

Introducing LOGO
For the Apple IIComputer,Texas Instruments 99/4Aand
TandyColor Computer

Introducing LOGO
For the AppleII Computer, Texas
Instruments 99/4A and
Tandy Color Computer

Peter Ross

A
••

Addison-WesleyPublishing Company
Reading, Massachusetts• MenloPark,California
London • Amsterdam

Don Mills, Ontario • Sydney

This book is in the
Addison-WesleyMicrocomputer Books

Popular Series

Copyright© 1983 by Addison-Wesley Publishing Company, Inc.

Allrightsreserved. Nopart of thispublication maybereproduced,
storedin a retrieval system, or transmittedin anyformor by any
means,without the prior written permissionof the publisher.
Published simultaneously in Canada.

Setby theauthorusingnroff, theUNIX text-processing system, at the
Universityof Edinburgh.

Printed in Finland by Werner S6derstr6mOsakeyhtio, Memberof
Finnprint.

Cover design by DesignExpoLimited.

ISBN 0-201-14652-5

ABCDEFGHIJ-876543

For Susan

Contents

Chapter 1 Introduction

1.1 Programming As A Tool For Exploring Ideas
1.2 Some History
1.3 A Digression About Artificial Intelligence (A.I.)
1.4 About This Book

1.5 Thoughts For Teachers
1.6 The Layout Of The Book

1

1

6

8

10

10

12

Chapter 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Turtle Graphics 15

Introduction 16

The Basic Turtle Graphics Commands 16
Some Terminology 18
Drawings 19
Variables 28
Arithmetic 30
2.6.1 Large Numbers 33
2.6.2 Other Arithmetic Procedures 34
More About Drawings 35
2.7.1 Controlling How The Screen Is Used 35
2.7.2 Putting Variables And Arithmetic To Use 37
2.7.3 Cartesian Drawing Procedures 44
2.7.4 Curves 47

Chapter 3 Procedures

3.1 Creating New Procedures
3.2 Procedures With Inputs

3.3 Crude Animation - A Study
3.4 Thoughts About Working With Procedures

3.4.1 A Bottom Up Approach
3.4.2 A Top Down Approach
3.4.3 Comparing The Two Approaches
3.4.4 Afterthought

3.5 Another Study - A Ticking Clock

49

49

54

57

63

63

64

66

67

68

3.6

3.7

3.8

3.9

3.10

More About Procedures 71
3.6.1 An Example - Bouncing The Turtle 76
3.6.2 Another Sort Of Conditional Command 78
More About Recursion 79
3.7.1 Filling Areas With Colour 81
3.7.2 Output By A Recursive Procedure 82
Diagrams Drawn By Recursion 85
Afterthought 88
Filing And Other Conveniences 89

Chapter 4 Words And Lists

4.1 Words

4.2 Beautiful Printing, Part 1
4.3 New Words From Old

4.4 Lists

4.5 Using Lists
4.5.1 Informative Messages
4.5.2 Constructing Lists From Bits
4.5.3 Dissecting Lists
4.5.4 What Is Needed?

4.6 Lists And Turtle Graphics
4.6.1 Playing With Scale
4.6.2 Simple Shape Recording
4.6.3 The State Of The Turtle

4.7 Two Non-graphic Examples
4.7.1 A Calculator

4.7.2 Beautiful Printing, Part 2

Chapter 5 Undertaking A Project

5.1 Generalities

5.2 Nested Polygons
5.2.1 The Question

5.2.2 Representing The Hexagon
5.2.3 Producing The Nested Hexagon
5.2.4 Trying it Out
5.2.5 Problems And Doubts

5.2.6 The New Nest Procedure

5.2.7 Fault Tracing
5.2.8 More About Nested Polygons
5.2.9 The Next Snag

5.3 Different Number Bases

5.3.1 First Thoughts
5.3.2 Difficulties

5.3.3 Redesigning The Procedure
5.3.4 Recovering The Base 10 Form

92

92

96

98

100

102

102

104

107

109

117

117

119

120

120

120

122

125

125

126

126

128

130

131

132

133

134

135

137

139

140

142

144

145

5.3.5 Improving CONVERT And DEC
5.3.6 Arithmetic In Any Base

5.4 A Final Project

Chapter 6 Ideas And Where They Might Come Fr

6.1 Picking A Project
6.2 Evaluating Ideas
6.3 Looking For Ideas
6.4 When In A Mess

Chapter 7 Projects

7.1 Projects With Clear Targets
7.1.1 Drawings
7.1.2 Rotation And Reflection Of Shapes
7.1.3 Precise Arithmetic

7.1.4 Tangrams

7.2 Open-ended Projects
7.2.1 Mazes

7.2.2 Language Programs
7.2.3 A Database

7.2.4 Simple Pattern Recognition
7.2.5 Games

7.3 Beyond Logo
7.4 In Conclusion

Appendix A Terrapin Logo

Appendix B Apple Logo

Appendix C Ti Logo

Appendix D Radio Shack Color Logo

Appendix E Research Machines Logo

Appendix F Answers

Index

147

147

148

149

149

150

150

154

156

156

156

156

160

162

164

165

168

171

175

175

176

178

179

189

203

213

224

235

244

Apple, Apple II and Apple LOGO are registered trademarks of Apple Computer, Inc.
Tl LOGO is a registered trademark of Texas Instruments Incorporated.
Radio Shack is a registered trademark of Tandy Corporation.

CP/M is a registered trademark of Digital Research.

ACKNOWLEDGEMENTS

The work of the LOGO group in the Department of Artificial Intelli
gence at the University of Edinburgh owes much to many people:
Ben du Boulay. Colin McArthur. Fran Plane. Tim O'Shea. Peter
Ross. Ken Johnson. Ena Inglis as well as the head of the whole
enterprise Jim Howe. Others too numerous to mention have contri
buted significantly. This book has been influenced greatly by the
work of ail of these people; although it was written by one of us.
all have had a hand in its origins. The Social Science Research
Council has supported the LOGO work at Edinburgh for many years
- this book would not have existed without their continued support
of the group's work.

I would like to thank Geoff Cumming and Jim Howe for reading
through the first draft of this book and making lengthy and valu
able comments about its contents. My wife Susan O'Brien spent
many hours correcting my spelling and style, and encouraged me
at every stage - you owe her a lotl

Four quotations have been used:

From THE HOUSE AT POOH CORNER by AAMilne. Copyright 1928 by EP.Dutton. Copy
right renewal 1956 by AAMilne. British copyright Methuen Children's Books Ltd

From WINNIE-THE-POOH by AAMilne. Copyright 1926 by EP.Dutton Co. Copyright
renewal 1954 by AAMilne. British copyright Methuen Children's Books Ltd.

They are reprinted by kind permission of Methuen Children's Books Ltd and EP.Dutton,
Inc.

Chapter 1
Introduction

"Clever!" said Eeyore scornfully, putting a foot
heavily on his three sticks. "Education!" said
Eeyore bitterly, jumping on his six sticks. "What
is Learning?" asked Eeyore as he kicked his twelve
sticks into the air. "A thing Rabbit knows! Ha!"

(The House at Pooh Corner. A.A.Milne)

Aims This chapter gives some background and historical informa
tion about LOGO, and tries to explain why LOGO is different
from the majority of programming languages. It also
describes the structure of the book. LOGO programming
doesn't appear until chapter 2. but you'd be well advised to
start reading this chapter first ...

1.1 PROGRAMMING AS A TOOL FOR EXPLORING IDEAS

LOGO is a computer programming language.

For some time now. it has been widely held that learning to pro
gram a computer gives you skills which are very valuable in
worlds other than that of computing. There is clearly some truth
in this; although computers work fast, they follow instructions pre
cisely, and programming therefore requires you to be explicit and
orderly when expressing what you want the computer to do for
you. If you are not. then it does not do what you want, and
either you have to re-thlnk your instructions to the computer or
you have to modify your goals. The habit of precise thinking that
you can learn from this can be very useful in other areas of your
life. Unfortunately, it is hard to anticipate how much you can
gain by learning to program until you embark on it and find out

for yourself. The chief question is. are the benefits worth the
effort? Some of the non-technical arguments made in this chapter
might help you to decide this (so keep reading).

Computers, whatever their cost or size, consist essentially of
the following ingredients:

(a) one or more processors (CPUs) which obey instructions,

(b) some internal memory.

(c) some external memory, such as floppy disks.

(d) some links between what is inside the computer and what

is outside, such as a keyboard, a screen, perhaps a
printer or some 'paddles'.

A computer can therefore be characterised as a quantity of
'empty space' (ingredients (b) and (c» and some restrictions on
what you can do with it (ingredients (a) and (d)). Within the res
trictions, only your own imagination limits what you use the empty
space for. Normally, some of the empty space is given over to a
set of tools, called the operating system, which makes the rest of
the computer's facilities much easier to use. For example, one
common task much in demand as a small part of larger tasks is

that of capturing what is typed on the keyboard at appropriate
momenis. if you had to spell out every detail of this each time
you wrote a program employing it. you might well decide to give
up in disgust at the effort required. Having an operating system
means that you sacrifice a little of the flexibility of the computer
for the sake of being able to make it do such frequently required
tasks much more easily.

This trade-off between flexibility and ease of use is also a
major factor in the design of programming languages. Any
language makes some kinds of tasks slightly easier and others
slightly harder to express than another language; indeed, in some
cases the difference is more than slight. Many of the popular
programming languages now In use are 'structured'; that is. they
allow you - and in fact are designed to encourage you - to chop
up the task you want the machine to do. into a series of smaller
sub-tasks. You can chop up the sub-tasks too. into finer and finer
bits, to the point where each sub-sub-..-task is simple to explain
and to program.

This decomposition of something large into smaller and more
manageable parts is not peculiar to the world of programming and

computers. For example, suppose you decide to repaint your
living-room. You do not immediately think "i must find the car
keys/get the bus" (unless neurotic about the subject), you are
likely to start by thinking "I must get some paint... white. I think..."
and then to go on to plan where to get it. and so on. it may be
only moments, or it may be days, before you arrive at the first
action, namely finding the car keys or finding some money,
necessary to the first sub-task of getting some paint. Unfortunately,
not many people make the most of this approach - you go to the
shops, buy the paint and return home, and then realise you don't
have a single adequate paintbrush.

The knack of tackling problems sensibly, by tackling only
manageable chunks at a time and in a sensible and effective
order, is one of those skills which might be more easily learned
or improved through the experience of programming than by other
means, in the world of programming, there are not so many of
those discordant distractions (such as "I shouldn't be doing this
painting, it'll be a mess, and anyway I can't afford either the time
or the money"). Also, making mistakes is safe and cheap, and the
computer makes it clear that there is something wrong when you
have made a mistake - even if only by failing to react as
expocted.

There are drawbacks. A computer is immensely less tolerant
than you are of leaving things unsaid. Programming languages
mostly require you to be very precise about what it is you want
the computer to do. and to express it in terms convenient for the
machine rather than in some language which would seem ade
quately precise to you. For example, the following is a small frag
ment taken from the start of a program written in PASCAL-

PROGRAM ANALYSE(INPUT.OUTPUT);
VAR N. TOTAL: INTEGER;

BUFF: PACKED ARRAYt0..51U OF CHAR;

etc.

To write in PASCAL you must know quite a lot before you start.
You need to know what punctuation is required where, what vari
ous keywords such as INPUT. VAR and INTEGER mean, when to
use round brackets and when to use square brackets, and so on.
If you have programmed before, you will certainly know that being
careless about such things causes you considerable frustration.
There are many other rules that you need to be aware of as
well, rules which have no effect on the look of what you write but
do concern the content. An example is that, in PASCAL on various
microcomputers, quantities specified as INTEGER which you might

expect to behave like everyday integers, in fact cannot be bigger
than 32767. Naturally, most people who start to learn PASCAL do
not think of writing programs which involve large integers. If in
due course you do. surprising things happen when you run the
program. Attempts to deal with integers larger than 65536 will be
pointed out as faults (normally in terms drawn from computer jar
gon, a vast and expanding source of linguistic horrors). However,
if some calculation ought to result in an integer between 32768
and 65536 then the result will actually be treated as a negative
integer between -32768 and 0. If you do not know about this, it
will cost you a lot of effort to find out. because it is not a fault
as far as the machine is concerned.

Because normally you need considerable knowledge about the
computer itself, knowledge which Is not really relevant to your
intentions but only to expressing them, you therefore need consid
erable commitment or interest when you first start to learn to pro
gram. Of necessity, you have to start with a fairly simplistic set of
beliefs about what is really going on inside the computer, and
have to take many things on trust or keep them at arm's length
by classifying them as black magic. This is sad. because it deters
many people from mastering the use of very powerful and versatile
tools for intellectual exploration and enjoyment. With a computer,
you can simulate nearly anything you can imagine; having a simu
lation, you can investigate it.

That assertion deserves some comment. Various uninformed

ideas about computers still circulate, for instance

"They are only very good at dealing with numbers"

"A microcomputer is really only capable of games"

"Writing computer programs is for masochists"

The true strength of computers lies in the fact that they manipu
late symbols, according to rules provided by the user. The sym
bols might be represented within the computer as groups of binary
digits, but it is the interpretation of the symbols that matters, and
that is up to the user - the computer merely obeys the rules.
Suppose, for example, that you want to display Russian text on
your microcomputer. You could represent the letters of the Russian
alphabet as the numbers 1 to 33 and their upper case equivalents
as the numbers 34 to 66. Then you could incorporate various
rules within a program, such as

If key 'A' is pressed, store the number 1 (so key 'A'
corresponds to the first letter of the Russian alphabet). If

key 'B' is pressed, store the number 2. ...etc.

To convert ail lower case Russian letters to upper case,
look at each number. If it is between 1 and 33. then
add 33 to it.

To display the letter corresponding to 1. put dots on the
screen at the following (X.Y) co-ordinates and move the
origin of co-ordinates so that the next character displayed
will be in a sensible place (for example, just to the right
of the last one).

These rules are purely to do with numbers, but they could be
incorporated into a word processing system for Russian text. The
trick of computer programming is to devise rules which operate on
numbers, as the computer knows them, such that the content of
the rules is consistent with the interpretation you want to put on
them. Usually the rules are not as straightforward as these
examples suggest. Besides deciding to represent Russian letters as
the numbers 1 to 33, you would also have to decide how to
represent words, sentences and paragraphs - probably by deciding
how to organise sets of representations of letters. One of the
important points in the later part of this book will be to do with
choosing how to represent what is to be modelled; the choice has
a big influence on how easy it is to specify the rules.

Having chosen representations for the Ingredients of what you
want to model, and thought a little about the rules, the main task
Is to translate it all into one or more computer programs. Certain
maxims are worth remembering at this point. One is that it is
better to try to be as general as possible - that way you eventu
ally build yourself a toolkit, and your programming gets easier and
faster. Another is that it is better to break the whole task into

small bits - they are easier to play about with and to modify.
These and many others will be illustrated in this book.

LOGO was designed to avoid most of the initial hurdles in
learning to program, and yet to be very powerful. In particular,
you need know nothing about the guts of your computer before
you start, and you can get Interesting results for your efforts
almost at once. After all, the whole point of using a computer is
to make interesting things happen on your terminal or elsewhere
outside the machine. In short. LOGO offers the power in modelling
and expression which might be found in other languages, yet
avoids much of the bureaucracy and specialised computer science
that other languages demand. It is not intended to be the ultimate
in programming. In general, what can be done In one language

can be done in any other, perhaps more awkwardly and perhaps
more simply.

1.2 SOME HISTORY

LOGO was designed at Bolt Beranek and Newman Inc in Cam
bridge. Massachusetts, in the late 1960s and so is younger than
most other languages. It was created as part of an experiment to
test the idea that programming might be a useful educational dis
cipline to teach children. The first research project was closely
related to mathematics and the ideas it sought to test were,
roughly, these:

Programming might be the basis for a useful language, not
directly linked to computing, in which to talk about
problem-solving divorced from the background of any par
ticular school subject.

Programming might be a good vehicle for illustrating some
mathematical concepts which are normally hard to grasp.

A computer, with the right programming language, could
be a wonderful 'mathematical laboratory' in which it would
be possible to experiment with abstract ideas it would oth
erwise be hard to give form to.

The word 'mathematics' being taken in a very wide sense, is the
art of being able to analyse and explore rules governing physical
or imaginary but logical worlds. The original version of LOGO was
designed by Wallace Feurzeig. Daniel Bobrow and Seymour Papert
- their design owed much to another language called LISP . now
widely used for research in Artificial Intelligence. LOGO was refined
at the Artificial Intelligence Laboratory of M.i.T. and at the
Department of Artificial Intelligence of the University of Edinburgh,
Scotland.

At first LOGO had no provision for computer graphics, thei
necessary hardware being prohibitively expensive in those days for
an education project. Then, fairly early on. graphics were incor
porated into the language, in the form of 'turtle graphics'. This

1 LISP is powerful (it was invented in the mid-1960s (at M.I.T. (who still use it for A.I.
research (as do many others (though less so in Europe (where Prolog is a strong rival
language))))) and has been much developed since) but tends to be almost unreadable
(because its syntax depends so much on parentheses)!

is now such a major facet of LOGO for beginners that many peo
ple mistakenly assume that 'turtle graphics' Is the whole of LOGO.

Graphics have probably contributed most to the success of
LOGO. Producing pictures is tremendously appealing, and offers
enormous scope for experimenting. Many other programming
languages treat graphics as an extra, 'bolted on' afterwards.
Although they offer sophisticated ways of generating pictures, it
needs a sophisticated user to understand and use their graphics-
related parts. For example, they nearly all assume a fair familiarity
with Cartesian co-ordinates; this would make them inaccessible to
a child who had not yet met them In school. LOGO'S 'turtle
graphics' avoids such traps, by providing a very simple means of
picture construction which demands no prior investment In
mathematical or computer knowledge. The essential knowledge is
merely an awareness of familiar concepts such as 'forward',
'backward', 'left' and 'right'. This makes it possible for children,
even young ones, to start using LOGO.

Various versions of LOGO appeared in the course of time.
Most American versions are recognisable as dialects of the M.I.T.
LOGO, although the version available for the Texas Instruments Tl
99/4 is somewhat unusual compared to others such as Apple
LOGO and Terrapin LOGO. Nevertheless, it too sprang from an
M.I.T. research project. An assumption underlying the work, that
went Into these versions was that LOGO would never easily fit into
the conventional maths curriculum - the curriculum would eventu

ally change to incorporate what LOGO had to offer. In the U.K. a
different dialect of LOGO evolved from research work done at the

Department of Artificial Intelligence of the University of Edinburgh
from 1972 onwards. This was based on the belief that LOGO would

best gain acceptance by being used within the conventional curri
culum in some way - evolution rather than revolution, so to speak.
Thus Edinburgh LOGO was developed, through various research
projects, to be even less demanding on the user's understanding
and prior knowledge than the M.I.T. versions. A microcomputer
version of Edinburgh LOGO exists for the 380Z and 480Z (Z80
based machines running CP/M) produced by Research Machines
Ltd. of Oxford, one of the largest suppliers of microcomputers to
British schools.

Ail the educational research carried out so far suggests that
LOGO has a great deal to offer as a means of teaching concep

tual thinking, but no survey yet has been on a big enough scale
to be conclusive. You may wonder, if it seems to be such a
good thing, why it did not become available to the public much
sooner than it did? The main reason Is this: LOGO requires more
from a computer than most other popular languages do. Until the

1980s, a computer powerful enough to provide what LOGO
demands would have been too expensive to be a commercial suc
cess.

1.3 A DIGRESSION ABOUT ARTIFICIAL INTELLIGENCE (A.I.)

(You can safely skip this section if you want.)

At first sight It might seem strange that educational research
should be done In the world of Artificial Intelligence - a Depart
ment of Education, or some such body, might seem more the
appropriate place for LOGO. To understand the reasons for this
you need to know a little about what Artificial Intelligence Is and
what it aims to do. It is sometimes defined as the use of com

puters to study intelligence and. In particular, human thought.
The definition does not convey much.

To get a little feel for the subject, consider the following
example of the sort of unrealistic 'intelligence test' that often
appears In the newspapers:

Which is the odd one out?

ZXTLVY
When first confronted with such a problem, various ideas

spring to mind Immediately. Perhaps the 'Y' is the odd one out.
because it is the only one which has pretensions to being a
vowel. Perhaps it is a code - if you try the usual trick of substi
tuting 1 for 'A'. 2 for 'B' etc.. then it turns out that 'Y' is the
only odd number, so it really Is the 'odd one out'. At some point
you might make the leap of looking at them as geometric figures
rather than as letters of the alphabet. In that case you might
realise that the 'Z' qualifies as odd one out because it is made
up of three straight lines rather than two. or perhaps because it
involves two line junctions rather than one. The more you look,
the more justifications you can find for any particular one being
the answer.

Now imagine that you had to write a computer program to

mimic your solution of the problem. The work you would have to

put in before starting to write such a program could well be
called Artificial Intelligence (if you did a good job of it). You
would, amongst other problems, have to figure out why you made
the leap from considering letters to considering shapes, and why
you did it when you did. Had you worked through all the letter
possibilities? No, there is a huge number of them and you could
not possibly try them all. Some obnoxious whiz-kid. for Instance,
might have been able to claim that the 'V was the odd one out
because all the others were initials of authors of children's books

published in 19121 You presumably made the leap because you felt
that you were starting to look for possibilities that were too
unlikely. But ... how do you embody the notion of 'too unlikely' in
a computer program? Moreover, how do you encapsulate the
knowledge and experience that made you plump for the attribute
of shape as a likely factor to explore?

The reason that computers are so vital to the subject of
Artificial Intelligence is that you cannot get away with hand-waving
about these points in such problems. The computer only obeys
instructions; it cannot decide for itself to switch to some new

tack, even if the program to explore that new tack exists. The
program which mimics your solution to the above problem - do
not try writing one. it's a huge can of worms - would have to
include regular checks about the likelihood of success with the
current approach. Likelihood is not easy to quantify - it depends
on past experience. A good program would have to be capable of
resuming the exploration of a previously rejected avenue if it
begins to look more promising after all. as others grow less likely.

The absolute lack of intelligence on the part of a computer
makes the act of writing a program to model something a good
test of a theory in A.I. The problem above is not representative
of work in the field - current research (1983) is concerned with

more fundamental questions which this problem only hints at. It
should help you appreciate, however, that the world of A.I. has
had good reason to spend a lot of effort in developing computer
languages specifically for modelling purposes. Those now used in
A.I.. such as LISP and PROLOG, are geared to bring out the
aspects of computer programming which are most useful in model
ling and to play down those aspects which would be least relevant
to the aims of the subject. LOGO is one product of that effort; as
such, it is a remarkable success.

The studying of how and what people learn through using
LOGO also fits in with the interests of workers in A.I.

10

1.4 ABOUT THIS BOOK

What it Is not

This book is not a programming manual in the normal sense. It
does not aim purely to teach you how to read and write LOGO -
other manuals already do that well. It is not much concerned
with the technical aspects of computers. If you want to know why
smoke is coming from your Apple II, how to make it control your
coffee grinder, or why the disk drive is making that grating noise,
then look elsewhere...

What it is

On first learning to program a computer, most people estimate
their own abilities very badly. Either they plough through a
manual or a course and then immediately embark on trying to
write a program which will play a decent game of chess, or they
find themselves short of inspiration and confidence and rapidly
lose interest. Either way, the machine fails to live up to their
expectations. Often the problem Is that only a hazy distinction is
made between knowing the mechanics of programming and know
ing how to put it to use.

The purpose of this book is to help you develop the

knowledge and experience to be able to make the most of LOGO
as a tool. True, to do so involves teaching you to program in
LOGO. However, there is a widespread view that good programming
is the private preserve of geniuses, that mere mortals cannot
aspire to great results, and that a measure of the worth of a
program is the amount of ingenuity which went into it. This book
should help to demolish that idea. The power to express your
ideas well and to develop them thoroughly is not a gift - it is
something which can be learned, and LOGO makes it enjoyable.

1.5 THOUGHTS FOR TEACHERS

(You can skip this section too if you are never going to find
yourself teaching others about LOGO, even informally.)

Much has been said in magazines and journals about the
educational value of LOGO. Not much has been said about the

problems. One of the major snags is that, while students can

1 For example, 'LOGO* by Harold Abelson, pub. by Byte/McGraw-Hill Publications, 1382;
or 'Apple LOGO', by the same author and publisher, 1982

n

learn a lot from making mistakes and tracking them down, it is
extremely disenchanting to make too many mistakes and too little
progress towards becoming fluent in the use of LOGO. Your prob
lem is to leave a student alone long enough to develop confi
dence in his ideas, and yet be aware enough to spot when help
Is necessary. There are asides throughout the book which point
out areas of likely trouble.

An aside - apologies now and hereafter to readers who are
women - sexist sympathies are not intended by references to 'he'
and 'his', but this book aims to be short and readable. Indeed,

you may care to ponder why girls did significantly better than
boys in a high school project were LOGO was used to teach the
traditional mathematics syllabus.

As a teacher, even if you are not one in the formal sense,
you ought to bear one or two points in mind. A beginner is going
to have his own ideas about what is really going on inside the
computer as he works with LOGO. Usually this is a very simplified
version of the truth, but it has the great benefit of making the
whole system seem manageable. The habit of simplification is not
only used by beginners, of course - for example, just about
everyone characterises their government as a sort of collective
being with a rather dumb mind of its own. Doing so makes it
seem comprehensible.

Such simplification can be useful or it can be obstructive. It

is useful only if it helps you to grasp why things are happening
and permits you to predict what will happen in response to your
actions. A significant part of the art of teaching consists of
encouraging pupils to adopt some simplifying and familiar analogy,
and then getting them to modify and enlarge it in a reasonably
consistent way to take account of new and previously inexplicable
details. What has been said above might lead you to think that, in
the world of LOGO, this is going to be easier than usual. It is to
some extent, but do not imagine you can be complacent about it
- being easier does not mean that it is easy. To put you in the
mood, consider how you might tackle these two questions from a
bright but beginning LOGO user:

"How can the computer read what is engraved on the
keys? If I press 'F' then an F appears on the screen,
but the computer has no eyes."

"If I type a lot. or press RETURN many times, then some
of what I have typed goes off the top of the screen. Can
I get it back? (Note: the answer is no) and where did it
go?"

12

If you are going to be using LOGO in formal classroom teaching,
you will need to do some careful planning. Yes, LOGO can be a
vehicle for teaching programming, though there seems little point
in teaching programming for its own sake. After all. while LOGO is
a powerful and relatively simple language, it is representative of
only one of various classes of programming languages, each of
which has its own underlying 'programming concepts'. It is the
particular approach to expressing ideas which is valuable in LOGO,
rather than the computer science aspects.

If you want to use LOGO as a means for teaching topics in
some subject such as mathematics or geography (where you could
use it for training people In ideas about graphic representations),
then you will need a good deal of organised material. This is true
no matter what programming language is used. You will also have
to figure out how to teach the necesary LOGO programming
before getting your pupils to put that knowledge to use in experi
menting with your subject.

One neglected approach is to use LOGO to underpin a group
discussion. You can do this even if you only have one machine
per class, by making the machine the arbiter of who is right and
who is wrong in the discussion or by getting the group to plan
how to model something, with you as the typist.

Finally - for the moment - do not be put off by articles
which try to lay down the law about how LOGO should be used. If
it suits you to devise LOGO programs which others will use but
need not understand, because it is an easy language in which to
express your intentions, then go ahead.

1.6 THE LAYOUT OF THE BOOK

As you will have seen, sections within chapters are numbered. The
numbering is hierarchical - section 2.6.1 is subsection 1 of sec
tion 6 of chapter 2. Figures are also numbered by chapter - fig
ure 2.3 is figure 3 of chapter 2. This makes it easier to refer to
them, especially because figures might not always appear on the
same page on which they are first mentioned in the text. Chunks
of LOGO look like this:

PRINT 654 * 321

You will find that long lines on the Apple It's screen look odd -
the screen is only wide enough for 40 characters and if you type
off the end of one line the machine continues for you on the

1 Or even this book.

13

next line. This may cause a word to be split in the middle if it
starts close to the end of a line. Long lines of LOGO will be
indicated in this book by indenting the continuation. The following
example is not LOGO, but you could type it nevertheless (the
LOGO system will merely object to it). There are only two lines;
you could make it appear on your screen very much as it
appears here by the simple step of inserting extra spaces between
certain of the words:

THIS IS NOT LOGO. JUST AN EXAMPLE OF HOW

ONE VERY LONG LINE OF TYPING WILL BE

SHOWN IN THE TEXT OF THIS BOOK.

THIS IS A SECOND LINE.

Diagrams appear as shown in figure 1.1. The box around it shows
where the useful edges of the screen are. so that you can get
an idea of what it ought to look like on your computer. The box
will not appear on your screen (unless you add it yourself), as it
is an extra included when this book was printed so that you can
judge the scale - which is useful if you want to try marrying two

1

vn4

Figure 1.1

14

or more diagrams.

Appendices describe various versions of LOGO which existed
at the time the book was published. They are worth looking at
even if you have no chance to use another version; the variations
in what they provide might give you some useful ideas about gen
eral LOGO commands you can create for yourself.

There are exercises. Those that have a reasonably short and
instructive solution are answered at the back of the book. They
are not meant to be a graded series to take you through every
thing that needs to be practised. Try them as you encounter
them or you'll be missing a lot.

Chapter 2
Turtle graphics

"It just shows what can be done by taking a little
trouble." said Eeyore. "Do you see. Pooh? Do you
see. Piglet? Brains first and then Hard Work. Look
at iti That's the way to build a house." said
Eeyore proudly.

(The House at Pooh Corner, A.A.Milne)

Aims This chapter has two purposes. One Is to introduce you to
the LOGO drawing commands. They are. Individually, remark
ably simple: using them with a few of the more generally
useful features of LOGO also introduced in this chapter
should equip you to produce some fairly elaborate drawings.
The other purpose is more general: to show LOGO as an
interesting tool for experiment and investigation.

NOTE There are examples of LOGO throughout this book. The ver
sion of LOGO on which they are based is one marketed by
Terrapin Inc. of Boston and by Krell Inc. of New York, for
the Apple II microcomputer. It will be referred to in the text
as Terrapin LOGO. If you have some other version of
LOGO, you will not be able to copy the examples unthink
ingly, even though there are more similarities than differ
ences between the various LOGOs that exist. You should

treat the examples of LOGO as prototypes of ideas - even
if it is this LOGO you have! Anything without a ready coun
terpart in Apple LOGO or Tl LOGO will be indicated in the
text. Radio Shack Color LOGO has so many differences that
you should not rely on any of the Information given in the
body of the book; an Appendix describes it.

15

16

2.1 INTRODUCTION

Suppose that you have just switched on your microcomputer and
got LOGO going - If you do not know how. look at the instruc
tions that came with the disk. On the screen you should see.
amongst other things, a small solid rectangle, the cursor, which
will be just to the right of the prompt: in Terrapin LOGO this is

- on a few other micros it is

W:

(the initial W is for 'Waiting'). This prompt indicates that LOGO is
waiting for you to type in a command of some sort. If you have
not done so already, try typing a few letters of the alphabet to
see what happens, then press the RETURN key. Pressing the
RETURN key indicates to LOGO that what you have typed is
(perhaps) a command that you want obeyed. Unless you were
lucky in your choice of letters. LOGO will print an error message
on the screen, the gist of which will be that your command is
not a known one. There are two points to make here:

LOGO errors may cost you some time, but they do not
damage anything you spent money on.

Making errors is. as In other subjects, one of the best
ways to learn things, it's the normal thing to be doing,
rather than the exception!

Initially LOGO will only recognise around a hundred com
mands. However, one of the beauties of the language is that you
can extend the set of commands it knows about - this is the

main topic of the chapter after this. Between 10% and 20% of the
commands available at the start are to do with drawing. These are

introduced in this chapter.

2.2 THE BASIC TURTLE GRAPHICS COMMANDS

Each time you start LOGO up, you should see a short introductory
message, and the prompt. Type

DRAW

and press RETURN. Even DRAW Is not needed with some versions

17

of LOGO. You should now see an arrowhead in the middle of the

screen. On the Apple II it points upward. The arrowhead is called
the turtle; there are commands that change its location, others
that change its direction and one or two that do both. A useful
characterisation of it. especially for children, is

"an animal which crawls across a sheet of paper, towing
a pencil or an eraser"

and the screen can be characterised as

"a sheet of paper which you are looking down on from
above"

Initially the turtle will draw a line as it moves.

The fundamental commands which control the turtle are. FOR

WARD. BACK. LEFT and RIGHT, and each requires you to supply a
number indicating 'how much'. The number gives degrees of rota
tion (360 is a full turn on the spot) for LEFT and RIGHT, and
'turtle units' for FORWARD and BACK. For example, try typing

FORWARD 50

(do not forget to press RETURN as well). The turtle will move for
ward 50 units, drawing a line. One 'turtle unit' does not
correspond to some number of inches or centimeters - the physi
cal length of the line depends on the size of your screen. How
ever, the screen has a fixed size when measured in terms of

'turtle units'. If you now type the additional commands

RIGHT 120

FORWARD 50

RIGHT 120

FORWARD 50

then your drawing should look like figure 2.1. If you are puzzled
by why it should be RIGHT 120 rather than. say. RIGHT 60 then
try the commands with RIGHT 60 instead and see what happens -
experiment! There are commands for cleaning off the drawing
and returning the turtle to where it was (and facing upward) at
the start - in Terrapin LOGO they are

HOME

CLEARSCREEN

18

Figure 2.1

2.3 SOME TERMINOLOGY

There is some terminology which It is sensible to mention here.
Things like CLEAN and FORWARD and so on are called pro
cedures: a command is really an instruction to LOGO to execute
(that is. obey) some procedure(s). It is not vital for you to make
a distinction between 'command' and 'procedure' - you should just
be aware of the terminology at the moment.

You may note that, although you must supply a number for
FORWARD (what happens If you do not?), you supply nothing else
with HOME (what happens if you do?). The customary way of
describing this is to say that

FORWARD takes one input, which must be a number

but

HOME takes no input

There are other procedures that take more than one Input, and
even some for which the number of inputs can be unknown.
Examples of these will appear in chapters 3 and 4.

19

Try the command

RANDOM 50

- you will get an error message pointing out that you have not
said what to do with some random number less than 50. This is

because RANDOM not only requires one input - In the command
it was 50 - it also produces an output. RANDOM'S output is a
random positive integer less than the input number. The output
number can be used wherever a number input would be accept
able:

FORWARD RANDOM 50

would move the turtle forward by a random integer number of tur
tle units less than 50. FORWARD needs a number for its input.
RANDOM 50 outputs a number - if you like, you can choose to
think that the expression RANDOM 50 is a number.

The procedures FORWARD. BACK. LEFT. RIGHT. HOME and
CLEARSCREEN (and many others) do not produce an output, they
merely have some effect. It is one of the fundamental rules about
LOGO commands that if something produces an output, it must be
used as the input to something else - you cannot leave outputs
lying about unused.

2.4 DRAWINGS

There are abbreviations for the most commonly used procedures,
to spare your fingertips. In particular, you can use

FD for FORWARD

BK for BACK

LT for LEFT

RT for RIGHT

CS for CLEARSCREEN

EXERCISES

There are various things you could now take time to investigate:

(1) What happens when the turtle reaches the edge of the
screen?

20

12) What are the dimensions of the screen in 'turtle units'?

{3} How much should the turtle be turned from its initial

heading so that it points at a corner of the screen (trial
and error is the method, unless you want to indulge in
trigonometry)?

(4) Do FD. BK. LT and RT accept negative numbers, and if so
what is the effect?

(5) Do those commands accept numbers with decimal parts, or
do they just ignore any decimal part? This requires
forethought - the decimal part certainly gets ignored when
showing lines on the screen: the question is. is the turtle
really where It seems to be or is it a fraction of a turtle
unit further along the line?

The answers to each of these might be useful to you later on.

You will find, in Terrapin LOGO, the answer to question {1}
is that the turtle reappears at the opposite edge of the screen
when it moves off any edge. This Is called wrapping; you can
prevent it happening in subsequent commands by using the com

mand

NOWRAP

and you can switch back to having the turtle wrap by using

WRAP

When the turtle is allowed to wrap, try the commands

CS

RT 50

FD 30000

in order to see what happens when you send the turtle forward
some distance that Is much larger than the dimensions of the

screen. There is nothing remarkable about the angle 50 in this

21

trio - try some others (some choices are remarkable).

EXERCISES

You might also like to try your hand at constructing some simple
drawings, such as

(6a) some simple polygons - essentially sets of paired FOR
WARD and RIGHT (or LEFT) commands

(6b) something less regular, such as a drawing of your micro
computer. Keep It fairly simple, unless you are a maso-
chist. Planning the drawing should remind you of those
popular challenges 'draw this without lifting pen from
paper...'

At this point you might think, with reason, that LOGO draw
ings require you to type too many commands for fairly simple
results. If more complex drawings were going to be correspond
ingly more arduous to construct, you would be justified in aban
doning the whole enterprise immediately. However, as you might
expect - and you ought to have expected that the designers of
LOGO would have thought of it - there are ways of making things
easier. You can combine several commands into one. by merely
putting one after another with space between. For example.

HOME CS

is one command formed from two. Similarly.

FD 50 RT 120

is one (compound) command, and three such commands in
sequence will draw an equilateral triangle. This allows you to make
up single commands which are very long; if they spread to .the
point where they are going to overflow the right-hand edge of the
screen, do not worry - just keep typing and what you type will
appear on the next line down. DON'T press RETURN when your
typing reaches the right-hand edge unless you want LOGO to obey
the command you've typed so far. So. when drawing a square,
part of your screen might look like this

22

? FD 50 RT 90 FD 50 RT 90 FD 50 RT 90 FD

50 RT 90

and LOGO will treat the whole thing as one command. There is a
limit to how long a line can be - it is roughly six complete
widths of the screen.

What you can do about typing mistakes depends on which
version of LOGO you have. In Terrapin LOGO on the Apple II you
can use the ESC key to rub out characters and use the arrow

keys to move the cursor back and forward in the line, to allow
you to pick what you want to rub out. Putting the cursor in the
middle of the line somewhere and then typing, causes what is to
the right to be pushed to the right. Two other options are very
useful, but are slightly less convenient because they require you
to press the key marked CTRL, and to press another while holding

it down (the CTRL key is similar to the SHIFT keys in its use).
The options are

CTRL-D (that is. CTRL and D) which is very like ESC. ESC deletes

the character just to the left of the cursor. CTRL-D
deletes the character which is underneath the cursor

CTRL-K (that is. CTRL and K) which deletes everything from where

the cursor is to the end of the command.

There is a variety of other things you can do. but these are the
most useful possibilities. Consult the manual that came with your
LOGO system to see what powers you can call on for correcting
typing - the repertoire may even be amended by the supplier
from time to time, so it will not be described in this book.

LOGO has a number of commands which are useful in many

situations. One is for those occasions when repetition of some
command (perhaps compound) is required:

REPEAT 5 I FD 50 RT 72 1

is an example that draws a pentagon. The square brackets are
necessary here. Unfortunately the square brackets characters are
not visibly engraved anywhere on the Apple II keyboard. To type
them:

[Is shift-M (i.e. hold down one of the two shift keys and while
holding it down, press M.

23

] is Shift-N.

if you are prone to forgetting this kind of detail, get some very
small sticky labels, write the symbols on them and affix them to
the keys or to the Apple case.

The general form of the REPEAT command is

REPEAT number t command 1

and. using it. you should now be able to draw any regular
polygon. It is a very powerful command, more so than might
appear at first sight. Think of it as a command with another com
mand inside it - then you should see that this is legal LOGO,
and it will produce an interesting pattern, shown in figure 2.2.

REPEAT 10 [RT 36 REPEAT 5 [FD 40
RT 72 1]

This gives you a prototype for all sorts of 'rotated polygon' pat
terns. There are several noteworthy points about it:

Figure 2.2

24

The REPEAT command on the inside just draws one pen
tagon, and leaves the turtle as it was before. Such a
command, that afterwards has affected neither the turtle's

location nor its heading, is sometimes referred to as
'state-transparent'. The turtle's location and heading are
together known as the turtle's state.

The main REPEAT command is thus something of the form

REPEAT 10 I RT 36 state-transparent command 1

so that the turtle will in effect have turned by 10x36 =

360 degrees by the end. Thus the whole command is also
state-transparent.

those numbers 10 and 36 give a pleasingly regular and
state-transparent result because they multiply to give 360.
How about trying pairs of numbers that multiply to give
720. or some other multiple of 360? For example.

REPEAT 5 [RT 144 ... 1

Some are not worth the effort:

REPEAT 12 I RT 60 ... 1

is just the equivalent of

REPEAT 2 [REPEAT 6 [RT 60 ... 1 1

and so you would just be repeating a state-transparent
procedure twice. Doing that means nothing more than
retracing the drawing, because just before the second
time, the turtle will be as it was just before the first time.
A little thought, and perhaps some experiment, should
show you how to spot which pairs of numbers are poten
tially interesting, and which are not.

The idea of polygons rotated about one spot may come to
seem limited after you've tried a few. A variation that

offers further possibilities is

REPEAT x [FD y RT z state-transparent command 1

since this too is state-transparent if the numbers x and z

are suitably chosen. The drawings in figures 2.3 and 2.4

25

were produced by such a command .

Ail the drawings produced by one such command have a
somewhat sterile regularity about them. It should be reasonably
clear that this Is because in any REPEAT command like those
above, the only thing that changes from one repetition to the next
is the state of the turtle - its position or heading or both. What
the turtle actually does at each repetition is unchanging, and that

is because the numbers - distances or angles - are unvarying.
There are some exciting variations on this theme. The first is
just to make the command even more elaborate. There comes a
point at which there are so many different sorts of regularity in a
picture that it is difficult for the eye to grasp what the subsec
tions of the pattern are that have been repeated. Consider the

following hypothesis:

It is the state-transparent parts that catch the attention.

The idea of studying such a subjective hypothesis may surprise
you if you are of a scientific turn of mind. Nevertheless, you may
or rnjay not agree with this, but you can investigate it by trying
various sorts of REPEAT combinations (as one or as several com

mands) where there are several state-transparent ingredients, and
various in which there are only one or two at most. The drawing
in figure 2.5 is state-transparent, with only one state-transparent
ingredient within it. The command was

REPEAT 12 I FD 30 REPEAT 4 [FD 15

RT 90 1 BK 30 RT 30]

Try experimenting. Get some other people's opinions too -
the results may not be as subjective as you think.

Another of the possibilities for variety is to have the turtle
erase some parts of a drawing, or to have it not draw at all for
some parts. In Terrapin LOGO the turtle cannot erase directly, it
can only overwrite something previously drawn with a new line in
the same colour as the background (so it looks like erasure is
happening, to all intents and purposes). There are two useful
commands: PENCOLOR (or PC for short) which takes an input

1 Warning for Tl LOGO users: the Tl 99/4 and Tl 99/4a machines have a limitation on
their conventional graphics abilities. You know about it when you get the message OUT
OF INK, and the only thing to do is to clear the screen and start over. Try the rotated
pentagon command given earlier, with FD 50 instead of FD 40, to see this. You tiay
have to scale down some of the commands used as illustrations in this book, in order

to avoid the limitation. In compensation, Tl LOGO offers some very powerful animation
features.

26

Figure 2.3

Figure 2.4

27

Figure 2.5

which must be a number between 0 and 6 and makes the turtle

draw in the corresponding colour in future, and BACKGROUND (or
BG for short) which also expects a number between 0 and 6 and
sets the colour of the background. Colour 6 is curious; it is an
"inverting" colour which causes others to change to their reverse.
What that means, and what colours 0 to 5 are. is something you
can best find out for yourself by trying PC and BG - they depend
on the sort of display you have, although they should work (if
only to make a feeble difference) even on a black and white

display. That is why they are numbers rather than names such as
'green' and 'violet' - such is the standardisation in video technol
ogy that what looks green on one display may well look violet on
another!

On the Apple II the initial settings are 0 for the background
and 1 for the turtle's pen colour. Provided you do not change the
background colour, therefore, the way to make the turtle erase is
to give the command

PENCOLOR 0

and the way to make it not draw or erase at all is to use the
command

PENUP

28

or PU for short. You can make it resume drawing (with the
current pen colour) by the command

PENDOWN

or PD for short. Try these in a compound command, for example

FD 100 PENCOLOR 0 BK 50 PENUP BK 50

should leave the turtle at its starting point, with a 50-unit line in
front of it. You need to give the command

PENCOLOR 1

to get the turtle to resume drawing when it moves.

You can greatly extend the potential for drawings by using
variables Instead of explicit numbers. This idea is so important
throughout the rest of the book that it deserves a section to itself.

2.5 VARIABLES

The MAKE command

MAKE "Z 50

gives a variable1 named Z the value 50 (note the quote mark just
before the Z). The name of the variable does not have to be a

single letter, it can be anything, such as HIPPOPOTAMUS or
HYPOTENUSE, which you find appropriate and not uncomfortably
long. You can use any characters apart from the left and right
square brackets and spaces; LENGTH.OF.SIDE is a perfectly good
name for a variable.

Then you can use a command such as

FORWARD :Z

to move the turtle forward 50. Note the colon (':'). it means 'the

value of the variable called'.

1 WHAT, you were not very sure about variables in your early days of algebra? The
image to keep in mind, then, is this: think of ail the numbers, negative or positive,
stretching in an orderly line way off into the distance (like railway tracks). Imagine a
large luggage label with the name Z written on it, hanging on one of the numbers, SO
for instance. Then you can refer to 50 by the name on the label, rather than as 'SO1.
Moreover, you can move the label around from number to number as the occasion
demands. You can also have several labels on one number. Solving algebraic equations

is just a matter of deducing which number some label is hanging on_

29

Digression

People often ask two questions about the MAKE command.
The first is, what is that quote mark doing there? To
answer, consider the command MAKE FORWARD 50. Does

this give a variable named FORWARD the value 50, or Is
it a mangled attempt to move the turtle? The quote mark
prevents LOGO mistaking the name as a command - and
remember, it was mentioned that in LOGO the user can

create new commands (and perhaps create one called Z).
To be more precise, the quote mark signifies that what
follows is just a word and nothing more than that. Chapter
4 explains various LOGO commands which are concerned
with words rather than specifically with numbers. You can
PRINT a word by

PRINT "HELLO

All you need to remember at present Is that MAKE expects
its first input to be a word, and It takes the word to be
the name of a variable. The second input could also be a
word if you wanted:

MAKE "CLEOPATRA "EGYPT

PRINT :CLEOPATRA

will print EGYPT.

The second question is. why is there no matching quote at
the end of a word? The answer is that LOGO takes the space
after the name to mark the end of the name; It would be wasting
your time to force you to put in something which is really super
fluous. In Terrapin LOGO, a quote mark at the end. or within a
name, will just be taken as part of the name.

Digression for those familiar with another language:
LOGO is unusually friendly about variables. You do not
have to declare the name or type of variables beforehand,
as you would in PASCAL for instance. MAKE looks for a
variable of the given name; if there is not one, it creates
one. Moreover, the type is the type of the current value.

In most LOGO systems, there is another way to get at the
value of a variable. In Terrapin LOGO there is a procedure
called THING which expects one input, a word naming a variable,
and returns the value of the variable called by that name. For

30

instance, if the variable called Z has the value 50. then

FORWARD THING "Z

will send the turtle forward 50. Again, the quote mark in that
command exists to let the LOGO system know that the Z is merely
a name rather than the name of a procedure that it should run.

It might seem that the colon is nothing more than an abbre
viation for THING. In fact, it is something even less than that. To
illustrate the problem, consider this sequence of LOGO commands:

MAKE "FRED 50

MAKE "X "FRED

FORWARD THING THING "X

The second command gave the variable called X a value - the
value was just a bit of text, namely the word FRED. The FOR
WARD command is equivalent to

FORWARD THING "FRED

which is equivalent to

FORWARD 50

However, the following is NOT the same:

FORWARD ::FRED

This command would send LOGO looking for a variable called by
the name :FRED. but the colon is NOT a procedure (there would
need to be a space between the colon and what followed it if it
were a procedure). You could always make a variable whose name
was :FRED. by

MAKE ":FRED 35

but your FORWARD command would move the turtle 35 units rather
than 50. The colon is only a sort of notational convenience
rather than a procedure; however, it is so convenient that the

procedure THING only gets used where the colon would not do
the job, such as in the example above.

2.6 ARITHMETIC

Introducing the standard arithmetic operations of addition, subtrac
tion, multiplication and division together with MAKE considerably
expands the potential for drawings. For instance, the command

31

MAKE "Z :Z + 2

gives Z a new value 2 bigger than it previously had. This
deserves some comment. The command is still something of the
general form

MAKE "Z number

but the number is :Z + 2 rather than something explicit. In
LOGO, as in real life, the '+' adds two numbers together. It pro
duces an output, also a number, that is the sum of the two

numbers; such an expression is acceptable wherever a number is
acceptable. The same applies to other LOGO arithmetic procedures:
'*' for multiplication. '/' for division and '-' for subtraction. You
should now be in a position to understand that a command such
as

MAKE "Z 3

REPEAT 50 t FD :Z RT 90 MAKE "Z :Z + 2]

will draw a sort of rectangular spiral.

EXERCISES

Here are various things it would be worth taking some time to
investigate:

(7) Nothing has been said about the layout of commands.
Where are spaces necessary, for Instance? Experiment -
nothing worse than an error message will happen. You will
remember better If you figure it out than if you clutter up
your mental imagery by turning to the manual at this
point.

{8} The MAKE command allows you to alter the sizes of dis
tances and angles between repetitions. Try some variants
of REPEAT commands you tried before. (This might show
you that it's a good idea to keep notes of your
successes.)

(9) How do the arithmetic procedures behave when some of
the numbers are negative?

32

(10) What happens when you try to divide a number by zero,
or try to multiply numbers together to get some colossal
result?

Spend some time playing with the arithmetic procedures. The
simple way to do this is to use the procedure PRINT - its single
input can be also be a number:

MAKE "NUM 5

PRINT :NUM * 5

will print 25. Try predicting what the commands

PRINT 3*4 + 5*6

PRINT 12/4/2

PRINT -4 + 5*6

PRINT 6/2+4

will print, then try them. In Terrapin LOGO at least, complicated
arithmetic expressions are worked out according to the following
rules:

(i) all the multiplications and divisions are done first (so
3*4+5*6 is really 12+30 rather than 3*9*6)

(ii) then all the additions and subtractions are done

(ill) whenever rules (i) and (ii) are ambiguous, work left-to-
right (so 6/3*7 Is 2*7 rather 6/21)

(iv) parentheses can be used in the obvious ways.

BEWARE of subtraction - it is easy to get confused between (a)

subtracting one number from another, and (b) using a negative
number, because the minus sign is used for both purposes. The
command

PRINT 5 -2

does not print 3. It prints 5 and then LOGO complains that you
have not said what to do with -2. The safe course is to put a

33

space after the minus sign unless you mean to indicate a nega
tive number.

PRINT 5-2

will print 3.

There are still further possibilities for confusion:

PRINT RANDOM 10+12

is the same as

PRINT RANDOM 22

and different from

PRINT (RANDOM 10) + 12

The rule is that LOGO does all the '+'. '*'. '-' and '/' it can

before anything else.

To be absolutely safe, use parentheses to make your mean
ing clear.

PRINT RANDOM (10+12)

PRINT RANDOM (10 +12)

PRINT RANDOM (10+ 12)

PRINT RANDOM (10+12)

are all the same, and the effort of including the parentheses is
only a small price to pay for avoiding arithmetic boobytraps.

2.6.1 Large Numbers

Investigate how large and how small a number your LOGO system
will let you work with. In Terrapin LOGO numbers with more than
about six significant digits get printed in a specialised form, and it
will also recognise numbers given by you in this form:

1E3 is the same as 1000

1.E3 is also 1000

1N3 Is 1/1000. I.e. 0.001
3.7E6 is 3700000

-4.2N2 is -4.2/100. I.e. -0.042

(Note that neither Radio Shack Color LOGO nor Tl LOGO accept
or handle numbers with decimal parts. They only accept integers.)
The 'E'. for 'exponent', indicates that the number before it is to
be multiplied by 10 to the power given by the positive integer

34

after the digit. The 'N', for 'negative exponent', indicates that the
number before it is to be divided by the appropriate power of 10
instead. In either case the power of ten to use is easily written
and thought of as a 'V followed by the given number of '0's.
There must be no spaces inside the number, and the integer
which follows the 'E' or 'N' must be positive.

2.6.2 Other Arithmetic Procedures

Mainly for the sake of completeness, here are the other arithmetic
procedures in Terrapin LOGO. If your LOGO system does not have
them don't despair - you will (eventually) find that it is almost
certainly possible to create them for yourself.

There are three trigonometric procedures. COS and SIN take
one number as input - an angle in degrees - and cutput the
cosine or sine of that angle:

PRINT SIN 30

prints 0.5. The procedure ATAN takes two inputs, and outputs the
angle in degrees whose arctangent is the second input divided by
the first - try making the first input 0. The angle is always
between 0 and 360.

There are various procedures which are concerned with
integers (whole numbers) in particular, in one way or another.

They are

INTEGER This procedure takes one input and outputs the integer
part of it. that is. it gets rid of any fractional part.

ROUND This takes one input and outputs the nearest integer

to it:

PRINT ROUND 2.6 prints 3

PRINT ROUND 2.47 prints 2

PRINT ROUND -2.6 prints -3

REMAINDER This takes two inputs. If they are not integers it
ROUNDs them first; It then outputs the remainder left
when the first input is divided by the second:

PRINT REMAINDER 75 11 prints 9

35

QUOTIENT This also takes two inputs. ROUNDing them first if
necessary. It outputs the integer quotient of the first
divided by the second:

PRINT QUOTIENT 75 11 prints 6

There are two other procedures, which are not especially
concerned with integers:

SQRT This takes one input and outputs its square root. The
input must of course be positive.

RANDOMIZE This takes no input and does not output anything. Its
effect is to make the values produced by RANDOM
even less predictable than they are. if you do not use
RANDOMIZE, then whenever you start up LOGO and
use RANDOM you will get the same sequence of ran
dom numbers.

2.7 MORE ABOUT DRAWINGS

Ail this knowledge can be put to use for constructing more ela
borate and interesting drawings. However, there is one further
LOGO topic that is worth knowing about first.

2.7.1 Controlling How The Screen Is Used

On the Apple II, part of a large drawing can be invisible, 'behind'
the four lines of text at the bottom of the screen as in figure
2.6. Fortunately this is only one of the ways of utilising the
screen permitted by the Apple ll's electronics. The table below
shows the choices, together with the corresponding Terrapin LOGO
commands that select them. On other machines, with other LOGO

systems, the possibilities and commands will be different and you
should read your manual to find out more. The command DRAW,
mentioned in section 1. automatically selects SPLITSCREEN. DRAW
also clears the screen and returns the turtle to its initial position
and heading, if you forget to use DRAW, your first drawing com
mand will also cause a DRAW to happen. NODRAW also erases
any drawing. When you are doing drawing, these control-key func
tions are extremely useful:

CTRL-F This has the effect of FULLSCREEN

36

Figure 2.6

USING THE APPLE II SCREEN

SPLITSCREEN

FULLSCREEN

NODRAW

Visible area: 280 wide

200 high
Text area: bottom 4 lines

Visible area: 280 wide

240 high
Text area: none

No drawing at all
Text area: full 24 lines

CTRL-S This has the effect of SPLITSCREEN

CTRL-T CT' for 'text') This makes the drawing invisible and makes
the full 24 lines of text visible. It is not quite like
NODRAW. because the drawing is not erased. You can

make the drawing visible again by using CTRL-F or
CTRL-S. but DRAW would erase the drawing.

37

The electronics also determine how colours look on the

screen. As the correspondence between colours and turtle pen
numbers are hard to remember and depend on your TV or moni
tor, it is a good idea to create some appropriately named vari
ables, for example

MAKE "BLACK 0

MAKE "WHITE 1

MAKE "RED 2

MAKE -YELLOW 3

MAKE "BLUE 4

MAKE "GREEN 5

MAKE "INVERSE 6

These can be used with the PENCOLOR and BACKGROUND com

mands:

PC :RED

BG :WHITE

2.7.2 Putting Variables And Arithmetic To Use

If you have had some fancy graphics ideas in mind already, you
may now be equipped to tackle them. Try them. If you find them
still impossible, read on - there are yet more drawing commands
to come. If you do not have a pet project, don't worry - there is
no reason why you should, and there are many ways to get
inspiration. One is to think about what what you have recently
learnt about LOGO, and consider whether you can apply it to
make interesting variations on what you had done previously. To
make the most of this.

KEEP NOTES OF SUCCESSES

KEEP NOTES OF FAILURES - and what went wrong

KEEP NOTES OF IDEAS - especially half-baked ones

so that you can look back at them later. It is good practice to
keep a notebook, or at least a supply of paper, close at hand for
this. (Note for teachers: it is VERY IMPORTANT to get your pupils
to do this. Do not be influenced by articles in the press suggest
ing that using a computer is a big step towards getting rid of
paper.)

Here are two examples of the approach.

38

Spirals

in section 2.4 it was hinted that one way out of the sterile regu
larity which comes from overworking REPEAT is to vary some
lengths from one repetition to the next. Variables are the way to
do this. Figure 2.7 was produced by

MAKE "X 0

REPEAT 100 [FD :X RT 121 MAKE "X :X + 31

The angle of 121 degrees is close to. but not equal to. the angle
of 120 degrees used in drawing an equilateral triangle. Try some
others:

44 or 46

89 or 91

71 or 73

143 or 145

(close to an octagon)
(close to a square)
(close to a pentagon)
(close to a pentagram)

but remember to MAKE "X 0 or some small number first, and to

—I

Figure 2.7

39

centre the turtle and clear the screen with

HOME CS

(Note for maths teachers: this exercise could be used to motivate

the idea of experimenting with small changes in familiar situations.)
There is nothing special about the number of repetitions - 100
seems a reasonable number. If it is too small the spiralling effect
is not very clear, if it is too big the drawing overflows the screen,
and if the turtle is being allowed to wrap the outcome can be
very messy. It can be beautiful too. so try some examples
nevertheless.

There are endless variations on spiralling. In the example
above the length the turtle moves increases by 3 at each step
while the angle it turns remains constant. What happens if it is
the angle that Increases, while the length stays constant? For
instance.

MAKE "ANGLE 0

REPEAT 1000 [FD 3 RT :ANGLE
MAKE "ANGLE :ANGLE + 71

draws figure 2.8. The number of repetitions does need to be
large here. Notice that there are 8 blobs, and the angle is
increased by 7 degrees at each step. If the angle is increased by
11 degrees instead there are 12 blobs. With an increment of 13.
there are 14 blobs. This suggests a simple rule relating the
increment to the number of blobs. However, it is not

blobs = increment + 1

but something a bit more complex.

EXERCISES

(11) What is the rule?

(12) Investigate what happens when both the length and the
angle vary. Try decrementing as well as incrementing.

40

Figure 2.8

Random figures

To draw a rectangle of some random size it is not enough to

REPEAT 4 [FD RANDOM 50 RT 901

because each side in the drawing would be of random length,
whereas rectangles have two pairs of equal sides. These com
mands do the trick:

MAKE "W RANDOM 50

MAKE "H RANDOM 50

REPEAT 2 [FD :W RT 90 FD :H RT 901

Therefore the following monster command will produce a sort of
"instant Mondrian" picture1:

REPEAT 100 [MAKE "W RANDOM 50 MAKE "H
RANDOM 50 REPEAT 2 [FD :W RT 90 FD

:H RT 901 FD RANDOM 100 RT 90 FD

RANDOM 100 LT 901

1 This isn't fair to Piet Mondrian, whose paintings are anything but random.

41

The anatomy of this is:

REPEAT 100 [{set up W) {set up H)
(rectangle W units by H units)
(move the turtle somewhere else)]

Figure 2.9 was drawn this way. with the turtle allowed to wrap.
The final four commands (FD, RT. FD. LT) in the repetition are
included to move the turtle away from the first corner of the rec
tangle it has just drawn. A PU and a PD command inserted on
either side of these four commands would ensure that only com
plete rectangles appear in the drawing. However, after a hundred
repetitions it should be almost impossible to see the extra lines
where the turtle moved from one rectangle to the next.

As an example of making constructive use of unsuccessful
Ideas, look again at the first attempt to draw a single random
rectangle. It did not draw one. and it was not state-transparent.
The "instant Mondrlan" command had to include some means of

making sure that the repeated commands were not state-
transparent. Repeating the 'unsuccessful' command might be an

Figure 2.9

42

easy way to achieve similar results:

REPEAT 25 [REPEAT 4 [FD RANDOM 50

RT 9011

This is the same as

REPEAT 100 [FD RANDOM 50 RT 90]

a sample of which is shown in figure 2.10. (Note for teachers:

this works because the intersection of two rectangles is a rectan
gle. It also works for triangles provided they are all of the same
shape. It does not apply in quite the same way to pentagons,
hexagons etc.)

There is nothing special about 100 as the number of repeti
tions. There is also nothing particularly vital about 90 as the
turning angle in such a random figure. If the angle is made ran
dom and the length fixed the resulting drawing (such as figure
2.11) is a kind of random walk: Figure 2.11 was drawn by the
following command. Try this with a much larger input to FORWARD

Figure 2.10

Figure 2.11

as well.

REPEAT 1000 [FD 3 RT RANDOM 3601

43

EXERCISES

There are some interesting questions about random walks:

(13) In a two-dimensional random walk, does the turtle tend to

return to the starting point? Use NOWRAP to prevent wrap
ping, as that could cause confusion about whether the tur
tle had really returned to its start.

{14} If so. roughly how many steps does it take? If not, does
varying the range of angles make a difference, for exam
ple using RANDOM 90 or 90 * (RANDOM 4) instead?

(15) Investigate one dimensional random walks, by using the
expression 180 * (RANDOM 2) for the angle.

44

2.7.3 Cartesian Drawing Procedures

Most LOGO systems include procedures which control the turtle in
a Cartesian way. that is. according to an (X.Y) co-ordinate system.
In Terrapin LOGO the origin of co-ordinates is at the centre of
the screen, so that the turtle's position co-ordinates can lie (give
or take a small amount) in the ranges

-140 < X < 140 -120 < Y < 120

It is possible to change either of the turtle's co-ordinates, or both
at once. The effect of doing any of these is to make the turtle
leap to a new position on the screen. If the turtle's pen is down
it will draw a straight line between the old position and the new

one. The commands are

SETX This takes one number, the turtle's new X co

ordinate, as input. If the pen is down a horizontal
line will be drawn.

SETY This takes one number, the turtle's new Y co

ordinate, as input. If the pen is down a vertical line
will be drawn.

SETXY This takes two numbers as inputs. The first is a new

X co-ordinate, the second a new Y co-ordinate.

SETHEADING (or SETH for short). This takes one number, the

turtle's new heading, as input. It turns the turtle on
the spot to point along that heading.

The following command should help you to get the feel of it:

REPEAT 50 [SETXY (RANDOM 140) (RANDOM
120)]

The parentheses are included only for clarity. The command draws
a cat's cradle of lines, but only in the top right quarter of the
screen where both co-ordinates are positive. . To cover the whole
screen a random X co-ordinate between -140 and 140 is needed,

and also a suitable Y co-ordinate. One possible way to do this is

REPEAT 50 [SETXY (140 - RANDOM 280) (120

- RANDOM 240))

45

The Cartesian commands also provide a simple means of
checking on the randomness of RANDOM. The idea is to use
RANDOM to scatter small blips onto the screen; if it is done at

random they should be evenly spread rather than clustered in

places. The command FD 1 BK 1 draws a small blip, so

REPEAT 500 [PU SETXY (140 - RANDOM 280)

(120 - RANDOM 240) PD FD 1 BK 1]

draws 500 blips at random places on the screen. It takes a while.

The SET- commands by themselves are not very convenient
to use. They deal with absolute rather than relative positions on

the screen and working In terms of absolute positions needs
forethought. There is a complementary set of procedures whcih
help to make the SET- ones much more useful. They are

XCOR This takes no input, but outputs the turtle's current X
co-ordinate. The command SETX XCOR thus does noth

ing at all. Note that the turtle's X co-ordinate cannot lie
outside the range -140 to 140. even if the turtle has
wrapped round an edge of the screen. If the turtle is at
the right-hand side of the screen and it wraps round to
the left-hand side, the X co-ordinate does not change
smoothly as you do it. It jumps from around 140 to
around -140.

YCOR This takes no input, but outputs the turtle's current Y

co-ordinate. It behaves much like XCOR.

HEADING This takes no input, but outputs the turtle's current
heading. The heading is measured in degrees, in the
range 0 to 360. A heading of 0 is directly up the
screen, and the heading increases clockwise.

TOWARDS This takes two numbers as Inputs, which it treats as the
X and Y co-ordinates of a point on the screen. It out
puts the heading that the turtle must have to aim at that
point from Its current location.

This set of procedures frees you from having to work in
terms of absolute positions. The command

SETXY XCOR + 10 YCOR + 10

moves the turtle - drawing, if the pen is down - in a straight

46

line to a point 10 units right and 10 units up. It does not change
the heading. The command

SETX XCOR + 2 SETX XCOR -2

makes the turtle draw a small horizontal blip in a state-

transparent way. it is also possible to record a position on the
screen for later use. for instance

MAKE "X XCOR

MAKE "Y YCOR

MAKE "H HEADING

SETXY :X :Y

SETH :H

This is a very useful trick when constructing a drawing whcih
requires many commands, such as figure 2.12. It was drawn using
only Cartesian commands. Even simple drawings like this demand
quite a lot of typing. You would naturally hesitate to repeat this
effort every time you wanted to Include a church or a house or
whatever in a drawing. There is a means of encapsulating a

Figure 2.12

47

sequence of commands as one (new) procedure, which can then
be used in exactly the same way as existing procedures. Com
puter programming, after all, is supposed to help you avoid undue
work rather than create it. Chapter 3 is about defining new pro
cedures.

2.7.4 Curves

All the diagrams in this chapter have been composed of straight
lines. There are no built-in Terrapin LOGO procedures immedi
ately available to you for curve drawing (there are in some other
LOGO versions). The material in chapter 3 will explain how to
define some; this section is about the ideas involved.

Figure 2.8 suggests how curves can be simulated. The trick
is approximation. Consider circles or arcs of circles, for example.
The command

REPEAT 360 [FD 1 RT 1]

draws a 360-sided polygon (very slowly)1. It is also as good a
representation of a circle as the Apple II is going to allow. How
big is this circle? Well, the circumference is 360 units so the
radius must be 360 divided by 277. or roughly 57.296. In general
the circumference of a circle of radius R is 2nR To approximate
to such a circle, therefore, the turtle must move FORWARD by
2xrR/360 for each step, and turn by 1 degree. Now 277/360 =
0.01745... so a circle of a particular radius can be drawn by

MAKE "R {radius)

REPEAT 360 [FD :R*0.01745 RT 1]

(note that neither Radio Shack Color LOGO nor Tl LOGO accept
numbers with decimals, they only accept integers. You'll need to
experiment.) To draw an arc of a circle just reduce the number
of repetitions. To draw a rightward-bendlng arc which subtends a
particular angle at the circle's centre.

REPEAT {angle} [FD {radlus}*0.01745 RT 1]

By looking at the command itself rather than what it drew, it

1 Except in Radio Shack Color LOGO, where it draws an octagon. The reason is that
this LOGO has rather coarser ideas about the turtle's heading. Over a distance of 1
unit, it is not going to distinguish between a heading of 1 degree and a heading of
10 degrees. The cure is to make the step size and the angle increment bigger,
perhaps around 8. That way you will get a reasonably circular-looking shape.

48

should be easy to see that the turtle will change its heading by
the chosen angle in drawing the arc. A leftward-bending arc can
be drawn by substituting LT for RT.

The drawing of a circle can be speeded up a bit. by com
manding LOGO not to bother showing the turtle. The command is

HIDETURTLE (or HT for short)

and the complementary command is

SHOWTURTLE (or ST for short)

It Is possible to approximate to curves other than circles, but
it Is usually much harder. Spirals probably represent the next step
up in complexity - just make the radius increase slowly at each
repetition. For instance.

MAKE "R 50

REPEAT 720 [FD :R*0.01745 RT 1 MAKE "R
:R + 1]

draws two turns of a linear spiral. There is considerable scope for
experimentation. Try changing the distance the turtle moves at
each repetition as well, although stop It before this gets too big
or it will become obvious that the curve is really made up of
straight line segments. Another thing to do is to change the
length or angle by multiplying by a constant less than 1 at each
step, instead of adding a constant.

Chapter 3
Procedures

"Well." said Owl. "the customary procedure in
such cases is as follows."

"What does Crustimony Proseedcake mean?" said
Pooh. "For I am a Bear of Very Little Brain.
and long words Bother me."

"It means the Thing to Do."

(Winnie-the-Pooh. A.A.Milne)

Aims Defining your own procedures offers an enormous range of
possibilities. This chapter explains how to create and modify
them. Doing so offers a great deal of power for experiment
ing with Ideas. Later in the chapter, some advice and gen
eral principles are described that should help you to make
the most of this.

3.1 CREATING NEW PROCEDURES

IMPORTANT NOTE

Before starting work on this chapter, read the technical manual
that came with the LOGO system to find out how to prepare a
floppy disk (if your system uses them; cassettes might also need
preparing) so that it can be used for storing things in LOGO that
you want to keep. You need to do this NOW because you cannot
prepare one while running LOGO.

Suppose you wanted to draw a scene such as the one
shown in figure 3.11. Drawing each house, tree and bird using

1 Maybe it is not something you would want to do, but just suppose for the sake of
argument.

49

50

only the basic turtle graphics commands would be extremely tedi
ous, it would be easier if there were commands HOUSE. TREE

and BIRD: the only difficulty might then be ensuring that the turtle
was in the right place at the right time for each of these com
mands.

The ability to define such new commands, in terms of other
commands, is an essential part of every version of LOGO, in Ter

rapin LOGO the procedures TO and EDIT let you do this. The
same commands, with minor variations of detail, are used in

most other versions of LOGO though Research Machines LOGO
uses BUILD and CHANGE instead.

To see how to use TO. consider the following example. It is
often convenient to have a command that will draw a box of some

kind. Suppose the command is to be called BOX. The LOGO
command

TO BOX

will erase any drawing and any text on the screen and instead

Figure 3.1

51

you should see essentially what is shown in figure 3.2. The line
at the top is the title line of the new procedure BOX. The cursor
is just under the 'T' of TO. and LOGO is now waiting for you to
specify the sequence of commands that will make up the definition
of BOX. You can now type commands, but LOGO will not obey
them yet. even when you press RETURN - the cursor merely
moves to the start of the next line. This is because you are now
using a piece of the LOGO system called the editor. It helps to
think of the editor as a tool for writing out the definition of a
command which, when you finish editing, becomes known to the
LOGO system. Try typing

REPEAT 4 [FD 50 RT 90]

END

and then pressing CTRL-C (that is. press the CTRL key and while
holding it down press C). The screen should clear and the two
messages

TO BOX

a

Eai„T.S:-.E-TRL:-C:^TD*iDEF. IME-. CTRL?-Ct*..TQ,*.REQRT

Figure 3.2

52

PLEASE WAIT...

BOX DEFINED

should appear, with a short pause before the second one. followed
by the normal prompt. You can now use BOX as a normal com
mand. Type

BOX

and press RETURN, and the turtle will draw a square of side 50.
If It did something else instead then you may have made some
mistake in typing the definition - read on...

When you use the editor you will find in at least three cases
out of four that you want to change something or correct some
typing mistake in an earlier line. Whatever the version of LOGO
you are using, there are ways of moving the cursor around the
screen, deleting parts of what you have typed and inserting new
material. If you have already finished the editing of the definition
you can get it back to modify It by the command

EDIT BOX

Terrapin LOGO gives you the following powers when using TO or
EDIT:

A single LOGO command line can. as before, stretch over
several lines of the screen. However, when this happens (i.e.

you type off the end of a line and onto the next line) the
editor puts an exclamation mark at the right-hand side of the
screen as a reminder that the line continues.

The arrow keys move the cursor left or right. If the cursor is
at the start of a line and is moved left, it jumps to the end
of the line above. If the cursor is at the end of a line and

is moved right It jumps to the start of the next line.

Typing bits of LOGO inserts them at the point where the cur
sor is. If there is anything to the right of the cursor, that
gets pushed to the right as you type.

The ESC key. as before, can be used to delete a character
(anything to the right of it on the same LOGO line - even if
it spans more than one screen line - moves one place left
to fill the gap). If the cursor Is at the start of a line then
the effect of the ESC key is to join that whole LOGO line
onto the previous one.

53

There are also various CTRL-key options:

CTRL-P This moves the cursor up one LOGO line (the 'P' Is for
'previous').

CTRL-N This moves the cursor down one LOGO line (the 'N' is
for 'next').

CTRL-0 This opens up a line - that is, it splices in a blank line
where the cursor is.

CTRL-A This moves the cursor to the beginning of the LOGO line
(think of 'A' being at the beginning of the alphabet).

CTRL-E This moves the cursor to the end of the line CE' for

'end').

CTRL-K This deletes everything on the current LOGO line that is
to the right of the cursor (the 'K' is for 'kill'). If there Is
nothing to the right of the cursor, it joins the current line
to the next one.

The definition of a procedure may not fit into one screenful.
This does not matter - just keep typing. The following CTRL-key
functions should be useful in such a situation:

CTRL-B This moves you back by roughly a whole screenful in the
definition (if possible), so that you can work on an earlier

screenful.

CTRL-F This moves you forward by roughly a whole screenful (If
possible) so that you can work on a later screenful.

CTRL-L This adjusts the definition so that the line with the cursor
on it is in the centre of the screen.

As was mentioned earlier. CTRL-C is the way to end editing
if you are satisfied with the definition. If you are not satisfied and
want instead to abandon editing and discard the definition, type
CTRL-G. This feature makes it easy to practise using the editor-

just type

TO JUNK

54

or whatever, to get 'into' the editor and then try typing anything
at ail - a limerick, your name and address, rows of numbers. You
can play around with the editing keys to your heart's content and
eventually throw away all the messy results by typing CTRL-G -
only do not type CTRL-C first! It is a very good idea to spend a
little while doing this practice; everyone develops their own style
of working with an editor and it is better to get a feel for it
before using it in earnest.

Therefore. PRACTISE NOW.

(Notes for teachers: (a) get pupils to do this as an abstract
exercise before they move on to defining procedures. It can be
hard to think about editing and about the LOGO commands making
up a definition at the same time (b) be careful about how you
introduce LOGO procedures. Many beginners have trouble grasping
the distinction between defining and running a procedure. They
often expect the commands typed in as part of a definition to be
obeyed at once - after ail. they may never have articulated the
notion of 'postponed action' to themselves before in any subject,
and not just computer programming (c) if you have read the
instructions above you may have noticed that the description of
how to use the editor is based on a particular image, although it
is not made explicit. The image is that of typing on a roll of
paper seen through a window. The roll can be wound on (down
ward) by CTRL-F. and back (upward) by CTRL-B. Strips of blank
paper can be spliced in by CTRL-O. It helps beginners to have
some such analogy, though it is best not to press it too far if
the reality cannot sustain it. Joining two lines into one using ESC
i? somethinp that does not fit the analogy well, which is why the
analogy is not explicitly stated above, it might still be worthwhile
to use it if you are careful about the order in which the editing
functions are introduced.)

3.2 PROCEDURES WITH INPUTS

The procedure BOX defined above can be put to use as though it
were a normal LOGO command, e.g.

REPEAT 36 [RT 10 BOX]

After a short while BOX will seem fairly limited. It would be better

if it took an input which gave the size of the BOX. Procedures
such as FORWARD and RIGHT take an input, so why not BOX? It
can. once the definition is suitably changed. To do this, give the

command

EDIT BOX

55

and the definition of BOX will reappear. Remember that any draw
ing and any commands which were visible before the EDIT com
mand will be erased by this. Use the editing functions to change
the definition to look like this:

TO BOX :SIDE

REPEAT 4 [FD :SIDE RT 90]

END

The first line, called the title line has been changed by the
addition of ':SIDE'. This informs the LOGO system, when you finish
the editing, that BOX will in future take one input which, for the
purposes of the definition, will be a variable called by the name
SIDE. This variable only exists while BOX is being run. and it
temporarily supersedes any previously existing variable called SIDE.
Therefore the last of the commands

MAKE "SIDE 100
BOX 50

PRINT :SIDE

will print 100. because the command BOX has finished by the
time the PRINT command is given.

A procedure can have as many inputs as you like. The
names of the inputs can also be given at the time you invoke the
editor, for example

TO TRASH :N1 :RHUBARB DISTANCE

and then that will be what Is shown at the top of the screen.
Once into the editor, you are free to change the title line as you
like, provided that there is a valid title line when you finish the
editing.

To reinforce the point about inputs, look at these two pro
cedures:

TO JUNK1 :N

JUNK2

END

TO JUNK2

PRINT :N

END

(it is legal and commonplace to define two or more procedures in
one piece of editing. That is the only real significance of END, to
mark where one definition ends where and another should start).

With these.

56

MAKE "N 100

JUNK1 50

will result in the number 50 being printed. Although it is JUNK2
that is responsible for a number being printed. JUNK1 is still run
ning when JUNK2 gets obeyed (because the command JUNK2 is
part of the definition of JUNK1). so the variable called N whose
value is printed is really the input to JUNK1.

Digression:
If it seems to you as though the form of the TO and
EDIT commands contradicts the rules about naming and
when to use a colon or a quote, you are correct. This is
a peculiarity of Terrapin LOGO and one or two other ver
sions.

A 'box* does not have to mean a square, it can mean any

thing polygonal. Here is BOX modified to take two inputs, the first
of which is to be the side length and the second is to be the
number of sides:

TO BOX :SIDE :N

REPEAT :N [FD :SIDE RT 360/:N]

END

Now the command

BOX 50

will result in an error message saying that there are not enough
inputs for BOX. The command

BOX 50 6

will draw a hexagon, and

MAKE "N 3

REPEAT 18 [BOX :N 6 RT 10 MAKE "N :N+3]

will draw figure 3.3. The example used in this chapter so far.
drawing a box. may not look like a particularly good advertisement
for procedures as labour-saving devices. The next subsection
should help to dispel doubts.

57

Figure 3.3

3.3 CRUDE ANIMATION - A STUDY

It is possible, in Terrapin LOGO, to achieve a crude form of ani
mation, in some versions of LOGO it is not really possible, and in
others It Is very much easier. The difference is mainly caused by
differences in computer hardware rather than software.

At this point, the value of LOGO as a tool for experimenting
starts to appear - for there are a variety of ways to set about
animating something. Suppose that the objective is to animate a
small square to make it appear to move around the screen. There
are at least two ways this might be done:

A (a) draw the box on the screen.

(b) move the turtle a little, with the pen up.

(c) clear the screen.

(d) repeat steps (a) to (c) many times.

58

B (a) draw the box on the screen.

(b) erase the box by redrawing it in the background colour,
perhaps after a short pause.

(c) move the turtle a little, with the pen up.

(d) repeat steps (a) to (c) many times.

At first sight there is not much to choose between these as

basic methods. It would be nice if the basic method could be

extended, for instance

to allow acceleration or deceleration of the shape

to allow motion along curves

to allow size changes so that the shape appears to be getting
nearer or further away.

The rest of this subsection will be devoted to showing one

typical route for the investigation and development of one of these
methods, namely method B. The question of whether method A
has any relative advantages or disadvantages will be left as an
exercise.

Assume that the background colour is 0. the pen is down
and the pen colour is unknown. Then step (a) is

PC 1 BOX 10 4

The initial PC (that's PENCOLOR. remember?) ensures that the tur

tle will draw the box, in colour 1. Step (b) is just

PC 0 BOX 10 4

Forget about the business of a delay before erasing, for the
moment at least. Step (c) is just

PU FD 10 PD

This assumes that 'a little' means 10 units. Remember that PU is

short for PENUP and PD Is short for PENDOWN. All these can be

combined in one procedure called ANIMATE:

TO ANIMATE

59

PC 1 BOX 10 4

PC 0 BOX 10 4

PU FD 10 PD

END

Now tidy up the screen and then try it. by

HOME CS

REPEAT 50 [ANIMATE]

The result is remarkably disappointing, it is not at all fast and
the turtle leaping about all over the drawing spoils any impression
of motion by the box itself. This does not mean that animation is
impossible. In such a situation, there are two things you should
do. The first is to remind yourself that in 90% of cases it will
turn out that there is more to the problem than appears at first
glance. The second is to analyse why the result is disappointing.
Writing down what the snags are helps a lot; then, when other
difficulties appear later on. your notes will help you to avoid fal
ling into the same old traps. In this case, perhaps the two diffi
culties - slowness and the mad dancing of the turtle - are
related. It may be that the time spent by LOGO in drawing the
turtle at the end of each FD and RT command Is why it is so
slow. The cure Is to dispense with the turtle somehow. Is there a
way of doing this? Yes. the command HT (short for HIDETURTLE)
instructs the LOGO system not to bother showing the turtle. Try it:

HOME CS

HT REPEAT 50 [ANIMATE]

It is better, but still poor. There are two 'motions' visible - the

turtle round the square in the BOX command, and the jerky
motion of the square. The second might be made less jerky by
reducing the turtle motion between one square and the next, by
changing the FD 10 in the last line of ANIMATE to FD 5 or
thereabouts. Doing this helps the situation a little, but also makes
it clear that the motion of the turtle around the square in BOX is
the main snag.

Getting round this looks impossible. There is no Terrapin
LOGO command to make the turtle draw faster. One possibility is
to make the box even smaller - say 5 units on a side - but it is
rather weak-willed to have to accept that it is only possible to
animate tiny shapes. Therefore the question comes down to this:
is there any other way to draw a square, a way that does not
use FD? Presumably BK is just as inadequate for the task as FD.
although it is worth a try. The answer is yes. there are the
Cartesian commands. You may have noticed that they are fast.

60

though that is only an impression at this stage. However, how can
BOX be modified to use Cartesian commands? Drawing a hexagon,
for example, must be difficult because the co-ordinates will never
be straightforward integers.

A useful principle to call on at this point is

If you cannot crack the problem, avoid it.

The command BOX is too general for this investigation. A com
mand that draws a small square is all that is required. The way
forward is to edit ANIMATE to replace the BOX commands by
(say) SQUARE and to define SQUARE suitably using Cartesian
commands. SQUARE can be defined in the same editing session
as changing ANIMATE, by moving the cursor past the end of the
definition of ANIMATE and typing in the definition of SQUARE, or it
can be defined separately:

TO ANIMATE

PC 1 SQUARE

PC 0 SQUARE

PU FD 10 PD

END

TO SQUARE

SETX XCOR + 10

SETY YCOR + 10

SETX XCOR - 10

SETY YCOR - 10

END

Be careful: editing not only erases the drawing, it also undoes the
effect of HT and returns the turtle to its default state of being
shown on the screen after every drawing command. Each of the
four lines in SQUARE draws one side of the square. The square it
draws has its sides parallel to the sides of the screen whatever
the heading of the turtle, but that is not a particular handicap. In
fact, it could be an advantage; in the earlier version the motion

of the square was always parallel to a side of the square. If you
try this version of ANIMATE you should find that it is much better.

In Terrapin LOGO the Cartesian commands are significantly faster
than FD and BK. even with the turtle hidden.

At last the basic idea, method B. looks workable. Having
established this, it is time to think about embellishments. Look

once more at the definition of ANIMATE. Having cut out the use

of FD in drawing the square, it might well be advantageous to cut
out the use of FD there too. Replacing it by a SETX command is
too restrictive, but a SETXY command should do. The amount by

61

which to change the X and Y co-ordinates could be Inputs to
ANIMATE:

TO ANIMATE :X :Y

PC 1 SQUARE

PC 0 SQUARE

PU SETXY XCOR + :X YCOR + :Y PD

END

Try various values for the inputs. Beware of this, however:

HOME CS

HT REPEAT 50 [ANIMATE 10 -10]

Terrapin LOGO will tell you that ANIMATE needs more inputs,
because it takes the ANIMATE command to be ANIMATE (10-10)

rather than ANIMATE 10 (-10). The way to avoid this trap is to
use parentheses to make the meaning clear.

ANIMATE can be further improved. At present it does only
one movement of the square. Suppose that a final line is added:

TO ANIMATE :X :Y

PC 1 SQUARE

PC 0 SQUARE

PU SETXY XCOR + :X YCOR + :Y PD

ANIMATE :X :Y

END

This is legal because, at the time ANIMATE is run, the LOGO
system knows how to obey the ANIMATE command in the last line!
This idea of a procedure invoking itself, whether in the last line
or elsewhere, is called recursion. It is a very powerful tech
nique, and it will be used a lot later in this book. The new ver
sion of ANIMATE does one movement of the square, then invokes

ANIMATE. So. what it does is to move the square once, then ...
move the square once, then ... move the square once, then ...
etc. Before you try it you had better make sure that you know
how to stop it. In Terrapin LOGO, the way is to type CTRL-G. This
always stops whatever is happening and gets you back to the
prompt. (Note for teachers: 'G' for 'give up'? Whichever
mnemonic you choose, use it. There is no virtue in trying to use
computer jargon such as 'CTRL-G causes an execution interrupt'.)
With recursion, all that is needed to start the animation is

HOME CS

ANIMATE 10 2

for example. The REPEAT command is unnecessary. If it is used.

62

only the first repetition will happen. Typing CTRL-G will stop
everything. Including the REPEAT.

Another embellishment is the 'zoom lines' effect common in

early Walt Disney cartoons. An easy way to achieve it is to have
several (say three) squares always visible. Whenever one is added
to the screen, the idea is not to delete it but to delete the fourth

square back instead. Here is one way to do this:

TO ANIMATE :X :Y

PC 1 SQUARE

PU SETXY XCOR - 3*:X YCOR - 3*:Y PD

PC 0 SQUARE

PU SETXY XCOR + 4*:X YCOR + 4*:Y PD

END

The first SETXY in this leaps the turtle from the latest square,
back past the previous two to the starting position of the third
last square. That square is deleted. The second SETXY leaps the
turtle past the newly added square to the starting position for the
next ANIMATE. The whole effect is much more pleasing, even if
very crude as an example of computer animation. (Note: one
curiosity of the Apple Ii's electronics is that you are likely to get
odd fragments of colour appearing on the screen, depending on
the inputs to ANIMATE! if you have used colour graphics on the
Apple II before you will be used to this.)

EXERCISES

{1} How can acceleration and/or deceleration of the square be

simulated?

(2) Is It practicable to make the square grow or shrink as it
moves? Can motion toward or away from you be simulated

by this?

{3} is it practicable to make the square change orientation as
It moves? (It might help you to remember that LOGO pro
vides procedures for SIN and COS).

{4} Does moving along a non-linear path spoil the animation
effect? One way to start on this would be to consider
changing the inputs to the recursive ANIMATE command
within the definition of ANIMATE, by a small fixed amount

each time it invokes itself.

63

{5} What are the relative merits of using basic method A for
animation instead?

3.4 THOUGHTS ABOUT WORKING WITH PROCEDURES

Look again at figure 3.1 on page 50. which showed some houses,
trees and birds. There are various ways to set about the task of
making such a drawing. Each way has its pros and cons. The
next two subsections will consider fundamentally different
approaches.

3.4.1 A Bottom Up Approach

One way to start is to get a sheet of graph paper and plot
roughly where everything is to go. Going to the lengths of actually
drawing the whole scene on paper is too much like real work; the
point Is to make sure that none of the houses and none of the
birds overlap any other. To do this it is necessary to decide on
the size of a house and on the size of a bird (are different sizes

of bird to be allowed?). Thereafter you can start on defining the
procedures which will be used for a house. A house in this scene
will have a body (the main rectangular part), a roof, a door and
a window. Suppose the body is to be 20 units across and 10
units high. The door ought to be near one side (the left, say)
and perhaps 4 wide and 7 high. The window will be perhaps 5
square. Assume that the turtle is to start at the lower left corner
of the body and with a heading of 0 degrees. Some playing might
get you to this definition, or something similar:

TO HOUSE
REPEAT 2 [FD 10 RT 90 FD 20 RT 901
RT 90 FD 4 LT 90

REPEAT 2 [FD 7 RT 90 FD 4 RT 90]
LT 90 FD 4 RT 90
RT 90 FD 12 LT 90 PU FD 3 PD
REPEAT 4 [FD 5 RT 90]
PU BK 3 PD LT 90 FD 12 RT 90
FD 10 RT 45 FD 5.66
RT 45 FD 12 RT 45 FD 5.66 RT 135
FD 20 RT 90 BK 10

END

This is almost Incomprehensible. It is easier to break it up Into
suitable chunks, like this:

64

TO BODY

REPEAT 2 [FD 10 RT 90 FD 20 RT 90]

END

TO DOOR
RT 90 FD 4 LT 90

REPEAT 2 [FD 7 RT 90 FD 4 RT 90]

LT 90 FD 4 RT 90

END

TO WINDOW

RT 90 FD 12 LT 90 PU FD 3 PD

REPEAT 4 [FD 5 RT 90]
PU BK 3 PD LT 90 FD 12 RT 90

END

TO ROOF

FD 10 RT 45 FD 5.66

RT 45 FD 12 RT 45 FD 5.66 RT 135

FD 20 RT 90 BK 10

END

TO HOUSE

BODY DOOR WINDOW ROOF

END

This is slightly easier, although exactly the same basic commands
are used and in the same order. Each of the procedures assumes

the same starting place for the turtle, and requires some care to
define considering the simplicity of the resulting drawing of a
house. Are you convinced that the definitions are correct? Did
you check them or did you sensibly baulk at that mundane task?
On the other hand there is this to be said, each of the

ingredients is state-transparent and so the definition of HOUSE in
terms of BODY. DOOR. WINDOW and ROOF is child's play. This

sort of approach, where the ingredients are tackled separately and
almost in isolation, and are combined only at the last stage, is
widely known as bottom up. Progress of the work is from the
bottom (or specific) level up towards the top (or general) level.

3.4.2 A Top Down Approach

Instead of diving straight Into the fine detail you could start with
generalities. For example, a house in this scene consists of a
body, a door, a roof and a window and so the definition of
HOUSE can be

TO HOUSE

BODY DOOR ROOF WINDOW

65

END

and it remains to define these four ingredients. The body, door
and window are all rectangles even though the window is a spe
cial case. viz. a square. Thus BODY can be defined as

TO BODY
RECTANGLE 10 20

END

provided that RECTANGLE'S first input is going to be its height
and its second is going to be the width. In HOUSE, the BODY is
followed by the DOOR. This could be expressed as

TO DOOR

MOVE.FROM.BODY.TO.DOOR

RECTANGLE 7 4

END

where MOVE.FROM.BODY.TO.DOOR does what its name suggests.
Note that it is acceptable to have full stops within a name, and it
makes a compound name more readable. Similarly.

TO WINDOW

MOVE.FROM.DOOR.TO.WINDOW

RECTANGLE 5 5

END

TO ROOF

MOVE.FROM.WINDOW.TO.ROOF

RT 45 FD 5.66 RT 45 FD 12 RT 45 FD 5.66

MOVE.FROM.ROOF.TO.BODY

END

There are still five undefined procedures, but assumptions have
already been made about each of them. For instance, in
MOVE.FROM.DOOR.TO.WINDOW the turtle starts from where it fin

ished after DOOR, and must end at the starting place for drawing

the rectangular outline of the window. (Note for pedants: all
those MOVE.FROM.somewhere.TO.somewhere could indeed have been

incorporated explicitly In the definition of HOUSE, for example

TO HOUSE

BODY MOVE.FROM.BODY.TO.DOOR

DOOR MOVE.FROM.DOOR.TO.WINDOW
WINDOW MOVE.FROM.WINDOW.TO.ROOF

ROOF MOVE.FROM.ROOF.TO.BODY

END

and that makes it slightly easier to remember the necessary

66

assumptions. But it requires more forethought at the start and it
does not save any work. An exhaustive discussion would be
exhausting.)

You can define the extra procedures for yourself. This sort of
approach goes by the name of top down: progress is from the
top (or general) level towards the bottom (or specific) level.

3.4.3 Comparing The Two Approaches

The 'bottom up' approach often leads to defining unduly elaborate
procedures, such as those on page XX. Three of those four con
tain a LOGO command to draw some size of rectangle, and it
would have been neater to define a general rectangle procedure
to use in those three. Doing that is not much less work, but at
least the rectangle procedure would thereafter exist as a general
tool for other uses as well. For example, you could decide, in due
course, that the house is really in need of a chimney. It would
be much easier to experiment with its size if there were a gen
eral rectangle procedure available.

Another point against working 'bottom up' is that your pro

cedures are harder to read and harder to extend later on. The

decisions made while defining the procedures are not even hinted
at by anything visible within them, they are only recorded else
where - on paper at best, more commonly solely in your head.
On the other hand working 'bottom up' is 'natural' and easy to
start with. When visualising a drawing, the semantically complete
components such as 'door' and 'window' are what catches the
attention rather than Incomplete ingredients such as 'side of door'
and 'top of roof. But. when you start defining the sequence of
LOGO commands, it is the details such as angles and lengths
which are the focus of attention and this makes 'bottom up' work
ing the 'natural' way.

Working 'top down' is much cleaner once you are used to it.
Unfortunately it does take a while to get used to. However,
because you begin by representing general chunks of the drawing
by procedure names before defining the procedures themselves. It
is natural to choose the names so as to remind you of the deci
sions, such as MOVE.FROM.BODY.TO.DOOR. When you return later
to extend or change the drawing, it is easier to pick up the
threads. It is also easier to do the actual modifications. Take an

example: suppose that HOUSE Is not the right size for some par
ticular purpose. You resolve to give HOUSE an input which is a
scale factor, so that HOUSE 1.5 is half as big again as HOUSE 1.
In both the 'top down' and 'bottom up' cases the new HOUSE
procedure might be

67

TO HOUSE :SCALE

BODY DOOR WINDOW ROOF

END

(Note that it is unnecessary to give BODY etc. an input, though it
is up to you. The temporary variable SCALE will exist while they
are being run. so the definition of these procedures can use it.)
In the 'bottom up' versions of BODY etc.. you need to append the
LOGO phrase '* .SCALE' to every FD and BK command - a total
of sixteen times. In the 'top down' case you need only do this
twelve times - twice inside the definition of rectangle, three times
inside ROOF, once in MOVE.FROM.BODY.TO.DOOR and twice each

in the other MOVE... procedures.

Contrary to popular programming folklore, the 'top down'
approach is not appreciably easier to work with, although it is
easier to read and understand once the whole thing works. There
is just as much scope for mis-remembering decisions made at an
earlier stage of the enterprise, or perhaps even more. A very
common occurrence is to forget to define some procedure at all
first time round, although this is not hazardous but merely frus
trating in LOGO. Getting used to 'top down' working calls for
some effort, particularly in learning to plan and analyse first then
act later. This does not mean that you have to map out the
entire campaign beforehand; it merely means learning to remind
yourself to take a second look at what you are visualising, and
learning to generalise.

Very few people, even sampled from professional program
mers, stick purely to one approach or the other. The vast majority
use a hybrid of the two and the ease and flexibility of the solu
tion depends on the particular mix. As a general principle, if one
is needed.

top down is the one to choose if you are tackling something
unknown or if you expect to want to generalise your
work later on

bottom up is for when you are on familiar ground.

3.4.4 Afterthought

Adding the birds is the major hurdle on the way to finishing fig
ure 3.1. Each is made of two arcs, and arcs were the topic in
section 2.7.4 in chapter 2. It Is worthwhile to define procedures
for arcs: for instance

68

TO ARCRIGHT :RADIUS :ANGLE

REPEAT :ANGLE [FD :RADIUS * 0.01745
RT 1]

END

Notice that the angle has to be positive (LOGO will object if it is
negative) but the radius can be any number. An ARCLEFT pro
cedure is useful even though ARCRIGHT with a negative radius will
do the trick.

Drawing a bird by joining two arcs is still not entirely trivial
- try it - but It Is fairly easy to experiment with, once you have
a tool such as ARCRIGHT at your command. You can reasonably
expect to get it wrong two or three times before getting it right,
so don't kick yourself the first time! The rules are

(a) make procedures which are tools, when you can. and

(b) in general, generalise.

3.5 ANOTHER STUDY - A TICKING CLOCK

The aim of this is to draw a clock face, and make it keep to

time. There are three separate chunks clearly involved: drawing
the clock face, drawing the hands and making the clock work.
Figure 3.4 shows a simple clock face, drawn by

TO MARK

PU FD 50 PD FD 10 PU BK 60 PD

END

HOME CS

REPEAT 12 [MARK RT 30]

The procedure MARK is state-transparent, and it is assumed that
the turtle starts and ends at the centre of the clock face. A

better face might have the marks for 12. 3. 6 and 9 o'clock
slightly longer than the rest. A further refinement would be to add
Roman numerals - much easier to draw than arable numerals -

but it is best to start with something very simple.

The other two chunks are not so easy. It is tempting to

launch into the task of drawing the hands and give no thought to
the other one. Doing so will probably get you into a mess,
because making the clock tick involves redrawing the hands once
per minute. Consider that first, therefore. A command such as

REPEAT 1000 [TICK]

69

Figure 3.4

would be all that is needed, if TICK advances the hands by a
minute and then takes a minute to finish. The clock will wind

down after 1000 minutes, but if you seriously want to leave your
computer switched on and doing nothing else for much longer
than 16 hours you can simply increase the number of repetitions.

Thus the problem is only how to define TICK. Look at the phrase
'advances the hands'. Where are they advanced from, and where
to? This suggests having two variables, one concerned with the
minute hand and one with the hour hand. Call them MINUTE and

HOUR. The value of MINUTE will be the heading of the minute
hand; it would have been equally reasonable to elect that the
values should be the number of minutes since the clock was

started. TICK must do this at least:

erase the minute hand.

erase the hour hand.

update the MINUTE and HOUR variables.

draw the minute hand in its new place.

70

draw the hour hand in its new place

The minute hand must not be long enough to reach the
hour marks on the face or it will erase them as it moves; let it

be 40 units long, and let the hour hand be 20 units long. Then
the erasing of the minute hand can be done by

PC 0

SETH :MINUTE FD 40 BK 40

The hour hand is erased in the same way. The next task is
updating MINUTE and HOUR. As there are 60 minutes in an hour,
and 360 degrees to be swept by the minute hand, the command
is

MAKE "MINUTE :MINUTE + 6

and. for the hour hand.

MAKE "HOUR :HOUR + 0.5

Here is a prototype for TICK:

TO TICK

PC 0

SETH .MINUTE FD 40 BK 40

SETH :HOUR FD 20 BK 20

MAKE "MINUTE :MINUTE + 6

MAKE "HOUR :HOUR + 0.5

PC 1

SETH :MINUTE FD 40 BK 40

SETH :HOUR FD 20 BK 20

END

Unfortunately it only takes moments rather than a full minute,
when it is run. What is needed is a delaying command, something
that does nothing but takes a while. Tests will show you that

REPEAT 61000 11

is such a command (even doing nothing takes a little time!), and

that 61000 is approximately the right number if you add the com
mand as the last line of TICK. You will need to adjust it slightly
to make the clock accurate.

One oddity of TICK is that the first time it is used, it erases
non-existent hands, but this does not matter, it only remains to

put all the ingredients together. Remember to set the values of

71

MINUTE and HOUR before starting the clock.

EXERCISES

(6} Is it practicable to include a second hand?

{7} Define a procedure which takes two numbers as input,
representing the time of day. and draws the clock and
starts it.

(8} Create a clock that runs backwards, or only has six hours
on its face. Find out if other people can get used to
using such a clock.

3.6 MORE ABOUT PROCEDURES

All the examples in this chapter so far have been concerned with
drawing. Some have used inputs, others have not. None have
output anything. It is reasonable to want to define procedures that
output, and LOGO, being a very reasonable language, provides a
means of doing so. In Terrapin LOGO there is a procedure OUT
PUT, which takes one input. Its effect is to end the procedure in
which it appears, and make It output whatever OUTPUT'S input
was. Here is an example:

TO SQUARE :N
OUTPUT :N * :N

END

The command

PRINT SQUARE 7

will print 49, because the OUTPUT procedure has input 49, and
causes SQUARE to end and output 49. Note that SQUARE does

not resume (so to speak) - if SQUARE were instead

TO SQUARE :N
OUTPUT :N * :N
PRINT "CLOWN

END

then PRINT SQUARE 7 would still only print 49. because obeying

72

the OUTPUT is taken by LOGO to be a sign to stop obeying the
definition of SQUARE.

Digression:
Suppose that were not so? Then you could put two OUT
PUTS in a procedure definition, and LOGO would get very
confusing. If you have ever fancied trying your hand at
specifying a new programming language, this suggests an
intriguing possibility on which to base something...

Another common factor of ail the examples so far is that all

the commands in a procedure definition are obeyed, none depend
on any kind of circumstance. Being able to do one thing if some
condition prevails and another thing if not, is what makes comput
ers so useful. A facetious but comprehensible example, which
nevertheless calls for a sophisticated computer system and a lot
of programming work, is

if....it Is Friday
and...it is near the end of the day.
then..remind the users that the computer closes

down at 6 p.m.

Note that there is an implied 'else..do not remind them' here. This
example would require that the computer can find out the date
and time, that it has a means (expressed in the form of a pro
gram) of judging what 'near the end of the day' means, and that
it has a means of reminding users. Of course, nobody would be
single-minded enough to do all the programming work needed to
make this example possible, unless the work could also be put to
many other such uses.

in LOGO, and in most programming languages, the kind of
conditions which it is possible to make some action or command
depend upon are very simple. What complicates the matter is that
it is very handy to be able to compound conditions, such as 'this
condition and that condition' or 'this or that'. Since these are

themselves conditions it must also be possible to have conditions
such as 'this condition and (that condition or another condition)'

and so on.

In Terrapin LOGO conditional commands look like this:

IF :N > 0 THEN MAKE "Z :N

This says that 'if the value of N is greater than 0 then give Z
the value of N'.

73

IF :N = 0 THEN PRINT "HELP ELSE
MAKE "N :N - 1

This is 'If the value of N is 0 then print the word HELP, else
make N one less than its present value'.

In general such commands must be of the form

IF condition THEN command(s)

or

IF condition THEN command(s) ELSE command(s)

although there is one further way of expressing the idea which
will be mentioned shortly.

Digression for Apple LOGO users:

Apple LOGO is very like Terrapin LOGO, but is significantly
different here. The Apple LOGO conditional commands are

IF condition [command(s) if true]

IF condition Icommand(s) If true] tcommand(s)
if not]

and you will need to translate the examples in this book if
you are using Apple LOGO. The translation is easy: turn
'THEN' into '['. put ']' at the very end of any IF com
mand, and replace 'ELSE' by '] ['. For example.

IF :N = 0 THEN PRINT "ME ELSE PRINT "YOU

becomes

IF :N = 0 [PRINT "ME] [PRINT "YOU 1

There are numerous possibilities for the condition in these
commands. As the examples above suggest. It can be

something > anotherthing

something - anotherthing

something < anotherthing

where the 'somethings' and 'anotherthings' are numbers. In the
case of 'something = anotherthing' they can also be words, or

74

even another kind of object altogether called lists - these are
introduced in chapter 4. In fact, in LOGO a condition is really just
the word TRUE or the word FALSE or any expression that outputs
TRUE or FALSE; each of the above conditions does that, so

PRINT 3 > 4

prints FALSE, and

PRINT 7 * 7 > 30

prints TRUE.

There are other possibilities for conditions. They can be any
procedure which outputs the word TRUE or the word FALSE. For
instance, suppose a number is to be deemed huge if it is bigger
than 1000. The procedure

TO HUGE :NUMBER

IF :NUMBER > 1000 THEN OUTPUT "TRUE
ELSE OUTPUT "FALSE

END

can be used as a condition:

IF HUGE :X THEN PRINT "COLOSSAL!

Conditions can be compounded by using the procedures ALLOF
and ANYOF. Each of these normally takes two inputs, which must
be TRUE or FALSE, and outputs one of TRUE or FALSE, for
example

PRINT ALLOF 4 > 2 71 < 70

prints FALSE because not all are true.

However, it is sometimes necessary to check whether ALLOF
or ANYOF a fair number of conditions are true. There is.

accordingly, a convenient way of doing this in LOGO. The rule is
that ALLOF and ANYOF can actually have any number of inputs
provided that the whole collective condition is enclosed in
parentheses, for example

IF (ANYOF XCOR > 135 YCOR > 115
XCOR < -135 YCOR < -115) THEN

PRINT "OOPS!

If parentheses are not used then there must be exactly two Inputs
for ALLOF or ANYOF. The same kind of rule happens to apply to
the procedure PRINT, and to a very few other procedures that will

75

appear in chapter 4.

There are some procedures built into Terrapin LOGO for
checking certain kinds of condition. The procedure NUMBER? takes
one input, and outputs TRUE only if the input is a number (rather
than. say. a word). The procedure WORD? outputs TRUE only If
its input is a word. The procedure THING? expects a word as Its
input, and outputs TRUE only if there is a variable by that name .
The procedure NOT is very useful. Its input must be the word
TRUE or the word FALSE - whichever it is. NOT outputs the other

one.

EXERCISES

Suppose you have typed in the commands

MAKE "ALPHA 6

MAKE "BETA 9

MAKE "GAMMA -12

(9) What does this do?

IF NOT :ALPHA < 10 THEN PRINT "RATS

{10} What does this do?

IF (ANYOF :ALPHA < 5 .BETA < 5

:GAMMA < 5) THEN PRINT "OK

ELSE PRINT "HAGGIS

{11} What does this do?

PRINT ALLOF :ALPHA > :BETA 0 > :GAMMA

(12} What does this do?

PRINT :GAMMA / :ALPHA + :BETA = 7

(13) What does this do?

IF THING "GAMMA THEN PRINT "EXISTS ELSE

1 In other LOGO books you will find this expressed another way, namely that THING?
only outputs TRUE if the variable has a value. The notion implied by this is that every
possible variable exists, but most have no value! (Note for teachers: beware of such a
notion. There are an immense number of possible variables, and an Apple II is physi
cally quite small . so where are they?)

76

PRINT "NON-EXISTENT

3.6.1 An Example - Bouncing The Turtle

The aim of the experiment in this sub-section is to make the tur
tle appear to bounce back from the edges of the screen as it
moves around (see figure 3.5). One way to start is to figure out
how to make the turtle seem to move continuously. This need be
nothing more sophisticated than repeating the command FD 5 (the
number 5 being just a typical small number). What happens near
the edge? Clearly, the turtle's heading has to change, but by
what? Take a specimen case: the turtle is moving along a heading
of 73 degrees and comes to the right-hand side. A nice effect
would be if the turtle's heading changed to -73 degrees. Think
ing about some more specimen cases suggest the following rules

/
/

\

/
./

./
' \/ /

/V/ A

/

\/

\Z
\

\
/

v
/

/

Figure 3.5

77

if the turtle 'hits' either side its heading H should change
to -H

If the turtle 'hits' the top or bottom, its heading H should
change to (180-H).

The remaining problem is how to find out when the turtle is
nearing a side. The easy way Is to check Its co-ordinates. Rather
than redirecting the turtle exactly when It hits the edge, do the
simple thing and redirect it if it is close to the edge, for example
if XCOR > 135. Testing whether the turtle is close to an edge
ought to be done at every move, since any move might be the
one which takes it near an edge. Here is a procedure STEP to
make one 5 unit turtle step; the turtle motion will be done by
repeating STEP:

TO STEP

IF ANYOF XCOR > 135 XCOR < -135 THEN

SETH (- HEADING)

IF ANYOF YCOR > 115 YCOR < -115 THEN

SETH (180 - HEADING)

FD 5

END

Before trying this, think a minute. There seems to be a possibility
not accounted for - what if the turtle comes to two edges simul
taneously, when it approaches a corner of the screen? As it hap
pens this is a red herring - the definition of STEP is adequate
for this circumstance too (or is that wrong?).

Try STEP, but give the turtle an unusual heading first, for
example

HOME CS

SETH 37

REPEAT 500 [STEP]

You can modify STEP by adding the command STEP to the end of
the definition. Then the REPEAT command can be replaced by the
command STEP alone, because it will repeat itself.

One of STEP'S deficiencies is that the screen fills up with
diagonal lines pretty swiftly and It becomes hard to see the
bouncing effect. A cure is to change things so that the turtle
appears to be towing a piece of string - as the turtle moves, the
line 50 units back along its path must be erased. Since the task
of figuring out where the turtle was some distance back along a
path which might have corners in It looks hard, do It another way.

78

Instead, imagine that there are two turtles moving independently,
with one drawing and one erasing. Because there is only one tur
tle in Terrapin LOGO, it must leap about a lot to achieve this
effect; the position and heading of each hypothetical turtle can be
recorded by variables, and updated at each leap of the real turtle.
You can work out the details for yourself. Do try It. because many
of the mistakes you can make in this project give you different
and very pleasing effects!

3.6.2 Another Sort Of Conditional Command

Terrapin LOGO has a useful alternative to IF .. THEN .. ELSE..
Instead of

TO VAST? :N

IF ANYOF :N > 10000 :N < -10000 THEN

OUTPUT "TRUE ELSE OUTPUT "FALSE

END

you can redefine it as

TO VAST? :N

TEST ANYOF :N > 10000 :N < -10000

IFTRUE OUTPUT "TRUE

IFFALSE OUTPUT "FALSE
END

The TEST command takes one input. TRUE or FALSE, and causes
LOGO to note what it was. The IFTRUE command. IFT for short,

causes the rest of the line to be obeyed only if the outcome of
the previous TEST was TRUE. The IFFALSE command. IFF for
short, works similarly.

Although TEST. IFTRUE and IFFALSE can make a procedure
neater and more comprehensible, be careful with them. The TEST
and the associated IFTRUE and/or IFFALSE must appear in the
same procedure definition; you cannot have the IFTRUE or
IFFALSE in a sub-procedure. Also, note that there is no point In
having IFTRUE and IFFALSE on the same line; the commands after
the first might be obeyed, but those after the second would never
be.

1 If you are using Radio Shack LOGO or Tl LOGO you can have many turtles without
resorting to the device explained here.

79

3.7 MORE ABOUT RECURSION

Recursion, defining a procedure partly in terms of itself, is a very
powerful technique and well worth mastering. It is not especially
difficult to use and it can make many problems almost magically
easy to solve. This section contains some examples and two or
three simple rules of thumb for checking that you are getting it
right.

Look at this:

TO JUNK

PRINT "HOHO

JUNK

END

It is recursive; if you run it HOHO will be repeatedly printed until
you stop it. Make sure you know how to stop it. though if the
worst comes to the worst you can always switch the machine off.
In Terrapin LOGO the way to stop anything is to type CTRL-G
(remember, that means press the CTRL key and then, while still
pressing that, press G). The motto suggested by the JUNK pro
cedure is that

Recursion can be an easy way to make something repeat
indefinitely.

There are examples in earlier sections where this was or could
have been applied, such as ANIMATE in section 3 and TICK in
section 5.

Sometimes what a problem requires is repetition ending when
some condition is satisfied, rather than repetition forever or for a
known number of times. For instance, suppose that a problem
requires that the turtle should move straight ahead until it reaches
either side of the screen. The way to formalise what the turtle
must do is

If at either side of the screen then do no more.

Otherwise FD 1 (or 5 or whatever is the chosen step size)
and think again.

There is a Terrapin LOGO procedure called STOP which, like OUT
PUT, causes the procedure being run to finish at that point. If
some other procedure called it. that one then resumes. STOP
allows you to turn the plan above into LOGO:

80

TO TRUNDLE

IF ANYOF XCOR > 139 XCOR < -139 THEN STOP

FD 1

TRUNDLE

END

To see how this works, imagine that the turtle is at X=137.5, Y=0
(say) and its heading is 90 so that it is only three units from
hitting the right-hand edge. If TRUNDLE is run. then

in line 1. the condition Is not satisfied

so. line 2: the turtle moves FD 1 (now X=138.5)

line 3: TRUNDLE is obeyed ...

line 1

line 2

line 3

the condition is not satisfied, so

the turtle moves FD 1 (now X=139.5)

TRUNDLE is obeyed ...

line 1: the condition holds, so STOP

causes this procedure to finish ...
I

... and there is no more to do in this

TRUNDLE, so it ends ...

so the command is complete.

The turtle Is at X=139.5. Y=0. True, this is not quite the edge of
the screen, but you cannot have everything. TRUNDLE at least
gets the turtle to within a 1 unit wide band at either side. To get
it exactly to the edge there are only three possibilities:

(a) Move it by 0.001 at a time. This is horribly slow.

(b) Do some trigonometry. This is messy.

(c) With no wrapping (after NOWRAP) try to send it past the
edge. This causes an error, which stops everything and
returns LOGO to waiting for your command.

None of these is entirely satisfactory; the unit-at-a-time way is a
reasonable compromise. (Note for teachers: it would be possible to
base a whole mathematics course on the art of reaching an

acceptable compromise. LOGO would make a good vehicle for It.)
The principle which TRUNDLE hints at is that

Recursion can be an easy way to cause repetition subject
to some conditions.

81

3.7.1 Filling Areas With Colour

A very satisfying variation on the line drawings normally associated
with LOGO is to have the turtle fill in whole areas on the screen.
There are many ways to do this. As Is often the case, one way
is relatively easy and many are ghastly. An easy way is to Ima
gine that the turtle is repeatedly drawing a line between its
current position and some anchor point. To phrase It another way.
imagine the turtle Is anchored by an elastic thread to some point.
As the turtle moves, what the thread sweeps over is filled in.

The SETXY command makes the turtle jump from one place
to another, drawing a line in the current colour. Thus, to draw a
line from its current place ail It needs to do is to jump to the
anchor point and then back to where It was. To turn this idea
Into LOGO, suppose that the X co-ordinate of the anchor point is
stored as the value of a variable called ANCHORX. and the Y

co-ordinate is similarly stored. There will need to be two more
variables to record the turtle's proper position while it is at the
anchor point: call them REALX and REALY. Then the following pro
cedure is a sort of counterpoint to FD. which does what FD does
but also fills in the area between the drawn line and the anchor

point:

TO FILLFD :N

IF :N=0 THEN STOP

MAKE "REALX XCOR
MAKE "REALY YCOR

SETXY .ANCHORX :ANCHORY
SETXY :REALX :REALY

FD 1

FILLFD :N-1

END

It moves the turtle fairly slowly; hiding the turtle first (with HT)
speeds it up a bit. To make it easy to shift the anchor point
around, define

TO ANCHOR

MAKE "ANCHORX XCOR

MAKE "ANCHORY YCOR

END

Whenever ANCHOR is used, the turtle's current location becomes

the anchor point. Figure 3.6 used FILLFD and ANCHOR - it looks
better in colour!

FILLFD works because SETXY does not affect the turtle's

heading, so when the second SETXY is done the turtle is back to

82

Figure 3.6

where it was when the procedure was started. Suppose that the IF
command were left out. Then FILLFD would invoke itself endlessly
and the turtle would not stop moving until you typed CTRL-G. if it
were being allowed to wrap. Therefore, obviously.

A recursive procedure which is not to run indefinitely
must include some conditional command that may stop it.
The conditional command must come before the recursive

use of the procedure in the definition.

A basic safeguard is to check a recursive procedure by eye.
and see what its inputs are used for. If the IF command were
missing from FILL.FD. then the :N would not be used for anything
other than part of the input to the final recursive use of FILL.FD.
and that should at least arouse your suspicions.

3.7.2 Output By A Recursive Procedure

The overworked example used in 99% of all known programming
books is the 'factorial' function, written

n!

and meaning the product of all the integers from 1 to n inclusive
- so 31 is 6. and 4! Is 24. Rather than spoil your expectations.

83

here it is in LOGO - it is very concise:

TO FACTORIAL :N

IF :N=1 THEN OUTPUT 1 ELSE OUTPUT
:N * FACTORIAL :N-1

END

This is based on the straightforward observation that if you know
the product of the integers from 1 to :N-1 (which is FACTORIAL
:N-1) then FACTORIAL :N Is just :N times that. The observation
transliterates readily into pseudo-LOGO as

FACTORIAL :N is :N * FACTORIAL :N-1

but this has no conditional command, so that recursion never

stops. Recursion can only stop if at some point the procedure
outputs the result of some expression which does not itself involve
FACTORIAL. For example, you could always note that FACTORIAL 3
is 6. and begin the definition with

IF :N=3 THEN OUTPUT 6 ELSE ...

but then you would find, perhaps by experience (like everyone
else), that it did not work if N was 1 or 2.

EXERCISES

(14) What if N is not an integer?

A much less well-aired example Is the finding of the cube root of
a number. Although there is a cunning algorithm usable by some
one who excels at mental arithmetic, it is somewhat elaborate and

unnecessary when you have an obedient computer to do some
brute calculations for you. The method to be applied here is the
honourable and ancient mathematical one of inspired guesswork.
Take an example: what is the cube root of 9? Clearly it lies
between 1 and 9. Perhaps it is the average of 1 and 9. namely
5. No. 5 cubed is 125. Moreover. 1 cubed is 1. so it must lie

between 1 and 5. Perhaps it is their average. 3? No. 3 cubed is
27, so it is between 1 and 3. Perhaps it is their average, 2? No.
2 cubed is only 8 so it must lie between 2 and 3 ... and so on.
In theory this process never ends. However. LOGO cannot deal
with more than seven significant digits in a number. When the
calculation has reached seven digit accuracy then as far as LOGO

84

is concerned the average is equal to one of the numbers - and
that is when to stop. It would be a lot of effort if you were going
to do It on paper, but it is no skin off your nose if it is LOGO
that does the work. To formalise the method, define a procedure
that has three inputs, namely the number whose cube root is to
be found, a low guess and a high guess. Its title will be

TO CUBE.ROOT :N .LOW :HIGH

The first step is to average the guesses:

MAKE "AV (:LOW + :HIGH) / 2

If this is at the limit of accuracy, output it:

IF ANYOF :AV = :LOW :AV = :HIGH THEN

OUTPUT :AV

If it is not then, if it is too high look again between :LOW and
:AV. otherwise look again between :AV and :HIGH. like this:

IF :AV * :AV * :AV > :N THEN

OUTPUT CUBE.ROOT :N :LOW :AV

ELSE OUTPUT CUBE.ROOT :N :AV :HIGH

and that is all there is to it. If you are doubtful, try it and see.
If it offends your eye to have to give three inputs then you can
always beautify the whole affair this way:

TO CU.RT :N

OUTPUT CUBE.ROOT :N 1 :N

END

You should find this works surprisingly fast.

EXERCISES

(15) Is it sensible to use the same method for fourth roots?

(16) There is still a problem if the input to CU.RT is negative,
or between 0 and 1. How can you fix it?

{17} Why is the stopping test in CUBE.ROOT not :AV * :AV *
:AV = :N ?

85

(18) For keen mathematicians: define ARCSIN. the inverse of

SIN.

3.8 DIAGRAMS DRAWN BY RECURSION

Many of the best mathematicians of all time have devoted a signi
ficant amount of their effort to studying figures drawn by essen
tially recursive methods. Although there are interesting theorems to
be dug out, much of the motivation has been purely the beauty of
the results. The power of LOGO makes the area readily accessible
to your exploration.

To start with, consider the command FORWARD 90. The tur

tle, afterwards, is 90 units away but has the same heading. It is
rather mundane for the turtle to get there along a straight line.
Make it take a more devious route, such as that In figure 3.7. A
procedure to do this, for any input as well as 90. is

Figure 3.7

86

TO DOODLE :N

FD :N / 3

RT 90 FD :N / 3

LT 90 FD :N / 3

LT 90 FD :N / 3

RT 90 FD :N / 3

END

This can be thought of as a 'more Interesting' sort of FORWARD;
it has the same overall effect on the turtle's state. Therefore, why
not use it Instead of FORWARD - in particular, inside the defini
tion of DOODLE?

TO DOODLE :N

DOODLE :N / 3

RT 90 DOODLE :N / 3

LT 90 DOODLE :N / 3

LT 90 DOODLE :N / 3

RT 90 DOODLE :N / 3

END

Either by looking at this, or by trying it. you ought to see that
this is not quite good enough. The recursion never stops because
there is no conditional command involved. To get round this,
include at the start a command to say that if the input is suitably
small then just do FORWARD rather than the fancy path:

IF :N < 5 THEN FD :N STOP

Remember, this has to come before the first recursive use of

DOODLE in the definition. It is also a good idea to use a vari
able, say one called MIN. instead of 5. That way if 5 turns out to
be not quite the right choice of a small number, you need only
change the value of MIN rather than edit DOODLE. This is yet
another application of the principle that you should really try to
make things easy for yourself... Figure 3.8 shows the result of
DOODLE 100.

Spend some time trying other variations, other choices for
the indirect path to replace the straight line. But note: each seg
ment of the path must be shorter than the whole. If not. the input
to one of the DOODLEs in the definition will not be any smaller
than the input to the main DOODLE, and so when it is run it will
not be progressing towards the point at which the 'halt recursion'
condition is satisfied. Apart from this, your most likely problem is
to forget to include the STOP.

Here Is a variant of the idea, shown in figure 3.9

TO BRANCH :N

87

Figure 3.8

IF :N < 3 THEN STOP

FD :N

RT 45 BRANCH :N * 0.6

LT 90 BRANCH :N * 0.4

RT 45

BK :N

END

An interesting thing about this definition is that if the sub-

procedures BRANCH :N * 0.6 and BRANCH :N * 0.4 are state-
transparent, then the whole thing is. Now. certainly, if the input is
very small (less than 3). BRANCH is state-transparent because ail
it does is STOP and nothing else. Having seen this, you can con
vince yourself that BRANCH Is state-transparent whatever its input.
Again there is a vast selection of variations on this idea, for

example you can have three or more BRANCH commands within
the definition. An area to experiment with is to see if a procedure
can meaningfully be 'nearly but not quite' state-transparent -

make the first line

IF :N < 3 THEN FD 1 STOP

and see what happens.

Finally, here, without further comment, is a famous example
first suggested by the German mathematician David Hilbert:

88

Figure 3.9

TO LHAND :S :N TO RHAND :S :N

IF :N=0 THEN STOP IF :N=0 THEN STOP

LT 90 RT 90

RHAND :S :N - 1 LHAND :S

FD :S FD :S

RT 90 LT 90

LHAND :S :N - 1 RHAND :S :N - 1

FD :S FD :S

LHAND :S :N - 1 LHAND :S :N - 1

RT 90 LT 90

FD :S FD :S

RHAND :S :N - 1 LHAND :S

LT 90 RT 90

END END

:N - 1

:N - 1

There is no accompanying diagram, you will just have to try itl To
start with, try LHAND 30 2 and LHAND 18 3 with the turtle at the
centre of the screen.

3.9 AFTERTHOUGHT

This chapter has provided you with nearly all the ingredients for
some sort of 'turtle billiards'.

89

3.10 FILING AND OTHER CONVENIENCES

If you have worked through this chapter, you should now have
several procedures, some of which are worth keeping for the
future. Of course you may by this time have lost track of what
you have defined. The way to find out what you have is to use
the Terrapin LOGO procedure PRINTOUT, or PO for short. It
expects one input, which can be

TITLES The effect of

PO TITLES

is to print, on the screen, the title line of each pro
cedure you have defined (and not erased) in the
current LOGO session. This is so useful that it can

be further abbreviated to POTS.

NAMES The effect of

PO NAMES

is to print the name and value of each existing vari
able.

PROCEDURES

The effect of

PO PROCEDURES

is to print out the title and definition of each pro
cedure. It is not very useful, because everything tends
to flash before your eyes on the screen. There is a
mechanism explained in the technical manual that
comes with Terrapin LOGO whereby whatever is
printed on the screen can simultaneously be printed
on a printer, if you have one.

a name The name of a procedure (though without a quote);
for instance,

PO JUNK

would print the title and definition of JUNK, if it
existed.

90

ALL This prints everything - variables and procedures.

The procedure ERASE gets LOGO to discard a procedure.
Normally the input is the name of a procedure, though without a
quote. ERASE also accepts ALL. NAMES or PROCEDURES, just like
PRINTOUT. (Note for teachers: ERASE. PRINTOUT. EDIT and TO are

the only cases in Terrapin LOGO where the quote before the
name is unreasonably omitted.) The procedure ERNAME can be
used to get LOGO to discard its knowledge of a named variable -
the input does take a quote mark beforehand.

It is possible to preserve a copy of all the current procedure
definitions on a disk (if you are unsure about using a disk, check
with the technical manual). The procedure is SAVE; it expects as
its input a word by which you wish to name the whole collection
of current procedures. For example.

SAVE "MARCH.23.STUFF

In a similar fashion, you can save a picture by using SAVEPICT:

SAVEPICT "MONA.LISA

To fetch a group of procedures from the disk at the start of the
next session (or any other time), use READ. For example.

READ "MARCH.23.STUFF

would fetch all the procedures you had previously saved with that
SAVE command above. Any procedures existing before the READ in
the current session will still exist, provided that their names were
not the same as any of those procedures fetched by READ.

To fetch a picture from the disk, use READPICT:

READPICT "MONA.LISA

This will destroy any current drawing. It will not affect the turtle,
and in particular the turtle will not necessarily be where you left
it when you did the SAVEPICT.

Eventually you will forget what is on the disk. Use CATALOG
to find out; it takes no inputs and just causes the names of the
various procedure collections and pictures to be printed. A pro
cedure collection will have '.LOGO' after its name, and a picture
will have '.PICT' after its name. If you want to throw away one or

more of them (disks do have limited though large capacity) use
ERASEFILE to get rid of a procedure collection or ERASEPICT to
get rid of a picture. The commands

91

ERASEPICT "MONA.LISA

will irrevocably discard what had been saved under these names.

Here are some useful guidelines:

(a) Make the names sensible. It might be fun to call some
thing RABBIT, but It Is not very helpful a few days later.

(b) At the end of a session, use POTS to check on what

exists. Use ERASE to prune out unwanted procedures
before using SAVE.

(c) You can merge two SAVEd collections by READing in first
one then the other, and then SAVEing the combined col
lection under a new name. If you use an existing name
you will lose what was previously stored under that name.

(d) There is no easy way to merge two pictures.

Chapter 4
Words and lists

Aims Chapters 2 and 3 have been almost entirely concerned with
graphics. This one is not. It has more to say about words,
and it introduces a third kind of entity called lists. It also
develops the idea of creating a 'toolkit' of procedures.

Note Alas. Radio Shack Color LOGO does not have the features

to be described in this chapter. If you are using this LOGO,
you can skip chapters 4 and 5. You won't be able to tackle
the majority of projects in chapter 7 either. However. Radio
Shack Color LOGO does have some compensatory extras.

The most exciting is that it allows you to use numerous
turtles, which can send each other messages. Appendix D
tells you more.

4.1 WORDS

Words In LOGO look similar to printed words in English, although
they are not formed according to quite the same rules. In particu
lar, there are precise rules in LOGO whereas in English rules, if
they exist at all. are very flexible. LOGO words were introduced in
chapter 2. as names of variables. A word in Terrapin LOGO is
composed of any sequence of printable characters except for a
space or a left or right square bracket (that is. T or 'J'). Even
these can be part of a word if you surround the whole word by
single quote marks. Thus

WHO?? FATIMA
<?.** 'LESSER FLAMINGO'

23907 PRICE.OF.BUTTER

PRINT +

THIS.IS.A.LONGISH.WORD

are all acceptable words. Three of these look like a number, a

92

93

LOGO procedure and an arithmetic operation. In general, the way
to distinguish a word from something It might be confused with -
such as the name of a not-yet-defined LOGO procedure - is to
put a double quote mark before it1. So,

PRINT FATIMA

will, in Terrapin LOGO, produce the error message

THERE IS NO PROCEDURE NAMED FATIMA

whereas

PRINT "FATIMA

will do just what it suggests. The initial quote mark, being an
indication to LOGO, will not be printed, though

PRINT ""FATIMA

will print "FATIMA rather than FATIMA. Similarly,

PRINT "PRICE.OF.BUTTER prints PRICE.OF.BUTTER
PRINT "<?.** prints <?.**

PRINT "'LESSER FLAMINGO' prints LESSER FLAMINGO
PRINT "239 prints 239

PRINT "PRINT prints PRINT

PRINT "+ prints +

The PRINT "23 example is surprising. In fact. Terrapin LOGO is
somewhat woolly-minded about the difference between numbers and
words, in particular.

PRINT "23 + 24

will print 47. but

PRINT "23+24

will print 23+24 (and not 47) because now the whole group of
characters after the quote cannot be a number because there is
a plus sign in the middle of it. Terrapin LOGO does not object to
you using the character '+' in the middle of a word. Moreover, a

1 Some LOGO systems, such as Research Machines LOGO, use a single quote, some
times called an apostrophe, rather than the normal double inverted comma which most
people would think was meant by the phrase "quote mark", if your LOGO system is
one of those, then it probably has other and more restrictive rules about what is or is
not a word.

94

word with only digits in it is still a perfectly good name for a
variable:

MAKE "2 397

Then

PRINT 2 prints 2
PRINT :2 prints 397

Also.

PRINT :2 + 3

prints 400. but the command

PRINT :2+3

produces the error message

THERE IS NO NAME 2+3

meaning that there is no variable so named. You will find, in Ter
rapin LOGO, that the single quote is also a potential boobytrap.
For example.

PRINT "THAT'S

is legal and prints THAT'S, and indeed

PRINT "'THATS ALL FOLKS

prints THATS ALL FOLKS because Terrapin LOGO tolerates not
finding the matching single quote at the end of the line. It acts,
reasonably, as though you had forgotten it or were too lazy to put
it in. However,

PRINT "'THAT'S ALL FOLKS

is not legal; you would be told

THERE IS NO PROCEDURE NAMED S

To summarise, the rules are

Use a double quote before a word, if it might be con
fused with something else (there is only one place where
confusion cannot arise, and that is inside a list - see

section 4 below).

95

Be careful about single quotes.

(Note for teachers: the Idea of 'rule' Is not the same as 'formal

definition'. Where the formal definition is a mess, it is much

better to give some examples and then emphasise that caution is
needed.)

There is a procedure WORD? which takes one input, and
outputs TRUE only if the input is a word. If you are in doubt, use
ii.

There is one unusual case worth knowing about, which fol
lows from the definition. A word need have no characters at all!

The command

PRINT "

prints a blank line. This case is called the 'empty word'.

So far, all the printing has been one word per line, which is
next to useless for practical purposes. To get round this, there is
a version of PRINT called PRINTl. It behaves like PRINT except
that it does not start a new line after printing its input(s). If you
use only PRINTl then the prompt which appears after the com
mand has finished will appear on the same line as your printing.
Here are some examples:

PRINTl "HELLO PRINTl "THERE

prints HELLOTHERE and the next prompt appears immediately next
to the final 'E*.

PRINTl "HELLO PRINT "THERE

prints HELLOTHERE and the next prompt will be on the line below.
Notice that PRINTl does not put any space after what it prints. To
separate words by space you need quite explicitly to print a word
consisting of spaces:

PRINTl "HELLO PRINTl "' ' PRINT "THERE

prints HELLO THERE.

It can be very tedious to use one PRINT or PRINTl com
mand per word. As a convenience. Terrapin LOGO allows you to
use just one PRINT or PRINTl command for any number of inputs,
provided that you surround the whole printing command with
parentheses. Thus

(PRINT "HELLO "THERE)

96

prints HELLO THERE. Beware, though, of the following mistake:

(PRINT "HELLO "THERE)

is an error because LOGO takes the second word to be 'THERE)'

rather than 'THERE' and so cannot find the matching right
parenthesis. Quite reasonably, on the other hand.

(PRINT 2 3)

prints 2 3.

The LOGO jargon used to describe a procedure such as
PRINT which can take many inputs, is that it 'can be greedy'. In
this book you have only met four procedures so far which can be
greedy: PRINT. PRINTl. ALLOF and ANYOF. You will meet others in
this chapter.

4.2 BEAUTIFUL PRINTING. PART 1

All this opens up the possibility of printing text on the screen in
fancy ways. However, the effect of having an exotically printed
display of Information would be marred by having all those previ
ous command lines on the screen. You can reset the displaying
of text on the screen by using the procedure

CLEARTEXT

This wipes away ail the text; the next prompt will appear at the
top left of the area in which text can appear. If you specified
DRAW recently, this means the twentieth line, first column. If you
specified NODRAW recently, this means the top left of the screen.
Note that CTRL-F. CTRL-S and CTRL-T do not affect this.

You can make printing appear where you like, within reason,
by using the procedure CURSOR. This takes two numbers as
inputs; the first Is the column where printing is to start next,
counting from column 0. and the second is the line number,
counting from line 0. Column 0. line 0 is at the top left of the
screen. The column must lie In the range 0 to 39. and the line
number must be in the range 0 to 23. A further restriction is that
CURSOR rounds its inputs to be integers, so you cannot use
commands such as CURSOR 12.5 20.5 to produce fancy subscripts
or superscripts.

Within these restrictions. CURSOR Is very useful. For instance.

TO CRAWL

CURSOR 10 21

CURSOR 10 21
(PRINTl "X = ' XCOR)

CURSOR 10 22

(PRINTl "'Y = ' YCOR)

FD 1

CRAWL

END

97

makes the turtle crawl along its current heading, while a display
of its X and Y co-ordinates is continually updated. If the heading
is not a multiple of 90 degrees the co-ordinates will have decimal
parts, and the display will be changing so much that It is pretty
confusing. It would be better to ROUND the co-ordinates first. If
you edit CRAWL to be this.

TO CRAWL

CURSOR 10 21

(PRINTl "'X = '

CURSOR 10 22

(PRINTl "'Y = '

FD 1

CRAWL

END

ROUND XCOR)

ROUND YCOR)

you may be puzzled to find that sometimes either or both co
ordinates seem to be much too big. What is happening is this,
imagine that the X co-ordinate is just above 100. and decreasing.
When it is 100 the number 100 will be printed starting at column
14 of line 21. When the X co-ordinate drops to around 99. the
99 will be printed starting at column 14 of line 21. However. 99
is only two digits long whereas 100 was three. The final 0 digit of
100 will not be overwritten when the 99 is printed, so the co
ordinate will appear on the screen to be 990. The cure is to
print as many spaces after the number as are necessary to
guarantee that the previous number is fully overwritten, for exam
ple

TO CRAWL

CURSOR 10 21

(PRINTl "'X = '

CURSOR 10 22
(PRINTl "Y = '

FD 1

CRAWL

END

ROUND XCOR

ROUND YCOR

The CURSOR procedure was also used In this procedure to pro
duce figure 4.1. with the command shown at the top left, previ
ously defined.

98

?REBUS 0 ABRACADABRA
?• RBRRCRDABRA

ABRACADABRA
RBRRCRDRBRfl

ABRACADABRA
RBRRCRDRBRfl

RBRRCRDRBRfl
RBRRCRDRBRfl

RBRRCRDRBRfl
RBRRCflDRBRfl

RBRRCRDRBRfl
RBRRCRDRBRfl

ABRACADABRA
ABRRCADRBRA

ABRACADABRA
ABRRCADRBRA

ABRACADABRA

ABRRCRDRBRR
ABRflCRDRBRfl

flBRACRDRBRfl
flBRRCADABRA

ABRACADABRA
flBRACADABRfl

Figure 4.1

4.3 NEW WORDS FROM OLD

There are times when, in a problem, you need to be able to
assemble a word from some constituent parts. In Terrapin LOGO
there is a procedure WORD which normally takes two inputs,
though it can be greedy, and concatenates the characters of its
inputs to form one larger word. The resulting word Is output. An
example:

PRINT WORD "CAN "DID

prints CANDID, and

MAKE "FATHER "DOMINIC

PRINT THING WORD "FAT "HER

prints DOMINIC. (Note: this is a case where the colon cannot be
used in place of THING.) An example of greedy use is

PRINT (WORD "IN "TERM "IN "ABLE)

prints INTERMINABLE - do not forget the space before the right-
hand parenthesis.

99

There are other circumstances for which WOAD is useful,

besides playing about with English words. One sometimes arises in
large LOGO procedures when you need to use a substantial
number of variables. You do not want to type in all their names,
or perhaps you do not know how many will be needed when you
are only at the stage of defining the procedures. However, you
also want to be sure that none of the variables already exists,
because if one did it might already be In active use for some
other purpose. The variable named X. for instance, tends to be
overused. The idea, then, is to define a procedure which gen
erates, at each successive use, the next word in the sequence
VAR1. VAR2. VAR3 ... provided that word Is not already in use as
the name of a variable. This procedure, say called GENVAR. will
be used with MAKE, for instance

MAKE "NEWNAME GENVAR

MAKE :NEWNAME 87

The logical ingredients for defining GENVAR are

(a) Get the next unused number in the sequence 1. 2. 3..
which could form part of the word to be output. The easy
way to do this is to store it as the value of a variable,

say GEN.NEXT, and increment its value each time GENVAR
is used.

(b) Concatenate 'VAR' and this number to form a possible
word to output.

(c) Use THING? to see if this word is the name of an exist

ing variable. If not. output it. If it is. do ail the steps
again (by recursion?).

This translates fairly directly into LOGO as

MAKE "GEN.NEXT 0

TO GENVAR
MAKE "GEN.NEXT :GEN.NEXT + 1

TEST THING? WORD "VAR :GEN.NEXT

IFFALSE OUTPUT WORD "VAR :GEN.NEXT
IFTRUE OUTPUT GENVAR

END

There are interesting details in this procedure. The variable
GENJMEXT does not have to be incremented first of all. but it will

100

have to be at some point and this way is neat (try it another way
and see). You may also be surprised to see IFFALSE appearing
before IFTRUE. but there is no reason why not. Because of this,
the TEST/IFTRUE/IFFALSE method of defining conditionals is more
flexible, although more verbose, than IF..THEN..ELSE. A third point
to note in GENVAR is that the OUTPUT is needed in the last line.

If you cannot see why. try the experiment of leaving it out.

GENVAR can be tested easily:

MAKE "VAR3 "SOMETHING
REPEAT 4 {PRINT GENVAR]

should print VARl. VAR2. VAR4 and VAR5 because VAR3 is already
in use.

4.4 LISTS

in addition to numbers and words. LOGO also deals with a third

sort of entity, lists. These are the most versatile and elaborate of
the three. A list is just an ordered collection of numbers, words
and .. lists. The word 'ordered' means that it does matter which

number, word or list in the collection comes first, which comes

second and so on. A list is expressed in LOGO by writing the
members of the collection In order and enclosing the whole lot in
square brackets. For example.

[23 6 1 99]

is a list with four members. The word 'element' is a common

synonym for 'member'. Because a list is ordered, the list

[23 1 6 99]

is not the same as the example above. Here are some more

examples of lists:

[PIES 1 75] This has three elements, a word and two

numbers.

[THIS IS A LIST] This has four elements, all words.

[[0 0] [29 76]] This has two elements. The first is the list [0 0]

and the second is the list [29 76].

[[[A Q] [R T]]] This has one element, the list [[A Q] [R T]]

which itself has two elements.

101

fj This has no elements at all. This is a very
common example called the empty list.

Lists can be used to represent almost any kind of information,
whether that Information has some order to it or not. The first

example above shows how a list might be used to represent pric
ing information. The second shows how a list can represent an
English phrase or sentence. The third shows how a list might be
used to represent a set of X and Y co-ordinate pairs.

Try PRINTing examples of lists. You will find that PRINT, in
Terrapin LOGO at least, omits the outermost pair of square brack
ets . for example

PRINT [HELLO BOSS] prints HELLO BOSS
PRINT [EH? [OUCH]] prints EH? [OUCH]
PRINT [] prints a blank line

Try using lists as values for variables:

MAKE "TRY [THIS IS A TEST]
PRINT :TRY

will print THIS IS A TEST. You will find that you are never obliged
to separate a square bracket from anything else by spaces,
though you can if you like.

You should now see that the REPEAT command. Introduced

in chapter 2. just takes two inputs. The first is a number, the
second is a list representing an ordered sequence of commands.
Therefore

MAKE "X [FD RANDOM 30 RT 90]
REPEAT 5 :X

.. move the turtle ..

REPEAT 3 :X

.. move the turtle ..

REPEAT 12 :X

.. etc ..

saves a lot of repetitive typing.

A list can never be mistaken for the name of a procedure
to be run; procedure names must always be words. Because of
this, words do not need an initial double quote when they are
used within a list. Consider this faulty pair of commands:

1 if you want, you can change this. See the Terrapin LOGO technical manual for de
tails.

102

MAKE "X 100

PRINT (:X IS 100]

This does not print [100 IS 100]. Because the ':X' is within a list,
LOGO treats it just as a word rather than 'the value of the vari
able called X'. Remember that ':X' is a legal possibility for a
word, for instance

MAKE "Y "'.X'

PRINT :Y

prints :X. But note. REPEAT treats lists as commands.

4.5 USING LISTS

4.5.1 Informative Messages

In the factorial procedure in section 3.7.2. it was assumed that
the input was a positive integer. If it was 0 or negative the pro
cedure recursed happily until stopped by CTRL-G. If the input was
not a number but a word. Terrapin LOGO would give the unap

petising message

= DOESNT LIKE word AS INPUT. IN LINE
IF :N=1 THEN OUTPUT 1 ELSE OUTPUT :N

* FACTORIAL :N-1

AT LEVEL 1 OF FACTORIAL

(Note that the phrase 'AT LEVEL T means that there was only
one procedure - FACTORIAL - which had started but had not fin
ished when the error occurred.) You can make your assumptions
about FACTORIAL explicit by introducing some conditional com
mands to check that the input is what you intended:

TO FACTORIAL :N
IF WORD? :N THEN PRINT [WORD INPUT

TO FACTORIAL] STOP
IF :N<1 THEN PRINT [INPUT LESS THAN

1] STOP
IF :N=1 THEN OUTPUT 1 ELSE OUTPUT

:N * FACTORIAL :N-1

END

Here lists are used to provide short informative messages to make
the procedure more foolproof. Alas, it is still not perfect. Consider
the command

PRINT FACTORIAL 2.5

103

The procedure FACTORIAL 2.5 will try to output 2.5 * FACTORIAL
1.5. The procedure FACTORIAL 1.5 will try to output 1.5 * FAC
TORIAL 0.5. The procedure FACTORIAL 0.5 will print INPUT LESS
THAN 1 and stop, not outputtlng anything. Thus the expression 1.5
* FACTORIAL 0.5 will be an error - Terrapin LOGO will tell you
that

FACTORIAL DIDNT OUTPUT. IN LINE
IF :N=1 THEN OUTPUT 1 ELSE OUTPUT :N
* FACTORIAL :N-1

AT LEVEL 2 OF FACTORIAL

(Here it is 'AT LEVEL 2' because FACTORIAL 2.5 had started but
not finished; it was waiting for the output from FACTORIAL 1.5
which had started but had not finished when the error was
encountered.) AH this tends to spoil the hoped-for simplicity of the
informative message.

As is so often the case, there is an easy repair. There is a
procedure TOPLEVEL which, like STOP, immediately ends the pro
cedure it appears within. Unlike STOP, it ends every other unfin
ished procedure as well, so that LOGO immediately returns to
waiting for your next command. Putting a TOPLEVEL at some
point in a procedure is very much like telling LOGO "imagine I
type a CTRL-G at this point". The repair to FACTORIAL is to use
TOPLEVEL instead of STOP. Indeed, because of what TOPLEVEL

does, you can define a generally useful procedure called ERROR
which takes one input - usually to be a list - and use it in con
ditional commands that check for errors:

TO ERROR :MESSAGE

PRINT :MESSAGE

TOPLEVEL

END

TO FACTORIAL :N

IF WORD? :N THEN ERROR [WORD INPUT TO
FACTORIAL]

IF :N<1 THEN ERROR [INPUT LESS THAN 1]
.. etc ..

A procedure such as ERROR is a very useful tool. You may
wonder, why is it not provided as standard? Fundamentally the
answer is that LOGO is really a kit of useful procedures from
which to assemble procedures to suit your own particular needs.
ERROR, taking only one Input, could be too specific for some pur
poses. For example, you might choose to start each session of
LOGO with

104

MAKE "ERROR.COUNT 0

and define ERROR as

TO ERROR :MESSAGE

PRINT :MESSAGE

MAKE "ERROR.COUNT :ERROR.COUNT + 1

PRINTl [THAT WAS BLUNDER NUMBER]
PRINTl "' '

PRINT :ERROR.COUNT

TOPLEVEL

END

The aim of LOGO'S designers has been to provide a collection of
procedures which was sufficiently general and yet sufficiently com
plete for users to put it to a very wide variety of uses.

4.5.2 Constructing Lists From Bits

Wide though the possibilities suggested by this last section are. it
is ultimately limiting if every list used in any procedure is one
that had to be typed in at some point. LOGO provides ways of
assembling lists from bits, and for turning sentences typed by you
into lists. For the latter. Terrapin LOGO provides REQUEST, or RQ
for short. REQUEST takes no input; it waits till the user has typed
a line, and then outputs that line as a list:

TO HELLO

PRJ.NTl [WHO ARE YOU]
MAKE "REPLY REQUEST

(PRINTl "HELLO ' :REPLY)

END

If you give the command HELLO you might see something like this
on your screen:

?HELLO

WHO ARE YOU?ATTILA THE HUN

HELLO ATTILA THE HUN

?

Terrapin LOGO also provides two procedures for constructing lists:

LIST This takes two inputs normally, though it can be greedy.
It outputs a list formed from its inputs

SENTENCE This procedure. SE for short, also takes two inputs nor
mally and can also be greedy. It too outputs a list

105

formed from its inputs. However, if any input is a list it
first breaks it up into its elements, for example
[THIS LIST] would be treated as the two words THIS

LIST. It does not do this recursively; lists within lists
are not broken up.

Some examples should help:

LIST "HELLO "SIR

outputs [HELLO SIR].

LIST 2*5 "COMMANDMENTS

outputs [10 COMMANDMENTS].

(LIST [HO HO] "HE "SAID)

outputs [[HO HO] HE SAID].

(LIST 12 3 4 5)

outputs [12 3 4 51.

SE "MICHAEL "MOUSE

outputs [MICHAEL MOUSE].

(SE [HO HOI "HE "SAID)

outputs [HO HO HE SAID].

SE [WHAT IS] [THE QUESTION]

outputs [WHAT IS THE QUESTION].

A simple mnemonic is that LIST puts square brackets around
the collection of its inputs, and SENTENCE strips the outer square
brackets off any of Its inputs before putting square brackets
around the lot.

As the names suggest. SENTENCE is the more useful in
applications where lists are to be used essentially as sentences.
LIST is often the more useful in other cases. As an example of
the former here Is a simple and educationally hopeless quiz pro
cedure:

TO QUIZ
MAKE "Nl RANDOM 50

MAKE ttN2 RANDOM 50

106

PRINTl (SE [WHAT IS] :N1 "TIMES :N2)
IF (SE :N1 * :N2) = REQUEST THEN

PRINT [YES] ELSE PRINT SE [SHAME
IT WAS] :N1 * :N2

QUIZ

END

It is educationally useless because if you give any wrong answer
at all it tells you the correct answerl Note the line

IF (SE :N1 * :N2) = REQUEST THEN ...

SE has only one input, so (SE :N1 * :N2) is just the list whose
sole element is the right answer. The REQUEST outputs a list
formed from what the user types. If he types the right answer and
nothing extra, the two lists will be equal.

As an example of using LIST, here is a simple fault-tracing
aid called CHECK. Its input is assumed to be a word which is the
name of a variable:

TO CHECK :QXRZ
PRINT (LIST :QXRZ "HAS "VALUE THING

:QXRZ)
END

It can be used like this:

MAKE "X [120 110]

CHECK "X (Note, not CHECK :X)

- it will print

X HAS VALUE [120 110]

CHECK could be used within a procedure to print the values of
the inputs if you were not sure what was going on and needed to
make some basic checks. If SENTENCE were used here instead of
LIST then CHECK would have printed the more confusing message

X HAS VALUE 120 110

The input to CHECK was called QXRZ because the name is
unlikely to be used elsewhere. The name must be an unlikely one:

CHECK "QXRZ

will print QXRZ HAS VALUE QXRZ, which is true but unhelpful if

107

you want to examine the value of some other variable called
QXRZ.

Tl LOGO does not have LIST. It only provides SENTENCE.

4.5.3 Dissecting Lists

LOGO also provides procedures for getting at bits of lists. In Ter
rapin LOGO there are four:

FIRST This takes a list as input, and outputs the first element.
Obviously, the input list must not be the empty list.

BUTFIRST This procedure. BF for short, takes a list as input and
outputs a list formed by removing the first element. The
input must not be the empty list. If the input list has
only one element then the output list will be the empty
list.

LAST This is the opposite of FIRST. It takes a list as input,
and outputs the last element. The input list must not be
empty.

BUTLAST This procedure, BL for short, is the opposite of BUT-
FIRST. It outputs a list consisting of ail but the last
element of the input. The input list must not be empty.

These four procedures can also accept a word as input, and do
the corresponding action with the first or last character of the
word. Examples:

FIRST [HELLO SIR]
BF [HELLO SIR]

FIRST "HELLO

BF "HELLO
LAST [ONE TWO THREE]

BUTLAST [ONE TWO THREE]

LAST "CLAMP

BUTLAST "CLAMP

outputs HELLO
outputs [SIR]
outputs H
outputs ELLO
outputs THREE
outputs [ONE TWO]
outputs P
outputs CLAM

There is also a procedure LIST? which outputs TRUE or FALSE
depending on whether its single input is a list or not.

It may seem perverse that there Is no way directly to get
hold of the second element of a list, or to replace the seventh
(or whichever) element by something else. It is perverse. Failing
to provide some such procedures is taking the aims of generality

108

too far. especially since It is not a wholly trivial task to define
them for yourself. There is a historical reason for it, but it is no
longer valid. It was this: LOGO is descended from the language
LISP. In LISP and in LOGO, there was and still is a commonplace

requirement to be able to compare two lists. LISP users also fre
quently wanted to be able to make more elaborate checks, such
as 'is [A B C D] a list containing only letters of the alphabet?'.
In the early days of LISP, both software and hardware ideas were
much less sophisticated. In particular it was conceptually more
taxing, although not impossible, to handle whole entities such as
lists where the size was unknown in advance, it was much easier,

and mathematically more satisfying, to look on a list as though it
had precisely two constituents - a 'first element' and a list, which
was the BUTFIRST bit. In those terms the list

[A B C D]

might have been written as

(A. (B. CC. (D. 0))))

However the square bracket notation, or an equivalent of it. was
adopted instead, being much easier to read and write. Unfor
tunately for you. the notation disguised the fact that a list really
had exactly two constituents. Since those days both hardware and
software science have made a lot of progress. Now. various ver
sions of LOGO do provide procedures which allow you to deal
directly with elements other than the first or last of a list. Terra
pin LOGO, for compactness, has only provided LAST and BUTLAST
as the symmetrical counterparts of FIRST and BUTFIRST. Anything
beyond these you must create for yourself.

This brings out the notion of building yourself general toolkits
of procedures. It is almost always much easier to step from a
general case to a specific one than it is to do the reverse. This
is because moving from the specific to the general requires you
to articulate what the generalisation is. each time; in the other
direction no such articulation is needed. The next section and its

subsections are concerned with defining a small but very useful kit
of tools for working with procedures. You would be well advised to
spend one whole LOGO session working through it. so that at the
end you could SAVE all the procedures as one collection (as a
file) called, say. LISTSTUFF. Then in future, when you want to
work with lists, you can ease the burden by giving a command

READ "LISTSTUFF

109

at the start.

4.5.4 What Is Needed?

When you embark on the construction of such a toolkit, the first
step is to plan what will be in it. Remember that it is always
possible to add to the collection at a later date, it is also very
sensible not to let the size of the collection get out of hand. The
planning usually demands imagination and some past experience of
what is useful, and takes hours or days rather than minutes. If at
this point you have not spent much time playing with lists in
LOGO then the following thoughts should be helpful. They might
also serve to set you thinking about some involved projects to do
with lists.

Needs:

- It is useful to be able to test whether something is a member
of a specified list. Suppose a procedure asked a question; the
user could reply 'I THINK YES' or 'YES PERHAPS' or 'MY
ANSWER IS YES' or 'YES INDEED' as well as plain 'YES'. If
you used REQUEST to capture the answer, it would be nice to
check whether YES was part of it. This could go wrong, the
user might answer 'CERTAINLY NOT YES', but it is impossible
to cater for every possibility.

- It is useful to be able to find out how many elements there
are in a list (and how many characters there are in a word).

- it is useful to be able to get hold of the N-th element of a
list, for any specified number N. Suppose you are working on
devising LOGO procedures to encode or decode a message.
The procedures FIRST. BUTFIRST, LAST and BUTLAST let you
get at the characters in a word. You could create variables
called A to Z. with values 1 to 26. Then, to encode a letter,

say R. you need only look up the :R-th element of some
predefined 'coding list', and let that stand for the letter R.

- it is useful to be able to update one particular element of a
list, imagine your aim is to devise LOGO procedures to play
tic-tac-toe. otherwise known as noughts-and-crosses. You could
represent the state of play as a list with nine elements, for
example

[BLANK X X BLANK 0 BLANK O BLANK BLANK]

no

to represent figure 4.2. If the '0' player were to play in the
top left cell, you would have to update the first element of the
list from BLANK to O. (Note for those interested in the ideas

of artificial intelligence: it is much harder to devise a pro

cedure which plays badly but believably than it is to devise
one which plays perfectly.) As another example, suppose you
wanted to count letter frequencies in text typed by a user. You
could represent the count for each character as one element
of a large list. Each time a letter appeared you could make
the corresponding element one larger than before. This is
easier than having one variable per character because there
are at least 57 likely characters, excluding lower case letters.
There is a procedure ASCII which expects a one letter word as
input and outputs a number which uniquely stands for that
letter. The correspondence between numbers and characters is
defined by the American Standard Code for Information inter
change - ASCII for short. Incidentally there is a procedure
CHAR which does just the reverse. The Terrapin LOGO pro
cedure READCHARACTER. RC for short, outputs a single

Figure 4.2

Ill

character word representing one keystroke by the user; you
can type a certain number of characters ahead of a program
that uses RC. and the LOGO system will preserve them so that
RC can catch up. The procedure RC? outputs TRUE if there
are any characters currently available for RC to read without
waiting for the user's next character to be typed.

- it is useful to be able to construct a list consisting of all the
elements common to two fists. Suppose that you are using
LOGO to experiment with set theory and you are representing
sets by lists. The 'intersection of two sets' will be the list of
elements common to the two lists.

- It is useful to be able to construct a set which contains any
element In either of two lists, but only once. In set theory this
would be the union of two sets.

- It is useful to be able to generate a new list from a given
one. in which every occurrence of some specified element has
been replaced by a new element. An example of this will be
given in chapter 7. in a project to create a simple database of
facts.

This forms an adequate basic collection. In due course you will
think of some others which are worth including, but remember to
keep notes of what they do and what they do not do.

is something in a list?

If you do not see at once how to define this, try an example:
how can you test whether B is a member of IA B CI? The chief
tools at your disposal are FIRST and BUTFIRST. Is B the FIRST of
this list? No. Now you only have BUTFIRST left In your tooibagl
The BUTFIRST of the list is IB CI. and B is the FIRST of that.

This suggests the following algorithm:

(a) Is the something in question equal to the FIRST of the
list? If so. output TRUE.

(b) If not. is it a member of the BUTFIRST of the list?

The algorithm is not quite complete: so far there Is no way It can
output FALSE, yet it must be capable of doing so. The time to
output FALSE Is when there are no elements left to check - that

112

is. when left with the empty list. Turning this Into LOGO gives

TO MEMBER? :EL :L

IF :L = [] THEN OUTPUT "FALSE
IF :EL = FIRST :L THEN OUTPUT "TRUE ELSE

OUTPUT MEMBER? :EL (BUTFIRST :L)
END

(the parentheses here are only for legibility). Test it.

Counting the number of elements

Again, the basic tools you have are FIRST and BUTFIRST. FIRST
tells you what the first element is. but that does not help you to
find out how many elements there are. Presumably, the main tool
Is therefore BUTFIRST. Consider an example: [A B C] has three
elements. The BUTFIRST of it is [B CI. which has two. So [A B

C] has one more than the BUTFIRST of it has. What if the list Is

empty? Then, the count is zero. All this suggests this LOGO pro
cedure:

TO COUNT :LIST

IF .LIST = [] THEN OUTPUT 0
OUTPUT 1 + COUNT BUTFIRST :LIST
END

Simple variations are possible. In particular, you can make COUNT
work for words as well as lists:

TO COUNT :LIST

IF ANYOF :LIST = U :LIST = " THEN OUTPUT 0
OUTPUT 1 + COUNT BUTFIRST :LIST
END

You might want to go back and extend MEMBER? in a similar
way.

Getting the N-th element

If N is 1 it is easy - output the FIRST of the list. If N is not
one. what is wanted is the (N-l)-th element of the BUTFIRST of

the list. In LOGO:

TO ITEM :NTH :LIST
IF :NTH = 1 THEN OUTPUT FIRST :LIST

OUTPUT ITEM :NTH - 1 (BUTFIRST :LIST)
END

This is capable of improvement - what If :NTH is zero or

113

negative, or the list is too short? Here is a better version:

TO ITEM :NTH :LIST

IF ANYOF (:NTH < 1) (:LIST=[J) THEN
ERROR [MISTAKE USING ITEM]

IF :NTH = 1 THEN OUTPUT FIRST :LIST
OUTPUT ITEM :NTH - 1 (BUTFIRST :LIST)
END

This uses the ERROR procedure defined in section 4.5.1. The pro
cedure can also be extended so that it works with words and out
puts the N-th character1.

Updating an element of a list

Terrapin LOGO provides two procedures which are really special
ised and restricted forms of SENTENCE. One. FPUT (an acronym
for FirstPUT). is for glueing some element onto the front of a list,
it takes two inputs, the second of which must be a list, and out
puts a list whose first element is the first input and whose
remainder is the second input, for example

FPUT "A [B C]

outputs [A B CJ. The other procedure. LPUT (an acronym for Last-
PUT), works in a predictably similar way. You can safely opt to
forget about both of these; however, for the sake of showing them
in use they will both be used in the remainder of this chapter.

When updating an element of a list you need to know three
things: what the list is. which is the element to update and what
its new value is to be. Again it is best to think about the sim
plest case first of ail. To update the first element of a list, just
output the list formed by glueing the new value onto the front of
the BUTFIRST of the given list (that Is. prune off the old value,
glue on the new). If it is not the first element that is to be
updated then it becomes a matter of updating the (N-l)-th ele
ment of the BUTFIRST of the given list, for instance to update the
third element of [ABC D], update the second of [B C Dl.
Forethought, or one or two misfiring experiments, will remind you
that it is also necessary to glue the FIRST element of the given
list onto the result of updating the BUTFIRST of it.

This is the bones of it in LOGO:

TO UPDATE :N :LIST :NEW

t In Apple LOGO and some others ITEM is provided for you.

114

IF :N = 1 THEN OUTPUT (FPUT :NEW

BUTFIRST :LIST)

OUTPUT (FPUT (FIRST :LIST) (UPDATE

(:N - 1) BUTFIRST :LIST :NEW)

END

Once more, it makes sense to put in a first line similar to that
included in ITEM above. (Note for teachers: the inputs to UPDATE
appear in the order shown for a good reason, namely that it
makes the use of UPDATE easier to verbalise. The expression

UPDATE 2 [A B C] "Z could be read as 'update the second ele
ment of [A B CJ to be Z'. It pays to get your students Into this
habit.)

Since both FPUT and SENTENCE always output a list. It is
trickier to make UPDATE work for words too. It is undoubtedly

neater to define a whole new procedure if you want to be able to
do this operation on words. The corresponding procedure to FPUT
or SENTENCE is WORD.

The intersection of two lists

Consider some examples: the intersection of (A B CI and [C A R]
ought to be [C A] or [A CI. The intersection of [A B] and [C D]
ought to be the empty list. It is reasonably clear that the thing to
do is to work through the first list, and include each element that
also features In the second list in the answer. Yet again, the
tools for working through the first list are FIRST and BUTFIRST.
To check whether an element features in the second list, you now

have MEMBER? available. The only time that the answer is the
empty list is when you have checked all the elements of the first
list and are left with an empty first list.

In LOGO this could be expressed as

TO INTERSECT :L1 :L2
IF :L1 = [] THEN OUTPUT []
TEST MEMBER? (FIRST :L1) :L2
IFTRUE OUTPUT FPUT (FIRST :L1)

INTERSECT (BF :L1) :L2
IFFALSE OUTPUT INTERSECT (BF :L1) :L2
END

This may be the first time you have seen a procedure which
invokes itself recursively in one of two possible places in its
definition, rather than in just one possible place. If you are in
doubt, try it out. It may help to work through an example on
paper first.

115

The union of two lists

The union of [A B] and [A C] ought to be [A B CI or some per
mutation of it. rather than [A A B CJ. The union of [A B] and [C]

ought to be [A B C] or some permutation of that. The important
point is to avoid unnecessary duplication of elements in the
answer. As with INTERSECT the obvious method is to work

through the first list, using FIRST and BUTFIRST. If the first list is
empty the answer is just the second list, even if that is empty, if
the first list is not empty, consider its first element, if it features
in the second list, ignore it because that would otherwise lead to
duplication. If it is not in the second list, glue it onto the union
of the BUTFIRST of the first list, and the second list.

In LOGO this could be expressed in a manner very like the
example of INTERSECT:

TO UNION :L1 :L2

IF :L1 = [] THEN OUTPUT :L2

TEST MEMBER? (FIRST :L1) :L2

IFTRUE OUTPUT UNION (BF :L1) :L2

IFFALSE OUTPUT FPUT (FIRST :L1) UNION

(BF :L1) :L2

END

Compare this carefully with INTERSECT; the similarities are surpris
ing.

Replacing all occurences of an element

Once more, the tools for working through the list are FIRST and
BUTFIRST. If the list is empty, output the empty list. Otherwise,
look at the first element. If it is an occurrence of what is to be

replaced, use FPUT to put the new value onto the front of the
result of processing the rest of the list. If not. FPUT the first ele
ment instead. In LOGO this is

TO REPLACE .OLD :NEW :L

IF :L = [] THEN OUTPUT []
TEST :OLD = FIRST :L
IFTRUE OUTPUT FPUT :NEW REPLACE

:OLD :NEW (BF :L)

IFFALSE OUTPUT FPUT FIRST :L

REPLACE :OLD :NEW (BF :L)

END

116

EXERCISES

If you have worked carefully through this chapter you should be
able, with care and perhaps one or two false starts, to do these
exercises. They are hard. Do not expect to do them in a few
minutes. If you have not been following this chapter you are now
on your own ...

(1) Devise a procedure REVERSE that outputs a list formed by
reversing its input:

REVERSE [ABC] should output [C B A]

(Hint: LPUT might help.)

(2) Devise a procedure REVWORD that reverses a word:

REVWORD "STRAP should output PARTS

{3} Devise a procedure which tests whether a word or a list
is palindromic, that is. reads the same backwards as for
wards. Try to do it more directly than by using the
results of the first two exercises.

PALINDROME "REFER should output TRUE
PALINDROME [ABBA] should output TRUE
PALINDROME [A B A B] should output FALSE

(4) Devise a procedure which prints out a list reasonably
elegantly. What this means is for you to decide. As a
suggestion, printing out the list

[HERE [WITH [A FEW] FRILLS] IS A LIST]

might be nicely printed as

HERE

WITH

A

FEW

FRILLS

IS

A

LIST

117

Remember the procedure LIST? which tests whether its
input is a list or not; it is analogous to WORD? and
NUMBER?.

4.6 LISTS AND TURTLE GRAPHICS

Putting together your knowledge of lists and your knowledge of
turtle graphics can expand your programming horizons consider
ably. Chapter 5 is largely concerned with a project In this area;
chapter 7 suggests several others. This section describes two
small projects for the sake of demonstrating some basic practical
uses of lists.

4.6.1 Playing With Scale

This project was originally motivated by the Idle thought that it
would be fun to be able to shrink or eniarge shapes easily, and
to turn them over. One way is to edit a procedure such as

TO BOX

REPEAT 4 [FD 100 RT 90]
END

so that it has an input, which is used as a multiplying factor for
the 100. This permits change of scale, but not turning over.

What is involved in turning over a shape? Some playing
about with simple non-symmetric shapes ought to convince you
that what is needed is to replace FORWARD by BACKWARD and
RIGHT by LEFT, and vice-versa. BACKWARD 100 is just the same
as FORWARD -100. and LEFT 90 Is the same as RIGHT -90. So.

all that is needed is to reverse the signs of the numbers involved.
The awkward point about this is that the definition of BOX will
come to look cumbersome - it will need two inputs, one for the
side length and one for the angle. It will also be an unreasonable
amount of work to incorporate this feature in each new shape,
and this would stop the whole enterprise from being fun or easy.

There is another approach. The key idea - which you may
not feel is the best or even much use. but this is only a
demonstration - is to represent simple shapes as lists of lists.
Each list will contain two numbers, an amount to go FORWARD
and an amount to turn RIGHT. For Instance, the basic BOX would

be

118

U100 90] [100 90] [100 90] [100 90]]

It must be possible to define a procedure, say called DO, which
takes such a list as input and draws the shape. The steps

involved are:

(a) If the list is empty just STOP.

(b) Otherwise look at the FIRST of it (in the case of the box

its tlOO 901). Go FORWARD by the FIRST of this, turn
RIGHT by the second element.

(o) Now just DO the BUTFIRST of the list of lists.

Here Is the LOGO definition:

TO DO :LL

IF :LL = D THEN STOP
FORWARD FIRST (FIRST :LL)
RIGHT ITEM 2 (FIRST :LL)
DO BUTFIRST :LL

END

It is easy to give DO a second input which will be a scale factor:

TO DO :LL :SCALE
IF :LL = n THEN STOP
FD :SCALE * FIRST (FIRST :LL)
RT ITEM 2 (FIRST :LL)

DO (BUTFIRST :LL) :SCALE
END

To draw the shape turned over, use a separate procedure:

TO FLIP :LL :SCALE
IF :LL = D THEN STOP
BK :SCALE * FIRST (FIRST :LL)
LT ITEM 2 (FIRST :LL)
FLIP (BUTFIRST :LL) :SCALE

END

The beauty of DO and FLIP is that it is easy to express shapes
as lists of lists. These two procedures could form the basis of a
simple kit for experimenting with rotations and reflections.

119

4.6.2 Simple Shape Recording

When playing with SETX, SETY and SETXY. it often happens that
you give values which are not quite correct and this mars the
drawing. Either you accept the blemish or you start again. What
motivates this project is the thought that it would be useful to be
able to manoeuvre the turtle into the right spot, making mistakes
on the way. and then record the spot somehow. Then it would be
easy to clear the screen and draw a perfect shape by replaying
the recording.

The main idea is to have a variable, say called RECORDING,
whose value will be a list of lists each containing the X and Y
co-ordinates of one spot. A procedure RECORD will be used to
append the turtle's current co-ordinates to the end of the record
ing and update RECORDING. Another procedure. REPLAY, will be
used to replay the recording. RECORD will only be used when
the turtle is on a wanted spot.

RECORD is simple:

TO RECORD

MAKE RECORDING LPUT (LIST XCOR YCOR)
RECORDING

END

REPLAY is only slightly harder. You only need to SETXY to the
co-ordinates given by the FIRST of RECORDING, then REPLAY the
BUTFIRST of it. However, it would be pleasing if REPLAY took no
inputs at all. It ought not to change RECORDING itself, because
then you could only use REPLAY once. Here is one solution: use
a subprocedure with an input.

TO REPLAY

PU SETXY (ITEM 1 FIRST RECORDING)
(ITEM 2 FIRST RECORDING) PD

PLAYBACK :RECORDING

END

TO PLAYBACK :L

IF :L = [] THEN STOP

SETXY (ITEM 1 FIRST :L) (ITEM 2

FIRST :L)

PLAYBACK BUTFIRST :L

END

The first line in REPLAY gets the turtle to the staring position;
therefore it would be slightly more economical If the second line
were PLAYBACK BF :RECORDING instead. Before trying the pro
cedures, remember to

120

MAKE "RECORDING fJ

at the start.

4.6.3 The State Of The Turtle

If you want to play about with other such projects it may help you
to know that Terrapin LOGO provides a procedure called TURTLE-
STATE, or TS for short. It takes no input, and outputs a list of
four elements:

- The first is TRUE if the pen is down. FALSE if not.

- The second is TRUE if the turtle is normally visible. FALSE if
HIDETURTLE was last specified.

- The third is a number giving the background colour.

- The fourth is a number giving the pen colour.

This procedure together with XCOR. YCOR and HEADING tells you
all there is to know about the state of the turtle at any time.

4.7 TWO NON-GRAPHIC EXAMPLES

This section gives two examples of the use of lists. The comments
are brief.

4.7.1 A Calculator

This section describes a simple set of procedures which together
form a 'reverse Polish' calculator, mimicing the way some pocket
calculators work. The name 'reverse Polish' refers to a particular

notation for arithmetic. Instead of expressing the product of 23
and 34 as

23 * 34

the 'reverse Polish' form is

23 34 *

that is. you enter the number 23 first, then the number 34, and
only then do you say what is to be done with them - in this
example, they are to be multiplied together. The principle behind

121

the notation is that you are working with an ordered sequence of
numbers, initially empty. Any number you enter is appended at the
end of the sequence. If you specify an arithmetic operation it is
carried out using the last (that is. most recent) two numbers of
the sequence; those numbers are deleted from the end of the
sequence by the operation, and the result is put there instead.
Therefore you need to keep in mind what the sequence is. For
example:

enter

enter

enter

enter

enter

enter

sequence: nothing
sequence: 7
sequence: 7 9
sequence: 7 9 6
sequence: 7 54
sequence: 61
error! There is only one number.

The sequence will be stored in LOGO as a list, the value of a
variable called SEQ. The main work will be done by a procedure
R.POLISH, which will use REQUEST to get a number or an opera
tion from the user. If it is a number it will be appended to the
list, otherwise the appropriate operation will be done. It is con
venient to have a fifth operation called 'P' which prints the
sequence, and to have the last number In the sequence printed
whether you specify a number or an operation.

In the definitions below, the procedure PUT puts its input
onto the end of the sequence and the procedure GET takes one
number off the end and outputs the number. The effect of the
operation of addition is therefore just PUT (GET + GET). The

definitions are

TO CALC

SETUP

R.POLISH

END

TO SETUP

MAKE "SEQ 0

END

TO R.POLISH

PRINT1°'» ' MAKE "IN REQUEST
IF (COUNT :IN) > 1 THEN PRINT [ALL BUT

FIRST ITEM IGNORED]

MAKE "IN FIRST :IN

IF NUMBER? :IN THEN PUT :IN
IF :IN = "* THEN PUT (GET * GET)

IF :IN = V THEN PUT (GET / GET)

IF :IN = •- THEN PUT (GET - GET)

122

IF :IN = "+ THEN PUT (GET + GET)

IF :IN = "Q THEN PRINT [QUIT! TOPLEVEL
IF :IN = "P THEN PRINT :SEQ ELSE PRINT

LAST :SEQ
R.POLISH

END

TO GET
MAKE "VAL LAST :SEQ

MAKE "SEQ BUTLAST :SEQ
OUTPUT :VAL

END

TO PUT :NUM

MAKE "SEQ LPUT :NUM :SEQ
END

Beware of subtraction and division: they are not quite what you
would expect. For example, entering 12. then 24. then '/' will
result in 2 being printed, rather than 0.5. You can add further
operations by adding lines to R.POLISH. One useful addition is an
operation which merely deletes the last number, in case you enter
a wrong number by mistake. Another useful operation is that of
swapping the last two items around.

4.7.2 Beautiful Printing. Part 2

The set of procedures described below are designed to print the
definition of a procedure, on the screen. In a way similar to the
one used in this book. In particular, the printout avoids having any
words split by overlapping the right-hand edge of the Apple II
screen. For example, rather than seeing a procedure printed on
the Apple's 40-character wide screen somewhat like this:

TO RUBBISH
PRINT [THIS IS AN EXAMPLE OF A LIST WIT

H TEN ELEMENTS)

END

(the word WITH looks as though it has been spilt into WIT and H
because it overlaps the right-hand edge of the screen), it would
be more attractive and less confusing to see

THE TEXT OF RUBBISH IS
TO RUBBISH

PRINT [THIS IS AN EXAMPLE OF A LIST
WITH TEN ELEMENTS 1

END

123

it is only possible to do this if the definition of a pro
cedure is available in a form that other procedures can use.
Fortunately, the definition of the procedure is acessible in the
form of a list of lists by using the Terrapin LOGO procedure
TEXT. It expects one input, a word naming a procedure. It outputs
a list of lists, one list per line. The first list holds the inputs
from the title line, or is empty If there are no Inputs for the
named procedure. An example: if the procedure JUNK is defined
as

TO JUNK :A :B

REPEAT :A [PRINT :B]

END

then TEXT "JUNK will output

(l:A :B] [REPEAT :A [PRINT :B3J]

To use the LOGO procedures below, give the command NICE with
one input, a word naming the procedure whose definition is to be
printed. There are no comments about the definitions; treat them

as an exercise in trying to read LOGO programs. The definitions
could be improved a little; try NICE "PLIST to see where.

TO NICE :N

PRINT SENTENCE [THE TEXT OF1 SENTENCE :N

"IS

PRINT! :N

MAKE "N TEXT :N

PRINT FIRST :N

PLLIST BUTFIRST :N

hND

10 PLLIST :N

IF :N = U THEN PRINT "END STOP

PLIST FIRST :N

PLLIST BUTFIRST :N

END

TO PLIST :L

MAKE "COL 2

PRINT! "' '

PP :L

PRINT "

END

TO PP :L

IF :L = a THEN STOP

IF LIST? FIRST :L THEN PP (SENTENCE "T

FIRST :L "']') PP BUTFIRST :L STOP

124

IF COUNT FIRST :L > 37 - :COL THEN PRINT
[] PRINT1 "' ' MAKE "COL 6

PRINT1 FIRST :L

PRINT1 "' '

MAKE "COL :COL + 1 + COUNT FIRST :L

PP BUTFIRST :L

END

The COUNT procedure used here Is the version which works
whether the input is a word or a list.

Chapter 5
Undertaking a project

Aims Being able to define and use new procedures is only one
kind of LOGO skill. There are more general ones which can
only be learnt by undertaking some larger-scale enterprises.
This chapter is mainly devoted to two unretouched project
studies. The aim is to show the bad decisions along the
way as well as the good.

5.1 GENERALITIES

What is needed when you undertake a major project goes beyond
the skills needed to be able to express ideas as procedures. The
work of a project often divides into two parts: the planning, and
the implementation of the plans. Although some planning must be
done first, do not think that all the decision-making must be com
pleted before starting on the job of implementation. This very
rarely works out. not least because it is almost impossible to
forecast all the snags beforehand. Moreover, few projects are so
fully and clearly defined that it is possible to plan them in com
plete detail; such projects usually turn out to be dull, anyway.

Nevertheless, planning and implementation are very different
activities. It is the norm to have many periods of one and many
of the other, interleaved. However, beware of trying to do both at
once. Only a very experienced programmer can appear to do both
at once. Even then it Is only appearance, he will still be using
his experience to implement something whose planning side he
had thoroughly explored months or years ago. Unless you have
years of experience to call on. it is better to work somewhat in
this fashion:

- Having chosen a project, begin by trying to describe what will
first give you some real sense of satisfaction. You may well

125

126

not be satisfied with it by the time you achieve it. but it will
have been a milestone.

- Then plan, in as top-down a fashion as you feel at ease with.
That is. try to start with general intentions and refine them
stage by stage into more specific intentions.

- When you feel that some of the ingredients are sufficiently
precisely defined, implement them. You will probably find it
necessary to do this before all the planning is complete, in
order to reassure yourself that you are still working along rea

sonable lines. Planning needs confidence; implementation pro
vides it or proves it unjustified.

- Continue with stages of planning and programming until you
reach your milestone or find that you cannot. In either case
find another milestone and carry on.

Use paper and pencil when planning. You do not have to make
elaborate notes, you can probably get away with jotting down terse
reminders of important points. Although you may be one of the
few who can work reliably by memory alone. It is vastly more
annoying to start by supposing this and being proved wrong than
it is to work the other way around.

The rest of this chapter is taken up by two sections, each
devoted to a project. Each section has various subsections. The
idea is to show two realistic examples, as might be done by a
person with a reasonable amount of experience. Working from the
point of view of a novice might exhaust your interest.

5.2 NESTED POLYGONS

This project arose from the kind of doodles I do absent-mindedly,
such as when concentrating on speaking on the telephone. Looking
at the doodles afterward, a certain conjecture came to mind. The
project was an attempt to gather some evidence to see if it was
really plausible.

5.2.1 The Question

Imagine that you have drawn a somewhat irregular hexagon on
your telephone pad. An idle thing to do is to join up the mid
points of the sides. The result is a smaller irregular hexagon. Do
it again and again. Figure 5.1 shows the outcome of this after a

127

few minutes. The odd thing is that the innermost hexagon looks
much more like a regular hexagon than the original one. Perhaps
the more you continue, the more like a regular hexagon it gets.
On the other hand it may be only a coincidence, perhaps the ini
tial hexagon was a lucky choice. Maybe some initial hexagons do
lead to regular ones and others do not. but If so. why. and what
makes the difference? Moreover, what about octagons, heptagons,
pentagons? What about quadrilaterals - do you get squares or do
you get parallelograms or do you get nothing remarkable at all?1

The initial idea, therefore, is to devise some LOGO pro
cedures to draw the successively smaller hexagons. This will make
it possible to check on a variety of initial hexagons with compara
tive ease. The first hurdle is to figure out how this can be done.

Figure 5.1

1 There is a neat mathematical solution to the problem, based on expressing the co
ordinates as trigonometric polynomials. But suppose that is too much like hard work _

128

5.2.2 Representing The Hexagon

Experience will teach you that this is one of the most crucial
decisions in almost any project. The right decision can make the
whole thing easy; the wrong one can lead to high blood pressure
and premature philately.

Two possibilities are apparent. The first Is to represent the
hexagon as a series of FORWARD and RIGHT pairs, as in the
RECORD procedure in section 4.6.2.

Advantages it is easy to produce the actual drawing.

Disadvantages It Is hard to specify the initial list of lists of pairs
of numbers, even If the initial hexagon is nearly
regular. Also, it is not immediately clear how to
get the representation of the nested hexagon from
this one.

The other possibility is to represent the hexagon as a list of six
elements each giving the co-ordinates of a corner.

Advantages It is easy to draw the hexagon, using SETXY. It is
also easy to specify the initial list - use the
RECORD system in chapter 4. It is not too awk
ward to construct the list that will represent the
nested hexagon, either. Given the co-ordinates of
two adjacent corners, the co-ordinates of the
mid-point can be found by taking the average of
the corresponding co-ordinates.

Disadvantages No major ones (yet).

Therefore, use the second one.

it helps further deliberations If you have a real example to
work on. Rather than deal with negative numbers, take a hexagon
that lies entirely within the top right quadrant of the screen, say

[[10 30] [30 201 [80 101 [120 801 [50 1101 [10 5011

The procedure PLAYBACK defined in section 6.2 of chapter 4
could be used to draw the hexagon represented by this. It is not
ideal - try It. e.g.

129

MAKE "HEX [[10 301 [30 201 [80 101 [120
80] [50 110] [10 50]]

PLAYBACK :HEX

draws figure 5.2. There are two snags. The line from the turtle's
starting position to the first corner should not be there. Also, the

last side is missing. All would be well if the turtle had started at
the last corner. This suggests a simple amendment - make PLAY
BACK a subprocedure of one that puts the turtle at the last
corner first, and then invokes it. So.

TO PLOT :LL

PENUP

SETXY (ITEM 1 LAST :LL)
:LL)

PENDOWN

PLAYBACK :LL

END

This works.

(ITEM 2 LAST

Figure 5.2

130

5.2.3 Producing The Nested Hexagon

Given one hexagon, the nested one has its corners at the mid
points of the sides. Suppose a side runs from corner [xl yll to
corner [x2 y2]. The midpoint will have X co-ordinate (xl+x2)/2
and Y co-ordinate (yl+y2)/2. It seems sensible to define a pro
cedure MIDPT which will be given two points (as two-element lists)
as inputs, and will output the two-element list for the midpoint:

TO MIDPT :PT1 :PT2

OUTPUT LIST ((ITEM 1 :PT1) + (ITEM

1 :PT2))/2 ((ITEM 2 :PT1) + (

ITEM 2 :PT2))/2

END

Try this to make sure that it does the right thing, before carrying
on.

it must now be straightforward to define a procedure that,
given the representation of a hexagon, outputs the representation
of the nested hexagon. For example:

TO NEST :LL

OUTPUT (LIST MIDPT ITEM 1 :LL ITEM

MIDPT ITEM 2 :LL ITEM 3 :LL

MIDPT ITEM 3 :LL ITEM 4 :LL

MIDPT ITEM 4 :LL ITEM 5 :LL

MIDPT ITEM 5 :LL ITEM 6 :LL

MIDPT ITEM 6 :LL ITEM 1 :LL)

END

2 :LL

This one-line procedure is a big mouthful. If you mistyped it the
mistake would be hard to find. Moreover, if you were to call the
input LISTOFLISTS rather than LL. you would find that Terrapin
LOGO would not accept it because the line was too long. The
limit is 256 characters. However. NEST works: try

PRINT NEST :HEX

You should be able to predict that it prints

[[20 25] [55 15] [100 45] [85 95] [30 80] [10 40]]

by looking at the value of HEX.

Principle

In general, whenever you create a procedure, try it at
once. Don't store up troubles for later.

131

5.2.4 Trying It Out

You now have the ingredients to start experimenting, namely PLOT
and NEST. You might be tempted to launch into

CS

PLOT :HEX

REPEAT 10 [MAKE "HEX NEST .HEX PLOT
:HEX]

but wait. Doing this, you would lose the original value of HEX.
Keep a copy of it first:

MAKE "ORIG.HEX :HEX

Then the sequence of commands above will produce figure 5.3.
Now you can spend a little time investigating the original conjec
ture.

Figure 5.3

132

5.2.5 Problems And Doubts

If you have now tried nesting hexagons several times, starting
from various initial hexagons, you might think that the original
conjecture is fractionally more plausible than it seemed earlier.
However, the innermost hexagon is eventually too small to judge
by eye for regularity.

At this point, another doubt might assail you. If you want to
move on to looking at heptagons (seven-sided figures) you need a
new version of NEST; you need a new one every time you want
to move on to another number of sides. This would be nearly
acceptable if NEST weren't so easy to mistype.

Principle

A warning sign in any project is that one or more of the
procedures seems to be getting out of hand.

Perhaps it is possible to define a recursive version of NEST,
so that it will work however many sides there are. The algorithm,
relying on past experience, might go like this:

(a) if there is only one corner output the empty list.

(b) Form the midpoint of the first two corners. Join this onto
the list of midpoints formed by starting with the BUTFIRST
of the original list, and then output the result.

This is incomplete. If it is applied to a list of six corners It gen
erates a list of five midpoints. The missing one is the one lying
between the last corner and the first one.

There are at least two possible cures. One is to create a
variable which holds the first corner, and then use the value of it

in a new step (a):

(a) If there is only one corner in the list, output the list
whose sole element is the midpoint between it and the
corner whose position is given by the variable.

Another solution is to change the representation of the polygon
slightly. Instead of having N elements.

[corner! corner2 .. cornerN]

133

let it have N+l:

[cornerl corner2 .. cornerN cornerl)

This lets you generate all the N midpoints by a straight forward
recursion, as outlined above. To construct the representation of
the nested polygon all that is needed is to glue a copy of the
first midpoint onto the end of the list of midpoints.

5.2.6 The New Nest Procedure

The two solutions are almost equally good. The second one. a
changed representation, will be adopted for what follows. It is
marginally neater, though neither solution necessitates changes to
PLOT.

Principle

When in genuine doubt, make a random choice - at least
it's progress.

NEST becomes:

TO NEST :LL

MAKE "LL MIDPTLIST :LL

OUTPUT LPUT (FIRST :LL) :LL
END

TO MIDPTLIST :LL

IF (COUNT :LL) = 1 THEN OUTPUT 0
OUTPUT FPUT (MIDPT ITEM 1 :LL ITEM 2

:LL) (MIDPTLIST BUTFIRST :LL)

END

This uses COUNT as defined in section 4.5.4. An Interesting
detail is the use of LL as though it were a normal variable rather
than an input, in the first line of NEST. It was explained in
chapter 3 that inputs are variables; the only point to remember is
that LL supersedes any other variable of the same name while
NEST is being run.

Remember to amend the value of HEX (and ORIG.HEX):

MAKE "HEX LPUT (FIRST :HEX) :HEX

134

5.2.7 Fault Tracing

It is timely to discuss how to set about tracking down faults in
procedures, using a specific example. Suppose that you have just
copied MIDPTLIST into your LOGO system, but you carelessly omit
ted the BUTFIRST in the last line. When you use NEST, nothing
happens, not even a prompt to show that it has finished. The best
thing to do is to type CTRL-G to terminate whatever is happening,
with extreme prejudice. Thereafter, begin by looking at the defini
tions of NEST and MIDPTLIST. If the problem doesn't catch your
eye one recourse is to include some extra commands in each
definition. You could insert

CHECK "LL

at the start of each definition: CHECK was defined in section

4.5.2. Running NEST again, you should see that LL only changed
value once, and thereafter never changed. This might alert you to
the problem; MIDPTLIST ought to be invoking itself recursively with
successively shorter input lists each time.

The ultimate recourse is to use the Terrapin LOGO procedure
TRACE. From the time it is obeyed until the procedure NOTRACE
is obeyed, LOGO will print out any line of procedure definition that
it is just about to obey. Moreover, LOGO will wait for you to type
any character, other than CTRL-G or CTRL-Z. before obeying it. If
you type CTRL-G. LOGO will abort every procedure in progress
and return to waiting for your next command, as usual. If you
type CTRL-Z. LOGO will also wait for commands from you. but the
procedures in progress will not have been aborted, merely
suspended. (The procedure PAUSE also achieves this effect;
PAUSE is to CTRL-Z as TOPLEVEL is to CTRL-G.) You can then

give commands to find out such details as the current values of
variables. When you want LOGO to resume the suspended pro
cedures, use the command CONTINUE (or CO for short). Using
CTRL-Z for fault finding is sometimes not very useful, because it
can be hard to find out how far LOGO has got before you typed
the CTRL-Z. PAUSE is more useful; you can put it in a known
place.

All these fault finding aids may help you. It is hard to give
more advice; everyone develops their own style of setting about
the hunt, and everyone gets plenty of opportunities to develop iti
Just bear these points in mind:

- Be patient.

135

- Be systematic.

- 99% of all faults are simple ones and have a single cause.

- Test each of your procedures In turn, using various test cases
for Inputs: 'likely' values, 'unlikely' values and special cases
such as the empty list or the empty word.

- Work from the bottom up; test those procedures first which
depend least on other procedures. This spares you a lot of
trouble if it turns out that there is more than one fault to be
found.

- KEEP NOTES!

5.2.8 More About Nested Polygons

Both NEST and PLOT now cope with a polygon of any number of
sides. There still remains the problem of what to do when the
Innermost nested polygon becomes too small to judge properly.
One proposal is to switch from drawing the polygon to printing out
the lengths of the sides. Presumably more regular polygons have
sides which are more nearly equal:

TO PRINTSIDES :LL

IF (COUNT :LL) = 1 THEN STOP
PRINT PYTHAG (ITEM 1 :LL) (ITEM 2

:LL)

PRINTSIDES BUTFIRST :LL
END

TO PYTHAG :PT1 :PT2

OUTPUT SQRT (SQR (ITEM 1 :PT1) -

(ITEM 1 :PT2)) + (SQR (ITEM
2 :PT1) -(ITEM 2 :PT2))

END

TO SQR :N
OUTPUT :N * :N

END

It turns out. however, that this idea is not very good. The side
lengths get so small that it is tricky to compare them; it is hard
to assess whether they are getting 'more equal' with successive
nestings.

What is really needed Is a new idea - or to give up on the
whole problem.

136

Principle

When all else fails, indulge in wishful or fantastic specu
lations.

If you want to try your hand at thinking of a solution to this
problem, then do not look at the next page vet. Put the book
down and think about it for a little while.

137

The problem of minute nested polygons would not be so bad if
you had a powerful magnifying glass for peering at the screen.
This suggests an Idea: why not magnify the polygon every so
often? How often? Answer: when you feel it necessary. How can
you magnify a polygon? Simply multiply every co-ordinate by some
chosen scaling-up factor. What factor? Rather than indulging in an
orgy of calculation, why not just pick one and see? You can
always erase the screen and try another if your choice is bad.

First, consider how to rescale one single point:

TO RESCALE :PT .SCALE

OUTPUT LIST :SCALE * (ITEM 1 :PT)
:SCALE * (ITEM 2 :PT)

END

To magnify the whole polygon just RESCALE each corner in turn:

TO MAGNIFY :LL :SCALE
IF :LL = [] THEN STOP

OUTPUT FPUT (RESCALE FIRST :LL :SCALE)
(MAGNIFY BUTFIRST :LL :SCALE)

END

To try this, the first thing is to recover the original hexagon -
the test case - and to clear the screen:

CS

MAKE "HEX :ORIG.HEX

Then do some nesting:

REPEAT 10 [MAKE "HEX NEST :HEX PLOT :HEX]

Then magnify the final one a bit:

MAKE "HEX MAGNIFY :HEX 6

Now the magnified hexagon may not fit the screen. You can print
it and check that no co-ordinate is outside the area of the

screen. On the other hand you could just clear the screen and
PLOT it. If it is too small or big. just use MAGNIFY again with a
suitable scaling factor.

5.2.9 The Next Snag

The trick of magnification lets you continue the nesting process
for a while. However, you will find that magnification tends to
make the polygon drift off to the edge of the screen. (For the

138

technically minded: magnification moves the centre of area of the
polygon further from the centre of the screen, so you would
expect this.) The remedy is clear: move the magnified polygon
across a bit. This means adding a chosen number to every X
co-ordinate, and another chosen number to every Y co-ordinate. A
tidy way to specify the two numbers is as a list with two ele
ments, e.g. [50 30] meaning 'add 50 to the X co-ordinates, add
30 to the Y co-ordinates'. To adjust one corner Is easy:

TO ADJUST :PT :AMOUNT

OUTPUT LIST (ITEM 1 :PT) + (ITEM 1
:AMOUNT) (ITEM 2 :PT) + (ITEM
2 :AMOUNT)

END

Shifting the whole polygon is almost as easy:

TO SHIFT :LL :AMOUNT

IF :LL = [] THEN STOP
OUTPUT FPUT (ADJUST FIRST :LL :AMOUNT)

(SHIFT BUTFIRST :LL :AMOUNT)

END

To use it:

MAKE "HEX SHIFT :HEX [-50 -60]

You now have a toolkit which allows you to pursue the origi
nal conjecture as far as you want.

PLOT This draws a polygon on the screen.

NEST This constructs the list of lists representing the next
nested polygon.

MAGNIFY This is used whenever the polygon gets too small.

SHIFT This is used whenever the polygon drifts too far from
the middle of the screen.

EXERCISES

(1) Investigate the conjecture. If it's false, can you modify it
to fit the facts from the investigation?

139

(2) Would you come to a different conclusion if you formed
nested polygons according to a different rule? For
instance, instead of midpoints use one of the points of
trisection of each side.

(3) A very interesting variation is to form the nested polygon
by joining the midpoints of diagonals instead of sides. To
start with, use the diagonals which link each corner to the
one two round from it.

(4) Have you tried using really irregular polygons, such as
non-convex ones (that is. having one or more inward
bulges)?

5.3 DIFFERENT NUMBER BASES

This project was originally mentioned in a paper1 describing a
study of how LOGO might be used in a school mathematics class
room. The work was funded by the Social Science Research
Council of Great Britain.

Numbers are conventionally written
that the group of digits

754

'In base 10'. This means

is the conventional way of writing the number

7*100 + 5*10 + 4*1

The multipliers, from right to left, are 1. 10 and 100: successive
powers of 10. If you were told that 754 was really meant to be
read 'in base 8' here, the number in question would have been

7*64 + 5*8 +4*1

which is 448 + 40 + 4 or 492 in the customary 'base 10' nota
tion. The multipliers here, from right to left, are 1. 8 and 64:

successive powers of eight, in base 8 numbers, the digits '8' and
'9' are not used. The reason is that if they were, there would be
at least two different ways of expressing most numbers, for

1 Teaching Mathematics through Programming in the Classroom', by JAM.Howe,
P.M.Ross, KJohnson and R.lnglis, Computers and Education, vol. 6, 1982

140

example, the number written '91' would be

9*8 + 1

which is the same as

(8 + 1)*8 + 1

which is

1*64 +1*8 + 1

which can be written in base 8 as '111'. Similarly, when numbers
are written in base 2 notation, the only digits are '0' and '1'. It
is Important to realise that when dealing with numbers in uncon
ventional bases, it is only the representation of the numbers, as
marks on paper or syllables In speech, that is different. The
number written as '43' in base 8 is exactly the same number
denoted by '35' in base 10. or by '50' in base 7. or by '100011'
in base 2.

The aim of this project is to devise a set of LOGO pro
cedures for experimenting with numbers written in unconventional
bases. The motive is pure curiosity.

5.3.1 First Thoughts

The first need that comes to mind is for a means of converting a
number from one base to another. Take an example: how is '91'
in base 10 to be written in base 8? It is bigger than 64 and less
than 512 (=64*8). so the leftmost digit in the base 8 representa
tion will be standing for the number of 64s involved. Now

91 = 1*64 + 27

so the leftmost digit will be one. The remainder. 27. is

27 = 3*8 + 3

so

91 = 1*64 + 3*8 + 3*1

and therefore '91' is written as '133' in base 8. It should be
possible to formalise this somehow, though it may look confusing
at the moment.

In fact, the method looks sufficiently confusing to make one
think twice. The problem Is to determine what the digits are when

141

91 is rewritten in base 8. Suppose they are A, B and C. Then

91 = A*64 + B*8 +C*1

The right-hand side of this Is C plus some multiple of 8. because
A*64 + B*8 is a sum of multiples of 8. This means that C is just
the remainder when 91 is divided by 8 - and there is a LOGO
procedure REMAINDER to work this out in any general case. Since
91 = 11*8 + 3. C must be 3. Moreover.

11*8 = A*64 + B*8

SO

11 = A*8 + B

This means that 'AB' is the representation of 11 in base 8. By
the same process, B is 3 and A is 1.

Formalise this. Instead of working with 91. consider how to
do it for any number - call the number N. The final digit of the
representation of N In base 8 Is the remainder when N is divided
by 8. Unfortunately this is. literally, the last digit to be written
down. As the example above suggests, the digits that come earlier
are those which form the representation, in base 8. of the integer
quotient on N divided by 8. There is a LOGO procedure QUO
TIENT to work this out. There is also one easy point to note: it
is only when N is more than 7 that you need to consider quo
tients at all.

A restatement of all this, closer to LOGO, is

(a) If N Is more than 7. write the base 8 representation of
the integer quotient of N divided by 8.

(b) Write the remainder of dividing N by 8.

This turns directly into LOGO:

TO BASE8 :N

IF :N > 7 THEN BASE8 QUOTIENT :N 8
PRINT! REMAINDER :N 8

END

PRINT1 is used, rather than PRINT, so that the digits all appear
on the same line. It is also easy to generalise BASE8 so that it
works for other bases. Let the base be given as the value of a
variable called BASE. A suitable generalisation might be:

142

TO CONVERT :N

IF :N > CBASE - 1) THEN CONVERT

QUOTIENT :N :BASE
PRINT1 REMAINDER :N :BASE

END

Test this.

MAKE "BASE 2

CONVERT 30

prints 11110. However, there is room for improvement:

MAKE "BASE 8

CONVERT 13.216

prints 15.

5.3.2 Difficulties

There are faults. In particular,

- It gets negative numbers wrong.

- it would be more useful if it could OUTPUT something instead
of PRINTing.

- If the base is larger than 10. the number it prints is very odd
because, for instance, it will treat a remainder of 10 as though

it were a single digit.

- It ignores anything after a decimal point in the input. This is
because both QUOTIENT and REMAINDER round their inputs to

be integers.

Each of these is understandable but annoying. The immediate
question is the order in which to try tackling them. It is wise to
leave the first one till last, for this reason:

Principle

When a number of difficulties compete equally for your
attention, try the most all-embracing or most elaborate
one first. If you solve it. some of the others may disap
pear. If you cannot (yet) solve it. move on to the next
worst.

143

Applying this is hard: it is only your opinion as to which is the
worst. In this case the question of decimals looks very Intractable;
the earlier discussion never got round to them at ail. The best
thing to do is to ignore it. by deciding that CONVERT will only be
used with integers.

Principle

If a problem looks too nasty, change the rules.

It is amazing how few people make conscious use of this,
although It is a valuable and much-applied principle in every
branch of mathematics. When you have made enough progress
with the amended problem, you may begin to see how to tackle
the original.

The second and third deficiencies of CONVERT go hand in
hand. One answer to the problem of representing outsize digits is
commonly used in computer science, namely to use letters as
extra digits. The sixteen possible digits in base 16 - a digit being
defined as something that is acceptable as a 'place value' in the
written form of a number - are conventionally denoted by '0',..'9*.
A'...F'. But there are only 26 letters (most Apples do not have

lower case) and so there is still a problem if the base is bigger
than 36. The crux of the trouble Is that it seems necessary to
use a single symbol for a single digit. If you were to use a pair
of symbols, it would always be possible for two pairs to appear
side by side in the written form, and so cause confusion. To
illustrate this: imagine you are a Venusian on the point of invent
ing written forms of numbers. You ponder using '*' for the Earthl-
ing 'T, and 'AA\for the Earthling '2'. It is a bad choice - would
the Venusian ***"• be the Earthling '111', or '12'. or '21'?

The way forward is to ignore that problem. Now look at the
second deficiency, wanting to make CONVERT output instead of
print. What sort of thing can any procedure output? A word,
number or list. A list looks best: why not make CONVERT output a
list of digits, for instance. [9 1] to represent 91 in base 10? In
fact why not include the base in the list - why not decide that
91 will be represented as [9 1 [10]]? The base is itself within a
list, to avoid thinking of it as another digit.

The more you consider this, the better it looks. The list
would be easy to read when PRINTed. since PRINT omits the
outermost brackets. The number '-91' can be represented as t-

9 1 [10]]. Also, the problem of representing outsized digits goes
away! Now that there is a space between each digit when a
number is printed, it is perfectly satisfactory to use two or more

144

symbols together to represent one single digit. For example the
number 22, when represented in base 12. would be the list
[1 10 [12]]. This is unambiguous.

This gives you a good example of how the two general prin
ciples stated earlier can work out advantageously in practice. The
final deficiency of CONVERT has also been resolved by adopting
the list notation. To CONVERT a negative number, convert the
positive number and glue a minus sign onto the front of the
result.

5.3.3 Redesigning The Procedure

Things have now moved from planning to implementation. There
are three ingredients, not necessarily in this order:

- Constructing the list of digits.

- Attaching the information about the base to the end of the list.

- Worrying about whether the number is negative or positive. This
must be the first step.

There ought to be a sub-procedure for generating the unadorned
list of digits. This procedure will only ever have a positive input.

The algorithm for this sub-procedure resembles the previous
one for CONVERT:

(a) If the input, :N. is more than .BASE - 1 then output the
list formed by

(i) getting the digit list of QUOTIENT :N .BASE

(ii) attaching REMAINDER :N :BASE to the end of this list,
by using LPUT

(b) Otherwise just output the list whose sole element is :N.

In LOGO this is:

TO DIGIT.LIST :N

TEST :N > CBASE - 1)
IFTRUE OUTPUT LPUT (REMAINDER :N :BASE)

(DIGIT.LIST QUOTIENT :N :BASE)
IFFALSE OUTPUT (LIST :N)

END

145

The new CONVERT procedure will use this. The plan is:

(a) If the input is negative, then change the sign and FPUT a
minus sign onto the list formed by glueing the details of
the base onto the end of the result of DIGIT.LIST.

(b) Otherwise just glue the details of the base onto the end
of the result of DIGIT.LIST.

Thus

TO CONVERT :N

TEST :N < 0

IFTRUE OUTPUT FPUT "- LPUT (LIST :BASE)
DIGIT.LIST (-:N)

IFFALSE OUTPUT LPUT (LIST :BASE)
DIGIT.LIST :N

END

Test this with various bases.

There is one base other than 10 that Is widely used, though
you may not immediately think of it as such. It is base 1000. It is
used when the number 19723 is written as '19.723'.

5.3.4 Recovering The Base 10 Form

It would be useful to be able to recover the conventional form of

a number - the base 10 form. The alternatives are to devise a

method for this from scratch, or to devise a method which is the

inverse of the one used in defining DIGIT.LIST.

Take the former. An example: 95 is [13 7 [8]]. The first
thing to do with the list is to prune off the final element, using
LAST and BUTLAST, to get hold of the digit list and the base
separately. The base is the FIRST of the LAST, the digit list is
the BUTLAST. [1 3 7]. There are two ways to look at this. One is
that it is 1*64 + whatever [3 7] represents In base 8. This looks
difficult; why 64 rather than 8 or 512? The other way is to think
of it as 8 times whatever [1 3] represents, + 7. This way is
better, it has a more natural correspondence with ideas of recur
sion in LOGO, it is akin to observing that

1*64 + 3*8 + 7

is the same as

((d) *8 + 3)*8 + 7)

146

though it is not Important to grasp this. Here Is a LOGO pro
cedure to turn a digit list back into a number; the base is
assumed to be given as the value of a variable BB:

TO RECOVER :DL
IF :DL = [] THEN OUTPUT 0
OUTPUT (:BB * RECOVER BUTLAST :DL)

+ (LAST :DL)

END

This will be a sub-procedure of the main one. say DEC. The
steps in DEC will be:

(a) Check if there is a minus sign at the start of the input
list. If so. remove It and then output the negative of the
number obtained by doing the following steps.

(b) Prune off the last element, the base information, and set

a variable called BB to be the base.

(c) Use RECOVER to get the value.

In LOGO this is

TO DEC :L

IF "- = FIRST :L THEN OUTPUT (- DEC
BUTFIRST :L)

MAKE "BB FIRST LAST :L

OUTPUT RECOVER BUTLAST :L

END

If you are doubtful of the translation from algorithm to LOGO, then
work through, on paper, what happens during the command

PRINT DEC I- 1 3 7 [81]

Now the armoury for investigating numbers in different bases
consists of CONVERT and DEC. There are two extensions:

- It would be useful if CONVERT also accepted a list as input,
so that it could convert a number not in base 10 to yet

another base.

- it would be useful to have procedures to do simple arithmetic
using the list forms of numbers.

147

Both of these are easy.

5.3.5 Improving CONVERT And DEC

The improvement to CONVERT consists of checking whether the
input is a list. It it is. just use DEC to turn it into a base 10
number first:

TO CONVERT :N

IF LIST? :N THEN MAKE "N DEC :N

etc. etc.

END

The improvement to DEC consists of checking whether the Input is
a number. If it is just output it:

TO DEC :L

IF NUMBER? :L THEN OUTPUT :L
etc. etc.

END

5.3.6 Arithmetic In Any Base

About the hardest task in devising arithmetic procedures is choos
ing names for them. Use ADD. SUBTRACT. MULTIPLY and DIVIDE.
The procedure ADD is

TO ADD :N1 :N2

OUTPUT CONVERT ((DEC :N1) + (DEC :N2))
END

and the others are similarly defined. Here is a sample session
of using the procedures:

?MAKE "BASE 8

?MAKE "X CONVERT 15
?MAKE "Y CONVERT 17

?PRINT :X

1 7 [8]

7PRINT :Y

2 1 [8]

?MAKE "BASE 16

?PRINT CONVERT 15*17

15 15 [161
?PRINT CONVERT (MULTIPLY :X :Y)

15 15 [16]
?PRINT CONVERT :X

15 [16]

148

?PRINT CONVERT :Y

1 1 [16]
?PRINT DEC MULTIPLY :X :Y

255

?MAKE BASE 2

?PRINT CONVERT 255

1 1 1 1 1 1 1 1 12)

and so on. Observations such as the fact that [15 [16]] multiplied
by [1 1 [16]] is [15 15 [16]] will help to give you a feel for sim
ple arithmetic in bases other than 10.

EXERCISES

(5) is it sensible for the base to be negative, using the
current procedure definitions? If not. can they be suitably
modified? Is the idea of a negative base reasonable?

{6} Can you now extend the work to cover numbers with
decimal parts? (Hint: 3.74 is 374/100)

(7) Is the idea of a non-integer base reasonable? The existing
procedures are not adequate for investigating this.

5.4 A FINAL PROJECT

Various general principles were mentioned in this chapter. Keep
them in mind when you embark on any of the projects outlined in
chapter 7. Other useful general maxims will strike you as you get
more experienced. The only one you ought to stick to without
exception is

KEEP ND1ES

There is the basis of another project: how was the diagram pro

duced?

Chapter 6
Ideas andwhere they
might come from

Is that you. Rabbit?" said Pooh.
'Let's suppose it isn't." said Rabbit, "and
see what happens."

(The House at Pooh Corner, AAMilne)

Aims In most projects there comes a point at which you find
yourself stuck, if only temporarily. This chapter offers a few
thoughts and strategies which may help you when you are
in a mess.

6.1 PICKING A PROJECT

"Project?", many people say to themselves, "well .. urn .. I can't
think of one." There is a widespread fancy that having sufficient
originality of mind to think up a worthwhile project and carry it
through, is (a) rare, (b) a gift rather than an acquisition, (c) a
personal characteristic which is somehow independent of experi
ence and knowledge. It is not so. Confidence Is a major factor in
determining success. While success also creates confidence, there
are other sources as well.

The best way to pick a project is to select something which
has caught your interest. Your interest gets you started, and keeps
you going on those frequent occasions when your expertise tem
porarily fails you. The object of the interest does not have to be
part of the world of LOGO. The initial thought can be very woolly:

- write procedures to generate chunks of English text

- investigate ways of tiling a floor

149

150

- devise mazes

- experiment with abstract patterns

- play chess

and may turn out to be Impossible.

The initial idea does not have to be specific, or sharply
defined, if it is not. you can take for a project the task of seeing
to what extent the initial idea is practicable. Bear in mind that
trying but failing to do the project is just as worthwhile as
succeeding. In fact, it is usually more worthwhile, since you will
probably have done more investigating.

Do not set your sights too low. In particular, do not reject a
project idea on the grounds that you cannot Immediately see how
to turn the details into LOGO. On the other hand, do not set your

sights too high. A useful guard against this is to measure how
much description the idea needs. Suppose you think. "I'll get
LOGO to play me at chess." As you probably know, playing chess
in anything other than a mindless way demands some experience
and some ability to look forward. Even writing down the fundamen
tal rules takes a while to do. All this would have to be captured
somehow within LOGO procedures, not necessarily explicitly but at
least in such a manner that a person who knew LOGO but no
chess could learn quite a lot about the game by reading the pro
cedure definitions. Looked at this way. the task is too daunting. It
would be possible to narrow the scope, of course. You could
make your Apple II into a chessboard, merely recording and
displaying the moves of two human players on the screen. Or you
could use LOGO as a simple tool to show you how many times
each square is attacked; this is useful if you are a devotee of
one- and two-move chess problems, or a player of postal chess.
Unlike chess, the instructions for tic-tac-toe are very short and a
foolproof strategy is easy to explain. A project concerned with
playing that game would therefore seem to have a good chance
of success, even though you cannot at once envisage the details.

Another fruitful source of project ideas lies in following up
possibilities that have occurred to you in earlier work (so keep
notes of them). For instance, the Apple II comes equipped with
two 'paddles', each having a rotatable knob and a button. Terrapin
LOGO provides the means to use them. The procedure PADDLE
takes one input, a number between 0 and 3 (the Apple II can
accomodate four paddles though only two are provided), and out
puts a number between 0 and 255 that depends on how far the

151

knob on the relevant paddle has been turned. The procedure
PADDLEBUTTON takes a similar Input, and outputs TRUE if the
appropriate button is being pressed at the time, or FALSE other
wise. Therefore, you have a means of controlling something. What?
With two paddles you can control two quantities (at least). It may
have struck you. when working through chapter 3. that it would be
nice to have a simple sketching system that is easier to use than
typing in turtle commands. The combination of the ingredients of
paddles, the turtle and the thought about sketching suggests an
idea, namely using SETXY to move the turtle around according to
the rotation of the two knobs.

6.2 EVALUATING IDEAS

When trying to pick a project, or when tackling some part of one.
you are sometimes faced with the job of assessing an idea before
launching into it. The assessment is purely to decide whether the
idea merits the effort of some exploration.

If you do this, it is likely that you are neutral about the idea
in question. If you were emotionally attached to the idea you
would just plunge in. If it did not appeal to you. you might reject
it out of hand. It is surprising, however, how productive a few
moments of consideration can be. There are almost no guidelines
for you; this is another of those matters which depend heavily on
temperament and experience. About the only reliable rules are to
leave questions of programmabllity until last - LOGO is meant to
be very flexible - and to look into the question of what resources
are required.

As an illustration, consider this question: can LOGO be used
to construct some useful word-processing tools? On the positive
side: It is possible to print words almost anywhere on the screen.
It Is easy to determine the length of words, the technical manual
explains how to get things printed on paper, and so on. On the
negative side: with LOGO there is not much free space for the
text itself (how can you check?), a reasonable quality printer is
needed, the Apple II does not readily cope with lower case. The
balance depends on you priorities. If you spend a lot of time
constructing notices using transfer lettering, where the letters are
of various widths, then you can make up a LOGO toolkit containing
all the relevant details to help you lay out the letters on paper.

6.3 LOOKING FOR IDEAS

There are various useful strategies that help in the hunt for ideas.
Generalisation and specialisation are two common ones, and there

152

are various ways they can be applied. The example of simple
shape recording, in section 4.6.2. could be generalised to include
the possibility of recording whether the turtle's pen was down or
up. and what colour it was. as well as the turtle's position. This
would make it possible to record and replay much more sophisti
cated shapes. The same example could be generalised in another
direction entirely, towards simple command recording. A command
recording system could be used either to allow you to replay
recent commands, or (using DEFINE) to allow you to define a
procedure and have the commands obeyed while defining.

Generalisation depends on being able to answer the question
"what am I really trying to do here?", in detail. Traditional wisdom
says that the thing to do is to write down ail your assumptions
and aims about the matter in hand, and then pick over the list in
a systematic way. If you can do that, you do not need help. The
only useful recommendation for you if you cannot specify your
assumptions, is to turn over the goals In your mind and pick on
the bits that annoy you. Indulge in wishful thinking: ask yourself
"wouldn't it be nice if..." and "what would happen if ...". For
instance: wouldn't it be nice if LOGO did arithmetic to an accu

racy of some large number of significant digits? This is a project
discussed further in chapter 7.

Specialisation tends to be easier than generalisation, because
it happens more naturally. It arises when you find some goal too
hard and you have to cut down your ambition a bit. There have
been several examples earlier in this book, such as the limitation
of the number bases project to Integers only In section 6.3.2. As
another simple case: think about defining some LOGO procedures
that accept a date as input, and output the day of the week on
which it fell, or will fall. It is messy, especially if you want it to
work for years before 1752 when the calendar was reformed. Start
by working only in the current year. If that Is too much, start by
working only in the current month of the current year.

Another useful strategy goes by the quaint name of
defocussing'. The idea is to examine something well known and

understood, but consciously to Ignore certain aspects of it. It is
very much akin to specialisation, but you start with something
familiar. This was applied In chapter 2 to the REPEAT command,
to see it as a command that contained another command. As
another example, look at the procedure CHAR mentioned in section
4.5.4. It is normally used in conjunction with ASCII; ASCII expects
a single character word as input, and outputs the number associ
ated with it by international conventions, and CHAR does the
reverse. However. CHAR is just a procedure which takes a number
as input, and outputs a character. CHAR 65 outputs A, and CHAR

153

32 ouputs a word consisting of a single space, but there are
many more possible numbers to input than there are characters to
output. If you investigate, you will make some useful discoveries,
such as the fact that CHAR 7 outputs a character which, when
PRINTed. causes the Apple II to bleep briefly. In particular, the
only effect of

PRINT1 CHAR 7

is to cause the bleep, and so the command can be used when it
is necessary for a procedure to attract your attention.

Perhaps the most useful strategy is analogy. It lets you
import ideas, if not solutions, from other domains familiar to you.
There are dangers, as you can easily stretch an analogy too far.
but it is also the main aid to imagination. Consider the Apple's
paddles again. The sketchpad system suggested earlier has a bad
drawback; it is hard to control the paddles accurately in order to
draw straight lines or smooth curves. A better sketchpad system
can be conceived by analogy with a radar screen, imagine the
turtle anchored at a particular spot, moving forward and back a
chosen distance along a chosen heading. The distance and head
ing can be selected by the paddle knobs, so that rotating the
knob controlling the heading makes the line repeatedly drawn by
the turtle sweep round like a radar beam. If a button is pressed
then the turtle leaps to the other end of the beam, and that
becomes the new centre of rotation. As a sketchpad system this
is much better: all the lines are straight, and it is possible to
provide an informative digital readout at the bottom of the screen
by using CURSOR. Here are the details; the sketcher is started by
the command START:

TO START

HOME CS SPLITSCREEN
CURSOR 6 20 PRINT! "X

CURSOR 20 20 PRINT1 "DISTANCE
CURSOR 6 21 PRINT1 "Y

CURSOR 20 21 PRINT! "HEADING
SKETCH

END

TO SKETCH

MAKE "X XCOR

MAKE "Y YCOR

SETH 360 * (PADDLE 0) / 255

MAKE "D PADDLE 1

CURSOR 8 20

(PRINT1 ROUND :X "' ')

CURSOR 29 20

154

(PRINT1 ROUND :D "' ')

CURSOR 8 21
(PRINT1 ROUND :Y "' ')

CURSOR 29 21

(PRINT1 ROUND HEADING "' ')

PC 6

FD :D

PU SETXY :X :Y PD
FD :D

PU SETXY :X :Y PD
IF PADDLEBUTTON 0 THEN PC 1 FD :D

SKETCH

END

Some points: the beam is drawn by doing FD :D twice, with pen
colour 6 (the inverting colour), rather than FD :D and BK :D
because sometimes BK :D does not entirely erase all the dots
drawn by the FD :D. The only sure way to erase a line is to
retrace it in the same direction in which it was drawn. Pen colour

6 is used, rather than the background colour, so that the sketcher
does not erase previously drawn parts of the sketch. The captions
for the digital readout are printed by START because they only
need to be printed once. It is a happy accident that SKETCH is
not too fast; if it were then it would be difficult to push the
paddlebutton and release it fast enough to prevent LOGO obeying
PADDLEBUTTON 0 twice while you still had the button depressed.
Try START when the turtle is allowed to wrap.

6.4 WHEN IN A MESS

If you reach the stage of banging your head against the wall,
then follow this recipe:

(a) Rest for a bit.

(b) Try working on something else, unrelated to the source of
your frustration.

(c) When you are ready, go back and try to crack the nut
some other ways.

(d) If all fails, give up. There is no shame in it; if you find
there is. you are probably taking the enterprise too seri
ously, and you should do step (a) several times in a row.

155

Such a recipe is as good as any other. None of them are any
use unless you have some reasonably-developed self-awareness.
Creation, in any area, has several phases: a period of incubation,
the 'Eureka' stage when the thoughts hatch, and the stage of
thrashing out details. The incubation stage normally takes a while,
and proceeds happily while you are doing something else unre
lated - so you may as well do something else, such as lie In the
bath drinking beer. The 'Eureka' stage is unpredictable, but it
need not be sudden or complete, it can equally well appear as a
slow increase in certainty that you are on a 'right* track. The
thrashing stage is when you actually do the mundane things to
make it all work, and is the only phase that an outside observer
would recognise as effort.

Chapter 7
Projects

Alms This chapter contains some project suggestions, with
thoughts about each. Some have a mathematical bias, oth
ers don't. They may look ambitious, but they are all possi
ble.

7.1 PROJECTS WITH CLEAR TARGETS

Projects which have clearly defined objectives are not necessarily
any easier than ones with hazy or ridiculously ambitious targets.
The first subsection consists of four diagrams, suggesting some
drawing projects.

7.1.1 Drawings

The four drawings on the next two pages should give you some
ideas. The face was drawn using a sketching procedure of the
sort hinted at in chapter 6. The rolling box used nothing more
than was in chapter 2. The set of ellipses is the hardest; devis
ing a procedure to draw one is no easy task. The abstract pat
tern also used the ideas of chapter 2. but the fundamental
ingredient was an arc rather than a straight line.

7.1.2 Rotation And Reflection Of Shapes

The result of this project might be a useful tool for Introducing
this topic to someone unfamiliar with it.

The aim is to produce a set of tools for playing about with
shapes, reflecting them In specified lines through the origin and
rotating them about the origin. There are various ways this might
be done, such as the method used In section 4.6.1. The important
feature is that the user of the tools should be able to specify

156

157

y ^

Figure 7.1

Figure 7.2

158

*• - -.

Figure 7.3

Figure 7.4

some shape to play with, in a straightforward way. Since it is
possible to get hold of the definition of a procedure, using TEXT,
it would be possible to devise a system that interpreted the defini
tion, putting LEFT for RIGHT when the reflection of a shape was
to be drawn. If you try this, it turns out to be rather cumbersome.

159

The method proposed here, which you need not use. is to require
the user to use two new procedures instead of FORWARD and
RIGHT, namely AHEAD and TURN:

TO AHEAD :DIST

FORWARD :DIST * :SCALE
END

TO TURN :ANGLE

RT :ANGLE * :ASCALE
END

The variables SCALE and ASCALE will initially be 1. so that
AHEAD and TURN are synonyms for FORWARD and RIGHT. The
scale of a shape can be changed simply by altering SCALE and
re-running the procedure to draw it. The shape can be drawn as
a mirror image, once the turtle is suitably positioned, merely by
changing the sign of ASCALE. The value of ASCALE will always be
either 1 or -1.

There are two awkward parts to the whole project. One Is
that shapes defined by the user may not be state-transparent. If
they are not. then it will be hard to draw the reflection of a

shape in a specified mirror, since the turtle needs to be at the
image of the starting place before starting to draw the reflection.
A way to get round the problem is to define a procedure SHOW,
whose input should be the name of a procedure defining the
shape:

TO SHOW .SHAPE

MAKE "OLDX XCOR

MAKE "OLDY YCOR

MAKE "OLDH HEADING

REPEAT 1 (LIST :SHAPE)

PU SETXY :OLDX .OLDY PD

SETH :OLDH

END

This version only works in a state-transparent way if the shape
starts and finishes with the pen down, but you can improve it if
you want.

The other tricky part is to figure out how to reflect the
turtle's position and heading in a given mirror. The procedures
MIRROR and REFLECT, defined below, draw a dotted line

representing the mirror along a specified heading through the ori
gin and reflect the turtle in that mirror:

TO MIRROR :A

MAKE "OLDX XCOR

160

MAKE "OLDY YCOR

MAKE "OLDH HEADING

PU HOME PD

RT :A

REPEAT 30 [FD 1 PU FD 3 PD]

PU HOME PD

RT 180 + :A

REPEAT 30 [FD 1 PU FD 3 PD]

PU SETXY :OLDX :OLDY PD

SETH :OLDH

END

TO REFLECT :A

MIRROR :A

MAKE "AA (2 * :A - ATAN XCOR YCOR)

PU

SETXY R * SIN :AA R * COS :AA

SETH (2 * :A - HEADING)

PD

END

TO R

OUTPUT SQRT (XCOR * XCOR + YCOR * YCOR)
END

This is the bare bones of the set of procedures. It would be an
improvement if SHOW also caused the name of the shape It draws
to be preserved as the value of some variable, say LAST.DRAWN.
so that REFLECT could also draw the reflection of the shape last
SHOWn after reversing the sign of ASCALE. Figure 7.5 shows an
example of a shape reflected in a 45-degree mirror. A useful
extra would be a procedure to rotate the turtle's location about
the origin by a given angle, so that the user could play with
rotating and reflecting shapes.

7.1.3 Precise Arithmetic

Terrapin LOGO is limited to six significant figures when doing
arithmetic. The aim of this project is to extend that considerably,
to 30 or more signif^ant figures. While one approach would be to
work in base 1000. capitalising on the effort in section 6.3. it is
neater and conceptually better to work with lists of digits. For
instance. 82371964 could be represented as

[82371964]

If you wanted to work with decimals as well, it would be better to
represent a number such as 82371964.003 as

161

Figure 7.5

£8 2371964003 [-3]]

so that you continue to work essentially with integers, but can
adjust the mutipiying power of ten at the end of a calculation. You
should start by defining a procedure to add two numbers
represented in some such way; this is the easiest of arithmetic
operations.

It is awkward to have to enter numbers in a list form. You

cannot merely enter them as numbers, because LOGO will treat

them as such and give them to your procedure as an approxima
tion correct to six significant figures. The solution is to use
READCHARACTER. RC for short, to get hold of the digits and any
sign or decimal point one by one. Here is a procedure to get
hold of a positive integer. A procedure to read in a positive or
negative number, possibly with a decimal part, is rather more
complex.

TO GETINT :L

MAKE "CHAR RC

PRINT1 :CHAR

IF ALLOF (:CHAR = "' ' > <:L = [])

THEN OUTPUT GETINT :L

IF MEMBER? :CHAR [0 12345678 9]
THEN OUTPUT GETINT LPUT :CHAR :L

162

OUTPUT :L

END

This is used by giving it the empty list as input: it glues digits
onto the end of its input. The first IF command ensures that any
initial spaces are forgotten. The second IF command glues the
latest digit onto the end of the story so far. which is handed on
as the input to a recursive use of GETINT. If some digits have
been collected and the character read by RC is not a digit, then
the last line is obeyed, thus ending the collecting of digits. An
interesting thought is that the procedure could also be used for
collecting words - just use a different list in the MEMBER? check.

Procedures for multiplication and division can be defined
essentially by mimicking the way these are done on paper. Terra
pin LOGO probably does not have enough space or speed to let
you define a high-precision SIN or COS. but you could include
the high-precision basic operations with the reverse Polish calcu
lator in section 4.7.1.

7.1.4 Tangrams

This is an ancient Chinese puzzle. It consists of seven pieces, as
shown in figure 7.6. They are used to try to compose a variety of
puzzle shapes, from a simple parallelogram and other regular pat
terns to elaborate outlines of animals and people, it is possible to
write LOGO procedures for playing about with them, although if
that is all you want to do it is easier to use cardboard. With
quite a lot of work it is possible to devise procedures for analys
ing an outline, to see if it can be composed of the seven
tangrams. The project acquires more point when you start experi
menting with sets of pieces of your own choice, rather than the
seven in figure 7.6. It is much easier to play about with shapes
in LOGO than it is to cut up bits of cardboard every time you
want to alter one of the basic shapes somewhat.

The key idea is to represent the outline of a basic shape as
a list of lists. Each list in the list contains two numbers, the first
being the length of a side and the second being the amount by
which to turn right at the end of that side. The list describes the
shape in a clockwise direction. When you want to stick two
shapes together along an edge, the method for constructing the
description of the new shape is suggested by figure 7.7. Copy one
shape till you reach the edge where the second is to be
attached, then switch to the second shape and copy edges till you
meet the edge where the first is to be attached. At the last
edge before you switch from first to second shape, you need to

163

Figure 7.6

Figure 7.7

adjust the turning angle. A similar adjustment is necessary when
stepping from the second to the first.

A neat trick which greatly simplifies the programming is to
describe a shape by going round it twice. This means that the list

164

describing a four-sided shape will have eight lists in it. The virtue
of this is that when you are looking for the edge to start from,
you will definitely find it in the first half of the description. Copy
ing all but one edge of the figure, from that one on. will not
result in you meeting the end of the list and having to jump back
to the beginning. Expressing this in a symbolic form, imagine that
you have two shapes each with four sides. Their list descriptions
can be viewed as

[el e2 e3 e4 el e2 e3 e4]

and

[El E2 E3 E4 El E2 E3 E4]

where each element is actually a list, with two elements. If edge
e3 of the first shape is to be joined to edge E2 of the second
shape, and e3 and E2 have the same length, then the result will
have edges

el. e2(new angle). E3. E4. El (new angle), el

and the list description can be formed by joining the list with
these elements to itself, using SENTENCE. The result is not so
neat if the edges to be joined have different lengths. In such a
case there will remnants of one or both of the two edges and
these will need to be included in the description. You will also
need to devise a suitable way of expressing exactly how the two

edges are to be joined.

Your procedure for joining two shapes must also take into
account two special cases. One is made obvious by the observa
tion that joining two squares of equal size gives you a rectangle
with four sides rather than a six sided shape. The other is when
one or both shapes have concave bits. Joining along two of the
concave edges may not be possible, but you should be able to
convince yourself that if you try to do this, then the turning angle
at one of the joining points will be greater than 360 degrees.
This needs to be detected by the procedure, and treated as an
error.

This project is one of the most elaborate in this chapter. It
takes time to do well.

7.2 OPEN-ENDED PROJECTS

The projects outlined here can be take you in many different
directions. They have no 'ultimate' goal.

165

7.2.1 Mazes

There are several types of mechanical turtle in the world, and
some have touch sensors so that they can be programmed to
avoid obstacles and explore their surroundings. This project aims
to make similar things happen on the screen. In particular, the
aim is to get the turtle to explore a maze drawn by the user.

The principal problem is that there is no way for the turtle
to detect lines drawn on the screen. The solution proposed here
is to have two representations of the maze, which agree but are
independent. The maze will be made out of squares 10 units on a
side, as shown in figure 7.8. There will also be a list showing
where the walls of the maze are. The turtle will be able to tell if
it has hit a wall on the screen by checking Its co-ordinates to
see which square it is in. and seeing if that square is in the list.
An easy way to identify a square is by the co-ordinates of the
bottom left corner, or rather by a relative displacement from the
bottom left corner of the whole maze. An example will make this
clearer: suppose that the bottom left corner of the maze is at

Figure 7.8

166

X=-80. Y=-60. If a square of the maze wall has its bottom left
corner at X=-20. Y=30. then the X displacement is +60. the Y
displacement is +90. The square can therefore be identified by the
list [6 9]. and the turtle can tell if it is in this square by seeing
if the expression

LIST QUOTIENT (XCOR - (-80)) 10
QUOTIENT (YCOR - (-60)) 10

is equal to [6 91: this works because QUOTIENT outputs the
integer part of the division, so the turtle's X co-ordinate can be
anywhere between -20 and -10. its Y co-ordinate can be any
where between 30 and 39 and the list output by the expression

will be the same.

It seems at first sight as though it will be very tedious to
set up the two representations. The task can be made very easy
by defining a small 'maze editor' which allows the user to draw
the maze and construct the list at the same time. In the following
definitions, the variable WALL is where the list description is kept,
and the editor is the procedure MAKEMAZE. it does some initial
setting up and then invokes MAP to map out the maze according
to keys pressed by the user:

key L = move 1 square left
key R = move 1 square right
key U = move 1 square up the screen
key D = move 1 square down the screen
key S = include this square in the list, and draw it
key Q = quit from the editor

Here are the procedures. The co-ordinates of the bottom left of
the whole maze are recorded as the values of the variables MX

and MY:

TO SQUARE

SETX XCOR + 10
SETY YCOR + 10
SETX XCOR - 10

SETY XCOR - 10
MAKE "WALL LPUT LIST QUOTIENT XCOR -

:MX 10 QUOTIENT YCOR - :MY 10
:WALL

END

TO MAP

MAKE "K READCHARACTER

IF :K = "L THEN PU SETX XCOR - 10
IF :K = "R THEN PU SETX XCOR + 10
IF :K = "U THEN PU SETY YCOR + 10

167

IF :K = "D THEN PU SETY YCOR - 10
IF :K = "S THEN PD SQUARE
IF :K = -Q THEN TOPLEVEL
MAP

END

TO MAKEMAZE

MAKE "MX (- 80)
MAKE "MY (- 60)

MAKE "WALL 0
PU SETXY :MX :MY

SETH 45

MAP

END

The SETH 45 near the end of MAKEMAZE ensures that the turtle
is pointing into the square whose bottom left corner it is standing
on. This helps the user to know where the square will be drawn
if he presses 'S' when using the editor. A useful addition might
be a key to allow the user to delete a drawn square, and remove
the details of it from the list.

The following procedure shows how the turtle can be made
to grope around the maze at random. The turtle starts where it

was left by the maze editor. It draws in pen colour 6. the invert
ing colour, so that it can wipe out its own tracks if it needs to
retreat and so that it does not delete parts of the maze walls. To
run it. give the command START:

TO START

PU

SETXY XCOR + 5 YCOR + 5

PD

PC 6

GROPE

END

TO GROPE

SETH 90 * RANDOM 4

FD 10

IF MEMBER? LIST QUOTIENT XCOR - :MX 10
QUOTIENT YCOR - :MY 10 :WALL
THEN BK 10

IF RC? THEN STOP ELSE GROPE

END

The SETXY in START puts the turtle in the middle of a square. In
GROPE, the SETH gives the turtle a heading randomly chosen
from 0. 90. 180. 270. The last line checks to see if the user has

typed anything - typing any key stops the search.

168

Although It may seem as though almost all the work has
been done for you. this is in fact just the beginning. The main
work of the project is to get the turtle to explore the maze in a
sensible way. One way to start is to get the turtle to record its
path as It explores. This might be as a list of 'F's. 'L's and 'R's
representing the FORWARDS. LEFTs and RIGHTS It has taken to
get to its current position, or as a list representing the squares it
has traversed. If you adopt the 'FLR' form, the thing to do is to
update the path list first, then make the move, so that if the
move turns out to land the turtle in the wall it has the informa

tion about how to get out.

The major hurdle is to cope with mazes that have 'islands',
parts which are not connected to the outside walls of the maze. A
dumb turtle could happily walk around the outside of an 'island'
for ever, not realising the fact. To overcome this the turtle must
have a means of knowing where it has been, so that it can tell
whether it has visited the current square some time In the past.

An interesting experiment is to make the turtle explore in a
limited way. It can follow alleys for a certain distance, and give
up if It has not found turnings by then. If it fails to find the way
out. it can then return to explore those alleys further. This Is
based on the assumption that many mazes have long blind alleys.

It is possible to speed up searching if you let the turtle
'teleport'. using SETXY. This implies that the turtle must record
suitable places to leap back to. as it explores. An advantage is
that the turtle will not erase its tracks when it teleports. and so
there will be a complete record on the screen of where It has
searched.

7.2.2 Language Programs

There is a wide variety of possibilities for LOGO procedure sets
which work with language. This section only hints at the possibili
ties, the idea being to give you enough to get yourself started.

The first idea is to try playing about with synonyms of words.
It is entertaining, and can be instructive, to try recasting sen
tences using synonyms for various of the words In them and to
see if the sense changes. The recasting of a sentence ought to
be done under the user's control, by means of a simple sentence
editor including commands such as 'replace the fifth word by a
synonym if possible', 'replace all adjectives by synonyms' and so
on. The LOGO procedure SPIN defined below is not so elaborate:
all it does it to replace every word in a given sentence by a
synonym if possible. For example.

169

PRINT SPIN [THE BIG BUT DUMB DOG
WAS BITTEN BY THE SMALL BUT
CLEVER CAT]

might print

THE LARGE BUT DOPEY CANINE WAS
BITTEN BY THE TINY BUT SMART CAT

The synonyms are provided as a list of lists:

MAKE "SYNL [[BIG LARGE HUGE GIANT VAST]
[SMALL TINY WEE MINUTE] [INTELLIGENT
CLEVER BRAINY SMART] [DUMB STUPID
THICK DOPEY BRAINLESS] [FAT ADIPOSE
PODGY HEFTY] [DOG CANINE POOCH]]

The definition of SPIN and its subprocedures are

TO SPIN :SENT

IF :SENT=[] THEN OUTPUT 0
OUTPUT FPUT (SYN FIRST :SENT :SYNL)

(SPIN BUTFIRST :SENT)
END

TO SYN .WORD :SLIST

IF :SLIST=[] THEN OUTPUT .WORD
IF MEMBER? .WORD FIRST :SLIST THEN

OUTPUT RANDLIST FIRST .SLIST
OUTPUT SYN :WORD BUTFIRST :SLIST
END

TO RANDLIST :L

OUTPUT ITEM 1 + RANDOM COUNT :L :L
END

The job of RANDLIST is to output a random element of the list it
receives as input. The procedure SYN takes a word and a list of
synonym lists, and tries to find the word In one of those lists. If

found, it outputs a random element of that list. If no list contain
ing the word is found, it just outputs the word because it is then
the only available synonym for itself.

Another useful procedure is INSERT, which Inserts an element
between two adjacent items in a list. It can be used as the basis
of a simple sentence editor, allowing the user to do such things
as insert extra adjectives and adverbs. Its counterpart. DELETE,
can be defined in a similar way. INSERT expects three inputs: the
item to insert, the list in which it is to be inserted, and the

number of the element after which it is to be inserted, items are

numbered from 1. so INSERTing after item 0 is equivalent to

170

putting the new item at the start.

TO INSERT :EL :L :NUM

IF :N=0 THEN OUTPUT FPUT :EL :L

OUTPUT FPUT FIRST :L INSERT :EL BF :L

:NUM - 1

END

There are many word games which can be turned into LOGO
procedures. The game 'Hangman' requires the the user to guess
the letters which speli an unknown word, with only seven mistakes
allowed. If a letter is guessed correctly, the player is told all the
positions within the word where It appears. A game like 'Hang
man' is hard to do well, because It depends on having a reason
ably sized dictionary of words from which to choose the mystery
word to spell. An arithmetic version is possible, in which the idea
is to guess the numbers and operations which make up a speci
fied equation, because it is possible to generate correct equations.
An interesting variation is 'Textman'. in which the idea is to guess
the words which make up a mystery sentence. This depends on
some of the grammatical ideas described below. Another entertain
ing game is 'Aunt Hettie Likes'. The idea is for the user to ask
questions of the form

DOES SHE LIKE <something>

The reply depends on the application of a secret rule: the classic
one is that Auntie Hettie likes anything that has a double letter in
it. The aim is to guess the secret rule. Two players could take
turns to devise a LOGO procedure, with a standard name such as
RULE, that takes a word as input and outputs TRUE or FALSE
appropriately. There are many variants of this idea, such as
guessing the verb in a sentence, cracking a code, or predicting
the next item in a linguistic or arithmetic sequence.

it is possible to write LOGO procedures to check whether a
given sentence complies with a limited subset of English grammar.
One way to specify the grammar is like this:

MAKE "SENTENCE.FORM

HNOUN.PHRASE VERB NOUN.PHRASE]
[NOUN.PHRASE INTRANSITIVE.VERB]]

MAKE "NOUN.PHRASE.FORM

[[DETERMINER NOUN]

[DETERMINER ADJ NOUN]]

MAKE "DETERMINER.FORM [A THE]
MAKE "NOUN.FORM [DOG ELEPHANT BAKER

171

SAUSAGE]

MAKE "VERB.FORM [ATE LIKED PAINTED]
MAKE "INTRANSITIVE.VERB.FORM [FAINTED]
MAKE "ADJ.FORM [GREEN BIG SWEATY]

The way to tell whether an item in a list, such as DOG. Is meant
to be an ordinary word or the name of a grammatical construc
tion, is to check what

THING? WORD "DOG "'.FORM'

outputs. If it is TRUE then DOG Is the name of a construction, if
it is FALSE then it is just a word and nothing more. The task of
checking whether the sentence

THE BIG SWEATY DOG ATE THE BAKER

fits the mini-grammar is almost identical in concept to the task of
searching a maze.

7.2.3 A Database

This project Involves some sophisticated points of list programming,
and can be taken a very long way. It also introduces some rudi
mentary ideas of Artificial Intelligence. The aim is to create a
database package. The basic definitions below provide four useful
procedures:

SETUP This sets up the system.

FACT This takes a list as input, recording that as a fact.

FACTS This takes no input, and prints the list of facts nicely.

QUERY This takes a list as input, and prints any known fact that
matches it. The input can have elements that begin with
a question mark, and these are taken to match anything at
all.

The sample session using these procedures should give you the
idea:

?FACT [FRED LIKES HAGGIS]
OK

?FACT [FRED HATES BEANS AND BEER]
OK

?FACT [HAGGIS IS CHEAP]

172

OK

?FACT [WALTER LIKES HAGGIS]

OK

?FACT [WALTER LIKES WHISKY]

OK

?FACT [WALTER LIKES WALTER]
OK

?FACTS

FRED LIKES HAGGIS

FRED HATES BEANS AND BEER

HAGGIS IS CHEAP

WALTER LIKES HAGGIS

WALTER LIKES WHISKY

WALTER LIKES WALTER

?QUERY [FRED LIKES ?X]
FRED LIKES HAGGIS

?QUERY [?X LIKES HAGGIS]
FRED LIKES HAGGIS

WALTER LIKES HAGGIS
?QUERY [?THIS LIKES ?THAT]
FRED LIKES HAGGIS

WALTER LIKES HAGGIS

WALTER LIKES WHISKY

WALTER LIKES WALTER

?QUERY [FRED HATES ?X]
... NO MATCH

?QUERY [FRED HATES ?A AND ?B]
FRED HATES BEANS AND BEER
?QUERY [?A LIKES ?A]
WALTER LIKES WALTER

in each case, all the facts that precisely match the query are
printed. Note the last case, in which the goal is to find something
that likes itself; the 'database variable' ?A turns up twice in the
query.

The facts are held as a list of lists, the value of a variable

called FACTS. LOGO does not object that this is also the name of
a procedure. The definitions of SETUP. FACT and FACTS are
very simple:

TO SETUP

MAKE "FACTS 11

END

TO FACT :L

MAKE "FACTS LPUT :L :FACTS

END

TO FACTS

IF :FACTS=U THEN PRINT [... NO FACTS]
ELSE PRINTFACTS :FACTS

173

END

TO PRINTFACTS :L

IF :L=D THEN STOP
PRINT! "' '"

PRINT FIRST :L

PRINTFACTS BUTFIRST :L
END

The definition of QUERY is fairly short but much more sophisti
cated. QUERY invokes a procedure called SCAN to look for
matches in the list of facts. SCAN works through the list of facts,
applying MATCH? to see if the query matches each fact in turn.
The procedure MATCH? takes two Inputs - the first is the query,
the second is one fact from the list of them. It works recursively.

TO QUERY :Q
MAKE "NOMATCH "TRUE
SCAN :Q .FACTS
IF :NOMATCH THEN PRINT I... NO MATCH]
END

TO SCAN :QUERY :FACTS
IF :FACTS=D THEN STOP

IF MATCH? :QUERY (FIRST :FACTS) THEN
PRINT FIRST :FACTS

SCAN :QUERY (BUTFIRST :FACTS)
END

TO MATCH? :Q :FACT

IF ALLOF (:Q=D) CFACT=D) THEN
MAKE "NOMATCH "FALSE OUTPUT "TRUE

IF FIRST FIRST :Q « "? THEN MAKE "Q
REPLACE FIRST :Q FIRST :FACT :Q

IF NOT (FIRST :Q) = (FIRST :FACT)
THEN OUTPUT "FALSE

OUTPUT MATCH? BUTFIRST :Q BUTFIRST :FACT
END

The REPLACE procedure used in MATCH? Is the one defined In
section 4.5.4. The inputs are, in order, the element to be replaced
throughout the list, the element to replace it by, and the list
itself. If MATCH? finds an element of the query which begins with
a question mark, it replaces all occurrences of that element in
the rest of the query by the corresponding element from the fact
being examined, before proceeding to check the match. If this is
confusing, work through some of the examples from the sample
session above, on paper.

There are many ways this embryo package can be extended.
One possibility is to alter FACT to allow 'input inferences'. The

174

idea is to define a new procedure, say INFER, that will allow the
user to command the package to make certain inferences when
FACT is used In future. For example, the command

INFER [?X LIKES HAGGIS] [?X IS SCOTTISH]

should be taken to mean that, if a fact 'someone likes haggis' is
entered, then the fact 'the person is Scottish' should be entered
automatically. INFER need only update a list of lists, each of
which consists of the two inputs from an INFER command. This
list can then be used by FACT, which should check whether the
fact matches the first input to any previous INFER. If it does, the
corresponding second input should be treated as the input to a
new use of FACT, so that after these commands

INFER [?X EATS HAGGIS] [?X IS SCOTTISH]
INFER [?A IS SCOTTISH] t?A HAS A KILT]
FACT [DONALD EATS HAGGIS]

the facts [DONALD EATS HAGGIS]. [DONALD IS SCOTTISH] and

[DONALD HAS A KILT] are all included in the FACTS list.

A severe test of your programming skill is to amend QUERY
to allow conjunctions of queries, for example

QUERY [[?Z LIKES ?Y] [?Y IS CHEAP]]

should print (assuming the facts in the sample session)

FRED LIKES HAGGIS

HAGGIS IS CHEAP

WALTER LIKES HAGGIS

HAGGIS IS CHEAP

and nothing else. The hurdle Is producing a new version of
MATCH?. It must know the entire query, not just one component of
it. To illustrate the problem: suppose the new MATCH? has been
trying to match [?Z LIKES ?Y] with [FRED LIKES WHISKY], and has
reached the stage of matching [?Y] with [WHISKY] in its recursing.
Then it must go on to examine whether there is any match for
the fact [WHISKY IS CHEAP], and return to examining the previous
part of the query when it finds none. Of course, it should be
equally possible to conjoin three or more parts for a single query.

A further refinement is to attach probability values to facts,
and have QUERY print a probability value for each answer to a
conjunction.

175

7.2.4 Simple Pattern Recognition

Many so-called 'intelligence tests' in books and newspapers ask
for the answers to questions such as this:

Give the next term In the sequence -
<

ABABDDCFG...

The first step is to recognise that the letters are grouped in
threes. To generate the next three, the rule is to update the first
of the three by one letter, the second by two and the third by
three. If the question were to find the next term in the sequence

12 12 4 4 3 6 7...

it would be much easier to recognise the arithmetic progression
121. 244. 367 .. in disguise. You can write LOGO procedures to
analyse such questions to determine the pattern. The approach is
to try values from 1 upward for the length of the group, and see
whether there is some arithmetic progression visible. With a letter
sequence, the letters can be turned into numbers by using the
procedure ASCII: the letter sequence given above would be

65 66 65 66 68 68 67 70 71 ...

Split into lists of length three, this gives three lists representing
numbers in base 1000 (say), and the procedures you produced for
the project in section 5.3.6 can be used to check whether this

forms an arithmetic progression. Since at least three terms are
needed to confirm that the pattern is an arithmetic progression,
the LOGO procedure can safely give up If the length of the group
reaches one third of the length of the given sequence without
finding a progression.

Sometimes letter sequences assume that the alphabet wraps
round from Z back to A. In this case you need to be looking for
an arithmetic progression using arithmetic modulo 26.

7.2.5 Games

There are vasts number of games. They fall Into three groups:

(a) those in which you play the machine

176

(b) those in which you play someone else, and the machine
referees

(c) those in which the machine acts as board or dice or

rulebook.

Those in category (a) tend to be simple. There are many variants
of games such as tic-tac-toe. fox-and-geese and other easy
board games for which you can write LOGO procedures to play
you. They nearly all suffer from the same fault, which is that you
know how the machine plays. Games with an element of chance
are more fun to play - consult a book of games for ideas. The
simplest are games such as 'Shoot' where the turtle lies near one
corner of the screen, a slowly animated target moves near the
other corner and you have to guess a range and heading to get
the turtle to hit the target. Variants such as 'turtle golf, with
many targets to be hit in sequence, naturally follow from this.

Category (b) offers a very wide scope. Competitive versions
of one-person games like 'Shoot' are usually possible. At the
other end of the scale of difficulty, there are very elaborate
games such as 'Kriegspiel'. This Is chess, but neither player can
see his opponent's pieces, and has to try moves in the dark.
Normally there Is a referee, who announces check when It hap
pens, and removes pieces (without naming them to the capturer)
as appropriate, and checks on the legality of moves. You may find
it possible (but difficult) to write LOGO procedures to act as
referee, showing each player his own pieces when It is his turn
and erasing them when it is not.

Category (c) is dull. There are few games in which the
record-keeping powers of a computer really make a difference. Do
not let that stop you trying to invent ones, though.

7.3 BEYOND LOGO

Now you know LOGO. Nobody can claim to know all there is to
know about it. because it is constantly developing as a language.
The last project in this book Is to attempt to Invent further
features, or even redesign LOGO. The criteria to use in judging
changes are their usefulness and comprehensibility.

To get you started, the FOR command is defined below. It Is
used In the following way. The command

FOR "Z IN [10 25 100] [BOX :Z RT 10]

Is equivalent to

177

BOX 10 RT 10

BOX 25 RT 10
BOX 100 RT 10

The definition is

TO FOR :QXRY .IN.VALUE :L :COMM
IF :L=[] THEN STOP
IF NOT :IN.VALUE = "OUTPUT.BY.IN THEN

ERROR [MISSING KEYWORD: IN]
MAKE :QXRY FIRST :L
REPEAT 1 :COMM

FOR :QXRY .IN.VALUE BF :L :COMM
END

TO IN

OUTPUT "OUTPUT.BY.IN
END

The procedure IN is included purely to make the FOR command
easier to read when used in procedures. FOR can be improved in
many ways. For example, as it stands, the command

FOR "X IN [PRINT FORWARD] [:X 100]

will not work. This is because

REPEAT 1 [:X 100]

will not work, as the elements inside the list are not a legal
command. A solution is to use the REPLACE procedure defined in
section 4.5.4. to replace all occurrences of a colon followed by
the word given as first input to FOR by the value of the variable
named by that word.

Many people also want a means of adding comments In a
procedure. The cheap answer is

TO COMMENT :L

END

so that comments in procedures will look like this:

FD 100

COMMENT [SENDS THE TURTLE FORWARD]

As well as annotating your procedures in this way. you should
also cultivate the habit of writing down your procedures and keep
ing them with your other LOGO notes - in a loose leaf binder.

178

say. That way you can also note down such points as why you
did something in a particular way. and what the problems and
potential improvements are.

7.4 IN CONCLUSION

Computing can be a social activity. The best way to find new
ideas and new projects is to discuss them with other people, in
competition or in co-operation. Try brainstorming sessions, to
explore a project or devise a method of representation. Form
groups and get them into friendly competition. Don't restrict your
self to LOGO; look at other people's programs in other languages
for their ideas, and give them some of your own. If you create
something you're really proud of. then tell others about it or send
it to one of the many magazines.

Enjoy it!

Appendix A
Terrapin LOGO

A.I Terrapin LOGO

This appendix describes the Terrapin LOGO language used in the
main body of this book and which runs on the Apple II. Terrapin
LOGO is sold by

Terrapin Inc..
380 Green Street.

Cambridge.
Massachusetts 02139. 1USA.

A.2 Conventions

Conventions description uses the follow

FORWARD (FD) n

BUTFIRST (BF) nwl => nwl

PRINT nwl.

LIST nwl nwl... => 1

meaning

(a) FORWARD can be abbreviated to FD, and it expects a
number as input

(b) BUTFIRST can be abbreviated to BF. it expects a number,
word or list as input and it outputs a number, word or
list.

179

180

(c) PRINT expects a number, word or list as input, and it can
be greedy

(d) LIST normally expects two inputs, each a number, word or
list, and outputs a list, but it can be greedy.

The abbreviations used are

n number

w word

I list

t truth value, the word TRUE or the word FALSE

A.3 Turtle Graphics

The screen is 280 turtle units wide and 240 turtle units high. The
origin of co-ordinates Is at the middle of the screen. When the
turtle has a heading of 0 degrees it is pointing straight up the
screen. The heading increases as the turtle turns clockwise.

FORWARD (FD) n

BACK (BK) n

LEFT (LT)

In

n

degrees.

RIGHT (RT)

in

n

degrees

HOME

CLEARSCREEN (CS)

DRAW

NODRAW

WRAP

NOWRAP

SETX

Initialises the drawing.

Destroys any drawing and reverts to using the screen
only for text.

After this command, if the turtle leaves one edge of
the screen it reappears at the other.

After this command, the turtle is not allowed to cross

the edges of the screen.

181

SETY n

SETHEADING (SETH) n

Sets the heading to be in the range 0-360 degrees.

SETXY n n

All these draw a line if the pen is down.

PEN DOWN (PD)

PENUP (PU)

PENCOLOR (PC) n

The input must be an integer in the range 0-6.

BACKGROUND (BG) n

Like PENCOLOR. but sets the background color.

SHOWTURTLE (ST)

HIDETURTLE (HT)

FULLSCREEN

SPLITSCREEN

XCOR => n

YCOR => n

HEADING => n

TOWARDS n n => n

The inputs are the x and y of a point on the screen.
The output is a heading towards that point. In
degrees.

TURTLESTATE => I

The output list has four elements: the first is TRUE
or FALSE depending on whether the pen is down, the
second is TRUE or FALSE depending on whether the
turtle is shown or hidden, the third is the pen color
and the last is the background color.

A.4 Arithmetic

Numbers can be given in various forms:

35

3.6

3.7E2 meaning 370
3.8N2 meaning 0.038

There can be a minus sign at the front; there should be no

182

space between the minus and the first digit. LOGO can work with
integers in the range -2147483648 to 2147483647. with complete
accuracy. Otherwise LOGO only works to around seven significant
figures, although it can cope with numbers having up to 38 digits
on either side of the decimal point, with some loss of accuracy.

SIN

COS

ATAN

SQRT

INTEGER

ROUND

QUOTIENT

REMAINDER

RANDOM

RANDOMIZE

n n => n

These four are used in a conventional way: 3+4.
not + 3 4. Use parentheses to avoid ambiguity.

=> n

=> n

n n => n

Outputs the angle, in degrees between 0 and 360.
whose arctangent is the first input divided by the
second.

n => n

n => n

Removes any fractional part.

n => n

Rounds the input to the nearest integer.

n n => n

Rounds its inputs, outputs the integer quotient of
them.

n n => n

Rounds its inputs, outputs the remainder on dividing
first input by second.

n => n

Rounds its Input, then outputs a random integer In
the range 0 to one less than the input.

Makes the sequence of numbers generated by
repeated use of RANDOM unpredictable. Without RAN
DOMIZE, the sequence would be the same each time
the computer is turned on.

A.5 Procedures

TO w

Input is NOT quoted.

EDIT w

183

Input is NOT quoted

DEFINE w I

The first input is a name (It IS quoted), the second
is a list of lists defining a procedure to be known by
that name.

TEXT w => I

Input is a name (it IS quoted). Output is a list of
lists, giving the definition of the procedure named.

ERASE (ER) w

The input is NOT quoted. Makes LOGO forget about
the named procedure. Can also use the qualifiers
PROCEDURES. NAMES (for all variable names) or ALL
(both NAMES and PROCEDURES).

A.6 Words and Lists

FIRST nwl => nwl

LAST nwl => nwl

BUTFIRST (BF) nwl => nwl

BUTLAST (BU nwl => nwl

LIST nwl nwl... => I

SENTENCE (SE) nwl nwl... => I

Like LIST, but input lists get broken into the collec
tion of separate elements first.

FPUT nwl I => I

Puts the first input onto the front of the list.

LPUT nwl I => I

Puts the first input onto the end of the list.

WORD nw nw... => nw

Concatenates its inputs.

A.7 Condition Procedures

IF t THEN ..:

IF t THEN ... ELSE ...

TEST t

IFTRUE ... (IFT)

IFFALSE ... (IFF)

184

n n => t

Used in the customary way: 2 > 1. not > 2 1.

nwl nwl => t

Used in the customary way: 2 = 2, not = 2 2.

LIST? nwl => t

WORD? nwl => t

NUMBER? nwl => t

THING?

Outputs
variable.

nwl => t

TRUE if the

ALLOF t t... => t

ANYOF t t... => t

NOT t => t

A.8 Control

STOP

TOPLEVEL

OUTPUT (OP) nwl

REPEAT n 1

RUN

Like

1

REPEAT 1 ...

GO w

Transfers control to the line labelled with the given

word. To label a line, start it with the word, followed

immediately (no space) by a colon.

A.9 Screen Input/Output

PRINT (PR) nwl...

PRINT1 nwl...

Like PRINT, but does not move on to a new line

after printing.

REQUEST (RQ) => I

READCHARACTER (RC) => w

Outputs a single-character word consisting of the
least recent character typed but not yet read.

185

RC? => t

Outputs TRUE if there are characters that have been
typed but not read.

CLEARINPUT

Causes any characters typed but not so far read to
be thrown away.

CLEARTEXT

Erases any text on the screen.

CURSOR n n

Positions the cursor at the given column (0-39) and
row (0-23). Top left Is 0.0.

ASCII nw => n

The input must be one character (perhaps a single-
digit number). Outputs the ASCII code of that char
acter.

CHAR n => nw

The reverse of ASCII.

PADDLE n => n

The input must be one of 0. 1. 2 or 3. specifying a
paddle. The output is in the range 0-255. depending
on that paddle setting.

PADDLEBUTTON n => t

The input must be one of 0. 1. or 2. specifying a
paddle. The output is TRUE if the button on that
paddle is being pressed.

OUTDEV n

The input is an integer. If it is in the range 1-8. it
is taken to specify a slot to which output should be
sent, rather than the screen. If It is larger than 8.
it is taken as the entry address of an assembly
language routine that will handle all output. The key
CTRL-SHIFT-M restores the method of outputting to
the default arrangement.

A.10 Variables

MAKE w nwl"

THING (:) w => nwl

The colon is not a true abbreviation - see the com

ments in chapter 2.

ERNAME w

186

Makes LOGO forget about the named variable.

A. 11 Information

CATALOG

PRINTOUT (PO) w

Can also take the qualifiers ALL. NAMES. TITLES or
PROCEDURES. POTS is short for PO TITLES.

A.12 Files

SAVE w

Saves everything but the drawing in the named file.

READ w

Reads in the contents of the named file.

ERASEFILE w

SAVEPICT w

Saves the drawing in the named file.

READPICT w

Reads in the drawing in the named file.

ERASEPICT w

A.13 Tracing

TRACE

The key CTRL-Z causes a pause.

NOTRACE

PAUSE

Causes a pause, during which any commands can be
given.

CONTINUE (CO)

Resumes activity, ends a pause.

A.14 Editing Keys

Any normal text you type is inserted, without overwriting any exist
ing text. The following keys are used for editing. Most can be
used outside the editor too.

ESC Rubs out the character to the left of the cursor.

187

CTRL-D Rubs out the character on which the cursor Is standing.

- -» Moves the cursor left or right.

CTRL-A Moves the cursor to the start of the current line of LOGO
(maybe not the current screen line).

CTRL-E Moves the cursor to the end of the current line of LOGO
(maybe not the current screen line).

CTRL-K Deletes all characters to the right of the cursor on the
current line of LOGO.

CTRL-N (Editor only) Moves the cursor down to the next line of
LOGO.

CTRL-P (Editor) Moves the cursor up to the previous line of
LOGO. (Normal) Retypes the previous line, unless it
included a REPEAT or RUN.

CTRL-0 (Editor only) Splices in a blank line after the current line
of LOGO.

CTRL-B (Editor) Moves the cursor back through the definition by
about a screenful.

CTRL-F (Editor) Moves the cursor on through the definition by
about a screenful. (Normal) Full graphics screen, no text
displayed.

CTRL-L (Editor only) Moves the definition so that the current line
is near the middle of the screen.

CTRL-C (Editor only) Completes the editing.

CTRL-G (Editor) Aborts the editing. (Normal) Aborts the command.

A.15 Other Special Keys

SHIFT-N Left square bracket ('[').

SH1FT-M Right square bracket (']').

188

CTRL-SHIFT-P Underscore ('__').

CTRL-G Aborts the command.

CTRL-Z Causes a pause.

CTRL-W Suspends LOGO command and output. Typing anything
causes the command and outputting to resume.

CTRL-F Full graphics screen, no text displayed.

CTRL-S Mixed text and graphics. Four lines of text displayed.

CTRL-T No graphics displayed. Twenty four lines of text displayed.

A.16 Special Commands

.ASPECT

.BPT

.CALL

.DEPOSIT

.EXAMINE

DOS

The Input is a number representing the ratio of the
size of a unit vertical step to the size of a unit hor
izontal step. Normally it is 0.8. but you may need to
change It If circles look elliptical on your screen.
Changing it changes the permissible range of y co
ordinate values.

Jumps Into the Apple monitor. You can get back to
LOGO by typing G or CTRL-Y.

n

The Input should be an integer. Calls the assembly
language subroutine at that address.

n n

The first input is an address in memory, the second
is a value. Like BASIC'S POKE.

n => n

Outputs the value at the given memory address. Like
BASIC'S PEEK.

I

Passes the command to the Apple DOS monitor.

Appendix B
Apple LOGO

B.l Apple LOGO

This appendix describes the Apple LOGO language, as sold by

Apple Computer Inc..
10260 Bandiey Drive,
Cupertino.
California 95014. USA.

Apple LOGO is very like Terrapin LOGO in many ways, but there
are some traps for the careless. These are pointed out in the
notes that follow.

B.2 Conventions

The description uses the notation described in section A.l. One
further abbreviation is used; it is

P word naming a package (see notes below).

B.3 Turtle Graphics

The screen is 280 turtle units wide and 240 turtle units high. The
origin of co-ordinates is at the middle of the screen. When the
turtle has a heading of 0 degrees it Is pointing straight up the
screen. The heading increases as tne turtle turns clockwise.

FORWARD (FD) n

BACK (BK) n

LEFT (LT)

In

n

degrees.

189

190

RIGHT (RT) n

In degrees

HOME

CLEAN

FENCE

WINDOW

Terrapin LOGO CLEARSCREEN. Clears the drawing,
does not affect the turtle.

CLEARSCREEN (CS)

Different from Terrapin LOGO; equivalent to DRAW.

WRAP

After this command, if the turtle leaves one edge of

the screen it reappears at the other.

Terrapin LOGO NOWRAP. After this command, the
turtle is not allowed to cross the edges of the

screen.

No Terrapin LOGO equivalent. Makes the display
behave like a window onto the centre of a huge

drawing area. No wrapping.

SETX n

SETY n

SETHEADING (SETH) n

Sets the heading to be in the range 0-360 degrees.

SETPOS I
Takes a list of two numbers, an x and a y. Similar

to Terrapin LOGO SETXY.

PENDOWN (PD)

PENUP (PU)

SETPC n

Terrapin LOGO PENCOLOR. Sets the pen color (0-5).
To get the reversing color use PENREVERSE.

PENCOLOR (PC) => n

Different from Terrapin LOGO. Outputs the pen color.

PENREVERSE

Sets the pen to the reversing color.

PENERASE

Sets the pen to the background color.

191

SETBG n

Terrapin LOGO BACKGROUND. Sets the background
color (0-5 only).

BACKGROUND (BG) => n

Different from Terrapin LOGO. Outputs the background
color.

SHOWTURTLE (ST)

HIDETURTLE (HT)

FULLSCREEN

SPLITSCREEN

TEXTSCREEN

XCOR

YCOR

HEADING

TOWARDS

PEN

SETPEN

SHOWNP

Terrapin LOGO NODRAW.

=> n

=> n

=> n

n n => n

The inputs are the x and y of a point on the screen.
The output is a heading towards that point, in
degrees.

=> I

No Terrapin LOGO equivalent. Outputs a list of two
elements, the first being one of PENDOWN. PENUP.
PENERASE or PENREVERSE. and the second being
the pen color (an integer).

I

Sets the pen state - see PEN.

=> t

Outputs TRUE if the turtle is being shown. FALSE if
hidden.

B.4 Arithmetic

Numbers can be given in various forms:

35

3.6

3.7E2 meaning 370
3.8N2 meaning 0.038

The rules are exactly as for Terrapin LOGO (described in section

192

A.4).

+. -. *. /

SIN

COS

ARCTAN

SQRT

INT

ROUND

QUOTIENT

PRODUCT

SUM

REMAINDER

RANDOM

RERANDOM

n n => n

These four are used in a conventional way: 3+4.
not + 3 4. Use parentheses to avoid ambiguity.

n => n

n => n

n n => n

Terrapin LOGO ATAN. Outputs the angle, in degrees
between 0 and 360. whose arctangent is the first
input divided by the second.

n => n

n => n

Terrapin LOGO INTEGER. Removes any fractional
part.

n => n

Rounds the input to the nearest integer.

n n => n

Rounds its inputs, outputs the integer quotient of
them.

n n.

n n.

=> n

=> n

n n => n

Rounds its inputs, outputs the remainder on dividing
first input by second.

n => n

Rounds its input, then outputs a random integer in
the range 0 to one less than the Input.

Terrapin LOGO RANDOMIZE.

B.5 Procedures

In Apple LOGO, the input to TO. EDIT etc. is quoted.

TO w

Input IS quoted.

EDIT w

DEFINE

TEXT

ERASE (ER)

ERPS

193

input IS quoted

w I

The first input is a name (it IS quoted), the second
is a list of lists defining a procedure to be known by
that name.

w => I

Input is a name (It IS quoted). Output is a list of
lists, giving the definition of the procedure named.

wl

The input IS quoted. Makes LOGO forget about the
named procedure(s).

Erases all procedures not buried (see section B.10
on packages). Can also take a package name or a
list of them as input, in which case the effect is
confined to those packages.

B.6 Words and Lists

FIRST

LAST

BUTFIRST (BF)

BUTLAST (BL)

LIST

SENTENCE (SE)

nwl => nwl

nwl => nwl

nwl => nwl

nwl => nwl

nwl nwl... => I

nwl nwl... => I

Like LIST, but input lists get broken into the collec
tion of separate elements first.

FPUT nwl I => I

Puts the first Input onto the front of the list.

LPUT nwl I => I

Puts the first input onto the end of the list.

WORD nw nw... => nw

Concatenates its inputs.

COUNT I => n

Outputs the number of elements of the list. Does not
accept a word as input.

ITEM n I => nwl

Outputs the chosen element from the list.

194

B.7 Condition Procedures

The syntax of the IF command is a major difference between
Apple LOGO and Terrapin LOGO. Apple LOGO also uses a final 'P'
rather than a final '?' in naming the various condition testing
procedures.

IF t I

IF t I I

TEST t

IFTRUE

IFFALSE

>. <

Apple LOGO'S IF has a similarity to REPEAT. The one
or two lists contain commands. If the condition is

TRUE, the first is obeyed. The second list is only
obeyed if the condition is FALSE.

(I FT)

(IFF)

n n => t

Used in the customary way: 2 > 1. not > 2 1.

nwl nwl => t

Used in the customary way: 2 = 2. not = 2 2.

nwl => t

nwl => t

nwl => t

nwl nwl => t

wl => t

Outputs TRUE if the input is the empty word or list.

nwl I => t

Outputs TRUE if the first input is a member of the
list.

nwl => t

Outputs TRUE if the input is the name of an existing
variable.

w => t

Outputs TRUE if the input is the name of an existing
procedure.

w => t

Outouts TRUE if the input is the name of a built-in
procedure.

LISTP

WORDP

NUMBERP

EQUALP

EMPTYP

MEMBERP

THINGP

DEFINEDP

PRIMITIVEP

195

AND t t... => t

Terrapin LOGO ALLOF.

OR t t... => t

Terrapin LOGO ANYOF.

NOT t => t

B.8 Control

in Apple LOGO the command THROW "TOPLEVEL is used instead
of TOPLEVEL. There are two procedures. CATCH and THROW, for
transferring control. Take an example:

CATCH "FRED [PROC1 PROC2 PROC3]

causes the commands In the list to be obeyed. However. If In the
course of obeying them LOGO meets the command

THROW "FRED

then the CATCH command ends Immediately. The LOGO system
itself is repeatedly obeying the command

CATCH "TOPLEVEL [your typed-ln commands!

Another special case is that any error results in an implied

THROW "ERROR

which you can CATCH If you want to provide your own error rou
tines (see ERROR below).

STOP

OUTPUT (OP) nwl

REPEAT n 1

RUN 1

Like REPEAT 1

GO w

Transfers control to the matching LABEL in the same
procedure.

LABEL w

CATCH w I

THROW w

196

ERROR

Outputs Information about the most recent error
the technical manual for details.

- see

B.9 Screen Input/Output

PRINT (PR) nwl...

TYPE nwl...

Terrapin LOGO PRINT!. Like PRINT, but does not
move on to a new line after printing.

SHOW nwl
Like PRINT, but also prints the outermost brackets of
lists.

READLIST (RL) => I

Terrapin LOGO REQUEST.

READCHAR (RC) => w

Terrapin LOGO READCHARACTER. Outputs a single-
character word consisting of the least recent charac
ter typed but not yet read.

KEYP

CLEARTEXT

SETCURSOR

CURSOR

ASCII

CHAR

PADDLE

=> t

Terrapin LOGO RC?. Outputs TRUE if there are
characters that have been typed but not read.

Erases any text on the screen.

I

Similar to Terrapin LOGO CURSOR. The Input Is a
list of two numbers. Positions the cursor at the given
column (0-39) and row (0-23). Top left Is 0.0.

=> I

Outputs a two element list giving the column and row
of the cursor.

nw => n

The input must be one character (perhaps a single-
digit number). Outputs the ASCII code of that char
acter.

n => nw

The reverse of ASCII.

n => n

The input must be one of 0. 1. 2 or 3. specifying a
paddle. The output is in the range 0-255. depending

197

on that paddle setting.

BUTTONP n => t

Terrapin LOGO PADDLEBUTTON. The input must be
one of 0. 1. or 2. specifying a paddle. The output is
TRUE if the button on that paddle is being pressed.

.PRINTER n

Like Terrapin LOGO OUTDEV. The input is an
integer. If it is in the range 1-8. it is taken to
specify a slot to which output should be sent, rather
than the screen. If it is in the range 9-15. output
goes both to the screen and to slot (input - 8).

B.10 Packages

In Apple LOGO variables and procedures can be put into 'pack
ages', and specified packages can be saved on disk or erased
from memory.

PACKAGE

PKGALL

BURY

UNBURY

P wl

The first input is the name of a package (If it is
unknown this will make it known). The second input
is a word, or a list of words, naming variables and
procedures to be included in the package.

P

Packages everything not yet packaged.

P

Marks the contents of the package, so that they can
not be affected by POALL. ERALL. ERNS. ERPS.
PONS. POPS. POTS or SAVE.

Undoes the effect of BURY.

B.11 Packages

MAKE w nwl

THING (:) w => nwl

The colon is not a true abbreviation - see the com

ments in chapter 2.

LOCAL w

Creates a variable having the given name, which
temporarily supercedes any other of the same name.

198

ERN

ERNS

The variable ceases to exist when the procedure in
which it was created by LOCAL comes to an end.

wl

Makes LOGO forget about the named variable(s).

Erases all (unburied) variables. Can also take a pack
age name, or a list of them, when it confines the
effect to those packages.

B.I2 Information

CATALOG

PO

PONS

POPS

POALL

POTS

B.13 Files

SAVE

LOAD

wl

Prints out definitions of the named procedure(s).

Prints out the values of all (unburied) variables. Can
take a package name as input, to confine printing to
that package.

Prints out all (unburied) procedure definitions. Can
take a package name as input, to confine printing to
that package.

Combines PONS and POPS.

Prints out the titles of all (unburied) procedures. Can
take a package name as input, to confine printing to
that package.

w

Saves everything (unburied) except the drawing in the
named file. Can take a second input - a package
name or a list of them - to confine saving to those

packages.

w

Like Terrapin LOGO READ. Reads in the contents of
the named file. Can also take a package name as a
second Input, and the file contents will then be
loaded into that package.

199

ERASEFILE w

B.I4 Tracing

PAUSE

Causes a pause, during which any commands can be
given.

CO

Terrapin LOGO CONTINUE. Resumes activity, ends a
pause.

B.I5 Editing Keys

Any normal text you type is inserted, without overwriting any exist
ing text. The following keys are used for editing. Most can be
used outside the editor too.

CTRL-D Rubs out the character on which the cursor is standing.

Rubs out the character to the left of the cursor.

-» Moves the cursor right.

CTRL-B Moves the cursor left.

CTRL-A Moves the cursor to the start of the current line of LOGO
(maybe not the current screen line).

CTRL-E Moves the cursor to the end of the current line of LOGO

(maybe not the current screen line).

CTRL-K Deletes all characters to the right of the cursor on the
current line of LOGO.

CTRL-Y Inserts what was last deleted by CTRL-K.

CTRL-N (Editor only) Moves the cursor down to the next line of
LOGO.

CTRL-P (Editor) Moves the cursor up to the previous line of

LOGO. (Normal) Retypes the previous line, unless it
included a REPEAT or RUN.

200

CTRL-0 (Editor only) Splices in a blank line after the current line
of LOGO.

ESC V (Editor) Moves the cursor back through the definition by
about a screenful.

CTRL-V (Editor) Moves the cursor on through the definition by

about a screenful.

CTRL-L (Editor only) Moves the definition so that the current line
is near the middle of the screen. (Normal) Full graphics

screen, no text.

CTRL-C (Editor only) Completes the editing.

CTRL-G (Editor) Aborts the editing. (Normal) Aborts the command.

ESC < (Editor only) Moves the cursor to the start of all the text.

ESC > (Editor only) Moves the cursor to the end of all the text.

B.I6 Other Special Keys

SHIFT-N Left square bracket ('[').

SHIFT-M Right square bracket (']').

CTRL-G Aborts the command.

CTRL-Z Causes a pause.

CTRL-W Suspends LOGO command and output. Typing anything
causes the command and outputting to resume.

CTRL-L Full graphics screen, no text displayed.

CTRL-S Mixed text and graphics. Four lines of text displayed.

CTRL-T No graphics displayed. Twenty four lines of text displayed.

CTRL-Q Allows you to remove any special significance, as far as
LOGO is concerned, from the next character typed in. The

201

CTRL-Q appears as a backslash.

B.17 Properties

In Apple LOGO, names (for instance, variable names or procedure
names) can have properties associated with them. A property has
a name and a value. You could construct such a feature for
yourself using lists, but Apple LOGO provides various procedures
for the sake of efficiency.

PPROP

GPROP

PLIST

REMPROP

PPS

w wl nwl

The first input is a name, the second is a property
name for that name, the third is the value of the
named property.

w wl => nwl

The first Input is a name, the second a property
name. Outputs the value of the property.

w => I

Takes a name as input. Outputs a list of property
names and values.

w wl

Takes a name and a property name, and erases that
property of the name.

With no input, prints the properties of everything. Can
take a package name or a list of packages, then
confines its effect to those packages.

B.18 Special Commands

SETSCRUNCH n

Terrapin LOGO .ASPECT. The input is a number
representing the ratio of the size of a unit vertical
step to the size of a unit horizontal step. Normally it
is 0.8, but you may need to change it if circles look
elliptical on your screen. Changing it changes the
permissible range of y co-ordinate values.

SCRUNCH => n

Outputs the current screen scaling.

.BPT

Jumps Into the Apple monitor. You can get back to
LOGO by typing G or CTRL-Y.

202

.DEPOSIT n n

The first input is an address in memory, the second
is a value. Like BASIC'S POKE.

.EXAMINE n => n

Outputs the value at the given memory address. Like
BASIC'S PEEK.

SETDISK inputs
Takes one to three inputs, to select a disk to use.
The first input is the drive number, the (optional)
second is the slot number and the (optional) third is
the disk volume number.

DISK => I

Outputs a list of three numbers - see SETDISK.

COPYDEF w w

Causes the first input to name whatever the second
input names.

Appendix C
HLOGO

C.l Ti LOGO FOR THE TI-99/4a

This appendix describes the TI LOGO language for the TI-99/4a
computer. The version for the TI-99/4 is almost identical. The
difference between the two concerns the keyboard - the 99/4a has
a FCTN key. used in a similar way to the SHIFT and CTRL keys.
Various operations available on the 99/4a as FCTN-key combina
tions were provided as SHIFT-key combinations on the 99/4. TI
LOGO is available from suppliers of Texas Instruments Inc. com
puter products.

TI LOGO differs from Terrapin LOGO and Apple LOGO In
several important ways. While TI LOGO has generally similar turtle
graphics, the list handling facilities are not quite as broad. The
main difference Is that TI LOGO has 'sprites' and 'tiles' as well
as the turtle. Both are graphic objects. The sprites are used for
animation; the turtle Is normally controlled by commands affecting
its heading and location, but sprites are normally controlled by
commands affecting their heading, speed and visible shape. The
'tiles' are just the visible forms of the characters you normally
see on the screen, such as the letters of the alphabet.

There are 32 sprites, numbered 0 to 31. Commands can be
directed at one. several or all at once. There are 26 possible
shapes for sprites, numbered 0 to 25. Numbers 1 to 5 are
predefined, the others are initially blank. Any can be redefined
using a simple shape editor to specify the pattern of dots in a 16
by 16 grid. Each of the 32 sprites can be commanded to adopt
one of these 26 shapes. A neat form of animation can be
obtained by commanding a sprite (or several, or all) to adopt one
shape, then another, then another and so on. as it moves across
the screen.

There are 96 tiles, numbered from 0 to 95. Numbers 32 to
95 initially carry the patterns of the characters engraved on the

203

204

key tops - tile 33 is the exclamation mark, tile 42 is the asterisk,
tiles 65 to 90 are the letters A to Z and so on. Numbers 0 to 31
are initially blank. Tiles are used when characters are to be
displayed on the screen. Although any tile can be changed by
using the shape editor to specify a new pattern of dots on an 8
by 8 grid, be careful: if. for instance, you change tile 72. the
letter H. to be three nested squares then you will get the squares
rather than the letter H in your typed commands and in error
messages. It is wise to confine yourself to changing tiles 0 to
31 until you are a fairly experienced user of TI LOGO.

TI LOGO does not handle numbers with decimal parts. It only
deals with integers, in the range -32767 to 32767.

C.2 Turtle Graphics. Sprites and Tiles

The screen Is 254 units wide and 192 units high. The origin of
co-ordinates is at the centre of the screen. When the turtle has
a heading of 0 degrees it is pointing straight up the screen. The
heading increases as the turtle turns clockwise. To use the turtle,
give the command TELL TURTLE first.

TELL nl

Selects what the following commands will be directed
at. Examples are TELL TURTLE. TELL BACKGROUND.
TELL TILE 17. TELL 3. TELL [2 7 19 301. The com

mand TELL 3 is the same as TELL SPRITE 3. The

variable ALL has been predefined to have as its value
the list consisting of the integers from 0 to 31. so
you can TELL :ALL.

FORWARD (FD) n

BACK (BK) n

LEFT (LT) n

RIGHT (RT) n

DOT n n

Puts a dot at the point whose X and Y co-ordinates
are specified.

HOME

Sends the turtle or sprite(s) to the centre of the
screen. No line is drawn.

CLEARSCREEN (CS)

SX

205

Sets the X co-ordinate for the turtle or sprite(s). No
line is drawn.

SY n

Sets the Y co-ordinate for the turtle or sprite(s). No
line is drawn.

SXY n n

Combines SX and SY.

SXV n

Gives the sprite(s) the chosen X velocity, in the
range -127 to 127.

SYV n

Like SXV. but Y velocity.

SV n n

Combines SXV and SYV.

SETHEADING (SH) n

SETSPEED (SS) n

Gives the sprite(s) the chosen speed along the
current heading.

SETCOLOR (SO nl

If the input is a number. It gives the turtle pen or
sprite(s) the chosen color. Some variables have been

predefined suitably, for example SC :LIME is the same
as SC 3. The variables are CLEAR. BLACK. GREEN.
LIME. BLUE. SKY. RED. CYAN. RUST. ORANGE. YEL

LOW. LEMON. OLIVE. PURPLE. GRAY and WHITE. How

these actually appear depends on your TV set. If it is
a tile that is being commanded, the input can be a
list of two numbers. The first selects the tile's fore

ground, the second selects the tile's background
color.

COLORBACKGROUND (CB)

Like SETCOLOR. but affects only the screen back
ground color.

CARRY n

Tells the sprlte(s) which shape to have. Shapes 1 to
5 are predefined, and there are appropriate prede
fined variables: PLANE is 1. TRUCK is 2, ROCKET is

3. BALL is 4 and BOX is 5.

MAKESHAPE (MS) n

Invokes the shape editor to edit the chosen shape.

206

SHOWTURTLE (ST)

HIDETURTLE (HT)

PENDOWN (PD)

PENUP (PU)

PENERASE (PE)

PENREVERSE (PR)

NOTURTLE

FREEZE

THAW

COLOR

SPEED

XVEL

YVEL

WHO

SHAPE

XCOR

YCOR

HEADING

Removes the turtle and erases any turtle drawing -
the reverse of TELL TURTLE.

Stops all sprite motion, until the command THAW.

Restarts all sprite motion after a FREEZE.

=> n

Outputs the color of the turtle pen or sprite(s). If
several are being commanded, the color of the first
is output.

=> n

Outputs the speed of the sprlte(s). If more than one
is being commanded, the speed of the first is output.

=> n

Like SPEED: outputs the X component of the velocity.

=> n

Like SPEED: outputs the Y component of the velocity.

=> identity
Outputs the Input to the last TELL command. This
may be TURTLE or TILE n, and these are neither
words nor lists, but can be PRINTed.

=> n

Outputs the number of the shape of the sprlte(s). If
several are being commanded, outputs the number of
the shape of the first.

=> n

Outputs the X co-ordinate of the turtle or sprite(s).

=> n

Outputs the Y co-ordinate of the turtle or sprlte(s).

=> n

207

Outputs the heading of the turtle or sprite(s).

WHERE => I

Outputs a list of three numbers, namely the turtle's
co-ordinates and heading.

MAKECHAR (MO n

Invokes the shape editor to edit the shape on a tile.

PUTTILE (PT) n n n

The first input is a tile number, the second is a row
number (0-23) and the third is a column number
(0-31). The tile is displayed there on the screen.

PRINTCHAR (PC) n

Like PUTTILE, but prints that tile where the cursor
currently is.

CHARNUM (CN) w => n

The input is a single character word. Outputs the
number of the corresponding tile.

EACH

BEEP

NOBEEP

WAIT

LOOKLIKE

I

The input is a list of commands. Each commanded
sprite obeys the list of commands. The procedure
YOURNUMBER (YN for short) can be used in the list

- each sprite recognises it as the number of itself.
The list is re-evaluated for each sprite. Therefore
EACH [SC RANDOM] gives each a random color,
whereas SC RANDOM gives them ail the same ran
dom color.

Starts the single tone sound.

Stops the sound.

Waits the given number of 60ths of a second (50ths
in Britain).

n

A form of CARRY, but the input is a sprite number
rather than a shape number.

C.3 Arithmetic

Numbers are integers, in the range -32767 to 32767.

208

SUM

DIFFERENCE

PRODUCT

QUOTIENT

RANDOM

n n => n

These are used in the conventional

parentheses to avoid ambiguity.

n n =>0 -

SUM 3 4 outputs 7.

n n => n

DIFFERENCE 7 2 outputs 5.

n n => n

n n => n

QUOTIENT 21 3 outputs 7.

=> n

way. Use

Outputs a random number from 0 to 9.

C.4 Procedures

TO

EDIT

DEFINE

TEXT

ERASE

w

Input is NOT quoted.

w

Input is NOT quoted. It can be omitted if you have
not thought of a name at the start of editing!

w I

The first input is a name (it IS quoted), the second
is a list of lists defining a procedure to be known by
that name.

w => I

Input is a name (it IS quoted). Output is a list of
lists, giving the definition of the procedure named.

w

The Input is NOT quoted. The named procedure is
erased.

C.5 Words and Lists

Beware of parentheses and the minus sign inside lists. They are
treated as self-contained words. The list [(-3) 4] has five ele
ments: '('. '-'. 3. ')' and 4. You must use SENTENCE if you
want to include a negative number in a list, because you cannot
type in the number directly as part of the list. Note also that only
WORD can accept a number as input.

FIRST wl => nwl

LAST

BUTFIRST (BF)

BUTLAST (BL)

wl => nwl

wl => nwl

wl => nwl

209

SENTENCE (SE) wl wl => I

Combines the inputs into a list. Input lists get broken into
separate elements first, as in Terrapin LOGO.

WORD nw nw => nwl

C.6 Condition Procedures

IF t THEN

IF t THEN

TEST

IFT ,...

IFF ...

>. <

ELSE

n n => t

Used in the customary way: 2 > 1. not > 2 1.

nwl nwl => t

Used in the customary way: 2 = 2. not = 2 2.

GREATER

GREATER

n n => t

5 4 Is TRUE,

LESS

LESS 7 3

n n => t

is FALSE.

IS

A form Of

nwl nwl =>

'=': IS 6 3+

EITHER t t => t

BOTH t t => t

NOT t => t"

C.7 Control

STOP

OUTPUT (OP) nwl

REPEAT n 1

RUN

Like

1

REPEAT 1 ...

210

GO nw

Transfers control to the line with the specified label
in the same procedure. Labels are put at the start
of a line, and are followed immediately (no space) by
a colon.

C.8 Screen Input/Output

PRINT nwl

TYPE nwl

Like PRINT, but does not move on to a new line

after printing.

READLINE (RL) => I

Reads in a line typed by the user.

READCHAR (RO => w

Outputs a single-character word consisting of the
least recent character typed but not yet read.

RC? => t

Outputs TRUE if there are characters that have been
typed but not read.

C.9 Variables

MAKE w nwl

CALL nwl w

MAKE with the inputs reversed.

CONTENTS => I

Outputs a list of the names of all variables.

CIO Information

PP

Prints the names of the procedures.

PN

Prints the names and values of all the variables.

PO w

Prints the named procedure. The name need not be
quoted.

PA

Prints all procedures, and the names and values of
all variables.

C.ll Files

SAVE

211

Follow the instructions it gives. You can save all pro
cedures, or all shapes and tiles, or both.

RECALL

Follow the instructions it gives.

C.12 Tracing

CONTINUE

Resumes after a pause. The key FCTN-7 is used to
cause a pause.

TRACEBACK

Used during a pause. Prints information about the
paused procedures.

C.13 Editing Keys

Any normal text you type is inserted, without overwriting existing
text. There are mnemonics above the top row of keys, or on the
front of other keys, to remind you of the function of that key
when used with FCTN. Many can be used to edit the commands
you type in directly. FCTN-R is a left square bracket. FCTN-T is
a right square bracket.

FCTN-3 (ERASE) Erases the character to the left of the cursor. If

at the start of a line, joins the line to the previous one.

FCTN-1 (DELETE) Erases the character where the cursor is. If it

is at the end of a line, joins the line to the next one.

FCTN-5 (BEGIN) Moves the cursor to the start of the current

LOGO line.

FCTN-6 (PROC'D) Moves the cursor to the end of the current

LOGO line.

FCTN-4 (CLEAR) Erases from the cursor to the end of the current

LOGO line.

FCTN-E (up-arrow) Moves the cursor up a line.

212

FCTN-X (down-arrow) Moves the cursor down a line.

FCTN-S (left-arrow) Moves the cursor left one character.

FCTN-D (right-arrow) Moves the cursor right one character.

FCTN-9 (BACK) Ends editing. Also used to abort the running of a
procedure.

C.14 Shape editing

You see a grid of squares. The cursor is a flashing square filling
one of the grid squares. The keys E (up), X (down), S (left) and
D (right) move the cursor one square, leaving the square It was
on empty. Using these keys with FCTN also moves the cursor, but
leaves the square it was on full. FCTN-9 (BACK) ends the editing.

C.15 Special Commands

FCTN-= exits TI LOGO. The command BYE does the same.

Appendix D
Radio Shack Color
LOGO

D.I RADIO SHACK COLOR LOGO

Radio Shack Color LOGO is a product of Micropi. and is licensed
to Tandy Corporation. It is very different from the other versions
of LOGO that have been described. There is no provision for
working with lists or with words, only Integers. It is essentially a
turtle graphics system, but with some powerful features beyond
those described in the main text of this book (which is why this
appendix is included).

The most outstanding feature of the system is that you can
have many turtles, each obeying its own LOGO procedure, on the
screen at once. Because of the nature of the computer
hardware, the turtles do not literally all move 'at once'; each gets
to move a little in turn. Provided that you do not have too many
turtles on the screen, the computer works fast enough to give you
the Impression of simultaneous movement. If you do have lots of
turtles, you will be able to see a 'rippling' effect produced by the
small but perceptible hesitation in each turtle's motion. Turtles can
send messages to each other. A message, however, is just an
integer: if you want a turtle to send more complicated information,
such as its co-ordinates, then you must have it send a sequence
of messages.

The way Radio Shack Color LOGO is used is also markedly
different to the other LOGO systems. There are four 'modes' of
interaction: BREAK mode. RUN mode. EDIT mode and DOODLE

mode. When you first start this LOGO, you cannot immediately give
LOGO commands, because you are in BREAK mode. BREAK mode
has three purposes: to give access to the EDIT and the RUN
modes, to let you load or save programs using disk or cassette
and to let you make a copy of LOGO procedures on a printer.

EDIT mode lets you edit LOGO procedures. You do not edit a
single procedure; instead, you always get access to ail the

213

214

existing procedures, so that you can change one or several, or
add or delete procedures as you wish, in one piece of editing.

As the name suggests. RUN mode is the mode to select
when you want to give commands. Unfortunately, the rules about
commands in RUN mode are not the same as those for com

mands within procedures. The differences are that some commands
are not possible In RUN mode, and only one command is allowed
per line. In the summary below, the commands that are NOT
usable in RUN mode are noted.

DOODLE mode lets very young users construct simple draw
ings. In this mode, the numeric keys each do a simple turtle
command, such as FORWARD 10 or LEFT 45.

To get from BREAK mode to RUN mode, press 'R'.
To get from BREAK mode to EDIT mode, press 'E'.
To get to DOODLE mode, get into RUN mode and press '§'.
To return to BREAK mode, press the BREAK key.

D.2 Conventions

The conventions are the same as those explained at the start of
Appendix A.

D.3 Turtle Graphics

The origin of co-ordinates is at the bottom left of the screen. The
screen is 256 units wide (0 to 255) and 192 units high (0 to
191). The turtle starts in the centre of the screen. Its initial
heading is 0. straight upward. The turtle turns clockwise as its
heading increases.

The turtle can only be precisely at a point with integer co
ordinates, not part of the way between two such points. Because
of this, the command

REPEAT 360 [FD 1 RT 1]

draws an octagon rather than a circle. For the first 22 repetitions,
the turtle goes to the next point vertically upward. At the 23rd. the
heading is such that the nearest point for the turtle to go to Is
the one up and to the left, and this is the start of the second
side of the octagon. Therefore the point to bear in mind is: do
not combine small turtle movements with small changes in direc
tion. The command

REPEAT 36 [FD 10 RT 10]

215

draws a very reasonable circle (and very quickly).

There is one master turtle, and up to 254 other turtles. Each
turtle is identified by an integer, specified at the time it is
brought into existence ('hatched'). The identifying integer must be
in the range 1 to 254 - the master turtle is turtle 0. Many tur
tles can have the same identifying integer. When more than just
one turtle is being used, each turtle in turn obeys one basic
command. This includes the master turtle, so the master turtle
must have at least as much to do as every other one. otherwise
the system will make all the others wait each time until you give
a further command to the master turtle. This is awkward but there
is a simple device to spare you too much convoluted forethought:
you can make the master turtle (or any other) vanish, in which
case it no longer needs to get a turn. The master turtle reap
pears if there are no other turtles around, or if there are no
unfinished procedures. Other turtles never reappear except by
being 'hatched' again.

FORWARD (FD) n

BACK (BK) n

RIGHT (RT) n

LEFT (LT) n

HOME

CLEAR

Wipes off any drawing and sends the commanded tur
tle to the home position.

PENDOWN (PD)

PENUP (PU)

PENCOLOR (PC) n

Colours are 0. 1. 2 and 3. The default is 0. The

actual color depends on your TV set.

BACKGROUND (BG) n

Like PENCOLOR. but sets the background color. Eras
ing is done by drawing in the background color.

COLORSET n

The input must be 0 or 1. There are two possible
sets of the four colors 0-3. and this command

selects the one to use. The default is 0.

HATCH n procedure & arguments

216

VANISH

Hatches a turtle, which has the same position and
heading as the parent turtle at that moment. The first
input is the identifying number for the child turtle
(this is used when sending and receiving messages).
The rest of the input line is the name of the pro
cedure, together with any needed inputs, that the
hatched turtle is to obey. When the procedure ends,
if ever, the hatched turtle vanishes.

Makes the commanded turtle go out of existence. If it
is the master turtle, it will reappear if no other tur
tles are left with anything to do.

SETX (SX)

SETY (SY)

SETHEADING (SH)

SHOWTURTLE (ST)

HIDETURTLE (HT)

SHAPE

WRAP

NOWRAP

SLOW

XLOC

definition

The Input is a sequence of letters: F. B. L. R, U
and D for forward one dot. back one dot. left 45.
right 45. put the shape pen up and put the shape
pen down. If the sequence is too long to fit on one
line, a minus sign can be used to indicate that the
sequence continues on the next line. The shape pen
is only for redefining how the turtle looks on the
screen. It is not the same as the turtle's pen. Can
only be used in a procedure.

When wrapping, no part of a line that crosses the
edge of the screen ever gets drawn.

Sets the speed of motion of all turtles at once. The
input must be in the range 0 (fastest) to 127
(slowest).

n => n

Gives the X co-ordinate of the turtle identified by the
Input number. If there is more than one such turtle,
one is selected and its X co-ordinate is output. The
input must be enclosed in parentheses if it is an

YLOC

HEADING

ME

NEAR

SEND

MAIL

217

expression.

n => n

Like XLOC. but outputs the Y co-ordinate. The input
must be enclosed in parentheses if it is an expres
sion.

n => n

Like XLOC, but outputs the heading. The input must
be enclosed in parentheses if it is an expression.

=> n

Outputs the identifying number of the commanded tur
tle.

n => n

The input is the identifying number of some turtle(s).
Outputs the sum of the horizontal and vertical dis
tances between the commanded turtle and one turtle
having the given identifying number. If there is no
such turtle, then the measuring point used is the
home position. The input must be enclosed in
parentheses If it is an expression.

n n

Sends the message (just an integer) specified by the
second input, to the turtle identified by the first input.
If there is more than one such turtle, the first one
to look at its mail gets the message. An identifier of
255 means that the message is for any turtle; the
first to read its mall gets the message. The input
must be enclosed in parentheses if it is an expres
sion.

n => n

The Input is the identifying number of the turtle from
which a message is to be read. An identifier of 255
means that a message from any turtle is to be read.
The oldest unread message is output, or 0 is output
if there is no message to be read. The input must
be enclosed in parentheses if it is an expression.

D.4 Arithmetic

Radio Shack Color LOGO only deals with integers, in the range
-32768 to 32767. The numeric code corresponding to a key can
be entered as a single quote followed by the key - for instance.
'A is the same as 65.

218

+.-.*./ n n => n

These are used in the conventional way: 2 + 3. not
+ 2 3.

ABS n => n

Outputs the input with the sign changed, if necessary,
to make it non-negative. The input must be
enclosed in parentheses if it is an expression.

RANDOM n

Outputs a random integer in the range 0 to one less
than the input. The input must be enclosed in
parentheses if it is an expression.

D.5 Procedures

You must switch to EDIT mode (press BREAK, then E). You get
access to all procedure definitions, so you can add more and
delete or change any existing ones in a single editing session.
When you add new definitions, the first line must begin with the
word TO (and there must be no space before it). The TO is fol
lowed by the name of the procedure (no quote), and then up to
five input names, each beginning with a colon as in Terrapin
LOGO. The end of one definition is denoted by the word END.
also as in Terrapin LOGO.

D.6 Condition Procedures

The words TRUE and FALSE are not used in Radio Shack Color
LOGO. Instead, the number 0 denotes 'false' and any non-zero
number denotes 'true'. Logical tests that work out true always out
put 1.

>. <. = n n => n

Used in the conventional way.

>=. <=, <> n n => n

Used In the conventional way. The '<>' means 'not
equal to*.

& n n => n

Used as 'and', and comes in between the inputs.
Ouputs 1 only if both the inputs are non-zero, other
wise outputs 0.

i n n => n

Used as 'or', and comes in between the inputs.

219

Outputs 1 If either input Is non-zero, otherwise out
puts 0.

NOT n => n

Outputs 1 if the input is zero, otherwise outputs 0.

D.7 Control

IF n (commands)

Note that THEN Is not used, and that the commands
must be enclosed In parentheses. The commands are
obeyed if the first Input is non-zero. Can only be
used inside a procedure.

IF n (commands) ELSE (commands)

Can only be used inside a procedure.

REPEAT n (commands)

Note that the commands are enclosed in parentheses.
Can only be used inside a procedure.

WHILE n (commands)

The first input is evaluated. If it is non-zero, the
commands are obeyed. The first input is re-evaluated,
and the commands re-obeyed, until the first input
works out to be 0. Thus WHILE 1 (...) is a simple
way of making something happen forever, or until
Interrupted, whichever is the sooner. To interrupt use
BREAK - this also selects BREAK mode. Can only
be used inside a procedure.

STOP

Can only be used inside a procedure.

D.8 Input/Output

To save or load procedures on cassette or disk, you must enter
BREAK mode (press the BREAK key) - see the manual for details.

PRINT n

PRINT string
You can print a string of characters by surrounding
them with double quote marks - for instance. PRINT
"HELLO WORLD". The printing appears starting at the
location of the commanded turtle.

KEY => n

220

Outputs the numeric code corresponding to the key
currently being pressed, or 0 if no key is being
pressed.

PADDLE n => n

The input is an integer in the range 0 to 3. The
input 0 refers to the up/down displacement of the left
paddle, the input 1 refers to the left/right displace
ment of the left paddle, and 2 and 3 refer similarly
to the right paddle. The output is a measure of the
displacement, in the range 0 to 63. Fully up or fully
left is 0. The Input must be enclosed in parentheses
if it is an expression.

D.9 Editing Keys

The only line you get a chance to alter Is the one at the bottom
of the screen. Pressing SHIFT CLEAR in BREAK mode wipes out
all definitions. To enter EDIT mode, press BREAK to get into
BREAK mode, then press E. Normally, what you type overwrites
whatever is on the same line. You can Insert one of the special
key command codes by typing an asterisk first. To type in an
asterisk you must type two asterisks.

ENTER Moves the text up one line. If you are at the end
of all text, adds a new line.

Moves the cursor right one character. If used with
SHIFT, inserts a blank space Into the line by mov
ing the right-hand part rightward. provided there is
space left on the line.

•- Moves the cursor left one character. If used with
SHIFT, deletes the character where the cursor is
and closes the gap. If the line is empty, it is
removed.

UP-ARROW Moves the text up one line. If used with SHIFT,
starts the text moving up automatically until any key
is pressed.

DOWN-ARROW Moves the text down one line. If used with SHIFT,
inserts a complete lineful of spaces where the cur
sor is.

221

CLEAR Moves the cursor to the top of all the text.

D.10 DOODLE Mode

To enter DOODLE mode, enter RUN mode then press '§'. The next
line you type will be taken as the name of a procedure.
Thereafter, the numeric keys can be used to provide some simple
LOGO commands - see the manual for details - and the com
mands are automatically added to the definition of the procedure.
To exit DOODLE mode, and thereby end the procedure defining as
well, press BREAK. This returns you to BREAK mode.

D.ll An Example

The program in this section is a 'minefield' type game. The object
is to manoeuvre one 'roving' turtle from bottom left to top right,
using small steps controlled by the 'F'. *B'. 'L' and 'R' keys.
There are a dozen invisible turtles randomly spread around, with
two at edges to thwart the obvious algorithm; they do nothing but
test for the approach of the 'roving' one. If it comes fairly near
(less than 40) a sentry, the sentry sends a message to the rover,
which blinks twice thus giving the user warning of nearby danger.
If it comes too near, the sentry explodes (in fairly slow motion)
and sends a different message to the rover which is then forced
to return to bottom left; the sentry clears the screen, so you have
to remember your path and where you got warnings. The top
right of the screen has a turtle in the 'base' watching for the
rover coming. If it gets there, the 'base' draws a fence, to indi
cate success, and sends a message to the rover to return it to
the start so the game can start over. Lots of refinements are
possible, such as having a scorer, having a supply of rocks so
that the rover can lob some around to try to explode mines
safely, and so on.

The procedure WATCH is what each sentry does. The initial
WAIT 50 makes sure that no sentry sends any messages during
the setting up stage - WAIT Is defined below. The roving turtle
has Identity number 100.

TO WATCH

HT

WAIT 50

WHILE 1

(IF NEAR 100 < 40

(SEND 100 1 WAIT 15)

IF NEAR 100 < 20

(BANG SEND 100 2 WAIT 15)

222

)

END

The procedure WAIT Is for wasting time.

TO WAIT :D

REPEAT :D 0

END

The procedure BANG draws a little explosion.

TO BANG

REPEAT 12

(RT 33 FD 20 LT 3 BK 20)

END

The procedure SEEK is what the roving turtle does. The WHILE 1
(...) loop awaits a key press by the user, and makes the rover
move appropriately. After each move, the rover looks to see if any
turtle has sent it mail. If the message is 1. the rover blinks
twice, warning the user that it Is near an invisible sentry. If the
message is 2. the rover causes the screen to clear, and it leaps
back to the start. The message 2 only gets sent by a sentry if
the rover is too close, and the sentry has already done the pro
cedure BANG, drawing an explosion.

TO SEEK

WHILE 1

(MAKE :K KEY

IF :K

(IF :K='F (FD 10)

IF :K='B (BK 10)

IF :K='R (RT 45)

IF :K='L (LT 45)

)

MAKE :M MAIL 255

IF :M

(IF :M=1 (HT ST HT ST)
ELSE (CLEAR SX 5 SY 5)

)

)

END

The base turtle, that the rover is trying to reach, obeys the pro
cedure BASE. It repeatedly looks to see if the rover is close, if
so. it draws a fence, to tell the user that he has won. then
sends the rover the message 2. and the rover clears the screen
and returns to the start.

TO BASE

223

WHILE 1

(IF NEAR 100 < 30

(SH 180 SX 225 SY 192

FD 30 LT 90 FD 30

SX 245 SY 180
WAIT 100

SEND 100 2

WAIT 25)

)

END

The main procedure is PLAY, it starts everything else. The first
REPEAT command creates the first ten sentries, moving the master
turtle to some random spot that is not too near the start and not
too near the finish. The next four lines create two more ran

domly placed sentries, one of which is somewhere on the left-
hand edge of the screen and the other of which is somewhere
along the bottom edge. These two are specially placed to prevent
the user from moving the rover along the outside edge of the
screen; otherwise this would be a comparatively easy ploy. The
next two lines place the base turtle at the finish 0<=245. Y=180).
and start it looking for the arrival of the rover. Then the rover
itself is created at the start position (X=5. Y=5) and It starts to
obey the procedure SEEK defined above. The final VANISH com
mand gets rid of the master turtle, so that the sentries, the base
and the rover turtles do not need to wait for the master turtle to

have a turn.

TO PLAY

REPEAT 10

(SX 30 + RANDOM 196

SY 30 + RANDOM 132

HATCH 1 WATCH)

SX 5 SY 30 + RANDOM 132

HATCH 1 WATCH

SY 5 SX 30 + RANDOM 196

HATCH 1 WATCH

SX 245 SY 180

HATCH 1 BASE

SX 5 SY 5

HATCH 100 SEEK

VANISH

END

Appendix E
Research Machines
LOGO

E.l Research Machines LOGO

Research Machines LOGO is distributed by

Research Machines Ltd..

P.O. Box 75.
Oxford 0X2 OBW

England

It is designed to run under the CP/M operating system, on
Research Machines microcomputers. At present it runs on two
types of Z80-based machines. These have special graphics
hardware, so this LOGO will not run on other Z80-based CP/M

systems.

Research Machines LOGO is a dialect of LOGO designed at
the Department of Artificial Intelligence of the University of Edin
burgh. Many of the procedure names are different to those used
in versions such as Terrapin LOGO that are based on the M.I.T.
dialect. The facilities it offers are broadly similar to those of Ter
rapin LOGO.

E.2 Conventions

The description uses the notation described in section A.l. The
differences from Terrapin LOGO are pointed out in the notes that
follow. A crucial difference Is that Research Machines LOGO uses
a single quote (apostrophe) rather than the double quote mark, for
differentiating between words and procedures.

E.3 Turtle Graphics

The screen is 320 units wide by 192 unit high. The origin of
co-ordinates is at the bottom left of the screen; the turtle initially

224

225

starts at X=160. Y=95 in the middle of the screen. When the turtle
has a heading of 0 degrees It is pointing rightward. Unlike other
LOGO systems, the heading increases as the turtle turns anticlock
wise. There is no equivalent of WRAP or TURTLESTATE. Terrapin
LOGO has no equivalent of SLOW. LABEL or NOEDGES.

FORWARD (FD) n

BACKWARD (BD) ' n

Note, the abbreviation is not BK.

LEFT (LT)

RIGHT (RT)

CLEAN (CL)

CENTRE (CT)

EDGES

NOEDGES

SLOW

FAST

Terrapin LOGO CLEARSCREEN. Clears the drawing,
does not affect the turtle.

i

Returns the turtle to its initial position. Does not draw
a line, under any circumstances. Can also be spelt
CENTER.

After this command, the turtle is not allowed to cross
the edge of the screen. This is the default cir
cumstance.

After this command, the turtle can cross the edge of
the screen, though it does not wrap. The turtle's
co-ordinates are limited to the range -32757 to
+32757.

Selects the slower of the two turtle speeds. This is
the default.

Selects the faster of the two speeds, which is com
parable to the speed in Terrapin LOGO.

SETX n

Does not draw a line.

SETY n

Does not draw a line.

SETH n

ARCL n n

226

ARCR

LABEL

PENCIL

ERASER

LIFT

REVEAL

HIDE

WHERE

DRAWING

TEXT

MIX

PICTURE

Draws an arc bending leftwards. The first input is the
radius, the second is the angle.

n n

Like ARCL. but draws an arc bending rightwards.

nwi

Prints its input as part of the drawing, starting at the
turtle's position. The turtle's state is not changed.

n

The input must be In the range 0-3. Pencil 0 is the
same as Terrapin LOGO PENUP. The other three are
red. green and blue. This command is a combination
of Terrapin LOGO PC and PD or PU.

Makes the turtle erase as it moves. Can also be

spelt RUBBER.

Terrapin LOGO PENUP.

Terrapin LOGO SHOWTURTLE.

Terrapin LOGO HIDETURTLE.

=> I

Outputs a list of three numbers. The first two are the
turtle's X and Y co-ordinates and the third is its

heading.

Restricts text such as typed commands to the bottom
four lines of the screen, so that text does not

obscure the drawing.

Renders the drawing invisible, so that the drawing
does not obscure text. MIX. DRAWING or any turtle
command makes the drawing visible.

Allows both text and drawing to use the full screen,
though the drawing area does not extend to the bot
tom four lines on the screen.

Sends a copy of the drawing to the printer. The sys
tem can be told of the printer type in several ways;

227

if the system does not know it. it will ask you.

E.4 Arithmetic

Numbers can be given either as integers or as numbers with a
decimal part, such as:

-317

67.891

There is no exponent notation. Numbers are only accurate to
seven significant figures, though they can have up to 38 digits on
either side of the decimal point. Another important difference is
that Research Machines LOGO does not use the conventional +. -.
* and / for arithmetic. Instead, the procedures ADD. SUB. MUL
and DIV are used.

ADD n n

SUBTRACT (SUB) n n

MULTIPLY (MUL) n n

DIVIDE (DIV) n n

SHARE

=> n

=> n

=> n

=> n

DECIMALS

SIN

COS

TAN

SQT

n n => n

Like DIVIDE, but the output is the integer part of the
division.

n

The input must be an Integer from 0 to 6. This
determines the number of decimal places to be used
when printing numbers. An important point is that in
this LOGO, numbers which look equal when printed
are equal, and those which look unequal are unequal.

=> n

=> n

=> n

=> n

REMAINDER (REM) n n => n

Outputs the remainder when the first input is divided
by the second.

PICK n => n

Outputs a random integer between 1 and its input.

RANDOM => n

228

Outputs a random number between 0 and 0.999999.

E.5 Procedures

There Is no equivalent of the Terrapin LOGO DEFINE and TEXT.
Terrapin LOGO has no equivalent of INSPECT or RESTORE.

BUILD

CHANGE

INSPECT

RESTORE

SCRAP

COPY

w

Terrapin LOGO TO. The input can be quoted or
unquoted.

w

Like Terrapin LOGO EDIT, but the named procedure
must exist. The input can be quoted or unquoted.

w

Like CHANGE, but it does not allow you to change
the procedure. No backup copy is made either. The
input can be quoted or unquoted.

Undoes what the last CHANGE did.

wl

Like Terrapin LOGO ERASE. Deletes the named
procedure(s).

wl

Sends a copy of the named procedure(s) to the
printer.

E.6 Words and Lists

There Is no empty word. Research Machines LOGO has two very
useful features. The first is 'dynamic lists', akin to Terrapin LOGO
SENTENCE. They are like ordinary lists, but angle brackets are
used instead of square brackets. The contents of the list is a
sequence of expressions. When the command containing the
dynamic list is obeyed, the expressions are evaluated and the out
puts formed into a list. For example.

PRINT <FIRST [TAKE OFF] ADD 2 3>

prints ITAKE 51.
The other feature is list subscripting. A hash sign ('#') Intro

duces a subscript. The following is an example:

MAKE 'X [THIS IS A LIST]

229

PRINT :X # 4

prints LIST, and

MAKE 'X # 1 :X

PRINT :X

prints [[THIS IS A LIST] IS A LIST]. Subscripts can be com
pounded:

PRINT :X # 1 # 1

now prints THIS. This must be used if you want a counterpart of
the Terrapin LOGO LAST. The Terrapin LOGO expression

LAST :X

would be

:X # COUNT :X

FIRST wl => nwl

Does not accept a number as input.

REST wl => wl

Terrapin LOGO BUTFIRST.

JOIN wl wl => wl

Joins two words or lists into one.

PUTFIRST (PF) nwl I => I

Puts the first input onto the front of the list given as
second input, and outputs the resulting list.

PUTLAST (PL) I nwl => I

Somewhat like PUTFIRST. Note that the Inputs are
switched round.

COUNT nwl => n

Outputs the number of elements or characters In the
input, if the input is a number, the output is the
number of digits to the left of the decimal point, at
least 1.

E.7 Condition Procedures

Procedures that test some condition usually have names ending in
'Q'. rather than '?' as In Terrapin LOGO. Research Machines
LOGO also uses procedures such as EQUALQ rather than '='.

230

IF t THEN ...

IF t THEN ... ELSE ...

You can also have expressions rather than commands
after the THEN and ELSE, in which case the whole

IF ... outputs a result.

EQUALQ (EQQ) nwl nwl => t

GREATERQ (GRQ) nw nw => t

GREATEREQUALQ (GEQ) nw nw => t

LESSQ (LSQ) nw nw => t

LESSEQUALQ (LEQ) nw nw -> t

NUMBERQ (NQ) nwl => t

WORDQ (WQ) nwl => t

LISTQ (LQ) nwl => t

ZEROQ (ZQ) nwl => t

EMPTYQ (EMQ) 1 => t

KEYQ => t

Outputs TRUE if a key

read in by LOGO.

BOTH t t => t

EITHER t t => t

XOR t t => t

NOT

E.8 Control

Outputs TRUE if one input is TRUE and the other
FALSE.

t => t

Research Machines LOGO has a DO and a WHILE command as
well as REPEAT. The REPEAT command does not expect the
commands in a list. By default, it repeats all the commands from
the REPEAT to the end of the line, although you can change this
by using parentheses to enclose the REPEAT and all the com
mands it is to repeat.

STOP

ESCAPE

Terrapin LOGO TOPLEVEL

231

RESULT nwl

Terrapin LOGO OUTPUT.

REPEAT n commands

DO commands UNTIL t

WHILE t commands

RUN w inputs
Runs the command named by the first input. Any
necessary inputs for the command must follow.

PAUSE n

Walts the given number of complete seconds.

E.9 Screen Input/Output

There is no counterpart of the Terrapin LOGO procedures ASCII.
CHAR. CURSOR or the paddles. It is possible to simulate CURSOR
and PRINT1 by using LABEL (see section E.3).

PRINT nwl

Lists are printed with the outermost square brackets.

SAY nwl

Like PRINT, but lists are printed without the outermost
square brackets.

ASK I => I

Prints the input, without the outermost bracket, and
appends a question mark. Waits for the user to type
a line in reply, then outputs that line as a list. Simi
lar to Terrapin LOGO REQUEST.

KEY => w

Outputs a single-character word consisting of the
least recent key pressed but not yet read in.

E.10 Variables

MAKE w nwl

If the variable already exists and has a list as its
value, you can use the subscripting mechanism
explained in section E.6 to change the value of one
element.

VALUE (:) w => nwl

Like Terrapin LOGO THING. If the value is a list, you

232

can use the subscripting mechanism explained In
section E.6 to select one element.

NEW w

Creates a new variable which supercedes any other of
the same name until the procedure in which it is
used ends. Initially the new temporary variable has no
value.

E.ll Information

FILES

Terrapin LOGO CATALOG.

PROCEDURES

Prints out the names of the user-defined procedures.

INDEX

Prints the names of the procedures in the active file.

E.12 Files

There is no way to save pictures, though they can be printed.

KEEP wl
Keeps the named procedure(s) in the active file.

GET wl
Gets the named procedure(s) from the active file.

LOSE wl
Deletes the named procedure(s) from the active file.

FILENAME w

Selects the named file as the active one.

DISK w
The input is a single-character word. Selects that
disk as the active one.

INITIALISE

Resets the active disk and file to the default. This
is necessary if you change disks, otherwise CP/M
loses track of the disks.

E.13 Tracing

Research Machines LOGO has some very powerful features.

TERSE

VERBOSE

TRACE

UNTRACE

WALK

UNWALK

BUG

UNBUG

233

Selects a short form for the error messages.

Selects the normal, detailed form of error messages.

wl

Marks the named procedure(s) for tracing. When run.
LOGO will report the fact, report the values of the
inputs and of any output.

wl

wl

Marks the named procedure(s) for walking. When run.
LOGO will expect a response from you before obeying
each line. The RETURN key means 'do that line'.
CTRL-C means 'do not bother to ask for other lines
in this procedure'. CTRL-F means 'do no more ask
ing'.

wl

wl

Marks the named variable(s) for tracing. LOGO will
report the new value whenever the value is changed.

wl

E.14 Editing Keys

The model used is different from that of Terrapin LOGO. The cur
sor can move to anywhere in the window, not just within the text
of the procedure. Only one procedure can be edited at once.
Normal typing is inserted where the cursor is. without overwriting
existing text. The editor arranges that a word is never broken in
two by overlapping the right-hand edge of the screen.

CTRL-L Cursor left.

CTRL-R Cursor right.

CTRL-U Cursor up.

CTRL-D Cursor down.

DEL Deletes the character to the left of the cursor and closes
up the gap.

234

CTRL-X Deletes the character the cursor is standing on. and
closes the gap.

RETURN Moves the cursor to the start of the next line.

CTRL-S Inserts a lineful of spaces.

CTRL-K Deletes the line on which the cursor is standing.

CTRL-B Moves the cursor to the beginning of the procedure.

CTRL-E Moves the cursor to the end of the procedure.

CTRL-C Moves the cursor to the top left corner of the window.

CTRL-G Moves the cursor up 8 lines, moving the text if necessary.

CTRL-T Moves the cursor down 8 lines, moving the cursor If
necessary.

CTRL-H Displays part of the 'help' text describing the editing keys.

ESCAPE Ends the editing session.

CTRL-Z Aborts the editing session.

E.I5 Other Special Keys

ESCAPE Interrupts any command and returns LOGO to waiting for
the next command.

CTRL-Z Interrupts any command, like ESCAPE, but also prints
useful information: the names of the procedures in pro
gress, in reverse chronological order, the names and
values of their inputs, and the name and value of any
variable created by a NEW command, and the names and
values of all other variables. The printing of all this can
be interrupted by ESCAPE or another CTRL-Z.

E.16 Special Commands

GOODBYE

Exits gracefully from LOGO, returns you to CP/M.

Appendix F
Answers

Chapter 2

(1) It depends. Normally the turtle just reappears at the oppo
site edge. You can change this by the Terrapin LOGO
command NOWRAP; thereafter, attempting to cross the
edge will produce the error message

TURTLE OUT OF BOUNDS

To revert to normal, use the command WRAP. In Apple
LOGO, the procedure NOWRAP does not exist by that
name, but is called FENCE instead. Apple LOGO also has
WINDOW, which allows the turtle to wander off the screen
but doesn't make it reappear at the opposite edge.
Instead, it makes the screen into a window onto the cen
tre of a huge flat drawing area. Other LOGOs have other
possibilities.

{2} In Terrapin LOGO and Apple LOGO the screen is 280 wide
and 240 high. From the Initial position of the turtle, it is
120.625 to the top edge. 119.375 to the bottom edge.
140.5 to the left edge and 139.5 to the right edge. Yes.
this means that the turtle does not start exactly In the
middle of the screen.

(3) To be dreadfully precise:

49.115 degrees for the top right corner.
130.51 degrees for the bottom right corner.
229.647 degrees for the bottom left corner.
310.648 degrees for the top left corner.

For nearly all purposes, the answers 49. 131. 230 and
311 are good enough.

235

236

[4) Yes. FD -100 is BK 100. LT -53 is RT 53 and so on.

[5} Yes. they do. Try the command FD 0.3 ten times, and you
will get a line 3 units long. The command FD 0.003 one
thousand times will do the same thing. The way to test
this without old age catching up on you is in chapter 2 -
the REPEAT command. LT and RT also happily work with

numbers with decimal parts.

(6a) For a pentagon the angle is 72 degrees. For a hexagon
the angle is 60 degrees. For a 7-sided polygon the
angle is 51.429 degrees.

(6b) This is up to you.

{7} The rules about layout of commands are a mess. There
are two worth remembering explicitly: if one space is
necessary at some point, then it is acceptable to have
more, and it is wise to put a space before a right
parenthesis.

(8) This is up to you.

(9) As you might hope, they work. For example. 3 4 is 7.

(10) Dividing by zero produces the message

CAN'T DIVIDE BY ZERO

Too large or too minute a result is signalled by

NUMBER TOO LARGE OR TOO SMALL IN operation

(11) Let the increment be N. If N is a multiple of 8 there will
be infinitely many blobs. Otherwise there will be

1 + N/(hlghest common factor of 360 and N)

Why is there an exception when N is a multiple of 8. you
may ask? Because that is the only time when the highest
common factor of N and 180 Is not the same as the
highest common factor of N and 360. If N is not a mul
tiple of 8. the turtle will at some point reach an effective
heading of 180 degrees, and start retracing its steps.
BEFORE It reaches an exact multiple of 360 degrees and

237

starts to repeat the figure from its new position.

(12) You can get some fancy spirals, at the very least.

(13) If 'two-dimensional random walk' means that at each step
there are just four choices of direction (up. down. left,
right) then the answer is yes. it definitely returns to the
start eventually. If there are more choices, the situation is
much more complicated, but the short answer is 'probably'.

(14) it all depends. Have a look at 'An Introduction to Proba
bility Theory' by William Feller. 2 vols. pub. by Random
House, if you really want to get into this and you are
good at mathematics.

(15) In a one-dimensional walk the turtle definitely returns to
the start. Try making the step size depend on direction.

Chapter 3

(1) Yes. Change the inputs to ANIMATE a little each time -
make the last line of the definition something like this:

ANIMATE :X * 1.1 :Y * 1.2

(2) Yes. Give SQUARE an input, to be the side of the square,
like this:

TO SQUARE :S

SETX XCOR + :S

SETY YCOR + :S

SETX XCOR - :S

SETY YCOR - :S

END

TO ANIMATE :X :Y :S

PC 1 SQUARE :S

PC 0 SQUARE :S

PU SETXY XCOR + :X YCOR + ;Y PD
ANIMATE :X :Y :S + 0.5

END

The effect gets less realistic as the side of the square
gets bigger.

(3) Not really. You can have LOGO do the necessary tri
gonometric calculations, or revert to drawing a square by

238

using FD and RT. but either way is significantly slower
than the square used in the chapter.

(4) it doesn't, though you may think otherwise.

(5) Basic method A is very poor, because CS takes a fairly
long time to finish. It makes the gap between each 'frame'
much too long to give the illusion of animation.

(6) Yes. instead of REPEAT 61000 []. make the last line of
TICK

PC 6 REPEAT 60 [SEC!

where SEC is defined as

TO SEC
SETH '.SECOND FD 30
REPEAT 750 []

BK 30
MAKE "SECOND :SECOND + 6
END

You will need to initialise SECOND to be 0 before staring
the clock. The delay of REPEAT 750 n may need to be
tuned somewhat. Pen color 6 is used because you cannot
really afford to have a hiccup once a minute to redraw
the hour and minute hands if the seconds hand erases
them. This is acceptable when there Is no seconds hand,
because both hands get redrawn every minute; with a
seconds hand it would mean redrawing all three once a
second, or a much fancier version of TICK.

(7) This is left for you.

(8) The procedure definition is up to you. It is surprising how
hard it Is to get used to a backward-running clock at
first, and how natural it eventually becomes.

(9) It does nothing. The condition Is FALSE.

(10) It prints OK. because -12 < 5.

(11) It prints FALSE.

239

(12) It prints FALSE. The condition is -11.3333 = 7.

(13) It is a trick question. You would get the error message

IF DOESN'T LIKE -12 AS INPUT. IT EXPECTS
TRUE OR FALSE

(14) You get the message

NO STORAGE LEFTI. IN LINE

IF :N = 1 THEN OUTPUT 1 ELSE OUTPUT
:N * FACTORIAL :N - 1

OF FACTORIAL. AT LEVEL something

because the stopping condition never holds and recursion
continues till there is no more space left for LOGO to
keep track of what's happening. Once the message
appears. LOGO reclaims a lot of temporarily used space,
so don't panic, nothing awful has happened.

(15) It can be used, for numbers larger than 1. but it is not
particularly sensible, because there is a much more con
venient answer. Use SQRT SQRT :N instead!

(16) For numbers between 0 and 1. you need to reverse the
test

:AV * :AV * :AV > :N

You can change CUBE.ROOT so that it checks whether :N
lies between 0 and 1. and does the appropriate test. For
negative numbers, change CU.RT:

TO CU.RT :N

IF :N<0 THEN OUTPUT -CUBE.ROOT -:N 1
(-:N) ELSE OUTPUT CUBE.ROOT :N 1 :N

END

(17) There is a problem caused by the limited accuracy of
numbers. Suppose :LOW is 1.70994. and :HIGH is 1.70995.
Then LOGO will calculate the value of AV as 1.70994.
However, if it is the cube root of 5 that is being sought,
the cube of 1.70994 Is only 4.99986. so CUBE.ROOT will
recurse. The new inputs will be 5. 1.70994 and 1.70995 -
which are the same as before. The recursion will not stop
until the available space for keeping track of recursion
gets used up.

240

(18) It is very like the cube root example:

TO ARCSIN :VAL
OUTPUT ASIN :VAL (-90) 90
END

TO ASIN :V :L :H
MAKE "AV (:L + :H) / 2
IF ANYOF :AV = :L :AV = :H THEN OUTPUT

:AV

IF SIN :AV < :V THEN OUTPUT ASIN :V :AV
:H ELSE OUTPUT ASIN :V :L :AV

END

Chapter 4

(1) One of many answers:

TO REVERSE :L
IF :L = [] THEN OUTPUT 0
OUTPUT LPUT FIRST :L REVERSE BF :L
END

(2) One of many answers:

TO REVWORD :W
IF :W = " THEN OUTPUT "

OUTPUT WORD REVWORD BF :W FIRST :W
END

(3) One of many answers:

TO PALINDROME :X
IF COUNT :X < 2 THEN OUTPUT "TRUE
IF (FIRST :X) = (LAST :X) THEN OUTPUT

PALINDROME BF BL :X ELSE OUTPUT
"FALSE

END

This uses the version of COUNT that works both for lists

and for words.

(4) A procedure that prints out a list in the way suggested in
the exercise would be

TO LIST.PRINT :L

LPRINT :L 0

END

TO LPRINT :L :INDENT
IF :L = [] THEN STOP
IF LIST? FIRST :L THEN LPRINT FIRST :L

:INDENT + 4 ELSE REPEAT :INDENT
[PRINT1 "' '] PRINT FIRST :L

LPRINT BF :L :INDENT
END

241

Chapter 5

(1)

(2)

(3)

Sorry - it IS false. The truth is that the nested polygons
do get somewhat 'more regular', but they also tend to get
more like the second one back in the sequence; there are
really two interleaved sequences of hexagons. Within either
sequence, opposite sides tend to become parallel, and to
lie parallel to the corresponding diagonals. An interesting
detail is that the two sequences both 'converge' on the
same point, and that point is the 'centre of mass' of
every one of the hexagons.

The main difference, if you use points of trisection. is that
you get three interleaved sequences of hexagons rather
than two. Again, in each sequence, the opposite sides of
a hexagon tend to become parallel. Although, within each
sequence, the hexagons get more like each other, there Is
not really a 'limiting hexagon'. You will have to take this
on trust .

With a hexagon, you eventually get a line, which does not
shrink to a point. If you start with an irregular pentagon,
you eventaully get a pentagram. From a regular pentagon,
you get a regular pentagon. Experiment with other initial
figures, and with different rules for forming the nested
polygon.

(4) It turns out that the answer to (1) does hold for non-
convex polygons. The general theory is elaborate; see the
reference given In the footnote if you want a full and
technical answer.

1 Or, if you are proficient in trigonometry, read the article by J.H.Cadwell, 'A property
of linear cyclic transformations', in the Mathematical Gazette, vol. 37, no. 320, p.85
(1S53).

242

(5) The current definitions are not adequate - for example, the
first line of DIGIT.LIST will give a test outcome of TRUE
for every non-negative number if the base is negative. In
particular, if the input is zero. DIGIT.LIST will recurse until
the space for keeping track of recursion is exhausted.
While it is possible to make some changes so that
DIGIT.LIST always gives some answer, the idea of a nega
tive base is not really sensible. The main snag is. what
are digits? Can they be negative? Consider the number
-16 in base -8. Is it represented as I- -2 0 [-8]] or as
[2 0 [-8]]? The number 16 would be either [-2 0 [-8]] or
[-2 0 [-8]]. This means that either negative digits must
be allowed, or that some apparently negative numbers are
larger than some apparently positive ones. If you can live
with these, fine...

(6) Follow up the hint. To convert 3.74 to a base 8 form,
keep multiplying by 8 until you get an integer, or you
have multiplied by 8 four times. Convert the integer. Then
move the decimal (or rather, octal) point leftward in the
list the appropriate number of digits. Consider an example.
The decimal number 3.74. would be written in base 8 as

3.57270244365050753412....

In decimal form. 3.74*8*8*8*8 is 15319.04...; rounding this
to an integer gives 15319. Converting this to base 8 using
CONVERT gives the list [35727 [8]]. Shifting the point
leftward four places gives a list [3.5727 [8]]. Defining
LOGO procedures to do all this is not too hard.

(7) The snag, again, is deciding what is a digit or not. What
is 2.6 in base 2.5? Obviously, it is just over [1 12.5]]. but
how much over? You could apply the answer to exercise 6
here. There is a more serious snag. What is 100 in base
0.5? Think about this, and you will see the snag about
digits much more clearly. In base 0.5. or any other base
between 0 and 1. there is no such thing as a 'biggest
digit'. Suppose there were, and that it was N. Then In
base 0.5 the number NNN...NNN (however many times the
digit N occurs) would be no bigger than

N * (1 + 0.5 + 0.25 + 0.125 + ...)

which is no bigger than

243

N / (1 - 0.5)

which is 2 * N. This means that you could not represent
numbers bigger than this!

Index

Where an index item happens to be the main subject of several
consecutive pages in the book, only the first of those pages is
mentioned below. For example. Artificial Intelligence is the main
theme on pages 8 and 9. so only page 8 is mentioned. There
are no references below to items which are mentioned only in the
appendices. This Index is only intended to cover the main body of
the book. Page references are given for the first appearance of
the Terrapin LOGO procedures used In the examples. There is a
separate index to the examples of LOGO procedures.

" : 29. 93 ASCII: 110

* : 31 ATAN: 34

+ : 31

- : 31 BACKGROUND (BG): 27

/ : 31 BACKWARD (BK): 17

: (colon): 28. 30 base.

< : 73 of a number: 139

= : 73 converting to a: 147

> : 73 BF: 107

D: 22 BG: 27

BK: 19

Abelson. H.: 10 BL: 107

ALL: 90 Bobrow. D.: 6

ALLOF: 74 Bolt Beranek & Newman Inc.:

analogy: 153 bottom up: 63 66 135

animation: 57 bouncing: 76

ANYOF: 74 BUTFIRST (BF): 107

Apple II: 12. 35. 62. 150 BUTLAST (BL): 107

arc drawing: 68
arcs: 47 calculator: 120

arithmetic: 30 Cartesian procedures: 44

arithmetic expressions: 32 CATALOG: 90

arithmetic, precise: 160 CHAR: 110

Artificial Intelligence: 8. 171 chess: 150

244

choosing a project: 149
circles: 47

CLEARSCREEN (CS): 17
CLEARTEXT: 96

co-ordinates: 44

colon: 28. 30

colour: 25

command: 18

comments: 177

condition: 72

conditional command: 72. 79
constructing lists: 104
CONTINUE (CO): 134

correcting typing: 22
COS: 34

creating a procedure: 50
CS: 19

CU.RT: 84

cube root: 83

cursor: 16. 51. 96

CURSOR: 96

curves: 47

database: 171

defocussing: 152
delay: 70

dissecting lists: 107
DRAW: 16

drawings: 156

Edinburgh: 7
EDIT: 50

editor: 51

element of a list: 100

empty word: 95

ERASE: 90

ERASEFILE: 90

ERASEPICT: 90

erasing text: 96

erasing when drawing: 25
ERNAME: 90

orrors: 16

evaluating an idea: 151
exercises: 19. 21. 31. 39. 43.

62, 71. 75. 83. 84. 116.
138. 148

exponent notation: 33

factorial: 82

FALSE: 74

fault finding: 103. 106, 134
FD: 19

Feurzelg. w.: 6
filing: 89

filling areas: 81
FIRST: 107

FORWARD (FD): 17
FPUT: 113

FULLSCREEN: 35

games: 175

generalisation: 152

greedy procedure: 96

HEADING: 45

HIDETURTLE (HT): 48
Hllbert. D.: 87

HOME: 17

HT: 48

ideas: 150

ideas, evaluating: 151
IF..THEN..: 72

IFFALSE (IFF): 79

IFTRUE (IFT): 79

implementing a plan: 125
informative messages: 102
input: 18

inputs to a procedure: 54
Inserting an element into

list: 170

INTEGER: 34

language programs: 168
large numbers: 33
LEFT (LT): 17

length of a command: 22
LISP: 108

LISP: 6

LIST: 104

list elements: 100

lists: 100

245

246

lists.

constructing: 104
dissecting: 107
intersection of two: 114

length of: 112
membership of: 112
replacing one element

throughout: 115
specific element of: 112
union of two: 115

updating an element of: 113
lists and the turtle: 117

LIST?: 107

LPUT: 113

LT: 19

M.I.T.: 6 7

MAKE: 28

matching: 173
mazes: 165

messages, informative: 102
Mondrian. P.: 40

NAMES: 89

nesting: 127
NODRAW: 36

NOTRACE: 134

NOWRAP: 20

number bases: 139

NUMBER?: 75

output: 19
OUTPUT: 71

output by a procedure: 71

PADDLE: 150

PADDLEBUTTON: 151

paddles: 150
Papert. S.: 6
PASCAL: 3

patterns: 175
PAUSE: 134

PC: 25

PD: 28

PENCOLOR (PC): 25

PENDOWN (PD): 28

PENUP (PU): 27

planning a project: 125
PO: 89

POTS: 89

precise arithmetic: 160
PRINT: 32

PRINT!: 95

PRINTOUT (PO): 89

procedures: 18
procedures.

defining and using: 49
greedy: 96

PROCEDURES: 89

programming: 2
project.

choosing a: 149
planning a: 125

projects: 156
prompt: 16
PU: 28

quote mark: 29. 93
QUOTIENT: 35

radar: 153

RANDOM: 19

random element of a list: 169
random walks: 43

RANDOMIZE: 35

randomness In drawings: 40

RC: 110

RC?: Ill

READ: 90

READCHARACTER (RC): 110
READPICT: 90

recursion: 61. 79
recursion in drawings: 85
reflection of shapes: 156
REMAINDER: 34

REPEAT: 22

representations: 4. 128. 132.
140. 160. 162

REQUEST (RQ): 104
Research Machines: 7

REST: 107

reverse Polish: 120

RIGHT (RT): 17

rotation of shapes: 156
ROUND: 34

RQ: 104

RT: 19

SAVE: 90

SAVEPICT: 90

scale: 117

screen usage: 35

SENTENCE (SE): 104
SETH: 44

SETHEADING (SETH): 44
SETX: 44

SETXY: 44

SETY: 44

shape recording: 119
shape rotation and reflection:

156

SHOWTURTLE (ST): 48
SIN: 34

sketching: 151
specialisation: 152

speed of the turtle: 48. 59
spirals: 38

SPLITSCREEN: 35

SQRT: 35

square brackets: 22
square root: 35

ST: 48

state of the turtle: 24. 120

state-transparent: 24
STOP: 79

tangrams: 162

teaching LOGO: 10
TEST: 79

TEXT: 123

THING: 29

THING?: 75

TI 99/4: 7

time delay: 70
TITLES: 89

TO: 50

top down: 64. 66. 126

TOPLEVEL: 103

247

TOWARDS: 45
TRACE: 134

tracing: 134

trigonometric procedures: 34.
240

TRUE: 74

turtle: 17

turtle graphics: 16
turtle state: 120

TURTLESTATE: 120
typing mistakes: 22

variables: 28. 99

warning signs: 132
WORD: 98

WORD?: 75

words: 92

words, creating: 98
WRAP: 20

wrapping: 20

XCOR: 45

YCOR: 45

248

The following table tells you where to find the examples of LOGO
procedures given In this book. Where several versions of a pro
cedure were defined, a page number Is given for each of them.

ADD: 147

ADJUST: 138

AHEAD: 159

ANCHOR: 81

ANIMATE: 58. 60. 61. 62. 237
ARCRIGHT: 68

ARCSIN: 240

ASIN: 240

BASE8: 141

BODY: 64. 65

BOX: 56

BRANCH: 86

CALC: 121

CHECK: 106

COMMENT: 177

CONVERT: 142. 145. 147

COUNT: 112

CRAWL: 96. 97

CU.RT: 239

CUBE.ROOT: 84

DEC: 146 147

DIGIT.LIST: 144

DO: 118

DOODLE: 86

DOOR: 64. 65

ERROR: 103. 104

FACT: 172

FACTORIAL: 83. 102. 103

FACTS: 172

FILLFD: 81

FLIP: 118

FOR: 177

GENVAR: 99

GET: 122

GETINT: 161

GROPE: 167

HELLO: 104

HOUSE: 63. 64. 65. 67
HUGE: 74

INSERT: 170

INTERSECT: 114

ITEM: 112 113

LHAND: 88

LIST.PRINT: 240

LPRINT: 241

MAGNIFY: 137

MAKEMAZE: 167

MAP: 166

MARK: 68

MATCH?: 173

MEMBER?: 112

MIDPT: 130

MIDPTLIST: 133

MIRROR: 159

NEST: 130. 133

NICE: 123

PALINDROME: 240

PLAYBACK: 119

PLIST: 123

PLLIST: 123

PLOT: 129

PP: 123

PRINTFACTS: 173

PRINTSIDES: 135

PUT: 122

PYTHAG: 135

QUERY: 173

QUIZ: 105

R: 160

R.POLISH: 121

RANDLIST: 169

RECORD: 119

RECOVER: 146

REFLECT: 160

REPLACE: 115

REPLAY: 119

RESCALE: 137

REVERSE: 240

REVWORD: 240

RHAND: 88

ROOF: 64. 65

SCAN: 173

SEC: 238

SETUP: 121. 172

SHIFT: 138

SHOW: 159

SKETCH: 153

SPIN: 169

SQR: 135

SQUARE: 60. 71. 166. 237
START: 153. 167

STEP: 77

SYN: 169

TICK: 70

TRUNDLE: 80

TURN: 159

UNION: 115

UPDATE: 113

VAST?: 79

WINDOW: 64. 65

249

	front-cover
	Binder1
	content01
	content02
	content03
	content04
	content05
	content06
	content07

	back-cover

