR operation between a bit in the register and a

corresponding bit in the immediate operand. The OR result of that pair of bits replaces
the bit in the register. As a result of this instruction, a hex 7E6F is left in Register 6.

I0P = 0011 1010 0000 1111 = >3AQF
(R6) Before = 0101 1100 0110 1001 = >5C69
(R6) After = 0111 1110 0110 1111 = >JE6F

The hex 7E6F is compared to zero, causing the Logical Greater Than status bit to be one,
the Arithmetic Greater Than status bit to be one, and the Equal status bit to be zero.

184

The AND Operation Instructions (ANDI, SZC, and SZCB)
15.2.2 The Set Ones Corresponding Instruction (SOC)

The Set Ones Corresponding Instruction (SOC) performs a logical OR operation on two
word values. The instruction requires two operands, both of which can use any of the
five general addressing modes.

The instruction performs a logical OR operation between the first value and the second
value. The result replaces the contents of the second operand. This result is compared
to zero and that comparison affects the Logical Greater Than, Arithmetic Greater Than,
and Equal status bits.

As an example, suppose Register 6 contains a hex 3A0F and memory word TWEETE
contains a hex 5C69 before the following instruction is performed

SOC R6,@TWEETE

The instruction performs an OR operation between a bit in Register 6 and the
corresponding bit in TWEETE. The result of that pair of bits replaces the bit in the
TWEETE. As a result of this instruction, a hex 7E6F is left in TWEETE.

(R6) = 0011 1010 0000 1111 = >3A0F
(TWEETE) Before = 0101 1100 0110 1001 = >5C69

(TWEETE) After = 0111 1110 0110 1111 = >7E6F

The hex 7E6F is compared to zero, causing the Logical Greater Than status bit to be one,
the Arithmetic Greater Than status bit to be one, and the Equal status bit to be zero.

The instruction is called Set Ones Corresponding because the one bits in the first operand
(the bit mask) set ones in the corresponding bits of the second operand. Zero bits in the
first operand leave the corresponding bits in the second operand unchanged.

'15.2.3 The Set Ones Corresponding Byte Instruction (SOCB)

The Set Ones Corresponding Byte instruction (SOCB) works just like the Set Ones
Corresponding (SOC] instruction except it uses two byte values, rather than word values.
It additionally affects the Odd Parity status bit. The instruction requires two operands,

both of which can use any of the five general addressing modes.

As an example, suppose Register 6 contains a hex 3A0F and memory word TWEETE
contains a hex 5C69 before the following instruction is performed.

185

Chapter 15

SOCB R6,8TWEETE

The instruction performs an OR operation between a bit in the left byte of Register 6
and the corresponding bit in byte address TWEETE. The result of that pair of bits replaces
the bitin TWEETE. As a result of this instruction, a hex 7E is left in byte address TWEETE.
A hex 7E69 is left in word address TWEETE.

(R6) = 0011 1010 0000 1111 = »>3A(F
(TWEETE) Before = 0101 1100 0110 1001 = >5C69
(TWEETE) After = 0111 1110 0110 1001 = >7E69

e A Bt]
NOT AFFECTED

The byte result, hex 7E, is compared to zero, causing the Logical Greater Than status bit
to be one, the Arithmetic Greater Than status bit to be one, and the Equal status bit to
be zero. The Odd Parity status bit is a zero.

15.3 The Exclusive Or Instruction (XOR)

The Exclusive OR instruction (XOR) is the only instruction that performs an exclusive
OR operation.

The Exclusive OR operation selects the state of a bit based upon the state of two other
bits. In the following truth table for the Exclusive OR operation, X is the state of one bit
and Y is the state of the other bit. Notice that the result is a one only if X or Y is a one,
but not both (X and Y must be different).

Exclusive OR
Truth Table

X bit | Y bit | Result

-0 O
-0 o
o - o

The Exclusive OR operation is useful for selectively changing the state of bits in a data
quantity. As an example, consider an Exclusive OR operation between two byte values.

186

The AND Operation Instructions (ANDI, SZC, and SZCB)

One byte is called X and the other is called Y. The Exclusive OR operation is performed

on each of the eight pairs of X and Y bits and produces an 8-bit result called R.
X = 00111010
Y = 01011100

R = 01100110

Notice that for each X bit that is one, the corresponding R bit is changed. For each X
bit that is zero, the corresponding R bit is the same state as the Y bit.

Call the 8-bit X value a bit mask. Everywhere there is a one in the bit mask, the
corresponding bit in the R byte is changed; everywhere there's a zero in the bit mask,
the corresponding bit in the R byte is the same as the Y bit. Effectively, the bit mask is
inverting bits at selected locations of the Y value and leaving unselected locations
unchanged.

The Exclusive OR operation is useful for inverting or changing the state of selected bits
in a data quantity.

The Exclusive OR instruction (XOR) performs an Exclusive OR operation on two word
values. The instruction requires two operands, the first can use any of the five general
addressing modes and the second uses only register direct addressing.

The instruction performs an Exclusive OR operation between the contents of the first
operand and the register. The result replaces the contents of the register. This result is
compared to zero and that comparison affects the Logical Greater Than, Arithmetic
Greater Than, and Equal status bits.

As an example, suppose memory word TWEETE contains a hex 5C69 and Register 6
contains a hex 3AOF before the following instruction is performed.

XOR @TWEETE,R6

The instruction performs an Exclusive OR operation between a bit in TWEETE and the
corresponding bit in Register 6. The Exclusive OR result of that pair of bits replaces the
bit in Register 6. As a result of this instruction, a hex 6666 is left in Register 6.

(TWEETE) = 0101 1100 0110 1001 = >5C69
(R6) Before = 0011 1010 0000 1111 = >3ACF
(R6) After = 0110 0110 0110 0110 = >6666

187

Chapter 15

The hex 6666 is compared to zero, causing the Logical Greater Than status bit to be one,
the Arithmetic Greater Than Status bit to be one, and the Equal status bit to be zero.

15.4 The Invert Instruction (INV)

The Invert instruction (INV) performs a logical NOT function. It inverts the state of the
bits in a word. The instruction requires one operand and the operand can use any of the
five general addressing modes. The result of the operation is compared to zero and the
Logical Greater Than, Arithmetic Greater Than, and Equal status bits are affected based
upon that comparison.

As an example, assume that Register 2 contains 8. The following IN'V instruction inverts
the bits in the fifth word of a memory file called COMPS.

INV @CoMPS(R2)

If that word contains a hex 5E6D before the instruction is performed, it contains a hex
A192 after the instruction is performed.

(COMPS (R2)) Before = 0101 1110 0110 1101 = >5E6D
After = 1010 0001 1001 0010 = >A192

The Logical Greater Than status bit is one, the Arithmetic Greater Than status bit is zZero,
and the Equal status bit is zero as a result of the instruction.

When you invert the state of each bit in a data quantity, you take the one’s complement
of the value. The Invert instruction forms the one's complement of a word.

15.5 The Initialize to Constant Instructions (CLR and SETO)

There are two instructions that initialize a location to a constant value. These instructions
are useful for setting locations to common initial conditions.

15.5.1 The Clear Instruction (CLR)

The Clear instruction (CLR) initializes a word to zero. The instruction requires one
operand that can use any of the five general addressing modes. No status bits are affected.

Programs very often initialize storage locations to zero before performing operations.
Earlier, the LI instruction was used to initialize a register to zero. The Clear instruction,
however, is a more effective way.

188

The AND Operation Instructions (ANDI, SZC, and SZCBJ
For example, the instruction
CLR R8
sets the contents of Register 8 to zero.

Notice that the CLR instruction always addresses a word location, not a byte.

15.5.2 The Set to One Instruction (SETO)

The Set to One instruction (SETO) initializes a word to minus one (hex FFFF). The
instruction requires one operand which can use any of the five general addressing modes.
No status bits are affected.

The value hex FFFF, which is often called minus one, because that’s its value if you
interpret it as a signed number, is sometimes used as a marker for the end of a file or
a special code within a program.

As an example of how it operates, the instruction

SETO *R7

sets the contents of the location pointed to by Register 7 to hex FFFF.

Notice that the SETO instruction always addresses a word location, not a byte.

15.6 Program Example

The following program examines the two bytes in each word of a ten-word file. If both
bytes contain either an odd number or an even number, the program clears the word
in a corresponding word of a second ten-word file; otherwise, the corresponding word
of the second file is set to hex FFFF. The program takes advantage of the fact that an
odd number has a one bit in the least significant bit position and an even number has
a zero bit in the least significant bit position. The program illustrates the use of several
of the logical instructions introduced in this chapter. Look at the listing.

189

Chapter 15

99/4 ASSEMBELER

VERSION 1.2 PAGE 0001
o021 IDT *EVENODD® DETECT EVEN AND ODD NUMEERS
000> QDRO OZE@ LWPI WS POINT TO WORKSPACE

020z DOS4’
2002 ©OD4 020z LI R2, BUFFER POINT TO DATR WORDS
202t 0ozC’
2004 200 0203 LI RZ: FLRGS POINT TO SAME/DIFFERENT FLAGS
BBOR DBLO’
0205 00dC 2204 LI R4, 10 SET A COUNTER
QORE QDA
OBOE 8210 COZ2 GTWORD MOV *R2+, RO GET A DATA WORD C(AUTDINCREMENT)
0007 0812 0240 RANDI R@.)Q101 TURN OFF RALL BITS EXCEPT LSB'S
8014 @101
o202 DR1E CO40D MOV RO, R1 COPY RESULT
0009 0B1E GEC1 SWPB R1 EXCHANGE THE TWO BYTES IN THE COPY
0210 @01R 2840 XOR R@,R1 BOTH SAME OR DIFFERENT?
0011 @B1C Q4F3 CLR #R3+ ASBUME SAME - SET “SAME" FLAG
8012 @21E 1302 JE@ SRME YES, THEY ARE SAME
8013 2020 @SE3 INV B-2(R3) DIFFERENT - SET "DIFFERENT" FLAG
8022 FFFE
8014 0024 Q604 SAME DEC R4 DECREMENT COUNTER
@815 @02E 15F4 JGT GTWORD IF COUNTER () @, CHECK ANDTHER WORD
0016 QO28 V420 BLWP 30 GO HOME
B02R GO0
2017 @22C BUFFER BSS 20 DATA WORDS HERE
2018 @240 FLRGS BSS 20 FLAGS PUT HERE
82138 B854 WS BSS 3I2 WORKSPARCE
2020 END

99/4 ASSEMBLER
VERSION 1.2

PARGE 2002
* BUFFER @@2C ' FLAGS @040 * GTWORD @018 RO 2200
R1 2001 R10 ooeA R11 2228 R12 eoac
R13 200D R14 Q2oE R1S eoeF R2 0202
R3 2203 R4 2804 RS 2005 R 2006
R7 2007 RE o2es RS9 2223 ' SAME e@24

' Ws 2054

2320 ERRORS

The BSS directive labeled BUFFER at statement 17 reserves a block of memory for the
ten-word file containing the pairs of bytes to be analyzed. The BSS directive labeled

FLAGS at statement 18 reserves a block of memory for the ten words used to mark the
relationship of the bytes in BUFFER,

The first instruction (statement 2), an LWPI, sets up the Workspace Pointer.

Statements 3, 4, and 5 are Load Immediate instructions. The first one points Register 2

to the file of words. The second one points Register 3 to the file FLAGS. The third one
initializes a loop count of 10 in Register 4.

The MOV instruction labeled GTWORD copies a word from the BUFFER file into
Register 0. Notice it uses register indirect autoincrement addressing mode. After this

instruction is performed, Register 0 contains the two bytes of a word and Register 2 points
to the following word in the file.

190

The AND Operation Instructions (ANDI, SZC, and SZCB)

In statement 7, the ANDI instruction turns off or forces to zero all the bits in Register
0 except the rightmost bit in each byte. The MOV instruction at statement 8 copies the
result into Register 1. The SWPB instruction (statement 9) exchanges the two bytes in
Register 1

The XOR instruction (statement 10) performs an Exclusive OR operation between the
contents of Register 0 and Register 1. The result is left in Register 1. The result in register
1 is either a value of zero or a value of one. If the rightmost bit in each byte is the same,
the result is zero. If the rightmost bit in each byte is different, the result is one. The
instruction compares the result to zero and affects several status bits, including the Equal
status bit.

The CLR instruction (statement 11) clears to zero the corresponding word in the FLAGS
file. Notice the instruction uses register indirect autoincrement addressing mode, so that
after it is performed, Register 3 points to the next word in the FLAGS file. The instruction
assumes the two bytes are the same. The CLR instruction doesn’t change any status bits.
The status bits are in the same state they were after the XOR instruction was performed.

The JEQ instruction (statement 12) analyzes the Equal status bit that was affected by the
XOR instruction. It jumps to SAME and skips the next instruction if the result of the XOR
instruction is zero which means the bytes are the same. Otherwise, it lets the program
go on to the next instruction, the INV instruction.

If the two bytes are different, the INV instruction at statement 13 is performed. It reaches
back to the previous word in the FLAGS file and inverts it. Since the previously performed
CLR instruction set that word to zero, the INV instruction changes it to all one bits (hex
FFFF).

The DEC instruction (labeled SAME) subtracts one from the loop count in Register 4 and
closes the loop to GTWORD if the loop count is not yet zero; otherwise, it lets the program
fall out of the loop to the Go-home instruction (BLWP).

Use the assembler to assemble the program and then use the Loader to load the resulting
object program. Load the Debugger with the program and use the Debugger to control
the program.

Before running the program, use the Debugger to place values in the BUFFER file.
Set a breakpoint at the BLWP instruction and run the program.

After running the program, use the Debugger to look at the FLAGS file for the results.

191

Chapter 15

This chapter illustrates the use of the Logical instructions. The next chapter introduces
the Branch and Subroutine instructions.

192

Chapter 16
BRANCH AND SUBROUTINE INSTRUCTIONS

This chapter reviews the concept of subroutines and describes those instructions which
are used with subroutines and long-range transfers of control (branches). This chapter
also describes context switching, the instructions that can cause a context switch, and
explains the events that happen as a result of a context switch.

16.1 Subroutines

Nearly every language offers the ability to define and use subroutines. A subroutine is
normally used in a program when a function needs to be performed several times at
different locations in the program. By creating a subroutine to perform that function, it

can be called from anywhere in the program where that function is needed.

You can imagine that a subroutine looks like this.

A Subroutine

+
+

Entry Point ~-=> | <m==msmcesess Riattend

- - - so - s - -

. > Instructions

Exit Point <=--- +

. > Data Area

193

Chapter 16

A subroutine consists of a set of instructions and, possibly, an associated area of data.
The subroutine has an entry point; that is, a point where it receives control. Although
it's possible to construct a subroutine with more than one entry point, most subroutines
should have only one. The subroutine has an exit point; that is, the last instruction in the
subroutine which is performed and the one that returns control to the program that called
the subroutine. It's possible that a subroutine may have more than one exit point, but
good programming practice recommends that you use only one.

Within a complete program, you can have several individual programs segments. Some
of these program segments may be subroutines that can be called from statements in other
parts of the program. Other program segments can be “calling programs” that contain
statements which call subroutines. When a calling program calls a subroutine, the
subroutine receives program control, performs its job, and then exits by returning control
to the calling program. Usually, the calling program is returned control at the location
immediately following the instruction that called the subroutine. The location where a
calling program is returned control from a subroutine is called the return point.

A Program
+==~= | calling statement
return point K==t
toem> entry point ~——
. > Subroutine
exit point et A}

+

Often, data must be exchanged between a calling program and a subroutine. There are
several ways of exchanging data. One way is to use defined areas of memory. For
example, assume that the calling program and subroutine are designed to use locations
X and Y for passing data. These are specific memory locations used only for passing data.
The calling program places the data to be processed in memory location X and then calls
the subroutine. The subroutine takes the data from location X, performs the operation
on the data, and places the results in memory location Y. The subroutine exits and returns
control to the calling program. The calling program is designed to look in memory location
Y for the result of the subroutine’s operation.

194

Branch and Subroutine Instructions

There are other ways of passing data between calling programs and subroutines. Another
way is to use several areas of memory for passing data. In this case, the calling program’s
logic selects an area of memory to use and places the data in that chosen area. When
the calling program calls the subroutine, it passes to the subroutine the address of the
memory area containing the data to be processed. When the subroutine receives control,
it extracts the data from that area and processes it. The subroutine also might select an
area of memory in which to place the result. After choosing an area and placing the results
there, the subroutine returns to the calling program and passes back to the calling program
the address where the result was placed.)

A third common technique for exchanging data between a calling program and a
subroutine is to use the working registers. With this technique, the calling program simply
places data in one or more of the working registers and calls the subroutine. The
subroutine retrieves the data from the register(s), performs its operation on the data, places
the results in one or more registers, and returns control to the calling program. The calling
program looks in the register(s) for the result.

Look now at some of the ways that you can call subroutines in assembly language with
the TI Home Computer. There are two categories of subroutine- calling techniques. One
category is where the calling program and subroutine share the same set of working
registers; the second category is where the calling program and the subroutine have
different sets of registers. This technique of assigning a different set of working registers
to the calling program and the subroutine is called “context switching.” Look first at those
ways of calling subroutines that don’t use context switching.

16.2 Non-Context Switching Subroutine Calls

There are three instructions that can be used with subroutines without causing a context
switch:

e Branch and Link (BL)
e ranch (B)

e Execute (X]

16.2.1 The Branch and Link Instruction (BL)

The Branch and Link instruction (BL) calls a subroutine. Both the subroutine and the
calling program share the same set of registers.

195

Chapter 16

The BL instruction has one operand that can use any of the five general addressing modes.
The instruction transfers program control to the location of the instruction specified by
the operand. The return address which is the address of the location immediately
following the BL instruction is placed in Register 11.

As an example, suppose there’s a subroutine in a program with an entry point of SUBR
(SUBR is the label attached to the first instruction to be performed in the subroutine).
The following instruction calls the subroutine

BL @SUBR

and the address of the location immediately following the BL instruction is placed in
Register 11.

When the subroutine is finished and ready to return control to the calling program, it
can do so by going to the address contained in Register 11. It can do this by using a Branch
instruction.

16.2.2 The Branch Instruction (B)

The Branch instruction (B) is similar to the Branch and Link instruction. The B instruction
has one operand that can use any of the five general addressing modes and it causes a
transfer of program control to the location specified by the operand. The B instruction
is normally used to exit from a subroutine that's called by a Branch and Link instruction.

For example, the instruction
B *R1l

transfers program control to the address in Register 11.

In fact, a Branch instruction with this particular operand is used so often in TI Home
Computer assembly language programs that a pseudo-instruction has been given to it.
A pseudo-instruction is a mnemonic operation code that is used in place of another
operation code and assumes a specific operand. The pseudo-instruction, RT, when placed
in the operation code field of a statement, results in machine code that is the same as
that for B *R11.

RT = B *Rl1l

The B instruction is normally the last instruction performed by a subroutine called with

196

Branch and Subroutine Instructions

a BL instruction, but the Branch instruction can be used anywhere in a program that you
want to perform an unconditional transfer of control.

The B instruction is similar to the JMP instruction. Both instructions cause an
unconditional transfer of control within a program. But the Branch instruction has a big
advantage over the JMP instruction. The B instruction can transfer control anywhere,
whereas the JMP instruction has a limited transfer-of-control range. Also, the B
instruction has a much wider choice of addressing modes available to it, since it can use
any of the five general addressing modes; the JMP instructions is limited to PC-relative
addressing.

There are some advantages to the JMP instruction, however. It requires only one word
of machine code where the B instruction might require two words. Also, the JMP
instruction usually takes less time for the computer to perform than the B instruction.

The limited transfer-of-control range of the JMP instruction is often not a severe
handicap. Persons who study such things tell us that, in a high percentage of cases, when
a program transfers control to another instruction, that instruction is within a relatively
short distance of the instruction transferring control.

The bottom line is this. Use a JMP instruction whenever you can for an unconditional
transfer of control. If you can't reach the target with a JMP instruction, use a B instruction.
16.2.3 The Execute Instruction (X)

There's another instruction which is classified as a subroutine instruction. The Execute
instruction (X) performs a one-instruction subroutine call.

The Execute instruction has one operand and can use any of the five general addressing
modes. The operand is the address of an instruction. The Execute instruction performs
the one instruction at that address and then returns to the location following the Execute
instruction.

For example, suppose there are these instructions in a program.

197

Chapter 16

4memmen X OPICKET

4mmmnnn > PICKET A RO,RL ~ ===mm- +

The X instruction causes the computer to perform the instruction labeled PICKET. After
performing that instruction, the computer returns to the location following the X
instruction.

There are a couple of things to be wary of when using the Execute instruction. For
example, if the instruction performed by an Execute instruction requires more than one
word of machine code, the locations immediately following the Execute instruction’s
machine code are used as the addresses for the data. Also, if the instruction performed
by an Execute instruction is a jump instruction that results in a transfer of control, the
jump is made a relative distance from the location of the Execute instruction rather than
from the location of the jump instruction. When using the Execute instruction, proceed
with caution.

16.3 Context-Switching Subroutine Calls

Recall that context switching is a way of calling a subroutine so that the calling program
and the subroutine can have their own set of registers. There are two instructions that
cause a context switch — BLWP and XOP — and one instruction that reverses a context
switch — RTWP.

16.3.1 The Branch and Load Workspace Pointer Instruction (BLWP)

The BLWP instruction has one operand and can use any of the five general addessing
modes. The operand specifies the address of a two-word “vector” in memory that the
computer uses to perform a context switch.

A context switch vector is composed of two adjacent words in memory. The first word

contains the 16-bit address of the subroutine’s workspace; the second word contains the
16-bit address of the subroutine’s entry point.

198

Branch and Subroutine Instructions

A Two-Word Vector

First Word Address of Subroutine's Workspace

Second Word Address of Subroutine's Entry Point

—_— —

- ———

For example, suppose there are these statements in a program.

BLWP @GIZZ

617z DATA SUBWSP
DATA SUBENT

The BLWP instruction calls a subroutine with a context switch. The operand used with
the BLWP instruction identifies the location of the two-word context switching vector.
GIZZ is a label attached to the first word of a two-word vector. The first word is the
address of the workspace used by the subroutine, SUBWSP, and the second word is the
address of the subroutine’s entry point, SUBENT.

When a subroutine is called as a result of a context switch, the subroutine can use its
own set of working registers. The subroutine’s registers are different from the set of
registers used by the calling program.

When a context switch is performed, the computer automatically saves the old program
context in the subroutine’s workspace. Specifically, the computer saves what was in the
Workspace Pointer, Program Counter, and Status Register at the moment immediately
before the context switch in the bottom three registers of the subroutine’s workspace. The
computer saves the contents of the Workspace Pointer in Register 13, the contents of the
Program Counter in Register 14, and the contents of the Status Register in Register 15
of the subroutine’s workspace.

Saving an 01d Program Context
in the Subroutine's Workspace

199

Chapter 16

R13 | Contents of Workspace Pointer |
R14 | Contents of Program Counter |
R15 | Contents of Status Register |

+- +

As you might expect, the contents of these internal registers are saved so that the contents
can be eventually restored to the registers. When the subroutine finishes, it can exit and
return program control to the calling program by using a Return with Workspace Pointer
(RTWP] instruction.

16.3.2 The Return with Workspace Pointer Instruction (RTWP)

The Return with Workspace Pointer instruction (RTWP) reverses a context switch. It’s
one of the few instructions that doesn’t require an operand. The operation of the RTWP
instruction is simple. It places the contents of Register 13 into the computer’s Workspace
Pointer, moves the contents of Register 14 into the Program Counter, and moves the
contents of Register 15 into the Status Register.

An RTWP Instruction Reverses a Context Switch

Computer Memory
+ + + +
ettt + Workspace
| Wp |<- ------ + + +
e + I . |
Hmmm———————— + + i +
I PC |<=]==+ #mmmmme- =] R13 l
$mmmm e + | + +
#mmmmmmmnnan - R14 |
e + + +
| SR |¢= |===mmmmmmmm—-- -] R15 |
frmme e ——— + + +
dmmmmm e e n e ———.—— + + +

200

Branch and Subroutine Instructions

As soon as the RTWP instruction finishes, the computer uses the workspace which is
addressed in the Workspace Pointer and performs the instruction which is addressed in
the Program Counter. The Status Register contains whatever was in Register 15. The
calling program continues with the program context that it had before calling the
subroutine.

An RTWP instruction is normally the last instruction performed in a subroutine called
as a result of a context switch.

16.3.3 The Extended Operation Instruction (XOP)

There's a second instruction that causes a context switch. It's the Extended Operation
instruction (XOP). There are several differences, to distinguish an XOP context switch
from a BLWP context switch. Like the BLWP instruction, the XOP instruction requires
a two-word vector for the context switch. But with the XOP instruction, the vector must
be located at a very precise location within a limited area of memory. This area of memory
is the XOP vector memory space. The vector for an XOP instruction must be located in
the area of memory between word addresses hexadecimal 40 and hexadecimal 7E,
inclusive.

XOP Vector Memory Space

3
+

>0040 | X0P 0 WS

+ > XOP 0 Vector
>0042 | X0P 0 PC |
>0044 | x0P 1 WS |

+

> XOP 1 Vector

:
+

b— e b — — +

>0046 | xop1 pc

XOP 15 WS

-—
>007C l

> XOP 15 Vector

>007E X0P 15 PC

—_——
]
—_——

The XOP instruction requires two operands. The second operand is a C-type operand;
it's a number that ranges from 0 through 15. The second operand identifies the precise
location of the vector for the XOP instruction. An operand of 0 tells the computer to use

201

Chapter 16

the first pair of words in the XOP vector memory space for the vector or memory locations
hexadecimal 40 and 42. An operand of 1 tells the computer to use the second pair of words
in that memory space for the vector or memory locations hexadecimal 44 and 46. An
operand of 2 tells the computer to use the third pair of words for the vector, and so forth.
An operand of 15 tells the computer to use the last pair of words for the vector or memory
locations hexadecimal 7C and 7E.

This area of memory from hexadecimal 40 through hexadecimal 7E is in the TI Home
Computer’s ROM. The contents of these vectors can’t be changed. Some of the TI Home
Computers have vectors defined for XOP numbers 1 and 2; some have vectors defined
only for XOP number 2.

The XOP instruction has two operands. The second operand identifies the address of
information passed automatically to the subroutine. The address of the first operand is
automatically placed in Register 11 of the subroutine’s workspace. It's the address value
of the operand and not the content of the address that is placed in Register 11. For
example, the instruction

XOP @PARAM,2

puts the address value of PARAM, not the contents of location PARAM, in Register 11
of the subroutine’s workspace. :

An RTWP instruction is used to exit a subroutine called by XOP instruction.

16.4 Context Switching and Interrupts

The two instructions, BLWP and XOP, cause a context switch. A context switch is also
performed by the computer in response to an interrupt signal from an I/0 device. The
number of the interrupting device tells the computer where to find the two-word vector.
The vectors for interrupt-initiated context switches are located in the area of memory
between word addresses 0 and hexadecimal 3E, inclusive. This area of memory is in ROM
and the contents of the vectors can't be changed.

16.5 Program Example

The following program is designed to illustrate different ways of calling subroutines. The
program makes use of the Branch and Link instruction (BL) to call a subroutine within
the program itself and it uses the Branch and Load Workspace Pointer instruction (BLWP)
to call two subroutines resident within the TI Home Computer’s ROM.

202

Branch and Subroutine Instructions

The program generates the Morse code for messages typed in on the computer’s keyboard.
When you run the program, you can press an alphabetic key and the program immediately
sounds the Morse code for that character. If you press a key other than an alphabetic
character, A through Z, the program sounds a reject signal. If you press the <enter<
key, the program stops and returns to the title screen.

The program translates each character entered on the keyboard into Morse code and
sounds the Morse code for each character. The program uses a subroutine called KSCAN
to read the characters from the keyboard and uses a subroutine called SOUND to sound
the Morse code characters. These subroutines are located in the TI Home Computer’s
ROM. A third subroutine called DELAY is included in the program itself and produces
a time delay that determines how long a sound is heard. The length of the sound depends
upon whether a dot or a dash is being sent.

Look at the program listing.

99/4 ASSEMBLER

VERSIDN 1.2 ' PRGE 0201
gggi IDT 'MORSE’ TRANSLATE CHARACTERS TO MORSE CODE !
< .
2023 + EXTERNRL REFERENCES
2224 REF KSCAN, SCUND
2285 -
002E * EQURTED VALUES
2007 1194 DOTIME EQU 4500 DELAY FOR DOT TONE
o2ee +
2203 0003 020 LWPI WS INILIALIZE WORKSPARCE
Q222 oap’
2C12 CQ2s 7820 GETKEY SR Q) 374, A B3I74 SELECT ENTIRE KEYBOARD
S39€ 8374
2008 £374
0211 Q20A BuZ0 BLWP 3KSCAN CHECK KEYBOARD
2eac oae2
2212 @02t DO MOVB @) 837C, RO READ KEYBOARD STATUS
0912 B837C
3013 2012 2020 COC 3IKEYMSK,R® CHECK KEYBDARD STATUS
J2:14 2238’
Q214 @D1E 1EFE JNE GETKEY JUMP IF ND KEY YET
J01S ©318 D220 MOVB @) E8373: RO KEY PRESSED: PUT RSCII CODE IN RO
23:R 327S
201€ 22iC 0242 ANDI RO,)7FQ0 STRIP OFF PARITY BIT
JJ1E 7FCO
2017 303 9ED2 CB RO, ACHARA COMPARE CODE TO "A*"
22Z2 OSSR’
0018 CC2¢ 1AZD JL NALPHA JUMP IF NOT ARLPHRBETIC. MAY BE CR
219 @IZE SE00 CB R@, CHARZ COMPARE CODE TO "2Z"
2228 2335B° .
Q020 Q2ZA :BZQ JH NOGCOD JUMP IF NOT ALPHABETIC
2021 002C CoCo MOV RO, R3 COPY CHAR CODE TO R3 (LEFT BYTE)
2222 202E S&CT SWPB R3 PUT CHAR IN RIGHT BYTE
202T ©O30 2223 Al R3. -ES SUBTRACT CODE FOR "R" = INDEX
2032 FFBF
2224 20T4 ORL3 SLA R3,1 MULTIPLY INDEX BY 2
0225 @AZE Ci1x3 MOV @MCTABL(RI), R4 GET TABLE ENTRY IN R4
Q22e 039s’
2026 DQ@TA C2C4 MOV R4, R3 COPY TABLE ENTRY TO R3
2027 QQIC 2983 SRL R3,8 RIGHT JUSTIFY ELEMENT COUNT
3028 B2TE @22R SENDEL LI R10,) 9100 TURN ON
2042 3:022

203

Chapter 16

0029 0042 DERGA MOVB R1@. 3SCUND TONE
Q044 2200
2270 Q046 @4C2 CLR R2 PUT ZERD IN R2
2031 2048 @914 SRL R4»1 SHIFT NEXT ELEMENT CODE INTO CARRY
2032 804A 1702 JNC DOT JUMP IF DOT
2033 B24C @222 AI R2, DOTIME®*2 ADD DELAY FOR DRSH
BA4E 232

30T4 QOSQ @czz DOT AI R2, DOTIME ADD DELAY FOR DOT
QaS2 1194

0235 0054 GEARD BL @DELAY DELAY AND END TONE
Q256 aes2’
2036 2058 0202 LI R2, DOTIME GET INTER-ELEMENT DELAY TIME
205R 1194
22337 @2SC B6A0 BL QDELAY DELAY AFTER ELEMENT
BASE sz’
0038 @QE@ QEdI DEC R3 DECREMENT ELEMENT COUNT
9039 QQE2 1EED JNE SENDEL JUMP IF MORE ELEMENTS TO SEND
0040 B@E4 18CF JMP GETKEY ELSE GO GET ANOTHER CHAR

99/4 ASSEMBELER
VERSION 1,2 PAGE 0202
P@41 DOEE SE@® NALPHA CE RO, BCHARCR IS CHAR A CARRIAGE RETURN?
B2es @ac’

204z DREA 1389 JEO EXIT 1S SO. GO EXIT
@043 DREC OZDA NOGOOD L1 R1@.)F4B® TURN ON
BREE FLOB
2044 @070 DEGA MOVE R10, 8SOUND NOISE
0072 0044’
0045 QD74 0202 LI R2,DOTIME#2 SET DELAY TIME FOR NOISE
0076 2328
Q04E QD78 QEAD EL @DELAY DELAY AND TURN OFF NDISE
007A 0222’
o047 BD7C 10C3 JMP GETKEY GO GET NEXT CHAR
QO4E @O7E Q4z@ EXIT BLWP 80 GO HOME
20c0 @220
BR4S *
@050 @@82 DBFC DELAY SRC R12,15 KILL TIME
P2S1 @284 DED2 DEC R2 DECREMENT DELAY COUNT
00S2 0PSE 1EFD JNE DELAY JUMP IF MORE DELAY
POS3 Q2E8 D2@A LI RiD,)SFFF TURN OFF
@@8A SFFF
0054 @2SC DSOA MDVE R10@, 3SCUND TONE
00SE 8072’
2S5 @090 BECA SWPE R10 TURN OFF
20SE @292 DEGA MOVE R1@, 3SOUND NOISE
2096 @OSE’
2057 BR9E D4SB B »*R11 RETURN TO CALLER
o0Se *
20s9 * DATA CONSTANTS
oRED *
POE1 BM9S 202@ KEYMSK DATA) 2000 KEY MASK
PBE2 G@SA 41 CHARA TEXT 'A’ CHAR CDODE FOR "A®
@363 G@9B SA CHARZ TEXT '2° CHRR CODE FOR "Z"
@OE4 0@SC 8D CHARCR BYTE >@D CHAR CODE FOR CARRIAGE RETURN
99/4 ASSEMBLER
VERSION 1.2 PAGE BB23
ooEE -
o0e7 # TRANSLATION LOOK-UP TABLE
20ES »
PPES BOOE @202 MCTAEL DATA) 0202 A= ._
@070 22AG BLO1 DATA @401 E= _..
0071 BOA2 BLOS DATA)0B40S C=_._
2072 0OAG BT01 DATA) 8201 D= _..
0073 GORE 2180 DATA) @100 E=.
8074 GOAS DLOAL DATA) @404 F= ...
PO75 QOAR BIQ3T DATA) @303 6= ..
@07c @OAC B4LED DATA) D4LBD H= ...
@077 ORAE 0200 DATA 0200 B S
0072 QOBO B4QE DATA) DLOE J= ..
2073 0OB2 BI0S DATA @305 K= .
00E0 @OR4 G402 DATA) 0402 L=._..
o0E1 @OBE 0203 DATA) @203 M=

204

Branch and Subroutine Instructions

2082 @2BE 0201 DATA) 0201 N = _.
2083 QOBA 0387 DATA) 0307 0= ___
2084 QOEC ©@4BE DATA) @406 Pe .__
9985 QUBE 040B DATR) B4dB Q= __._
00e6 00CO @Io2 DATA) B322 R=._
8027 @VC2 0300 DATA) B3I00 S = .,
ooce euCs 0101 DATA)0101 T=_
2283 BOCE B34 DATA) B34 U= ...
2080 20C8 0408 DATA) B40e V= -
2091 0OCR B3B6 DATA) 0306 W= ool
00352 @BCC V409 DATA 0409 X = _...
0093 @OCE 042D DATA) 040D Y= oo
2094 Q20D @403 DATA) B4d3 = __
20385 *
B2SE @2D2 WS BSS 32 WORKSPARCE
037 END
99/4 RSSEMBLER
VERSION 1.2 PAGE @004
' CHARA 203sA ' CHARCR @@sC ' CHARZ 2039B ' DELRY @eg2
' DpoT 2050 DOTIME 1194 ' EXIT @07E ' GETKEY 0204
' KEYMSK @098 E KSCAN @aac ' MCTABL @O@SE ' NALPHR @066
* NDOGOOD @@esC RG 2200 R1 2001 R10© BDBAR
R11 B00B R12 20ac R13 2eeD R14 [
R1S GosF R2 eso2 R3 2203 R4 2004
RS 0005 R6 2006 R7 2207 R8 eaoe
2009 ' SENDEL @@3t E SOUND 2094 ' WS 2ap2

RS
9222 ERRORS

The statements with an asterisk in the label field; for example, statements 2 and 3, are
comments. Statement 4 is a REF directive. The REF directive references symbols that
are defined some place other than the program in which the REF directive appears. The
operands for the REF directive are KSCAN and SOUND. These two symbols are the
names of entry points into two subroutines that reside in the computer’'s ROM. (See
Chapter 18 for further discussion of the REF directive.) KSCAN is the name of a
subroutine which scans the keyboard to see if a key has been pressed. Each time the
KSCAN subroutine is called, it affects a status byte at memory location <837C. If a key
has been pressed since the last time the KSCAN subroutine was called, a bit in the status
byte in set to one; otherwise, the bit is cleared to zero.

SOUND is the name of a subroutine that produces tones or sound with the sound
processor.

In statement 7, the symbol DOTIME is equated to the value 4500. This value is a number
that determines the number of times to perform a program loop in the DELAY subroutine
and, effectively, determines the length of the sound produced by the sound processor.

The entry point of the program is the LWPI instruction at statement 9 which initializes
the Workspace Pointer. The Subtract Bytes instruction (labeled GETKEY) zeroes out byte
address <8374. This is the byte address used by the KSCAN subroutine to determine
whether it should look at the whole keyboard or only a part of the keyboard. Putting a
zero in the byte causes KSCAN to look at the whole keyboard.

205

Chapter 16

The BLWP instruction at statement 10 calls the KSCAN subroutine. Upon return from
the KSCAN subroutine, the MOVB instruction at statement 12 copies the status byte
affected by the KSCAN subroutine into the left byte of Register 0. Then the Compare
Ones Corresponding instruction at statement 13 checks the status bit in that hyte. If the
bit is set, it means that a key was pressed; if the bit is zero, no key was pressed. The JNE
instruction at statement 14 causes a jump to GETKEY if the bit is zero and the program
calls KSCAN again. The program remains in this loop, repeatedly calling KSCAN until
a key is pressed. When a key is pressed, the KSCAN subroutine places the character code
for that key in byte address <8375. When a key is pressed, the program falls out of the
loop and the Move Byte instruction at statement 15 copies the ASCII character code into
the left byte of Register 0.

The And Immediate instruction at statement 16 isolates the 7-bit ASCII character code
in the left byte of Register 0. Since the program can only produce the Morse code for
alphabetic characters, the program checks the character to determine if it's alphabetic.
The Compare Bytes instruction at statement 17 compares the ASCII character code in
Register 0 with the ASCII character code for the letter A (hexadecimal 41). If the character
code in Register 0 is less than hex 41, the character is not alphabetic and the Jump if Low
instruction at statement 18 causes a jump to the instruction labeled NALPHA. If the
character code in Register 0 is hex 41 or greater, the Compare Bytes instruction at
statement 19 compares it with the ASCII character code for the letter Z (hexadecimal 5A).
If the character code in Register 0 is greater than hex 5A, the character is not alphabetic
and the Jump High instruction at statement 20 causes a jump to the instruction labeled
NOGOOD. If the program reaches the Move Word instruction at statement 21, the
character is alphabetic and the Move Word instruction copies the character code into
Register 3 (the left byte). The Swap Bytes instruction at statement 22 puts the character
code into the right byte of Register 3 which right justifies the code.

At this point, it would be helpful to look at the structure of the lookup table that is used
to translate the ASCII character codes of the characters into Morse code. The table begins
with the DATA directive labeled MCTABL, statement 69. Each of the alphabetic
characters has a one-word entry in the table, starting with the character A and ending
with the character Z. Each one-word entry consists of two bytes. The left byte is the
number of Morse code elements (dots and dashes) for the character. The right byte defines
what those elements are and the order of the elements. In the right byte, the elements
for a character appear right-to-left. A zero represents a dot and a one represents a dash.
The first word in the table is labeled MCTABL and is the entry for the letter A. In Morse
code, the letter A consists of two elements; a dot followed by a dash. In the table entry
for A, notice the left byte contains a 2 (for two elements) and the right byte contains a
2. The binary byte value for 2 is 0000 0010. The zero in the rightmost bit position represents
the dot and the one in the next position to the left represents the dash.

206

Branch and Subroutine Instructions

Take another example. Find the entry for the letter C in the table, the third word. The
left byte is 4, meaning there are four elements in the Morse code. The right byte is 5 (a
binary 0000 0101). The rightmost bit (a one) represents the first element, a dash; the next
bit to the left (a zero) represents the second element, a dot; the next bit to the left (a one)
represents the third element, a dash; and the next bit to the left (a zero) represents the
fourth element, a dot.

The instructions beginning with statement 23 form an index to the lookup table. The Add
Immediate instruction at statement 23 subtracts the character code for the letter A from
the character code in Register 3. The result is a number in the range of 0 through 25. The
Shift Left Arithmetic instruction at statement 24 multiplies the result in Register 3 by two.
The result in Register 3 is a word index into the lookup table that selects a specific entry
based upon the ASCII character code of the key entered.

The Move Word instruction at statement 25 uses indexed addressing to select the
appropriate table entry and moves the entry to Register 4. The Move Word instruction
at statement 26 copies the entry to Register 3. The Shift Right Logical instruction at
statement 27 shifts the left byte of the entry into the right byte position of Register 3 and
leaves zeros in the left byte of Register 3 (it right justifies the element count in Register
3). At this point, the element count is right justified in Register 3 and the bits representing
the elements are in the right byte of Register 4.

The instructions beginning at statement 28 sound the Morse code. The Morse code for
each character consists of a series of dot and dashes. There is a unique pattern of dots
and dashes for each character. The sound for a dash is three times longer than the sound
for a dot. There is an period of silence after each element equal in length to the dot time.

The Load Immediate instruction labeled SENDEL puts a hexadecimal 91 in Register 10
which is the value of a command to produce a tone with the sound processor and the
Move Byte instruction at statement 29 sends the command to the sound processor. The
Clear instruction at statement 30 zeros out Register 2. The Shift Right Logical instruction
at statement 31 shifts an element bit out of Register 4 and the state of that bit is copied
into the Carry status bit. The Jump if No Carry instruction at statement 32 causes a jump
to the instruction labeled DOT if the bit is a zero. Otherwise, if the bit is one (representing
a dash), the Add Immediate instruction at statement 33 adds two times the dot time to
Register 2. The Add Immediate instruction at statement 34 adds one dot time to the
contents of Register 2. When the program reaches statement 35, Register 2 has one of two
values in it: a value equal to the dot time or a value equal to three times the dot time.
The value in Register 2 determines the length of delay before turning off the sound; it
determines the length of the sound.

The Branch and Link instruction at statement 35 calls the DELAY routine. The DELAY

207

Chapter 16

routine, starting with statement 50, begins with a three-instruction loop that is performed
a number of times, depending upon the value in Register 2. The loop takes a finite amount
of time to perform and while the loop is being performed, the sound processor is making
a sound. When the loop is finished, the subroutine turns off the sound processor
(statements 53 through 56) and returns to the calling program (statement 57).

The program receives control from the DELAY subroutine at statement 36. The Load
Immediate instruction at statement 36 sets the delay time equal to a dot time and the
Branch and Link instruction at statement 37 calls the DELAY subroutine to wait for one
dot time before sounding another element.

The program receives control again from the DELAY subroutine at statement 38. The
Decrement instruction at statement 38 decrements the element count in Register 3. If there
are more elements left to send in the character, the Jump if Not Equal instruction at
statement 39 causes a jump to the instruction labeled SENDEL and the next element is
identified and sent.

When no more elements remain to be sent, the JMP instruction at statement 40 causes
ajump to the instruction labeled GETKEY and the program waits for the operator to press
another key.

The instruction labled NALPHA receives control if the ASCII character code is less than
hex 41. The Compare Bytes instruction at statement 41 compares the character code to
that produced by the <enter< key (hex D). If the operator pressed the <enter< key,
the JEQ instruction at statement 42 jumps to the instruction labeled EXIT, the Go-Home
instruction.

The instruction labeled NOGOOD receives control if the ASCII character code is greater
than hex 5A, the code for the letter Z. The series of instructions from statement 43 through
statement 46 sound a reject signal with the sound processor. The JMP instruction at
statement 47 jumps to the instruction labled GETKEY and the program waits for the
operator to press another key.

If you have the equipment, go ahead edit, assemble, load, and run the program.

This chapter illustrates the use of the Branch and Subroutine instructions. The next
chapter introduces the CRU and External instructions.

208

Chapter 17
CRU AND EXTERNAL INSTRUCTIONS

All computers, no matter how complex or how simple, have some way of exchanging data
with input and output devices. The TI Home Computer has different ways to exchange
data with 170 devices. One of these ways is the Communication Register Unit (CRU).
This chapter describes the CRU, the instructions that are used with the CRU, and the
CRU addressing formats.

17.1 The Communication Register Unit (CRU)

The CRU is a serial I/O port that is part of the computer’s central processor. Serial means
that the data exchanged between the processor and 1/0 devices are exchanged in serial
form, or one bit at a time. When performing CRU input or output operations, the processor
uses a single line to bring information into the processor from an input device and another
single line to send data to an output device. Each of these lines carries one bit of data
at a time. The input line is called CRUIN; the output line is called CRUOUT.

Just as addresses are used to select specific memory locations to supply or receive data
for an operation, addresses are also used to select the specific input or output devices
that supply or receive each bit of data when a CRU 1/0 operation is performed.

There are five instructions in the TI Home Computer’s instruction set that are used for
CRU input and output operations. Three of these instructions are single-bit CRU
instructions; that is, only one bit of data is sent or received with each instruction. The
other two instructions are multi-bit CRU instructions; that is, they can be used to send
or receive more than one bit of data. Although a multi-bit CRU instructions can cause
a transfer of up to 16 bits of data, each bit is sent or received serially on the CRUIN or
CRUOUT line.

Among the five CRU instructions, three instructions cause data to be sent out to a device
and two instructions cause data to be brought in from a device.

Each of the five instructions can be classified as either a single-bit or a multi-bit
instruction and each of them can be classified as an input or output instruction. You can

209

Chapter 17

even classify them both ways at the same time, as shown below.

CRU Instructions

| Input | Output|
Single~Bit | |

TB SBO
SBZ

+

Multi-Bit i STCR | LDCR |

b

17.2 The CRU Single-Bit Instructions (SBO, SBZ, and TB)

The three single-bit instructions receive or send only one bit of data. The TB (Test Bit)
instruction receives a single bit of data from an input device. The SBO and SBZ
instructions send a single bit of data to an output device. The SBO (Set Bit to One)
instruction sends a one bit; the SBZ (Set Bit to Zero) instruction sends a zero bit.

Each of the single-bit CRU instructions requires only one operand. The operand is called
a displacement and is a number from —128 through +127. The displacement is added
to a base address. The sum of the displacement and the base address is the address of
the device. The base address must be in Register 12.

When a CRU instruction is performed, the computer always uses a base address in
Register 12. It's the programmer’s job to make sure that the correct base address is in the
register before the CRU instruction is performed.

Register 12, like all other working registers, holds 16 bits. When Register 12 is used to
hold a base address for a CRU operation, the programmer must put the base address in
bit positions 3 through 14 of Register 12. This 12-bit value in Register 12 is called the
“CRU hardware base address.” This address is the actual one that the computer hardware
uses to address a device.

Register 12
of 1] 2| 3| 4| 5] 6] 7| 8] 9|10|11|12|13]14]15|
I

M "
* r - T r r -+ * b b T +*

| |<~-- CRU Hardware Base Address --->i |

3 3 3 " 4 3 + 3 3 + 3 M N
+ * + b * * h s T b * * * * h

+
T

+

r

When Register 12 holds a base address for CRU operations, it doesn’t matter what the
bits in positions 0, 1, and 15 are. In most cases, though, these bit positions contain zeros.

210

CRU and External Instructions

When these bit positions contain zeros, the entire 16-bit value in Register 12 is called the
“CRU software base address.” This is address is the one that the program (software) puts
in the register.

Register 12

| o] 1| 2] 3| 4] 5| 6] 7| 8] 9|r0]11|12|13]14|15]
| o] o} o|<-~~ cru Hardware Base Address -:->i oi
Kmmmmmmne CRUYSo;tw;reYBase ;dd;es; :-~:~-:—>T

Notice that the CRU hardware base address is simply shifted one bit position to the left
in Register 12. Shifting a number to the left is the same as multiplying the number times
2. This means that the CRU software base address is two times the CRU hardware base
address.

CRU Software Base Address = 2 X CRU Hardware Base Address

Or, to say the same thing another way, the CRU hardware base address is one- half the
CRU software base address.

CRU Hardware Base Address = 1/2 CRU Software Base Address

Register 12 actually contains two base addresses at the same time, but there is a fixed
relationship between the two of them.

All CRU instructions require that a base address be established in Register 12. The Load
Immediate (LI) instruction can be used to establish the base address.

For example, to establish a hardware base address of hexadecimal 40 in Register 12, you
could use the following instruction.

LI R12,>80
Or, if you don’t want to go through the mental gymnastics of multiplying the CRU
hardware base address times two, you can let the assembler calculate the CRU software
base address for you. You can write the instruction this way.

LI R12,>40%2

Most TI assemblers (the line-by-line assembler with the Mini Memory Module is one
exception) calculate the expression >40*2 as hexadecimal 40 times 2, or hexadecimal
80.

211

Chapter 17

When a single-bit CRU instruction is performed, the address of the selected device is
the sum of a base address in Register 12 and the displacement which appears in the
operand field of the instruction. The sum is a bit address; it’s the address of a single bit
of data.

The displacement operand of a single-bit CRU instruction is a number that is added to
the CRU hardware base address or to say it another way: The displacement of a CRU
single-bit instruction is added to the CRU hardware base address in register 12.

For example, suppose Register 12 contains hexadecimal 2A6. The software base address
is hex 2A6, and the hardware base address is hex 153. A single- bit CRU instruction with
an operand of 2 addresses bit address hex 155.

With that background, let's see how the three single-bit CRU instructions work.

17.2.1 The Set Bit to One Instruction (SBO)

The Set Bit to One instruction (SBO) sends a one bit to an output device. The instruction
requires one operand that is a displacement added to the CRU hardware base address
in Register 12. The sum is the address that selects a specific device. The displacement
must be a number from —128 through +127.

For example, consider the following program segment.

LI R12,>200

SBO 12

The LI instruction establishes a CRU software base address of hexadecimal 200 in
Register 12. Consequently, the CRU hardware base address is hexadecimal 100. When
the SBO instruction is performed, a one bit is sent to the device whose bit address is
hexadecimal 10C which is the hardware base address plus the displacement, decimal
12.

17.2.2 The Set Bit to Zero Instruction (SBZ)

The Set Bit to Zero instruction (SBZ) sends a zero bit to an output device. The instruction
requires one operand which is a displacement added to the CRU hardware base address

212

CRU and External Instructions

in Register 12. The sum is the address which selects a specific device. The displacement
must be a number from —128 through +127.

For example, consider the following program segment.

LI R12,>1E3*2

SBZ -9

The LI instruction establishes a CRU hardware base address of hexadecimal 1E3 in
Register 12. When the SBZ instruction is performed, a single zero bit is sent to the device
with bit address hexadecimal 1DA. The bit address is the sum of the hardware base
address, hex 1E3, plus the displacement, decimal —9.

17.2.3 The Test Bit Instruction (TB)

The Test Bit Instruction (TB) is the only single-bit instruction that performs an input
operation. It reads one bit of data from an input device and places the state of that bit
into the Equal status bit. The instruction requires one operand which is a displacement
added to the CRU hardware base address in Register 12. The sum is the address which
selects a specific device. The displacement must be a number from —128 through +127.

For example, consider the following program segment.

LI R12,>39C*2

L]
.

B 23

The LI instruction establishes a CRU hardware base address of hexadecimal 39C in
Register 12. When the TB instruction is performed, a single bit is read in from the device
with bit address hexadecimal 3B3 (the sum of the hardware base address, 39C, plus the
displacement, decimal 23).

The device might be a switch where a one bit means the switch is on and a zero bit means
the switch is off. Following the TB instruction, the state of the switch is recorded in the
Equal status bit. You can use a conditional jump instruction to determine if the switch
is on or off. A JEQ instruction causes a jump if the switch is on, and a JNE instruction
causes a jump if the switch is off.

213

Chapter 17

In the following program segment, the JNE instruction cause a jump to the instruction
labeled OFF if the switch is off; that is, where the state of the tested bit is zero.

T8 23
JNE OFF

17.3 The CRU Muiti-Bit Instructiohs (LDCR and STCR)

There are two CRU instructions that transfer more than one bit of data. The LDCR (Load
Communication Register) instruction sends a number of bits out serially on the CRUOUT
line to output devices with consecutive addresses. The STCR (Store Communication
Register) instruction reads in a number of bits serially on the CRUIN line from input
devices with consecutive addresses.

Each of the multi-bit CRU instructions requires two operands. The first operand can use
any of the five general addressing modes and is the word or byte address for the data
bits. The second operand is a count that specifies how many data bits to transfer. The
count is a number that must be in the range of 0 through 15.

A non-zero count, 1 through 15, specifies directly the number of bits transferred. A count
of 0 means that 16 bits are transferred.

Just as with the single-bit CRU instructions, when a multi-bit CRU instruction is
performed, the computer always uses a base address in Register 12. It is the programmer’s
job to make sure that the correct base address is in the register before the CRU instruction
is performed.

17.3.1 The Load Communication Register Instruction (LDCR)

The Load Communication Register instruction (LDCR) transfers a number of bits from
memory to output devices with consecutive bit addresses. The instruction requires two
operands. The first operand can use any of the five general addressing modes and is the
word or byte address of the memory location containing the bits to be transferred. The
second operand is a number in the range of 0 through 15 which specifies how many bits
to transfer. A number of 0 means that 16 bits are transferred.

If the second operand is a number from 1 through 8, the first operand is a byte address.
If the second operand is a number from 9 through 15 or is a 0, the first operand is a word
address.

214

CRU and External Instructions

The base address in Register 12 determines the address of the device to which the first
data bit is sent. Subsequent bits are sent to devices having the next consecutive sequential
addresses.

The bit sent to the first device comes from the rightmost bit in the byte or word. The second
bit sent out comes from the next bit to the left in the byte or word. Any other bits sent
out come from the next bits to the left in the byte or word; that is, bits are sent out from
the byte or word from right to left.

For example, consider the following program segment.

LI R12,>200

LDCR @PUTTY, 10

Suppose word address PUTTY contains hexadecimal 9ABC, a binary 1001 1010 1011 1100.

The first bit sent out comes from the rightmost bit in PUTTY or bit position 15. It goes
to the device whose address is hexadecimal 100. Hex 100 is the CRU hardware base
address in Register 12. The second bit sent out comes from bit position 14 in PUTTY and
goes to the device with an address of hexadecimal 101. The third bit sent out comes from
bit position 13 in PUTTY and goes to the device with an address of hexadecimal 102.
Ten bits are transferred. The last bit sent out comes from bit position 6 in PUTTY and
goes to the device with address hexadecimal 109.

N > 10th bit to >109

R > 3rd bit to >102
O et > 2nd bit to >101
$mmm—— > 1st bit to >100

o] |8 [13)ei5]
fomd = [A==t = [A=ttt

ity 1] .. | 1) .. | 2] 0] 0]

g == ==t .= A=ttt

215

Chapter 17
17.3.2 The Store Communication Register Instruction (STCR)

The Store Communication Register instruction (STCR) transfers a number of bits into
memory from output devices with consecutive bit addresses. The instruction requires two
operands. The first operand can use any of the five general addressing modes and is the
word or byte address of the memory location that receives the transferred bits. The second
operand is a number in the range of 0 through 15 that specifies the number of bits to send.
A number of 0 means that 16 bits are transferred. -

If the second operand is a number from 1 through 8, the first operand is a byte address.
If the second operand is a number from 9 through 15 or is a 0, the first operand is a word
address.

The base address in Register 12 determines the address of the device from which the
first data bit is transferred. Subsequent bits are transferred from devices having the next
consecutive sequential addresses.

The bit transferred from the first device goes into the rightmost bit in the byte or word.
The second bit goes to the next bit to the left in the byte or word. Any other bits transferred
in go to the next bits to the left; that is, bits transferred in fill the byte or word from right
to left. Any unfilled bit positions in the byte or word are forced to zero.

For example, consider the following program segment.

LI R12,>38D*2

STCR R9,5

Suppose Register 9 contains hexadecimal F72D (a binary 1111 0111 0010 1101) before the
STCR instruction is performed.

The STCR instruction transfers five bits into Register 9. A count of 5 establishes the first
operand as a byte address. Since register direct addressing is used for the byte operation,
the left byte of Register 9 receives the five data bits. The first bit transferred goes to bit
position 7 in Register 9; the second bit goes to bit position 6; the third bit goes to bit position
5 and the fifth, and last bit, transferred in goes to bit position 3 in Register 9. Since bit
positions 0 through 2 in the left byte are unfilled, these bit positions are forced to zero.
The right byte of the register is unaffected.

The first bit transferred is determined by the base address in Register 12. Since Register
12 contains a hardware base address of hexadecimal 38D, the first bit comes from the

216

CRU and External Instructions

device with an address of hex 38D. The second bit comes from the device with an address
of hex 38E, and so forth. The fifth bit comes from the device with an address of hex 391.

Suppose these devices are individual switches where a one bit means a switch is on and
a zero bit means the switch is off. Further suppose that the switches at the following
addresses are on or off as indicated below.

Switch Address State
>38D On
>38E off
>38F off
>390 On
>391 On

After the STCR instruction is performed, Register 9 contains hexadecimal 192D.

+ < 5th bit from >391
4th bit from >390
frmmeemmemm———— < 3rd bit from >38F
dmmmmmem———— < 2nd bit from >38E
O atatalat < 1st bit from >38D

9|10|11|1z|13|14|15|

+
A

¥ * +

| of 1] 2] 3] 4
R9 |o|o|o|

b

< Zeros> ¢~=~~ Unaffected ~~~~>

17.4 The External Instructions (IDLE, RSET, LREX, CKON, CKOF)

There are five instructions in the TI Home Computer's instruction set classified as
external instructions. These instructions are reserved for very special functions within
the computer and, generally, should not be used in your programs.

Each of these instructions causes the central processor to generate specific signals that

can trigger functions defined by other electronic components in the computer. The
inappropriate use of these instructions can cause unpredictable resuits. None of these

five instructions require an operand.

17.4.1 The Idle Instruction (IDLE)

The Idle instruction (IDLE) places the central processor in the idle state. When an IDLE
instruction is performed, the computer stops performing any other instructions and simply

217

Chapter 17
performs the IDLE instruction over and over again. The computer remains in the idle

state until an interrupt signal occurs from some device.

17.4.2 The Reset Instruction (RSET)

The Reset instruction (RSET) puts zeros into the interrupt mask which is the rightmost
four bits in the Status Register. This is a way of preventing all but the most important
interrupt signals from causing an interrupt.

17.4.3 The Other External Instructions (LREX, CKON, and CKOF)

The other External instructions (LREX, CKON, and CKOF) do not directly affect the
operation of the central processor.

Program Example

In the last chapter, the example program accepted an alphabetic key pressed on the
keyboard and translated and sounded the Morse code for that that character. This
program simulates a telegraph key. Whenever you press the <function> key, a sound
is made. When you release the key, the sound stops. The program uses one of the CRU
instructions to determine when a specific key is pressed and when it’s released.

Look at the listing for the program.

99/4 RSSEMBLER

VERSION 1,2 PAGE 0201
o001 IDT *SOUND’ MAKE A SOUND BY PRESSING A KEY
0202 *

0003 * EXTERNAL REFERENCES

0004 REF SOUND REFERENCE SOUND PORT

o00S "

00es * EQUATED VRLUES

o007 2020 DEBNCE EQU) 2000 DELAY TIME TO WAIT ON BOUNCING KEY

2208 @087 FUNCTN ECU 7 DISPLACEMENT FOR FUNCTION KEY

229 *

ngO 022 B2E. LWPI WS INITIALIZE WORKSPACE POINTER
000z 0028’

®011 0V4 BLCC CLR R12 POINT TO KEYBDARD

B012 OOPE 1F@7 CHEKEY TB FUNCTN TEST KEY

2013 082S 13FE JEQ $-2 WAIT UNTIL IT'S DOWN

P014 OIOA B20A LI RI19.,)9100 TURN ON
0oOC 9100

@015 @@PE DSOA MOVB R1@, 8S0UND TONE
0010 2200

2016 2012 0202 LI R2.DEBNCE INIT R2 TO DEBOUNCE DELAY COUNT
@014 2020

@017 2016 BED2 DEC R2 WAIT FOR KEY

©018 0018 1EFE INE $-2 TO STOP BOUNCING

o219 PR1A 1FO7 TB FUNCTN TEST KEY

@220 @21C 1EFE INE $-2 WAIT UNTIL IT'S UP

218

CRU and External Instructions

2021 021E B28R LI R1©.)9FB2 TURN OFF
0020 SFBO
0@22 0022 DEBA MOVB R10, 8SOUND TONE
2024 @010
2023 O026 10EF JMP CHEKEY GD WAIT FOR KEY TD BE PRESSED RGAIN
2024 "
0025 o028 WS BSS 32 WORKSPACE
0026 END
99/4 ASSEMBLER
VERSION 1.2 PRGE 8202
* CHEKEY @02E DEBNCE 20200 FUNCTN 2007 RO ozee
R1 2e01 R10 o00A R11 200B R12 ezac
R13 200D R14 QORE R1S 200F R2 222
R3 2003 RG 2004 RS 2205 RE 2826
R7 2007 RE 2ooe R9 203 E SOUND @024
' WS 0p28

@232 ERRORS

The REF directive (statement 4) references the symbol SOUND, a byte address that is
used to give commands to the sound processor.

There are two EQUated values. DEBNCE is equated to hexadecimal 2000 in statement
7. DEBNCE is a loop counter used to create a program controlled timing loop to wait for
the key to stop bouncing (making intermittent contact) when the operator presses it. The
second EQUated value is FUNCTN. FUNCTN is equated to the value 7 in statement
8. This value is the CRU I/0 address of the <function> key on the keyboard. This is
the key the operator presses to make a sound.

The entry point of the program is the LWPI instruction at statement 10. Statement 11
establishes a base address of zero in Register 12 for CRU addressing.

The TB instruction labeled CHEKEY tests the state of the <function> key. The state
of the key is a logic one if it is not pressed and a logic zero if it is pressed. If the key is
not pressed, the JEQ instruction at statement 13 jumps back to the TB instruction to test
the key again. The program remains in this two-instruction loop, repeatedly testing the
key until the key is pressed.

When the key is pressed, the program falls out of the loop and the two instructions at
statements 14 and 15 command the sound processor to make a sound. The program then
initializes the contents of Register 2 to DEBNCE (statement 16) and performs a two-
instruction programmed control timing loop (statements 17 and 18). The purpose of this
loop is to wait for the key to stop bouncing before checking for the release of the key.

In statement 19, the program uses another TB instruction to determine when the key is
released. The two-instruction loop composed of statements 19 and 20 is performed
repeatedly until the key is released. At that time, the program falls out of the loop and
the two instructions at statements 21 and 22 command the sound processor to be silent.

219

Chapter 17

Then the JMP instruction at statement 23 jumps back to the CHEKEY instruction to wait
for the key to be pressed again. The program is composed as an infinite loop. It has no
exit point.

Edit, assemble, load, and run the program.

This chapter describes the CRU and External instructions. Now all of the instructions

in the instruction set have been described. The remaining chapters discuss other assembly
language concepts and describe the structure of the TI Home Computer’s machine code.

220

Chapter 18
OTHER ASSEMBLER LANGUAGE CONCEPTS

This chapter discusses a variety of topics relevant to assembly language programming:
e operand expressions
e program relocation
e assembler directives
e assembler errors
e a comparison of some of the different utility packages for running and developing
assembly language programs
18.1 Operand Expressions

Expressions are used in the operand field of a statement. An expression can include one
or more constants or symbols and arithmetic operators. The most common arithmetic
operators are these.

Arithmetic
Meaning
Operator
+ positive or addition.
- ' minus or substraction.
* multiplication.
/ division.
As an example, in the statement

221

Chapter 18
ORANGE MOV @PEEL+2,R6

PEEL + 2 is an expression. The instruction moves the contents of the location with the
address PEEL + 2 to register 6. If PEEL has an address value of hexadecimal B4A2, then
the address value of PEEL + 2 is hexadecimal B4A4.

Expressions can be simple or they can be complex. An expression can consist of simply
a constant. The following statements are examples of this.
SBO 9

8 -3

Expressions may include several constants and symbols with more than one arithmetic
operator. For example, the statement

CLR @QUARK+14/6*2

clears the contents of the word with the address that is determined by the expression
QUARK+14/6*2. When evaluating an expression, most assemblers perform the
arithmetic operations from left to right. In this example, suppose the address value of
QUARK is hexadecimal A6B4 (decimal 42676). The assembler evaluates the expression
left to right like this.

QUARK = 42676

QUARK+14 = 42690

QUARK+14/6= 7115

QUARK+14/6%2 14230 (hexadecimal 3796)

The instruction clears the contents of location hexadecimal 3796. This example is extreme.
Most likely, you won't encounter expressions that complex.

18.2 Relocation

The Assembler included with the Editor/Assembler package is a relocatable assembler.
This means that it can assemble a source program and construct an object program so
the object code can be loaded at different locations in memory. The object program
requires a relocating loader to be able to load the object code into different locations.

There may be some statements, though, that you don’t want to be relocatable. For
example, you might want the constant ten in a specific, physical memory location with
an address that remains the same. Sections of a program may be relocatable and other
sections non-relocatable (absolute). ‘

222

Other Assembly Language Concepts
During assembly, the Assembler uses a location counter to assign location values to
program statements. As each statement is assembled, the location counter is incremented
by the length of the assembled item.
The $ symbol is used to represent the current value of the location counter. When the

$ symbol is used in an expression in the operand field of a statement, you can read the
symbol as “this location.” For example, the statement

JMP $+8

can be read as jump to “this location” plus 8.

18.3 Assembler Directives

An assembler directive gives directions to the assembler during the assembly process.
The previous chapters have introduced a few assembler directives such as BSS, DATA,
and END. This section describes several of the more commonly used directives.
18.3.1 Directives that Define the Contents of Memory

Some directives define the contents of memory. These directives include DATA, BYTE,
and TEXT.

18.3.1.1 The DATA Directive

The DATA directive defines a word of memory with a specific value in it. For example,
the statement

DATA 10

defines a word of memory that contains ten.

You can assign a name to the value with the DATA directive. For example, the statement

DECA DATA 10

assigns the name DECA to the constant 10.

223

Chapter 18

You can use symbols in expressions in the operand field of a DATA directive. For
example, the statement

DONUT DATA HOOPLA-6

assigns the name DONUT to a memory word containing the value of HOOPLA minus
6.

You can use more than one operand in the operand field of a DATA directive. For
example, the statement

CTABLE DATA 5,4,3,2,1,0,~1,~2,-3,~4,~5
defines a table of eleven consecutive words. The first word, containing a constant of 5,

is named CTABLE. The second word, containing a constant of 4, could be addressed with
the expression CTABLE 2.

18.3.1.2 The BYTE Directive

The BYTE directive is similar to the DATA directive except it defines a byte of memory
with a specific value it, rather than a word.

For example, the statement

CRUZO BYTE 8,-128,>40,0

defines the content of four consecutive bytes in memory. The first byte contains the value
8; the second byte contains the value minus 128; the third byte contains the value
hexadecimal 40; and the fourth byte contains the value 0. The name of the first byte is
CRUZO.

If Register 9 contains the value 2 and Register 4 contains hexadecimal 0A7C, then the
statement

AB B@CRUZO(R9),R4

adds the two byte values hexadecimal 40 and 0A.

224

Other Assembly Language Concepts
18.3.1.3 The TEXT Directive
The TEXT directive causes the assembler to put the ASCII character codes for specific
characters into consecutive bytes of memory. The characters whose character codes are
assembled are in the operand field surrounded by single quote marks (apostrophes).
For example, the statement

MESG TEXT ‘'GERONIMO!'

places the ASCII character codes for the characters G, E, R,0, N, I, M, O, and ! in
consecutive bytes of memory.

The name MESG is assigned to the address of the first character.

Suppose the assembler’s location counter contains hexadecimal 1C6 when this TEXT
directive is encountered.

The Assembler places the following hexadecimal values into the following words of
memory.

Word Address Contents
>01C6 >4745
>01C8 >524F
>01CA >4E49
>01CC >4D4F
>01CE >217?

Immediately after assembling the TEXT directive, the location counter contains
hexadecimal 01CF and the contents of byte address hexadecimal 01CF is not yet defined.

The TEXT directive is often used to compose a message that can be displayed on a screen
or printed. Sometimes a message may have several lines of text. To end a line of text
and begin another, you can embed the ASCII character codes for a carriage return and
line feed within the text string.

For example, the statements

PROMPT TEXT 'WHEN READY'
BYTE >00,>0A
TEXT *PRESS ANY KEY'

225

Chapter 18

causes the characters WHEN READY to appear on one line and the characters PRESS
ANY KEY to appear on another line. Hexadecimal 0D is the ASCII character code for
a carriage return and hexadecimal 0A is the ASCII character code for a line feed. There
are some video displays, printers, and other similar devices which may not require the
line feed character in order to put characters on another line.

18.3.2 The EVEN Directive

Sometimes, especially following a BYTE or TEXT directive, the location counter value
isan odd number. The EVEN directive forces the location counter value to the next larger
even number so that the object code assembled after the EVEN directive will begin on
a word boundary.

For example, suppose the statement
BYTE -88,12,-1

left the location counter with a value of hexadecimal 13D (an odd number). An EVEN
directive following the BYTE directive

BYTE -88,12,-1
EVEN

forces the location counter value to hexadecimal 13E, the next larger even value. If the
location counter value is already an even number, the EVEN directive doesn’t change
it.

18.3.3 Directives that Reserve But Do Not Define the Contents of Memory

Two directives that reserve memory space for use in a program but don't define the
contents of those memory locations are BSS and BES.

18.3.3.1 The Block Starting with Symbol Directive (BSS)

The Block Starting with Symbol Directive (BSS) reserves one or more bytes of memory
but doesn’t define the values those bytes contain. The operand of the BSS directive
specifies how many bytes to reserve. For example, the statement

BSS 20

226

Other Assembly Language Concepls
reserves 20 bytes (10 words) of memory.

You can use a label with the BSS directive. A label is the name given to the first location
of the area of memory.

For example, the statement

BUFFER BSS 80

reserves 80 bytes (40 words) of memory and BUFFER is the name assigned to the first
location.

The BSS directive is often used to reserve an area of memory for a program’s workspace.
For example, the statement

Wsp BSS 32

reserves a 32-byte (16-word) area of memory and assigns the name WSP to the first
location. The statement

LWPI WSP

can be used to load the Workspace Pointer with the address value of WSP.

18.3.3.2 The Block Ending with Symbol Directive (BES)

The Block Ending with Symbol directive (BES), like the BSS directive, also reserves a
block of memory. The BES directive, though, assigns to the label the value of the address
immediately following the block of memory.

For example, the statement

STACK BES >100

reserves a 256-byte (hexadecimal 100) area of memory. If the value of the location counter
is hexadecimal 10E when the BES directive is encountered, the location counter value
is advanced to hexadecimal 20E and the label STACK is assigned the address value
hexadecimal 20E.

227

Chapter 18
18.3.4 Directives that Initialize the Location Counter

Two directives that initialize the assembler’s location counter are RORG and AORG.

18.3.4.1 The Relocatable Origin Directive (RORG)

The Relocatable Origin Directive (RORG) causes the section of the program that follows
to be relocatable. It permits the object code for that section of the program to be loaded
into different physical memory locations. With the Editor/ Assembler package’s
assembler, the object code is relocatable by default and an RORG directive isn't needed
unless you want it

If an operand is used with the RORG directive, the location counter is set to that value.
If no operand is used, the location counter is set to zero or to the last value it had when
assembling the last relocatable section of the program.

For example, the statement

RORG

specifies that the following section of the program is relocatable and, if this is the first
relocatable section of the program, the location counter is set to zero.

The statement

RORG $+16

advances the location counter by 16 from its current value.

18.3.4.2 The Absolute Origin Directive (AORG)

The Absolute Origin directive (AORG) causes the section of the program following it to
be non-relocatable. It causes the object code for that section of the program to be loaded
into specific and fixed (absolute) memory locations.

If an operand is used with the AORG directive, the location counter is set to that value.
For example, the statements

AORG >FFFC
DATA LOADWP
DATA LOADPC

228

Other Assembly Language Concepts

cause the two word values LOADWP and LOADPC to occupy the fixed locations
hexadecimal FFFC and FFFE.

18.3.5 The Equate Directive (EQU)

The Equate directive (EQU) assigns (or equates) a name to a value without reserving a
word in the program’s memory space. For example, the statement

TWELVE EQU 12

assigns the name TWELVE to the constant 12. TWELVE can then be used anywhere in
a statement where the constant 12 can be used. For example, the statement

LI R7,TWELVE

is the equivalent to the statement
LI R7,12

As another example, the statement

NEG @BLADE (TWELVE)

is equivalent to the statement
NEG @BLADE(12)

which is equivalent to the statement
NEG @BLADE (R12)

You can even use the equated name with an assembler directive. For example, the
statement

DATA TWELVE

reserves a word of memory with a content of 12.

18.3.6 The Book End Directives (IDT and END)

There are two directives that you can think of as bookends for a program. These directives
are the IDT and END directives.

229

Chapter 18
18.3.6.1 The End Directive (END)

The End directive (END) should be in the last statement of a program. It tells the
Assembler to stop assembling. You can use a label with the END directive. A label is
simply assigned the value of the location counter when the directive is encountered. You
can also use an operand with the END directive. The operand lets you define the entry
point of the program. That is, it specifies the instruction to be performed first when the
program runs.

For example, the statement

END OPEN

identifies OPEN as the name of the instruction to be performed first when the program
runs. OPEN should be a label attached to that instruction.

Note

With the Editor/Assembler package’s Loader, using an operand with an

END directive causes the program to start running as soon as it's loaded.
18.3.6.2 The Identification Directive (IDT)
The Identification directive (IDT) is optional. However, if it's used, it should be the first
statement in a program. It assigns a name to the program. The name of the program is
specified in the operand field. The name can have up to eight characters and the
characters are surrounded by single quote marks (apostrophes). For example, the
statement

IDT °'MODULE X'

assigns the name MODULE X to a program.

18.3.7 The External Linkage Directives (DEF and REF)

When creating lengthy programs, it is often convenient to divide the program into
separately assembled modules and have a linking loader load the object programs into
memory together. The DEF and REF directives help link together separately assembled
programs.

230

Other Assembly Language Concepts
18.3.7.1 The External Definition Directive (DEF)

The External Definition directive (DEF) identifies those symbols that are defined in a
program and that can be referenced by other programs. To be used by other programs,
a symbol must appear in the label field of a statement in the program and also be included
in the operand of the DEF statement

For example, the statement

DEF OPEN,TWELVE

identifies the symbols OPEN and TWELVE as symbols that can be referenced by other
programs. These symbols must be defined by the program that includes the DEF directive.
To be defined, a symbol must appear in the label field of a statement.

18.3.7.2 The External Reference Directive (REF)

The External Reference directive (REF) identifies those symbols which are used in a
program and defined in another program. These symbols are included in the operand
field of the REF statement. For example, the statement

REF PIGARN,CRAZY8,CUPID

identifies the symbols PIGARN, CRAZY8, and CUPID as symbols used in the program
and defined in another program.

As an example, the statement

MOV *R6+,BPIGARN

moves a word to memory location PIGARN that is defined in a different program from
this one.

When programs are assembled separately and reference symbols between them, the
object programs must be loaded and linked together by a linking loader. Before you run
a program that references a symbol in another program, the program that defines the
symbol must be loaded. The loader included with the Editor/Assembler package is
capable of loading and linking programs together.

231

Chapter 18

18.4 Assembler Errors

Some things can go wrong when you assemble a program. Whenever the assembler finds
a statement that it can’t assemble or encounters a situation that it can’t handle, it gives
you an error message. These error conditions are classified as fatal or nonfatal.

Fatal errors are grim. The assembler just can’t go on. Fortunately, fatal errors don’t
happen often. Fatal errors occur when the assembler can’t read or write to a disk for some
reason, or the assembler runs out of memory. If the assembler encounters a fatal
condition, it displays an error message on the screen and stops the assembly process.

Nonfatal error conditions don't stop the assembly process. They nearly always result from
writing a statement incorrectly. These are the error conditions that you'll encounter most
oftén. Write enough programs and you'll get quite a collection of them. When the
assembler encounters a nonfatal error, it displays the statement in error and an
appropriate admonishment on the screen. And to further add to your embarassement,
it also prints the error message right on the listing.

Even a program that’s not up to the assembler’s standards has some value. It can serve
as a bad example. Here's the listing of a program which has, perhaps, a high enough
percentage of errors to qualify for a world record.

99/4 ASSEMELER
VERSION 1,2 PAGE 00201
2201 IDT °'NAME TOO LONG' SHOULD BE € DR LESS CHARACTERS

ok OUT OF RANGE — 8001

0002 022D 100@ A COMMENT LINE SHOULD BEGIN WITH AN ASTERICK ().
w4tk SYMBOL TRUNCATION - @002
wompobd: INVALID MNEMONIC - 2002

020> CeB2 B2E0 LWPI WS OPERANDS MUST MATCH DEFINED SYMBOLS
Q004 2200
#oroktox - UNDEFINED SYMBOL - @00%
2004 G2QE CO4@ STARTUP MDV RO.R1 LABELS MUST BE & CHARS DR LESS
wordok SYMBOL. TRUNCATION ~ 0B04
0005 200t 1000 MOVE R1,R2 OPCODES MUST BE SPELLED RIGHT
waorkok INVALID MNEMONIC - 00@S
Z00c Q0BA 1000 LABEL MOV R2,R3 LABELS MUST BEGIN IN FIRST COLUMN
wobk INVALID MNEMONIC - @B0E
2007 @B@C 18600 MOV R4, RS DPCODES CAN'T BEGIN IN FIRST COLUMN
soory INVALID MNEMONIC - @207
2022 OBBE 1085 JMP $+300 JUMP TRRGETS MUST BE IN RANGE
sk QUT OF RANGE - @208
0009 6010 B206 L1 RE, aBUFF DON’T USE @ WITH IMMEDIATE OPERANDS
0012 2200
wotot SYNTAX ERROR -~ 0209
0010 @014 2820 XOR 8MASK, *R7 XOR 2ND OPERAND MUST BE REG DIRECT
0016 0018’
#okkk SYNTARX ERROR ~ 2010
0011 0918 BUFF BSS FORTY OPERAND SYMBOLS MUST BE DEFINED
ok UNDEFINED SYMBOL -~ @013
2012 2018 1803 MASK DATA) SCEF SPRCES MUST BE BETWEEN OPERANDS
#ootolok - SYNTAX ERROR - 2012
2213 001A WspP BSS BSS DIRECTIVE RERUIRES AN OPERAND

sowkk UNDEFINED SYMBOL - 8813 .
0014 QB1R 18D@ THE LAST STATEMENT SHOULD CONTAIN AN END DIRECTIVE

232

Other Assembly Language Concepls

sololobw INVALID MNEMONIC - 8014
8015 END
THE FOLLOWING SYMBOLS ARE UNDEFINED:

COMMEN

WS

MOVE

LABEL

FORTY

BSS

LAST '

sousokok END ASSUMED - 0015

99/4 ASSEMBLER

VERSION 1.2 PRAGE @202
'R 2000 U BSS aceo ' BUFF 2018 U COMMEN @200

U FORTY @022 U LABEL 2022 U LAST (1] ' MASK 2018

' MOV 220ec U MOVE 202 RO 2020 R1 2201
R1O 220A R11 20eB R12 epec R13 220D

R14 @8RE R13 QRoF R2 2802 R3 2203

R4 2204 RS 22085 RE 2225 R7 2027

R8 eoes8 R9 22es ' STARTU @226 ' THE 801A
U Ws 2222 ' WSP 201R
9016 ERRORS

At the bottom of the listing, notice the message ***** END ASSUMED - 0015. It means
the source program does not contain an END directive. Statement number 15 was added
by the assembler when it encountered the end of the source program disk file.

18.5 Comparison of Utility Packages

A variety of assemblers and associated utility programs available from Texas Instruments
and, perhaps, from other sources that you might use to assemble a program. The specific
assembler you choose depends upon what kind of equipment you have and how much
money you want to spend.

This book illustrates the use of the assembler in the Editor/Assembler package as an
example of the features common to most assemblers. Other assemblers may have some
more features, fewer features, or different features.

Here's a brief comparison of some of the assemblers and associated utility programs that
are available. ,

18.5.1 Editor/Assembler Package

The Editor/Assembler package includes four utility programs:

e an editor for composing source programs

233

Chapter 18

e a relocatable assembler (one which can produce relocatable object code)

e a relocating linking loader (one which can load and link several individual object
programs

e an extensive debugger

The package comes with a comprehensive manual that describes the detailed architecture
of the TI Home Computer, including the programmable components that directly control
graphics, sound, and speech.

To run the Editor/Assembler package requires at least one disk drive and a Memory
Expansion unit in addition to the computer console and a display.

18.5.2 The Mini Memory Module

The Mini Memory Module is a Command Module that contains 4K bytes of battery-
backed CPU RAM and ROM-resident programs. These programs allow you to tie TI
BASIC programs and assembly language programs together. The Mini Memory Module
comes with an assembler on a cassette tape and a debugger that’s resident in the Mini
Memory Module’s ROM.

You can load the assembler from a cassette into the RAM and use it to assemble programs.
The assembler is a line-by-line assembler which means that each statement is assembled
and the resulting object code stored in memory as each statement is typed.

This is different from using the Editor/Assembler package where you use an editor to
type in all the source statements before they are assembled. With the Mini Memory
Module, there’s no editor. You simply type in the statements on the keyboard and they're
assembled as you type them. If you need to reassemble a program again, you type it all
again.

The object code created by the line-by-line assembler is stored into the CPU RAM in
the Mini Memory Module. You can’t assemble very large programs, though. The Mini
Memory Module has only 4K bytes of CPU RAM and the assembler needs about half
of that 4K for itself. (You can assemble large programs by adding a Memory Expansion
unit.)

The line-by-line assembler is a nonrelocatable assembler and accepts only a few
directives.

234

Other Assembly Language Concepts

There’s no loader. The object code is stored directly in memory as the source statements
are assembled. A debugger is included in the Mini Memory Module’s ROM and has a
minimal number of commands to help you debug a program.

The big advantage of the Mini Memory Module is that it gives you assembly language
capability without having to purchase a disk drive or a Memory Expansion unit.

18.5.3 The p-System Assembler and Linker

The UCSD p-System gives you the ability to develop and run programs written in other
high-level languages besides BASIC. In addition, an assembler is available for use with
the UCSD p-System that lets you develop assembly language programs that can be used
with these other languages.

The assembler is relocatable and includes a larger number of directives than the one
with the Editor/Assembler package. The assembler is also a macro assembler, which
means you can create your own macro statements. When the assembler encounters a
macro statement, it generates a whole series of individual source statements and
assembles the source statements as if they were included directly in the source program.

A linker is also available which can link assembly language object programs with high-
level language programs.

The UCSD p-System requires a Memory Expansion unit, a p-System peripheral, and at
least one disk drive in addition to the computer console and a display.

18.5.4 Other Assemblers

Other assemblers exists that could conceivably be used to develop assembly language
programs for the TI Home Computer. Texas Instruments provides other assemblers
intended for those individuals and organizations that develop commercial programs.
These assemblers are designed to run on minicomputers or bigger computers.

There are also assemblers that run on lower-cost equipment. As one example, Texas
Instruments manufactures a single-board microcomputer called the University Module.
Included in the ROM on the board is a line-by-line assembler similar to the line-by-line
assembler that comes with the Mini Memory Module.

These assemblers all recognize the same instruction mnemonic operation codes, expect

basically the same syntax, and accept all or many of the same assembler directives
discussed in this book.

235

Chapter 19
MACHINE CODE FORMATS

This chapter explores the structure of the TI Home Computer’s machine code. A
knowledge of machine code can give you an edge when you need to debug a program.

19.1 Relationship of Machine Code to Assembly Language

Machine language is what the computer needs in order to understand what to do.
Assembly language is a domesticated form of machine language. It gives you the
advantage of directly controlling a computer without having to deal with the ones and
zeros of machine code.

Although you normally would not choose to write programs in machine language and
you don't have to when there’s an an assembler available, it's often helpful to understand
the format of machine code. When debugging a program, for example, you might need
to change an instruction. Rather than take the time to leave the debugger, use an editor
to change the statement, re-assemble, and reload the object program, it's faster to use
the debugger to directly change the machine code. Also, sometimes, you may be using
the debugger to examine the machine code of a program and you want to know the kind
of instruction you're looking at. In these situations, a knowledge of how machine code
is structured is helpful. :

19.2 Determining the Number of Words of Machine Code

All machine language instructions of the TI Home Computer require an even number
of bytes of machine code. All instructions require either two, four, or six bytes of machine
code or one, two, or three words. You can easily determine the number of words of
machine code that an instruction requires by examining the assembly language form of
the instruction.

All instructions require at least one word of machine code. A few instructions always
require two words of machine code. Some instructions may require two, or even three,
words of machine code, depending upon the addressing modes used by the operands.

237

Chapter 19

The only instructions that always require two words of machine code are those with an
immediate operand. You can identify these instructions easily because the last letter of
the mnemonic operation code is the letter, I; for example, LI, Al OR], etc.

The instructions that have operands that can use the general addressing modes may
require two or three words of machine code. With these instructions, an additional word
of machine code is required for each operand that uses either symbolic addressing or
indexed addressing. These are the operands that require an at sign (@) with them. An
instruction that has only one operand that can use the general addressing modes may
require either one or two words of machine code. It depends upon the specific addressing
mode used by that operand. An instruction which has two operands where both of the
operands can use the general addressing modes may require one, two, or three words
of machine code.

An additional word of machine code is required for each valid at sign (@) in the
instruction. For example, the instruction

MOV *R7+,BARGIE

requires one additional word of machine code for a total of two words.

The instruction

SIC @WILMA,GARGIE
requires a total of three words of machine code (one word plus two more for the two at
signs).

With this background, let’s see how the machine code is structured.

19.3 Machine Code Fields

Just as assembly language statements contain different fields of information, machine
code also has different fields. Within each instruction’s machine code, there is a field
of bits with a unique and fixed pattern that identifies the instruction’s operation. For
example, there’s a unique pattern of bits that identifies a MOV instruction; there’s a
unique pattern that identifies a CLR instruction; and there’s a unique pattern that
identifies each of the other instructions. ‘

There are some fields within the machine code with contents that vary depending upon
the operands used with the instruction.

238

Machine Code Formats

You can determine which bits in the machine code of an instruction are fixed and which
ones are variable by examining the instruction summary for the instruction. Appendix
A contains the instruction summaries which are arranged in alphabetical order according
to the instructions’ mnemonic operation codes. For example, turn to the instruction
summary for the MOV instruction and look at the last item in the instruction summary,
titled “Machine Cede.” The line labeled “Binary” contains the state of the specific bits
in the machine code that are fixed. With the MOV instruction, the first four bits in the
first word are fixed. These four bits are a binary 1100. In machine code, a binary 1100
in the first four bits of an instruction means “MOV.”

Look at the instruction summary for the A instruction. With the A instruction, the first
four bits are also fixed. These four bits are a binary 1010. In machine code, a binary 1010
in the first four bits of an instruction means “A.”

Often, more than four bits are fixed in the machine code. After all, if only four bits were
used to determine operation codes, the computer could only have 16 instructions.

Turn to the instruction summary for the COC instruction and look at the machine code
format. The first six bits are fixed. They are a binary 001000.

Turn to the instruction summary for the SRL instruction and look at the machine code
format. The first eight bits are fixed. They are a binary 00001001.

Turn to the STWP instruction summary and look at the machine code format. The first
twelve bits are fixed. They are a binary 000000101010.

There are a few instructions in which all the machine code bits are fixed. For example,
turn to the RTWP instruction summary and look at the machine code format. All sixteen
bits in the one word of machine code are fixed. In machine code, a binary 0000 0011 1000
0000 (or hex 0380) means “RTWP.”

There are no variable bits in the machine code of the RTWP instruction because the
instruction has no operands. Variable bits appear in the machine code of those
instructions that have operands. The contents of the variable fields depend upon the
specific operands used with the instruction.

In the machine code description of an instruction summary the line titled “Hex" contains
the hexadecimal digits that correspond to the fixed bits of the machine code. Only those
hex digits are shown for which the corresponding machine code nibble is completely
defined. A hex digit is not shown for any nibble which contains bits that vary depending
upon the operands. Hex digits are shown only for the bits in the first word of machine

239

Chapter 19

code because the bits in any other word of machine code always vary depending upon
the operands.

Let’s explore these variable fields more closely.

19.4 The R Field

Turn to the instruction summary for the STWP instruction and look at the machine code
description. The first twelve bits are fixed; the last four bits are variable. The last four
bits make up an R field which is indicated by the R in that field. The STWP instruction
requires only one operand and that operand must be a register (the operand uses only
register direct addressing). The R field in the machine code holds the register number
of the operand. For example, the instruction

STWP R6

results in a binary 0110 in the R field.

The instruction
STWP R9

results in a binary 1001 in the R field. The entire word of machine code for the instruction
STWP R9

is a binary 0000 0010 1010 1001 (or hexadecimal 02A9).

An R field in a machine code word is always four bits big and holds the number of a
register.

19.5 The C Field

Turn to the instruction summary for the SRL instruction and look at the machine code
description. The first eight bits are fixed and the last eight bits are variable. The last eight
bits include a four-bit R field and a four-bit C field. The SRL instruction requires two
operands: a register number (R) and a count (C). The R field holds the register number
and the C field holds the count.

For example, the instruction

240

SRL R10,2

results in an R field of binary 1010 and a C field of binary 0010. The complete word of
machine code is a binary 00600 1001 0010 1010 or hexadecimal 092A.

The C field in a machine code word allows for four bits and holds a count in the range
of 0 through 15.

19.6 The IOP Field

Turn to the LI instruction summary in Appendix A and look at the machine code
description. The Load Immediate instruction has an immediate operand and requires two
words of machine code. The requirement for a second word of machine code is indicated
in the machine code description by a second word with a solid bottom line.

In the first word of the machine code, the first twelve bits are fixed and the last four bits
constitute an R field. The second word of machine code contains the 16-bit immediate
operand.

The LI instruction requires two operands: a register number and an immediate operand.
In the machine code, the R field holds the register number and the immediate operand
holds the immediate operand. Immediate operands are always 16 bits; there are no 8-bit
immediate operands.

As an example, the instruction
LI R10,>1234

results in an R field of binary 1010 and an immediate operand field of binary 0001 0010
0011 0100.

The first word of machine code is binary 0000 0010 0000 1010 (hexadecimal 020A); the
second word of machine code is binary 0001 0010 0011 0100 (hexadecimal 1234).

As another example, the instruction

LI R12,1234

(where 1234 is a decimal number) results in the following two words of machine code.

Binary Hexadecimal
First Word 0000 0010 0000 1100 020C
Second Word 0000 0100 1101 0010 04D2

241

Chapter 19

An immediate operand can be a negative number. For example, the instruction

LI RoO,-1

results in the following two words of machine code.

Binary Hexadec imal
First Word 0000 0010 0000 0000 0200
Second Word 1111 1111 1111 1111 FFFF

The immediate operand field is always is 16 bits, is always the second word of the machine
code, and contains the immediate operand.

19.7 General Addresssing Mode Fields

Those instructions that allow an operand to use the five general addressing modes result
in a more complex machine code structure.

Turn to the instruction summary for the MOV instruction and look at the machine code
description. The first four bits are fixed, a binary 1100, and the next twelve bits vary
according to the operands used with the instruction. These twelve bits include four fields:
a two-bit Td field, a four-bit Rd field, a two-bit Ts field, and a four-bit Rs field.

19.7.1 The Ts and Td Fields

The two-bit Ts and Td fields specify the specific addressing modes that the operands use.
The two-bit codes for the Ts and Td fields are as follows.

Ts and Td Code Addressing Mode
00 Register Direct
01 Register Indirect
11 Register Indirect Autoincrement
10 Either Symbolic (Direct Memory) or

Indexed, depending upon the accom-
panying Rd or Rs field

242

Machine Code Formats

19.7.2 The Rs and Rd Fields

The Rs and Rd fields hold the register number specified by the source operand (Rs) and
the register number specified by the destination operand (Rd), if a register is specified.

For example, in the instruction
MOV R9,R14

both operands are using register direct addressing. Register 9 is the source operand;
Register 14 is the destination operand.

The Td field specifies the type of addressing mode for the destination operand. In this
example, the destination operand is using register direct addressing and the Td field is
a binary 00.

The Rd field specifies the register number used in the destination operand if a register
number is used. In this example, the destination operand uses Register 14 and the Rd
field is a binary 1110.

The Ts field specifies the type of addressing made for the source operand. In this example,
the source operand uses register direct addressing and the Ts field is a binary 00.

The Rs field specifies the register number used in the source operand if a register number
is used. In this example, the source operand uses Register 9 and the Ts field is a binary
1001.

The complete word of machine code is structured as follows.

Fixed Bits Td Rd Ts Rs
1100 00 1110 00 1001

The 16-bit machine code word is a binary 1100 0011 1000 1001, or hexadecimal C389.

Notice this. In the machine code, the codes for the destination operand appear to the left
of the codes for the source operand. This format is just opposite of the order of the
operands in the assembly language statement in which the source operand appears to
the left of the destination operand.

Consider a second example. The instruction

MOV *R8,RS
uses register indirect addressing for the source operand and register direct addressing
for the destination operand.

243

Chapter 19

In the machine code, the Ts field is a binary 01 and the Rs field is a binary 1000. The
Td field code is binary 00 and the Rd field is a binary 0101.

The complete word of machine is structured as follows.

Fixed Bits Td Rd Ts Rs
1100 00 0101 01 1000

The 16-bit machine code word is a binary 1100 0001 0101 1000, or hexadecimal C158.
Look at a third example. The instruction
MOV *R2+,*R15

uses register indirect autoincrement addressing for the source operand and register
indirect addressing for the destination operand.

In the machine code, the Ts field is a binary 11 and the Rs field is a binary 0010. The
Td field is binary 01 and the Rd field is a binary 1111.

The complete word of machine is structured as follows.

Fixed Bits Td Rd Ts Rs
1100 01 1111 11 0010

The 16-bit machine code word is a binary 1100 0111 1111 0010, or hexadecimal C7F2.
Take another example. The instruction

MOV @A062(R10),R7

uses indexed addressing for the source operand and register direct addressing for the
destination operand.

In the machine code, the Ts field is a binary 10 and the Rs field is a binary 1010. The
Td field is a binary 00 and the Rd field is a binary 0111.

The complete word of machine is structured as follows.

Fixed Bits Td Rd Ts Rs
1100 00 0111 10 1010

The 16-bit machine code word is a binary 1100 0001 1110 1010, or hexadecimal C1EA.

A Ts or Td field code of binary 10 is used to specify both indexed and symbolic (direct

244

Machine Code Formats

memory) addressing. In the case of symbolic addressing, though, no register number is
used and the accompanying Rs or Rd field is set to a binary 0000. ’

As an example, the instruction

MOV @>B83E,@>A062(R5)

uses symbolic addressing for the source operand and indexed addressing for the
destination operand.

In the machine code, the Ts fieI;i is a binary 10 and the Rs field is a binary 0000. The
Td field is also a binary 10 and the Rd field is a binary 0101.

The complete word of machine is structured as follows.

Fixed Bits Td Rd Ts Rs
1100 10 0101 10 0000

The 16-bit machine code word is a binary 1100 1001 0110 0000, or hexadecimal C960.

A Ts or Td field code of binary 10 is used to indicate both symbolic and indexed
addressing. When the computer interprets the machine code and sees a Ts or Td field
with a binary 10, the computer doesn’t know whether the operand is using symbolic
addressing or indexed addressing until it looks at the accompanying Rs or Rd field. If
the accompanying Rs or Rd field contains a non-zero value, the operand is using indexed
addressing and the number in the Rs or Rd field is the number of the index register. If
the accompanying Rs or Rd field contains zero, the operand is using symbolic addressing.

Notice that an Rs or Rd field of zero when used with a Ts or Td field of binary 10 means
Symbolic addressing. Therefore, Register 0 can't be used as an index register. If you
specify Register 0 as an index register in an assembly language instruction, the assembler
places the four-bit binary number of the index register (0000) in the Rs or Rd field and
sets the accompanying Ts or Td field to a binary 10. When the computer performs the
machine code, it responds as if the operand is using symbolic addressing.

Whenever the machine code contains a Ts or Td field code of binary 10, an additional
word of machine code is required. The additional word holds the 16-bit memory address
specified in the operand.

An additional word of machine code is required for each Ts or Td field code of binary
10. If both the Ts and Td field are a binary 10, two additional words are required, and
the address value of the memory location specified in the source operand precedes the
address value of the memory location specified in the destination operand.

245

Chapter 19

Notice in the machine code description of the MOV instruction that the machine code
may require more than one word. The possibility of more than one word is indicated by
the dashed lines at the bottom of the second and third lines.

For example, the instruction
MOV @>B83E,8>A062(RS5)
requires two additional words of machine code, one for the source operand memory

address and one for the destination operand memory address. The three words of
machine code are as follows.

First Word >C960
Second Word >B83E
Third Word >A062

As a second example, the instruction
MOV R4,@WINKLE

requires one additional word of machine code or a total of two words.

The first word of machine code is hexadecimal C804; the second word of machine code
contains the address value of WINKLE.

There are some instructions that have only one operand that can use the general
addressing modes.

Turn to the instruction summary for the SWPB instruction and look at the machine code
description. The first ten bits are fixed and the next six bits consist of a two-bit Ts field
and a four-bit Rs field. The SWPB instruction has one operand, called a source operand,
that can use the general addressing modes.
For example, the instruction

SWPB R11
uses register direct addressing for the source operand.

In the machine code, the Ts field code is a binary 00 and the Rs field is a binary 1011.

The complete word of machine code is structured as follows.

Fixed Bits Ts Rs
0000011011 00 1011

246

Machine Code Formats
The 16-bit machine code word is a binary 0000 0110 1100 1011, or hexadecimal 06CB.

As another example, the instruction

SWPB @SABRE

uses symbolic addressing for the source operand.

The instruction requires two words of machine code. In the first word, the Ts field code
is a binary 10 and the Rs field is a binary 0000.

The first word of machine is structured as follows.

Fixed Bits Ts Rs
0000011011 10 0000

The first word machine code word is a binary 0000 0110 1110 0000, or hexadecimal 06E0.
The second word contains the address value of SABRE.

Each valid @ sign in an instruction results in a Ts or Td field of binary 10 and requires
an additional word of machine code.

19.8 The Displacement Field

A Displacement field appears only in the machine code format of the single-bit CRU
instructions (SBO, SBZ, and TB). The Displacement field holds an eight-bit value which
the computer adds to the hardware base address in Register 12 when a single-bit CRU
instruction is performed.

Turn to the instruction summary for the SBO instruction and look at the machine code
description. The instruction requires only one word of machine code. The first eight bits
are fixed, a binary 0001 1101, and the last eight bits make up the variable Displacement
field. The assembler puts into this field the value of the Displacement operand in the
assembly language instruction. For example, the instruction

SBo0 3

results in a Displacement field of binary 0000 0011. The 16-bit machine code word is a
binary 0001 1101 0000 0011, or hexadecimal 1D03.

The instruction

247

Chapter 19

SBD ~10

where 10 is a decimal number results in a Displacement field of binary 1111 0110. The
16-bit machine code word is a binary 0001 1101 1111 0110, or hexadecimal 1DFs.

The Displacement operand with the single-bit CRU instructions is limited to the range
of —128 to +127 because that’s the range of the eight-bit signed number that goes in the
Displacement field of the machine code. If you use a Displacement operand outside this
range, the assembler flags it as an error.

The eight-bit Displacement field is used only with the single-bit CRU instructions.

19.9 The PC Word Displacement Field

A PCWord Displacement field appears only in the machine code of the jump instructions.
It's used to tell the computer how many words to add to the
address in the Program Counter (PC) to cause a jump to the right location.

Turn to the instruction summary for the JNE instruction and look at the machine code
description. The instruction requires only one word of machine code. The first eight bits
are fixed (a binary 0001 0110) and the last eight bits make up the variable PC Word
Displacement field. The assembler places in this field a value equal to the number of
words that must be added to the address in the Program Counter to cause a jump to the
correct target location.

The PC Word Displacement field is an eight-bit field and, therefore, the number in this
field is limited to the range of an eight-bit signed number (—128 to +127).

Recall that the Program Counter is the register in the computer’s central processor that
is continually updated to hold the address of the next instruction to be performed. As
the computer performs an instruction, the address in the Program Counter is
automatically increased to the address immediately following the address of the
instruction currently being performed. This is done automatically because instructions
usually are performed in sequential order. So, when an instruction in a location is being
performed, the address in the Program Counter points to the next location.

This is true of all instructions, including the jump instructions. When a jump instruction
is performed, the Program Counter is pointing to the location immediately after the jump
instruction. If a jump is made, the computer adds the PC Word Displacement in the
machine code to the word address in the Program Counter. The sum is the address of

the instruction to be performed next.

248

Machine Code Formats

Notice that it's the number of words (the word displacement) that is added to the word
address in the Program Counter.

When writing a jump instruction in assembly language, you specify the distance to the
target in terms of the location of the instruction, not where the Program Counter points
when the machine code is performed. And the distance to the target is measured in bytes,
not words.

The assembler that translates an assembly language jump instruction into machine code
has a way of resolving all this. It translates the distance to the target measured in bytes
from the location of the instruction into a PC Word Displacement in the machine code
which measures the distance to the target in words from the address in the Program
Counter.

Whenever the assembler encounters a jump instruction, it simply takes the byte
displacement specified by the Target operand and divides it by two to convert the byte
displacement to a displacement measured in words. Then it subtracts one from this
amount to compensate for the fact that the Program Counter points to the location
following the jump instruction when the machine code instruction is performed.

The formula the assembler uses for translating a Target operand in assembly language
to a PC Word Displacement in machine code is

(N72) - 1

where N is the signed displacement, measured in bytes, to the target from the location
of the instruction.

Take an example. The instruction

JNE $+10

specifies a target for the jump which is ten bytes ahead of the location of the]NE
instruction. The value of N is +10. The assembler applies the formula and derives plus
4.

(+10/2) -1 = +4

The assembler places a plus 4 in the eight-bit PC Word Displacement field (a binary 0000
0100). The entire 16-bit machine code word is a binary 0001 0110 0000 0100, or
hexadecimal 1604.

249

Chaptexl 19
Notice in the formula that N is a signed number. For example, the instruction

JNE $-10

specifies a target that is ten bytes behind the location of the JNE instruction and the value
of N is —10.

The assembler applies the formula and derives minus 6.

(-10/72) -1 = -6

The assembler places a minus 6 (a binary 1111 1010) in the eight-bit PC Word
Displacement field. The entire 16-bit machine code word is a binary 0001 0110 1111 1010,
or hexadecimal 16FA.

The assembler performs the same calculation even if the operand of the jump instruction
is the label of the target instruction. The assembler simply calculates the distance in bytes
to the target and then applies the same formula to determine the PC Word Displacement.

For example, the instruction
JINE ROSCOE
specifies as a target the instruction labeled ROSCOE. Suppose the JNE instruction

occupies location hexadecimal A34E and the instruction labeled ROSCOE occupies
location hexadecimal A32C.

Location Instruction
>A32C ROSCOE ~=~mmmmmeen-
>A34E JNE ROSCOE

250

Machine Code Formals

The distance from the JNE instruction to its target can be calculated as follows.

>A34E Location of JUNE Instruction
- >A32C Location of Target Instruction

>0022 Displacement in Bytes to the Target

Since hexadecimal 22 is a decimal 34 and since the target is behind the jump instruction
(a minus direction), the displacement to the target is —34. This is the number that the
assembler uses to calculate the PC Word Displacement in the machine code.

(-34/2) =1 = -18
The PC Word Displacement is —18 decimal, or —12 hexadecimal.

The assembler places a minus hexadecimal 12 in the eight-bit PC Word Displacement
field (a binary 1110 1110).

The entire 16-bit machine code word is a binary 0001 0110 1110 1110, or hexadecimal
16EE.

251

Chapter 20
SUMMARY

This book has covered a lot of ground. The structure of assembly language programs and
the structure of data used by those programs has been introduced. The instructions and
addressing modes of the TI Home Computer’s instruction set have been presented with
several examples of how to use the instructions. The function of assembly language
development tools has been described and the example programs in the book can be used
to experiment with assembly language utility programs such as assemblers and debuggers.
The basic concepts of assembly language programming in general and, specifically, for
the TI Home Computer has been covered.

The purpose of this book is to lay a foundation to help you understand programs written

in assembly language for the TI Home Computer and to help you get started in creating
your own programs. Hopefully, it has achieved that purpose for you. Good programming!

253

¥

Appendix A

Instruction Summaries

255

Appendix A

256

INSTRUCTION OPERATION CODES IN ALPHABETICAL ORDER

Op-Code Syntax Op~Code Syntax
A S, D LDCR s, C
AB S, D LI R, I0P
ABS S LIMI I0P

Al R, I0P LREX

ANDI R, IOP LWPI I0P

B S MOV S, D
BL S MOVB S, D
BLWP S MPY S, R

c S, D NEG S

c8 S, D ORI R, I0P
CI R, I0P RSET

CKON RTWP

CKOF S S, D
CLR S SB S, D
coC S, R SBO Displacement
czC S, R SBZ Displacement
DEC S SETO S

DECT S SLA R, C
DIV S, R socC S, D
IDLE socs S, D
INC S SRA R, C
INCT S SRC R, C
INV S SRL R, C
JEQ Target STCR s, C
JGT Target STST R

JH Target STWP R

JHE Target SWPB S

JL Target SZC S, D
JLE Target SZCB S, D
JLT Target T8 Displacement
JMP Target X S

JNC Target Xop s, C
JNE Target XOR S, R
JNO Target

Joc Target

Jop Target

Instruction Summaries

Add Words A

Mnemonic and Addressing Modes: A S,D

Result: (S) + (D) -=> (D)

Operation: Adds the contents of the first operand to the contents of the
second operand. Replaces the contents of the second operand with the
sum. Both operands are word addresses.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

PEGES DUV Epsy pupy prvey pee PN B Bl ELd EAd Bl Ealdl Badadl Radedl Haded

L>|A>|EQ|CY|OV

The addition affects the Carry and Overflow status bits.
The sum is compared to zero and the Logical Greater Than,
Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The Add Words instruction offers the widest choice of
addressing modes for an add operation.

Example: A R4,GALPHA

Before After
(R4) = >5A74 >5A74
(ALPHA) = >BC5A >16CE
L>=1, A>=1,EQ=20
Cy=1,0V=0
Machine Code:
Hex Grmm= [===> (=== = ===} (=mm = wms) (mom s oss)

0 1 2 3 45 6 7 8 9101112131415

B L e e e

Binary 1] o] 1] 0] T d Rd Ts Rs

Source (or Destination) Address

Length: 1 or 2 or 3 words

257

Appendix A

Add Bytes AB

Mnemonic and Addressing Modes: AB S,D

Bytes
Result: (S) + (D) -~~--~ > (D)

Operation: Adds the contents of the first operand to the contents of the
second operand. Replaces the contents of the second operand with the
sum. Both operands are byte addresses.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

L>|A>|EQ|CY|oV|OP

The addition affects the Carry and Overflow status bits.
The sum is compared to zero and the Logical Greater Than,
Arithmetic Greater Than, and Equal status bits are
affected accordingly. The OP status bit is set to one if
there's an odd number of one bits in the sum; otherwise;
it's cleared to zero.

Notes: The Add Bytes instruction adds two 8-bit numbers together.
Example: AB R4,QALPHA

Before After
(R4) = >8074 >8074
(ALPHA) = >BC5A >3C5A
L> =1, A>= 1, EQ = 0
CY=1,0V=1, 0P =0

Machine Code:

Hex ===~ B ===> (m=m = m=m) (mes o cen) (mmm = mme)
0 1 2 3 45 6 7 8 910111213 1415

Binary 1] 0] 1} 1| Td Rd Ts Rs

I CEI B E S [y vy iy vy DI --l..- VY [PV [[

Source (or Destination) Address

L I I T e T T T T i,

Length: 1 or 2 or 3 words

258

Instruction Summaries

Absolute ABS

Mnemonic and Addressing Modes: ABS S
Result: |(S)]| ==> (S)
Operation: Takes the absolute value of the contents of the operand.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

L>{A>|EQ ov

gy ity pipay pigiy prviy PN ELIEIES A EL R BTN IEL R LN Bl Eadedl Kaiad

The content of the operand before the absolute value is
taken is compared to zero and the Logical 6reater Than,
Arithmetic Greater Than, and Equal status bits are
affected accordingly. If the content of the operand is
>8000, the Overflow status bit is set; otherwise, it's
cleared to zero.

Notes: The Absolute instruction forces a value to a positive number. If
the value is already positive, it's unchanged. If the value is
negative, it's forced to its two's complement value, However, if the
value is hex 8000 (the smallest negative number and which doesn't have
a positive counterpart), the computer sets the Overflow status bit to
indicate it can't form a positive number.

Example: ABS QNUMBER

Before After
(NUMBER) = >FFF9 >0007
L>=1, A>=0, EQ=0
ovV=20

Machine Code:

Hex Gmmm) m==d> ===] ===d> (mmm = mmm) (wes = me=mD
01 2 3 45 6 7 8 9101112131415

Binary of ool oo 11101 Ts R's

Source Address

- ® e wm m em e e e e e o m mom owmow e = o= o= o~

Length: 1 or 2 words

259

Appendix A

Add Immediate Al

Mnemonic and Addressing Modes: AI R,IOP
Result: (R) + IOP -~> (R)
Operation: Adds the 16-bit immediate operand to the contents of the register.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

Ll Kot Kol D D I T PR PN (PP [P Ry [UNGHY (g [Rpu (i ey

L>[A>[EQ|CY{OV

The addition affects the Carry and Overflow status bits.
The sum is compared to zero and the Logical Greater Than,
Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The AI instruction is useful for adding a specific constant to the
contents of a register.

Example: Al R3,4

Before After
(R3) = >BC5A >BCSE
L>=1, A> =0, EQ =0
CY=0,0V=20
Machine Code:
Hex ===) === Kmmm 2 mmed (mmm 2 emmd (mme o mma)

0 1 2 3 45 6 7 8 910111213 1415

Pl Lo TN PRV vy [NURy DUy DIVEY DUy VIS PEPRS PN _-I--I....I--

Binary 0] o 0jo0oj o0l Ol 100 0] 1]0 R

Immediate Operand I I l
g o e e B A B R

Length: 2 words

260

Instruction Summaries

And Immediate ANDI

Mnemonic and Addressing Modes: ANDI R,IOP

Result: (R) AND IOP --> (R)

Operation: Performs a logical AND operation between the bits in the
register and the bits in the immediate operand. The result replaces the
contents of the register.

Status Bits Affected:

6 1 2 3 45 6 7 8 9101112131415

L>|A>|E

o

- | | | | | | e o | = | o | o | == | =

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The ANDI instruction is useful for forcing selected bits in a
register to zero.

Example: ANDI RO,>A60F
Before After -
(RO) = >BC5A >A40A

L>=1, A>=0, EQ =0

(RO) Before = 1011 1100 0101 1010
1op = 1010 0110 0000 1111

(RO) After = 1010 0100 0000 1010

Machine Code:

Hex Gmm=) ===> Kmm= 2 === (=== § m==> === - ===>
01 2 3 45 6 7 8 9101112131415

[Ny DEVEY [y vy DEVEN (SR IV e N B B --I--l--l_-

Binary o]l of 0] 0j O] O] 1/ O] O] 1] O] O

Iy DIV IV IS IO PIES I N I BT B --I--l--l-_

Immediate Operand
m i B e e e e

Length: 2 words

261

Appendix A

Branch B

Mnemonic and Addressing Modes: B S
Result: S --> (PC)
Operation: Transfers program control to the operand address.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

PN LN N BT IRV PR [PRgiy vy gty | | | e |-

No status bits are affected.

Notes: The B instruction performs a long-distance transfer of program
control. The B instruciton performs an unconditional transfer of
control as does the JMP instruction. But whereas the JMP instruction
allows only a short-distance transfer of control, the B instruction
permits a transfer of control to any location in the memory space.

Example: B G@TICKET

Causes a transfer of program control to location TICKET.

Machine Code:

Hex €===) m==> (=== § =m=d> (=== = cmed (mmm - mmm)
0 1 2 3 45 6 7 8 9101112131415

Binary 0] 0] 0| Of Of 1| of of O 1] T s Rs

Source Address

Length: 1 or 2 words

262

Instruction Summaries

Branch and Link BL

Mnemonic and Addressing Modes: BL S

Result: (PC) --> (R11)
s ~--> (PC)

Operation: Transfers program control to the operand address and saves the
address following the BL instruction in Register 11,

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415
No status bits are affected.

Notes: The BL instruction calls a subroutine. The return address is
saved in Register 11. The subroutine can return to the calling
program by performing a Branch instruction to the address in
Register 11 (B *Rl11).

Example: Calling Program Subroutine
--------------- +===> SUBR =======--=

Machine Code:

Hex Q== [===> === § ===) === = m=e) (==~ = -~
0 1 2 3 45 6 7 8 9101112131415

Binary 0] 0] 0y O] O 1] 1] Of 1] O] T s Rs

o o o I et o I R R

Source Address

Length: 1 or 2 words

263

Appendix A
Branch and Load Workspace Pointer BLWP

Mnemonic and Addressing Modes: BLWP $S

Result: (S) --> (WP)
(S +2) --> (PC)
(0o1d WP) --> (new R13)
(o1d PC) -=> (new R14)
(o1d SR) ~=> (new R15)

Operation: Performs a context switch using the two-word vector
specified by the operand address. The operand is the address
of the first word of the vector and it contains the address of
a new workspace. The second word of the vector contains the
address of the program to which a transfer of control is made.
When the BLWP instruction is perfomed, the current contents of
the WP, PC, and SR are stored in Registers 13, 14, and 15,
respectively, of the new workspace.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

Notes: The BLWP instruction can be used to perform a context switch
to any subroutine or program in the memory address space.

No status bits are affected.

Example: Calling Program Called Program
BLWP @SQVECT -=---- + SUBWSP BSS 32
------------- <==+ H
: ~==> SUBENT ==<==--
SQVECT DATA SUBWSP :
DATA SUBENT d=em-nm- RTWP

A context switch is performed using the contents of SQVECT as
the address for a new workspace and the contents of SQVECT+2 as
the address of a program to which a transfer of program control is made.

Machine Code:

Hex C=m=) === (=== § mmed> (vme w mmm) (e = mem)
0 1 2 3 45 6 7 8 9101112131415

Binary 6f of o] 0] O] 1] oj O] O] Of| T s Rs

o o I e e B R R B

Source Address

I I I e e T T T T S S P Y

Length: 1 or 2 words

264

Instruction Summaries

Compare Words C

Mnemonic and Addressing Modes: C S,D

Result: %gi ?>i and EQ status bits affected based upon
:(D

Operation: Compares the contents of the first operand to the contents
of the second operand. The operands are word addresses. The
Logical Greater Than, Arithmetic Greater Than, and Equal status
bits are affected based upon the results of the comparison.

Status Bits Affected:

0 1 2 3 4 5 6 7 8 9101112131415

L>|A>|EQ

The contents of the first operand is compared to the
contents of the second operand and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The Compare Word instruction compares two 16-bit
values together. Neither the contents of the source
operand or the contents of the destination operand are

changed.
Example: C Q@ALPHA,R4

Before After
(ALPHA) = >A374 >A374
(R4) = >6E2F >6E2F

L>=1, A>=0,EQ =0
Machine Code:

Hex Gmm= 8 ===> (=== = ===} (umm = mwwd (mmm = eee)
0 1 2 3 45 6 7 8 9101112131415

o o B o B e e e e

Binary 1] o0j0j0]Td R d Ts Rs

Source {or Destination) Address

B . T T T T T T T P

P . T . T T i L T T T T

Length: 1 or 2 or 3 words

265

Appendix A

Compare Bytes cB

Mnemonic and Addressing Modes: CB S,D

Result: L>, A>, and EQ status bits affected based upon
(S):(D). OP status bit affected based upon number
of one bits in (S).

Operation: Compares the contents of the first operand to the contents
of the second operand. The operands are byte addresses. The Logical
Greater Than, Arithmetic Greater Than, and Equal status bits are
affected based upon the results of the comparison. The 0dd Parity
status bit is affected based upon the number of one bits in the source
operand.

Status Bits Affected:

0 1 2 3 465 6 7 8 9101112131415

L>|A>]EQ op

LY BN E TN TR TR PRy BT PV el P N T T PR PR

The contents of the first operand is compared to the
contents of the second operand and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly. The 0dd Parity status bit is
affected based upon the number of one bits in the

source operand.

Notes: The Compare Word instruction compares two 8-bit values together.
Neither the contents of the source operand or the contents of the
destination operand are changed.

Example: C GALPHA(R7),R4

Before After
(ALPHA) = >74A3 >74A3
(R4) = >F26E >F26E
(R7) = >0001 >0001

L>=0,A>=0,EQ=0,0P=0

Machine Code:
Hex === G m==d (mms = mmm) (mme = mem) (mmm = ees)

0 1 2 3 45 6 7 8 9101112131415

A S S R e pe e e e e e

Binary 11 070[12}Td Rd Ts R s

Uy DUV RV S --l-- --I-- PRGN VI DRV VIS PV [V --I--

Source (or Destination) Address

L R . T T T e O .

Length: 1 or 2 or 3 words

266

Instruction Summaries

Compare Immediate CI

Mnemonic and Addressing Medes: CI R,IOP

Result: L>, A>, and EQ status bits affected based upon
(R):(10P).

Operation: Compares the contents of the register to the immediate
operand. The Logical Greater Than, Arithmetic Greater Than, and
Equal status bits are affected based upon the results of the comparison.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415
L>IA>|E | l
The contents of the register is compared to the contents
of the immediate operand and the Logical Greater Than,

Arithmetic Greater Than, and Equal status bits are
affected accordingly.

o

Notes: The Compare Immediate instruction can be used to check for a
specific address value in a register when the register is being used
with register indirect autoincrement or indexed addressing in a loop.

Example: CI R10,TBLEND

Before After
(R10) = >A49C >A49C
TBLEND = >A49C >A49C

L>=0,A>=0, EQ = 1

Machine Code:

Hex === () ===> (=== 2 === (=m= § ===) (=== - ===d
01 2 3 45 6 7 8 9101112131415

Binary o] o oj 0| 0] O] 1} O] 1| Of O] O R

Immediate Operand I I l
g ol G

Length: 2 words

267

Appendix A

Clock Off CKOF

Mnemonic and Addressing Modes: CKOF
Result: Sends signals out on address lines and CRUOUT 1line.

Operation: When the CKOF instruction is performed, the binary values
1, 1, and O appear on address lines A0, Al, and A2, respectively,
in conjunction with a synchronizing pulse on the CRUCLK 1ine.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

ELIELREL N ED N EL Y T P T PV P P P PN B BT

No status bits are affected.

Notes: The CKOF instruction may be used to implement functions unique
to hardware surrounding the central processor.

Machine Code:

Hex ¢mm= [===> K=== 3 === === ===> <=== 0 -==>
0 1 2 3 45 6 7 8 9101112131415

Binary 0] of of 0] 0] Of 1y 1) 1] 1{ Of O] O] O] 0| O

Length: 1 word

268

Instruction Summaries

Clock On CKON

Mnemonic and Addressing Modes: CKON
Result: Sends signals out on address lines and CRUOUT 1line.

Operation: When the CKON instruction is performed, the binary values
1, 0, and 1 appear on address lines A0, Al, and A2, respectively,
in conjunction with a synchronizing pulse on the CRUCLK 1ine.

Status Bits Affected:
01 2 3 45 6 7 8 910111213 14 15
No status bits are affected.

Notes: The CKON instruction may be used to implement functions unique
to hardware surrounding the central processor.

Machine Code:

Hex C=== ===> C=== 3 me==) (===] === (=== () -==>
01 2 3 45 6 7 8 9101112131415

E L L e R B N R A S I I R L A R

Binary 0| 0f 0] 0 0f Oof 1] 1| 1] o] 1| O] O] 0| O{ O

Length: 1 word

269

Appendix A

Clear CLR

Mnemonic and Addressing Modes: CLR $
Result: 0 --> (S)
Operation: Forces the content of the operand to zero.

Status Bits Affected:

01 2 3 4 5 6 7 8 9101112 131415
No status bits are affected.

Notes: The CLR instruction is useful for initializing a word to zero.
Example: CLR @ZFFLAG
Before After
(ZFFLAG) = >72E9 >0000
No status bits affected.

Machine Code:

Hex Qmm= [===> Cm=e § ===) (mmm = mm=d (emm - ===)
0 1 2 3 456 7 8 9101112131415

o o B B B B e e e e e e

Binary 0 0 O) Of Of 1] Of O 1f 1| T s R's

Source Address

Length: 1 or 2 words

270

Instruction Summaries

Compare Ones Corresponding coc

Mnemonic and Addressing Modes: COC S,R

Result: (S) AND complement (R); set Equal status bit if
result zero.

Operation: Sets the Equal status bit if there are all one bits in the
contents of the second operand corresponding to the bit positions
where there are one bits in the contents of the first operand.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

an |||] an]em || =] - --‘-- JEPE U DUV (S [

E

o0

The Equal status bit is set if there are all one bits
in the contents of the second operand corresponding to
the bit positions where there are one bits in the
contents of the first operand; otherwise, it's cleared.

Notes: The COC instruction can be used to test the state of specific bits
in the contents of a register.

Example: COC @ALPHA,R4

Before After Binary
(ALPHA) = >3A74 >3A74 0011 1010 0111 0100
(R4) = >BC5A >BCSA 1011 1100 0101 1010
EQ =0
Machine Code:
Hex Cm== 2 === === = ===D (=me = emm) (omm - =s==)

01 2 3 45 6 7 8 9101112131415

Binary 0| O 1 0] O| O Ts

R Rs
o o et I

Source Address

- . w w w m w m m w = e e e oem e e e wm owom = = o=

Length: 1 or 2 words

271

Appendix A

Compare Zeros Corresponding czc

Mnemonic and Addressing Modes: CIC S,R
Result: (S) AND (R); set Equal status bit if result zero.

Operation: Sets the Equal status bit if there are all zero bits in the
contents of the second operand corresponding to the bit positions
where there are one bits in the contents of the first operand.

Status Bits Affected:

01 2 3 456 7 8 9101112131415

EQ

| | o | wn | o | - ELE I T LT N JEVRY PR PR P

The Equal status bit 1s set if there are all zero bits
in the contents of the second operand corresponding to
the bit positions where there are one bits in the

contents of the first operand; otherwise, it's cleared.

Notes: The CZC instruction can be used to test the state of specific bits
in the contents of a register.

Example: CZC @ALPHA,R4

Before After Binary
(ALPHA) = >3A74 >3A74 0011 1010 0111 0100
(R4) = >C482 >C482 1100 0100 1000 0010
EQ =1
Machine Code:
Hex (m== 2 =m=d (om== = mme) (mmm = eha) (mem = mme)

0 1 2 3 45 6 7 8 910111213 1415

Binary 0] 0] 1] 0] o0]1 l Ts Rs
I

e e e e B R B

Source Address

Length: 1 or 2 words

272

Instruction Summaries

Decrement DEC

Mnemonic and Addressing Modes: DEC §
Result: (S) = 1 ==> (S)

Operation: Subtracts one from the contents of the operand.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

L>|A>[EQ|CY|OV , }

|| | e |] o | e | mm | ma] cw | vn | v o=

The computer adds a negative 1 (hexadecimal FFFF) to the
contents of the operand. The addition affects the Carry
and Overflow status bits. The result is compared to zero
and the Logical Greater Than, Arithmetic Greater Than,
and Equal status bits are affected accordingly.

Notes: The Decrement instruction is useful for decrementing a byte
address in a register which is being used for indirect addressing or

indexed addressing, It's also useful for adjusting a loop counter in a
program loop.

Example: DEC R2
Before After
(R2) = >0009 >0008
L>=1, A>=1,EQ =0
Cy=1,0 =20
Machine Code:
Hex Cm==) ===> === f ===> (==~ = ===) (=== = o=

01 2 3 456 7 8 9101112131415

UG [PIVEY (VI DUV JUURy vy RV EETSS TRy puy PR - --I--l--l--

Binary 0] 0| 0] O] Of 1} 1) O] 0| O] T s Rs

o e e e e B

Source Address

Length: 1 or 2 words

273

Appendix A

Decrement by Two DECT

Mnemonic and Addressing Modes: DECT S
Result: (S) - 2 ~-> (S)
Operation: Subtracts two from the contents of the operand.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

LS L LS E LR TN N A e N I I ks

L>|A>{EQ|CY|OV

LAl Ll D DN T Pl TN Y [e PN I I 0 ey v

The computer adds a negative 2 (hexadecimal FFFE) to the
contents of the operand. The addition affects the Carry
and Overflow status bits. The result is compared to zero
and the Logical Greater Than, Arithmetic Greater Than,
and Equatl status bits are affected accordingly.

Notes: The Decrement by Two instruction is useful for decrementing
a word address in a register which is being used for indirect
addressing or indexed addressing.

Example: DECT R2

Before After
(R2) = >0009 >0007
L>=1, A>=1, EQ = 0
CY =1, 0V=10
Machine Code:
Hex === 0 ===> K=== § ~==> (=== = ===} (Lmm= - em=)

01 2 3 45 6 7 8 910111213 1415

P Y Y TS [Ty vy ik Gy UV RNy DUV D --I--l--l--

Binary of of of of Oof 1 1{ Oof O| }| T s Rs

Source Address

Length: 1 or 2 words

274

Instruction Summaries

Divide DIV

Mnemonic and Addressing Modes: DIV S,R

Result: (R and R+1) / (S) --> (R) Quotient and
(R+1) Remainder

Operation: Divides the word value in the first operand (the divisor) inte
the 32-bit dividend in the destination register and the next register.
The destination register contains the most significant 16 bits of the
dividend and the next register contains the least significant 16 bits.
After the division, the destination register contains the 16-bit
quotient and the next register contains the 16-bit remainder. Before
the division, the 16-bit divisor in the first operand is compared to the
16~bit value in the destination register. If the divisor is less than,
or equal to, this most significant word of the dividend, the quotient
would exceed 16 bits and, in such a case, the computer sets the Overflow
status bit and does not perform the divide. The numbers are treated as
unsigned values.

Status Bits Affected:
0 1 2 3 45 6 7 8 9101112131415

ov

The Overflow status bit is set if the 16-bit divisor
is less than, or equal to, the contents of the
destination register; otherwise it's cleared to zero.

Notes: The Divide instruction divides a 16-bit number into a 32-bit number.
It's an unsigned division; the computer ignores the sign of the numbers.

Example: DIV @DIVISR,RS

Before After
(DIVISR) = >0008 >0008
(R5) = >0000 >000C
(R6) = >0064 >0004
oV =20
Machine Code:
Hex Krmm= 3 ===> (m=m = mmm) (e== = m=s=) (oms - mos)

01 2 3 45 6 7 8 9101112131415

[Py (U (I VY RV RVRY [PV --I--I-- --I-.. --l-_l--l--

Binary 0| 0 1] 1] 1| 1 R Ts Rs

S ot e

Source Address

e . T T e

Length: 1 or 2 words

275

Appendix A

Idle IDLE

Mnemonic and Addressing Modes: IDLE

Result: 1Idle the computer
Sends signals out on address l1ines and CRUCLK 1line.

Operation: Places the computer into the idle state. The computer performs
the IDLE instruction continuously until an interrupt occurs. When an
interrupt occurs that causes a context switch, the return address saved
is the location following the IDLE instruction. When the IDLE
instruction is performed, the binary values 0, 1, and O appear on
address lines A0, Al, and A2, in conjunction with a synchronizing pulse
on the CRUCLK 1ine.

Status Bits Affected:
01 2 3 45 6 7 8 9101112131415
No status bits are affected.

Notes: The IDLE instruction may be used to implement functions unique to
hardware surrounding the central processor.

Machine Code:

Hex C=== [===> (=== 3 ===> (mme § em=d (=m= [-=->
0 1 2 3 45 6 7 8 9101112131415

o | oe | on | ce | o | v e | ca e | cn | an | ca]cce | cc | e

Binary 0] 0] O} Of O] O] 1{ 1| O] 1{ 0] O] O| 0] O] O

e | |aw | e | cw | e | ww ow e [ow | ce |ee | cc e | e | =

Length: 1 word

276

Instruction Summaries

Increment INC

Mnemonic and Addressing Modes: INC §
Result: (S) + 1 ~~> (S)
Operation: Adds one to the contents of the operand.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

L>|A>|EQ|CY|OV

The addition affects the Carry and Overflow status bits.
The sum is compared to zero and the Logical Greater Than,
Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The Increment instruction is useful for incrementing a byte address
in a register which is being used for indirect addressing or indexed
addressing. It's also useful for adjusting a loop counter in a program

loo0p.
Example: INC R2
Before After

(R2) = >0009 >000A
L>=1,A> =1, EQ=10
CYy =0,0V=0

Machine Code:
Hex Cm==) ===> === § === (=== = ===) (=== -~ ===

0 1 2 3 45 6 7 8 9101112131415

e B B e

Binary ol oj of ojof 1{ O) 1] 1| Of Ts Rs

o o B e e e

Source Address

- . e e e m w e mom om e w o w o w ow o m o w = - -

Length: 1 or 2 words

277

Appendix A

Increment by Two INCT

Mnemonic and Addressing Modes: INCT S

Result: (S) + 2 --> (S)

Operation: Adds two to the contents of the operand.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

L>{A>|EQ|CY|OV

The addition affects the Carry and Overflow status bits.
The sum is compared to zero and the Logical Greater Than,
Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The Increment by Two instruction is useful for incrementing a word

address in a register which is being used for indirect addressing or
indexed addressing.

Example: INCT R2

Before After
(R2) = >0009 >000B
L>=1, A>=1, EQ =0
Cy=0,0V=0
Machine Code:
Hex === () ===> (=== § ===) (m== = —m=) (m== - meo

01 2 3 45 6 7 8 9101112131415

B R T T E TSy [y vy pivuy [Uouy gy P --l--l--l--

Binary 0 oj 0 0] O] 1] O] 1] 1] 1 Ts Rs

L e o e o e B A R

Source Address

L T T R R T T T T NPy

Length: 1 or 2 words

278

Instruction Summaries

Invert INV

Mnemonic and Addressing Modes: 1INV S
Result: Complement (S) =-=-> (S)

Operation: Inverts the state of each bit in the operand. Leaves the one's
complement of the original value in the operand.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

L>|A>|EQ

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The INV instruction is a logical NOT operation, It changes all the
one bits in a word to zeros and all the zero bits to ones.
Example: INV @PNFLAG
Before After
(PNFLAG) = >FFFF >0000
L> =10, A> =0, EQ = 1

Machine Code:

Hex === ===> (=== § ===) Lm=m = m==) (mw= - oo
01 2 3 456 7 8 9101112131415

JEY DY DUV UV [DRY VY DIV DUPIY PRy [Py [y e --I--l_-l--

Binary 0] ofj oj o] O] 1] 0f 201 Ts Rs

RGN DV DV DIVES DEVEY DIGES PIHY DUPHS PRy PR --I-- --I--I--I--

Source Address

- . m e e e m e e m e ® oo om om oaeom o omoam - -

Length: 1 or 2 words

279

Appendix A

Jump if Equal JEQ

Mnemonic and Addressing Modes: JEQ Target

Result: If EQ = 1, jump to target
If EQ = 0, continue to following instruction

Operation: Jumps to the target instruction if the Equal status bit is one.
Otherwise, there is no jump and program control continues to the
following instruction. The target must be within -254 to +256 bytes
from the location of the JEQ instruction.

Status Bits Affected:

0 1 2 3 45 6 7 8 910111213 14 15
No status bits are affected.
The EQ status bit is analyzed.

Notes: The JEQ instruction can be used to check the state of the Equal
status bit resulting from a previous instruction's operation. 1It's
often used at the end of a loop to determine if the loop count is zero.

Example: JEQ GALLOP
The JEQ instruction jumps to the instruction labeled GALLOP if the Equal
status bit is one.

Machine Code:

Hex ==] ===> === 3 ===d Qmme = meed Lemm - mee)
01 23 45 67 8 9101112131415

Binary 0f 0] 0f 1] 0| Of 1] 1| PC Word Displacement

Length: 1 word

280

Instruction Summaries

Jump if Greater Than J&T

Mnemonic and Addressing Modes: JGT Target

Result: If A> = 1, jump to target;
otherwise, continue to following instruction

Operation: Jumps to the target instruction if the Arithmetic Greater Than
status bit is one. Otherwise, there is no jump and program control
continues to the following instruction. The target must be within -254
to +256 bytes from the location of the J6T instruction.

Status Bits Affected:

01 2 3 456 7 8 9101112131415

JUgiy EpEy [y puvy pivny paes e PPN ETI R E EUR S IE L Bl Badad

No status bits are affected.
The A> status bit is analyzed.

Notes: The JBT instruction can be used to check the state of the Arithmetic
Greater Than status bit resulting from a previous instruction's
operation. The JGT can be used to evaluate the arithmetic (signed)
result of an operation.

Example: J6T GALLOP

The J6T instruction jumps to the instruction labeled GALLOP if the
Arithmetic Greater Than status bit is one.

Machine Code:

Hex Qmm=] ==m> === § ===> (emmm = === (omm = =D
01 2 3 45 6 7 8 9101112131415

RS RV [y ipiy IV e --l--l--l--l--'--l--l--

Binary o o]l ol 1y o] 1] o] 1] PC Word Displacement

e e R R

Length: 1 word

281

Appendix A

Jump if High JH

Mnemonic and Addressing Modes: JH Target

Result: If L> = 1, jump to target;
otherwise, continue to following instruction

Operation: Jumps to the target instruction if the Logical Greater Than
status bit is one, Otherwise, there is no Jjump and program control
continues to the following instruction. The target must be within ~254
to +256 bytes from the location of the JH instruction.

1

Status Bits Affected:

6 1 2 3 45 6 7 8 9101112131415

R I o] o Eory (S [Py vy vy vy IV DU --’--‘--'-- -

faindl L LD D 0 I TN T I T [PV (PSP PSVRRS ol (PRGN [N [PUpt Iy IR

No status bits are affected.
The L> status bit is analyzed.

Notes: The JH instruction can be used to check the state of the Logical
Greater Than status bit resulting from a previous instruction's
operation. The JH can be used to evaluate the logical (unsigned) result
of an operation,

Example: JH GALLOP

The JH instruction jumps to the instruction labeled GALLOP if the
Logical Greater Than status bit is one.

Machine Code:

Hex €=] ===> === B ===d> Kmmm = mwe) (mme a mmm)
0 1 2 3 45 6 7 8 9101112131415

Binary 0] 0f 0] 1] 1] 0| 1| 1| PC Word Displacement

LS T [piviy piviy iy VNS DIV --I--I--I--I-_l_-l--l--

Length: 1 word

282

Instruction Summaries

Jump if High or Equal JHE

Mnemonic and Addressing Modes: JHE Target

Result: If L> =1 or EQ = 1, jump to target;
otherwise, continue to following instruction

Operation: Jumps to the target instruction if the Logical Greater Than or
Equal status bit is one. Otherwise, there is no jump and program
control continues to the following instruction. The target must be
within -254 to +256 bytes from the location of the JHE instruction,

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415
No status bits are affected.
The L> and EQ status bits are analyzed.

Notes: The JHE instruction can be used to check the state of the Logical
Greater Than and Equal status bits resulting from a previous
instruction's operation. The JHE can be used to evaluate the logical
(unsigned) result of an operation.

Example: JHE GALLOP
The JHE instruction jumps to the instruction labeled GALLOP if the
Logical Greater Than or Equal status bit is set to one,

Machine Code:

Hex Qm==] ===> === § ===)> (mm= = ==s=d Kowe o ===
01 2 3 456 7 8 9101112131415

JRNY [Uiy [PV [y [y [ueey _-I-..I--I--I-..l--l..-l--

Binary ol o] o[1] o] 1| 0] 0] PC Word Displacement

Length: 1 word

283

Appendix A

284

Jump if Low JL

Mnemonic and Addressing Modes: JL Target

Result: If L> = 0 and EQ = 0, jump to target;
otherwise, continue to following instruction

Operation: Jumps to the target instruction if the Logical Greater Than
status bit is zero and the Equal status bit is zero. Otherwise, there
is no jump and program control continues to the following instruction.
Ihettarget must be within -254 to +256 bytes from the location of the JL

nstruction,

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

Lo 2 U PR PRV UV Uy [y R DU (VY DR IV D --l--

No status bits are affected.
The L> and EQ status bits are analyzed.

Notes: The JL instruction can be used to check the state of the Logical
Greater Than and Equal status bits resulting from a previous
jnstruction's operation. The JL can be used to evaluate the logical
(unsigned) result of an operation.

Example: JL GALLOP

The JL instruction jumps to the instruction labeled GALLOP if the
Logical Greater Than status bit is zero and the Equal status bit is zero.

Machine Code:

Hex ===] ===> (=== [===> (m== = ema) (mmm = =)
0 1 2 3 45 6 7 8 9101112131415

EOd BT L PP PP [Py UV PUVEY UV [N IV RV I ..l--I--

Binary 0y o] 0] 1| 1|1 O] 1] O] PC wdrd Displacement

e 0 1N L [P DUy iy DAV --I--l--l--l_-l--l--l--

Length: 1 word

Instruction Summaries

Jump if Low or Equal ’ JLE

Mnemonic and Addressing Modes: JLE Target

Result: If L> = 0 or EQ = 1, jump to target;
otherwise, continue to following instruction

Operation: Jumps to the target instruction if the Logical Greater Than
status bit is zero or the Equal status bit is one, Otherwise, there is
no jump and program control continues to the following instruction. The
:arget must be within =254 to +256 bytes from the location of the JLE

nstruction.

Status Bits Affected:

1 2 3 45 6 7 8 9101112131415

— | e an] ww | - - | | | e | v | vn | | v | ww]| -

No status bits are affected.
The L> and EQ status bits are analyzed.

Notes: The JLE instruction can be used to check the state of the Logical
Greater Than and Equal status bits resulting from a previous
instruction's operation. The JLE can be used to evaluate the logical
(unsigned) result of an operation.

Example: JLE GALLOP

The JLE instruction jumps to the instruction labeled GALLOP if the
Logical Greater Than status bit is zero or if the Equal status bit is one.

Machine Code:

Hex Qumm] ===) === 2 ===> (=== = ===) === = ===
01 2 3 45 6 7 8 9101112131415

Binary o| ol of 1] o] o] 1] 0] PC Word Displacement

B P o
e o i I e e e R e

Length: 1 word

285

Appendix A

Jump if Less Than JLT

Mnemonic and Addressing Modes: JLT Target

Result: If A> =0 and EQ = 0, jump to target;
otherwise, continue to following instruction

Operation: Jumps to the target instruction if the Arithmetic Greater Than
status bit is zero and the Equal status bit is zero. Otherwise, there
is no jump and program control continues to the following instruction.
The target must be within -254 to +256 bytes from the location of the
JLT instruction.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

mm e | ms vt | o | e | v | ca | vw | va | ca | ce]| we |~

No status bits are affected.
The A> and EQ status bits are analyzed.

Notes: The JLT instruction can be used to check the state of the Arithmetic
Greater Than and Equal status bits resulting from a previous
instruction's operation. The JLT can be used to evaluate the arithmetic
(signed) result of an operation.

Example: JLT GALLOP
The JLT instruction jumps to the instruction labeled GALLOP if the

Arithmetic Greater Than status bit is zero and the Equal status bit is
zero,

Machine Code:

Hex === 1 ===> (===] ===> (=== = mma) (mmm = —ae)
0 1 2 3 45 6 7 8 9101112131415

Lol L T [P PGSy IRy DUGHY PRV DRV DUV DU P --I..-I--l--

Binary 0f 0j o] 11 of o of 1| PC Word Displacement

o e e e e A S

Length: 1 word

286

Instruction Summaries

Jump Unconditional JMP

Mnemonic and Addressing Modes: JMP Target
Result: Jump to target

Operation: Jumps to the target instruction. The target must be within -254
to +256 bytes from the location of the JMP instruction.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

No status bits are affected.
No status bit are analyzed.

Notes: The JMP instruction performs a short-range transfer of program
control. The JMP instruction peforms an unconditional transfer of
control as does the B instruction. The JMP instruction, however,
requires only one word of machine code and the B instruction may require
two words.

Example: JMP GALLOP
The JMP instruction jumps to the instruction labeled GALLOP,

’ Machine Code:

Hex gmm=] ===> === (===> (=== = ===> === o= ===
0 1 2 3 45 6 7 8 9101112131415

““""&r"“"hkhkhhh

Binary of 0] 0| 1 0| 0] 6] PC Word Displacement

IS pIS P || --I--'--l--'--l--l--'--

Length: 1 word

287

Appendix A

Jump if No Carry JNC

Mnemonic and Addressing Modes: JNC Target

Result: If CY = 0, jump to target
If CY = 1, continue to following instruction

Operation: Jumps to the target instruction if the Carry status bit is zero.
Otherwise, there is no jump and program control continues to the
following instruction. The target must be within ~254 to +256 bytes
from the location of the JNC instruction.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

mas | men | m- - | on | on | as] ae | e | e]| cw| e —

No status bits are affected.
The CY status bit is analyzed.

Notes: The JNC instruction can be used to check the state of the Carry
status bit resulting from a previous instruction's operation.
Example: JNC GALLOP
The JNC instruction jumps to the instruction labeled GALLOP 1f the Carry
status bit is zero.

Machine Code:

Hex ===] ===> (=m=] ===) Lemme o mmn) (mmm - —aa)
01 2 3 456 7 8 9101112131415

e Dl Y 0 [Py (Ui vy [y UG DENES DIV DIV --l--l--l--

Binary 0] 0| Of 1|1 0] 1| 1] 1| PC Word Displacement

C 0 S RS [y vy pivey P --I--I--'--I--l--l--l--

Length: 1 word

288

Instruction Summaries

Jump if Not Equal JNE

Mnemonic and Addressing Modes: JNE Target

Result: If EQ = 0, jump to target
1f EQ = 1, continue to following instruction

Operation: Jumps to the target instruction if the Equal status bit is zero.
Otherwise, there is no jump and program control continues to the
following instruction. The target must be within -254 to +256 bytes
from the location of the JNE instruction.

Status Bits Affected:
0 1 2 3 45 6 7 8 9101112131415

No status bits are affected.
The EQ status bit is analyzed.

Notes: The JNE instruction can be used to check for the state of the Equal
status bit resulting from a previous instruction’s operation. It's
often used at the end of a loop to determine if the loop count is zero.

Example: JNE GALLOP
The JNE instruction jumps to the instruction labeled GALLOP if the Equal
status bit is zero.

Machine Code:

Hex Qmm=] ===> === § ===> (=== = ===> (=== - ==
01 2 3 45 6 7 8 9101112131415

Binary ol of of 1] o] 1y 1] 0] PC Word Displacement

NG DEGEY DIV DEVES pRv DU e --I--l--l--l--l--l--l--

Length: 1 word

289

Appendix A

Jump if No Overflow JNO

Mnemonic and Addressing Modes: JNO Target

Result: If OV = 0, jump to target
If OV = 1, continue to following instruction

Operation: Jumps to the target instruction if the Overflow status bit is
zero, Otherwise, there is no jump and program control continues to the
following instruction. The target must be within ~254 to +256 bytes
from the location of the JNO instruction.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415
No status bits are affected.
The OV status bit is analyzed.
Notes: The JNO instruction can be used to check the state of the Overflow
status bit resulting from a previous instruction's operation.
Example: JNO GALLOP
The JNO instruction jumps to the instruction labeled GALLOP if the

Overflow status bit is zero.

Machine Code:

Hex ===] ===> === Q m=s)d (omm o ema) (mmm = mma)
01 2 3 45 6 7 8 9101112131415

Binary 0] 0f 0 1{ 1| of 0] 1| PC Word Displacement

Length: 1 word

290

Instruction Summaries

Jump On Carry Joc

Mnemonic and Addressing Modes: JOC Target

Result: If CY = 1, jump to target
If CY = 0, continue to following instruction

Operation: Jumps to the target instruction if the Carry status bit is one.
Otherwise, there is no jump and program control continues to the
following instruction. The target must be within -254 to +256 bytes
from the location of the JOC instruction.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415
No status bits are affected.
The CY status bit is analyzed.

Notes: The JOC instruction can be used to check the state of the Carry
status bit resulting from a previous instruction's operation.

Example: JOC GALLOP

The JOC instruction jumps to the instruction labeled GALLOP if the Carry
status bit is one.

Machine Code:

Hex Q==] ===> (=== § ===> (=== = ===) (m=s - ~==)
01 2 3 45 6 7 8 9101112131415

1 o e e o o

Binary o| o] of 1] 1] o| 0] 0] PC Word Displacement

o e e e A

Length: 1 word

291

Appendix A

Jump if 0dd Parity JoP

Mnemonic and Addressing Modes: JOP Target

Result: If OP = 1, jump to target
If OP = 0, continue to following instruction

Operation: Jumps to the target instruction if the 0dd Parity status bit is
one, Otherwise, there is no jump and program control continues to the
following instruction. The target must be within -254 to +256 bytes
from the location of the JOP instruction.

Status Bits Affected:

0 1.2 3 45 6 7 8 9101112131415

Lo I IR I TN T I T Ry e e N e I I I Y
—

o | mw o | o | ca | ce | e me | e | e | ww | - — | m- | -

No status bits are affected.
The OP status bit is analyzed.

Notes: The JOP dinstruction can be used to check the state of the 0dd Parity

status bit resulting from a previous instruction's operation.

Example: JOP GALLOP

The JOP instruction jumps to the instruction labeled GALLOP if the 0dd
Parity status bit 1is one.

Machine Code:

Hex ===] ===> Qm== [~==> (m== = =ms) Lomm = =)
0 1 2 3 45 6 7 8 9101112131415

(RN [P [vy [piviy DUGES RS [--l-.. RN PRVRY I --I--I--

Binary 0 0] Of 1] 1] 1| O] O] PC Word Displacement

Length: 1 word

202

Instruction Summaries

Load Communicaton Register Unit LDCR
Mnemonic and Addressing Modes: LDCR §,C

Result: (S) =-~> The number of CRU selected bit addresses
determined by C.

Operation: Sends out the number of bits specified by C from the source
operand to consecutive CRU bit addresses. If C is zero, 16 bits are
sent out. If the number of bits sent out is greater that 8, the source
operand is a word address; otherwise, it's a byte address. The bits
sent out from the contents of the word or byte addressed by the source
operand are sent out from right to left (the rightmost bit in the word
or byte is sent out first). The CRU hardware base address (the contents
of R12, bits 3 through 14) selects the first CRU bit address and
subsequent bits sent out go to the subsequent CRU bit addresses. The
contents of R12 and the source operand remain unchanged. The bits are
sent out sequentially on the CRUOUT line.

Status Bits Affected:
0 1 2 3 45 6 7 8 9101112131415

Py e N L R IR I E I RS P R N I I Bl

L>|A>|EQ 0l

©

The entire content of the source operand (not just the
transferred bits) is compared to zero and the Logical
Greater Than, Arithmetic Greater Than, and Equal status
bits are affected accordingly. If the source operand is
a byte address, the 0dd Parity status bit is affected
based upon the number of one bits in the contents of the
source operand.

Notes: The LDCR instruction sends out a multiple number of bits (up to a
maximum of 16) to a series of CRU bit addresses.

Example: LI R3,>1E7F
LI R12,>200
LDCR R3,0
Sends out 16 bits from the contents of Register 3 to CRU bit addresses
hexadecimal 100 through 10F.
L>=1,A> =1, EQ =0

Machine Code:
Hex Cmm= 3 ===> Lmmm = mes) (=== = o=s=) (=ms - ===

0 1 2 3 45 6 7 8 9101112131415

Py VY DV R Y vy [--l--l-- _-I-- --l--l--l--

Binary 0t 0] 11 1{ 0f O c Ts Rs

NG DIGES VI DUV VR PRV --I--l--l-- --l-- --I--l--l--

Source Address

Length: 1 or 2 words

293

Appendix A

Load Immediate LI

Mnemonic and Addressing Modes: LI R,IOP

Result: IOP --> (R)

Operation: Places the 16-bit immediate operand into the contents of the
register.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

malme | oe | ca | e v | va | aa | va | aa] e | o e | v | cw | o=

L>|A>{EQ

The immediate operand is compared to zero and the Logical
Greater Than, Arithmetic Greater Than, and Equal status
bits are affected accordingly.

Notes: The LI instruction is used often to initialize a register with a
constant; for example, a loop counter or an address to be used with
indirect or indexed addressing.

Example: LI R9,100
Before After
(R9) = >BC5A >0064

L=1,A>=1,EQ=0

Machine Code:

Hex Comm ===> e 2 ===d (mmm) mme) Kmme s meed
01 2 3 45 6 7 8 9101112131415

e e T T B e B O

Binary o[o] oj o] 0] O] 1] O] Of Of O

Immediate Operand I ' I
oo i e o e Bl e

Length: 2 words

294

Instruction Summaries

Load Interrupt Mask Immediate LIMI

Mnemonic and Addressing Modes: LIMI I0P
Result: I0P Bits 12 through 15 ~~> (ST) Bits 12 through 15

Operation: Replaces the contents of the Interrupt Mask (the rightmost four
bits of the Status Register) with bits 12 through 15 (the rightmost
nibble) of the immediate operand.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

N EIEIES

0jI1]I2{I3

-

|| v | v | e | v | v me | v] cn] wn | ~-

The interrupt mask is set to the value of the right
most nibble of the immediate operand.

Notes: The LIMI dinstruction is used to set the interrupt mask to a specific
number. This number is used by the computer to determine which
interrupt signals are allowed to cause an interrupt and which ones are
not. When an interrupt signal occurs, the number of the interrupting
device (called its interrupt "level”) is compared to the number 1in the
interrupt mask. The interrupt level must be less than or equal to the
number in the interrupt mask before the device is allowed to interrupt
the current program. (A level 0 device is always allowed to interrupt.)

Example: LIMI 6

The number 6 is placed in the interrupt mask. Only devices with
interrupt levels of 0 through 6 are allowed to interrupt the current
program,

Machine Code:

Hex Com= ===> (=== 3 ===> Lm== [===> (=== () ~~~>
0 1 2 3 45 6 7 8 9101112131415

Binary o} o] o] O] Oof Of 1j 1| Of O] O] O] O O} O] O

Immediate Operand
o B e

Length: 2 words

295

Appendix A

Load or Restart Execution LREX

Mnemonic and Addressing Modes: LREX
Result: Sends signals out on address lines and CRUOUT line.

Operation: When the LREX instruction is performed, the binary values 1, 1,
and 1 appear on address 1ines A0, Al, and A2, respectively, in
conjunction with a synchronizing puise on the CRUCLK 1line.

Status Bits Affected:
0 1 2 3 4 5 6 7 8 9101112131415
No status bits are affected.

Notes: The LREX instruction may be used to implement functions unique to
hardware surrounding the central processor.

Machine Code:

Hex C=== [=~=> === 3 ===> (==~ [=~=d (mm= () =~=>
01 2 3 45 6 7 8 9101112131415

LN T I e e R R P e R S e I I el B

Binary 0f 0| 0] O Of Of 1] 1} 1} 1f 1] 0j O] O] O} O

mm o |ow e | o | ew | am | em | ow | ew | we | we | o | |~

Length: 1 word

296

Instruction Summaries

Load Workspace Pointer Immediate LWPI

Mnemonic and Addressing Modes: LWPI IOP
Result: I0P ~=> (WP)

Operation: Replaces the contents of the Workspace Pointer with the
immediate operand.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415
No status bits are affected.

Notes: The LWPI instruction is used to define the area of memory for a
program to use as its workspace. The immediate operand is placed into
the Workspace Pointer. This operand should be the address of the first
word of the workspace (the address of Register 0). The computer uses
the next 15 contiguous words in memory as Registers 1 through 15,

Example: LWPI WSP
The address value of WSP is placed in the Workspace Pointer,.
A BSS directive can be used to reserve the 32-byte (16~word) workspace.

Exampie: WsP BSS 32

Machine Code:

Hex === ===> === 2 ===> (=== [===> (==~ (~==>
0 1 2 3 45 6 7 8 9101112131415

Binary of o] oj 0 O] O] 1| O] 1] 1] 1] 0] O] O] O O

Immediate Operand
g o e

Length: 1 word

297

Appendix A

Move Mord MOV

Mnemonic and Addressing Modes: MOV S,D

Result: (S) ~--> (D)

Operation: Replaces the contents of the second operand with a copy of the
contents of the first operand. Both operands are word addresses.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

ELI BRI BN B B I P (PP TS R R Py I e e

L>|A>|EQ

|| | v | | | mn | ma || v v | | we | v | v | -

The moved word is compared to zero and the Logical
Greater Than, Arithmetic Greater Than, and Equal
status bits are affected accordingly.

Notes: You can use the MOV instruction to copy a word from one location to
another. It's often used to copy a word from one general memory
Tocation to another general memory location. It can be used to
initialize the contents of an operand at the start of a program and to
save the results of an operation.

Example: MOV @ALPHA,R4

Before After
(ALPHA) = >3A74 >3A74
(R4) = >BC5A >3A74

L>=1,A>=1, EQ =0

Machine Code:

Hex Q== [=m=> Kmm= = mem) (mmm m mmm) (mme = =)
0 1 2 3 45 6 7 8 91011 12 13 14 15

SRy [P VY VRS IESY U [y vy puvieg Uiy pRpRY PV --I--I-..I..-

Binary 1]110[{0] Td Rd Ts Rs

Source (or Destination) Address

Length: 1 or 2 or 3 words

298

Instruction Summaries

Move Byte MOVB
Mnemonic and Addressing Modes: MOVB S,D

Byte
Result: (S) -=--> (D)

Operation: Replaces the contents of the second operand with a copy of the
contents of the first operand. Both operands are byte addresses. The
contents of the unaddressed byte in a word are unaffected.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

L>|A>|EQ 0

©

The moved byte is compared to zero and the Logical
Greater Than, Arithmetic Greater Than, and Equal

status bits are affected accordingly. The 0dd Parity
status bit is set to one if there's an odd number of one
bits in the byte; otherwise, it's cleared to zero.

Notes: You can use the MOVB instruction to copy a byte from one location to
another, It can be used to initialize the contents of an operand at the
start of a program and to save the results of an operation.

Example: MOVB @ALPHA(R1),R4

Before After
(ALPHA) = >3A74 >3A74
(R1) = >0001 >0001
(R4) = >BC5A >745A

L>=1,A>=1,EQ=0, 0P =0

Machine Code:

Hex Q=== D =mm> Cmmm = mme) (mme e mma) (omm = mes)
6 1 2 3 456 7 8 9101112131415

Binary 1] 1] 0] 1| Td R d Ts R's

e o o o B

Source (or Destination) Address

I e T T T T N T T . T e P

Length: 1 or 2 or 3 words

299

Appendix A

Multiply

Mnemonic and Addressing Modes: MPY S,R

Result: (S) * (R) -=> (R and R+1)

Operation: Multiplies the contents of the first operand by the contents of
the second operand. The most significant 16-bits of the 32~bit preduct
replaces the contents of the destination register and the least
significant 16 bits of the product replaces the contents of the next
register. If Register 15 is the destination register, the least
significant 16 bits of the product replaces the contents of the word
following Register 15. The numbers are treated as unsigned values.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

No status bits affected.

Notes: The Multiply instruction multiplies two 16~bit numbers and produces
a 32-bit product, 1It's an unsigned multiplication; the computer ignores

the sign of the numbers.

Example: MPY @FACTOR,R5

Before After
(FACTOR) = >0023 >0023
(R5) = >0005 >0000
(R6) a >A687 >00AF

No status bits affected.

Machine Code:
|

Hex Cmm= 3 mme=d Gmwm = mmm) (emm = mme)d (mme = e
01 2 3 45 6 7 8 9101112131415

Binary 0] 0| 1] 1] 1] 0 R Ts Rs

PSS VIS (SO [PV S (o --I--I--l-- --I-- -..l..-l--l--

Source Address

Length: 1 or 2 words

300

Instruction Summaries

Negate NEG

Mnemonic and Addressing Modes: NEG S
Result: =(S) -~> (S)

Operation: Negates (forms the two's complement of) the contents of the
operand.

Status Bits Affected:

0'1 2 3 45 6 7 8 9101112131415

L>[A>|EQ|CY|OV

The computer negates the contents of the operand by
taking the one's complement of the contents and adding
one. The addition affects the Carry and Overflow status
bits. The result is compared to zero and the Logical
Greater Than, Arithmetic Greater Than, and Equal status
bits are affected accordingly.

Notes: The Negate instruction negates a 16~bit number.

Example: NEG Q@DTFLAG
Before After
(DTFLAG) = >0005 >FFFB
L>=1, A> =0, EQ = 0 '
CY =0,0V=0

Machine Code:

Hex €===) ~==> (==~ § =m=) (em= = ~=o) Lomm o ~ee)
01 2 3 45 6 7 8 9101112131415

PG [SIVEY [PV DV VI VI [N DI DY UV DU P --I_-l--l--

Binary 0] 0j 0 O] Of 1] O] 1/ O] O] T s Rs

RN PUGRY [PV (IR VI PUONY DIV ORI PRV --I-- --I--l--l--

Source Address

Length: 1 or 2 words

301

Appendix A

Or Immediate

Mnemonic and Addressing Modes: ORI R,IOP

Result: (R) OR I0P ~~> (R)

Operation: Performs a logical OR operation
and the bits in the immediate operand.
of the register.

Status Bits Affected:

01 2 3 45 6 7 89

— | m| -

L>]A>|EQ

10 11 12

The result is compared to zero
Than, Arithmetic Greater Than,
affected accordingly.

Notes:
register to one.

Example: ORI RO,>A60F
Before After
(RO) = >BCSA >BESF
L> =1, A> =
(RO) Before = 1011 1100 0101 1010
I0P = 1010 0110 0000 1111
(RO) After = 1011 1110 0101 1111

Machine Code:

ORI

between the bits in the register
The result replaces the contents

13 14 15

and the Logical Greater
and Equal status bits are

The ORI instruction is useful for forcing selected bits in a

Hex Cmm=) =~=> Cm== 2 ===> em= f ~=m> (mmm - ~==)
01 2 3 45 6 7 8 9101112131415
Binary 0} 0| o] 0| o] O] 1| O] O] 1| 1| O

Immediate Operand

302

--l--l-_I--I--I....I-..|....|--I..-I-..|.....|....|..-I-..|-..

Length: 2 words

Instruction Summaries

Reset RSET

Mnemonic and Addressing Modes: RSET

Result: Force interrupt mask to zero.
Sends signals out on address 1ines and CRUOUT Tine.

Operation: Forces the interrupt mask (the rightmost nibble in the Status
Register) to zero, When the RSET instructionn is performed, the binary
values 0, 1, and 1 appear on address lines A0, Al, and A2, respectively,
in conjunction with a synchronizing pulse on the CRUCLK 1ine.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

11]12}13

-
o

The interrupt mask (status bits 12 through 15) are
forced to zero.

Notes: The RSET instruction may be used to implement functions unique to
hardware surrounding the central processor.

Machine Code:

Hex Cmm= (} ===> C~== 3 ==~> === f ===> K==~~= (~~=>
0 1 2 3 45 6 7 8 9101112131415

pUpi gy puviny prny prvie ey e PR EOE B Bl B Bl Bl Rl Balad

Binary o} of of oj of of 1| 1| of 1| 1| Of 0] Oy O] O

PEUE I pipiy puviy prwsy i e N B I B E LR N L N D I

Length: 1 word

303

Appendix A

Return with Workspace Pointer RTWP

Mnemonic and Addressing Modes: RTWP

Result: (R13) ~~> (WP)
(R14) ~-~> (PC)
(R15) ~~> (SR)

Operation: Reverses a context switch., The contents of the Workspace
Pointer, Program Counter, and Status Register are replaced with the
contents of Registers 13, 14, and 15, respectively, of the current
workspace.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

0[I1|I2(I3

L>|A>|EQ|CY|OV|OP|X

—

The contents of the Status Register 1is replaced with
the contents of Register 15.

Notes: The RTWP instruction is normally used as the last instruction
performed by a subroutine which is called by a context switch (by an XOP
or BLWP instruction or by an interrupt).

Example: Calling Program Called Program
BLWP G@SQVECT ====<=-~ + SUBWSP BSS 32
------------- =+ :
: $===> SUBENT ==-=-==
SQVECT DATA SUBWSP :
DATA SUBENT d=mmm=mn- RTWP

Machine Code:

Hex Gmmm [===> Kmmm 3 mmmd (mmm 8 mmmd (mmm () ===
0 1 2 3 456 7 8 9101112131415

LI BN LR B LN BT P P N B R e e e P o

Binary 0f 0| 0) 0 Of O] 1] 1] 1j 0| O] 0| O] O] 0] O

manlon |ow |lve |[ww |ww | we |an | jaa | ve |cow | e |cec |caw e

Length: 1 word

304

Instruction Summaries

Subtract Words S

Mnemonic and Addressing Modes: S S,D
Result: (D) ~ (S) ~-~> (D)

. Operation: Subtracts the contents of the first operand from the contents of
the second operand. Replaces the contents of the second operand with
the difference. Both operands are word addresses.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

| | v - | -

L>|A>|EQ|CY]|O

—n| | | v | -

-

PN T I e Bl Bl Bl Bl Bl Bl Bl

The computer adds the two's complement of the contents of
the first operand to the contents of the second operand.
The addition affects the Carry and Overflow status bits.
The sum is compared to zero and the Logical Greater Than,
Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The Subtract Words instruction subtracts one 16~bit number from
another.

Example: S R4,GALPHA

Before After
(R4) = >07A4 >07A4
(ALPHA) = >BC5A >B4B6
L>=1, A>=0, EQ =0
CY=1,0V=20
Machine Code:
Hex == § ===> === = ===) (mmm = mmm) (vmm o~ =)

01 2 3 45 6 7 8 9101112131415

JUONY DIGEY RV RV [PV [V (VY vt --l-- --l-- --|--|--I--

Binary 0] 1 10| Td R d Ts Rs

JENNG DUSE) R [--I-- PRGNy [Py DUVHY QU RV VR vy pav --l--

Source (or Destination) Address

- e w am m om mm e @ m m w m om om e owmomom ow @ ™

- . w W wm oemowm wm m w e owm e wm m W wm e o om o= w -

Length: 1 or 2 or 3 words

305

Appendix A

Subtract Bytes SB

Mnemonic and Addressing Modes: SB S,D

Bytes
Result: (D) - (S) ~~--- > (D)

Operation: Subtracts the contents of the first operand from the contents of
the second operand. Replaces the contents of the second operand with
the difference. Both operands are byte addresses.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

L>|A>|EQ{CY|OV|OP

Rl E IR DN RSN TN L T PR TS I T P I e e

The computer adds the two's complement of the contents of
the first operand to the contents of the second operand.
The addition affects the Carry and Overflow status bits.
The sum is compared to zero and the Logical Greater Than,
Arithmetic Greater Than, and Equal status bits are
affected accordingly. The OP status bit is set to one if
there's an odd number of one bits in the sum; otherwise;
it's cleared to zero.

Notes: The Subtract Bytes instruction subtracts one 8-bit
number from another.

Example: SB R4,QRALPHA

Before After
(R4) = >07A4 >07A4
(ALPHA) = >BC5A >B55A
L>=1, A>=0, EQ =0
CY=1,0V=20
Machine Code:
Hex €=] ===> Lmmm = mmm) (ews = mmm) (e - e

0 1 2 3 45 6 7 8 9101112 13 14 15

GNPV [Ty [ECNy iy pUvEY DIV DUGHY ISy DIVES DUVEY PN --I--I--I--

Binary 0| 11111} T7d Rd Ts Rs

R U vy DIV --I-- --I-- JEVEy [PRPEY [PV PO VIR VIR [N (S

Source (or Destination) Address

- e m m e m e e momom e e w o eemomeom o w omeomow e o=

-, e m e e m m e e om e e o e mom w om om m m

Length: 1 or 2 or 3 words

306

Instruction Summaries

Set Bit to One SBO

Mnemonic and Addressing Modes: SBO Displacement
Result: One bit --> Selected CRU Bit Address

Operation: Sends a one bit to a selected CRU bit address. The bit address
is the 12-bit sum of the CRU hardware base address (the contents of R12,
bits 3 through 14) and the displacement operand (a number in the range
of ~128 through +127). The 12-bit sum appears on the computer's address
1ines A3 through Al4, Address lines A0 through A2 are forced to zero.
The one bit goes out on the CRUOUT 1ine in conjunction with a
synchronizing pulse on the CRUCLK line.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415
No status bits are affected.
Notes: The SBO instruction sets a CRU device at the selected address to a

logic one.

Example: LI R12,>400
SB0 18

Sets CRU bit address hexadecimal 212 to a logic one. No status bits are
affected.

Machine Code:

Hex Qum=] ===3 (mo= [=m=> Kmmm = mmed (mme = =ss)
01 2 3 456 7 8 9101112131415

oo o B

Binary 0{ 0] O] 11 1| 1] O 1 Displacement

e e i e R e e e

Length: 1 word

307

Appendix A

308

Set Bit to Zero SBZ

Mnemonic and Addressing Modes: SBZ Displacement
Result: Zero bit -~> Selected CRU Bit Address

Operation: Sends a zero bit to a selected CRU bit address. The bit address
is the 12-bit sum of the CRU hardware base address (the contents of R12,
bits 3 through 14) and the displacement operand (a number in the range
of -128 through +127). The 12-bit sum appears on the computer's address
lines A3 through Al4, Address lines A0 through A2 are forced to zero.
The zero bit goes out on the CRUOUT Tine in conjunction with a
synchronizing pulse on the CRUCLK 1ine,

Status Bits Affected:

0 1 2 3 4 5 6 7 8 910111213 14 15
No status bits are affected.

Notes: The SBZ instruction sets a CRU device at the selected address to a
logic zero.

Example: LI R12,>300
SBZ ~18

Sets CRU bit address hexadecimal 16E to a logic zero. No status bits
are affected.

Machine Code:

Hex e B A e L
01 2 3 456 7 8 9101112131415

I B B B e e B

Binary 0] 0} O] 1] 1f{ 1f 1| O Displacement

Y RV U Y iRy pUpiy v PV --I--I--l--l-..l--l--l--

Length: 1 word

Instruction Summaries

Set to Ones SETO

Mnemonic and Addressing Modes: SETO S
Result: >FFFF ==> (S)
Operation: Forces the content of the operand to hexadecimal FFFF.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415
No status bits are affected.

Notes: The SETO instruction initializes all the bits in a word to ones.
This value is sometimes used as a special marker to mark the end of a
table or sometimes used for a flag condition, When considered as a
signed number, hexadecimal FFFF is -1.

Example: SETO RZFFLAG
Before After
(ZFFLAG) = >72E9 >FFFF
No status bits affected.

Machine Code:

Hex ===) ===> (=~=] ===> Km== = ===) (e=w= = =e=)
01 2 3 45 6 7 8 9101112131415

Binary 0|l oj o] 0J O] 1| 1] 1| O] O} Ts Rs

il
Source Address

-, e e e m m m m w m e e e owm om o= om ow = m o=

Length: 1 or 2 words

309

Appendix A

Shift Left Arithmetic SLA

Mnemonic and Addressing Modes: SLA R,C

Result: <~~~ (places ~~=-
01 14 15
dompmmdan [mmpmedent
(R) = | x| X| «..|X]| X| <===0
Ll DL L e s 4

Operation: Shifts the contents of the register to the left by the number of
bit positions specified by the count, C. If C is 0, the shift count is
specified by the number in the rightmost nibble of Register 0, If C is
0 and the rightmost nible of register 0 1s zero, the bits in the
register are shifted 16 posistins., Fills the vacated bit positions
with zeros. The state of the last bit shifted out is recorded in the
Carry status bit.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

L>{A>|EQ|CY}|OV

- | - || v | mwlva e | v | ca | vn | cn] ca] ce | wn | w=

v

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly. The Carry status bit 1s a copy of
the last bit shifted out, The Overfiow status bit is set
to one if the sign bit (bit position 0) changes anytime
during the shift; otherwise, it's cleared to zero.

Notes: The SLA instruction can be used to perform a multiplication by 2,
In order for the result to be correct, the sign bit should not change
during the shift,

Example: SLA R8,3

Before After
(R8) = >9A74 >D3A0
L> =1, A> = 0, EQ = 0,
CY =0, 0V=1
Machine Code:
Hex ===) ===> ===] === (emwm s mme) (emm e e

0 1 2 3 45 6 7 8 9101112131415

P 0y DS [Py [y vy (o RS DI--I-.. --l-..l-..l..-

Binary of 0| 0] 0of 1] 0] 1| O c

e e e e o S S

Length: 1 word

310

Instruction Summaries
Set Ones Corresponding soc
Mnemonic and Addressing Modes: SOC §S,D

Result: (S) OR (D) --> (D)

Operation: Sets to one all those bits in the contents of the destination
operand that correspond to the position of one bits in the source
operand. Leaves unchanged those bits in the contents of the destination
operand that correspond to the position of zero bits in the source
operand. This 1s a logical OR operation between the bits in the
contents of the source operand and the bits in the contents of the
destinaion operand. Both operands are word addresses.

Status Bits Affected:
01 2 3 45 6 7 8 9101112131415

prpny puviy e P rTI RN PR PSR TR R S AR LD S IE DN I Ll Dl et

L>|A>|EQ

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The SOC instruction can be used to force selected bits in a word to
one. The computer ORs the contents of the source operand with the
contents of the destination operand.

Example: SOC @BITMSK,R1

Before After
aeooum A
L>=1,A>=0, EQ=0
(BITMSK) = 1010 0110 0000 1111

(R1) Before = 1011 1100 0101 1010
(R1) After = 1011 1110 0101 1111

Machine Code:
Hex K==~ [=~~> Cmm= = mm=) (ows o mee) (ome = =)

0 1 2 3 465 6 7 8 9101112131415

JEPNY [IGHN PIE [P --I-- --l..-l-_l-- -..I-.. --l-...l-..l--

Binary 1] 1] 1] 0| Td Rd Ts Rs

S e ot e o ot e

Source (or Destination) Address

- . w m e m e mom M oEm owm e om W e m w w = = -

Length: 1 or 2 or 3 words

311

Appendix A
Set Ones Corresponding Byte socs

Mnemonic and Addressing Modes: SOCB S,D
Result: (S) OR (D) ~-> (D)

Operation: Sets to one all those bits in the contents of the destination
operand that correspond to the position of one bits in the source
operand. Leaves unchanged those bits in the contents of the destination
operand that correspond to the position of zero bits in the source
operand. This is a logical OR operation between the bits in the
contents of the source operand and the bits in the contents of the
destination operand. Both operands are byte addresses.

Status Bits Affected:
01 2 3 45 6 7 8 910111213 14 15

LA L AT R e N B L) BT IS PSS vy iy
— | -

L>|A>|EQ op

|l os | en]lon | v | el ce | v | ca | va] cn | wn] .-

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly. The 0dd Parity status bit is set
if the byte result contains an odd number of one bits;
otherwise, it's cleared to zero,

Notes: The SOCB instruction can be used to force selected bits in a byte to
one, The computer ORs the contents of the source operand with the
contents of the destination operand.

Example: SOCB @BITMSK,R1

Before After
(BITMSK) = >A60F >A60F
(R1) = >BC5A >BESA
L>=1, A>=0, EQ =0, OP = 0
(BITMSK) = 1010 0110 0000 1111

(R1) Before = 1011 1100 0101 1010

(R1) After = 1011 1110 0101 1010
<~ Not ~>
changed

Machine Code:
Hex === [===) (=== = «nc) (mmmw = wmm) (omm - mes)

0 1 2 3 45 6 7 8 9101112131415

(BN [PEVR [0y [py Dy Dy DRV --I--I_- --I-- --l--I--l--

Binary 1| 1] 1] 1| T d Rd Ts Rs

Source (or Destination) Address

- . e m e e e m o w e oweoaeememmomomm e e om om .

-, e e e e e e mm m e e ommeowmw e ow mow m o= -

Length: 1 or 2 or 3 words

312

Instruction Summaries

Shift Right Arithmetic SRA

Mnemonic and Addressing Modes: SRA R,C

Result: ===~ € places ~-~=>
01 14 15

Fompmmpo= [empmpmat

(R) = +===>| X| X| . . . | X| X|

P / ——pmmpemmg

Operation: Shifts the contents of the register to the right by the number
of bit positions specified by the count, C. If C is O, the shift count
is specified by the number in the rightmost nibble of Register 0. If C
is 0 and the rightmost nibble of register 0 is zero, the bits in the
register are shifted 16 positions. The vacated bit positions are filled
with a copy of the sign bit (bit 0). The state of the last bit shifted
out is recorded in the Carry status bit.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

pugsy piviiy pivy peiy e PRI R A R E N DS IE DR g bl et

L>|A>|EQ|CY

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly. The Carry status bit is a copy of
the last bit shifted out.

Notes: The SRA instruction can be used to perform a division by 2 when the
number in the register is an signed value.

Example: SRA R8,2
Before After
(R8) = >9A74 >E69D
L>=1, A>=0, EQ =0, CY =0
Machine Code:

Hex Qum=) ===> === 8 ===> (=== = === (mmm s ===
01 2 3 45 6 7 8 9101112131415

Y N Iy DIviy vy (R S --I_-I-_'-.. -..I--I--I-..

Binary ol o] 0] o] 1] 0] O] O

g i e
Length: 1 word
313

Appendix A

Shift Right Circular SRC
Mnemonic and Addressing Modes: SRC R,C

Result: ==~= C places ==-=>
01 14 15
Lt i SO ARt 2
(R) = +===>| X| X| « . . | X| X]-==+
Ll e A e aht S

4
T

M
*

Operation: Shifts the contents of the register to the right by the number

of bit positions specified by the count, C.. If C is 0, the shift count
is specified by the number in the rightmost nibble of Register 0, If C
is 0 and the rightmost nibble of register 0 is zero, the bits in the
register are shifted 16 positios. Each bit shifted out of bit position
15 (the right end of the register) goes to bit position 0 (the left end
of the register). The state of the last bit shifted out is recorded in
the Carry status bit.

Status Bits Affected:
0 1 2 3 4 5 6 7 8 9101112131415

| ma e o] ow | | en | e | w |] wnw]| e] ew]] -

L>|A>|EQ(CY

Ead EC N DN BTN TN I TR TN I T PP PR [P PR PRV (PR ey

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly. The Carry status bit is a copy of
the last bit shifted out.

Notes: The SRC 1instruction can be used to rearrange the position of bits in
a word without changing their order. Notice that after a SRC
instruction is performed, the sign bit (bit position 0) is the same as
the state of the Carry status bit.

Example: SRC R8,2
Before After
(R8) = >9A74 >269D

L>=1,A>=1,EQ=0,CY=0
Machine Code: '

Hex €===) ===> (=== B ===> (emm = av=d Lmmm - mmm)
01 2 3 45 6 7 8 9101112131415

PUY [PV [GEY DEVES puiy [V U v -..I--|-- --I--l--l--

Binary 6f o] o of 1] 0] 1} 1 l R
;

Length: 1 wor

314

Instruction Summaries

Shift Right Logical SRL

Mnemonic and Addressing Modes: SRL R,C

Result: -=== C places -===>
01 14 15
domdmmpem [mpemte=t

(R) = +===>| X| X| . . . | X] X]|

fm—pm—p— / e

Operation: Shifts the contents of the register to the right by the number
of bit positions specified by the count, C. If C is 0, the shift count
is specified by the number in the rightmost nibble of Register 0. If C
is 0 and the rightmost nibble of register 0 is zero, the bits in the
register are shifted 16 positions. The vacated bit positions are filled
with zeros. The state of the last bit shifted out is recorded in the
Carry status bit.

Status Bits Affected:

01 2 3 45 6 7 8 9101112131415

PRy Dy pigsy prosy puviy puvny pree PN PR EE I E S ELE BN KUl Eald Kaded

L>|A>{EQ|CY

JEpY DRgly Divy iy pivey sy PV P R ELI B Bl Bl Baned Rl Bacedd

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly. The Carry status bit is a copy of
the last bit shifted out.

Notes: The SRL instruction can be used to perform a division by 2 when the
number in the register is an unsigned value. It's also useful in
situations where each bit is a data item; for example, the state of a
specific switch, You might use the SRL instruction to check the
cgngitiﬁ?"?f the swithch by shifting its bit image into the Carry
status .

Example: SRL R8,2
Before After
(R8) = >3A74 >0E9D

L>=1, A>=0, EQ =0, CY =0
Machine Code:

Hex Gmm=) ===> (=== § ===> Kmm= = === (ams = wms)
01 2 3 45 6 7 8 9101112131415

Binary ol oj of of 1j 0] O} 1 ¢

Y RN PGS PIVEY pEvE PIVES DIV I --l-.. --l--l--l-_

Length: 1 word

315

Appendix A

Store Communicaton Register Unit STCR

Mnemonic and Addressing Modes: STCR S,C

Result: The number of CRU selected bit addresses determined
by € ~=> (S)

Operation: Reads the number of bits specified by C into the source operand
from consecutive CRU bit addresses. If C is zero, 16 bits are read in,
If the number of bits specified is greater that 8, the source operand is
a word address; otherwise, it's a byte address. The bits read into the
contents of the word or byte addressed by the source operand fi11 the
word or byte from right to left. Any unfilled bit positions in the
source operand are forced to zero, The CRU hardware base address (the
contents of R12, bits 3 through 14) selects the first CRU bit address
and subsequent bits read in come from the subsequent CRU bit addresses.
The content of R12 is unchanged. The bits are read in sequentially on
the CRUIN 1line.

Status Bits Affected:

01 2 3 456 7 8 9101112131415

L>|A>|EQ 0

LRI R I I

o

mmlon]l on| e | eoe]| ca] en] -

The entire content of the source operand (not Just the
transferred bits) is compared to zero and the Logical
Greater Than, Arithmetic Greater Than, and Equal status
bits are affected accordingly. If the source operand is
a byte address, the 0dd Parity status bit is affected
based upon the number of one bits in the contents of the
source operand.

Notes: The STCR instruction reads in a multiple number of bits (up to a
maximum of 16) from a series of CRU bit addresses.

Example: LI R12,>400
STCR @STATUS, 4

Reads in 4 bits from CRU bit addresses hexadecimal 200 through 203 into
the contents of byte address STATUS, bits 7 through 4 (from right to left).

Machine Code:
Hex === 3 === (mme = mms) (eme = mes) (mem a mem)

0 1 2 3 45 6 7 8 9101112131415

PR 0 S oy ey vy --l--l-- --l-- --l--l--l--

Binary 0ol 1{1]1]0 c Ts R's

Uy RN 55y iy [P --I--I--l-- --I-- --I--I--l--

Source Address

- e m e e e e @ meewee ®memmeew momeom e

Length: 1 or 2 words

316

Instruction Summaries

Store Status STST

Mnemonic and Addressing Modes: STST R
Result: (ST) -=> (R)

Operation: The contents of the register is replaced with a copy of the
contents of the Status Register.

Status Bits Affected:

0 1 2 3 4 5 6 7 8 9101112131415
No status bits are affected.

Notes: You can use the STST instruction to save the contents of the Status
Register. This might be useful for determining the state of the X
status bit (for which there is no conditional jump instruction) or for
analyzing the number in the interrupt mask.

Example: STST R15
The contents of the Status Register is copied into Register 15.

Machine Code:

Hex gm== () ===> (=== 2 ===> === [===> &=es = ===
01 2 3 45 6 7 8 9101112131415

I Y L L

Binary o] of o] of o] of 1} O| 1f 1) 0] O

JEUY DUURY DN PRI DEVES DIV SEV B Ead B B --I-..I....I--

Length: 1 word

317

Appendix A

Store Workspace Pointer STWP

Mnemonic and Addressing Modes: STWP R
Result: (WP) --> (R)

Operation: The contents of the register is replaced with a copy of the
contents of the Workspace Pointer.

Status Bits Affected:

0 12 3 456 7 8 9101112131415

No status are bits affected.

Notes: You can use the STWP instruction to save the address of the current
workspace, This is sometimes useful in a subroutine so that the
subroutine can remember the address of its current workspace, use a
different workspace for a while, and then restore the address of its
orignal workspace to the Workspace Pointer.

Example: STWP R13

The address value in the Workspace Pointer is copied into Register 13.

Machine Code:

Hex Co== 0 =m=> Come 2 ==md (mmm | =) (mmm = ams)
01 2 3 45 6 7 8 9101112131415

Ll B Y T [y [FSony piviy [upiy piviy [Ny DIV DU --I--I--l--

Binary 0] 0 o] of of o] 1f ol 1] 0| 1] © R

ESl U VN PN VY PUVRY DIVES JUVES PENEY PRI DU PO --l--l--l--

Length: 1 word

318

Instruction Summaries

Swap Bytes SwPB

Mnemonic and Addressing Modes: SWPB S

Result: (S) Bits 0 through 7 --> (S) Bits 8 through 15
(S) Bits 8 through 15 -=> (S) Bits 0 through 7

Operation: Swaps the two bytes in a word.

Status Bits Affected:

0 1 2 3 456 7 8

| e | v wn | ma | e]| vw| aw] =] -

w0

10 11 12 13 14 15

Notes: Although you can use the SWPB instruction to swap the two bytes in a
general memory word, it's used more often to exchange the two bytes in a
register. In order to perform a byte operation with the contents of a
register, the byte must be in the left half of the register. The SWPB
instruction can be used to place the right byte of a register in the

No status bits are affected.

left half.
Example: SWPB R4

Before After
(R4) = >BC5A >5ABC

No status bits affected.

Machine Code:

Hex Qmm= () ===> L~== f ===> (=== = === Kwws = ===
01 2 3 45 6 7 8 9101112131415

o B B B B e e L LU

Binary ol oj of] oj O] 1] 1J 0] 1] 1| Ts

Rs
S o e e o e

Source Address

Length: 1 or 2 words

319

Appendix A
Set Zeros Corresponding SZ¢
Mnemonic and Addressing Modes: SIC §,D
Result: Complement (S) AND (D) ~~> (D)

Operation: Sets to zero all those bits in the contents of the destfination
operand that correspond to the position of one bits in the source
operand, Leaves unchanged those bits in the contents of the destination
operand that correspond to the position of zero bits in the source
operand. Both operands are word addresses.

Status Bits Affected:

01 2 3 456 7 8 9101112131415

bt Kidl Ol DN I TN IO T (S PP (PR) PNy [Ny (I (DUQNG DEREN [

L>|A>|EQ

- | - el D DN DN LY T VY PP D) [PUUSN) [eity [PEGIN (VIR (g

v

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The SZC instruction can be used to force selected bits in a word to
zero, The computer ANDs the complement of the contents of the source
operand with the contents of the destination operand,

Example: SZIC @BITMSK,R1

Before After
(BITMSK) = >A60F >A60F
(R1) = >BC5A >1850

L>=1,A>=1, EQ =0

(BITMSK) = 1010 0110 0000 1111
(R1) Before = 1011 1100 0101 1010

(R1) After = 0001 1000 0101 0000

Machine Code:
Hex === 4 ===) (=== = ===} (emm e ema)d (o= = ame)

0 1 2 3 45 6 7 8 9101112131415

Binary of1fojO]Td Rd Ts Rs

R [PV VY --I-- --I-- |- ...I.~ |- --I--

Source (or Destination) Address

-, M m em mm e eeeewomomememewomeoemoeow m o

Length: 1 or 2 or 3 words

320

Instruction Summaries

Set Zeros Corresponding Byte SZCB

Mnemonic and Addressing Modes: SICB S,D

Result: byte
Complement (S) AND (D) -=-=> (D)

Operation: Sets to zero all those bits in the contents of the destination
operand that correspond to the position of one bits in the source
operand. Leaves unchanged those bits in the contents of the destination
operand that correspond to the position of zero bits in the source
operand. Both operands are byte addresses.

Status Bits Affected:
01 2 3 45 6 7 8 910111213 1415

e | mm | v | | ca]| | e | an | ca |]| ca]mw | o] aa] e

L>[A>|EQ op

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly. The 0dd Parity status bit is set
1f the byte result contains an odd number of one bits;
otherwise, it's cleared to zero.

Notes: The SZCB instruction can be used to force selected bits in a byte to
zero. The computer ANDs the complement of the contents of the source
operand with the contents of the destination operand.

Example: SZCB GBITMSK,R1

Before After
(BITMSK) = >A60F >A60F
(R1) = >BC5A >185A

L>=1, A>=1, EQ=0, OP =0

(BITMSK) = 1010 0110 0000 1111
(R1) Before = 1011 1100 0101 1010

(R1) After = 0001 1000 0101 1010
<= Not =->
changed
Machine Code:
Hex Gmmm B mm=) (m== = =ma) (~mm = mm=) (mmm - ~e=)

01 2 3 45 67 8 9101112131415

Binary 0j 101 1] Td Rd Ts R's

Sy IUUY vy PEVS -..|-- PRy UV VY (VIS PV iy [y IR R e

Source (or Destination) Address

[. . T T e e T

P T T T e e e

Length: 1 or 2 or 3 words

321

Appendix A

Test Bit T8

Mnemonic and Addressing Modes: TB Displacement

Result: State of bit at selected CRU Bit Address --> EQ
status bit

Operation: Reads the state of the bit at the selected CRU bit address. The
state of the bit is recorded in the Equal status bit, The bit address
is the 12-bit sum of the CRU hardware base address (the contents of R12,
bits 3 through 14) and the displacement operand (a number in the range
of =128 through +127). The 12-bit sum appears on the computer's address
1ines A3 through Al4. Address lines A0 through A2 are forced to zero.
The selected bit is read in on the CRUIN line.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

E

malme | oo | ae] ox | oce | .-

o

m—mloa|lmeon | ca | cw | cw | ww] -

The Equal status bit is set to the state of the bit read in.

Notes: The TB instruction reads the state of a CRU input bit so that its
state can be tested.

Example: LI R12,>400
M 0
JEQ ON

The JEQ instruction causes a jump to the instruction labeled ON if the
CRU bit at address hexadecimal 200 is a one,

Machine Code:

Hex €mmm] ===> (mm= F omem) Lem= = mme) (mme m mee)
01 2 3 45 6 7 8 9101112131415

AT AP R

Binary 0} O] O 1{ 1§ 1] 1 1 Displacement

e e e e e e e R R R R

Length: 1 word

322

Instruction Summaries

Execute X

Mnemonic and Addressing Modes: X S
Result: Performs the instruction at the operand address.

Operation: Performs (executes) the instruction specified by the operand
address and program control returns immediately to the location
following the X instruction, unless the executed instruction is one
which performs a transfer of program control (e.g, a branch or jump
instruction). If the executed instruction is a jump which causes a
transfer of control, the jump is made relative to the location of the X
instruction. If the executed instruction requires more than one word of
machine code, the word or words following the X instruction are used for
operand addresses.

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

eyl i e e I IR e e e R R N I D

| me | vw | v | v | caen] | e we | cn] an] mw] o= |] o

No status bits are affected by the X instruction itself,
but the executed instruction affects the status bits.

Notes: The X instruction is sometimes useful in situations where a program
constructs the machine code for an instruction and then performs it.
Proceed with caution when using the X instruction.

Example: tmemmnna- X GGLOBAL
------ ===t
--~> GLOBAL A R8,R3 ----l

Executes the Add Words instruction at GLOBAL and returns to the location
following the X instruction.

Machine Code:

Hex Cmm=) ===> C~== 4 =~==> (=== = ===} (~== = ===>
01 2 3 45 6 7 8 9101112131415

S I O L L e

Binary ol of 0f OJ O] 1j 0l O}j1 O] Ts Rs

Y PUVES DI PV VN PUVEN) DUV PV --l-- --I-- --I--l-..l-..

Source Address

Length: 1 or 2 words

323

st

e

Appendix A

Extended Operation xop

Mnemonic and Addressing Modes: XOP S,C

Result: (>40 + 4 x C) ~~> (WP)
(>42 + 4 x C) -~> (PC)

(o1d WP) --> (new R13)

(o1d PC) ~~=> (new R14)

(o1d SR) --> {new R15)

S ~==> (new R11)

Operation: Performs a context switch using the two-word vector specified by
the second operand. The second operand is multiplied by four and added
to hexadecimal 40. The result is the address of the first word of the
two-word vector and it contains the address of a new workspace. The
second word contains the address of a program to which a transfer of
control is made, When the XOP instruction is perfomed, the current
contents of the WP, PC, and SR are stored in Registers 13, 14, and 15,
respectively, of the new workspace. Also, the address of the first
operand is stored in Register 11 of the new workspace.

Status Bits Affected:

0 1 2 3 456 7 8 9101112131415
The Extended Operation status bit is set.

Notes: The XOP instruction performs a context switch using a vector within
a fixed area of memory.

Example: XOP @PARAM,1

A context switch is performed using the contents of memory locatfons
hexadecimal 44 and 46 as a two-word vector, The address value of PARAM
is placed in Register 11 of the new workspace.

Machine Code:

Hex === 2 ===> (=== = mmm) Lmms = mmm) (mme — —me)
0 1 2 3 456 7 8 9101112131415

o o B B e i e A
¢

Binary 0] 0] 11 0] 1] 1 Ts Rs

Ry RVRY [Py iy pIGRy PRV -..I..-I.....l-- --I-- --l..-l....l-..

Source Address

- e m m m e e m m o momoeom e omomoeoamom e e o

Length: 1 or 2 words

324

Instruction Summaries

Exclusive Or XO0R

Mnemonic and Addressing Modes: XOR S,R

Result: (S) XOR (R) ~--> (R)

Operation: Performs a logical exclusive OR operation between the bits in
the source operand and the bits in the destination register. The result
replaces the contents of the destination register,

Status Bits Affected:

0 1 2 3 45 6 7 8 9101112131415

L>|A>|EQ

mw| | | | ww | mn | e | v | wce | cal e en]|mw | vl wa] v

The result is compared to zero and the Logical Greater
Than, Arithmetic Greater Than, and Equal status bits are
affected accordingly.

Notes: The XOR instruction is useful for selectively complementing bits in
a register. Bits in the destination register are complemented for which
there are one bits in the corresponding bit positions of the source
operand.

Example: XOR @BITMSK,R1

Before After
(BITMSK) = >A60F >A60F
(R1) = >BC5A >1A55

L>=1,A>=1,EQ=0

(BITMSK) = 1010 0110 0000 1111
(R1) Before = 1011 1100 0101 1010
(R1) After = 0001 1010 0101 0101

Machine Code:

Hex Cmm= 2 ===)> Kmmm = mmm) (mme = mmm) (mme - =)
01 2 3 45 6 7 8 910111213 1415

Binary 0j 0j 1] 0} 1] 0O R Ts Rs

e e o B e

Source Address

Length: 1 or 2 words

325

Appendix B

Number Tables

Hexadecimal Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
c 1100 12
D 1101 13
E 1110 14
F 1111 15

Even Byte

Hex Dec Hex

0
4,096
8,192

12,288
16,384
20,480
24,576
28,672
32,766
36,864
40,960
45,066
49,152
53,248
57,344
61,440

TIMOO@POVONONDHWNI=O
MMmOOOMPOENONAEWNEO
TMMOOWPOVRENOANHWN-HO

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

326

Appendix C

ASCII Character Table

ASCII CHARACTER SET

Character

NUL-Null

SOH~Start of Heading
STX-Start of Text
ETX-End of Text
EOT-End of Transmission
ENQ~Enquiry
ACK-Acknowledge
BEL~Bell
BS-Backspace
HT-Horizonatal Tab
LF~Line Feed
VT-Vertical Tab
FF-Form Feed
CR~Carriage Return
S0-Shift Qut
SI-Shift In

DLE-Data Link Escape
DC1-Device Control 1
DC2-Device Control 2
DC3-Device Control 3
DC4-Device Control 4
NAK-Negative Acknowledge
SYN~Synchronous Idle
ETB-End of Transmission Block
CAN~-Cancel

EM-End of Medium
SUB-~Substitute
ESC~Escape

FS~File Separator
G65-6Group Separator
RS~-Record Separator
US-Unit Separator
Space

1o 4+ %orr~ “QOJRH W B om

-~e

Binary

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
001
001
001
001
001
001
001
oot
001
001
001
001
001
001
001
010
010
010
010
010
010
010
010
010
010
010
010
010
010
010
010

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

LCONONLWN-O

327

Appendix C

328

ASCII CHARACTER SET (Continued)

Character Binary Hex

011 0000 30
011 0001 31
011 0010 32
011 0011 33
011 0100 34
011 0101 35
011 0110 36
011 0111 37
011 1000 38
011 1001 39
011 1010 3A
011 1011 3B
011 1100 3C
011 1101 30
011 1110 3E
011 1111 3F
100 0000 40
100 0001 41
100 0010 42
100 0011 43
100 0100 44
100 0101 45
100 0110 46
100 0111 47
100 1000 48
100 1001 49
100 1010 4A
100 1011 4B
100 1100 4C
100 1101 4D
100 1110 4E
100 1111 4F
101 0000 50
101 0001 51
101 0010 52
101 0011 53
101 0100 54
101 0101 55
101 o110 56
101 0111 57
101 1000 58
101 1001 59
101 1010 5A
101 1011 5B
101 1100 5C
101 1101 50
101 1110 5E
101 1111 5F
110 0000 60

NS ECCANAAOTVOZIrRUHIMTMMOOTPADUOV I Ace e OONOTHRWNEHO

Decimal

48
49
50

ASCII CHARACTER SET (Continued)

Character Binary Hex

110 0001 61
110 0010 62
110 0011 63
110 0100 64
110 0101 65
110 0110 66
110 0111 67
110 1000 68
110 1001 69
110 1010 6A
110 1011 6B
110 1100 6C
110 1101 6D
110 1110 6E
110 1111 6F
111 0000 70
111 0001 71
111 0010 72
111 0011 73
111 0100 74
111 0101 75
111 0110 76
111 0111 77
111 1000 78
111 1001 79
111 1010 7A
111 1011 78
111 1100 7C
111 1101 70
111 1110 7E
DEL~Delete, Rubout 111 1111 7F

NKXECCHNITONTDUOST =X TAQHOQAMNTH

ASCII Character Table

Decimal

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

329

Index

Addressing formats, 59 Labels, 41, 46
AND operation, 179, 180 Language, levels 5, 6
ASCII, 29 Levels, language 5
Assembler, 8, 10, 91, 94, 234, 235 Listing, 8, 96, 99
Assembler errors, 232 Loader, 8, 103
Logical operations, 179
BASIC, 6, 9, 11, 25, 30, 42, 45, 86 Loop. 79, 87
Binary, 12, 62 Machine language (code), 5, 62, 237
Bit, 12 Memory, 12, 33, 34
Branches, 195
Bug, 8 Negative numbers, 25
Buzzwords, 4, 8 Nibble, 12
Byte, 12 Niblet, 12
Byte operations, 72 Number Conversion, 13, 15, 16, 19, 20, 22, 26
Carry status, 164 Object program, 8, 95
Character codes, 29 Operands, 42, 46, 61, 221
Comments, 42, 47, 48 Operation code, 42, 46
Computer languages, 5 OR operation, 179, 183
Conditional jump, 38, 82, 151 Overflow status, 164
Context switching, 195, 198
CPU, 35 Parity bit, 29
CPU RAM, 34 PC-Relative addressing, 59, 81, 248
CRU, 39, 59, 209 Positiional notation, 14
CRU Addressing, 59, 209 Program, 5
Program Counter (PC), 36, 107, 199

Desinsion spernd, 01 Radis, 14

y RAM, 33

Directives, 42, 46, 223

Double word, 13 Read-only memory, 33

Read/write memory, 33

Register Direct addressing, 59, 63

Register Indirect Autoincrement addressing, 59, 66
Register Indirect addressing, 59, 65

Relocation, 222

ROM, 33

Editor, 8, 91, 92
Exclusive OR operation, 179, 186
Expressions, 221

General addressing modes, 59, 242

GROM, 34 Shift counts, 131

Hexadecimal, 13, 62, 113 Shifting, 125

Sign bit, 26
Signed values, 25
1/0, 33 Source operand, 61
Immediate addressing, 59, 77 Source program, 8, 95
Indexed addressing, 59, 70 Statement fields, 41
Instruction summary, description, 60 Status Register (SR), 36, 38, 39, 107, 199
Interrupts, 202 Subroutines, 193
Symbolic addressing, 59, 68
Jump, conditional, 38, 82, 151 Syntax, 45

330

Translation, 7
Two’s complement, 25, 171

VDP RAM, 34
Vector, 198

Word, 12, 34
Workspace Pointer (WP), 36, 107, 199

XOR operation, 179, 186

331

Ready to learn the anatomy of assembly language statements?
Addressing formats? Instructions such as move byte, jump, logical,
and subroutine? Machine code formats and more? Plug in your TI
and read on!

With this book in hand, you can actually talk to your T/ in its
own language—and have more direct control over its hardware
components. These are the very same components that make it
possible to create and run new programs much more rapidly than
with any other language—as well as generate sophisticated graph-
ics, sound, and speech.

Learning Tl 99/4A Home Computer Assembly Lan-
guage Programming deftly explains the all-important information
that is often obscured—or even omitted—from the standard docu-
mentation that comes with your machine and software. One bite at a
time, using a variety of teaching approaches, it clarifies the often-
mysterious inner workings of the Tl—so much so that it makes
assembly language mastery painless—even exciting!

Here’s just a sample of what you’ll learn:

® basic concepts of assembly language programming
e the structure of TlI's existing programs—

and how to make use of other programs

in assembly language
* how to customize programs to fit your own purposes
how to originate your own programs
e what extra support tools are available

and what they can do
e and much more.

Cover design © 1984 by Jeannette Jacobs
WORDWARE PUBLISHING, INC. Plano, Texas 75074

ISBN 0-915381-5kL-7

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013
	content014
	content015
	content016
	content017

	back-cover

