

Texas

Instruments
Home Computer

Graphics
Programs

Programming Books by Len Turner
101 Programming Tips &Tricks for the Texas Instruments

TI-99/4A Home Computer

36 Texas Instruments TI-99/4A Programs for Home, School
& Office

Texas Instruments Computer Program Writing Workbook
Texas Instruments Home Computer Games Programs
Texas Instruments Home Computer Graphics Programs

Texas

Instruments
Home Computer

Graphics
Programs

by Len Turner

ARCsoft Publishers
WOODSBORO, MARYLAND

FIRST EDITION
FIRST PRINTING

©1984 by ARCsoft Publishers, P.O. Box 132, Woodsboro, MD 21798 USA

Reproduction or publication of the contents of this book, In any manner,
without express permission of the publisher, Is prohibited. No liability is
assumed with respect to the use of the information herein.

Trademark credits and software copyrights:

TI-99/4A is a trademark of Texas Instruments Inc.

Applications software, programs, and programming advice in this
book are Copyright 1984 by ARCsoft Publishers.

ISBN 0-86668-031-4

Preface

Color video graphics is the most exciting artform to
come along in this century. It also is the most useful tool
in business and education since the printing press.

If a picture is worth a thousand words, a moving pic
ture is worth a thousand still pictures. The video-graphics
picture, even when frozen as a single still image, is
equivalent to a moving picture because of the ability of
the computer to make instantaneous changes, to correct
and progress, to add and eliminate.

Businessmen, teachers and students have been
heavily impressed with the ability of graphics to transmit
endless streams of useful data quickly. Millions have
thrilled to the avante garde forms being devised by artists.

All programs in this book were written and thorough
ly tested with a Texas Instruments TI-99/4A, a ver
satile microcomputer system with a small lightweight
configuration and a flexible version of the BASIC pro
gramming language.

The total number of applications to which the Texas

Instruments home, personal and business micro
computers can be put is limited only by the scope of the
imagination. In this book, we have created 38 practical
new sets of applications programs for your use. It is
hoped that you will, by using these 38 programs, learn
how to make your Tl computer work for you. You will be
able to gain an understanding of how programs work in
the computer and how to build on these 38 easy-to-use
pieces of software to make your computer do even more
work as your understanding grows.

This book, as well as all published by ARCsoft
Publishers, is written for newcomers, novices and first-
timers, as well as for advanced users of microcomputers.
Our intention has been to provide easy-to-type-in-and-run
programs for the Texas InstrumentsTI-99/4A,TI-99/2, Com
pact 40, and other Tl personal, home and business
microcomputers. You type these programs into your com
puter and it does the rest. You do not have to be a pro
gram writer to use this book!

This volume is a companion book to 101 Programming
Tips & Tricks for the Texas Instruments TI-99I4A Home
Computer, 36 Texas Instruments TI-99/4A Programs for
Home, School & Office, Texas Instruments Computer
Program Writing Workbook, and Texas Instruments Home
Computer Games Programs.

—Len Turner

Table of Contents

Introduction 9

The BASIC Language 14

Computer Graphics 34

Sketches, Graphs & Stuff

Drawing Sketches 41

Color Bar Graph Generator 43

Draw Bar Graphs 45

Aztec Art 47

Aztec Art II 47

Checkerboard 48

Reverse Checkerboard 49

Clock Exercise 50

Blue Fence Builder 51

Multicolor Fence Builder 51

Window Twinklers 52

Five-Item Checklist 53

Backward Writer 55

Show The Colors 57

Snowfall 58

Flashing Graphics Cursor 58

Screen Filler 59

Super Slot-0 60

Making Things Move

Moving Illusion 64

Super Moving Illusion 65

Circling Dot 66

Dot Thrower 67

Multicolor Dot Thrower 68

Square-Hole Thrower 69

Making Things Move 70

Reversing Delivery Truck 71

Chase The Cat 72

Colorful Hopping Pussycat 74

Cannon Target Shoot 75

Winking Man 77

Borders, Boxes & Billboards

Box The Screen 80

Screen Border 81

Flashing Screen Border 82

Box Score 83

Blackboard 84

Centered Boxed Titles 85

Flashing Message Border 86

Flashing Program Title 88

Appendix

Appendix A: BASIC Words 91

Appendix B: Character Sets 93

Appendix C: Color Codes 93

Appendix D: Graphics Grids 94

Introduction
Computer graphics! The most exciting element of the

new world of microcomputers. After word games and
number crunching, making colorful video displays can be
great fun. And now you can make your own with the 38
programs in this book.

These programs are very useful in themselves. They
also make good starting points for further development
as you learn more and more about how to program your
own computer. You can learn a great deal about how
BASIC programs are organized and how they work simply
by typing in these programs. Use these fun and practical
programs and, then, modify them and expand them to suit
your needs as your interests grow.

These programs are designed to be typed into your
computer, via its keyboard console, just as you find the
programs printed here in this book. No other program
ming is needed. We assume you have read the owner's
manuals and instructional pamphlets which came with
your computer and accessories. You know how to hook
up the console to the TV modulator/connector and to any

other accessories you may have purchased. You know
how to type the programs into your Tl computer. You do
not have to be a programmer to use these pieces of soft
ware. Just type them in, as you find them here, and run
them. They will work!

These programs do not require tape or disk, unless
you choose to save them on those media. These pro
grams are so easy to type in you can save this book and
retype them whenever you wish to rerun a program.

Computer printouts
To make sure there are no errors in these programs,

we have written and tested each and every program on our
own TI-99/4A and printed every one on a TI-99 line printer.
The hardcopy printout from that line printer is reproduced
directly in this book!

The Tl computer operated the printer and listed these
programs. No human hands came between the computer
and these listings so no re-typing or proofreading errors
have been introduced. You should find these programs
run exactly as reproduced here.

If, after typing in a program from this book, you get
an error message from your Tl computer, check the handy
list of Tl BASIC words and other Tl info in the Appendix at
the back of this book. Then compare your typed program
lines with the program lines reproduced in this book.

Undoubtedly, you will find you have made a typing er
ror in entering the program lines into your Tl. However,
should you find an error in a program in this book, please
call it to the attention of the author by sending a postcard
or letter to him in care of ARCsoft Publishers, P.O. Box
132, Woodsboro, MD 21798 USA. The author will ap
preciate being able to make any necessary corrections to
future editions of this book.

Making things move
This book has been organized into seven convenient

sections plus an appendix.
The first three sections are this Introduction plus The

BASIC Language and Computer Graphics.
The second three sections compose the main portion of

the book and are the reason the book exists. They are

10

Sketches, Graphs &Stuff including 18 graphics programs;
Making Things Move with 12 exciting graphics programs;
and Borders, Boxes &Billboards eight interesting graphics
programs.

The appendix includes BASIC words and other useful
information which you will want to keep at hand.

Try them all. They're great fun to run. And they are
especially designed to be short so you won't have to
spend hours typing in one program.

Endless running
Many of the programs in this book will continue to

run until you command them off manually via the CLEAR
function. You may stop any run, at any time, by use of the
CLEAR function.

The function key is in the lower right corner of the
console keyboard and is labeled FCTN. Press and hold
FCTN and press the number 4 key in the upper row of
keys. The combination of FCTN and 4 creates the CLEAR
instruction to the computer.

This CLEAR function is the same as what is called
BREAK in other microcomputers.

Here is an example of how the CLEAR function
works in the Tl computer. Type in this brief two-line pro
gram. Type in line 10 and press ENTER. Then type in line
20 and press ENTER. This will lodge the complete pro
gram in program memory. Here is the program:

10 PRINT "XYZ"

20 GOTO 10

After you have the program stored in program memory,
type in RUN and press ENTER to start the operation. The

computer will do as instructed. It will print the letters XYZ
repeatedly. In fact, it will go on forever until you stop the
action.

To stop the run, press and hold the FCTN key. While
holding FCTN down, press the number 4 key. This is the
CLEAR function. It will stop the computer run. Try it.

REMarks
As you read through all of the programs in this book,

you will notice few REM, or remarks, statements. The

11

author's training in writing BASIC-language computer
programs included an emphasis on brevity and saving of
memory space. A sharp editing pencil was in order—and
still is!

REMarks and explanations in software are out. Hon
ing, fine tuning, and waste trimming are in. Use of coding-
form program-writing worksheets is encouraged. Such
worksheets can be found in the Texas Instrument Pro
gram Writing Workbook published by ARCsoft
Publishers. Your objective always should be to make the
most efficient use of available memory.

Always remember: even though they may be headed
toward the same goal, no two programmers will write the
exact same list of BASIC instructions, or program lines,
from scratch. As you load these various programs into
your Tl computer, one at a time, you'll make modifications
to suit your personal needs and interests. For instance,
exact wording of PRINT statements can be changed. Or
two or more programs can be combined into one grand
scheme. Your applications may vary.

If you want to load more than one of these programs
into your Tl computer at the same time, be sure to use dif
ferent sets of line numbers for different programs.

Computer programmers today generally mix the use
of the two words, ENTER and RETURN. They are used to
mean the same thing. In this case, we mean the ENTER
key on the right side of the console keyboard.

Other computers
These programs will run on any computer which is

set up to be programmed in BASIC. However, to run these
on machines other than ones using Tl BASIC as found in
the TI-99/4A, you may have to make slight modifications
to program lines. Graphic commands, especially, will dif
fer elsewhere. Also use of multiple-statement lines, using
the colon (:), is quite different in most other forms of
BASIC.

Refer to the owner's manual which came with your
non-TI personal computer. Compare its version of BASIC
with Tl BASIC.

Also, if you use a non-TI microcomputer, such things
as line numbering, spacing, logical tests, multiplication

12

symbols, print statements and other instructions may dif
fer.

Standalone vs. subroutine
All of the programs in this book can be used as por

tions of larger lists of instructions to your computer. That
is, they can be written in as GOTO or GOSUB objects. To
do so, make appropriate changes to the first line (usually
numbered 10 in this book) and the last line of each pro
gram.

If you create a subroutine, remember that every
GOSUB must have a RETURN. RETURN must be the last
line of each subroutine.

If you work one of these programs into a larger set of
instructions, be especially careful of your memory
(variable) names or labels. They must agree with, and fit
into, those you are using in the main program. Also, be
careful of line numbers. No two programs can occupy the
exact same set of line numbers.

If you want to load more than one of these programs
into your Tl computer at the same time, be sure to use dif
ferent sets of line numbers.

Learning programming
These programs are written to be typed into your Tl

computer just as you find them here with no programming
needed. We assume you know how to turn on your com
puter and how to go about typing in a program. Many of
the programs and much of the programming advice in this
book will, in fact, also be of interest to old-timers in the
program-writing game since we have presented many
powerful new twists aimed at making your computer do
more work more quickly.

Use this book to stimulate your thinking about how
to approach various software problems and projects. Use
it to get good ideas for new and different approaches to
all of your programming goals. As you grow and develop
as a program writer, modify these programs and make
your computer do even more.

Happy programming!

13

The BASIC Language

Texas Instruments personal computers are practical,
useful, fun, even exciting. But writing programs can be a
drag unless you know BASIC, the most popular software
language. In this book we will introduce you to the T.I.
BASIC in an easy-to-understand explanation of the most-
used words.

We also provide a graphics grid for use in creating
graphics designs for use on the T.I. computer.

Texas Instruments BASIC
Before writing programs for your T.I. be sure you have

thoroughly read and understand the owner's manual which
came with your computer. It will tell you how to turn the
machine on, how to hook up the accessories, how to type in
new programs for the computer to run.

The introduction to T.I. BASIC which we offer here will
allow you to understand the most elementary workings of
your computer and its program language.

The graphics grid is designed for your use in creating

14

new and different video art on the TV monitor of your T.I.
personal computer. Visualize the squares on the grid as if
they were the dots you can turn on and off on the face of
your T.I. TV picture tube. No matter whether you are work
ing low-resolution, medium-resolution or high-resolution
graphics, the sheet will allow you to plan in advance your
charts, graphs and other drawings.

This will be a straight-forward introduction to program
ming. We assume you have tried to read the owner's
manual which came with your computer. You know how
to turn it on. You know that pushing its buttons can't
break it. Don't be afraid to experiment. We'll show you
how to make it work for you.

However, the knowledge of BASIC which you will gain
from this book will be applicable to any microcomputer,
minicomputer, or main-frame computer using the BASIC
language. And all of today's popular microcomputers use
BASIC.

Our simple down-to-earth instruction will help you
quickly understand how to talk to your computer and
make it do what you want.

The name of the language is BASIC. That stands for
Beginner's All-purpose Symbolic Instruction Code. What
does that mean? Well, you know beginner. That's you. All-
purpose means it's generally useful for lots of different
things. Symbolic reflects the fact that the comupter uses
symbols to receive instructions from you. That is, sym
bols like the word PRINT or IF or THEN or FOR or NEXT.

The symbols mostly are words you already know. Code is
a buzz-word used by programmers to mean instructions to
a computer.

So, you can translate Beginner's All-purpose Symbolic
Instruction Code to mean "You use familiar words to tell

your computer how to do just about anything."
BASIC was invented at Dartmouth College in the 1960s

to be used by students, beginners, novices, newcomers,
to computers and programming. It's very much like every
day English, as you'll see as we go through this book.
We'll point out the familiar look-alike words which have

15

meanings you already know and understand. Words like
end, for, go, to, if, then, list, new, next, step, print, return,
run, stop, and others.

Building on what you already know, we'll show you how
the computer receives your instructions and uses them to
do what you want.

Universal BASIC

We will use what we consider the most-universal form

of BASIC, simplified so it is applicable to just about any
contemporary computer—large or small. These words,
when used to instruct a computer, would be understood
by just about any hardware. Be sure to check your
owners' manual to see how its BASIC words differ (if

they do) from those we use here.
Keep your owners' manual handy as you type in and

run programs. You may need it to make sure you are
properly turning on your equipment.

Please remember, no two programmers write identical
programs from scratch. Even when working toward the
same goal, different writers will create different logic pat
terns. If your program doesn't exactly match a suggestion

in this book, yours still may be correct.
Assuming your program runs and gets the required

result, judgment of writing quality should be made on
brevity, quickness of running time, and organizational
clarity. It's always best to write as few lines as possible.
The faster a computer completes its work, the better. And
instructions should appear to flow in a logical order so
they can be followed by others who might read your
writing.

What's Inside Your Computer

There are four main areas : the input keyboard, the tiny
microprocessor, a hulking memory, and the output
display.

16

Processor, input, output and memory are the important
parts of any computer. There are many accessory sec
tions but those four are where the most- interest

ing activity occurs.
Input and output, often abbreviated as I/O, allow a com

puter to receive work orders from its operator, to receive
information or data for use during a work period, and to
send out messages and work results to the operator.

Through the keyboard, an operator gives the computer
a list of instructions for carrying out one or more jobs.
That list, or program of action, is followed by the com
puter whenever told to do so. It does not have to be acted

upon immediately. The program can be remembered for
later action.

To achieve some of its work goals, the computer must
have additional information or data. That information also

is typed in through the keyboard.
So, the keyboard has two functions: sending in pro

grams of instructions and sending in additional data.

The output display might be a television set or a TV-like
monitor or a larger electric typewriter. The output display
has one main duty: showing messages and work results
to you.

Memory
The convenience of a computer would be lost if we had

to send in instructions, one at a time, and await action
after each instruction. The beauty of the beast lies in its
ability to memorize a long list of instructions and then,
upon later command, execute those orders. The computer
has a memory to store its various lists of instructions. It is

called program memory and it can hold more than one
complete program at a time.

At the same time, things would be slowed considerably
if each extra piece of information has to be keyed in
repeatedly every time the computer needed it. The com
puter can accept data one time and then store it away for
repeated use later. To keep such extra information on
hand, the computer has data memory.

17

Imagine 26 boxes labeled A through Z. The contents of
the boxes can be changed. Some contain something.
Some contain nothing. All are variable in that their con
tents can be changed.

Consider each box to be a single memory location,
identified by its label A or B or C on through Z.

Strings
The boxes can contain either numerical information or

words composed of combinations of letters, symbols and
even numbers. Such a word is thought of as a string of
data. Whenever one of our memory location boxes is stor
ing a word, it is a string variable. If it holds only numbers,
with no letters or other keyboard symbols, it is a
numerical variable.

The quantity of letters, symbols and numbers which
can be tied together in a string and stored in one memory
location is limited. In larger desktop computers, one
string in one memory location can hold hundreds of
characters. But in some computers, one string is
limited to seven characters.

This limitation applies only to string variables, not to
numerical variables. Here are some examples of what
variables contents might look like:

String Numerical

Variables Variables

JIM 86

@#$%ABC 1234567890

1/12/83 22.66

BIRTH DY 1

The program writer must keep track of which kind of
variable is being used in a particular memory location. For
example, if you store a word in location B and then try to
use that data in a math problem, an error will occur and
you'll get a message from your computer.

Only when you have numerical information stored in a
memory location can you use that data for math.

18

One way programmers keep such things straight is by
labeling string variables with a dollar sign ($). The dollar
sign means string and should be read as "string."

Empty boxes

If we were to put a number in A we would label it A. If
we were to put a word in A we would label it A$.

By the way, you can change the contents of the various
boxes during the running of a program. A location can go
from empty to full or from full to empty. Or a full location
can have its value changed. A program can be written so
the computer will continually check memory locations to
see what has been stored there.

Obviously, when we say a memory location is empty we
mean it has nothing in it. In effect, it has a big fat zero in

side. As a matter of fact, if you were to look at the con
tents of an empty variable, you would see that it contains
a zero. If you ask the computer to show you the contents
of an empty memory location, the output display will
show 0 if it is a numerical variable. If it is a string variable
with nothing stored inside, the display will show nothing.
Not even a zero. It will be blank.

You write in data memory by setting the data location
letter equal to the value you want to write in it. For in
stance:

A =1234

The value on the right is transferred into the storage loca
tion on the left.

Program memory
Now you know how to write information in data

memory, and recall it. How about writing in program
memory?

Your computer is built to use the BASIC program
language. BASIC requires each line of a program to start

19

with a line number. Here's a typical three-line program.
Notice the numbers at the beginning of each line:

10 CALL CLEAR
20 A$ = "WORD"

30 PRINT A$

The computer needs those line numbers to be able to
follow your instructions in sequence. It knows that line 20
comes after line 10 and line 30 comes after line 20. Here's
the same program with different line numbers:

5 CALL CLEAR

21 A$ = "WORD"

189 PRINT A$

This program will run just the same as the first one. The
line numbers are in the same sequence and the com
mands within each line are the same.

It is possible to write a program which uses every
single step of program memory!

NEW
The command NEW erases everything stored in pro

gram memory, no matter how many different programs
you have there.

The processor
Be an electronic mouse inside the computer again.

Notice the master-controller in charge of everything.
That's the microprocessor. Micro means small. Processor
means it follows instructions in manipulating data to do
work. It's not very big but it sure is powerful!

The processor is a very logical worker, dutifully going
about its business in a proper order, carrying out instruc
tions, doing work.

Built into the processor are instructions for how to
handle its chores. As it follows that internal set of instruc

tions, it knows how to follow your external set of instruc
tions and do the work you want done.

To make a long story short, the processor takes inform
ation from memory, does something with it, and then

20

either returns data to memory or displays it as output for
you to read. It is able to do this many, many times each se
cond and that's why we love the microprocessor!

Suppose you tell the microprocessor to fetch the con
tents of memory location B. It looks in there and finds
WORD there. It reads that word, leaves the original behind
in memory location B, and takes the information about
what is in B away to work with it. The processor actually
has a tiny memory inside itself so it can remember what it
read in B.

If we instruct the processor to store something in
memory location C, it writes data to that memory location.
When it writes in that memory location, it destroys
whatever was there before. For example, suppose we
have the number 1234 stored in memory location C. As a
result of an operation, we instruct the microprocessor to
store the number 6789 in memory location C. It will put
6789 into C and we will lose the original number, 1234,
forever.

Remember: reading destroys nothing but writing
replaces old information with new.

In carrying out activities, the processor follows exactly
the set of instructions you gave it as a program. It can't do
anything else. If you make a mistake, it makes a mistake.
If your work was perfect, its work will be perfect.

Program language
A program is composed of sets of alphabet letters

which the processor understands as words. A complete
set of such words makes up a language. BASIC is a
language composed of words such as GO, TO, FOR,
NEXT, IF, THEN, STEP, PRINT, RETURN, INPUT, PAUSE,
WAIT, SET, STOP, END, SAVE, LOAD, GET, PUT, RUN,
LIST, NEW and many others.

Since our computers are so very small, they
have been given only the very best, most useful, of these
words.

The more extensive the BASIC vocabulary, the more
flexible the writer can be in creating programs. The total

21

number of BASIC words invented to date is well over 500.

You have the best of these in your computer.
It's easy to see why BASIC is the most popular com

puter language today. It's most like everyday English and,
therefore, most readily used.

Writing and Running Programs

Writing programs means creating line lists of instruc
tions and storing them, one at a time, in program memory.

Running means having the computer recall those sets
of instructions, one line at a time, and do them.

RUN

Let's put an instruction in program memory and then
run it.

RUN is an instruction to the computer to start at the
lowest program line number and begin executing com
mands it finds there.

You can make the computer start its run at a different
line number by typing that line number immediately after
the word RUN. For instance, to start at line 100, type:

RUN 100

The computer will skip over any program lines with
numbers less than 100.

REMarks

Suppose you were to write a very long, 50-line program
of instructions for your computer. You might forget what
each line was to accomplish. You need some way to put
information in program memory which won't be acted
upon by the computer during a run. Information such as
notes to yourself so that when you list your program you
can recall what the various parts of the program were sup
posed to do. These notes to yourself, and for other pro
grammers to read, are called remarks. The REM command

22

is used. Anything in a program line after REM will be ig
nored by the computer during a run. For example:

10 REM PRINT "NAME"

20 PRINT "WORD"

Type in this program and run it. You'll see that the com
puter has ignored, or skipped over line 10 and done line
20. Anything on a line after REM is ignored.

REMarks are good for notes but very wasteful of
memory. And we don't have much memory to spare in the
computer. Use REM infrequently!

BREAK

What to do when your computer goes blitzo!
BREAK is used whenever you need to stop a RUN dead

in its tracks. It's your panic button.

STOP

But suppose you want the program to STOP
automatically at some point in a run? Use the STOP com
mand. Write it into your program as one line.

END

You can, at your option, tell the computer a program
has ended. Use the END command.

Input and Output

Input means giving the computer something to store in
memory, whether data or program.

Output means displaying messages and work results
for you to see.

23

INPUT
Information can be permanently placed in memory

when you write a program. That is, data will actually be
part of the program as written. This fixed information
could look like this:

10 A$ = "WORD"

Whenever you run the program the computer will always
start with the memory that WORD is the data in memory
location A$.

But, suppose you want the computer to pick up
changeable data during a run? Use the INPUT function.
Try this program:

10 A$ = "ITIS"

20 INPUT "WHAT IS THE WORD":B$

30 PRINT A$;B$

When you run this program, the computer starts at line 10
and stores the string IT IS in memory location A. At line
20, the computer displays the question, WHAT IS THE
WORD, and waits for a reply. You type in any string of
characters in reply to give your answer to the
computer. The computer stores your answer in B$.
Then, the computer moves on to line 30
where it recalls the contents of memory locations A$ and
B$ and prints them on the display.

The TI-99/4A does not permit multiple statements on
one line, as other computers might. The colon, used by
other computers to set apart multiple statements on one
line, is used for something else in the TI-99/4A.

The colon (:) is used to attach the variable (memory
location) name to the end of an INPUT statement. For
example, here the prompt in the INPUT statement is the
word "NAME" and the memory location is N.

10 INPUT "NAME":N

Let's see how INPUT works when you want to collect
numerical data. It works the same. Try this short program:

10 Q = 111

20 INPUT "PICK A NUMBER":N

24

30 R = Q+N

40 PRINT N;"PLUS ";Q;" = ";R

Here, line 10 puts the value 111 into memory location Q.
Line 20 displays the message, PICK A NUMBER, and
awaits your response. Whatever number you select, key it
in. The computer will store your number in memory loca
tion N.

Line30 does the math workfor you by adding. It recalls
that 111 was stored in Q and your number was stored in N.
It adds those two values to get a new total. The total is
stored in memory location R. The program moves on to
line 40.

At line 40 the computer prints the results in sentence
form. Try it with several different numbers. It's fun!

Suppose your number were 59. The program result,
after printing line 40, would look like this:

59 PLUS 111 = 170

You don't have to use the message part of the INPUT
function if you don't want to. For instance:

10 INPUT N

20 INPUT P

30 PRINT N

40 PRINT P

This program allows the computer to take in your
numerical data and store it in memory locations N and P
and then print the values on the display. The computer
will start at the lowest line number, as usual, line 10.
Since no message has been supplied, the computer will
display only a question mark (?). The ? tells you the com
puter wants some information. Try it on yourcomputer.

PRINT

You already have used the PRINT output command but
here's some further information.

25

PRINT causes a message to be displayed on the
computer's display. The printed message consists of
whatever is contained within the quotation marks follow
ing the PRINT command. For instance:

10 PRINT "I LIKE ICE CREAM"
The computer reproduces exactly what you place bet
ween the quotes, including blank spaces. Try it in your
computer. Now, type in this program:

10 PRINT "I LIKE ICE CREAM"

20 PRINT "DO YOU?"

These PRINT messages need not be in the same line as
the PRINT command, by the way. Rather, you can store a
message in data memory and recall it for PRINTing. For
example:

10 N = 1234.56789

20 PRINT N

Thecomputer, at line 10, stores the number1234.56789 in
memory location N. At line 20, the computer recalls the
value of N and prints it on its display. Here's another
example:

10 G$ = "WORD"

20 PRINT G$

Herethe computer stores the string of characters, WORD,
in memory location G. At line 20 it recalls G$and prints it.

Here's an even more complex program:

10 A = 6

20 B = 7

30 C = 2

40 D = A+B + C

50 PRINT D

The computerstores the number 6 in memory location A;
the number 7 in location B; and 2 in C. At line 40 it recalls

26

the values in A, B and C and adds them together. The
result of that addition is stored in D. Line 50 recalls the
contents of Dand prints the number on the display. Try it.

The Real Computer Power!

When folks talk about a computer having power, they
often are referring to its ability to make decisions. And its
looping ability. And its jumping ability. These capacities,
when combined, make for some very powerful computing
ability.

FOR/NEXT/STEP

You already know loops are fun but we need a way to
control them to put them to a useful purpose. Here's one
way:

10 FORL = 1 TO 100

20 PRINT L

30 NEXT L

40 PRINT "END OF COUNT"

Lines 10 and 30 create a FOR/NEXT loop. A FOR/NEXT
loop probably is the most frequently used of the super
power BASIC commands.

In this program, line 10 actually contains a built-in
counter which advances the value stored in Lby one every
time the program reaches line 30. In fact, until the count
reaches 100, line 30 causes the program to jump back to
line 10. When the value in L reaches 100, then and only
then will the FOR/NEXT loop let the action drop on down
to line 40. Here's a variation:

10 FOR A = 10 TO 100

20 PRINT A

30 NEXT A

The memory location used in the loop can be any of those
available to you in your computer.

Unless you tell it otherwise, the count will step up by
ones. Try this change:

27

10 FOR X = 2 TO 40 STEP 2

20 PRINT X

30 NEXT X

Here the count goes up by twos. Trythis program to make
the computer count down by ones:

10 FOR J = 100 TO 1 STEP-1

20 PRINT J

30 NEXT J

The computer starts at 100 and counts down to 1, and
then stops. Very convenient. Very powerful!

The STEP statement is not used unless you want in
crements other than +1. Minus numbers after STEP will
cause the computer to count down in numbers while
positive numbers will cause it to count up. Now make the
computer take some giant steps:

10 FOR R = 999 TO 1 STEP -100

20 PRINT R

30 NEXTR

The computer counts down by hundreds. At that rate, it
doesn't take very long to run out of numbers.

Sometimes you need a time delay in the middle of a
program as it is running. The loop can be used to create
such a time delay.

10 FOR N = 1 TO 999
20 NEXTN

Get a stopwatch and keep an eye on the running time
for the program. Line 10 is a FOR/NEXT loop all on one
line, without any output during the loop. The computer
merely counts internally up to 999 and then moves on.

How long does it take such a loop to run its course?
Use a stopwatch to time it . A nice long delay! Now
try counting to 100:

10 FORN = 1 TO 100

20 NEXTN

How long is the delay?
10 FORN = 1 TO 10
20 NEXTN

Counting only to 10 reduces the delay.

28

10 FORN = 1T0 5
20 NEXT N

Counting only to 5 makes things happen even more quick
ly. 10 FORN = 1T0 3

20 NEXTN

Why is a one-second loop useful? Well, maybe you
would like to turn your computer into a clock!

Here's a simple timer, for starts:

10 CALL CLEAR

20 T = T + 1

30 FOR N = 1 TO 3

40 NEXTN

50 PRINT T;" SECONDS"
60 GOTO 20

This is a crude clock. You can adjust its speed by
changing the number 3 in line 30. It will count seconds un
til you stop it with the BREAK key.

Can you figure out why it takes a bit longer for the first
display, 1 SECONDS, to appear? Because the computer
uses up time as it works it way through lines 10,20 and 30.
You planned on it using up time at line 30 but you may
have overlooked the amount of time it takes to carry out

the instructions at line 10 and line 20.

IF/THEN

Did we say earlier the computer has the ability to make
decisions? Yes! The IF/THEN statement is an important

part of the decision-making process.
IF something happens or is true, THEN and only then

will something else happen. IF nothing happens or
something is not true, THEN nothing will happen. The
IF/THEN test is one of the superpowers of the com
puter. IF something is true, THEN some action is taken.

That action can be a GOTO jump to a new line.

IF/THEN statements must end with a line number, for
example:

10 IF A=B THEN 200

Try this brief program. In it, the computer displays 10 if you

29

type in the number 10 in reply to its question. Ifyou type any
other number, it will display zero:

10 CALL CLEAR

20 INPUT "WHAT IS THE NUMBER":N
30 IF N=10 THEN 100
40 PRINT "0 "

50 PRINT

60 PRINT

70 GOTO 20

100 PRINT N

110 GOTO 50

At line 10, the entire video screen is cleared. At 20, the
computer asks you to type in a number. You type in a
number and press ENTER. At line 30, the computer makes a
decision. It does this by testing the value you placed in
memory location Nat line 20. If Nis found to be equal to 10
then program action jumps to line 100. If not, action drops
to line 40 where the computer prints a zero. Lines 50 and 60
cause the computer to print two blank lines and then line70
pushesaction back to line20wherethe question is repeated.

GOTO
You know that the computer does your list of BASIC in

structions by following line numbers. First it does line 10,
then line 20, etc. But, suppose you want the computer to
do things in a different order. Maybe you would like it to
jump over a group of lines. Orskip down to a different part
of the program. This ability to branch out and around
some lines to do other lines is an important power in the
computer. It involves the GOTO and GOSUB statements.

GOTO means "go to a line." The GOTO statement must
include the destination where you wish the program to
go. For example:

GOTO 100

When the computer finds a GOTO statement, it im
mediately leaves the list, searches for and finds the
destination line, and reenters operations at that point.
Here's a small example:

30

10 GOTO 30

20 PRINT "NAME"

30 PRINT "WORD"

In this program, the computer starts at line 10 where it im
mediately finds a command to GOTO line 30. It skips
down the list until it finds line 30. At line 30 it resumes do
ing what you asked. It prints WORD. In this case, the in
struction in line 20 never gets done.

You can jump backward and forward within the pro
gram. Here's an example:

10 INPUT "ENTER A NUMBER":A

20 INPUT "ENTER ANOTHER NUMBER":B
30 GOTO 100

40 PRINT"THE TOTAL IS ";T
50 GOTO 10

100 T = A+B

110 GOTO 40

Again the program starts running at the lowest line
number, line 10. At line 10 it asks you for a number which
it stores in memory location A. At line 20 it asks for
another number which it puts in B.

At line 30 it finds an order to branch down to line 100
which it does. When it finds line 100 it does the instruc
tion in line 100. It recalls the contents of A and B and adds
them together, storing the total in T. Having completed
line 100, it moves on down to line 110.

At line 110 the computer finds your instruction to jump
back up to line 40. Doing that, it finds at line 40 an instruc
tion to print THE TOTAL ISand the value in T. Putting that
message on the display, it goes on to line 50.

At line 50 it comes upon your command to go up to line
10. It does that, thereby starting the entire process over
again. The computer will go through this elaborate loop
as long as you are willing to keep giving it numbers.

GOTO is, in fact, one of the most-used words in the
BASIC language. Our programs are strewn with such
jumps.

31

GOSUB/RETURN
Often you will need to repeat the exact same set of in

structions at different points in a program. You could type
the required program lines into the program each time
they are needed. Or you can type them once and make the
program jump to them when needed.

Typing of repeating sequences wastes your program-
writing time, and, more importantly, wastes program
memory space. It's easier for you and uses less memory
when you create one subroutine to be repeatedly used by
the computer.

Why not use a GOTO statement to get to a subroutine?
The answer lies in the RETURN from the subroutine. If
you were to use GOTO to get to a subroutine from several
different places in a program, the designation of where to
return to after completion of the subroutine would be long
and clumsy. GOSUBwas invented to take care of just that
problem.

A subroutine is a small program which you can imagine
as being set aside from the main program. A subroutine
can be used as often as you like while running the main
program. Each time a subroutine is completed, the com
puter automatically returns to the line in the main pro
gram immediately following the line from which it earlier
had left the main program. Here's a small example:

10 A = 555

20 GOSUB 100

30 PRINT T

40 END

100 T = A+1

110 RETURN

The main program is contained in lines 10, 20, 30 and 40.
The subroutine is lines 100 and 110. The jump to the
subroutine is the instruction in line 20. Note that it con
tains the destination line number. The return from the
subroutine is from line 110 to line 30.

At line 10, we assign the value 555 to memory location
A. At line 20, we ask the computer to branch to the
subroutine at line 100.

32

At line 100 the computer finds an instruction to recall
the value of A and add one to that value. The new total is

stored in memory location T.

The program moves on to line 110 where it finds
RETURN. That instruction, which must always be at the
end of a subroutine, tells the program to jump back to the
line immediately following the line where it left the main
program. In this case, the program left the main routine at
line 20 so RETURN will kick it back to line 30.

At line 30 the computer finds a command to recall the
contents of T and to display it. It does that and moves on
to line 40. At line 40 it finds the END command and

ceases operations.

Why an END in line 40? Because you need to make sure
the subroutine is entered only from the GOSUB instruc
tion. After line 30, without an END in line 40, the program
would automatically move from line 30 to the next
available higher line number which is 100. At line 100 it
would enter the subroutine. At line 110 it would find a

RETURN which did not come from a GOSUB and an error

message would occur.

Just as a GOSUB must have a RETURN, the RETURN
statement must come after a GOSUB.

The computer has a tiny private "scratchpad" bit of
memory within itself where it writes temporary notes to
itself. When it executes a GOSUB command, it makes
note of the line number from which it left the main pro
gram. Later, when it finds a RETURN, it refers to its
scratchpad to see where it left the main program. It deter
mines the next available program line after that exit point
and re-enters the main body of the program at that point.

If the computer encounters a RETURN without having
left the main program via GOSUB, it won't be able to find a
"where to" note on its scratchpad and will send you an er
ror message. You don't want error messages so you pre
vent the computer from getting into subroutines by
means other than GOSUB jump commands.

33

Computer Graphics

Your personal computer is a system with four major
parts: input, processor, memory and output.

Processor and memory are the innards, the brain
which does the internal work you ask for.

Input is composed of the various parts of the equip
ment which allow you talk to the computer, to send in in
formation for the memory to store and for the processor
to work on. Input includes the typewriter-style keyboard, a
tape, a disk, etc.

Output is the equipment available for the computer
to talk back to you, to report the results of work you asked
it to do. Output includes the video display screen, a line
printer, or other devices.

This is concerned with a special use of one
piece of output equipment, the video display screen. We
hope you will learn from these pages how to make the
computer display useful pictures on the face of the video
tube.

When you turn the power on, the computer knows
how to operate because the manufacturer has written

34

software and inserted it into the computer's innards. That
internal program is system software.

The computer can go beyond its basic internal
housekeeping functions to do real-world jobs you ask of it
because you write additional programs for it to follow.
Your added instructions are applications software.

This , then, will show you how to write applica
tions software especially to create pictures on the video
display.

You hear a lot of talk, these days, about various types
of resolution. Some graphics are said to be low-
resolution. Some are high-resolution. There is a middle
ground which could be thought of as medium resolution.
What's the difference?

Low vs. high resolution
Letters, symbols, numbers, entire words, pictures,

charts, graphs, anything displayed on the face of your TV
screen or video display monitor is created as a series of
lighted dots against a dark background. Imagine your TV
screen as a large grid of tiny square rectangles like a
piece of graph paper. Suppose you wanted to create the
letter P on that grid, as in this approximate drawing:

The overall screen is dark. The light spots, when viewed
together, create the image of the letter P. Your education
leads you to see the letter P rather than an assortment of
13 white spots against a black background.

To create the letter P on the face of your TV, the com
puter lights several small rectangular dots in a pattern
you recognize as P. The same for the letters C and A and

35

T, the number 1 or the symbol we call an exclamation
point or any others you can think of:

The size of the face of a TV set is fixed, but it is possible
to make the lighted dots larger or smaller. The smaller the
dot, the more dots we can squeeze onto the face of the
video screen. Like creating graph paper with ever-smaller
squares, the more dots we squeeze onto the face of the
video tube, the less likely you are to be able to see any
one dot.

Fewer dots filling a screen mean each dot is bigger,
more easily seen. More dots filling a screen mean smaller
dots, each less easily seen. For example, look at these
two grids. Each is the same size. But one has twice as
many small squares in it.

Let's try our letter P in each of two grids. The P on the left,
below, contains more dots. We'll call it "high resolution"
since it has a higher number of dots in the same space.

The P on the right contains fewer dots. We'll call it
"low resolution" since it contains a lower number of dots

in the same space:

36

High Resolution Low Resolution

If we had a P with more dots than in our low-resolution P,
but with fewer dots than in our high-resolution P, we
would have a medium-resolution P.

All information transmitted to you from the computer
on the video screen is created the same way, as a pattern
of lighted dots.

Text vs. graphics mode
Text mode is used for common letters, numbers,

symbols, words, formulas and other kinds of frequently-
used English-language communication. In the text mode,
the computer calls upon data imbedded in its permanent
memory to create the patterns of lighted dots we will
recognize as letters of the alphabet or numbers or sym
bols.

The quantities and descriptions of those patterns of
lighted dots are previously established inside the com
puter and beyond your control. Call for the letter A and
you'll always get the same A. You cannot make that text-
mode A short-legged or fatter or slimmer. In text mode, an
A is an A is an A...

Graphics mode, on the other hand, is your own per
sonal sketch pad. You can draw shapes and sizes of all
sorts of characters and figures to suit your own desires.

When you turn power on, your computer wakes
up in the text mode. Many of the BASIC words you use in
programs automatically create text displays. For in
stance, use of the PRINT instruction makes a text display.

Video graph paper
Remember we said the TV screen can be imagined as

having a grid like graph paper? Well, like graph paper you

37

can precisely locate one spot on the face of the screen by
counting rows and columns. Here's a grid:

Now, suppose we thought of all the horizontal rows
as X and the vertical columns as Y. We might think of
lines moving across the TV screen as moving in the X
direction and lines moving up and down the screen as
moving in the Y direction.

*

The upper left corner of the screen is position X =1 and
Y = 1. There are 32 columns across the screen and 24 rows
down the screen. Thus, X can range from 1 to 32 and Y from
1 to 24.

Count the dots across the grid. Start on the left and count
toward the right. As you move toward the right hand side
of the grid you get more and more dots. The number of
dots is increasing. Each new dot adds one to the total.
Each new dot is plus one.

Now move backward, right to left. Each new dot sub-

38

tracts one from the total previously counted. Each is
minus one.

To move left to right, then, add one to the value of X.
To move right to left, subtract one from the value of X.

" "2 — -
\ I "1 1 1 1 1 1 1 1

^

Similarly, to go up or down the screen, the value of Y
changes.

You will note that the position where X,Y is 1,1 is
in the upper left hand corner of the grid. What would the
lower left hand corner be? Since it is in the fifteenth
position for both X and Y it would be 15,15.

Any position on the screen can be located as an X,Y
point. For instance 1,1 or 15,15 or 7,8. Where is 7,8?

1

%
%

M
f>
6

7
ft I
9
to

It

n
is
H
is

These X and Y values are used in the CALL GCHAR,
CALLHCHARandCALLVCHARcommandsintheTI-99/4A.

39

Sketches, Graphs & Stuff

Drawing Sketches
Now you can draw lines, rules, diagrams, maps, charts,

boxes—anything you can imagine—on the face of your
color TV set. Use the Computer keyboard as your
pen and its video output as your ink.

Lines 50 to390accept your up, down, right, or left com
mands, as U, D, R, or L No other letters will work. Line400
draws your lines.

Program Listing
10 CALL CLEAR

20 CALL CHAR<128,"FFFFFFFFFFFFFFFF")
30 R=l

40 C=l

50 CALL KEY(0,Z,X>
60 IF X=0 THEN 50

70 IF Z=85 THEN 90
80 GOTO 150

90 R=R-1

100 IF R<1 THEN 120

110 GOTO 140

120 R=l

130 GOTO 50

140 GOTO 400

150 IF Z=68 THEN 170
160 GOTO 230

170 R=R+1

180 IF R>24 THEN 200
190 GOTO 220

200 R=24

210 GOTO 50

220 GOTO 400

230 IF Z=82 THEN 250
240 GOTO 310

250 C=C+1

260 IF C>32 THEN 280
270 GOTO 300

280 C=32

290 GOTO 50

41

300 GOTO 400

310 IF Z==76 THEN 330

320 GOTO 390

330 C=C-1

340 IF C<1 THEN :360

350 GOTO 380

360 C=l

370 GOTO 50

380 GOTO 400

390 GOTO 50

400 CALL HCHAR<R,C,128>

410 GOTO 50

42

Color Bar Graph Generator
The bar graph generated by this program can have

up to 20 bars. The lengths of the bars are limited to
the range of zero to 23. You type in the letter X to end the
input loop. The bars are numbered sequentially, from top
to bottom, starting with number one.

Program Listing

10 CALL CLEAR

20 DIM R*(20)

30 DIM NM*(20)

40 CALL CHAR(128,"FFFFFFFFFFFFFFFF")
50 PRINT "WHAT IS THE TITLE"

60 INPUT "OF THE CHART? ":T*

70 N=N+1

80 PRINT

90 INPUT "BAR LENGTH (1-23)? ":R*<N>

100 IF R*(N>="X" THEN 160

110 IF VAL(R*<N))>23 THEN 130

120 GOTO 150

130 PRINT "OOPS, TOO LONG, TRY AGAIN"

140 GOTO 90

150 GOTO 180

160 R*<N)="0"

170 GOTO 210

180 NM*<N)=STR*(N)

190 IF N+l=21 THEN 210

200 GOTO 70

210 CALL CLEAR

220 CALL SCREEN(5)

230 FOR W=l TO 13

240 CALL COLOR(W,16,5)

250 NEXT W

260 LT=LEN(T*>

270 TP=INT<<32-LT>/2)

280 PRINT TAB(TP);T*

290 PRINT

300 FOR K=l TO N

310 PRINT NM*(K)5" ";

43

320 NR=VAL(R*(K))

330 PRINT TAB(4)5" ";
340 FOR J=l TO NR
350 PRINT CHR*(128);

360 NEXT J

370 PRINT

380 NEXT K

390 CALL KEY(0,Z,X)
400 IF X=0 THEN 390

410 FOR P=l TO 20

420 R*(P)=""

430 NM*(P)=""

440 N=0

450 NEXT P

460 CALL CLEAR

470 CALL SCREEN<4)

480 FOR W=l TO 13
490 CALL COLOR<W,2,1)
500 NEXT W

510 GOTO 10

44

Draw Bar Graphs

Drawing graphs on the video screen are a popular
form of communication today. This program establishes a
bar graph on the computer display.

We have selected the business-like example, shown
here, to demonstrate how you go about setting up a bar
graph on the TV screen.

After a run, the computer awaits your press of any
key to do another.

Program Listing

10 CALL CLEAR

20 CALL CHAR(128,"FFFFFFFFFFFFFFFF")
30 INPUT "1978 PROFITS? ":A

40 IF A>23 THEN 30

50 INPUT "1979 PROFITS? "sB

60 IF B>23 THEN 50

70 INPUT "1980 PROFITS? ":C

80 IF C>23 THEN 70

90 INPUT "1981 PROFITS? ":D

100 IF D>23 THEN 90

110 INPUT "1982 PROFITS? "sE

120 IF E>23 THEN 110

130 CALL CLEAR

140 PRINT TAB(ll);"PROFITS"
150 PRINT

160 PRINT

170 PRINT "1978 ";
180 FOR L=l TO A

190 PRINT CHR*(128) ;
200 NEXT L

210 PRINT

220 PRINT

230 PRINT "1979 ";
240 FOR L=l TO B

250 PRINT CHR*(128);

260 NEXT L

270 PRINT

280 PRINT

45

290 PRINT "1980 ";

300 FOR L==1 TO C

310 PRINT CHR*<128);

320 NEXT L

330 PRINT

340 PRINT

350 PRINT "1981 ";

0»6U FOR L==1 TO D

370 PRINT CHR*(128);

380 NEXT L

390 PRINT

400 PRINT

410 PRINT "1982 ";

420 FOR L==1 TO E

430 PRINT CHR*<128);

440 NEXT L

450 PRINT

460 CALL KEY<0,Z,X)

470 IF X=0 THEN 460

480 GOTO 10

Sample Run

46

1978

1979

1980

1981

1982

PROFITS

Aztec Art

Our program reminded us of Aztec artwork.

Program Listing

10 CALL CLEAR

20 CALL SCREEN(ll)

30 FOR X=10 TO 1 STEP -1

40 FOR N=l TO 12

50 CN=INT(126*RND)

60 IF CN<33 THEN 50

70 R=12-(X*SIN(N/6*3.14))

80 C=16-(X*C0S(N/6*3.14))

90 CALL. HCHAR(R,C,CN)
100 NEXT N

110 NEXT X

120 GOTO 120

Aztec Art II

Program Listing

10 CALL CLEAR

20 RANDOMIZE

25 WW*="FFFFFFFFFFFFFFFF"

27 CALL CHAR(128,WW*)
30 FOR X=10 TO 1 STEP -1

40 FOR N=l TO 12

70 R=12-(X*SIN<N/6*3.14))

80 C=16-(X*C0S(N/6*3.14))

90 CALL HCHAR(R,C,128)
100 NEXT N

110 NEXT X

120 GOTO 120

47

Checkerboard

Program Listing

10 CALL CLEAR

20 W*="0000000000000000"

30 B*="FFFFFFFFFFFFFFFF"

40 CALL CHAR(128,W*)

50 CALL CHAR(129,B*)
60 CALL COLOR(13,2,16)
100 FOR Y=4 TO 19

110 FOR X=8 TO 23

120 CALL VCHAR(Y,X,128)
140 NEXT X

150 NEXT Y

200 FOR Y=5 TO 19 STEP 2

210 FOR X=9 TO 23 STEP 2

220 CALL VCHAR(Y,X,129)
225 CALL VCHAR(Y-1,X-1,129)
230 NEXT X

240 NEXT Y

300 GOTO 300

48

Reverse Checkerboard

Program Listing

10 CALL CLEAR

20 W*="FFFFFFFFFFFFFFFF"

30 B*="0000000000000000"

40 CALL CHAR(128,WHO
50 CALL CHAR(129,B*)

60 CALL COLOR(13,2,16)
100 FOR Y=4 TO 19

110 FOR X=8 TO 23

120 CALL VCHAR(Y,X,128)
140 NEXT X

150 NEXT Y

200 FOR Y=5 TO 19 STEP 2

210 FOR X=9 TO 23 STEP 2

220 CALL VCHAR(Y,X,129)
225 CALL VCHAR(Y-l,X-i,129)
230 NEXT X

240 NEXT Y

300 GOTO 300

49

Clock Exercise

More round graphics on your rectangular picture
tube.

Program Listing

10 CALL CLEAR

20 FOR N=l TO 12

30 IF N>3 THEN 60

40 CX=49

50 GOTO 70

60 CX=32

70 CN=N+45

80 IF CN<49 THEN 100

90 GOTO 110

100 CN=CN+2

110 R=12-(10*SIN(N/6*3. 14))

120 C=16-(10*C05(N/6*3.14))

130 CALL HCHAR(R,C-1,CX)
140 CALL HCHAR(R,C,CN)
150 NEXT N

160 GOTO 160

50

Blue Fence Builder

Program Listing

10 CALL CLEAR

20 D*="FFFF81818181FFFF"

40 CALL CHAR(128,D*)

70 FOR Y==1 TO 24

80 FOR X==1 TO 32

110 CALL COLOR(13,5, 16)

120 CALL VCHAR(Y,X,1 28)

130 NEXT X

140 NEXT Y

200 GOTO 200

Multicolor Fence Builder

Program Listing

10 iCALL CLEAR

20 :D*="FFFF81818181FFFF

40 iCALL CHAR(128,D*)

70 1FOR Y==1 TO 24

80 1FOR X==1 TO 32

90 !C=INT(16*RND)+1

100 IF C<:2 THEN 90

105 IF C==4 THEN 90

110 CALL COLOR(13,C,4)
120 CALL VCHAR(Y,X,128)
130 NEXT X

140 NEXT Y

200 GOTO 200

51

Window Twinklers

Well, what would you call them?

Program Listing

10 CALL CLEAR

20 FC=INT(17*RND)

30 IF FC<3 THEN 20
40 CALL C0L0R(1,FC,5)
50 CH=INT(38*RND)

60 IF CH<33 THEN 50
70 C=INT(33*RND)

80 IF C<1 THEN 70

90 R=INT(25*RND)

100 IF R<1 THEN 90
110 CALL HCHAR(R,C,CH)

120 GOTO 20

52

Five-Item Checklist

The computer asks you to give it the names of five
items. It then prints them in a column with small check
off boxes alongside.

Program Listing

10 CALL CLEAR

20 CALL CHAR(128,"FF8181818181FF">
30 DIM I*(5)

40 INPUT "FIRST ITEM: ":I*(1)

50 INPUT "SECOND ITEM: ":I*(2>

60 INPUT "THIRD ITEM: ":I*(3)

70 INPUT "FOURTH ITEM: ":I*(4>

80 INPUT "FIFTH ITEM: ":I*(5)

90 PRINT

100 PRINT

110 PRINT

120 PRINT

130 PRINT "CHECKLIST"

140 FOR L=l TO 9

150 PRINT CHR*(126);

160 NEXT L

170 PRINT

180 FOR L=l TO 5

190 PRINT CHR*(128);" ";I*(L>
200 NEXT L

210 CALL KEY(0,Z,X)

220 IF X=0 THEN 210

230 GOTO 10

Sample Run

• PENCIL
D PAPER
(J JNK
Q PEN
D NOTEBOOK

53

• RADIO
• TELEUISION
• NEWSPAPER
• MAGAZINE
• BOOKS

• DOG
• CAT
• HORSE
• COW
• SHEEP

• RAIN
• SNOW
• SLEET
• HAIL
• SLUSH

• HAT
• COAT
• GLOUES
• SCARF
• BOOTS

54

Backward Writer

Give the computer a message of up to 99 characters.
The computer will print the message backward. Then
press R to repeat the same message. Or press Wto start
over with a new message.

The computer is simply amazing!

Program Listing

10 CALL CLEAR

20 DIM X*(100)

30 PRINT "TYPE A MESSAGE"

40 INPUT A*

50 IF LEN(A*)>100 THEN 70

60 GOTO 90

70 PRINT "OOPS, TOO LONG, TRY AGAIN"
80 GOTO 30

90 L=LEN<A*>

100

110

12C

i3<:

14C

150

i6<:

170

i8<:

190

20(

210

220

23<

24C

250

260

270

28C

29C

300

31(

CALL CLEAR

FOR J=L+1 TO 1 STEP

X*(J)=SEG*(A*, J, 1)

PRINT X*(J>;
NEXT J

FOR Q=l TO 10

PRINT

NEXT Q

PRINT "PRESS R

PRINT "PRESS M

PRINT "PRESS W

PRINT "PRESS Q

CALL KEY(0,I,X)
IF X=0 THEN 220

IF Z=82 THEN 100

IF Z=77 THEN 300

IF Z=87 THEN 10

IF Z=81 THEN 370

CALL CLEAR

GOTO 180

CALL CLEAR-

PRINT A*

TO REPEAT BACKWARD

TO SEE ORIGINAL"

TO WRITE NEW"

TO QUIT"

55

320 FOR G=l TO 10

330 PRINT

340 NEXT G

350 GOTO 180

360 GOTO 10

370 CALL CLEAR

380 PRINT "BYE BYE"

56

Show The Colors

This demonstrator program shows each of the available
screen colors slowly. As they pass in review, watchers
learn what is available. For a longer time of display of
each color, increase the number 500 in line 40.

Program Listing
10 CALL CLEAR

20 FOR C=-3 TO 16

30 CC=C

40 FOR T==1 TO 500

50 NEXT T

60 IF C><? THEN 80

70 GOTO 90

80 CC=CC--10

90 X=32

100 if c:>9 THEN 120

110 GOTO 130

120 X=49

130 CALL SCREEN(C)

140 CALL HCHARU, 15, X)

150 CALL HCHARd, 16, CC+48)
160 NEXT C

170 GOTO 20

57

Snowfall

White flakes sprinkle down the screen, over and
over—until you press the BREAK key. It may be useless
but it's a lot of fun to watch!

Program Listing

10 CALL CLEAR

20 CALL SCREEN(5)

30 CALL COLOR(2, 16,5)
40 R=INT(25*RND>

50 IF R<1 THEN 40

60 C=INT(32*RND)

70 IF C<1 THEN 60

80 CALL HCHAR(R,C,42)
90 GOTO 40

Flashing Graphics Cursor

You can make any one spot on the face of your televi
sion set, or video-display tube, dance or glitter with color
using this program.

Use this flashy little indicator to spot whatever you
like on the graphics screen. Change the location of the
cursor spot by changing the two 12 s in line 50.

Program Listing

10 CALL CLEAR

20 CALL CHAR(128, "FFFFFFFFFFFFFFFF")

30 FOR C=3 TO 16

40 CALL COLOR(13, C,4)

50 CALL HCHAR(12, 12,128)

60 NEXT C

70 GOTO 30

58

Screen Filler

Some say it looks like Outer Space. Maybe a view of
Earth from out there? Whatever, it makes a fun, colorful
display.

Program Listing
10 CALL CLEAR

20 CALL CHAR(128,"FFFFFFFFFFFFFFFF">
30 CALL SCREEN(10)

40 C=INT(33*RND)

50 IF C<1 THEN 40

60 R=INT(25*RND>

70 IF R<1 THEN 60

80 CALL HCHAR(R,C,128)
90 GOTO 40

59

Super Slot-0

Oh, those evil slot machines! They're just popping
up everywhere. Even inside my Tl Computer.

As with all the programs used as examples in this
book, simply type this one in and RUN it. The computer
will display, on your video screen, the name of this
program and some simple instructions.

Like any good slot machine, when you pull the han
dle it displays some objects. If you get no two alike, you
lose. If you get two alike among the three objects, you
win small. If all three are the same, you win big.

To simulate pulling the slot machine's lever arm,
press the ENTER key on the keyboard.

One difference in our Slot-0 game, the display is en
tirely at random. No one pushes a secret button under the
table to make certain items pop up.

Get out your funny-money from that old Monopoly
game, gather up your friends, and let's have some fun.

Program Listing

10 CALL CLEAR

20 GOSUB 500

30 PRINT

40 PRINT

50 PRINT

60 GOSUB 200

70 PRINT "***** ***** ***** *****"

80 PRINT n* "jA*;" * * ";B$s" * * "

5C$5" * * "J0*5" *"
90 PRINT "***** ***** ***** *****"

100 PRINT

105 PRINT

110 PRINT "TO PULL. THE LEVER,"
120 INPUT "PRESS ENTER":KY*

130 GOTO 10

200 GOSUB 400

210 A*=CHR*<X)

220 GOSUB 400

230 B*=CHR*<X)

240 GOSUB 400

60

250 C$=CHR*(X)

260 GOSUB 400

270 D*=CHR$(X)

280 GOSUB 400

400 R=INT< 5*RND)I

410 IF R<1 THEN 400

420 IF R=l THEN 800

430 IF R=2 THEN 900

440 IF R==3 THEN 1000

450 IF R=4 THEN 1100

460 RETURN

500 PRINT "*********************"
510 PRINT "* SUPER T.I„ SLOT-0 *"
520 PRINT '"*********************••
530 RETURN

800 X=35

810 GOTO 460

900 X=36

910 GOTO 460

1000» X=37

1010» GOTO 460

11001 X=38

1110 GOTO 460

SampleRun

* SUPER T.I. SLOT-0 *

******************* *}|C

***** ***** ***** *****

****#*****#*
***** ***** ***** *****

TO PULL THE LEVER,
PRESS ENTER

61

* SUPER T.I. SLOT-0 *

***** ***** ***** *****
*#***** 7. **&*
***** ***** ***** *****

TO PULL THE LEVER,
PRESS ENTER

62

Making Things Move

Moving Illusion

Beware! This constantly-moving image may drive
you batty.

Program Listing

10 CALL CLEAR
20 CALL CHAR(128,"FFFFFFFFFFFFFFFF")
30 CALL SCREEN<9>

40 FOR L=l TO 24

50 PRINT TAB(L)5CHR*(128)
60 NEXT L

70 GOTO 40

64

Super Moving Illusion
If you liked Tip Number 84 above, you'll love this one!

Here the background color changes as well as the color of
the lines. Very striking!

Program Listing

10 RANDOMIZE

20 CALL CLEAR

30 CALL CHAR(128,"FFFFFFFFFFFFFFFF")
40 SC=INT(16*RND>

50 IF SC<3 THEN 40

60 CALL SCREEN(SO

70 CL=INT(17*RND)

80 IF CL<3 THEN 70

90 CALL COLOR(13,CL,SO
100 FOR L=l TO 24

110 PRINT TAB(L);CHR*(128)
120 NEXT L

130 GOTO 40

65

Circling Dot

More round graphics on your rectangular picture
tube.

Program Listing

10 CALL CLEAR

20 CALL CHAR(128,"FFFFFFFFFFFFFFFF")
30 CALL COLOR(1,9,6)

40 FOR N=l TO 12

50 R=12-(10*SIN(N/6*3.14)>

60 C=16-(10*C0S(N/6*3.14))

70 CALL HCHAR(R,C,128)
80 FOR T=l TO 75

90 NEXT T

100 CALL CLEAR

110 NEXT N

120 GOTO 40

66

Dot Thrower

Program Listing

10 CALL CLEAR

20 D*="0000"

25 RANDOMIZE

30 CALL CHAR(128,D*)
40 CALL COLOR(13,4,2)
45 PRINT "DOT THROWER"

50 PRINT "***********"
55 PRINT

60 PRINT "TO THROW DOTS"

65 PRINT "ACROSS THE SCREEN"

70 PRINT "PRESS THE SPACE BAR"
75 PRINT

80 PRINT "PRESS ONCE FOR ONE DOT"
85 PRINT "OR HOLD DOWN FOR MANY DOTS"
90 N=N+1

95 GOSUB 200

100 CALL VCHAR(P,Q,128)
110 GOTO 90

200 CALL KEY(0,Z,X>
210 IF X=0 THEN 200

220 IF Z=32 THEN 300

230 GOTO 200

300 P=INT(23*RND)+1

310 Q=INT(31*RND)+1

320 IF N>1 THEN 340

330 CALL CLEAR

340 RETURN

67

Multicolor Dot Thrower

Program Listing

10 CALL CLEAR

20 D$="0000"

30 RANDOMIZE

40 CALL CHAR(128,D*>

45 PRINT "DOT THROWER"

50 PRINT "***********"

55 PRINT

60 PRINT "TO THROW COLORFUL DOTS"

65 PRINT "ACROSS THE SCREEN"

70 PRINT "PRESS THE SPACE BAR"

75 PRINT

80 PRINT "PRESS ONCE FOR ONE DOT"

85 PRINT "OR HOLD DOWN FOR MANY DOTS"

90 N=N+1

95 GOSUB 200

100 CALL COLOR(13,4,0
110 CALL VCHAR(P,Q,128)
120 GOTO 90

200 CALL KEY(0,Z,X)

210 IF X=0 THEN 200

220 IF Z=32 THEN 300

230 GOTO 200

300 P=INT(23*RND)+1

310 Q=INT(31*RND>+1

320 C=INT(16*RND)+1

330 IF C<2 THEN 320

340 IF C=4 THEN 320

350 IF N>1 THEN 370

360 CALL CLEAR

370 RETURN

68

Square-Hole Thrower

Program Listing

10 CALL CLEAR

20 D*="FFFF81818181FFFF"

30 RANDOMIZE

40 CALL CHAR(128,D*)
45 PRINT "DOT THROWER"

50 PRINT "******#****"

55 PRINT

60 PRINT "TO THROW COLORFUL DOTS"

65 PRINT "ACROSS THE SCREEN"

70 PRINT "PRESS THE SPACE BAR"

75 PRINT

80 PRINT "PRESS ONCE FOR ONE DOT"

85 PRINT "OR HOLD DOWN FOR MANY DOTS"
90 N=N+1

95 GOSUB 200

100 CALL COLOR(13,C,4)
110 CALL VCHAR(P,Q,128)
120 GOTO 90

200 CALL KEY(0,Z,X)

210 IF X=0 THEN 200

220 IF Z=32 THEN 300

230 GOTO 200

300 P=INT(23*RND)+1

310 Q=INT(31*RND)+1

320 C=INT(16*RND)+1

330 IF C<2 THEN 320

340 IF C=4 THEN 320

350 IF N>1 THEN 370

360 CALL CLEAR

370 RETURN

69

Making Things Move

Movement on the computer display screen is an illu
sion. As in any television picture, the turning on and turn
ing off of dots in a pattern across a screen can seem to
provide motion to an object drawn on the face of the tube.

There are a number of ways to get the look of motion.
Let's send a dot across the screen:

Program Listing

10 CALL CLEAR

20 CALL CHAR(128,"FFFFFFFFFFFFFFFF")
30 FOR C=2 TO 32

40 CALL HCHAR(12,C,128)

50 FOR T=l TO 25

60 NEXT T

70 CALL CLEAR

80 NEXT C

90 FOR C=31 TO 1 STEP -1

100 CALL HCHAR(12,C,128)
110 FOR T=l TO 25

120 NEXT T

130 CALL CLEAR

140 NEXT C

150 GOTO 30

70

Reversing Delivery Truck

Program Listing

10

20

25

^6

27

30

40

50

72

74

80

83

90

100

110

120

130

140

150

160

170

CALL CLEAR

LET A*="00F8E8F8FFFF44"

LET B*="0000000000000000"
LET C*="001F171FFFFF22"
FOR X=l TO 28

CALL CHAR(128,A*)
CALL COLOR(13,2,4)
CALL VCHAR(12,X,128)
CALL CHAR(129,B*)
CALL COLOR(13, 4, 4)
CALL VCHAR(12,X,129)
NEXT X

FOR X=28 TO 1 STEP -1

CALL CHAR(128,C*)
CALL COLOR(13,2,4)
CALL VCHAR(12,X,128)
CALL CHAR(129,B*)
CALL COLOR(13, 4,4)
CALL VCHAR(12,X,129)
NEXT X

GOTO 27

71

Chase The Cat

Program Listing

10 CALL CLEAR

20 A*="0000000000808080"

30 B*="0000000000030303"

40 C*="FF81BDBD81FFFFFF"

50 D*=C*

60 E*="1F1F1F1F1F1F1F1F"

70 F*="F8F8F8F8F8F8F8F8"

80 6*="1F1F1F1F1F1FE0E0"

90 H*="F8F8F8F8F8F80707"

100 CALL CHAR(128,A*)

110 CALL CHAR(129,B*)
120 CALL CHAR(130,C*)
130 CALL CHAR(131,D*)

140 CALL CHAR(132,E*)
150 CALL CHAR(133,F*)
160 CALL. CHAR (134, G*)

170 CALL CHAR(135,H*)
180 GOSUB 400

190 FOR X=l TO 27

200 Y=12

210 CALL COLOR(13,2,4)
220 CALL VCHAR(Y,X,128)
230 CALL VCHAR(Y,X+1,129)
240 CALL VCHAR(Y+1,X,130)
250 CALL VCHAR(Y+1,X+1,131)
260 CALL VCHAR(Y+2,X,132)
270 CALL VCHAR(Y+2,X+1,133)
280 CALL VCHAR(Y+3,X,134)
290 CALL VCHAR(Y+3,X+1,135)
295 IF X=27 THEN 310

300 CALL CLEAR

310 NEXT X

320 FOR T=l TO 200

330 NEXT T

340 GOTO 180

400 PRINT "PRESS THE SPACE BAR"

410 PRINT "TO MAKE THE CAT"

72

420 PRINT "RUN ACROSS THE SCREEN'
430 CALL KEY(0,Z,X)
440 IF X=0 THEN 430

450 CALL CLEAR

460 RETURN

73

Colorful Hopping Pussycat

Program Listing

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

74

CALL CLEAR

A*="0000000000808080"

B*="0000000000030303"

C*="FF81BDBD81FFFFFF"

D*=C*

E*="1F1F1F1F1F1F1F1F"

F*="F8F8F8F8F8F8F8F8"

G*="1F1F1F1F1F1FE0E0"

H*="F8F8F8F8F8F80707"

CALL CHAR(128,A*)
CALL CHAR(129,B*)
CALL CHAR(130,C*)
CALL CHAR(131,D*>
CALL CHAR(132,E*)
CALL CHAR(133,F*)
CALL CHAR(134,G*)
CALL CHAR(135,H*)
C=INT(16*RND)+1

X=INT(26*RND)+1

Y=INT(21*RND)+1

CALL COLOR(13,C,4)
VCHAR(Y,X,128)
VCHAR(Y,X+1,129)
VCHAR(Y+1,X,130)

,X+1,131)
X,132)

X+l,133)
X,134)
X+l,135)

CALL

CALL

CALL

CALL VCHAR(Y+1

CALL VCHAR(Y+2

CALL VCHAR(Y+2

CALL VCHAR(Y+3

CALL VCHAR(Y+3

FOR T=l TO 200

NEXT T

CALL CLEAR

GOTO 180

Cannon Target Shoot

Program Listing

10 CALL CLEAR

20 D*="FFFFFFFFFFFFFFFF"

25 G*="0000000000000000"

30 CALL CHAR(128,D*)
35 CALL CHAR(129,G*)
40 CALL COLOR(13,5,4)
50 FOR L=l TO 19

55 PRINT CHR*(32);
60 NEXT L

65 PRINT "TARGET"

70 FOR L=l TO 9

75 PRINT

80 NEXT L

100 PRINT CHR*(32);CHR*(32);"CANNON'
110 FOR L=l TO 11

120 PRINT

130 NEXT L

140 FOR Y=9 TO 15

150 CALL VCHAR(Y,2,128)
160 NEXT Y

170 FOR X=2 TO 12

180 CALL VCHAR(9,X,128)
190 NEXT X

200 FOR Y=9 TO 15

210 CALL VCHAR(Y,12,128)
220 NEXT Y

230 FOR X=12 TO 2 STEP -1

240 CALL VCHAR(15,X,128)
250 NEXT X

260 FOR X=13 TO 15

270 FOR Y=ll TO 13

280 CALL VCHAR(Y,X,128)
290 NEXT Y

300 NEXT X

310 FOR Y=3 TO 12

320 FOR X=16 TO 32

330 CALL VCHAR(Y,25,128)

75

340 CALL VCHAR(12,X,128>
342 IF Y~12 THEN 346

344 GOTO 350

346 IF X=25 THEN 400

350 CALL VCHAR(Y,25,129>
360 CALL VCHAR(12,X,129)

370 NEXT X

380 NEXT Y

390 GOTO 500

400 CALL COLOR(13,11,4)
405 FOR XX=24 TO 26

410 FOR YY=11 TO 13
420 CALL VCHAR(YY,XX,128)
430 CALL VCHAR(YY,XX,129)
440 NEXT YY

450 NEXT XX

460 CALL COLOR(13,5,4)

470 X=32

480 GOTO 350

500 GOTO 310

76

Winking Man

Program Listing

10 CALL CLEAR

20 W*="FFFFFFFFFFFFFFFF"

30 :B*="0000000000000000"

40 iCALL CHAR(128,W*)
50 iCALL CHAR(129,B*)
60 iCALL COLOR(13,2,4)
70 1M=l

100 FOR X=2 TO 31

110 Y=l

120 CALL VCHAR(Y,X,128)
140 NEXT X

200 FOR Y=l TO 24

210 X=31

220 CALL VCHAR(Y,X,128)
230 NEXT Y

300 FOR X=31 TO 2 STEP -

310 Y=24

320 CALL VCHAR(Y,X,128)
330 NEXT X

400 FOR Y=24 TO 1 STEP -

410 X=2

420 CALL VCHAR(Y,X,128)
430 NEXT Y

500 FOR X=4 TO 10

510 FOR Y=3 TO 9

520 CALL VCHAR(Y,X,128)
530 NEXT Y

540 NEXT X

600 FOR X=22 TO 29

610 FOR 'V=3 TO 9

620 CALL VCHAR(Y,X,128)
630 NEXT Y

640 NEXT X

700 FOR ,/=11 TO 13

710 FOR :X=14 TO 17

720 CALL VCHAR(Y,X,128)
730 NEXT X

77

740 NEXT Y

800 FOR X=5 TO 28

810 FOR Y=19 TO 20

820 CALL VCHAR(Y,X,128)
830 NEXT Y

840 NEXT X

850 CALL VCHAR(18,4,128)
860 CALL VCHAR(18,29,128)
900][F N=l THEN 1100

1000 FOR Y=3 TO 9

1010 FOR X=22 TO 29

1020 CALL VCHAR(Y,X,128)

1030 NEXT X

1040 NEXT Y

1050 N=l

1060 FOR T=l TO 150

1070 NEXT T

1080 GOTO 900

1100 FOR Y=9 TO 3 STEP -1

1110 FOR X=29 TO 22 STEP

1120 CALL VCHAR(Y,X,129)
1130 NEXT X

1140 NEXT Y

1150 N=0

1160 GOTO 1060

78

Borders, Boxes
& Billboards

Box The Screen
Here's how to draw a box around the graphics

display-screen area on your TV monitor.Lines 30and 50
draw the vertical sides of the box while lines 20 and 40
draw the horizontal bottom and top. Line 60 is a freeze-
frame loop to hold the picture so you can see it.

Program Listing

10 CALL CLEAR

20 CALL HCHARd, 1,64,32)

30 CALL VCHAR(1,32,64,24)

40 CALL HCHAR(24,1,64,32)

50 CALL VCHARd, 1,64,24)

60 GOTO 60

80

Screen Border

Program Listing

10 CALL CLEAR

20 D*="FFFF81818181FFFF"

40 CALL CHAR(128,D*)
50 CALL COLOR<13,7,16)
100 FOR X=2 TO 31

110 Y=l

120 CALL VCHAR(Y,X,128)
130 NEXT X

200 FOR Y=l TO 24

210 X=31

220 CALL VCHAR<Y,X,128)

230 NEXT Y

300 FOR X=31 TO 2 STEP -1

310 Y=24

320 CALL VCHAR(Y,X,128)
330 NEXT X

400 FOR Y=24 TO 1 STEP -1

410 X=2

420 CALL VCHAR<Y,X,128)
430 NEXT Y

500 GOTO 500

81

Flashing Screen Border

Program Listing

10 CALL CLEAR

20 D*="FFFF81818181FFFF"

40 CALL CHAR(128,D*)

100 FOR X=2 TO 31

110 Y=l

115 BOSUB 600

120 CALL VCHAR(Y,X,128)
130 NEXT X

200 FOR Y=l TO 24

210 X=31

215 GOSUB 800

220 CALL VCHAR(Y,X,128)
230 NEXT Y

300 FOR X=31 TO 2 STEP -1

310 Y=24

315 GOSUB 600

320 CALL VCHAR(Y,X,128)
330 NEXT X

400 FOR Y=24 TO 1 STEP -1

410 X=2

415 GOSUB 800

420 CALL VCHAR<Y,X,128)

430 NEXT Y

500 GOTO 100

600 IF INT (X/2)=*(X/2) THEN 700
610 CALL COLOR(13,7,16)

620 RETURN

700 CALL COLOR(13,16,7)
710 RETURN

800 IF INT<Y/2)=<Y/2)THEN 900

810 CALL COLOR(13,7,16)

820 RETURN

900 CALL COLOR(13,16,7)

910 RETURN

82

Box Score

To dress up scores during and at the end of a game
program, use this method of putting those scores in a
box. The box around the score will highlight it and jazz up
your video display.

Program Listing

10 CALL CLEAR

20 INPUT "PLAYER'S NAME: ": N*
30 INPUT "PLAYER'S SCORE: ":S
40 PRINT

50 S*=STR*(S>

60 LN=LEN(N*)+LEN(S*)
70 LT=LN+14

80 FOR Z=l TO LT

90 PRINT "*";
100 NEXT Z

110 PRINT

120 PRINT "* ";N*;"'S SCORE: ";S*;" *"
130 FOR Z=l TO LT

140 PRINT "*";
150 NEXT Z

160 FOR Z=l TO 10

170 PRINT

180 NEXT Z

190 GOTO 20

Sample Run

PLAYER'S NAME: HELEN

PLAYER'S SCORE: 88

* HELEN'S SCORE: 88 *

83

PLAYER'S NAME: SAM

PLAYER'S SCORE: 98765

* SAM'S SCORE: 98765 *

Blackboard

This program appears to draw a blackboard on the
screen. You can write messages on it, draw football plays,
create art or words etc. on this electronic chalkboard.

Program Listing

•FFFFFFFFFFFFFFFF")
10 CALL CLEAR

20 CALL CHAR(128,

30 CALL SCREEN(9)

40 FOR C=10 TO 22

50 FOR R=5 TO 19

60 CALL HCHAR(R,C

70 NEXT R

80 NEXT C

90 GOTO 90

84

128)

Centered Boxed Titles

Here's how to dress up your program titles.
After you type in and RUN the program, press any key

on your keyboard to do more.

Program Listing

10 CALL CLEAR

20 INPUT "WHAT IS THE TITLE? ":T*

30 LT=LEN(T*>

40 IF LT>20 THEN 60

50 GOTO 80

60 1PRINT "OOPS, TOO LONG, TRY AGAIN"
70 GOTO 20

80 1LB=LT+6

90 SP=<(32-LB)/2)-l

100 AS*="*"

110 CALL CLEAR

120 PRINT TAB(SP-l);"
130 FOR L=l TO LB

140 PRINT AS*;
150 NEXT L

160 PRINT TAB(SP)!"** M;T*;" **»
170 PRINT TAB(SP-l)5"
180 FOR L=l TO LB

190 PRINT AS*;

200 NEXT L

210 FOR L=l TO 15

220 PRINT

230 NEXT L

240 CALL KEY(0,Z,X)
250 IF X»0 THEN 240

260 GOTO 10

85

Flashing Message Border

Program Listing

10 CALL CLEAR

20 B*="FFFF81818181FFFF"

30 CALL CHAR(128,B*)
35 REM *****MESSAGE STORED IN M* AT

LINE 50

40 PRINT "TYPE A MESSAGE OF UP"

45 PRINT "TO 20 CHARACTERS IN LENGTH'

50 INPUT M*

55 LM=LEN(M*>

60 IF LM>20 THEN 50

65 CALL CLEAR

70 TS=INT((32-LM)/2)-l

80 FOR L=l TO TS

82 PRINT CHR*(32);

84 NEXT L

86 PRINT M*

88 FOR L=l TO 11

90 PRINT

92 NEXT L

100 FOR X=TS TO TS+LM+5

110 Y=9

115 GOSUB 600

120 CALL VCHAR(Y,X,128)
130 NEXT X

200 FOR Y=9 TO 15

210 X=TS+LM+5

215 GOSUB 8O0

220 CALL VCHAR(Y:,X, 128)
230 NEXT Y

300 FOR X=(TS+LM+5)TO TS STEP -1

310 Y=15

315 GOSUB 600

320 CALL VCHAR(Y,X,128)
330 NEXT X

400 FOR Y=15 TO 9 STEP -1

410 X=TS

415 GOSUB 800

86

420 CALL VCHAR(Y,X,128)
430 NEXT Y

500 GOTO 100

600 IF INT(X/2)=(X/2)THEN 700

610 CALL COLOR(13,7,16)
620 RETURN

700 CALL COLOR(13,16,7)

710 RETURN

800 IF INT(Y/2)=(Y/2)THEN 900

810 CALL COLOR(13,7,16)

820 RETURN

900 CALL COLOR(13,16,7)
910 RETURN

87

Flashing Program Title

Program Listing

10 CALL CLEAR

20 B*="FFFF81818181FFFF"

30 CALL CHAR(128,B*)
40 REM *****PR0GRAM TITLE OF UP TO 22

CHARACTERS STORED IN PT* IN LINE 50

50 PT*="PROGRAM TITLE"

55 LM=LEN(PT*)

60 IF LM>22 THEN 50

65 CALL CLEAR

70 TS=INT((32-LM)/2)-l

80 FOR L=l TO TS

82 PRINT CHR*(32);

84 NEXT L

86 PRINT PT*

88 FOR L=l TO 11

90 PRINT

92 NEXT L

100 FOR X=TS TO TS+LM+5

110 Y=9

115 GOSUB 600

120 CALL VCHAR(Y,X,128)
130 NEXT X

200 FOR Y=9 TO 15

210 X=TS+LM+5

215 GOSUB 800

220 CALL VCHAR(Y,X,128)
230 NEXT Y

300 FOR X=(TS+LM+5)TO TS STEP -1

310 Y=15

315 GOSUB 600

320 CALL VCHAR(Y,X,128)
330 NEXT X

400 FOR Y=15 TO 9 STEP -1

410 X=TS

415 GOSUB 800

420 CALL VCHAR(Y,X,128)
430 NEXT Y

88

500 GOTO 100

600 IF INT(X/2)=(X/2)THEN 700
610 CALL COLOR(13,5, 11)
620 RETURN

700 CALL COLOR(13,11,5)
710 RETURN

800 IF INT(Y/2)=(Y/2)THEN 900
810 CALL COLOR(13,5,11)
820 RETURN

900 CALL COLOR(13,11,5)
910 RETURN

89

Appendix

Appendix A: BASIC Words
ABS

ASC

ATN

BREAK

BYE

CALL CHAR
CALL CLEAR
CALL COLOR
CALL GCHAR
CALL HCHAR

CALL JOYST
CALL KEY

CALL SCREEN
CALL SOUND
CALL VCHAR
CHR$
CLOSE

CON

CONTINUE
COS

DATA

DEF

DELETE
DIM

DISPLAY

EDIT

END

EOF

EXP

FOR

GOSUB
GOTO
IF

ELSE

INPUT

INPUT*
INT

LEN

absolute value
ASCII number of string's first
character

trig arctangent
stops program run
leaves BASIC

redefines ASCII characters
erases video display
sets video colors

finds video location contents
places character on video screen
joystick input
find keypress; like INKEY$
change video screen color
causes tones, noise
places character on video screen
changes number to character
shuts a file

same as CONTINUE
resume run after BREAK
trig cosine
stores numbers, letters in program
user-defined function
removes program or file
dimensions an array
PRINT

displays line for changing
concludes program execution
end of file

exponential value ex
FOR/NEXT loop
move to subroutine

move to line number
IF/THEN decision maker
IF/THEN/ELSE decision maker
takes in info

takes in info from external file
finds integer of number
changes character to number

91

LET

LIST

LOG

NEW

NEXT

NUM

NUMBER

OLD

ON

OPEN

OPTION BASE

POS

PRINT

RANDOMIZE

READ

REC

REM

RES

RESEQUENCE

RESTORE

RETURN

RND

RUN

SAVE

SEG$
SGN

SIN

SQR
STEP

STOP

STR$

TAB

TAN

THEN

TO

TRACE

UNBREAK

UNTRACE

VAL

92

optional; assign value to variable
display program lines
natural logarithm
empty the program memory
FOR/NEXT loop
same as NUMBER
automatic line numbering
load from mass storage device to
memory

ON/GOSUB or ON/GOTO
establish a file
lowest array subscript
position of a substring
output to display or external device
shuffle random number generator
finds DATA lines and moves info
record number; with PRINT
remarks

same as RESEQUENCE
renumber program lines
resets DATA/READ
go back to main program after
GOSUB
random number generator
start program execution
copy program to external file
finds substring
find whether number is positive or
negative
trig sine
square root
FOR/NEXT loop increment control
ends program run
changes number to string
control PRINT or DISPLAY location
trig tangent
IF/THEN decision maker
FOR/NEXT loop
debug program lines
remove breakpoints
cancels TRACE
changes string to number

Appendix B: Character Sets

Set ASCII Code

1 32-39

2 40-47

3 48-55

4 56-63

5 64-71

6 72-79

7 80-87

8 88-95

9 96-103

10 104-111

11 112-119

12 120-127

13 128-135

14 136-143

15 144-151

16 152-159

Appendix C: Color Codes

Number Color

1 Transparent
2 Black

3 Medium green
4 Light green
5 Dark blue

6 Light blue
7 Dark red

8 Cyan
9 Medium red

10 Light red
11 Dark yellow
12 Light yellow
13 Dark green
14 Magenta
15 Gray
16 White

93

Appendix D: Graphics Grid

Use the handy grid form to layout your on-screen
designs. Imagine the vertical direction as the Y axis and the
horizontal direction as the X axis. You may substitute larger
graph paper for this function. Use 10-per-inch division
paper.

94

Computer books from
ARCsoft Publishers
At Your Bookstore

For the Texas Instruments TI-99/4A Home Computer:
Texas Instruments Home Computer Games Programs
Len Turner $8.95 ISBN 0-86668-032-2
Texas Instruments Home Computer Graphics Programs
Len Turner $9.95 |SBN 0-86668-031-4

101 Programming Tips &Tricks for the Texas Instruments TI-99/4A
Len Turner $8.95 ISBN 0-86668-025-X
36 Texas Instruments TI-99/4A Programs for Home, School & Office
Len Turner $8.95 ISBN 0-86668-024-1
Texas Instruments Computer Program Writing Workbook
Len Turner $4.95 |SBN 0-86668-812-9

For the Commodore computers:
Commodore 64 Computer Programs for Beginners
Howard Adler $8.95 ISBN 0-86668-033-0
101 Programming Tips & Tricks for the VIC-20 and Commodore 64
Howard Adler $8.95 ISBN 0-86668-030-6
34 VIC-20 Computer Programs for Home, School & Office
Howard Adler $8.95 ISBN 0-86668-029-2
VIC-20 Computer Program Writing Workbook
Howard Adler $4.95 ISBN 0-86668-811-0

For the TRS-80 Model 100and other portable computers
44 Programsfor the TRS-80 Model 100Portable Computer
Jjm Co,e $8.95 ISBN 0-86668-034-9

Forthe TRS-80 Color Computer and TDP-100 computers:
Color Computer Graphics
Ron Clark $9.95 ISBN 0-86668-012-8
101 Color Computer Programming Tips &Tricks
Ron Clark $7.95 ISBN 0-86668-007-1
55 Color Computer Programs for Home, School & Office
Ron Clark $9.95 ISBN 0-86668-005-5
55 MORE Color Computer Programs for Home, School & Office
Ron Clark $9.95 ISBN 0-86668-008-X
The Color Computer Songbook
Ron Clark $7.95 ISBN 0-86668-011-X
TRS-80 Color Computer Program Writing Workbook
Ron Clark $4.95 ISBN 0-86668-816-1
My Buttons Are Blue and Other Love Poems
Edited by Ron Clark $4.95 ISBN 0-86668-013-6

95

For the ATARI computers:

101 ATARI Computer Programming Tips &Tricks
Alan North $8.95 ISBN 0-86668-022-5
31 New ATARI Computer Programs for Home, School &Office
Alan North $8.95 ISBN 0-86668-018-7
ATARI Computer Program Writing Workbook
Alan North $4.95 ISBN 0-86668-814-5

For the TIMEX/Sinclair 1000, Sinclair ZX-81 and MicroAce:

Practical TIMEX/Sinclair Computer Programs for Beginners
Edward Page $7.95 ISBN 0-86668-027-6
101 TIMEX 1000/Sinclair ZX-81 Programming Tips & Tricks
Edward Page $7.95 ISBN 0-86668-020-9
TIMEX/Sinclair Computer Games Programs
Edward Page $7.95 ISBN 0-86668-026-8
37 TIMEX 1000/Sinclair ZX-81 Programs for Home, School & Office
Edward Page $8.95 ISBN 0-86668-021-7
TIMEX/Sinclair Computer Program Writing Workbook
Edward Page $4.95 ISBN 0-86668-810-2

For the Apple and Franklin ACE computers:

101 APPLE Computer Programming Tips & Tricks
Fred White $8.95 ISBN 0-86668-015-2

33 New APPLE Computer Programs for Home, School & Office
Fred White $8.95 ISBN 0-86668-016-0

APPLE Computer Program Writing Workbook
Fred White $4.95 ISBN 0-86668-813-7

For the TRS-80, Sharp and Casio Pocket Computers:

Practical PC-2/PC-1500 Pocket Computer Programs
Jim Cole $7.95 ISBN0-86668-028-4

Pocket Computer Programming Made Easy
Jim Cole $8.95 ISB N0-86668-009-8

99 Tips & Tricks for the New Pocket Computers
Jim Cole $7.95 ISBN 0-86668-019-5

101 Pocket Computer Programming Tips & Tricks
Jim Cole $7.95 ISBN 0-86668-004-7

Murder In The Mansion and Other Computer Adventures — 2nd Edition
Jim Cole $6.95 ISBN 0-86668-501-4

50 Programs in BASIC for Home, School &Office — 2nd Edition
Jim Cole $9.95 ISBN 0-86668-502-2

50 MORE Programs in BASIC for Home, School & Office
Jim Cole $9.95 ISBN 0-86668-003-9

Pocket Computer Program Writing Workbook
Jim Cole $4.95 ISBN 0-86668-817-X

35 Practical Programs for the CASIO Pocket Computer
Jim Cole $8.95 ISBN 0-86668-014-4

96

	front-cover
	Binder2
	content006
	content007
	content008
	content009
	content010

	back-cover

