

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by Section
107and 108 of the United States Copyright Act without the permission of the copy
right owner is unlawful.

Printed in the United States of America

ISBN 0-942386-27-2

10 987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403 (919) 275-
9809, is one of the ABC publishing companies, and is not associated with any manufac
turer of personal computers. TI-99/4Ais a trademark of Texas Instruments Inc.

t

/iPS

0S&

Content

Foreword v

Chapter 1:Starting Out 1
^ Chapter 2: Putting Characters on the Screen 5
^ Chapter 3: Defining Custom Characters 17
£* Chapter4: Beginning to Move 31
f5* Chapter 5: Keyboard and JoystickControl 47
£* Chapter 6: Sound 69
p Chapter 7: Martian Attack 79
-^ Chapter 8: Martian Revenge 91

Chapter 9: Riverboat 103
** Chapter 10: Shark 115

Chapter 11:Mushrooms 127
£* Chapter 12: Hobo Party 139
f* Chapter 13: Moneybags 159
£» Chapter 14: How to Create YourOwn Game 179
p> AppendixA: Characters:ASCII Code Numbers and Sets.. 193
a* Appendix B: Color Values 195
-^ Appendix C: In Case of Error 196

ffi^j

z1^)

**^%

0* lijaajfaaMttraasg^^^

-^ Whether you're just beginning to program or havebeen
^ computing for years, Creating Arcade Games on the TI-99/4A will
if* show you how to write an arcade-style game. Step by step,
-^ this book will show you how to create gamecharacters, move
^ them on the screen, control them with the keyboard or
(p* joystick, produce sound effects, and even keep score.
_^ How do you createa videogame? How can you make
^ figures move about on acolorful screen? How can you make
£* the computer control some of the figures while you control
-^ othersby pressing keysor moving the joystick?
^ When you play arcade-style games, you take these things
£* for granted. Butwhen you first try to create your own video-
0St game, youmayfind them difficult problems to solve.
^ You'll use the TI-99/4A's built-in graphic and sound abili-
f** ties to enhance your games, and even see how to draw and
_ move sprites with the TI Extended BASIC cartridge. Starting
^ with an idea, you'll see how to develop acomplete game by
^ followinga simple step-by-step guide, from choosing the

y game's concept to testingand debugging the finished program.
^ Also included are eight complete games ready to type in
<p* and enjoy Because they're fully explained, these games will
0^ quickly lead you to a full understanding ofthe techniques
- necessary to create your own exciting games. There's even a
p* game written with TI Extended BASIC that uses sprites to

create an action-packed game of speed and skill.
^ Like all COMPUTE! books, you'll refer to this book not
f^ just once, as you write your first game, but again and again.
—^ You'll find it a valuable resource formore complex gameideas
^ and information on the TI-99/4A as you design other video-
£* games. With the ideas in this book, and your creativity, you'll
-^ quickly be writing and playing your own arcade-style games.

f Acknowledgments
(p\ Creating Arcade Games on the TI-99/4A is dedicated to Laure

Smith, who made the ideas in this book easier to understand.
«sfa>

0^\

V.J

•3

^%\
•^.j

3

/S^>

p^ This book is designed to help you create fast-action, arcade-
style games, no matterhow little or how muchyou already

^ know about the TI-99/4A computer. If you are new to
-n computers and computerprogramming, Chapters 2 through 6
" will give a clear and simple step-by-step introduction to
f^ BASIC, the language that provides the building blocks you'll
-^ use to create videogame programs.
^ All videogames are made up of a small number of
P* programming pieces, called commands, functions, and opera-
0^ tions. These pieces are then combined in many different ways
^ to create all kinds of arcade games.
P* The rest of the book consists of actual game programs,

whichyou can type in and play. Mostimportant is the fact that
youcan also change these programs. Experimenting with the
programs will help youbecause you'll often learnmore from
seeing what changes when you alter a working program than
you can from discussions or examples of theory. By experi-

^ menting, you can discovera new and better way to do some-
p^ thing. Above all, don't worry about damaging your computer
^ by experimenting with the programs. Nothing you type in can
P» possibly hurtyour TI-99/4A.
0^ Even though BASIC is oneoftheeasier computer
^ languages to learn, it is still alanguage, like French or Spanish.
^ You must learn it step by step, one word at a time. Some parts

of the language willbe easy for you to learn and understand,
and other parts may seem more difficult. Reread the difficult
parts and be patient. It takes time to makea new language
natural and comfortable.

If you already know TI BASIC, you can skim the early
chapters until you find material new to you. However, if you
know BASIC only from other computers, it would be a good
idea to read everything. The TI-99/4A has features that you'll
need to be aware of.

Chapters 7 through 13 each contain a videogame, written
to show you how the TI-99/4A computer can be used to create
arcade-style games. You'll be shown how you can modify the
game to make it harder or easier, faster or slower. At least one
of these modifications will be outlined, complete with the
program lines you'll need to alter or add. You'll also be given
hints on what you can do to expand the game and make it

g0\

ffwi

1

zSfesv

more interesting. C3
Each of the videogames is explained in great detail, and ^

any unusual techniques areexplained fully. By the time you
have gone through each game, you'll have anarsenal of tech- £?
niques and tricks that you can use tocreate your own video- ^
games on the TIcomputer. ^

TI has two BASIC languages. The first comes with your ^
computer, and iscalled TI BASIC. You can purchase a separate (*$
cartridge to plug into your computercalled TI Extended
BASIC. This language lets you use more BASIC keywords, and —
includes sprites, whichare moving characters that make •*%
creating games even easier. Chapter 13 has agame that shows ^
youhow spritesand Extended BASIC work. C-5

Finally, Chapter 14isa detailed, step-by-step outline that /*%
will show you how to create new and original games. You'll ^T
see how to get ideas, how to work those ideas into games, and ^?
the steps necessary to make yourgame programs come alive. **%
By following thissimple step-by-step process, and by using
the information throughout the book, you should have no O
trouble designing the games that you've always wanted to f=^
play.

Getting Help
Appendix C, "In CaseofError," will help you in your own
programming when you make errors. Allprogrammers make
errors. The secret is knowing what to do when something goes
wrong.

Equipment
All youneed to begin programming videogames is yourTI-99/
4A computer. Ifyou have a TI-99/4 computer, you may be able
to adapt these programs to that earlier version of the 99/4A.
Most of the differences will be slight; checkyour TI-99/4
manual to see if the commands work the same. You will, of
course, need a TVset, and you should have a tape recorder or
disk drive to save your games onceyou've typed them in.

v..

/pSSi

The first step in creating your own fast-action arcade game is to
learn how to get your TI computer to do exactly what you want
it to do.

You give the computer instructions by using keywords
that are part of the BASIC language. You'll learn many
different BASIC keywords in this book, but the ones that are
most important are those that put pictures on the screen.

PRINT is the first BASIC keyword you'll use to put letters,
words, and pictures on the screen. These drawings can look
like animals, people, spaceships, or whatever you want.

Often called characters, these pictures can be made to do
things and move around. Ifa game doesn't have moving char
acters, it isn't a real arcade game.

How to Put Things on the Screen
When you turn on your TI-99/4A, you'll see the beginning
rainbow screen. Your TI is ready. Press any key to begin. You
should see a message telling you to press 1 for TI BASIC, or 2
for any other cartridges you have in the machine. For now, if
you have any other cartridges in your computer, take them out.
(But only after turning off the computer—never insert or
remove a cartridge while the computer is on, because you can
damage it.)

Press the 1 key, and the screen will show TI BASIC READY
near the bottom. Below it, you'll see an arrow, which tells you
that the computer is ready for instructions.

Type PRINT. Nothing happened! This is because you must
tell the computer what you want to PRINT.

After the word PRINT, add a quote. On the TI-99/4A, you
get a quote to appear on the screen by pressing the FCTN key
at the lower right of the keyboard and the P key at the same
time. The FCTN (FUNCTION) key has a gray dot on it and lets
you use a key for more than one thing.

After you type the quote, type the letter A. Then add

on the Screen ^

another quote. »
Your line should look like this:

PRINT "A" ^
Nothing has happened yet. To tell the computer that you ^

arefinished with that line, press theENTER key. It hasa <*)
yellow dot on it and is on the right side of the keyboard. "

When you pressed ENTER, several things happened. First —
of all, the line you typed moved up a few lines, and below it **)
appeared the letter A, all by itself. Then, a new arrow
appeared below, telling you that the computer is ready to do ^
something else. ^

Try using PRINT to put other letters on the screen. For
example, you can type: ^
PRINT "THE TI IS GREAT" ^
When you press ENTER, the computer will display THE TI IS ^
GREAT on the screen. ^

Note: When you start out with TI BASIC, smaller-sized *
letters will appear on the screen. You will need to depress the ^)
ALPHA LOCK key to get larger letters if you want to type ~
words inside quotes. Whateveris typed inside a pair of quotes
will stay that way. Whatever is typed outside quotes, like the "^
word PRINT, will bechanged tolarge letters automatically by ^
the computer. '

Making a Program
Line Numbers. You can't make much of a game by just —^

typing PRINT. You must createa program, which allowsyou ^
to tell the computer to executemore than one line. If you just _
use PRINT by itself, you'll be limited to seeing only what you -
have typed. That isn't much fun, and is certainly not a game. *=^

A program is a group of commands and functions that ''
execute in order. You can tell the computer in what order you -
want it to do things by putting line numbers before you type the "^
commands. _

For instance, you can type: ^
10 PRINT "TEXAS INSTRUMENTS" ^

This time, when you press the ENTER key, the line moves up, "^
but itdoesn't PRINT This isbecause the TI is waiting for more ^
numbered lines, or for you to tell it what to do with the collec-
tion of numbered lines you have typed. When you typed ^

P PRINT"A"by itself, the computer did what you told it to do
a right away. This is called the command mode, and you won't see

it used much in game programming, because a program that
P* creates a game must do many things to make a game play.
IP* Line-Numbered Commands. By adding a line number

before a command, you're telling the computer to store the line
C** you type, after you press ENTER. The computer will use the
«* line number to keep track of every line you type.

The TI has a special command called NUM which will
{* automatically number the lines for you. You can type NUM
Mfe and press ENTER, and the lines will start at 100 and increment

by 10. If you don't want your line numbers to start at 100 and
p* count up by 10's, you can change this by typing:

f^ NUM first line, distance between lines
«te and pressing ENTER.

For example, if you want to start at line 10, and go up by 5
P* each time, just type NUM 10,5 and press ENTER.
m\ RUN. When you're ready to use all the commands, you

simply type RUN and press ENTER. The computer will start at
f^ the line with the lowest number and execute it. After it's
p> finished with that line, it will go on to the linewith the next

highest number, and so on. It will go through all the line-
P* numbered commands you've stored in memory until it comes
p» to the end. When it's through, it willdisplay:
r -DONE**

If it doesn't make it through, you'll see an error message. Refer
^ to Appendix C, "In Case ofError," ifyou need help.
£* Running a Program. You have already typed:
pa 10 PRINT "TEXAS INSTRUMENTS"

into your computer. You can add two more lines as follows:

K 20 PRINT "MAKES TERRIFIC"
f^ 30 PRINT "COMPUTERS"

pv When you havefinished typing, you can PRINT out all three
lines by typing RUN and pressing the ENTER key.

f* You should see:

f* TEXAS INSTRUMENTS

fv MAKES TERRIFIC
p> COMPUTERS
_ on the screen.

Pyttiing Characters on the Screen
^S\

LIST and EDIT. LIST and EDIT are two BASIC keywords f3
that will help you make changes inyour line-numbered ^
commands without retyping an entire line.

You may need to see the numbered lines you have stored *^
in memory. You cando this by typing the word LIST and ^
pressing ENTER. You can LIST one line by typing LIST and the
line number. Forexample, typing LIST 10will print out line 10. ^
Youcan see a group of lines by typing: **
LIST first line-last line Z^
and pressing ENTER.

For example, if you want to see lines 10 through 20, type ^
LIST 10-20. You get the hyphen by typing SHIFT/. «^

When you're writing your programs and make a mistake
or want to change a line-numbered statement in your '3
program, you can type EDIT and the number of the line you «^
want to change. That line will appear at the bottom of the
screen andanything else on the screen will scroll up one line. ^

You'll see the cursor after the line number ofthe lineyou *s^
now want to edit. If the blinking cursor is on top of a letter on
the line you're editing, whatever you type will replace what *3
was there. You can use thearrow keys (FCTN and S to move «^
left, FCTN and D to move right) to move the cursor. ""

Ifyou want to insert a letter orletters, type FCTN and2. ^
Whatever you type will be inserted before the cursor. You can ^
type FCTN and 1 to delete anything under the cursor.

When you're through, press ENTER. The new line will 3
replace the old line. After editing, it's always a good idea to <=^
use the LIST command to check your newly edited line.

Another way toedit lines is to enterthe line number and f?
then press the FCTN keyand the down-arrow key(thex key). «^
The line will display and can be edited just as you did using
the EDIT command. This method may be more useful ifyou're f^
editing several lines in sequence. To display the next line, just «^
press the FCTN key and down-arrow key, and it will appear.

Be Careful. When you're writing programs on theTI f^
computer, be careful not to accidentally press the FCTN key ^
and the = key at the same time. Ifyou do, your program will be
erased! To erasea program, just turn off yourTI or type NEW *^
and press ENTER. Typing FCTN and = together can be disas- *^
trous, especially if you thought you were typing a plus sign,
which is SHIFT and = . *^

10

r

icteirs on the Sateen JL

^ Also to be safe, save your programs frequently to tape or
p* disk so that if there is a power failure, your program won't be
~» lost-

Where Can You Print?
^ So far you have had no choice as to where PRINT put the
f^ letters and words on the screen. When you create your arcade
_ games, however, you'll want to positionall elements of your
^ game exactly where you want them on the screen.
p> The TI screen can be used likea map, and you can use the
~ CALLHCHAR command to put your characters exactly where
^ you want them. The TI has several commands that use the
£* word CALL followed by another word. By using CALL, the TI

computer knows the word that follows will tell it to do some-
^ thing unusual, something that is not part of the standard
f^ BASIC list of keywords used on other computers. CALL
' HCHAR means to use the word HCHAR, which stands for
^ HorizontalCHARacters.
£* The map is blank when you start, and is divided up into a

grid. There are 32columns acrossand 24rows down, making
^ up 768 blocks. Each column and row has anumber. The
p* columns are numbered from 1 to 32, with the first column on

the left. The rows are numbered from 1 to 24, with the first row
^ at the top. Figure 2-1, TI Screen Map, shows how the comput-
£* er's screen is organized.
.^ To use CALL HCHAR, youmust give the computer three
^ or four numbers to tell itwhere to put a particular character.
I» When using CALLHCHAR, the first number you type,
_ after CALL HCHAR and a left parenthesis, is the row number.
^ Follow that with a comma, and then the column number. Next
f^ you type the number which stands for the letter you want to

appear on the screen. Finally, type a right parenthesis and
^* press ENTER. Appendix A, "Characters," shows what number
f^ represents each letter, number, or symbol on the TI's keyboard.

For example, the number 72 stands for the letter H.
^ ASCII Numbers. The computer uses these numbers to
p* represent letters. These numbers are called ASCII codes; ASCII

stands for the American Standard Code for Information Inter-
^ change. This is a code agreed upon by computer makers, so
f» that an H is always represented by the letter 72, no matter

what computer it is.
^ The TI has a command called ASC. If you want to see

ii

K
F

ig
ur

e
2-

1.
T

I
Sc

re
en

M
ap

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

C
o
l
u
m
n

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

1 2 3 4 5 6 7 8 9

1
0

1
1

o
1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

J
J

J
J

J
J

J
J

J
J

J
J

J
J
J
J
J
'
J

J
J
J
J
J
J
J

•

ftp»4

@ SCi^©@E

^ what code value a letter, number, orsymbol isrepresented by,
^> just type ASC("letter") and pressENTER. Be sure to put the

parentheses and quotes around the letter.
?* CALL HCHAR. Begin by typing:
f* CALL HCHAR(
f* but do not press ENTER yet. Besure to type the left paren-
^ thesis (SHIFT 9).
L Pick a row and column on the screen. Remember that the
P* row must be between 1 and 32, and the column between 1 and
-^ 24. For this example, pick row 15and column 25. Next, pick a
~ letter, for instance, the letter A. If you look upAinAppendix
f^ A, you'll see that it's representedby the codevalue 65. Finally,
-a type a right parenthesis (SHIFT 0).

Here's an example:

<* CALL HCHAR (15,25,65)
P* Now, press ENTER. The letter A will appear somewhere
p» onthe middle right ofthe screen.

More Than One Character. You can add one more number
^ to the CALL HCHAR command to tell thecomputer to print
£» more than one character at a time. Ifyouwant it to print 15

times, starting at the row and column you selected, all you
^ have to do is add another comma after the ASCII code value
p> and a number to represent the numberof times you want it to

print. Besure to add the final parenthesis (SHIFT 0). For
^ example, type:
f* CALL HCHAR (15,25,65,15)
f* When you press ENTER, a row of A's will PRINT, starting at
_ row 15, column 25. Eight A's will print, and the other seven
^ will spill over and show on the next line, starting at the far left.
f5* You could use the CALL HCHAR command to create almost
-^ any kind of horizontal display that you want. If you wanted a
* border at the top and bottom of the screen, for instance, all
f* you'd have to do is enter these lines in a program:

r Program 2-1. Border
(•* 5 CALL CLEAR

10 CALL HCHAR(1,1,95,32)
P 20 CALL HCHAR(24,1,95,32)
r5j3 GOTO 50

This creates a border using the underline symbol, which is

f* 13

ASCII code value 95. The top border is created by line 10, ^
which starts at row 1, column 1, and puts 32 underline ^
symbols across the screen. Line 20 does the same thing, but
near the bottom of the screen. It begins at row 24, column 1, ^)
and places the symbols on the screen. Line 5simply clears the ^
screen so you can see the borders easier, while line 50 holds the
characters on the screen. To breakfrom this program, press the ^
FCTN key and the 4key at the same time. ^

Using VCHAR. You can also use a similar command, *—'
CALL VCHAR, which stands for Vertical CHARacter. It works ^
the same, exceptthat the fourth number indicates how many «*
times you want a character to be PRINTed down.

For example, type: f^

CALL VCHAR (15,25,65,15) ^
When you press ENTER, you'll see ten A's PRINT down, and *^
another four starting at the next columnand at the top row.
Wait! Why do you have only 14 A's? Why not15, the number f3
specified in thecommand? «^

When the TI executes a line in the command mode, the """
screen moves up one row after the command is finished. You'll "^
see how to avoid this later.

Using the CALL VCHAR command, you can complete the
border by adding left- and right-hand lines. Add these lines to
"Border."

|£8£\

30 CALL VCHAR(2,1,124,22) _
40 CALL VCHAR(2,32,124,22) "j)

You'll notice that the ASCII code value is different from the *3
horizontal borders. ASCII code value 124 is used to create the ^
vertical borders. Line30draws the left-hand border by starting
at row 2, column 1 and PRINTing 22symbols, just enough to ^)
fill in the gapbetween the topand bottom borders. The right- ^
hand border is created by line 40, which PRINTs 22 symbols *
starting at row 2, column 32. ^

With only six lines, you've drawn a border. You can use «^,
this technique in any game that requires a playing field
marked off from the rest of the screen. *^)

You now have the most fundamental part ofany arcade «^
game. Every game you create on the TI computer will use
CALL HCHAR or CALL VCHAR, because these commands *"*
are necessary to create the screen, the world where the game *•*
takes place. You'll use PRINTto put messages on the screen,

14 /0»

* but your game won't play unless you can put your game charac-
f* ters exactly where you want them on the screen. That'swhat

CALL HCHAR and CALL VCHAR do.
* Of course, there are more things you'll learn before you
£•* create your own games. You'll learn how to move characters on

the screen, both by computer and player control; how to tell if
^ two characters collide; and how to make sound effects with
£* your computer. This may seem like a lot, but you'll learn step

by step, so that in the end, you'll know how to put it together
^ to make a game of your own.
p» How a game looks is as important as how it plays. In the

next chapter, you'll see how to transform single letters of the
^ alphabet into graphic pictures that look like animals, people,
£* spaceships, or almostanything you can draw. Not only that,

but vou'll be able to choose colors for your character pictures.
JUS* J

p Review
In this chapter you've seen some of the building blocks that •

P* you'll use in programming arcade games on your TI-99/4A
n computer.

• By using PRINT, you can put letters on the screen.
f8* • Aprogram is a group ofcommands, each command
am having its own line number. RUN makes the computer

execute the program. You can also use LIST and EDIT to
P* make changes in your line-numbered commands.
gm • CALL HCHAR and CALL VCHAR place characters on

the screen, exactly where you want them,
f* The form for HCHAR and VCHAR is:

r> CALL HCHAR or CALL VCHAR (row, column, ASCII #, # of
^ chars)

15

^3

>—2

v3

f$01k

^R\

Your computer has theability tochange the shape and color of
its characters. You're not restricted to just the letters, numbers,
and symbols on its keyboard. You can use this to create crea
tures, objects, people, or backgrounds, or almost anything you
want!

Ifyou look closely at your TV screen, you'll see that each
letteris made up ofdots in a pattern eight dots wide by eight
dots high. Each dot canbe turned on or off—colored or not
colored. Theirarrangement creates the shape of the character.
For example, the letterA would have a pattern like Figure 3-1.

Figure 3-1. Dot Pattern

To createyour own custom gamecharacters, you simply
change the dot patterns. It'snot even difficult.

CALL CHAR
The CALL CHAR command lets you create your own
custom character by changing the dot pattern of any standard
character. By using CALL CHAR, you can change the dot
pattern of the letterA so that it resembles a spaceship. This is

19

20

&&>&

called redefining acharacter. After you have redefined a char- ^
acter, its new dotpattern will be printed onthe screen when- ^
ever you use it in a PRINT, CALL HCHAR, or CALL VCHAR ^
statement in the program. **)

There are two codes that make CALL CHAR work. The ^
first is simply the ASCII code value of the character, from 32 to -
159, that you want to change. You can look at Appendix Ato "**)
see whichcharacters are represented by which ASCII values. ~
For example, the space is ASCII 32, the !(exclamation mark) is
33, the # (number sign) is 35, and so on. **}

The TI divides these numbers into two groups for CALL ^
CHAR. When you use CALL CHAR to redefine the characters -
whose ASCII numbers are between 32 and 127, they will stay ^)
redefined only while your program is running. Then they will ^
go back to their normal patterns. For example, ifyou change an
Atoa rocket ship, it will have that shapeonly while your <*$
program is running. Afteryou stop the program, the letter A ~
will come back. This is a handy feature because otherwise you -
might change a character thatyou need toenter. It can get **)
confusing ifyou type Aand a rocket shipappearson the ^_
screen. *

If you prefer, you can use the characters that have the *^
ASCII values 128-159, and they will stay changed until you ^
change them back yourself or turn off the machine. ~

Either set ofnumbers is all right, but youmightwant to *^)
useonly thevalues from 32-127 so that you won'taccidentally ~
use an earlier redefined character. •

Select a Character Number. Firstofall, you must select a *^
character you want to change. Usually you won't want to ^
change the character whose ASCII number is 32, because that -
is the spacekey, what the TI uses forany part of the screen that "*)
doesn't have a character on it. You might also want to save the ^
alphabet so you can print messages on the screen, like GAME -
OVER or NEXT ROUND. <*)

Usually a good group ofstandard characters to change is «,
the symbols which begin atASCII 33 (!) and end atASCII 47 (/). *
While you will use some of these in your program, they will "^
not actually be redefined until the program runs, so that you
can type and LISTyour programs and still see, for instance, a
+ • n

For an example of how to use CALL CHAR, we'll use the ! _
(exclamation point). Its ASCII number is33. ^

/in

fim&i

$mfa\

£H£\

^9\

Defining Cystom Characters J)
Next, you have to decide what you want your new pattern

to look like.
Making a Picture. Some graph paper will be handy for the

nextstep. Ifyou can find somethat's marked off in blocks of
eightby eight, that's evenbetter. Otherwise, drawan eight-by-
eightblock on the graph paper, and createyour figure in it,
coloring in the squares that you want to appear on in the new
character, and leaving blank the ones that you want off. When
the custom character is placed on the screen, the on dots will
show in one color, while the of/dots will appear in the same
color as the background.

Forexample, here's a picture of the head of a caterpillar:

Figure 3-2. Caterpillar Head

The caterpillar is facing left, and has a mouth, eye, nose, and
feelers. You can change its shape it you want. The important
thing is to draw a picture first, and put it into an eight-by-eight
dot pattern.

After you have created the dot pattern, you must put the
pattern into a special code that the TI can read.

Think of each eight-by-eight block as if it were divided
into two parts, each four dots wide. For each four-dot section,
there are 16possible combinations of on (colored) and off (not-
colored) dots. In the TI, a binary code is used to specify which
dots are on and which are off. In binary notation, a 0 stands
for off and a 1 stands for on. However, you can use a type of
shorthand, called hexadecimal, to indicate the combination of

21

colored dots in your own custom character.
Figure 3-3 shows each combination of on and off dots, as

well as the corresponding hexadecimal codes.

Figure 3-3. Character Combinations and Codes

Dot Combination Hexadecimal
Code

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

To create your own figure, you simply arrange the codes
for the four-dot sections in order, beginning at the top-left
corner and working to the right, then down to the next row,
proceeding until you reach the bottom-right corner. If you
remember that it's just like the way we read, starting at the top
and moving to the right, you won't have any problem with it.

Make sure that the combinations match the code you've
chosen. For instance, the caterpillar head would have these
hexadecimal code values for its dot combinations:

22

/SEN

fSg\

/C5&

/gey

0mA

/Bin

flftfc"*

/SEN

fWB5

f*

Figure 3-4. Caterpillar Codes

BO

40

39

5F

DF

7D

08

30

lanracters

The whole pattern for the caterpillar's head is:
B040395FDF7D0830

Once you have created the number and letter pattern that
represents all the dots, you can put it into the CALLCHAR
command.

Here's how it works:
• Type CALL CHAR.
• Enter a left parenthesis (SHIFT9).
• Type the ASCII code value of the letter, number, or

symbol you want changed.
• Enter a comma, followed by a quote mark (FCTN P).
• Type all 16 letters and numbers that make up your

pattern, with no spaces in between. (If you type less
than 16, the computer will fill the rest with blanks, and if
you type more than 16, the computer will ignore the
remainder.)

• Finally, type another quote mark, and a right paren
thesis (SHIFT 0).

In the example of our caterpillar head, type:
CALL CHAR (96,"B040395FDF7D0830")

When typing this, be sure to put the parentheses, comma,
and the quotes in the right places, or the TI won't know what
you want it to do.

Putting It on the Screen. If you typed a CALL CHAR
command by itself, nothing would happen. Actually, you

23

'MMUkkudfci*™^^ >"••* f\ III I •^tayJwoy

DefiniiiQ Cyst@m Characters

would see the screen blink, but the command'seffectwould be *^
overbefore you were able to see it. **$

What you have to do is create a program to see it.
First of all, type NEW and press ENTER. This will clear *J

your computer's memory. «a^
Before you begin typing, make sure that your ALPHA

LOCK key is pressed and locked down. Otherwise, you may ^
have problems with someof the letters you type. «^

Then enter:

120 CALL CHAR(96, "B040395FDF7D0830") ^
However, if you run the program by typing RUN and >

ENTER, you still won't see anything. You must add a special ^
line afterward to keep the picture you've created on the screen
so that you see what has happened. >

Type: ^
170 GOTO 170

GOTO is a command that tells the computer to go to a
specific line and execute that line. If you are on line 170and '
you tell the computer to GOTO line 170, the program will stay «^
stuck on that line, always going to itself, until you stop it. If
you don't have something like this, when the program ends *^
and after it has processed the last command, the screen char- «*^
acter shapes will go back to their original values. (See the
section "Stopping the Program" in this chapter tosee how to ^
stop your program.) ^

You still can't see the new character's shape until you print
it on the screen. To do this, use CALL HCHAR. *^

To put the caterpillar's head at row 5, column 10, for ^
example, you would add:
150 CALL HCHAR(5,10,96) ;

This will put character 96, the character you just redefined to '
look like a caterpillar head, on the screen. "^

(Notice that you are able to type line 150 after you typed
line 170. However, if you LIST the program, you'll see that line '
150 has been inserted between line 120and line 170.) It's a **)
good idea to always use LISTto see if you've made any
mistakes. •

Before you type RUN, however, add one more command: "^
100 CALL CLEAR

This will clear the screen so that you will have an empty screen

24

n

r

when the program runs.
Now, when you type RUN and press ENTER, this short

program will display a caterpillar's head on the screen.

Program 3-1. Caterpillar
100 CALL CLEAR
120 CALL CHAR(96,"B040395FDF7D0830")
150 CALL HCHAR(5,10,96)
170 GOTO 170

Stopping the Program. After you have typed RUN and
seen your caterpillar, you will notice that pressing the keys on
the keyboard has no effect. This is because line 170 has the
computer stuck in what is called an infinite loop. Hundreds of
times a second, the computer is executing line 170.

The only way to stop it, besides turning the computer off,
is to press the FCTN key, hold it down, and press the 4 key.
This should stop your program and you will see the message:
* BREAKPOINT AT 170

The computer will beep to tell you that it has stopped.
Also, you'll notice that your caterpillar's head has changed

back to a single quotation mark, because it kept its redefined
shape only while the program was running.

Adding Legs and a Body. Your caterpillar might like a
body and legs. All you have to do is design a character to look
like a body segment. Here's how it might look, complete with
dot combination codes:

Figure 3-5. Body and Legs

25

3 Defining Cystom Characters

Add this line to the program we've been creating,
Program 3-1: *^)
130 CALL CHAR(97,"00EEBFFDEFFFAAAA") a»

To put the character on thescreen, add this line: ^
160 CALL HCHAR(5,11,97,5)

This will put character 97, which you redefined in line 130,
into row 5, column 11. Column 11 was picked because it is one ***)
column to the right of the caterpillar's head. The fourth «
number, 5, is the number of times that the character will be
repeated to make a long body. ^

When you type RUN and pressENTER, you'll seea cater- ^
pillar, complete with head and body. You can make the body
longer or shorter by selecting a different value for the fourth ^
number in the CALL HCHAR command. ^

Adding Color «»
So far in this chapter, you've seen how to create new shapes.
But there's another way you can make your characters unique, '
and that's to add color. There are two ways to add color to the «^
screen. The first is by changing the whole color of the screen,
and the second is to give each character, orgroup of characters, "^
a different color. *=^

Screen Color. Depending on how your TV screen is
adjusted, you should see a green background when your ^
program runs, and a blue background when you are typing. «^

If you would like to change the color of the background
screen, you use the CALL SCREEN command: *^
CALLSCREEN (n) ^
where n is a number from 1 to 16. Each number represents a ^
different color. For a list of the colors and their number values,
refer to Appendix B, "Color Values." You could retype the
CALL SCREEN command 16 times to see each color, but an
easier way is to enter and RUN this short program. You'll see
the color and its value for a moment on the screen.

Program 3-2. Screen Color
10 FOR C0L0R=1 TO 16

20 CALL CLEAR

30 CALL SCREEN(COLOR)
40 PRINT "COLOR VALUE";COLOR ."^
50 FOR DELAY=1 TO 1000

26

Gyst@im Characters

* 60 NEXT DELAY

pa 70 NEXT COLOR
^ 80 CALL CLEAR
pa 90 GOTO 10

f» Asyou can see from looking at the color value table in
Appendix B, color 1 is transparent. Ifyou had a transparent

^ graphics character, it would be the same color as the screen. In
f** otherwords, it wouldbe invisible. Specifying CALL SCREEN

(1), however, will make the screen black. Since the print on the
^ TI is displayed in black too, you'll not see a message for the
p» black color in this program. In fact, because the transparent

screencolor prints in black, the first two seconds of this
^ program will create ablack screen.
f» Changing the screen color ofour caterpillar program could

be done by simply adding this line:
110 CALL SCREEN(16)

^ which will turn the screen color to white. Of course, you could
p» select a different color by entering another color value inside

the parentheses.
^ Character Color. You canalso change the color ofany stan-
f» dard or custom character. All you have to do is use the

command CALL COLOR.
^ TheTIdivides all the characters that it uses into groups of
f* eight characters, called character sets. For example, the charac

ters that have ASCII numbers from 32 to 39 are all known as
^ character set 1, the characters that have ASCII numbers 40-47
(» are set 2, and so on. Appendix A "Characters," also lists the

characters by set.
^ When you change a color, the entire setof eight characters
p> changes. For example, ifyou change character set1, you

change the colorsof the space, as wellas those of the !"#$%&'
symbols.

a To use CALL COLOR, you must specify the character set
number, the foreground color, and the background color. The

^ foreground color sets the on dots in the character pattern, and
pm the background colorsets the off dots. If you are using a char

acter set that does not include the space, character set 2, for
^ instance, thebackground might bedifferent from thespace
fm color, so that you can have multicolored characters.

The form for CALL COLOR is:

CALL COLOR (character set number, foreground color
value, background color value)

27

Custom Characters

For example, adding this line to Program 3-1, "Caterpillar,"
changes the character colors: *^
140 CALL C0L0R(9,9,16) *=%)

This colors all of character set 9, so that the foreground color is «^
9, or medium red, and the background color is 16, which is
white. ^

Ifyou use color 1, which is called transparent, then what- «=^
ever the screen coloris becomes the color for backgroundor
foreground color. ^

In this example, you would get thesame colors ifyou «^
typed:
140 CALL COLOR(9,9,1)

because the screen color was previously set to 16. ?
You can change the character colors, just as you changed -^

the screen color, by selecting another color value.
Here's the caterpillarprogram so far: "^

Program 3-3. Caterpillar Complete ^
100 CALL CLEAR ^
110 CALL SCREEN(16)
120 CALL CHAR(96,"B040395FDF7D0830") '
130 CALL CHAR(97, "00EEBFFDEFFFAAAA") «sv
140 CALL COLOR(9,9,16) '
150 CALL HCHAR(5,10,96) <=^
160 CALL HCHAR(5,11,97,5)
170 GOTO 170 *™)

Flickers. You can even use the CALL COLOR command to ^
create flickering or blinking custom characters. To make the a
caterpillar figure flickerrapidly, for example, you could use the
transparent color 1, alternating it with another character color. ^
Replacing line 170in Program 3-3and adding the new lines 180 *«
and 190 would do this. The changes you would enter are:
170 CALL COLOR(9,1,1)
180 CALL COLOR(9,9,16)
190 GOTO 170

RUN the program to see the difference this feature can make in ;
your character's appearance. The character is made invisible by <"*}
line 170, and then visible inline 180. Itall happens so quickly, me%
however, that it seems to flicker. ~

Disappearing Characters. You can make the character "^
blink off and on at a slower pace by making a few more 0U.

28 *?

fSr?\

4UT!\

i0Sv

)efininq Cyst@m Characters

^ changes. The character is again made invisible and then visible,
f5* only this time the delay loop in line 180 slows the process
_ down. Here are the lines you need to change and add to the
^ original version of Program 3-3 to see this happen:
f* 170 CALL C0L0R(9,16,16)
a 180 FOR DELAY=1 TO 100
^ 190 NEXT DELAY
pv 200 GOTO 140

am Solid Characters. There are two ways you can create solid
squareson the TIscreen. These kinds of figures can be used in

^ games to draw borders, walls of mazes, orsimple playing
m* fields.

One way to draw solid figures in color is to assign the
^ same color to both the foreground and the background in the
p& CALL COLOR command. This will make the eight-by-eight

dot pattern one color, no matterwhat the on-off combination of
^ dots. The only thing you should remember is thatifyou're
p* using character set1, which includes the space (ASCII code

value 32), most of the screen will change to the new color. If
f5* you want to create solid squares of color, you should not use
pa set 1.

As an example, let's change the caterpillar figure into a six-
^ block bar. It's easy. All you have to do ischange line 140 in
pa Program 3-3:
pa 140 CALL C0L0R(9,9,9)

All the characters in set 9 now display in red, and the cater-
^ pillar becomes a solid red bar. The rest of the screen remains
f* white. If this had been set1,almost all of the screen would

have changed to red, since much of the screen is filled with
L spaces.
p* The other way tocreate solid blocks, ofcourse, is tomake

custom characters defined as 0. Although the character may
^ seem empty, all you have to do is set the figure's foreground
p* and background colors to thesame color value, as youdid

with the caterpillar. If you want to type more on the keyboard,
^ you can draw acharacter as completely filled by entering
(** FFFFFFFFFFFFFFFF (16 F's). You would only have to specify

the foreground color, then; the background could be set to
^ anything and the square would still show on the screen.
pa But drawing characters is only part ofthe technique

needed to create your own arcade games. Another is motion.

30

tsss\

Even ifyou have a dazzling screen and unique characters, it ^
still isn't a game unless the characters on that screen move and <=^
interact. The next chapter will show you how to do that.

Review "

In this chapter you've learned how to make custom characters
by using CALL CHAR, which defines a dot pattern eight-by- •JB|>
eight- m^

• CALL CHAR uses the ASCII character number and a
set of numbers and letters that represents the dot ^
picture. The form for the command is:

CALL CHAR {character number, "dot pattern code")
• CALL HCHAR PRINTs the custom characters on the

screen.

• CALL COLOR can color your characters in the following «=^
manner:

CALL COLOR {character set number, foreground color
number, background color number) *^)

Each set ofeight characters has a character set number, from 1 ^
to 16, and each color has a number, from 1 to 16. _

^5^!k

«sa

ftfrmA

Now that you've seen how to redefine characters, it's time to
see how to make them move. Making figures move is what
arcade games are all about—if it doesn't move, you don't really
have a game. This chapter will covercomputer-controlled
movement—making the TI move your standard or custom
characters. The next chapter will explain how you can use the
keyboard or joystick to move figures under playercontrol.

First of all, you'll need a figure for the computer to move
on the screen. Instead of a caterpillar, let's change it into a
butterfly.

Here's a dot pattern for a butterfly.

Figure 4-1. Butterfly

To create the butterfly in Figure 4-1, type:
10 CALL CHAR(33,"2499DBFF7EFFC381")

This creates a figure as character 33, which is the exclamation
mark.

More about Color. You'll notice that some color combina
tions work better on your TV set than others. A combination
that will work well for your butterfly figure is an orange char
acter on a black background. To see this, you'd enter:
20 CALL SCREEN(2)

33

^# B@gmnm<§ to IVtewe ^

to make a black screen, then ^
30 CALL C0L0R(1,7,1) gs^
to make the orange character.

The first 1refers tocharacter set1, which includes the ^
exclamation mark (ASCII 33). The 7 is actually dark red, but it ^
looks orangeon most TV sets when they are properly
adjusted. '

(When you are setting up your color TV and your TI «)
computer, adjust the TV set so that the flesh tones look right,
then switch back to the channel that your computer willbe on. '
This way, you can use colors in a way that willmatch what **)
other people will use.)

The third number in the CALL COLOR command isa 1, ^
which means that the background of the butterfly's eight-by- **)
eight grid will be transparent. As mentioned inChapter 3, this ^
means that it will match whatever the screen's color is. '

To make sure you have an empty screen, it's a good idea to ^
always type:
5 CALL CLEAR ™

Now, if you would like to see your butterfly on the screen, *
enter «^
40 CALL VCHAR(5,10,33)
900 GOTO 900

«<a

Line 40 putscharacter 33 in row 5, column 10. Line 900 is ^
there so that your program will keep running. «^

The program looks like this so far:

Program 4-1. Butterfly
5 CALL CLEAR

10 CALL CHAR(33,"2499DBFF7EFFC381") ^
20 CALL SCREEN(2)
30 CALL COLOR(l,7,l) "^
40 CALL VCHAR(5,10,33)
900 GOTO 900

Making It Move
To make something appear to move on the screen, you'll go
through a four-step process: ^

• You draw it on thescreen, byusing CALL CHAR to —^
create your character in memory, and CALL VCHAR or
CALL HCHAR to put it on the screen. "1

$$$s

/fps^

f$hkK

z^3*

• Then you create a shortdelay. You needa delay because
theimage must appear on thescreen long enough for
you to see it. You create a delay simply byusing a FOR/
NEXT loop.

A FOR/NEXT loop is made up of two parts. The FOR
portion of the loop would be written something like this:
FOR X = 1 TO 500
This sets up a counting system for keeping track ofhowmany
times X (or any variable) executes.

The NEXT part of the loop would be written as:
NEXTX

^ This sends the computer back up to the line that has the FOR
p* portion of the FOR/NEXT loop. The FOR/NEXT cycle will

continueas many times as specified in the statement. This
P* typeofloop slows the computer down.
«a Another use of FOR/NEXT loops is to cause a certain kind

ofaction to happen a certain numberoftimes. The first
P* number after the FORis the starting number of the variable (X
am in this case), and the secondnumber is the final number. If you

want it to count in increments larger or smaller than one, you
f^ can add the word STEP and the number you want to have it
(« increment by. For example, you could enter something like

this:

^* FOR X = 500 TO 1STEP -1
F* and the computer would count backwards by ones.
p* Often you won't need to use aFOR/NEXT loop when

simulating motion, because you'll put necessary calculations in
f^ the part ofthemotion cycle thatcomes between when a char-
pa acter is put on the screen and when itis erased. These calcula

tions will slow the computer down.
^ • Next you need toerase your character at its present loca-
f» Hon before you move it to a new one. If you don't, it will

look like it's leaving a trail behind. You can erase a char-
<•* acter bysimply using CALL VCHAR or CALL HCHAR,
fm and using character 32, which is the space. Printing a

space on top of anything erases it.
^ • Finally, you put your character at itsnew location with
^m CALL VCHAR orCALL HCHAR, using a new row and

column value for its new location.

^ These four steps will create motion on your TI computer.

35

Beginning to i¥i@we **>

Here's a sample program which will show you how to ^
make yourbutterfly character move. To Program 4-1, add the _
following lines.

Program 4-2. Butterfly Motion
100 FOR X=l TO 10

110 CALL VCHAR(5,10+X-1,32)
120 CALL VCHAR(5,10+X,33)
130 FOR Y=l TO 100

140 NEXT Y

150 NEXT X *^)

"••5N

These six linesare very importantfor understandinghow ^
motion works. The following explanation will help to clarify ^
these six lines, as wellas the lines you typed in earlier.

Here is how the four steps of motion, mentioned earlier, ^
work.

Step 1. The characterwas first PRINTed in Program 4-1,
line 40. But each time it'sprinted again, line 120 will place it at ^)
itsnew row and column number. Line 120 uses thevariable X, ^
which was set up in the FOR/NEXT loop in line 100. Xwill }
increase by 1each time the programgoes through the loop, ^
starting at1and going to 10. Because of this, the computer can m^
use Xand add it to the original column, 10. The first time
through the loop, line 120 will print the character at column 11 "®)
(10 +1 = 11), the next time around the loop it will print at _
column 12, and so on.

Step 2. The delay must come after the character is printed, ^
but not before the character is erased and a new one isprinted. «^
Lines 130 and 140 use another FOR/NEXT loop, which creates a '
delayas the computer goes through the loop 100 times. You "^
can, ofcourse, make the Ylooplonger or shorterby increasing
or decreasing the range of values. This will lengthen or shorten
the delay time. ^

Step 3. Next you erase the old characterin line 110 by m*
PRINTing the space character (32) at the previous location.
This also uses the Xin the loop, but subtracts 1 from it, since ~*)
you want toerase the old character. Since Xstarts outat 1, the -^
first time through the loop, the erasing will be at 10+ X-1 (this
could also be stated as 10+1 -1). Since 1-1 is 0, it will erase at "^
column 10. The next time through the Xloop, Xwill be 2, so _»
10-I- X-1 will be 10+ 2-1, or 11. The erasing is always one
column (or row, if it is moving up or down) behind where it "*)
PRINTS. ^
36 ^

«^

^ Step 4. Finally, you PRINT the new character in line 120.
f^ This must happen immediately after the erasing, with no
«^ delays ofany kind in between. Line 120 uses Xto put character
- 33in a new column. Movingusually involves a cycle of putting
p* characters on the screen, delaying, erasing, and putting them
_ on the screen at a new position.
• You can have the character move up or down by adding
p* numbers to the row number instead of the column. For
_ example, change lines 110 and 120 to read:

110 CALL VCHAR(5+X-1,10,32)
P" 120 CALL VCHAR(5+X,10,33)

f^ When you type RUN and press ENTER, yourbutterflywill
^ move downward instead of to the right.
; By changing a few lines, youcan make the butterfly move
P* back and forth across the screen in a continuous loop. What
-a youend up doing is creating anotherset ofinstructions to
^ move the character from right to left, erasing the previously
f^ printed figure and reprinting it in thecolumn to the left. Most
« of these lines are duplications ofones you've already entered.
^ To move the butterfly back and forth, simply add these
P* lines to Program 4-2:
pa 160 FOR X=10 TO 1 STEP -1

170 CALL VCHAR(5,10+X+1,32)
(^ 180 CALL VCHAR(5,10+X,33)

190 FOR Y=l TO 50

r* 200 NEXT Y
210 NEXT X

^ 220 GOTO 100
ps> 900 GOTO 900

^ Line 160 moves the character from right to left by
^ assigning Xavalue starting with 10, so that the butterfly's
f^ position is at column 20 (10 +10), its last location as it moved
^a left to right. Each time through the main movement loop of the

program, Xdecreasesby 1, due to the STEP -1 statement.
P^ Lines 170 and 180 first erase the previous character and then

print a new figure to the left. (The second time through the
loop, the butterfly shows up in column 19 [10 + 9]; the third
time through the loop, in column 18; and so on.)

Line 190 creates a delay loop, this time half as long as
when the character moved from left to right. Notice how much
faster the butterfly moves from right to left, compared to left to
right. Lines200 and 210 are the NEXT part of the FOR/NEXT

37

/F31

170 CALL VCHAR(5+X+1,10,32)
180 CALL VCHAR(5+X,10,33)

s

«*

loop begun in line 160, while line 220 simply sends the ^
program back to line 100, where the movement from left to «^
right executes again.

This movement will continue until you press the FCTN ^
and the 4 keys. m^

You could use something like this in a game of your own if
you wanted a target thatconstantly moved from side toside, ^
like the ducks in a carnival gallery. To move the butterfly up <•*)
and down, over and over, all you'd have to do is change lines
110 and 120 as you saw earlier, and then alter lines 170 and 180 ^
to:

If you put a number of characters on the screen, each ^
moving in its own particular pattern, you could have the basis «o*
for a simple arcade-style target-and-shoot game.

Random Motion
Often it's useful to have a character move in ways that the
player cannot predict. If you know that a character will always
move from left to right, for instance, the game may be too easy.

YourTI has a function called RND, which picks a number
that will be different each time. The number selected is always ^
a decimal function between 0 and 1. For example, it could be «
.5, .33, .76934, or .102113. "

This number by itself might not seem too useful, but you ^
can multiply itbyany number to get a larger one. For example, ^
if you multiply it by 10, you'll get random numbers between 0
and 9. They'll still have several numerals after the decimal "^
point, however. ^

To use RND effectively, you must use another function,
called INT, which stands for INTEGER. This function knocks ^
off any fractional part of a number. For example, if you have a
number like 1.33, it will drop the .33, leaving you with the
integer 1. **)

Because RND picks numbers between 0 and 1, ifyou use ^
the INT command which rounds off fractions, you would
always end up with 0. You must be sure to multiply the RND """^
function inside the parentheses after the INT command. To
move up the range of possible numbers, you need to add a
number to the end of the statement.

Here's a formula you can use.

38

^•"SS

4BS\

-^

iffSJN

/WSN

fi$tm\

teainninq to SVS©¥e

^ To get a random number between 1and X, use:
?* INT(RND*X)+1
(js* For example, to get a random numberbetween 1and 32, which

would be helpful in selecting a column on the screen at
^ random, the formula would look like this:
P* INT (RND *32) + 1
gm If the +1 were omitted, the range would be between 0 and 31.

Whenever you use this formula in your program, you'll get
P* a different number between 1 and 32. (The * character is the
p> multiplication sign.)

A Fluttering Butterfly. To set up a program to move the
f^ butterfly in random motion, in any one of eight directions (up,
pa down, left, right, or up-right, up-left, down-right, down-left),

enter the following new program:

m Program 4-3. Random Butterfly
10 REM BUTTERFLY

f5* 20 CALL CLEAR
30 CALL SCREEN(2)

P* 40 CALL C0L0R(1,7,1)
_ 50 OR=12

<"* 60 OC=16
pm 70 CALL CHAR(33,"2499DBFF7EFFC381")
^ 100 REM LOOP
(« 110 X=INT(RND*3)-1

120 Y=INT(RND*3)-1
f^ 130 NR=OR+X

140 NC=OC+Y

y* 150 CALL VCHAR(OR,OC,32)
em 160 CALL VCHAR(NR,NC,33)
[170 OR=NR
^ 180 OC=NC

200 GOTO 100

This program can be divided into two parts:
f^ • The initial part, which sets up the beginningvaluesof the
tm program. This includes lines 10-60, which create the shape,

colors, background, and initialposition of the butterfly.
^ • Thepart of the programthat moves the butterfly. In this
p> part, the numbers used tocalculate the new position ofthe

butterfly are created, the rows and columns of both the
^ new and old positionof the butterfly are calculated, the old
p> butterfly is erased, and thenewbutterfly iscreated. Finally,

the old row and column become the new row and column,

39

so that the process can start over again. Notice that there is ^
no FOR/NEXT loop to create a delay, as there was in the **>>
last program. This is because there willbe enough delay in
the calculation of the new and old row values. You could ^
stilladd a delay ifyou want, becauseone of the factors of ^
game design has to do with how long an image appears on
the screen. If itis too quick, the eye doesn't pick up all the ^
details, and if it is too slow, the player gets bored. ^

Here is a more specific line-by-line explanation.
Line 10is a REMark; anything following REM will be '

ignored by the computer, but it's often important for you to —^
know what a program does. Adding remark labels will make _
your programs easier to follow and is a good habit to get into, '
especially in more complicated programs where you may want ^
dozens of REM statements to label all the different parts.

Line 20 clears the screen, line 30 sets the screen color to '
black (2), and line 40 sets the color of the character to orange, ^
with a transparent background.

Lines 50 and 60 establish the variables OR and OC (Old ^
Row and Old Column). The starting position is row 12 and ^
column 16, which is roughly at the center of the screen.

Line 70 creates the butterfly using CALL CHAR. ~$
Line 100is another remark to show that you have started *^

the main part of the program. Line 100is the start of the main
movement loop, with line 200as its other end. The program '
will go back and forth between line 100 and line 200. ^

Lines 110 and 120set up random numbers. What you want
to do isget numbers that are either 1, 0, or -1, for both the ^
row and column change. INT (RND*3) will produce numbers ^
between 0 and 2, and subtracting 1 will make them between
-1 and 1. Xwill be used for the row change, and Ywill be ^
used for the column change. ^

Lines 130 and 140 calculate the new row and columns that
you want to print the butterfly at. NR and NC are the New '
Column and New Rows. New and Old are used to show the ^)
positions where the butterfly will be printed (New) and where
it will be erased (Old). '

Lines 150 and 160 use CALL VCHAR to first erase the old -^
butterfly by putting character 32 (space) at row OR and column
OC. Then, character 33 (butterfly) is put on the screen at row '
NR and column NC. -*)

Lines 170and 180 change the values of the old row and

40 ^

tdm^,

FFfmTt

fi^s*|

ffofifel

column to the new row and column. Only by using this will
f5^ the character erase when line 150 is executed the next time
pa through the mainloop.

Line 200 simply sends the program back to line 100, so
f^ that the loop repeats.
p, Checking for the Edge of the Screen. When you run the

program, you can watch the butterfly fly around the screen,
P* but after a while, the program will stop and you'll see an error
pv message, probably onethat reads BAD VALUE IN LINE 160.

This is because the butterfly fluttered too close to an edge
P* and the NR and NC values were higher or lower than the TI
em allows. Since the row numbers can be only from 1 to 24 and the

column numbers from 1 to 32, if your program has a row
f^ number greater than 24 or less than 1, or a column number
p> greater than 32 or less than 1, you will get the BAD VALUE

error statement from the TI.
r° To avoid this, you must add a way to check for row and
p* column values. The easiest way todo this is toadda GOSUB

command, which will make the program go to a subroutine,
r* do what is there, and then RETURNto the main program. You
mm could add the subroutine to the main program, but it's often

easier to understand if you have a simple main loop, and use
P3 GOSUB commands to process more complicated kinds of
« information by sending the computer out of the main loop to a

subroutine and then having it return. This way, you can use
f5* the same subroutine over and over again without cluttering up
psv your main loop or having to rewrite the lines. For our example,

simply add the line:
145 GOSUB 300

(^ This will check the NR and NC values that were just
created in lines 130 and 140.

Now add:

P* 300 REM CHECK FOR SIDES
—^ 310 IF NR<1 THEN 400
^ 320 IF NR>24 THEN 400
pss 330 IF NC<1 THEN 400

340 IF NC>32 THEN 400

f^ 350 RETURN

p* This subroutine has the REM statement CHECK FOR
SIDES in line 300. Lines 310 to 340 test NR and NC to see if

^ they are numbers thatcan be used bythe TI for the CALL
(« VCHAR routine. If they are smaller or greater than the

41

Sepmraing to IVtawe

mmSS\

numbers that are legal, the program will jump to line 400. J
Otherwise, the program will continue. ^

Line 350 is a RETURN command. RETURN must always _
be the last line in a GOSUB subroutine, and it will make the
program go back to the last GOSUB command. «^

The subroutine to reset the values for NR and NC look like

this: ~
400 REM ERROR ^
410 NR=12 _

420 NC=16 /

430 RETURN m^
This is a separate part of the same subroutine that the

program will shift to if any boundary errors are found in lines
310-340. ^

Lines 410 and 420 change the new row and column _
numbers from the edge of the screen to numbers that will be at '
the center of the screen. Line 430 RETURNS the program to ***)
line 145, and the butterfly continues to move. _

The complete program to move your butterfly character
randomly around the screen looks like this: ^

Program 4-4. Random with Edge Checking ^
10 REM BUTTERFLY "^
20 CALL CLEAR

30 CALL SCREEN(2) ^
40 CALL COLOR(1,7,1)
50 OR=12 '

60 OC=16 «•»

70 CALL CHAR(33,"2499DBFF7EFFC381") '
100 REM LOOP ^
105 RANDOMIZE

110 X=INT(RND*3)-1 ^
115 RANDOMIZE

120 Y=INT(RND*3)-1 ?
130 NR=OR+X -~

140 NC=OC+Y }
145 GOSUB 300 ^
150 CALL VCHAR(OR,OC,32)
160 CALL VCHAR(NR,NC,33) *"}
170 OR=NR

180 OC=NC J

200 GOTO 100 «^
300 REM CHECK FOR SIDES . '
310 IF NR<1 THEN 400 «^
320 IF NR>24 THEN 400

«\

42 '^

fim<&\

teginnirtig t© BVfowe

f* 330 IF NC<1 THEN 400
« 340 IF NO32 THEN 400

350 RETURN

a 400 REM ERROR

V 410 NR=12
p» 420 NC=16

430 RETURN

^ Another way to program this kind of movement is to use
p* the conditional OR to checkif the characteris close to a screen

edge. This method will shorten the program somewhatby
^ checking for two different things in one line. Itwould look like
(j^* this:

p* Program 4-5. Side Checker with OR
p* 10 REM BUTTERFLY
^ 20 CALL CLEAR
P> 30 CALL SCREEN(2)

40 CALL COLOR(l,7,l)
f* 50 OR=12

60 OC=16
f 70 CALL CHAR(33,"2499DBFF7EFFC381")
tm 100 REM LOOP

105 RANDOMIZE

pv 110 X=INT(RND*3)-1
115 RANDOMIZE

P* 120 Y=INT(RND*3)-1
130 NR=OR+X

140 NC=OC+Y

145 GOSUB 300
150 CALL VCHAR(OR,OC,32)

(«a 160 CALL VCHAR(NR,NC,33)
170 OR=NR

f^ 180 OC=NC
200 GOTO 100

f^ 300 REM CHECK FOR SIDES
«a 310 IF (NR<1)+(NR>24)THEN 400
1 320 IF (NC<1)+(NC>32)THF.N 400
p* 330 RETURN

400 REM ERROR

p* 410 NR=12
420 NC=16

f^ 430 RETURN

• Lines 105 and 115were added, lines 310-330 were changed, and
f^ lines 340 and 350 were eliminated. Those are the only differ-

ences between this and Program 4-4.
^ Lines 105 and 115 contain a new command, RANDOMIZE.

p> 43

4K$\

This will create truly random numbers, which the RND func-
tion does not actually do. If you RUN a program which has the **)
RND function over and over, you would see the same ,_-
sequenceof numbers again and again. This makes a game
using the RND function seem to follow a certain pattern, "^
something you probablydon't want. You want each game to be «
a little different from the last.

To generate true random numbers, it's a good idea to place *^
the RANDOMIZE command somewhere inyour program. ^
Some programmers put it only near the beginningof the
program, but it's probably best to use RANDOMIZE just "*%
before you use a statement with a RND function. This is what ~
lines 105and 115 do. ^

Lines 310 and 320may look confusing, but they're really "^
quite simple to understand. You can use the + sign in an IF/ «~
THEN statement to simulate the logical OR other computers
allow. The logical OR means that at least one of the parts of the ^
line (before and after the + sign) must be true to shift the _
program. For instance, in line 310, if either NR<1 or NR>24 is
true, the program shifts to the subroutine at line 400. Only one *^
of those conditions has to be met for the program to move to *—
the subroutine. Notice that the parentheses are used to sepa-
rate the different conditions from the + sign. This eliminates **)
any possibility of the computergettingconfused and thinking ^.
that the value 1 is to be added to something.

In other situations, you may want to have both sections of ^
the line be true before a shift to another line takes place. You
can do this by using the logical AND, which is represented on
the TIby the *sign in an IF/THEN statement. For example, if
you wanted the subroutine at line 400called only when both
NR<1 and NC>32 are true (in other words, only when the
butterfly is in the upper-right corner of the screen), you could
use a line such as:

IF (NR<1) * (NC>32) THEN 400
Both parts of the line must be true for the program to shift to
the subroutine. You could use this to call a subroutine congrat- **)
ulating you on winning the game, for example, if theobject ^
was to get the butterfly from one corner of the screen to
another, perhaps avoiding flower obstacles on the way. ^

Character motion such as patterned and random move- «*
ment will be necessary for your arcade games because usually

44 <^^

*5KN

n

n

f^ you'll want to create some moving character for your game
§m player to react against.

However, there is one more kind of motion which is abso-
P* lutedly essential to arcade game play, and that is the motion
p> that happens when the player provides input and tells the

computerwhat to do by pressing a key or pulling a joystick.
P* In the nextchapteryou'll see how to have yourplayer's
p> wishes transferred to the computer program.

p> Review
—, In this chapter you saw how to createmotion on the screen by
^ moving abutterfly character around in both patterned and
P> random ways.
p^ The four steps to create movement are:
^ • Using CALL VCHAR or CALL HCHAR, you place a
p* character on the screen. You use CALL CHAR to create
~ you own custom characters.
- • A FOR/NEXT loop can be used to create a short delay so

p* that the characters can be more easily seen. Sometimes
^ the main loop's calculations do this for you.
- • The character has to be erased at its old row and column
P location. Printing a space character (ASCII 32)does this.
_, • Finally, the character is displayed on the screen at a new
' row and column position. It's important that there be no
P delay between the erasing and putting a new character
/5SV on the screen, oryou will have the appearance oftwo

characters on the screen.
p^ • It is also important to check that the row and column
_ numbers are within the limits of what the CALL VCHAR

command allows. Row numbers must be between 1 and
P 24, and column numbers between 1 and 32. Subroutines
__. can check for errors.
ram)

f^\

f^ 45

'vj
p

ijp
sM

<M
<S

^
3

sJ
*

*J
*

<3
<S

kj
l

*M
vj

l
v^

ll
s^

^
3

\S
<$

<3
sJ

I
\M

wJ
J

«J
0

<S
vJ

I
vJ

l
^

vJ
J

>*J
1

vJ
J

^M
\M

vJ
J

vJ
J

v#
\J

f

[turn*

In the last chapter you saw how to create motionby moving a
butterfly character. But simply moving things on the screen is
usually nof a game: To have an arcade game, the player should
be able to interact with the game's imaginary world.

The player should have some way to affect the computer
program. You can do this in two ways: the TI's keyboard, or
joysticks.

Using the Keyboard
The TI computer accepts commands from the keyboard when
you useone oftwodifferent BASIC keywords.

INPUT. The first way to use the keyboard is with the
INPUTcommand, but it really works too slow for player-
controlled movement. INPUT accepts as many keystrokes as
the player types in until theENTER key is pressed. Ause for
this mightbe to have the player type in his or her name. For
example:
10 INPUT "WHAT IS YOUR NAME?":A$

would have the computerfirst display the phrase WHAT IS
YOUR NAME?, and then it would store as A$ whatever was
entered. A$ could be printed later, perhaps at the end. For
example:
PRINT "CONGRATULATIONS, "; A$;"! YOUR SCORE WAS
"; SCORE; "POINTS."
The player's name would appear in the message.

This is a nice way to embellish your game, but it's an
extra, not a necessary ingredient for a fast-action game.

Because the program stops to receive information when
you use INPUT, it'snot as useful in a game situation as the
other keyboard command, CALL KEY.

CALL KEY. You can use the command CALL KEY, which
will look to see if a key has been pressed, to receive player
input.

CALL KEY has three parts to it.
Key-unit. The first part of the CALL KEY command is

called the key-unit and tells the TIhow to refer to its keyboard.

49

«4*IWl\

£lB&h

You can use this to split the keyboard in two, look for upper- "^
and lowercase, or use a forced uppercase mode. «*)

In this book, the programswill usuallyuse a key-unitof3,
which does three things: ^

• All input, whether it is lowercase or uppercase letters, «^
will be interpreted as uppercase letters. This is a safety
factor, because then theplayer doesn'thave to worry '
aboutwhether theSHIFT key or ALPHA LOCK keyis «•)
pressed.

• Thekey-unitof3 alsochanges the function keys (which
are producedby simultaneously pressingthe FCTN key
and anotherkey) to specific numbers. This will preventa
program being erased if the FCTN and the = keys are
accidentally pressed at the same time.

• Thekey-unit of3 also ignoresany controlcharacters
(which are producedby simultaneously pressingCTRL
and another key). This insures that the playerwon't acci
dentally create a code that your game won't understand.

Return-variable. The second part of the CALL KEY
command is called the return-variable. Thiscan be any variable
you choose. When CALL KEY is used, thecomputer will put
thenumber ofany pressed key into this variable. For example,
if you specify that the return-variable of the CALLKEY is K,
the ASCII number ofa pressed key will be stored in the vari
able K. You can use this variable to makelatergame decisions.

For example, if you use Kas the return-variable, and the A
key was pressed, you'll find that K has the number 65 stored
in it. Ifyou use the key-unit of3, it won'tmatterwhether you
press A or SHIFTA; you'll still get the number 65. Refer to
Appendix A, "Characters," for the valuesfor each key.

If no key is pressed, the number -1 is put into the return-
variable, csa

Status-variable. The third part of the CALLKEY
command is the status-variable. This can be any variable you "^
choose. Forexample, you could call it S. When CALL KEY is -^
used, a number will be put into the status-variable that will tell
you oneofthree things: ^

• If the number is 1, you'll know that a newkey was -*)
pressed since the last time CALL KEY was used. This
can be helpful if, for example, you want to keep the *^
player from constantly pressing the samekey. «^

• If the number is 0, you'll know that the same key was

^^\

£3^\

4B|\

50

/PiwSS

^ pressed as the last time CALL KEY was used. This could
f^ be used to wait until a new key is pressed.

• Finally, if the numberis -1, you'll know that no key was
^ pressed. You could use this to wait for any key to be
p1 pressed.

C* Motion
pn While anykeys could be used, you'll probably find it easiest

for the player to use the E, X, S, and D keys to make something
f* move. This is because arrows are printed on the sides of these
p> keys. The £ key is up, the Xkey is down, the Skey is left, and

the D key is right.
f5* By usingCALL KEY and testing the return-variable, you
fm can use theASCII values that thereturn-variable contains to

move your character around. Here are theASCII values for the
?** arrow keys:

/!*™ELl3

p» Putting CALL KEY Together. To use CALL KEY, you need
the key-unit, the return-variable, and thestatus-variable in the

*** command. Here's the form of the CALL KEY command:
P* CALL KEY (key-unit, return-variable, status-variable)
P* The key-unit is a number from 0 to 5; we'll usually use 3. The
« return-variable and status-variable can be any variable.
^ Here is aprogram that demonstrates how to move achar-
f5* acter with CALL KEY. It's divided into three parts:
~ • Thebeginning, which sets up the variables and gives

everything a starting value.
p* • The main loop, which checks to see if a key has been
— pressed.

• A smaller section which the computer goes to if some-
P* thing happens. This is often a subroutine.
~ Often you will find that arcade game programs are set up
^ in this way. You must set things up, wait for something to
P* happen, and then make it happen.
« The Setup. Toset up the variables and character, you

could enter:
fftfffWl

Letter ASCII Value Arrow

E 69 up

X 88 down

S 83 left

D 68 right

Program 5-1. Setup
10 REM MOVE THE NET

20 CALL CLEAR

30 CALL SCREEN(2)
40 CALL COLOR(2,5,1)
50 CALL CHAR(42, "152B55AR552B0101")
60 LET N0R=23

65 LET NNR=2 3

70 LET NOC=16

75 LET NNC=16

This looks similar to thebeginning ofthe program from
the last chapter that set up the butterfly. CALL CLEAR and
CALL SCREEN are the same, but CALL COLOR has a 2 for the
first value because you'll be usinga different character set.
Since you're creating a net to catch thebutterfly, it would be
nice to have it a different color. If you used the same character
set as the butterfly, it would have to be the same color. In this
example, character number 42, which is the asterisk, will be
used from set 2.

In line 50, the asterisk character is redefined as a butterfly
net. Here is what it would look like:

Figure 5-1. Butterfly Net

The code values used to create the butterfly net are:
152B55AB552B0101

In lines 60 and 70, the variables NOR and NOC stand for
the Net Old Row and the Net Old Column. They're set to 12
and 16 to put the net in the center of the screen. Lines 65 and

52

<3>S|

<SRS

^)

eats

fim&\

75set up an initial value of the Net New Row and the Net New
P Column, variables NNR and NNC. You'll want to have the
«*> new and old row and columns be the same before you actually

move.

f™ Now you're ready to put it on the screen. The next line
psi does this:
_ 80 CALL VCHAR(N0R,N0C,42)

The Main Loop. Now you're ready to set up your main
* loop. This is usually a very short part of the program that will
p> just go through and do one of two things:

• The program will check to see if a key is pressed, or
^ • Some form of automatic motion will take place, while the
(?» player is deciding what to do.

In this example, only the first thing, which is to see which
^ keys are pressed, will take place.

v Program 5-2. Main Loop
f* 100 REM MAIN LOOP
« 110 CALL KEY(3,KfS)
v 120 IF K=69 THEN 300
pN 130 IF K=88 THEN 400

140 IF K=83 THEN 500

P* 150 IF K=68 THEN 600

190 GOTO 100

Lines 100and 190make up the main loop. The program
^ will goback and forth many times each second, and it will do
a only what is between lines 100 and 190.

In this case, line 110 uses the CALL KEY command. 3 is
^ the key-unit and tells you that the keyboard will be usedin an
(s\ all-uppercase way. Kis the return variable, and tellsyou which

key, if any, has been pressed. S is the status-variable, and
^ won't be used in this example, but since you must have some-
pa thing in its place, we'll use S.

Lines 120-150 check to see if the key has been pressed. If it
^ has, you areinterested only in whether thekeys E, X, S, orD
pa were pressed. For example, if the Ekey was pressed, line120

will tell the program to go to line 300. Similarly, the other lines
r* tell the program to go to specific lines, depending on which
p> key is pressed. If none of the four was pressed, the loop

continues.

^ Which Way to Move. Enter these lines for the actual move
rs^ ment subroutines:

r 53

Program 5-3. Movement Subroutines
300 REM E MOVE UP ^
310 NNR=N0R-1

320 GOTO 700 ^
400 REM X MOVE DOWN «rv

410 NNR=N0R+1

420 GOTO 700 -=^
500 REM S MOVE LEFT

510 NNC=N0C-1 ^
520 GOTO 700

600 REM D MOVE RIGHT "^
610 NNC=NOC+l _

620 GOTO 700 '

These lines do the arithmetic calculations that will be used ^
to move the net to its new location. NNR and NNC are varia- m^
bles for the Net New Row and the Net New Column. To move
the net up, you simply subtract 1 from the old row. The
subroutine from lines 300-320 does this. Ifyouwant it to move *^
down, you add 1 to the old row. Lines 400-420 move the net
down. The columns change the same way, with subroutines ^
moving the character left in lines 500-520 and right on lines «•»
600-620.

Amove changes the row orcolumn by one, either adding ^
or subtracting. Notice that lines 300, 400, 500, 600 all are REM «^
statements. A careful use of REM statements is a good
programming habit because you'll want tomake sure you're "^
doing the right things in the right places. Typing REM E m^
MOVE UP will remind you that the E key moves things up.

Notice that you have notactually moved anything yet. The ^
new row and columnare calculated, but the program must do «^
one more thine before it can move the net.

Checking for Edges. Whenever you have a character '
moving, you need to check to see that the player's move is *•}
legal. Illegal moves can cause the program to stop, and you
may not even want the player-controlled figure moving to
certain places on the screen. To checkfor the screen edges with ^
our net movement program, you need to add only these lines:

Program 5-4. Checking Edges -^
700 REM CHECK MOVE

710 IF (NNR<1)+(NNR>24)THEN 800 "^
720 IF (NNC<1)+(NNC>32)THEN 800 _
730 CALL VCHAR(NOR,NOC,32)
740 CALL VCHAR(NNR,NNC,42)

54

«^

G5s\

0$>3S

P*

($$&*.

F* 750 N0R=NNR
_ 760 N0C=NNC

y 770 GOTO 100

p* Lines 700-770 check to see if an error has occurred, and if
(gBB it has, theprogram goes to line 800. Since thescreen row and

column must be between rows 1 and 24 and columns 1 and 32,
F* these are the legal boundaries. If the new row or column
—^ would be outside these, an error has occurred.

- If there's been no error, the old position of the net is erased
f^ and its new position is put on the screen. Finally, lines 750 and
~ 760change the new row and column into the old row and

column so that the program will be ready for the next move.
f^ After this has happened, the program goes back to line 100, to
—j, wait for the next key to be pressed.

Running into the Edges. All that's left to do is to decide
P1 what should happen when an error is committed. In this
_, example, nothing will happen; the character seems to wait

patiently at any screen edge.

Program 5-5. Staying Still
^ 800 REM ERROR
ps 810 NNR=N0R
• 820 NNC=NOC

f» 830 GOTO 100

pt Nothing happens here because thenew net will not be
printed. This subroutine cancels the calculations of lines 300-

f* 620 by resetting the variables NNR and NNC to what they
A* were before. You must always, if you want not to do some

thing, make sure that the steps that led up to that decision
f5* don't affect other parts. If, for example, you don't change the
«v new row and column to the old row and column when the

program discovers an error, the next time you check NNR or
f5* NNC, the program will think they are still out of bounds,
pa because you didn't reset them.

You'll find that the following steps will be repeated for
f^ most game programs.
pi • Set up your initial variables, clear the screen, chooseyou

colors, create your character shape, and put your char-
f^ acter on the screen.
Afe • Create a main loop that looks for keys pressed or creates

other kinds of automatic motion.

(f* • Create smaller parts of the program, called subroutines,
fiA that do specific things. In this example, subroutines

«Wrt 55

^^^^^^^^^H^^S^^^^SB^^^^^S^^^S

5 Keyboard and Joystick Control ^
were created to calculate new rows and columns for the "^
net, to check forerrors and screen edges, as well as to ^
force the character to remain on the screen.

• If there was no error, the old character was erased, a new *^
one put on the screen, and the variables for new row «=r^
and column were reset to the old row and column, so
that the main loop can execute again. ^

The complete program to create keyboard-controlled ^
movement would look like this:

Program 5-6. Keyboard Movement _
10 REM MOVE THE NET
20 CALL CLEAR *^
30 CALL SCREEN(2)
40 CALL C0L0R(2,3,1) **9
50 CALL CHAR(42,"152B55AB552B0101") «*
60 N0R=12 '

65 NNR=12 on

70 N0C=16

75 NNC=16 *^
80 CALL VCHAR(NOR,NOC,42)
100 REM MAIN LOOP ^
110 CALL KEY(3,K,S) ^^
120 IF K=69 THEN 300 '

130 IF K=88 THEN 400 *m
140 IF K=83 THEN 500

150 IF K=68 THEN 600 «R)
190 GOTO 100

300 REM E MOVE UP ^
310 NNR=N0R-1

320 GOTO 700 7

400 REM X MOVE D0V7N ems
410 NNR=N0R+1 '
420 GOTO 700 «*

500 REM S MOVE LEFT

510 NNC=NOC-l "^
520 GOTO 700

600 REM D MOVE RIGHT ^
610 NNC=NOC+l *st
620 GOTO 700 '

700 REM CHECK MOVE «*

710 IF (NNR<1)+(NNR>24)THEN 800
720 IF (NNC<1)+(NNC>32)THEN 800 "")
730 CALL VCHAR(NOR,NOC,32)
740 CALL VCHAR(NNR,NNC,42) "^
750 NOR=NNR —

760 NOC=NNC i

56 °^

fww\
iCeyb©ard amid Joystock ComtroQ

770 GOTO 100

800 REM ERROR

810 NNR=NOR

820 NNC=NOC

830 GOTO 100

Joysticks
If you have a joystick for your TI computer, you can use it

P* instead of pressing a key. The TI is set up to use two joysticks
^ thatarewired together. For this example, only onejoystick will

be used.
f5* The joystick uses the CALLJOYST command, and needs
«a three steps to move a figure on the screen.

Key-unit. The first part of the CALL JOYST command is
f^ called the key-unit. This simply tells the computer which
a joystick you want to test. A key-unit of 1 tests joystick 1, while

the key-unit of 2 tests joystick 2.
f2* For most of these examples, joystick 1 will be used.
an Joystick Directions. The CALLJOYST command needs

two variables, which will hold the column and row directions
P* that the joystick pushes toward. If you push it to the right, it
-si* gives a number which can be used to calculate a column to the

right. Similarly, pushing the joystick to the left gives a number
f81 that can be used to calculate a column to the left. The same
-a procedure also applies to the row direction calculations when

the joystick is pushed up or down.
P* Here is the form for CALL JOYST:

p> CALLJOYST (key-unit, column-direction, row-direction)
a* Notice that the row and column are the opposite of what

you might expect from using the CALL VCHAR commands.
^ This is becauseTIcalls them x-return and y-return and uses x to
pa represent the column numberand y for the row number. Since

row and column will be more important here, the words
f* column-direction and row-direction will be used.
n Column-direction and row-direction are variables that you

can choose. Each variable, when the CALL JOYST is used, will
P* storecertain numbers. Here theyare:
^ Joystick Direction Column Value Row Value
/sa» Up 0 4

Down 0 -4

P* Left -4 0

f[ifpn\ (%f7

5 fl€@yfo@ard and Joy&itick C@!ffi)tra!

Joystick Direction Column Value Row Value

Right
Up-Left
Up-Right
Down-Left

4

-4

4

-4

0

4

4

-4

Down-Right 4 -4

Figure 5-2 shows these values for the
looking from above.

oystick as if you were

Figure 5-2. Joystick Direction Values

(-4,4)

(-4.0) (4,0)

(-4,-4)

(0,-4)

If you pull the joystick up and to the right, say, the row
and column direction variables will be 4 and 4.

(Note: When using the joystick, make sure that the
ALPHA LOCK key is up. Otherwise, the joystick up pull will
be ignored.)

You can use these variable values in much the same way
that you used CALL KEYto control motion.

Example of CALLJOYST. In Program 5-6 in which you
just saw how to use CALL KEY, you could use CALL JOYST
instead. All you have to do is type these lines:

58

OS

(U4

fll

ex%

CEZk

p

$&&&

P* Program 5-7. Joystick Main Loop
p* 110 CALL JOYST(1,JC,JR)

120 IF JR=4 THEN 300
f^ 130 IF JR=-4 THEN 400
~ 140 IF JC=-4 THEN 500
^ 150 IF JC=4 THEN 600

^ These will erase the old lines 110-150 and create similar ones
f<=> that use CALL JOYST.

In this example, you'll use joystick 1. JC is thecolumn
f variable that stores the column-direction value, and JR will be
p* the row variable used to store the row-direction value.

Lines 120-150 send the programto the appropriate subrou-
^ tines that will move the net character in the direction the
p> joystick is moved. For example, if JR is equal to 4, the joystick

was moved up.
f^ Diagonal Directions. What happens ifyou pull the
p> joystick in adiagonal direction? The way the program is

written now, the up and down movements of a diagonal push
f* on the joystick will happen first, because they're tested first in
p* the main loop. If you want to test for true diagonal movement,

you can add these lines:

Program 5-8. Diagonal Joystick Movement
305 IF JC<>0 THEN 100

f^ 405 IF JC<>0 THEN 100
pv 505 IF JR<>0 THEN 100

605 IF JR<>0 THEN 100

^ This will make sure that the character will move only if the
(** joystick is pushed straight up. By using <> (SHIFT COMMA
^ and SHIFT PERIOD), you are saying that JC or JR is not equal
(to 0. If it is not 0, you are in a diagonal pull, and the program
^ goes back to line 100.
-^ Because the TI joystickis somewhat unresponsive, you
- may ormay notwant touse lines 305, 405, 505, and 605 to
P* keep your directions equal. Ifyou don't, the up and down
« directions will be used more often, unless you change the
• order of lines 120-150. Most of the examples in this book will
P* usesomething like lines 305, 405, 505, and 605 so that the
~ directional movements are equal to the up, down, right, and

left directions.
P* To usea joystick on theTI to move the net figure, the
^ complete program would look like this:

Srn&S

59

Program 5-9. Joystick Movement ^
10 REM MOVE THE NET *&)
20 CALL CLEAR

30 CALL SCREEN(2) ^
40 CALL COLOR(2,3,l)
50 CALL CHAR(42,"152B55AB552B0101") ^
60 N0R=12 _

65 NNR=12 ?

70 N0C=16 «a

75 NNC=16

80 CALL VCHAR(N0R,N0Cf42) *^
100 REM MAIN LOOP
110 CALL J0YST(1,JC,JR) ^5
120 IF JR=4 THEN 300 _
130 IF JR=-4 THEN 400 •
140 IF JC=-4 THEN 500 am
150 IF JC=4 THEN 600
190 GOTO 100 «^
300 REM MOVE UP

305 IF JC<>0 THEN 100 ^
310 NNR=N0R-1
320 GOTO 700 ?

400 REM MOVE DOWN «=r>
405 IF JC<>0 THEN 100
410 NNR=N0R+1 -=^
420 GOTO 700

500 REM MOVE LEFT "^
505 IF JR<>0 THEN 100
510 NNC=NOC-l 7

520 GOTO 700

600 REM MOVE RIGHT

605 IF JRO0 THEN 100 «=N
610 NNC=NOC+l

620 GOTO 700 ^
700 REM CHECK MOVE _
710 IF (NNR<1)+(NNR>24)THEN 800 "^
720 IF (NNC<1)+(NNC>32)THEN 800 ^
730 CALL VCHAR(NOR,NOC,32) -
740 CALL VCHAR(NNR,NNC,42) «*
750 NOR=NNR
760 NOC=NNC *=^
770 GOTO 100

800 REM ERROR "^
810 NNR=NOR

820 NNC=NOC J
830 GOTO 100

«KX

60

P* Making a Game
« Putting the Butterfly in. To make thebutterfly and net
^" programs into agame, all you have to do is add the butterfly.
P* Since you already have a net, and you created a butterfly
~ inChapter 4, it's a simple thing to mix the butterfly program
- parts into the netprogram. Then, all you have to do is test to
p* see if the net and the butterfly are at the same place at the same

^ In this game, your score will depend on how fast you
r** catch thebutterfly with the net. To make it more difficult, the
« butterfly will start out ata random place on the top of the
^ screen, and your net will start out at the bottom center.
p* Starting Out. First you must add thebutterfly:

?* Program 5-10. Adding the Butterfly
p* 45 CALL COLOR(1,7,1)

55 CALL CHAR(33,"2499DBFF7EFFC381")
f* 90 LET 0R=INT(RND*4)+1

95 LET 0C=INT(RND*32)+1
^ 97 CALL VCHAR(OR,OC,33)
pv 99 LET COUNT=0
~ These lines create the same butterfly as in Chapter 4. Lines
• 90 and 95 put it on the screen between row 1and row 4and
P* between column 1 and column 32.
« Line 99 starts the COUNT variable at 0, and this is used to

keep track of the score. Most games are better ifyou can think
P* of a way to keep score. In this game, the longer you play, the
asm higher the number ofyour score. However, the idea here is to

get as low a scoreas possible,
f* Type these two lines to change the beginning location of
p, the net:

60 LET N0R=23

f5* 65 LET NNR=23

p* The Main Loop. Now add this line to the main loop:
p> 102 LET COUNT=COUNT+l

p* This will add 1to the variable COUNT, so that itwill get
larger each time the main loop executes. The number of times

P* through will equal your score. The lower the number, the
pas better your score will be.

Enter:

y 105 GOSUB 200

61

This will send the program to line 200, which is a subrou- ^
tine toprint the butterfly. Since the loop always goes back to mm
line 100, you want to make sure you move the butterfly before
you check to see if you move the net. If you do it the other way, "^
the butterfly will neverget a chance to move. am

Move Butterfly Subroutine. Here's the subroutine which
will move the butterfly: ^

Program 5-11. Butterfly Movement Subroutine ^
200 REM MOVE BUTTERFLY mm
210 I=INT(RND*3)-1
220 J=INT(RND*3.)-1 «*.
230 LET NR=OR+I

240 LET NC=OC+J **^
250 IF NR<1 THEN 900

255 IF NR>24 THEN 900 ?
260 IF NC<1 THEN 900 am
265 IF NC>32 THEN 900 J
270 CALL VCHAR(OR,OC,32) «^
275 CALL VCHAR(NR,NC,33)
280 LET OR=NR **)
285 LET OC=NC

290 IF NR=NOR THEN 1000 ?
292 IF NC=NOC THEN 1100 «
295 RETURN -

Lines 200-285 are the same as those used in the last
chapter to create and move thebutterfly. *•}

Lines 210-240 create a new row andcolumn by using am
random numbers. Lines 250-265 check the new row and
column to see ifthere are any errors. If there are, the program "**
goes to line900. Otherwise, the program continues, and lines am
270 and 275 erase the oldbutterfly and put the new oneon the
screen. **)

Lines 280 and 285 make the new row and column into the a
old row and column so that the next time through, the
butterfly will be ready to move. **)

Lines 290 and 292 are new:They check to see ifa collision «*
has occurred betweenthe butterfly's old row and column, and
the net's old row andcolumn. If the rows match (NR =NOR), "*)
the program goes to line 1000. If the columns match «_
(NC= NOC), the program goes to line 1100. '

Line 295 RETURNS theprogram to themain loop. **)
Butterfly Errors. Type these lines to take care of any error ^

thatoccurs if thebutterfly flies too close to the edge:

62

fityWR^

- Program 5-12. Butterfly Edges
f5* 900 REM BUTTERFLY ERROP
~ 910 LET NR=OR

k- 920 LET NC=OC
pv 930 GOTO 100

gms These lines set the new row and column back to their old
values, so that nothinghappenswhen thebutterfly tries to fly

f"* off the screen. In other words, it will always remain on the
__ j screen.

^ Checking for Collisions. You would add these lines to
P^ check for the collisions between the butterfly and the net.

<"* Program 5-13. Collision Checking
F* 1000 REM ROW MATCH, CHECK COLUMN
^ 1010 IF NC=NOC THEN 2000
V - 1020 RETURN

mm 1100 REM COLUMN MATCH, CHECK ROVJ
1110 IF NR=NOR THEN 2000

P* 1120 RETURN

am Lines 1000-1020 were accessed from line 290, which found
a match between the rows of the butterfly and net. If a match is

^ found in line 1010 between the columns of the butterfly and the
p> net, you know that they must both be in the same row and

column. If this is so, the program will go to line 2000, whichis
?*• the end. If it is not a match—that is, if only the rows match—
p\ the program RETURNS to the main loop.

Lines1100-1120 serve the same purpose. Accessed from
^ line 292, which found a match between the columns of the
mm butterfly andnet, line 1110 will shift the program to the subrou

tine at line 2000 if NR = NOR. If the columns do not match, the
F* program RETURNS to the main loop.
ps Ending the Game. If the butterfly and net have collided,

the game is over. The short subroutine that follows acts as an
F* end routine for our game.
am You canalso program your game to let theplayer choose if

heor shewants to play again. This is simple todo, and theend
F* routine includes this feature.

e Program 5-14. Endings
p* 2000 REM COLLISION

2005 CALL CLEAR

F* 2007 CALL SCREEN(3)
_^ 2010 PRINT "YOU CAUGHT THE BUTTERFLY"

2020 PRINT "IN ";COUNT;" MOVES"
2030 PRINT "WANT TO PLAY AGAIN?" mm,
2040 PRINT "PRESS Y FOR YES"
2050 CALL KEY(3,K,S) "*,
2060 IF S=0 THEN 2050
2070 IF K=89 THEN 10 **!
2080 END _

This routine ends the game byclearing thescreen and
changing the screen color. The screen color must be changed
because the letters on the screen normally print in black, and
since we had a black screen, the letters wouldn't show up
unless you changed the screen color.

Lines 2010-2040 letthe player know that the game is over, ^
and what the score was, byprinting theCOUNT in line 2020. «*

Notice the way that line2020 is spaced, and also the use of '
the semicolon, to allow textand variables to be mixed in the "^
same print line.

CALL KEY is used in line 2050 to let the player choose to ^
play again. Sis the status-variable, and if Sis 0, no key has **>
been pressed. Ifnone was pressed, the program goes back to «*
line 2050 and keeps going back until a key is pressed, which •
changes theSvariable to something else besides 0. "^

If a Ywas pressed, K is set to 89, the ASCII number for Y.
IfYwas pressed, the program begins again at line 10. Ifthe
player typedanything other thana Y, thegame is over.

Your First Game
"Flutters," the butterfly and net game you've been developing
as you read, is your first complete game. Although you have
seen it in bits and pieces, it may be worthwhile to see it in a ^
complete form. Here it is. ^

Program 5-15. Flutters -^
10 REM MOVE THE NET «
20 CALL CLEAR '

30 CALL SCREEN(2) mm
40 CALL COLOR(2,5,1)
45 CALL COLOR(1,7,1) **}
50 CALL CHAR(42,"152B55AB552B0101")
55 CALL CHAR(33,"2499DBFF7EFFC381") l
60 LET NOR=23 m.
65 LET NNR=23 '
70 LET NOC=16 <=n
75 LET NNC=16 '
80 CALL VCHAR(NOR,NOC,42) "*$

64 **)

at&

n

ft!BWtf\

/jypmX

^ 90 LET OR=INT(RND*4)+l
mm 95 LET OC=INT(RND*32)+l
V 97 CALL VCHAR(OR,OC,33)
(^ 99 LET COUNT=0

100 REM LOOP

f^ 102 LET COUNT=COUNT+l
" 105 GOSUB 200
V^ 110 CALL JOYST(1,JC,JR)
mm 120 IF JR=4 THEN 300
• 130 IF JR=-4 THEN 400

*•» 140 IF JC=-4 THEN 500

150 IF JC=4 THEN 600
P* 160 CALL SOUND(NOR*10+10,NOC*100+200,0)

190 GOTO 100

F* 200 REM MOVE BUTTERFLY
« 210 I=INT(RND*3)-1
1 220 J=INT(RND*3)-1

230 LET NR=OR+I

240 LET NC=OC+J

P* 250 IF NR<1 THEN 900
255 IF NR>24 THEM 900

F* 260 IF NC<1 THEN 900
-^ 265 IF NC>32 THEN 900
^ 270 CALL VCHAR(OR,OC,32)
mm 275 CALL VCHAR(NR,NC, 33)
K 280 LET OR=NR
(» 285 LET OC=NC

290 IF NR=NOR THEN 1000

P* 292 IF NC=NOC THEN 1100
__ 295 RETURN

~ 300 REM MOVE UP
305 IF JC<>0 THEN 100
310 LET NNR=NOR-l

^a 320 GOTO 700
400 REM MOVE DOV7N

p* 405 IF JC<>0 THEN 100
410 LET NNR=NOR+l

f* 420 GOTO 700
-^ 500 REM MOVE LEFT
"' 505 IF JR<>0 THEN 100
am 510 LET NNC=NOC-l

520 GOTO 700
p* 600 REM MOVE RIGHT

605 IF JR<>0 THEN 100
P* 610 LET NNC=NOC+l

620 GOTO 700

* ' 700 REM CHECK MOVE
« 710 IF (NNR<D+(NNR>24)THEN 800
- 720 IF (NNC<1)+(NNC>32)THEN 800
p* 745 CALL VCHAR(NOR,NOC,32)

mm

$$i\

$$w\

65

am

»yboairel ai^d Joystick C
^^^^^nsmmmsmmm^^msi^m^^l s=rs

750 CALL VCHAR(NNR,NNC,42)
760 LET N0R=NNR

770 LET N0C=NNC

780 GOTO 100

800 REM ERROR

810 LET NNR=N0R **)
820 LET NNC=MOC

825 CALL SOUND(100,-6,0) **^
830 GOTO 100 _

900 REM BUTTERFLY ERROR "
910 LET NR=OR am
920 LET NC=OC

930 GOTO 100 **^
1000 RFM ROW MATCH, CHECK COLUMN
1010 IF NC=NOC THEN 2000 "*)
1020 RETURN

1100 REM COLUMN MATCH, CHECK ROW '
1110 IF NR=NOR THEN 2000 a®>
1120 RETURN 7
2000 REM COLLISION "*)
2005 CALL CLEAR

2007 CALL SCRF.EN(3) "^
2010 PRINT "YOU CAUGHT THE BUTTERFLY" gmm
2020 PRINT "IN ";COUNT;" MOVES" >
2030 PRINT "WANT TO PLAY AGAIN?" mm
2040 PRINT "PRESS Y FOR YES"
2050 CALL KEY(3,K,S) "*)
2060 IF S=0 THEN 2050
2070 IF K=89 THEN 10 "^
2080 END

Saving Your Game. When you've finished typingallof —
this in, type RUN and press ENTER. You must catch the ^
butterfly as quickly as you can. Each time you do, you'll be ^
told how long it took you, and you can try to improve your ^m
score. ^

Before you turn offyour computer, however, be sure to ***)
save a copy ofyour game ontoyour cassette recorder or disk
drive. Typing SAVE CS1 if you have a cassette recorder, or
SAVE DSKl.FLUTTER ifyou have a disk drive, will place the *)
game under the filename FLUTTER.

Changing the Game *_
There aremany things you could do to change and improve
this game. •*•}

• You could make the butterfly fly farther each time by mm,
making it add or subtracta number largerthan 1to its
row or column. ^

66 ^^

mm

mm

/p5\

/p*N

• You could put in more than one butterfly.
f* • You could have butterflies flying in a pattern from left to
am right an<3 try to see how manyyou could catch in a net

during a given time.

Review
P In this chapter you've seen how to use thekeyboard and the
p\ joystick to move an object around onthe screen.

CALL KEY, which is used to detect a pressed key, has
^ three parts:
pv •The key-unit, which is used to define how the keyboard

will be read. Usually key-unit 3 is used.
P • The return-variable stores the ASCII number of the
m* pressed keyso that youcan use it laterin the program.

• The status-variable stores the status of the key that was
"P pressed. If thestatus-variable equals 1, a new key was
mm pressed. Ifit equals -1, the same key was pressed, and

if it is equal to 0, no key was pressed.
C* The form for CALL KEY is:

^ CALL KEY, (key-unit, return-variable, status-variable)
Ft CALL JOYST reads the joysticks and needs three things:
p •The key-unit, which will be 1for joystick 1, or 2for

joystick 2.
F* • The x-return, which will be the same as the column direc-
p\ tion, left or right. The numbers stored will be 0, 4, or -4.

•They-return, which will be the same as the row direc-
^ tion, up ordown. The numbers stored will be0, 4, or- 4.
<^ * The form for CALL JOYST is:
^ CALL JOYST (key-unit, left-right, up-down)

am Tools of the Trade
^- You have all the BASIC building blocks that you'll need to
$F createyour own arcadegames. As you have seen in this
am chapter, it's relatively easy to design and write individual

pieces ofa program, which, when added together, create an
f* entire game. In fact, you created a game that netsbutterflies.
am By using whatyou've already learned, you cancreate all kinds

of arcade games.
f^ But you can make yourgame program evenbetter by
am addingsound to it. Soundeffects canenhanceany game, and

we almost always expect them in an arcade-style game.
P* Chapter 6 introduces you to the TI's sound capability.

/P^

67

<**

F$

F*

«$
mm

f^

F*

F$

**)

P1 Using the CALL SOUND Command
a Youcan enhance your games by using sound to provide infor

mation to the player, as well as making the game more enter-
f* taining. The command CALL SOUND allows you to create
p\ music, noises, or evenindividual tones.

CALL SOUND needs at least three numbers to create a

P sound:
a* • Duration, which tells the computer how long to make the

sound. You can use a number from 1 to 4250, each incre-
f^ ment representing 1/1000 second. If you use 400, for
a example, you'll get the sound's duration for 4/10 second;

4000 would set the duration to 4 seconds,
f* • Frequency, or the pitch of the sound. If it is a positive
p> number, the range can go from 110 to44733. This is

expressed as cycles per second, with 110 being a very
P* low tone and 44733 higher than the human ear can hear.
p> The User's Reference Guide, yourmanual to the TI,

includes an appendix listing the numbers which produce
P* various pitches on the musical scale. For example, 262
a represents a middle C on the musical scale. If you know

how to read music, you can make your TI play tunes.
f^ You can play up to three musical notes at one time, so
xm you can create three-part harmony.

If the number is negative, it must be between -1 and - 8.
^ Negative numbers produce periodicand white noises, which
p> can be used for special effects.

Here's how negative numbers work for the frequency part
f* of CALL SOUND:

^ Table 6-1. Noise Frequency Values
Number Effect

-1

-2

-3

-4

High pitched buzz
Medium pitched buzz
Low pitched buzz
A buzz related to the third tone in the group of
tones.

-5

-6
-7

High pitched white noise
Medium pitched white noise
Low pitched white noise

71

AMMiriS 4SEk

-8 White noise that is related to the third tone in **)
the group of tones. «?j

You can use buzzes for electronic sounds, while white *°)
noises can be used for wind, explosions, surf, static, and so on. «*

• Volume, which is how loud a sound will be. 0 is the
loudest, and 30 the softest. ^

You canuse CALL SOUND to create up to three sounds ^
and one noise at once by adding more frequency and volume
numbers after the initial set. "^

CALL SOUND looks like this: **

CALL SOUND (duration, frequency, volume)
You can add more frequencies and volumes after the first

three variables, butbesure to always add them in pairs, **)
frequency first, followed by volume. You can havefour sounds my
in a single CALL SOUND command, but only one of them can
bea noise value (-1 to - 8). Ifyou have more thanone sound ^
in a single CALL SOUND command, they'll playat the same my
time.

Here's a typical sound: ^
CALL SOUND (100,262,0) ^

This would produce a middle C (262cycles per second), ^
last 1/10 second, at the loudest volume of 0.

If you wanted to add a second note, you could change the '
command to: °^
CALL SOUND (100,262,0,294,0) my

This would add a middle D sound, also at the loudest «*
volume, to play two notes at once.

Sounds in Your Program. When you useCALL SOUND, "^
the TI will process the sound commands independently of the «*
rest of the program. In other words, the program will continue
with whatever comes after theCALL SOUND command, espe- ^
dally if the sound'sduration is long. You can use this to play my
music or sound effects while the program is running, but when
there is no motion on the screen. Because ofthis, youmust ^
plan your sounds so that they'll end when you want them to. my
Often a sound will continue while other things take place, so
you must try to time them byestimating howlong you want ^
the sound to continue after the program has processed the my
CALL SOUND command.

72 my

/if^

^ You can also use CALL SOUND to provide a constant
(ss\ background sound as the game is played. Let's add sound to

"Flutters," the game we created in Chapter 5.

160 CALL SOUND(NOR*10+10,NOC*100+200,0)

Adding this line will create different sounds, depending on
where you move the net.

The variable NOR is the row and is used to calculate the
duration of the sound. If NOR is small, the duration will be

f* short.
^ NOC is thevariable for thecolumn and is used to calculate

the frequency. The smaller the value for NOC, the lower the
f5* frequency,
-a When you add this line, you can tell where the net is by

how long the tone plays and what its pitch is.
(^ You can add this line to create a sound effect in Flutters:

pa 825 CALL SOUND(100,-6,0)

p* Now you'll hear a short crashing sound whenever the net
bumps into the screen edge. The duration is 1/10 second, and

^ the tone is one of the white noise sounds the TI can make.
(Ba Byusing this, you can always tell when you've hit the

edge.
^ Sounds can bevery useful for telling the player what has
m happened, providing player feedback, as well as dressing up

the game by playing music.

fsjffi£\

Sound Parade

To see how to create several useful sounds, here's a program
demonstrating effects you can use in your own games:

^ Program 6-1. Sound Parade
f^ 10 REM SOUMD PROGRAM

20 CALL CLEAR

P* 30 CALL SCREEN(7)
-* 40 RANDOMIZE
{- 50 GOSUB 2000
{ffl§v 60 LET Z$="123456789ABC"

65 CALL KEY(3,K,S)
f* 70 IF S<1 THEN 65

75 LET F$=CHR$(K)
P" 80 FOR 1=1 TO 12

83 IF F$=SEG$(Z$,I,1)THEN 90
*- 85 NEXT I
a 87 GOTO 65

tm\

90 LET X=I ^
100 ON X GOSUB 200,300,400,500,600,700,800,900,100 _

0,1100,1200,1300
110 GOTO 65 my
200 REM SCALES

205 RESTORE ^
210 FOR 1=1 TO 8

220 READ A

230 CALL SOUND(200,A,0)
240 NEXT I

250 DATA 262,294,330,349,392,440,494,523
290 RETURN

300 REM TUNE 3 PART HARMONY

310 RESTORE

320 FOR 1=1 TO 8

325 READ A

326 LET B(I)=A
330 NEXT I f*y
340 FOR 1=1 TO 30

350 LET R=B(INT(RND*8)+1) ^
352 LET S=B(INT(RND*8)+1)
354 LET T=B(IHT(RND*8)+1) ^
360 CALL SOUND(100,R,0,S,0,T,0) _
370 NEXT I ™
390 RETURN my
400 REM FALLING SOUND

410 FOR 1=1 TO 30 ^
420 CALL SOUND(100,2000-50*1,0)
425 NEXT I ")
490 RETURN

500 REM BOUNCE '
510 CALL SOUND(100,110,0)
530 CALL SOUND(100,440,0)
590 RETURN mi)
600 REM WAVES

610 FOR 1=1 TO 4 "**)
620 CALL SOUND(400+INT(RND*200),-7,0)
622 CALL SOUND(2000,-6,5) ?
627 CALL SOUND(4000,-5,12)
630 CALL SOUND(INT(RND*200),44000,15)
650 NEXT I "*)
690 RETURN

700 REM TICK TOCK "^
705 FOR J=l TO 8

710 CALL SOUND(10,-5,0)]
720 GOSUB 3000

740 CALL SOUND(10,-7,0)
745 GOSUB 3000 my
750 NEXT J

my

tss^s

^s&

mm

^mnT\

my

74 .1

firymfk

f* 790 RETURN
m 800 REM ALERT
- 810 FOR 1=1 TO 8
pa 820 CALL SOUND(200,440,0,400,0)

830 CALL SOUND(200,880,0,800,0)
f^ 840 NEXT I
. 890 RETURN

^ 900 REM URGENT RUNNING
-J, 910 FOR 1=1 TO 30
1 920 CALL SOUND(10,440,0,450,0)
«sn 930 CALL SOUND(10, 450,0,460,0)

940 CALL SOUND(10,460,0,470,0)
(^ 950 NEXT I

990 RETURN

f^ 1000 REM UFO MOVING
_ 1004 FOR J=l TO 8

* 1005 FOR 1=1 TO 7
age, 1010 CALL SOUND(100,-1,1, 2000,0)

1070 NEXT I

(S5» 1080 NEXT J
1090 RETURN

p* 1100 REM DEATH RAY
1105 FOR 1=1 TO 8

f^ 1110 CALL SOUND(100,-3,0,880,0,890,0)
_, 1150 NEXT I

{- 1190 RETURN
1200 REM CRASH

1205 CALL SOUND(200,-5,0)
po 1210 FOR 1=1 TO 3

1220 CALL SOUND(200*I,-7,I*5)
<F* 1230 NEXT I

1290 RETURN

1300 REM BLAST OFF

1305 FOR 1=1 TO 15
1310 CALL SOUND(50,-5,4)

f»v 1315 CALL SOUND(10,900+30*1,0)
1320 NEXT I

(^ 1350 CALL SOUND(2000,-7,0)
_ 1390 RETURN

r* 2000 REM TITLES
2005 PRINT "LIBRARY OF SOUNDS"

2006 PRINT

p\ 2010 PRINT "TO HEAR A SOUND"
2015 PRINT "PRESS THE APPROPRIATE KEY"

p* 2017 PRINT "(ALPHA LOCK DOWN)"
2020 PRINT

F* 2030 PRINT "1 - SCALES"
—a 2040 PRINT "2 - TUNE 3 PART HARMONY"
f 2050 PRINT "3 - FALLING SOUND"

M<m\

ifi&?\

75

When you type in the program and RUN it, you'll see
several choices displayed. Press the appropriate button to hear ^
a specific sound.

Each of the subroutines between lines 200 and 1390
contains a set of BASIC commands that use CALL SOUND in
various ways to produce a sound or group of sounds. Eachof
the sound subroutines is calledby the ON . . . GOSUB
command in line 100. You can analyze each of the subroutines
and see how they work, and even insert them into your own
game program.

You can look through each of the subroutines and see how ^
a slight change in one of the CALL SOUND variables will alter my
the sound when it plays. By experimenting, you'll be able to
come up with your own sounds. ^

Using Sound ^
Sounds can be used inagame program to do several things. ~^
You can play musicat the beginningofa program. Ifyour my
program will take a long time to set up, a tune can keep the
player's interest while your program creates the screen and '
sets variables. my

You can add sounds for each action that happens, so that you
create a lively game. Arcade-game players like tohave sounds ^
with their games, toaddentertainment andinterest. **y

However, don't think that sounds are just for entertainment.
Sounds can bevery important. You can use sounds togive the ^

76

^Hfilk

2060 PRINT "4 - BOUNCE" ^
2070 PRINT "5 - WAVES"

2080 PRINT "6 - TICK TOCK" ?

2090 PRINT "7 - ALERT" a

2100 PRINT "8 - URGENT RUNNING" 3
2110 PRINT "9 - UFO MOVING" my
2120 PRINT "A - DEATH RAY"

2130 PRINT "B - CRASH" "^
2140 PRINT "C - BLAST OFF"

2200 FOR 1=1 TO 4 ^
2210 PRINT #*
2220 NEXT I J
2900 RETURN my
3000 REM DELAY 1

3010 FOR DELAY=1 TO 200 ^
3020 NEXT DELAY _
3030 RETURN 7

m$L

my

my

ms\

m%\

my

P* player information. You can use sounds toalert theplayer that
p* something new has happened; for example, anew wave ofoppo

nents has started down the screen, or the clock shows less time,
f* Whenyourplayer-controlled figure crashes orexplodes, youcan
p* reinforce the loss by sound, and if the player wins, you can use

sound to reinforce the victory.

_ Review
^ CALL SOUND. To add sound to your program you can use
f5* CALL SOUND, which includes three necessary values:
_ • Duration. The values range from 1 to 4250 and are meas-
^ ured in 1/1000 second.
g* • Frequency. Values range from 110 to 44733 and are meas-
_ ured in cycles per second.
^ • Volume. 0 is loudest and 30is softest.
p» The form for CALL SOUND is:
ps CALL SOUND (duration, frequency, volume)

Creating Your Game
^ In thechapters which follow, you'll seemany different kinds of
p\ games, but all of them will have the same basic structure.

Here are the three parts of my arcade game structure:
P • The setup—determining theinitial values for the objects
p\ on the screen.

• The main loop—checking to see if a key is pressed or a
ff joystick hasbeen pushed, ormoving a computer-
mss controlled figure, such as the butterfly in Flutters.

• Smaller programs—some of theseare subroutines, and
P others are just small program pieces that are executed by
p\ GOTO statements. Ithelps to break a program down

into parts that you can easily deal with and change.
P* Oftenyoucanreuse these small programs and subrou-
«a tines in other programs.

Analyzing other programmers' games is almost as educa-
v tional as writing your own. When you look over a game
p> program listing, you can often find techniques you'll want to

use.

^ Asyougo througheach ofthe following game chapters,
«a* you'll not only have games that you can type in and play,

you'll also see how different kinds ofarcade games are
•P programmed. You'll see hints onhow tomodify the games by
/P^lH

77

78

ms\

essh

making simple changes and inmost cases see the program ^
lines toaddoralter tomake one ofthe modifications. By using **y
the principles that you've learnedin the first sixchapters, as
well asboth old and new techniques in the games themselves, ^
you'll beable to write your own arcade games on theTI my
computer.

The last game chapter focuses on the use ofsprites and ^
other features which you can use ifyou have the TI Extended my
BASIC cartridge. Sprites are special characters that can move
on the screen all by themselves, and have other properties that ^
make for even more exciting arcade games. my

A final chapter will give you a step-by-step process that
youcan use to design yourowngames. "^

mty.

mm

my

mm

my

*Smk

my

mis

ms\

m$\

my

^y

*s^

($$®S

tmn^

String arrays can be used to store information, in this case the
computer-controlled opponents, in agame. You'll also see how to use
the joystick to operate the player-controlled character.

How to Play
After you've entered this program, type RUN and press
ENTER.

When you do, there'll be a short pause, and the screen
will goblack. You'll seea purplecannon at the bottom ofthe
screen, and four orange attackers at the top.

They'll move down at a constant speed, makingbeeping
noisesas they go. But the invaders keep shifting their position,
making it hard to stop them before they reach ground level.
You fire yourcannonby pressing the fire button on joystick
number 1. A green missile will shoot up and eliminate an
invader—if your aim was good. To move your cannon, push
your joystickto the right or left.

Ifyou hit an invader, there will be a short explosion and
one of the invaders will disappear. You must get all four
invaders before they reach ground level or you'll lose the
game.

Destroying all four invaders before they reach ground
level ends the game. You'll see a score based on how far away
the last invader was when you eliminated it, and the screen
will turn red.

Winor lose, you'll have a chance to play again; type Yif
you want another game.

Program Structure
Like all other games in this book, this one also has three parts.
Thefirst part, lines 10-90, is the setup, where the initialvalues
are assigned. The second part is the main loop, which runs
from line 100 to 140. The third part, various subroutines,
makes up the rest of the program.

Program 7-1. Martian Attack
10 REM MARTIAN ATTACK

15 LET GC=16

20 LET GR=23

25 CALL CLEAR
30 CALL SCREEN(l)

81

35 CALL COLOR(1,5,1) ^
40 CALL COLOR(4,13,l) ^
45 CALL COLOR(2,7,l) '
50 CALL CHAR(33,"183C18183C187EFF") «)
55 CALL CHAR(42,"FFC3663C18181818")
60 CALL CHAR(60,"10383838387C7C44") ^
65 LET COUNT=0

68 RANDOMIZE "^
69 FOR 1=1 TO 8

70 LET A$(I)=" "
71 NEXT I am
72 FOR 1=1 TO 4

73 LET A$(I*2)=CHR$(42) *^
74 NEXT I

75 LET IR=1 *^
80 LET IC=INT(RND*16)+4 ~
90 CALL VCHAR(GR,GC,33) '
100 REM LOOP es%
110 LET C0UNT=C0UNT+1
113 IF COUNT=10 THEN 200 «^
120 CALL KEY(1,K,S)
125 IF K=18 THEN 300 "^
130 CALL J0YST(1,JC,JR)
135 IF JC=-4 THEN 500 ?
136 IF JC=4 THEN 550 **
140 GOTO 100 '

200 REM PRINT INVADERS **
206 LET COUNT=0
210 FOR 1=1 TO 8 *^
215 CALL VCHAR(IR,IC+I,32) _
220 NEXT I ^
225 LET IR=IR+1 ^
230 IF IR=23 THEN 700 ™
233 LET IC=INT(RND*16)+4 <m
23 5 FOR 1=1 TO 8

240 CALL VCHAR(IR,IC+I,ASC(A$(I))) *^
242 CALL SOUND(5,800+16*1,0)
245 NEXT I **)
250 GOTO 120 _

300 REM FIRE '
310 FOR 1=22 TO IR+1 STEP -1 **
320 CALL VCHAR(I,GC,32)
325 CALL VCHAR(I-1,GC,60) *^
327 CALL SOUND(10,-2,0)
330 NEXT I **)
335 CALL VCHAR(I,GC,32)
340 FOR 1=1 TO 8

345 IF ASC(A$(I))=42 THEN 360 ***
3 50 NEXT I

82 ^

*•&

/mzz!\

V 355 GOTO 130
*m 360 IF GC=IC+I THEN 800

370 GOTO 350

(» 500 REM PULL LEFT
510 IF GC=1 THEN 1000

P* 515 CALL SOUND(50,440,0)
520 LET GC=GC-1

v 530 CALL VCHAR(GR,GC+1,32)
~ 535 CALL VCHAR(GR,GC,33)

540 GOTO 140

&* 550 REM PULL RIGHT

560 IF GC=32 THEN 1000
f^ 565 CALL SOUND(50,440,0)

570 LET GC=GC+1
f* 580 CALL VCHAR(GR,GC-1,32)
« 585 CALL VCHAR(GR,GC,33)
*- 590 GOTO 140
(Pft 700 REM GAME OVER

710 CALL SCREEN(8)
f8* 720 PRINT "THE MARTIANS HAVE LANDED"

730 PRINT "YOU HAVE LOST"
^ 790 GOTO 880
« 800 REM GET ONE INVADER
(810 LET A$(l)=CHR$(32)
pet 815 CALL SOUND(300,-5,0)

820 FOR 1=1 TO 8
p* 830 IF ASC(A$(I))=42 THEN 130

840 NEXT I

f* 845 REM END
_, 850 CALL CLEAR
(860 CALL SCREEN(10)
am 865 PRINT "YOU GOT THEM ALL"

870 PRINT "YOUR SCORE WAS "jINT(100*((23-IR)
p> /22));"POINTS"

880 PRINT "WANT TO PLAY AGAIN?"
f^ 885 PRINT "PRESS Y FOR YES"

887 CALL KEY(3,K,S)
v 888 IF S=0 THEN 887
gm 889 IF K=89 THEN 10

890 END

f^ 1000 REM CRASH
1010 CALL SOUND(100,-6,0)

(*"* 1020 GOTO 140

r Here'sa line-by-line descriptionof the game program:
F^ Line 10 is the title of the game, put into a REM statement.
-^ It'sa good idea to have at least the title, and any other informa

tion you want to remember about the game, here.

(M* 83

Lines 15-20 initialize the gun column and row at 16and 23
respectively.

Line 25 clears the screen, and line 30 turns the screen
black. Putting these lines at thebeginning oftheprogram
makes sure the screen begins empty.

Lines 35-45 set the character colors to purple for the excla
mation point, green for the < sign, and orange for the asterisk.

Lines 50-60 change the !, <, and *signs to new dot <m
patterns with CALL CHAR.

Line 65 sets the COUNT variable to 0, which is used to ^
decidewhen to move the invaders down. «^

Line 68 uses the RANDOMIZE command. If this were not
used, thesame pattern would repeat every game. ^

Lines 69-71 contain somethingyou've not yet seen used in <•*
thisbook. Blanks are first put into the string variable array A$.
This is where the invaders are stored, and the blanks will ^
remove any display left from an earliergame. <•*

Lines 72-74 put the invadersinto the proper locations of
A$. Character 42 is the invader; it will beplaced into every ^
other location of A$ (1*2).

Lines 75-80 set up the beginninginvader row and column.
Therow (IR) will be 1, at the top of the screen, and the column ^
(IC) will be set by a random number between 4 and 21. Since
the invader group is eight columns wide, this will center them.

Line 90puts the gun (ASCII 33) at its proper row and
column on the screen.

Line 100 is a REM to remind you that the main loopstarts
at line100. The program will spend mostofits timein this ^
loop. sss

Line 110 adds 1 to the COUNT variable. Line 113 sees if the
COUNT variable is equal to10. Ifit is, the program jumps to ^
the smaller program at line 200. This will move the invaders -•»
down one line.

Line 120 checks the joystick fire button. Ifit waspressed, "^
line 125 tells the program to go to line 300, which fires a ^
missile.

Line 130 reads the joystick. Ifit was moved left, line135 ^
shifts the program to the subroutine at line 500; ifit was -^
moved right, line 136shifts the program to line 550.

Line 140 closes the main loopand sends the program back *"}
to line 100.

Line 200 begins the routine that moves the invaders down.

iSm\

84 -=^

Line 206 changes the COUNT variable back to 0 so that the
f55* next time around, the main loop will start counting up from 0
m\ again.

Lines 210-220 PRINTspaces (ASCII 32) to erase the old
P* invaders before PRINTing new ones.
p» Line 225 increases the row (IR) of the invaders by 1,

moving them down.
f* Line 230 checks to see if the new row of the invaders is
p* equal to 23. If it is, the program jumps to 700, which ends the

game.
^ Line 233 calculates a new column for the invaders between
p» column 4and column 21.

Lines 235-245 put the new invaders on the screen, by
f^ PRINTing the string variable array A$. If some of the invaders
mss have been destroyed, they won't be printed. Line 242creates a

sound as each invader is printed.
P* Line 250shifts the program back to the main loop.
p» Line 300 begins the routine that executes the firing of the

missile.
f^ Lines 310-330 fire the missile and produce a sound as it
*m moves. Line 310 calculates where the missile will begin and

end. The missile (ASCII 60) is erased in line 320 and put on the
P* screen in line 325. Notice that the missile is erased one row
p> below the place where itwill be put on the screen. The missile

sound is created in line 327.
r* Line 335 erases the missile at the last point it was
p^ PRINTed, butonly after it's moved upasfar as possible. This is

necessary because of the way that the FOR/NEXT loop works
P* in lines 310-330.
« Lines 340-350 check to see if any invaders are in the proper

position. If they are, the program jumps to line 360. Other-
P* wise, the FOR/NEXT loop continues, and the program goes
mm back to the main loop at line 130.
' Line 360 checks to see if any invader is in the same column

<cA as the missile. If it is, the missile has hit one of the invaders,
am and the routine at line 800 is called. Otherwise, the program

uses line 370 to return to the FOR/NEXT loop at line 350 so it
f^ can check for more matches.
p> Lines 500-540 move the player's figure ifthe joystick was

pushed to the left. Line 510 checks to see if the gun row is at
P* the left edge of the screen. If it is, the program jumps to line
fs%\ 1000.

f* 85

Line 515 produces a sound as the gun moves.
Line 520decreases the gun column by one, and lines 530

and 535 erase the old gun and print it at its new location.
Line 540sends the program back to the main loop.
Lines550-590 operate likelines 500-540, except for right

joystick movement.
Lines 700-790 make up the routine which executes when

the invaders reach row 23. Line 710 changes the screen color ^
and lines 720-730 print out a message. Then the program goes ~
to line 880, for the ending message. •

Lines800-840 eliminatean invader. Line810 puts a space *^
into the array A$ so that instead ofan invader, a space is „«
PRINTed. An explosion sound effectis produced by line 815,
and lines 820-840 check to see if there are invaders left. If there ^
are one or more left, the program returns to the main loop.

Eliminating all the invaders sends the program to the final
message starting at line 850.

Line 850clears the screen, line 860changes its color, line
865 prints the message, and line 870 calculatesyour score,
based on how low on the screen the invaders reached.

Lines 880-890 let the player choose another game. Line 887
uses CALL KEY to see if a key was pressed; line 888 sees if any
key was pressed. If no key was pressed, CALL KEY is used
again. If a key was pressed, the program sees, in line 889, if a
Y(character89) was pressed. If it was, the program starts
again at line 10. If it wasn't, the program ends at line 890 with
an END. It's a good programming habit to END your programs
to be on the safe side.

Lines 1000-1020 create the crashing sound effect used
when the player's figure goes too far to the left or right.

<w\

<m&

«s^

Variables £SS\

GC Gun Column.
j

GR Gun Row.
<*5E\

COUNT Counting variable used to determine when to
lower the invaders one row.

^

A$ String variable array used to store the invaders' n

characters. ~)
IR Invader Row.
IC Invader Column.

^

K Key pressed. ~)
S Key status.

86 "*)

/!p3\

^ JC Joystick Column value.
f» JR JoystickRow value.

P* Special Notes. The use of string variable arrays in this
ps> example ishelpful so thatyou can keep track of which invaders

have been destroyed and which haven't. Notice that you must
P* use a string variable array if you want to change what is in the
am string; otherwise, you could just use a string and read from it

by using the SEG$function.
P* Arrays can make a program more efficient, especially if a
pa process is repeated many times. The use of a variable array in

"Martian Attack" is a good example. For more information on
P1 string variable arrays, refer to the TI's User's Reference Guide or
am COMPUTED Programmer's Reference Guide to the TI-99/4A.

p> Changing the Game
_ There are many ways you could change Martian Attack.
^ Changes of colors, sounds, and character shapes would be
p* simplest.

• If you don't have a joystick, you can use the methods
^ outlined in Chapter 5to use the keyboard by using
p> CALL KEY.

• You can increase the number of invaders by putting
^ more of them in the array A$ or by making A$ larger and
p* changing the lines that use A$ to reflect this.

• You can make the game faster and harder by letting
^' COUNT go up to a smaller number in line 113, or you
p* can make it slower and easier by making the count go to

a higher number.
^ Although this was designed to be a simple program so
p* that you could analyze the parts easier, you could do much to
« make this into a more elaborate game. Some of the things you

could do are:
P* • Make it so that each time a group of invaders is

destroyed, a new group starts out at a lower position.
- • Also, you could design it so that as each new wave

p* begins, a different shape of invader attacks by using
m CALL CHAR to redefine new characters.
v • After going through some of the examples in later chap
py ters, you might want to add a feature that lets the
m invaders drop missiles on the player's character.
v • You could also add other objects that could be shot
am

/?jR\ 87

down. Ifyou do, you mightwant to change the scoring ^
toinclude these objects, oryou could change thescoring m^
if you have multiple waves.

• After you have seen later chapters, you could also ^
display the current score, the number of guns left (ifyou «*
want to add more than one gun destroyed before the
game is over), or the high scoreduring multiple game ^
play.

Round 10. For an example of how to actually program a
change to the game, you couldadd a few lines so that you can ^
play ten rounds before the game ends. a

Each round of play will have the invaders starting at a
lower row than before. You'll get a round score, and then, after ^
ten rounds, you'll see a final score. «^

It's not difficult. As you make these changes, you'll see
how easy it is to modify any arcade-style game. ^

Tobegin, you could add these lines to the game program. mm
12 LET R0UND=1

13 LET POINTS=0 ^

These lines set the ROUND variable, which is used not only to ^
keep track of which round the game is in, but also to determine _
where the invaders start on the screen. POINTS is the variable
for the total number of points earned. ^

Now enter these lines: _

867 LET TEMP=INT(100*((23-IR)/22))
868 LET POINTS=POINTS+TEMP ^
875 GOTO 3000

The temporary variable, TEMR stores only the points
earned that round. TEMP is added to POINTS to create a total ^
score. Line 3000 ends the round. Here's the routine beginning «•»
at line 3000:

3000 REM NEXT ROUND

3010 LET ROUND=ROUND+l

3015 FOR 1=1 TO 1000

3016 NEXT I ^
3020 IF ROUNDOll THEN 15

3030 PRINT "THE GAME IS OVER" ~)
3040 PRINT "YOUR FINAL SCORE IS ";POINTS

3050 GOTO 880

<SB\

These lines increase the ROUND number, create a short **)
delay so you can read the round's message, and then decide «s
whether the program has gone ten rounds. If not, the program

~)

88 **)

f$WS ^

^ returns to line 15 to start another round.
p* If ten rounds have elapsed, lines 3030-3040 put the final

score on the screen and send the program to line 880 for the
v end routine.

p& Some of the program lines need to be changed.
^ 75 LET IR=ROUND

This line is changed so that IR, the invaders' beginning
^ row, will equal ROUND. As ROUND increases, so will the
&* invaders' row.

fpttft&A

0m\

730 GOTO 867

This alters the program logic so that the game will not end
^ here, but go to the end of a round instead.
f^ 870 PRINT "YOUR ROUND SCORE V7AS ";TEMP;" POINTS"

f^ The temporary round score, TEMI? is printed instead of
_ the total points.
^ You'll also have to erase line 790, since line 730 now is a
P* GOTO command.

am

f^\ on

O

/piffi^

Horizontal scrolling is difficult tosimulate on many computors. But
by using a large string variable array, you can create agame which
makes it appear as if the screen were scrolling from right to left.

How to Play
Your ship starts out at the top, and the city is moving below
you. You can drop bombs by pressing the joystick fire button.

If you push the joystickto the right, your ship will go
forward, and the city will flow beneath you faster. If you push
the joystick to the left, your ship will drop back and the city
will scroll under you more slowly.

As you pass overa missile base, it may fire at you. If it
does, it may hit you and the game ends.

Hitting a building with a bomb increases your score by 10
points. If you hit a missile base, you receive 25points. No
points are awarded if you hit an empty area.

When the game begins, there willbe a pause while the city
array is filled, and then the titlewillPRINT. You see how many
bombs you have availableand what your score is. You start out
with only 20bombs;each time you drop one, the display
changes.

When you crash, the game is over, and your score is
shown.

8-1. Martian RevengeProgram

10 REM

20 CALL

25 CALL

26 CALL

30 CALL

31 CALL

32 CALL

33 CALL

34 CALL

35 CALL

36 CALL

37 CALL

38 CALL

39 CALL

MARTIAN REVENGE

CLEAR

COLOR(3,16,l)
COLOR(4,16,1)
CHAR(93,"0038FF99FFB5FFFF"
CHAR(94,"FFABFFD5FFABFFFF"
CHAR(95,"666666FF89FF91FF"
CHAR(96,"2A2A2A6EFE37FFFF"
CHAR(97,"06EFFFFFFFC3C3C3"
CHAR(98,"3C1818383030FFFF"
CHAR(33,"0000C0E0FEE3FE00"
CHAR(42,"00000000000849FF"
CHAR(104,"10383838387C7C44")
CHAP(112,"000000181800000")

93

40 CALL C0L0R(1,7,1) ^
41 CALL COLOR(2,10,1)
42 CALL C0L0R(8,3#1) ^
43 CALL COLOR(9,3,1) »
44 CALL COLOR(5,16,l)
45 CALL COLOR(6,16,l) «^
46 CALL C0L0R(7,16,1)
47 CALL COLOR(10,5,1) ^
48 CALL COLOR(ll,8,l) .
49 CALL SCREEN(2) 7*5
50 DIM A$(128) ~
53 FOR 1=33 TO 128 •-'
54 LET A$(I)=CHR$(lNT(RND*6)+93) a*
56 NEXT I

57 LET K=32 «^
60 LET B$="REVENGE{4 SPACES}BOMBS{6 SPACES}HITS "
61 FOR 1=1 TO LEN(B$) *3
62 CALL VCHAR(1,I,ASC(SEG$(B$,I,1))) «
63 NEXT I -/

65 LET COUNT=0 «s^
66 LET SCORE=0

67 GOSUB 400 «=^
70 LET SR=2 "

72 LET SC=16 ^
74 CALL VCHAR(SR,SC,33)
79 RANDOMIZE ^7
80 FOR 1=1 TO 20 «»
82 LET A$(INT(RND*96+33))=CHR$(104)
84 NEXT I ^
90 LET BOMB=20

95 GOSUB 460 ^
98 GOSUB 300 ^_
100 REM MAIN LOOP *J
105 LET SPEED=SPEED+1 «v
110 IF SPEED<INT(5-SC/8)THEN 120
115 GOSUB 300 «)
120 CALL KEY(1,KK,S)
125 IF KK=18 THEN 500 *^
127 CALL JOYST(l,JC,JR) .
128 IF JC=4 THEN 600 *J
129 IF JC=-4 THEN 650 ~

130 IF .5>RND THEN 700 '
135 LET COUNT=COUNT+l *^
140 IF COUNT=5 THEN 800

190 GOTO 100 "**)
300 REM PRINT CITY

310 FOR 1=1 TO 32 "^
320 LET A$(I)=A$(K+I) ^
330 CALL VCHAR(24,I,ASC(A$(I))) J

94

Ips»

lartian Revenge

340 NEXT I

pN 350 LET K=K+1
355 LET SPEED=0

P* 360 IF K<>96 THEN 380
370 LET K=32

380 RETURN

mm 400 REM SCORE
- 410 LET B$=STR$(SCORE)
fa 420 FOR 1=1 TO LEN(B$)

430 CALL VCHARU, 27+1,ASC(SEG$(B$, 1,1)))
f* 440 NEXT I

450 RETURN

f^ 460 REM BOMBS
-* 465 LET B$=STR$(BOMB)
V 470 FOR 1=1 TO LEN(B$)
» 475 CALL VCHAR(1,17+1,ASC(SEG$(B$, 1,1)))

480 NEXT I

f* 485 CALL VCHAR(1,17+I,32)
490 RETURN

f01 500 REM BOMBS AWAY
-^ 503 LET BOMB=BOMB-l
^ 505 IF BOMB<0 THEN 130
dt\ 506 GOSUB 460

510 FOR. I=SR+1 TO 23
f^ 520 CALL VCHAR(I,SC,32)

525 CALL VCHAR(I+1,SC,112)
C* 530 NEXT I
,jl 532 IF A$(SC)=CHR$(42)THEN 545
* 535 IF A$(SC)<>CHR$(104)THEN 540
mm 537 LET SCORE=SCORE+15
- 540 LET SCORE=SCORE+10
f*> 545 CALL VCHAR(24,SC,42)
_ 547 LET A$(SC)=CHR$(42)
V^ 550 LET A$(SC+K-1)=CHR$(42)
ma 555 CALL SOUND(100,-5,0,200,0)

557 GOSUB 400

(** 560 GOTO 130
600 REM MOVE RIGHT

ft* 605 IF SC=32 THEN 130
' 610 LET SC=SC+1
f^ 615 CALL VCHAR(SR,SC-1,32)

620 CALL VCHAR(SR,SC,33)
630 GOTO 130

pv 650 REM MOVE LEFT
655 IF SC=1 THEN 130

P* 660 LET SC=SC-1
665 CALL VCHAR(SR,SC+1,32)

f* 670 CALL VCHAR(SR,SC,33)
^ 680 GOTO 130

0Bi

fi^fb

96

700 REM MISSLES

705 IF A$(SC)<>CHR$(104)THEN 135 0^
707 RANDOMIZE

710 LET H=INT(RND*22) ^
715 FOR 1=22 TO H STEP -1 _

717 CALL VCHAR(I+1,SC,32) ^
720 CALL VCHAR(I,SC,104) ^
722 CALL SOUND(1,-6,0,800-8*1,0) '
725 IF SR=I THEN 750 a^
730 NEXT I

735 CALL VCHAR(I+1,SC,32) ^
740 GOTO 135

750 CALL SOUND(1000,-6,0,110,0) "^
752 CALL CLEAR

754 PRINT "YOU WERE HIT BY A MISSILE"

756 PRINT "YOUR SCORE WAS ";SCORE

760 GOTO 1000

800 REM COUNT ***)
820 IF SR=23 THEN 900

825 LET COUNT=0 ^
830 LET SR=SR+1 ^
835 CALL VCHAR(SR-1,SC,32) 7
840 CALL VCHAR(SR,SC,33) ^
850 GOTO 100

900 REM CRASH «*)
910 CALL CLEAR

920 PRINT "YOU CRASHED" *^
930 PRINT "YOUR SCORE WAS ";SCORE ^
1000 REM END rl
1010 PRINT "WANT TO PLAY AGAIN" «*
1020 PRINT "PRESS Y FOR YES" •

1030 CALL KEY(3,K,S) *%)
1040 IF S=0 THEN 1030

1045 CALL CLEAR ^
1050 IF K=89 THEN 50 *
1060 END ;>

Program Structure ^
Lines 25 and 26 use CALL COLORto change all numerals

to white, so they'll show on the black background when the *")
game runs.

Lines 30-39 create the custom characters used in the game.
Lines 30-35 create the buildings of the city, line 36 creates the "^
player's ship, line 37 creates rubble that is left after a bomb has „_
dropped, line 38 creates the missile, and line 39 draws the
player's bomb figure. *}

Lines 40-49 color the various characters. Line 40 colors the ^

**)

• shiporange, while line41 colors the rubble red. Lines 42-43
f^ color the citycharacters green, lines44-46 color the letters
fm white for display purposes, line 47 colors the missiles purple,
^ and line 48colors the bombblue. Thescreencolor is set to
f^ black in line 49.
-^ Lines 50-56 fill the string variable array A$with various
^ Martian city buildings. The array itself is used in two parts.
C* The first 32 positions store thecurrentline on the screen, while
^k positions 33-128 are filled with the whole city. This creates a
• long cityscape that is repeated every 96 moves. As the city
(** scrolls below the ship, new parts of the array A$are put on the
m^ screen.
[Line 57 sets the variable Kequal to 32; thiskeeps track of
P^ which part of the cityis on the screen. Kis the number of the
mm leftmost portion of the city that is currently visible.
- Lines 60-63 PRINT letters on the screen. Since you can't
f^ control where PRINT places letters (it will always PRINTnear
-k the bottom), you have to use CALL VCHAR and PRINT one
^ letter ata time by reading from astring variable, in this case
("* B$. This technique is veryuseful fordisplaying titles and other
-* messages as the game runs.

Line 65 sets the COUNT variable to 0, which determines
f^ when to lower the ship.
^ Line 66 is the variable for SCORE.
" Line 67 shifts the program to the subroutine at line 400.
f"> This puts the current score on the screen.
mto Lines 70-72 start the shipat row2and column 16, while
• line 74 puts the ship on the screen.
f^ Lines 79-84 put the 20missiles in random locations into
fm the array A$.
v Line 90 sets BOMB, the counter for the number of bombs.
f* Line 95 then GOSUBs to line 460, which displays the number.
^ Line 98 calls the subroutine atline 300, which prints the
^ current part of the city visible on the screen.
f*" Line 100begins the main loop.
^ Lines 105-110 control the speed of the city as it scrolls
• beneath the ship. SPEED is actuallya counter, and it increases
f** to a number calculated in line 110, depending on which column
~ the ship is in. If SC, the ship column, is large, the count is
™ reached quickly, and the program GOSUBs to line 300, which
f* puts the city on the screen. IfSCis smaller, it takes longer to
_^ get to the maximum SPEED, so the cityscrolls by slowly.

f0\ 97

Lines 120-125 check the joystick fire button. If it was ^
pressed, the program goes to line 500, which drops the bomb. «^

Lines 127-129 read the joystick. If it was pushed left, the _
program goes to line 650; ifit was pushed right, line 600 is T*
called. *ny

Line 130 tests to see ifa random number is less than .5. If ^
it is, the program will go to line 700, which will fire a missile. ^
A missile fires only half of the time. ^

Lines 135-140 check the COUNT variable. If it is equal to 5, ^
the program goes to line 800, which moves the ship downward ^
one row. ^

Line 190 ends the main loop. ^7
Line 300 begins the subroutine that puts part of the city on T^

the screen. Kis a counter that points to the place in A$where **)
thecurrent leftmost part ofthecity is. '^.

Lines 310-340 move the city parts from the fixed part of the ^
array (elements 33-128) into the temporary part of the array "**)
(elements 1-32). Also, the new part of the array is put on the ^
screen in line 330. *7

Line 350 increases Kso it points to the next part of the city. **>
Line 355 sets the SPEED counter back to 0. ~
Line 360 checks K. If itis less than 96, the program returns ^

to the main loop. If it equals 96, the array resets K to 32, so it ^
can start at the beginning of the cityscape. 'Z

The subroutine in lines 400-450 puts the score on the ^
screen. *=^

Lines 460-490 comprise a subroutine which displays the ^
number of bombs left on the screen. *3

Line 500begins the bomb-dropping routine. Line 503 ^
subtracts 1from the number ofbombs left, line 505 checks to ^T
see if abomb is left and goes to the main loop if all have been "3
used, and line 506 GOSUBs to line 460to print the new ^
number ofbombs left. ^7

Lines 510-530 erase the bomb and PRINT it at the next row. "^
Line 532 checks to see if the bombhas hit rubble. If it has, *^

the program goes to line 545, so that the player's score isn't
increased. *^

Line 535 checks to see if the bomb hit a missile base. If it -^
didn't, the program goes to line 540, skipping over line 537.

Line 537adds 15points to the score and executes only if '
the bomb hit a missile base. *&)

Line 540 adds 10 points to the score. The bomb hit either a

98 «=?)

j§P8l

^ city character ora missile, so 10 points are added for a city and
f& a total of 25 for a missile base (15 points from line 537 + 10).

Line 545 PRINTs a rubble character on the screen, while
^ line 547 places the rubble character into the current array posi-
(#v tion. Line 550 makes sure the rubble will reappear the next
. time the ship flies over it.

^ Line 555 creates the exploding bomb sound effect.
p* Line 557 GOSUBs to the subroutine which displays the
/. new score, andline 560 returns to the main loop.
v Lines 600-680 move the ship left or right, depending on
(•* joystick movement.

Line700 begins the routine that fires the missiles from the
^ city. Line 705 checks to see if a missile is at the same column as
f* the ship. Ifit isn't, the program goes back to themain loop.

Lines 707-740 move the missile. The variable H determines
<"* how high the missile will fly before itexplodes. Lines 717-722
f^ erase the old missile, put the new one.on the screen, and

produce the missile's sound. Line 725 checks to see if the
^ missile has reached the same heightas the ship row. If it has,
p> theprogram goes to line 750. Ifit hasn't, themissile continues

until it reaches the height H. After that, it erases itself at its last
^ position, and the program goes back to the main loop.
$m If the missile hit the ship, line 750 creates the sound ofan

explosion.
v Lines 752-760 clear the screen and print the message. Then
m\ the program goes to line 1000 and finishes the game program.

Line 800begins the small program that moves the ship
^ downwardone row at a time. Line 820 checks to see if the ship
pm has reached thebottom row; ifit has, the program goes to line

900. Line 825 sets COUNT back to 0. Lines 830-850 add one to
^ the ship's row, erase the old ship, and put the new ship on the
f*\ screen. Then the program goes back tothe main loop.

Lines 900-930 print the crash message and your score.
?* Lines1000-1060 print the final messages and reset the
p* game. Notice that in line 1050, the program goes back to line

50, not line 10. There's no need to redefine the characters and
v colors again.

v Variables
F* A$ String variablearray used to store the cityscape.
mm. K Counter that points to the leftmost element in the

cityscape array currently displayed.

(PBv 99

^fes\

B$ String which putsmessages on thescreen using *"?
CALLVCHAR. ^

COUNT Counterto move theshiplower after a certain
number of times through the loop. ^

SR Ship Row. ^
SC Ship Column.
BOMB Numberofbombs left. ^
KK Key pressed. a*
S Key status. ~
SPEED Counter variable thatdetermines howfast the ^

city scrolls. *^
JC Joystick Column direction.
JR Joystick Row direction. **)

Special Notes. By using thestring variable arrayA$, you ^)
were able to simulate a scrolling screen. The array A$ is ^
actually split into two parts. The front end, elements 1-32, '
stores the current group of characters that are on the bottom of ^)
the screen. The rest of the array, elements 33-128, stores the ^
whole city, only a part ofwhich can beon the screen at anyone
time. K, a variable pointing to an elementin the array, starts ***)
out at32 and counts upeach time the city "moves." When K ^
equals 96, the K turns back to 32and the front part fills with —
the earlier partsofthecityscape. This may soundconfusing, ^
but ifyou study it, you'll see how this array is used to simulate ^
horizontal scrolling. -

Byusing the SPEED variableas a special counter to deter- "^
mine when to scroll the city, and by checking against a variable ^
for the ship's column, the player can vary the speed atwhich ~
the city scrolls. This creates the illusionof movement. ^

The technique used in line 130 gives you away to produce ^
an inconsistent event. By using .5>RND, youare generating a -
number between0 and 1;if it's less than .5, the event happens. *%
This is often useful when you want anefficient way to include ^
random events in your games. -

Changing the Game ^
• Besides modifications similar to those in Chapter7, you "^

could change this game radically by having the ship fly ^
past the city without crashing. You could even have more
than one arrayand create mountainand valley characters **)
in thebottomfewrowsand scrolling them together. a-

• You could vary the things that were in the arrays and have

100

different points for things you hit.
C* • To make thegame easier or harder, youcould vary the
pm speed of scrolling, give the player more bombs, orgive the

Martians more missiles (or fire them more often).
£** • If you wanted to, you could have enemy rockets coming at
**& the playerfrom the right side, and you couldgive the

playersmallmissiles that couldbe fired sideways.
f^ • You can be the attackeror the defender. By using the
Ay second joystick, you couldhaveone person be the attacker

and another be the defender,
f* Second City. You can make the city have a few towers
p^ sticking up into the next row so that the effect of motion will

be stronger.
f^ The towers are somewhat flimsy, and your ship will be
(0\ able to ram through them, as will the enemy's missiles.

First, add these lines to the program:
rf^

51 DIM Z$(128)
52 GOSUB 3000

-^ These create a new string array, Z$, which holds additional
city characters in the same way that A$ did, except that Z$ will

(** display in row 23. The second row can be created by a subrou-
pm tine starting in line 3000.
mj^ 325 LET Z$ (I)=Z$ (K+I)
V 335 CALL VCHAR(23,I,ASC(Z$(I)))

P*1 The above lines are used in exactly the same way as the corre-
j0* sponding lines for A$ (320 and 330), first to move the array

elements to the screen area, and second, to put the characters
f^ on the screen in row 23.

f* 3000 REM SECOND STORY
^ 3010 FOR 1=1 TO 128
f* 3012 LET Z$(I)=CHR$(32)
m 3014 NEXT I
1 3020 FOR 1=33 TO 128
rite 3030 IF RND>.2 THEN 3050

3040 LET Z$(I)=CHRS(98)
p* 3050 NEXT I
_ 3060 RETURN
0m

This subroutine creates a second story for the city. The new
r* array, Z$, is filled with spaces, then, depending on the random
pm number from line3030, a tower is put in the array. Thisshould

draw one tower for every five spaces, on the average.

3

(•^a

3

ffte^k

0$\

^SN

/gR>

Vertical scrolling can be used in many different typesofgames. In
"Riverboat," it creates a river, obstacles in midstream, and even
factories on the riverbank.

How to Play
Green riverbanks are on either side, and your riverboat
appears at the top of the screen as the game begins.

You always move downriver, the vertical scrolling making
it seem as if the boat moves, while it is actually the scenery
which changes position beside your boat.

You may move the boat to the left or right with the
joystick, but be careful not to crash into the riverbanks, which
are always changing as the river winds back and forth.

Once in a while you'll see a blue factory with smokestacks
and a dock attached to it. Don't crash into the factory or the
docks!

If you move alongside a dock, press the joystick fire
button and pick up cargo from the docks. If you do it correctly,
your score will show on the left side of the screen. If you miss
the cargo, the word oops appears instead.

The river goes on forever. If you crash into the bank or a
dock, a message appears, telling you how many times you
successfully loaded cargo.

Program 9-1. Riverboat
10 REM RIVERBOAT

20 CALL CLEAR

25 CALL SCREEN(8)
30 CALL COLOR(1,7,1)
32 CALL C0L0R(2,13,1)
36 CALL COLOR(9,5,1)
40 CALL CHAR(33,"FFFFFF7E7E7E3C18")
42 CALL CHAR(34,"7E7E7E00FFFFFFFF")
44 CALL CHAR(42,"FFFFFFFFFFFFFFFF")
46 CALL CHAR(96,"2A2A2A6EFEE7FFFF")
48 CALL CHAR(97,M00000000000003FF")
50 LET RR=3

60 LET LB=11

62 LET RB=21

64 FOR 1=1 TO 3

65 GOSUB 300

66 NEXT I

69 LET RC=INT((RB+LB)/2)

105

70 FOR 1=1 TO 20

75 GOSUB 300

78 NEXT I

80 GOSUB 200 4m)
90 LET SCORE=0

100 REM MAIN LOOP ^
110 GOSUB 400

115 GOSUB 700 ^
120 GOSUB 200 ^
125 GOSUB 900 ---'•
130 GOSUB 300 /s»

190 GOTO 100

200 REM PRINT BOAT *^
210 CALL VCHAR(RR-2,RC,32) ""
220 CALL VCHAR(RR-1,RC,34) *_)
230 CALL VCHAR(RR,RC,33)
232 CALL SOUND(100,-5,0,910,15)
233 CALL SOUND(200,-5,15,910,20) <£*
235 RETURN

300 REM PRINT BANK ^
305 RANDOMIZE

310 CALL HCHAR(24,1,42,LB) ^
320 CALL HCHAR(24,RB,42,32-RB)
322 IF RND<.9 THEN 330
324 IF RND<.5 THEN 328 ^
325 CALL VCHAR(24,LB+1,96)
326 CALL VCHAR(24,LB+2,97) ***)
327 GOTO 330

328 CALL VCHAR(24,RB-1,96) ^)
329 CALL VCHAR(24,RB-2,97) 4_
330 LET RB=RB+INT(RND*3)-1 ^7
340 LET LB=LB+INT(RND*3)-1 ^
342 IF RB-LB<6 THEN 380 •-'
343 IF LB<7 THEN 360 *^
344 IF RB>28 THEN 370

345 PRINT ^
350 RETURN

360 LET LB=LB+1

365 GOTO 345

370 LET RB=RB-1

375 GOTO 345 -=^
380 LET LB=LB-1

382 LET RB=PB+1 "*)
385 GOTO 345

400 REM PICK UP CARGO ^
410 CALL KEY(1,K,S)
420 IF K<>18 THEN 490

430 CALL GCHAR(RR-2,RC-1,C) «^
431 IF C=97 THEN 440

106 «•}

Csm\

£™\

£^\

***N

1 432 CALL GCHAR(RR-1,RC-1,C)
m 433 IF C=97 THEN 440

434 CALL GCHAR(RR-1,RC+1,C)
^ 435 IF C=97 THEN 440

436 CALL GCHAR(RR-2,RC+1,C)
f* 437 IF C<>97 THEN 500
0* 440 LET SC0RE=SC0RE+1
^ 445 CALL SOUND(200,440,0)
f* 450 LET A$=STR$(SCORE)

455 LET C0L=1

f** 460 GOSUB 600
490 RETURN

f^ 500 REM PRINT ERROR
-* 510 LET A$="OOPS"
v 520 LET COL=l
gm 530 GOSUB 600

535 CALL SOUND(1000,-1,0,200,0)
f* 560 RETURN

600 REM PRINT MESSAGE

r* 610 FOR 1=1 TO LEN(A$)
— 620 CALL VCHAR(23,COL+I,ASC(SEG$(A$,I,l)))
" 630 NEXT I
f*\ 640 RETURN

700 REM BOAT JOYST

f5* 710 CALL JOYST(l,JC,JR)
720 IF JC=4 THEN 750

r* 722 IF JC=-4 THEN 780
^ 730 RETURN
^ 750 CALL GCHAR(RR,RC+1,C)

752 CALL GCHAR(RR-1,RC+1,C)
754 IF C<>32 THEN 800

f^ 760 LET RC=RC+1
762 CALL VCHAR(RR-2,RC-1,32,2)

C 765 RETURN
0^ 780 CALL GCHAR(RR,RC-1,C)
^ 782 CALL GCHAR(RR-1,RC-1,C)
g*s 784 IF C<>32 THEN 800

790 LET RC=RC-1

fa 792 CALL VCHAR(RR-2,RC+1,32,2)
795 RETURN

P* 800 REM CRASH
805 FOR 1=1 TO 10

806 CALL SOUND(300,-6,1-1)
807 NEXT I

810 PRINT "YOUR BOAT CRASHED"
820 PRINT "YOUR SCORE WAS ";SCORE
830 PRINT "WANT TO PLAY AGAIN"
840 PRINT "PRESS Y FOR YES"
850 CALL KEY(3,K,S)

i$R&\

0S^

107

860 IF S=0 THEN 850 ^
870 IF K=89 THEN 10 ^
880 END J

900 REM CHECK AHEAD tkk
910 CALL GCHAR(RR+1,RC,C)
920 IF C<>32 THEN 800 «^
930 RETURN

Program Structure ^
Line 20 clears the screen, and line 25 colors the screen blue.
Line 30 colors the riverboat dark red, line 32colors the *^

riverbanks dark green, and line 36 colors thefactories and m^
docks dark blue.

Lines 40-48 create the custom characters. Lines 40-42 ^
create the riverboat, line 44 the riverbank, andlines 46-48 the ^
factory and dock.

Line 50 makes the riverboat's row position equal to 3. *?
Lines 60-62 make the initial left bank column equal to 11 ^

and the initial right bank columnequal to 21.
Lines 64-66 set up a FOR/NEXT loop to run three times to *3

print the first three segments of the riverbank; this is needed «^
so that the riverboat doesn't crash intotheriverbank right
away. ^)

Line 69 sets theriverboat column to the middle ofthe first ^
three segments of the riverbank.

Lines 70-78 create the rest of the riverbank, adding 20 ^
more segments. a

Line 80 uses a GOSUB to put the riverboat in the water,
and line 90 sets the SCORE to 0. ^

Lines 100-190 are the main loop. You'll notice that in this «*^
game, the main loop uses nothing but GOSUB to subroutines. "T
This creates a cleaner game program, and makes the order of ^
the main loop elements easier tochange. By looking to the A^
called subroutines, you can see what eachmain loop line does.

Lines 200-235 comprise the subroutine which puts the boat "^
on the screenand create the sound effect of the riverboat's -^
paddlewheels. The boat is actually composed of three charac
ters: the bow, the midship, and the stern, which isactually a "^
space. Byputting a space at the end, you can easily make the
boat seem to move.

In lines 300-385 is a subroutine which puts the riverbank's
next segment at the bottom of the screen and then scrolls it <^
upward with a PRINT statement. This subroutine is the heart -

108 "*>

^ of the vertical scrolling technique.
f* Line305 uses RANDOMIZE to make sure that each bank
-^ is randomly drawn.
^ Lines 310-320 put the left and right banks on the screen.
f^ The value was calculated the last time this subroutine was
~ called. By using HCHAR, and having several characters
^ PRINTed atonce, you can create the left and right bank
'£* quickly. The left bankstartsat column 1and goes to the
-^ column number stored in the variable LB. Theright bank starts
^ outat the column number in variable RB and PRINTs charac-
f** ters to the right edge of the screen.
-^ Line 322 generates a random number andchecks to see if
^ itis less than .9. If it is, the program goes to line 330. If itisn't,
f"* the program continues toline 324, which puts a factory on the
— riverbank an average of one out of every ten times.
^ Line 324 generates another random number to determine
f* whethera factory will be put on the right or the leftbank. If it
_ is less than .5, the program goes to line 328. If it isn't, the
" program continues.
f* Lines 325-327 put the factory and the dock on the leftbank
_ and send the program to line 330, while lines 328-329 do the
• same on the right bank.
p* Lines330-340 createnew values for the right and left
-^ banks by adding 1 to or subtracting 1from each bank's value.
^ Lines 342-344 check the left and right bank (LB, RB) values
f^ for various operations.
" Lines 360-365 take careofwhat happens if the leftbank
^ was less than 7. One is added to the left bank, and the
p* program goes to line 345 to complete the riverbank subroutine.
0^ Lines 370-375 take care of what happens if the right bank is
^ greater than 28. One is subtracted from the right bank and the
f^ program goes to line 345.

If the distance between the two banks is too small, lines
^ 380-385 are executed. One is added to the leftbank and one is
f^ subtracted from the right bank.

^ Lines 400-490 execute when the joystick fire button is
^ pressed. Lines 410-420 check the fire button. Lines 430-437 use
f» CALL GCHARto check for a dock next to either side of the

^ riverboat's midship or bow. Lines 430, 432, 434, and 436 test
^ each of the four possibilities. Lines 431, 433, and 435 test to see
f^ if the dockcharacter is there. If it is, the programgoes to line
^ 440. If ifgets all the way through without finding any docks,

«v 109

$9\

0&£\

line 437makes the program go to line 500, which tells you that —
you missed. ^

Line 440 addsonepoint toyour score, and line 445 makes ^Z
a sound to tell you that you were successful. -^

Lines 450-460 set up the call to the subroutine in line600, ^
which displays your score.

Line 490 RETURNS the program to the main loop. —
Lines 500-560 continue part ofthe subroutine that started ^

inline 400. A$ and COL are given the proper values toprint ^
OOPS on the screen, and the subroutine atline 600 puts the ^
message on the screen. **§

The subroutine in lines 600-640 can becalled from ^_
anywhere to put a message on the screen. This subroutine -5
needs a column, which it finds in the variable COL, and a ^
string variable, A$, which contains the message orscore you ^
want put on the screen. Bysetting up a message subroutine, —
you can print scores, messages, or anything you want at any *^
place on the screen.

Lines 700-795 are asubroutine that moves the boat right or ^
left, depending on whetheryou have pushed the joystick or *3
not. This is similar to other joystick routines you've seen in this „L
book. The riverboat's column is reduced or increased by one, ^
depending on the joystick direction, and its old location is ^
erased. ^

Lines 750-754 check for a crash when the riverboat moves -
right, and lines 780-784 check fora crash when moving left. f3

Lines 800-880 are called if the boat does crash. ^1
Lines 805-807 use FOR/NEXT loop to create a sound that —*

plays ten times, but softereach time, to simulate a large ^
explosion. ^T

Lines 810-880 should be familiar. They PRINT amessage, ^
the score, and provide an option to play again. *^

The subroutine inlines 900-930 checks for a head-on colli- ^
sion. Lines 910-920 use CALL GCHAR to test the row and —
column immediately in front of the bow. If it is not water ^
(ASCII 32), there's a crash and the program goes to line 800. «-.
Otherwise, the program RETURNS to the main loop. -

Variables

RR Riverboat Row.
RC Riverboat Column.
LB Left Bank column.

110

^ RB Right Bank column.
p* K Key pressed.
. S Key Status.

v C Variable used to store the character value found
£* byCALLGCHAR.

Special Notes. Thisprogram uses the PRINT statement to
^ create a scrolling river, simulating vertical movement.
£* The subroutine at line 600 isanexample of a generalized
tmss message display routine. You must put a column number into
^ COL and a message into the string variable A$ before you call
f* this subroutine. Whatever you put into these will be displayed
^ on the screen in the column you selected.
^ This program takes several safety measures. Itchecks
f5* collisions in front andonthe sides, and makes sure that the

riverbanks are within certain values so that the river doesn't
^ run off the screen or get too narrow. The program must also
f* check all possibilities for getting cargo, and put a message on

the screen ifyou miss. Try to thinkofevery possibility and
^ have the computer check for it. By setting limits in the creation
f»* oftheriverbanks, for example, you make sure that thegame is

playable.
^ Putting a space behind a character, as isdone with the
p* riverboat, insures that when the screen scrolls, and the new
_ character appears, it doesn't need a separate erasure.
^ Extended BASIC. If you have the TI Extended BASIC
P* cartridge, you'll have to modify this program slightly. In

Extended BASIC, the PRINT statement starts printing one row
higher than in TIBASIC. Instead ofprintingat row 24, it prints
at 23.

/$5£\

^ To change the program tomake it work in Extended
^ BASIC, simply change the row values that everything starts at.
f* Change lines310, 320, 325, 326, 328, and 329 so that the row
_ number is 23 instead of 24. Change line 620 so that the row
~ number is 22 instead of23. Finally, change line 70 so thatthe
f^ FOR/NEXT loop counts only to 19instead of 20.

?* Changing the Game
p* • You can make the game more interesting byallowing the

riverboat to move forward or backward, and adjusting how
^ often theriver scrolls forward bythe method you sawfor
ft* changing scrolling speed in "Martian Revenge."

• You could also add a different boat at the bottom, one able

0^ 111

tomove upward. Allow each boat tofire, andhave the f?
second boat controlled byjoystick 2. You could then have a ^
riverboatbattle between two players.

• Ofcourse, you can have different factories with different f^
score values, oryou could addfloating mines that the ^
riverboat would have to avoid.

• You could putguns on the riverbanks andhave them fire at ^
theriverboat and theriverboat fire back. You could create ^
drawbridges that would need to be raised for the riverboat
to pass; the only way to do so might be to dock afew rows ^
beforethe boat reaches the bridge. a

• Ifyou allow yourriverboat to back up, you couldalso .
create islands which split the river in two, and have one of ^
the side rivers dead-end sothat the riverboat has toback ^
up before it crashes.

• Finally, you could change the game byhaving the water in ^
the river ofvarying depths, making itmore complicated. «^
Some depths could be safe, others so low that the boat
might (depending on a random number) get stuck. "^

• You could dress up this world byputting houses and <=^
forests on eachside, or otherboatsin the riverforyou to
avoid. f^

Sandbars. You canchange the game so that the river has ^
sandbars to make it more difficult to travel. At the same time,
byadding a few more lines, you can keep track ofhow far the ^
riverboat has traveled. <=»)

To start, you could add these lines:
55 CALL CHAR(116,"AA55AA55AA55AA55") —
56 CALL C0L0R(ll,llf 1) «*
57 LET DIST=0

These lines create the shape and color of the sandbar, and set ^
the initial DIST variable to 0, which is used to calculate the ^)
distance. _

304 LET DIST=DIST+1

The above line increases the distance every time a riverbank is
put on the screen. ^

321 IF RND<.1 THEN 3000 *^

If the random number is less than .1, the program goes to **}
line 3000, which puts a sandbar in a river.

825 PRINT "YOU WENT ";(DIST-20)/20;"MILES"

112 *R)

#**

0^

ipSt^

P^

00s

displays the final message so that you can see how far theboat
got.

3000 REM PUT SANDBAR IN RIVER
3005 IF DIST<10 THEN 322

3010 LET BAR=(LB+RB)/2
3020 CALL VCHAR(24,BAR,116)
3030 GOTO 322

This routine puts a sandbar in the river. If the DIST vari
able is less than 10, no sandbar is PRINTed; this might make
the start of the game toodifficult. Line 3010 calculates the
center of the river, and line 3020 puts the sandbar in the river.

113

!)
G

O
0

«
C

€
C

C
€

€
0

0
O

€
-
€

O
O

O
C

€
€

O
O

fl
C

0
0

€
€

0
O

0
C«

f)
C

0B±

fffftmA

|pP\

i/yow /o//ou> £«<? ni>er 0/no return /ong enough, you'll eventually
reach the ocean, and there you'll find sharks.

A target practice game that shows how to create complex auto
matic motion, "Shark" also shows you a different way to use joysticks
to shoot at a target.

How to Play
Thegamestarts out with the creation ofa playingfield. Your
mission is to stun a shark with your electro-zap gun. The shark
spends mostofits time underwater, but due to the quirks of
the electro-zap gun, you can stun it more easily if you hit it
while it's underwater.

If you stun the shark while it's underwater, you get 25
points; if it'son the surface, you'll getonly 5 points. You need
at least 200points to immobilize the shark.

The shark starts out at the upper-left corner of the screen,
then swims to the right and left side, making a slow zigzag
pattern as it wends its way to the bottom of the screen.

If the shark reaches the bottom, it starts again at the top-
left corner.

Yourscore is displayed along the right border of the screen
as a striped bar chart. When you hit the shark on its fin, you
hear one kind of sound. When you hit it underwater, you'll
hear another. If you miss, you'll see your shot hit the water and
hear yet another sound.

You aim by setting the row and column pointers, which
are along the bottom and right sides of the screen, to match the
row and column of the shark. When you're ready, press the fire
button. After you fire, there'll be a short delay while the
electro-zap gun recharges.

Program 10-1. Shark
10 REM SHARK

20 CALL CLEAR

25 CALL SCREEN(6)
28 CALL CHAR(42,"FFFFFFFFFFFFFFFF")
29 CALL CHAR(104,"3F003F003F003F00")
30 CALL CHAR(33,"80C0E0F0F8FCFEFF")
31 CALL CHAR(97,"010101FFFF010101")
32 CALL CHAR(34f"0103070F1F3F7FFF")
33 CALL CHAR(96,"181818181818FFFF")

117

34 CALL COLOR(10,16,1) ^
35 CALL COLOR(2,16,1) _.
39 CALL COLOR(9,7,16) 5
40 CALL VCHAR(1,30,42,24)
41 CALL HCHAR(24,1,42,30)
60 LET CC=15 *^
62 LET CR=12

65 CALL VCHAR(24,CC,96) ^)
66 CALL VCHAR(CR,30,97)
70 LET FLAG=1 7*
80 LET SR=1 ~

82 LET SC=2 - -'
87 LET SCORE=0 a

88 LET COUNT=0

90 LET SLOW=0 ^
95 LFT SHOTS=0

97 LET DELAY=0 3>
100 REM MAIN LOOP

105 LET DELAY=DELAY+1

110 GOSUB 300 «ffi^
115 LET SL0W=SL0W+1
117 IF SLOW=3 THEN 119 ^)
118 GOTO 130

119 LET SLOW=0 T)
120 IF FLAG=1 THEN 700

125 IF FLAG=0 THEN 750 ^
130 CALL KEY(1,K,S) **
135 IF K=18 THEN 800

190 GOTO 100 ***$
200 REM TIME

210 FOR 1=1 TO 250 f^
220 NEXT I ^
230 RETURN Tj
300 REM JOYSTICK &ss
310 CALL J0YST(1,JC,JR) * •
315 IF JR=4 THEN 400 f^
320 IF JR=-4 THEN 450

325 IF JC=4 THEN 500 ^
330 IF JC=-4 THEN 550 "

335 RETURN ^
400 REM MOVE UP

405 IF JC<>0 THEN 335

410 IF CR=1 THEN 335 -^
420 LET CR=CR-1
430 CALL VCHAR(CR+1,30,42) ^
435 CALL VCHAR(CR,30,97) ''
440 RETURN ^
450 REM MOVE DOWN —

455 IF JC<>0 THEN 335 - *

118 fi^

*"5S!\

tf^l

^ 460 IF CR=23 THEN 335
ff» 470 LET CR=CR+1

480 CALL VCHAR(CR-1,30,42)
f* 485 CALL VCHAR(CR,30,97)

490 RETURN

f^ 500 REM MOVE RIGHT
505 IF JR<>0 THEN 335
510 IF CC=29 THEN 335

• 520 LET CC=CC+1

530 CALL VCHAR(24,CC-1,42)
^ 535 CALL VCHAR(24,CC,96)

540 RETURN

f* 550 REM MOVE LEFT
555 IF JR<>0 THEN 335

560 IF CC=2 THEN 335

m\ 570 LET CC=CC-1

V 580 CALL VCHAR(24,CC+1,42)
fa 585 CALL VCHAR(24,CC,96)

590 RETURN

f5* 700 REM MOVE SHARK RIGHT
702 LET COUNT=COUNT+l

v 705 IF SC=28 THEN 740

«* 710 LET SC=SC+1
V 715 RANDOMIZE
p> 720 IF RND>.2 THEN 737

730 CALL VCHAR(SR,SC,33)
f* 737 CALL VCHAR(SR,SC-1,32)
j_v 738 GOTO 130
r* 740 LET SR=SR+1
^ 742 CALL VCHAR(SR-1,SC,32)
V 744 LET FLAG=0
pN 745 IF SR=24 THEN 850

747 GOTO 130

f* 750 REM MOVE SHARK LEFT
752 LET COUNT=COUNT+l

^ 755 IF SC=2 THEN 790
760 LET SC=SC-1

765 RANDOMIZE

770 IF RND>.2 THEN 787
780 CALL VCHAR(SR,SC,34)
787 CALL VCHAR(SR,SC+1,32)
788 GOTO 130

790 LET SR=SR+1

792 CALL VCHAR(SR-1,SC,32)
794 LET FLAG=1

PR 797 GOTO 130

800 REM FIRE AT SHARK

f^ 801 IF DELAY<10 THEN 100
^ 802 LET SHOTS=SHOTS+l

|R&

0&*

0$£\

119

803 LET DELAY=0 f^
804 CALL GCHAR(CR,CC,C) ~
805 IF C<>32 THEN 810 1
806 CALL VCHAR(CR,CC,46) 4Sgs
807 G0SUB 200 '
808 CALL VCHAR(CR,CC,32) **)
809 CALL SOUND(10,-6,0)
810 IF SROCR THEN 100 f^
815 IF SC<>CC THEN 100 ^_
825 IF C<>32 THEN 830 ,..7

826 CALL SOUND(200,110,0) «»
827 LET SCORE=SCORE+20 -^
830 LET SC0RE=SC0RE+5 «j
832 CALL SOUND(100,880,0)
835 IF SCORE>200 THEN 1000 ^)
836 GOSUB 900 _

837 GOTO 100 ^
850 REM SHARK STARTS OVER ^
851 LET A$="SHARK STARTS OVER" - •
855 FOR 1=1 TO LEN(A$) aa
860 CALL VCHAR(1,3+I,ASC(SEG$(A$,I,1)))
862 CALL SOUND(100,-2,0,440,0) ^
865 NEXT I _
870 GOSUB 200 ^
880 CALL HCHAR(1,3,32,3+LEN(A$)) ^
885 LET SR=1 - '

886 LET SC=2 «a^
887 LET FLAG=1

890 GOTO 130 f*)
900 REM PRINT SCORE

910 CALL VCHAR(1,31,104,INT(SCORE/10)) ^
920 RETURN ^
1000 REM GAME OVER -•'
1010 CALL CLEAR tf^
1015 CALL COLOR(9,2,l)
1020 PRINT "YOU GOT THE SHARK" f*$
1030 PRINT "IT TOOK YOU ";SHOTS;" SHOTS" ^
1040 PRINT "AND THE SHARK SWAM ";COUNT?" YARDS" ^
1050 PRINT "WANT TO PLAY AGAIN" ^.
1060 PRINT "PRESS Y FOR YES" -

1070 CALL KEY(3,K,S) a
1080 IF S=0 THEN 1070

1090 IF K=89 THEN 10 ^
1095 END

Program Structure <^
Line 20 clears the screen, and line 25 colors the screen _

light blue. ^

120 **)

0S&»

/iiSv §g=j==^@M^^=====|^^^m=^^^^^^§g^Ki=iS^i^^^^^5S

Lines 28-33create the character shapes: the slot the
f2* pointers fit in for the electro-zap gun is drawn in line 28; the
~ right-facing and left-facing shark fins in lines 30and 32; the
^ column and row pointers inlines 31 and 33; while line 29
f* creates the bar chart.
~ Lines 34-39 color the bar chart white, the pointer slots
^ white, and the pointers dark red.
f* Using CALLVCHARand CALL HCHAR, lines 40-41
-^ create the slots that the pointers fit in.
^ Lines 60-62 create the beginning values of the pointers,
f^ with the row and column of 12 and 15. Lines 65-66 then put the
^ pointers on the screen.
^ Lines 70-97 initialize the variables used in the game. Refer
p* to the variable list at the end of this section.
-^ Lines 100-190 are the main loop. Line 105 increases the
^ DELAY variable by 1. This increases each time through the
f3* loop, and is used to see if enough time has passed to allow the
-^ gun to fire. If the joystick fire button is pushed, DELAY is
^ checked to see if it is 10or more. After it's fired, DELAY is set
f^ back to 0 again, and the count resumes.
tm Lines 115-125 move theshark every three times through
• the loop and move it to the right or left depending on how the
f** FLAGvariable is set. The computer-controlled movement of
p^ thesharkis a bitdifferent than that used previously.
^ Line 115adds 1 to the variable SLOWand line 117sees if
f** SLOW is equal to 3. If it is, the program goes to line 119. If it
_^ isn't, the program skips to line 130. Line 119resets SLOW to 0,
™ and lines 120and 125check to see whether the FLAG variable
f^ is 1 or 0, moving the shark right or left through later
-^ subroutines.
^ Lines 200-230 create a time delay using a FOR/NEXT loop.
f* Delay loops can be placed in subroutines so they can be called
_ whenever you need to slow the program down.

Our standard joystick subroutine is in lines 300-335.
f* Lines 400-590 move the row and column electro-zap gun

pointers up, down, right, or left.
Line 410 checks the pointer row (CR). If it's equal to 1, the

pointer cannot go any higher. Line 420 subtracts 1 from the
row pointer.

Lines 430-435 erase the pointer at its old location and put it
on the screen at its new position. Notice, in erasing, that the
slot (ASCII 42) is put on the screen, not a space, and that the

121

(WfcRkX

pointer has a white background to match the color of the slot. ^
Similarly, lines 450-590 perform the functions for down, ^

right, and left moves of the pointers.
Lines 700-747 move the shark right. This was gone tofrom ^

line 120 if theFLAG was 1. Line 702 adds 1 to theCOUNT vari- ^
able and line 705 checks to see if the shark column is equal to
28. If it is, the shark cannot swim any further to the right. Line ^7
710 then adds 1 to the shark column. ^

If the random number generated in line 720 isgreater than ^_
.2, the program goes to line 737, which makes sure the shark's ^j
fin is not printed. If the random number is less than .2, the fin m^
is PRINTed and erased. ~~

Line 740 starts the sequence used to turn the shark 3
around. First the shark's row is increased by 1, then line 742 *^
erases the old character if it happened to be on the screen. Line
744 sets the FLAG to 0, which tells the main loop that the "^
shark is now swimming from right to left. Finally, line 745 m^
checks to see if the shark row is 24, which is as far as it can go
down. If it is, the program goes to line 850, which starts the J
shark over again. *=*>,

Lines 750-797 move the shark left. ^_
Lines 800-837 check tosee what happens when the gun is ^

fired. ^
If the DELAY variable is less than 10, the program goes

back to the main loop. Line 802 adds 1 to the SHOTS variable, Ty
and line 803 resets the DELAY variable to 0, so the main loop <=)
executes 10 times before the gun is fired again.

Line 804 sees ifanything is inthe position pointed to by ^
the row and column gun pointers. Line 805 sees if it is not an ^
empty space. If it's not a space (checked in line 805), the
program goes to line 810, indicating that you stunned the O
shark. ^

Line 806 lets you see where your shot landed. Line 808
erases the shot, and line 809 makes the sound of the shot Trl
hitting the water. ««)

Lines 810-815 test to see if the shark's row and column
match the pointers' row andcolumn. "!>

Line 825again uses the variable C; if C is not equal to 32 ***)
(space), the shark was hit and the program goes to line 830. _

If a fin was not hit, but you have hit the shark, line 826
prints the victory sound for hitting the submerged shark, and *^
line 827 adds 20 to your score. The program goes to line 830, (fi_

122 7)

/site

4fffi!\

/W^

MA

ffPBN

where 5 points areadded to thescore ifyou hit theshark on
the surface.

Line 835 checks to see if the SCORE variable is greater
than 200. If it is, the shark has been immobilized and the
program goes to line 1000.

Lines 850-890 reset the shark if it has gone all the way to
the bottom-right corner.

A message shows on the screen so you'll know that the
shark is back at its starting place. Also, a warbling tone is
called from line 862.

Line 885-887 reset the shark row and column to the begin
ning values and the FLAG variable to 1.

Lines 900-920 comprise a subroutine that puts the score on
the screen as a bar chart created with CALL VCHAR.

Theending routine is in lines1000-1095. It PRINTs a
message telling you thatyou immobilized theshark, how
many shots it took, and how far the shark swam. Then it offers
another chance to play the game.

Variables
CC Column pointer for the gun.
CR Row pointer for the gun.
FLAG Variable used to tell whether the shark is

swimming left or right. Ifit is swimming right,
FLAG= 1; if it is swimming left, FLAG= 0.

SR Shark's Row.
SC Shark's Column.
COUNT Distance that the shark travels.
SLOW Counter variable used to move the shark three

times through the main loop.
SHOTS Stores the number of shots fired.
DELAY Makes sure the gun won't fire until the main

loop has executed at least10cycles.
K Key pressed.
S Key Status.
JR Joystick Row.
JC Joystick Column.
C Character value that CALL GCHAR finds in a

specific row and column.
Special Notes. The row and column pointers demonstrate

a different way to choose a row and column by pushing the
joysticks.

123

124

The othermainfeature of thisgame is the computer- ^)
controlled motion of the shark. It moves in aknown pattern, ^
but because most of its trip is unseen, the gameis different
from a normal shooting-stylegame. The shark moves until it ^
gets to a certain point, then itmoves ina different direction. By ^
using this kind of patterned motion, you can create all kinds of —
complicated characters which can take on personalities of their ^
own. Notice the use of FLAG to tell the computer which way ^
somethingis going. By using morecomplex flags, you can -^
control characters in any way you want. ^

Notice the sequence in lines 826-832. By adding scores and ^
sounds together, you can combine elements tocreate a total -^
that is either a single partora total ofboth parts. Ifone thing "^)
happens, one score and sound are obtained, but if another ^
event occurs, both scoresand both sounds display and -
execute. ^

Changing the Game ^
• You could fill theocean with different kinds ofcreatures, f^

each with different pointsawardedforstunning them.
• This game could bemodified sothat the shark would beon ^

the surface all the time, butmoving atvarying speeds. ^
• You could, instead, have another character that appearson

the screen, for instance, adolphin. If the shark appears, ^
youcouldstun it for points, buta dolphin, which would «^
have a fin of a different color, would have to left alone, or
you would lose points. You'd have to decide quickly. ^

• You could also change the game so that you'd have to ^
manipulatea third dimension. By pressing the joystick fire
button and moving the joystick up or down, you could ^
adjust the depth that your shot fired. Making the shark go ^
to different depths and awarding points for closeshots
could also be included. **$

• You couldturn this intoa fast-action, two-player gameby ^
having a second joystick withthepointers on the top and
left sides of the screen, and see who could get the shark "^
first. «n

• Add more sound to this game, by producingone kind of ~
splash when the sharksurfaces and another whenit dives *^
back below thewater. «^

Dolphin. You can add a few lines to make it so a dolphin
is swimming with theshark. Sometimes the shark will beon "^

tf^N

f* the surface, other times the dolphin. Ifyou hit a dolphin, you'll
gm, lose your score.
^ To add thedolphin, begin adding these lines to Shark:
$* 24 CALL COLOR(ll,ll,l)
tm 26 CALL CHAR(112,"80C0E0F0F8FCFEFF")
^ 27 CALL CHAR(113f"0103070F1F3F7FFF")

^ The dolphin's fin is the same shape as the shark's, but is
(f* yellow.

£* 102 GOSUB 3000

#» Adding theabove line to the main loop sends theprogram
to the subroutine at line 3000.

817 IF DF=0 THEN 825
f* 819 CALL VCHAR(1,31,32,24)

820 LET SCORE=0
r* 822 CALL VCHAR(SR,SC,32)
_ 823 LET A$="YOU HIT A DOLPHIN"
^ 824 GOTO 855
f8* Insert these lines to check if you hit a dolphin. If DFis 0, the
«, shark is on the surface. Ifnot, lines 819-824 take care ofwhat

happens ifyou hit a dolphin.
f8* Line 819 erases yourscore, line 820 sets the SCORE variable
a to 0, line 822 erases the dolphin on the screen, and line 823
- setsup the message to tell you that you hit a dolphin.

P Line 824 sends the program to line 855, where the messageis
^ printed and the game starts over again.
^ 3000 REM SWITCH
- 3010 IF DF=1 THEN 3020

f&v 3012 LET DO=112
3013 LET DI=113

f^ 3015 LET DF=1
3017 GOTO 3030

\ 3020 LET DF=0
an 3022 LET DO=33
^ 3024 LET DI=34
f* 3030 RETURN

p To change the shark and dolphin positions, you'll need the
lines above. If DF is 1, the dolphin is on the surface, and the

P program goes to line3020.
« If DF is not 1, DO and DI are set to give the dolphin

shapes, and DF is set to1sothat the dolphin will beon the
f* surface.

125

If DF= 1, the shark's shape, DO and DI are set, and DF is
set to 0 so that the shark can move on the surface.

You'llalso need to change these lines:
730 CALL VCHAR(SR,SC,DO)
780 CALL VCHAR(SR,SC,DI)

These lines put the fin above the water;; if DO is 32 and DI is
33, a shark is printed; if DO is 112 and DIis 113, a dolphin is
shown.

126

43«X

fps^

/a^*

0&%

psp^

The caterpillar we designed earlier is back—now it's demonstrating a
technique which makes it seem to grow and grow and grow. You'll see
how to create a completely different kind ofmotion, one for a creature
that's always moving.

How to Play
Ared-fenced gardenfor the caterpillar to crawl around in is
drawn, and the title and score appear. The caterpillar soon
starts crawling around the garden.

Unlike the other objects you've manipulated, the cater
pillar isalways moving. You affect the direction ofthe motion
bymoving the joystick. Ifyou pushit left, the caterpillar
changes direction tomove left; a right joystick move makes the
caterpillar go right, and so on.

Be careful. Ifyou are movingleftand pull the stick to the
right, the caterpillar will crash into itself.

This is a hungrycaterpillar, and it eatsmushrooms. As the
game continues, more and more mushrooms sprout in the
garden. Beware! Only thered mushrooms aregood to eat.
Blue mushrooms are poison to your caterpillar.

Steer the caterpillar carefully. If it hits the red wallat the
edge ofthe garden, it will crash, and ifit hits anyofitsown
body, it will also crash.

One more thing: Each time the caterpillar eats a mush
room, it grows longer. How long can your caterpillar getbefore
it runs out of room?

When youcrash, yourscore is shown, and youcan play
again.

Program 11-1. Mushrooms
10 REM MUSHROOMS

20 CALL CLEAR

25 CALL SCREEN(15)
30 CALL CHAR(33,"143E2A7F436B3E36")
32 CALL CHAR(34,"00EEBFFDEFFFAAAA")
34 CALL CHAR(42,"CCCCFFFFFFFFFFFF")
35 CALL CHAR(43,"FFFFFFFFFFFFFFFF")
37 CALL CHAR(104,"3CFFFF9918181818")
38 CALL CHAR(112,"3CFFFF9918181818")
40 CALL COLOR(1,13,1)

129

44 CALL COLOR(2,9,l) *3
47 CALL COLOR(10,14,1) ^
48 CALL COLOR(ll,5,l) '
52 CALL HCHAR(2,1,42,32) «^
53 CALL HCHAR(23,1,42,32)
57 CALL VCHAR(3,1,43,20) ^
58 CALL VCHAR(3,32,43,20) _
60 LET A$="MUSHROOMS{8 SPACES}p = POISON" ^
61 LET R0W=1 ^
62 LET C0L=2 - '
64 GOSUB 200

65 LET SCORE=0

66 LET A$="SC0RE{3 SPACES)"&STR$(SCORE)
67 LET ROW=24
68 LET COL=10

69 GOSUB 200

70 LET C0L=18

80 LET COUNT=0 «ss
82 DIM R(500)
83 DIM C(500) **%
85 LET CR=12

86 LET CC=16 ^
87 LET R(1)=CR "
88 LET C(1)=CC ^
90 LET D=l ^
97 LET K=l - '
98 LET M=0 ^
100 REM MAIN LOOP

110 LET C0UNT=C0UNT+1 ^
112 IF C0UNT=3 THEN 300 ~"
120 CALL JOYST(l,JC,JR) ™
122 IF JR=4 THEN 500 ~

123 IF JC=4 THEN 510 --'
124 IF JR=-4 THEN 520 *fe

125 IF JC=-4 THEN 530

130 IF M>0 THEN 800 ^
140 LET M=M+1
190 GOTO 100 ^
200 REM MESSAGE ^
210 FOR 1=1 TO LEN(A$) ?
220 CALL VCHAR(R0W,C0L+I,ASC(SEG$(A$,I,1))) **
230 NEXT I

240 RETURN ~)
300 REM UPDATE MOVE
305 LET COUNT=0 **)
307 CALL VCHAR(CR,CC,34) _
310 ON D GOTO 320,330,340,350 -*
320 LET CR=CR-1 m*
325 GOTO 360

<=^

130 ^

*G^\

*~^

M^

330 LET CC=CC+1

f* 335 GOTO 360
340 LET CP=CR+1

P* 345 GOTO 360
-» 350 LET CC=CC-1
- 360 CALL GCHAR(CR,CC,N)

365 IF N=32 THEN 380
367 IF N=112 THEN 900

f* 370 IF N<>104 THEN 400
372 LET SCORE=SCORE+l

f^ 373 LET A$=STR$(SCORE)
-^ 374 GOSUB 200
• 380 CALL VCHAR(CR,CC,33)
^m 381 LET K=K+1

382 LET R(K)=CR
f* 384 LET C(K)=CC

387 IF K>SCORE+3 THEN 390
f5* 388 GOTO 300
_ 390 CALL VCHAR(R(1),C(1),32)
^ 391 LET K=K-1
Mm 392 FOR 1=1 TO K

393 LET R(I)=R(I+D
f» 394 LET C(I)=C(I+D

395 NEXT I

P* 397 GOTO 120
400 REM CRASH

405 CALL CLEAR

410 PRINT "YOU CRASHED"
420 GOTO 930

0* 500 REM MOVE UP

501 IF JC<>0 THEN 130
f"* 502 LET D=l

505 GOTO 130
v* 510 REM MOVE RIGHT

512 IF JR<>0 THEN 130
513 LET D=2

pa 515 GOTO 130
520 REM MOVE DOWN

f88* 522 IF JC<>0 THEN 130
^ 523 LET D=3
f* 525 GOTO 130
-to 530 REM MOVE LEFT
^ 532 IF JR<>0 THEN 130
m*\ 533 LET D=4

535 GOTO 130
P* 800 REM PUT DOWN MUSHROOMS

_ 810 LET M=0
P^ 815 RANDOMIZE
ms 820 LET MR=INT(RND*21)+2

0R&

JHBk

tfm&\

fife

825 LET MC=INT(RND*30)+2 ^
830 CALL GCHAR(MR,MC,N) "
840 IF N<>32 THEN 820 '
842 IF RND<.7 THEN 845 a
843 CALL VCHAR(MR,MC,112) '
844 GOTO 100 «)
845 CALL VCHAR(MR,MC,104)
850 GOTO 100 **$
900 REM POISON

910 CALL CLEAR ^
920 PRINT "YOU ATE A POISON MUSHROOM " ^\
930 PRINT "YOUR SCORE WAS "?SCORE;" MUSHROOM

S" *3^
940 PRINT "WANT TO PLAY AGAIN"
950 PRINT "PRESS Y FOR YES" *^)
960 CALL KEY(3,K,S) _
970 IF S=0 THEN 960 ^
980 IF K=89 THEN 10
990 END

<s%

Program Structure ^
Line 20 clears the screen, and line 25 colors it gray. ^
Lines 30-38 create the custom characters. Line 30 creates **

the head of the caterpillar, line 32 the body, line 34 thetop and
bottom of the garden fence, line 35 the sides, line 37 the edible ^
mushroom, and line 38 the poison mushroom. a

Line40colors the caterpillargreen and line 44colors the
fence red. Line47colors the ediblemushrooms dark red, while **§
line 48 colors the poison mushrooms blue. «^

Lines 52-58 use HCHAR and VCHAR to create the garden
fence. ^

Lines 60-64 put the title and warning about poison mush- *=^
rooms on the screen. A generalized message subroutine that
starts at line 200 is used here. You supply the message in the "^
string variable A$, a value for the variable ROW, and a value **
for variable COL.

Lines 66-69put the current score on the screen. Notice *^
how theampersand (&) is used toadd two strings together. «*

Line 70 sets COL to 18 to PRINT the score.
Line 80 sets COUNT to 0. COUNT will check to see how ~*>

often the caterpillar moves. a
Lines 82-83 create variable arrays R and C, which store the

current rows and columns ofall the caterpillar's segments. ***)
Lines 85-86 create the row and column variables that will **)

hold the row and columnvaluesof the caterpillar's head, and ~

132

lines 87-88 put the caterpillar's head row and column into the
f^ first elements of the arrays.
«* Line 90 sets D equal to 1. D is the direction that the cater

pillarmoves. If D is equal to 1, the caterpillargoes up; 2 moves
f* it right, 3 fordown, and 4 for left.
p& Line 97 setsKequal to 1. Kacts as a pointer to showhow

long the caterpillar is and where its head is in the array that
f^ stores the bodyparts.
pa Line 98 sets M equal to 0. Mis a counter used to PRINT

mushrooms on the screen.
C Lines 110-112 increase COUNT by 1. IfCOUNT is equal to
a 3, the program goes to line 300, which moves the caterpillar.

Lines 120-125 read the joystick. Depending on the result,
P* the program will go to lines 500, 510, 520, or 530, where the
ps direction of thecaterpillar is changed. (Notice that these lines

do not move the caterpillar; they only change the direction of
f^ the move.)
«b Lines 130-140 place the mushroom. If M is greater than 0,

the program creates a mushroom using the routineat line 800.
f^ Ifit is equal to 0,1 is added to M. Since Mis reset to 0 when a
Mb mushroom is added, and the program goes back to line 100,

this will PRINT a mushroom every other time the program
^ goes through a loop.
pa A message subroutine in lines 200-300 PRINTs a message

(A$) in row (ROW) and column (COL). This is similar to the
P* technique used in earlier games.
m* Lines 300-397 move the caterpillar in a way different from

other games in this book.
(** Line 307PRINTs a new body segment at the place where
#* the head was. This is the first step in moving the caterpillar.

Line 310 uses a new command, ON GOTO. This takes a
P" variable, D in this case, and reads what is there. It goes to the
p, first line number it finds after the command ifD= 1. That's line

320. If D = 2, the program goes to line 330; if D = 3, then line
f* 340, and so on. D is 1, 2, 3, or 4. If it is anything else, the
a* program stops. (Ifyou use ON GOTO, make sure that your

variable cannot be greater or less than the number of line
f* numbers you have after GOTO.)
p* Lines 320-325 decrease the row of the head by 1, lines 330-

335 increase the column by 1, lines 340-345 increase the row by
P* 1, and line 350decreases the column by 1. All except the last
/m line number send the program to line 360, where the next part

jff5\

133

of the programcontinues. The resultof theselines, coupled
with line 310, is to change the row or column numbers of the ^
head in accordance with the direction variable, D, by using ON a
GOTO.

Lines 360-370 check to see what is in the new column and f^
row beforethe head PRINTs. Ifa space is there, the program a^
goes to line 380. A poison mushroom in the location shifts the
program to line 900. If anything except an edible mushroom is
there, it must bea wall ora caterpillar body part, and the «=^
program goes to line 400where the crash begins.

Line 372 beginsthe routine that eats the mushroom. *?
Lines 373-374 displays thenewSCORE by using the «^

general message subroutine beginning at line 200.
Line 380 thenputsa newhead in theproper row and "^

column, while line 381 adds 1to theKpointer. Lines 382-384 «^
put the new row and column ofthe head into the proper
elements of the arrays Rand C. "^

Line387 is a complex line that checks to see if the length of «^
the caterpillar is greater than the SCORE + 3. If it is, the
program goes to line 390, where the old tail position is erased, ^
causing the illusion that thecaterpillar has moved. Ifyou ^
create a new head and erase the old tail, the caterpillarwill
seem to have moved. You want this to happen except in two ^
situations: You want the caterpillar to get longerwhen the **)
SCORE is increased (because the caterpillarmust grow when it
eats), and you want the caterpillar to get longer when you first ^
start the game, so that it will be at least two body segments ^
and one head. At this point, Kis one greater than the length of
the head andbody. ^

IfKisnotgreater than the SCORE + 3, line 300 PRINTs a "*)
new head and body segment, and keeps doing so until the
length + 1is greater than the SCORE + 3. **)

Line 390 erases the tail. <•*)
Lines 391-395 take care of the array. You don't want to

keep increasing the length of the array because itwill get ^
longerthan memory. What happens is that line 391 subtracts 1 -^
from K, and lines 392-395 set up a FOR/NEXT loop which
transfers thehead and body segment row and column back "*)
one element in the two arrays. In other words, the row and -^
column numbers of the second-to-last segment is transferred
soit becomes the row and column ofthe end (because the end "^
was just erased). Since Kis one less than before, the K + 1 «^

134

fi^\

<css

MeA

p* segment (the head) is transferred and becomes the K segment,
which is now the row and column of the head at the new K

^ position in the array. This may seem confusing, but it's avalu-
F* able technique for keeping track of something like the caterpil-

lar's head and body segment rows and columns. As the
^ caterpillar gets longer, and Kis abigger number, the FOR/
{» NEXT loop is so large that it takes longer to make this transfer,

but that's acceptable since a largecaterpillarwould naturally be
^ sluggish. Whenever you're creating agame, make sure that
F" programmingproblemsfit into the contextof the game's

world.
^ Lines 400-420 PRINT the crash message and sendthe
p* program to line 930 for the ending routine.

Lines 500-535 calculate the caterpillar's direction, based on
^ the joystick movement.
F* Line 501 makes sure that diagonal movements are not

allowed.
^ Line 502 changes D, the direction variable, to 1, to point
F* the caterpillar up. Line 505 then sends the programbackto the

main loop.
^ Similarly, lines 510-515 change the direction to the right;
F* lines 520-525, to down; and lines530-535 change the direction

to the left.
^ Lines 800-850 put the mushrooms inthe garden. Line 810
F* changes M, the counter, back to 0 for the next time through the
_ loop.
^ RANDOMIZE is used in line 815 to make sure that RND
f» will be different each time.

Lines 820-825 create a random row and column for the
^ mushroom to appear in, and lines 830-840 check to see if some-
f* thing is alreadyin that row and column. If so, the program

goes back to line 820 and tries again, until it finds an empty
^ space for the mushroom. This is important because you don't
F* want mushrooms appearing on top of the walls, caterpillar, or

other mushrooms.
^ Line 842 checks to see if the random number is less than
p» .7. Only then will the program PRINTan edible mushroom. A

poison mushroom is put on the screen if RND>.7.
f* Lines 900-990, the endroutine, print the message thatyou
p» ate a poison mushroom, print your score, and let you have

another chance to play the game.

135

^

Variables
ROW Row number of the message.
COL Column number of the message.
COUNT Variable used to see how often the caterpillarwill

move.

R Array that stores the row numbers of each
segment of the caterpillar's body.

C Array that stores the column numbers of each
segment of the caterpillar's body.

CR Row of the caterpillar's head.
CC Column of the caterpillar's head.
D Direction that the caterpillar will travel the next

time it's put on the screen.
K Pointer that shows where the head of the

caterpillar is stored in the arrays R and C.
M Counter used to see how often the mushrooms

will be put on the screen.
JR Joystick Row variable.
JC Joystick Column variable.
N Variable that CALL GCHAR uses to store the

character value it finds.
MR Mushroom Row.
MC Mushroom Column.

Special Notes. The caterpillar in this game is an unusual
kind of creature, since it can get longer and longer each time.
By using an array, you can keep track of every segment and
what row and column it's in. Of course, you have to read just
the arrays every time you move, because the row and column
of the head and tail change.

Using arrays is often a good technique when you have
complex figures on the screen, or you are using changing
shapes. Just be sure you don't have an array that gets bigger
than your memory can handle.

ON GOTO is a useful command that can help when the
program has to make complicated choices. One command can
replace, in this case, four commands. (The first would be IF D
= 1 THEN 320, the second would be IF D = 2 THEN 330, and
so on.)

Often you must use tricky logic to make your program
work correctly. An example of this is line 370, which assumes
that if the object in the row and column is not an edible mush
room, it must be a body segment or a wall, since everything

136

«fiE3V

pw

/pss>
§

F* else was already tested for in lines365-367. The logic in line
rm 387is especially tricky since it is testing for two separate cases,

one in which the caterpillar is less than three segments long,
f^ and the other if the score has increased since the last time the
p caterpillarwas PRINTed. The use of the variable K in this

program is worth studying, because it is used as a pointer to
€* where the head row and column values are in the arrays. K
pa will increase and decrease as the array is first increased and

then shortened to accommodate the transfer of all elements
f* backward by one element.

f* Changing the Game
p* • You can change the counters in this program tocreate more

or fewer mushrooms each time the main loop is processed.
P* You canalso change thecounter thatmoves thecaterpillar
ps sothatitmoves more orless often. Ifyou move itmore

often, you run the risk of having the joystick's movements
F* notbeing acknowledged in time andyour caterpillar may
p\ crash. You can also make itharder by putting ina higher

ratio of poison to ediblemushrooms.
?* • You could change this game quite a bitbyputting in more
pa walls to make ita maze. If you do that, you could also add

creatures that chase the caterpillar, and you could have
r* different kinds ofobjects for your caterpillar toeat. By
ms using CALL GCHAR, you can createallkinds ofobstacle

courses for a character to go through, testing each time to
f^ see whether a wallor an edible objectis there. (See "Hobo
pa Party" in Chapter 12for an example of a maze-chase game.)

• You could make this game different by setting a top limit
r* on how bigthe caterpillar canget, so that it won't slow
pv down too much.

• To make this an interesting two-person game, you could
P* havetwo caterpillars on thescreen, and keepthem from
pa crashing into each other while they tried to get

mushrooms,
f* You could add sounds for munching the mushrooms,
pa sounds for each time the caterpillar moved, and sounds when

it ran into a wall or itself.
P* Lost in the Garden. Tosee how easy it is to change the
pa game by adding a few lines, you can create walls inside your

garden, and, at the same time, make it easier for the caterpillar
F* by having it grow to a length ofonly three segments.

137

^$%

•A.

Whenever you're changing a game, make sure that it **,
remains balanced. If you makeit harder, think about making ^Z
something else easier, oritwill be too hard. ^

Begin by adding: «j
59 GOSUB 3000 m^
This will shift the program to line3000 to place morewalls ^1
inside the garden. Here's the subroutine which does that:
3000 REM PUT DOWN MORE WALLS 3
3004 RANDOMIZE „=a.
3005 LET Z$="" —'
3010 FOR 1=1 TO 4 «s=^
3020 LET ZR=INT(RND*18)+4
3025 FOR J=l TO LEN(Z$) *^
3026 IF CHR$(ZR)=SEG$(Z$,J,1)THEN 3020 "
3027 NEXT J T7

3030 LET Z$=Z$&CHR$(ZR) «»
3040 CALL HCHAR(ZR,INT(RND*10)+2,42,INT(RND*20)+1) —'
3050 NEXT I m*
3060 RETURN

This subroutine puts down four wallsof random length at /- :
random places in the garden. "^

Line 3004 adds RANDOMIZE to make sure that the walls "
will be putindifferent places each time. ^

Z$ is used as a temporary variable to see at which rows ^3
the walls have already been put down. _

The main FOR/NEXT loop is between lines 3010-3050. Line ^
3020sets up a random row number. A secondary FOR/NEXT "}
loop is between lines 3025-3027. Line 3026 tests to see if the ~
row just picked is inside the variable Z$. If it is, you want ^
another row, so the program goes back for another try. *•*,

Line 3030 adds the new row to Z$by using &to add it to "
the string. Line 3040 puts the wall down at the row that was —
chosen, starting at a random column and going along for a ^
random length.

To complete the modification, change this line:
387 IF K>3 THEN 390 T*)

By changing this, you make sure that the caterpillar will grow "J
no longer than three segments. ^

138 _

A—$\

/p5?»

/pB^

0^S

/sW^

Euer wonder how you can create animation on the TI? "Hobo Party"
will show you the principles of animation, creating characters that
move their legs and arms. You'll also see how to create mazes, and
characters that move in patterns inside the maze.

How to Play
The object of the game is for the hobo to gather all the pans
that are scattered throughout the junkyard before the time
limit is up.

You're the hobo, and your legs are always moving. You
can move through the junkyard by using the joystick.
However, you can't cross any junk piles; instead, you must go
around them. You'll start out at a different place in the junk
yard every time you play.

There's a guard, and his arms are always wavingas he
holds up his billyclubs. If he gets next to you, the game is over.

Along the bottom rowyou'll seea colored bar. This shows
how much time is left before the party starts. If you haven't
gathered up all the pans bythen, you've lost the game. The bar
gets shorter as time passes.

You pick up a pan by simply moving on top ofit. Each pan
you getwill be transferred to the row immediately above the
time bar so you'll know how many pans you've gotten. There
are 32 pans you must pick up.

The game starts out by displaying the title and drawing
the maze. The maze walls are made up of old boots, tires, TV
sets, bottles, and trash bags.

After the maze is on the screen, the 32 pans are put on the
screen. Each time you play, the pans are placedin different
locations in the maze. Your hobo is then placed in the maze.

The guard is placed in the centerof the maze and immedi
ately starts coming after you. If theguard passes over a pan, he
moves it out of the way. Sometimes the guard doesn't spot you
and will wander around, but sooner or later he'll find you,
especially if you move around.

If you get all 32pans beforethe time is up, the game's over
and you'll have another chance to play. If the guard catches
you first, the game ends, you'll find out how many pans you
got, and you'll have the option to play again.

141

Program 12-1. Hobo Party "1
10 REM HOBO PARTY «)
15 CALL CLEAR
17 RANDOMIZE ^
20 GOSUB 3000

30 GOSUB 2000 J
40 GOSUB 4000

100 REM MAIN LOOP

110 CALL CHAR(33,"1C1C083E08142241") ^)
112 CALL CHAR(42,"1C1D0936545C1414")
120 LET C0UNT=C0UNT+1 **)
122 IP COUNT<20 THEN 130 _
125 GOSUB 200 T>
130 GOSUB 300 g^
150 CALL CHAR(33,"1C1C083E08141414")
152 CALL CHAR(42,"1C5C4836151D1414") ^
160 GOSUB 500

190 GOTO 100 ^
200 REM SCORE

205 CALL SOUND(100,440,0) ^
210 LET COUNT=0 ^
215 LET TIME=TIME-1 --
217 IF TIME=0 THEN 5000 «=^j
220 CALL HCHAR(24,1,116,TIME)
225 IF TIME>31 THEN 230 *5
227 CALL HCHAR(24,TIME+1,32) __
230 CALL HCHAR(23,1,104,PAN) ?
290 RETURN _

300 REM JOYSTICK T?
310 CALL JOYST(l,JC,JR) «a
320 IF JR=4 THEN 410

322 IF JR=-4 THEN 430 *^
324 IF JC=4 THEN 420
326 IF JC=-4 THEN 440 ^)
330 RETURN

350 REM CHECK HOBO MOVE ^
355 CALL GCHAR(RR,CC,C) «~
360 IF C<>104 THEN 370 '
363 LET TIME=TIME+1 «^
364 LET PAN=PAN+1

365 CALL SOUND(100,880,0) "^
366 CALL VCHAR(RR,CC,32)
367 GOSUB 200 "^
368 IF PAN>31 THEN 900

4SA

369 GOTO 380

370 IF C=32 THEN 380

375 CALL SOUND(100,110,0)
376 LET RR=HR *"=*)

-^

n

377 LET CC=HC

142

0E\

^ 378 GOTO 330
pa 380 CALL VCHAR(HR,HC,32)

381 CALL VCHAR(RR,CC,33)
f» 382 LET HR=RR

383 LET HC=CC

f8* 390 GOTO 330
400 REM MOVES U R D L

^ 410 IF JC<>0 THEN 330
mm 412 LET RR=HR-1

414 GOTO 350

(•» 420 IF JR<>0 THEN 330
422 LET CC=HC+1

f* 424 GOTO 350
430 IF JC<>0 THEN 330

f^ 432 LET RR=HR+1
434 GOTO 350

440 IF JR<>0 THEN 330
$m 442 LET CC=HC-1

444 GOTO 350

f5* 500 REM CHECK GUARD MOVE
502 LET TRY=0

f* 503 LET FLAG=0
505 LET CI=0

506 LET RI=0
«n 510 LET DR=HR-GR

512 LET DC=HC-GC

f3* 514 IF ABS(DR)>ABS(DC)THEN 530
515 LET FLAG=1

P* 520 IF DC>0 THEN 525
-* 522 LET CI=-1
^ 523 GOTO 550
sm 525 LET CI=1

527 GOTO 550

pa 530 if DR>0 THEN 535
532 LET RI=-1

f* 533 GOTO 550
_ 535 LET RI=1

^ 550 CALL GCHAR(GR+RI,GC+CI,C)
m* 552 IF C=33 THEN 700

555 IF C<>104 THEN 560

p^ 557 LET STORE=104
558 GOTO 600

f3* 560 IF C<>32 THEN 580
__ 565 LET STORE=32
r* 566 GOTO 600
mm 570 LET RI=INT(RND*3)-l

572 LET CI=INT(RND*3)-1
p> 575 GOTO 550

580 IF TRY=1 THEN 570

i$s> 143

f$mt\

0fi®*\

/ps>

GZ\

581 LET TRY=1 ^
582 IF FLAG=1 THEN 530
583 GOTO 520

600 REM MOVE GUARD «^
610 CALL VCHAR(GR,GC,STORE)
620 CALL VCHAR(GR+RI,GC+CI,42) ^)
630 LET GR=GR+RI _
640 LET GC=GC+CI ^
650 RETURN ea
700 REM GUARD CATCHES HOBO
705 CALL CLEAR <•«

710 PRINT "THE GUARD GOT YOU"
800 REM FINAL MESSAGE ^
810 PRINT ~

820 PRINT "YOU GOT ";PAN;" PANS" ^
830 PRINT «~
840 PRINT "WANT TO PLAY AGAIN?" -'
850 PRINT "PRESS Y FOR YES" ^
860 CALL KEY(3,K,S)
870 IF S=0 THEN 860 ^
875 IF K=89 THEN 10

880 END ^
900 REM ENOUGH PANS ^
905 CALL CLEAR ^
910 PRINT "YOU GOT ENOUGH PANS!"
920 GOTO 800

2000 REM MAZE GENERATOR *^
2050 CALL CLEAR

2100 LET A$="HOBO PARTY" ^
2110 LET ROW=l

2120 LET COL=ll ^
2130 GOSUB 2700
2160 FOR 11=1 TO 4

2165 CALL VCHAR(1,2*11+2, 33) «•$
2170 CALL VCHAR(1,2*11+21,33)
2180 NEXT II *^
2190 RESTORE

2200 REM PUT MAZE ON SCREEN *°^
2205 RANDOMIZE
2210 FOR J=3 TO 22

2220 READ A$ -^
2230 FOR 1=1 TO 32

2240 IF SEG$(A$,I,1)<>"0" THEN 2260 "^
2250 LET EL=32
2255 GOTO 2270 *1
2260 LET EL=INT(RND*5)+96 ~
2270 CALL VCHAR(J,I,EL) -}
2280 NEXT I

2290 NEXT J

jC^w^V

i^S^X

«=*)

*S5^

~)

144

0^

pa

/•Si

SKI

(SB*

2300

2310

2320

2325

2330

2335

2340

2350

2400

2500

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2700

2710

2720

2730

2740

3000

3010

3020

3030

3040

3050

3060

3070

3075

3100

3110

3120

3200

4000

REM PUT PANS ON SCREEN

FOR 1=1 TO 32
LET PR=INT(RND*18)+4
LET PC=INT(RND*30)+2
CALL GCHAR(PR,PC,C)
IF C<>32 THEN 2320
CALL VCHAR(PR,PC,104)
NEXT I

RETURN

REM MAZE DATA

DATA 001111111111111111110001111H100
DATA 0110000000000000001111100011H11
DATA 11000000000000000000010000000001

11001111111111110000000000000011
10000011000000000000000011110010
10000000000000000001100110000001
10100000001111110011111000000001
111111000000000H110000000001001

DATA 011000000000000001000000000H001
DATA 01000001111000001100011H1100001

11000111100001001100010000000011
10000000000001000100000000000110
10000000000001000100000011000010
10011111110001000100100010000001

~„x~ 10000000000011000100100010000001
DATA 10000000000010000000100010001001
DATA 11000001111100000000110010001001
DATA 111000000000000100011100000010H
DATA 01111000000000111000111000011H0
DATA 000111111111110011111011111H000
REM PRINT MESSAGE

FOR 1=1 TO LEN(A$)
CALL VCHAR(ROW,COL+I,ASC(SEG$(A$, 1,1)))
NEXT I

RETURN

REM CHARACTERS

REM TRASH

CALL CHAR(96,n28103C7EFFFFFF7E")
CALL CHAR(97,"3C7EE7C3C3E77E3C")
CALL CHAR(98,"1408FF85878587FF")
CALL CHAR(99,"000F0F0F0F3F7F77")
CALL CHAR(100,"44444EEEEEEEEEEE")
REM PANS

CALL CHAR(104,"0000003E38380000")
CALL SCREEN(4)
CALL COLOR(9,13,l)
CALL COLOR(10,9,1)
RETURN

REM INITIAL VARIABLES

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

145

|d$fttf\

4005 REM HOBO ^
4010 LET HR=INT(RND*18)+4
4015 LET*RR=HR ™
4020 LET HC=INT(RND*30)+3 mm
4025 LET CC=HC

4030 CALL CHAR(33,"1C1C083E08141414") "*}
4035 CALL COLOR(1,2,1)
4040 CALL GCHAR(HR,HC,C) ^
4050 IF C<>32 THEN 4010
4060 CALL VCHAR(HR,HC,33) ^
4100 REM GUARD ^
4105 LET GR=10 '
4106 LET GC=18 c^
4130 CALL CHAR(42,"1C1D0936545C1414")
4135 CALL COLOR(2,2,l) ^
4160 CALL VCHAR(GR,GC,42) -
4200 LET COUNT=0 ^
4210 LET TIME=33 „_
4220 CALL COLOR(ll,9,l) >
4225 CALL CHAR(116, "CCCCCCCCCCCCCC") am
4230 LET PAN=0 ?
4300 GOSUB 200 «s)
4310 LET STORE=32

4900 RETURN **l
5000 REM TIME IS UP

5010 CALL CLEAR J
5020 PRINT "YOUR TIME IS UP"
5030 GOTO 800

<sa

Program Structure
Line 10 is the title, line 15 clears thescreen, and line 17 ^

uses the RANDOMIZE command. mm.
Line 20 calls a subroutine which starts in line 3000. This

subroutine creates the characters and colors needed to create ^
the maze walls and pans. Since this subroutine and thenext «*)
(which creates the maze) takeup a lot ofspace in the program,
it's better to put it in a subroutine nearer the end of the ^
program so that it will be out of the way. This speeds program -^
flow because the less you have at thebeginning ofa program,
the faster the TI finds things, since it starts looking for certain "^
things at the lowest line numbers. «^

Line 30 calls a subroutine that actually creates the maze,
starting in line 2000. ^

Line 40 calls a subroutine that starts in line 4000 which
sets up all the initialconditions of the rest of the game.

Line 100starts the main loop.
4K\

146

f* Lines 110-112 use CALL CHAR to give a shape to both the
f5* hoboand the guard. These shapes will be used to animate the

hobo and guard. (See lines 150-152 formoreexplanation.)
^ Lines 120-125 use the variable COUNT tokeep track of
p* how muchtimepasses in the game. Each timethe program

goes through themain loop, COUNT is increased by1. If
* COUNTis less than 20, the program goes to line 130 and the
p* main loop continues. If COUNT equals 20, the program goes
~ to line 125. This sends the program to a subroutine in line 200
^ which changes the time display so the player knows time is
p* passing. (Notice thatbyusing a jump to line 130, line 125 can
' call a subroutine. This is needed because other parts of the
^ program will use the subroutine in line 200. Whenever
p* possible, usesubroutines, for then they can beeasily used

again and again.)
" Line 130 sendstheprogram toa subroutine starting in line
f* 300, a joystick reading subroutine.

Lines 150-152 use CALLCHAR to give different shapes to
^ the guard and hobo. Compare these shapes to the CALL
C» CHAR commands in lines 110-112. They aresimilar, but the two

shapes for thehobo make the hobo's legs seem tomove, and
^ the two shapes for the guard make his arms seem to move.
{** This is one way to create animation on the TI. All that'sbeen

done is to use CALL CHAR to create two shapes, but because
^ they change every time the program goes through the loop,
p* thecharacters seem to move. Asimple addition like this can

make,a gamemore fun, even though it doesn't affect game
v play.
p> Line 160 makes the program go to a subroutine that starts

in line 500. This subroutine makes the guard move in the direc-
^ tion of the hobo.
p* Line 190 ends the main loop.

Line 200 begins the subroutine that puts the time bar chart
^ on thebottom ofthescreen, and puts the number ofpans that
p* the playerhas obtained on the rowabove the bar.

Line 205 uses CALLSOUND to let the player know that
^ the time and/or number of pans isbeing changed. This is
(•» helpful since the player will be watching the center of the
_ screen most of the time.
^ Line 210 resetsCOUNT to 0so that when the program
p* goes back to the main loop, it can count to 20again.

147

Line 215 subtracts 1 from the variable TIME, which is used "*)
to keep track of remaining time. <*»

Line 217checks to see if time has run out. If TIME is 0, the
program jumps to line5000 and ends the game. ^

Line 220 puts thebarchart on thescreen. By using CALL ^
HCHAR, character 116 is PRINTed the number oftime toequal
the value of variable TIME. TIME starts at32 and decreases by ^
1 each time this subroutine is called.

Lines 225-227 put a space (character 32) after the time bar
chart's end, so that the bar gets shorter. Line225 checks to see
if the barchart is 32, which it will be thefirst time through. Ifit
is, the program does not put a spaceafter the bar chart's end; if
the TIME variable is less than 32, line 227 puts a space at the ***
column that isone more than the length of the barchart (meas- ^
ured by TIME). Without these two lines, you wouldn't know
that the bar is gettingshorter. "^

Line 230 puts the number of pans that the player has <=^
gotten on the screen. Byusing CALL HCHAR with character
104, which is the pancharacter, the number of pans PRINTed ^
equals PAN. IfPAN is0, nothing is puton the screen. ^

Line 300 begins the subroutine that reads the joystick.
Lines 310-326 are the same asinother games in this book, *?

using CALL JOYST to seeif thejoystick hasbeenmoved, and «•)
then sending the program tospecific lines depending on the
joystick direction. °^

Lines 350-390 process the hobo's intended move and see ^
whether the hobo can actuallymove.

Line 355 uses CALL GCHAR to see if the new move will ^
work. Whatever is in Cis the object thatiscurrently in the «^
location where youwant the hobo to go, as determined by the
new row and column, RR and CC. ^

Line 360 tests to see ifC is not equal to 104. Ifit isn't, that «*)
means the place you want to move the hobo to doesn't contain a
pan, and the program goes to line 370. "^

Ifthere is is a pan in theway, lines 363-369 take care of -^
what happens, because you'll be picking up that pan. Line 363
increases TIME by1. The time will notactually increase, but ^
because the subroutine that puts the pans taken on the screen —^
also decreases TIME, you must increase it here so that there will
be no change in the TIME variable. Line364 increases PAN. ^
Line365 uses CALL SOUND to let the playerknow a pan has -^
been picked up. Line366 erases the pan. Line 367 uses the

148

subroutine in line 200 to put the new number of pans on the
P* screen. Line 368 checks to see if all the pans have been picked
mm up. If they have, the program goes to line900, where the

program ends. Line 369 sends the program to line380, where
rT the hobo is put on the screen at its new position.
mm If there is no pan in the way, line 370 tests to see if a space

is present. If it is, all is well, and the program goes to line380.
f^ If there is something else in the way, it must be one of the
pa junkyard walls or maybe the guard. If either is true, lines 375-

378 make sure that the hobo can't go in that direction.
f^ Lines 375-376 reset the new row and coumn variables so
mm that they are the sameas the old rowand column variables.
- If all is well, lines 380-390 put the hobo at the new row and
C column.
mm Line 380 uses CALLVCHAR to erase the hobo at the

hobo's old row and column, HR and HC, and line 381 uses
C* CALL VCHAR to put the hobo at the new row column, RR and

TIC

Lines382-383 change the old row and column to the new
P row and column, so that the next time through the loop, the
mm. old becomes the new.

Line 390sends the program to line 330, which is a
f* RETURN to the main loop. A RETURN could have been put
mm here, but by sending all the branchesofa complicated subrou-

tine like this to a central RETURNline number, you can see the
f55* program flow easier, and youdon't riskhaving a RETURN in
m the wrong place.

First, line 410 checks to see if the joystick column variable
P1 was 0. If it wasn't, the joystickwas moved diagonally, and the
mm program goes to line330, which returns to the main loop. (You

should always check for this kind of input problemto make
P sure that what the player wants actually happens. It can be
mm very frustrating for the playerto think that he or she is moving

the joystickup and have the charactermove sideways because
P* there was a slight diagonal tug on the joystick.)
<m, Line412 creates a variable RR, which is used for the new

row you want the hobo to move to. You don't want to actually
P* change the row yet because the hobo might not be able to go in
^ that direction.

Finally, line 414 sends the program to line 350, where the
P* hobo's move is processed.
I** Similarly, lines 420-444 test the joystick's inputfor diagonals,
V,

create a new row or column variable that will be used to '
see if the hobo can go in that direction, and shift the program ^
to line 350. _

Lines 500-650 move the guard. Every time the program •
goes through the main loop, the guard moves. Lines 500-575 **)
calculate the guard's move, and lines 600-650 move the guard.

Lines 502-503 create variables that will be used as flags to '
test which way the logic will flow in this subroutine. TRY is 0 ^
and will be used to see if one logic path was followed, and
FLAG will be used to see which way a different logic path ^
went. ^

Lines 505-506 set the variables CI and RI to 0. These will
be used for the increase (or decrease) of the guard's row or ^
column. ^

Lines 510-512 create new variables which will be used to ~
calculate the difference between the row and column positions '
of the hobo and guard. ^

Line 514 takes the absolute values of the differences between <—
the rows and columns of the hobo and guard, and sees which
is greater. You want to determine which way the guard will ^
move first. You've already calculated the differences between ,—
the rows and columns, and you want to go in a pattern that '
will use the shortest path, which will be the difference that is ***)
greatest. In other words, if the distance between the rows is ~
greater than the distance between the columns, you want to '
decrease that distance first. If the row difference is greater than ^
the column difference, the program will go to line 530; if the —
column distance is greater than the row distance, the program •
will go to line 520. Notice that the absolute values were taken **,
with ABS. This was used because you're concerned only with ^
the numerical distance. If you don't take the absolute value, you ^
might get wrong answers because the difference may be a ^
minus number if the hobo is, for example, to the left of the 0m.
guard. -

Lines 515-527are used for the guard's move calculation if "*)
the column difference is to be decreased. „_.

First of all, line 515 sets FLAG to 1. Line 520 tests to see '
whether the difference between columns is greater than 0. If it —*)
is, the hobo is to the left of the guard, and the program goes to ~
line 525. If it's not greater, the hobo is to the right of the guard,
and the program goes to line 522. "^

Line 522 sets CI to —1. This will be used later to move the

150 **)

mm

09\

• guard's position to the left.
p* Lines 525-527 are used if the hobois to the leftof the

guard. CI= 1 is used later to move the guard right.
^ Lines 530-535 operate the same way as lines 515-527,
p* except that the hobo is above orbelow the guard, and CR is

changedto 1or -1 to move the guard down or up, depending
^ on whether the hobo isbelow orabove the guard. The only
P* difference is that FLAG is not changed, so that it will remain 0.

The FLAG variable will be used later to tell whether the guard
^ attempted to move left or right (FLAG = 1) or up or down (FLAG
p* =0). Remember, at this point in the program, you are calcu

lating only where the guard will attempt to move.
?* Line 550 uses CALL GCHAR to see where theattempted
p* move will go. Thecharacter in the rowand column where the

guard wants to go is stored in the variable C.
^ Line552 tests to see if C is 33. If it is, that means that the
p* guard has caught the hobo, and the program goes to line700.

Line 555 tests to see if the attempted move is not equal to
^ character 104, which is the pan character. You must be careful
p* that the guard does not accidentally erase a pan. If no pan is in

the way, the program goes to line 560.
^ If a pan is in the way, the guard can move there. First, line
p> 557 puts the number104 into a variable called STORE. In the

initialization part of the program, STORE was set to 32. STORE
^ isused toleave behind either a space ora pan when the guard
p* moves. Ifa guard is aboutto move on top ofa pan, STORE will

be set to 104so that when it moves, the pan will be put where
^ the guard moved from. The program then goes to line 600 to
p* move the guard.

Line 560 tests to see if the position the guard moved to is
^* not equal to 32. If it is not, amaze wall is blocking the way, and
p* the program goes to line 580.

Line 565 makes sure that STORE contains a space (ASCII
^ 32) so that when the guard is put inits new position, a space
p* will be put down in the old position. This is necessary to

prevent another pan from being PRINTed.
^ Line 566 sends the program to line 600 so that the guard
p> can be PRINTed.

Lines 570-575 are accessed if the first and second attempts
^ tomove the guard failed. Lines 570-572 generate random
p* increases or decreases for the guard's row and column, and

line 575sends the program back to line 550to test these new

ft^m^

151

values. If they don't work, lines 570-575 repeat again and again "*)
until a path for the guard's movement is found. When one is <_.
found, the guard is moved by line 600.

Lines 580-583 determine the flow of the logic in the guard's *^
attempts. The first time through the guard's subroutine, the ^
program will attempt to move the guard in the row or column
direction that is still toward the hobo, but which is the greatest ^
difference in row or column direction. However, if this direction <—*
didn't work because something is in the way, the program will
next try to go in another direction toward the hobo. Here's an ***)
example: If the guard is in the middle and the hobo is to the ,_~
right or left, and the row difference is greater than the column
difference, the guard will first attempt to move toward the row ^
thatiscloser to thehobo. Iftheway isblocked, theguard will ^
next try to move toward the column that is closer to the hobo.
Finally, if neither of these ways works, a random move away *^>
from the hobo takes place. This may help the guard escape
from a blind spot he may be trapped in.

Line 580 sees if TRYis equal to 1. If it isn't, this is the first ^
time through the testing procedure. The first attempt has _
failed, and now a second attempt is made. -

Line 581 sets the TRY variable to 1, so that the next time ^
the program reaches this point, if the second attempt fails, line
580 sends the program for a third attempt.

*=%

*s%

Line 582 sees if the FLAG variable was set to 1. If it was, **%
the first try was in a column direction, so the program goes
back to line 530 and tries to see if moving in a row direction
will help. If FLAG was 0, the first attempt was in a row direc- **)
tion, so line 583 makes the program go back to line 520 to see if „__
moving in a column direction will help.

Lines 600-650 actually move the guard. Line 610uses ^
CALL VCHAR to put a space where the old row and column of ,_
the guard was. A space is put down if STORE is equal to 32, '
but a pan is placed if STORE is equal to 104. Line 620 uses ^
CALL VCHAR to put the guard in the new row and column, as ^
calculated by GR +RI and GC +CI. Finally, lines 630-640 ™
change the old guard row and column to the new row and ^
column. „_

Lines 700-710 are accessed if the guard catches the hobo.
Line 705 clears the screen, and line 710prints a message. ^)

Lines 800-880 are the end of the program. This will be
gone to when the guard catches the hobo, the time runs out, or

tfWA

152

Uteammd

H©b© Party 1

the hobo gets all the pans. This is programmed the same way
as the endings of other games in this book, to give the final
score, a chance to play again, and end the program.

Lines 900-920 are used if the hobo got all the pans. Line
905 clears the screen, line 910 prints the message, and line 920
sends the program to line 800 for the ending.

Lines 2000-2740 contain the subroutine that generates the
maze and puts the pans and the title on the screen.

Lines 2100-2130 set up variables which use the subroutine
starting at line 2700. The subroutine at line 2700 puts the title

P* message on the screen, HOBO PARTY, PRINTed at row 1,
column 11.

Lines 2160-2180 put the exclamations on either side of the
p* title. Dancing hobos appear from these characters when the
— program is finally set up. The exclamation marks are put on
~ the screen using CALL VCHAR and aFOR/NEXT loop.
P* Line 2190 is the word RESTORE. This is a very important
~ safety measure when you're using DATA statements, such as

those which generate the maze. RESTORE makes sure that
P* when READ reads a DATA statement, it starts with the very
«, first statement.

Line 2200begins the actual maze generation.
P* Line 2210 starts a FOR/NEXT loop that is used to put each
^ row of the maze on the screen. The first row is3and thelast

row 22; J is used for the row number.
p* Line 2220 READs the first DATA statement it finds. The
^ DATA statements in this program are in lines 2500-2529. Each

DATA statement is a collection of 32 numbers read as one
P* string, A$. The numbers are either 0 or 1;a 0 indicates a space
_> and a 1 indicates that a character is to appear on the screen.

The maze generator is set up this way so that the programmer
^ can easily make changes in the layout of the maze, by merely
-^ changing the 0's or l's. There are 20 DATA statements, each

representing one row.
P* Line 2230 starts a second FOR/NEXT loop which is used to
~j translate the 0's and l's into specific objects to create the maze.

Variable 1 is used for the counter here and is also the column
p* number.
—^ Line 2240 looks at each segment of the A$ variable. If the

segment is not equal to 0, the program will go to line 2260.
p* Notice that 0 is used because 0 is a string, not a numeric vari-
—a able. If the segment is a 0, the program goes to line 2250.

p* 153

asss

Line 2250 sets the variable EL (ELement) to 32. EL islater ^
used to decide what is put on the screen. Since the segment ^
was 0, ELwill be 32 so that a space can be printed.

Line 2255 then sends the program to line 2270 so that the >
space can be put on the screen. ^

Line 2260 is accessed if the segment of A$ is equal to
something besides 0 (in other words, if the segment is 1). This '
line generates a random number, stored in EL, between 96 and **)
100. ELis the character printed. Trash bags, tires, TVsets,
boots, and bottlesare the customcharacters defined in the ^
subroutine at line 3000. Because EL is chosen randomly each ^
time through the loop, the maze consists of walls of varying
objects. The overall shape is the same, but the texture is '
different each time because of what makes up the walls. *=%

Line 2270 uses CALL VCHAR to put a character on the
screen in row J and column I. '

Lines 2280-2290 close off the FOR/NEXT loops. When you —^
have one loop inside another, make sure that you have them
closed correctly. Ifthe outer loop is J, you should putNEXT J ^
last. When the program has gone through all of the J and I «^
loop combinations, the maze is on the screen.

Lines 2300-2350 put the pans on the screen. Line 2310 sets
up a FOR/NEXT loop that will put 32 pans on the screen. Lines
2320-2325 create a random row and column for the pan. Notice
that no number will be generated that will be outside the maze
boundaries. Line 2330 uses CALL GCHAR to see if the row p>
and column generated are already occupied. If they are not _
equal to 32 (a space), the program goes back to line 2320 to try •
again. Line 2340 is gone to if a space wasat the row and **>
column numbers that were generated. CALLVCHAR puts a _
pan (character 104) in the row and column selected. '

Lines 2500-2529 are the DATA statements used to create ^

the maze. (Notice that these DATA statements are not part of _
the program, in the sense that no GOTOs or GOSUBs go to
these lines. They could have been put in any part of the ^
program that is not in the program flow. When a READ state
ment is used, the program starts at the beginning and looks for
the first DATA statement it finds. RESTORE must be used to -^
make sure that the first DATA statement is used; otherwise,
there is a chance that if you tried to reuse the DATA state
ments, they would start after the last DATAstatement.) ^

Lines 2700-2740 contain a subroutine which puts a

154 ^

iC3^V

fi-ms^

- message on the screen. This is similar to message subroutines
P* used in other programs in this book. CALL VCHAR is used to
p-> take astring, A$, and by using ASC(SEG$), puts each char-

acter of the string in the proper row and column.
P* In lines 3000-3200 is a subroutine which creates the char-
« acter shapes and colors of the maze and pans.
~ Lines 3020-3060 use CALL CHAR to create the shapes of
P* the trash bags, tires, TV sets, boots, and bottles.
« Line 3075 creates the shape of the pan using CALLCHAR.

Line 3100 colors the screen light green.
p* Line 3110 colors the maze objects dark green. Dark green
« is used with light green so that the shapes of the objects will

show through. If you use colors that contrast too much, some
P* of the dots that make up the objects will seem to blend into the
- background. Line3120 colors the pans medium red.
- Lines 4000-4900 set up the initial variables that start the
p* game.
_ Lines 4005-4060 put the hobo on the screen. Line 4010 sets
• the hobo's beginning row to a random row number, HR. Line
p* 4015 sets the new hobo row number variable, RR, to the same
ggtN value as HR.
^ Lines 4020-4025 create the old and new hobo column
P number variables, in a manner similar to lines 4010-4015.
_^ Line 4030 uses CALL CHAR to createthe initial shape of
- the hobo. This shape changes to produce animation in the
p* main loop.
~ Line 4035 colors the hobo black. Black is used for both the
^ hobo and the guard for the best visibility. You can tell them
p* apart because they have different shapes which are animated
__^ to move the hobo's legs and the guard's arms.
• Line 4040 uses CALL GCHAR to see what is in the row
4s* and column generated for the hobo's location. If the row and
—a column do not have a space (character 32), the program goes

back to line 4010 to try again. If the row and column do have a
p* space, line 4060 uses CALL VCHAR to put the hobo on the
~ screen.

••' Lines 4100-4160 put the guard on the screen.
p* Lines 4105-4106 create the guard's beginning row and
_ column position, in a central location, in row 10 and column
*" 18. Line 4130 creates the guard's beginning shape, which is
p* animated in the main loop. Line 4135 colors the guard black,
_ and line 4160puts the guard on the screen using CALL
• VCHAR.

#^ 155

Line 4200 sets COUNT to 0. COUNT is used in the main
loop to keep track of time.

Line 4210 sets TIME to 33. TIME is set equal to 33 because
the subroutine that uses TIME starts out by subtracting 1.
Remember that no more than 32 blocks can be on one line at a
time.

Line 4220 sets the color of the blocks that show how much
time has elapsed.

Line 4225 uses CALL CHAR to create the shape of one
block. The total number of blocks indicates how much time is
left.

Line 4230 sets the variable PAN equal to 0. Line 4300 uses
the subroutine starting at line 200 to put the number of pans
on the screen and also to show how much time has elapsed.

Line 4310 sets the variable STOREequal to 32. STORE is
used by the subroutine that moves the guard. Lines 5000-5030
are gone to when the time is up, and the player has not gotten
enough pans. Line 5010 clears the screen, line 5020 prints the
message that the time is up, and line 5030 sends the program
to line 800, where the ending takes place.

Variables
HR

RR

HC
CC
GR

GC

COUNT

TIME

PAN

STORE

A$

ROW

COL

EL

156

Hobo's current row.
Hobo's attempted row when it tries to move.
Hobo's current column.
Hobo's attempted column when it tries to move.
Guard's current row.

Guard's current column.
Variable used to keep track of time in the main
loop.
Variableused to put the amount of remaining
time on the screen.

Number of pans that the player has picked up.
Variableused to see whether the guard is about
to move on top of a pan or space.
String variable which holds a message to be put
on the screen ora temporary variable for a DATA
statement.

Row that the message will be PRINTed to.
Column that the message will be PRINTed to.
What is put on the screen when the maze is
generated.

ffflmft

^ PR Pan row.
p» PC Pan column.

FLAG Variable to see whether the first attempt of the
^ guard's move was in arow or column direction.
p* TRY Variable to seeifthesecond attemptofthe

guard's move also failed.
^ CI Increase ordecrease of the guard's column
p* position move attempt.

RI Increase or decrease of the guard's row position
/Rift .. •
^ move attempt.
p» DR Difference between thehobo rowand theguard

row.

^ DC Difference between the hobo column and the
p» guard column.

Special Notes. Bychanging the value that CALLCHAR
^ uses in the main loop, this program isable toanimate the two
pv action figures. Even if they are standing still, they stillmove,

because arms wave and legs jump. Using this kind of simple
^ animation can make a game more fun because players expect
p> realistic character movement in arcade games.

The maze generated in this game is a fixed maze, in the
^ sense that the pattern will always be the same. It feels different
p> each time you play because the walls ofthe game are different.

Reading in the shape from DATA statements makes the maze
^ itself easy to modify.
pa Thisgameshows how to display scores by using a bar

chart instead of just putting the number on the screen. Often it
^ iseasier for a player to justglance ata bar chart andunder-
p> stand its meaning than it is to see a number. Also, by using the

same technique, but with the shape of a pan instead of a block,
^ you can show how many pans have been picked upby the
p* hobo.

Study the logic of how the guard moves in lines 500-560.
^ In this game the idea is tomake the guard assmart aspossible,
p* so it will be able to catch the hobo. By anticipating all the

possible moves the guard can make, you can decide which
^ moves arebest. Ifhecan't make one move, you can see which
p* is the best. However, it's important to give the guard a way to

move, even if it is not the best way; otherwise, the guard may
^ get stuck, orworse yet, the program may become stuck ina
p* loop, always trying the best way.

Another interesting feature of this game is what happens

<$^ 157

when the guard moves over a pan. When you have objects ^
scattered around a screen that you don't want accidentally *m)
erased, you must have a way to restore whatever is moved
over. This isa powerful technique. By using it, you could ^
create a detailed map and have objects move over the map and «=^
store what they move over in a variable, leaving behind what
they justwent over. t=m)

Changing theGame ~
Besides the usual changes of color, shape, and sound, you can *p>
do a lot to change this game. «—

• The most obvious is to create mazes of different shapes.
You can create your own patterns, and enter them as ^
DATA statements. <—

• You can alter the maze each game by changing into a
space one of the five objects that make up the maze ^
walls. For example, ifyou make the trash bagintoa ^
space, the walls will have different shapes. However, if
you do this, take care that the outside walls contain no ^
spaces, or the moving characters may be able to escape. «*

• You can make the game more difficult by letting the
guard move more often, or you can make the time *p>
shorter. Ifyou wanttomake the game more difficult, ^
you can create a way for the guard to blast holes in the
maze walls so that he can more easily get to the hobo. ^

• To make it easier, you could add an escape option: If the ~
joystick button is pressed, the hobo could be picked up
and carried to a new unknown position on the screen, as **%
a way to escape when theguardisclosing in. ^

• Also, a second or third guard could be added, just by
duplicating the guard move routine for a second or third ^
guard- «m

• You could also create special items, like coffee pots. If
the hobo gets these special items, he can chase the guard ^
fora while. This will require the guard to do the oppo- mm^
site of what he did before, and will make the game very '
complex. *p}

• Finally, you can create a series of mazes for the hobo and ~
guard to go through, and add things like traps, dogs,
and so on. "^

158

ffifi£*

f» l/smg f/ze 77 Extended BASIC cartridge's capability to create sprites,
you can easily create and move characters on the screen. (If you don't

^ have the Extended BASIC cartridge, you can't use the commands in
f» this game.)

P* Spriteshave the ability to move independently, can be larger
« than normal characters, can move without erasing anything

created on the screen by normal characters, and can detect
P* collisions between one sprite and another.
p» "Moneybags" is a game that uses 14 sprites: 12 cars that

run on a freeway, one money truck that has a bad habit of
P* dropping money bags, and a playerfigure trying to pick up
p* the money without being run over by the cars.

Before you see how the game works, a short summary of
P1 how sprites work on the TI is in order.

f* Sprites
p1 Firstofall, you must have the TIExtended BASIC cartridge
' plugged into your machine. Then, when you power up, and
^ after pressing any key, you'll be given an option between TI
f"* BASIC and TI EXTENDED BASIC. Press the 2 key to use TI

EXTENDED BASIC.
^ Most of the differences between Extended and TI BASIC
p* won't be covered here. However, if you want to edit a line,

instead of typing EDIT 10, you must type the line number you
^ wish to edit and then press FCTN and the Ekey simultane-
f» ously. Also, if you want to use PRINT to scroll the screen,

make sure you don't have anything on line 24 (see the discus-
^ sion of scrolling inChapter 9).
p* Also, youcan combine more than one statement on a line

by putting two colons (::) between statements.
• You can also see how much memory you have left by
f** typing SIZE.

Finally, Extended BASIC allows you to do many other
^ complicated things, such as a more generalized IF/THEN
p» command, using a GOSUB afterTHEN, or having a simple

command follow the THEN.
- To use sprites effectively, here's a summary of the
f^ commands that affect sprites.

fwmSk
161

CALL MAGNIFY. Touse sprites, you must first decide
how large you want them. CALL MAGNIFY will make all the
sprites a particular size.

CALLMAGNIFY (1) makes sprites the same size as char
acters, 8 dots wide by 8 dots high. Each sprite is made up of
one character, much the same way that a custom character is
made. CALL CHAR is used to create the sprite's shape.

Take a look at Figure 13-1 for a moment. Similar to a
custom character, a sprite can be drawn using an 8 by 8 grid.

Figure 13-1. Sprite Grid

To draw the sprite, simply fill in the boxes representing
the on dots, then calculate the hexadecimal code values for
each four-dot pattern. Refer to Figure 3-3, Character Combina
tions and Codes, for the 16 patterns and their code values.

An example of a sprite, already drawn and with its hexa
decimal values calculated, is in Figure 13-2.

In fact, this sprite picture is used in Moneybags.
CALL MAGNIFY (2) is the same as CALL MAGNIFY (1)

except that the dots have been enlarged, so that they cover
more area.

CALL MAGNIFY(3) creates sprites that are 16 dots across
and 16dots down. In other words, each sprite is actually made
up of four characters in a square, two characters by two charac
ters. In fact, each CALL MAGNIFY (3) sprite is created from

162

/JH'rl'i

**"$!

*=^

GSJ)

fi^j

/m^\

/P^l

/R>

p*

Figure 13-2. Bank Guard
Code Values

10

38

10

38

54

10

28

28

four charactersin sequence, such as characternumbers 32, 33,
34, 35. The first character is put in the upper-left corner, the
second in the lower-left corner, the third in the upper-right
corner, and the fourth in the lower-right corner. When you're
choosing fourcharacters to make a sprite like this, pickfour
that start at a number divisibleby 4, such as 32, 36, 40, 44, and
soon.

A spritedrawn when CALL MAGNIFY (3) is used would
be created on a 16by 16dot grid, similar to Figure 13-3. Notice
that it's actually four character grids put together.

You can use all four character grids if you want, or you can
use onlyone, two, or threeofthem. Unused grids will showas
blanks, or empty. You can use CALL MAGNIFY (3) to create
sprites thatare long and thin, or tall and narrow, by using only
two of the grids, leaving the other two blank. Moneybags does
this creating a sprite like the one in Figure 13-4.
Four characters are needed to draw this sprite, but the charac
ters n + 1 and n + 3 were left blank. This way the car appears
twice as long as it is high.

CALL MAGNIFY (4) is the same as CALL MAGNIFY (3)
except that eachdot has been enlarged. Thisis similar to the
difference between CALL MAGNIFY (1) and CALL MAGNIFY
(2).

163

aos

Figure 13-3. CALL MAGNIFY (3) Grid

C laracter n Character n + 2

Charact<jr n + 1 Zha ract€;r n + 3

164

n

CKIS

r
p*

r*

Bybags 13r
Monc

Figure 13-4. Car Spr

Code Values

ite

Code Values

p, 07

08

10

E0

r 90

p* 90

fiffi* 7F FE

pa FF ^^^^^^^^^^^^^^^^^^^^^^^^^^M__ FE

r FF ^^^^^^^^^^^^^^^^^^^IH^I FF
r 1C

1C

38

e 38

P»

r
f!!55\

r

r

r

r
p,

r

r°

f*

pa

r*

r*
r

p*

r*

r

r 165

r

s
<E5K\

CALL CHAR. Once you have decided what CALL ^
MAGNIFY you want touse, create your sprite shapes by using es^
CALL CHAR to define them. Thisworks the same way as
CALL CHAR did in creating custom characters. Ifyou are ^
usinga CALL MAGNIFY of3 or4, youmust make sure to put ^
blanks in the characters that youdon't want to appear on the
screerv You can do this by simply saying CALL CHAR (n " "), ^
which will put all zeros in character n. m

CALL SPRITE. CALL SPRITE puts your sprite on the
screen. You canhaveup to 28 different spriteson the screen at *^
one time. Each sprite has a number (which you must put a # <•*
sign in front of).

Each time youcreate a sprite, youmustgive it several ^
numbers: ^

• The first is the sprite number. Between 1 and 28, it must «
have a # sign infront of it. ™

• The next value is the characternumber. If you have a ^
CALL MAGNIFY of1or 2, the number you put in willbe ~
the ASCII number of the characteryou've defined, from
32 to 159. ^
Ifyou have a CALL MAGNIFY of3 or 4, you must put in ,—
the first ASCII number of the first character, and the TI
will use the following three numbers to define the rest of ^
the sprite's shape. „_

• Next is the number to color the sprite. Any number be- '
tween 1 and 16 can be used. ^

• The dot-row number is next. Sprites use a different «~
system of rows and columns than normal characters.
The TI uses 256 dot-rows, from 1at the top of the screen ^
down to the bottom. However, the bottom of the screen ~
is at dot-row 192, so any dot-rows beyond 192 are off the
bottom of the screen. These extra dot-rows can be useful ^
for hiding sprites temporarily.
Eight dot-rows are equal to one normal row, so you can
calculate a sprite's position bymultiplying a normal row "^
by 8 and subtracting 7. For example, dot-row 17 will be —^
at the top of normal row 3. Of course, there is the possi
bility ofoverlapping, soyou must calculate carefully. "^

• Next is the dot-column value. This is similar to the dot- «•»
row numbers; there are 256dot-columns, starting with 1
onthe left side andending at 256 on the right. "^

<sa

166

&&

r*

p^p

• • The sixth value is the row velocity, which causes the
f*» sprite to move in a vertical direction. The speed depends
_ on the number. If you use positive numbers, the sprites
• move down, and if you use negative numbers, they
P* move up. If the row velocity is 0, the sprites won't move.
' Row velocity values arefrom -128 to127, with thehigher
™ numbers being quite fast. If the sprite goes off the top or
p* bottom of the screen, it will wrap around, coming back

onto the screen, moving in the same direction.
^ •Finally, you need avalue for column velocity. This works
p* the same as the row velocity, except that the movement

is horizontal. If the numbers are positive, the sprite will
• move from left to right, and if the numbers are negative,
p* it will move from right to left. If the column velocity is 0,
' the sprite will remain stationary. You can leave off the
— row and column velocities and the sprite won't move,
p* but it'sa good idea to define them both as 0 just to make

sure.

^ Here's the form for CALL SPRITE:
F* CALL SPRITE (#sprite number, character number, color number,
p> dot-row, dot-column, row velocity, column velocity)
a Once you have set up a sprite, it will keep moving until

the program tells it to do somethingelse.
£** Ifyou have both the row velocity and column velocity
p> numbers not equal to zero, the sprite will move diagonally.

CALL COINC. Once you have your sprites moving, it's
^ often useful to detect collisions with another sprite.
p* There are several different ways to use CALL COINC

(which stands for Coincide). We'll use it to detect collisions
P* between two particular sprites.
a CALL COINC needs three numbers and a variable to

make it work:

• The first number is the sprite number you want to test.
p* You must precede it by a # sign.
— • The second value is the sprite number you want to check

to see if it has collided with the first. You must also
F^ precede it by a # sign.
_ • The third number is called the tolerance. This is the

• distance between the upper-left corners of the two
f* sprites in question. Ifyou have a tolerance of1, the
_ program will detect a collision only if the sprites' upper-

/BESi

left corners are in the same dot-row and dot-column. If ^
the tolerance is 8, the upper-left corners have to come a
only within eight dot-rows and dot-columns of each
other. ^

• Finally, a variable mustbe inserted that contains a «^
number to tell you whether the two sprites collided or
not. The variable contains a 0 with no collision, and -1 ^
with a collision. <=^

CALL COINC's form looks like this:

CALL COINC (#sprite number, #sprite number, tolerance, variable)
You can also use CALL COINC to detect if any sprites ^

collide or if a sprite collides with a specific dot-row and dot- *"^
column.

It's important to note that CALL COINC tells you only "^
whether there is a collision at the time the command is «*$
processed. To use it properly, you should have it in the main
loop and test it frequently. Sometimes, if a sprite is moving
fast enough, a CALL COINC won't happen at the moment of «^
the collision and you'll get a false reading.

CALL LOCATE. If you want to change a sprite's position
on the screen, you can use CALL LOCATE to move it to a new "^
dot-row and dot-column. _

This is useful for moving sprites with the joystick. You can
also use this to move a sprite off the screen if you want to hide ^
it temporarily, using CALL LOCATE to send it to a dot-row «»
value higher than 192.

CALLLOCATE needs the sprite #, a dot-row, and a dot- "**§
column. Her's how it would look:

CALL LOCATE (#sprite number, dot-row, dot-column)
CALL DELSPRITE. If you want to erase a particular

sprite, you can use DELSPRITE to remove a sprite from the
screen. All you have to do is specify the sprite you want
deleted. The form for the command is:

CALL DELSPRITE (#sprite number)
If you want to remove all sprites from the screen, you

could type: <=^
CALL DELSPRITE (ALL) ^

Other Sprite Commands. The previous sprite commands a
commands are the ones you probably will want to use in your

^\

168 «5

ess^k

iC^k

rfSS£)

•—s\

/P83

4*pt^ Moneybags

games, and are the ones used in the game Moneybags.
f5* However, several other commands are used with sprites. They
/bev are.

• CALL COLOR, which can be used for sprites by speci-
^ fying the sprite number (putting a# sign before it) and
p> the number of the foreground color. You can use this to

change colors of a sprite.
^ • CALL MOTION, which changes the motion of a sprite
f5* by specifying the sprite number, the row velocity, and

the column velocity.
^ • CALL POSITION, which finds out where the sprite isby
p* specifyingthe sprite number, and two variables, which

contain the dot-row and dot-column. You could use this
^ to see if a sprite has moved to acertain part of the
P* screen.

• CALL DISTANCE, which tells you how far apart two
^ sprites are by specifying the two sprite numbers and a
f®> variable that tellshow farapart they are in terms of the

square of the distance; you can also find out how far
^ away a sprite is from a specific dot-row and dot-column,
p» in terms of the square of the distance.

• CALL PATTERN, which changes a sprite to a new
* pattern by specifying the sprite number and the pattern
£** shape in a way similar to the CALL CHAR command.

You can use this to specify a pattern for a CALL
^ MAGNIFY of 3or4, using one string of numbers rather
(sa than four different CALL CHAR commands.

<P* Moneybags
p, Now that you've seena shortsummary ofhow sprites work,

you're ready to see sprites in action.
P* Thegame starts by drawing a dotted line on the screen to
p*» divide the highway. The title and score PRINT at the bottom.

A green money truck moves along the top of the screen.
f^ They must have left the back door open, becausemoneyis
£n flying out of the doorand scattering across the highway. As the

truck speeds off, a bank guard jumps out of the truck. The
^ guard's jobis to get allof the money without being run over.
(=ss This seems easy enough, but cars come from both sides of

the highway, six moving along the upper half of the highway
^ andsix more along thelower half. Each car isa different color
in* and moves at a different speed.

169

/m&\

You must guide the bank guard with your joystick,
moving him next to a moneybag, and picking it up by pressing
the fire button. Each moneybag you retrieve increases your
score by 1.

But be careful. If one of the cars hits the bank guard, the
game is over.

If the guard can pick up all the money on the screen,
another truck will come along and more money will be scat
tered. This game requires not only fast action, but strategy. You
have to figure out the cars' speeds so you won't be run over
when you try to pick up the money.

Program 13-1. Moneybags
10 REM MONEYBAGS

20 CALL CLEAR

25 CALL SCREEN(16)
30 CALL CHAR(104,"0708107FFFFF1C1C"
31 CALL CHAR(106,"E09090FEFEFF3838"
32 CALL CHAR(105,"")
33 CALL CHAR(107,"")
35 CALL CHAR(112,"7F44447FFFFF1C1C"
36 CALL CHAR(114,"E09090FEFEFF3838"
37 CALL CHAR(113,"")
38 CALL CHAR(115,"")
40 CALL CHAR(120,"0709097F7FFF1C1C"
41 CALL CHAR(121,"")
42 CALL CHAR(122,"E01008FEFFFF3838"
43 CALL CHAR(123,"")
45 CALL CHAR(128,"0709097F7FFF1C1C"
46 CALL CHAR(129,"")
47 CALL CHAR(130,"FE2222FEFFFF3838"
48 CALL CHAR(131,"")
50 CALL MAGNIFY(3)
51 CALL CHAR(36,"1038103854102828")
52 CALL CHAR(37,"")
53 CALL CHAR(38,"")
54 CALL CHAR(39,"")
65 CALL CHAR(43,"F0F0000000000000")
66 CALL COLOR(2,10,1)
70 CALL HCHAR(12,1,43,32)
80 LET CR=1

81 LET CC=8*16-7

86 CALL CHAR(96,"7F7F7F7FFFFF1C1C")
87 CALL CHAR(97,"")
88 CALL CHAR(99, «'")
89 CALL CHAR(98,"E09090FEFEFF3838")
90 LET P$="MONEYBAGS{5 SPACES}SCORE

170

<offi\

£$$£*

M*

sn®ss

tfw?&

91 LET PLACE=2

92 GOSUB 1000

93 GOSUB 800

94 CALL SPRITE(#1,36,14,CR,CC,0,0)
95 LET COUNT=l :: LET SCORE=0
96 GOSUB 200
97 LET P$=STR$(SCORE)
98 LET PLACE=23

99 GOSUB 1000
100 REM MAIN LOOP

122 FOR 1=2 TO 13

123 CALL C0INC(#1,#I,7,A)
125 IF A=-l THEN 300

128 NEXT I

130 CALL J0YST(1,JC,JR)
133 IF JR=4 THEN 500

134 IF JC=4 THEN 550

135 IF JR=-4 THEN 600

136 IF JC=-4 THEN 650

150 CALL KEY(1,K,S)
155 IF K=18 THEN 900

190 GOTO 100

200 REM NEW SPRITES

201 RANDOMIZE

210 CALL SPRITE(#3,104,4,INT(RND*80+90)+l,l,
0,RND*10+1)

212 CALL SPRITE

,0,RND*10+1
220 CALL SPRITE'

,0,RND*10+1
#13,112,5,INT(RND*80+90)+l,l222 CALL SPRITE

,0,RND*10+1
230 CALL SPRITE

,0,RND*10+1
240 CALL SPRITE

,0,RND*10+1
250 CALL SPRITE

0,-RND*10-l
252 CALL SPRITE

#12,104,3,INT(RND*80+90)+l,l

#4,112,12,INT(RND*80+90)+l,1

#5,104,14,INT(RND*80+90)+l,l

#2,112,10,INT(RND*80+90)+l,l

#6,120,6,INT(RND*72)+9,31*8,

8,0,-RND*10-l)
260 CALL SPRITE

0,-RND*10-l
262 CALL SPRITE

#10,120,11,INT(RND*72)+9,31*

#7,120,7,INT(RND*72)+9,31*8,

#11,128,13,INT(RND*72)+9,31*
8,0,-RND*10-l)

#8,128,8,INT(RND*72)+9,31*8,

#9,128,9,INT(RND*72)+9,31*8,

270 CALL SPRITE

0,-RND*10-l
280 CALL SPRITE

0,-RND*10-l
285 RETURN

171

172

cm.

&*&\

300 REM COLLISION **l
310 CALL SOUND(800,-5,0,880,0,890,0) ~
315 CALL CHAR(36,"18183C5A5A181824") ~
320 FOR 1=1 TO 300

330 NEXT I

350 PRINT "YOU WERE RUN OVER BY A CAR" «^
360 GOTO 700

500 REM MOVE UP *^
510 IF JC<>0 THEN 150

520 IF CR>9 THEN LET CR=CR-8 t

530 CALL LOCATE(#1,CR,CC) s^
540 GOTO 150

550 REM MOVE RIGHT ^
560 IF JR<>0 THEN 150

570 IF CC<243 THEN LET CC=CC+8 *^
580 CALL LOCATE(#1,CR,CC)
590 GOTO 150 ^
600 REM MOVE DOWN a-
610 IF JC<>0 THEN 150 '
620 IF CR<175 THEN LET CR=CR+8 m^
630 CALL LOCATE(#1,CR,CC)
640 GOTO 150 "^
650 REM MOVE LEFT

660 IF JR<>0 THEN 150 "
670 IF CO9 THEN LET CC=CC-8 <~
680 CALL LOCATE(#1,CR,CC) ™
690 GOTO 150 «^
700 REM ENDING

710 PRINT "YOU GOT ";SCORE;"BAGS OF MONEY" ^
720 PRINT "WANT TO PLAY AGAIN"

730 PRINT "PRESS Y FOR YES" "^
740 CALL KEY(3,K,S) «
750 IF S=0 THEN 740 >
752 CALL DELSPRITE(ALL) «a
755 IF K=89 THEN 10

760 END **}
800 REM PRINT OUT MONEY

802 CALL SPRITE(#20,96,4,1,1,0,9) "^
804 LET COUNT=l _

805 RANDOMIZE '
810 CALL CHAR(136,"183C3C0000000000") a
815 CALL COLOR(14,ll,l)
820 FOR 1=2 TO 31 *=^
830 LET BAG=INT(RND*22)+2
835 CALL GCHAR(BAG,I,Q) *^
837 IF Q<>32 THEN 830
840 CALL VCHAR(BAG,I,136)
846 NEXT I

848 CALL DELSPRITE(#20)

fi^

P* 850 RETURN
900 REM GET MONEY

C 910 LET R0W=INT(CR/8)+l
pn 915 LET C0L=INT(CC/8)+l

920 CALL GCHAR(ROW,COL,M)
p* 922 IF M<>136 THEN 100

925 LET SCORE=SCORE+l

F* 927 LET COUNT=COUNT+l
928 IF COUNT>28 THEN GOSUB 800

f® 930 CALL SOUND(100,-3,0,440,0)
pa 932 LET P$=STR$(SCORE)
{ 933 GOSUB 1000
p* 950 CALL VCHAR(ROV7, COL, 32)

955 GOTO 100

f^ 1000 REM PRINT
1010 FOR 1=1 TO LEN(P$)

f* 1020 CALL VCHAR(24,I+PLACE,ASC(SEG$(P$,I,1))
)

1030 NEXT I

1040 RETURN

1

/m^\,

frpm^

(ZsSl

Program Structure
Line 10 is the title, line 20 clears the screen, and line 25

colors the screen white.
F* Four different car shapes are created in lines 30-48. Lines
~ 30-33 create one right-facing car; lines 35-38, a right-facing
• station wagon; lines 40-43, a left-facing car; and lines 45-48, a
F* left-facing station wagon.
_, Line 50 is a CALL MAGNIFY (3) which makes each sprite

normal sized, but of four characters. For instance, characters
p* 104-107 make up one car, with the second and fourth charac-
_^ ters blank, since the cars are 16 dots long and only 8 wide.

Lines 51-54 create the characters that make up the bank
p* guard sprite. Since the bank guard is only an 8 dot by 8 dot
„ shape, the other three characters are left blank.
' Line 65 creates the character used for the striped median
(^ line of the highway. Line 66 colors it red, and line 70 puts it on

the screen with CALL HCHAR.
Lines 80-81 set up the initial row and column of the bank

p* guard.
_ Lines 86-89 create the group of characters for the money

truck sprite.
F* Lines 90-92 set the string variable P$ which PRINTs the
_ title on the screen by setting the PLACE variable, which is the

column, and the subroutine at line 1000.

173

mm

OS51

0&k

Line 93 sends the program to line 800 tomove the money "^
truckacross the screen, scattering money. m)

Line 94 creates sprite #1, the bank guard, using character
36, color 14, row and column CRand CC, and 0 row and ^
column velocity. em

Line 95 shows how Extended BASIC can combine two
commands on one line. The first command sets COUNT at 1 ^
(the COUNT will be used to see how much money is still on m^
the screen); the second command sets SCORE to 0. The two
are separated by a doublecolon (::). "^

Line96uses the GOSUB commandto create the 12cars, ^
sprites #2-#13.

Lines 97-99 put the score on the screen, using the subrou- ^
tine that starts in line1000. m$

Lines 100-190 are the main loop.
In lines 122-128 is a FOR/NEXT loop that tests to see ifany ^

of the sprites have collidedwith the bank guard sprite (sprite m^
#1). The variable I is used in CALL COINC to test whether any
oneofthe 12 sprites (numbered #2-#13) collided withsprite "^
#1. A tolerance of 7 is used so that if the sprites overlap at all, m
a collision is detected. The collision result is stored in the vari
able A. Line 125 sends the program to line300 ifA= -1, indi- "^
eating there was a collision. m^

Lines 130-136 read the joystick using the method from
earlier chapters. Lines 150-155 read the joystick fire button.

Line 190 ends the main loop. ••
Lines 210-240 set up the six sprites that move from left to

right. Notice thateven though there aresix sprites, only two "^
shapes are used: One begins with character 104, the other m^
begins with shape 112. Six colors are used, however. Each of
the sprites is assigned a random column velocity, so that each "^
moves at a different speed. Also, each sprite has a different a^
dot-row value, created with a random number, so that they
startoutat varying rows. All ofthese right-facing cars startout ^
between dot-row 91 and dot-row 170. This moves thecars -=^
along the bottom part of the screen.

Lines 250-280 set up the six sprites that move from right to "^
left. They are similar to the cars moving from leftto right «m^
except that they start in dot-column 31*8. (It's often convenient
to multiply byeight so thatyou don'thave toactually graph *"5
outa 256 x 256 grid. 31*8 is248, so the cars will always startat ^
the rightmost part of the screen.) Also, these cars are in dot-

174 ^

t^\

|ffipB\

^ rows from 9to 80, so that they move along the top half of the
f* screen. The sprites are made from characters that start with
-^ numbers 120 and 128. Onceall these sprites are set up and
•• moving, they will keep moving until one of them hits the bank
(^ guard. If they move offthe edge of the screen, they'll just enter
—^ on the other side.
': Lines 300-360 take care of the results if one of the cars
f^ collides with the bank guard. A sound is made in line 310, and
_^ the characterof the bank guard is changed in line 315 so that
• the bank guard looks flattened. A delay is created in lines 320-

f^ 330, and a message is displayed in line 350. The program then
-^ goes to line 700 where the ending routine executes.
- Lines 500-690 move the bank guard, the up movement

P* taking place in lines 500-540.
Line 510 checks to see if the joystick column variable is 0.

If it isn't, there is a diagonal joystick movement, and the
f^ program returns to the main loop.
— Line 520 checks to see if the bank guard's dot-row is

- greater than 9. If it is, it can move up. Line 520 shows the real
f^ power ofTI Extended BASIC. TI BASIC onlyallows an IF/
a THEN to go to a line number, but Extended BASIC allows a

statement to follow the THEN. In this case, IF CR is greater
P* than 9, THEN 8 is subtracted from CR, by saying LET
« CR = CR - 8. This saves a separate line.
^ Line 530 uses CALL LOCATE tomove the bank guard to
P* the newly calculated row and column.
pa Line 540 sends the program back to the main loop.

Similarly, lines 550-590 move the guard right, lines 600-640
f? move down, and lines 650-690 move left,
pa Lines 700-760 end thegame byprinting the score and

asking the player if another game is desired. Notice that line
F* 752 was added. This deletes all the sprites with DELSPRITE
« (ALL). If this were omitted, the cars would still be on the

screen when the game started over again.
f^ The subroutine in lines 800-850 scatters the money on the
pa highway.

Line 802 sets up the money truck sprite. It starts at the top
P* left and goes to the top right. The speed is adjusted so it will
p^ reach the other side justas the last bit of money isputon the

screen.

f* Line 804 sets COUNT back to 1, so that the variable can
pa count to see ifall themoney has been picked up.

&nw\

oneybags

Lines 810-815 create the shape and color of the moneybag
while lines820-846 set up a FOR/NEXT loop whichprovidesa
random row for the moneybag to be placed in. Lines 835-837
test to see if something is already in the location, such as the
medianstrip betweenthe two halves of the road. If something ^
is there, the program goes backand picks another random «-
number in line 830. Lines 848 then deletes the money truck '
with CALL DELSPRITE. n

Lines 900-955 operate the joystick fire button. ^
Lines 910-915 calculate the normal row and column from

the dot-rowand dot-column of the bank guard sprite, and line ^
920 uses CALL GCHARto see if something is in the row and «*
column. ^

Line 922 tests to see if the object CALLGCHAR found ^
was character 136, which is the bag of money. If it didn't find —
the money, the program goes back to the main loop. If it did, •
line 925 adds 1 to SCORE. ^

Line 927 adds 1 to COUNT, so that line 928 can test tosee ^
if COUNT is greater than 28. If it is greater, there'sonly one
bag left on the screen, so the subroutine in line 800 is called, *^
which calls another money truck to scattermore money. —

Line 930 creates the sound of picking up the money.
Lines 932-933 put the new score on the screen by using the ^

subroutine at line 1000.

Line 950 puts a space where the money was. Notice that '
this has no effect on the bank guard sprite, because the sprites ^
do not interactwith screen characters and in fact are always
put on top of any screen characters.

Line 955returns this part of the main loop.
The subroutine in lines 1000-1040 puts a message on the

screen. It uses P$ for the message, and the variable PLACEfor
the column. ^

Now that you've seen how this program works, you'll ~
notice how simple the structure of this program is. Imagine
trying to create a game that uses CALL VCHAR to move 13 ^
objects around on the screen, and how slow it would be. This ,—
is the power of sprites. '

Variables
CR Bank guard row. '
CC Bank guard column. ^
P$ String variable used for screen messages.

176

&%

4SHH

<csa

M^l

1 '
r

PLACE Variable used to put messagesat a specific
column.

COUNT Determines when there is only one moneybag
left on the screen.

SCORE Number of moneybags recovered.
A Variable used by CALL COINC to tell whether a

collision occurred.
JC Joystick column.
JR Joystick row.
K Key pressed.
S Key Status.
BAG Row in which a moneybag is put.
ROW Variable for the normal row that a dot-row is

translated into.
COL Variable for the normal column a dot-column is

translated into.
M Variable used by CALL GCHAR to see if a

moneybag was picked up.

Changing the Game
Now that you have seen how efficient sprites are, you may
want to go backand rewrite some of the games that you saw
earlier in this book.

• To make this game harder, you could occasionally test to
see if a sprite is near the edge it did not start from. If it
is, and you find it with a CALL POSITION, you could
erase it and put it at a new dot-row so that the cars
wouldn't always be in the same dot-row.

• You could scatter different values of money (shown by
different colors) and get more points for picking up
different moneybags.

• You could have some of the cars change lanes to get
closer to the row the bank guard is in.

• You could even give the bank guard a time limit in which
P^ to get all the money.

• To make the game look different, change CALL
P* MAGNIFY to 4, so that the cars and bank guard are
p^ large. Try this to see what it looks like; it maybe too
™ hard to play because there is no place for the bank guard
("* to hide.

177

*9

fi$£S

/^5\

14 Ho

A game is, quite simply, a competition that takes place by
following certain rules to achieve a desirable goal. All you need
to create your own game ideas are three things: a goal, a
competition, and rules. Add the programming building blocks
that you have seen in earlier chapters, and you're ready to
create original arcade-style videogames.

This chapter will give you a step-by-step process that will
show you how to assemble all of the necessary pieces to make
a complete game. The first five steps show you how to create
your original game idea. The last ten steps show you how to
make that game come alive by creating a computer program.

Step 1 is the most important, because it gives you a
method to determine what the game's goal should be. What is
the prize? What do you want to conquer, surpass, win, or
beat? It's a good idea to plan beforehand, so that you won't
program half of a game and suddenly realize it's not what you
wanted. If you make plans and follow them through, you
won't limit yourself by what you think the machine can do.
Many beginning programmers limit themselves because they
don't plan ahead.

Step 1: The Goal. In choosing a goal for your game, you
can look at other types of games for ideas. For example, what
is the goal of tennis, football, or chess? But you don't need to
stop at ordinary games. Examine the goals of other pursuits,
such as business, medicine, or politics.

Make a list of the goals that the people in these different
professions strive for. Things you might include in your list
would be: return the ball, make a touchdown, capture their
king, deliver the products, serve the customers, remove the
tumor, cure cancer, feed the poor, or end inflation.

Jot down as many goals as you can think of. When you
have your list completed, exchange some of the words and see
what you get. For example, instead of capturing the king, how
about returning the king, or curing the king?

181

Another wayto do thiswould be to make twolists. The ^
first could be a listoftypes ofactions, orverbs. The second list <•)
couldinclude types ofobjects, or nouns. Ifyour list includes
verbs like eat, smash, orattack, and nouns like Martians, ^
invaders, or potatoes, you could create goal-type ideas like **)
smash the invaders, eat the potatoes, or attack the Martians.
You could even program your computer to store these lists and ^
pick combinations for you automatically. ^

Onceyou have a goal foryour game, allyou have to do is
create a way to reach that goal. What do you smash the *^
invaders with? m^

What eats up the potatoes? Or where do you attackthe
Martians? The answers to these questions create the competi- *^
tion of your game. «|

Step 2: Hero and Enemy. You need to have someone or
something that is competing with theplayer for the same goal.
Usually thereis a hero (theplayer) and an enemy (the
computer or another player). You must decide what the hero
should be and what the enemy should be.

Usually the player will be a human character, but not
always. The hero or the enemy can beMartians, mosquitos, or
even potatoes.

Step 3: Location. The hero and villain competingfor the
same goal must have a locationwhere they do this. Make a list
oflocation possibilities, suchas on the moon, in yourback
yard, or underwater. Make a location choice from this list.

Step 4: Weapons. Now that you know whois competing
for whatand where, all you need for the action tobegin is an
object the competing players can use. The object couldbe *^
called a weapon.

The object is what the hero or villain uses to reach the '
goal. It's the basis for the nature of the competition of the ^
game. In other words, it's what's used to smash, attack, eat _
with, or invade. Some weaponsyou might use couldbe a ball, '
a racquet, a gun, a boomerang, a book, an apple, a tank, a ^
spaceship, or a laser beam. _

Again, make a list of possibilities and from that list choose '
your weapons. **^

Ifyou save all of these lists, you'll have a valuable resource 0t%
for game ideas. >

Step 5: Rules. Onceyou've chosen the goal and competi- ^
tion elements of the game, you need to formulate the rules of ^

182 **)

£Sft

ffW*\

fpffir\

^ how these things interact. The rules you choose will depend
p» on what the goal is, where the location is, what the weapons

are, and who the hero and enemy are.
^ It's important to determine what it takes to win orlose the
p* game. How many points do you need? How do you get

points? How do you losepoints? How much time do you
^ have? What happens ifyou go out of the boundaries? What
p* kinds of moves can or can't be made? Think carefully about the

other rules you might need. Ask yourselfquestions like these,
^ and theanswers will become the rules ofyour game. Write
P* down the rules.

Now that your game has its rules, goals, the hero and
^ enemy, the location, and weapons, you're ready tobegin
pa programming.

Step 6: Outline. The first step in creating the computer
^ program for your game idea is to make a general outline on
p\ paperofwhat youwant the program to do.

Review the building blocks presented in Chapters 2-6 if
^"* necessary. Orexamine thegames in Chapters 7-13 to see how
p» different kinds of movement are achieved. Make notes on how

your location background should be set up, how the hero
^ should move, how the enemy should move, and how the
pv weapons should work. You must consider how everypieceof

your program will have to work.
^ After examining all the pieces ofthegame idea, you can
p» begin to create the actual computer program.

Now is a good time to get out graph paper and draw the
^ various characters you'll want to use. Also, think about what
P* kinds of colors you want to use in the design of your charac

ters, what colors you want the screen to be, and what kinds of
^ shapes andcolors you might want touse for background
(m objects. When you are thinking about this, write down what

kind of sounds would enhance the game, and create a library
^ ofsounds that you like or that signify something, suchas
P» explosions, flying saucer sounds, or laser zaps.

Also, you should decide whether you want to use TI
<T BASIC or TI Extended BASIC.
p» Now that you've planned the main elements ofyour

game, the first and most important part of any game program
1 is the mam loop.
p* Step 7: The Main Loop. The main loop of a program

usually does two things.^i™S

183

184

WW

e "»

The first is that it reads the keyboard or joystick, so that it ^
can take action based on player input. If the player does not do —
something, there is no real game. The main loop waits for ^
player input. *^

The second thing that the main loopdoes is to keep track &*
oftime. After a certain number oftimes around the loop, •
various things can happen. You can use this timing to move *^
the background, the enemy, or take other actions that make the ~
game work. ^

The major parts ofa gameare decided in the main loop, so ^
you should know what you want done here. Make it simple, ^
becausecomplicated things take time, and you want as little to
actually happen in the loopas possible, so that the game plays *^
as quickly as possible. BASIC is oftenslow enough without ~
burdening the main loop with unnecessary calculations. ^

To keep the main loop from slowingdown the game, you *"1
canmake the more complicated things happen in smaller ^.
programs and subroutines, which the main loop goes to. Once ^
a key is pressed, the joystickis moved, or the program has *^
gone around the loop a certain number of times, the program —
can go to a smaller program or subroutine.

Write down what you want the main loop to do. Study "^
main loops that have been presented in this book and write ^
down the BASIC statements that you want to use to make this -
loop happen. Don't start using line numbers yet and don't ^
type anything into the computer. You must patiently plan —
before you begin to actually program, to make sure that the "
program pieces work together. ^

Step 8: Smaller Programs and Subroutines. The smaller ^
programs are accessed from the main loop, or sometimes from '
other smaller programs. Eachsmallerprogram or subroutine ^
should do one or two things. When the smaller program is
finished, it goes back to the main loop.

Smaller programs can do many things, but you want to ^
keep them simple. If a smallerprogram is getting too compli
cated, you might want to break it down into several even
smaller programs. The idea is to use smaller programs to break
the game down into simple steps.

For example, one smaller program might move a character
left, and another smaller program might move the same char- "^
acterright. A smallerprogram could fire a gun, move the back- ^
ground, or move the enemy. You can use smaller programs to

am

How to Create Y©yr Own Same 14

— check to see if there will be a collision, to print or erase charac-
p* ters, to keep score, or keep track of time.

Often you can use a smaller program or subroutine in
-- more than one game, because it will do the same thing. Keep a
p» notebook and write down smaller programsthat you might
' want to use from one game to another.
^ Write down the BASIC statements for each ofyour smaller
P* programs or subroutines.
' Step 9:The Line-by-Line Listing. Now that you've
^ written down the BASIC statements you want to use for your
p main loop and your smallerprograms, you must go through

and see what needs to be done to make it a program.
^ Almost always you'll need an initial setup of things that
p must happen before the program goes to the main loop.

Part of this setup involves setting variables using LET
— statements. Write down all the variables that will be used in
p the program. Decide what their beginning values must be.

When this is done, write down the LET statements that
^ make the variables what they should start out to be. Write
p* down line numbers and have them be between 10 and 99, in

the order that seems logical.
*— Next, think about all thebeginning setups that your
p* program may need, such as a background or putting your

characters on the screen before you start. If you have room,
^- you may want to print the instructions on the screen before
f^ you play the game.

You should also clear the screen, put a REM title in, color
— the screen, define characters with CALL CHAR, and do other
p* things that need to be done before the game starts.

The game doesn't actually begin playing until the program
^ gets to the main loop. Decide what you want to have happen
p* before then, and put all the setups after the LET statements,
_ but still between 10 and 99.
^ Now you're ready to write down exactly what you want in
p* the main loop. Make sure that it loops back on itself with a

GOTO statement at the end. Usually the main loop can use
^ line numbers between 100and 190.
p* Finally, one at a time, write down the smaller programs

that you want to use, numbering each smaller program or
• subroutine starting at a multiple of 100. In other words, the
pa first small program or subroutine should start at 300, the next
1^ at 400, and so on.

P* 185

H©w to Create Your Own Game

Go over everything you've written. Now that you have a
line-by-line listing of your program, you can begin to type in
the actual statements.

Step 10: Typing the Setup and the Main Loop. Type in the
LET statements that give your variables theirbeginningvalues. ^
Then type in whatever else you want to happen before the
main loop begins, such as the printing of the background, the *^
beginning characters, the instructions, and colors. «^

Now, run the program and see if the background, charac
ters, instructions, and other things are as you want them. Itis ^
easierto change them now, because whateveryou do now will ^
affect the whole program. Once you see the opening screen,
you may want to make changes. If so, make your changes and ^
note them. m^

After you have the opening the way you want, type in the
statements for the main loop. To test the main loop, type in ^
dummy statements that are the line numbers of each subrou- m
tine. Each dummy statement could be something like XXX
PRINT "STOP IN LINE n" (XXX and nare thelinenumbers) ^
and follow it with a STOP statement. es^

Then, run the program and test your mail loop. Press each
key ormove the joystick andsee what happens. The program *^
should go to the line you want it to, then stop. You can tell m
which line it went to by the "STOP IN LINE n" report.

Ifpartofyour main loop uses a counter which counts toa ^
certain numberbefore it jumps, test it by using PRINT to see m^
what value the variable had when the program stopped.

When you're satisfied that your main loop works the way ^
you want, you should SAVE the program on tape or disk. <=^
Always get in the habit of saving parts of your program as you
write them. That way, when you make a mistake oracciden- *"9
tally erase part of the program, you can go back to the version m^
you saved and continue working again from there.

Step 11: Typing the Smaller Programs and Subroutines. '
Now you're ready to type in each smaller program or subrou- ^
tine. Type one in at a time and test it. Run the program and
see if it does what it's supposed to do. '

Always start with the simplest smaller program or subrou- ^
tine and work up to the hardest. For example, if you have a
smaller program to move the character, type that in first and

GSfy

^B%

test it. When you press the left-arrow key, see if the character ^
moves to the left. Test the smaller programs thoroughly,

186 *m

P? making sure that they workproperly.
pa As each smaller program works the way you want it to,

save the program. Asyou do more difficult smaller programs,
^ test the old ones to make sure they still work. If you have
p* trouble with your program at this point, read Appendix C, "In

Case of Error," which contains helpful hints on how to detect
\ ... errors.

p> Experiment with each smaller program, and see what
happens when you make changes. Often you'll get a new idea

P" asyou areprogramming, and this is theperfect time to try it
p* out. Because BASIC often tells you if you have anerror, you

cantryout different statements and ideas, and seewhat effect
^ theyhaveon the program.
^ Step12: Keep Records. Make notes on each experiment

you make as you program. Ifyou discover that something
f* doesn't work, write it down. If you find something that you
p> like, write thatdown too. You could even keep a separate

notebook for smallerprograms that can be reused in other
C games,
p* SAVE to tapeor disk all the versions ofyour program as

you create them. If you're using tape to store your program,
f* write down in a notebook the counter number on your
p* recorder which marks each place where you have a program

version. Put the date on each version, so you can later
f* rememberwhat you were doing and be able to sort out each
(sss version.

Step 13: Test. When all the smallerprograms have been
C added and tested, you can test the complete program game.
px Make sure that all the parts do what you want them to, and

test to see that none of the characters can go off the screen, or
P* that no characters pass through each other without something
p> happening (unless you want it that way).

One good way to test your game at this point is to give it
f5* to a friend to play. Another is to put the game away for a few
p* days and then goback to it and play thegame as ifyou have

never seen it before.
<P Think about each part of the game: How do the hero and
m villain interact with each other? How do they interact with the

boundaries? Do the weapons do what they should? Does the
fT scoringwork?Are the characters movingas fast or as slow as
£* you want them to?

Step 14: Corrections. Make any corrections or additions

187

14 How to Create Your Own Game n
necessary. Retest again andagain. Ifyou want your game to ^
really work, you must test it. Nothing isworse than having a m^
game that seemsto work, but doesn't when the player does
something thatthe programmer didn't think of. Try to see your ^
game from another person's point of view, and forget for a a^
moment how the actual program works.

When you make your corrections, test all the other parts of ^
the game aswell. Sometimes one error can cover upanother, ^
and sometimes youthinkyou are fixing oneerrorwhenyou're
actuallycausing another. "^

Step 15: Copies. When you're satisfied with the completed m^
gameand there are no mistakes in it, make two copies on two
separate tapes. ^

Now your videogame iscomplete. You can sell it, give it to m^
your friends, or play it yourself.

However, you should be warned that once you finish your
first game, you'll want to go right backand create another that
is even better.

Copyrighting and Marketing _
Once you've created your own game, you have many options. ^
Assuming that you didn't copy your ideas from a commercial ^
game, you should probablycopyrightyour game. Although
your game is actually protected under copyright law once
you've written it, you can insure this by putting a copyright
notice in your program, or writing to the Library of Congress
in Washington, D.C., for the papers needed to copyright your
program. ^

To put a copyright notice in your game, just type, near the
first line:

101REM COPYRIGHT (C) 1984 YOUR NAME

and you are protected by common law copyright.
Once you've protected your game, you might want to

submit it to a magazine. Magazines willpay you for your game
and often will let you resell it elsewhere. When you sella game

4Gh

C5£\

to a magazine, make sure you know what rights you're selling. ~^
You can also try to sell your game to a company that sells

and distributes other videogames. If you want to do this, write
to them, describing your game in a most general way, and wait
for a reply. Don't send in your game until they ask you to.
Usually they'll send you a form to fill out and they'll sign a

n

188 *^

p How to Create Your Own Game

P1 lettersaying that they won't steal your idea.
pv You also could try to sell your game yourself. Many maga

zines have low rates for small ads at the back of the magazine,
f^ and you can sellyourgames by mail. However, ifyou do,
a makesure you have plenty ofcopies on hand in case you get a

lot of orders. The Post Office has a regulation that says that if
C* you sell bymail, you mustsendoutall orders or offer the
p* customer a refund within 30 days.

Often games are fun to play, but they may not be as good
F* as the best that are for sale, or you may not want to get this
«x involved. There's probably a TI users group in your area, and

you might want to set up a tapeexchange so you can trade
P programs that you have written for programs that others have
p* written.

Whatever you do with them, writing games is fun for its
f* own sake. You can create games that play exactly the way you
px want them to play, and when you get tired of the way they

play, youcanchange themor write new ones. The best part of
f? it all is that once you have your hands on a computer, you
p* don't have to spend money to create an infinite number of

games, all the games you could everwant.
<? Ifyou want hundreds ofexciting, fast-action arcade
a games, the TI has a lifetime supplybuiltright in. All youneed

is your imagination and programming skill!

189

Appendix A

Characters:
ASCII Code Numbers and

{•ifsp&X ASCII Code # (Zlmradet

f-fm&?\ Set#l

32 (space)
33

34

35

;

#

^*S\ 36

37

$
%

/Zm&\ 38 &

0*
39

Set #2
/|^^

40 (
pv 41

42
)
*

0m\ 43

44

45

+

/^srt 46

47 /
/$9^

Set #3

/rt^ 48

49

0

1
/p*S\

50 2

/pg3\ 51

52

3

4

j(^^ 53
54

5

6
p.

55 7

/3!$£\, Set #4

on

56

57

58

8

9

\

59 /

/^™5\
60 <

/^?V 61 =p»^

62 >

/^\ 63 ?

m*

ASCII Code* diameter

Set #5

64 @
65 A

66 B

67 C

68 D

69 E

70 F

71

Set #6

G

72 H

73 I

74 J
75 K

76 L

77 M

78 N

79

Set #7

O

80 P

81 Q
82 R

83 S

84 T

85 U

86 V

87

Set #8

w

88 X

89 Y

90 z

91 [
92 \
93]
94 A

95

193

flBfiS

ASCIICode # Character ASCIICode #

Set #9 Set #13* ^
96 x 128 <•*
97 a 129
98 B 130 ^
99 C 131 «.
100 D 132 •
101 e 133 ^
102 f 134
103 G 135 ^

Set #10 Set #14* ")
104 h 136
105 i 137
106 J 138 ern^
107 k 139
108 L 140 ^
!09 M 141 ^
110 N 142 ™
111 O 143 <•"&

Set #11 Set #15* «•
112 p 144
113 Q 145 ^

JJ* R 146 ^115 s 147 ~
116 T 148 em
117 u 149
118 V 150 ^
119 W 151 ^

Set #12 Set #16* ^
120 x 152 *?
121 Y 153
122 z 154

^k?i

fiBSk

123 { 155 n
124 ' 156 _
125 } 157 ^
126 ~ 158 *%
127 DEL 159

*There are no standard characters for sets 13 through 16. This
has no effect on your ability to define them and use them in *^
CALL HCHAR and CALLVCHAR statements, but it is very **\
difficult to use them in PRINT statements.

194

Color Values

(^ Color Number Value
1

Black* 2
^ Medium Green 3
f^ Light Green 4

Dark Blue 5
C* Light Blue 6
p> Dark Red 7

Cyan 8
^ Medium Red 9
(*& Light Red 10
A Dark Yellow U
^ Light Yellow 12
p* Dark Green 13

Magenta 14
r Gray 15
/sa White 16

Transparent

195

CT^Z
In Case of Error
When you're programming, you'll occasionally make mistakes.
The TI computerhas the ability to check for three kinds of
errors, and you'll see a fourth method that you can use
yourself.

The TI manual that came with your computer hasan
appendix in theback called Error Messages that can help you ^
with certain kinds of errors. The three kinds the TI can find
are:

• Errors that you make while typing in a line. These will
usually be things that make no sense at all. You must
retype the line so that it makes sense in terms of BASIC
keywords and syntax.

• Errors that are caughtjust before the program starts
running. These usually have to do with variables, DIM
statements, being out of memory, and so on.

• Errors that cause the program to stop after it has started
to run, such as a GOTO to a line number that does not
exist or a value that is illegalfor a HCHAR. ^

Anytime the TI tells you that you have made an error, you ^
can look up the error message in the manual's index on Error '
Messages. Gooveryourprogram carefully to locate the error. **)

Tracing Errors. TheTIhas a special command called _
TRACE. By simply typing TRACE before you run aprogram, ^
you can see how the program flows. You will see a series of *^
line numbers enclosed by () symbols, such as (300) (310) (350).

You can follow the logic ofyour program and if it crashes,
where it stopped.

TRACE givesyou two ways offinding errors. You can see
where your program stopped, if it stopped and you don't
understand the error message. You can also use it to see the
logical flow ofyour program, which may help you to notice
that the program is not going to the lines it should, in the
proper order.

Type UNTRACE to turn off the TRACE command, so that
you can run your program normally.

Logical Errors
This is the fourth and hardest kind of error to catch. Your ^
program runs, you do not get an error message, yet something «*i
is wrong.

196

cSm

am

<•»

^

«%

<c^jk

Here are some things to try:
^" • Use TRACE to follow the program logic again. See if you
f5* typed what you thought you did. Check your program
(mk to make sureyou did not accidentally erase a line.
• • Check all your GOTO statements to make sure you're
p* not accidentally sending your program into a loop that it
p* can't get out of.

• Check your FOR/NEXT loops to make sure you have
f^ written them correctly. If you have one loop inside
-^ another, make sure that the one inside ends before the

next begins, and that your FOR/NEXT loops use
P* different variables.
0^ • Make sureyou don't confuse variables that seem alike.

A$, A, A$(2), and A(3) are all different kinds of variables.
(^ The first is a string variable, the second is a numeric
-^ variable, the third is a dimensioned string variable array,
^ and the fourth isa dimensioned numeric variable array.
f^ • Check your logiccarefullywhen you use operatives such
_^ as AND, OR, NOT, or <>. What you think a statement
• means may not be what it actually means.
f* • In complicated statements, use parentheses to sort out
_ mathematical operations. Don't type 3*A + 2/B unless
* you are sure which willbe performed first.

* How to Find Errors
f^ Here are a few ways to find errors.
p> • If you're not sure what value a variable has in a process,

you can always use PRINT AT to print out the variable
^ somewhere on the screen.
p> Forexample, if you are working out a complicatedidea

like the creation of the river in "Riverboat," you could print the
^ values of AandBon the side of the screen byusing a general-
p> ized screen print routine with CALLVCHAR. Youcould put A

and Binto strings and use SEG$ to put them on the screen,
^ onecharacter at a time, in a location that won't interfere with
p*> the game play.

Then, when the program runs, you can see the values of A
^ and B. In "Mushrooms," for example, you could PRINT the
f*> values of the arrays R and C to make sure that they contained
-^ the correct characters for each step of the program. You can
* always take out the generalized screen print statements after
p* you are sure what you are doing, but they are very valuable if

0mi\

Appendix C

^

you want to follow a process. If your screen is full and you
have a printer, you canalways print out variables on the ^
Printer. ~

• You canbreakyour program into steps. Then, use the
command BREAK to stop your program at a certain ^
point. All you have to do is type BREAK (line number) ^
and the program will stop when it comes to that line
number. Using BREAK, you can see just how far your ^
program gotbefore it stopped. Start at the beginning of «*
your program and work down.

Also, once your program has stopped at the line youthink ^
it should, you can use PRINT asa command by itself (with no *m
line number) to print out variables to see what value a variable
had at the moment the program halted. ^

If your program runs to the point where it should, and all ^
the variables are whatyou thinktheyshould be, change the
BREAKline number and pick a new line number further in the ^
Pr°gram- ^

Keep BREAKing yourprogram until you have figured out
where the problem is. Once you've narrowed the area where ^
theerror could be, you'll be able to track down the problem «.
eventually. -

You can turn off BREAKby typing UNBREAK. **%
• Put in fixed numbers. If you are using acounter and it ^

doesn't seem to work, try settingavariable equal to a
specific numberand see whathappens. Choose specific *!
numbers to seeif they do what you think they should. am
For example, if you havea counter that is supposed to
count to 3, set it equal to 3 the first time, and see if it ^
does what it's supposed to do. Similarly, test out all «*
possibilitiesof a number. If you want a number between
3 and 20, try 3 and then try 20. The idea is to make sure "5
thatall numbers are allowable. Often, if youare dealing «*
in random numbers, some of the numbers may be all
right and others may not, but because they are random, ^
you might not know which ones are causing your _
program to have problems. If you take the highest and
lowest, you can assume that those in between will work ^
correctly. ^

• If all else fails, take a rest. Putyour program away and
look at it later. Also, if you can't figure out a problem, ^
another person who is familiar with the TI may have an ^
insight into what is wrong with your program. -

198 ^

animation 141

CALL CHAR and 147

ASCII codes 11
custom characters and 20

table 193-94

automatic morion 117

background color 29
BREAK command 198

butterfly character 33-34
"Butterfly Motion" program 36
CALL CHAR 19-20, 23-24

animation and 147

custom characters and 155
CALL CLEAR 24

CALL command 11
CALL COINC 167-68,174
CALL COLOR 27

in "Martian Revenge" 96
sprites and 169

CALL DELSPRITE 168,176
CALL DISTANCE 169

CALL GCHAR

in "Hobo Party" 148,151,154-55,176
in "Mushrooms" 137

in "Riverboat" 109-10

sprites and 166
CALL HCHAR 11,12, 14, 24

in "Hobo Party" 148, 173
CALL JOYST 57-58, 67
CALL KEY 49-51, 67

in "Martian Attack" 86

key-unit and 49-50
return-variable and 50

status-variable and 50-51
CALL LOCATE 168,175
CALL MAGNIFY 162-63, 166, 173

grid 164
CALL MOTION 169

CALL PATTERN 169

CALL POSITION 169,177
CALL SCREEN 26
CALL SOUND 71-77

in "Hobo Party" 148
independent of program execution 72

CALL SPRITE 166-67

CALL VCHAR 14, 97
in "Hobo Party" 149-55

cartridges, caution with 7
character insertion 10

characters 7

collision checking 63
color 26-28

chart 195

compound characters
in "Riverboat" 108

copyright 188-89
custom characters 19-30

in "Hobo Party" 155
DATA statement 153

debugging techniques 196-98
diagonal movement, joystick and 59-60
disappearing characters 28-29
"Dolphin" modificationof "Shark" 124-26
duration (sound) 71
edge of screen, checking for41-42
EDIT command 10

ending 63-64
Equals key, caution using with FCTN 10
experimentation, value of 3
FCTN Key 10

caution using with Equals key 10
filenames, disk 66
flickering 28
"Flutters" game 64-66
FOR/NEXT loops 35

delay and 35
foreground color 29
frequency (sound) 71
game characters 182
game design 77-78

concepts 181-89
game initialization

in "Riverboat" 108

goal, in game design 181-82
GOSUB command 41

clear program design and 108
GOTO command 24

"Hobo Party" game 141,146-58
modifications 158

horizontal scrolling 93
IF/THEN statement 44

INPUT statement 49

INT function 38-39

joystick 49-57
in "Hobo Party" 149-50
in "Shark" 123-24

joystick direction 57-58
table 58

keyboard 49-67
motion and 51

line-numbered commands 9

LIST keyword 10
main loop 53

in game design 183-84

199

marketing 188-89
"Martian Attack" game

discussion 83-87

modifications 87-89

program 81-83
"Martian Revenge" game

discussion 93, 96-100
modifications 100-1

program 93-96
"Moneybags" game

discussion 169-70, 173-77
modifications 177
program 170-73

movement 33-45

in "Hobo Party" 151-52
in "Mushrooms" 133-35

"Mushrooms" game
discussion 132-37

modifications 137-38

program 129-32
noise frequency 71-72
ON/GOTO command 136

OR operator, how substituted 4
patterned motion

in "Shark" 124

plus sign 44
PRINT AT command 197

PRINT statement 7-8

in "Martian Revenge" 97
program editing 10
programming techniques 185-87
"Random Butterfly" program 39-42
RANDOMIZE command 43-44

random motion 38-43

READ statement 153

redefining characters 20
REM statement 40, 185
RESTORE statement 153
RETURN command 41

"Riverboat" game
discussion 108-11

200

modifications 111-13
program 105-8

RND function 38-39

RANDOMIZE and 44

rules, in game design 182-83
RUN command 9

SAVE command 66

screen color 26

changing 27
SEGS function 87, 197
"Shark" game

discussion 120-24

modifications 124-26

program 117-20
solid characters 29-30
sound, uses of 76-77
"Sound Parade" program 73-76
sprite collisions 167-68
sprite grid 162
sprites 4, 161-69
stopping a program 25
string arrays 81

in "Martian Attack" 84, 86
in "Martian Revenge" 97, 100

subroutines

efficient placement of 146
in game design 184-85

TI BASIC 3, 4
TI Extended BASIC 4, 175

overview 161

sprites and 161
"Riverboat" and 111

TI-99/4Acomputer, hard to damage 3
TRACE command 196-97

UNBREAK command 198

UNTRACE command 196

vertical scrolling 105, 108-9
volume (sound) 71

*1

^

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!.

For Fastest Service,
Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
PO Box 5406
Greensboro. NC 27403

My Computer Is:
• Commodore64 QTI-99/4A • Timex/Sinclair DVIC-20 [JPE\
• Radio Shack Color Computer • Apple • Atari • Other
• Don't yet have one...

• $24 One Year US Subscription
• $45 Two Year US Subscription
• $65 Three Year US Subscription
Subscription rates outside the US:

• $30 Canada
• $42 Europe, Australia, New Zealand/Air Delivery
• $52 Middle East, North Africa, Central America/Air Mail
• $72 Elsewhere/Air Mail
• $30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank; international Money
Order, or charge card.
• Payment Enclosed • VISA
• MasterCard • American Express
Ace t. No. Expires /

3

f«5

	front-cover
	Binder1
	chapter000
	chapter000
	content016

	content000
	chapter001
	content001
	chapter002
	content002
	chapter003
	content003
	chapter004
	content004
	chapter005
	content005
	chapter006
	content006
	chapter007
	content007
	chapter008
	content008
	chapter009
	content009
	chapter010
	content010
	chapter011
	content011
	chapter012
	content012
	chapter013
	content013
	chapter014
	content014
	chapter015
	content015

	back-cover

