

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation ofany partof this work beyond that permitted by
Sections 107 and 108 of the United States CopyrightAct without the permission of
the copyright owner is unlawful.

Printed in the United States of America

10 987654321

ISBN 0-87455-036-X

The authors and publisher havemadeeveryeffort in the preparation of thisbook to insure the ac
curacy of the programs and information. However, the information and programs in this book are
soldwithout warranty, either express orimplied. Neither the authors norCOMPUTE! Publica
tions, Inc., will be liable forany damages caused or alleged to be caused directly, indirectly, inci
dentally, or consequentially by the programs or information in this book.

Theopinions expressed in this book are solely those of theauthors and are not necessarily those
of COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies and is not associated with any
manufacturer of personal computers. TI and TI-99/4A are trademarks of Texas Instru
ments, Inc.

ttkwHf

••5R9

Foreword v

Chapter 1: Applications and Techniques l
MitiCalc

Milo Tsukroff 3
Sketchpad

Kevin George 22
Memo: The Simple Word Processor for the TI-99/4A

Michael A. Covington 29
TI Screen Dump

Michael A. Covington 35
I/O Through the Joystick Port

Michael A. Covington 41
Record Blocking Techniques for the TI-99/4A

Roger O'Neel 51
AI with TI

Robert L. Brown 55

Chapter 2: Fun and Games 67
Labyrinth

Rick Rothstein 69
Spitfire

Edward F. Roberts, Jr 77
BOG'L

Rick Rothstein 82
Speed Demon

/• C. Hilty 93
Blackjack

Jim Rubino 99
Flood Waters

Lee Suydam 106
Macro/Micro Maze

Bob Foley HI
Mad Hatter Ladder

Scott Parsons 120

Chapter 3: Inside the TI 125
TI Memory Organization

William S. Miller 127
The Heart of the TI-99/4A: The TMS9900 Microprocessor

William S. Miller 134
TI Character Graphics

Rick Rothstein 145
TI-99/4A Character Definitions

Michael A. Covington 151

Chapter 4: It's Educational 155
Oh, So Simple

Jeannie M. Watson 157
Happy Face Arithmetic

Doug Hapeman 161
Spelling Tutor

Jeannie M. Watson 167

Chapter 5: Assembly Language 173
TI-99/4A Memory and Assembly Language Tips

Lee M. Marsh 175
TI FastSearch

Thomas W. Kirk 182
Expand TI BASIC with Mini Memory

Christopher Flynn 188
TI File Management

Thomas W. Kirk 209

Appendix
A Beginner's Guide to Typing In Programs 243

Index 247
Disk Coupon 249

What do you do when you have a computer that's no longer
made? If you have a TI-99/4A, you've probably asked your
self that very question.

COMPUTEl's TI Collection, Volume Two is the perfect an
swer. You may not be able to buy commercial software for
your computer, but with this book you can add many impres
sive programs to your software library.

All the programs and articles you find here are appearing
for the first time anywhere. Games that entertain, or entertain
and educate, sophisticated applications, and illuminating tuto
rials on a wide range of TI topics—all are ready to use on
your TI-99/4A.

How about a simple memo processor, one that doesn't
need a disk drive or take up an entire tape for storage? It's
easy to use and perfect for short letters and memos. Ever
wanted a spreadsheet for your TI? "MitiCalc" is the answer.
It's not as fast as a commercial package, but it's close. You'll
find it just right for those small personal accounting and finan
cial tasks.

Tutorials and information about your computer put you
inside the machine. You'll learn about everything from the
TI's "heart," its microprocessor, to the way it communicates
with the outside world through its joystick port. Articles on
memory management, and how the TI's memory is arranged,
give you clear and concise information on this important as
pect of the machine.

Have you thought about programming in assembly lan
guage, but haven't had the courage to try? COMPUTE'S TI
Collection, Volume Two gives you two plans of attack. Type in
and use such assembly language programs as "TI FastSearch"
or "TI File Management." Or learn some of the basics of
assembly language programming—with either the Editor/
Assembler or the Mini Memory command module.

And we haven't forgotten how much fun the TI-99/4A
can be. Games, from shoot-em-ups like "Spitfire" to the mind-
boggling "BOG'L," will give you hours of entertainment.
There are even children's educational games included, like
"Happy Face Arithmetic" and "Spelling Tutor," which says
the words for your child to spell.

With such a range of programs and information, you'll
find COMPUTE'S TI Collection, Volume Two an extraordinary
value.

All the programs in COMPUTEVs TI Collection, Volume
Two are ready to type in and run. If you prefer not to
type in the programs, however, youcan order a 5-1/4-
inch disk which includes all the programs in the book.
Call toll-free 1-800-346-6767 (in New York, call 212-265-
8360) or use the coupon found in the back of this book.

vi

^jBBf)

Milo Tsukroff

A spreadsheet on the TI-99/4A? Impossible,
some might say. Fortunately, not impossible.
4'MitiCalc" for the TI-99/4A, though not as so
phisticated as commercially available spread
sheets which can have thousands of "cells," or
entry pointsfor numbers and other information,
offers enoughfor most home users. For TI BASIC.

"MitiCalc" allows you to enter titles, numbers, or equations on
a table with 18 columns, each containing 18 rows. This table
is often called a spreadsheet. Any entry which involves num
bers or equations can use other numeric entries as numbers.

Because of the ability of one entry to call upon the value
of other entries, a change made to a single entry can affect
many others. When a spreadsheet is properly set up, this en
ables you to see the results of a change quickly.

When you want to save a spreadsheet, the program lets
you save it on either disk or cassette tape. You can also load
spreadsheets from disk or cassette, making the work of setting
up a spreadsheet largely automated once you've created the
basic overlay. All the options available to you while using
MitiCalc are right in front of you—either on the keyboard
overlay you've made or on the menu screen.

Note: When using MitiCalc on an unexpanded TI-99/4A,
you'll have space for about 3000 characters. This does not in
clude the numbers which will be displayed on the spreadsheet
for the numeric entries. It should be possible to fill the spread
sheet without seeing a *MEMORY FULL IN LINE... message.
This message indicates a program crash, which wipes out all
your entries. If you feel that you've used a great deal of mem
ory, save what you've done before continuing. Of course, if
you have a TI-99/4A with more than 16K of memory, you'll
be able to fill an entire spreadsheet without worrying.

Running with MitiCalc
After loading MitiCalc into memory, type RUN and press EN
TER. The computer takes about 15 seconds to check the pro
gram for errors. As soon as the menu screen appears, you're
ready to begin.

Applications and Techniques

Place the MitiCalc keyboard overlay into the holder above
the number keys.

MitiCalc Keyboard Overlay

«P*ge Pige* Clear
Screen O

Cancel
Entry

Edit
Entry Erase •BREAK*

Goto
Menu

Goto
Home

Title
Entry

Numeric
Entry

Compute
Sheet

•QUIT* O

Menu Screen Functions
When the menu screen is displayed, access the following op
tions by simply pressing the appropriate key. All other keys
are locked out.

1. Lets you load previously saved spreadsheets from either the
disk drive or the cassette recorder. When loading in a stored
spreadsheet, the program first clears the memory to avoid a
MEMORY FULL condition. A message prompting you to en
ter a filename appears. If you're loading a file to disk, type
DSKl.filename

where filename is the name of this particular spreadsheet.
Press ENTER.

If you're loading a file to the cassette recorder, type
CSl.filename

and press ENTER. (If you want, you can omit the filename
when loading a file from tape. Just make sure that the tape
is positioned at the correct location for that file. Pressing
ENTER simply loads the next file found on the tape.)

After the spreadsheet has been entered, all numeric
entries are calculated once. Every time a numeric entry
starts to be calculated, a brief bip sound indicates that pro
cessing has begun. A unique hoot sound announces that the
computer has finished processing all entries.

2. Allows you to save your present spreadsheet to either disk
or tape. As in the previous option, you'll be prompted for a
filename. Again, type DSKl.filename or CSl.filename and
press ENTER.

All entries in a column are saved, whether or not
they're used. All columns are saved, up to the last column
with entries in it.

Applications and Techniques

Note: About one minute of tape is required for each
column saved. Unless a great deal of room is needed, it's
best to set up your spreadsheet in the leftmost columns.

3. Clears out all entries on the spreadsheet, both title entries
and numeric entries. This takes about 15 seconds.

4. Pressing this key ends the program. Using it is easier than
pressing FCTN-4, and should be the only way that you end
with MitiCalc.

5. Displays the spreadsheet. Before displaying, the computer
asks you to enter the starting entry position. Enter the loca
tion as a column letter, A-O (uppercase only), and a num
ber, 1-18. Some possible entries are A12, Q6, and J13. Press
ENTER. If you simply wish to start in the Home position—
Al—press ENTER only. Note: If you enter an incorrect loca
tion, the program repeats the prompt. Though the range of
columns runs from A to R, you cannot use columns P, Q,
and R in an entry location when going to the spreadsheet.

6. All numeric entries are calculated. Processing starts at col
umn A and proceeds to the last column with a numeric en
try. Every time a numeric entry starts to be calculated, a
brief bip sound indicates that processing has begun. When
all entries have been processed (which takes some time for
largersheets) the hoot sound announces that the computer's
done.

Special-Function Keys
When the MitiCalc spreadsheet is displayed, you'll see four
columns of entries on the screen. Each column is only seven
characters wide—title entries show only the first seven charac
ters, and numbers longer than seven characters cannot be dis
played. The column letters appear at the top of the spread
sheet, row numbers at the extreme left and right. The current
cell is indicated by both a pair of flashing cursors on the
spreadsheet and by an entry location shown near the upper-
left corner.

Running along the top of the screen is a space, called the
display line, in which the full entry is displayed. It shows all
the characters of the entry at which you're located.

The following Function and Control keys are active and
should be indicated on your keyboard overlay (see the figure
above). No other keys are active. Pressing an active key results
in a keytone, accompanied by the appropriate action. Pressing

Applications and Techniques

an invalid key results in a keytone, immediately followed by a
bad-key boop sound.
Key Function
FCTN-2 Edit Entry
FCTN-4 BREAK

FCTN-5 Go to Menu

FCTN-6 Go to Home (Al)
FCTN-7 Title Entry
FCTN-8 Numeric Entry
FCTN-9 Compute Sheet
FCTN-= QUIT
CTRL-= Clear Screen
CTRL-8 Page Left
CTRL-9 Page Right
FCTN-E Up
FCTN-X Down

FCTN-S Left
FCTN-D Right

BREAK (FCTN-4) and QUIT (FCTN-=) are active at all times.
Do not press them by mistake. To end the program, it's best to
return to the menu screen and use the 4 option. Hitting either
FCTN-4 or FCTN-= could ruin hours of hard work.

If you do accidentally press BREAK by mistake, don't
panic. You actually haven't lost anything—yet. Immediately
type in CONTINUE or CON and press ENTER. The blinking
cursors will reappear, but in the wrong place, because the
screen has scrolled. Press FCTN-5 (Go to Menu) to access the
menu screen, and use the 5 option to return to the spread
sheet. The sheet will be redrawn correctly when you do this,
and no data will be lost.

What the Keys Do

FCTN-E, X, S, D Up, Down, Left, Right
Each time one of these keys is pressed, the dual cursors move
one row or column in the desired direction. The display line is
updated with the contents of the new position, and the loca
tion indicator is reset. If you move beyond the edge of the dis
played part of the spreadsheet, it's redrawn with the columns
shifted over one.

CTRL-8, 9 Page Left, Page Right
These keys redraw the entire spreadsheet, shifted over four
columns in the appropriate direction.

Applications and Techniques

FCTN-5 Go to Menu
This returns you to the menu screen.

FCTN-6 Go to Home

Redraws the spreadsheet, with the first four columns shown
and the cursor at the Home—Al—position.

CTRL-= Clear Screen
Clears all entries in the four displayed columns. Caution: Do
not press FCTN instead of CTRL. FCTN-= is QUIT.

FCTN-7 Title Entry
Erases the display line and puts a blinking cursor at the begin
ning of the display line. Any characters put onto the display
line after you use this key are entered as a title entry. The
cursors on the entry location in the spreadsheet will freeze
there while you work on the display line.

FCTN-8 Numeric Entry
Erases the display line and puts a blinking cursor on the sec
ond space of the display line. (The first space is reserved for a
special character.) You'll be able to enter only certain charac
ters and numbers onto the display line. The number value of
the numeric entry will be displayed on the spreadsheet if it
contains seven characters or fewer. The characters of the actual
entry can be seen only on the display line. As with Title Entry,
the cursors on the entry location freeze while you work on the
display line.

FCTN-2 Edit Entry
Allows you to change or modify an existing entry, whether ti
tle or numeric. The cursor is put on the display line, and the
blinking cursors freeze.

FCTN-9 Compute Sheet
All numeric entries are calculated, from the top of each col
umn to the bottom, proceeding from Column A to the last col
umn which includes a numeric entry. This may take some
time, so the program indicates when it's started evaluating
each numeric entry with a brief bip sound. When all entries
have been evaluated, the program announces the fact with a
multitonal hoot.

The Display Line—Special Keys
The display line can hold a total of 30 characters. Only when

Applications and Techniques

the cursor is on the display line can you enter information. It's
necessary to type fewer than 25 words per minute to allow the
program to pick up every character. Because a tone sounds ev
ery time a key is struck, you can tell if you're typing too fast.
If you do, the computer will begin to skip tones. If you hit a
key which is not allowed, such as inactive Function keys,
you'll also hear a bad-key boop, and no character will be
entered.

The following Function keys are active when in the dis
play line.
Key Function
FCTN-1 Cancel Entry
FCTN-3 Erase
FCTN-4 BREAK
FCTN-= QUIT
FCTN-S Left
FCTN-D Right
ENTER Enter

Remember that BREAK (FCTN-4) and QUIT (FCTN-=) are al
ways active. Do not press them by mistake. Follow the instruc
tions previously given if you accidentally press BREAK.

Display Line Key Features

FCTN-S, D Left, Right
Use these keys to move the cursor left or right along the dis
play line.

FCTN-3 Erase
Erases the entire display line. It also changes a numeric entry
to a title entry by eliminating the numeric entry's special first
character.

FCTN-1 Cancel Entry
Pressing this key eliminates all changes made to the display
line. The old line is displayed, and you're returned to the
blinking cursors of the spreadsheet.

ENTER Enter
Makes the program read the string of characters on the display
line into memory. If the entry is a title entry, it goes right in. If
the entry is a numeric entry, it is processed and checked for
errors before it's entered into the spreadsheet's memory.

Applications and Techniques

The Display Line—The Title Entry
When you're typing a title entry, any characters can be entered
on the display line—numbers, letters, or symbols. Only the
first seven characters of your entry are displayed. All other
characters will be shown only on the display line. If there are
fewer than seven characters, they're left-justified—flush with
the left edge of the entry block. Spaces are counted as charac
ters only if they're between characters or to the left of charac
ters which are visible on the display line.

For example, a display line could show
IT IS FINISHED.

The initial space and the spaces between IT and IS and be
tween IS and FINISHED all count as characters. The entry is
16 characters long in memory, which counts toward the 3000-
character limit. What's shown on the spreadsheet, however, is

IT IS

To enter a new title entry into the spreadsheet after typing
it onto the display line, press ENTER. Any previous entry will
be erased, and the numeric value of that entry is set to zero.

The Display Line—The Numeric Entry
When typing in a numeric entry, you can enter only certain
characters. All other characters are bad keys and will not ap
pear in the display line when you type them. None of the
characters on the display line will be displayed directly. In
stead, the entry shows the numeric value of the entry.

The first character of a numeric entry has an ASCII value
of 127, and appears as a blank. Because eliminating it turns a
numeric entry into a title entry, it cannot be deleted except
with the FCTN-3 (Erase) command.

To enter a numeric entry, press ENTER. First, the brief
tone sounds to indicate that the entry has entered the subrou
tine where it's to be processed. Then, if there's an error which
can be detected, a sharp beeping tone sounds. The cursor will
reappear on the display line at the location of the mistake.
When a numeric entry doesn't have a detectable error, it's
evaluated and its value is displayed on the spreadsheet. The
value is also entered internally for use by other entries at this
point. All values are rounded to the second decimal place,
whether shown on the spreadsheet or stored internally.

Applications and Techniques

If the character length of the number is longer than seven
characters, including decimal points and negative signs, the
number will not be displayed. Instead, a series of exclamation
points will appear. All numbers are displayed right-justified.

Mathematics of the Numeric Entry
The numeric entry is the most important part of MitiCalc. It's
evaluated by a large subroutine which reads the characters of
the entry and comes up with the entry's value.

Numbers. Numbers can be entered normally, including
decimals, but negative numbers cannot be entered directly—
the minus sign is recognized only as indicating subtraction.
Also, scientific notation cannot be entered directly. On the
spreadsheet, negative numbers and, occasionally, numbers in
scientific notation will be displayed. One convenient way to
enter a negative amount is to subtract a number from zero. Ex
amples of acceptable numbers are 32899, 7.2333, 4, 6783, and
0-50.

Operators. You can add, subtract, multiply, and divide
numbers or items which are processed as numbers. Here are
some examples of acceptable entries:
14+6.7 Addition
14 —6.7 Subtraction
14*6.7 Multiplication
14/6.7 Division
23.*2+48.6 Equations can be entered, up to the 29-character

limit.

Some examples of unacceptable entries include:
23.53.+46 Extra period in first number
—16 + 2 First number is missing
45*+ 47.88 Two adjacent operators; middle number is missing
56/ No number at end
45E16+1000000 Scientific notation not allowed

Entry References. Instead of a number, you can refer to
the value of another numeric entry. You must enclose the loca
tion of the desired entry in parentheses. Because of this re
quirement, parentheses may not be used for any other reason in a
numeric entry. The column letter must be an uppercase letter
from A to R, and the row number, which follows immediately
without a space, has to be in the range of 1 to 18. Thus, three
characters is the maximum within the parentheses. A few ac
ceptable entry references follow:

10

Applications and Techniques

(A18)+3
43*(Q6)-17.34
0-(A09)*2+403.79

Unacceptable entry references include:
(AA2) Not an entry location
14+C5/2 No parentheses
(E7—3 Missing parentheses
(Ml9) Row location is beyond 18
(D 2) Space in entry reference
(GO14) Entry reference too long

Column Sums. A convenient feature, the column sum,
counts as a number in an equation. It's indicated by a dollar
sign ($), followed immediately by the column letter. The col
umn sum is taken of an entire column—except when the col
umn is the same one that the numeric entry is in. When that's
the case, only the numeric entries above the row in which the
numeric entry is located are added. Examples of acceptable
column sums in numeric entries are

$B
17+$F-493.45
(C14)/7.5+$E-14000

Order of Processing. Equations are processed from left to
right. Algebraic hierarchy is not followed, and parentheses are
only to be used for entry references. This can cause problems,
and it often requires ingenuity to write an expression that will
work as desired. If necessary, an unused entry location may be
used to hold intermediate calculations. (If correct algebra was
allowed, the program would be much larger and, even worse,
much slower.) The process of coming up with a solution to an
equation is much like an inexpensive pocket calculator, and
looks like this:

3*14+4/2 Equation
42+4/2

46/2
23 Answer

If the situation was such that $B=3, (C3)=14, and
(D17)=2, the equation would look like this:
$B*(C3)+4.00/(D17) Equation

42+4.00/(D17)
46/(D17)

23 Answer

11

Applications and Techniques

Mistakes. Some mistakes won't trigger the error warning
and may in fact produce strange results. These mistakes are
missing operators before or after a column sum or an entry
reference; division by zero or by a number that's extremely
close to zero; and multiplication of two extremely high value
numbers.

If no characters or numbers are entered, an error will re
sult. To eliminate the entry entirely, including the special first
character, use the FCTN-3 (Erase) key.

Processing of Entire Sheet
Because of the direction of processing, when the entire sheet is
computed, it's best to make entry references or column sums
refer to entries that are either

• in columns to the left of the numeric entry's location, or
• above and in the same column.

Referencing below or to the right, even if the entries are al
ready in place, should be avoided. If this is not avoided, it will
be necessary to compute the entire sheet one or more extra
times when the spreadsheet is loaded from tape or disk. Refer
ences to entries or columns which are not computed at the
time of referencing return a value of zero, as do references to
title entries.

Editing the Display Line—Helpful Hints
Making modifications to existing entries is easier with the fol
lowing tips.

• If you decide that you don't want to make any modifications
after all, you can use FCTN-1 (Cancel) to eliminate any
changes that you've made. This is especially useful if you
don't remember exactly what was in the old display line, or
if a numeric entry has errors you can't easily fix. The old dis
play line will be redisplayed, and you'll be returned to the
blinking cursors of the spreadsheet.

• To erase an entry quickly and easily, press FCTN-7 (Title En
try) from the spreadsheet. Press ENTER, and the entry will
be completely cleared, including the internal numeric value.

• You cannot insert or delete characters. This worked too
slowly in TI BASIC. To eliminate characters, use the space
bar. Sometimes it may be faster to use FCTN-3 (Erase), but
be careful if you're working on a numeric entry. If you erase
the special first character, it's changed to a title entry.

12

Applications and Techniques

• Because the only characters needed for a numeric entry are
numbers, operators, and the capital letters A to R, only these
are allowed. It's helpful to use ALPHA LOCK when typing a
numeric entry to avoid making mistakes on entry references
or column sums.

• If you want to process a single numeric entry already in the
spreadsheet without computing the entire sheet, use FCTN-2
(Edit Entry). Press ENTER without making any modifica
tions, and the entry will be reevaluated.

• Remember while typing on the display line (and elsewhere
in the program) that a tone sounds every time you strike a
key, and it registers in the program. It is possible to press a
key and have the program not pick it up. If you don't hear a
tone, the computer didn't pick up your keystroke.

Check Balancing
Here's a sample spreadsheet I've developed. It demonstrates
how MitiCalc works. To type it in, go to the spreadsheet dis
play and move to the locations indicated. In each location, put
in either a title or numeric entry—whichever is indicated.

Title Numeric

Location Entry Entry
Al OrigBal
A2 Chk#+Dt

Bl (Original balance of the account)
B2 Amount

A18 Balance

B18 2*(B1)-$B
CI Balance

C2 Chk#+Dt

Dl (B18)
D2 Amount

C18 Balance

D18 2*(D1)-$D
^". A3-A17, C3--C17 (Number of check, date, and other

information)
=» B3-B17, D3-•D17 (Amount of check whose number is

to the left of the entry)
« A3-A17, C3 -CI 7 (Deposits—date and other

information)
sa B3—B17, D3-•D17 (Deposits: Subtract the amount of

the deposit from zero to get a nega
tive amount)

13

Applications and Techniques

After putting in all checks, press FCTN-9 (Compute Sheet) to
get the new balance.

MitiCalc

100 CALL CHAR(150,"000000FFFF")
110 CALL CHAR(151,"4040404040404040")
120 CALL CHAR(152,"0202020202020202")
130 CALL CHAR(153,"FFFFFFFFFFFFFFFF")
140 DEF B(A$)=SGN(ASC(A$)-127)+1
150 OPTION BASE 1

160 DIM U(16),0$(16),N(18,18),S$(18,18)
170 CALL CLEAR

180 PRINT " ** MitiCalc **"
190 PRINT ::TAB(8);"** MENU **"::"1 Load old data f

rom":" cassette or disk."
200 PRINT "2 Save the program's data":" on cassett

e or disk.":"3 Clear all entries.":"4 End this
program."

210 PRINT "5 Go to the MitiCalc table.":"6 Recalcul
ate entire sheet.":::" PRESS THE APPROPRIATE KE

Y."

220 CALL KEY(5,K,S)
230 IF S=0 THEN 220

240 CALL SOUND(100,320,12)
250 IF (K<49)+(K>54)THEN 220
260 ON (K-48)G0SUB 3230,3370,3140,3670,3470,3330
270 GOTO 170

280 P=l

290 Y=l

300 X=l

310 FOR E=l TO 24

320 CALL HCHAR(E,1,153,32)
330 NEXT E

340 CALL HCHAR(5,4,150,28)
350 CALL VCHAR(6,3,150,18)
360 FOR E=l TO 9

370 CALL HCHAR(E+5,2,E+48)
380 CALL HCHAR(E+5,32,E+48)
390 NEXT E

400 FOR E=0 TO 8

410 CALL HCHAR(E+15,2,E+48)
420 CALL HCHAR(E+15,32,E+48)
430 CALL HCHAR(E+15,1,49)
440 NEXT E

450 CALL HCHAR(4,4,32,28)
460 FOR E=l TO 4

470 CALL HCHAR(4,E*7-3,151)
480 CALL HCHAR(4,E*7+3,152)
490 CALL HCHAR(4,E*7,P+E+63)
500 NEXT E

14

Applications and Techniques

510 FOR G=P TO P+3

520 FOR Yl=l TO 18

530 IF S$(G,Y1)="" THEN 960
540 IF B(S$(G,Y1))THEN 980
550 DS=S$(G,Y1)
560 TL=1

570 X1=G-P+1

580 GOSUB 2870

590 NEXT Yl

600 NEXT G

610 CALL HCHAR(2,2,32,30)
620 Z=P+X-1

630 FOR E=l TO LEN(S$(Z,Y))
640 CALL HCHAR (2,E+l,ASC(SEGIS(Z,Y),E,1)))
650 NEXT E

660 CALL HCHAR(4,1,30,3)
670 CALL HCHAR(4,l,Z+64)
680 FOR G=l TO LEN(STRS(Y))
690 CALL HCHAR(4,G+1,ASC(SEG?(STR$(Y),G,1)))
700 NEXT G

710 J=Y+5

720 CALL GCHAR(J,X*7+3,W)
730 CALL GCHAR(J,X*7-3,M)
740 CALL HCHAR(J,X*7-3,30)
750 CALL HCHAR(J,X*7+3,30)
760 CALL KEY(5,K,S)
770 IF S THEN 810

780 CALL HCHAR(J,X*7-3,M)
790 CALL HCHAR(J,X*7+3,W)
800 GOTO 720

810 CALL SOUND(-100,200,15,400,17)
820 IF K=6 THEN 1750

830 IF K=l THEN 1300

840 IF (K=4)*(S$(Z,Y)<>"")THEN 3130
850 CALL HCHAR(J,X*7-3,M)
860 CALL HCHAR(J,X*7+3,W)
870 IF INT(K/4)=2 THEN 1000
880 IF (K=158)*(P<>1)THEN 3030
890 IF K=157 THEN 1190

900 IF K=15 THEN 2690

910 IF (K=159)*(P<15)THEN 3080
920 IF K=14 THEN 3220

930 IF (K=12)*(P<>1)THEN 280
940 CALL SOUND(-450,110,10)
950 GOTO 720

960 CALL HCHAR((Yl+5),((G-P+l)*7-3),32,7)
970 GOTO 590

980 DS=STR$(N(G,Y1))
990 GOTO 570

1000 ON (K-7)GOTO 1010,1070,1130,1160
1010 IF X=l THEN 1040

15

Applications and Techniques

1020 X=X-1

1030 GOTO 610 «

1040 IF P=l THEN 610
1050 P=P-1

1060 GOTO 450

1070 IF X=4 THEN 1100
1080 X=X+1 ""
1090 GOTO 610

1100 IF P=15 THEN 610
1110 P=P+1

1120 GOTO 450

1130 IF Y=18 THEN 610
1140 Y=Y+1

1150 GOTO 610

1160 IF Y=l THEN 610
1170 Y=Y-1
1180 GOTO 610

1190 FOR D=P TO P+3

1200 FOR E=l TO 18

1210 S$(D,E)=""
1220 N(D,E)=0
1230 NEXT E

1240 NEXT D

1250 IF (LOP+3) + (LC<P)THEN 1270
1260 LC=P-1

1270 IF (LL>P+3)+(LL<P)THEN 1290
1280 LL=P-1

1290 GOTO 290

13&0 CALL HCHAR(2,2,32,30)

1310 FG=0

1320 P2=2

1330 CALL GCHAR(2,P2,P1)
1340 CALL HCHAR(2,P2,30)
1350 CALL HCHAR(2,P2,P1)
1360 CALL KEY(5,K,S)
1370 IF S=0 THEN 1330

1380 CALL SOUND(-100,550,15)
1390 IF K=7 THEN 1300

1400 IF K=3 THEN 3570

1410 IF K=13 THEN 1540 =^

1420 IF (K=8)*(P2<>2)*(FG=0)+(K=8)*(P2<>3)*(FG=1)TH '
EN 1520 _

1430 IF (K=9)*(P2<>31)THEN 1480
1440 IF (K>126)+(K<32)THEN 1500
1450 IF (FG)*((K>82)+(K=44)+(K>57)*(K<65)+(K<40)*(K —«

<>36)*(K<>32))THEN 1500
1460 CALL HCHAR(2,P2,K) „
1470 IF P2=31 THEN 1500

1480 P2=P2+1

1490 GOTO 1330 "^

16 "^

Applications and Techniques

1500 CALL SOUND(-450,120,5)
1510 GOTO 1330

1520 P2=P2-1

1530 GOTO 1330

1540 IF LL>Z THEN 1560

1550 LL=Z

1560 FOR D=31 TO 2 STEP -1
1570 CALL GCHAR(2,D,G)
1580 IF G<>32 THEN 1600

1590 NEXT D

1600 Q$=""
1610 FOR E=l TO D-l
1620 CALL GCHAR(2,E+1,G)
1630 Q$=Q$&CHR$(G)
1640 NEXT E

1650 IF QS="" THEN 1670
1660 IF B(Q$)THEN 2580
1670 S$(Z,Y)=QS
1680 DS=Q$
1690 N(Z,Y)=0
1700 TL=1

1710 X1=X

1720 Y1=Y

1730 GOSUB 2870

1740 GOTO 720

1750 CALL HCHAR(2,2,127)
1760 CALL HCHAR(2,3,32,29)
1770 P2=3

1780 FG=1

1790 1=0

1800 GOTO 1330

1810 CALL SOUND(20,1000,12)
1820 FOR F=l TO 16

1830 U(F)=0
1840 OS(F)=""
1850 NEXT F

1860 1$=""
1870 T=l

1880 FOR F=2 TO (LEN(Q$))
1890 V$=SEGS(QS,F,1)
1900 IF (V$=".")*(POS(IS,".",1)<>0)THEN 2070
1910 IF VS="." THEN 1940

1920 IF VS<"0" THEN 2240

1930 IF V$>"9" THEN 2070
1940 IS=I$&VS

1950 NEXT F

1960 IF (IS="")+(lS=".")THEN 2070
1970 IF T=l THEN 2090

1980 U(T)=VAL(IS)
1990 R=U(1)

17

Applications and Techniques

2000 FOR F=l TO T-l

2010 IF 0$(F)="*" THEN 2110 <•«
2020 IF 0$(F)="+" THEN 2150
2030 IF 0$(F)="/" THEN 2170 ^
2040 IF 0$(F)="-" THEN 2220
2050 NEXT F

2060 RETURN ^

2070 1=1

2080 GOTO 2060

2090 R=VAL(I$)
2100 GOTO 2060

2110 IF (R=0)+(U(F+1)=0)THEN 2130
2120 IF ABS(LOG(ABS(R))+LOG(ABS(U(F+1))))>208 THEN

2200

2130 R=R*U(F+1)
2140 GOTO 2050

2150 R=R+U(F+1)
2160 GOTO 2050

2170 IF ABS(U(F+l))<=9.999E-89 THEN 2200
2180 R=R/U(F+1)
2190 GOTO 2050

2200 R=9.999E+89
2210 GOTO 2050
2220 R=R-U(F+1)
2230 GOTO 2050

2240 IF 1$="." THEN 2070
2250 IF V$="(" THEN 2330
2260 IF V$="$" THEN 2440
2270 IF (l$="")+(V$=" ")THEN 2070
2280 U(T)=VAL(I$)
2290 0$(T)=V$
2300 T=T+1

2310 1$=""
2320 GOTO 1950

2330 P3=POS(Q$,")",F)
2340 IF (P3=0)+(P3-F<3)+(P3-F>4)THEN 2070
2350 OX=ASC(SEG$(Q$,F+l,l))-64
2360 OY$=SEG$(Q$,F+2,P3-F-2)
2370 IF (LEN(OY$)=l)*((OY$<"l")+(OY$>"9"))+(LEN(OY$

)=2)*(OY$>"09")*((OY$>"18")+(OY$<"10"))THEN 20 *=*>
70

2380 IF (OY$<"01")+(OX<1)+(OX>18)THEN 2070 am,
2390 OY=VAL(OY$)
2400 U(T)=N(OX,OY)
2410 I$=STR$(U(T)) c"n
2420 F=P3

2430 GOTO 1950 -n

2440 XC=(ASC(SEG$(Q$,F+l,l)))-64
2450 IF (XC<1)+(XC>18)THEN 2070 ^
2460 IF XC=XP THEN 2560

18 "^

Applications and Techniques

2470 FX=18

2480 FOR D=l TO FX
2490 IF S$(XC,D)="" THEN 2520
2500 IF B(S$(XC,D))=0 THEN 2520
2510 U(T)=U(T)+N(XC,D)
2520 NEXT D

2530 I$=STR$(U(T))
2540 F=F+1

2550 GOTO 1950

2560 FX=YP-1

2570 GOTO 2480

2580 XP=Z

2590 YP=Y

2600 IF LOZ THEN 2620

2610 LC=Z

2620 GOSUB 1810

2630 IF I THEN 3610

2640 FG=0

2650 S$(Z,Y)=Q$
2660 N(Z/Y)=(INT(100*R+.5))/l00
2670 D$=STR$(N(Z,Y))
2680 GOTO 1710

2690 FOR G=l TO LC

2700 FOR C=l TO 18

2710 IF S$(G,C)="" THEN 2830
2720 IF B(S$(G,C))=0 THEN 2830
2730 XP=G

2740 YP=C

2750 Q$=S$(G,C)
2760 GOSUB 1810

2770 N(G,C)=(INT(100*R+.5))/l00
2780 IF (G-P<0)+(G-P>3)-(TT)THEN 2830
2790 X1=G-P+1

2800 Y1=C

2810 D$=STR$(N(G,C))
2820 GOSUB 2870

2830 NEXT C

2840 NEXT G

2850 CALL SOUND(500,-3,13,330,16,1320,20,2640,22)
2860 IF TT THEN 3350 ELSE 720

2870 IF LEN(D$)>7 THEN 2990
2880 FOR E=l TO 7-LEN(D$)
2890 IF TL THEN 2970

2900 D$=" "&D$
2910 NEXT E

2920 FOR E=l TO 7

2930 CALL HCHAR(Yl+5,Xl*7-4+E,ASC(SEG$(D$,E,l)))
2940 NEXT E

2950 TL=0

2960 RETURN

2970 D$=D$&" "

19

Applications and Techniques

2980 GOTO 2910

2990 IF TL THEN 3010 «*
3000 D$="l111111"

3010 D$=SEG$(D$,1,7) „,
3020 GOTO 2920

3030 IF P<5 THEN 3060
3040 P=P-4 ea^
3050 GOTO 450
3060 P=l

3070 GOTO 450

3080 IF P>11 THEN 3110
3090 P=P+4

3100 GOTO 450
3110 P=15
3120 GOTO 450

3130 IF B(S$(Z,Y))THEN 1770 ELSE 1310
3140 FOR C=l TO 18
3150 FOR E=l TO 18
3160 N(C,E)=0
3170 S$(C,E)=""
3180 NEXT E

3190 NEXT C

3200 LC=0

3210 LL=0
3220 RETURN

3230 GOSUB 3140
3240 CALL CLEAR
3245 PRINT "Enter filename"
3246 INPUT D$
3250 OPEN #3:D$,SEQUENTIAL,INTERNAL,INPUT ,FIXED 12

8

3260 INPUT #3:LL,LC
3270 FOR G=l TO LL
3280 FOR F=0 TO 5

3290 INPUT #3:S$(G,F*3+l),S$(G,F*3+2),S$(G,F*3+3)
3300 NEXT F ' '
3310 NEXT G
3320 CLOSE #3
3330 TT=1

3340 GOTO 2690 «r
3350 TT=0

3360 RETURN n

3370 CALL CLEAR

3375 PRINT "Enter filename"
3376 INPUT D$ "^
3380 OPEN #2:D$,SEQUENTIAL,INTERNAL,OUTPUT,FIXED 12

3390 PRINT #2:LL,LC
3400 FOR G=l TO LL „-,
3410 FOR F=0 TO 5

20 "^

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

Applications and Techniques

PRINT #2:S$(G,F*3+l),S$(G,F*3+2),S$(G,F*3+3)
NEXT F

NEXT G

CLOSE #2
RETURN

PRINT ::

INPUT "Entry position? >":T$
IF t$="" THEN 280
IF (LEN(T$)<2)+(LEN(T$)>3)THEN 3470
P=ASC(T$)-64
IF (P<1)+(P>15)THEN 3470
Q$=SEG$(T$,2,LEN(T$)-1)
IF (Q$<',01")-(LEN(Q$)=l)*((Q$<"l,,) + (Q$>M9")) +(
LEN(Q$)=2)*(Q$>M09")*((Q$>"18")+(Q$<"10"))THEN
3470

Y=VAL(Q$)
GOTO 300

CALL HCHAR(J,X*7-3,M)
CALL HCHAR(J,X*7+3,W)
FG=0

GOTO 610

FOR Q=l TO 9

CALL SOUND(100,1250,0)
CALL SOUND(100,110,30)
NEXT Q

P2=F+1

GOTO 1780

END

21

Kevin George

With over 124 custom characters and special
Junction keys, "TI Sketchpad" makes it easy to
draw complex pictures on your computer screen.
Uses TI BASIC.

"TI Sketchpad" is a picture construction set. Its 124 custom
characters can be combined in a multitude of ways, letting you
create unique figures, shapes, and even complete screen
scenes.

Although you have only one foreground, one background,
and one screen color, you can use any of the characters to de
sign a picture. Because of the nature of these predefined char
acters, your drawing will most likely be somewhat geometric.
Buildings, machines, aircraft, rockets, even cars can easily be
created on your TI's screen. More than a hundred characters
give you an enormous number of possibilities.

Sketchpad in Action
After you've typed in and saved TI Sketchpad, run the pro
gram. It first asks you for the screen color, then the fore
ground and background colors. Simply respond to each
prompt by entering a number from 1 to 16. After a few sec
onds the screen appears, with a small, square cursor in its
middle. If you choose a background color other than 1, or a
background color with the same number as the foreground
color, the entire 24 X 32 grid will be one shade.

Once the cursor is on the screen, you can start drawing by
positioning the cursor and hitting any key or key combination
listed in the chart below. Positioning the cursor is simple—use
the four arrow keys, and it moves one space in the appropriate
direction. If you move the cursor beyond the screen's limits,
the cursor wraps around, or reappears on the opposite side. Be
careful not to press any character key unless you see the
cursor on the screen.

The keys and key combinations, and the custom charac
ters each generates, are listed in this chart:

22

TI Sketchpad Keys and Characters

' ™ 4 • G •

+

' ESS

@

A

B

C

D

F •

H

I

J

K

L

M

N

O

P

Q

R

S

T

v b

W

X

Y

•

m

23

FCTN V

CTRL A

CTRLB

24

CTRLC

CTRLD

CTRLE

CTRLF

CTRLG

CTRLH

CTRL I

CTRL J

CTRLK

CTRLL

CTRLM

CTRLN

CTRLO

CTRLP

CTRLQ

CTRLR

CTRLS

CTRLT

CTRLU

CTRLV

CTRLW

CTRLX

CTRLY

CTRLZ

CTRL.

CTRL ;

Applications and Techniques

As you press a key, its character appears in place of the
cursor, which moves to the right one space. The cursor doesn't
erase the character in its position unless you press the space bar.

Special-Function Keys
In addition to the four directional keys and the redefined keys,
TI Sketchpad offers three special-function keys.

FCTN-1. Clears the screen of all characters (including the
cursor), but does not move the cursor to the middle of the
screen. (In fact, the cursor remains invisible until you move it.)

FCTN-2. Stops the program when you're finished
drawing.

FCTN-3. A toggle key, which when pressed allows you to
draw the same character over and over in any direction you
move the cursor. When pressed again, it returns to its normal
operation. After pressing FCTN-3, for instance, you'll hear a
short, high sound. Press the key you want to draw with and
move the cursor around. It lays down that character wherever
the cursor moves. Press another key. Now that character is
drawn wherever you move the cursor. Press FCTN-3 to toggle
off the function. Something important to remember: While
pressing down on the FCTN key, sharply hit the 3 key. If you
press down too long on the 3 key, the program reads it as a
toggle off, then back on, or on, then off. It may seem like
nothing has happened. You'll hear this as a two-tone sound
instead of the single tone you should hear.

TI Sketchpad

40 X=12

50 Y=16

60 CALL CHAR(159,"007E424242427E")
70 Z=32

80 CALL CLEAR

90 CALL SCREEN(2)
100 FOR COL=l TO 12

110 CALL COLOR(COL,16,1)
120 NEXT COL

130 INPUT "TYPE IN A SCREEN COLOR: ":S
140 PRINT

150 INPUT "TYPE IN A FOREGROUND COLOR: ":F

160 PRINT

170 INPUT "TYPE IN A BACKGROUND COLOR: ":B

180 PRINT

190 CALL CLEAR

200 PRINT " GIVE ME A WHILE TO THINK"

25

Applications and Techniques

210 FOR A=l TO 500

220 NEXT A mm
230 CALL CLEAR

240 FOR C=33 TO 158
250 READ CHS «•»
260 CALL CHAR(C,CH$)
270 NEXT C br

280 CALL SCREEN(S)
290 FOR COL=l TO 16
300 CALL COLOR(COL,F,B)
310 NEXT COL

320 CALL HCHAR(X,Y,159)
330 CALL KEY(0,K,S)
340 IF S=0 THEN 330
350 IF K=7 THEN 360 ELSE 420
360 IF J=l THEN 370 ELSE 400
370 J=0

380 CALL SOUND(500,-3,0)
390 GOTO 420

400 J=l

410 CALL SOUND(500,-1,0)
420 IF K<32 THEN 520

430 G=K

440 IF J=l THEN 490

450 CALL HCHAR(X,Y,K)
460 Y=Y+1

470 IF Y=32 THEN 480 ELSE 490

480 Y=l

490 CALL GCHAR(X,Y,Z)
500 CALL HCHAR(X,Y,159)
510 GOTO 330

520 IF K=8 THEN 530 ELSE 630

530 IF J=l THEN 540 ELSE 550

540 Z=G

550 CALL HCHAR(X,Y,Z)
560 Y=Y-1

570 IF Y<1 THEN 580 ELSE 600

580 Y=32

590 IF J=l THEN 610

600 CALL GCHAR(X,Y,Z)
610 CALL HCHAR(X,Y,159) "^
620 GOTO 330

630 IF K=9 THEN 640 ELSE 740 «*

640 IF J=l THEN 650 ELSE 660

650 Z=G aw
660 CALL HCHAR(X,Y,Z)
670 Y=Y+1

680 IF Y>32 THEN 690 ELSE 710 =^
690 Y=l

700 IF J=l THEN 720 an

710 CALL GCHAR(X,Y,Z)

26 •"

Applications and Techniques

720 CALL HCHAR(X,Y,159)
730 GOTO 330

740 IF K=10 THEN 750 ELSE 850

750 IF J=l THEN 760 ELSE 770

760 Z=G

770 CALL HCHAR(X,Y,Z)
780 X=X+1

790 IF X>24 THEN 800 ELSE 820

800 X=l

810 IF J=l THEN 830

820 CALL GCHAR(X,Y,Z)
830 CALL HCHAR(X,Y,159)
840 GOTO 330

850 IF K=ll THEN 860 ELSE 950

860 IF J=l THEN 870 ELSE 880

870 Z=G

880 CALL HCHAR(X,Y,Z)
890 X=X-1

900 IF X<1 THEN 910 ELSE 930

910 X=24

920 IF J=l THEN 940

930 CALL GCHAR(X,Y,Z)
940 CALL HCHAR(X,Y,159)
950 IF K=3 THEN 960 ELSE 980

960 CALL CLEAR

970 GOTO 330

980 IF K=4 THEN 990 ELSE 330

990 END
1000 DATA 3C7EFFFFFFFF7E3C,3C7EDFBFBFFF7E3C,3C42818

181423C,C0E0F0F0F0F0E0C0,03070F0F0F0F0703,FFFF
7E3C

1010 DATA 000000003C7EFF,C0201010101020C0,030408080
8080403,8181423C,000000003C428181,182424242424
2418

1020 DATA 00007E81817E,183C3C3C3C3C3C18,00007EFFFF7
E,E7C3C3C3C3C3C3E7,FFFF81000081FFFF,071F3F7F7F
FFFFFF

1030 DATA E0F8FCFEFEFFFFFF,FFFFFFFEFEFCF8E,FBFFFF7B
7F3F1F07,FBFFFFFFFFFFFFBF,0103070F1F3F7FFF,80C
0E0F0F8FCFEFF

1040 DATA FF7F3F1F0F070301,FFFEFCF8F0E0C080,0718204
040808080,E018040202010101,01010102020418E,808
0804040201807

1050 DATA 0101010303071FFF,808080C0C0E0F8FF,FF1F070
303010101,FFF8E0C0C080808,00182442422418,00183
C7E7E3C18

1060 DATA 0000001,0000183C3C18,000018242418,FFFFE7C
3C3E7FFFF,8040201008040201,010204081020408

1070 DATA 00000000FFFFFFFF,FFFFFFFF,F0F0F0F0F0F0F0F
0,0F0F0F0F0F0F0F0F,FF,00000000000000FF

27

Applications and Techniques

1080 DATA 8080808080808080,0101010101010101,FF81FF8
1FF81FF,FFAAAAAAAAAAAAFF,FF818181818181FF,183C
7EFFFF7E3C18

1090 DATA 18183C3C7E7EFFFF,FFFF7E7E3C3C1818,030F3FF
FFF3F0F03,C0F0FCEFFFFCF0C,8142241818244281,181
818FFFF181818

1100 DATA 1818FF1818FF1818,242424FFFF242424,0000005
5AA,081008100810081,FF7E3C18183C7EFF,81C3E7FFF
FE7C381

1110 DATA FFAAFFAAFFAAFFAA,3C243C243C243C24,0000FF5
555FF,00003F2D353F26,0000FC746CFC3C24,3C24FC6C
74FC

1120 DATA 3C243F352D3F,AAAAAAAAAAAAAAFF,905020C,000
0000003040A09,090A0403,00000000C020509

1130 DATA 101020C,0000000003040808,08080403,0000000
0C020101,0000FF0000FF,2424242424242424

1140 DATA 0000FC0404E42424,2424E40404FC,24242720203
F,00003F2020272424,242221100807,2444840810E0

1150 DATA 0000E01008844424,0000070810212224,3C,0000
8080808,000001010101,000000000000003C

1160 DATA FF818199998181FF,FF81BDA5A5BD81FF,FFFFC3C
3C3C3FFFF,00003C3C3C3C,00003C24243C,1010101010
10101

1170 DATA 000000FF,E7C381000081C3E7,7FBFDFEFF7FBFDF
E,FEFDFBF7EFDFBF7F,41221408080808,000808080814
2241

1180 DATA 0F0F0F0FF0F0F0F,F0F0F0F00F0F0F0F,00554922
22141C08,00061862C4621806,006018462346186,1038
28444492AA

1190 DATA FF7E3C,00000000003C7EFF,81FF81FF81FF81FF,
80C0E0E0E0E0602,0103070707070604,000000F00F

1200 DATA FFFFFF0000FFFFFF,E7E7E7E7E7E7E7E7,105438F
E38541,7EBDDBE7E7DBBD7E,0,0

28

The Simple Word Processor
for the TI-99/4A
^•^^•b Michael A. Covington

This simple word processor doesn't need a disk
drive and works on an unexpanded 16K TI-
99/4A. Written in TI BASIC, "Memo" stores your
text and commands in DATA statements.

Most word processing programs rely on a disk drive, or sec
ond-best, on a large (40K or so) memory workspace which can
be saved onto tape to give you a place to put text. There's no
room for a 40K memory workspace in the 16K TI-99/4A, and
adding a disk drive multiplies the overall cost of the computer
by a factor of something like six. But word processing is still
within reach, if you're willing to sacrifice a certain amount of
convenience and edit only relatively short documents.

"Memo" is a word processor that reads its text from
DATA statements within the program itself. Thus, there's no
need for an external data file, nor the workspace in which to
edit one. Moreover, the keys designed for program editing can
be used on the text as well.

How It Works

To use Memo, you enter text as a set of quoted strings within
DATA statments at the end of the program. In the default .line
mode (the mode you get if you don't ask for any other), each
string becomes one line on the printed page. Pages after the
first are automatically numbered in the upper-right-hand
corner.

With Memo, you also have the ability to enter commands,
not just text. Beginning a quoted string with a period indicates
that it's a command. Commands, as you can see if you look
at the program listing, must be on a line by themselves. Here
are the available Memo commands (note the abbreviations in
parentheses).

.line (.1) puts you in line mode, the mode just described.
You need this command only if you've been in another mode.

.center (.c) is similar to line mode except that each line is
centered in the middle of the page.

29

Applications and Techniques

.join (.j), the most useful of Memo's modes, this treats
subsequent strings as a continuous stream of words. The com
puter puts as many words on one line as will fit, producing
lines of approximately equal lengths.

.skip (.s) skips a line, which is useful for starting a new
paragraph or double spacing (.skip would have to appear be
tween each line of text for double spacing).

.page (.p) begins a new page, complete with page
number.

.in (.i) moves the left margin in (toward the right) by five
spaces.

.out (.o) moves the left margin out (toward the right) by
five spaces.

.end (.e) signals the end of the text. This command is nec
essary or the last line may not print. (It's included as line
32766 in the program listing and should not be deleted. Also
make sure you include the final RETURN at the end of your
DATA statements.)

The DATA statements for all these commands, and the
accompanying text, begin at line 20000. The program listing
includes a sample text describing these commands. To enter
your own text, simply replace the lines beginning at 20000
with your own DATA statements. Remember, though, to in
clude line 32766 at the end of your text. (Note: You can enter
up to four complete screen lines in one DATA statement. If
you'e using the .join command, you don't have to worry about
where you break the lines of text, as long as you're not break
ing up words; .join will print the text as a continuous stream
of words, putting as many as will fit on each printed line.)

As you enter text and commands, be sure not to omit the
BASIC keyword DATA. If you do, you'll get a SYNTAX ER
ROR message early in the program's execution.

Memo Working, Customization
While working, Memo asks how many copies you want, asks
if you want to see the quoted strings displayed on the screen
as they're processed (answer Y or N), then goes to work. You
can interrupt a print job by pressing any key and holding it
down (don't use FCTN-4, or the printer might not be properly
reset).

Several features of Memo need to be customized for your
own printer. WIDTH (in characters) and PAGESIZE (in lines)

30

Applications and Techniques m

are fairly straightforward. In line 60, use the appropriate de
vice name, PIO or RS232, as appropriate. [In order to get
Memo to work here at COMPUTE! on an Okidata printer, we
had to include "RS232/2.BA=9600.PA=N.DA=8"—Editor.]
If you wish, you can add a statement in line 70 to transmit
printer codes to place it in emphasized mode or the like. Line
1020 resets the printer to top of form and cancels all special
modes—the line shown is correct for an Epson MX-80, but it
should be changed for other printers. A simple PRINT #1:
CHR$(12) may suffice.

Double spacing? Hyphenation? Underlining? These and
many other features are absent mainly to conserve memory—
the available 16K is divided between the program and the
DATA statements, and, naturally, the less program, the more
text you can have. Memo will accommodate approximately
eight typed pages of text. It's at its best for producing multiple
copies of short documents (hence the name).

Memo

1 REM This is TI BASIC.

5 CALL CLEAR

10 PRINT "MEMO Word Processor"
21 PRINT : :

22 INPUT "How many copies? ":COPIES
23 INPUT "Display on screen? ":DISPLAY$
24 DISPLAY$=SEG$(DISPLAY?,1,1)
25 PRINT : :"To cancel the run, press"
26 PRINT "any key and hold it down.": :
30 MODE=l

32 PAGENO=l

40 WIDTH=70

45 PAGESIZE=50

50 INDENT=5

52 REM force syntax-checking of the data statements
54 GOSUB 20000

59 REM change "PIO" to "RS232" as appropriate
60 OPEN #1:"PIO",VARIABLE 255
65 FOR 1=1 TO COPIES

66 RESTORE

67 PRINT :"< copy number ";I;">": :
80 LINECOUNT=0

90 REM read a data string
100 READ A$
103 CALL KEY(5,CODE,STATUS)
104 IF STATUS<>0 THEN 1026

105 IF (DISPLAYS="n")+(DISPLAY$="N")THEN 110
106 PRINT : :A$

31

Applications and Techniques

110 IF SEG?(A?, 1,1)0"." THEN 500
120 REM process a command
130 GOSUB 10000 «f»

140 A?=SEG?(A?,2,1)
141 IF A?<"a" THEN 150 <sm
142 REM convert to upper case
143 A?=CHR?(ASC(A?)-32)
150 IF A$<>"S" THEN 200 "^
160 PRINT #1

170 LINEC0UNT=LINEC0UNT+1
200 IF A?<>MP" THEN 250
210 GOSUB 10630

250 IF A?o"I" THEN 300
260 INDENT=INDENT+5

270 WIDTH=WIDTH-5

300 IF A?<>"0" THEN 350
310 INDENT=INDENT-5

320 WIDTH=WIDTH+5

350 IF ASo"L" THEN 400
360 M0DE=1

400 IF A$<>"C" THEN 450
410 M0DE=2

450 IF A?o"J" THEN 470
460 M0DE=3

470 IF A$="E" THEN 1000
480 GO TO 100

500 REM process a string
510 ON MODE GO TO 520,520,600
520 BUFFER$=A$
530 GOSUB 10000

540 GO TO 100

600 REM joined mode
605 BUFFER?=BUFFER?&" "&A?
606 IF SEG?(BUFFER?,1,1)<>" " THEN 610
607 BUFFER?=SEG?(BUFFER?,2,255)
610 IF LEN(BUFFER?)<WIDTH THEN 100
620 PTR=WIDTH

630 IF SEG?(BUFFER?.PTR,1)=" " THEN 700
640 PTR=PTR-1

650 GO TO 630

700 PRINT #1:TAB(INDENT);SEG?(BUFFER?,1,PTR) ^
705 LINEC0UNT=LINEC0UNT+1

710 BUFFER?=SEG?(BUFFER?,PTR+1,255) "*•
720 GO TO 610

1000 REM end of run w
1010 GOSUB 10000
1019 REM reset printer
1020 PRINT #1:CHR?(12)&CHR?(27)&"<§" "
1025 NEXT I

1026 IF STATUS=0 THEN 1030 *s»,

*£ on

Applications and Techniques

1027 CALL SOUND(250,880,1)
1028 PRINT : :"<run cancelled>": : :
1029 PRINT #1:CHR?(12)&CHR?(27)&"<§"
1030 CLOSE #1

1040 STOP

10000 REM subroutine
10010 REM empty the buffer
10020 IF LEN(BUFFER?)=0 THEN 10999
10030 ON MODE GO TO 10040,10500,10040
10040 PRINT #1:TAB(INDENT);BUFFER?
10050 GO TO 10600 %% . %
10500 PRINT #1:TAB(((WIDTH-HEN(BUFBAR?))/2)+INDEJT)

;BUBFER

10600 BUFFER?=""
10610 LINECOUNT=LINECOUNT+l
10620 IF LINECOUNT<PAGESIZE THEN 10999
10630 REI start a new pace

10600 PAGEN09PAGENO+1
10650 PRINT #1:CHR?(12)
10660 PRINT #l:TAB(WIDTH-8);PAGENO
10670 PRINT #1
10680 LINECOUNT=2

10999 RETURN

19997 REM Do not copy statements 20000-20300 —
19998 REM replace them with your own textl
19999 REM Resume copying at 32766.
20000 DATA ".center",".skip",".skip",".skip","MEMO

Word Processing Program"
20010 DATA ".skip","Michael A. Covington"
20020 DATA ".skip",".skip",".skip",".join"
20030 DATA "The MEMO Word Processing Program occupi

es"

20035 DATA "less than 2K of the TI-99/4A's"
20040 DATA "16K of memory, yet provides a number"
20045 DATA "of useful word processing functions."
20050 DATA "The text is stored as a set of quoted s

trings"
20055 DATA "in DATA statements within the program i

tself."

20060 DATA "This makes MEMO very suitable for use w
ith a cassette recorder:"

20070 DATA "the program, with the DATA statements a
dded,"

20075 DATA "can be saved, reloaded, and run as need
ed."

20080 DATA ".skip","The program recognizes the foil
owing commands.n

20090 DATA "A command must be the only thing in its
quoted string."

20100 DATA ".skip",".skip",".line"
20110 DATA ".in"

33

20120

20130

20140

20150

20160

20170

20180

20190

20200

20210

20220

20230

20235

20240

20245

20250

20260

20270

20280

20285

32765

32766

34

Applications and Techniques

DATA " .line or

Each quoted string"
DATA "

line, beginning at"
DATA "

".skip"
DATA " .center or

ke line mode, but"
DATA "

red.",".skip"
DATA " .join or
quoted strings are"
DATA "

nuous stream of"

DATA "

words are put on"
DATA "

fit.",".skip"
DATA " .skip or
ip"
DATA " .page or
t page.",".skip"
DATA " .in or

spaces to the right."
DATA ".skip"
DATA " .out or .o — Move left margin 5
spaces to the left."

DATA ".skip"
DATA " .end or .e — End of run. (This
command is neces-"

DATA "

ine may not be"
DATA "

luded as line"
DATA "

am as published and"
DATA "

ted.)"

REM The following 2 statements must always be
included.

DATA ".END"

.1 — The default mode,

is printed on one

the left margin.",

•c — Centered mode. Li

each line is cente

.j — Joined mode. The

treated as a conti

words, and as many

each line as will

.s — Skip a line.",".sk

.p — Skip to top of nex

.i — Move left margin 5

sary or the last 1

printed. It is inc

32766 of the progr

should not be dele

Michael A. Covington

Transfer anything on your screen to the printer,
including redefined characters. You can use this
technique to get printouts of the graphics from
another program by just making it a subroutine.

Programmers who spend a lot of time designing an elaborate
screen display often want to obtain a hardcopy of that screen.
Unfortunately, the computer usually has facilities only for
printing the characters which are on the screen. Full-screen
copying isn't normally available. The reason for this is that
each type of printer accepts different codes for graphics, and
some—such as letter-quality printers—aren't even capable of
creating graphic printouts.

The simplest way to reproduce the screen on a printer is
to include in your program a second set of PRINT statements
identical to those which write to the screen. This second set is
directed to a printer. This is tantamount to doing everything
twice. In many cases, it's much better to do a screen dump—
have the computer look directly at the portion of its memory
which represents the screen and print out what's there.

An ASCII Printout
In either TI BASIC or Extended BASIC, you can use the CALL
GCHAR subprogram to find the ASCII code of the character
in any position on the screen. The following routine will
dump a screen to the printer (assuming file #1 has already
been opened to the printer):

100 FOR ROW=l TO 24
110 FOR COL=l TO 32
120 CALL GCHAR(ROW,COL,CODE)
130 PRINT #l:CHRS(CODE);
140 NEXT COL

150 PRINT #1

160 NEXT ROW

This routine simply scans the screen and transmits the
ASCII codes to the printer. (Line 150 starts a new line on the
printer at the appropriate point.)

35

Applications and Techniques

And Redefined Characters, Too
This method works only when the screen and printer charac
ter codes are the same. This works well unless you've been re
defining characters using CALL CHAR. Since CALL CHAR
doesn't change the character's ASCII code (which is the only
thing being transmitted by the routine above), the printer will
not know that the characters have been redefined. Still, this
method is fairly fast, and it is adequate for most purposes.

If you have the Extended BASIC cartridge and a printer
which allows dot-matrix graphics, you can do a type of screen
dump that reproduces the appearance of all characters exactly,
including those redefined. The trick is to determine not'only
the ASCII numeric code, but also the graphic definition cor
responding to that code. This can be done with the Extended
BASIC routine CHARPAT. The graphic definitions are then
translated into appropriate graphics codes for the printer, and
the result is an exact picture of the screen.

Graphics Printed
The accompanying Extended BASIC program illustrates this
approach with screen dumps to Epson printers with graphics
capability (including the TI Impact Printer, which is made by
Epson). The device name (RS232 or PIO) and the codes to ask
for special print modes (especially the codes to reset the
printer at the end) may have to be tailored to your printer.
Epson has used several different sets of codes over the years,
so changes may be necessary even for some Epsons. This ver
sion is known to work on an MX-80 III.

The main routine (lines 180-520) draws a sample picture
on the screen and then calls the subroutine DUMPSCREEN
(lines 30000-30920), which actually performs the dump. As
you might expect, the process is slow. A whole screen can
take 45 minutes. During the process, a cursor symbol (a black
rectangle) moves slowly across the screen, indicating which
character is being scanned and reassuring the user that the
computer hasn't gone to sleep. The printer prints half a line at
a time.

Even taking 45 minutes, DUMPSCREEN is far from use
less. It serves as an inexpensive, easy alternative to
photographing the screen when you want to produce docu
mentation or capture graphic data that can't be reproduced

36

Applications and Techniques •

any other way. The output quality is arguably better than a
photograph and is certainly easier to reproduce.

Using the Routine
Lines 180-520 are just a demonstration. To use the screen
dump routine in your own programs, include lines 30000-
30920 in your work, then CALL DUMPSCREEEN whenever
you want a copy of the screen display.

One possible problem: If you interrupt the printing by
pressing FCTN-4, you may have to turn the printer off and
back on to reset it.

TI Screen Dump to Epson Printers
100 1 This TI-99/4A Extended BASIC program draws a
110 I picture on the screen and reproduces it on th

e

120 I printer using DUMPSCREEN.
130 1
140 I The DUMPSCREEN routine itself (lines 30000-on

) can
150 1 be included in any program to obtain the sere

en

160 1 dumping function.
170 1

180 CALL CHAR(96,"1818181818181818")
190 CALL CHAR(97,"000000FFFF000000")
200 CALL CHAR(98,"1818181F1F000000")
210 CALL CHAR(99,"0102041F1F181818")
220 CALL CHAR(100,"0000000F1F204080")
230 CALL CHAR(101,"000000F8F8385898")
240 CALL CHAR(102,"010204F8F8181818")
250 CALL CHAR(103,"1818181810204080")
260 CALL CHAR(104,"191A1CF8F0000000")
300 CALL CLEAR

310 CALL HCHAR(14,8,98)
320 CALL HCHAR(9,8,99)
330 CALL HCHAR(8,9,100)
340 CALL HCHAR(8,13,101)
350 CALL HCHAR(9,12,102)
360 CALL HCHAR(13,13,103)
370 CALL HCHAR(14,12,104)
380 CALL HCHAR(9,9,97,3)
390 CALL VCHAR(10,12,96,4)
400 CALL HCHAR(14,9,97,3)
410 CALL VCHAR(10,8,96,4)
420 CALL HCHAR(8,10,97,3)
430 CALL VCHAR(9,13,96,4)
440 DISPLAY AT(8/15):"TI-99"

37

Applications and Techniques

450 DISPLAY AT(9,15):"SCREEN"
460 DISPLAY AT(10,15):*'DUMP"
470 DISPLAY AT(11,15):"PROGRAM"
480 DISPLAY AT(4, 2) :"**************************«•
490 DISPLAY AT(19,2)
500 DISPLAY AT(22,2)
510 CALL DUMPSCREEN
520 STOP

530 1

540 1

550 1

560 1

30000 SUB DUMPSCREEN
30010 1

1 TI-99/4A Extended BASIC
I

30020

30030

30040 1

30050 1

30060

30070

30080

30090

30100

30110

38

"MICHAEL A. COVINGTON
"A*************************"

I Performs bit-by-bit dump of the TI-99 scree
n

i onto the TI Impact Printer or any
I Epson printer with GRAFTRAX.
I Reproduces all user-defined
1 characters but cannot see sprites.

30120 I Caution: Dumping is slow.
30130 I Allow 45 minutes to dump one screen.
30140 I If dump is interrupted by pressing <FCTN>4,

it may
30150 1 be necessary to switch the printer off and

on again to reset it.
30160 1

30170 DIM BIT(8,8)
30180 HXS="0123456789ABCDEF"
30190 I Use "PIO" or "RS232" as appropriate.
30200 DEVICES="PIO"

30210 OPEN #99:DEVICE$&".CR"
30220 PRINT #99:CHRS(27);"A";CHR$(8)1 narrow line s

pacing
30230 1

30240 I SCRROW and SCRCOL are the screen row and co
lumn being examined.

30250 1

30260 FOR SCRR0W=1 TO 24

30270 PRINT #99:CHR$(27);"L";CHR$(0);CHR$(2)l super
-high-res. mode

30280 FOR SCRCOL=l TO 32
30290 1

30300 i Determine what character is at current posi
tion

30310 1

flWUf

30320

30330

30340

30350

30360

30370

30380

30390

30400

30410

30420

30430

30440

30450

30460

30470

30480

30490

30500

30510

30520

30530

30540

30550

30560

30570

30580

30590

30600

30610

30620

30630

30640

30650

30660

30670

30680

30690

30700

30710

30720

30730

30740

30750

Applications and Techniques

CALL GCHAR(SCRROW,SCRCOL,CODE)
I

1 Display a cursor symbol in place of it
I so user can watch progress

I

CALL HCHAR(SCRROW,SCRCOL,30)

I If present character = previous one, don't
re-do analysis
1

IF CODE=OLDCODE THEN 30770
OLDCODE=CODE

1

I Zero out the matrix in which decoding will
take place
1

FOR 1=1 TO 8
BIT(1,1),BIT(1,2),BIT(1,3),BIT(1,4),BIT(1,5),
BIT(I,6),BIT(I,7),BIT(I,8)=0
NEXT I

I

I Get graphic code for current character
1

IF CODE<32 THEN PAT$="0000000000000000" ELSE
CALL CHARPAT(CODE,PATS)
I

1 Bypass analysis of blank (the most common c
haracter)
1

IF PATS<>"0000000000000000" THEN 30610
PRINT #99:RPT$(CHR$(0),16):: GO TO 30820
i

1 Decode the string returned by CHARPAT into
a matrix of bits

1

FOR PSN=1 TO 8

V1=P0S(HXS,SEGS (PATS,2*PSN-1,1),1)-1
V2=P0S(HX$,SEGS(PAT$,2*PSN,1),1)-1
IF Vl>=8 THEN BIT(PSN,1)=1 :: Vl=Vl-8
IF Vl>=4 THEN BIT(PSN,2)=1 :: Vl=Vl-4
IF Vl>=2 THEN BIT(PSN,3)=1 :: Vl=Vl-2
BIT(PSN,4)=V1
IF V2>=8 THEN BIT(PSN,5)=1 :: V2=V2-8
IF V2>=4 THEN BIT(PSN,6)=1 :: V2=V2-4
IF V2>=2 THEN BIT(PSN,7)=1 :: V2=V2-2
BIT(PSN,8)=V2
NEXT PSN

1

1

1 Encode each column of bits for the printer

39

Applications and Techniques „*,

30760 1

30770 FOR PRCOL=l TO 8 «

30780 CHVAL=128*BIT(l,PRCOL)+64*BIT(2,PRCOL)+32*BIT
(3,PRCOL)+16*BIT(4,PRCOL)+8*BIT(5,PRCOL)+4*BI ^
T(6,PRCOL)+2*BIT(7,PRCOL)+BIT(8,PRCOL)

30790 PRINT #99:CHR$(CHVAL);CHR$(CHVAL);
30800 NEXT PRCOL ***
30810 1

30820 CALL HCHAR(SCRROW,SCRCOL,CODE)i remove the cu
rsor

30830 PRINT #99 1 transmit end-of-record signal to
printer

30840 NEXT SCRCOL

30850 PRINT #99:CHRS(13);CHR$(10)1 cr and If
30860 NEXT SCRROW

30870 i

30880 1 all done
30890 1

30900 PRINT #99:CHR$(12);CHR$(27);"@" i reset print
er

30910 CLOSE #99

30920 SUBEND

p*«

40

Michael A. Covington

Turning your TI-99/4A into a remote sensing and
control device is possible, but only if you know
how the joystick port works. This article explains
how input and output through the port can be
done, and even includes a program to create a
realtime clock with your computer. For advanced
users.

One of the limitations of the TI-99/4A personal computer is
that, since TI BASIC has no PEEK or POKE statement, there's
no straightforward way for a BASIC program to communicate
with home-built peripherals via the computer's 40-pin bus. To
use conventional interfacing techniques, you need the Mini
Memory module, which, when you can find it, costs as much
as you probably paid for your computer.

But TI BASIC does have a window to the outside world—
the joystick port. In this article, we'll look at some ways of
using the joystick port for input and even output, making it
possible for the computer to monitor and control other equip
ment such as lights, burglar alarms, or laboratory experiments.
All without requiring expensive accessories or the use of as
sembly language. You'll find plans for a realtime clock here, as
well as basic information for constructing several other circuits.

The Basics
The joystick port is a 9-pin male D-subminiature connector
that protrudes from the left side of the computer (Figure 1).

jm Two of the nine pins are not used. Two more are strobe pins,
used to distinguish one joystick from another (joystick 1 goes

«, to pin 7, and joystick 2 to pin 2). The rest are sense pins, used
to determine the direction in which the joystick is being

rm pushed or whether the fire button is being pressed.

41

Applications and Techniques

Figure 1. The Joystick Port

Sense pins

KT Strobe North Fi
No 2 <Y=4) i, „ Westconnection i outton ^ ^

\\ \ / /

No

connection Strobe

1

\ East
South (X=4)

(Y=-4)

Sense pins

The computer "looks" at the joystick by sending out a
brief pulse through one of the strobe pins and checking
whether it comes back in through any of the sense pins. The
joystick itself contains only a set of switches. Its function is to
connect its strobe pin to one or more sense pins, signaling the
computer to do something.

The computer is instructed to look for these connections
by means of two subprograms. For everything except the fire
buttons, the appropriate subprogram call is
CALL JOYST(2V,X,Y)

where N equals 1 for joystick 1 or 2 for joystick 2. After the
call, the values in X and Yindicate the joystick's status. If the
relevant strobe pin isn't connected to anything, X and Yboth
come back as zero. If it's connected to one or more sense pins,
the values of X and Yare as shown in the following table.

42

6S?p

tmi?:>i

(SSv)

C*i"l

/Applications and i ccnniciu.cs i~«~«>™»ra-w.».w.M».w,^—«-"»™»

Joystick Port Input States

To examine the joystick port, use CALLKEY(N,CODE,STATUS)
and/or CALL JOYST(N,X,Y), where N equals 1 to use strobe
pin 7, or 2 to use strobe pin 2.
Unless otherwise specified, the values returned are
CODE=-l, STATUS=0, X=0, and Y=0.

Any nonconflicting combination can be used together. There
are 324 distinct states.

Connecting
strobe pin to
Pin 4

Pin 3

Pin 8

Pin 9

Pin 5

Gives this result
Code=18, STATUS=1 on first call, -1
thereafter
Y=4 (does not work when ALPHA LOCK
key is depressed)
Y=-4
X=4

X=-4

The fire button sense pin works the same way as the
others, but the subprogram for examining it is different:
CALL KE\(N,CODE,STATUS)

N is 1 or 2, depending on which joystick you want to look at.
CODE is not very interesting (it comes back as 18 if the con
nection is made and —1 if it isn't). The most useful value re
turned is STATUS—0 if there's no connection, —1 if there is,
and 1 if there's a connection now, but wasn't the last time you
looked. This provides a convenient way to get a response ex
actly once for a single event, even if the computer happens to
call the subprogram several times during that event.

You can make connections in combination (analogous to
moving the joystick diagonally—up and sideways at the same
time, for instance) so that if you connect a strobe pin to pins 3
and 9 at the same time, you get X=4 and Y=4. Not all com
binations are possible, of course. You can't move a single joy
stick up and down at the same time.

Program 1 is quite simple, and lets you try out the effect
of making various sets of connections. You can't harm the
computer in any way by tying together any combination of
joystick port pins, so long as you don't apply any outside
voltages.

43

Applications and Techniques

Program 1. Joystick Status
10 PRINT

20 FOR 1=1 TO 2

30 PRINT "JOYSTICK NO. ";I
40 CALL JOYST(I,X,Y)
50 PRINT "X = ";X
60 PRINT "Y = ";Y
70 CALL KEY(I,CODE,STATUS)
80 PRINT "FIREBUTTON STATUS:

90 NEXT I

100 GOTO 10

";STATUS

One thing you'll notice when you try making combina
tions is that when any two sense lines are tied together, the
operation of some part of the keyboard is disrupted. This oc
curs because the keyboard uses the same sense lines as the
joystick, along with other strobe lines of its own.

But it is possible to connect a single strobe pin to several
sense pins without establishing a path between the sense pins
themselves—use diodes. Figure 2 shows how; virtually any
type of germanium or silicon diode will do. Contrary to what
you might expect, strobe pins are negative and sense pins are
positive, so the cathode (the banded end) of the diode has to
go toward the strobe pin. (Relative to the computer's internal
ground level, sense pins are held at +5 volts by a 1OK pull-up
resistor. Strobe pins are normally at +4.3 volts, but go to 0
volts when a CALL JOYST or CALL KEY for the relevant joy
stick is executed.)

Figure 2. Using Diodes

A strobe ^_ Bad A strobe
Better

pin (2 or 7) pin

<

\ :\ 1N34,
1N914,
or equiv.

{ <
A sense A sense

pin **" pin *

Another Another

sense pin "*" sense pin *

44

Applications and Techniques

From the Outside World

Interesting possibilities open up when the joystick switches are
actuated, not by hand, but by outside electrical signals. The
simplest way to do this, and one which guarantees complete
electrical isolation between the computer and the connected
outside circuit, is to use an optocoupler (Figure 3). An outside
voltage of 3 to 12 volts dc turns on an LED, which enables
current to flow through a high-gain phototransistor, which, in
turn, takes the place of the switch in the joystick. (The LED
and transistor are enclosed in a lightproof case so that outside
light doesn't affect them.) You can use a total of ten such
optocouplers—one for each of the four directions in which
each joystick can move, and one for each fire button—al
though, since some combinations conflict, you can't quite in
put ten bits of data at once. (If there were no conflicts, there
would be 1024 distinguishable combinations. As it is, there are
324, corresponding to a little more than eight bits.)

Figure 3. Through an Optocoupler
| ** , , ». Sense pin

Input
signal:
3 to 15

volts dc

47052

_*. Strobe pin

Optocoupler: TIL119, 4N31,
SK3040, SK3041, etc.

The optocouplers can be driven by logic circuits, analog-
to-digital converters, power-on indicators, or anything else
that will drive an LED. If you want to operate with higher
voltages—in order to sense, for instance, the presence or ab
sence of ac line power—you can even use relays instead. Con
tact bounce is not a problem since it's taken care of within the
TI-99/4A.

45

F
ig

u
re

4.
T

e
n

-S
e
c
o

n
d

T
im

e
r

C
ir

cu
it

T
o

lo
w

-

vo
lt

ag
e

(5
to

12
V

)
ac

su
p

p
ly

+
5

V

4
8

1
0

K

A
W

W
—

^|
-

5
5

5

1
0

0
K

i
t
:

1
4

+
5

V

.0
1

1

V
+

A
7

4
L

S
9

2
Q

D

Q
A

B
V

-
R

o

+
5

V

.0
1

H
h

L

1
4

11

A
Q

„
V

+

7
4

L
S

9
0

Q
A

R
0

R
-

V
-

1
1

1
°

1
2

+
5

V

1
4

A
Q

D
V

+

B
74

L
S9

0
Q

;

R
„

R
,

V
-

.0
1

J_

1
2

2

1
2

110
I6

Vi
[6

Tib
"

!
I

1

O
p

to
co

u
p

le
r

as
in

F
ig

ur
e

3

+
5

V

4
7

0
A T
o

co
m

p
u

te
r

_
P

in
4

•*
•

P
in

2 1
.1

J
.!

.!

Applications and Techniques

Realtime Clock

If you make and break connections between a strobe line and
a sense line at specific time intervals, intervals slow enough
for the computer to keep track of, you can give the computer a
way to tell time. The program must examine the joystick port
at least twice in each such cycle, once for "on" and once for
"off." Since TI BASIC programs are apt to pause at unpredict
able moments for as long as three seconds in order to reorga
nize memory, the shortest practical cycle is a bit more than six
seconds.

Figure 4 shows a circuit for a ten-second joystick port
clock, and Program 2 uses it. In effect, the circuit holds the fire
button down for exactly five seconds and releases it for an
other five, over and over again.

Program 2. Timer Subroutine and Demonstration

1 GOTO 1000

10 REM SUBROUTINE

20 REM ACCEPTS:

30 REM HRS,MIN,SEC
40 REM GIVES:

50 REM HRS,MIN,SEC
60 REM (UPDATED)
70 REM STATUS

80 REM (=1 IF LAST
90 REM CALL RESULTED

100 REM IN AN UPDATE)
110 CALL KEY(2,CODE,STATUS)
120 IF STATUS<>1 THEN 299
130 SEC=SEC+10

140 IF SEC<60 THEN 299
150 SEC=SEC-60

160 MIN=MIN+1

170 IF MIN<60 THEN 299
180 MIN=MIN-60

190 HRS=HRS+1

299 RETURN

1000 REM MAIN PROGRAM

1010 CALL CLEAR

1020 PRINT "SET THE CLOCK:"
1030 INPUT "HRS:":HRS

1040 INPUT "MIN:":MIN

1050 INPUT "SEC:":SEC
1055 SEC=SEC-10

1060 CALL CLEAR

1070 PRINT "STARTING CLOCK"

47

Applications and Techniques

1090 REM MAIN LOOP

1100 GOSUB 10

1110 IF STATUS<>1 THEN 1100
1120 CALL CLEAR

1130 PRINT HRS;":";MIN;":";SEC
1140 GOTO 1100

The 555 in Figure 4 converts the line frequency into a
TTL-compatible square wave, and the counters divide the fre
quency down from 60 hertz to 0.1 hertz. To get a one-minute
timer—30 seconds on, 30 seconds off—include an additional
74LS92 in the chain.

Program 2, in turn, contains a subroutine which examines
the joystick port and adds ten seconds to the current time
whenever necessary. It's incumbent on the main program to
call this subroutine at least once every five seconds so that ev
ery on and off is detected. Extra calls have no effect—the
demonstration program makes hundreds of them in each cy
cle, but a program containing time-consuming calculations
might need to have GOSUB statements scattered all through it
to insure that five seconds never go by without at least one of
them being executed.

Although this type of clock keeps time quite accurately
once it's running, it's likely to be off by as much as ten sec
onds when initially set, because you have no way of control
ling the point in the ten-second cycle at which the program
first starts running. A more sophisticated program could pro
vide a way of making adjustments to the clock once under
way—perhaps using CALL KEY statements referencing the
keyboard so that you could press the + key to add a second,
the — key to subtract one, or the like.

There are, of course, many uses for a realtime clock. You
can use your computer as a fancy digital clock, alarm clock, or
timer, keeping track of dozens of processes at the same time.
Moreover, by connecting the realtime clock to one pair of pins
and connecting another to an optocoupler, you can detect and
record the time at which power is applied to an external cir
cuit—for instance, the motor of a telephone answering ma
chine, giving you a way of logging the times at which the calls
come in.

48

Applications and Techniques

Output
There's more. You can also use the joystick port for output.
This is possible because a pulse is present on the joystick
strobe pin only when a CALL JOYST or CALL KEY statement
referencing that joystick is executed, and each call produces
exactly one pulse. Detect the strobe pulse and convert it to
logic level, and you can use it to receive information from the
computer.

Figure 5 shows a sample circuit. The strobe pulse, ap
proximately 4.3 volts at 0.5 milliamperes for 200 microsec
onds, is not powerful enough to turn on the LED in an opto
coupler, so a different type of coupling has to be used. We still
want a high degree of isolation between the computer and the
outside circuit in case of a short or an incorrect voltage reach
ing the terminals. The two 0.01-microfarad capacitors com
pletely block direct current and present an impedance of over
250,000 ohms at 120 hertz, the highest frequency that could
come from a power supply short while still transmitting the
strobe pulses almost unimpeded.

The 555 translates the pulse to TTL level and inverts it.
Its output is normally high, but goes low briefly during a
strobe pulse. In the example, this is then fed to a flip-flop so
that the LED switches on or off whenever a CALL JOYST or
CALL KEY sends a strobe pulse out the relevant strobe pin. Of
course, you could drive any type of TTL circuit.

There are only two distinguishable states that you can
transmit in this way—you can use one strobe pin or the other.
(It doesn't matter what sense pin the detecting circuit is con
nected to. The absence of a pulse cannot convey any infor
mation, since there's no way of telling whether it's absent
intentionally or because the program has paused for memory
reorganization.) Two states, however, are actually enough.

Using one strobe pin for 1 and the other for 0, you can
output an unlimited amount of information, albeit at a slow
and somewhat unpredictable rate. Also, you can input an un
limited amount of data by using one strobe pin for output and
one for input. The output pulses can serve to clock the data,
which is read, one bit at a time, on the input channel. This is
obviously not a very good way to interface a TI-99/4A to a
printer or modem—but it does make it possible to experiment
with input/output and control simple devices at very low cost.

Try it out. You'll be amazed at what you can do.

49

F
ig

u
re

5.
J
o

y
st

ic
k

P
o

rt
O

u
tp

u
t

0.
01

nF

S
en

se
p

in
•*

-

T
o

co
m

p
u

te
r

5
6

K

O
.O

lu
F

St
ro

be
p

in

!
1

I
!

1

+
5

V

N
o

rm
a

ll
y

h
ig

h

L
o

w
fo

r
2

0
0

u
se

c

d
u

ri
n

g
a

st
ro

b
e

p
u

ls
e

+
5

V
+

5
V 4

7
0

I
J

J

Roger O'Neel

Record blocking, packing groups offiles together
in blocks, speeds up tape saves and loads. This
article, complete with a sample program, illus
trates the technique.

Once you begin to program on the TI-99/4A, it isn't long
before you realize the need for some type of data storage.
When you turn off your computer, the program and data are
erased from memory—you quickly learn to save your program
on tape or disk. As you begin to understand the process, creat
ing data files becomes a reality. Data can easily be stored,
sorted, and updated.

However, with longer data files, especially on tape, you
soon become painfully aware of the relative slowness of your
data storage/retrieval system. Reading from and writing to
these files can be time-consuming and cumbersome. But by
employing the following technique, using a feature of TI
BASIC, you can greatly reduce cassette data file processing
time. This added efficiency is caused by something called
record blocking.

What Is Record Blocking?
Blocking is simply the process in which two or more individ
ual records (called logical records) are grouped together and
written on a tape, creating a block, or physical record. These
blocks, composed of several logical records, are separated on
the tape by interblock gaps and a record identifying tone on
the TI-99/4A. There are several reasons this technique is
widely used. First, more records can be written on a smaller
amount of tape because several records are written between
the interblock gaps and record-identifying tone, so there are
fewer gaps and tones to the file. Next, the records can be in
put faster because several records can be read before waiting
on the interblock gaps and tone. Last, this technique can easily
be used on the TI-99/4A and possibly on other personal
computers.

51

Applications and Techniques

When you use record blocking, however, you must make
several choices. You must determine what blocking factor (the
number of logical records to a block) and what block size to
use. Several things should be considered in making these
choices.

You should first consider what block size to use. In TI
BASIC you can use cassette record lengths of 64, 128, and 192
characters. Second, you should determine the number of fields
to be written to a single logical record to determine the maxi
mum length of that logical record. The type of field (string or
numeric) will be a big factor in this process. I suggest that you
use internal data format, since it's the most efficient. In inter
nal format, the length of a numeric variable written to tape is
nine, and the length of a string variable written to tape is the
length of the string plus one. This is all explained in the TI
manual.

Finally, you must determine the blocking factor. Calculate
this by dividing the length of the block, or physical record, by
the length of the logical record. You should use only the inte
ger part of the answer to insure that all logical records are
written on the block. It's not a bad idea to subtract one from
this figure just to be safe. If a logical record caused the block
to become too long, you would receive a FILE ERROR IN...
message and the program would stop. It's up to you to safe
guard against that occurrence.

A Demonstration

The "Record Blocking" program is designed to illustrate this
technique. It asks you to type in six names and amounts, out
put the data in blocked format, erase the two arrays, and then
input and print the data that was on the tape. The key to this
program is the use of pending print and input, as you'll see in
the program.

Record Blocking

10 CALL CLEAR

20 REM BF=BLOCKING FACTOR,NR=NO. OF RECORDS
30 BF=3

40 NR=6

50 DIM N$(9),AMT(9)
60 PRINT "RECORD BLOCKING DEMO"

70 FOR X=l TO 4

80 PRINT

90 NEXT X

52

Applications and Techniques

100 PRINT "PLEASE INPUT 6 NAMES AND 6"

110 PRINT

120 PRINT "AMOUNTS."

130 PRINT

140 FOR X=l TO 6

150 GOTO 190

160 PRINT

170 PRINT "NAME TOO LONG. PLEASE RETRY."

180 PRINT

190 INPUT "NAME? ":N$(X)
200 IF LEN(N$(X))>25 THEN 160
210 PRINT

220 INPUT "AMT PAID? ":AMT(X)
230 CALL CLEAR

240 NEXT X

250 PRINT "RECORDING DATA."
260 PRINT

270 OPEN #1:"CS1",INTERNAL,OUTPUT,FIXED 128
280 FOR X=l TO INT(NR/BF)+1
290 FOR Y=l TO BF
300 PRINT #1:NS((X-1)*BF+Y),AMT((X-1)*BF+Y),
310 NEXT Y

320 PRINT #1

330 NEXT X

340 CLOSE #1

350 FOR X=l TO 6

360 NS(X)=""
370 AMT(X)=0
380 NEXT X

390 CALL CLEAR
400 PRINT "POSITION TAPE FOR INPUT."
410 PRINT
420 OPEN #2:"CS1",INTERNAL,INPUT ,FIXED 128
430 FOR X=l TO INT(NR/BF)+1
440 FOR Y=l TO BF
450 INPUT #2:NS((X-1)*BF+Y),AMT((X-1)*BF+Y),
460 NEXT Y

470 INPUT #2:A$
480 NEXT X

490 CLOSE #2
500 CALL CLEAR
510 PRINT "DATA SUCCESSFULLY READ IN."
520 PRINT

530 FOR X=l TO 6
540 PRINT N$(X)
550 PRINT AMT(X)
560 PRINT

570 NEXT X

53

Applications and Techniques

Lines Function

10-50 Initialize variables and clear screen.
60-130 Screen output instructions.
140-240 Data input routine. Notice line 200—this is one way to in

sure that your strings are not too long.
250-340 Data output to tape. Your block size is in line 270—I've

chosen 128. The next two FOR-NEXT loops and PRINT
statement actually create the block. Notice the comma
after the PRINT statement in line 300, which sets up the
pending print condition. This is the key. (Refer to the TI
manual for details on pending print and input.) Line 300
could be changed to write whatever variables you need.
The formula that's there—((X-1)*BF+Y)—is to extract
the correct array members using the two variables given,
along with the blocking factor.

350-380 Erase data stored in memory.
390-490 Tape input routine. Notice the similarity between this and

the output section. In line 450, make sure to include the
comma to cause the pending input condition.

500-570 Print data just read in.

Notice the block size and blocking factor used in this pro
gram. The block size, as noted above, was arbitrarily chosen
as 128 (line 270). You can choose 64 or 192 in your own pro
grams if you wish. The blocking factor, found by dividing the
block length (128) by the length of each logical record, is 3
(line 30). Each logical record contains 35 bytes. This was cal
culated by adding the length of N$ (no more than 25 charac
ters—see line 200) plus one to the length of AMT, which is 9
since internal data format is being used: 26+9=35. Dividing
35 into 128 results in 3.65—use only the integer, and the
blocking factor is 3. Three logical records can be written to
each block.

This program can be adapted for your purposes and is
strictly for instructional purposes. You may have noticed upon
running the program that you had six logical records, with a
blocking factor of 3, so you should have output two blocks.
Three blocks were actually written so that if the number of
records was not evenly divisible by the blocking factor, all
records would be written. For this reason, it's necessary to di
mension arrays equal to the maximum number of records plus
the blocking factor, as in line 50. If you don't, an error will occur.

Experiment with this technique in your own BASIC pro
grams. You'll find that it will save you considerable time in
saving and retrieving data files to tape.

54

Robert L. Brown

Your TI-99/4A can learn from its mistakes as it
plays a game against itself or against you. This
simple program shows you the beginnings of arti
ficial intelligence. Runs in TI BASIC.

Artificial intelligence is a phrase we're all hearing a lot of re
cently. It seems to be one of the current buzzwords in comput
ing circles. Trying to mimic the human thinking process with a
computer, somehow making the machine learn from its expe
rience and mistakes, is at the root of all investigations into ar
tificial intelligence.

It's a fascinating subject, one that's captivated a large seg
ment of the computing world. Working with artificial intelli
gence, however, may seem out of your reach. After all, you
have only a personal computer, not a huge mainframe with
unheard of speeds and immense memory.

But with a little work, you can create an artificial intelli
gence, of sorts, in your TI-99/4A. The accompanying program
may not be artificial intelligence, but it's a start.

NIM

Written in TI BASIC, "AI with TI" is a program which demon
strates some of the principles of artificial intelligence. The pro
gram seems to learn from its experience, getting better at
playing a game called NIM as it wins more and more.

Perhaps you've played NIM. Each player alternately se
lects 1 to 3 stones from a pot of 21 stones. The object is to
force the opponent to take the last one. The game involves a
very simple strategy which anyone (at least human) can easily
learn. But can your computer learn to master the strategy?

With this program, the computer learns very much like
you and me. Each game constitutes an experience, and the re
sult, whether success or failure, serves as a building block to
ward future strategy. The program is written in two versions.
The first version allows you to observe as "TI" and its alter
ego "Alex" match wits against each other. This lets you see
the logic process as both TI and Alex attempt to master the
game simultaneously. The second version allows you to match

55

Applications and Techniques

wits with your own computer. Be forewarned, however—TI is
a smart player and your efforts will inevitably be futile.

The first version of AI with TI involves four arrays, while
the second version uses three arrays. These arrays constitute
the temporary and permanent memory which your computer
utilizes in its learning process. The computer always plays
from temporary memory. When it wins, it transfers the values
which are in temporary memory into permanent memory for
future reference. If, however, the computer loses, then it "for
gets" everything that it used in that game and transfers the
values which its opponent used to win into its permanent
memory. In this way, TI is constantly improving its knowledge
and game strategy.

Decisions, Decisions
But how does the computer decide which stored values to use?
This is a matter of strategy. Let's take a brief look at that strat
egy. First of all, the challenger (Alex, or you) will always go
first. This insures the possibility of a flawless game for TI. Un
der these conditions there's a very simple mathematical equa
tion which could be used. If TI always takes the difference of
four minus the number of stones its opponent takes, then it
will win every time.

Why not simply include a line like LET X=4-Y? That
would be defeating the purpose. You want TI to develop its
own strategy. You want the computer to make decisions based
solely upon its previous experience.

The two versions of AI with TI are identical for the most
part, with the exception that Version 2 contains just three ar
rays. That's because there's no need to store permanent mem
ory values for yourself. Your brain should be quite adequate;
We'll look at Version 1 as we explain the process going on in
side the computer.

Preliminaries

The program begins with a brief introduction which explains
the rules of the game and invites you to watch as Alex and TI
learn to play NIM (lines 40-160). Before they can begin play
ing, however, space for their permanent and temporary mem
ory must be allocated. Take a close look at lines 270-300. Til
represents the temporary memory of TI, TI2 its more perma
nent memory. Likewise, ALEX1 represents Alex's temporary

56

Applications and Techniques

memory and ALEX2 contains its permanent memory. Just like
the Scarecrow in The Wizard of Oz, TI and Alex both have
been given a brain.

Line 310 sets the total number of stones to 21. Any value
still in temporary memory must be cleared, which is what
lines 360-390 do.

Let's Begin
With the preliminaries out of the way, the game can begin.
Alex goes first. The first thing Alex does is to look back into
its permanent memory to see if there's a stored value which
corresponds to the total number of stones remaining. If there's
no value—ALEX2(TOT)=0—Alex chooses a random value be
tween 1 and 3. This value will be assigned to temporary mem
ory as long as it doesn't make the total number of stones
fewer than one (lines 420-440). If Alex has a corresponding
value—ALEX2(TOT)>0—then it transfers that value into tem
porary memory (line 480). Remember, both players make all
moves from their temporary memory. After Alex has made a
decision, the new total is computed (line 500), and results are
printed (line 510). The program then checks to see if Alex has
won (line 550). If the total is still greater than one, then TI
must go through the same process (lines 560-710). The steps
are identical.

But what happens when one of the players wins? After
each game the following steps are executed:
1. The winner "remembers" the values it used.
2. The loser "forgets" the values it used.
3. The loser "remembers" the values used by the winner.
These steps are accomplished in lines 750-880 when Alex
wins, and lines 950-1080 when TI wins.

Type in and run Version 1 of AI with TI. Watch as TI and
Alex play a few games and pay particular attention to the
changes in TI's permanent memory. The process you see on
the screen continues until TI has mastered the game. At that
point, array TI2 should look something like this:
Array Element Value
TI2(1) 0
TI2(2) 1
TI2(3) 2
TI2(4) 3
TI2(5) 0

57

IIIM^HBlMHIMI«l..«lt,.l Applications and Techniques

Array Element Value

TI2(6) 1

TI2(7) 2

TI2(8) 3

TI2(9) 0

TI2(10) 1

TI2(11) 2

TI2(12) 3

TI2(13) 0

TI2(14) 1

TI2(15) 2

TI2(16) 3

TI2(17) 0

TI2(18) 1

TI2(19) 2

TI2(20) 3

TI2(21) 0

You've done it. TI has learned to master the game without
using any mathematical equation.

The RANDOMIZE Statement

How many games must TI play before it learns completely? If
you look at line 920 in Version 1, you'll see that TI masters
the game after it's won 24 games. But how can we be so cer
tain? That's simple—don't include a RANDOMIZE statement.
Of course, this means that TI and Alex will always play the
same set of games. If you'd like to include the RANDOMIZE
statement, you can. My experience indicates that when the
RANDOMIZE statement is used, TI must win between 20 and
40 games before it has the game mastered. You might want to
experiment with this on your own. Perhaps you can devise a
better way to know when TI has learned the game.

Memory Changes
If you want to watch the changes in TI's memory, add these
lines to Version 1.

341 FOR 1=1 TO 21

342 PRINT "TI2_"?I;"=";TI2(I)
343 NEXT I

344 FOR DELAY=1 TO 3000

345 NEXT DELAY

346 CALL CLEAR

This routine will display the values of TI's permanent
memory before the start of each game.

58

Applications and Techniques

Learning Faster
The first time you run Version 1, you might be frustrated with
the amount of time it takes for TI to learn. Remember, to learn
it must win 24 games, and that means it must play a total of
50. However, there's a way to help TI learn faster. Much of the
time is consumed in printing the results and in the delay loops
which follow. Once you fully understand this program, try
writing it with subroutines instead. Place your PRINT state
ments outside the subroutines. This allows TI to quickly play
several games in advance. When the first game is displayed on
the screen, TI will already have the experience of these games
stored in memory. A good place to locate your GOSUB state
ments is inside the delay loop in lines 100-110. Of course,
you would want to change line 100 to something like
100 FOR DELAY=1 TO 25

Experiment with this technique and see what results you
get. Realize, however, that by using this technique you lose
the advantage of observing memory changes in the early stages.

The Irony
Does Alex also have to learn? Not necessarily. When I began
to write this program, Alex chose a random value regardless of
the total number of stones remaining, and TI never "remem
bered" Alex's values when Alex won. However, under these
conditions, TI's learning process was extremely slow. When I
made Alex smarter, it forced TI to learn faster. This is the
irony of the program—the smarter TI's opponent, the faster TI
learns.

Version 2
Version 2 lets you participate in TI's learning experience. The
number of games TI must play to master the game will vary
with this version. However, TI will be able to learn much
faster than it did in Version 1, because it will be playing
against a smarter opponent. After TI has won ten games,
you'll be given the option of continuing play or throwing in
the towel. At this point TI should have the game mastered, so
you might want to choose the second option.

No More Dumb Computer
The next time someone starts complaining about the amount
of time you spend playing with your "dumb" computer, load

59

Applications and Techniques

up Version 2 of AI with TI. Let your friend play against TI for
a while—you'll never hear another insult again.

AI with TI—Version 1 (Alex Versus TI)
30 CALL CLEAR

40 PRINT "HELLOI, I AM YOUR FRIENDLY":"TI HOME COMP
UTER. I BET YOU"

50 PRINT "DIDN'T KNOW THAT I HAVE AN":"ALTER-EGO CA

LLED ""ALEX"".":"ALEX AND I LIKE TO PLAY A":"GAM
E CALLED ""NIM""."

60 PRINT

70 PRINT "IN THIS GAME THERE ARE (21) STONES AND WE
EACH TAKE FROM":"l TO 3 STONES ALTERNATELY."

80 PRINT

90 PRINT "THE OBJECT IS TO FORCE THE":"OTHER PLAYER
TO TAKE THE":"LAST STONE."

100 FOR DELAY=1 TO 3000

110 NEXT DELAY

120 CALL CLEAR

130 PRINT "IF YOU WATCH VERY CAREFULLY AS ALEX AND
I PLAY YOU WILL NOTICE THAT WE BOTH CONTINUE"

140 PRINT "TO GET SMARTER."
150 PRINT

160 PRINT "YES1 COMPUTERS CAN LEARN."
165 PRINT

166 PRINT "PRESS THE SPACE BAR AND":"WE'LL SHOW YOU
ii

170 CALL KEY(0,K,S)
180 IF S=0 THEN 170

190 IF K<>32 THEN 170
200 CALL CLEAR

210 HS="THE GAME OF NIM"
220 FOR L=l TO LEN(H$)
230 CALL HCHAR(12,7+L,ASC(SEGS(HS,L,1)))
240 NEXT L

250 REM**SET UP ARRAYS ** **TI1 AND ALEX1
** **ARE TEMPORARY ** **MEMOR

Y.TI2 AND **

260 REM**ALEX2 ARE THE ** **PERMAMENT MEMO
RY**

270 DIM TI1(21)
280 DIM TI2(21)
290 DIM ALEX1(21)
300 DIM ALEX2(21)
310 TOT=21

320 FOR DELAY=1 TO 500
330 NEXT DELAY

340 CALL CLEAR

350 REM**CLEAR ALL VALUES** **FROM TEMPORAR
Y ** **MEMORY **

60

Applications and Techniques

360 FOR 1=1 TO 21

^a 370 TI1(I)=0

380 ALEX1(I)=0
390 NEXT I

H^ 400 rem*************** * ALEX'S TURN *

^ 410 REM**CHECK TO SEE ** **IF A VALUE IS
** **STORED IN THE ** **PERMA

MENT MEMORY**
420 IF (ALEX2(TOT)>0)*((TOT-ALEX2(TOT))>=1)THEN 480
430 REM**IF NO VALUE TAKE** **RANDOM VALUE

**

440 ALEXl(TOT)=INT(RND*3)+l
450 IF (TOT-ALEXl(TOT))>=1 THEN 490
460 GOTO 440
470 REM**TRANSFER VALUE ** **FROM PERMAMENT

** **MEMORY TO THE ** **TEMPO
RARY MEMORY**

480 ALEXl(TOT)=ALEX2(TOT)
490 Y=ALEXl(TOT)
500 TOT=TOT-ALEXl(TOT)
510 PRINT "ALEX TAKES ";Y:"TOTAL REMAINING ";TOT
520 FOR DELAY=1 TO 200

530 NEXT DELAY

540 REM**CHECK FOR WIN**
550 IF TOT=l THEN 730
560 REM************* * TI'S TURN *

570 REM**CHECK TO SEE IF A VALUE IS STORED IN THE
PERMAMENT MEMORY

580 IF (PI2(PKP)>0)*((TOT)TI2(TOT))>=1)THEJ 640
590 REM**IF NO VALUE TAKE** **RANDOM VALUE

**

600 TIl(TOT)=INT(RND*3)+l
610 IF (TOT-TIl(TKT))>=l THEJ 650
620 GOTO 600

630 REM**TRANSFER VALUE ** **FROM PERMAMENT
** **MEMORY TO THE ** **TEMPO

RARY MEMORY**

p3 640 TIl(TOT)=TI2(TOT)
650 X=TIl(TOT)

^H, 660 TOT=TOT-TIl(TOT)
670 PRINT "I TAKE ";X:"TOTAL REMAINING ";TOT
680 FOR DELAY=1 TO 200

"m 690 NEXT DELAY
700 REM**CHECK FOR WIN**

nso 710 IF TOT=l THEN 900

720 GOTO 420

730 PRINT " ALEX WINS ARGHH1"rt^lRl

61

Applications and Techniques

740 REM**TRANSFER ** **TEMPORARY TO**
**PERMAMENT ** g^

750 FOR 1=1 TO 20

760 IF ALEX1(I)=0 THEN 780
770 ALEX2(I)=ALEX1(I) "^
780 NEXT I

790 REM **TI FORGETS** **OWN VALUES** «k^
800 FOR 1=1 TO 21

810 IF TI1(I)=0 THEN 830
820 TI2(I)=0
830 NEXT I

840 REM**TI REMEMBERS ** **ALEX'S VALUES*
*

850 FOR 1=1 TO 20

860 IF ALEX1(I)=0 THEN 880
870 TI2(I)=ALEX1(I)
880 NEXT I

890 GOTO 310

900 PRINT " I WINI 11"

910 WINS=WINS+1

920 REM**WHEN WINS=24 GAME** **IS MASTERED
**

930 IF WINS=24 THEN 1100

940 REM**TRANSFER ** **TEMPORARY TO**
**PERMAMENT **

950 FOR 1=1 TO 21

960 IF TI1(I)=0 THEN 980
970 TI2(I)=TI1(1)
980 NEXT 1

990 REM**ALEX FORGETS** **OWN VALUES **

1000 FOR 1=1 TO 21
1010 IF ALEX1(I)=0 THEN 1030
1020 ALEX2(I)=0
1030 NEXT I

1040 REM**ALEX REMEMBERS** **TI'S VALUES
**

1050 FOR 1=1 TO 20
1060 IF TI1(I)=0 THEN 1080
1070 ALEX2(I)=TI1(I) _
1080 NEXT I . '
1090 GOTO 310

1100 H$="ENOUGH IS ENOUGH" mm-
1110 CALL CLEAR

1120 FOR L=l TO LEN(HS) man
1130 CALL HCHAR(12,7+L,ASC(SEG$(H$,L,1)))
1140 NEXT L

1150 END ""'•

62

Applications and Techniques

AI with TI—Version 2 (You Versus TI)
30 RANDOMIZE

40 CALL CLEAR
50 PRINT "HELLOl, I AM YOUR FRIENDLY":"TI HOME COMP

UTER. I BET YOU"
60 PRINT "DIDN'T KNOW THAT I CAN LEARN": "JUST AS WE

LL AS ANY HUMAN.":"TO DEMONSTRATE LET'S PLAY A":
"GAME"

70 PRINT
80 PRINT "IN THIS GAME THERE ARE (21) STONES AND WE

EACH TAKE FROM":"l TO 3 STONES ALTERNATELY."
90 PRINT
100 PRINT "THE OBJECT IS TO FORCE THE":"OTHER PLAYE

R TO TAKE THE":"LAST STONE."
110 PRINT
120 PRINT "IT IS REALLY QUITE A SIMPLE GAME.
125 PRINT
130 PRINT "WHY DON'T YOU PRESS THE":"SPACE BAR AND

WE'LL BEGIN."
140 CALL KEY(0,K,S)
150 IF S=0 THEN 140
160 IF K<>32 THEN 140
170 REM**DIMENSION ARRAYS**
180 DIM Til(21)
190 DIM TI2(21)
200 DIM YOUl(21)
205 WINS=0
210 TOT=21
220 REM**CLEAR ALL VALUES** **FROM TEMPORARY

** **MEMORY **

230 FOR 1=1 TO 21

240 TI1(I)=0
250 YOU1(I)=0
260 NEXT I

270 CALL CLEAR
280 REM *************** * YOUR TURN *

290 REM

300 PRINT "YOU TAKE"
310 PRINT "(1 TO 3 ONLY)"
320 INPUT YOU1(TOT)
330 IF (YOUl(TOT)<>l)*(YOUl(TOT)<>2)*(YOUl(TOT)<>3)

THEN 300

335 IF TOT-YOU1(TOT)<1 THEN 300
340 TOT=TOT-YOUl(TOT)
350 PRINT "TOTAL REMAINING ":TOT

360 REM**CHECK FOR WIN**

370 IF TOT=l THEN 540

380 REM

63

Applications and Techniques

390 rem***************

400 REM**CHECK TO SEE **
** **STORED IN THE

MENT MEMORY**

410 IF (TI2(TOT)>0)THEN 470
420 REM**IF NO VALUE TAKE**

**

430 TIl(TOT)=INT(RND*3)+l
440 IF (T0T-TI1(T0T))>=1 THEN 480
450 GOTO 430

460 REM**TRANSFER VALUE **

** **MEMORY TO THE

RARY MEMORY**

470 TI1(T0T)=TI2(T0T)
480 X=TIl(TOT)
490 TOT=TOT-TIl(TOT)
500 PRINT "I TAKE ";X:"TOTAL REMAINING ";TOT
510 REM**CHECK FOR WIN**

520 IF TOT=l THEN 660

530 GOTO 300

540 PRINT " YOU WIN ARGHHl"

550 REM**TI FORGETS**

560 FOR 1=1 TO 21

570 IF TI1(I)=0 THEN 590
580 TI2(I)=0
590 NEXT I

600 REM**TI REMEMBERS**

610 FOR 1=1 TO 20

620 IF YOU1(I)=0 THEN 640
630 TI2(I)=Y0U1(I)
640 NEXT I

650 GOTO 210

660 PRINT " I WIN I 11"

665 FOR X=l TO 30

666 NEXT X

670 WINS=WINS+1

680 IF WINS=10 THEN 750

690 REM**TRANSFER **

**PERMAMENT **
700 FOR 1=1 TO 21

710 IF TI1(I)=0 THEN 730
720 PI2(I)=TI1(I)
730 NEXT I

740 GOTO 210

750 CALL CLEAR

760 PRINT "WOULD YOU LIKE TO PLAY SOME MORE?"
770 PRINT

780 PRINT "PRESS THE SPACE BAR TO":"CONTINUE"

64

* TI'S TURN *

**IF A VALUE IS

** **PERMA

**RANDOM VALUE

**FROM PERMAMENT

** **TEMPO

OWN VALUES

**YOUR VALUES **

TEMPORARY TO

Jhft^

iteri

Applications and Techniques

fmSt)

790 PRINT

f* 800 PRINT "PRESS ANY OTHER KEY TO EXIT"
810 CALL KEY(0,K,S)

Fw 820 IF S=0 THEN 810
1 830 IF K=32 THEN 205
p^ 840 H$="MAYBE NEXT TIME"
L 850 CALL CLEAR

860 FOR L=l TO LEN(H$)
870 CALL HCHAR(12,7+L,ASC(SEGS(HS,L,1)))
880 NEXT L

890 END

65

,1

jJl

3

i 1

&

3

ra

Rick Rothstein

After you play this game awhile, you may think
you're in Sartre's play No Exit. Be calm and me
thodical—there is an escape. All you have to do
isfind it, andfind itjast. For either 77 BASIC or
Extended BASIC.

"Labyrinth" is a direct descendant of an award-winning pro
gram first written by Robert Tusk for the Apple. Later versions
for a number of other personal computers, including the Com
modore 64, VIC-20, and Atari, ran in the September 1983 is
sue of COMPUTE! magazine. With a bit of persistence, I've
duplicated this game for the TI-99/4A.

Where's the Door
You find yourself somewhere in the midst of a labyrinth, a
five-story maze. Each floor has 25 rooms, arranged in a 5 X 5
grid. Within these rooms are openings, sometimes one, other
times several. You can move from room to room, heading
north, east, south, west, up, or down by pressing the N, E, S,
W, U, or D key, respectively.

Only one door within these 125 rooms opens to the out
side. It could be an opening in a wall, a floor, or even a ceil
ing. You need to get out as fast as possible. You never know
what may lurk in a labyrinth.

The four compass directions are displayed at the bottom
of the screen—the direction you're currently facing is under
lined. You can change your orientation by pressing the < key
(less than symbol) or the > key (greater than symbol) in order
to turn counterclockwise or clockwise, respectively. (Don't
press the SHIFT key along with the < or > key.)

Help
For a break from your escape, press AID (FCTN-7), and the
game timer freezes, the elapsed time displays, and a menu ap
pears. The six options you'll see offer a number of alternatives.
1. Abandon the current game and start a new maze.
2. Abandon the current game and restart the same maze over

again.

69

Fun and Games

3. Return to the current game at exactly the same point where
it was interrupted.

4. View the coordinates of the room that you are currently lo
cated in.

5. View the coordinates of the room containing the exit.
0. Quit the program.

Although options 4 and 5 are provided, save them for only
the most desperate situation. Obviously, they make it a snap
to escape.

The coordinates provided by options 4 and 5 are in an
X,Y,A format. You might see something like
X=l Y=5A=5

which means that this particular room is on the topmost level,
at the upper-right corner (if you were looking at the floor from
above).

The Labyrinth
X=l, Y=5, A=5

\\\\\

If you successfully find your way out, you'll be congratu
lated, advised of the time it took to complete the maze, and
offered the option menu. You can play again from there.

70

Fun and Games e

A Few Changes
As listed, Labyrinth runs in TI BASIC, the built-in language of
the TI-99/4A. If you have Extended BASIC, you need to make
the following changes in order for the timer to work correctly:
With Standard 16K Console
1090 QA=.0515
1100 QB=.1728
1110 QC=.8748

With 32K Memory Expansion
1090 QA=.0497
1100 QB=.1627
1110 QC=.8346

If you have the original, Version 100 Extended BASIC module,
use the TI BASIC version instead—it runs faster for this par
ticular program.

Labryinth
940 REM LABYRINTH
950 REM (FOR THE TI-99/4A)
990 REM

1000 CALL SCREEN(6)
1010 CALL CLEAR
1020 RANDOMIZE

1030 OPTION BASE 1
1040 DIM W(5,25)
1050 FOR N=l TO 8
1060 CALL COLOR(N,16,1)
1070 NEXT N

1080 K=49
1090 QA=.0721
1100 QB=.1741
1110 QC=1.6115
1120 FOR N=33 TO 48
1130 READ CS

1140 CALL CHAR(N,C$)
1150 NEXT N

1160 FOR N=94 TO 142

1170 READ C$
1180 CALL CHAR(N,C$)
1190 NEXT N

1200 FOR N=l TO 5
1210 AS=A$&CHR$(136)
1220 B$=BS&CHR$(129)
1230 NEXT N

1240 CALL CLEAR

71

Fun and Games

1250 IF K<>49 THEN 1270

1260 PRINT " <SETTING UP A PLEASE WAIT>"

1270 FOR N=9 TO 14

1280 CALL COLOR(N,l,l) °^
1290 NEXT N

1300 IF K=50 THEN 1840 em,
1310 IF K=51 THEN 1880
1320 FOR F=l TO 5

1330 FOR R=l TO 25

1340 W(F,R)=0
1350 NEXT R

1360 NEXT F

1370 FOR F=l TO 5
1380 FOR R=l TO 16 STEP 5
1390 FOR P=0 TO 4

1400 X=-(RND<.8)
1410 W(F,R+P)=W(F,R+P)+100000*X
1420 W(F,R+P+5)=W(F,R+P+5)+1000*X
1430 NEXT P

1440 NEXT R
1450 NEXT F

1460 FOR F=l TO 5
1470 FOR R=21 TO 24
1480 FOR P=0 TO -20 STEP -5
1490 X=-(RND<.8)
1500 W(F,R+P)=W(F,R+P)+10000*X
1510 W(F,R+P+1)=W(F,R+P+1)+100*X
1520 NEXT P

1530 NEXT R

1540 NEXT F

1550 FOR F=l TO 4
1560 FOR R=l TO 21 STEP 5
1570 FOR P=0 TO 4
1580 X=-(RND<.8)
1590 W(F,R+P)=W(F,R+P)+X
1600 W(F+l,R+P)=W(F+lfR+P)+10*X
1610 NEXT P
1620 NEXT R

1630 NEXT F

1640 XD=INT(6*RND)+1 "":
1650 IF XD<5 THEN 1690
1660 XF=1-4*(XD=6) •"
1670 XR=INT(25*RND)+1
1680 GOTO 1800 „,
1690 XF=INT(5*RND)+1
1700 P=INT(5*RND)+1
1710 IF XD<>1 THEN 1730 "*"
1720 XR=20+P

1730 IF XD<>2 THEN 1750 —*
1740 XR=5*P

72 "~

Fun and Games hrwh*.

1750 IF XD<>3 THEN 1770

1760 XR=P

1770 IF XD<>4 THEN 1790
1780 XR=5*P-4

1790 IF W(XF,XR)=0 THEN 1640
1800 SF=INT(5*RND)+1
1810 SR=INT(25*RND)+1
1820 IF W(SF,SR)=0 THEN 1800
1830 SD=INT(4*RND)+1
1840 F=SF

1850 R=SR

1860 D=SD

1870 TM=1

1880 W(XF,XR)=W(XF,XR)+10~(6-XD)
1890 CALL CLEAR

1900 IF K<>49 THEN 1960

1910 CALL SOUND(100,700,0)
1920 PRINT " <PRESS ANY KEY TO BEGIN>"

1930 CALL KEY(0,K,S)
1940 IF S=0 THEN 1930

1950 CALL CLEAR

1960 PRINT "############################":")*
"&A$&A$&"

1970 PRINT " +)* "&CHR$(137)&CHR$(138)St"
&CHR$(140)&CHRS(141)Sc" -,."

1980 PRINT " +)* "&CHR$(139)&CHR$(136)&A$&CHR$
(142)&" -,.":" +)* -»*"

1990 PRINT " ' /((((((((((((_":" $
%M:" "ef $ % ranh"

2000 PRINT " * gef $ % rano h":" *aaac §
pqrrst % liiih":" % * $ uwrrxv % h

h"

2010 FOR N=l TO 5

2020 PRINT " % s $ uu vv % h h"
2030 NEXT N

2040 PRINT " % * $ yzrrU % h h":" *bbbd-,(
((((((((((()*kjjjh"

2050 PRINT " % -,. "&CHR$(128)&CHR$(129)&B$&CHR$
(130)&" +)* h"

2060 PRINT " "-,. "&CHR$(131)&CHR$(132)&"
&CHR$(133)&CHR$(134)&" +)*h"

2070 PRINT "-,. "&B$&B$&" +)*":M(((((((((
((((((((((((((((((("s" NORTH EAST SOUTH WE
ST"

2080 CALL VCHAR(1,2,33)
2090 CALL VCHAR(2,2,36,20)
2100 CALL VCHAR(22,2,38)
2110 CALL VCHAR(1,31,34)
2120 CALL VCHAR(2,31,37,20)

73

Fun and Games

2130 CALL VCHAR(22,31,39)
2140 GOTO 2850 ^
2150 CALL KEY(0,K,S)
2160 TM=TM+QA

2170 IF S<1 THEN 2150 *"*
2180 IF K=l THEN 2580
2190 IF K<>78 THEN 2240 em
2200 IF SEGS(W$,1,1)="0" THEN 2550
2210 IF (XF=F)*(XR=R)*(XD=1)THEN 2580
2220 R=R+5

2230 GOTO 2850

2240 IF K<>83 THEN 2290
2250 IF SEG$(W$,3,1)="0" THEN 2550
2260 IF (XF=F)*(XR=R)*(XD=3)THEN 2580
2270 R=R-5

2280 GOTO 2850

2290 IF K<>87 THEN 2340

2300 IF SEG$(W$,4,1)="0" THEN 2550
2310 IF (XF=F)*(XR=R)*(XD=4)THEN 2580
2320 R=R-1

2330 GOTO 2850

2340 IF K<>69 THEN 2390
2350 IF SEG$(W$,2,1)="0" THEN 2550
2360 IF (XF=F)*(XR=R)*(XD=2)THEN 2580
2370 R=R+1

2380 GOTO 2850

2390 IF K<>85 THEN 2440
2400 IF SEG$(W$,6,1)="0" THEN 2550
2410 IF (XF=F)*(XR=R)*(XD=6)THEN 2580
2420 F=F+1

2430 GOTO 2850

2440 IF K<>68 THEN 2490

2450 IF SEG$(W$,5,1)="0" THEN 2550
2460 IF (XF=F)*(XR=R)*(XD=5)THEN 2580
2470 F=F-1

2480 GOTO 2850

2490 IF K<>44 THEN 2520
2500 D=D-1-4*(D=1)
2510 GOTO 2850

2520 IF K<>46 THEN 2550 „_
2530 D=D+1+4*(D=4)
2540 GOTO 2850
2550 CALL SOUND(200,110,0) •*
2560 TM=TM+QB

2570 GOTO 2150 m

2580 W(XF,XR)=W(XF,XR)-10A(6-XD)
2590 CALL CLEAR

2600 T$="ELAPSED TIME:" "^
2610 IF K=l THEN 2690

2620 PRINT " << CONGRATULATIONS >>": : "^
2630 FOR K=l TO 3

74 -"

Fun and Games

2640 FOR N=500 TO 800 STEP 20

2650 CALL SOUND(50,N,0)
2660 NEXT N

2670 NEXT K

2680 T$="YOU SOLVED THE MAZE IN:"
2690 MN=INT(TM/60)
2700 SC=INT(TM-60*MN)
2710 C$=STR$(MN)&" MIN "&STR$(SC)&" SEC"
2720 PRINT TAB((28-LEN(T$))/2);T$: :TAB((28-LEN(C$)

)/2);C$: : : :
2730 PRINT "PRESS TO":" ": :" 1 PLAY A

NEW MAZE": :" 2 REPLAY THE SAME MAZE": :

2740 PRINT " 3 RETURN TO MAZE": :" 4 SEE PR

ESENT LOCATION": :" 5 SEE EXIT LOCATION":

:" 0 QUIT":
2750 CALL SOUND(100,700,0)
2760 CALL KEY(0,K,S)
2770 WS=RND

2780 IF S=0 THEN 2760

2790 IF (K<48)+(K>53)<0 THEN 2830
2800 IF K=52 THEN 3010

2810 IF K=53 THEN 3070

2820 IF K=48 THEN 3150 ELSE 1240

2830 CALL SOUND(200,110,0)
2840 GOTO 2760

2850 CALL HCHAR(24,1,32,32)
2860 FOR N=9 TO 14

2870 CALL COLOR(N,1,1)
2880 NEXT N

2890 W$="000000"&STR$(W(F,R))
2900 W$=SEG$(W$,LEN(W$)-5,6)
2910 TM=TM+QC

2920 CALL COLOR(9,l-15*(SEG?(W$,D-l-4*(D=l),l)="l")
,1)

2930 CALL COLOR(10,1-15*(SEG$(W$,D+1+4*(D=4),1)="1"
),1)

2940 CALL COLOR(ll,l-15*(SEG$(W$,D,l)="l"),l)
2950 CALL COLOR(12,l-15*(SEG$(W$,D,l)="l"),1)
2960 CALL COLOR(13,l-15*(SEG$(W$,5,l)="l"),l)
2970 CALL COLOR(14,l-15*(SEG$(W$,6,l)="l"),l)
2980 CALL SOUND(100,700,0)
2990 CALL HCHAR(24,5+7*(D-1)+(D>2),94,5+(INT(D/2)=D

/2))
3000 GOTO 2150

3010 XX=R-20*(R>20)*(R<26)-15*(R>15)*(R<21)-10*(R>1
0)*(R<16)-5*(R>5)*(R<11)

3020 YY=INT((R-l)/5)+l
3030 ZZ=F

3040 CALL CLEAR

3050 PRINT " YOU ARE AT ";

75

Fun and Games

3060 GOTO 3120
3070 XX=XR-20*(XR>20)*(XR<26)-15*(XR>15)*(XR<21)-10

(XR>10)(XR<16)-5*(XR> 5)*(XR<11)
3080 YY=INT((XR-l)/5)+l
3090 ZZ=XF

3100 CALL CLEAR

3110 PRINT "EXIT LOCATED AT ";
3120 T$="X="&STR$(XX)&" Y="&STR$(YY)&" A="&STR$(ZZ)
3130 PRINT T$: : : :

3140 GOTO 2730

3150 CALL CLEAR

3160 END

3170 DATA 0000000000000303,000000000000C0C,00000000
0000FFFF,0303030303030303,C0C0C0C0C0C0C0C,0303
,C0C,FFFF

3180 DATA C0F07C1F0701,00000000C0F07C1F,0701,030F3E
F8E08,00000000030F3EF8,E08,0703030303030303,00
38444C54644438

3190 DATA 0000FFFF,E0C0C0C0C0C0C0C,0303030303030303
,FFFF,000000000000FFFF,FFFF030303030303,030303
030303FFFF

3200 DATA C0F07C1F0701,00000000C0F07C1F,0701,C0C0C0
C0C0C0C0C,FFFF,000000000000FFFF, C0C0C0C0C0C0FF
FF

3210 DATA FFFFC0C0C0C0C0C,00000000030F3EF8,030F3EF8
E08,E08,3F3F3E373331303,FFFF000080C0E07,FFFF

3220 DATA FFFF00000103070E,FCFC7CECCC8C0C0C,3030303
03030303,0C0C0C0C0C0C0C0C,3F3F30303030303,FCFC
0C0C0C0C0C0C

3230 DATA 3030303133373E3C,3F7FE0C08,FCFE070301,0C0
C0C8CCCEC7C3C,0,0,0,0103070F1F3B73E3,FFFF,80C0
E0F0F8DCCEC7

3240 DATA 0103070E1C3870E,C383030303030303,C3C1C0C0
C0C0C0C,80C0E070381C0E07,0,000000000000FFFF

3250 DATA E070381C0E070301,03030303030383C3,E3733B1
F0F070301,C0C0C0C0C0C0C1C3,070E1C3870E0C08,C7C
EDCF8F0E0C08

76

Edward F. Roberts, Jr.

The fate of England rests with The Few, the pi
lots of the Royal Air Force, as they try to drive
off the clouds of German bombers. You're one of
those Few. ltSpitfire" uses Extended BASIC.

The Junkers JU-88 bomber is in your sights, but only briefly.
You press the firing button, and your Spitfire's machine guns
hammer at the enemy's tail. For a moment it jinks out of the
way, but you bank and climb and fire again. The enemy
bomber explodes in a fireball of flame.

"Spitfire" is an action game which puts you in the cockpit
of a fighter plane during the Battle of Britain. You've managed
to get behind an enemy bomber and you're ready to bring it
down.

Just Like the First Joystick
Spitfire uses the joystick as though it were the control stick of
a real fighter. If the enemy aircraft is up and to the left, just
pull back and to the left to center it in your sights. Destroying
the bomber gives you 100 points. Keep track of your remain
ing ammunition and fuel (upper left and right on the screen,
respectively) as you chase down one bomber after another.

A score of 3500 points advances you to the next difficulty
level. A string of six misses lets the enemy bomb your city and
costs you ten rounds of ammunition.

Spitfire includes 12 levels of difficulty. Numeric variables
are used to control the random motion and velocity of the en
emy bomber. After level 6, the joystick sensitivity is increased,
allowing a balance between the speed of your aircraft and that
of your enemy. The ease at which enemy bombers are tar
geted and destroyed also becomes more difficult as you ad
vance to other levels.

These levels allow even a beginning pilot to bring down
the occasional aircraft, yet still challenge the best of The Few.

As Fast as Possible
Lines 560-620 contain the core of the program. This loop is
kept as short as possible to increase the chance of recognizing

77

Fun and Games

the fire command from the joystick and also to provide a
quicker response to joystick motion inputs.

The conditional branch in line 560 checks the fire button.
If it's been pressed, the program jumps to a routine which
checks for coincidence, decrements the ammo remaining, and
increments the score if a hit is declared. If a miss is declared, it
increments the miss count and checks to see if the skyline
must be displayed. The skyline begins to appear with the third
miss. A hit prior to the sixth miss clears the miss count and re
moves the skyline from the bottom of the screen.

Spitfire
100 REM ******************

110 REM **** SPITFIRE ****
120 REM ******************

150 REM

160 OPTION BASE 1

170 CALL CLEAR

180 FOR C0L=1 TO 14 :: CALL COLOR(COL,16,1):: NEXT
COL

190 CALL SCREEN(2)
200 DISPLAY AT(10,12):"SPITFIRE"
220 FOR T=l TO 500 :: NEXT T

230 FOR COL=l TO 14 :: CALL COLOR(COL,2,1):: NEXT C
OL

240 CALL CLEAR

250 AMMO=60 :: FUEL=600 :: SCORE=0 :: DIM SCENE?(5)
260 DIM SONG(11,2)
270 FOR X=l TO 11 :: READ SONG(X,1),SONG(X,2):: NEX

T X

280 DATA 750,117,750,117,183,117,558,117,750,139,18
3,131,558,131,183,117,558,117,750,110,1500,117

290 TOL=14 :: VMUL=8 :: HMUL=18 :: N=l :: JMUL=3
300 CALL SCREEN(8)
330 CALL MAGNIFY(4)
340 CALL CHAR(45,"000000FF")
350 CALL CHAR(136,"914925158B47370FFF070B1525499121

12244952A4C8D0FFC0E0586651282422")
360 CALL CHAR(104,"02070F1F0F1F3F7FFFFF7F3F1F030100

0080C0E0F0F8FCFFFEFCF0E0E0E0C080")
370 CALL COLOR(10,11,1)

380 CALL CHAR(140,"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
")

390 CALL COLOR(14,3,3)
400 CALL HCHAR(24,1,140,32)
410 CALL CHAR(112,"99FF99FF99FF99FF090F090F090F090F

90F090F090F090F099FF99FFFFFFFFFF")
420 CALL CHAR(116,"FFFFFFFFFFFFFFFF")

78

Fun and Games

430 CALL CHAR(117,"00000000FFFFFFFFC3C3C3C3C3C3C3C3
00000000F0F0F0F0000000000F0F0F0F")

440 LET SCENES(5)=" uttttttttttttttu" :: SCENES(
4)=" tttttttttttsp"

450 SCENE$(3)=" vututwtxpppp" :: SCENE$(2)="
v t t ppuu"

460 SCENES(1)=" v t w uu"
470 CALL CHAR(46,"101010FF10101010")
480 CALL CHAR(36,"00183C3E7FFFFF7F7F3F7FFFFF7F3F0F0

000000080E0F0F8FDFFFFFEFCFCFEFC")
485 CALL SPRITE(#3,36,16,80,45,0,-1):: CALL SPRITE(

#4,36,16,68,35,0,2)
490 DISPLAY AT(11,13):"~" :: DISPLAY AT(15,13) :"—

ii

500 DISPLAY AT(13,10):*'-.- -.-"
510 RANDOMIZE

520 CALL CHAR(40,"00"):: CALL CHAR(41,"00"):: CALL
CHAR(43,"00")

530 CALL CHAR(96,"01010F010307FF3733000000000000000
000E00080C0FED89800000000000000")

540 CALL SPRITE(#7,96,5,60,24,-9+(RND*9),8+(RND*9))
550 CALL SPRITE(#2,42,7,91,98)
560 CALL JOYST(l,H,V):: CALL KEY(1,KEY,STATUS):: IF

KEY=18 THEN 630

570 FUEL=FUEL-1

580 DISPLAY AT(1,20):"FUEL";FUEL
590 IF FUEL<=0 THEN 1160
600 CALL MOTION(#7,(VMUL*(RND-.5)-(JMUL*V)),(HMUL*(

RND-.5)-(JMUL*H)))
610 CALL MOTION(#4,-(l*V),2-(l*H)):: CALL MOTION(#3

,-(l*V),-2-(l*H))
620 GOTO 560

630 CALL COINC(#7,86,105,TOL,COIN)
640 CALL SOUND(100,-5,0)
650 AMMO=AMMO-l

660 MISS=MISS+1

670 IF MISS>=3 THEN 910 ELSE 680

680 IF AMMO<0 THEN AMMO=0

690 DISPLAY AT(1,3):"AMMO";AMMO
700 REM IF AMM0<1 THEN 900

710 IF (C0IN=-1)*(KEY=18)THEN 720 ELSE 560
720 CALL SOUND(500,-7,0):: CALL SCREEN(7):: CALL SC

REEN(9)
730 CALL DELSPRITE(#7)
740 CALL SPRITE(#11,104,11,80,106)
750 CALL SPRITE(#10,136,14,88,95)
760 FOR D=l TO 50 :: NEXT D :: CALL COLOR(#10,2) ::

CALL COLOR(#ll,7)
770 FOR D=l TO 50 :: NEXT D

780 CALL COLOR(#10,7):: CALL COLOR(#11,16)

79

Fun and Games m

790 CALL SCREEN(7):: FOR D=l TO 30 :: NEXT D :: CAL
L SCREEN(8) mm

800 FOR D=l TO 20 :: NEXT D

810 FREQ=1000 „.
820 MISS=0 '

830 CALL HCHAR(19,1,32,160)
840 FOR S=l TO 8 «

850 CALL SOUND(-100,FREQ,3):: FREQ=FREQ-100
860 NEXT S

870 SCORE=SCORE+100

880 DISPLAY AT(2,3):"SCORE";SCORE
890 CALL DELSPRITE(#7,#10,#11):: IF AMM0<1 THEN 900

ELSE 540

900 IF SCORE>(N*3500)THEN 1080 ELSE 1210
910 REM SHOW CITY

920 IF MISS<>3 THEN 940

930 DISPLAY AT(23,1):SCENE$(1):: GOTO 680
940 IF MISS=4 THEN 980

950 IF MISS=5 THEN 990

960 IF MISS=6 THEN 1000

970 IF MISS=7 THEN 1020

980 DISPLAY AT(22,1):SCENE$(1):: DISPLAY AT(23,1):S
CENE$(2):: GOTO 680

990 DISPLAY AT(21,1):SCENE$(1):: DISPLAY AT(22,1):S
CENE$(2):: DISPLAY AT(23,1):SCENE$(3):: GOTO 68
0

1000 DISPLAY AT(20,1):SCENE$(1):: DISPLAY AT(21,1):
SCENES(2):: DISPLAY AT(22,1):SCENES(3)

1010 DISPLAY AT(23,1):SCENES(4):: GOTO 680
1020 DISPLAY AT(19,1):SCENE$(1):: DISPLAY AT(20,1):

SCENE$(2):: DISPLAY AT(21,1):SCENES(3)
1030 CALL SPRITE(#9,136,7,160,100):: CALL SPRITE(#8

,104,11,158,90)
1040 CALL SOUND(1500,-7,0)
1050 DISPLAY AT(22,1):SCENE$(4):: DISPLAY AT(23,1):

SCENE$(5):: MISS=0 :: AMMO=AMMO-9
1060 FOR D=l TO 50 :: NEXT D :: CALL DELSPRITE(#8,#

9):: CALL HCHAR(19,1,32,160):: GOTO 680
1070 END

1080 AMMO~60 :: FUEL=600 :: MISS=0 :: N=N+1 :: READ —»
TOL :: READ VMUL :: READ HMUL

1090 DISPLAY AT(24,21):"LEVEL";N ^
1100 IF N>6 THEN JMUL=JMUL+1
1110 CALL HCHAR(19,1,32,160)
1120 IF N=13 THEN 1210 •"•
1130 GOTO 560

1140 DATA 12,9,20,11,10,22,10,13,26,9,16,30,9,18,32 mm
,9,20

1150 DATA 36,9,21,37,9,22,38,9,24,39,10,26,41,10,28 _
,42,12,30,43,13,40,50 <*n

80 ""

Fun and Games i . ^sr^

1160 DISPLAY AT(8,6):"YOUR FUEL IS GONE"
1170 DISPLAY AT(9,6):"YOU HAVE CRASHED"
1180 CALL SOUND(2000,-7,0)
1190 FOR NOTE=l TO 11 :: CALL SOUND(SONG(NOTE,1),SO

NG(NOTE,2),0)
1200 NEXT NOTE

1210 DISPLAY AT(12,10):"GAME OVER"
1220 CALL MOTION(#7,10*RND,10*RND):: DISPLAY AT(1,2

0):"FUEL"
1230 DISPLAY AT(10,5):"WANT TO PLAY AGAIN? Y/N"
1240 ACCEPT AT(11,16):A$:: RESTORE :: IF ((ASC(A$)

=89)+(ASC(A$)=121))THEN 240
1250 CALL CLEAR

1260 END

81

Rick Rothstein

Duplicating the popular word game, "BOG'L"
displays letters and provides a three-minute
timer on the screen as you list all the words you
can. Extended BASIC and Memory Expansion
necessary.

Did you buy your computer so that your children would have
access to a personal teaching tool? So that you could operate
your business more profitably? If you're anything like me (and
most people), one reason you bought it was to play games.

Word games have always held a particular fascination for
me, and so it seemed logical to let my TI-99/4A help satisfy
this passion. One of my all-time favorites is a word-find game
made by Parker Brothers under the name Boggle.

First, the Rules
The mechanical version of Boggle is played with 16 letter
cubes, a shaker tray, and an egg timer. The letter cubes are
placed into the shaker tray, mixed thoroughly, and allowed to
come to rest in a 4 X 4 grid. The timer is started, and the top
faces of the letter cubes are revealed by removing the cover
from the shaker tray.

Each player (two to six recommended) then takes paper
and pencil and writes down as many words as he or she can
find, within the allotted time, according to the following rules:
• All words must contain three or more letters.
• Each word is formed by linking adjoining letters together in

their proper sequence.
• The letters may be joined horizontally, vertically, diagonally,

or a by combination of those directions.
• No letter cube may be used more than once within any sin

gle word.
• Any word—including plurals, forms, and tenses—may be

used as long as it can be found in a standard English
dictionary.

• Proper names, abbreviations, and words spelled with an
apostrophe or hyphen are not allowed.

• Words within words are permissible. For example, SCARE,
CARE, SCAR, CAR, and ARE would all be counted.

82

Fun and Games

• When the timer runs out, all players must stop writing.

Playing BOG'L
"BOG'L" is written in Extended BASIC and simulates the play
of the Parker Brothers game perfectly. Even the faces of the
letter "cubes" are randomly displayed rightside up, upside
down, or sideways.

First, type in, save, and then load and run the program. If
you have a disk system with no Memory Expansion unit at
tached, you must type and enter CALL FILES(l), followed by
NEW before loading this program. The program will then ask
whether you want to see a display of the alphabet used in the
game. Pressing Y displays all 26 letters of the alphabet exactly
as they appear during play. If you're playing BOG'L for the
first time, take a look at the alphabet to become accustomed to
the shapes. This is a good idea since BOGT often displays let
ters upside down or on their sides. (Special notice should be
taken of the W and M, the U and V, the N and Z—note the
underline—as well as the letter Q, which is always displayed
together with the letter U.)

If you press any key after viewing the alphabet, or if you
pressed N instead of viewing the alphabet, the program begins
setting up the first game board. When the onscreen timer, set
for three minutes, appears to the right of the letter tray, play
may be started by pressing any key. Four beeps will sound,
giving you time to pick up a pencil and paper, and then a 4 X
4 grid of letters appears. Game play proceeds according to the
rules listed above. When three minutes have elapsed, an end-
of-game tone is sounded and all letters are blacked out.

Pressing any key redisplays the game board. Use this fea
ture for scoring. At the same time, the program begins to cal
culate the next game board. Hence, redisplaying the game
board before scoring begins will minimize the wait required to
start the next game. Pressing FCTN-8 (REDO) anytime after
the board is redisplayed blacks out the tray of letters, resets
the timer (invisibly), and continues setting up the next game
board. Pressing FCTN-3 (ERASE) ends the program.

During game play, while the timer is counting down, you
may do any of the following:

• Press FCTN-8 (REDO) to restart another game. This feature
is included in case no usable vowels are displayed.

83

Fun and Games

• Press FCTN-7 (AID) to suspend play, in other words, to
freeze the timer and black out the letter board. This feature is
included in case a neighbor, or nature, calls. Press FCTN-7 a
second time to restart the game at the exact point where it
was interrupted.

• Press FCTN-3 (ERASE) to end the program.

How to Score

Scoring in BOG'L follows these rules:

• At the end of a round, each player in turn reads his or her
list of words out loud.

• If a word appears on more than one player's list, it's crossed
off all the lists on which it appears—including the reader's
list.

• After all players have read from their lists, one point is
scored for each word remaining on a player's list.

• All words of five or more letters receive a bonus:

umber of Bonus

Letters Points
5 1

6 2

7 4

8 + 10

• The player having the highest number of points wins.

In the Program
There are two versions of Extended BASIC. Version 100 is the
older and slower of the two. In particular, it processes FOR-
NEXT loops at about half the speed of Version 110. Since the
onscreen timer operates by means of three nested FOR-NEXT
loops, it's necessary to take this speed difference into account
so that BOG'L will work correctly for either version. Line 150
accomplishes this.

The first statement asks the Extended BASIC module
which version it is. The second statement sets the variable
named TIMER to 12 for Version 100 or to 22 for Version 110.
(Remember, the relational expression in the parentheses evalu
ates to minus one if 1=100, and zero if IolOO.)

As it turns out, there's another speed of operation differ
ence which must be accounted for. Version 110 processes
FOR-NEXT loops just a little bit faster if a 32K Memory Ex
pansion unit is attached to your computer than if no memory

84

?^£)

Fun and Games

expansion is hooked up. (Version 100 seems not to be affected
by this.) The last three statements in line 150 adjust the
TIMER variable if necessary.

The ON ERROR 830 statement sets a path for the pro
gram to follow should an error occur. The CALL INIT state
ment checks to see if the 32K Memory Expansion is attached.
If it is, error trapping is reset to normal and the program con
tinues. However, if the memory unit is not attached, an error
occurs and program execution is sent to line 830. If Version
110 of Extended BASIC is in operation, the TIMER variable is
reduced by one. If Version 100 is in operation, the TIMER
variable is not changed. The program then returns to the last
statement of line 150, at which point error trapping is reset to
normal before continuing.

Describing the Program

Lines Function

150-160 Initialize program.
170-180 Ask players whether they want to see the alphabet and

check for answer.

190-230 Display entire alphabet if requested and check for pro
gram continuation.

240 Additional program initializing.
250-260 Define the graphics to be used on the timer.
270-280 Define the graphics to be used on the letter tray.
290-310 Display the letter tray (invisibly).
320-340 Display the onscreen timer (invisibly).
350 Places the sprites which will be used to display the let

ter cubes onto the screen.

360 Randomly picks one letter to be displayed on the face
of each of the 16 letter cubes.

370-660 For each letter cube, select the appropriate DATA state
ment, randomly pick one of the four possible orienta
tions for the letter to be displayed, and assign the
character pattern to the FACE$() array. Also check to
see if the timer is visible or not. The timer is invisible

only if FCTN-8 (REDO) has already been pressed.
670-680 Wait for FCTN-8 (REDO) or, alternatively, FCTN-3

(ERASE) to be pressed. These lines are reached only if
the timer was visible when line 660 was executed.

690 Assigns the appropriate cube face patterns to the char
acters which define each sprite.

700 Sounds an alert and then makes the onscreen timer

visible.

85

Fun and Games

710 Checks for the starting of a game or, alternatively, the
quitting of the program.

720 Beeps four times and then makes the game board
visible.

730-750 Run the onscreen timer.
760 Signals the end of a game and blacks out the screen.
770 Checks to see if the players want to redisplay the game

board for verification purposes during scoring. If yes,
the board is redisplayed and the program branches to
line 360, at which point calculations for the next game
board are started.

780-790 This subroutine checks to see if FCTN-8 (REDO) is
pressed while the timer is visible. If so, the tray is
blacked out and the timer is made invisible.

800-810 Redisplay the game board if FCTN-7 (AID) is pressed
and start the timer again upon returning. This subrou
tine is activated only if AID was pressed in order to
freeze the timer during the playing of a game.

820 This subroutine makes the timer invisible and blacks

out the tray.
830 Adjusts the variable named TIMER if required.
840-1350 Contain the character string expressions which specify

the shapes of the letters. The first four items of data
contain the patterns for the four possible orientations of
the letter A, the next four for the letter B, and so on.

1360-1370 Each item of data contains the six letters which make
up each letter cube.

1380 Clears the screen and quits the program.

BOG'L

150 CALL VERSION(I):: TIMER=22+10*(1=100):: ON ERRO
R 830 :: CALL INIT :: ON ERROR STOP

160 CALL SCREEN(4):: CALL MAGNIFY(4):: DIM FACE?(16
),LETTER$(16):: DEF F$(N)=RPT$("F",N)

170 CALL CLEAR :: DISPLAY "DO YOU WANT TO SEE THE"
:: DISPLAY BEEP:"ALPHABET DISPLAYED? (Y/N)"

180 CALL KEY(0,K,S):: IF S=0 THEN 180 ELSE IF K=78
THEN 240 ELSE IF K<>89 THEN 180

190 N=0 :: CALL CLEAR :: CALL CHAR(33,"000000000000
0303",35,,,000000000000FCFC")

200 FOR ROW=-3 TO 166 STEP 28 :: FOR COL=65 TO 161

STEP 32 :: N=N+1 :: READ TS,A$,A$,A$:: CALL CH
AR(32+4*N,TS)

210 CALL SPRITE(#N,32+4*N,2,ROW-256*(ROW=-3),COL)::
IF N=17 THEN DISPLAY AT(14,7):"I#" ELSE IF ROW

=165 AND COL=97 THEN 230

86

Fun and Games

220 NEXT COL :: NEXT ROW

ma 230 CALL KEY(0,K,S):: IF S=0 THEN 230 ELSE CALL DEL
SPRITE(ALL)

240 VISIBLE=0 :: CALL CLEAR :: CALL CHARSET :: CALL
COLOR(2,1,1,3,1,1,4,1,1,5,5,2,6,5,2)

250 CALL CHAR(52,RPT?("01",8)&RPT?("0",14)&"FC"&RPT
I** ?("0",14)&"E00"):: N=55

260 FOR 1=14 TO 0 STEP -2 :: N=N+1 :: CALL CHAR(N,R
PT?("0",I)&F?(16-I)):: NEXT I

270 CALL CHAR(64,F?(13)&"CFC"&F?(12)&"0000"&F?(12)&
"3C3C"6,F?(12)&"3F3F",68,"FCFC"&F?(12)&"0000"&F?
(12)&"3C3C"&FS(12)&"3F3"&F?(13))

280 CALL CHAR(72,RPT?("FCn,10)&F?(9)&"CFC"&"3F3"&F?
(9)&RPT?("3F",10),76,"3C3C&F?(8)&"3C3C0",78,"0
000,,&F?(8),79,RPT?("3C",8))

290 DISPLAY AT(3,1):"@AAAABAAAABAAAABAAAAC"
300 FOR 1=4 TO 19 STEP 5 :: DISPLAY AT(I,1):RPT?("H

MMMMOMMMMOMMMMOMMMMK+++++++",4)&"INNNNLNNNNLNNN
NLNNNNJ" :: NEXT I

310 DISPLAY AT(23,1):"DEEEEFEEEEFEEEEFEEEEG"
320 GOSUB 820 :: CALL HCHAR(3,26,55,5):: CALL HCHAR

(4,26,55,5):: CALL HCHAR(22,26,55,5):: CALL HCH
AR(23,26,55,5)

330 CALL VCHAR(4,26,52,18):: CALL VCHAR(4,27,55,19)
:: CALL VCHAR(4,28,63,18):: CALL VCHAR(4,29,63,
18):: CALL VCHAR(4,30,55,19)

340 FOR 1=0 TO 3 :: CALL HCHAR(6*1+3,27,53):: CALL
HCHAR(6*I+4,27,51-I):: CALL HCHAR(6*I+6,27,54) :
: NEXT I :: CALL HCHAR(24,27,32)

350 RANDOMIZE :: N=0 :: FOR J=25 TO 145 STEP 40 : :

FOR 1=25 TO 145 STEP 40 :: N=N+1 :: CALL SPRITE

(#N,76+4*N,2,J,I):: NEXT I :: NEXT J
360 RESTORE 1360 :: FOR 1=1 TO 16 :: GOSUB 780 : : R

EAD T$:: LETTERS(I)=SEG?(T?,INT(RND*6+1),1): :
NEXT I

370 FOR 1=1 TO 16 :: GOSUB 780

380 IF LETTER?(I)<"N" THEN ON ASC(LETTER?(I))-64 GO
TO 400,410,420,430,440,450,460,470,480,490,500,
510,520

P« 390 ON ASC(LETTER?(I))-77 GOTO 530,540,550,560,530,
580,590,600,610(620(630,200,650

AfXfX

T*s^3?|

400 RESTORE 840 : : GOTO 660

410 RESTORE 860 : : GOTO 660

420 RESTORE 880 : : GOTO 660

430 RESTORE 900 : : GOTO 660

440 RESTORE 920 : : GOTO 660

450 RESTORE 940 : : GOTO 660

460 RESTORE 960 : : GOTO 660

470 RESTORE 980 : : GOTO 660

480 RESTORE 1000 :: GOTO 660

87

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

88

Fun and Games

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

GOTO 660

RESTORE 1020

RESTORE 1040

RESTORE 1060

RESTORE 1080

RESTORE 1100

RESTORE 1120

RESTORE 1140

RESTORE 1160

RESTORE 1180

RESTORE 1200

RESTORE 1220

RESTORE 1240

RESTORE 1260

RESTORE 1280

RESTORE 1300

RESTORE 1320

RESTORE 1340

GOSUB 780 ::

(I):: NEXT J
WASTER=RND :

FOR J=0 TO INT(RND*4):: READ FACE?
:: NEXT I :: IF VISIBLE=0 THEN 690

CALL KEY(0,K,S):: IF S=0 THEN 670
IF K=7 THEN 1380 ELSE IF K=6 THEN GOSUB 820 ::

GOTO 690 ELSE 670

FOR 1=16 TO 1 STEP -1

CHAR(76+4*1,FACE?(N))
T I

CALL SOUND(150,800,0)
6):: VISIBLE=1
WASTER=RND :: CALL KEY(0,K,S):: IF S=0 THEN 710
ELSE IF K=7 THEN 1380

FOR 1=1 TO 4 :: CALL SOUND(200,400,0):: CALL SO
UND(800,400,30):: NEXT I :: CALL COLOR(5,5,15,6
,5,15)
FOR J=4 TO 21 :

H=l TO TIMER ::

CALL KEY(0,K,S)

: N=INT(I*RND+1):: CALL
FACE?(N)=FACE?(I):: NEX

CALL COLOR(3,2,16,4,7,l

FOR 1=62 TO 55 STEP -1

T?=""

: IF K=6 THEN GOSUB 820 :: GOTO

360 ELSE IF K=7 THEN 1380 ELSE IF K=l AND S=l
THEN CALL COLOR(5,5,2,6,5,2):: GOSUB 800
NEXT H :: CALL HCHAR(J,28,I,2):: NEXT I :: NEXT
J

CALL SOUND(400,110,9,220,9,330,9):: CALL COLOR(
5,5,2,6,5,2)
WASTER=RND :: CALL KEY(0,K,S):: IF S=0 THEN 770
ELSE IF K=7 THEN 1380 ELSE CALL COLOR(5,5,15,6
,5,15):: GOTO 360
CALL KEY(0,K,S):: IF K=7 THEN 1380 ELSE IF VISI
BLE=1 AND K=6 THEN GOSUB 820
RETURN

CALL KEY(0,K,S):: IF S=0 THEN 800
IF K=l AND S=l THEN CALL COLOR(5,5,15,6,5,15)::
RETURN ELSE IF K=7 THEN 1380 ELSE 800

FOR

Fun and Games

820 VISIBLE=0 :: CALL C0L0R(3,1,1,4,1,1,5,5,2,6,5, 2
pw):: CALL VCHAR(4,28,63,18):: CALL VCHAR(4,29,63

,18):: RETURN
^ 830 TIMER=TIMER-I-(I=100):: RETURN NEXT

840 DATA 00000103070E1C181F1F181818180000000080C0E0
703818F8F818181818,0000003F3F0303030303033F3F00

F5* 0000000000C0E070381C1C3870E0C
850 DATA 0000181818181F1F181C0E07030100000000181818

18F8F8183870E0C08,00000003070E1C38381C0E0703000
000000000FCFCC0C0C0C0C0C0FCFC

860 DATA 00001F1F1818181F1F1818181F1F00000000E0F038
1838F0F0381838F0E,0000003F3F31313131313B1F0E000
000000000FCFC8C8C8C8C8CDCF87

870 DATA 0000070F1C181C0F0F1C181C0F0700000000F8F818
1818F8F8181818F8F8,0000000E1F3B31313131313F3F00
000000000070F8DC8C8C8C8C8CFCFC

880 DATA 0000070F1C1818181818181C0F0700000000F0F818
00000000000018F8F,0000000F1F3830303030303818000
000000000F0F81C0C0C0C0C0C1C18

890 DATA 00000F1F18000000000000181F0F00000000E0F038
18181818181838F0E,00000018383030303030381F0F000
000000000181C0C0C0C0C0C1CF8F

900 DATA 00001F1F18181818181818181F1F00000000C0E070
38181818183870E0C0000003F3F30303030381C0F07000
000000000FCFC0C0C0C0C1C38F0E

910 DATA 000003070E1C181818181C0E070300000000F8F818
18181818181818F8F8,000000070F1C38303030303F3F00
0000000000E0F0381C0C0C0C0CFCFC

920 DATA 00001F1F1818181F1F1818181F1F00000000F8F800

0000E0E0000000F8F8,0000003F3F313131313131303000
0000000000FCFC8C8C8C8C8C8C0C0C

930 DATA 00001F1F00000007070000001F1F00000000F8F818

1818F8F8181818F8F8,00000030303131313131313F3F00
00000000000C0C8C8C8C8C8C8CFCFC

940 DATA 00001F1F1818181F1F181818181800000000F8F800

0000E0E,0000003F3F0101010101010000000000000000F
CFC8C8C8C8C8C8C0C0C

950 DATA 0000000000000007070000001F1F00000000181818

1818F8F8181818F8F8,00000030303131313131313F3F00
f~1 00000000000000808080808080FCFC

960 DATA 0000070F1C1818181818181C0F0700000000F0F818

rm 00000078781818F8F8,0000000F1F3830303033333F3F00
0000000000F0F81C0C0C0C0C0C1C18

m 970 DATA 00001F1F18181E1E000000181F0F00000000E0F038
18181818181838F0E,00000018383030303030381F0F000
000000000FCFCCCCC0C0C0C1CF8F

^ 980 DATA 000018181818181F1F181818181800000000181818
1818F8F81818181818,0000003F3F0101010101013F3F00

^ 0000000000FCFC808080808080FCFC

-*i 89

3 Fun and Games

990 DATA 000018181818181F1F181818181800000000181818
1818F8F81818181818,0000003F3F0101010101013F3F00
0000000000FCFC808080808080FCFC

1000 DATA 000007070101010101010101070700000000E0E08

080808080808080E0E,000000000030303F3F303000000
0000000000000000C0CFCFC0C0C

1010 DATA 000007070101010101010101070700000000E0E08

080808080808080E0E,000000000030303F3F303000000
0000000000000000C0CFCFC0C0C

1020 DATA 00000000000000000000181C0F070000000018181

818181818181838F0E,0000000C1C3830303030381F0F0
000000000000000000000000000FCFC

1030 DATA 0000070F1C18181818181818181800000000E0F03

81800000,0000003F3F000000000000000000000000000
0F0F81C0C0C0C0C1C383

1040 DATA 0000181818191B1F1F1F19181818000000003870E

0C080000080C0E07038,0000003F3F0303070E1C383020
000000000000FCFC80C0E070381C0C04

1050 DATA 00001C0E07030100000103070E1C0000000018181

898F8F8F8D898181818,0000002030381C0E0703013F3F

000000000000040C1C3870E0C0C0FCFC

1060 DATA 0000181818181818181818181F1F0000000000000

000000000000000F8F8,0000003F3F3030303030303030
000000000000FCFC0000000

1070 DATA 00001F1F0000000000000000000000000000F8F81

8181818181818181818,00000000000000000000003F3F
0000000000000C0C0C0C0C0C0C0CFCFC

1080 DATA 0000181C1E1F1B191818181818180000000018387

8F8D898181818181818,0000003F3F0000000000003F3F
000000000000FCFC3870E0E07038FCFC

1090 DATA 0000181818181818191B1F1E1C180000000018181

818181898D8F8783818,0000003F3F1C0E07070E1C3F3F
000000000000FCFC000000000000FCFC

1100 DATA 0000181C1E1F1B191918181818180000000018181

818189898D8F8783818,0000003F3F000001070E1C3F3F
000000000000FCFC3870E0800000FCFC

1110 DATA 0000181C1E1F1B191918181818180000000018181
818189898D8F8783818,0000003F3F000001070E1C3F3F
000000000000FCFC3870E0800000FCFC

1120 DATA 0000070F1C1818181818181C0F0700000000E0F03
818181818181838F0E,0000000F1F3830303030381F0F0
00000000000F0F81C0C0C0C0C1CF8F

1130 DATA 0000070F1C1818181818181C0F0700000000E0F03
818181818181838F0E,0000000F1F3830303030381F0F0
00000000000F0F81C0C0C0C0C1CF8F

1140 DATA 00001F1F1818181F1F181818181800000000E0F03
81838F0E,0000003F3F010101010101000000000000000
0FCFC8C8C8C8C8CDCF87

1150 DATA 00000000000000070F1C181C0F070000000018181
81818F8F8181818F8F8,0000000E1F3B31313131313F3F
0000000000000000808080808080FCFC

90

Fun and Games e

1160 DATA 001E3F73616167733F1E000000000000000000808

08080C040006666667E3C0000010303030301003D7C60
607C3C0000F8FC8E0646CEFCF88

1170 DATA 003C7E66666600020301010101000000000000000

00078FCCEE68686CEFC78,000000000000011F3F736260
713F1F00003C3E06063EBC0080C0C0C0C08

1180 DATA 00001F1F1818181F1F1B1918181800000000E0F03

81838F0E080C0E07038,0000003F3F0103070F1D393020
000000000000FCFC8C8C8C8C8CDCF87

1190 DATA 00001C0E070301070F1C181C0F070000000018181
898D8F8F8181818F8F8,0000000E1F3B31313131313F3F
000000000000040C9CB8F0E0C080FCFC

1200 DATA 0000070F1C181C0F0700181C0F0700000000E0F03
81800E0F0381838F0E,0000000C1C39313131313B1F0E0
0000000000070F8DC8C8C8C8C9C383

1210 DATA 0000070F1C181C0F0700181C0F0700000000E0F03
81800E0F0381838F0E,0000000C1C39313131313B1F0E0
0000000000070F8DC8C8C8C8C9C383

1220 DATA 00001F1F0101010101010101010100000000F8F88
080808080808080808,000000000000003F3F000000000
000000000000C0C0C0CFCFC0C0C0C0C

1230 DATA 0000010101010101010101011F1F0000000080808
080808080808080F8F8,000000303030303F3F30303030
00000000000000000000FCFC

1240 DATA 00001818181818181818181C0F070000000018181
818181818181838F0E,0000000F1F3830303030381F0F0
00000000000FCFC000000000000FCFC

1250 DATA 0000070F1C18181818181818181800000000E0F03
8181818181818181818,0000003F3F0000000000003F3F
000000000000F0F81C0C0C0C0C1CF8F

1260 DATA 0000181818181818181C0E0703010000000018181
8181818183870E0C08,00000003070E1C38381C0E07030
00000000000FCFC000000000000FCFC

1270 DATA 00000103070E1C181818181818180000000080C0E

0703818181818181818,0000003F3F0000000000003F3F

000000000000C0E070381C1C3870E0C

1280 DATA 000018181818191919191B1F0F060000000018181

81898989898D8F8F06,0000000F1F383C1F1F3C381F0F0
00000000000FCFC0000C0C00000FCFC

1290 DATA 0000060F1F1B19191919181818180000000060F0F

8D89898989818181818,0000003F3F0000030300003F3F
000000000000F0F81C3CF8F83C1CF8F

1300 DATA 0000181C1C0E070303070E1C1C180000000018383

870E0C0C0E070383818,000000383C1E070303071E3C38
0000000000001C3C78E0C0C0E0783C1C

1310 DATA 0000181C1C0E070303070E1C1C180000000018383

870E0C0C0E070383818,000000383C1E070303071E3C38
0000000000001C3C78E0C0C0E0783C1C

91

Fun and Games

1320 DATA 00001818181C0E070301010101010000000018181
83870E0C0808080808,000000000000013F3F010000000
000000000003C7CE0C08080C0E07C3C

1330 DATA 0000010101010103070E1C1818180000000080808

08080C0E07038181818,0000003C3E0703010103073E3C
00000000000000000080FCFC8

1340 DATA 00001F1F00000103070E1F1F001F00000000F8F87

0E0C0800000F8F800F8,0000002C2E2F2F2D2C2C2C2C2C
0000000000000C0C0C8CCCEC7C3C1C0C

1350 DATA 00001F001F1F00000103070E1F1F00000000F800F

8F870E0C0800000F8F8,00000030383C3E373331303030
0000000000003434343434B4F4F47434

1360 DATA RSLCAE,DENOSW,ISEHNP,AMORHS,GVNTEI,TAOCAI
,BMJAOQ,YHEFIE

1370 DATA USETLP,EDANVZ,FBRXOI,PECAMD,DTNKOU,GURIWL
,ULEKYG,YATILB

1380 CALL DELSPRITE(ALL):: CALL CLEAR :: END

92

J. C. Hilty

Avoid, then pass the onrushing cars trying to
block your path as you press the accelerator to
the floorboard. This 3-D racing game is written in
Extended BASIC.

Look in any arcade and you'll see several varieties of car-
racing videogames. Though certainly not able to display the
kind of sophisticated arcadelike graphics you see on these ma
chines, nor with their speed, your TI-99/4A can produce an
exciting racing game.

Unsafe at Any Speed
The object of "Speed Demon," as in many racing games, is to
pass other race cars while keeping the speedometer needle
pressed against the edge of the dial. You move your car from
side to side with the left and right arrow keys (just press the
keys themselves—you don't need to use the FCTN key as you
do when moving the cursor during program line editing). The
up and down arrow keys control your speed—pressing the up
key increases speed, while the down key applies the brakes.
The faster you go, the more points are added to your score.
Don't exceed the speed limit—300 mph—of Speed Demon, or
you'll crash.

You'll notice that there's a slight delay in your car's re
sponse when a new car approaches. Going off the road or, of
course, hitting another car, turns your million-dollar racing
machine into a pile of smoking metal.

Your final score is a sum of the number of cars you pass
and the amount of acceleration.

Speed Demon Details
Speed Demon simulates the 3-D effect of the arcade games.
This involves designing a screen which gives a feeling of
depth and motion, without becoming too crowded or compli
cated. Various CHAR designs allow the program to have this
feel. Take a look at the following description, which roughly
outlines the Speed Demon program.

93

Fun and Games

Lines Program Description
100-220 Define the CHAR patterns and colors.
230-260 Ask whether or not you require instructions.
270-350 Title screen is set up.
360-530 The game screen is set up using DISPLAY statements

instead of numerous HCHAR and VCHAR statements.
540-600 Set up the constantly moving highway lines which give

the illusion of the race car moving down the road. A
"hidden sprite" set in line 410 makes the lines appear
to be coming from the end of the road. This sprite is
the same color as the sky, and it's never set in motion.
Thus, the highway line sprites can be constantly in mo
tion, without appearing to go from the top to the bot
tom of the screen.

610-650 Finish the screen and position the player's race car.
660-670 Highway lines set in motion.
680-970 Main game loop.
980-1110 Car crashes and score is displayed.
1120-1270 Instructions.

Besides the hidden sprite, shadow sprites are also used to
give the cars some appearance of depth. Speed Demon also
shows how to use screen boundaries by accessing CALL PO
SITION and CALL COINC statements. One of the biggest
challenges in creating this game was trying to design the pass
ing cars, making it seem that they're rushing at you from a
distance. This was done with CALL PATTERN statements and
a CALL MAGNIFY(4) statement, giving the largest possible
area to design ever-increasing CHAR patterns for the cars.

You can increase the other cars' speeds by changing the
dot row speed in lines 920 and 930 from 12 to 18. This means
you have to react even faster than before, but it makes for a
more exciting game.

Speed Demon

100 CALL CLEAR

110 CALL COLOR(ll,5,l):: CALL COLOR(12,5,1)
120 FOR A=3 TO 8 :: CALL COLOR(A,16,1):: NEXT A
130 CALL COLOR(2,16,1,10,6,6):: CALL COLOR(9,14,14)
140 CALL CHAR(118,"FFFFFFFFFFFFFFFF",119,"F8F8FCFCF

EFEFFFF",120,"8080C0C0E0F0F0F8")
150 CALL CHAR(121,"1F1F3F3F7F7FFFFF",122,"010103030

7070F0F")
160 CALL CHAR(104,RPT$("F",64))
170 CALL CHAR(108,"00000000000000000000000000000000

00000000008080808080800000000000")

94

Fun and Games

180 CALL CHAR(132,"01313F3101070607E7E1E1FFE3E1E1E0
808CFC8C80E060E0E78787FFC7878707")

190 CALL CHAR(136,"0000090F09030203313F333131000000
000020E02080808018F8981818000000")

200 CALL CHAR(140,"00000000010301030507050500000000
000000000080008040C0404000000000")

210 CALL CHAR(36,"000000000000000000010100000000000
00000000000008080C0400000000000")

220 CALL CHAR(40,"000000000001030105070500000000000
00000000000800040C0400000000000")

230 PRINT "FOR INSTRUCTIONS PRESS Y"

240 PRINT :: PRINT :: PRINT

250 PRINT "PRESS N IF INSTRUCTIONS"

260 PRINT "ARE NOT NEEDED."
270 CALL KEY(0,K,S):: IF S=0 THEN 270 :: IF K=89 TH

EN GOSUB 1120

280 CALL CLEAR

290 CALL SCREEN(5)
300 CALL MAGNIFY(4)
310 DISPLAY AT(6,6):"SPEED"
320 DISPLAY AT(8,6):"DEMON"
330 CALL SOUND(2000,-8,2)
340 CALL SPRITE(#1,132,11,189,170,-6,0):: CALL SPRI

TE(#2,132,2,192,167,-6,0)
350 CALL SOUND(4000,-8,2):: FOR DELAY=1 TO 1500 ::

NEXT DELAY

360 CALL CLEAR :: CALL DELSPRITE(ALL):: CALL SCREEN
(8):: CALL C0L0R(2,6,6)

370 CALL HCHAR(1,1,42,128)
380 CALL SPRITE(#10,104,6,1,110)
390 DISPLAY AT(5,13):"zvvx" :: DISPLAY AT(6,13):"yv

vw"

400 DISPLAY AT(7,12):"zvvvvx" :: DISPLAY AT(8,12):"
yvvvvw"

410 DISPLAY AT(9,11):"zvvvvvvx" :: DISPLAY AT(10,11
):"yvvvvvvw"

420 DISPLAY AT(11,10):"zvvvvvvvvx" :: DISPLAY AT(12
,10):"yvvvvvvvvw"

430 DISPLAY AT(13,9):"zvvvvvvvvvvx" :: DISPLAY AT(1
4,9):"yvvvvvvvvvvw"

440 DISPLAY AT(15,8):"zvvvvvvvvvvvvx" :: DISPLAY AT
(16,8):"yvvvvvvvvvvvvw"

450 DISPLAY AT(17,7):"zvvvvvvvvvvvvvvx" :: DISPLAY
AT(18,7):"yvvvvvvvvvvvvvvw"

460 DISPLAY AT(19,6):"zvvvvvvvvvvvvvvvvx" :: DISPLA
Y AT(20,6):"yvvvvvvvvvvvvvvvvw"

470 DISPLAY AT(21,5):"zvvvvvvvvvvvvvvvvvvx" :: DISP
LAY AT(22,5):"yvvvvvvvvvvvvvvvvvvw"

480 DISPLAY AT(23,4):"zvvvvvvvvvvvvvvvvvvvvx" :: DI
SPLAY AT (-24,4) :"yvvvvvvvvvvvvvvvvvvvvw"

95

mam Fun and Games

CALL HCHAR(4,1,118,7):: CALL HCHAR(3,3,118,3)::
CALL HCHAR(2,4,118,1)

CALL HCHAR(3,7,97,5):: CALL HCHAR(4,8,97,3) :: C
ALL HCHAR(2,10,97,1)
CALL HCHAR(4,11,118,3)
CALL HCHAR(4,22,118,6)
CALL HCHAR(3,27,97,2):
REM HIGHWAY LINES

CALL SPRITE(#11,108,16,1,112)
CALL SPRITE(#12,108,16,40,112)
CALL SPRITE(#13,108,16,79,112)
CALL SPRITE(#14,108,16,118,112)
CALL SPRITE(#15,108,16,157,112)
CALL SPRITE(#16,108,16,196,112)
DISPLAY AT(10,2)SIZE(4):"MPH" :
23)SIZE(5):"SCORE"
CALL SPRITE(#1,132,11,155,150):
,132,2,158,147)
SCORE=0 :: MPH=0 :: HL=0

DISPLAY AT(11,2)SIZE(4):MPH ::
)SIZE(4):SCORE
FOR DELAY=1 TO 200 :: NEXT DELAY

HL=8 :: MPH=10 :: FOR H=ll TO 16

(#H,HL,0):: NEXT H
DISPLAY AT(11,3)SIZE(4):MPH
GOSUB 860

CALL POSITION(#4,Y,X):
CALL C0INC(#1,#4,25,R)
CALL P0SITI0N(#1,Y,X):
X>190 THEN 1000

CALL HCHAR(3,13,118,1)
CALL HCHAR(3,22,118,1)

CALL HCHAR(4,28,97,4)

: DISPLAY AT(10,

: CALL SPRITE(#2

DISPLAY AT(11,25

CALL MOTION

IF Y>175 THEN 980

IF R=-l THEN 1000

IF X<40 THEN 1000 IF

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

CALL KEY(0,K,S):
IF K=83 THEN 770

IF K=68 THEN 780

IF K=69 THEN 790

IF K=88 THEN 830

CALL MOTION(#1,0,-6)
OTO 690

CALL MOTION(#1,0,6):
O 690

MPH=MPH+20 :: DISPLAY AT(11,3)SIZE(4):MPH
MPH>300 THEN 1000

HL=HL+1 :: FOR H=ll TO 16 :: CALL MOTION(#H,HL,
0):: NEXT H
SCORE=SCORE+10 :: DISPLAY AT(11, 25)SIZE(4):SCOR
E

GOTO 690

MPH=MPH-20 :: IF MPH<0 THEN 1000

DISPLAY AT(11,3)SIZE(4):MPH :: SCORE=SCORE-20 :
: DISPLAY AT(11,25)SIZE(4):SCORE
GOTO 690

IF S=0 THEN 690

96

: CALL MOTION(#2,0,-6)

CALL MOTION(#2,0,6):: GOT

IF

Fun and Games

860 RANDOMIZE

870 Z=INT(2*RND)+1
880 S=INT(9*RND)
890 C=INT(ll*RND)+6
900 CALL SOUND(1200,-8,2)
910 CALL SPRITE(#4,36,C,20,120):: CALL SPRITE(#5,36

2 23 117)
920 If'z=1 THEN CALL MOTION(#4,12,S):: IF Z=l THEN

CALL MOTION(#5,12,S)
930 IF Z=2 THEN CALL MOTION(#4,12,-S):: IF Z=2 THEN

CALL MOTION(#5,12,-S)
940 FOR DELAY=1 TO 20 :: NEXT DELAY :: CALL PATTERN

(#4,40):: CALL PATTERN(#5,40):: FOR DELAY=1 TO
20 :: NEXT DELAY

950 CALL PATTERN(#4,140):: CALL PATTERN{#5,140) :: F
OR DELAY=1 TO 20 :: NEXT DELAY :: CALL PATTERN(
#4,136):: CALL PATTERN(#5,136)

960 FOR DELAY=1 TO 20 :: NEXT DELAY

(#4,132):: CALL PATTERN(#5,132)
970 RETURN

980 CALL DELSPRITE(#4,#5):: SCORE=SCORE+10 ::
AY AT(ll,25)SIZE(4):SCORE

990 GOTO 680

1000 CALL MOTION(#1,0,0,#2,0,0,#4,0,0,#5,0,0)
1010 CALL SOUND(3000,-7,2)
1020 FOR Y=l TO 10 :: CALL COLOR(#1,7,#4,7)::

ELAY=1 TO 20 :: NEXT DELAY :: CALL COLOR(#l,ll
,#4,C):: FOR DELAY=1 TO 20 :: NEXT DELAY :: NE
XT Y

1030 CALL CLEAR :: CALL COLOR(2,16,1)
1040 CALL DELSPRITE(ALL)
1050 CALL SCREEN(13)
1060 DISPLAY AT(8,2):"SORRY, YOU CRASHED"
1070 DISPLAY AT(12,2):"YOUR SCORE WAS";SCORE
1080 DISPLAY AT(20,2):"PLAY AGAIN-Y/N"
1090 CALL KEY(0,K,S):: IF S=0 THEN 1090
1100 IF K=89 THEN 360

1110 END

1120 CALL CLEAR

1130 CALL SCREEN(13)
1140 PRINT " SPEED DEMON" :: PRINT

1150 PRINT " ALPHA LOCK MUST BE ON."
1160 PRINT :: PRINT "USE THE ARROW KEYS:"

1170 PRINT "RIGHT:MOVES RIGHT"

1180 PRINT "LEFT:MOVES LEFT"
1190 PRINT "UP ACCELERATOR"

1200 PRINT "DOWN:BRAKE"
1210 PRINT

1220 PRINT "SCORING:POINTS FOR PASSING"
ND ACCELERATING" :: PRINT

CALL PATTERN

DISPL

FOR D

PRINT "A

97

Fun and Games

1230 PRINT "DANGERS:CRASHES AND GOING" :: PRINT "OF
F THE ROAD" :: PRINT

1240 PRINT

1250 PRINT "PRESS ANY KEY"
1260 CALL KEY(0,K,S):: IF S=0 THEN 1260
1270 RETURN

98

Jim Rubino

An excellent adaptation of the classic card game,
"Blackjack" lets you bet, hit, double-down, or
split. Play against the computer dealer or in a
three-way hand with a friend. For the unex-
panded TI-99/4A with Extended BASIC.

"Blackjack," a computer simulation of the casino-style card
game, entertains as it gives you the chance to sharpen your
card skills—and unlike "practice" in Las Vegas or Atlantic
City—without going broke.

The object of the game is simple—hold a hand of cards
which add up to no more than 21. To win, of course, you
must have a higher total than the dealer (or the optional other
player). In Blackjack, aces may count as either 1 or 11 points,
face cards (jack, queen, or king) count as 10, and all other
cards count at their face value (2-10).

A blackjack is a two-card hand—one ace and either a face
card or a ten. Blackjack means you win automatically. If you
end up with more than 21 points, you're busted, and lose.

In Front of the Green Felt
After a title screen, select either the one- or two-player game.
The computer always acts as the dealer. Players place their
bets, and the game begins.

Each player is dealt two cards, face up. The computer
deals itself one card face up and one face down. If any player
has a blackjack, it's announced and that player is finished. If
the dealer's face-up card is an ace, each remaining player is al
lowed to place an insurance bet. This is equal to one half the
original bet and pays off at two-to-one odds if the dealer has a
blackjack. If the dealer doesn't get blackjack, the insurance
money is lost and play continues. Depending on your current
point value, you may be offered the opportunity to double-
down. You can now double the amount of your original bet.
To make the game more playable, this happens only when it
may be advantageous. If you choose to double-down, you're
dealt a single card face up. Your round is through.

If your first two cards are a pair, you can choose to split

99

!•!• >»••!< i»i—^a Fun and Games

them into two hands. If you do, one card is erased and an
other dealt. This hand is then played to a conclusion. It's then
erased, and another hand is dealt.

At all other times, you can ask for a hit—another card.
The dealer will give you another card to add to the two al
ready showing. Keep asking for cards as long as you want—
just make sure not to go bust.

When all players have finished, either through drawing a
blackjack, going bust, or staying with their cards, it's the deal
er's (computer's) turn. If necessary, it will draw cards until it
has either gone bust or reached a score from 17 to 21. Aces
will be counted as 11 if they bring the points to 17 to 21, and
1 at all other times.

The hands are then counted and a new round begins.
Play continues until one player either runs out of money or
enters a bet of $9999999. During the game, players are asked
if they want these options: double, hit, insurance, or split. The
response to these questions is simply Yfor yes, N for no.

Just for informational purposes, the computer uses a two-
deck shoe from which the cards are dealt. When the number
of cards remaining in the computer dealer's "shoe" reaches 25
or fewer, the dealer reshuffles. Most casinos use a three- or
four-deck shoe. They also usually shuffle the decks once 50 or
75 percent of the cards have been dealt. This makes it harder
for "card counters" to succeed.

With a two-deck shoe, and reshuffling happening when
about 25 percent of the cards remain, Blackjack is close to ca
sino reality. You could practice card-counting techniques with
this program, but we're making no guarantees that it will help
you out at the table, whether on the screen or in real life.

Lines, Lines
Most of the information necessary for the game is contained in
the array X(5,14). The computer uses X(1,N). Player 1 uses
X(2, N) and X(4, N), while player 2 uses X(3,N) and X(5,N).
Lines Function
100-150 Control prescan. Lines 100, 110, and 150 may be de

leted without affecting operation of the program, but
doing so will add about 12 seconds to the time between
when RUN is entered and execution begins.

160-170 Initialize array variables.
180-240 Subroutine to select and display a card.
250 Deals first cards to players and computer.

100

Fun and Games

260-280 Check for blackjack. If any player has one, a message is
displayed.

290-320 Offer an insurance bet if appropriate.
330 If dealer has blackjack, displays it.
340-500 Split, double, and hit routine. This series of lines offers

each player the appropriate option at the proper time.
510-560 Draw dealer's hand.
570-730 Score all hands and display scores. Also indicate if a

player has won, lost, or tied the computer.
750-830 Subroutine to accept bets. Each player begins the game

with $3,000. (Minimum bet is $1. Maximum is the
amount of cash the player has left.)

850 Creates a double deck of cards using arrays DEK(104)
and SUIT(104).

880-890 Initialize variables.
900-1140 Display titles and define graphics characters.

Blackjack
100 GOTO 160 :: P,S,R,C,L,CAS,CARD?,CA,N,A,I,NP,M,J

,M$,Y
110 CALL VCHAR :: CALL SCREEN :: CALL HCHAR :: CALL

KEY :: CALL SOUND :: CALL CLEAR :: CALL COLOR
:: CALL CHAR

120 OPTION BASE 1 :: DIM X(5,14),Rl(8),CI(5),BJ$(8)
,DEK(104),SUIT(104),SCORES(6),CARS(13)

130 DATA A,2,3,4,5,6,7,8,9,10,J,Q,K,A10,3,10A,7,AJ,
13,JA,15,AQ,20,QA,23,AK,9,KA,

15,5,10,15,20,25
140 DATA 1,13,3,2,13,6,3,13,9,4,13,6,5,13,9,1,14,1,

2,14,7,3,14,13,4,14,7,5,14,13
150 l@P-
160 FOR A=l TO 13 :: READ CAR$(A):: NEXT A :: FOR A

=1 TO 8 :: READ BJ$(A),Rl(A):: NEXT A :: FOR A=
1 TO 5 :: READ C1(A):: NEXT A

170 CALL CLEAR :: ON WARNING NEXT :: FOR A=l TO 10
:: READ R,C,S :: X(R,C)=S :: NEXT A :: GOSUB 91
0 :: GOTO 250

180 X(S,2)=X(S,2)+1 :: RANDOMIZE :: I=INT(RND*N)+1
:: CA=DEK(I):: DEK(I)=DEK(N):: CAS=SUIT(I) :: SU
IT(I)=SUIT(N):: N=N-1

190 CARD$=CARS(CA):: IF CA>9 THEN CA=10 ELSE IF (CA
=1)*(X(S,7)=0)THEN X(S,4)=X(S,4)+10 :: X(S,7)=1

200 IF (P<>1)*(X(P,9)=0)*(SCORES(P)=CARDS)THEN X(P,
9)=1 :: SCORES(L)=CARDS :: X(L,3)=X(P,3) :: X(L,
4)=X(P,4):: X(L,7)=X(P,7):: X(L,8)=X(P,8)

210 X(S,3)=X(S,3)+CA :: X(S,4)=X(S,4)+CA :: SCORE?(
S)=SCORE$(S)&CARD$:: IF P=l THEN M?=CARD$:: Y
=CAS

101

Fun and Games

220 R=X(S,14):: C=C1(X(S,2)+l):: CALL SOUND(90,-6,0
):: CALL VCHAR(R,C,112,5):: CALL VCHAR(R,C+l,11
2,5):: CALL VCHAR(R,C+2,112,5)

230 IF ((NP=1)*(M=4))+(M=6)THEN M=0 :: RETURN ELSE
DISPLAY AT(R+1,C-1)SIZE(LEN(CARD$)):CARDS :: R=
R+3 :: C=C+1

240 CALL HCHAR(R,C,CAS):: CALL HCHAR(R,C+l,CAS+1) ::
CALL HCHAR(R+l,C,CAS+2):: CALL HCHAR(R+1,C+l,C

AS+3):: RETURN
250 GOSUB 760 :: FOR A=l TO I :: M=M+1 :: P=S :: L=

P+2 :: CALL SCREEN(X(S,13)):: GOSUB 180 :: IF S
=NP+1 THEN S=l ELSE S=S+1

260 NEXT A :: CALL SCREEN(13):: CALL SOUND(150,110,
3,300,3,500,3)

270 FOR P=l TO 3 :: FOR 1=1 TO 8 :: IF BJS(I)=SCORE
$(P)THEN X(P,1)=X(P,1)+INT(X(P,8)*1.5):: X(P,5)

280 NEXT I :: IF (P>1)*(X(P,5)=1)THEN DISPLAY AT(R1
(P+5),13)BEEP:"BLACKJACK"

290 NEXT P :: FOR P=2 TO NP+1

300 IF (SEG$(SCORES(1),1,1)=»A")*(X(P,5)=0)*((X(P,1
)-X(P,8))>=X(P,8)/2)THEN DISPLAY AT(R1(P+5),13)
BEEP:"INSURANCE?" ELSE 330

310 CALL KEY(3,I,J):: IF J=0 THEN 310 :: CALL SOUND
(90,220,0):: CALL HCHAR(R1(P+5),13,32,15)

320 IF (I=89)*(X(1,5)=1)THEN X(P,1)=X(P,1)+X(P,8)EL
SE IF (I=89)*(X(1,5)=0)THEN X(P,1)=X(P,1)-INT((
X(P,8)*.5)+.5)

330 NEXT P :: S=0 :: IF X(l,5)=l THEN S,P=1 :: CARD
$=M$:: CAS=Y :: GOSUB 220 :: DISPLAY AT(3,13):
"BLACKJACK" :: GOTO 570

340 X(5,2),X(0,2)=0 :: S=S+2 :: IF (S=6)*(NP=1)THEN
510 ELSE IF (S=6)*(NP=2)THEN S=3 ELSE IF S=7 T

HEN 510

350 IF X(S,5)=1 THEN 500 ELSE IF S/2=INT(S/2)THEN P
=2 ELSE P=3

360 ON X(S,9)+1 GOTO 420,370,400,500
370 L=P+2 :: CALL SCREEN(X(S,13)):: DISPLAY AT(X(S,

14)+2,13)BEEP:"SPLIT?"
380 CALL KEY(3,I,J):: IF J=0 THEN 380 :: CALL SOUND

(90,220,3):: CALL HCHAR(X(S,14)+2,13,32,8):: IF
1=78 THEN 420 ELSE IF I<>89 THEN 370

390 X(L,9)=2 :: SCORE$(S)=SCORE$(L):: X(S,2)=0 :: X
(S,3)=X(L,3):: X(S,4)=X(L,4):: X(S,7)=X(L,7)::
GOTO 410

400 CALL SCREEN(X(S,13)):: CALL SOUND(90,220,3):: X
(S,2)=0

410 A=X(S,14):: FOR A=A TO A+5 :: CALL HCHAR(A,9,32
#23):: NEXT A :: GOSUB 180

102

{V'F.JBtil

Fun and Games

420 CALL SCREEN(X(S,13)):: IF ((X(S,7)=0)*((X(S,3)<
^ 8)+(X(S,3)>ll)))+((X(S,7)=l)*((X(S,4)<13)+(X(S,

4)>18)))THEN 460
am 430 IF (X(P,1)-X(P,8))>=X(P,8)THEN DISPLAY AT(R1(P+
' 5),13)BEEP:"DOUBLE?" ELSE 460

440 CALL KEY(3,I,J):: IF J=0 THEN 440 :: CALL SOUND
!"* (90,220,3):: CALL HCHAR(Rl(P+5),15,32,7)

450 IF 1=89 THEN X(S,8)=X(S,8)*2 :: GOSUB 180 :: X(
S,6)=l :: GOTO 500 ELSE IF I<>78 THEN 430

460 IF X(S,5)=1 THEN 500 ELSE R=X(S,14)+2 :: C=C1(X
(S,2)):: DISPLAY AT(R,C+8)BEEP:"HIT?"

470 CALL KEY(3,I,J):: IF J=0 THEN 470 :: CALL SOUND
(90,220,3):: CALL HCHAR(R1(P+5),C+8,32,6) :: IF
1=78 THEN 500 ELSE IF I<>89 THEN 460

480 GOSUB 180 :: IF (X(S,2)=4)*(X(S,3)<22)THEN X(S,
1)=X(S,8)*2+X(S,1):: X(S,5)=1

490 IF X(S,3)<21 THEN 460
500 GOTO 340

510 S,P=1 :: X(l,2)=l :: CALL SCREEN(X(P,13)) :: CAR
D$=M$:: CAS=Y :: GOSUB 220

520 FOR A=2 TO 5 :: IF ((X(A,3)>0)*(X(A,3)<22))* (X(
A,5)=0)THEN 550

530 NEXT A :: GOTO 570

540 IF X(l,2)=4 THEN X(l,2)=-1
550 IF X(l,4)<17 THEN GOSUB 180 :: GOTO 540 ELSE IF

X(l,4)<22 THEN 570
560 IF X(l,3)<17 THEN GOSUB 180 :: GOTO 540
570 CALL SOUND(1250,200,3,300,3,400,3,-2,3)ISCORE R

OUTINE

580 FOR P=l TO 5 :: IF X(P,4)<22 THEN X(P,3)=X(P,4)
590 NEXT P :: DISPLAY AT(20,1):"DEALER ";X(1,3)::

DISPLAY AT(22,1):"PLAYER 1 M?X(2,3):: IF NP=2
THEN DISPLAY AT(24,1):"PLAYER 2 ";X(3,3)

600 IF X(4,9)=2 THEN DISFLAY AT(22,20):X(4,3)
610 IF X(5,9)=2 THEN DISPLAY AT(24,20):X(5,3)
620 IF X(l,3)>21 THEN X(l,3)=0
630 FOR A=2 TO 5 :: IF (A=2)+(A=4)THEN R=22 ELSE R=

24

__ 640 IF A<4 THEN C=15 ELSE C=25
650 IF (X(A,9)=3)+(X(A,8)=0)THEN 710
660 IF X(1,3)=X(A,3)THEN DISPLAY AT(R,C)SIZE(3) :"TI

ran E" : : GOTO 710

670 IF X(A,5)=1 THEN DISPLAY AT(R,C)SIZE(3) :"WIN" :
to : GOTO 710

680 IF X(A,3)>21 THEN X(A,1)=X(A,1)-X(A,8) :: DISPLA
Y AT(R,C)SIZE(4):"BUST" n GOTO 710

"** 690 IF X(A,3)<X(1,3)THEN X(A,1)=X(A,1)-X(A,8):: DIS
PLAY AT(R,C)SIZE(4):"LOSE" :: GOTO 710

"* 700 IF X(A,3)>X(1/3)THEN X(A,1)=X(A,1)+X(A,8):: DIS
PLAY AT(R,C)SIZE(3):"WIN"

•""* 103

Fun and Games

710 NEXT A :: IF X(4,9)=2 THEN X(2,1)=X(2,1)+X(4,1)
720 IF X(5,9)=2 THEN X(3,1)=X(3,1)+X(5,1)
730 FOR A=l TO 1000 :: NEXT A :: CALL CLEAR :: GOTO

250

740 CALL CLEAR :: END

750 REM ACCEPT BETS

760 FOR A=l TO 11 :: CALL COLOR(A,2,1):: NEXT A ::
FOR A=l TO NP :: IF X(A+1,1)<

1 THEN 740 :: NEXT A

770 FOR 1=1 TO 5 :: SCORES(1)="" :: FOR J=2 TO 11 :
: X(I,J)=0 :: NEXT J :: NEXT I :: P=6 :: CALL S
CREEN(14):: RESTORE 860

780 X(4,1),X(5,1)=0 :: X(4,9),X(5,9)=3
790 FOR A=l TO NP :: FOR 1=1 TO P :: READ C,MS :: D

ISPLAY AT(R1(I),C):MS :: NEXT I :: P=P-2 :: NEX
T A

800 DISPLAY AT(9,4)SIZE(7):"$";X(2,1):: IF NP=2 THE
N DISPLAY AT(9,17)SIZE(7).:"S";X(3,1)

810 ACCEPT AT(15,6)VALIDATE(DIGIT)SIZE(7)BEEP:X(2,8
):: X(4,8)=X(2,8):: IF X(2,8)=9999999 THEN 740
ELSE IF X(2,8)>X(2,1)THEN 810

820 IF NP=2 THEN ACCEPT AT(15,19)VALIDATE(DIGIT)SIZ
E(7)BEEP:X(3,8):: X(5,8)=X(3,8):: IF X(3f8)=999
9999 THEN 740 ELSE IF X(3,8)>X(3,1)THEN 820

830 CALL SOUND(125,1400,0):: CALL CLEAR :: IF N>25
THEN 880 ELSE DISPLAY AT(12,10):"SHUFFLING"

840 A=l :: FOR P=l TO 2 :: FOR 1=1 TO 4 :: FOR J=l
TO 13 :: DEK(A)=J :: A=A+1 :: NEXT J :: NEXT I
:: NEXT P :: P=l :: A=96 :: N=104

850 FOR 1=1 TO 4 :: FOR J=l TO 26 :: SUIT(P)=A :: P
=P+1 :: NEXT J :: A=A+4 :: NEXT I

860 DATA 4,PLAYER 1,6,CASH,6,BET?,4,S,7,PLACE YOUR
BET,6,THEN PRESS ENTER

870 DATA 17,PLAYER 2,19,CASH,19,BET?,17,$
880 CALL CLEAR :: FOR A=2 TO 8 :: CALL COLOR(A,5,16

):: NEXT A :: CALL COLOR(9,7,16,10,2,16,11,16,1
6)

890 X(1,2),X(2,2),X(3,2),X(4,2),X(5,2)=-1 :: S=2 ::
IF NP=1 THEN 1=4 :: RETURN ELSE 1=6 :: RETURN

900 REM TITLES

910 X(2,l)=3000 :: X(3,l)=3000 :: CALL SCREEN(4)::
CALL CLEAR :: RESTORE 980 :: FOR A=l TO 4 :: RE
AD R,C,M$:: DISPLAY AT(R,C):M$:s NEXT A

920 DISPLAY AT(R,C)BEEP:M$
930 FOR A=l TO 27 :: CALL KEY(3,I,J):: IF J<>0 THEN

950

940 NEXT A :: CALL HCHAR(R,C,32,20):: FOR A=l TO 25
:: NEXT A :: GOTO 920

950 IF P=l THEN 1030

104

Fun and Games

960 P=P+1 :: CALL SOUND(90,220,0):: CALL CLEAR :: F
OR A=l TO 9 :: READ R,C,MS :: DISPLAY AT(R,C):M
S :: NEXT A

970 GOTO 920

980 DATA 6,10,BLACKJACK,11,4,A CARD GAME FOR 1 OR 2
,16,11,PLAYERS

990 DATA 24,8,PRESS ANY KEY
1000 DATA 1,1, ACES COUNT 1 OR 11. FACE CARDS COU

NT 10. OTHER CARDS ARE WORTH FACE VALUE.

1010 DATA 6,8,WINNING HANDS,8,2,BLACKJACK
3 TO 2,10,2,5 CARDS UNDER 21 2 TO 1,12,2,INS
URANCE 2 TO 1

1020 DATA 14,2,OTHER BETS 1 TO 1,18,1,TO EN
D THE GAME ENTER A BET,20,1,OF 9999999.,24,8,P
RESS ANY KEY

1030 REM HOW MANY PLAYERS?

1040 CALL SOUND(90,220,0):: CALL CLEAR :: CALL SCRE
EN(8)

1050 CALL CHAR(96,"00001C3E7F7F7F7F0000387CFEFEFEFE
3F1F0F0703010000FCF8F0E0C08")1 HEART

1060 CALL CHAR(100,"000103070F1F3F7F0080C0E0F0F8FCF
E7F3F1F0F07030100FEFCF8F0E0C08")I DIAMOND

1070 CALL CHAR(104,"010103070F1F3F7F000080C0E0F0F8F
C7F7F7F7F3F190101FCFCFCFCF83")1 SPADE

1080 CALL CHAR(108,"01030707070331790080C0C0C080183
C7F7F793101010100FCFC3C18")iCLUB

1090 CALL CHAR(112,"FFFFFFFFFFFFFFFF")
1100 DISPLAY AT(11,7)BEEP:"1 OR*2 PLAYERS?"
1110 FOR A=l TO 24 :: CALL KEY(3,I,J):: IF (I>48)*(

K51)THEN 1130
1120 NEXT A :: CALL CLEAR :: FOR A=l TO 25 :: NEXT

A :: GOTO 1100

1130 NP=I-48 :: CALL SOUND(90,220,0):: CALL CLEAR
1140 RETURN

105

Lee Suydam

An entertaining gamefor children and adults
alike, "Flood Waters'* tests your addition agility
as you move up an incline, just ahead of the ris
ing water, before the rolling ball knocks you
down. Works on the unexpanded TI-99/4A with
TI BASIC.

It's even worse than the Johnstown Flood. The dam's not
burst, but there's a huge water faucet descending from the
clouds, and it's pouring water down around your ears as if
some giant just turned on the tap.

The Water's Rising
As the game begins, the sky faucet turns on and water streams
down to flood the base of the incline, threatening to drown
you. Fortunately, the rising waters stop just in the nick of
time. A pair of dice appear at the top of the screen—at the
same instant a red ball begins rolling down the incline. Not to
worry—simply add the dice together, respond correctly, and
you're temporarily safe and one step higher on the incline. If
you fail to give the correct response before the red ball strikes
you, the water faucet turns on again, flooding another three
levels. If you're trapped underwater—well, you know you
don't have gills. The trick in "Flood Waters" is to answer cor
rectly and stay high and dry.

As you climb higher, it becomes more and more difficult
to answer before the red ball bowls you over. As you shorten
the distance, there's less and less time to respond. When you
get past the ladder on the side of the incline, your error rate
usually increases. Only the quick and resourceful will reach
the top and receive the CONGRATULATIONS message.

Make an Overlay
Before you play, mark a keyboard overlay from 2 to 12, as in
the figure below. This allows you to use the top 12 keys of the
keyboard as answers 2-12. A bundle of spare overlays was
supplied with your computer.

106

Fun and Games e

Flood Waters Overlay

O

2 3 4 5 6 7 8 9 10 11 12 O

0E0mEG]0G]D]0S
How Flood Waters Works

Lines Program Structure
100 Title.
110-240 Give reward or failure message.
250-310 Establish initial variables and conditions.
320-360 Define color and numbers charts 88-95 (blue

water).
370-410 Define color and numbers charts 96-103 (red fau

cet and building parts).
420-480 Define color and numbers charts 104-122 (black

incline, running figure, and other parts).
500-550 Cause blue water to rise in each of 32 columns or

one line.

560-570 Cause splash of falling water (24) to advance.
580 Counts A, for rows of water.
600 Returns program to end of game message when

water overtakes running figure.
620-860 Draw water faucet, incline, and running figure.
870-890 Description of water.
900-910 Description of ball and faucet.
920-930 Description of ladder, incline, figure, and window.
960-970 Description of dice one, two, three, and four.
980-990 Description of dice five, six, and water drop.
1000 Causes water to advance three rows.
1010 Draws a string of water drops.
1020 Resets value of A.
1030-1160 Give random pairs of dice, draw them on the

screen, and assign the correct response (B).
1170-1220 Advance red ball.
1240 Tests for correct response.
1250-1300 Test for contact between red ball and running

figure.
1310-1350 Advance figure and test for win message.

107

-*fTh~-HK,i Fun and Games __

Flood Waters

100 REM FLOOD WATERS

110 CALL CLEAR

120 IF Rl=2 THEN 130 ELSE 160
130 PRINT " CONGRATULATIONS IIl"
140 PRINT ::::::

150 GOTO 230
160 IF ROW=Rl-2 THEN 170 ELSE 250
170 FOR X=l TO 18

180 PRINT TAB(X);"0"
190 PRINT

200 NEXT X

210 PRINT "GLUBl GLUBl GLUBl"
220 PRINT ::::::

230 FOR D=l TO 1000

240 NEXT D

250 RESTORE

260 RANDOMIZE

270 A=l

280 ROW=23

290 Rl=21

300 Cl=ll

310 CALL SCREEN(16)
320 CALL COLOR(8,5,l)
330 FOR C=88 TO 95

340 READ C$
350 CALL CHAR(C,C$)
360 NEXT C

370 CALL COLOR(9,10,1)
380 FOR C=96 TO 103

390 READ C$
400 CALL CHAR(C,C$)
410 NEXT C

420 FOR X=10 TO 12

430 CALL COLOR(X,2,l)
440 NEXT X

450 FOR C=104 TO 122

460 READ C$
470 CALL CHAR(C,C$)
480 NEXT C

490 GOSUB 620

500 FOR Y=24 TO 1 STEP -1

510 FOR N=88 TO 95

520 CALL VCHAR(4,7,95,20)
530 CALL HCHAR(Y,1,N,32)
540 CALL SOUND(10,1000-(20*X),2)
550 NEXT N

560 ROW=ROW-l

570 CALL HCHAR(ROW+l,6,24,3)
580 A=A+1

108

Fun and Games

590 GOTO 1000

600 IF R0W=Rl-2 THEN 110

610 NEXT Y

620 REM FAUCET&INCLINE

630 PRINT "zbcd"

640 PRINT "aaaag"
650 PRINT "zzefah";TAB(28)
660 PRINT TAB(27)
670 PRINT TAB(26)
680 PRINT TAB(25)
690 PRINT TAB(24)
700 PRINT TAB(23)
710 PRINT TAB(22)
720 PRINT TAB(21)
730 PRINT TAB(20)
740 PRINT TAB(19)
750 PRINT TAB(18)
760 PRINT TAB(17)
770 PRINT TAB(16)
780 PRINT TAB(15)
790 PRINT TAB(14)
800 PRINT TAB(13)
810 PRINT TAB(12)
820 PRINT TAB(11)
830 PRINT TAB(9);
840 PRINT TAB(9);
850 PRINT TAB(8);
860 RETURN

870 REM FLOODING WATER

880 DATA 00000000000000FF,000000000000FFFF,00000000
00FFFFFF,00000000FFFFFFFF

890 DATA 000000FFFFFFFFFF,0000FFFFFFFFFFFF,00FFFFFF
FFFFFFFF,FFFFFFFFFFFFFFFF

900 REM BALL abed

910 DATA 003C7E7E7E7E3C,FFFFFFFFFFFFFFFF,1038FF5F38
10,0018FFFF18187EFF,081CFAFE1C08

920 REM e £ g h
930 DATA 9F7E,0000000003070307,FCE4F3FFFFFFFFFF,000

00000E0C0E0C0
940 REM i j k 1
950 DATA 427E42427E42427E,0103070F1F3F7FFF,18187FF0

3C24E483,111111FF111111FF
960 REM m n o p

970 DATA 0000001818,C0C0000000000303,C0C00018180003
03(C3C300000000C3C3

980 REM qrstuvwxyz
990 DATA C3C300181800C3C3,C3C300C3C300C3C3,10101010

10101010,0808080808080808,000010103838783,,,,,,
1000 IF A<>4 PHAN 600

1010 CALL VCHAR(4,7,117,ROW-l)
1020 A=l

109

ii • ii

"ja"
"jla"
"jaaa"
"jaala"
"jaaaaa"
"jalaala"
"jiaaaaaa"
"jaialaala"
"jaaiaaaaaa"
"jalaialaala"
"jaaaaiaaaaaa"
"jaaalaialaala"
"jalaaaaiaaaaaa"
"jaaaaalaialaala"
11 jaaaaaaaaiaaaaaa"
"jalaalaalaialaala"
"jaaaaaaaaaaiaaaaaa"
'kjaaalaalaalaialaala"
jaaaaaaaaaaaaiaaaaaa"
'jaalaalaalaalaialaala"

Fun and Games w

1030 Q=INT(RND*6)+109
1040 W=INT(RND*6)+109
1050 CALL VCHAR(1,14,Q)
1060 CALL SOUND(100,-1,2)
1070 CALL VCHAR(1,17,W)
1080 CALL SOUND(50,-2,10)
1090 IF Q+W<=226 THEN 1100 ELSE 1120

1100 B=Q+W-169
1110 GOTO 1170

1120 IF Q+W=227 THEN 1130 ELSE 1150

1130 B=48

1140 GOTO 1170

1150 IF Q+W=228 THEN 1160 ELSE 1170
1160 B=61

1170 C2=32

1180 FOR R2=l TO Rl

1190 C2=C2-1

1200 CALL VCHAR(R2,C2,96)
1210 CALL SOUND(300,-2,15)
1220 CALL VCHAR(R2,C2,122)
1230 CALL KEY(0,K,ST)
1240 IF K=(B)THEN 1300
1250 IF ST=0 THEN 1260

1260 IF R2<>R1 THEN 1290

1270 CALL VCHAR(R1,C1,107)
1280 GOTO 600

1290 NEXT R2

1300 CALL VCHAR(R1,C1,122)
1310 R1=R1-1

1320 C1=C1+1

1330 CALL VCHAR(R1,C1,107)
1340 IF Rl=2 THEN 110

1350 GOTO 1030

110

tfSfi

Bob Foley

A maze game with a difference. You're trapped
in a complex maze, and you can't even see the
entire pattern. Escape before time—and you—
expire. For an expanded TI-99/4A (see exception
below) with either TI BASIC or Extended BASIC.

Requiring a good memory and quick thinking, "Macro/Micro
Maze" isn't your standard maze game. It's more than a rat-to-
the-cheese kind of game.

It's unique because it displays three different representa
tions of the same maze.

• The Minimaze. This is the maze that's randomly constructed
during the game setup. It's a 23 X 31 character maze that
takes up the entire screen.

• The Macromaze. A "zoom in" of nine characters of the orig
inal maze. You play the game here.

• The Micromaze. Perhaps the most interesting of the three,
it's a 4 X 3 character representation of the original maze,
displayed above the Macromaze to help you find your way.

The object of the game is to move through the Macro-
maze, pick up the five green squares, and get out of the Mini-
maze in as little time as possible. You must exit through the
yellow square on the left (but only after picking up all five
green squares).

If you've picked up all the green squares and you think
you're running out of time (assuming you're far from the exit),
you can press the T key (for Transport). This moves your red
square randomly to another part of the maze, perhaps closer
to the exit.

Move through the Macromaze by pressing the arrow keys
(make sure the ALPHA LOCK key is depressed). On the
screen, it will seem as if the red square is stationary and the
maze moves around it.

The number of times you get to see the complete Mini-
maze during the game is determined by your answers to the
questions at the beginning of the program. To see the Mini-
maze, press M. The number of Minimaze "looks" you have
left is displayed in the upper-left corner.

Ill

Fun and Games

If you're frustrated or lost, with no Minimaze looks left,
you can press G to give up. This displays the original maze
and ends the program.

Of course, all this movement and looking is being done
under a time limit. Fail to retrieve the green squares and exit
before the time's up, and you've lost the game. Type RUN to
play again. (You can increase the time limit by altering line
2570. For instance, change it to IF TIME>2000 THEN 3110 to
double the time you have to exit.)

Memory Notes
Macro/Micro Maze is a large program, and takes up almost
16K of your TI-99/4A's memory. If you're loading it from
disk, you must have the 32K Memory Expansion card installed.
If you're using tape, however, you can load and run this game
with an unexpanded TI. (If you purchase the companion disk
to this book—see the coupon in the back of the book for de
tails—and want to run the game on the 16K TI, you'll have to
load it into the computer from disk, then save it out to tape.
Load the tape file—with OLD CS1—follow the prompts, and
you should have no trouble.)

Macro/Micro Maze
50 CALL CLEAR

60 PRINT TAB(8);"MACRO/MICRO-MAZE": ::::::::
: :"(4-5 MINUTE SETUP TIME)"

70 FOR 1=1 TO 400

80 NEXT I

90 RANDOMIZE

100 A$="FFFPFFFFFFFFFFFF"
110 CALL CHAR(128,A?)
120 CALL CHAR(136,AS)
130 CALL CHAR(142,"0")
140 CALL CHAR(96,AS)
150 CALL CHAR(143,"FF818181818181FF")
160 CALL CHAR(97,"0")
170 CALL COLOR(10,15,15)
180 CALL COLOR(ll,5,l)
190 CALL COLOR(12,5,l)
200 CALL CLEAR

210 INPUT "DO YOU WANT TO SEE THE MAZE BEING BUILT(
Y/N)? (Y-5 MINI-MAZES, N-6 MINIMAZES)":BU$

220 IF (BUSo"N")*(BUSo"Y")THEN 210
230 COL=-ASC(BU$)+94
240 MINI=17-INT((ASC(BU$)/7))
250 CALL COLOR(13,COL,1)

112

Fun and Games

260 CALL COLOR(14,16,7)
270 CALL COLOR(9,13,ll)
280 PRINT : : : : :"D0 YOU WANT THE MICROMAZE (Y/

N)? (Y-SUBTRACT 2 MINI- MAZES, N-ADD 2 MINIMAZ
ES)": :

290 INPUT " NOTE: IF 'Y',ADD 1 MINUTE TO STARTUP T

IME -":MMAZ$
300 IF (MMAZ$o"Y")*(MMAZS<>,,N")THEN 280
310 MINI=MINI+(-2*(SGN(ASC(MMAZ$)-80)))
320 CALL CLEAR

330 CALL SCREEN(16)
340 OPTION BASE 1

350 DIM MAC(24,32)
360 DIM B$(12)
370 TRANS=1

380 FOR 1=1 TO 23 STEP 2

390 CALL VCHAR(1,1+1,128,23)
400 CALL HCHAR(I,2,128,31)
410 NEXT I

420 FOR 1=26 TO 32 STEP 2

430 CALL VCHAR(1,I,128,23)
440 NEXT I

450 X=(2*(INT(RND*8)+4))+l
460 Y=2*(INT(RND*6)+4)
470 XX=X

480 YY=Y

490 FOR S=l TO 40

500 FOR Z=l TO 25

510 TR=0

520 Q=INT(RND*4)+1
530 TR=TR+1

540 IF TR>11 THEN 850
550 QW=0

560 ON Q GOTO 570,640,710,780
570 YY=YY-2

580 SY=2

590 SX=0

600 GOSUB 970
610 IF QW THEN 520

620 CALL VCHAR(YY,XX,136,3)
630 GOTO 840

640 XX=XX+2

650 SX=-2

660 SY=0

670 GOSUB 970

680 IF QW THEN 520

690 CALL HCHAR(YY,XX-2,136,3)
700 GOTO 840

710 YY=YY+2
720 SY=-2

113

5=a Fun and Games «•?

730 SX=0 _
740 GOSUB 970
750 IF QW THEN 520
760 CALL VCHAR(YY-2,XX,136,3) **.
770 GOTO 840

780 XX=XX-2 mm
790 SX=2

800 SY=0

810 GOSUB 970

820 IF QW THEN 520

830 CALL HCHAR(YY,XX,136,3)
840 NEXT Z

850 D=D+1

860 IF D<4 THEN 910

870 XX=(2*(INT(RND*15)+1))+1
880 YY=2*(INT(RND*11)+1)
890 RANDOMIZE

900 GOTO 930

910 XX=X

920 YY=Y

930 CALL GCHAR(YY,XX,GC)
940 IF GC<>136 THEN 860

950 NEXT S

960 GOTO 1040

970 IF (XX<2)+(XX>32)+(YY<1)+(YY>23)THEN 1000
980 CALL GCHAR(YY,XX,GC)
990 IF GC=32 THEN 1030

1000 QW=1

1010 YY=YY+SY

1020 XX=XX+SX

1030 RETURN

1040 FOR YY=2 TO 22 STEP 2

1050 FOR XX=3 TO 31 STEP 2

1060 CALL GCHAR(YY,XX,GC)
1070 IF GC<>32 THEN 1290

1080 TR=0

1090 Q=INT(RND*4)+1
1100 TR9TR+1

1110 IF TR=11 THEN 1290

1120 IF ((YY=2)*(Q=1))+((YY=22)*(Q=3))+((XX=0)*(Q=4 ^
))+((XX=31)*(Q=2))THEN 1090

1130 ON Q GOTO 1100,1180,1220,1260 •»
1140 CALL GCHAR(YY-2,XX,GC)
1150 IF GC<>136 THEN 1090 M
1160 CALL VCHAR(YY-2,XX,136,3)
1170 GOTO 1290

1180 CALL GCHAR(YY,XX+2,GC) "
1190 IF GC<>136 THEN 1090

1200 CALL HCHAR(YY,XX,136,3) «e*
1210 GOTO 1290

114 "^

Fun and Games

1220 CALL GCHAR(YY+2,XX,GC)
1230 IF GC<>136 THEN 1090

1240 CALL VCHAR(YY,XX,136,3)
1250 GOTO 1290
1260 CALL GCHAR(YY,XX-2,GC)
1270 IF GC<>136 THEN 1090
1280 CALL HCHAR(YY,XX-2,136,3)
1290 NEXT XX

1300 NEXT YY

1310 IF TR=0 THEN 1340

1320 TR=0

1330 GOTO 1040

1340 CALL COLOR(13,5,l)
1350 CALL HCHAR(24,1,136,32)
1360 CALL VCHAR(1,1,136,24)
1370 FOR XX=1 TO 32

1380 FOR YY=1 TO 24

1390 CALL GCHAR(YY,XX,MAC(YY,XX))
1400 NEXT YY

1410 NEXT XX

1420 IF MMAZS="N" THEN 2070

1430 FOR CH=116 TO 127

1440 A=0

1450 READ STY,STX
1460 DATA 1,1,9,1,17,1,1,9,9,9,17,9,1,17,9,17,17,17

,1,25,9,25,17,25

1470 FOR 1=1 TO 16

1480 M1=MAC(STY+A,STX+B)
1490 M2=MAC(STY+A,STX+B+1)
1500 M3=MAC(STY+A,STX+B+2)
1510 M4=MAC(STY+A,STX+B+3)
1520 IF B=4 THEN 1550

1530 B=4

1540 GOTO 1570

1550 B=0

1560 A=A+1

1570 IF (M1=136)*(M2=136)*(M3=136)*(M4=136)=0 THEN
1600

1580 A$="0"
1590 GOTO 2030

1600 IF (M1=136)*(M2=136)*(M3=136)*(M4=128)=0 THEN
1630

1610 A$="l"
1620 GOTO 2030

1630 IF (M1=136)*(M2=136)*(M3=128)*(M4=136)=0 THEN
1660

1640 A$="2"

1650 GOTO 2030

1660 IF (M1=136)*(M2=136)*(M3=128)*(M4=128)=0 THEN
1690

115

Fun and Games

1670 A$="3"
1680 GOTO 2030

1690 IF (M1=136)*(M2=128)*(M3=136)*(M4=136)=0 THEN
1720

1700 A$="4"

1710 GOTO 2030

1720 IF (M1=136)*(M2=128)*(M3=136)*(M4=128)=0 THEN
1750

1730 A$="5"

1740 GOTO 2030

1750 IF (M1=136)*(M2=128)*(M3=128)*(M4=136)=0 THEN
1780

1760 A$="6"
1770 GOTO 2030

1780 IF (M1=136)*(M2=128)*(M3=128)*(M4=128)=0 THEN
1810

1790 A$="7"
1800 GOTO 2030

1810 IF (M1=128')*(M2=136)*(M3=136)*(M4=136)=0 THEN
1840

1820 A$="8"
1830 GOTO 2030

1840 IF (M1=128)*(M2=136)*(M3=136)*(M4=128)=0 THEN
1870

1850 A$="9"
1860 GOTO 2030

1870 IF (M1=128)*(M2=136)*(M3=128)*(M4=136)=0 THEN
1900

1880 A$="A"
1890 GOTO 2030

1900 IF (M1=128)*(M2=136)*(M3=128)*(M4=128)=0 THEN
1930

1910 A$="B"
1920 GOTO 2030

1930 IF (M1=128)*(M2=128)*(M3=136)*(M4=136)=0 THEN
1960

1940 A$="C"
1950 GOTO 2030

1960 IF (M1=128)*(M2=128)*(M3=136)*(M4=128)=0 THEN
1990

1970 A$="D"
1980 GOTO 2030

1990 IF (M1=128)*(M2=128)*(M3=128)*(M4=136)=0 THEN
2020

2000 A$="E"
2010 GOTO 2030

2020 A$="F"
2030 B$(CH-115)=BS(CH-115)&A$
2040 NEXT I

2050 CALL CHAR(CH,B$(CH-115))

116

Fun and Games

2060 NEXT CH

2070 CALL VCHAR(Y,X,143)
2080 MAC(Y,X)=143
2090 FOR 1=1 TO 5
2100 XX=(2*(INT(RND*15)+1))+1
2110 YY=2*(INT(RND*11)+1)
2120 IF (MAC(YY,XX)=143)+(MAC(YY,XX)=96)THEN 2100
2130 MAC(YY,XX)=96
2140 CALL VCHAR(YY,XX,96)
2150 NEXT I

2160 YY=2*(INT(RND*11)+1)
2170 CALL VCHAR(YY,2,97)
2180 MAC(YY,2)=97
2190 CALL CLEAR

2200 PRINT "M=MINIMAZE-";MINI
2210 PRINT "T=TRANSPORT-";TRANS

2220 PRINT "G=GIVE UP": :::::::::::::

2230 Q$="USE ARROW KEYS TO MOVE"
2240 FOR 1=1 TO LEN(QS)
2250 CALL VCHAR(I+1,29,ASC(SEGS(Q$,I,1)))
2260 NEXT I

2270 CALL HCHAR(4,5,104,21)
2280 CALL HCHAR(24,5,104,21)
2290 CALL VCHAR(4,5,104,21)
2300 CALL VCHAR(4,25,104,21)
2310 IF MMAZ$="N" THEN 2390
2320 CH=115

2330 FOR 1=19 TO 22

2340 FOR J=l TO 3

2350 CH=CH+1

2360 CALL VCHAR(J,I,CH)
2370 NEXT J

2380 NEXT I

2390 FOR 1=6 TO 11

2400 CALL VCHAR(5,I,MAC(Y-1,X-1),6)
2410 CALL VCHAR(11,I,MAC(Y,X-1),7)
2420 CALL VCHAR(18,I,MAC(Y+1,X-1),6)
2430 NEXT I

2440 FOR 1=12 TO 18

2450 CALL VCHAR(5,I,MAC(Y-1,X),6)
2460 IF (K13)+ (I>17)THEN 2480
2470 CALL VCHAR(12,I,142,5)
2480 CALL VCHAR(18,I,MAC(Y+1,X),6)
2490 NEXT I

2500 FOR 1=19 TO 24

2510 CALL VCHAR(5,I,MAC(Y-1,X+1),6)
2520 CALL VCHAR(11,I,MAC(Y,X+1),7)
2530 CALL VCHAR(18,I,MAC(Y+1,X+1),6)
2540 NEXT I

117

Fun and Games ^

2550 CALL KEY(0,K,S)
2560 TIME=TIME+1 mm,
2570 IF TIME>1000 THEN 3110
2580 CALL SOUND(10,1000,0) em
2590 IF K<>69 THEN 2650

2600 IF MAC(Y-1,X)=128 THEN 2550 tma
2610 Y=Y-1 ""
2620 SY=1

2630 SX=0

2640 GOTO 2820

2650 IF K<>68 THEN 2710

2660 IF MAC(Y,X+1)=128 THEN 2550
2670 X=X+1

2680 SX=-1

2690 SY=0

2700 GOTO 2820

2710 IF K<>88 THEN 2770

2720 IF MAC(Y+1,X)=128 THEN 2550
2730 Y=Y+1

2740 SY=-1

2750 SX=0

2760 GOTO 2820

2770 IF K<>83 THEN 2890

2780 IF (MAC(Y,X-1)=128)+((MAC(Y,X-1)=97)*(M<>5))TH
EN 2550

2790 X=X-1

2800 SX=1

2810 SY=0

2820 IF (MAC(Y,X)<>96)*(MAC(Y,X)o97)THEN 2860
2830 M=M+1

2840 CALL SOUND(10,300,1)
2850 IF M=6 THEN 3010

2860 MAC(Y,X)=143
2870 MAC(Y+SY,X+SX)=136
2880 GOTO 2390

2890 IF (K=77)*(MINI>0)=0 THEN 2990
2900 MINI=MINI-1
2910 FOR XX=1 TO 32

2920 FOR YY=1 TO 24

2930 CALL VCHAR(YY,XX,MAC(YY,XX)) "^
2940 NEXT YY

2950 NEXT XX «a*

2960 FOR 1=1 TO 300

2970 NEXT I

2980 IF K=71 THEN 3140 ELSE 2190

2990 IF K<>71 THEN 3040

3000 GOTO 2910 "^

3010 MSG$="YOU MADE IT!"
3020 CALL SOUND(900,1000,0) ^
3030 GOTO 3130

118 ~*

Fun and Games

3040 IP (K=84)*(M=5)*(TRANS=1)=0 THEN 2550
^ 3050 TRANS=0

3060 MAC(Y,X)=136
fm 3070 Y=2*(INT(RND*11)+1)

3080 X=(2*(INT(RND*15)+1))+1
3090 MAC(Y,X)=143

" 3100 GOTO 2190
3110 MSGS="TOO MUCH TIMEI"

3120 CALL SOUND(300,110,0)
3130 PRINT TAB(6);MSGS: :::::::::
3140 FOR 1=1 TO 1000

3150 NEXT I

J5SSJ

119

Scott Parsons

This climbing game pits you against buzz saws
andflames as you leap and dashfrom floor to
floor. Extended BASIC required; joystick
optional.

The Mad Hatter is desperate. Buzz saws and flames are chas
ing him from one end of his two-tiered home to another.
You're his only chance—you've got to help him out by press
ing the right keys or moving the joystick in the right direction.
Points and more points are your only reward.

Two Tiers
Starting at the lower left, the Mad Hatter glides silently from
side to side when you press the right or left arrow key (or
move the joystick right or left). Buzz saws, always heading
left, block the Hatter's path. They can be jumped, however, by
pressing the period (.) key or the joystick fire button. Be ex
tremely careful, though, that you help the Hatter jump at just
the right moment. Even the slightest touch of the buzz saw
and the Mad Hatter is only a Mad Cap.

Climbing from floor to floor, using the ladders, is even
more difficult. Press the up arrow key when the Hatter is in
position. Unfortunately, he's a bit afraid of heights, and the
only time you can persuade him to climb is when he's just a
bit to the right of a ladder, with more than half his body di
rectly under it. Hit the up arrow key or move the joystick up
and, his fears gone, he pops up a floor.

Up and up you help the Hatter climb, until he reaches the
top of the screen. At that moment, you're given the bonus
points which have been ticking away at the bottom center of
the screen. The faster you get the Hatter to the top, the more
points you score. (The game ends if the bonus runs out before
the Hatter makes it.)

Three chances are all you have to help the Hatter. Once
he's at the top, the screen flickers into the next tier of the Hat
ter's home. Now there are four floors and only two ladders.
The saws are gone, but flames have taken their place.

120

Fun and Games

Flaming Hats
^ Two bolts on each floor must be removed by moving over

them. That's easier than it looks, for you can "wrap around"
^ the screen and sneak up behind the flame to steal the bolt. As

in the first part of the Mad Hatter's house, ladders are pro-
f* vided to get to the next floor. On this screen, you can even go

back down a ladder. Hatter has an even greater fear of heights
here, and climbing the ladders takes more time than before. At
least he's safe when he's on a ladder, for the flames move
only from side to side.

A time limit ticks away—get to the top of the second tier
before it runs out, and points equal to the remaining time are
awarded. Then you're back to the first screen for more buzz
saw fun.

Mad Hatter Ladder

100 CALL CHAR(98,"818181FFFF818181")
110 CALL COLOR(9,l,l)
120 CALL SCREEN(2)
130 P=5

140 CALL CHAR(128,"0E13070F1F3F2F271300000000000000
00C8E4F4FCF8F0E0C870")

150 CALL MAGNIFY(3)
160 LIFE=3

170 SC=0

180 E=0

190 CALL CLEAR

200 FOR 1=1 TO 8 :: CALL COLOR(I,5,1):: NEXT I
210 CALL CHAR(96,"FF814242242418FF")
220 M=0

230 FOR 1=1 TO 4 :: CALL HCHAR(I*6,1,96,32):: NEXT
I

240 E=0

250 DISPLAY AT(1,7):"SCORE" :: DISPLAY AT(2,6):SC
260 DISPLAY AT(1,20):"HIGH" :: DISPLAY AT(2,19):HIG

H

(*b 270 TIME=5000 :: DISPLAY AT(24,13)SIZE(5):TIME
280 CALL CHAR(97,"818181FFFF818181"):: FOR 1=1 TO 2

:: CALL VCHAR(18,25+1,96+1,6):: CALL VCHAR(12,
"i 5+1,96+1,6):: CALL VCHAR(6, 25+1,96+1, 6)

290 CALL VCHAR(1,5+I,96+I,5):: NEXT I
^ 300 CALL HCHAR(1,3,96,5)

310 CALL COLOR(9,10,1)
rsa 320 FOR IR=1 TO 2

330 FOR 1=1 TO 4 :: CALL SPRITE(#1+I+E,128,16,1*6*8
-16,1,0,P):: P=-P :: NEXT I

340 IF E=4 THEN 360

«5si 221

Fun and Games

350 FOR R=l TO 1000 :: NEXT R

360 E=4

370 NEXT IR

380 CALL CHAR(132,"3F3F3F1F1F1F1F1F1F3A02020222323E
FCFCFCF8F8F8F8F8F85C404040444C7C")

390 CALL SPRITE(#1,132,5,21*8,16)
400 REM 1st screen play
410 CALL JOYST(l,X,Y):: GOSUB 1290 :: CALL MOTION(#

1,0,X*1.5)
420 CALL POSITION(#l,Q,W):: IF W<16 AND X=-4 THEN C

ALL MOTION(#1,0,0):: CALL LOCATE(#1,Q,24)
430 IF W>240 AND X=4 THEN CALL MOTION(#1,0,0) :: CAL

L LOCATE(#1,Q,232)
440 CALL COINC(ALL,Z):: IF Z<0 THEN 610
450 TIME=TIME-50 :: IF TIME=0 THEN 1260 ELSE DISPLA

Y AT(24,13)SIZE(5):TIME
460 CALL POSITION(#1,Q,W):: CALL GCHAR(Q/8,W/8,Z)::

IF Z=97 THEN 470 ELSE 540

470 CALL JOYST(l,X,Y):: GOSUB 1290 :: CALL POSITION
(#1»Q,W):: IF Q<48 THEN 500 ELSE IF Y=4 THEN CA
LL LOCATE(#1,Q-48,W)

480 CALL COINC(ALL,Z):: IF Z<0 THEN 610
490 GOTO 540

500 IF Y=4 THEN CALL DELSPRITE(ALL)ELSE 540
510 FOR AQW=1 TO TIME STEP 100 :: SC=SC+100 :: DISP

LAY AT(2,6)SIZE(5):SC :: NEXT AQW
520 IF SOHIGH THEN HIGH=SC :: CALL CLEAR
530 GOTO 640

540 CALL KEY(1,X,Y):: GOSUB 1310 :: IF X=18 THEN 57
0

550 CALL COINC(ALL,Z):: IF Z<0 THEN GOTO 610
560 CALL KEY(1,X,Y):: GOSUB 1310 :: IF X=18 THEN 57

0 ELSE 600

570 CALL POSITION(#l,Q,W):: CALL LOCATE(#1,Q-16,W)
580 FOR 1=1 TO 130 :: NEXT I

590 CALL POSITION(#l,Q,W):: CALL LOCATE(#1,Q+16,W)
600 CALL COINC(ALL,Z):: IF Z<0 THEN 610 ELSE 630
610 LIFE=LIFE-1 :: CALL DELSPRITE(ALL):: IF HIFE=0

THEN 1260 :: GOTO 230

620 CALL SOUND(-1000(200,0)
630 GOTO 400

640 CALL CLEAR

650 CALL CHAR(97,"FF814242242418FF")
660 CALL CHAR(98,"818181FFFB818181")
670 AQW=-5

680 CALL CHAR(136,"31377B7F7FFFFFFFFF7F7F3F3F1F0F00
98FCF8FCFCFFFFFFFEFEFEFEFCFCF0F0")

690 FOR 1=2 TO 5 :: F(I)=5 :: NEXT I
700 CALL COLOR(10,1,1):: CALL CHAR(104,"FF7E7E7E7E7

E7E7E7E")

122

Fun and Games

710 M=0

720 TIME=5000
730 CALL CHAR(120,"3F3F3F1F1F1F1F1F1F3A02020222323E

FCFCFCF8F8F8F8F8F85C404040444C7C")
740 CALL MAGNIFY(3)
750 CALL C0L0R(9,1,1):: CALL CHAR(96,"818181FFFF818

181"):: CALL CLEAR
760 FOR 1=1 TO 4 :: CALL HCHAR(1*6,1,97,32):: NEXT

I

770 CALL VCHAR(1,5,96,24):: CALL VCHAR(1,6,98,24)::
CALL VCHAR(1,26,96,24):: CALL VCHAR(1,27,98,24

780 FOR 1=1 TO 4 :: CALL HCHAR(1*6,11,104):: CALL H
CHAR(I*6,21,104):: NEXT I

790 CALL COLOR(10,5,1):: CALL COLOR(9,10,1)
800 DISPLAY AT(1,2):"HIGH SCORE"
810 DISPLAY AT(2,1):HIGH :: DISPLAY AT(2,22):SC
820 DISPLAY AT(24,12)SIZE(4):TIME
830 CALL SPRITE(#1,120,5,168,224)
840 FOR 1=1 TO 4 :: CALL SPRITE(#1+1,136,7,1*6*8-16

,1,0,AQW):: AQW=-AQW :: NEXT I
850 CALL JOYST(l,X,Y):: GOSUB 1290 :: CALL MOTION(#

1,0,X*1.25)
860 CALL POSITION(#1,Q,W)
870 IF W<16 OR W>240 THEN 880 ELSE CALL GCHAR(Q/8+3

,W/8,Z):: IF Z=104 THEN CALL SOUND(-1000,210,0)
:: CALL HCHAR(Q/8+3,W/8,32):: GOTO 1170

880 TIME=TIME-100 :: IF TIME=0 THEN 1260

890 DISPLAY AT(24,12)SIZE(5):TIME
900 CALL COINC(ALL,Z):: IF Z<0 THEN LIFE=LIFE-1 ::

IF LIFE=0 THEN 1260 ELSE TIME=5000-(M*400) :: GO
TO 830

910 IF ASD=1 THEN IT=IT+1 :: GOTO 920 ELSE 930

920 IF IT=1 THEN 980

930 CALL KEY(1,S,D):: GOSUB 1310 :: IF S=18 THEN 94
0 ELSE 990

940 CALL POSITION(#l,Q,W):: CALL LOCATE(#1,Q-16,W)
950 ASD=1

960 IF YY=1 THEN YY=0 :: GOTO 1010

970 GOTO 990

980 IT=0 :: ASD=0 :: CALL POSITION(#1,Q,W):: CALL L
OCATE(#l,Q+16,W)

990 FOR 1=2 TO 5 :: CALL POSITION(#1,Q,W):: IF W<16
THEN CALL MOTION(#1,0,5):: F(I)=-F(I)

1000 CALL JOYST(l,X,Y):: GOSUB 1290 :: CALL MOTION(
#1,0,X*1.25)

1010 CALL POSITION(#l,Q,W)
1020 IF W<16 OR W>250 THEN 1030 ELSE CALL GCHAR(Q/8

+3,W/8,Z):: IF Z=104 THEN CALL SOUND(-1000,310
,2):: CALL HCHAR(Q/8+3,W/8,32):: YY=1 :: GOTO
1170

123

5s> Fun and Games

1030 IF ASD=1 THEN 1070 ELSE CALL KEY(1,S,D):: IF S
=18 THEN YY=1 :: GOTO 940

1040 CALL COINC(ALL,Z):: IF Z<0 THEN LIFE=LIFE-1 ::
IF LIFE=0 THEN 1260 ELSE TIME=5000-(M*400) ::

GOTO 830

1050 CALL JOYST(l,X,Y):: GOSUB 1290 :: IF X=0 AND Y
=0 THEN CALL MOTION(#1,0,X*1.5)

1060 YY=0

1070 IF W>232 THEN CALL MOTION(#I,0,-5):: F(I)=-F(I

1080 IF W>8 AND W<232 THEN 1090 ELSE 1100
1090 CALL GCHAR(Q/8+2,W/8,Z):: IF Z=32 THEN F(I)=-F

(I):: CALL MOTION(#I,0,F(l))
1100 NEXT I

1110 CALL POSITION(#l,Q,W):: IF Q<28 THEN 1130
1120 IF Y=4 THEN CALL POSITION(#l,Q,W):: CALL GCHAR

(Q/8,W/8,Z):: IF Z=96 THEN CALL LOCATE(#1,Q-48
,W)

1130 IF Q>8*20 THEN 1150

1140 IF Y=-4 THEN CALL POSITION(#1,Q,W):: CALL GCHA
R(Q/8,W/8,Z):: IF Z=96 THEN CALL LOCATE(#1,Q+4
8,W)

1150 CALL POSITION(#l,Q,W)
1160 IF W>250 OR W<16 THEN 850 ELSE CALL GCHAR(Q/8+

3,INT(W/8+.5),Z):: IF Z=104 THEN CALL SOUND(-1
000,110,1):: CALL HCHAR(Q/8+3,W/8,32)ELSE 1230

1170 SC=SC+20

1180 DISPLAY AT(2,22):SC
1190 M=M+1 :: IF M=8 THEN 1200 ELSE IF YY=1 THEN 10

60 ELSE 850

1200 CALL DELSPRITE(ALL):: FOR T=l TO TIME STEP 100
1210 CALL SOUND(200,563,0):: CALL SOUND(200,282,0) :

: SC=SC+100 :: DISPLAY AT(2,22):SC :: NEXT T :
: GOTO 190

1220 DISPLAY AT(2,22):SC
1230 GOTO 850

1240 IF SOHIGH THEN HIGH=SC :: DISPLAY AT(2,1)SIZE
(6):HIGH

1250 GOTO 210

1260 IF SOHIGH THEN HIGH=SC
1270 CALL SCREEN(16):: CALL DELSPRITE(ALL)
1280 DISPLAY AT(10,6)SIZE(17):"PLAY AGAIN (Y/N)" ::

CALL KEY(0,Q,W):: IF 0=121 OR Q=89 THEN 110 E
LSE IF Q=110 OR Q=78 THEN END ELSE 1280

1290 CALL KEY(0,B,C):: IF B=83 THEN X=-4 ELSE IF B=
68 THEN X=4 ELSE IF B=69 THEN Y=4 ELSE IF B=88
THEN Y=-4

1300 RETURN

1310 CALL KEY(0,B,C):: IF C=-l THEN RETURN ELSE IF
B=46 THEN X=18 :: S=18

1320 RETURN

124

p^l

;Ffl

n

TI Memory Organization
William S. Miller

Whether you're an advanced programmer or just
starting out, you can profitfrom knowing how
your computer is put together. This tutorial de
scribes the unique, rarely documented memory
organization of the TI-99/4A and includes two
memory maps.

The TI-99/4A computer is a powerful machine, and there's
more inside its console than most documentation shows. Sur
prisingly, though the TI's memory organization is unlike that
of any other personal computer, very little has been published
on the subject. Let's explore the major features of TI architec
ture and see how the computer's internal structure affects its
performance.

Addressing Memory
Before looking at specifics, let's review how computers handle
memory. Computer memory is simply a collection of individ
ual memory locations, or addresses. Each location can hold a
byte, a value in the range 0-255. Memory is commonly mea
sured in units of kilobytes (1024 bytes), abbreviated as K. Thus,
8K of memory is actually 8192 (8*1024) bytes.

At the most fundamental level, a computer can perform
only two simple memory operations: It can read a memory lo
cation (see what number is stored there) or write to a location
(store a new value). There's a limit to the number of locations
a computer can address, determined by the addressing capabil
ity of its microprocessor chip. The TI's TMS9900 micro
processor can address a maximum of 64K (65,536) locations.
Thus, the lowest memory address the TI can refer to is loca
tion 0, and the highest is location 65,535.

Though the computer can read or write to as many as 64K
locations, memory chips may not be present in all those
places, so the usable memory in the computer may be much
less than 64K. When a memory chip is present, it may contain
either Read Only Memory (ROM) or Random Access Memory
(RAM). A ROM chip contains information in permanent form;
the computer can read ROM memory, but can't write to it.
RAM is programmable memory; the computer can write to a

127

Inside the TI

RAM location as well as read its contents. The numbers stored
in ROM are retained when you shut down the computer, but
RAM is volatile—as soon as you turn off the power, its con
tents are lost.

Most computers also have a few locations that aren't
exactly ROM or RAM. These are control addresses, used to
control input/output chips. By writing to or reading such loca
tions, the computer controls graphics displays, disk storage,
and similar functions.

You may have heard that the TI-99/4A has a 16-bit
microprocessor rather than the 8-bit processor found in most
home computers. In fact, the TI actually sees its 64K address
space as 32,768 two-byte words of memory rather than as
65,536 bytes. Since the microprocessor can manipulate a word
either as an entire 16-bit package or as two 8-bit packages, it
combines some capabilities of 16-bit and 8-bit processors.
(Most other 16-bit processors, however, can address consider
ably more than 64K of RAM.)

TI Memory Map
A memory map is simply a chart of a computer's memory orga
nization showing the location of ROM and RAM. Figure 1 is a
general memory map for the TI-99/4A.

Several questions may spring to mind when you scan the
map. For instance, where's the 16K RAM that's supposed to
be available in an unexpanded machine? What is a GPL inter
preter and what is GROM? Only 8K of internal ROM is appar
ent—where is the advertised 26K ROM? Since only 8K of
memory space is assigned to the module port, how is it possi
ble for modules to hold as much as 36K of program infor
mation? Finally, how can all of the peripheral ROMs occupy
the same 8K space? After all, they're frequently used at the
same time.

To track down the missing RAM, we'll need to review
some hardware. In addition to its main microprocessor, the TI
has a second microprocessor devoted exclusively to graphics.
The TMS9918A Video Display Processor (VDP) controls
sprites, high-resolution displays, and other graphics features,
and can address a maximum of 16K of RAM. Since this special
RAM area can be accessed only by the VDP (hence the term
VDP RAM), it's not included in the general memory map in
Figure 1.

128

Inside the TI

Figure 1. TI-99/4A General Memory Map

$FFFF

$A000

$8000

$6000

$4000

$2000

$0000

High memory expansion

High memory expansion

High memory expansion

Memory-mapped I/O for speech synthesizer,
YDP, GROM, sound chip. CPU scratchpad
RAM at $8300.

8K available at module port

ROMs for peripheral devices—up to 11
peripherals such as disk controller, RS-232
interface, etc.

Low 8K portion of 32K Expansion RAM

Console ROM, contains part of operating system,
GPL interpreter, part of TI BASIC.

8K

8K

8K

8K

8K

8K

8K

8K

The main microprocessor can access VDP RAM only in a
secondhand way, by writing to or reading special addresses in
the VDP chip itself. The VDP then writes to or fetches data
from VDP RAM. But VDP RAM is used for nongraphics pur
poses as well. When you use the built-in TI BASIC, your pro
gram is stored entirely in VDP RAM. TI Extended BASIC (a
36K module) uses VDP RAM for the same purpose when no

129

Inside the TI

expansion RAM is present. If the 32K RAM Memory Expan
sion unit is installed, TI Extended BASIC uses 24K of expan
sion RAM to store the program and numeric variables, about
14K of VDP RAM to store string variables, and the remaining
8K of expansion RAM to store machine language routines
(accessed with the CALL statement). When a disk drive is
hooked up, the disk operating system also uses 2K of VDP
RAM as a data buffer area.

Incidentally, the TI-99/4A is not the only computer to use
the VDP chip. Spectravideo, Coleco, and all MSX computers
employ the VDP, and it has also been marketed as part of a
sprite board for the Apple II with Logo.

A Hidden Interpreter
As you may know, a computer can't directly understand
BASIC words like PRINT and GOTO. The BASIC language is
actually a large machine language program that interprets (de
codes) BASIC commands, translating each statement into ma
chine language instructions which the computer can perform
directly. A program that translates commands from one lan
guage to another is called, not surprisingly, an interpreter.
Since the translating takes time, interpreted programs always
run slower than machine language programs.

In addition to the BASIC interpreter, the TI has a Graph
ics Programming Language (GPL) interpreter. This is a special-
purpose machine language program (4K in length, stored in
the 8K console ROM) which interprets programs stored in a
special kind of ROM known as Graphics Read Only Memory
(GROM). Since GROM space is not directly addressable, you
can't use it to store machine language routines (or anything
else, for that matter). The TI may use up to eight GROMs,
each 6K in size. A typical module contains three resident
GROMs along with one 8K ROM.

GPL routines are ideal for graphics and are quite fast,
though comparable machine language routines seem to run
from two to ten times faster. But don't get excited about writ
ing your own GPL routines. As far as I know, GPL programs
must reside in GROM or GRAM (Graphics RAM), and the
main processor's address space contains only a few locations
for communicating between the GPL interpreter and GROM.
Even if you learn how to program in GPL (no small feat, since

130

Inside the TI

TI provides no documentation), you have no way to put such
programs in GROM where the GPL interpreter can run them.
For all practical purposes, GPL and GROM are usable only by
TI's own programmers.

In any case, we've answered some of our questions. The
missing console ROM is actually 18K of GROM, and the extra
module ROM is up to 30K of GROM. The 18K of console
GROM contains parts of the operating system like the cassette
service routine, as well as most of the TI BASIC interpreter.

That's bad news for BASIC programmers (see below), but
it's ideal for module-based software. Modules have 8K of di
rectly addressable ROM for speed-intensive routines and up to
30K of GROM for slightly less speedy GPL routines. Very
large and elaborate module-based programs may be installed
without sacrificing any of the user RAM that's normally avail
able. Since the system is so flexible, some modules provide a
bit of everything. The Mini Memory module, for instance, pro
vides 4K of RAM (with battery backup to retain data when
unplugged), 4K of addressable ROM, and 6K of GROM, in
cluding utilities for machine language programming.

As the memory map shows, 8K of the main memory
space is occupied by peripheral ROMs. The main processor
has extremely flexible input/output capabilities and can actu
ally assign several 8K peripheral ROMs to the same 8K ad
dress space without stealing any of the 48K user RAM. Each
peripheral is controlled with separate instructions, so the sys
tem never becomes confused. Up to 11 peripherals, each with
its own ROM, can be connected to the TI, giving the computer
unusual expansion capabilities. The TI Peripheral Expansion
System provides an eight-slot parallel expansion bus and aux
iliary power supply to take advantage of this flexibility.

Expanded Memory Map
Compared with some other systems, the TI-99/4A has a rela
tively open architecture. Many different configurations (and
capabilities) are possible, depending on what you plug into the
system. Figure 2, an expanded TI memory map, illustrates this
flexibility.

Like virtually every other computer, the TI does have
some flaws. First, the unexpanded machine has no directly ac
cessible user RAM (just VDP RAM, which can be accessed
only secondhand through the VDP). Since there's no way to

131

Inside the TI

load and run machine language programs in RAM, machine
language programming is impossible on an unexpanded sys
tem. This also explains why PEEK and POKE were omitted
from TI BASIC: Since there's no memory you can access di
rectly, the commands are meaningless. (Note: The exception to
all the machine language programming limitation is that you can
create relatively primitive machine language programs on an un
expanded TI, as long as you have the Mini Memory module.)

Figure 2. TI-99/4A Expanded Memory Map

48K GROM 64K Main Memory

t

6K
High Expansion 8K

6K

High Expansion 8K
Module GROMs 6K

High Expansion 8K6K

< 1

6K
Memory mapped I/O 8K

i

6K
Module
Port

8K
Console GROMs 6K

Peripheral ROMs 8K
'

6K

Low 8K Expansion BK

Console ROM 8K

16K VDP RAM

File Buffers

screen

Up to 3 180K
disk drives

Disk Controller 8K

p-code Peripheral 8K

RS-232 Interface 8K

Up to 8 additional
peripherals 8K

Note: Shaded areas are possible user RAM.

The consequences for BASIC are even more serious. Since
BASIC programs are stored in VDP RAM, every BASIC state
ment must be shuffled through two microprocessors instead of
one. Remember, the main processor can't access VDP RAM di
rectly. It can only send requests to the VDP, a second proces
sor, which in turn accesses the memory. Worse still, the TI
BASIC interpreter itself resides mostly in GPL-interpreted
GROM, not in memory accessible to the main processor. As a
result, every BASIC statement must be interpreted twice—

132

{5350

Piva^J

Inside the TI

once by the GPL interpreter and again by the BASIC
interpreter.

So much for the bad news. TI BASIC is slow—not as slow
!** as its LIST and PRINT commands might suggest, but still

slower than other personal computer BASICs. However, TI Ex-
r* tended BASIC is much faster than TI BASIC, and the system's

flexibility partly compensates for its slowness.

133

/•
The TMS9900 Microprocessor
^^^^^™ William S. Miller

The TI-99/4A's microprocessor—the TMS9900—
is a powerful chip. With the right software tools,
such as the Editor/Assembler or the Mini Memory
command module, you can jump into assembly
language programming. First, though, you need
some background on the 9900, and the way it
drives the TI-99/4A.

Controlling the flow ofinformation within any computer sys
tem is the central processing unit (CPU). Whether the com
puter is a huge mainframe, expensive mini, or personal micro,
the CPU is responsible for moving information to and from
memory locations (places where the machine stores its instruc
tions and data), for transforming this information using built-
in sequences of arithmetic and logical operations, and for
transmitting this information to and from external devices for
storage or communication with the outside world. The CPU
within your TI-99/4A is a small microprocessor, the TMS9900.

These arithmetic, logical, and transfer operations make up
the smallest software building blocks available to a program
mer. Each operation has a corresponding code expressed as a
group of ones and zeros, referred to as its opcode. As the
microprocessor steps through memory, it recognizes these
codes and executes the appropriate operations.

The set of available operations and their corresponding
codes is called the instruction set of the CPU and comprises
the machine language for that particular computer. Rather than
fetch these codes or manipulate stored data one bit at a time
along a single physical line (serially), all microcomputer sys
tems transfer 8 or 16 bits simultaneously along 8 or 16 lines
(in parallel). The microprocessor itself is capable of digesting
data in corresponding 8- or 16-bit gulps. The width of the data
path within the microprocessor, whether 8 or 16 bits, is what
describes it as an 8-bit or 16-bit machine. The TI-99/4A's
TMS9900 microprocessor transfers and manipulates data 16
bits at a time.

134

Inside the TI s

Some Important Facts
The TMS9900 microprocessor was developed in the mid-1970s
by Texas Instruments as a single-chip implementation of the
CPU architecture and instruction set of their 990 minicom
puter series. The 9900 is a single large-scale integration inte
grated circuit in a big 3.2 X 0.9 inch 64-pin package. This pin
set includes 16 data and 16 address lines—using 64 pins
rather than the usual 40 permits each of these data and ad
dress lines to have a direct connection to system memory, en
abling full 16-bit data and instruction transfers to and from the
processor.

The power supply levels required by the 9900 are +5,
—5, and +12 volts. The 9900 also requires timing pulses in a
cycle of four phases from an external clock for the control and
coordination of the processor's internal operation. In the TI-
99/4A, this four-phase cycle is repeated 3,000,000 times per
second for a clock speed of 3 megahertz. Finally, the 9900
must have access to at least 256 bytes of external RAM on
which to base its unique memory-based register files. Take a
look at Figure 1, which shows the TMS9900 with its pin as
signments labeled.

The TMS9900 microprocessor dominates the TI-99/4A's
console circuit board, as you can see from Figure 2. (Make a
note of the placement of the 9901 programmable system inter
face chip, to the left of the the 9900. We'll discuss some of the
990l's features a bit later.)

In several aspects, the TMS9900 reflects innovative and
unique design. This article looks at these four design aspects
of the 9900 microprocessor:

• Its unusual register files
• Its instruction set

• Its flexible serial interface
• Its powerful interrupt structure

We'll also briefly outline the features of the Editor/
Assembler package from Texas Instruments—this powerful
software and command module lets you utilize the advanced
capabilities of the TMS9900 microprocessor.

135

Figure 1. TMS9900 Pin Assignments

1

2

Wait - 3

4

5

Reset -» 6

7

Timing Pulse 01 -» 8

Timing Pulse 02 -» 9

"10

11

12

13

14

15

16

Address Pins / 17

18

19

20

21

22

23

24

Timing Pulse 04 -» ""25
26

27

Timing Pulse 03 -» 28

29

CRUOUT - 30

CRUIN - 31

Interrupt Request -* 32

136

Hold

Memory Enable

Ready

- CRU Clock

Data Pins

Interrupt Level

Gf*S)

fiSir

6W

feBlS*:^

I
I

1
1

J

F
ig

ur
e

2.
T

I-
99

/4
A

C
on

so
le

B
oa

rd
S

ch
em

a
ti

c

D

"^
4

9
9

1
8

A

V
id

e
o

D
is

p
la

y
P

r
o

c
e
s
s
o

r

1
6

K
V

D
P

R
A

M

9
9

0
1

P
ro

gr
am

m
ab

le
S

ys
te

m
In

te
r
fa

c
e

1
1

1

Inside the TI

Registers on the TMS9900
The most unusual aspect of the 9900's design is its register
sets. All microprocessors use a special set of memory locations
into which required data and results from each machine in
struction are placed. Two other locations are also needed—the
program counter, for storing and incrementing the RAM ad
dress containing the next machine instruction, and the status
register, which maintains a record of any special conditions
that may have occurred during each instruction's execution.

These registers are typically built into the microprocessor
chip itself, an arrangement that allows for very fast access to
register contents, but limits the number of registers to between
3 and 16. Because of this limitation, whenever the micro
processor encounters an instruction causing a temporary
branch to a subroutine (which in turn requires a new set of
register contents), the programmer must provide a series of in
structions to store the contents of these on-board registers in
memory and load into the registers the values appropriate to
the start of the new subroutine environment. When execution
returns to the calling program, the new register contents must
be saved and the old contents reloaded. This register saving
and reloading can occupy almost 50 percent of the micro
processor's time when it's involved in a complex application,
such as when using multiple subroutines and interrupts.

To avoid this, TI has taken an unusual approach to estab
lishing register files on the TMS9900. The chip actually pro
vides only three on-board registers—the program counter,
status register, and a third, the workspace pointer. The latter is
unique to the 9900 microprocessor family.

Rather than providing general-purpose registers on the
chip, the 9900 establishes a set of 16 registers in consecutive
RAM locations. The contents of the workspace pointer tell the
microprocessor the address of the first of these 16 two-byte (or
one-word) registers. As many register sets as desired may be
set up in RAM. Each set is referred to as a workspace and con
tains registers numbered from R0 to R15. A new workspace
may be used at any time simply by changing the contents of
the workspace pointer. A workspace may be placed in any
available RAM, even overlap with other workspaces.

It's easier to see this efficiency when the programmer is
faced with a situation involving multiple interrupts and sub
routine calls. Rather than saving and loading register contents

138

Inside the TI

before a branch or return, the programmer selects an instruc
tion that executes what Texas Instruments calls a context
switch. This single instruction performs several tasks before
jumping from the current sequence of instructions to the se
quence called for by the branch operation.
• First, the current program counter and workspace pointer

values are saved in temporary storage locations.
• New values appropriate to the subroutine are then loaded

into the program counter and workspace pointer.
• Finally, the old workspace pointer, old program counter, and

status registers are saved to registers R13, R14, and R15 of
the new workspace, effectively saving the state of the
microprocessor at the moment prior to the jump.

• The microprocessor begins to execute instructions using the
new workspace as its register set.

• A simple return instruction restores the old register values
and workspace, enabling the microprocessor to continue with
the calling program sequence.

This flexible register capability results in easier assembly lan
guage programming and faster program execution, and is
unique to the 9900 family of microprocessors.

The 9900 Instruction Set
The Branch and Load Workspace Pointer (BLWP) and Return
with Workspace Pointer (RWP) instructions described above
are good examples of the convenience and speed provided by
a well-designed instruction set. The TMS9900 offers 69 in
structions using six addressing modes. These instructions fall
into several categories (the numbers in parentheses indicate
how many instructions exist in each category):
• Arithmetic instructions (13)
• Jump and Branch instructions (19)
• Compare instructions (5)
• Control and CRU instructions (10)
• Load and Move instructions (8)
• Logical instructions (10)
• Workspace Register Shift instructions (4)
The advanced assembly language features offered to the TI-
99/4A assembly language programmer include the following.

Memory to memory operations. Many operations may
be performed directly on the contents of memory locations in

139

a Inside the TI

RAM. For example, the ADD Words instruction may specify
two RAM addresses containing operands (data to be manipu
lated). The operand found in the first address will be added to
that in the second, and the sum left in the second address.
There's no need to load registers. In contrast, virtually all 8-bit
microprocessors require that a value be loaded into a special
ized one-chip register known as the accumulator before an
arithmetic operation may be performed using that value. The
LDA (LoaD Accumulator) instruction is probably the most fre
quently used instruction of the 6502 microprocessor. On the
9900, any register or memory location may be used as an
accumulator.

Byte and word operations. The 9900 may operate upon
any 16-bit word (in other words, two 8-bit bytes) of memory,
or on either byte of that word. In fact, the 9900 sees memory
as 32,768 words rather than as 65,536 bytes. All operations
have access to or transfer an entire word of data whether or
not a single byte is manipulated.

Flexible addressing modes. Addressing modes refers to the
strategies that you may select to specify where the operands
required by an operation are to be found. For example, any
register may contain an operand, the address where the oper
and may be found, or a value to which a constant is added to
find the operand. The addressing modes available to the 9900
assembly language programmer include Workspace Register
Addressing, Workspace Register Indirect Addressing, Work
space Register Indirect Auto Increment Addressing, Symbolic
Memory Addressing, Indexed Memory Addressing, and Imme
diate Addressing. Most instructions may use any of these ad
dressing modes in any combination—where appropriate.

Hardware multiply and divide. The TMS9900 can multi
ply two unsigned 16-bit values, producing a 32-bit integer
product, or divide a 32-bit value by a 16-bitvalue, producing
a 16-bit quotient, each with a single instruction.

The extended operation. The extended operation instruc
tion permits the addition of up to 16 software designed in
structions to the instruction set of the 9900, an advanced
feature supported by the more recent TI-99/4A operating sys
tem, though not by the TI-99/4 or early TI-99/4As.

140

Inside the TI e

The Serial Interface and Interrupt Structure
Both of these functions are conducted with the help of a single
auxiliary chip in the TI-99/4A, the 9901 programmable sys
tems interface. Thus far, we've just talked about parallel data
transfers, where entire 16-bit words are moved at once along
the 16 data lines to or from the locations in the address space
specified by signals present on the address bus. As can many
microprocessors, the 9900 is able to send and receive infor
mation by means other than these data lines. Serial data may
be moved into and out of the processor over two lines dedi
cated to the purpose, and the microprocessor may respond to
combinations of signals placed on five lines dedicated to the
receipt of interrupts.

Serial data consists of bits sent or received one at a time,
while an interrupt does just that—it interrupts the transfer.
When an interrupt request is received that the microprocessor
has been programmed to acknowledge, it stops what it's do
ing, saves its state, branches through a context switch using
parameters specified by the operating system, and performs
the task called by the interrupt. When the job's done, the
microprocessor state returns to normal.

While many processors offer a line for serial data I/O, the
TMS9900 is capable of unusually flexible serial data transfers.
This serial interface capability, along with any external support
chips present which utilize this capability, is referred to as the
Communications Register Unit, or CRU. This serial capacity is
unusual in that it provides serial data with 4K bits of address
space to specify sources and destinations for serial data. When
an instruction is executed that sends or receives serial data
along the two dedicated lines, the processor also places a 12-
bit address specification on the address bus, determining one
of 4096 sources or destinations for the data. This means that,
in addition to the 64K byte address space available to the data
lines, there's an additional serial address space with 4K of in
dividually distinguishable single-bit addresses available as
either source or destination for serial data.

In the TI-99/4A, the serial data lines are connected to the
9901 programmable systems interface, which receives infor
mation from 5 of the 12 address lines used to specify destina
tions for serial data and receives a chip enable signal to let the
9901 know when address information is intended for it. In
turn, the 9901 provides 22 lines to the outside world that may

141

Inside the TI

be programmed for a variety of I/O tasks. When the appropri
ate address information and chip enable signal are sent, ac
companied by from 1 to 16 bits of serial data, the 9901
interprets that data as destined for its registers used to pro
gram data transfer characteristics. In this way, you can initial
ize the 9901 to provide up to 16 of its 22 system lines for the
receipt and disbursement of serial data to a number of sources
and destinations, as well as program the 990l's flexible inter
rupt control capabilities.

The TMS9900 microprocessor provides several CRU in
structions which can be used to control this serial interface
and to transfer, test, and modify serial data as it's sent or re
ceived. In the TI-99/4A, the 9901 (as CRU) is used to address
console devices such as the keyboard, joysticks, and cassette
interface, as well as to address and activate external devices
such as the disk controller, four ports of the RS-232 interface,
the thermal printer, the p-code peripheral, and the appropriate
bank-switched peripheral device ROM and RAM. A number of
blocks of CRU address space have been reserved in the TI-
99/4A operating system for future expansion.

The interrupt capabilities of the 9900 are just as flexible,
and these too are significantly enhanced by the 9901. As al
ready mentioned, the 9900 uses five lines to receive interrupts.
One line is an interrupt request line, and is used whenever the
processor is to be interrupted. The other four are used to spec
ify the level of the interrupt request being made, an indication
of the request's urgency. Using four lines gives the processor
16 levels of interrupt. To give you control over which interrupt
levels will be acknowledged, the last 4 bits of the 16-bit status
register may be used to select the levels of interrupt using the
Load Interrupt Mask Immediate (LIMI) instruction. An LIMI 2
instruction enables interrupt levels 0, 1, and 2—all other inter
rupts will be ignored. The 9901 further augments this interrupt
capability by providing up to 16 separate interrupt lines and
lets you more selectively mask a few or even a single one of
these lines while leaving others (both higher and lower prior
ities) unmasked. The improved operating system of the TI-
99/4A provides interrupt handling routines that take advantage
of this flexible structure.

142

Inside the TI

The Editor/Assembler Package
The Editor/Assembler software and hardware from Texas In
struments is a powerful development environment, one de
rived from their 990 minicomputers, and provides features
unusual for a microcomputer assembler. Just some of the pack
age's features are listed here.

80-column Editor. The Editor employs three overlapping
40-column windows onto the 80-column text, which may be
scrolled horizontally or vertically to view all source text. Pow
erful editing features include insertion and deletion by charac
ter, word, or line; find word; find and replace words; move
block; copy block; file insert from disk; and list source to any
device.

The Assembler. This produces relocatable, linkable code.
Object code produced by the Assembler may contain unre
solved references that are resolved by the loader provided dur
ing load from disk, permitting the loader to place programs
anywhere in available RAM. External References and Defini
tions let you build a library of program modules of relocatable
code that will be automatically loaded from disk and linked to
a new program which contains the appropriate references as
the new program is assembled. All external references and
definitions are resolved by the loader. This also permits as
sembly language programs to be loaded and called by name
rather than address from the Extended BASIC, TI BASIC, and
Editor/Assembler environments. Parameters may be passed at
this time, too.

System utilities. Utilities residing either in console ROM
or the Editor/Assembler software may be used simply by load
ing registers with the required parameters and calling the rou
tine. The Extended BASIC environment duplicates these
utilities for assembly programs run from this BASIC. Utilities
include write or read single or multiple bytes from VDP RAM
or VDP registers; keyboard scan; link to GROM routines; link
to ROM or RAM assembly routines; link to floating-point
routines; PEEK, POKE, PEEKV, and POKEV from TI-BASIC;
link to assembly routines from BASIC by name (rather than by
address); get or modify BASIC numeric, string, or array vari
ables for assembly language program use; and link to error
routines.

143

IM.VI—•-,—^^»n Inside the TI

TI Bug Object Code Debugger. Once the object code is
produced, it can be debugged by setting breakpoints; inspect
ing or changing CPU, VDP, and GROM memory parameters;
inspecting and changing CRU bits; finding words, bytes, and
blocks; moving blocks; converting from decimal to hexadeci
mal or the reverse; and performing hexadecimal arithmetic.
The optional Advanced Assembly Debugger is also available
to further enhance these debugging tools.

The Editor/Assembler manual. A very complete, well-
written guide to 9900 assembly language and the TI-99/4A ar
chitecture in general.

144

Rick Rothstein

Printing redefined characters within strings is
a fast and efficient methodfor creating custom
graphics. By using undefined character codes,
you can add custom characters without sacrific
ing any part of the standard character set. The
technique works with either TI BASIC or Ex
tended BASIC.

Many TI owners know that the CALL CHAR statement rede
fines graphic characters, and that these new characters can be
assigned to any character code from 32 to 159 (only characters
32-143 in Extended BASIC). Once graphic characters have
been redefined, they're often placed on the screen—one at a
time—with CALL HCHAR or CALL VCHAR statements. But

it's much more efficient to print them on the screen as strings.
Let's draw a smiling face on the screen to illustrate the

basic technique. Enter and run Program 1. Lines 160-190 re
define the first 25 characters of the alphabet as graphic shapes,
then lines 200-240 print these custom characters on the screen
as strings. (If you have Extended BASIC, this same technique
works with the DISPLAY AT statement.) Lines 1000-1050
contain the character redefinition data.

Program 1. Smiling Pace
100 CALL CLEAR

110 CALL SCREEN(13)
120 CALL COLOR(5,ll,l)
130 CALL COLOR(6,ll,l)
140 CALL COLOR(7,2,ll)
150 CALL COLOR(8,ll,l)
160 FOR N=65 TO 89

170 READ CODES

180 CALL CHAR(N,CODES)
190 NEXT N

200 PRINT TAB(13);"ABCDE"
210 PRINT TAB(13);"FRSTG"
220 PRINT TAB(13);"HUIVJ"
230 PRINT TAB(13);"KWPQL"
240 PRINT TAB(13);"MNOXY": ::::::::
250 GOTO 250

145

Inside the TI

1000 DATA 0000000000000001,000000071F7FFFFF#0000FFF
FFFFFFFFF,000000E0F8FEFFFF

1010 DATA 0000000000000080,0307070F0F1F1F1F,C0E0E0F
0F0F8F8F8,3F3F3F3F3F3F3F3F

1020 DATA FFFFFFFFFFFFFFFF,FCFCFCFCFCFCFCFC,1F1F1F0
F0F070703,F8F8F8F0F0E0E0C0

1030 DATA 0100000000000000,FFFF7F1F07000000,FFFFFFF
FFFFF0000,000000C3FF7E0000

1040 DATA 3860C08000000000,0000000E1F3F3F3F,0000000
000818181,00000070F8FCFCFC

1050 DATA 1F0E000000000206,F870000000004060,1C06030
100000000,FFFFFEF8E0000000,8000000000000000

The disadvantage of redefining the standard characters is
that the commonly used letters and numbers are no longer
available. Since alphanumeric characters occupy the first 126
ASCII character codes, the usual solution is to put custom
graphics in characters with codes above 126.

Undefined Character Codes
Characters with ASCII codes over 126 are unlike the alphanu-
merics. Since BASIC doesn't use them, they're considered un
defined, and ordinarily are blanks. But you can still print them
on the screen, usually with the CHR$ function. For instance,
after characters 127, 128, and 129 are redefined, they can be
printed with the statement PRINT CHR$(127); CHR$(128);
CHR$ (129). Of course, if these characters have not been rede
fined, this statement simply prints three blanks.

Although the CHR$ function is fast, it's more cumbersome
and less memory-efficient than printing an ordinary string en
closed in quotation marks (like PRINT "ABC"). Fortunately—
though you may never have seen this fact documented—it's
not necessary to use the CHR$ method. All the character
codes above 126 can be generated directly from the keyboard
by pressing the CTRL or FCTN keys along with alphanumeric
keys. This allows you to enclose the undefined characters
within quotation marks, just like ordinary alphanumerics.

Let's see how this is done. Press FCTN-= (QUIT) and
reselect either TI BASIC or TI Extended BASIC (you'll see why
this is necessary in a moment). Enter the following line in im
mediate mode (with no line number), holding down the CTRL
key as you type the A and B:
PRINT "AB"

146

Inside the TI

On the screen it will look as though nothing was printed.
Actually, characters 129 and 130 were printed next to each
other, but since neither character has been redefined, both are
blanks. Enter the following program without erasing the spot
where you printed the two special characters:
10 CALL CHAR(129,"0044447C44444400")
20 CALL CHAR(130,"0038101010103800")

When you run this program, watch what happens at the
spot where the two undefined characters were printed earlier.
The custom characters appear as soon as the program rede
fines character codes 129 and 130. Enter NEW and type
CTRL-A (hold down the CTRL key and press A). Since you've
redefined character 129, it's no longer blank.

Clearing Redefined Characters
There are only four ways to clear graphic definitions from
characters with codes of 127 or higher: Press the QUIT key
(FCTN-=), enter the BYE command, enter a new definition
with a CALL CHAR statement, or shut off the computer.

Once again, press the QUIT key and reselect TI BASIC
(do not select TI Extended BASIC if it's available). Now type
in Program 1 again, substituting the following line:
160 FOR N=129 TO 153

When you enter lines 200-240, press the CTRL key when
entering the letters between the quotation marks (remember,
the undefined characters will look like blanks). When you run
the program, it draws the same smiling face, using character
codes which were previously thought unprintable without the
CHR$ function. More significantly, while the first version of
the program eliminated the first 25 characters of the alphabet,
this version retains all the standard alphanumerics.

Table 1 shows all the character codes which can be rede

fined and printed on the screen, along with key combinations
that generate them. For example, CTRL-A generates character
code 129—to get this character, hold down the CTRL key and
press A. Note that character code 127 is generated by the
FCTN key rather than the CTRL key. Also, remember that
only those characters with codes of 143 or less are available
with Extended BASIC.

147

Inside the TI

Table 1. Redefinable CTRL/FCTN Characters

Code

127

128
129

130

131
132

133
134

135

136
137

138
139

140
141

142

143

Keys
FCTN-V
CTRL-,
CTRL-A

CTRL-B

CTRL-C
CTRL-D
CTRL-E

CTRL-F

CTRL-G
CTRL-H
CTRL-I
CTRL-J
CTRL-K

CTRL-L

CTRL-M
CTRL-N

CTRL-O

Code

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Keys
CTRL-P

CTRL-Q
CTRL-R

CTRL-S

CTRL-T

CTRL-U
CTRL-V
CTRL-W
CTRL-X

CTRL-Y

CTRL-Z

CTRL-.
CTRL-;
CTRL- =

CTRL-8
CTRL-9

Character codes 127-159 are not the only ones which can
be printed on the screen with CTRL or FCTN in standard
BASIC. Table 2 lists the remaining undefined codes. The
CALL CHAR statement, however, cannot redefine these char
acters. Hence, they can be printed on the screen only as
blanks. Short of printing secret (invisible) codes on the screen,
which can be read only by the CALL GCHAR statement, it's
difficult to imagine a practical use for these codes. None of
them can be used in Extended BASIC.

Table 2. Nonredefinable CTRL/FCTN Characters

Codes
176

177

178

179

180

181

182

183

184

185

186

187

148

Keys
CTRL-0
CTRL-1

CTRL-2

CTRL-3
CTRL-4

CTRL-5
CTRL-6
CTRL-7

FCTN-,
FCTN-.
FCTN-/
CTRL-/

Codes

188

189

190

191

192

193

194

195

196

197

198

Keys
FCTN-0
FCTN-;
FCTN-B

FCTN-H
FCTN-J
FCTN-K
FCTN-L
FCTN-M

FCTN-N
FCTN-Q
FCTN-Y

flP$?

JSP)

vmfii

CBJly)

Inside the TI

Putting Custom Characters to Work
As you've already seen, it's not easy to type or read characters
that all look blank. Program 2 (for regular BASIC) or Program
3 (for Extended BASIC) will help you incorporate these special
characters into your own programs. Each program simply re
defines the characters above 126 to make them display in
reverse video (character 127 is displayed as the FCTN symbol
to remind you to type it with FCTN instead of CTRL). Run the
program before loading or typing in your own program. You'll
find it much easier to enter the special characters and read
your listings on the screen.

Program 2. Visible Characters for TI BASIC
100 CALL CHAR(127,"007040604A4A0A04")
110 FOR N=128 TO 159

120 READ AS

130 CALL CHAR(N,"FFM&AS)
140 NEXT N

1000 DATA FFFFFFFFCFEFDF,C7BBBB83BBBBBB,87DBDBC7DBD
B87,C7BBBFBFBFBBC7

1010 DATA 87DBDBDBDBDB87,83BFBF87BFBF83,83BFBF87BFB
FBF,C3BFBFA3BBBBC7

1020 DATA BBBBBB83BBBBBB,C7EFEFEFEFEFC7,FBFBFBFBFBB

BC7,BBB7AF9FAFB7BB
1030 DATA BFBFBFBFBFBF83,BB93ABABBBBBBB,BB9B9BABB3B

3BB,83BBBBBBBBBB83
1040 DATA 87BBBB87BFBFBF,C7BBBBBBABB7CB,87BBBB87AFB

FBB,C7BBBFC7FBBBC7
1050 DATA 83EFEFEFEFEFEF,BBBBBBBBBBBBC7,BBBBBBD7D7E

FEF,BBBBBBABABABD7
1060 DATA BBBBD7EFD7BBBB,BBBBD7EFEFEFEF,83FBF7EFDFB

F83,FFFFFFFFFFCFCF
1070 DATA FFCFCFFFCFEFDF,FFFF83FF83FFFF/C7BBBBC7BBB

BC7,C7BBBBC3FBF7CF

Program 3. Visible Characters for Extended BASIC
100 CALL CHAR(127,"007040604A4A0A04",128,"FFFFFFFFF

FCFEFDF")
110 HEXS="0123456789ABCDEF"

120 FOR J=129 TO 143

130 CALL CHARPAT(J-64,A$)
140 BS=""

150 FOR K=l TO 16

160 B$=B$&SEGS(HEXS,17-P0S(HEXS,SEGS(AS,K,1),1),1)
170 NEXT K

180 CALL CHAR(J,BS)
190 NEXT J

149

imsmmss\;^\„^^.mmnismsm InSlde the TI

Programs 2 and 3 make screen listings comprehensible,
but it's impossible to do the same for printed listings. Printers
interpret these special codes as true control codes, performing
linefeeds, backspaces, tabs, or whatever, rather than printing
the redefined characters.

Printing graphic characters on the screen is fast and
memory-efficient. However, it does have one drawback. The
PRINT statement (and DISPLAY AT statement in TI Extended
BASIC) can put graphic characters into only 28 of the 32 avail
able screen columns. Hence, any part of a picture which occu
pies columns 1, 2, 31, or 32 must still be put on the screen
with a CALL HCHAR or CALL VCHAR statement after the
rest of the picture has been PRINTed.

It's not a good idea to place any critical graphics in those
columns anyway, since some TV sets cannot display them due
to overscan. Many programmers simply blank out these col
umns with a solid block that's the same color as the border,
thus creating a frame for the screen display. This can be done
efficiently—taking advantage of screen wraparound—with the
single statement CALL VCHAR(1,31, CHARNUM,96). Replace
CHARNUM with the ASCII code of the character defined as a
solid block.

150

p3»H

Michael A. Covington

Ever needed to know the definitions for the TI-
99/4A's character set? If you don't have Ex
tended BASIC, it's impossible. Listed here are all
the TI's characters, their ASCII values, and their
definitions. Primarily for TI BASIC owners.

The accompanying table shows the graphic definition (along
with the ASCII code value and its actual appearance) of every
predefined character on the TI-99/4A. You'll need this infor
mation for several reasons:

• If you want to return a character to its original appearance
after having changed it.

• If you want to have more than one copy of a given character
or set of characters (in different colors, for instance).

• If you want to emulate the TI-99/4A's character set on the
older TI-99/4.

• Or if you simply want to see how the character set works.

In TI BASIC, there's no way to make the computer give
you the definitions of predefined characters. These tables were
prepared using the CALL CHARPAT statement in Extended
BASIC and dumped pixel by pixel onto an Epson graphics
printer—what you see here is an exact picture of how the
characters look on the screen.

The Character Set

32 "OOOOOOOOOOOOOOOO"

33 ! "0010101010100010"

34 " "0028282800000000"

35 « "0028287C287C2828"

36 $ "0038545038145438"

37 * "0060640810204C0C"

38 & "0020505020544834"

39 ' "0008081000000000"

40 < "0008102020201008"

151

mInside the TI

41 > "0020100808081020"

42 ♦ "000028107C102800"

43 + "000010107C101000"

44 , "0000000000301020"

45 - "0O0OOOO07C000000"

46 . "0000000000003030"

47 / "0000040810204000"

48 O "0038444444444438"

49 1 "0010301010101038"

50 2 "003844040810207C"

51 3 "0038440418044438"

52 4 "00081828487C0808"

53 5 "007C407804044438"

54 6 "0018204078444438"

55 7 "007C040810202020"

56 8 "0038444438444438"

57 9 "003844443C040830"

58 : "0000303000303000"

59 ; "0000303000301020"

60 < "0008102040201008"

61 = "0000007C007C0000"

62 > "0020100804081020"

63 ? "0038440408100010"

64 9 "0038445C545C4038"

65 fl "003844447C444444"

66 B "0078242438242478"

67 C " 0038444040404438"

68 D "0078242424242478"

69 E "007C40407840407C"

70 F "007C404078404040"

71 6 "003C40405C444438"

72 H M004444447C444444"

73 I "0038101010101038"

74 J "0004040404044438"

75 K "0044485060504844"

152

Inside the TI

76 L "004040404040407C"

7 7 M "00446C5454444444"

78 N "00446464544C4C44"

79 O "007C44444444447C"

80 P "0078444478404040"

81 Q "0038444444544834"

82 R "0078444478504844"

83 S "0038444038044438"

84 T "007C101010101010"

85 U "0044444444444438"

86 V "0044444428281010"

87 W "0044444454545428"

88 X "0044442810284444"

89 Y "0044442810101010"

90 2 "007C04081020407C"

91 C "0038202020202038"

92 \ "0000402010080400"

93 1 "0038080808080838"

94 ~ "0000102844000000"

95 _ "000000000000007C"

96 x "0000201008000000"

97 r "00000038447C4444"

98 b "0000007824382478"

99 c "0000003C4040403C"

100 j> "0000007824242478"

101 e "0000007C4078407C"

102 f "0000007C40784040"

103 s "0000003C405C4438"

104 h "00000044447C4444"

105 i "0000003810101038"

106 o "0000000808084830"

107 k "0000002428302824"

108 i_ "000000404040407C"

109 m "000000446C544444"

HO n "0000004464544C44"

153

Inside the TI

111 • "0000007C4444447C"

112 p "0000007844784040"

113 q "0000003844544834"

114 r "0000007844784844"

115 s "0000003C40380478"

116 t "0000007C10101010"

117 u "0000004444444438"

118 v "0000004444282810"

119 w "0000004444545428"

120 x "0000004428102844"

121 y "0000004428101010"

122 z "0000007C0810207C"

123 < "0018202040202018"

124 ! "0010 101000101010"

125 > "0030080804080830"

126 " "0000205408000000"

154

VJ!

n

fj

f*3

-5

Jeannie M. Watson

Even toddlers can benefitfrom the TI-99/4A com
puter. TheseJour short programs, with simple
graphics and synthesized sound, teach the al
phabet, numbers, and colors. Extended BASIC
and the Speech Synthesizer module required.

Personal computers can be a tremendous tool for everyone in
the family, from parents who use it for correspondence and fi
nancial management to school-age children who use it to help
with homework. Even preschoolers can make use of the TI-
99/4A, as the four short programs here demonstrate.

The TI-99/4A offers an excellent opportunity for intro
ducing very young children to computers, at the same time
teaching them such things as the alphabet, numbers, and col
ors. Because of its sprites, Extended BASIC, and optional
Speech Synthesizer, this machine can provide for the needs
and interests of extremely young learners. A variety of pro
grams can be developed to appeal to your toddler just by fol
lowing a few simple rules.

At Their Level
You've got to keep some things in mind when very young
children use a personal computer. Preschool children haven't
yet developed abstract thinking abilities. Two-year-olds, for in
stance, function on a very concrete thinking level. They need
simple tasks to perform, with immediate responses from the
computer. Steps that a child must perform need to be short
and precise.

All the Senses
The TI-99/4A screen can offer excellent images to children,
who need to easily see and recognize visually not only what
the screen is showing, but also which keys are which. Add the
Speech Synthesizer and you've got auditory responses. This is
a definite advantage for preschoolers, since they often don't
yet know how to read and write. And the feel as fingers push
keys offers tactile stimulation and fine motor control, another
sensory input. All in all, the computer can give a well-rounded
set of sense-oriented learning stimulations.

157

a It's Educational

Keep It Simple
Programs need to provide young children with an activity
they can easily perform. Success must be readily obtainable,
and a response and reward should follow immediately. Start
with one single keypress and work up to more than one as the
child's readiness increases. It's important that your child can
perform the task you've assigned and not experience failure.

Provide Uncluttered Motivation
Movement, color, vocal rewards, and similar interest-holding
tactics are important for holding a young child's attention
span. However, care must be taken to provide the child with
easily recognizable symbols and sounds, without unnecessary
distraction or interference. The little learner hasn't yet matured
enough to always separate the important from the unimpor
tant. For example, if you want to teach the letter B, put it on
the screen, but don't fill the screen with flowers, graphics, and
other distractions. An uncluttered, simple B moving across the
screen while a Speech Synthesizer says B will produce better
results than a Bburied in the midst of a field of graphics.

Programming
With the TI-99/4A, its Speech Synthesizer, and Extended
BASIC, the following programs are excellent beginnings for a
young child who has watched sisters, brothers, and parents at
the computer.

i

Teach the Letters A-Z

A toddler learns through repetition and modeling (copying
what others do or say). This program should be accompanied
by lots of praise and attention from the parents. The child
simply needs to be shown how to press one letter key at a
time. (Before using any of these programs, make sure the AL
PHA LOCK key is pressed down.)

Program 1. Say the Letter
50 CALL MAGNIFY(2)
100 CALL CLEAR

200 CALL KEY(0fKEY,STATUS)
300 IF KEY<65 OR KEY>90 THEN 200

400 CALL SPRITE(#1,KEY,2,100,10,0,25)
500 CALL SAY(CHR$(KEY))
600 GOTO 200

158

It's Educational

Teach the Numbers 0-9
Show your toddler the top row of keys on the keyboard. Take
the child's finger and press one number at a time. Don't worry
about the other keys, like S or D, because this program
doesn't recognize them. Notice that the program teaches only
the visual and auditory symbol of the number. It doesn't teach
one-to-one correspondence, which is the child's realization
that 8 equals eight things or 2 equals two things. That's for a
different program, one beyond the scope of this article.

Program 2. Say the Number
50 CALL MAGNIFY(2)
100 CALL CLEAR

200 CALL KEY(0,KEY,STATUS)
300 IF KEY<48 OR KEY>57 THEN 200
400 CALL SPRITE(#1,KEY,2,100,10,0,25)
500 CALL SAY(CHR$(KEY))
600 GOTO 200

All Together, Now
After your child has mastered the first two programs, a review
is a good idea because repetition usually helps retention. Com
bining the letters and numbers is one step higher on the learn
ing scale.

Program 3. Letters and Numbers
50 CALL MAGNIFY(2)
100 CALL CLEAR

200 CALL KEY(0,KEY,STATUS)
300 IF (KEY<48 OR KEY>90)OR(KEY>57 AND KEY<65)THEN

200

400 CALL SPRITE(#1,KEY,2,100,10,0,25)
500- CALL SAY(CHRS(KEY))
600 GOTO 200

And Colors, Too
Teaching colors to your toddler with the computer is a delight.
Children like color. Be sure your TI-99/4A is connected to a
color monitor or color television for this program. Show your
child how to press the space bar. Each time it's pressed the
computer will say a color and show it on the screen.

If you want to change the colors and the words spoken,
all you have to do is modify lines 240-340, changing the

159

It's Educational

values in the COLOR statements and entering the appropriate
word in the CALL SAY statements. Refer to your Extended
BASIC manual for the various color values and to your Speech
Synthesizer manual for the correct words. You may want to
change the colors, but not the spoken words, so that the colors
on your TV or monitor match better with the words spoken. ^
Program 4. Say the Colors
120 CALL SCREEN(2)
130 CALL CLEAR

140 CALL CHAR(128,"FFFFFFFFFFFFFFFF")
150 FOR C=8 TO 26

160 CALL VCHAR(4,C,128,18)
170 NEXT C

180 CALL KEY(0,KEY,STATUS)
190 IF KEY<>32 THEN 180

200 L=L+1

210 IF L<5 THEN 230

220 L=l

230 ON L GOTO 240,270,300,330
240 C0L0R=5

250 CALL SAY("BLUE")
260 GOTO 360

270 C0L0R=7

280 CALL SAY("RED")
290 GOTO 360

300 COLOR=ll

310 CALL SAY("YELLOW")
320 GOTO 360

330 COLOR=13

340 CALL SAY("GREEN")
360 CALL COLOR(13,COLOR,2)
370 GOTO 180

160

pBf!^

Doug Hapeman

This delightful educational game puts Happy
Face's fate in your child's hands. Correct an
swers to addition, subtraction, multiplication,
and division problems move Happy Face to the
top. Extended BASIC required.

Addition, subtraction, multiplication, and division. The four
primary activities in arithmetic aren't always easy for children
to learn (and are sometimes hard for adults to remember).
Constant practice and drill is one of the best ways to master
these skills and, once mastered, sharpen them. That's why
young children often spend a lot of time time hunched over
paper, pencils in hand, adding, subtracting, multiplying, and
dividing numbers.

Your TI-99/4A can serve as an excellent arithmetic teach
ing tool, giving your child problem after problem to solve.
"Happy Face Arithmetic," an entertaining educational pro
gram, puts this tool at your child's fingertips.

Happy Face, Sad Face
After you've typed in and saved the program, load it from
tape or disk and enter RUN. Your child has four types of
problems to choose from—addition, subtraction, multiplica
tion, and division. Simply press the appropriate key.

There are even three difficulty levels in Happy Face
Arithmetic. Depending on your child's age and ability, you
can choose Easy (uses numbers from 1 to 9), Medium (1-25),
or Hard (1-99). There aren't any fractional numbers in Happy
Face Arithmetic, only integers. This applies to answers as well.
In the division mode, all answers will be integers.

The program displays five questions at a time. The upper
part of the screen is a series of five floors, with ladders con
necting them. Each time all five questions are answered cor
rectly, Happy Face climbs a ladder to the next level. If just one
of the five is answered incorrectly, Happy Face remains on the
same floor and the correct answers are shown. Of course, the
object is to keep answering problems until Happy Face reaches
the top level. Your child will delight in the reward—balloons

161

ssa It's Educational

launched and music playing. You'll also see the percentage of
problems answered correctly.

Entering answers is easy. Just press the correct number
keys and then hit the ENTER key. Mistakes can be corrected
by using the FCTN and arrow keys to move the cursor left or
right, then entering the right number. Once you press the EN
TER key, however, you can't go back and change the answer.

Happy Face Arithmetic
100 REM HAPPY FACE MATH

110 REM

120 DIM W(5),X(5),Y(5),Z(5),C$(13)
130 DISPLAY AT(9,3)ERASE ALL:RPT$("*",23): :" * H

APPY-FACE*": :" *ARITHMETIC

": :" ";RPT$("",23)
140 REM *******DEFINE CHARACTERS AND COLORS*******
150 FOR 1=10 TO 0 STEP -1 :: READ C,C$(l):: CALL CH

AR(C,C$(I)):: DISPLAY AT(23,12)BEEP:I :: NEXT I
160 FOR 1=0 TO 8 :: CALL COLOR(I,2,13):: NEXT I ::

CALL COLOR(9,5,ll):: CALL COLOR(10,15,13):: CAL
L COLOR(12,2,13):: CALL SCREEN(15)

170 DATA 95,001818007E001818,97,FFFFFFFFFFFFFFFF,98
,FFFFFF,99,FFFFC0C0FFFFC0C0,100,FFFF0303FFFF030
3,104,FFFFFFFF7F3E1C

180 DATA 112,030F3F7F7F3FFFFFFFFF3F7F7F37070100C0CC
FEFEFCFFFFFFFFFCFEFEECE08

190 DATA 124,071820404C8880818088844340201807E0180C
0232110181011121C2020418E

200 DATA 128,071820404C8880818083844840201807E0180C
023211018101C12112020418E

210 DATA 132,071820404C888081809F904844231807E0180C
023211018101F9091222C418E

220 DATA 136,030F1F3F3F3F3F1F0F0703010102040880E0F0
F8F8F8F8F0E0C08

230 REM *******OPTIONS MENUS*******
240 DISPLAY AT(23,3):"*PRESS ANY KEY TO BEGIN*" ::

CALL KEY(0,KEY,S):: IF S=0 THEN 240
250 DISPLAY AT(5,1)ERASE ALL:"CHOOSE THE TYPE OF PR

OBLEMS:": : :"PRESS FOR": : :" 1 = ADDITIO

N": :" 2 = SUBTRACTION"

260 DISPLAY AT(15,3)BEEP:"3 = MULTIPLICATION": :"
4 = DIVISION"

270 CALL KEY(0,K,S):: IF S=0 OR K<49 OR K>52 THEN 2
70 :: FLAG,ND,NR=0 :: M=2"(l/12)

280 DISPLAY AT(5,1)ERASE ALL BEEP:"CHOOSE LEVEL OF
DIFFICULTY:": : :"PRESS FOR": : :" 1 = EAS

Y PROBLEMS": :" 2 = MEDIUM PROBLEMS"

290 DISPLAY AT(15,3):"3 = DIFFICULT PROBLEMS"

162

It's Educational

300 CALL KEY(0,KK,S):: IF S=0 OR KK<49 OR KK>51 THE
N 300 :: CALL CLEAR

310 REM *******PRINT SCREEN*******
320 CALL HCHAR(1,1,104,32)
330 FOR R=5 TO 14 STEP 3 :: CALL HCHAR(R,1,98,32) ::

ON (R-2)/3 GOSUB 340,350,360,350 :: NEXT R ::
CALL HCHAR(17,1,97,256):: GOTO 380

340 FOR C=12 TO 20 STEP 8 :: GOSUB 370 :: NEXT C ::
RETURN

350 FOR C=8 TO 24 STEP 8 :: GOSUB 370 :: NEXT C ::
RETURN

360 FOR C=4 TO 28 STEP 8 :: GOSUB 370 :: NEXT C ::

RETURN , „„ ox
370 CALL VCHAR(R,C,99,3):: CALL VCHAR(R,C+1,100,3):

• RETURN

380 R=113 :: H=15 :: CALL SPRITE(#1,124,2,R,120,#2,
124,2,17,120,#3,112,16,1,192,0,-1):: CALL MAGNI
FY(3)

390 CALL MOTION(#1,0,H,#2,0,-H):: FOR 1=18 TO 21 ::
DISPLAY AT(I,1):RPT$(" ",28):: NEXT I :: CALL
HCHAR(23,1,97,64)

400 REM *******DIFFICULTY LEVEL NUMBER LIMITS******
*

410 ON KK-48 GOTO 420,430,440
420 N=9 :: GOTO 460
430 N925 :: GOTO 460

440 N=99
450 REM *******SELECT RANDOM NUMBERS*******
460 FOR 1=1 TO 5 :: RANDOMIZE :: W(I)=INT(RND*N)+1

:: NEXT I :: IF K-48>2 THEN N=9 ELSE N=N
470 FOR 1=1 TO 5 :: RANDOMIZE :: X(I)=INT(RND*N)+1

:: NEXT I

480 FOR 1=1 TO 5 :: IF W(I)>=X(I)THEN 490 :: HOLD=W
(I):: W(I)=X(I):: X(I)=HOLD

490 NEXT I

500 REM *******CALCULATE CORRECT ANSWERS*******
510 FOR 1=1 TO 5 :: ON K-48 GOSUB 520,530,540,550 :

: NEXT I :: GOTO 570

520 Z$="+"
530 Z$="-"
540 ZS="x"

550 ZS="

Z(I)=W(I)+X(I)
Z(I)=W(I)-X(I)
Z(I)=W(I)*X(I)
Z(I)=W(I)*X(I)

):: Z(I)=HOLD :: RETURN
560 REM *******PRINT PROBLEMS*******

570 COL=l :: FOR 1=1 TO 5 :: DISPLAY AT(18,COL):USI
NG "####":W(I):: DISPLAY AT(19,COL):" ";Z$

580 DISPLAY AT(19,COL+2):USING "##":X(I):: DISPLAY
AT(20,COL):" " :: COL=COL+

6 :: NEXT I

590 REM *******ACCEPT ANSWERS*******

163

RETURN

RETURN

RETURN

HOLD=W(I):: W(I)=Z(I

It's Educational

600 C0L=5 :: FOR 1=1 TO 5 :: ACCEPT AT(21,COL-LEN(S
TR$(Z(I))))VALIDATE(DIGIT)SIZE(3)BEEP:Y(I):: CO
L=COL+6 :: NEXT I

610 REM *******print CORRECT ANSWERS*******
620 J=0 :: COL=l :: FOR 1=1 TO 5 :: IF Y(I)<>Z(I)TH

EN Z$="OOPS" ELSE Z$="GOOD" :: IF Y(I)<>Z(I)THE
N 630 :: NR=NR+1 :: GOTO 640

630 J=l

640 DISPLAY AT(23,COL):Z$:: DISPLAY AT(24,COL):USI
NG M####":Z(I):: COL=COL+6 :: NEXT I :: IF J=0
THEN 690

650 REM *******MUSIC FOR NOT FIVE RIGHT*******
660 P=128 :: GOSUB 670 :: FOR 1=25 TO 1 STEP -1 ::

CALL SOUND(-40,440*MAI,l,-3,2):: NEXT I :: P=12
4 :: GOSUB 670 :: GOTO 790

670 CALL PATTERN(#1,P,#2,P):: RETURN
680 REM *******SPRITE MOVEMENT AND MUSIC FOR FIVE R

IGHT*******

690 FLAG=FLAG+1 :: P=132 :: CALL POSITION(#l,R,C)::
ON FLAG GOTO 700,720,700,740

700 FOR 1=57 TO 185 STEP 64 :: IF OI THEN 710 :: C
=1 :: GOTO 760

710 NEXT I :: C=57 :: GOTO 760
720 FOR 1=217 TO 25 STEP -64 :: IF C<I THEN 730 ::

C=I :: GOTO 760

730 NEXT I :: C=217 :: GOTO 760
740 FOR 1=153 TO 89 STEP -64 :: IF C<I THEN 750 ::

C=I :: GOTO 760

750 NEXT I :: C=153

760 GOSUB 780 :: CALL MOTION(#1,-5,0):: R=R-24 :: P
=124

770 FOR 1=4 TO 14 :: CALL COLOR(9,I,11):: CALL SOUN
D(60,440*M~I,1):: NEXT I :: CALL SOUND(200,440*
M~15,l):: GOSUB 780 :: H=-H :: GOTO 790

780 CALL COINC(#l,R,C,3,CH):: IF CH=0 THEN 780 ELSE
CALL MOTION(#1,0,0,#2,0,0):: CALL LOCATE(#l,R,

C):: CALL PATTERN(#1,P,#2,P):: RETURN
790 CALL COLOR(9,5,ll):: ND=ND+5 :: IF R>17 THEN 39

0

800 REM *******ROUTINE FOR END OF TEST*******
810 CALL LOCATE(#2,R,C-16):: CALL MOTION(#1,0,H,#2,

0,H)

820 FOR 1=5 TO 21 :: C=INT(RND*212)+16 :: CALL SPRI
TE(#I,136,8,192,C,-20,5):: NEXT I

830 PER=INT(NR/ND*100+.5)
840 DISPLAY AT(18,1):" HAPPY FACES TOGETHER AGAIN":

:" YOU HAD";NR;"RIGHT OUT OF";ND:" THAT'S";PER
;"PERCENT CORRECT 1"

850 IF NR<ND THEN 880
860 REM *******MUSIC FOR TEST OVER*******

164

It's Educational

870 DISPLAY AT(23,1):" TERRIFIC, A PERFECT SCORE 1":
" KEEP UP THE EXCELLENT WORK" :: GOTO 890

880 DISPLAY AT(23,l):"NOW SEE IF YOU CAN REACH THE"
:" TOP WITH A PERFECT SCORE"

890 CALL KEY(0,K,S):: IF K=89 OR K=78 THEN 1240 ::
T=80

900 CALL SOUND(T*3,311,0):: CALL PATTERN(#1,132,#2,
132)

910 CALL SOUND(T,349,0)
920 CALL SOUND(T*4,392,0,311,4,156,2):: CALL KEY(0,

K,S):: IF K=89 OR K=78 THEN 1240
930 CALL SOUND(T*3,392,0,156,2)
940 CALL SOUND(T,415,0,156,2)
950 CALL SOUND(T*3,392,0,233,2)

IF K=89 OR K=78 THEN 1240
960 CALL SOUND(T,370,0,233,2)
970 CALL SOUND(T*4,392,0,233,2)

IF K=89 OR K=78 THEN 1240
980 CALL SOUND(T*4,415,0,311,4,262,2):;

N(#l,124,#2,124)
990 CALL SOUND(T*4,415,0,311,4,247,2)::

K,S):: IF K=89 OR K=78 THEN 1240
1000 CALL SOUND(T*8,392,0,311,4,233,2)

,K,S):: IF K=89 OR K=78 THEN 1240
1010 CALL SOUND(T*4,466,0,392,4,156,2)

RN(#1,132,#2,132)
1020 CALL SOUND(T*3,466,0,156,2)

: IF K=89 OR K=78 THEN 1240

1030 CALL SOUND(T,523,0,156,2)
1040 CALL SOUND(T*3,466,0,196,2)
1050 CALL SOUND(T,440,0,196,2)
1060 CALL SOUND(T*4,466,0,196,2)

: IF K=89 OR K=78 THEN 1240

1070 CALL SOUND(T*8,523,0,311,4,208,2):: CALL PATTE
RN(#1,124,#2,124):: CALL KEY(0,K,S):: IF K=89
OR K=78 THEN 1240

1080 CALL SOUND(T*4,466,0,311,4,196,2)
1090 CALL SOUND(T*3,466,0):: CALL KEY(0,K,S):: IF K

=89 OR K=78 THEN 1240

1100 CALL SOUND(T,494,0)
1110 CALL SOUND(T*3,523,0,208,2)

132,#2,132)
1120 CALL SOUND(T,494,0,208,2)
1130 CALL SOUND(T*2,523,0,208,2)
1140 CALL SOUND(T*10,622,0,415,4,262,2):: CALL KEY(

0,K,S):: IF K=89 OR K=78 THEN 1240
1150 CALL SOUND(T*3,392,0,156,2):: CALL PATTERN(#1,

124,#2,124)
1160 CALL SOUND(T,415,0,147,2)
1170 CALL SOUND(T*2,440,0,139,2)

CALL KEY(0,K,S)::

CALL KEY(0,K,S)::

CALL PATTER

CALL KEY(0,

; CALL KEY(0

! CALL PATTE

CALL KEY(0,K,S):

CALL KEY(0,K,S):

CALL PATTERN(#1,

165

It's Educational

1180 CALL SOUND(T*10,466,0,330,4,131,2):: CALL KEY(
0,K,S):: IF K=89 OR K=78 THEN 1240

1190 CALL SOUND(T*8,311,0,220,4,175,2):: CALL PATTE
RN(#1,132,#2,132):: CALL KEY(0,K,S):: IFK=89
OR K=78 THEN 1240

1200 CALL SOUND(T*8,349,0,208,4,117,2):: CALL KEY(0
,K,S):: IF K=89 OR K=78 THEN 1240

1210 CALL SOUND(T*16,311,0,196,4,156,2):: CALL PATT
ERN(#1,124,#2,124):: CALL KEY(0,K,S):: IF K=89
OR K=78 THEN 1240

1220 DISPLAY AT(12,2):"*WISH TO PLAY AGAIN? (Y/N)"
:: GOTO 900

1230 REM *******FINISH OR REPEAT SESSION*******
1240 CALL DELSPRITE(ALL):: IF K=89 THEN 240 :: DISP

LAY AT(13,6)ERASE ALL:"HAVE A NICE DAYl" :: ST
OP

166

$m&>f

^^)

tmtfl

M5f

Jeannie M. Watson

Does your child need practice with a list of spell
ing words? This program, which requires the
Speech Synthesizer and the Terminal Emulator
II command module, speaks and spells the list
you enter.

Practice makes perfect. That cliche is especially true of learn
ing how to spell. School children spend hours practicing this
week's spelling words— listening to the teacher pronounce
the words, writing them down, and taking tests.

You can give your child an advantage—additional spell
ing practice—with "Spelling Tutor." The TI-99/4A can dupli
cate, to a large extent, the classroom environment, even speak
the words when you have Texas Instrument's Speech Synthe
sizer connected. This program, which also requires the Termi
nal Emulator II command module, will provide your child
with entertaining and educational spelling drill.

Drill and Practice
The key phrase is repetition for retention. Spelling words, to be
learned, must be memorized and retained. This program can
provide an unending drill until all the words are learned and
spelled correctly on the test. This is accomplished by following
a series of steps. You (or your child) enter a word list, one
word at a time. Each entry consists of a correct spelling of the
word, a comma, and the phonetic-like spelling required to
make the Speech Synthesizer pronounce the word properly.

You can enter up to 20 words. For fewer than 20, simply
type a comma and press ENTER when prompted for another
word. The words are printed and spoken in a list form to ver
ify that they've been typed in correctly. Type Y or N for yes or
no. You're allowed to enter the word list again if a mistake
has been made.

Spelling Tutor personalizes the child's learning by ask
ing for the student's name, again followed by a comma and
phonetic-like spelling of the name. Drill and practice then be
gins in earnest. The computer asks the child to spell each
word in the list. Three chances are given to spell every word

167

It's Educational

in the list correctly. When the third mistake is made, the pro
gram spells the word, one letter at a time, saying and printing
each letter. The printed word stays on the screen for several
seconds. Once the drill is finished, the child is given a test.

Learning from Mistakes
Children learn well from their mistakes if errors are treated as
learning experiences, not as some sort of negative reinforce
ment. This program immediately reteaches incorrectly spelled
words. If a child makes a spelling error, Spelling Tutor gives
immediate visual and auditory feedback by displaying the
word on the screen after the three chances are up. When an
error is made, the TI beeps and prints INCORRECT. After the
spelling test is given, the program tells the child the number
of correct and incorrect words, and again displays the incor
rectly spelled words as they should be spelled. Your child
learns from mistakes in two ways: immediate feedback and
immediate review.

When a right answer is entered, the computer displays a
happy face graphic and says the child's name.

Using Spelling Tutor
Using this program is simple. The important thing to remem
beris to follow each word—including the student's name—
with a comma and a phonetic-like spelling of the word to
allow the Speech Synthesizer to say the word correctly. Again,
if you have fewer than 20 words and want to proceed, type a
comma when asked for the next word and the program will
continue.

Once the spelling test has been taken, two things can hap
pen. If the child spelled all the words in the list correctly dur
ing the test, the program returns to the name prompt so that
another student can play. If the child missed one or more words,
the list is again presented. Another test is given at its end.

To quit the program, press FCTN-4.

Controlling the Speech Synthesizer
Before introducing your child to this program, you may want
to check the pronunciation, by the Speech Synthesizer, of the
spelling word list. The TI Speech Synthesizer is a wonderful
tool, but it recognizes only phonetic spellings. You'll have to
enter (after the comma) the correct phonetic spelling so that

168

It's Educational

the Synthesizer can read the word. Spelling Tutor includes a
RUN 2000 option that lets you check the pronunciation of the
words before your child hears them. Just type RUN 2000, press
ENTER, and listen for pronunciation errors.

Phonetic spellings are listed in the dictionary, so if you
aren't sure of one, be sure to look it up. Exceptions-to-the-rule
words are given phonetically, too. An example is the word
COLONEL—phonetically it should be spelled KEKN-L, with
the accent on the first syllable. The accent marks to use are ~
or %or you may want to try ! or ?. A little experimenting
should solve any problems.

Spelling Tutor
100 CALL CLEAR

110 CALL CHAR(154,"0F1020409E808C81")
120 CALL CHAR(155,"F008040279013181")
130 CALL CHAR(156,"919191884423100F")
140 CALL CHAR(157,"8989891122C408F0")
150 CALL CHAR(152,"3C4299A1A99423C")
160 OPEN #1:"SPEECH",OUTPUT

170 CALL CLEAR

180 PRINT "SPELLING TUTOR":"FOR T.I. 99/4A WITH TEI
I":"":CHR$(152);"JEANNIE WATSON ":::::

190 PRINT #1:"SPELLING TUTOR BY JEANNIE WATSON"
200 PRINT "ENTER WORD LIST":"IN THIS FORMAT":"WORD,

PHONICS SPELLING":"HIT COMMA TO ENTER":"SHORTE

NED LIST": : : : :

210 WN=1

220 DIM A$(25)
230 DIM B$(25)
240 DIM C$(25)
250 DIM E$(25)
260 DIM P$(25)
270 PRINT "ENTER WORD NUMBER":WN

280 INPUT A$(WN),B$(WN)
290 IF A$(WN)="" THEN 330
300 IF WN=20 THEN 330

310 WN=WN+1

320 GOTO 270

330 CALL CLEAR

340 PRINT #l:"YOUR WORD LIST IS"

350 FOR W=l TO WN-1

360 IF A$(W)="" THEN 410
370 PRINT A$(W):
380 PRINT #1:B$(W)
390 NEXT W

400 PRINT "": :

169

a It's Educational __

410 INPUT "IS WORD LIST CORRECT? (Y OR N)":V$
420 IF V$="Y" THEN 450 «^
430 WN=1

440 GOTO 270 ^
450 Z=WN-1

460 CALL CLEAR

470 PRINT "ENTER STUDENT'S NAME":"NAME, PHONIC NAME ""*

480 INPUT N$,M$
490 IF N$="" THEN 200
500 PRINT #1:M$
510 CORRECT=0
520 FOR K=0 TO 20
530 E$(K)=M"
540 P$(K)=""
550 NEXT K

560 CALL CLEAR

570 PRINT "PRESS SPACE BAR":"TO BEGIN": ::::::

580 CALL KEY(3,K,S)
590 IF K<>32 THEN 580

600 CALL CLEAR

610 P=l

620 T=0

630 PRINT #1:"PLEASE SPELL":B$(P)
640 INPUT C$(P)
650 IF C$(P)=A$(P)THEN 900
660 CALL SOUND(100,500,5)
670 PRINT "INCORRECT": :
680 T=T+1

690 IF T>=3 THEN 760

700 GOTO 630

710 T=l

720 IF P=Z THEN 990
730 P=P+1

740 CALL SOUND(100,600,5)
750 GOTO 740

760 CALL CLEAR

770 PRINT #1:B$(P):"IS SPELLED"
780 FOR 0=1 TO LEN(A$(P))
790 D$=SEG$(A$(P),0,1)
800 PRINT #1:D$
810 PRINT D$
820 NEXT O

830 PRINT "":::::::::::
840 FOR DELAY=1 TO 500
850 NEXT DELAY

860 IF P=Z THEN 990
870 P=P+1

880 CALL CLEAR

170

It's Educational u^^

890 GOTO 620
900 PRINT #l:"YOU ARE CORRECT":M$
910 PRINT "YOU ARE CORRECT ";NS: : : : :
920 GOSUB 1340
930 FOR DELAY=1 TO 500
940 NEXT DELAY
950 IF P=Z THEN 990

960 P=P+1

970 CALL CLEAR

980 GOTO 630

990 CALL CLEAR
1000 REM SPELLING TEST
1010 PRINT "SPELLING TEST": :::::::::::
1020 CORRECT=0

1030 FOR Y=l TO Z
1040 PRINT #1:M$:"PLEASE SPELL THE WORD":B$(Y)
1050 INPUT LS
1060 IF L$=A$(Y)THEN 1110
1070 E$(R)=A$(Y)
1080 PS(R)=B$(Y)
1090 R=R+1

1100 GOTO 1120

1110 CORRECT=CORRECT+l

1120 NEXT Y

1130 CALL CLEAR

1140 IF CORRECT=Z THEJ 1250
1150 PRINT #l:MS:"YOU SCORED":CORRECT:"OUT OF A TOT

AL OF":Z

1160 PRINT N$;" YOU SCORED":CORRECT;"RIGHT":(Z-CORR
ECT);"WRONG": : : :

1170 PRINT "THESE WORDS NEED":"MORE STUDY:": : : :

1180 FOR U=0 TO R

1190 PRINT E$(U): :
1200 PRINT #1:P$(U)
1210 FOR DEL=1 TO 1000

1220 NEXT DEL

1230 NEXT U

1240 GOTO 600

1250 CALL CLEAR

1260 PRINT #l:"YOU ARE A GOOD STUDENT":M$:"YOU GOT
THEM ALL RIGHT"

1270 PRINT N$;" IS A GOOD SPELLER!I I11":
1280 GOSUB 1340

1290 FOR DEL=1 TO 1000

1300 NEXT DEL

1310 CALL CLEAR

1320 GOTO 470

1330 REM HAPPY FACE SUBROUTINE

1340 RO=12

171

It's Educational

1350 CO=20

1360 FOR CH=154 TO 157 •*
1370 CALL HCHAR(RO,CO,CH)
1380 IF CO<21 THEN 1420 am
1390 CO=20

1400 R0=R0+1

1410 GOTO 1430 ew
1420 CO=CO+l

1430 NEXT CH
1440 RETURN

1450 OPEN #2:"SPEECH",OUTPUT
1460 CALL CLEAR
1470 INPUT "ENTER WORD ":W$
1480 IF WS="" THEN 100
1490 PRINT #2:W$
1500 GOTO 1470
2000 GOTO 1450
2010 END

172

n

n

n

Lee M. Marsh

This informative article outlines the TI-99/4A's
memory and offers some interesting tips about
assembly language programming.

The TI-99/4A is an interesting and complex computer that
uses three processors. The main processor is the TMS9900,
which handles all numeric and data manipulation. The second
is the TMS9918A Video Display Processor, responsible for
keeping the data displayed on the screen and for the auto
matic motion of sprites. The third microprocessor is the
TMS9919 sound generator controller, with three sound gen
erators that can be independently set for frequency and
volume.

Before writing assembly language programs on the TI-
99/4A, you must know where things are located in memory.
What follows are some of the tidbits and techniques I've
learned from using the Editor/Assembler. They may be of help
to you as well.

Memory Complications
Three different command modules for the TI-99/4A allow you
to load and run assembly language programs—the Editor/
Assembler, Mini Memory, and Extended BASIC. The Editor/
Assembler and Mini Memory allow you to assemble and run
assembly language programs. Extended BASIC lets you run as
sembly language programs, though not create them. We'll get
into its shortcomings in a moment.

The TI-99/4A uses a fairly complicated memory scheme.
The TMS9900 microprocessor has 16 address lines and is ca
pable of directly accessing 65,535 bytes (64K) of memory.
(Though there can be more than 64K of memory in the sys
tem, it's something left for later.) For now, let's see how the
memory that's directly addressable is divided.

The first 8K, from >0000 to >1FFF (the > symbol indi
cates that the number is in hexadecimal format), is built into

175

eee) Assembly Language

the TI's console and contains some of the BASIC interpreter
and utility programs such as SCAN, which checks to see if a
key's been pressed and returns its value. Some of these
routines can be used by your assembly language programs.

The next block, from >2000 to >3FFF, is called Low
Memory Expansion. This 8K is part of the 32K Memory Ex
pansion card—how it's used is determined by the module
you've got plugged into the console. This block usually has
utility routines, user assembly programs, and a
REFerence/DEFinition (REF/DEF) table which lets you name
your programs so that they can call each other and be
accessed by the CALL LINK statement in Extended BASIC.
This is one of the areas where the Editor/Assembler, Mini
Memory, and Extended BASIC differ.

The TI-99/4A*s Memory

CPU MEMORY

>0000 to >1FFF

Console ROM

>2000 to >3FFF

Low Memory

Expansion

MEMORY MAPPED
>4000 to >5FFF

Device ROMs

MEMORY MAPPED

Sound

Generator

Speech

Synthesizer
>6000 to >7FFF

Command Module
32K VDP MEM.

Basic Program

Screen Memory
I/O Memory

GROM

18K Console

>0000->17FF
>2000->37FF
>4000->57FF

>8000 to >9FFF

RAM PAD and

Memory-Mapped

Devices 30K in Module

>6000->77FF

>8000->97FF

>A000->B7FF

>C000->D7FF

>E000->F7FF

>AO0O to >FFFF

High Memory

Expansion

176

Assembly Language

Differences
As an example, consider how you'd access a routine in this 8K
block. Assume you're trying to call the VSBW utility routine.
VSBW writes a single character to screen memory.

The Editor/Assembler uses the statement BLWP VSBW.
The Assembler would resolve the REFerence to VSBW when
compiling. (BLWP—Branch and Load Workspace Pointers—is
like a GOSUB in BASIC.)

Because Extended BASIC cannot resolve external REFer-
ences, you must look them up on page 415 of the Editor/
Assembler manual. For instance, in Extended BASIC you'd
have to write BLWP >2020 instead. If you used a REFerence,
you'd get a Bad Tag error when you loaded the program in Ex
tended BASIC. (Another note concerning Extended BASIC: It
doesn't support DSRLNK—Device Service Routine Link—
which means that you cannot use peripherals from your as
sembly language programs. You either have to do it from
BASIC or try to write your own DSRLNK routine.)

When you're using the Mini Memory, you also have to
look up the hexadecimal address of such a routine. However,
since the routines are in a different area of memory (>6000 to
>6FFF), you need to refer to the Mini Memory's own manual.
Sticking with the same example, you'd enter BLWP @6024 if
you were using the Mini Memory module.

As you can see, calling utilities is one of the major things
to watch when you're converting a program to run under an
other command module.

Peripherals and Modules
The 8K of memory from >4000 to >5FFF is located in the pe
ripheral devices connected to the system (the disk, RS-232, or
p-code cards). These are selected one at a time through Com
munications Register Unit (CRU) addressing. CRU addressing
provides for economical single-bit I/O processing.

The cassette recorder motors, for example, are turned on
and off by CRU instructions. Have a disk controller card? In
spect addresses >4000 to >5FFF and you'll find all zeros—but
turn on CRU bit >1100 and look again—now the disk ROM
program is there.

To turn on the ROMs with the Debugger, type 0100,1,
press ENTER, type 1, and press ENTER. 0100,1 ENTER 0
ENTER deselects the ROMs when you're finished. Make a

177

Assembly Language

note that all peripheral ROMs share the same memory space.
The 8K from >6000 to >7FFF is used by the command

modules which plug into the console port. This memory can
be either RAM or ROM, depending on the module. (As far as I
know, Mini Memory is the only one with RAM.)

What's Left

The next 8K, from >8000 to >9FFF, is very important because
it contains the RAM PAD and all memory-mapped devices.
The RAM PAD is located at >8300 to >83FF. This 256-byte
area is the nerve center of the system, and is used to pass pa
rameters and status from program to program.

The final block is large, from >A000 to >FFFF. This is the
last 24K of the 32K Memory Expansion card and is at your
disposal when using the Editor/Assembler or Mini Memory
module. You're confined somewhat when in Extended BASIC.
From >A000 to the address contained in >8336-37 is free—
the memory above that address is used by Extended BASIC.

Memory Mapping
Memory mapping allows the TI-99/4A to exceed 64K of mem
ory. Several devices are memory mapped, including the sound
generator, the Speech Synthesizer, Graphic Programming Lan
guage ROM (GROM), and Video Display Memory. Memory
mapping in the TI-99/4A means that you write the address
you want to read/write from into a specific memory address,
then read/write the data into a different memory address. You
can think of memory mapping as a window through which
these devices can exchange data.
• GROM contains utility routines which you can access with

BLWP GPLLNK. A maximum of 48K of GROM can reside in
the system, divided into eight segments of 6K each. Three
are in the TI's console, and the other five can be inside the
command modules. The 18K of GROM in the TI console
contains the rest of the BASIC interpreter.

• You'll notice that no mention has been made of directly ad
dressable console memory for your BASIC programs. The
16K of memory in the unexpanded TI-99/4A is controlled by
the TMS9918A Video Display Processor and isn't in the
TMS9900's directly addressable space. BASIC programs are
stored in VDP memory. (I think that's one reason why TI
BASIC is not as fast as it could be. BASIC programs and data

178

Assembly Language

must be pushed through an eight-bit window to and from
VDP memory.)

• Sound is another memory-mapped device, and to use it you
put a sound table in VDP memory which gives information
that the three sound generators need (frequency, duration,
and attenuation), then tell the sound generator to process it.

One Last Tip
Here's one last tip to help you poke around inside Extended
BASIC. If you replace all the external REF statements in an as
sembly language source listing with their hex equivalent in
EQU statements (VSBW EQU >2020, for instance), you can re
compile it and run it from Extended BASIC. To load and run,
use the following procedure:

1. Get the ready prompt in Extended BASIC.
2. Type CALL INIT and press ENTER.
3. Type CALL LOAD ("DSK1.DEBUG"), assuming you are

using DSK1. and you recompiled it under the filename
DEBUG.

4. Type CALL LINK("DEBUG"), again assuming that you left
the DEF statement in the source program as DEBUG.

5. Press U to change the screen offset so that the characters
show up.

6. Use the Debugger as you would with the Editor/Assembler,
but now you can inspect Extended BASIC ROM and
GROM.

References

I find the following information invaluable when writing as
sembly language programs. The numbers in italics are page
numbers in the Editor/Assembler manual.

Address Feature or Function
0000-1FFF 8K Console ROM 399
000E Keyboard scan 250
2000-2001 ID Code >A55A 411
2000-3FFF Low memory expansion 411
200A-2019 Argument identifier 278
2022 UTLTAB 264
2022-20FF UTLTAB data 411
2024 First free high memory 264
2026 Last free high memory 264

179

Address

2028

202A

202C
202E

2030
2032

2034

2036
2038

203A

20bA

2100-2128
2128-26FF

2700-3F37
3f38-3FFF
4000-5FFF

6000-7FFF
8000-9FFF
8300-83FF

8310
8312

831A

833C
834A

8354

8354-8355
8356

8356-8357
835C
836E

8370-8370
8372

8373

8374

8375

8376
8377
8378

8379

837A
837B

837C
837D

180

Assembly Language

Feature or Function

First free low memory 264
Last free low memory 264
Checksum 264
PAB flag pointer 264
GPL return address 264
CRU address save 264
Save DSR/SUB address 264
Save DEV/SUB name length 264
Save DEV/SUB name pointer 264
UTILWS (utility workspace) 246
USRWSP (user workspace) 246
Utility vectors 411
Utility programs 421
Assembly programs 411
REF/DEF table 246, 307
Peripheral ROM 399
Command module 399
RAM PAD memory-mapped devices 399
RAM PAD 404
Value stack pointer 278
Number of arguments 278
First free VDP memory 253
Pointer to PAB in VDP memory 302
Start of floating-point accumulator 252
Math errors 254
Length of name in cassette call 253
Address of character after CSl in cassette call 253
Pointer to name length in PAB 262
Arguments 252
VSPTR 259
Highest VDP memory 405
Least significant byte of data stack pointer
Most significant byte=83 404
Least significant byte of subroutine stack pointer
Most significant byte=83 404
Keyboard number to scan 250
ASCII key code returned 250
Joystick Y position 250
Joystick X position 250
Random number generator 405
VDP interrupt timer 405
Maximum number of sprites 405
Copy of VDP status 405
GPL status byte 250, 405
VDP charactor buffer 405

(sS9

r^3^

fim^t?

Assembly Language

Address Feature or Function

837E Current screen row 405
837F Current screen column 405
83C0-84FG Interpreter workspace 405
83C0 Random number seed 406
83C2 Interrupt control flag 406
83C4 User interrupt address 406
83CA Console keyboard debounce 406
83CC Sound list pointer 312, 406
83CE >01 to trigger sound generator 322, 406
83D0 >0000 during cassette call 253
83D0-83D4 GROM/ROM search pointers 406
83D4 Copy of VDP register #1 326
83D6-83D7 Screen time out counter 406

83D8 Scan return address 406
83DA Scan player number 406
83FD Least significant bit=l for VDP sound table 322

This is a list of "windows" to the memory-mapped devices.

Address Feature or Function
8400 Sound generator 327
8800 VDP read data 267

8802 VDP read status register 269
8C00 VDP write data 268
8C02 VDP write address 266
9000 Speech read data 352
9400 Speech write data 352
9800 GROM read data 272
9802 GROM read address 270
9C00 GROM write data 272
9C02 GROM write address 270

181

Thomas W. Kirk

Lookingfor a fast way to search through hun
dreds of array elements? "TI FastSearch" is a
machine language subprogram which you can
call and link to with Extended BASIC.
Editor/Assembler, Extended BASIC, disk drive,
and Memory Expansion unit necessary.

Searching through ten records, looking for just the right one,
is certainly possible in TI BASIC or Extended BASIC. But mul
tiply the number of records by ten, or a hundred, and the task
begins to look impossible. Even Extended BASIC is just too
slow. Only machine language, the language the computer uses
when it communicates with itself, will do.

I discovered this when a friend told me of a business
which had a TI-99/4A on display—the business wanted to
use it to keep track of sales documents. I wrote an Extended
BASIC program to do what was needed, but it was just too
slow. One of the problems was the search routine, which ex
amined the contents of an array containing pointers to a ran
dom access file. After I came to the conclusion that machine
language was required, I distilled the problem into two parts:
finding all the array elements in turn and comparing them
with the value sought.

Finding Array Elements and Simple Variables
The BASIC Support Utility subprograms contained in the Ex
tended BASIC command module provide easy access to arrays
created in Extended BASIC. The Editor/Assembler manual de
scribes the setup required to invoke the routines.

NUMREF, one of these utility subprograms, is used to re
cover a numeric array element which was created in Extended
BASIC and stored in floating-point format. The linkage from
Extended BASIC follows this format:

CALL UNK("NAME",K,N(x))

where NAME is the defined name of the assembly language
subprogram you're calling, K is the first parameter, and N(x)
the second parameter. Execution of this command transfers
control of the computer to the called assembly language pro
gram and passes information concerning the particulars of

182

Assembly Language

each argument to a value stack in the VDP memory pointed to
by contents of the PAD at locations >8300 to >8315 (the >
symbol indicates hexadecimal notation).

However, the easiest way to locate a particular argument
value is through assembly language:
LI R0,1 Element number or 0 if argument is a simple

variable

LI Rl,l Parameter number
BLWP @NUMREF Invoke NUMREF

NUMREF finds the specified argument and places it at eight
consecutive byte locations starting at location >834A. The
value is stored in radix 100 format.

STRREF, another utility subprogram, is used to recover a
string element which was created in Extended BASIC and
which is stored in string format—06667979717369 where 06 is
string length in bytes, and where 66, 79, 79, 71, 73, and 69 are
ASCII codes. STRREF places the recovered string in a user-
designated buffer. The syntax, in assembly language, is
LI R0,1 Element number or 0 if argument is a simple

variable
LI Rl,l Parameter number
LI R1,BUF Buffer location—the first byte must contain

buffer length. Attempting to load a string which
exceeds specified value will result in an error.

BLWP @STRREF Invoke STRREF

Entering TI FastSearch
Your first job, then, is to enter the assembly language listing
(Program 1) at the end of the article. Using the Editor/
Assembler, you need to enter, assemble, and debug the pro
gram. It's not long (not as long as some other machine lan
guage programs in this book, at least), and when you're
satisfied that it's working correctly, save it to disk. Save it in a
FIXED 80 format. If you're planning to use the demonstration
program (Program 2), make sure you save the file as SORTA.

Once you have the program on disk, you can load it into
memory and use the CALL LINK format to access its two
subroutines.

Comparing Values
A search is done simply and quickly by comparing the bytes
of the passed argument with the bytes of the array element

183

Assembly Language

fetched by the BASIC Support Utility. The position is tracked
by a counter. When a match is detected, the counter is stored
in a predetermined memory location, and control is returned
to Extended BASIC. The BASIC program then PEEKs at the
agreed memory location and captures the required array
position.

Program 2 is an Extended BASIC program which shows
you how easy it is to link to assembly language subroutines
from TI BASIC and Extended BASIC. It creates a 1000-element
array, asks you to specify one of those elements, and then lo
cates that array for you.

FIND and AGAIN

The file you've created, SORTA, contains two subprograms:
FIND and AGAIN.

FIND. This finds the first occurrence of any number K,
passed from Extended BASIC in array N(x). To call this sub
program, use the format
CALL LINK("FIND",K,]V(*);

To return control to Extended BASIC, use the format

CALL PEEK(-24560/HI,LO)

where the specified element number equals (HI*256)+LO.
Thus, if the element number was 32967, for instance, HI

would equal 128 and LO would equal 199 (128*256=32768;
32768 + 199 = 32967).

AGAIN. This subprogram finds any occurrence of any
number K, passed from Extended BASIC in array N(x). Its for
mat is much the same as FIND:

CALL LINK("AGAIN",1C,N(*))

where K is the number and N(x) is the array. Control is passed
back to Extended BASIC by the same procedure as with FIND:
CALL PEEK(-24560,HI,LO)

where the element number equals (HI*256)+LO.
For either FIND or AGAIN, array N(x) must be created in

Extended BASIC before the utility can be used.
Note in Program 2, the Extended BASIC demonstration,

that both FIND and AGAIN are used. This insures that all in
stances of an array element are found. FIND locates the first
instance of the element, while AGAIN locates any instance.

184

Assembly Language

Program 1. TI FastSearch

DEF FIND,AGAIN
NUMREF EQU >200C
TARGET EQU >A000
PLACE EQU >A010
STATUS EQU >837C
SAVE DATA >0000
FAC EQU >834A
GPLWS EQU >83E0
MYWS BSS >20
MYWS1 BSS >20
MYWS2 BSS >20

MSWS3 BSS >20
FIND

LWPI MYWS

LI R0,0
LI Rl,l
BLWP @NUMREF LOAD LINKED VALUE IN FAC
LI R2,8
LI R3,FAC
LI R4,TARGET

BACK MOV *R3+,*R4+ PUT IT AT TARGET
DECT R2

JNE BACK
LI Rl,2

NEXT BLWP @NUMREF LOAD ARRAY VALUE IN FAC
LI R2,8
LI R3,TARGET
LI R4,>834B

COMP C *R3+,*R4+ COMPARE TARGET WITH FAC
JNE ADD1 JUMP NOT EQ TO ADD1
DECT R2

CI R2,0
JNE COMP

JMP MATCH

ADD1 INC RO
CI R0,>03E8
JLT NEXT

JMP NO

MATCH MOV RO,@PLACE
BLWP @RETURN

NO LI R0,>FFFF
MOV R0,@PLACE
BLWP ©RETURN

******** AGAIN ***************

AGAIN

LWPI MYWS

MOV @PLACE,R0

185

•m Assembly Language

INC RO

LI Rl} 2. i»s?
NEXT1 BLWP @NUMREF LOAD ARRAY VALUE IN FAC
LI R2,8
LI R3,TARGET H
LI R4,>834B

COMP1 C *R3+,*R4+ COMPARE TARGET WITH FAC mm
JNE ADD2 JUMP NOT EQ TO ADD1
DECT R2

CI R2,0
JNE COMP1

JMP MATCH1

ADD2 INC RO

CI R0,>03E8
JLT NEXT1
JMP NOl

MATCH1 MOV R0,@PLACE
BLWP @RETURN

NOl LI R0,>FFFF
MOV R0,@PLACE
BLWP @RETURN

**** RETURN *************

RETURN DATA MYWS1,RET1
RET1 CLR RO

MOVB RO,@STATUS *CLEAR STATUS
LWPI GPLWS *BRANCH TO GLWP
B @>0070 *LOAD RETURN
RT *RETURN
END

Program 2. Extended BASIC Search Demonstration
100 CALL CLEAR :: PRINT "LOADING ASSEMBLY SUBPROGRA

M.":"ONE MOMENT PLEASE..."

110 REM THIS EXTENDED BASIC PROGRAM ILLUSTRATE6 THE

USE OF THE MACHINE LANGUAGE SUBPROGRAMS CONTAI

NED IN "SORTA".
120 CALL INIT :: REM INITIALIZE SYSTEM _

130 CALL LOAD("DSK1.SORTA") I
140 DIM ARRAY(1000)
150 CALL CLEAR :: PRINT "BUILDING A 1000 ELEMENT «•»

ARRAY.": :"ONE MOMENT PLEASE ..."

160 FOR X=l TO 1000 :: ARRAY(X)=X+3 :: NEXT X :: RE =n
M BUILDS AN ARRAY

170 DISPLAY AT(3,2)ERASE ALL:"INPUT AN INTEGER BETW
EEN 0 AND 1000: " :: ACCEPT AT(5,11)BEEP VALID ^
ATE(NUMERIC):K

180 CALL CLEAR :: PRINT "SEARCHING.": :"ONE MOMENT «*

PLEASE..."

186 "*

f-1-i^)

Assembly Language e

190 CALL LINK("FIND",K,ARRAY())
200 CALL CLEAR

210 CALL PEEK(-24560,HI,LO):: CALL CONVERT(HI, LO,VA
LUE):: IF VALUE=65535 THEN 250

220 PRINT "ARRAY POSITION IS: ";VALUE: :"N(";STR$(V
ALUE);")=";K: :

230 CALL LINK("AGAIN",K,ARRAY())
240 GOTO 210

250 PRINT "THAT'S ALL": :"PRESS ENTER TO CONTINUE.,
it

252 CALL KEY(3,KE,ST):: IF ST=0 THEN 252 ELSE 170
260 END

270 SUB CONVERT(HI,LO,VALUE)
280 VALUE=HI*256+L0

290 SUBEND

187

Christopher Flynn

Seven assembly language routines add power
andflexibility to TI BASIC. You don't have to
know anything about assembly language pro
gramming to enter or use these utilities. Mini
Memory command module and disk drive needed.

You've probably heard of Texas Instrument's Mini Memory
command module, but you may not know what it does, or
even what it can do, for your TI-99/4A. Though the module is
no longer available retail (not much associated with the TI-
99/4A is, unfortunately), there's still a good chance you'll be
able to find one. TI-99/4A user groups, many of which still
exist, are an excellent place to start. And there are various
organizations, even a few companies, that have made it their
job to distribute whatever TI hardware and software they
come across.

What we'll do in this article is see what the Mini Memory
module is, and some of the things you can do with it. We'll
focus on how to use Mini Memory to add new commands to
TI BASIC.

What It Is
First of all, the Mini Memory is a TI command module. This
means that you can plug it right into the TI-99/4A console,
just like Parsec or Munchman. You don't need any additional
hardware to use the Mini Memory.

Inside the cartridge, there are three things:

• A 4K Read Only Memory (ROM) chip
• A 6K Graphics Read Only Memory (GROM) chip
• And 4K of Random Access Memory (RAM), with battery

backup
The ROM and GROM chips contain programs written by

Texas Instruments. These programs are quite different from
those usually found in a command module.

Since the module contains 4K of RAM (the type of mem
ory into which the computer can store information and from

188

Assembly Language

which it can read that information), you can store data or pro
grams in the Mini Memory. Notice that the 4K RAM also has
a built-in battery backup. Why? Well, whatever you store in
the RAM will remain there—even when you turn off your
computer. This gives you some interesting possibilities.

Also included with the Mini Memory is a cassette tape
containing the Line-by-Line assembler. This is a program
which lets you experiment with assembly language program
ming. Don't forget that your TI-99/4A contains a 16-bit CPU.
Its assembly language capabilities are outstanding.

But What's It For?

There are a number of uses for the Mini Memory cartridge.
Here are just a few:

• Storage for BASIC programs or files
• Learning about assembly language programming
• Running assembly language programs

What we'll do is briefly discuss these applications. This should
give you a better idea of what the Mini Memory really can do.

Just another device. First of all, you can use the Mini
Memory as though it were another device. In other words, you
can make it work like a cassette tape recorder or even a disk
drive. You can save a program in the cartridge (if the program
isn't too long) with the SAVE command. You can get the pro
gram back again with the OLD command. Since there's a bat
tery backup, the program remains in the cartridge's memory
even after you turn off your machine.

The 4K RAM can also be used for saving data. You can
use any type of file structure supported by TI BASIC. The
PRINT command will write data into the Mini Memory. The
INPUT command will read the data back. Even relative files
work. These capabilities allow you to do things that you just
couldn't do with a tape recorder.

Learning assembly. Another use for the Mini Memory
cartridge is as an aid to learning assembly language. The Line-
by-Line assembler is useful, but it's not a full-scale develop
ment system. The Line-by-Line assembler takes up most of the
4K of Mini Memory RAM. It has some other deficiencies as
well. There's no provision for saving the source code for pro
grams, and debugging can be a very tedious job. But at least
you can try out assembly language to see if you like it. (If you

189

EasEi Assembly Language

decide to jump into assembly language at full speed, you'll
need to find a copy of Texas Instrument's Editor/Assembler.
With it, however, you'll have to have an expanded TI-99/4A,
with a disk drive.)

Running assembly language programs. The Mini Mem
ory module can be used to run assembly language programs
written by others. People who have fully expanded TI-99/4A
computers can develop programs you can use. In fact, there
are several utility programs included in this article and other
assembly language programs in this book that you can enter
into the module.

TI BASIC Utilities
If you could expand TI BASIC, what features would you add?
Subroutines such as CALL COLOR or CALL SOUND might
immediately come to mind.

How about something different? We've developed assem
bly language utilities for:

• Sorting
• Screen formatting
• String-number conversion

You'll probably find these very useful. These utilities will
come in handy when you're developing your own BASIC
programs.

Before you continue, you need the following hardware
and software.

• TI-99/4A console
• Disk drive
• Mini Memory command module
• Disk containing one or more of the utilities in object code
form

The first three items are standard—you probably already
have them. A disk which includes the utilities is something
you don't have—at least not yet. You can, however, put these
utilities on disk, with some typing.

Disk Utilities
Though most people probably use a cassette tape to store Mini
Memory-created assembly language programs and routines, it
is possible to load them from disk. Normally, only files created
by Texas Instruments' Editor/Assembler package can be loaded

190

Assembly Language

from disk through the Mini Memory option of the command
module. However, we've managed to duplicate the object code
format that the Editor/Assembler uses. As long as you follow
the directions below, you'll be able to load one or more of
these utilities directly from disk.

• In TI BASIC, type in Program 1, "Binload," and save it to
disk. This is your master object code maker, to which you'll
add DATA statements specific to each utility.

• Load Program 1 from disk and list it. The last line, line 340,
should be near the bottom of the screen. Select the appropri
ate set of DATA statements (Programs 2-9) and type them in.
When you've finished entering one complete set (the number
of DATA statement lines depends on the utility), save the
program to disk, using the correct filename. These are
Program 2 SORTN/BAS
Program 3 SORT$/BAS
Program 4 DISP$/BAS
Program 5 ACCPT$/BAS
Program 6 SETWID/BAS
Program 7 TOSTR$/BAS
Program 8 TONUM$/BAS
Program 9 KERNAL/BAS

• Once you have these BASIC programs on disk, all you need
to do to create machine language object files is to run each of
them in turn. When you run SORTN/BAS, for instance, it
will ask you for a filename. Simply enter SORTN and press
ENTER, and the TI will automatically create an object file
called SORTN on the disk in drive 1.

Use the following filenames when creating object code
files for these utilities. It is important that you use these names.
BASIC Object
Filename Filename
SORTN/BAS SORTN
SORT$/BAS SORT$
DISP$/BAS DISP$
ACCPT$/BAS ACCPT$
SETWID/BAS SETWID
TOSTR$/BAS TOSTR$
TONUM/BAS TONUM
KERNAL/BAS KERNAL

It's at this point that any typing errors in the DATA
statements will show up. The last few numbers of each

191

a Assembly Language

DATA statement are a checksum. If there is an error in a par
ticular DATA statement, a message to that effect will appear.
Check that line and make any necessary corrections.

• Continue to run the BASIC programs until you have all the
object files on disk.

Loading the Utilities
Before you can use the utilities, they must be stored in the
Mini Memory module. Just follow these steps:

• Turn off the computer. If you have the Memory Expansion
unit installed, remove it. Insert the Mini Memory module.
Turn the computer back on and wait for the title screen to
appear.

• Press any key to obtain the main menu. Select the Mini
Memory option by pressing the 3 key.

• Select the Re-Initialize option from this menu by pressing the
3 key. This insures that the Mini Memory is cleared of any
old programs or data. Hit FCTN-6 (PROC'D) if so instructed.

• You should see the Mini Memory menu on your screen
again. Select the Load and Run option by pressing the 1 key.

• A prompt appears, asking for a filename. Type
DSK1.filename, where filename is one of the object code
filenames listed above. (Make sure that filename is on the
disk currently in drive 1.)

• Continue to load and run the utilities, one at a time, until all
you have on disk are placed in the Mini Memory's RAM.

• Press the ENTER key instead of typing in a filename. Mini
Memory will ask you for a Program Name. Ignore this, and
simply press FCTN-= (QUIT).

Note: KERNAL is not strictly a utility, but it's vital that
it be loaded into Mini Memory whenever you're using any or all
of the utilities.

Now you're ready to use the utilities in the Mini Mem
ory module. The utilities will stay in the Mini Memory until
they're erased (or until the battery runs out). Keep the disk
with the object files in a safe place.

Using the Utilities
If you're used to including CALL SOUND or CALL COLOR in
your programs, you already know how to use these utilities. In
general, a program in the Mini Memory is called with a pro
gram statement like:

192

Assembly Language g=

CALL LINKC'program name"^parameter list)

LINK may be a new BASIC word to you. Think of it as the
way you tell BASIC to use a Mini Memory program.

The particular program that you want is given by "pro
gram name". The program name can be up to six characters
long. BASIC insists that the program name be enclosed in
quotation marks.

Computers will hardly ever do anything useful until
they're given some data or information. The same is true of
the Mini Memory utilities. We want to send something from
our BASIC program to Mini Memory, and we expect some re
sults back. That's the purpose of the parameter list. It's noth
ing more than a fancy name for a list of variables or constants.

Notice how easy this is. You don't need to worry about
the memory location of any machine language programs. You
don't have to do any bothersome PEEKs and POKEs. All you
do is go about the business of solving the particular problem
you're working on. The TI-99/4A helps you out instead of
getting in your way.

The following sections describe the utilities in general
terms. Near the end of this article you'll find a reference sec
tion which contains a complete list of all the utilities as well as
the specifics on each of the parameter lists.

Sorting
Many applications need some kind of sorting routine. Perhaps
you want to alphabetize a list of names or compile a list of
numbers. There are two programs to do this: SORT$ sorts lists
of strings, while SORTN sorts numbers.

These two sorts are in-memory sorts. That means that all
the data to be sorted must be in BASIC'S memory at the same
time. Both of these sorts use the shell sort (named after a
mathematician) algorithm. Fairly good sorting speed is
obtained.

The "Utilities Reference" at the end of the article lists all
the details. Let's look at a few examples of SORTN and
SORTS.

SORTN. Sort, in ascending order, the first 100 entries in
the array EXPENSES:
CALL LINK("SORTN",100,"A",EXPENSES<))

Look at how the array is made available to Mini Memory. The

193

Assembly Language

parentheses after EXPENSES indicate that EXPENSES is an ar
ray. Furthermore, the entire array is being passed to SORTN.
Both SORTN and SORT$ require a left and right parentheses
pair right after the array name.

How do you get the answers back to BASIC? The sorted
results are returned in EXPENSES. This means that the entries
in EXPENSES have been reordered. The original sequence of
data has been lost.

SORT$. NAMES$ contains a list of last names of those to
whom you'll send Christmas cards. Each string in NAMES$ is
ten characters long. Sort the first 50 entries in the list, in as
cending order, on all ten characters:
CALL LINK("SORT$",50,10,1,10,"A",NAMES$())

You have to include four numbers in the parameter list:
50 number of entries

10 length of each string
1 starting position of the sort key subfield

10 length of the sort key subfield

SORT$. Suppose each string was 20 characters long. The
last name starts in position 11 this time. Now the sort state
ment would look like this:

CALL LINK("SORT$",50,20,11,10,"A",NAMES$())

You've included the information to tell SORT$ that you want
to sort on a subfield rather than on the entire string.

These sorts are very easy to use. Be careful of the way
you type the array name in the CALL LINK statement. Re
member that SORTS requires each string to be of the same length.
Pad strings on the right with blanks if necessary.

Screen Formatting
One of the facilities absent from TI BASIC is a way to PRINT
or INPUT from a given row and column on the screen. TI
BASIC is a scroller. It prints and accepts data from line 24. Ev
erything above that is scrolled up to make room.

Isn't that good enough? For many applications it is. But
sometimes you may want to design programs with a bit of
graphics so that the screen resembles a paper form. (This is
particularly true of data collection programs.) A scrolling dis
play doesn't lend itself to this type of program design.

Many programmers have resorted to HCHAR or VCHAR
to address the screen by row and column. Unfortunately, these

194

Assembly Language

commands can display only one character from a source string
at a time. They're also a bit on the slow side.

With the right utilities in Mini Memory, you have a set of
three subroutines designed to overcome these restrictions:
DISP$ display a string at a given row and column
ACCPT$ accept a string from a given row and column
SETWID set screen width

DISP$ and ACCPT$ work only with strings. Moreover, they're
line-oriented. DISP$ displays only one screen line of data at a
time. Similarly, you can only type up to one line of data at a
time with ACCPT$.

Before getting into details, let's take a quick look at
SETWID. It will set the screen width to either 28 or 32 charac

ters per line. You can use 32 characters per line only if you're
using a monitor or television set that doesn't cut off the edges
of your screen. SETWID works with ACCPT$ and DISP$. The
line length for BASIC'S PRINT, INPUT, and LIST statements is
not affected.

The "Utilities Reference" section at the end of the article
lists the details for ACCPT$ and DISP$. In both cases ROW,
COL, and SIZE are part of the parameter list. ROW and COL
are used to address the position on the screen where you want
either to display or accept a string. ROW may range in value
from 1 to 24. COL may range from 1 to either 28 or 32, de
pending on SETWID (the default is 28).

The top-left corner of the screen is always row 1, column
1. This is true regardless of what screen width is being used.
The utility programs automatically adjust for the 28 or 32
character line length.

SIZE is a parameter that limits either the amount of data
displayed or typed in. A few examples will clarify these
subroutines.

DISP$. Display up to ten characters of ADDRESS$ at row
2, column 10:

CALLLINK("DISP$",2,10,10,ADDRESS$)

Refer to "Utilities Reference." SIZE is positive (10). Thus, ten
characters will be erased from the screen beginning at row 2,
column 10. Next, up to ten characters of ADDRESS$ will be
displayed. Any characters to the right of ADDRESS$ on row 2
will not be disturbed.

195

Assembly Language

DISP$. Do the same thing, but erase the rest of row 2
from column 10 to the end of the line:

CALL LINK("DISP$",2,10, -10,ADDRESS$)

If SIZE is negative, the remainder of the row is erased prior to
displaying data.

That's all there is to DISP$. You could have used numeric
variables in place of 2 and 10 for ROW and COL. Also, you
could have used a string literal in the parameter list.

ACCPT$ is very similar to BASIC'S INPUT statement.
ACCPT$ is used to read information from the keyboard. How
ever, there's no prompt option associated with ACCPT$. A
message should be displayed with DISP$ first.

ACCPTS has some unique features. There's only one
editing key available—the left arrow (FCTN-S). It serves as a
simple backspace key. Characters that you backspace over are
erased. Second, ACCPT$ has an automatic ENTER feature.
SIZE indicates the number of characters that ACCPT$ wants
you to type. If you type in exactly that many, you don't have
to press ENTER—ACCPT$ does it automatically. Third,
ACCPT$ can read characters from the screen that you previ
ously typed or that were put on the screen by an earlier DISP$
statement. Thus, you don't have to type frequently used re
sponses over and over. Finally, ACCPT$ uses the underline as
its cursor. This is to remind you that ACCPT$, not BASIC, is
working.

ACCEPT$. Get a two-character state code from row 6,
column 1:

CALL LINK("ACCPT$",6,1,2,STATE$)

Two characters will be erased from the screen starting at row
6, column 1. ACCPT$ will wait for you to type in a response.
If you just hit ENTER, STATES will be set to the null string. If
you type two characters, say, MD, ACCPT$ will supply the
ENTER for you. STATES will then contain "MD".

ACCEPTS. What if you want VA most of the time, but
you don't want to type it in every time?
100 CALL LINK("DISP$"/6,1,2/"VA")

200 CALL LINKrACCPT$"/6,l,-2/STATE$)

300 GOTO 100

196

Assembly Language

First, you put VA on the screen with DISP$. In the ACCPT$
statement, you use a negative number for SIZE. This tells
ACCPT$ not to erase the field from the screen first—leave
whatever's there alone. Looking at the screen, you'd see VA. If
this is what you wanted, you'd just type ENTER. If you
wanted a different state code, you'd type over VA and then hit
ENTER.

From these simple examples, you can probably get a good
idea of what ACCPT$ and DISP$ can do. Experiment with
these two subroutines. They take a little time to get to know.

String/Number Conversion
As you've seen, ACCPT$ and DISP$ work very well for char
acter strings. But what about numbers? Surely there are times
when you'll want to display a number on the screen or when
you'll want to input a number.

What you end up doing is using string variables for all of
your input/output (I/O), then converting the strings to num
bers and vice versa as the program requires.

TI BASIC has built-in functions to handle much of the
work. STR$ converts a number to a string. VAL does the
reverse, converting a string to a number.

Sometimes, though, you'll want more flexibility. For ex
ample, if you're displaying a column of numbers, you'd like to
round the numbers and also make sure that the decimal points
line up. You can do this in BASIC, but so you don't have to
write such a program over and over again, TOSTR$ is in
cluded in the utility package.

BASIC'S VAL function has a nasty quirk. It's designed to
convert a character string, containing a series of digits, to a
number. It does this just fine. However, if there's a nonnu-
meric character in the character string, VAL chokes and the
program stops. TONUM$ is a subroutine which helps alleviate
this problem. TONUM$ extracts the numeric portion of any
character string that it is fed. This numeric portion can then be
acted upon by VAL without any difficulty.

Look to "Utilities Reference" for all the details on these
subroutines. First, though, let's go through a few examples.

TOSTR$. Convert the contents of RESULT to a character
string rounded to two places after the decimal point:
CALL LINK("TOSTR$",RESULT,2,T$)

197

Assembly Language

T$ will contain the character string. You could have used any
string variable. The name does not matter. mn.

Here are some typical results.
RESULT T$ LEN(T$) ""
1.232 1.23 4
2.345 2.35 4 "7
4 4.00 4
38.91299 38.91 5
0 .00 4
-3 -3.00 5
-2.345 -2.34 5
-1.232 -1.22 5

Notice that negative numbers are rounded toward zero.
If you wanted to print these numbers in a column, you'd

pad them on the left with spaces. Then, you'd take the
rightmost N characters with the SEG$ function.

TONUM$. The easiest subroutine to use. It has only one
variable in its parameter list. Give TONUM$ a string, and it
will return the numeric part, if any, of the string in the same
variable:

CALL LINK("TONUM$",A$)

A$ Before A$ After
1234 1234

1.78ZS6 1.78

-1.89.23 -1.89
#$! 0

Although it may be difficult to see from the example,
TONUM$ skips over leading spaces.

TONUM$ should be used with a bit of caution. Suppose
someone, in a payroll system, intended to type in 20000 for an
annual salary. Due to some kind of error, the number was
typed as Z0000. As the example shows, TONUM$ would con
vert this to a 0 annual salary. Be sure to include the necessary
editing checks in your programs.

Sample Program
A sample program is shown in Program 10. It's designed to
use most of the subroutines described in this article. Try out
this program after you've loaded all eight subroutines into
Mini Memory.

198

Assembly Language

Utilities Reference

ACCPT$
Accept String At
CALL LINK("ACCPT$",ROW,COL,SIZE,A$)

ROW Row number (1-24) on which the field will be displayed
COL Column number (1-28 or 1-32)
SIZE Size (1-28 or 1-32) of the field to be entered

If SIZE>0 then the field will be erased on the screen. If
SIZE<0 then the screen will not be erased, thus making it pos
sible to read the prior field contents. When SIZE characters
have been typed, ACCPT$ returns control to BASIC. It's not
necessary to press ENTER. The left arrow (FCTN-S) is the
only active editing key; it functions as a simple backspace key.

DISP$
Display String At
CALL LINK("DISP$",ROW,COL,SIZE,A$)

ROW Number of the row (1-24) on which the field is to be
displayed

COL Column number (1-28 or 1-32) of the field
SIZE Size (1-28 or 1-32) of the field to be displayed

If SIZE>0 then the field will be erased prior to display. If
SIZE<0 then the entire row from COL onward will be erased.

SETWID

Set Screen Width

CALL LINK("SETWID",N)

N Set the screen width to N

N may be either 28 or 32, representing the number of charac
ters per line. The TV or monitor must be capable of displaying
32 characters if this option is chosen. SETWID also affects the
COL and SIZE parameters of ACCPT$ and DISP$.

SORT$
Sort String Array
CALL LINK("SORT$",Nl,N2,N3,T$,A$())

Nl Number of records to sort
N2 Record length (must be fixed)
N3 Starting position (relative to 1) of sort key

199

Assembly Language

85&I

N4 Length of sort key
T$ Type of sort—"A" is ascending, "D" is descending "
A#$() Name of string array containing the records
Performs a shell sort of the records (or strings) in the array
A$(). The sorted records are returned in A$().

SORTN

Sort Numeric Array
CALL LINK("SORTN",Nl,T$,A())
Nl Number of elements to sort
T$ Type of sort—"A" is ascending, "D" is descending
A() Name of the array containing elements to be sorted
Performs a shell sort of the elements in A(). The sorted ele
ments are returned in A().

TONUM$
Edit a String for Numeric Value
CALL LINK("TONUM$",A$)

A$ The string to be edited

Edits A$ for a numeric value. Removes leading blanks; returns
all digits up to the first nonnumeric character. Returns the re
sult in A$. Use the VAL function if the result is to be placed in
a numeric variable.

TOSTR

Convert a Number to a String
CALL LINK("TOSTR",Nl,N2,A$)
Nl The number to be converted
N2 The number of digits (0-10) to be included after the decimal

point
A$ The result string

The number (Nl) is rounded according to the number of digits «•»
after the decimal point desired (N2). The number is converted
into a string and returned in A$. If N2 is zero, Nl is converted ••
to an integer. If N2 is nonzero, trailing zeros (up to N2) are
supplied. v

Program 1. Binload ^
100 INPUT "NAME OF PROGRAM:":N$
110 OPEN #1:"DSK1."&NS,DISPLAY ,OUTPUT,FIXED 80 ^
120 READ A$

200 ^

Assembly Language

130 IF A$="END" THEN 280
140 A=0

150 FOR 1=1 TO LEN(A$)-5
160 A=A+ASC(SEG$(A$/I,1))
170 NEXT I

180 D=65536-A

190 H§=""
200 FOR 1=1 TO 4

210 H=D-16*INT(D/16)
220 D=INT(D/16)
230 HS=SEG$("0123456789ABCDEF",H+l,1)&H$
240 NEXT I
250 IF H$<>SEG$(A$,LEN(A$)-4,4)THEN 310
260 PRINT #1:AS

270 GOTO 120

280 PRINT #1:": 99/4 AS"
290 CLOSE #1

300 END

310 PRINT "BAD DATA LINE:"
320 PRINT A$
330 CLOSE #1:DELETE

340 END

Program 2. SORTN/BAS

1000 DATA 0017A 974B6BC80BB713CB0201B0001B06
A0B7118BC1E0B834AB04C07F2BBF

1010 DATA 974C8B0201B0002BD820B734FB714DB0202B714DB
0420B604CB04E0B71427F2BFF

1020 DATA 974DEB9820B714EB7350B1602B0720B7142B0202B
0001B0A12B81C2B11FD7F2C0F

1030 DATA 974F4B13FCBC802B7140BC0A0B7140B0812B1343B
C802B7140BC187B61827F29CF

1040 DATA 9750AB0208B0001BC248BC2A0B7140BA289BC00AB
0201B0003B0420B60447F2DDF

1050 DATA 97520B0201B0008BD861B8349B835BB0601B16FBB
C009B0201B0003B04207F2E6F

1060 DATA 97536B6044B0420B601CB0A00BD060B837CBC820B
7142B7142B1604B20607F2DBF

1070 DATA 9754CB7146B1604B1017B2060B7146B1614BC00AB
0201B0003B0420B60407F311F

1080 DATA 97562B0201B0008BD861B835BB8349B0601B16FBB
C009B0201B0003B04207F2E0F

1090 DATA 97578B6040B6260B7140B15C8B0588B0606B16C4B
10B9B04C0BD800B837C7F2A7F

2000 DATA 9758EBC2E0B713CB045BBC80BB713EB0201B0001B
06A0B7118B0200B00017F2B2F

2010 DATA 975A4B0201B0018B06A0B7126BC260B834AB0609B
0201B0002B06A0B71187F2EFF

201

Assembly Language

2020 DATA 975BABC820B714AB714AB1607B0200B0001B0201B
0020B06A0B7126B10067F2F0F

2030 DATA 975D0B0200B0001B0201B001CB06A0B7126BC220B
834AB0608B0201B00037F30EF

2040 DATA 975E6B06A0B7118B04C7BC1A0B834AB1501B0707B
0746BC289B0A5ABA2887F272F

2050 DATA 975FCBC820B714AB714AB1301B05CABC820B714AB

714AB1603B0205B00207F296F

2060 DATA 97612B1002B0205B001CB6148BC2E0B713EB045BB
B060B735EB0420B60247F2C6F

2070 DATA 97628B0580B0602B15FBB045B7FA53F
2080 DATA 674B6SORTN 7FCFAF
2090 DATA END

Program 3. SORT$/BAS
1000 DATA 0013A 9737CBC80BB713CB0201B0001B06

A0B7118BC1E0B834AB02017F2D2F

1010 DATA 9738EB0002B06A0B7118B0200B0001B0201B00FFB
06A0B7126BC160B834A7F2D6F

1020 DATA 973A4B0201B0003B06A0B7118B0200B0001BC045B
06A0B7126BC120B834A7F2F1F

1030 DATA 973BAB0604B0201B0004B06A0B7118B0200B0001B

C045B06A0B7126BC0E07F2E6F
1040 DATA 973D0B834AB04C0B0201B0005BD820B734FB714DB

0202B714DB0420B604C7F2B4F

1050 DATA 973E6B04E0B7142B9820B714EB7350B1602B0720B

7142B0202B0001B0A127F2F2F

1060 DATA 973FCB81C2B11FDB13FCBC802B7140BC0A0B7140B

0812B134EBC802B71407F266F

1070 DATA 97412BC187B6182B0208B0001BC248BC2A0B7140B

A289BC009B0201B00067F2D1F

1080 DATA 97428B0202B714DBC805B714CB0420B604CBC00AB

0201B0006B0202B724F7F2CBF

1090 DATA 9743EBC805B724EB0420B604CBC084BA083B0602B

C003B04C1BD322B714E7F285F

2000 DATA 97454B2060B7144B1302B7320B734FB7322B7250B
02C1B0602B0600B16F37F2F8F

2010 DATA 9746ABC820B7142B7142B1604B2060B7144B1615B

1003B2060B7144B13117F30DF

2020 DATA 97480BC009B0201B0006B0202B724FB0420B6048B

C00AB0201B0006B02027F312F

2030 DATA 97496B714DB0420B6048B6260B7140B15BDB0588B
0606B16B9B10AEB04C07F2A1F

2040 DATA 974ACBD800B837CBC2E0B713CB045B7F8F3F
2050 DATA 6737CSORT$ 7FD23F
2060 DATA END

202

Assembly Language

Program 4. DISP$/BAS
1000 DATA 00158 97630BC80BB713CB06A0B7594B04

C0B0201B0004B0202B714D7F2F3F
1010 DATA 97642B0203B00FFBC803B714CB0420B604CBC1C7B

1307BC00ABC085B02017F296F
1020 DATA 97658B2000B06A0B7620B1009BC086B8085B1501B

C085BC00AB0201B20007F2E8F
1030 DATA 9766EB06A0B7620BC0A0B714CB8086B1501BC086B

8085B1501BC085B02037F2AAF
1040 DATA 97684B714EBC00ABD073BB060B735EB0420B6024B

0580B0602B15F8BC2E07F28DF
1050 DATA 9769AB713CB045BBC80BB713EB04C3B06A0B7700B

9801B7360B13FBB98017F26EF
1060 DATA 976B0B7356B131FB9801B7355B130FB9801B7357B

1AF2B9801B735FB1BEF7F264F
1070 DATA 976C6BB060B735EB0420B6024B0580B0583B80C2B

15E7B1011BD060B73577F2B7F
1080 DATA 976DCBB060B735EB0420B6024B0600B0603B15DDB

13DCB0580B0583B10D97F295F
1090 DATA 976F2BD060B7352B0420B6024BC2E0B713EB045BB

0420B602CBD801B73527F2A4F
2000 DATA 97708BD820B7353B8374BD060B7351B0420B6024B

0204B0200B0420B60207F30CF
2010 DATA 9771EBD060B837CB2060B7148B1312B0604B16F7B

D060B7352B0420B60247F2C9F
2020 DATA 97734B0204B0200B0420B6020BD060B837CB2060B

7148B1303B0604B16F77F2FFF
2030 DATA 9774AB10E1BD060B8375BD820B7353B837CB045BB

C802B714CB1314B11137F294F
2040 DATA 97760B0201B714EB0420B6030BC0C2B78E0B735EB

714DB0603B16FBBC0C27F283F
2050 DATA 97776B9823B714DB7357B1604B0620B714CB0603B

16F8B045B7F4DCF

2060 DATA 67630DISP$ 7FD4FF
2070 DATA END

Program 5. ACCPT$/BAS
1000 DATA 00060 97788BC80BB713CB06A0B7594BC0

86B8085B1501BC085BC2427F2B7F
1010 DATA 9779ABC1C7B1606BC00AB0201B2000B06A0B7620B

1003BC00AB06A0B77587F2AEF
1020 DATA 977B0BC00ABC089B06A0B769EBC0C3B1605BC1C7B

1607B04E0B714CB10047F262F

1030 DATA 977C6BC00ABC083B06A0B7758B04C0B0201B0004B
0202B714DBD820B73537F2ADF

1040 DATA 977DCB837CB0420B6048BC2E0B713CB045B7F7EFF
1050 DATA 67788ACCPT$7FD26F

1060 DATA END

203

Assembly Language

Program 6. SETWID/BAS
1000 DATA 00014 9797CBC80BB713CB0201B0001B06

A0B7118BC060B834AB04E07F2D6F
1010 DATA 9798EB714A7FD84F
1020 DATA 6797CSETWID7FCD9F
1030 DATA END

Program 7. TOSTR$/BAS
1000 DATA 000EA 97892BC80BB713CB0201B0002B06

A0B7118B0200B0000B02017F311F
1010 DATA 978A4B000AB06A0B7126BC220B834ABC048B0A11B

C821B7368B835CB04E07F283F

1020 DATA 978BAB835EB04E0B8360B04E0B8362B04C0B0201B
0001B0420B6044B04207F2D8F

1030 DATA 978D0B601CB0600BD820B7353B8355B0420B6018B
0014BD820B7353B837C7F2C3F

1040 DATA 978E6B04C6BD1A0B8356B06C6B04C9BD260B8355B
06C9B0229B8300BC0867F26CF

1050 DATA 978FCB0201B714EBDC79B0602B16FDBC086B0201B
714EB9C60B735DB132B7F24CF

1060 DATA 97912B0602B16FBB0202B000FB0201B714EBA046B

DC60B735BB0602B16FC7F291F

1070 DATA 97928B04E0B714CBC086B0201B714EB9C60B735AB

1306B05A0B714CB06027F29AF

1080 DATA 9793EB16F9BD460B735AB0202B714DBA808B714CB

C208B1302B05A0B714C7F272F

1090 DATA 97954B9820B714DB734FB1608B05A0B714CBD820B

735BB714FB1002B02027F29EF

2000 DATA 9796AB7361B04C0B0201B0003B0420B6048BC2E0B

713CB045B7F4EEF

2010 DATA 67892TOSTR$7FCF9F
2020 DATA END

Program 8. TONUM$/BAS
1000 DATA 000AA 977E8BC80BB713CB04C0B0201B00

01B0202B00FFBC802B714C7F2AFF

1010 DATA 977FAB0202B714DB0420B604CBC160B714CB1333B
04C6B04E0B714CB04C77F288F

1020 DATA 97810B0201B714EBD091B9802B7357B1604B0581B
0605B16F9B1025BC0C17F2C6F

1030 DATA 97826B9802B7358B1303B9802B7359B1606B0605B
131CB05A0B714CB05817F2D4F

1040 DATA 9783CBD091B9802B735AB1604BC186B160EB0586B
1007B9802B735BB1A097F291F

1050 DATA 97852B9802B735CB1B06B0587B05A0B714CB0581B
0605B16ECB0603BD4E07F28FF

204

Assembly Language

1060 DATA 97868B714DBC1C7B1609B0200B0001BC800B714CB

D820B735BB714EB02037F29DF
1070 DATA 9787EB714DB04C0B0201B0001BC083B0420B6048B

C2E0B713CB045B7F3BDF

1080 DATA 677E8T0NUM$7FCF1F
1090 DATA END

Program 9. KERNAL/BAS
1000 DATA 00264 97118B04C0B0420B6044B0420B60

1CB1200B045BB8020B834A7F31EF
1010 DATA 9712AB1104B8801B834AB1101B045BB0200B1300B

0420B6050B609CB77B87F2E9F
1020 DATA 97140B0001B0000B1000B4000B2000B0001B0001B

534EB5445B5220B594F7F340F
1030 DATA 97156B5552B2053B454CB4543B5449B4F4EB2020B

5330B3030B3000B00007F2FBF
1040 DATA 9716CB0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F399F
1050 DATA 97182B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F3A8F
1060 DATA 97198B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F3A1F
1070 DATA 971AEB0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F38CF
1080 DATA 971C4B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F39BF
1090 DATA 971DAB0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F38DF
1100 DATA 971F0B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F39CF
1110 DATA 97206B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F3ABF
1120 DATA 9721CB0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F39DF
1130 DATA 97232B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F3ACF
1140 DATA 97248B0000B0000B0000B000AB584BB4554B4248B

434FB4E41B0000B00007F30EF
1150 DATA 9725EB0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F397F

1160 DATA 97274B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F3A6F

1170 DATA 9728AB0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F398F

1180 DATA 972A0B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F3A0F

1190 DATA 972B6B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F399F

205

Assembly Language

1200 DATA 972CCB0000B0000B0000B0000B0000B0000B0000B
0000B0000B0000B00007F38BF

1210 DATA 972E2B0000B0000B0000B0000B0000B0000B0000B

0000B0000B0000B00007F39AF

1220 DATA 972F8B0000B0000B0000B0000B0000B0000B0000B
0000B0000B0000B00007F393F

1230 DATA 9730EB0000B0000B0000B0000B0000B0000B0000B
0000B0000B0000B00007F39BF

1240 DATA 97324B0000B0000B0000B0000B0000B0000B0000B
0000B0000B0000B00007F3AAF

1250 DATA 9733AB0000B0000B0000B0000B0000B0000B0000B
0000B0000B0000B00017F39BF

1260 DATA 97350B44BFBBF00B0508B0D20B2B2DB2E30B3945B
607FBFF05B2A2AB2A2A7F237F

1270 DATA 97366B2A00B3F32B3F05B3E32B3E05B3D32B3D05B
3C32B3C05B3B32B3B057F279F

1280 DATA 67118KERNAL7FD05F
1290 DATA END

Program 10. Utility Demonstration

130 DIM SORTLIST(100),SORTLIST$(100)
140 CALL CLEAR

150 CALL LINK("DISPS",12,7,28,"MINI MEMORY DEMO")
160 FOR 1=1 TO 1000

170 NEXT I

180 CALL CLEAR

190 CALL LINK("DISPS",2,1,28,"DO YOU WANT TO SORT:"
)

200 CALL LINK("DISPS",4,4,28,"S STRINGS")
210 CALL LINK("DISPS",6,4,28,"N NUMBERS")
220 CALL LINK("DISPS",8,1,28/'ENTER YOUR SELECTION

S")
230 REM

240 REM GET TYPE OF SORT
250 REM

260 CALL LINK("ACCPT$",8,23,-1,TYPES)
270 IF TYPE$="S" THEN 300
280 IF TYPE$="N" THEN 300
290 GOTO 260

300 REM

310 REM GET NUMBER OF ITEMS
320 REM

330 CALL LINK("DISPS",12,1,28,"HOW MANY ITEMS TO SO
RT 50")

340 CALL LINK("ACCPT$",12,25,-2,ITEMS$)
350 CALL LINK("TONUM$",ITEMS?)
360 ITEMS=VAL(ITEMS?)
370 IF ITEMS<3 THEN 330

380 IF ITEMS>99 THEN 330

206

Assembly Language

390 REM

!"*» 400 REM BUILD LIST OF ITEMS TO SORT
410 REM

-a 420 CALL CLEAR
r 430 CALL LINKC'DISP?",12,1,28,"WORKING ...")

440 IF TYPE?="N" THEN 540
f^ 450 FOR 1=1 TO ITEMS

460 CALL LINK("DISP?",24,1,28,STR?(I))
470 T?=""
480 FOR J=l TO 10
490 T?=T?&CHR?(25*RND+65)
500 NEXT J

510 SORTLIST?(I)=T?
520 NEXT I

530 GOTO 580

540 FOR 1=1 TO ITEMS
550 CALL LINK("DISP?",24,1,28,STR?(I))
560 SORTLIST(I)=100*RND
570 NEXT I

580 REM

590 REM SORT THE LIST

600 REM

610 CALL CLEAR
620 CALL LINKC'DISP?",12,1,28,"BEGIN SORT ...")
630 CALL SOUND(50,440,0)
640 IF TYPE?="N" THEN 670
650 CALL LINK("SORT?",ITEMS,10,1,10,"A",SORTLIST?()

)
660 GOTO 680
670 CALL LINK("SORTN", ITEMS,"A",SORTLISTO)
680 REM

690 REM DISPLAY THE RESULTS

700 REM

710 CALL SOUND(50,440,0)
720 IF TYPE?="N" THEN 770
730 FOR 1=1 TO ITEMS

740 PRINT SORTLIST?(I)
750 NEXT I

760 GOTO 830

pnt 770 FOR 1=1 TO ITEMS
780 CALL LINK("TOSTR?",SORTLIST(I),2,T?)
790 T?=" "&T?

"** 800 T?=SEG?(T?,LEN(T?)-6,7)
810 PRINT T?

«aa 820 NEXT I

830 REM

^ 840 REM ALL DONE
850 REM

860 FOR 1=1 TO 2000

^5? 870 NEXT I

"w 207

Assembly Language

880 CALL CLEAR

890 CALL LINKC'DISP?" ,12,1,28, "NEAT, HUH?") •*•*
900 FOR 1=1 TO 1000

910 NEXT I «,,
920 GOTO 100

0E5JJ

208

TI File Management
Thomas W. Kirk

Assembly language provides power to almost any
task. This article and its accompanying programs
offer the building blocks you need to create im
pressivefile management programs. There's even
an example included, an automatic disk file cat-
aloger. Extended BASIC, Memory Expansion, disk
drive, and Editor/Assembler required.

Like many people, I've never been wildly enthusiastic about
being neat. I have a hard time keeping track of my programs.
And a super fast program doesn't save much time if it takes all
night to find it. Trying to get organized, I decided to create a
fast autodisk cataloger.

What I came up with is a set of general-purpose assembly
language subprograms. These subprograms greatly enhance
the powerful Extended BASIC language by making file access
easy. In the process, I've managed to construct a working
demonstration of these routines. By coincidence, this demo
automatically catalogs files on any number of disks.

What We Need

All file management packages have several things in common.
They need to create files, save files, load previously created
(old) files, modify files, sort files, and find records. Commer
cial-quality file management systems are quite versatile and
laden with features, but other than perfecting and expanding
on these simple concepts, they're not much different from
what's presented here.

Before making a file management program work reason
ably fast on the TI-99/4A, you have to understand the ma
chine's limitations. TI Extended BASIC is great for repeating
an operation a few times, but it seems slow when it tries to re
peat something numerous times. Loading, saving, and sorting
files, and searching arrays are four such repetitive tasks. The
subprograms I've developed use the flexibility of TI Extended
BASIC to negate some of the language's limitations.

The first task—creating a file—is a repetitive process, but
not one that's time critical. The major consideration is that the

209

Assembly Language

process is simple, concise, and, most important, foolproof. TI
Extended BASIC excels in this.

The second and third tasks—saving and loading files—are
another matter. The processes are totally repetitive and require
no interaction. A slow routine in these areas is noticeable and
frustrating. Assembly language, with the help of TI's utilities,
offers the perfect solution.

Fast Loading and Saving
File is a term used to describe a grouping of records. For our
purpose, we'll limit the discussion to records targeted for disk
storage. In BASIC there are three steps to file access: (1) open
the file, (2) input record from or print records to the file, and
(3) close the file.

The TI Extended BASIC command to open a file looks
like this:

OPEN #1:"DKS1.EXAMPLE",SEQUENTIAL, VARIABLE 80,
DISPLAY, UPDATE

You'll notice that the statement includes information de
fining file parameters or attributes. These definitions are used
by the operating system to determine which set of subroutines
is used to create the file. The BASIC interpreter translates the
attributes into a list of numbers and stores them in a Peripheral
Access Block (PAB). Active PABs are stored in Video Display
Processor Random Access Memory (VDP RAM). In assembly
language, you cut out the middleman, the interpreter, and di
rectly access the operating system by placing a PAB in VDP
RAM, telling the computer where the PAB is located, and then
branching to the Device Service Routine (DSR). The DSR
reads the contents of the PBA, turns on the Read Only Mem
ory (ROM) chips contained in the disk controller card, and
then branches to the ROM subroutines required to execute the
operation indicated in the PAB.

The PRINT command is used to write a record to an
opened file, and the INPUT command is used to read a record
from an opened file. Both commands modify byte 1 of the
PAB. PRINT places a 3 in byte 1, while INPUT inserts a 2.
Execution of a PRINT command entails creating a buffer in the
VDP RAM, transferring target data to the buffer, then branch
ing to the instructions contained in the disk controller card for
the actual write-to-disk operation. Executing an INPUT com
mand uses the same actions as a PRINT operation, except the

210

Assembly Language

DSR calls the read-from-disk routines contained in the disk
controller. Each of these commands is implemented in assem
bly language by placing the appropriate operation code in byte
1 of the PAB and invoking the DSR. The TI Editor/Assembler
package contains a detailed description of how to access the
file management system of the TI-99/4A.

The CLOSE instruction is identical to the OPEN opera
tion, except PAB byte 1 contains the CLOSE code of 1. Of
course, subsequent to setting the PAB for the close operation,
the DSR is invoked.

Now that you understand how to get data to or from a
disk, it's important to determine how to reference and assign
data to variables created in BASIC. TI thoughtfully provided
several utilities specifically designed to do this job. The
STRREF, STRASG, NUMREF, and NUMASG (see "TI Fast-
Search," elsewhere in this collection) allow capture of data
from or data assignment to variables created in BASIC.

Combining the OPEN, repetitive variable reference, write,
and CLOSE subtasks together makes a complete fast print-to-
disk subroutine. While putting the OPEN, repetitive read and
variable value assignment, and CLOSE subtasks together
yields a fast read-from-disk subroutine.

Modifying a File
No one is perfect, and that's precisely why files often need
some modification. TI Extended BASIC is perfectly suited for
changing files. For the most part, the task is nonrepetitive,
and the lavish editing functions available with the ACCEPT
AT statement make writing and editing programs easy. In gen
eral, the Extended BASIC edit section of the program is self-
explanatory. A full description of the operations procedure is
included toward the end of this article.

Sorting Array Elements
If waiting for the disk operating system to load data is frustrat
ing, then waiting for an interpreted language to sort an array
of elements is boring. Only one thing is more boring than
waiting for a sort routine to work its magic—reading about
how it works. Let's just say that this sorting routine works. It
is important to note, however, that this routine works much
faster on a scrambled array than on a sorted one. Not only is
it unnecessary to sort a sorted array, this routine will take up

211

Assembly Language

to three times as long to run the second time through. Ap
pending additional scrambled elements to the array will in ef
fect partially scramble it and therefore, to some degree, lessen
run time.

Searching the Array
Searching an array (again, see "TI FastSearch" in this book)
is a simple matter in Extended BASIC, but it's very time-
consuming. An equivalent search in assembly language can
execute in less than one fifth the time. The linkage to BASIC
is also quite simple, making the implementation all the more
attractive.

The search subprogram compares a parameter passed
from BASIC with the contents of an array. Just a serial com
parison. A counter tracks the element number of the most cur
rent comparison. Upon detection of a match, the counter value
is passed back to BASIC via a PEEK command.

Building the Program
Type in Program 1, "QDEMO." It's written in TI Extended
BASIC, so make sure you have that command module plugged
into the console. Save it to disk using the filename QDEMO
(you can assign it a different name).

Entering the three assembly language subprograms (the
source code for these subprograms is listed in Programs 2, 3,
and 4) requires more structure. Each subprogram is indepen
dent, though you'll need all three if you're using QDEMO. If
you need (in creating your own file management program, for
instance) only one or two of the subprograms, then by all
means feel free to enter only those you'll use.

Of course, you need the Editor/Assembler package to en
ter, edit, assemble, and debug these subprograms. Save them
to disk (the same disk which contains QDEMO) using these
filenames.

Program 2 QSORTA
Program 3 QSHA
Program 4 QLOADA

1/ you want QDEMO to load your assembly language subpro
grams, the object code must be assembled to the proper filename.

212

Assembly Language

Operational Instructions
The first step in understanding how to use a relatively com
plex grouping of assembly language subprograms is to under
stand how they're organized. The figure shows the organization
and logical flow of the file management program we're using
to demonstrate the use of these assembly language file loader/
saver, sort, and search subprograms.

Autocataloger Overview

START
NEW

FILE

ADD

ENTRY

ADD

REMARKS

CHANGE

ENTRY

SAVE

FILE

LOAD

FILE

DELETE

ENTRY

PURGE

MEM

Obviously, the program is menu driven, so the top block
is the major select subroutine. Immediately following initial
ization, you'll be presented with a selection of operations to
choose from:

1) Start new file
2) Sort file
3) Find entry
4) Edit file
5) Display file
6) Print file
7) Save file
8) Load file
9) Terminate session

Start new file. Choosing this selection allows you to
quickly load the indexes of your disk library. Two important
actions take place in this section. First, the subroutine assigns
your disk indexes to array positions, and, second, a selective

213

Assembly Language

counter assigns a pointer value for access to the REMARKS
relative file to each array element. The actions are fully auto
matic. Merely follow the prompts.

The Start new file section is also used to append existing
files which have been loaded using option 8. In either circum
stance, the limit is 500 records. Five hundred records just
about exhaust the TI-99/4A's string memory capability.

Sort file. This section does just what it says—it sorts the
file. After selection, you'll be asked the question # OF CHAR
ACTERS: 6. Your answer determines the resolution of the sort
routine. Responding with 1 means that the sort will look at
only the first character of the target string, while an entry of
15 forces the sort routine to look at more character positions.
Theoretically, the sort should go faster the lower the resolu
tion. I find that the default value of 6 is adequate for this
application.

Find entry. Pressing 3 yields access to the Find entry sec
tion of the program. Normally, you should go through the Edit
file section prior to entry of this subroutine. I recommend this
because, even though an array entry is created in the Start new
file section, the REMARKS file has yet to be created. Attempt
ing to access a nonexistent file causes a file error. This error is
trapped, and so doesn't stop the program. But it's always best
to enter the Edit section, add remarks, then return to Find
entry.

To find an entry, just follow the prompts. The machine
calls the search routine, then recovers the relative record
pointed to by the captured array element.

Edit file. This selection offers you several additional op
tions, all presented on the screen:

1) Add entry
2) Add remark
3) Change entry
4) Delete entry
5) Return to main menu

Add entry allows individual records to be added. Use this
section to append your file to include newly acquired pro
grams added to a disk index currently in the file.

Add remark lets you add remarks either in sequential or
der, starting at the beginning of the file, or to a particular title
you've specified. In either case, the remark is in FIXED 40, IN-

214

Assembly Language

TERNAL format. Because of this, the remark is limited to 28
characters. Ample prompts are provided.

Change entry. Both the title entry and the remark can be
changed if Change entry is selected. Normally, this section
should not be used to change a title that has no remark en
tered with it.

Delete entry deletes a specified entry and replaces it with a
!!*num tag. This tag insures that the relative record number is
not wasted. The next add or append action will assign the
specified title the relative record number contained in the tag.

Return to main menu returns you to the master menu.
Display file. If selection 5 is chosen, the file will print to

the screen. Stop and start the listing by pressing any key.
Pressing FCTN-9 returns you to the main menu.

Print file. Prints to the specified device the contents of
the file and its remark. There is no autopaging provided.

Save file. The fast write-to-disk subroutine described ear
lier. A SEQUENTIAL, FIXED 40, DISPLAY file is created. This
file contains the title (variable length), relative record number
(three digits), and disk name (variable length), as read from
J$(). The format of the record is
//TITLE*NUM*DISKNAME//

The number of records saved is stored in the first record of
this sequential file. When this selection is chosen, you'll be
asked to designate a target filename. The routine overwrites
existing files of the same name.

Load old file. Causes a designated FIXED 40, DISPLAY,
SEQUENTIAL file to be loaded. The number of records to be
read is stored in record 1 of the target file. The read-in data is
stored in J$(). You're asked for a target file immediately after
entering this section.

End this session. Stops the program. All data not saved
to disk is lost.

Dry Run
We've covered the particulars of the subprogram set, and dis
cussed the organization of the demonstration program and
considerations for entering the code. Now it's time to try it out.
• Turn the computer on with the Extended BASIC module

plugged in.
• Place your program disk in drive 1.

215

Assembly Language

• Type RUN "DSK1.QDEMO".
• The TI-99/4A will come to life and say it's initializing. The

program is loading the object files.
• The main menu appears. Take your program disk out of

drive 1 and put it away.
• Select menu item 1 (Start new listing).
• Designate a target drive.
• Place a disk you wish to catalog in the designated drive. Fol

low the prompts. The program will load the index, and ask if
you want to load another. Continue repeating this until
you've entered all your disks or reach the 500-record limit.

Note: I suggest you start off loading just one index,
then run through the rest of the procedures to insure that the
program works. This will save the frustration of loading 400
records, only to find that you made one mistake typing in
QDEMO.

• Select N to return to the main menu when you're finished
loading indexes.

• Select 2 from the main menu (Sort file).
• Follow the prompts. The TI-99/4A will sort the file, then re

turn to the main menu.

• Select 7 on the main menu (Save file).
• Insert a new, initialized disk in the drive of your choice.
• Answer the prompts. Your file will be saved and the program

will return to the main menu.
• Select 4 on the main menu (Edit).
• Select 2 on the submenu (Add remarks).
• Answer the prompt to cause the remarks to begin at entry 1.
• Enter your remarks. The program will return to the Edit

submenu automatically when all records are remarked.
• Select 5 on the submenu (Return to main menu).
• You're on your own.

You have the utility routines and a useful autocatalog pro
gram. I hope you find these tools useful. I believe they're one
implementation of the fundamental building blocks needed to
create any reasonably fast TI Extended BASIC file manage
ment program.

Acknowledgments
The DSR subroutine used in this article was provided courtesy
of Texas Instruments, Incorporated.

216

Assembly Language

Assembly Language Routines
Documentation
In order to use these assembly language subprograms to create
your own file management programs in Extended BASIC, you
need to know even more about them. What follows should
give you an idea of what each of the three subprograms does,
how it does it, and what you can use it for.

Assign/Reference
Object filename: QLOADA

Contains the routines:

PULL1. This routine reads records off a disk and assigns
them to a targeted set of array elements. Its calling linkage for
mat is

CALL LINK("PULL1VDSIC-.NAME"/N$()J)

where DSK—.NAME is the target drive and program name
string, N$() is the array to which elements will be assigned,
and J is the number of elements to read.

This is an autoreturn routine. No data is returned to Ex
tended BASIC.

PUSH1. Writes a designated number of records, captured
from a targeted array, to disk. Its calling format is
CALL LTNK("PVSm","DSK-.NAME",m(),J)

where DSK—.NAME is the target drive and filename, N$() is
the designated array, and J is the number of elements to write.
As with PULL1, this returns automatically to BASIC, with no
data returned.

Before calling either of these routines, the target array
must be dimensioned in TI Extended BASIC.

Other considerations are that the number of records to be
transferred to memory must be within the limits of the DIM
statement. The size limits of the VDP RAM must also be ob
served. The file attributes are SEQUENTIAL FIXED 40, DIS
PLAY, and UPDATE.

This subprogram (QLOADA) is designed for general-
purpose application. It can be linked to any TI Extended
BASIC program which needs a fast array load/save
subroutine.

217

Assembly Language

String Search
Object filename: QSHA

Contains the routines:

FIND. Sequentially searches the target array for the first
occurrence of a designated string argument. The calling format
for FIND is

CALL LINK ("FIND","STRING",N$())

where STRING is the designated string, and N$() is the target
array.

The array position is returned at >A000 (decimal
-24560). CALL PEEK(-24560,HI,LO)::VAL=HI*256+LO
renders the proper array position available to the TI Extended
BASIC caller.

AGAIN. Finds the second and all subsequent occurrences
of a designated string argument in a target array. Its calling
linkage format is
CALL LINK (//AGAIN,'//SrRTNG///N$())

where STRING is the designated string and N$() is the target
array.

The return linkage is identical to FIND's.
The target array must be dimensioned in TI Extended

BASIC.

This subprogam (QSHA) is callable only from TI Extended
BASIC. With appropriate modifications this subprogram is
callable from TI BASIC.

The search routine is tailored to the specific application
contained in QDEMO. Additional applications may require ar
ray elements to be terminated with an "*". The "*" serves to
decouple the several front characters of a string from the trail
ing characters of the same string. An example might be
"FRONTTRAILINGCHARACTERS"

The search routine will find "FRONT" and ignore the remain
ing characters.

Sort Routine

Object filename: EQSORTA

Contains the routines:

CLEAR. This routine sequentially clears array elements
by installing null strings. The clearing action starts at element

218

Assembly Language

1 of a specified string and ends at a specified element. The
calling format is
CALL LINK("CLEAR",N$(),LENGTH,1)

where N$() is the target array, LENGTH is the number of ele
ments to be cleared, and 1 is a required filler. This is an
autoreturn routine, with no data returned to Extended BASIC.

FILTER. Strips a specified number of string array ele
ments of all null string elements. Call it with
CALL LINK("FILTER",N$(),LENGTH,1)

where N$() is the target array, LENGTH is the number of ele
ments the routine will filter, and 1 is a required filler. Again,
no data returned.

QSORT. Sorts a specified number of string array ele
ments. The order is ascending. The resolution of the sort is
selectable. Its format is

CALL LINK(//QSORT///N$(),LENGTH,RES)

where N$() is the target array, LENGTH the number of ele
ments to sort, and RES the number of characters that will be
included in the sort. Autoreturn routine, no data returned.

The target array must be dimensioned in TI Extended
BASIC prior to call. If elements have been deleted, use FILTER
to remove any null strings. If null strings are not removed, the
sort routine will place them at the beginning of the array.

This sort routine works reasonably fast on a scrambled ar
ray. Sorting a sorted array takes about three times as long as
the same sort on a scrambled array. It must be called only
from TI Extended BASIC. Minor modifications are required to
link to TI BASIC.

Program 1. QDEMO
Enter this program in Extended BASIC.

100 CALL CLEAR :: PRINT : : : :"***DISK DIRECTORY D
EMO***": : :

110 PRINT "INITIALIZING.":"ONE MOMENT PLEASE..."

120 CALL INIT :: CALL LOAD("DSK1.QSORTA"):: CALL LO
AD("DSK1.QLOADA"):: CALL LOAD("DSK1.QSHA")

130 GOTO 170 :: DIM J$(520):: AS, AKS,B$,DISS, DM$,DO
S,FI$,FLEN$,JTAGS,JTAG1S,N1S,NAMES,NM$,PNS,RES

140 A,C,D,E,F,HI,IC,IC1,J,Jl,JE,JJ,K,KK,L,LO,LS1,LS
2,MSB,NONE,P,PLA,S,SK,SKI,TK,X

150 CALL CLEAR :: CALL CONVERT :: CALL ERR :: CALL

HOLD :: CALL INIT :: CALL KEY :: CALL LINK :: C

ALL LOAD :: CALL PEEK

219

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

220

E5=z=sraa Assembly Language

1@P-

REM START PROGRAM TARGET

ON ERROR 2010 :: J=l :: OPEN #1:"MEMINIT",FIXED
10 :: CLOSE #1 :: ON WARNING NEXT :: REM ON ER

ROR 2010

DIM J$(750)
ON ERROR 2010

CALL CLEAR :: PRINT "************MENU**********

**": : :"1. START NEW LISTING.":"2. SORT LISTIN

G.":"3. FIND ENTRY.":"4. EDIT LISTING."

PRINT "5. DISPLAY LIST.":"6. PRINT LIST.":"7. S

AVE LIST.":"8. LOAD LIST.":"9. TERMINATE THIS S

ESSION."

SK=0 : : PLA=0 : : A=l

PRINT : :"ENTER THE NUMBER FOR YOUR SELECTION

PLEASE."

CALL KEY(3,K,S)
IF K=49 THEN CALL CLEAR

IF K=50 THEN CALL CLEAR

IF K=51 THEN CALL CLEAR

IF K=52 THEN CALL CLEAR

IF K=53 THEN CALL CLEAR

IF K=54 THEN CALL CLEAR

IF K=55 THEN CALL CLEAR

IF K=56 THEN CALL CLEAR

IF K=57 THEN CALL CLEAR

ECTORY PROGRAM*": : : :

GOTO 250

GOSUB 810 :: CLOSE #1 :

R TO FIND J$() ELEMENT
GOSUB 1130

GOSUB 680 :

GOSUB 760 ;

GOSUB 1890

GOSUB 1030

GOSUB 1070

GOTO 210

GOTO 210

GOTO 210

GOTO 210

GOTO 210

GOTO 210

GOTO 430

GOTO 380

GOTO 360

GOTO 370

GOTO 390

GOTO 400

GOTO 410

GOTO 420

PRINT "*END FILE DIR

"GOOD DAY1" :: END

GOTO 210 REM POINTE

IF J<>1 THEN J=J-1
DISPLAY AT(1,1):"**START NEW DIRECTORY FILE**":
: :"MASTER DISK[l-3]?";A :: ACCEPT AT(4,19)VAL

IDATE(DIGIT)SIZE(-1):A
DISPLAY AT(7,1):"PLACE IN DRIVE #";A;"A DISK YO
U WISH TO INCLUDE IN THE DIRECTORY.": : :"
ELEMENTS LOADED": :"THE LIMIT IS 500."
DISPLAY AT(24,1):"PRESS ENTER TO CONTINUE."
CALL KEY(3,K,S):: IF K<>13 THEN 470
IF A<1 THEN 440
IF A>3 THEN 440
OPEN #2:"DSK"&STR$(A)&".",INPUT ,RELATIVE,INTER
NAL

INPUT #2:AS

P^S3|

Assembly Language

520 DISPLAY AT(23(1):"LOADING DSK";STR (A);".";AS;"
,_, INDEX.":"ONE MOMENT PLEASE..."

530 GOSUB 2040

540 IF J=500 THEN DISPLAY AT(12,1):"1UBUFFER FULLl
!"• 11":: COPO 610

550 INPUT #2:B$
pa 120 DISPLAY AT(12,1)SIZE(4):J

570 IF LEN(B$)=0 THEN 610
580 IF PLA<1000 THEN GOSUB 2090
590 JS(JJ)=BS&"*"&JTAG1$&"*"&AS
600 GOTO 530

610 CLOSE #2

620 DISPLAY AT(23,1):"ENTER ANOTHER DISK? Y/N":"
ii

630 CALL KEY(3,K,S)
640 IF K=89 THEN 440

650 IF K=78 THEN CALL LINK("FILTER",J$(),J,0):: CAL
L PEEK(-24576,HI,LO):: J=(HI*256+LO):: JS(J+1)
="ZZZZZ" :: GOTO 210

660 GOTO 630

670 GOTO 210

680 MSB=6 :: DISPLAY AT(1,4)ERASE ALL:"****SORTING
SECTION****" :: JS(J+l)="ZZZZZ"

690 DISPLAY AT(6,1):"ENTER":"# OF CHARACTERS:";MSB
:: ACCEPT AT(7,18)BEEP SIZE(-2):MSB

700 DISPLAY AT(20,1):"SORTING";J;: :"THE PROCESS SH
OULD TAKE":"ABOUT";J*.15;"SECONDS."

710 CALL LINK("FILTER",J$(),J,0)
720 CALL LINK("FIND","ZZZZZ",J$()):: CALL CONVERT(P

LA):: J=PLA
730 CALL LINK("QSORT",J$(),J,MSB)
740 RETURN

750 REM ***DISPLAY SECTION***

760 KK=J :: FOR X=l TO KK

770 CALL KEY(5,K,S):: IF K=15 THEN RETURN
780 IF S<>0 AND So-1 THEN CALL HOLD

790 PRINT J$(X)
800 NEXT X :: CALL HOLD :: GOTO 210 :: REM FINISH D

ISPLAY SECTION

_ 810 DISPLAY AT(1,1)ERASE ALL:" *FIND ENTRY SECTION
*" :: GOSUB 2180

820 GOSUB 890

•^ 830 GOSUB 2150 :: INPUT #1,REC TK:RE$:: DISPLAY AT
(14,1):"REMARKS:":RE$

«i 840 DISPLAY AT(24,1):"FIND ANOTHER? Y/N"
850 CALL KEY(3,K,S)
860 IF K=89 THEN 820

rm 870 IF K=78 THEN RETURN
880 GOTO 850

<^ 890 DISPLAY AT(11,1):"ENTER YOUR PROGRAM:" :: ACCEP
T AT(11,20):NAME$

•*•» 221

Assembly Language

900 D0$=NAMES6c"*"
910 CALL LINK("FIND",DOS,J$())
920 CALL CONVERT(PLA):: IF PLA>1000 THEN DISPLAY AT

(11,1):"NO MATCH" :: GOTO 980
930 DISPLAY AT(11,1):JS(PLA)
940 DISPLAY AT(24,1):"FIND DUPLICATE? Y/N":
950 CALL KEY(3,K,S):: IF K=78 THEN GOTO 980
960 IF K=89 THEN CALL LINK("AGAIN",DOS,J$()):: GOTO

920

970 GOTO 950
980 DISPLAY AT(24,1):"FIND ANOTHER? Y/N."
990 CALL KEY(3,K,S)
1000 IF K=78 THEN RETURN

1010 IF K=89 THEN GOTO 890
1020 GOTO 990

1030 PRINT " ***SAVE FILE SECTION***": : : : :: PR
INT "ENTER TARGET FILE NAME:" :: INPUT Nl$::
REM THIS IS LOAD FILE SUBROUTINE

1040 CALL LINK("FIND","ZZZZZ",J$()):: CALL CONVERT(
PLA):: J=PLA :: PRINT "SAVING FILE:";N1S: :J;H
ELEMENTS.": :"ONE MOMENT PLEASE..."

1050 J$(1)=STRS(J):: CALL LINK("PUSH1",N1S,JS(),J):
: J$(l)=""

1060 RETURN

1070 PRINT " ***LOAD FILE SECTION***": : :: PRINT
"ENTER TARGET FILE NAME:" :: INPUT Nl$:: REM
THIS IS LOAD FILE SECTION

1080 OPEN #1:N1$,FIXED 40 :: INPUT #1:FLEN$
1090 IF ASC(FLEN$)<48 OR ASC(FLEN$)>57 THEN FLEN$=S

EG$(FLEN$,2,LEN(FLEN$)-1)
1100 J=VAL(FLEN$):: CLOSE #1 :: PRINT "LOADING ";J;

"ELEMENTS.": :"ONE MOMENT PLEASE..."
1110 CALL LINK("PULL1",N1S,J$(),J):: J$(l)=""

=J

1120 PRINT : : :"FINISHED" :: JS(J)="ZZZZZ" :
RN

1130 CALL CLEAR :: PRINT "***EDIT LIST SECTION***":
....«• *****MENU*****». . .»i. ADD ENTR

Y":"2. ADD REMARKS":"3. CHANGE ENTRY"

1140 PRINT "4. DELETE ENTRY.":"5. PURGE MEMORY.":"6
. MAIN MENU": :"PRESS NUMBER FOR SELECTION PL

EASE."

1150 CALL KEY(3,K,S)
1160 IF K=49 THEN CALL CLEAR :: GOTO 1230

1170 IF K=50 THEN CALL CLEAR :: GOTO 1380

1180 IF K=51 THEN CALL CLEAR :: GOTO 1560

1190 IF K=52 THEN CALL CLEAR :: GOTO 1680

1200 IF K=53 THEN CALL CLEAR :: GOTO 1830

1210 IF K=54 THEN CALL CLEAR :: RETURN

1220 GOTO 1150

JJ

RETU

222

Assembly Language

1230 DISPLAY AT(1,1)ERASE ALL:"****ADD ENTRY SECTIO

1240 GOSUB 2180

1250 GOSUB 2090 :: REM GET ENTRY NUMBER IF AVAILABL
E

1260 DISPLAY AT(11,1):"ENTER PROGRAM NAME:": :"ENTE
R DISK NAME:": :"ENTER REMARK:"

1270 ACCEPT AT(11,20):NMS :: ACCEPT AT(13,17):DM$:
: ACCEPT AT(16,1):RES

1280 IF PLA>1000 THEN JE=J :: GOTO 1300
1290 IF PLA<1000 THEN JE=PLA :: GOTO 1310
1300 GOSUB 2040 :: REM GET JTAG1$
1310 J$(JE)=NM$&"*,,&JTAG1$&"*"&DM$:: DISPLAY AT(23

,1):J$(JE);" ADDED":"ADD ANOTHER? Y/N"
1320 PLA=JE :: GOSUB 2150 :: PRINT #1,REC TK:RES
1330 CALL KEY(3,K,S)
1340 IF K=89 THEN 1250

1350 IF K=78 THEN CLOSE #1 :: J$(J+l)="ZZZZZ" :: RE
TURN

1360 GOTO 1330
1370 RETURN

1380 DISPLAY AT(1,1)ERASE ALL:" ***ADD REMARKS***"
1390 GOSUB 2180 :: REM CALL CLEAR

1400 DISPLAY AT(24,1):"START AT 1ST RECORD? Y/N"
1410 CALL KEY(3,K,S):: IF K=89 THEN PLA=2 :: GOTO 1

450

1420 IF K=78 THEN DISPLAY AT(24,1):"ENTER START TIT
LE:" :: ACCEPT AT(24,19):NAMES :s CALL LINK("F
IND",NAMES,JS()):: CALL CONVERT(PLA):: GOTO 14
40

1430 GOTO 1410

1440 IF PLA>1000 THEN DISPLAY AT(24,l):"NO MATCH. T
RY AGAIN1" :: GOTO 1420

1450 FOR X=PLA TO JJ-1

1460 DISPLAY AT(3,1):"RECORDS LEFT:";(JJ-1)-PLA
1470 PLA=X :: GOSUB 2150

1480 DISPLAY AT(10,1): :"ENTER REMARK FOR:": :J$(PL
A):: ACCEPT AT(15,1)SIZE(-80):RES

1490 PRINT #1,REC TK:RE$
1500 DISPLAY AT(24,1):"ADD ANOTHER REMARK? Y/N"
1510 CALL KEY(3,K,S):: IF K=78 THEN X=JJ :: GOTO 15

40

1520 IF K=89 THEN 1540

1530 GOTO 1510

1540 NEXT X :: CLOSE #1

1550 RETURN

1560 REM CHANGE ENTRY

1570 GOSUB 890 :: GOSUB 2150 :: CALL CLEAR :: GOSUB

2180

1580 INPUT #1,REC TK:RE$:: CLOSE #1

223

Assembly Language

1590 DISPLAY AT(12,1):"MAKE YOUR CHANGE.": : :J$(PL
A): :"REMARKS:":RE$ «

1600 ACCEPT AT(15,1)SIZE(-80):J$(PLA):: ACCEPT AT(1
8,1)SIZE(-80):RE$

1610 DISPLAY AT(24,l):NONE :: GOSUB 2180 :: PRINT # ^
1,REC TK:RES :: CLOSE #1

1620 DISPLAY AT(24,1):"CHANGE ANOTHER? Y/N" •«
1630 CALL KEY(3,K,S)
1640 IF K=89 THEN 1570
1650 IF K=78 THEN 1130

1660 GOTO 1630

1670 GOTO 210
1680 DISPLAY AT(1,1)ERASE ALL:"**DELETE ENTRY SECTI

ON**" :: DISPLAY AT(11,1):"PROGRAM NAME? " ::
ACCEPT AT(11,15):NAME$

1690 P=0 :: L=0 :: DOS=NAME$&"*"
1700 CALL LINK("FIND",DO$,J$())
1710 CALL PEEK(-24560,HI,LO):: PLA=HI*256+LO :: IF

PLA>1000 THEN DISPLAY AT(ll,l):"NO MATCH" :: G
OTO 1790

1720 DISPLAY AT(11,1):JS(PLA):: DISPLAY AT(24,1):"A
RE YOU SURE? Y/N"

1730 CALL KEY(3,K,S):: IF K=89 THEN GOTO 1750
1740 IF K=78 THEN GOTO 210 ELSE GOTO 1730
1750 DISPLAY AT(12,1):"DELETED" :: P=POS(JS(PLA),"*

",2):: L=LEN(J$(PLA)):: J$(PLA)="11"&SEGS(JS(P
LA),P,4)

1760 PLA=0

1770 GOTO 1790

1780 GOTO 1730

1790 DISPLAY AT(24,1):"DELETE ANOTHER? Y/N":
1800 CALL KEY(3,K,S):: IF K=89 THEN 1680
1810 IF K=78 THEN 1130

1820 GOTO 1800

1830 DISPLAY AT(1,1):"****PURGE FILE****": : :"ARE
YOU SURE? Y/N"

1840 CALL KEY(3,K,S):: IF K=89 THEN 1870
1850 IF K=78 THEN 1130

1860 GOTO 1840

1870 CALL LINK("CLEAR",JS(),J+1,1):: J=l :: GOTO 11 „_,
30 '

1880 REM END PURGE SECTION

1890 DISPLAY AT(1,1):"***PRINT FILE SECTION***" •"*
1900 IC=0

1905 DISPLAY AT(23,1):"ENTER PRINTER NAME:":"RS232 . m
BA=1200.TW" :: ACCEPT AT(24,1)SIZE(-20):PN$

1910 OPEN #2:PNS :: PRINT #2:TAB(10);"FILE NAME mn
DISK NAME":TAB(10) ;" "

:: PRINT #2:

1920 GOSUB 2180 m"

1930 FOR X=2 TO J :: IF LEN(JS(X))=0 THEN 1990

224 ""

Assembly Language

1940 PLA=X :: GOSUB 2150 :: INPUT #1,REC TK:RE$
1950 D=POS(JS(X),"*",l):: DIS$=SEG$(J$(X),1,LEN(J$(

X))+(D-LEN(J$(X))))
1960 FI$=RPT$("*",15-LEN(DISS)):: LS1=LEN(J$(X))::

LS2=LEN(DIS$)

1970 PRINT #2:TAB(10);DIS$&FI$&SEG$(JS(X),LS2+4,LS1
-(LS2+2))&"**********"&RES

1980 IC1=IC+1 :: IC=IC1 :: IF IC=60 THEN PRINT #1:

1990

2000

2010

2020

2025

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

NEXT X

RETURN

CALL ERR(C,D,E,F):: ON ERROR 2020
PRINT :"FILE ERROR FILE ERROR11"

025 :: CLOSE #2 :: FOR X=l TO 200

RETURN 200

REM ROUTINE TO SET ARRAY NUMBER

J1=J+1 :: J=J1 :: JJ=J

JTAG$=STRS(JJ)
IF LEN(JTAGS)=1 THEN JTAG$="00"&JTAGS
IF LEN(JTAG$)=2 THEN JTAG$="0"&JTAG$
JTAG1S=JTAG$:: RETURN
REM ARRAY FILL SUBROUTINE

JTAG1$=JTAGS :: SK1=SK+1 :: SK=SK1 :: IF SK>1
THEN 2130

CALL LINK("FIND","I 1",JS()):: CALL CONVERT(PLA
):: IF PLA>1000 THEN RETURN
JTAG1$=SEGS(JS(PLA),4,3):: JJ=PLA :: RETURN
CALL LINK("AGAIN","11",J$()):: CALL CONVERT(PL
A):: IF PLA>1000 THEN RETURN
JTAG1$=SEGS(J$(PLA),4,3):: JJ=PLA :: RETURN
IF PLA> 1000 THEN RETURN :: REM GET RECORD NUMB
ER

IF LEN(J$(PLA))=0 THEN RETURN :: REM GET RECOR
D NUMBER

AK$=SEGS(JS(PLA),POS(JS(PLA),"*",1)+l,3):: TK=
VAL(AKS):: RETURN :: REM GET RECORD NUMBER
DISPLAY AT(5,1):"ENTER FILE NAME:";N1$:: ACCE
PT AT(5,17)SIZE(-15):N1S
DISPLAY AT(7,1):"FILE ";N1$;"REM":"TO BE ACCES
SED":"PRESS ENTER TO CONTINUE" :: CALL HOLD ::
OPEN #1:N1S&"REM",RELATIVE 500,INTERNAL

RETURN

1@P+

SUB HOLD

DISPLAY AT(24,1)
CALL KEY(3,K,S):
SUBEND

SUB CONVERT(PLA)
CALL PEEK(-24560,HI,LO)
PLA=HI*256+LO
SUBEND

225

CLOSE #1 CLOSE #2

; CLOSE #1

ON ERROR 2

: NEXT X

"PRESS ANY KEY TO CONTINUE"
IF S=0 OR S=-l THEN 2240

Assembly Language

Program 2. QSORTA
Enter this, and the following two source code listings, with the Editor/Assembler. ^

*****EQSORT***** cs^

DEF CLEAR,FILTER,QSORT ^

******EQUATES***********

CFI EQU >12B8
FAC EQU >834A
GPLWS EQU >83E0
NUMREF EQU >200C
STATUS EQU >837C
STRASG EQU >2010
STRREF EQU >2014
TGT EQU >A000

******DATA*************'

ARG1 DATA >0

ARG2 DATA >0

ARG3 DATA >0

BLN DATA >0020,>2020,>2020
COUNT DATA >0

CT1 DATA >0
FF DATA >FF

I DATA >0

J DATA >0

KK DATA >0

LB DATA >0

N DATA >0

ONE DATA >1

P DATA >0
RB DATA >0

X DATA >0
ZERO DATA >0

******5LoCKS************

ABUF BSS :>100

ABUF1 BSS :>100

LP BSS :>100

MYWS BSS >20

RP BSS >100

RTWS BSS >20

SWS1 BSS >20

SWS2 BSS >20

SWS3 BSS >20

SWS4 BSS >20

226

Assembly Language

SWS5 BSS >20

TBUF BSS >100

******BLWPS************

EXIJ DATA SWS1,EXIJ1
EXJI DATA SWS2,EXJI1
GABJ DATA SWS3,GABJ1
GABI DATA SWS3,GABI1
INIT DATA SWS3,INIT1
SREF DATA SWS4,SREF1
SASI DATA SWS5,SASI1
SASJ DATA SWS5,SASJ1
RETURN DATA RTWS,RET1
XML

DATA GPLWS,XML1

CLEAR

BLWP ©INIT
CL1 MOV @I,R0
LI Rl,l
LI R2,BLN
BLWP @STRASG
INC @I
C @I,@ARG2
JNE CL1

BLWP @RETURN

FILTER

LWPI MYWS

BLWP @INIT

MOV @ONE,@I
MOV @ONE,@KK
LI Rl,l

REPT MOV @I,R0
BLWP @SREF

CB @TBUF,@ZERO
JEQ F548

INC @KK

MOV @KK,R0
LI R2,TBUF
BLWP @STRASG

F548 INC @I

227

Assembly Language

c

JLT

@I,@ARG2
REPT

MOV @KK,@TGT

BLWP @RETURN

QSORT
LWPI

BLWP

LI

MOV

MYWS

@INIT
R8,>2
R8,@P

MOV
*

@ONE,@LP(R8)

MOV
*

@ARG2,@RP(R8)

S230

JLT

JEQ
JMP

HOME

S240
*

CI R8,0
HOME

HOME

S240

BLWP @RETURN
MOV @LP(R8),@LB

MOV
*

@RP(R8),@RB

DECT

S270

JLT

JEQ
*

R8

C @RB,@LB
S230
S230

MOV
*

@LB,@I

MOV
*

@RB,@J

BLWP
*

@SREF

S310

JLT

C @J,@ONE
S350

S320 LI R2,TBUF+1
BLWP @GABJ
MOV @ARG3,R5
LI R3,ABUF+1

Ml CB *R2+,*R3+
JGT S350

228

Assembly Language

JNE CON

DEC R5
CI R5,0
JEQ S350
JMP Ml

**

CON DEC @J

JMP S310
*

S350 C @J,@I
JGT S380

BLWP
*

@SASI

*

JMP S500

S380
*

BLWP @EXIJ

INC @I
*

S400 C @I,@ARG2
JGT

*

S440

LI R2,TBUF+1
BLWP @GABI
MOV @ARG3,R5
LI R3,ABUF+1

M2 CB *R3+,*R2+
JGT S440

JNE S420

DEC R5

CI R5,0
JEQ S420

JMP M2

S420 INC @I
*

JMP S400
*

S440 C @J,@I
JLT S480

JEQ S480

229

Assembly Language

BLWP
*

@EXJI

DEC @J
*

JMP S320
*

S480 BLWP @SASJ
*

MOV
*

@J,@I

S500
*

INCT R8

MOV @RB,R1
MOV @I,R4
MOV @I,R3
MOV @LB,R2
S @R3,@R1
S @R2,@R4
C @R4,@R1
JGT S560

JEQ
*

S560

MOV @I,R1
INC Rl

MOV R1,@LP(R8)

MOV @RB,@RP(R8)
*

MOV @I,@RB
DEC @RB

S550 B @S270
*

S560
*

MOV @LB,@LP(R8)

MOV @I,R1
DEC Rl

MOV
*

R1,@RP(R8)

MOV @I,@LB
INC @LB

@S270

*******SUBROUTINES***************

230

INIT

INIT1

MOV @ONE,@COUNT
CLR @LB
CLR @RB
CLR @TGT
MOV @ONE,@I
MOV @ONE,@J
LI R2,LP
BL @CLRA
LI R2,RP
BL @CLRA
LI R0,0
LI Rl,2
BLWP @NUMREF
LWPI GPLWS
BL @GSV
BL @CFI
MOV @FAC,@ARG2
BL @GPOL
LWPI SWS3

LI Rl,3
BLWP @NUMREF
LWPI GPLWS

BL @GSV
BL @CFI
MOV @FAC,@ARG3
BL @GPOL
LWPI SWS3

RTWP

SREF

SREF1

LI R2,TBUF
BL @CLRT
LI R5,>FFFF
MOV @I,RO
LI Rl,l
LI R2,TBUF
MOV R5,*R2
BLWP @STRREF
RTWP

*****GABJ

GABJ1

Assembly Language

231

m Assembly Language

LI R2,ABUF
BL @CLRA
LI R5,>FFFF
MOV @J,R0
LI Rl,l
LI R2,ABUF
MOV R5,*R2
BLWP @STRREF
RTWP

****GABI

GABI1

LI R2,ABUF
BL @CLRA
LI R5,>FFFF
MOV @I,R0
LI Rl,l
LI R2,ABUF
MOV R5,*R2
BLWP @STRREF
RTWP

SASA

SASH

MOV @I,R0
LI Rl,l
LI R2,TBUF
BLWP @STRASG
RTWP

SASJ1

MOV @J,R0
LI Rl,l
LI R2,TBUF
BLWP @STRASG
RTWP

*********^i

EXIJ

EXIJ1

LI R5,>FFFF
MOV @J,R0
LI Rl,l
LI R2,ABUF1
MOV R5,*R2
BLWP @STRREF

232

MOV @I,R0
•" BLWP @STRASG

RTWP

EXJI

EXJI1

LI R5,>FFFF
MOV @I,RO
LI Rl,l
LI R2,ABUF1
MOV R5,*R2
BLWP @STRREF
MOV @J,R0
BLWP @STRASG
RTWP

********CLRT******

CLRT

LI Rl,>100
LI R3,>FFFF

CLRT1 MOV R3,*R2+
DECT Rl

CI R1,0
JNE CLRT1

RT

CLRA

LI Rl,>100
LI R3,>0

CLRA1 MOV R3,*R2+
DECT Rl

CI R1,0
JNE CLRA1

RT

^ ***XML************

a* XML1 BL @>12B8
RTWP

m **RETUIRN**********

«n RET1

CLR RO

hv MOVB R0,@STATUS
LWPI GPLWS

Assembly Language

233

Assembly Language w

B @>0070

*********GPL PAD SAVE**********

CSV LI Rl,>100
LI R2,ABUF1
LI R3,>8300

AG MOV *R3+,*R2+
DECT Rl
JNE AG

RT

*********GPL PAD RET ***********

GPOL LI Rl,>100
LI R2,ABUF1
LI R3,>8300

AG1 MOV *R2+,*R3+
DECT Rl

JNE AG1

RT

END

Program 3. QSHA

DEF FIND,AGAIN

*DATA STATEMENTS*****
*

COUNT DATA >0000
N188 DATA >0200
ONE DATA >0001
SAVE DATA >0000
SIZE
4k

DATA >0000

♦EQUATES************
*

BUF EQU >A012
BUF1 EQU >A100
GPLWS EQU >83E0
NUMREF EQU >200C
PLACE EQU >A010
SAVE1 EQU >A200
SAVE2 EQU >A202
STATUS EQU >837C
STRREF EQU >201A
TARGET
*

EQU >A000

♦MEMORY
*

BLOCKS******

MYWS BSS >20
MYWS1 BSS >20
MYWS2 BSS >20

MSWS3 BSS >20

on

tS&\

*****FIND***********

234 *"

pK»

i^kI

Assembly Language

FIND

AG1

LWPI MYWS

CLR ©COUNT
INC ©COUNT
CLR Rl

CLR R2

CLR R3

CLR R4

MOV R1,©BUF*2
MOV Rl,©BUFl+2
LI R2,>FF00
MOVB R2,©BUF
LI R2.BUF
LI R0,0
LI Rl,l
BLWP ©STRREF
LI Rl,2
MOV ©COUNT,RO
LI R2,>FF00
MOVB R2,©BUF1
LI R2.BUF1
BLWP ©STRREF
MOVB ©BUP.R2
SWPB R2

LI R3.BUF+1
LI R4.BUF1+1
CB *R3+,*R4+
JNE ADD1

DEC R2

CI R2.0
JNE COMP

JMP MATCH
INC ©COUNT
C ©COUNT,©N188
JLT NEXT

JMP NO

MOV RO,©PLACE
BLWP ©RETURN
LI R0,>FFFF
MOV RO,©PLACE
BLWP ©RETURN

LOADS STRING LENGTH INTO FIRST BYTE OF BUFFER
LOADS BUFFER ADDRESS IN R2

NEXT

COMP

ADD1

MATCH

NO

********AQAJN*************

AGAIN LWPI MYWS
BL ©AG1

********R£TURN************

RETURN

RET1

MOVB
LWPI

B

RT
END

DATA MYWS1.RET1
CLR RO

RO,©STATUS
GPLWS

©>0070

LOAD LINKED VALUE IN BUF

LOAD ARRAY VALUE IN BUF1
LOAD STRINC LENGTH IN R2
PUT THE VALUE IN THE LSB

COMPARE TARGET WITH
JUMP NOT EQ TO ADD1

*CLEAR STATUS
*BRANCH TO GLWP
*LOAD RETURN
♦RETURN

FAC

Program 4. QLOADA

DEF PUSH1,PULL1

ABUF1 BSS MOO
ARK BSS >20

ARK1 BSS >20

LEVEL 1

LEVEL 2

WS

ws

235

Assembly Language

ARK2 BSS >20 LEVEL 3 WS
RTWS BSS >20
ARG1 BSS >2

ARG2 BSS >2

ARG3 BSS >2
BUFF BSS >100 BUFFER FOR VDP DA'
BUF1 BSS >100
OPEN DATA >0000
CLOSE DATA >0100
READ DATA >0200
WRITE DATA >0300
INPUT DATA >0000 1C00
OUTPUT DATA >0000 1A00
CODE DATA >0000 HOLDER FOR OPCODE
MODE DATA >0000
FILL DATA >FFFF

BSZ DATA >0000
START DATA >0000

VSTAR DATA >0000

PABBUF DATA >0000
PAB DATA >0F80
KEEP DATA >0000
CFI EQU >12B8
DIR EQU >8310
FAC EQU >834A
NUMREF EQU >200C
STATUS EQU >837C

STRASG EQU >2010
STRREF EQU >2014

SCLEN EQU >8355
SCNAME EQU >8356
CRULST EQU >83DO
SADDR EQU >83D2
GPLWS EQU >83E0
FLGPTR DATA 0

SVGPRT DATA 0

SAVCRU DATA 0

SAVENT DATA 0

SAVLEN DATA 0
SAVPAB DATA 0

SAVVER DATA 0

DLNKWS DATA 0,0,0,0,0
TYPE DATA 0,0,0,0,0,0,0,0,0,0,0
CI00 DATA 100

236

H20 EQU $
H2000 DATA >2000

DECMAL TEXT '.'

HAA BYTE >AA

SAVRTN DATA 0

VMBW EQU >2024
VMBR EQU >202C
VSBW EQU >2020
VSBR EQU >2028
KSCAN EQU >201C
NAMBUF BSS >15

Assembly Language

* 0 12 3 4 5
PDATA DATA >0000,>0022,>2828

DATA >0000,>000F
TEXT •DSK1.NAME1234567890'
EVEN

MYREG BSS >20

BUFFER BSS >100

******BLVJPS****

RETURN DATA RTWS,RET1
INIT DATA ARK1,INIT1
OPER DATA ARK1,0PER1
ROOM DATA ARK,ROOM1
RROOM DATA ARK,RR00M1
FILE DATA ARK1,FILE1

WRITE ARRAY TO DISK*

PUSH1

LWPI MYREG
BLWP @INIT
MOV @0UTPUT,@M0DE
BLWP @R00M
MOV @WRITE,@CODE
BLWP @0PER
LI R0,1
MOV R0,@BSZ

PU1 BL @CLRA
LI R2,BUF1
MOV @FILL,*R2
LI Rl,2
MOV @BSZ,R0
BLWP @STRREF
LI R0,>0022
LI R1,BUF1
LI R2,>28

ROUTINE TO GET SPACE AT >1000

CLEAR

SET BUF ADD FOR STR

40 CHARACTERS

237

BLWP @VMBW
BLWP @FILE
INC @BSZ
C @BSZ,@ARG3
JNE PU1

BLWP @RETURN RETURN TO BASIC

********READ RECORD TO ARRAY*******

PULL1

LWPI MYREG
BLWP @INIT CALL INIT
MOV @INPUT,@MODE
BLWP @ROOM
MOV @READ,@CODE
BLWP @OPER
LI R0,1
MOV R0,@BSZ

PI BLWP @FILE READ FILE
MOV R1,@BUF1
LI R0,>0022
LI R1,BUF1
LI R2,>28 40 CHARACTERS
BLWP @VMBR EXCHANGE FILE VALUE
MOV @BSZ,R0
LI Rl,2
LI R2,BUF1
BLWP @STRASG
INC @BSZ
C @BSZ,@ARG3
JNE PI

LI Rl,2
BLWP ©RETURN

****INITIALIZE*********

INIT1

CLR @MODE
CLR @CODE
CLR @BSZ
CLR @ARG1
CLR @ARG2
CLR @ARG3
CLR RO

BL @STR
LI R0,0
LI Rl,3
BLWP @NUMREF
LWPI GPLWS

BL @GSV

238

Assembly Language

BL @CFI
MOV @FAC,@ARG3
BL @GPOL
LWPI ARK1

RTWP

****PUT LINKED STR IN p/^B*******

STR

LI R0,0 SIMPLE VARIABLE

LI Rl,l FIRST VARIABLE

LI R4,>FFFF
LI R2,PDATA+9 PUT IT IN PAB

MOVB R4,*R2 SET BUFF LENGTH

BLWP @STRREF DO IT

RT

******dFTIIRN*********^k*******************'

RET1 BLWP @RROOM
CLR RO

MOVB RO,@STATUS
LWPI GPLWS

B @>0070
RT

*******LOAD OP CODE*******

OPER1 LI R0,>0000
MOV @CODE,Rl
BLWP @VSBW
LI R0,>0001
MOV @M0DE,R1
BLWP @VSBW
RTWP

***********ROOM*********

ROOM1 LI R0,>0000 this routine

LI R1,BUFF gets a space

LI R2,>100 vdp ram @1000
BLWP @VMBR

LI R0,>0000
LI Rl,PDATA LOAD PAB

LI R2,>20
BLWP @VMBW ****************

MOV @OPEN,@CODE DO OPEN

BLWP @OPER
BLWP @FILE
RTWP

239

Assembly Language **i

******PUT DATA BACK IN VDP**** hi

RROOMl MOV @CLOSE,@CODE ********
BLWP @OPER PUT CLOSE IN PAB ™)
BLWP @FILE ********
LI R0,>0000 •*
LI R1,BUFF
LI R2,>100
BLWP @VMBW
RTWP

*******EXECUTE*FILE*OPERATION****

FILE1 LI R6,>0009 POINTER TO NAME
MOV R6,@SCNAME
BLWP @DSRLNK
DATA 8
RTWP

*********GPL PAD SAVE**********

GSV LI Rl,>100
LI R2,ABUF1
LI R3,>8300

AG MOV *R3+,*R2+
DECT Rl
JNE AG

RT

*********GPL PAD RET ***********

GPOL LI Rl,>100
LI R2,ABUF1
LI R3,>8300

AG1 MOV *R2+,*R3+
DECT Rl

JNE AG1

RT

***********CLRA******************

CLRA LI R3,>100 *^
CLR RO
LI R1,BUF1 •"!

CLAR1 MOV R0,*R1+
DECT R3 •*
CI R3,0
JNE CLAR1
RT "*

******************************** ISST

240

Assembly Language

****DSRLNK***DSRLNK***DSRLNK***DSRLNK***

DSRLNK DATA DLNKWS,DLENTR
DLENTR MOV *R14+,R5
SZCB @H20,R15
MOV @SCNAME,R0
MOV R0,R9
AI R9,-8
BLWP @VSBR
MOVB R1,R3
SRL R3,8
SETO R4
LI R2,NAMBUF

LNK$LP INC RO

INC R4
C R4,R3
JEQ LNK$LN
BLWP @VSBR
MOVB R1,*R2+
CB R1,@DECMAL
JNE LNK$LP

LNK$LN MOV R4,R4
JEQ LNKERR

CI R4,7
JGT LNKERR

CLR @CRULST
MOV R4,@SCLEN-1
MOV R4,@SAVLEN
INC R4
A R4,@SCNAME
MOV @SCNAME,@SAVPAB

********SEARCH ROMS*******'

SROM LWPI GPLWS
CLR Rl

LI R12,>0F00
NOROM MOV R12,R12
JEQ NOOFF
SBZ 0

NOOFF AI R12,>0100
CLR @CRULST
CI R12,>2000
JEQ NODSR

MOV R12,@CRULST
SBO 0

LI R2,>4000
CB *R2,@HAA
JNE NOROM
A @TYPE,R2

241

Assembly Language

JMP SG02

SGO MOV @SADDR,R2
SBO 0

SG02 MOV *R2,R2
JEQ NOROM

MOV R2,@SADDR
INCT R2

MOV *R2+,R9
MOVB @SCLEN,R5
JEQ NAME2

CB R5,*R2+
JNE SGO

SRL R5,8
LI R6,NAMBUF

NAME1 CB *R6+,*R2+
JNE SGO

DEC R5

JNE NAME1

NAME2 INC Rl

MOV R1,@SAVVER
MOV R9,@SAVENT
MOV R12,@SAVCRU
BL *R9
JMP SGO

SBZ 0

LWPI DLNKWS
MOV R9,R0
BLWP @VSBR
SRL Rl,13
JNE IOERR

RTWP

NODSR LWPI DLNKWS

LNKERR CLR Rl

IOERR SWPB Rl

MOVB R1,*R13
SOCB @H20,R15
RTWP

END

242

UMA

pEyfil

ssra

Appendix

A Beginner's Guide to

What Is a Program?
A computer cannot perform any task by itself. Like a car with
out gas, a computer has potential, but without a program, it
isn't going anywhere. The programs published in this book are
written in a computer language called BASIC. BASIC is easy
to learn and is built into the TI.

BASIC Programs
Computers can be picky. Unlike the English language, which
is full of ambiguities, BASIC usually has only one right way of
stating something. Every letter, character, or number is signifi
cant. A common mistake is substituting a letter such as O for
the numeral 0, a lowercase / for the numeral 1, or an upper
case B for the numeral 8. Also, you must enter all punctuation
such as colons and commas just as they appear in the book.
Spacing can be important. To be safe, type in the listings ex
actly as they appear. Enter all programs with the ALPHA
LOCK on (in the down position). Release the ALPHA LOCK
to enter lowercase text.

About DATA Statements
Some programs contain a section or sections of DATA state
ments. These lines provide information needed by the pro
gram; they are especially sensitive to errors.

If a single number in any one DATA statement is mis
typed, your machine could lock up, or crash. The keyboard
may seem dead, and the screen may go blank. Don't panic—
no damage is done. To regain control, you have to turn off
your computer, then turn it back on. This will erase whatever
program was in memory, so always save a copy of your program
before you run it. If your computer crashes, you can load the
program and look for your mistake.

Sometimes a mistyped DATA statement will cause an er
ror message when the program is run. The error message may
refer to the program line that READs the data. The error is still
in the DATA statements, though.

243

Appendix

Get to Know Your Machine
You should familiarize yourself with your computer before at
tempting to type in a program. Learn the statements you use
to store and retrieve programs from tape or disk. You'll want
to save a copy of your program so that you won't have to type
it in every time you want to use it. Learn to use your ma
chine's editing functions. How do you change a line if you
made a mistake? You can always retype the line, but you at
least need to know how to backspace. It's all explained in
your owner's manual.

A Quick Review
1. Type in the program, a line at a time, in order. Press

ENTER at the end of each line.
2. Check the line you've typed against the line in the book.

You can check the entire program again if you get an error
when you run the program.

3. Make sure you've typed all the DATA statements and CALL
CHAR statements correctly.

244

n

"ACCPT$" disk utility 195-96, 199
"ACCPT/BAS" program 203
address 127, 175
AI 55-60

"AI with TI" programs 55-65
arithmetic, teaching 161-62
arrays 57, 193-94, 182-84, 211-12
artificial intelligence. SeeAI
ASCII 35, 146
"ASCII Printout, An" program 35-36
assembly language 175-208
autocataloger 213-16
BASIC Support Utility subprograms

182

battery backup 189
"Binload" program 191, 200-201
blackjack, rules of 99-100
"Blackjack" program 99-105
blocking factor 52
BLWP (Branch and Load Workspace

Pointer) instruction 139, 177
Boggle (board game) 82, 83
"BOG'L" program v, 82-92
byte 127
CALL CHAR statement 36, 145, 147
CALL CHARPAT statement 36, 151
CALL COLOR statement 192
CALL FILES statement 83
CALL GCHAR statement 35
CALL HCHAR statement 145, 150,

194-95

CALL INIT statement 85
CALL JOYST statement 42, 44, 49
CALL KEY statement 43, 44, 48, 49
CALL LINK statement 176, 183, 193
CALL SOUND statement 192
CALL VCHAR statement 145, 150,

194-95
capacitor 49
cartridges. See modules
cassette recorder motors 177

character codes, undefined 146-47
keyboard and 146
redefining 146-47

characters, custom 145-50
character set 151-54
checkbookspreadsheet example 13
checksum 192

children, teaching with computers
157-58

CHR$ function 146
CLOSE statement 211

Communications Register Unit. See CRU
console board schematic 137
context switch 139, 141
conversion, string/number 197-98
CPU 134
CRU 141, 177
CTRL/FCTN characters 146-48
custom characters 145-50
data files 51, 209-42
DATA statement 30, 243-44
Device Service Routine (DSR) 210
diode 44

disk 3, 29, 83, 190
disk controller card 177
disk utilities, Editor/Assembler and 190
disk utilities, Mini Memory and

190-200

loading 192
reference 199-200
using 192-93

"DISP$" disk utility 195-96, 199
"DISP$/BAS" program 203
DISPLAY AT statement 145, 150
Editor/Assembler 143-44, 175-81,

182-84, 190
education 157-72

eight-bit machine 134
electrical isolation, joystick port and 45
Epson printers 36
expanded memory map 132
Extended BASIC 35-36, 82, 83, 99,

129-30, 158, 175-81, 209
"Extended BASIC Search Demonstra

tion" program 186-87
file management 209-42
file management routines reference

217-19

fire button 41, 43
"Flood Waters" program 106-10
FOR-NEXT loop 84
GOSUB statement 48
GPL interpreter 130
graphic characters 145-50
Graphics Programming Language inter

preter. See GPL interpreter
Graphics Read Only Memory. See

GROM

GROM 128, 130-31
"Happy Face Arithmetic" program v,

161-66

home-built peripherals, communicating
with 41-50

245

INPUT command, files and 210
input states, joystick port 43
instruction set, 9900 134, 139-40
instruction types 139
interblock gap 51
interpreter, BASIC 130
interrupt 141-42
interrupt request line 142
joystick port 41-50
"Joystick Status" program 44
"KERNAL/BAS" program 205-6
keyboard overlay 106-7
kilobyte 127
"Labyrinth" program 69-76
LED 45

"Letters and Numbers" program 159
Line-by-Line assembler 189-90

disadvantages of 189
logical record 51
Low Memory Expansion 176-77
machine language 130, 131-32
"Macro/Mini Maze" program 111-19
"Mad Hatter Ladder" program 120-24
maze 69

"Memo" word processor 29-34
commands 29-30

customizing 30-31
memory

dump 35
expansion card 112, 129-30
limitations of 29
map 128-33, 179-81
mapping, devices and 178
organization 127-33, 175-76

Mini Memory module 41, 132, 175-81,
188-200

"MitiCalc" program v, 3-21
display line 9-10
function keys and 5-8
memory and 3
menu 4

optimizing 12-13
order of processing 11

modules, memory advantages of 131
NIM (game) 55-57
NUMREF utility subprogram 182-83
opcode 134
OPEN statement 210
operation, ML 134
optocoupler 45, 48, 49
output, joystick port and 49
outside signals, joystick port and 45
parallel data transfer 134
physical record 51
pin assignments, TMS9900 136
pins, joystick port 41-44

246

PRINT command, files and 210
printers, incompatibility and 35
Program Access Block (PAB) 210
Program Counter 138
"QDEMO" program 212, 219-25
"QLOADA" program 212, 235-42
"QSHA" program 212, 234-35
"QSORTA" program 212, 226-34
RAM 127-28

RAM pad 178
Random Access Memory. See RAM
RANDOMIZE statement 58
Read Only Memory. See ROM
realtime clock 47
record blocking 51-54
"Record Blocking" program 52-54
record length, cassette and 52
redefined characters, clearing 147
register files 135, 138-39
ROM 127

RWP (Return with Workspace Pointer)
instruction 139

"Say the Colors" program 160
"Say the Letter" program 158
"Say the Number" program 159
screen formatting 194-97
screen width 195
sequential file, creating 210-11
serial data transfer 134, 141-42
"SETWID" screen utility 195, 199
"SETWID/BAS" program 204
16-bit machine 134

"Smiling Face" program 145-45
"SORT$" disk utility 193, 194, 199-200
"SORT$/BAS" program 202
sorting 193-94
"SORTN" disk utility 193, 200
"SORTN/BAS" program 201-2
Speech Synthesizer 158, 167, 168-69
"Speed Demon" program 93-98
"Spelling Tutor" program v, 167-72
"Spitfire" program v, 77-81
spreadsheet v, 3-10
sprites 175
status register 138
STR$ function 197
strobe pin 41, 42, 44, 49
STRREFutility subprogram 183
tape 3, 5,112
3-D graphics simulation 93
"TI FastSearch" program v, 182-86
"TI File Management" programs v,

209-242

TI Impact Printer 36
"Timer Subroutine and Demonstration"

program 47-48

BEil

IKi#\

OJsSJl

•n

"TI Screen Dump to Epson Printers"
program 36-40

"TI Sketchpad" program 22-28
keys and characters 23-24

TMS9900 microprocessor 127, 134-40,
175, 178
registers 138-39

TMS9901 programmable system inter
face chip 135, 141-42

TMS9918a Video Display Processor
175, 178. See also VDP

TMS9919 sound generator controller
175

TONUM$ disk utility 197, 198, 200
"TONUM$/BAS" program 204-5
"TOSTR$" disk utility 197-98

"TOSTR$/BAS" program 204
typing in programs 243-44
"Utility Demonstration" program 206-8
VAL function 197

VDP 128-30, 143
VDP RAM 128-30, 210
Version 100 Extended BASIC module

71,84
Version 110 Extended BASIC module

84

"Visible Characters for Extended
BASIC" program 149-50

"Visible Characters for TI BASIC"
program 149, 150

word, of memory 128
workspace pointer 138

247

flP^t

1
|K5)

j^>'

To order your copy of TI Collection, Vol. 2 Disk, call our toll-
free US order line: 1-800-346-6767 (in NY 212-887-8525) or
send your prepaid order to:

77 Collection, Vol. 2 Disk
COMPUTE! Publications
P.O. Box 5038
F.D.R. Station
New York, NY 10150

Send copies of TI Collection, Vol. 2 Disk at $12.95 per
copy.

All orders must be prepaid (check, charge, or money order). NC
residents add 4.5% sales tax.

Subtotal $

Shipping and Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $

All payments must be in U.S. funds.

d Payment enclosed
a Charge • Visa • MasterCard • American Express

Acct. No. Exp. Date
(Required)

Signature

Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

46103623

L.J^

'H5fc$s\

<E^r,

	front-page
	Binder1
	chapter000
	content000
	chapter001
	content001
	content001-b
	content001-c
	chapter002
	content002
	content002-b
	content002-c
	chapter003
	content003
	chapter004
	content004
	chapter005
	content005
	content005-b
	content005-c
	content005-d

	back-page

