

-"S&N,

Creative Programming
for Young Minds

...ontheTI99/4A

Volume VI

by Leonard Storm

EJ--^--%—est
CH—^EIIl—Ef-—-fT^\

CD <s> <sb <m>

01981 ,CREATIVE ProgrammingJnc, CharlestonJL 61920
A Subsidiary of RV Weatherford Co.

s A registered trade mark of Texas Instruments, Inc.

-^ft^!^

CREATIVE PROGRAMMING FOR YOUNG MINDS

...ON THE TI-99/4A

VOLUME VI

TABLE OF CONTENTS

LESSON #21

LESSON #22

LESSON #23

STRINGS 246

VAL 246

STR$ 248
CHR$ 248
ASC 250

LEN 251

SEG$ 252
POS 258

ON GOTO, ON GOSUB 263
ON GOTO 263

ON GOSUB 264

CALL KEY 265

DATA STORAGE 275

DATA . 275

READ 275

RESTORE 277

OPEN 279

CLOSE 280

INDIGO PROJECTS

246

LESSON #21: STRINGS

The ability of a microcomputer to handle strings of letters,

numbers and symbols, gives it great flexibility and power.

In an earlier lesson, you learned that a string constant

is a string of characters or spaces enclosed in quotes.

For example,

"ABCDEFG", "123", "@#12"

are all valid string constants. You also learned that

string constants could not be used in arithmetic operations

since they do not have a numerical value. Thus, "1" + "2"

makes no sense to the computer, while 1 + 2 does.

There is, however, a TI command that enables you to convert

a string constant to a numeric constant. This command is

the VAL command which stands for VALUE.

Type in the following program. It illustrates the use of

the VAL command.

10 CALL CLEAR

20 REM A$ IS A STRING VARIABLE

30 A$="123.5"

40 B=VAL(A$)

50 PRINT "A$=";A$

60 PRINT "B=";B

RUN the program.

247

Statement 40 converts the string constant "123.5" to the

numeric constant 123.5. This value is assigned to the

variable B.

Notice the differences in the way statements 50 and 60

print onto the screen. Statement 60 leaves a space for

the sign of the number between the equal sign and the

number, while statement 50 does not leave such a space.

Now add these two lines:

70 PRINT "2*B=";2*B

80 PRINT "2*A$=";2*A$

Now RUN it. Did you get an error?

Statement 70 shows a valid numeric operation. Statement 80

shows an invalid operation between a numeric constant and

a string constant.

Now let's experiment a little further. What happens if

you enter the following program? Type NEW first to clear

the memory.

10 A$="NO NUMBERS HERE"

20 PRINT VAL(A$)

Now RUN.

What did the computer do?

Since the string is not a valid representation of a

number, the VAL function cannot be used to convert the

string to a number.

248

TI BASIC also offers a reverse procedure. Numbers may

be converted into strings. This is accomplished by using

the STR$ command.

Type in NEW and enter the following program:

10 A=-123.4

20 B$=STR$(A)

30 PRINT "B$= ";B$

40 PRINT "2*A= ";2*A

50 PRINT "2*B$= ";2*B$

Now RUN the program.

Statement 20 converts the number represented by the symbol A

into a string which is assigned to the string variable, B$.

Thus, B$="-123.4" after statement 20 is executed. State

ment 50 shows once more that string constants cannot be

used in numeric operations.

Try to figure what the following command will do. Then

type it into the computer to test your logic.

PRINT STR$(VAL("123"))

Another string command that is sometimes useful is illus

trated in the following program. Type the program into

the computer and then RUN it.

10 A$=CHR$(72)&CHR$(69)&CHR$(76)&CHR$(76)&CHR$(79)

20 B$=CHR$(77)&CHR$(89)

30 C$=CHR$(78)&CHR$(65)&CHR$(77)&CHR$(69)

Keep going.

249

40 D$=CHR$(73)&CHR$(83)

50 E$=CHR$(84)&CHR$(69)&CHR$(88)

60 PRINT A$

70 PRINT B$;" ";C$;" ";D$

80 PRINT E$

90 GOTO 90

The CHR$ command converts a character code number to its

corresponding character. For example, 72 is the character

code for the letter H. Thus if Z$=CHR$(72), then Z$="H".

In statement 10 of the program, A$ is set equal to "H" &

"E" & "L" & "L" & "0". Therefore, A$="HELLO".

The following program illustrates how easy it is to print

out the alphabet by using the CHR$ command. Type the

program into the computer and then RUN it.

10 FOR 1=65 TO 90

20 PRINT CHR$(I);

30 NEXT I

40 GOTO 40

By the way, the character codes are also known as ASCII

character codes. ASCII is pronounced "ask'-ee". The

letters of ASCII stand for American Standard Code for

Information Interchange.

Create a program that will display for you the codes from

32 to 127.

250

The CHR$ command can also be used to display characters

you define. This is illustrated by the following program,

Type it into the computer and then RUN it.

10 CALL CLEAR

20 CALL CHAR (100,"10387CFE7F3E1C08")

30 FOR 1=1 TO 768

40 PRINT CHR$(100);

50 NEXT I

60 GOTO 60

Create a character of your own.

Now type the following command into the computer:

PRINT ASC("A")

How did the computer respond?

Notice that the ASC command converts a character to its

corresponding ASCII code.

Now type the following command into the computer:

PRINT ASC("AB")

Notice that the ASC command converts only the first

character in the string to its ASCII code. The other

characters in the string produce no effect.

251

The following program converts keyboard characters to their

corresponding ASCII codes. Type the program into the com

puter and RUN it. Input any character you wish.

10 CALL CLEAR

20 A$="THE ASCII VALUE OF "

30 PRINT "INPUT A KEYBOARD CHARACTER"

40 INPUT B$

50 PRINT

60 PRINT A$;B$;" IS";ASC(B$);"."

70 GOTO 30

Now, suppose you wanted to find the length of a string

"^ (number of characters), or you wanted to pick out a

portion of the string and use that portion for something,

or perhaps you want to create a new string which has the

same characters as the old string but in the reverse order.

There are string commands which will let you accomplish

these tasks.

The LEN command can be used to find the number of characters

in a string. LEN stands for LENgth. Type in the following

commands. Write the computer's response on the lines

provided.

COMMAND RESPONSE

PRINT LEN("")

PRINT LEN(" ")

PRINT LEN("1234")

Keep going.

COMMAND RESPONSE

PRINT LEN("ABCDEF")

A$="1234567890"

PRINT LEN(A$)

B$="BBB"

L=LEN(B$)

PRINT L

L=LEN(A$&B$)

PRINT L

252

As you can see, the LEN command finds the length of the

string. Spaces are counted in determining the length

of a string. The null string ("") has zero length.

Notice that the length of a string may be assigned to

a variable:

L=LEN("ABC")=3

The SEG$ command can be used to obtain a portion of a string

The SEG$ command has three parts as shown below:

SEG$(A$,P,L)

This SEG$ command will give you a portion of string A$.

The portion (or substring) begins at position P in A$ and

is L characters long.

253

For example,

B$=SEG$("HOWABOUTTHAT",4,5)

would set B$ equal to "ABOUT" since the string segment

"ABOUT" begins at position 4 of the string "HOWABOUTTHAT"

and is 5 characters long.

Type the following program into the computer and RUN it.

Then fill in the table.

10 INPUT "INPUT A$,P,L ":A$,P,L

20 B$=SEG$(A$,P,L)

30 PRINT B$::

40 GOTO 10

Use the following inputs:

A$

HOW ARE YOU 1 5

HOW ARE YOU 3 7

HOW ARE YOU 5 0

HOW ARE YOU 5 15

HOW ARE YOU 13 3

HOW ARE YOU 0 3

HOW ARE YOU 5 -1

RESPONSE

254

The following program shows how the string commands can

be used to invert the character order in a string. Type

the program into the computer and RUN it. Input any

strings you want.

5 CALL CLEAR

10 INPUT "INPUT A STRING ":A$

20 L=LEN(A$)

30 FOR I=L TO 1 STEP -1

40 B$=B$&SEG$(A$,I,1)

50 NEXT I

60 PRINT B$

70 B$=""

80 GOTO 10

Here's how the program works:

Suppose you input ABC at line statement 10. Then state

ment 20 will set L equal to 3. Statements 30 through 50

build up the inverse (backwards) string one character at

a time.

When statement 40 is first executed, 1=3. Therefore,

B$ equals SEG$(A$,3,1) which is "C".

When statement 40 is executed a second time, 1=2, so that

SEG$(A$,2,1)="B". Now B$="CB".

When statement 40 is executed the third time, 1=1,

SEG$(A$,1,1)="A" and B$="CBA". The string has now been

inverted.

255

The string commands may also be used to convert from

one number system to another. Let's see how a number

in BINARY can be converted to a decimal number. But

first, let's talk about the binary number system.

The binary number system contains only two digits (0 and 1)

It is the system used by all digital computers. To under

stand how the binary system works, let *s compare it with

the decimal number system which has ten digits.

A decimal number such as 1732 can be rewritten as:

(1 x 1000) + (7x100) + (3x10) + (2x1)

That is, each place toward the left has a place value 10

times larger than the preceding place.

In the binary number system, each place toward the left

has a place value two times as large as the preceding

place.

For example, the binary number 11011 can be rewritten as:

(1x16) + (1x8) + (0x4) + (1x2) + (lxl)

Thus 11011 in binary is the same as (1x16) + (1x8) +

(0x4) + (1x2) + (lxl) =27 in decimal.

256

The following program converts a binary number into its

decimal equivalent. Type the program into the computer

and RUN it. Input the data listed below the program.

5 CALL CLEAR

10 V=0

20 INPUT "INPUT A BINARY #: ":B$

30 L=LEN(B$)

40 FOR I=L TO 1 STEP -1

50 DIGIT$=SEG$(B$,I,1)

60 IF (DIGIT$<>"0")*(DIGIT$<>"1") THEN 10

70 V=V+VAL(DIGIT$)*2 A(L-I)

80 NEXT I

90 PRINT "DECIMAL EQUIVALENT^' ;V

100 PRINT:::

110 GOTO 10

BINARY DATA COMPUTER RESPONSE

0

1

10

n

100

101

liiiini

liiiiiiiiiiiini

ABC

123

257

Here's how the program works:

Statement 30 finds the length of the binary string that

you have entered as input in statement 20. Statement 50

looks at one character of the string at a time beginning

from the right. Statement 60 checks to see that each

character is either 0 or 1 (a valid binary digit). If

it isn't, the program jumps back to statement 10 and

starts over. Statement 70 computes the decimal number.

It adds the current digit to the sum of the previous

digits. The value of each digit is calculated by

2A(L-I) .

EXERCISE 21-1

Now it's your turn. Create a program that will convert

a base 10 (decimal) number into binary. For example,

if you input 111, the computer will display a 7.

258

The last string function in TI BASIC that we will study

is the POS (or position) command. This command allows

one to find the position of one string within another.

The form of the POS function is:

POS(mainstring,substring,n)

The POS function searches for the string called substring

in the string called mainstring beginning at the nth

position in mainstring. Examples are given below. Type

in the following program and RUN it.

10 A$="ABCDEFABCDEF"

20 PRINT POS(A$,"ABC",l)

30 PRINT POS(A$,"ABC",2)

40 PRINT POS(A$,"F",9)

50 PRINT POS(A$,"AC",l)

Record the computer responses on the line below.

Note that if the POS function cannot find substring in

the mainstring, then it returns to a value of zero.

Statement 20 finds that substring "ABC" is located in

mainstring A$ beginning at position one. Thus statement

20 prints a one.

In statement 30, the POS function begins searching for

"ABC" at position 2 in A$ and therefore misses the first

occurence of "ABC". But the POS function locates another

"ABC" beginning at position 7 in A$. Therefore statement 30

prints the number 7.

Now type in the following program:

10 INPUT "MAINSTRING ":M$

20 INPUT "SUBSTRING ":S$

30 1=0

40 N=l

50 N=POS(M$,S$,N)+l

60 IF N=l THEN 90

70 1=1+1

80 GOTO 50

90 PRINT S$;" OCCURS ";I;"TIMES IN ";M$

100 PRINT:::

110 GOTO 10

Input the following strings when you RUN the program,

Record the computer's responses.

M$ S$ RESPONSE

"AB AA" "A" '

"ABBAAB" "AB"

"AAAAAAA" "A"

"TUVWZ" "X"

259

To see how the program works, let's use the following

examples:

M$="ABA" S$="A"

After statement 40 is executed, N=l. Then statement 50

finds the position of "A" in "ABA" beginning at the

position N=l. Therefore, the POS command returns a value

Keep going.

260

of 1 since the first occurrence of "A" is in the first

position of "ABA". Then statement 50 sets N equal to

one more than this position or N=2. Statement 70 adds 1

to the variable I, to indicate that there has been an

occurrence of "A" in "ABA". Next, statement 80 returns

the program to statement 50 to find the next position of

"A" in "ABA". This time the POS function would return a

value of 3 since the function begins its search for "A"

at position 2 and doesn't find "A" until position 3 in

string "ABA". Statement 50 then sets N equal to 4 (one

more than the POS function value). Next, statement 70

adds another one to I to indicate that two "A"'s have

been found in "ABA". Again, statement 80 causes a jump

back to statement 50. This time, however, the POS function

returns a value of zero since it cannot find an "A" in

"ABA" beginning at position N=4. Therefore, statement 50

sets N equal to 1. Since N=l, statement 60 causes a jump

to statement 90 to print out the number of occurrences of

S$ in M$.

Try to figure out what would happen if statement 50 were:

50 N=POS(M$,S$,N)

Check your answer by RUNning the program with statement

50 changed.

261

EXERCISE 21-2

Write a program that will take a message in English and

convert it to a "secret" encoded message where all

characters in the original message are replaced by their

ASCII character codes. The program should end by print

ing the coded message on the screen. Use ASC$, SEG$, and

LEN functions in your program. Write your program below.

262

EXERCISE 21-5

Write a program that will take the ASCII code generated

by the previous program (EXERCISE 21-2) and convert it

back to English. Store the complete message under a

single variable name, say A$. Then have the program end

by printing the message A$ on the screen. Write the

completed program on the lines below.

263

LESSON #22: ON GOTO, ON GOSUB

THE ON GOTO STATEMENT ALLOWS A

PROGRAM TO JUMP TO ONE OF SEVERAL

PROGRAM LINES DEPENDING ON THE

VALUE OF THE VARIABLE IN THE

ON GOTO STATEMENT.

An example of an ON GOTO statement is shown below:

10 CALL CLEAR

20 PRINT "SELECT AN INTEGER FROM 1 TO 4."::

25 INPUT N

30 ON N GOTO 50,60,70,80

40 GOTO 20

50 PRINT "N=l"

55 GOTO 20

60 PRINT "N=2"

65 GOTO 20

70 PRINT "N=3"

75 GOTO 20

80 PRINT "N=4"

85 GOTO 20

Type the program into the computer and then RUN it.

Enter the following numbers for N:

N COMPUTER'S RESPONSE

2

3

Keep going.

N COMPUTER'S RESPONSE

4

1

1.1

3.8

5

264

Whenever a non-integer value of N is entered, the ON GOTO

statement first rounds N to an integer. If the value of

N is greater than the number of line numbers in the GOTO

list, then the program stops running and prints "BAD VALUE

IN line number . "

A variation of ON GOTO is ON GOSUB. The ON GOSUB statement

is used when you want the computer to jump to any one of

several subroutines based upon the value of a numeric

expression in the ON GOSUB statement.

An ON GOSUB statement is illustrated in the next program.

Type the program into the computer.

5 CALL CLEAR

10 INPUT X

20 ON X GOSUB 40,60,80

30 GOTO 10

40 PRINT "X=l"

50 RETURN

60 PRINT "X=2"

70 RETURN

80 PRINT "X=3"

Keep going.

90 RETURN

RUN the program. Input the following values for X

X

l

1.3

1.7

2

3

3.3

4

COMPUTER'S RESPONSE

265

When statement 20 is executed, the computer first determines

the value of the numeric expression X, and rounds it if

necessary to obtain an integer. This integer tells the pro

gram which line number in the ON GOSUB list to transfer to.

Thus far, anytime information was to be input through the

keyboard, the computer had to wait on you. The computer

printed a question mark and then waited for you to type

in the data and then press ENTER. There are times when

it would be great if the computer would not have to stop

and wait for the data and a pressed ENTER key. TI BASIC

has a subprogram which will allow for this possibility.

This subprogram is accessed by using:

CALL KEY(mode, key,status)

The value of mode may be 0, 1, 2, 3, 4, or 5.

266

If mode = 0, then the console keyboard is the input device

for the computer, the particular mode the same as was

previously specified by CALL KEY.

If mode =1, then the left side of the keyboard is the input

device (or remote control unit 1). If mode =2, then the

right side of the keyboard is the input device (or remote

control unit 2.)

Modes 3, 4, and 5 will not be discussed here.

The second part of the CALL KEY command, key, will be

determined by the key you touch. The computer auto

matically assigns a value to key based upon which key

you press. If the console is in mode 0, then one of

the normal ASCII codes will be assigned to key each time

one of the keyboard keys is pressed. For example, if

the A key is pressed, then the value assigned to the

second part of the CALL KEY command will be 65. If mode

1 or 2 is selected, then the character codes take on

values from 0 through 19. (More about this later.)

The status variable is a numeric variable. If a value of

1 is returned for status, that means that a new key was

pressed since the last use of the CALL KEY subprogram.

If status =-1, then the same key was pressed during this

execution of CALL KEY as was pressed during the last

execution of CALL KEY.

If status =0, then no key was pressed.

267

Notice that values for key and status are not assigned

by you, the programmer, but are assigned by the computer

according to what has happened at the input unit (keyboard

or remote control).

Now type in the following program which illustrates the

use of the CALL KEY subprogram.

10 CALL CLEAR

20 CALL KEY(0,KEY,STAT)

30 IF STAT=0 THEN 80

40 IF STAT=-1 THEN 100

50 PRINT "A NEW KEY HAS BEEN PRESSED":"STAT=1"

60 PRINT "KEY=";KEY

70 GOTO 20

80 PRINT "NO KEY WAS PRESSED"

90 GOTO 20

100 PRINT "THE SAME KEY WAS PRESSED"

110 GOTO 20

RUN the program. Notice that the program prints "NO KEY

WAS PRESSED" over and over.

Now press the A key and hold it down. First the computer

should print:

A NEW KEY HAS BEEN PRESSED

STAT=1

KEY=65

Thereafter the computer will print:

THE SAME KEY WAS PRESSED

268

If you now stop holding the A key, the computer will

again print:

NO KEY WAS PRESSED

What does KEY equal when you press the following keys:

SYMBOL KEY= SYMBOL KEY= SYMBOL KEY=

1 A N

2 B 0

3 C P

4 D Q

5 E R

6 F S

7 G T

8 H U

9 I V

0 J W

space K X

i L Y

ii
M Z

t
+

Now type the following program into the computer:

10 CALL CLEAR

20 CALL KEY(0,KEY,STAT)

30 IF STAT=0 THEN 20

40 NOTE=KEY-48

50 ON NOTE GOTO 60,80,100,120,140,160,180,200

60 NOTE=220

70 GOTO 210

80 NOTE=247

90 GOTO 210

100 NOTE=262

110 GOTO 210

120 NOTE=294

130 GOTO 210

140 NOTE=330

150 GOTO 210

160 NOTE=349

170 GOTO 210

180 NOTE=392

190 GOTO 210

200 NOTE=440

210 CALL SOUND(-200,NOTE,0)

220 GOTO 20

Finally, RUN the program.

By pressing the number keys from 1 through 8, you can

play a tune.

269

•^sitey

270

This is how the program works:

If no key is pressed when statement 20 is executed, then

STAT will be set to zero. Statement 30 then will cause

the computer to loop back to statement 20.

Now, suppose the number 2 key is pressed. Statement 20

will set STAT equal to 1 and KEY equal to 50 (ASCII code

for 2). Statement 40 sets NOTE equal to 2. Statement 50

causes a jump to statement 80 which sets NOTE equal to 247

Statement 90 causes a jump to statement 210 which plays

the specified note. The computer then jumps back to

statement 20 while the note is still being played.

EXERCISE 22-1

Create a program of your own that will play a tune by

spelling a word on the keyboard.

271

Now let's investigate modes 1 and 2. Type the following

program into the computer:

10 CALL CLEAR

20 CALL KEY(1,A,B)

30 IF B<=0 THEN 20

40 PRINT "A=";A

50 GOTO 20

RUN the program. Use it to see what number the computer

assigns to A for each key that you press. Record your

results below.

KEY PRESSED A KEY PRESSED A

1 A

2 S

3 D

4 F

5 G

Q Z

W X

E C

R V

T B

P 6

0 7

1 8

U 9

Y 0

272

Now change statement 20 to:

20 CALL KEY(2,A,B)

Press the following keys and record the computer's response

KEY PRESSED A KEY PRESSED A

6 l

7 2

8 3

9 4

0 5

Y Q

u w

1 E

0 R

P T

/ ;

H N

J M

K

L

273

EXERCISE 22-2

Write a music program which allows 2 notes to be input

at the same time so that the computer plays the 2 notes

simultaneously. HINT: Use two CALL KEY commands,

CALL KEY(1,A,B)

CALL KEY(2,C,D)

and use a 2 note CALL SOUND statement.

If one unit finds that none of its keys are being pressed,

then the program should cause a silent note to be played

for that unit.

Write your completed program on the lines below.

j*$$&\

274

EXERCISE 22-5

This time you are to write a program which will use mode

0 of CALL KEY and the ON GOSUB command. Whenever one of

the number keys is pressed on the console keyboard, the

program should cause that same number to be drawn on the

screen such that the number fills up most of the screen.

Use HCHAR or VCHAR to draw the number in block form.

Whenever a different number is pressed, the previous

number should be erased before the new number is drawn.

275

LESSON #23: DATA STORAGE

THE DATA STATEMENT ALLOWS YOU TO

STORE DATA (NUMBERS OR STRINGS)

INSIDE YOUR PROGRAM. THE STORED

DATA IS ACCESSED BY USING THE

READ COMMAND.

The following program illustrates the form and use of

DATA statements. Type this program into the computer

and RUN it.

5 CALL CLEAR

10 PRINT "READ SOME DATA"

20 READ A,B

30 PRINT "A=";A,"B=";B

40 FOR 1=1 TO 1000

50 NEXT I

60 DATA 3,9,27

70 GOTO 10

80 DATA 81,243,729

Statement 20 causes the numeric variables A and B to be

given values from the DATA list beginning with the first

DATA list: statement 60 and beginning from the left.

Thus A=3 and B=9 are the first assignments made by the

READ statement. Note that the positions of the DATA

statements within a program are not important, only their

relative order.

276

When statement 20 is next executed, A is set to 27 and B

is set to 81, the next numbers (in order) in the data list.

What message does the computer give when the READ statement

runs out of data?

Type in the following program and RUN it.

5 CALL CLEAR

10 DATA 1,A,B,,

20 READ X$

30 PRINT X$

40 READ X$

50 PRINT X$

60 READ Z

70 PRINT Z

80 READ Z$

90 PRINT "Z$=";Z$

Why does the program give an error message?

Add one character to the appropriate statements to correct

the problem. Show the corrections below.

NOTE: TWO ADJACENT COMMAS IN THE DATA LIST REPRESENT

THE NULL STRING (NO CHARACTERS IN THE STRING).

277

The RESTORE command can be used to repsoition the DATA

list pointer so that a READ statement can access the same

data more than once. This is illustrated in the following

program:

5 CALL CLEAR

10 DATA 2,4,6,8

20 FOR 1=1 TO 6

30 READ A

40 PRINT A;

50 NEXT I

60 RESTORE

70 READ A

80 READ B

90 READ C

100 PRINT A;B;C

110 DATA 10,12,14

Type the program into the computer and RUN it.

Statements 20 through 50 cause 6 numbers in the DATA list

to be read and printed. Statement 60 repositions the

data list pointer to the first element of the first DATA

statement. Then, statements 70, 80, and 90 set A=2, B=4,

and C=6.

Now make the following program change:

60 RESTORE 110

RUN the program again. Notice that statement 60 causes

the DATA list pointer to be positioned to the first element

of statement 10.

Now type the following program into your computer

5 CALL CLEAR

10 DATA 1,1,1,2,1,3,1,4,1,5,0,0

20 DATA 1,3,2,3,3,3,4,3,5,3,6,3,0,0

30 CALL COLOR(2,2,2)

40 ROW=9

50 COL=ll

60 GOSUB 160

70 GOSUB 160

80 RESTORE

90 COL=17

100 GOSUB 160

110 GOSUB 160

120 RESTORE

130 ROW=14

140 GOSUB 160

150 GOTO 150

160 READ A,B

170 IF A=0 THEN 200

180 CALL HCHAR(ROW+A-1,COL+B-1,40)

190 GOTO 160

200 RETURN

Can you figure out what the program does?

RUN the program to see.

278

279

Data may be stored in another way, not in the computer's

memory, but on tape by using a cassette recorder. By

doing this, one may store data indefinitely.

But how does one go about "filing" away data on cassette

tape? In TI BASIC, one has to OPEN a file before the

data can be stored. (This is like opening a bank account

before one deposits money.)

The form of a typical OPEN statement is shown below:

100 OPEN #5:"CS1",INTERNAL,OUTPUT,FIXED

The #5 is a file number. When opening a file, any number

from 1 to 255 may be used as the file number as long as

no other currently open file has that number.

"CS1" tells where the file is to be located. "CSl" stands

for cassette #1.

The computer handles file data in one of two formats,

either INTERNAL or DISPLAY. If DISPLAY format is specified,

the data will be stored in ASCII code. INTERNAL-type data

is recorded in a machine language format which is efficient

ly read by a computer but not by people.

The fourth part of the open statement tells the computer

whether data is to be written to the file (OUTPUT) or read

from the file (INPUT).

280

The last part specifies record-type. A record is the

group of data transferred between computer and device

during one transaction.

FIXED means that the record length is fixed. If the

(FIXED) record length is not specified, a record size of

64 characters is assumed by the computer (when a cassette

recorder is the device being used).

For cassette tape records, the maximum length that you

may specify is 192 characters (FIXED 192) . All cassette

records must be of FIXED length.

Now let's try to store some numbers on tape. Type the

following program into the computer. Then RUN it. Follow

the instructions given by the computer.

10 CALL CLEAR

20 OPEN #8:"CSl",INTERNAL,OUTPUT,FIXED

30 DATA 1.3,4.906E2,4,15,8213,99,0.1,8,25

40 FOR 1=1 TO 3

50 READ A,B,C

60 PRINT #8:A,B,C

70 NEXT I

80 CLOSE #8

Statement 50 reads 3 numbers at a time from the data list.

Statement 60 then prints these numbers in file #8. Each

print causes one record to be written to the file. There

fore three records are written to file #8.

281

The CLOSE #8 statement in line 80 is the opposite of the

OPEN statement. After the CLOSE statement is executed,

the file is no longer available to your program.

Now let's retrieve the data from cassette tape. Type

the following program into the computer and RUN it.

10 CALL CLEAR

20 OPEN #17:"CSl",INTERNAL,INPUT,FIXED

30 FOR 1=1 TO 3

40 INPUT #17:A,B,C

50 PRINT A;B;C

60 NEXT I

70 CLOSE #17

Notice that the file number need not be the same for INPUT

as for OUTPUT. However, the data format must be the same:

INTERNAL, in this case. And the record-type must be the

same: FIXED, in this case.

Now type this program into the computer.

10 CALL CLEAR

20 OPEN #2:"CSl",INTERNAL,INPUT,FIXED

30 INPUT #2: A,B,C

40 INPUT #2: A,B,C,D

50 INPUT #2: A,B

60 CLOSE #2

RUN the program. Did you get an error? Do you know why?

282

Notice that an error results because statement 40 tries

to read 4 numeric variables from the second record of

the file. However, only 3 variables were written to that

record.

When a number is written in INTERNAL format, the computer

uses 9 characters to represent the number. Therefore,

9x3 or 27 characters were needed per record to represent

the numbers that were stored on tape. But we previously

stated that FIXED length puts 64 characters per record.

The computer automatically "pads" the rest of each record

with zeroes.

Now type in the following program. Then RUN it.

10 CALL CLEAR

20 OPEN #1: "CSl",INTERNAL,OUTPUT,FIXED

30 PRINT #1: 1,2,3,4,5,6

40 PRINT #1: 1,2,3,4,5,6,7

50 PRINT #1: 1,2,3,4,5,6,7,8

60 CLOSE #1

Statement 50 causes an error since 8 numbers would take

9x8 or 72 characters for representation. However, a

record with FIXED specification allows only 64 characters

Change statement 20 to:

20 OPEN #1:"CSl",INTERNAL,OUTPUT,FIXED 128

Then RUN the program again.

283

This time the program works because the record length of

128 characters is greater than the 72 needed to represent

the 8 numbers in statement 50.

EXERCISE 25-1

Write a short program that will read the data back from

tape and print it on the screen. Check the program to

see that it works properly.

INTERNAL-type string data requires one position in the

record for every character in the string plus one position

which designates the length of the string. The computer

"knows" the length of the string by reading the length

indicator which is located at the beginning of the string.

For example, "HELLO, MY NAME IS TEX." would require 23

positions in a record.

284

Now type the following program into your computer.

10 CALL CLEAR

20 OPEN #1:"CSl",INTERNAL,OUTPUT,FIXED

30 INPUT "INPUT A$,B":A$,B

40 PRINT #1:A$,B

50 IF (A$="99")*(B=99) THEN 70

60 GOTO 30

70 CLOSE #1

RUN the program. Input some data. Try to find the largest

string that statement 40 will accept. How many characters

are in this string?

^*n Remember a number in INTERNAL format takes the same 9

spaces no matter whether it is 0 or 1.234E19. Therefore,

a maximum of 64-9-1 spaces is allowed for the string, A$.

To terminate the program and to close the file, type in

99,99 as your last INPUT.

•"fl&Vj

""l??Sy

285

EXERCISE 25-2

Use the program from page 284 to store some data on tape

Then write a program to retrieve the data. Show your

working program below.

286

All DISPLAY-type data is stored in a file in ASCII code

with one character in the data taking up one position

in the record.

Therefore, numeric data does not gave a fixed length in

DISPLAY format as it does in INTERNAL format. For example,

the number -2.632E-13 would take 11 positions in DISPLAY

format (including a position for sign, decimal point,

exponent, trailing space, and digits).

Now enter the following program into your computer:

100 CALL CLEAR

110 OPEN #1:"CSl",DISPLAY,OUTPUT,FIXED 64

120 A$="123"

130 B$="QRS"

140 C=123

150 PRINT #1: A$;B$

160 PRINT #1: A$;",";B$

170 PRINT #1: C;C;C

180 PRINT #1: C;",";C;",";C

190 CLOSE #1

200 OPEN #1:"CSl",DISPLAY,INPUT,FIXED

210 INPUT #1: X$

220 PRINT X$

230 INPUT #1: X$,Y$

240 PRINT X$:Y$

250 INPUT #1: X$

260 PRINT X$

Keep going.

287

270 INPUT #1: A,B,C

280 PRINT A:B:C

290 CLOSE #1

RUN the program. You should obtain the following output

on the screen:

123QRS

123

QRS

123 123 123

123

123

123

Here's how the program works:

Statement 150 prints the strings A$="123" and B$="QRS"

consecutively on tape (123QRS). The semi-colon (;) in

statement 150 does not get recorded on tape. Statement

150 has caused one record to be recorded.

Later, statement 210 inputs one string called X$ from the

first record of the tape. Notice that X$="123QRS" (as

shown in statement 220). Instead of finding two strings

in the first record, statement 210 finds only one. This

is because there is no separator between the strings "123"

and "QRS".

288

Statement 160 records a second record on tape. This

record contains the following:

123,QRS

Since this record contains a separating comma, statement

230 is able to read two different strings from the second

record of the tape, namely, "123" and "QRS". Statement 240

prints these two strings on separate lines of the screen.

Statement 170 prints the same number, 123, three times on

the third record. The semi-colons specify that the numbers

are to be written one right after the other. Statement 250

reads the third record. It detects only a single string in

the third record since no separators were recorded in this

record. Notice that there are two spaces between each 123.

Remember that every number always includes a place for a

sign and a trailing space.

If C$="123" had been printed 3 times on the record, no

such spaces between digits would have occurred.

Finally, statement 180 records a comma separator between

each 123 so that statement 270 is able to discern 3 numeric

constants in the fourth record. Statement 280 prints the

three numbers on three separate lines.

Now replace the semi-colons in lines 150 through 180 with

commas and RUN the program again. Notice the effect of the

commas; items are separated into two columns. That is,

commas cause additional spaces to be recorded on tape.

289

EXERCISE 25-5

Write a program that allows you to type text as if you

were using a regular typewriter. The text should appear

on the screen as it would on a typewritten page. Design

the program so that pressing ENTER at the end of each line

causes that line to be stored in a one dimensional string

array called TEXT$(I), where I is the Ith line of text.

Whenever TEXT$(I) is equal to the null string ("") on any

input, use an IF-THEN statement to cause the program to

jump to a list of options. One option should allow the

user to store all of the text on cassette tape using DISPLAY

format. Another option should allow the text stored on tape

to be retrieved and placed back in array TEXT$(I). Another

option should allow more text to be entered into the array

from the keyboard starting with any line number I. Try to

think of additional options that would make this program

very useful. Write your completed program below.

THE COLORED PAGES

At the end of this manual, you will find several

colored pages. These are projects that test your ability

to use what you have learned. There are no right or

wrong answers. If your program does what is asked, then

it is quite acceptable. You are free to express your

creativity. Be proud of what you do. Do not worry

whether your solution is like anyone else's.

Some of these projects may seem easy. . .but do not

be deceived into thinking that you can skip them. After

all, if they are easy for you, then it will not take long

to do them.

Good luck!

A- DouXk^Y^vxaM

Henry A. Taitt
Director

INDIGO PROJECT 1

Create a graphics program that uses CHR$(x) to

[raw a skyscraper. Have the values of x stored as

DATA.

INDIGO PROJECT

Using ON...GOTO or/and ON...GOSUB create a ten

question multiple choice test. Include a method for

determining the number correct.

INDIGO PROJECT 3

Create a program that will display all of the

special characters that may be printed with CHR$(x)

You may have to do a little outside reading.

INDIGO PROJECT L\

Create a program that moves a dot around on the

screen when you touch the four arrow keys. Use CALL KEY

so you won't have to press ENTER.

INDIGO PROJECT 5

CHR$(x) can be used in a lot of ways. Write a

program that will cause the following message to appear

in the middle of the screen.

Look, I'm using quotes around "Hello"!

Send to:

INDIGO PROJECT 6

Using DATA, READ, ON...GOSUB, CHR$ and CALL KEY

plus other commands, produce a program that draws the

simple maze shown below, and allows you to guide a

symbol through the maze using keys of your choice for

directions.

Record your solution on tape and send it to us

for your Programmer VI card.

Henry A. Taitt
CREATIVE Programming Inc
604 Sixth Street

Charleston, IL 61920

Your name

Phone # _

Address

TI-99/4A

City, State

Zip Birthdate

Don't forget to enclose a self-addressed stamped envelope

-3&k,

—^=r~ZZZ -.r».7r..r—-^T~ ^

L—.-/^ _4— -— """"^S.-- 3

Ls-Jr , --/..
s,

L™J '̂'"
^,"fjf -^cr,

L&k=£7^ fc* „•*£ — ^D
[""-^-7 1 -*- -y -— —

»-* r A i

Cir A \ - ~~ j

~—T ' '„ —^ —

t 1 — —

-~

-J _ —i —'

{.= _ "-'" J

'> c

C

^CREATIVE
KABations

A FORUM FOR YOUNG MINDS

CREATIVE Programming, Inc.. Charleston, IL 61920

A newsletter published 12 times a year. The articles are for young programmers, about young
programmers and often written by young programmers.

Each month a graphics program created by a student is selected for the cover. It could be yours!
Contests, mind bending challenges, computer game reviews, new creations, programs, even an X-rated
column for parents and teachers who are running programs in their areas.

Name.

Address

City .State Zip.

Please make checks payable to: CREATIVE Creations
604 Sixth Street
Charleston, IL 61920

Only $18 a year ($32 for two years) brings all twelve
issues to your door. Join us today in sharing in the
excitement of CREATIVE Programming through
CREATIVE Creations.

D one year ($18.00) D two years ($32.00)

	front-cover
	front-cover-inside
	content01
	content02
	content03
	content04
	back-cover

